1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2017 Joyent, Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 * Copyright (c) 2019, Datto Inc. All rights reserved. 31 * Copyright (c) 2021, Klara Inc. 32 * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP. 33 */ 34 35 #include <sys/zfs_context.h> 36 #include <sys/fm/fs/zfs.h> 37 #include <sys/spa.h> 38 #include <sys/spa_impl.h> 39 #include <sys/bpobj.h> 40 #include <sys/dmu.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_dir.h> 43 #include <sys/vdev_impl.h> 44 #include <sys/vdev_rebuild.h> 45 #include <sys/vdev_draid.h> 46 #include <sys/uberblock_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/space_map.h> 50 #include <sys/space_reftree.h> 51 #include <sys/zio.h> 52 #include <sys/zap.h> 53 #include <sys/fs/zfs.h> 54 #include <sys/arc.h> 55 #include <sys/zil.h> 56 #include <sys/dsl_scan.h> 57 #include <sys/vdev_raidz.h> 58 #include <sys/abd.h> 59 #include <sys/vdev_initialize.h> 60 #include <sys/vdev_trim.h> 61 #include <sys/vdev_raidz.h> 62 #include <sys/zvol.h> 63 #include <sys/zfs_ratelimit.h> 64 #include "zfs_prop.h" 65 66 /* 67 * One metaslab from each (normal-class) vdev is used by the ZIL. These are 68 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are 69 * part of the spa_embedded_log_class. The metaslab with the most free space 70 * in each vdev is selected for this purpose when the pool is opened (or a 71 * vdev is added). See vdev_metaslab_init(). 72 * 73 * Log blocks can be allocated from the following locations. Each one is tried 74 * in order until the allocation succeeds: 75 * 1. dedicated log vdevs, aka "slog" (spa_log_class) 76 * 2. embedded slog metaslabs (spa_embedded_log_class) 77 * 3. other metaslabs in normal vdevs (spa_normal_class) 78 * 79 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer 80 * than this number of metaslabs in the vdev. This ensures that we don't set 81 * aside an unreasonable amount of space for the ZIL. If set to less than 82 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced 83 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab. 84 */ 85 static uint_t zfs_embedded_slog_min_ms = 64; 86 87 /* default target for number of metaslabs per top-level vdev */ 88 static uint_t zfs_vdev_default_ms_count = 200; 89 90 /* minimum number of metaslabs per top-level vdev */ 91 static uint_t zfs_vdev_min_ms_count = 16; 92 93 /* practical upper limit of total metaslabs per top-level vdev */ 94 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17; 95 96 /* lower limit for metaslab size (512M) */ 97 static uint_t zfs_vdev_default_ms_shift = 29; 98 99 /* upper limit for metaslab size (16G) */ 100 static uint_t zfs_vdev_max_ms_shift = 34; 101 102 int vdev_validate_skip = B_FALSE; 103 104 /* 105 * Since the DTL space map of a vdev is not expected to have a lot of 106 * entries, we default its block size to 4K. 107 */ 108 int zfs_vdev_dtl_sm_blksz = (1 << 12); 109 110 /* 111 * Rate limit slow IO (delay) events to this many per second. 112 */ 113 static unsigned int zfs_slow_io_events_per_second = 20; 114 115 /* 116 * Rate limit deadman "hung IO" events to this many per second. 117 */ 118 static unsigned int zfs_deadman_events_per_second = 1; 119 120 /* 121 * Rate limit direct write IO verify failures to this many per scond. 122 */ 123 static unsigned int zfs_dio_write_verify_events_per_second = 20; 124 125 /* 126 * Rate limit checksum events after this many checksum errors per second. 127 */ 128 static unsigned int zfs_checksum_events_per_second = 20; 129 130 /* 131 * Ignore errors during scrub/resilver. Allows to work around resilver 132 * upon import when there are pool errors. 133 */ 134 static int zfs_scan_ignore_errors = 0; 135 136 /* 137 * vdev-wide space maps that have lots of entries written to them at 138 * the end of each transaction can benefit from a higher I/O bandwidth 139 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 140 */ 141 int zfs_vdev_standard_sm_blksz = (1 << 17); 142 143 /* 144 * Tunable parameter for debugging or performance analysis. Setting this 145 * will cause pool corruption on power loss if a volatile out-of-order 146 * write cache is enabled. 147 */ 148 int zfs_nocacheflush = 0; 149 150 /* 151 * Maximum and minimum ashift values that can be automatically set based on 152 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX 153 * is higher than the maximum value, it is intentionally limited here to not 154 * excessively impact pool space efficiency. Higher ashift values may still 155 * be forced by vdev logical ashift or by user via ashift property, but won't 156 * be set automatically as a performance optimization. 157 */ 158 uint_t zfs_vdev_max_auto_ashift = 14; 159 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN; 160 161 /* 162 * VDEV checksum verification for Direct I/O writes. This is neccessary for 163 * Linux, because anonymous pages can not be placed under write protection 164 * during Direct I/O writes. 165 */ 166 #if !defined(__FreeBSD__) 167 uint_t zfs_vdev_direct_write_verify = 1; 168 #else 169 uint_t zfs_vdev_direct_write_verify = 0; 170 #endif 171 172 void 173 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 174 { 175 va_list adx; 176 char buf[256]; 177 178 va_start(adx, fmt); 179 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 180 va_end(adx); 181 182 if (vd->vdev_path != NULL) { 183 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 184 vd->vdev_path, buf); 185 } else { 186 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 187 vd->vdev_ops->vdev_op_type, 188 (u_longlong_t)vd->vdev_id, 189 (u_longlong_t)vd->vdev_guid, buf); 190 } 191 } 192 193 void 194 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 195 { 196 char state[20]; 197 198 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 199 zfs_dbgmsg("%*svdev %llu: %s", indent, "", 200 (u_longlong_t)vd->vdev_id, 201 vd->vdev_ops->vdev_op_type); 202 return; 203 } 204 205 switch (vd->vdev_state) { 206 case VDEV_STATE_UNKNOWN: 207 (void) snprintf(state, sizeof (state), "unknown"); 208 break; 209 case VDEV_STATE_CLOSED: 210 (void) snprintf(state, sizeof (state), "closed"); 211 break; 212 case VDEV_STATE_OFFLINE: 213 (void) snprintf(state, sizeof (state), "offline"); 214 break; 215 case VDEV_STATE_REMOVED: 216 (void) snprintf(state, sizeof (state), "removed"); 217 break; 218 case VDEV_STATE_CANT_OPEN: 219 (void) snprintf(state, sizeof (state), "can't open"); 220 break; 221 case VDEV_STATE_FAULTED: 222 (void) snprintf(state, sizeof (state), "faulted"); 223 break; 224 case VDEV_STATE_DEGRADED: 225 (void) snprintf(state, sizeof (state), "degraded"); 226 break; 227 case VDEV_STATE_HEALTHY: 228 (void) snprintf(state, sizeof (state), "healthy"); 229 break; 230 default: 231 (void) snprintf(state, sizeof (state), "<state %u>", 232 (uint_t)vd->vdev_state); 233 } 234 235 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 236 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 237 vd->vdev_islog ? " (log)" : "", 238 (u_longlong_t)vd->vdev_guid, 239 vd->vdev_path ? vd->vdev_path : "N/A", state); 240 241 for (uint64_t i = 0; i < vd->vdev_children; i++) 242 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 243 } 244 245 /* 246 * Virtual device management. 247 */ 248 249 static vdev_ops_t *const vdev_ops_table[] = { 250 &vdev_root_ops, 251 &vdev_raidz_ops, 252 &vdev_draid_ops, 253 &vdev_draid_spare_ops, 254 &vdev_mirror_ops, 255 &vdev_replacing_ops, 256 &vdev_spare_ops, 257 &vdev_disk_ops, 258 &vdev_file_ops, 259 &vdev_missing_ops, 260 &vdev_hole_ops, 261 &vdev_indirect_ops, 262 NULL 263 }; 264 265 /* 266 * Given a vdev type, return the appropriate ops vector. 267 */ 268 static vdev_ops_t * 269 vdev_getops(const char *type) 270 { 271 vdev_ops_t *ops, *const *opspp; 272 273 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 274 if (strcmp(ops->vdev_op_type, type) == 0) 275 break; 276 277 return (ops); 278 } 279 280 /* 281 * Given a vdev and a metaslab class, find which metaslab group we're 282 * interested in. All vdevs may belong to two different metaslab classes. 283 * Dedicated slog devices use only the primary metaslab group, rather than a 284 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL. 285 */ 286 metaslab_group_t * 287 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc) 288 { 289 if (mc == spa_embedded_log_class(vd->vdev_spa) && 290 vd->vdev_log_mg != NULL) 291 return (vd->vdev_log_mg); 292 else 293 return (vd->vdev_mg); 294 } 295 296 void 297 vdev_default_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs, 298 zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs) 299 { 300 (void) vd, (void) remain_rs; 301 302 physical_rs->rs_start = logical_rs->rs_start; 303 physical_rs->rs_end = logical_rs->rs_end; 304 } 305 306 /* 307 * Derive the enumerated allocation bias from string input. 308 * String origin is either the per-vdev zap or zpool(8). 309 */ 310 static vdev_alloc_bias_t 311 vdev_derive_alloc_bias(const char *bias) 312 { 313 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 314 315 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) 316 alloc_bias = VDEV_BIAS_LOG; 317 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) 318 alloc_bias = VDEV_BIAS_SPECIAL; 319 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) 320 alloc_bias = VDEV_BIAS_DEDUP; 321 322 return (alloc_bias); 323 } 324 325 /* 326 * Default asize function: return the MAX of psize with the asize of 327 * all children. This is what's used by anything other than RAID-Z. 328 */ 329 uint64_t 330 vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg) 331 { 332 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 333 uint64_t csize; 334 335 for (int c = 0; c < vd->vdev_children; c++) { 336 csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg); 337 asize = MAX(asize, csize); 338 } 339 340 return (asize); 341 } 342 343 uint64_t 344 vdev_default_min_asize(vdev_t *vd) 345 { 346 return (vd->vdev_min_asize); 347 } 348 349 /* 350 * Get the minimum allocatable size. We define the allocatable size as 351 * the vdev's asize rounded to the nearest metaslab. This allows us to 352 * replace or attach devices which don't have the same physical size but 353 * can still satisfy the same number of allocations. 354 */ 355 uint64_t 356 vdev_get_min_asize(vdev_t *vd) 357 { 358 vdev_t *pvd = vd->vdev_parent; 359 360 /* 361 * If our parent is NULL (inactive spare or cache) or is the root, 362 * just return our own asize. 363 */ 364 if (pvd == NULL) 365 return (vd->vdev_asize); 366 367 /* 368 * The top-level vdev just returns the allocatable size rounded 369 * to the nearest metaslab. 370 */ 371 if (vd == vd->vdev_top) 372 return (P2ALIGN_TYPED(vd->vdev_asize, 1ULL << vd->vdev_ms_shift, 373 uint64_t)); 374 375 return (pvd->vdev_ops->vdev_op_min_asize(pvd)); 376 } 377 378 void 379 vdev_set_min_asize(vdev_t *vd) 380 { 381 vd->vdev_min_asize = vdev_get_min_asize(vd); 382 383 for (int c = 0; c < vd->vdev_children; c++) 384 vdev_set_min_asize(vd->vdev_child[c]); 385 } 386 387 /* 388 * Get the minimal allocation size for the top-level vdev. 389 */ 390 uint64_t 391 vdev_get_min_alloc(vdev_t *vd) 392 { 393 uint64_t min_alloc = 1ULL << vd->vdev_ashift; 394 395 if (vd->vdev_ops->vdev_op_min_alloc != NULL) 396 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd); 397 398 return (min_alloc); 399 } 400 401 /* 402 * Get the parity level for a top-level vdev. 403 */ 404 uint64_t 405 vdev_get_nparity(vdev_t *vd) 406 { 407 uint64_t nparity = 0; 408 409 if (vd->vdev_ops->vdev_op_nparity != NULL) 410 nparity = vd->vdev_ops->vdev_op_nparity(vd); 411 412 return (nparity); 413 } 414 415 static int 416 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value) 417 { 418 spa_t *spa = vd->vdev_spa; 419 objset_t *mos = spa->spa_meta_objset; 420 uint64_t objid; 421 int err; 422 423 if (vd->vdev_root_zap != 0) { 424 objid = vd->vdev_root_zap; 425 } else if (vd->vdev_top_zap != 0) { 426 objid = vd->vdev_top_zap; 427 } else if (vd->vdev_leaf_zap != 0) { 428 objid = vd->vdev_leaf_zap; 429 } else { 430 return (EINVAL); 431 } 432 433 err = zap_lookup(mos, objid, vdev_prop_to_name(prop), 434 sizeof (uint64_t), 1, value); 435 436 if (err == ENOENT) 437 *value = vdev_prop_default_numeric(prop); 438 439 return (err); 440 } 441 442 /* 443 * Get the number of data disks for a top-level vdev. 444 */ 445 uint64_t 446 vdev_get_ndisks(vdev_t *vd) 447 { 448 uint64_t ndisks = 1; 449 450 if (vd->vdev_ops->vdev_op_ndisks != NULL) 451 ndisks = vd->vdev_ops->vdev_op_ndisks(vd); 452 453 return (ndisks); 454 } 455 456 vdev_t * 457 vdev_lookup_top(spa_t *spa, uint64_t vdev) 458 { 459 vdev_t *rvd = spa->spa_root_vdev; 460 461 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 462 463 if (vdev < rvd->vdev_children) { 464 ASSERT(rvd->vdev_child[vdev] != NULL); 465 return (rvd->vdev_child[vdev]); 466 } 467 468 return (NULL); 469 } 470 471 vdev_t * 472 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 473 { 474 vdev_t *mvd; 475 476 if (vd->vdev_guid == guid) 477 return (vd); 478 479 for (int c = 0; c < vd->vdev_children; c++) 480 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 481 NULL) 482 return (mvd); 483 484 return (NULL); 485 } 486 487 static int 488 vdev_count_leaves_impl(vdev_t *vd) 489 { 490 int n = 0; 491 492 if (vd->vdev_ops->vdev_op_leaf) 493 return (1); 494 495 for (int c = 0; c < vd->vdev_children; c++) 496 n += vdev_count_leaves_impl(vd->vdev_child[c]); 497 498 return (n); 499 } 500 501 int 502 vdev_count_leaves(spa_t *spa) 503 { 504 int rc; 505 506 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 507 rc = vdev_count_leaves_impl(spa->spa_root_vdev); 508 spa_config_exit(spa, SCL_VDEV, FTAG); 509 510 return (rc); 511 } 512 513 void 514 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 515 { 516 size_t oldsize, newsize; 517 uint64_t id = cvd->vdev_id; 518 vdev_t **newchild; 519 520 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 521 ASSERT(cvd->vdev_parent == NULL); 522 523 cvd->vdev_parent = pvd; 524 525 if (pvd == NULL) 526 return; 527 528 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 529 530 oldsize = pvd->vdev_children * sizeof (vdev_t *); 531 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 532 newsize = pvd->vdev_children * sizeof (vdev_t *); 533 534 newchild = kmem_alloc(newsize, KM_SLEEP); 535 if (pvd->vdev_child != NULL) { 536 memcpy(newchild, pvd->vdev_child, oldsize); 537 kmem_free(pvd->vdev_child, oldsize); 538 } 539 540 pvd->vdev_child = newchild; 541 pvd->vdev_child[id] = cvd; 542 543 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 544 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 545 546 /* 547 * Walk up all ancestors to update guid sum. 548 */ 549 for (; pvd != NULL; pvd = pvd->vdev_parent) 550 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 551 552 if (cvd->vdev_ops->vdev_op_leaf) { 553 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); 554 cvd->vdev_spa->spa_leaf_list_gen++; 555 } 556 } 557 558 void 559 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 560 { 561 int c; 562 uint_t id = cvd->vdev_id; 563 564 ASSERT(cvd->vdev_parent == pvd); 565 566 if (pvd == NULL) 567 return; 568 569 ASSERT(id < pvd->vdev_children); 570 ASSERT(pvd->vdev_child[id] == cvd); 571 572 pvd->vdev_child[id] = NULL; 573 cvd->vdev_parent = NULL; 574 575 for (c = 0; c < pvd->vdev_children; c++) 576 if (pvd->vdev_child[c]) 577 break; 578 579 if (c == pvd->vdev_children) { 580 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 581 pvd->vdev_child = NULL; 582 pvd->vdev_children = 0; 583 } 584 585 if (cvd->vdev_ops->vdev_op_leaf) { 586 spa_t *spa = cvd->vdev_spa; 587 list_remove(&spa->spa_leaf_list, cvd); 588 spa->spa_leaf_list_gen++; 589 } 590 591 /* 592 * Walk up all ancestors to update guid sum. 593 */ 594 for (; pvd != NULL; pvd = pvd->vdev_parent) 595 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 596 } 597 598 /* 599 * Remove any holes in the child array. 600 */ 601 void 602 vdev_compact_children(vdev_t *pvd) 603 { 604 vdev_t **newchild, *cvd; 605 int oldc = pvd->vdev_children; 606 int newc; 607 608 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 609 610 if (oldc == 0) 611 return; 612 613 for (int c = newc = 0; c < oldc; c++) 614 if (pvd->vdev_child[c]) 615 newc++; 616 617 if (newc > 0) { 618 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP); 619 620 for (int c = newc = 0; c < oldc; c++) { 621 if ((cvd = pvd->vdev_child[c]) != NULL) { 622 newchild[newc] = cvd; 623 cvd->vdev_id = newc++; 624 } 625 } 626 } else { 627 newchild = NULL; 628 } 629 630 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 631 pvd->vdev_child = newchild; 632 pvd->vdev_children = newc; 633 } 634 635 /* 636 * Allocate and minimally initialize a vdev_t. 637 */ 638 vdev_t * 639 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 640 { 641 vdev_t *vd; 642 vdev_indirect_config_t *vic; 643 644 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 645 vic = &vd->vdev_indirect_config; 646 647 if (spa->spa_root_vdev == NULL) { 648 ASSERT(ops == &vdev_root_ops); 649 spa->spa_root_vdev = vd; 650 spa->spa_load_guid = spa_generate_load_guid(); 651 } 652 653 if (guid == 0 && ops != &vdev_hole_ops) { 654 if (spa->spa_root_vdev == vd) { 655 /* 656 * The root vdev's guid will also be the pool guid, 657 * which must be unique among all pools. 658 */ 659 guid = spa_generate_guid(NULL); 660 } else { 661 /* 662 * Any other vdev's guid must be unique within the pool. 663 */ 664 guid = spa_generate_guid(spa); 665 } 666 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 667 } 668 669 vd->vdev_spa = spa; 670 vd->vdev_id = id; 671 vd->vdev_guid = guid; 672 vd->vdev_guid_sum = guid; 673 vd->vdev_ops = ops; 674 vd->vdev_state = VDEV_STATE_CLOSED; 675 vd->vdev_ishole = (ops == &vdev_hole_ops); 676 vic->vic_prev_indirect_vdev = UINT64_MAX; 677 678 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 679 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 680 vd->vdev_obsolete_segments = zfs_range_tree_create(NULL, 681 ZFS_RANGE_SEG64, NULL, 0, 0); 682 683 /* 684 * Initialize rate limit structs for events. We rate limit ZIO delay 685 * and checksum events so that we don't overwhelm ZED with thousands 686 * of events when a disk is acting up. 687 */ 688 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second, 689 1); 690 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_deadman_events_per_second, 691 1); 692 zfs_ratelimit_init(&vd->vdev_dio_verify_rl, 693 &zfs_dio_write_verify_events_per_second, 1); 694 zfs_ratelimit_init(&vd->vdev_checksum_rl, 695 &zfs_checksum_events_per_second, 1); 696 697 /* 698 * Default Thresholds for tuning ZED 699 */ 700 vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N); 701 vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T); 702 vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N); 703 vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T); 704 vd->vdev_slow_io_n = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N); 705 vd->vdev_slow_io_t = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T); 706 707 list_link_init(&vd->vdev_config_dirty_node); 708 list_link_init(&vd->vdev_state_dirty_node); 709 list_link_init(&vd->vdev_initialize_node); 710 list_link_init(&vd->vdev_leaf_node); 711 list_link_init(&vd->vdev_trim_node); 712 713 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL); 714 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 715 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 716 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); 717 718 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 719 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 720 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 721 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 722 723 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL); 724 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL); 725 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL); 726 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL); 727 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL); 728 cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL); 729 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL); 730 731 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL); 732 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL); 733 734 for (int t = 0; t < DTL_TYPES; t++) { 735 vd->vdev_dtl[t] = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, 736 NULL, 0, 0); 737 } 738 739 txg_list_create(&vd->vdev_ms_list, spa, 740 offsetof(struct metaslab, ms_txg_node)); 741 txg_list_create(&vd->vdev_dtl_list, spa, 742 offsetof(struct vdev, vdev_dtl_node)); 743 vd->vdev_stat.vs_timestamp = gethrtime(); 744 vdev_queue_init(vd); 745 746 return (vd); 747 } 748 749 /* 750 * Allocate a new vdev. The 'alloctype' is used to control whether we are 751 * creating a new vdev or loading an existing one - the behavior is slightly 752 * different for each case. 753 */ 754 int 755 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 756 int alloctype) 757 { 758 vdev_ops_t *ops; 759 const char *type; 760 uint64_t guid = 0, islog; 761 vdev_t *vd; 762 vdev_indirect_config_t *vic; 763 const char *tmp = NULL; 764 int rc; 765 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 766 boolean_t top_level = (parent && !parent->vdev_parent); 767 768 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 769 770 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 771 return (SET_ERROR(EINVAL)); 772 773 if ((ops = vdev_getops(type)) == NULL) 774 return (SET_ERROR(EINVAL)); 775 776 /* 777 * If this is a load, get the vdev guid from the nvlist. 778 * Otherwise, vdev_alloc_common() will generate one for us. 779 */ 780 if (alloctype == VDEV_ALLOC_LOAD) { 781 uint64_t label_id; 782 783 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 784 label_id != id) 785 return (SET_ERROR(EINVAL)); 786 787 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 788 return (SET_ERROR(EINVAL)); 789 } else if (alloctype == VDEV_ALLOC_SPARE) { 790 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 791 return (SET_ERROR(EINVAL)); 792 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 793 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 794 return (SET_ERROR(EINVAL)); 795 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 796 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 797 return (SET_ERROR(EINVAL)); 798 } 799 800 /* 801 * The first allocated vdev must be of type 'root'. 802 */ 803 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 804 return (SET_ERROR(EINVAL)); 805 806 /* 807 * Determine whether we're a log vdev. 808 */ 809 islog = 0; 810 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 811 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 812 return (SET_ERROR(ENOTSUP)); 813 814 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 815 return (SET_ERROR(ENOTSUP)); 816 817 if (top_level && alloctype == VDEV_ALLOC_ADD) { 818 const char *bias; 819 820 /* 821 * If creating a top-level vdev, check for allocation 822 * classes input. 823 */ 824 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 825 &bias) == 0) { 826 alloc_bias = vdev_derive_alloc_bias(bias); 827 828 /* spa_vdev_add() expects feature to be enabled */ 829 if (spa->spa_load_state != SPA_LOAD_CREATE && 830 !spa_feature_is_enabled(spa, 831 SPA_FEATURE_ALLOCATION_CLASSES)) { 832 return (SET_ERROR(ENOTSUP)); 833 } 834 } 835 836 /* spa_vdev_add() expects feature to be enabled */ 837 if (ops == &vdev_draid_ops && 838 spa->spa_load_state != SPA_LOAD_CREATE && 839 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) { 840 return (SET_ERROR(ENOTSUP)); 841 } 842 } 843 844 /* 845 * Initialize the vdev specific data. This is done before calling 846 * vdev_alloc_common() since it may fail and this simplifies the 847 * error reporting and cleanup code paths. 848 */ 849 void *tsd = NULL; 850 if (ops->vdev_op_init != NULL) { 851 rc = ops->vdev_op_init(spa, nv, &tsd); 852 if (rc != 0) { 853 return (rc); 854 } 855 } 856 857 vd = vdev_alloc_common(spa, id, guid, ops); 858 vd->vdev_tsd = tsd; 859 vd->vdev_islog = islog; 860 861 if (top_level && alloc_bias != VDEV_BIAS_NONE) 862 vd->vdev_alloc_bias = alloc_bias; 863 864 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0) 865 vd->vdev_path = spa_strdup(tmp); 866 867 /* 868 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a 869 * fault on a vdev and want it to persist across imports (like with 870 * zpool offline -f). 871 */ 872 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp); 873 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) { 874 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 875 vd->vdev_faulted = 1; 876 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 877 } 878 879 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0) 880 vd->vdev_devid = spa_strdup(tmp); 881 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0) 882 vd->vdev_physpath = spa_strdup(tmp); 883 884 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 885 &tmp) == 0) 886 vd->vdev_enc_sysfs_path = spa_strdup(tmp); 887 888 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0) 889 vd->vdev_fru = spa_strdup(tmp); 890 891 /* 892 * Set the whole_disk property. If it's not specified, leave the value 893 * as -1. 