1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2017 Joyent, Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 * Copyright (c) 2019, Datto Inc. All rights reserved. 31 * Copyright (c) 2021, Klara Inc. 32 * Copyright [2021] Hewlett Packard Enterprise Development LP 33 */ 34 35 #include <sys/zfs_context.h> 36 #include <sys/fm/fs/zfs.h> 37 #include <sys/spa.h> 38 #include <sys/spa_impl.h> 39 #include <sys/bpobj.h> 40 #include <sys/dmu.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_dir.h> 43 #include <sys/vdev_impl.h> 44 #include <sys/vdev_rebuild.h> 45 #include <sys/vdev_draid.h> 46 #include <sys/uberblock_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/space_map.h> 50 #include <sys/space_reftree.h> 51 #include <sys/zio.h> 52 #include <sys/zap.h> 53 #include <sys/fs/zfs.h> 54 #include <sys/arc.h> 55 #include <sys/zil.h> 56 #include <sys/dsl_scan.h> 57 #include <sys/vdev_raidz.h> 58 #include <sys/abd.h> 59 #include <sys/vdev_initialize.h> 60 #include <sys/vdev_trim.h> 61 #include <sys/zvol.h> 62 #include <sys/zfs_ratelimit.h> 63 #include "zfs_prop.h" 64 65 /* 66 * One metaslab from each (normal-class) vdev is used by the ZIL. These are 67 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are 68 * part of the spa_embedded_log_class. The metaslab with the most free space 69 * in each vdev is selected for this purpose when the pool is opened (or a 70 * vdev is added). See vdev_metaslab_init(). 71 * 72 * Log blocks can be allocated from the following locations. Each one is tried 73 * in order until the allocation succeeds: 74 * 1. dedicated log vdevs, aka "slog" (spa_log_class) 75 * 2. embedded slog metaslabs (spa_embedded_log_class) 76 * 3. other metaslabs in normal vdevs (spa_normal_class) 77 * 78 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer 79 * than this number of metaslabs in the vdev. This ensures that we don't set 80 * aside an unreasonable amount of space for the ZIL. If set to less than 81 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced 82 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab. 83 */ 84 int zfs_embedded_slog_min_ms = 64; 85 86 /* default target for number of metaslabs per top-level vdev */ 87 int zfs_vdev_default_ms_count = 200; 88 89 /* minimum number of metaslabs per top-level vdev */ 90 int zfs_vdev_min_ms_count = 16; 91 92 /* practical upper limit of total metaslabs per top-level vdev */ 93 int zfs_vdev_ms_count_limit = 1ULL << 17; 94 95 /* lower limit for metaslab size (512M) */ 96 int zfs_vdev_default_ms_shift = 29; 97 98 /* upper limit for metaslab size (16G) */ 99 int zfs_vdev_max_ms_shift = 34; 100 101 int vdev_validate_skip = B_FALSE; 102 103 /* 104 * Since the DTL space map of a vdev is not expected to have a lot of 105 * entries, we default its block size to 4K. 106 */ 107 int zfs_vdev_dtl_sm_blksz = (1 << 12); 108 109 /* 110 * Rate limit slow IO (delay) events to this many per second. 111 */ 112 unsigned int zfs_slow_io_events_per_second = 20; 113 114 /* 115 * Rate limit checksum events after this many checksum errors per second. 116 */ 117 unsigned int zfs_checksum_events_per_second = 20; 118 119 /* 120 * Ignore errors during scrub/resilver. Allows to work around resilver 121 * upon import when there are pool errors. 122 */ 123 int zfs_scan_ignore_errors = 0; 124 125 /* 126 * vdev-wide space maps that have lots of entries written to them at 127 * the end of each transaction can benefit from a higher I/O bandwidth 128 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 129 */ 130 int zfs_vdev_standard_sm_blksz = (1 << 17); 131 132 /* 133 * Tunable parameter for debugging or performance analysis. Setting this 134 * will cause pool corruption on power loss if a volatile out-of-order 135 * write cache is enabled. 136 */ 137 int zfs_nocacheflush = 0; 138 139 uint64_t zfs_vdev_max_auto_ashift = ASHIFT_MAX; 140 uint64_t zfs_vdev_min_auto_ashift = ASHIFT_MIN; 141 142 void 143 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 144 { 145 va_list adx; 146 char buf[256]; 147 148 va_start(adx, fmt); 149 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 150 va_end(adx); 151 152 if (vd->vdev_path != NULL) { 153 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 154 vd->vdev_path, buf); 155 } else { 156 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 157 vd->vdev_ops->vdev_op_type, 158 (u_longlong_t)vd->vdev_id, 159 (u_longlong_t)vd->vdev_guid, buf); 160 } 161 } 162 163 void 164 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 165 { 166 char state[20]; 167 168 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 169 zfs_dbgmsg("%*svdev %llu: %s", indent, "", 170 (u_longlong_t)vd->vdev_id, 171 vd->vdev_ops->vdev_op_type); 172 return; 173 } 174 175 switch (vd->vdev_state) { 176 case VDEV_STATE_UNKNOWN: 177 (void) snprintf(state, sizeof (state), "unknown"); 178 break; 179 case VDEV_STATE_CLOSED: 180 (void) snprintf(state, sizeof (state), "closed"); 181 break; 182 case VDEV_STATE_OFFLINE: 183 (void) snprintf(state, sizeof (state), "offline"); 184 break; 185 case VDEV_STATE_REMOVED: 186 (void) snprintf(state, sizeof (state), "removed"); 187 break; 188 case VDEV_STATE_CANT_OPEN: 189 (void) snprintf(state, sizeof (state), "can't open"); 190 break; 191 case VDEV_STATE_FAULTED: 192 (void) snprintf(state, sizeof (state), "faulted"); 193 break; 194 case VDEV_STATE_DEGRADED: 195 (void) snprintf(state, sizeof (state), "degraded"); 196 break; 197 case VDEV_STATE_HEALTHY: 198 (void) snprintf(state, sizeof (state), "healthy"); 199 break; 200 default: 201 (void) snprintf(state, sizeof (state), "<state %u>", 202 (uint_t)vd->vdev_state); 203 } 204 205 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 206 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 207 vd->vdev_islog ? " (log)" : "", 208 (u_longlong_t)vd->vdev_guid, 209 vd->vdev_path ? vd->vdev_path : "N/A", state); 210 211 for (uint64_t i = 0; i < vd->vdev_children; i++) 212 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 213 } 214 215 /* 216 * Virtual device management. 217 */ 218 219 static vdev_ops_t *vdev_ops_table[] = { 220 &vdev_root_ops, 221 &vdev_raidz_ops, 222 &vdev_draid_ops, 223 &vdev_draid_spare_ops, 224 &vdev_mirror_ops, 225 &vdev_replacing_ops, 226 &vdev_spare_ops, 227 &vdev_disk_ops, 228 &vdev_file_ops, 229 &vdev_missing_ops, 230 &vdev_hole_ops, 231 &vdev_indirect_ops, 232 NULL 233 }; 234 235 /* 236 * Given a vdev type, return the appropriate ops vector. 237 */ 238 static vdev_ops_t * 239 vdev_getops(const char *type) 240 { 241 vdev_ops_t *ops, **opspp; 242 243 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 244 if (strcmp(ops->vdev_op_type, type) == 0) 245 break; 246 247 return (ops); 248 } 249 250 /* 251 * Given a vdev and a metaslab class, find which metaslab group we're 252 * interested in. All vdevs may belong to two different metaslab classes. 253 * Dedicated slog devices use only the primary metaslab group, rather than a 254 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL. 255 */ 256 metaslab_group_t * 257 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc) 258 { 259 if (mc == spa_embedded_log_class(vd->vdev_spa) && 260 vd->vdev_log_mg != NULL) 261 return (vd->vdev_log_mg); 262 else 263 return (vd->vdev_mg); 264 } 265 266 /* ARGSUSED */ 267 void 268 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 269 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 270 { 271 physical_rs->rs_start = logical_rs->rs_start; 272 physical_rs->rs_end = logical_rs->rs_end; 273 } 274 275 /* 276 * Derive the enumerated allocation bias from string input. 277 * String origin is either the per-vdev zap or zpool(8). 278 */ 279 static vdev_alloc_bias_t 280 vdev_derive_alloc_bias(const char *bias) 281 { 282 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 283 284 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) 285 alloc_bias = VDEV_BIAS_LOG; 286 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) 287 alloc_bias = VDEV_BIAS_SPECIAL; 288 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) 289 alloc_bias = VDEV_BIAS_DEDUP; 290 291 return (alloc_bias); 292 } 293 294 /* 295 * Default asize function: return the MAX of psize with the asize of 296 * all children. This is what's used by anything other than RAID-Z. 297 */ 298 uint64_t 299 vdev_default_asize(vdev_t *vd, uint64_t psize) 300 { 301 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 302 uint64_t csize; 303 304 for (int c = 0; c < vd->vdev_children; c++) { 305 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 306 asize = MAX(asize, csize); 307 } 308 309 return (asize); 310 } 311 312 uint64_t 313 vdev_default_min_asize(vdev_t *vd) 314 { 315 return (vd->vdev_min_asize); 316 } 317 318 /* 319 * Get the minimum allocatable size. We define the allocatable size as 320 * the vdev's asize rounded to the nearest metaslab. This allows us to 321 * replace or attach devices which don't have the same physical size but 322 * can still satisfy the same number of allocations. 323 */ 324 uint64_t 325 vdev_get_min_asize(vdev_t *vd) 326 { 327 vdev_t *pvd = vd->vdev_parent; 328 329 /* 330 * If our parent is NULL (inactive spare or cache) or is the root, 331 * just return our own asize. 332 */ 333 if (pvd == NULL) 334 return (vd->vdev_asize); 335 336 /* 337 * The top-level vdev just returns the allocatable size rounded 338 * to the nearest metaslab. 