1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2017 Joyent, Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 * Copyright (c) 2019, Datto Inc. All rights reserved. 31 * Copyright (c) 2021, Klara Inc. 32 * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP. 33 */ 34 35 #include <sys/zfs_context.h> 36 #include <sys/fm/fs/zfs.h> 37 #include <sys/spa.h> 38 #include <sys/spa_impl.h> 39 #include <sys/bpobj.h> 40 #include <sys/dmu.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_dir.h> 43 #include <sys/vdev_impl.h> 44 #include <sys/vdev_rebuild.h> 45 #include <sys/vdev_draid.h> 46 #include <sys/uberblock_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/space_map.h> 50 #include <sys/space_reftree.h> 51 #include <sys/zio.h> 52 #include <sys/zap.h> 53 #include <sys/fs/zfs.h> 54 #include <sys/arc.h> 55 #include <sys/zil.h> 56 #include <sys/dsl_scan.h> 57 #include <sys/vdev_raidz.h> 58 #include <sys/abd.h> 59 #include <sys/vdev_initialize.h> 60 #include <sys/vdev_trim.h> 61 #include <sys/vdev_raidz.h> 62 #include <sys/zvol.h> 63 #include <sys/zfs_ratelimit.h> 64 #include "zfs_prop.h" 65 66 /* 67 * One metaslab from each (normal-class) vdev is used by the ZIL. These are 68 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are 69 * part of the spa_embedded_log_class. The metaslab with the most free space 70 * in each vdev is selected for this purpose when the pool is opened (or a 71 * vdev is added). See vdev_metaslab_init(). 72 * 73 * Log blocks can be allocated from the following locations. Each one is tried 74 * in order until the allocation succeeds: 75 * 1. dedicated log vdevs, aka "slog" (spa_log_class) 76 * 2. embedded slog metaslabs (spa_embedded_log_class) 77 * 3. other metaslabs in normal vdevs (spa_normal_class) 78 * 79 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer 80 * than this number of metaslabs in the vdev. This ensures that we don't set 81 * aside an unreasonable amount of space for the ZIL. If set to less than 82 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced 83 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab. 84 */ 85 static uint_t zfs_embedded_slog_min_ms = 64; 86 87 /* default target for number of metaslabs per top-level vdev */ 88 static uint_t zfs_vdev_default_ms_count = 200; 89 90 /* minimum number of metaslabs per top-level vdev */ 91 static uint_t zfs_vdev_min_ms_count = 16; 92 93 /* practical upper limit of total metaslabs per top-level vdev */ 94 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17; 95 96 /* lower limit for metaslab size (512M) */ 97 static uint_t zfs_vdev_default_ms_shift = 29; 98 99 /* upper limit for metaslab size (16G) */ 100 static uint_t zfs_vdev_max_ms_shift = 34; 101 102 int vdev_validate_skip = B_FALSE; 103 104 /* 105 * Since the DTL space map of a vdev is not expected to have a lot of 106 * entries, we default its block size to 4K. 107 */ 108 int zfs_vdev_dtl_sm_blksz = (1 << 12); 109 110 /* 111 * Rate limit slow IO (delay) events to this many per second. 112 */ 113 static unsigned int zfs_slow_io_events_per_second = 20; 114 115 /* 116 * Rate limit checksum events after this many checksum errors per second. 117 */ 118 static unsigned int zfs_checksum_events_per_second = 20; 119 120 /* 121 * Ignore errors during scrub/resilver. Allows to work around resilver 122 * upon import when there are pool errors. 123 */ 124 static int zfs_scan_ignore_errors = 0; 125 126 /* 127 * vdev-wide space maps that have lots of entries written to them at 128 * the end of each transaction can benefit from a higher I/O bandwidth 129 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 130 */ 131 int zfs_vdev_standard_sm_blksz = (1 << 17); 132 133 /* 134 * Tunable parameter for debugging or performance analysis. Setting this 135 * will cause pool corruption on power loss if a volatile out-of-order 136 * write cache is enabled. 137 */ 138 int zfs_nocacheflush = 0; 139 140 /* 141 * Maximum and minimum ashift values that can be automatically set based on 142 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX 143 * is higher than the maximum value, it is intentionally limited here to not 144 * excessively impact pool space efficiency. Higher ashift values may still 145 * be forced by vdev logical ashift or by user via ashift property, but won't 146 * be set automatically as a performance optimization. 147 */ 148 uint_t zfs_vdev_max_auto_ashift = 14; 149 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN; 150 151 void 152 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 153 { 154 va_list adx; 155 char buf[256]; 156 157 va_start(adx, fmt); 158 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 159 va_end(adx); 160 161 if (vd->vdev_path != NULL) { 162 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 163 vd->vdev_path, buf); 164 } else { 165 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 166 vd->vdev_ops->vdev_op_type, 167 (u_longlong_t)vd->vdev_id, 168 (u_longlong_t)vd->vdev_guid, buf); 169 } 170 } 171 172 void 173 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 174 { 175 char state[20]; 176 177 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 178 zfs_dbgmsg("%*svdev %llu: %s", indent, "", 179 (u_longlong_t)vd->vdev_id, 180 vd->vdev_ops->vdev_op_type); 181 return; 182 } 183 184 switch (vd->vdev_state) { 185 case VDEV_STATE_UNKNOWN: 186 (void) snprintf(state, sizeof (state), "unknown"); 187 break; 188 case VDEV_STATE_CLOSED: 189 (void) snprintf(state, sizeof (state), "closed"); 190 break; 191 case VDEV_STATE_OFFLINE: 192 (void) snprintf(state, sizeof (state), "offline"); 193 break; 194 case VDEV_STATE_REMOVED: 195 (void) snprintf(state, sizeof (state), "removed"); 196 break; 197 case VDEV_STATE_CANT_OPEN: 198 (void) snprintf(state, sizeof (state), "can't open"); 199 break; 200 case VDEV_STATE_FAULTED: 201 (void) snprintf(state, sizeof (state), "faulted"); 202 break; 203 case VDEV_STATE_DEGRADED: 204 (void) snprintf(state, sizeof (state), "degraded"); 205 break; 206 case VDEV_STATE_HEALTHY: 207 (void) snprintf(state, sizeof (state), "healthy"); 208 break; 209 default: 210 (void) snprintf(state, sizeof (state), "<state %u>", 211 (uint_t)vd->vdev_state); 212 } 213 214 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 215 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 216 vd->vdev_islog ? " (log)" : "", 217 (u_longlong_t)vd->vdev_guid, 218 vd->vdev_path ? vd->vdev_path : "N/A", state); 219 220 for (uint64_t i = 0; i < vd->vdev_children; i++) 221 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 222 } 223 224 /* 225 * Virtual device management. 226 */ 227 228 static vdev_ops_t *const vdev_ops_table[] = { 229 &vdev_root_ops, 230 &vdev_raidz_ops, 231 &vdev_draid_ops, 232 &vdev_draid_spare_ops, 233 &vdev_mirror_ops, 234 &vdev_replacing_ops, 235 &vdev_spare_ops, 236 &vdev_disk_ops, 237 &vdev_file_ops, 238 &vdev_missing_ops, 239 &vdev_hole_ops, 240 &vdev_indirect_ops, 241 NULL 242 }; 243 244 /* 245 * Given a vdev type, return the appropriate ops vector. 246 */ 247 static vdev_ops_t * 248 vdev_getops(const char *type) 249 { 250 vdev_ops_t *ops, *const *opspp; 251 252 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 253 if (strcmp(ops->vdev_op_type, type) == 0) 254 break; 255 256 return (ops); 257 } 258 259 /* 260 * Given a vdev and a metaslab class, find which metaslab group we're 261 * interested in. All vdevs may belong to two different metaslab classes. 262 * Dedicated slog devices use only the primary metaslab group, rather than a 263 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL. 264 */ 265 metaslab_group_t * 266 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc) 267 { 268 if (mc == spa_embedded_log_class(vd->vdev_spa) && 269 vd->vdev_log_mg != NULL) 270 return (vd->vdev_log_mg); 271 else 272 return (vd->vdev_mg); 273 } 274 275 void 276 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 277 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 278 { 279 (void) vd, (void) remain_rs; 280 281 physical_rs->rs_start = logical_rs->rs_start; 282 physical_rs->rs_end = logical_rs->rs_end; 283 } 284 285 /* 286 * Derive the enumerated allocation bias from string input. 287 * String origin is either the per-vdev zap or zpool(8). 288 */ 289 static vdev_alloc_bias_t 290 vdev_derive_alloc_bias(const char *bias) 291 { 292 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 293 294 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) 295 alloc_bias = VDEV_BIAS_LOG; 296 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) 297 alloc_bias = VDEV_BIAS_SPECIAL; 298 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) 299 alloc_bias = VDEV_BIAS_DEDUP; 300 301 return (alloc_bias); 302 } 303 304 /* 305 * Default asize function: return the MAX of psize with the asize of 306 * all children. This is what's used by anything other than RAID-Z. 307 */ 308 uint64_t 309 vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg) 310 { 311 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 312 uint64_t csize; 313 314 for (int c = 0; c < vd->vdev_children; c++) { 315 csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg); 316 asize = MAX(asize, csize); 317 } 318 319 return (asize); 320 } 321 322 uint64_t 323 vdev_default_min_asize(vdev_t *vd) 324 { 325 return (vd->vdev_min_asize); 326 } 327 328 /* 329 * Get the minimum allocatable size. We define the allocatable size as 330 * the vdev's asize rounded to the nearest metaslab. This allows us to 331 * replace or attach devices which don't have the same physical size but 332 * can still satisfy the same number of allocations. 333 */ 334 uint64_t 335 vdev_get_min_asize(vdev_t *vd) 336 { 337 vdev_t *pvd = vd->vdev_parent; 338 339 /* 340 * If our parent is NULL (inactive spare or cache) or is the root, 341 * just return our own asize. 342 */ 343 if (pvd == NULL) 344 return (vd->vdev_asize); 345 346 /* 347 * The top-level vdev just returns the allocatable size rounded 348 * to the nearest metaslab. 349 */ 350 if (vd == vd->vdev_top) 351 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 352 353 return (pvd->vdev_ops->vdev_op_min_asize(pvd)); 354 } 355 356 void 357 vdev_set_min_asize(vdev_t *vd) 358 { 359 vd->vdev_min_asize = vdev_get_min_asize(vd); 360 361 for (int c = 0; c < vd->vdev_children; c++) 362 vdev_set_min_asize(vd->vdev_child[c]); 363 } 364 365 /* 366 * Get the minimal allocation size for the top-level vdev. 367 */ 368 uint64_t 369 vdev_get_min_alloc(vdev_t *vd) 370 { 371 uint64_t min_alloc = 1ULL << vd->vdev_ashift; 372 373 if (vd->vdev_ops->vdev_op_min_alloc != NULL) 374 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd); 375 376 return (min_alloc); 377 } 378 379 /* 380 * Get the parity level for a top-level vdev. 381 */ 382 uint64_t 383 vdev_get_nparity(vdev_t *vd) 384 { 385 uint64_t nparity = 0; 386 387 if (vd->vdev_ops->vdev_op_nparity != NULL) 388 nparity = vd->vdev_ops->vdev_op_nparity(vd); 389 390 return (nparity); 391 } 392 393 static int 394 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value) 395 { 396 spa_t *spa = vd->vdev_spa; 397 objset_t *mos = spa->spa_meta_objset; 398 uint64_t objid; 399 int err; 400 401 if (vd->vdev_root_zap != 0) { 402 objid = vd->vdev_root_zap; 403 } else if (vd->vdev_top_zap != 0) { 404 objid = vd->vdev_top_zap; 405 } else if (vd->vdev_leaf_zap != 0) { 406 objid = vd->vdev_leaf_zap; 407 } else { 408 return (EINVAL); 409 } 410 411 err = zap_lookup(mos, objid, vdev_prop_to_name(prop), 412 sizeof (uint64_t), 1, value); 413 414 if (err == ENOENT) 415 *value = vdev_prop_default_numeric(prop); 416 417 return (err); 418 } 419 420 /* 421 * Get the number of data disks for a top-level vdev. 422 */ 423 uint64_t 424 vdev_get_ndisks(vdev_t *vd) 425 { 426 uint64_t ndisks = 1; 427 428 if (vd->vdev_ops->vdev_op_ndisks != NULL) 429 ndisks = vd->vdev_ops->vdev_op_ndisks(vd); 430 431 return (ndisks); 432 } 433 434 vdev_t * 435 vdev_lookup_top(spa_t *spa, uint64_t vdev) 436 { 437 vdev_t *rvd = spa->spa_root_vdev; 438 439 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 440 441 if (vdev < rvd->vdev_children) { 442 ASSERT(rvd->vdev_child[vdev] != NULL); 443 return (rvd->vdev_child[vdev]); 444 } 445 446 return (NULL); 447 } 448 449 vdev_t * 450 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 451 { 452 vdev_t *mvd; 453 454 if (vd->vdev_guid == guid) 455 return (vd); 456 457 for (int c = 0; c < vd->vdev_children; c++) 458 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 459 NULL) 460 return (mvd); 461 462 return (NULL); 463 } 464 465 static int 466 vdev_count_leaves_impl(vdev_t *vd) 467 { 468 int n = 0; 469 470 if (vd->vdev_ops->vdev_op_leaf) 471 return (1); 472 473 for (int c = 0; c < vd->vdev_children; c++) 474 n += vdev_count_leaves_impl(vd->vdev_child[c]); 475 476 return (n); 477 } 478 479 int 480 vdev_count_leaves(spa_t *spa) 481 { 482 int rc; 483 484 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 485 rc = vdev_count_leaves_impl(spa->spa_root_vdev); 486 spa_config_exit(spa, SCL_VDEV, FTAG); 487 488 return (rc); 489 } 490 491 void 492 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 493 { 494 size_t oldsize, newsize; 495 uint64_t id = cvd->vdev_id; 496 vdev_t **newchild; 497 498 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 499 ASSERT(cvd->vdev_parent == NULL); 500 501 cvd->vdev_parent = pvd; 502 503 if (pvd == NULL) 504 return; 505 506 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 507 508 oldsize = pvd->vdev_children * sizeof (vdev_t *); 509 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 510 newsize = pvd->vdev_children * sizeof (vdev_t *); 511 512 newchild = kmem_alloc(newsize, KM_SLEEP); 513 if (pvd->vdev_child != NULL) { 514 memcpy(newchild, pvd->vdev_child, oldsize); 515 kmem_free(pvd->vdev_child, oldsize); 516 } 517 518 pvd->vdev_child = newchild; 519 pvd->vdev_child[id] = cvd; 520 521 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 522 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 523 524 /* 525 * Walk up all ancestors to update guid sum. 526 */ 527 for (; pvd != NULL; pvd = pvd->vdev_parent) 528 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 529 530 if (cvd->vdev_ops->vdev_op_leaf) { 531 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); 532 cvd->vdev_spa->spa_leaf_list_gen++; 533 } 534 } 535 536 void 537 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 538 { 539 int c; 540 uint_t id = cvd->vdev_id; 541 542 ASSERT(cvd->vdev_parent == pvd); 543 544 if (pvd == NULL) 545 return; 546 547 ASSERT(id < pvd->vdev_children); 548 ASSERT(pvd->vdev_child[id] == cvd); 549 550 pvd->vdev_child[id] = NULL; 551 cvd->vdev_parent = NULL; 552 553 for (c = 0; c < pvd->vdev_children; c++) 554 if (pvd->vdev_child[c]) 555 break; 556 557 if (c == pvd->vdev_children) { 558 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 559 pvd->vdev_child = NULL; 560 pvd->vdev_children = 0; 561 } 562 563 if (cvd->vdev_ops->vdev_op_leaf) { 564 spa_t *spa = cvd->vdev_spa; 565 list_remove(&spa->spa_leaf_list, cvd); 566 spa->spa_leaf_list_gen++; 567 } 568 569 /* 570 * Walk up all ancestors to update guid sum. 571 */ 572 for (; pvd != NULL; pvd = pvd->vdev_parent) 573 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 574 } 575 576 /* 577 * Remove any holes in the child array. 578 */ 579 void 580 vdev_compact_children(vdev_t *pvd) 581 { 582 vdev_t **newchild, *cvd; 583 int oldc = pvd->vdev_children; 584 int newc; 585 586 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 587 588 if (oldc == 0) 589 return; 590 591 for (int c = newc = 0; c < oldc; c++) 592 if (pvd->vdev_child[c]) 593 newc++; 594 595 if (newc > 0) { 596 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP); 597 598 for (int c = newc = 0; c < oldc; c++) { 599 if ((cvd = pvd->vdev_child[c]) != NULL) { 600 newchild[newc] = cvd; 601 cvd->vdev_id = newc++; 602 } 603 } 604 } else { 605 newchild = NULL; 606 } 607 608 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 609 pvd->vdev_child = newchild; 610 pvd->vdev_children = newc; 611 } 612 613 /* 614 * Allocate and minimally initialize a vdev_t. 615 */ 616 vdev_t * 617 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 618 { 619 vdev_t *vd; 620 vdev_indirect_config_t *vic; 621 622 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 623 vic = &vd->vdev_indirect_config; 624 625 if (spa->spa_root_vdev == NULL) { 626 ASSERT(ops == &vdev_root_ops); 627 spa->spa_root_vdev = vd; 628 spa->spa_load_guid = spa_generate_guid(NULL); 629 } 630 631 if (guid == 0 && ops != &vdev_hole_ops) { 632 if (spa->spa_root_vdev == vd) { 633 /* 634 * The root vdev's guid will also be the pool guid, 635 * which must be unique among all pools. 636 */ 637 guid = spa_generate_guid(NULL); 638 } else { 639 /* 640 * Any other vdev's guid must be unique within the pool. 641 */ 642 guid = spa_generate_guid(spa); 643 } 644 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 645 } 646 647 vd->vdev_spa = spa; 648 vd->vdev_id = id; 649 vd->vdev_guid = guid; 650 vd->vdev_guid_sum = guid; 651 vd->vdev_ops = ops; 652 vd->vdev_state = VDEV_STATE_CLOSED; 653 vd->vdev_ishole = (ops == &vdev_hole_ops); 654 vic->vic_prev_indirect_vdev = UINT64_MAX; 655 656 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 657 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 658 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL, 659 0, 0); 660 661 /* 662 * Initialize rate limit structs for events. We rate limit ZIO delay 663 * and checksum events so that we don't overwhelm ZED with thousands 664 * of events when a disk is acting up. 665 */ 666 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second, 667 1); 668 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_slow_io_events_per_second, 669 1); 670 zfs_ratelimit_init(&vd->vdev_checksum_rl, 671 &zfs_checksum_events_per_second, 1); 672 673 /* 674 * Default Thresholds for tuning ZED 675 */ 676 vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N); 677 vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T); 678 vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N); 679 vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T); 680 vd->vdev_slow_io_n = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N); 681 vd->vdev_slow_io_t = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T); 682 683 list_link_init(&vd->vdev_config_dirty_node); 684 list_link_init(&vd->vdev_state_dirty_node); 685 list_link_init(&vd->vdev_initialize_node); 686 list_link_init(&vd->vdev_leaf_node); 687 list_link_init(&vd->vdev_trim_node); 688 689 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL); 690 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 691 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 692 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); 693 694 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 695 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 696 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 697 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 698 699 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL); 700 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL); 701 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL); 702 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL); 703 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL); 704 cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL); 705 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL); 706 707 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL); 708 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL); 709 710 for (int t = 0; t < DTL_TYPES; t++) { 711 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 712 0); 713 } 714 715 txg_list_create(&vd->vdev_ms_list, spa, 716 offsetof(struct metaslab, ms_txg_node)); 717 txg_list_create(&vd->vdev_dtl_list, spa, 718 offsetof(struct vdev, vdev_dtl_node)); 719 vd->vdev_stat.vs_timestamp = gethrtime(); 720 vdev_queue_init(vd); 721 722 return (vd); 723 } 724 725 /* 726 * Allocate a new vdev. The 'alloctype' is used to control whether we are 727 * creating a new vdev or loading an existing one - the behavior is slightly 728 * different for each case. 729 */ 730 int 731 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 732 int alloctype) 733 { 734 vdev_ops_t *ops; 735 const char *type; 736 uint64_t guid = 0, islog; 737 vdev_t *vd; 738 vdev_indirect_config_t *vic; 739 const char *tmp = NULL; 740 int rc; 741 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 742 boolean_t top_level = (parent && !parent->vdev_parent); 743 744 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 745 746 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 747 return (SET_ERROR(EINVAL)); 748 749 if ((ops = vdev_getops(type)) == NULL) 750 return (SET_ERROR(EINVAL)); 751 752 /* 753 * If this is a load, get the vdev guid from the nvlist. 754 * Otherwise, vdev_alloc_common() will generate one for us. 755 */ 756 if (alloctype == VDEV_ALLOC_LOAD) { 757 uint64_t label_id; 758 759 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 760 label_id != id) 761 return (SET_ERROR(EINVAL)); 762 763 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 764 return (SET_ERROR(EINVAL)); 765 } else if (alloctype == VDEV_ALLOC_SPARE) { 766 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 767 return (SET_ERROR(EINVAL)); 768 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 769 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 770 return (SET_ERROR(EINVAL)); 771 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 772 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 773 return (SET_ERROR(EINVAL)); 774 } 775 776 /* 777 * The first allocated vdev must be of type 'root'. 778 */ 779 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 780 return (SET_ERROR(EINVAL)); 781 782 /* 783 * Determine whether we're a log vdev. 784 */ 785 islog = 0; 786 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 787 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 788 return (SET_ERROR(ENOTSUP)); 789 790 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 791 return (SET_ERROR(ENOTSUP)); 792 793 if (top_level && alloctype == VDEV_ALLOC_ADD) { 794 const char *bias; 795 796 /* 797 * If creating a top-level vdev, check for allocation 798 * classes input. 799 */ 800 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 801 &bias) == 0) { 802 alloc_bias = vdev_derive_alloc_bias(bias); 803 804 /* spa_vdev_add() expects feature to be enabled */ 805 if (spa->spa_load_state != SPA_LOAD_CREATE && 806 !spa_feature_is_enabled(spa, 807 SPA_FEATURE_ALLOCATION_CLASSES)) { 808 return (SET_ERROR(ENOTSUP)); 809 } 810 } 811 812 /* spa_vdev_add() expects feature to be enabled */ 813 if (ops == &vdev_draid_ops && 814 spa->spa_load_state != SPA_LOAD_CREATE && 815 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) { 816 return (SET_ERROR(ENOTSUP)); 817 } 818 } 819 820 /* 821 * Initialize the vdev specific data. This is done before calling 822 * vdev_alloc_common() since it may fail and this simplifies the 823 * error reporting and cleanup code paths. 824 */ 825 void *tsd = NULL; 826 if (ops->vdev_op_init != NULL) { 827 rc = ops->vdev_op_init(spa, nv, &tsd); 828 if (rc != 0) { 829 return (rc); 830 } 831 } 832 833 vd = vdev_alloc_common(spa, id, guid, ops); 834 vd->vdev_tsd = tsd; 835 vd->vdev_islog = islog; 836 837 if (top_level && alloc_bias != VDEV_BIAS_NONE) 838 vd->vdev_alloc_bias = alloc_bias; 839 840 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0) 841 vd->vdev_path = spa_strdup(tmp); 842 843 /* 844 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a 845 * fault on a vdev and want it to persist across imports (like with 846 * zpool offline -f). 847 */ 848 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp); 849 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) { 850 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 851 vd->vdev_faulted = 1; 852 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 853 } 854 855 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0) 856 vd->vdev_devid = spa_strdup(tmp); 857 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0) 858 vd->vdev_physpath = spa_strdup(tmp); 859 860 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 861 &tmp) == 0) 862 vd->vdev_enc_sysfs_path = spa_strdup(tmp); 863 864 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0) 865 vd->vdev_fru = spa_strdup(tmp); 866 867 /* 868 * Set the whole_disk property. If it's not specified, leave the value 869 * as -1. 870 */ 871 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 872 &vd->vdev_wholedisk) != 0) 873 vd->vdev_wholedisk = -1ULL; 874 875 vic = &vd->vdev_indirect_config; 876 877 ASSERT0(vic->vic_mapping_object); 878 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 879 &vic->vic_mapping_object); 880 ASSERT0(vic->vic_births_object); 881 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 882 &vic->vic_births_object); 883 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 884 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 885 &vic->vic_prev_indirect_vdev); 886 887 /* 888 * Look for the 'not present' flag. This will only be set if the device 889 * was not present at the time of import. 