894 */ 895 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 896 &vd->vdev_wholedisk) != 0) 897 vd->vdev_wholedisk = -1ULL; 898 899 vic = &vd->vdev_indirect_config; 900 901 ASSERT0(vic->vic_mapping_object); 902 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 903 &vic->vic_mapping_object); 904 ASSERT0(vic->vic_births_object); 905 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 906 &vic->vic_births_object); 907 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 908 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 909 &vic->vic_prev_indirect_vdev); 910 911 /* 912 * Look for the 'not present' flag. This will only be set if the device 913 * was not present at the time of import. 914 */ 915 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 916 &vd->vdev_not_present); 917 918 /* 919 * Get the alignment requirement. Ignore pool ashift for vdev 920 * attach case. 921 */ 922 if (alloctype != VDEV_ALLOC_ATTACH) { 923 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, 924 &vd->vdev_ashift); 925 } else { 926 vd->vdev_attaching = B_TRUE; 927 } 928 929 /* 930 * Retrieve the vdev creation time. 931 */ 932 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 933 &vd->vdev_crtxg); 934 935 if (vd->vdev_ops == &vdev_root_ops && 936 (alloctype == VDEV_ALLOC_LOAD || 937 alloctype == VDEV_ALLOC_SPLIT || 938 alloctype == VDEV_ALLOC_ROOTPOOL)) { 939 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP, 940 &vd->vdev_root_zap); 941 } 942 943 /* 944 * If we're a top-level vdev, try to load the allocation parameters. 945 */ 946 if (top_level && 947 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 948 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 949 &vd->vdev_ms_array); 950 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 951 &vd->vdev_ms_shift); 952 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 953 &vd->vdev_asize); 954 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING, 955 &vd->vdev_noalloc); 956 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 957 &vd->vdev_removing); 958 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 959 &vd->vdev_top_zap); 960 vd->vdev_rz_expanding = nvlist_exists(nv, 961 ZPOOL_CONFIG_RAIDZ_EXPANDING); 962 } else { 963 ASSERT0(vd->vdev_top_zap); 964 } 965 966 if (top_level && alloctype != VDEV_ALLOC_ATTACH) { 967 ASSERT(alloctype == VDEV_ALLOC_LOAD || 968 alloctype == VDEV_ALLOC_ADD || 969 alloctype == VDEV_ALLOC_SPLIT || 970 alloctype == VDEV_ALLOC_ROOTPOOL); 971 /* Note: metaslab_group_create() is now deferred */ 972 } 973 974 if (vd->vdev_ops->vdev_op_leaf && 975 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 976 (void) nvlist_lookup_uint64(nv, 977 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 978 } else { 979 ASSERT0(vd->vdev_leaf_zap); 980 } 981 982 /* 983 * If we're a leaf vdev, try to load the DTL object and other state. 984 */ 985 986 if (vd->vdev_ops->vdev_op_leaf && 987 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 988 alloctype == VDEV_ALLOC_ROOTPOOL)) { 989 if (alloctype == VDEV_ALLOC_LOAD) { 990 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 991 &vd->vdev_dtl_object); 992 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 993 &vd->vdev_unspare); 994 } 995 996 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 997 uint64_t spare = 0; 998 999 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1000 &spare) == 0 && spare) 1001 spa_spare_add(vd); 1002 } 1003 1004 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 1005 &vd->vdev_offline); 1006 1007 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 1008 &vd->vdev_resilver_txg); 1009 1010 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 1011 &vd->vdev_rebuild_txg); 1012 1013 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) 1014 vdev_defer_resilver(vd); 1015 1016 /* 1017 * In general, when importing a pool we want to ignore the 1018 * persistent fault state, as the diagnosis made on another 1019 * system may not be valid in the current context. The only 1020 * exception is if we forced a vdev to a persistently faulted 1021 * state with 'zpool offline -f'. The persistent fault will 1022 * remain across imports until cleared. 1023 * 1024 * Local vdevs will remain in the faulted state. 1025 */ 1026 if (spa_load_state(spa) == SPA_LOAD_OPEN || 1027 spa_load_state(spa) == SPA_LOAD_IMPORT) { 1028 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 1029 &vd->vdev_faulted); 1030 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 1031 &vd->vdev_degraded); 1032 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 1033 &vd->vdev_removed); 1034 1035 if (vd->vdev_faulted || vd->vdev_degraded) { 1036 const char *aux; 1037 1038 vd->vdev_label_aux = 1039 VDEV_AUX_ERR_EXCEEDED; 1040 if (nvlist_lookup_string(nv, 1041 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 1042 strcmp(aux, "external") == 0) 1043 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 1044 else 1045 vd->vdev_faulted = 0ULL; 1046 } 1047 } 1048 } 1049 1050 /* 1051 * Add ourselves to the parent's list of children. 1052 */ 1053 vdev_add_child(parent, vd); 1054 1055 *vdp = vd; 1056 1057 return (0); 1058 } 1059 1060 void 1061 vdev_free(vdev_t *vd) 1062 { 1063 spa_t *spa = vd->vdev_spa; 1064 1065 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 1066 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1067 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 1068 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); 1069 1070 /* 1071 * Scan queues are normally destroyed at the end of a scan. If the 1072 * queue exists here, that implies the vdev is being removed while 1073 * the scan is still running. 1074 */ 1075 if (vd->vdev_scan_io_queue != NULL) { 1076 mutex_enter(&vd->vdev_scan_io_queue_lock); 1077 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); 1078 vd->vdev_scan_io_queue = NULL; 1079 mutex_exit(&vd->vdev_scan_io_queue_lock); 1080 } 1081 1082 /* 1083 * vdev_free() implies closing the vdev first. This is simpler than 1084 * trying to ensure complicated semantics for all callers. 1085 */ 1086 vdev_close(vd); 1087 1088 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 1089 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 1090 1091 /* 1092 * Free all children. 1093 */ 1094 for (int c = 0; c < vd->vdev_children; c++) 1095 vdev_free(vd->vdev_child[c]); 1096 1097 ASSERT(vd->vdev_child == NULL); 1098 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 1099 1100 if (vd->vdev_ops->vdev_op_fini != NULL) 1101 vd->vdev_ops->vdev_op_fini(vd); 1102 1103 /* 1104 * Discard allocation state. 1105 */ 1106 if (vd->vdev_mg != NULL) { 1107 vdev_metaslab_fini(vd); 1108 metaslab_group_destroy(vd->vdev_mg); 1109 vd->vdev_mg = NULL; 1110 } 1111 if (vd->vdev_log_mg != NULL) { 1112 ASSERT0(vd->vdev_ms_count); 1113 metaslab_group_destroy(vd->vdev_log_mg); 1114 vd->vdev_log_mg = NULL; 1115 } 1116 1117 ASSERT0(vd->vdev_stat.vs_space); 1118 ASSERT0(vd->vdev_stat.vs_dspace); 1119 ASSERT0(vd->vdev_stat.vs_alloc); 1120 1121 /* 1122 * Remove this vdev from its parent's child list. 1123 */ 1124 vdev_remove_child(vd->vdev_parent, vd); 1125 1126 ASSERT(vd->vdev_parent == NULL); 1127 ASSERT(!list_link_active(&vd->vdev_leaf_node)); 1128 1129 /* 1130 * Clean up vdev structure. 1131 */ 1132 vdev_queue_fini(vd); 1133 1134 if (vd->vdev_path) 1135 spa_strfree(vd->vdev_path); 1136 if (vd->vdev_devid) 1137 spa_strfree(vd->vdev_devid); 1138 if (vd->vdev_physpath) 1139 spa_strfree(vd->vdev_physpath); 1140 1141 if (vd->vdev_enc_sysfs_path) 1142 spa_strfree(vd->vdev_enc_sysfs_path); 1143 1144 if (vd->vdev_fru) 1145 spa_strfree(vd->vdev_fru); 1146 1147 if (vd->vdev_isspare) 1148 spa_spare_remove(vd); 1149 if (vd->vdev_isl2cache) 1150 spa_l2cache_remove(vd); 1151 1152 txg_list_destroy(&vd->vdev_ms_list); 1153 txg_list_destroy(&vd->vdev_dtl_list); 1154 1155 mutex_enter(&vd->vdev_dtl_lock); 1156 space_map_close(vd->vdev_dtl_sm); 1157 for (int t = 0; t < DTL_TYPES; t++) { 1158 zfs_range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 1159 zfs_range_tree_destroy(vd->vdev_dtl[t]); 1160 } 1161 mutex_exit(&vd->vdev_dtl_lock); 1162 1163 EQUIV(vd->vdev_indirect_births != NULL, 1164 vd->vdev_indirect_mapping != NULL); 1165 if (vd->vdev_indirect_births != NULL) { 1166 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1167 vdev_indirect_births_close(vd->vdev_indirect_births); 1168 } 1169 1170 if (vd->vdev_obsolete_sm != NULL) { 1171 ASSERT(vd->vdev_removing || 1172 vd->vdev_ops == &vdev_indirect_ops); 1173 space_map_close(vd->vdev_obsolete_sm); 1174 vd->vdev_obsolete_sm = NULL; 1175 } 1176 zfs_range_tree_destroy(vd->vdev_obsolete_segments); 1177 rw_destroy(&vd->vdev_indirect_rwlock); 1178 mutex_destroy(&vd->vdev_obsolete_lock); 1179 1180 mutex_destroy(&vd->vdev_dtl_lock); 1181 mutex_destroy(&vd->vdev_stat_lock); 1182 mutex_destroy(&vd->vdev_probe_lock); 1183 mutex_destroy(&vd->vdev_scan_io_queue_lock); 1184 1185 mutex_destroy(&vd->vdev_initialize_lock); 1186 mutex_destroy(&vd->vdev_initialize_io_lock); 1187 cv_destroy(&vd->vdev_initialize_io_cv); 1188 cv_destroy(&vd->vdev_initialize_cv); 1189 1190 mutex_destroy(&vd->vdev_trim_lock); 1191 mutex_destroy(&vd->vdev_autotrim_lock); 1192 mutex_destroy(&vd->vdev_trim_io_lock); 1193 cv_destroy(&vd->vdev_trim_cv); 1194 cv_destroy(&vd->vdev_autotrim_cv); 1195 cv_destroy(&vd->vdev_autotrim_kick_cv); 1196 cv_destroy(&vd->vdev_trim_io_cv); 1197 1198 mutex_destroy(&vd->vdev_rebuild_lock); 1199 cv_destroy(&vd->vdev_rebuild_cv); 1200 1201 zfs_ratelimit_fini(&vd->vdev_delay_rl); 1202 zfs_ratelimit_fini(&vd->vdev_deadman_rl); 1203 zfs_ratelimit_fini(&vd->vdev_dio_verify_rl); 1204 zfs_ratelimit_fini(&vd->vdev_checksum_rl); 1205 1206 if (vd == spa->spa_root_vdev) 1207 spa->spa_root_vdev = NULL; 1208 1209 kmem_free(vd, sizeof (vdev_t)); 1210 } 1211 1212 /* 1213 * Transfer top-level vdev state from svd to tvd. 1214 */ 1215 static void 1216 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 1217 { 1218 spa_t *spa = svd->vdev_spa; 1219 metaslab_t *msp; 1220 vdev_t *vd; 1221 int t; 1222 1223 ASSERT(tvd == tvd->vdev_top); 1224 1225 tvd->vdev_ms_array = svd->vdev_ms_array; 1226 tvd->vdev_ms_shift = svd->vdev_ms_shift; 1227 tvd->vdev_ms_count = svd->vdev_ms_count; 1228 tvd->vdev_top_zap = svd->vdev_top_zap; 1229 1230 svd->vdev_ms_array = 0; 1231 svd->vdev_ms_shift = 0; 1232 svd->vdev_ms_count = 0; 1233 svd->vdev_top_zap = 0; 1234 1235 if (tvd->vdev_mg) 1236 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 1237 if (tvd->vdev_log_mg) 1238 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg); 1239 tvd->vdev_mg = svd->vdev_mg; 1240 tvd->vdev_log_mg = svd->vdev_log_mg; 1241 tvd->vdev_ms = svd->vdev_ms; 1242 1243 svd->vdev_mg = NULL; 1244 svd->vdev_log_mg = NULL; 1245 svd->vdev_ms = NULL; 1246 1247 if (tvd->vdev_mg != NULL) 1248 tvd->vdev_mg->mg_vd = tvd; 1249 if (tvd->vdev_log_mg != NULL) 1250 tvd->vdev_log_mg->mg_vd = tvd; 1251 1252 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 1253 svd->vdev_checkpoint_sm = NULL; 1254 1255 tvd->vdev_alloc_bias = svd->vdev_alloc_bias; 1256 svd->vdev_alloc_bias = VDEV_BIAS_NONE; 1257 1258 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 1259 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 1260 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 1261 1262 svd->vdev_stat.vs_alloc = 0; 1263 svd->vdev_stat.vs_space = 0; 1264 svd->vdev_stat.vs_dspace = 0; 1265 1266 /* 1267 * State which may be set on a top-level vdev that's in the 1268 * process of being removed. 1269 */ 1270 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 1271 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 1272 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 1273 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); 1274 ASSERT3P(tvd->vdev_indirect_births, ==, NULL); 1275 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); 1276 ASSERT0(tvd->vdev_noalloc); 1277 ASSERT0(tvd->vdev_removing); 1278 ASSERT0(tvd->vdev_rebuilding); 1279 tvd->vdev_noalloc = svd->vdev_noalloc; 1280 tvd->vdev_removing = svd->vdev_removing; 1281 tvd->vdev_rebuilding = svd->vdev_rebuilding; 1282 tvd->vdev_rebuild_config = svd->vdev_rebuild_config; 1283 tvd->vdev_indirect_config = svd->vdev_indirect_config; 1284 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 1285 tvd->vdev_indirect_births = svd->vdev_indirect_births; 1286 zfs_range_tree_swap(&svd->vdev_obsolete_segments, 1287 &tvd->vdev_obsolete_segments); 1288 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 1289 svd->vdev_indirect_config.vic_mapping_object = 0; 1290 svd->vdev_indirect_config.vic_births_object = 0; 1291 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 1292 svd->vdev_indirect_mapping = NULL; 1293 svd->vdev_indirect_births = NULL; 1294 svd->vdev_obsolete_sm = NULL; 1295 svd->vdev_noalloc = 0; 1296 svd->vdev_removing = 0; 1297 svd->vdev_rebuilding = 0; 1298 1299 for (t = 0; t < TXG_SIZE; t++) { 1300 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 1301 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 1302 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 1303 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 1304 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 1305 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 1306 } 1307 1308 if (list_link_active(&svd->vdev_config_dirty_node)) { 1309 vdev_config_clean(svd); 1310 vdev_config_dirty(tvd); 1311 } 1312 1313 if (list_link_active(&svd->vdev_state_dirty_node)) { 1314 vdev_state_clean(svd); 1315 vdev_state_dirty(tvd); 1316 } 1317 1318 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 1319 svd->vdev_deflate_ratio = 0; 1320 1321 tvd->vdev_islog = svd->vdev_islog; 1322 svd->vdev_islog = 0; 1323 1324 dsl_scan_io_queue_vdev_xfer(svd, tvd); 1325 } 1326 1327 static void 1328 vdev_top_update(vdev_t *tvd, vdev_t *vd) 1329 { 1330 if (vd == NULL) 1331 return; 1332 1333 vd->vdev_top = tvd; 1334 1335 for (int c = 0; c < vd->vdev_children; c++) 1336 vdev_top_update(tvd, vd->vdev_child[c]); 1337 } 1338 1339 /* 1340 * Add a mirror/replacing vdev above an existing vdev. There is no need to 1341 * call .vdev_op_init() since mirror/replacing vdevs do not have private state. 1342 */ 1343 vdev_t * 1344 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 1345 { 1346 spa_t *spa = cvd->vdev_spa; 1347 vdev_t *pvd = cvd->vdev_parent; 1348 vdev_t *mvd; 1349 1350 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1351 1352 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 1353 1354 mvd->vdev_asize = cvd->vdev_asize; 1355 mvd->vdev_min_asize = cvd->vdev_min_asize; 1356 mvd->vdev_max_asize = cvd->vdev_max_asize; 1357 mvd->vdev_psize = cvd->vdev_psize; 1358 mvd->vdev_ashift = cvd->vdev_ashift; 1359 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift; 1360 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift; 1361 mvd->vdev_state = cvd->vdev_state; 1362 mvd->vdev_crtxg = cvd->vdev_crtxg; 1363 1364 vdev_remove_child(pvd, cvd); 1365 vdev_add_child(pvd, mvd); 1366 cvd->vdev_id = mvd->vdev_children; 1367 vdev_add_child(mvd, cvd); 1368 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1369 1370 if (mvd == mvd->vdev_top) 1371 vdev_top_transfer(cvd, mvd); 1372 1373 return (mvd); 1374 } 1375 1376 /* 1377 * Remove a 1-way mirror/replacing vdev from the tree. 1378 */ 1379 void 1380 vdev_remove_parent(vdev_t *cvd) 1381 { 1382 vdev_t *mvd = cvd->vdev_parent; 1383 vdev_t *pvd = mvd->vdev_parent; 1384 1385 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1386 1387 ASSERT(mvd->vdev_children == 1); 1388 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1389 mvd->vdev_ops == &vdev_replacing_ops || 1390 mvd->vdev_ops == &vdev_spare_ops); 1391 cvd->vdev_ashift = mvd->vdev_ashift; 1392 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift; 1393 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift; 1394 vdev_remove_child(mvd, cvd); 1395 vdev_remove_child(pvd, mvd); 1396 1397 /* 1398 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1399 * Otherwise, we could have detached an offline device, and when we 1400 * go to import the pool we'll think we have two top-level vdevs, 1401 * instead of a different version of the same top-level vdev. 1402 */ 1403 if (mvd->vdev_top == mvd) { 1404 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1405 cvd->vdev_orig_guid = cvd->vdev_guid; 1406 cvd->vdev_guid += guid_delta; 1407 cvd->vdev_guid_sum += guid_delta; 1408 1409 /* 1410 * If pool not set for autoexpand, we need to also preserve 1411 * mvd's asize to prevent automatic expansion of cvd. 1412 * Otherwise if we are adjusting the mirror by attaching and 1413 * detaching children of non-uniform sizes, the mirror could 1414 * autoexpand, unexpectedly requiring larger devices to 1415 * re-establish the mirror. 1416 */ 1417 if (!cvd->vdev_spa->spa_autoexpand) 1418 cvd->vdev_asize = mvd->vdev_asize; 1419 } 1420 cvd->vdev_id = mvd->vdev_id; 1421 vdev_add_child(pvd, cvd); 1422 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1423 1424 if (cvd == cvd->vdev_top) 1425 vdev_top_transfer(mvd, cvd); 1426 1427 ASSERT(mvd->vdev_children == 0); 1428 vdev_free(mvd); 1429 } 1430 1431 /* 1432 * Choose GCD for spa_gcd_alloc. 1433 */ 1434 static uint64_t 1435 vdev_gcd(uint64_t a, uint64_t b) 1436 { 1437 while (b != 0) { 1438 uint64_t t = b; 1439 b = a % b; 1440 a = t; 1441 } 1442 return (a); 1443 } 1444 1445 /* 1446 * Set spa_min_alloc and spa_gcd_alloc. 1447 */ 1448 static void 1449 vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc) 1450 { 1451 if (min_alloc < spa->spa_min_alloc) 1452 spa->spa_min_alloc = min_alloc; 1453 if (spa->spa_gcd_alloc == INT_MAX) { 1454 spa->spa_gcd_alloc = min_alloc; 1455 } else { 1456 spa->spa_gcd_alloc = vdev_gcd(min_alloc, 1457 spa->spa_gcd_alloc); 1458 } 1459 } 1460 1461 void 1462 vdev_metaslab_group_create(vdev_t *vd) 1463 { 1464 spa_t *spa = vd->vdev_spa; 1465 1466 /* 1467 * metaslab_group_create was delayed until allocation bias was available 1468 */ 1469 if (vd->vdev_mg == NULL) { 1470 metaslab_class_t *mc; 1471 1472 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) 1473 vd->vdev_alloc_bias = VDEV_BIAS_LOG; 1474 1475 ASSERT3U(vd->vdev_islog, ==, 1476 (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); 1477 1478 switch (vd->vdev_alloc_bias) { 1479 case VDEV_BIAS_LOG: 1480 mc = spa_log_class(spa); 1481 break; 1482 case VDEV_BIAS_SPECIAL: 1483 mc = spa_special_class(spa); 1484 break; 1485 case VDEV_BIAS_DEDUP: 1486 mc = spa_dedup_class(spa); 1487 break; 1488 default: 1489 mc = spa_normal_class(spa); 1490 } 1491 1492 vd->vdev_mg = metaslab_group_create(mc, vd, 1493 spa->spa_alloc_count); 1494 1495 if (!vd->vdev_islog) { 1496 vd->vdev_log_mg = metaslab_group_create( 1497 spa_embedded_log_class(spa), vd, 1); 1498 } 1499 1500 /* 1501 * The spa ashift min/max only apply for the normal metaslab 1502 * class. Class destination is late binding so ashift boundary 1503 * setting had to wait until now. 1504 */ 1505 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1506 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { 1507 if (vd->vdev_ashift > spa->spa_max_ashift) 1508 spa->spa_max_ashift = vd->vdev_ashift; 1509 if (vd->vdev_ashift < spa->spa_min_ashift) 1510 spa->spa_min_ashift = vd->vdev_ashift; 1511 1512 uint64_t min_alloc = vdev_get_min_alloc(vd); 1513 vdev_spa_set_alloc(spa, min_alloc); 1514 } 1515 } 1516 } 1517 1518 int 1519 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1520 { 1521 spa_t *spa = vd->vdev_spa; 1522 uint64_t oldc = vd->vdev_ms_count; 1523 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1524 metaslab_t **mspp; 1525 int error; 1526 boolean_t expanding = (oldc != 0); 1527 1528 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1529 1530 /* 1531 * This vdev is not being allocated from yet or is a hole. 1532 */ 1533 if (vd->vdev_ms_shift == 0) 1534 return (0); 1535 1536 ASSERT(!vd->vdev_ishole); 1537 1538 ASSERT(oldc <= newc); 1539 1540 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1541 1542 if (expanding) { 1543 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp)); 1544 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1545 } 1546 1547 vd->vdev_ms = mspp; 1548 vd->vdev_ms_count = newc; 1549 1550 for (uint64_t m = oldc; m < newc; m++) { 1551 uint64_t object = 0; 1552 /* 1553 * vdev_ms_array may be 0 if we are creating the "fake" 1554 * metaslabs for an indirect vdev for zdb's leak detection. 1555 * See zdb_leak_init(). 1556 */ 1557 if (txg == 0 && vd->vdev_ms_array != 0) { 1558 error = dmu_read(spa->spa_meta_objset, 1559 vd->vdev_ms_array, 1560 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1561 DMU_READ_PREFETCH); 1562 if (error != 0) { 1563 vdev_dbgmsg(vd, "unable to read the metaslab " 1564 "array [error=%d]", error); 1565 return (error); 1566 } 1567 } 1568 1569 error = metaslab_init(vd->vdev_mg, m, object, txg, 1570 &(vd->vdev_ms[m])); 1571 if (error != 0) { 1572 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1573 error); 1574 return (error); 1575 } 1576 } 1577 1578 /* 1579 * Find the emptiest metaslab on the vdev and mark it for use for 1580 * embedded slog by moving it from the regular to the log metaslab 1581 * group. 1582 */ 1583 if (vd->vdev_mg->mg_class == spa_normal_class(spa) && 1584 vd->vdev_ms_count > zfs_embedded_slog_min_ms && 1585 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) { 1586 uint64_t slog_msid = 0; 1587 uint64_t smallest = UINT64_MAX; 1588 1589 /* 1590 * Note, we only search the new metaslabs, because the old 1591 * (pre-existing) ones may be active (e.g. have non-empty 1592 * range_tree's), and we don't move them to the new 1593 * metaslab_t. 1594 */ 1595 for (uint64_t m = oldc; m < newc; m++) { 1596 uint64_t alloc = 1597 space_map_allocated(vd->vdev_ms[m]->ms_sm); 1598 if (alloc < smallest) { 1599 slog_msid = m; 1600 smallest = alloc; 1601 } 1602 } 1603 metaslab_t *slog_ms = vd->vdev_ms[slog_msid]; 1604 /* 1605 * The metaslab was marked as dirty at the end of 1606 * metaslab_init(). Remove it from the dirty list so that we 1607 * can uninitialize and reinitialize it to the new class. 1608 */ 1609 if (txg != 0) { 1610 (void) txg_list_remove_this(&vd->vdev_ms_list, 1611 slog_ms, txg); 1612 } 1613 uint64_t sm_obj = space_map_object(slog_ms->ms_sm); 1614 metaslab_fini(slog_ms); 1615 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg, 1616 &vd->vdev_ms[slog_msid])); 1617 } 1618 1619 if (txg == 0) 1620 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1621 1622 /* 1623 * If the vdev is marked as non-allocating then don't 1624 * activate the metaslabs since we want to ensure that 1625 * no allocations are performed on this device. 1626 */ 1627 if (vd->vdev_noalloc) { 1628 /* track non-allocating vdev space */ 1629 spa->spa_nonallocating_dspace += spa_deflate(spa) ? 1630 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 1631 } else if (!expanding) { 1632 metaslab_group_activate(vd->vdev_mg); 1633 if (vd->vdev_log_mg != NULL) 1634 metaslab_group_activate(vd->vdev_log_mg); 1635 } 1636 1637 if (txg == 0) 1638 spa_config_exit(spa, SCL_ALLOC, FTAG); 1639 1640 return (0); 1641 } 1642 1643 void 1644 vdev_metaslab_fini(vdev_t *vd) 1645 { 1646 if (vd->vdev_checkpoint_sm != NULL) { 1647 ASSERT(spa_feature_is_active(vd->vdev_spa, 1648 SPA_FEATURE_POOL_CHECKPOINT)); 1649 space_map_close(vd->vdev_checkpoint_sm); 1650 /* 1651 * Even though we close the space map, we need to set its 1652 * pointer to NULL. The reason is that vdev_metaslab_fini() 1653 * may be called multiple times for certain operations 1654 * (i.e. when destroying a pool) so we need to ensure that 1655 * this clause never executes twice. This logic is similar 1656 * to the one used for the vdev_ms clause below. 1657 */ 1658 vd->vdev_checkpoint_sm = NULL; 1659 } 1660 1661 if (vd->vdev_ms != NULL) { 1662 metaslab_group_t *mg = vd->vdev_mg; 1663 1664 metaslab_group_passivate(mg); 1665 if (vd->vdev_log_mg != NULL) { 1666 ASSERT(!vd->vdev_islog); 1667 metaslab_group_passivate(vd->vdev_log_mg); 1668 } 1669 1670 uint64_t count = vd->vdev_ms_count; 1671 for (uint64_t m = 0; m < count; m++) { 1672 metaslab_t *msp = vd->vdev_ms[m]; 1673 if (msp != NULL) 1674 metaslab_fini(msp); 1675 } 1676 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1677 vd->vdev_ms = NULL; 1678 vd->vdev_ms_count = 0; 1679 1680 for (int i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) { 1681 ASSERT0(mg->mg_histogram[i]); 1682 if (vd->vdev_log_mg != NULL) 1683 ASSERT0(vd->vdev_log_mg->mg_histogram[i]); 1684 } 1685 } 1686 ASSERT0(vd->vdev_ms_count); 1687 } 1688 1689 typedef struct vdev_probe_stats { 1690 boolean_t vps_readable; 1691 boolean_t vps_writeable; 1692 boolean_t vps_zio_done_probe; 1693 int vps_flags; 1694 } vdev_probe_stats_t; 1695 1696 static void 1697 vdev_probe_done(zio_t *zio) 1698 { 1699 spa_t *spa = zio->io_spa; 1700 vdev_t *vd = zio->io_vd; 1701 vdev_probe_stats_t *vps = zio->io_private; 1702 1703 ASSERT(vd->vdev_probe_zio != NULL); 1704 1705 if (zio->io_type == ZIO_TYPE_READ) { 1706 if (zio->io_error == 0) 1707 vps->vps_readable = 1; 1708 if (zio->io_error == 0 && spa_writeable(spa)) { 1709 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1710 zio->io_offset, zio->io_size, zio->io_abd, 1711 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1712 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1713 } else { 1714 abd_free(zio->io_abd); 1715 } 1716 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1717 if (zio->io_error == 0) 1718 vps->vps_writeable = 1; 1719 abd_free(zio->io_abd); 1720 } else if (zio->io_type == ZIO_TYPE_NULL) { 1721 zio_t *pio; 1722 zio_link_t *zl; 1723 1724 vd->vdev_cant_read |= !vps->vps_readable; 1725 vd->vdev_cant_write |= !vps->vps_writeable; 1726 vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u", 1727 vd->vdev_cant_read, vd->vdev_cant_write); 1728 1729 if (vdev_readable(vd) && 1730 (vdev_writeable(vd) || !spa_writeable(spa))) { 1731 zio->io_error = 0; 1732 } else { 1733 ASSERT(zio->io_error != 0); 1734 vdev_dbgmsg(vd, "failed probe"); 1735 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1736 spa, vd, NULL, NULL, 0); 1737 zio->io_error = SET_ERROR(ENXIO); 1738 1739 /* 1740 * If this probe was initiated from zio pipeline, then 1741 * change the state in a spa_async_request. Probes that 1742 * were initiated from a vdev_open can change the state 1743 * as part of the open call. 1744 */ 1745 if (vps->vps_zio_done_probe) { 1746 vd->vdev_fault_wanted = B_TRUE; 1747 spa_async_request(spa, SPA_ASYNC_FAULT_VDEV); 1748 } 1749 } 1750 1751 mutex_enter(&vd->vdev_probe_lock); 1752 ASSERT(vd->vdev_probe_zio == zio); 1753 vd->vdev_probe_zio = NULL; 1754 mutex_exit(&vd->vdev_probe_lock); 1755 1756 zl = NULL; 1757 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1758 if (!vdev_accessible(vd, pio)) 1759 pio->io_error = SET_ERROR(ENXIO); 1760 1761 kmem_free(vps, sizeof (*vps)); 1762 } 1763 } 1764 1765 /* 1766 * Determine whether this device is accessible. 