1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2017 Joyent, Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 * Copyright (c) 2019, Datto Inc. All rights reserved. 31 * Copyright (c) 2021, Klara Inc. 32 * Copyright [2021] Hewlett Packard Enterprise Development LP 33 */ 34 35 #include <sys/zfs_context.h> 36 #include <sys/fm/fs/zfs.h> 37 #include <sys/spa.h> 38 #include <sys/spa_impl.h> 39 #include <sys/bpobj.h> 40 #include <sys/dmu.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_dir.h> 43 #include <sys/vdev_impl.h> 44 #include <sys/vdev_rebuild.h> 45 #include <sys/vdev_draid.h> 46 #include <sys/uberblock_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/space_map.h> 50 #include <sys/space_reftree.h> 51 #include <sys/zio.h> 52 #include <sys/zap.h> 53 #include <sys/fs/zfs.h> 54 #include <sys/arc.h> 55 #include <sys/zil.h> 56 #include <sys/dsl_scan.h> 57 #include <sys/vdev_raidz.h> 58 #include <sys/abd.h> 59 #include <sys/vdev_initialize.h> 60 #include <sys/vdev_trim.h> 61 #include <sys/zvol.h> 62 #include <sys/zfs_ratelimit.h> 63 #include "zfs_prop.h" 64 65 /* 66 * One metaslab from each (normal-class) vdev is used by the ZIL. These are 67 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are 68 * part of the spa_embedded_log_class. The metaslab with the most free space 69 * in each vdev is selected for this purpose when the pool is opened (or a 70 * vdev is added). See vdev_metaslab_init(). 71 * 72 * Log blocks can be allocated from the following locations. Each one is tried 73 * in order until the allocation succeeds: 74 * 1. dedicated log vdevs, aka "slog" (spa_log_class) 75 * 2. embedded slog metaslabs (spa_embedded_log_class) 76 * 3. other metaslabs in normal vdevs (spa_normal_class) 77 * 78 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer 79 * than this number of metaslabs in the vdev. This ensures that we don't set 80 * aside an unreasonable amount of space for the ZIL. If set to less than 81 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced 82 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab. 83 */ 84 static uint_t zfs_embedded_slog_min_ms = 64; 85 86 /* default target for number of metaslabs per top-level vdev */ 87 static uint_t zfs_vdev_default_ms_count = 200; 88 89 /* minimum number of metaslabs per top-level vdev */ 90 static uint_t zfs_vdev_min_ms_count = 16; 91 92 /* practical upper limit of total metaslabs per top-level vdev */ 93 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17; 94 95 /* lower limit for metaslab size (512M) */ 96 static uint_t zfs_vdev_default_ms_shift = 29; 97 98 /* upper limit for metaslab size (16G) */ 99 static const uint_t zfs_vdev_max_ms_shift = 34; 100 101 int vdev_validate_skip = B_FALSE; 102 103 /* 104 * Since the DTL space map of a vdev is not expected to have a lot of 105 * entries, we default its block size to 4K. 106 */ 107 int zfs_vdev_dtl_sm_blksz = (1 << 12); 108 109 /* 110 * Rate limit slow IO (delay) events to this many per second. 111 */ 112 static unsigned int zfs_slow_io_events_per_second = 20; 113 114 /* 115 * Rate limit checksum events after this many checksum errors per second. 116 */ 117 static unsigned int zfs_checksum_events_per_second = 20; 118 119 /* 120 * Ignore errors during scrub/resilver. Allows to work around resilver 121 * upon import when there are pool errors. 122 */ 123 static int zfs_scan_ignore_errors = 0; 124 125 /* 126 * vdev-wide space maps that have lots of entries written to them at 127 * the end of each transaction can benefit from a higher I/O bandwidth 128 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 129 */ 130 int zfs_vdev_standard_sm_blksz = (1 << 17); 131 132 /* 133 * Tunable parameter for debugging or performance analysis. Setting this 134 * will cause pool corruption on power loss if a volatile out-of-order 135 * write cache is enabled. 136 */ 137 int zfs_nocacheflush = 0; 138 139 /* 140 * Maximum and minimum ashift values that can be automatically set based on 141 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX 142 * is higher than the maximum value, it is intentionally limited here to not 143 * excessively impact pool space efficiency. Higher ashift values may still 144 * be forced by vdev logical ashift or by user via ashift property, but won't 145 * be set automatically as a performance optimization. 146 */ 147 uint_t zfs_vdev_max_auto_ashift = 14; 148 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN; 149 150 void 151 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 152 { 153 va_list adx; 154 char buf[256]; 155 156 va_start(adx, fmt); 157 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 158 va_end(adx); 159 160 if (vd->vdev_path != NULL) { 161 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 162 vd->vdev_path, buf); 163 } else { 164 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 165 vd->vdev_ops->vdev_op_type, 166 (u_longlong_t)vd->vdev_id, 167 (u_longlong_t)vd->vdev_guid, buf); 168 } 169 } 170 171 void 172 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 173 { 174 char state[20]; 175 176 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 177 zfs_dbgmsg("%*svdev %llu: %s", indent, "", 178 (u_longlong_t)vd->vdev_id, 179 vd->vdev_ops->vdev_op_type); 180 return; 181 } 182 183 switch (vd->vdev_state) { 184 case VDEV_STATE_UNKNOWN: 185 (void) snprintf(state, sizeof (state), "unknown"); 186 break; 187 case VDEV_STATE_CLOSED: 188 (void) snprintf(state, sizeof (state), "closed"); 189 break; 190 case VDEV_STATE_OFFLINE: 191 (void) snprintf(state, sizeof (state), "offline"); 192 break; 193 case VDEV_STATE_REMOVED: 194 (void) snprintf(state, sizeof (state), "removed"); 195 break; 196 case VDEV_STATE_CANT_OPEN: 197 (void) snprintf(state, sizeof (state), "can't open"); 198 break; 199 case VDEV_STATE_FAULTED: 200 (void) snprintf(state, sizeof (state), "faulted"); 201 break; 202 case VDEV_STATE_DEGRADED: 203 (void) snprintf(state, sizeof (state), "degraded"); 204 break; 205 case VDEV_STATE_HEALTHY: 206 (void) snprintf(state, sizeof (state), "healthy"); 207 break; 208 default: 209 (void) snprintf(state, sizeof (state), "<state %u>", 210 (uint_t)vd->vdev_state); 211 } 212 213 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 214 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 215 vd->vdev_islog ? " (log)" : "", 216 (u_longlong_t)vd->vdev_guid, 217 vd->vdev_path ? vd->vdev_path : "N/A", state); 218 219 for (uint64_t i = 0; i < vd->vdev_children; i++) 220 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 221 } 222 223 /* 224 * Virtual device management. 225 */ 226 227 static vdev_ops_t *const vdev_ops_table[] = { 228 &vdev_root_ops, 229 &vdev_raidz_ops, 230 &vdev_draid_ops, 231 &vdev_draid_spare_ops, 232 &vdev_mirror_ops, 233 &vdev_replacing_ops, 234 &vdev_spare_ops, 235 &vdev_disk_ops, 236 &vdev_file_ops, 237 &vdev_missing_ops, 238 &vdev_hole_ops, 239 &vdev_indirect_ops, 240 NULL 241 }; 242 243 /* 244 * Given a vdev type, return the appropriate ops vector. 245 */ 246 static vdev_ops_t * 247 vdev_getops(const char *type) 248 { 249 vdev_ops_t *ops, *const *opspp; 250 251 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 252 if (strcmp(ops->vdev_op_type, type) == 0) 253 break; 254 255 return (ops); 256 } 257 258 /* 259 * Given a vdev and a metaslab class, find which metaslab group we're 260 * interested in. All vdevs may belong to two different metaslab classes. 261 * Dedicated slog devices use only the primary metaslab group, rather than a 262 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL. 263 */ 264 metaslab_group_t * 265 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc) 266 { 267 if (mc == spa_embedded_log_class(vd->vdev_spa) && 268 vd->vdev_log_mg != NULL) 269 return (vd->vdev_log_mg); 270 else 271 return (vd->vdev_mg); 272 } 273 274 void 275 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 276 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 277 { 278 (void) vd, (void) remain_rs; 279 280 physical_rs->rs_start = logical_rs->rs_start; 281 physical_rs->rs_end = logical_rs->rs_end; 282 } 283 284 /* 285 * Derive the enumerated allocation bias from string input. 286 * String origin is either the per-vdev zap or zpool(8). 287 */ 288 static vdev_alloc_bias_t 289 vdev_derive_alloc_bias(const char *bias) 290 { 291 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 292 293 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) 294 alloc_bias = VDEV_BIAS_LOG; 295 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) 296 alloc_bias = VDEV_BIAS_SPECIAL; 297 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) 298 alloc_bias = VDEV_BIAS_DEDUP; 299 300 return (alloc_bias); 301 } 302 303 /* 304 * Default asize function: return the MAX of psize with the asize of 305 * all children. This is what's used by anything other than RAID-Z. 306 */ 307 uint64_t 308 vdev_default_asize(vdev_t *vd, uint64_t psize) 309 { 310 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 311 uint64_t csize; 312 313 for (int c = 0; c < vd->vdev_children; c++) { 314 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 315 asize = MAX(asize, csize); 316 } 317 318 return (asize); 319 } 320 321 uint64_t 322 vdev_default_min_asize(vdev_t *vd) 323 { 324 return (vd->vdev_min_asize); 325 } 326 327 /* 328 * Get the minimum allocatable size. We define the allocatable size as 329 * the vdev's asize rounded to the nearest metaslab. This allows us to 330 * replace or attach devices which don't have the same physical size but 331 * can still satisfy the same number of allocations. 332 */ 333 uint64_t 334 vdev_get_min_asize(vdev_t *vd) 335 { 336 vdev_t *pvd = vd->vdev_parent; 337 338 /* 339 * If our parent is NULL (inactive spare or cache) or is the root, 340 * just return our own asize. 341 */ 342 if (pvd == NULL) 343 return (vd->vdev_asize); 344 345 /* 346 * The top-level vdev just returns the allocatable size rounded 347 * to the nearest metaslab. 348 */ 349 if (vd == vd->vdev_top) 350 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 351 352 return (pvd->vdev_ops->vdev_op_min_asize(pvd)); 353 } 354 355 void 356 vdev_set_min_asize(vdev_t *vd) 357 { 358 vd->vdev_min_asize = vdev_get_min_asize(vd); 359 360 for (int c = 0; c < vd->vdev_children; c++) 361 vdev_set_min_asize(vd->vdev_child[c]); 362 } 363 364 /* 365 * Get the minimal allocation size for the top-level vdev. 366 */ 367 uint64_t 368 vdev_get_min_alloc(vdev_t *vd) 369 { 370 uint64_t min_alloc = 1ULL << vd->vdev_ashift; 371 372 if (vd->vdev_ops->vdev_op_min_alloc != NULL) 373 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd); 374 375 return (min_alloc); 376 } 377 378 /* 379 * Get the parity level for a top-level vdev. 380 */ 381 uint64_t 382 vdev_get_nparity(vdev_t *vd) 383 { 384 uint64_t nparity = 0; 385 386 if (vd->vdev_ops->vdev_op_nparity != NULL) 387 nparity = vd->vdev_ops->vdev_op_nparity(vd); 388 389 return (nparity); 390 } 391 392 static int 393 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value) 394 { 395 spa_t *spa = vd->vdev_spa; 396 objset_t *mos = spa->spa_meta_objset; 397 uint64_t objid; 398 int err; 399 400 if (vd->vdev_top_zap != 0) { 401 objid = vd->vdev_top_zap; 402 } else if (vd->vdev_leaf_zap != 0) { 403 objid = vd->vdev_leaf_zap; 404 } else { 405 return (EINVAL); 406 } 407 408 err = zap_lookup(mos, objid, vdev_prop_to_name(prop), 409 sizeof (uint64_t), 1, value); 410 411 if (err == ENOENT) 412 *value = vdev_prop_default_numeric(prop); 413 414 return (err); 415 } 416 417 /* 418 * Get the number of data disks for a top-level vdev. 419 */ 420 uint64_t 421 vdev_get_ndisks(vdev_t *vd) 422 { 423 uint64_t ndisks = 1; 424 425 if (vd->vdev_ops->vdev_op_ndisks != NULL) 426 ndisks = vd->vdev_ops->vdev_op_ndisks(vd); 427 428 return (ndisks); 429 } 430 431 vdev_t * 432 vdev_lookup_top(spa_t *spa, uint64_t vdev) 433 { 434 vdev_t *rvd = spa->spa_root_vdev; 435 436 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 437 438 if (vdev < rvd->vdev_children) { 439 ASSERT(rvd->vdev_child[vdev] != NULL); 440 return (rvd->vdev_child[vdev]); 441 } 442 443 return (NULL); 444 } 445 446 vdev_t * 447 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 448 { 449 vdev_t *mvd; 450 451 if (vd->vdev_guid == guid) 452 return (vd); 453 454 for (int c = 0; c < vd->vdev_children; c++) 455 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 456 NULL) 457 return (mvd); 458 459 return (NULL); 460 } 461 462 static int 463 vdev_count_leaves_impl(vdev_t *vd) 464 { 465 int n = 0; 466 467 if (vd->vdev_ops->vdev_op_leaf) 468 return (1); 469 470 for (int c = 0; c < vd->vdev_children; c++) 471 n += vdev_count_leaves_impl(vd->vdev_child[c]); 472 473 return (n); 474 } 475 476 int 477 vdev_count_leaves(spa_t *spa) 478 { 479 int rc; 480 481 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 482 rc = vdev_count_leaves_impl(spa->spa_root_vdev); 483 spa_config_exit(spa, SCL_VDEV, FTAG); 484 485 return (rc); 486 } 487 488 void 489 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 490 { 491 size_t oldsize, newsize; 492 uint64_t id = cvd->vdev_id; 493 vdev_t **newchild; 494 495 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 496 ASSERT(cvd->vdev_parent == NULL); 497 498 cvd->vdev_parent = pvd; 499 500 if (pvd == NULL) 501 return; 502 503 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 504 505 oldsize = pvd->vdev_children * sizeof (vdev_t *); 506 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 507 newsize = pvd->vdev_children * sizeof (vdev_t *); 508 509 newchild = kmem_alloc(newsize, KM_SLEEP); 510 if (pvd->vdev_child != NULL) { 511 memcpy(newchild, pvd->vdev_child, oldsize); 512 kmem_free(pvd->vdev_child, oldsize); 513 } 514 515 pvd->vdev_child = newchild; 516 pvd->vdev_child[id] = cvd; 517 518 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 519 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 520 521 /* 522 * Walk up all ancestors to update guid sum. 523 */ 524 for (; pvd != NULL; pvd = pvd->vdev_parent) 525 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 526 527 if (cvd->vdev_ops->vdev_op_leaf) { 528 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); 529 cvd->vdev_spa->spa_leaf_list_gen++; 530 } 531 } 532 533 void 534 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 535 { 536 int c; 537 uint_t id = cvd->vdev_id; 538 539 ASSERT(cvd->vdev_parent == pvd); 540 541 if (pvd == NULL) 542 return; 543 544 ASSERT(id < pvd->vdev_children); 545 ASSERT(pvd->vdev_child[id] == cvd); 546 547 pvd->vdev_child[id] = NULL; 548 cvd->vdev_parent = NULL; 549 550 for (c = 0; c < pvd->vdev_children; c++) 551 if (pvd->vdev_child[c]) 552 break; 553 554 if (c == pvd->vdev_children) { 555 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 556 pvd->vdev_child = NULL; 557 pvd->vdev_children = 0; 558 } 559 560 if (cvd->vdev_ops->vdev_op_leaf) { 561 spa_t *spa = cvd->vdev_spa; 562 list_remove(&spa->spa_leaf_list, cvd); 563 spa->spa_leaf_list_gen++; 564 } 565 566 /* 567 * Walk up all ancestors to update guid sum. 568 */ 569 for (; pvd != NULL; pvd = pvd->vdev_parent) 570 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 571 } 572 573 /* 574 * Remove any holes in the child array. 575 */ 576 void 577 vdev_compact_children(vdev_t *pvd) 578 { 579 vdev_t **newchild, *cvd; 580 int oldc = pvd->vdev_children; 581 int newc; 582 583 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 584 585 if (oldc == 0) 586 return; 587 588 for (int c = newc = 0; c < oldc; c++) 589 if (pvd->vdev_child[c]) 590 newc++; 591 592 if (newc > 0) { 593 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP); 594 595 for (int c = newc = 0; c < oldc; c++) { 596 if ((cvd = pvd->vdev_child[c]) != NULL) { 597 newchild[newc] = cvd; 598 cvd->vdev_id = newc++; 599 } 600 } 601 } else { 602 newchild = NULL; 603 } 604 605 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 606 pvd->vdev_child = newchild; 607 pvd->vdev_children = newc; 608 } 609 610 /* 611 * Allocate and minimally initialize a vdev_t. 612 */ 613 vdev_t * 614 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 615 { 616 vdev_t *vd; 617 vdev_indirect_config_t *vic; 618 619 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 620 vic = &vd->vdev_indirect_config; 621 622 if (spa->spa_root_vdev == NULL) { 623 ASSERT(ops == &vdev_root_ops); 624 spa->spa_root_vdev = vd; 625 spa->spa_load_guid = spa_generate_guid(NULL); 626 } 627 628 if (guid == 0 && ops != &vdev_hole_ops) { 629 if (spa->spa_root_vdev == vd) { 630 /* 631 * The root vdev's guid will also be the pool guid, 632 * which must be unique among all pools. 633 */ 634 guid = spa_generate_guid(NULL); 635 } else { 636 /* 637 * Any other vdev's guid must be unique within the pool. 638 */ 639 guid = spa_generate_guid(spa); 640 } 641 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 642 } 643 644 vd->vdev_spa = spa; 645 vd->vdev_id = id; 646 vd->vdev_guid = guid; 647 vd->vdev_guid_sum = guid; 648 vd->vdev_ops = ops; 649 vd->vdev_state = VDEV_STATE_CLOSED; 650 vd->vdev_ishole = (ops == &vdev_hole_ops); 651 vic->vic_prev_indirect_vdev = UINT64_MAX; 652 653 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 654 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 655 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL, 656 0, 0); 657 658 /* 659 * Initialize rate limit structs for events. We rate limit ZIO delay 660 * and checksum events so that we don't overwhelm ZED with thousands 661 * of events when a disk is acting up. 662 */ 663 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second, 664 1); 665 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_slow_io_events_per_second, 666 1); 667 zfs_ratelimit_init(&vd->vdev_checksum_rl, 668 &zfs_checksum_events_per_second, 1); 669 670 /* 671 * Default Thresholds for tuning ZED 672 */ 673 vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N); 674 vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T); 675 vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N); 676 vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T); 677 678 list_link_init(&vd->vdev_config_dirty_node); 679 list_link_init(&vd->vdev_state_dirty_node); 680 list_link_init(&vd->vdev_initialize_node); 681 list_link_init(&vd->vdev_leaf_node); 682 list_link_init(&vd->vdev_trim_node); 683 684 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL); 685 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 686 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 687 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); 688 689 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 690 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 691 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 692 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 693 694 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL); 695 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL); 696 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL); 697 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL); 698 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL); 699 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL); 700 701 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL); 702 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL); 703 704 for (int t = 0; t < DTL_TYPES; t++) { 705 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 706 0); 707 } 708 709 txg_list_create(&vd->vdev_ms_list, spa, 710 offsetof(struct metaslab, ms_txg_node)); 711 txg_list_create(&vd->vdev_dtl_list, spa, 712 offsetof(struct vdev, vdev_dtl_node)); 713 vd->vdev_stat.vs_timestamp = gethrtime(); 714 vdev_queue_init(vd); 715 vdev_cache_init(vd); 716 717 return (vd); 718 } 719 720 /* 721 * Allocate a new vdev. The 'alloctype' is used to control whether we are 722 * creating a new vdev or loading an existing one - the behavior is slightly 723 * different for each case. 724 */ 725 int 726 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 727 int alloctype) 728 { 729 vdev_ops_t *ops; 730 char *type; 731 uint64_t guid = 0, islog; 732 vdev_t *vd; 733 vdev_indirect_config_t *vic; 734 char *tmp = NULL; 735 int rc; 736 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 737 boolean_t top_level = (parent && !parent->vdev_parent); 738 739 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 740 741 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 742 return (SET_ERROR(EINVAL)); 743 744 if ((ops = vdev_getops(type)) == NULL) 745 return (SET_ERROR(EINVAL)); 746 747 /* 748 * If this is a load, get the vdev guid from the nvlist. 749 * Otherwise, vdev_alloc_common() will generate one for us. 750 */ 751 if (alloctype == VDEV_ALLOC_LOAD) { 752 uint64_t label_id; 753 754 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 755 label_id != id) 756 return (SET_ERROR(EINVAL)); 757 758 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 759 return (SET_ERROR(EINVAL)); 760 } else if (alloctype == VDEV_ALLOC_SPARE) { 761 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 762 return (SET_ERROR(EINVAL)); 763 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 764 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 765 return (SET_ERROR(EINVAL)); 766 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 767 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 768 return (SET_ERROR(EINVAL)); 769 } 770 771 /* 772 * The first allocated vdev must be of type 'root'. 773 */ 774 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 775 return (SET_ERROR(EINVAL)); 776 777 /* 778 * Determine whether we're a log vdev. 779 */ 780 islog = 0; 781 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 782 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 783 return (SET_ERROR(ENOTSUP)); 784 785 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 786 return (SET_ERROR(ENOTSUP)); 787 788 if (top_level && alloctype == VDEV_ALLOC_ADD) { 789 char *bias; 790 791 /* 792 * If creating a top-level vdev, check for allocation 793 * classes input. 794 */ 795 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 796 &bias) == 0) { 797 alloc_bias = vdev_derive_alloc_bias(bias); 798 799 /* spa_vdev_add() expects feature to be enabled */ 800 if (spa->spa_load_state != SPA_LOAD_CREATE && 801 !spa_feature_is_enabled(spa, 802 SPA_FEATURE_ALLOCATION_CLASSES)) { 803 return (SET_ERROR(ENOTSUP)); 804 } 805 } 806 807 /* spa_vdev_add() expects feature to be enabled */ 808 if (ops == &vdev_draid_ops && 809 spa->spa_load_state != SPA_LOAD_CREATE && 810 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) { 811 return (SET_ERROR(ENOTSUP)); 812 } 813 } 814 815 /* 816 * Initialize the vdev specific data. This is done before calling 817 * vdev_alloc_common() since it may fail and this simplifies the 818 * error reporting and cleanup code paths. 819 */ 820 void *tsd = NULL; 821 if (ops->vdev_op_init != NULL) { 822 rc = ops->vdev_op_init(spa, nv, &tsd); 823 if (rc != 0) { 824 return (rc); 825 } 826 } 827 828 vd = vdev_alloc_common(spa, id, guid, ops); 829 vd->vdev_tsd = tsd; 830 vd->vdev_islog = islog; 831 832 if (top_level && alloc_bias != VDEV_BIAS_NONE) 833 vd->vdev_alloc_bias = alloc_bias; 834 835 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 836 vd->vdev_path = spa_strdup(vd->vdev_path); 837 838 /* 839 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a 840 * fault on a vdev and want it to persist across imports (like with 841 * zpool offline -f). 842 */ 843 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp); 844 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) { 845 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 846 vd->vdev_faulted = 1; 847 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 848 } 849 850 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 851 vd->vdev_devid = spa_strdup(vd->vdev_devid); 852 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 853 &vd->vdev_physpath) == 0) 854 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 855 856 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 857 &vd->vdev_enc_sysfs_path) == 0) 858 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path); 859 860 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 861 vd->vdev_fru = spa_strdup(vd->vdev_fru); 862 863 /* 864 * Set the whole_disk property. If it's not specified, leave the value 865 * as -1. 