1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 26 * Copyright 2017 Nexenta Systems, Inc. 27 * Copyright (c) 2014 Integros [integros.com] 28 * Copyright 2016 Toomas Soome <tsoome@me.com> 29 * Copyright 2017 Joyent, Inc. 30 * Copyright (c) 2017, Intel Corporation. 31 * Copyright (c) 2019, Datto Inc. All rights reserved. 32 * Copyright (c) 2021, Klara Inc. 33 * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP. 34 */ 35 36 #include <sys/zfs_context.h> 37 #include <sys/fm/fs/zfs.h> 38 #include <sys/spa.h> 39 #include <sys/spa_impl.h> 40 #include <sys/bpobj.h> 41 #include <sys/dmu.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/dsl_dir.h> 44 #include <sys/vdev_impl.h> 45 #include <sys/vdev_rebuild.h> 46 #include <sys/vdev_draid.h> 47 #include <sys/uberblock_impl.h> 48 #include <sys/metaslab.h> 49 #include <sys/metaslab_impl.h> 50 #include <sys/space_map.h> 51 #include <sys/space_reftree.h> 52 #include <sys/zio.h> 53 #include <sys/zap.h> 54 #include <sys/fs/zfs.h> 55 #include <sys/arc.h> 56 #include <sys/zil.h> 57 #include <sys/dsl_scan.h> 58 #include <sys/vdev_raidz.h> 59 #include <sys/abd.h> 60 #include <sys/vdev_initialize.h> 61 #include <sys/vdev_trim.h> 62 #include <sys/vdev_raidz.h> 63 #include <sys/zvol.h> 64 #include <sys/zfs_ratelimit.h> 65 #include "zfs_prop.h" 66 67 /* 68 * One metaslab from each (normal-class) vdev is used by the ZIL. These are 69 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are 70 * part of the spa_embedded_log_class. The metaslab with the most free space 71 * in each vdev is selected for this purpose when the pool is opened (or a 72 * vdev is added). See vdev_metaslab_init(). 73 * 74 * Log blocks can be allocated from the following locations. Each one is tried 75 * in order until the allocation succeeds: 76 * 1. dedicated log vdevs, aka "slog" (spa_log_class) 77 * 2. embedded slog metaslabs (spa_embedded_log_class) 78 * 3. other metaslabs in normal vdevs (spa_normal_class) 79 * 80 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer 81 * than this number of metaslabs in the vdev. This ensures that we don't set 82 * aside an unreasonable amount of space for the ZIL. If set to less than 83 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced 84 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab. 85 */ 86 static uint_t zfs_embedded_slog_min_ms = 64; 87 88 /* default target for number of metaslabs per top-level vdev */ 89 static uint_t zfs_vdev_default_ms_count = 200; 90 91 /* minimum number of metaslabs per top-level vdev */ 92 static uint_t zfs_vdev_min_ms_count = 16; 93 94 /* practical upper limit of total metaslabs per top-level vdev */ 95 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17; 96 97 /* lower limit for metaslab size (512M) */ 98 static uint_t zfs_vdev_default_ms_shift = 29; 99 100 /* upper limit for metaslab size (16G) */ 101 static uint_t zfs_vdev_max_ms_shift = 34; 102 103 int vdev_validate_skip = B_FALSE; 104 105 /* 106 * Since the DTL space map of a vdev is not expected to have a lot of 107 * entries, we default its block size to 4K. 108 */ 109 int zfs_vdev_dtl_sm_blksz = (1 << 12); 110 111 /* 112 * Rate limit slow IO (delay) events to this many per second. 113 */ 114 static unsigned int zfs_slow_io_events_per_second = 20; 115 116 /* 117 * Rate limit deadman "hung IO" events to this many per second. 118 */ 119 static unsigned int zfs_deadman_events_per_second = 1; 120 121 /* 122 * Rate limit direct write IO verify failures to this many per scond. 123 */ 124 static unsigned int zfs_dio_write_verify_events_per_second = 20; 125 126 /* 127 * Rate limit checksum events after this many checksum errors per second. 128 */ 129 static unsigned int zfs_checksum_events_per_second = 20; 130 131 /* 132 * Ignore errors during scrub/resilver. Allows to work around resilver 133 * upon import when there are pool errors. 134 */ 135 static int zfs_scan_ignore_errors = 0; 136 137 /* 138 * vdev-wide space maps that have lots of entries written to them at 139 * the end of each transaction can benefit from a higher I/O bandwidth 140 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 141 */ 142 int zfs_vdev_standard_sm_blksz = (1 << 17); 143 144 /* 145 * Tunable parameter for debugging or performance analysis. Setting this 146 * will cause pool corruption on power loss if a volatile out-of-order 147 * write cache is enabled. 148 */ 149 int zfs_nocacheflush = 0; 150 151 /* 152 * Maximum and minimum ashift values that can be automatically set based on 153 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX 154 * is higher than the maximum value, it is intentionally limited here to not 155 * excessively impact pool space efficiency. Higher ashift values may still 156 * be forced by vdev logical ashift or by user via ashift property, but won't 157 * be set automatically as a performance optimization. 158 */ 159 uint_t zfs_vdev_max_auto_ashift = 14; 160 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN; 161 162 /* 163 * VDEV checksum verification for Direct I/O writes. This is neccessary for 164 * Linux, because anonymous pages can not be placed under write protection 165 * during Direct I/O writes. 166 */ 167 #if !defined(__FreeBSD__) 168 uint_t zfs_vdev_direct_write_verify = 1; 169 #else 170 uint_t zfs_vdev_direct_write_verify = 0; 171 #endif 172 173 void 174 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 175 { 176 va_list adx; 177 char buf[256]; 178 179 va_start(adx, fmt); 180 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 181 va_end(adx); 182 183 if (vd->vdev_path != NULL) { 184 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 185 vd->vdev_path, buf); 186 } else { 187 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 188 vd->vdev_ops->vdev_op_type, 189 (u_longlong_t)vd->vdev_id, 190 (u_longlong_t)vd->vdev_guid, buf); 191 } 192 } 193 194 void 195 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 196 { 197 char state[20]; 198 199 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 200 zfs_dbgmsg("%*svdev %llu: %s", indent, "", 201 (u_longlong_t)vd->vdev_id, 202 vd->vdev_ops->vdev_op_type); 203 return; 204 } 205 206 switch (vd->vdev_state) { 207 case VDEV_STATE_UNKNOWN: 208 (void) snprintf(state, sizeof (state), "unknown"); 209 break; 210 case VDEV_STATE_CLOSED: 211 (void) snprintf(state, sizeof (state), "closed"); 212 break; 213 case VDEV_STATE_OFFLINE: 214 (void) snprintf(state, sizeof (state), "offline"); 215 break; 216 case VDEV_STATE_REMOVED: 217 (void) snprintf(state, sizeof (state), "removed"); 218 break; 219 case VDEV_STATE_CANT_OPEN: 220 (void) snprintf(state, sizeof (state), "can't open"); 221 break; 222 case VDEV_STATE_FAULTED: 223 (void) snprintf(state, sizeof (state), "faulted"); 224 break; 225 case VDEV_STATE_DEGRADED: 226 (void) snprintf(state, sizeof (state), "degraded"); 227 break; 228 case VDEV_STATE_HEALTHY: 229 (void) snprintf(state, sizeof (state), "healthy"); 230 break; 231 default: 232 (void) snprintf(state, sizeof (state), "<state %u>", 233 (uint_t)vd->vdev_state); 234 } 235 236 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 237 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 238 vd->vdev_islog ? " (log)" : "", 239 (u_longlong_t)vd->vdev_guid, 240 vd->vdev_path ? vd->vdev_path : "N/A", state); 241 242 for (uint64_t i = 0; i < vd->vdev_children; i++) 243 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 244 } 245 246 /* 247 * Virtual device management. 248 */ 249 250 static vdev_ops_t *const vdev_ops_table[] = { 251 &vdev_root_ops, 252 &vdev_raidz_ops, 253 &vdev_draid_ops, 254 &vdev_draid_spare_ops, 255 &vdev_mirror_ops, 256 &vdev_replacing_ops, 257 &vdev_spare_ops, 258 &vdev_disk_ops, 259 &vdev_file_ops, 260 &vdev_missing_ops, 261 &vdev_hole_ops, 262 &vdev_indirect_ops, 263 NULL 264 }; 265 266 /* 267 * Given a vdev type, return the appropriate ops vector. 268 */ 269 static vdev_ops_t * 270 vdev_getops(const char *type) 271 { 272 vdev_ops_t *ops, *const *opspp; 273 274 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 275 if (strcmp(ops->vdev_op_type, type) == 0) 276 break; 277 278 return (ops); 279 } 280 281 /* 282 * Given a vdev and a metaslab class, find which metaslab group we're 283 * interested in. All vdevs may belong to two different metaslab classes. 284 * Dedicated slog devices use only the primary metaslab group, rather than a 285 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL. 286 */ 287 metaslab_group_t * 288 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc) 289 { 290 if (mc == spa_embedded_log_class(vd->vdev_spa) && 291 vd->vdev_log_mg != NULL) 292 return (vd->vdev_log_mg); 293 else 294 return (vd->vdev_mg); 295 } 296 297 void 298 vdev_default_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs, 299 zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs) 300 { 301 (void) vd, (void) remain_rs; 302 303 physical_rs->rs_start = logical_rs->rs_start; 304 physical_rs->rs_end = logical_rs->rs_end; 305 } 306 307 /* 308 * Derive the enumerated allocation bias from string input. 309 * String origin is either the per-vdev zap or zpool(8). 310 */ 311 static vdev_alloc_bias_t 312 vdev_derive_alloc_bias(const char *bias) 313 { 314 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 315 316 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) 317 alloc_bias = VDEV_BIAS_LOG; 318 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) 319 alloc_bias = VDEV_BIAS_SPECIAL; 320 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) 321 alloc_bias = VDEV_BIAS_DEDUP; 322 323 return (alloc_bias); 324 } 325 326 uint64_t 327 vdev_default_psize(vdev_t *vd, uint64_t asize, uint64_t txg) 328 { 329 ASSERT0(asize % (1ULL << vd->vdev_top->vdev_ashift)); 330 uint64_t csize, psize = asize; 331 for (int c = 0; c < vd->vdev_children; c++) { 332 csize = vdev_asize_to_psize_txg(vd->vdev_child[c], asize, txg); 333 psize = MIN(psize, csize); 334 } 335 336 return (psize); 337 } 338 339 /* 340 * Default asize function: return the MAX of psize with the asize of 341 * all children. This is what's used by anything other than RAID-Z. 342 */ 343 uint64_t 344 vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg) 345 { 346 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 347 uint64_t csize; 348 349 for (int c = 0; c < vd->vdev_children; c++) { 350 csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg); 351 asize = MAX(asize, csize); 352 } 353 354 return (asize); 355 } 356 357 uint64_t 358 vdev_default_min_asize(vdev_t *vd) 359 { 360 return (vd->vdev_min_asize); 361 } 362 363 /* 364 * Get the minimum allocatable size. We define the allocatable size as 365 * the vdev's asize rounded to the nearest metaslab. This allows us to 366 * replace or attach devices which don't have the same physical size but 367 * can still satisfy the same number of allocations. 368 */ 369 uint64_t 370 vdev_get_min_asize(vdev_t *vd) 371 { 372 vdev_t *pvd = vd->vdev_parent; 373 374 /* 375 * If our parent is NULL (inactive spare or cache) or is the root, 376 * just return our own asize. 377 */ 378 if (pvd == NULL) 379 return (vd->vdev_asize); 380 381 /* 382 * The top-level vdev just returns the allocatable size rounded 383 * to the nearest metaslab. 384 */ 385 if (vd == vd->vdev_top) 386 return (P2ALIGN_TYPED(vd->vdev_asize, 1ULL << vd->vdev_ms_shift, 387 uint64_t)); 388 389 return (pvd->vdev_ops->vdev_op_min_asize(pvd)); 390 } 391 392 void 393 vdev_set_min_asize(vdev_t *vd) 394 { 395 vd->vdev_min_asize = vdev_get_min_asize(vd); 396 397 for (int c = 0; c < vd->vdev_children; c++) 398 vdev_set_min_asize(vd->vdev_child[c]); 399 } 400 401 /* 402 * Get the minimal allocation size for the top-level vdev. 403 */ 404 uint64_t 405 vdev_get_min_alloc(vdev_t *vd) 406 { 407 uint64_t min_alloc = 1ULL << vd->vdev_ashift; 408 409 if (vd->vdev_ops->vdev_op_min_alloc != NULL) 410 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd); 411 412 return (min_alloc); 413 } 414 415 /* 416 * Get the parity level for a top-level vdev. 417 */ 418 uint64_t 419 vdev_get_nparity(vdev_t *vd) 420 { 421 uint64_t nparity = 0; 422 423 if (vd->vdev_ops->vdev_op_nparity != NULL) 424 nparity = vd->vdev_ops->vdev_op_nparity(vd); 425 426 return (nparity); 427 } 428 429 static int 430 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value) 431 { 432 spa_t *spa = vd->vdev_spa; 433 objset_t *mos = spa->spa_meta_objset; 434 uint64_t objid; 435 int err; 436 437 if (vd->vdev_root_zap != 0) { 438 objid = vd->vdev_root_zap; 439 } else if (vd->vdev_top_zap != 0) { 440 objid = vd->vdev_top_zap; 441 } else if (vd->vdev_leaf_zap != 0) { 442 objid = vd->vdev_leaf_zap; 443 } else { 444 return (EINVAL); 445 } 446 447 err = zap_lookup(mos, objid, vdev_prop_to_name(prop), 448 sizeof (uint64_t), 1, value); 449 450 if (err == ENOENT) 451 *value = vdev_prop_default_numeric(prop); 452 453 return (err); 454 } 455 456 /* 457 * Get the number of data disks for a top-level vdev. 458 */ 459 uint64_t 460 vdev_get_ndisks(vdev_t *vd) 461 { 462 uint64_t ndisks = 1; 463 464 if (vd->vdev_ops->vdev_op_ndisks != NULL) 465 ndisks = vd->vdev_ops->vdev_op_ndisks(vd); 466 467 return (ndisks); 468 } 469 470 vdev_t * 471 vdev_lookup_top(spa_t *spa, uint64_t vdev) 472 { 473 vdev_t *rvd = spa->spa_root_vdev; 474 475 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 476 477 if (vdev < rvd->vdev_children) { 478 ASSERT(rvd->vdev_child[vdev] != NULL); 479 return (rvd->vdev_child[vdev]); 480 } 481 482 return (NULL); 483 } 484 485 vdev_t * 486 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 487 { 488 vdev_t *mvd; 489 490 if (vd->vdev_guid == guid) 491 return (vd); 492 493 for (int c = 0; c < vd->vdev_children; c++) 494 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 495 NULL) 496 return (mvd); 497 498 return (NULL); 499 } 500 501 static int 502 vdev_count_leaves_impl(vdev_t *vd) 503 { 504 int n = 0; 505 506 if (vd->vdev_ops->vdev_op_leaf) 507 return (1); 508 509 for (int c = 0; c < vd->vdev_children; c++) 510 n += vdev_count_leaves_impl(vd->vdev_child[c]); 511 512 return (n); 513 } 514 515 int 516 vdev_count_leaves(spa_t *spa) 517 { 518 int rc; 519 520 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 521 rc = vdev_count_leaves_impl(spa->spa_root_vdev); 522 spa_config_exit(spa, SCL_VDEV, FTAG); 523 524 return (rc); 525 } 526 527 void 528 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 529 { 530 size_t oldsize, newsize; 531 uint64_t id = cvd->vdev_id; 532 vdev_t **newchild; 533 534 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 535 ASSERT(cvd->vdev_parent == NULL); 536 537 cvd->vdev_parent = pvd; 538 539 if (pvd == NULL) 540 return; 541 542 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 543 544 oldsize = pvd->vdev_children * sizeof (vdev_t *); 545 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 546 newsize = pvd->vdev_children * sizeof (vdev_t *); 547 548 newchild = kmem_alloc(newsize, KM_SLEEP); 549 if (pvd->vdev_child != NULL) { 550 memcpy(newchild, pvd->vdev_child, oldsize); 551 kmem_free(pvd->vdev_child, oldsize); 552 } 553 554 pvd->vdev_child = newchild; 555 pvd->vdev_child[id] = cvd; 556 557 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 558 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 559 560 /* 561 * Walk up all ancestors to update guid sum. 562 */ 563 for (; pvd != NULL; pvd = pvd->vdev_parent) 564 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 565 566 if (cvd->vdev_ops->vdev_op_leaf) { 567 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); 568 cvd->vdev_spa->spa_leaf_list_gen++; 569 } 570 } 571 572 void 573 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 574 { 575 int c; 576 uint_t id = cvd->vdev_id; 577 578 ASSERT(cvd->vdev_parent == pvd); 579 580 if (pvd == NULL) 581 return; 582 583 ASSERT(id < pvd->vdev_children); 584 ASSERT(pvd->vdev_child[id] == cvd); 585 586 pvd->vdev_child[id] = NULL; 587 cvd->vdev_parent = NULL; 588 589 for (c = 0; c < pvd->vdev_children; c++) 590 if (pvd->vdev_child[c]) 591 break; 592 593 if (c == pvd->vdev_children) { 594 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 595 pvd->vdev_child = NULL; 596 pvd->vdev_children = 0; 597 } 598 599 if (cvd->vdev_ops->vdev_op_leaf) { 600 spa_t *spa = cvd->vdev_spa; 601 list_remove(&spa->spa_leaf_list, cvd); 602 spa->spa_leaf_list_gen++; 603 } 604 605 /* 606 * Walk up all ancestors to update guid sum. 607 */ 608 for (; pvd != NULL; pvd = pvd->vdev_parent) 609 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 610 } 611 612 /* 613 * Remove any holes in the child array. 614 */ 615 void 616 vdev_compact_children(vdev_t *pvd) 617 { 618 vdev_t **newchild, *cvd; 619 int oldc = pvd->vdev_children; 620 int newc; 621 622 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 623 624 if (oldc == 0) 625 return; 626 627 for (int c = newc = 0; c < oldc; c++) 628 if (pvd->vdev_child[c]) 629 newc++; 630 631 if (newc > 0) { 632 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP); 633 634 for (int c = newc = 0; c < oldc; c++) { 635 if ((cvd = pvd->vdev_child[c]) != NULL) { 636 newchild[newc] = cvd; 637 cvd->vdev_id = newc++; 638 } 639 } 640 } else { 641 newchild = NULL; 642 } 643 644 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 645 pvd->vdev_child = newchild; 646 pvd->vdev_children = newc; 647 } 648 649 /* 650 * Allocate and minimally initialize a vdev_t. 651 */ 652 vdev_t * 653 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 654 { 655 vdev_t *vd; 656 vdev_indirect_config_t *vic; 657 658 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 659 vic = &vd->vdev_indirect_config; 660 661 if (spa->spa_root_vdev == NULL) { 662 ASSERT(ops == &vdev_root_ops); 663 spa->spa_root_vdev = vd; 664 spa->spa_load_guid = spa_generate_load_guid(); 665 } 666 667 if (guid == 0 && ops != &vdev_hole_ops) { 668 if (spa->spa_root_vdev == vd) { 669 /* 670 * The root vdev's guid will also be the pool guid, 671 * which must be unique among all pools. 672 */ 673 guid = spa_generate_guid(NULL); 674 } else { 675 /* 676 * Any other vdev's guid must be unique within the pool. 677 */ 678 guid = spa_generate_guid(spa); 679 } 680 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 681 } 682 683 vd->vdev_spa = spa; 684 vd->vdev_id = id; 685 vd->vdev_guid = guid; 686 vd->vdev_guid_sum = guid; 687 vd->vdev_ops = ops; 688 vd->vdev_state = VDEV_STATE_CLOSED; 689 vd->vdev_ishole = (ops == &vdev_hole_ops); 690 vic->vic_prev_indirect_vdev = UINT64_MAX; 691 692 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 693 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 694 vd->vdev_obsolete_segments = zfs_range_tree_create(NULL, 695 ZFS_RANGE_SEG64, NULL, 0, 0); 696 697 /* 698 * Initialize rate limit structs for events. We rate limit ZIO delay 699 * and checksum events so that we don't overwhelm ZED with thousands 700 * of events when a disk is acting up. 701 */ 702 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second, 703 1); 704 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_deadman_events_per_second, 705 1); 706 zfs_ratelimit_init(&vd->vdev_dio_verify_rl, 707 &zfs_dio_write_verify_events_per_second, 1); 708 zfs_ratelimit_init(&vd->vdev_checksum_rl, 709 &zfs_checksum_events_per_second, 1); 710 711 /* 712 * Default Thresholds for tuning ZED 713 */ 714 vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N); 715 vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T); 716 vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N); 717 vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T); 718 vd->vdev_slow_io_n = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N); 719 vd->vdev_slow_io_t = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T); 720 721 list_link_init(&vd->vdev_config_dirty_node); 722 list_link_init(&vd->vdev_state_dirty_node); 723 list_link_init(&vd->vdev_initialize_node); 724 list_link_init(&vd->vdev_leaf_node); 725 list_link_init(&vd->vdev_trim_node); 726 727 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL); 728 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 729 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 730 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); 731 732 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 733 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 734 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 735 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 736 737 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL); 738 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL); 739 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL); 740 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL); 741 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL); 742 cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL); 743 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL); 744 745 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL); 746 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL); 747 748 for (int t = 0; t < DTL_TYPES; t++) { 749 vd->vdev_dtl[t] = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, 750 NULL, 0, 0); 751 } 752 753 txg_list_create(&vd->vdev_ms_list, spa, 754 offsetof(struct metaslab, ms_txg_node)); 755 txg_list_create(&vd->vdev_dtl_list, spa, 756 offsetof(struct vdev, vdev_dtl_node)); 757 vd->vdev_stat.vs_timestamp = gethrtime(); 758 vdev_queue_init(vd); 759 760 return (vd); 761 } 762 763 /* 764 * Allocate a new vdev. The 'alloctype' is used to control whether we are 765 * creating a new vdev or loading an existing one - the behavior is slightly 766 * different for each case. 767 */ 768 int 769 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 770 int alloctype) 771 { 772 vdev_ops_t *ops; 773 const char *type; 774 uint64_t guid = 0, islog; 775 vdev_t *vd; 776 vdev_indirect_config_t *vic; 777 const char *tmp = NULL; 778 int rc; 779 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 780 boolean_t top_level = (parent && !parent->vdev_parent); 781 782 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 783 784 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 785 return (SET_ERROR(EINVAL)); 786 787 if ((ops = vdev_getops(type)) == NULL) 788 return (SET_ERROR(EINVAL)); 789 790 /* 791 * If this is a load, get the vdev guid from the nvlist. 792 * Otherwise, vdev_alloc_common() will generate one for us. 793 */ 794 if (alloctype == VDEV_ALLOC_LOAD) { 795 uint64_t label_id; 796 797 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 798 label_id != id) 799 return (SET_ERROR(EINVAL)); 800 801 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 802 return (SET_ERROR(EINVAL)); 803 } else if (alloctype == VDEV_ALLOC_SPARE) { 804 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 805 return (SET_ERROR(EINVAL)); 806 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 807 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 808 return (SET_ERROR(EINVAL)); 809 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 810 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 811 return (SET_ERROR(EINVAL)); 812 } 813 814 /* 815 * The first allocated vdev must be of type 'root'. 816 */ 817 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 818 return (SET_ERROR(EINVAL)); 819 820 /* 821 * Determine whether we're a log vdev. 822 */ 823 islog = 0; 824 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 825 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 826 return (SET_ERROR(ENOTSUP)); 827 828 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 829 return (SET_ERROR(ENOTSUP)); 830 831 if (top_level && alloctype == VDEV_ALLOC_ADD) { 832 const char *bias; 833 834 /* 835 * If creating a top-level vdev, check for allocation 836 * classes input. 837 */ 838 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 839 &bias) == 0) { 840 alloc_bias = vdev_derive_alloc_bias(bias); 841 842 /* spa_vdev_add() expects feature to be enabled */ 843 if (spa->spa_load_state != SPA_LOAD_CREATE && 844 !spa_feature_is_enabled(spa, 845 SPA_FEATURE_ALLOCATION_CLASSES)) { 846 return (SET_ERROR(ENOTSUP)); 847 } 848 } 849 850 /* spa_vdev_add() expects feature to be enabled */ 851 if (ops == &vdev_draid_ops && 852 spa->spa_load_state != SPA_LOAD_CREATE && 853 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) { 854 return (SET_ERROR(ENOTSUP)); 855 } 856 } 857 858 /* 859 * Initialize the vdev specific data. This is done before calling 860 * vdev_alloc_common() since it may fail and this simplifies the 861 * error reporting and cleanup code paths. 862 */ 863 void *tsd = NULL; 864 if (ops->vdev_op_init != NULL) { 865 rc = ops->vdev_op_init(spa, nv, &tsd); 866 if (rc != 0) { 867 return (rc); 868 } 869 } 870 871 vd = vdev_alloc_common(spa, id, guid, ops); 872 vd->vdev_tsd = tsd; 873 vd->vdev_islog = islog; 874 875 if (top_level && alloc_bias != VDEV_BIAS_NONE) 876 vd->vdev_alloc_bias = alloc_bias; 877 878 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0) 879 vd->vdev_path = spa_strdup(tmp); 880 881 /* 882 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a 883 * fault on a vdev and want it to persist across imports (like with 884 * zpool offline -f). 885 */ 886 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp); 887 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) { 888 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 889 vd->vdev_faulted = 1; 890 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 891 } 892 893 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0) 894 vd->vdev_devid = spa_strdup(tmp); 895 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0) 896 vd->vdev_physpath = spa_strdup(tmp); 897 898 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 899 &tmp) == 0) 900 vd->vdev_enc_sysfs_path = spa_strdup(tmp); 901 902 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0) 903 vd->vdev_fru = spa_strdup(tmp); 904 905 /* 906 * Set the whole_disk property. If it's not specified, leave the value 907 * as -1. 