890 */ 891 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 892 &vd->vdev_not_present); 893 894 /* 895 * Get the alignment requirement. Ignore pool ashift for vdev 896 * attach case. 897 */ 898 if (alloctype != VDEV_ALLOC_ATTACH) { 899 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, 900 &vd->vdev_ashift); 901 } else { 902 vd->vdev_attaching = B_TRUE; 903 } 904 905 /* 906 * Retrieve the vdev creation time. 907 */ 908 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 909 &vd->vdev_crtxg); 910 911 if (vd->vdev_ops == &vdev_root_ops && 912 (alloctype == VDEV_ALLOC_LOAD || 913 alloctype == VDEV_ALLOC_SPLIT || 914 alloctype == VDEV_ALLOC_ROOTPOOL)) { 915 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP, 916 &vd->vdev_root_zap); 917 } 918 919 /* 920 * If we're a top-level vdev, try to load the allocation parameters. 921 */ 922 if (top_level && 923 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 924 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 925 &vd->vdev_ms_array); 926 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 927 &vd->vdev_ms_shift); 928 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 929 &vd->vdev_asize); 930 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING, 931 &vd->vdev_noalloc); 932 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 933 &vd->vdev_removing); 934 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 935 &vd->vdev_top_zap); 936 vd->vdev_rz_expanding = nvlist_exists(nv, 937 ZPOOL_CONFIG_RAIDZ_EXPANDING); 938 } else { 939 ASSERT0(vd->vdev_top_zap); 940 } 941 942 if (top_level && alloctype != VDEV_ALLOC_ATTACH) { 943 ASSERT(alloctype == VDEV_ALLOC_LOAD || 944 alloctype == VDEV_ALLOC_ADD || 945 alloctype == VDEV_ALLOC_SPLIT || 946 alloctype == VDEV_ALLOC_ROOTPOOL); 947 /* Note: metaslab_group_create() is now deferred */ 948 } 949 950 if (vd->vdev_ops->vdev_op_leaf && 951 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 952 (void) nvlist_lookup_uint64(nv, 953 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 954 } else { 955 ASSERT0(vd->vdev_leaf_zap); 956 } 957 958 /* 959 * If we're a leaf vdev, try to load the DTL object and other state. 960 */ 961 962 if (vd->vdev_ops->vdev_op_leaf && 963 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 964 alloctype == VDEV_ALLOC_ROOTPOOL)) { 965 if (alloctype == VDEV_ALLOC_LOAD) { 966 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 967 &vd->vdev_dtl_object); 968 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 969 &vd->vdev_unspare); 970 } 971 972 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 973 uint64_t spare = 0; 974 975 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 976 &spare) == 0 && spare) 977 spa_spare_add(vd); 978 } 979 980 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 981 &vd->vdev_offline); 982 983 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 984 &vd->vdev_resilver_txg); 985 986 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 987 &vd->vdev_rebuild_txg); 988 989 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) 990 vdev_defer_resilver(vd); 991 992 /* 993 * In general, when importing a pool we want to ignore the 994 * persistent fault state, as the diagnosis made on another 995 * system may not be valid in the current context. The only 996 * exception is if we forced a vdev to a persistently faulted 997 * state with 'zpool offline -f'. The persistent fault will 998 * remain across imports until cleared. 999 * 1000 * Local vdevs will remain in the faulted state. 1001 */ 1002 if (spa_load_state(spa) == SPA_LOAD_OPEN || 1003 spa_load_state(spa) == SPA_LOAD_IMPORT) { 1004 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 1005 &vd->vdev_faulted); 1006 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 1007 &vd->vdev_degraded); 1008 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 1009 &vd->vdev_removed); 1010 1011 if (vd->vdev_faulted || vd->vdev_degraded) { 1012 const char *aux; 1013 1014 vd->vdev_label_aux = 1015 VDEV_AUX_ERR_EXCEEDED; 1016 if (nvlist_lookup_string(nv, 1017 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 1018 strcmp(aux, "external") == 0) 1019 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 1020 else 1021 vd->vdev_faulted = 0ULL; 1022 } 1023 } 1024 } 1025 1026 /* 1027 * Add ourselves to the parent's list of children. 1028 */ 1029 vdev_add_child(parent, vd); 1030 1031 *vdp = vd; 1032 1033 return (0); 1034 } 1035 1036 void 1037 vdev_free(vdev_t *vd) 1038 { 1039 spa_t *spa = vd->vdev_spa; 1040 1041 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 1042 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1043 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 1044 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); 1045 1046 /* 1047 * Scan queues are normally destroyed at the end of a scan. If the 1048 * queue exists here, that implies the vdev is being removed while 1049 * the scan is still running. 1050 */ 1051 if (vd->vdev_scan_io_queue != NULL) { 1052 mutex_enter(&vd->vdev_scan_io_queue_lock); 1053 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); 1054 vd->vdev_scan_io_queue = NULL; 1055 mutex_exit(&vd->vdev_scan_io_queue_lock); 1056 } 1057 1058 /* 1059 * vdev_free() implies closing the vdev first. This is simpler than 1060 * trying to ensure complicated semantics for all callers. 1061 */ 1062 vdev_close(vd); 1063 1064 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 1065 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 1066 1067 /* 1068 * Free all children. 1069 */ 1070 for (int c = 0; c < vd->vdev_children; c++) 1071 vdev_free(vd->vdev_child[c]); 1072 1073 ASSERT(vd->vdev_child == NULL); 1074 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 1075 1076 if (vd->vdev_ops->vdev_op_fini != NULL) 1077 vd->vdev_ops->vdev_op_fini(vd); 1078 1079 /* 1080 * Discard allocation state. 1081 */ 1082 if (vd->vdev_mg != NULL) { 1083 vdev_metaslab_fini(vd); 1084 metaslab_group_destroy(vd->vdev_mg); 1085 vd->vdev_mg = NULL; 1086 } 1087 if (vd->vdev_log_mg != NULL) { 1088 ASSERT0(vd->vdev_ms_count); 1089 metaslab_group_destroy(vd->vdev_log_mg); 1090 vd->vdev_log_mg = NULL; 1091 } 1092 1093 ASSERT0(vd->vdev_stat.vs_space); 1094 ASSERT0(vd->vdev_stat.vs_dspace); 1095 ASSERT0(vd->vdev_stat.vs_alloc); 1096 1097 /* 1098 * Remove this vdev from its parent's child list. 1099 */ 1100 vdev_remove_child(vd->vdev_parent, vd); 1101 1102 ASSERT(vd->vdev_parent == NULL); 1103 ASSERT(!list_link_active(&vd->vdev_leaf_node)); 1104 1105 /* 1106 * Clean up vdev structure. 1107 */ 1108 vdev_queue_fini(vd); 1109 1110 if (vd->vdev_path) 1111 spa_strfree(vd->vdev_path); 1112 if (vd->vdev_devid) 1113 spa_strfree(vd->vdev_devid); 1114 if (vd->vdev_physpath) 1115 spa_strfree(vd->vdev_physpath); 1116 1117 if (vd->vdev_enc_sysfs_path) 1118 spa_strfree(vd->vdev_enc_sysfs_path); 1119 1120 if (vd->vdev_fru) 1121 spa_strfree(vd->vdev_fru); 1122 1123 if (vd->vdev_isspare) 1124 spa_spare_remove(vd); 1125 if (vd->vdev_isl2cache) 1126 spa_l2cache_remove(vd); 1127 1128 txg_list_destroy(&vd->vdev_ms_list); 1129 txg_list_destroy(&vd->vdev_dtl_list); 1130 1131 mutex_enter(&vd->vdev_dtl_lock); 1132 space_map_close(vd->vdev_dtl_sm); 1133 for (int t = 0; t < DTL_TYPES; t++) { 1134 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 1135 range_tree_destroy(vd->vdev_dtl[t]); 1136 } 1137 mutex_exit(&vd->vdev_dtl_lock); 1138 1139 EQUIV(vd->vdev_indirect_births != NULL, 1140 vd->vdev_indirect_mapping != NULL); 1141 if (vd->vdev_indirect_births != NULL) { 1142 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1143 vdev_indirect_births_close(vd->vdev_indirect_births); 1144 } 1145 1146 if (vd->vdev_obsolete_sm != NULL) { 1147 ASSERT(vd->vdev_removing || 1148 vd->vdev_ops == &vdev_indirect_ops); 1149 space_map_close(vd->vdev_obsolete_sm); 1150 vd->vdev_obsolete_sm = NULL; 1151 } 1152 range_tree_destroy(vd->vdev_obsolete_segments); 1153 rw_destroy(&vd->vdev_indirect_rwlock); 1154 mutex_destroy(&vd->vdev_obsolete_lock); 1155 1156 mutex_destroy(&vd->vdev_dtl_lock); 1157 mutex_destroy(&vd->vdev_stat_lock); 1158 mutex_destroy(&vd->vdev_probe_lock); 1159 mutex_destroy(&vd->vdev_scan_io_queue_lock); 1160 1161 mutex_destroy(&vd->vdev_initialize_lock); 1162 mutex_destroy(&vd->vdev_initialize_io_lock); 1163 cv_destroy(&vd->vdev_initialize_io_cv); 1164 cv_destroy(&vd->vdev_initialize_cv); 1165 1166 mutex_destroy(&vd->vdev_trim_lock); 1167 mutex_destroy(&vd->vdev_autotrim_lock); 1168 mutex_destroy(&vd->vdev_trim_io_lock); 1169 cv_destroy(&vd->vdev_trim_cv); 1170 cv_destroy(&vd->vdev_autotrim_cv); 1171 cv_destroy(&vd->vdev_autotrim_kick_cv); 1172 cv_destroy(&vd->vdev_trim_io_cv); 1173 1174 mutex_destroy(&vd->vdev_rebuild_lock); 1175 cv_destroy(&vd->vdev_rebuild_cv); 1176 1177 zfs_ratelimit_fini(&vd->vdev_delay_rl); 1178 zfs_ratelimit_fini(&vd->vdev_deadman_rl); 1179 zfs_ratelimit_fini(&vd->vdev_checksum_rl); 1180 1181 if (vd == spa->spa_root_vdev) 1182 spa->spa_root_vdev = NULL; 1183 1184 kmem_free(vd, sizeof (vdev_t)); 1185 } 1186 1187 /* 1188 * Transfer top-level vdev state from svd to tvd. 1189 */ 1190 static void 1191 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 1192 { 1193 spa_t *spa = svd->vdev_spa; 1194 metaslab_t *msp; 1195 vdev_t *vd; 1196 int t; 1197 1198 ASSERT(tvd == tvd->vdev_top); 1199 1200 tvd->vdev_ms_array = svd->vdev_ms_array; 1201 tvd->vdev_ms_shift = svd->vdev_ms_shift; 1202 tvd->vdev_ms_count = svd->vdev_ms_count; 1203 tvd->vdev_top_zap = svd->vdev_top_zap; 1204 1205 svd->vdev_ms_array = 0; 1206 svd->vdev_ms_shift = 0; 1207 svd->vdev_ms_count = 0; 1208 svd->vdev_top_zap = 0; 1209 1210 if (tvd->vdev_mg) 1211 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 1212 if (tvd->vdev_log_mg) 1213 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg); 1214 tvd->vdev_mg = svd->vdev_mg; 1215 tvd->vdev_log_mg = svd->vdev_log_mg; 1216 tvd->vdev_ms = svd->vdev_ms; 1217 1218 svd->vdev_mg = NULL; 1219 svd->vdev_log_mg = NULL; 1220 svd->vdev_ms = NULL; 1221 1222 if (tvd->vdev_mg != NULL) 1223 tvd->vdev_mg->mg_vd = tvd; 1224 if (tvd->vdev_log_mg != NULL) 1225 tvd->vdev_log_mg->mg_vd = tvd; 1226 1227 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 1228 svd->vdev_checkpoint_sm = NULL; 1229 1230 tvd->vdev_alloc_bias = svd->vdev_alloc_bias; 1231 svd->vdev_alloc_bias = VDEV_BIAS_NONE; 1232 1233 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 1234 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 1235 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 1236 1237 svd->vdev_stat.vs_alloc = 0; 1238 svd->vdev_stat.vs_space = 0; 1239 svd->vdev_stat.vs_dspace = 0; 1240 1241 /* 1242 * State which may be set on a top-level vdev that's in the 1243 * process of being removed. 1244 */ 1245 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 1246 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 1247 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 1248 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); 1249 ASSERT3P(tvd->vdev_indirect_births, ==, NULL); 1250 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); 1251 ASSERT0(tvd->vdev_noalloc); 1252 ASSERT0(tvd->vdev_removing); 1253 ASSERT0(tvd->vdev_rebuilding); 1254 tvd->vdev_noalloc = svd->vdev_noalloc; 1255 tvd->vdev_removing = svd->vdev_removing; 1256 tvd->vdev_rebuilding = svd->vdev_rebuilding; 1257 tvd->vdev_rebuild_config = svd->vdev_rebuild_config; 1258 tvd->vdev_indirect_config = svd->vdev_indirect_config; 1259 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 1260 tvd->vdev_indirect_births = svd->vdev_indirect_births; 1261 range_tree_swap(&svd->vdev_obsolete_segments, 1262 &tvd->vdev_obsolete_segments); 1263 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 1264 svd->vdev_indirect_config.vic_mapping_object = 0; 1265 svd->vdev_indirect_config.vic_births_object = 0; 1266 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 1267 svd->vdev_indirect_mapping = NULL; 1268 svd->vdev_indirect_births = NULL; 1269 svd->vdev_obsolete_sm = NULL; 1270 svd->vdev_noalloc = 0; 1271 svd->vdev_removing = 0; 1272 svd->vdev_rebuilding = 0; 1273 1274 for (t = 0; t < TXG_SIZE; t++) { 1275 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 1276 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 1277 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 1278 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 1279 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 1280 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 1281 } 1282 1283 if (list_link_active(&svd->vdev_config_dirty_node)) { 1284 vdev_config_clean(svd); 1285 vdev_config_dirty(tvd); 1286 } 1287 1288 if (list_link_active(&svd->vdev_state_dirty_node)) { 1289 vdev_state_clean(svd); 1290 vdev_state_dirty(tvd); 1291 } 1292 1293 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 1294 svd->vdev_deflate_ratio = 0; 1295 1296 tvd->vdev_islog = svd->vdev_islog; 1297 svd->vdev_islog = 0; 1298 1299 dsl_scan_io_queue_vdev_xfer(svd, tvd); 1300 } 1301 1302 static void 1303 vdev_top_update(vdev_t *tvd, vdev_t *vd) 1304 { 1305 if (vd == NULL) 1306 return; 1307 1308 vd->vdev_top = tvd; 1309 1310 for (int c = 0; c < vd->vdev_children; c++) 1311 vdev_top_update(tvd, vd->vdev_child[c]); 1312 } 1313 1314 /* 1315 * Add a mirror/replacing vdev above an existing vdev. There is no need to 1316 * call .vdev_op_init() since mirror/replacing vdevs do not have private state. 1317 */ 1318 vdev_t * 1319 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 1320 { 1321 spa_t *spa = cvd->vdev_spa; 1322 vdev_t *pvd = cvd->vdev_parent; 1323 vdev_t *mvd; 1324 1325 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1326 1327 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 1328 1329 mvd->vdev_asize = cvd->vdev_asize; 1330 mvd->vdev_min_asize = cvd->vdev_min_asize; 1331 mvd->vdev_max_asize = cvd->vdev_max_asize; 1332 mvd->vdev_psize = cvd->vdev_psize; 1333 mvd->vdev_ashift = cvd->vdev_ashift; 1334 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift; 1335 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift; 1336 mvd->vdev_state = cvd->vdev_state; 1337 mvd->vdev_crtxg = cvd->vdev_crtxg; 1338 1339 vdev_remove_child(pvd, cvd); 1340 vdev_add_child(pvd, mvd); 1341 cvd->vdev_id = mvd->vdev_children; 1342 vdev_add_child(mvd, cvd); 1343 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1344 1345 if (mvd == mvd->vdev_top) 1346 vdev_top_transfer(cvd, mvd); 1347 1348 return (mvd); 1349 } 1350 1351 /* 1352 * Remove a 1-way mirror/replacing vdev from the tree. 1353 */ 1354 void 1355 vdev_remove_parent(vdev_t *cvd) 1356 { 1357 vdev_t *mvd = cvd->vdev_parent; 1358 vdev_t *pvd = mvd->vdev_parent; 1359 1360 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1361 1362 ASSERT(mvd->vdev_children == 1); 1363 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1364 mvd->vdev_ops == &vdev_replacing_ops || 1365 mvd->vdev_ops == &vdev_spare_ops); 1366 cvd->vdev_ashift = mvd->vdev_ashift; 1367 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift; 1368 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift; 1369 vdev_remove_child(mvd, cvd); 1370 vdev_remove_child(pvd, mvd); 1371 1372 /* 1373 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1374 * Otherwise, we could have detached an offline device, and when we 1375 * go to import the pool we'll think we have two top-level vdevs, 1376 * instead of a different version of the same top-level vdev. 1377 */ 1378 if (mvd->vdev_top == mvd) { 1379 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1380 cvd->vdev_orig_guid = cvd->vdev_guid; 1381 cvd->vdev_guid += guid_delta; 1382 cvd->vdev_guid_sum += guid_delta; 1383 1384 /* 1385 * If pool not set for autoexpand, we need to also preserve 1386 * mvd's asize to prevent automatic expansion of cvd. 1387 * Otherwise if we are adjusting the mirror by attaching and 1388 * detaching children of non-uniform sizes, the mirror could 1389 * autoexpand, unexpectedly requiring larger devices to 1390 * re-establish the mirror. 1391 */ 1392 if (!cvd->vdev_spa->spa_autoexpand) 1393 cvd->vdev_asize = mvd->vdev_asize; 1394 } 1395 cvd->vdev_id = mvd->vdev_id; 1396 vdev_add_child(pvd, cvd); 1397 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1398 1399 if (cvd == cvd->vdev_top) 1400 vdev_top_transfer(mvd, cvd); 1401 1402 ASSERT(mvd->vdev_children == 0); 1403 vdev_free(mvd); 1404 } 1405 1406 /* 1407 * Choose GCD for spa_gcd_alloc. 1408 */ 1409 static uint64_t 1410 vdev_gcd(uint64_t a, uint64_t b) 1411 { 1412 while (b != 0) { 1413 uint64_t t = b; 1414 b = a % b; 1415 a = t; 1416 } 1417 return (a); 1418 } 1419 1420 /* 1421 * Set spa_min_alloc and spa_gcd_alloc. 1422 */ 1423 static void 1424 vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc) 1425 { 1426 if (min_alloc < spa->spa_min_alloc) 1427 spa->spa_min_alloc = min_alloc; 1428 if (spa->spa_gcd_alloc == INT_MAX) { 1429 spa->spa_gcd_alloc = min_alloc; 1430 } else { 1431 spa->spa_gcd_alloc = vdev_gcd(min_alloc, 1432 spa->spa_gcd_alloc); 1433 } 1434 } 1435 1436 void 1437 vdev_metaslab_group_create(vdev_t *vd) 1438 { 1439 spa_t *spa = vd->vdev_spa; 1440 1441 /* 1442 * metaslab_group_create was delayed until allocation bias was available 1443 */ 1444 if (vd->vdev_mg == NULL) { 1445 metaslab_class_t *mc; 1446 1447 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) 1448 vd->vdev_alloc_bias = VDEV_BIAS_LOG; 1449 1450 ASSERT3U(vd->vdev_islog, ==, 1451 (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); 1452 1453 switch (vd->vdev_alloc_bias) { 1454 case VDEV_BIAS_LOG: 1455 mc = spa_log_class(spa); 1456 break; 1457 case VDEV_BIAS_SPECIAL: 1458 mc = spa_special_class(spa); 1459 break; 1460 case VDEV_BIAS_DEDUP: 1461 mc = spa_dedup_class(spa); 1462 break; 1463 default: 1464 mc = spa_normal_class(spa); 1465 } 1466 1467 vd->vdev_mg = metaslab_group_create(mc, vd, 1468 spa->spa_alloc_count); 1469 1470 if (!vd->vdev_islog) { 1471 vd->vdev_log_mg = metaslab_group_create( 1472 spa_embedded_log_class(spa), vd, 1); 1473 } 1474 1475 /* 1476 * The spa ashift min/max only apply for the normal metaslab 1477 * class. Class destination is late binding so ashift boundary 1478 * setting had to wait until now. 1479 */ 1480 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1481 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { 1482 if (vd->vdev_ashift > spa->spa_max_ashift) 1483 spa->spa_max_ashift = vd->vdev_ashift; 1484 if (vd->vdev_ashift < spa->spa_min_ashift) 1485 spa->spa_min_ashift = vd->vdev_ashift; 1486 1487 uint64_t min_alloc = vdev_get_min_alloc(vd); 1488 vdev_spa_set_alloc(spa, min_alloc); 1489 } 1490 } 1491 } 1492 1493 int 1494 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1495 { 1496 spa_t *spa = vd->vdev_spa; 1497 uint64_t oldc = vd->vdev_ms_count; 1498 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1499 metaslab_t **mspp; 1500 int error; 1501 boolean_t expanding = (oldc != 0); 1502 1503 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1504 1505 /* 1506 * This vdev is not being allocated from yet or is a hole. 1507 */ 1508 if (vd->vdev_ms_shift == 0) 1509 return (0); 1510 1511 ASSERT(!vd->vdev_ishole); 1512 1513 ASSERT(oldc <= newc); 1514 1515 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1516 1517 if (expanding) { 1518 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp)); 1519 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1520 } 1521 1522 vd->vdev_ms = mspp; 1523 vd->vdev_ms_count = newc; 1524 1525 for (uint64_t m = oldc; m < newc; m++) { 1526 uint64_t object = 0; 1527 /* 1528 * vdev_ms_array may be 0 if we are creating the "fake" 1529 * metaslabs for an indirect vdev for zdb's leak detection. 1530 * See zdb_leak_init(). 1531 */ 1532 if (txg == 0 && vd->vdev_ms_array != 0) { 1533 error = dmu_read(spa->spa_meta_objset, 1534 vd->vdev_ms_array, 1535 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1536 DMU_READ_PREFETCH); 1537 if (error != 0) { 1538 vdev_dbgmsg(vd, "unable to read the metaslab " 1539 "array [error=%d]", error); 1540 return (error); 1541 } 1542 } 1543 1544 error = metaslab_init(vd->vdev_mg, m, object, txg, 1545 &(vd->vdev_ms[m])); 1546 if (error != 0) { 1547 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1548 error); 1549 return (error); 1550 } 1551 } 1552 1553 /* 1554 * Find the emptiest metaslab on the vdev and mark it for use for 1555 * embedded slog by moving it from the regular to the log metaslab 1556 * group. 1557 */ 1558 if (vd->vdev_mg->mg_class == spa_normal_class(spa) && 1559 vd->vdev_ms_count > zfs_embedded_slog_min_ms && 1560 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) { 1561 uint64_t slog_msid = 0; 1562 uint64_t smallest = UINT64_MAX; 1563 1564 /* 1565 * Note, we only search the new metaslabs, because the old 1566 * (pre-existing) ones may be active (e.g. have non-empty 1567 * range_tree's), and we don't move them to the new 1568 * metaslab_t. 1569 */ 1570 for (uint64_t m = oldc; m < newc; m++) { 1571 uint64_t alloc = 1572 space_map_allocated(vd->vdev_ms[m]->ms_sm); 1573 if (alloc < smallest) { 1574 slog_msid = m; 1575 smallest = alloc; 1576 } 1577 } 1578 metaslab_t *slog_ms = vd->vdev_ms[slog_msid]; 1579 /* 1580 * The metaslab was marked as dirty at the end of 1581 * metaslab_init(). Remove it from the dirty list so that we 1582 * can uninitialize and reinitialize it to the new class. 1583 */ 1584 if (txg != 0) { 1585 (void) txg_list_remove_this(&vd->vdev_ms_list, 1586 slog_ms, txg); 1587 } 1588 uint64_t sm_obj = space_map_object(slog_ms->ms_sm); 1589 metaslab_fini(slog_ms); 1590 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg, 1591 &vd->vdev_ms[slog_msid])); 1592 } 1593 1594 if (txg == 0) 1595 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1596 1597 /* 1598 * If the vdev is marked as non-allocating then don't 1599 * activate the metaslabs since we want to ensure that 1600 * no allocations are performed on this device. 1601 */ 1602 if (vd->vdev_noalloc) { 1603 /* track non-allocating vdev space */ 1604 spa->spa_nonallocating_dspace += spa_deflate(spa) ? 1605 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 1606 } else if (!expanding) { 1607 metaslab_group_activate(vd->vdev_mg); 1608 if (vd->vdev_log_mg != NULL) 1609 metaslab_group_activate(vd->vdev_log_mg); 1610 } 1611 1612 if (txg == 0) 1613 spa_config_exit(spa, SCL_ALLOC, FTAG); 1614 1615 return (0); 1616 } 1617 1618 void 1619 vdev_metaslab_fini(vdev_t *vd) 1620 { 1621 if (vd->vdev_checkpoint_sm != NULL) { 1622 ASSERT(spa_feature_is_active(vd->vdev_spa, 1623 SPA_FEATURE_POOL_CHECKPOINT)); 1624 space_map_close(vd->vdev_checkpoint_sm); 1625 /* 1626 * Even though we close the space map, we need to set its 1627 * pointer to NULL. The reason is that vdev_metaslab_fini() 1628 * may be called multiple times for certain operations 1629 * (i.e. when destroying a pool) so we need to ensure that 1630 * this clause never executes twice. This logic is similar 1631 * to the one used for the vdev_ms clause below. 1632 */ 1633 vd->vdev_checkpoint_sm = NULL; 1634 } 1635 1636 if (vd->vdev_ms != NULL) { 1637 metaslab_group_t *mg = vd->vdev_mg; 1638 1639 metaslab_group_passivate(mg); 1640 if (vd->vdev_log_mg != NULL) { 1641 ASSERT(!vd->vdev_islog); 1642 metaslab_group_passivate(vd->vdev_log_mg); 1643 } 1644 1645 uint64_t count = vd->vdev_ms_count; 1646 for (uint64_t m = 0; m < count; m++) { 1647 metaslab_t *msp = vd->vdev_ms[m]; 1648 if (msp != NULL) 1649 metaslab_fini(msp); 1650 } 1651 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1652 vd->vdev_ms = NULL; 1653 vd->vdev_ms_count = 0; 1654 1655 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 1656 ASSERT0(mg->mg_histogram[i]); 1657 if (vd->vdev_log_mg != NULL) 1658 ASSERT0(vd->vdev_log_mg->mg_histogram[i]); 1659 } 1660 } 1661 ASSERT0(vd->vdev_ms_count); 1662 } 1663 1664 typedef struct vdev_probe_stats { 1665 boolean_t vps_readable; 1666 boolean_t vps_writeable; 1667 int vps_flags; 1668 } vdev_probe_stats_t; 1669 1670 static void 1671 vdev_probe_done(zio_t *zio) 1672 { 1673 spa_t *spa = zio->io_spa; 1674 vdev_t *vd = zio->io_vd; 1675 vdev_probe_stats_t *vps = zio->io_private; 1676 1677 ASSERT(vd->vdev_probe_zio != NULL); 1678 1679 if (zio->io_type == ZIO_TYPE_READ) { 1680 if (zio->io_error == 0) 1681 vps->vps_readable = 1; 1682 if (zio->io_error == 0 && spa_writeable(spa)) { 1683 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1684 zio->io_offset, zio->io_size, zio->io_abd, 1685 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1686 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1687 } else { 1688 abd_free(zio->io_abd); 1689 } 1690 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1691 if (zio->io_error == 0) 1692 vps->vps_writeable = 1; 1693 abd_free(zio->io_abd); 1694 } else if (zio->io_type == ZIO_TYPE_NULL) { 1695 zio_t *pio; 1696 zio_link_t *zl; 1697 1698 vd->vdev_cant_read |= !vps->vps_readable; 1699 vd->vdev_cant_write |= !vps->vps_writeable; 1700 vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u", 1701 vd->vdev_cant_read, vd->vdev_cant_write); 1702 1703 if (vdev_readable(vd) && 1704 (vdev_writeable(vd) || !spa_writeable(spa))) { 1705 zio->io_error = 0; 1706 } else { 1707 ASSERT(zio->io_error != 0); 1708 vdev_dbgmsg(vd, "failed probe"); 1709 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1710 spa, vd, NULL, NULL, 0); 1711 zio->io_error = SET_ERROR(ENXIO); 1712 } 1713 1714 mutex_enter(&vd->vdev_probe_lock); 1715 ASSERT(vd->vdev_probe_zio == zio); 1716 vd->vdev_probe_zio = NULL; 1717 mutex_exit(&vd->vdev_probe_lock); 1718 1719 zl = NULL; 1720 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1721 if (!vdev_accessible(vd, pio)) 1722 pio->io_error = SET_ERROR(ENXIO); 1723 1724 kmem_free(vps, sizeof (*vps)); 1725 } 1726 } 1727 1728 /* 1729 * Determine whether this device is accessible. 