866 */ 867 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 868 &vd->vdev_wholedisk) != 0) 869 vd->vdev_wholedisk = -1ULL; 870 871 vic = &vd->vdev_indirect_config; 872 873 ASSERT0(vic->vic_mapping_object); 874 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 875 &vic->vic_mapping_object); 876 ASSERT0(vic->vic_births_object); 877 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 878 &vic->vic_births_object); 879 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 880 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 881 &vic->vic_prev_indirect_vdev); 882 883 /* 884 * Look for the 'not present' flag. This will only be set if the device 885 * was not present at the time of import. 886 */ 887 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 888 &vd->vdev_not_present); 889 890 /* 891 * Get the alignment requirement. 892 */ 893 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 894 895 /* 896 * Retrieve the vdev creation time. 897 */ 898 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 899 &vd->vdev_crtxg); 900 901 /* 902 * If we're a top-level vdev, try to load the allocation parameters. 903 */ 904 if (top_level && 905 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 906 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 907 &vd->vdev_ms_array); 908 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 909 &vd->vdev_ms_shift); 910 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 911 &vd->vdev_asize); 912 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING, 913 &vd->vdev_noalloc); 914 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 915 &vd->vdev_removing); 916 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 917 &vd->vdev_top_zap); 918 } else { 919 ASSERT0(vd->vdev_top_zap); 920 } 921 922 if (top_level && alloctype != VDEV_ALLOC_ATTACH) { 923 ASSERT(alloctype == VDEV_ALLOC_LOAD || 924 alloctype == VDEV_ALLOC_ADD || 925 alloctype == VDEV_ALLOC_SPLIT || 926 alloctype == VDEV_ALLOC_ROOTPOOL); 927 /* Note: metaslab_group_create() is now deferred */ 928 } 929 930 if (vd->vdev_ops->vdev_op_leaf && 931 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 932 (void) nvlist_lookup_uint64(nv, 933 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 934 } else { 935 ASSERT0(vd->vdev_leaf_zap); 936 } 937 938 /* 939 * If we're a leaf vdev, try to load the DTL object and other state. 940 */ 941 942 if (vd->vdev_ops->vdev_op_leaf && 943 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 944 alloctype == VDEV_ALLOC_ROOTPOOL)) { 945 if (alloctype == VDEV_ALLOC_LOAD) { 946 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 947 &vd->vdev_dtl_object); 948 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 949 &vd->vdev_unspare); 950 } 951 952 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 953 uint64_t spare = 0; 954 955 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 956 &spare) == 0 && spare) 957 spa_spare_add(vd); 958 } 959 960 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 961 &vd->vdev_offline); 962 963 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 964 &vd->vdev_resilver_txg); 965 966 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 967 &vd->vdev_rebuild_txg); 968 969 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) 970 vdev_defer_resilver(vd); 971 972 /* 973 * In general, when importing a pool we want to ignore the 974 * persistent fault state, as the diagnosis made on another 975 * system may not be valid in the current context. The only 976 * exception is if we forced a vdev to a persistently faulted 977 * state with 'zpool offline -f'. The persistent fault will 978 * remain across imports until cleared. 979 * 980 * Local vdevs will remain in the faulted state. 981 */ 982 if (spa_load_state(spa) == SPA_LOAD_OPEN || 983 spa_load_state(spa) == SPA_LOAD_IMPORT) { 984 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 985 &vd->vdev_faulted); 986 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 987 &vd->vdev_degraded); 988 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 989 &vd->vdev_removed); 990 991 if (vd->vdev_faulted || vd->vdev_degraded) { 992 char *aux; 993 994 vd->vdev_label_aux = 995 VDEV_AUX_ERR_EXCEEDED; 996 if (nvlist_lookup_string(nv, 997 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 998 strcmp(aux, "external") == 0) 999 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 1000 else 1001 vd->vdev_faulted = 0ULL; 1002 } 1003 } 1004 } 1005 1006 /* 1007 * Add ourselves to the parent's list of children. 1008 */ 1009 vdev_add_child(parent, vd); 1010 1011 *vdp = vd; 1012 1013 return (0); 1014 } 1015 1016 void 1017 vdev_free(vdev_t *vd) 1018 { 1019 spa_t *spa = vd->vdev_spa; 1020 1021 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 1022 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1023 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 1024 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); 1025 1026 /* 1027 * Scan queues are normally destroyed at the end of a scan. If the 1028 * queue exists here, that implies the vdev is being removed while 1029 * the scan is still running. 1030 */ 1031 if (vd->vdev_scan_io_queue != NULL) { 1032 mutex_enter(&vd->vdev_scan_io_queue_lock); 1033 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); 1034 vd->vdev_scan_io_queue = NULL; 1035 mutex_exit(&vd->vdev_scan_io_queue_lock); 1036 } 1037 1038 /* 1039 * vdev_free() implies closing the vdev first. This is simpler than 1040 * trying to ensure complicated semantics for all callers. 1041 */ 1042 vdev_close(vd); 1043 1044 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 1045 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 1046 1047 /* 1048 * Free all children. 1049 */ 1050 for (int c = 0; c < vd->vdev_children; c++) 1051 vdev_free(vd->vdev_child[c]); 1052 1053 ASSERT(vd->vdev_child == NULL); 1054 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 1055 1056 if (vd->vdev_ops->vdev_op_fini != NULL) 1057 vd->vdev_ops->vdev_op_fini(vd); 1058 1059 /* 1060 * Discard allocation state. 1061 */ 1062 if (vd->vdev_mg != NULL) { 1063 vdev_metaslab_fini(vd); 1064 metaslab_group_destroy(vd->vdev_mg); 1065 vd->vdev_mg = NULL; 1066 } 1067 if (vd->vdev_log_mg != NULL) { 1068 ASSERT0(vd->vdev_ms_count); 1069 metaslab_group_destroy(vd->vdev_log_mg); 1070 vd->vdev_log_mg = NULL; 1071 } 1072 1073 ASSERT0(vd->vdev_stat.vs_space); 1074 ASSERT0(vd->vdev_stat.vs_dspace); 1075 ASSERT0(vd->vdev_stat.vs_alloc); 1076 1077 /* 1078 * Remove this vdev from its parent's child list. 1079 */ 1080 vdev_remove_child(vd->vdev_parent, vd); 1081 1082 ASSERT(vd->vdev_parent == NULL); 1083 ASSERT(!list_link_active(&vd->vdev_leaf_node)); 1084 1085 /* 1086 * Clean up vdev structure. 1087 */ 1088 vdev_queue_fini(vd); 1089 vdev_cache_fini(vd); 1090 1091 if (vd->vdev_path) 1092 spa_strfree(vd->vdev_path); 1093 if (vd->vdev_devid) 1094 spa_strfree(vd->vdev_devid); 1095 if (vd->vdev_physpath) 1096 spa_strfree(vd->vdev_physpath); 1097 1098 if (vd->vdev_enc_sysfs_path) 1099 spa_strfree(vd->vdev_enc_sysfs_path); 1100 1101 if (vd->vdev_fru) 1102 spa_strfree(vd->vdev_fru); 1103 1104 if (vd->vdev_isspare) 1105 spa_spare_remove(vd); 1106 if (vd->vdev_isl2cache) 1107 spa_l2cache_remove(vd); 1108 1109 txg_list_destroy(&vd->vdev_ms_list); 1110 txg_list_destroy(&vd->vdev_dtl_list); 1111 1112 mutex_enter(&vd->vdev_dtl_lock); 1113 space_map_close(vd->vdev_dtl_sm); 1114 for (int t = 0; t < DTL_TYPES; t++) { 1115 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 1116 range_tree_destroy(vd->vdev_dtl[t]); 1117 } 1118 mutex_exit(&vd->vdev_dtl_lock); 1119 1120 EQUIV(vd->vdev_indirect_births != NULL, 1121 vd->vdev_indirect_mapping != NULL); 1122 if (vd->vdev_indirect_births != NULL) { 1123 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1124 vdev_indirect_births_close(vd->vdev_indirect_births); 1125 } 1126 1127 if (vd->vdev_obsolete_sm != NULL) { 1128 ASSERT(vd->vdev_removing || 1129 vd->vdev_ops == &vdev_indirect_ops); 1130 space_map_close(vd->vdev_obsolete_sm); 1131 vd->vdev_obsolete_sm = NULL; 1132 } 1133 range_tree_destroy(vd->vdev_obsolete_segments); 1134 rw_destroy(&vd->vdev_indirect_rwlock); 1135 mutex_destroy(&vd->vdev_obsolete_lock); 1136 1137 mutex_destroy(&vd->vdev_dtl_lock); 1138 mutex_destroy(&vd->vdev_stat_lock); 1139 mutex_destroy(&vd->vdev_probe_lock); 1140 mutex_destroy(&vd->vdev_scan_io_queue_lock); 1141 1142 mutex_destroy(&vd->vdev_initialize_lock); 1143 mutex_destroy(&vd->vdev_initialize_io_lock); 1144 cv_destroy(&vd->vdev_initialize_io_cv); 1145 cv_destroy(&vd->vdev_initialize_cv); 1146 1147 mutex_destroy(&vd->vdev_trim_lock); 1148 mutex_destroy(&vd->vdev_autotrim_lock); 1149 mutex_destroy(&vd->vdev_trim_io_lock); 1150 cv_destroy(&vd->vdev_trim_cv); 1151 cv_destroy(&vd->vdev_autotrim_cv); 1152 cv_destroy(&vd->vdev_trim_io_cv); 1153 1154 mutex_destroy(&vd->vdev_rebuild_lock); 1155 cv_destroy(&vd->vdev_rebuild_cv); 1156 1157 zfs_ratelimit_fini(&vd->vdev_delay_rl); 1158 zfs_ratelimit_fini(&vd->vdev_deadman_rl); 1159 zfs_ratelimit_fini(&vd->vdev_checksum_rl); 1160 1161 if (vd == spa->spa_root_vdev) 1162 spa->spa_root_vdev = NULL; 1163 1164 kmem_free(vd, sizeof (vdev_t)); 1165 } 1166 1167 /* 1168 * Transfer top-level vdev state from svd to tvd. 1169 */ 1170 static void 1171 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 1172 { 1173 spa_t *spa = svd->vdev_spa; 1174 metaslab_t *msp; 1175 vdev_t *vd; 1176 int t; 1177 1178 ASSERT(tvd == tvd->vdev_top); 1179 1180 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite; 1181 tvd->vdev_ms_array = svd->vdev_ms_array; 1182 tvd->vdev_ms_shift = svd->vdev_ms_shift; 1183 tvd->vdev_ms_count = svd->vdev_ms_count; 1184 tvd->vdev_top_zap = svd->vdev_top_zap; 1185 1186 svd->vdev_ms_array = 0; 1187 svd->vdev_ms_shift = 0; 1188 svd->vdev_ms_count = 0; 1189 svd->vdev_top_zap = 0; 1190 1191 if (tvd->vdev_mg) 1192 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 1193 if (tvd->vdev_log_mg) 1194 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg); 1195 tvd->vdev_mg = svd->vdev_mg; 1196 tvd->vdev_log_mg = svd->vdev_log_mg; 1197 tvd->vdev_ms = svd->vdev_ms; 1198 1199 svd->vdev_mg = NULL; 1200 svd->vdev_log_mg = NULL; 1201 svd->vdev_ms = NULL; 1202 1203 if (tvd->vdev_mg != NULL) 1204 tvd->vdev_mg->mg_vd = tvd; 1205 if (tvd->vdev_log_mg != NULL) 1206 tvd->vdev_log_mg->mg_vd = tvd; 1207 1208 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 1209 svd->vdev_checkpoint_sm = NULL; 1210 1211 tvd->vdev_alloc_bias = svd->vdev_alloc_bias; 1212 svd->vdev_alloc_bias = VDEV_BIAS_NONE; 1213 1214 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 1215 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 1216 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 1217 1218 svd->vdev_stat.vs_alloc = 0; 1219 svd->vdev_stat.vs_space = 0; 1220 svd->vdev_stat.vs_dspace = 0; 1221 1222 /* 1223 * State which may be set on a top-level vdev that's in the 1224 * process of being removed. 1225 */ 1226 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 1227 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 1228 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 1229 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); 1230 ASSERT3P(tvd->vdev_indirect_births, ==, NULL); 1231 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); 1232 ASSERT0(tvd->vdev_noalloc); 1233 ASSERT0(tvd->vdev_removing); 1234 ASSERT0(tvd->vdev_rebuilding); 1235 tvd->vdev_noalloc = svd->vdev_noalloc; 1236 tvd->vdev_removing = svd->vdev_removing; 1237 tvd->vdev_rebuilding = svd->vdev_rebuilding; 1238 tvd->vdev_rebuild_config = svd->vdev_rebuild_config; 1239 tvd->vdev_indirect_config = svd->vdev_indirect_config; 1240 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 1241 tvd->vdev_indirect_births = svd->vdev_indirect_births; 1242 range_tree_swap(&svd->vdev_obsolete_segments, 1243 &tvd->vdev_obsolete_segments); 1244 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 1245 svd->vdev_indirect_config.vic_mapping_object = 0; 1246 svd->vdev_indirect_config.vic_births_object = 0; 1247 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 1248 svd->vdev_indirect_mapping = NULL; 1249 svd->vdev_indirect_births = NULL; 1250 svd->vdev_obsolete_sm = NULL; 1251 svd->vdev_noalloc = 0; 1252 svd->vdev_removing = 0; 1253 svd->vdev_rebuilding = 0; 1254 1255 for (t = 0; t < TXG_SIZE; t++) { 1256 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 1257 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 1258 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 1259 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 1260 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 1261 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 1262 } 1263 1264 if (list_link_active(&svd->vdev_config_dirty_node)) { 1265 vdev_config_clean(svd); 1266 vdev_config_dirty(tvd); 1267 } 1268 1269 if (list_link_active(&svd->vdev_state_dirty_node)) { 1270 vdev_state_clean(svd); 1271 vdev_state_dirty(tvd); 1272 } 1273 1274 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 1275 svd->vdev_deflate_ratio = 0; 1276 1277 tvd->vdev_islog = svd->vdev_islog; 1278 svd->vdev_islog = 0; 1279 1280 dsl_scan_io_queue_vdev_xfer(svd, tvd); 1281 } 1282 1283 static void 1284 vdev_top_update(vdev_t *tvd, vdev_t *vd) 1285 { 1286 if (vd == NULL) 1287 return; 1288 1289 vd->vdev_top = tvd; 1290 1291 for (int c = 0; c < vd->vdev_children; c++) 1292 vdev_top_update(tvd, vd->vdev_child[c]); 1293 } 1294 1295 /* 1296 * Add a mirror/replacing vdev above an existing vdev. There is no need to 1297 * call .vdev_op_init() since mirror/replacing vdevs do not have private state. 1298 */ 1299 vdev_t * 1300 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 1301 { 1302 spa_t *spa = cvd->vdev_spa; 1303 vdev_t *pvd = cvd->vdev_parent; 1304 vdev_t *mvd; 1305 1306 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1307 1308 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 1309 1310 mvd->vdev_asize = cvd->vdev_asize; 1311 mvd->vdev_min_asize = cvd->vdev_min_asize; 1312 mvd->vdev_max_asize = cvd->vdev_max_asize; 1313 mvd->vdev_psize = cvd->vdev_psize; 1314 mvd->vdev_ashift = cvd->vdev_ashift; 1315 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift; 1316 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift; 1317 mvd->vdev_state = cvd->vdev_state; 1318 mvd->vdev_crtxg = cvd->vdev_crtxg; 1319 1320 vdev_remove_child(pvd, cvd); 1321 vdev_add_child(pvd, mvd); 1322 cvd->vdev_id = mvd->vdev_children; 1323 vdev_add_child(mvd, cvd); 1324 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1325 1326 if (mvd == mvd->vdev_top) 1327 vdev_top_transfer(cvd, mvd); 1328 1329 return (mvd); 1330 } 1331 1332 /* 1333 * Remove a 1-way mirror/replacing vdev from the tree. 1334 */ 1335 void 1336 vdev_remove_parent(vdev_t *cvd) 1337 { 1338 vdev_t *mvd = cvd->vdev_parent; 1339 vdev_t *pvd = mvd->vdev_parent; 1340 1341 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1342 1343 ASSERT(mvd->vdev_children == 1); 1344 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1345 mvd->vdev_ops == &vdev_replacing_ops || 1346 mvd->vdev_ops == &vdev_spare_ops); 1347 cvd->vdev_ashift = mvd->vdev_ashift; 1348 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift; 1349 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift; 1350 vdev_remove_child(mvd, cvd); 1351 vdev_remove_child(pvd, mvd); 1352 1353 /* 1354 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1355 * Otherwise, we could have detached an offline device, and when we 1356 * go to import the pool we'll think we have two top-level vdevs, 1357 * instead of a different version of the same top-level vdev. 1358 */ 1359 if (mvd->vdev_top == mvd) { 1360 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1361 cvd->vdev_orig_guid = cvd->vdev_guid; 1362 cvd->vdev_guid += guid_delta; 1363 cvd->vdev_guid_sum += guid_delta; 1364 1365 /* 1366 * If pool not set for autoexpand, we need to also preserve 1367 * mvd's asize to prevent automatic expansion of cvd. 1368 * Otherwise if we are adjusting the mirror by attaching and 1369 * detaching children of non-uniform sizes, the mirror could 1370 * autoexpand, unexpectedly requiring larger devices to 1371 * re-establish the mirror. 1372 */ 1373 if (!cvd->vdev_spa->spa_autoexpand) 1374 cvd->vdev_asize = mvd->vdev_asize; 1375 } 1376 cvd->vdev_id = mvd->vdev_id; 1377 vdev_add_child(pvd, cvd); 1378 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1379 1380 if (cvd == cvd->vdev_top) 1381 vdev_top_transfer(mvd, cvd); 1382 1383 ASSERT(mvd->vdev_children == 0); 1384 vdev_free(mvd); 1385 } 1386 1387 void 1388 vdev_metaslab_group_create(vdev_t *vd) 1389 { 1390 spa_t *spa = vd->vdev_spa; 1391 1392 /* 1393 * metaslab_group_create was delayed until allocation bias was available 1394 */ 1395 if (vd->vdev_mg == NULL) { 1396 metaslab_class_t *mc; 1397 1398 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) 1399 vd->vdev_alloc_bias = VDEV_BIAS_LOG; 1400 1401 ASSERT3U(vd->vdev_islog, ==, 1402 (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); 1403 1404 switch (vd->vdev_alloc_bias) { 1405 case VDEV_BIAS_LOG: 1406 mc = spa_log_class(spa); 1407 break; 1408 case VDEV_BIAS_SPECIAL: 1409 mc = spa_special_class(spa); 1410 break; 1411 case VDEV_BIAS_DEDUP: 1412 mc = spa_dedup_class(spa); 1413 break; 1414 default: 1415 mc = spa_normal_class(spa); 1416 } 1417 1418 vd->vdev_mg = metaslab_group_create(mc, vd, 1419 spa->spa_alloc_count); 1420 1421 if (!vd->vdev_islog) { 1422 vd->vdev_log_mg = metaslab_group_create( 1423 spa_embedded_log_class(spa), vd, 1); 1424 } 1425 1426 /* 1427 * The spa ashift min/max only apply for the normal metaslab 1428 * class. Class destination is late binding so ashift boundary 1429 * setting had to wait until now. 1430 */ 1431 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1432 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { 1433 if (vd->vdev_ashift > spa->spa_max_ashift) 1434 spa->spa_max_ashift = vd->vdev_ashift; 1435 if (vd->vdev_ashift < spa->spa_min_ashift) 1436 spa->spa_min_ashift = vd->vdev_ashift; 1437 1438 uint64_t min_alloc = vdev_get_min_alloc(vd); 1439 if (min_alloc < spa->spa_min_alloc) 1440 spa->spa_min_alloc = min_alloc; 1441 } 1442 } 1443 } 1444 1445 int 1446 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1447 { 1448 spa_t *spa = vd->vdev_spa; 1449 uint64_t oldc = vd->vdev_ms_count; 1450 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1451 metaslab_t **mspp; 1452 int error; 1453 boolean_t expanding = (oldc != 0); 1454 1455 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1456 1457 /* 1458 * This vdev is not being allocated from yet or is a hole. 1459 */ 1460 if (vd->vdev_ms_shift == 0) 1461 return (0); 1462 1463 ASSERT(!vd->vdev_ishole); 1464 1465 ASSERT(oldc <= newc); 1466 1467 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1468 1469 if (expanding) { 1470 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp)); 1471 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1472 } 1473 1474 vd->vdev_ms = mspp; 1475 vd->vdev_ms_count = newc; 1476 1477 for (uint64_t m = oldc; m < newc; m++) { 1478 uint64_t object = 0; 1479 /* 1480 * vdev_ms_array may be 0 if we are creating the "fake" 1481 * metaslabs for an indirect vdev for zdb's leak detection. 1482 * See zdb_leak_init(). 1483 */ 1484 if (txg == 0 && vd->vdev_ms_array != 0) { 1485 error = dmu_read(spa->spa_meta_objset, 1486 vd->vdev_ms_array, 1487 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1488 DMU_READ_PREFETCH); 1489 if (error != 0) { 1490 vdev_dbgmsg(vd, "unable to read the metaslab " 1491 "array [error=%d]", error); 1492 return (error); 1493 } 1494 } 1495 1496 error = metaslab_init(vd->vdev_mg, m, object, txg, 1497 &(vd->vdev_ms[m])); 1498 if (error != 0) { 1499 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1500 error); 1501 return (error); 1502 } 1503 } 1504 1505 /* 1506 * Find the emptiest metaslab on the vdev and mark it for use for 1507 * embedded slog by moving it from the regular to the log metaslab 1508 * group. 1509 */ 1510 if (vd->vdev_mg->mg_class == spa_normal_class(spa) && 1511 vd->vdev_ms_count > zfs_embedded_slog_min_ms && 1512 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) { 1513 uint64_t slog_msid = 0; 1514 uint64_t smallest = UINT64_MAX; 1515 1516 /* 1517 * Note, we only search the new metaslabs, because the old 1518 * (pre-existing) ones may be active (e.g. have non-empty 1519 * range_tree's), and we don't move them to the new 1520 * metaslab_t. 1521 */ 1522 for (uint64_t m = oldc; m < newc; m++) { 1523 uint64_t alloc = 1524 space_map_allocated(vd->vdev_ms[m]->ms_sm); 1525 if (alloc < smallest) { 1526 slog_msid = m; 1527 smallest = alloc; 1528 } 1529 } 1530 metaslab_t *slog_ms = vd->vdev_ms[slog_msid]; 1531 /* 1532 * The metaslab was marked as dirty at the end of 1533 * metaslab_init(). Remove it from the dirty list so that we 1534 * can uninitialize and reinitialize it to the new class. 1535 */ 1536 if (txg != 0) { 1537 (void) txg_list_remove_this(&vd->vdev_ms_list, 1538 slog_ms, txg); 1539 } 1540 uint64_t sm_obj = space_map_object(slog_ms->ms_sm); 1541 metaslab_fini(slog_ms); 1542 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg, 1543 &vd->vdev_ms[slog_msid])); 1544 } 1545 1546 if (txg == 0) 1547 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1548 1549 /* 1550 * If the vdev is marked as non-allocating then don't 1551 * activate the metaslabs since we want to ensure that 1552 * no allocations are performed on this device. 1553 */ 1554 if (vd->vdev_noalloc) { 1555 /* track non-allocating vdev space */ 1556 spa->spa_nonallocating_dspace += spa_deflate(spa) ? 1557 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 1558 } else if (!expanding) { 1559 metaslab_group_activate(vd->vdev_mg); 1560 if (vd->vdev_log_mg != NULL) 1561 metaslab_group_activate(vd->vdev_log_mg); 1562 } 1563 1564 if (txg == 0) 1565 spa_config_exit(spa, SCL_ALLOC, FTAG); 1566 1567 return (0); 1568 } 1569 1570 void 1571 vdev_metaslab_fini(vdev_t *vd) 1572 { 1573 if (vd->vdev_checkpoint_sm != NULL) { 1574 ASSERT(spa_feature_is_active(vd->vdev_spa, 1575 SPA_FEATURE_POOL_CHECKPOINT)); 1576 space_map_close(vd->vdev_checkpoint_sm); 1577 /* 1578 * Even though we close the space map, we need to set its 1579 * pointer to NULL. The reason is that vdev_metaslab_fini() 1580 * may be called multiple times for certain operations 1581 * (i.e. when destroying a pool) so we need to ensure that 1582 * this clause never executes twice. This logic is similar 1583 * to the one used for the vdev_ms clause below. 1584 */ 1585 vd->vdev_checkpoint_sm = NULL; 1586 } 1587 1588 if (vd->vdev_ms != NULL) { 1589 metaslab_group_t *mg = vd->vdev_mg; 1590 1591 metaslab_group_passivate(mg); 1592 if (vd->vdev_log_mg != NULL) { 1593 ASSERT(!vd->vdev_islog); 1594 metaslab_group_passivate(vd->vdev_log_mg); 1595 } 1596 1597 uint64_t count = vd->vdev_ms_count; 1598 for (uint64_t m = 0; m < count; m++) { 1599 metaslab_t *msp = vd->vdev_ms[m]; 1600 if (msp != NULL) 1601 metaslab_fini(msp); 1602 } 1603 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1604 vd->vdev_ms = NULL; 1605 vd->vdev_ms_count = 0; 1606 1607 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 1608 ASSERT0(mg->mg_histogram[i]); 1609 if (vd->vdev_log_mg != NULL) 1610 ASSERT0(vd->vdev_log_mg->mg_histogram[i]); 1611 } 1612 } 1613 ASSERT0(vd->vdev_ms_count); 1614 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0); 1615 } 1616 1617 typedef struct vdev_probe_stats { 1618 boolean_t vps_readable; 1619 boolean_t vps_writeable; 1620 int vps_flags; 1621 } vdev_probe_stats_t; 1622 1623 static void 1624 vdev_probe_done(zio_t *zio) 1625 { 1626 spa_t *spa = zio->io_spa; 1627 vdev_t *vd = zio->io_vd; 1628 vdev_probe_stats_t *vps = zio->io_private; 1629 1630 ASSERT(vd->vdev_probe_zio != NULL); 1631 1632 if (zio->io_type == ZIO_TYPE_READ) { 1633 if (zio->io_error == 0) 1634 vps->vps_readable = 1; 1635 if (zio->io_error == 0 && spa_writeable(spa)) { 1636 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1637 zio->io_offset, zio->io_size, zio->io_abd, 1638 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1639 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1640 } else { 1641 abd_free(zio->io_abd); 1642 } 1643 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1644 if (zio->io_error == 0) 1645 vps->vps_writeable = 1; 1646 abd_free(zio->io_abd); 1647 } else if (zio->io_type == ZIO_TYPE_NULL) { 1648 zio_t *pio; 1649 zio_link_t *zl; 1650 1651 vd->vdev_cant_read |= !vps->vps_readable; 1652 vd->vdev_cant_write |= !vps->vps_writeable; 1653 1654 if (vdev_readable(vd) && 1655 (vdev_writeable(vd) || !spa_writeable(spa))) { 1656 zio->io_error = 0; 1657 } else { 1658 ASSERT(zio->io_error != 0); 1659 vdev_dbgmsg(vd, "failed probe"); 1660 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1661 spa, vd, NULL, NULL, 0); 1662 zio->io_error = SET_ERROR(ENXIO); 1663 } 1664 1665 mutex_enter(&vd->vdev_probe_lock); 1666 ASSERT(vd->vdev_probe_zio == zio); 1667 vd->vdev_probe_zio = NULL; 1668 mutex_exit(&vd->vdev_probe_lock); 1669 1670 zl = NULL; 1671 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1672 if (!vdev_accessible(vd, pio)) 1673 pio->io_error = SET_ERROR(ENXIO); 1674 1675 kmem_free(vps, sizeof (*vps)); 1676 } 1677 } 1678 1679 /* 1680 * Determine whether this device is accessible. 