908 */ 909 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 910 &vd->vdev_wholedisk) != 0) 911 vd->vdev_wholedisk = -1ULL; 912 913 vic = &vd->vdev_indirect_config; 914 915 ASSERT0(vic->vic_mapping_object); 916 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 917 &vic->vic_mapping_object); 918 ASSERT0(vic->vic_births_object); 919 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 920 &vic->vic_births_object); 921 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 922 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 923 &vic->vic_prev_indirect_vdev); 924 925 /* 926 * Look for the 'not present' flag. This will only be set if the device 927 * was not present at the time of import. 928 */ 929 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 930 &vd->vdev_not_present); 931 932 /* 933 * Get the alignment requirement. Ignore pool ashift for vdev 934 * attach case. 935 */ 936 if (alloctype != VDEV_ALLOC_ATTACH) { 937 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, 938 &vd->vdev_ashift); 939 } else { 940 vd->vdev_attaching = B_TRUE; 941 } 942 943 /* 944 * Retrieve the vdev creation time. 945 */ 946 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 947 &vd->vdev_crtxg); 948 949 if (vd->vdev_ops == &vdev_root_ops && 950 (alloctype == VDEV_ALLOC_LOAD || 951 alloctype == VDEV_ALLOC_SPLIT || 952 alloctype == VDEV_ALLOC_ROOTPOOL)) { 953 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP, 954 &vd->vdev_root_zap); 955 } 956 957 /* 958 * If we're a top-level vdev, try to load the allocation parameters. 959 */ 960 if (top_level && 961 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 962 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 963 &vd->vdev_ms_array); 964 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 965 &vd->vdev_ms_shift); 966 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 967 &vd->vdev_asize); 968 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING, 969 &vd->vdev_noalloc); 970 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 971 &vd->vdev_removing); 972 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 973 &vd->vdev_top_zap); 974 vd->vdev_rz_expanding = nvlist_exists(nv, 975 ZPOOL_CONFIG_RAIDZ_EXPANDING); 976 } else { 977 ASSERT0(vd->vdev_top_zap); 978 } 979 980 if (top_level && alloctype != VDEV_ALLOC_ATTACH) { 981 ASSERT(alloctype == VDEV_ALLOC_LOAD || 982 alloctype == VDEV_ALLOC_ADD || 983 alloctype == VDEV_ALLOC_SPLIT || 984 alloctype == VDEV_ALLOC_ROOTPOOL); 985 /* Note: metaslab_group_create() is now deferred */ 986 } 987 988 if (vd->vdev_ops->vdev_op_leaf && 989 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 990 (void) nvlist_lookup_uint64(nv, 991 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 992 } else { 993 ASSERT0(vd->vdev_leaf_zap); 994 } 995 996 /* 997 * If we're a leaf vdev, try to load the DTL object and other state. 998 */ 999 1000 if (vd->vdev_ops->vdev_op_leaf && 1001 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 1002 alloctype == VDEV_ALLOC_ROOTPOOL)) { 1003 if (alloctype == VDEV_ALLOC_LOAD) { 1004 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 1005 &vd->vdev_dtl_object); 1006 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 1007 &vd->vdev_unspare); 1008 } 1009 1010 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 1011 uint64_t spare = 0; 1012 1013 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1014 &spare) == 0 && spare) 1015 spa_spare_add(vd); 1016 } 1017 1018 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 1019 &vd->vdev_offline); 1020 1021 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 1022 &vd->vdev_resilver_txg); 1023 1024 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 1025 &vd->vdev_rebuild_txg); 1026 1027 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) 1028 vdev_defer_resilver(vd); 1029 1030 /* 1031 * In general, when importing a pool we want to ignore the 1032 * persistent fault state, as the diagnosis made on another 1033 * system may not be valid in the current context. The only 1034 * exception is if we forced a vdev to a persistently faulted 1035 * state with 'zpool offline -f'. The persistent fault will 1036 * remain across imports until cleared. 1037 * 1038 * Local vdevs will remain in the faulted state. 1039 */ 1040 if (spa_load_state(spa) == SPA_LOAD_OPEN || 1041 spa_load_state(spa) == SPA_LOAD_IMPORT) { 1042 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 1043 &vd->vdev_faulted); 1044 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 1045 &vd->vdev_degraded); 1046 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 1047 &vd->vdev_removed); 1048 1049 if (vd->vdev_faulted || vd->vdev_degraded) { 1050 const char *aux; 1051 1052 vd->vdev_label_aux = 1053 VDEV_AUX_ERR_EXCEEDED; 1054 if (nvlist_lookup_string(nv, 1055 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 1056 strcmp(aux, "external") == 0) 1057 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 1058 else 1059 vd->vdev_faulted = 0ULL; 1060 } 1061 } 1062 } 1063 1064 /* 1065 * Add ourselves to the parent's list of children. 1066 */ 1067 vdev_add_child(parent, vd); 1068 1069 *vdp = vd; 1070 1071 return (0); 1072 } 1073 1074 void 1075 vdev_free(vdev_t *vd) 1076 { 1077 spa_t *spa = vd->vdev_spa; 1078 1079 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 1080 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1081 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 1082 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); 1083 1084 /* 1085 * Scan queues are normally destroyed at the end of a scan. If the 1086 * queue exists here, that implies the vdev is being removed while 1087 * the scan is still running. 1088 */ 1089 if (vd->vdev_scan_io_queue != NULL) { 1090 mutex_enter(&vd->vdev_scan_io_queue_lock); 1091 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); 1092 vd->vdev_scan_io_queue = NULL; 1093 mutex_exit(&vd->vdev_scan_io_queue_lock); 1094 } 1095 1096 /* 1097 * vdev_free() implies closing the vdev first. This is simpler than 1098 * trying to ensure complicated semantics for all callers. 1099 */ 1100 vdev_close(vd); 1101 1102 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 1103 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 1104 1105 /* 1106 * Free all children. 1107 */ 1108 for (int c = 0; c < vd->vdev_children; c++) 1109 vdev_free(vd->vdev_child[c]); 1110 1111 ASSERT(vd->vdev_child == NULL); 1112 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 1113 1114 if (vd->vdev_ops->vdev_op_fini != NULL) 1115 vd->vdev_ops->vdev_op_fini(vd); 1116 1117 /* 1118 * Discard allocation state. 1119 */ 1120 if (vd->vdev_mg != NULL) { 1121 vdev_metaslab_fini(vd); 1122 metaslab_group_destroy(vd->vdev_mg); 1123 vd->vdev_mg = NULL; 1124 } 1125 if (vd->vdev_log_mg != NULL) { 1126 ASSERT0(vd->vdev_ms_count); 1127 metaslab_group_destroy(vd->vdev_log_mg); 1128 vd->vdev_log_mg = NULL; 1129 } 1130 1131 ASSERT0(vd->vdev_stat.vs_space); 1132 ASSERT0(vd->vdev_stat.vs_dspace); 1133 ASSERT0(vd->vdev_stat.vs_alloc); 1134 1135 /* 1136 * Remove this vdev from its parent's child list. 1137 */ 1138 vdev_remove_child(vd->vdev_parent, vd); 1139 1140 ASSERT(vd->vdev_parent == NULL); 1141 ASSERT(!list_link_active(&vd->vdev_leaf_node)); 1142 1143 /* 1144 * Clean up vdev structure. 1145 */ 1146 vdev_queue_fini(vd); 1147 1148 if (vd->vdev_path) 1149 spa_strfree(vd->vdev_path); 1150 if (vd->vdev_devid) 1151 spa_strfree(vd->vdev_devid); 1152 if (vd->vdev_physpath) 1153 spa_strfree(vd->vdev_physpath); 1154 1155 if (vd->vdev_enc_sysfs_path) 1156 spa_strfree(vd->vdev_enc_sysfs_path); 1157 1158 if (vd->vdev_fru) 1159 spa_strfree(vd->vdev_fru); 1160 1161 if (vd->vdev_isspare) 1162 spa_spare_remove(vd); 1163 if (vd->vdev_isl2cache) 1164 spa_l2cache_remove(vd); 1165 1166 txg_list_destroy(&vd->vdev_ms_list); 1167 txg_list_destroy(&vd->vdev_dtl_list); 1168 1169 mutex_enter(&vd->vdev_dtl_lock); 1170 space_map_close(vd->vdev_dtl_sm); 1171 for (int t = 0; t < DTL_TYPES; t++) { 1172 zfs_range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 1173 zfs_range_tree_destroy(vd->vdev_dtl[t]); 1174 } 1175 mutex_exit(&vd->vdev_dtl_lock); 1176 1177 EQUIV(vd->vdev_indirect_births != NULL, 1178 vd->vdev_indirect_mapping != NULL); 1179 if (vd->vdev_indirect_births != NULL) { 1180 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1181 vdev_indirect_births_close(vd->vdev_indirect_births); 1182 } 1183 1184 if (vd->vdev_obsolete_sm != NULL) { 1185 ASSERT(vd->vdev_removing || 1186 vd->vdev_ops == &vdev_indirect_ops); 1187 space_map_close(vd->vdev_obsolete_sm); 1188 vd->vdev_obsolete_sm = NULL; 1189 } 1190 zfs_range_tree_destroy(vd->vdev_obsolete_segments); 1191 rw_destroy(&vd->vdev_indirect_rwlock); 1192 mutex_destroy(&vd->vdev_obsolete_lock); 1193 1194 mutex_destroy(&vd->vdev_dtl_lock); 1195 mutex_destroy(&vd->vdev_stat_lock); 1196 mutex_destroy(&vd->vdev_probe_lock); 1197 mutex_destroy(&vd->vdev_scan_io_queue_lock); 1198 1199 mutex_destroy(&vd->vdev_initialize_lock); 1200 mutex_destroy(&vd->vdev_initialize_io_lock); 1201 cv_destroy(&vd->vdev_initialize_io_cv); 1202 cv_destroy(&vd->vdev_initialize_cv); 1203 1204 mutex_destroy(&vd->vdev_trim_lock); 1205 mutex_destroy(&vd->vdev_autotrim_lock); 1206 mutex_destroy(&vd->vdev_trim_io_lock); 1207 cv_destroy(&vd->vdev_trim_cv); 1208 cv_destroy(&vd->vdev_autotrim_cv); 1209 cv_destroy(&vd->vdev_autotrim_kick_cv); 1210 cv_destroy(&vd->vdev_trim_io_cv); 1211 1212 mutex_destroy(&vd->vdev_rebuild_lock); 1213 cv_destroy(&vd->vdev_rebuild_cv); 1214 1215 zfs_ratelimit_fini(&vd->vdev_delay_rl); 1216 zfs_ratelimit_fini(&vd->vdev_deadman_rl); 1217 zfs_ratelimit_fini(&vd->vdev_dio_verify_rl); 1218 zfs_ratelimit_fini(&vd->vdev_checksum_rl); 1219 1220 if (vd == spa->spa_root_vdev) 1221 spa->spa_root_vdev = NULL; 1222 1223 kmem_free(vd, sizeof (vdev_t)); 1224 } 1225 1226 /* 1227 * Transfer top-level vdev state from svd to tvd. 1228 */ 1229 static void 1230 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 1231 { 1232 spa_t *spa = svd->vdev_spa; 1233 metaslab_t *msp; 1234 vdev_t *vd; 1235 int t; 1236 1237 ASSERT(tvd == tvd->vdev_top); 1238 1239 tvd->vdev_ms_array = svd->vdev_ms_array; 1240 tvd->vdev_ms_shift = svd->vdev_ms_shift; 1241 tvd->vdev_ms_count = svd->vdev_ms_count; 1242 tvd->vdev_top_zap = svd->vdev_top_zap; 1243 1244 svd->vdev_ms_array = 0; 1245 svd->vdev_ms_shift = 0; 1246 svd->vdev_ms_count = 0; 1247 svd->vdev_top_zap = 0; 1248 1249 if (tvd->vdev_mg) 1250 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 1251 if (tvd->vdev_log_mg) 1252 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg); 1253 tvd->vdev_mg = svd->vdev_mg; 1254 tvd->vdev_log_mg = svd->vdev_log_mg; 1255 tvd->vdev_ms = svd->vdev_ms; 1256 1257 svd->vdev_mg = NULL; 1258 svd->vdev_log_mg = NULL; 1259 svd->vdev_ms = NULL; 1260 1261 if (tvd->vdev_mg != NULL) 1262 tvd->vdev_mg->mg_vd = tvd; 1263 if (tvd->vdev_log_mg != NULL) 1264 tvd->vdev_log_mg->mg_vd = tvd; 1265 1266 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 1267 svd->vdev_checkpoint_sm = NULL; 1268 1269 tvd->vdev_alloc_bias = svd->vdev_alloc_bias; 1270 svd->vdev_alloc_bias = VDEV_BIAS_NONE; 1271 1272 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 1273 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 1274 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 1275 1276 svd->vdev_stat.vs_alloc = 0; 1277 svd->vdev_stat.vs_space = 0; 1278 svd->vdev_stat.vs_dspace = 0; 1279 1280 /* 1281 * State which may be set on a top-level vdev that's in the 1282 * process of being removed. 1283 */ 1284 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 1285 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 1286 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 1287 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); 1288 ASSERT3P(tvd->vdev_indirect_births, ==, NULL); 1289 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); 1290 ASSERT0(tvd->vdev_noalloc); 1291 ASSERT0(tvd->vdev_removing); 1292 ASSERT0(tvd->vdev_rebuilding); 1293 tvd->vdev_noalloc = svd->vdev_noalloc; 1294 tvd->vdev_removing = svd->vdev_removing; 1295 tvd->vdev_rebuilding = svd->vdev_rebuilding; 1296 tvd->vdev_rebuild_config = svd->vdev_rebuild_config; 1297 tvd->vdev_indirect_config = svd->vdev_indirect_config; 1298 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 1299 tvd->vdev_indirect_births = svd->vdev_indirect_births; 1300 zfs_range_tree_swap(&svd->vdev_obsolete_segments, 1301 &tvd->vdev_obsolete_segments); 1302 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 1303 svd->vdev_indirect_config.vic_mapping_object = 0; 1304 svd->vdev_indirect_config.vic_births_object = 0; 1305 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 1306 svd->vdev_indirect_mapping = NULL; 1307 svd->vdev_indirect_births = NULL; 1308 svd->vdev_obsolete_sm = NULL; 1309 svd->vdev_noalloc = 0; 1310 svd->vdev_removing = 0; 1311 svd->vdev_rebuilding = 0; 1312 1313 for (t = 0; t < TXG_SIZE; t++) { 1314 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 1315 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 1316 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 1317 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 1318 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 1319 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 1320 } 1321 1322 if (list_link_active(&svd->vdev_config_dirty_node)) { 1323 vdev_config_clean(svd); 1324 vdev_config_dirty(tvd); 1325 } 1326 1327 if (list_link_active(&svd->vdev_state_dirty_node)) { 1328 vdev_state_clean(svd); 1329 vdev_state_dirty(tvd); 1330 } 1331 1332 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 1333 svd->vdev_deflate_ratio = 0; 1334 1335 tvd->vdev_islog = svd->vdev_islog; 1336 svd->vdev_islog = 0; 1337 1338 dsl_scan_io_queue_vdev_xfer(svd, tvd); 1339 } 1340 1341 static void 1342 vdev_top_update(vdev_t *tvd, vdev_t *vd) 1343 { 1344 if (vd == NULL) 1345 return; 1346 1347 vd->vdev_top = tvd; 1348 1349 for (int c = 0; c < vd->vdev_children; c++) 1350 vdev_top_update(tvd, vd->vdev_child[c]); 1351 } 1352 1353 /* 1354 * Add a mirror/replacing vdev above an existing vdev. There is no need to 1355 * call .vdev_op_init() since mirror/replacing vdevs do not have private state. 1356 */ 1357 vdev_t * 1358 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 1359 { 1360 spa_t *spa = cvd->vdev_spa; 1361 vdev_t *pvd = cvd->vdev_parent; 1362 vdev_t *mvd; 1363 1364 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1365 1366 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 1367 1368 mvd->vdev_asize = cvd->vdev_asize; 1369 mvd->vdev_min_asize = cvd->vdev_min_asize; 1370 mvd->vdev_max_asize = cvd->vdev_max_asize; 1371 mvd->vdev_psize = cvd->vdev_psize; 1372 mvd->vdev_ashift = cvd->vdev_ashift; 1373 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift; 1374 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift; 1375 mvd->vdev_state = cvd->vdev_state; 1376 mvd->vdev_crtxg = cvd->vdev_crtxg; 1377 1378 vdev_remove_child(pvd, cvd); 1379 vdev_add_child(pvd, mvd); 1380 cvd->vdev_id = mvd->vdev_children; 1381 vdev_add_child(mvd, cvd); 1382 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1383 1384 if (mvd == mvd->vdev_top) 1385 vdev_top_transfer(cvd, mvd); 1386 1387 return (mvd); 1388 } 1389 1390 /* 1391 * Remove a 1-way mirror/replacing vdev from the tree. 1392 */ 1393 void 1394 vdev_remove_parent(vdev_t *cvd) 1395 { 1396 vdev_t *mvd = cvd->vdev_parent; 1397 vdev_t *pvd = mvd->vdev_parent; 1398 1399 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1400 1401 ASSERT(mvd->vdev_children == 1); 1402 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1403 mvd->vdev_ops == &vdev_replacing_ops || 1404 mvd->vdev_ops == &vdev_spare_ops); 1405 cvd->vdev_ashift = mvd->vdev_ashift; 1406 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift; 1407 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift; 1408 vdev_remove_child(mvd, cvd); 1409 vdev_remove_child(pvd, mvd); 1410 1411 /* 1412 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1413 * Otherwise, we could have detached an offline device, and when we 1414 * go to import the pool we'll think we have two top-level vdevs, 1415 * instead of a different version of the same top-level vdev. 1416 */ 1417 if (mvd->vdev_top == mvd) { 1418 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1419 cvd->vdev_orig_guid = cvd->vdev_guid; 1420 cvd->vdev_guid += guid_delta; 1421 cvd->vdev_guid_sum += guid_delta; 1422 1423 /* 1424 * If pool not set for autoexpand, we need to also preserve 1425 * mvd's asize to prevent automatic expansion of cvd. 1426 * Otherwise if we are adjusting the mirror by attaching and 1427 * detaching children of non-uniform sizes, the mirror could 1428 * autoexpand, unexpectedly requiring larger devices to 1429 * re-establish the mirror. 1430 */ 1431 if (!cvd->vdev_spa->spa_autoexpand) 1432 cvd->vdev_asize = mvd->vdev_asize; 1433 } 1434 cvd->vdev_id = mvd->vdev_id; 1435 vdev_add_child(pvd, cvd); 1436 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1437 1438 if (cvd == cvd->vdev_top) 1439 vdev_top_transfer(mvd, cvd); 1440 1441 ASSERT(mvd->vdev_children == 0); 1442 vdev_free(mvd); 1443 } 1444 1445 /* 1446 * Choose GCD for spa_gcd_alloc. 1447 */ 1448 static uint64_t 1449 vdev_gcd(uint64_t a, uint64_t b) 1450 { 1451 while (b != 0) { 1452 uint64_t t = b; 1453 b = a % b; 1454 a = t; 1455 } 1456 return (a); 1457 } 1458 1459 /* 1460 * Set spa_min_alloc and spa_gcd_alloc. 1461 */ 1462 static void 1463 vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc) 1464 { 1465 if (min_alloc < spa->spa_min_alloc) 1466 spa->spa_min_alloc = min_alloc; 1467 if (spa->spa_gcd_alloc == INT_MAX) { 1468 spa->spa_gcd_alloc = min_alloc; 1469 } else { 1470 spa->spa_gcd_alloc = vdev_gcd(min_alloc, 1471 spa->spa_gcd_alloc); 1472 } 1473 } 1474 1475 void 1476 vdev_metaslab_group_create(vdev_t *vd) 1477 { 1478 spa_t *spa = vd->vdev_spa; 1479 1480 /* 1481 * metaslab_group_create was delayed until allocation bias was available 1482 */ 1483 if (vd->vdev_mg == NULL) { 1484 metaslab_class_t *mc; 1485 1486 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) 1487 vd->vdev_alloc_bias = VDEV_BIAS_LOG; 1488 1489 ASSERT3U(vd->vdev_islog, ==, 1490 (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); 1491 1492 switch (vd->vdev_alloc_bias) { 1493 case VDEV_BIAS_LOG: 1494 mc = spa_log_class(spa); 1495 break; 1496 case VDEV_BIAS_SPECIAL: 1497 mc = spa_special_class(spa); 1498 break; 1499 case VDEV_BIAS_DEDUP: 1500 mc = spa_dedup_class(spa); 1501 break; 1502 default: 1503 mc = spa_normal_class(spa); 1504 } 1505 1506 vd->vdev_mg = metaslab_group_create(mc, vd); 1507 1508 if (!vd->vdev_islog) { 1509 vd->vdev_log_mg = metaslab_group_create( 1510 spa_embedded_log_class(spa), vd); 1511 } 1512 1513 /* 1514 * The spa ashift min/max only apply for the normal metaslab 1515 * class. Class destination is late binding so ashift boundary 1516 * setting had to wait until now. 1517 */ 1518 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1519 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { 1520 if (vd->vdev_ashift > spa->spa_max_ashift) 1521 spa->spa_max_ashift = vd->vdev_ashift; 1522 if (vd->vdev_ashift < spa->spa_min_ashift) 1523 spa->spa_min_ashift = vd->vdev_ashift; 1524 1525 uint64_t min_alloc = vdev_get_min_alloc(vd); 1526 vdev_spa_set_alloc(spa, min_alloc); 1527 } 1528 } 1529 } 1530 1531 void 1532 vdev_update_nonallocating_space(vdev_t *vd, boolean_t add) 1533 { 1534 spa_t *spa = vd->vdev_spa; 1535 1536 if (vd->vdev_mg->mg_class != spa_normal_class(spa)) 1537 return; 1538 1539 uint64_t raw_space = metaslab_group_get_space(vd->vdev_mg); 1540 uint64_t dspace = spa_deflate(spa) ? 1541 vdev_deflated_space(vd, raw_space) : raw_space; 1542 if (add) { 1543 spa->spa_nonallocating_dspace += dspace; 1544 } else { 1545 ASSERT3U(spa->spa_nonallocating_dspace, >=, dspace); 1546 spa->spa_nonallocating_dspace -= dspace; 1547 } 1548 } 1549 1550 int 1551 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1552 { 1553 spa_t *spa = vd->vdev_spa; 1554 uint64_t oldc = vd->vdev_ms_count; 1555 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1556 metaslab_t **mspp; 1557 int error; 1558 boolean_t expanding = (oldc != 0); 1559 1560 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1561 1562 /* 1563 * This vdev is not being allocated from yet or is a hole. 1564 */ 1565 if (vd->vdev_ms_shift == 0) 1566 return (0); 1567 1568 ASSERT(!vd->vdev_ishole); 1569 1570 ASSERT(oldc <= newc); 1571 1572 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1573 1574 if (expanding) { 1575 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp)); 1576 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1577 } 1578 1579 vd->vdev_ms = mspp; 1580 vd->vdev_ms_count = newc; 1581 1582 for (uint64_t m = oldc; m < newc; m++) { 1583 uint64_t object = 0; 1584 /* 1585 * vdev_ms_array may be 0 if we are creating the "fake" 1586 * metaslabs for an indirect vdev for zdb's leak detection. 1587 * See zdb_leak_init(). 1588 */ 1589 if (txg == 0 && vd->vdev_ms_array != 0) { 1590 error = dmu_read(spa->spa_meta_objset, 1591 vd->vdev_ms_array, 1592 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1593 DMU_READ_PREFETCH); 1594 if (error != 0) { 1595 vdev_dbgmsg(vd, "unable to read the metaslab " 1596 "array [error=%d]", error); 1597 return (error); 1598 } 1599 } 1600 1601 error = metaslab_init(vd->vdev_mg, m, object, txg, 1602 &(vd->vdev_ms[m])); 1603 if (error != 0) { 1604 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1605 error); 1606 return (error); 1607 } 1608 } 1609 1610 /* 1611 * Find the emptiest metaslab on the vdev and mark it for use for 1612 * embedded slog by moving it from the regular to the log metaslab 1613 * group. 1614 */ 1615 if (vd->vdev_mg->mg_class == spa_normal_class(spa) && 1616 vd->vdev_ms_count > zfs_embedded_slog_min_ms && 1617 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) { 1618 uint64_t slog_msid = 0; 1619 uint64_t smallest = UINT64_MAX; 1620 1621 /* 1622 * Note, we only search the new metaslabs, because the old 1623 * (pre-existing) ones may be active (e.g. have non-empty 1624 * range_tree's), and we don't move them to the new 1625 * metaslab_t. 1626 */ 1627 for (uint64_t m = oldc; m < newc; m++) { 1628 uint64_t alloc = 1629 space_map_allocated(vd->vdev_ms[m]->ms_sm); 1630 if (alloc < smallest) { 1631 slog_msid = m; 1632 smallest = alloc; 1633 } 1634 } 1635 metaslab_t *slog_ms = vd->vdev_ms[slog_msid]; 1636 /* 1637 * The metaslab was marked as dirty at the end of 1638 * metaslab_init(). Remove it from the dirty list so that we 1639 * can uninitialize and reinitialize it to the new class. 1640 */ 1641 if (txg != 0) { 1642 (void) txg_list_remove_this(&vd->vdev_ms_list, 1643 slog_ms, txg); 1644 } 1645 uint64_t sm_obj = space_map_object(slog_ms->ms_sm); 1646 metaslab_fini(slog_ms); 1647 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg, 1648 &vd->vdev_ms[slog_msid])); 1649 } 1650 1651 if (txg == 0) 1652 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1653 1654 /* 1655 * If the vdev is marked as non-allocating then don't 1656 * activate the metaslabs since we want to ensure that 1657 * no allocations are performed on this device. 1658 */ 1659 if (vd->vdev_noalloc) { 1660 /* track non-allocating vdev space */ 1661 vdev_update_nonallocating_space(vd, B_TRUE); 1662 } else if (!expanding) { 1663 metaslab_group_activate(vd->vdev_mg); 1664 if (vd->vdev_log_mg != NULL) 1665 metaslab_group_activate(vd->vdev_log_mg); 1666 } 1667 1668 if (txg == 0) 1669 spa_config_exit(spa, SCL_ALLOC, FTAG); 1670 1671 return (0); 1672 } 1673 1674 void 1675 vdev_metaslab_fini(vdev_t *vd) 1676 { 1677 if (vd->vdev_checkpoint_sm != NULL) { 1678 ASSERT(spa_feature_is_active(vd->vdev_spa, 1679 SPA_FEATURE_POOL_CHECKPOINT)); 1680 space_map_close(vd->vdev_checkpoint_sm); 1681 /* 1682 * Even though we close the space map, we need to set its 1683 * pointer to NULL. The reason is that vdev_metaslab_fini() 1684 * may be called multiple times for certain operations 1685 * (i.e. when destroying a pool) so we need to ensure that 1686 * this clause never executes twice. This logic is similar 1687 * to the one used for the vdev_ms clause below. 