339 */ 340 if (vd == vd->vdev_top) 341 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 342 343 return (pvd->vdev_ops->vdev_op_min_asize(pvd)); 344 } 345 346 void 347 vdev_set_min_asize(vdev_t *vd) 348 { 349 vd->vdev_min_asize = vdev_get_min_asize(vd); 350 351 for (int c = 0; c < vd->vdev_children; c++) 352 vdev_set_min_asize(vd->vdev_child[c]); 353 } 354 355 /* 356 * Get the minimal allocation size for the top-level vdev. 357 */ 358 uint64_t 359 vdev_get_min_alloc(vdev_t *vd) 360 { 361 uint64_t min_alloc = 1ULL << vd->vdev_ashift; 362 363 if (vd->vdev_ops->vdev_op_min_alloc != NULL) 364 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd); 365 366 return (min_alloc); 367 } 368 369 /* 370 * Get the parity level for a top-level vdev. 371 */ 372 uint64_t 373 vdev_get_nparity(vdev_t *vd) 374 { 375 uint64_t nparity = 0; 376 377 if (vd->vdev_ops->vdev_op_nparity != NULL) 378 nparity = vd->vdev_ops->vdev_op_nparity(vd); 379 380 return (nparity); 381 } 382 383 /* 384 * Get the number of data disks for a top-level vdev. 385 */ 386 uint64_t 387 vdev_get_ndisks(vdev_t *vd) 388 { 389 uint64_t ndisks = 1; 390 391 if (vd->vdev_ops->vdev_op_ndisks != NULL) 392 ndisks = vd->vdev_ops->vdev_op_ndisks(vd); 393 394 return (ndisks); 395 } 396 397 vdev_t * 398 vdev_lookup_top(spa_t *spa, uint64_t vdev) 399 { 400 vdev_t *rvd = spa->spa_root_vdev; 401 402 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 403 404 if (vdev < rvd->vdev_children) { 405 ASSERT(rvd->vdev_child[vdev] != NULL); 406 return (rvd->vdev_child[vdev]); 407 } 408 409 return (NULL); 410 } 411 412 vdev_t * 413 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 414 { 415 vdev_t *mvd; 416 417 if (vd->vdev_guid == guid) 418 return (vd); 419 420 for (int c = 0; c < vd->vdev_children; c++) 421 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 422 NULL) 423 return (mvd); 424 425 return (NULL); 426 } 427 428 static int 429 vdev_count_leaves_impl(vdev_t *vd) 430 { 431 int n = 0; 432 433 if (vd->vdev_ops->vdev_op_leaf) 434 return (1); 435 436 for (int c = 0; c < vd->vdev_children; c++) 437 n += vdev_count_leaves_impl(vd->vdev_child[c]); 438 439 return (n); 440 } 441 442 int 443 vdev_count_leaves(spa_t *spa) 444 { 445 int rc; 446 447 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 448 rc = vdev_count_leaves_impl(spa->spa_root_vdev); 449 spa_config_exit(spa, SCL_VDEV, FTAG); 450 451 return (rc); 452 } 453 454 void 455 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 456 { 457 size_t oldsize, newsize; 458 uint64_t id = cvd->vdev_id; 459 vdev_t **newchild; 460 461 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 462 ASSERT(cvd->vdev_parent == NULL); 463 464 cvd->vdev_parent = pvd; 465 466 if (pvd == NULL) 467 return; 468 469 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 470 471 oldsize = pvd->vdev_children * sizeof (vdev_t *); 472 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 473 newsize = pvd->vdev_children * sizeof (vdev_t *); 474 475 newchild = kmem_alloc(newsize, KM_SLEEP); 476 if (pvd->vdev_child != NULL) { 477 bcopy(pvd->vdev_child, newchild, oldsize); 478 kmem_free(pvd->vdev_child, oldsize); 479 } 480 481 pvd->vdev_child = newchild; 482 pvd->vdev_child[id] = cvd; 483 484 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 485 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 486 487 /* 488 * Walk up all ancestors to update guid sum. 489 */ 490 for (; pvd != NULL; pvd = pvd->vdev_parent) 491 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 492 493 if (cvd->vdev_ops->vdev_op_leaf) { 494 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); 495 cvd->vdev_spa->spa_leaf_list_gen++; 496 } 497 } 498 499 void 500 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 501 { 502 int c; 503 uint_t id = cvd->vdev_id; 504 505 ASSERT(cvd->vdev_parent == pvd); 506 507 if (pvd == NULL) 508 return; 509 510 ASSERT(id < pvd->vdev_children); 511 ASSERT(pvd->vdev_child[id] == cvd); 512 513 pvd->vdev_child[id] = NULL; 514 cvd->vdev_parent = NULL; 515 516 for (c = 0; c < pvd->vdev_children; c++) 517 if (pvd->vdev_child[c]) 518 break; 519 520 if (c == pvd->vdev_children) { 521 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 522 pvd->vdev_child = NULL; 523 pvd->vdev_children = 0; 524 } 525 526 if (cvd->vdev_ops->vdev_op_leaf) { 527 spa_t *spa = cvd->vdev_spa; 528 list_remove(&spa->spa_leaf_list, cvd); 529 spa->spa_leaf_list_gen++; 530 } 531 532 /* 533 * Walk up all ancestors to update guid sum. 534 */ 535 for (; pvd != NULL; pvd = pvd->vdev_parent) 536 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 537 } 538 539 /* 540 * Remove any holes in the child array. 541 */ 542 void 543 vdev_compact_children(vdev_t *pvd) 544 { 545 vdev_t **newchild, *cvd; 546 int oldc = pvd->vdev_children; 547 int newc; 548 549 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 550 551 if (oldc == 0) 552 return; 553 554 for (int c = newc = 0; c < oldc; c++) 555 if (pvd->vdev_child[c]) 556 newc++; 557 558 if (newc > 0) { 559 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP); 560 561 for (int c = newc = 0; c < oldc; c++) { 562 if ((cvd = pvd->vdev_child[c]) != NULL) { 563 newchild[newc] = cvd; 564 cvd->vdev_id = newc++; 565 } 566 } 567 } else { 568 newchild = NULL; 569 } 570 571 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 572 pvd->vdev_child = newchild; 573 pvd->vdev_children = newc; 574 } 575 576 /* 577 * Allocate and minimally initialize a vdev_t. 578 */ 579 vdev_t * 580 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 581 { 582 vdev_t *vd; 583 vdev_indirect_config_t *vic; 584 585 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 586 vic = &vd->vdev_indirect_config; 587 588 if (spa->spa_root_vdev == NULL) { 589 ASSERT(ops == &vdev_root_ops); 590 spa->spa_root_vdev = vd; 591 spa->spa_load_guid = spa_generate_guid(NULL); 592 } 593 594 if (guid == 0 && ops != &vdev_hole_ops) { 595 if (spa->spa_root_vdev == vd) { 596 /* 597 * The root vdev's guid will also be the pool guid, 598 * which must be unique among all pools. 599 */ 600 guid = spa_generate_guid(NULL); 601 } else { 602 /* 603 * Any other vdev's guid must be unique within the pool. 604 */ 605 guid = spa_generate_guid(spa); 606 } 607 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 608 } 609 610 vd->vdev_spa = spa; 611 vd->vdev_id = id; 612 vd->vdev_guid = guid; 613 vd->vdev_guid_sum = guid; 614 vd->vdev_ops = ops; 615 vd->vdev_state = VDEV_STATE_CLOSED; 616 vd->vdev_ishole = (ops == &vdev_hole_ops); 617 vic->vic_prev_indirect_vdev = UINT64_MAX; 618 619 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 620 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 621 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL, 622 0, 0); 623 624 /* 625 * Initialize rate limit structs for events. We rate limit ZIO delay 626 * and checksum events so that we don't overwhelm ZED with thousands 627 * of events when a disk is acting up. 628 */ 629 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second, 630 1); 631 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_slow_io_events_per_second, 632 1); 633 zfs_ratelimit_init(&vd->vdev_checksum_rl, 634 &zfs_checksum_events_per_second, 1); 635 636 list_link_init(&vd->vdev_config_dirty_node); 637 list_link_init(&vd->vdev_state_dirty_node); 638 list_link_init(&vd->vdev_initialize_node); 639 list_link_init(&vd->vdev_leaf_node); 640 list_link_init(&vd->vdev_trim_node); 641 642 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL); 643 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 644 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 645 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); 646 647 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 648 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 649 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 650 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 651 652 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL); 653 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL); 654 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL); 655 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL); 656 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL); 657 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL); 658 659 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL); 660 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL); 661 662 for (int t = 0; t < DTL_TYPES; t++) { 663 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 664 0); 665 } 666 667 txg_list_create(&vd->vdev_ms_list, spa, 668 offsetof(struct metaslab, ms_txg_node)); 669 txg_list_create(&vd->vdev_dtl_list, spa, 670 offsetof(struct vdev, vdev_dtl_node)); 671 vd->vdev_stat.vs_timestamp = gethrtime(); 672 vdev_queue_init(vd); 673 vdev_cache_init(vd); 674 675 return (vd); 676 } 677 678 /* 679 * Allocate a new vdev. The 'alloctype' is used to control whether we are 680 * creating a new vdev or loading an existing one - the behavior is slightly 681 * different for each case. 682 */ 683 int 684 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 685 int alloctype) 686 { 687 vdev_ops_t *ops; 688 char *type; 689 uint64_t guid = 0, islog; 690 vdev_t *vd; 691 vdev_indirect_config_t *vic; 692 char *tmp = NULL; 693 int rc; 694 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 695 boolean_t top_level = (parent && !parent->vdev_parent); 696 697 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 698 699 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 700 return (SET_ERROR(EINVAL)); 701 702 if ((ops = vdev_getops(type)) == NULL) 703 return (SET_ERROR(EINVAL)); 704 705 /* 706 * If this is a load, get the vdev guid from the nvlist. 707 * Otherwise, vdev_alloc_common() will generate one for us. 708 */ 709 if (alloctype == VDEV_ALLOC_LOAD) { 710 uint64_t label_id; 711 712 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 713 label_id != id) 714 return (SET_ERROR(EINVAL)); 715 716 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 717 return (SET_ERROR(EINVAL)); 718 } else if (alloctype == VDEV_ALLOC_SPARE) { 719 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 720 return (SET_ERROR(EINVAL)); 721 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 722 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 723 return (SET_ERROR(EINVAL)); 724 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 725 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 726 return (SET_ERROR(EINVAL)); 727 } 728 729 /* 730 * The first allocated vdev must be of type 'root'. 731 */ 732 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 733 return (SET_ERROR(EINVAL)); 734 735 /* 736 * Determine whether we're a log vdev. 737 */ 738 islog = 0; 739 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 740 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 741 return (SET_ERROR(ENOTSUP)); 742 743 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 744 return (SET_ERROR(ENOTSUP)); 745 746 if (top_level && alloctype == VDEV_ALLOC_ADD) { 747 char *bias; 748 749 /* 750 * If creating a top-level vdev, check for allocation 751 * classes input. 752 */ 753 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 754 &bias) == 0) { 755 alloc_bias = vdev_derive_alloc_bias(bias); 756 757 /* spa_vdev_add() expects feature to be enabled */ 758 if (spa->spa_load_state != SPA_LOAD_CREATE && 759 !spa_feature_is_enabled(spa, 760 SPA_FEATURE_ALLOCATION_CLASSES)) { 761 return (SET_ERROR(ENOTSUP)); 762 } 763 } 764 765 /* spa_vdev_add() expects feature to be enabled */ 766 if (ops == &vdev_draid_ops && 767 spa->spa_load_state != SPA_LOAD_CREATE && 768 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) { 769 return (SET_ERROR(ENOTSUP)); 770 } 771 } 772 773 /* 774 * Initialize the vdev specific data. This is done before calling 775 * vdev_alloc_common() since it may fail and this simplifies the 776 * error reporting and cleanup code paths. 