xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev.c (revision 9b37d84c87e69dabc69d818aa4d2fea718bd8b74)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright 2016 Toomas Soome <tsoome@me.com>
29  * Copyright 2017 Joyent, Inc.
30  * Copyright (c) 2017, Intel Corporation.
31  * Copyright (c) 2019, Datto Inc. All rights reserved.
32  * Copyright (c) 2021, Klara Inc.
33  * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP.
34  */
35 
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa.h>
39 #include <sys/spa_impl.h>
40 #include <sys/bpobj.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/vdev_rebuild.h>
46 #include <sys/vdev_draid.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/metaslab.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/space_map.h>
51 #include <sys/space_reftree.h>
52 #include <sys/zio.h>
53 #include <sys/zap.h>
54 #include <sys/fs/zfs.h>
55 #include <sys/arc.h>
56 #include <sys/zil.h>
57 #include <sys/dsl_scan.h>
58 #include <sys/vdev_raidz.h>
59 #include <sys/abd.h>
60 #include <sys/vdev_initialize.h>
61 #include <sys/vdev_trim.h>
62 #include <sys/vdev_raidz.h>
63 #include <sys/zvol.h>
64 #include <sys/zfs_ratelimit.h>
65 #include "zfs_prop.h"
66 
67 /*
68  * One metaslab from each (normal-class) vdev is used by the ZIL.  These are
69  * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
70  * part of the spa_embedded_log_class.  The metaslab with the most free space
71  * in each vdev is selected for this purpose when the pool is opened (or a
72  * vdev is added).  See vdev_metaslab_init().
73  *
74  * Log blocks can be allocated from the following locations.  Each one is tried
75  * in order until the allocation succeeds:
76  * 1. dedicated log vdevs, aka "slog" (spa_log_class)
77  * 2. embedded slog metaslabs (spa_embedded_log_class)
78  * 3. other metaslabs in normal vdevs (spa_normal_class)
79  *
80  * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
81  * than this number of metaslabs in the vdev.  This ensures that we don't set
82  * aside an unreasonable amount of space for the ZIL.  If set to less than
83  * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
84  * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
85  */
86 static uint_t zfs_embedded_slog_min_ms = 64;
87 
88 /* default target for number of metaslabs per top-level vdev */
89 static uint_t zfs_vdev_default_ms_count = 200;
90 
91 /* minimum number of metaslabs per top-level vdev */
92 static uint_t zfs_vdev_min_ms_count = 16;
93 
94 /* practical upper limit of total metaslabs per top-level vdev */
95 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17;
96 
97 /* lower limit for metaslab size (512M) */
98 static uint_t zfs_vdev_default_ms_shift = 29;
99 
100 /* upper limit for metaslab size (16G) */
101 static uint_t zfs_vdev_max_ms_shift = 34;
102 
103 int vdev_validate_skip = B_FALSE;
104 
105 /*
106  * Since the DTL space map of a vdev is not expected to have a lot of
107  * entries, we default its block size to 4K.
108  */
109 int zfs_vdev_dtl_sm_blksz = (1 << 12);
110 
111 /*
112  * Rate limit slow IO (delay) events to this many per second.
113  */
114 static unsigned int zfs_slow_io_events_per_second = 20;
115 
116 /*
117  * Rate limit deadman "hung IO" events to this many per second.
118  */
119 static unsigned int zfs_deadman_events_per_second = 1;
120 
121 /*
122  * Rate limit direct write IO verify failures to this many per scond.
123  */
124 static unsigned int zfs_dio_write_verify_events_per_second = 20;
125 
126 /*
127  * Rate limit checksum events after this many checksum errors per second.
128  */
129 static unsigned int zfs_checksum_events_per_second = 20;
130 
131 /*
132  * Ignore errors during scrub/resilver.  Allows to work around resilver
133  * upon import when there are pool errors.
134  */
135 static int zfs_scan_ignore_errors = 0;
136 
137 /*
138  * vdev-wide space maps that have lots of entries written to them at
139  * the end of each transaction can benefit from a higher I/O bandwidth
140  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
141  */
142 int zfs_vdev_standard_sm_blksz = (1 << 17);
143 
144 /*
145  * Tunable parameter for debugging or performance analysis. Setting this
146  * will cause pool corruption on power loss if a volatile out-of-order
147  * write cache is enabled.
148  */
149 int zfs_nocacheflush = 0;
150 
151 /*
152  * Maximum and minimum ashift values that can be automatically set based on
153  * vdev's physical ashift (disk's physical sector size).  While ASHIFT_MAX
154  * is higher than the maximum value, it is intentionally limited here to not
155  * excessively impact pool space efficiency.  Higher ashift values may still
156  * be forced by vdev logical ashift or by user via ashift property, but won't
157  * be set automatically as a performance optimization.
158  */
159 uint_t zfs_vdev_max_auto_ashift = 14;
160 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
161 
162 /*
163  * VDEV checksum verification for Direct I/O writes. This is neccessary for
164  * Linux, because anonymous pages can not be placed under write protection
165  * during Direct I/O writes.
166  */
167 #if !defined(__FreeBSD__)
168 uint_t zfs_vdev_direct_write_verify = 1;
169 #else
170 uint_t zfs_vdev_direct_write_verify = 0;
171 #endif
172 
173 void
174 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
175 {
176 	va_list adx;
177 	char buf[256];
178 
179 	va_start(adx, fmt);
180 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
181 	va_end(adx);
182 
183 	if (vd->vdev_path != NULL) {
184 		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
185 		    vd->vdev_path, buf);
186 	} else {
187 		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
188 		    vd->vdev_ops->vdev_op_type,
189 		    (u_longlong_t)vd->vdev_id,
190 		    (u_longlong_t)vd->vdev_guid, buf);
191 	}
192 }
193 
194 void
195 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
196 {
197 	char state[20];
198 
199 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
200 		zfs_dbgmsg("%*svdev %llu: %s", indent, "",
201 		    (u_longlong_t)vd->vdev_id,
202 		    vd->vdev_ops->vdev_op_type);
203 		return;
204 	}
205 
206 	switch (vd->vdev_state) {
207 	case VDEV_STATE_UNKNOWN:
208 		(void) snprintf(state, sizeof (state), "unknown");
209 		break;
210 	case VDEV_STATE_CLOSED:
211 		(void) snprintf(state, sizeof (state), "closed");
212 		break;
213 	case VDEV_STATE_OFFLINE:
214 		(void) snprintf(state, sizeof (state), "offline");
215 		break;
216 	case VDEV_STATE_REMOVED:
217 		(void) snprintf(state, sizeof (state), "removed");
218 		break;
219 	case VDEV_STATE_CANT_OPEN:
220 		(void) snprintf(state, sizeof (state), "can't open");
221 		break;
222 	case VDEV_STATE_FAULTED:
223 		(void) snprintf(state, sizeof (state), "faulted");
224 		break;
225 	case VDEV_STATE_DEGRADED:
226 		(void) snprintf(state, sizeof (state), "degraded");
227 		break;
228 	case VDEV_STATE_HEALTHY:
229 		(void) snprintf(state, sizeof (state), "healthy");
230 		break;
231 	default:
232 		(void) snprintf(state, sizeof (state), "<state %u>",
233 		    (uint_t)vd->vdev_state);
234 	}
235 
236 	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
237 	    "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
238 	    vd->vdev_islog ? " (log)" : "",
239 	    (u_longlong_t)vd->vdev_guid,
240 	    vd->vdev_path ? vd->vdev_path : "N/A", state);
241 
242 	for (uint64_t i = 0; i < vd->vdev_children; i++)
243 		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
244 }
245 
246 /*
247  * Virtual device management.
248  */
249 
250 static vdev_ops_t *const vdev_ops_table[] = {
251 	&vdev_root_ops,
252 	&vdev_raidz_ops,
253 	&vdev_draid_ops,
254 	&vdev_draid_spare_ops,
255 	&vdev_mirror_ops,
256 	&vdev_replacing_ops,
257 	&vdev_spare_ops,
258 	&vdev_disk_ops,
259 	&vdev_file_ops,
260 	&vdev_missing_ops,
261 	&vdev_hole_ops,
262 	&vdev_indirect_ops,
263 	NULL
264 };
265 
266 /*
267  * Given a vdev type, return the appropriate ops vector.
268  */
269 static vdev_ops_t *
270 vdev_getops(const char *type)
271 {
272 	vdev_ops_t *ops, *const *opspp;
273 
274 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
275 		if (strcmp(ops->vdev_op_type, type) == 0)
276 			break;
277 
278 	return (ops);
279 }
280 
281 /*
282  * Given a vdev and a metaslab class, find which metaslab group we're
283  * interested in. All vdevs may belong to two different metaslab classes.
284  * Dedicated slog devices use only the primary metaslab group, rather than a
285  * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
286  */
287 metaslab_group_t *
288 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
289 {
290 	if (mc == spa_embedded_log_class(vd->vdev_spa) &&
291 	    vd->vdev_log_mg != NULL)
292 		return (vd->vdev_log_mg);
293 	else
294 		return (vd->vdev_mg);
295 }
296 
297 void
298 vdev_default_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
299     zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs)
300 {
301 	(void) vd, (void) remain_rs;
302 
303 	physical_rs->rs_start = logical_rs->rs_start;
304 	physical_rs->rs_end = logical_rs->rs_end;
305 }
306 
307 /*
308  * Derive the enumerated allocation bias from string input.
309  * String origin is either the per-vdev zap or zpool(8).
310  */
311 static vdev_alloc_bias_t
312 vdev_derive_alloc_bias(const char *bias)
313 {
314 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
315 
316 	if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
317 		alloc_bias = VDEV_BIAS_LOG;
318 	else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
319 		alloc_bias = VDEV_BIAS_SPECIAL;
320 	else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
321 		alloc_bias = VDEV_BIAS_DEDUP;
322 
323 	return (alloc_bias);
324 }
325 
326 uint64_t
327 vdev_default_psize(vdev_t *vd, uint64_t asize, uint64_t txg)
328 {
329 	ASSERT0(asize % (1ULL << vd->vdev_top->vdev_ashift));
330 	uint64_t csize, psize = asize;
331 	for (int c = 0; c < vd->vdev_children; c++) {
332 		csize = vdev_asize_to_psize_txg(vd->vdev_child[c], asize, txg);
333 		psize = MIN(psize, csize);
334 	}
335 
336 	return (psize);
337 }
338 
339 /*
340  * Default asize function: return the MAX of psize with the asize of
341  * all children.  This is what's used by anything other than RAID-Z.
342  */
343 uint64_t
344 vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg)
345 {
346 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
347 	uint64_t csize;
348 
349 	for (int c = 0; c < vd->vdev_children; c++) {
350 		csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg);
351 		asize = MAX(asize, csize);
352 	}
353 
354 	return (asize);
355 }
356 
357 uint64_t
358 vdev_default_min_asize(vdev_t *vd)
359 {
360 	return (vd->vdev_min_asize);
361 }
362 
363 /*
364  * Get the minimum allocatable size. We define the allocatable size as
365  * the vdev's asize rounded to the nearest metaslab. This allows us to
366  * replace or attach devices which don't have the same physical size but
367  * can still satisfy the same number of allocations.
368  */
369 uint64_t
370 vdev_get_min_asize(vdev_t *vd)
371 {
372 	vdev_t *pvd = vd->vdev_parent;
373 
374 	/*
375 	 * If our parent is NULL (inactive spare or cache) or is the root,
376 	 * just return our own asize.
377 	 */
378 	if (pvd == NULL)
379 		return (vd->vdev_asize);
380 
381 	/*
382 	 * The top-level vdev just returns the allocatable size rounded
383 	 * to the nearest metaslab.
384 	 */
385 	if (vd == vd->vdev_top)
386 		return (P2ALIGN_TYPED(vd->vdev_asize, 1ULL << vd->vdev_ms_shift,
387 		    uint64_t));
388 
389 	return (pvd->vdev_ops->vdev_op_min_asize(pvd));
390 }
391 
392 void
393 vdev_set_min_asize(vdev_t *vd)
394 {
395 	vd->vdev_min_asize = vdev_get_min_asize(vd);
396 
397 	for (int c = 0; c < vd->vdev_children; c++)
398 		vdev_set_min_asize(vd->vdev_child[c]);
399 }
400 
401 /*
402  * Get the minimal allocation size for the top-level vdev.
403  */
404 uint64_t
405 vdev_get_min_alloc(vdev_t *vd)
406 {
407 	uint64_t min_alloc = 1ULL << vd->vdev_ashift;
408 
409 	if (vd->vdev_ops->vdev_op_min_alloc != NULL)
410 		min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
411 
412 	return (min_alloc);
413 }
414 
415 /*
416  * Get the parity level for a top-level vdev.
417  */
418 uint64_t
419 vdev_get_nparity(vdev_t *vd)
420 {
421 	uint64_t nparity = 0;
422 
423 	if (vd->vdev_ops->vdev_op_nparity != NULL)
424 		nparity = vd->vdev_ops->vdev_op_nparity(vd);
425 
426 	return (nparity);
427 }
428 
429 static int
430 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value)
431 {
432 	spa_t *spa = vd->vdev_spa;
433 	objset_t *mos = spa->spa_meta_objset;
434 	uint64_t objid;
435 	int err;
436 
437 	if (vd->vdev_root_zap != 0) {
438 		objid = vd->vdev_root_zap;
439 	} else if (vd->vdev_top_zap != 0) {
440 		objid = vd->vdev_top_zap;
441 	} else if (vd->vdev_leaf_zap != 0) {
442 		objid = vd->vdev_leaf_zap;
443 	} else {
444 		return (EINVAL);
445 	}
446 
447 	err = zap_lookup(mos, objid, vdev_prop_to_name(prop),
448 	    sizeof (uint64_t), 1, value);
449 
450 	if (err == ENOENT)
451 		*value = vdev_prop_default_numeric(prop);
452 
453 	return (err);
454 }
455 
456 /*
457  * Get the number of data disks for a top-level vdev.
458  */
459 uint64_t
460 vdev_get_ndisks(vdev_t *vd)
461 {
462 	uint64_t ndisks = 1;
463 
464 	if (vd->vdev_ops->vdev_op_ndisks != NULL)
465 		ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
466 
467 	return (ndisks);
468 }
469 
470 vdev_t *
471 vdev_lookup_top(spa_t *spa, uint64_t vdev)
472 {
473 	vdev_t *rvd = spa->spa_root_vdev;
474 
475 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
476 
477 	if (vdev < rvd->vdev_children) {
478 		ASSERT(rvd->vdev_child[vdev] != NULL);
479 		return (rvd->vdev_child[vdev]);
480 	}
481 
482 	return (NULL);
483 }
484 
485 vdev_t *
486 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
487 {
488 	vdev_t *mvd;
489 
490 	if (vd->vdev_guid == guid)
491 		return (vd);
492 
493 	for (int c = 0; c < vd->vdev_children; c++)
494 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
495 		    NULL)
496 			return (mvd);
497 
498 	return (NULL);
499 }
500 
501 static int
502 vdev_count_leaves_impl(vdev_t *vd)
503 {
504 	int n = 0;
505 
506 	if (vd->vdev_ops->vdev_op_leaf)
507 		return (1);
508 
509 	for (int c = 0; c < vd->vdev_children; c++)
510 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
511 
512 	return (n);
513 }
514 
515 int
516 vdev_count_leaves(spa_t *spa)
517 {
518 	int rc;
519 
520 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
521 	rc = vdev_count_leaves_impl(spa->spa_root_vdev);
522 	spa_config_exit(spa, SCL_VDEV, FTAG);
523 
524 	return (rc);
525 }
526 
527 void
528 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
529 {
530 	size_t oldsize, newsize;
531 	uint64_t id = cvd->vdev_id;
532 	vdev_t **newchild;
533 
534 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
535 	ASSERT(cvd->vdev_parent == NULL);
536 
537 	cvd->vdev_parent = pvd;
538 
539 	if (pvd == NULL)
540 		return;
541 
542 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
543 
544 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
545 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
546 	newsize = pvd->vdev_children * sizeof (vdev_t *);
547 
548 	newchild = kmem_alloc(newsize, KM_SLEEP);
549 	if (pvd->vdev_child != NULL) {
550 		memcpy(newchild, pvd->vdev_child, oldsize);
551 		kmem_free(pvd->vdev_child, oldsize);
552 	}
553 
554 	pvd->vdev_child = newchild;
555 	pvd->vdev_child[id] = cvd;
556 
557 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
558 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
559 
560 	/*
561 	 * Walk up all ancestors to update guid sum.
562 	 */
563 	for (; pvd != NULL; pvd = pvd->vdev_parent)
564 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
565 
566 	if (cvd->vdev_ops->vdev_op_leaf) {
567 		list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
568 		cvd->vdev_spa->spa_leaf_list_gen++;
569 	}
570 }
571 
572 void
573 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
574 {
575 	int c;
576 	uint_t id = cvd->vdev_id;
577 
578 	ASSERT(cvd->vdev_parent == pvd);
579 
580 	if (pvd == NULL)
581 		return;
582 
583 	ASSERT(id < pvd->vdev_children);
584 	ASSERT(pvd->vdev_child[id] == cvd);
585 
586 	pvd->vdev_child[id] = NULL;
587 	cvd->vdev_parent = NULL;
588 
589 	for (c = 0; c < pvd->vdev_children; c++)
590 		if (pvd->vdev_child[c])
591 			break;
592 
593 	if (c == pvd->vdev_children) {
594 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
595 		pvd->vdev_child = NULL;
596 		pvd->vdev_children = 0;
597 	}
598 
599 	if (cvd->vdev_ops->vdev_op_leaf) {
600 		spa_t *spa = cvd->vdev_spa;
601 		list_remove(&spa->spa_leaf_list, cvd);
602 		spa->spa_leaf_list_gen++;
603 	}
604 
605 	/*
606 	 * Walk up all ancestors to update guid sum.
607 	 */
608 	for (; pvd != NULL; pvd = pvd->vdev_parent)
609 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
610 }
611 
612 /*
613  * Remove any holes in the child array.
614  */
615 void
616 vdev_compact_children(vdev_t *pvd)
617 {
618 	vdev_t **newchild, *cvd;
619 	int oldc = pvd->vdev_children;
620 	int newc;
621 
622 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
623 
624 	if (oldc == 0)
625 		return;
626 
627 	for (int c = newc = 0; c < oldc; c++)
628 		if (pvd->vdev_child[c])
629 			newc++;
630 
631 	if (newc > 0) {
632 		newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
633 
634 		for (int c = newc = 0; c < oldc; c++) {
635 			if ((cvd = pvd->vdev_child[c]) != NULL) {
636 				newchild[newc] = cvd;
637 				cvd->vdev_id = newc++;
638 			}
639 		}
640 	} else {
641 		newchild = NULL;
642 	}
643 
644 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
645 	pvd->vdev_child = newchild;
646 	pvd->vdev_children = newc;
647 }
648 
649 /*
650  * Allocate and minimally initialize a vdev_t.
651  */
652 vdev_t *
653 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
654 {
655 	vdev_t *vd;
656 	vdev_indirect_config_t *vic;
657 
658 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
659 	vic = &vd->vdev_indirect_config;
660 
661 	if (spa->spa_root_vdev == NULL) {
662 		ASSERT(ops == &vdev_root_ops);
663 		spa->spa_root_vdev = vd;
664 		spa->spa_load_guid = spa_generate_load_guid();
665 	}
666 
667 	if (guid == 0 && ops != &vdev_hole_ops) {
668 		if (spa->spa_root_vdev == vd) {
669 			/*
670 			 * The root vdev's guid will also be the pool guid,
671 			 * which must be unique among all pools.
672 			 */
673 			guid = spa_generate_guid(NULL);
674 		} else {
675 			/*
676 			 * Any other vdev's guid must be unique within the pool.
677 			 */
678 			guid = spa_generate_guid(spa);
679 		}
680 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
681 	}
682 
683 	vd->vdev_spa = spa;
684 	vd->vdev_id = id;
685 	vd->vdev_guid = guid;
686 	vd->vdev_guid_sum = guid;
687 	vd->vdev_ops = ops;
688 	vd->vdev_state = VDEV_STATE_CLOSED;
689 	vd->vdev_ishole = (ops == &vdev_hole_ops);
690 	vic->vic_prev_indirect_vdev = UINT64_MAX;
691 
692 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
693 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
694 	vd->vdev_obsolete_segments = zfs_range_tree_create(NULL,
695 	    ZFS_RANGE_SEG64, NULL, 0, 0);
696 
697 	/*
698 	 * Initialize rate limit structs for events.  We rate limit ZIO delay
699 	 * and checksum events so that we don't overwhelm ZED with thousands
700 	 * of events when a disk is acting up.
701 	 */
702 	zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
703 	    1);
704 	zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_deadman_events_per_second,
705 	    1);
706 	zfs_ratelimit_init(&vd->vdev_dio_verify_rl,
707 	    &zfs_dio_write_verify_events_per_second, 1);
708 	zfs_ratelimit_init(&vd->vdev_checksum_rl,
709 	    &zfs_checksum_events_per_second, 1);
710 
711 	/*
712 	 * Default Thresholds for tuning ZED
713 	 */
714 	vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N);
715 	vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T);
716 	vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N);
717 	vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T);
718 	vd->vdev_slow_io_n = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N);
719 	vd->vdev_slow_io_t = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T);
720 
721 	list_link_init(&vd->vdev_config_dirty_node);
722 	list_link_init(&vd->vdev_state_dirty_node);
723 	list_link_init(&vd->vdev_initialize_node);
724 	list_link_init(&vd->vdev_leaf_node);
725 	list_link_init(&vd->vdev_trim_node);
726 
727 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
728 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
729 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
730 	mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
731 
732 	mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
733 	mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
734 	cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
735 	cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
736 
737 	mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
738 	mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
739 	mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
740 	cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
741 	cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
742 	cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL);
743 	cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
744 
745 	mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
746 	cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
747 
748 	for (int t = 0; t < DTL_TYPES; t++) {
749 		vd->vdev_dtl[t] = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
750 		    NULL, 0, 0);
751 	}
752 
753 	txg_list_create(&vd->vdev_ms_list, spa,
754 	    offsetof(struct metaslab, ms_txg_node));
755 	txg_list_create(&vd->vdev_dtl_list, spa,
756 	    offsetof(struct vdev, vdev_dtl_node));
757 	vd->vdev_stat.vs_timestamp = gethrtime();
758 	vdev_queue_init(vd);
759 
760 	return (vd);
761 }
762 
763 /*
764  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
765  * creating a new vdev or loading an existing one - the behavior is slightly
766  * different for each case.
767  */
768 int
769 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
770     int alloctype)
771 {
772 	vdev_ops_t *ops;
773 	const char *type;
774 	uint64_t guid = 0, islog;
775 	vdev_t *vd;
776 	vdev_indirect_config_t *vic;
777 	const char *tmp = NULL;
778 	int rc;
779 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
780 	boolean_t top_level = (parent && !parent->vdev_parent);
781 
782 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
783 
784 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
785 		return (SET_ERROR(EINVAL));
786 
787 	if ((ops = vdev_getops(type)) == NULL)
788 		return (SET_ERROR(EINVAL));
789 
790 	/*
791 	 * If this is a load, get the vdev guid from the nvlist.
792 	 * Otherwise, vdev_alloc_common() will generate one for us.
793 	 */
794 	if (alloctype == VDEV_ALLOC_LOAD) {
795 		uint64_t label_id;
796 
797 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
798 		    label_id != id)
799 			return (SET_ERROR(EINVAL));
800 
801 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
802 			return (SET_ERROR(EINVAL));
803 	} else if (alloctype == VDEV_ALLOC_SPARE) {
804 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
805 			return (SET_ERROR(EINVAL));
806 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
807 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
808 			return (SET_ERROR(EINVAL));
809 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
810 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
811 			return (SET_ERROR(EINVAL));
812 	}
813 
814 	/*
815 	 * The first allocated vdev must be of type 'root'.
816 	 */
817 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
818 		return (SET_ERROR(EINVAL));
819 
820 	/*
821 	 * Determine whether we're a log vdev.
822 	 */
823 	islog = 0;
824 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
825 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
826 		return (SET_ERROR(ENOTSUP));
827 
828 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
829 		return (SET_ERROR(ENOTSUP));
830 
831 	if (top_level && alloctype == VDEV_ALLOC_ADD) {
832 		const char *bias;
833 
834 		/*
835 		 * If creating a top-level vdev, check for allocation
836 		 * classes input.
837 		 */
838 		if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
839 		    &bias) == 0) {
840 			alloc_bias = vdev_derive_alloc_bias(bias);
841 
842 			/* spa_vdev_add() expects feature to be enabled */
843 			if (spa->spa_load_state != SPA_LOAD_CREATE &&
844 			    !spa_feature_is_enabled(spa,
845 			    SPA_FEATURE_ALLOCATION_CLASSES)) {
846 				return (SET_ERROR(ENOTSUP));
847 			}
848 		}
849 
850 		/* spa_vdev_add() expects feature to be enabled */
851 		if (ops == &vdev_draid_ops &&
852 		    spa->spa_load_state != SPA_LOAD_CREATE &&
853 		    !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
854 			return (SET_ERROR(ENOTSUP));
855 		}
856 	}
857 
858 	/*
859 	 * Initialize the vdev specific data.  This is done before calling
860 	 * vdev_alloc_common() since it may fail and this simplifies the
861 	 * error reporting and cleanup code paths.
862 	 */
863 	void *tsd = NULL;
864 	if (ops->vdev_op_init != NULL) {
865 		rc = ops->vdev_op_init(spa, nv, &tsd);
866 		if (rc != 0) {
867 			return (rc);
868 		}
869 	}
870 
871 	vd = vdev_alloc_common(spa, id, guid, ops);
872 	vd->vdev_tsd = tsd;
873 	vd->vdev_islog = islog;
874 
875 	if (top_level && alloc_bias != VDEV_BIAS_NONE)
876 		vd->vdev_alloc_bias = alloc_bias;
877 
878 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0)
879 		vd->vdev_path = spa_strdup(tmp);
880 
881 	/*
882 	 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
883 	 * fault on a vdev and want it to persist across imports (like with
884 	 * zpool offline -f).
885 	 */
886 	rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
887 	if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
888 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
889 		vd->vdev_faulted = 1;
890 		vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
891 	}
892 
893 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0)
894 		vd->vdev_devid = spa_strdup(tmp);
895 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0)
896 		vd->vdev_physpath = spa_strdup(tmp);
897 
898 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
899 	    &tmp) == 0)
900 		vd->vdev_enc_sysfs_path = spa_strdup(tmp);
901 
902 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0)
903 		vd->vdev_fru = spa_strdup(tmp);
904 
905 	/*
906 	 * Set the whole_disk property.  If it's not specified, leave the value
907 	 * as -1.
908 	 */
909 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
910 	    &vd->vdev_wholedisk) != 0)
911 		vd->vdev_wholedisk = -1ULL;
912 
913 	vic = &vd->vdev_indirect_config;
914 
915 	ASSERT0(vic->vic_mapping_object);
916 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
917 	    &vic->vic_mapping_object);
918 	ASSERT0(vic->vic_births_object);
919 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
920 	    &vic->vic_births_object);
921 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
922 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
923 	    &vic->vic_prev_indirect_vdev);
924 
925 	/*
926 	 * Look for the 'not present' flag.  This will only be set if the device
927 	 * was not present at the time of import.
928 	 */
929 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
930 	    &vd->vdev_not_present);
931 
932 	/*
933 	 * Get the alignment requirement. Ignore pool ashift for vdev
934 	 * attach case.
935 	 */
936 	if (alloctype != VDEV_ALLOC_ATTACH) {
937 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT,
938 		    &vd->vdev_ashift);
939 	} else {
940 		vd->vdev_attaching = B_TRUE;
941 	}
942 
943 	/*
944 	 * Retrieve the vdev creation time.
