1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2017 Joyent, Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 * Copyright (c) 2019, Datto Inc. All rights reserved. 31 * Copyright (c) 2021, Klara Inc. 32 * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP. 33 */ 34 35 #include <sys/zfs_context.h> 36 #include <sys/fm/fs/zfs.h> 37 #include <sys/spa.h> 38 #include <sys/spa_impl.h> 39 #include <sys/bpobj.h> 40 #include <sys/dmu.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_dir.h> 43 #include <sys/vdev_impl.h> 44 #include <sys/vdev_rebuild.h> 45 #include <sys/vdev_draid.h> 46 #include <sys/uberblock_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/space_map.h> 50 #include <sys/space_reftree.h> 51 #include <sys/zio.h> 52 #include <sys/zap.h> 53 #include <sys/fs/zfs.h> 54 #include <sys/arc.h> 55 #include <sys/zil.h> 56 #include <sys/dsl_scan.h> 57 #include <sys/vdev_raidz.h> 58 #include <sys/abd.h> 59 #include <sys/vdev_initialize.h> 60 #include <sys/vdev_trim.h> 61 #include <sys/vdev_raidz.h> 62 #include <sys/zvol.h> 63 #include <sys/zfs_ratelimit.h> 64 #include "zfs_prop.h" 65 66 /* 67 * One metaslab from each (normal-class) vdev is used by the ZIL. These are 68 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are 69 * part of the spa_embedded_log_class. The metaslab with the most free space 70 * in each vdev is selected for this purpose when the pool is opened (or a 71 * vdev is added). See vdev_metaslab_init(). 72 * 73 * Log blocks can be allocated from the following locations. Each one is tried 74 * in order until the allocation succeeds: 75 * 1. dedicated log vdevs, aka "slog" (spa_log_class) 76 * 2. embedded slog metaslabs (spa_embedded_log_class) 77 * 3. other metaslabs in normal vdevs (spa_normal_class) 78 * 79 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer 80 * than this number of metaslabs in the vdev. This ensures that we don't set 81 * aside an unreasonable amount of space for the ZIL. If set to less than 82 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced 83 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab. 84 */ 85 static uint_t zfs_embedded_slog_min_ms = 64; 86 87 /* default target for number of metaslabs per top-level vdev */ 88 static uint_t zfs_vdev_default_ms_count = 200; 89 90 /* minimum number of metaslabs per top-level vdev */ 91 static uint_t zfs_vdev_min_ms_count = 16; 92 93 /* practical upper limit of total metaslabs per top-level vdev */ 94 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17; 95 96 /* lower limit for metaslab size (512M) */ 97 static uint_t zfs_vdev_default_ms_shift = 29; 98 99 /* upper limit for metaslab size (16G) */ 100 static uint_t zfs_vdev_max_ms_shift = 34; 101 102 int vdev_validate_skip = B_FALSE; 103 104 /* 105 * Since the DTL space map of a vdev is not expected to have a lot of 106 * entries, we default its block size to 4K. 107 */ 108 int zfs_vdev_dtl_sm_blksz = (1 << 12); 109 110 /* 111 * Rate limit slow IO (delay) events to this many per second. 112 */ 113 static unsigned int zfs_slow_io_events_per_second = 20; 114 115 /* 116 * Rate limit checksum events after this many checksum errors per second. 117 */ 118 static unsigned int zfs_checksum_events_per_second = 20; 119 120 /* 121 * Ignore errors during scrub/resilver. Allows to work around resilver 122 * upon import when there are pool errors. 123 */ 124 static int zfs_scan_ignore_errors = 0; 125 126 /* 127 * vdev-wide space maps that have lots of entries written to them at 128 * the end of each transaction can benefit from a higher I/O bandwidth 129 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 130 */ 131 int zfs_vdev_standard_sm_blksz = (1 << 17); 132 133 /* 134 * Tunable parameter for debugging or performance analysis. Setting this 135 * will cause pool corruption on power loss if a volatile out-of-order 136 * write cache is enabled. 137 */ 138 int zfs_nocacheflush = 0; 139 140 /* 141 * Maximum and minimum ashift values that can be automatically set based on 142 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX 143 * is higher than the maximum value, it is intentionally limited here to not 144 * excessively impact pool space efficiency. Higher ashift values may still 145 * be forced by vdev logical ashift or by user via ashift property, but won't 146 * be set automatically as a performance optimization. 147 */ 148 uint_t zfs_vdev_max_auto_ashift = 14; 149 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN; 150 151 void 152 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 153 { 154 va_list adx; 155 char buf[256]; 156 157 va_start(adx, fmt); 158 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 159 va_end(adx); 160 161 if (vd->vdev_path != NULL) { 162 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 163 vd->vdev_path, buf); 164 } else { 165 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 166 vd->vdev_ops->vdev_op_type, 167 (u_longlong_t)vd->vdev_id, 168 (u_longlong_t)vd->vdev_guid, buf); 169 } 170 } 171 172 void 173 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 174 { 175 char state[20]; 176 177 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 178 zfs_dbgmsg("%*svdev %llu: %s", indent, "", 179 (u_longlong_t)vd->vdev_id, 180 vd->vdev_ops->vdev_op_type); 181 return; 182 } 183 184 switch (vd->vdev_state) { 185 case VDEV_STATE_UNKNOWN: 186 (void) snprintf(state, sizeof (state), "unknown"); 187 break; 188 case VDEV_STATE_CLOSED: 189 (void) snprintf(state, sizeof (state), "closed"); 190 break; 191 case VDEV_STATE_OFFLINE: 192 (void) snprintf(state, sizeof (state), "offline"); 193 break; 194 case VDEV_STATE_REMOVED: 195 (void) snprintf(state, sizeof (state), "removed"); 196 break; 197 case VDEV_STATE_CANT_OPEN: 198 (void) snprintf(state, sizeof (state), "can't open"); 199 break; 200 case VDEV_STATE_FAULTED: 201 (void) snprintf(state, sizeof (state), "faulted"); 202 break; 203 case VDEV_STATE_DEGRADED: 204 (void) snprintf(state, sizeof (state), "degraded"); 205 break; 206 case VDEV_STATE_HEALTHY: 207 (void) snprintf(state, sizeof (state), "healthy"); 208 break; 209 default: 210 (void) snprintf(state, sizeof (state), "<state %u>", 211 (uint_t)vd->vdev_state); 212 } 213 214 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 215 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 216 vd->vdev_islog ? " (log)" : "", 217 (u_longlong_t)vd->vdev_guid, 218 vd->vdev_path ? vd->vdev_path : "N/A", state); 219 220 for (uint64_t i = 0; i < vd->vdev_children; i++) 221 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 222 } 223 224 /* 225 * Virtual device management. 226 */ 227 228 static vdev_ops_t *const vdev_ops_table[] = { 229 &vdev_root_ops, 230 &vdev_raidz_ops, 231 &vdev_draid_ops, 232 &vdev_draid_spare_ops, 233 &vdev_mirror_ops, 234 &vdev_replacing_ops, 235 &vdev_spare_ops, 236 &vdev_disk_ops, 237 &vdev_file_ops, 238 &vdev_missing_ops, 239 &vdev_hole_ops, 240 &vdev_indirect_ops, 241 NULL 242 }; 243 244 /* 245 * Given a vdev type, return the appropriate ops vector. 246 */ 247 static vdev_ops_t * 248 vdev_getops(const char *type) 249 { 250 vdev_ops_t *ops, *const *opspp; 251 252 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 253 if (strcmp(ops->vdev_op_type, type) == 0) 254 break; 255 256 return (ops); 257 } 258 259 /* 260 * Given a vdev and a metaslab class, find which metaslab group we're 261 * interested in. All vdevs may belong to two different metaslab classes. 262 * Dedicated slog devices use only the primary metaslab group, rather than a 263 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL. 264 */ 265 metaslab_group_t * 266 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc) 267 { 268 if (mc == spa_embedded_log_class(vd->vdev_spa) && 269 vd->vdev_log_mg != NULL) 270 return (vd->vdev_log_mg); 271 else 272 return (vd->vdev_mg); 273 } 274 275 void 276 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 277 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 278 { 279 (void) vd, (void) remain_rs; 280 281 physical_rs->rs_start = logical_rs->rs_start; 282 physical_rs->rs_end = logical_rs->rs_end; 283 } 284 285 /* 286 * Derive the enumerated allocation bias from string input. 287 * String origin is either the per-vdev zap or zpool(8). 288 */ 289 static vdev_alloc_bias_t 290 vdev_derive_alloc_bias(const char *bias) 291 { 292 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 293 294 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) 295 alloc_bias = VDEV_BIAS_LOG; 296 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) 297 alloc_bias = VDEV_BIAS_SPECIAL; 298 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) 299 alloc_bias = VDEV_BIAS_DEDUP; 300 301 return (alloc_bias); 302 } 303 304 /* 305 * Default asize function: return the MAX of psize with the asize of 306 * all children. This is what's used by anything other than RAID-Z. 307 */ 308 uint64_t 309 vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg) 310 { 311 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 312 uint64_t csize; 313 314 for (int c = 0; c < vd->vdev_children; c++) { 315 csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg); 316 asize = MAX(asize, csize); 317 } 318 319 return (asize); 320 } 321 322 uint64_t 323 vdev_default_min_asize(vdev_t *vd) 324 { 325 return (vd->vdev_min_asize); 326 } 327 328 /* 329 * Get the minimum allocatable size. We define the allocatable size as 330 * the vdev's asize rounded to the nearest metaslab. This allows us to 331 * replace or attach devices which don't have the same physical size but 332 * can still satisfy the same number of allocations. 333 */ 334 uint64_t 335 vdev_get_min_asize(vdev_t *vd) 336 { 337 vdev_t *pvd = vd->vdev_parent; 338 339 /* 340 * If our parent is NULL (inactive spare or cache) or is the root, 341 * just return our own asize. 342 */ 343 if (pvd == NULL) 344 return (vd->vdev_asize); 345 346 /* 347 * The top-level vdev just returns the allocatable size rounded 348 * to the nearest metaslab. 349 */ 350 if (vd == vd->vdev_top) 351 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 352 353 return (pvd->vdev_ops->vdev_op_min_asize(pvd)); 354 } 355 356 void 357 vdev_set_min_asize(vdev_t *vd) 358 { 359 vd->vdev_min_asize = vdev_get_min_asize(vd); 360 361 for (int c = 0; c < vd->vdev_children; c++) 362 vdev_set_min_asize(vd->vdev_child[c]); 363 } 364 365 /* 366 * Get the minimal allocation size for the top-level vdev. 367 */ 368 uint64_t 369 vdev_get_min_alloc(vdev_t *vd) 370 { 371 uint64_t min_alloc = 1ULL << vd->vdev_ashift; 372 373 if (vd->vdev_ops->vdev_op_min_alloc != NULL) 374 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd); 375 376 return (min_alloc); 377 } 378 379 /* 380 * Get the parity level for a top-level vdev. 381 */ 382 uint64_t 383 vdev_get_nparity(vdev_t *vd) 384 { 385 uint64_t nparity = 0; 386 387 if (vd->vdev_ops->vdev_op_nparity != NULL) 388 nparity = vd->vdev_ops->vdev_op_nparity(vd); 389 390 return (nparity); 391 } 392 393 static int 394 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value) 395 { 396 spa_t *spa = vd->vdev_spa; 397 objset_t *mos = spa->spa_meta_objset; 398 uint64_t objid; 399 int err; 400 401 if (vd->vdev_root_zap != 0) { 402 objid = vd->vdev_root_zap; 403 } else if (vd->vdev_top_zap != 0) { 404 objid = vd->vdev_top_zap; 405 } else if (vd->vdev_leaf_zap != 0) { 406 objid = vd->vdev_leaf_zap; 407 } else { 408 return (EINVAL); 409 } 410 411 err = zap_lookup(mos, objid, vdev_prop_to_name(prop), 412 sizeof (uint64_t), 1, value); 413 414 if (err == ENOENT) 415 *value = vdev_prop_default_numeric(prop); 416 417 return (err); 418 } 419 420 /* 421 * Get the number of data disks for a top-level vdev. 422 */ 423 uint64_t 424 vdev_get_ndisks(vdev_t *vd) 425 { 426 uint64_t ndisks = 1; 427 428 if (vd->vdev_ops->vdev_op_ndisks != NULL) 429 ndisks = vd->vdev_ops->vdev_op_ndisks(vd); 430 431 return (ndisks); 432 } 433 434 vdev_t * 435 vdev_lookup_top(spa_t *spa, uint64_t vdev) 436 { 437 vdev_t *rvd = spa->spa_root_vdev; 438 439 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 440 441 if (vdev < rvd->vdev_children) { 442 ASSERT(rvd->vdev_child[vdev] != NULL); 443 return (rvd->vdev_child[vdev]); 444 } 445 446 return (NULL); 447 } 448 449 vdev_t * 450 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 451 { 452 vdev_t *mvd; 453 454 if (vd->vdev_guid == guid) 455 return (vd); 456 457 for (int c = 0; c < vd->vdev_children; c++) 458 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 459 NULL) 460 return (mvd); 461 462 return (NULL); 463 } 464 465 static int 466 vdev_count_leaves_impl(vdev_t *vd) 467 { 468 int n = 0; 469 470 if (vd->vdev_ops->vdev_op_leaf) 471 return (1); 472 473 for (int c = 0; c < vd->vdev_children; c++) 474 n += vdev_count_leaves_impl(vd->vdev_child[c]); 475 476 return (n); 477 } 478 479 int 480 vdev_count_leaves(spa_t *spa) 481 { 482 int rc; 483 484 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 485 rc = vdev_count_leaves_impl(spa->spa_root_vdev); 486 spa_config_exit(spa, SCL_VDEV, FTAG); 487 488 return (rc); 489 } 490 491 void 492 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 493 { 494 size_t oldsize, newsize; 495 uint64_t id = cvd->vdev_id; 496 vdev_t **newchild; 497 498 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 499 ASSERT(cvd->vdev_parent == NULL); 500 501 cvd->vdev_parent = pvd; 502 503 if (pvd == NULL) 504 return; 505 506 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 507 508 oldsize = pvd->vdev_children * sizeof (vdev_t *); 509 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 510 newsize = pvd->vdev_children * sizeof (vdev_t *); 511 512 newchild = kmem_alloc(newsize, KM_SLEEP); 513 if (pvd->vdev_child != NULL) { 514 memcpy(newchild, pvd->vdev_child, oldsize); 515 kmem_free(pvd->vdev_child, oldsize); 516 } 517 518 pvd->vdev_child = newchild; 519 pvd->vdev_child[id] = cvd; 520 521 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 522 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 523 524 /* 525 * Walk up all ancestors to update guid sum. 526 */ 527 for (; pvd != NULL; pvd = pvd->vdev_parent) 528 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 529 530 if (cvd->vdev_ops->vdev_op_leaf) { 531 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); 532 cvd->vdev_spa->spa_leaf_list_gen++; 533 } 534 } 535 536 void 537 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 538 { 539 int c; 540 uint_t id = cvd->vdev_id; 541 542 ASSERT(cvd->vdev_parent == pvd); 543 544 if (pvd == NULL) 545 return; 546 547 ASSERT(id < pvd->vdev_children); 548 ASSERT(pvd->vdev_child[id] == cvd); 549 550 pvd->vdev_child[id] = NULL; 551 cvd->vdev_parent = NULL; 552 553 for (c = 0; c < pvd->vdev_children; c++) 554 if (pvd->vdev_child[c]) 555 break; 556 557 if (c == pvd->vdev_children) { 558 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 559 pvd->vdev_child = NULL; 560 pvd->vdev_children = 0; 561 } 562 563 if (cvd->vdev_ops->vdev_op_leaf) { 564 spa_t *spa = cvd->vdev_spa; 565 list_remove(&spa->spa_leaf_list, cvd); 566 spa->spa_leaf_list_gen++; 567 } 568 569 /* 570 * Walk up all ancestors to update guid sum. 571 */ 572 for (; pvd != NULL; pvd = pvd->vdev_parent) 573 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 574 } 575 576 /* 577 * Remove any holes in the child array. 578 */ 579 void 580 vdev_compact_children(vdev_t *pvd) 581 { 582 vdev_t **newchild, *cvd; 583 int oldc = pvd->vdev_children; 584 int newc; 585 586 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 587 588 if (oldc == 0) 589 return; 590 591 for (int c = newc = 0; c < oldc; c++) 592 if (pvd->vdev_child[c]) 593 newc++; 594 595 if (newc > 0) { 596 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP); 597 598 for (int c = newc = 0; c < oldc; c++) { 599 if ((cvd = pvd->vdev_child[c]) != NULL) { 600 newchild[newc] = cvd; 601 cvd->vdev_id = newc++; 602 } 603 } 604 } else { 605 newchild = NULL; 606 } 607 608 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 609 pvd->vdev_child = newchild; 610 pvd->vdev_children = newc; 611 } 612 613 /* 614 * Allocate and minimally initialize a vdev_t. 615 */ 616 vdev_t * 617 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 618 { 619 vdev_t *vd; 620 vdev_indirect_config_t *vic; 621 622 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 623 vic = &vd->vdev_indirect_config; 624 625 if (spa->spa_root_vdev == NULL) { 626 ASSERT(ops == &vdev_root_ops); 627 spa->spa_root_vdev = vd; 628 spa->spa_load_guid = spa_generate_guid(NULL); 629 } 630 631 if (guid == 0 && ops != &vdev_hole_ops) { 632 if (spa->spa_root_vdev == vd) { 633 /* 634 * The root vdev's guid will also be the pool guid, 635 * which must be unique among all pools. 636 */ 637 guid = spa_generate_guid(NULL); 638 } else { 639 /* 640 * Any other vdev's guid must be unique within the pool. 641 */ 642 guid = spa_generate_guid(spa); 643 } 644 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 645 } 646 647 vd->vdev_spa = spa; 648 vd->vdev_id = id; 649 vd->vdev_guid = guid; 650 vd->vdev_guid_sum = guid; 651 vd->vdev_ops = ops; 652 vd->vdev_state = VDEV_STATE_CLOSED; 653 vd->vdev_ishole = (ops == &vdev_hole_ops); 654 vic->vic_prev_indirect_vdev = UINT64_MAX; 655 656 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 657 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 658 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL, 659 0, 0); 660 661 /* 662 * Initialize rate limit structs for events. We rate limit ZIO delay 663 * and checksum events so that we don't overwhelm ZED with thousands 664 * of events when a disk is acting up. 665 */ 666 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second, 667 1); 668 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_slow_io_events_per_second, 669 1); 670 zfs_ratelimit_init(&vd->vdev_checksum_rl, 671 &zfs_checksum_events_per_second, 1); 672 673 /* 674 * Default Thresholds for tuning ZED 675 */ 676 vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N); 677 vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T); 678 vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N); 679 vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T); 680 vd->vdev_slow_io_n = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N); 681 vd->vdev_slow_io_t = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T); 682 683 list_link_init(&vd->vdev_config_dirty_node); 684 list_link_init(&vd->vdev_state_dirty_node); 685 list_link_init(&vd->vdev_initialize_node); 686 list_link_init(&vd->vdev_leaf_node); 687 list_link_init(&vd->vdev_trim_node); 688 689 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL); 690 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 691 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 692 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); 693 694 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 695 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 696 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 697 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 698 699 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL); 700 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL); 701 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL); 702 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL); 703 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL); 704 cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL); 705 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL); 706 707 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL); 708 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL); 709 710 for (int t = 0; t < DTL_TYPES; t++) { 711 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 712 0); 713 } 714 715 txg_list_create(&vd->vdev_ms_list, spa, 716 offsetof(struct metaslab, ms_txg_node)); 717 txg_list_create(&vd->vdev_dtl_list, spa, 718 offsetof(struct vdev, vdev_dtl_node)); 719 vd->vdev_stat.vs_timestamp = gethrtime(); 720 vdev_queue_init(vd); 721 722 return (vd); 723 } 724 725 /* 726 * Allocate a new vdev. The 'alloctype' is used to control whether we are 727 * creating a new vdev or loading an existing one - the behavior is slightly 728 * different for each case. 729 */ 730 int 731 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 732 int alloctype) 733 { 734 vdev_ops_t *ops; 735 const char *type; 736 uint64_t guid = 0, islog; 737 vdev_t *vd; 738 vdev_indirect_config_t *vic; 739 const char *tmp = NULL; 740 int rc; 741 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 742 boolean_t top_level = (parent && !parent->vdev_parent); 743 744 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 745 746 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 747 return (SET_ERROR(EINVAL)); 748 749 if ((ops = vdev_getops(type)) == NULL) 750 return (SET_ERROR(EINVAL)); 751 752 /* 753 * If this is a load, get the vdev guid from the nvlist. 754 * Otherwise, vdev_alloc_common() will generate one for us. 755 */ 756 if (alloctype == VDEV_ALLOC_LOAD) { 757 uint64_t label_id; 758 759 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 760 label_id != id) 761 return (SET_ERROR(EINVAL)); 762 763 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 764 return (SET_ERROR(EINVAL)); 765 } else if (alloctype == VDEV_ALLOC_SPARE) { 766 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 767 return (SET_ERROR(EINVAL)); 768 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 769 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 770 return (SET_ERROR(EINVAL)); 771 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 772 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 773 return (SET_ERROR(EINVAL)); 774 } 775 776 /* 777 * The first allocated vdev must be of type 'root'. 778 */ 779 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 780 return (SET_ERROR(EINVAL)); 781 782 /* 783 * Determine whether we're a log vdev. 784 */ 785 islog = 0; 786 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 787 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 788 return (SET_ERROR(ENOTSUP)); 789 790 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 791 return (SET_ERROR(ENOTSUP)); 792 793 if (top_level && alloctype == VDEV_ALLOC_ADD) { 794 const char *bias; 795 796 /* 797 * If creating a top-level vdev, check for allocation 798 * classes input. 799 */ 800 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 801 &bias) == 0) { 802 alloc_bias = vdev_derive_alloc_bias(bias); 803 804 /* spa_vdev_add() expects feature to be enabled */ 805 if (spa->spa_load_state != SPA_LOAD_CREATE && 806 !spa_feature_is_enabled(spa, 807 SPA_FEATURE_ALLOCATION_CLASSES)) { 808 return (SET_ERROR(ENOTSUP)); 809 } 810 } 811 812 /* spa_vdev_add() expects feature to be enabled */ 813 if (ops == &vdev_draid_ops && 814 spa->spa_load_state != SPA_LOAD_CREATE && 815 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) { 816 return (SET_ERROR(ENOTSUP)); 817 } 818 } 819 820 /* 821 * Initialize the vdev specific data. This is done before calling 822 * vdev_alloc_common() since it may fail and this simplifies the 823 * error reporting and cleanup code paths. 824 */ 825 void *tsd = NULL; 826 if (ops->vdev_op_init != NULL) { 827 rc = ops->vdev_op_init(spa, nv, &tsd); 828 if (rc != 0) { 829 return (rc); 830 } 831 } 832 833 vd = vdev_alloc_common(spa, id, guid, ops); 834 vd->vdev_tsd = tsd; 835 vd->vdev_islog = islog; 836 837 if (top_level && alloc_bias != VDEV_BIAS_NONE) 838 vd->vdev_alloc_bias = alloc_bias; 839 840 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0) 841 vd->vdev_path = spa_strdup(tmp); 842 843 /* 844 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a 845 * fault on a vdev and want it to persist across imports (like with 846 * zpool offline -f). 847 */ 848 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp); 849 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) { 850 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 851 vd->vdev_faulted = 1; 852 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 853 } 854 855 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0) 856 vd->vdev_devid = spa_strdup(tmp); 857 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0) 858 vd->vdev_physpath = spa_strdup(tmp); 859 860 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 861 &tmp) == 0) 862 vd->vdev_enc_sysfs_path = spa_strdup(tmp); 863 864 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0) 865 vd->vdev_fru = spa_strdup(tmp); 866 867 /* 868 * Set the whole_disk property. If it's not specified, leave the value 869 * as -1. 870 */ 871 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 872 &vd->vdev_wholedisk) != 0) 873 vd->vdev_wholedisk = -1ULL; 874 875 vic = &vd->vdev_indirect_config; 876 877 ASSERT0(vic->vic_mapping_object); 878 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 879 &vic->vic_mapping_object); 880 ASSERT0(vic->vic_births_object); 881 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 882 &vic->vic_births_object); 883 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 884 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 885 &vic->vic_prev_indirect_vdev); 886 887 /* 888 * Look for the 'not present' flag. This will only be set if the device 889 * was not present at the time of import. 