777 */ 778 void *tsd = NULL; 779 if (ops->vdev_op_init != NULL) { 780 rc = ops->vdev_op_init(spa, nv, &tsd); 781 if (rc != 0) { 782 return (rc); 783 } 784 } 785 786 vd = vdev_alloc_common(spa, id, guid, ops); 787 vd->vdev_tsd = tsd; 788 vd->vdev_islog = islog; 789 790 if (top_level && alloc_bias != VDEV_BIAS_NONE) 791 vd->vdev_alloc_bias = alloc_bias; 792 793 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 794 vd->vdev_path = spa_strdup(vd->vdev_path); 795 796 /* 797 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a 798 * fault on a vdev and want it to persist across imports (like with 799 * zpool offline -f). 800 */ 801 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp); 802 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) { 803 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 804 vd->vdev_faulted = 1; 805 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 806 } 807 808 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 809 vd->vdev_devid = spa_strdup(vd->vdev_devid); 810 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 811 &vd->vdev_physpath) == 0) 812 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 813 814 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 815 &vd->vdev_enc_sysfs_path) == 0) 816 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path); 817 818 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 819 vd->vdev_fru = spa_strdup(vd->vdev_fru); 820 821 /* 822 * Set the whole_disk property. If it's not specified, leave the value 823 * as -1. 824 */ 825 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 826 &vd->vdev_wholedisk) != 0) 827 vd->vdev_wholedisk = -1ULL; 828 829 vic = &vd->vdev_indirect_config; 830 831 ASSERT0(vic->vic_mapping_object); 832 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 833 &vic->vic_mapping_object); 834 ASSERT0(vic->vic_births_object); 835 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 836 &vic->vic_births_object); 837 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 838 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 839 &vic->vic_prev_indirect_vdev); 840 841 /* 842 * Look for the 'not present' flag. This will only be set if the device 843 * was not present at the time of import. 844 */ 845 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 846 &vd->vdev_not_present); 847 848 /* 849 * Get the alignment requirement. 850 */ 851 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 852 853 /* 854 * Retrieve the vdev creation time. 855 */ 856 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 857 &vd->vdev_crtxg); 858 859 /* 860 * If we're a top-level vdev, try to load the allocation parameters. 861 */ 862 if (top_level && 863 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 864 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 865 &vd->vdev_ms_array); 866 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 867 &vd->vdev_ms_shift); 868 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 869 &vd->vdev_asize); 870 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING, 871 &vd->vdev_noalloc); 872 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 873 &vd->vdev_removing); 874 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 875 &vd->vdev_top_zap); 876 } else { 877 ASSERT0(vd->vdev_top_zap); 878 } 879 880 if (top_level && alloctype != VDEV_ALLOC_ATTACH) { 881 ASSERT(alloctype == VDEV_ALLOC_LOAD || 882 alloctype == VDEV_ALLOC_ADD || 883 alloctype == VDEV_ALLOC_SPLIT || 884 alloctype == VDEV_ALLOC_ROOTPOOL); 885 /* Note: metaslab_group_create() is now deferred */ 886 } 887 888 if (vd->vdev_ops->vdev_op_leaf && 889 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 890 (void) nvlist_lookup_uint64(nv, 891 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 892 } else { 893 ASSERT0(vd->vdev_leaf_zap); 894 } 895 896 /* 897 * If we're a leaf vdev, try to load the DTL object and other state. 898 */ 899 900 if (vd->vdev_ops->vdev_op_leaf && 901 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 902 alloctype == VDEV_ALLOC_ROOTPOOL)) { 903 if (alloctype == VDEV_ALLOC_LOAD) { 904 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 905 &vd->vdev_dtl_object); 906 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 907 &vd->vdev_unspare); 908 } 909 910 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 911 uint64_t spare = 0; 912 913 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 914 &spare) == 0 && spare) 915 spa_spare_add(vd); 916 } 917 918 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 919 &vd->vdev_offline); 920 921 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 922 &vd->vdev_resilver_txg); 923 924 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 925 &vd->vdev_rebuild_txg); 926 927 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) 928 vdev_defer_resilver(vd); 929 930 /* 931 * In general, when importing a pool we want to ignore the 932 * persistent fault state, as the diagnosis made on another 933 * system may not be valid in the current context. The only 934 * exception is if we forced a vdev to a persistently faulted 935 * state with 'zpool offline -f'. The persistent fault will 936 * remain across imports until cleared. 937 * 938 * Local vdevs will remain in the faulted state. 939 */ 940 if (spa_load_state(spa) == SPA_LOAD_OPEN || 941 spa_load_state(spa) == SPA_LOAD_IMPORT) { 942 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 943 &vd->vdev_faulted); 944 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 945 &vd->vdev_degraded); 946 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 947 &vd->vdev_removed); 948 949 if (vd->vdev_faulted || vd->vdev_degraded) { 950 char *aux; 951 952 vd->vdev_label_aux = 953 VDEV_AUX_ERR_EXCEEDED; 954 if (nvlist_lookup_string(nv, 955 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 956 strcmp(aux, "external") == 0) 957 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 958 else 959 vd->vdev_faulted = 0ULL; 960 } 961 } 962 } 963 964 /* 965 * Add ourselves to the parent's list of children. 966 */ 967 vdev_add_child(parent, vd); 968 969 *vdp = vd; 970 971 return (0); 972 } 973 974 void 975 vdev_free(vdev_t *vd) 976 { 977 spa_t *spa = vd->vdev_spa; 978 979 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 980 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 981 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 982 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); 983 984 /* 985 * Scan queues are normally destroyed at the end of a scan. If the 986 * queue exists here, that implies the vdev is being removed while 987 * the scan is still running. 988 */ 989 if (vd->vdev_scan_io_queue != NULL) { 990 mutex_enter(&vd->vdev_scan_io_queue_lock); 991 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); 992 vd->vdev_scan_io_queue = NULL; 993 mutex_exit(&vd->vdev_scan_io_queue_lock); 994 } 995 996 /* 997 * vdev_free() implies closing the vdev first. This is simpler than 998 * trying to ensure complicated semantics for all callers. 999 */ 1000 vdev_close(vd); 1001 1002 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 1003 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 1004 1005 /* 1006 * Free all children. 1007 */ 1008 for (int c = 0; c < vd->vdev_children; c++) 1009 vdev_free(vd->vdev_child[c]); 1010 1011 ASSERT(vd->vdev_child == NULL); 1012 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 1013 1014 if (vd->vdev_ops->vdev_op_fini != NULL) 1015 vd->vdev_ops->vdev_op_fini(vd); 1016 1017 /* 1018 * Discard allocation state. 1019 */ 1020 if (vd->vdev_mg != NULL) { 1021 vdev_metaslab_fini(vd); 1022 metaslab_group_destroy(vd->vdev_mg); 1023 vd->vdev_mg = NULL; 1024 } 1025 if (vd->vdev_log_mg != NULL) { 1026 ASSERT0(vd->vdev_ms_count); 1027 metaslab_group_destroy(vd->vdev_log_mg); 1028 vd->vdev_log_mg = NULL; 1029 } 1030 1031 ASSERT0(vd->vdev_stat.vs_space); 1032 ASSERT0(vd->vdev_stat.vs_dspace); 1033 ASSERT0(vd->vdev_stat.vs_alloc); 1034 1035 /* 1036 * Remove this vdev from its parent's child list. 1037 */ 1038 vdev_remove_child(vd->vdev_parent, vd); 1039 1040 ASSERT(vd->vdev_parent == NULL); 1041 ASSERT(!list_link_active(&vd->vdev_leaf_node)); 1042 1043 /* 1044 * Clean up vdev structure. 1045 */ 1046 vdev_queue_fini(vd); 1047 vdev_cache_fini(vd); 1048 1049 if (vd->vdev_path) 1050 spa_strfree(vd->vdev_path); 1051 if (vd->vdev_devid) 1052 spa_strfree(vd->vdev_devid); 1053 if (vd->vdev_physpath) 1054 spa_strfree(vd->vdev_physpath); 1055 1056 if (vd->vdev_enc_sysfs_path) 1057 spa_strfree(vd->vdev_enc_sysfs_path); 1058 1059 if (vd->vdev_fru) 1060 spa_strfree(vd->vdev_fru); 1061 1062 if (vd->vdev_isspare) 1063 spa_spare_remove(vd); 1064 if (vd->vdev_isl2cache) 1065 spa_l2cache_remove(vd); 1066 1067 txg_list_destroy(&vd->vdev_ms_list); 1068 txg_list_destroy(&vd->vdev_dtl_list); 1069 1070 mutex_enter(&vd->vdev_dtl_lock); 1071 space_map_close(vd->vdev_dtl_sm); 1072 for (int t = 0; t < DTL_TYPES; t++) { 1073 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 1074 range_tree_destroy(vd->vdev_dtl[t]); 1075 } 1076 mutex_exit(&vd->vdev_dtl_lock); 1077 1078 EQUIV(vd->vdev_indirect_births != NULL, 1079 vd->vdev_indirect_mapping != NULL); 1080 if (vd->vdev_indirect_births != NULL) { 1081 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1082 vdev_indirect_births_close(vd->vdev_indirect_births); 1083 } 1084 1085 if (vd->vdev_obsolete_sm != NULL) { 1086 ASSERT(vd->vdev_removing || 1087 vd->vdev_ops == &vdev_indirect_ops); 1088 space_map_close(vd->vdev_obsolete_sm); 1089 vd->vdev_obsolete_sm = NULL; 1090 } 1091 range_tree_destroy(vd->vdev_obsolete_segments); 1092 rw_destroy(&vd->vdev_indirect_rwlock); 1093 mutex_destroy(&vd->vdev_obsolete_lock); 1094 1095 mutex_destroy(&vd->vdev_dtl_lock); 1096 mutex_destroy(&vd->vdev_stat_lock); 1097 mutex_destroy(&vd->vdev_probe_lock); 1098 mutex_destroy(&vd->vdev_scan_io_queue_lock); 1099 1100 mutex_destroy(&vd->vdev_initialize_lock); 1101 mutex_destroy(&vd->vdev_initialize_io_lock); 1102 cv_destroy(&vd->vdev_initialize_io_cv); 1103 cv_destroy(&vd->vdev_initialize_cv); 1104 1105 mutex_destroy(&vd->vdev_trim_lock); 1106 mutex_destroy(&vd->vdev_autotrim_lock); 1107 mutex_destroy(&vd->vdev_trim_io_lock); 1108 cv_destroy(&vd->vdev_trim_cv); 1109 cv_destroy(&vd->vdev_autotrim_cv); 1110 cv_destroy(&vd->vdev_trim_io_cv); 1111 1112 mutex_destroy(&vd->vdev_rebuild_lock); 1113 cv_destroy(&vd->vdev_rebuild_cv); 1114 1115 zfs_ratelimit_fini(&vd->vdev_delay_rl); 1116 zfs_ratelimit_fini(&vd->vdev_deadman_rl); 1117 zfs_ratelimit_fini(&vd->vdev_checksum_rl); 1118 1119 if (vd == spa->spa_root_vdev) 1120 spa->spa_root_vdev = NULL; 1121 1122 kmem_free(vd, sizeof (vdev_t)); 1123 } 1124 1125 /* 1126 * Transfer top-level vdev state from svd to tvd. 1127 */ 1128 static void 1129 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 1130 { 1131 spa_t *spa = svd->vdev_spa; 1132 metaslab_t *msp; 1133 vdev_t *vd; 1134 int t; 1135 1136 ASSERT(tvd == tvd->vdev_top); 1137 1138 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite; 1139 tvd->vdev_ms_array = svd->vdev_ms_array; 1140 tvd->vdev_ms_shift = svd->vdev_ms_shift; 1141 tvd->vdev_ms_count = svd->vdev_ms_count; 1142 tvd->vdev_top_zap = svd->vdev_top_zap; 1143 1144 svd->vdev_ms_array = 0; 1145 svd->vdev_ms_shift = 0; 1146 svd->vdev_ms_count = 0; 1147 svd->vdev_top_zap = 0; 1148 1149 if (tvd->vdev_mg) 1150 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 1151 if (tvd->vdev_log_mg) 1152 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg); 1153 tvd->vdev_mg = svd->vdev_mg; 1154 tvd->vdev_log_mg = svd->vdev_log_mg; 1155 tvd->vdev_ms = svd->vdev_ms; 1156 1157 svd->vdev_mg = NULL; 1158 svd->vdev_log_mg = NULL; 1159 svd->vdev_ms = NULL; 1160 1161 if (tvd->vdev_mg != NULL) 1162 tvd->vdev_mg->mg_vd = tvd; 1163 if (tvd->vdev_log_mg != NULL) 1164 tvd->vdev_log_mg->mg_vd = tvd; 1165 1166 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 1167 svd->vdev_checkpoint_sm = NULL; 1168 1169 tvd->vdev_alloc_bias = svd->vdev_alloc_bias; 1170 svd->vdev_alloc_bias = VDEV_BIAS_NONE; 1171 1172 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 1173 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 1174 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 1175 1176 svd->vdev_stat.vs_alloc = 0; 1177 svd->vdev_stat.vs_space = 0; 1178 svd->vdev_stat.vs_dspace = 0; 1179 1180 /* 1181 * State which may be set on a top-level vdev that's in the 1182 * process of being removed. 