1767 * 1768 * Read and write to several known locations: the pad regions of each 1769 * vdev label but the first, which we leave alone in case it contains 1770 * a VTOC. 1771 */ 1772 zio_t * 1773 vdev_probe(vdev_t *vd, zio_t *zio) 1774 { 1775 spa_t *spa = vd->vdev_spa; 1776 vdev_probe_stats_t *vps = NULL; 1777 zio_t *pio; 1778 1779 ASSERT(vd->vdev_ops->vdev_op_leaf); 1780 1781 /* 1782 * Don't probe the probe. 1783 */ 1784 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1785 return (NULL); 1786 1787 /* 1788 * To prevent 'probe storms' when a device fails, we create 1789 * just one probe i/o at a time. All zios that want to probe 1790 * this vdev will become parents of the probe io. 1791 */ 1792 mutex_enter(&vd->vdev_probe_lock); 1793 1794 if ((pio = vd->vdev_probe_zio) == NULL) { 1795 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1796 1797 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1798 ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD; 1799 vps->vps_zio_done_probe = (zio != NULL); 1800 1801 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1802 /* 1803 * vdev_cant_read and vdev_cant_write can only 1804 * transition from TRUE to FALSE when we have the 1805 * SCL_ZIO lock as writer; otherwise they can only 1806 * transition from FALSE to TRUE. This ensures that 1807 * any zio looking at these values can assume that 1808 * failures persist for the life of the I/O. That's 1809 * important because when a device has intermittent 1810 * connectivity problems, we want to ensure that 1811 * they're ascribed to the device (ENXIO) and not 1812 * the zio (EIO). 1813 * 1814 * Since we hold SCL_ZIO as writer here, clear both 1815 * values so the probe can reevaluate from first 1816 * principles. 1817 */ 1818 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1819 vd->vdev_cant_read = B_FALSE; 1820 vd->vdev_cant_write = B_FALSE; 1821 } 1822 1823 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1824 vdev_probe_done, vps, 1825 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1826 } 1827 1828 if (zio != NULL) 1829 zio_add_child(zio, pio); 1830 1831 mutex_exit(&vd->vdev_probe_lock); 1832 1833 if (vps == NULL) { 1834 ASSERT(zio != NULL); 1835 return (NULL); 1836 } 1837 1838 for (int l = 1; l < VDEV_LABELS; l++) { 1839 zio_nowait(zio_read_phys(pio, vd, 1840 vdev_label_offset(vd->vdev_psize, l, 1841 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE, 1842 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1843 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1844 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1845 } 1846 1847 if (zio == NULL) 1848 return (pio); 1849 1850 zio_nowait(pio); 1851 return (NULL); 1852 } 1853 1854 static void 1855 vdev_load_child(void *arg) 1856 { 1857 vdev_t *vd = arg; 1858 1859 vd->vdev_load_error = vdev_load(vd); 1860 } 1861 1862 static void 1863 vdev_open_child(void *arg) 1864 { 1865 vdev_t *vd = arg; 1866 1867 vd->vdev_open_thread = curthread; 1868 vd->vdev_open_error = vdev_open(vd); 1869 vd->vdev_open_thread = NULL; 1870 } 1871 1872 static boolean_t 1873 vdev_uses_zvols(vdev_t *vd) 1874 { 1875 #ifdef _KERNEL 1876 if (zvol_is_zvol(vd->vdev_path)) 1877 return (B_TRUE); 1878 #endif 1879 1880 for (int c = 0; c < vd->vdev_children; c++) 1881 if (vdev_uses_zvols(vd->vdev_child[c])) 1882 return (B_TRUE); 1883 1884 return (B_FALSE); 1885 } 1886 1887 /* 1888 * Returns B_TRUE if the passed child should be opened. 1889 */ 1890 static boolean_t 1891 vdev_default_open_children_func(vdev_t *vd) 1892 { 1893 (void) vd; 1894 return (B_TRUE); 1895 } 1896 1897 /* 1898 * Open the requested child vdevs. If any of the leaf vdevs are using 1899 * a ZFS volume then do the opens in a single thread. This avoids a 1900 * deadlock when the current thread is holding the spa_namespace_lock. 1901 */ 1902 static void 1903 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func) 1904 { 1905 int children = vd->vdev_children; 1906 1907 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri, 1908 children, children, TASKQ_PREPOPULATE); 1909 vd->vdev_nonrot = B_TRUE; 1910 1911 for (int c = 0; c < children; c++) { 1912 vdev_t *cvd = vd->vdev_child[c]; 1913 1914 if (open_func(cvd) == B_FALSE) 1915 continue; 1916 1917 if (tq == NULL || vdev_uses_zvols(vd)) { 1918 cvd->vdev_open_error = vdev_open(cvd); 1919 } else { 1920 VERIFY(taskq_dispatch(tq, vdev_open_child, 1921 cvd, TQ_SLEEP) != TASKQID_INVALID); 1922 } 1923 1924 vd->vdev_nonrot &= cvd->vdev_nonrot; 1925 } 1926 1927 if (tq != NULL) { 1928 taskq_wait(tq); 1929 taskq_destroy(tq); 1930 } 1931 } 1932 1933 /* 1934 * Open all child vdevs. 1935 */ 1936 void 1937 vdev_open_children(vdev_t *vd) 1938 { 1939 vdev_open_children_impl(vd, vdev_default_open_children_func); 1940 } 1941 1942 /* 1943 * Conditionally open a subset of child vdevs. 1944 */ 1945 void 1946 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func) 1947 { 1948 vdev_open_children_impl(vd, open_func); 1949 } 1950 1951 /* 1952 * Compute the raidz-deflation ratio. Note, we hard-code 128k (1 << 17) 1953 * because it is the "typical" blocksize. Even though SPA_MAXBLOCKSIZE 1954 * changed, this algorithm can not change, otherwise it would inconsistently 1955 * account for existing bp's. We also hard-code txg 0 for the same reason 1956 * since expanded RAIDZ vdevs can use a different asize for different birth 1957 * txg's. 1958 */ 1959 static void 1960 vdev_set_deflate_ratio(vdev_t *vd) 1961 { 1962 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 1963 vd->vdev_deflate_ratio = (1 << 17) / 1964 (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >> 1965 SPA_MINBLOCKSHIFT); 1966 } 1967 } 1968 1969 /* 1970 * Choose the best of two ashifts, preferring one between logical ashift 1971 * (absolute minimum) and administrator defined maximum, otherwise take 1972 * the biggest of the two. 1973 */ 1974 uint64_t 1975 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b) 1976 { 1977 if (a > logical && a <= zfs_vdev_max_auto_ashift) { 1978 if (b <= logical || b > zfs_vdev_max_auto_ashift) 1979 return (a); 1980 else 1981 return (MAX(a, b)); 1982 } else if (b <= logical || b > zfs_vdev_max_auto_ashift) 1983 return (MAX(a, b)); 1984 return (b); 1985 } 1986 1987 /* 1988 * Maximize performance by inflating the configured ashift for top level 1989 * vdevs to be as close to the physical ashift as possible while maintaining 1990 * administrator defined limits and ensuring it doesn't go below the 1991 * logical ashift. 1992 */ 1993 static void 1994 vdev_ashift_optimize(vdev_t *vd) 1995 { 1996 ASSERT(vd == vd->vdev_top); 1997 1998 if (vd->vdev_ashift < vd->vdev_physical_ashift && 1999 vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) { 2000 vd->vdev_ashift = MIN( 2001 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift), 2002 MAX(zfs_vdev_min_auto_ashift, 2003 vd->vdev_physical_ashift)); 2004 } else { 2005 /* 2006 * If the logical and physical ashifts are the same, then 2007 * we ensure that the top-level vdev's ashift is not smaller 2008 * than our minimum ashift value. For the unusual case 2009 * where logical ashift > physical ashift, we can't cap 2010 * the calculated ashift based on max ashift as that 2011 * would cause failures. 2012 * We still check if we need to increase it to match 2013 * the min ashift. 2014 */ 2015 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift, 2016 vd->vdev_ashift); 2017 } 2018 } 2019 2020 /* 2021 * Prepare a virtual device for access. 2022 */ 2023 int 2024 vdev_open(vdev_t *vd) 2025 { 2026 spa_t *spa = vd->vdev_spa; 2027 int error; 2028 uint64_t osize = 0; 2029 uint64_t max_osize = 0; 2030 uint64_t asize, max_asize, psize; 2031 uint64_t logical_ashift = 0; 2032 uint64_t physical_ashift = 0; 2033 2034 ASSERT(vd->vdev_open_thread == curthread || 2035 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2036 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 2037 vd->vdev_state == VDEV_STATE_CANT_OPEN || 2038 vd->vdev_state == VDEV_STATE_OFFLINE); 2039 2040 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2041 vd->vdev_cant_read = B_FALSE; 2042 vd->vdev_cant_write = B_FALSE; 2043 vd->vdev_fault_wanted = B_FALSE; 2044 vd->vdev_remove_wanted = B_FALSE; 2045 vd->vdev_min_asize = vdev_get_min_asize(vd); 2046 2047 /* 2048 * If this vdev is not removed, check its fault status. If it's 2049 * faulted, bail out of the open. 2050 */ 2051 if (!vd->vdev_removed && vd->vdev_faulted) { 2052 ASSERT(vd->vdev_children == 0); 2053 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 2054 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 2055 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2056 vd->vdev_label_aux); 2057 return (SET_ERROR(ENXIO)); 2058 } else if (vd->vdev_offline) { 2059 ASSERT(vd->vdev_children == 0); 2060 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 2061 return (SET_ERROR(ENXIO)); 2062 } 2063 2064 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, 2065 &logical_ashift, &physical_ashift); 2066 2067 /* Keep the device in removed state if unplugged */ 2068 if (error == ENOENT && vd->vdev_removed) { 2069 vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED, 2070 VDEV_AUX_NONE); 2071 return (error); 2072 } 2073 2074 /* 2075 * Physical volume size should never be larger than its max size, unless 2076 * the disk has shrunk while we were reading it or the device is buggy 2077 * or damaged: either way it's not safe for use, bail out of the open. 2078 */ 2079 if (osize > max_osize) { 2080 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2081 VDEV_AUX_OPEN_FAILED); 2082 return (SET_ERROR(ENXIO)); 2083 } 2084 2085 /* 2086 * Reset the vdev_reopening flag so that we actually close 2087 * the vdev on error. 2088 */ 2089 vd->vdev_reopening = B_FALSE; 2090 if (zio_injection_enabled && error == 0) 2091 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO)); 2092 2093 if (error) { 2094 if (vd->vdev_removed && 2095 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 2096 vd->vdev_removed = B_FALSE; 2097 2098 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 2099 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 2100 vd->vdev_stat.vs_aux); 2101 } else { 2102 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2103 vd->vdev_stat.vs_aux); 2104 } 2105 return (error); 2106 } 2107 2108 vd->vdev_removed = B_FALSE; 2109 2110 /* 2111 * Recheck the faulted flag now that we have confirmed that 2112 * the vdev is accessible. If we're faulted, bail. 2113 */ 2114 if (vd->vdev_faulted) { 2115 ASSERT(vd->vdev_children == 0); 2116 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 2117 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 2118 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2119 vd->vdev_label_aux); 2120 return (SET_ERROR(ENXIO)); 2121 } 2122 2123 if (vd->vdev_degraded) { 2124 ASSERT(vd->vdev_children == 0); 2125 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2126 VDEV_AUX_ERR_EXCEEDED); 2127 } else { 2128 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 2129 } 2130 2131 /* 2132 * For hole or missing vdevs we just return success. 2133 */ 2134 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 2135 return (0); 2136 2137 for (int c = 0; c < vd->vdev_children; c++) { 2138 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 2139 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2140 VDEV_AUX_NONE); 2141 break; 2142 } 2143 } 2144 2145 osize = P2ALIGN_TYPED(osize, sizeof (vdev_label_t), uint64_t); 2146 max_osize = P2ALIGN_TYPED(max_osize, sizeof (vdev_label_t), uint64_t); 2147 2148 if (vd->vdev_children == 0) { 2149 if (osize < SPA_MINDEVSIZE) { 2150 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2151 VDEV_AUX_TOO_SMALL); 2152 return (SET_ERROR(EOVERFLOW)); 2153 } 2154 psize = osize; 2155 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 2156 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 2157 VDEV_LABEL_END_SIZE); 2158 } else { 2159 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 2160 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 2161 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2162 VDEV_AUX_TOO_SMALL); 2163 return (SET_ERROR(EOVERFLOW)); 2164 } 2165 psize = 0; 2166 asize = osize; 2167 max_asize = max_osize; 2168 } 2169 2170 /* 2171 * If the vdev was expanded, record this so that we can re-create the 2172 * uberblock rings in labels {2,3}, during the next sync. 2173 */ 2174 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0)) 2175 vd->vdev_copy_uberblocks = B_TRUE; 2176 2177 vd->vdev_psize = psize; 2178 2179 /* 2180 * Make sure the allocatable size hasn't shrunk too much. 2181 */ 2182 if (asize < vd->vdev_min_asize) { 2183 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2184 VDEV_AUX_BAD_LABEL); 2185 return (SET_ERROR(EINVAL)); 2186 } 2187 2188 /* 2189 * We can always set the logical/physical ashift members since 2190 * their values are only used to calculate the vdev_ashift when 2191 * the device is first added to the config. These values should 2192 * not be used for anything else since they may change whenever 2193 * the device is reopened and we don't store them in the label. 2194 */ 2195 vd->vdev_physical_ashift = 2196 MAX(physical_ashift, vd->vdev_physical_ashift); 2197 vd->vdev_logical_ashift = MAX(logical_ashift, 2198 vd->vdev_logical_ashift); 2199 2200 if (vd->vdev_asize == 0) { 2201 /* 2202 * This is the first-ever open, so use the computed values. 2203 * For compatibility, a different ashift can be requested. 2204 */ 2205 vd->vdev_asize = asize; 2206 vd->vdev_max_asize = max_asize; 2207 2208 /* 2209 * If the vdev_ashift was not overridden at creation time 2210 * (0) or the override value is impossible for the device, 2211 * then set it the logical ashift and optimize the ashift. 2212 */ 2213 if (vd->vdev_ashift < vd->vdev_logical_ashift) { 2214 vd->vdev_ashift = vd->vdev_logical_ashift; 2215 2216 if (vd->vdev_logical_ashift > ASHIFT_MAX) { 2217 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2218 VDEV_AUX_ASHIFT_TOO_BIG); 2219 return (SET_ERROR(EDOM)); 2220 } 2221 2222 if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE) 2223 vdev_ashift_optimize(vd); 2224 vd->vdev_attaching = B_FALSE; 2225 } 2226 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN || 2227 vd->vdev_ashift > ASHIFT_MAX)) { 2228 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2229 VDEV_AUX_BAD_ASHIFT); 2230 return (SET_ERROR(EDOM)); 2231 } 2232 } else { 2233 /* 2234 * Make sure the alignment required hasn't increased. 2235 */ 2236 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift && 2237 vd->vdev_ops->vdev_op_leaf) { 2238 (void) zfs_ereport_post( 2239 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT, 2240 spa, vd, NULL, NULL, 0); 2241 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2242 VDEV_AUX_BAD_LABEL); 2243 return (SET_ERROR(EDOM)); 2244 } 2245 vd->vdev_max_asize = max_asize; 2246 } 2247 2248 /* 2249 * If all children are healthy we update asize if either: 2250 * The asize has increased, due to a device expansion caused by dynamic 2251 * LUN growth or vdev replacement, and automatic expansion is enabled; 2252 * making the additional space available. 2253 * 2254 * The asize has decreased, due to a device shrink usually caused by a 2255 * vdev replace with a smaller device. This ensures that calculations 2256 * based of max_asize and asize e.g. esize are always valid. It's safe 2257 * to do this as we've already validated that asize is greater than 2258 * vdev_min_asize. 2259 */ 2260 if (vd->vdev_state == VDEV_STATE_HEALTHY && 2261 ((asize > vd->vdev_asize && 2262 (vd->vdev_expanding || spa->spa_autoexpand)) || 2263 (asize < vd->vdev_asize))) 2264 vd->vdev_asize = asize; 2265 2266 vdev_set_min_asize(vd); 2267 2268 /* 2269 * Ensure we can issue some IO before declaring the 2270 * vdev open for business. 2271 */ 2272 if (vd->vdev_ops->vdev_op_leaf && 2273 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 2274 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2275 VDEV_AUX_ERR_EXCEEDED); 2276 return (error); 2277 } 2278 2279 /* 2280 * Track the minimum allocation size. 2281 */ 2282 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 2283 vd->vdev_islog == 0 && vd->vdev_aux == NULL) { 2284 uint64_t min_alloc = vdev_get_min_alloc(vd); 2285 vdev_spa_set_alloc(spa, min_alloc); 2286 } 2287 2288 /* 2289 * If this is a leaf vdev, assess whether a resilver is needed. 2290 * But don't do this if we are doing a reopen for a scrub, since 2291 * this would just restart the scrub we are already doing. 2292 */ 2293 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen) 2294 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd); 2295 2296 return (0); 2297 } 2298 2299 static void 2300 vdev_validate_child(void *arg) 2301 { 2302 vdev_t *vd = arg; 2303 2304 vd->vdev_validate_thread = curthread; 2305 vd->vdev_validate_error = vdev_validate(vd); 2306 vd->vdev_validate_thread = NULL; 2307 } 2308 2309 /* 2310 * Called once the vdevs are all opened, this routine validates the label 2311 * contents. This needs to be done before vdev_load() so that we don't 2312 * inadvertently do repair I/Os to the wrong device. 2313 * 2314 * This function will only return failure if one of the vdevs indicates that it 2315 * has since been destroyed or exported. This is only possible if 2316 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 2317 * will be updated but the function will return 0. 2318 */ 2319 int 2320 vdev_validate(vdev_t *vd) 2321 { 2322 spa_t *spa = vd->vdev_spa; 2323 taskq_t *tq = NULL; 2324 nvlist_t *label; 2325 uint64_t guid = 0, aux_guid = 0, top_guid; 2326 uint64_t state; 2327 nvlist_t *nvl; 2328 uint64_t txg; 2329 int children = vd->vdev_children; 2330 2331 if (vdev_validate_skip) 2332 return (0); 2333 2334 if (children > 0) { 2335 tq = taskq_create("vdev_validate", children, minclsyspri, 2336 children, children, TASKQ_PREPOPULATE); 2337 } 2338 2339 for (uint64_t c = 0; c < children; c++) { 2340 vdev_t *cvd = vd->vdev_child[c]; 2341 2342 if (tq == NULL || vdev_uses_zvols(cvd)) { 2343 vdev_validate_child(cvd); 2344 } else { 2345 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd, 2346 TQ_SLEEP) != TASKQID_INVALID); 2347 } 2348 } 2349 if (tq != NULL) { 2350 taskq_wait(tq); 2351 taskq_destroy(tq); 2352 } 2353 for (int c = 0; c < children; c++) { 2354 int error = vd->vdev_child[c]->vdev_validate_error; 2355 2356 if (error != 0) 2357 return (SET_ERROR(EBADF)); 2358 } 2359 2360 2361 /* 2362 * If the device has already failed, or was marked offline, don't do 2363 * any further validation. Otherwise, label I/O will fail and we will 2364 * overwrite the previous state. 2365 */ 2366 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 2367 return (0); 2368 2369 /* 2370 * If we are performing an extreme rewind, we allow for a label that 2371 * was modified at a point after the current txg. 2372 * If config lock is not held do not check for the txg. spa_sync could 2373 * be updating the vdev's label before updating spa_last_synced_txg. 2374 */ 2375 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 2376 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 2377 txg = UINT64_MAX; 2378 else 2379 txg = spa_last_synced_txg(spa); 2380 2381 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 2382 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2383 VDEV_AUX_BAD_LABEL); 2384 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 2385 "txg %llu", (u_longlong_t)txg); 2386 return (0); 2387 } 2388 2389 /* 2390 * Determine if this vdev has been split off into another 2391 * pool. If so, then refuse to open it. 2392 */ 2393 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 2394 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 2395 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2396 VDEV_AUX_SPLIT_POOL); 2397 nvlist_free(label); 2398 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 2399 return (0); 2400 } 2401 2402 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 2403 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2404 VDEV_AUX_CORRUPT_DATA); 2405 nvlist_free(label); 2406 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2407 ZPOOL_CONFIG_POOL_GUID); 2408 return (0); 2409 } 2410 2411 /* 2412 * If config is not trusted then ignore the spa guid check. This is 2413 * necessary because if the machine crashed during a re-guid the new 2414 * guid might have been written to all of the vdev labels, but not the 2415 * cached config. The check will be performed again once we have the 2416 * trusted config from the MOS. 2417 */ 2418 if (spa->spa_trust_config && guid != spa_guid(spa)) { 2419 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2420 VDEV_AUX_CORRUPT_DATA); 2421 nvlist_free(label); 2422 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 2423 "match config (%llu != %llu)", (u_longlong_t)guid, 2424 (u_longlong_t)spa_guid(spa)); 2425 return (0); 2426 } 2427 2428 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 2429 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 2430 &aux_guid) != 0) 2431 aux_guid = 0; 2432 2433 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 2434 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2435 VDEV_AUX_CORRUPT_DATA); 2436 nvlist_free(label); 2437 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2438 ZPOOL_CONFIG_GUID); 2439 return (0); 2440 } 2441 2442 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 2443 != 0) { 2444 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2445 VDEV_AUX_CORRUPT_DATA); 2446 nvlist_free(label); 2447 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2448 ZPOOL_CONFIG_TOP_GUID); 2449 return (0); 2450 } 2451 2452 /* 2453 * If this vdev just became a top-level vdev because its sibling was 2454 * detached, it will have adopted the parent's vdev guid -- but the 2455 * label may or may not be on disk yet. Fortunately, either version 2456 * of the label will have the same top guid, so if we're a top-level 2457 * vdev, we can safely compare to that instead. 2458 * However, if the config comes from a cachefile that failed to update 2459 * after the detach, a top-level vdev will appear as a non top-level 2460 * vdev in the config. Also relax the constraints if we perform an 2461 * extreme rewind. 2462 * 2463 * If we split this vdev off instead, then we also check the 2464 * original pool's guid. We don't want to consider the vdev 2465 * corrupt if it is partway through a split operation. 