1681 * 1682 * Read and write to several known locations: the pad regions of each 1683 * vdev label but the first, which we leave alone in case it contains 1684 * a VTOC. 1685 */ 1686 zio_t * 1687 vdev_probe(vdev_t *vd, zio_t *zio) 1688 { 1689 spa_t *spa = vd->vdev_spa; 1690 vdev_probe_stats_t *vps = NULL; 1691 zio_t *pio; 1692 1693 ASSERT(vd->vdev_ops->vdev_op_leaf); 1694 1695 /* 1696 * Don't probe the probe. 1697 */ 1698 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1699 return (NULL); 1700 1701 /* 1702 * To prevent 'probe storms' when a device fails, we create 1703 * just one probe i/o at a time. All zios that want to probe 1704 * this vdev will become parents of the probe io. 1705 */ 1706 mutex_enter(&vd->vdev_probe_lock); 1707 1708 if ((pio = vd->vdev_probe_zio) == NULL) { 1709 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1710 1711 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1712 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1713 ZIO_FLAG_TRYHARD; 1714 1715 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1716 /* 1717 * vdev_cant_read and vdev_cant_write can only 1718 * transition from TRUE to FALSE when we have the 1719 * SCL_ZIO lock as writer; otherwise they can only 1720 * transition from FALSE to TRUE. This ensures that 1721 * any zio looking at these values can assume that 1722 * failures persist for the life of the I/O. That's 1723 * important because when a device has intermittent 1724 * connectivity problems, we want to ensure that 1725 * they're ascribed to the device (ENXIO) and not 1726 * the zio (EIO). 1727 * 1728 * Since we hold SCL_ZIO as writer here, clear both 1729 * values so the probe can reevaluate from first 1730 * principles. 1731 */ 1732 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1733 vd->vdev_cant_read = B_FALSE; 1734 vd->vdev_cant_write = B_FALSE; 1735 } 1736 1737 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1738 vdev_probe_done, vps, 1739 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1740 1741 /* 1742 * We can't change the vdev state in this context, so we 1743 * kick off an async task to do it on our behalf. 1744 */ 1745 if (zio != NULL) { 1746 vd->vdev_probe_wanted = B_TRUE; 1747 spa_async_request(spa, SPA_ASYNC_PROBE); 1748 } 1749 } 1750 1751 if (zio != NULL) 1752 zio_add_child(zio, pio); 1753 1754 mutex_exit(&vd->vdev_probe_lock); 1755 1756 if (vps == NULL) { 1757 ASSERT(zio != NULL); 1758 return (NULL); 1759 } 1760 1761 for (int l = 1; l < VDEV_LABELS; l++) { 1762 zio_nowait(zio_read_phys(pio, vd, 1763 vdev_label_offset(vd->vdev_psize, l, 1764 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE, 1765 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1766 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1767 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1768 } 1769 1770 if (zio == NULL) 1771 return (pio); 1772 1773 zio_nowait(pio); 1774 return (NULL); 1775 } 1776 1777 static void 1778 vdev_load_child(void *arg) 1779 { 1780 vdev_t *vd = arg; 1781 1782 vd->vdev_load_error = vdev_load(vd); 1783 } 1784 1785 static void 1786 vdev_open_child(void *arg) 1787 { 1788 vdev_t *vd = arg; 1789 1790 vd->vdev_open_thread = curthread; 1791 vd->vdev_open_error = vdev_open(vd); 1792 vd->vdev_open_thread = NULL; 1793 } 1794 1795 static boolean_t 1796 vdev_uses_zvols(vdev_t *vd) 1797 { 1798 #ifdef _KERNEL 1799 if (zvol_is_zvol(vd->vdev_path)) 1800 return (B_TRUE); 1801 #endif 1802 1803 for (int c = 0; c < vd->vdev_children; c++) 1804 if (vdev_uses_zvols(vd->vdev_child[c])) 1805 return (B_TRUE); 1806 1807 return (B_FALSE); 1808 } 1809 1810 /* 1811 * Returns B_TRUE if the passed child should be opened. 1812 */ 1813 static boolean_t 1814 vdev_default_open_children_func(vdev_t *vd) 1815 { 1816 (void) vd; 1817 return (B_TRUE); 1818 } 1819 1820 /* 1821 * Open the requested child vdevs. If any of the leaf vdevs are using 1822 * a ZFS volume then do the opens in a single thread. This avoids a 1823 * deadlock when the current thread is holding the spa_namespace_lock. 1824 */ 1825 static void 1826 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func) 1827 { 1828 int children = vd->vdev_children; 1829 1830 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri, 1831 children, children, TASKQ_PREPOPULATE); 1832 vd->vdev_nonrot = B_TRUE; 1833 1834 for (int c = 0; c < children; c++) { 1835 vdev_t *cvd = vd->vdev_child[c]; 1836 1837 if (open_func(cvd) == B_FALSE) 1838 continue; 1839 1840 if (tq == NULL || vdev_uses_zvols(vd)) { 1841 cvd->vdev_open_error = vdev_open(cvd); 1842 } else { 1843 VERIFY(taskq_dispatch(tq, vdev_open_child, 1844 cvd, TQ_SLEEP) != TASKQID_INVALID); 1845 } 1846 1847 vd->vdev_nonrot &= cvd->vdev_nonrot; 1848 } 1849 1850 if (tq != NULL) { 1851 taskq_wait(tq); 1852 taskq_destroy(tq); 1853 } 1854 } 1855 1856 /* 1857 * Open all child vdevs. 1858 */ 1859 void 1860 vdev_open_children(vdev_t *vd) 1861 { 1862 vdev_open_children_impl(vd, vdev_default_open_children_func); 1863 } 1864 1865 /* 1866 * Conditionally open a subset of child vdevs. 1867 */ 1868 void 1869 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func) 1870 { 1871 vdev_open_children_impl(vd, open_func); 1872 } 1873 1874 /* 1875 * Compute the raidz-deflation ratio. Note, we hard-code 1876 * in 128k (1 << 17) because it is the "typical" blocksize. 1877 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 1878 * otherwise it would inconsistently account for existing bp's. 1879 */ 1880 static void 1881 vdev_set_deflate_ratio(vdev_t *vd) 1882 { 1883 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 1884 vd->vdev_deflate_ratio = (1 << 17) / 1885 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 1886 } 1887 } 1888 1889 /* 1890 * Choose the best of two ashifts, preferring one between logical ashift 1891 * (absolute minimum) and administrator defined maximum, otherwise take 1892 * the biggest of the two. 1893 */ 1894 uint64_t 1895 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b) 1896 { 1897 if (a > logical && a <= zfs_vdev_max_auto_ashift) { 1898 if (b <= logical || b > zfs_vdev_max_auto_ashift) 1899 return (a); 1900 else 1901 return (MAX(a, b)); 1902 } else if (b <= logical || b > zfs_vdev_max_auto_ashift) 1903 return (MAX(a, b)); 1904 return (b); 1905 } 1906 1907 /* 1908 * Maximize performance by inflating the configured ashift for top level 1909 * vdevs to be as close to the physical ashift as possible while maintaining 1910 * administrator defined limits and ensuring it doesn't go below the 1911 * logical ashift. 1912 */ 1913 static void 1914 vdev_ashift_optimize(vdev_t *vd) 1915 { 1916 ASSERT(vd == vd->vdev_top); 1917 1918 if (vd->vdev_ashift < vd->vdev_physical_ashift && 1919 vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) { 1920 vd->vdev_ashift = MIN( 1921 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift), 1922 MAX(zfs_vdev_min_auto_ashift, 1923 vd->vdev_physical_ashift)); 1924 } else { 1925 /* 1926 * If the logical and physical ashifts are the same, then 1927 * we ensure that the top-level vdev's ashift is not smaller 1928 * than our minimum ashift value. For the unusual case 1929 * where logical ashift > physical ashift, we can't cap 1930 * the calculated ashift based on max ashift as that 1931 * would cause failures. 1932 * We still check if we need to increase it to match 1933 * the min ashift. 1934 */ 1935 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift, 1936 vd->vdev_ashift); 1937 } 1938 } 1939 1940 /* 1941 * Prepare a virtual device for access. 1942 */ 1943 int 1944 vdev_open(vdev_t *vd) 1945 { 1946 spa_t *spa = vd->vdev_spa; 1947 int error; 1948 uint64_t osize = 0; 1949 uint64_t max_osize = 0; 1950 uint64_t asize, max_asize, psize; 1951 uint64_t logical_ashift = 0; 1952 uint64_t physical_ashift = 0; 1953 1954 ASSERT(vd->vdev_open_thread == curthread || 1955 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1956 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1957 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1958 vd->vdev_state == VDEV_STATE_OFFLINE); 1959 1960 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1961 vd->vdev_cant_read = B_FALSE; 1962 vd->vdev_cant_write = B_FALSE; 1963 vd->vdev_min_asize = vdev_get_min_asize(vd); 1964 1965 /* 1966 * If this vdev is not removed, check its fault status. If it's 1967 * faulted, bail out of the open. 1968 */ 1969 if (!vd->vdev_removed && vd->vdev_faulted) { 1970 ASSERT(vd->vdev_children == 0); 1971 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1972 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1973 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1974 vd->vdev_label_aux); 1975 return (SET_ERROR(ENXIO)); 1976 } else if (vd->vdev_offline) { 1977 ASSERT(vd->vdev_children == 0); 1978 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1979 return (SET_ERROR(ENXIO)); 1980 } 1981 1982 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, 1983 &logical_ashift, &physical_ashift); 1984 1985 /* Keep the device in removed state if unplugged */ 1986 if (error == ENOENT && vd->vdev_removed) { 1987 vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED, 1988 VDEV_AUX_NONE); 1989 return (error); 1990 } 1991 1992 /* 1993 * Physical volume size should never be larger than its max size, unless 1994 * the disk has shrunk while we were reading it or the device is buggy 1995 * or damaged: either way it's not safe for use, bail out of the open. 1996 */ 1997 if (osize > max_osize) { 1998 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1999 VDEV_AUX_OPEN_FAILED); 2000 return (SET_ERROR(ENXIO)); 2001 } 2002 2003 /* 2004 * Reset the vdev_reopening flag so that we actually close 2005 * the vdev on error. 2006 */ 2007 vd->vdev_reopening = B_FALSE; 2008 if (zio_injection_enabled && error == 0) 2009 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO)); 2010 2011 if (error) { 2012 if (vd->vdev_removed && 2013 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 2014 vd->vdev_removed = B_FALSE; 2015 2016 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 2017 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 2018 vd->vdev_stat.vs_aux); 2019 } else { 2020 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2021 vd->vdev_stat.vs_aux); 2022 } 2023 return (error); 2024 } 2025 2026 vd->vdev_removed = B_FALSE; 2027 2028 /* 2029 * Recheck the faulted flag now that we have confirmed that 2030 * the vdev is accessible. If we're faulted, bail. 2031 */ 2032 if (vd->vdev_faulted) { 2033 ASSERT(vd->vdev_children == 0); 2034 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 2035 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 2036 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2037 vd->vdev_label_aux); 2038 return (SET_ERROR(ENXIO)); 2039 } 2040 2041 if (vd->vdev_degraded) { 2042 ASSERT(vd->vdev_children == 0); 2043 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2044 VDEV_AUX_ERR_EXCEEDED); 2045 } else { 2046 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 2047 } 2048 2049 /* 2050 * For hole or missing vdevs we just return success. 2051 */ 2052 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 2053 return (0); 2054 2055 for (int c = 0; c < vd->vdev_children; c++) { 2056 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 2057 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2058 VDEV_AUX_NONE); 2059 break; 2060 } 2061 } 2062 2063 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 2064 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 2065 2066 if (vd->vdev_children == 0) { 2067 if (osize < SPA_MINDEVSIZE) { 2068 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2069 VDEV_AUX_TOO_SMALL); 2070 return (SET_ERROR(EOVERFLOW)); 2071 } 2072 psize = osize; 2073 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 2074 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 2075 VDEV_LABEL_END_SIZE); 2076 } else { 2077 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 2078 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 2079 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2080 VDEV_AUX_TOO_SMALL); 2081 return (SET_ERROR(EOVERFLOW)); 2082 } 2083 psize = 0; 2084 asize = osize; 2085 max_asize = max_osize; 2086 } 2087 2088 /* 2089 * If the vdev was expanded, record this so that we can re-create the 2090 * uberblock rings in labels {2,3}, during the next sync. 2091 */ 2092 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0)) 2093 vd->vdev_copy_uberblocks = B_TRUE; 2094 2095 vd->vdev_psize = psize; 2096 2097 /* 2098 * Make sure the allocatable size hasn't shrunk too much. 2099 */ 2100 if (asize < vd->vdev_min_asize) { 2101 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2102 VDEV_AUX_BAD_LABEL); 2103 return (SET_ERROR(EINVAL)); 2104 } 2105 2106 /* 2107 * We can always set the logical/physical ashift members since 2108 * their values are only used to calculate the vdev_ashift when 2109 * the device is first added to the config. These values should 2110 * not be used for anything else since they may change whenever 2111 * the device is reopened and we don't store them in the label. 2112 */ 2113 vd->vdev_physical_ashift = 2114 MAX(physical_ashift, vd->vdev_physical_ashift); 2115 vd->vdev_logical_ashift = MAX(logical_ashift, 2116 vd->vdev_logical_ashift); 2117 2118 if (vd->vdev_asize == 0) { 2119 /* 2120 * This is the first-ever open, so use the computed values. 2121 * For compatibility, a different ashift can be requested. 2122 */ 2123 vd->vdev_asize = asize; 2124 vd->vdev_max_asize = max_asize; 2125 2126 /* 2127 * If the vdev_ashift was not overridden at creation time, 2128 * then set it the logical ashift and optimize the ashift. 2129 */ 2130 if (vd->vdev_ashift == 0) { 2131 vd->vdev_ashift = vd->vdev_logical_ashift; 2132 2133 if (vd->vdev_logical_ashift > ASHIFT_MAX) { 2134 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2135 VDEV_AUX_ASHIFT_TOO_BIG); 2136 return (SET_ERROR(EDOM)); 2137 } 2138 2139 if (vd->vdev_top == vd) { 2140 vdev_ashift_optimize(vd); 2141 } 2142 } 2143 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN || 2144 vd->vdev_ashift > ASHIFT_MAX)) { 2145 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2146 VDEV_AUX_BAD_ASHIFT); 2147 return (SET_ERROR(EDOM)); 2148 } 2149 } else { 2150 /* 2151 * Make sure the alignment required hasn't increased. 2152 */ 2153 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift && 2154 vd->vdev_ops->vdev_op_leaf) { 2155 (void) zfs_ereport_post( 2156 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT, 2157 spa, vd, NULL, NULL, 0); 2158 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2159 VDEV_AUX_BAD_LABEL); 2160 return (SET_ERROR(EDOM)); 2161 } 2162 vd->vdev_max_asize = max_asize; 2163 } 2164 2165 /* 2166 * If all children are healthy we update asize if either: 2167 * The asize has increased, due to a device expansion caused by dynamic 2168 * LUN growth or vdev replacement, and automatic expansion is enabled; 2169 * making the additional space available. 2170 * 2171 * The asize has decreased, due to a device shrink usually caused by a 2172 * vdev replace with a smaller device. This ensures that calculations 2173 * based of max_asize and asize e.g. esize are always valid. It's safe 2174 * to do this as we've already validated that asize is greater than 2175 * vdev_min_asize. 2176 */ 2177 if (vd->vdev_state == VDEV_STATE_HEALTHY && 2178 ((asize > vd->vdev_asize && 2179 (vd->vdev_expanding || spa->spa_autoexpand)) || 2180 (asize < vd->vdev_asize))) 2181 vd->vdev_asize = asize; 2182 2183 vdev_set_min_asize(vd); 2184 2185 /* 2186 * Ensure we can issue some IO before declaring the 2187 * vdev open for business. 2188 */ 2189 if (vd->vdev_ops->vdev_op_leaf && 2190 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 2191 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2192 VDEV_AUX_ERR_EXCEEDED); 2193 return (error); 2194 } 2195 2196 /* 2197 * Track the minimum allocation size. 2198 */ 2199 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 2200 vd->vdev_islog == 0 && vd->vdev_aux == NULL) { 2201 uint64_t min_alloc = vdev_get_min_alloc(vd); 2202 if (min_alloc < spa->spa_min_alloc) 2203 spa->spa_min_alloc = min_alloc; 2204 } 2205 2206 /* 2207 * If this is a leaf vdev, assess whether a resilver is needed. 2208 * But don't do this if we are doing a reopen for a scrub, since 2209 * this would just restart the scrub we are already doing. 2210 */ 2211 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen) 2212 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd); 2213 2214 return (0); 2215 } 2216 2217 static void 2218 vdev_validate_child(void *arg) 2219 { 2220 vdev_t *vd = arg; 2221 2222 vd->vdev_validate_thread = curthread; 2223 vd->vdev_validate_error = vdev_validate(vd); 2224 vd->vdev_validate_thread = NULL; 2225 } 2226 2227 /* 2228 * Called once the vdevs are all opened, this routine validates the label 2229 * contents. This needs to be done before vdev_load() so that we don't 2230 * inadvertently do repair I/Os to the wrong device. 2231 * 2232 * This function will only return failure if one of the vdevs indicates that it 2233 * has since been destroyed or exported. This is only possible if 2234 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 2235 * will be updated but the function will return 0. 2236 */ 2237 int 2238 vdev_validate(vdev_t *vd) 2239 { 2240 spa_t *spa = vd->vdev_spa; 2241 taskq_t *tq = NULL; 2242 nvlist_t *label; 2243 uint64_t guid = 0, aux_guid = 0, top_guid; 2244 uint64_t state; 2245 nvlist_t *nvl; 2246 uint64_t txg; 2247 int children = vd->vdev_children; 2248 2249 if (vdev_validate_skip) 2250 return (0); 2251 2252 if (children > 0) { 2253 tq = taskq_create("vdev_validate", children, minclsyspri, 2254 children, children, TASKQ_PREPOPULATE); 2255 } 2256 2257 for (uint64_t c = 0; c < children; c++) { 2258 vdev_t *cvd = vd->vdev_child[c]; 2259 2260 if (tq == NULL || vdev_uses_zvols(cvd)) { 2261 vdev_validate_child(cvd); 2262 } else { 2263 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd, 2264 TQ_SLEEP) != TASKQID_INVALID); 2265 } 2266 } 2267 if (tq != NULL) { 2268 taskq_wait(tq); 2269 taskq_destroy(tq); 2270 } 2271 for (int c = 0; c < children; c++) { 2272 int error = vd->vdev_child[c]->vdev_validate_error; 2273 2274 if (error != 0) 2275 return (SET_ERROR(EBADF)); 2276 } 2277 2278 2279 /* 2280 * If the device has already failed, or was marked offline, don't do 2281 * any further validation. Otherwise, label I/O will fail and we will 2282 * overwrite the previous state. 2283 */ 2284 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 2285 return (0); 2286 2287 /* 2288 * If we are performing an extreme rewind, we allow for a label that 2289 * was modified at a point after the current txg. 2290 * If config lock is not held do not check for the txg. spa_sync could 2291 * be updating the vdev's label before updating spa_last_synced_txg. 2292 */ 2293 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 2294 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 2295 txg = UINT64_MAX; 2296 else 2297 txg = spa_last_synced_txg(spa); 2298 2299 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 2300 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2301 VDEV_AUX_BAD_LABEL); 2302 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 2303 "txg %llu", (u_longlong_t)txg); 2304 return (0); 2305 } 2306 2307 /* 2308 * Determine if this vdev has been split off into another 2309 * pool. If so, then refuse to open it. 2310 */ 2311 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 2312 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 2313 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2314 VDEV_AUX_SPLIT_POOL); 2315 nvlist_free(label); 2316 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 2317 return (0); 2318 } 2319 2320 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 2321 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2322 VDEV_AUX_CORRUPT_DATA); 2323 nvlist_free(label); 2324 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2325 ZPOOL_CONFIG_POOL_GUID); 2326 return (0); 2327 } 2328 2329 /* 2330 * If config is not trusted then ignore the spa guid check. This is 2331 * necessary because if the machine crashed during a re-guid the new 2332 * guid might have been written to all of the vdev labels, but not the 2333 * cached config. The check will be performed again once we have the 2334 * trusted config from the MOS. 2335 */ 2336 if (spa->spa_trust_config && guid != spa_guid(spa)) { 2337 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2338 VDEV_AUX_CORRUPT_DATA); 2339 nvlist_free(label); 2340 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 2341 "match config (%llu != %llu)", (u_longlong_t)guid, 2342 (u_longlong_t)spa_guid(spa)); 2343 return (0); 2344 } 2345 2346 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 2347 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 2348 &aux_guid) != 0) 2349 aux_guid = 0; 2350 2351 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 2352 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2353 VDEV_AUX_CORRUPT_DATA); 2354 nvlist_free(label); 2355 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2356 ZPOOL_CONFIG_GUID); 2357 return (0); 2358 } 2359 2360 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 2361 != 0) { 2362 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2363 VDEV_AUX_CORRUPT_DATA); 2364 nvlist_free(label); 2365 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2366 ZPOOL_CONFIG_TOP_GUID); 2367 return (0); 2368 } 2369 2370 /* 2371 * If this vdev just became a top-level vdev because its sibling was 2372 * detached, it will have adopted the parent's vdev guid -- but the 2373 * label may or may not be on disk yet. Fortunately, either version 2374 * of the label will have the same top guid, so if we're a top-level 2375 * vdev, we can safely compare to that instead. 2376 * However, if the config comes from a cachefile that failed to update 2377 * after the detach, a top-level vdev will appear as a non top-level 2378 * vdev in the config. Also relax the constraints if we perform an 2379 * extreme rewind. 2380 * 2381 * If we split this vdev off instead, then we also check the 2382 * original pool's guid. We don't want to consider the vdev 2383 * corrupt if it is partway through a split operation. 