1183 */ 1184 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 1185 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 1186 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 1187 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); 1188 ASSERT3P(tvd->vdev_indirect_births, ==, NULL); 1189 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); 1190 ASSERT0(tvd->vdev_noalloc); 1191 ASSERT0(tvd->vdev_removing); 1192 ASSERT0(tvd->vdev_rebuilding); 1193 tvd->vdev_noalloc = svd->vdev_noalloc; 1194 tvd->vdev_removing = svd->vdev_removing; 1195 tvd->vdev_rebuilding = svd->vdev_rebuilding; 1196 tvd->vdev_rebuild_config = svd->vdev_rebuild_config; 1197 tvd->vdev_indirect_config = svd->vdev_indirect_config; 1198 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 1199 tvd->vdev_indirect_births = svd->vdev_indirect_births; 1200 range_tree_swap(&svd->vdev_obsolete_segments, 1201 &tvd->vdev_obsolete_segments); 1202 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 1203 svd->vdev_indirect_config.vic_mapping_object = 0; 1204 svd->vdev_indirect_config.vic_births_object = 0; 1205 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 1206 svd->vdev_indirect_mapping = NULL; 1207 svd->vdev_indirect_births = NULL; 1208 svd->vdev_obsolete_sm = NULL; 1209 svd->vdev_noalloc = 0; 1210 svd->vdev_removing = 0; 1211 svd->vdev_rebuilding = 0; 1212 1213 for (t = 0; t < TXG_SIZE; t++) { 1214 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 1215 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 1216 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 1217 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 1218 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 1219 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 1220 } 1221 1222 if (list_link_active(&svd->vdev_config_dirty_node)) { 1223 vdev_config_clean(svd); 1224 vdev_config_dirty(tvd); 1225 } 1226 1227 if (list_link_active(&svd->vdev_state_dirty_node)) { 1228 vdev_state_clean(svd); 1229 vdev_state_dirty(tvd); 1230 } 1231 1232 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 1233 svd->vdev_deflate_ratio = 0; 1234 1235 tvd->vdev_islog = svd->vdev_islog; 1236 svd->vdev_islog = 0; 1237 1238 dsl_scan_io_queue_vdev_xfer(svd, tvd); 1239 } 1240 1241 static void 1242 vdev_top_update(vdev_t *tvd, vdev_t *vd) 1243 { 1244 if (vd == NULL) 1245 return; 1246 1247 vd->vdev_top = tvd; 1248 1249 for (int c = 0; c < vd->vdev_children; c++) 1250 vdev_top_update(tvd, vd->vdev_child[c]); 1251 } 1252 1253 /* 1254 * Add a mirror/replacing vdev above an existing vdev. There is no need to 1255 * call .vdev_op_init() since mirror/replacing vdevs do not have private state. 1256 */ 1257 vdev_t * 1258 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 1259 { 1260 spa_t *spa = cvd->vdev_spa; 1261 vdev_t *pvd = cvd->vdev_parent; 1262 vdev_t *mvd; 1263 1264 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1265 1266 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 1267 1268 mvd->vdev_asize = cvd->vdev_asize; 1269 mvd->vdev_min_asize = cvd->vdev_min_asize; 1270 mvd->vdev_max_asize = cvd->vdev_max_asize; 1271 mvd->vdev_psize = cvd->vdev_psize; 1272 mvd->vdev_ashift = cvd->vdev_ashift; 1273 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift; 1274 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift; 1275 mvd->vdev_state = cvd->vdev_state; 1276 mvd->vdev_crtxg = cvd->vdev_crtxg; 1277 1278 vdev_remove_child(pvd, cvd); 1279 vdev_add_child(pvd, mvd); 1280 cvd->vdev_id = mvd->vdev_children; 1281 vdev_add_child(mvd, cvd); 1282 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1283 1284 if (mvd == mvd->vdev_top) 1285 vdev_top_transfer(cvd, mvd); 1286 1287 return (mvd); 1288 } 1289 1290 /* 1291 * Remove a 1-way mirror/replacing vdev from the tree. 1292 */ 1293 void 1294 vdev_remove_parent(vdev_t *cvd) 1295 { 1296 vdev_t *mvd = cvd->vdev_parent; 1297 vdev_t *pvd = mvd->vdev_parent; 1298 1299 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1300 1301 ASSERT(mvd->vdev_children == 1); 1302 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1303 mvd->vdev_ops == &vdev_replacing_ops || 1304 mvd->vdev_ops == &vdev_spare_ops); 1305 cvd->vdev_ashift = mvd->vdev_ashift; 1306 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift; 1307 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift; 1308 vdev_remove_child(mvd, cvd); 1309 vdev_remove_child(pvd, mvd); 1310 1311 /* 1312 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1313 * Otherwise, we could have detached an offline device, and when we 1314 * go to import the pool we'll think we have two top-level vdevs, 1315 * instead of a different version of the same top-level vdev. 1316 */ 1317 if (mvd->vdev_top == mvd) { 1318 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1319 cvd->vdev_orig_guid = cvd->vdev_guid; 1320 cvd->vdev_guid += guid_delta; 1321 cvd->vdev_guid_sum += guid_delta; 1322 1323 /* 1324 * If pool not set for autoexpand, we need to also preserve 1325 * mvd's asize to prevent automatic expansion of cvd. 1326 * Otherwise if we are adjusting the mirror by attaching and 1327 * detaching children of non-uniform sizes, the mirror could 1328 * autoexpand, unexpectedly requiring larger devices to 1329 * re-establish the mirror. 1330 */ 1331 if (!cvd->vdev_spa->spa_autoexpand) 1332 cvd->vdev_asize = mvd->vdev_asize; 1333 } 1334 cvd->vdev_id = mvd->vdev_id; 1335 vdev_add_child(pvd, cvd); 1336 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1337 1338 if (cvd == cvd->vdev_top) 1339 vdev_top_transfer(mvd, cvd); 1340 1341 ASSERT(mvd->vdev_children == 0); 1342 vdev_free(mvd); 1343 } 1344 1345 void 1346 vdev_metaslab_group_create(vdev_t *vd) 1347 { 1348 spa_t *spa = vd->vdev_spa; 1349 1350 /* 1351 * metaslab_group_create was delayed until allocation bias was available 1352 */ 1353 if (vd->vdev_mg == NULL) { 1354 metaslab_class_t *mc; 1355 1356 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) 1357 vd->vdev_alloc_bias = VDEV_BIAS_LOG; 1358 1359 ASSERT3U(vd->vdev_islog, ==, 1360 (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); 1361 1362 switch (vd->vdev_alloc_bias) { 1363 case VDEV_BIAS_LOG: 1364 mc = spa_log_class(spa); 1365 break; 1366 case VDEV_BIAS_SPECIAL: 1367 mc = spa_special_class(spa); 1368 break; 1369 case VDEV_BIAS_DEDUP: 1370 mc = spa_dedup_class(spa); 1371 break; 1372 default: 1373 mc = spa_normal_class(spa); 1374 } 1375 1376 vd->vdev_mg = metaslab_group_create(mc, vd, 1377 spa->spa_alloc_count); 1378 1379 if (!vd->vdev_islog) { 1380 vd->vdev_log_mg = metaslab_group_create( 1381 spa_embedded_log_class(spa), vd, 1); 1382 } 1383 1384 /* 1385 * The spa ashift min/max only apply for the normal metaslab 1386 * class. Class destination is late binding so ashift boundary 1387 * setting had to wait until now. 1388 */ 1389 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1390 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { 1391 if (vd->vdev_ashift > spa->spa_max_ashift) 1392 spa->spa_max_ashift = vd->vdev_ashift; 1393 if (vd->vdev_ashift < spa->spa_min_ashift) 1394 spa->spa_min_ashift = vd->vdev_ashift; 1395 1396 uint64_t min_alloc = vdev_get_min_alloc(vd); 1397 if (min_alloc < spa->spa_min_alloc) 1398 spa->spa_min_alloc = min_alloc; 1399 } 1400 } 1401 } 1402 1403 int 1404 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1405 { 1406 spa_t *spa = vd->vdev_spa; 1407 uint64_t oldc = vd->vdev_ms_count; 1408 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1409 metaslab_t **mspp; 1410 int error; 1411 boolean_t expanding = (oldc != 0); 1412 1413 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1414 1415 /* 1416 * This vdev is not being allocated from yet or is a hole. 1417 */ 1418 if (vd->vdev_ms_shift == 0) 1419 return (0); 1420 1421 ASSERT(!vd->vdev_ishole); 1422 1423 ASSERT(oldc <= newc); 1424 1425 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1426 1427 if (expanding) { 1428 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 1429 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1430 } 1431 1432 vd->vdev_ms = mspp; 1433 vd->vdev_ms_count = newc; 1434 1435 for (uint64_t m = oldc; m < newc; m++) { 1436 uint64_t object = 0; 1437 /* 1438 * vdev_ms_array may be 0 if we are creating the "fake" 1439 * metaslabs for an indirect vdev for zdb's leak detection. 1440 * See zdb_leak_init(). 1441 */ 1442 if (txg == 0 && vd->vdev_ms_array != 0) { 1443 error = dmu_read(spa->spa_meta_objset, 1444 vd->vdev_ms_array, 1445 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1446 DMU_READ_PREFETCH); 1447 if (error != 0) { 1448 vdev_dbgmsg(vd, "unable to read the metaslab " 1449 "array [error=%d]", error); 1450 return (error); 1451 } 1452 } 1453 1454 error = metaslab_init(vd->vdev_mg, m, object, txg, 1455 &(vd->vdev_ms[m])); 1456 if (error != 0) { 1457 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1458 error); 1459 return (error); 1460 } 1461 } 1462 1463 /* 1464 * Find the emptiest metaslab on the vdev and mark it for use for 1465 * embedded slog by moving it from the regular to the log metaslab 1466 * group. 