1688 */ 1689 vd->vdev_checkpoint_sm = NULL; 1690 } 1691 1692 if (vd->vdev_ms != NULL) { 1693 metaslab_group_t *mg = vd->vdev_mg; 1694 1695 metaslab_group_passivate(mg); 1696 if (vd->vdev_log_mg != NULL) { 1697 ASSERT(!vd->vdev_islog); 1698 metaslab_group_passivate(vd->vdev_log_mg); 1699 } 1700 1701 uint64_t count = vd->vdev_ms_count; 1702 for (uint64_t m = 0; m < count; m++) { 1703 metaslab_t *msp = vd->vdev_ms[m]; 1704 if (msp != NULL) 1705 metaslab_fini(msp); 1706 } 1707 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1708 vd->vdev_ms = NULL; 1709 vd->vdev_ms_count = 0; 1710 1711 for (int i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) { 1712 ASSERT0(mg->mg_histogram[i]); 1713 if (vd->vdev_log_mg != NULL) 1714 ASSERT0(vd->vdev_log_mg->mg_histogram[i]); 1715 } 1716 } 1717 ASSERT0(vd->vdev_ms_count); 1718 } 1719 1720 typedef struct vdev_probe_stats { 1721 boolean_t vps_readable; 1722 boolean_t vps_writeable; 1723 boolean_t vps_zio_done_probe; 1724 int vps_flags; 1725 } vdev_probe_stats_t; 1726 1727 static void 1728 vdev_probe_done(zio_t *zio) 1729 { 1730 spa_t *spa = zio->io_spa; 1731 vdev_t *vd = zio->io_vd; 1732 vdev_probe_stats_t *vps = zio->io_private; 1733 1734 ASSERT(vd->vdev_probe_zio != NULL); 1735 1736 if (zio->io_type == ZIO_TYPE_READ) { 1737 if (zio->io_error == 0) 1738 vps->vps_readable = 1; 1739 if (zio->io_error == 0 && spa_writeable(spa)) { 1740 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1741 zio->io_offset, zio->io_size, zio->io_abd, 1742 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1743 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1744 } else { 1745 abd_free(zio->io_abd); 1746 } 1747 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1748 if (zio->io_error == 0) 1749 vps->vps_writeable = 1; 1750 abd_free(zio->io_abd); 1751 } else if (zio->io_type == ZIO_TYPE_NULL) { 1752 zio_t *pio; 1753 zio_link_t *zl; 1754 1755 vd->vdev_cant_read |= !vps->vps_readable; 1756 vd->vdev_cant_write |= !vps->vps_writeable; 1757 vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u", 1758 vd->vdev_cant_read, vd->vdev_cant_write); 1759 1760 if (vdev_readable(vd) && 1761 (vdev_writeable(vd) || !spa_writeable(spa))) { 1762 zio->io_error = 0; 1763 } else { 1764 ASSERT(zio->io_error != 0); 1765 vdev_dbgmsg(vd, "failed probe"); 1766 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1767 spa, vd, NULL, NULL, 0); 1768 zio->io_error = SET_ERROR(ENXIO); 1769 1770 /* 1771 * If this probe was initiated from zio pipeline, then 1772 * change the state in a spa_async_request. Probes that 1773 * were initiated from a vdev_open can change the state 1774 * as part of the open call. 1775 */ 1776 if (vps->vps_zio_done_probe) { 1777 vd->vdev_fault_wanted = B_TRUE; 1778 spa_async_request(spa, SPA_ASYNC_FAULT_VDEV); 1779 } 1780 } 1781 1782 mutex_enter(&vd->vdev_probe_lock); 1783 ASSERT(vd->vdev_probe_zio == zio); 1784 vd->vdev_probe_zio = NULL; 1785 mutex_exit(&vd->vdev_probe_lock); 1786 1787 zl = NULL; 1788 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1789 if (!vdev_accessible(vd, pio)) 1790 pio->io_error = SET_ERROR(ENXIO); 1791 1792 kmem_free(vps, sizeof (*vps)); 1793 } 1794 } 1795 1796 /* 1797 * Determine whether this device is accessible. 1798 * 1799 * Read and write to several known locations: the pad regions of each 1800 * vdev label but the first, which we leave alone in case it contains 1801 * a VTOC. 1802 */ 1803 zio_t * 1804 vdev_probe(vdev_t *vd, zio_t *zio) 1805 { 1806 spa_t *spa = vd->vdev_spa; 1807 vdev_probe_stats_t *vps = NULL; 1808 zio_t *pio; 1809 1810 ASSERT(vd->vdev_ops->vdev_op_leaf); 1811 1812 /* 1813 * Don't probe the probe. 1814 */ 1815 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1816 return (NULL); 1817 1818 /* 1819 * To prevent 'probe storms' when a device fails, we create 1820 * just one probe i/o at a time. All zios that want to probe 1821 * this vdev will become parents of the probe io. 1822 */ 1823 mutex_enter(&vd->vdev_probe_lock); 1824 1825 if ((pio = vd->vdev_probe_zio) == NULL) { 1826 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1827 1828 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1829 ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD; 1830 vps->vps_zio_done_probe = (zio != NULL); 1831 1832 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1833 /* 1834 * vdev_cant_read and vdev_cant_write can only 1835 * transition from TRUE to FALSE when we have the 1836 * SCL_ZIO lock as writer; otherwise they can only 1837 * transition from FALSE to TRUE. This ensures that 1838 * any zio looking at these values can assume that 1839 * failures persist for the life of the I/O. That's 1840 * important because when a device has intermittent 1841 * connectivity problems, we want to ensure that 1842 * they're ascribed to the device (ENXIO) and not 1843 * the zio (EIO). 1844 * 1845 * Since we hold SCL_ZIO as writer here, clear both 1846 * values so the probe can reevaluate from first 1847 * principles. 1848 */ 1849 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1850 vd->vdev_cant_read = B_FALSE; 1851 vd->vdev_cant_write = B_FALSE; 1852 } 1853 1854 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1855 vdev_probe_done, vps, 1856 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1857 } 1858 1859 if (zio != NULL) 1860 zio_add_child(zio, pio); 1861 1862 mutex_exit(&vd->vdev_probe_lock); 1863 1864 if (vps == NULL) { 1865 ASSERT(zio != NULL); 1866 return (NULL); 1867 } 1868 1869 for (int l = 1; l < VDEV_LABELS; l++) { 1870 zio_nowait(zio_read_phys(pio, vd, 1871 vdev_label_offset(vd->vdev_psize, l, 1872 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE, 1873 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1874 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1875 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1876 } 1877 1878 if (zio == NULL) 1879 return (pio); 1880 1881 zio_nowait(pio); 1882 return (NULL); 1883 } 1884 1885 static void 1886 vdev_load_child(void *arg) 1887 { 1888 vdev_t *vd = arg; 1889 1890 vd->vdev_load_error = vdev_load(vd); 1891 } 1892 1893 static void 1894 vdev_open_child(void *arg) 1895 { 1896 vdev_t *vd = arg; 1897 1898 vd->vdev_open_thread = curthread; 1899 vd->vdev_open_error = vdev_open(vd); 1900 vd->vdev_open_thread = NULL; 1901 } 1902 1903 static boolean_t 1904 vdev_uses_zvols(vdev_t *vd) 1905 { 1906 #ifdef _KERNEL 1907 if (zvol_is_zvol(vd->vdev_path)) 1908 return (B_TRUE); 1909 #endif 1910 1911 for (int c = 0; c < vd->vdev_children; c++) 1912 if (vdev_uses_zvols(vd->vdev_child[c])) 1913 return (B_TRUE); 1914 1915 return (B_FALSE); 1916 } 1917 1918 /* 1919 * Returns B_TRUE if the passed child should be opened. 1920 */ 1921 static boolean_t 1922 vdev_default_open_children_func(vdev_t *vd) 1923 { 1924 (void) vd; 1925 return (B_TRUE); 1926 } 1927 1928 /* 1929 * Open the requested child vdevs. If any of the leaf vdevs are using 1930 * a ZFS volume then do the opens in a single thread. This avoids a 1931 * deadlock when the current thread is holding the spa_namespace_lock. 1932 */ 1933 static void 1934 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func) 1935 { 1936 int children = vd->vdev_children; 1937 1938 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri, 1939 children, children, TASKQ_PREPOPULATE); 1940 vd->vdev_nonrot = B_TRUE; 1941 1942 for (int c = 0; c < children; c++) { 1943 vdev_t *cvd = vd->vdev_child[c]; 1944 1945 if (open_func(cvd) == B_FALSE) 1946 continue; 1947 1948 if (tq == NULL || vdev_uses_zvols(vd)) { 1949 cvd->vdev_open_error = vdev_open(cvd); 1950 } else { 1951 VERIFY(taskq_dispatch(tq, vdev_open_child, 1952 cvd, TQ_SLEEP) != TASKQID_INVALID); 1953 } 1954 } 1955 1956 if (tq != NULL) 1957 taskq_wait(tq); 1958 for (int c = 0; c < children; c++) { 1959 vdev_t *cvd = vd->vdev_child[c]; 1960 vd->vdev_nonrot &= cvd->vdev_nonrot; 1961 } 1962 1963 if (tq != NULL) 1964 taskq_destroy(tq); 1965 } 1966 1967 /* 1968 * Open all child vdevs. 1969 */ 1970 void 1971 vdev_open_children(vdev_t *vd) 1972 { 1973 vdev_open_children_impl(vd, vdev_default_open_children_func); 1974 } 1975 1976 /* 1977 * Conditionally open a subset of child vdevs. 1978 */ 1979 void 1980 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func) 1981 { 1982 vdev_open_children_impl(vd, open_func); 1983 } 1984 1985 /* 1986 * Compute the raidz-deflation ratio. Note, we hard-code 128k (1 << 17) 1987 * because it is the "typical" blocksize. Even though SPA_MAXBLOCKSIZE 1988 * changed, this algorithm can not change, otherwise it would inconsistently 1989 * account for existing bp's. We also hard-code txg 0 for the same reason 1990 * since expanded RAIDZ vdevs can use a different asize for different birth 1991 * txg's. 1992 */ 1993 static void 1994 vdev_set_deflate_ratio(vdev_t *vd) 1995 { 1996 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 1997 vd->vdev_deflate_ratio = (1 << 17) / 1998 (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >> 1999 SPA_MINBLOCKSHIFT); 2000 } 2001 } 2002 2003 /* 2004 * Choose the best of two ashifts, preferring one between logical ashift 2005 * (absolute minimum) and administrator defined maximum, otherwise take 2006 * the biggest of the two. 2007 */ 2008 uint64_t 2009 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b) 2010 { 2011 if (a > logical && a <= zfs_vdev_max_auto_ashift) { 2012 if (b <= logical || b > zfs_vdev_max_auto_ashift) 2013 return (a); 2014 else 2015 return (MAX(a, b)); 2016 } else if (b <= logical || b > zfs_vdev_max_auto_ashift) 2017 return (MAX(a, b)); 2018 return (b); 2019 } 2020 2021 /* 2022 * Maximize performance by inflating the configured ashift for top level 2023 * vdevs to be as close to the physical ashift as possible while maintaining 2024 * administrator defined limits and ensuring it doesn't go below the 2025 * logical ashift. 2026 */ 2027 static void 2028 vdev_ashift_optimize(vdev_t *vd) 2029 { 2030 ASSERT(vd == vd->vdev_top); 2031 2032 if (vd->vdev_ashift < vd->vdev_physical_ashift && 2033 vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) { 2034 vd->vdev_ashift = MIN( 2035 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift), 2036 MAX(zfs_vdev_min_auto_ashift, 2037 vd->vdev_physical_ashift)); 2038 } else { 2039 /* 2040 * If the logical and physical ashifts are the same, then 2041 * we ensure that the top-level vdev's ashift is not smaller 2042 * than our minimum ashift value. For the unusual case 2043 * where logical ashift > physical ashift, we can't cap 2044 * the calculated ashift based on max ashift as that 2045 * would cause failures. 2046 * We still check if we need to increase it to match 2047 * the min ashift. 2048 */ 2049 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift, 2050 vd->vdev_ashift); 2051 } 2052 } 2053 2054 /* 2055 * Prepare a virtual device for access. 2056 */ 2057 int 2058 vdev_open(vdev_t *vd) 2059 { 2060 spa_t *spa = vd->vdev_spa; 2061 int error; 2062 uint64_t osize = 0; 2063 uint64_t max_osize = 0; 2064 uint64_t asize, max_asize, psize; 2065 uint64_t logical_ashift = 0; 2066 uint64_t physical_ashift = 0; 2067 2068 ASSERT(vd->vdev_open_thread == curthread || 2069 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2070 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 2071 vd->vdev_state == VDEV_STATE_CANT_OPEN || 2072 vd->vdev_state == VDEV_STATE_OFFLINE); 2073 2074 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2075 vd->vdev_cant_read = B_FALSE; 2076 vd->vdev_cant_write = B_FALSE; 2077 vd->vdev_fault_wanted = B_FALSE; 2078 vd->vdev_remove_wanted = B_FALSE; 2079 vd->vdev_min_asize = vdev_get_min_asize(vd); 2080 2081 /* 2082 * If this vdev is not removed, check its fault status. If it's 2083 * faulted, bail out of the open. 2084 */ 2085 if (!vd->vdev_removed && vd->vdev_faulted) { 2086 ASSERT(vd->vdev_children == 0); 2087 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 2088 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 2089 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2090 vd->vdev_label_aux); 2091 return (SET_ERROR(ENXIO)); 2092 } else if (vd->vdev_offline) { 2093 ASSERT(vd->vdev_children == 0); 2094 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 2095 return (SET_ERROR(ENXIO)); 2096 } 2097 2098 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, 2099 &logical_ashift, &physical_ashift); 2100 2101 /* Keep the device in removed state if unplugged */ 2102 if (error == ENOENT && vd->vdev_removed) { 2103 vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED, 2104 VDEV_AUX_NONE); 2105 return (error); 2106 } 2107 2108 /* 2109 * Physical volume size should never be larger than its max size, unless 2110 * the disk has shrunk while we were reading it or the device is buggy 2111 * or damaged: either way it's not safe for use, bail out of the open. 2112 */ 2113 if (osize > max_osize) { 2114 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2115 VDEV_AUX_OPEN_FAILED); 2116 return (SET_ERROR(ENXIO)); 2117 } 2118 2119 /* 2120 * Reset the vdev_reopening flag so that we actually close 2121 * the vdev on error. 2122 */ 2123 vd->vdev_reopening = B_FALSE; 2124 if (zio_injection_enabled && error == 0) 2125 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO)); 2126 2127 if (error) { 2128 if (vd->vdev_removed && 2129 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 2130 vd->vdev_removed = B_FALSE; 2131 2132 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 2133 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 2134 vd->vdev_stat.vs_aux); 2135 } else { 2136 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2137 vd->vdev_stat.vs_aux); 2138 } 2139 return (error); 2140 } 2141 2142 vd->vdev_removed = B_FALSE; 2143 2144 /* 2145 * Recheck the faulted flag now that we have confirmed that 2146 * the vdev is accessible. If we're faulted, bail. 2147 */ 2148 if (vd->vdev_faulted) { 2149 ASSERT(vd->vdev_children == 0); 2150 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 2151 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 2152 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2153 vd->vdev_label_aux); 2154 return (SET_ERROR(ENXIO)); 2155 } 2156 2157 if (vd->vdev_degraded) { 2158 ASSERT(vd->vdev_children == 0); 2159 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2160 VDEV_AUX_ERR_EXCEEDED); 2161 } else { 2162 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 2163 } 2164 2165 /* 2166 * For hole or missing vdevs we just return success. 2167 */ 2168 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 2169 return (0); 2170 2171 for (int c = 0; c < vd->vdev_children; c++) { 2172 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 2173 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2174 VDEV_AUX_NONE); 2175 break; 2176 } 2177 } 2178 2179 osize = P2ALIGN_TYPED(osize, sizeof (vdev_label_t), uint64_t); 2180 max_osize = P2ALIGN_TYPED(max_osize, sizeof (vdev_label_t), uint64_t); 2181 2182 if (vd->vdev_children == 0) { 2183 if (osize < SPA_MINDEVSIZE) { 2184 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2185 VDEV_AUX_TOO_SMALL); 2186 return (SET_ERROR(EOVERFLOW)); 2187 } 2188 psize = osize; 2189 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 2190 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 2191 VDEV_LABEL_END_SIZE); 2192 } else { 2193 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 2194 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 2195 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2196 VDEV_AUX_TOO_SMALL); 2197 return (SET_ERROR(EOVERFLOW)); 2198 } 2199 psize = 0; 2200 asize = osize; 2201 max_asize = max_osize; 2202 } 2203 2204 /* 2205 * If the vdev was expanded, record this so that we can re-create the 2206 * uberblock rings in labels {2,3}, during the next sync. 2207 */ 2208 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0)) 2209 vd->vdev_copy_uberblocks = B_TRUE; 2210 2211 vd->vdev_psize = psize; 2212 2213 /* 2214 * Make sure the allocatable size hasn't shrunk too much. 2215 */ 2216 if (asize < vd->vdev_min_asize) { 2217 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2218 VDEV_AUX_BAD_LABEL); 2219 return (SET_ERROR(EINVAL)); 2220 } 2221 2222 /* 2223 * We can always set the logical/physical ashift members since 2224 * their values are only used to calculate the vdev_ashift when 2225 * the device is first added to the config. These values should 2226 * not be used for anything else since they may change whenever 2227 * the device is reopened and we don't store them in the label. 2228 */ 2229 vd->vdev_physical_ashift = 2230 MAX(physical_ashift, vd->vdev_physical_ashift); 2231 vd->vdev_logical_ashift = MAX(logical_ashift, 2232 vd->vdev_logical_ashift); 2233 2234 if (vd->vdev_asize == 0) { 2235 /* 2236 * This is the first-ever open, so use the computed values. 2237 * For compatibility, a different ashift can be requested. 2238 */ 2239 vd->vdev_asize = asize; 2240 vd->vdev_max_asize = max_asize; 2241 2242 /* 2243 * If the vdev_ashift was not overridden at creation time 2244 * (0) or the override value is impossible for the device, 2245 * then set it the logical ashift and optimize the ashift. 2246 */ 2247 if (vd->vdev_ashift < vd->vdev_logical_ashift) { 2248 vd->vdev_ashift = vd->vdev_logical_ashift; 2249 2250 if (vd->vdev_logical_ashift > ASHIFT_MAX) { 2251 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2252 VDEV_AUX_ASHIFT_TOO_BIG); 2253 return (SET_ERROR(EDOM)); 2254 } 2255 2256 if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE) 2257 vdev_ashift_optimize(vd); 2258 vd->vdev_attaching = B_FALSE; 2259 } 2260 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN || 2261 vd->vdev_ashift > ASHIFT_MAX)) { 2262 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2263 VDEV_AUX_BAD_ASHIFT); 2264 return (SET_ERROR(EDOM)); 2265 } 2266 } else { 2267 /* 2268 * Make sure the alignment required hasn't increased. 2269 */ 2270 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift && 2271 vd->vdev_ops->vdev_op_leaf) { 2272 (void) zfs_ereport_post( 2273 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT, 2274 spa, vd, NULL, NULL, 0); 2275 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2276 VDEV_AUX_BAD_LABEL); 2277 return (SET_ERROR(EDOM)); 2278 } 2279 vd->vdev_max_asize = max_asize; 2280 } 2281 2282 /* 2283 * If all children are healthy we update asize if either: 2284 * The asize has increased, due to a device expansion caused by dynamic 2285 * LUN growth or vdev replacement, and automatic expansion is enabled; 2286 * making the additional space available. 2287 * 2288 * The asize has decreased, due to a device shrink usually caused by a 2289 * vdev replace with a smaller device. This ensures that calculations 2290 * based of max_asize and asize e.g. esize are always valid. It's safe 2291 * to do this as we've already validated that asize is greater than 2292 * vdev_min_asize. 2293 */ 2294 if (vd->vdev_state == VDEV_STATE_HEALTHY && 2295 ((asize > vd->vdev_asize && 2296 (vd->vdev_expanding || spa->spa_autoexpand)) || 2297 (asize < vd->vdev_asize))) 2298 vd->vdev_asize = asize; 2299 2300 vdev_set_min_asize(vd); 2301 2302 /* 2303 * Ensure we can issue some IO before declaring the 2304 * vdev open for business. 2305 */ 2306 if (vd->vdev_ops->vdev_op_leaf && 2307 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 2308 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2309 VDEV_AUX_ERR_EXCEEDED); 2310 return (error); 2311 } 2312 2313 /* 2314 * Track the minimum allocation size. 2315 */ 2316 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 2317 vd->vdev_islog == 0 && vd->vdev_aux == NULL) { 2318 uint64_t min_alloc = vdev_get_min_alloc(vd); 2319 vdev_spa_set_alloc(spa, min_alloc); 2320 } 2321 2322 /* 2323 * If this is a leaf vdev, assess whether a resilver is needed. 2324 * But don't do this if we are doing a reopen for a scrub, since 2325 * this would just restart the scrub we are already doing. 2326 */ 2327 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen) 2328 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd); 2329 2330 return (0); 2331 } 2332 2333 static void 2334 vdev_validate_child(void *arg) 2335 { 2336 vdev_t *vd = arg; 2337 2338 vd->vdev_validate_thread = curthread; 2339 vd->vdev_validate_error = vdev_validate(vd); 2340 vd->vdev_validate_thread = NULL; 2341 } 2342 2343 /* 2344 * Called once the vdevs are all opened, this routine validates the label 2345 * contents. This needs to be done before vdev_load() so that we don't 2346 * inadvertently do repair I/Os to the wrong device. 2347 * 2348 * This function will only return failure if one of the vdevs indicates that it 2349 * has since been destroyed or exported. This is only possible if 2350 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 2351 * will be updated but the function will return 0. 2352 */ 2353 int 2354 vdev_validate(vdev_t *vd) 2355 { 2356 spa_t *spa = vd->vdev_spa; 2357 taskq_t *tq = NULL; 2358 nvlist_t *label; 2359 uint64_t guid = 0, aux_guid = 0, top_guid; 2360 uint64_t state; 2361 nvlist_t *nvl; 2362 uint64_t txg; 2363 int children = vd->vdev_children; 2364 2365 if (vdev_validate_skip) 2366 return (0); 2367 2368 if (children > 0) { 2369 tq = taskq_create("vdev_validate", children, minclsyspri, 2370 children, children, TASKQ_PREPOPULATE); 2371 } 2372 2373 for (uint64_t c = 0; c < children; c++) { 2374 vdev_t *cvd = vd->vdev_child[c]; 2375 2376 if (tq == NULL || vdev_uses_zvols(cvd)) { 2377 vdev_validate_child(cvd); 2378 } else { 2379 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd, 2380 TQ_SLEEP) != TASKQID_INVALID); 2381 } 2382 } 2383 if (tq != NULL) { 2384 taskq_wait(tq); 2385 taskq_destroy(tq); 2386 } 2387 for (int c = 0; c < children; c++) { 2388 int error = vd->vdev_child[c]->vdev_validate_error; 2389 2390 if (error != 0) 2391 return (SET_ERROR(EBADF)); 2392 } 2393 2394 2395 /* 2396 * If the device has already failed, or was marked offline, don't do 2397 * any further validation. Otherwise, label I/O will fail and we will 2398 * overwrite the previous state. 2399 */ 2400 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 2401 return (0); 2402 2403 /* 2404 * If we are performing an extreme rewind, we allow for a label that 2405 * was modified at a point after the current txg. 2406 * If config lock is not held do not check for the txg. spa_sync could 2407 * be updating the vdev's label before updating spa_last_synced_txg. 2408 */ 2409 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 2410 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 2411 txg = UINT64_MAX; 2412 else 2413 txg = spa_last_synced_txg(spa); 2414 2415 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 2416 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2417 VDEV_AUX_BAD_LABEL); 2418 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 2419 "txg %llu", (u_longlong_t)txg); 2420 return (0); 2421 } 2422 2423 /* 2424 * Determine if this vdev has been split off into another 2425 * pool. If so, then refuse to open it. 2426 */ 2427 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 2428 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 2429 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2430 VDEV_AUX_SPLIT_POOL); 2431 nvlist_free(label); 2432 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 2433 return (0); 2434 } 2435 2436 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 2437 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2438 VDEV_AUX_CORRUPT_DATA); 2439 nvlist_free(label); 2440 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2441 ZPOOL_CONFIG_POOL_GUID); 2442 return (0); 2443 } 2444 2445 /* 2446 * If config is not trusted then ignore the spa guid check. This is 2447 * necessary because if the machine crashed during a re-guid the new 2448 * guid might have been written to all of the vdev labels, but not the 2449 * cached config. The check will be performed again once we have the 2450 * trusted config from the MOS. 2451 */ 2452 if (spa->spa_trust_config && guid != spa_guid(spa)) { 2453 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2454 VDEV_AUX_CORRUPT_DATA); 2455 nvlist_free(label); 2456 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 2457 "match config (%llu != %llu)", (u_longlong_t)guid, 2458 (u_longlong_t)spa_guid(spa)); 2459 return (0); 2460 } 2461 2462 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 2463 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 2464 &aux_guid) != 0) 2465 aux_guid = 0; 2466 2467 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 2468 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2469 VDEV_AUX_CORRUPT_DATA); 2470 nvlist_free(label); 2471 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2472 ZPOOL_CONFIG_GUID); 2473 return (0); 2474 } 2475 2476 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 2477 != 0) { 2478 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2479 VDEV_AUX_CORRUPT_DATA); 2480 nvlist_free(label); 2481 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2482 ZPOOL_CONFIG_TOP_GUID); 2483 return (0); 2484 } 2485 2486 /* 2487 * If this vdev just became a top-level vdev because its sibling was 2488 * detached, it will have adopted the parent's vdev guid -- but the 2489 * label may or may not be on disk yet. Fortunately, either version 2490 * of the label will have the same top guid, so if we're a top-level 2491 * vdev, we can safely compare to that instead. 2492 * However, if the config comes from a cachefile that failed to update 2493 * after the detach, a top-level vdev will appear as a non top-level 2494 * vdev in the config. Also relax the constraints if we perform an 2495 * extreme rewind. 2496 * 2497 * If we split this vdev off instead, then we also check the 2498 * original pool's guid. We don't want to consider the vdev 2499 * corrupt if it is partway through a split operation. 