2384 */ 2385 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 2386 boolean_t mismatch = B_FALSE; 2387 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 2388 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 2389 mismatch = B_TRUE; 2390 } else { 2391 if (vd->vdev_guid != top_guid && 2392 vd->vdev_top->vdev_guid != guid) 2393 mismatch = B_TRUE; 2394 } 2395 2396 if (mismatch) { 2397 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2398 VDEV_AUX_CORRUPT_DATA); 2399 nvlist_free(label); 2400 vdev_dbgmsg(vd, "vdev_validate: config guid " 2401 "doesn't match label guid"); 2402 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 2403 (u_longlong_t)vd->vdev_guid, 2404 (u_longlong_t)vd->vdev_top->vdev_guid); 2405 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 2406 "aux_guid %llu", (u_longlong_t)guid, 2407 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 2408 return (0); 2409 } 2410 } 2411 2412 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 2413 &state) != 0) { 2414 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2415 VDEV_AUX_CORRUPT_DATA); 2416 nvlist_free(label); 2417 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2418 ZPOOL_CONFIG_POOL_STATE); 2419 return (0); 2420 } 2421 2422 nvlist_free(label); 2423 2424 /* 2425 * If this is a verbatim import, no need to check the 2426 * state of the pool. 2427 */ 2428 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 2429 spa_load_state(spa) == SPA_LOAD_OPEN && 2430 state != POOL_STATE_ACTIVE) { 2431 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 2432 "for spa %s", (u_longlong_t)state, spa->spa_name); 2433 return (SET_ERROR(EBADF)); 2434 } 2435 2436 /* 2437 * If we were able to open and validate a vdev that was 2438 * previously marked permanently unavailable, clear that state 2439 * now. 2440 */ 2441 if (vd->vdev_not_present) 2442 vd->vdev_not_present = 0; 2443 2444 return (0); 2445 } 2446 2447 static void 2448 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 2449 { 2450 char *old, *new; 2451 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) { 2452 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) { 2453 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed " 2454 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2455 dvd->vdev_path, svd->vdev_path); 2456 spa_strfree(dvd->vdev_path); 2457 dvd->vdev_path = spa_strdup(svd->vdev_path); 2458 } 2459 } else if (svd->vdev_path != NULL) { 2460 dvd->vdev_path = spa_strdup(svd->vdev_path); 2461 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 2462 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path); 2463 } 2464 2465 /* 2466 * Our enclosure sysfs path may have changed between imports 2467 */ 2468 old = dvd->vdev_enc_sysfs_path; 2469 new = svd->vdev_enc_sysfs_path; 2470 if ((old != NULL && new == NULL) || 2471 (old == NULL && new != NULL) || 2472 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) { 2473 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path " 2474 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2475 old, new); 2476 2477 if (dvd->vdev_enc_sysfs_path) 2478 spa_strfree(dvd->vdev_enc_sysfs_path); 2479 2480 if (svd->vdev_enc_sysfs_path) { 2481 dvd->vdev_enc_sysfs_path = spa_strdup( 2482 svd->vdev_enc_sysfs_path); 2483 } else { 2484 dvd->vdev_enc_sysfs_path = NULL; 2485 } 2486 } 2487 } 2488 2489 /* 2490 * Recursively copy vdev paths from one vdev to another. Source and destination 2491 * vdev trees must have same geometry otherwise return error. Intended to copy 2492 * paths from userland config into MOS config. 2493 */ 2494 int 2495 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 2496 { 2497 if ((svd->vdev_ops == &vdev_missing_ops) || 2498 (svd->vdev_ishole && dvd->vdev_ishole) || 2499 (dvd->vdev_ops == &vdev_indirect_ops)) 2500 return (0); 2501 2502 if (svd->vdev_ops != dvd->vdev_ops) { 2503 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 2504 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 2505 return (SET_ERROR(EINVAL)); 2506 } 2507 2508 if (svd->vdev_guid != dvd->vdev_guid) { 2509 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 2510 "%llu)", (u_longlong_t)svd->vdev_guid, 2511 (u_longlong_t)dvd->vdev_guid); 2512 return (SET_ERROR(EINVAL)); 2513 } 2514 2515 if (svd->vdev_children != dvd->vdev_children) { 2516 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 2517 "%llu != %llu", (u_longlong_t)svd->vdev_children, 2518 (u_longlong_t)dvd->vdev_children); 2519 return (SET_ERROR(EINVAL)); 2520 } 2521 2522 for (uint64_t i = 0; i < svd->vdev_children; i++) { 2523 int error = vdev_copy_path_strict(svd->vdev_child[i], 2524 dvd->vdev_child[i]); 2525 if (error != 0) 2526 return (error); 2527 } 2528 2529 if (svd->vdev_ops->vdev_op_leaf) 2530 vdev_copy_path_impl(svd, dvd); 2531 2532 return (0); 2533 } 2534 2535 static void 2536 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 2537 { 2538 ASSERT(stvd->vdev_top == stvd); 2539 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 2540 2541 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 2542 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 2543 } 2544 2545 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 2546 return; 2547 2548 /* 2549 * The idea here is that while a vdev can shift positions within 2550 * a top vdev (when replacing, attaching mirror, etc.) it cannot 2551 * step outside of it. 2552 */ 2553 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 2554 2555 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 2556 return; 2557 2558 ASSERT(vd->vdev_ops->vdev_op_leaf); 2559 2560 vdev_copy_path_impl(vd, dvd); 2561 } 2562 2563 /* 2564 * Recursively copy vdev paths from one root vdev to another. Source and 2565 * destination vdev trees may differ in geometry. For each destination leaf 2566 * vdev, search a vdev with the same guid and top vdev id in the source. 2567 * Intended to copy paths from userland config into MOS config. 2568 */ 2569 void 2570 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 2571 { 2572 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 2573 ASSERT(srvd->vdev_ops == &vdev_root_ops); 2574 ASSERT(drvd->vdev_ops == &vdev_root_ops); 2575 2576 for (uint64_t i = 0; i < children; i++) { 2577 vdev_copy_path_search(srvd->vdev_child[i], 2578 drvd->vdev_child[i]); 2579 } 2580 } 2581 2582 /* 2583 * Close a virtual device. 2584 */ 2585 void 2586 vdev_close(vdev_t *vd) 2587 { 2588 vdev_t *pvd = vd->vdev_parent; 2589 spa_t *spa __maybe_unused = vd->vdev_spa; 2590 2591 ASSERT(vd != NULL); 2592 ASSERT(vd->vdev_open_thread == curthread || 2593 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2594 2595 /* 2596 * If our parent is reopening, then we are as well, unless we are 2597 * going offline. 2598 */ 2599 if (pvd != NULL && pvd->vdev_reopening) 2600 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 2601 2602 vd->vdev_ops->vdev_op_close(vd); 2603 2604 vdev_cache_purge(vd); 2605 2606 /* 2607 * We record the previous state before we close it, so that if we are 2608 * doing a reopen(), we don't generate FMA ereports if we notice that 2609 * it's still faulted. 2610 */ 2611 vd->vdev_prevstate = vd->vdev_state; 2612 2613 if (vd->vdev_offline) 2614 vd->vdev_state = VDEV_STATE_OFFLINE; 2615 else 2616 vd->vdev_state = VDEV_STATE_CLOSED; 2617 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2618 } 2619 2620 void 2621 vdev_hold(vdev_t *vd) 2622 { 2623 spa_t *spa = vd->vdev_spa; 2624 2625 ASSERT(spa_is_root(spa)); 2626 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 2627 return; 2628 2629 for (int c = 0; c < vd->vdev_children; c++) 2630 vdev_hold(vd->vdev_child[c]); 2631 2632 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL) 2633 vd->vdev_ops->vdev_op_hold(vd); 2634 } 2635 2636 void 2637 vdev_rele(vdev_t *vd) 2638 { 2639 ASSERT(spa_is_root(vd->vdev_spa)); 2640 for (int c = 0; c < vd->vdev_children; c++) 2641 vdev_rele(vd->vdev_child[c]); 2642 2643 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL) 2644 vd->vdev_ops->vdev_op_rele(vd); 2645 } 2646 2647 /* 2648 * Reopen all interior vdevs and any unopened leaves. We don't actually 2649 * reopen leaf vdevs which had previously been opened as they might deadlock 2650 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 2651 * If the leaf has never been opened then open it, as usual. 2652 */ 2653 void 2654 vdev_reopen(vdev_t *vd) 2655 { 2656 spa_t *spa = vd->vdev_spa; 2657 2658 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2659 2660 /* set the reopening flag unless we're taking the vdev offline */ 2661 vd->vdev_reopening = !vd->vdev_offline; 2662 vdev_close(vd); 2663 (void) vdev_open(vd); 2664 2665 /* 2666 * Call vdev_validate() here to make sure we have the same device. 2667 * Otherwise, a device with an invalid label could be successfully 2668 * opened in response to vdev_reopen(). 2669 */ 2670 if (vd->vdev_aux) { 2671 (void) vdev_validate_aux(vd); 2672 if (vdev_readable(vd) && vdev_writeable(vd) && 2673 vd->vdev_aux == &spa->spa_l2cache) { 2674 /* 2675 * In case the vdev is present we should evict all ARC 2676 * buffers and pointers to log blocks and reclaim their 2677 * space before restoring its contents to L2ARC. 2678 */ 2679 if (l2arc_vdev_present(vd)) { 2680 l2arc_rebuild_vdev(vd, B_TRUE); 2681 } else { 2682 l2arc_add_vdev(spa, vd); 2683 } 2684 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2685 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 2686 } 2687 } else { 2688 (void) vdev_validate(vd); 2689 } 2690 2691 /* 2692 * Reassess parent vdev's health. 2693 */ 2694 vdev_propagate_state(vd); 2695 } 2696 2697 int 2698 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2699 { 2700 int error; 2701 2702 /* 2703 * Normally, partial opens (e.g. of a mirror) are allowed. 2704 * For a create, however, we want to fail the request if 2705 * there are any components we can't open. 2706 */ 2707 error = vdev_open(vd); 2708 2709 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2710 vdev_close(vd); 2711 return (error ? error : SET_ERROR(ENXIO)); 2712 } 2713 2714 /* 2715 * Recursively load DTLs and initialize all labels. 2716 */ 2717 if ((error = vdev_dtl_load(vd)) != 0 || 2718 (error = vdev_label_init(vd, txg, isreplacing ? 2719 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2720 vdev_close(vd); 2721 return (error); 2722 } 2723 2724 return (0); 2725 } 2726 2727 void 2728 vdev_metaslab_set_size(vdev_t *vd) 2729 { 2730 uint64_t asize = vd->vdev_asize; 2731 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2732 uint64_t ms_shift; 2733 2734 /* 2735 * There are two dimensions to the metaslab sizing calculation: 2736 * the size of the metaslab and the count of metaslabs per vdev. 2737 * 2738 * The default values used below are a good balance between memory 2739 * usage (larger metaslab size means more memory needed for loaded 2740 * metaslabs; more metaslabs means more memory needed for the 2741 * metaslab_t structs), metaslab load time (larger metaslabs take 2742 * longer to load), and metaslab sync time (more metaslabs means 2743 * more time spent syncing all of them). 2744 * 2745 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2746 * The range of the dimensions are as follows: 2747 * 2748 * 2^29 <= ms_size <= 2^34 2749 * 16 <= ms_count <= 131,072 2750 * 2751 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2752 * at least 512MB (2^29) to minimize fragmentation effects when 2753 * testing with smaller devices. However, the count constraint 2754 * of at least 16 metaslabs will override this minimum size goal. 2755 * 2756 * On the upper end of vdev sizes, we aim for a maximum metaslab 2757 * size of 16GB. However, we will cap the total count to 2^17 2758 * metaslabs to keep our memory footprint in check and let the 2759 * metaslab size grow from there if that limit is hit. 2760 * 2761 * The net effect of applying above constrains is summarized below. 2762 * 2763 * vdev size metaslab count 2764 * --------------|----------------- 2765 * < 8GB ~16 2766 * 8GB - 100GB one per 512MB 2767 * 100GB - 3TB ~200 2768 * 3TB - 2PB one per 16GB 2769 * > 2PB ~131,072 2770 * -------------------------------- 2771 * 2772 * Finally, note that all of the above calculate the initial 2773 * number of metaslabs. Expanding a top-level vdev will result 2774 * in additional metaslabs being allocated making it possible 2775 * to exceed the zfs_vdev_ms_count_limit. 2776 */ 2777 2778 if (ms_count < zfs_vdev_min_ms_count) 2779 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 2780 else if (ms_count > zfs_vdev_default_ms_count) 2781 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 2782 else 2783 ms_shift = zfs_vdev_default_ms_shift; 2784 2785 if (ms_shift < SPA_MAXBLOCKSHIFT) { 2786 ms_shift = SPA_MAXBLOCKSHIFT; 2787 } else if (ms_shift > zfs_vdev_max_ms_shift) { 2788 ms_shift = zfs_vdev_max_ms_shift; 2789 /* cap the total count to constrain memory footprint */ 2790 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 2791 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 2792 } 2793 2794 vd->vdev_ms_shift = ms_shift; 2795 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 2796 } 2797 2798 void 2799 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 2800 { 2801 ASSERT(vd == vd->vdev_top); 2802 /* indirect vdevs don't have metaslabs or dtls */ 2803 ASSERT(vdev_is_concrete(vd) || flags == 0); 2804 ASSERT(ISP2(flags)); 2805 ASSERT(spa_writeable(vd->vdev_spa)); 2806 2807 if (flags & VDD_METASLAB) 2808 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 2809 2810 if (flags & VDD_DTL) 2811 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 2812 2813 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 2814 } 2815 2816 void 2817 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 2818 { 2819 for (int c = 0; c < vd->vdev_children; c++) 2820 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 2821 2822 if (vd->vdev_ops->vdev_op_leaf) 2823 vdev_dirty(vd->vdev_top, flags, vd, txg); 2824 } 2825 2826 /* 2827 * DTLs. 2828 * 2829 * A vdev's DTL (dirty time log) is the set of transaction groups for which 2830 * the vdev has less than perfect replication. There are four kinds of DTL: 2831 * 2832 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 2833 * 2834 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 2835 * 2836 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 2837 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 2838 * txgs that was scrubbed. 2839 * 2840 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 2841 * persistent errors or just some device being offline. 2842 * Unlike the other three, the DTL_OUTAGE map is not generally 2843 * maintained; it's only computed when needed, typically to 2844 * determine whether a device can be detached. 2845 * 2846 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 2847 * either has the data or it doesn't. 2848 * 2849 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 2850 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 2851 * if any child is less than fully replicated, then so is its parent. 2852 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 2853 * comprising only those txgs which appear in 'maxfaults' or more children; 2854 * those are the txgs we don't have enough replication to read. For example, 2855 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 2856 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 2857 * two child DTL_MISSING maps. 2858 * 2859 * It should be clear from the above that to compute the DTLs and outage maps 2860 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 2861 * Therefore, that is all we keep on disk. When loading the pool, or after 2862 * a configuration change, we generate all other DTLs from first principles. 2863 */ 2864 void 2865 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2866 { 2867 range_tree_t *rt = vd->vdev_dtl[t]; 2868 2869 ASSERT(t < DTL_TYPES); 2870 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2871 ASSERT(spa_writeable(vd->vdev_spa)); 2872 2873 mutex_enter(&vd->vdev_dtl_lock); 2874 if (!range_tree_contains(rt, txg, size)) 2875 range_tree_add(rt, txg, size); 2876 mutex_exit(&vd->vdev_dtl_lock); 2877 } 2878 2879 boolean_t 2880 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2881 { 2882 range_tree_t *rt = vd->vdev_dtl[t]; 2883 boolean_t dirty = B_FALSE; 2884 2885 ASSERT(t < DTL_TYPES); 2886 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2887 2888 /* 2889 * While we are loading the pool, the DTLs have not been loaded yet. 2890 * This isn't a problem but it can result in devices being tried 2891 * which are known to not have the data. In which case, the import 2892 * is relying on the checksum to ensure that we get the right data. 2893 * Note that while importing we are only reading the MOS, which is 2894 * always checksummed. 2895 */ 2896 mutex_enter(&vd->vdev_dtl_lock); 2897 if (!range_tree_is_empty(rt)) 2898 dirty = range_tree_contains(rt, txg, size); 2899 mutex_exit(&vd->vdev_dtl_lock); 2900 2901 return (dirty); 2902 } 2903 2904 boolean_t 2905 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 2906 { 2907 range_tree_t *rt = vd->vdev_dtl[t]; 2908 boolean_t empty; 2909 2910 mutex_enter(&vd->vdev_dtl_lock); 2911 empty = range_tree_is_empty(rt); 2912 mutex_exit(&vd->vdev_dtl_lock); 2913 2914 return (empty); 2915 } 2916 2917 /* 2918 * Check if the txg falls within the range which must be 2919 * resilvered. DVAs outside this range can always be skipped. 2920 */ 2921 boolean_t 2922 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 2923 uint64_t phys_birth) 2924 { 2925 (void) dva, (void) psize; 2926 2927 /* Set by sequential resilver. */ 2928 if (phys_birth == TXG_UNKNOWN) 2929 return (B_TRUE); 2930 2931 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)); 2932 } 2933 2934 /* 2935 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered. 2936 */ 2937 boolean_t 2938 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 2939 uint64_t phys_birth) 2940 { 2941 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2942 2943 if (vd->vdev_ops->vdev_op_need_resilver == NULL || 2944 vd->vdev_ops->vdev_op_leaf) 2945 return (B_TRUE); 2946 2947 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize, 2948 phys_birth)); 2949 } 2950 2951 /* 2952 * Returns the lowest txg in the DTL range. 2953 */ 2954 static uint64_t 2955 vdev_dtl_min(vdev_t *vd) 2956 { 2957 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2958 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2959 ASSERT0(vd->vdev_children); 2960 2961 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1); 2962 } 2963 2964 /* 2965 * Returns the highest txg in the DTL. 2966 */ 2967 static uint64_t 2968 vdev_dtl_max(vdev_t *vd) 2969 { 2970 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2971 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2972 ASSERT0(vd->vdev_children); 2973 2974 return (range_tree_max(vd->vdev_dtl[DTL_MISSING])); 2975 } 2976 2977 /* 2978 * Determine if a resilvering vdev should remove any DTL entries from 2979 * its range. If the vdev was resilvering for the entire duration of the 2980 * scan then it should excise that range from its DTLs. Otherwise, this 2981 * vdev is considered partially resilvered and should leave its DTL 2982 * entries intact. The comment in vdev_dtl_reassess() describes how we 2983 * excise the DTLs. 2984 */ 2985 static boolean_t 2986 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done) 2987 { 2988 ASSERT0(vd->vdev_children); 2989 2990 if (vd->vdev_state < VDEV_STATE_DEGRADED) 2991 return (B_FALSE); 2992 2993 if (vd->vdev_resilver_deferred) 2994 return (B_FALSE); 2995 2996 if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 2997 return (B_TRUE); 2998 2999 if (rebuild_done) { 3000 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3001 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 3002 3003 /* Rebuild not initiated by attach */ 3004 if (vd->vdev_rebuild_txg == 0) 3005 return (B_TRUE); 3006 3007 /* 3008 * When a rebuild completes without error then all missing data 3009 * up to the rebuild max txg has been reconstructed and the DTL 3010 * is eligible for excision. 3011 */ 3012 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE && 3013 vdev_dtl_max(vd) <= vrp->vrp_max_txg) { 3014 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd)); 3015 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg); 3016 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg); 3017 return (B_TRUE); 3018 } 3019 } else { 3020 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 3021 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys; 3022 3023 /* Resilver not initiated by attach */ 3024 if (vd->vdev_resilver_txg == 0) 3025 return (B_TRUE); 3026 3027 /* 3028 * When a resilver is initiated the scan will assign the 3029 * scn_max_txg value to the highest txg value that exists 3030 * in all DTLs. If this device's max DTL is not part of this 3031 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg] 3032 * then it is not eligible for excision. 3033 */ 3034 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 3035 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd)); 3036 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg); 3037 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg); 3038 return (B_TRUE); 3039 } 3040 } 3041 3042 return (B_FALSE); 3043 } 3044 3045 /* 3046 * Reassess DTLs after a config change or scrub completion. If txg == 0 no 3047 * write operations will be issued to the pool. 3048 */ 3049 void 3050 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, 3051 boolean_t scrub_done, boolean_t rebuild_done) 3052 { 3053 spa_t *spa = vd->vdev_spa; 3054 avl_tree_t reftree; 3055 int minref; 3056 3057 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 3058 3059 for (int c = 0; c < vd->vdev_children; c++) 3060 vdev_dtl_reassess(vd->vdev_child[c], txg, 3061 scrub_txg, scrub_done, rebuild_done); 3062 3063 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 3064 return; 3065 3066 if (vd->vdev_ops->vdev_op_leaf) { 3067 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 3068 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3069 boolean_t check_excise = B_FALSE; 3070 boolean_t wasempty = B_TRUE; 3071 3072 mutex_enter(&vd->vdev_dtl_lock); 3073 3074 /* 3075 * If requested, pretend the scan or rebuild completed cleanly. 3076 */ 3077 if (zfs_scan_ignore_errors) { 3078 if (scn != NULL) 3079 scn->scn_phys.scn_errors = 0; 3080 if (vr != NULL) 3081 vr->vr_rebuild_phys.vrp_errors = 0; 3082 } 3083 3084 if (scrub_txg != 0 && 3085 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3086 wasempty = B_FALSE; 3087 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d " 3088 "dtl:%llu/%llu errors:%llu", 3089 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg, 3090 (u_longlong_t)scrub_txg, spa->spa_scrub_started, 3091 (u_longlong_t)vdev_dtl_min(vd), 3092 (u_longlong_t)vdev_dtl_max(vd), 3093 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0)); 3094 } 3095 3096 /* 3097 * If we've completed a scrub/resilver or a rebuild cleanly 3098 * then determine if this vdev should remove any DTLs. We 3099 * only want to excise regions on vdevs that were available 3100 * during the entire duration of this scan. 3101 */ 3102 if (rebuild_done && 3103 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) { 3104 check_excise = B_TRUE; 3105 } else { 3106 if (spa->spa_scrub_started || 3107 (scn != NULL && scn->scn_phys.scn_errors == 0)) { 3108 check_excise = B_TRUE; 3109 } 3110 } 3111 3112 if (scrub_txg && check_excise && 3113 vdev_dtl_should_excise(vd, rebuild_done)) { 3114 /* 3115 * We completed a scrub, resilver or rebuild up to 3116 * scrub_txg. If we did it without rebooting, then 3117 * the scrub dtl will be valid, so excise the old 3118 * region and fold in the scrub dtl. Otherwise, 3119 * leave the dtl as-is if there was an error. 3120 * 3121 * There's little trick here: to excise the beginning 3122 * of the DTL_MISSING map, we put it into a reference 3123 * tree and then add a segment with refcnt -1 that 3124 * covers the range [0, scrub_txg). This means 3125 * that each txg in that range has refcnt -1 or 0. 