890 */ 891 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 892 &vd->vdev_not_present); 893 894 /* 895 * Get the alignment requirement. Ignore pool ashift for vdev 896 * attach case. 897 */ 898 if (alloctype != VDEV_ALLOC_ATTACH) { 899 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, 900 &vd->vdev_ashift); 901 } else { 902 vd->vdev_attaching = B_TRUE; 903 } 904 905 /* 906 * Retrieve the vdev creation time. 907 */ 908 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 909 &vd->vdev_crtxg); 910 911 if (vd->vdev_ops == &vdev_root_ops && 912 (alloctype == VDEV_ALLOC_LOAD || 913 alloctype == VDEV_ALLOC_SPLIT || 914 alloctype == VDEV_ALLOC_ROOTPOOL)) { 915 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP, 916 &vd->vdev_root_zap); 917 } 918 919 /* 920 * If we're a top-level vdev, try to load the allocation parameters. 921 */ 922 if (top_level && 923 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 924 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 925 &vd->vdev_ms_array); 926 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 927 &vd->vdev_ms_shift); 928 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 929 &vd->vdev_asize); 930 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING, 931 &vd->vdev_noalloc); 932 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 933 &vd->vdev_removing); 934 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 935 &vd->vdev_top_zap); 936 vd->vdev_rz_expanding = nvlist_exists(nv, 937 ZPOOL_CONFIG_RAIDZ_EXPANDING); 938 } else { 939 ASSERT0(vd->vdev_top_zap); 940 } 941 942 if (top_level && alloctype != VDEV_ALLOC_ATTACH) { 943 ASSERT(alloctype == VDEV_ALLOC_LOAD || 944 alloctype == VDEV_ALLOC_ADD || 945 alloctype == VDEV_ALLOC_SPLIT || 946 alloctype == VDEV_ALLOC_ROOTPOOL); 947 /* Note: metaslab_group_create() is now deferred */ 948 } 949 950 if (vd->vdev_ops->vdev_op_leaf && 951 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 952 (void) nvlist_lookup_uint64(nv, 953 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 954 } else { 955 ASSERT0(vd->vdev_leaf_zap); 956 } 957 958 /* 959 * If we're a leaf vdev, try to load the DTL object and other state. 960 */ 961 962 if (vd->vdev_ops->vdev_op_leaf && 963 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 964 alloctype == VDEV_ALLOC_ROOTPOOL)) { 965 if (alloctype == VDEV_ALLOC_LOAD) { 966 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 967 &vd->vdev_dtl_object); 968 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 969 &vd->vdev_unspare); 970 } 971 972 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 973 uint64_t spare = 0; 974 975 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 976 &spare) == 0 && spare) 977 spa_spare_add(vd); 978 } 979 980 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 981 &vd->vdev_offline); 982 983 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 984 &vd->vdev_resilver_txg); 985 986 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 987 &vd->vdev_rebuild_txg); 988 989 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) 990 vdev_defer_resilver(vd); 991 992 /* 993 * In general, when importing a pool we want to ignore the 994 * persistent fault state, as the diagnosis made on another 995 * system may not be valid in the current context. The only 996 * exception is if we forced a vdev to a persistently faulted 997 * state with 'zpool offline -f'. The persistent fault will 998 * remain across imports until cleared. 999 * 1000 * Local vdevs will remain in the faulted state. 1001 */ 1002 if (spa_load_state(spa) == SPA_LOAD_OPEN || 1003 spa_load_state(spa) == SPA_LOAD_IMPORT) { 1004 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 1005 &vd->vdev_faulted); 1006 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 1007 &vd->vdev_degraded); 1008 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 1009 &vd->vdev_removed); 1010 1011 if (vd->vdev_faulted || vd->vdev_degraded) { 1012 const char *aux; 1013 1014 vd->vdev_label_aux = 1015 VDEV_AUX_ERR_EXCEEDED; 1016 if (nvlist_lookup_string(nv, 1017 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 1018 strcmp(aux, "external") == 0) 1019 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 1020 else 1021 vd->vdev_faulted = 0ULL; 1022 } 1023 } 1024 } 1025 1026 /* 1027 * Add ourselves to the parent's list of children. 1028 */ 1029 vdev_add_child(parent, vd); 1030 1031 *vdp = vd; 1032 1033 return (0); 1034 } 1035 1036 void 1037 vdev_free(vdev_t *vd) 1038 { 1039 spa_t *spa = vd->vdev_spa; 1040 1041 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 1042 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1043 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 1044 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); 1045 1046 /* 1047 * Scan queues are normally destroyed at the end of a scan. If the 1048 * queue exists here, that implies the vdev is being removed while 1049 * the scan is still running. 1050 */ 1051 if (vd->vdev_scan_io_queue != NULL) { 1052 mutex_enter(&vd->vdev_scan_io_queue_lock); 1053 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); 1054 vd->vdev_scan_io_queue = NULL; 1055 mutex_exit(&vd->vdev_scan_io_queue_lock); 1056 } 1057 1058 /* 1059 * vdev_free() implies closing the vdev first. This is simpler than 1060 * trying to ensure complicated semantics for all callers. 1061 */ 1062 vdev_close(vd); 1063 1064 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 1065 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 1066 1067 /* 1068 * Free all children. 1069 */ 1070 for (int c = 0; c < vd->vdev_children; c++) 1071 vdev_free(vd->vdev_child[c]); 1072 1073 ASSERT(vd->vdev_child == NULL); 1074 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 1075 1076 if (vd->vdev_ops->vdev_op_fini != NULL) 1077 vd->vdev_ops->vdev_op_fini(vd); 1078 1079 /* 1080 * Discard allocation state. 1081 */ 1082 if (vd->vdev_mg != NULL) { 1083 vdev_metaslab_fini(vd); 1084 metaslab_group_destroy(vd->vdev_mg); 1085 vd->vdev_mg = NULL; 1086 } 1087 if (vd->vdev_log_mg != NULL) { 1088 ASSERT0(vd->vdev_ms_count); 1089 metaslab_group_destroy(vd->vdev_log_mg); 1090 vd->vdev_log_mg = NULL; 1091 } 1092 1093 ASSERT0(vd->vdev_stat.vs_space); 1094 ASSERT0(vd->vdev_stat.vs_dspace); 1095 ASSERT0(vd->vdev_stat.vs_alloc); 1096 1097 /* 1098 * Remove this vdev from its parent's child list. 1099 */ 1100 vdev_remove_child(vd->vdev_parent, vd); 1101 1102 ASSERT(vd->vdev_parent == NULL); 1103 ASSERT(!list_link_active(&vd->vdev_leaf_node)); 1104 1105 /* 1106 * Clean up vdev structure. 1107 */ 1108 vdev_queue_fini(vd); 1109 1110 if (vd->vdev_path) 1111 spa_strfree(vd->vdev_path); 1112 if (vd->vdev_devid) 1113 spa_strfree(vd->vdev_devid); 1114 if (vd->vdev_physpath) 1115 spa_strfree(vd->vdev_physpath); 1116 1117 if (vd->vdev_enc_sysfs_path) 1118 spa_strfree(vd->vdev_enc_sysfs_path); 1119 1120 if (vd->vdev_fru) 1121 spa_strfree(vd->vdev_fru); 1122 1123 if (vd->vdev_isspare) 1124 spa_spare_remove(vd); 1125 if (vd->vdev_isl2cache) 1126 spa_l2cache_remove(vd); 1127 1128 txg_list_destroy(&vd->vdev_ms_list); 1129 txg_list_destroy(&vd->vdev_dtl_list); 1130 1131 mutex_enter(&vd->vdev_dtl_lock); 1132 space_map_close(vd->vdev_dtl_sm); 1133 for (int t = 0; t < DTL_TYPES; t++) { 1134 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 1135 range_tree_destroy(vd->vdev_dtl[t]); 1136 } 1137 mutex_exit(&vd->vdev_dtl_lock); 1138 1139 EQUIV(vd->vdev_indirect_births != NULL, 1140 vd->vdev_indirect_mapping != NULL); 1141 if (vd->vdev_indirect_births != NULL) { 1142 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1143 vdev_indirect_births_close(vd->vdev_indirect_births); 1144 } 1145 1146 if (vd->vdev_obsolete_sm != NULL) { 1147 ASSERT(vd->vdev_removing || 1148 vd->vdev_ops == &vdev_indirect_ops); 1149 space_map_close(vd->vdev_obsolete_sm); 1150 vd->vdev_obsolete_sm = NULL; 1151 } 1152 range_tree_destroy(vd->vdev_obsolete_segments); 1153 rw_destroy(&vd->vdev_indirect_rwlock); 1154 mutex_destroy(&vd->vdev_obsolete_lock); 1155 1156 mutex_destroy(&vd->vdev_dtl_lock); 1157 mutex_destroy(&vd->vdev_stat_lock); 1158 mutex_destroy(&vd->vdev_probe_lock); 1159 mutex_destroy(&vd->vdev_scan_io_queue_lock); 1160 1161 mutex_destroy(&vd->vdev_initialize_lock); 1162 mutex_destroy(&vd->vdev_initialize_io_lock); 1163 cv_destroy(&vd->vdev_initialize_io_cv); 1164 cv_destroy(&vd->vdev_initialize_cv); 1165 1166 mutex_destroy(&vd->vdev_trim_lock); 1167 mutex_destroy(&vd->vdev_autotrim_lock); 1168 mutex_destroy(&vd->vdev_trim_io_lock); 1169 cv_destroy(&vd->vdev_trim_cv); 1170 cv_destroy(&vd->vdev_autotrim_cv); 1171 cv_destroy(&vd->vdev_autotrim_kick_cv); 1172 cv_destroy(&vd->vdev_trim_io_cv); 1173 1174 mutex_destroy(&vd->vdev_rebuild_lock); 1175 cv_destroy(&vd->vdev_rebuild_cv); 1176 1177 zfs_ratelimit_fini(&vd->vdev_delay_rl); 1178 zfs_ratelimit_fini(&vd->vdev_deadman_rl); 1179 zfs_ratelimit_fini(&vd->vdev_checksum_rl); 1180 1181 if (vd == spa->spa_root_vdev) 1182 spa->spa_root_vdev = NULL; 1183 1184 kmem_free(vd, sizeof (vdev_t)); 1185 } 1186 1187 /* 1188 * Transfer top-level vdev state from svd to tvd. 1189 */ 1190 static void 1191 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 1192 { 1193 spa_t *spa = svd->vdev_spa; 1194 metaslab_t *msp; 1195 vdev_t *vd; 1196 int t; 1197 1198 ASSERT(tvd == tvd->vdev_top); 1199 1200 tvd->vdev_ms_array = svd->vdev_ms_array; 1201 tvd->vdev_ms_shift = svd->vdev_ms_shift; 1202 tvd->vdev_ms_count = svd->vdev_ms_count; 1203 tvd->vdev_top_zap = svd->vdev_top_zap; 1204 1205 svd->vdev_ms_array = 0; 1206 svd->vdev_ms_shift = 0; 1207 svd->vdev_ms_count = 0; 1208 svd->vdev_top_zap = 0; 1209 1210 if (tvd->vdev_mg) 1211 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 1212 if (tvd->vdev_log_mg) 1213 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg); 1214 tvd->vdev_mg = svd->vdev_mg; 1215 tvd->vdev_log_mg = svd->vdev_log_mg; 1216 tvd->vdev_ms = svd->vdev_ms; 1217 1218 svd->vdev_mg = NULL; 1219 svd->vdev_log_mg = NULL; 1220 svd->vdev_ms = NULL; 1221 1222 if (tvd->vdev_mg != NULL) 1223 tvd->vdev_mg->mg_vd = tvd; 1224 if (tvd->vdev_log_mg != NULL) 1225 tvd->vdev_log_mg->mg_vd = tvd; 1226 1227 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 1228 svd->vdev_checkpoint_sm = NULL; 1229 1230 tvd->vdev_alloc_bias = svd->vdev_alloc_bias; 1231 svd->vdev_alloc_bias = VDEV_BIAS_NONE; 1232 1233 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 1234 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 1235 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 1236 1237 svd->vdev_stat.vs_alloc = 0; 1238 svd->vdev_stat.vs_space = 0; 1239 svd->vdev_stat.vs_dspace = 0; 1240 1241 /* 1242 * State which may be set on a top-level vdev that's in the 1243 * process of being removed. 1244 */ 1245 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 1246 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 1247 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 1248 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); 1249 ASSERT3P(tvd->vdev_indirect_births, ==, NULL); 1250 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); 1251 ASSERT0(tvd->vdev_noalloc); 1252 ASSERT0(tvd->vdev_removing); 1253 ASSERT0(tvd->vdev_rebuilding); 1254 tvd->vdev_noalloc = svd->vdev_noalloc; 1255 tvd->vdev_removing = svd->vdev_removing; 1256 tvd->vdev_rebuilding = svd->vdev_rebuilding; 1257 tvd->vdev_rebuild_config = svd->vdev_rebuild_config; 1258 tvd->vdev_indirect_config = svd->vdev_indirect_config; 1259 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 1260 tvd->vdev_indirect_births = svd->vdev_indirect_births; 1261 range_tree_swap(&svd->vdev_obsolete_segments, 1262 &tvd->vdev_obsolete_segments); 1263 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 1264 svd->vdev_indirect_config.vic_mapping_object = 0; 1265 svd->vdev_indirect_config.vic_births_object = 0; 1266 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 1267 svd->vdev_indirect_mapping = NULL; 1268 svd->vdev_indirect_births = NULL; 1269 svd->vdev_obsolete_sm = NULL; 1270 svd->vdev_noalloc = 0; 1271 svd->vdev_removing = 0; 1272 svd->vdev_rebuilding = 0; 1273 1274 for (t = 0; t < TXG_SIZE; t++) { 1275 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 1276 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 1277 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 1278 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 1279 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 1280 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 1281 } 1282 1283 if (list_link_active(&svd->vdev_config_dirty_node)) { 1284 vdev_config_clean(svd); 1285 vdev_config_dirty(tvd); 1286 } 1287 1288 if (list_link_active(&svd->vdev_state_dirty_node)) { 1289 vdev_state_clean(svd); 1290 vdev_state_dirty(tvd); 1291 } 1292 1293 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 1294 svd->vdev_deflate_ratio = 0; 1295 1296 tvd->vdev_islog = svd->vdev_islog; 1297 svd->vdev_islog = 0; 1298 1299 dsl_scan_io_queue_vdev_xfer(svd, tvd); 1300 } 1301 1302 static void 1303 vdev_top_update(vdev_t *tvd, vdev_t *vd) 1304 { 1305 if (vd == NULL) 1306 return; 1307 1308 vd->vdev_top = tvd; 1309 1310 for (int c = 0; c < vd->vdev_children; c++) 1311 vdev_top_update(tvd, vd->vdev_child[c]); 1312 } 1313 1314 /* 1315 * Add a mirror/replacing vdev above an existing vdev. There is no need to 1316 * call .vdev_op_init() since mirror/replacing vdevs do not have private state. 1317 */ 1318 vdev_t * 1319 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 1320 { 1321 spa_t *spa = cvd->vdev_spa; 1322 vdev_t *pvd = cvd->vdev_parent; 1323 vdev_t *mvd; 1324 1325 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1326 1327 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 1328 1329 mvd->vdev_asize = cvd->vdev_asize; 1330 mvd->vdev_min_asize = cvd->vdev_min_asize; 1331 mvd->vdev_max_asize = cvd->vdev_max_asize; 1332 mvd->vdev_psize = cvd->vdev_psize; 1333 mvd->vdev_ashift = cvd->vdev_ashift; 1334 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift; 1335 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift; 1336 mvd->vdev_state = cvd->vdev_state; 1337 mvd->vdev_crtxg = cvd->vdev_crtxg; 1338 1339 vdev_remove_child(pvd, cvd); 1340 vdev_add_child(pvd, mvd); 1341 cvd->vdev_id = mvd->vdev_children; 1342 vdev_add_child(mvd, cvd); 1343 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1344 1345 if (mvd == mvd->vdev_top) 1346 vdev_top_transfer(cvd, mvd); 1347 1348 return (mvd); 1349 } 1350 1351 /* 1352 * Remove a 1-way mirror/replacing vdev from the tree. 1353 */ 1354 void 1355 vdev_remove_parent(vdev_t *cvd) 1356 { 1357 vdev_t *mvd = cvd->vdev_parent; 1358 vdev_t *pvd = mvd->vdev_parent; 1359 1360 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1361 1362 ASSERT(mvd->vdev_children == 1); 1363 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1364 mvd->vdev_ops == &vdev_replacing_ops || 1365 mvd->vdev_ops == &vdev_spare_ops); 1366 cvd->vdev_ashift = mvd->vdev_ashift; 1367 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift; 1368 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift; 1369 vdev_remove_child(mvd, cvd); 1370 vdev_remove_child(pvd, mvd); 1371 1372 /* 1373 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1374 * Otherwise, we could have detached an offline device, and when we 1375 * go to import the pool we'll think we have two top-level vdevs, 1376 * instead of a different version of the same top-level vdev. 1377 */ 1378 if (mvd->vdev_top == mvd) { 1379 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1380 cvd->vdev_orig_guid = cvd->vdev_guid; 1381 cvd->vdev_guid += guid_delta; 1382 cvd->vdev_guid_sum += guid_delta; 1383 1384 /* 1385 * If pool not set for autoexpand, we need to also preserve 1386 * mvd's asize to prevent automatic expansion of cvd. 1387 * Otherwise if we are adjusting the mirror by attaching and 1388 * detaching children of non-uniform sizes, the mirror could 1389 * autoexpand, unexpectedly requiring larger devices to 1390 * re-establish the mirror. 1391 */ 1392 if (!cvd->vdev_spa->spa_autoexpand) 1393 cvd->vdev_asize = mvd->vdev_asize; 1394 } 1395 cvd->vdev_id = mvd->vdev_id; 1396 vdev_add_child(pvd, cvd); 1397 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1398 1399 if (cvd == cvd->vdev_top) 1400 vdev_top_transfer(mvd, cvd); 1401 1402 ASSERT(mvd->vdev_children == 0); 1403 vdev_free(mvd); 1404 } 1405 1406 /* 1407 * Choose GCD for spa_gcd_alloc. 1408 */ 1409 static uint64_t 1410 vdev_gcd(uint64_t a, uint64_t b) 1411 { 1412 while (b != 0) { 1413 uint64_t t = b; 1414 b = a % b; 1415 a = t; 1416 } 1417 return (a); 1418 } 1419 1420 /* 1421 * Set spa_min_alloc and spa_gcd_alloc. 1422 */ 1423 static void 1424 vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc) 1425 { 1426 if (min_alloc < spa->spa_min_alloc) 1427 spa->spa_min_alloc = min_alloc; 1428 if (spa->spa_gcd_alloc == INT_MAX) { 1429 spa->spa_gcd_alloc = min_alloc; 1430 } else { 1431 spa->spa_gcd_alloc = vdev_gcd(min_alloc, 1432 spa->spa_gcd_alloc); 1433 } 1434 } 1435 1436 void 1437 vdev_metaslab_group_create(vdev_t *vd) 1438 { 1439 spa_t *spa = vd->vdev_spa; 1440 1441 /* 1442 * metaslab_group_create was delayed until allocation bias was available 1443 */ 1444 if (vd->vdev_mg == NULL) { 1445 metaslab_class_t *mc; 1446 1447 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) 1448 vd->vdev_alloc_bias = VDEV_BIAS_LOG; 1449 1450 ASSERT3U(vd->vdev_islog, ==, 1451 (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); 1452 1453 switch (vd->vdev_alloc_bias) { 1454 case VDEV_BIAS_LOG: 1455 mc = spa_log_class(spa); 1456 break; 1457 case VDEV_BIAS_SPECIAL: 1458 mc = spa_special_class(spa); 1459 break; 1460 case VDEV_BIAS_DEDUP: 1461 mc = spa_dedup_class(spa); 1462 break; 1463 default: 1464 mc = spa_normal_class(spa); 1465 } 1466 1467 vd->vdev_mg = metaslab_group_create(mc, vd, 1468 spa->spa_alloc_count); 1469 1470 if (!vd->vdev_islog) { 1471 vd->vdev_log_mg = metaslab_group_create( 1472 spa_embedded_log_class(spa), vd, 1); 1473 } 1474 1475 /* 1476 * The spa ashift min/max only apply for the normal metaslab 1477 * class. Class destination is late binding so ashift boundary 1478 * setting had to wait until now. 1479 */ 1480 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1481 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { 1482 if (vd->vdev_ashift > spa->spa_max_ashift) 1483 spa->spa_max_ashift = vd->vdev_ashift; 1484 if (vd->vdev_ashift < spa->spa_min_ashift) 1485 spa->spa_min_ashift = vd->vdev_ashift; 1486 1487 uint64_t min_alloc = vdev_get_min_alloc(vd); 1488 vdev_spa_set_alloc(spa, min_alloc); 1489 } 1490 } 1491 } 1492 1493 int 1494 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1495 { 1496 spa_t *spa = vd->vdev_spa; 1497 uint64_t oldc = vd->vdev_ms_count; 1498 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1499 metaslab_t **mspp; 1500 int error; 1501 boolean_t expanding = (oldc != 0); 1502 1503 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1504 1505 /* 1506 * This vdev is not being allocated from yet or is a hole. 1507 */ 1508 if (vd->vdev_ms_shift == 0) 1509 return (0); 1510 1511 ASSERT(!vd->vdev_ishole); 1512 1513 ASSERT(oldc <= newc); 1514 1515 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1516 1517 if (expanding) { 1518 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp)); 1519 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1520 } 1521 1522 vd->vdev_ms = mspp; 1523 vd->vdev_ms_count = newc; 1524 1525 for (uint64_t m = oldc; m < newc; m++) { 1526 uint64_t object = 0; 1527 /* 1528 * vdev_ms_array may be 0 if we are creating the "fake" 1529 * metaslabs for an indirect vdev for zdb's leak detection. 1530 * See zdb_leak_init(). 1531 */ 1532 if (txg == 0 && vd->vdev_ms_array != 0) { 1533 error = dmu_read(spa->spa_meta_objset, 1534 vd->vdev_ms_array, 1535 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1536 DMU_READ_PREFETCH); 1537 if (error != 0) { 1538 vdev_dbgmsg(vd, "unable to read the metaslab " 1539 "array [error=%d]", error); 1540 return (error); 1541 } 1542 } 1543 1544 error = metaslab_init(vd->vdev_mg, m, object, txg, 1545 &(vd->vdev_ms[m])); 1546 if (error != 0) { 1547 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1548 error); 1549 return (error); 1550 } 1551 } 1552 1553 /* 1554 * Find the emptiest metaslab on the vdev and mark it for use for 1555 * embedded slog by moving it from the regular to the log metaslab 1556 * group. 1557 */ 1558 if (vd->vdev_mg->mg_class == spa_normal_class(spa) && 1559 vd->vdev_ms_count > zfs_embedded_slog_min_ms && 1560 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) { 1561 uint64_t slog_msid = 0; 1562 uint64_t smallest = UINT64_MAX; 1563 1564 /* 1565 * Note, we only search the new metaslabs, because the old 1566 * (pre-existing) ones may be active (e.g. have non-empty 1567 * range_tree's), and we don't move them to the new 1568 * metaslab_t. 1569 */ 1570 for (uint64_t m = oldc; m < newc; m++) { 1571 uint64_t alloc = 1572 space_map_allocated(vd->vdev_ms[m]->ms_sm); 1573 if (alloc < smallest) { 1574 slog_msid = m; 1575 smallest = alloc; 1576 } 1577 } 1578 metaslab_t *slog_ms = vd->vdev_ms[slog_msid]; 1579 /* 1580 * The metaslab was marked as dirty at the end of 1581 * metaslab_init(). Remove it from the dirty list so that we 1582 * can uninitialize and reinitialize it to the new class. 1583 */ 1584 if (txg != 0) { 1585 (void) txg_list_remove_this(&vd->vdev_ms_list, 1586 slog_ms, txg); 1587 } 1588 uint64_t sm_obj = space_map_object(slog_ms->ms_sm); 1589 metaslab_fini(slog_ms); 1590 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg, 1591 &vd->vdev_ms[slog_msid])); 1592 } 1593 1594 if (txg == 0) 1595 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1596 1597 /* 1598 * If the vdev is marked as non-allocating then don't 1599 * activate the metaslabs since we want to ensure that 1600 * no allocations are performed on this device. 1601 */ 1602 if (vd->vdev_noalloc) { 1603 /* track non-allocating vdev space */ 1604 spa->spa_nonallocating_dspace += spa_deflate(spa) ? 1605 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 1606 } else if (!expanding) { 1607 metaslab_group_activate(vd->vdev_mg); 1608 if (vd->vdev_log_mg != NULL) 1609 metaslab_group_activate(vd->vdev_log_mg); 1610 } 1611 1612 if (txg == 0) 1613 spa_config_exit(spa, SCL_ALLOC, FTAG); 1614 1615 return (0); 1616 } 1617 1618 void 1619 vdev_metaslab_fini(vdev_t *vd) 1620 { 1621 if (vd->vdev_checkpoint_sm != NULL) { 1622 ASSERT(spa_feature_is_active(vd->vdev_spa, 1623 SPA_FEATURE_POOL_CHECKPOINT)); 1624 space_map_close(vd->vdev_checkpoint_sm); 1625 /* 1626 * Even though we close the space map, we need to set its 1627 * pointer to NULL. The reason is that vdev_metaslab_fini() 1628 * may be called multiple times for certain operations 1629 * (i.e. when destroying a pool) so we need to ensure that 1630 * this clause never executes twice. This logic is similar 1631 * to the one used for the vdev_ms clause below. 1632 */ 1633 vd->vdev_checkpoint_sm = NULL; 1634 } 1635 1636 if (vd->vdev_ms != NULL) { 1637 metaslab_group_t *mg = vd->vdev_mg; 1638 1639 metaslab_group_passivate(mg); 1640 if (vd->vdev_log_mg != NULL) { 1641 ASSERT(!vd->vdev_islog); 1642 metaslab_group_passivate(vd->vdev_log_mg); 1643 } 1644 1645 uint64_t count = vd->vdev_ms_count; 1646 for (uint64_t m = 0; m < count; m++) { 1647 metaslab_t *msp = vd->vdev_ms[m]; 1648 if (msp != NULL) 1649 metaslab_fini(msp); 1650 } 1651 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1652 vd->vdev_ms = NULL; 1653 vd->vdev_ms_count = 0; 1654 1655 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 1656 ASSERT0(mg->mg_histogram[i]); 1657 if (vd->vdev_log_mg != NULL) 1658 ASSERT0(vd->vdev_log_mg->mg_histogram[i]); 1659 } 1660 } 1661 ASSERT0(vd->vdev_ms_count); 1662 } 1663 1664 typedef struct vdev_probe_stats { 1665 boolean_t vps_readable; 1666 boolean_t vps_writeable; 1667 boolean_t vps_zio_done_probe; 1668 int vps_flags; 1669 } vdev_probe_stats_t; 1670 1671 static void 1672 vdev_probe_done(zio_t *zio) 1673 { 1674 spa_t *spa = zio->io_spa; 1675 vdev_t *vd = zio->io_vd; 1676 vdev_probe_stats_t *vps = zio->io_private; 1677 1678 ASSERT(vd->vdev_probe_zio != NULL); 1679 1680 if (zio->io_type == ZIO_TYPE_READ) { 1681 if (zio->io_error == 0) 1682 vps->vps_readable = 1; 1683 if (zio->io_error == 0 && spa_writeable(spa)) { 1684 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1685 zio->io_offset, zio->io_size, zio->io_abd, 1686 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1687 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1688 } else { 1689 abd_free(zio->io_abd); 1690 } 1691 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1692 if (zio->io_error == 0) 1693 vps->vps_writeable = 1; 1694 abd_free(zio->io_abd); 1695 } else if (zio->io_type == ZIO_TYPE_NULL) { 1696 zio_t *pio; 1697 zio_link_t *zl; 1698 1699 vd->vdev_cant_read |= !vps->vps_readable; 1700 vd->vdev_cant_write |= !vps->vps_writeable; 1701 vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u", 1702 vd->vdev_cant_read, vd->vdev_cant_write); 1703 1704 if (vdev_readable(vd) && 1705 (vdev_writeable(vd) || !spa_writeable(spa))) { 1706 zio->io_error = 0; 1707 } else { 1708 ASSERT(zio->io_error != 0); 1709 vdev_dbgmsg(vd, "failed probe"); 1710 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1711 spa, vd, NULL, NULL, 0); 1712 zio->io_error = SET_ERROR(ENXIO); 1713 1714 /* 1715 * If this probe was initiated from zio pipeline, then 1716 * change the state in a spa_async_request. Probes that 1717 * were initiated from a vdev_open can change the state 1718 * as part of the open call. 1719 */ 1720 if (vps->vps_zio_done_probe) { 1721 vd->vdev_fault_wanted = B_TRUE; 1722 spa_async_request(spa, SPA_ASYNC_FAULT_VDEV); 1723 } 1724 } 1725 1726 mutex_enter(&vd->vdev_probe_lock); 1727 ASSERT(vd->vdev_probe_zio == zio); 1728 vd->vdev_probe_zio = NULL; 1729 mutex_exit(&vd->vdev_probe_lock); 1730 1731 zl = NULL; 1732 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1733 if (!vdev_accessible(vd, pio)) 1734 pio->io_error = SET_ERROR(ENXIO); 1735 1736 kmem_free(vps, sizeof (*vps)); 1737 } 1738 } 1739 1740 /* 1741 * Determine whether this device is accessible. 