945 	 */
946 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
947 	    &vd->vdev_crtxg);
948 
949 	if (vd->vdev_ops == &vdev_root_ops &&
950 	    (alloctype == VDEV_ALLOC_LOAD ||
951 	    alloctype == VDEV_ALLOC_SPLIT ||
952 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
953 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP,
954 		    &vd->vdev_root_zap);
955 	}
956 
957 	/*
958 	 * If we're a top-level vdev, try to load the allocation parameters.
959 	 */
960 	if (top_level &&
961 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
962 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
963 		    &vd->vdev_ms_array);
964 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
965 		    &vd->vdev_ms_shift);
966 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
967 		    &vd->vdev_asize);
968 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
969 		    &vd->vdev_noalloc);
970 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
971 		    &vd->vdev_removing);
972 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
973 		    &vd->vdev_top_zap);
974 		vd->vdev_rz_expanding = nvlist_exists(nv,
975 		    ZPOOL_CONFIG_RAIDZ_EXPANDING);
976 	} else {
977 		ASSERT0(vd->vdev_top_zap);
978 	}
979 
980 	if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
981 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
982 		    alloctype == VDEV_ALLOC_ADD ||
983 		    alloctype == VDEV_ALLOC_SPLIT ||
984 		    alloctype == VDEV_ALLOC_ROOTPOOL);
985 		/* Note: metaslab_group_create() is now deferred */
986 	}
987 
988 	if (vd->vdev_ops->vdev_op_leaf &&
989 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
990 		(void) nvlist_lookup_uint64(nv,
991 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
992 	} else {
993 		ASSERT0(vd->vdev_leaf_zap);
994 	}
995 
996 	/*
997 	 * If we're a leaf vdev, try to load the DTL object and other state.
998 	 */
999 
1000 	if (vd->vdev_ops->vdev_op_leaf &&
1001 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
1002 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
1003 		if (alloctype == VDEV_ALLOC_LOAD) {
1004 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
1005 			    &vd->vdev_dtl_object);
1006 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
1007 			    &vd->vdev_unspare);
1008 		}
1009 
1010 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
1011 			uint64_t spare = 0;
1012 
1013 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
1014 			    &spare) == 0 && spare)
1015 				spa_spare_add(vd);
1016 		}
1017 
1018 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
1019 		    &vd->vdev_offline);
1020 
1021 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
1022 		    &vd->vdev_resilver_txg);
1023 
1024 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
1025 		    &vd->vdev_rebuild_txg);
1026 
1027 		if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
1028 			vdev_defer_resilver(vd);
1029 
1030 		/*
1031 		 * In general, when importing a pool we want to ignore the
1032 		 * persistent fault state, as the diagnosis made on another
1033 		 * system may not be valid in the current context.  The only
1034 		 * exception is if we forced a vdev to a persistently faulted
1035 		 * state with 'zpool offline -f'.  The persistent fault will
1036 		 * remain across imports until cleared.
1037 		 *
1038 		 * Local vdevs will remain in the faulted state.
1039 		 */
1040 		if (spa_load_state(spa) == SPA_LOAD_OPEN ||
1041 		    spa_load_state(spa) == SPA_LOAD_IMPORT) {
1042 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
1043 			    &vd->vdev_faulted);
1044 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
1045 			    &vd->vdev_degraded);
1046 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
1047 			    &vd->vdev_removed);
1048 
1049 			if (vd->vdev_faulted || vd->vdev_degraded) {
1050 				const char *aux;
1051 
1052 				vd->vdev_label_aux =
1053 				    VDEV_AUX_ERR_EXCEEDED;
1054 				if (nvlist_lookup_string(nv,
1055 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
1056 				    strcmp(aux, "external") == 0)
1057 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
1058 				else
1059 					vd->vdev_faulted = 0ULL;
1060 			}
1061 		}
1062 	}
1063 
1064 	/*
1065 	 * Add ourselves to the parent's list of children.
1066 	 */
1067 	vdev_add_child(parent, vd);
1068 
1069 	*vdp = vd;
1070 
1071 	return (0);
1072 }
1073 
1074 void
1075 vdev_free(vdev_t *vd)
1076 {
1077 	spa_t *spa = vd->vdev_spa;
1078 
1079 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1080 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1081 	ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1082 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
1083 
1084 	/*
1085 	 * Scan queues are normally destroyed at the end of a scan. If the
1086 	 * queue exists here, that implies the vdev is being removed while
1087 	 * the scan is still running.
1088 	 */
1089 	if (vd->vdev_scan_io_queue != NULL) {
1090 		mutex_enter(&vd->vdev_scan_io_queue_lock);
1091 		dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
1092 		vd->vdev_scan_io_queue = NULL;
1093 		mutex_exit(&vd->vdev_scan_io_queue_lock);
1094 	}
1095 
1096 	/*
1097 	 * vdev_free() implies closing the vdev first.  This is simpler than
1098 	 * trying to ensure complicated semantics for all callers.
1099 	 */
1100 	vdev_close(vd);
1101 
1102 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
1103 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1104 
1105 	/*
1106 	 * Free all children.
1107 	 */
1108 	for (int c = 0; c < vd->vdev_children; c++)
1109 		vdev_free(vd->vdev_child[c]);
1110 
1111 	ASSERT(vd->vdev_child == NULL);
1112 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1113 
1114 	if (vd->vdev_ops->vdev_op_fini != NULL)
1115 		vd->vdev_ops->vdev_op_fini(vd);
1116 
1117 	/*
1118 	 * Discard allocation state.
1119 	 */
1120 	if (vd->vdev_mg != NULL) {
1121 		vdev_metaslab_fini(vd);
1122 		metaslab_group_destroy(vd->vdev_mg);
1123 		vd->vdev_mg = NULL;
1124 	}
1125 	if (vd->vdev_log_mg != NULL) {
1126 		ASSERT0(vd->vdev_ms_count);
1127 		metaslab_group_destroy(vd->vdev_log_mg);
1128 		vd->vdev_log_mg = NULL;
1129 	}
1130 
1131 	ASSERT0(vd->vdev_stat.vs_space);
1132 	ASSERT0(vd->vdev_stat.vs_dspace);
1133 	ASSERT0(vd->vdev_stat.vs_alloc);
1134 
1135 	/*
1136 	 * Remove this vdev from its parent's child list.
1137 	 */
1138 	vdev_remove_child(vd->vdev_parent, vd);
1139 
1140 	ASSERT(vd->vdev_parent == NULL);
1141 	ASSERT(!list_link_active(&vd->vdev_leaf_node));
1142 
1143 	/*
1144 	 * Clean up vdev structure.
1145 	 */
1146 	vdev_queue_fini(vd);
1147 
1148 	if (vd->vdev_path)
1149 		spa_strfree(vd->vdev_path);
1150 	if (vd->vdev_devid)
1151 		spa_strfree(vd->vdev_devid);
1152 	if (vd->vdev_physpath)
1153 		spa_strfree(vd->vdev_physpath);
1154 
1155 	if (vd->vdev_enc_sysfs_path)
1156 		spa_strfree(vd->vdev_enc_sysfs_path);
1157 
1158 	if (vd->vdev_fru)
1159 		spa_strfree(vd->vdev_fru);
1160 
1161 	if (vd->vdev_isspare)
1162 		spa_spare_remove(vd);
1163 	if (vd->vdev_isl2cache)
1164 		spa_l2cache_remove(vd);
1165 
1166 	txg_list_destroy(&vd->vdev_ms_list);
1167 	txg_list_destroy(&vd->vdev_dtl_list);
1168 
1169 	mutex_enter(&vd->vdev_dtl_lock);
1170 	space_map_close(vd->vdev_dtl_sm);
1171 	for (int t = 0; t < DTL_TYPES; t++) {
1172 		zfs_range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1173 		zfs_range_tree_destroy(vd->vdev_dtl[t]);
1174 	}
1175 	mutex_exit(&vd->vdev_dtl_lock);
1176 
1177 	EQUIV(vd->vdev_indirect_births != NULL,
1178 	    vd->vdev_indirect_mapping != NULL);
1179 	if (vd->vdev_indirect_births != NULL) {
1180 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1181 		vdev_indirect_births_close(vd->vdev_indirect_births);
1182 	}
1183 
1184 	if (vd->vdev_obsolete_sm != NULL) {
1185 		ASSERT(vd->vdev_removing ||
1186 		    vd->vdev_ops == &vdev_indirect_ops);
1187 		space_map_close(vd->vdev_obsolete_sm);
1188 		vd->vdev_obsolete_sm = NULL;
1189 	}
1190 	zfs_range_tree_destroy(vd->vdev_obsolete_segments);
1191 	rw_destroy(&vd->vdev_indirect_rwlock);
1192 	mutex_destroy(&vd->vdev_obsolete_lock);
1193 
1194 	mutex_destroy(&vd->vdev_dtl_lock);
1195 	mutex_destroy(&vd->vdev_stat_lock);
1196 	mutex_destroy(&vd->vdev_probe_lock);
1197 	mutex_destroy(&vd->vdev_scan_io_queue_lock);
1198 
1199 	mutex_destroy(&vd->vdev_initialize_lock);
1200 	mutex_destroy(&vd->vdev_initialize_io_lock);
1201 	cv_destroy(&vd->vdev_initialize_io_cv);
1202 	cv_destroy(&vd->vdev_initialize_cv);
1203 
1204 	mutex_destroy(&vd->vdev_trim_lock);
1205 	mutex_destroy(&vd->vdev_autotrim_lock);
1206 	mutex_destroy(&vd->vdev_trim_io_lock);
1207 	cv_destroy(&vd->vdev_trim_cv);
1208 	cv_destroy(&vd->vdev_autotrim_cv);
1209 	cv_destroy(&vd->vdev_autotrim_kick_cv);
1210 	cv_destroy(&vd->vdev_trim_io_cv);
1211 
1212 	mutex_destroy(&vd->vdev_rebuild_lock);
1213 	cv_destroy(&vd->vdev_rebuild_cv);
1214 
1215 	zfs_ratelimit_fini(&vd->vdev_delay_rl);
1216 	zfs_ratelimit_fini(&vd->vdev_deadman_rl);
1217 	zfs_ratelimit_fini(&vd->vdev_dio_verify_rl);
1218 	zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1219 
1220 	if (vd == spa->spa_root_vdev)
1221 		spa->spa_root_vdev = NULL;
1222 
1223 	kmem_free(vd, sizeof (vdev_t));
1224 }
1225 
1226 /*
1227  * Transfer top-level vdev state from svd to tvd.
1228  */
1229 static void
1230 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1231 {
1232 	spa_t *spa = svd->vdev_spa;
1233 	metaslab_t *msp;
1234 	vdev_t *vd;
1235 	int t;
1236 
1237 	ASSERT(tvd == tvd->vdev_top);
1238 
1239 	tvd->vdev_ms_array = svd->vdev_ms_array;
1240 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
1241 	tvd->vdev_ms_count = svd->vdev_ms_count;
1242 	tvd->vdev_top_zap = svd->vdev_top_zap;
1243 
1244 	svd->vdev_ms_array = 0;
1245 	svd->vdev_ms_shift = 0;
1246 	svd->vdev_ms_count = 0;
1247 	svd->vdev_top_zap = 0;
1248 
1249 	if (tvd->vdev_mg)
1250 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1251 	if (tvd->vdev_log_mg)
1252 		ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1253 	tvd->vdev_mg = svd->vdev_mg;
1254 	tvd->vdev_log_mg = svd->vdev_log_mg;
1255 	tvd->vdev_ms = svd->vdev_ms;
1256 
1257 	svd->vdev_mg = NULL;
1258 	svd->vdev_log_mg = NULL;
1259 	svd->vdev_ms = NULL;
1260 
1261 	if (tvd->vdev_mg != NULL)
1262 		tvd->vdev_mg->mg_vd = tvd;
1263 	if (tvd->vdev_log_mg != NULL)
1264 		tvd->vdev_log_mg->mg_vd = tvd;
1265 
1266 	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1267 	svd->vdev_checkpoint_sm = NULL;
1268 
1269 	tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1270 	svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1271 
1272 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1273 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1274 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1275 
1276 	svd->vdev_stat.vs_alloc = 0;
1277 	svd->vdev_stat.vs_space = 0;
1278 	svd->vdev_stat.vs_dspace = 0;
1279 
1280 	/*
1281 	 * State which may be set on a top-level vdev that's in the
1282 	 * process of being removed.
1283 	 */
1284 	ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1285 	ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1286 	ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1287 	ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1288 	ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1289 	ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1290 	ASSERT0(tvd->vdev_noalloc);
1291 	ASSERT0(tvd->vdev_removing);
1292 	ASSERT0(tvd->vdev_rebuilding);
1293 	tvd->vdev_noalloc = svd->vdev_noalloc;
1294 	tvd->vdev_removing = svd->vdev_removing;
1295 	tvd->vdev_rebuilding = svd->vdev_rebuilding;
1296 	tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1297 	tvd->vdev_indirect_config = svd->vdev_indirect_config;
1298 	tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1299 	tvd->vdev_indirect_births = svd->vdev_indirect_births;
1300 	zfs_range_tree_swap(&svd->vdev_obsolete_segments,
1301 	    &tvd->vdev_obsolete_segments);
1302 	tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1303 	svd->vdev_indirect_config.vic_mapping_object = 0;
1304 	svd->vdev_indirect_config.vic_births_object = 0;
1305 	svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1306 	svd->vdev_indirect_mapping = NULL;
1307 	svd->vdev_indirect_births = NULL;
1308 	svd->vdev_obsolete_sm = NULL;
1309 	svd->vdev_noalloc = 0;
1310 	svd->vdev_removing = 0;
1311 	svd->vdev_rebuilding = 0;
1312 
1313 	for (t = 0; t < TXG_SIZE; t++) {
1314 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1315 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1316 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1317 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1318 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1319 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1320 	}
1321 
1322 	if (list_link_active(&svd->vdev_config_dirty_node)) {
1323 		vdev_config_clean(svd);
1324 		vdev_config_dirty(tvd);
1325 	}
1326 
1327 	if (list_link_active(&svd->vdev_state_dirty_node)) {
1328 		vdev_state_clean(svd);
1329 		vdev_state_dirty(tvd);
1330 	}
1331 
1332 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1333 	svd->vdev_deflate_ratio = 0;
1334 
1335 	tvd->vdev_islog = svd->vdev_islog;
1336 	svd->vdev_islog = 0;
1337 
1338 	dsl_scan_io_queue_vdev_xfer(svd, tvd);
1339 }
1340 
1341 static void
1342 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1343 {
1344 	if (vd == NULL)
1345 		return;
1346 
1347 	vd->vdev_top = tvd;
1348 
1349 	for (int c = 0; c < vd->vdev_children; c++)
1350 		vdev_top_update(tvd, vd->vdev_child[c]);
1351 }
1352 
1353 /*
1354  * Add a mirror/replacing vdev above an existing vdev.  There is no need to
1355  * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1356  */
1357 vdev_t *
1358 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1359 {
1360 	spa_t *spa = cvd->vdev_spa;
1361 	vdev_t *pvd = cvd->vdev_parent;
1362 	vdev_t *mvd;
1363 
1364 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1365 
1366 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1367 
1368 	mvd->vdev_asize = cvd->vdev_asize;
1369 	mvd->vdev_min_asize = cvd->vdev_min_asize;
1370 	mvd->vdev_max_asize = cvd->vdev_max_asize;
1371 	mvd->vdev_psize = cvd->vdev_psize;
1372 	mvd->vdev_ashift = cvd->vdev_ashift;
1373 	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1374 	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1375 	mvd->vdev_state = cvd->vdev_state;
1376 	mvd->vdev_crtxg = cvd->vdev_crtxg;
1377 
1378 	vdev_remove_child(pvd, cvd);
1379 	vdev_add_child(pvd, mvd);
1380 	cvd->vdev_id = mvd->vdev_children;
1381 	vdev_add_child(mvd, cvd);
1382 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1383 
1384 	if (mvd == mvd->vdev_top)
1385 		vdev_top_transfer(cvd, mvd);
1386 
1387 	return (mvd);
1388 }
1389 
1390 /*
1391  * Remove a 1-way mirror/replacing vdev from the tree.
1392  */
1393 void
1394 vdev_remove_parent(vdev_t *cvd)
1395 {
1396 	vdev_t *mvd = cvd->vdev_parent;
1397 	vdev_t *pvd = mvd->vdev_parent;
1398 
1399 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1400 
1401 	ASSERT(mvd->vdev_children == 1);
1402 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1403 	    mvd->vdev_ops == &vdev_replacing_ops ||
1404 	    mvd->vdev_ops == &vdev_spare_ops);
1405 	cvd->vdev_ashift = mvd->vdev_ashift;
1406 	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1407 	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1408 	vdev_remove_child(mvd, cvd);
1409 	vdev_remove_child(pvd, mvd);
1410 
1411 	/*
1412 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1413 	 * Otherwise, we could have detached an offline device, and when we
1414 	 * go to import the pool we'll think we have two top-level vdevs,
1415 	 * instead of a different version of the same top-level vdev.
1416 	 */
1417 	if (mvd->vdev_top == mvd) {
1418 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1419 		cvd->vdev_orig_guid = cvd->vdev_guid;
1420 		cvd->vdev_guid += guid_delta;
1421 		cvd->vdev_guid_sum += guid_delta;
1422 
1423 		/*
1424 		 * If pool not set for autoexpand, we need to also preserve
1425 		 * mvd's asize to prevent automatic expansion of cvd.
1426 		 * Otherwise if we are adjusting the mirror by attaching and
1427 		 * detaching children of non-uniform sizes, the mirror could
1428 		 * autoexpand, unexpectedly requiring larger devices to
1429 		 * re-establish the mirror.
1430 		 */
1431 		if (!cvd->vdev_spa->spa_autoexpand)
1432 			cvd->vdev_asize = mvd->vdev_asize;
1433 	}
1434 	cvd->vdev_id = mvd->vdev_id;
1435 	vdev_add_child(pvd, cvd);
1436 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1437 
1438 	if (cvd == cvd->vdev_top)
1439 		vdev_top_transfer(mvd, cvd);
1440 
1441 	ASSERT(mvd->vdev_children == 0);
1442 	vdev_free(mvd);
1443 }
1444 
1445 /*
1446  * Choose GCD for spa_gcd_alloc.
1447  */
1448 static uint64_t
1449 vdev_gcd(uint64_t a, uint64_t b)
1450 {
1451 	while (b != 0) {
1452 		uint64_t t = b;
1453 		b = a % b;
1454 		a = t;
1455 	}
1456 	return (a);
1457 }
1458 
1459 /*
1460  * Set spa_min_alloc and spa_gcd_alloc.
1461  */
1462 static void
1463 vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc)
1464 {
1465 	if (min_alloc < spa->spa_min_alloc)
1466 		spa->spa_min_alloc = min_alloc;
1467 	if (spa->spa_gcd_alloc == INT_MAX) {
1468 		spa->spa_gcd_alloc = min_alloc;
1469 	} else {
1470 		spa->spa_gcd_alloc = vdev_gcd(min_alloc,
1471 		    spa->spa_gcd_alloc);
1472 	}
1473 }
1474 
1475 void
1476 vdev_metaslab_group_create(vdev_t *vd)
1477 {
1478 	spa_t *spa = vd->vdev_spa;
1479 
1480 	/*
1481 	 * metaslab_group_create was delayed until allocation bias was available
1482 	 */
1483 	if (vd->vdev_mg == NULL) {
1484 		metaslab_class_t *mc;
1485 
1486 		if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1487 			vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1488 
1489 		ASSERT3U(vd->vdev_islog, ==,
1490 		    (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1491 
1492 		switch (vd->vdev_alloc_bias) {
1493 		case VDEV_BIAS_LOG:
1494 			mc = spa_log_class(spa);
1495 			break;
1496 		case VDEV_BIAS_SPECIAL:
1497 			mc = spa_special_class(spa);
1498 			break;
1499 		case VDEV_BIAS_DEDUP:
1500 			mc = spa_dedup_class(spa);
1501 			break;
1502 		default:
1503 			mc = spa_normal_class(spa);
1504 		}
1505 
1506 		vd->vdev_mg = metaslab_group_create(mc, vd);
1507 
1508 		if (!vd->vdev_islog) {
1509 			vd->vdev_log_mg = metaslab_group_create(
1510 			    spa_embedded_log_class(spa), vd);
1511 		}
1512 
1513 		/*
1514 		 * The spa ashift min/max only apply for the normal metaslab
1515 		 * class. Class destination is late binding so ashift boundary
1516 		 * setting had to wait until now.
1517 		 */
1518 		if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1519 		    mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1520 			if (vd->vdev_ashift > spa->spa_max_ashift)
1521 				spa->spa_max_ashift = vd->vdev_ashift;
1522 			if (vd->vdev_ashift < spa->spa_min_ashift)
1523 				spa->spa_min_ashift = vd->vdev_ashift;
1524 
1525 			uint64_t min_alloc = vdev_get_min_alloc(vd);
1526 			vdev_spa_set_alloc(spa, min_alloc);
1527 		}
1528 	}
1529 }
1530 
1531 void
1532 vdev_update_nonallocating_space(vdev_t *vd, boolean_t add)
1533 {
1534 	spa_t *spa = vd->vdev_spa;
1535 
1536 	if (vd->vdev_mg->mg_class != spa_normal_class(spa))
1537 		return;
1538 
1539 	uint64_t raw_space = metaslab_group_get_space(vd->vdev_mg);
1540 	uint64_t dspace = spa_deflate(spa) ?
1541 	    vdev_deflated_space(vd, raw_space) : raw_space;
1542 	if (add) {
1543 		spa->spa_nonallocating_dspace += dspace;
1544 	} else {
1545 		ASSERT3U(spa->spa_nonallocating_dspace, >=, dspace);
1546 		spa->spa_nonallocating_dspace -= dspace;
1547 	}
1548 }
1549 
1550 int
1551 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1552 {
1553 	spa_t *spa = vd->vdev_spa;
1554 	uint64_t oldc = vd->vdev_ms_count;
1555 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1556 	metaslab_t **mspp;
1557 	int error;
1558 	boolean_t expanding = (oldc != 0);
1559 
1560 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1561 
1562 	/*
1563 	 * This vdev is not being allocated from yet or is a hole.
1564 	 */
1565 	if (vd->vdev_ms_shift == 0)
1566 		return (0);
1567 
1568 	ASSERT(!vd->vdev_ishole);
1569 
1570 	ASSERT(oldc <= newc);
1571 
1572 	mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1573 
1574 	if (expanding) {
1575 		memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp));
1576 		vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1577 	}
1578 
1579 	vd->vdev_ms = mspp;
1580 	vd->vdev_ms_count = newc;
1581 
1582 	for (uint64_t m = oldc; m < newc; m++) {
1583 		uint64_t object = 0;
1584 		/*
1585 		 * vdev_ms_array may be 0 if we are creating the "fake"
1586 		 * metaslabs for an indirect vdev for zdb's leak detection.
1587 		 * See zdb_leak_init().
1588 		 */
1589 		if (txg == 0 && vd->vdev_ms_array != 0) {
1590 			error = dmu_read(spa->spa_meta_objset,
1591 			    vd->vdev_ms_array,
1592 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1593 			    DMU_READ_PREFETCH);
1594 			if (error != 0) {
1595 				vdev_dbgmsg(vd, "unable to read the metaslab "
1596 				    "array [error=%d]", error);
1597 				return (error);
1598 			}
1599 		}
1600 
1601 		error = metaslab_init(vd->vdev_mg, m, object, txg,
1602 		    &(vd->vdev_ms[m]));
1603 		if (error != 0) {
1604 			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1605 			    error);
1606 			return (error);
1607 		}
1608 	}
1609 
1610 	/*
1611 	 * Find the emptiest metaslab on the vdev and mark it for use for
1612 	 * embedded slog by moving it from the regular to the log metaslab
1613 	 * group.
1614 	 */
1615 	if (vd->vdev_mg->mg_class == spa_normal_class(spa) &&
1616 	    vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1617 	    avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1618 		uint64_t slog_msid = 0;
1619 		uint64_t smallest = UINT64_MAX;
1620 
1621 		/*
1622 		 * Note, we only search the new metaslabs, because the old
1623 		 * (pre-existing) ones may be active (e.g. have non-empty
1624 		 * range_tree's), and we don't move them to the new
1625 		 * metaslab_t.
1626 		 */
1627 		for (uint64_t m = oldc; m < newc; m++) {
1628 			uint64_t alloc =
1629 			    space_map_allocated(vd->vdev_ms[m]->ms_sm);
1630 			if (alloc < smallest) {
1631 				slog_msid = m;
1632 				smallest = alloc;
1633 			}
1634 		}
1635 		metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1636 		/*
1637 		 * The metaslab was marked as dirty at the end of
1638 		 * metaslab_init(). Remove it from the dirty list so that we
1639 		 * can uninitialize and reinitialize it to the new class.
1640 		 */
1641 		if (txg != 0) {
1642 			(void) txg_list_remove_this(&vd->vdev_ms_list,
1643 			    slog_ms, txg);
1644 		}
1645 		uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1646 		metaslab_fini(slog_ms);
1647 		VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1648 		    &vd->vdev_ms[slog_msid]));
1649 	}
1650 
1651 	if (txg == 0)
1652 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1653 
1654 	/*
1655 	 * If the vdev is marked as non-allocating then don't
1656 	 * activate the metaslabs since we want to ensure that
1657 	 * no allocations are performed on this device.
1658 	 */
1659 	if (vd->vdev_noalloc) {
1660 		/* track non-allocating vdev space */
1661 		vdev_update_nonallocating_space(vd, B_TRUE);
1662 	} else if (!expanding) {
1663 		metaslab_group_activate(vd->vdev_mg);
1664 		if (vd->vdev_log_mg != NULL)
1665 			metaslab_group_activate(vd->vdev_log_mg);
1666 	}
1667 
1668 	if (txg == 0)
1669 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1670 
1671 	return (0);
1672 }
1673 
1674 void
1675 vdev_metaslab_fini(vdev_t *vd)
1676 {
1677 	if (vd->vdev_checkpoint_sm != NULL) {
1678 		ASSERT(spa_feature_is_active(vd->vdev_spa,
1679 		    SPA_FEATURE_POOL_CHECKPOINT));
1680 		space_map_close(vd->vdev_checkpoint_sm);
1681 		/*
1682 		 * Even though we close the space map, we need to set its
1683 		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1684 		 * may be called multiple times for certain operations
1685 		 * (i.e. when destroying a pool) so we need to ensure that
1686 		 * this clause never executes twice. This logic is similar
1687 		 * to the one used for the vdev_ms clause below.