1467 */ 1468 if (vd->vdev_mg->mg_class == spa_normal_class(spa) && 1469 vd->vdev_ms_count > zfs_embedded_slog_min_ms && 1470 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) { 1471 uint64_t slog_msid = 0; 1472 uint64_t smallest = UINT64_MAX; 1473 1474 /* 1475 * Note, we only search the new metaslabs, because the old 1476 * (pre-existing) ones may be active (e.g. have non-empty 1477 * range_tree's), and we don't move them to the new 1478 * metaslab_t. 1479 */ 1480 for (uint64_t m = oldc; m < newc; m++) { 1481 uint64_t alloc = 1482 space_map_allocated(vd->vdev_ms[m]->ms_sm); 1483 if (alloc < smallest) { 1484 slog_msid = m; 1485 smallest = alloc; 1486 } 1487 } 1488 metaslab_t *slog_ms = vd->vdev_ms[slog_msid]; 1489 /* 1490 * The metaslab was marked as dirty at the end of 1491 * metaslab_init(). Remove it from the dirty list so that we 1492 * can uninitialize and reinitialize it to the new class. 1493 */ 1494 if (txg != 0) { 1495 (void) txg_list_remove_this(&vd->vdev_ms_list, 1496 slog_ms, txg); 1497 } 1498 uint64_t sm_obj = space_map_object(slog_ms->ms_sm); 1499 metaslab_fini(slog_ms); 1500 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg, 1501 &vd->vdev_ms[slog_msid])); 1502 } 1503 1504 if (txg == 0) 1505 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1506 1507 /* 1508 * If the vdev is marked as non-allocating then don't 1509 * activate the metaslabs since we want to ensure that 1510 * no allocations are performed on this device. 1511 */ 1512 if (vd->vdev_noalloc) { 1513 /* track non-allocating vdev space */ 1514 spa->spa_nonallocating_dspace += spa_deflate(spa) ? 1515 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 1516 } else if (!expanding) { 1517 metaslab_group_activate(vd->vdev_mg); 1518 if (vd->vdev_log_mg != NULL) 1519 metaslab_group_activate(vd->vdev_log_mg); 1520 } 1521 1522 if (txg == 0) 1523 spa_config_exit(spa, SCL_ALLOC, FTAG); 1524 1525 /* 1526 * Regardless whether this vdev was just added or it is being 1527 * expanded, the metaslab count has changed. Recalculate the 1528 * block limit. 1529 */ 1530 spa_log_sm_set_blocklimit(spa); 1531 1532 return (0); 1533 } 1534 1535 void 1536 vdev_metaslab_fini(vdev_t *vd) 1537 { 1538 if (vd->vdev_checkpoint_sm != NULL) { 1539 ASSERT(spa_feature_is_active(vd->vdev_spa, 1540 SPA_FEATURE_POOL_CHECKPOINT)); 1541 space_map_close(vd->vdev_checkpoint_sm); 1542 /* 1543 * Even though we close the space map, we need to set its 1544 * pointer to NULL. The reason is that vdev_metaslab_fini() 1545 * may be called multiple times for certain operations 1546 * (i.e. when destroying a pool) so we need to ensure that 1547 * this clause never executes twice. This logic is similar 1548 * to the one used for the vdev_ms clause below. 1549 */ 1550 vd->vdev_checkpoint_sm = NULL; 1551 } 1552 1553 if (vd->vdev_ms != NULL) { 1554 metaslab_group_t *mg = vd->vdev_mg; 1555 1556 metaslab_group_passivate(mg); 1557 if (vd->vdev_log_mg != NULL) { 1558 ASSERT(!vd->vdev_islog); 1559 metaslab_group_passivate(vd->vdev_log_mg); 1560 } 1561 1562 uint64_t count = vd->vdev_ms_count; 1563 for (uint64_t m = 0; m < count; m++) { 1564 metaslab_t *msp = vd->vdev_ms[m]; 1565 if (msp != NULL) 1566 metaslab_fini(msp); 1567 } 1568 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1569 vd->vdev_ms = NULL; 1570 vd->vdev_ms_count = 0; 1571 1572 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 1573 ASSERT0(mg->mg_histogram[i]); 1574 if (vd->vdev_log_mg != NULL) 1575 ASSERT0(vd->vdev_log_mg->mg_histogram[i]); 1576 } 1577 } 1578 ASSERT0(vd->vdev_ms_count); 1579 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0); 1580 } 1581 1582 typedef struct vdev_probe_stats { 1583 boolean_t vps_readable; 1584 boolean_t vps_writeable; 1585 int vps_flags; 1586 } vdev_probe_stats_t; 1587 1588 static void 1589 vdev_probe_done(zio_t *zio) 1590 { 1591 spa_t *spa = zio->io_spa; 1592 vdev_t *vd = zio->io_vd; 1593 vdev_probe_stats_t *vps = zio->io_private; 1594 1595 ASSERT(vd->vdev_probe_zio != NULL); 1596 1597 if (zio->io_type == ZIO_TYPE_READ) { 1598 if (zio->io_error == 0) 1599 vps->vps_readable = 1; 1600 if (zio->io_error == 0 && spa_writeable(spa)) { 1601 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1602 zio->io_offset, zio->io_size, zio->io_abd, 1603 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1604 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1605 } else { 1606 abd_free(zio->io_abd); 1607 } 1608 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1609 if (zio->io_error == 0) 1610 vps->vps_writeable = 1; 1611 abd_free(zio->io_abd); 1612 } else if (zio->io_type == ZIO_TYPE_NULL) { 1613 zio_t *pio; 1614 zio_link_t *zl; 1615 1616 vd->vdev_cant_read |= !vps->vps_readable; 1617 vd->vdev_cant_write |= !vps->vps_writeable; 1618 1619 if (vdev_readable(vd) && 1620 (vdev_writeable(vd) || !spa_writeable(spa))) { 1621 zio->io_error = 0; 1622 } else { 1623 ASSERT(zio->io_error != 0); 1624 vdev_dbgmsg(vd, "failed probe"); 1625 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1626 spa, vd, NULL, NULL, 0); 1627 zio->io_error = SET_ERROR(ENXIO); 1628 } 1629 1630 mutex_enter(&vd->vdev_probe_lock); 1631 ASSERT(vd->vdev_probe_zio == zio); 1632 vd->vdev_probe_zio = NULL; 1633 mutex_exit(&vd->vdev_probe_lock); 1634 1635 zl = NULL; 1636 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1637 if (!vdev_accessible(vd, pio)) 1638 pio->io_error = SET_ERROR(ENXIO); 1639 1640 kmem_free(vps, sizeof (*vps)); 1641 } 1642 } 1643 1644 /* 1645 * Determine whether this device is accessible. 1646 * 1647 * Read and write to several known locations: the pad regions of each 1648 * vdev label but the first, which we leave alone in case it contains 1649 * a VTOC. 1650 */ 1651 zio_t * 1652 vdev_probe(vdev_t *vd, zio_t *zio) 1653 { 1654 spa_t *spa = vd->vdev_spa; 1655 vdev_probe_stats_t *vps = NULL; 1656 zio_t *pio; 1657 1658 ASSERT(vd->vdev_ops->vdev_op_leaf); 1659 1660 /* 1661 * Don't probe the probe. 1662 */ 1663 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1664 return (NULL); 1665 1666 /* 1667 * To prevent 'probe storms' when a device fails, we create 1668 * just one probe i/o at a time. All zios that want to probe 1669 * this vdev will become parents of the probe io. 1670 */ 1671 mutex_enter(&vd->vdev_probe_lock); 1672 1673 if ((pio = vd->vdev_probe_zio) == NULL) { 1674 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1675 1676 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1677 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1678 ZIO_FLAG_TRYHARD; 1679 1680 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1681 /* 1682 * vdev_cant_read and vdev_cant_write can only 1683 * transition from TRUE to FALSE when we have the 1684 * SCL_ZIO lock as writer; otherwise they can only 1685 * transition from FALSE to TRUE. This ensures that 1686 * any zio looking at these values can assume that 1687 * failures persist for the life of the I/O. That's 1688 * important because when a device has intermittent 1689 * connectivity problems, we want to ensure that 1690 * they're ascribed to the device (ENXIO) and not 1691 * the zio (EIO). 1692 * 1693 * Since we hold SCL_ZIO as writer here, clear both 1694 * values so the probe can reevaluate from first 1695 * principles. 1696 */ 1697 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1698 vd->vdev_cant_read = B_FALSE; 1699 vd->vdev_cant_write = B_FALSE; 1700 } 1701 1702 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1703 vdev_probe_done, vps, 1704 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1705 1706 /* 1707 * We can't change the vdev state in this context, so we 1708 * kick off an async task to do it on our behalf. 1709 */ 1710 if (zio != NULL) { 1711 vd->vdev_probe_wanted = B_TRUE; 1712 spa_async_request(spa, SPA_ASYNC_PROBE); 1713 } 1714 } 1715 1716 if (zio != NULL) 1717 zio_add_child(zio, pio); 1718 1719 mutex_exit(&vd->vdev_probe_lock); 1720 1721 if (vps == NULL) { 1722 ASSERT(zio != NULL); 1723 return (NULL); 1724 } 1725 1726 for (int l = 1; l < VDEV_LABELS; l++) { 1727 zio_nowait(zio_read_phys(pio, vd, 1728 vdev_label_offset(vd->vdev_psize, l, 1729 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE, 1730 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1731 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1732 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1733 } 1734 1735 if (zio == NULL) 1736 return (pio); 1737 1738 zio_nowait(pio); 1739 return (NULL); 1740 } 1741 1742 static void 1743 vdev_load_child(void *arg) 1744 { 1745 vdev_t *vd = arg; 1746 1747 vd->vdev_load_error = vdev_load(vd); 1748 } 1749 1750 static void 1751 vdev_open_child(void *arg) 1752 { 1753 vdev_t *vd = arg; 1754 1755 vd->vdev_open_thread = curthread; 1756 vd->vdev_open_error = vdev_open(vd); 1757 vd->vdev_open_thread = NULL; 1758 } 1759 1760 static boolean_t 1761 vdev_uses_zvols(vdev_t *vd) 1762 { 1763 #ifdef _KERNEL 1764 if (zvol_is_zvol(vd->vdev_path)) 1765 return (B_TRUE); 1766 #endif 1767 1768 for (int c = 0; c < vd->vdev_children; c++) 1769 if (vdev_uses_zvols(vd->vdev_child[c])) 1770 return (B_TRUE); 1771 1772 return (B_FALSE); 1773 } 1774 1775 /* 1776 * Returns B_TRUE if the passed child should be opened. 1777 */ 1778 static boolean_t 1779 vdev_default_open_children_func(vdev_t *vd) 1780 { 1781 return (B_TRUE); 1782 } 1783 1784 /* 1785 * Open the requested child vdevs. If any of the leaf vdevs are using 1786 * a ZFS volume then do the opens in a single thread. This avoids a 1787 * deadlock when the current thread is holding the spa_namespace_lock. 1788 */ 1789 static void 1790 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func) 1791 { 1792 int children = vd->vdev_children; 1793 1794 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri, 1795 children, children, TASKQ_PREPOPULATE); 1796 vd->vdev_nonrot = B_TRUE; 1797 1798 for (int c = 0; c < children; c++) { 1799 vdev_t *cvd = vd->vdev_child[c]; 1800 1801 if (open_func(cvd) == B_FALSE) 1802 continue; 1803 1804 if (tq == NULL || vdev_uses_zvols(vd)) { 1805 cvd->vdev_open_error = vdev_open(cvd); 1806 } else { 1807 VERIFY(taskq_dispatch(tq, vdev_open_child, 1808 cvd, TQ_SLEEP) != TASKQID_INVALID); 1809 } 1810 1811 vd->vdev_nonrot &= cvd->vdev_nonrot; 1812 } 1813 1814 if (tq != NULL) { 1815 taskq_wait(tq); 1816 taskq_destroy(tq); 1817 } 1818 } 1819 1820 /* 1821 * Open all child vdevs. 1822 */ 1823 void 1824 vdev_open_children(vdev_t *vd) 1825 { 1826 vdev_open_children_impl(vd, vdev_default_open_children_func); 1827 } 1828 1829 /* 1830 * Conditionally open a subset of child vdevs. 1831 */ 1832 void 1833 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func) 1834 { 1835 vdev_open_children_impl(vd, open_func); 1836 } 1837 1838 /* 1839 * Compute the raidz-deflation ratio. Note, we hard-code 1840 * in 128k (1 << 17) because it is the "typical" blocksize. 