3126 * We then add DTL_SCRUB with a refcnt of 2, so that 3127 * entries in the range [0, scrub_txg) will have a 3128 * positive refcnt -- either 1 or 2. We then convert 3129 * the reference tree into the new DTL_MISSING map. 3130 */ 3131 space_reftree_create(&reftree); 3132 space_reftree_add_map(&reftree, 3133 vd->vdev_dtl[DTL_MISSING], 1); 3134 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 3135 space_reftree_add_map(&reftree, 3136 vd->vdev_dtl[DTL_SCRUB], 2); 3137 space_reftree_generate_map(&reftree, 3138 vd->vdev_dtl[DTL_MISSING], 1); 3139 space_reftree_destroy(&reftree); 3140 3141 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3142 zfs_dbgmsg("update DTL_MISSING:%llu/%llu", 3143 (u_longlong_t)vdev_dtl_min(vd), 3144 (u_longlong_t)vdev_dtl_max(vd)); 3145 } else if (!wasempty) { 3146 zfs_dbgmsg("DTL_MISSING is now empty"); 3147 } 3148 } 3149 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 3150 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3151 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 3152 if (scrub_done) 3153 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 3154 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 3155 if (!vdev_readable(vd)) 3156 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 3157 else 3158 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3159 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 3160 3161 /* 3162 * If the vdev was resilvering or rebuilding and no longer 3163 * has any DTLs then reset the appropriate flag and dirty 3164 * the top level so that we persist the change. 3165 */ 3166 if (txg != 0 && 3167 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3168 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) { 3169 if (vd->vdev_rebuild_txg != 0) { 3170 vd->vdev_rebuild_txg = 0; 3171 vdev_config_dirty(vd->vdev_top); 3172 } else if (vd->vdev_resilver_txg != 0) { 3173 vd->vdev_resilver_txg = 0; 3174 vdev_config_dirty(vd->vdev_top); 3175 } 3176 } 3177 3178 mutex_exit(&vd->vdev_dtl_lock); 3179 3180 if (txg != 0) 3181 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 3182 return; 3183 } 3184 3185 mutex_enter(&vd->vdev_dtl_lock); 3186 for (int t = 0; t < DTL_TYPES; t++) { 3187 /* account for child's outage in parent's missing map */ 3188 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 3189 if (t == DTL_SCRUB) 3190 continue; /* leaf vdevs only */ 3191 if (t == DTL_PARTIAL) 3192 minref = 1; /* i.e. non-zero */ 3193 else if (vdev_get_nparity(vd) != 0) 3194 minref = vdev_get_nparity(vd) + 1; /* RAID-Z, dRAID */ 3195 else 3196 minref = vd->vdev_children; /* any kind of mirror */ 3197 space_reftree_create(&reftree); 3198 for (int c = 0; c < vd->vdev_children; c++) { 3199 vdev_t *cvd = vd->vdev_child[c]; 3200 mutex_enter(&cvd->vdev_dtl_lock); 3201 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 3202 mutex_exit(&cvd->vdev_dtl_lock); 3203 } 3204 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 3205 space_reftree_destroy(&reftree); 3206 } 3207 mutex_exit(&vd->vdev_dtl_lock); 3208 } 3209 3210 /* 3211 * Iterate over all the vdevs except spare, and post kobj events 3212 */ 3213 void 3214 vdev_post_kobj_evt(vdev_t *vd) 3215 { 3216 if (vd->vdev_ops->vdev_op_kobj_evt_post && 3217 vd->vdev_kobj_flag == B_FALSE) { 3218 vd->vdev_kobj_flag = B_TRUE; 3219 vd->vdev_ops->vdev_op_kobj_evt_post(vd); 3220 } 3221 3222 for (int c = 0; c < vd->vdev_children; c++) 3223 vdev_post_kobj_evt(vd->vdev_child[c]); 3224 } 3225 3226 /* 3227 * Iterate over all the vdevs except spare, and clear kobj events 3228 */ 3229 void 3230 vdev_clear_kobj_evt(vdev_t *vd) 3231 { 3232 vd->vdev_kobj_flag = B_FALSE; 3233 3234 for (int c = 0; c < vd->vdev_children; c++) 3235 vdev_clear_kobj_evt(vd->vdev_child[c]); 3236 } 3237 3238 int 3239 vdev_dtl_load(vdev_t *vd) 3240 { 3241 spa_t *spa = vd->vdev_spa; 3242 objset_t *mos = spa->spa_meta_objset; 3243 range_tree_t *rt; 3244 int error = 0; 3245 3246 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 3247 ASSERT(vdev_is_concrete(vd)); 3248 3249 /* 3250 * If the dtl cannot be sync'd there is no need to open it. 3251 */ 3252 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps) 3253 return (0); 3254 3255 error = space_map_open(&vd->vdev_dtl_sm, mos, 3256 vd->vdev_dtl_object, 0, -1ULL, 0); 3257 if (error) 3258 return (error); 3259 ASSERT(vd->vdev_dtl_sm != NULL); 3260 3261 rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3262 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC); 3263 if (error == 0) { 3264 mutex_enter(&vd->vdev_dtl_lock); 3265 range_tree_walk(rt, range_tree_add, 3266 vd->vdev_dtl[DTL_MISSING]); 3267 mutex_exit(&vd->vdev_dtl_lock); 3268 } 3269 3270 range_tree_vacate(rt, NULL, NULL); 3271 range_tree_destroy(rt); 3272 3273 return (error); 3274 } 3275 3276 for (int c = 0; c < vd->vdev_children; c++) { 3277 error = vdev_dtl_load(vd->vdev_child[c]); 3278 if (error != 0) 3279 break; 3280 } 3281 3282 return (error); 3283 } 3284 3285 static void 3286 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) 3287 { 3288 spa_t *spa = vd->vdev_spa; 3289 objset_t *mos = spa->spa_meta_objset; 3290 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 3291 const char *string; 3292 3293 ASSERT(alloc_bias != VDEV_BIAS_NONE); 3294 3295 string = 3296 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : 3297 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : 3298 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; 3299 3300 ASSERT(string != NULL); 3301 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 3302 1, strlen(string) + 1, string, tx)); 3303 3304 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { 3305 spa_activate_allocation_classes(spa, tx); 3306 } 3307 } 3308 3309 void 3310 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 3311 { 3312 spa_t *spa = vd->vdev_spa; 3313 3314 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 3315 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3316 zapobj, tx)); 3317 } 3318 3319 uint64_t 3320 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 3321 { 3322 spa_t *spa = vd->vdev_spa; 3323 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 3324 DMU_OT_NONE, 0, tx); 3325 3326 ASSERT(zap != 0); 3327 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3328 zap, tx)); 3329 3330 return (zap); 3331 } 3332 3333 void 3334 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 3335 { 3336 if (vd->vdev_ops != &vdev_hole_ops && 3337 vd->vdev_ops != &vdev_missing_ops && 3338 vd->vdev_ops != &vdev_root_ops && 3339 !vd->vdev_top->vdev_removing) { 3340 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 3341 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 3342 } 3343 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 3344 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 3345 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) 3346 vdev_zap_allocation_data(vd, tx); 3347 } 3348 } 3349 3350 for (uint64_t i = 0; i < vd->vdev_children; i++) { 3351 vdev_construct_zaps(vd->vdev_child[i], tx); 3352 } 3353 } 3354 3355 static void 3356 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 3357 { 3358 spa_t *spa = vd->vdev_spa; 3359 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 3360 objset_t *mos = spa->spa_meta_objset; 3361 range_tree_t *rtsync; 3362 dmu_tx_t *tx; 3363 uint64_t object = space_map_object(vd->vdev_dtl_sm); 3364 3365 ASSERT(vdev_is_concrete(vd)); 3366 ASSERT(vd->vdev_ops->vdev_op_leaf); 3367 3368 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3369 3370 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 3371 mutex_enter(&vd->vdev_dtl_lock); 3372 space_map_free(vd->vdev_dtl_sm, tx); 3373 space_map_close(vd->vdev_dtl_sm); 3374 vd->vdev_dtl_sm = NULL; 3375 mutex_exit(&vd->vdev_dtl_lock); 3376 3377 /* 3378 * We only destroy the leaf ZAP for detached leaves or for 3379 * removed log devices. Removed data devices handle leaf ZAP 3380 * cleanup later, once cancellation is no longer possible. 3381 */ 3382 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 3383 vd->vdev_top->vdev_islog)) { 3384 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 3385 vd->vdev_leaf_zap = 0; 3386 } 3387 3388 dmu_tx_commit(tx); 3389 return; 3390 } 3391 3392 if (vd->vdev_dtl_sm == NULL) { 3393 uint64_t new_object; 3394 3395 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx); 3396 VERIFY3U(new_object, !=, 0); 3397 3398 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 3399 0, -1ULL, 0)); 3400 ASSERT(vd->vdev_dtl_sm != NULL); 3401 } 3402 3403 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3404 3405 mutex_enter(&vd->vdev_dtl_lock); 3406 range_tree_walk(rt, range_tree_add, rtsync); 3407 mutex_exit(&vd->vdev_dtl_lock); 3408 3409 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx); 3410 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 3411 range_tree_vacate(rtsync, NULL, NULL); 3412 3413 range_tree_destroy(rtsync); 3414 3415 /* 3416 * If the object for the space map has changed then dirty 3417 * the top level so that we update the config. 3418 */ 3419 if (object != space_map_object(vd->vdev_dtl_sm)) { 3420 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 3421 "new object %llu", (u_longlong_t)txg, spa_name(spa), 3422 (u_longlong_t)object, 3423 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 3424 vdev_config_dirty(vd->vdev_top); 3425 } 3426 3427 dmu_tx_commit(tx); 3428 } 3429 3430 /* 3431 * Determine whether the specified vdev can be offlined/detached/removed 3432 * without losing data. 3433 */ 3434 boolean_t 3435 vdev_dtl_required(vdev_t *vd) 3436 { 3437 spa_t *spa = vd->vdev_spa; 3438 vdev_t *tvd = vd->vdev_top; 3439 uint8_t cant_read = vd->vdev_cant_read; 3440 boolean_t required; 3441 3442 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3443 3444 if (vd == spa->spa_root_vdev || vd == tvd) 3445 return (B_TRUE); 3446 3447 /* 3448 * Temporarily mark the device as unreadable, and then determine 3449 * whether this results in any DTL outages in the top-level vdev. 3450 * If not, we can safely offline/detach/remove the device. 3451 */ 3452 vd->vdev_cant_read = B_TRUE; 3453 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3454 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 3455 vd->vdev_cant_read = cant_read; 3456 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3457 3458 if (!required && zio_injection_enabled) { 3459 required = !!zio_handle_device_injection(vd, NULL, 3460 SET_ERROR(ECHILD)); 3461 } 3462 3463 return (required); 3464 } 3465 3466 /* 3467 * Determine if resilver is needed, and if so the txg range. 3468 */ 3469 boolean_t 3470 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 3471 { 3472 boolean_t needed = B_FALSE; 3473 uint64_t thismin = UINT64_MAX; 3474 uint64_t thismax = 0; 3475 3476 if (vd->vdev_children == 0) { 3477 mutex_enter(&vd->vdev_dtl_lock); 3478 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3479 vdev_writeable(vd)) { 3480 3481 thismin = vdev_dtl_min(vd); 3482 thismax = vdev_dtl_max(vd); 3483 needed = B_TRUE; 3484 } 3485 mutex_exit(&vd->vdev_dtl_lock); 3486 } else { 3487 for (int c = 0; c < vd->vdev_children; c++) { 3488 vdev_t *cvd = vd->vdev_child[c]; 3489 uint64_t cmin, cmax; 3490 3491 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 3492 thismin = MIN(thismin, cmin); 3493 thismax = MAX(thismax, cmax); 3494 needed = B_TRUE; 3495 } 3496 } 3497 } 3498 3499 if (needed && minp) { 3500 *minp = thismin; 3501 *maxp = thismax; 3502 } 3503 return (needed); 3504 } 3505 3506 /* 3507 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj 3508 * will contain either the checkpoint spacemap object or zero if none exists. 3509 * All other errors are returned to the caller. 3510 */ 3511 int 3512 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj) 3513 { 3514 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 3515 3516 if (vd->vdev_top_zap == 0) { 3517 *sm_obj = 0; 3518 return (0); 3519 } 3520 3521 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 3522 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj); 3523 if (error == ENOENT) { 3524 *sm_obj = 0; 3525 error = 0; 3526 } 3527 3528 return (error); 3529 } 3530 3531 int 3532 vdev_load(vdev_t *vd) 3533 { 3534 int children = vd->vdev_children; 3535 int error = 0; 3536 taskq_t *tq = NULL; 3537 3538 /* 3539 * It's only worthwhile to use the taskq for the root vdev, because the 3540 * slow part is metaslab_init, and that only happens for top-level 3541 * vdevs. 3542 */ 3543 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) { 3544 tq = taskq_create("vdev_load", children, minclsyspri, 3545 children, children, TASKQ_PREPOPULATE); 3546 } 3547 3548 /* 3549 * Recursively load all children. 3550 */ 3551 for (int c = 0; c < vd->vdev_children; c++) { 3552 vdev_t *cvd = vd->vdev_child[c]; 3553 3554 if (tq == NULL || vdev_uses_zvols(cvd)) { 3555 cvd->vdev_load_error = vdev_load(cvd); 3556 } else { 3557 VERIFY(taskq_dispatch(tq, vdev_load_child, 3558 cvd, TQ_SLEEP) != TASKQID_INVALID); 3559 } 3560 } 3561 3562 if (tq != NULL) { 3563 taskq_wait(tq); 3564 taskq_destroy(tq); 3565 } 3566 3567 for (int c = 0; c < vd->vdev_children; c++) { 3568 int error = vd->vdev_child[c]->vdev_load_error; 3569 3570 if (error != 0) 3571 return (error); 3572 } 3573 3574 vdev_set_deflate_ratio(vd); 3575 3576 /* 3577 * On spa_load path, grab the allocation bias from our zap 3578 */ 3579 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3580 spa_t *spa = vd->vdev_spa; 3581 char bias_str[64]; 3582 3583 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3584 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), 3585 bias_str); 3586 if (error == 0) { 3587 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); 3588 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); 3589 } else if (error != ENOENT) { 3590 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3591 VDEV_AUX_CORRUPT_DATA); 3592 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) " 3593 "failed [error=%d]", 3594 (u_longlong_t)vd->vdev_top_zap, error); 3595 return (error); 3596 } 3597 } 3598 3599 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3600 spa_t *spa = vd->vdev_spa; 3601 uint64_t failfast; 3602 3603 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3604 vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast), 3605 1, &failfast); 3606 if (error == 0) { 3607 vd->vdev_failfast = failfast & 1; 3608 } else if (error == ENOENT) { 3609 vd->vdev_failfast = vdev_prop_default_numeric( 3610 VDEV_PROP_FAILFAST); 3611 } else { 3612 vdev_dbgmsg(vd, 3613 "vdev_load: zap_lookup(top_zap=%llu) " 3614 "failed [error=%d]", 3615 (u_longlong_t)vd->vdev_top_zap, error); 3616 } 3617 } 3618 3619 /* 3620 * Load any rebuild state from the top-level vdev zap. 3621 */ 3622 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3623 error = vdev_rebuild_load(vd); 3624 if (error && error != ENOTSUP) { 3625 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3626 VDEV_AUX_CORRUPT_DATA); 3627 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load " 3628 "failed [error=%d]", error); 3629 return (error); 3630 } 3631 } 3632 3633 if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) { 3634 uint64_t zapobj; 3635 3636 if (vd->vdev_top_zap != 0) 3637 zapobj = vd->vdev_top_zap; 3638 else 3639 zapobj = vd->vdev_leaf_zap; 3640 3641 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N, 3642 &vd->vdev_checksum_n); 3643 if (error && error != ENOENT) 3644 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3645 "failed [error=%d]", (u_longlong_t)zapobj, error); 3646 3647 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T, 3648 &vd->vdev_checksum_t); 3649 if (error && error != ENOENT) 3650 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3651 "failed [error=%d]", (u_longlong_t)zapobj, error); 3652 3653 error = vdev_prop_get_int(vd, VDEV_PROP_IO_N, 3654 &vd->vdev_io_n); 3655 if (error && error != ENOENT) 3656 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3657 "failed [error=%d]", (u_longlong_t)zapobj, error); 3658 3659 error = vdev_prop_get_int(vd, VDEV_PROP_IO_T, 3660 &vd->vdev_io_t); 3661 if (error && error != ENOENT) 3662 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3663 "failed [error=%d]", (u_longlong_t)zapobj, error); 3664 } 3665 3666 /* 3667 * If this is a top-level vdev, initialize its metaslabs. 3668 */ 3669 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 3670 vdev_metaslab_group_create(vd); 3671 3672 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 3673 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3674 VDEV_AUX_CORRUPT_DATA); 3675 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 3676 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 3677 (u_longlong_t)vd->vdev_asize); 3678 return (SET_ERROR(ENXIO)); 3679 } 3680 3681 error = vdev_metaslab_init(vd, 0); 3682 if (error != 0) { 3683 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 3684 "[error=%d]", error); 3685 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3686 VDEV_AUX_CORRUPT_DATA); 3687 return (error); 3688 } 3689 3690 uint64_t checkpoint_sm_obj; 3691 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj); 3692 if (error == 0 && checkpoint_sm_obj != 0) { 3693 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3694 ASSERT(vd->vdev_asize != 0); 3695 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); 3696 3697 error = space_map_open(&vd->vdev_checkpoint_sm, 3698 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 3699 vd->vdev_ashift); 3700 if (error != 0) { 3701 vdev_dbgmsg(vd, "vdev_load: space_map_open " 3702 "failed for checkpoint spacemap (obj %llu) " 3703 "[error=%d]", 3704 (u_longlong_t)checkpoint_sm_obj, error); 3705 return (error); 3706 } 3707 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 3708 3709 /* 3710 * Since the checkpoint_sm contains free entries 3711 * exclusively we can use space_map_allocated() to 3712 * indicate the cumulative checkpointed space that 3713 * has been freed. 3714 */ 3715 vd->vdev_stat.vs_checkpoint_space = 3716 -space_map_allocated(vd->vdev_checkpoint_sm); 3717 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 3718 vd->vdev_stat.vs_checkpoint_space; 3719 } else if (error != 0) { 3720 vdev_dbgmsg(vd, "vdev_load: failed to retrieve " 3721 "checkpoint space map object from vdev ZAP " 3722 "[error=%d]", error); 3723 return (error); 3724 } 3725 } 3726 3727 /* 3728 * If this is a leaf vdev, load its DTL. 3729 */ 3730 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 3731 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3732 VDEV_AUX_CORRUPT_DATA); 3733 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 3734 "[error=%d]", error); 3735 return (error); 3736 } 3737 3738 uint64_t obsolete_sm_object; 3739 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object); 3740 if (error == 0 && obsolete_sm_object != 0) { 3741 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3742 ASSERT(vd->vdev_asize != 0); 3743 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 3744 3745 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 3746 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 3747 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3748 VDEV_AUX_CORRUPT_DATA); 3749 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 3750 "obsolete spacemap (obj %llu) [error=%d]", 3751 (u_longlong_t)obsolete_sm_object, error); 3752 return (error); 3753 } 3754 } else if (error != 0) { 3755 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete " 3756 "space map object from vdev ZAP [error=%d]", error); 3757 return (error); 3758 } 3759 3760 return (0); 3761 } 3762 3763 /* 3764 * The special vdev case is used for hot spares and l2cache devices. Its 3765 * sole purpose it to set the vdev state for the associated vdev. To do this, 3766 * we make sure that we can open the underlying device, then try to read the 3767 * label, and make sure that the label is sane and that it hasn't been 3768 * repurposed to another pool. 3769 */ 3770 int 3771 vdev_validate_aux(vdev_t *vd) 3772 { 3773 nvlist_t *label; 3774 uint64_t guid, version; 3775 uint64_t state; 3776 3777 if (!vdev_readable(vd)) 3778 return (0); 3779 3780 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 3781 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3782 VDEV_AUX_CORRUPT_DATA); 3783 return (-1); 3784 } 3785 3786 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 3787 !SPA_VERSION_IS_SUPPORTED(version) || 3788 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 3789 guid != vd->vdev_guid || 3790 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 3791 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3792 VDEV_AUX_CORRUPT_DATA); 3793 nvlist_free(label); 3794 return (-1); 3795 } 3796 3797 /* 3798 * We don't actually check the pool state here. If it's in fact in 3799 * use by another pool, we update this fact on the fly when requested. 3800 */ 3801 nvlist_free(label); 3802 return (0); 3803 } 3804 3805 static void 3806 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx) 3807 { 3808 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3809 3810 if (vd->vdev_top_zap == 0) 3811 return; 3812 3813 uint64_t object = 0; 3814 int err = zap_lookup(mos, vd->vdev_top_zap, 3815 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object); 3816 if (err == ENOENT) 3817 return; 3818 VERIFY0(err); 3819 3820 VERIFY0(dmu_object_free(mos, object, tx)); 3821 VERIFY0(zap_remove(mos, vd->vdev_top_zap, 3822 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx)); 3823 } 3824 3825 /* 3826 * Free the objects used to store this vdev's spacemaps, and the array 3827 * that points to them. 3828 */ 3829 void 3830 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 3831 { 3832 if (vd->vdev_ms_array == 0) 3833 return; 3834 3835 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3836 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 3837 size_t array_bytes = array_count * sizeof (uint64_t); 3838 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 3839 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 3840 array_bytes, smobj_array, 0)); 3841 3842 for (uint64_t i = 0; i < array_count; i++) { 3843 uint64_t smobj = smobj_array[i]; 3844 if (smobj == 0) 3845 continue; 3846 3847 space_map_free_obj(mos, smobj, tx); 3848 } 3849 3850 kmem_free(smobj_array, array_bytes); 3851 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 3852 vdev_destroy_ms_flush_data(vd, tx); 3853 vd->vdev_ms_array = 0; 3854 } 3855 3856 static void 3857 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 3858 { 3859 spa_t *spa = vd->vdev_spa; 3860 3861 ASSERT(vd->vdev_islog); 3862 ASSERT(vd == vd->vdev_top); 3863 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 3864 3865 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3866 3867 vdev_destroy_spacemaps(vd, tx); 3868 if (vd->vdev_top_zap != 0) { 3869 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 3870 vd->vdev_top_zap = 0; 3871 } 3872 3873 dmu_tx_commit(tx); 3874 } 3875 3876 void 3877 vdev_sync_done(vdev_t *vd, uint64_t txg) 3878 { 3879 metaslab_t *msp; 3880 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 3881 3882 ASSERT(vdev_is_concrete(vd)); 3883 3884 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 3885 != NULL) 3886 metaslab_sync_done(msp, txg); 3887 3888 if (reassess) { 3889 metaslab_sync_reassess(vd->vdev_mg); 3890 if (vd->vdev_log_mg != NULL) 3891 metaslab_sync_reassess(vd->vdev_log_mg); 3892 } 3893 } 3894 3895 void 3896 vdev_sync(vdev_t *vd, uint64_t txg) 3897 { 3898 spa_t *spa = vd->vdev_spa; 3899 vdev_t *lvd; 3900 metaslab_t *msp; 3901 3902 ASSERT3U(txg, ==, spa->spa_syncing_txg); 3903 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3904 if (range_tree_space(vd->vdev_obsolete_segments) > 0) { 3905 ASSERT(vd->vdev_removing || 3906 vd->vdev_ops == &vdev_indirect_ops); 3907 3908 vdev_indirect_sync_obsolete(vd, tx); 3909 3910 /* 3911 * If the vdev is indirect, it can't have dirty 3912 * metaslabs or DTLs. 3913 */ 3914 if (vd->vdev_ops == &vdev_indirect_ops) { 3915 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 3916 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 3917 dmu_tx_commit(tx); 3918 return; 3919 } 3920 } 3921 3922 ASSERT(vdev_is_concrete(vd)); 3923 3924 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 3925 !vd->vdev_removing) { 3926 ASSERT(vd == vd->vdev_top); 3927 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 3928 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 3929 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 3930 ASSERT(vd->vdev_ms_array != 0); 3931 vdev_config_dirty(vd); 3932 } 3933 3934 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 3935 metaslab_sync(msp, txg); 3936 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 3937 } 3938 3939 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 3940 vdev_dtl_sync(lvd, txg); 3941 3942 /* 3943 * If this is an empty log device being removed, destroy the 3944 * metadata associated with it. 3945 */ 3946 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 3947 vdev_remove_empty_log(vd, txg); 3948 3949 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 3950 dmu_tx_commit(tx); 3951 } 3952 3953 uint64_t 3954 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 3955 { 3956 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 3957 } 3958 3959 /* 3960 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 3961 * not be opened, and no I/O is attempted. 