1742 * 1743 * Read and write to several known locations: the pad regions of each 1744 * vdev label but the first, which we leave alone in case it contains 1745 * a VTOC. 1746 */ 1747 zio_t * 1748 vdev_probe(vdev_t *vd, zio_t *zio) 1749 { 1750 spa_t *spa = vd->vdev_spa; 1751 vdev_probe_stats_t *vps = NULL; 1752 zio_t *pio; 1753 1754 ASSERT(vd->vdev_ops->vdev_op_leaf); 1755 1756 /* 1757 * Don't probe the probe. 1758 */ 1759 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1760 return (NULL); 1761 1762 /* 1763 * To prevent 'probe storms' when a device fails, we create 1764 * just one probe i/o at a time. All zios that want to probe 1765 * this vdev will become parents of the probe io. 1766 */ 1767 mutex_enter(&vd->vdev_probe_lock); 1768 1769 if ((pio = vd->vdev_probe_zio) == NULL) { 1770 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1771 1772 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1773 ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD; 1774 vps->vps_zio_done_probe = (zio != NULL); 1775 1776 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1777 /* 1778 * vdev_cant_read and vdev_cant_write can only 1779 * transition from TRUE to FALSE when we have the 1780 * SCL_ZIO lock as writer; otherwise they can only 1781 * transition from FALSE to TRUE. This ensures that 1782 * any zio looking at these values can assume that 1783 * failures persist for the life of the I/O. That's 1784 * important because when a device has intermittent 1785 * connectivity problems, we want to ensure that 1786 * they're ascribed to the device (ENXIO) and not 1787 * the zio (EIO). 1788 * 1789 * Since we hold SCL_ZIO as writer here, clear both 1790 * values so the probe can reevaluate from first 1791 * principles. 1792 */ 1793 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1794 vd->vdev_cant_read = B_FALSE; 1795 vd->vdev_cant_write = B_FALSE; 1796 } 1797 1798 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1799 vdev_probe_done, vps, 1800 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1801 } 1802 1803 if (zio != NULL) 1804 zio_add_child(zio, pio); 1805 1806 mutex_exit(&vd->vdev_probe_lock); 1807 1808 if (vps == NULL) { 1809 ASSERT(zio != NULL); 1810 return (NULL); 1811 } 1812 1813 for (int l = 1; l < VDEV_LABELS; l++) { 1814 zio_nowait(zio_read_phys(pio, vd, 1815 vdev_label_offset(vd->vdev_psize, l, 1816 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE, 1817 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1818 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1819 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1820 } 1821 1822 if (zio == NULL) 1823 return (pio); 1824 1825 zio_nowait(pio); 1826 return (NULL); 1827 } 1828 1829 static void 1830 vdev_load_child(void *arg) 1831 { 1832 vdev_t *vd = arg; 1833 1834 vd->vdev_load_error = vdev_load(vd); 1835 } 1836 1837 static void 1838 vdev_open_child(void *arg) 1839 { 1840 vdev_t *vd = arg; 1841 1842 vd->vdev_open_thread = curthread; 1843 vd->vdev_open_error = vdev_open(vd); 1844 vd->vdev_open_thread = NULL; 1845 } 1846 1847 static boolean_t 1848 vdev_uses_zvols(vdev_t *vd) 1849 { 1850 #ifdef _KERNEL 1851 if (zvol_is_zvol(vd->vdev_path)) 1852 return (B_TRUE); 1853 #endif 1854 1855 for (int c = 0; c < vd->vdev_children; c++) 1856 if (vdev_uses_zvols(vd->vdev_child[c])) 1857 return (B_TRUE); 1858 1859 return (B_FALSE); 1860 } 1861 1862 /* 1863 * Returns B_TRUE if the passed child should be opened. 1864 */ 1865 static boolean_t 1866 vdev_default_open_children_func(vdev_t *vd) 1867 { 1868 (void) vd; 1869 return (B_TRUE); 1870 } 1871 1872 /* 1873 * Open the requested child vdevs. If any of the leaf vdevs are using 1874 * a ZFS volume then do the opens in a single thread. This avoids a 1875 * deadlock when the current thread is holding the spa_namespace_lock. 1876 */ 1877 static void 1878 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func) 1879 { 1880 int children = vd->vdev_children; 1881 1882 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri, 1883 children, children, TASKQ_PREPOPULATE); 1884 vd->vdev_nonrot = B_TRUE; 1885 1886 for (int c = 0; c < children; c++) { 1887 vdev_t *cvd = vd->vdev_child[c]; 1888 1889 if (open_func(cvd) == B_FALSE) 1890 continue; 1891 1892 if (tq == NULL || vdev_uses_zvols(vd)) { 1893 cvd->vdev_open_error = vdev_open(cvd); 1894 } else { 1895 VERIFY(taskq_dispatch(tq, vdev_open_child, 1896 cvd, TQ_SLEEP) != TASKQID_INVALID); 1897 } 1898 1899 vd->vdev_nonrot &= cvd->vdev_nonrot; 1900 } 1901 1902 if (tq != NULL) { 1903 taskq_wait(tq); 1904 taskq_destroy(tq); 1905 } 1906 } 1907 1908 /* 1909 * Open all child vdevs. 1910 */ 1911 void 1912 vdev_open_children(vdev_t *vd) 1913 { 1914 vdev_open_children_impl(vd, vdev_default_open_children_func); 1915 } 1916 1917 /* 1918 * Conditionally open a subset of child vdevs. 1919 */ 1920 void 1921 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func) 1922 { 1923 vdev_open_children_impl(vd, open_func); 1924 } 1925 1926 /* 1927 * Compute the raidz-deflation ratio. Note, we hard-code 128k (1 << 17) 1928 * because it is the "typical" blocksize. Even though SPA_MAXBLOCKSIZE 1929 * changed, this algorithm can not change, otherwise it would inconsistently 1930 * account for existing bp's. We also hard-code txg 0 for the same reason 1931 * since expanded RAIDZ vdevs can use a different asize for different birth 1932 * txg's. 1933 */ 1934 static void 1935 vdev_set_deflate_ratio(vdev_t *vd) 1936 { 1937 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 1938 vd->vdev_deflate_ratio = (1 << 17) / 1939 (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >> 1940 SPA_MINBLOCKSHIFT); 1941 } 1942 } 1943 1944 /* 1945 * Choose the best of two ashifts, preferring one between logical ashift 1946 * (absolute minimum) and administrator defined maximum, otherwise take 1947 * the biggest of the two. 1948 */ 1949 uint64_t 1950 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b) 1951 { 1952 if (a > logical && a <= zfs_vdev_max_auto_ashift) { 1953 if (b <= logical || b > zfs_vdev_max_auto_ashift) 1954 return (a); 1955 else 1956 return (MAX(a, b)); 1957 } else if (b <= logical || b > zfs_vdev_max_auto_ashift) 1958 return (MAX(a, b)); 1959 return (b); 1960 } 1961 1962 /* 1963 * Maximize performance by inflating the configured ashift for top level 1964 * vdevs to be as close to the physical ashift as possible while maintaining 1965 * administrator defined limits and ensuring it doesn't go below the 1966 * logical ashift. 1967 */ 1968 static void 1969 vdev_ashift_optimize(vdev_t *vd) 1970 { 1971 ASSERT(vd == vd->vdev_top); 1972 1973 if (vd->vdev_ashift < vd->vdev_physical_ashift && 1974 vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) { 1975 vd->vdev_ashift = MIN( 1976 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift), 1977 MAX(zfs_vdev_min_auto_ashift, 1978 vd->vdev_physical_ashift)); 1979 } else { 1980 /* 1981 * If the logical and physical ashifts are the same, then 1982 * we ensure that the top-level vdev's ashift is not smaller 1983 * than our minimum ashift value. For the unusual case 1984 * where logical ashift > physical ashift, we can't cap 1985 * the calculated ashift based on max ashift as that 1986 * would cause failures. 1987 * We still check if we need to increase it to match 1988 * the min ashift. 1989 */ 1990 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift, 1991 vd->vdev_ashift); 1992 } 1993 } 1994 1995 /* 1996 * Prepare a virtual device for access. 1997 */ 1998 int 1999 vdev_open(vdev_t *vd) 2000 { 2001 spa_t *spa = vd->vdev_spa; 2002 int error; 2003 uint64_t osize = 0; 2004 uint64_t max_osize = 0; 2005 uint64_t asize, max_asize, psize; 2006 uint64_t logical_ashift = 0; 2007 uint64_t physical_ashift = 0; 2008 2009 ASSERT(vd->vdev_open_thread == curthread || 2010 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2011 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 2012 vd->vdev_state == VDEV_STATE_CANT_OPEN || 2013 vd->vdev_state == VDEV_STATE_OFFLINE); 2014 2015 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2016 vd->vdev_cant_read = B_FALSE; 2017 vd->vdev_cant_write = B_FALSE; 2018 vd->vdev_min_asize = vdev_get_min_asize(vd); 2019 2020 /* 2021 * If this vdev is not removed, check its fault status. If it's 2022 * faulted, bail out of the open. 2023 */ 2024 if (!vd->vdev_removed && vd->vdev_faulted) { 2025 ASSERT(vd->vdev_children == 0); 2026 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 2027 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 2028 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2029 vd->vdev_label_aux); 2030 return (SET_ERROR(ENXIO)); 2031 } else if (vd->vdev_offline) { 2032 ASSERT(vd->vdev_children == 0); 2033 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 2034 return (SET_ERROR(ENXIO)); 2035 } 2036 2037 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, 2038 &logical_ashift, &physical_ashift); 2039 2040 /* Keep the device in removed state if unplugged */ 2041 if (error == ENOENT && vd->vdev_removed) { 2042 vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED, 2043 VDEV_AUX_NONE); 2044 return (error); 2045 } 2046 2047 /* 2048 * Physical volume size should never be larger than its max size, unless 2049 * the disk has shrunk while we were reading it or the device is buggy 2050 * or damaged: either way it's not safe for use, bail out of the open. 2051 */ 2052 if (osize > max_osize) { 2053 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2054 VDEV_AUX_OPEN_FAILED); 2055 return (SET_ERROR(ENXIO)); 2056 } 2057 2058 /* 2059 * Reset the vdev_reopening flag so that we actually close 2060 * the vdev on error. 2061 */ 2062 vd->vdev_reopening = B_FALSE; 2063 if (zio_injection_enabled && error == 0) 2064 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO)); 2065 2066 if (error) { 2067 if (vd->vdev_removed && 2068 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 2069 vd->vdev_removed = B_FALSE; 2070 2071 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 2072 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 2073 vd->vdev_stat.vs_aux); 2074 } else { 2075 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2076 vd->vdev_stat.vs_aux); 2077 } 2078 return (error); 2079 } 2080 2081 vd->vdev_removed = B_FALSE; 2082 2083 /* 2084 * Recheck the faulted flag now that we have confirmed that 2085 * the vdev is accessible. If we're faulted, bail. 2086 */ 2087 if (vd->vdev_faulted) { 2088 ASSERT(vd->vdev_children == 0); 2089 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 2090 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 2091 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2092 vd->vdev_label_aux); 2093 return (SET_ERROR(ENXIO)); 2094 } 2095 2096 if (vd->vdev_degraded) { 2097 ASSERT(vd->vdev_children == 0); 2098 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2099 VDEV_AUX_ERR_EXCEEDED); 2100 } else { 2101 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 2102 } 2103 2104 /* 2105 * For hole or missing vdevs we just return success. 2106 */ 2107 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 2108 return (0); 2109 2110 for (int c = 0; c < vd->vdev_children; c++) { 2111 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 2112 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2113 VDEV_AUX_NONE); 2114 break; 2115 } 2116 } 2117 2118 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 2119 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 2120 2121 if (vd->vdev_children == 0) { 2122 if (osize < SPA_MINDEVSIZE) { 2123 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2124 VDEV_AUX_TOO_SMALL); 2125 return (SET_ERROR(EOVERFLOW)); 2126 } 2127 psize = osize; 2128 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 2129 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 2130 VDEV_LABEL_END_SIZE); 2131 } else { 2132 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 2133 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 2134 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2135 VDEV_AUX_TOO_SMALL); 2136 return (SET_ERROR(EOVERFLOW)); 2137 } 2138 psize = 0; 2139 asize = osize; 2140 max_asize = max_osize; 2141 } 2142 2143 /* 2144 * If the vdev was expanded, record this so that we can re-create the 2145 * uberblock rings in labels {2,3}, during the next sync. 2146 */ 2147 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0)) 2148 vd->vdev_copy_uberblocks = B_TRUE; 2149 2150 vd->vdev_psize = psize; 2151 2152 /* 2153 * Make sure the allocatable size hasn't shrunk too much. 2154 */ 2155 if (asize < vd->vdev_min_asize) { 2156 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2157 VDEV_AUX_BAD_LABEL); 2158 return (SET_ERROR(EINVAL)); 2159 } 2160 2161 /* 2162 * We can always set the logical/physical ashift members since 2163 * their values are only used to calculate the vdev_ashift when 2164 * the device is first added to the config. These values should 2165 * not be used for anything else since they may change whenever 2166 * the device is reopened and we don't store them in the label. 2167 */ 2168 vd->vdev_physical_ashift = 2169 MAX(physical_ashift, vd->vdev_physical_ashift); 2170 vd->vdev_logical_ashift = MAX(logical_ashift, 2171 vd->vdev_logical_ashift); 2172 2173 if (vd->vdev_asize == 0) { 2174 /* 2175 * This is the first-ever open, so use the computed values. 2176 * For compatibility, a different ashift can be requested. 2177 */ 2178 vd->vdev_asize = asize; 2179 vd->vdev_max_asize = max_asize; 2180 2181 /* 2182 * If the vdev_ashift was not overridden at creation time, 2183 * then set it the logical ashift and optimize the ashift. 2184 */ 2185 if (vd->vdev_ashift == 0) { 2186 vd->vdev_ashift = vd->vdev_logical_ashift; 2187 2188 if (vd->vdev_logical_ashift > ASHIFT_MAX) { 2189 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2190 VDEV_AUX_ASHIFT_TOO_BIG); 2191 return (SET_ERROR(EDOM)); 2192 } 2193 2194 if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE) 2195 vdev_ashift_optimize(vd); 2196 vd->vdev_attaching = B_FALSE; 2197 } 2198 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN || 2199 vd->vdev_ashift > ASHIFT_MAX)) { 2200 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2201 VDEV_AUX_BAD_ASHIFT); 2202 return (SET_ERROR(EDOM)); 2203 } 2204 } else { 2205 /* 2206 * Make sure the alignment required hasn't increased. 2207 */ 2208 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift && 2209 vd->vdev_ops->vdev_op_leaf) { 2210 (void) zfs_ereport_post( 2211 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT, 2212 spa, vd, NULL, NULL, 0); 2213 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2214 VDEV_AUX_BAD_LABEL); 2215 return (SET_ERROR(EDOM)); 2216 } 2217 vd->vdev_max_asize = max_asize; 2218 } 2219 2220 /* 2221 * If all children are healthy we update asize if either: 2222 * The asize has increased, due to a device expansion caused by dynamic 2223 * LUN growth or vdev replacement, and automatic expansion is enabled; 2224 * making the additional space available. 2225 * 2226 * The asize has decreased, due to a device shrink usually caused by a 2227 * vdev replace with a smaller device. This ensures that calculations 2228 * based of max_asize and asize e.g. esize are always valid. It's safe 2229 * to do this as we've already validated that asize is greater than 2230 * vdev_min_asize. 2231 */ 2232 if (vd->vdev_state == VDEV_STATE_HEALTHY && 2233 ((asize > vd->vdev_asize && 2234 (vd->vdev_expanding || spa->spa_autoexpand)) || 2235 (asize < vd->vdev_asize))) 2236 vd->vdev_asize = asize; 2237 2238 vdev_set_min_asize(vd); 2239 2240 /* 2241 * Ensure we can issue some IO before declaring the 2242 * vdev open for business. 2243 */ 2244 if (vd->vdev_ops->vdev_op_leaf && 2245 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 2246 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2247 VDEV_AUX_ERR_EXCEEDED); 2248 return (error); 2249 } 2250 2251 /* 2252 * Track the minimum allocation size. 2253 */ 2254 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 2255 vd->vdev_islog == 0 && vd->vdev_aux == NULL) { 2256 uint64_t min_alloc = vdev_get_min_alloc(vd); 2257 vdev_spa_set_alloc(spa, min_alloc); 2258 } 2259 2260 /* 2261 * If this is a leaf vdev, assess whether a resilver is needed. 2262 * But don't do this if we are doing a reopen for a scrub, since 2263 * this would just restart the scrub we are already doing. 2264 */ 2265 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen) 2266 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd); 2267 2268 return (0); 2269 } 2270 2271 static void 2272 vdev_validate_child(void *arg) 2273 { 2274 vdev_t *vd = arg; 2275 2276 vd->vdev_validate_thread = curthread; 2277 vd->vdev_validate_error = vdev_validate(vd); 2278 vd->vdev_validate_thread = NULL; 2279 } 2280 2281 /* 2282 * Called once the vdevs are all opened, this routine validates the label 2283 * contents. This needs to be done before vdev_load() so that we don't 2284 * inadvertently do repair I/Os to the wrong device. 2285 * 2286 * This function will only return failure if one of the vdevs indicates that it 2287 * has since been destroyed or exported. This is only possible if 2288 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 2289 * will be updated but the function will return 0. 2290 */ 2291 int 2292 vdev_validate(vdev_t *vd) 2293 { 2294 spa_t *spa = vd->vdev_spa; 2295 taskq_t *tq = NULL; 2296 nvlist_t *label; 2297 uint64_t guid = 0, aux_guid = 0, top_guid; 2298 uint64_t state; 2299 nvlist_t *nvl; 2300 uint64_t txg; 2301 int children = vd->vdev_children; 2302 2303 if (vdev_validate_skip) 2304 return (0); 2305 2306 if (children > 0) { 2307 tq = taskq_create("vdev_validate", children, minclsyspri, 2308 children, children, TASKQ_PREPOPULATE); 2309 } 2310 2311 for (uint64_t c = 0; c < children; c++) { 2312 vdev_t *cvd = vd->vdev_child[c]; 2313 2314 if (tq == NULL || vdev_uses_zvols(cvd)) { 2315 vdev_validate_child(cvd); 2316 } else { 2317 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd, 2318 TQ_SLEEP) != TASKQID_INVALID); 2319 } 2320 } 2321 if (tq != NULL) { 2322 taskq_wait(tq); 2323 taskq_destroy(tq); 2324 } 2325 for (int c = 0; c < children; c++) { 2326 int error = vd->vdev_child[c]->vdev_validate_error; 2327 2328 if (error != 0) 2329 return (SET_ERROR(EBADF)); 2330 } 2331 2332 2333 /* 2334 * If the device has already failed, or was marked offline, don't do 2335 * any further validation. Otherwise, label I/O will fail and we will 2336 * overwrite the previous state. 2337 */ 2338 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 2339 return (0); 2340 2341 /* 2342 * If we are performing an extreme rewind, we allow for a label that 2343 * was modified at a point after the current txg. 2344 * If config lock is not held do not check for the txg. spa_sync could 2345 * be updating the vdev's label before updating spa_last_synced_txg. 2346 */ 2347 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 2348 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 2349 txg = UINT64_MAX; 2350 else 2351 txg = spa_last_synced_txg(spa); 2352 2353 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 2354 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2355 VDEV_AUX_BAD_LABEL); 2356 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 2357 "txg %llu", (u_longlong_t)txg); 2358 return (0); 2359 } 2360 2361 /* 2362 * Determine if this vdev has been split off into another 2363 * pool. If so, then refuse to open it. 2364 */ 2365 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 2366 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 2367 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2368 VDEV_AUX_SPLIT_POOL); 2369 nvlist_free(label); 2370 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 2371 return (0); 2372 } 2373 2374 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 2375 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2376 VDEV_AUX_CORRUPT_DATA); 2377 nvlist_free(label); 2378 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2379 ZPOOL_CONFIG_POOL_GUID); 2380 return (0); 2381 } 2382 2383 /* 2384 * If config is not trusted then ignore the spa guid check. This is 2385 * necessary because if the machine crashed during a re-guid the new 2386 * guid might have been written to all of the vdev labels, but not the 2387 * cached config. The check will be performed again once we have the 2388 * trusted config from the MOS. 2389 */ 2390 if (spa->spa_trust_config && guid != spa_guid(spa)) { 2391 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2392 VDEV_AUX_CORRUPT_DATA); 2393 nvlist_free(label); 2394 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 2395 "match config (%llu != %llu)", (u_longlong_t)guid, 2396 (u_longlong_t)spa_guid(spa)); 2397 return (0); 2398 } 2399 2400 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 2401 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 2402 &aux_guid) != 0) 2403 aux_guid = 0; 2404 2405 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 2406 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2407 VDEV_AUX_CORRUPT_DATA); 2408 nvlist_free(label); 2409 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2410 ZPOOL_CONFIG_GUID); 2411 return (0); 2412 } 2413 2414 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 2415 != 0) { 2416 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2417 VDEV_AUX_CORRUPT_DATA); 2418 nvlist_free(label); 2419 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2420 ZPOOL_CONFIG_TOP_GUID); 2421 return (0); 2422 } 2423 2424 /* 2425 * If this vdev just became a top-level vdev because its sibling was 2426 * detached, it will have adopted the parent's vdev guid -- but the 2427 * label may or may not be on disk yet. Fortunately, either version 2428 * of the label will have the same top guid, so if we're a top-level 2429 * vdev, we can safely compare to that instead. 2430 * However, if the config comes from a cachefile that failed to update 2431 * after the detach, a top-level vdev will appear as a non top-level 2432 * vdev in the config. Also relax the constraints if we perform an 2433 * extreme rewind. 2434 * 2435 * If we split this vdev off instead, then we also check the 2436 * original pool's guid. We don't want to consider the vdev 2437 * corrupt if it is partway through a split operation. 