1730 * 1731 * Read and write to several known locations: the pad regions of each 1732 * vdev label but the first, which we leave alone in case it contains 1733 * a VTOC. 1734 */ 1735 zio_t * 1736 vdev_probe(vdev_t *vd, zio_t *zio) 1737 { 1738 spa_t *spa = vd->vdev_spa; 1739 vdev_probe_stats_t *vps = NULL; 1740 zio_t *pio; 1741 1742 ASSERT(vd->vdev_ops->vdev_op_leaf); 1743 1744 /* 1745 * Don't probe the probe. 1746 */ 1747 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1748 return (NULL); 1749 1750 /* 1751 * To prevent 'probe storms' when a device fails, we create 1752 * just one probe i/o at a time. All zios that want to probe 1753 * this vdev will become parents of the probe io. 1754 */ 1755 mutex_enter(&vd->vdev_probe_lock); 1756 1757 if ((pio = vd->vdev_probe_zio) == NULL) { 1758 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1759 1760 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1761 ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD; 1762 1763 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1764 /* 1765 * vdev_cant_read and vdev_cant_write can only 1766 * transition from TRUE to FALSE when we have the 1767 * SCL_ZIO lock as writer; otherwise they can only 1768 * transition from FALSE to TRUE. This ensures that 1769 * any zio looking at these values can assume that 1770 * failures persist for the life of the I/O. That's 1771 * important because when a device has intermittent 1772 * connectivity problems, we want to ensure that 1773 * they're ascribed to the device (ENXIO) and not 1774 * the zio (EIO). 1775 * 1776 * Since we hold SCL_ZIO as writer here, clear both 1777 * values so the probe can reevaluate from first 1778 * principles. 1779 */ 1780 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1781 vd->vdev_cant_read = B_FALSE; 1782 vd->vdev_cant_write = B_FALSE; 1783 } 1784 1785 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1786 vdev_probe_done, vps, 1787 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1788 1789 /* 1790 * We can't change the vdev state in this context, so we 1791 * kick off an async task to do it on our behalf. 1792 */ 1793 if (zio != NULL) { 1794 vd->vdev_probe_wanted = B_TRUE; 1795 spa_async_request(spa, SPA_ASYNC_PROBE); 1796 } 1797 } 1798 1799 if (zio != NULL) 1800 zio_add_child(zio, pio); 1801 1802 mutex_exit(&vd->vdev_probe_lock); 1803 1804 if (vps == NULL) { 1805 ASSERT(zio != NULL); 1806 return (NULL); 1807 } 1808 1809 for (int l = 1; l < VDEV_LABELS; l++) { 1810 zio_nowait(zio_read_phys(pio, vd, 1811 vdev_label_offset(vd->vdev_psize, l, 1812 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE, 1813 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1814 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1815 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1816 } 1817 1818 if (zio == NULL) 1819 return (pio); 1820 1821 zio_nowait(pio); 1822 return (NULL); 1823 } 1824 1825 static void 1826 vdev_load_child(void *arg) 1827 { 1828 vdev_t *vd = arg; 1829 1830 vd->vdev_load_error = vdev_load(vd); 1831 } 1832 1833 static void 1834 vdev_open_child(void *arg) 1835 { 1836 vdev_t *vd = arg; 1837 1838 vd->vdev_open_thread = curthread; 1839 vd->vdev_open_error = vdev_open(vd); 1840 vd->vdev_open_thread = NULL; 1841 } 1842 1843 static boolean_t 1844 vdev_uses_zvols(vdev_t *vd) 1845 { 1846 #ifdef _KERNEL 1847 if (zvol_is_zvol(vd->vdev_path)) 1848 return (B_TRUE); 1849 #endif 1850 1851 for (int c = 0; c < vd->vdev_children; c++) 1852 if (vdev_uses_zvols(vd->vdev_child[c])) 1853 return (B_TRUE); 1854 1855 return (B_FALSE); 1856 } 1857 1858 /* 1859 * Returns B_TRUE if the passed child should be opened. 1860 */ 1861 static boolean_t 1862 vdev_default_open_children_func(vdev_t *vd) 1863 { 1864 (void) vd; 1865 return (B_TRUE); 1866 } 1867 1868 /* 1869 * Open the requested child vdevs. If any of the leaf vdevs are using 1870 * a ZFS volume then do the opens in a single thread. This avoids a 1871 * deadlock when the current thread is holding the spa_namespace_lock. 1872 */ 1873 static void 1874 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func) 1875 { 1876 int children = vd->vdev_children; 1877 1878 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri, 1879 children, children, TASKQ_PREPOPULATE); 1880 vd->vdev_nonrot = B_TRUE; 1881 1882 for (int c = 0; c < children; c++) { 1883 vdev_t *cvd = vd->vdev_child[c]; 1884 1885 if (open_func(cvd) == B_FALSE) 1886 continue; 1887 1888 if (tq == NULL || vdev_uses_zvols(vd)) { 1889 cvd->vdev_open_error = vdev_open(cvd); 1890 } else { 1891 VERIFY(taskq_dispatch(tq, vdev_open_child, 1892 cvd, TQ_SLEEP) != TASKQID_INVALID); 1893 } 1894 1895 vd->vdev_nonrot &= cvd->vdev_nonrot; 1896 } 1897 1898 if (tq != NULL) { 1899 taskq_wait(tq); 1900 taskq_destroy(tq); 1901 } 1902 } 1903 1904 /* 1905 * Open all child vdevs. 1906 */ 1907 void 1908 vdev_open_children(vdev_t *vd) 1909 { 1910 vdev_open_children_impl(vd, vdev_default_open_children_func); 1911 } 1912 1913 /* 1914 * Conditionally open a subset of child vdevs. 1915 */ 1916 void 1917 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func) 1918 { 1919 vdev_open_children_impl(vd, open_func); 1920 } 1921 1922 /* 1923 * Compute the raidz-deflation ratio. Note, we hard-code 128k (1 << 17) 1924 * because it is the "typical" blocksize. Even though SPA_MAXBLOCKSIZE 1925 * changed, this algorithm can not change, otherwise it would inconsistently 1926 * account for existing bp's. We also hard-code txg 0 for the same reason 1927 * since expanded RAIDZ vdevs can use a different asize for different birth 1928 * txg's. 1929 */ 1930 static void 1931 vdev_set_deflate_ratio(vdev_t *vd) 1932 { 1933 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 1934 vd->vdev_deflate_ratio = (1 << 17) / 1935 (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >> 1936 SPA_MINBLOCKSHIFT); 1937 } 1938 } 1939 1940 /* 1941 * Choose the best of two ashifts, preferring one between logical ashift 1942 * (absolute minimum) and administrator defined maximum, otherwise take 1943 * the biggest of the two. 1944 */ 1945 uint64_t 1946 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b) 1947 { 1948 if (a > logical && a <= zfs_vdev_max_auto_ashift) { 1949 if (b <= logical || b > zfs_vdev_max_auto_ashift) 1950 return (a); 1951 else 1952 return (MAX(a, b)); 1953 } else if (b <= logical || b > zfs_vdev_max_auto_ashift) 1954 return (MAX(a, b)); 1955 return (b); 1956 } 1957 1958 /* 1959 * Maximize performance by inflating the configured ashift for top level 1960 * vdevs to be as close to the physical ashift as possible while maintaining 1961 * administrator defined limits and ensuring it doesn't go below the 1962 * logical ashift. 1963 */ 1964 static void 1965 vdev_ashift_optimize(vdev_t *vd) 1966 { 1967 ASSERT(vd == vd->vdev_top); 1968 1969 if (vd->vdev_ashift < vd->vdev_physical_ashift && 1970 vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) { 1971 vd->vdev_ashift = MIN( 1972 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift), 1973 MAX(zfs_vdev_min_auto_ashift, 1974 vd->vdev_physical_ashift)); 1975 } else { 1976 /* 1977 * If the logical and physical ashifts are the same, then 1978 * we ensure that the top-level vdev's ashift is not smaller 1979 * than our minimum ashift value. For the unusual case 1980 * where logical ashift > physical ashift, we can't cap 1981 * the calculated ashift based on max ashift as that 1982 * would cause failures. 1983 * We still check if we need to increase it to match 1984 * the min ashift. 1985 */ 1986 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift, 1987 vd->vdev_ashift); 1988 } 1989 } 1990 1991 /* 1992 * Prepare a virtual device for access. 1993 */ 1994 int 1995 vdev_open(vdev_t *vd) 1996 { 1997 spa_t *spa = vd->vdev_spa; 1998 int error; 1999 uint64_t osize = 0; 2000 uint64_t max_osize = 0; 2001 uint64_t asize, max_asize, psize; 2002 uint64_t logical_ashift = 0; 2003 uint64_t physical_ashift = 0; 2004 2005 ASSERT(vd->vdev_open_thread == curthread || 2006 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2007 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 2008 vd->vdev_state == VDEV_STATE_CANT_OPEN || 2009 vd->vdev_state == VDEV_STATE_OFFLINE); 2010 2011 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2012 vd->vdev_cant_read = B_FALSE; 2013 vd->vdev_cant_write = B_FALSE; 2014 vd->vdev_min_asize = vdev_get_min_asize(vd); 2015 2016 /* 2017 * If this vdev is not removed, check its fault status. If it's 2018 * faulted, bail out of the open. 2019 */ 2020 if (!vd->vdev_removed && vd->vdev_faulted) { 2021 ASSERT(vd->vdev_children == 0); 2022 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 2023 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 2024 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2025 vd->vdev_label_aux); 2026 return (SET_ERROR(ENXIO)); 2027 } else if (vd->vdev_offline) { 2028 ASSERT(vd->vdev_children == 0); 2029 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 2030 return (SET_ERROR(ENXIO)); 2031 } 2032 2033 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, 2034 &logical_ashift, &physical_ashift); 2035 2036 /* Keep the device in removed state if unplugged */ 2037 if (error == ENOENT && vd->vdev_removed) { 2038 vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED, 2039 VDEV_AUX_NONE); 2040 return (error); 2041 } 2042 2043 /* 2044 * Physical volume size should never be larger than its max size, unless 2045 * the disk has shrunk while we were reading it or the device is buggy 2046 * or damaged: either way it's not safe for use, bail out of the open. 2047 */ 2048 if (osize > max_osize) { 2049 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2050 VDEV_AUX_OPEN_FAILED); 2051 return (SET_ERROR(ENXIO)); 2052 } 2053 2054 /* 2055 * Reset the vdev_reopening flag so that we actually close 2056 * the vdev on error. 2057 */ 2058 vd->vdev_reopening = B_FALSE; 2059 if (zio_injection_enabled && error == 0) 2060 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO)); 2061 2062 if (error) { 2063 if (vd->vdev_removed && 2064 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 2065 vd->vdev_removed = B_FALSE; 2066 2067 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 2068 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 2069 vd->vdev_stat.vs_aux); 2070 } else { 2071 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2072 vd->vdev_stat.vs_aux); 2073 } 2074 return (error); 2075 } 2076 2077 vd->vdev_removed = B_FALSE; 2078 2079 /* 2080 * Recheck the faulted flag now that we have confirmed that 2081 * the vdev is accessible. If we're faulted, bail. 2082 */ 2083 if (vd->vdev_faulted) { 2084 ASSERT(vd->vdev_children == 0); 2085 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 2086 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 2087 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2088 vd->vdev_label_aux); 2089 return (SET_ERROR(ENXIO)); 2090 } 2091 2092 if (vd->vdev_degraded) { 2093 ASSERT(vd->vdev_children == 0); 2094 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2095 VDEV_AUX_ERR_EXCEEDED); 2096 } else { 2097 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 2098 } 2099 2100 /* 2101 * For hole or missing vdevs we just return success. 2102 */ 2103 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 2104 return (0); 2105 2106 for (int c = 0; c < vd->vdev_children; c++) { 2107 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 2108 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2109 VDEV_AUX_NONE); 2110 break; 2111 } 2112 } 2113 2114 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 2115 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 2116 2117 if (vd->vdev_children == 0) { 2118 if (osize < SPA_MINDEVSIZE) { 2119 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2120 VDEV_AUX_TOO_SMALL); 2121 return (SET_ERROR(EOVERFLOW)); 2122 } 2123 psize = osize; 2124 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 2125 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 2126 VDEV_LABEL_END_SIZE); 2127 } else { 2128 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 2129 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 2130 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2131 VDEV_AUX_TOO_SMALL); 2132 return (SET_ERROR(EOVERFLOW)); 2133 } 2134 psize = 0; 2135 asize = osize; 2136 max_asize = max_osize; 2137 } 2138 2139 /* 2140 * If the vdev was expanded, record this so that we can re-create the 2141 * uberblock rings in labels {2,3}, during the next sync. 2142 */ 2143 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0)) 2144 vd->vdev_copy_uberblocks = B_TRUE; 2145 2146 vd->vdev_psize = psize; 2147 2148 /* 2149 * Make sure the allocatable size hasn't shrunk too much. 2150 */ 2151 if (asize < vd->vdev_min_asize) { 2152 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2153 VDEV_AUX_BAD_LABEL); 2154 return (SET_ERROR(EINVAL)); 2155 } 2156 2157 /* 2158 * We can always set the logical/physical ashift members since 2159 * their values are only used to calculate the vdev_ashift when 2160 * the device is first added to the config. These values should 2161 * not be used for anything else since they may change whenever 2162 * the device is reopened and we don't store them in the label. 2163 */ 2164 vd->vdev_physical_ashift = 2165 MAX(physical_ashift, vd->vdev_physical_ashift); 2166 vd->vdev_logical_ashift = MAX(logical_ashift, 2167 vd->vdev_logical_ashift); 2168 2169 if (vd->vdev_asize == 0) { 2170 /* 2171 * This is the first-ever open, so use the computed values. 2172 * For compatibility, a different ashift can be requested. 2173 */ 2174 vd->vdev_asize = asize; 2175 vd->vdev_max_asize = max_asize; 2176 2177 /* 2178 * If the vdev_ashift was not overridden at creation time, 2179 * then set it the logical ashift and optimize the ashift. 2180 */ 2181 if (vd->vdev_ashift == 0) { 2182 vd->vdev_ashift = vd->vdev_logical_ashift; 2183 2184 if (vd->vdev_logical_ashift > ASHIFT_MAX) { 2185 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2186 VDEV_AUX_ASHIFT_TOO_BIG); 2187 return (SET_ERROR(EDOM)); 2188 } 2189 2190 if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE) 2191 vdev_ashift_optimize(vd); 2192 vd->vdev_attaching = B_FALSE; 2193 } 2194 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN || 2195 vd->vdev_ashift > ASHIFT_MAX)) { 2196 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2197 VDEV_AUX_BAD_ASHIFT); 2198 return (SET_ERROR(EDOM)); 2199 } 2200 } else { 2201 /* 2202 * Make sure the alignment required hasn't increased. 2203 */ 2204 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift && 2205 vd->vdev_ops->vdev_op_leaf) { 2206 (void) zfs_ereport_post( 2207 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT, 2208 spa, vd, NULL, NULL, 0); 2209 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2210 VDEV_AUX_BAD_LABEL); 2211 return (SET_ERROR(EDOM)); 2212 } 2213 vd->vdev_max_asize = max_asize; 2214 } 2215 2216 /* 2217 * If all children are healthy we update asize if either: 2218 * The asize has increased, due to a device expansion caused by dynamic 2219 * LUN growth or vdev replacement, and automatic expansion is enabled; 2220 * making the additional space available. 2221 * 2222 * The asize has decreased, due to a device shrink usually caused by a 2223 * vdev replace with a smaller device. This ensures that calculations 2224 * based of max_asize and asize e.g. esize are always valid. It's safe 2225 * to do this as we've already validated that asize is greater than 2226 * vdev_min_asize. 2227 */ 2228 if (vd->vdev_state == VDEV_STATE_HEALTHY && 2229 ((asize > vd->vdev_asize && 2230 (vd->vdev_expanding || spa->spa_autoexpand)) || 2231 (asize < vd->vdev_asize))) 2232 vd->vdev_asize = asize; 2233 2234 vdev_set_min_asize(vd); 2235 2236 /* 2237 * Ensure we can issue some IO before declaring the 2238 * vdev open for business. 2239 */ 2240 if (vd->vdev_ops->vdev_op_leaf && 2241 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 2242 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2243 VDEV_AUX_ERR_EXCEEDED); 2244 return (error); 2245 } 2246 2247 /* 2248 * Track the minimum allocation size. 2249 */ 2250 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 2251 vd->vdev_islog == 0 && vd->vdev_aux == NULL) { 2252 uint64_t min_alloc = vdev_get_min_alloc(vd); 2253 vdev_spa_set_alloc(spa, min_alloc); 2254 } 2255 2256 /* 2257 * If this is a leaf vdev, assess whether a resilver is needed. 2258 * But don't do this if we are doing a reopen for a scrub, since 2259 * this would just restart the scrub we are already doing. 2260 */ 2261 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen) 2262 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd); 2263 2264 return (0); 2265 } 2266 2267 static void 2268 vdev_validate_child(void *arg) 2269 { 2270 vdev_t *vd = arg; 2271 2272 vd->vdev_validate_thread = curthread; 2273 vd->vdev_validate_error = vdev_validate(vd); 2274 vd->vdev_validate_thread = NULL; 2275 } 2276 2277 /* 2278 * Called once the vdevs are all opened, this routine validates the label 2279 * contents. This needs to be done before vdev_load() so that we don't 2280 * inadvertently do repair I/Os to the wrong device. 2281 * 2282 * This function will only return failure if one of the vdevs indicates that it 2283 * has since been destroyed or exported. This is only possible if 2284 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 2285 * will be updated but the function will return 0. 2286 */ 2287 int 2288 vdev_validate(vdev_t *vd) 2289 { 2290 spa_t *spa = vd->vdev_spa; 2291 taskq_t *tq = NULL; 2292 nvlist_t *label; 2293 uint64_t guid = 0, aux_guid = 0, top_guid; 2294 uint64_t state; 2295 nvlist_t *nvl; 2296 uint64_t txg; 2297 int children = vd->vdev_children; 2298 2299 if (vdev_validate_skip) 2300 return (0); 2301 2302 if (children > 0) { 2303 tq = taskq_create("vdev_validate", children, minclsyspri, 2304 children, children, TASKQ_PREPOPULATE); 2305 } 2306 2307 for (uint64_t c = 0; c < children; c++) { 2308 vdev_t *cvd = vd->vdev_child[c]; 2309 2310 if (tq == NULL || vdev_uses_zvols(cvd)) { 2311 vdev_validate_child(cvd); 2312 } else { 2313 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd, 2314 TQ_SLEEP) != TASKQID_INVALID); 2315 } 2316 } 2317 if (tq != NULL) { 2318 taskq_wait(tq); 2319 taskq_destroy(tq); 2320 } 2321 for (int c = 0; c < children; c++) { 2322 int error = vd->vdev_child[c]->vdev_validate_error; 2323 2324 if (error != 0) 2325 return (SET_ERROR(EBADF)); 2326 } 2327 2328 2329 /* 2330 * If the device has already failed, or was marked offline, don't do 2331 * any further validation. Otherwise, label I/O will fail and we will 2332 * overwrite the previous state. 2333 */ 2334 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 2335 return (0); 2336 2337 /* 2338 * If we are performing an extreme rewind, we allow for a label that 2339 * was modified at a point after the current txg. 2340 * If config lock is not held do not check for the txg. spa_sync could 2341 * be updating the vdev's label before updating spa_last_synced_txg. 2342 */ 2343 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 2344 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 2345 txg = UINT64_MAX; 2346 else 2347 txg = spa_last_synced_txg(spa); 2348 2349 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 2350 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2351 VDEV_AUX_BAD_LABEL); 2352 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 2353 "txg %llu", (u_longlong_t)txg); 2354 return (0); 2355 } 2356 2357 /* 2358 * Determine if this vdev has been split off into another 2359 * pool. If so, then refuse to open it. 2360 */ 2361 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 2362 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 2363 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2364 VDEV_AUX_SPLIT_POOL); 2365 nvlist_free(label); 2366 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 2367 return (0); 2368 } 2369 2370 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 2371 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2372 VDEV_AUX_CORRUPT_DATA); 2373 nvlist_free(label); 2374 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2375 ZPOOL_CONFIG_POOL_GUID); 2376 return (0); 2377 } 2378 2379 /* 2380 * If config is not trusted then ignore the spa guid check. This is 2381 * necessary because if the machine crashed during a re-guid the new 2382 * guid might have been written to all of the vdev labels, but not the 2383 * cached config. The check will be performed again once we have the 2384 * trusted config from the MOS. 2385 */ 2386 if (spa->spa_trust_config && guid != spa_guid(spa)) { 2387 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2388 VDEV_AUX_CORRUPT_DATA); 2389 nvlist_free(label); 2390 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 2391 "match config (%llu != %llu)", (u_longlong_t)guid, 2392 (u_longlong_t)spa_guid(spa)); 2393 return (0); 2394 } 2395 2396 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 2397 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 2398 &aux_guid) != 0) 2399 aux_guid = 0; 2400 2401 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 2402 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2403 VDEV_AUX_CORRUPT_DATA); 2404 nvlist_free(label); 2405 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2406 ZPOOL_CONFIG_GUID); 2407 return (0); 2408 } 2409 2410 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 2411 != 0) { 2412 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2413 VDEV_AUX_CORRUPT_DATA); 2414 nvlist_free(label); 2415 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2416 ZPOOL_CONFIG_TOP_GUID); 2417 return (0); 2418 } 2419 2420 /* 2421 * If this vdev just became a top-level vdev because its sibling was 2422 * detached, it will have adopted the parent's vdev guid -- but the 2423 * label may or may not be on disk yet. Fortunately, either version 2424 * of the label will have the same top guid, so if we're a top-level 2425 * vdev, we can safely compare to that instead. 2426 * However, if the config comes from a cachefile that failed to update 2427 * after the detach, a top-level vdev will appear as a non top-level 2428 * vdev in the config. Also relax the constraints if we perform an 2429 * extreme rewind. 2430 * 2431 * If we split this vdev off instead, then we also check the 2432 * original pool's guid. We don't want to consider the vdev 2433 * corrupt if it is partway through a split operation. 