2500 */ 2501 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 2502 boolean_t mismatch = B_FALSE; 2503 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 2504 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 2505 mismatch = B_TRUE; 2506 } else { 2507 if (vd->vdev_guid != top_guid && 2508 vd->vdev_top->vdev_guid != guid) 2509 mismatch = B_TRUE; 2510 } 2511 2512 if (mismatch) { 2513 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2514 VDEV_AUX_CORRUPT_DATA); 2515 nvlist_free(label); 2516 vdev_dbgmsg(vd, "vdev_validate: config guid " 2517 "doesn't match label guid"); 2518 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 2519 (u_longlong_t)vd->vdev_guid, 2520 (u_longlong_t)vd->vdev_top->vdev_guid); 2521 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 2522 "aux_guid %llu", (u_longlong_t)guid, 2523 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 2524 return (0); 2525 } 2526 } 2527 2528 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 2529 &state) != 0) { 2530 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2531 VDEV_AUX_CORRUPT_DATA); 2532 nvlist_free(label); 2533 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2534 ZPOOL_CONFIG_POOL_STATE); 2535 return (0); 2536 } 2537 2538 nvlist_free(label); 2539 2540 /* 2541 * If this is a verbatim import, no need to check the 2542 * state of the pool. 2543 */ 2544 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 2545 spa_load_state(spa) == SPA_LOAD_OPEN && 2546 state != POOL_STATE_ACTIVE) { 2547 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 2548 "for spa %s", (u_longlong_t)state, spa->spa_name); 2549 return (SET_ERROR(EBADF)); 2550 } 2551 2552 /* 2553 * If we were able to open and validate a vdev that was 2554 * previously marked permanently unavailable, clear that state 2555 * now. 2556 */ 2557 if (vd->vdev_not_present) 2558 vd->vdev_not_present = 0; 2559 2560 return (0); 2561 } 2562 2563 static void 2564 vdev_update_path(const char *prefix, char *svd, char **dvd, uint64_t guid) 2565 { 2566 if (svd != NULL && *dvd != NULL) { 2567 if (strcmp(svd, *dvd) != 0) { 2568 zfs_dbgmsg("vdev_copy_path: vdev %llu: %s changed " 2569 "from '%s' to '%s'", (u_longlong_t)guid, prefix, 2570 *dvd, svd); 2571 spa_strfree(*dvd); 2572 *dvd = spa_strdup(svd); 2573 } 2574 } else if (svd != NULL) { 2575 *dvd = spa_strdup(svd); 2576 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 2577 (u_longlong_t)guid, *dvd); 2578 } 2579 } 2580 2581 static void 2582 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 2583 { 2584 char *old, *new; 2585 2586 vdev_update_path("vdev_path", svd->vdev_path, &dvd->vdev_path, 2587 dvd->vdev_guid); 2588 2589 vdev_update_path("vdev_devid", svd->vdev_devid, &dvd->vdev_devid, 2590 dvd->vdev_guid); 2591 2592 vdev_update_path("vdev_physpath", svd->vdev_physpath, 2593 &dvd->vdev_physpath, dvd->vdev_guid); 2594 2595 /* 2596 * Our enclosure sysfs path may have changed between imports 2597 */ 2598 old = dvd->vdev_enc_sysfs_path; 2599 new = svd->vdev_enc_sysfs_path; 2600 if ((old != NULL && new == NULL) || 2601 (old == NULL && new != NULL) || 2602 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) { 2603 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path " 2604 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2605 old, new); 2606 2607 if (dvd->vdev_enc_sysfs_path) 2608 spa_strfree(dvd->vdev_enc_sysfs_path); 2609 2610 if (svd->vdev_enc_sysfs_path) { 2611 dvd->vdev_enc_sysfs_path = spa_strdup( 2612 svd->vdev_enc_sysfs_path); 2613 } else { 2614 dvd->vdev_enc_sysfs_path = NULL; 2615 } 2616 } 2617 } 2618 2619 /* 2620 * Recursively copy vdev paths from one vdev to another. Source and destination 2621 * vdev trees must have same geometry otherwise return error. Intended to copy 2622 * paths from userland config into MOS config. 2623 */ 2624 int 2625 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 2626 { 2627 if ((svd->vdev_ops == &vdev_missing_ops) || 2628 (svd->vdev_ishole && dvd->vdev_ishole) || 2629 (dvd->vdev_ops == &vdev_indirect_ops)) 2630 return (0); 2631 2632 if (svd->vdev_ops != dvd->vdev_ops) { 2633 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 2634 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 2635 return (SET_ERROR(EINVAL)); 2636 } 2637 2638 if (svd->vdev_guid != dvd->vdev_guid) { 2639 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 2640 "%llu)", (u_longlong_t)svd->vdev_guid, 2641 (u_longlong_t)dvd->vdev_guid); 2642 return (SET_ERROR(EINVAL)); 2643 } 2644 2645 if (svd->vdev_children != dvd->vdev_children) { 2646 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 2647 "%llu != %llu", (u_longlong_t)svd->vdev_children, 2648 (u_longlong_t)dvd->vdev_children); 2649 return (SET_ERROR(EINVAL)); 2650 } 2651 2652 for (uint64_t i = 0; i < svd->vdev_children; i++) { 2653 int error = vdev_copy_path_strict(svd->vdev_child[i], 2654 dvd->vdev_child[i]); 2655 if (error != 0) 2656 return (error); 2657 } 2658 2659 if (svd->vdev_ops->vdev_op_leaf) 2660 vdev_copy_path_impl(svd, dvd); 2661 2662 return (0); 2663 } 2664 2665 static void 2666 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 2667 { 2668 ASSERT(stvd->vdev_top == stvd); 2669 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 2670 2671 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 2672 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 2673 } 2674 2675 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 2676 return; 2677 2678 /* 2679 * The idea here is that while a vdev can shift positions within 2680 * a top vdev (when replacing, attaching mirror, etc.) it cannot 2681 * step outside of it. 2682 */ 2683 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 2684 2685 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 2686 return; 2687 2688 ASSERT(vd->vdev_ops->vdev_op_leaf); 2689 2690 vdev_copy_path_impl(vd, dvd); 2691 } 2692 2693 /* 2694 * Recursively copy vdev paths from one root vdev to another. Source and 2695 * destination vdev trees may differ in geometry. For each destination leaf 2696 * vdev, search a vdev with the same guid and top vdev id in the source. 2697 * Intended to copy paths from userland config into MOS config. 2698 */ 2699 void 2700 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 2701 { 2702 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 2703 ASSERT(srvd->vdev_ops == &vdev_root_ops); 2704 ASSERT(drvd->vdev_ops == &vdev_root_ops); 2705 2706 for (uint64_t i = 0; i < children; i++) { 2707 vdev_copy_path_search(srvd->vdev_child[i], 2708 drvd->vdev_child[i]); 2709 } 2710 } 2711 2712 /* 2713 * Close a virtual device. 2714 */ 2715 void 2716 vdev_close(vdev_t *vd) 2717 { 2718 vdev_t *pvd = vd->vdev_parent; 2719 spa_t *spa __maybe_unused = vd->vdev_spa; 2720 2721 ASSERT(vd != NULL); 2722 ASSERT(vd->vdev_open_thread == curthread || 2723 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2724 2725 /* 2726 * If our parent is reopening, then we are as well, unless we are 2727 * going offline. 2728 */ 2729 if (pvd != NULL && pvd->vdev_reopening) 2730 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 2731 2732 vd->vdev_ops->vdev_op_close(vd); 2733 2734 /* 2735 * We record the previous state before we close it, so that if we are 2736 * doing a reopen(), we don't generate FMA ereports if we notice that 2737 * it's still faulted. 2738 */ 2739 vd->vdev_prevstate = vd->vdev_state; 2740 2741 if (vd->vdev_offline) 2742 vd->vdev_state = VDEV_STATE_OFFLINE; 2743 else 2744 vd->vdev_state = VDEV_STATE_CLOSED; 2745 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2746 } 2747 2748 void 2749 vdev_hold(vdev_t *vd) 2750 { 2751 spa_t *spa = vd->vdev_spa; 2752 2753 ASSERT(spa_is_root(spa)); 2754 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 2755 return; 2756 2757 for (int c = 0; c < vd->vdev_children; c++) 2758 vdev_hold(vd->vdev_child[c]); 2759 2760 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL) 2761 vd->vdev_ops->vdev_op_hold(vd); 2762 } 2763 2764 void 2765 vdev_rele(vdev_t *vd) 2766 { 2767 ASSERT(spa_is_root(vd->vdev_spa)); 2768 for (int c = 0; c < vd->vdev_children; c++) 2769 vdev_rele(vd->vdev_child[c]); 2770 2771 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL) 2772 vd->vdev_ops->vdev_op_rele(vd); 2773 } 2774 2775 /* 2776 * Reopen all interior vdevs and any unopened leaves. We don't actually 2777 * reopen leaf vdevs which had previously been opened as they might deadlock 2778 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 2779 * If the leaf has never been opened then open it, as usual. 2780 */ 2781 void 2782 vdev_reopen(vdev_t *vd) 2783 { 2784 spa_t *spa = vd->vdev_spa; 2785 2786 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2787 2788 /* set the reopening flag unless we're taking the vdev offline */ 2789 vd->vdev_reopening = !vd->vdev_offline; 2790 vdev_close(vd); 2791 (void) vdev_open(vd); 2792 2793 /* 2794 * Call vdev_validate() here to make sure we have the same device. 2795 * Otherwise, a device with an invalid label could be successfully 2796 * opened in response to vdev_reopen(). 2797 */ 2798 if (vd->vdev_aux) { 2799 (void) vdev_validate_aux(vd); 2800 if (vdev_readable(vd) && vdev_writeable(vd) && 2801 vd->vdev_aux == &spa->spa_l2cache) { 2802 /* 2803 * In case the vdev is present we should evict all ARC 2804 * buffers and pointers to log blocks and reclaim their 2805 * space before restoring its contents to L2ARC. 2806 */ 2807 if (l2arc_vdev_present(vd)) { 2808 l2arc_rebuild_vdev(vd, B_TRUE); 2809 } else { 2810 l2arc_add_vdev(spa, vd); 2811 } 2812 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2813 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 2814 } 2815 } else { 2816 (void) vdev_validate(vd); 2817 } 2818 2819 /* 2820 * Recheck if resilver is still needed and cancel any 2821 * scheduled resilver if resilver is unneeded. 2822 */ 2823 if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) && 2824 spa->spa_async_tasks & SPA_ASYNC_RESILVER) { 2825 mutex_enter(&spa->spa_async_lock); 2826 spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER; 2827 mutex_exit(&spa->spa_async_lock); 2828 } 2829 2830 /* 2831 * Reassess parent vdev's health. 2832 */ 2833 vdev_propagate_state(vd); 2834 } 2835 2836 int 2837 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2838 { 2839 int error; 2840 2841 /* 2842 * Normally, partial opens (e.g. of a mirror) are allowed. 2843 * For a create, however, we want to fail the request if 2844 * there are any components we can't open. 2845 */ 2846 error = vdev_open(vd); 2847 2848 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2849 vdev_close(vd); 2850 return (error ? error : SET_ERROR(ENXIO)); 2851 } 2852 2853 /* 2854 * Recursively load DTLs and initialize all labels. 2855 */ 2856 if ((error = vdev_dtl_load(vd)) != 0 || 2857 (error = vdev_label_init(vd, txg, isreplacing ? 2858 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2859 vdev_close(vd); 2860 return (error); 2861 } 2862 2863 return (0); 2864 } 2865 2866 void 2867 vdev_metaslab_set_size(vdev_t *vd) 2868 { 2869 uint64_t asize = vd->vdev_asize; 2870 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2871 uint64_t ms_shift; 2872 2873 /* 2874 * There are two dimensions to the metaslab sizing calculation: 2875 * the size of the metaslab and the count of metaslabs per vdev. 2876 * 2877 * The default values used below are a good balance between memory 2878 * usage (larger metaslab size means more memory needed for loaded 2879 * metaslabs; more metaslabs means more memory needed for the 2880 * metaslab_t structs), metaslab load time (larger metaslabs take 2881 * longer to load), and metaslab sync time (more metaslabs means 2882 * more time spent syncing all of them). 2883 * 2884 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2885 * The range of the dimensions are as follows: 2886 * 2887 * 2^29 <= ms_size <= 2^34 2888 * 16 <= ms_count <= 131,072 2889 * 2890 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2891 * at least 512MB (2^29) to minimize fragmentation effects when 2892 * testing with smaller devices. However, the count constraint 2893 * of at least 16 metaslabs will override this minimum size goal. 2894 * 2895 * On the upper end of vdev sizes, we aim for a maximum metaslab 2896 * size of 16GB. However, we will cap the total count to 2^17 2897 * metaslabs to keep our memory footprint in check and let the 2898 * metaslab size grow from there if that limit is hit. 2899 * 2900 * The net effect of applying above constrains is summarized below. 2901 * 2902 * vdev size metaslab count 2903 * --------------|----------------- 2904 * < 8GB ~16 2905 * 8GB - 100GB one per 512MB 2906 * 100GB - 3TB ~200 2907 * 3TB - 2PB one per 16GB 2908 * > 2PB ~131,072 2909 * -------------------------------- 2910 * 2911 * Finally, note that all of the above calculate the initial 2912 * number of metaslabs. Expanding a top-level vdev will result 2913 * in additional metaslabs being allocated making it possible 2914 * to exceed the zfs_vdev_ms_count_limit. 2915 */ 2916 2917 if (ms_count < zfs_vdev_min_ms_count) 2918 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 2919 else if (ms_count > zfs_vdev_default_ms_count) 2920 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 2921 else 2922 ms_shift = zfs_vdev_default_ms_shift; 2923 2924 if (ms_shift < SPA_MAXBLOCKSHIFT) { 2925 ms_shift = SPA_MAXBLOCKSHIFT; 2926 } else if (ms_shift > zfs_vdev_max_ms_shift) { 2927 ms_shift = zfs_vdev_max_ms_shift; 2928 /* cap the total count to constrain memory footprint */ 2929 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 2930 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 2931 } 2932 2933 vd->vdev_ms_shift = ms_shift; 2934 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 2935 } 2936 2937 void 2938 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 2939 { 2940 ASSERT(vd == vd->vdev_top); 2941 /* indirect vdevs don't have metaslabs or dtls */ 2942 ASSERT(vdev_is_concrete(vd) || flags == 0); 2943 ASSERT(ISP2(flags)); 2944 ASSERT(spa_writeable(vd->vdev_spa)); 2945 2946 if (flags & VDD_METASLAB) 2947 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 2948 2949 if (flags & VDD_DTL) 2950 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 2951 2952 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 2953 } 2954 2955 void 2956 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 2957 { 2958 for (int c = 0; c < vd->vdev_children; c++) 2959 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 2960 2961 if (vd->vdev_ops->vdev_op_leaf) 2962 vdev_dirty(vd->vdev_top, flags, vd, txg); 2963 } 2964 2965 /* 2966 * DTLs. 2967 * 2968 * A vdev's DTL (dirty time log) is the set of transaction groups for which 2969 * the vdev has less than perfect replication. There are four kinds of DTL: 2970 * 2971 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 2972 * 2973 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 2974 * 2975 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 2976 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 2977 * txgs that was scrubbed. 2978 * 2979 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 2980 * persistent errors or just some device being offline. 2981 * Unlike the other three, the DTL_OUTAGE map is not generally 2982 * maintained; it's only computed when needed, typically to 2983 * determine whether a device can be detached. 2984 * 2985 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 2986 * either has the data or it doesn't. 2987 * 2988 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 2989 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 2990 * if any child is less than fully replicated, then so is its parent. 2991 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 2992 * comprising only those txgs which appear in 'maxfaults' or more children; 2993 * those are the txgs we don't have enough replication to read. For example, 2994 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 2995 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 2996 * two child DTL_MISSING maps. 2997 * 2998 * It should be clear from the above that to compute the DTLs and outage maps 2999 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 3000 * Therefore, that is all we keep on disk. When loading the pool, or after 3001 * a configuration change, we generate all other DTLs from first principles. 3002 */ 3003 void 3004 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 3005 { 3006 zfs_range_tree_t *rt = vd->vdev_dtl[t]; 3007 3008 ASSERT(t < DTL_TYPES); 3009 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 3010 ASSERT(spa_writeable(vd->vdev_spa)); 3011 3012 mutex_enter(&vd->vdev_dtl_lock); 3013 if (!zfs_range_tree_contains(rt, txg, size)) 3014 zfs_range_tree_add(rt, txg, size); 3015 mutex_exit(&vd->vdev_dtl_lock); 3016 } 3017 3018 boolean_t 3019 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 3020 { 3021 zfs_range_tree_t *rt = vd->vdev_dtl[t]; 3022 boolean_t dirty = B_FALSE; 3023 3024 ASSERT(t < DTL_TYPES); 3025 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 3026 3027 /* 3028 * While we are loading the pool, the DTLs have not been loaded yet. 3029 * This isn't a problem but it can result in devices being tried 3030 * which are known to not have the data. In which case, the import 3031 * is relying on the checksum to ensure that we get the right data. 3032 * Note that while importing we are only reading the MOS, which is 3033 * always checksummed. 3034 */ 3035 mutex_enter(&vd->vdev_dtl_lock); 3036 if (!zfs_range_tree_is_empty(rt)) 3037 dirty = zfs_range_tree_contains(rt, txg, size); 3038 mutex_exit(&vd->vdev_dtl_lock); 3039 3040 return (dirty); 3041 } 3042 3043 boolean_t 3044 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 3045 { 3046 zfs_range_tree_t *rt = vd->vdev_dtl[t]; 3047 boolean_t empty; 3048 3049 mutex_enter(&vd->vdev_dtl_lock); 3050 empty = zfs_range_tree_is_empty(rt); 3051 mutex_exit(&vd->vdev_dtl_lock); 3052 3053 return (empty); 3054 } 3055 3056 /* 3057 * Check if the txg falls within the range which must be 3058 * resilvered. DVAs outside this range can always be skipped. 3059 */ 3060 boolean_t 3061 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 3062 uint64_t phys_birth) 3063 { 3064 (void) dva, (void) psize; 3065 3066 /* Set by sequential resilver. */ 3067 if (phys_birth == TXG_UNKNOWN) 3068 return (B_TRUE); 3069 3070 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)); 3071 } 3072 3073 /* 3074 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered. 3075 */ 3076 boolean_t 3077 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 3078 uint64_t phys_birth) 3079 { 3080 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 3081 3082 if (vd->vdev_ops->vdev_op_need_resilver == NULL || 3083 vd->vdev_ops->vdev_op_leaf) 3084 return (B_TRUE); 3085 3086 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize, 3087 phys_birth)); 3088 } 3089 3090 /* 3091 * Returns the lowest txg in the DTL range. 3092 */ 3093 static uint64_t 3094 vdev_dtl_min(vdev_t *vd) 3095 { 3096 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 3097 ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 3098 ASSERT0(vd->vdev_children); 3099 3100 return (zfs_range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1); 3101 } 3102 3103 /* 3104 * Returns the highest txg in the DTL. 3105 */ 3106 static uint64_t 3107 vdev_dtl_max(vdev_t *vd) 3108 { 3109 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 3110 ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 3111 ASSERT0(vd->vdev_children); 3112 3113 return (zfs_range_tree_max(vd->vdev_dtl[DTL_MISSING])); 3114 } 3115 3116 /* 3117 * Determine if a resilvering vdev should remove any DTL entries from 3118 * its range. If the vdev was resilvering for the entire duration of the 3119 * scan then it should excise that range from its DTLs. Otherwise, this 3120 * vdev is considered partially resilvered and should leave its DTL 3121 * entries intact. The comment in vdev_dtl_reassess() describes how we 3122 * excise the DTLs. 3123 */ 3124 static boolean_t 3125 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done) 3126 { 3127 ASSERT0(vd->vdev_children); 3128 3129 if (vd->vdev_state < VDEV_STATE_DEGRADED) 3130 return (B_FALSE); 3131 3132 if (vd->vdev_resilver_deferred) 3133 return (B_FALSE); 3134 3135 if (zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 3136 return (B_TRUE); 3137 3138 if (rebuild_done) { 3139 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3140 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 3141 3142 /* Rebuild not initiated by attach */ 3143 if (vd->vdev_rebuild_txg == 0) 3144 return (B_TRUE); 3145 3146 /* 3147 * When a rebuild completes without error then all missing data 3148 * up to the rebuild max txg has been reconstructed and the DTL 3149 * is eligible for excision. 3150 */ 3151 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE && 3152 vdev_dtl_max(vd) <= vrp->vrp_max_txg) { 3153 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd)); 3154 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg); 3155 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg); 3156 return (B_TRUE); 3157 } 3158 } else { 3159 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 3160 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys; 3161 3162 /* Resilver not initiated by attach */ 3163 if (vd->vdev_resilver_txg == 0) 3164 return (B_TRUE); 3165 3166 /* 3167 * When a resilver is initiated the scan will assign the 3168 * scn_max_txg value to the highest txg value that exists 3169 * in all DTLs. If this device's max DTL is not part of this 3170 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg] 3171 * then it is not eligible for excision. 3172 */ 3173 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 3174 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd)); 3175 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg); 3176 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg); 3177 return (B_TRUE); 3178 } 3179 } 3180 3181 return (B_FALSE); 3182 } 3183 3184 /* 3185 * Reassess DTLs after a config change or scrub completion. If txg == 0 no 3186 * write operations will be issued to the pool. 3187 */ 3188 static void 3189 vdev_dtl_reassess_impl(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, 3190 boolean_t scrub_done, boolean_t rebuild_done, boolean_t faulting) 3191 { 3192 spa_t *spa = vd->vdev_spa; 3193 avl_tree_t reftree; 3194 int minref; 3195 3196 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 3197 3198 for (int c = 0; c < vd->vdev_children; c++) 3199 vdev_dtl_reassess_impl(vd->vdev_child[c], txg, 3200 scrub_txg, scrub_done, rebuild_done, faulting); 3201 3202 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 3203 return; 3204 3205 if (vd->vdev_ops->vdev_op_leaf) { 3206 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 3207 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3208 boolean_t check_excise = B_FALSE; 3209 boolean_t wasempty = B_TRUE; 3210 3211 mutex_enter(&vd->vdev_dtl_lock); 3212 3213 /* 3214 * If requested, pretend the scan or rebuild completed cleanly. 3215 */ 3216 if (zfs_scan_ignore_errors) { 3217 if (scn != NULL) 3218 scn->scn_phys.scn_errors = 0; 3219 if (vr != NULL) 3220 vr->vr_rebuild_phys.vrp_errors = 0; 3221 } 3222 3223 if (scrub_txg != 0 && 3224 !zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3225 wasempty = B_FALSE; 3226 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d " 3227 "dtl:%llu/%llu errors:%llu", 3228 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg, 3229 (u_longlong_t)scrub_txg, spa->spa_scrub_started, 3230 (u_longlong_t)vdev_dtl_min(vd), 3231 (u_longlong_t)vdev_dtl_max(vd), 3232 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0)); 3233 } 3234 3235 /* 3236 * If we've completed a scrub/resilver or a rebuild cleanly 3237 * then determine if this vdev should remove any DTLs. We 3238 * only want to excise regions on vdevs that were available 3239 * during the entire duration of this scan. 3240 */ 3241 if (rebuild_done && 3242 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) { 3243 check_excise = B_TRUE; 3244 } else { 3245 if (spa->spa_scrub_started || 3246 (scn != NULL && scn->scn_phys.scn_errors == 0)) { 3247 check_excise = B_TRUE; 3248 } 3249 } 3250 3251 if (scrub_txg && check_excise && 3252 vdev_dtl_should_excise(vd, rebuild_done)) { 3253 /* 3254 * We completed a scrub, resilver or rebuild up to 3255 * scrub_txg. If we did it without rebooting, then 3256 * the scrub dtl will be valid, so excise the old 3257 * region and fold in the scrub dtl. Otherwise, 3258 * leave the dtl as-is if there was an error. 3259 * 3260 * There's little trick here: to excise the beginning 3261 * of the DTL_MISSING map, we put it into a reference 3262 * tree and then add a segment with refcnt -1 that 3263 * covers the range [0, scrub_txg). This means 3264 * that each txg in that range has refcnt -1 or 0. 3265 * We then add DTL_SCRUB with a refcnt of 2, so that 3266 * entries in the range [0, scrub_txg) will have a 3267 * positive refcnt -- either 1 or 2. We then convert 3268 * the reference tree into the new DTL_MISSING map. 3269 */ 3270 space_reftree_create(&reftree); 3271 space_reftree_add_map(&reftree, 3272 vd->vdev_dtl[DTL_MISSING], 1); 3273 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 3274 space_reftree_add_map(&reftree, 3275 vd->vdev_dtl[DTL_SCRUB], 2); 3276 space_reftree_generate_map(&reftree, 3277 vd->vdev_dtl[DTL_MISSING], 1); 3278 space_reftree_destroy(&reftree); 3279 3280 if (!zfs_range_tree_is_empty( 3281 vd->vdev_dtl[DTL_MISSING])) { 3282 zfs_dbgmsg("update DTL_MISSING:%llu/%llu", 3283 (u_longlong_t)vdev_dtl_min(vd), 3284 (u_longlong_t)vdev_dtl_max(vd)); 3285 } else if (!wasempty) { 3286 zfs_dbgmsg("DTL_MISSING is now empty"); 3287 } 3288 } 3289 zfs_range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 3290 zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3291 zfs_range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 3292 if (scrub_done) 3293 zfs_range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, 3294 NULL); 3295 zfs_range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 3296 3297 /* 3298 * For the faulting case, treat members of a replacing vdev 3299 * as if they are not available. It's more likely than not that 3300 * a vdev in a replacing vdev could encounter read errors so 3301 * treat it as not being able to contribute. 