3962 */ 3963 int 3964 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3965 { 3966 vdev_t *vd, *tvd; 3967 3968 spa_vdev_state_enter(spa, SCL_NONE); 3969 3970 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3971 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 3972 3973 if (!vd->vdev_ops->vdev_op_leaf) 3974 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 3975 3976 tvd = vd->vdev_top; 3977 3978 /* 3979 * If user did a 'zpool offline -f' then make the fault persist across 3980 * reboots. 3981 */ 3982 if (aux == VDEV_AUX_EXTERNAL_PERSIST) { 3983 /* 3984 * There are two kinds of forced faults: temporary and 3985 * persistent. Temporary faults go away at pool import, while 3986 * persistent faults stay set. Both types of faults can be 3987 * cleared with a zpool clear. 3988 * 3989 * We tell if a vdev is persistently faulted by looking at the 3990 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at 3991 * import then it's a persistent fault. Otherwise, it's 3992 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external" 3993 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This 3994 * tells vdev_config_generate() (which gets run later) to set 3995 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist. 3996 */ 3997 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 3998 vd->vdev_tmpoffline = B_FALSE; 3999 aux = VDEV_AUX_EXTERNAL; 4000 } else { 4001 vd->vdev_tmpoffline = B_TRUE; 4002 } 4003 4004 /* 4005 * We don't directly use the aux state here, but if we do a 4006 * vdev_reopen(), we need this value to be present to remember why we 4007 * were faulted. 4008 */ 4009 vd->vdev_label_aux = aux; 4010 4011 /* 4012 * Faulted state takes precedence over degraded. 4013 */ 4014 vd->vdev_delayed_close = B_FALSE; 4015 vd->vdev_faulted = 1ULL; 4016 vd->vdev_degraded = 0ULL; 4017 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 4018 4019 /* 4020 * If this device has the only valid copy of the data, then 4021 * back off and simply mark the vdev as degraded instead. 4022 */ 4023 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 4024 vd->vdev_degraded = 1ULL; 4025 vd->vdev_faulted = 0ULL; 4026 4027 /* 4028 * If we reopen the device and it's not dead, only then do we 4029 * mark it degraded. 4030 */ 4031 vdev_reopen(tvd); 4032 4033 if (vdev_readable(vd)) 4034 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 4035 } 4036 4037 return (spa_vdev_state_exit(spa, vd, 0)); 4038 } 4039 4040 /* 4041 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 4042 * user that something is wrong. The vdev continues to operate as normal as far 4043 * as I/O is concerned. 4044 */ 4045 int 4046 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 4047 { 4048 vdev_t *vd; 4049 4050 spa_vdev_state_enter(spa, SCL_NONE); 4051 4052 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4053 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4054 4055 if (!vd->vdev_ops->vdev_op_leaf) 4056 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4057 4058 /* 4059 * If the vdev is already faulted, then don't do anything. 4060 */ 4061 if (vd->vdev_faulted || vd->vdev_degraded) 4062 return (spa_vdev_state_exit(spa, NULL, 0)); 4063 4064 vd->vdev_degraded = 1ULL; 4065 if (!vdev_is_dead(vd)) 4066 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 4067 aux); 4068 4069 return (spa_vdev_state_exit(spa, vd, 0)); 4070 } 4071 4072 int 4073 vdev_remove_wanted(spa_t *spa, uint64_t guid) 4074 { 4075 vdev_t *vd; 4076 4077 spa_vdev_state_enter(spa, SCL_NONE); 4078 4079 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4080 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4081 4082 /* 4083 * If the vdev is already removed, then don't do anything. 4084 */ 4085 if (vd->vdev_removed) 4086 return (spa_vdev_state_exit(spa, NULL, 0)); 4087 4088 vd->vdev_remove_wanted = B_TRUE; 4089 spa_async_request(spa, SPA_ASYNC_REMOVE); 4090 4091 return (spa_vdev_state_exit(spa, vd, 0)); 4092 } 4093 4094 4095 /* 4096 * Online the given vdev. 4097 * 4098 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 4099 * spare device should be detached when the device finishes resilvering. 4100 * Second, the online should be treated like a 'test' online case, so no FMA 4101 * events are generated if the device fails to open. 4102 */ 4103 int 4104 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 4105 { 4106 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 4107 boolean_t wasoffline; 4108 vdev_state_t oldstate; 4109 4110 spa_vdev_state_enter(spa, SCL_NONE); 4111 4112 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4113 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4114 4115 if (!vd->vdev_ops->vdev_op_leaf) 4116 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4117 4118 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 4119 oldstate = vd->vdev_state; 4120 4121 tvd = vd->vdev_top; 4122 vd->vdev_offline = B_FALSE; 4123 vd->vdev_tmpoffline = B_FALSE; 4124 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 4125 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 4126 4127 /* XXX - L2ARC 1.0 does not support expansion */ 4128 if (!vd->vdev_aux) { 4129 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4130 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) || 4131 spa->spa_autoexpand); 4132 vd->vdev_expansion_time = gethrestime_sec(); 4133 } 4134 4135 vdev_reopen(tvd); 4136 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 4137 4138 if (!vd->vdev_aux) { 4139 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4140 pvd->vdev_expanding = B_FALSE; 4141 } 4142 4143 if (newstate) 4144 *newstate = vd->vdev_state; 4145 if ((flags & ZFS_ONLINE_UNSPARE) && 4146 !vdev_is_dead(vd) && vd->vdev_parent && 4147 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4148 vd->vdev_parent->vdev_child[0] == vd) 4149 vd->vdev_unspare = B_TRUE; 4150 4151 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 4152 4153 /* XXX - L2ARC 1.0 does not support expansion */ 4154 if (vd->vdev_aux) 4155 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 4156 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 4157 } 4158 4159 /* Restart initializing if necessary */ 4160 mutex_enter(&vd->vdev_initialize_lock); 4161 if (vdev_writeable(vd) && 4162 vd->vdev_initialize_thread == NULL && 4163 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 4164 (void) vdev_initialize(vd); 4165 } 4166 mutex_exit(&vd->vdev_initialize_lock); 4167 4168 /* 4169 * Restart trimming if necessary. We do not restart trimming for cache 4170 * devices here. This is triggered by l2arc_rebuild_vdev() 4171 * asynchronously for the whole device or in l2arc_evict() as it evicts 4172 * space for upcoming writes. 4173 */ 4174 mutex_enter(&vd->vdev_trim_lock); 4175 if (vdev_writeable(vd) && !vd->vdev_isl2cache && 4176 vd->vdev_trim_thread == NULL && 4177 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { 4178 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, 4179 vd->vdev_trim_secure); 4180 } 4181 mutex_exit(&vd->vdev_trim_lock); 4182 4183 if (wasoffline || 4184 (oldstate < VDEV_STATE_DEGRADED && 4185 vd->vdev_state >= VDEV_STATE_DEGRADED)) 4186 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 4187 4188 return (spa_vdev_state_exit(spa, vd, 0)); 4189 } 4190 4191 static int 4192 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 4193 { 4194 vdev_t *vd, *tvd; 4195 int error = 0; 4196 uint64_t generation; 4197 metaslab_group_t *mg; 4198 4199 top: 4200 spa_vdev_state_enter(spa, SCL_ALLOC); 4201 4202 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4203 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4204 4205 if (!vd->vdev_ops->vdev_op_leaf) 4206 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4207 4208 if (vd->vdev_ops == &vdev_draid_spare_ops) 4209 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4210 4211 tvd = vd->vdev_top; 4212 mg = tvd->vdev_mg; 4213 generation = spa->spa_config_generation + 1; 4214 4215 /* 4216 * If the device isn't already offline, try to offline it. 4217 */ 4218 if (!vd->vdev_offline) { 4219 /* 4220 * If this device has the only valid copy of some data, 4221 * don't allow it to be offlined. Log devices are always 4222 * expendable. 4223 */ 4224 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4225 vdev_dtl_required(vd)) 4226 return (spa_vdev_state_exit(spa, NULL, 4227 SET_ERROR(EBUSY))); 4228 4229 /* 4230 * If the top-level is a slog and it has had allocations 4231 * then proceed. We check that the vdev's metaslab group 4232 * is not NULL since it's possible that we may have just 4233 * added this vdev but not yet initialized its metaslabs. 4234 */ 4235 if (tvd->vdev_islog && mg != NULL) { 4236 /* 4237 * Prevent any future allocations. 4238 */ 4239 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 4240 metaslab_group_passivate(mg); 4241 (void) spa_vdev_state_exit(spa, vd, 0); 4242 4243 error = spa_reset_logs(spa); 4244 4245 /* 4246 * If the log device was successfully reset but has 4247 * checkpointed data, do not offline it. 4248 */ 4249 if (error == 0 && 4250 tvd->vdev_checkpoint_sm != NULL) { 4251 ASSERT3U(space_map_allocated( 4252 tvd->vdev_checkpoint_sm), !=, 0); 4253 error = ZFS_ERR_CHECKPOINT_EXISTS; 4254 } 4255 4256 spa_vdev_state_enter(spa, SCL_ALLOC); 4257 4258 /* 4259 * Check to see if the config has changed. 4260 */ 4261 if (error || generation != spa->spa_config_generation) { 4262 metaslab_group_activate(mg); 4263 if (error) 4264 return (spa_vdev_state_exit(spa, 4265 vd, error)); 4266 (void) spa_vdev_state_exit(spa, vd, 0); 4267 goto top; 4268 } 4269 ASSERT0(tvd->vdev_stat.vs_alloc); 4270 } 4271 4272 /* 4273 * Offline this device and reopen its top-level vdev. 4274 * If the top-level vdev is a log device then just offline 4275 * it. Otherwise, if this action results in the top-level 4276 * vdev becoming unusable, undo it and fail the request. 4277 */ 4278 vd->vdev_offline = B_TRUE; 4279 vdev_reopen(tvd); 4280 4281 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4282 vdev_is_dead(tvd)) { 4283 vd->vdev_offline = B_FALSE; 4284 vdev_reopen(tvd); 4285 return (spa_vdev_state_exit(spa, NULL, 4286 SET_ERROR(EBUSY))); 4287 } 4288 4289 /* 4290 * Add the device back into the metaslab rotor so that 4291 * once we online the device it's open for business. 4292 */ 4293 if (tvd->vdev_islog && mg != NULL) 4294 metaslab_group_activate(mg); 4295 } 4296 4297 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 4298 4299 return (spa_vdev_state_exit(spa, vd, 0)); 4300 } 4301 4302 int 4303 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 4304 { 4305 int error; 4306 4307 mutex_enter(&spa->spa_vdev_top_lock); 4308 error = vdev_offline_locked(spa, guid, flags); 4309 mutex_exit(&spa->spa_vdev_top_lock); 4310 4311 return (error); 4312 } 4313 4314 /* 4315 * Clear the error counts associated with this vdev. Unlike vdev_online() and 4316 * vdev_offline(), we assume the spa config is locked. We also clear all 4317 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 4318 */ 4319 void 4320 vdev_clear(spa_t *spa, vdev_t *vd) 4321 { 4322 vdev_t *rvd = spa->spa_root_vdev; 4323 4324 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 4325 4326 if (vd == NULL) 4327 vd = rvd; 4328 4329 vd->vdev_stat.vs_read_errors = 0; 4330 vd->vdev_stat.vs_write_errors = 0; 4331 vd->vdev_stat.vs_checksum_errors = 0; 4332 vd->vdev_stat.vs_slow_ios = 0; 4333 4334 for (int c = 0; c < vd->vdev_children; c++) 4335 vdev_clear(spa, vd->vdev_child[c]); 4336 4337 /* 4338 * It makes no sense to "clear" an indirect or removed vdev. 4339 */ 4340 if (!vdev_is_concrete(vd) || vd->vdev_removed) 4341 return; 4342 4343 /* 4344 * If we're in the FAULTED state or have experienced failed I/O, then 4345 * clear the persistent state and attempt to reopen the device. We 4346 * also mark the vdev config dirty, so that the new faulted state is 4347 * written out to disk. 4348 */ 4349 if (vd->vdev_faulted || vd->vdev_degraded || 4350 !vdev_readable(vd) || !vdev_writeable(vd)) { 4351 /* 4352 * When reopening in response to a clear event, it may be due to 4353 * a fmadm repair request. In this case, if the device is 4354 * still broken, we want to still post the ereport again. 4355 */ 4356 vd->vdev_forcefault = B_TRUE; 4357 4358 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 4359 vd->vdev_cant_read = B_FALSE; 4360 vd->vdev_cant_write = B_FALSE; 4361 vd->vdev_stat.vs_aux = 0; 4362 4363 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 4364 4365 vd->vdev_forcefault = B_FALSE; 4366 4367 if (vd != rvd && vdev_writeable(vd->vdev_top)) 4368 vdev_state_dirty(vd->vdev_top); 4369 4370 /* If a resilver isn't required, check if vdevs can be culled */ 4371 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) && 4372 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4373 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool)) 4374 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4375 4376 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 4377 } 4378 4379 /* 4380 * When clearing a FMA-diagnosed fault, we always want to 4381 * unspare the device, as we assume that the original spare was 4382 * done in response to the FMA fault. 4383 */ 4384 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 4385 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4386 vd->vdev_parent->vdev_child[0] == vd) 4387 vd->vdev_unspare = B_TRUE; 4388 4389 /* Clear recent error events cache (i.e. duplicate events tracking) */ 4390 zfs_ereport_clear(spa, vd); 4391 } 4392 4393 boolean_t 4394 vdev_is_dead(vdev_t *vd) 4395 { 4396 /* 4397 * Holes and missing devices are always considered "dead". 4398 * This simplifies the code since we don't have to check for 4399 * these types of devices in the various code paths. 4400 * Instead we rely on the fact that we skip over dead devices 4401 * before issuing I/O to them. 4402 */ 4403 return (vd->vdev_state < VDEV_STATE_DEGRADED || 4404 vd->vdev_ops == &vdev_hole_ops || 4405 vd->vdev_ops == &vdev_missing_ops); 4406 } 4407 4408 boolean_t 4409 vdev_readable(vdev_t *vd) 4410 { 4411 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 4412 } 4413 4414 boolean_t 4415 vdev_writeable(vdev_t *vd) 4416 { 4417 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 4418 vdev_is_concrete(vd)); 4419 } 4420 4421 boolean_t 4422 vdev_allocatable(vdev_t *vd) 4423 { 4424 uint64_t state = vd->vdev_state; 4425 4426 /* 4427 * We currently allow allocations from vdevs which may be in the 4428 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 4429 * fails to reopen then we'll catch it later when we're holding 4430 * the proper locks. Note that we have to get the vdev state 4431 * in a local variable because although it changes atomically, 4432 * we're asking two separate questions about it. 4433 */ 4434 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 4435 !vd->vdev_cant_write && vdev_is_concrete(vd) && 4436 vd->vdev_mg->mg_initialized); 4437 } 4438 4439 boolean_t 4440 vdev_accessible(vdev_t *vd, zio_t *zio) 4441 { 4442 ASSERT(zio->io_vd == vd); 4443 4444 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 4445 return (B_FALSE); 4446 4447 if (zio->io_type == ZIO_TYPE_READ) 4448 return (!vd->vdev_cant_read); 4449 4450 if (zio->io_type == ZIO_TYPE_WRITE) 4451 return (!vd->vdev_cant_write); 4452 4453 return (B_TRUE); 4454 } 4455 4456 static void 4457 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs) 4458 { 4459 /* 4460 * Exclude the dRAID spare when aggregating to avoid double counting 4461 * the ops and bytes. These IOs are counted by the physical leaves. 4462 */ 4463 if (cvd->vdev_ops == &vdev_draid_spare_ops) 4464 return; 4465 4466 for (int t = 0; t < VS_ZIO_TYPES; t++) { 4467 vs->vs_ops[t] += cvs->vs_ops[t]; 4468 vs->vs_bytes[t] += cvs->vs_bytes[t]; 4469 } 4470 4471 cvs->vs_scan_removing = cvd->vdev_removing; 4472 } 4473 4474 /* 4475 * Get extended stats 4476 */ 4477 static void 4478 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx) 4479 { 4480 (void) cvd; 4481 4482 int t, b; 4483 for (t = 0; t < ZIO_TYPES; t++) { 4484 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++) 4485 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b]; 4486 4487 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) { 4488 vsx->vsx_total_histo[t][b] += 4489 cvsx->vsx_total_histo[t][b]; 4490 } 4491 } 4492 4493 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4494 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) { 4495 vsx->vsx_queue_histo[t][b] += 4496 cvsx->vsx_queue_histo[t][b]; 4497 } 4498 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t]; 4499 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t]; 4500 4501 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++) 4502 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b]; 4503 4504 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++) 4505 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b]; 4506 } 4507 4508 } 4509 4510 boolean_t 4511 vdev_is_spacemap_addressable(vdev_t *vd) 4512 { 4513 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 4514 return (B_TRUE); 4515 4516 /* 4517 * If double-word space map entries are not enabled we assume 4518 * 47 bits of the space map entry are dedicated to the entry's 4519 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 4520 * to calculate the maximum address that can be described by a 4521 * space map entry for the given device. 4522 */ 4523 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 4524 4525 if (shift >= 63) /* detect potential overflow */ 4526 return (B_TRUE); 4527 4528 return (vd->vdev_asize < (1ULL << shift)); 4529 } 4530 4531 /* 4532 * Get statistics for the given vdev. 4533 */ 4534 static void 4535 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4536 { 4537 int t; 4538 /* 4539 * If we're getting stats on the root vdev, aggregate the I/O counts 4540 * over all top-level vdevs (i.e. the direct children of the root). 4541 */ 4542 if (!vd->vdev_ops->vdev_op_leaf) { 4543 if (vs) { 4544 memset(vs->vs_ops, 0, sizeof (vs->vs_ops)); 4545 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes)); 4546 } 4547 if (vsx) 4548 memset(vsx, 0, sizeof (*vsx)); 4549 4550 for (int c = 0; c < vd->vdev_children; c++) { 4551 vdev_t *cvd = vd->vdev_child[c]; 4552 vdev_stat_t *cvs = &cvd->vdev_stat; 4553 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex; 4554 4555 vdev_get_stats_ex_impl(cvd, cvs, cvsx); 4556 if (vs) 4557 vdev_get_child_stat(cvd, vs, cvs); 4558 if (vsx) 4559 vdev_get_child_stat_ex(cvd, vsx, cvsx); 4560 } 4561 } else { 4562 /* 4563 * We're a leaf. Just copy our ZIO active queue stats in. The 4564 * other leaf stats are updated in vdev_stat_update(). 4565 */ 4566 if (!vsx) 4567 return; 4568 4569 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex)); 4570 4571 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) { 4572 vsx->vsx_active_queue[t] = 4573 vd->vdev_queue.vq_class[t].vqc_active; 4574 vsx->vsx_pend_queue[t] = avl_numnodes( 4575 &vd->vdev_queue.vq_class[t].vqc_queued_tree); 4576 } 4577 } 4578 } 4579 4580 void 4581 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4582 { 4583 vdev_t *tvd = vd->vdev_top; 4584 mutex_enter(&vd->vdev_stat_lock); 4585 if (vs) { 4586 memcpy(vs, &vd->vdev_stat, sizeof (*vs)); 4587 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 4588 vs->vs_state = vd->vdev_state; 4589 vs->vs_rsize = vdev_get_min_asize(vd); 4590 4591 if (vd->vdev_ops->vdev_op_leaf) { 4592 vs->vs_pspace = vd->vdev_psize; 4593 vs->vs_rsize += VDEV_LABEL_START_SIZE + 4594 VDEV_LABEL_END_SIZE; 4595 /* 4596 * Report initializing progress. Since we don't 4597 * have the initializing locks held, this is only 4598 * an estimate (although a fairly accurate one). 4599 */ 4600 vs->vs_initialize_bytes_done = 4601 vd->vdev_initialize_bytes_done; 4602 vs->vs_initialize_bytes_est = 4603 vd->vdev_initialize_bytes_est; 4604 vs->vs_initialize_state = vd->vdev_initialize_state; 4605 vs->vs_initialize_action_time = 4606 vd->vdev_initialize_action_time; 4607 4608 /* 4609 * Report manual TRIM progress. Since we don't have 4610 * the manual TRIM locks held, this is only an 4611 * estimate (although fairly accurate one). 4612 */ 4613 vs->vs_trim_notsup = !vd->vdev_has_trim; 4614 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done; 4615 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est; 4616 vs->vs_trim_state = vd->vdev_trim_state; 4617 vs->vs_trim_action_time = vd->vdev_trim_action_time; 4618 4619 /* Set when there is a deferred resilver. */ 4620 vs->vs_resilver_deferred = vd->vdev_resilver_deferred; 4621 } 4622 4623 /* 4624 * Report expandable space on top-level, non-auxiliary devices 4625 * only. The expandable space is reported in terms of metaslab 4626 * sized units since that determines how much space the pool 4627 * can expand. 4628 */ 4629 if (vd->vdev_aux == NULL && tvd != NULL) { 4630 vs->vs_esize = P2ALIGN( 4631 vd->vdev_max_asize - vd->vdev_asize, 4632 1ULL << tvd->vdev_ms_shift); 4633 } 4634 4635 vs->vs_configured_ashift = vd->vdev_top != NULL 4636 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift; 4637 vs->vs_logical_ashift = vd->vdev_logical_ashift; 4638 if (vd->vdev_physical_ashift <= ASHIFT_MAX) 4639 vs->vs_physical_ashift = vd->vdev_physical_ashift; 4640 else 4641 vs->vs_physical_ashift = 0; 4642 4643 /* 4644 * Report fragmentation and rebuild progress for top-level, 4645 * non-auxiliary, concrete devices. 4646 */ 4647 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 4648 vdev_is_concrete(vd)) { 4649 /* 4650 * The vdev fragmentation rating doesn't take into 4651 * account the embedded slog metaslab (vdev_log_mg). 4652 * Since it's only one metaslab, it would have a tiny 4653 * impact on the overall fragmentation. 4654 */ 4655 vs->vs_fragmentation = (vd->vdev_mg != NULL) ? 4656 vd->vdev_mg->mg_fragmentation : 0; 4657 } 4658 vs->vs_noalloc = MAX(vd->vdev_noalloc, 4659 tvd ? tvd->vdev_noalloc : 0); 4660 } 4661 4662 vdev_get_stats_ex_impl(vd, vs, vsx); 4663 mutex_exit(&vd->vdev_stat_lock); 4664 } 4665 4666 void 4667 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 4668 { 4669 return (vdev_get_stats_ex(vd, vs, NULL)); 4670 } 4671 4672 void 4673 vdev_clear_stats(vdev_t *vd) 4674 { 4675 mutex_enter(&vd->vdev_stat_lock); 4676 vd->vdev_stat.vs_space = 0; 4677 vd->vdev_stat.vs_dspace = 0; 4678 vd->vdev_stat.vs_alloc = 0; 4679 mutex_exit(&vd->vdev_stat_lock); 4680 } 4681 4682 void 4683 vdev_scan_stat_init(vdev_t *vd) 4684 { 4685 vdev_stat_t *vs = &vd->vdev_stat; 4686 4687 for (int c = 0; c < vd->vdev_children; c++) 4688 vdev_scan_stat_init(vd->vdev_child[c]); 4689 4690 mutex_enter(&vd->vdev_stat_lock); 4691 vs->vs_scan_processed = 0; 4692 mutex_exit(&vd->vdev_stat_lock); 4693 } 4694 4695 void 4696 vdev_stat_update(zio_t *zio, uint64_t psize) 4697 { 4698 spa_t *spa = zio->io_spa; 4699 vdev_t *rvd = spa->spa_root_vdev; 4700 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 4701 vdev_t *pvd; 4702 uint64_t txg = zio->io_txg; 4703 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL; 4704 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL; 4705 zio_type_t type = zio->io_type; 4706 int flags = zio->io_flags; 4707 4708 /* 4709 * If this i/o is a gang leader, it didn't do any actual work. 4710 */ 4711 if (zio->io_gang_tree) 4712 return; 4713 4714 if (zio->io_error == 0) { 4715 /* 4716 * If this is a root i/o, don't count it -- we've already 4717 * counted the top-level vdevs, and vdev_get_stats() will 4718 * aggregate them when asked. This reduces contention on 4719 * the root vdev_stat_lock and implicitly handles blocks 4720 * that compress away to holes, for which there is no i/o. 4721 * (Holes never create vdev children, so all the counters 4722 * remain zero, which is what we want.) 4723 * 4724 * Note: this only applies to successful i/o (io_error == 0) 4725 * because unlike i/o counts, errors are not additive. 