2434 */ 2435 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 2436 boolean_t mismatch = B_FALSE; 2437 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 2438 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 2439 mismatch = B_TRUE; 2440 } else { 2441 if (vd->vdev_guid != top_guid && 2442 vd->vdev_top->vdev_guid != guid) 2443 mismatch = B_TRUE; 2444 } 2445 2446 if (mismatch) { 2447 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2448 VDEV_AUX_CORRUPT_DATA); 2449 nvlist_free(label); 2450 vdev_dbgmsg(vd, "vdev_validate: config guid " 2451 "doesn't match label guid"); 2452 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 2453 (u_longlong_t)vd->vdev_guid, 2454 (u_longlong_t)vd->vdev_top->vdev_guid); 2455 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 2456 "aux_guid %llu", (u_longlong_t)guid, 2457 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 2458 return (0); 2459 } 2460 } 2461 2462 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 2463 &state) != 0) { 2464 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2465 VDEV_AUX_CORRUPT_DATA); 2466 nvlist_free(label); 2467 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2468 ZPOOL_CONFIG_POOL_STATE); 2469 return (0); 2470 } 2471 2472 nvlist_free(label); 2473 2474 /* 2475 * If this is a verbatim import, no need to check the 2476 * state of the pool. 2477 */ 2478 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 2479 spa_load_state(spa) == SPA_LOAD_OPEN && 2480 state != POOL_STATE_ACTIVE) { 2481 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 2482 "for spa %s", (u_longlong_t)state, spa->spa_name); 2483 return (SET_ERROR(EBADF)); 2484 } 2485 2486 /* 2487 * If we were able to open and validate a vdev that was 2488 * previously marked permanently unavailable, clear that state 2489 * now. 2490 */ 2491 if (vd->vdev_not_present) 2492 vd->vdev_not_present = 0; 2493 2494 return (0); 2495 } 2496 2497 static void 2498 vdev_update_path(const char *prefix, char *svd, char **dvd, uint64_t guid) 2499 { 2500 if (svd != NULL && *dvd != NULL) { 2501 if (strcmp(svd, *dvd) != 0) { 2502 zfs_dbgmsg("vdev_copy_path: vdev %llu: %s changed " 2503 "from '%s' to '%s'", (u_longlong_t)guid, prefix, 2504 *dvd, svd); 2505 spa_strfree(*dvd); 2506 *dvd = spa_strdup(svd); 2507 } 2508 } else if (svd != NULL) { 2509 *dvd = spa_strdup(svd); 2510 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 2511 (u_longlong_t)guid, *dvd); 2512 } 2513 } 2514 2515 static void 2516 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 2517 { 2518 char *old, *new; 2519 2520 vdev_update_path("vdev_path", svd->vdev_path, &dvd->vdev_path, 2521 dvd->vdev_guid); 2522 2523 vdev_update_path("vdev_devid", svd->vdev_devid, &dvd->vdev_devid, 2524 dvd->vdev_guid); 2525 2526 vdev_update_path("vdev_physpath", svd->vdev_physpath, 2527 &dvd->vdev_physpath, dvd->vdev_guid); 2528 2529 /* 2530 * Our enclosure sysfs path may have changed between imports 2531 */ 2532 old = dvd->vdev_enc_sysfs_path; 2533 new = svd->vdev_enc_sysfs_path; 2534 if ((old != NULL && new == NULL) || 2535 (old == NULL && new != NULL) || 2536 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) { 2537 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path " 2538 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2539 old, new); 2540 2541 if (dvd->vdev_enc_sysfs_path) 2542 spa_strfree(dvd->vdev_enc_sysfs_path); 2543 2544 if (svd->vdev_enc_sysfs_path) { 2545 dvd->vdev_enc_sysfs_path = spa_strdup( 2546 svd->vdev_enc_sysfs_path); 2547 } else { 2548 dvd->vdev_enc_sysfs_path = NULL; 2549 } 2550 } 2551 } 2552 2553 /* 2554 * Recursively copy vdev paths from one vdev to another. Source and destination 2555 * vdev trees must have same geometry otherwise return error. Intended to copy 2556 * paths from userland config into MOS config. 2557 */ 2558 int 2559 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 2560 { 2561 if ((svd->vdev_ops == &vdev_missing_ops) || 2562 (svd->vdev_ishole && dvd->vdev_ishole) || 2563 (dvd->vdev_ops == &vdev_indirect_ops)) 2564 return (0); 2565 2566 if (svd->vdev_ops != dvd->vdev_ops) { 2567 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 2568 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 2569 return (SET_ERROR(EINVAL)); 2570 } 2571 2572 if (svd->vdev_guid != dvd->vdev_guid) { 2573 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 2574 "%llu)", (u_longlong_t)svd->vdev_guid, 2575 (u_longlong_t)dvd->vdev_guid); 2576 return (SET_ERROR(EINVAL)); 2577 } 2578 2579 if (svd->vdev_children != dvd->vdev_children) { 2580 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 2581 "%llu != %llu", (u_longlong_t)svd->vdev_children, 2582 (u_longlong_t)dvd->vdev_children); 2583 return (SET_ERROR(EINVAL)); 2584 } 2585 2586 for (uint64_t i = 0; i < svd->vdev_children; i++) { 2587 int error = vdev_copy_path_strict(svd->vdev_child[i], 2588 dvd->vdev_child[i]); 2589 if (error != 0) 2590 return (error); 2591 } 2592 2593 if (svd->vdev_ops->vdev_op_leaf) 2594 vdev_copy_path_impl(svd, dvd); 2595 2596 return (0); 2597 } 2598 2599 static void 2600 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 2601 { 2602 ASSERT(stvd->vdev_top == stvd); 2603 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 2604 2605 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 2606 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 2607 } 2608 2609 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 2610 return; 2611 2612 /* 2613 * The idea here is that while a vdev can shift positions within 2614 * a top vdev (when replacing, attaching mirror, etc.) it cannot 2615 * step outside of it. 2616 */ 2617 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 2618 2619 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 2620 return; 2621 2622 ASSERT(vd->vdev_ops->vdev_op_leaf); 2623 2624 vdev_copy_path_impl(vd, dvd); 2625 } 2626 2627 /* 2628 * Recursively copy vdev paths from one root vdev to another. Source and 2629 * destination vdev trees may differ in geometry. For each destination leaf 2630 * vdev, search a vdev with the same guid and top vdev id in the source. 2631 * Intended to copy paths from userland config into MOS config. 2632 */ 2633 void 2634 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 2635 { 2636 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 2637 ASSERT(srvd->vdev_ops == &vdev_root_ops); 2638 ASSERT(drvd->vdev_ops == &vdev_root_ops); 2639 2640 for (uint64_t i = 0; i < children; i++) { 2641 vdev_copy_path_search(srvd->vdev_child[i], 2642 drvd->vdev_child[i]); 2643 } 2644 } 2645 2646 /* 2647 * Close a virtual device. 2648 */ 2649 void 2650 vdev_close(vdev_t *vd) 2651 { 2652 vdev_t *pvd = vd->vdev_parent; 2653 spa_t *spa __maybe_unused = vd->vdev_spa; 2654 2655 ASSERT(vd != NULL); 2656 ASSERT(vd->vdev_open_thread == curthread || 2657 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2658 2659 /* 2660 * If our parent is reopening, then we are as well, unless we are 2661 * going offline. 2662 */ 2663 if (pvd != NULL && pvd->vdev_reopening) 2664 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 2665 2666 vd->vdev_ops->vdev_op_close(vd); 2667 2668 /* 2669 * We record the previous state before we close it, so that if we are 2670 * doing a reopen(), we don't generate FMA ereports if we notice that 2671 * it's still faulted. 2672 */ 2673 vd->vdev_prevstate = vd->vdev_state; 2674 2675 if (vd->vdev_offline) 2676 vd->vdev_state = VDEV_STATE_OFFLINE; 2677 else 2678 vd->vdev_state = VDEV_STATE_CLOSED; 2679 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2680 } 2681 2682 void 2683 vdev_hold(vdev_t *vd) 2684 { 2685 spa_t *spa = vd->vdev_spa; 2686 2687 ASSERT(spa_is_root(spa)); 2688 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 2689 return; 2690 2691 for (int c = 0; c < vd->vdev_children; c++) 2692 vdev_hold(vd->vdev_child[c]); 2693 2694 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL) 2695 vd->vdev_ops->vdev_op_hold(vd); 2696 } 2697 2698 void 2699 vdev_rele(vdev_t *vd) 2700 { 2701 ASSERT(spa_is_root(vd->vdev_spa)); 2702 for (int c = 0; c < vd->vdev_children; c++) 2703 vdev_rele(vd->vdev_child[c]); 2704 2705 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL) 2706 vd->vdev_ops->vdev_op_rele(vd); 2707 } 2708 2709 /* 2710 * Reopen all interior vdevs and any unopened leaves. We don't actually 2711 * reopen leaf vdevs which had previously been opened as they might deadlock 2712 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 2713 * If the leaf has never been opened then open it, as usual. 2714 */ 2715 void 2716 vdev_reopen(vdev_t *vd) 2717 { 2718 spa_t *spa = vd->vdev_spa; 2719 2720 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2721 2722 /* set the reopening flag unless we're taking the vdev offline */ 2723 vd->vdev_reopening = !vd->vdev_offline; 2724 vdev_close(vd); 2725 (void) vdev_open(vd); 2726 2727 /* 2728 * Call vdev_validate() here to make sure we have the same device. 2729 * Otherwise, a device with an invalid label could be successfully 2730 * opened in response to vdev_reopen(). 2731 */ 2732 if (vd->vdev_aux) { 2733 (void) vdev_validate_aux(vd); 2734 if (vdev_readable(vd) && vdev_writeable(vd) && 2735 vd->vdev_aux == &spa->spa_l2cache) { 2736 /* 2737 * In case the vdev is present we should evict all ARC 2738 * buffers and pointers to log blocks and reclaim their 2739 * space before restoring its contents to L2ARC. 2740 */ 2741 if (l2arc_vdev_present(vd)) { 2742 l2arc_rebuild_vdev(vd, B_TRUE); 2743 } else { 2744 l2arc_add_vdev(spa, vd); 2745 } 2746 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2747 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 2748 } 2749 } else { 2750 (void) vdev_validate(vd); 2751 } 2752 2753 /* 2754 * Recheck if resilver is still needed and cancel any 2755 * scheduled resilver if resilver is unneeded. 2756 */ 2757 if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) && 2758 spa->spa_async_tasks & SPA_ASYNC_RESILVER) { 2759 mutex_enter(&spa->spa_async_lock); 2760 spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER; 2761 mutex_exit(&spa->spa_async_lock); 2762 } 2763 2764 /* 2765 * Reassess parent vdev's health. 2766 */ 2767 vdev_propagate_state(vd); 2768 } 2769 2770 int 2771 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2772 { 2773 int error; 2774 2775 /* 2776 * Normally, partial opens (e.g. of a mirror) are allowed. 2777 * For a create, however, we want to fail the request if 2778 * there are any components we can't open. 2779 */ 2780 error = vdev_open(vd); 2781 2782 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2783 vdev_close(vd); 2784 return (error ? error : SET_ERROR(ENXIO)); 2785 } 2786 2787 /* 2788 * Recursively load DTLs and initialize all labels. 2789 */ 2790 if ((error = vdev_dtl_load(vd)) != 0 || 2791 (error = vdev_label_init(vd, txg, isreplacing ? 2792 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2793 vdev_close(vd); 2794 return (error); 2795 } 2796 2797 return (0); 2798 } 2799 2800 void 2801 vdev_metaslab_set_size(vdev_t *vd) 2802 { 2803 uint64_t asize = vd->vdev_asize; 2804 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2805 uint64_t ms_shift; 2806 2807 /* 2808 * There are two dimensions to the metaslab sizing calculation: 2809 * the size of the metaslab and the count of metaslabs per vdev. 2810 * 2811 * The default values used below are a good balance between memory 2812 * usage (larger metaslab size means more memory needed for loaded 2813 * metaslabs; more metaslabs means more memory needed for the 2814 * metaslab_t structs), metaslab load time (larger metaslabs take 2815 * longer to load), and metaslab sync time (more metaslabs means 2816 * more time spent syncing all of them). 2817 * 2818 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2819 * The range of the dimensions are as follows: 2820 * 2821 * 2^29 <= ms_size <= 2^34 2822 * 16 <= ms_count <= 131,072 2823 * 2824 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2825 * at least 512MB (2^29) to minimize fragmentation effects when 2826 * testing with smaller devices. However, the count constraint 2827 * of at least 16 metaslabs will override this minimum size goal. 2828 * 2829 * On the upper end of vdev sizes, we aim for a maximum metaslab 2830 * size of 16GB. However, we will cap the total count to 2^17 2831 * metaslabs to keep our memory footprint in check and let the 2832 * metaslab size grow from there if that limit is hit. 2833 * 2834 * The net effect of applying above constrains is summarized below. 2835 * 2836 * vdev size metaslab count 2837 * --------------|----------------- 2838 * < 8GB ~16 2839 * 8GB - 100GB one per 512MB 2840 * 100GB - 3TB ~200 2841 * 3TB - 2PB one per 16GB 2842 * > 2PB ~131,072 2843 * -------------------------------- 2844 * 2845 * Finally, note that all of the above calculate the initial 2846 * number of metaslabs. Expanding a top-level vdev will result 2847 * in additional metaslabs being allocated making it possible 2848 * to exceed the zfs_vdev_ms_count_limit. 2849 */ 2850 2851 if (ms_count < zfs_vdev_min_ms_count) 2852 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 2853 else if (ms_count > zfs_vdev_default_ms_count) 2854 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 2855 else 2856 ms_shift = zfs_vdev_default_ms_shift; 2857 2858 if (ms_shift < SPA_MAXBLOCKSHIFT) { 2859 ms_shift = SPA_MAXBLOCKSHIFT; 2860 } else if (ms_shift > zfs_vdev_max_ms_shift) { 2861 ms_shift = zfs_vdev_max_ms_shift; 2862 /* cap the total count to constrain memory footprint */ 2863 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 2864 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 2865 } 2866 2867 vd->vdev_ms_shift = ms_shift; 2868 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 2869 } 2870 2871 void 2872 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 2873 { 2874 ASSERT(vd == vd->vdev_top); 2875 /* indirect vdevs don't have metaslabs or dtls */ 2876 ASSERT(vdev_is_concrete(vd) || flags == 0); 2877 ASSERT(ISP2(flags)); 2878 ASSERT(spa_writeable(vd->vdev_spa)); 2879 2880 if (flags & VDD_METASLAB) 2881 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 2882 2883 if (flags & VDD_DTL) 2884 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 2885 2886 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 2887 } 2888 2889 void 2890 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 2891 { 2892 for (int c = 0; c < vd->vdev_children; c++) 2893 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 2894 2895 if (vd->vdev_ops->vdev_op_leaf) 2896 vdev_dirty(vd->vdev_top, flags, vd, txg); 2897 } 2898 2899 /* 2900 * DTLs. 2901 * 2902 * A vdev's DTL (dirty time log) is the set of transaction groups for which 2903 * the vdev has less than perfect replication. There are four kinds of DTL: 2904 * 2905 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 2906 * 2907 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 2908 * 2909 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 2910 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 2911 * txgs that was scrubbed. 2912 * 2913 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 2914 * persistent errors or just some device being offline. 2915 * Unlike the other three, the DTL_OUTAGE map is not generally 2916 * maintained; it's only computed when needed, typically to 2917 * determine whether a device can be detached. 2918 * 2919 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 2920 * either has the data or it doesn't. 2921 * 2922 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 2923 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 2924 * if any child is less than fully replicated, then so is its parent. 2925 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 2926 * comprising only those txgs which appear in 'maxfaults' or more children; 2927 * those are the txgs we don't have enough replication to read. For example, 2928 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 2929 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 2930 * two child DTL_MISSING maps. 2931 * 2932 * It should be clear from the above that to compute the DTLs and outage maps 2933 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 2934 * Therefore, that is all we keep on disk. When loading the pool, or after 2935 * a configuration change, we generate all other DTLs from first principles. 2936 */ 2937 void 2938 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2939 { 2940 range_tree_t *rt = vd->vdev_dtl[t]; 2941 2942 ASSERT(t < DTL_TYPES); 2943 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2944 ASSERT(spa_writeable(vd->vdev_spa)); 2945 2946 mutex_enter(&vd->vdev_dtl_lock); 2947 if (!range_tree_contains(rt, txg, size)) 2948 range_tree_add(rt, txg, size); 2949 mutex_exit(&vd->vdev_dtl_lock); 2950 } 2951 2952 boolean_t 2953 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2954 { 2955 range_tree_t *rt = vd->vdev_dtl[t]; 2956 boolean_t dirty = B_FALSE; 2957 2958 ASSERT(t < DTL_TYPES); 2959 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2960 2961 /* 2962 * While we are loading the pool, the DTLs have not been loaded yet. 2963 * This isn't a problem but it can result in devices being tried 2964 * which are known to not have the data. In which case, the import 2965 * is relying on the checksum to ensure that we get the right data. 2966 * Note that while importing we are only reading the MOS, which is 2967 * always checksummed. 2968 */ 2969 mutex_enter(&vd->vdev_dtl_lock); 2970 if (!range_tree_is_empty(rt)) 2971 dirty = range_tree_contains(rt, txg, size); 2972 mutex_exit(&vd->vdev_dtl_lock); 2973 2974 return (dirty); 2975 } 2976 2977 boolean_t 2978 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 2979 { 2980 range_tree_t *rt = vd->vdev_dtl[t]; 2981 boolean_t empty; 2982 2983 mutex_enter(&vd->vdev_dtl_lock); 2984 empty = range_tree_is_empty(rt); 2985 mutex_exit(&vd->vdev_dtl_lock); 2986 2987 return (empty); 2988 } 2989 2990 /* 2991 * Check if the txg falls within the range which must be 2992 * resilvered. DVAs outside this range can always be skipped. 2993 */ 2994 boolean_t 2995 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 2996 uint64_t phys_birth) 2997 { 2998 (void) dva, (void) psize; 2999 3000 /* Set by sequential resilver. */ 3001 if (phys_birth == TXG_UNKNOWN) 3002 return (B_TRUE); 3003 3004 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)); 3005 } 3006 3007 /* 3008 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered. 3009 */ 3010 boolean_t 3011 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 3012 uint64_t phys_birth) 3013 { 3014 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 3015 3016 if (vd->vdev_ops->vdev_op_need_resilver == NULL || 3017 vd->vdev_ops->vdev_op_leaf) 3018 return (B_TRUE); 3019 3020 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize, 3021 phys_birth)); 3022 } 3023 3024 /* 3025 * Returns the lowest txg in the DTL range. 3026 */ 3027 static uint64_t 3028 vdev_dtl_min(vdev_t *vd) 3029 { 3030 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 3031 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 3032 ASSERT0(vd->vdev_children); 3033 3034 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1); 3035 } 3036 3037 /* 3038 * Returns the highest txg in the DTL. 3039 */ 3040 static uint64_t 3041 vdev_dtl_max(vdev_t *vd) 3042 { 3043 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 3044 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 3045 ASSERT0(vd->vdev_children); 3046 3047 return (range_tree_max(vd->vdev_dtl[DTL_MISSING])); 3048 } 3049 3050 /* 3051 * Determine if a resilvering vdev should remove any DTL entries from 3052 * its range. If the vdev was resilvering for the entire duration of the 3053 * scan then it should excise that range from its DTLs. Otherwise, this 3054 * vdev is considered partially resilvered and should leave its DTL 3055 * entries intact. The comment in vdev_dtl_reassess() describes how we 3056 * excise the DTLs. 3057 */ 3058 static boolean_t 3059 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done) 3060 { 3061 ASSERT0(vd->vdev_children); 3062 3063 if (vd->vdev_state < VDEV_STATE_DEGRADED) 3064 return (B_FALSE); 3065 3066 if (vd->vdev_resilver_deferred) 3067 return (B_FALSE); 3068 3069 if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 3070 return (B_TRUE); 3071 3072 if (rebuild_done) { 3073 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3074 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 3075 3076 /* Rebuild not initiated by attach */ 3077 if (vd->vdev_rebuild_txg == 0) 3078 return (B_TRUE); 3079 3080 /* 3081 * When a rebuild completes without error then all missing data 3082 * up to the rebuild max txg has been reconstructed and the DTL 3083 * is eligible for excision. 3084 */ 3085 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE && 3086 vdev_dtl_max(vd) <= vrp->vrp_max_txg) { 3087 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd)); 3088 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg); 3089 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg); 3090 return (B_TRUE); 3091 } 3092 } else { 3093 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 3094 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys; 3095 3096 /* Resilver not initiated by attach */ 3097 if (vd->vdev_resilver_txg == 0) 3098 return (B_TRUE); 3099 3100 /* 3101 * When a resilver is initiated the scan will assign the 3102 * scn_max_txg value to the highest txg value that exists 3103 * in all DTLs. If this device's max DTL is not part of this 3104 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg] 3105 * then it is not eligible for excision. 3106 */ 3107 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 3108 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd)); 3109 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg); 3110 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg); 3111 return (B_TRUE); 3112 } 3113 } 3114 3115 return (B_FALSE); 3116 } 3117 3118 /* 3119 * Reassess DTLs after a config change or scrub completion. If txg == 0 no 3120 * write operations will be issued to the pool. 3121 */ 3122 void 3123 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, 3124 boolean_t scrub_done, boolean_t rebuild_done) 3125 { 3126 spa_t *spa = vd->vdev_spa; 3127 avl_tree_t reftree; 3128 int minref; 3129 3130 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 3131 3132 for (int c = 0; c < vd->vdev_children; c++) 3133 vdev_dtl_reassess(vd->vdev_child[c], txg, 3134 scrub_txg, scrub_done, rebuild_done); 3135 3136 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 3137 return; 3138 3139 if (vd->vdev_ops->vdev_op_leaf) { 3140 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 3141 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3142 boolean_t check_excise = B_FALSE; 3143 boolean_t wasempty = B_TRUE; 3144 3145 mutex_enter(&vd->vdev_dtl_lock); 3146 3147 /* 3148 * If requested, pretend the scan or rebuild completed cleanly. 3149 */ 3150 if (zfs_scan_ignore_errors) { 3151 if (scn != NULL) 3152 scn->scn_phys.scn_errors = 0; 3153 if (vr != NULL) 3154 vr->vr_rebuild_phys.vrp_errors = 0; 3155 } 3156 3157 if (scrub_txg != 0 && 3158 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3159 wasempty = B_FALSE; 3160 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d " 3161 "dtl:%llu/%llu errors:%llu", 3162 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg, 3163 (u_longlong_t)scrub_txg, spa->spa_scrub_started, 3164 (u_longlong_t)vdev_dtl_min(vd), 3165 (u_longlong_t)vdev_dtl_max(vd), 3166 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0)); 3167 } 3168 3169 /* 3170 * If we've completed a scrub/resilver or a rebuild cleanly 3171 * then determine if this vdev should remove any DTLs. We 3172 * only want to excise regions on vdevs that were available 3173 * during the entire duration of this scan. 3174 */ 3175 if (rebuild_done && 3176 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) { 3177 check_excise = B_TRUE; 3178 } else { 3179 if (spa->spa_scrub_started || 3180 (scn != NULL && scn->scn_phys.scn_errors == 0)) { 3181 check_excise = B_TRUE; 3182 } 3183 } 3184 3185 if (scrub_txg && check_excise && 3186 vdev_dtl_should_excise(vd, rebuild_done)) { 3187 /* 3188 * We completed a scrub, resilver or rebuild up to 3189 * scrub_txg. If we did it without rebooting, then 3190 * the scrub dtl will be valid, so excise the old 3191 * region and fold in the scrub dtl. Otherwise, 3192 * leave the dtl as-is if there was an error. 3193 * 3194 * There's little trick here: to excise the beginning 3195 * of the DTL_MISSING map, we put it into a reference 3196 * tree and then add a segment with refcnt -1 that 3197 * covers the range [0, scrub_txg). This means 3198 * that each txg in that range has refcnt -1 or 0. 3199 * We then add DTL_SCRUB with a refcnt of 2, so that 3200 * entries in the range [0, scrub_txg) will have a 3201 * positive refcnt -- either 1 or 2. We then convert 3202 * the reference tree into the new DTL_MISSING map. 3203 */ 3204 space_reftree_create(&reftree); 3205 space_reftree_add_map(&reftree, 3206 vd->vdev_dtl[DTL_MISSING], 1); 3207 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 3208 space_reftree_add_map(&reftree, 3209 vd->vdev_dtl[DTL_SCRUB], 2); 3210 space_reftree_generate_map(&reftree, 3211 vd->vdev_dtl[DTL_MISSING], 1); 3212 space_reftree_destroy(&reftree); 3213 3214 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3215 zfs_dbgmsg("update DTL_MISSING:%llu/%llu", 3216 (u_longlong_t)vdev_dtl_min(vd), 3217 (u_longlong_t)vdev_dtl_max(vd)); 3218 } else if (!wasempty) { 3219 zfs_dbgmsg("DTL_MISSING is now empty"); 3220 } 3221 } 3222 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 3223 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3224 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 3225 if (scrub_done) 3226 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 3227 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 3228 if (!vdev_readable(vd)) 3229 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 3230 else 3231 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3232 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 3233 3234 /* 3235 * If the vdev was resilvering or rebuilding and no longer 3236 * has any DTLs then reset the appropriate flag and dirty 3237 * the top level so that we persist the change. 