3302 */ 3303 if (!vdev_readable(vd) || 3304 (faulting && vd->vdev_parent != NULL && 3305 vd->vdev_parent->vdev_ops == &vdev_replacing_ops)) { 3306 zfs_range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 3307 } else { 3308 zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3309 zfs_range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 3310 } 3311 3312 /* 3313 * If the vdev was resilvering or rebuilding and no longer 3314 * has any DTLs then reset the appropriate flag and dirty 3315 * the top level so that we persist the change. 3316 */ 3317 if (txg != 0 && 3318 zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3319 zfs_range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) { 3320 if (vd->vdev_rebuild_txg != 0) { 3321 vd->vdev_rebuild_txg = 0; 3322 vdev_config_dirty(vd->vdev_top); 3323 } else if (vd->vdev_resilver_txg != 0) { 3324 vd->vdev_resilver_txg = 0; 3325 vdev_config_dirty(vd->vdev_top); 3326 } 3327 } 3328 3329 mutex_exit(&vd->vdev_dtl_lock); 3330 3331 if (txg != 0) 3332 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 3333 } else { 3334 mutex_enter(&vd->vdev_dtl_lock); 3335 for (int t = 0; t < DTL_TYPES; t++) { 3336 /* account for child's outage in parent's missing map */ 3337 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 3338 if (t == DTL_SCRUB) { 3339 /* leaf vdevs only */ 3340 continue; 3341 } 3342 if (t == DTL_PARTIAL) { 3343 /* i.e. non-zero */ 3344 minref = 1; 3345 } else if (vdev_get_nparity(vd) != 0) { 3346 /* RAIDZ, DRAID */ 3347 minref = vdev_get_nparity(vd) + 1; 3348 } else { 3349 /* any kind of mirror */ 3350 minref = vd->vdev_children; 3351 } 3352 space_reftree_create(&reftree); 3353 for (int c = 0; c < vd->vdev_children; c++) { 3354 vdev_t *cvd = vd->vdev_child[c]; 3355 mutex_enter(&cvd->vdev_dtl_lock); 3356 space_reftree_add_map(&reftree, 3357 cvd->vdev_dtl[s], 1); 3358 mutex_exit(&cvd->vdev_dtl_lock); 3359 } 3360 space_reftree_generate_map(&reftree, 3361 vd->vdev_dtl[t], minref); 3362 space_reftree_destroy(&reftree); 3363 } 3364 mutex_exit(&vd->vdev_dtl_lock); 3365 } 3366 3367 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) { 3368 raidz_dtl_reassessed(vd); 3369 } 3370 } 3371 3372 void 3373 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, 3374 boolean_t scrub_done, boolean_t rebuild_done) 3375 { 3376 return (vdev_dtl_reassess_impl(vd, txg, scrub_txg, scrub_done, 3377 rebuild_done, B_FALSE)); 3378 } 3379 3380 /* 3381 * Iterate over all the vdevs except spare, and post kobj events 3382 */ 3383 void 3384 vdev_post_kobj_evt(vdev_t *vd) 3385 { 3386 if (vd->vdev_ops->vdev_op_kobj_evt_post && 3387 vd->vdev_kobj_flag == B_FALSE) { 3388 vd->vdev_kobj_flag = B_TRUE; 3389 vd->vdev_ops->vdev_op_kobj_evt_post(vd); 3390 } 3391 3392 for (int c = 0; c < vd->vdev_children; c++) 3393 vdev_post_kobj_evt(vd->vdev_child[c]); 3394 } 3395 3396 /* 3397 * Iterate over all the vdevs except spare, and clear kobj events 3398 */ 3399 void 3400 vdev_clear_kobj_evt(vdev_t *vd) 3401 { 3402 vd->vdev_kobj_flag = B_FALSE; 3403 3404 for (int c = 0; c < vd->vdev_children; c++) 3405 vdev_clear_kobj_evt(vd->vdev_child[c]); 3406 } 3407 3408 int 3409 vdev_dtl_load(vdev_t *vd) 3410 { 3411 spa_t *spa = vd->vdev_spa; 3412 objset_t *mos = spa->spa_meta_objset; 3413 zfs_range_tree_t *rt; 3414 int error = 0; 3415 3416 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 3417 ASSERT(vdev_is_concrete(vd)); 3418 3419 /* 3420 * If the dtl cannot be sync'd there is no need to open it. 3421 */ 3422 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps) 3423 return (0); 3424 3425 error = space_map_open(&vd->vdev_dtl_sm, mos, 3426 vd->vdev_dtl_object, 0, -1ULL, 0); 3427 if (error) 3428 return (error); 3429 ASSERT(vd->vdev_dtl_sm != NULL); 3430 3431 rt = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, NULL, 0, 0); 3432 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC); 3433 if (error == 0) { 3434 mutex_enter(&vd->vdev_dtl_lock); 3435 zfs_range_tree_walk(rt, zfs_range_tree_add, 3436 vd->vdev_dtl[DTL_MISSING]); 3437 mutex_exit(&vd->vdev_dtl_lock); 3438 } 3439 3440 zfs_range_tree_vacate(rt, NULL, NULL); 3441 zfs_range_tree_destroy(rt); 3442 3443 return (error); 3444 } 3445 3446 for (int c = 0; c < vd->vdev_children; c++) { 3447 error = vdev_dtl_load(vd->vdev_child[c]); 3448 if (error != 0) 3449 break; 3450 } 3451 3452 return (error); 3453 } 3454 3455 static void 3456 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) 3457 { 3458 spa_t *spa = vd->vdev_spa; 3459 objset_t *mos = spa->spa_meta_objset; 3460 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 3461 const char *string; 3462 3463 ASSERT(alloc_bias != VDEV_BIAS_NONE); 3464 3465 string = 3466 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : 3467 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : 3468 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; 3469 3470 ASSERT(string != NULL); 3471 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 3472 1, strlen(string) + 1, string, tx)); 3473 3474 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { 3475 spa_activate_allocation_classes(spa, tx); 3476 } 3477 } 3478 3479 void 3480 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 3481 { 3482 spa_t *spa = vd->vdev_spa; 3483 3484 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 3485 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3486 zapobj, tx)); 3487 } 3488 3489 uint64_t 3490 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 3491 { 3492 spa_t *spa = vd->vdev_spa; 3493 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 3494 DMU_OT_NONE, 0, tx); 3495 3496 ASSERT(zap != 0); 3497 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3498 zap, tx)); 3499 3500 return (zap); 3501 } 3502 3503 void 3504 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 3505 { 3506 if (vd->vdev_ops != &vdev_hole_ops && 3507 vd->vdev_ops != &vdev_missing_ops && 3508 vd->vdev_ops != &vdev_root_ops && 3509 !vd->vdev_top->vdev_removing) { 3510 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 3511 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 3512 } 3513 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 3514 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 3515 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) 3516 vdev_zap_allocation_data(vd, tx); 3517 } 3518 } 3519 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 && 3520 spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) { 3521 if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) 3522 spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx); 3523 vd->vdev_root_zap = vdev_create_link_zap(vd, tx); 3524 } 3525 3526 for (uint64_t i = 0; i < vd->vdev_children; i++) { 3527 vdev_construct_zaps(vd->vdev_child[i], tx); 3528 } 3529 } 3530 3531 static void 3532 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 3533 { 3534 spa_t *spa = vd->vdev_spa; 3535 zfs_range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 3536 objset_t *mos = spa->spa_meta_objset; 3537 zfs_range_tree_t *rtsync; 3538 dmu_tx_t *tx; 3539 uint64_t object = space_map_object(vd->vdev_dtl_sm); 3540 3541 ASSERT(vdev_is_concrete(vd)); 3542 ASSERT(vd->vdev_ops->vdev_op_leaf); 3543 3544 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3545 3546 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 3547 mutex_enter(&vd->vdev_dtl_lock); 3548 space_map_free(vd->vdev_dtl_sm, tx); 3549 space_map_close(vd->vdev_dtl_sm); 3550 vd->vdev_dtl_sm = NULL; 3551 mutex_exit(&vd->vdev_dtl_lock); 3552 3553 /* 3554 * We only destroy the leaf ZAP for detached leaves or for 3555 * removed log devices. Removed data devices handle leaf ZAP 3556 * cleanup later, once cancellation is no longer possible. 3557 */ 3558 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 3559 vd->vdev_top->vdev_islog)) { 3560 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 3561 vd->vdev_leaf_zap = 0; 3562 } 3563 3564 dmu_tx_commit(tx); 3565 return; 3566 } 3567 3568 if (vd->vdev_dtl_sm == NULL) { 3569 uint64_t new_object; 3570 3571 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx); 3572 VERIFY3U(new_object, !=, 0); 3573 3574 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 3575 0, -1ULL, 0)); 3576 ASSERT(vd->vdev_dtl_sm != NULL); 3577 } 3578 3579 rtsync = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, NULL, 0, 0); 3580 3581 mutex_enter(&vd->vdev_dtl_lock); 3582 zfs_range_tree_walk(rt, zfs_range_tree_add, rtsync); 3583 mutex_exit(&vd->vdev_dtl_lock); 3584 3585 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx); 3586 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 3587 zfs_range_tree_vacate(rtsync, NULL, NULL); 3588 3589 zfs_range_tree_destroy(rtsync); 3590 3591 /* 3592 * If the object for the space map has changed then dirty 3593 * the top level so that we update the config. 3594 */ 3595 if (object != space_map_object(vd->vdev_dtl_sm)) { 3596 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 3597 "new object %llu", (u_longlong_t)txg, spa_name(spa), 3598 (u_longlong_t)object, 3599 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 3600 vdev_config_dirty(vd->vdev_top); 3601 } 3602 3603 dmu_tx_commit(tx); 3604 } 3605 3606 /* 3607 * Determine whether the specified vdev can be 3608 * - offlined 3609 * - detached 3610 * - removed 3611 * - faulted 3612 * without losing data. 3613 */ 3614 boolean_t 3615 vdev_dtl_required(vdev_t *vd) 3616 { 3617 spa_t *spa = vd->vdev_spa; 3618 vdev_t *tvd = vd->vdev_top; 3619 uint8_t cant_read = vd->vdev_cant_read; 3620 boolean_t required; 3621 boolean_t faulting = vd->vdev_state == VDEV_STATE_FAULTED; 3622 3623 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3624 3625 if (vd == spa->spa_root_vdev || vd == tvd) 3626 return (B_TRUE); 3627 3628 /* 3629 * Temporarily mark the device as unreadable, and then determine 3630 * whether this results in any DTL outages in the top-level vdev. 3631 * If not, we can safely offline/detach/remove the device. 3632 */ 3633 vd->vdev_cant_read = B_TRUE; 3634 vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting); 3635 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 3636 vd->vdev_cant_read = cant_read; 3637 vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting); 3638 3639 if (!required && zio_injection_enabled) { 3640 required = !!zio_handle_device_injection(vd, NULL, 3641 SET_ERROR(ECHILD)); 3642 } 3643 3644 return (required); 3645 } 3646 3647 /* 3648 * Determine if resilver is needed, and if so the txg range. 3649 */ 3650 boolean_t 3651 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 3652 { 3653 boolean_t needed = B_FALSE; 3654 uint64_t thismin = UINT64_MAX; 3655 uint64_t thismax = 0; 3656 3657 if (vd->vdev_children == 0) { 3658 mutex_enter(&vd->vdev_dtl_lock); 3659 if (!zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3660 vdev_writeable(vd)) { 3661 3662 thismin = vdev_dtl_min(vd); 3663 thismax = vdev_dtl_max(vd); 3664 needed = B_TRUE; 3665 } 3666 mutex_exit(&vd->vdev_dtl_lock); 3667 } else { 3668 for (int c = 0; c < vd->vdev_children; c++) { 3669 vdev_t *cvd = vd->vdev_child[c]; 3670 uint64_t cmin, cmax; 3671 3672 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 3673 thismin = MIN(thismin, cmin); 3674 thismax = MAX(thismax, cmax); 3675 needed = B_TRUE; 3676 } 3677 } 3678 } 3679 3680 if (needed && minp) { 3681 *minp = thismin; 3682 *maxp = thismax; 3683 } 3684 return (needed); 3685 } 3686 3687 /* 3688 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj 3689 * will contain either the checkpoint spacemap object or zero if none exists. 3690 * All other errors are returned to the caller. 3691 */ 3692 int 3693 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj) 3694 { 3695 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 3696 3697 if (vd->vdev_top_zap == 0) { 3698 *sm_obj = 0; 3699 return (0); 3700 } 3701 3702 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 3703 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj); 3704 if (error == ENOENT) { 3705 *sm_obj = 0; 3706 error = 0; 3707 } 3708 3709 return (error); 3710 } 3711 3712 int 3713 vdev_load(vdev_t *vd) 3714 { 3715 int children = vd->vdev_children; 3716 int error = 0; 3717 taskq_t *tq = NULL; 3718 3719 /* 3720 * It's only worthwhile to use the taskq for the root vdev, because the 3721 * slow part is metaslab_init, and that only happens for top-level 3722 * vdevs. 3723 */ 3724 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) { 3725 tq = taskq_create("vdev_load", children, minclsyspri, 3726 children, children, TASKQ_PREPOPULATE); 3727 } 3728 3729 /* 3730 * Recursively load all children. 3731 */ 3732 for (int c = 0; c < vd->vdev_children; c++) { 3733 vdev_t *cvd = vd->vdev_child[c]; 3734 3735 if (tq == NULL || vdev_uses_zvols(cvd)) { 3736 cvd->vdev_load_error = vdev_load(cvd); 3737 } else { 3738 VERIFY(taskq_dispatch(tq, vdev_load_child, 3739 cvd, TQ_SLEEP) != TASKQID_INVALID); 3740 } 3741 } 3742 3743 if (tq != NULL) { 3744 taskq_wait(tq); 3745 taskq_destroy(tq); 3746 } 3747 3748 for (int c = 0; c < vd->vdev_children; c++) { 3749 int error = vd->vdev_child[c]->vdev_load_error; 3750 3751 if (error != 0) 3752 return (error); 3753 } 3754 3755 vdev_set_deflate_ratio(vd); 3756 3757 if (vd->vdev_ops == &vdev_raidz_ops) { 3758 error = vdev_raidz_load(vd); 3759 if (error != 0) 3760 return (error); 3761 } 3762 3763 /* 3764 * On spa_load path, grab the allocation bias from our zap 3765 */ 3766 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3767 spa_t *spa = vd->vdev_spa; 3768 char bias_str[64]; 3769 3770 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3771 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), 3772 bias_str); 3773 if (error == 0) { 3774 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); 3775 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); 3776 } else if (error != ENOENT) { 3777 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3778 VDEV_AUX_CORRUPT_DATA); 3779 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) " 3780 "failed [error=%d]", 3781 (u_longlong_t)vd->vdev_top_zap, error); 3782 return (error); 3783 } 3784 } 3785 3786 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3787 spa_t *spa = vd->vdev_spa; 3788 uint64_t failfast; 3789 3790 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3791 vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast), 3792 1, &failfast); 3793 if (error == 0) { 3794 vd->vdev_failfast = failfast & 1; 3795 } else if (error == ENOENT) { 3796 vd->vdev_failfast = vdev_prop_default_numeric( 3797 VDEV_PROP_FAILFAST); 3798 } else { 3799 vdev_dbgmsg(vd, 3800 "vdev_load: zap_lookup(top_zap=%llu) " 3801 "failed [error=%d]", 3802 (u_longlong_t)vd->vdev_top_zap, error); 3803 } 3804 } 3805 3806 /* 3807 * Load any rebuild state from the top-level vdev zap. 3808 */ 3809 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3810 error = vdev_rebuild_load(vd); 3811 if (error && error != ENOTSUP) { 3812 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3813 VDEV_AUX_CORRUPT_DATA); 3814 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load " 3815 "failed [error=%d]", error); 3816 return (error); 3817 } 3818 } 3819 3820 if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) { 3821 uint64_t zapobj; 3822 3823 if (vd->vdev_top_zap != 0) 3824 zapobj = vd->vdev_top_zap; 3825 else 3826 zapobj = vd->vdev_leaf_zap; 3827 3828 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N, 3829 &vd->vdev_checksum_n); 3830 if (error && error != ENOENT) 3831 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3832 "failed [error=%d]", (u_longlong_t)zapobj, error); 3833 3834 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T, 3835 &vd->vdev_checksum_t); 3836 if (error && error != ENOENT) 3837 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3838 "failed [error=%d]", (u_longlong_t)zapobj, error); 3839 3840 error = vdev_prop_get_int(vd, VDEV_PROP_IO_N, 3841 &vd->vdev_io_n); 3842 if (error && error != ENOENT) 3843 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3844 "failed [error=%d]", (u_longlong_t)zapobj, error); 3845 3846 error = vdev_prop_get_int(vd, VDEV_PROP_IO_T, 3847 &vd->vdev_io_t); 3848 if (error && error != ENOENT) 3849 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3850 "failed [error=%d]", (u_longlong_t)zapobj, error); 3851 3852 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_N, 3853 &vd->vdev_slow_io_n); 3854 if (error && error != ENOENT) 3855 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3856 "failed [error=%d]", (u_longlong_t)zapobj, error); 3857 3858 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_T, 3859 &vd->vdev_slow_io_t); 3860 if (error && error != ENOENT) 3861 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3862 "failed [error=%d]", (u_longlong_t)zapobj, error); 3863 } 3864 3865 /* 3866 * If this is a top-level vdev, initialize its metaslabs. 3867 */ 3868 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 3869 vdev_metaslab_group_create(vd); 3870 3871 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 3872 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3873 VDEV_AUX_CORRUPT_DATA); 3874 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 3875 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 3876 (u_longlong_t)vd->vdev_asize); 3877 return (SET_ERROR(ENXIO)); 3878 } 3879 3880 error = vdev_metaslab_init(vd, 0); 3881 if (error != 0) { 3882 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 3883 "[error=%d]", error); 3884 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3885 VDEV_AUX_CORRUPT_DATA); 3886 return (error); 3887 } 3888 3889 uint64_t checkpoint_sm_obj; 3890 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj); 3891 if (error == 0 && checkpoint_sm_obj != 0) { 3892 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3893 ASSERT(vd->vdev_asize != 0); 3894 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); 3895 3896 error = space_map_open(&vd->vdev_checkpoint_sm, 3897 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 3898 vd->vdev_ashift); 3899 if (error != 0) { 3900 vdev_dbgmsg(vd, "vdev_load: space_map_open " 3901 "failed for checkpoint spacemap (obj %llu) " 3902 "[error=%d]", 3903 (u_longlong_t)checkpoint_sm_obj, error); 3904 return (error); 3905 } 3906 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 3907 3908 /* 3909 * Since the checkpoint_sm contains free entries 3910 * exclusively we can use space_map_allocated() to 3911 * indicate the cumulative checkpointed space that 3912 * has been freed. 3913 */ 3914 vd->vdev_stat.vs_checkpoint_space = 3915 -space_map_allocated(vd->vdev_checkpoint_sm); 3916 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 3917 vd->vdev_stat.vs_checkpoint_space; 3918 } else if (error != 0) { 3919 vdev_dbgmsg(vd, "vdev_load: failed to retrieve " 3920 "checkpoint space map object from vdev ZAP " 3921 "[error=%d]", error); 3922 return (error); 3923 } 3924 } 3925 3926 /* 3927 * If this is a leaf vdev, load its DTL. 3928 */ 3929 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 3930 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3931 VDEV_AUX_CORRUPT_DATA); 3932 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 3933 "[error=%d]", error); 3934 return (error); 3935 } 3936 3937 uint64_t obsolete_sm_object; 3938 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object); 3939 if (error == 0 && obsolete_sm_object != 0) { 3940 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3941 ASSERT(vd->vdev_asize != 0); 3942 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 3943 3944 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 3945 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 3946 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3947 VDEV_AUX_CORRUPT_DATA); 3948 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 3949 "obsolete spacemap (obj %llu) [error=%d]", 3950 (u_longlong_t)obsolete_sm_object, error); 3951 return (error); 3952 } 3953 } else if (error != 0) { 3954 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete " 3955 "space map object from vdev ZAP [error=%d]", error); 3956 return (error); 3957 } 3958 3959 return (0); 3960 } 3961 3962 /* 3963 * The special vdev case is used for hot spares and l2cache devices. Its 3964 * sole purpose it to set the vdev state for the associated vdev. To do this, 3965 * we make sure that we can open the underlying device, then try to read the 3966 * label, and make sure that the label is sane and that it hasn't been 3967 * repurposed to another pool. 3968 */ 3969 int 3970 vdev_validate_aux(vdev_t *vd) 3971 { 3972 nvlist_t *label; 3973 uint64_t guid, version; 3974 uint64_t state; 3975 3976 if (!vdev_readable(vd)) 3977 return (0); 3978 3979 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 3980 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3981 VDEV_AUX_CORRUPT_DATA); 3982 return (-1); 3983 } 3984 3985 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 3986 !SPA_VERSION_IS_SUPPORTED(version) || 3987 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 3988 guid != vd->vdev_guid || 3989 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 3990 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3991 VDEV_AUX_CORRUPT_DATA); 3992 nvlist_free(label); 3993 return (-1); 3994 } 3995 3996 /* 3997 * We don't actually check the pool state here. If it's in fact in 3998 * use by another pool, we update this fact on the fly when requested. 3999 */ 4000 nvlist_free(label); 4001 return (0); 4002 } 4003 4004 static void 4005 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx) 4006 { 4007 objset_t *mos = spa_meta_objset(vd->vdev_spa); 4008 4009 if (vd->vdev_top_zap == 0) 4010 return; 4011 4012 uint64_t object = 0; 4013 int err = zap_lookup(mos, vd->vdev_top_zap, 4014 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object); 4015 if (err == ENOENT) 4016 return; 4017 VERIFY0(err); 4018 4019 VERIFY0(dmu_object_free(mos, object, tx)); 4020 VERIFY0(zap_remove(mos, vd->vdev_top_zap, 4021 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx)); 4022 } 4023 4024 /* 4025 * Free the objects used to store this vdev's spacemaps, and the array 4026 * that points to them. 4027 */ 4028 void 4029 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 4030 { 4031 if (vd->vdev_ms_array == 0) 4032 return; 4033 4034 objset_t *mos = vd->vdev_spa->spa_meta_objset; 4035 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 4036 size_t array_bytes = array_count * sizeof (uint64_t); 4037 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 4038 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 4039 array_bytes, smobj_array, 0)); 4040 4041 for (uint64_t i = 0; i < array_count; i++) { 4042 uint64_t smobj = smobj_array[i]; 4043 if (smobj == 0) 4044 continue; 4045 4046 space_map_free_obj(mos, smobj, tx); 4047 } 4048 4049 kmem_free(smobj_array, array_bytes); 4050 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 4051 vdev_destroy_ms_flush_data(vd, tx); 4052 vd->vdev_ms_array = 0; 4053 } 4054 4055 static void 4056 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 4057 { 4058 spa_t *spa = vd->vdev_spa; 4059 4060 ASSERT(vd->vdev_islog); 4061 ASSERT(vd == vd->vdev_top); 4062 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 4063 4064 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 4065 4066 vdev_destroy_spacemaps(vd, tx); 4067 if (vd->vdev_top_zap != 0) { 4068 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 4069 vd->vdev_top_zap = 0; 4070 } 4071 4072 dmu_tx_commit(tx); 4073 } 4074 4075 void 4076 vdev_sync_done(vdev_t *vd, uint64_t txg) 4077 { 4078 metaslab_t *msp; 4079 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 4080 4081 ASSERT(vdev_is_concrete(vd)); 4082 4083 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 4084 != NULL) 4085 metaslab_sync_done(msp, txg); 4086 4087 if (reassess) { 4088 metaslab_sync_reassess(vd->vdev_mg); 4089 if (vd->vdev_log_mg != NULL) 4090 metaslab_sync_reassess(vd->vdev_log_mg); 4091 } 4092 } 4093 4094 void 4095 vdev_sync(vdev_t *vd, uint64_t txg) 4096 { 4097 spa_t *spa = vd->vdev_spa; 4098 vdev_t *lvd; 4099 metaslab_t *msp; 4100 4101 ASSERT3U(txg, ==, spa->spa_syncing_txg); 4102 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 4103 if (zfs_range_tree_space(vd->vdev_obsolete_segments) > 0) { 4104 ASSERT(vd->vdev_removing || 4105 vd->vdev_ops == &vdev_indirect_ops); 4106 4107 vdev_indirect_sync_obsolete(vd, tx); 4108 4109 /* 4110 * If the vdev is indirect, it can't have dirty 4111 * metaslabs or DTLs. 4112 */ 4113 if (vd->vdev_ops == &vdev_indirect_ops) { 4114 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 4115 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 4116 dmu_tx_commit(tx); 4117 return; 4118 } 4119 } 4120 4121 ASSERT(vdev_is_concrete(vd)); 4122 4123 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 4124 !vd->vdev_removing) { 4125 ASSERT(vd == vd->vdev_top); 4126 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 4127 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 4128 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 4129 ASSERT(vd->vdev_ms_array != 0); 4130 vdev_config_dirty(vd); 4131 } 4132 4133 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 4134 metaslab_sync(msp, txg); 4135 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 4136 } 4137 4138 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 4139 vdev_dtl_sync(lvd, txg); 4140 4141 /* 4142 * If this is an empty log device being removed, destroy the 4143 * metadata associated with it. 4144 */ 4145 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 4146 vdev_remove_empty_log(vd, txg); 4147 4148 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 4149 dmu_tx_commit(tx); 4150 } 4151 uint64_t 4152 vdev_asize_to_psize_txg(vdev_t *vd, uint64_t asize, uint64_t txg) 4153 { 4154 return (vd->vdev_ops->vdev_op_asize_to_psize(vd, asize, txg)); 4155 } 4156 4157 /* 4158 * Return the amount of space that should be (or was) allocated for the given 4159 * psize (compressed block size) in the given TXG. Note that for expanded 4160 * RAIDZ vdevs, the size allocated for older BP's may be larger. See 4161 * vdev_raidz_psize_to_asize(). 