1841 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 1842 * otherwise it would inconsistently account for existing bp's. 1843 */ 1844 static void 1845 vdev_set_deflate_ratio(vdev_t *vd) 1846 { 1847 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 1848 vd->vdev_deflate_ratio = (1 << 17) / 1849 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 1850 } 1851 } 1852 1853 /* 1854 * Maximize performance by inflating the configured ashift for top level 1855 * vdevs to be as close to the physical ashift as possible while maintaining 1856 * administrator defined limits and ensuring it doesn't go below the 1857 * logical ashift. 1858 */ 1859 static void 1860 vdev_ashift_optimize(vdev_t *vd) 1861 { 1862 ASSERT(vd == vd->vdev_top); 1863 1864 if (vd->vdev_ashift < vd->vdev_physical_ashift) { 1865 vd->vdev_ashift = MIN( 1866 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift), 1867 MAX(zfs_vdev_min_auto_ashift, 1868 vd->vdev_physical_ashift)); 1869 } else { 1870 /* 1871 * If the logical and physical ashifts are the same, then 1872 * we ensure that the top-level vdev's ashift is not smaller 1873 * than our minimum ashift value. For the unusual case 1874 * where logical ashift > physical ashift, we can't cap 1875 * the calculated ashift based on max ashift as that 1876 * would cause failures. 1877 * We still check if we need to increase it to match 1878 * the min ashift. 1879 */ 1880 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift, 1881 vd->vdev_ashift); 1882 } 1883 } 1884 1885 /* 1886 * Prepare a virtual device for access. 1887 */ 1888 int 1889 vdev_open(vdev_t *vd) 1890 { 1891 spa_t *spa = vd->vdev_spa; 1892 int error; 1893 uint64_t osize = 0; 1894 uint64_t max_osize = 0; 1895 uint64_t asize, max_asize, psize; 1896 uint64_t logical_ashift = 0; 1897 uint64_t physical_ashift = 0; 1898 1899 ASSERT(vd->vdev_open_thread == curthread || 1900 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1901 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1902 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1903 vd->vdev_state == VDEV_STATE_OFFLINE); 1904 1905 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1906 vd->vdev_cant_read = B_FALSE; 1907 vd->vdev_cant_write = B_FALSE; 1908 vd->vdev_min_asize = vdev_get_min_asize(vd); 1909 1910 /* 1911 * If this vdev is not removed, check its fault status. If it's 1912 * faulted, bail out of the open. 1913 */ 1914 if (!vd->vdev_removed && vd->vdev_faulted) { 1915 ASSERT(vd->vdev_children == 0); 1916 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1917 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1918 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1919 vd->vdev_label_aux); 1920 return (SET_ERROR(ENXIO)); 1921 } else if (vd->vdev_offline) { 1922 ASSERT(vd->vdev_children == 0); 1923 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1924 return (SET_ERROR(ENXIO)); 1925 } 1926 1927 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, 1928 &logical_ashift, &physical_ashift); 1929 /* 1930 * Physical volume size should never be larger than its max size, unless 1931 * the disk has shrunk while we were reading it or the device is buggy 1932 * or damaged: either way it's not safe for use, bail out of the open. 1933 */ 1934 if (osize > max_osize) { 1935 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1936 VDEV_AUX_OPEN_FAILED); 1937 return (SET_ERROR(ENXIO)); 1938 } 1939 1940 /* 1941 * Reset the vdev_reopening flag so that we actually close 1942 * the vdev on error. 1943 */ 1944 vd->vdev_reopening = B_FALSE; 1945 if (zio_injection_enabled && error == 0) 1946 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO)); 1947 1948 if (error) { 1949 if (vd->vdev_removed && 1950 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1951 vd->vdev_removed = B_FALSE; 1952 1953 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 1954 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 1955 vd->vdev_stat.vs_aux); 1956 } else { 1957 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1958 vd->vdev_stat.vs_aux); 1959 } 1960 return (error); 1961 } 1962 1963 vd->vdev_removed = B_FALSE; 1964 1965 /* 1966 * Recheck the faulted flag now that we have confirmed that 1967 * the vdev is accessible. If we're faulted, bail. 1968 */ 1969 if (vd->vdev_faulted) { 1970 ASSERT(vd->vdev_children == 0); 1971 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1972 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1973 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1974 vd->vdev_label_aux); 1975 return (SET_ERROR(ENXIO)); 1976 } 1977 1978 if (vd->vdev_degraded) { 1979 ASSERT(vd->vdev_children == 0); 1980 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1981 VDEV_AUX_ERR_EXCEEDED); 1982 } else { 1983 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1984 } 1985 1986 /* 1987 * For hole or missing vdevs we just return success. 1988 */ 1989 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1990 return (0); 1991 1992 for (int c = 0; c < vd->vdev_children; c++) { 1993 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1994 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1995 VDEV_AUX_NONE); 1996 break; 1997 } 1998 } 1999 2000 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 2001 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 2002 2003 if (vd->vdev_children == 0) { 2004 if (osize < SPA_MINDEVSIZE) { 2005 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2006 VDEV_AUX_TOO_SMALL); 2007 return (SET_ERROR(EOVERFLOW)); 2008 } 2009 psize = osize; 2010 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 2011 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 2012 VDEV_LABEL_END_SIZE); 2013 } else { 2014 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 2015 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 2016 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2017 VDEV_AUX_TOO_SMALL); 2018 return (SET_ERROR(EOVERFLOW)); 2019 } 2020 psize = 0; 2021 asize = osize; 2022 max_asize = max_osize; 2023 } 2024 2025 /* 2026 * If the vdev was expanded, record this so that we can re-create the 2027 * uberblock rings in labels {2,3}, during the next sync. 2028 */ 2029 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0)) 2030 vd->vdev_copy_uberblocks = B_TRUE; 2031 2032 vd->vdev_psize = psize; 2033 2034 /* 2035 * Make sure the allocatable size hasn't shrunk too much. 2036 */ 2037 if (asize < vd->vdev_min_asize) { 2038 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2039 VDEV_AUX_BAD_LABEL); 2040 return (SET_ERROR(EINVAL)); 2041 } 2042 2043 /* 2044 * We can always set the logical/physical ashift members since 2045 * their values are only used to calculate the vdev_ashift when 2046 * the device is first added to the config. These values should 2047 * not be used for anything else since they may change whenever 2048 * the device is reopened and we don't store them in the label. 2049 */ 2050 vd->vdev_physical_ashift = 2051 MAX(physical_ashift, vd->vdev_physical_ashift); 2052 vd->vdev_logical_ashift = MAX(logical_ashift, 2053 vd->vdev_logical_ashift); 2054 2055 if (vd->vdev_asize == 0) { 2056 /* 2057 * This is the first-ever open, so use the computed values. 2058 * For compatibility, a different ashift can be requested. 2059 */ 2060 vd->vdev_asize = asize; 2061 vd->vdev_max_asize = max_asize; 2062 2063 /* 2064 * If the vdev_ashift was not overridden at creation time, 2065 * then set it the logical ashift and optimize the ashift. 2066 */ 2067 if (vd->vdev_ashift == 0) { 2068 vd->vdev_ashift = vd->vdev_logical_ashift; 2069 2070 if (vd->vdev_logical_ashift > ASHIFT_MAX) { 2071 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2072 VDEV_AUX_ASHIFT_TOO_BIG); 2073 return (SET_ERROR(EDOM)); 2074 } 2075 2076 if (vd->vdev_top == vd) { 2077 vdev_ashift_optimize(vd); 2078 } 2079 } 2080 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN || 2081 vd->vdev_ashift > ASHIFT_MAX)) { 2082 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2083 VDEV_AUX_BAD_ASHIFT); 2084 return (SET_ERROR(EDOM)); 2085 } 2086 } else { 2087 /* 2088 * Make sure the alignment required hasn't increased. 2089 */ 2090 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift && 2091 vd->vdev_ops->vdev_op_leaf) { 2092 (void) zfs_ereport_post( 2093 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT, 2094 spa, vd, NULL, NULL, 0); 2095 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2096 VDEV_AUX_BAD_LABEL); 2097 return (SET_ERROR(EDOM)); 2098 } 2099 vd->vdev_max_asize = max_asize; 2100 } 2101 2102 /* 2103 * If all children are healthy we update asize if either: 2104 * The asize has increased, due to a device expansion caused by dynamic 2105 * LUN growth or vdev replacement, and automatic expansion is enabled; 2106 * making the additional space available. 2107 * 2108 * The asize has decreased, due to a device shrink usually caused by a 2109 * vdev replace with a smaller device. This ensures that calculations 2110 * based of max_asize and asize e.g. esize are always valid. It's safe 2111 * to do this as we've already validated that asize is greater than 2112 * vdev_min_asize. 2113 */ 2114 if (vd->vdev_state == VDEV_STATE_HEALTHY && 2115 ((asize > vd->vdev_asize && 2116 (vd->vdev_expanding || spa->spa_autoexpand)) || 2117 (asize < vd->vdev_asize))) 2118 vd->vdev_asize = asize; 2119 2120 vdev_set_min_asize(vd); 2121 2122 /* 2123 * Ensure we can issue some IO before declaring the 2124 * vdev open for business. 2125 */ 2126 if (vd->vdev_ops->vdev_op_leaf && 2127 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 2128 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2129 VDEV_AUX_ERR_EXCEEDED); 2130 return (error); 2131 } 2132 2133 /* 2134 * Track the minimum allocation size. 2135 */ 2136 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 2137 vd->vdev_islog == 0 && vd->vdev_aux == NULL) { 2138 uint64_t min_alloc = vdev_get_min_alloc(vd); 2139 if (min_alloc < spa->spa_min_alloc) 2140 spa->spa_min_alloc = min_alloc; 2141 } 2142 2143 /* 2144 * If this is a leaf vdev, assess whether a resilver is needed. 2145 * But don't do this if we are doing a reopen for a scrub, since 2146 * this would just restart the scrub we are already doing. 2147 */ 2148 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen) 2149 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd); 2150 2151 return (0); 2152 } 2153 2154 static void 2155 vdev_validate_child(void *arg) 2156 { 2157 vdev_t *vd = arg; 2158 2159 vd->vdev_validate_thread = curthread; 2160 vd->vdev_validate_error = vdev_validate(vd); 2161 vd->vdev_validate_thread = NULL; 2162 } 2163 2164 /* 2165 * Called once the vdevs are all opened, this routine validates the label 2166 * contents. This needs to be done before vdev_load() so that we don't 2167 * inadvertently do repair I/Os to the wrong device. 2168 * 2169 * This function will only return failure if one of the vdevs indicates that it 2170 * has since been destroyed or exported. This is only possible if 2171 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 2172 * will be updated but the function will return 0. 