2438 */ 2439 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 2440 boolean_t mismatch = B_FALSE; 2441 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 2442 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 2443 mismatch = B_TRUE; 2444 } else { 2445 if (vd->vdev_guid != top_guid && 2446 vd->vdev_top->vdev_guid != guid) 2447 mismatch = B_TRUE; 2448 } 2449 2450 if (mismatch) { 2451 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2452 VDEV_AUX_CORRUPT_DATA); 2453 nvlist_free(label); 2454 vdev_dbgmsg(vd, "vdev_validate: config guid " 2455 "doesn't match label guid"); 2456 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 2457 (u_longlong_t)vd->vdev_guid, 2458 (u_longlong_t)vd->vdev_top->vdev_guid); 2459 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 2460 "aux_guid %llu", (u_longlong_t)guid, 2461 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 2462 return (0); 2463 } 2464 } 2465 2466 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 2467 &state) != 0) { 2468 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2469 VDEV_AUX_CORRUPT_DATA); 2470 nvlist_free(label); 2471 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2472 ZPOOL_CONFIG_POOL_STATE); 2473 return (0); 2474 } 2475 2476 nvlist_free(label); 2477 2478 /* 2479 * If this is a verbatim import, no need to check the 2480 * state of the pool. 2481 */ 2482 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 2483 spa_load_state(spa) == SPA_LOAD_OPEN && 2484 state != POOL_STATE_ACTIVE) { 2485 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 2486 "for spa %s", (u_longlong_t)state, spa->spa_name); 2487 return (SET_ERROR(EBADF)); 2488 } 2489 2490 /* 2491 * If we were able to open and validate a vdev that was 2492 * previously marked permanently unavailable, clear that state 2493 * now. 2494 */ 2495 if (vd->vdev_not_present) 2496 vd->vdev_not_present = 0; 2497 2498 return (0); 2499 } 2500 2501 static void 2502 vdev_update_path(const char *prefix, char *svd, char **dvd, uint64_t guid) 2503 { 2504 if (svd != NULL && *dvd != NULL) { 2505 if (strcmp(svd, *dvd) != 0) { 2506 zfs_dbgmsg("vdev_copy_path: vdev %llu: %s changed " 2507 "from '%s' to '%s'", (u_longlong_t)guid, prefix, 2508 *dvd, svd); 2509 spa_strfree(*dvd); 2510 *dvd = spa_strdup(svd); 2511 } 2512 } else if (svd != NULL) { 2513 *dvd = spa_strdup(svd); 2514 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 2515 (u_longlong_t)guid, *dvd); 2516 } 2517 } 2518 2519 static void 2520 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 2521 { 2522 char *old, *new; 2523 2524 vdev_update_path("vdev_path", svd->vdev_path, &dvd->vdev_path, 2525 dvd->vdev_guid); 2526 2527 vdev_update_path("vdev_devid", svd->vdev_devid, &dvd->vdev_devid, 2528 dvd->vdev_guid); 2529 2530 vdev_update_path("vdev_physpath", svd->vdev_physpath, 2531 &dvd->vdev_physpath, dvd->vdev_guid); 2532 2533 /* 2534 * Our enclosure sysfs path may have changed between imports 2535 */ 2536 old = dvd->vdev_enc_sysfs_path; 2537 new = svd->vdev_enc_sysfs_path; 2538 if ((old != NULL && new == NULL) || 2539 (old == NULL && new != NULL) || 2540 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) { 2541 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path " 2542 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2543 old, new); 2544 2545 if (dvd->vdev_enc_sysfs_path) 2546 spa_strfree(dvd->vdev_enc_sysfs_path); 2547 2548 if (svd->vdev_enc_sysfs_path) { 2549 dvd->vdev_enc_sysfs_path = spa_strdup( 2550 svd->vdev_enc_sysfs_path); 2551 } else { 2552 dvd->vdev_enc_sysfs_path = NULL; 2553 } 2554 } 2555 } 2556 2557 /* 2558 * Recursively copy vdev paths from one vdev to another. Source and destination 2559 * vdev trees must have same geometry otherwise return error. Intended to copy 2560 * paths from userland config into MOS config. 2561 */ 2562 int 2563 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 2564 { 2565 if ((svd->vdev_ops == &vdev_missing_ops) || 2566 (svd->vdev_ishole && dvd->vdev_ishole) || 2567 (dvd->vdev_ops == &vdev_indirect_ops)) 2568 return (0); 2569 2570 if (svd->vdev_ops != dvd->vdev_ops) { 2571 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 2572 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 2573 return (SET_ERROR(EINVAL)); 2574 } 2575 2576 if (svd->vdev_guid != dvd->vdev_guid) { 2577 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 2578 "%llu)", (u_longlong_t)svd->vdev_guid, 2579 (u_longlong_t)dvd->vdev_guid); 2580 return (SET_ERROR(EINVAL)); 2581 } 2582 2583 if (svd->vdev_children != dvd->vdev_children) { 2584 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 2585 "%llu != %llu", (u_longlong_t)svd->vdev_children, 2586 (u_longlong_t)dvd->vdev_children); 2587 return (SET_ERROR(EINVAL)); 2588 } 2589 2590 for (uint64_t i = 0; i < svd->vdev_children; i++) { 2591 int error = vdev_copy_path_strict(svd->vdev_child[i], 2592 dvd->vdev_child[i]); 2593 if (error != 0) 2594 return (error); 2595 } 2596 2597 if (svd->vdev_ops->vdev_op_leaf) 2598 vdev_copy_path_impl(svd, dvd); 2599 2600 return (0); 2601 } 2602 2603 static void 2604 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 2605 { 2606 ASSERT(stvd->vdev_top == stvd); 2607 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 2608 2609 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 2610 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 2611 } 2612 2613 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 2614 return; 2615 2616 /* 2617 * The idea here is that while a vdev can shift positions within 2618 * a top vdev (when replacing, attaching mirror, etc.) it cannot 2619 * step outside of it. 2620 */ 2621 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 2622 2623 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 2624 return; 2625 2626 ASSERT(vd->vdev_ops->vdev_op_leaf); 2627 2628 vdev_copy_path_impl(vd, dvd); 2629 } 2630 2631 /* 2632 * Recursively copy vdev paths from one root vdev to another. Source and 2633 * destination vdev trees may differ in geometry. For each destination leaf 2634 * vdev, search a vdev with the same guid and top vdev id in the source. 2635 * Intended to copy paths from userland config into MOS config. 2636 */ 2637 void 2638 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 2639 { 2640 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 2641 ASSERT(srvd->vdev_ops == &vdev_root_ops); 2642 ASSERT(drvd->vdev_ops == &vdev_root_ops); 2643 2644 for (uint64_t i = 0; i < children; i++) { 2645 vdev_copy_path_search(srvd->vdev_child[i], 2646 drvd->vdev_child[i]); 2647 } 2648 } 2649 2650 /* 2651 * Close a virtual device. 2652 */ 2653 void 2654 vdev_close(vdev_t *vd) 2655 { 2656 vdev_t *pvd = vd->vdev_parent; 2657 spa_t *spa __maybe_unused = vd->vdev_spa; 2658 2659 ASSERT(vd != NULL); 2660 ASSERT(vd->vdev_open_thread == curthread || 2661 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2662 2663 /* 2664 * If our parent is reopening, then we are as well, unless we are 2665 * going offline. 2666 */ 2667 if (pvd != NULL && pvd->vdev_reopening) 2668 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 2669 2670 vd->vdev_ops->vdev_op_close(vd); 2671 2672 /* 2673 * We record the previous state before we close it, so that if we are 2674 * doing a reopen(), we don't generate FMA ereports if we notice that 2675 * it's still faulted. 2676 */ 2677 vd->vdev_prevstate = vd->vdev_state; 2678 2679 if (vd->vdev_offline) 2680 vd->vdev_state = VDEV_STATE_OFFLINE; 2681 else 2682 vd->vdev_state = VDEV_STATE_CLOSED; 2683 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2684 } 2685 2686 void 2687 vdev_hold(vdev_t *vd) 2688 { 2689 spa_t *spa = vd->vdev_spa; 2690 2691 ASSERT(spa_is_root(spa)); 2692 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 2693 return; 2694 2695 for (int c = 0; c < vd->vdev_children; c++) 2696 vdev_hold(vd->vdev_child[c]); 2697 2698 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL) 2699 vd->vdev_ops->vdev_op_hold(vd); 2700 } 2701 2702 void 2703 vdev_rele(vdev_t *vd) 2704 { 2705 ASSERT(spa_is_root(vd->vdev_spa)); 2706 for (int c = 0; c < vd->vdev_children; c++) 2707 vdev_rele(vd->vdev_child[c]); 2708 2709 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL) 2710 vd->vdev_ops->vdev_op_rele(vd); 2711 } 2712 2713 /* 2714 * Reopen all interior vdevs and any unopened leaves. We don't actually 2715 * reopen leaf vdevs which had previously been opened as they might deadlock 2716 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 2717 * If the leaf has never been opened then open it, as usual. 2718 */ 2719 void 2720 vdev_reopen(vdev_t *vd) 2721 { 2722 spa_t *spa = vd->vdev_spa; 2723 2724 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2725 2726 /* set the reopening flag unless we're taking the vdev offline */ 2727 vd->vdev_reopening = !vd->vdev_offline; 2728 vdev_close(vd); 2729 (void) vdev_open(vd); 2730 2731 /* 2732 * Call vdev_validate() here to make sure we have the same device. 2733 * Otherwise, a device with an invalid label could be successfully 2734 * opened in response to vdev_reopen(). 2735 */ 2736 if (vd->vdev_aux) { 2737 (void) vdev_validate_aux(vd); 2738 if (vdev_readable(vd) && vdev_writeable(vd) && 2739 vd->vdev_aux == &spa->spa_l2cache) { 2740 /* 2741 * In case the vdev is present we should evict all ARC 2742 * buffers and pointers to log blocks and reclaim their 2743 * space before restoring its contents to L2ARC. 2744 */ 2745 if (l2arc_vdev_present(vd)) { 2746 l2arc_rebuild_vdev(vd, B_TRUE); 2747 } else { 2748 l2arc_add_vdev(spa, vd); 2749 } 2750 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2751 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 2752 } 2753 } else { 2754 (void) vdev_validate(vd); 2755 } 2756 2757 /* 2758 * Recheck if resilver is still needed and cancel any 2759 * scheduled resilver if resilver is unneeded. 2760 */ 2761 if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) && 2762 spa->spa_async_tasks & SPA_ASYNC_RESILVER) { 2763 mutex_enter(&spa->spa_async_lock); 2764 spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER; 2765 mutex_exit(&spa->spa_async_lock); 2766 } 2767 2768 /* 2769 * Reassess parent vdev's health. 2770 */ 2771 vdev_propagate_state(vd); 2772 } 2773 2774 int 2775 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2776 { 2777 int error; 2778 2779 /* 2780 * Normally, partial opens (e.g. of a mirror) are allowed. 2781 * For a create, however, we want to fail the request if 2782 * there are any components we can't open. 2783 */ 2784 error = vdev_open(vd); 2785 2786 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2787 vdev_close(vd); 2788 return (error ? error : SET_ERROR(ENXIO)); 2789 } 2790 2791 /* 2792 * Recursively load DTLs and initialize all labels. 2793 */ 2794 if ((error = vdev_dtl_load(vd)) != 0 || 2795 (error = vdev_label_init(vd, txg, isreplacing ? 2796 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2797 vdev_close(vd); 2798 return (error); 2799 } 2800 2801 return (0); 2802 } 2803 2804 void 2805 vdev_metaslab_set_size(vdev_t *vd) 2806 { 2807 uint64_t asize = vd->vdev_asize; 2808 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2809 uint64_t ms_shift; 2810 2811 /* 2812 * There are two dimensions to the metaslab sizing calculation: 2813 * the size of the metaslab and the count of metaslabs per vdev. 2814 * 2815 * The default values used below are a good balance between memory 2816 * usage (larger metaslab size means more memory needed for loaded 2817 * metaslabs; more metaslabs means more memory needed for the 2818 * metaslab_t structs), metaslab load time (larger metaslabs take 2819 * longer to load), and metaslab sync time (more metaslabs means 2820 * more time spent syncing all of them). 2821 * 2822 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2823 * The range of the dimensions are as follows: 2824 * 2825 * 2^29 <= ms_size <= 2^34 2826 * 16 <= ms_count <= 131,072 2827 * 2828 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2829 * at least 512MB (2^29) to minimize fragmentation effects when 2830 * testing with smaller devices. However, the count constraint 2831 * of at least 16 metaslabs will override this minimum size goal. 2832 * 2833 * On the upper end of vdev sizes, we aim for a maximum metaslab 2834 * size of 16GB. However, we will cap the total count to 2^17 2835 * metaslabs to keep our memory footprint in check and let the 2836 * metaslab size grow from there if that limit is hit. 2837 * 2838 * The net effect of applying above constrains is summarized below. 2839 * 2840 * vdev size metaslab count 2841 * --------------|----------------- 2842 * < 8GB ~16 2843 * 8GB - 100GB one per 512MB 2844 * 100GB - 3TB ~200 2845 * 3TB - 2PB one per 16GB 2846 * > 2PB ~131,072 2847 * -------------------------------- 2848 * 2849 * Finally, note that all of the above calculate the initial 2850 * number of metaslabs. Expanding a top-level vdev will result 2851 * in additional metaslabs being allocated making it possible 2852 * to exceed the zfs_vdev_ms_count_limit. 2853 */ 2854 2855 if (ms_count < zfs_vdev_min_ms_count) 2856 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 2857 else if (ms_count > zfs_vdev_default_ms_count) 2858 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 2859 else 2860 ms_shift = zfs_vdev_default_ms_shift; 2861 2862 if (ms_shift < SPA_MAXBLOCKSHIFT) { 2863 ms_shift = SPA_MAXBLOCKSHIFT; 2864 } else if (ms_shift > zfs_vdev_max_ms_shift) { 2865 ms_shift = zfs_vdev_max_ms_shift; 2866 /* cap the total count to constrain memory footprint */ 2867 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 2868 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 2869 } 2870 2871 vd->vdev_ms_shift = ms_shift; 2872 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 2873 } 2874 2875 void 2876 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 2877 { 2878 ASSERT(vd == vd->vdev_top); 2879 /* indirect vdevs don't have metaslabs or dtls */ 2880 ASSERT(vdev_is_concrete(vd) || flags == 0); 2881 ASSERT(ISP2(flags)); 2882 ASSERT(spa_writeable(vd->vdev_spa)); 2883 2884 if (flags & VDD_METASLAB) 2885 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 2886 2887 if (flags & VDD_DTL) 2888 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 2889 2890 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 2891 } 2892 2893 void 2894 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 2895 { 2896 for (int c = 0; c < vd->vdev_children; c++) 2897 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 2898 2899 if (vd->vdev_ops->vdev_op_leaf) 2900 vdev_dirty(vd->vdev_top, flags, vd, txg); 2901 } 2902 2903 /* 2904 * DTLs. 2905 * 2906 * A vdev's DTL (dirty time log) is the set of transaction groups for which 2907 * the vdev has less than perfect replication. There are four kinds of DTL: 2908 * 2909 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 2910 * 2911 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 2912 * 2913 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 2914 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 2915 * txgs that was scrubbed. 2916 * 2917 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 2918 * persistent errors or just some device being offline. 2919 * Unlike the other three, the DTL_OUTAGE map is not generally 2920 * maintained; it's only computed when needed, typically to 2921 * determine whether a device can be detached. 2922 * 2923 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 2924 * either has the data or it doesn't. 2925 * 2926 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 2927 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 2928 * if any child is less than fully replicated, then so is its parent. 2929 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 2930 * comprising only those txgs which appear in 'maxfaults' or more children; 2931 * those are the txgs we don't have enough replication to read. For example, 2932 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 2933 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 2934 * two child DTL_MISSING maps. 2935 * 2936 * It should be clear from the above that to compute the DTLs and outage maps 2937 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 2938 * Therefore, that is all we keep on disk. When loading the pool, or after 2939 * a configuration change, we generate all other DTLs from first principles. 2940 */ 2941 void 2942 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2943 { 2944 range_tree_t *rt = vd->vdev_dtl[t]; 2945 2946 ASSERT(t < DTL_TYPES); 2947 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2948 ASSERT(spa_writeable(vd->vdev_spa)); 2949 2950 mutex_enter(&vd->vdev_dtl_lock); 2951 if (!range_tree_contains(rt, txg, size)) 2952 range_tree_add(rt, txg, size); 2953 mutex_exit(&vd->vdev_dtl_lock); 2954 } 2955 2956 boolean_t 2957 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2958 { 2959 range_tree_t *rt = vd->vdev_dtl[t]; 2960 boolean_t dirty = B_FALSE; 2961 2962 ASSERT(t < DTL_TYPES); 2963 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2964 2965 /* 2966 * While we are loading the pool, the DTLs have not been loaded yet. 2967 * This isn't a problem but it can result in devices being tried 2968 * which are known to not have the data. In which case, the import 2969 * is relying on the checksum to ensure that we get the right data. 2970 * Note that while importing we are only reading the MOS, which is 2971 * always checksummed. 2972 */ 2973 mutex_enter(&vd->vdev_dtl_lock); 2974 if (!range_tree_is_empty(rt)) 2975 dirty = range_tree_contains(rt, txg, size); 2976 mutex_exit(&vd->vdev_dtl_lock); 2977 2978 return (dirty); 2979 } 2980 2981 boolean_t 2982 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 2983 { 2984 range_tree_t *rt = vd->vdev_dtl[t]; 2985 boolean_t empty; 2986 2987 mutex_enter(&vd->vdev_dtl_lock); 2988 empty = range_tree_is_empty(rt); 2989 mutex_exit(&vd->vdev_dtl_lock); 2990 2991 return (empty); 2992 } 2993 2994 /* 2995 * Check if the txg falls within the range which must be 2996 * resilvered. DVAs outside this range can always be skipped. 2997 */ 2998 boolean_t 2999 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 3000 uint64_t phys_birth) 3001 { 3002 (void) dva, (void) psize; 3003 3004 /* Set by sequential resilver. */ 3005 if (phys_birth == TXG_UNKNOWN) 3006 return (B_TRUE); 3007 3008 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)); 3009 } 3010 3011 /* 3012 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered. 3013 */ 3014 boolean_t 3015 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 3016 uint64_t phys_birth) 3017 { 3018 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 3019 3020 if (vd->vdev_ops->vdev_op_need_resilver == NULL || 3021 vd->vdev_ops->vdev_op_leaf) 3022 return (B_TRUE); 3023 3024 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize, 3025 phys_birth)); 3026 } 3027 3028 /* 3029 * Returns the lowest txg in the DTL range. 3030 */ 3031 static uint64_t 3032 vdev_dtl_min(vdev_t *vd) 3033 { 3034 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 3035 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 3036 ASSERT0(vd->vdev_children); 3037 3038 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1); 3039 } 3040 3041 /* 3042 * Returns the highest txg in the DTL. 3043 */ 3044 static uint64_t 3045 vdev_dtl_max(vdev_t *vd) 3046 { 3047 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 3048 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 3049 ASSERT0(vd->vdev_children); 3050 3051 return (range_tree_max(vd->vdev_dtl[DTL_MISSING])); 3052 } 3053 3054 /* 3055 * Determine if a resilvering vdev should remove any DTL entries from 3056 * its range. If the vdev was resilvering for the entire duration of the 3057 * scan then it should excise that range from its DTLs. Otherwise, this 3058 * vdev is considered partially resilvered and should leave its DTL 3059 * entries intact. The comment in vdev_dtl_reassess() describes how we 3060 * excise the DTLs. 3061 */ 3062 static boolean_t 3063 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done) 3064 { 3065 ASSERT0(vd->vdev_children); 3066 3067 if (vd->vdev_state < VDEV_STATE_DEGRADED) 3068 return (B_FALSE); 3069 3070 if (vd->vdev_resilver_deferred) 3071 return (B_FALSE); 3072 3073 if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 3074 return (B_TRUE); 3075 3076 if (rebuild_done) { 3077 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3078 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 3079 3080 /* Rebuild not initiated by attach */ 3081 if (vd->vdev_rebuild_txg == 0) 3082 return (B_TRUE); 3083 3084 /* 3085 * When a rebuild completes without error then all missing data 3086 * up to the rebuild max txg has been reconstructed and the DTL 3087 * is eligible for excision. 3088 */ 3089 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE && 3090 vdev_dtl_max(vd) <= vrp->vrp_max_txg) { 3091 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd)); 3092 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg); 3093 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg); 3094 return (B_TRUE); 3095 } 3096 } else { 3097 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 3098 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys; 3099 3100 /* Resilver not initiated by attach */ 3101 if (vd->vdev_resilver_txg == 0) 3102 return (B_TRUE); 3103 3104 /* 3105 * When a resilver is initiated the scan will assign the 3106 * scn_max_txg value to the highest txg value that exists 3107 * in all DTLs. If this device's max DTL is not part of this 3108 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg] 3109 * then it is not eligible for excision. 3110 */ 3111 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 3112 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd)); 3113 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg); 3114 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg); 3115 return (B_TRUE); 3116 } 3117 } 3118 3119 return (B_FALSE); 3120 } 3121 3122 /* 3123 * Reassess DTLs after a config change or scrub completion. If txg == 0 no 3124 * write operations will be issued to the pool. 3125 */ 3126 void 3127 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, 3128 boolean_t scrub_done, boolean_t rebuild_done) 3129 { 3130 spa_t *spa = vd->vdev_spa; 3131 avl_tree_t reftree; 3132 int minref; 3133 3134 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 3135 3136 for (int c = 0; c < vd->vdev_children; c++) 3137 vdev_dtl_reassess(vd->vdev_child[c], txg, 3138 scrub_txg, scrub_done, rebuild_done); 3139 3140 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 3141 return; 3142 3143 if (vd->vdev_ops->vdev_op_leaf) { 3144 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 3145 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3146 boolean_t check_excise = B_FALSE; 3147 boolean_t wasempty = B_TRUE; 3148 3149 mutex_enter(&vd->vdev_dtl_lock); 3150 3151 /* 3152 * If requested, pretend the scan or rebuild completed cleanly. 3153 */ 3154 if (zfs_scan_ignore_errors) { 3155 if (scn != NULL) 3156 scn->scn_phys.scn_errors = 0; 3157 if (vr != NULL) 3158 vr->vr_rebuild_phys.vrp_errors = 0; 3159 } 3160 3161 if (scrub_txg != 0 && 3162 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3163 wasempty = B_FALSE; 3164 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d " 3165 "dtl:%llu/%llu errors:%llu", 3166 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg, 3167 (u_longlong_t)scrub_txg, spa->spa_scrub_started, 3168 (u_longlong_t)vdev_dtl_min(vd), 3169 (u_longlong_t)vdev_dtl_max(vd), 3170 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0)); 3171 } 3172 3173 /* 3174 * If we've completed a scrub/resilver or a rebuild cleanly 3175 * then determine if this vdev should remove any DTLs. We 3176 * only want to excise regions on vdevs that were available 3177 * during the entire duration of this scan. 3178 */ 3179 if (rebuild_done && 3180 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) { 3181 check_excise = B_TRUE; 3182 } else { 3183 if (spa->spa_scrub_started || 3184 (scn != NULL && scn->scn_phys.scn_errors == 0)) { 3185 check_excise = B_TRUE; 3186 } 3187 } 3188 3189 if (scrub_txg && check_excise && 3190 vdev_dtl_should_excise(vd, rebuild_done)) { 3191 /* 3192 * We completed a scrub, resilver or rebuild up to 3193 * scrub_txg. If we did it without rebooting, then 3194 * the scrub dtl will be valid, so excise the old 3195 * region and fold in the scrub dtl. Otherwise, 3196 * leave the dtl as-is if there was an error. 3197 * 3198 * There's little trick here: to excise the beginning 3199 * of the DTL_MISSING map, we put it into a reference 3200 * tree and then add a segment with refcnt -1 that 3201 * covers the range [0, scrub_txg). This means 3202 * that each txg in that range has refcnt -1 or 0. 3203 * We then add DTL_SCRUB with a refcnt of 2, so that 3204 * entries in the range [0, scrub_txg) will have a 3205 * positive refcnt -- either 1 or 2. We then convert 3206 * the reference tree into the new DTL_MISSING map. 3207 */ 3208 space_reftree_create(&reftree); 3209 space_reftree_add_map(&reftree, 3210 vd->vdev_dtl[DTL_MISSING], 1); 3211 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 3212 space_reftree_add_map(&reftree, 3213 vd->vdev_dtl[DTL_SCRUB], 2); 3214 space_reftree_generate_map(&reftree, 3215 vd->vdev_dtl[DTL_MISSING], 1); 3216 space_reftree_destroy(&reftree); 3217 3218 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3219 zfs_dbgmsg("update DTL_MISSING:%llu/%llu", 3220 (u_longlong_t)vdev_dtl_min(vd), 3221 (u_longlong_t)vdev_dtl_max(vd)); 3222 } else if (!wasempty) { 3223 zfs_dbgmsg("DTL_MISSING is now empty"); 3224 } 3225 } 3226 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 3227 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3228 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 3229 if (scrub_done) 3230 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 3231 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 3232 if (!vdev_readable(vd)) 3233 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 3234 else 3235 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3236 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 3237 3238 /* 3239 * If the vdev was resilvering or rebuilding and no longer 3240 * has any DTLs then reset the appropriate flag and dirty 3241 * the top level so that we persist the change. 