2466 */ 2467 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 2468 boolean_t mismatch = B_FALSE; 2469 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 2470 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 2471 mismatch = B_TRUE; 2472 } else { 2473 if (vd->vdev_guid != top_guid && 2474 vd->vdev_top->vdev_guid != guid) 2475 mismatch = B_TRUE; 2476 } 2477 2478 if (mismatch) { 2479 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2480 VDEV_AUX_CORRUPT_DATA); 2481 nvlist_free(label); 2482 vdev_dbgmsg(vd, "vdev_validate: config guid " 2483 "doesn't match label guid"); 2484 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 2485 (u_longlong_t)vd->vdev_guid, 2486 (u_longlong_t)vd->vdev_top->vdev_guid); 2487 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 2488 "aux_guid %llu", (u_longlong_t)guid, 2489 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 2490 return (0); 2491 } 2492 } 2493 2494 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 2495 &state) != 0) { 2496 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2497 VDEV_AUX_CORRUPT_DATA); 2498 nvlist_free(label); 2499 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2500 ZPOOL_CONFIG_POOL_STATE); 2501 return (0); 2502 } 2503 2504 nvlist_free(label); 2505 2506 /* 2507 * If this is a verbatim import, no need to check the 2508 * state of the pool. 2509 */ 2510 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 2511 spa_load_state(spa) == SPA_LOAD_OPEN && 2512 state != POOL_STATE_ACTIVE) { 2513 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 2514 "for spa %s", (u_longlong_t)state, spa->spa_name); 2515 return (SET_ERROR(EBADF)); 2516 } 2517 2518 /* 2519 * If we were able to open and validate a vdev that was 2520 * previously marked permanently unavailable, clear that state 2521 * now. 2522 */ 2523 if (vd->vdev_not_present) 2524 vd->vdev_not_present = 0; 2525 2526 return (0); 2527 } 2528 2529 static void 2530 vdev_update_path(const char *prefix, char *svd, char **dvd, uint64_t guid) 2531 { 2532 if (svd != NULL && *dvd != NULL) { 2533 if (strcmp(svd, *dvd) != 0) { 2534 zfs_dbgmsg("vdev_copy_path: vdev %llu: %s changed " 2535 "from '%s' to '%s'", (u_longlong_t)guid, prefix, 2536 *dvd, svd); 2537 spa_strfree(*dvd); 2538 *dvd = spa_strdup(svd); 2539 } 2540 } else if (svd != NULL) { 2541 *dvd = spa_strdup(svd); 2542 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 2543 (u_longlong_t)guid, *dvd); 2544 } 2545 } 2546 2547 static void 2548 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 2549 { 2550 char *old, *new; 2551 2552 vdev_update_path("vdev_path", svd->vdev_path, &dvd->vdev_path, 2553 dvd->vdev_guid); 2554 2555 vdev_update_path("vdev_devid", svd->vdev_devid, &dvd->vdev_devid, 2556 dvd->vdev_guid); 2557 2558 vdev_update_path("vdev_physpath", svd->vdev_physpath, 2559 &dvd->vdev_physpath, dvd->vdev_guid); 2560 2561 /* 2562 * Our enclosure sysfs path may have changed between imports 2563 */ 2564 old = dvd->vdev_enc_sysfs_path; 2565 new = svd->vdev_enc_sysfs_path; 2566 if ((old != NULL && new == NULL) || 2567 (old == NULL && new != NULL) || 2568 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) { 2569 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path " 2570 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2571 old, new); 2572 2573 if (dvd->vdev_enc_sysfs_path) 2574 spa_strfree(dvd->vdev_enc_sysfs_path); 2575 2576 if (svd->vdev_enc_sysfs_path) { 2577 dvd->vdev_enc_sysfs_path = spa_strdup( 2578 svd->vdev_enc_sysfs_path); 2579 } else { 2580 dvd->vdev_enc_sysfs_path = NULL; 2581 } 2582 } 2583 } 2584 2585 /* 2586 * Recursively copy vdev paths from one vdev to another. Source and destination 2587 * vdev trees must have same geometry otherwise return error. Intended to copy 2588 * paths from userland config into MOS config. 2589 */ 2590 int 2591 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 2592 { 2593 if ((svd->vdev_ops == &vdev_missing_ops) || 2594 (svd->vdev_ishole && dvd->vdev_ishole) || 2595 (dvd->vdev_ops == &vdev_indirect_ops)) 2596 return (0); 2597 2598 if (svd->vdev_ops != dvd->vdev_ops) { 2599 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 2600 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 2601 return (SET_ERROR(EINVAL)); 2602 } 2603 2604 if (svd->vdev_guid != dvd->vdev_guid) { 2605 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 2606 "%llu)", (u_longlong_t)svd->vdev_guid, 2607 (u_longlong_t)dvd->vdev_guid); 2608 return (SET_ERROR(EINVAL)); 2609 } 2610 2611 if (svd->vdev_children != dvd->vdev_children) { 2612 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 2613 "%llu != %llu", (u_longlong_t)svd->vdev_children, 2614 (u_longlong_t)dvd->vdev_children); 2615 return (SET_ERROR(EINVAL)); 2616 } 2617 2618 for (uint64_t i = 0; i < svd->vdev_children; i++) { 2619 int error = vdev_copy_path_strict(svd->vdev_child[i], 2620 dvd->vdev_child[i]); 2621 if (error != 0) 2622 return (error); 2623 } 2624 2625 if (svd->vdev_ops->vdev_op_leaf) 2626 vdev_copy_path_impl(svd, dvd); 2627 2628 return (0); 2629 } 2630 2631 static void 2632 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 2633 { 2634 ASSERT(stvd->vdev_top == stvd); 2635 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 2636 2637 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 2638 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 2639 } 2640 2641 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 2642 return; 2643 2644 /* 2645 * The idea here is that while a vdev can shift positions within 2646 * a top vdev (when replacing, attaching mirror, etc.) it cannot 2647 * step outside of it. 2648 */ 2649 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 2650 2651 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 2652 return; 2653 2654 ASSERT(vd->vdev_ops->vdev_op_leaf); 2655 2656 vdev_copy_path_impl(vd, dvd); 2657 } 2658 2659 /* 2660 * Recursively copy vdev paths from one root vdev to another. Source and 2661 * destination vdev trees may differ in geometry. For each destination leaf 2662 * vdev, search a vdev with the same guid and top vdev id in the source. 2663 * Intended to copy paths from userland config into MOS config. 2664 */ 2665 void 2666 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 2667 { 2668 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 2669 ASSERT(srvd->vdev_ops == &vdev_root_ops); 2670 ASSERT(drvd->vdev_ops == &vdev_root_ops); 2671 2672 for (uint64_t i = 0; i < children; i++) { 2673 vdev_copy_path_search(srvd->vdev_child[i], 2674 drvd->vdev_child[i]); 2675 } 2676 } 2677 2678 /* 2679 * Close a virtual device. 2680 */ 2681 void 2682 vdev_close(vdev_t *vd) 2683 { 2684 vdev_t *pvd = vd->vdev_parent; 2685 spa_t *spa __maybe_unused = vd->vdev_spa; 2686 2687 ASSERT(vd != NULL); 2688 ASSERT(vd->vdev_open_thread == curthread || 2689 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2690 2691 /* 2692 * If our parent is reopening, then we are as well, unless we are 2693 * going offline. 2694 */ 2695 if (pvd != NULL && pvd->vdev_reopening) 2696 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 2697 2698 vd->vdev_ops->vdev_op_close(vd); 2699 2700 /* 2701 * We record the previous state before we close it, so that if we are 2702 * doing a reopen(), we don't generate FMA ereports if we notice that 2703 * it's still faulted. 2704 */ 2705 vd->vdev_prevstate = vd->vdev_state; 2706 2707 if (vd->vdev_offline) 2708 vd->vdev_state = VDEV_STATE_OFFLINE; 2709 else 2710 vd->vdev_state = VDEV_STATE_CLOSED; 2711 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2712 } 2713 2714 void 2715 vdev_hold(vdev_t *vd) 2716 { 2717 spa_t *spa = vd->vdev_spa; 2718 2719 ASSERT(spa_is_root(spa)); 2720 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 2721 return; 2722 2723 for (int c = 0; c < vd->vdev_children; c++) 2724 vdev_hold(vd->vdev_child[c]); 2725 2726 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL) 2727 vd->vdev_ops->vdev_op_hold(vd); 2728 } 2729 2730 void 2731 vdev_rele(vdev_t *vd) 2732 { 2733 ASSERT(spa_is_root(vd->vdev_spa)); 2734 for (int c = 0; c < vd->vdev_children; c++) 2735 vdev_rele(vd->vdev_child[c]); 2736 2737 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL) 2738 vd->vdev_ops->vdev_op_rele(vd); 2739 } 2740 2741 /* 2742 * Reopen all interior vdevs and any unopened leaves. We don't actually 2743 * reopen leaf vdevs which had previously been opened as they might deadlock 2744 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 2745 * If the leaf has never been opened then open it, as usual. 2746 */ 2747 void 2748 vdev_reopen(vdev_t *vd) 2749 { 2750 spa_t *spa = vd->vdev_spa; 2751 2752 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2753 2754 /* set the reopening flag unless we're taking the vdev offline */ 2755 vd->vdev_reopening = !vd->vdev_offline; 2756 vdev_close(vd); 2757 (void) vdev_open(vd); 2758 2759 /* 2760 * Call vdev_validate() here to make sure we have the same device. 2761 * Otherwise, a device with an invalid label could be successfully 2762 * opened in response to vdev_reopen(). 2763 */ 2764 if (vd->vdev_aux) { 2765 (void) vdev_validate_aux(vd); 2766 if (vdev_readable(vd) && vdev_writeable(vd) && 2767 vd->vdev_aux == &spa->spa_l2cache) { 2768 /* 2769 * In case the vdev is present we should evict all ARC 2770 * buffers and pointers to log blocks and reclaim their 2771 * space before restoring its contents to L2ARC. 2772 */ 2773 if (l2arc_vdev_present(vd)) { 2774 l2arc_rebuild_vdev(vd, B_TRUE); 2775 } else { 2776 l2arc_add_vdev(spa, vd); 2777 } 2778 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2779 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 2780 } 2781 } else { 2782 (void) vdev_validate(vd); 2783 } 2784 2785 /* 2786 * Recheck if resilver is still needed and cancel any 2787 * scheduled resilver if resilver is unneeded. 2788 */ 2789 if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) && 2790 spa->spa_async_tasks & SPA_ASYNC_RESILVER) { 2791 mutex_enter(&spa->spa_async_lock); 2792 spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER; 2793 mutex_exit(&spa->spa_async_lock); 2794 } 2795 2796 /* 2797 * Reassess parent vdev's health. 2798 */ 2799 vdev_propagate_state(vd); 2800 } 2801 2802 int 2803 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2804 { 2805 int error; 2806 2807 /* 2808 * Normally, partial opens (e.g. of a mirror) are allowed. 2809 * For a create, however, we want to fail the request if 2810 * there are any components we can't open. 2811 */ 2812 error = vdev_open(vd); 2813 2814 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2815 vdev_close(vd); 2816 return (error ? error : SET_ERROR(ENXIO)); 2817 } 2818 2819 /* 2820 * Recursively load DTLs and initialize all labels. 2821 */ 2822 if ((error = vdev_dtl_load(vd)) != 0 || 2823 (error = vdev_label_init(vd, txg, isreplacing ? 2824 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2825 vdev_close(vd); 2826 return (error); 2827 } 2828 2829 return (0); 2830 } 2831 2832 void 2833 vdev_metaslab_set_size(vdev_t *vd) 2834 { 2835 uint64_t asize = vd->vdev_asize; 2836 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2837 uint64_t ms_shift; 2838 2839 /* 2840 * There are two dimensions to the metaslab sizing calculation: 2841 * the size of the metaslab and the count of metaslabs per vdev. 2842 * 2843 * The default values used below are a good balance between memory 2844 * usage (larger metaslab size means more memory needed for loaded 2845 * metaslabs; more metaslabs means more memory needed for the 2846 * metaslab_t structs), metaslab load time (larger metaslabs take 2847 * longer to load), and metaslab sync time (more metaslabs means 2848 * more time spent syncing all of them). 2849 * 2850 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2851 * The range of the dimensions are as follows: 2852 * 2853 * 2^29 <= ms_size <= 2^34 2854 * 16 <= ms_count <= 131,072 2855 * 2856 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2857 * at least 512MB (2^29) to minimize fragmentation effects when 2858 * testing with smaller devices. However, the count constraint 2859 * of at least 16 metaslabs will override this minimum size goal. 2860 * 2861 * On the upper end of vdev sizes, we aim for a maximum metaslab 2862 * size of 16GB. However, we will cap the total count to 2^17 2863 * metaslabs to keep our memory footprint in check and let the 2864 * metaslab size grow from there if that limit is hit. 2865 * 2866 * The net effect of applying above constrains is summarized below. 2867 * 2868 * vdev size metaslab count 2869 * --------------|----------------- 2870 * < 8GB ~16 2871 * 8GB - 100GB one per 512MB 2872 * 100GB - 3TB ~200 2873 * 3TB - 2PB one per 16GB 2874 * > 2PB ~131,072 2875 * -------------------------------- 2876 * 2877 * Finally, note that all of the above calculate the initial 2878 * number of metaslabs. Expanding a top-level vdev will result 2879 * in additional metaslabs being allocated making it possible 2880 * to exceed the zfs_vdev_ms_count_limit. 2881 */ 2882 2883 if (ms_count < zfs_vdev_min_ms_count) 2884 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 2885 else if (ms_count > zfs_vdev_default_ms_count) 2886 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 2887 else 2888 ms_shift = zfs_vdev_default_ms_shift; 2889 2890 if (ms_shift < SPA_MAXBLOCKSHIFT) { 2891 ms_shift = SPA_MAXBLOCKSHIFT; 2892 } else if (ms_shift > zfs_vdev_max_ms_shift) { 2893 ms_shift = zfs_vdev_max_ms_shift; 2894 /* cap the total count to constrain memory footprint */ 2895 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 2896 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 2897 } 2898 2899 vd->vdev_ms_shift = ms_shift; 2900 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 2901 } 2902 2903 void 2904 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 2905 { 2906 ASSERT(vd == vd->vdev_top); 2907 /* indirect vdevs don't have metaslabs or dtls */ 2908 ASSERT(vdev_is_concrete(vd) || flags == 0); 2909 ASSERT(ISP2(flags)); 2910 ASSERT(spa_writeable(vd->vdev_spa)); 2911 2912 if (flags & VDD_METASLAB) 2913 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 2914 2915 if (flags & VDD_DTL) 2916 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 2917 2918 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 2919 } 2920 2921 void 2922 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 2923 { 2924 for (int c = 0; c < vd->vdev_children; c++) 2925 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 2926 2927 if (vd->vdev_ops->vdev_op_leaf) 2928 vdev_dirty(vd->vdev_top, flags, vd, txg); 2929 } 2930 2931 /* 2932 * DTLs. 2933 * 2934 * A vdev's DTL (dirty time log) is the set of transaction groups for which 2935 * the vdev has less than perfect replication. There are four kinds of DTL: 2936 * 2937 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 2938 * 2939 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 2940 * 2941 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 2942 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 2943 * txgs that was scrubbed. 2944 * 2945 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 2946 * persistent errors or just some device being offline. 2947 * Unlike the other three, the DTL_OUTAGE map is not generally 2948 * maintained; it's only computed when needed, typically to 2949 * determine whether a device can be detached. 2950 * 2951 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 2952 * either has the data or it doesn't. 2953 * 2954 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 2955 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 2956 * if any child is less than fully replicated, then so is its parent. 2957 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 2958 * comprising only those txgs which appear in 'maxfaults' or more children; 2959 * those are the txgs we don't have enough replication to read. For example, 2960 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 2961 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 2962 * two child DTL_MISSING maps. 2963 * 2964 * It should be clear from the above that to compute the DTLs and outage maps 2965 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 2966 * Therefore, that is all we keep on disk. When loading the pool, or after 2967 * a configuration change, we generate all other DTLs from first principles. 2968 */ 2969 void 2970 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2971 { 2972 zfs_range_tree_t *rt = vd->vdev_dtl[t]; 2973 2974 ASSERT(t < DTL_TYPES); 2975 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2976 ASSERT(spa_writeable(vd->vdev_spa)); 2977 2978 mutex_enter(&vd->vdev_dtl_lock); 2979 if (!zfs_range_tree_contains(rt, txg, size)) 2980 zfs_range_tree_add(rt, txg, size); 2981 mutex_exit(&vd->vdev_dtl_lock); 2982 } 2983 2984 boolean_t 2985 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2986 { 2987 zfs_range_tree_t *rt = vd->vdev_dtl[t]; 2988 boolean_t dirty = B_FALSE; 2989 2990 ASSERT(t < DTL_TYPES); 2991 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2992 2993 /* 2994 * While we are loading the pool, the DTLs have not been loaded yet. 2995 * This isn't a problem but it can result in devices being tried 2996 * which are known to not have the data. In which case, the import 2997 * is relying on the checksum to ensure that we get the right data. 2998 * Note that while importing we are only reading the MOS, which is 2999 * always checksummed. 3000 */ 3001 mutex_enter(&vd->vdev_dtl_lock); 3002 if (!zfs_range_tree_is_empty(rt)) 3003 dirty = zfs_range_tree_contains(rt, txg, size); 3004 mutex_exit(&vd->vdev_dtl_lock); 3005 3006 return (dirty); 3007 } 3008 3009 boolean_t 3010 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 3011 { 3012 zfs_range_tree_t *rt = vd->vdev_dtl[t]; 3013 boolean_t empty; 3014 3015 mutex_enter(&vd->vdev_dtl_lock); 3016 empty = zfs_range_tree_is_empty(rt); 3017 mutex_exit(&vd->vdev_dtl_lock); 3018 3019 return (empty); 3020 } 3021 3022 /* 3023 * Check if the txg falls within the range which must be 3024 * resilvered. DVAs outside this range can always be skipped. 3025 */ 3026 boolean_t 3027 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 3028 uint64_t phys_birth) 3029 { 3030 (void) dva, (void) psize; 3031 3032 /* Set by sequential resilver. */ 3033 if (phys_birth == TXG_UNKNOWN) 3034 return (B_TRUE); 3035 3036 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)); 3037 } 3038 3039 /* 3040 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered. 3041 */ 3042 boolean_t 3043 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 3044 uint64_t phys_birth) 3045 { 3046 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 3047 3048 if (vd->vdev_ops->vdev_op_need_resilver == NULL || 3049 vd->vdev_ops->vdev_op_leaf) 3050 return (B_TRUE); 3051 3052 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize, 3053 phys_birth)); 3054 } 3055 3056 /* 3057 * Returns the lowest txg in the DTL range. 3058 */ 3059 static uint64_t 3060 vdev_dtl_min(vdev_t *vd) 3061 { 3062 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 3063 ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 3064 ASSERT0(vd->vdev_children); 3065 3066 return (zfs_range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1); 3067 } 3068 3069 /* 3070 * Returns the highest txg in the DTL. 3071 */ 3072 static uint64_t 3073 vdev_dtl_max(vdev_t *vd) 3074 { 3075 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 3076 ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 3077 ASSERT0(vd->vdev_children); 3078 3079 return (zfs_range_tree_max(vd->vdev_dtl[DTL_MISSING])); 3080 } 3081 3082 /* 3083 * Determine if a resilvering vdev should remove any DTL entries from 3084 * its range. If the vdev was resilvering for the entire duration of the 3085 * scan then it should excise that range from its DTLs. Otherwise, this 3086 * vdev is considered partially resilvered and should leave its DTL 3087 * entries intact. The comment in vdev_dtl_reassess() describes how we 3088 * excise the DTLs. 3089 */ 3090 static boolean_t 3091 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done) 3092 { 3093 ASSERT0(vd->vdev_children); 3094 3095 if (vd->vdev_state < VDEV_STATE_DEGRADED) 3096 return (B_FALSE); 3097 3098 if (vd->vdev_resilver_deferred) 3099 return (B_FALSE); 3100 3101 if (zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 3102 return (B_TRUE); 3103 3104 if (rebuild_done) { 3105 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3106 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 3107 3108 /* Rebuild not initiated by attach */ 3109 if (vd->vdev_rebuild_txg == 0) 3110 return (B_TRUE); 3111 3112 /* 3113 * When a rebuild completes without error then all missing data 3114 * up to the rebuild max txg has been reconstructed and the DTL 3115 * is eligible for excision. 3116 */ 3117 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE && 3118 vdev_dtl_max(vd) <= vrp->vrp_max_txg) { 3119 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd)); 3120 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg); 3121 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg); 3122 return (B_TRUE); 3123 } 3124 } else { 3125 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 3126 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys; 3127 3128 /* Resilver not initiated by attach */ 3129 if (vd->vdev_resilver_txg == 0) 3130 return (B_TRUE); 3131 3132 /* 3133 * When a resilver is initiated the scan will assign the 3134 * scn_max_txg value to the highest txg value that exists 3135 * in all DTLs. If this device's max DTL is not part of this 3136 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg] 3137 * then it is not eligible for excision. 3138 */ 3139 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 3140 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd)); 3141 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg); 3142 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg); 3143 return (B_TRUE); 3144 } 3145 } 3146 3147 return (B_FALSE); 3148 } 3149 3150 /* 3151 * Reassess DTLs after a config change or scrub completion. If txg == 0 no 3152 * write operations will be issued to the pool. 3153 */ 3154 static void 3155 vdev_dtl_reassess_impl(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, 3156 boolean_t scrub_done, boolean_t rebuild_done, boolean_t faulting) 3157 { 3158 spa_t *spa = vd->vdev_spa; 3159 avl_tree_t reftree; 3160 int minref; 3161 3162 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 3163 3164 for (int c = 0; c < vd->vdev_children; c++) 3165 vdev_dtl_reassess_impl(vd->vdev_child[c], txg, 3166 scrub_txg, scrub_done, rebuild_done, faulting); 3167 3168 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 3169 return; 3170 3171 if (vd->vdev_ops->vdev_op_leaf) { 3172 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 3173 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3174 boolean_t check_excise = B_FALSE; 3175 boolean_t wasempty = B_TRUE; 3176 3177 mutex_enter(&vd->vdev_dtl_lock); 3178 3179 /* 3180 * If requested, pretend the scan or rebuild completed cleanly. 3181 */ 3182 if (zfs_scan_ignore_errors) { 3183 if (scn != NULL) 3184 scn->scn_phys.scn_errors = 0; 3185 if (vr != NULL) 3186 vr->vr_rebuild_phys.vrp_errors = 0; 3187 } 3188 3189 if (scrub_txg != 0 && 3190 !zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3191 wasempty = B_FALSE; 3192 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d " 3193 "dtl:%llu/%llu errors:%llu", 3194 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg, 3195 (u_longlong_t)scrub_txg, spa->spa_scrub_started, 3196 (u_longlong_t)vdev_dtl_min(vd), 3197 (u_longlong_t)vdev_dtl_max(vd), 3198 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0)); 3199 } 3200 3201 /* 3202 * If we've completed a scrub/resilver or a rebuild cleanly 3203 * then determine if this vdev should remove any DTLs. We 3204 * only want to excise regions on vdevs that were available 3205 * during the entire duration of this scan. 3206 */ 3207 if (rebuild_done && 3208 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) { 3209 check_excise = B_TRUE; 3210 } else { 3211 if (spa->spa_scrub_started || 3212 (scn != NULL && scn->scn_phys.scn_errors == 0)) { 3213 check_excise = B_TRUE; 3214 } 3215 } 3216 3217 if (scrub_txg && check_excise && 3218 vdev_dtl_should_excise(vd, rebuild_done)) { 3219 /* 3220 * We completed a scrub, resilver or rebuild up to 3221 * scrub_txg. If we did it without rebooting, then 3222 * the scrub dtl will be valid, so excise the old 3223 * region and fold in the scrub dtl. Otherwise, 3224 * leave the dtl as-is if there was an error. 3225 * 3226 * There's little trick here: to excise the beginning 3227 * of the DTL_MISSING map, we put it into a reference 3228 * tree and then add a segment with refcnt -1 that 3229 * covers the range [0, scrub_txg). This means 3230 * that each txg in that range has refcnt -1 or 0. 3231 * We then add DTL_SCRUB with a refcnt of 2, so that 3232 * entries in the range [0, scrub_txg) will have a 3233 * positive refcnt -- either 1 or 2. We then convert 3234 * the reference tree into the new DTL_MISSING map. 3235 */ 3236 space_reftree_create(&reftree); 3237 space_reftree_add_map(&reftree, 3238 vd->vdev_dtl[DTL_MISSING], 1); 3239 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 3240 space_reftree_add_map(&reftree, 3241 vd->vdev_dtl[DTL_SCRUB], 2); 3242 space_reftree_generate_map(&reftree, 3243 vd->vdev_dtl[DTL_MISSING], 1); 3244 space_reftree_destroy(&reftree); 3245 3246 if (!zfs_range_tree_is_empty( 3247 vd->vdev_dtl[DTL_MISSING])) { 3248 zfs_dbgmsg("update DTL_MISSING:%llu/%llu", 3249 (u_longlong_t)vdev_dtl_min(vd), 3250 (u_longlong_t)vdev_dtl_max(vd)); 3251 } else if (!wasempty) { 3252 zfs_dbgmsg("DTL_MISSING is now empty"); 3253 } 3254 } 3255 zfs_range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 3256 zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3257 zfs_range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 3258 if (scrub_done) 3259 zfs_range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, 3260 NULL); 3261 zfs_range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 3262 3263 /* 3264 * For the faulting case, treat members of a replacing vdev 3265 * as if they are not available. It's more likely than not that 3266 * a vdev in a replacing vdev could encounter read errors so 3267 * treat it as not being able to contribute. 3268 */ 3269 if (!vdev_readable(vd) || 3270 (faulting && vd->vdev_parent != NULL && 3271 vd->vdev_parent->vdev_ops == &vdev_replacing_ops)) { 3272 zfs_range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 3273 } else { 3274 zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3275 zfs_range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 3276 } 3277 3278 /* 3279 * If the vdev was resilvering or rebuilding and no longer 3280 * has any DTLs then reset the appropriate flag and dirty 3281 * the top level so that we persist the change. 