4162 */ 4163 uint64_t 4164 vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg) 4165 { 4166 return (vd->vdev_ops->vdev_op_psize_to_asize(vd, psize, txg)); 4167 } 4168 4169 uint64_t 4170 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 4171 { 4172 return (vdev_psize_to_asize_txg(vd, psize, 0)); 4173 } 4174 4175 /* 4176 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 4177 * not be opened, and no I/O is attempted. 4178 */ 4179 int 4180 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 4181 { 4182 vdev_t *vd, *tvd; 4183 4184 spa_vdev_state_enter(spa, SCL_NONE); 4185 4186 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4187 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4188 4189 if (!vd->vdev_ops->vdev_op_leaf) 4190 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4191 4192 tvd = vd->vdev_top; 4193 4194 /* 4195 * If user did a 'zpool offline -f' then make the fault persist across 4196 * reboots. 4197 */ 4198 if (aux == VDEV_AUX_EXTERNAL_PERSIST) { 4199 /* 4200 * There are two kinds of forced faults: temporary and 4201 * persistent. Temporary faults go away at pool import, while 4202 * persistent faults stay set. Both types of faults can be 4203 * cleared with a zpool clear. 4204 * 4205 * We tell if a vdev is persistently faulted by looking at the 4206 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at 4207 * import then it's a persistent fault. Otherwise, it's 4208 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external" 4209 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This 4210 * tells vdev_config_generate() (which gets run later) to set 4211 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist. 4212 */ 4213 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 4214 vd->vdev_tmpoffline = B_FALSE; 4215 aux = VDEV_AUX_EXTERNAL; 4216 } else { 4217 vd->vdev_tmpoffline = B_TRUE; 4218 } 4219 4220 /* 4221 * We don't directly use the aux state here, but if we do a 4222 * vdev_reopen(), we need this value to be present to remember why we 4223 * were faulted. 4224 */ 4225 vd->vdev_label_aux = aux; 4226 4227 /* 4228 * Faulted state takes precedence over degraded. 4229 */ 4230 vd->vdev_delayed_close = B_FALSE; 4231 vd->vdev_faulted = 1ULL; 4232 vd->vdev_degraded = 0ULL; 4233 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 4234 4235 /* 4236 * If this device has the only valid copy of the data, then 4237 * back off and simply mark the vdev as degraded instead. 4238 */ 4239 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 4240 vd->vdev_degraded = 1ULL; 4241 vd->vdev_faulted = 0ULL; 4242 4243 /* 4244 * If we reopen the device and it's not dead, only then do we 4245 * mark it degraded. 4246 */ 4247 vdev_reopen(tvd); 4248 4249 if (vdev_readable(vd)) 4250 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 4251 } 4252 4253 return (spa_vdev_state_exit(spa, vd, 0)); 4254 } 4255 4256 /* 4257 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 4258 * user that something is wrong. The vdev continues to operate as normal as far 4259 * as I/O is concerned. 4260 */ 4261 int 4262 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 4263 { 4264 vdev_t *vd; 4265 4266 spa_vdev_state_enter(spa, SCL_NONE); 4267 4268 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4269 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4270 4271 if (!vd->vdev_ops->vdev_op_leaf) 4272 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4273 4274 /* 4275 * If the vdev is already faulted, then don't do anything. 4276 */ 4277 if (vd->vdev_faulted || vd->vdev_degraded) 4278 return (spa_vdev_state_exit(spa, NULL, 0)); 4279 4280 vd->vdev_degraded = 1ULL; 4281 if (!vdev_is_dead(vd)) 4282 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 4283 aux); 4284 4285 return (spa_vdev_state_exit(spa, vd, 0)); 4286 } 4287 4288 int 4289 vdev_remove_wanted(spa_t *spa, uint64_t guid) 4290 { 4291 vdev_t *vd; 4292 4293 spa_vdev_state_enter(spa, SCL_NONE); 4294 4295 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4296 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4297 4298 /* 4299 * If the vdev is already removed, or expanding which can trigger 4300 * repartition add/remove events, then don't do anything. 4301 */ 4302 if (vd->vdev_removed || vd->vdev_expanding) 4303 return (spa_vdev_state_exit(spa, NULL, 0)); 4304 4305 /* 4306 * Confirm the vdev has been removed, otherwise don't do anything. 4307 */ 4308 if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL))) 4309 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST))); 4310 4311 vd->vdev_remove_wanted = B_TRUE; 4312 spa_async_request(spa, SPA_ASYNC_REMOVE_BY_USER); 4313 4314 return (spa_vdev_state_exit(spa, vd, 0)); 4315 } 4316 4317 4318 /* 4319 * Online the given vdev. 4320 * 4321 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 4322 * spare device should be detached when the device finishes resilvering. 4323 * Second, the online should be treated like a 'test' online case, so no FMA 4324 * events are generated if the device fails to open. 4325 */ 4326 int 4327 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 4328 { 4329 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 4330 boolean_t wasoffline; 4331 vdev_state_t oldstate; 4332 4333 spa_vdev_state_enter(spa, SCL_NONE); 4334 4335 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4336 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4337 4338 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 4339 oldstate = vd->vdev_state; 4340 4341 tvd = vd->vdev_top; 4342 vd->vdev_offline = B_FALSE; 4343 vd->vdev_tmpoffline = B_FALSE; 4344 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 4345 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 4346 4347 /* XXX - L2ARC 1.0 does not support expansion */ 4348 if (!vd->vdev_aux) { 4349 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4350 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) || 4351 spa->spa_autoexpand); 4352 vd->vdev_expansion_time = gethrestime_sec(); 4353 } 4354 4355 vdev_reopen(tvd); 4356 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 4357 4358 if (!vd->vdev_aux) { 4359 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4360 pvd->vdev_expanding = B_FALSE; 4361 } 4362 4363 if (newstate) 4364 *newstate = vd->vdev_state; 4365 if ((flags & ZFS_ONLINE_UNSPARE) && 4366 !vdev_is_dead(vd) && vd->vdev_parent && 4367 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4368 vd->vdev_parent->vdev_child[0] == vd) 4369 vd->vdev_unspare = B_TRUE; 4370 4371 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 4372 4373 /* XXX - L2ARC 1.0 does not support expansion */ 4374 if (vd->vdev_aux) 4375 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 4376 spa->spa_ccw_fail_time = 0; 4377 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 4378 } 4379 4380 /* Restart initializing if necessary */ 4381 mutex_enter(&vd->vdev_initialize_lock); 4382 if (vdev_writeable(vd) && 4383 vd->vdev_initialize_thread == NULL && 4384 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 4385 (void) vdev_initialize(vd); 4386 } 4387 mutex_exit(&vd->vdev_initialize_lock); 4388 4389 /* 4390 * Restart trimming if necessary. We do not restart trimming for cache 4391 * devices here. This is triggered by l2arc_rebuild_vdev() 4392 * asynchronously for the whole device or in l2arc_evict() as it evicts 4393 * space for upcoming writes. 4394 */ 4395 mutex_enter(&vd->vdev_trim_lock); 4396 if (vdev_writeable(vd) && !vd->vdev_isl2cache && 4397 vd->vdev_trim_thread == NULL && 4398 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { 4399 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, 4400 vd->vdev_trim_secure); 4401 } 4402 mutex_exit(&vd->vdev_trim_lock); 4403 4404 if (wasoffline || 4405 (oldstate < VDEV_STATE_DEGRADED && 4406 vd->vdev_state >= VDEV_STATE_DEGRADED)) { 4407 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 4408 4409 /* 4410 * Asynchronously detach spare vdev if resilver or 4411 * rebuild is not required 4412 */ 4413 if (vd->vdev_unspare && 4414 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4415 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) && 4416 !vdev_rebuild_active(tvd)) 4417 spa_async_request(spa, SPA_ASYNC_DETACH_SPARE); 4418 } 4419 return (spa_vdev_state_exit(spa, vd, 0)); 4420 } 4421 4422 static int 4423 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 4424 { 4425 vdev_t *vd, *tvd; 4426 int error = 0; 4427 uint64_t generation; 4428 metaslab_group_t *mg; 4429 4430 top: 4431 spa_vdev_state_enter(spa, SCL_ALLOC); 4432 4433 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4434 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4435 4436 if (!vd->vdev_ops->vdev_op_leaf) 4437 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4438 4439 if (vd->vdev_ops == &vdev_draid_spare_ops) 4440 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4441 4442 tvd = vd->vdev_top; 4443 mg = tvd->vdev_mg; 4444 generation = spa->spa_config_generation + 1; 4445 4446 /* 4447 * If the device isn't already offline, try to offline it. 4448 */ 4449 if (!vd->vdev_offline) { 4450 /* 4451 * If this device has the only valid copy of some data, 4452 * don't allow it to be offlined. Log devices are always 4453 * expendable. 4454 */ 4455 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4456 vdev_dtl_required(vd)) 4457 return (spa_vdev_state_exit(spa, NULL, 4458 SET_ERROR(EBUSY))); 4459 4460 /* 4461 * If the top-level is a slog and it has had allocations 4462 * then proceed. We check that the vdev's metaslab group 4463 * is not NULL since it's possible that we may have just 4464 * added this vdev but not yet initialized its metaslabs. 4465 */ 4466 if (tvd->vdev_islog && mg != NULL) { 4467 /* 4468 * Prevent any future allocations. 4469 */ 4470 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 4471 metaslab_group_passivate(mg); 4472 (void) spa_vdev_state_exit(spa, vd, 0); 4473 4474 error = spa_reset_logs(spa); 4475 4476 /* 4477 * If the log device was successfully reset but has 4478 * checkpointed data, do not offline it. 4479 */ 4480 if (error == 0 && 4481 tvd->vdev_checkpoint_sm != NULL) { 4482 ASSERT3U(space_map_allocated( 4483 tvd->vdev_checkpoint_sm), !=, 0); 4484 error = ZFS_ERR_CHECKPOINT_EXISTS; 4485 } 4486 4487 spa_vdev_state_enter(spa, SCL_ALLOC); 4488 4489 /* 4490 * Check to see if the config has changed. 4491 */ 4492 if (error || generation != spa->spa_config_generation) { 4493 metaslab_group_activate(mg); 4494 if (error) 4495 return (spa_vdev_state_exit(spa, 4496 vd, error)); 4497 (void) spa_vdev_state_exit(spa, vd, 0); 4498 goto top; 4499 } 4500 ASSERT0(tvd->vdev_stat.vs_alloc); 4501 } 4502 4503 /* 4504 * Offline this device and reopen its top-level vdev. 4505 * If the top-level vdev is a log device then just offline 4506 * it. Otherwise, if this action results in the top-level 4507 * vdev becoming unusable, undo it and fail the request. 4508 */ 4509 vd->vdev_offline = B_TRUE; 4510 vdev_reopen(tvd); 4511 4512 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4513 vdev_is_dead(tvd)) { 4514 vd->vdev_offline = B_FALSE; 4515 vdev_reopen(tvd); 4516 return (spa_vdev_state_exit(spa, NULL, 4517 SET_ERROR(EBUSY))); 4518 } 4519 4520 /* 4521 * Add the device back into the metaslab rotor so that 4522 * once we online the device it's open for business. 4523 */ 4524 if (tvd->vdev_islog && mg != NULL) 4525 metaslab_group_activate(mg); 4526 } 4527 4528 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 4529 4530 return (spa_vdev_state_exit(spa, vd, 0)); 4531 } 4532 4533 int 4534 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 4535 { 4536 int error; 4537 4538 mutex_enter(&spa->spa_vdev_top_lock); 4539 error = vdev_offline_locked(spa, guid, flags); 4540 mutex_exit(&spa->spa_vdev_top_lock); 4541 4542 return (error); 4543 } 4544 4545 /* 4546 * Clear the error counts associated with this vdev. Unlike vdev_online() and 4547 * vdev_offline(), we assume the spa config is locked. We also clear all 4548 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 4549 */ 4550 void 4551 vdev_clear(spa_t *spa, vdev_t *vd) 4552 { 4553 vdev_t *rvd = spa->spa_root_vdev; 4554 4555 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 4556 4557 if (vd == NULL) 4558 vd = rvd; 4559 4560 vd->vdev_stat.vs_read_errors = 0; 4561 vd->vdev_stat.vs_write_errors = 0; 4562 vd->vdev_stat.vs_checksum_errors = 0; 4563 vd->vdev_stat.vs_dio_verify_errors = 0; 4564 vd->vdev_stat.vs_slow_ios = 0; 4565 4566 for (int c = 0; c < vd->vdev_children; c++) 4567 vdev_clear(spa, vd->vdev_child[c]); 4568 4569 /* 4570 * It makes no sense to "clear" an indirect or removed vdev. 4571 */ 4572 if (!vdev_is_concrete(vd) || vd->vdev_removed) 4573 return; 4574 4575 /* 4576 * If we're in the FAULTED state or have experienced failed I/O, then 4577 * clear the persistent state and attempt to reopen the device. We 4578 * also mark the vdev config dirty, so that the new faulted state is 4579 * written out to disk. 4580 */ 4581 if (vd->vdev_faulted || vd->vdev_degraded || 4582 !vdev_readable(vd) || !vdev_writeable(vd)) { 4583 /* 4584 * When reopening in response to a clear event, it may be due to 4585 * a fmadm repair request. In this case, if the device is 4586 * still broken, we want to still post the ereport again. 4587 */ 4588 vd->vdev_forcefault = B_TRUE; 4589 4590 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 4591 vd->vdev_cant_read = B_FALSE; 4592 vd->vdev_cant_write = B_FALSE; 4593 vd->vdev_stat.vs_aux = 0; 4594 4595 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 4596 4597 vd->vdev_forcefault = B_FALSE; 4598 4599 if (vd != rvd && vdev_writeable(vd->vdev_top)) 4600 vdev_state_dirty(vd->vdev_top); 4601 4602 /* If a resilver isn't required, check if vdevs can be culled */ 4603 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) && 4604 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4605 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool)) 4606 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4607 4608 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 4609 } 4610 4611 /* 4612 * When clearing a FMA-diagnosed fault, we always want to 4613 * unspare the device, as we assume that the original spare was 4614 * done in response to the FMA fault. 4615 */ 4616 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 4617 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4618 vd->vdev_parent->vdev_child[0] == vd) 4619 vd->vdev_unspare = B_TRUE; 4620 4621 /* Clear recent error events cache (i.e. duplicate events tracking) */ 4622 zfs_ereport_clear(spa, vd); 4623 } 4624 4625 boolean_t 4626 vdev_is_dead(vdev_t *vd) 4627 { 4628 /* 4629 * Holes and missing devices are always considered "dead". 4630 * This simplifies the code since we don't have to check for 4631 * these types of devices in the various code paths. 4632 * Instead we rely on the fact that we skip over dead devices 4633 * before issuing I/O to them. 4634 */ 4635 return (vd->vdev_state < VDEV_STATE_DEGRADED || 4636 vd->vdev_ops == &vdev_hole_ops || 4637 vd->vdev_ops == &vdev_missing_ops); 4638 } 4639 4640 boolean_t 4641 vdev_readable(vdev_t *vd) 4642 { 4643 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 4644 } 4645 4646 boolean_t 4647 vdev_writeable(vdev_t *vd) 4648 { 4649 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 4650 vdev_is_concrete(vd)); 4651 } 4652 4653 boolean_t 4654 vdev_allocatable(vdev_t *vd) 4655 { 4656 uint64_t state = vd->vdev_state; 4657 4658 /* 4659 * We currently allow allocations from vdevs which may be in the 4660 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 4661 * fails to reopen then we'll catch it later when we're holding 4662 * the proper locks. Note that we have to get the vdev state 4663 * in a local variable because although it changes atomically, 4664 * we're asking two separate questions about it. 4665 */ 4666 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 4667 !vd->vdev_cant_write && vdev_is_concrete(vd) && 4668 vd->vdev_mg->mg_initialized); 4669 } 4670 4671 boolean_t 4672 vdev_accessible(vdev_t *vd, zio_t *zio) 4673 { 4674 ASSERT(zio->io_vd == vd); 4675 4676 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 4677 return (B_FALSE); 4678 4679 if (zio->io_type == ZIO_TYPE_READ) 4680 return (!vd->vdev_cant_read); 4681 4682 if (zio->io_type == ZIO_TYPE_WRITE) 4683 return (!vd->vdev_cant_write); 4684 4685 return (B_TRUE); 4686 } 4687 4688 static void 4689 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs) 4690 { 4691 /* 4692 * Exclude the dRAID spare when aggregating to avoid double counting 4693 * the ops and bytes. These IOs are counted by the physical leaves. 4694 */ 4695 if (cvd->vdev_ops == &vdev_draid_spare_ops) 4696 return; 4697 4698 for (int t = 0; t < VS_ZIO_TYPES; t++) { 4699 vs->vs_ops[t] += cvs->vs_ops[t]; 4700 vs->vs_bytes[t] += cvs->vs_bytes[t]; 4701 } 4702 4703 cvs->vs_scan_removing = cvd->vdev_removing; 4704 } 4705 4706 /* 4707 * Get extended stats 4708 */ 4709 static void 4710 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx) 4711 { 4712 (void) cvd; 4713 4714 int t, b; 4715 for (t = 0; t < ZIO_TYPES; t++) { 4716 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++) 4717 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b]; 4718 4719 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) { 4720 vsx->vsx_total_histo[t][b] += 4721 cvsx->vsx_total_histo[t][b]; 4722 } 4723 } 4724 4725 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4726 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) { 4727 vsx->vsx_queue_histo[t][b] += 4728 cvsx->vsx_queue_histo[t][b]; 4729 } 4730 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t]; 4731 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t]; 4732 4733 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++) 4734 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b]; 4735 4736 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++) 4737 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b]; 4738 } 4739 4740 } 4741 4742 boolean_t 4743 vdev_is_spacemap_addressable(vdev_t *vd) 4744 { 4745 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 4746 return (B_TRUE); 4747 4748 /* 4749 * If double-word space map entries are not enabled we assume 4750 * 47 bits of the space map entry are dedicated to the entry's 4751 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 4752 * to calculate the maximum address that can be described by a 4753 * space map entry for the given device. 4754 */ 4755 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 4756 4757 if (shift >= 63) /* detect potential overflow */ 4758 return (B_TRUE); 4759 4760 return (vd->vdev_asize < (1ULL << shift)); 4761 } 4762 4763 /* 4764 * Get statistics for the given vdev. 4765 */ 4766 static void 4767 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4768 { 4769 int t; 4770 /* 4771 * If we're getting stats on the root vdev, aggregate the I/O counts 4772 * over all top-level vdevs (i.e. the direct children of the root). 4773 */ 4774 if (!vd->vdev_ops->vdev_op_leaf) { 4775 if (vs) { 4776 memset(vs->vs_ops, 0, sizeof (vs->vs_ops)); 4777 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes)); 4778 } 4779 if (vsx) 4780 memset(vsx, 0, sizeof (*vsx)); 4781 4782 for (int c = 0; c < vd->vdev_children; c++) { 4783 vdev_t *cvd = vd->vdev_child[c]; 4784 vdev_stat_t *cvs = &cvd->vdev_stat; 4785 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex; 4786 4787 vdev_get_stats_ex_impl(cvd, cvs, cvsx); 4788 if (vs) 4789 vdev_get_child_stat(cvd, vs, cvs); 4790 if (vsx) 4791 vdev_get_child_stat_ex(cvd, vsx, cvsx); 4792 } 4793 } else { 4794 /* 4795 * We're a leaf. Just copy our ZIO active queue stats in. The 4796 * other leaf stats are updated in vdev_stat_update(). 4797 */ 4798 if (!vsx) 4799 return; 4800 4801 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex)); 4802 4803 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4804 vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t]; 4805 vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t); 4806 } 4807 } 4808 } 4809 4810 void 4811 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4812 { 4813 vdev_t *tvd = vd->vdev_top; 4814 mutex_enter(&vd->vdev_stat_lock); 4815 if (vs) { 4816 memcpy(vs, &vd->vdev_stat, sizeof (*vs)); 4817 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 4818 vs->vs_state = vd->vdev_state; 4819 vs->vs_rsize = vdev_get_min_asize(vd); 4820 4821 if (vd->vdev_ops->vdev_op_leaf) { 4822 vs->vs_pspace = vd->vdev_psize; 4823 vs->vs_rsize += VDEV_LABEL_START_SIZE + 4824 VDEV_LABEL_END_SIZE; 4825 /* 4826 * Report initializing progress. Since we don't 4827 * have the initializing locks held, this is only 4828 * an estimate (although a fairly accurate one). 4829 */ 4830 vs->vs_initialize_bytes_done = 4831 vd->vdev_initialize_bytes_done; 4832 vs->vs_initialize_bytes_est = 4833 vd->vdev_initialize_bytes_est; 4834 vs->vs_initialize_state = vd->vdev_initialize_state; 4835 vs->vs_initialize_action_time = 4836 vd->vdev_initialize_action_time; 4837 4838 /* 4839 * Report manual TRIM progress. Since we don't have 4840 * the manual TRIM locks held, this is only an 4841 * estimate (although fairly accurate one). 4842 */ 4843 vs->vs_trim_notsup = !vd->vdev_has_trim; 4844 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done; 4845 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est; 4846 vs->vs_trim_state = vd->vdev_trim_state; 4847 vs->vs_trim_action_time = vd->vdev_trim_action_time; 4848 4849 /* Set when there is a deferred resilver. */ 4850 vs->vs_resilver_deferred = vd->vdev_resilver_deferred; 4851 } 4852 4853 /* 4854 * Report expandable space on top-level, non-auxiliary devices 4855 * only. The expandable space is reported in terms of metaslab 4856 * sized units since that determines how much space the pool 4857 * can expand. 4858 */ 4859 if (vd->vdev_aux == NULL && tvd != NULL) { 4860 vs->vs_esize = P2ALIGN_TYPED( 4861 vd->vdev_max_asize - vd->vdev_asize, 4862 1ULL << tvd->vdev_ms_shift, uint64_t); 4863 } 4864 4865 vs->vs_configured_ashift = vd->vdev_top != NULL 4866 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift; 4867 vs->vs_logical_ashift = vd->vdev_logical_ashift; 4868 if (vd->vdev_physical_ashift <= ASHIFT_MAX) 4869 vs->vs_physical_ashift = vd->vdev_physical_ashift; 4870 else 4871 vs->vs_physical_ashift = 0; 4872 4873 /* 4874 * Report fragmentation and rebuild progress for top-level, 4875 * non-auxiliary, concrete devices. 4876 */ 4877 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 4878 vdev_is_concrete(vd)) { 4879 /* 4880 * The vdev fragmentation rating doesn't take into 4881 * account the embedded slog metaslab (vdev_log_mg). 4882 * Since it's only one metaslab, it would have a tiny 4883 * impact on the overall fragmentation. 4884 */ 4885 vs->vs_fragmentation = (vd->vdev_mg != NULL) ? 4886 vd->vdev_mg->mg_fragmentation : 0; 4887 } 4888 vs->vs_noalloc = MAX(vd->vdev_noalloc, 4889 tvd ? tvd->vdev_noalloc : 0); 4890 } 4891 4892 vdev_get_stats_ex_impl(vd, vs, vsx); 4893 mutex_exit(&vd->vdev_stat_lock); 4894 } 4895 4896 void 4897 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 4898 { 4899 return (vdev_get_stats_ex(vd, vs, NULL)); 4900 } 4901 4902 void 4903 vdev_clear_stats(vdev_t *vd) 4904 { 4905 mutex_enter(&vd->vdev_stat_lock); 4906 vd->vdev_stat.vs_space = 0; 4907 vd->vdev_stat.vs_dspace = 0; 4908 vd->vdev_stat.vs_alloc = 0; 4909 mutex_exit(&vd->vdev_stat_lock); 4910 } 4911 4912 void 4913 vdev_scan_stat_init(vdev_t *vd) 4914 { 4915 vdev_stat_t *vs = &vd->vdev_stat; 4916 4917 for (int c = 0; c < vd->vdev_children; c++) 4918 vdev_scan_stat_init(vd->vdev_child[c]); 4919 4920 mutex_enter(&vd->vdev_stat_lock); 4921 vs->vs_scan_processed = 0; 4922 mutex_exit(&vd->vdev_stat_lock); 4923 } 4924 4925 void 4926 vdev_stat_update(zio_t *zio, uint64_t psize) 4927 { 4928 spa_t *spa = zio->io_spa; 4929 vdev_t *rvd = spa->spa_root_vdev; 4930 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 4931 vdev_t *pvd; 4932 uint64_t txg = zio->io_txg; 4933 /* Suppress ASAN false positive */ 4934 #ifdef __SANITIZE_ADDRESS__ 4935 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL; 4936 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL; 4937 #else 4938 vdev_stat_t *vs = &vd->vdev_stat; 4939 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex; 4940 #endif 4941 zio_type_t type = zio->io_type; 4942 int flags = zio->io_flags; 4943 4944 /* 4945 * If this i/o is a gang leader, it didn't do any actual work. 4946 */ 4947 if (zio->io_gang_tree) 4948 return; 4949 4950 if (zio->io_error == 0) { 4951 /* 4952 * If this is a root i/o, don't count it -- we've already 4953 * counted the top-level vdevs, and vdev_get_stats() will 4954 * aggregate them when asked. This reduces contention on 4955 * the root vdev_stat_lock and implicitly handles blocks 4956 * that compress away to holes, for which there is no i/o. 4957 * (Holes never create vdev children, so all the counters 4958 * remain zero, which is what we want.) 4959 * 4960 * Note: this only applies to successful i/o (io_error == 0) 4961 * because unlike i/o counts, errors are not additive. 