3242 */ 3243 if (txg != 0 && 3244 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3245 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) { 3246 if (vd->vdev_rebuild_txg != 0) { 3247 vd->vdev_rebuild_txg = 0; 3248 vdev_config_dirty(vd->vdev_top); 3249 } else if (vd->vdev_resilver_txg != 0) { 3250 vd->vdev_resilver_txg = 0; 3251 vdev_config_dirty(vd->vdev_top); 3252 } 3253 } 3254 3255 mutex_exit(&vd->vdev_dtl_lock); 3256 3257 if (txg != 0) 3258 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 3259 } else { 3260 mutex_enter(&vd->vdev_dtl_lock); 3261 for (int t = 0; t < DTL_TYPES; t++) { 3262 /* account for child's outage in parent's missing map */ 3263 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 3264 if (t == DTL_SCRUB) { 3265 /* leaf vdevs only */ 3266 continue; 3267 } 3268 if (t == DTL_PARTIAL) { 3269 /* i.e. non-zero */ 3270 minref = 1; 3271 } else if (vdev_get_nparity(vd) != 0) { 3272 /* RAIDZ, DRAID */ 3273 minref = vdev_get_nparity(vd) + 1; 3274 } else { 3275 /* any kind of mirror */ 3276 minref = vd->vdev_children; 3277 } 3278 space_reftree_create(&reftree); 3279 for (int c = 0; c < vd->vdev_children; c++) { 3280 vdev_t *cvd = vd->vdev_child[c]; 3281 mutex_enter(&cvd->vdev_dtl_lock); 3282 space_reftree_add_map(&reftree, 3283 cvd->vdev_dtl[s], 1); 3284 mutex_exit(&cvd->vdev_dtl_lock); 3285 } 3286 space_reftree_generate_map(&reftree, 3287 vd->vdev_dtl[t], minref); 3288 space_reftree_destroy(&reftree); 3289 } 3290 mutex_exit(&vd->vdev_dtl_lock); 3291 } 3292 3293 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) { 3294 raidz_dtl_reassessed(vd); 3295 } 3296 } 3297 3298 /* 3299 * Iterate over all the vdevs except spare, and post kobj events 3300 */ 3301 void 3302 vdev_post_kobj_evt(vdev_t *vd) 3303 { 3304 if (vd->vdev_ops->vdev_op_kobj_evt_post && 3305 vd->vdev_kobj_flag == B_FALSE) { 3306 vd->vdev_kobj_flag = B_TRUE; 3307 vd->vdev_ops->vdev_op_kobj_evt_post(vd); 3308 } 3309 3310 for (int c = 0; c < vd->vdev_children; c++) 3311 vdev_post_kobj_evt(vd->vdev_child[c]); 3312 } 3313 3314 /* 3315 * Iterate over all the vdevs except spare, and clear kobj events 3316 */ 3317 void 3318 vdev_clear_kobj_evt(vdev_t *vd) 3319 { 3320 vd->vdev_kobj_flag = B_FALSE; 3321 3322 for (int c = 0; c < vd->vdev_children; c++) 3323 vdev_clear_kobj_evt(vd->vdev_child[c]); 3324 } 3325 3326 int 3327 vdev_dtl_load(vdev_t *vd) 3328 { 3329 spa_t *spa = vd->vdev_spa; 3330 objset_t *mos = spa->spa_meta_objset; 3331 range_tree_t *rt; 3332 int error = 0; 3333 3334 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 3335 ASSERT(vdev_is_concrete(vd)); 3336 3337 /* 3338 * If the dtl cannot be sync'd there is no need to open it. 3339 */ 3340 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps) 3341 return (0); 3342 3343 error = space_map_open(&vd->vdev_dtl_sm, mos, 3344 vd->vdev_dtl_object, 0, -1ULL, 0); 3345 if (error) 3346 return (error); 3347 ASSERT(vd->vdev_dtl_sm != NULL); 3348 3349 rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3350 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC); 3351 if (error == 0) { 3352 mutex_enter(&vd->vdev_dtl_lock); 3353 range_tree_walk(rt, range_tree_add, 3354 vd->vdev_dtl[DTL_MISSING]); 3355 mutex_exit(&vd->vdev_dtl_lock); 3356 } 3357 3358 range_tree_vacate(rt, NULL, NULL); 3359 range_tree_destroy(rt); 3360 3361 return (error); 3362 } 3363 3364 for (int c = 0; c < vd->vdev_children; c++) { 3365 error = vdev_dtl_load(vd->vdev_child[c]); 3366 if (error != 0) 3367 break; 3368 } 3369 3370 return (error); 3371 } 3372 3373 static void 3374 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) 3375 { 3376 spa_t *spa = vd->vdev_spa; 3377 objset_t *mos = spa->spa_meta_objset; 3378 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 3379 const char *string; 3380 3381 ASSERT(alloc_bias != VDEV_BIAS_NONE); 3382 3383 string = 3384 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : 3385 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : 3386 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; 3387 3388 ASSERT(string != NULL); 3389 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 3390 1, strlen(string) + 1, string, tx)); 3391 3392 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { 3393 spa_activate_allocation_classes(spa, tx); 3394 } 3395 } 3396 3397 void 3398 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 3399 { 3400 spa_t *spa = vd->vdev_spa; 3401 3402 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 3403 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3404 zapobj, tx)); 3405 } 3406 3407 uint64_t 3408 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 3409 { 3410 spa_t *spa = vd->vdev_spa; 3411 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 3412 DMU_OT_NONE, 0, tx); 3413 3414 ASSERT(zap != 0); 3415 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3416 zap, tx)); 3417 3418 return (zap); 3419 } 3420 3421 void 3422 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 3423 { 3424 if (vd->vdev_ops != &vdev_hole_ops && 3425 vd->vdev_ops != &vdev_missing_ops && 3426 vd->vdev_ops != &vdev_root_ops && 3427 !vd->vdev_top->vdev_removing) { 3428 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 3429 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 3430 } 3431 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 3432 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 3433 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) 3434 vdev_zap_allocation_data(vd, tx); 3435 } 3436 } 3437 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 && 3438 spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) { 3439 if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) 3440 spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx); 3441 vd->vdev_root_zap = vdev_create_link_zap(vd, tx); 3442 } 3443 3444 for (uint64_t i = 0; i < vd->vdev_children; i++) { 3445 vdev_construct_zaps(vd->vdev_child[i], tx); 3446 } 3447 } 3448 3449 static void 3450 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 3451 { 3452 spa_t *spa = vd->vdev_spa; 3453 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 3454 objset_t *mos = spa->spa_meta_objset; 3455 range_tree_t *rtsync; 3456 dmu_tx_t *tx; 3457 uint64_t object = space_map_object(vd->vdev_dtl_sm); 3458 3459 ASSERT(vdev_is_concrete(vd)); 3460 ASSERT(vd->vdev_ops->vdev_op_leaf); 3461 3462 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3463 3464 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 3465 mutex_enter(&vd->vdev_dtl_lock); 3466 space_map_free(vd->vdev_dtl_sm, tx); 3467 space_map_close(vd->vdev_dtl_sm); 3468 vd->vdev_dtl_sm = NULL; 3469 mutex_exit(&vd->vdev_dtl_lock); 3470 3471 /* 3472 * We only destroy the leaf ZAP for detached leaves or for 3473 * removed log devices. Removed data devices handle leaf ZAP 3474 * cleanup later, once cancellation is no longer possible. 3475 */ 3476 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 3477 vd->vdev_top->vdev_islog)) { 3478 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 3479 vd->vdev_leaf_zap = 0; 3480 } 3481 3482 dmu_tx_commit(tx); 3483 return; 3484 } 3485 3486 if (vd->vdev_dtl_sm == NULL) { 3487 uint64_t new_object; 3488 3489 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx); 3490 VERIFY3U(new_object, !=, 0); 3491 3492 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 3493 0, -1ULL, 0)); 3494 ASSERT(vd->vdev_dtl_sm != NULL); 3495 } 3496 3497 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3498 3499 mutex_enter(&vd->vdev_dtl_lock); 3500 range_tree_walk(rt, range_tree_add, rtsync); 3501 mutex_exit(&vd->vdev_dtl_lock); 3502 3503 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx); 3504 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 3505 range_tree_vacate(rtsync, NULL, NULL); 3506 3507 range_tree_destroy(rtsync); 3508 3509 /* 3510 * If the object for the space map has changed then dirty 3511 * the top level so that we update the config. 3512 */ 3513 if (object != space_map_object(vd->vdev_dtl_sm)) { 3514 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 3515 "new object %llu", (u_longlong_t)txg, spa_name(spa), 3516 (u_longlong_t)object, 3517 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 3518 vdev_config_dirty(vd->vdev_top); 3519 } 3520 3521 dmu_tx_commit(tx); 3522 } 3523 3524 /* 3525 * Determine whether the specified vdev can be offlined/detached/removed 3526 * without losing data. 3527 */ 3528 boolean_t 3529 vdev_dtl_required(vdev_t *vd) 3530 { 3531 spa_t *spa = vd->vdev_spa; 3532 vdev_t *tvd = vd->vdev_top; 3533 uint8_t cant_read = vd->vdev_cant_read; 3534 boolean_t required; 3535 3536 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3537 3538 if (vd == spa->spa_root_vdev || vd == tvd) 3539 return (B_TRUE); 3540 3541 /* 3542 * Temporarily mark the device as unreadable, and then determine 3543 * whether this results in any DTL outages in the top-level vdev. 3544 * If not, we can safely offline/detach/remove the device. 3545 */ 3546 vd->vdev_cant_read = B_TRUE; 3547 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3548 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 3549 vd->vdev_cant_read = cant_read; 3550 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3551 3552 if (!required && zio_injection_enabled) { 3553 required = !!zio_handle_device_injection(vd, NULL, 3554 SET_ERROR(ECHILD)); 3555 } 3556 3557 return (required); 3558 } 3559 3560 /* 3561 * Determine if resilver is needed, and if so the txg range. 3562 */ 3563 boolean_t 3564 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 3565 { 3566 boolean_t needed = B_FALSE; 3567 uint64_t thismin = UINT64_MAX; 3568 uint64_t thismax = 0; 3569 3570 if (vd->vdev_children == 0) { 3571 mutex_enter(&vd->vdev_dtl_lock); 3572 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3573 vdev_writeable(vd)) { 3574 3575 thismin = vdev_dtl_min(vd); 3576 thismax = vdev_dtl_max(vd); 3577 needed = B_TRUE; 3578 } 3579 mutex_exit(&vd->vdev_dtl_lock); 3580 } else { 3581 for (int c = 0; c < vd->vdev_children; c++) { 3582 vdev_t *cvd = vd->vdev_child[c]; 3583 uint64_t cmin, cmax; 3584 3585 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 3586 thismin = MIN(thismin, cmin); 3587 thismax = MAX(thismax, cmax); 3588 needed = B_TRUE; 3589 } 3590 } 3591 } 3592 3593 if (needed && minp) { 3594 *minp = thismin; 3595 *maxp = thismax; 3596 } 3597 return (needed); 3598 } 3599 3600 /* 3601 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj 3602 * will contain either the checkpoint spacemap object or zero if none exists. 3603 * All other errors are returned to the caller. 3604 */ 3605 int 3606 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj) 3607 { 3608 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 3609 3610 if (vd->vdev_top_zap == 0) { 3611 *sm_obj = 0; 3612 return (0); 3613 } 3614 3615 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 3616 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj); 3617 if (error == ENOENT) { 3618 *sm_obj = 0; 3619 error = 0; 3620 } 3621 3622 return (error); 3623 } 3624 3625 int 3626 vdev_load(vdev_t *vd) 3627 { 3628 int children = vd->vdev_children; 3629 int error = 0; 3630 taskq_t *tq = NULL; 3631 3632 /* 3633 * It's only worthwhile to use the taskq for the root vdev, because the 3634 * slow part is metaslab_init, and that only happens for top-level 3635 * vdevs. 3636 */ 3637 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) { 3638 tq = taskq_create("vdev_load", children, minclsyspri, 3639 children, children, TASKQ_PREPOPULATE); 3640 } 3641 3642 /* 3643 * Recursively load all children. 3644 */ 3645 for (int c = 0; c < vd->vdev_children; c++) { 3646 vdev_t *cvd = vd->vdev_child[c]; 3647 3648 if (tq == NULL || vdev_uses_zvols(cvd)) { 3649 cvd->vdev_load_error = vdev_load(cvd); 3650 } else { 3651 VERIFY(taskq_dispatch(tq, vdev_load_child, 3652 cvd, TQ_SLEEP) != TASKQID_INVALID); 3653 } 3654 } 3655 3656 if (tq != NULL) { 3657 taskq_wait(tq); 3658 taskq_destroy(tq); 3659 } 3660 3661 for (int c = 0; c < vd->vdev_children; c++) { 3662 int error = vd->vdev_child[c]->vdev_load_error; 3663 3664 if (error != 0) 3665 return (error); 3666 } 3667 3668 vdev_set_deflate_ratio(vd); 3669 3670 if (vd->vdev_ops == &vdev_raidz_ops) { 3671 error = vdev_raidz_load(vd); 3672 if (error != 0) 3673 return (error); 3674 } 3675 3676 /* 3677 * On spa_load path, grab the allocation bias from our zap 3678 */ 3679 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3680 spa_t *spa = vd->vdev_spa; 3681 char bias_str[64]; 3682 3683 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3684 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), 3685 bias_str); 3686 if (error == 0) { 3687 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); 3688 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); 3689 } else if (error != ENOENT) { 3690 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3691 VDEV_AUX_CORRUPT_DATA); 3692 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) " 3693 "failed [error=%d]", 3694 (u_longlong_t)vd->vdev_top_zap, error); 3695 return (error); 3696 } 3697 } 3698 3699 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3700 spa_t *spa = vd->vdev_spa; 3701 uint64_t failfast; 3702 3703 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3704 vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast), 3705 1, &failfast); 3706 if (error == 0) { 3707 vd->vdev_failfast = failfast & 1; 3708 } else if (error == ENOENT) { 3709 vd->vdev_failfast = vdev_prop_default_numeric( 3710 VDEV_PROP_FAILFAST); 3711 } else { 3712 vdev_dbgmsg(vd, 3713 "vdev_load: zap_lookup(top_zap=%llu) " 3714 "failed [error=%d]", 3715 (u_longlong_t)vd->vdev_top_zap, error); 3716 } 3717 } 3718 3719 /* 3720 * Load any rebuild state from the top-level vdev zap. 3721 */ 3722 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3723 error = vdev_rebuild_load(vd); 3724 if (error && error != ENOTSUP) { 3725 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3726 VDEV_AUX_CORRUPT_DATA); 3727 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load " 3728 "failed [error=%d]", error); 3729 return (error); 3730 } 3731 } 3732 3733 if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) { 3734 uint64_t zapobj; 3735 3736 if (vd->vdev_top_zap != 0) 3737 zapobj = vd->vdev_top_zap; 3738 else 3739 zapobj = vd->vdev_leaf_zap; 3740 3741 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N, 3742 &vd->vdev_checksum_n); 3743 if (error && error != ENOENT) 3744 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3745 "failed [error=%d]", (u_longlong_t)zapobj, error); 3746 3747 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T, 3748 &vd->vdev_checksum_t); 3749 if (error && error != ENOENT) 3750 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3751 "failed [error=%d]", (u_longlong_t)zapobj, error); 3752 3753 error = vdev_prop_get_int(vd, VDEV_PROP_IO_N, 3754 &vd->vdev_io_n); 3755 if (error && error != ENOENT) 3756 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3757 "failed [error=%d]", (u_longlong_t)zapobj, error); 3758 3759 error = vdev_prop_get_int(vd, VDEV_PROP_IO_T, 3760 &vd->vdev_io_t); 3761 if (error && error != ENOENT) 3762 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3763 "failed [error=%d]", (u_longlong_t)zapobj, error); 3764 3765 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_N, 3766 &vd->vdev_slow_io_n); 3767 if (error && error != ENOENT) 3768 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3769 "failed [error=%d]", (u_longlong_t)zapobj, error); 3770 3771 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_T, 3772 &vd->vdev_slow_io_t); 3773 if (error && error != ENOENT) 3774 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3775 "failed [error=%d]", (u_longlong_t)zapobj, error); 3776 } 3777 3778 /* 3779 * If this is a top-level vdev, initialize its metaslabs. 3780 */ 3781 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 3782 vdev_metaslab_group_create(vd); 3783 3784 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 3785 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3786 VDEV_AUX_CORRUPT_DATA); 3787 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 3788 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 3789 (u_longlong_t)vd->vdev_asize); 3790 return (SET_ERROR(ENXIO)); 3791 } 3792 3793 error = vdev_metaslab_init(vd, 0); 3794 if (error != 0) { 3795 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 3796 "[error=%d]", error); 3797 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3798 VDEV_AUX_CORRUPT_DATA); 3799 return (error); 3800 } 3801 3802 uint64_t checkpoint_sm_obj; 3803 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj); 3804 if (error == 0 && checkpoint_sm_obj != 0) { 3805 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3806 ASSERT(vd->vdev_asize != 0); 3807 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); 3808 3809 error = space_map_open(&vd->vdev_checkpoint_sm, 3810 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 3811 vd->vdev_ashift); 3812 if (error != 0) { 3813 vdev_dbgmsg(vd, "vdev_load: space_map_open " 3814 "failed for checkpoint spacemap (obj %llu) " 3815 "[error=%d]", 3816 (u_longlong_t)checkpoint_sm_obj, error); 3817 return (error); 3818 } 3819 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 3820 3821 /* 3822 * Since the checkpoint_sm contains free entries 3823 * exclusively we can use space_map_allocated() to 3824 * indicate the cumulative checkpointed space that 3825 * has been freed. 3826 */ 3827 vd->vdev_stat.vs_checkpoint_space = 3828 -space_map_allocated(vd->vdev_checkpoint_sm); 3829 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 3830 vd->vdev_stat.vs_checkpoint_space; 3831 } else if (error != 0) { 3832 vdev_dbgmsg(vd, "vdev_load: failed to retrieve " 3833 "checkpoint space map object from vdev ZAP " 3834 "[error=%d]", error); 3835 return (error); 3836 } 3837 } 3838 3839 /* 3840 * If this is a leaf vdev, load its DTL. 3841 */ 3842 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 3843 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3844 VDEV_AUX_CORRUPT_DATA); 3845 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 3846 "[error=%d]", error); 3847 return (error); 3848 } 3849 3850 uint64_t obsolete_sm_object; 3851 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object); 3852 if (error == 0 && obsolete_sm_object != 0) { 3853 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3854 ASSERT(vd->vdev_asize != 0); 3855 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 3856 3857 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 3858 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 3859 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3860 VDEV_AUX_CORRUPT_DATA); 3861 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 3862 "obsolete spacemap (obj %llu) [error=%d]", 3863 (u_longlong_t)obsolete_sm_object, error); 3864 return (error); 3865 } 3866 } else if (error != 0) { 3867 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete " 3868 "space map object from vdev ZAP [error=%d]", error); 3869 return (error); 3870 } 3871 3872 return (0); 3873 } 3874 3875 /* 3876 * The special vdev case is used for hot spares and l2cache devices. Its 3877 * sole purpose it to set the vdev state for the associated vdev. To do this, 3878 * we make sure that we can open the underlying device, then try to read the 3879 * label, and make sure that the label is sane and that it hasn't been 3880 * repurposed to another pool. 3881 */ 3882 int 3883 vdev_validate_aux(vdev_t *vd) 3884 { 3885 nvlist_t *label; 3886 uint64_t guid, version; 3887 uint64_t state; 3888 3889 if (!vdev_readable(vd)) 3890 return (0); 3891 3892 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 3893 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3894 VDEV_AUX_CORRUPT_DATA); 3895 return (-1); 3896 } 3897 3898 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 3899 !SPA_VERSION_IS_SUPPORTED(version) || 3900 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 3901 guid != vd->vdev_guid || 3902 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 3903 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3904 VDEV_AUX_CORRUPT_DATA); 3905 nvlist_free(label); 3906 return (-1); 3907 } 3908 3909 /* 3910 * We don't actually check the pool state here. If it's in fact in 3911 * use by another pool, we update this fact on the fly when requested. 3912 */ 3913 nvlist_free(label); 3914 return (0); 3915 } 3916 3917 static void 3918 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx) 3919 { 3920 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3921 3922 if (vd->vdev_top_zap == 0) 3923 return; 3924 3925 uint64_t object = 0; 3926 int err = zap_lookup(mos, vd->vdev_top_zap, 3927 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object); 3928 if (err == ENOENT) 3929 return; 3930 VERIFY0(err); 3931 3932 VERIFY0(dmu_object_free(mos, object, tx)); 3933 VERIFY0(zap_remove(mos, vd->vdev_top_zap, 3934 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx)); 3935 } 3936 3937 /* 3938 * Free the objects used to store this vdev's spacemaps, and the array 3939 * that points to them. 3940 */ 3941 void 3942 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 3943 { 3944 if (vd->vdev_ms_array == 0) 3945 return; 3946 3947 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3948 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 3949 size_t array_bytes = array_count * sizeof (uint64_t); 3950 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 3951 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 3952 array_bytes, smobj_array, 0)); 3953 3954 for (uint64_t i = 0; i < array_count; i++) { 3955 uint64_t smobj = smobj_array[i]; 3956 if (smobj == 0) 3957 continue; 3958 3959 space_map_free_obj(mos, smobj, tx); 3960 } 3961 3962 kmem_free(smobj_array, array_bytes); 3963 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 3964 vdev_destroy_ms_flush_data(vd, tx); 3965 vd->vdev_ms_array = 0; 3966 } 3967 3968 static void 3969 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 3970 { 3971 spa_t *spa = vd->vdev_spa; 3972 3973 ASSERT(vd->vdev_islog); 3974 ASSERT(vd == vd->vdev_top); 3975 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 3976 3977 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3978 3979 vdev_destroy_spacemaps(vd, tx); 3980 if (vd->vdev_top_zap != 0) { 3981 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 3982 vd->vdev_top_zap = 0; 3983 } 3984 3985 dmu_tx_commit(tx); 3986 } 3987 3988 void 3989 vdev_sync_done(vdev_t *vd, uint64_t txg) 3990 { 3991 metaslab_t *msp; 3992 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 3993 3994 ASSERT(vdev_is_concrete(vd)); 3995 3996 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 3997 != NULL) 3998 metaslab_sync_done(msp, txg); 3999 4000 if (reassess) { 4001 metaslab_sync_reassess(vd->vdev_mg); 4002 if (vd->vdev_log_mg != NULL) 4003 metaslab_sync_reassess(vd->vdev_log_mg); 4004 } 4005 } 4006 4007 void 4008 vdev_sync(vdev_t *vd, uint64_t txg) 4009 { 4010 spa_t *spa = vd->vdev_spa; 4011 vdev_t *lvd; 4012 metaslab_t *msp; 4013 4014 ASSERT3U(txg, ==, spa->spa_syncing_txg); 4015 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 4016 if (range_tree_space(vd->vdev_obsolete_segments) > 0) { 4017 ASSERT(vd->vdev_removing || 4018 vd->vdev_ops == &vdev_indirect_ops); 4019 4020 vdev_indirect_sync_obsolete(vd, tx); 4021 4022 /* 4023 * If the vdev is indirect, it can't have dirty 4024 * metaslabs or DTLs. 4025 */ 4026 if (vd->vdev_ops == &vdev_indirect_ops) { 4027 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 4028 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 4029 dmu_tx_commit(tx); 4030 return; 4031 } 4032 } 4033 4034 ASSERT(vdev_is_concrete(vd)); 4035 4036 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 4037 !vd->vdev_removing) { 4038 ASSERT(vd == vd->vdev_top); 4039 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 4040 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 4041 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 4042 ASSERT(vd->vdev_ms_array != 0); 4043 vdev_config_dirty(vd); 4044 } 4045 4046 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 4047 metaslab_sync(msp, txg); 4048 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 4049 } 4050 4051 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 4052 vdev_dtl_sync(lvd, txg); 4053 4054 /* 4055 * If this is an empty log device being removed, destroy the 4056 * metadata associated with it. 4057 */ 4058 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 4059 vdev_remove_empty_log(vd, txg); 4060 4061 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 4062 dmu_tx_commit(tx); 4063 } 4064 4065 /* 4066 * Return the amount of space that should be (or was) allocated for the given 4067 * psize (compressed block size) in the given TXG. Note that for expanded 4068 * RAIDZ vdevs, the size allocated for older BP's may be larger. See 4069 * vdev_raidz_asize(). 