3238 */ 3239 if (txg != 0 && 3240 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3241 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) { 3242 if (vd->vdev_rebuild_txg != 0) { 3243 vd->vdev_rebuild_txg = 0; 3244 vdev_config_dirty(vd->vdev_top); 3245 } else if (vd->vdev_resilver_txg != 0) { 3246 vd->vdev_resilver_txg = 0; 3247 vdev_config_dirty(vd->vdev_top); 3248 } 3249 } 3250 3251 mutex_exit(&vd->vdev_dtl_lock); 3252 3253 if (txg != 0) 3254 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 3255 } else { 3256 mutex_enter(&vd->vdev_dtl_lock); 3257 for (int t = 0; t < DTL_TYPES; t++) { 3258 /* account for child's outage in parent's missing map */ 3259 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 3260 if (t == DTL_SCRUB) { 3261 /* leaf vdevs only */ 3262 continue; 3263 } 3264 if (t == DTL_PARTIAL) { 3265 /* i.e. non-zero */ 3266 minref = 1; 3267 } else if (vdev_get_nparity(vd) != 0) { 3268 /* RAIDZ, DRAID */ 3269 minref = vdev_get_nparity(vd) + 1; 3270 } else { 3271 /* any kind of mirror */ 3272 minref = vd->vdev_children; 3273 } 3274 space_reftree_create(&reftree); 3275 for (int c = 0; c < vd->vdev_children; c++) { 3276 vdev_t *cvd = vd->vdev_child[c]; 3277 mutex_enter(&cvd->vdev_dtl_lock); 3278 space_reftree_add_map(&reftree, 3279 cvd->vdev_dtl[s], 1); 3280 mutex_exit(&cvd->vdev_dtl_lock); 3281 } 3282 space_reftree_generate_map(&reftree, 3283 vd->vdev_dtl[t], minref); 3284 space_reftree_destroy(&reftree); 3285 } 3286 mutex_exit(&vd->vdev_dtl_lock); 3287 } 3288 3289 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) { 3290 raidz_dtl_reassessed(vd); 3291 } 3292 } 3293 3294 /* 3295 * Iterate over all the vdevs except spare, and post kobj events 3296 */ 3297 void 3298 vdev_post_kobj_evt(vdev_t *vd) 3299 { 3300 if (vd->vdev_ops->vdev_op_kobj_evt_post && 3301 vd->vdev_kobj_flag == B_FALSE) { 3302 vd->vdev_kobj_flag = B_TRUE; 3303 vd->vdev_ops->vdev_op_kobj_evt_post(vd); 3304 } 3305 3306 for (int c = 0; c < vd->vdev_children; c++) 3307 vdev_post_kobj_evt(vd->vdev_child[c]); 3308 } 3309 3310 /* 3311 * Iterate over all the vdevs except spare, and clear kobj events 3312 */ 3313 void 3314 vdev_clear_kobj_evt(vdev_t *vd) 3315 { 3316 vd->vdev_kobj_flag = B_FALSE; 3317 3318 for (int c = 0; c < vd->vdev_children; c++) 3319 vdev_clear_kobj_evt(vd->vdev_child[c]); 3320 } 3321 3322 int 3323 vdev_dtl_load(vdev_t *vd) 3324 { 3325 spa_t *spa = vd->vdev_spa; 3326 objset_t *mos = spa->spa_meta_objset; 3327 range_tree_t *rt; 3328 int error = 0; 3329 3330 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 3331 ASSERT(vdev_is_concrete(vd)); 3332 3333 /* 3334 * If the dtl cannot be sync'd there is no need to open it. 3335 */ 3336 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps) 3337 return (0); 3338 3339 error = space_map_open(&vd->vdev_dtl_sm, mos, 3340 vd->vdev_dtl_object, 0, -1ULL, 0); 3341 if (error) 3342 return (error); 3343 ASSERT(vd->vdev_dtl_sm != NULL); 3344 3345 rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3346 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC); 3347 if (error == 0) { 3348 mutex_enter(&vd->vdev_dtl_lock); 3349 range_tree_walk(rt, range_tree_add, 3350 vd->vdev_dtl[DTL_MISSING]); 3351 mutex_exit(&vd->vdev_dtl_lock); 3352 } 3353 3354 range_tree_vacate(rt, NULL, NULL); 3355 range_tree_destroy(rt); 3356 3357 return (error); 3358 } 3359 3360 for (int c = 0; c < vd->vdev_children; c++) { 3361 error = vdev_dtl_load(vd->vdev_child[c]); 3362 if (error != 0) 3363 break; 3364 } 3365 3366 return (error); 3367 } 3368 3369 static void 3370 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) 3371 { 3372 spa_t *spa = vd->vdev_spa; 3373 objset_t *mos = spa->spa_meta_objset; 3374 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 3375 const char *string; 3376 3377 ASSERT(alloc_bias != VDEV_BIAS_NONE); 3378 3379 string = 3380 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : 3381 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : 3382 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; 3383 3384 ASSERT(string != NULL); 3385 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 3386 1, strlen(string) + 1, string, tx)); 3387 3388 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { 3389 spa_activate_allocation_classes(spa, tx); 3390 } 3391 } 3392 3393 void 3394 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 3395 { 3396 spa_t *spa = vd->vdev_spa; 3397 3398 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 3399 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3400 zapobj, tx)); 3401 } 3402 3403 uint64_t 3404 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 3405 { 3406 spa_t *spa = vd->vdev_spa; 3407 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 3408 DMU_OT_NONE, 0, tx); 3409 3410 ASSERT(zap != 0); 3411 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3412 zap, tx)); 3413 3414 return (zap); 3415 } 3416 3417 void 3418 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 3419 { 3420 if (vd->vdev_ops != &vdev_hole_ops && 3421 vd->vdev_ops != &vdev_missing_ops && 3422 vd->vdev_ops != &vdev_root_ops && 3423 !vd->vdev_top->vdev_removing) { 3424 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 3425 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 3426 } 3427 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 3428 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 3429 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) 3430 vdev_zap_allocation_data(vd, tx); 3431 } 3432 } 3433 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 && 3434 spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) { 3435 if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) 3436 spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx); 3437 vd->vdev_root_zap = vdev_create_link_zap(vd, tx); 3438 } 3439 3440 for (uint64_t i = 0; i < vd->vdev_children; i++) { 3441 vdev_construct_zaps(vd->vdev_child[i], tx); 3442 } 3443 } 3444 3445 static void 3446 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 3447 { 3448 spa_t *spa = vd->vdev_spa; 3449 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 3450 objset_t *mos = spa->spa_meta_objset; 3451 range_tree_t *rtsync; 3452 dmu_tx_t *tx; 3453 uint64_t object = space_map_object(vd->vdev_dtl_sm); 3454 3455 ASSERT(vdev_is_concrete(vd)); 3456 ASSERT(vd->vdev_ops->vdev_op_leaf); 3457 3458 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3459 3460 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 3461 mutex_enter(&vd->vdev_dtl_lock); 3462 space_map_free(vd->vdev_dtl_sm, tx); 3463 space_map_close(vd->vdev_dtl_sm); 3464 vd->vdev_dtl_sm = NULL; 3465 mutex_exit(&vd->vdev_dtl_lock); 3466 3467 /* 3468 * We only destroy the leaf ZAP for detached leaves or for 3469 * removed log devices. Removed data devices handle leaf ZAP 3470 * cleanup later, once cancellation is no longer possible. 3471 */ 3472 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 3473 vd->vdev_top->vdev_islog)) { 3474 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 3475 vd->vdev_leaf_zap = 0; 3476 } 3477 3478 dmu_tx_commit(tx); 3479 return; 3480 } 3481 3482 if (vd->vdev_dtl_sm == NULL) { 3483 uint64_t new_object; 3484 3485 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx); 3486 VERIFY3U(new_object, !=, 0); 3487 3488 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 3489 0, -1ULL, 0)); 3490 ASSERT(vd->vdev_dtl_sm != NULL); 3491 } 3492 3493 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3494 3495 mutex_enter(&vd->vdev_dtl_lock); 3496 range_tree_walk(rt, range_tree_add, rtsync); 3497 mutex_exit(&vd->vdev_dtl_lock); 3498 3499 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx); 3500 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 3501 range_tree_vacate(rtsync, NULL, NULL); 3502 3503 range_tree_destroy(rtsync); 3504 3505 /* 3506 * If the object for the space map has changed then dirty 3507 * the top level so that we update the config. 3508 */ 3509 if (object != space_map_object(vd->vdev_dtl_sm)) { 3510 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 3511 "new object %llu", (u_longlong_t)txg, spa_name(spa), 3512 (u_longlong_t)object, 3513 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 3514 vdev_config_dirty(vd->vdev_top); 3515 } 3516 3517 dmu_tx_commit(tx); 3518 } 3519 3520 /* 3521 * Determine whether the specified vdev can be offlined/detached/removed 3522 * without losing data. 3523 */ 3524 boolean_t 3525 vdev_dtl_required(vdev_t *vd) 3526 { 3527 spa_t *spa = vd->vdev_spa; 3528 vdev_t *tvd = vd->vdev_top; 3529 uint8_t cant_read = vd->vdev_cant_read; 3530 boolean_t required; 3531 3532 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3533 3534 if (vd == spa->spa_root_vdev || vd == tvd) 3535 return (B_TRUE); 3536 3537 /* 3538 * Temporarily mark the device as unreadable, and then determine 3539 * whether this results in any DTL outages in the top-level vdev. 3540 * If not, we can safely offline/detach/remove the device. 3541 */ 3542 vd->vdev_cant_read = B_TRUE; 3543 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3544 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 3545 vd->vdev_cant_read = cant_read; 3546 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3547 3548 if (!required && zio_injection_enabled) { 3549 required = !!zio_handle_device_injection(vd, NULL, 3550 SET_ERROR(ECHILD)); 3551 } 3552 3553 return (required); 3554 } 3555 3556 /* 3557 * Determine if resilver is needed, and if so the txg range. 3558 */ 3559 boolean_t 3560 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 3561 { 3562 boolean_t needed = B_FALSE; 3563 uint64_t thismin = UINT64_MAX; 3564 uint64_t thismax = 0; 3565 3566 if (vd->vdev_children == 0) { 3567 mutex_enter(&vd->vdev_dtl_lock); 3568 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3569 vdev_writeable(vd)) { 3570 3571 thismin = vdev_dtl_min(vd); 3572 thismax = vdev_dtl_max(vd); 3573 needed = B_TRUE; 3574 } 3575 mutex_exit(&vd->vdev_dtl_lock); 3576 } else { 3577 for (int c = 0; c < vd->vdev_children; c++) { 3578 vdev_t *cvd = vd->vdev_child[c]; 3579 uint64_t cmin, cmax; 3580 3581 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 3582 thismin = MIN(thismin, cmin); 3583 thismax = MAX(thismax, cmax); 3584 needed = B_TRUE; 3585 } 3586 } 3587 } 3588 3589 if (needed && minp) { 3590 *minp = thismin; 3591 *maxp = thismax; 3592 } 3593 return (needed); 3594 } 3595 3596 /* 3597 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj 3598 * will contain either the checkpoint spacemap object or zero if none exists. 3599 * All other errors are returned to the caller. 3600 */ 3601 int 3602 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj) 3603 { 3604 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 3605 3606 if (vd->vdev_top_zap == 0) { 3607 *sm_obj = 0; 3608 return (0); 3609 } 3610 3611 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 3612 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj); 3613 if (error == ENOENT) { 3614 *sm_obj = 0; 3615 error = 0; 3616 } 3617 3618 return (error); 3619 } 3620 3621 int 3622 vdev_load(vdev_t *vd) 3623 { 3624 int children = vd->vdev_children; 3625 int error = 0; 3626 taskq_t *tq = NULL; 3627 3628 /* 3629 * It's only worthwhile to use the taskq for the root vdev, because the 3630 * slow part is metaslab_init, and that only happens for top-level 3631 * vdevs. 3632 */ 3633 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) { 3634 tq = taskq_create("vdev_load", children, minclsyspri, 3635 children, children, TASKQ_PREPOPULATE); 3636 } 3637 3638 /* 3639 * Recursively load all children. 3640 */ 3641 for (int c = 0; c < vd->vdev_children; c++) { 3642 vdev_t *cvd = vd->vdev_child[c]; 3643 3644 if (tq == NULL || vdev_uses_zvols(cvd)) { 3645 cvd->vdev_load_error = vdev_load(cvd); 3646 } else { 3647 VERIFY(taskq_dispatch(tq, vdev_load_child, 3648 cvd, TQ_SLEEP) != TASKQID_INVALID); 3649 } 3650 } 3651 3652 if (tq != NULL) { 3653 taskq_wait(tq); 3654 taskq_destroy(tq); 3655 } 3656 3657 for (int c = 0; c < vd->vdev_children; c++) { 3658 int error = vd->vdev_child[c]->vdev_load_error; 3659 3660 if (error != 0) 3661 return (error); 3662 } 3663 3664 vdev_set_deflate_ratio(vd); 3665 3666 if (vd->vdev_ops == &vdev_raidz_ops) { 3667 error = vdev_raidz_load(vd); 3668 if (error != 0) 3669 return (error); 3670 } 3671 3672 /* 3673 * On spa_load path, grab the allocation bias from our zap 3674 */ 3675 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3676 spa_t *spa = vd->vdev_spa; 3677 char bias_str[64]; 3678 3679 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3680 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), 3681 bias_str); 3682 if (error == 0) { 3683 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); 3684 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); 3685 } else if (error != ENOENT) { 3686 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3687 VDEV_AUX_CORRUPT_DATA); 3688 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) " 3689 "failed [error=%d]", 3690 (u_longlong_t)vd->vdev_top_zap, error); 3691 return (error); 3692 } 3693 } 3694 3695 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3696 spa_t *spa = vd->vdev_spa; 3697 uint64_t failfast; 3698 3699 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3700 vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast), 3701 1, &failfast); 3702 if (error == 0) { 3703 vd->vdev_failfast = failfast & 1; 3704 } else if (error == ENOENT) { 3705 vd->vdev_failfast = vdev_prop_default_numeric( 3706 VDEV_PROP_FAILFAST); 3707 } else { 3708 vdev_dbgmsg(vd, 3709 "vdev_load: zap_lookup(top_zap=%llu) " 3710 "failed [error=%d]", 3711 (u_longlong_t)vd->vdev_top_zap, error); 3712 } 3713 } 3714 3715 /* 3716 * Load any rebuild state from the top-level vdev zap. 3717 */ 3718 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3719 error = vdev_rebuild_load(vd); 3720 if (error && error != ENOTSUP) { 3721 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3722 VDEV_AUX_CORRUPT_DATA); 3723 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load " 3724 "failed [error=%d]", error); 3725 return (error); 3726 } 3727 } 3728 3729 if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) { 3730 uint64_t zapobj; 3731 3732 if (vd->vdev_top_zap != 0) 3733 zapobj = vd->vdev_top_zap; 3734 else 3735 zapobj = vd->vdev_leaf_zap; 3736 3737 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N, 3738 &vd->vdev_checksum_n); 3739 if (error && error != ENOENT) 3740 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3741 "failed [error=%d]", (u_longlong_t)zapobj, error); 3742 3743 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T, 3744 &vd->vdev_checksum_t); 3745 if (error && error != ENOENT) 3746 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3747 "failed [error=%d]", (u_longlong_t)zapobj, error); 3748 3749 error = vdev_prop_get_int(vd, VDEV_PROP_IO_N, 3750 &vd->vdev_io_n); 3751 if (error && error != ENOENT) 3752 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3753 "failed [error=%d]", (u_longlong_t)zapobj, error); 3754 3755 error = vdev_prop_get_int(vd, VDEV_PROP_IO_T, 3756 &vd->vdev_io_t); 3757 if (error && error != ENOENT) 3758 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3759 "failed [error=%d]", (u_longlong_t)zapobj, error); 3760 3761 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_N, 3762 &vd->vdev_slow_io_n); 3763 if (error && error != ENOENT) 3764 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3765 "failed [error=%d]", (u_longlong_t)zapobj, error); 3766 3767 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_T, 3768 &vd->vdev_slow_io_t); 3769 if (error && error != ENOENT) 3770 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3771 "failed [error=%d]", (u_longlong_t)zapobj, error); 3772 } 3773 3774 /* 3775 * If this is a top-level vdev, initialize its metaslabs. 3776 */ 3777 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 3778 vdev_metaslab_group_create(vd); 3779 3780 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 3781 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3782 VDEV_AUX_CORRUPT_DATA); 3783 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 3784 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 3785 (u_longlong_t)vd->vdev_asize); 3786 return (SET_ERROR(ENXIO)); 3787 } 3788 3789 error = vdev_metaslab_init(vd, 0); 3790 if (error != 0) { 3791 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 3792 "[error=%d]", error); 3793 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3794 VDEV_AUX_CORRUPT_DATA); 3795 return (error); 3796 } 3797 3798 uint64_t checkpoint_sm_obj; 3799 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj); 3800 if (error == 0 && checkpoint_sm_obj != 0) { 3801 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3802 ASSERT(vd->vdev_asize != 0); 3803 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); 3804 3805 error = space_map_open(&vd->vdev_checkpoint_sm, 3806 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 3807 vd->vdev_ashift); 3808 if (error != 0) { 3809 vdev_dbgmsg(vd, "vdev_load: space_map_open " 3810 "failed for checkpoint spacemap (obj %llu) " 3811 "[error=%d]", 3812 (u_longlong_t)checkpoint_sm_obj, error); 3813 return (error); 3814 } 3815 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 3816 3817 /* 3818 * Since the checkpoint_sm contains free entries 3819 * exclusively we can use space_map_allocated() to 3820 * indicate the cumulative checkpointed space that 3821 * has been freed. 3822 */ 3823 vd->vdev_stat.vs_checkpoint_space = 3824 -space_map_allocated(vd->vdev_checkpoint_sm); 3825 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 3826 vd->vdev_stat.vs_checkpoint_space; 3827 } else if (error != 0) { 3828 vdev_dbgmsg(vd, "vdev_load: failed to retrieve " 3829 "checkpoint space map object from vdev ZAP " 3830 "[error=%d]", error); 3831 return (error); 3832 } 3833 } 3834 3835 /* 3836 * If this is a leaf vdev, load its DTL. 3837 */ 3838 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 3839 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3840 VDEV_AUX_CORRUPT_DATA); 3841 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 3842 "[error=%d]", error); 3843 return (error); 3844 } 3845 3846 uint64_t obsolete_sm_object; 3847 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object); 3848 if (error == 0 && obsolete_sm_object != 0) { 3849 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3850 ASSERT(vd->vdev_asize != 0); 3851 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 3852 3853 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 3854 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 3855 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3856 VDEV_AUX_CORRUPT_DATA); 3857 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 3858 "obsolete spacemap (obj %llu) [error=%d]", 3859 (u_longlong_t)obsolete_sm_object, error); 3860 return (error); 3861 } 3862 } else if (error != 0) { 3863 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete " 3864 "space map object from vdev ZAP [error=%d]", error); 3865 return (error); 3866 } 3867 3868 return (0); 3869 } 3870 3871 /* 3872 * The special vdev case is used for hot spares and l2cache devices. Its 3873 * sole purpose it to set the vdev state for the associated vdev. To do this, 3874 * we make sure that we can open the underlying device, then try to read the 3875 * label, and make sure that the label is sane and that it hasn't been 3876 * repurposed to another pool. 3877 */ 3878 int 3879 vdev_validate_aux(vdev_t *vd) 3880 { 3881 nvlist_t *label; 3882 uint64_t guid, version; 3883 uint64_t state; 3884 3885 if (!vdev_readable(vd)) 3886 return (0); 3887 3888 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 3889 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3890 VDEV_AUX_CORRUPT_DATA); 3891 return (-1); 3892 } 3893 3894 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 3895 !SPA_VERSION_IS_SUPPORTED(version) || 3896 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 3897 guid != vd->vdev_guid || 3898 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 3899 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3900 VDEV_AUX_CORRUPT_DATA); 3901 nvlist_free(label); 3902 return (-1); 3903 } 3904 3905 /* 3906 * We don't actually check the pool state here. If it's in fact in 3907 * use by another pool, we update this fact on the fly when requested. 3908 */ 3909 nvlist_free(label); 3910 return (0); 3911 } 3912 3913 static void 3914 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx) 3915 { 3916 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3917 3918 if (vd->vdev_top_zap == 0) 3919 return; 3920 3921 uint64_t object = 0; 3922 int err = zap_lookup(mos, vd->vdev_top_zap, 3923 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object); 3924 if (err == ENOENT) 3925 return; 3926 VERIFY0(err); 3927 3928 VERIFY0(dmu_object_free(mos, object, tx)); 3929 VERIFY0(zap_remove(mos, vd->vdev_top_zap, 3930 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx)); 3931 } 3932 3933 /* 3934 * Free the objects used to store this vdev's spacemaps, and the array 3935 * that points to them. 3936 */ 3937 void 3938 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 3939 { 3940 if (vd->vdev_ms_array == 0) 3941 return; 3942 3943 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3944 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 3945 size_t array_bytes = array_count * sizeof (uint64_t); 3946 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 3947 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 3948 array_bytes, smobj_array, 0)); 3949 3950 for (uint64_t i = 0; i < array_count; i++) { 3951 uint64_t smobj = smobj_array[i]; 3952 if (smobj == 0) 3953 continue; 3954 3955 space_map_free_obj(mos, smobj, tx); 3956 } 3957 3958 kmem_free(smobj_array, array_bytes); 3959 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 3960 vdev_destroy_ms_flush_data(vd, tx); 3961 vd->vdev_ms_array = 0; 3962 } 3963 3964 static void 3965 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 3966 { 3967 spa_t *spa = vd->vdev_spa; 3968 3969 ASSERT(vd->vdev_islog); 3970 ASSERT(vd == vd->vdev_top); 3971 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 3972 3973 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3974 3975 vdev_destroy_spacemaps(vd, tx); 3976 if (vd->vdev_top_zap != 0) { 3977 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 3978 vd->vdev_top_zap = 0; 3979 } 3980 3981 dmu_tx_commit(tx); 3982 } 3983 3984 void 3985 vdev_sync_done(vdev_t *vd, uint64_t txg) 3986 { 3987 metaslab_t *msp; 3988 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 3989 3990 ASSERT(vdev_is_concrete(vd)); 3991 3992 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 3993 != NULL) 3994 metaslab_sync_done(msp, txg); 3995 3996 if (reassess) { 3997 metaslab_sync_reassess(vd->vdev_mg); 3998 if (vd->vdev_log_mg != NULL) 3999 metaslab_sync_reassess(vd->vdev_log_mg); 4000 } 4001 } 4002 4003 void 4004 vdev_sync(vdev_t *vd, uint64_t txg) 4005 { 4006 spa_t *spa = vd->vdev_spa; 4007 vdev_t *lvd; 4008 metaslab_t *msp; 4009 4010 ASSERT3U(txg, ==, spa->spa_syncing_txg); 4011 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 4012 if (range_tree_space(vd->vdev_obsolete_segments) > 0) { 4013 ASSERT(vd->vdev_removing || 4014 vd->vdev_ops == &vdev_indirect_ops); 4015 4016 vdev_indirect_sync_obsolete(vd, tx); 4017 4018 /* 4019 * If the vdev is indirect, it can't have dirty 4020 * metaslabs or DTLs. 4021 */ 4022 if (vd->vdev_ops == &vdev_indirect_ops) { 4023 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 4024 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 4025 dmu_tx_commit(tx); 4026 return; 4027 } 4028 } 4029 4030 ASSERT(vdev_is_concrete(vd)); 4031 4032 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 4033 !vd->vdev_removing) { 4034 ASSERT(vd == vd->vdev_top); 4035 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 4036 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 4037 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 4038 ASSERT(vd->vdev_ms_array != 0); 4039 vdev_config_dirty(vd); 4040 } 4041 4042 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 4043 metaslab_sync(msp, txg); 4044 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 4045 } 4046 4047 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 4048 vdev_dtl_sync(lvd, txg); 4049 4050 /* 4051 * If this is an empty log device being removed, destroy the 4052 * metadata associated with it. 4053 */ 4054 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 4055 vdev_remove_empty_log(vd, txg); 4056 4057 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 4058 dmu_tx_commit(tx); 4059 } 4060 4061 /* 4062 * Return the amount of space that should be (or was) allocated for the given 4063 * psize (compressed block size) in the given TXG. Note that for expanded 4064 * RAIDZ vdevs, the size allocated for older BP's may be larger. See 4065 * vdev_raidz_asize(). 