1688 		 */
1689 		vd->vdev_checkpoint_sm = NULL;
1690 	}
1691 
1692 	if (vd->vdev_ms != NULL) {
1693 		metaslab_group_t *mg = vd->vdev_mg;
1694 
1695 		metaslab_group_passivate(mg);
1696 		if (vd->vdev_log_mg != NULL) {
1697 			ASSERT(!vd->vdev_islog);
1698 			metaslab_group_passivate(vd->vdev_log_mg);
1699 		}
1700 
1701 		uint64_t count = vd->vdev_ms_count;
1702 		for (uint64_t m = 0; m < count; m++) {
1703 			metaslab_t *msp = vd->vdev_ms[m];
1704 			if (msp != NULL)
1705 				metaslab_fini(msp);
1706 		}
1707 		vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1708 		vd->vdev_ms = NULL;
1709 		vd->vdev_ms_count = 0;
1710 
1711 		for (int i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) {
1712 			ASSERT0(mg->mg_histogram[i]);
1713 			if (vd->vdev_log_mg != NULL)
1714 				ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1715 		}
1716 	}
1717 	ASSERT0(vd->vdev_ms_count);
1718 }
1719 
1720 typedef struct vdev_probe_stats {
1721 	boolean_t	vps_readable;
1722 	boolean_t	vps_writeable;
1723 	boolean_t	vps_zio_done_probe;
1724 	int		vps_flags;
1725 } vdev_probe_stats_t;
1726 
1727 static void
1728 vdev_probe_done(zio_t *zio)
1729 {
1730 	spa_t *spa = zio->io_spa;
1731 	vdev_t *vd = zio->io_vd;
1732 	vdev_probe_stats_t *vps = zio->io_private;
1733 
1734 	ASSERT(vd->vdev_probe_zio != NULL);
1735 
1736 	if (zio->io_type == ZIO_TYPE_READ) {
1737 		if (zio->io_error == 0)
1738 			vps->vps_readable = 1;
1739 		if (zio->io_error == 0 && spa_writeable(spa)) {
1740 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1741 			    zio->io_offset, zio->io_size, zio->io_abd,
1742 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1743 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1744 		} else {
1745 			abd_free(zio->io_abd);
1746 		}
1747 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1748 		if (zio->io_error == 0)
1749 			vps->vps_writeable = 1;
1750 		abd_free(zio->io_abd);
1751 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1752 		zio_t *pio;
1753 		zio_link_t *zl;
1754 
1755 		vd->vdev_cant_read |= !vps->vps_readable;
1756 		vd->vdev_cant_write |= !vps->vps_writeable;
1757 		vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u",
1758 		    vd->vdev_cant_read, vd->vdev_cant_write);
1759 
1760 		if (vdev_readable(vd) &&
1761 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1762 			zio->io_error = 0;
1763 		} else {
1764 			ASSERT(zio->io_error != 0);
1765 			vdev_dbgmsg(vd, "failed probe");
1766 			(void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1767 			    spa, vd, NULL, NULL, 0);
1768 			zio->io_error = SET_ERROR(ENXIO);
1769 
1770 			/*
1771 			 * If this probe was initiated from zio pipeline, then
1772 			 * change the state in a spa_async_request. Probes that
1773 			 * were initiated from a vdev_open can change the state
1774 			 * as part of the open call.
1775 			 */
1776 			if (vps->vps_zio_done_probe) {
1777 				vd->vdev_fault_wanted = B_TRUE;
1778 				spa_async_request(spa, SPA_ASYNC_FAULT_VDEV);
1779 			}
1780 		}
1781 
1782 		mutex_enter(&vd->vdev_probe_lock);
1783 		ASSERT(vd->vdev_probe_zio == zio);
1784 		vd->vdev_probe_zio = NULL;
1785 		mutex_exit(&vd->vdev_probe_lock);
1786 
1787 		zl = NULL;
1788 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1789 			if (!vdev_accessible(vd, pio))
1790 				pio->io_error = SET_ERROR(ENXIO);
1791 
1792 		kmem_free(vps, sizeof (*vps));
1793 	}
1794 }
1795 
1796 /*
1797  * Determine whether this device is accessible.
1798  *
1799  * Read and write to several known locations: the pad regions of each
1800  * vdev label but the first, which we leave alone in case it contains
1801  * a VTOC.
1802  */
1803 zio_t *
1804 vdev_probe(vdev_t *vd, zio_t *zio)
1805 {
1806 	spa_t *spa = vd->vdev_spa;
1807 	vdev_probe_stats_t *vps = NULL;
1808 	zio_t *pio;
1809 
1810 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1811 
1812 	/*
1813 	 * Don't probe the probe.
1814 	 */
1815 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1816 		return (NULL);
1817 
1818 	/*
1819 	 * To prevent 'probe storms' when a device fails, we create
1820 	 * just one probe i/o at a time.  All zios that want to probe
1821 	 * this vdev will become parents of the probe io.
1822 	 */
1823 	mutex_enter(&vd->vdev_probe_lock);
1824 
1825 	if ((pio = vd->vdev_probe_zio) == NULL) {
1826 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1827 
1828 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1829 		    ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD;
1830 		vps->vps_zio_done_probe = (zio != NULL);
1831 
1832 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1833 			/*
1834 			 * vdev_cant_read and vdev_cant_write can only
1835 			 * transition from TRUE to FALSE when we have the
1836 			 * SCL_ZIO lock as writer; otherwise they can only
1837 			 * transition from FALSE to TRUE.  This ensures that
1838 			 * any zio looking at these values can assume that
1839 			 * failures persist for the life of the I/O.  That's
1840 			 * important because when a device has intermittent
1841 			 * connectivity problems, we want to ensure that
1842 			 * they're ascribed to the device (ENXIO) and not
1843 			 * the zio (EIO).
1844 			 *
1845 			 * Since we hold SCL_ZIO as writer here, clear both
1846 			 * values so the probe can reevaluate from first
1847 			 * principles.
1848 			 */
1849 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1850 			vd->vdev_cant_read = B_FALSE;
1851 			vd->vdev_cant_write = B_FALSE;
1852 		}
1853 
1854 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1855 		    vdev_probe_done, vps,
1856 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1857 	}
1858 
1859 	if (zio != NULL)
1860 		zio_add_child(zio, pio);
1861 
1862 	mutex_exit(&vd->vdev_probe_lock);
1863 
1864 	if (vps == NULL) {
1865 		ASSERT(zio != NULL);
1866 		return (NULL);
1867 	}
1868 
1869 	for (int l = 1; l < VDEV_LABELS; l++) {
1870 		zio_nowait(zio_read_phys(pio, vd,
1871 		    vdev_label_offset(vd->vdev_psize, l,
1872 		    offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1873 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1874 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1875 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1876 	}
1877 
1878 	if (zio == NULL)
1879 		return (pio);
1880 
1881 	zio_nowait(pio);
1882 	return (NULL);
1883 }
1884 
1885 static void
1886 vdev_load_child(void *arg)
1887 {
1888 	vdev_t *vd = arg;
1889 
1890 	vd->vdev_load_error = vdev_load(vd);
1891 }
1892 
1893 static void
1894 vdev_open_child(void *arg)
1895 {
1896 	vdev_t *vd = arg;
1897 
1898 	vd->vdev_open_thread = curthread;
1899 	vd->vdev_open_error = vdev_open(vd);
1900 	vd->vdev_open_thread = NULL;
1901 }
1902 
1903 static boolean_t
1904 vdev_uses_zvols(vdev_t *vd)
1905 {
1906 #ifdef _KERNEL
1907 	if (zvol_is_zvol(vd->vdev_path))
1908 		return (B_TRUE);
1909 #endif
1910 
1911 	for (int c = 0; c < vd->vdev_children; c++)
1912 		if (vdev_uses_zvols(vd->vdev_child[c]))
1913 			return (B_TRUE);
1914 
1915 	return (B_FALSE);
1916 }
1917 
1918 /*
1919  * Returns B_TRUE if the passed child should be opened.
1920  */
1921 static boolean_t
1922 vdev_default_open_children_func(vdev_t *vd)
1923 {
1924 	(void) vd;
1925 	return (B_TRUE);
1926 }
1927 
1928 /*
1929  * Open the requested child vdevs.  If any of the leaf vdevs are using
1930  * a ZFS volume then do the opens in a single thread.  This avoids a
1931  * deadlock when the current thread is holding the spa_namespace_lock.
1932  */
1933 static void
1934 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1935 {
1936 	int children = vd->vdev_children;
1937 
1938 	taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1939 	    children, children, TASKQ_PREPOPULATE);
1940 	vd->vdev_nonrot = B_TRUE;
1941 
1942 	for (int c = 0; c < children; c++) {
1943 		vdev_t *cvd = vd->vdev_child[c];
1944 
1945 		if (open_func(cvd) == B_FALSE)
1946 			continue;
1947 
1948 		if (tq == NULL || vdev_uses_zvols(vd)) {
1949 			cvd->vdev_open_error = vdev_open(cvd);
1950 		} else {
1951 			VERIFY(taskq_dispatch(tq, vdev_open_child,
1952 			    cvd, TQ_SLEEP) != TASKQID_INVALID);
1953 		}
1954 	}
1955 
1956 	if (tq != NULL)
1957 		taskq_wait(tq);
1958 	for (int c = 0; c < children; c++) {
1959 		vdev_t *cvd = vd->vdev_child[c];
1960 		vd->vdev_nonrot &= cvd->vdev_nonrot;
1961 	}
1962 
1963 	if (tq != NULL)
1964 		taskq_destroy(tq);
1965 }
1966 
1967 /*
1968  * Open all child vdevs.
1969  */
1970 void
1971 vdev_open_children(vdev_t *vd)
1972 {
1973 	vdev_open_children_impl(vd, vdev_default_open_children_func);
1974 }
1975 
1976 /*
1977  * Conditionally open a subset of child vdevs.
1978  */
1979 void
1980 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
1981 {
1982 	vdev_open_children_impl(vd, open_func);
1983 }
1984 
1985 /*
1986  * Compute the raidz-deflation ratio.  Note, we hard-code 128k (1 << 17)
1987  * because it is the "typical" blocksize.  Even though SPA_MAXBLOCKSIZE
1988  * changed, this algorithm can not change, otherwise it would inconsistently
1989  * account for existing bp's.  We also hard-code txg 0 for the same reason
1990  * since expanded RAIDZ vdevs can use a different asize for different birth
1991  * txg's.
1992  */
1993 static void
1994 vdev_set_deflate_ratio(vdev_t *vd)
1995 {
1996 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1997 		vd->vdev_deflate_ratio = (1 << 17) /
1998 		    (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >>
1999 		    SPA_MINBLOCKSHIFT);
2000 	}
2001 }
2002 
2003 /*
2004  * Choose the best of two ashifts, preferring one between logical ashift
2005  * (absolute minimum) and administrator defined maximum, otherwise take
2006  * the biggest of the two.
2007  */
2008 uint64_t
2009 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b)
2010 {
2011 	if (a > logical && a <= zfs_vdev_max_auto_ashift) {
2012 		if (b <= logical || b > zfs_vdev_max_auto_ashift)
2013 			return (a);
2014 		else
2015 			return (MAX(a, b));
2016 	} else if (b <= logical || b > zfs_vdev_max_auto_ashift)
2017 		return (MAX(a, b));
2018 	return (b);
2019 }
2020 
2021 /*
2022  * Maximize performance by inflating the configured ashift for top level
2023  * vdevs to be as close to the physical ashift as possible while maintaining
2024  * administrator defined limits and ensuring it doesn't go below the
2025  * logical ashift.
2026  */
2027 static void
2028 vdev_ashift_optimize(vdev_t *vd)
2029 {
2030 	ASSERT(vd == vd->vdev_top);
2031 
2032 	if (vd->vdev_ashift < vd->vdev_physical_ashift &&
2033 	    vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) {
2034 		vd->vdev_ashift = MIN(
2035 		    MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
2036 		    MAX(zfs_vdev_min_auto_ashift,
2037 		    vd->vdev_physical_ashift));
2038 	} else {
2039 		/*
2040 		 * If the logical and physical ashifts are the same, then
2041 		 * we ensure that the top-level vdev's ashift is not smaller
2042 		 * than our minimum ashift value. For the unusual case
2043 		 * where logical ashift > physical ashift, we can't cap
2044 		 * the calculated ashift based on max ashift as that
2045 		 * would cause failures.
2046 		 * We still check if we need to increase it to match
2047 		 * the min ashift.
2048 		 */
2049 		vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
2050 		    vd->vdev_ashift);
2051 	}
2052 }
2053 
2054 /*
2055  * Prepare a virtual device for access.
2056  */
2057 int
2058 vdev_open(vdev_t *vd)
2059 {
2060 	spa_t *spa = vd->vdev_spa;
2061 	int error;
2062 	uint64_t osize = 0;
2063 	uint64_t max_osize = 0;
2064 	uint64_t asize, max_asize, psize;
2065 	uint64_t logical_ashift = 0;
2066 	uint64_t physical_ashift = 0;
2067 
2068 	ASSERT(vd->vdev_open_thread == curthread ||
2069 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2070 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
2071 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
2072 	    vd->vdev_state == VDEV_STATE_OFFLINE);
2073 
2074 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2075 	vd->vdev_cant_read = B_FALSE;
2076 	vd->vdev_cant_write = B_FALSE;
2077 	vd->vdev_fault_wanted = B_FALSE;
2078 	vd->vdev_remove_wanted = B_FALSE;
2079 	vd->vdev_min_asize = vdev_get_min_asize(vd);
2080 
2081 	/*
2082 	 * If this vdev is not removed, check its fault status.  If it's
2083 	 * faulted, bail out of the open.
2084 	 */
2085 	if (!vd->vdev_removed && vd->vdev_faulted) {
2086 		ASSERT(vd->vdev_children == 0);
2087 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2088 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2089 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2090 		    vd->vdev_label_aux);
2091 		return (SET_ERROR(ENXIO));
2092 	} else if (vd->vdev_offline) {
2093 		ASSERT(vd->vdev_children == 0);
2094 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
2095 		return (SET_ERROR(ENXIO));
2096 	}
2097 
2098 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
2099 	    &logical_ashift, &physical_ashift);
2100 
2101 	/* Keep the device in removed state if unplugged */
2102 	if (error == ENOENT && vd->vdev_removed) {
2103 		vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED,
2104 		    VDEV_AUX_NONE);
2105 		return (error);
2106 	}
2107 
2108 	/*
2109 	 * Physical volume size should never be larger than its max size, unless
2110 	 * the disk has shrunk while we were reading it or the device is buggy
2111 	 * or damaged: either way it's not safe for use, bail out of the open.
2112 	 */
2113 	if (osize > max_osize) {
2114 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2115 		    VDEV_AUX_OPEN_FAILED);
2116 		return (SET_ERROR(ENXIO));
2117 	}
2118 
2119 	/*
2120 	 * Reset the vdev_reopening flag so that we actually close
2121 	 * the vdev on error.
2122 	 */
2123 	vd->vdev_reopening = B_FALSE;
2124 	if (zio_injection_enabled && error == 0)
2125 		error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
2126 
2127 	if (error) {
2128 		if (vd->vdev_removed &&
2129 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
2130 			vd->vdev_removed = B_FALSE;
2131 
2132 		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
2133 			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
2134 			    vd->vdev_stat.vs_aux);
2135 		} else {
2136 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2137 			    vd->vdev_stat.vs_aux);
2138 		}
2139 		return (error);
2140 	}
2141 
2142 	vd->vdev_removed = B_FALSE;
2143 
2144 	/*
2145 	 * Recheck the faulted flag now that we have confirmed that
2146 	 * the vdev is accessible.  If we're faulted, bail.
2147 	 */
2148 	if (vd->vdev_faulted) {
2149 		ASSERT(vd->vdev_children == 0);
2150 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2151 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2152 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2153 		    vd->vdev_label_aux);
2154 		return (SET_ERROR(ENXIO));
2155 	}
2156 
2157 	if (vd->vdev_degraded) {
2158 		ASSERT(vd->vdev_children == 0);
2159 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2160 		    VDEV_AUX_ERR_EXCEEDED);
2161 	} else {
2162 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
2163 	}
2164 
2165 	/*
2166 	 * For hole or missing vdevs we just return success.
2167 	 */
2168 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
2169 		return (0);
2170 
2171 	for (int c = 0; c < vd->vdev_children; c++) {
2172 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
2173 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2174 			    VDEV_AUX_NONE);
2175 			break;
2176 		}
2177 	}
2178 
2179 	osize = P2ALIGN_TYPED(osize, sizeof (vdev_label_t), uint64_t);
2180 	max_osize = P2ALIGN_TYPED(max_osize, sizeof (vdev_label_t), uint64_t);
2181 
2182 	if (vd->vdev_children == 0) {
2183 		if (osize < SPA_MINDEVSIZE) {
2184 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2185 			    VDEV_AUX_TOO_SMALL);
2186 			return (SET_ERROR(EOVERFLOW));
2187 		}
2188 		psize = osize;
2189 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
2190 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
2191 		    VDEV_LABEL_END_SIZE);
2192 	} else {
2193 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2194 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2195 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2196 			    VDEV_AUX_TOO_SMALL);
2197 			return (SET_ERROR(EOVERFLOW));
2198 		}
2199 		psize = 0;
2200 		asize = osize;
2201 		max_asize = max_osize;
2202 	}
2203 
2204 	/*
2205 	 * If the vdev was expanded, record this so that we can re-create the
2206 	 * uberblock rings in labels {2,3}, during the next sync.
2207 	 */
2208 	if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2209 		vd->vdev_copy_uberblocks = B_TRUE;
2210 
2211 	vd->vdev_psize = psize;
2212 
2213 	/*
2214 	 * Make sure the allocatable size hasn't shrunk too much.
2215 	 */
2216 	if (asize < vd->vdev_min_asize) {
2217 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2218 		    VDEV_AUX_BAD_LABEL);
2219 		return (SET_ERROR(EINVAL));
2220 	}
2221 
2222 	/*
2223 	 * We can always set the logical/physical ashift members since
2224 	 * their values are only used to calculate the vdev_ashift when
2225 	 * the device is first added to the config. These values should
2226 	 * not be used for anything else since they may change whenever
2227 	 * the device is reopened and we don't store them in the label.
2228 	 */
2229 	vd->vdev_physical_ashift =
2230 	    MAX(physical_ashift, vd->vdev_physical_ashift);
2231 	vd->vdev_logical_ashift = MAX(logical_ashift,
2232 	    vd->vdev_logical_ashift);
2233 
2234 	if (vd->vdev_asize == 0) {
2235 		/*
2236 		 * This is the first-ever open, so use the computed values.
2237 		 * For compatibility, a different ashift can be requested.
2238 		 */
2239 		vd->vdev_asize = asize;
2240 		vd->vdev_max_asize = max_asize;
2241 
2242 		/*
2243 		 * If the vdev_ashift was not overridden at creation time
2244 		 * (0) or the override value is impossible for the device,
2245 		 * then set it the logical ashift and optimize the ashift.
2246 		 */
2247 		if (vd->vdev_ashift < vd->vdev_logical_ashift) {
2248 			vd->vdev_ashift = vd->vdev_logical_ashift;
2249 
2250 			if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2251 				vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2252 				    VDEV_AUX_ASHIFT_TOO_BIG);
2253 				return (SET_ERROR(EDOM));
2254 			}
2255 
2256 			if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE)
2257 				vdev_ashift_optimize(vd);
2258 			vd->vdev_attaching = B_FALSE;
2259 		}
2260 		if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2261 		    vd->vdev_ashift > ASHIFT_MAX)) {
2262 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2263 			    VDEV_AUX_BAD_ASHIFT);
2264 			return (SET_ERROR(EDOM));
2265 		}
2266 	} else {
2267 		/*
2268 		 * Make sure the alignment required hasn't increased.
2269 		 */
2270 		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2271 		    vd->vdev_ops->vdev_op_leaf) {
2272 			(void) zfs_ereport_post(
2273 			    FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2274 			    spa, vd, NULL, NULL, 0);
2275 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2276 			    VDEV_AUX_BAD_LABEL);
2277 			return (SET_ERROR(EDOM));
2278 		}
2279 		vd->vdev_max_asize = max_asize;
2280 	}
2281 
2282 	/*
2283 	 * If all children are healthy we update asize if either:
2284 	 * The asize has increased, due to a device expansion caused by dynamic
2285 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
2286 	 * making the additional space available.
2287 	 *
2288 	 * The asize has decreased, due to a device shrink usually caused by a
2289 	 * vdev replace with a smaller device. This ensures that calculations
2290 	 * based of max_asize and asize e.g. esize are always valid. It's safe
2291 	 * to do this as we've already validated that asize is greater than
2292 	 * vdev_min_asize.
2293 	 */
2294 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2295 	    ((asize > vd->vdev_asize &&
2296 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
2297 	    (asize < vd->vdev_asize)))
2298 		vd->vdev_asize = asize;
2299 
2300 	vdev_set_min_asize(vd);
2301 
2302 	/*
2303 	 * Ensure we can issue some IO before declaring the
2304 	 * vdev open for business.
2305 	 */
2306 	if (vd->vdev_ops->vdev_op_leaf &&
2307 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2308 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2309 		    VDEV_AUX_ERR_EXCEEDED);
2310 		return (error);
2311 	}
2312 
2313 	/*
2314 	 * Track the minimum allocation size.
2315 	 */
2316 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2317 	    vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2318 		uint64_t min_alloc = vdev_get_min_alloc(vd);
2319 		vdev_spa_set_alloc(spa, min_alloc);
2320 	}
2321 
2322 	/*
2323 	 * If this is a leaf vdev, assess whether a resilver is needed.
2324 	 * But don't do this if we are doing a reopen for a scrub, since
2325 	 * this would just restart the scrub we are already doing.
2326 	 */
2327 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2328 		dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2329 
2330 	return (0);
2331 }
2332 
2333 static void
2334 vdev_validate_child(void *arg)
2335 {
2336 	vdev_t *vd = arg;
2337 
2338 	vd->vdev_validate_thread = curthread;
2339 	vd->vdev_validate_error = vdev_validate(vd);
2340 	vd->vdev_validate_thread = NULL;
2341 }
2342 
2343 /*
2344  * Called once the vdevs are all opened, this routine validates the label
2345  * contents. This needs to be done before vdev_load() so that we don't
2346  * inadvertently do repair I/Os to the wrong device.
2347  *
2348  * This function will only return failure if one of the vdevs indicates that it
2349  * has since been destroyed or exported.  This is only possible if
2350  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
2351  * will be updated but the function will return 0.
2352  */
2353 int
2354 vdev_validate(vdev_t *vd)
2355 {
2356 	spa_t *spa = vd->vdev_spa;
2357 	taskq_t *tq = NULL;
2358 	nvlist_t *label;
2359 	uint64_t guid = 0, aux_guid = 0, top_guid;
2360 	uint64_t state;
2361 	nvlist_t *nvl;
2362 	uint64_t txg;
2363 	int children = vd->vdev_children;
2364 
2365 	if (vdev_validate_skip)
2366 		return (0);
2367 
2368 	if (children > 0) {
2369 		tq = taskq_create("vdev_validate", children, minclsyspri,
2370 		    children, children, TASKQ_PREPOPULATE);
2371 	}
2372 
2373 	for (uint64_t c = 0; c < children; c++) {
2374 		vdev_t *cvd = vd->vdev_child[c];
2375 
2376 		if (tq == NULL || vdev_uses_zvols(cvd)) {
2377 			vdev_validate_child(cvd);
2378 		} else {
2379 			VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2380 			    TQ_SLEEP) != TASKQID_INVALID);
2381 		}
2382 	}
2383 	if (tq != NULL) {
2384 		taskq_wait(tq);
2385 		taskq_destroy(tq);
2386 	}
2387 	for (int c = 0; c < children; c++) {
2388 		int error = vd->vdev_child[c]->vdev_validate_error;
2389 
2390 		if (error != 0)
2391 			return (SET_ERROR(EBADF));
2392 	}
2393 
2394 
2395 	/*
2396 	 * If the device has already failed, or was marked offline, don't do
2397 	 * any further validation.  Otherwise, label I/O will fail and we will
2398 	 * overwrite the previous state.
2399 	 */
2400 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2401 		return (0);
2402 
2403 	/*
2404 	 * If we are performing an extreme rewind, we allow for a label that
2405 	 * was modified at a point after the current txg.
2406 	 * If config lock is not held do not check for the txg. spa_sync could
2407 	 * be updating the vdev's label before updating spa_last_synced_txg.
2408 	 */
2409 	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2410 	    spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2411 		txg = UINT64_MAX;
2412 	else
2413 		txg = spa_last_synced_txg(spa);
2414 
2415 	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2416 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2417 		    VDEV_AUX_BAD_LABEL);
2418 		vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2419 		    "txg %llu", (u_longlong_t)txg);
2420 		return (0);
2421 	}
2422 
2423 	/*
2424 	 * Determine if this vdev has been split off into another
2425 	 * pool.  If so, then refuse to open it.
2426 	 */
2427 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2428 	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2429 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2430 		    VDEV_AUX_SPLIT_POOL);
2431 		nvlist_free(label);
2432 		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2433 		return (0);
2434 	}
2435 
2436 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2437 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2438 		    VDEV_AUX_CORRUPT_DATA);
2439 		nvlist_free(label);
2440 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2441 		    ZPOOL_CONFIG_POOL_GUID);
2442 		return (0);
2443 	}
2444 
2445 	/*
2446 	 * If config is not trusted then ignore the spa guid check. This is
2447 	 * necessary because if the machine crashed during a re-guid the new
2448 	 * guid might have been written to all of the vdev labels, but not the
2449 	 * cached config. The check will be performed again once we have the
2450 	 * trusted config from the MOS.
2451 	 */
2452 	if (spa->spa_trust_config && guid != spa_guid(spa)) {
2453 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2454 		    VDEV_AUX_CORRUPT_DATA);
2455 		nvlist_free(label);
2456 		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2457 		    "match config (%llu != %llu)", (u_longlong_t)guid,
2458 		    (u_longlong_t)spa_guid(spa));
2459 		return (0);
2460 	}
2461 
2462 	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2463 	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2464 	    &aux_guid) != 0)
2465 		aux_guid = 0;
2466 
2467 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2468 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2469 		    VDEV_AUX_CORRUPT_DATA);
2470 		nvlist_free(label);
2471 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2472 		    ZPOOL_CONFIG_GUID);
2473 		return (0);
2474 	}
2475 
2476 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2477 	    != 0) {
2478 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2479 		    VDEV_AUX_CORRUPT_DATA);
2480 		nvlist_free(label);
2481 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2482 		    ZPOOL_CONFIG_TOP_GUID);
2483 		return (0);
2484 	}
2485 
2486 	/*
2487 	 * If this vdev just became a top-level vdev because its sibling was
2488 	 * detached, it will have adopted the parent's vdev guid -- but the
2489 	 * label may or may not be on disk yet. Fortunately, either version
2490 	 * of the label will have the same top guid, so if we're a top-level
2491 	 * vdev, we can safely compare to that instead.
2492 	 * However, if the config comes from a cachefile that failed to update
2493 	 * after the detach, a top-level vdev will appear as a non top-level
2494 	 * vdev in the config. Also relax the constraints if we perform an
2495 	 * extreme rewind.
2496 	 *
2497 	 * If we split this vdev off instead, then we also check the
2498 	 * original pool's guid. We don't want to consider the vdev
2499 	 * corrupt if it is partway through a split operation.
2500 	 */
2501 	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2502 		boolean_t mismatch = B_FALSE;
2503 		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2504 			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2505 				mismatch = B_TRUE;
2506 		} else {
2507 			if (vd->vdev_guid != top_guid &&
2508 			    vd->vdev_top->vdev_guid != guid)
2509 				mismatch = B_TRUE;
2510 		}
2511 
2512 		if (mismatch) {
2513 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2514 			    VDEV_AUX_CORRUPT_DATA);
2515 			nvlist_free(label);
2516 			vdev_dbgmsg(vd, "vdev_validate: config guid "
2517 			    "doesn't match label guid");
2518 			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2519 			    (u_longlong_t)vd->vdev_guid,
2520 			    (u_longlong_t)vd->vdev_top->vdev_guid);
2521 			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2522 			    "aux_guid %llu", (u_longlong_t)guid,
2523 			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2524 			return (0);
2525 		}
2526 	}
2527 
2528 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2529 	    &state) != 0) {
2530 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2531 		    VDEV_AUX_CORRUPT_DATA);
2532 		nvlist_free(label);
2533 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2534 		    ZPOOL_CONFIG_POOL_STATE);
2535 		return (0);
2536 	}
2537 
2538 	nvlist_free(label);
2539 
2540 	/*
2541 	 * If this is a verbatim import, no need to check the
2542 	 * state of the pool.
2543 	 */
2544 	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2545 	    spa_load_state(spa) == SPA_LOAD_OPEN &&
2546 	    state != POOL_STATE_ACTIVE) {
2547 		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2548 		    "for spa %s", (u_longlong_t)state, spa->spa_name);
2549 		return (SET_ERROR(EBADF));
2550 	}
2551 
2552 	/*
2553 	 * If we were able to open and validate a vdev that was
2554 	 * previously marked permanently unavailable, clear that state
2555 	 * now.