4070 */ 4071 uint64_t 4072 vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg) 4073 { 4074 return (vd->vdev_ops->vdev_op_asize(vd, psize, txg)); 4075 } 4076 4077 uint64_t 4078 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 4079 { 4080 return (vdev_psize_to_asize_txg(vd, psize, 0)); 4081 } 4082 4083 /* 4084 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 4085 * not be opened, and no I/O is attempted. 4086 */ 4087 int 4088 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 4089 { 4090 vdev_t *vd, *tvd; 4091 4092 spa_vdev_state_enter(spa, SCL_NONE); 4093 4094 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4095 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4096 4097 if (!vd->vdev_ops->vdev_op_leaf) 4098 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4099 4100 tvd = vd->vdev_top; 4101 4102 /* 4103 * If user did a 'zpool offline -f' then make the fault persist across 4104 * reboots. 4105 */ 4106 if (aux == VDEV_AUX_EXTERNAL_PERSIST) { 4107 /* 4108 * There are two kinds of forced faults: temporary and 4109 * persistent. Temporary faults go away at pool import, while 4110 * persistent faults stay set. Both types of faults can be 4111 * cleared with a zpool clear. 4112 * 4113 * We tell if a vdev is persistently faulted by looking at the 4114 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at 4115 * import then it's a persistent fault. Otherwise, it's 4116 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external" 4117 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This 4118 * tells vdev_config_generate() (which gets run later) to set 4119 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist. 4120 */ 4121 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 4122 vd->vdev_tmpoffline = B_FALSE; 4123 aux = VDEV_AUX_EXTERNAL; 4124 } else { 4125 vd->vdev_tmpoffline = B_TRUE; 4126 } 4127 4128 /* 4129 * We don't directly use the aux state here, but if we do a 4130 * vdev_reopen(), we need this value to be present to remember why we 4131 * were faulted. 4132 */ 4133 vd->vdev_label_aux = aux; 4134 4135 /* 4136 * Faulted state takes precedence over degraded. 4137 */ 4138 vd->vdev_delayed_close = B_FALSE; 4139 vd->vdev_faulted = 1ULL; 4140 vd->vdev_degraded = 0ULL; 4141 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 4142 4143 /* 4144 * If this device has the only valid copy of the data, then 4145 * back off and simply mark the vdev as degraded instead. 4146 */ 4147 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 4148 vd->vdev_degraded = 1ULL; 4149 vd->vdev_faulted = 0ULL; 4150 4151 /* 4152 * If we reopen the device and it's not dead, only then do we 4153 * mark it degraded. 4154 */ 4155 vdev_reopen(tvd); 4156 4157 if (vdev_readable(vd)) 4158 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 4159 } 4160 4161 return (spa_vdev_state_exit(spa, vd, 0)); 4162 } 4163 4164 /* 4165 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 4166 * user that something is wrong. The vdev continues to operate as normal as far 4167 * as I/O is concerned. 4168 */ 4169 int 4170 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 4171 { 4172 vdev_t *vd; 4173 4174 spa_vdev_state_enter(spa, SCL_NONE); 4175 4176 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4177 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4178 4179 if (!vd->vdev_ops->vdev_op_leaf) 4180 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4181 4182 /* 4183 * If the vdev is already faulted, then don't do anything. 4184 */ 4185 if (vd->vdev_faulted || vd->vdev_degraded) 4186 return (spa_vdev_state_exit(spa, NULL, 0)); 4187 4188 vd->vdev_degraded = 1ULL; 4189 if (!vdev_is_dead(vd)) 4190 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 4191 aux); 4192 4193 return (spa_vdev_state_exit(spa, vd, 0)); 4194 } 4195 4196 int 4197 vdev_remove_wanted(spa_t *spa, uint64_t guid) 4198 { 4199 vdev_t *vd; 4200 4201 spa_vdev_state_enter(spa, SCL_NONE); 4202 4203 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4204 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4205 4206 /* 4207 * If the vdev is already removed, or expanding which can trigger 4208 * repartition add/remove events, then don't do anything. 4209 */ 4210 if (vd->vdev_removed || vd->vdev_expanding) 4211 return (spa_vdev_state_exit(spa, NULL, 0)); 4212 4213 /* 4214 * Confirm the vdev has been removed, otherwise don't do anything. 4215 */ 4216 if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL))) 4217 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST))); 4218 4219 vd->vdev_remove_wanted = B_TRUE; 4220 spa_async_request(spa, SPA_ASYNC_REMOVE); 4221 4222 return (spa_vdev_state_exit(spa, vd, 0)); 4223 } 4224 4225 4226 /* 4227 * Online the given vdev. 4228 * 4229 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 4230 * spare device should be detached when the device finishes resilvering. 4231 * Second, the online should be treated like a 'test' online case, so no FMA 4232 * events are generated if the device fails to open. 4233 */ 4234 int 4235 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 4236 { 4237 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 4238 boolean_t wasoffline; 4239 vdev_state_t oldstate; 4240 4241 spa_vdev_state_enter(spa, SCL_NONE); 4242 4243 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4244 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4245 4246 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 4247 oldstate = vd->vdev_state; 4248 4249 tvd = vd->vdev_top; 4250 vd->vdev_offline = B_FALSE; 4251 vd->vdev_tmpoffline = B_FALSE; 4252 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 4253 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 4254 4255 /* XXX - L2ARC 1.0 does not support expansion */ 4256 if (!vd->vdev_aux) { 4257 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4258 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) || 4259 spa->spa_autoexpand); 4260 vd->vdev_expansion_time = gethrestime_sec(); 4261 } 4262 4263 vdev_reopen(tvd); 4264 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 4265 4266 if (!vd->vdev_aux) { 4267 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4268 pvd->vdev_expanding = B_FALSE; 4269 } 4270 4271 if (newstate) 4272 *newstate = vd->vdev_state; 4273 if ((flags & ZFS_ONLINE_UNSPARE) && 4274 !vdev_is_dead(vd) && vd->vdev_parent && 4275 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4276 vd->vdev_parent->vdev_child[0] == vd) 4277 vd->vdev_unspare = B_TRUE; 4278 4279 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 4280 4281 /* XXX - L2ARC 1.0 does not support expansion */ 4282 if (vd->vdev_aux) 4283 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 4284 spa->spa_ccw_fail_time = 0; 4285 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 4286 } 4287 4288 /* Restart initializing if necessary */ 4289 mutex_enter(&vd->vdev_initialize_lock); 4290 if (vdev_writeable(vd) && 4291 vd->vdev_initialize_thread == NULL && 4292 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 4293 (void) vdev_initialize(vd); 4294 } 4295 mutex_exit(&vd->vdev_initialize_lock); 4296 4297 /* 4298 * Restart trimming if necessary. We do not restart trimming for cache 4299 * devices here. This is triggered by l2arc_rebuild_vdev() 4300 * asynchronously for the whole device or in l2arc_evict() as it evicts 4301 * space for upcoming writes. 4302 */ 4303 mutex_enter(&vd->vdev_trim_lock); 4304 if (vdev_writeable(vd) && !vd->vdev_isl2cache && 4305 vd->vdev_trim_thread == NULL && 4306 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { 4307 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, 4308 vd->vdev_trim_secure); 4309 } 4310 mutex_exit(&vd->vdev_trim_lock); 4311 4312 if (wasoffline || 4313 (oldstate < VDEV_STATE_DEGRADED && 4314 vd->vdev_state >= VDEV_STATE_DEGRADED)) { 4315 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 4316 4317 /* 4318 * Asynchronously detach spare vdev if resilver or 4319 * rebuild is not required 4320 */ 4321 if (vd->vdev_unspare && 4322 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4323 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) && 4324 !vdev_rebuild_active(tvd)) 4325 spa_async_request(spa, SPA_ASYNC_DETACH_SPARE); 4326 } 4327 return (spa_vdev_state_exit(spa, vd, 0)); 4328 } 4329 4330 static int 4331 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 4332 { 4333 vdev_t *vd, *tvd; 4334 int error = 0; 4335 uint64_t generation; 4336 metaslab_group_t *mg; 4337 4338 top: 4339 spa_vdev_state_enter(spa, SCL_ALLOC); 4340 4341 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4342 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4343 4344 if (!vd->vdev_ops->vdev_op_leaf) 4345 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4346 4347 if (vd->vdev_ops == &vdev_draid_spare_ops) 4348 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4349 4350 tvd = vd->vdev_top; 4351 mg = tvd->vdev_mg; 4352 generation = spa->spa_config_generation + 1; 4353 4354 /* 4355 * If the device isn't already offline, try to offline it. 4356 */ 4357 if (!vd->vdev_offline) { 4358 /* 4359 * If this device has the only valid copy of some data, 4360 * don't allow it to be offlined. Log devices are always 4361 * expendable. 4362 */ 4363 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4364 vdev_dtl_required(vd)) 4365 return (spa_vdev_state_exit(spa, NULL, 4366 SET_ERROR(EBUSY))); 4367 4368 /* 4369 * If the top-level is a slog and it has had allocations 4370 * then proceed. We check that the vdev's metaslab group 4371 * is not NULL since it's possible that we may have just 4372 * added this vdev but not yet initialized its metaslabs. 4373 */ 4374 if (tvd->vdev_islog && mg != NULL) { 4375 /* 4376 * Prevent any future allocations. 4377 */ 4378 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 4379 metaslab_group_passivate(mg); 4380 (void) spa_vdev_state_exit(spa, vd, 0); 4381 4382 error = spa_reset_logs(spa); 4383 4384 /* 4385 * If the log device was successfully reset but has 4386 * checkpointed data, do not offline it. 4387 */ 4388 if (error == 0 && 4389 tvd->vdev_checkpoint_sm != NULL) { 4390 ASSERT3U(space_map_allocated( 4391 tvd->vdev_checkpoint_sm), !=, 0); 4392 error = ZFS_ERR_CHECKPOINT_EXISTS; 4393 } 4394 4395 spa_vdev_state_enter(spa, SCL_ALLOC); 4396 4397 /* 4398 * Check to see if the config has changed. 4399 */ 4400 if (error || generation != spa->spa_config_generation) { 4401 metaslab_group_activate(mg); 4402 if (error) 4403 return (spa_vdev_state_exit(spa, 4404 vd, error)); 4405 (void) spa_vdev_state_exit(spa, vd, 0); 4406 goto top; 4407 } 4408 ASSERT0(tvd->vdev_stat.vs_alloc); 4409 } 4410 4411 /* 4412 * Offline this device and reopen its top-level vdev. 4413 * If the top-level vdev is a log device then just offline 4414 * it. Otherwise, if this action results in the top-level 4415 * vdev becoming unusable, undo it and fail the request. 4416 */ 4417 vd->vdev_offline = B_TRUE; 4418 vdev_reopen(tvd); 4419 4420 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4421 vdev_is_dead(tvd)) { 4422 vd->vdev_offline = B_FALSE; 4423 vdev_reopen(tvd); 4424 return (spa_vdev_state_exit(spa, NULL, 4425 SET_ERROR(EBUSY))); 4426 } 4427 4428 /* 4429 * Add the device back into the metaslab rotor so that 4430 * once we online the device it's open for business. 4431 */ 4432 if (tvd->vdev_islog && mg != NULL) 4433 metaslab_group_activate(mg); 4434 } 4435 4436 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 4437 4438 return (spa_vdev_state_exit(spa, vd, 0)); 4439 } 4440 4441 int 4442 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 4443 { 4444 int error; 4445 4446 mutex_enter(&spa->spa_vdev_top_lock); 4447 error = vdev_offline_locked(spa, guid, flags); 4448 mutex_exit(&spa->spa_vdev_top_lock); 4449 4450 return (error); 4451 } 4452 4453 /* 4454 * Clear the error counts associated with this vdev. Unlike vdev_online() and 4455 * vdev_offline(), we assume the spa config is locked. We also clear all 4456 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 4457 */ 4458 void 4459 vdev_clear(spa_t *spa, vdev_t *vd) 4460 { 4461 vdev_t *rvd = spa->spa_root_vdev; 4462 4463 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 4464 4465 if (vd == NULL) 4466 vd = rvd; 4467 4468 vd->vdev_stat.vs_read_errors = 0; 4469 vd->vdev_stat.vs_write_errors = 0; 4470 vd->vdev_stat.vs_checksum_errors = 0; 4471 vd->vdev_stat.vs_slow_ios = 0; 4472 4473 for (int c = 0; c < vd->vdev_children; c++) 4474 vdev_clear(spa, vd->vdev_child[c]); 4475 4476 /* 4477 * It makes no sense to "clear" an indirect or removed vdev. 4478 */ 4479 if (!vdev_is_concrete(vd) || vd->vdev_removed) 4480 return; 4481 4482 /* 4483 * If we're in the FAULTED state or have experienced failed I/O, then 4484 * clear the persistent state and attempt to reopen the device. We 4485 * also mark the vdev config dirty, so that the new faulted state is 4486 * written out to disk. 4487 */ 4488 if (vd->vdev_faulted || vd->vdev_degraded || 4489 !vdev_readable(vd) || !vdev_writeable(vd)) { 4490 /* 4491 * When reopening in response to a clear event, it may be due to 4492 * a fmadm repair request. In this case, if the device is 4493 * still broken, we want to still post the ereport again. 4494 */ 4495 vd->vdev_forcefault = B_TRUE; 4496 4497 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 4498 vd->vdev_cant_read = B_FALSE; 4499 vd->vdev_cant_write = B_FALSE; 4500 vd->vdev_stat.vs_aux = 0; 4501 4502 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 4503 4504 vd->vdev_forcefault = B_FALSE; 4505 4506 if (vd != rvd && vdev_writeable(vd->vdev_top)) 4507 vdev_state_dirty(vd->vdev_top); 4508 4509 /* If a resilver isn't required, check if vdevs can be culled */ 4510 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) && 4511 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4512 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool)) 4513 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4514 4515 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 4516 } 4517 4518 /* 4519 * When clearing a FMA-diagnosed fault, we always want to 4520 * unspare the device, as we assume that the original spare was 4521 * done in response to the FMA fault. 4522 */ 4523 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 4524 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4525 vd->vdev_parent->vdev_child[0] == vd) 4526 vd->vdev_unspare = B_TRUE; 4527 4528 /* Clear recent error events cache (i.e. duplicate events tracking) */ 4529 zfs_ereport_clear(spa, vd); 4530 } 4531 4532 boolean_t 4533 vdev_is_dead(vdev_t *vd) 4534 { 4535 /* 4536 * Holes and missing devices are always considered "dead". 4537 * This simplifies the code since we don't have to check for 4538 * these types of devices in the various code paths. 4539 * Instead we rely on the fact that we skip over dead devices 4540 * before issuing I/O to them. 4541 */ 4542 return (vd->vdev_state < VDEV_STATE_DEGRADED || 4543 vd->vdev_ops == &vdev_hole_ops || 4544 vd->vdev_ops == &vdev_missing_ops); 4545 } 4546 4547 boolean_t 4548 vdev_readable(vdev_t *vd) 4549 { 4550 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 4551 } 4552 4553 boolean_t 4554 vdev_writeable(vdev_t *vd) 4555 { 4556 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 4557 vdev_is_concrete(vd)); 4558 } 4559 4560 boolean_t 4561 vdev_allocatable(vdev_t *vd) 4562 { 4563 uint64_t state = vd->vdev_state; 4564 4565 /* 4566 * We currently allow allocations from vdevs which may be in the 4567 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 4568 * fails to reopen then we'll catch it later when we're holding 4569 * the proper locks. Note that we have to get the vdev state 4570 * in a local variable because although it changes atomically, 4571 * we're asking two separate questions about it. 4572 */ 4573 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 4574 !vd->vdev_cant_write && vdev_is_concrete(vd) && 4575 vd->vdev_mg->mg_initialized); 4576 } 4577 4578 boolean_t 4579 vdev_accessible(vdev_t *vd, zio_t *zio) 4580 { 4581 ASSERT(zio->io_vd == vd); 4582 4583 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 4584 return (B_FALSE); 4585 4586 if (zio->io_type == ZIO_TYPE_READ) 4587 return (!vd->vdev_cant_read); 4588 4589 if (zio->io_type == ZIO_TYPE_WRITE) 4590 return (!vd->vdev_cant_write); 4591 4592 return (B_TRUE); 4593 } 4594 4595 static void 4596 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs) 4597 { 4598 /* 4599 * Exclude the dRAID spare when aggregating to avoid double counting 4600 * the ops and bytes. These IOs are counted by the physical leaves. 4601 */ 4602 if (cvd->vdev_ops == &vdev_draid_spare_ops) 4603 return; 4604 4605 for (int t = 0; t < VS_ZIO_TYPES; t++) { 4606 vs->vs_ops[t] += cvs->vs_ops[t]; 4607 vs->vs_bytes[t] += cvs->vs_bytes[t]; 4608 } 4609 4610 cvs->vs_scan_removing = cvd->vdev_removing; 4611 } 4612 4613 /* 4614 * Get extended stats 4615 */ 4616 static void 4617 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx) 4618 { 4619 (void) cvd; 4620 4621 int t, b; 4622 for (t = 0; t < ZIO_TYPES; t++) { 4623 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++) 4624 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b]; 4625 4626 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) { 4627 vsx->vsx_total_histo[t][b] += 4628 cvsx->vsx_total_histo[t][b]; 4629 } 4630 } 4631 4632 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4633 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) { 4634 vsx->vsx_queue_histo[t][b] += 4635 cvsx->vsx_queue_histo[t][b]; 4636 } 4637 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t]; 4638 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t]; 4639 4640 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++) 4641 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b]; 4642 4643 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++) 4644 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b]; 4645 } 4646 4647 } 4648 4649 boolean_t 4650 vdev_is_spacemap_addressable(vdev_t *vd) 4651 { 4652 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 4653 return (B_TRUE); 4654 4655 /* 4656 * If double-word space map entries are not enabled we assume 4657 * 47 bits of the space map entry are dedicated to the entry's 4658 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 4659 * to calculate the maximum address that can be described by a 4660 * space map entry for the given device. 4661 */ 4662 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 4663 4664 if (shift >= 63) /* detect potential overflow */ 4665 return (B_TRUE); 4666 4667 return (vd->vdev_asize < (1ULL << shift)); 4668 } 4669 4670 /* 4671 * Get statistics for the given vdev. 4672 */ 4673 static void 4674 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4675 { 4676 int t; 4677 /* 4678 * If we're getting stats on the root vdev, aggregate the I/O counts 4679 * over all top-level vdevs (i.e. the direct children of the root). 4680 */ 4681 if (!vd->vdev_ops->vdev_op_leaf) { 4682 if (vs) { 4683 memset(vs->vs_ops, 0, sizeof (vs->vs_ops)); 4684 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes)); 4685 } 4686 if (vsx) 4687 memset(vsx, 0, sizeof (*vsx)); 4688 4689 for (int c = 0; c < vd->vdev_children; c++) { 4690 vdev_t *cvd = vd->vdev_child[c]; 4691 vdev_stat_t *cvs = &cvd->vdev_stat; 4692 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex; 4693 4694 vdev_get_stats_ex_impl(cvd, cvs, cvsx); 4695 if (vs) 4696 vdev_get_child_stat(cvd, vs, cvs); 4697 if (vsx) 4698 vdev_get_child_stat_ex(cvd, vsx, cvsx); 4699 } 4700 } else { 4701 /* 4702 * We're a leaf. Just copy our ZIO active queue stats in. The 4703 * other leaf stats are updated in vdev_stat_update(). 4704 */ 4705 if (!vsx) 4706 return; 4707 4708 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex)); 4709 4710 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4711 vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t]; 4712 vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t); 4713 } 4714 } 4715 } 4716 4717 void 4718 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4719 { 4720 vdev_t *tvd = vd->vdev_top; 4721 mutex_enter(&vd->vdev_stat_lock); 4722 if (vs) { 4723 memcpy(vs, &vd->vdev_stat, sizeof (*vs)); 4724 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 4725 vs->vs_state = vd->vdev_state; 4726 vs->vs_rsize = vdev_get_min_asize(vd); 4727 4728 if (vd->vdev_ops->vdev_op_leaf) { 4729 vs->vs_pspace = vd->vdev_psize; 4730 vs->vs_rsize += VDEV_LABEL_START_SIZE + 4731 VDEV_LABEL_END_SIZE; 4732 /* 4733 * Report initializing progress. Since we don't 4734 * have the initializing locks held, this is only 4735 * an estimate (although a fairly accurate one). 4736 */ 4737 vs->vs_initialize_bytes_done = 4738 vd->vdev_initialize_bytes_done; 4739 vs->vs_initialize_bytes_est = 4740 vd->vdev_initialize_bytes_est; 4741 vs->vs_initialize_state = vd->vdev_initialize_state; 4742 vs->vs_initialize_action_time = 4743 vd->vdev_initialize_action_time; 4744 4745 /* 4746 * Report manual TRIM progress. Since we don't have 4747 * the manual TRIM locks held, this is only an 4748 * estimate (although fairly accurate one). 4749 */ 4750 vs->vs_trim_notsup = !vd->vdev_has_trim; 4751 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done; 4752 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est; 4753 vs->vs_trim_state = vd->vdev_trim_state; 4754 vs->vs_trim_action_time = vd->vdev_trim_action_time; 4755 4756 /* Set when there is a deferred resilver. */ 4757 vs->vs_resilver_deferred = vd->vdev_resilver_deferred; 4758 } 4759 4760 /* 4761 * Report expandable space on top-level, non-auxiliary devices 4762 * only. The expandable space is reported in terms of metaslab 4763 * sized units since that determines how much space the pool 4764 * can expand. 4765 */ 4766 if (vd->vdev_aux == NULL && tvd != NULL) { 4767 vs->vs_esize = P2ALIGN( 4768 vd->vdev_max_asize - vd->vdev_asize, 4769 1ULL << tvd->vdev_ms_shift); 4770 } 4771 4772 vs->vs_configured_ashift = vd->vdev_top != NULL 4773 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift; 4774 vs->vs_logical_ashift = vd->vdev_logical_ashift; 4775 if (vd->vdev_physical_ashift <= ASHIFT_MAX) 4776 vs->vs_physical_ashift = vd->vdev_physical_ashift; 4777 else 4778 vs->vs_physical_ashift = 0; 4779 4780 /* 4781 * Report fragmentation and rebuild progress for top-level, 4782 * non-auxiliary, concrete devices. 4783 */ 4784 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 4785 vdev_is_concrete(vd)) { 4786 /* 4787 * The vdev fragmentation rating doesn't take into 4788 * account the embedded slog metaslab (vdev_log_mg). 4789 * Since it's only one metaslab, it would have a tiny 4790 * impact on the overall fragmentation. 4791 */ 4792 vs->vs_fragmentation = (vd->vdev_mg != NULL) ? 4793 vd->vdev_mg->mg_fragmentation : 0; 4794 } 4795 vs->vs_noalloc = MAX(vd->vdev_noalloc, 4796 tvd ? tvd->vdev_noalloc : 0); 4797 } 4798 4799 vdev_get_stats_ex_impl(vd, vs, vsx); 4800 mutex_exit(&vd->vdev_stat_lock); 4801 } 4802 4803 void 4804 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 4805 { 4806 return (vdev_get_stats_ex(vd, vs, NULL)); 4807 } 4808 4809 void 4810 vdev_clear_stats(vdev_t *vd) 4811 { 4812 mutex_enter(&vd->vdev_stat_lock); 4813 vd->vdev_stat.vs_space = 0; 4814 vd->vdev_stat.vs_dspace = 0; 4815 vd->vdev_stat.vs_alloc = 0; 4816 mutex_exit(&vd->vdev_stat_lock); 4817 } 4818 4819 void 4820 vdev_scan_stat_init(vdev_t *vd) 4821 { 4822 vdev_stat_t *vs = &vd->vdev_stat; 4823 4824 for (int c = 0; c < vd->vdev_children; c++) 4825 vdev_scan_stat_init(vd->vdev_child[c]); 4826 4827 mutex_enter(&vd->vdev_stat_lock); 4828 vs->vs_scan_processed = 0; 4829 mutex_exit(&vd->vdev_stat_lock); 4830 } 4831 4832 void 4833 vdev_stat_update(zio_t *zio, uint64_t psize) 4834 { 4835 spa_t *spa = zio->io_spa; 4836 vdev_t *rvd = spa->spa_root_vdev; 4837 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 4838 vdev_t *pvd; 4839 uint64_t txg = zio->io_txg; 4840 /* Suppress ASAN false positive */ 4841 #ifdef __SANITIZE_ADDRESS__ 4842 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL; 4843 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL; 4844 #else 4845 vdev_stat_t *vs = &vd->vdev_stat; 4846 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex; 4847 #endif 4848 zio_type_t type = zio->io_type; 4849 int flags = zio->io_flags; 4850 4851 /* 4852 * If this i/o is a gang leader, it didn't do any actual work. 4853 */ 4854 if (zio->io_gang_tree) 4855 return; 4856 4857 if (zio->io_error == 0) { 4858 /* 4859 * If this is a root i/o, don't count it -- we've already 4860 * counted the top-level vdevs, and vdev_get_stats() will 4861 * aggregate them when asked. This reduces contention on 4862 * the root vdev_stat_lock and implicitly handles blocks 4863 * that compress away to holes, for which there is no i/o. 4864 * (Holes never create vdev children, so all the counters 4865 * remain zero, which is what we want.) 4866 * 4867 * Note: this only applies to successful i/o (io_error == 0) 4868 * because unlike i/o counts, errors are not additive. 