2173 */ 2174 int 2175 vdev_validate(vdev_t *vd) 2176 { 2177 spa_t *spa = vd->vdev_spa; 2178 taskq_t *tq = NULL; 2179 nvlist_t *label; 2180 uint64_t guid = 0, aux_guid = 0, top_guid; 2181 uint64_t state; 2182 nvlist_t *nvl; 2183 uint64_t txg; 2184 int children = vd->vdev_children; 2185 2186 if (vdev_validate_skip) 2187 return (0); 2188 2189 if (children > 0) { 2190 tq = taskq_create("vdev_validate", children, minclsyspri, 2191 children, children, TASKQ_PREPOPULATE); 2192 } 2193 2194 for (uint64_t c = 0; c < children; c++) { 2195 vdev_t *cvd = vd->vdev_child[c]; 2196 2197 if (tq == NULL || vdev_uses_zvols(cvd)) { 2198 vdev_validate_child(cvd); 2199 } else { 2200 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd, 2201 TQ_SLEEP) != TASKQID_INVALID); 2202 } 2203 } 2204 if (tq != NULL) { 2205 taskq_wait(tq); 2206 taskq_destroy(tq); 2207 } 2208 for (int c = 0; c < children; c++) { 2209 int error = vd->vdev_child[c]->vdev_validate_error; 2210 2211 if (error != 0) 2212 return (SET_ERROR(EBADF)); 2213 } 2214 2215 2216 /* 2217 * If the device has already failed, or was marked offline, don't do 2218 * any further validation. Otherwise, label I/O will fail and we will 2219 * overwrite the previous state. 2220 */ 2221 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 2222 return (0); 2223 2224 /* 2225 * If we are performing an extreme rewind, we allow for a label that 2226 * was modified at a point after the current txg. 2227 * If config lock is not held do not check for the txg. spa_sync could 2228 * be updating the vdev's label before updating spa_last_synced_txg. 2229 */ 2230 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 2231 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 2232 txg = UINT64_MAX; 2233 else 2234 txg = spa_last_synced_txg(spa); 2235 2236 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 2237 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2238 VDEV_AUX_BAD_LABEL); 2239 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 2240 "txg %llu", (u_longlong_t)txg); 2241 return (0); 2242 } 2243 2244 /* 2245 * Determine if this vdev has been split off into another 2246 * pool. If so, then refuse to open it. 2247 */ 2248 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 2249 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 2250 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2251 VDEV_AUX_SPLIT_POOL); 2252 nvlist_free(label); 2253 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 2254 return (0); 2255 } 2256 2257 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 2258 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2259 VDEV_AUX_CORRUPT_DATA); 2260 nvlist_free(label); 2261 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2262 ZPOOL_CONFIG_POOL_GUID); 2263 return (0); 2264 } 2265 2266 /* 2267 * If config is not trusted then ignore the spa guid check. This is 2268 * necessary because if the machine crashed during a re-guid the new 2269 * guid might have been written to all of the vdev labels, but not the 2270 * cached config. The check will be performed again once we have the 2271 * trusted config from the MOS. 2272 */ 2273 if (spa->spa_trust_config && guid != spa_guid(spa)) { 2274 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2275 VDEV_AUX_CORRUPT_DATA); 2276 nvlist_free(label); 2277 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 2278 "match config (%llu != %llu)", (u_longlong_t)guid, 2279 (u_longlong_t)spa_guid(spa)); 2280 return (0); 2281 } 2282 2283 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 2284 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 2285 &aux_guid) != 0) 2286 aux_guid = 0; 2287 2288 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 2289 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2290 VDEV_AUX_CORRUPT_DATA); 2291 nvlist_free(label); 2292 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2293 ZPOOL_CONFIG_GUID); 2294 return (0); 2295 } 2296 2297 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 2298 != 0) { 2299 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2300 VDEV_AUX_CORRUPT_DATA); 2301 nvlist_free(label); 2302 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2303 ZPOOL_CONFIG_TOP_GUID); 2304 return (0); 2305 } 2306 2307 /* 2308 * If this vdev just became a top-level vdev because its sibling was 2309 * detached, it will have adopted the parent's vdev guid -- but the 2310 * label may or may not be on disk yet. Fortunately, either version 2311 * of the label will have the same top guid, so if we're a top-level 2312 * vdev, we can safely compare to that instead. 2313 * However, if the config comes from a cachefile that failed to update 2314 * after the detach, a top-level vdev will appear as a non top-level 2315 * vdev in the config. Also relax the constraints if we perform an 2316 * extreme rewind. 2317 * 2318 * If we split this vdev off instead, then we also check the 2319 * original pool's guid. We don't want to consider the vdev 2320 * corrupt if it is partway through a split operation. 2321 */ 2322 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 2323 boolean_t mismatch = B_FALSE; 2324 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 2325 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 2326 mismatch = B_TRUE; 2327 } else { 2328 if (vd->vdev_guid != top_guid && 2329 vd->vdev_top->vdev_guid != guid) 2330 mismatch = B_TRUE; 2331 } 2332 2333 if (mismatch) { 2334 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2335 VDEV_AUX_CORRUPT_DATA); 2336 nvlist_free(label); 2337 vdev_dbgmsg(vd, "vdev_validate: config guid " 2338 "doesn't match label guid"); 2339 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 2340 (u_longlong_t)vd->vdev_guid, 2341 (u_longlong_t)vd->vdev_top->vdev_guid); 2342 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 2343 "aux_guid %llu", (u_longlong_t)guid, 2344 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 2345 return (0); 2346 } 2347 } 2348 2349 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 2350 &state) != 0) { 2351 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2352 VDEV_AUX_CORRUPT_DATA); 2353 nvlist_free(label); 2354 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2355 ZPOOL_CONFIG_POOL_STATE); 2356 return (0); 2357 } 2358 2359 nvlist_free(label); 2360 2361 /* 2362 * If this is a verbatim import, no need to check the 2363 * state of the pool. 2364 */ 2365 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 2366 spa_load_state(spa) == SPA_LOAD_OPEN && 2367 state != POOL_STATE_ACTIVE) { 2368 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 2369 "for spa %s", (u_longlong_t)state, spa->spa_name); 2370 return (SET_ERROR(EBADF)); 2371 } 2372 2373 /* 2374 * If we were able to open and validate a vdev that was 2375 * previously marked permanently unavailable, clear that state 2376 * now. 2377 */ 2378 if (vd->vdev_not_present) 2379 vd->vdev_not_present = 0; 2380 2381 return (0); 2382 } 2383 2384 static void 2385 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 2386 { 2387 char *old, *new; 2388 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) { 2389 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) { 2390 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed " 2391 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2392 dvd->vdev_path, svd->vdev_path); 2393 spa_strfree(dvd->vdev_path); 2394 dvd->vdev_path = spa_strdup(svd->vdev_path); 2395 } 2396 } else if (svd->vdev_path != NULL) { 2397 dvd->vdev_path = spa_strdup(svd->vdev_path); 2398 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 2399 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path); 2400 } 2401 2402 /* 2403 * Our enclosure sysfs path may have changed between imports 2404 */ 2405 old = dvd->vdev_enc_sysfs_path; 2406 new = svd->vdev_enc_sysfs_path; 2407 if ((old != NULL && new == NULL) || 2408 (old == NULL && new != NULL) || 2409 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) { 2410 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path " 2411 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2412 old, new); 2413 2414 if (dvd->vdev_enc_sysfs_path) 2415 spa_strfree(dvd->vdev_enc_sysfs_path); 2416 2417 if (svd->vdev_enc_sysfs_path) { 2418 dvd->vdev_enc_sysfs_path = spa_strdup( 2419 svd->vdev_enc_sysfs_path); 2420 } else { 2421 dvd->vdev_enc_sysfs_path = NULL; 2422 } 2423 } 2424 } 2425 2426 /* 2427 * Recursively copy vdev paths from one vdev to another. Source and destination 2428 * vdev trees must have same geometry otherwise return error. Intended to copy 2429 * paths from userland config into MOS config. 2430 */ 2431 int 2432 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 2433 { 2434 if ((svd->vdev_ops == &vdev_missing_ops) || 2435 (svd->vdev_ishole && dvd->vdev_ishole) || 2436 (dvd->vdev_ops == &vdev_indirect_ops)) 2437 return (0); 2438 2439 if (svd->vdev_ops != dvd->vdev_ops) { 2440 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 2441 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 2442 return (SET_ERROR(EINVAL)); 2443 } 2444 2445 if (svd->vdev_guid != dvd->vdev_guid) { 2446 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 2447 "%llu)", (u_longlong_t)svd->vdev_guid, 2448 (u_longlong_t)dvd->vdev_guid); 2449 return (SET_ERROR(EINVAL)); 2450 } 2451 2452 if (svd->vdev_children != dvd->vdev_children) { 2453 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 2454 "%llu != %llu", (u_longlong_t)svd->vdev_children, 2455 (u_longlong_t)dvd->vdev_children); 2456 return (SET_ERROR(EINVAL)); 2457 } 2458 2459 for (uint64_t i = 0; i < svd->vdev_children; i++) { 2460 int error = vdev_copy_path_strict(svd->vdev_child[i], 2461 dvd->vdev_child[i]); 2462 if (error != 0) 2463 return (error); 2464 } 2465 2466 if (svd->vdev_ops->vdev_op_leaf) 2467 vdev_copy_path_impl(svd, dvd); 2468 2469 return (0); 2470 } 2471 2472 static void 2473 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 2474 { 2475 ASSERT(stvd->vdev_top == stvd); 2476 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 2477 2478 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 2479 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 2480 } 2481 2482 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 2483 return; 2484 2485 /* 2486 * The idea here is that while a vdev can shift positions within 2487 * a top vdev (when replacing, attaching mirror, etc.) it cannot 2488 * step outside of it. 2489 */ 2490 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 2491 2492 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 2493 return; 2494 2495 ASSERT(vd->vdev_ops->vdev_op_leaf); 2496 2497 vdev_copy_path_impl(vd, dvd); 2498 } 2499 2500 /* 2501 * Recursively copy vdev paths from one root vdev to another. Source and 2502 * destination vdev trees may differ in geometry. For each destination leaf 2503 * vdev, search a vdev with the same guid and top vdev id in the source. 