3282 */ 3283 if (txg != 0 && 3284 zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3285 zfs_range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) { 3286 if (vd->vdev_rebuild_txg != 0) { 3287 vd->vdev_rebuild_txg = 0; 3288 vdev_config_dirty(vd->vdev_top); 3289 } else if (vd->vdev_resilver_txg != 0) { 3290 vd->vdev_resilver_txg = 0; 3291 vdev_config_dirty(vd->vdev_top); 3292 } 3293 } 3294 3295 mutex_exit(&vd->vdev_dtl_lock); 3296 3297 if (txg != 0) 3298 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 3299 } else { 3300 mutex_enter(&vd->vdev_dtl_lock); 3301 for (int t = 0; t < DTL_TYPES; t++) { 3302 /* account for child's outage in parent's missing map */ 3303 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 3304 if (t == DTL_SCRUB) { 3305 /* leaf vdevs only */ 3306 continue; 3307 } 3308 if (t == DTL_PARTIAL) { 3309 /* i.e. non-zero */ 3310 minref = 1; 3311 } else if (vdev_get_nparity(vd) != 0) { 3312 /* RAIDZ, DRAID */ 3313 minref = vdev_get_nparity(vd) + 1; 3314 } else { 3315 /* any kind of mirror */ 3316 minref = vd->vdev_children; 3317 } 3318 space_reftree_create(&reftree); 3319 for (int c = 0; c < vd->vdev_children; c++) { 3320 vdev_t *cvd = vd->vdev_child[c]; 3321 mutex_enter(&cvd->vdev_dtl_lock); 3322 space_reftree_add_map(&reftree, 3323 cvd->vdev_dtl[s], 1); 3324 mutex_exit(&cvd->vdev_dtl_lock); 3325 } 3326 space_reftree_generate_map(&reftree, 3327 vd->vdev_dtl[t], minref); 3328 space_reftree_destroy(&reftree); 3329 } 3330 mutex_exit(&vd->vdev_dtl_lock); 3331 } 3332 3333 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) { 3334 raidz_dtl_reassessed(vd); 3335 } 3336 } 3337 3338 void 3339 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, 3340 boolean_t scrub_done, boolean_t rebuild_done) 3341 { 3342 return (vdev_dtl_reassess_impl(vd, txg, scrub_txg, scrub_done, 3343 rebuild_done, B_FALSE)); 3344 } 3345 3346 /* 3347 * Iterate over all the vdevs except spare, and post kobj events 3348 */ 3349 void 3350 vdev_post_kobj_evt(vdev_t *vd) 3351 { 3352 if (vd->vdev_ops->vdev_op_kobj_evt_post && 3353 vd->vdev_kobj_flag == B_FALSE) { 3354 vd->vdev_kobj_flag = B_TRUE; 3355 vd->vdev_ops->vdev_op_kobj_evt_post(vd); 3356 } 3357 3358 for (int c = 0; c < vd->vdev_children; c++) 3359 vdev_post_kobj_evt(vd->vdev_child[c]); 3360 } 3361 3362 /* 3363 * Iterate over all the vdevs except spare, and clear kobj events 3364 */ 3365 void 3366 vdev_clear_kobj_evt(vdev_t *vd) 3367 { 3368 vd->vdev_kobj_flag = B_FALSE; 3369 3370 for (int c = 0; c < vd->vdev_children; c++) 3371 vdev_clear_kobj_evt(vd->vdev_child[c]); 3372 } 3373 3374 int 3375 vdev_dtl_load(vdev_t *vd) 3376 { 3377 spa_t *spa = vd->vdev_spa; 3378 objset_t *mos = spa->spa_meta_objset; 3379 zfs_range_tree_t *rt; 3380 int error = 0; 3381 3382 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 3383 ASSERT(vdev_is_concrete(vd)); 3384 3385 /* 3386 * If the dtl cannot be sync'd there is no need to open it. 3387 */ 3388 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps) 3389 return (0); 3390 3391 error = space_map_open(&vd->vdev_dtl_sm, mos, 3392 vd->vdev_dtl_object, 0, -1ULL, 0); 3393 if (error) 3394 return (error); 3395 ASSERT(vd->vdev_dtl_sm != NULL); 3396 3397 rt = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, NULL, 0, 0); 3398 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC); 3399 if (error == 0) { 3400 mutex_enter(&vd->vdev_dtl_lock); 3401 zfs_range_tree_walk(rt, zfs_range_tree_add, 3402 vd->vdev_dtl[DTL_MISSING]); 3403 mutex_exit(&vd->vdev_dtl_lock); 3404 } 3405 3406 zfs_range_tree_vacate(rt, NULL, NULL); 3407 zfs_range_tree_destroy(rt); 3408 3409 return (error); 3410 } 3411 3412 for (int c = 0; c < vd->vdev_children; c++) { 3413 error = vdev_dtl_load(vd->vdev_child[c]); 3414 if (error != 0) 3415 break; 3416 } 3417 3418 return (error); 3419 } 3420 3421 static void 3422 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) 3423 { 3424 spa_t *spa = vd->vdev_spa; 3425 objset_t *mos = spa->spa_meta_objset; 3426 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 3427 const char *string; 3428 3429 ASSERT(alloc_bias != VDEV_BIAS_NONE); 3430 3431 string = 3432 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : 3433 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : 3434 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; 3435 3436 ASSERT(string != NULL); 3437 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 3438 1, strlen(string) + 1, string, tx)); 3439 3440 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { 3441 spa_activate_allocation_classes(spa, tx); 3442 } 3443 } 3444 3445 void 3446 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 3447 { 3448 spa_t *spa = vd->vdev_spa; 3449 3450 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 3451 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3452 zapobj, tx)); 3453 } 3454 3455 uint64_t 3456 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 3457 { 3458 spa_t *spa = vd->vdev_spa; 3459 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 3460 DMU_OT_NONE, 0, tx); 3461 3462 ASSERT(zap != 0); 3463 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3464 zap, tx)); 3465 3466 return (zap); 3467 } 3468 3469 void 3470 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 3471 { 3472 if (vd->vdev_ops != &vdev_hole_ops && 3473 vd->vdev_ops != &vdev_missing_ops && 3474 vd->vdev_ops != &vdev_root_ops && 3475 !vd->vdev_top->vdev_removing) { 3476 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 3477 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 3478 } 3479 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 3480 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 3481 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) 3482 vdev_zap_allocation_data(vd, tx); 3483 } 3484 } 3485 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 && 3486 spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) { 3487 if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) 3488 spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx); 3489 vd->vdev_root_zap = vdev_create_link_zap(vd, tx); 3490 } 3491 3492 for (uint64_t i = 0; i < vd->vdev_children; i++) { 3493 vdev_construct_zaps(vd->vdev_child[i], tx); 3494 } 3495 } 3496 3497 static void 3498 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 3499 { 3500 spa_t *spa = vd->vdev_spa; 3501 zfs_range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 3502 objset_t *mos = spa->spa_meta_objset; 3503 zfs_range_tree_t *rtsync; 3504 dmu_tx_t *tx; 3505 uint64_t object = space_map_object(vd->vdev_dtl_sm); 3506 3507 ASSERT(vdev_is_concrete(vd)); 3508 ASSERT(vd->vdev_ops->vdev_op_leaf); 3509 3510 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3511 3512 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 3513 mutex_enter(&vd->vdev_dtl_lock); 3514 space_map_free(vd->vdev_dtl_sm, tx); 3515 space_map_close(vd->vdev_dtl_sm); 3516 vd->vdev_dtl_sm = NULL; 3517 mutex_exit(&vd->vdev_dtl_lock); 3518 3519 /* 3520 * We only destroy the leaf ZAP for detached leaves or for 3521 * removed log devices. Removed data devices handle leaf ZAP 3522 * cleanup later, once cancellation is no longer possible. 3523 */ 3524 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 3525 vd->vdev_top->vdev_islog)) { 3526 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 3527 vd->vdev_leaf_zap = 0; 3528 } 3529 3530 dmu_tx_commit(tx); 3531 return; 3532 } 3533 3534 if (vd->vdev_dtl_sm == NULL) { 3535 uint64_t new_object; 3536 3537 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx); 3538 VERIFY3U(new_object, !=, 0); 3539 3540 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 3541 0, -1ULL, 0)); 3542 ASSERT(vd->vdev_dtl_sm != NULL); 3543 } 3544 3545 rtsync = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, NULL, 0, 0); 3546 3547 mutex_enter(&vd->vdev_dtl_lock); 3548 zfs_range_tree_walk(rt, zfs_range_tree_add, rtsync); 3549 mutex_exit(&vd->vdev_dtl_lock); 3550 3551 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx); 3552 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 3553 zfs_range_tree_vacate(rtsync, NULL, NULL); 3554 3555 zfs_range_tree_destroy(rtsync); 3556 3557 /* 3558 * If the object for the space map has changed then dirty 3559 * the top level so that we update the config. 3560 */ 3561 if (object != space_map_object(vd->vdev_dtl_sm)) { 3562 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 3563 "new object %llu", (u_longlong_t)txg, spa_name(spa), 3564 (u_longlong_t)object, 3565 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 3566 vdev_config_dirty(vd->vdev_top); 3567 } 3568 3569 dmu_tx_commit(tx); 3570 } 3571 3572 /* 3573 * Determine whether the specified vdev can be 3574 * - offlined 3575 * - detached 3576 * - removed 3577 * - faulted 3578 * without losing data. 3579 */ 3580 boolean_t 3581 vdev_dtl_required(vdev_t *vd) 3582 { 3583 spa_t *spa = vd->vdev_spa; 3584 vdev_t *tvd = vd->vdev_top; 3585 uint8_t cant_read = vd->vdev_cant_read; 3586 boolean_t required; 3587 boolean_t faulting = vd->vdev_state == VDEV_STATE_FAULTED; 3588 3589 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3590 3591 if (vd == spa->spa_root_vdev || vd == tvd) 3592 return (B_TRUE); 3593 3594 /* 3595 * Temporarily mark the device as unreadable, and then determine 3596 * whether this results in any DTL outages in the top-level vdev. 3597 * If not, we can safely offline/detach/remove the device. 3598 */ 3599 vd->vdev_cant_read = B_TRUE; 3600 vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting); 3601 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 3602 vd->vdev_cant_read = cant_read; 3603 vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting); 3604 3605 if (!required && zio_injection_enabled) { 3606 required = !!zio_handle_device_injection(vd, NULL, 3607 SET_ERROR(ECHILD)); 3608 } 3609 3610 return (required); 3611 } 3612 3613 /* 3614 * Determine if resilver is needed, and if so the txg range. 3615 */ 3616 boolean_t 3617 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 3618 { 3619 boolean_t needed = B_FALSE; 3620 uint64_t thismin = UINT64_MAX; 3621 uint64_t thismax = 0; 3622 3623 if (vd->vdev_children == 0) { 3624 mutex_enter(&vd->vdev_dtl_lock); 3625 if (!zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3626 vdev_writeable(vd)) { 3627 3628 thismin = vdev_dtl_min(vd); 3629 thismax = vdev_dtl_max(vd); 3630 needed = B_TRUE; 3631 } 3632 mutex_exit(&vd->vdev_dtl_lock); 3633 } else { 3634 for (int c = 0; c < vd->vdev_children; c++) { 3635 vdev_t *cvd = vd->vdev_child[c]; 3636 uint64_t cmin, cmax; 3637 3638 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 3639 thismin = MIN(thismin, cmin); 3640 thismax = MAX(thismax, cmax); 3641 needed = B_TRUE; 3642 } 3643 } 3644 } 3645 3646 if (needed && minp) { 3647 *minp = thismin; 3648 *maxp = thismax; 3649 } 3650 return (needed); 3651 } 3652 3653 /* 3654 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj 3655 * will contain either the checkpoint spacemap object or zero if none exists. 3656 * All other errors are returned to the caller. 3657 */ 3658 int 3659 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj) 3660 { 3661 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 3662 3663 if (vd->vdev_top_zap == 0) { 3664 *sm_obj = 0; 3665 return (0); 3666 } 3667 3668 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 3669 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj); 3670 if (error == ENOENT) { 3671 *sm_obj = 0; 3672 error = 0; 3673 } 3674 3675 return (error); 3676 } 3677 3678 int 3679 vdev_load(vdev_t *vd) 3680 { 3681 int children = vd->vdev_children; 3682 int error = 0; 3683 taskq_t *tq = NULL; 3684 3685 /* 3686 * It's only worthwhile to use the taskq for the root vdev, because the 3687 * slow part is metaslab_init, and that only happens for top-level 3688 * vdevs. 3689 */ 3690 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) { 3691 tq = taskq_create("vdev_load", children, minclsyspri, 3692 children, children, TASKQ_PREPOPULATE); 3693 } 3694 3695 /* 3696 * Recursively load all children. 3697 */ 3698 for (int c = 0; c < vd->vdev_children; c++) { 3699 vdev_t *cvd = vd->vdev_child[c]; 3700 3701 if (tq == NULL || vdev_uses_zvols(cvd)) { 3702 cvd->vdev_load_error = vdev_load(cvd); 3703 } else { 3704 VERIFY(taskq_dispatch(tq, vdev_load_child, 3705 cvd, TQ_SLEEP) != TASKQID_INVALID); 3706 } 3707 } 3708 3709 if (tq != NULL) { 3710 taskq_wait(tq); 3711 taskq_destroy(tq); 3712 } 3713 3714 for (int c = 0; c < vd->vdev_children; c++) { 3715 int error = vd->vdev_child[c]->vdev_load_error; 3716 3717 if (error != 0) 3718 return (error); 3719 } 3720 3721 vdev_set_deflate_ratio(vd); 3722 3723 if (vd->vdev_ops == &vdev_raidz_ops) { 3724 error = vdev_raidz_load(vd); 3725 if (error != 0) 3726 return (error); 3727 } 3728 3729 /* 3730 * On spa_load path, grab the allocation bias from our zap 3731 */ 3732 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3733 spa_t *spa = vd->vdev_spa; 3734 char bias_str[64]; 3735 3736 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3737 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), 3738 bias_str); 3739 if (error == 0) { 3740 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); 3741 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); 3742 } else if (error != ENOENT) { 3743 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3744 VDEV_AUX_CORRUPT_DATA); 3745 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) " 3746 "failed [error=%d]", 3747 (u_longlong_t)vd->vdev_top_zap, error); 3748 return (error); 3749 } 3750 } 3751 3752 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3753 spa_t *spa = vd->vdev_spa; 3754 uint64_t failfast; 3755 3756 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3757 vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast), 3758 1, &failfast); 3759 if (error == 0) { 3760 vd->vdev_failfast = failfast & 1; 3761 } else if (error == ENOENT) { 3762 vd->vdev_failfast = vdev_prop_default_numeric( 3763 VDEV_PROP_FAILFAST); 3764 } else { 3765 vdev_dbgmsg(vd, 3766 "vdev_load: zap_lookup(top_zap=%llu) " 3767 "failed [error=%d]", 3768 (u_longlong_t)vd->vdev_top_zap, error); 3769 } 3770 } 3771 3772 /* 3773 * Load any rebuild state from the top-level vdev zap. 3774 */ 3775 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3776 error = vdev_rebuild_load(vd); 3777 if (error && error != ENOTSUP) { 3778 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3779 VDEV_AUX_CORRUPT_DATA); 3780 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load " 3781 "failed [error=%d]", error); 3782 return (error); 3783 } 3784 } 3785 3786 if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) { 3787 uint64_t zapobj; 3788 3789 if (vd->vdev_top_zap != 0) 3790 zapobj = vd->vdev_top_zap; 3791 else 3792 zapobj = vd->vdev_leaf_zap; 3793 3794 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N, 3795 &vd->vdev_checksum_n); 3796 if (error && error != ENOENT) 3797 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3798 "failed [error=%d]", (u_longlong_t)zapobj, error); 3799 3800 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T, 3801 &vd->vdev_checksum_t); 3802 if (error && error != ENOENT) 3803 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3804 "failed [error=%d]", (u_longlong_t)zapobj, error); 3805 3806 error = vdev_prop_get_int(vd, VDEV_PROP_IO_N, 3807 &vd->vdev_io_n); 3808 if (error && error != ENOENT) 3809 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3810 "failed [error=%d]", (u_longlong_t)zapobj, error); 3811 3812 error = vdev_prop_get_int(vd, VDEV_PROP_IO_T, 3813 &vd->vdev_io_t); 3814 if (error && error != ENOENT) 3815 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3816 "failed [error=%d]", (u_longlong_t)zapobj, error); 3817 3818 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_N, 3819 &vd->vdev_slow_io_n); 3820 if (error && error != ENOENT) 3821 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3822 "failed [error=%d]", (u_longlong_t)zapobj, error); 3823 3824 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_T, 3825 &vd->vdev_slow_io_t); 3826 if (error && error != ENOENT) 3827 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3828 "failed [error=%d]", (u_longlong_t)zapobj, error); 3829 } 3830 3831 /* 3832 * If this is a top-level vdev, initialize its metaslabs. 3833 */ 3834 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 3835 vdev_metaslab_group_create(vd); 3836 3837 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 3838 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3839 VDEV_AUX_CORRUPT_DATA); 3840 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 3841 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 3842 (u_longlong_t)vd->vdev_asize); 3843 return (SET_ERROR(ENXIO)); 3844 } 3845 3846 error = vdev_metaslab_init(vd, 0); 3847 if (error != 0) { 3848 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 3849 "[error=%d]", error); 3850 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3851 VDEV_AUX_CORRUPT_DATA); 3852 return (error); 3853 } 3854 3855 uint64_t checkpoint_sm_obj; 3856 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj); 3857 if (error == 0 && checkpoint_sm_obj != 0) { 3858 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3859 ASSERT(vd->vdev_asize != 0); 3860 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); 3861 3862 error = space_map_open(&vd->vdev_checkpoint_sm, 3863 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 3864 vd->vdev_ashift); 3865 if (error != 0) { 3866 vdev_dbgmsg(vd, "vdev_load: space_map_open " 3867 "failed for checkpoint spacemap (obj %llu) " 3868 "[error=%d]", 3869 (u_longlong_t)checkpoint_sm_obj, error); 3870 return (error); 3871 } 3872 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 3873 3874 /* 3875 * Since the checkpoint_sm contains free entries 3876 * exclusively we can use space_map_allocated() to 3877 * indicate the cumulative checkpointed space that 3878 * has been freed. 3879 */ 3880 vd->vdev_stat.vs_checkpoint_space = 3881 -space_map_allocated(vd->vdev_checkpoint_sm); 3882 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 3883 vd->vdev_stat.vs_checkpoint_space; 3884 } else if (error != 0) { 3885 vdev_dbgmsg(vd, "vdev_load: failed to retrieve " 3886 "checkpoint space map object from vdev ZAP " 3887 "[error=%d]", error); 3888 return (error); 3889 } 3890 } 3891 3892 /* 3893 * If this is a leaf vdev, load its DTL. 3894 */ 3895 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 3896 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3897 VDEV_AUX_CORRUPT_DATA); 3898 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 3899 "[error=%d]", error); 3900 return (error); 3901 } 3902 3903 uint64_t obsolete_sm_object; 3904 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object); 3905 if (error == 0 && obsolete_sm_object != 0) { 3906 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3907 ASSERT(vd->vdev_asize != 0); 3908 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 3909 3910 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 3911 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 3912 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3913 VDEV_AUX_CORRUPT_DATA); 3914 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 3915 "obsolete spacemap (obj %llu) [error=%d]", 3916 (u_longlong_t)obsolete_sm_object, error); 3917 return (error); 3918 } 3919 } else if (error != 0) { 3920 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete " 3921 "space map object from vdev ZAP [error=%d]", error); 3922 return (error); 3923 } 3924 3925 return (0); 3926 } 3927 3928 /* 3929 * The special vdev case is used for hot spares and l2cache devices. Its 3930 * sole purpose it to set the vdev state for the associated vdev. To do this, 3931 * we make sure that we can open the underlying device, then try to read the 3932 * label, and make sure that the label is sane and that it hasn't been 3933 * repurposed to another pool. 3934 */ 3935 int 3936 vdev_validate_aux(vdev_t *vd) 3937 { 3938 nvlist_t *label; 3939 uint64_t guid, version; 3940 uint64_t state; 3941 3942 if (!vdev_readable(vd)) 3943 return (0); 3944 3945 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 3946 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3947 VDEV_AUX_CORRUPT_DATA); 3948 return (-1); 3949 } 3950 3951 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 3952 !SPA_VERSION_IS_SUPPORTED(version) || 3953 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 3954 guid != vd->vdev_guid || 3955 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 3956 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3957 VDEV_AUX_CORRUPT_DATA); 3958 nvlist_free(label); 3959 return (-1); 3960 } 3961 3962 /* 3963 * We don't actually check the pool state here. If it's in fact in 3964 * use by another pool, we update this fact on the fly when requested. 3965 */ 3966 nvlist_free(label); 3967 return (0); 3968 } 3969 3970 static void 3971 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx) 3972 { 3973 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3974 3975 if (vd->vdev_top_zap == 0) 3976 return; 3977 3978 uint64_t object = 0; 3979 int err = zap_lookup(mos, vd->vdev_top_zap, 3980 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object); 3981 if (err == ENOENT) 3982 return; 3983 VERIFY0(err); 3984 3985 VERIFY0(dmu_object_free(mos, object, tx)); 3986 VERIFY0(zap_remove(mos, vd->vdev_top_zap, 3987 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx)); 3988 } 3989 3990 /* 3991 * Free the objects used to store this vdev's spacemaps, and the array 3992 * that points to them. 3993 */ 3994 void 3995 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 3996 { 3997 if (vd->vdev_ms_array == 0) 3998 return; 3999 4000 objset_t *mos = vd->vdev_spa->spa_meta_objset; 4001 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 4002 size_t array_bytes = array_count * sizeof (uint64_t); 4003 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 4004 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 4005 array_bytes, smobj_array, 0)); 4006 4007 for (uint64_t i = 0; i < array_count; i++) { 4008 uint64_t smobj = smobj_array[i]; 4009 if (smobj == 0) 4010 continue; 4011 4012 space_map_free_obj(mos, smobj, tx); 4013 } 4014 4015 kmem_free(smobj_array, array_bytes); 4016 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 4017 vdev_destroy_ms_flush_data(vd, tx); 4018 vd->vdev_ms_array = 0; 4019 } 4020 4021 static void 4022 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 4023 { 4024 spa_t *spa = vd->vdev_spa; 4025 4026 ASSERT(vd->vdev_islog); 4027 ASSERT(vd == vd->vdev_top); 4028 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 4029 4030 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 4031 4032 vdev_destroy_spacemaps(vd, tx); 4033 if (vd->vdev_top_zap != 0) { 4034 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 4035 vd->vdev_top_zap = 0; 4036 } 4037 4038 dmu_tx_commit(tx); 4039 } 4040 4041 void 4042 vdev_sync_done(vdev_t *vd, uint64_t txg) 4043 { 4044 metaslab_t *msp; 4045 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 4046 4047 ASSERT(vdev_is_concrete(vd)); 4048 4049 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 4050 != NULL) 4051 metaslab_sync_done(msp, txg); 4052 4053 if (reassess) { 4054 metaslab_sync_reassess(vd->vdev_mg); 4055 if (vd->vdev_log_mg != NULL) 4056 metaslab_sync_reassess(vd->vdev_log_mg); 4057 } 4058 } 4059 4060 void 4061 vdev_sync(vdev_t *vd, uint64_t txg) 4062 { 4063 spa_t *spa = vd->vdev_spa; 4064 vdev_t *lvd; 4065 metaslab_t *msp; 4066 4067 ASSERT3U(txg, ==, spa->spa_syncing_txg); 4068 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 4069 if (zfs_range_tree_space(vd->vdev_obsolete_segments) > 0) { 4070 ASSERT(vd->vdev_removing || 4071 vd->vdev_ops == &vdev_indirect_ops); 4072 4073 vdev_indirect_sync_obsolete(vd, tx); 4074 4075 /* 4076 * If the vdev is indirect, it can't have dirty 4077 * metaslabs or DTLs. 4078 */ 4079 if (vd->vdev_ops == &vdev_indirect_ops) { 4080 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 4081 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 4082 dmu_tx_commit(tx); 4083 return; 4084 } 4085 } 4086 4087 ASSERT(vdev_is_concrete(vd)); 4088 4089 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 4090 !vd->vdev_removing) { 4091 ASSERT(vd == vd->vdev_top); 4092 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 4093 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 4094 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 4095 ASSERT(vd->vdev_ms_array != 0); 4096 vdev_config_dirty(vd); 4097 } 4098 4099 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 4100 metaslab_sync(msp, txg); 4101 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 4102 } 4103 4104 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 4105 vdev_dtl_sync(lvd, txg); 4106 4107 /* 4108 * If this is an empty log device being removed, destroy the 4109 * metadata associated with it. 4110 */ 4111 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 4112 vdev_remove_empty_log(vd, txg); 4113 4114 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 4115 dmu_tx_commit(tx); 4116 } 4117 4118 /* 4119 * Return the amount of space that should be (or was) allocated for the given 4120 * psize (compressed block size) in the given TXG. Note that for expanded 4121 * RAIDZ vdevs, the size allocated for older BP's may be larger. See 4122 * vdev_raidz_asize(). 