2556 	 */
2557 	if (vd->vdev_not_present)
2558 		vd->vdev_not_present = 0;
2559 
2560 	return (0);
2561 }
2562 
2563 static void
2564 vdev_update_path(const char *prefix, char *svd, char **dvd, uint64_t guid)
2565 {
2566 	if (svd != NULL && *dvd != NULL) {
2567 		if (strcmp(svd, *dvd) != 0) {
2568 			zfs_dbgmsg("vdev_copy_path: vdev %llu: %s changed "
2569 			    "from '%s' to '%s'", (u_longlong_t)guid, prefix,
2570 			    *dvd, svd);
2571 			spa_strfree(*dvd);
2572 			*dvd = spa_strdup(svd);
2573 		}
2574 	} else if (svd != NULL) {
2575 		*dvd = spa_strdup(svd);
2576 		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2577 		    (u_longlong_t)guid, *dvd);
2578 	}
2579 }
2580 
2581 static void
2582 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2583 {
2584 	char *old, *new;
2585 
2586 	vdev_update_path("vdev_path", svd->vdev_path, &dvd->vdev_path,
2587 	    dvd->vdev_guid);
2588 
2589 	vdev_update_path("vdev_devid", svd->vdev_devid, &dvd->vdev_devid,
2590 	    dvd->vdev_guid);
2591 
2592 	vdev_update_path("vdev_physpath", svd->vdev_physpath,
2593 	    &dvd->vdev_physpath, dvd->vdev_guid);
2594 
2595 	/*
2596 	 * Our enclosure sysfs path may have changed between imports
2597 	 */
2598 	old = dvd->vdev_enc_sysfs_path;
2599 	new = svd->vdev_enc_sysfs_path;
2600 	if ((old != NULL && new == NULL) ||
2601 	    (old == NULL && new != NULL) ||
2602 	    ((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
2603 		zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2604 		    "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2605 		    old, new);
2606 
2607 		if (dvd->vdev_enc_sysfs_path)
2608 			spa_strfree(dvd->vdev_enc_sysfs_path);
2609 
2610 		if (svd->vdev_enc_sysfs_path) {
2611 			dvd->vdev_enc_sysfs_path = spa_strdup(
2612 			    svd->vdev_enc_sysfs_path);
2613 		} else {
2614 			dvd->vdev_enc_sysfs_path = NULL;
2615 		}
2616 	}
2617 }
2618 
2619 /*
2620  * Recursively copy vdev paths from one vdev to another. Source and destination
2621  * vdev trees must have same geometry otherwise return error. Intended to copy
2622  * paths from userland config into MOS config.
2623  */
2624 int
2625 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2626 {
2627 	if ((svd->vdev_ops == &vdev_missing_ops) ||
2628 	    (svd->vdev_ishole && dvd->vdev_ishole) ||
2629 	    (dvd->vdev_ops == &vdev_indirect_ops))
2630 		return (0);
2631 
2632 	if (svd->vdev_ops != dvd->vdev_ops) {
2633 		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2634 		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2635 		return (SET_ERROR(EINVAL));
2636 	}
2637 
2638 	if (svd->vdev_guid != dvd->vdev_guid) {
2639 		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2640 		    "%llu)", (u_longlong_t)svd->vdev_guid,
2641 		    (u_longlong_t)dvd->vdev_guid);
2642 		return (SET_ERROR(EINVAL));
2643 	}
2644 
2645 	if (svd->vdev_children != dvd->vdev_children) {
2646 		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2647 		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
2648 		    (u_longlong_t)dvd->vdev_children);
2649 		return (SET_ERROR(EINVAL));
2650 	}
2651 
2652 	for (uint64_t i = 0; i < svd->vdev_children; i++) {
2653 		int error = vdev_copy_path_strict(svd->vdev_child[i],
2654 		    dvd->vdev_child[i]);
2655 		if (error != 0)
2656 			return (error);
2657 	}
2658 
2659 	if (svd->vdev_ops->vdev_op_leaf)
2660 		vdev_copy_path_impl(svd, dvd);
2661 
2662 	return (0);
2663 }
2664 
2665 static void
2666 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2667 {
2668 	ASSERT(stvd->vdev_top == stvd);
2669 	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2670 
2671 	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2672 		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2673 	}
2674 
2675 	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2676 		return;
2677 
2678 	/*
2679 	 * The idea here is that while a vdev can shift positions within
2680 	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2681 	 * step outside of it.
2682 	 */
2683 	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2684 
2685 	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2686 		return;
2687 
2688 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2689 
2690 	vdev_copy_path_impl(vd, dvd);
2691 }
2692 
2693 /*
2694  * Recursively copy vdev paths from one root vdev to another. Source and
2695  * destination vdev trees may differ in geometry. For each destination leaf
2696  * vdev, search a vdev with the same guid and top vdev id in the source.
2697  * Intended to copy paths from userland config into MOS config.
2698  */
2699 void
2700 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2701 {
2702 	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2703 	ASSERT(srvd->vdev_ops == &vdev_root_ops);
2704 	ASSERT(drvd->vdev_ops == &vdev_root_ops);
2705 
2706 	for (uint64_t i = 0; i < children; i++) {
2707 		vdev_copy_path_search(srvd->vdev_child[i],
2708 		    drvd->vdev_child[i]);
2709 	}
2710 }
2711 
2712 /*
2713  * Close a virtual device.
2714  */
2715 void
2716 vdev_close(vdev_t *vd)
2717 {
2718 	vdev_t *pvd = vd->vdev_parent;
2719 	spa_t *spa __maybe_unused = vd->vdev_spa;
2720 
2721 	ASSERT(vd != NULL);
2722 	ASSERT(vd->vdev_open_thread == curthread ||
2723 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2724 
2725 	/*
2726 	 * If our parent is reopening, then we are as well, unless we are
2727 	 * going offline.
2728 	 */
2729 	if (pvd != NULL && pvd->vdev_reopening)
2730 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2731 
2732 	vd->vdev_ops->vdev_op_close(vd);
2733 
2734 	/*
2735 	 * We record the previous state before we close it, so that if we are
2736 	 * doing a reopen(), we don't generate FMA ereports if we notice that
2737 	 * it's still faulted.
2738 	 */
2739 	vd->vdev_prevstate = vd->vdev_state;
2740 
2741 	if (vd->vdev_offline)
2742 		vd->vdev_state = VDEV_STATE_OFFLINE;
2743 	else
2744 		vd->vdev_state = VDEV_STATE_CLOSED;
2745 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2746 }
2747 
2748 void
2749 vdev_hold(vdev_t *vd)
2750 {
2751 	spa_t *spa = vd->vdev_spa;
2752 
2753 	ASSERT(spa_is_root(spa));
2754 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2755 		return;
2756 
2757 	for (int c = 0; c < vd->vdev_children; c++)
2758 		vdev_hold(vd->vdev_child[c]);
2759 
2760 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
2761 		vd->vdev_ops->vdev_op_hold(vd);
2762 }
2763 
2764 void
2765 vdev_rele(vdev_t *vd)
2766 {
2767 	ASSERT(spa_is_root(vd->vdev_spa));
2768 	for (int c = 0; c < vd->vdev_children; c++)
2769 		vdev_rele(vd->vdev_child[c]);
2770 
2771 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
2772 		vd->vdev_ops->vdev_op_rele(vd);
2773 }
2774 
2775 /*
2776  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2777  * reopen leaf vdevs which had previously been opened as they might deadlock
2778  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2779  * If the leaf has never been opened then open it, as usual.
2780  */
2781 void
2782 vdev_reopen(vdev_t *vd)
2783 {
2784 	spa_t *spa = vd->vdev_spa;
2785 
2786 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2787 
2788 	/* set the reopening flag unless we're taking the vdev offline */
2789 	vd->vdev_reopening = !vd->vdev_offline;
2790 	vdev_close(vd);
2791 	(void) vdev_open(vd);
2792 
2793 	/*
2794 	 * Call vdev_validate() here to make sure we have the same device.
2795 	 * Otherwise, a device with an invalid label could be successfully
2796 	 * opened in response to vdev_reopen().
2797 	 */
2798 	if (vd->vdev_aux) {
2799 		(void) vdev_validate_aux(vd);
2800 		if (vdev_readable(vd) && vdev_writeable(vd) &&
2801 		    vd->vdev_aux == &spa->spa_l2cache) {
2802 			/*
2803 			 * In case the vdev is present we should evict all ARC
2804 			 * buffers and pointers to log blocks and reclaim their
2805 			 * space before restoring its contents to L2ARC.
2806 			 */
2807 			if (l2arc_vdev_present(vd)) {
2808 				l2arc_rebuild_vdev(vd, B_TRUE);
2809 			} else {
2810 				l2arc_add_vdev(spa, vd);
2811 			}
2812 			spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2813 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2814 		}
2815 	} else {
2816 		(void) vdev_validate(vd);
2817 	}
2818 
2819 	/*
2820 	 * Recheck if resilver is still needed and cancel any
2821 	 * scheduled resilver if resilver is unneeded.
2822 	 */
2823 	if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) &&
2824 	    spa->spa_async_tasks & SPA_ASYNC_RESILVER) {
2825 		mutex_enter(&spa->spa_async_lock);
2826 		spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER;
2827 		mutex_exit(&spa->spa_async_lock);
2828 	}
2829 
2830 	/*
2831 	 * Reassess parent vdev's health.
2832 	 */
2833 	vdev_propagate_state(vd);
2834 }
2835 
2836 int
2837 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2838 {
2839 	int error;
2840 
2841 	/*
2842 	 * Normally, partial opens (e.g. of a mirror) are allowed.
2843 	 * For a create, however, we want to fail the request if
2844 	 * there are any components we can't open.
2845 	 */
2846 	error = vdev_open(vd);
2847 
2848 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2849 		vdev_close(vd);
2850 		return (error ? error : SET_ERROR(ENXIO));
2851 	}
2852 
2853 	/*
2854 	 * Recursively load DTLs and initialize all labels.
2855 	 */
2856 	if ((error = vdev_dtl_load(vd)) != 0 ||
2857 	    (error = vdev_label_init(vd, txg, isreplacing ?
2858 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2859 		vdev_close(vd);
2860 		return (error);
2861 	}
2862 
2863 	return (0);
2864 }
2865 
2866 void
2867 vdev_metaslab_set_size(vdev_t *vd)
2868 {
2869 	uint64_t asize = vd->vdev_asize;
2870 	uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2871 	uint64_t ms_shift;
2872 
2873 	/*
2874 	 * There are two dimensions to the metaslab sizing calculation:
2875 	 * the size of the metaslab and the count of metaslabs per vdev.
2876 	 *
2877 	 * The default values used below are a good balance between memory
2878 	 * usage (larger metaslab size means more memory needed for loaded
2879 	 * metaslabs; more metaslabs means more memory needed for the
2880 	 * metaslab_t structs), metaslab load time (larger metaslabs take
2881 	 * longer to load), and metaslab sync time (more metaslabs means
2882 	 * more time spent syncing all of them).
2883 	 *
2884 	 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2885 	 * The range of the dimensions are as follows:
2886 	 *
2887 	 *	2^29 <= ms_size  <= 2^34
2888 	 *	  16 <= ms_count <= 131,072
2889 	 *
2890 	 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2891 	 * at least 512MB (2^29) to minimize fragmentation effects when
2892 	 * testing with smaller devices.  However, the count constraint
2893 	 * of at least 16 metaslabs will override this minimum size goal.
2894 	 *
2895 	 * On the upper end of vdev sizes, we aim for a maximum metaslab
2896 	 * size of 16GB.  However, we will cap the total count to 2^17
2897 	 * metaslabs to keep our memory footprint in check and let the
2898 	 * metaslab size grow from there if that limit is hit.
2899 	 *
2900 	 * The net effect of applying above constrains is summarized below.
2901 	 *
2902 	 *   vdev size       metaslab count
2903 	 *  --------------|-----------------
2904 	 *      < 8GB        ~16
2905 	 *  8GB   - 100GB   one per 512MB
2906 	 *  100GB - 3TB     ~200
2907 	 *  3TB   - 2PB     one per 16GB
2908 	 *      > 2PB       ~131,072
2909 	 *  --------------------------------
2910 	 *
2911 	 *  Finally, note that all of the above calculate the initial
2912 	 *  number of metaslabs. Expanding a top-level vdev will result
2913 	 *  in additional metaslabs being allocated making it possible
2914 	 *  to exceed the zfs_vdev_ms_count_limit.
2915 	 */
2916 
2917 	if (ms_count < zfs_vdev_min_ms_count)
2918 		ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2919 	else if (ms_count > zfs_vdev_default_ms_count)
2920 		ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2921 	else
2922 		ms_shift = zfs_vdev_default_ms_shift;
2923 
2924 	if (ms_shift < SPA_MAXBLOCKSHIFT) {
2925 		ms_shift = SPA_MAXBLOCKSHIFT;
2926 	} else if (ms_shift > zfs_vdev_max_ms_shift) {
2927 		ms_shift = zfs_vdev_max_ms_shift;
2928 		/* cap the total count to constrain memory footprint */
2929 		if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2930 			ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2931 	}
2932 
2933 	vd->vdev_ms_shift = ms_shift;
2934 	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2935 }
2936 
2937 void
2938 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2939 {
2940 	ASSERT(vd == vd->vdev_top);
2941 	/* indirect vdevs don't have metaslabs or dtls */
2942 	ASSERT(vdev_is_concrete(vd) || flags == 0);
2943 	ASSERT(ISP2(flags));
2944 	ASSERT(spa_writeable(vd->vdev_spa));
2945 
2946 	if (flags & VDD_METASLAB)
2947 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2948 
2949 	if (flags & VDD_DTL)
2950 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2951 
2952 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2953 }
2954 
2955 void
2956 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2957 {
2958 	for (int c = 0; c < vd->vdev_children; c++)
2959 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2960 
2961 	if (vd->vdev_ops->vdev_op_leaf)
2962 		vdev_dirty(vd->vdev_top, flags, vd, txg);
2963 }
2964 
2965 /*
2966  * DTLs.
2967  *
2968  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2969  * the vdev has less than perfect replication.  There are four kinds of DTL:
2970  *
2971  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2972  *
2973  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2974  *
2975  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2976  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2977  *	txgs that was scrubbed.
2978  *
2979  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2980  *	persistent errors or just some device being offline.
2981  *	Unlike the other three, the DTL_OUTAGE map is not generally
2982  *	maintained; it's only computed when needed, typically to
2983  *	determine whether a device can be detached.
2984  *
2985  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2986  * either has the data or it doesn't.
2987  *
2988  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2989  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2990  * if any child is less than fully replicated, then so is its parent.
2991  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2992  * comprising only those txgs which appear in 'maxfaults' or more children;
2993  * those are the txgs we don't have enough replication to read.  For example,
2994  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2995  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2996  * two child DTL_MISSING maps.
2997  *
2998  * It should be clear from the above that to compute the DTLs and outage maps
2999  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
3000  * Therefore, that is all we keep on disk.  When loading the pool, or after
3001  * a configuration change, we generate all other DTLs from first principles.
3002  */
3003 void
3004 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
3005 {
3006 	zfs_range_tree_t *rt = vd->vdev_dtl[t];
3007 
3008 	ASSERT(t < DTL_TYPES);
3009 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3010 	ASSERT(spa_writeable(vd->vdev_spa));
3011 
3012 	mutex_enter(&vd->vdev_dtl_lock);
3013 	if (!zfs_range_tree_contains(rt, txg, size))
3014 		zfs_range_tree_add(rt, txg, size);
3015 	mutex_exit(&vd->vdev_dtl_lock);
3016 }
3017 
3018 boolean_t
3019 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
3020 {
3021 	zfs_range_tree_t *rt = vd->vdev_dtl[t];
3022 	boolean_t dirty = B_FALSE;
3023 
3024 	ASSERT(t < DTL_TYPES);
3025 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3026 
3027 	/*
3028 	 * While we are loading the pool, the DTLs have not been loaded yet.
3029 	 * This isn't a problem but it can result in devices being tried
3030 	 * which are known to not have the data.  In which case, the import
3031 	 * is relying on the checksum to ensure that we get the right data.
3032 	 * Note that while importing we are only reading the MOS, which is
3033 	 * always checksummed.
3034 	 */
3035 	mutex_enter(&vd->vdev_dtl_lock);
3036 	if (!zfs_range_tree_is_empty(rt))
3037 		dirty = zfs_range_tree_contains(rt, txg, size);
3038 	mutex_exit(&vd->vdev_dtl_lock);
3039 
3040 	return (dirty);
3041 }
3042 
3043 boolean_t
3044 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
3045 {
3046 	zfs_range_tree_t *rt = vd->vdev_dtl[t];
3047 	boolean_t empty;
3048 
3049 	mutex_enter(&vd->vdev_dtl_lock);
3050 	empty = zfs_range_tree_is_empty(rt);
3051 	mutex_exit(&vd->vdev_dtl_lock);
3052 
3053 	return (empty);
3054 }
3055 
3056 /*
3057  * Check if the txg falls within the range which must be
3058  * resilvered.  DVAs outside this range can always be skipped.
3059  */
3060 boolean_t
3061 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3062     uint64_t phys_birth)
3063 {
3064 	(void) dva, (void) psize;
3065 
3066 	/* Set by sequential resilver. */
3067 	if (phys_birth == TXG_UNKNOWN)
3068 		return (B_TRUE);
3069 
3070 	return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
3071 }
3072 
3073 /*
3074  * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
3075  */
3076 boolean_t
3077 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3078     uint64_t phys_birth)
3079 {
3080 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3081 
3082 	if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
3083 	    vd->vdev_ops->vdev_op_leaf)
3084 		return (B_TRUE);
3085 
3086 	return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
3087 	    phys_birth));
3088 }
3089 
3090 /*
3091  * Returns the lowest txg in the DTL range.
3092  */
3093 static uint64_t
3094 vdev_dtl_min(vdev_t *vd)
3095 {
3096 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3097 	ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3098 	ASSERT0(vd->vdev_children);
3099 
3100 	return (zfs_range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
3101 }
3102 
3103 /*
3104  * Returns the highest txg in the DTL.
3105  */
3106 static uint64_t
3107 vdev_dtl_max(vdev_t *vd)
3108 {
3109 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3110 	ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3111 	ASSERT0(vd->vdev_children);
3112 
3113 	return (zfs_range_tree_max(vd->vdev_dtl[DTL_MISSING]));
3114 }
3115 
3116 /*
3117  * Determine if a resilvering vdev should remove any DTL entries from
3118  * its range. If the vdev was resilvering for the entire duration of the
3119  * scan then it should excise that range from its DTLs. Otherwise, this
3120  * vdev is considered partially resilvered and should leave its DTL
3121  * entries intact. The comment in vdev_dtl_reassess() describes how we
3122  * excise the DTLs.
3123  */
3124 static boolean_t
3125 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
3126 {
3127 	ASSERT0(vd->vdev_children);
3128 
3129 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
3130 		return (B_FALSE);
3131 
3132 	if (vd->vdev_resilver_deferred)
3133 		return (B_FALSE);
3134 
3135 	if (zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
3136 		return (B_TRUE);
3137 
3138 	if (rebuild_done) {
3139 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3140 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
3141 
3142 		/* Rebuild not initiated by attach */
3143 		if (vd->vdev_rebuild_txg == 0)
3144 			return (B_TRUE);
3145 
3146 		/*
3147 		 * When a rebuild completes without error then all missing data
3148 		 * up to the rebuild max txg has been reconstructed and the DTL
3149 		 * is eligible for excision.
3150 		 */
3151 		if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
3152 		    vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
3153 			ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
3154 			ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
3155 			ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
3156 			return (B_TRUE);
3157 		}
3158 	} else {
3159 		dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
3160 		dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
3161 
3162 		/* Resilver not initiated by attach */
3163 		if (vd->vdev_resilver_txg == 0)
3164 			return (B_TRUE);
3165 
3166 		/*
3167 		 * When a resilver is initiated the scan will assign the
3168 		 * scn_max_txg value to the highest txg value that exists
3169 		 * in all DTLs. If this device's max DTL is not part of this
3170 		 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
3171 		 * then it is not eligible for excision.
3172 		 */
3173 		if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
3174 			ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
3175 			ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
3176 			ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
3177 			return (B_TRUE);
3178 		}
3179 	}
3180 
3181 	return (B_FALSE);
3182 }
3183 
3184 /*
3185  * Reassess DTLs after a config change or scrub completion. If txg == 0 no
3186  * write operations will be issued to the pool.
3187  */
3188 static void
3189 vdev_dtl_reassess_impl(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3190     boolean_t scrub_done, boolean_t rebuild_done, boolean_t faulting)
3191 {
3192 	spa_t *spa = vd->vdev_spa;
3193 	avl_tree_t reftree;
3194 	int minref;
3195 
3196 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3197 
3198 	for (int c = 0; c < vd->vdev_children; c++)
3199 		vdev_dtl_reassess_impl(vd->vdev_child[c], txg,
3200 		    scrub_txg, scrub_done, rebuild_done, faulting);
3201 
3202 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
3203 		return;
3204 
3205 	if (vd->vdev_ops->vdev_op_leaf) {
3206 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
3207 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3208 		boolean_t check_excise = B_FALSE;
3209 		boolean_t wasempty = B_TRUE;
3210 
3211 		mutex_enter(&vd->vdev_dtl_lock);
3212 
3213 		/*
3214 		 * If requested, pretend the scan or rebuild completed cleanly.
3215 		 */
3216 		if (zfs_scan_ignore_errors) {
3217 			if (scn != NULL)
3218 				scn->scn_phys.scn_errors = 0;
3219 			if (vr != NULL)
3220 				vr->vr_rebuild_phys.vrp_errors = 0;
3221 		}
3222 
3223 		if (scrub_txg != 0 &&
3224 		    !zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3225 			wasempty = B_FALSE;
3226 			zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3227 			    "dtl:%llu/%llu errors:%llu",
3228 			    (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
3229 			    (u_longlong_t)scrub_txg, spa->spa_scrub_started,
3230 			    (u_longlong_t)vdev_dtl_min(vd),
3231 			    (u_longlong_t)vdev_dtl_max(vd),
3232 			    (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
3233 		}
3234 
3235 		/*
3236 		 * If we've completed a scrub/resilver or a rebuild cleanly
3237 		 * then determine if this vdev should remove any DTLs. We
3238 		 * only want to excise regions on vdevs that were available
3239 		 * during the entire duration of this scan.
3240 		 */
3241 		if (rebuild_done &&
3242 		    vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3243 			check_excise = B_TRUE;
3244 		} else {
3245 			if (spa->spa_scrub_started ||
3246 			    (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3247 				check_excise = B_TRUE;
3248 			}
3249 		}
3250 
3251 		if (scrub_txg && check_excise &&
3252 		    vdev_dtl_should_excise(vd, rebuild_done)) {
3253 			/*
3254 			 * We completed a scrub, resilver or rebuild up to
3255 			 * scrub_txg.  If we did it without rebooting, then
3256 			 * the scrub dtl will be valid, so excise the old
3257 			 * region and fold in the scrub dtl.  Otherwise,
3258 			 * leave the dtl as-is if there was an error.
3259 			 *
3260 			 * There's little trick here: to excise the beginning
3261 			 * of the DTL_MISSING map, we put it into a reference
3262 			 * tree and then add a segment with refcnt -1 that
3263 			 * covers the range [0, scrub_txg).  This means
3264 			 * that each txg in that range has refcnt -1 or 0.
3265 			 * We then add DTL_SCRUB with a refcnt of 2, so that
3266 			 * entries in the range [0, scrub_txg) will have a
3267 			 * positive refcnt -- either 1 or 2.  We then convert
3268 			 * the reference tree into the new DTL_MISSING map.
3269 			 */
3270 			space_reftree_create(&reftree);
3271 			space_reftree_add_map(&reftree,
3272 			    vd->vdev_dtl[DTL_MISSING], 1);
3273 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3274 			space_reftree_add_map(&reftree,
3275 			    vd->vdev_dtl[DTL_SCRUB], 2);
3276 			space_reftree_generate_map(&reftree,
3277 			    vd->vdev_dtl[DTL_MISSING], 1);
3278 			space_reftree_destroy(&reftree);
3279 
3280 			if (!zfs_range_tree_is_empty(
3281 			    vd->vdev_dtl[DTL_MISSING])) {
3282 				zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3283 				    (u_longlong_t)vdev_dtl_min(vd),
3284 				    (u_longlong_t)vdev_dtl_max(vd));
3285 			} else if (!wasempty) {
3286 				zfs_dbgmsg("DTL_MISSING is now empty");
3287 			}
3288 		}
3289 		zfs_range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3290 		zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3291 		    zfs_range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3292 		if (scrub_done)
3293 			zfs_range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL,
3294 			    NULL);
3295 		zfs_range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3296 
3297 		/*
3298 		 * For the faulting case, treat members of a replacing vdev
3299 		 * as if they are not available. It's more likely than not that
3300 		 * a vdev in a replacing vdev could encounter read errors so
3301 		 * treat it as not being able to contribute.
3302 		 */
3303 		if (!vdev_readable(vd) ||
3304 		    (faulting && vd->vdev_parent != NULL &&
3305 		    vd->vdev_parent->vdev_ops == &vdev_replacing_ops)) {
3306 			zfs_range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3307 		} else {
3308 			zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3309 			    zfs_range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3310 		}
3311 
3312 		/*
3313 		 * If the vdev was resilvering or rebuilding and no longer
3314 		 * has any DTLs then reset the appropriate flag and dirty
3315 		 * the top level so that we persist the change.
3316 		 */
3317 		if (txg != 0 &&
3318 		    zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3319 		    zfs_range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3320 			if (vd->vdev_rebuild_txg != 0) {
3321 				vd->vdev_rebuild_txg = 0;
3322 				vdev_config_dirty(vd->vdev_top);
3323 			} else if (vd->vdev_resilver_txg != 0) {
3324 				vd->vdev_resilver_txg = 0;
3325 				vdev_config_dirty(vd->vdev_top);
3326 			}
3327 		}
3328 
3329 		mutex_exit(&vd->vdev_dtl_lock);
3330 
3331 		if (txg != 0)
3332 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3333 	} else {
3334 		mutex_enter(&vd->vdev_dtl_lock);
3335 		for (int t = 0; t < DTL_TYPES; t++) {
3336 			/* account for child's outage in parent's missing map */
3337 			int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3338 			if (t == DTL_SCRUB) {
3339 				/* leaf vdevs only */
3340 				continue;
3341 			}
3342 			if (t == DTL_PARTIAL) {
3343 				/* i.e. non-zero */
3344 				minref = 1;
3345 			} else if (vdev_get_nparity(vd) != 0) {
3346 				/* RAIDZ, DRAID */
3347 				minref = vdev_get_nparity(vd) + 1;
3348 			} else {
3349 				/* any kind of mirror */
3350 				minref = vd->vdev_children;
3351 			}
3352 			space_reftree_create(&reftree);
3353 			for (int c = 0; c < vd->vdev_children; c++) {
3354 				vdev_t *cvd = vd->vdev_child[c];
3355 				mutex_enter(&cvd->vdev_dtl_lock);
3356 				space_reftree_add_map(&reftree,
3357 				    cvd->vdev_dtl[s], 1);
3358 				mutex_exit(&cvd->vdev_dtl_lock);
3359 			}
3360 			space_reftree_generate_map(&reftree,
3361 			    vd->vdev_dtl[t], minref);
3362 			space_reftree_destroy(&reftree);
3363 		}
3364 		mutex_exit(&vd->vdev_dtl_lock);
3365 	}
3366 
3367 	if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) {
3368 		raidz_dtl_reassessed(vd);
3369 	}
3370 }
3371 
3372 void
3373 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3374     boolean_t scrub_done, boolean_t rebuild_done)
3375 {
3376 	return (vdev_dtl_reassess_impl(vd, txg, scrub_txg, scrub_done,
3377 	    rebuild_done, B_FALSE));
3378 }
3379 
3380 /*
3381  * Iterate over all the vdevs except spare, and post kobj events
3382  */
3383 void
3384 vdev_post_kobj_evt(vdev_t *vd)
3385 {
3386 	if (vd->vdev_ops->vdev_op_kobj_evt_post &&
3387 	    vd->vdev_kobj_flag == B_FALSE) {
3388 		vd->vdev_kobj_flag = B_TRUE;
3389 		vd->vdev_ops->vdev_op_kobj_evt_post(vd);
3390 	}
3391 
3392 	for (int c = 0; c < vd->vdev_children; c++)
3393 		vdev_post_kobj_evt(vd->vdev_child[c]);
3394 }
3395 
3396 /*
3397  * Iterate over all the vdevs except spare, and clear kobj events
3398  */
3399 void
3400 vdev_clear_kobj_evt(vdev_t *vd)
3401 {
3402 	vd->vdev_kobj_flag = B_FALSE;
3403 
3404 	for (int c = 0; c < vd->vdev_children; c++)
3405 		vdev_clear_kobj_evt(vd->vdev_child[c]);
3406 }
3407 
3408 int
3409 vdev_dtl_load(vdev_t *vd)
3410 {
3411 	spa_t *spa = vd->vdev_spa;
3412 	objset_t *mos = spa->spa_meta_objset;
3413 	zfs_range_tree_t *rt;
3414 	int error = 0;
3415 
3416 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3417 		ASSERT(vdev_is_concrete(vd));
3418 
3419 		/*
3420 		 * If the dtl cannot be sync'd there is no need to open it.