4726 * When reading a ditto block, for example, failure of 4727 * one top-level vdev does not imply a root-level error. 4728 */ 4729 if (vd == rvd) 4730 return; 4731 4732 ASSERT(vd == zio->io_vd); 4733 4734 if (flags & ZIO_FLAG_IO_BYPASS) 4735 return; 4736 4737 mutex_enter(&vd->vdev_stat_lock); 4738 4739 if (flags & ZIO_FLAG_IO_REPAIR) { 4740 /* 4741 * Repair is the result of a resilver issued by the 4742 * scan thread (spa_sync). 4743 */ 4744 if (flags & ZIO_FLAG_SCAN_THREAD) { 4745 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 4746 dsl_scan_phys_t *scn_phys = &scn->scn_phys; 4747 uint64_t *processed = &scn_phys->scn_processed; 4748 4749 if (vd->vdev_ops->vdev_op_leaf) 4750 atomic_add_64(processed, psize); 4751 vs->vs_scan_processed += psize; 4752 } 4753 4754 /* 4755 * Repair is the result of a rebuild issued by the 4756 * rebuild thread (vdev_rebuild_thread). To avoid 4757 * double counting repaired bytes the virtual dRAID 4758 * spare vdev is excluded from the processed bytes. 4759 */ 4760 if (zio->io_priority == ZIO_PRIORITY_REBUILD) { 4761 vdev_t *tvd = vd->vdev_top; 4762 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config; 4763 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 4764 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt; 4765 4766 if (vd->vdev_ops->vdev_op_leaf && 4767 vd->vdev_ops != &vdev_draid_spare_ops) { 4768 atomic_add_64(rebuilt, psize); 4769 } 4770 vs->vs_rebuild_processed += psize; 4771 } 4772 4773 if (flags & ZIO_FLAG_SELF_HEAL) 4774 vs->vs_self_healed += psize; 4775 } 4776 4777 /* 4778 * The bytes/ops/histograms are recorded at the leaf level and 4779 * aggregated into the higher level vdevs in vdev_get_stats(). 4780 */ 4781 if (vd->vdev_ops->vdev_op_leaf && 4782 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) { 4783 zio_type_t vs_type = type; 4784 zio_priority_t priority = zio->io_priority; 4785 4786 /* 4787 * TRIM ops and bytes are reported to user space as 4788 * ZIO_TYPE_IOCTL. This is done to preserve the 4789 * vdev_stat_t structure layout for user space. 4790 */ 4791 if (type == ZIO_TYPE_TRIM) 4792 vs_type = ZIO_TYPE_IOCTL; 4793 4794 /* 4795 * Solely for the purposes of 'zpool iostat -lqrw' 4796 * reporting use the priority to categorize the IO. 4797 * Only the following are reported to user space: 4798 * 4799 * ZIO_PRIORITY_SYNC_READ, 4800 * ZIO_PRIORITY_SYNC_WRITE, 4801 * ZIO_PRIORITY_ASYNC_READ, 4802 * ZIO_PRIORITY_ASYNC_WRITE, 4803 * ZIO_PRIORITY_SCRUB, 4804 * ZIO_PRIORITY_TRIM, 4805 * ZIO_PRIORITY_REBUILD. 4806 */ 4807 if (priority == ZIO_PRIORITY_INITIALIZING) { 4808 ASSERT3U(type, ==, ZIO_TYPE_WRITE); 4809 priority = ZIO_PRIORITY_ASYNC_WRITE; 4810 } else if (priority == ZIO_PRIORITY_REMOVAL) { 4811 priority = ((type == ZIO_TYPE_WRITE) ? 4812 ZIO_PRIORITY_ASYNC_WRITE : 4813 ZIO_PRIORITY_ASYNC_READ); 4814 } 4815 4816 vs->vs_ops[vs_type]++; 4817 vs->vs_bytes[vs_type] += psize; 4818 4819 if (flags & ZIO_FLAG_DELEGATED) { 4820 vsx->vsx_agg_histo[priority] 4821 [RQ_HISTO(zio->io_size)]++; 4822 } else { 4823 vsx->vsx_ind_histo[priority] 4824 [RQ_HISTO(zio->io_size)]++; 4825 } 4826 4827 if (zio->io_delta && zio->io_delay) { 4828 vsx->vsx_queue_histo[priority] 4829 [L_HISTO(zio->io_delta - zio->io_delay)]++; 4830 vsx->vsx_disk_histo[type] 4831 [L_HISTO(zio->io_delay)]++; 4832 vsx->vsx_total_histo[type] 4833 [L_HISTO(zio->io_delta)]++; 4834 } 4835 } 4836 4837 mutex_exit(&vd->vdev_stat_lock); 4838 return; 4839 } 4840 4841 if (flags & ZIO_FLAG_SPECULATIVE) 4842 return; 4843 4844 /* 4845 * If this is an I/O error that is going to be retried, then ignore the 4846 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 4847 * hard errors, when in reality they can happen for any number of 4848 * innocuous reasons (bus resets, MPxIO link failure, etc). 4849 */ 4850 if (zio->io_error == EIO && 4851 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 4852 return; 4853 4854 /* 4855 * Intent logs writes won't propagate their error to the root 4856 * I/O so don't mark these types of failures as pool-level 4857 * errors. 4858 */ 4859 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 4860 return; 4861 4862 if (type == ZIO_TYPE_WRITE && txg != 0 && 4863 (!(flags & ZIO_FLAG_IO_REPAIR) || 4864 (flags & ZIO_FLAG_SCAN_THREAD) || 4865 spa->spa_claiming)) { 4866 /* 4867 * This is either a normal write (not a repair), or it's 4868 * a repair induced by the scrub thread, or it's a repair 4869 * made by zil_claim() during spa_load() in the first txg. 4870 * In the normal case, we commit the DTL change in the same 4871 * txg as the block was born. In the scrub-induced repair 4872 * case, we know that scrubs run in first-pass syncing context, 4873 * so we commit the DTL change in spa_syncing_txg(spa). 4874 * In the zil_claim() case, we commit in spa_first_txg(spa). 4875 * 4876 * We currently do not make DTL entries for failed spontaneous 4877 * self-healing writes triggered by normal (non-scrubbing) 4878 * reads, because we have no transactional context in which to 4879 * do so -- and it's not clear that it'd be desirable anyway. 4880 */ 4881 if (vd->vdev_ops->vdev_op_leaf) { 4882 uint64_t commit_txg = txg; 4883 if (flags & ZIO_FLAG_SCAN_THREAD) { 4884 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4885 ASSERT(spa_sync_pass(spa) == 1); 4886 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 4887 commit_txg = spa_syncing_txg(spa); 4888 } else if (spa->spa_claiming) { 4889 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4890 commit_txg = spa_first_txg(spa); 4891 } 4892 ASSERT(commit_txg >= spa_syncing_txg(spa)); 4893 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 4894 return; 4895 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4896 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 4897 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 4898 } 4899 if (vd != rvd) 4900 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 4901 } 4902 } 4903 4904 int64_t 4905 vdev_deflated_space(vdev_t *vd, int64_t space) 4906 { 4907 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); 4908 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 4909 4910 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); 4911 } 4912 4913 /* 4914 * Update the in-core space usage stats for this vdev, its metaslab class, 4915 * and the root vdev. 4916 */ 4917 void 4918 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 4919 int64_t space_delta) 4920 { 4921 (void) defer_delta; 4922 int64_t dspace_delta; 4923 spa_t *spa = vd->vdev_spa; 4924 vdev_t *rvd = spa->spa_root_vdev; 4925 4926 ASSERT(vd == vd->vdev_top); 4927 4928 /* 4929 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 4930 * factor. We must calculate this here and not at the root vdev 4931 * because the root vdev's psize-to-asize is simply the max of its 4932 * children's, thus not accurate enough for us. 4933 */ 4934 dspace_delta = vdev_deflated_space(vd, space_delta); 4935 4936 mutex_enter(&vd->vdev_stat_lock); 4937 /* ensure we won't underflow */ 4938 if (alloc_delta < 0) { 4939 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); 4940 } 4941 4942 vd->vdev_stat.vs_alloc += alloc_delta; 4943 vd->vdev_stat.vs_space += space_delta; 4944 vd->vdev_stat.vs_dspace += dspace_delta; 4945 mutex_exit(&vd->vdev_stat_lock); 4946 4947 /* every class but log contributes to root space stats */ 4948 if (vd->vdev_mg != NULL && !vd->vdev_islog) { 4949 ASSERT(!vd->vdev_isl2cache); 4950 mutex_enter(&rvd->vdev_stat_lock); 4951 rvd->vdev_stat.vs_alloc += alloc_delta; 4952 rvd->vdev_stat.vs_space += space_delta; 4953 rvd->vdev_stat.vs_dspace += dspace_delta; 4954 mutex_exit(&rvd->vdev_stat_lock); 4955 } 4956 /* Note: metaslab_class_space_update moved to metaslab_space_update */ 4957 } 4958 4959 /* 4960 * Mark a top-level vdev's config as dirty, placing it on the dirty list 4961 * so that it will be written out next time the vdev configuration is synced. 4962 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 4963 */ 4964 void 4965 vdev_config_dirty(vdev_t *vd) 4966 { 4967 spa_t *spa = vd->vdev_spa; 4968 vdev_t *rvd = spa->spa_root_vdev; 4969 int c; 4970 4971 ASSERT(spa_writeable(spa)); 4972 4973 /* 4974 * If this is an aux vdev (as with l2cache and spare devices), then we 4975 * update the vdev config manually and set the sync flag. 4976 */ 4977 if (vd->vdev_aux != NULL) { 4978 spa_aux_vdev_t *sav = vd->vdev_aux; 4979 nvlist_t **aux; 4980 uint_t naux; 4981 4982 for (c = 0; c < sav->sav_count; c++) { 4983 if (sav->sav_vdevs[c] == vd) 4984 break; 4985 } 4986 4987 if (c == sav->sav_count) { 4988 /* 4989 * We're being removed. There's nothing more to do. 4990 */ 4991 ASSERT(sav->sav_sync == B_TRUE); 4992 return; 4993 } 4994 4995 sav->sav_sync = B_TRUE; 4996 4997 if (nvlist_lookup_nvlist_array(sav->sav_config, 4998 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 4999 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 5000 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 5001 } 5002 5003 ASSERT(c < naux); 5004 5005 /* 5006 * Setting the nvlist in the middle if the array is a little 5007 * sketchy, but it will work. 5008 */ 5009 nvlist_free(aux[c]); 5010 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 5011 5012 return; 5013 } 5014 5015 /* 5016 * The dirty list is protected by the SCL_CONFIG lock. The caller 5017 * must either hold SCL_CONFIG as writer, or must be the sync thread 5018 * (which holds SCL_CONFIG as reader). There's only one sync thread, 5019 * so this is sufficient to ensure mutual exclusion. 5020 */ 5021 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5022 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5023 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5024 5025 if (vd == rvd) { 5026 for (c = 0; c < rvd->vdev_children; c++) 5027 vdev_config_dirty(rvd->vdev_child[c]); 5028 } else { 5029 ASSERT(vd == vd->vdev_top); 5030 5031 if (!list_link_active(&vd->vdev_config_dirty_node) && 5032 vdev_is_concrete(vd)) { 5033 list_insert_head(&spa->spa_config_dirty_list, vd); 5034 } 5035 } 5036 } 5037 5038 void 5039 vdev_config_clean(vdev_t *vd) 5040 { 5041 spa_t *spa = vd->vdev_spa; 5042 5043 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5044 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5045 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5046 5047 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 5048 list_remove(&spa->spa_config_dirty_list, vd); 5049 } 5050 5051 /* 5052 * Mark a top-level vdev's state as dirty, so that the next pass of 5053 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 5054 * the state changes from larger config changes because they require 5055 * much less locking, and are often needed for administrative actions. 5056 */ 5057 void 5058 vdev_state_dirty(vdev_t *vd) 5059 { 5060 spa_t *spa = vd->vdev_spa; 5061 5062 ASSERT(spa_writeable(spa)); 5063 ASSERT(vd == vd->vdev_top); 5064 5065 /* 5066 * The state list is protected by the SCL_STATE lock. The caller 5067 * must either hold SCL_STATE as writer, or must be the sync thread 5068 * (which holds SCL_STATE as reader). There's only one sync thread, 5069 * so this is sufficient to ensure mutual exclusion. 5070 */ 5071 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5072 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5073 spa_config_held(spa, SCL_STATE, RW_READER))); 5074 5075 if (!list_link_active(&vd->vdev_state_dirty_node) && 5076 vdev_is_concrete(vd)) 5077 list_insert_head(&spa->spa_state_dirty_list, vd); 5078 } 5079 5080 void 5081 vdev_state_clean(vdev_t *vd) 5082 { 5083 spa_t *spa = vd->vdev_spa; 5084 5085 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5086 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5087 spa_config_held(spa, SCL_STATE, RW_READER))); 5088 5089 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 5090 list_remove(&spa->spa_state_dirty_list, vd); 5091 } 5092 5093 /* 5094 * Propagate vdev state up from children to parent. 5095 */ 5096 void 5097 vdev_propagate_state(vdev_t *vd) 5098 { 5099 spa_t *spa = vd->vdev_spa; 5100 vdev_t *rvd = spa->spa_root_vdev; 5101 int degraded = 0, faulted = 0; 5102 int corrupted = 0; 5103 vdev_t *child; 5104 5105 if (vd->vdev_children > 0) { 5106 for (int c = 0; c < vd->vdev_children; c++) { 5107 child = vd->vdev_child[c]; 5108 5109 /* 5110 * Don't factor holes or indirect vdevs into the 5111 * decision. 5112 */ 5113 if (!vdev_is_concrete(child)) 5114 continue; 5115 5116 if (!vdev_readable(child) || 5117 (!vdev_writeable(child) && spa_writeable(spa))) { 5118 /* 5119 * Root special: if there is a top-level log 5120 * device, treat the root vdev as if it were 5121 * degraded. 5122 */ 5123 if (child->vdev_islog && vd == rvd) 5124 degraded++; 5125 else 5126 faulted++; 5127 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 5128 degraded++; 5129 } 5130 5131 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 5132 corrupted++; 5133 } 5134 5135 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 5136 5137 /* 5138 * Root special: if there is a top-level vdev that cannot be 5139 * opened due to corrupted metadata, then propagate the root 5140 * vdev's aux state as 'corrupt' rather than 'insufficient 5141 * replicas'. 5142 */ 5143 if (corrupted && vd == rvd && 5144 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 5145 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 5146 VDEV_AUX_CORRUPT_DATA); 5147 } 5148 5149 if (vd->vdev_parent) 5150 vdev_propagate_state(vd->vdev_parent); 5151 } 5152 5153 /* 5154 * Set a vdev's state. If this is during an open, we don't update the parent 5155 * state, because we're in the process of opening children depth-first. 5156 * Otherwise, we propagate the change to the parent. 5157 * 5158 * If this routine places a device in a faulted state, an appropriate ereport is 5159 * generated. 5160 */ 5161 void 5162 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 5163 { 5164 uint64_t save_state; 5165 spa_t *spa = vd->vdev_spa; 5166 5167 if (state == vd->vdev_state) { 5168 /* 5169 * Since vdev_offline() code path is already in an offline 5170 * state we can miss a statechange event to OFFLINE. Check 5171 * the previous state to catch this condition. 5172 */ 5173 if (vd->vdev_ops->vdev_op_leaf && 5174 (state == VDEV_STATE_OFFLINE) && 5175 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) { 5176 /* post an offline state change */ 5177 zfs_post_state_change(spa, vd, vd->vdev_prevstate); 5178 } 5179 vd->vdev_stat.vs_aux = aux; 5180 return; 5181 } 5182 5183 save_state = vd->vdev_state; 5184 5185 vd->vdev_state = state; 5186 vd->vdev_stat.vs_aux = aux; 5187 5188 /* 5189 * If we are setting the vdev state to anything but an open state, then 5190 * always close the underlying device unless the device has requested 5191 * a delayed close (i.e. we're about to remove or fault the device). 5192 * Otherwise, we keep accessible but invalid devices open forever. 5193 * We don't call vdev_close() itself, because that implies some extra 5194 * checks (offline, etc) that we don't want here. This is limited to 5195 * leaf devices, because otherwise closing the device will affect other 5196 * children. 5197 */ 5198 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 5199 vd->vdev_ops->vdev_op_leaf) 5200 vd->vdev_ops->vdev_op_close(vd); 5201 5202 if (vd->vdev_removed && 5203 state == VDEV_STATE_CANT_OPEN && 5204 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 5205 /* 5206 * If the previous state is set to VDEV_STATE_REMOVED, then this 5207 * device was previously marked removed and someone attempted to 5208 * reopen it. If this failed due to a nonexistent device, then 5209 * keep the device in the REMOVED state. We also let this be if 5210 * it is one of our special test online cases, which is only 5211 * attempting to online the device and shouldn't generate an FMA 5212 * fault. 5213 */ 5214 vd->vdev_state = VDEV_STATE_REMOVED; 5215 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 5216 } else if (state == VDEV_STATE_REMOVED) { 5217 vd->vdev_removed = B_TRUE; 5218 } else if (state == VDEV_STATE_CANT_OPEN) { 5219 /* 5220 * If we fail to open a vdev during an import or recovery, we 5221 * mark it as "not available", which signifies that it was 5222 * never there to begin with. Failure to open such a device 5223 * is not considered an error. 5224 */ 5225 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 5226 spa_load_state(spa) == SPA_LOAD_RECOVER) && 5227 vd->vdev_ops->vdev_op_leaf) 5228 vd->vdev_not_present = 1; 5229 5230 /* 5231 * Post the appropriate ereport. If the 'prevstate' field is 5232 * set to something other than VDEV_STATE_UNKNOWN, it indicates 5233 * that this is part of a vdev_reopen(). In this case, we don't 5234 * want to post the ereport if the device was already in the 5235 * CANT_OPEN state beforehand. 5236 * 5237 * If the 'checkremove' flag is set, then this is an attempt to 5238 * online the device in response to an insertion event. If we 5239 * hit this case, then we have detected an insertion event for a 5240 * faulted or offline device that wasn't in the removed state. 5241 * In this scenario, we don't post an ereport because we are 5242 * about to replace the device, or attempt an online with 5243 * vdev_forcefault, which will generate the fault for us. 5244 */ 5245 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 5246 !vd->vdev_not_present && !vd->vdev_checkremove && 5247 vd != spa->spa_root_vdev) { 5248 const char *class; 5249 5250 switch (aux) { 5251 case VDEV_AUX_OPEN_FAILED: 5252 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 5253 break; 5254 case VDEV_AUX_CORRUPT_DATA: 5255 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 5256 break; 5257 case VDEV_AUX_NO_REPLICAS: 5258 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 5259 break; 5260 case VDEV_AUX_BAD_GUID_SUM: 5261 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 5262 break; 5263 case VDEV_AUX_TOO_SMALL: 5264 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 5265 break; 5266 case VDEV_AUX_BAD_LABEL: 5267 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 5268 break; 5269 case VDEV_AUX_BAD_ASHIFT: 5270 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT; 5271 break; 5272 default: 5273 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 5274 } 5275 5276 (void) zfs_ereport_post(class, spa, vd, NULL, NULL, 5277 save_state); 5278 } 5279 5280 /* Erase any notion of persistent removed state */ 5281 vd->vdev_removed = B_FALSE; 5282 } else { 5283 vd->vdev_removed = B_FALSE; 5284 } 5285 5286 /* 5287 * Notify ZED of any significant state-change on a leaf vdev. 5288 * 5289 */ 5290 if (vd->vdev_ops->vdev_op_leaf) { 5291 /* preserve original state from a vdev_reopen() */ 5292 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) && 5293 (vd->vdev_prevstate != vd->vdev_state) && 5294 (save_state <= VDEV_STATE_CLOSED)) 5295 save_state = vd->vdev_prevstate; 5296 5297 /* filter out state change due to initial vdev_open */ 5298 if (save_state > VDEV_STATE_CLOSED) 5299 zfs_post_state_change(spa, vd, save_state); 5300 } 5301 5302 if (!isopen && vd->vdev_parent) 5303 vdev_propagate_state(vd->vdev_parent); 5304 } 5305 5306 boolean_t 5307 vdev_children_are_offline(vdev_t *vd) 5308 { 5309 ASSERT(!vd->vdev_ops->vdev_op_leaf); 5310 5311 for (uint64_t i = 0; i < vd->vdev_children; i++) { 5312 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 5313 return (B_FALSE); 5314 } 5315 5316 return (B_TRUE); 5317 } 5318 5319 /* 5320 * Check the vdev configuration to ensure that it's capable of supporting 5321 * a root pool. We do not support partial configuration. 5322 */ 5323 boolean_t 5324 vdev_is_bootable(vdev_t *vd) 5325 { 5326 if (!vd->vdev_ops->vdev_op_leaf) { 5327 const char *vdev_type = vd->vdev_ops->vdev_op_type; 5328 5329 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) 5330 return (B_FALSE); 5331 } 5332 5333 for (int c = 0; c < vd->vdev_children; c++) { 5334 if (!vdev_is_bootable(vd->vdev_child[c])) 5335 return (B_FALSE); 5336 } 5337 return (B_TRUE); 5338 } 5339 5340 boolean_t 5341 vdev_is_concrete(vdev_t *vd) 5342 { 5343 vdev_ops_t *ops = vd->vdev_ops; 5344 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 5345 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 5346 return (B_FALSE); 5347 } else { 5348 return (B_TRUE); 5349 } 5350 } 5351 5352 /* 5353 * Determine if a log device has valid content. If the vdev was 5354 * removed or faulted in the MOS config then we know that 5355 * the content on the log device has already been written to the pool. 5356 */ 5357 boolean_t 5358 vdev_log_state_valid(vdev_t *vd) 5359 { 5360 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 5361 !vd->vdev_removed) 5362 return (B_TRUE); 5363 5364 for (int c = 0; c < vd->vdev_children; c++) 5365 if (vdev_log_state_valid(vd->vdev_child[c])) 5366 return (B_TRUE); 5367 5368 return (B_FALSE); 5369 } 5370 5371 /* 5372 * Expand a vdev if possible. 5373 */ 5374 void 5375 vdev_expand(vdev_t *vd, uint64_t txg) 5376 { 5377 ASSERT(vd->vdev_top == vd); 5378 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5379 ASSERT(vdev_is_concrete(vd)); 5380 5381 vdev_set_deflate_ratio(vd); 5382 5383 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 5384 vdev_is_concrete(vd)) { 5385 vdev_metaslab_group_create(vd); 5386 VERIFY(vdev_metaslab_init(vd, txg) == 0); 5387 vdev_config_dirty(vd); 5388 } 5389 } 5390 5391 /* 5392 * Split a vdev. 5393 */ 5394 void 5395 vdev_split(vdev_t *vd) 5396 { 5397 vdev_t *cvd, *pvd = vd->vdev_parent; 5398 5399 vdev_remove_child(pvd, vd); 5400 vdev_compact_children(pvd); 5401 5402 cvd = pvd->vdev_child[0]; 5403 if (pvd->vdev_children == 1) { 5404 vdev_remove_parent(cvd); 5405 cvd->vdev_splitting = B_TRUE; 5406 } 5407 vdev_propagate_state(cvd); 5408 } 5409 5410 void 5411 vdev_deadman(vdev_t *vd, const char *tag) 5412 { 5413 for (int c = 0; c < vd->vdev_children; c++) { 5414 vdev_t *cvd = vd->vdev_child[c]; 5415 5416 vdev_deadman(cvd, tag); 5417 } 5418 5419 if (vd->vdev_ops->vdev_op_leaf) { 5420 vdev_queue_t *vq = &vd->vdev_queue; 5421 5422 mutex_enter(&vq->vq_lock); 5423 if (avl_numnodes(&vq->vq_active_tree) > 0) { 5424 spa_t *spa = vd->vdev_spa; 5425 zio_t *fio; 5426 uint64_t delta; 5427 5428 zfs_dbgmsg("slow vdev: %s has %lu active IOs", 5429 vd->vdev_path, avl_numnodes(&vq->vq_active_tree)); 5430 5431 /* 5432 * Look at the head of all the pending queues, 5433 * if any I/O has been outstanding for longer than 5434 * the spa_deadman_synctime invoke the deadman logic. 5435 */ 5436 fio = avl_first(&vq->vq_active_tree); 5437 delta = gethrtime() - fio->io_timestamp; 5438 if (delta > spa_deadman_synctime(spa)) 5439 zio_deadman(fio, tag); 5440 } 5441 mutex_exit(&vq->vq_lock); 5442 } 5443 } 5444 5445 void 5446 vdev_defer_resilver(vdev_t *vd) 5447 { 5448 ASSERT(vd->vdev_ops->vdev_op_leaf); 5449 5450 vd->vdev_resilver_deferred = B_TRUE; 5451 vd->vdev_spa->spa_resilver_deferred = B_TRUE; 5452 } 5453 5454 /* 5455 * Clears the resilver deferred flag on all leaf devs under vd. Returns 5456 * B_TRUE if we have devices that need to be resilvered and are available to 5457 * accept resilver I/Os. 5458 */ 5459 boolean_t 5460 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx) 5461 { 5462 boolean_t resilver_needed = B_FALSE; 5463 spa_t *spa = vd->vdev_spa; 5464 5465 for (int c = 0; c < vd->vdev_children; c++) { 5466 vdev_t *cvd = vd->vdev_child[c]; 5467 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx); 5468 } 5469 5470 if (vd == spa->spa_root_vdev && 5471 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { 5472 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 5473 vdev_config_dirty(vd); 5474 spa->spa_resilver_deferred = B_FALSE; 5475 return (resilver_needed); 5476 } 5477 5478 if (!vdev_is_concrete(vd) || vd->vdev_aux || 5479 !vd->vdev_ops->vdev_op_leaf) 5480 return (resilver_needed); 5481 5482 vd->vdev_resilver_deferred = B_FALSE; 5483 5484 return (!vdev_is_dead(vd) && !vd->vdev_offline && 5485 vdev_resilver_needed(vd, NULL, NULL)); 5486 } 5487 5488 boolean_t 5489 vdev_xlate_is_empty(range_seg64_t *rs) 5490 { 5491 return (rs->rs_start == rs->rs_end); 5492 } 5493 5494 /* 5495 * Translate a logical range to the first contiguous physical range for the 5496 * specified vdev_t. This function is initially called with a leaf vdev and 5497 * will walk each parent vdev until it reaches a top-level vdev. Once the 5498 * top-level is reached the physical range is initialized and the recursive 5499 * function begins to unwind. As it unwinds it calls the parent's vdev 5500 * specific translation function to do the real conversion. 