4123 */ 4124 uint64_t 4125 vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg) 4126 { 4127 return (vd->vdev_ops->vdev_op_asize(vd, psize, txg)); 4128 } 4129 4130 uint64_t 4131 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 4132 { 4133 return (vdev_psize_to_asize_txg(vd, psize, 0)); 4134 } 4135 4136 /* 4137 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 4138 * not be opened, and no I/O is attempted. 4139 */ 4140 int 4141 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 4142 { 4143 vdev_t *vd, *tvd; 4144 4145 spa_vdev_state_enter(spa, SCL_NONE); 4146 4147 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4148 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4149 4150 if (!vd->vdev_ops->vdev_op_leaf) 4151 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4152 4153 tvd = vd->vdev_top; 4154 4155 /* 4156 * If user did a 'zpool offline -f' then make the fault persist across 4157 * reboots. 4158 */ 4159 if (aux == VDEV_AUX_EXTERNAL_PERSIST) { 4160 /* 4161 * There are two kinds of forced faults: temporary and 4162 * persistent. Temporary faults go away at pool import, while 4163 * persistent faults stay set. Both types of faults can be 4164 * cleared with a zpool clear. 4165 * 4166 * We tell if a vdev is persistently faulted by looking at the 4167 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at 4168 * import then it's a persistent fault. Otherwise, it's 4169 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external" 4170 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This 4171 * tells vdev_config_generate() (which gets run later) to set 4172 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist. 4173 */ 4174 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 4175 vd->vdev_tmpoffline = B_FALSE; 4176 aux = VDEV_AUX_EXTERNAL; 4177 } else { 4178 vd->vdev_tmpoffline = B_TRUE; 4179 } 4180 4181 /* 4182 * We don't directly use the aux state here, but if we do a 4183 * vdev_reopen(), we need this value to be present to remember why we 4184 * were faulted. 4185 */ 4186 vd->vdev_label_aux = aux; 4187 4188 /* 4189 * Faulted state takes precedence over degraded. 4190 */ 4191 vd->vdev_delayed_close = B_FALSE; 4192 vd->vdev_faulted = 1ULL; 4193 vd->vdev_degraded = 0ULL; 4194 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 4195 4196 /* 4197 * If this device has the only valid copy of the data, then 4198 * back off and simply mark the vdev as degraded instead. 4199 */ 4200 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 4201 vd->vdev_degraded = 1ULL; 4202 vd->vdev_faulted = 0ULL; 4203 4204 /* 4205 * If we reopen the device and it's not dead, only then do we 4206 * mark it degraded. 4207 */ 4208 vdev_reopen(tvd); 4209 4210 if (vdev_readable(vd)) 4211 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 4212 } 4213 4214 return (spa_vdev_state_exit(spa, vd, 0)); 4215 } 4216 4217 /* 4218 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 4219 * user that something is wrong. The vdev continues to operate as normal as far 4220 * as I/O is concerned. 4221 */ 4222 int 4223 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 4224 { 4225 vdev_t *vd; 4226 4227 spa_vdev_state_enter(spa, SCL_NONE); 4228 4229 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4230 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4231 4232 if (!vd->vdev_ops->vdev_op_leaf) 4233 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4234 4235 /* 4236 * If the vdev is already faulted, then don't do anything. 4237 */ 4238 if (vd->vdev_faulted || vd->vdev_degraded) 4239 return (spa_vdev_state_exit(spa, NULL, 0)); 4240 4241 vd->vdev_degraded = 1ULL; 4242 if (!vdev_is_dead(vd)) 4243 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 4244 aux); 4245 4246 return (spa_vdev_state_exit(spa, vd, 0)); 4247 } 4248 4249 int 4250 vdev_remove_wanted(spa_t *spa, uint64_t guid) 4251 { 4252 vdev_t *vd; 4253 4254 spa_vdev_state_enter(spa, SCL_NONE); 4255 4256 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4257 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4258 4259 /* 4260 * If the vdev is already removed, or expanding which can trigger 4261 * repartition add/remove events, then don't do anything. 4262 */ 4263 if (vd->vdev_removed || vd->vdev_expanding) 4264 return (spa_vdev_state_exit(spa, NULL, 0)); 4265 4266 /* 4267 * Confirm the vdev has been removed, otherwise don't do anything. 4268 */ 4269 if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL))) 4270 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST))); 4271 4272 vd->vdev_remove_wanted = B_TRUE; 4273 spa_async_request(spa, SPA_ASYNC_REMOVE); 4274 4275 return (spa_vdev_state_exit(spa, vd, 0)); 4276 } 4277 4278 4279 /* 4280 * Online the given vdev. 4281 * 4282 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 4283 * spare device should be detached when the device finishes resilvering. 4284 * Second, the online should be treated like a 'test' online case, so no FMA 4285 * events are generated if the device fails to open. 4286 */ 4287 int 4288 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 4289 { 4290 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 4291 boolean_t wasoffline; 4292 vdev_state_t oldstate; 4293 4294 spa_vdev_state_enter(spa, SCL_NONE); 4295 4296 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4297 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4298 4299 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 4300 oldstate = vd->vdev_state; 4301 4302 tvd = vd->vdev_top; 4303 vd->vdev_offline = B_FALSE; 4304 vd->vdev_tmpoffline = B_FALSE; 4305 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 4306 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 4307 4308 /* XXX - L2ARC 1.0 does not support expansion */ 4309 if (!vd->vdev_aux) { 4310 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4311 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) || 4312 spa->spa_autoexpand); 4313 vd->vdev_expansion_time = gethrestime_sec(); 4314 } 4315 4316 vdev_reopen(tvd); 4317 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 4318 4319 if (!vd->vdev_aux) { 4320 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4321 pvd->vdev_expanding = B_FALSE; 4322 } 4323 4324 if (newstate) 4325 *newstate = vd->vdev_state; 4326 if ((flags & ZFS_ONLINE_UNSPARE) && 4327 !vdev_is_dead(vd) && vd->vdev_parent && 4328 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4329 vd->vdev_parent->vdev_child[0] == vd) 4330 vd->vdev_unspare = B_TRUE; 4331 4332 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 4333 4334 /* XXX - L2ARC 1.0 does not support expansion */ 4335 if (vd->vdev_aux) 4336 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 4337 spa->spa_ccw_fail_time = 0; 4338 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 4339 } 4340 4341 /* Restart initializing if necessary */ 4342 mutex_enter(&vd->vdev_initialize_lock); 4343 if (vdev_writeable(vd) && 4344 vd->vdev_initialize_thread == NULL && 4345 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 4346 (void) vdev_initialize(vd); 4347 } 4348 mutex_exit(&vd->vdev_initialize_lock); 4349 4350 /* 4351 * Restart trimming if necessary. We do not restart trimming for cache 4352 * devices here. This is triggered by l2arc_rebuild_vdev() 4353 * asynchronously for the whole device or in l2arc_evict() as it evicts 4354 * space for upcoming writes. 4355 */ 4356 mutex_enter(&vd->vdev_trim_lock); 4357 if (vdev_writeable(vd) && !vd->vdev_isl2cache && 4358 vd->vdev_trim_thread == NULL && 4359 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { 4360 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, 4361 vd->vdev_trim_secure); 4362 } 4363 mutex_exit(&vd->vdev_trim_lock); 4364 4365 if (wasoffline || 4366 (oldstate < VDEV_STATE_DEGRADED && 4367 vd->vdev_state >= VDEV_STATE_DEGRADED)) { 4368 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 4369 4370 /* 4371 * Asynchronously detach spare vdev if resilver or 4372 * rebuild is not required 4373 */ 4374 if (vd->vdev_unspare && 4375 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4376 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) && 4377 !vdev_rebuild_active(tvd)) 4378 spa_async_request(spa, SPA_ASYNC_DETACH_SPARE); 4379 } 4380 return (spa_vdev_state_exit(spa, vd, 0)); 4381 } 4382 4383 static int 4384 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 4385 { 4386 vdev_t *vd, *tvd; 4387 int error = 0; 4388 uint64_t generation; 4389 metaslab_group_t *mg; 4390 4391 top: 4392 spa_vdev_state_enter(spa, SCL_ALLOC); 4393 4394 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4395 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4396 4397 if (!vd->vdev_ops->vdev_op_leaf) 4398 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4399 4400 if (vd->vdev_ops == &vdev_draid_spare_ops) 4401 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4402 4403 tvd = vd->vdev_top; 4404 mg = tvd->vdev_mg; 4405 generation = spa->spa_config_generation + 1; 4406 4407 /* 4408 * If the device isn't already offline, try to offline it. 4409 */ 4410 if (!vd->vdev_offline) { 4411 /* 4412 * If this device has the only valid copy of some data, 4413 * don't allow it to be offlined. Log devices are always 4414 * expendable. 4415 */ 4416 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4417 vdev_dtl_required(vd)) 4418 return (spa_vdev_state_exit(spa, NULL, 4419 SET_ERROR(EBUSY))); 4420 4421 /* 4422 * If the top-level is a slog and it has had allocations 4423 * then proceed. We check that the vdev's metaslab group 4424 * is not NULL since it's possible that we may have just 4425 * added this vdev but not yet initialized its metaslabs. 4426 */ 4427 if (tvd->vdev_islog && mg != NULL) { 4428 /* 4429 * Prevent any future allocations. 4430 */ 4431 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 4432 metaslab_group_passivate(mg); 4433 (void) spa_vdev_state_exit(spa, vd, 0); 4434 4435 error = spa_reset_logs(spa); 4436 4437 /* 4438 * If the log device was successfully reset but has 4439 * checkpointed data, do not offline it. 4440 */ 4441 if (error == 0 && 4442 tvd->vdev_checkpoint_sm != NULL) { 4443 ASSERT3U(space_map_allocated( 4444 tvd->vdev_checkpoint_sm), !=, 0); 4445 error = ZFS_ERR_CHECKPOINT_EXISTS; 4446 } 4447 4448 spa_vdev_state_enter(spa, SCL_ALLOC); 4449 4450 /* 4451 * Check to see if the config has changed. 4452 */ 4453 if (error || generation != spa->spa_config_generation) { 4454 metaslab_group_activate(mg); 4455 if (error) 4456 return (spa_vdev_state_exit(spa, 4457 vd, error)); 4458 (void) spa_vdev_state_exit(spa, vd, 0); 4459 goto top; 4460 } 4461 ASSERT0(tvd->vdev_stat.vs_alloc); 4462 } 4463 4464 /* 4465 * Offline this device and reopen its top-level vdev. 4466 * If the top-level vdev is a log device then just offline 4467 * it. Otherwise, if this action results in the top-level 4468 * vdev becoming unusable, undo it and fail the request. 4469 */ 4470 vd->vdev_offline = B_TRUE; 4471 vdev_reopen(tvd); 4472 4473 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4474 vdev_is_dead(tvd)) { 4475 vd->vdev_offline = B_FALSE; 4476 vdev_reopen(tvd); 4477 return (spa_vdev_state_exit(spa, NULL, 4478 SET_ERROR(EBUSY))); 4479 } 4480 4481 /* 4482 * Add the device back into the metaslab rotor so that 4483 * once we online the device it's open for business. 4484 */ 4485 if (tvd->vdev_islog && mg != NULL) 4486 metaslab_group_activate(mg); 4487 } 4488 4489 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 4490 4491 return (spa_vdev_state_exit(spa, vd, 0)); 4492 } 4493 4494 int 4495 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 4496 { 4497 int error; 4498 4499 mutex_enter(&spa->spa_vdev_top_lock); 4500 error = vdev_offline_locked(spa, guid, flags); 4501 mutex_exit(&spa->spa_vdev_top_lock); 4502 4503 return (error); 4504 } 4505 4506 /* 4507 * Clear the error counts associated with this vdev. Unlike vdev_online() and 4508 * vdev_offline(), we assume the spa config is locked. We also clear all 4509 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 4510 */ 4511 void 4512 vdev_clear(spa_t *spa, vdev_t *vd) 4513 { 4514 vdev_t *rvd = spa->spa_root_vdev; 4515 4516 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 4517 4518 if (vd == NULL) 4519 vd = rvd; 4520 4521 vd->vdev_stat.vs_read_errors = 0; 4522 vd->vdev_stat.vs_write_errors = 0; 4523 vd->vdev_stat.vs_checksum_errors = 0; 4524 vd->vdev_stat.vs_dio_verify_errors = 0; 4525 vd->vdev_stat.vs_slow_ios = 0; 4526 4527 for (int c = 0; c < vd->vdev_children; c++) 4528 vdev_clear(spa, vd->vdev_child[c]); 4529 4530 /* 4531 * It makes no sense to "clear" an indirect or removed vdev. 4532 */ 4533 if (!vdev_is_concrete(vd) || vd->vdev_removed) 4534 return; 4535 4536 /* 4537 * If we're in the FAULTED state or have experienced failed I/O, then 4538 * clear the persistent state and attempt to reopen the device. We 4539 * also mark the vdev config dirty, so that the new faulted state is 4540 * written out to disk. 4541 */ 4542 if (vd->vdev_faulted || vd->vdev_degraded || 4543 !vdev_readable(vd) || !vdev_writeable(vd)) { 4544 /* 4545 * When reopening in response to a clear event, it may be due to 4546 * a fmadm repair request. In this case, if the device is 4547 * still broken, we want to still post the ereport again. 4548 */ 4549 vd->vdev_forcefault = B_TRUE; 4550 4551 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 4552 vd->vdev_cant_read = B_FALSE; 4553 vd->vdev_cant_write = B_FALSE; 4554 vd->vdev_stat.vs_aux = 0; 4555 4556 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 4557 4558 vd->vdev_forcefault = B_FALSE; 4559 4560 if (vd != rvd && vdev_writeable(vd->vdev_top)) 4561 vdev_state_dirty(vd->vdev_top); 4562 4563 /* If a resilver isn't required, check if vdevs can be culled */ 4564 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) && 4565 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4566 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool)) 4567 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4568 4569 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 4570 } 4571 4572 /* 4573 * When clearing a FMA-diagnosed fault, we always want to 4574 * unspare the device, as we assume that the original spare was 4575 * done in response to the FMA fault. 4576 */ 4577 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 4578 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4579 vd->vdev_parent->vdev_child[0] == vd) 4580 vd->vdev_unspare = B_TRUE; 4581 4582 /* Clear recent error events cache (i.e. duplicate events tracking) */ 4583 zfs_ereport_clear(spa, vd); 4584 } 4585 4586 boolean_t 4587 vdev_is_dead(vdev_t *vd) 4588 { 4589 /* 4590 * Holes and missing devices are always considered "dead". 4591 * This simplifies the code since we don't have to check for 4592 * these types of devices in the various code paths. 4593 * Instead we rely on the fact that we skip over dead devices 4594 * before issuing I/O to them. 4595 */ 4596 return (vd->vdev_state < VDEV_STATE_DEGRADED || 4597 vd->vdev_ops == &vdev_hole_ops || 4598 vd->vdev_ops == &vdev_missing_ops); 4599 } 4600 4601 boolean_t 4602 vdev_readable(vdev_t *vd) 4603 { 4604 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 4605 } 4606 4607 boolean_t 4608 vdev_writeable(vdev_t *vd) 4609 { 4610 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 4611 vdev_is_concrete(vd)); 4612 } 4613 4614 boolean_t 4615 vdev_allocatable(vdev_t *vd) 4616 { 4617 uint64_t state = vd->vdev_state; 4618 4619 /* 4620 * We currently allow allocations from vdevs which may be in the 4621 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 4622 * fails to reopen then we'll catch it later when we're holding 4623 * the proper locks. Note that we have to get the vdev state 4624 * in a local variable because although it changes atomically, 4625 * we're asking two separate questions about it. 4626 */ 4627 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 4628 !vd->vdev_cant_write && vdev_is_concrete(vd) && 4629 vd->vdev_mg->mg_initialized); 4630 } 4631 4632 boolean_t 4633 vdev_accessible(vdev_t *vd, zio_t *zio) 4634 { 4635 ASSERT(zio->io_vd == vd); 4636 4637 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 4638 return (B_FALSE); 4639 4640 if (zio->io_type == ZIO_TYPE_READ) 4641 return (!vd->vdev_cant_read); 4642 4643 if (zio->io_type == ZIO_TYPE_WRITE) 4644 return (!vd->vdev_cant_write); 4645 4646 return (B_TRUE); 4647 } 4648 4649 static void 4650 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs) 4651 { 4652 /* 4653 * Exclude the dRAID spare when aggregating to avoid double counting 4654 * the ops and bytes. These IOs are counted by the physical leaves. 4655 */ 4656 if (cvd->vdev_ops == &vdev_draid_spare_ops) 4657 return; 4658 4659 for (int t = 0; t < VS_ZIO_TYPES; t++) { 4660 vs->vs_ops[t] += cvs->vs_ops[t]; 4661 vs->vs_bytes[t] += cvs->vs_bytes[t]; 4662 } 4663 4664 cvs->vs_scan_removing = cvd->vdev_removing; 4665 } 4666 4667 /* 4668 * Get extended stats 4669 */ 4670 static void 4671 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx) 4672 { 4673 (void) cvd; 4674 4675 int t, b; 4676 for (t = 0; t < ZIO_TYPES; t++) { 4677 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++) 4678 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b]; 4679 4680 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) { 4681 vsx->vsx_total_histo[t][b] += 4682 cvsx->vsx_total_histo[t][b]; 4683 } 4684 } 4685 4686 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4687 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) { 4688 vsx->vsx_queue_histo[t][b] += 4689 cvsx->vsx_queue_histo[t][b]; 4690 } 4691 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t]; 4692 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t]; 4693 4694 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++) 4695 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b]; 4696 4697 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++) 4698 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b]; 4699 } 4700 4701 } 4702 4703 boolean_t 4704 vdev_is_spacemap_addressable(vdev_t *vd) 4705 { 4706 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 4707 return (B_TRUE); 4708 4709 /* 4710 * If double-word space map entries are not enabled we assume 4711 * 47 bits of the space map entry are dedicated to the entry's 4712 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 4713 * to calculate the maximum address that can be described by a 4714 * space map entry for the given device. 4715 */ 4716 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 4717 4718 if (shift >= 63) /* detect potential overflow */ 4719 return (B_TRUE); 4720 4721 return (vd->vdev_asize < (1ULL << shift)); 4722 } 4723 4724 /* 4725 * Get statistics for the given vdev. 4726 */ 4727 static void 4728 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4729 { 4730 int t; 4731 /* 4732 * If we're getting stats on the root vdev, aggregate the I/O counts 4733 * over all top-level vdevs (i.e. the direct children of the root). 4734 */ 4735 if (!vd->vdev_ops->vdev_op_leaf) { 4736 if (vs) { 4737 memset(vs->vs_ops, 0, sizeof (vs->vs_ops)); 4738 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes)); 4739 } 4740 if (vsx) 4741 memset(vsx, 0, sizeof (*vsx)); 4742 4743 for (int c = 0; c < vd->vdev_children; c++) { 4744 vdev_t *cvd = vd->vdev_child[c]; 4745 vdev_stat_t *cvs = &cvd->vdev_stat; 4746 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex; 4747 4748 vdev_get_stats_ex_impl(cvd, cvs, cvsx); 4749 if (vs) 4750 vdev_get_child_stat(cvd, vs, cvs); 4751 if (vsx) 4752 vdev_get_child_stat_ex(cvd, vsx, cvsx); 4753 } 4754 } else { 4755 /* 4756 * We're a leaf. Just copy our ZIO active queue stats in. The 4757 * other leaf stats are updated in vdev_stat_update(). 4758 */ 4759 if (!vsx) 4760 return; 4761 4762 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex)); 4763 4764 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4765 vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t]; 4766 vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t); 4767 } 4768 } 4769 } 4770 4771 void 4772 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4773 { 4774 vdev_t *tvd = vd->vdev_top; 4775 mutex_enter(&vd->vdev_stat_lock); 4776 if (vs) { 4777 memcpy(vs, &vd->vdev_stat, sizeof (*vs)); 4778 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 4779 vs->vs_state = vd->vdev_state; 4780 vs->vs_rsize = vdev_get_min_asize(vd); 4781 4782 if (vd->vdev_ops->vdev_op_leaf) { 4783 vs->vs_pspace = vd->vdev_psize; 4784 vs->vs_rsize += VDEV_LABEL_START_SIZE + 4785 VDEV_LABEL_END_SIZE; 4786 /* 4787 * Report initializing progress. Since we don't 4788 * have the initializing locks held, this is only 4789 * an estimate (although a fairly accurate one). 4790 */ 4791 vs->vs_initialize_bytes_done = 4792 vd->vdev_initialize_bytes_done; 4793 vs->vs_initialize_bytes_est = 4794 vd->vdev_initialize_bytes_est; 4795 vs->vs_initialize_state = vd->vdev_initialize_state; 4796 vs->vs_initialize_action_time = 4797 vd->vdev_initialize_action_time; 4798 4799 /* 4800 * Report manual TRIM progress. Since we don't have 4801 * the manual TRIM locks held, this is only an 4802 * estimate (although fairly accurate one). 4803 */ 4804 vs->vs_trim_notsup = !vd->vdev_has_trim; 4805 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done; 4806 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est; 4807 vs->vs_trim_state = vd->vdev_trim_state; 4808 vs->vs_trim_action_time = vd->vdev_trim_action_time; 4809 4810 /* Set when there is a deferred resilver. */ 4811 vs->vs_resilver_deferred = vd->vdev_resilver_deferred; 4812 } 4813 4814 /* 4815 * Report expandable space on top-level, non-auxiliary devices 4816 * only. The expandable space is reported in terms of metaslab 4817 * sized units since that determines how much space the pool 4818 * can expand. 4819 */ 4820 if (vd->vdev_aux == NULL && tvd != NULL) { 4821 vs->vs_esize = P2ALIGN_TYPED( 4822 vd->vdev_max_asize - vd->vdev_asize, 4823 1ULL << tvd->vdev_ms_shift, uint64_t); 4824 } 4825 4826 vs->vs_configured_ashift = vd->vdev_top != NULL 4827 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift; 4828 vs->vs_logical_ashift = vd->vdev_logical_ashift; 4829 if (vd->vdev_physical_ashift <= ASHIFT_MAX) 4830 vs->vs_physical_ashift = vd->vdev_physical_ashift; 4831 else 4832 vs->vs_physical_ashift = 0; 4833 4834 /* 4835 * Report fragmentation and rebuild progress for top-level, 4836 * non-auxiliary, concrete devices. 4837 */ 4838 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 4839 vdev_is_concrete(vd)) { 4840 /* 4841 * The vdev fragmentation rating doesn't take into 4842 * account the embedded slog metaslab (vdev_log_mg). 4843 * Since it's only one metaslab, it would have a tiny 4844 * impact on the overall fragmentation. 4845 */ 4846 vs->vs_fragmentation = (vd->vdev_mg != NULL) ? 4847 vd->vdev_mg->mg_fragmentation : 0; 4848 } 4849 vs->vs_noalloc = MAX(vd->vdev_noalloc, 4850 tvd ? tvd->vdev_noalloc : 0); 4851 } 4852 4853 vdev_get_stats_ex_impl(vd, vs, vsx); 4854 mutex_exit(&vd->vdev_stat_lock); 4855 } 4856 4857 void 4858 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 4859 { 4860 return (vdev_get_stats_ex(vd, vs, NULL)); 4861 } 4862 4863 void 4864 vdev_clear_stats(vdev_t *vd) 4865 { 4866 mutex_enter(&vd->vdev_stat_lock); 4867 vd->vdev_stat.vs_space = 0; 4868 vd->vdev_stat.vs_dspace = 0; 4869 vd->vdev_stat.vs_alloc = 0; 4870 mutex_exit(&vd->vdev_stat_lock); 4871 } 4872 4873 void 4874 vdev_scan_stat_init(vdev_t *vd) 4875 { 4876 vdev_stat_t *vs = &vd->vdev_stat; 4877 4878 for (int c = 0; c < vd->vdev_children; c++) 4879 vdev_scan_stat_init(vd->vdev_child[c]); 4880 4881 mutex_enter(&vd->vdev_stat_lock); 4882 vs->vs_scan_processed = 0; 4883 mutex_exit(&vd->vdev_stat_lock); 4884 } 4885 4886 void 4887 vdev_stat_update(zio_t *zio, uint64_t psize) 4888 { 4889 spa_t *spa = zio->io_spa; 4890 vdev_t *rvd = spa->spa_root_vdev; 4891 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 4892 vdev_t *pvd; 4893 uint64_t txg = zio->io_txg; 4894 /* Suppress ASAN false positive */ 4895 #ifdef __SANITIZE_ADDRESS__ 4896 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL; 4897 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL; 4898 #else 4899 vdev_stat_t *vs = &vd->vdev_stat; 4900 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex; 4901 #endif 4902 zio_type_t type = zio->io_type; 4903 int flags = zio->io_flags; 4904 4905 /* 4906 * If this i/o is a gang leader, it didn't do any actual work. 4907 */ 4908 if (zio->io_gang_tree) 4909 return; 4910 4911 if (zio->io_error == 0) { 4912 /* 4913 * If this is a root i/o, don't count it -- we've already 4914 * counted the top-level vdevs, and vdev_get_stats() will 4915 * aggregate them when asked. This reduces contention on 4916 * the root vdev_stat_lock and implicitly handles blocks 4917 * that compress away to holes, for which there is no i/o. 4918 * (Holes never create vdev children, so all the counters 4919 * remain zero, which is what we want.) 4920 * 4921 * Note: this only applies to successful i/o (io_error == 0) 4922 * because unlike i/o counts, errors are not additive. 