3421 		 */
3422 		if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps)
3423 			return (0);
3424 
3425 		error = space_map_open(&vd->vdev_dtl_sm, mos,
3426 		    vd->vdev_dtl_object, 0, -1ULL, 0);
3427 		if (error)
3428 			return (error);
3429 		ASSERT(vd->vdev_dtl_sm != NULL);
3430 
3431 		rt = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, NULL, 0, 0);
3432 		error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3433 		if (error == 0) {
3434 			mutex_enter(&vd->vdev_dtl_lock);
3435 			zfs_range_tree_walk(rt, zfs_range_tree_add,
3436 			    vd->vdev_dtl[DTL_MISSING]);
3437 			mutex_exit(&vd->vdev_dtl_lock);
3438 		}
3439 
3440 		zfs_range_tree_vacate(rt, NULL, NULL);
3441 		zfs_range_tree_destroy(rt);
3442 
3443 		return (error);
3444 	}
3445 
3446 	for (int c = 0; c < vd->vdev_children; c++) {
3447 		error = vdev_dtl_load(vd->vdev_child[c]);
3448 		if (error != 0)
3449 			break;
3450 	}
3451 
3452 	return (error);
3453 }
3454 
3455 static void
3456 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3457 {
3458 	spa_t *spa = vd->vdev_spa;
3459 	objset_t *mos = spa->spa_meta_objset;
3460 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3461 	const char *string;
3462 
3463 	ASSERT(alloc_bias != VDEV_BIAS_NONE);
3464 
3465 	string =
3466 	    (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3467 	    (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3468 	    (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3469 
3470 	ASSERT(string != NULL);
3471 	VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3472 	    1, strlen(string) + 1, string, tx));
3473 
3474 	if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3475 		spa_activate_allocation_classes(spa, tx);
3476 	}
3477 }
3478 
3479 void
3480 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3481 {
3482 	spa_t *spa = vd->vdev_spa;
3483 
3484 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3485 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3486 	    zapobj, tx));
3487 }
3488 
3489 uint64_t
3490 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3491 {
3492 	spa_t *spa = vd->vdev_spa;
3493 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3494 	    DMU_OT_NONE, 0, tx);
3495 
3496 	ASSERT(zap != 0);
3497 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3498 	    zap, tx));
3499 
3500 	return (zap);
3501 }
3502 
3503 void
3504 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3505 {
3506 	if (vd->vdev_ops != &vdev_hole_ops &&
3507 	    vd->vdev_ops != &vdev_missing_ops &&
3508 	    vd->vdev_ops != &vdev_root_ops &&
3509 	    !vd->vdev_top->vdev_removing) {
3510 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3511 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3512 		}
3513 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3514 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3515 			if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3516 				vdev_zap_allocation_data(vd, tx);
3517 		}
3518 	}
3519 	if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 &&
3520 	    spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) {
3521 		if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2))
3522 			spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx);
3523 		vd->vdev_root_zap = vdev_create_link_zap(vd, tx);
3524 	}
3525 
3526 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3527 		vdev_construct_zaps(vd->vdev_child[i], tx);
3528 	}
3529 }
3530 
3531 static void
3532 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3533 {
3534 	spa_t *spa = vd->vdev_spa;
3535 	zfs_range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3536 	objset_t *mos = spa->spa_meta_objset;
3537 	zfs_range_tree_t *rtsync;
3538 	dmu_tx_t *tx;
3539 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
3540 
3541 	ASSERT(vdev_is_concrete(vd));
3542 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3543 
3544 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3545 
3546 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3547 		mutex_enter(&vd->vdev_dtl_lock);
3548 		space_map_free(vd->vdev_dtl_sm, tx);
3549 		space_map_close(vd->vdev_dtl_sm);
3550 		vd->vdev_dtl_sm = NULL;
3551 		mutex_exit(&vd->vdev_dtl_lock);
3552 
3553 		/*
3554 		 * We only destroy the leaf ZAP for detached leaves or for
3555 		 * removed log devices. Removed data devices handle leaf ZAP
3556 		 * cleanup later, once cancellation is no longer possible.
3557 		 */
3558 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3559 		    vd->vdev_top->vdev_islog)) {
3560 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3561 			vd->vdev_leaf_zap = 0;
3562 		}
3563 
3564 		dmu_tx_commit(tx);
3565 		return;
3566 	}
3567 
3568 	if (vd->vdev_dtl_sm == NULL) {
3569 		uint64_t new_object;
3570 
3571 		new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3572 		VERIFY3U(new_object, !=, 0);
3573 
3574 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3575 		    0, -1ULL, 0));
3576 		ASSERT(vd->vdev_dtl_sm != NULL);
3577 	}
3578 
3579 	rtsync = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, NULL, 0, 0);
3580 
3581 	mutex_enter(&vd->vdev_dtl_lock);
3582 	zfs_range_tree_walk(rt, zfs_range_tree_add, rtsync);
3583 	mutex_exit(&vd->vdev_dtl_lock);
3584 
3585 	space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3586 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3587 	zfs_range_tree_vacate(rtsync, NULL, NULL);
3588 
3589 	zfs_range_tree_destroy(rtsync);
3590 
3591 	/*
3592 	 * If the object for the space map has changed then dirty
3593 	 * the top level so that we update the config.
3594 	 */
3595 	if (object != space_map_object(vd->vdev_dtl_sm)) {
3596 		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3597 		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
3598 		    (u_longlong_t)object,
3599 		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3600 		vdev_config_dirty(vd->vdev_top);
3601 	}
3602 
3603 	dmu_tx_commit(tx);
3604 }
3605 
3606 /*
3607  * Determine whether the specified vdev can be
3608  * - offlined
3609  * - detached
3610  * - removed
3611  * - faulted
3612  * without losing data.
3613  */
3614 boolean_t
3615 vdev_dtl_required(vdev_t *vd)
3616 {
3617 	spa_t *spa = vd->vdev_spa;
3618 	vdev_t *tvd = vd->vdev_top;
3619 	uint8_t cant_read = vd->vdev_cant_read;
3620 	boolean_t required;
3621 	boolean_t faulting = vd->vdev_state == VDEV_STATE_FAULTED;
3622 
3623 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3624 
3625 	if (vd == spa->spa_root_vdev || vd == tvd)
3626 		return (B_TRUE);
3627 
3628 	/*
3629 	 * Temporarily mark the device as unreadable, and then determine
3630 	 * whether this results in any DTL outages in the top-level vdev.
3631 	 * If not, we can safely offline/detach/remove the device.
3632 	 */
3633 	vd->vdev_cant_read = B_TRUE;
3634 	vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting);
3635 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3636 	vd->vdev_cant_read = cant_read;
3637 	vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting);
3638 
3639 	if (!required && zio_injection_enabled) {
3640 		required = !!zio_handle_device_injection(vd, NULL,
3641 		    SET_ERROR(ECHILD));
3642 	}
3643 
3644 	return (required);
3645 }
3646 
3647 /*
3648  * Determine if resilver is needed, and if so the txg range.
3649  */
3650 boolean_t
3651 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3652 {
3653 	boolean_t needed = B_FALSE;
3654 	uint64_t thismin = UINT64_MAX;
3655 	uint64_t thismax = 0;
3656 
3657 	if (vd->vdev_children == 0) {
3658 		mutex_enter(&vd->vdev_dtl_lock);
3659 		if (!zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3660 		    vdev_writeable(vd)) {
3661 
3662 			thismin = vdev_dtl_min(vd);
3663 			thismax = vdev_dtl_max(vd);
3664 			needed = B_TRUE;
3665 		}
3666 		mutex_exit(&vd->vdev_dtl_lock);
3667 	} else {
3668 		for (int c = 0; c < vd->vdev_children; c++) {
3669 			vdev_t *cvd = vd->vdev_child[c];
3670 			uint64_t cmin, cmax;
3671 
3672 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3673 				thismin = MIN(thismin, cmin);
3674 				thismax = MAX(thismax, cmax);
3675 				needed = B_TRUE;
3676 			}
3677 		}
3678 	}
3679 
3680 	if (needed && minp) {
3681 		*minp = thismin;
3682 		*maxp = thismax;
3683 	}
3684 	return (needed);
3685 }
3686 
3687 /*
3688  * Gets the checkpoint space map object from the vdev's ZAP.  On success sm_obj
3689  * will contain either the checkpoint spacemap object or zero if none exists.
3690  * All other errors are returned to the caller.
3691  */
3692 int
3693 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3694 {
3695 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3696 
3697 	if (vd->vdev_top_zap == 0) {
3698 		*sm_obj = 0;
3699 		return (0);
3700 	}
3701 
3702 	int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3703 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3704 	if (error == ENOENT) {
3705 		*sm_obj = 0;
3706 		error = 0;
3707 	}
3708 
3709 	return (error);
3710 }
3711 
3712 int
3713 vdev_load(vdev_t *vd)
3714 {
3715 	int children = vd->vdev_children;
3716 	int error = 0;
3717 	taskq_t *tq = NULL;
3718 
3719 	/*
3720 	 * It's only worthwhile to use the taskq for the root vdev, because the
3721 	 * slow part is metaslab_init, and that only happens for top-level
3722 	 * vdevs.
3723 	 */
3724 	if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3725 		tq = taskq_create("vdev_load", children, minclsyspri,
3726 		    children, children, TASKQ_PREPOPULATE);
3727 	}
3728 
3729 	/*
3730 	 * Recursively load all children.
3731 	 */
3732 	for (int c = 0; c < vd->vdev_children; c++) {
3733 		vdev_t *cvd = vd->vdev_child[c];
3734 
3735 		if (tq == NULL || vdev_uses_zvols(cvd)) {
3736 			cvd->vdev_load_error = vdev_load(cvd);
3737 		} else {
3738 			VERIFY(taskq_dispatch(tq, vdev_load_child,
3739 			    cvd, TQ_SLEEP) != TASKQID_INVALID);
3740 		}
3741 	}
3742 
3743 	if (tq != NULL) {
3744 		taskq_wait(tq);
3745 		taskq_destroy(tq);
3746 	}
3747 
3748 	for (int c = 0; c < vd->vdev_children; c++) {
3749 		int error = vd->vdev_child[c]->vdev_load_error;
3750 
3751 		if (error != 0)
3752 			return (error);
3753 	}
3754 
3755 	vdev_set_deflate_ratio(vd);
3756 
3757 	if (vd->vdev_ops == &vdev_raidz_ops) {
3758 		error = vdev_raidz_load(vd);
3759 		if (error != 0)
3760 			return (error);
3761 	}
3762 
3763 	/*
3764 	 * On spa_load path, grab the allocation bias from our zap
3765 	 */
3766 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3767 		spa_t *spa = vd->vdev_spa;
3768 		char bias_str[64];
3769 
3770 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3771 		    VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3772 		    bias_str);
3773 		if (error == 0) {
3774 			ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3775 			vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3776 		} else if (error != ENOENT) {
3777 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3778 			    VDEV_AUX_CORRUPT_DATA);
3779 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3780 			    "failed [error=%d]",
3781 			    (u_longlong_t)vd->vdev_top_zap, error);
3782 			return (error);
3783 		}
3784 	}
3785 
3786 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3787 		spa_t *spa = vd->vdev_spa;
3788 		uint64_t failfast;
3789 
3790 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3791 		    vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast),
3792 		    1, &failfast);
3793 		if (error == 0) {
3794 			vd->vdev_failfast = failfast & 1;
3795 		} else if (error == ENOENT) {
3796 			vd->vdev_failfast = vdev_prop_default_numeric(
3797 			    VDEV_PROP_FAILFAST);
3798 		} else {
3799 			vdev_dbgmsg(vd,
3800 			    "vdev_load: zap_lookup(top_zap=%llu) "
3801 			    "failed [error=%d]",
3802 			    (u_longlong_t)vd->vdev_top_zap, error);
3803 		}
3804 	}
3805 
3806 	/*
3807 	 * Load any rebuild state from the top-level vdev zap.
3808 	 */
3809 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3810 		error = vdev_rebuild_load(vd);
3811 		if (error && error != ENOTSUP) {
3812 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3813 			    VDEV_AUX_CORRUPT_DATA);
3814 			vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3815 			    "failed [error=%d]", error);
3816 			return (error);
3817 		}
3818 	}
3819 
3820 	if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) {
3821 		uint64_t zapobj;
3822 
3823 		if (vd->vdev_top_zap != 0)
3824 			zapobj = vd->vdev_top_zap;
3825 		else
3826 			zapobj = vd->vdev_leaf_zap;
3827 
3828 		error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N,
3829 		    &vd->vdev_checksum_n);
3830 		if (error && error != ENOENT)
3831 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3832 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3833 
3834 		error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T,
3835 		    &vd->vdev_checksum_t);
3836 		if (error && error != ENOENT)
3837 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3838 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3839 
3840 		error = vdev_prop_get_int(vd, VDEV_PROP_IO_N,
3841 		    &vd->vdev_io_n);
3842 		if (error && error != ENOENT)
3843 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3844 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3845 
3846 		error = vdev_prop_get_int(vd, VDEV_PROP_IO_T,
3847 		    &vd->vdev_io_t);
3848 		if (error && error != ENOENT)
3849 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3850 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3851 
3852 		error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_N,
3853 		    &vd->vdev_slow_io_n);
3854 		if (error && error != ENOENT)
3855 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3856 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3857 
3858 		error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_T,
3859 		    &vd->vdev_slow_io_t);
3860 		if (error && error != ENOENT)
3861 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3862 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3863 	}
3864 
3865 	/*
3866 	 * If this is a top-level vdev, initialize its metaslabs.
3867 	 */
3868 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3869 		vdev_metaslab_group_create(vd);
3870 
3871 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3872 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3873 			    VDEV_AUX_CORRUPT_DATA);
3874 			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3875 			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3876 			    (u_longlong_t)vd->vdev_asize);
3877 			return (SET_ERROR(ENXIO));
3878 		}
3879 
3880 		error = vdev_metaslab_init(vd, 0);
3881 		if (error != 0) {
3882 			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3883 			    "[error=%d]", error);
3884 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3885 			    VDEV_AUX_CORRUPT_DATA);
3886 			return (error);
3887 		}
3888 
3889 		uint64_t checkpoint_sm_obj;
3890 		error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3891 		if (error == 0 && checkpoint_sm_obj != 0) {
3892 			objset_t *mos = spa_meta_objset(vd->vdev_spa);
3893 			ASSERT(vd->vdev_asize != 0);
3894 			ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3895 
3896 			error = space_map_open(&vd->vdev_checkpoint_sm,
3897 			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3898 			    vd->vdev_ashift);
3899 			if (error != 0) {
3900 				vdev_dbgmsg(vd, "vdev_load: space_map_open "
3901 				    "failed for checkpoint spacemap (obj %llu) "
3902 				    "[error=%d]",
3903 				    (u_longlong_t)checkpoint_sm_obj, error);
3904 				return (error);
3905 			}
3906 			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3907 
3908 			/*
3909 			 * Since the checkpoint_sm contains free entries
3910 			 * exclusively we can use space_map_allocated() to
3911 			 * indicate the cumulative checkpointed space that
3912 			 * has been freed.
3913 			 */
3914 			vd->vdev_stat.vs_checkpoint_space =
3915 			    -space_map_allocated(vd->vdev_checkpoint_sm);
3916 			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3917 			    vd->vdev_stat.vs_checkpoint_space;
3918 		} else if (error != 0) {
3919 			vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3920 			    "checkpoint space map object from vdev ZAP "
3921 			    "[error=%d]", error);
3922 			return (error);
3923 		}
3924 	}
3925 
3926 	/*
3927 	 * If this is a leaf vdev, load its DTL.
3928 	 */
3929 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3930 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3931 		    VDEV_AUX_CORRUPT_DATA);
3932 		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3933 		    "[error=%d]", error);
3934 		return (error);
3935 	}
3936 
3937 	uint64_t obsolete_sm_object;
3938 	error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3939 	if (error == 0 && obsolete_sm_object != 0) {
3940 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
3941 		ASSERT(vd->vdev_asize != 0);
3942 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3943 
3944 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3945 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3946 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3947 			    VDEV_AUX_CORRUPT_DATA);
3948 			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3949 			    "obsolete spacemap (obj %llu) [error=%d]",
3950 			    (u_longlong_t)obsolete_sm_object, error);
3951 			return (error);
3952 		}
3953 	} else if (error != 0) {
3954 		vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3955 		    "space map object from vdev ZAP [error=%d]", error);
3956 		return (error);
3957 	}
3958 
3959 	return (0);
3960 }
3961 
3962 /*
3963  * The special vdev case is used for hot spares and l2cache devices.  Its
3964  * sole purpose it to set the vdev state for the associated vdev.  To do this,
3965  * we make sure that we can open the underlying device, then try to read the
3966  * label, and make sure that the label is sane and that it hasn't been
3967  * repurposed to another pool.
3968  */
3969 int
3970 vdev_validate_aux(vdev_t *vd)
3971 {
3972 	nvlist_t *label;
3973 	uint64_t guid, version;
3974 	uint64_t state;
3975 
3976 	if (!vdev_readable(vd))
3977 		return (0);
3978 
3979 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3980 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3981 		    VDEV_AUX_CORRUPT_DATA);
3982 		return (-1);
3983 	}
3984 
3985 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3986 	    !SPA_VERSION_IS_SUPPORTED(version) ||
3987 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3988 	    guid != vd->vdev_guid ||
3989 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3990 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3991 		    VDEV_AUX_CORRUPT_DATA);
3992 		nvlist_free(label);
3993 		return (-1);
3994 	}
3995 
3996 	/*
3997 	 * We don't actually check the pool state here.  If it's in fact in
3998 	 * use by another pool, we update this fact on the fly when requested.
3999 	 */
4000 	nvlist_free(label);
4001 	return (0);
4002 }
4003 
4004 static void
4005 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
4006 {
4007 	objset_t *mos = spa_meta_objset(vd->vdev_spa);
4008 
4009 	if (vd->vdev_top_zap == 0)
4010 		return;
4011 
4012 	uint64_t object = 0;
4013 	int err = zap_lookup(mos, vd->vdev_top_zap,
4014 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
4015 	if (err == ENOENT)
4016 		return;
4017 	VERIFY0(err);
4018 
4019 	VERIFY0(dmu_object_free(mos, object, tx));
4020 	VERIFY0(zap_remove(mos, vd->vdev_top_zap,
4021 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
4022 }
4023 
4024 /*
4025  * Free the objects used to store this vdev's spacemaps, and the array
4026  * that points to them.
4027  */
4028 void
4029 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
4030 {
4031 	if (vd->vdev_ms_array == 0)
4032 		return;
4033 
4034 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
4035 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
4036 	size_t array_bytes = array_count * sizeof (uint64_t);
4037 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
4038 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
4039 	    array_bytes, smobj_array, 0));
4040 
4041 	for (uint64_t i = 0; i < array_count; i++) {
4042 		uint64_t smobj = smobj_array[i];
4043 		if (smobj == 0)
4044 			continue;
4045 
4046 		space_map_free_obj(mos, smobj, tx);
4047 	}
4048 
4049 	kmem_free(smobj_array, array_bytes);
4050 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
4051 	vdev_destroy_ms_flush_data(vd, tx);
4052 	vd->vdev_ms_array = 0;
4053 }
4054 
4055 static void
4056 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
4057 {
4058 	spa_t *spa = vd->vdev_spa;
4059 
4060 	ASSERT(vd->vdev_islog);
4061 	ASSERT(vd == vd->vdev_top);
4062 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
4063 
4064 	dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4065 
4066 	vdev_destroy_spacemaps(vd, tx);
4067 	if (vd->vdev_top_zap != 0) {
4068 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
4069 		vd->vdev_top_zap = 0;
4070 	}
4071 
4072 	dmu_tx_commit(tx);
4073 }
4074 
4075 void
4076 vdev_sync_done(vdev_t *vd, uint64_t txg)
4077 {
4078 	metaslab_t *msp;
4079 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
4080 
4081 	ASSERT(vdev_is_concrete(vd));
4082 
4083 	while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
4084 	    != NULL)
4085 		metaslab_sync_done(msp, txg);
4086 
4087 	if (reassess) {
4088 		metaslab_sync_reassess(vd->vdev_mg);
4089 		if (vd->vdev_log_mg != NULL)
4090 			metaslab_sync_reassess(vd->vdev_log_mg);
4091 	}
4092 }
4093 
4094 void
4095 vdev_sync(vdev_t *vd, uint64_t txg)
4096 {
4097 	spa_t *spa = vd->vdev_spa;
4098 	vdev_t *lvd;
4099 	metaslab_t *msp;
4100 
4101 	ASSERT3U(txg, ==, spa->spa_syncing_txg);
4102 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
4103 	if (zfs_range_tree_space(vd->vdev_obsolete_segments) > 0) {
4104 		ASSERT(vd->vdev_removing ||
4105 		    vd->vdev_ops == &vdev_indirect_ops);
4106 
4107 		vdev_indirect_sync_obsolete(vd, tx);
4108 
4109 		/*
4110 		 * If the vdev is indirect, it can't have dirty
4111 		 * metaslabs or DTLs.
4112 		 */
4113 		if (vd->vdev_ops == &vdev_indirect_ops) {
4114 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
4115 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
4116 			dmu_tx_commit(tx);
4117 			return;
4118 		}
4119 	}
4120 
4121 	ASSERT(vdev_is_concrete(vd));
4122 
4123 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
4124 	    !vd->vdev_removing) {
4125 		ASSERT(vd == vd->vdev_top);
4126 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
4127 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
4128 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
4129 		ASSERT(vd->vdev_ms_array != 0);
4130 		vdev_config_dirty(vd);
4131 	}
4132 
4133 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
4134 		metaslab_sync(msp, txg);
4135 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
4136 	}
4137 
4138 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
4139 		vdev_dtl_sync(lvd, txg);
4140 
4141 	/*
4142 	 * If this is an empty log device being removed, destroy the
4143 	 * metadata associated with it.
4144 	 */
4145 	if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
4146 		vdev_remove_empty_log(vd, txg);
4147 
4148 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
4149 	dmu_tx_commit(tx);
4150 }
4151 uint64_t
4152 vdev_asize_to_psize_txg(vdev_t *vd, uint64_t asize, uint64_t txg)
4153 {
4154 	return (vd->vdev_ops->vdev_op_asize_to_psize(vd, asize, txg));
4155 }
4156 
4157 /*
4158  * Return the amount of space that should be (or was) allocated for the given
4159  * psize (compressed block size) in the given TXG. Note that for expanded
4160  * RAIDZ vdevs, the size allocated for older BP's may be larger. See
4161  * vdev_raidz_psize_to_asize().
4162  */
4163 uint64_t
4164 vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg)
4165 {
4166 	return (vd->vdev_ops->vdev_op_psize_to_asize(vd, psize, txg));
4167 }
4168 
4169 uint64_t
4170 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
4171 {
4172 	return (vdev_psize_to_asize_txg(vd, psize, 0));
4173 }
4174 
4175 /*
4176  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
4177  * not be opened, and no I/O is attempted.
4178  */
4179 int
4180 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4181 {
4182 	vdev_t *vd, *tvd;
4183 
4184 	spa_vdev_state_enter(spa, SCL_NONE);
4185 
4186 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4187 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4188 
4189 	if (!vd->vdev_ops->vdev_op_leaf)
4190 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4191 
4192 	tvd = vd->vdev_top;
4193 
4194 	/*
4195 	 * If user did a 'zpool offline -f' then make the fault persist across
4196 	 * reboots.
4197 	 */
4198 	if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
4199 		/*
4200 		 * There are two kinds of forced faults: temporary and
4201 		 * persistent.  Temporary faults go away at pool import, while
4202 		 * persistent faults stay set.  Both types of faults can be
4203 		 * cleared with a zpool clear.
4204 		 *
4205 		 * We tell if a vdev is persistently faulted by looking at the
4206 		 * ZPOOL_CONFIG_AUX_STATE nvpair.  If it's set to "external" at
4207 		 * import then it's a persistent fault.  Otherwise, it's
4208 		 * temporary.  We get ZPOOL_CONFIG_AUX_STATE set to "external"
4209 		 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL.  This
4210 		 * tells vdev_config_generate() (which gets run later) to set
4211 		 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
4212 		 */
4213 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
4214 		vd->vdev_tmpoffline = B_FALSE;
4215 		aux = VDEV_AUX_EXTERNAL;
4216 	} else {
4217 		vd->vdev_tmpoffline = B_TRUE;
4218 	}
4219 
4220 	/*
4221 	 * We don't directly use the aux state here, but if we do a
4222 	 * vdev_reopen(), we need this value to be present to remember why we
4223 	 * were faulted.
4224 	 */
4225 	vd->vdev_label_aux = aux;
4226 
4227 	/*
4228 	 * Faulted state takes precedence over degraded.
4229 	 */
4230 	vd->vdev_delayed_close = B_FALSE;
4231 	vd->vdev_faulted = 1ULL;
4232 	vd->vdev_degraded = 0ULL;
4233 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
4234 
4235 	/*
4236 	 * If this device has the only valid copy of the data, then
4237 	 * back off and simply mark the vdev as degraded instead.
4238 	 */
4239 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
4240 		vd->vdev_degraded = 1ULL;
4241 		vd->vdev_faulted = 0ULL;
4242 
4243 		/*
4244 		 * If we reopen the device and it's not dead, only then do we
4245 		 * mark it degraded.
4246 		 */
4247 		vdev_reopen(tvd);
4248 
4249 		if (vdev_readable(vd))
4250 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
4251 	}
4252 
4253 	return (spa_vdev_state_exit(spa, vd, 0));
4254 }
4255 
4256 /*
4257  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
4258  * user that something is wrong.  The vdev continues to operate as normal as far
4259  * as I/O is concerned.
4260  */
4261 int
4262 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4263 {
4264 	vdev_t *vd;
4265 
4266 	spa_vdev_state_enter(spa, SCL_NONE);
4267 
4268 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4269 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4270 
4271 	if (!vd->vdev_ops->vdev_op_leaf)
4272 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4273 
4274 	/*
4275 	 * If the vdev is already faulted, then don't do anything.
4276 	 */
4277 	if (vd->vdev_faulted || vd->vdev_degraded)
4278 		return (spa_vdev_state_exit(spa, NULL, 0));
4279 
4280 	vd->vdev_degraded = 1ULL;
4281 	if (!vdev_is_dead(vd))
4282 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
4283 		    aux);
4284 
4285 	return (spa_vdev_state_exit(spa, vd, 0));
4286 }
4287 
4288 int
4289 vdev_remove_wanted(spa_t *spa, uint64_t guid)
4290 {
4291 	vdev_t *vd;
4292 
4293 	spa_vdev_state_enter(spa, SCL_NONE);
4294 
4295 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4296 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4297 
4298 	/*
4299 	 * If the vdev is already removed, or expanding which can trigger
4300 	 * repartition add/remove events, then don't do anything.