4869 * When reading a ditto block, for example, failure of 4870 * one top-level vdev does not imply a root-level error. 4871 */ 4872 if (vd == rvd) 4873 return; 4874 4875 ASSERT(vd == zio->io_vd); 4876 4877 if (flags & ZIO_FLAG_IO_BYPASS) 4878 return; 4879 4880 mutex_enter(&vd->vdev_stat_lock); 4881 4882 if (flags & ZIO_FLAG_IO_REPAIR) { 4883 /* 4884 * Repair is the result of a resilver issued by the 4885 * scan thread (spa_sync). 4886 */ 4887 if (flags & ZIO_FLAG_SCAN_THREAD) { 4888 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 4889 dsl_scan_phys_t *scn_phys = &scn->scn_phys; 4890 uint64_t *processed = &scn_phys->scn_processed; 4891 4892 if (vd->vdev_ops->vdev_op_leaf) 4893 atomic_add_64(processed, psize); 4894 vs->vs_scan_processed += psize; 4895 } 4896 4897 /* 4898 * Repair is the result of a rebuild issued by the 4899 * rebuild thread (vdev_rebuild_thread). To avoid 4900 * double counting repaired bytes the virtual dRAID 4901 * spare vdev is excluded from the processed bytes. 4902 */ 4903 if (zio->io_priority == ZIO_PRIORITY_REBUILD) { 4904 vdev_t *tvd = vd->vdev_top; 4905 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config; 4906 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 4907 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt; 4908 4909 if (vd->vdev_ops->vdev_op_leaf && 4910 vd->vdev_ops != &vdev_draid_spare_ops) { 4911 atomic_add_64(rebuilt, psize); 4912 } 4913 vs->vs_rebuild_processed += psize; 4914 } 4915 4916 if (flags & ZIO_FLAG_SELF_HEAL) 4917 vs->vs_self_healed += psize; 4918 } 4919 4920 /* 4921 * The bytes/ops/histograms are recorded at the leaf level and 4922 * aggregated into the higher level vdevs in vdev_get_stats(). 4923 */ 4924 if (vd->vdev_ops->vdev_op_leaf && 4925 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) { 4926 zio_type_t vs_type = type; 4927 zio_priority_t priority = zio->io_priority; 4928 4929 /* 4930 * TRIM ops and bytes are reported to user space as 4931 * ZIO_TYPE_FLUSH. This is done to preserve the 4932 * vdev_stat_t structure layout for user space. 4933 */ 4934 if (type == ZIO_TYPE_TRIM) 4935 vs_type = ZIO_TYPE_FLUSH; 4936 4937 /* 4938 * Solely for the purposes of 'zpool iostat -lqrw' 4939 * reporting use the priority to categorize the IO. 4940 * Only the following are reported to user space: 4941 * 4942 * ZIO_PRIORITY_SYNC_READ, 4943 * ZIO_PRIORITY_SYNC_WRITE, 4944 * ZIO_PRIORITY_ASYNC_READ, 4945 * ZIO_PRIORITY_ASYNC_WRITE, 4946 * ZIO_PRIORITY_SCRUB, 4947 * ZIO_PRIORITY_TRIM, 4948 * ZIO_PRIORITY_REBUILD. 4949 */ 4950 if (priority == ZIO_PRIORITY_INITIALIZING) { 4951 ASSERT3U(type, ==, ZIO_TYPE_WRITE); 4952 priority = ZIO_PRIORITY_ASYNC_WRITE; 4953 } else if (priority == ZIO_PRIORITY_REMOVAL) { 4954 priority = ((type == ZIO_TYPE_WRITE) ? 4955 ZIO_PRIORITY_ASYNC_WRITE : 4956 ZIO_PRIORITY_ASYNC_READ); 4957 } 4958 4959 vs->vs_ops[vs_type]++; 4960 vs->vs_bytes[vs_type] += psize; 4961 4962 if (flags & ZIO_FLAG_DELEGATED) { 4963 vsx->vsx_agg_histo[priority] 4964 [RQ_HISTO(zio->io_size)]++; 4965 } else { 4966 vsx->vsx_ind_histo[priority] 4967 [RQ_HISTO(zio->io_size)]++; 4968 } 4969 4970 if (zio->io_delta && zio->io_delay) { 4971 vsx->vsx_queue_histo[priority] 4972 [L_HISTO(zio->io_delta - zio->io_delay)]++; 4973 vsx->vsx_disk_histo[type] 4974 [L_HISTO(zio->io_delay)]++; 4975 vsx->vsx_total_histo[type] 4976 [L_HISTO(zio->io_delta)]++; 4977 } 4978 } 4979 4980 mutex_exit(&vd->vdev_stat_lock); 4981 return; 4982 } 4983 4984 if (flags & ZIO_FLAG_SPECULATIVE) 4985 return; 4986 4987 /* 4988 * If this is an I/O error that is going to be retried, then ignore the 4989 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 4990 * hard errors, when in reality they can happen for any number of 4991 * innocuous reasons (bus resets, MPxIO link failure, etc). 4992 */ 4993 if (zio->io_error == EIO && 4994 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 4995 return; 4996 4997 /* 4998 * Intent logs writes won't propagate their error to the root 4999 * I/O so don't mark these types of failures as pool-level 5000 * errors. 5001 */ 5002 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 5003 return; 5004 5005 if (type == ZIO_TYPE_WRITE && txg != 0 && 5006 (!(flags & ZIO_FLAG_IO_REPAIR) || 5007 (flags & ZIO_FLAG_SCAN_THREAD) || 5008 spa->spa_claiming)) { 5009 /* 5010 * This is either a normal write (not a repair), or it's 5011 * a repair induced by the scrub thread, or it's a repair 5012 * made by zil_claim() during spa_load() in the first txg. 5013 * In the normal case, we commit the DTL change in the same 5014 * txg as the block was born. In the scrub-induced repair 5015 * case, we know that scrubs run in first-pass syncing context, 5016 * so we commit the DTL change in spa_syncing_txg(spa). 5017 * In the zil_claim() case, we commit in spa_first_txg(spa). 5018 * 5019 * We currently do not make DTL entries for failed spontaneous 5020 * self-healing writes triggered by normal (non-scrubbing) 5021 * reads, because we have no transactional context in which to 5022 * do so -- and it's not clear that it'd be desirable anyway. 5023 */ 5024 if (vd->vdev_ops->vdev_op_leaf) { 5025 uint64_t commit_txg = txg; 5026 if (flags & ZIO_FLAG_SCAN_THREAD) { 5027 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 5028 ASSERT(spa_sync_pass(spa) == 1); 5029 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 5030 commit_txg = spa_syncing_txg(spa); 5031 } else if (spa->spa_claiming) { 5032 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 5033 commit_txg = spa_first_txg(spa); 5034 } 5035 ASSERT(commit_txg >= spa_syncing_txg(spa)); 5036 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 5037 return; 5038 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 5039 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 5040 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 5041 } 5042 if (vd != rvd) 5043 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 5044 } 5045 } 5046 5047 int64_t 5048 vdev_deflated_space(vdev_t *vd, int64_t space) 5049 { 5050 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); 5051 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 5052 5053 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); 5054 } 5055 5056 /* 5057 * Update the in-core space usage stats for this vdev, its metaslab class, 5058 * and the root vdev. 5059 */ 5060 void 5061 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 5062 int64_t space_delta) 5063 { 5064 (void) defer_delta; 5065 int64_t dspace_delta; 5066 spa_t *spa = vd->vdev_spa; 5067 vdev_t *rvd = spa->spa_root_vdev; 5068 5069 ASSERT(vd == vd->vdev_top); 5070 5071 /* 5072 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 5073 * factor. We must calculate this here and not at the root vdev 5074 * because the root vdev's psize-to-asize is simply the max of its 5075 * children's, thus not accurate enough for us. 5076 */ 5077 dspace_delta = vdev_deflated_space(vd, space_delta); 5078 5079 mutex_enter(&vd->vdev_stat_lock); 5080 /* ensure we won't underflow */ 5081 if (alloc_delta < 0) { 5082 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); 5083 } 5084 5085 vd->vdev_stat.vs_alloc += alloc_delta; 5086 vd->vdev_stat.vs_space += space_delta; 5087 vd->vdev_stat.vs_dspace += dspace_delta; 5088 mutex_exit(&vd->vdev_stat_lock); 5089 5090 /* every class but log contributes to root space stats */ 5091 if (vd->vdev_mg != NULL && !vd->vdev_islog) { 5092 ASSERT(!vd->vdev_isl2cache); 5093 mutex_enter(&rvd->vdev_stat_lock); 5094 rvd->vdev_stat.vs_alloc += alloc_delta; 5095 rvd->vdev_stat.vs_space += space_delta; 5096 rvd->vdev_stat.vs_dspace += dspace_delta; 5097 mutex_exit(&rvd->vdev_stat_lock); 5098 } 5099 /* Note: metaslab_class_space_update moved to metaslab_space_update */ 5100 } 5101 5102 /* 5103 * Mark a top-level vdev's config as dirty, placing it on the dirty list 5104 * so that it will be written out next time the vdev configuration is synced. 5105 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 5106 */ 5107 void 5108 vdev_config_dirty(vdev_t *vd) 5109 { 5110 spa_t *spa = vd->vdev_spa; 5111 vdev_t *rvd = spa->spa_root_vdev; 5112 int c; 5113 5114 ASSERT(spa_writeable(spa)); 5115 5116 /* 5117 * If this is an aux vdev (as with l2cache and spare devices), then we 5118 * update the vdev config manually and set the sync flag. 5119 */ 5120 if (vd->vdev_aux != NULL) { 5121 spa_aux_vdev_t *sav = vd->vdev_aux; 5122 nvlist_t **aux; 5123 uint_t naux; 5124 5125 for (c = 0; c < sav->sav_count; c++) { 5126 if (sav->sav_vdevs[c] == vd) 5127 break; 5128 } 5129 5130 if (c == sav->sav_count) { 5131 /* 5132 * We're being removed. There's nothing more to do. 5133 */ 5134 ASSERT(sav->sav_sync == B_TRUE); 5135 return; 5136 } 5137 5138 sav->sav_sync = B_TRUE; 5139 5140 if (nvlist_lookup_nvlist_array(sav->sav_config, 5141 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 5142 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 5143 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 5144 } 5145 5146 ASSERT(c < naux); 5147 5148 /* 5149 * Setting the nvlist in the middle if the array is a little 5150 * sketchy, but it will work. 5151 */ 5152 nvlist_free(aux[c]); 5153 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 5154 5155 return; 5156 } 5157 5158 /* 5159 * The dirty list is protected by the SCL_CONFIG lock. The caller 5160 * must either hold SCL_CONFIG as writer, or must be the sync thread 5161 * (which holds SCL_CONFIG as reader). There's only one sync thread, 5162 * so this is sufficient to ensure mutual exclusion. 5163 */ 5164 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5165 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5166 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5167 5168 if (vd == rvd) { 5169 for (c = 0; c < rvd->vdev_children; c++) 5170 vdev_config_dirty(rvd->vdev_child[c]); 5171 } else { 5172 ASSERT(vd == vd->vdev_top); 5173 5174 if (!list_link_active(&vd->vdev_config_dirty_node) && 5175 vdev_is_concrete(vd)) { 5176 list_insert_head(&spa->spa_config_dirty_list, vd); 5177 } 5178 } 5179 } 5180 5181 void 5182 vdev_config_clean(vdev_t *vd) 5183 { 5184 spa_t *spa = vd->vdev_spa; 5185 5186 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5187 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5188 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5189 5190 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 5191 list_remove(&spa->spa_config_dirty_list, vd); 5192 } 5193 5194 /* 5195 * Mark a top-level vdev's state as dirty, so that the next pass of 5196 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 5197 * the state changes from larger config changes because they require 5198 * much less locking, and are often needed for administrative actions. 5199 */ 5200 void 5201 vdev_state_dirty(vdev_t *vd) 5202 { 5203 spa_t *spa = vd->vdev_spa; 5204 5205 ASSERT(spa_writeable(spa)); 5206 ASSERT(vd == vd->vdev_top); 5207 5208 /* 5209 * The state list is protected by the SCL_STATE lock. The caller 5210 * must either hold SCL_STATE as writer, or must be the sync thread 5211 * (which holds SCL_STATE as reader). There's only one sync thread, 5212 * so this is sufficient to ensure mutual exclusion. 5213 */ 5214 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5215 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5216 spa_config_held(spa, SCL_STATE, RW_READER))); 5217 5218 if (!list_link_active(&vd->vdev_state_dirty_node) && 5219 vdev_is_concrete(vd)) 5220 list_insert_head(&spa->spa_state_dirty_list, vd); 5221 } 5222 5223 void 5224 vdev_state_clean(vdev_t *vd) 5225 { 5226 spa_t *spa = vd->vdev_spa; 5227 5228 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5229 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5230 spa_config_held(spa, SCL_STATE, RW_READER))); 5231 5232 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 5233 list_remove(&spa->spa_state_dirty_list, vd); 5234 } 5235 5236 /* 5237 * Propagate vdev state up from children to parent. 5238 */ 5239 void 5240 vdev_propagate_state(vdev_t *vd) 5241 { 5242 spa_t *spa = vd->vdev_spa; 5243 vdev_t *rvd = spa->spa_root_vdev; 5244 int degraded = 0, faulted = 0; 5245 int corrupted = 0; 5246 vdev_t *child; 5247 5248 if (vd->vdev_children > 0) { 5249 for (int c = 0; c < vd->vdev_children; c++) { 5250 child = vd->vdev_child[c]; 5251 5252 /* 5253 * Don't factor holes or indirect vdevs into the 5254 * decision. 5255 */ 5256 if (!vdev_is_concrete(child)) 5257 continue; 5258 5259 if (!vdev_readable(child) || 5260 (!vdev_writeable(child) && spa_writeable(spa))) { 5261 /* 5262 * Root special: if there is a top-level log 5263 * device, treat the root vdev as if it were 5264 * degraded. 5265 */ 5266 if (child->vdev_islog && vd == rvd) 5267 degraded++; 5268 else 5269 faulted++; 5270 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 5271 degraded++; 5272 } 5273 5274 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 5275 corrupted++; 5276 } 5277 5278 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 5279 5280 /* 5281 * Root special: if there is a top-level vdev that cannot be 5282 * opened due to corrupted metadata, then propagate the root 5283 * vdev's aux state as 'corrupt' rather than 'insufficient 5284 * replicas'. 5285 */ 5286 if (corrupted && vd == rvd && 5287 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 5288 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 5289 VDEV_AUX_CORRUPT_DATA); 5290 } 5291 5292 if (vd->vdev_parent) 5293 vdev_propagate_state(vd->vdev_parent); 5294 } 5295 5296 /* 5297 * Set a vdev's state. If this is during an open, we don't update the parent 5298 * state, because we're in the process of opening children depth-first. 5299 * Otherwise, we propagate the change to the parent. 5300 * 5301 * If this routine places a device in a faulted state, an appropriate ereport is 5302 * generated. 5303 */ 5304 void 5305 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 5306 { 5307 uint64_t save_state; 5308 spa_t *spa = vd->vdev_spa; 5309 5310 if (state == vd->vdev_state) { 5311 /* 5312 * Since vdev_offline() code path is already in an offline 5313 * state we can miss a statechange event to OFFLINE. Check 5314 * the previous state to catch this condition. 5315 */ 5316 if (vd->vdev_ops->vdev_op_leaf && 5317 (state == VDEV_STATE_OFFLINE) && 5318 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) { 5319 /* post an offline state change */ 5320 zfs_post_state_change(spa, vd, vd->vdev_prevstate); 5321 } 5322 vd->vdev_stat.vs_aux = aux; 5323 return; 5324 } 5325 5326 save_state = vd->vdev_state; 5327 5328 vd->vdev_state = state; 5329 vd->vdev_stat.vs_aux = aux; 5330 5331 /* 5332 * If we are setting the vdev state to anything but an open state, then 5333 * always close the underlying device unless the device has requested 5334 * a delayed close (i.e. we're about to remove or fault the device). 5335 * Otherwise, we keep accessible but invalid devices open forever. 5336 * We don't call vdev_close() itself, because that implies some extra 5337 * checks (offline, etc) that we don't want here. This is limited to 5338 * leaf devices, because otherwise closing the device will affect other 5339 * children. 5340 */ 5341 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 5342 vd->vdev_ops->vdev_op_leaf) 5343 vd->vdev_ops->vdev_op_close(vd); 5344 5345 if (vd->vdev_removed && 5346 state == VDEV_STATE_CANT_OPEN && 5347 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 5348 /* 5349 * If the previous state is set to VDEV_STATE_REMOVED, then this 5350 * device was previously marked removed and someone attempted to 5351 * reopen it. If this failed due to a nonexistent device, then 5352 * keep the device in the REMOVED state. We also let this be if 5353 * it is one of our special test online cases, which is only 5354 * attempting to online the device and shouldn't generate an FMA 5355 * fault. 5356 */ 5357 vd->vdev_state = VDEV_STATE_REMOVED; 5358 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 5359 } else if (state == VDEV_STATE_REMOVED) { 5360 vd->vdev_removed = B_TRUE; 5361 } else if (state == VDEV_STATE_CANT_OPEN) { 5362 /* 5363 * If we fail to open a vdev during an import or recovery, we 5364 * mark it as "not available", which signifies that it was 5365 * never there to begin with. Failure to open such a device 5366 * is not considered an error. 5367 */ 5368 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 5369 spa_load_state(spa) == SPA_LOAD_RECOVER) && 5370 vd->vdev_ops->vdev_op_leaf) 5371 vd->vdev_not_present = 1; 5372 5373 /* 5374 * Post the appropriate ereport. If the 'prevstate' field is 5375 * set to something other than VDEV_STATE_UNKNOWN, it indicates 5376 * that this is part of a vdev_reopen(). In this case, we don't 5377 * want to post the ereport if the device was already in the 5378 * CANT_OPEN state beforehand. 5379 * 5380 * If the 'checkremove' flag is set, then this is an attempt to 5381 * online the device in response to an insertion event. If we 5382 * hit this case, then we have detected an insertion event for a 5383 * faulted or offline device that wasn't in the removed state. 5384 * In this scenario, we don't post an ereport because we are 5385 * about to replace the device, or attempt an online with 5386 * vdev_forcefault, which will generate the fault for us. 5387 */ 5388 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 5389 !vd->vdev_not_present && !vd->vdev_checkremove && 5390 vd != spa->spa_root_vdev) { 5391 const char *class; 5392 5393 switch (aux) { 5394 case VDEV_AUX_OPEN_FAILED: 5395 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 5396 break; 5397 case VDEV_AUX_CORRUPT_DATA: 5398 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 5399 break; 5400 case VDEV_AUX_NO_REPLICAS: 5401 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 5402 break; 5403 case VDEV_AUX_BAD_GUID_SUM: 5404 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 5405 break; 5406 case VDEV_AUX_TOO_SMALL: 5407 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 5408 break; 5409 case VDEV_AUX_BAD_LABEL: 5410 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 5411 break; 5412 case VDEV_AUX_BAD_ASHIFT: 5413 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT; 5414 break; 5415 default: 5416 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 5417 } 5418 5419 (void) zfs_ereport_post(class, spa, vd, NULL, NULL, 5420 save_state); 5421 } 5422 5423 /* Erase any notion of persistent removed state */ 5424 vd->vdev_removed = B_FALSE; 5425 } else { 5426 vd->vdev_removed = B_FALSE; 5427 } 5428 5429 /* 5430 * Notify ZED of any significant state-change on a leaf vdev. 5431 * 5432 */ 5433 if (vd->vdev_ops->vdev_op_leaf) { 5434 /* preserve original state from a vdev_reopen() */ 5435 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) && 5436 (vd->vdev_prevstate != vd->vdev_state) && 5437 (save_state <= VDEV_STATE_CLOSED)) 5438 save_state = vd->vdev_prevstate; 5439 5440 /* filter out state change due to initial vdev_open */ 5441 if (save_state > VDEV_STATE_CLOSED) 5442 zfs_post_state_change(spa, vd, save_state); 5443 } 5444 5445 if (!isopen && vd->vdev_parent) 5446 vdev_propagate_state(vd->vdev_parent); 5447 } 5448 5449 boolean_t 5450 vdev_children_are_offline(vdev_t *vd) 5451 { 5452 ASSERT(!vd->vdev_ops->vdev_op_leaf); 5453 5454 for (uint64_t i = 0; i < vd->vdev_children; i++) { 5455 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 5456 return (B_FALSE); 5457 } 5458 5459 return (B_TRUE); 5460 } 5461 5462 /* 5463 * Check the vdev configuration to ensure that it's capable of supporting 5464 * a root pool. We do not support partial configuration. 5465 */ 5466 boolean_t 5467 vdev_is_bootable(vdev_t *vd) 5468 { 5469 if (!vd->vdev_ops->vdev_op_leaf) { 5470 const char *vdev_type = vd->vdev_ops->vdev_op_type; 5471 5472 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) 5473 return (B_FALSE); 5474 } 5475 5476 for (int c = 0; c < vd->vdev_children; c++) { 5477 if (!vdev_is_bootable(vd->vdev_child[c])) 5478 return (B_FALSE); 5479 } 5480 return (B_TRUE); 5481 } 5482 5483 boolean_t 5484 vdev_is_concrete(vdev_t *vd) 5485 { 5486 vdev_ops_t *ops = vd->vdev_ops; 5487 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 5488 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 5489 return (B_FALSE); 5490 } else { 5491 return (B_TRUE); 5492 } 5493 } 5494 5495 /* 5496 * Determine if a log device has valid content. If the vdev was 5497 * removed or faulted in the MOS config then we know that 5498 * the content on the log device has already been written to the pool. 5499 */ 5500 boolean_t 5501 vdev_log_state_valid(vdev_t *vd) 5502 { 5503 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 5504 !vd->vdev_removed) 5505 return (B_TRUE); 5506 5507 for (int c = 0; c < vd->vdev_children; c++) 5508 if (vdev_log_state_valid(vd->vdev_child[c])) 5509 return (B_TRUE); 5510 5511 return (B_FALSE); 5512 } 5513 5514 /* 5515 * Expand a vdev if possible. 5516 */ 5517 void 5518 vdev_expand(vdev_t *vd, uint64_t txg) 5519 { 5520 ASSERT(vd->vdev_top == vd); 5521 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5522 ASSERT(vdev_is_concrete(vd)); 5523 5524 vdev_set_deflate_ratio(vd); 5525 5526 if ((vd->vdev_spa->spa_raidz_expand == NULL || 5527 vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) && 5528 (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 5529 vdev_is_concrete(vd)) { 5530 vdev_metaslab_group_create(vd); 5531 VERIFY(vdev_metaslab_init(vd, txg) == 0); 5532 vdev_config_dirty(vd); 5533 } 5534 } 5535 5536 /* 5537 * Split a vdev. 5538 */ 5539 void 5540 vdev_split(vdev_t *vd) 5541 { 5542 vdev_t *cvd, *pvd = vd->vdev_parent; 5543 5544 VERIFY3U(pvd->vdev_children, >, 1); 5545 5546 vdev_remove_child(pvd, vd); 5547 vdev_compact_children(pvd); 5548 5549 ASSERT3P(pvd->vdev_child, !=, NULL); 5550 5551 cvd = pvd->vdev_child[0]; 5552 if (pvd->vdev_children == 1) { 5553 vdev_remove_parent(cvd); 5554 cvd->vdev_splitting = B_TRUE; 5555 } 5556 vdev_propagate_state(cvd); 5557 } 5558 5559 void 5560 vdev_deadman(vdev_t *vd, const char *tag) 5561 { 5562 for (int c = 0; c < vd->vdev_children; c++) { 5563 vdev_t *cvd = vd->vdev_child[c]; 5564 5565 vdev_deadman(cvd, tag); 5566 } 5567 5568 if (vd->vdev_ops->vdev_op_leaf) { 5569 vdev_queue_t *vq = &vd->vdev_queue; 5570 5571 mutex_enter(&vq->vq_lock); 5572 if (vq->vq_active > 0) { 5573 spa_t *spa = vd->vdev_spa; 5574 zio_t *fio; 5575 uint64_t delta; 5576 5577 zfs_dbgmsg("slow vdev: %s has %u active IOs", 5578 vd->vdev_path, vq->vq_active); 5579 5580 /* 5581 * Look at the head of all the pending queues, 5582 * if any I/O has been outstanding for longer than 5583 * the spa_deadman_synctime invoke the deadman logic. 5584 */ 5585 fio = list_head(&vq->vq_active_list); 5586 delta = gethrtime() - fio->io_timestamp; 5587 if (delta > spa_deadman_synctime(spa)) 5588 zio_deadman(fio, tag); 5589 } 5590 mutex_exit(&vq->vq_lock); 5591 } 5592 } 5593 5594 void 5595 vdev_defer_resilver(vdev_t *vd) 5596 { 5597 ASSERT(vd->vdev_ops->vdev_op_leaf); 5598 5599 vd->vdev_resilver_deferred = B_TRUE; 5600 vd->vdev_spa->spa_resilver_deferred = B_TRUE; 5601 } 5602 5603 /* 5604 * Clears the resilver deferred flag on all leaf devs under vd. Returns 5605 * B_TRUE if we have devices that need to be resilvered and are available to 5606 * accept resilver I/Os. 5607 */ 5608 boolean_t 5609 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx) 5610 { 5611 boolean_t resilver_needed = B_FALSE; 5612 spa_t *spa = vd->vdev_spa; 5613 5614 for (int c = 0; c < vd->vdev_children; c++) { 5615 vdev_t *cvd = vd->vdev_child[c]; 5616 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx); 5617 } 5618 5619 if (vd == spa->spa_root_vdev && 5620 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { 5621 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 5622 vdev_config_dirty(vd); 5623 spa->spa_resilver_deferred = B_FALSE; 5624 return (resilver_needed); 5625 } 5626 5627 if (!vdev_is_concrete(vd) || vd->vdev_aux || 5628 !vd->vdev_ops->vdev_op_leaf) 5629 return (resilver_needed); 5630 5631 vd->vdev_resilver_deferred = B_FALSE; 5632 5633 return (!vdev_is_dead(vd) && !vd->vdev_offline && 5634 vdev_resilver_needed(vd, NULL, NULL)); 5635 } 5636 5637 boolean_t 5638 vdev_xlate_is_empty(range_seg64_t *rs) 5639 { 5640 return (rs->rs_start == rs->rs_end); 5641 } 5642 5643 /* 5644 * Translate a logical range to the first contiguous physical range for the 5645 * specified vdev_t. This function is initially called with a leaf vdev and 5646 * will walk each parent vdev until it reaches a top-level vdev. Once the 5647 * top-level is reached the physical range is initialized and the recursive 5648 * function begins to unwind. As it unwinds it calls the parent's vdev 5649 * specific translation function to do the real conversion. 