5501 */ 5502 void 5503 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 5504 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 5505 { 5506 /* 5507 * Walk up the vdev tree 5508 */ 5509 if (vd != vd->vdev_top) { 5510 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs, 5511 remain_rs); 5512 } else { 5513 /* 5514 * We've reached the top-level vdev, initialize the physical 5515 * range to the logical range and set an empty remaining 5516 * range then start to unwind. 5517 */ 5518 physical_rs->rs_start = logical_rs->rs_start; 5519 physical_rs->rs_end = logical_rs->rs_end; 5520 5521 remain_rs->rs_start = logical_rs->rs_start; 5522 remain_rs->rs_end = logical_rs->rs_start; 5523 5524 return; 5525 } 5526 5527 vdev_t *pvd = vd->vdev_parent; 5528 ASSERT3P(pvd, !=, NULL); 5529 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL); 5530 5531 /* 5532 * As this recursive function unwinds, translate the logical 5533 * range into its physical and any remaining components by calling 5534 * the vdev specific translate function. 5535 */ 5536 range_seg64_t intermediate = { 0 }; 5537 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs); 5538 5539 physical_rs->rs_start = intermediate.rs_start; 5540 physical_rs->rs_end = intermediate.rs_end; 5541 } 5542 5543 void 5544 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs, 5545 vdev_xlate_func_t *func, void *arg) 5546 { 5547 range_seg64_t iter_rs = *logical_rs; 5548 range_seg64_t physical_rs; 5549 range_seg64_t remain_rs; 5550 5551 while (!vdev_xlate_is_empty(&iter_rs)) { 5552 5553 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs); 5554 5555 /* 5556 * With raidz and dRAID, it's possible that the logical range 5557 * does not live on this leaf vdev. Only when there is a non- 5558 * zero physical size call the provided function. 5559 */ 5560 if (!vdev_xlate_is_empty(&physical_rs)) 5561 func(arg, &physical_rs); 5562 5563 iter_rs = remain_rs; 5564 } 5565 } 5566 5567 static char * 5568 vdev_name(vdev_t *vd, char *buf, int buflen) 5569 { 5570 if (vd->vdev_path == NULL) { 5571 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) { 5572 strlcpy(buf, vd->vdev_spa->spa_name, buflen); 5573 } else if (!vd->vdev_ops->vdev_op_leaf) { 5574 snprintf(buf, buflen, "%s-%llu", 5575 vd->vdev_ops->vdev_op_type, 5576 (u_longlong_t)vd->vdev_id); 5577 } 5578 } else { 5579 strlcpy(buf, vd->vdev_path, buflen); 5580 } 5581 return (buf); 5582 } 5583 5584 /* 5585 * Look at the vdev tree and determine whether any devices are currently being 5586 * replaced. 5587 */ 5588 boolean_t 5589 vdev_replace_in_progress(vdev_t *vdev) 5590 { 5591 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0); 5592 5593 if (vdev->vdev_ops == &vdev_replacing_ops) 5594 return (B_TRUE); 5595 5596 /* 5597 * A 'spare' vdev indicates that we have a replace in progress, unless 5598 * it has exactly two children, and the second, the hot spare, has 5599 * finished being resilvered. 5600 */ 5601 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 || 5602 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING))) 5603 return (B_TRUE); 5604 5605 for (int i = 0; i < vdev->vdev_children; i++) { 5606 if (vdev_replace_in_progress(vdev->vdev_child[i])) 5607 return (B_TRUE); 5608 } 5609 5610 return (B_FALSE); 5611 } 5612 5613 /* 5614 * Add a (source=src, propname=propval) list to an nvlist. 5615 */ 5616 static void 5617 vdev_prop_add_list(nvlist_t *nvl, const char *propname, char *strval, 5618 uint64_t intval, zprop_source_t src) 5619 { 5620 nvlist_t *propval; 5621 5622 propval = fnvlist_alloc(); 5623 fnvlist_add_uint64(propval, ZPROP_SOURCE, src); 5624 5625 if (strval != NULL) 5626 fnvlist_add_string(propval, ZPROP_VALUE, strval); 5627 else 5628 fnvlist_add_uint64(propval, ZPROP_VALUE, intval); 5629 5630 fnvlist_add_nvlist(nvl, propname, propval); 5631 nvlist_free(propval); 5632 } 5633 5634 static void 5635 vdev_props_set_sync(void *arg, dmu_tx_t *tx) 5636 { 5637 vdev_t *vd; 5638 nvlist_t *nvp = arg; 5639 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5640 objset_t *mos = spa->spa_meta_objset; 5641 nvpair_t *elem = NULL; 5642 uint64_t vdev_guid; 5643 nvlist_t *nvprops; 5644 5645 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV); 5646 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS); 5647 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE); 5648 5649 /* this vdev could get removed while waiting for this sync task */ 5650 if (vd == NULL) 5651 return; 5652 5653 mutex_enter(&spa->spa_props_lock); 5654 5655 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5656 uint64_t intval, objid = 0; 5657 char *strval; 5658 vdev_prop_t prop; 5659 const char *propname = nvpair_name(elem); 5660 zprop_type_t proptype; 5661 5662 /* 5663 * Set vdev property values in the vdev props mos object. 5664 */ 5665 if (vd->vdev_top_zap != 0) { 5666 objid = vd->vdev_top_zap; 5667 } else if (vd->vdev_leaf_zap != 0) { 5668 objid = vd->vdev_leaf_zap; 5669 } else { 5670 panic("vdev not top or leaf"); 5671 } 5672 5673 switch (prop = vdev_name_to_prop(propname)) { 5674 case VDEV_PROP_USERPROP: 5675 if (vdev_prop_user(propname)) { 5676 strval = fnvpair_value_string(elem); 5677 if (strlen(strval) == 0) { 5678 /* remove the property if value == "" */ 5679 (void) zap_remove(mos, objid, propname, 5680 tx); 5681 } else { 5682 VERIFY0(zap_update(mos, objid, propname, 5683 1, strlen(strval) + 1, strval, tx)); 5684 } 5685 spa_history_log_internal(spa, "vdev set", tx, 5686 "vdev_guid=%llu: %s=%s", 5687 (u_longlong_t)vdev_guid, nvpair_name(elem), 5688 strval); 5689 } 5690 break; 5691 default: 5692 /* normalize the property name */ 5693 propname = vdev_prop_to_name(prop); 5694 proptype = vdev_prop_get_type(prop); 5695 5696 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5697 ASSERT(proptype == PROP_TYPE_STRING); 5698 strval = fnvpair_value_string(elem); 5699 VERIFY0(zap_update(mos, objid, propname, 5700 1, strlen(strval) + 1, strval, tx)); 5701 spa_history_log_internal(spa, "vdev set", tx, 5702 "vdev_guid=%llu: %s=%s", 5703 (u_longlong_t)vdev_guid, nvpair_name(elem), 5704 strval); 5705 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5706 intval = fnvpair_value_uint64(elem); 5707 5708 if (proptype == PROP_TYPE_INDEX) { 5709 const char *unused; 5710 VERIFY0(vdev_prop_index_to_string( 5711 prop, intval, &unused)); 5712 } 5713 VERIFY0(zap_update(mos, objid, propname, 5714 sizeof (uint64_t), 1, &intval, tx)); 5715 spa_history_log_internal(spa, "vdev set", tx, 5716 "vdev_guid=%llu: %s=%lld", 5717 (u_longlong_t)vdev_guid, 5718 nvpair_name(elem), (longlong_t)intval); 5719 } else { 5720 panic("invalid vdev property type %u", 5721 nvpair_type(elem)); 5722 } 5723 } 5724 5725 } 5726 5727 mutex_exit(&spa->spa_props_lock); 5728 } 5729 5730 int 5731 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 5732 { 5733 spa_t *spa = vd->vdev_spa; 5734 nvpair_t *elem = NULL; 5735 uint64_t vdev_guid; 5736 nvlist_t *nvprops; 5737 int error = 0; 5738 5739 ASSERT(vd != NULL); 5740 5741 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV, 5742 &vdev_guid) != 0) 5743 return (SET_ERROR(EINVAL)); 5744 5745 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS, 5746 &nvprops) != 0) 5747 return (SET_ERROR(EINVAL)); 5748 5749 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) 5750 return (SET_ERROR(EINVAL)); 5751 5752 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5753 char *propname = nvpair_name(elem); 5754 vdev_prop_t prop = vdev_name_to_prop(propname); 5755 uint64_t intval = 0; 5756 char *strval = NULL; 5757 5758 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) { 5759 error = EINVAL; 5760 goto end; 5761 } 5762 5763 if (vdev_prop_readonly(prop)) { 5764 error = EROFS; 5765 goto end; 5766 } 5767 5768 /* Special Processing */ 5769 switch (prop) { 5770 case VDEV_PROP_PATH: 5771 if (vd->vdev_path == NULL) { 5772 error = EROFS; 5773 break; 5774 } 5775 if (nvpair_value_string(elem, &strval) != 0) { 5776 error = EINVAL; 5777 break; 5778 } 5779 /* New path must start with /dev/ */ 5780 if (strncmp(strval, "/dev/", 5)) { 5781 error = EINVAL; 5782 break; 5783 } 5784 error = spa_vdev_setpath(spa, vdev_guid, strval); 5785 break; 5786 case VDEV_PROP_ALLOCATING: 5787 if (nvpair_value_uint64(elem, &intval) != 0) { 5788 error = EINVAL; 5789 break; 5790 } 5791 if (intval != vd->vdev_noalloc) 5792 break; 5793 if (intval == 0) 5794 error = spa_vdev_noalloc(spa, vdev_guid); 5795 else 5796 error = spa_vdev_alloc(spa, vdev_guid); 5797 break; 5798 case VDEV_PROP_FAILFAST: 5799 if (nvpair_value_uint64(elem, &intval) != 0) { 5800 error = EINVAL; 5801 break; 5802 } 5803 vd->vdev_failfast = intval & 1; 5804 break; 5805 case VDEV_PROP_CHECKSUM_N: 5806 if (nvpair_value_uint64(elem, &intval) != 0) { 5807 error = EINVAL; 5808 break; 5809 } 5810 vd->vdev_checksum_n = intval; 5811 break; 5812 case VDEV_PROP_CHECKSUM_T: 5813 if (nvpair_value_uint64(elem, &intval) != 0) { 5814 error = EINVAL; 5815 break; 5816 } 5817 vd->vdev_checksum_t = intval; 5818 break; 5819 case VDEV_PROP_IO_N: 5820 if (nvpair_value_uint64(elem, &intval) != 0) { 5821 error = EINVAL; 5822 break; 5823 } 5824 vd->vdev_io_n = intval; 5825 break; 5826 case VDEV_PROP_IO_T: 5827 if (nvpair_value_uint64(elem, &intval) != 0) { 5828 error = EINVAL; 5829 break; 5830 } 5831 vd->vdev_io_t = intval; 5832 break; 5833 default: 5834 /* Most processing is done in vdev_props_set_sync */ 5835 break; 5836 } 5837 end: 5838 if (error != 0) { 5839 intval = error; 5840 vdev_prop_add_list(outnvl, propname, strval, intval, 0); 5841 return (error); 5842 } 5843 } 5844 5845 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync, 5846 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 5847 } 5848 5849 int 5850 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 5851 { 5852 spa_t *spa = vd->vdev_spa; 5853 objset_t *mos = spa->spa_meta_objset; 5854 int err = 0; 5855 uint64_t objid; 5856 uint64_t vdev_guid; 5857 nvpair_t *elem = NULL; 5858 nvlist_t *nvprops = NULL; 5859 uint64_t intval = 0; 5860 char *strval = NULL; 5861 const char *propname = NULL; 5862 vdev_prop_t prop; 5863 5864 ASSERT(vd != NULL); 5865 ASSERT(mos != NULL); 5866 5867 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV, 5868 &vdev_guid) != 0) 5869 return (SET_ERROR(EINVAL)); 5870 5871 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops); 5872 5873 if (vd->vdev_top_zap != 0) { 5874 objid = vd->vdev_top_zap; 5875 } else if (vd->vdev_leaf_zap != 0) { 5876 objid = vd->vdev_leaf_zap; 5877 } else { 5878 return (SET_ERROR(EINVAL)); 5879 } 5880 ASSERT(objid != 0); 5881 5882 mutex_enter(&spa->spa_props_lock); 5883 5884 if (nvprops != NULL) { 5885 char namebuf[64] = { 0 }; 5886 5887 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5888 intval = 0; 5889 strval = NULL; 5890 propname = nvpair_name(elem); 5891 prop = vdev_name_to_prop(propname); 5892 zprop_source_t src = ZPROP_SRC_DEFAULT; 5893 uint64_t integer_size, num_integers; 5894 5895 switch (prop) { 5896 /* Special Read-only Properties */ 5897 case VDEV_PROP_NAME: 5898 strval = vdev_name(vd, namebuf, 5899 sizeof (namebuf)); 5900 if (strval == NULL) 5901 continue; 5902 vdev_prop_add_list(outnvl, propname, strval, 0, 5903 ZPROP_SRC_NONE); 5904 continue; 5905 case VDEV_PROP_CAPACITY: 5906 /* percent used */ 5907 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 : 5908 (vd->vdev_stat.vs_alloc * 100 / 5909 vd->vdev_stat.vs_dspace); 5910 vdev_prop_add_list(outnvl, propname, NULL, 5911 intval, ZPROP_SRC_NONE); 5912 continue; 5913 case VDEV_PROP_STATE: 5914 vdev_prop_add_list(outnvl, propname, NULL, 5915 vd->vdev_state, ZPROP_SRC_NONE); 5916 continue; 5917 case VDEV_PROP_GUID: 5918 vdev_prop_add_list(outnvl, propname, NULL, 5919 vd->vdev_guid, ZPROP_SRC_NONE); 5920 continue; 5921 case VDEV_PROP_ASIZE: 5922 vdev_prop_add_list(outnvl, propname, NULL, 5923 vd->vdev_asize, ZPROP_SRC_NONE); 5924 continue; 5925 case VDEV_PROP_PSIZE: 5926 vdev_prop_add_list(outnvl, propname, NULL, 5927 vd->vdev_psize, ZPROP_SRC_NONE); 5928 continue; 5929 case VDEV_PROP_ASHIFT: 5930 vdev_prop_add_list(outnvl, propname, NULL, 5931 vd->vdev_ashift, ZPROP_SRC_NONE); 5932 continue; 5933 case VDEV_PROP_SIZE: 5934 vdev_prop_add_list(outnvl, propname, NULL, 5935 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE); 5936 continue; 5937 case VDEV_PROP_FREE: 5938 vdev_prop_add_list(outnvl, propname, NULL, 5939 vd->vdev_stat.vs_dspace - 5940 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 5941 continue; 5942 case VDEV_PROP_ALLOCATED: 5943 vdev_prop_add_list(outnvl, propname, NULL, 5944 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 5945 continue; 5946 case VDEV_PROP_EXPANDSZ: 5947 vdev_prop_add_list(outnvl, propname, NULL, 5948 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE); 5949 continue; 5950 case VDEV_PROP_FRAGMENTATION: 5951 vdev_prop_add_list(outnvl, propname, NULL, 5952 vd->vdev_stat.vs_fragmentation, 5953 ZPROP_SRC_NONE); 5954 continue; 5955 case VDEV_PROP_PARITY: 5956 vdev_prop_add_list(outnvl, propname, NULL, 5957 vdev_get_nparity(vd), ZPROP_SRC_NONE); 5958 continue; 5959 case VDEV_PROP_PATH: 5960 if (vd->vdev_path == NULL) 5961 continue; 5962 vdev_prop_add_list(outnvl, propname, 5963 vd->vdev_path, 0, ZPROP_SRC_NONE); 5964 continue; 5965 case VDEV_PROP_DEVID: 5966 if (vd->vdev_devid == NULL) 5967 continue; 5968 vdev_prop_add_list(outnvl, propname, 5969 vd->vdev_devid, 0, ZPROP_SRC_NONE); 5970 continue; 5971 case VDEV_PROP_PHYS_PATH: 5972 if (vd->vdev_physpath == NULL) 5973 continue; 5974 vdev_prop_add_list(outnvl, propname, 5975 vd->vdev_physpath, 0, ZPROP_SRC_NONE); 5976 continue; 5977 case VDEV_PROP_ENC_PATH: 5978 if (vd->vdev_enc_sysfs_path == NULL) 5979 continue; 5980 vdev_prop_add_list(outnvl, propname, 5981 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE); 5982 continue; 5983 case VDEV_PROP_FRU: 5984 if (vd->vdev_fru == NULL) 5985 continue; 5986 vdev_prop_add_list(outnvl, propname, 5987 vd->vdev_fru, 0, ZPROP_SRC_NONE); 5988 continue; 5989 case VDEV_PROP_PARENT: 5990 if (vd->vdev_parent != NULL) { 5991 strval = vdev_name(vd->vdev_parent, 5992 namebuf, sizeof (namebuf)); 5993 vdev_prop_add_list(outnvl, propname, 5994 strval, 0, ZPROP_SRC_NONE); 5995 } 5996 continue; 5997 case VDEV_PROP_CHILDREN: 5998 if (vd->vdev_children > 0) 5999 strval = kmem_zalloc(ZAP_MAXVALUELEN, 6000 KM_SLEEP); 6001 for (uint64_t i = 0; i < vd->vdev_children; 6002 i++) { 6003 const char *vname; 6004 6005 vname = vdev_name(vd->vdev_child[i], 6006 namebuf, sizeof (namebuf)); 6007 if (vname == NULL) 6008 vname = "(unknown)"; 6009 if (strlen(strval) > 0) 6010 strlcat(strval, ",", 6011 ZAP_MAXVALUELEN); 6012 strlcat(strval, vname, ZAP_MAXVALUELEN); 6013 } 6014 if (strval != NULL) { 6015 vdev_prop_add_list(outnvl, propname, 6016 strval, 0, ZPROP_SRC_NONE); 6017 kmem_free(strval, ZAP_MAXVALUELEN); 6018 } 6019 continue; 6020 case VDEV_PROP_NUMCHILDREN: 6021 vdev_prop_add_list(outnvl, propname, NULL, 6022 vd->vdev_children, ZPROP_SRC_NONE); 6023 continue; 6024 case VDEV_PROP_READ_ERRORS: 6025 vdev_prop_add_list(outnvl, propname, NULL, 6026 vd->vdev_stat.vs_read_errors, 6027 ZPROP_SRC_NONE); 6028 continue; 6029 case VDEV_PROP_WRITE_ERRORS: 6030 vdev_prop_add_list(outnvl, propname, NULL, 6031 vd->vdev_stat.vs_write_errors, 6032 ZPROP_SRC_NONE); 6033 continue; 6034 case VDEV_PROP_CHECKSUM_ERRORS: 6035 vdev_prop_add_list(outnvl, propname, NULL, 6036 vd->vdev_stat.vs_checksum_errors, 6037 ZPROP_SRC_NONE); 6038 continue; 6039 case VDEV_PROP_INITIALIZE_ERRORS: 6040 vdev_prop_add_list(outnvl, propname, NULL, 6041 vd->vdev_stat.vs_initialize_errors, 6042 ZPROP_SRC_NONE); 6043 continue; 6044 case VDEV_PROP_OPS_NULL: 6045 vdev_prop_add_list(outnvl, propname, NULL, 6046 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL], 6047 ZPROP_SRC_NONE); 6048 continue; 6049 case VDEV_PROP_OPS_READ: 6050 vdev_prop_add_list(outnvl, propname, NULL, 6051 vd->vdev_stat.vs_ops[ZIO_TYPE_READ], 6052 ZPROP_SRC_NONE); 6053 continue; 6054 case VDEV_PROP_OPS_WRITE: 6055 vdev_prop_add_list(outnvl, propname, NULL, 6056 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE], 6057 ZPROP_SRC_NONE); 6058 continue; 6059 case VDEV_PROP_OPS_FREE: 6060 vdev_prop_add_list(outnvl, propname, NULL, 6061 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE], 6062 ZPROP_SRC_NONE); 6063 continue; 6064 case VDEV_PROP_OPS_CLAIM: 6065 vdev_prop_add_list(outnvl, propname, NULL, 6066 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM], 6067 ZPROP_SRC_NONE); 6068 continue; 6069 case VDEV_PROP_OPS_TRIM: 6070 /* 6071 * TRIM ops and bytes are reported to user 6072 * space as ZIO_TYPE_IOCTL. This is done to 6073 * preserve the vdev_stat_t structure layout 6074 * for user space. 6075 */ 6076 vdev_prop_add_list(outnvl, propname, NULL, 6077 vd->vdev_stat.vs_ops[ZIO_TYPE_IOCTL], 6078 ZPROP_SRC_NONE); 6079 continue; 6080 case VDEV_PROP_BYTES_NULL: 6081 vdev_prop_add_list(outnvl, propname, NULL, 6082 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL], 6083 ZPROP_SRC_NONE); 6084 continue; 6085 case VDEV_PROP_BYTES_READ: 6086 vdev_prop_add_list(outnvl, propname, NULL, 6087 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ], 6088 ZPROP_SRC_NONE); 6089 continue; 6090 case VDEV_PROP_BYTES_WRITE: 6091 vdev_prop_add_list(outnvl, propname, NULL, 6092 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE], 6093 ZPROP_SRC_NONE); 6094 continue; 6095 case VDEV_PROP_BYTES_FREE: 6096 vdev_prop_add_list(outnvl, propname, NULL, 6097 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE], 6098 ZPROP_SRC_NONE); 6099 continue; 6100 case VDEV_PROP_BYTES_CLAIM: 6101 vdev_prop_add_list(outnvl, propname, NULL, 6102 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM], 6103 ZPROP_SRC_NONE); 6104 continue; 6105 case VDEV_PROP_BYTES_TRIM: 6106 /* 6107 * TRIM ops and bytes are reported to user 6108 * space as ZIO_TYPE_IOCTL. This is done to 6109 * preserve the vdev_stat_t structure layout 6110 * for user space. 6111 */ 6112 vdev_prop_add_list(outnvl, propname, NULL, 6113 vd->vdev_stat.vs_bytes[ZIO_TYPE_IOCTL], 6114 ZPROP_SRC_NONE); 6115 continue; 6116 case VDEV_PROP_REMOVING: 6117 vdev_prop_add_list(outnvl, propname, NULL, 6118 vd->vdev_removing, ZPROP_SRC_NONE); 6119 continue; 6120 /* Numeric Properites */ 6121 case VDEV_PROP_ALLOCATING: 6122 /* Leaf vdevs cannot have this property */ 6123 if (vd->vdev_mg == NULL && 6124 vd->vdev_top != NULL) { 6125 src = ZPROP_SRC_NONE; 6126 intval = ZPROP_BOOLEAN_NA; 6127 } else { 6128 err = vdev_prop_get_int(vd, prop, 6129 &intval); 6130 if (err && err != ENOENT) 6131 break; 6132 6133 if (intval == 6134 vdev_prop_default_numeric(prop)) 6135 src = ZPROP_SRC_DEFAULT; 6136 else 6137 src = ZPROP_SRC_LOCAL; 6138 } 6139 6140 vdev_prop_add_list(outnvl, propname, NULL, 6141 intval, src); 6142 break; 6143 case VDEV_PROP_FAILFAST: 6144 src = ZPROP_SRC_LOCAL; 6145 strval = NULL; 6146 6147 err = zap_lookup(mos, objid, nvpair_name(elem), 6148 sizeof (uint64_t), 1, &intval); 6149 if (err == ENOENT) { 6150 intval = vdev_prop_default_numeric( 6151 prop); 6152 err = 0; 6153 } else if (err) { 6154 break; 6155 } 6156 if (intval == vdev_prop_default_numeric(prop)) 6157 src = ZPROP_SRC_DEFAULT; 6158 6159 vdev_prop_add_list(outnvl, propname, strval, 6160 intval, src); 6161 break; 6162 case VDEV_PROP_CHECKSUM_N: 6163 case VDEV_PROP_CHECKSUM_T: 6164 case VDEV_PROP_IO_N: 6165 case VDEV_PROP_IO_T: 6166 err = vdev_prop_get_int(vd, prop, &intval); 6167 if (err && err != ENOENT) 6168 break; 6169 6170 if (intval == vdev_prop_default_numeric(prop)) 6171 src = ZPROP_SRC_DEFAULT; 6172 else 6173 src = ZPROP_SRC_LOCAL; 6174 6175 vdev_prop_add_list(outnvl, propname, NULL, 6176 intval, src); 6177 break; 6178 /* Text Properties */ 6179 case VDEV_PROP_COMMENT: 6180 /* Exists in the ZAP below */ 6181 /* FALLTHRU */ 6182 case VDEV_PROP_USERPROP: 6183 /* User Properites */ 6184 src = ZPROP_SRC_LOCAL; 6185 6186 err = zap_length(mos, objid, nvpair_name(elem), 6187 &integer_size, &num_integers); 6188 if (err) 6189 break; 6190 6191 switch (integer_size) { 6192 case 8: 6193 /* User properties cannot be integers */ 6194 err = EINVAL; 6195 break; 6196 case 1: 6197 /* string property */ 6198 strval = kmem_alloc(num_integers, 6199 KM_SLEEP); 6200 err = zap_lookup(mos, objid, 6201 nvpair_name(elem), 1, 6202 num_integers, strval); 6203 if (err) { 6204 kmem_free(strval, 6205 num_integers); 6206 break; 6207 } 6208 vdev_prop_add_list(outnvl, propname, 6209 strval, 0, src); 6210 kmem_free(strval, num_integers); 6211 break; 6212 } 6213 break; 6214 default: 6215 err = ENOENT; 6216 break; 6217 } 6218 if (err) 6219 break; 6220 } 6221 } else { 6222 /* 6223 * Get all properties from the MOS vdev property object. 6224 */ 6225 zap_cursor_t zc; 6226 zap_attribute_t za; 6227 for (zap_cursor_init(&zc, mos, objid); 6228 (err = zap_cursor_retrieve(&zc, &za)) == 0; 6229 zap_cursor_advance(&zc)) { 6230 intval = 0; 6231 strval = NULL; 6232 zprop_source_t src = ZPROP_SRC_DEFAULT; 6233 propname = za.za_name; 6234 6235 switch (za.za_integer_length) { 6236 case 8: 6237 /* We do not allow integer user properties */ 6238 /* This is likely an internal value */ 6239 break; 6240 case 1: 6241 /* string property */ 6242 strval = kmem_alloc(za.za_num_integers, 6243 KM_SLEEP); 6244 err = zap_lookup(mos, objid, za.za_name, 1, 6245 za.za_num_integers, strval); 6246 if (err) { 6247 kmem_free(strval, za.za_num_integers); 6248 break; 6249 } 6250 vdev_prop_add_list(outnvl, propname, strval, 0, 6251 src); 6252 kmem_free(strval, za.za_num_integers); 6253 break; 6254 6255 default: 6256 break; 6257 } 6258 } 6259 zap_cursor_fini(&zc); 6260 } 6261 6262 mutex_exit(&spa->spa_props_lock); 6263 if (err && err != ENOENT) { 6264 return (err); 6265 } 6266 6267 return (0); 6268 } 6269 6270 EXPORT_SYMBOL(vdev_fault); 6271 EXPORT_SYMBOL(vdev_degrade); 6272 EXPORT_SYMBOL(vdev_online); 6273 EXPORT_SYMBOL(vdev_offline); 6274 EXPORT_SYMBOL(vdev_clear); 6275 6276 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW, 6277 "Target number of metaslabs per top-level vdev"); 6278 6279 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW, 6280 "Default limit for metaslab size"); 6281 6282 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW, 6283 "Minimum number of metaslabs per top-level vdev"); 6284 6285 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW, 6286 "Practical upper limit of total metaslabs per top-level vdev"); 6287 6288 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW, 6289 "Rate limit slow IO (delay) events to this many per second"); 6290 6291 /* BEGIN CSTYLED */ 6292 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW, 6293 "Rate limit checksum events to this many checksum errors per second " 6294 "(do not set below ZED threshold)."); 6295 /* END CSTYLED */ 6296 6297 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW, 6298 "Ignore errors during resilver/scrub"); 6299 6300 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW, 6301 "Bypass vdev_validate()"); 6302 6303 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW, 6304 "Disable cache flushes"); 6305 6306 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW, 6307 "Minimum number of metaslabs required to dedicate one for log blocks"); 6308 6309 /* BEGIN CSTYLED */ 6310 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift, 6311 param_set_min_auto_ashift, param_get_uint, ZMOD_RW, 6312 "Minimum ashift used when creating new top-level vdevs"); 6313 6314 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift, 6315 param_set_max_auto_ashift, param_get_uint, ZMOD_RW, 6316 "Maximum ashift used when optimizing for logical -> physical sector " 6317 "size on new top-level vdevs"); 6318 /* END CSTYLED */ 6319