4301 	 */
4302 	if (vd->vdev_removed || vd->vdev_expanding)
4303 		return (spa_vdev_state_exit(spa, NULL, 0));
4304 
4305 	/*
4306 	 * Confirm the vdev has been removed, otherwise don't do anything.
4307 	 */
4308 	if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL)))
4309 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST)));
4310 
4311 	vd->vdev_remove_wanted = B_TRUE;
4312 	spa_async_request(spa, SPA_ASYNC_REMOVE_BY_USER);
4313 
4314 	return (spa_vdev_state_exit(spa, vd, 0));
4315 }
4316 
4317 
4318 /*
4319  * Online the given vdev.
4320  *
4321  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
4322  * spare device should be detached when the device finishes resilvering.
4323  * Second, the online should be treated like a 'test' online case, so no FMA
4324  * events are generated if the device fails to open.
4325  */
4326 int
4327 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
4328 {
4329 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
4330 	boolean_t wasoffline;
4331 	vdev_state_t oldstate;
4332 
4333 	spa_vdev_state_enter(spa, SCL_NONE);
4334 
4335 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4336 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4337 
4338 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
4339 	oldstate = vd->vdev_state;
4340 
4341 	tvd = vd->vdev_top;
4342 	vd->vdev_offline = B_FALSE;
4343 	vd->vdev_tmpoffline = B_FALSE;
4344 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
4345 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
4346 
4347 	/* XXX - L2ARC 1.0 does not support expansion */
4348 	if (!vd->vdev_aux) {
4349 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4350 			pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
4351 			    spa->spa_autoexpand);
4352 		vd->vdev_expansion_time = gethrestime_sec();
4353 	}
4354 
4355 	vdev_reopen(tvd);
4356 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
4357 
4358 	if (!vd->vdev_aux) {
4359 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4360 			pvd->vdev_expanding = B_FALSE;
4361 	}
4362 
4363 	if (newstate)
4364 		*newstate = vd->vdev_state;
4365 	if ((flags & ZFS_ONLINE_UNSPARE) &&
4366 	    !vdev_is_dead(vd) && vd->vdev_parent &&
4367 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4368 	    vd->vdev_parent->vdev_child[0] == vd)
4369 		vd->vdev_unspare = B_TRUE;
4370 
4371 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
4372 
4373 		/* XXX - L2ARC 1.0 does not support expansion */
4374 		if (vd->vdev_aux)
4375 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
4376 		spa->spa_ccw_fail_time = 0;
4377 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4378 	}
4379 
4380 	/* Restart initializing if necessary */
4381 	mutex_enter(&vd->vdev_initialize_lock);
4382 	if (vdev_writeable(vd) &&
4383 	    vd->vdev_initialize_thread == NULL &&
4384 	    vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
4385 		(void) vdev_initialize(vd);
4386 	}
4387 	mutex_exit(&vd->vdev_initialize_lock);
4388 
4389 	/*
4390 	 * Restart trimming if necessary. We do not restart trimming for cache
4391 	 * devices here. This is triggered by l2arc_rebuild_vdev()
4392 	 * asynchronously for the whole device or in l2arc_evict() as it evicts
4393 	 * space for upcoming writes.
4394 	 */
4395 	mutex_enter(&vd->vdev_trim_lock);
4396 	if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
4397 	    vd->vdev_trim_thread == NULL &&
4398 	    vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
4399 		(void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
4400 		    vd->vdev_trim_secure);
4401 	}
4402 	mutex_exit(&vd->vdev_trim_lock);
4403 
4404 	if (wasoffline ||
4405 	    (oldstate < VDEV_STATE_DEGRADED &&
4406 	    vd->vdev_state >= VDEV_STATE_DEGRADED)) {
4407 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
4408 
4409 		/*
4410 		 * Asynchronously detach spare vdev if resilver or
4411 		 * rebuild is not required
4412 		 */
4413 		if (vd->vdev_unspare &&
4414 		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4415 		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) &&
4416 		    !vdev_rebuild_active(tvd))
4417 			spa_async_request(spa, SPA_ASYNC_DETACH_SPARE);
4418 	}
4419 	return (spa_vdev_state_exit(spa, vd, 0));
4420 }
4421 
4422 static int
4423 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
4424 {
4425 	vdev_t *vd, *tvd;
4426 	int error = 0;
4427 	uint64_t generation;
4428 	metaslab_group_t *mg;
4429 
4430 top:
4431 	spa_vdev_state_enter(spa, SCL_ALLOC);
4432 
4433 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4434 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4435 
4436 	if (!vd->vdev_ops->vdev_op_leaf)
4437 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4438 
4439 	if (vd->vdev_ops == &vdev_draid_spare_ops)
4440 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4441 
4442 	tvd = vd->vdev_top;
4443 	mg = tvd->vdev_mg;
4444 	generation = spa->spa_config_generation + 1;
4445 
4446 	/*
4447 	 * If the device isn't already offline, try to offline it.
4448 	 */
4449 	if (!vd->vdev_offline) {
4450 		/*
4451 		 * If this device has the only valid copy of some data,
4452 		 * don't allow it to be offlined. Log devices are always
4453 		 * expendable.
4454 		 */
4455 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4456 		    vdev_dtl_required(vd))
4457 			return (spa_vdev_state_exit(spa, NULL,
4458 			    SET_ERROR(EBUSY)));
4459 
4460 		/*
4461 		 * If the top-level is a slog and it has had allocations
4462 		 * then proceed.  We check that the vdev's metaslab group
4463 		 * is not NULL since it's possible that we may have just
4464 		 * added this vdev but not yet initialized its metaslabs.
4465 		 */
4466 		if (tvd->vdev_islog && mg != NULL) {
4467 			/*
4468 			 * Prevent any future allocations.
4469 			 */
4470 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
4471 			metaslab_group_passivate(mg);
4472 			(void) spa_vdev_state_exit(spa, vd, 0);
4473 
4474 			error = spa_reset_logs(spa);
4475 
4476 			/*
4477 			 * If the log device was successfully reset but has
4478 			 * checkpointed data, do not offline it.
4479 			 */
4480 			if (error == 0 &&
4481 			    tvd->vdev_checkpoint_sm != NULL) {
4482 				ASSERT3U(space_map_allocated(
4483 				    tvd->vdev_checkpoint_sm), !=, 0);
4484 				error = ZFS_ERR_CHECKPOINT_EXISTS;
4485 			}
4486 
4487 			spa_vdev_state_enter(spa, SCL_ALLOC);
4488 
4489 			/*
4490 			 * Check to see if the config has changed.
4491 			 */
4492 			if (error || generation != spa->spa_config_generation) {
4493 				metaslab_group_activate(mg);
4494 				if (error)
4495 					return (spa_vdev_state_exit(spa,
4496 					    vd, error));
4497 				(void) spa_vdev_state_exit(spa, vd, 0);
4498 				goto top;
4499 			}
4500 			ASSERT0(tvd->vdev_stat.vs_alloc);
4501 		}
4502 
4503 		/*
4504 		 * Offline this device and reopen its top-level vdev.
4505 		 * If the top-level vdev is a log device then just offline
4506 		 * it. Otherwise, if this action results in the top-level
4507 		 * vdev becoming unusable, undo it and fail the request.
4508 		 */
4509 		vd->vdev_offline = B_TRUE;
4510 		vdev_reopen(tvd);
4511 
4512 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4513 		    vdev_is_dead(tvd)) {
4514 			vd->vdev_offline = B_FALSE;
4515 			vdev_reopen(tvd);
4516 			return (spa_vdev_state_exit(spa, NULL,
4517 			    SET_ERROR(EBUSY)));
4518 		}
4519 
4520 		/*
4521 		 * Add the device back into the metaslab rotor so that
4522 		 * once we online the device it's open for business.
4523 		 */
4524 		if (tvd->vdev_islog && mg != NULL)
4525 			metaslab_group_activate(mg);
4526 	}
4527 
4528 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4529 
4530 	return (spa_vdev_state_exit(spa, vd, 0));
4531 }
4532 
4533 int
4534 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4535 {
4536 	int error;
4537 
4538 	mutex_enter(&spa->spa_vdev_top_lock);
4539 	error = vdev_offline_locked(spa, guid, flags);
4540 	mutex_exit(&spa->spa_vdev_top_lock);
4541 
4542 	return (error);
4543 }
4544 
4545 /*
4546  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
4547  * vdev_offline(), we assume the spa config is locked.  We also clear all
4548  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
4549  */
4550 void
4551 vdev_clear(spa_t *spa, vdev_t *vd)
4552 {
4553 	vdev_t *rvd = spa->spa_root_vdev;
4554 
4555 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4556 
4557 	if (vd == NULL)
4558 		vd = rvd;
4559 
4560 	vd->vdev_stat.vs_read_errors = 0;
4561 	vd->vdev_stat.vs_write_errors = 0;
4562 	vd->vdev_stat.vs_checksum_errors = 0;
4563 	vd->vdev_stat.vs_dio_verify_errors = 0;
4564 	vd->vdev_stat.vs_slow_ios = 0;
4565 
4566 	for (int c = 0; c < vd->vdev_children; c++)
4567 		vdev_clear(spa, vd->vdev_child[c]);
4568 
4569 	/*
4570 	 * It makes no sense to "clear" an indirect  or removed vdev.
4571 	 */
4572 	if (!vdev_is_concrete(vd) || vd->vdev_removed)
4573 		return;
4574 
4575 	/*
4576 	 * If we're in the FAULTED state or have experienced failed I/O, then
4577 	 * clear the persistent state and attempt to reopen the device.  We
4578 	 * also mark the vdev config dirty, so that the new faulted state is
4579 	 * written out to disk.
4580 	 */
4581 	if (vd->vdev_faulted || vd->vdev_degraded ||
4582 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
4583 		/*
4584 		 * When reopening in response to a clear event, it may be due to
4585 		 * a fmadm repair request.  In this case, if the device is
4586 		 * still broken, we want to still post the ereport again.
4587 		 */
4588 		vd->vdev_forcefault = B_TRUE;
4589 
4590 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4591 		vd->vdev_cant_read = B_FALSE;
4592 		vd->vdev_cant_write = B_FALSE;
4593 		vd->vdev_stat.vs_aux = 0;
4594 
4595 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4596 
4597 		vd->vdev_forcefault = B_FALSE;
4598 
4599 		if (vd != rvd && vdev_writeable(vd->vdev_top))
4600 			vdev_state_dirty(vd->vdev_top);
4601 
4602 		/* If a resilver isn't required, check if vdevs can be culled */
4603 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4604 		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4605 		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4606 			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4607 
4608 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4609 	}
4610 
4611 	/*
4612 	 * When clearing a FMA-diagnosed fault, we always want to
4613 	 * unspare the device, as we assume that the original spare was
4614 	 * done in response to the FMA fault.
4615 	 */
4616 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4617 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4618 	    vd->vdev_parent->vdev_child[0] == vd)
4619 		vd->vdev_unspare = B_TRUE;
4620 
4621 	/* Clear recent error events cache (i.e. duplicate events tracking) */
4622 	zfs_ereport_clear(spa, vd);
4623 }
4624 
4625 boolean_t
4626 vdev_is_dead(vdev_t *vd)
4627 {
4628 	/*
4629 	 * Holes and missing devices are always considered "dead".
4630 	 * This simplifies the code since we don't have to check for
4631 	 * these types of devices in the various code paths.
4632 	 * Instead we rely on the fact that we skip over dead devices
4633 	 * before issuing I/O to them.
4634 	 */
4635 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4636 	    vd->vdev_ops == &vdev_hole_ops ||
4637 	    vd->vdev_ops == &vdev_missing_ops);
4638 }
4639 
4640 boolean_t
4641 vdev_readable(vdev_t *vd)
4642 {
4643 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4644 }
4645 
4646 boolean_t
4647 vdev_writeable(vdev_t *vd)
4648 {
4649 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4650 	    vdev_is_concrete(vd));
4651 }
4652 
4653 boolean_t
4654 vdev_allocatable(vdev_t *vd)
4655 {
4656 	uint64_t state = vd->vdev_state;
4657 
4658 	/*
4659 	 * We currently allow allocations from vdevs which may be in the
4660 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4661 	 * fails to reopen then we'll catch it later when we're holding
4662 	 * the proper locks.  Note that we have to get the vdev state
4663 	 * in a local variable because although it changes atomically,
4664 	 * we're asking two separate questions about it.
4665 	 */
4666 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4667 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4668 	    vd->vdev_mg->mg_initialized);
4669 }
4670 
4671 boolean_t
4672 vdev_accessible(vdev_t *vd, zio_t *zio)
4673 {
4674 	ASSERT(zio->io_vd == vd);
4675 
4676 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4677 		return (B_FALSE);
4678 
4679 	if (zio->io_type == ZIO_TYPE_READ)
4680 		return (!vd->vdev_cant_read);
4681 
4682 	if (zio->io_type == ZIO_TYPE_WRITE)
4683 		return (!vd->vdev_cant_write);
4684 
4685 	return (B_TRUE);
4686 }
4687 
4688 static void
4689 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4690 {
4691 	/*
4692 	 * Exclude the dRAID spare when aggregating to avoid double counting
4693 	 * the ops and bytes.  These IOs are counted by the physical leaves.
4694 	 */
4695 	if (cvd->vdev_ops == &vdev_draid_spare_ops)
4696 		return;
4697 
4698 	for (int t = 0; t < VS_ZIO_TYPES; t++) {
4699 		vs->vs_ops[t] += cvs->vs_ops[t];
4700 		vs->vs_bytes[t] += cvs->vs_bytes[t];
4701 	}
4702 
4703 	cvs->vs_scan_removing = cvd->vdev_removing;
4704 }
4705 
4706 /*
4707  * Get extended stats
4708  */
4709 static void
4710 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4711 {
4712 	(void) cvd;
4713 
4714 	int t, b;
4715 	for (t = 0; t < ZIO_TYPES; t++) {
4716 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4717 			vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4718 
4719 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4720 			vsx->vsx_total_histo[t][b] +=
4721 			    cvsx->vsx_total_histo[t][b];
4722 		}
4723 	}
4724 
4725 	for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4726 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4727 			vsx->vsx_queue_histo[t][b] +=
4728 			    cvsx->vsx_queue_histo[t][b];
4729 		}
4730 		vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4731 		vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4732 
4733 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4734 			vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4735 
4736 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4737 			vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4738 	}
4739 
4740 }
4741 
4742 boolean_t
4743 vdev_is_spacemap_addressable(vdev_t *vd)
4744 {
4745 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4746 		return (B_TRUE);
4747 
4748 	/*
4749 	 * If double-word space map entries are not enabled we assume
4750 	 * 47 bits of the space map entry are dedicated to the entry's
4751 	 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4752 	 * to calculate the maximum address that can be described by a
4753 	 * space map entry for the given device.
4754 	 */
4755 	uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4756 
4757 	if (shift >= 63) /* detect potential overflow */
4758 		return (B_TRUE);
4759 
4760 	return (vd->vdev_asize < (1ULL << shift));
4761 }
4762 
4763 /*
4764  * Get statistics for the given vdev.
4765  */
4766 static void
4767 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4768 {
4769 	int t;
4770 	/*
4771 	 * If we're getting stats on the root vdev, aggregate the I/O counts
4772 	 * over all top-level vdevs (i.e. the direct children of the root).
4773 	 */
4774 	if (!vd->vdev_ops->vdev_op_leaf) {
4775 		if (vs) {
4776 			memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4777 			memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4778 		}
4779 		if (vsx)
4780 			memset(vsx, 0, sizeof (*vsx));
4781 
4782 		for (int c = 0; c < vd->vdev_children; c++) {
4783 			vdev_t *cvd = vd->vdev_child[c];
4784 			vdev_stat_t *cvs = &cvd->vdev_stat;
4785 			vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4786 
4787 			vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4788 			if (vs)
4789 				vdev_get_child_stat(cvd, vs, cvs);
4790 			if (vsx)
4791 				vdev_get_child_stat_ex(cvd, vsx, cvsx);
4792 		}
4793 	} else {
4794 		/*
4795 		 * We're a leaf.  Just copy our ZIO active queue stats in.  The
4796 		 * other leaf stats are updated in vdev_stat_update().
4797 		 */
4798 		if (!vsx)
4799 			return;
4800 
4801 		memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4802 
4803 		for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4804 			vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t];
4805 			vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t);
4806 		}
4807 	}
4808 }
4809 
4810 void
4811 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4812 {
4813 	vdev_t *tvd = vd->vdev_top;
4814 	mutex_enter(&vd->vdev_stat_lock);
4815 	if (vs) {
4816 		memcpy(vs, &vd->vdev_stat, sizeof (*vs));
4817 		vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4818 		vs->vs_state = vd->vdev_state;
4819 		vs->vs_rsize = vdev_get_min_asize(vd);
4820 
4821 		if (vd->vdev_ops->vdev_op_leaf) {
4822 			vs->vs_pspace = vd->vdev_psize;
4823 			vs->vs_rsize += VDEV_LABEL_START_SIZE +
4824 			    VDEV_LABEL_END_SIZE;
4825 			/*
4826 			 * Report initializing progress. Since we don't
4827 			 * have the initializing locks held, this is only
4828 			 * an estimate (although a fairly accurate one).
4829 			 */
4830 			vs->vs_initialize_bytes_done =
4831 			    vd->vdev_initialize_bytes_done;
4832 			vs->vs_initialize_bytes_est =
4833 			    vd->vdev_initialize_bytes_est;
4834 			vs->vs_initialize_state = vd->vdev_initialize_state;
4835 			vs->vs_initialize_action_time =
4836 			    vd->vdev_initialize_action_time;
4837 
4838 			/*
4839 			 * Report manual TRIM progress. Since we don't have
4840 			 * the manual TRIM locks held, this is only an
4841 			 * estimate (although fairly accurate one).
4842 			 */
4843 			vs->vs_trim_notsup = !vd->vdev_has_trim;
4844 			vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4845 			vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4846 			vs->vs_trim_state = vd->vdev_trim_state;
4847 			vs->vs_trim_action_time = vd->vdev_trim_action_time;
4848 
4849 			/* Set when there is a deferred resilver. */
4850 			vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4851 		}
4852 
4853 		/*
4854 		 * Report expandable space on top-level, non-auxiliary devices
4855 		 * only. The expandable space is reported in terms of metaslab
4856 		 * sized units since that determines how much space the pool
4857 		 * can expand.
4858 		 */
4859 		if (vd->vdev_aux == NULL && tvd != NULL) {
4860 			vs->vs_esize = P2ALIGN_TYPED(
4861 			    vd->vdev_max_asize - vd->vdev_asize,
4862 			    1ULL << tvd->vdev_ms_shift, uint64_t);
4863 		}
4864 
4865 		vs->vs_configured_ashift = vd->vdev_top != NULL
4866 		    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4867 		vs->vs_logical_ashift = vd->vdev_logical_ashift;
4868 		if (vd->vdev_physical_ashift <= ASHIFT_MAX)
4869 			vs->vs_physical_ashift = vd->vdev_physical_ashift;
4870 		else
4871 			vs->vs_physical_ashift = 0;
4872 
4873 		/*
4874 		 * Report fragmentation and rebuild progress for top-level,
4875 		 * non-auxiliary, concrete devices.
4876 		 */
4877 		if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4878 		    vdev_is_concrete(vd)) {
4879 			/*
4880 			 * The vdev fragmentation rating doesn't take into
4881 			 * account the embedded slog metaslab (vdev_log_mg).
4882 			 * Since it's only one metaslab, it would have a tiny
4883 			 * impact on the overall fragmentation.
4884 			 */
4885 			vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4886 			    vd->vdev_mg->mg_fragmentation : 0;
4887 		}
4888 		vs->vs_noalloc = MAX(vd->vdev_noalloc,
4889 		    tvd ? tvd->vdev_noalloc : 0);
4890 	}
4891 
4892 	vdev_get_stats_ex_impl(vd, vs, vsx);
4893 	mutex_exit(&vd->vdev_stat_lock);
4894 }
4895 
4896 void
4897 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4898 {
4899 	return (vdev_get_stats_ex(vd, vs, NULL));
4900 }
4901 
4902 void
4903 vdev_clear_stats(vdev_t *vd)
4904 {
4905 	mutex_enter(&vd->vdev_stat_lock);
4906 	vd->vdev_stat.vs_space = 0;
4907 	vd->vdev_stat.vs_dspace = 0;
4908 	vd->vdev_stat.vs_alloc = 0;
4909 	mutex_exit(&vd->vdev_stat_lock);
4910 }
4911 
4912 void
4913 vdev_scan_stat_init(vdev_t *vd)
4914 {
4915 	vdev_stat_t *vs = &vd->vdev_stat;
4916 
4917 	for (int c = 0; c < vd->vdev_children; c++)
4918 		vdev_scan_stat_init(vd->vdev_child[c]);
4919 
4920 	mutex_enter(&vd->vdev_stat_lock);
4921 	vs->vs_scan_processed = 0;
4922 	mutex_exit(&vd->vdev_stat_lock);
4923 }
4924 
4925 void
4926 vdev_stat_update(zio_t *zio, uint64_t psize)
4927 {
4928 	spa_t *spa = zio->io_spa;
4929 	vdev_t *rvd = spa->spa_root_vdev;
4930 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4931 	vdev_t *pvd;
4932 	uint64_t txg = zio->io_txg;
4933 /* Suppress ASAN false positive */
4934 #ifdef __SANITIZE_ADDRESS__
4935 	vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL;
4936 	vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL;
4937 #else
4938 	vdev_stat_t *vs = &vd->vdev_stat;
4939 	vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4940 #endif
4941 	zio_type_t type = zio->io_type;
4942 	int flags = zio->io_flags;
4943 
4944 	/*
4945 	 * If this i/o is a gang leader, it didn't do any actual work.
4946 	 */
4947 	if (zio->io_gang_tree)
4948 		return;
4949 
4950 	if (zio->io_error == 0) {
4951 		/*
4952 		 * If this is a root i/o, don't count it -- we've already
4953 		 * counted the top-level vdevs, and vdev_get_stats() will
4954 		 * aggregate them when asked.  This reduces contention on
4955 		 * the root vdev_stat_lock and implicitly handles blocks
4956 		 * that compress away to holes, for which there is no i/o.
4957 		 * (Holes never create vdev children, so all the counters
4958 		 * remain zero, which is what we want.)
4959 		 *
4960 		 * Note: this only applies to successful i/o (io_error == 0)
4961 		 * because unlike i/o counts, errors are not additive.
4962 		 * When reading a ditto block, for example, failure of
4963 		 * one top-level vdev does not imply a root-level error.
4964 		 */
4965 		if (vd == rvd)
4966 			return;
4967 
4968 		ASSERT(vd == zio->io_vd);
4969 
4970 		if (flags & ZIO_FLAG_IO_BYPASS)
4971 			return;
4972 
4973 		mutex_enter(&vd->vdev_stat_lock);
4974 
4975 		if (flags & ZIO_FLAG_IO_REPAIR) {
4976 			/*
4977 			 * Repair is the result of a resilver issued by the
4978 			 * scan thread (spa_sync).
4979 			 */
4980 			if (flags & ZIO_FLAG_SCAN_THREAD) {
4981 				dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4982 				dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4983 				uint64_t *processed = &scn_phys->scn_processed;
4984 
4985 				if (vd->vdev_ops->vdev_op_leaf)
4986 					atomic_add_64(processed, psize);
4987 				vs->vs_scan_processed += psize;
4988 			}
4989 
4990 			/*
4991 			 * Repair is the result of a rebuild issued by the
4992 			 * rebuild thread (vdev_rebuild_thread).  To avoid
4993 			 * double counting repaired bytes the virtual dRAID
4994 			 * spare vdev is excluded from the processed bytes.
4995 			 */
4996 			if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
4997 				vdev_t *tvd = vd->vdev_top;
4998 				vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
4999 				vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
5000 				uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
5001 
5002 				if (vd->vdev_ops->vdev_op_leaf &&
5003 				    vd->vdev_ops != &vdev_draid_spare_ops) {
5004 					atomic_add_64(rebuilt, psize);
5005 				}
5006 				vs->vs_rebuild_processed += psize;
5007 			}
5008 
5009 			if (flags & ZIO_FLAG_SELF_HEAL)
5010 				vs->vs_self_healed += psize;
5011 		}
5012 
5013 		/*
5014 		 * The bytes/ops/histograms are recorded at the leaf level and
5015 		 * aggregated into the higher level vdevs in vdev_get_stats().
5016 		 */
5017 		if (vd->vdev_ops->vdev_op_leaf &&
5018 		    (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
5019 			zio_type_t vs_type = type;
5020 			zio_priority_t priority = zio->io_priority;
5021 
5022 			/*
5023 			 * TRIM ops and bytes are reported to user space as
5024 			 * ZIO_TYPE_FLUSH.  This is done to preserve the
5025 			 * vdev_stat_t structure layout for user space.
5026 			 */
5027 			if (type == ZIO_TYPE_TRIM)
5028 				vs_type = ZIO_TYPE_FLUSH;
5029 
5030 			/*
5031 			 * Solely for the purposes of 'zpool iostat -lqrw'
5032 			 * reporting use the priority to categorize the IO.
5033 			 * Only the following are reported to user space:
5034 			 *
5035 			 *   ZIO_PRIORITY_SYNC_READ,
5036 			 *   ZIO_PRIORITY_SYNC_WRITE,
5037 			 *   ZIO_PRIORITY_ASYNC_READ,
5038 			 *   ZIO_PRIORITY_ASYNC_WRITE,
5039 			 *   ZIO_PRIORITY_SCRUB,
5040 			 *   ZIO_PRIORITY_TRIM,
5041 			 *   ZIO_PRIORITY_REBUILD.
5042 			 */
5043 			if (priority == ZIO_PRIORITY_INITIALIZING) {
5044 				ASSERT3U(type, ==, ZIO_TYPE_WRITE);
5045 				priority = ZIO_PRIORITY_ASYNC_WRITE;
5046 			} else if (priority == ZIO_PRIORITY_REMOVAL) {
5047 				priority = ((type == ZIO_TYPE_WRITE) ?
5048 				    ZIO_PRIORITY_ASYNC_WRITE :
5049 				    ZIO_PRIORITY_ASYNC_READ);
5050 			}
5051 
5052 			vs->vs_ops[vs_type]++;
5053 			vs->vs_bytes[vs_type] += psize;
5054 
5055 			if (flags & ZIO_FLAG_DELEGATED) {
5056 				vsx->vsx_agg_histo[priority]
5057 				    [RQ_HISTO(zio->io_size)]++;
5058 			} else {
5059 				vsx->vsx_ind_histo[priority]
5060 				    [RQ_HISTO(zio->io_size)]++;
5061 			}
5062 
5063 			if (zio->io_delta && zio->io_delay) {
5064 				vsx->vsx_queue_histo[priority]
5065 				    [L_HISTO(zio->io_delta - zio->io_delay)]++;
5066 				vsx->vsx_disk_histo[type]
5067 				    [L_HISTO(zio->io_delay)]++;
5068 				vsx->vsx_total_histo[type]
5069 				    [L_HISTO(zio->io_delta)]++;
5070 			}
5071 		}
5072 
5073 		mutex_exit(&vd->vdev_stat_lock);
5074 		return;
5075 	}
5076 
5077 	if (flags & ZIO_FLAG_SPECULATIVE)
5078 		return;
5079 
5080 	/*
5081 	 * If this is an I/O error that is going to be retried, then ignore the
5082 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
5083 	 * hard errors, when in reality they can happen for any number of
5084 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
5085 	 */
5086 	if (zio->io_error == EIO &&
5087 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
5088 		return;
5089 
5090 	/*
5091 	 * Intent logs writes won't propagate their error to the root
5092 	 * I/O so don't mark these types of failures as pool-level
5093 	 * errors.