4923 * When reading a ditto block, for example, failure of 4924 * one top-level vdev does not imply a root-level error. 4925 */ 4926 if (vd == rvd) 4927 return; 4928 4929 ASSERT(vd == zio->io_vd); 4930 4931 if (flags & ZIO_FLAG_IO_BYPASS) 4932 return; 4933 4934 mutex_enter(&vd->vdev_stat_lock); 4935 4936 if (flags & ZIO_FLAG_IO_REPAIR) { 4937 /* 4938 * Repair is the result of a resilver issued by the 4939 * scan thread (spa_sync). 4940 */ 4941 if (flags & ZIO_FLAG_SCAN_THREAD) { 4942 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 4943 dsl_scan_phys_t *scn_phys = &scn->scn_phys; 4944 uint64_t *processed = &scn_phys->scn_processed; 4945 4946 if (vd->vdev_ops->vdev_op_leaf) 4947 atomic_add_64(processed, psize); 4948 vs->vs_scan_processed += psize; 4949 } 4950 4951 /* 4952 * Repair is the result of a rebuild issued by the 4953 * rebuild thread (vdev_rebuild_thread). To avoid 4954 * double counting repaired bytes the virtual dRAID 4955 * spare vdev is excluded from the processed bytes. 4956 */ 4957 if (zio->io_priority == ZIO_PRIORITY_REBUILD) { 4958 vdev_t *tvd = vd->vdev_top; 4959 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config; 4960 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 4961 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt; 4962 4963 if (vd->vdev_ops->vdev_op_leaf && 4964 vd->vdev_ops != &vdev_draid_spare_ops) { 4965 atomic_add_64(rebuilt, psize); 4966 } 4967 vs->vs_rebuild_processed += psize; 4968 } 4969 4970 if (flags & ZIO_FLAG_SELF_HEAL) 4971 vs->vs_self_healed += psize; 4972 } 4973 4974 /* 4975 * The bytes/ops/histograms are recorded at the leaf level and 4976 * aggregated into the higher level vdevs in vdev_get_stats(). 4977 */ 4978 if (vd->vdev_ops->vdev_op_leaf && 4979 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) { 4980 zio_type_t vs_type = type; 4981 zio_priority_t priority = zio->io_priority; 4982 4983 /* 4984 * TRIM ops and bytes are reported to user space as 4985 * ZIO_TYPE_FLUSH. This is done to preserve the 4986 * vdev_stat_t structure layout for user space. 4987 */ 4988 if (type == ZIO_TYPE_TRIM) 4989 vs_type = ZIO_TYPE_FLUSH; 4990 4991 /* 4992 * Solely for the purposes of 'zpool iostat -lqrw' 4993 * reporting use the priority to categorize the IO. 4994 * Only the following are reported to user space: 4995 * 4996 * ZIO_PRIORITY_SYNC_READ, 4997 * ZIO_PRIORITY_SYNC_WRITE, 4998 * ZIO_PRIORITY_ASYNC_READ, 4999 * ZIO_PRIORITY_ASYNC_WRITE, 5000 * ZIO_PRIORITY_SCRUB, 5001 * ZIO_PRIORITY_TRIM, 5002 * ZIO_PRIORITY_REBUILD. 5003 */ 5004 if (priority == ZIO_PRIORITY_INITIALIZING) { 5005 ASSERT3U(type, ==, ZIO_TYPE_WRITE); 5006 priority = ZIO_PRIORITY_ASYNC_WRITE; 5007 } else if (priority == ZIO_PRIORITY_REMOVAL) { 5008 priority = ((type == ZIO_TYPE_WRITE) ? 5009 ZIO_PRIORITY_ASYNC_WRITE : 5010 ZIO_PRIORITY_ASYNC_READ); 5011 } 5012 5013 vs->vs_ops[vs_type]++; 5014 vs->vs_bytes[vs_type] += psize; 5015 5016 if (flags & ZIO_FLAG_DELEGATED) { 5017 vsx->vsx_agg_histo[priority] 5018 [RQ_HISTO(zio->io_size)]++; 5019 } else { 5020 vsx->vsx_ind_histo[priority] 5021 [RQ_HISTO(zio->io_size)]++; 5022 } 5023 5024 if (zio->io_delta && zio->io_delay) { 5025 vsx->vsx_queue_histo[priority] 5026 [L_HISTO(zio->io_delta - zio->io_delay)]++; 5027 vsx->vsx_disk_histo[type] 5028 [L_HISTO(zio->io_delay)]++; 5029 vsx->vsx_total_histo[type] 5030 [L_HISTO(zio->io_delta)]++; 5031 } 5032 } 5033 5034 mutex_exit(&vd->vdev_stat_lock); 5035 return; 5036 } 5037 5038 if (flags & ZIO_FLAG_SPECULATIVE) 5039 return; 5040 5041 /* 5042 * If this is an I/O error that is going to be retried, then ignore the 5043 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 5044 * hard errors, when in reality they can happen for any number of 5045 * innocuous reasons (bus resets, MPxIO link failure, etc). 5046 */ 5047 if (zio->io_error == EIO && 5048 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 5049 return; 5050 5051 /* 5052 * Intent logs writes won't propagate their error to the root 5053 * I/O so don't mark these types of failures as pool-level 5054 * errors. 5055 */ 5056 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 5057 return; 5058 5059 if (type == ZIO_TYPE_WRITE && txg != 0 && 5060 (!(flags & ZIO_FLAG_IO_REPAIR) || 5061 (flags & ZIO_FLAG_SCAN_THREAD) || 5062 spa->spa_claiming)) { 5063 /* 5064 * This is either a normal write (not a repair), or it's 5065 * a repair induced by the scrub thread, or it's a repair 5066 * made by zil_claim() during spa_load() in the first txg. 5067 * In the normal case, we commit the DTL change in the same 5068 * txg as the block was born. In the scrub-induced repair 5069 * case, we know that scrubs run in first-pass syncing context, 5070 * so we commit the DTL change in spa_syncing_txg(spa). 5071 * In the zil_claim() case, we commit in spa_first_txg(spa). 5072 * 5073 * We currently do not make DTL entries for failed spontaneous 5074 * self-healing writes triggered by normal (non-scrubbing) 5075 * reads, because we have no transactional context in which to 5076 * do so -- and it's not clear that it'd be desirable anyway. 5077 */ 5078 if (vd->vdev_ops->vdev_op_leaf) { 5079 uint64_t commit_txg = txg; 5080 if (flags & ZIO_FLAG_SCAN_THREAD) { 5081 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 5082 ASSERT(spa_sync_pass(spa) == 1); 5083 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 5084 commit_txg = spa_syncing_txg(spa); 5085 } else if (spa->spa_claiming) { 5086 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 5087 commit_txg = spa_first_txg(spa); 5088 } 5089 ASSERT(commit_txg >= spa_syncing_txg(spa)); 5090 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 5091 return; 5092 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 5093 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 5094 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 5095 } 5096 if (vd != rvd) 5097 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 5098 } 5099 } 5100 5101 int64_t 5102 vdev_deflated_space(vdev_t *vd, int64_t space) 5103 { 5104 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); 5105 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 5106 5107 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); 5108 } 5109 5110 /* 5111 * Update the in-core space usage stats for this vdev, its metaslab class, 5112 * and the root vdev. 5113 */ 5114 void 5115 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 5116 int64_t space_delta) 5117 { 5118 (void) defer_delta; 5119 int64_t dspace_delta; 5120 spa_t *spa = vd->vdev_spa; 5121 vdev_t *rvd = spa->spa_root_vdev; 5122 5123 ASSERT(vd == vd->vdev_top); 5124 5125 /* 5126 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 5127 * factor. We must calculate this here and not at the root vdev 5128 * because the root vdev's psize-to-asize is simply the max of its 5129 * children's, thus not accurate enough for us. 5130 */ 5131 dspace_delta = vdev_deflated_space(vd, space_delta); 5132 5133 mutex_enter(&vd->vdev_stat_lock); 5134 /* ensure we won't underflow */ 5135 if (alloc_delta < 0) { 5136 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); 5137 } 5138 5139 vd->vdev_stat.vs_alloc += alloc_delta; 5140 vd->vdev_stat.vs_space += space_delta; 5141 vd->vdev_stat.vs_dspace += dspace_delta; 5142 mutex_exit(&vd->vdev_stat_lock); 5143 5144 /* every class but log contributes to root space stats */ 5145 if (vd->vdev_mg != NULL && !vd->vdev_islog) { 5146 ASSERT(!vd->vdev_isl2cache); 5147 mutex_enter(&rvd->vdev_stat_lock); 5148 rvd->vdev_stat.vs_alloc += alloc_delta; 5149 rvd->vdev_stat.vs_space += space_delta; 5150 rvd->vdev_stat.vs_dspace += dspace_delta; 5151 mutex_exit(&rvd->vdev_stat_lock); 5152 } 5153 /* Note: metaslab_class_space_update moved to metaslab_space_update */ 5154 } 5155 5156 /* 5157 * Mark a top-level vdev's config as dirty, placing it on the dirty list 5158 * so that it will be written out next time the vdev configuration is synced. 5159 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 5160 */ 5161 void 5162 vdev_config_dirty(vdev_t *vd) 5163 { 5164 spa_t *spa = vd->vdev_spa; 5165 vdev_t *rvd = spa->spa_root_vdev; 5166 int c; 5167 5168 ASSERT(spa_writeable(spa)); 5169 5170 /* 5171 * If this is an aux vdev (as with l2cache and spare devices), then we 5172 * update the vdev config manually and set the sync flag. 5173 */ 5174 if (vd->vdev_aux != NULL) { 5175 spa_aux_vdev_t *sav = vd->vdev_aux; 5176 nvlist_t **aux; 5177 uint_t naux; 5178 5179 for (c = 0; c < sav->sav_count; c++) { 5180 if (sav->sav_vdevs[c] == vd) 5181 break; 5182 } 5183 5184 if (c == sav->sav_count) { 5185 /* 5186 * We're being removed. There's nothing more to do. 5187 */ 5188 ASSERT(sav->sav_sync == B_TRUE); 5189 return; 5190 } 5191 5192 sav->sav_sync = B_TRUE; 5193 5194 if (nvlist_lookup_nvlist_array(sav->sav_config, 5195 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 5196 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 5197 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 5198 } 5199 5200 ASSERT(c < naux); 5201 5202 /* 5203 * Setting the nvlist in the middle if the array is a little 5204 * sketchy, but it will work. 5205 */ 5206 nvlist_free(aux[c]); 5207 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 5208 5209 return; 5210 } 5211 5212 /* 5213 * The dirty list is protected by the SCL_CONFIG lock. The caller 5214 * must either hold SCL_CONFIG as writer, or must be the sync thread 5215 * (which holds SCL_CONFIG as reader). There's only one sync thread, 5216 * so this is sufficient to ensure mutual exclusion. 5217 */ 5218 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5219 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5220 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5221 5222 if (vd == rvd) { 5223 for (c = 0; c < rvd->vdev_children; c++) 5224 vdev_config_dirty(rvd->vdev_child[c]); 5225 } else { 5226 ASSERT(vd == vd->vdev_top); 5227 5228 if (!list_link_active(&vd->vdev_config_dirty_node) && 5229 vdev_is_concrete(vd)) { 5230 list_insert_head(&spa->spa_config_dirty_list, vd); 5231 } 5232 } 5233 } 5234 5235 void 5236 vdev_config_clean(vdev_t *vd) 5237 { 5238 spa_t *spa = vd->vdev_spa; 5239 5240 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5241 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5242 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5243 5244 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 5245 list_remove(&spa->spa_config_dirty_list, vd); 5246 } 5247 5248 /* 5249 * Mark a top-level vdev's state as dirty, so that the next pass of 5250 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 5251 * the state changes from larger config changes because they require 5252 * much less locking, and are often needed for administrative actions. 5253 */ 5254 void 5255 vdev_state_dirty(vdev_t *vd) 5256 { 5257 spa_t *spa = vd->vdev_spa; 5258 5259 ASSERT(spa_writeable(spa)); 5260 ASSERT(vd == vd->vdev_top); 5261 5262 /* 5263 * The state list is protected by the SCL_STATE lock. The caller 5264 * must either hold SCL_STATE as writer, or must be the sync thread 5265 * (which holds SCL_STATE as reader). There's only one sync thread, 5266 * so this is sufficient to ensure mutual exclusion. 5267 */ 5268 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5269 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5270 spa_config_held(spa, SCL_STATE, RW_READER))); 5271 5272 if (!list_link_active(&vd->vdev_state_dirty_node) && 5273 vdev_is_concrete(vd)) 5274 list_insert_head(&spa->spa_state_dirty_list, vd); 5275 } 5276 5277 void 5278 vdev_state_clean(vdev_t *vd) 5279 { 5280 spa_t *spa = vd->vdev_spa; 5281 5282 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5283 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5284 spa_config_held(spa, SCL_STATE, RW_READER))); 5285 5286 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 5287 list_remove(&spa->spa_state_dirty_list, vd); 5288 } 5289 5290 /* 5291 * Propagate vdev state up from children to parent. 5292 */ 5293 void 5294 vdev_propagate_state(vdev_t *vd) 5295 { 5296 spa_t *spa = vd->vdev_spa; 5297 vdev_t *rvd = spa->spa_root_vdev; 5298 int degraded = 0, faulted = 0; 5299 int corrupted = 0; 5300 vdev_t *child; 5301 5302 if (vd->vdev_children > 0) { 5303 for (int c = 0; c < vd->vdev_children; c++) { 5304 child = vd->vdev_child[c]; 5305 5306 /* 5307 * Don't factor holes or indirect vdevs into the 5308 * decision. 5309 */ 5310 if (!vdev_is_concrete(child)) 5311 continue; 5312 5313 if (!vdev_readable(child) || 5314 (!vdev_writeable(child) && spa_writeable(spa))) { 5315 /* 5316 * Root special: if there is a top-level log 5317 * device, treat the root vdev as if it were 5318 * degraded. 5319 */ 5320 if (child->vdev_islog && vd == rvd) 5321 degraded++; 5322 else 5323 faulted++; 5324 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 5325 degraded++; 5326 } 5327 5328 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 5329 corrupted++; 5330 } 5331 5332 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 5333 5334 /* 5335 * Root special: if there is a top-level vdev that cannot be 5336 * opened due to corrupted metadata, then propagate the root 5337 * vdev's aux state as 'corrupt' rather than 'insufficient 5338 * replicas'. 5339 */ 5340 if (corrupted && vd == rvd && 5341 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 5342 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 5343 VDEV_AUX_CORRUPT_DATA); 5344 } 5345 5346 if (vd->vdev_parent) 5347 vdev_propagate_state(vd->vdev_parent); 5348 } 5349 5350 /* 5351 * Set a vdev's state. If this is during an open, we don't update the parent 5352 * state, because we're in the process of opening children depth-first. 5353 * Otherwise, we propagate the change to the parent. 5354 * 5355 * If this routine places a device in a faulted state, an appropriate ereport is 5356 * generated. 5357 */ 5358 void 5359 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 5360 { 5361 uint64_t save_state; 5362 spa_t *spa = vd->vdev_spa; 5363 5364 if (state == vd->vdev_state) { 5365 /* 5366 * Since vdev_offline() code path is already in an offline 5367 * state we can miss a statechange event to OFFLINE. Check 5368 * the previous state to catch this condition. 5369 */ 5370 if (vd->vdev_ops->vdev_op_leaf && 5371 (state == VDEV_STATE_OFFLINE) && 5372 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) { 5373 /* post an offline state change */ 5374 zfs_post_state_change(spa, vd, vd->vdev_prevstate); 5375 } 5376 vd->vdev_stat.vs_aux = aux; 5377 return; 5378 } 5379 5380 save_state = vd->vdev_state; 5381 5382 vd->vdev_state = state; 5383 vd->vdev_stat.vs_aux = aux; 5384 5385 /* 5386 * If we are setting the vdev state to anything but an open state, then 5387 * always close the underlying device unless the device has requested 5388 * a delayed close (i.e. we're about to remove or fault the device). 5389 * Otherwise, we keep accessible but invalid devices open forever. 5390 * We don't call vdev_close() itself, because that implies some extra 5391 * checks (offline, etc) that we don't want here. This is limited to 5392 * leaf devices, because otherwise closing the device will affect other 5393 * children. 5394 */ 5395 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 5396 vd->vdev_ops->vdev_op_leaf) 5397 vd->vdev_ops->vdev_op_close(vd); 5398 5399 if (vd->vdev_removed && 5400 state == VDEV_STATE_CANT_OPEN && 5401 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 5402 /* 5403 * If the previous state is set to VDEV_STATE_REMOVED, then this 5404 * device was previously marked removed and someone attempted to 5405 * reopen it. If this failed due to a nonexistent device, then 5406 * keep the device in the REMOVED state. We also let this be if 5407 * it is one of our special test online cases, which is only 5408 * attempting to online the device and shouldn't generate an FMA 5409 * fault. 5410 */ 5411 vd->vdev_state = VDEV_STATE_REMOVED; 5412 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 5413 } else if (state == VDEV_STATE_REMOVED) { 5414 vd->vdev_removed = B_TRUE; 5415 } else if (state == VDEV_STATE_CANT_OPEN) { 5416 /* 5417 * If we fail to open a vdev during an import or recovery, we 5418 * mark it as "not available", which signifies that it was 5419 * never there to begin with. Failure to open such a device 5420 * is not considered an error. 5421 */ 5422 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 5423 spa_load_state(spa) == SPA_LOAD_RECOVER) && 5424 vd->vdev_ops->vdev_op_leaf) 5425 vd->vdev_not_present = 1; 5426 5427 /* 5428 * Post the appropriate ereport. If the 'prevstate' field is 5429 * set to something other than VDEV_STATE_UNKNOWN, it indicates 5430 * that this is part of a vdev_reopen(). In this case, we don't 5431 * want to post the ereport if the device was already in the 5432 * CANT_OPEN state beforehand. 5433 * 5434 * If the 'checkremove' flag is set, then this is an attempt to 5435 * online the device in response to an insertion event. If we 5436 * hit this case, then we have detected an insertion event for a 5437 * faulted or offline device that wasn't in the removed state. 5438 * In this scenario, we don't post an ereport because we are 5439 * about to replace the device, or attempt an online with 5440 * vdev_forcefault, which will generate the fault for us. 5441 */ 5442 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 5443 !vd->vdev_not_present && !vd->vdev_checkremove && 5444 vd != spa->spa_root_vdev) { 5445 const char *class; 5446 5447 switch (aux) { 5448 case VDEV_AUX_OPEN_FAILED: 5449 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 5450 break; 5451 case VDEV_AUX_CORRUPT_DATA: 5452 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 5453 break; 5454 case VDEV_AUX_NO_REPLICAS: 5455 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 5456 break; 5457 case VDEV_AUX_BAD_GUID_SUM: 5458 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 5459 break; 5460 case VDEV_AUX_TOO_SMALL: 5461 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 5462 break; 5463 case VDEV_AUX_BAD_LABEL: 5464 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 5465 break; 5466 case VDEV_AUX_BAD_ASHIFT: 5467 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT; 5468 break; 5469 default: 5470 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 5471 } 5472 5473 (void) zfs_ereport_post(class, spa, vd, NULL, NULL, 5474 save_state); 5475 } 5476 5477 /* Erase any notion of persistent removed state */ 5478 vd->vdev_removed = B_FALSE; 5479 } else { 5480 vd->vdev_removed = B_FALSE; 5481 } 5482 5483 /* 5484 * Notify ZED of any significant state-change on a leaf vdev. 5485 * 5486 */ 5487 if (vd->vdev_ops->vdev_op_leaf) { 5488 /* preserve original state from a vdev_reopen() */ 5489 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) && 5490 (vd->vdev_prevstate != vd->vdev_state) && 5491 (save_state <= VDEV_STATE_CLOSED)) 5492 save_state = vd->vdev_prevstate; 5493 5494 /* filter out state change due to initial vdev_open */ 5495 if (save_state > VDEV_STATE_CLOSED) 5496 zfs_post_state_change(spa, vd, save_state); 5497 } 5498 5499 if (!isopen && vd->vdev_parent) 5500 vdev_propagate_state(vd->vdev_parent); 5501 } 5502 5503 boolean_t 5504 vdev_children_are_offline(vdev_t *vd) 5505 { 5506 ASSERT(!vd->vdev_ops->vdev_op_leaf); 5507 5508 for (uint64_t i = 0; i < vd->vdev_children; i++) { 5509 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 5510 return (B_FALSE); 5511 } 5512 5513 return (B_TRUE); 5514 } 5515 5516 /* 5517 * Check the vdev configuration to ensure that it's capable of supporting 5518 * a root pool. We do not support partial configuration. 5519 */ 5520 boolean_t 5521 vdev_is_bootable(vdev_t *vd) 5522 { 5523 if (!vd->vdev_ops->vdev_op_leaf) { 5524 const char *vdev_type = vd->vdev_ops->vdev_op_type; 5525 5526 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) 5527 return (B_FALSE); 5528 } 5529 5530 for (int c = 0; c < vd->vdev_children; c++) { 5531 if (!vdev_is_bootable(vd->vdev_child[c])) 5532 return (B_FALSE); 5533 } 5534 return (B_TRUE); 5535 } 5536 5537 boolean_t 5538 vdev_is_concrete(vdev_t *vd) 5539 { 5540 vdev_ops_t *ops = vd->vdev_ops; 5541 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 5542 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 5543 return (B_FALSE); 5544 } else { 5545 return (B_TRUE); 5546 } 5547 } 5548 5549 /* 5550 * Determine if a log device has valid content. If the vdev was 5551 * removed or faulted in the MOS config then we know that 5552 * the content on the log device has already been written to the pool. 5553 */ 5554 boolean_t 5555 vdev_log_state_valid(vdev_t *vd) 5556 { 5557 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 5558 !vd->vdev_removed) 5559 return (B_TRUE); 5560 5561 for (int c = 0; c < vd->vdev_children; c++) 5562 if (vdev_log_state_valid(vd->vdev_child[c])) 5563 return (B_TRUE); 5564 5565 return (B_FALSE); 5566 } 5567 5568 /* 5569 * Expand a vdev if possible. 5570 */ 5571 void 5572 vdev_expand(vdev_t *vd, uint64_t txg) 5573 { 5574 ASSERT(vd->vdev_top == vd); 5575 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5576 ASSERT(vdev_is_concrete(vd)); 5577 5578 vdev_set_deflate_ratio(vd); 5579 5580 if ((vd->vdev_spa->spa_raidz_expand == NULL || 5581 vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) && 5582 (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 5583 vdev_is_concrete(vd)) { 5584 vdev_metaslab_group_create(vd); 5585 VERIFY(vdev_metaslab_init(vd, txg) == 0); 5586 vdev_config_dirty(vd); 5587 } 5588 } 5589 5590 /* 5591 * Split a vdev. 5592 */ 5593 void 5594 vdev_split(vdev_t *vd) 5595 { 5596 vdev_t *cvd, *pvd = vd->vdev_parent; 5597 5598 VERIFY3U(pvd->vdev_children, >, 1); 5599 5600 vdev_remove_child(pvd, vd); 5601 vdev_compact_children(pvd); 5602 5603 ASSERT3P(pvd->vdev_child, !=, NULL); 5604 5605 cvd = pvd->vdev_child[0]; 5606 if (pvd->vdev_children == 1) { 5607 vdev_remove_parent(cvd); 5608 cvd->vdev_splitting = B_TRUE; 5609 } 5610 vdev_propagate_state(cvd); 5611 } 5612 5613 void 5614 vdev_deadman(vdev_t *vd, const char *tag) 5615 { 5616 for (int c = 0; c < vd->vdev_children; c++) { 5617 vdev_t *cvd = vd->vdev_child[c]; 5618 5619 vdev_deadman(cvd, tag); 5620 } 5621 5622 if (vd->vdev_ops->vdev_op_leaf) { 5623 vdev_queue_t *vq = &vd->vdev_queue; 5624 5625 mutex_enter(&vq->vq_lock); 5626 if (vq->vq_active > 0) { 5627 spa_t *spa = vd->vdev_spa; 5628 zio_t *fio; 5629 uint64_t delta; 5630 5631 zfs_dbgmsg("slow vdev: %s has %u active IOs", 5632 vd->vdev_path, vq->vq_active); 5633 5634 /* 5635 * Look at the head of all the pending queues, 5636 * if any I/O has been outstanding for longer than 5637 * the spa_deadman_synctime invoke the deadman logic. 5638 */ 5639 fio = list_head(&vq->vq_active_list); 5640 delta = gethrtime() - fio->io_timestamp; 5641 if (delta > spa_deadman_synctime(spa)) 5642 zio_deadman(fio, tag); 5643 } 5644 mutex_exit(&vq->vq_lock); 5645 } 5646 } 5647 5648 void 5649 vdev_defer_resilver(vdev_t *vd) 5650 { 5651 ASSERT(vd->vdev_ops->vdev_op_leaf); 5652 5653 vd->vdev_resilver_deferred = B_TRUE; 5654 vd->vdev_spa->spa_resilver_deferred = B_TRUE; 5655 } 5656 5657 /* 5658 * Clears the resilver deferred flag on all leaf devs under vd. Returns 5659 * B_TRUE if we have devices that need to be resilvered and are available to 5660 * accept resilver I/Os. 5661 */ 5662 boolean_t 5663 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx) 5664 { 5665 boolean_t resilver_needed = B_FALSE; 5666 spa_t *spa = vd->vdev_spa; 5667 5668 for (int c = 0; c < vd->vdev_children; c++) { 5669 vdev_t *cvd = vd->vdev_child[c]; 5670 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx); 5671 } 5672 5673 if (vd == spa->spa_root_vdev && 5674 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { 5675 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 5676 vdev_config_dirty(vd); 5677 spa->spa_resilver_deferred = B_FALSE; 5678 return (resilver_needed); 5679 } 5680 5681 if (!vdev_is_concrete(vd) || vd->vdev_aux || 5682 !vd->vdev_ops->vdev_op_leaf) 5683 return (resilver_needed); 5684 5685 vd->vdev_resilver_deferred = B_FALSE; 5686 5687 return (!vdev_is_dead(vd) && !vd->vdev_offline && 5688 vdev_resilver_needed(vd, NULL, NULL)); 5689 } 5690 5691 boolean_t 5692 vdev_xlate_is_empty(zfs_range_seg64_t *rs) 5693 { 5694 return (rs->rs_start == rs->rs_end); 5695 } 5696 5697 /* 5698 * Translate a logical range to the first contiguous physical range for the 5699 * specified vdev_t. This function is initially called with a leaf vdev and 5700 * will walk each parent vdev until it reaches a top-level vdev. Once the 5701 * top-level is reached the physical range is initialized and the recursive 5702 * function begins to unwind. As it unwinds it calls the parent's vdev 5703 * specific translation function to do the real conversion. 5704 */ 5705 void 5706 vdev_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs, 5707 zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs) 5708 { 5709 /* 5710 * Walk up the vdev tree 5711 */ 5712 if (vd != vd->vdev_top) { 5713 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs, 5714 remain_rs); 5715 } else { 5716 /* 5717 * We've reached the top-level vdev, initialize the physical 5718 * range to the logical range and set an empty remaining 5719 * range then start to unwind. 