5650 */ 5651 void 5652 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 5653 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 5654 { 5655 /* 5656 * Walk up the vdev tree 5657 */ 5658 if (vd != vd->vdev_top) { 5659 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs, 5660 remain_rs); 5661 } else { 5662 /* 5663 * We've reached the top-level vdev, initialize the physical 5664 * range to the logical range and set an empty remaining 5665 * range then start to unwind. 5666 */ 5667 physical_rs->rs_start = logical_rs->rs_start; 5668 physical_rs->rs_end = logical_rs->rs_end; 5669 5670 remain_rs->rs_start = logical_rs->rs_start; 5671 remain_rs->rs_end = logical_rs->rs_start; 5672 5673 return; 5674 } 5675 5676 vdev_t *pvd = vd->vdev_parent; 5677 ASSERT3P(pvd, !=, NULL); 5678 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL); 5679 5680 /* 5681 * As this recursive function unwinds, translate the logical 5682 * range into its physical and any remaining components by calling 5683 * the vdev specific translate function. 5684 */ 5685 range_seg64_t intermediate = { 0 }; 5686 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs); 5687 5688 physical_rs->rs_start = intermediate.rs_start; 5689 physical_rs->rs_end = intermediate.rs_end; 5690 } 5691 5692 void 5693 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs, 5694 vdev_xlate_func_t *func, void *arg) 5695 { 5696 range_seg64_t iter_rs = *logical_rs; 5697 range_seg64_t physical_rs; 5698 range_seg64_t remain_rs; 5699 5700 while (!vdev_xlate_is_empty(&iter_rs)) { 5701 5702 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs); 5703 5704 /* 5705 * With raidz and dRAID, it's possible that the logical range 5706 * does not live on this leaf vdev. Only when there is a non- 5707 * zero physical size call the provided function. 5708 */ 5709 if (!vdev_xlate_is_empty(&physical_rs)) 5710 func(arg, &physical_rs); 5711 5712 iter_rs = remain_rs; 5713 } 5714 } 5715 5716 static char * 5717 vdev_name(vdev_t *vd, char *buf, int buflen) 5718 { 5719 if (vd->vdev_path == NULL) { 5720 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) { 5721 strlcpy(buf, vd->vdev_spa->spa_name, buflen); 5722 } else if (!vd->vdev_ops->vdev_op_leaf) { 5723 snprintf(buf, buflen, "%s-%llu", 5724 vd->vdev_ops->vdev_op_type, 5725 (u_longlong_t)vd->vdev_id); 5726 } 5727 } else { 5728 strlcpy(buf, vd->vdev_path, buflen); 5729 } 5730 return (buf); 5731 } 5732 5733 /* 5734 * Look at the vdev tree and determine whether any devices are currently being 5735 * replaced. 5736 */ 5737 boolean_t 5738 vdev_replace_in_progress(vdev_t *vdev) 5739 { 5740 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0); 5741 5742 if (vdev->vdev_ops == &vdev_replacing_ops) 5743 return (B_TRUE); 5744 5745 /* 5746 * A 'spare' vdev indicates that we have a replace in progress, unless 5747 * it has exactly two children, and the second, the hot spare, has 5748 * finished being resilvered. 5749 */ 5750 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 || 5751 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING))) 5752 return (B_TRUE); 5753 5754 for (int i = 0; i < vdev->vdev_children; i++) { 5755 if (vdev_replace_in_progress(vdev->vdev_child[i])) 5756 return (B_TRUE); 5757 } 5758 5759 return (B_FALSE); 5760 } 5761 5762 /* 5763 * Add a (source=src, propname=propval) list to an nvlist. 5764 */ 5765 static void 5766 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval, 5767 uint64_t intval, zprop_source_t src) 5768 { 5769 nvlist_t *propval; 5770 5771 propval = fnvlist_alloc(); 5772 fnvlist_add_uint64(propval, ZPROP_SOURCE, src); 5773 5774 if (strval != NULL) 5775 fnvlist_add_string(propval, ZPROP_VALUE, strval); 5776 else 5777 fnvlist_add_uint64(propval, ZPROP_VALUE, intval); 5778 5779 fnvlist_add_nvlist(nvl, propname, propval); 5780 nvlist_free(propval); 5781 } 5782 5783 static void 5784 vdev_props_set_sync(void *arg, dmu_tx_t *tx) 5785 { 5786 vdev_t *vd; 5787 nvlist_t *nvp = arg; 5788 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5789 objset_t *mos = spa->spa_meta_objset; 5790 nvpair_t *elem = NULL; 5791 uint64_t vdev_guid; 5792 uint64_t objid; 5793 nvlist_t *nvprops; 5794 5795 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV); 5796 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS); 5797 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE); 5798 5799 /* this vdev could get removed while waiting for this sync task */ 5800 if (vd == NULL) 5801 return; 5802 5803 /* 5804 * Set vdev property values in the vdev props mos object. 5805 */ 5806 if (vd->vdev_root_zap != 0) { 5807 objid = vd->vdev_root_zap; 5808 } else if (vd->vdev_top_zap != 0) { 5809 objid = vd->vdev_top_zap; 5810 } else if (vd->vdev_leaf_zap != 0) { 5811 objid = vd->vdev_leaf_zap; 5812 } else { 5813 panic("unexpected vdev type"); 5814 } 5815 5816 mutex_enter(&spa->spa_props_lock); 5817 5818 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5819 uint64_t intval; 5820 const char *strval; 5821 vdev_prop_t prop; 5822 const char *propname = nvpair_name(elem); 5823 zprop_type_t proptype; 5824 5825 switch (prop = vdev_name_to_prop(propname)) { 5826 case VDEV_PROP_USERPROP: 5827 if (vdev_prop_user(propname)) { 5828 strval = fnvpair_value_string(elem); 5829 if (strlen(strval) == 0) { 5830 /* remove the property if value == "" */ 5831 (void) zap_remove(mos, objid, propname, 5832 tx); 5833 } else { 5834 VERIFY0(zap_update(mos, objid, propname, 5835 1, strlen(strval) + 1, strval, tx)); 5836 } 5837 spa_history_log_internal(spa, "vdev set", tx, 5838 "vdev_guid=%llu: %s=%s", 5839 (u_longlong_t)vdev_guid, nvpair_name(elem), 5840 strval); 5841 } 5842 break; 5843 default: 5844 /* normalize the property name */ 5845 propname = vdev_prop_to_name(prop); 5846 proptype = vdev_prop_get_type(prop); 5847 5848 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5849 ASSERT(proptype == PROP_TYPE_STRING); 5850 strval = fnvpair_value_string(elem); 5851 VERIFY0(zap_update(mos, objid, propname, 5852 1, strlen(strval) + 1, strval, tx)); 5853 spa_history_log_internal(spa, "vdev set", tx, 5854 "vdev_guid=%llu: %s=%s", 5855 (u_longlong_t)vdev_guid, nvpair_name(elem), 5856 strval); 5857 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5858 intval = fnvpair_value_uint64(elem); 5859 5860 if (proptype == PROP_TYPE_INDEX) { 5861 const char *unused; 5862 VERIFY0(vdev_prop_index_to_string( 5863 prop, intval, &unused)); 5864 } 5865 VERIFY0(zap_update(mos, objid, propname, 5866 sizeof (uint64_t), 1, &intval, tx)); 5867 spa_history_log_internal(spa, "vdev set", tx, 5868 "vdev_guid=%llu: %s=%lld", 5869 (u_longlong_t)vdev_guid, 5870 nvpair_name(elem), (longlong_t)intval); 5871 } else { 5872 panic("invalid vdev property type %u", 5873 nvpair_type(elem)); 5874 } 5875 } 5876 5877 } 5878 5879 mutex_exit(&spa->spa_props_lock); 5880 } 5881 5882 int 5883 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 5884 { 5885 spa_t *spa = vd->vdev_spa; 5886 nvpair_t *elem = NULL; 5887 uint64_t vdev_guid; 5888 nvlist_t *nvprops; 5889 int error = 0; 5890 5891 ASSERT(vd != NULL); 5892 5893 /* Check that vdev has a zap we can use */ 5894 if (vd->vdev_root_zap == 0 && 5895 vd->vdev_top_zap == 0 && 5896 vd->vdev_leaf_zap == 0) 5897 return (SET_ERROR(EINVAL)); 5898 5899 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV, 5900 &vdev_guid) != 0) 5901 return (SET_ERROR(EINVAL)); 5902 5903 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS, 5904 &nvprops) != 0) 5905 return (SET_ERROR(EINVAL)); 5906 5907 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) 5908 return (SET_ERROR(EINVAL)); 5909 5910 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5911 const char *propname = nvpair_name(elem); 5912 vdev_prop_t prop = vdev_name_to_prop(propname); 5913 uint64_t intval = 0; 5914 const char *strval = NULL; 5915 5916 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) { 5917 error = EINVAL; 5918 goto end; 5919 } 5920 5921 if (vdev_prop_readonly(prop)) { 5922 error = EROFS; 5923 goto end; 5924 } 5925 5926 /* Special Processing */ 5927 switch (prop) { 5928 case VDEV_PROP_PATH: 5929 if (vd->vdev_path == NULL) { 5930 error = EROFS; 5931 break; 5932 } 5933 if (nvpair_value_string(elem, &strval) != 0) { 5934 error = EINVAL; 5935 break; 5936 } 5937 /* New path must start with /dev/ */ 5938 if (strncmp(strval, "/dev/", 5)) { 5939 error = EINVAL; 5940 break; 5941 } 5942 error = spa_vdev_setpath(spa, vdev_guid, strval); 5943 break; 5944 case VDEV_PROP_ALLOCATING: 5945 if (nvpair_value_uint64(elem, &intval) != 0) { 5946 error = EINVAL; 5947 break; 5948 } 5949 if (intval != vd->vdev_noalloc) 5950 break; 5951 if (intval == 0) 5952 error = spa_vdev_noalloc(spa, vdev_guid); 5953 else 5954 error = spa_vdev_alloc(spa, vdev_guid); 5955 break; 5956 case VDEV_PROP_FAILFAST: 5957 if (nvpair_value_uint64(elem, &intval) != 0) { 5958 error = EINVAL; 5959 break; 5960 } 5961 vd->vdev_failfast = intval & 1; 5962 break; 5963 case VDEV_PROP_CHECKSUM_N: 5964 if (nvpair_value_uint64(elem, &intval) != 0) { 5965 error = EINVAL; 5966 break; 5967 } 5968 vd->vdev_checksum_n = intval; 5969 break; 5970 case VDEV_PROP_CHECKSUM_T: 5971 if (nvpair_value_uint64(elem, &intval) != 0) { 5972 error = EINVAL; 5973 break; 5974 } 5975 vd->vdev_checksum_t = intval; 5976 break; 5977 case VDEV_PROP_IO_N: 5978 if (nvpair_value_uint64(elem, &intval) != 0) { 5979 error = EINVAL; 5980 break; 5981 } 5982 vd->vdev_io_n = intval; 5983 break; 5984 case VDEV_PROP_IO_T: 5985 if (nvpair_value_uint64(elem, &intval) != 0) { 5986 error = EINVAL; 5987 break; 5988 } 5989 vd->vdev_io_t = intval; 5990 break; 5991 case VDEV_PROP_SLOW_IO_N: 5992 if (nvpair_value_uint64(elem, &intval) != 0) { 5993 error = EINVAL; 5994 break; 5995 } 5996 vd->vdev_slow_io_n = intval; 5997 break; 5998 case VDEV_PROP_SLOW_IO_T: 5999 if (nvpair_value_uint64(elem, &intval) != 0) { 6000 error = EINVAL; 6001 break; 6002 } 6003 vd->vdev_slow_io_t = intval; 6004 break; 6005 default: 6006 /* Most processing is done in vdev_props_set_sync */ 6007 break; 6008 } 6009 end: 6010 if (error != 0) { 6011 intval = error; 6012 vdev_prop_add_list(outnvl, propname, strval, intval, 0); 6013 return (error); 6014 } 6015 } 6016 6017 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync, 6018 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 6019 } 6020 6021 int 6022 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 6023 { 6024 spa_t *spa = vd->vdev_spa; 6025 objset_t *mos = spa->spa_meta_objset; 6026 int err = 0; 6027 uint64_t objid; 6028 uint64_t vdev_guid; 6029 nvpair_t *elem = NULL; 6030 nvlist_t *nvprops = NULL; 6031 uint64_t intval = 0; 6032 char *strval = NULL; 6033 const char *propname = NULL; 6034 vdev_prop_t prop; 6035 6036 ASSERT(vd != NULL); 6037 ASSERT(mos != NULL); 6038 6039 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV, 6040 &vdev_guid) != 0) 6041 return (SET_ERROR(EINVAL)); 6042 6043 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops); 6044 6045 if (vd->vdev_root_zap != 0) { 6046 objid = vd->vdev_root_zap; 6047 } else if (vd->vdev_top_zap != 0) { 6048 objid = vd->vdev_top_zap; 6049 } else if (vd->vdev_leaf_zap != 0) { 6050 objid = vd->vdev_leaf_zap; 6051 } else { 6052 return (SET_ERROR(EINVAL)); 6053 } 6054 ASSERT(objid != 0); 6055 6056 mutex_enter(&spa->spa_props_lock); 6057 6058 if (nvprops != NULL) { 6059 char namebuf[64] = { 0 }; 6060 6061 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 6062 intval = 0; 6063 strval = NULL; 6064 propname = nvpair_name(elem); 6065 prop = vdev_name_to_prop(propname); 6066 zprop_source_t src = ZPROP_SRC_DEFAULT; 6067 uint64_t integer_size, num_integers; 6068 6069 switch (prop) { 6070 /* Special Read-only Properties */ 6071 case VDEV_PROP_NAME: 6072 strval = vdev_name(vd, namebuf, 6073 sizeof (namebuf)); 6074 if (strval == NULL) 6075 continue; 6076 vdev_prop_add_list(outnvl, propname, strval, 0, 6077 ZPROP_SRC_NONE); 6078 continue; 6079 case VDEV_PROP_CAPACITY: 6080 /* percent used */ 6081 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 : 6082 (vd->vdev_stat.vs_alloc * 100 / 6083 vd->vdev_stat.vs_dspace); 6084 vdev_prop_add_list(outnvl, propname, NULL, 6085 intval, ZPROP_SRC_NONE); 6086 continue; 6087 case VDEV_PROP_STATE: 6088 vdev_prop_add_list(outnvl, propname, NULL, 6089 vd->vdev_state, ZPROP_SRC_NONE); 6090 continue; 6091 case VDEV_PROP_GUID: 6092 vdev_prop_add_list(outnvl, propname, NULL, 6093 vd->vdev_guid, ZPROP_SRC_NONE); 6094 continue; 6095 case VDEV_PROP_ASIZE: 6096 vdev_prop_add_list(outnvl, propname, NULL, 6097 vd->vdev_asize, ZPROP_SRC_NONE); 6098 continue; 6099 case VDEV_PROP_PSIZE: 6100 vdev_prop_add_list(outnvl, propname, NULL, 6101 vd->vdev_psize, ZPROP_SRC_NONE); 6102 continue; 6103 case VDEV_PROP_ASHIFT: 6104 vdev_prop_add_list(outnvl, propname, NULL, 6105 vd->vdev_ashift, ZPROP_SRC_NONE); 6106 continue; 6107 case VDEV_PROP_SIZE: 6108 vdev_prop_add_list(outnvl, propname, NULL, 6109 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE); 6110 continue; 6111 case VDEV_PROP_FREE: 6112 vdev_prop_add_list(outnvl, propname, NULL, 6113 vd->vdev_stat.vs_dspace - 6114 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 6115 continue; 6116 case VDEV_PROP_ALLOCATED: 6117 vdev_prop_add_list(outnvl, propname, NULL, 6118 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 6119 continue; 6120 case VDEV_PROP_EXPANDSZ: 6121 vdev_prop_add_list(outnvl, propname, NULL, 6122 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE); 6123 continue; 6124 case VDEV_PROP_FRAGMENTATION: 6125 vdev_prop_add_list(outnvl, propname, NULL, 6126 vd->vdev_stat.vs_fragmentation, 6127 ZPROP_SRC_NONE); 6128 continue; 6129 case VDEV_PROP_PARITY: 6130 vdev_prop_add_list(outnvl, propname, NULL, 6131 vdev_get_nparity(vd), ZPROP_SRC_NONE); 6132 continue; 6133 case VDEV_PROP_PATH: 6134 if (vd->vdev_path == NULL) 6135 continue; 6136 vdev_prop_add_list(outnvl, propname, 6137 vd->vdev_path, 0, ZPROP_SRC_NONE); 6138 continue; 6139 case VDEV_PROP_DEVID: 6140 if (vd->vdev_devid == NULL) 6141 continue; 6142 vdev_prop_add_list(outnvl, propname, 6143 vd->vdev_devid, 0, ZPROP_SRC_NONE); 6144 continue; 6145 case VDEV_PROP_PHYS_PATH: 6146 if (vd->vdev_physpath == NULL) 6147 continue; 6148 vdev_prop_add_list(outnvl, propname, 6149 vd->vdev_physpath, 0, ZPROP_SRC_NONE); 6150 continue; 6151 case VDEV_PROP_ENC_PATH: 6152 if (vd->vdev_enc_sysfs_path == NULL) 6153 continue; 6154 vdev_prop_add_list(outnvl, propname, 6155 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE); 6156 continue; 6157 case VDEV_PROP_FRU: 6158 if (vd->vdev_fru == NULL) 6159 continue; 6160 vdev_prop_add_list(outnvl, propname, 6161 vd->vdev_fru, 0, ZPROP_SRC_NONE); 6162 continue; 6163 case VDEV_PROP_PARENT: 6164 if (vd->vdev_parent != NULL) { 6165 strval = vdev_name(vd->vdev_parent, 6166 namebuf, sizeof (namebuf)); 6167 vdev_prop_add_list(outnvl, propname, 6168 strval, 0, ZPROP_SRC_NONE); 6169 } 6170 continue; 6171 case VDEV_PROP_CHILDREN: 6172 if (vd->vdev_children > 0) 6173 strval = kmem_zalloc(ZAP_MAXVALUELEN, 6174 KM_SLEEP); 6175 for (uint64_t i = 0; i < vd->vdev_children; 6176 i++) { 6177 const char *vname; 6178 6179 vname = vdev_name(vd->vdev_child[i], 6180 namebuf, sizeof (namebuf)); 6181 if (vname == NULL) 6182 vname = "(unknown)"; 6183 if (strlen(strval) > 0) 6184 strlcat(strval, ",", 6185 ZAP_MAXVALUELEN); 6186 strlcat(strval, vname, ZAP_MAXVALUELEN); 6187 } 6188 if (strval != NULL) { 6189 vdev_prop_add_list(outnvl, propname, 6190 strval, 0, ZPROP_SRC_NONE); 6191 kmem_free(strval, ZAP_MAXVALUELEN); 6192 } 6193 continue; 6194 case VDEV_PROP_NUMCHILDREN: 6195 vdev_prop_add_list(outnvl, propname, NULL, 6196 vd->vdev_children, ZPROP_SRC_NONE); 6197 continue; 6198 case VDEV_PROP_READ_ERRORS: 6199 vdev_prop_add_list(outnvl, propname, NULL, 6200 vd->vdev_stat.vs_read_errors, 6201 ZPROP_SRC_NONE); 6202 continue; 6203 case VDEV_PROP_WRITE_ERRORS: 6204 vdev_prop_add_list(outnvl, propname, NULL, 6205 vd->vdev_stat.vs_write_errors, 6206 ZPROP_SRC_NONE); 6207 continue; 6208 case VDEV_PROP_CHECKSUM_ERRORS: 6209 vdev_prop_add_list(outnvl, propname, NULL, 6210 vd->vdev_stat.vs_checksum_errors, 6211 ZPROP_SRC_NONE); 6212 continue; 6213 case VDEV_PROP_INITIALIZE_ERRORS: 6214 vdev_prop_add_list(outnvl, propname, NULL, 6215 vd->vdev_stat.vs_initialize_errors, 6216 ZPROP_SRC_NONE); 6217 continue; 6218 case VDEV_PROP_OPS_NULL: 6219 vdev_prop_add_list(outnvl, propname, NULL, 6220 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL], 6221 ZPROP_SRC_NONE); 6222 continue; 6223 case VDEV_PROP_OPS_READ: 6224 vdev_prop_add_list(outnvl, propname, NULL, 6225 vd->vdev_stat.vs_ops[ZIO_TYPE_READ], 6226 ZPROP_SRC_NONE); 6227 continue; 6228 case VDEV_PROP_OPS_WRITE: 6229 vdev_prop_add_list(outnvl, propname, NULL, 6230 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE], 6231 ZPROP_SRC_NONE); 6232 continue; 6233 case VDEV_PROP_OPS_FREE: 6234 vdev_prop_add_list(outnvl, propname, NULL, 6235 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE], 6236 ZPROP_SRC_NONE); 6237 continue; 6238 case VDEV_PROP_OPS_CLAIM: 6239 vdev_prop_add_list(outnvl, propname, NULL, 6240 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM], 6241 ZPROP_SRC_NONE); 6242 continue; 6243 case VDEV_PROP_OPS_TRIM: 6244 /* 6245 * TRIM ops and bytes are reported to user 6246 * space as ZIO_TYPE_FLUSH. This is done to 6247 * preserve the vdev_stat_t structure layout 6248 * for user space. 6249 */ 6250 vdev_prop_add_list(outnvl, propname, NULL, 6251 vd->vdev_stat.vs_ops[ZIO_TYPE_FLUSH], 6252 ZPROP_SRC_NONE); 6253 continue; 6254 case VDEV_PROP_BYTES_NULL: 6255 vdev_prop_add_list(outnvl, propname, NULL, 6256 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL], 6257 ZPROP_SRC_NONE); 6258 continue; 6259 case VDEV_PROP_BYTES_READ: 6260 vdev_prop_add_list(outnvl, propname, NULL, 6261 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ], 6262 ZPROP_SRC_NONE); 6263 continue; 6264 case VDEV_PROP_BYTES_WRITE: 6265 vdev_prop_add_list(outnvl, propname, NULL, 6266 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE], 6267 ZPROP_SRC_NONE); 6268 continue; 6269 case VDEV_PROP_BYTES_FREE: 6270 vdev_prop_add_list(outnvl, propname, NULL, 6271 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE], 6272 ZPROP_SRC_NONE); 6273 continue; 6274 case VDEV_PROP_BYTES_CLAIM: 6275 vdev_prop_add_list(outnvl, propname, NULL, 6276 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM], 6277 ZPROP_SRC_NONE); 6278 continue; 6279 case VDEV_PROP_BYTES_TRIM: 6280 /* 6281 * TRIM ops and bytes are reported to user 6282 * space as ZIO_TYPE_FLUSH. This is done to 6283 * preserve the vdev_stat_t structure layout 6284 * for user space. 6285 */ 6286 vdev_prop_add_list(outnvl, propname, NULL, 6287 vd->vdev_stat.vs_bytes[ZIO_TYPE_FLUSH], 6288 ZPROP_SRC_NONE); 6289 continue; 6290 case VDEV_PROP_REMOVING: 6291 vdev_prop_add_list(outnvl, propname, NULL, 6292 vd->vdev_removing, ZPROP_SRC_NONE); 6293 continue; 6294 case VDEV_PROP_RAIDZ_EXPANDING: 6295 /* Only expose this for raidz */ 6296 if (vd->vdev_ops == &vdev_raidz_ops) { 6297 vdev_prop_add_list(outnvl, propname, 6298 NULL, vd->vdev_rz_expanding, 6299 ZPROP_SRC_NONE); 6300 } 6301 continue; 6302 /* Numeric Properites */ 6303 case VDEV_PROP_ALLOCATING: 6304 /* Leaf vdevs cannot have this property */ 6305 if (vd->vdev_mg == NULL && 6306 vd->vdev_top != NULL) { 6307 src = ZPROP_SRC_NONE; 6308 intval = ZPROP_BOOLEAN_NA; 6309 } else { 6310 err = vdev_prop_get_int(vd, prop, 6311 &intval); 6312 if (err && err != ENOENT) 6313 break; 6314 6315 if (intval == 6316 vdev_prop_default_numeric(prop)) 6317 src = ZPROP_SRC_DEFAULT; 6318 else 6319 src = ZPROP_SRC_LOCAL; 6320 } 6321 6322 vdev_prop_add_list(outnvl, propname, NULL, 6323 intval, src); 6324 break; 6325 case VDEV_PROP_FAILFAST: 6326 src = ZPROP_SRC_LOCAL; 6327 strval = NULL; 6328 6329 err = zap_lookup(mos, objid, nvpair_name(elem), 6330 sizeof (uint64_t), 1, &intval); 6331 if (err == ENOENT) { 6332 intval = vdev_prop_default_numeric( 6333 prop); 6334 err = 0; 6335 } else if (err) { 6336 break; 6337 } 6338 if (intval == vdev_prop_default_numeric(prop)) 6339 src = ZPROP_SRC_DEFAULT; 6340 6341 vdev_prop_add_list(outnvl, propname, strval, 6342 intval, src); 6343 break; 6344 case VDEV_PROP_CHECKSUM_N: 6345 case VDEV_PROP_CHECKSUM_T: 6346 case VDEV_PROP_IO_N: 6347 case VDEV_PROP_IO_T: 6348 case VDEV_PROP_SLOW_IO_N: 6349 case VDEV_PROP_SLOW_IO_T: 6350 err = vdev_prop_get_int(vd, prop, &intval); 6351 if (err && err != ENOENT) 6352 break; 6353 6354 if (intval == vdev_prop_default_numeric(prop)) 6355 src = ZPROP_SRC_DEFAULT; 6356 else 6357 src = ZPROP_SRC_LOCAL; 6358 6359 vdev_prop_add_list(outnvl, propname, NULL, 6360 intval, src); 6361 break; 6362 /* Text Properties */ 6363 case VDEV_PROP_COMMENT: 6364 /* Exists in the ZAP below */ 6365 /* FALLTHRU */ 6366 case VDEV_PROP_USERPROP: 6367 /* User Properites */ 6368 src = ZPROP_SRC_LOCAL; 6369 6370 err = zap_length(mos, objid, nvpair_name(elem), 6371 &integer_size, &num_integers); 6372 if (err) 6373 break; 6374 6375 switch (integer_size) { 6376 case 8: 6377 /* User properties cannot be integers */ 6378 err = EINVAL; 6379 break; 6380 case 1: 6381 /* string property */ 6382 strval = kmem_alloc(num_integers, 6383 KM_SLEEP); 6384 err = zap_lookup(mos, objid, 6385 nvpair_name(elem), 1, 6386 num_integers, strval); 6387 if (err) { 6388 kmem_free(strval, 6389 num_integers); 6390 break; 6391 } 6392 vdev_prop_add_list(outnvl, propname, 6393 strval, 0, src); 6394 kmem_free(strval, num_integers); 6395 break; 6396 } 6397 break; 6398 default: 6399 err = ENOENT; 6400 break; 6401 } 6402 if (err) 6403 break; 6404 } 6405 } else { 6406 /* 6407 * Get all properties from the MOS vdev property object. 6408 */ 6409 zap_cursor_t zc; 6410 zap_attribute_t za; 6411 for (zap_cursor_init(&zc, mos, objid); 6412 (err = zap_cursor_retrieve(&zc, &za)) == 0; 6413 zap_cursor_advance(&zc)) { 6414 intval = 0; 6415 strval = NULL; 6416 zprop_source_t src = ZPROP_SRC_DEFAULT; 6417 propname = za.za_name; 6418 6419 switch (za.za_integer_length) { 6420 case 8: 6421 /* We do not allow integer user properties */ 6422 /* This is likely an internal value */ 6423 break; 6424 case 1: 6425 /* string property */ 6426 strval = kmem_alloc(za.za_num_integers, 6427 KM_SLEEP); 6428 err = zap_lookup(mos, objid, za.za_name, 1, 6429 za.za_num_integers, strval); 6430 if (err) { 6431 kmem_free(strval, za.za_num_integers); 6432 break; 6433 } 6434 vdev_prop_add_list(outnvl, propname, strval, 0, 6435 src); 6436 kmem_free(strval, za.za_num_integers); 6437 break; 6438 6439 default: 6440 break; 6441 } 6442 } 6443 zap_cursor_fini(&zc); 6444 } 6445 6446 mutex_exit(&spa->spa_props_lock); 6447 if (err && err != ENOENT) { 6448 return (err); 6449 } 6450 6451 return (0); 6452 } 6453 6454 EXPORT_SYMBOL(vdev_fault); 6455 EXPORT_SYMBOL(vdev_degrade); 6456 EXPORT_SYMBOL(vdev_online); 6457 EXPORT_SYMBOL(vdev_offline); 6458 EXPORT_SYMBOL(vdev_clear); 6459 6460 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW, 6461 "Target number of metaslabs per top-level vdev"); 6462 6463 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW, 6464 "Default lower limit for metaslab size"); 6465 6466 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW, 6467 "Default upper limit for metaslab size"); 6468 6469 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW, 6470 "Minimum number of metaslabs per top-level vdev"); 6471 6472 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW, 6473 "Practical upper limit of total metaslabs per top-level vdev"); 6474 6475 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW, 6476 "Rate limit slow IO (delay) events to this many per second"); 6477 6478 /* BEGIN CSTYLED */ 6479 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW, 6480 "Rate limit checksum events to this many checksum errors per second " 6481 "(do not set below ZED threshold)."); 6482 /* END CSTYLED */ 6483 6484 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW, 6485 "Ignore errors during resilver/scrub"); 6486 6487 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW, 6488 "Bypass vdev_validate()"); 6489 6490 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW, 6491 "Disable cache flushes"); 6492 6493 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW, 6494 "Minimum number of metaslabs required to dedicate one for log blocks"); 6495 6496 /* BEGIN CSTYLED */ 6497 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift, 6498 param_set_min_auto_ashift, param_get_uint, ZMOD_RW, 6499 "Minimum ashift used when creating new top-level vdevs"); 6500 6501 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift, 6502 param_set_max_auto_ashift, param_get_uint, ZMOD_RW, 6503 "Maximum ashift used when optimizing for logical -> physical sector " 6504 "size on new top-level vdevs"); 6505 /* END CSTYLED */ 6506