5094 	 */
5095 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
5096 		return;
5097 
5098 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
5099 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
5100 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
5101 	    spa->spa_claiming)) {
5102 		/*
5103 		 * This is either a normal write (not a repair), or it's
5104 		 * a repair induced by the scrub thread, or it's a repair
5105 		 * made by zil_claim() during spa_load() in the first txg.
5106 		 * In the normal case, we commit the DTL change in the same
5107 		 * txg as the block was born.  In the scrub-induced repair
5108 		 * case, we know that scrubs run in first-pass syncing context,
5109 		 * so we commit the DTL change in spa_syncing_txg(spa).
5110 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
5111 		 *
5112 		 * We currently do not make DTL entries for failed spontaneous
5113 		 * self-healing writes triggered by normal (non-scrubbing)
5114 		 * reads, because we have no transactional context in which to
5115 		 * do so -- and it's not clear that it'd be desirable anyway.
5116 		 */
5117 		if (vd->vdev_ops->vdev_op_leaf) {
5118 			uint64_t commit_txg = txg;
5119 			if (flags & ZIO_FLAG_SCAN_THREAD) {
5120 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5121 				ASSERT(spa_sync_pass(spa) == 1);
5122 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
5123 				commit_txg = spa_syncing_txg(spa);
5124 			} else if (spa->spa_claiming) {
5125 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5126 				commit_txg = spa_first_txg(spa);
5127 			}
5128 			ASSERT(commit_txg >= spa_syncing_txg(spa));
5129 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
5130 				return;
5131 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
5132 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
5133 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
5134 		}
5135 		if (vd != rvd)
5136 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
5137 	}
5138 }
5139 
5140 int64_t
5141 vdev_deflated_space(vdev_t *vd, int64_t space)
5142 {
5143 	ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
5144 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
5145 
5146 	return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
5147 }
5148 
5149 /*
5150  * Update the in-core space usage stats for this vdev, its metaslab class,
5151  * and the root vdev.
5152  */
5153 void
5154 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
5155     int64_t space_delta)
5156 {
5157 	(void) defer_delta;
5158 	int64_t dspace_delta;
5159 	spa_t *spa = vd->vdev_spa;
5160 	vdev_t *rvd = spa->spa_root_vdev;
5161 
5162 	ASSERT(vd == vd->vdev_top);
5163 
5164 	/*
5165 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
5166 	 * factor.  We must calculate this here and not at the root vdev
5167 	 * because the root vdev's psize-to-asize is simply the max of its
5168 	 * children's, thus not accurate enough for us.
5169 	 */
5170 	dspace_delta = vdev_deflated_space(vd, space_delta);
5171 
5172 	mutex_enter(&vd->vdev_stat_lock);
5173 	/* ensure we won't underflow */
5174 	if (alloc_delta < 0) {
5175 		ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
5176 	}
5177 
5178 	vd->vdev_stat.vs_alloc += alloc_delta;
5179 	vd->vdev_stat.vs_space += space_delta;
5180 	vd->vdev_stat.vs_dspace += dspace_delta;
5181 	mutex_exit(&vd->vdev_stat_lock);
5182 
5183 	/* every class but log contributes to root space stats */
5184 	if (vd->vdev_mg != NULL && !vd->vdev_islog) {
5185 		ASSERT(!vd->vdev_isl2cache);
5186 		mutex_enter(&rvd->vdev_stat_lock);
5187 		rvd->vdev_stat.vs_alloc += alloc_delta;
5188 		rvd->vdev_stat.vs_space += space_delta;
5189 		rvd->vdev_stat.vs_dspace += dspace_delta;
5190 		mutex_exit(&rvd->vdev_stat_lock);
5191 	}
5192 	/* Note: metaslab_class_space_update moved to metaslab_space_update */
5193 }
5194 
5195 /*
5196  * Mark a top-level vdev's config as dirty, placing it on the dirty list
5197  * so that it will be written out next time the vdev configuration is synced.
5198  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
5199  */
5200 void
5201 vdev_config_dirty(vdev_t *vd)
5202 {
5203 	spa_t *spa = vd->vdev_spa;
5204 	vdev_t *rvd = spa->spa_root_vdev;
5205 	int c;
5206 
5207 	ASSERT(spa_writeable(spa));
5208 
5209 	/*
5210 	 * If this is an aux vdev (as with l2cache and spare devices), then we
5211 	 * update the vdev config manually and set the sync flag.
5212 	 */
5213 	if (vd->vdev_aux != NULL) {
5214 		spa_aux_vdev_t *sav = vd->vdev_aux;
5215 		nvlist_t **aux;
5216 		uint_t naux;
5217 
5218 		for (c = 0; c < sav->sav_count; c++) {
5219 			if (sav->sav_vdevs[c] == vd)
5220 				break;
5221 		}
5222 
5223 		if (c == sav->sav_count) {
5224 			/*
5225 			 * We're being removed.  There's nothing more to do.
5226 			 */
5227 			ASSERT(sav->sav_sync == B_TRUE);
5228 			return;
5229 		}
5230 
5231 		sav->sav_sync = B_TRUE;
5232 
5233 		if (nvlist_lookup_nvlist_array(sav->sav_config,
5234 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
5235 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
5236 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
5237 		}
5238 
5239 		ASSERT(c < naux);
5240 
5241 		/*
5242 		 * Setting the nvlist in the middle if the array is a little
5243 		 * sketchy, but it will work.
5244 		 */
5245 		nvlist_free(aux[c]);
5246 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
5247 
5248 		return;
5249 	}
5250 
5251 	/*
5252 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
5253 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
5254 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
5255 	 * so this is sufficient to ensure mutual exclusion.
5256 	 */
5257 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5258 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5259 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
5260 
5261 	if (vd == rvd) {
5262 		for (c = 0; c < rvd->vdev_children; c++)
5263 			vdev_config_dirty(rvd->vdev_child[c]);
5264 	} else {
5265 		ASSERT(vd == vd->vdev_top);
5266 
5267 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
5268 		    vdev_is_concrete(vd)) {
5269 			list_insert_head(&spa->spa_config_dirty_list, vd);
5270 		}
5271 	}
5272 }
5273 
5274 void
5275 vdev_config_clean(vdev_t *vd)
5276 {
5277 	spa_t *spa = vd->vdev_spa;
5278 
5279 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5280 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5281 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
5282 
5283 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
5284 	list_remove(&spa->spa_config_dirty_list, vd);
5285 }
5286 
5287 /*
5288  * Mark a top-level vdev's state as dirty, so that the next pass of
5289  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
5290  * the state changes from larger config changes because they require
5291  * much less locking, and are often needed for administrative actions.
5292  */
5293 void
5294 vdev_state_dirty(vdev_t *vd)
5295 {
5296 	spa_t *spa = vd->vdev_spa;
5297 
5298 	ASSERT(spa_writeable(spa));
5299 	ASSERT(vd == vd->vdev_top);
5300 
5301 	/*
5302 	 * The state list is protected by the SCL_STATE lock.  The caller
5303 	 * must either hold SCL_STATE as writer, or must be the sync thread
5304 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
5305 	 * so this is sufficient to ensure mutual exclusion.
5306 	 */
5307 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5308 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5309 	    spa_config_held(spa, SCL_STATE, RW_READER)));
5310 
5311 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
5312 	    vdev_is_concrete(vd))
5313 		list_insert_head(&spa->spa_state_dirty_list, vd);
5314 }
5315 
5316 void
5317 vdev_state_clean(vdev_t *vd)
5318 {
5319 	spa_t *spa = vd->vdev_spa;
5320 
5321 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5322 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5323 	    spa_config_held(spa, SCL_STATE, RW_READER)));
5324 
5325 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
5326 	list_remove(&spa->spa_state_dirty_list, vd);
5327 }
5328 
5329 /*
5330  * Propagate vdev state up from children to parent.
5331  */
5332 void
5333 vdev_propagate_state(vdev_t *vd)
5334 {
5335 	spa_t *spa = vd->vdev_spa;
5336 	vdev_t *rvd = spa->spa_root_vdev;
5337 	int degraded = 0, faulted = 0;
5338 	int corrupted = 0;
5339 	vdev_t *child;
5340 
5341 	if (vd->vdev_children > 0) {
5342 		for (int c = 0; c < vd->vdev_children; c++) {
5343 			child = vd->vdev_child[c];
5344 
5345 			/*
5346 			 * Don't factor holes or indirect vdevs into the
5347 			 * decision.
5348 			 */
5349 			if (!vdev_is_concrete(child))
5350 				continue;
5351 
5352 			if (!vdev_readable(child) ||
5353 			    (!vdev_writeable(child) && spa_writeable(spa))) {
5354 				/*
5355 				 * Root special: if there is a top-level log
5356 				 * device, treat the root vdev as if it were
5357 				 * degraded.
5358 				 */
5359 				if (child->vdev_islog && vd == rvd)
5360 					degraded++;
5361 				else
5362 					faulted++;
5363 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
5364 				degraded++;
5365 			}
5366 
5367 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
5368 				corrupted++;
5369 		}
5370 
5371 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
5372 
5373 		/*
5374 		 * Root special: if there is a top-level vdev that cannot be
5375 		 * opened due to corrupted metadata, then propagate the root
5376 		 * vdev's aux state as 'corrupt' rather than 'insufficient
5377 		 * replicas'.
5378 		 */
5379 		if (corrupted && vd == rvd &&
5380 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
5381 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
5382 			    VDEV_AUX_CORRUPT_DATA);
5383 	}
5384 
5385 	if (vd->vdev_parent)
5386 		vdev_propagate_state(vd->vdev_parent);
5387 }
5388 
5389 /*
5390  * Set a vdev's state.  If this is during an open, we don't update the parent
5391  * state, because we're in the process of opening children depth-first.
5392  * Otherwise, we propagate the change to the parent.
5393  *
5394  * If this routine places a device in a faulted state, an appropriate ereport is
5395  * generated.
5396  */
5397 void
5398 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
5399 {
5400 	uint64_t save_state;
5401 	spa_t *spa = vd->vdev_spa;
5402 
5403 	if (state == vd->vdev_state) {
5404 		/*
5405 		 * Since vdev_offline() code path is already in an offline
5406 		 * state we can miss a statechange event to OFFLINE. Check
5407 		 * the previous state to catch this condition.
5408 		 */
5409 		if (vd->vdev_ops->vdev_op_leaf &&
5410 		    (state == VDEV_STATE_OFFLINE) &&
5411 		    (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
5412 			/* post an offline state change */
5413 			zfs_post_state_change(spa, vd, vd->vdev_prevstate);
5414 		}
5415 		vd->vdev_stat.vs_aux = aux;
5416 		return;
5417 	}
5418 
5419 	save_state = vd->vdev_state;
5420 
5421 	vd->vdev_state = state;
5422 	vd->vdev_stat.vs_aux = aux;
5423 
5424 	/*
5425 	 * If we are setting the vdev state to anything but an open state, then
5426 	 * always close the underlying device unless the device has requested
5427 	 * a delayed close (i.e. we're about to remove or fault the device).
5428 	 * Otherwise, we keep accessible but invalid devices open forever.
5429 	 * We don't call vdev_close() itself, because that implies some extra
5430 	 * checks (offline, etc) that we don't want here.  This is limited to
5431 	 * leaf devices, because otherwise closing the device will affect other
5432 	 * children.
5433 	 */
5434 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
5435 	    vd->vdev_ops->vdev_op_leaf)
5436 		vd->vdev_ops->vdev_op_close(vd);
5437 
5438 	if (vd->vdev_removed &&
5439 	    state == VDEV_STATE_CANT_OPEN &&
5440 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
5441 		/*
5442 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
5443 		 * device was previously marked removed and someone attempted to
5444 		 * reopen it.  If this failed due to a nonexistent device, then
5445 		 * keep the device in the REMOVED state.  We also let this be if
5446 		 * it is one of our special test online cases, which is only
5447 		 * attempting to online the device and shouldn't generate an FMA
5448 		 * fault.
5449 		 */
5450 		vd->vdev_state = VDEV_STATE_REMOVED;
5451 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
5452 	} else if (state == VDEV_STATE_REMOVED) {
5453 		vd->vdev_removed = B_TRUE;
5454 	} else if (state == VDEV_STATE_CANT_OPEN) {
5455 		/*
5456 		 * If we fail to open a vdev during an import or recovery, we
5457 		 * mark it as "not available", which signifies that it was
5458 		 * never there to begin with.  Failure to open such a device
5459 		 * is not considered an error.
5460 		 */
5461 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5462 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5463 		    vd->vdev_ops->vdev_op_leaf)
5464 			vd->vdev_not_present = 1;
5465 
5466 		/*
5467 		 * Post the appropriate ereport.  If the 'prevstate' field is
5468 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5469 		 * that this is part of a vdev_reopen().  In this case, we don't
5470 		 * want to post the ereport if the device was already in the
5471 		 * CANT_OPEN state beforehand.
5472 		 *
5473 		 * If the 'checkremove' flag is set, then this is an attempt to
5474 		 * online the device in response to an insertion event.  If we
5475 		 * hit this case, then we have detected an insertion event for a
5476 		 * faulted or offline device that wasn't in the removed state.
5477 		 * In this scenario, we don't post an ereport because we are
5478 		 * about to replace the device, or attempt an online with
5479 		 * vdev_forcefault, which will generate the fault for us.
5480 		 */
5481 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5482 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
5483 		    vd != spa->spa_root_vdev) {
5484 			const char *class;
5485 
5486 			switch (aux) {
5487 			case VDEV_AUX_OPEN_FAILED:
5488 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5489 				break;
5490 			case VDEV_AUX_CORRUPT_DATA:
5491 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5492 				break;
5493 			case VDEV_AUX_NO_REPLICAS:
5494 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5495 				break;
5496 			case VDEV_AUX_BAD_GUID_SUM:
5497 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5498 				break;
5499 			case VDEV_AUX_TOO_SMALL:
5500 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5501 				break;
5502 			case VDEV_AUX_BAD_LABEL:
5503 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5504 				break;
5505 			case VDEV_AUX_BAD_ASHIFT:
5506 				class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5507 				break;
5508 			default:
5509 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5510 			}
5511 
5512 			(void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5513 			    save_state);
5514 		}
5515 
5516 		/* Erase any notion of persistent removed state */
5517 		vd->vdev_removed = B_FALSE;
5518 	} else {
5519 		vd->vdev_removed = B_FALSE;
5520 	}
5521 
5522 	/*
5523 	 * Notify ZED of any significant state-change on a leaf vdev.
5524 	 *
5525 	 */
5526 	if (vd->vdev_ops->vdev_op_leaf) {
5527 		/* preserve original state from a vdev_reopen() */
5528 		if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5529 		    (vd->vdev_prevstate != vd->vdev_state) &&
5530 		    (save_state <= VDEV_STATE_CLOSED))
5531 			save_state = vd->vdev_prevstate;
5532 
5533 		/* filter out state change due to initial vdev_open */
5534 		if (save_state > VDEV_STATE_CLOSED)
5535 			zfs_post_state_change(spa, vd, save_state);
5536 	}
5537 
5538 	if (!isopen && vd->vdev_parent)
5539 		vdev_propagate_state(vd->vdev_parent);
5540 }
5541 
5542 boolean_t
5543 vdev_children_are_offline(vdev_t *vd)
5544 {
5545 	ASSERT(!vd->vdev_ops->vdev_op_leaf);
5546 
5547 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
5548 		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5549 			return (B_FALSE);
5550 	}
5551 
5552 	return (B_TRUE);
5553 }
5554 
5555 /*
5556  * Check the vdev configuration to ensure that it's capable of supporting
5557  * a root pool. We do not support partial configuration.
5558  */
5559 boolean_t
5560 vdev_is_bootable(vdev_t *vd)
5561 {
5562 	if (!vd->vdev_ops->vdev_op_leaf) {
5563 		const char *vdev_type = vd->vdev_ops->vdev_op_type;
5564 
5565 		if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
5566 			return (B_FALSE);
5567 	}
5568 
5569 	for (int c = 0; c < vd->vdev_children; c++) {
5570 		if (!vdev_is_bootable(vd->vdev_child[c]))
5571 			return (B_FALSE);
5572 	}
5573 	return (B_TRUE);
5574 }
5575 
5576 boolean_t
5577 vdev_is_concrete(vdev_t *vd)
5578 {
5579 	vdev_ops_t *ops = vd->vdev_ops;
5580 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5581 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5582 		return (B_FALSE);
5583 	} else {
5584 		return (B_TRUE);
5585 	}
5586 }
5587 
5588 /*
5589  * Determine if a log device has valid content.  If the vdev was
5590  * removed or faulted in the MOS config then we know that
5591  * the content on the log device has already been written to the pool.
5592  */
5593 boolean_t
5594 vdev_log_state_valid(vdev_t *vd)
5595 {
5596 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5597 	    !vd->vdev_removed)
5598 		return (B_TRUE);
5599 
5600 	for (int c = 0; c < vd->vdev_children; c++)
5601 		if (vdev_log_state_valid(vd->vdev_child[c]))
5602 			return (B_TRUE);
5603 
5604 	return (B_FALSE);
5605 }
5606 
5607 /*
5608  * Expand a vdev if possible.
5609  */
5610 void
5611 vdev_expand(vdev_t *vd, uint64_t txg)
5612 {
5613 	ASSERT(vd->vdev_top == vd);
5614 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5615 	ASSERT(vdev_is_concrete(vd));
5616 
5617 	vdev_set_deflate_ratio(vd);
5618 
5619 	if ((vd->vdev_spa->spa_raidz_expand == NULL ||
5620 	    vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) &&
5621 	    (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5622 	    vdev_is_concrete(vd)) {
5623 		vdev_metaslab_group_create(vd);
5624 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
5625 		vdev_config_dirty(vd);
5626 	}
5627 }
5628 
5629 /*
5630  * Split a vdev.
5631  */
5632 void
5633 vdev_split(vdev_t *vd)
5634 {
5635 	vdev_t *cvd, *pvd = vd->vdev_parent;
5636 
5637 	VERIFY3U(pvd->vdev_children, >, 1);
5638 
5639 	vdev_remove_child(pvd, vd);
5640 	vdev_compact_children(pvd);
5641 
5642 	ASSERT3P(pvd->vdev_child, !=, NULL);
5643 
5644 	cvd = pvd->vdev_child[0];
5645 	if (pvd->vdev_children == 1) {
5646 		vdev_remove_parent(cvd);
5647 		cvd->vdev_splitting = B_TRUE;
5648 	}
5649 	vdev_propagate_state(cvd);
5650 }
5651 
5652 void
5653 vdev_deadman(vdev_t *vd, const char *tag)
5654 {
5655 	for (int c = 0; c < vd->vdev_children; c++) {
5656 		vdev_t *cvd = vd->vdev_child[c];
5657 
5658 		vdev_deadman(cvd, tag);
5659 	}
5660 
5661 	if (vd->vdev_ops->vdev_op_leaf) {
5662 		vdev_queue_t *vq = &vd->vdev_queue;
5663 
5664 		mutex_enter(&vq->vq_lock);
5665 		if (vq->vq_active > 0) {
5666 			spa_t *spa = vd->vdev_spa;
5667 			zio_t *fio;
5668 			uint64_t delta;
5669 
5670 			zfs_dbgmsg("slow vdev: %s has %u active IOs",
5671 			    vd->vdev_path, vq->vq_active);
5672 
5673 			/*
5674 			 * Look at the head of all the pending queues,
5675 			 * if any I/O has been outstanding for longer than
5676 			 * the spa_deadman_synctime invoke the deadman logic.
5677 			 */
5678 			fio = list_head(&vq->vq_active_list);
5679 			delta = gethrtime() - fio->io_timestamp;
5680 			if (delta > spa_deadman_synctime(spa))
5681 				zio_deadman(fio, tag);
5682 		}
5683 		mutex_exit(&vq->vq_lock);
5684 	}
5685 }
5686 
5687 void
5688 vdev_defer_resilver(vdev_t *vd)
5689 {
5690 	ASSERT(vd->vdev_ops->vdev_op_leaf);
5691 
5692 	vd->vdev_resilver_deferred = B_TRUE;
5693 	vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5694 }
5695 
5696 /*
5697  * Clears the resilver deferred flag on all leaf devs under vd. Returns
5698  * B_TRUE if we have devices that need to be resilvered and are available to
5699  * accept resilver I/Os.
5700  */
5701 boolean_t
5702 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5703 {
5704 	boolean_t resilver_needed = B_FALSE;
5705 	spa_t *spa = vd->vdev_spa;
5706 
5707 	for (int c = 0; c < vd->vdev_children; c++) {
5708 		vdev_t *cvd = vd->vdev_child[c];
5709 		resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5710 	}
5711 
5712 	if (vd == spa->spa_root_vdev &&
5713 	    spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5714 		spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5715 		vdev_config_dirty(vd);
5716 		spa->spa_resilver_deferred = B_FALSE;
5717 		return (resilver_needed);
5718 	}
5719 
5720 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5721 	    !vd->vdev_ops->vdev_op_leaf)
5722 		return (resilver_needed);
5723 
5724 	vd->vdev_resilver_deferred = B_FALSE;
5725 
5726 	return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5727 	    vdev_resilver_needed(vd, NULL, NULL));
5728 }
5729 
5730 boolean_t
5731 vdev_xlate_is_empty(zfs_range_seg64_t *rs)
5732 {
5733 	return (rs->rs_start == rs->rs_end);
5734 }
5735 
5736 /*
5737  * Translate a logical range to the first contiguous physical range for the
5738  * specified vdev_t.  This function is initially called with a leaf vdev and
5739  * will walk each parent vdev until it reaches a top-level vdev. Once the
5740  * top-level is reached the physical range is initialized and the recursive
5741  * function begins to unwind. As it unwinds it calls the parent's vdev
5742  * specific translation function to do the real conversion.
5743  */
5744 void
5745 vdev_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
5746     zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs)
5747 {
5748 	/*
5749 	 * Walk up the vdev tree
5750 	 */
5751 	if (vd != vd->vdev_top) {
5752 		vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5753 		    remain_rs);
5754 	} else {
5755 		/*
5756 		 * We've reached the top-level vdev, initialize the physical
5757 		 * range to the logical range and set an empty remaining
5758 		 * range then start to unwind.
5759 		 */
5760 		physical_rs->rs_start = logical_rs->rs_start;
5761 		physical_rs->rs_end = logical_rs->rs_end;
5762 
5763 		remain_rs->rs_start = logical_rs->rs_start;
5764 		remain_rs->rs_end = logical_rs->rs_start;
5765 
5766 		return;
5767 	}
5768 
5769 	vdev_t *pvd = vd->vdev_parent;
5770 	ASSERT3P(pvd, !=, NULL);
5771 	ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5772 
5773 	/*
5774 	 * As this recursive function unwinds, translate the logical
5775 	 * range into its physical and any remaining components by calling
5776 	 * the vdev specific translate function.
5777 	 */
5778 	zfs_range_seg64_t intermediate = { 0 };
5779 	pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5780 
5781 	physical_rs->rs_start = intermediate.rs_start;
5782 	physical_rs->rs_end = intermediate.rs_end;
5783 }
5784 
5785 void
5786 vdev_xlate_walk(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
5787     vdev_xlate_func_t *func, void *arg)
5788 {
5789 	zfs_range_seg64_t iter_rs = *logical_rs;
5790 	zfs_range_seg64_t physical_rs;
5791 	zfs_range_seg64_t remain_rs;
5792 
5793 	while (!vdev_xlate_is_empty(&iter_rs)) {
5794 
5795 		vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5796 
5797 		/*
5798 		 * With raidz and dRAID, it's possible that the logical range
5799 		 * does not live on this leaf vdev. Only when there is a non-
5800 		 * zero physical size call the provided function.
5801 		 */
5802 		if (!vdev_xlate_is_empty(&physical_rs))
5803 			func(arg, &physical_rs);
5804 
5805 		iter_rs = remain_rs;
5806 	}
5807 }
5808 
5809 static char *
5810 vdev_name(vdev_t *vd, char *buf, int buflen)
5811 {
5812 	if (vd->vdev_path == NULL) {
5813 		if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) {
5814 			strlcpy(buf, vd->vdev_spa->spa_name, buflen);
5815 		} else if (!vd->vdev_ops->vdev_op_leaf) {
5816 			snprintf(buf, buflen, "%s-%llu",
5817 			    vd->vdev_ops->vdev_op_type,
5818 			    (u_longlong_t)vd->vdev_id);
5819 		}
5820 	} else {
5821 		strlcpy(buf, vd->vdev_path, buflen);
5822 	}
5823 	return (buf);
5824 }
5825 
5826 /*
5827  * Look at the vdev tree and determine whether any devices are currently being
5828  * replaced.
5829  */
5830 boolean_t
5831 vdev_replace_in_progress(vdev_t *vdev)
5832 {
5833 	ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5834 
5835 	if (vdev->vdev_ops == &vdev_replacing_ops)
5836 		return (B_TRUE);
5837 
5838 	/*
5839 	 * A 'spare' vdev indicates that we have a replace in progress, unless
5840 	 * it has exactly two children, and the second, the hot spare, has
5841 	 * finished being resilvered.
5842 	 */
5843 	if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5844 	    !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5845 		return (B_TRUE);
5846 
5847 	for (int i = 0; i < vdev->vdev_children; i++) {
5848 		if (vdev_replace_in_progress(vdev->vdev_child[i]))
5849 			return (B_TRUE);
5850 	}
5851 
5852 	return (B_FALSE);
5853 }
5854 
5855 /*
5856  * Add a (source=src, propname=propval) list to an nvlist.
5857  */
5858 static void
5859 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval,
5860     uint64_t intval, zprop_source_t src)
5861 {
5862 	nvlist_t *propval;
5863 
5864 	propval = fnvlist_alloc();
5865 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
5866 
5867 	if (strval != NULL)
5868 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
5869 	else
5870 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
5871 
5872 	fnvlist_add_nvlist(nvl, propname, propval);
5873 	nvlist_free(propval);
5874 }
5875 
5876 static void
5877 vdev_props_set_sync(void *arg, dmu_tx_t *tx)
5878 {
5879 	vdev_t *vd;
5880 	nvlist_t *nvp = arg;
5881 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5882 	objset_t *mos = spa->spa_meta_objset;
5883 	nvpair_t *elem = NULL;
5884 	uint64_t vdev_guid;
5885 	uint64_t objid;
5886 	nvlist_t *nvprops;
5887 
5888 	vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV);
5889 	nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS);
5890 	vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE);
5891 
5892 	/* this vdev could get removed while waiting for this sync task */
5893 	if (vd == NULL)
5894 		return;
5895 
5896 	/*
5897 	 * Set vdev property values in the vdev props mos object.