4066 */ 4067 uint64_t 4068 vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg) 4069 { 4070 return (vd->vdev_ops->vdev_op_asize(vd, psize, txg)); 4071 } 4072 4073 uint64_t 4074 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 4075 { 4076 return (vdev_psize_to_asize_txg(vd, psize, 0)); 4077 } 4078 4079 /* 4080 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 4081 * not be opened, and no I/O is attempted. 4082 */ 4083 int 4084 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 4085 { 4086 vdev_t *vd, *tvd; 4087 4088 spa_vdev_state_enter(spa, SCL_NONE); 4089 4090 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4091 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4092 4093 if (!vd->vdev_ops->vdev_op_leaf) 4094 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4095 4096 tvd = vd->vdev_top; 4097 4098 /* 4099 * If user did a 'zpool offline -f' then make the fault persist across 4100 * reboots. 4101 */ 4102 if (aux == VDEV_AUX_EXTERNAL_PERSIST) { 4103 /* 4104 * There are two kinds of forced faults: temporary and 4105 * persistent. Temporary faults go away at pool import, while 4106 * persistent faults stay set. Both types of faults can be 4107 * cleared with a zpool clear. 4108 * 4109 * We tell if a vdev is persistently faulted by looking at the 4110 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at 4111 * import then it's a persistent fault. Otherwise, it's 4112 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external" 4113 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This 4114 * tells vdev_config_generate() (which gets run later) to set 4115 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist. 4116 */ 4117 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 4118 vd->vdev_tmpoffline = B_FALSE; 4119 aux = VDEV_AUX_EXTERNAL; 4120 } else { 4121 vd->vdev_tmpoffline = B_TRUE; 4122 } 4123 4124 /* 4125 * We don't directly use the aux state here, but if we do a 4126 * vdev_reopen(), we need this value to be present to remember why we 4127 * were faulted. 4128 */ 4129 vd->vdev_label_aux = aux; 4130 4131 /* 4132 * Faulted state takes precedence over degraded. 4133 */ 4134 vd->vdev_delayed_close = B_FALSE; 4135 vd->vdev_faulted = 1ULL; 4136 vd->vdev_degraded = 0ULL; 4137 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 4138 4139 /* 4140 * If this device has the only valid copy of the data, then 4141 * back off and simply mark the vdev as degraded instead. 4142 */ 4143 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 4144 vd->vdev_degraded = 1ULL; 4145 vd->vdev_faulted = 0ULL; 4146 4147 /* 4148 * If we reopen the device and it's not dead, only then do we 4149 * mark it degraded. 4150 */ 4151 vdev_reopen(tvd); 4152 4153 if (vdev_readable(vd)) 4154 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 4155 } 4156 4157 return (spa_vdev_state_exit(spa, vd, 0)); 4158 } 4159 4160 /* 4161 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 4162 * user that something is wrong. The vdev continues to operate as normal as far 4163 * as I/O is concerned. 4164 */ 4165 int 4166 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 4167 { 4168 vdev_t *vd; 4169 4170 spa_vdev_state_enter(spa, SCL_NONE); 4171 4172 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4173 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4174 4175 if (!vd->vdev_ops->vdev_op_leaf) 4176 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4177 4178 /* 4179 * If the vdev is already faulted, then don't do anything. 4180 */ 4181 if (vd->vdev_faulted || vd->vdev_degraded) 4182 return (spa_vdev_state_exit(spa, NULL, 0)); 4183 4184 vd->vdev_degraded = 1ULL; 4185 if (!vdev_is_dead(vd)) 4186 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 4187 aux); 4188 4189 return (spa_vdev_state_exit(spa, vd, 0)); 4190 } 4191 4192 int 4193 vdev_remove_wanted(spa_t *spa, uint64_t guid) 4194 { 4195 vdev_t *vd; 4196 4197 spa_vdev_state_enter(spa, SCL_NONE); 4198 4199 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4200 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4201 4202 /* 4203 * If the vdev is already removed, or expanding which can trigger 4204 * repartition add/remove events, then don't do anything. 4205 */ 4206 if (vd->vdev_removed || vd->vdev_expanding) 4207 return (spa_vdev_state_exit(spa, NULL, 0)); 4208 4209 /* 4210 * Confirm the vdev has been removed, otherwise don't do anything. 4211 */ 4212 if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL))) 4213 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST))); 4214 4215 vd->vdev_remove_wanted = B_TRUE; 4216 spa_async_request(spa, SPA_ASYNC_REMOVE); 4217 4218 return (spa_vdev_state_exit(spa, vd, 0)); 4219 } 4220 4221 4222 /* 4223 * Online the given vdev. 4224 * 4225 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 4226 * spare device should be detached when the device finishes resilvering. 4227 * Second, the online should be treated like a 'test' online case, so no FMA 4228 * events are generated if the device fails to open. 4229 */ 4230 int 4231 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 4232 { 4233 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 4234 boolean_t wasoffline; 4235 vdev_state_t oldstate; 4236 4237 spa_vdev_state_enter(spa, SCL_NONE); 4238 4239 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4240 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4241 4242 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 4243 oldstate = vd->vdev_state; 4244 4245 tvd = vd->vdev_top; 4246 vd->vdev_offline = B_FALSE; 4247 vd->vdev_tmpoffline = B_FALSE; 4248 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 4249 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 4250 4251 /* XXX - L2ARC 1.0 does not support expansion */ 4252 if (!vd->vdev_aux) { 4253 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4254 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) || 4255 spa->spa_autoexpand); 4256 vd->vdev_expansion_time = gethrestime_sec(); 4257 } 4258 4259 vdev_reopen(tvd); 4260 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 4261 4262 if (!vd->vdev_aux) { 4263 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4264 pvd->vdev_expanding = B_FALSE; 4265 } 4266 4267 if (newstate) 4268 *newstate = vd->vdev_state; 4269 if ((flags & ZFS_ONLINE_UNSPARE) && 4270 !vdev_is_dead(vd) && vd->vdev_parent && 4271 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4272 vd->vdev_parent->vdev_child[0] == vd) 4273 vd->vdev_unspare = B_TRUE; 4274 4275 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 4276 4277 /* XXX - L2ARC 1.0 does not support expansion */ 4278 if (vd->vdev_aux) 4279 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 4280 spa->spa_ccw_fail_time = 0; 4281 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 4282 } 4283 4284 /* Restart initializing if necessary */ 4285 mutex_enter(&vd->vdev_initialize_lock); 4286 if (vdev_writeable(vd) && 4287 vd->vdev_initialize_thread == NULL && 4288 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 4289 (void) vdev_initialize(vd); 4290 } 4291 mutex_exit(&vd->vdev_initialize_lock); 4292 4293 /* 4294 * Restart trimming if necessary. We do not restart trimming for cache 4295 * devices here. This is triggered by l2arc_rebuild_vdev() 4296 * asynchronously for the whole device or in l2arc_evict() as it evicts 4297 * space for upcoming writes. 4298 */ 4299 mutex_enter(&vd->vdev_trim_lock); 4300 if (vdev_writeable(vd) && !vd->vdev_isl2cache && 4301 vd->vdev_trim_thread == NULL && 4302 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { 4303 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, 4304 vd->vdev_trim_secure); 4305 } 4306 mutex_exit(&vd->vdev_trim_lock); 4307 4308 if (wasoffline || 4309 (oldstate < VDEV_STATE_DEGRADED && 4310 vd->vdev_state >= VDEV_STATE_DEGRADED)) { 4311 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 4312 4313 /* 4314 * Asynchronously detach spare vdev if resilver or 4315 * rebuild is not required 4316 */ 4317 if (vd->vdev_unspare && 4318 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4319 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) && 4320 !vdev_rebuild_active(tvd)) 4321 spa_async_request(spa, SPA_ASYNC_DETACH_SPARE); 4322 } 4323 return (spa_vdev_state_exit(spa, vd, 0)); 4324 } 4325 4326 static int 4327 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 4328 { 4329 vdev_t *vd, *tvd; 4330 int error = 0; 4331 uint64_t generation; 4332 metaslab_group_t *mg; 4333 4334 top: 4335 spa_vdev_state_enter(spa, SCL_ALLOC); 4336 4337 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4338 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4339 4340 if (!vd->vdev_ops->vdev_op_leaf) 4341 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4342 4343 if (vd->vdev_ops == &vdev_draid_spare_ops) 4344 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4345 4346 tvd = vd->vdev_top; 4347 mg = tvd->vdev_mg; 4348 generation = spa->spa_config_generation + 1; 4349 4350 /* 4351 * If the device isn't already offline, try to offline it. 4352 */ 4353 if (!vd->vdev_offline) { 4354 /* 4355 * If this device has the only valid copy of some data, 4356 * don't allow it to be offlined. Log devices are always 4357 * expendable. 4358 */ 4359 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4360 vdev_dtl_required(vd)) 4361 return (spa_vdev_state_exit(spa, NULL, 4362 SET_ERROR(EBUSY))); 4363 4364 /* 4365 * If the top-level is a slog and it has had allocations 4366 * then proceed. We check that the vdev's metaslab group 4367 * is not NULL since it's possible that we may have just 4368 * added this vdev but not yet initialized its metaslabs. 4369 */ 4370 if (tvd->vdev_islog && mg != NULL) { 4371 /* 4372 * Prevent any future allocations. 4373 */ 4374 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 4375 metaslab_group_passivate(mg); 4376 (void) spa_vdev_state_exit(spa, vd, 0); 4377 4378 error = spa_reset_logs(spa); 4379 4380 /* 4381 * If the log device was successfully reset but has 4382 * checkpointed data, do not offline it. 4383 */ 4384 if (error == 0 && 4385 tvd->vdev_checkpoint_sm != NULL) { 4386 ASSERT3U(space_map_allocated( 4387 tvd->vdev_checkpoint_sm), !=, 0); 4388 error = ZFS_ERR_CHECKPOINT_EXISTS; 4389 } 4390 4391 spa_vdev_state_enter(spa, SCL_ALLOC); 4392 4393 /* 4394 * Check to see if the config has changed. 4395 */ 4396 if (error || generation != spa->spa_config_generation) { 4397 metaslab_group_activate(mg); 4398 if (error) 4399 return (spa_vdev_state_exit(spa, 4400 vd, error)); 4401 (void) spa_vdev_state_exit(spa, vd, 0); 4402 goto top; 4403 } 4404 ASSERT0(tvd->vdev_stat.vs_alloc); 4405 } 4406 4407 /* 4408 * Offline this device and reopen its top-level vdev. 4409 * If the top-level vdev is a log device then just offline 4410 * it. Otherwise, if this action results in the top-level 4411 * vdev becoming unusable, undo it and fail the request. 4412 */ 4413 vd->vdev_offline = B_TRUE; 4414 vdev_reopen(tvd); 4415 4416 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4417 vdev_is_dead(tvd)) { 4418 vd->vdev_offline = B_FALSE; 4419 vdev_reopen(tvd); 4420 return (spa_vdev_state_exit(spa, NULL, 4421 SET_ERROR(EBUSY))); 4422 } 4423 4424 /* 4425 * Add the device back into the metaslab rotor so that 4426 * once we online the device it's open for business. 4427 */ 4428 if (tvd->vdev_islog && mg != NULL) 4429 metaslab_group_activate(mg); 4430 } 4431 4432 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 4433 4434 return (spa_vdev_state_exit(spa, vd, 0)); 4435 } 4436 4437 int 4438 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 4439 { 4440 int error; 4441 4442 mutex_enter(&spa->spa_vdev_top_lock); 4443 error = vdev_offline_locked(spa, guid, flags); 4444 mutex_exit(&spa->spa_vdev_top_lock); 4445 4446 return (error); 4447 } 4448 4449 /* 4450 * Clear the error counts associated with this vdev. Unlike vdev_online() and 4451 * vdev_offline(), we assume the spa config is locked. We also clear all 4452 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 4453 */ 4454 void 4455 vdev_clear(spa_t *spa, vdev_t *vd) 4456 { 4457 vdev_t *rvd = spa->spa_root_vdev; 4458 4459 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 4460 4461 if (vd == NULL) 4462 vd = rvd; 4463 4464 vd->vdev_stat.vs_read_errors = 0; 4465 vd->vdev_stat.vs_write_errors = 0; 4466 vd->vdev_stat.vs_checksum_errors = 0; 4467 vd->vdev_stat.vs_slow_ios = 0; 4468 4469 for (int c = 0; c < vd->vdev_children; c++) 4470 vdev_clear(spa, vd->vdev_child[c]); 4471 4472 /* 4473 * It makes no sense to "clear" an indirect or removed vdev. 4474 */ 4475 if (!vdev_is_concrete(vd) || vd->vdev_removed) 4476 return; 4477 4478 /* 4479 * If we're in the FAULTED state or have experienced failed I/O, then 4480 * clear the persistent state and attempt to reopen the device. We 4481 * also mark the vdev config dirty, so that the new faulted state is 4482 * written out to disk. 4483 */ 4484 if (vd->vdev_faulted || vd->vdev_degraded || 4485 !vdev_readable(vd) || !vdev_writeable(vd)) { 4486 /* 4487 * When reopening in response to a clear event, it may be due to 4488 * a fmadm repair request. In this case, if the device is 4489 * still broken, we want to still post the ereport again. 4490 */ 4491 vd->vdev_forcefault = B_TRUE; 4492 4493 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 4494 vd->vdev_cant_read = B_FALSE; 4495 vd->vdev_cant_write = B_FALSE; 4496 vd->vdev_stat.vs_aux = 0; 4497 4498 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 4499 4500 vd->vdev_forcefault = B_FALSE; 4501 4502 if (vd != rvd && vdev_writeable(vd->vdev_top)) 4503 vdev_state_dirty(vd->vdev_top); 4504 4505 /* If a resilver isn't required, check if vdevs can be culled */ 4506 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) && 4507 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4508 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool)) 4509 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4510 4511 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 4512 } 4513 4514 /* 4515 * When clearing a FMA-diagnosed fault, we always want to 4516 * unspare the device, as we assume that the original spare was 4517 * done in response to the FMA fault. 4518 */ 4519 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 4520 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4521 vd->vdev_parent->vdev_child[0] == vd) 4522 vd->vdev_unspare = B_TRUE; 4523 4524 /* Clear recent error events cache (i.e. duplicate events tracking) */ 4525 zfs_ereport_clear(spa, vd); 4526 } 4527 4528 boolean_t 4529 vdev_is_dead(vdev_t *vd) 4530 { 4531 /* 4532 * Holes and missing devices are always considered "dead". 4533 * This simplifies the code since we don't have to check for 4534 * these types of devices in the various code paths. 4535 * Instead we rely on the fact that we skip over dead devices 4536 * before issuing I/O to them. 4537 */ 4538 return (vd->vdev_state < VDEV_STATE_DEGRADED || 4539 vd->vdev_ops == &vdev_hole_ops || 4540 vd->vdev_ops == &vdev_missing_ops); 4541 } 4542 4543 boolean_t 4544 vdev_readable(vdev_t *vd) 4545 { 4546 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 4547 } 4548 4549 boolean_t 4550 vdev_writeable(vdev_t *vd) 4551 { 4552 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 4553 vdev_is_concrete(vd)); 4554 } 4555 4556 boolean_t 4557 vdev_allocatable(vdev_t *vd) 4558 { 4559 uint64_t state = vd->vdev_state; 4560 4561 /* 4562 * We currently allow allocations from vdevs which may be in the 4563 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 4564 * fails to reopen then we'll catch it later when we're holding 4565 * the proper locks. Note that we have to get the vdev state 4566 * in a local variable because although it changes atomically, 4567 * we're asking two separate questions about it. 4568 */ 4569 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 4570 !vd->vdev_cant_write && vdev_is_concrete(vd) && 4571 vd->vdev_mg->mg_initialized); 4572 } 4573 4574 boolean_t 4575 vdev_accessible(vdev_t *vd, zio_t *zio) 4576 { 4577 ASSERT(zio->io_vd == vd); 4578 4579 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 4580 return (B_FALSE); 4581 4582 if (zio->io_type == ZIO_TYPE_READ) 4583 return (!vd->vdev_cant_read); 4584 4585 if (zio->io_type == ZIO_TYPE_WRITE) 4586 return (!vd->vdev_cant_write); 4587 4588 return (B_TRUE); 4589 } 4590 4591 static void 4592 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs) 4593 { 4594 /* 4595 * Exclude the dRAID spare when aggregating to avoid double counting 4596 * the ops and bytes. These IOs are counted by the physical leaves. 4597 */ 4598 if (cvd->vdev_ops == &vdev_draid_spare_ops) 4599 return; 4600 4601 for (int t = 0; t < VS_ZIO_TYPES; t++) { 4602 vs->vs_ops[t] += cvs->vs_ops[t]; 4603 vs->vs_bytes[t] += cvs->vs_bytes[t]; 4604 } 4605 4606 cvs->vs_scan_removing = cvd->vdev_removing; 4607 } 4608 4609 /* 4610 * Get extended stats 4611 */ 4612 static void 4613 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx) 4614 { 4615 (void) cvd; 4616 4617 int t, b; 4618 for (t = 0; t < ZIO_TYPES; t++) { 4619 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++) 4620 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b]; 4621 4622 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) { 4623 vsx->vsx_total_histo[t][b] += 4624 cvsx->vsx_total_histo[t][b]; 4625 } 4626 } 4627 4628 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4629 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) { 4630 vsx->vsx_queue_histo[t][b] += 4631 cvsx->vsx_queue_histo[t][b]; 4632 } 4633 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t]; 4634 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t]; 4635 4636 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++) 4637 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b]; 4638 4639 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++) 4640 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b]; 4641 } 4642 4643 } 4644 4645 boolean_t 4646 vdev_is_spacemap_addressable(vdev_t *vd) 4647 { 4648 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 4649 return (B_TRUE); 4650 4651 /* 4652 * If double-word space map entries are not enabled we assume 4653 * 47 bits of the space map entry are dedicated to the entry's 4654 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 4655 * to calculate the maximum address that can be described by a 4656 * space map entry for the given device. 4657 */ 4658 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 4659 4660 if (shift >= 63) /* detect potential overflow */ 4661 return (B_TRUE); 4662 4663 return (vd->vdev_asize < (1ULL << shift)); 4664 } 4665 4666 /* 4667 * Get statistics for the given vdev. 4668 */ 4669 static void 4670 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4671 { 4672 int t; 4673 /* 4674 * If we're getting stats on the root vdev, aggregate the I/O counts 4675 * over all top-level vdevs (i.e. the direct children of the root). 4676 */ 4677 if (!vd->vdev_ops->vdev_op_leaf) { 4678 if (vs) { 4679 memset(vs->vs_ops, 0, sizeof (vs->vs_ops)); 4680 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes)); 4681 } 4682 if (vsx) 4683 memset(vsx, 0, sizeof (*vsx)); 4684 4685 for (int c = 0; c < vd->vdev_children; c++) { 4686 vdev_t *cvd = vd->vdev_child[c]; 4687 vdev_stat_t *cvs = &cvd->vdev_stat; 4688 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex; 4689 4690 vdev_get_stats_ex_impl(cvd, cvs, cvsx); 4691 if (vs) 4692 vdev_get_child_stat(cvd, vs, cvs); 4693 if (vsx) 4694 vdev_get_child_stat_ex(cvd, vsx, cvsx); 4695 } 4696 } else { 4697 /* 4698 * We're a leaf. Just copy our ZIO active queue stats in. The 4699 * other leaf stats are updated in vdev_stat_update(). 4700 */ 4701 if (!vsx) 4702 return; 4703 4704 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex)); 4705 4706 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4707 vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t]; 4708 vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t); 4709 } 4710 } 4711 } 4712 4713 void 4714 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4715 { 4716 vdev_t *tvd = vd->vdev_top; 4717 mutex_enter(&vd->vdev_stat_lock); 4718 if (vs) { 4719 memcpy(vs, &vd->vdev_stat, sizeof (*vs)); 4720 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 4721 vs->vs_state = vd->vdev_state; 4722 vs->vs_rsize = vdev_get_min_asize(vd); 4723 4724 if (vd->vdev_ops->vdev_op_leaf) { 4725 vs->vs_pspace = vd->vdev_psize; 4726 vs->vs_rsize += VDEV_LABEL_START_SIZE + 4727 VDEV_LABEL_END_SIZE; 4728 /* 4729 * Report initializing progress. Since we don't 4730 * have the initializing locks held, this is only 4731 * an estimate (although a fairly accurate one). 4732 */ 4733 vs->vs_initialize_bytes_done = 4734 vd->vdev_initialize_bytes_done; 4735 vs->vs_initialize_bytes_est = 4736 vd->vdev_initialize_bytes_est; 4737 vs->vs_initialize_state = vd->vdev_initialize_state; 4738 vs->vs_initialize_action_time = 4739 vd->vdev_initialize_action_time; 4740 4741 /* 4742 * Report manual TRIM progress. Since we don't have 4743 * the manual TRIM locks held, this is only an 4744 * estimate (although fairly accurate one). 4745 */ 4746 vs->vs_trim_notsup = !vd->vdev_has_trim; 4747 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done; 4748 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est; 4749 vs->vs_trim_state = vd->vdev_trim_state; 4750 vs->vs_trim_action_time = vd->vdev_trim_action_time; 4751 4752 /* Set when there is a deferred resilver. */ 4753 vs->vs_resilver_deferred = vd->vdev_resilver_deferred; 4754 } 4755 4756 /* 4757 * Report expandable space on top-level, non-auxiliary devices 4758 * only. The expandable space is reported in terms of metaslab 4759 * sized units since that determines how much space the pool 4760 * can expand. 4761 */ 4762 if (vd->vdev_aux == NULL && tvd != NULL) { 4763 vs->vs_esize = P2ALIGN( 4764 vd->vdev_max_asize - vd->vdev_asize, 4765 1ULL << tvd->vdev_ms_shift); 4766 } 4767 4768 vs->vs_configured_ashift = vd->vdev_top != NULL 4769 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift; 4770 vs->vs_logical_ashift = vd->vdev_logical_ashift; 4771 if (vd->vdev_physical_ashift <= ASHIFT_MAX) 4772 vs->vs_physical_ashift = vd->vdev_physical_ashift; 4773 else 4774 vs->vs_physical_ashift = 0; 4775 4776 /* 4777 * Report fragmentation and rebuild progress for top-level, 4778 * non-auxiliary, concrete devices. 4779 */ 4780 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 4781 vdev_is_concrete(vd)) { 4782 /* 4783 * The vdev fragmentation rating doesn't take into 4784 * account the embedded slog metaslab (vdev_log_mg). 4785 * Since it's only one metaslab, it would have a tiny 4786 * impact on the overall fragmentation. 4787 */ 4788 vs->vs_fragmentation = (vd->vdev_mg != NULL) ? 4789 vd->vdev_mg->mg_fragmentation : 0; 4790 } 4791 vs->vs_noalloc = MAX(vd->vdev_noalloc, 4792 tvd ? tvd->vdev_noalloc : 0); 4793 } 4794 4795 vdev_get_stats_ex_impl(vd, vs, vsx); 4796 mutex_exit(&vd->vdev_stat_lock); 4797 } 4798 4799 void 4800 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 4801 { 4802 return (vdev_get_stats_ex(vd, vs, NULL)); 4803 } 4804 4805 void 4806 vdev_clear_stats(vdev_t *vd) 4807 { 4808 mutex_enter(&vd->vdev_stat_lock); 4809 vd->vdev_stat.vs_space = 0; 4810 vd->vdev_stat.vs_dspace = 0; 4811 vd->vdev_stat.vs_alloc = 0; 4812 mutex_exit(&vd->vdev_stat_lock); 4813 } 4814 4815 void 4816 vdev_scan_stat_init(vdev_t *vd) 4817 { 4818 vdev_stat_t *vs = &vd->vdev_stat; 4819 4820 for (int c = 0; c < vd->vdev_children; c++) 4821 vdev_scan_stat_init(vd->vdev_child[c]); 4822 4823 mutex_enter(&vd->vdev_stat_lock); 4824 vs->vs_scan_processed = 0; 4825 mutex_exit(&vd->vdev_stat_lock); 4826 } 4827 4828 void 4829 vdev_stat_update(zio_t *zio, uint64_t psize) 4830 { 4831 spa_t *spa = zio->io_spa; 4832 vdev_t *rvd = spa->spa_root_vdev; 4833 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 4834 vdev_t *pvd; 4835 uint64_t txg = zio->io_txg; 4836 /* Suppress ASAN false positive */ 4837 #ifdef __SANITIZE_ADDRESS__ 4838 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL; 4839 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL; 4840 #else 4841 vdev_stat_t *vs = &vd->vdev_stat; 4842 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex; 4843 #endif 4844 zio_type_t type = zio->io_type; 4845 int flags = zio->io_flags; 4846 4847 /* 4848 * If this i/o is a gang leader, it didn't do any actual work. 4849 */ 4850 if (zio->io_gang_tree) 4851 return; 4852 4853 if (zio->io_error == 0) { 4854 /* 4855 * If this is a root i/o, don't count it -- we've already 4856 * counted the top-level vdevs, and vdev_get_stats() will 4857 * aggregate them when asked. This reduces contention on 4858 * the root vdev_stat_lock and implicitly handles blocks 4859 * that compress away to holes, for which there is no i/o. 4860 * (Holes never create vdev children, so all the counters 4861 * remain zero, which is what we want.) 4862 * 4863 * Note: this only applies to successful i/o (io_error == 0) 4864 * because unlike i/o counts, errors are not additive. 