4962 * When reading a ditto block, for example, failure of 4963 * one top-level vdev does not imply a root-level error. 4964 */ 4965 if (vd == rvd) 4966 return; 4967 4968 ASSERT(vd == zio->io_vd); 4969 4970 if (flags & ZIO_FLAG_IO_BYPASS) 4971 return; 4972 4973 mutex_enter(&vd->vdev_stat_lock); 4974 4975 if (flags & ZIO_FLAG_IO_REPAIR) { 4976 /* 4977 * Repair is the result of a resilver issued by the 4978 * scan thread (spa_sync). 4979 */ 4980 if (flags & ZIO_FLAG_SCAN_THREAD) { 4981 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 4982 dsl_scan_phys_t *scn_phys = &scn->scn_phys; 4983 uint64_t *processed = &scn_phys->scn_processed; 4984 4985 if (vd->vdev_ops->vdev_op_leaf) 4986 atomic_add_64(processed, psize); 4987 vs->vs_scan_processed += psize; 4988 } 4989 4990 /* 4991 * Repair is the result of a rebuild issued by the 4992 * rebuild thread (vdev_rebuild_thread). To avoid 4993 * double counting repaired bytes the virtual dRAID 4994 * spare vdev is excluded from the processed bytes. 4995 */ 4996 if (zio->io_priority == ZIO_PRIORITY_REBUILD) { 4997 vdev_t *tvd = vd->vdev_top; 4998 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config; 4999 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 5000 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt; 5001 5002 if (vd->vdev_ops->vdev_op_leaf && 5003 vd->vdev_ops != &vdev_draid_spare_ops) { 5004 atomic_add_64(rebuilt, psize); 5005 } 5006 vs->vs_rebuild_processed += psize; 5007 } 5008 5009 if (flags & ZIO_FLAG_SELF_HEAL) 5010 vs->vs_self_healed += psize; 5011 } 5012 5013 /* 5014 * The bytes/ops/histograms are recorded at the leaf level and 5015 * aggregated into the higher level vdevs in vdev_get_stats(). 5016 */ 5017 if (vd->vdev_ops->vdev_op_leaf && 5018 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) { 5019 zio_type_t vs_type = type; 5020 zio_priority_t priority = zio->io_priority; 5021 5022 /* 5023 * TRIM ops and bytes are reported to user space as 5024 * ZIO_TYPE_FLUSH. This is done to preserve the 5025 * vdev_stat_t structure layout for user space. 5026 */ 5027 if (type == ZIO_TYPE_TRIM) 5028 vs_type = ZIO_TYPE_FLUSH; 5029 5030 /* 5031 * Solely for the purposes of 'zpool iostat -lqrw' 5032 * reporting use the priority to categorize the IO. 5033 * Only the following are reported to user space: 5034 * 5035 * ZIO_PRIORITY_SYNC_READ, 5036 * ZIO_PRIORITY_SYNC_WRITE, 5037 * ZIO_PRIORITY_ASYNC_READ, 5038 * ZIO_PRIORITY_ASYNC_WRITE, 5039 * ZIO_PRIORITY_SCRUB, 5040 * ZIO_PRIORITY_TRIM, 5041 * ZIO_PRIORITY_REBUILD. 5042 */ 5043 if (priority == ZIO_PRIORITY_INITIALIZING) { 5044 ASSERT3U(type, ==, ZIO_TYPE_WRITE); 5045 priority = ZIO_PRIORITY_ASYNC_WRITE; 5046 } else if (priority == ZIO_PRIORITY_REMOVAL) { 5047 priority = ((type == ZIO_TYPE_WRITE) ? 5048 ZIO_PRIORITY_ASYNC_WRITE : 5049 ZIO_PRIORITY_ASYNC_READ); 5050 } 5051 5052 vs->vs_ops[vs_type]++; 5053 vs->vs_bytes[vs_type] += psize; 5054 5055 if (flags & ZIO_FLAG_DELEGATED) { 5056 vsx->vsx_agg_histo[priority] 5057 [RQ_HISTO(zio->io_size)]++; 5058 } else { 5059 vsx->vsx_ind_histo[priority] 5060 [RQ_HISTO(zio->io_size)]++; 5061 } 5062 5063 if (zio->io_delta && zio->io_delay) { 5064 vsx->vsx_queue_histo[priority] 5065 [L_HISTO(zio->io_delta - zio->io_delay)]++; 5066 vsx->vsx_disk_histo[type] 5067 [L_HISTO(zio->io_delay)]++; 5068 vsx->vsx_total_histo[type] 5069 [L_HISTO(zio->io_delta)]++; 5070 } 5071 } 5072 5073 mutex_exit(&vd->vdev_stat_lock); 5074 return; 5075 } 5076 5077 if (flags & ZIO_FLAG_SPECULATIVE) 5078 return; 5079 5080 /* 5081 * If this is an I/O error that is going to be retried, then ignore the 5082 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 5083 * hard errors, when in reality they can happen for any number of 5084 * innocuous reasons (bus resets, MPxIO link failure, etc). 5085 */ 5086 if (zio->io_error == EIO && 5087 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 5088 return; 5089 5090 /* 5091 * Intent logs writes won't propagate their error to the root 5092 * I/O so don't mark these types of failures as pool-level 5093 * errors. 5094 */ 5095 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 5096 return; 5097 5098 if (type == ZIO_TYPE_WRITE && txg != 0 && 5099 (!(flags & ZIO_FLAG_IO_REPAIR) || 5100 (flags & ZIO_FLAG_SCAN_THREAD) || 5101 spa->spa_claiming)) { 5102 /* 5103 * This is either a normal write (not a repair), or it's 5104 * a repair induced by the scrub thread, or it's a repair 5105 * made by zil_claim() during spa_load() in the first txg. 5106 * In the normal case, we commit the DTL change in the same 5107 * txg as the block was born. In the scrub-induced repair 5108 * case, we know that scrubs run in first-pass syncing context, 5109 * so we commit the DTL change in spa_syncing_txg(spa). 5110 * In the zil_claim() case, we commit in spa_first_txg(spa). 5111 * 5112 * We currently do not make DTL entries for failed spontaneous 5113 * self-healing writes triggered by normal (non-scrubbing) 5114 * reads, because we have no transactional context in which to 5115 * do so -- and it's not clear that it'd be desirable anyway. 5116 */ 5117 if (vd->vdev_ops->vdev_op_leaf) { 5118 uint64_t commit_txg = txg; 5119 if (flags & ZIO_FLAG_SCAN_THREAD) { 5120 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 5121 ASSERT(spa_sync_pass(spa) == 1); 5122 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 5123 commit_txg = spa_syncing_txg(spa); 5124 } else if (spa->spa_claiming) { 5125 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 5126 commit_txg = spa_first_txg(spa); 5127 } 5128 ASSERT(commit_txg >= spa_syncing_txg(spa)); 5129 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 5130 return; 5131 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 5132 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 5133 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 5134 } 5135 if (vd != rvd) 5136 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 5137 } 5138 } 5139 5140 int64_t 5141 vdev_deflated_space(vdev_t *vd, int64_t space) 5142 { 5143 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); 5144 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 5145 5146 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); 5147 } 5148 5149 /* 5150 * Update the in-core space usage stats for this vdev, its metaslab class, 5151 * and the root vdev. 5152 */ 5153 void 5154 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 5155 int64_t space_delta) 5156 { 5157 (void) defer_delta; 5158 int64_t dspace_delta; 5159 spa_t *spa = vd->vdev_spa; 5160 vdev_t *rvd = spa->spa_root_vdev; 5161 5162 ASSERT(vd == vd->vdev_top); 5163 5164 /* 5165 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 5166 * factor. We must calculate this here and not at the root vdev 5167 * because the root vdev's psize-to-asize is simply the max of its 5168 * children's, thus not accurate enough for us. 5169 */ 5170 dspace_delta = vdev_deflated_space(vd, space_delta); 5171 5172 mutex_enter(&vd->vdev_stat_lock); 5173 /* ensure we won't underflow */ 5174 if (alloc_delta < 0) { 5175 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); 5176 } 5177 5178 vd->vdev_stat.vs_alloc += alloc_delta; 5179 vd->vdev_stat.vs_space += space_delta; 5180 vd->vdev_stat.vs_dspace += dspace_delta; 5181 mutex_exit(&vd->vdev_stat_lock); 5182 5183 /* every class but log contributes to root space stats */ 5184 if (vd->vdev_mg != NULL && !vd->vdev_islog) { 5185 ASSERT(!vd->vdev_isl2cache); 5186 mutex_enter(&rvd->vdev_stat_lock); 5187 rvd->vdev_stat.vs_alloc += alloc_delta; 5188 rvd->vdev_stat.vs_space += space_delta; 5189 rvd->vdev_stat.vs_dspace += dspace_delta; 5190 mutex_exit(&rvd->vdev_stat_lock); 5191 } 5192 /* Note: metaslab_class_space_update moved to metaslab_space_update */ 5193 } 5194 5195 /* 5196 * Mark a top-level vdev's config as dirty, placing it on the dirty list 5197 * so that it will be written out next time the vdev configuration is synced. 5198 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 5199 */ 5200 void 5201 vdev_config_dirty(vdev_t *vd) 5202 { 5203 spa_t *spa = vd->vdev_spa; 5204 vdev_t *rvd = spa->spa_root_vdev; 5205 int c; 5206 5207 ASSERT(spa_writeable(spa)); 5208 5209 /* 5210 * If this is an aux vdev (as with l2cache and spare devices), then we 5211 * update the vdev config manually and set the sync flag. 5212 */ 5213 if (vd->vdev_aux != NULL) { 5214 spa_aux_vdev_t *sav = vd->vdev_aux; 5215 nvlist_t **aux; 5216 uint_t naux; 5217 5218 for (c = 0; c < sav->sav_count; c++) { 5219 if (sav->sav_vdevs[c] == vd) 5220 break; 5221 } 5222 5223 if (c == sav->sav_count) { 5224 /* 5225 * We're being removed. There's nothing more to do. 5226 */ 5227 ASSERT(sav->sav_sync == B_TRUE); 5228 return; 5229 } 5230 5231 sav->sav_sync = B_TRUE; 5232 5233 if (nvlist_lookup_nvlist_array(sav->sav_config, 5234 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 5235 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 5236 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 5237 } 5238 5239 ASSERT(c < naux); 5240 5241 /* 5242 * Setting the nvlist in the middle if the array is a little 5243 * sketchy, but it will work. 5244 */ 5245 nvlist_free(aux[c]); 5246 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 5247 5248 return; 5249 } 5250 5251 /* 5252 * The dirty list is protected by the SCL_CONFIG lock. The caller 5253 * must either hold SCL_CONFIG as writer, or must be the sync thread 5254 * (which holds SCL_CONFIG as reader). There's only one sync thread, 5255 * so this is sufficient to ensure mutual exclusion. 5256 */ 5257 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5258 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5259 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5260 5261 if (vd == rvd) { 5262 for (c = 0; c < rvd->vdev_children; c++) 5263 vdev_config_dirty(rvd->vdev_child[c]); 5264 } else { 5265 ASSERT(vd == vd->vdev_top); 5266 5267 if (!list_link_active(&vd->vdev_config_dirty_node) && 5268 vdev_is_concrete(vd)) { 5269 list_insert_head(&spa->spa_config_dirty_list, vd); 5270 } 5271 } 5272 } 5273 5274 void 5275 vdev_config_clean(vdev_t *vd) 5276 { 5277 spa_t *spa = vd->vdev_spa; 5278 5279 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5280 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5281 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5282 5283 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 5284 list_remove(&spa->spa_config_dirty_list, vd); 5285 } 5286 5287 /* 5288 * Mark a top-level vdev's state as dirty, so that the next pass of 5289 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 5290 * the state changes from larger config changes because they require 5291 * much less locking, and are often needed for administrative actions. 5292 */ 5293 void 5294 vdev_state_dirty(vdev_t *vd) 5295 { 5296 spa_t *spa = vd->vdev_spa; 5297 5298 ASSERT(spa_writeable(spa)); 5299 ASSERT(vd == vd->vdev_top); 5300 5301 /* 5302 * The state list is protected by the SCL_STATE lock. The caller 5303 * must either hold SCL_STATE as writer, or must be the sync thread 5304 * (which holds SCL_STATE as reader). There's only one sync thread, 5305 * so this is sufficient to ensure mutual exclusion. 5306 */ 5307 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5308 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5309 spa_config_held(spa, SCL_STATE, RW_READER))); 5310 5311 if (!list_link_active(&vd->vdev_state_dirty_node) && 5312 vdev_is_concrete(vd)) 5313 list_insert_head(&spa->spa_state_dirty_list, vd); 5314 } 5315 5316 void 5317 vdev_state_clean(vdev_t *vd) 5318 { 5319 spa_t *spa = vd->vdev_spa; 5320 5321 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5322 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5323 spa_config_held(spa, SCL_STATE, RW_READER))); 5324 5325 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 5326 list_remove(&spa->spa_state_dirty_list, vd); 5327 } 5328 5329 /* 5330 * Propagate vdev state up from children to parent. 5331 */ 5332 void 5333 vdev_propagate_state(vdev_t *vd) 5334 { 5335 spa_t *spa = vd->vdev_spa; 5336 vdev_t *rvd = spa->spa_root_vdev; 5337 int degraded = 0, faulted = 0; 5338 int corrupted = 0; 5339 vdev_t *child; 5340 5341 if (vd->vdev_children > 0) { 5342 for (int c = 0; c < vd->vdev_children; c++) { 5343 child = vd->vdev_child[c]; 5344 5345 /* 5346 * Don't factor holes or indirect vdevs into the 5347 * decision. 5348 */ 5349 if (!vdev_is_concrete(child)) 5350 continue; 5351 5352 if (!vdev_readable(child) || 5353 (!vdev_writeable(child) && spa_writeable(spa))) { 5354 /* 5355 * Root special: if there is a top-level log 5356 * device, treat the root vdev as if it were 5357 * degraded. 5358 */ 5359 if (child->vdev_islog && vd == rvd) 5360 degraded++; 5361 else 5362 faulted++; 5363 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 5364 degraded++; 5365 } 5366 5367 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 5368 corrupted++; 5369 } 5370 5371 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 5372 5373 /* 5374 * Root special: if there is a top-level vdev that cannot be 5375 * opened due to corrupted metadata, then propagate the root 5376 * vdev's aux state as 'corrupt' rather than 'insufficient 5377 * replicas'. 5378 */ 5379 if (corrupted && vd == rvd && 5380 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 5381 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 5382 VDEV_AUX_CORRUPT_DATA); 5383 } 5384 5385 if (vd->vdev_parent) 5386 vdev_propagate_state(vd->vdev_parent); 5387 } 5388 5389 /* 5390 * Set a vdev's state. If this is during an open, we don't update the parent 5391 * state, because we're in the process of opening children depth-first. 5392 * Otherwise, we propagate the change to the parent. 5393 * 5394 * If this routine places a device in a faulted state, an appropriate ereport is 5395 * generated. 5396 */ 5397 void 5398 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 5399 { 5400 uint64_t save_state; 5401 spa_t *spa = vd->vdev_spa; 5402 5403 if (state == vd->vdev_state) { 5404 /* 5405 * Since vdev_offline() code path is already in an offline 5406 * state we can miss a statechange event to OFFLINE. Check 5407 * the previous state to catch this condition. 5408 */ 5409 if (vd->vdev_ops->vdev_op_leaf && 5410 (state == VDEV_STATE_OFFLINE) && 5411 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) { 5412 /* post an offline state change */ 5413 zfs_post_state_change(spa, vd, vd->vdev_prevstate); 5414 } 5415 vd->vdev_stat.vs_aux = aux; 5416 return; 5417 } 5418 5419 save_state = vd->vdev_state; 5420 5421 vd->vdev_state = state; 5422 vd->vdev_stat.vs_aux = aux; 5423 5424 /* 5425 * If we are setting the vdev state to anything but an open state, then 5426 * always close the underlying device unless the device has requested 5427 * a delayed close (i.e. we're about to remove or fault the device). 5428 * Otherwise, we keep accessible but invalid devices open forever. 5429 * We don't call vdev_close() itself, because that implies some extra 5430 * checks (offline, etc) that we don't want here. This is limited to 5431 * leaf devices, because otherwise closing the device will affect other 5432 * children. 5433 */ 5434 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 5435 vd->vdev_ops->vdev_op_leaf) 5436 vd->vdev_ops->vdev_op_close(vd); 5437 5438 if (vd->vdev_removed && 5439 state == VDEV_STATE_CANT_OPEN && 5440 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 5441 /* 5442 * If the previous state is set to VDEV_STATE_REMOVED, then this 5443 * device was previously marked removed and someone attempted to 5444 * reopen it. If this failed due to a nonexistent device, then 5445 * keep the device in the REMOVED state. We also let this be if 5446 * it is one of our special test online cases, which is only 5447 * attempting to online the device and shouldn't generate an FMA 5448 * fault. 5449 */ 5450 vd->vdev_state = VDEV_STATE_REMOVED; 5451 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 5452 } else if (state == VDEV_STATE_REMOVED) { 5453 vd->vdev_removed = B_TRUE; 5454 } else if (state == VDEV_STATE_CANT_OPEN) { 5455 /* 5456 * If we fail to open a vdev during an import or recovery, we 5457 * mark it as "not available", which signifies that it was 5458 * never there to begin with. Failure to open such a device 5459 * is not considered an error. 5460 */ 5461 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 5462 spa_load_state(spa) == SPA_LOAD_RECOVER) && 5463 vd->vdev_ops->vdev_op_leaf) 5464 vd->vdev_not_present = 1; 5465 5466 /* 5467 * Post the appropriate ereport. If the 'prevstate' field is 5468 * set to something other than VDEV_STATE_UNKNOWN, it indicates 5469 * that this is part of a vdev_reopen(). In this case, we don't 5470 * want to post the ereport if the device was already in the 5471 * CANT_OPEN state beforehand. 5472 * 5473 * If the 'checkremove' flag is set, then this is an attempt to 5474 * online the device in response to an insertion event. If we 5475 * hit this case, then we have detected an insertion event for a 5476 * faulted or offline device that wasn't in the removed state. 5477 * In this scenario, we don't post an ereport because we are 5478 * about to replace the device, or attempt an online with 5479 * vdev_forcefault, which will generate the fault for us. 5480 */ 5481 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 5482 !vd->vdev_not_present && !vd->vdev_checkremove && 5483 vd != spa->spa_root_vdev) { 5484 const char *class; 5485 5486 switch (aux) { 5487 case VDEV_AUX_OPEN_FAILED: 5488 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 5489 break; 5490 case VDEV_AUX_CORRUPT_DATA: 5491 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 5492 break; 5493 case VDEV_AUX_NO_REPLICAS: 5494 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 5495 break; 5496 case VDEV_AUX_BAD_GUID_SUM: 5497 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 5498 break; 5499 case VDEV_AUX_TOO_SMALL: 5500 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 5501 break; 5502 case VDEV_AUX_BAD_LABEL: 5503 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 5504 break; 5505 case VDEV_AUX_BAD_ASHIFT: 5506 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT; 5507 break; 5508 default: 5509 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 5510 } 5511 5512 (void) zfs_ereport_post(class, spa, vd, NULL, NULL, 5513 save_state); 5514 } 5515 5516 /* Erase any notion of persistent removed state */ 5517 vd->vdev_removed = B_FALSE; 5518 } else { 5519 vd->vdev_removed = B_FALSE; 5520 } 5521 5522 /* 5523 * Notify ZED of any significant state-change on a leaf vdev. 5524 * 5525 */ 5526 if (vd->vdev_ops->vdev_op_leaf) { 5527 /* preserve original state from a vdev_reopen() */ 5528 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) && 5529 (vd->vdev_prevstate != vd->vdev_state) && 5530 (save_state <= VDEV_STATE_CLOSED)) 5531 save_state = vd->vdev_prevstate; 5532 5533 /* filter out state change due to initial vdev_open */ 5534 if (save_state > VDEV_STATE_CLOSED) 5535 zfs_post_state_change(spa, vd, save_state); 5536 } 5537 5538 if (!isopen && vd->vdev_parent) 5539 vdev_propagate_state(vd->vdev_parent); 5540 } 5541 5542 boolean_t 5543 vdev_children_are_offline(vdev_t *vd) 5544 { 5545 ASSERT(!vd->vdev_ops->vdev_op_leaf); 5546 5547 for (uint64_t i = 0; i < vd->vdev_children; i++) { 5548 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 5549 return (B_FALSE); 5550 } 5551 5552 return (B_TRUE); 5553 } 5554 5555 /* 5556 * Check the vdev configuration to ensure that it's capable of supporting 5557 * a root pool. We do not support partial configuration. 5558 */ 5559 boolean_t 5560 vdev_is_bootable(vdev_t *vd) 5561 { 5562 if (!vd->vdev_ops->vdev_op_leaf) { 5563 const char *vdev_type = vd->vdev_ops->vdev_op_type; 5564 5565 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) 5566 return (B_FALSE); 5567 } 5568 5569 for (int c = 0; c < vd->vdev_children; c++) { 5570 if (!vdev_is_bootable(vd->vdev_child[c])) 5571 return (B_FALSE); 5572 } 5573 return (B_TRUE); 5574 } 5575 5576 boolean_t 5577 vdev_is_concrete(vdev_t *vd) 5578 { 5579 vdev_ops_t *ops = vd->vdev_ops; 5580 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 5581 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 5582 return (B_FALSE); 5583 } else { 5584 return (B_TRUE); 5585 } 5586 } 5587 5588 /* 5589 * Determine if a log device has valid content. If the vdev was 5590 * removed or faulted in the MOS config then we know that 5591 * the content on the log device has already been written to the pool. 5592 */ 5593 boolean_t 5594 vdev_log_state_valid(vdev_t *vd) 5595 { 5596 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 5597 !vd->vdev_removed) 5598 return (B_TRUE); 5599 5600 for (int c = 0; c < vd->vdev_children; c++) 5601 if (vdev_log_state_valid(vd->vdev_child[c])) 5602 return (B_TRUE); 5603 5604 return (B_FALSE); 5605 } 5606 5607 /* 5608 * Expand a vdev if possible. 5609 */ 5610 void 5611 vdev_expand(vdev_t *vd, uint64_t txg) 5612 { 5613 ASSERT(vd->vdev_top == vd); 5614 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5615 ASSERT(vdev_is_concrete(vd)); 5616 5617 vdev_set_deflate_ratio(vd); 5618 5619 if ((vd->vdev_spa->spa_raidz_expand == NULL || 5620 vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) && 5621 (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 5622 vdev_is_concrete(vd)) { 5623 vdev_metaslab_group_create(vd); 5624 VERIFY(vdev_metaslab_init(vd, txg) == 0); 5625 vdev_config_dirty(vd); 5626 } 5627 } 5628 5629 /* 5630 * Split a vdev. 5631 */ 5632 void 5633 vdev_split(vdev_t *vd) 5634 { 5635 vdev_t *cvd, *pvd = vd->vdev_parent; 5636 5637 VERIFY3U(pvd->vdev_children, >, 1); 5638 5639 vdev_remove_child(pvd, vd); 5640 vdev_compact_children(pvd); 5641 5642 ASSERT3P(pvd->vdev_child, !=, NULL); 5643 5644 cvd = pvd->vdev_child[0]; 5645 if (pvd->vdev_children == 1) { 5646 vdev_remove_parent(cvd); 5647 cvd->vdev_splitting = B_TRUE; 5648 } 5649 vdev_propagate_state(cvd); 5650 } 5651 5652 void 5653 vdev_deadman(vdev_t *vd, const char *tag) 5654 { 5655 for (int c = 0; c < vd->vdev_children; c++) { 5656 vdev_t *cvd = vd->vdev_child[c]; 5657 5658 vdev_deadman(cvd, tag); 5659 } 5660 5661 if (vd->vdev_ops->vdev_op_leaf) { 5662 vdev_queue_t *vq = &vd->vdev_queue; 5663 5664 mutex_enter(&vq->vq_lock); 5665 if (vq->vq_active > 0) { 5666 spa_t *spa = vd->vdev_spa; 5667 zio_t *fio; 5668 uint64_t delta; 5669 5670 zfs_dbgmsg("slow vdev: %s has %u active IOs", 5671 vd->vdev_path, vq->vq_active); 5672 5673 /* 5674 * Look at the head of all the pending queues, 5675 * if any I/O has been outstanding for longer than 5676 * the spa_deadman_synctime invoke the deadman logic. 5677 */ 5678 fio = list_head(&vq->vq_active_list); 5679 delta = gethrtime() - fio->io_timestamp; 5680 if (delta > spa_deadman_synctime(spa)) 5681 zio_deadman(fio, tag); 5682 } 5683 mutex_exit(&vq->vq_lock); 5684 } 5685 } 5686 5687 void 5688 vdev_defer_resilver(vdev_t *vd) 5689 { 5690 ASSERT(vd->vdev_ops->vdev_op_leaf); 5691 5692 vd->vdev_resilver_deferred = B_TRUE; 5693 vd->vdev_spa->spa_resilver_deferred = B_TRUE; 5694 } 5695 5696 /* 5697 * Clears the resilver deferred flag on all leaf devs under vd. Returns 5698 * B_TRUE if we have devices that need to be resilvered and are available to 5699 * accept resilver I/Os. 5700 */ 5701 boolean_t 5702 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx) 5703 { 5704 boolean_t resilver_needed = B_FALSE; 5705 spa_t *spa = vd->vdev_spa; 5706 5707 for (int c = 0; c < vd->vdev_children; c++) { 5708 vdev_t *cvd = vd->vdev_child[c]; 5709 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx); 5710 } 5711 5712 if (vd == spa->spa_root_vdev && 5713 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { 5714 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 5715 vdev_config_dirty(vd); 5716 spa->spa_resilver_deferred = B_FALSE; 5717 return (resilver_needed); 5718 } 5719 5720 if (!vdev_is_concrete(vd) || vd->vdev_aux || 5721 !vd->vdev_ops->vdev_op_leaf) 5722 return (resilver_needed); 5723 5724 vd->vdev_resilver_deferred = B_FALSE; 5725 5726 return (!vdev_is_dead(vd) && !vd->vdev_offline && 5727 vdev_resilver_needed(vd, NULL, NULL)); 5728 } 5729 5730 boolean_t 5731 vdev_xlate_is_empty(zfs_range_seg64_t *rs) 5732 { 5733 return (rs->rs_start == rs->rs_end); 5734 } 5735 5736 /* 5737 * Translate a logical range to the first contiguous physical range for the 5738 * specified vdev_t. This function is initially called with a leaf vdev and 5739 * will walk each parent vdev until it reaches a top-level vdev. Once the 5740 * top-level is reached the physical range is initialized and the recursive 5741 * function begins to unwind. As it unwinds it calls the parent's vdev 5742 * specific translation function to do the real conversion. 5743 */ 5744 void 5745 vdev_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs, 5746 zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs) 5747 { 5748 /* 5749 * Walk up the vdev tree 5750 */ 5751 if (vd != vd->vdev_top) { 5752 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs, 5753 remain_rs); 5754 } else { 5755 /* 5756 * We've reached the top-level vdev, initialize the physical 5757 * range to the logical range and set an empty remaining 5758 * range then start to unwind. 