5898 	 */
5899 	if (vd->vdev_root_zap != 0) {
5900 		objid = vd->vdev_root_zap;
5901 	} else if (vd->vdev_top_zap != 0) {
5902 		objid = vd->vdev_top_zap;
5903 	} else if (vd->vdev_leaf_zap != 0) {
5904 		objid = vd->vdev_leaf_zap;
5905 	} else {
5906 		panic("unexpected vdev type");
5907 	}
5908 
5909 	mutex_enter(&spa->spa_props_lock);
5910 
5911 	while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5912 		uint64_t intval;
5913 		const char *strval;
5914 		vdev_prop_t prop;
5915 		const char *propname = nvpair_name(elem);
5916 		zprop_type_t proptype;
5917 
5918 		switch (prop = vdev_name_to_prop(propname)) {
5919 		case VDEV_PROP_USERPROP:
5920 			if (vdev_prop_user(propname)) {
5921 				strval = fnvpair_value_string(elem);
5922 				if (strlen(strval) == 0) {
5923 					/* remove the property if value == "" */
5924 					(void) zap_remove(mos, objid, propname,
5925 					    tx);
5926 				} else {
5927 					VERIFY0(zap_update(mos, objid, propname,
5928 					    1, strlen(strval) + 1, strval, tx));
5929 				}
5930 				spa_history_log_internal(spa, "vdev set", tx,
5931 				    "vdev_guid=%llu: %s=%s",
5932 				    (u_longlong_t)vdev_guid, nvpair_name(elem),
5933 				    strval);
5934 			}
5935 			break;
5936 		default:
5937 			/* normalize the property name */
5938 			propname = vdev_prop_to_name(prop);
5939 			proptype = vdev_prop_get_type(prop);
5940 
5941 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5942 				ASSERT(proptype == PROP_TYPE_STRING);
5943 				strval = fnvpair_value_string(elem);
5944 				VERIFY0(zap_update(mos, objid, propname,
5945 				    1, strlen(strval) + 1, strval, tx));
5946 				spa_history_log_internal(spa, "vdev set", tx,
5947 				    "vdev_guid=%llu: %s=%s",
5948 				    (u_longlong_t)vdev_guid, nvpair_name(elem),
5949 				    strval);
5950 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5951 				intval = fnvpair_value_uint64(elem);
5952 
5953 				if (proptype == PROP_TYPE_INDEX) {
5954 					const char *unused;
5955 					VERIFY0(vdev_prop_index_to_string(
5956 					    prop, intval, &unused));
5957 				}
5958 				VERIFY0(zap_update(mos, objid, propname,
5959 				    sizeof (uint64_t), 1, &intval, tx));
5960 				spa_history_log_internal(spa, "vdev set", tx,
5961 				    "vdev_guid=%llu: %s=%lld",
5962 				    (u_longlong_t)vdev_guid,
5963 				    nvpair_name(elem), (longlong_t)intval);
5964 			} else {
5965 				panic("invalid vdev property type %u",
5966 				    nvpair_type(elem));
5967 			}
5968 		}
5969 
5970 	}
5971 
5972 	mutex_exit(&spa->spa_props_lock);
5973 }
5974 
5975 int
5976 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
5977 {
5978 	spa_t *spa = vd->vdev_spa;
5979 	nvpair_t *elem = NULL;
5980 	uint64_t vdev_guid;
5981 	nvlist_t *nvprops;
5982 	int error = 0;
5983 
5984 	ASSERT(vd != NULL);
5985 
5986 	/* Check that vdev has a zap we can use */
5987 	if (vd->vdev_root_zap == 0 &&
5988 	    vd->vdev_top_zap == 0 &&
5989 	    vd->vdev_leaf_zap == 0)
5990 		return (SET_ERROR(EINVAL));
5991 
5992 	if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV,
5993 	    &vdev_guid) != 0)
5994 		return (SET_ERROR(EINVAL));
5995 
5996 	if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS,
5997 	    &nvprops) != 0)
5998 		return (SET_ERROR(EINVAL));
5999 
6000 	if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL)
6001 		return (SET_ERROR(EINVAL));
6002 
6003 	while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
6004 		const char *propname = nvpair_name(elem);
6005 		vdev_prop_t prop = vdev_name_to_prop(propname);
6006 		uint64_t intval = 0;
6007 		const char *strval = NULL;
6008 
6009 		if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) {
6010 			error = EINVAL;
6011 			goto end;
6012 		}
6013 
6014 		if (prop != VDEV_PROP_USERPROP && vdev_prop_readonly(prop)) {
6015 			error = EROFS;
6016 			goto end;
6017 		}
6018 
6019 		/* Special Processing */
6020 		switch (prop) {
6021 		case VDEV_PROP_PATH:
6022 			if (vd->vdev_path == NULL) {
6023 				error = EROFS;
6024 				break;
6025 			}
6026 			if (nvpair_value_string(elem, &strval) != 0) {
6027 				error = EINVAL;
6028 				break;
6029 			}
6030 			/* New path must start with /dev/ */
6031 			if (strncmp(strval, "/dev/", 5)) {
6032 				error = EINVAL;
6033 				break;
6034 			}
6035 			error = spa_vdev_setpath(spa, vdev_guid, strval);
6036 			break;
6037 		case VDEV_PROP_ALLOCATING:
6038 			if (nvpair_value_uint64(elem, &intval) != 0) {
6039 				error = EINVAL;
6040 				break;
6041 			}
6042 			if (intval != vd->vdev_noalloc)
6043 				break;
6044 			if (intval == 0)
6045 				error = spa_vdev_noalloc(spa, vdev_guid);
6046 			else
6047 				error = spa_vdev_alloc(spa, vdev_guid);
6048 			break;
6049 		case VDEV_PROP_FAILFAST:
6050 			if (nvpair_value_uint64(elem, &intval) != 0) {
6051 				error = EINVAL;
6052 				break;
6053 			}
6054 			vd->vdev_failfast = intval & 1;
6055 			break;
6056 		case VDEV_PROP_CHECKSUM_N:
6057 			if (nvpair_value_uint64(elem, &intval) != 0) {
6058 				error = EINVAL;
6059 				break;
6060 			}
6061 			vd->vdev_checksum_n = intval;
6062 			break;
6063 		case VDEV_PROP_CHECKSUM_T:
6064 			if (nvpair_value_uint64(elem, &intval) != 0) {
6065 				error = EINVAL;
6066 				break;
6067 			}
6068 			vd->vdev_checksum_t = intval;
6069 			break;
6070 		case VDEV_PROP_IO_N:
6071 			if (nvpair_value_uint64(elem, &intval) != 0) {
6072 				error = EINVAL;
6073 				break;
6074 			}
6075 			vd->vdev_io_n = intval;
6076 			break;
6077 		case VDEV_PROP_IO_T:
6078 			if (nvpair_value_uint64(elem, &intval) != 0) {
6079 				error = EINVAL;
6080 				break;
6081 			}
6082 			vd->vdev_io_t = intval;
6083 			break;
6084 		case VDEV_PROP_SLOW_IO_N:
6085 			if (nvpair_value_uint64(elem, &intval) != 0) {
6086 				error = EINVAL;
6087 				break;
6088 			}
6089 			vd->vdev_slow_io_n = intval;
6090 			break;
6091 		case VDEV_PROP_SLOW_IO_T:
6092 			if (nvpair_value_uint64(elem, &intval) != 0) {
6093 				error = EINVAL;
6094 				break;
6095 			}
6096 			vd->vdev_slow_io_t = intval;
6097 			break;
6098 		default:
6099 			/* Most processing is done in vdev_props_set_sync */
6100 			break;
6101 		}
6102 end:
6103 		if (error != 0) {
6104 			intval = error;
6105 			vdev_prop_add_list(outnvl, propname, strval, intval, 0);
6106 			return (error);
6107 		}
6108 	}
6109 
6110 	return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync,
6111 	    innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED));
6112 }
6113 
6114 int
6115 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
6116 {
6117 	spa_t *spa = vd->vdev_spa;
6118 	objset_t *mos = spa->spa_meta_objset;
6119 	int err = 0;
6120 	uint64_t objid;
6121 	uint64_t vdev_guid;
6122 	nvpair_t *elem = NULL;
6123 	nvlist_t *nvprops = NULL;
6124 	uint64_t intval = 0;
6125 	char *strval = NULL;
6126 	const char *propname = NULL;
6127 	vdev_prop_t prop;
6128 
6129 	ASSERT(vd != NULL);
6130 	ASSERT(mos != NULL);
6131 
6132 	if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV,
6133 	    &vdev_guid) != 0)
6134 		return (SET_ERROR(EINVAL));
6135 
6136 	nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops);
6137 
6138 	if (vd->vdev_root_zap != 0) {
6139 		objid = vd->vdev_root_zap;
6140 	} else if (vd->vdev_top_zap != 0) {
6141 		objid = vd->vdev_top_zap;
6142 	} else if (vd->vdev_leaf_zap != 0) {
6143 		objid = vd->vdev_leaf_zap;
6144 	} else {
6145 		return (SET_ERROR(EINVAL));
6146 	}
6147 	ASSERT(objid != 0);
6148 
6149 	mutex_enter(&spa->spa_props_lock);
6150 
6151 	if (nvprops != NULL) {
6152 		char namebuf[64] = { 0 };
6153 
6154 		while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
6155 			intval = 0;
6156 			strval = NULL;
6157 			propname = nvpair_name(elem);
6158 			prop = vdev_name_to_prop(propname);
6159 			zprop_source_t src = ZPROP_SRC_DEFAULT;
6160 			uint64_t integer_size, num_integers;
6161 
6162 			switch (prop) {
6163 			/* Special Read-only Properties */
6164 			case VDEV_PROP_NAME:
6165 				strval = vdev_name(vd, namebuf,
6166 				    sizeof (namebuf));
6167 				if (strval == NULL)
6168 					continue;
6169 				vdev_prop_add_list(outnvl, propname, strval, 0,
6170 				    ZPROP_SRC_NONE);
6171 				continue;
6172 			case VDEV_PROP_CAPACITY:
6173 				/* percent used */
6174 				intval = (vd->vdev_stat.vs_dspace == 0) ? 0 :
6175 				    (vd->vdev_stat.vs_alloc * 100 /
6176 				    vd->vdev_stat.vs_dspace);
6177 				vdev_prop_add_list(outnvl, propname, NULL,
6178 				    intval, ZPROP_SRC_NONE);
6179 				continue;
6180 			case VDEV_PROP_STATE:
6181 				vdev_prop_add_list(outnvl, propname, NULL,
6182 				    vd->vdev_state, ZPROP_SRC_NONE);
6183 				continue;
6184 			case VDEV_PROP_GUID:
6185 				vdev_prop_add_list(outnvl, propname, NULL,
6186 				    vd->vdev_guid, ZPROP_SRC_NONE);
6187 				continue;
6188 			case VDEV_PROP_ASIZE:
6189 				vdev_prop_add_list(outnvl, propname, NULL,
6190 				    vd->vdev_asize, ZPROP_SRC_NONE);
6191 				continue;
6192 			case VDEV_PROP_PSIZE:
6193 				vdev_prop_add_list(outnvl, propname, NULL,
6194 				    vd->vdev_psize, ZPROP_SRC_NONE);
6195 				continue;
6196 			case VDEV_PROP_ASHIFT:
6197 				vdev_prop_add_list(outnvl, propname, NULL,
6198 				    vd->vdev_ashift, ZPROP_SRC_NONE);
6199 				continue;
6200 			case VDEV_PROP_SIZE:
6201 				vdev_prop_add_list(outnvl, propname, NULL,
6202 				    vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE);
6203 				continue;
6204 			case VDEV_PROP_FREE:
6205 				vdev_prop_add_list(outnvl, propname, NULL,
6206 				    vd->vdev_stat.vs_dspace -
6207 				    vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6208 				continue;
6209 			case VDEV_PROP_ALLOCATED:
6210 				vdev_prop_add_list(outnvl, propname, NULL,
6211 				    vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6212 				continue;
6213 			case VDEV_PROP_EXPANDSZ:
6214 				vdev_prop_add_list(outnvl, propname, NULL,
6215 				    vd->vdev_stat.vs_esize, ZPROP_SRC_NONE);
6216 				continue;
6217 			case VDEV_PROP_FRAGMENTATION:
6218 				vdev_prop_add_list(outnvl, propname, NULL,
6219 				    vd->vdev_stat.vs_fragmentation,
6220 				    ZPROP_SRC_NONE);
6221 				continue;
6222 			case VDEV_PROP_PARITY:
6223 				vdev_prop_add_list(outnvl, propname, NULL,
6224 				    vdev_get_nparity(vd), ZPROP_SRC_NONE);
6225 				continue;
6226 			case VDEV_PROP_PATH:
6227 				if (vd->vdev_path == NULL)
6228 					continue;
6229 				vdev_prop_add_list(outnvl, propname,
6230 				    vd->vdev_path, 0, ZPROP_SRC_NONE);
6231 				continue;
6232 			case VDEV_PROP_DEVID:
6233 				if (vd->vdev_devid == NULL)
6234 					continue;
6235 				vdev_prop_add_list(outnvl, propname,
6236 				    vd->vdev_devid, 0, ZPROP_SRC_NONE);
6237 				continue;
6238 			case VDEV_PROP_PHYS_PATH:
6239 				if (vd->vdev_physpath == NULL)
6240 					continue;
6241 				vdev_prop_add_list(outnvl, propname,
6242 				    vd->vdev_physpath, 0, ZPROP_SRC_NONE);
6243 				continue;
6244 			case VDEV_PROP_ENC_PATH:
6245 				if (vd->vdev_enc_sysfs_path == NULL)
6246 					continue;
6247 				vdev_prop_add_list(outnvl, propname,
6248 				    vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE);
6249 				continue;
6250 			case VDEV_PROP_FRU:
6251 				if (vd->vdev_fru == NULL)
6252 					continue;
6253 				vdev_prop_add_list(outnvl, propname,
6254 				    vd->vdev_fru, 0, ZPROP_SRC_NONE);
6255 				continue;
6256 			case VDEV_PROP_PARENT:
6257 				if (vd->vdev_parent != NULL) {
6258 					strval = vdev_name(vd->vdev_parent,
6259 					    namebuf, sizeof (namebuf));
6260 					vdev_prop_add_list(outnvl, propname,
6261 					    strval, 0, ZPROP_SRC_NONE);
6262 				}
6263 				continue;
6264 			case VDEV_PROP_CHILDREN:
6265 				if (vd->vdev_children > 0)
6266 					strval = kmem_zalloc(ZAP_MAXVALUELEN,
6267 					    KM_SLEEP);
6268 				for (uint64_t i = 0; i < vd->vdev_children;
6269 				    i++) {
6270 					const char *vname;
6271 
6272 					vname = vdev_name(vd->vdev_child[i],
6273 					    namebuf, sizeof (namebuf));
6274 					if (vname == NULL)
6275 						vname = "(unknown)";
6276 					if (strlen(strval) > 0)
6277 						strlcat(strval, ",",
6278 						    ZAP_MAXVALUELEN);
6279 					strlcat(strval, vname, ZAP_MAXVALUELEN);
6280 				}
6281 				if (strval != NULL) {
6282 					vdev_prop_add_list(outnvl, propname,
6283 					    strval, 0, ZPROP_SRC_NONE);
6284 					kmem_free(strval, ZAP_MAXVALUELEN);
6285 				}
6286 				continue;
6287 			case VDEV_PROP_NUMCHILDREN:
6288 				vdev_prop_add_list(outnvl, propname, NULL,
6289 				    vd->vdev_children, ZPROP_SRC_NONE);
6290 				continue;
6291 			case VDEV_PROP_READ_ERRORS:
6292 				vdev_prop_add_list(outnvl, propname, NULL,
6293 				    vd->vdev_stat.vs_read_errors,
6294 				    ZPROP_SRC_NONE);
6295 				continue;
6296 			case VDEV_PROP_WRITE_ERRORS:
6297 				vdev_prop_add_list(outnvl, propname, NULL,
6298 				    vd->vdev_stat.vs_write_errors,
6299 				    ZPROP_SRC_NONE);
6300 				continue;
6301 			case VDEV_PROP_CHECKSUM_ERRORS:
6302 				vdev_prop_add_list(outnvl, propname, NULL,
6303 				    vd->vdev_stat.vs_checksum_errors,
6304 				    ZPROP_SRC_NONE);
6305 				continue;
6306 			case VDEV_PROP_INITIALIZE_ERRORS:
6307 				vdev_prop_add_list(outnvl, propname, NULL,
6308 				    vd->vdev_stat.vs_initialize_errors,
6309 				    ZPROP_SRC_NONE);
6310 				continue;
6311 			case VDEV_PROP_TRIM_ERRORS:
6312 				vdev_prop_add_list(outnvl, propname, NULL,
6313 				    vd->vdev_stat.vs_trim_errors,
6314 				    ZPROP_SRC_NONE);
6315 				continue;
6316 			case VDEV_PROP_SLOW_IOS:
6317 				vdev_prop_add_list(outnvl, propname, NULL,
6318 				    vd->vdev_stat.vs_slow_ios,
6319 				    ZPROP_SRC_NONE);
6320 				continue;
6321 			case VDEV_PROP_OPS_NULL:
6322 				vdev_prop_add_list(outnvl, propname, NULL,
6323 				    vd->vdev_stat.vs_ops[ZIO_TYPE_NULL],
6324 				    ZPROP_SRC_NONE);
6325 				continue;
6326 			case VDEV_PROP_OPS_READ:
6327 				vdev_prop_add_list(outnvl, propname, NULL,
6328 				    vd->vdev_stat.vs_ops[ZIO_TYPE_READ],
6329 				    ZPROP_SRC_NONE);
6330 				continue;
6331 			case VDEV_PROP_OPS_WRITE:
6332 				vdev_prop_add_list(outnvl, propname, NULL,
6333 				    vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE],
6334 				    ZPROP_SRC_NONE);
6335 				continue;
6336 			case VDEV_PROP_OPS_FREE:
6337 				vdev_prop_add_list(outnvl, propname, NULL,
6338 				    vd->vdev_stat.vs_ops[ZIO_TYPE_FREE],
6339 				    ZPROP_SRC_NONE);
6340 				continue;
6341 			case VDEV_PROP_OPS_CLAIM:
6342 				vdev_prop_add_list(outnvl, propname, NULL,
6343 				    vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM],
6344 				    ZPROP_SRC_NONE);
6345 				continue;
6346 			case VDEV_PROP_OPS_TRIM:
6347 				/*
6348 				 * TRIM ops and bytes are reported to user
6349 				 * space as ZIO_TYPE_FLUSH.  This is done to
6350 				 * preserve the vdev_stat_t structure layout
6351 				 * for user space.
6352 				 */
6353 				vdev_prop_add_list(outnvl, propname, NULL,
6354 				    vd->vdev_stat.vs_ops[ZIO_TYPE_FLUSH],
6355 				    ZPROP_SRC_NONE);
6356 				continue;
6357 			case VDEV_PROP_BYTES_NULL:
6358 				vdev_prop_add_list(outnvl, propname, NULL,
6359 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL],
6360 				    ZPROP_SRC_NONE);
6361 				continue;
6362 			case VDEV_PROP_BYTES_READ:
6363 				vdev_prop_add_list(outnvl, propname, NULL,
6364 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_READ],
6365 				    ZPROP_SRC_NONE);
6366 				continue;
6367 			case VDEV_PROP_BYTES_WRITE:
6368 				vdev_prop_add_list(outnvl, propname, NULL,
6369 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE],
6370 				    ZPROP_SRC_NONE);
6371 				continue;
6372 			case VDEV_PROP_BYTES_FREE:
6373 				vdev_prop_add_list(outnvl, propname, NULL,
6374 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE],
6375 				    ZPROP_SRC_NONE);
6376 				continue;
6377 			case VDEV_PROP_BYTES_CLAIM:
6378 				vdev_prop_add_list(outnvl, propname, NULL,
6379 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM],
6380 				    ZPROP_SRC_NONE);
6381 				continue;
6382 			case VDEV_PROP_BYTES_TRIM:
6383 				/*
6384 				 * TRIM ops and bytes are reported to user
6385 				 * space as ZIO_TYPE_FLUSH.  This is done to
6386 				 * preserve the vdev_stat_t structure layout
6387 				 * for user space.
6388 				 */
6389 				vdev_prop_add_list(outnvl, propname, NULL,
6390 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_FLUSH],
6391 				    ZPROP_SRC_NONE);
6392 				continue;
6393 			case VDEV_PROP_REMOVING:
6394 				vdev_prop_add_list(outnvl, propname, NULL,
6395 				    vd->vdev_removing, ZPROP_SRC_NONE);
6396 				continue;
6397 			case VDEV_PROP_RAIDZ_EXPANDING:
6398 				/* Only expose this for raidz */
6399 				if (vd->vdev_ops == &vdev_raidz_ops) {
6400 					vdev_prop_add_list(outnvl, propname,
6401 					    NULL, vd->vdev_rz_expanding,
6402 					    ZPROP_SRC_NONE);
6403 				}
6404 				continue;
6405 			case VDEV_PROP_TRIM_SUPPORT:
6406 				/* only valid for leaf vdevs */
6407 				if (vd->vdev_ops->vdev_op_leaf) {
6408 					vdev_prop_add_list(outnvl, propname,
6409 					    NULL, vd->vdev_has_trim,
6410 					    ZPROP_SRC_NONE);
6411 				}
6412 				continue;
6413 			/* Numeric Properites */
6414 			case VDEV_PROP_ALLOCATING:
6415 				/* Leaf vdevs cannot have this property */
6416 				if (vd->vdev_mg == NULL &&
6417 				    vd->vdev_top != NULL) {
6418 					src = ZPROP_SRC_NONE;
6419 					intval = ZPROP_BOOLEAN_NA;
6420 				} else {
6421 					err = vdev_prop_get_int(vd, prop,
6422 					    &intval);
6423 					if (err && err != ENOENT)
6424 						break;
6425 
6426 					if (intval ==
6427 					    vdev_prop_default_numeric(prop))
6428 						src = ZPROP_SRC_DEFAULT;
6429 					else
6430 						src = ZPROP_SRC_LOCAL;
6431 				}
6432 
6433 				vdev_prop_add_list(outnvl, propname, NULL,
6434 				    intval, src);
6435 				break;
6436 			case VDEV_PROP_FAILFAST:
6437 				src = ZPROP_SRC_LOCAL;
6438 				strval = NULL;
6439 
6440 				err = zap_lookup(mos, objid, nvpair_name(elem),
6441 				    sizeof (uint64_t), 1, &intval);
6442 				if (err == ENOENT) {
6443 					intval = vdev_prop_default_numeric(
6444 					    prop);
6445 					err = 0;
6446 				} else if (err) {
6447 					break;
6448 				}
6449 				if (intval == vdev_prop_default_numeric(prop))
6450 					src = ZPROP_SRC_DEFAULT;
6451 
6452 				vdev_prop_add_list(outnvl, propname, strval,
6453 				    intval, src);
6454 				break;
6455 			case VDEV_PROP_CHECKSUM_N:
6456 			case VDEV_PROP_CHECKSUM_T:
6457 			case VDEV_PROP_IO_N:
6458 			case VDEV_PROP_IO_T:
6459 			case VDEV_PROP_SLOW_IO_N:
6460 			case VDEV_PROP_SLOW_IO_T:
6461 				err = vdev_prop_get_int(vd, prop, &intval);
6462 				if (err && err != ENOENT)
6463 					break;
6464 
6465 				if (intval == vdev_prop_default_numeric(prop))
6466 					src = ZPROP_SRC_DEFAULT;
6467 				else
6468 					src = ZPROP_SRC_LOCAL;
6469 
6470 				vdev_prop_add_list(outnvl, propname, NULL,
6471 				    intval, src);
6472 				break;
6473 			/* Text Properties */
6474 			case VDEV_PROP_COMMENT:
6475 				/* Exists in the ZAP below */
6476 				/* FALLTHRU */
6477 			case VDEV_PROP_USERPROP:
6478 				/* User Properites */
6479 				src = ZPROP_SRC_LOCAL;
6480 
6481 				err = zap_length(mos, objid, nvpair_name(elem),
6482 				    &integer_size, &num_integers);
6483 				if (err)
6484 					break;
6485 
6486 				switch (integer_size) {
6487 				case 8:
6488 					/* User properties cannot be integers */
6489 					err = EINVAL;
6490 					break;
6491 				case 1:
6492 					/* string property */
6493 					strval = kmem_alloc(num_integers,
6494 					    KM_SLEEP);
6495 					err = zap_lookup(mos, objid,
6496 					    nvpair_name(elem), 1,
6497 					    num_integers, strval);
6498 					if (err) {
6499 						kmem_free(strval,
6500 						    num_integers);
6501 						break;
6502 					}
6503 					vdev_prop_add_list(outnvl, propname,
6504 					    strval, 0, src);
6505 					kmem_free(strval, num_integers);
6506 					break;
6507 				}
6508 				break;
6509 			default:
6510 				err = ENOENT;
6511 				break;
6512 			}
6513 			if (err)
6514 				break;
6515 		}
6516 	} else {
6517 		/*
6518 		 * Get all properties from the MOS vdev property object.
6519 		 */
6520 		zap_cursor_t zc;
6521 		zap_attribute_t *za = zap_attribute_alloc();
6522 		for (zap_cursor_init(&zc, mos, objid);
6523 		    (err = zap_cursor_retrieve(&zc, za)) == 0;
6524 		    zap_cursor_advance(&zc)) {
6525 			intval = 0;
6526 			strval = NULL;
6527 			zprop_source_t src = ZPROP_SRC_DEFAULT;
6528 			propname = za->za_name;
6529 
6530 			switch (za->za_integer_length) {
6531 			case 8:
6532 				/* We do not allow integer user properties */
6533 				/* This is likely an internal value */
6534 				break;
6535 			case 1:
6536 				/* string property */
6537 				strval = kmem_alloc(za->za_num_integers,
6538 				    KM_SLEEP);
6539 				err = zap_lookup(mos, objid, za->za_name, 1,
6540 				    za->za_num_integers, strval);
6541 				if (err) {
6542 					kmem_free(strval, za->za_num_integers);
6543 					break;
6544 				}
6545 				vdev_prop_add_list(outnvl, propname, strval, 0,
6546 				    src);
6547 				kmem_free(strval, za->za_num_integers);
6548 				break;
6549 
6550 			default:
6551 				break;
6552 			}
6553 		}
6554 		zap_cursor_fini(&zc);
6555 		zap_attribute_free(za);
6556 	}
6557 
6558 	mutex_exit(&spa->spa_props_lock);
6559 	if (err && err != ENOENT) {
6560 		return (err);
6561 	}
6562 
6563 	return (0);
6564 }
6565 
6566 EXPORT_SYMBOL(vdev_fault);
6567 EXPORT_SYMBOL(vdev_degrade);
6568 EXPORT_SYMBOL(vdev_online);
6569 EXPORT_SYMBOL(vdev_offline);
6570 EXPORT_SYMBOL(vdev_clear);
6571 
6572 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW,
6573 	"Target number of metaslabs per top-level vdev");
6574 
6575 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW,
6576 	"Default lower limit for metaslab size");
6577 
6578 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW,
6579 	"Default upper limit for metaslab size");
6580 
6581 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW,
6582 	"Minimum number of metaslabs per top-level vdev");
6583 
6584 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW,
6585 	"Practical upper limit of total metaslabs per top-level vdev");
6586 
6587 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
6588 	"Rate limit slow IO (delay) events to this many per second");
6589 
6590 ZFS_MODULE_PARAM(zfs, zfs_, deadman_events_per_second, UINT, ZMOD_RW,
6591 	"Rate limit hung IO (deadman) events to this many per second");
6592 
6593 ZFS_MODULE_PARAM(zfs, zfs_, dio_write_verify_events_per_second, UINT, ZMOD_RW,
6594 	"Rate Direct I/O write verify events to this many per second");
6595 
6596 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, direct_write_verify, UINT, ZMOD_RW,
6597 	"Direct I/O writes will perform for checksum verification before "
6598 	"commiting write");
6599 
6600 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
6601 	"Rate limit checksum events to this many checksum errors per second "
6602 	"(do not set below ZED threshold).");
6603 
6604 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
6605 	"Ignore errors during resilver/scrub");
6606 
6607 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
6608 	"Bypass vdev_validate()");
6609 
6610 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
6611 	"Disable cache flushes");
6612 
6613 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW,
6614 	"Minimum number of metaslabs required to dedicate one for log blocks");
6615 
6616 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
6617 	param_set_min_auto_ashift, param_get_uint, ZMOD_RW,
6618 	"Minimum ashift used when creating new top-level vdevs");
6619 
6620 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
6621 	param_set_max_auto_ashift, param_get_uint, ZMOD_RW,
6622 	"Maximum ashift used when optimizing for logical -> physical sector "
6623 	"size on new top-level vdevs");
6624 
6625 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, raidz_impl,
6626 		param_set_raidz_impl, param_get_raidz_impl, ZMOD_RW,
6627 		"RAIDZ implementation");
6628