4865 * When reading a ditto block, for example, failure of 4866 * one top-level vdev does not imply a root-level error. 4867 */ 4868 if (vd == rvd) 4869 return; 4870 4871 ASSERT(vd == zio->io_vd); 4872 4873 if (flags & ZIO_FLAG_IO_BYPASS) 4874 return; 4875 4876 mutex_enter(&vd->vdev_stat_lock); 4877 4878 if (flags & ZIO_FLAG_IO_REPAIR) { 4879 /* 4880 * Repair is the result of a resilver issued by the 4881 * scan thread (spa_sync). 4882 */ 4883 if (flags & ZIO_FLAG_SCAN_THREAD) { 4884 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 4885 dsl_scan_phys_t *scn_phys = &scn->scn_phys; 4886 uint64_t *processed = &scn_phys->scn_processed; 4887 4888 if (vd->vdev_ops->vdev_op_leaf) 4889 atomic_add_64(processed, psize); 4890 vs->vs_scan_processed += psize; 4891 } 4892 4893 /* 4894 * Repair is the result of a rebuild issued by the 4895 * rebuild thread (vdev_rebuild_thread). To avoid 4896 * double counting repaired bytes the virtual dRAID 4897 * spare vdev is excluded from the processed bytes. 4898 */ 4899 if (zio->io_priority == ZIO_PRIORITY_REBUILD) { 4900 vdev_t *tvd = vd->vdev_top; 4901 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config; 4902 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 4903 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt; 4904 4905 if (vd->vdev_ops->vdev_op_leaf && 4906 vd->vdev_ops != &vdev_draid_spare_ops) { 4907 atomic_add_64(rebuilt, psize); 4908 } 4909 vs->vs_rebuild_processed += psize; 4910 } 4911 4912 if (flags & ZIO_FLAG_SELF_HEAL) 4913 vs->vs_self_healed += psize; 4914 } 4915 4916 /* 4917 * The bytes/ops/histograms are recorded at the leaf level and 4918 * aggregated into the higher level vdevs in vdev_get_stats(). 4919 */ 4920 if (vd->vdev_ops->vdev_op_leaf && 4921 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) { 4922 zio_type_t vs_type = type; 4923 zio_priority_t priority = zio->io_priority; 4924 4925 /* 4926 * TRIM ops and bytes are reported to user space as 4927 * ZIO_TYPE_FLUSH. This is done to preserve the 4928 * vdev_stat_t structure layout for user space. 4929 */ 4930 if (type == ZIO_TYPE_TRIM) 4931 vs_type = ZIO_TYPE_FLUSH; 4932 4933 /* 4934 * Solely for the purposes of 'zpool iostat -lqrw' 4935 * reporting use the priority to categorize the IO. 4936 * Only the following are reported to user space: 4937 * 4938 * ZIO_PRIORITY_SYNC_READ, 4939 * ZIO_PRIORITY_SYNC_WRITE, 4940 * ZIO_PRIORITY_ASYNC_READ, 4941 * ZIO_PRIORITY_ASYNC_WRITE, 4942 * ZIO_PRIORITY_SCRUB, 4943 * ZIO_PRIORITY_TRIM, 4944 * ZIO_PRIORITY_REBUILD. 4945 */ 4946 if (priority == ZIO_PRIORITY_INITIALIZING) { 4947 ASSERT3U(type, ==, ZIO_TYPE_WRITE); 4948 priority = ZIO_PRIORITY_ASYNC_WRITE; 4949 } else if (priority == ZIO_PRIORITY_REMOVAL) { 4950 priority = ((type == ZIO_TYPE_WRITE) ? 4951 ZIO_PRIORITY_ASYNC_WRITE : 4952 ZIO_PRIORITY_ASYNC_READ); 4953 } 4954 4955 vs->vs_ops[vs_type]++; 4956 vs->vs_bytes[vs_type] += psize; 4957 4958 if (flags & ZIO_FLAG_DELEGATED) { 4959 vsx->vsx_agg_histo[priority] 4960 [RQ_HISTO(zio->io_size)]++; 4961 } else { 4962 vsx->vsx_ind_histo[priority] 4963 [RQ_HISTO(zio->io_size)]++; 4964 } 4965 4966 if (zio->io_delta && zio->io_delay) { 4967 vsx->vsx_queue_histo[priority] 4968 [L_HISTO(zio->io_delta - zio->io_delay)]++; 4969 vsx->vsx_disk_histo[type] 4970 [L_HISTO(zio->io_delay)]++; 4971 vsx->vsx_total_histo[type] 4972 [L_HISTO(zio->io_delta)]++; 4973 } 4974 } 4975 4976 mutex_exit(&vd->vdev_stat_lock); 4977 return; 4978 } 4979 4980 if (flags & ZIO_FLAG_SPECULATIVE) 4981 return; 4982 4983 /* 4984 * If this is an I/O error that is going to be retried, then ignore the 4985 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 4986 * hard errors, when in reality they can happen for any number of 4987 * innocuous reasons (bus resets, MPxIO link failure, etc). 4988 */ 4989 if (zio->io_error == EIO && 4990 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 4991 return; 4992 4993 /* 4994 * Intent logs writes won't propagate their error to the root 4995 * I/O so don't mark these types of failures as pool-level 4996 * errors. 4997 */ 4998 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 4999 return; 5000 5001 if (type == ZIO_TYPE_WRITE && txg != 0 && 5002 (!(flags & ZIO_FLAG_IO_REPAIR) || 5003 (flags & ZIO_FLAG_SCAN_THREAD) || 5004 spa->spa_claiming)) { 5005 /* 5006 * This is either a normal write (not a repair), or it's 5007 * a repair induced by the scrub thread, or it's a repair 5008 * made by zil_claim() during spa_load() in the first txg. 5009 * In the normal case, we commit the DTL change in the same 5010 * txg as the block was born. In the scrub-induced repair 5011 * case, we know that scrubs run in first-pass syncing context, 5012 * so we commit the DTL change in spa_syncing_txg(spa). 5013 * In the zil_claim() case, we commit in spa_first_txg(spa). 5014 * 5015 * We currently do not make DTL entries for failed spontaneous 5016 * self-healing writes triggered by normal (non-scrubbing) 5017 * reads, because we have no transactional context in which to 5018 * do so -- and it's not clear that it'd be desirable anyway. 5019 */ 5020 if (vd->vdev_ops->vdev_op_leaf) { 5021 uint64_t commit_txg = txg; 5022 if (flags & ZIO_FLAG_SCAN_THREAD) { 5023 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 5024 ASSERT(spa_sync_pass(spa) == 1); 5025 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 5026 commit_txg = spa_syncing_txg(spa); 5027 } else if (spa->spa_claiming) { 5028 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 5029 commit_txg = spa_first_txg(spa); 5030 } 5031 ASSERT(commit_txg >= spa_syncing_txg(spa)); 5032 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 5033 return; 5034 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 5035 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 5036 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 5037 } 5038 if (vd != rvd) 5039 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 5040 } 5041 } 5042 5043 int64_t 5044 vdev_deflated_space(vdev_t *vd, int64_t space) 5045 { 5046 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); 5047 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 5048 5049 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); 5050 } 5051 5052 /* 5053 * Update the in-core space usage stats for this vdev, its metaslab class, 5054 * and the root vdev. 5055 */ 5056 void 5057 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 5058 int64_t space_delta) 5059 { 5060 (void) defer_delta; 5061 int64_t dspace_delta; 5062 spa_t *spa = vd->vdev_spa; 5063 vdev_t *rvd = spa->spa_root_vdev; 5064 5065 ASSERT(vd == vd->vdev_top); 5066 5067 /* 5068 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 5069 * factor. We must calculate this here and not at the root vdev 5070 * because the root vdev's psize-to-asize is simply the max of its 5071 * children's, thus not accurate enough for us. 5072 */ 5073 dspace_delta = vdev_deflated_space(vd, space_delta); 5074 5075 mutex_enter(&vd->vdev_stat_lock); 5076 /* ensure we won't underflow */ 5077 if (alloc_delta < 0) { 5078 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); 5079 } 5080 5081 vd->vdev_stat.vs_alloc += alloc_delta; 5082 vd->vdev_stat.vs_space += space_delta; 5083 vd->vdev_stat.vs_dspace += dspace_delta; 5084 mutex_exit(&vd->vdev_stat_lock); 5085 5086 /* every class but log contributes to root space stats */ 5087 if (vd->vdev_mg != NULL && !vd->vdev_islog) { 5088 ASSERT(!vd->vdev_isl2cache); 5089 mutex_enter(&rvd->vdev_stat_lock); 5090 rvd->vdev_stat.vs_alloc += alloc_delta; 5091 rvd->vdev_stat.vs_space += space_delta; 5092 rvd->vdev_stat.vs_dspace += dspace_delta; 5093 mutex_exit(&rvd->vdev_stat_lock); 5094 } 5095 /* Note: metaslab_class_space_update moved to metaslab_space_update */ 5096 } 5097 5098 /* 5099 * Mark a top-level vdev's config as dirty, placing it on the dirty list 5100 * so that it will be written out next time the vdev configuration is synced. 5101 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 5102 */ 5103 void 5104 vdev_config_dirty(vdev_t *vd) 5105 { 5106 spa_t *spa = vd->vdev_spa; 5107 vdev_t *rvd = spa->spa_root_vdev; 5108 int c; 5109 5110 ASSERT(spa_writeable(spa)); 5111 5112 /* 5113 * If this is an aux vdev (as with l2cache and spare devices), then we 5114 * update the vdev config manually and set the sync flag. 5115 */ 5116 if (vd->vdev_aux != NULL) { 5117 spa_aux_vdev_t *sav = vd->vdev_aux; 5118 nvlist_t **aux; 5119 uint_t naux; 5120 5121 for (c = 0; c < sav->sav_count; c++) { 5122 if (sav->sav_vdevs[c] == vd) 5123 break; 5124 } 5125 5126 if (c == sav->sav_count) { 5127 /* 5128 * We're being removed. There's nothing more to do. 5129 */ 5130 ASSERT(sav->sav_sync == B_TRUE); 5131 return; 5132 } 5133 5134 sav->sav_sync = B_TRUE; 5135 5136 if (nvlist_lookup_nvlist_array(sav->sav_config, 5137 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 5138 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 5139 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 5140 } 5141 5142 ASSERT(c < naux); 5143 5144 /* 5145 * Setting the nvlist in the middle if the array is a little 5146 * sketchy, but it will work. 5147 */ 5148 nvlist_free(aux[c]); 5149 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 5150 5151 return; 5152 } 5153 5154 /* 5155 * The dirty list is protected by the SCL_CONFIG lock. The caller 5156 * must either hold SCL_CONFIG as writer, or must be the sync thread 5157 * (which holds SCL_CONFIG as reader). There's only one sync thread, 5158 * so this is sufficient to ensure mutual exclusion. 5159 */ 5160 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5161 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5162 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5163 5164 if (vd == rvd) { 5165 for (c = 0; c < rvd->vdev_children; c++) 5166 vdev_config_dirty(rvd->vdev_child[c]); 5167 } else { 5168 ASSERT(vd == vd->vdev_top); 5169 5170 if (!list_link_active(&vd->vdev_config_dirty_node) && 5171 vdev_is_concrete(vd)) { 5172 list_insert_head(&spa->spa_config_dirty_list, vd); 5173 } 5174 } 5175 } 5176 5177 void 5178 vdev_config_clean(vdev_t *vd) 5179 { 5180 spa_t *spa = vd->vdev_spa; 5181 5182 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5183 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5184 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5185 5186 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 5187 list_remove(&spa->spa_config_dirty_list, vd); 5188 } 5189 5190 /* 5191 * Mark a top-level vdev's state as dirty, so that the next pass of 5192 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 5193 * the state changes from larger config changes because they require 5194 * much less locking, and are often needed for administrative actions. 5195 */ 5196 void 5197 vdev_state_dirty(vdev_t *vd) 5198 { 5199 spa_t *spa = vd->vdev_spa; 5200 5201 ASSERT(spa_writeable(spa)); 5202 ASSERT(vd == vd->vdev_top); 5203 5204 /* 5205 * The state list is protected by the SCL_STATE lock. The caller 5206 * must either hold SCL_STATE as writer, or must be the sync thread 5207 * (which holds SCL_STATE as reader). There's only one sync thread, 5208 * so this is sufficient to ensure mutual exclusion. 5209 */ 5210 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5211 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5212 spa_config_held(spa, SCL_STATE, RW_READER))); 5213 5214 if (!list_link_active(&vd->vdev_state_dirty_node) && 5215 vdev_is_concrete(vd)) 5216 list_insert_head(&spa->spa_state_dirty_list, vd); 5217 } 5218 5219 void 5220 vdev_state_clean(vdev_t *vd) 5221 { 5222 spa_t *spa = vd->vdev_spa; 5223 5224 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5225 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5226 spa_config_held(spa, SCL_STATE, RW_READER))); 5227 5228 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 5229 list_remove(&spa->spa_state_dirty_list, vd); 5230 } 5231 5232 /* 5233 * Propagate vdev state up from children to parent. 5234 */ 5235 void 5236 vdev_propagate_state(vdev_t *vd) 5237 { 5238 spa_t *spa = vd->vdev_spa; 5239 vdev_t *rvd = spa->spa_root_vdev; 5240 int degraded = 0, faulted = 0; 5241 int corrupted = 0; 5242 vdev_t *child; 5243 5244 if (vd->vdev_children > 0) { 5245 for (int c = 0; c < vd->vdev_children; c++) { 5246 child = vd->vdev_child[c]; 5247 5248 /* 5249 * Don't factor holes or indirect vdevs into the 5250 * decision. 5251 */ 5252 if (!vdev_is_concrete(child)) 5253 continue; 5254 5255 if (!vdev_readable(child) || 5256 (!vdev_writeable(child) && spa_writeable(spa))) { 5257 /* 5258 * Root special: if there is a top-level log 5259 * device, treat the root vdev as if it were 5260 * degraded. 5261 */ 5262 if (child->vdev_islog && vd == rvd) 5263 degraded++; 5264 else 5265 faulted++; 5266 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 5267 degraded++; 5268 } 5269 5270 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 5271 corrupted++; 5272 } 5273 5274 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 5275 5276 /* 5277 * Root special: if there is a top-level vdev that cannot be 5278 * opened due to corrupted metadata, then propagate the root 5279 * vdev's aux state as 'corrupt' rather than 'insufficient 5280 * replicas'. 5281 */ 5282 if (corrupted && vd == rvd && 5283 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 5284 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 5285 VDEV_AUX_CORRUPT_DATA); 5286 } 5287 5288 if (vd->vdev_parent) 5289 vdev_propagate_state(vd->vdev_parent); 5290 } 5291 5292 /* 5293 * Set a vdev's state. If this is during an open, we don't update the parent 5294 * state, because we're in the process of opening children depth-first. 5295 * Otherwise, we propagate the change to the parent. 5296 * 5297 * If this routine places a device in a faulted state, an appropriate ereport is 5298 * generated. 5299 */ 5300 void 5301 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 5302 { 5303 uint64_t save_state; 5304 spa_t *spa = vd->vdev_spa; 5305 5306 if (state == vd->vdev_state) { 5307 /* 5308 * Since vdev_offline() code path is already in an offline 5309 * state we can miss a statechange event to OFFLINE. Check 5310 * the previous state to catch this condition. 5311 */ 5312 if (vd->vdev_ops->vdev_op_leaf && 5313 (state == VDEV_STATE_OFFLINE) && 5314 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) { 5315 /* post an offline state change */ 5316 zfs_post_state_change(spa, vd, vd->vdev_prevstate); 5317 } 5318 vd->vdev_stat.vs_aux = aux; 5319 return; 5320 } 5321 5322 save_state = vd->vdev_state; 5323 5324 vd->vdev_state = state; 5325 vd->vdev_stat.vs_aux = aux; 5326 5327 /* 5328 * If we are setting the vdev state to anything but an open state, then 5329 * always close the underlying device unless the device has requested 5330 * a delayed close (i.e. we're about to remove or fault the device). 5331 * Otherwise, we keep accessible but invalid devices open forever. 5332 * We don't call vdev_close() itself, because that implies some extra 5333 * checks (offline, etc) that we don't want here. This is limited to 5334 * leaf devices, because otherwise closing the device will affect other 5335 * children. 5336 */ 5337 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 5338 vd->vdev_ops->vdev_op_leaf) 5339 vd->vdev_ops->vdev_op_close(vd); 5340 5341 if (vd->vdev_removed && 5342 state == VDEV_STATE_CANT_OPEN && 5343 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 5344 /* 5345 * If the previous state is set to VDEV_STATE_REMOVED, then this 5346 * device was previously marked removed and someone attempted to 5347 * reopen it. If this failed due to a nonexistent device, then 5348 * keep the device in the REMOVED state. We also let this be if 5349 * it is one of our special test online cases, which is only 5350 * attempting to online the device and shouldn't generate an FMA 5351 * fault. 5352 */ 5353 vd->vdev_state = VDEV_STATE_REMOVED; 5354 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 5355 } else if (state == VDEV_STATE_REMOVED) { 5356 vd->vdev_removed = B_TRUE; 5357 } else if (state == VDEV_STATE_CANT_OPEN) { 5358 /* 5359 * If we fail to open a vdev during an import or recovery, we 5360 * mark it as "not available", which signifies that it was 5361 * never there to begin with. Failure to open such a device 5362 * is not considered an error. 5363 */ 5364 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 5365 spa_load_state(spa) == SPA_LOAD_RECOVER) && 5366 vd->vdev_ops->vdev_op_leaf) 5367 vd->vdev_not_present = 1; 5368 5369 /* 5370 * Post the appropriate ereport. If the 'prevstate' field is 5371 * set to something other than VDEV_STATE_UNKNOWN, it indicates 5372 * that this is part of a vdev_reopen(). In this case, we don't 5373 * want to post the ereport if the device was already in the 5374 * CANT_OPEN state beforehand. 5375 * 5376 * If the 'checkremove' flag is set, then this is an attempt to 5377 * online the device in response to an insertion event. If we 5378 * hit this case, then we have detected an insertion event for a 5379 * faulted or offline device that wasn't in the removed state. 5380 * In this scenario, we don't post an ereport because we are 5381 * about to replace the device, or attempt an online with 5382 * vdev_forcefault, which will generate the fault for us. 5383 */ 5384 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 5385 !vd->vdev_not_present && !vd->vdev_checkremove && 5386 vd != spa->spa_root_vdev) { 5387 const char *class; 5388 5389 switch (aux) { 5390 case VDEV_AUX_OPEN_FAILED: 5391 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 5392 break; 5393 case VDEV_AUX_CORRUPT_DATA: 5394 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 5395 break; 5396 case VDEV_AUX_NO_REPLICAS: 5397 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 5398 break; 5399 case VDEV_AUX_BAD_GUID_SUM: 5400 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 5401 break; 5402 case VDEV_AUX_TOO_SMALL: 5403 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 5404 break; 5405 case VDEV_AUX_BAD_LABEL: 5406 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 5407 break; 5408 case VDEV_AUX_BAD_ASHIFT: 5409 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT; 5410 break; 5411 default: 5412 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 5413 } 5414 5415 (void) zfs_ereport_post(class, spa, vd, NULL, NULL, 5416 save_state); 5417 } 5418 5419 /* Erase any notion of persistent removed state */ 5420 vd->vdev_removed = B_FALSE; 5421 } else { 5422 vd->vdev_removed = B_FALSE; 5423 } 5424 5425 /* 5426 * Notify ZED of any significant state-change on a leaf vdev. 5427 * 5428 */ 5429 if (vd->vdev_ops->vdev_op_leaf) { 5430 /* preserve original state from a vdev_reopen() */ 5431 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) && 5432 (vd->vdev_prevstate != vd->vdev_state) && 5433 (save_state <= VDEV_STATE_CLOSED)) 5434 save_state = vd->vdev_prevstate; 5435 5436 /* filter out state change due to initial vdev_open */ 5437 if (save_state > VDEV_STATE_CLOSED) 5438 zfs_post_state_change(spa, vd, save_state); 5439 } 5440 5441 if (!isopen && vd->vdev_parent) 5442 vdev_propagate_state(vd->vdev_parent); 5443 } 5444 5445 boolean_t 5446 vdev_children_are_offline(vdev_t *vd) 5447 { 5448 ASSERT(!vd->vdev_ops->vdev_op_leaf); 5449 5450 for (uint64_t i = 0; i < vd->vdev_children; i++) { 5451 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 5452 return (B_FALSE); 5453 } 5454 5455 return (B_TRUE); 5456 } 5457 5458 /* 5459 * Check the vdev configuration to ensure that it's capable of supporting 5460 * a root pool. We do not support partial configuration. 5461 */ 5462 boolean_t 5463 vdev_is_bootable(vdev_t *vd) 5464 { 5465 if (!vd->vdev_ops->vdev_op_leaf) { 5466 const char *vdev_type = vd->vdev_ops->vdev_op_type; 5467 5468 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) 5469 return (B_FALSE); 5470 } 5471 5472 for (int c = 0; c < vd->vdev_children; c++) { 5473 if (!vdev_is_bootable(vd->vdev_child[c])) 5474 return (B_FALSE); 5475 } 5476 return (B_TRUE); 5477 } 5478 5479 boolean_t 5480 vdev_is_concrete(vdev_t *vd) 5481 { 5482 vdev_ops_t *ops = vd->vdev_ops; 5483 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 5484 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 5485 return (B_FALSE); 5486 } else { 5487 return (B_TRUE); 5488 } 5489 } 5490 5491 /* 5492 * Determine if a log device has valid content. If the vdev was 5493 * removed or faulted in the MOS config then we know that 5494 * the content on the log device has already been written to the pool. 5495 */ 5496 boolean_t 5497 vdev_log_state_valid(vdev_t *vd) 5498 { 5499 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 5500 !vd->vdev_removed) 5501 return (B_TRUE); 5502 5503 for (int c = 0; c < vd->vdev_children; c++) 5504 if (vdev_log_state_valid(vd->vdev_child[c])) 5505 return (B_TRUE); 5506 5507 return (B_FALSE); 5508 } 5509 5510 /* 5511 * Expand a vdev if possible. 5512 */ 5513 void 5514 vdev_expand(vdev_t *vd, uint64_t txg) 5515 { 5516 ASSERT(vd->vdev_top == vd); 5517 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5518 ASSERT(vdev_is_concrete(vd)); 5519 5520 vdev_set_deflate_ratio(vd); 5521 5522 if ((vd->vdev_spa->spa_raidz_expand == NULL || 5523 vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) && 5524 (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 5525 vdev_is_concrete(vd)) { 5526 vdev_metaslab_group_create(vd); 5527 VERIFY(vdev_metaslab_init(vd, txg) == 0); 5528 vdev_config_dirty(vd); 5529 } 5530 } 5531 5532 /* 5533 * Split a vdev. 5534 */ 5535 void 5536 vdev_split(vdev_t *vd) 5537 { 5538 vdev_t *cvd, *pvd = vd->vdev_parent; 5539 5540 VERIFY3U(pvd->vdev_children, >, 1); 5541 5542 vdev_remove_child(pvd, vd); 5543 vdev_compact_children(pvd); 5544 5545 ASSERT3P(pvd->vdev_child, !=, NULL); 5546 5547 cvd = pvd->vdev_child[0]; 5548 if (pvd->vdev_children == 1) { 5549 vdev_remove_parent(cvd); 5550 cvd->vdev_splitting = B_TRUE; 5551 } 5552 vdev_propagate_state(cvd); 5553 } 5554 5555 void 5556 vdev_deadman(vdev_t *vd, const char *tag) 5557 { 5558 for (int c = 0; c < vd->vdev_children; c++) { 5559 vdev_t *cvd = vd->vdev_child[c]; 5560 5561 vdev_deadman(cvd, tag); 5562 } 5563 5564 if (vd->vdev_ops->vdev_op_leaf) { 5565 vdev_queue_t *vq = &vd->vdev_queue; 5566 5567 mutex_enter(&vq->vq_lock); 5568 if (vq->vq_active > 0) { 5569 spa_t *spa = vd->vdev_spa; 5570 zio_t *fio; 5571 uint64_t delta; 5572 5573 zfs_dbgmsg("slow vdev: %s has %u active IOs", 5574 vd->vdev_path, vq->vq_active); 5575 5576 /* 5577 * Look at the head of all the pending queues, 5578 * if any I/O has been outstanding for longer than 5579 * the spa_deadman_synctime invoke the deadman logic. 5580 */ 5581 fio = list_head(&vq->vq_active_list); 5582 delta = gethrtime() - fio->io_timestamp; 5583 if (delta > spa_deadman_synctime(spa)) 5584 zio_deadman(fio, tag); 5585 } 5586 mutex_exit(&vq->vq_lock); 5587 } 5588 } 5589 5590 void 5591 vdev_defer_resilver(vdev_t *vd) 5592 { 5593 ASSERT(vd->vdev_ops->vdev_op_leaf); 5594 5595 vd->vdev_resilver_deferred = B_TRUE; 5596 vd->vdev_spa->spa_resilver_deferred = B_TRUE; 5597 } 5598 5599 /* 5600 * Clears the resilver deferred flag on all leaf devs under vd. Returns 5601 * B_TRUE if we have devices that need to be resilvered and are available to 5602 * accept resilver I/Os. 5603 */ 5604 boolean_t 5605 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx) 5606 { 5607 boolean_t resilver_needed = B_FALSE; 5608 spa_t *spa = vd->vdev_spa; 5609 5610 for (int c = 0; c < vd->vdev_children; c++) { 5611 vdev_t *cvd = vd->vdev_child[c]; 5612 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx); 5613 } 5614 5615 if (vd == spa->spa_root_vdev && 5616 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { 5617 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 5618 vdev_config_dirty(vd); 5619 spa->spa_resilver_deferred = B_FALSE; 5620 return (resilver_needed); 5621 } 5622 5623 if (!vdev_is_concrete(vd) || vd->vdev_aux || 5624 !vd->vdev_ops->vdev_op_leaf) 5625 return (resilver_needed); 5626 5627 vd->vdev_resilver_deferred = B_FALSE; 5628 5629 return (!vdev_is_dead(vd) && !vd->vdev_offline && 5630 vdev_resilver_needed(vd, NULL, NULL)); 5631 } 5632 5633 boolean_t 5634 vdev_xlate_is_empty(range_seg64_t *rs) 5635 { 5636 return (rs->rs_start == rs->rs_end); 5637 } 5638 5639 /* 5640 * Translate a logical range to the first contiguous physical range for the 5641 * specified vdev_t. This function is initially called with a leaf vdev and 5642 * will walk each parent vdev until it reaches a top-level vdev. Once the 5643 * top-level is reached the physical range is initialized and the recursive 5644 * function begins to unwind. As it unwinds it calls the parent's vdev 5645 * specific translation function to do the real conversion. 