5759 */ 5760 physical_rs->rs_start = logical_rs->rs_start; 5761 physical_rs->rs_end = logical_rs->rs_end; 5762 5763 remain_rs->rs_start = logical_rs->rs_start; 5764 remain_rs->rs_end = logical_rs->rs_start; 5765 5766 return; 5767 } 5768 5769 vdev_t *pvd = vd->vdev_parent; 5770 ASSERT3P(pvd, !=, NULL); 5771 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL); 5772 5773 /* 5774 * As this recursive function unwinds, translate the logical 5775 * range into its physical and any remaining components by calling 5776 * the vdev specific translate function. 5777 */ 5778 zfs_range_seg64_t intermediate = { 0 }; 5779 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs); 5780 5781 physical_rs->rs_start = intermediate.rs_start; 5782 physical_rs->rs_end = intermediate.rs_end; 5783 } 5784 5785 void 5786 vdev_xlate_walk(vdev_t *vd, const zfs_range_seg64_t *logical_rs, 5787 vdev_xlate_func_t *func, void *arg) 5788 { 5789 zfs_range_seg64_t iter_rs = *logical_rs; 5790 zfs_range_seg64_t physical_rs; 5791 zfs_range_seg64_t remain_rs; 5792 5793 while (!vdev_xlate_is_empty(&iter_rs)) { 5794 5795 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs); 5796 5797 /* 5798 * With raidz and dRAID, it's possible that the logical range 5799 * does not live on this leaf vdev. Only when there is a non- 5800 * zero physical size call the provided function. 5801 */ 5802 if (!vdev_xlate_is_empty(&physical_rs)) 5803 func(arg, &physical_rs); 5804 5805 iter_rs = remain_rs; 5806 } 5807 } 5808 5809 static char * 5810 vdev_name(vdev_t *vd, char *buf, int buflen) 5811 { 5812 if (vd->vdev_path == NULL) { 5813 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) { 5814 strlcpy(buf, vd->vdev_spa->spa_name, buflen); 5815 } else if (!vd->vdev_ops->vdev_op_leaf) { 5816 snprintf(buf, buflen, "%s-%llu", 5817 vd->vdev_ops->vdev_op_type, 5818 (u_longlong_t)vd->vdev_id); 5819 } 5820 } else { 5821 strlcpy(buf, vd->vdev_path, buflen); 5822 } 5823 return (buf); 5824 } 5825 5826 /* 5827 * Look at the vdev tree and determine whether any devices are currently being 5828 * replaced. 5829 */ 5830 boolean_t 5831 vdev_replace_in_progress(vdev_t *vdev) 5832 { 5833 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0); 5834 5835 if (vdev->vdev_ops == &vdev_replacing_ops) 5836 return (B_TRUE); 5837 5838 /* 5839 * A 'spare' vdev indicates that we have a replace in progress, unless 5840 * it has exactly two children, and the second, the hot spare, has 5841 * finished being resilvered. 5842 */ 5843 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 || 5844 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING))) 5845 return (B_TRUE); 5846 5847 for (int i = 0; i < vdev->vdev_children; i++) { 5848 if (vdev_replace_in_progress(vdev->vdev_child[i])) 5849 return (B_TRUE); 5850 } 5851 5852 return (B_FALSE); 5853 } 5854 5855 /* 5856 * Add a (source=src, propname=propval) list to an nvlist. 5857 */ 5858 static void 5859 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval, 5860 uint64_t intval, zprop_source_t src) 5861 { 5862 nvlist_t *propval; 5863 5864 propval = fnvlist_alloc(); 5865 fnvlist_add_uint64(propval, ZPROP_SOURCE, src); 5866 5867 if (strval != NULL) 5868 fnvlist_add_string(propval, ZPROP_VALUE, strval); 5869 else 5870 fnvlist_add_uint64(propval, ZPROP_VALUE, intval); 5871 5872 fnvlist_add_nvlist(nvl, propname, propval); 5873 nvlist_free(propval); 5874 } 5875 5876 static void 5877 vdev_props_set_sync(void *arg, dmu_tx_t *tx) 5878 { 5879 vdev_t *vd; 5880 nvlist_t *nvp = arg; 5881 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5882 objset_t *mos = spa->spa_meta_objset; 5883 nvpair_t *elem = NULL; 5884 uint64_t vdev_guid; 5885 uint64_t objid; 5886 nvlist_t *nvprops; 5887 5888 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV); 5889 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS); 5890 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE); 5891 5892 /* this vdev could get removed while waiting for this sync task */ 5893 if (vd == NULL) 5894 return; 5895 5896 /* 5897 * Set vdev property values in the vdev props mos object. 5898 */ 5899 if (vd->vdev_root_zap != 0) { 5900 objid = vd->vdev_root_zap; 5901 } else if (vd->vdev_top_zap != 0) { 5902 objid = vd->vdev_top_zap; 5903 } else if (vd->vdev_leaf_zap != 0) { 5904 objid = vd->vdev_leaf_zap; 5905 } else { 5906 panic("unexpected vdev type"); 5907 } 5908 5909 mutex_enter(&spa->spa_props_lock); 5910 5911 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5912 uint64_t intval; 5913 const char *strval; 5914 vdev_prop_t prop; 5915 const char *propname = nvpair_name(elem); 5916 zprop_type_t proptype; 5917 5918 switch (prop = vdev_name_to_prop(propname)) { 5919 case VDEV_PROP_USERPROP: 5920 if (vdev_prop_user(propname)) { 5921 strval = fnvpair_value_string(elem); 5922 if (strlen(strval) == 0) { 5923 /* remove the property if value == "" */ 5924 (void) zap_remove(mos, objid, propname, 5925 tx); 5926 } else { 5927 VERIFY0(zap_update(mos, objid, propname, 5928 1, strlen(strval) + 1, strval, tx)); 5929 } 5930 spa_history_log_internal(spa, "vdev set", tx, 5931 "vdev_guid=%llu: %s=%s", 5932 (u_longlong_t)vdev_guid, nvpair_name(elem), 5933 strval); 5934 } 5935 break; 5936 default: 5937 /* normalize the property name */ 5938 propname = vdev_prop_to_name(prop); 5939 proptype = vdev_prop_get_type(prop); 5940 5941 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5942 ASSERT(proptype == PROP_TYPE_STRING); 5943 strval = fnvpair_value_string(elem); 5944 VERIFY0(zap_update(mos, objid, propname, 5945 1, strlen(strval) + 1, strval, tx)); 5946 spa_history_log_internal(spa, "vdev set", tx, 5947 "vdev_guid=%llu: %s=%s", 5948 (u_longlong_t)vdev_guid, nvpair_name(elem), 5949 strval); 5950 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5951 intval = fnvpair_value_uint64(elem); 5952 5953 if (proptype == PROP_TYPE_INDEX) { 5954 const char *unused; 5955 VERIFY0(vdev_prop_index_to_string( 5956 prop, intval, &unused)); 5957 } 5958 VERIFY0(zap_update(mos, objid, propname, 5959 sizeof (uint64_t), 1, &intval, tx)); 5960 spa_history_log_internal(spa, "vdev set", tx, 5961 "vdev_guid=%llu: %s=%lld", 5962 (u_longlong_t)vdev_guid, 5963 nvpair_name(elem), (longlong_t)intval); 5964 } else { 5965 panic("invalid vdev property type %u", 5966 nvpair_type(elem)); 5967 } 5968 } 5969 5970 } 5971 5972 mutex_exit(&spa->spa_props_lock); 5973 } 5974 5975 int 5976 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 5977 { 5978 spa_t *spa = vd->vdev_spa; 5979 nvpair_t *elem = NULL; 5980 uint64_t vdev_guid; 5981 nvlist_t *nvprops; 5982 int error = 0; 5983 5984 ASSERT(vd != NULL); 5985 5986 /* Check that vdev has a zap we can use */ 5987 if (vd->vdev_root_zap == 0 && 5988 vd->vdev_top_zap == 0 && 5989 vd->vdev_leaf_zap == 0) 5990 return (SET_ERROR(EINVAL)); 5991 5992 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV, 5993 &vdev_guid) != 0) 5994 return (SET_ERROR(EINVAL)); 5995 5996 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS, 5997 &nvprops) != 0) 5998 return (SET_ERROR(EINVAL)); 5999 6000 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) 6001 return (SET_ERROR(EINVAL)); 6002 6003 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 6004 const char *propname = nvpair_name(elem); 6005 vdev_prop_t prop = vdev_name_to_prop(propname); 6006 uint64_t intval = 0; 6007 const char *strval = NULL; 6008 6009 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) { 6010 error = EINVAL; 6011 goto end; 6012 } 6013 6014 if (prop != VDEV_PROP_USERPROP && vdev_prop_readonly(prop)) { 6015 error = EROFS; 6016 goto end; 6017 } 6018 6019 /* Special Processing */ 6020 switch (prop) { 6021 case VDEV_PROP_PATH: 6022 if (vd->vdev_path == NULL) { 6023 error = EROFS; 6024 break; 6025 } 6026 if (nvpair_value_string(elem, &strval) != 0) { 6027 error = EINVAL; 6028 break; 6029 } 6030 /* New path must start with /dev/ */ 6031 if (strncmp(strval, "/dev/", 5)) { 6032 error = EINVAL; 6033 break; 6034 } 6035 error = spa_vdev_setpath(spa, vdev_guid, strval); 6036 break; 6037 case VDEV_PROP_ALLOCATING: 6038 if (nvpair_value_uint64(elem, &intval) != 0) { 6039 error = EINVAL; 6040 break; 6041 } 6042 if (intval != vd->vdev_noalloc) 6043 break; 6044 if (intval == 0) 6045 error = spa_vdev_noalloc(spa, vdev_guid); 6046 else 6047 error = spa_vdev_alloc(spa, vdev_guid); 6048 break; 6049 case VDEV_PROP_FAILFAST: 6050 if (nvpair_value_uint64(elem, &intval) != 0) { 6051 error = EINVAL; 6052 break; 6053 } 6054 vd->vdev_failfast = intval & 1; 6055 break; 6056 case VDEV_PROP_CHECKSUM_N: 6057 if (nvpair_value_uint64(elem, &intval) != 0) { 6058 error = EINVAL; 6059 break; 6060 } 6061 vd->vdev_checksum_n = intval; 6062 break; 6063 case VDEV_PROP_CHECKSUM_T: 6064 if (nvpair_value_uint64(elem, &intval) != 0) { 6065 error = EINVAL; 6066 break; 6067 } 6068 vd->vdev_checksum_t = intval; 6069 break; 6070 case VDEV_PROP_IO_N: 6071 if (nvpair_value_uint64(elem, &intval) != 0) { 6072 error = EINVAL; 6073 break; 6074 } 6075 vd->vdev_io_n = intval; 6076 break; 6077 case VDEV_PROP_IO_T: 6078 if (nvpair_value_uint64(elem, &intval) != 0) { 6079 error = EINVAL; 6080 break; 6081 } 6082 vd->vdev_io_t = intval; 6083 break; 6084 case VDEV_PROP_SLOW_IO_N: 6085 if (nvpair_value_uint64(elem, &intval) != 0) { 6086 error = EINVAL; 6087 break; 6088 } 6089 vd->vdev_slow_io_n = intval; 6090 break; 6091 case VDEV_PROP_SLOW_IO_T: 6092 if (nvpair_value_uint64(elem, &intval) != 0) { 6093 error = EINVAL; 6094 break; 6095 } 6096 vd->vdev_slow_io_t = intval; 6097 break; 6098 default: 6099 /* Most processing is done in vdev_props_set_sync */ 6100 break; 6101 } 6102 end: 6103 if (error != 0) { 6104 intval = error; 6105 vdev_prop_add_list(outnvl, propname, strval, intval, 0); 6106 return (error); 6107 } 6108 } 6109 6110 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync, 6111 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 6112 } 6113 6114 int 6115 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 6116 { 6117 spa_t *spa = vd->vdev_spa; 6118 objset_t *mos = spa->spa_meta_objset; 6119 int err = 0; 6120 uint64_t objid; 6121 uint64_t vdev_guid; 6122 nvpair_t *elem = NULL; 6123 nvlist_t *nvprops = NULL; 6124 uint64_t intval = 0; 6125 char *strval = NULL; 6126 const char *propname = NULL; 6127 vdev_prop_t prop; 6128 6129 ASSERT(vd != NULL); 6130 ASSERT(mos != NULL); 6131 6132 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV, 6133 &vdev_guid) != 0) 6134 return (SET_ERROR(EINVAL)); 6135 6136 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops); 6137 6138 if (vd->vdev_root_zap != 0) { 6139 objid = vd->vdev_root_zap; 6140 } else if (vd->vdev_top_zap != 0) { 6141 objid = vd->vdev_top_zap; 6142 } else if (vd->vdev_leaf_zap != 0) { 6143 objid = vd->vdev_leaf_zap; 6144 } else { 6145 return (SET_ERROR(EINVAL)); 6146 } 6147 ASSERT(objid != 0); 6148 6149 mutex_enter(&spa->spa_props_lock); 6150 6151 if (nvprops != NULL) { 6152 char namebuf[64] = { 0 }; 6153 6154 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 6155 intval = 0; 6156 strval = NULL; 6157 propname = nvpair_name(elem); 6158 prop = vdev_name_to_prop(propname); 6159 zprop_source_t src = ZPROP_SRC_DEFAULT; 6160 uint64_t integer_size, num_integers; 6161 6162 switch (prop) { 6163 /* Special Read-only Properties */ 6164 case VDEV_PROP_NAME: 6165 strval = vdev_name(vd, namebuf, 6166 sizeof (namebuf)); 6167 if (strval == NULL) 6168 continue; 6169 vdev_prop_add_list(outnvl, propname, strval, 0, 6170 ZPROP_SRC_NONE); 6171 continue; 6172 case VDEV_PROP_CAPACITY: 6173 /* percent used */ 6174 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 : 6175 (vd->vdev_stat.vs_alloc * 100 / 6176 vd->vdev_stat.vs_dspace); 6177 vdev_prop_add_list(outnvl, propname, NULL, 6178 intval, ZPROP_SRC_NONE); 6179 continue; 6180 case VDEV_PROP_STATE: 6181 vdev_prop_add_list(outnvl, propname, NULL, 6182 vd->vdev_state, ZPROP_SRC_NONE); 6183 continue; 6184 case VDEV_PROP_GUID: 6185 vdev_prop_add_list(outnvl, propname, NULL, 6186 vd->vdev_guid, ZPROP_SRC_NONE); 6187 continue; 6188 case VDEV_PROP_ASIZE: 6189 vdev_prop_add_list(outnvl, propname, NULL, 6190 vd->vdev_asize, ZPROP_SRC_NONE); 6191 continue; 6192 case VDEV_PROP_PSIZE: 6193 vdev_prop_add_list(outnvl, propname, NULL, 6194 vd->vdev_psize, ZPROP_SRC_NONE); 6195 continue; 6196 case VDEV_PROP_ASHIFT: 6197 vdev_prop_add_list(outnvl, propname, NULL, 6198 vd->vdev_ashift, ZPROP_SRC_NONE); 6199 continue; 6200 case VDEV_PROP_SIZE: 6201 vdev_prop_add_list(outnvl, propname, NULL, 6202 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE); 6203 continue; 6204 case VDEV_PROP_FREE: 6205 vdev_prop_add_list(outnvl, propname, NULL, 6206 vd->vdev_stat.vs_dspace - 6207 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 6208 continue; 6209 case VDEV_PROP_ALLOCATED: 6210 vdev_prop_add_list(outnvl, propname, NULL, 6211 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 6212 continue; 6213 case VDEV_PROP_EXPANDSZ: 6214 vdev_prop_add_list(outnvl, propname, NULL, 6215 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE); 6216 continue; 6217 case VDEV_PROP_FRAGMENTATION: 6218 vdev_prop_add_list(outnvl, propname, NULL, 6219 vd->vdev_stat.vs_fragmentation, 6220 ZPROP_SRC_NONE); 6221 continue; 6222 case VDEV_PROP_PARITY: 6223 vdev_prop_add_list(outnvl, propname, NULL, 6224 vdev_get_nparity(vd), ZPROP_SRC_NONE); 6225 continue; 6226 case VDEV_PROP_PATH: 6227 if (vd->vdev_path == NULL) 6228 continue; 6229 vdev_prop_add_list(outnvl, propname, 6230 vd->vdev_path, 0, ZPROP_SRC_NONE); 6231 continue; 6232 case VDEV_PROP_DEVID: 6233 if (vd->vdev_devid == NULL) 6234 continue; 6235 vdev_prop_add_list(outnvl, propname, 6236 vd->vdev_devid, 0, ZPROP_SRC_NONE); 6237 continue; 6238 case VDEV_PROP_PHYS_PATH: 6239 if (vd->vdev_physpath == NULL) 6240 continue; 6241 vdev_prop_add_list(outnvl, propname, 6242 vd->vdev_physpath, 0, ZPROP_SRC_NONE); 6243 continue; 6244 case VDEV_PROP_ENC_PATH: 6245 if (vd->vdev_enc_sysfs_path == NULL) 6246 continue; 6247 vdev_prop_add_list(outnvl, propname, 6248 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE); 6249 continue; 6250 case VDEV_PROP_FRU: 6251 if (vd->vdev_fru == NULL) 6252 continue; 6253 vdev_prop_add_list(outnvl, propname, 6254 vd->vdev_fru, 0, ZPROP_SRC_NONE); 6255 continue; 6256 case VDEV_PROP_PARENT: 6257 if (vd->vdev_parent != NULL) { 6258 strval = vdev_name(vd->vdev_parent, 6259 namebuf, sizeof (namebuf)); 6260 vdev_prop_add_list(outnvl, propname, 6261 strval, 0, ZPROP_SRC_NONE); 6262 } 6263 continue; 6264 case VDEV_PROP_CHILDREN: 6265 if (vd->vdev_children > 0) 6266 strval = kmem_zalloc(ZAP_MAXVALUELEN, 6267 KM_SLEEP); 6268 for (uint64_t i = 0; i < vd->vdev_children; 6269 i++) { 6270 const char *vname; 6271 6272 vname = vdev_name(vd->vdev_child[i], 6273 namebuf, sizeof (namebuf)); 6274 if (vname == NULL) 6275 vname = "(unknown)"; 6276 if (strlen(strval) > 0) 6277 strlcat(strval, ",", 6278 ZAP_MAXVALUELEN); 6279 strlcat(strval, vname, ZAP_MAXVALUELEN); 6280 } 6281 if (strval != NULL) { 6282 vdev_prop_add_list(outnvl, propname, 6283 strval, 0, ZPROP_SRC_NONE); 6284 kmem_free(strval, ZAP_MAXVALUELEN); 6285 } 6286 continue; 6287 case VDEV_PROP_NUMCHILDREN: 6288 vdev_prop_add_list(outnvl, propname, NULL, 6289 vd->vdev_children, ZPROP_SRC_NONE); 6290 continue; 6291 case VDEV_PROP_READ_ERRORS: 6292 vdev_prop_add_list(outnvl, propname, NULL, 6293 vd->vdev_stat.vs_read_errors, 6294 ZPROP_SRC_NONE); 6295 continue; 6296 case VDEV_PROP_WRITE_ERRORS: 6297 vdev_prop_add_list(outnvl, propname, NULL, 6298 vd->vdev_stat.vs_write_errors, 6299 ZPROP_SRC_NONE); 6300 continue; 6301 case VDEV_PROP_CHECKSUM_ERRORS: 6302 vdev_prop_add_list(outnvl, propname, NULL, 6303 vd->vdev_stat.vs_checksum_errors, 6304 ZPROP_SRC_NONE); 6305 continue; 6306 case VDEV_PROP_INITIALIZE_ERRORS: 6307 vdev_prop_add_list(outnvl, propname, NULL, 6308 vd->vdev_stat.vs_initialize_errors, 6309 ZPROP_SRC_NONE); 6310 continue; 6311 case VDEV_PROP_TRIM_ERRORS: 6312 vdev_prop_add_list(outnvl, propname, NULL, 6313 vd->vdev_stat.vs_trim_errors, 6314 ZPROP_SRC_NONE); 6315 continue; 6316 case VDEV_PROP_SLOW_IOS: 6317 vdev_prop_add_list(outnvl, propname, NULL, 6318 vd->vdev_stat.vs_slow_ios, 6319 ZPROP_SRC_NONE); 6320 continue; 6321 case VDEV_PROP_OPS_NULL: 6322 vdev_prop_add_list(outnvl, propname, NULL, 6323 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL], 6324 ZPROP_SRC_NONE); 6325 continue; 6326 case VDEV_PROP_OPS_READ: 6327 vdev_prop_add_list(outnvl, propname, NULL, 6328 vd->vdev_stat.vs_ops[ZIO_TYPE_READ], 6329 ZPROP_SRC_NONE); 6330 continue; 6331 case VDEV_PROP_OPS_WRITE: 6332 vdev_prop_add_list(outnvl, propname, NULL, 6333 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE], 6334 ZPROP_SRC_NONE); 6335 continue; 6336 case VDEV_PROP_OPS_FREE: 6337 vdev_prop_add_list(outnvl, propname, NULL, 6338 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE], 6339 ZPROP_SRC_NONE); 6340 continue; 6341 case VDEV_PROP_OPS_CLAIM: 6342 vdev_prop_add_list(outnvl, propname, NULL, 6343 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM], 6344 ZPROP_SRC_NONE); 6345 continue; 6346 case VDEV_PROP_OPS_TRIM: 6347 /* 6348 * TRIM ops and bytes are reported to user 6349 * space as ZIO_TYPE_FLUSH. This is done to 6350 * preserve the vdev_stat_t structure layout 6351 * for user space. 6352 */ 6353 vdev_prop_add_list(outnvl, propname, NULL, 6354 vd->vdev_stat.vs_ops[ZIO_TYPE_FLUSH], 6355 ZPROP_SRC_NONE); 6356 continue; 6357 case VDEV_PROP_BYTES_NULL: 6358 vdev_prop_add_list(outnvl, propname, NULL, 6359 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL], 6360 ZPROP_SRC_NONE); 6361 continue; 6362 case VDEV_PROP_BYTES_READ: 6363 vdev_prop_add_list(outnvl, propname, NULL, 6364 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ], 6365 ZPROP_SRC_NONE); 6366 continue; 6367 case VDEV_PROP_BYTES_WRITE: 6368 vdev_prop_add_list(outnvl, propname, NULL, 6369 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE], 6370 ZPROP_SRC_NONE); 6371 continue; 6372 case VDEV_PROP_BYTES_FREE: 6373 vdev_prop_add_list(outnvl, propname, NULL, 6374 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE], 6375 ZPROP_SRC_NONE); 6376 continue; 6377 case VDEV_PROP_BYTES_CLAIM: 6378 vdev_prop_add_list(outnvl, propname, NULL, 6379 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM], 6380 ZPROP_SRC_NONE); 6381 continue; 6382 case VDEV_PROP_BYTES_TRIM: 6383 /* 6384 * TRIM ops and bytes are reported to user 6385 * space as ZIO_TYPE_FLUSH. This is done to 6386 * preserve the vdev_stat_t structure layout 6387 * for user space. 6388 */ 6389 vdev_prop_add_list(outnvl, propname, NULL, 6390 vd->vdev_stat.vs_bytes[ZIO_TYPE_FLUSH], 6391 ZPROP_SRC_NONE); 6392 continue; 6393 case VDEV_PROP_REMOVING: 6394 vdev_prop_add_list(outnvl, propname, NULL, 6395 vd->vdev_removing, ZPROP_SRC_NONE); 6396 continue; 6397 case VDEV_PROP_RAIDZ_EXPANDING: 6398 /* Only expose this for raidz */ 6399 if (vd->vdev_ops == &vdev_raidz_ops) { 6400 vdev_prop_add_list(outnvl, propname, 6401 NULL, vd->vdev_rz_expanding, 6402 ZPROP_SRC_NONE); 6403 } 6404 continue; 6405 case VDEV_PROP_TRIM_SUPPORT: 6406 /* only valid for leaf vdevs */ 6407 if (vd->vdev_ops->vdev_op_leaf) { 6408 vdev_prop_add_list(outnvl, propname, 6409 NULL, vd->vdev_has_trim, 6410 ZPROP_SRC_NONE); 6411 } 6412 continue; 6413 /* Numeric Properites */ 6414 case VDEV_PROP_ALLOCATING: 6415 /* Leaf vdevs cannot have this property */ 6416 if (vd->vdev_mg == NULL && 6417 vd->vdev_top != NULL) { 6418 src = ZPROP_SRC_NONE; 6419 intval = ZPROP_BOOLEAN_NA; 6420 } else { 6421 err = vdev_prop_get_int(vd, prop, 6422 &intval); 6423 if (err && err != ENOENT) 6424 break; 6425 6426 if (intval == 6427 vdev_prop_default_numeric(prop)) 6428 src = ZPROP_SRC_DEFAULT; 6429 else 6430 src = ZPROP_SRC_LOCAL; 6431 } 6432 6433 vdev_prop_add_list(outnvl, propname, NULL, 6434 intval, src); 6435 break; 6436 case VDEV_PROP_FAILFAST: 6437 src = ZPROP_SRC_LOCAL; 6438 strval = NULL; 6439 6440 err = zap_lookup(mos, objid, nvpair_name(elem), 6441 sizeof (uint64_t), 1, &intval); 6442 if (err == ENOENT) { 6443 intval = vdev_prop_default_numeric( 6444 prop); 6445 err = 0; 6446 } else if (err) { 6447 break; 6448 } 6449 if (intval == vdev_prop_default_numeric(prop)) 6450 src = ZPROP_SRC_DEFAULT; 6451 6452 vdev_prop_add_list(outnvl, propname, strval, 6453 intval, src); 6454 break; 6455 case VDEV_PROP_CHECKSUM_N: 6456 case VDEV_PROP_CHECKSUM_T: 6457 case VDEV_PROP_IO_N: 6458 case VDEV_PROP_IO_T: 6459 case VDEV_PROP_SLOW_IO_N: 6460 case VDEV_PROP_SLOW_IO_T: 6461 err = vdev_prop_get_int(vd, prop, &intval); 6462 if (err && err != ENOENT) 6463 break; 6464 6465 if (intval == vdev_prop_default_numeric(prop)) 6466 src = ZPROP_SRC_DEFAULT; 6467 else 6468 src = ZPROP_SRC_LOCAL; 6469 6470 vdev_prop_add_list(outnvl, propname, NULL, 6471 intval, src); 6472 break; 6473 /* Text Properties */ 6474 case VDEV_PROP_COMMENT: 6475 /* Exists in the ZAP below */ 6476 /* FALLTHRU */ 6477 case VDEV_PROP_USERPROP: 6478 /* User Properites */ 6479 src = ZPROP_SRC_LOCAL; 6480 6481 err = zap_length(mos, objid, nvpair_name(elem), 6482 &integer_size, &num_integers); 6483 if (err) 6484 break; 6485 6486 switch (integer_size) { 6487 case 8: 6488 /* User properties cannot be integers */ 6489 err = EINVAL; 6490 break; 6491 case 1: 6492 /* string property */ 6493 strval = kmem_alloc(num_integers, 6494 KM_SLEEP); 6495 err = zap_lookup(mos, objid, 6496 nvpair_name(elem), 1, 6497 num_integers, strval); 6498 if (err) { 6499 kmem_free(strval, 6500 num_integers); 6501 break; 6502 } 6503 vdev_prop_add_list(outnvl, propname, 6504 strval, 0, src); 6505 kmem_free(strval, num_integers); 6506 break; 6507 } 6508 break; 6509 default: 6510 err = ENOENT; 6511 break; 6512 } 6513 if (err) 6514 break; 6515 } 6516 } else { 6517 /* 6518 * Get all properties from the MOS vdev property object. 6519 */ 6520 zap_cursor_t zc; 6521 zap_attribute_t *za = zap_attribute_alloc(); 6522 for (zap_cursor_init(&zc, mos, objid); 6523 (err = zap_cursor_retrieve(&zc, za)) == 0; 6524 zap_cursor_advance(&zc)) { 6525 intval = 0; 6526 strval = NULL; 6527 zprop_source_t src = ZPROP_SRC_DEFAULT; 6528 propname = za->za_name; 6529 6530 switch (za->za_integer_length) { 6531 case 8: 6532 /* We do not allow integer user properties */ 6533 /* This is likely an internal value */ 6534 break; 6535 case 1: 6536 /* string property */ 6537 strval = kmem_alloc(za->za_num_integers, 6538 KM_SLEEP); 6539 err = zap_lookup(mos, objid, za->za_name, 1, 6540 za->za_num_integers, strval); 6541 if (err) { 6542 kmem_free(strval, za->za_num_integers); 6543 break; 6544 } 6545 vdev_prop_add_list(outnvl, propname, strval, 0, 6546 src); 6547 kmem_free(strval, za->za_num_integers); 6548 break; 6549 6550 default: 6551 break; 6552 } 6553 } 6554 zap_cursor_fini(&zc); 6555 zap_attribute_free(za); 6556 } 6557 6558 mutex_exit(&spa->spa_props_lock); 6559 if (err && err != ENOENT) { 6560 return (err); 6561 } 6562 6563 return (0); 6564 } 6565 6566 EXPORT_SYMBOL(vdev_fault); 6567 EXPORT_SYMBOL(vdev_degrade); 6568 EXPORT_SYMBOL(vdev_online); 6569 EXPORT_SYMBOL(vdev_offline); 6570 EXPORT_SYMBOL(vdev_clear); 6571 6572 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW, 6573 "Target number of metaslabs per top-level vdev"); 6574 6575 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW, 6576 "Default lower limit for metaslab size"); 6577 6578 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW, 6579 "Default upper limit for metaslab size"); 6580 6581 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW, 6582 "Minimum number of metaslabs per top-level vdev"); 6583 6584 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW, 6585 "Practical upper limit of total metaslabs per top-level vdev"); 6586 6587 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW, 6588 "Rate limit slow IO (delay) events to this many per second"); 6589 6590 ZFS_MODULE_PARAM(zfs, zfs_, deadman_events_per_second, UINT, ZMOD_RW, 6591 "Rate limit hung IO (deadman) events to this many per second"); 6592 6593 ZFS_MODULE_PARAM(zfs, zfs_, dio_write_verify_events_per_second, UINT, ZMOD_RW, 6594 "Rate Direct I/O write verify events to this many per second"); 6595 6596 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, direct_write_verify, UINT, ZMOD_RW, 6597 "Direct I/O writes will perform for checksum verification before " 6598 "commiting write"); 6599 6600 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW, 6601 "Rate limit checksum events to this many checksum errors per second " 6602 "(do not set below ZED threshold)."); 6603 6604 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW, 6605 "Ignore errors during resilver/scrub"); 6606 6607 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW, 6608 "Bypass vdev_validate()"); 6609 6610 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW, 6611 "Disable cache flushes"); 6612 6613 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW, 6614 "Minimum number of metaslabs required to dedicate one for log blocks"); 6615 6616 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift, 6617 param_set_min_auto_ashift, param_get_uint, ZMOD_RW, 6618 "Minimum ashift used when creating new top-level vdevs"); 6619 6620 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift, 6621 param_set_max_auto_ashift, param_get_uint, ZMOD_RW, 6622 "Maximum ashift used when optimizing for logical -> physical sector " 6623 "size on new top-level vdevs"); 6624 6625 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, raidz_impl, 6626 param_set_raidz_impl, param_get_raidz_impl, ZMOD_RW, 6627 "RAIDZ implementation"); 6628