5720 */ 5721 physical_rs->rs_start = logical_rs->rs_start; 5722 physical_rs->rs_end = logical_rs->rs_end; 5723 5724 remain_rs->rs_start = logical_rs->rs_start; 5725 remain_rs->rs_end = logical_rs->rs_start; 5726 5727 return; 5728 } 5729 5730 vdev_t *pvd = vd->vdev_parent; 5731 ASSERT3P(pvd, !=, NULL); 5732 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL); 5733 5734 /* 5735 * As this recursive function unwinds, translate the logical 5736 * range into its physical and any remaining components by calling 5737 * the vdev specific translate function. 5738 */ 5739 zfs_range_seg64_t intermediate = { 0 }; 5740 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs); 5741 5742 physical_rs->rs_start = intermediate.rs_start; 5743 physical_rs->rs_end = intermediate.rs_end; 5744 } 5745 5746 void 5747 vdev_xlate_walk(vdev_t *vd, const zfs_range_seg64_t *logical_rs, 5748 vdev_xlate_func_t *func, void *arg) 5749 { 5750 zfs_range_seg64_t iter_rs = *logical_rs; 5751 zfs_range_seg64_t physical_rs; 5752 zfs_range_seg64_t remain_rs; 5753 5754 while (!vdev_xlate_is_empty(&iter_rs)) { 5755 5756 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs); 5757 5758 /* 5759 * With raidz and dRAID, it's possible that the logical range 5760 * does not live on this leaf vdev. Only when there is a non- 5761 * zero physical size call the provided function. 5762 */ 5763 if (!vdev_xlate_is_empty(&physical_rs)) 5764 func(arg, &physical_rs); 5765 5766 iter_rs = remain_rs; 5767 } 5768 } 5769 5770 static char * 5771 vdev_name(vdev_t *vd, char *buf, int buflen) 5772 { 5773 if (vd->vdev_path == NULL) { 5774 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) { 5775 strlcpy(buf, vd->vdev_spa->spa_name, buflen); 5776 } else if (!vd->vdev_ops->vdev_op_leaf) { 5777 snprintf(buf, buflen, "%s-%llu", 5778 vd->vdev_ops->vdev_op_type, 5779 (u_longlong_t)vd->vdev_id); 5780 } 5781 } else { 5782 strlcpy(buf, vd->vdev_path, buflen); 5783 } 5784 return (buf); 5785 } 5786 5787 /* 5788 * Look at the vdev tree and determine whether any devices are currently being 5789 * replaced. 5790 */ 5791 boolean_t 5792 vdev_replace_in_progress(vdev_t *vdev) 5793 { 5794 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0); 5795 5796 if (vdev->vdev_ops == &vdev_replacing_ops) 5797 return (B_TRUE); 5798 5799 /* 5800 * A 'spare' vdev indicates that we have a replace in progress, unless 5801 * it has exactly two children, and the second, the hot spare, has 5802 * finished being resilvered. 5803 */ 5804 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 || 5805 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING))) 5806 return (B_TRUE); 5807 5808 for (int i = 0; i < vdev->vdev_children; i++) { 5809 if (vdev_replace_in_progress(vdev->vdev_child[i])) 5810 return (B_TRUE); 5811 } 5812 5813 return (B_FALSE); 5814 } 5815 5816 /* 5817 * Add a (source=src, propname=propval) list to an nvlist. 5818 */ 5819 static void 5820 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval, 5821 uint64_t intval, zprop_source_t src) 5822 { 5823 nvlist_t *propval; 5824 5825 propval = fnvlist_alloc(); 5826 fnvlist_add_uint64(propval, ZPROP_SOURCE, src); 5827 5828 if (strval != NULL) 5829 fnvlist_add_string(propval, ZPROP_VALUE, strval); 5830 else 5831 fnvlist_add_uint64(propval, ZPROP_VALUE, intval); 5832 5833 fnvlist_add_nvlist(nvl, propname, propval); 5834 nvlist_free(propval); 5835 } 5836 5837 static void 5838 vdev_props_set_sync(void *arg, dmu_tx_t *tx) 5839 { 5840 vdev_t *vd; 5841 nvlist_t *nvp = arg; 5842 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5843 objset_t *mos = spa->spa_meta_objset; 5844 nvpair_t *elem = NULL; 5845 uint64_t vdev_guid; 5846 uint64_t objid; 5847 nvlist_t *nvprops; 5848 5849 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV); 5850 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS); 5851 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE); 5852 5853 /* this vdev could get removed while waiting for this sync task */ 5854 if (vd == NULL) 5855 return; 5856 5857 /* 5858 * Set vdev property values in the vdev props mos object. 5859 */ 5860 if (vd->vdev_root_zap != 0) { 5861 objid = vd->vdev_root_zap; 5862 } else if (vd->vdev_top_zap != 0) { 5863 objid = vd->vdev_top_zap; 5864 } else if (vd->vdev_leaf_zap != 0) { 5865 objid = vd->vdev_leaf_zap; 5866 } else { 5867 panic("unexpected vdev type"); 5868 } 5869 5870 mutex_enter(&spa->spa_props_lock); 5871 5872 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5873 uint64_t intval; 5874 const char *strval; 5875 vdev_prop_t prop; 5876 const char *propname = nvpair_name(elem); 5877 zprop_type_t proptype; 5878 5879 switch (prop = vdev_name_to_prop(propname)) { 5880 case VDEV_PROP_USERPROP: 5881 if (vdev_prop_user(propname)) { 5882 strval = fnvpair_value_string(elem); 5883 if (strlen(strval) == 0) { 5884 /* remove the property if value == "" */ 5885 (void) zap_remove(mos, objid, propname, 5886 tx); 5887 } else { 5888 VERIFY0(zap_update(mos, objid, propname, 5889 1, strlen(strval) + 1, strval, tx)); 5890 } 5891 spa_history_log_internal(spa, "vdev set", tx, 5892 "vdev_guid=%llu: %s=%s", 5893 (u_longlong_t)vdev_guid, nvpair_name(elem), 5894 strval); 5895 } 5896 break; 5897 default: 5898 /* normalize the property name */ 5899 propname = vdev_prop_to_name(prop); 5900 proptype = vdev_prop_get_type(prop); 5901 5902 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5903 ASSERT(proptype == PROP_TYPE_STRING); 5904 strval = fnvpair_value_string(elem); 5905 VERIFY0(zap_update(mos, objid, propname, 5906 1, strlen(strval) + 1, strval, tx)); 5907 spa_history_log_internal(spa, "vdev set", tx, 5908 "vdev_guid=%llu: %s=%s", 5909 (u_longlong_t)vdev_guid, nvpair_name(elem), 5910 strval); 5911 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5912 intval = fnvpair_value_uint64(elem); 5913 5914 if (proptype == PROP_TYPE_INDEX) { 5915 const char *unused; 5916 VERIFY0(vdev_prop_index_to_string( 5917 prop, intval, &unused)); 5918 } 5919 VERIFY0(zap_update(mos, objid, propname, 5920 sizeof (uint64_t), 1, &intval, tx)); 5921 spa_history_log_internal(spa, "vdev set", tx, 5922 "vdev_guid=%llu: %s=%lld", 5923 (u_longlong_t)vdev_guid, 5924 nvpair_name(elem), (longlong_t)intval); 5925 } else { 5926 panic("invalid vdev property type %u", 5927 nvpair_type(elem)); 5928 } 5929 } 5930 5931 } 5932 5933 mutex_exit(&spa->spa_props_lock); 5934 } 5935 5936 int 5937 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 5938 { 5939 spa_t *spa = vd->vdev_spa; 5940 nvpair_t *elem = NULL; 5941 uint64_t vdev_guid; 5942 nvlist_t *nvprops; 5943 int error = 0; 5944 5945 ASSERT(vd != NULL); 5946 5947 /* Check that vdev has a zap we can use */ 5948 if (vd->vdev_root_zap == 0 && 5949 vd->vdev_top_zap == 0 && 5950 vd->vdev_leaf_zap == 0) 5951 return (SET_ERROR(EINVAL)); 5952 5953 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV, 5954 &vdev_guid) != 0) 5955 return (SET_ERROR(EINVAL)); 5956 5957 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS, 5958 &nvprops) != 0) 5959 return (SET_ERROR(EINVAL)); 5960 5961 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) 5962 return (SET_ERROR(EINVAL)); 5963 5964 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5965 const char *propname = nvpair_name(elem); 5966 vdev_prop_t prop = vdev_name_to_prop(propname); 5967 uint64_t intval = 0; 5968 const char *strval = NULL; 5969 5970 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) { 5971 error = EINVAL; 5972 goto end; 5973 } 5974 5975 if (prop != VDEV_PROP_USERPROP && vdev_prop_readonly(prop)) { 5976 error = EROFS; 5977 goto end; 5978 } 5979 5980 /* Special Processing */ 5981 switch (prop) { 5982 case VDEV_PROP_PATH: 5983 if (vd->vdev_path == NULL) { 5984 error = EROFS; 5985 break; 5986 } 5987 if (nvpair_value_string(elem, &strval) != 0) { 5988 error = EINVAL; 5989 break; 5990 } 5991 /* New path must start with /dev/ */ 5992 if (strncmp(strval, "/dev/", 5)) { 5993 error = EINVAL; 5994 break; 5995 } 5996 error = spa_vdev_setpath(spa, vdev_guid, strval); 5997 break; 5998 case VDEV_PROP_ALLOCATING: 5999 if (nvpair_value_uint64(elem, &intval) != 0) { 6000 error = EINVAL; 6001 break; 6002 } 6003 if (intval != vd->vdev_noalloc) 6004 break; 6005 if (intval == 0) 6006 error = spa_vdev_noalloc(spa, vdev_guid); 6007 else 6008 error = spa_vdev_alloc(spa, vdev_guid); 6009 break; 6010 case VDEV_PROP_FAILFAST: 6011 if (nvpair_value_uint64(elem, &intval) != 0) { 6012 error = EINVAL; 6013 break; 6014 } 6015 vd->vdev_failfast = intval & 1; 6016 break; 6017 case VDEV_PROP_CHECKSUM_N: 6018 if (nvpair_value_uint64(elem, &intval) != 0) { 6019 error = EINVAL; 6020 break; 6021 } 6022 vd->vdev_checksum_n = intval; 6023 break; 6024 case VDEV_PROP_CHECKSUM_T: 6025 if (nvpair_value_uint64(elem, &intval) != 0) { 6026 error = EINVAL; 6027 break; 6028 } 6029 vd->vdev_checksum_t = intval; 6030 break; 6031 case VDEV_PROP_IO_N: 6032 if (nvpair_value_uint64(elem, &intval) != 0) { 6033 error = EINVAL; 6034 break; 6035 } 6036 vd->vdev_io_n = intval; 6037 break; 6038 case VDEV_PROP_IO_T: 6039 if (nvpair_value_uint64(elem, &intval) != 0) { 6040 error = EINVAL; 6041 break; 6042 } 6043 vd->vdev_io_t = intval; 6044 break; 6045 case VDEV_PROP_SLOW_IO_N: 6046 if (nvpair_value_uint64(elem, &intval) != 0) { 6047 error = EINVAL; 6048 break; 6049 } 6050 vd->vdev_slow_io_n = intval; 6051 break; 6052 case VDEV_PROP_SLOW_IO_T: 6053 if (nvpair_value_uint64(elem, &intval) != 0) { 6054 error = EINVAL; 6055 break; 6056 } 6057 vd->vdev_slow_io_t = intval; 6058 break; 6059 default: 6060 /* Most processing is done in vdev_props_set_sync */ 6061 break; 6062 } 6063 end: 6064 if (error != 0) { 6065 intval = error; 6066 vdev_prop_add_list(outnvl, propname, strval, intval, 0); 6067 return (error); 6068 } 6069 } 6070 6071 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync, 6072 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 6073 } 6074 6075 int 6076 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 6077 { 6078 spa_t *spa = vd->vdev_spa; 6079 objset_t *mos = spa->spa_meta_objset; 6080 int err = 0; 6081 uint64_t objid; 6082 uint64_t vdev_guid; 6083 nvpair_t *elem = NULL; 6084 nvlist_t *nvprops = NULL; 6085 uint64_t intval = 0; 6086 char *strval = NULL; 6087 const char *propname = NULL; 6088 vdev_prop_t prop; 6089 6090 ASSERT(vd != NULL); 6091 ASSERT(mos != NULL); 6092 6093 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV, 6094 &vdev_guid) != 0) 6095 return (SET_ERROR(EINVAL)); 6096 6097 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops); 6098 6099 if (vd->vdev_root_zap != 0) { 6100 objid = vd->vdev_root_zap; 6101 } else if (vd->vdev_top_zap != 0) { 6102 objid = vd->vdev_top_zap; 6103 } else if (vd->vdev_leaf_zap != 0) { 6104 objid = vd->vdev_leaf_zap; 6105 } else { 6106 return (SET_ERROR(EINVAL)); 6107 } 6108 ASSERT(objid != 0); 6109 6110 mutex_enter(&spa->spa_props_lock); 6111 6112 if (nvprops != NULL) { 6113 char namebuf[64] = { 0 }; 6114 6115 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 6116 intval = 0; 6117 strval = NULL; 6118 propname = nvpair_name(elem); 6119 prop = vdev_name_to_prop(propname); 6120 zprop_source_t src = ZPROP_SRC_DEFAULT; 6121 uint64_t integer_size, num_integers; 6122 6123 switch (prop) { 6124 /* Special Read-only Properties */ 6125 case VDEV_PROP_NAME: 6126 strval = vdev_name(vd, namebuf, 6127 sizeof (namebuf)); 6128 if (strval == NULL) 6129 continue; 6130 vdev_prop_add_list(outnvl, propname, strval, 0, 6131 ZPROP_SRC_NONE); 6132 continue; 6133 case VDEV_PROP_CAPACITY: 6134 /* percent used */ 6135 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 : 6136 (vd->vdev_stat.vs_alloc * 100 / 6137 vd->vdev_stat.vs_dspace); 6138 vdev_prop_add_list(outnvl, propname, NULL, 6139 intval, ZPROP_SRC_NONE); 6140 continue; 6141 case VDEV_PROP_STATE: 6142 vdev_prop_add_list(outnvl, propname, NULL, 6143 vd->vdev_state, ZPROP_SRC_NONE); 6144 continue; 6145 case VDEV_PROP_GUID: 6146 vdev_prop_add_list(outnvl, propname, NULL, 6147 vd->vdev_guid, ZPROP_SRC_NONE); 6148 continue; 6149 case VDEV_PROP_ASIZE: 6150 vdev_prop_add_list(outnvl, propname, NULL, 6151 vd->vdev_asize, ZPROP_SRC_NONE); 6152 continue; 6153 case VDEV_PROP_PSIZE: 6154 vdev_prop_add_list(outnvl, propname, NULL, 6155 vd->vdev_psize, ZPROP_SRC_NONE); 6156 continue; 6157 case VDEV_PROP_ASHIFT: 6158 vdev_prop_add_list(outnvl, propname, NULL, 6159 vd->vdev_ashift, ZPROP_SRC_NONE); 6160 continue; 6161 case VDEV_PROP_SIZE: 6162 vdev_prop_add_list(outnvl, propname, NULL, 6163 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE); 6164 continue; 6165 case VDEV_PROP_FREE: 6166 vdev_prop_add_list(outnvl, propname, NULL, 6167 vd->vdev_stat.vs_dspace - 6168 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 6169 continue; 6170 case VDEV_PROP_ALLOCATED: 6171 vdev_prop_add_list(outnvl, propname, NULL, 6172 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 6173 continue; 6174 case VDEV_PROP_EXPANDSZ: 6175 vdev_prop_add_list(outnvl, propname, NULL, 6176 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE); 6177 continue; 6178 case VDEV_PROP_FRAGMENTATION: 6179 vdev_prop_add_list(outnvl, propname, NULL, 6180 vd->vdev_stat.vs_fragmentation, 6181 ZPROP_SRC_NONE); 6182 continue; 6183 case VDEV_PROP_PARITY: 6184 vdev_prop_add_list(outnvl, propname, NULL, 6185 vdev_get_nparity(vd), ZPROP_SRC_NONE); 6186 continue; 6187 case VDEV_PROP_PATH: 6188 if (vd->vdev_path == NULL) 6189 continue; 6190 vdev_prop_add_list(outnvl, propname, 6191 vd->vdev_path, 0, ZPROP_SRC_NONE); 6192 continue; 6193 case VDEV_PROP_DEVID: 6194 if (vd->vdev_devid == NULL) 6195 continue; 6196 vdev_prop_add_list(outnvl, propname, 6197 vd->vdev_devid, 0, ZPROP_SRC_NONE); 6198 continue; 6199 case VDEV_PROP_PHYS_PATH: 6200 if (vd->vdev_physpath == NULL) 6201 continue; 6202 vdev_prop_add_list(outnvl, propname, 6203 vd->vdev_physpath, 0, ZPROP_SRC_NONE); 6204 continue; 6205 case VDEV_PROP_ENC_PATH: 6206 if (vd->vdev_enc_sysfs_path == NULL) 6207 continue; 6208 vdev_prop_add_list(outnvl, propname, 6209 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE); 6210 continue; 6211 case VDEV_PROP_FRU: 6212 if (vd->vdev_fru == NULL) 6213 continue; 6214 vdev_prop_add_list(outnvl, propname, 6215 vd->vdev_fru, 0, ZPROP_SRC_NONE); 6216 continue; 6217 case VDEV_PROP_PARENT: 6218 if (vd->vdev_parent != NULL) { 6219 strval = vdev_name(vd->vdev_parent, 6220 namebuf, sizeof (namebuf)); 6221 vdev_prop_add_list(outnvl, propname, 6222 strval, 0, ZPROP_SRC_NONE); 6223 } 6224 continue; 6225 case VDEV_PROP_CHILDREN: 6226 if (vd->vdev_children > 0) 6227 strval = kmem_zalloc(ZAP_MAXVALUELEN, 6228 KM_SLEEP); 6229 for (uint64_t i = 0; i < vd->vdev_children; 6230 i++) { 6231 const char *vname; 6232 6233 vname = vdev_name(vd->vdev_child[i], 6234 namebuf, sizeof (namebuf)); 6235 if (vname == NULL) 6236 vname = "(unknown)"; 6237 if (strlen(strval) > 0) 6238 strlcat(strval, ",", 6239 ZAP_MAXVALUELEN); 6240 strlcat(strval, vname, ZAP_MAXVALUELEN); 6241 } 6242 if (strval != NULL) { 6243 vdev_prop_add_list(outnvl, propname, 6244 strval, 0, ZPROP_SRC_NONE); 6245 kmem_free(strval, ZAP_MAXVALUELEN); 6246 } 6247 continue; 6248 case VDEV_PROP_NUMCHILDREN: 6249 vdev_prop_add_list(outnvl, propname, NULL, 6250 vd->vdev_children, ZPROP_SRC_NONE); 6251 continue; 6252 case VDEV_PROP_READ_ERRORS: 6253 vdev_prop_add_list(outnvl, propname, NULL, 6254 vd->vdev_stat.vs_read_errors, 6255 ZPROP_SRC_NONE); 6256 continue; 6257 case VDEV_PROP_WRITE_ERRORS: 6258 vdev_prop_add_list(outnvl, propname, NULL, 6259 vd->vdev_stat.vs_write_errors, 6260 ZPROP_SRC_NONE); 6261 continue; 6262 case VDEV_PROP_CHECKSUM_ERRORS: 6263 vdev_prop_add_list(outnvl, propname, NULL, 6264 vd->vdev_stat.vs_checksum_errors, 6265 ZPROP_SRC_NONE); 6266 continue; 6267 case VDEV_PROP_INITIALIZE_ERRORS: 6268 vdev_prop_add_list(outnvl, propname, NULL, 6269 vd->vdev_stat.vs_initialize_errors, 6270 ZPROP_SRC_NONE); 6271 continue; 6272 case VDEV_PROP_TRIM_ERRORS: 6273 vdev_prop_add_list(outnvl, propname, NULL, 6274 vd->vdev_stat.vs_trim_errors, 6275 ZPROP_SRC_NONE); 6276 continue; 6277 case VDEV_PROP_SLOW_IOS: 6278 vdev_prop_add_list(outnvl, propname, NULL, 6279 vd->vdev_stat.vs_slow_ios, 6280 ZPROP_SRC_NONE); 6281 continue; 6282 case VDEV_PROP_OPS_NULL: 6283 vdev_prop_add_list(outnvl, propname, NULL, 6284 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL], 6285 ZPROP_SRC_NONE); 6286 continue; 6287 case VDEV_PROP_OPS_READ: 6288 vdev_prop_add_list(outnvl, propname, NULL, 6289 vd->vdev_stat.vs_ops[ZIO_TYPE_READ], 6290 ZPROP_SRC_NONE); 6291 continue; 6292 case VDEV_PROP_OPS_WRITE: 6293 vdev_prop_add_list(outnvl, propname, NULL, 6294 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE], 6295 ZPROP_SRC_NONE); 6296 continue; 6297 case VDEV_PROP_OPS_FREE: 6298 vdev_prop_add_list(outnvl, propname, NULL, 6299 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE], 6300 ZPROP_SRC_NONE); 6301 continue; 6302 case VDEV_PROP_OPS_CLAIM: 6303 vdev_prop_add_list(outnvl, propname, NULL, 6304 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM], 6305 ZPROP_SRC_NONE); 6306 continue; 6307 case VDEV_PROP_OPS_TRIM: 6308 /* 6309 * TRIM ops and bytes are reported to user 6310 * space as ZIO_TYPE_FLUSH. This is done to 6311 * preserve the vdev_stat_t structure layout 6312 * for user space. 6313 */ 6314 vdev_prop_add_list(outnvl, propname, NULL, 6315 vd->vdev_stat.vs_ops[ZIO_TYPE_FLUSH], 6316 ZPROP_SRC_NONE); 6317 continue; 6318 case VDEV_PROP_BYTES_NULL: 6319 vdev_prop_add_list(outnvl, propname, NULL, 6320 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL], 6321 ZPROP_SRC_NONE); 6322 continue; 6323 case VDEV_PROP_BYTES_READ: 6324 vdev_prop_add_list(outnvl, propname, NULL, 6325 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ], 6326 ZPROP_SRC_NONE); 6327 continue; 6328 case VDEV_PROP_BYTES_WRITE: 6329 vdev_prop_add_list(outnvl, propname, NULL, 6330 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE], 6331 ZPROP_SRC_NONE); 6332 continue; 6333 case VDEV_PROP_BYTES_FREE: 6334 vdev_prop_add_list(outnvl, propname, NULL, 6335 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE], 6336 ZPROP_SRC_NONE); 6337 continue; 6338 case VDEV_PROP_BYTES_CLAIM: 6339 vdev_prop_add_list(outnvl, propname, NULL, 6340 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM], 6341 ZPROP_SRC_NONE); 6342 continue; 6343 case VDEV_PROP_BYTES_TRIM: 6344 /* 6345 * TRIM ops and bytes are reported to user 6346 * space as ZIO_TYPE_FLUSH. This is done to 6347 * preserve the vdev_stat_t structure layout 6348 * for user space. 6349 */ 6350 vdev_prop_add_list(outnvl, propname, NULL, 6351 vd->vdev_stat.vs_bytes[ZIO_TYPE_FLUSH], 6352 ZPROP_SRC_NONE); 6353 continue; 6354 case VDEV_PROP_REMOVING: 6355 vdev_prop_add_list(outnvl, propname, NULL, 6356 vd->vdev_removing, ZPROP_SRC_NONE); 6357 continue; 6358 case VDEV_PROP_RAIDZ_EXPANDING: 6359 /* Only expose this for raidz */ 6360 if (vd->vdev_ops == &vdev_raidz_ops) { 6361 vdev_prop_add_list(outnvl, propname, 6362 NULL, vd->vdev_rz_expanding, 6363 ZPROP_SRC_NONE); 6364 } 6365 continue; 6366 case VDEV_PROP_TRIM_SUPPORT: 6367 /* only valid for leaf vdevs */ 6368 if (vd->vdev_ops->vdev_op_leaf) { 6369 vdev_prop_add_list(outnvl, propname, 6370 NULL, vd->vdev_has_trim, 6371 ZPROP_SRC_NONE); 6372 } 6373 continue; 6374 /* Numeric Properites */ 6375 case VDEV_PROP_ALLOCATING: 6376 /* Leaf vdevs cannot have this property */ 6377 if (vd->vdev_mg == NULL && 6378 vd->vdev_top != NULL) { 6379 src = ZPROP_SRC_NONE; 6380 intval = ZPROP_BOOLEAN_NA; 6381 } else { 6382 err = vdev_prop_get_int(vd, prop, 6383 &intval); 6384 if (err && err != ENOENT) 6385 break; 6386 6387 if (intval == 6388 vdev_prop_default_numeric(prop)) 6389 src = ZPROP_SRC_DEFAULT; 6390 else 6391 src = ZPROP_SRC_LOCAL; 6392 } 6393 6394 vdev_prop_add_list(outnvl, propname, NULL, 6395 intval, src); 6396 break; 6397 case VDEV_PROP_FAILFAST: 6398 src = ZPROP_SRC_LOCAL; 6399 strval = NULL; 6400 6401 err = zap_lookup(mos, objid, nvpair_name(elem), 6402 sizeof (uint64_t), 1, &intval); 6403 if (err == ENOENT) { 6404 intval = vdev_prop_default_numeric( 6405 prop); 6406 err = 0; 6407 } else if (err) { 6408 break; 6409 } 6410 if (intval == vdev_prop_default_numeric(prop)) 6411 src = ZPROP_SRC_DEFAULT; 6412 6413 vdev_prop_add_list(outnvl, propname, strval, 6414 intval, src); 6415 break; 6416 case VDEV_PROP_CHECKSUM_N: 6417 case VDEV_PROP_CHECKSUM_T: 6418 case VDEV_PROP_IO_N: 6419 case VDEV_PROP_IO_T: 6420 case VDEV_PROP_SLOW_IO_N: 6421 case VDEV_PROP_SLOW_IO_T: 6422 err = vdev_prop_get_int(vd, prop, &intval); 6423 if (err && err != ENOENT) 6424 break; 6425 6426 if (intval == vdev_prop_default_numeric(prop)) 6427 src = ZPROP_SRC_DEFAULT; 6428 else 6429 src = ZPROP_SRC_LOCAL; 6430 6431 vdev_prop_add_list(outnvl, propname, NULL, 6432 intval, src); 6433 break; 6434 /* Text Properties */ 6435 case VDEV_PROP_COMMENT: 6436 /* Exists in the ZAP below */ 6437 /* FALLTHRU */ 6438 case VDEV_PROP_USERPROP: 6439 /* User Properites */ 6440 src = ZPROP_SRC_LOCAL; 6441 6442 err = zap_length(mos, objid, nvpair_name(elem), 6443 &integer_size, &num_integers); 6444 if (err) 6445 break; 6446 6447 switch (integer_size) { 6448 case 8: 6449 /* User properties cannot be integers */ 6450 err = EINVAL; 6451 break; 6452 case 1: 6453 /* string property */ 6454 strval = kmem_alloc(num_integers, 6455 KM_SLEEP); 6456 err = zap_lookup(mos, objid, 6457 nvpair_name(elem), 1, 6458 num_integers, strval); 6459 if (err) { 6460 kmem_free(strval, 6461 num_integers); 6462 break; 6463 } 6464 vdev_prop_add_list(outnvl, propname, 6465 strval, 0, src); 6466 kmem_free(strval, num_integers); 6467 break; 6468 } 6469 break; 6470 default: 6471 err = ENOENT; 6472 break; 6473 } 6474 if (err) 6475 break; 6476 } 6477 } else { 6478 /* 6479 * Get all properties from the MOS vdev property object. 6480 */ 6481 zap_cursor_t zc; 6482 zap_attribute_t *za = zap_attribute_alloc(); 6483 for (zap_cursor_init(&zc, mos, objid); 6484 (err = zap_cursor_retrieve(&zc, za)) == 0; 6485 zap_cursor_advance(&zc)) { 6486 intval = 0; 6487 strval = NULL; 6488 zprop_source_t src = ZPROP_SRC_DEFAULT; 6489 propname = za->za_name; 6490 6491 switch (za->za_integer_length) { 6492 case 8: 6493 /* We do not allow integer user properties */ 6494 /* This is likely an internal value */ 6495 break; 6496 case 1: 6497 /* string property */ 6498 strval = kmem_alloc(za->za_num_integers, 6499 KM_SLEEP); 6500 err = zap_lookup(mos, objid, za->za_name, 1, 6501 za->za_num_integers, strval); 6502 if (err) { 6503 kmem_free(strval, za->za_num_integers); 6504 break; 6505 } 6506 vdev_prop_add_list(outnvl, propname, strval, 0, 6507 src); 6508 kmem_free(strval, za->za_num_integers); 6509 break; 6510 6511 default: 6512 break; 6513 } 6514 } 6515 zap_cursor_fini(&zc); 6516 zap_attribute_free(za); 6517 } 6518 6519 mutex_exit(&spa->spa_props_lock); 6520 if (err && err != ENOENT) { 6521 return (err); 6522 } 6523 6524 return (0); 6525 } 6526 6527 EXPORT_SYMBOL(vdev_fault); 6528 EXPORT_SYMBOL(vdev_degrade); 6529 EXPORT_SYMBOL(vdev_online); 6530 EXPORT_SYMBOL(vdev_offline); 6531 EXPORT_SYMBOL(vdev_clear); 6532 6533 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW, 6534 "Target number of metaslabs per top-level vdev"); 6535 6536 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW, 6537 "Default lower limit for metaslab size"); 6538 6539 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW, 6540 "Default upper limit for metaslab size"); 6541 6542 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW, 6543 "Minimum number of metaslabs per top-level vdev"); 6544 6545 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW, 6546 "Practical upper limit of total metaslabs per top-level vdev"); 6547 6548 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW, 6549 "Rate limit slow IO (delay) events to this many per second"); 6550 6551 ZFS_MODULE_PARAM(zfs, zfs_, deadman_events_per_second, UINT, ZMOD_RW, 6552 "Rate limit hung IO (deadman) events to this many per second"); 6553 6554 ZFS_MODULE_PARAM(zfs, zfs_, dio_write_verify_events_per_second, UINT, ZMOD_RW, 6555 "Rate Direct I/O write verify events to this many per second"); 6556 6557 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, direct_write_verify, UINT, ZMOD_RW, 6558 "Direct I/O writes will perform for checksum verification before " 6559 "commiting write"); 6560 6561 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW, 6562 "Rate limit checksum events to this many checksum errors per second " 6563 "(do not set below ZED threshold)."); 6564 6565 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW, 6566 "Ignore errors during resilver/scrub"); 6567 6568 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW, 6569 "Bypass vdev_validate()"); 6570 6571 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW, 6572 "Disable cache flushes"); 6573 6574 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW, 6575 "Minimum number of metaslabs required to dedicate one for log blocks"); 6576 6577 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift, 6578 param_set_min_auto_ashift, param_get_uint, ZMOD_RW, 6579 "Minimum ashift used when creating new top-level vdevs"); 6580 6581 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift, 6582 param_set_max_auto_ashift, param_get_uint, ZMOD_RW, 6583 "Maximum ashift used when optimizing for logical -> physical sector " 6584 "size on new top-level vdevs"); 6585 6586 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, raidz_impl, 6587 param_set_raidz_impl, param_get_raidz_impl, ZMOD_RW, 6588 "RAIDZ implementation"); 6589