5646 */ 5647 void 5648 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 5649 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 5650 { 5651 /* 5652 * Walk up the vdev tree 5653 */ 5654 if (vd != vd->vdev_top) { 5655 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs, 5656 remain_rs); 5657 } else { 5658 /* 5659 * We've reached the top-level vdev, initialize the physical 5660 * range to the logical range and set an empty remaining 5661 * range then start to unwind. 5662 */ 5663 physical_rs->rs_start = logical_rs->rs_start; 5664 physical_rs->rs_end = logical_rs->rs_end; 5665 5666 remain_rs->rs_start = logical_rs->rs_start; 5667 remain_rs->rs_end = logical_rs->rs_start; 5668 5669 return; 5670 } 5671 5672 vdev_t *pvd = vd->vdev_parent; 5673 ASSERT3P(pvd, !=, NULL); 5674 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL); 5675 5676 /* 5677 * As this recursive function unwinds, translate the logical 5678 * range into its physical and any remaining components by calling 5679 * the vdev specific translate function. 5680 */ 5681 range_seg64_t intermediate = { 0 }; 5682 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs); 5683 5684 physical_rs->rs_start = intermediate.rs_start; 5685 physical_rs->rs_end = intermediate.rs_end; 5686 } 5687 5688 void 5689 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs, 5690 vdev_xlate_func_t *func, void *arg) 5691 { 5692 range_seg64_t iter_rs = *logical_rs; 5693 range_seg64_t physical_rs; 5694 range_seg64_t remain_rs; 5695 5696 while (!vdev_xlate_is_empty(&iter_rs)) { 5697 5698 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs); 5699 5700 /* 5701 * With raidz and dRAID, it's possible that the logical range 5702 * does not live on this leaf vdev. Only when there is a non- 5703 * zero physical size call the provided function. 5704 */ 5705 if (!vdev_xlate_is_empty(&physical_rs)) 5706 func(arg, &physical_rs); 5707 5708 iter_rs = remain_rs; 5709 } 5710 } 5711 5712 static char * 5713 vdev_name(vdev_t *vd, char *buf, int buflen) 5714 { 5715 if (vd->vdev_path == NULL) { 5716 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) { 5717 strlcpy(buf, vd->vdev_spa->spa_name, buflen); 5718 } else if (!vd->vdev_ops->vdev_op_leaf) { 5719 snprintf(buf, buflen, "%s-%llu", 5720 vd->vdev_ops->vdev_op_type, 5721 (u_longlong_t)vd->vdev_id); 5722 } 5723 } else { 5724 strlcpy(buf, vd->vdev_path, buflen); 5725 } 5726 return (buf); 5727 } 5728 5729 /* 5730 * Look at the vdev tree and determine whether any devices are currently being 5731 * replaced. 5732 */ 5733 boolean_t 5734 vdev_replace_in_progress(vdev_t *vdev) 5735 { 5736 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0); 5737 5738 if (vdev->vdev_ops == &vdev_replacing_ops) 5739 return (B_TRUE); 5740 5741 /* 5742 * A 'spare' vdev indicates that we have a replace in progress, unless 5743 * it has exactly two children, and the second, the hot spare, has 5744 * finished being resilvered. 5745 */ 5746 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 || 5747 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING))) 5748 return (B_TRUE); 5749 5750 for (int i = 0; i < vdev->vdev_children; i++) { 5751 if (vdev_replace_in_progress(vdev->vdev_child[i])) 5752 return (B_TRUE); 5753 } 5754 5755 return (B_FALSE); 5756 } 5757 5758 /* 5759 * Add a (source=src, propname=propval) list to an nvlist. 5760 */ 5761 static void 5762 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval, 5763 uint64_t intval, zprop_source_t src) 5764 { 5765 nvlist_t *propval; 5766 5767 propval = fnvlist_alloc(); 5768 fnvlist_add_uint64(propval, ZPROP_SOURCE, src); 5769 5770 if (strval != NULL) 5771 fnvlist_add_string(propval, ZPROP_VALUE, strval); 5772 else 5773 fnvlist_add_uint64(propval, ZPROP_VALUE, intval); 5774 5775 fnvlist_add_nvlist(nvl, propname, propval); 5776 nvlist_free(propval); 5777 } 5778 5779 static void 5780 vdev_props_set_sync(void *arg, dmu_tx_t *tx) 5781 { 5782 vdev_t *vd; 5783 nvlist_t *nvp = arg; 5784 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5785 objset_t *mos = spa->spa_meta_objset; 5786 nvpair_t *elem = NULL; 5787 uint64_t vdev_guid; 5788 uint64_t objid; 5789 nvlist_t *nvprops; 5790 5791 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV); 5792 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS); 5793 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE); 5794 5795 /* this vdev could get removed while waiting for this sync task */ 5796 if (vd == NULL) 5797 return; 5798 5799 /* 5800 * Set vdev property values in the vdev props mos object. 5801 */ 5802 if (vd->vdev_root_zap != 0) { 5803 objid = vd->vdev_root_zap; 5804 } else if (vd->vdev_top_zap != 0) { 5805 objid = vd->vdev_top_zap; 5806 } else if (vd->vdev_leaf_zap != 0) { 5807 objid = vd->vdev_leaf_zap; 5808 } else { 5809 panic("unexpected vdev type"); 5810 } 5811 5812 mutex_enter(&spa->spa_props_lock); 5813 5814 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5815 uint64_t intval; 5816 const char *strval; 5817 vdev_prop_t prop; 5818 const char *propname = nvpair_name(elem); 5819 zprop_type_t proptype; 5820 5821 switch (prop = vdev_name_to_prop(propname)) { 5822 case VDEV_PROP_USERPROP: 5823 if (vdev_prop_user(propname)) { 5824 strval = fnvpair_value_string(elem); 5825 if (strlen(strval) == 0) { 5826 /* remove the property if value == "" */ 5827 (void) zap_remove(mos, objid, propname, 5828 tx); 5829 } else { 5830 VERIFY0(zap_update(mos, objid, propname, 5831 1, strlen(strval) + 1, strval, tx)); 5832 } 5833 spa_history_log_internal(spa, "vdev set", tx, 5834 "vdev_guid=%llu: %s=%s", 5835 (u_longlong_t)vdev_guid, nvpair_name(elem), 5836 strval); 5837 } 5838 break; 5839 default: 5840 /* normalize the property name */ 5841 propname = vdev_prop_to_name(prop); 5842 proptype = vdev_prop_get_type(prop); 5843 5844 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5845 ASSERT(proptype == PROP_TYPE_STRING); 5846 strval = fnvpair_value_string(elem); 5847 VERIFY0(zap_update(mos, objid, propname, 5848 1, strlen(strval) + 1, strval, tx)); 5849 spa_history_log_internal(spa, "vdev set", tx, 5850 "vdev_guid=%llu: %s=%s", 5851 (u_longlong_t)vdev_guid, nvpair_name(elem), 5852 strval); 5853 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5854 intval = fnvpair_value_uint64(elem); 5855 5856 if (proptype == PROP_TYPE_INDEX) { 5857 const char *unused; 5858 VERIFY0(vdev_prop_index_to_string( 5859 prop, intval, &unused)); 5860 } 5861 VERIFY0(zap_update(mos, objid, propname, 5862 sizeof (uint64_t), 1, &intval, tx)); 5863 spa_history_log_internal(spa, "vdev set", tx, 5864 "vdev_guid=%llu: %s=%lld", 5865 (u_longlong_t)vdev_guid, 5866 nvpair_name(elem), (longlong_t)intval); 5867 } else { 5868 panic("invalid vdev property type %u", 5869 nvpair_type(elem)); 5870 } 5871 } 5872 5873 } 5874 5875 mutex_exit(&spa->spa_props_lock); 5876 } 5877 5878 int 5879 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 5880 { 5881 spa_t *spa = vd->vdev_spa; 5882 nvpair_t *elem = NULL; 5883 uint64_t vdev_guid; 5884 nvlist_t *nvprops; 5885 int error = 0; 5886 5887 ASSERT(vd != NULL); 5888 5889 /* Check that vdev has a zap we can use */ 5890 if (vd->vdev_root_zap == 0 && 5891 vd->vdev_top_zap == 0 && 5892 vd->vdev_leaf_zap == 0) 5893 return (SET_ERROR(EINVAL)); 5894 5895 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV, 5896 &vdev_guid) != 0) 5897 return (SET_ERROR(EINVAL)); 5898 5899 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS, 5900 &nvprops) != 0) 5901 return (SET_ERROR(EINVAL)); 5902 5903 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) 5904 return (SET_ERROR(EINVAL)); 5905 5906 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5907 const char *propname = nvpair_name(elem); 5908 vdev_prop_t prop = vdev_name_to_prop(propname); 5909 uint64_t intval = 0; 5910 const char *strval = NULL; 5911 5912 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) { 5913 error = EINVAL; 5914 goto end; 5915 } 5916 5917 if (vdev_prop_readonly(prop)) { 5918 error = EROFS; 5919 goto end; 5920 } 5921 5922 /* Special Processing */ 5923 switch (prop) { 5924 case VDEV_PROP_PATH: 5925 if (vd->vdev_path == NULL) { 5926 error = EROFS; 5927 break; 5928 } 5929 if (nvpair_value_string(elem, &strval) != 0) { 5930 error = EINVAL; 5931 break; 5932 } 5933 /* New path must start with /dev/ */ 5934 if (strncmp(strval, "/dev/", 5)) { 5935 error = EINVAL; 5936 break; 5937 } 5938 error = spa_vdev_setpath(spa, vdev_guid, strval); 5939 break; 5940 case VDEV_PROP_ALLOCATING: 5941 if (nvpair_value_uint64(elem, &intval) != 0) { 5942 error = EINVAL; 5943 break; 5944 } 5945 if (intval != vd->vdev_noalloc) 5946 break; 5947 if (intval == 0) 5948 error = spa_vdev_noalloc(spa, vdev_guid); 5949 else 5950 error = spa_vdev_alloc(spa, vdev_guid); 5951 break; 5952 case VDEV_PROP_FAILFAST: 5953 if (nvpair_value_uint64(elem, &intval) != 0) { 5954 error = EINVAL; 5955 break; 5956 } 5957 vd->vdev_failfast = intval & 1; 5958 break; 5959 case VDEV_PROP_CHECKSUM_N: 5960 if (nvpair_value_uint64(elem, &intval) != 0) { 5961 error = EINVAL; 5962 break; 5963 } 5964 vd->vdev_checksum_n = intval; 5965 break; 5966 case VDEV_PROP_CHECKSUM_T: 5967 if (nvpair_value_uint64(elem, &intval) != 0) { 5968 error = EINVAL; 5969 break; 5970 } 5971 vd->vdev_checksum_t = intval; 5972 break; 5973 case VDEV_PROP_IO_N: 5974 if (nvpair_value_uint64(elem, &intval) != 0) { 5975 error = EINVAL; 5976 break; 5977 } 5978 vd->vdev_io_n = intval; 5979 break; 5980 case VDEV_PROP_IO_T: 5981 if (nvpair_value_uint64(elem, &intval) != 0) { 5982 error = EINVAL; 5983 break; 5984 } 5985 vd->vdev_io_t = intval; 5986 break; 5987 case VDEV_PROP_SLOW_IO_N: 5988 if (nvpair_value_uint64(elem, &intval) != 0) { 5989 error = EINVAL; 5990 break; 5991 } 5992 vd->vdev_slow_io_n = intval; 5993 break; 5994 case VDEV_PROP_SLOW_IO_T: 5995 if (nvpair_value_uint64(elem, &intval) != 0) { 5996 error = EINVAL; 5997 break; 5998 } 5999 vd->vdev_slow_io_t = intval; 6000 break; 6001 default: 6002 /* Most processing is done in vdev_props_set_sync */ 6003 break; 6004 } 6005 end: 6006 if (error != 0) { 6007 intval = error; 6008 vdev_prop_add_list(outnvl, propname, strval, intval, 0); 6009 return (error); 6010 } 6011 } 6012 6013 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync, 6014 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 6015 } 6016 6017 int 6018 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 6019 { 6020 spa_t *spa = vd->vdev_spa; 6021 objset_t *mos = spa->spa_meta_objset; 6022 int err = 0; 6023 uint64_t objid; 6024 uint64_t vdev_guid; 6025 nvpair_t *elem = NULL; 6026 nvlist_t *nvprops = NULL; 6027 uint64_t intval = 0; 6028 char *strval = NULL; 6029 const char *propname = NULL; 6030 vdev_prop_t prop; 6031 6032 ASSERT(vd != NULL); 6033 ASSERT(mos != NULL); 6034 6035 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV, 6036 &vdev_guid) != 0) 6037 return (SET_ERROR(EINVAL)); 6038 6039 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops); 6040 6041 if (vd->vdev_root_zap != 0) { 6042 objid = vd->vdev_root_zap; 6043 } else if (vd->vdev_top_zap != 0) { 6044 objid = vd->vdev_top_zap; 6045 } else if (vd->vdev_leaf_zap != 0) { 6046 objid = vd->vdev_leaf_zap; 6047 } else { 6048 return (SET_ERROR(EINVAL)); 6049 } 6050 ASSERT(objid != 0); 6051 6052 mutex_enter(&spa->spa_props_lock); 6053 6054 if (nvprops != NULL) { 6055 char namebuf[64] = { 0 }; 6056 6057 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 6058 intval = 0; 6059 strval = NULL; 6060 propname = nvpair_name(elem); 6061 prop = vdev_name_to_prop(propname); 6062 zprop_source_t src = ZPROP_SRC_DEFAULT; 6063 uint64_t integer_size, num_integers; 6064 6065 switch (prop) { 6066 /* Special Read-only Properties */ 6067 case VDEV_PROP_NAME: 6068 strval = vdev_name(vd, namebuf, 6069 sizeof (namebuf)); 6070 if (strval == NULL) 6071 continue; 6072 vdev_prop_add_list(outnvl, propname, strval, 0, 6073 ZPROP_SRC_NONE); 6074 continue; 6075 case VDEV_PROP_CAPACITY: 6076 /* percent used */ 6077 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 : 6078 (vd->vdev_stat.vs_alloc * 100 / 6079 vd->vdev_stat.vs_dspace); 6080 vdev_prop_add_list(outnvl, propname, NULL, 6081 intval, ZPROP_SRC_NONE); 6082 continue; 6083 case VDEV_PROP_STATE: 6084 vdev_prop_add_list(outnvl, propname, NULL, 6085 vd->vdev_state, ZPROP_SRC_NONE); 6086 continue; 6087 case VDEV_PROP_GUID: 6088 vdev_prop_add_list(outnvl, propname, NULL, 6089 vd->vdev_guid, ZPROP_SRC_NONE); 6090 continue; 6091 case VDEV_PROP_ASIZE: 6092 vdev_prop_add_list(outnvl, propname, NULL, 6093 vd->vdev_asize, ZPROP_SRC_NONE); 6094 continue; 6095 case VDEV_PROP_PSIZE: 6096 vdev_prop_add_list(outnvl, propname, NULL, 6097 vd->vdev_psize, ZPROP_SRC_NONE); 6098 continue; 6099 case VDEV_PROP_ASHIFT: 6100 vdev_prop_add_list(outnvl, propname, NULL, 6101 vd->vdev_ashift, ZPROP_SRC_NONE); 6102 continue; 6103 case VDEV_PROP_SIZE: 6104 vdev_prop_add_list(outnvl, propname, NULL, 6105 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE); 6106 continue; 6107 case VDEV_PROP_FREE: 6108 vdev_prop_add_list(outnvl, propname, NULL, 6109 vd->vdev_stat.vs_dspace - 6110 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 6111 continue; 6112 case VDEV_PROP_ALLOCATED: 6113 vdev_prop_add_list(outnvl, propname, NULL, 6114 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 6115 continue; 6116 case VDEV_PROP_EXPANDSZ: 6117 vdev_prop_add_list(outnvl, propname, NULL, 6118 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE); 6119 continue; 6120 case VDEV_PROP_FRAGMENTATION: 6121 vdev_prop_add_list(outnvl, propname, NULL, 6122 vd->vdev_stat.vs_fragmentation, 6123 ZPROP_SRC_NONE); 6124 continue; 6125 case VDEV_PROP_PARITY: 6126 vdev_prop_add_list(outnvl, propname, NULL, 6127 vdev_get_nparity(vd), ZPROP_SRC_NONE); 6128 continue; 6129 case VDEV_PROP_PATH: 6130 if (vd->vdev_path == NULL) 6131 continue; 6132 vdev_prop_add_list(outnvl, propname, 6133 vd->vdev_path, 0, ZPROP_SRC_NONE); 6134 continue; 6135 case VDEV_PROP_DEVID: 6136 if (vd->vdev_devid == NULL) 6137 continue; 6138 vdev_prop_add_list(outnvl, propname, 6139 vd->vdev_devid, 0, ZPROP_SRC_NONE); 6140 continue; 6141 case VDEV_PROP_PHYS_PATH: 6142 if (vd->vdev_physpath == NULL) 6143 continue; 6144 vdev_prop_add_list(outnvl, propname, 6145 vd->vdev_physpath, 0, ZPROP_SRC_NONE); 6146 continue; 6147 case VDEV_PROP_ENC_PATH: 6148 if (vd->vdev_enc_sysfs_path == NULL) 6149 continue; 6150 vdev_prop_add_list(outnvl, propname, 6151 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE); 6152 continue; 6153 case VDEV_PROP_FRU: 6154 if (vd->vdev_fru == NULL) 6155 continue; 6156 vdev_prop_add_list(outnvl, propname, 6157 vd->vdev_fru, 0, ZPROP_SRC_NONE); 6158 continue; 6159 case VDEV_PROP_PARENT: 6160 if (vd->vdev_parent != NULL) { 6161 strval = vdev_name(vd->vdev_parent, 6162 namebuf, sizeof (namebuf)); 6163 vdev_prop_add_list(outnvl, propname, 6164 strval, 0, ZPROP_SRC_NONE); 6165 } 6166 continue; 6167 case VDEV_PROP_CHILDREN: 6168 if (vd->vdev_children > 0) 6169 strval = kmem_zalloc(ZAP_MAXVALUELEN, 6170 KM_SLEEP); 6171 for (uint64_t i = 0; i < vd->vdev_children; 6172 i++) { 6173 const char *vname; 6174 6175 vname = vdev_name(vd->vdev_child[i], 6176 namebuf, sizeof (namebuf)); 6177 if (vname == NULL) 6178 vname = "(unknown)"; 6179 if (strlen(strval) > 0) 6180 strlcat(strval, ",", 6181 ZAP_MAXVALUELEN); 6182 strlcat(strval, vname, ZAP_MAXVALUELEN); 6183 } 6184 if (strval != NULL) { 6185 vdev_prop_add_list(outnvl, propname, 6186 strval, 0, ZPROP_SRC_NONE); 6187 kmem_free(strval, ZAP_MAXVALUELEN); 6188 } 6189 continue; 6190 case VDEV_PROP_NUMCHILDREN: 6191 vdev_prop_add_list(outnvl, propname, NULL, 6192 vd->vdev_children, ZPROP_SRC_NONE); 6193 continue; 6194 case VDEV_PROP_READ_ERRORS: 6195 vdev_prop_add_list(outnvl, propname, NULL, 6196 vd->vdev_stat.vs_read_errors, 6197 ZPROP_SRC_NONE); 6198 continue; 6199 case VDEV_PROP_WRITE_ERRORS: 6200 vdev_prop_add_list(outnvl, propname, NULL, 6201 vd->vdev_stat.vs_write_errors, 6202 ZPROP_SRC_NONE); 6203 continue; 6204 case VDEV_PROP_CHECKSUM_ERRORS: 6205 vdev_prop_add_list(outnvl, propname, NULL, 6206 vd->vdev_stat.vs_checksum_errors, 6207 ZPROP_SRC_NONE); 6208 continue; 6209 case VDEV_PROP_INITIALIZE_ERRORS: 6210 vdev_prop_add_list(outnvl, propname, NULL, 6211 vd->vdev_stat.vs_initialize_errors, 6212 ZPROP_SRC_NONE); 6213 continue; 6214 case VDEV_PROP_OPS_NULL: 6215 vdev_prop_add_list(outnvl, propname, NULL, 6216 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL], 6217 ZPROP_SRC_NONE); 6218 continue; 6219 case VDEV_PROP_OPS_READ: 6220 vdev_prop_add_list(outnvl, propname, NULL, 6221 vd->vdev_stat.vs_ops[ZIO_TYPE_READ], 6222 ZPROP_SRC_NONE); 6223 continue; 6224 case VDEV_PROP_OPS_WRITE: 6225 vdev_prop_add_list(outnvl, propname, NULL, 6226 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE], 6227 ZPROP_SRC_NONE); 6228 continue; 6229 case VDEV_PROP_OPS_FREE: 6230 vdev_prop_add_list(outnvl, propname, NULL, 6231 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE], 6232 ZPROP_SRC_NONE); 6233 continue; 6234 case VDEV_PROP_OPS_CLAIM: 6235 vdev_prop_add_list(outnvl, propname, NULL, 6236 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM], 6237 ZPROP_SRC_NONE); 6238 continue; 6239 case VDEV_PROP_OPS_TRIM: 6240 /* 6241 * TRIM ops and bytes are reported to user 6242 * space as ZIO_TYPE_FLUSH. This is done to 6243 * preserve the vdev_stat_t structure layout 6244 * for user space. 6245 */ 6246 vdev_prop_add_list(outnvl, propname, NULL, 6247 vd->vdev_stat.vs_ops[ZIO_TYPE_FLUSH], 6248 ZPROP_SRC_NONE); 6249 continue; 6250 case VDEV_PROP_BYTES_NULL: 6251 vdev_prop_add_list(outnvl, propname, NULL, 6252 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL], 6253 ZPROP_SRC_NONE); 6254 continue; 6255 case VDEV_PROP_BYTES_READ: 6256 vdev_prop_add_list(outnvl, propname, NULL, 6257 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ], 6258 ZPROP_SRC_NONE); 6259 continue; 6260 case VDEV_PROP_BYTES_WRITE: 6261 vdev_prop_add_list(outnvl, propname, NULL, 6262 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE], 6263 ZPROP_SRC_NONE); 6264 continue; 6265 case VDEV_PROP_BYTES_FREE: 6266 vdev_prop_add_list(outnvl, propname, NULL, 6267 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE], 6268 ZPROP_SRC_NONE); 6269 continue; 6270 case VDEV_PROP_BYTES_CLAIM: 6271 vdev_prop_add_list(outnvl, propname, NULL, 6272 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM], 6273 ZPROP_SRC_NONE); 6274 continue; 6275 case VDEV_PROP_BYTES_TRIM: 6276 /* 6277 * TRIM ops and bytes are reported to user 6278 * space as ZIO_TYPE_FLUSH. This is done to 6279 * preserve the vdev_stat_t structure layout 6280 * for user space. 6281 */ 6282 vdev_prop_add_list(outnvl, propname, NULL, 6283 vd->vdev_stat.vs_bytes[ZIO_TYPE_FLUSH], 6284 ZPROP_SRC_NONE); 6285 continue; 6286 case VDEV_PROP_REMOVING: 6287 vdev_prop_add_list(outnvl, propname, NULL, 6288 vd->vdev_removing, ZPROP_SRC_NONE); 6289 continue; 6290 case VDEV_PROP_RAIDZ_EXPANDING: 6291 /* Only expose this for raidz */ 6292 if (vd->vdev_ops == &vdev_raidz_ops) { 6293 vdev_prop_add_list(outnvl, propname, 6294 NULL, vd->vdev_rz_expanding, 6295 ZPROP_SRC_NONE); 6296 } 6297 continue; 6298 /* Numeric Properites */ 6299 case VDEV_PROP_ALLOCATING: 6300 /* Leaf vdevs cannot have this property */ 6301 if (vd->vdev_mg == NULL && 6302 vd->vdev_top != NULL) { 6303 src = ZPROP_SRC_NONE; 6304 intval = ZPROP_BOOLEAN_NA; 6305 } else { 6306 err = vdev_prop_get_int(vd, prop, 6307 &intval); 6308 if (err && err != ENOENT) 6309 break; 6310 6311 if (intval == 6312 vdev_prop_default_numeric(prop)) 6313 src = ZPROP_SRC_DEFAULT; 6314 else 6315 src = ZPROP_SRC_LOCAL; 6316 } 6317 6318 vdev_prop_add_list(outnvl, propname, NULL, 6319 intval, src); 6320 break; 6321 case VDEV_PROP_FAILFAST: 6322 src = ZPROP_SRC_LOCAL; 6323 strval = NULL; 6324 6325 err = zap_lookup(mos, objid, nvpair_name(elem), 6326 sizeof (uint64_t), 1, &intval); 6327 if (err == ENOENT) { 6328 intval = vdev_prop_default_numeric( 6329 prop); 6330 err = 0; 6331 } else if (err) { 6332 break; 6333 } 6334 if (intval == vdev_prop_default_numeric(prop)) 6335 src = ZPROP_SRC_DEFAULT; 6336 6337 vdev_prop_add_list(outnvl, propname, strval, 6338 intval, src); 6339 break; 6340 case VDEV_PROP_CHECKSUM_N: 6341 case VDEV_PROP_CHECKSUM_T: 6342 case VDEV_PROP_IO_N: 6343 case VDEV_PROP_IO_T: 6344 case VDEV_PROP_SLOW_IO_N: 6345 case VDEV_PROP_SLOW_IO_T: 6346 err = vdev_prop_get_int(vd, prop, &intval); 6347 if (err && err != ENOENT) 6348 break; 6349 6350 if (intval == vdev_prop_default_numeric(prop)) 6351 src = ZPROP_SRC_DEFAULT; 6352 else 6353 src = ZPROP_SRC_LOCAL; 6354 6355 vdev_prop_add_list(outnvl, propname, NULL, 6356 intval, src); 6357 break; 6358 /* Text Properties */ 6359 case VDEV_PROP_COMMENT: 6360 /* Exists in the ZAP below */ 6361 /* FALLTHRU */ 6362 case VDEV_PROP_USERPROP: 6363 /* User Properites */ 6364 src = ZPROP_SRC_LOCAL; 6365 6366 err = zap_length(mos, objid, nvpair_name(elem), 6367 &integer_size, &num_integers); 6368 if (err) 6369 break; 6370 6371 switch (integer_size) { 6372 case 8: 6373 /* User properties cannot be integers */ 6374 err = EINVAL; 6375 break; 6376 case 1: 6377 /* string property */ 6378 strval = kmem_alloc(num_integers, 6379 KM_SLEEP); 6380 err = zap_lookup(mos, objid, 6381 nvpair_name(elem), 1, 6382 num_integers, strval); 6383 if (err) { 6384 kmem_free(strval, 6385 num_integers); 6386 break; 6387 } 6388 vdev_prop_add_list(outnvl, propname, 6389 strval, 0, src); 6390 kmem_free(strval, num_integers); 6391 break; 6392 } 6393 break; 6394 default: 6395 err = ENOENT; 6396 break; 6397 } 6398 if (err) 6399 break; 6400 } 6401 } else { 6402 /* 6403 * Get all properties from the MOS vdev property object. 6404 */ 6405 zap_cursor_t zc; 6406 zap_attribute_t za; 6407 for (zap_cursor_init(&zc, mos, objid); 6408 (err = zap_cursor_retrieve(&zc, &za)) == 0; 6409 zap_cursor_advance(&zc)) { 6410 intval = 0; 6411 strval = NULL; 6412 zprop_source_t src = ZPROP_SRC_DEFAULT; 6413 propname = za.za_name; 6414 6415 switch (za.za_integer_length) { 6416 case 8: 6417 /* We do not allow integer user properties */ 6418 /* This is likely an internal value */ 6419 break; 6420 case 1: 6421 /* string property */ 6422 strval = kmem_alloc(za.za_num_integers, 6423 KM_SLEEP); 6424 err = zap_lookup(mos, objid, za.za_name, 1, 6425 za.za_num_integers, strval); 6426 if (err) { 6427 kmem_free(strval, za.za_num_integers); 6428 break; 6429 } 6430 vdev_prop_add_list(outnvl, propname, strval, 0, 6431 src); 6432 kmem_free(strval, za.za_num_integers); 6433 break; 6434 6435 default: 6436 break; 6437 } 6438 } 6439 zap_cursor_fini(&zc); 6440 } 6441 6442 mutex_exit(&spa->spa_props_lock); 6443 if (err && err != ENOENT) { 6444 return (err); 6445 } 6446 6447 return (0); 6448 } 6449 6450 EXPORT_SYMBOL(vdev_fault); 6451 EXPORT_SYMBOL(vdev_degrade); 6452 EXPORT_SYMBOL(vdev_online); 6453 EXPORT_SYMBOL(vdev_offline); 6454 EXPORT_SYMBOL(vdev_clear); 6455 6456 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW, 6457 "Target number of metaslabs per top-level vdev"); 6458 6459 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW, 6460 "Default lower limit for metaslab size"); 6461 6462 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW, 6463 "Default upper limit for metaslab size"); 6464 6465 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW, 6466 "Minimum number of metaslabs per top-level vdev"); 6467 6468 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW, 6469 "Practical upper limit of total metaslabs per top-level vdev"); 6470 6471 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW, 6472 "Rate limit slow IO (delay) events to this many per second"); 6473 6474 /* BEGIN CSTYLED */ 6475 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW, 6476 "Rate limit checksum events to this many checksum errors per second " 6477 "(do not set below ZED threshold)."); 6478 /* END CSTYLED */ 6479 6480 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW, 6481 "Ignore errors during resilver/scrub"); 6482 6483 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW, 6484 "Bypass vdev_validate()"); 6485 6486 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW, 6487 "Disable cache flushes"); 6488 6489 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW, 6490 "Minimum number of metaslabs required to dedicate one for log blocks"); 6491 6492 /* BEGIN CSTYLED */ 6493 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift, 6494 param_set_min_auto_ashift, param_get_uint, ZMOD_RW, 6495 "Minimum ashift used when creating new top-level vdevs"); 6496 6497 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift, 6498 param_set_max_auto_ashift, param_get_uint, ZMOD_RW, 6499 "Maximum ashift used when optimizing for logical -> physical sector " 6500 "size on new top-level vdevs"); 6501 /* END CSTYLED */ 6502