2504 * Intended to copy paths from userland config into MOS config. 2505 */ 2506 void 2507 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 2508 { 2509 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 2510 ASSERT(srvd->vdev_ops == &vdev_root_ops); 2511 ASSERT(drvd->vdev_ops == &vdev_root_ops); 2512 2513 for (uint64_t i = 0; i < children; i++) { 2514 vdev_copy_path_search(srvd->vdev_child[i], 2515 drvd->vdev_child[i]); 2516 } 2517 } 2518 2519 /* 2520 * Close a virtual device. 2521 */ 2522 void 2523 vdev_close(vdev_t *vd) 2524 { 2525 vdev_t *pvd = vd->vdev_parent; 2526 spa_t *spa __maybe_unused = vd->vdev_spa; 2527 2528 ASSERT(vd != NULL); 2529 ASSERT(vd->vdev_open_thread == curthread || 2530 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2531 2532 /* 2533 * If our parent is reopening, then we are as well, unless we are 2534 * going offline. 2535 */ 2536 if (pvd != NULL && pvd->vdev_reopening) 2537 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 2538 2539 vd->vdev_ops->vdev_op_close(vd); 2540 2541 vdev_cache_purge(vd); 2542 2543 /* 2544 * We record the previous state before we close it, so that if we are 2545 * doing a reopen(), we don't generate FMA ereports if we notice that 2546 * it's still faulted. 2547 */ 2548 vd->vdev_prevstate = vd->vdev_state; 2549 2550 if (vd->vdev_offline) 2551 vd->vdev_state = VDEV_STATE_OFFLINE; 2552 else 2553 vd->vdev_state = VDEV_STATE_CLOSED; 2554 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2555 } 2556 2557 void 2558 vdev_hold(vdev_t *vd) 2559 { 2560 spa_t *spa = vd->vdev_spa; 2561 2562 ASSERT(spa_is_root(spa)); 2563 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 2564 return; 2565 2566 for (int c = 0; c < vd->vdev_children; c++) 2567 vdev_hold(vd->vdev_child[c]); 2568 2569 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL) 2570 vd->vdev_ops->vdev_op_hold(vd); 2571 } 2572 2573 void 2574 vdev_rele(vdev_t *vd) 2575 { 2576 ASSERT(spa_is_root(vd->vdev_spa)); 2577 for (int c = 0; c < vd->vdev_children; c++) 2578 vdev_rele(vd->vdev_child[c]); 2579 2580 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL) 2581 vd->vdev_ops->vdev_op_rele(vd); 2582 } 2583 2584 /* 2585 * Reopen all interior vdevs and any unopened leaves. We don't actually 2586 * reopen leaf vdevs which had previously been opened as they might deadlock 2587 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 2588 * If the leaf has never been opened then open it, as usual. 2589 */ 2590 void 2591 vdev_reopen(vdev_t *vd) 2592 { 2593 spa_t *spa = vd->vdev_spa; 2594 2595 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2596 2597 /* set the reopening flag unless we're taking the vdev offline */ 2598 vd->vdev_reopening = !vd->vdev_offline; 2599 vdev_close(vd); 2600 (void) vdev_open(vd); 2601 2602 /* 2603 * Call vdev_validate() here to make sure we have the same device. 2604 * Otherwise, a device with an invalid label could be successfully 2605 * opened in response to vdev_reopen(). 2606 */ 2607 if (vd->vdev_aux) { 2608 (void) vdev_validate_aux(vd); 2609 if (vdev_readable(vd) && vdev_writeable(vd) && 2610 vd->vdev_aux == &spa->spa_l2cache) { 2611 /* 2612 * In case the vdev is present we should evict all ARC 2613 * buffers and pointers to log blocks and reclaim their 2614 * space before restoring its contents to L2ARC. 2615 */ 2616 if (l2arc_vdev_present(vd)) { 2617 l2arc_rebuild_vdev(vd, B_TRUE); 2618 } else { 2619 l2arc_add_vdev(spa, vd); 2620 } 2621 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2622 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 2623 } 2624 } else { 2625 (void) vdev_validate(vd); 2626 } 2627 2628 /* 2629 * Reassess parent vdev's health. 2630 */ 2631 vdev_propagate_state(vd); 2632 } 2633 2634 int 2635 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2636 { 2637 int error; 2638 2639 /* 2640 * Normally, partial opens (e.g. of a mirror) are allowed. 2641 * For a create, however, we want to fail the request if 2642 * there are any components we can't open. 2643 */ 2644 error = vdev_open(vd); 2645 2646 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2647 vdev_close(vd); 2648 return (error ? error : SET_ERROR(ENXIO)); 2649 } 2650 2651 /* 2652 * Recursively load DTLs and initialize all labels. 2653 */ 2654 if ((error = vdev_dtl_load(vd)) != 0 || 2655 (error = vdev_label_init(vd, txg, isreplacing ? 2656 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2657 vdev_close(vd); 2658 return (error); 2659 } 2660 2661 return (0); 2662 } 2663 2664 void 2665 vdev_metaslab_set_size(vdev_t *vd) 2666 { 2667 uint64_t asize = vd->vdev_asize; 2668 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2669 uint64_t ms_shift; 2670 2671 /* 2672 * There are two dimensions to the metaslab sizing calculation: 2673 * the size of the metaslab and the count of metaslabs per vdev. 2674 * 2675 * The default values used below are a good balance between memory 2676 * usage (larger metaslab size means more memory needed for loaded 2677 * metaslabs; more metaslabs means more memory needed for the 2678 * metaslab_t structs), metaslab load time (larger metaslabs take 2679 * longer to load), and metaslab sync time (more metaslabs means 2680 * more time spent syncing all of them). 2681 * 2682 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2683 * The range of the dimensions are as follows: 2684 * 2685 * 2^29 <= ms_size <= 2^34 2686 * 16 <= ms_count <= 131,072 2687 * 2688 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2689 * at least 512MB (2^29) to minimize fragmentation effects when 2690 * testing with smaller devices. However, the count constraint 2691 * of at least 16 metaslabs will override this minimum size goal. 2692 * 2693 * On the upper end of vdev sizes, we aim for a maximum metaslab 2694 * size of 16GB. However, we will cap the total count to 2^17 2695 * metaslabs to keep our memory footprint in check and let the 2696 * metaslab size grow from there if that limit is hit. 2697 * 2698 * The net effect of applying above constrains is summarized below. 2699 * 2700 * vdev size metaslab count 2701 * --------------|----------------- 2702 * < 8GB ~16 2703 * 8GB - 100GB one per 512MB 2704 * 100GB - 3TB ~200 2705 * 3TB - 2PB one per 16GB 2706 * > 2PB ~131,072 2707 * -------------------------------- 2708 * 2709 * Finally, note that all of the above calculate the initial 2710 * number of metaslabs. Expanding a top-level vdev will result 2711 * in additional metaslabs being allocated making it possible 2712 * to exceed the zfs_vdev_ms_count_limit. 2713 */ 2714 2715 if (ms_count < zfs_vdev_min_ms_count) 2716 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 2717 else if (ms_count > zfs_vdev_default_ms_count) 2718 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 2719 else 2720 ms_shift = zfs_vdev_default_ms_shift; 2721 2722 if (ms_shift < SPA_MAXBLOCKSHIFT) { 2723 ms_shift = SPA_MAXBLOCKSHIFT; 2724 } else if (ms_shift > zfs_vdev_max_ms_shift) { 2725 ms_shift = zfs_vdev_max_ms_shift; 2726 /* cap the total count to constrain memory footprint */ 2727 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 2728 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 2729 } 2730 2731 vd->vdev_ms_shift = ms_shift; 2732 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 2733 } 2734 2735 void 2736 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 2737 { 2738 ASSERT(vd == vd->vdev_top); 2739 /* indirect vdevs don't have metaslabs or dtls */ 2740 ASSERT(vdev_is_concrete(vd) || flags == 0); 2741 ASSERT(ISP2(flags)); 2742 ASSERT(spa_writeable(vd->vdev_spa)); 2743 2744 if (flags & VDD_METASLAB) 2745 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 2746 2747 if (flags & VDD_DTL) 2748 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 2749 2750 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 2751 } 2752 2753 void 2754 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 2755 { 2756 for (int c = 0; c < vd->vdev_children; c++) 2757 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 2758 2759 if (vd->vdev_ops->vdev_op_leaf) 2760 vdev_dirty(vd->vdev_top, flags, vd, txg); 2761 } 2762 2763 /* 2764 * DTLs. 2765 * 2766 * A vdev's DTL (dirty time log) is the set of transaction groups for which 2767 * the vdev has less than perfect replication. There are four kinds of DTL: 2768 * 2769 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 2770 * 2771 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 2772 * 2773 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 2774 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 2775 * txgs that was scrubbed. 2776 * 2777 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 2778 * persistent errors or just some device being offline. 2779 * Unlike the other three, the DTL_OUTAGE map is not generally 2780 * maintained; it's only computed when needed, typically to 2781 * determine whether a device can be detached. 2782 * 2783 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 2784 * either has the data or it doesn't. 2785 * 2786 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 2787 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 2788 * if any child is less than fully replicated, then so is its parent. 2789 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 2790 * comprising only those txgs which appear in 'maxfaults' or more children; 2791 * those are the txgs we don't have enough replication to read. For example, 2792 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 2793 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 2794 * two child DTL_MISSING maps. 2795 * 2796 * It should be clear from the above that to compute the DTLs and outage maps 2797 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 2798 * Therefore, that is all we keep on disk. When loading the pool, or after 2799 * a configuration change, we generate all other DTLs from first principles. 2800 */ 2801 void 2802 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2803 { 2804 range_tree_t *rt = vd->vdev_dtl[t]; 2805 2806 ASSERT(t < DTL_TYPES); 2807 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2808 ASSERT(spa_writeable(vd->vdev_spa)); 2809 2810 mutex_enter(&vd->vdev_dtl_lock); 2811 if (!range_tree_contains(rt, txg, size)) 2812 range_tree_add(rt, txg, size); 2813 mutex_exit(&vd->vdev_dtl_lock); 2814 } 2815 2816 boolean_t 2817 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2818 { 2819 range_tree_t *rt = vd->vdev_dtl[t]; 2820 boolean_t dirty = B_FALSE; 2821 2822 ASSERT(t < DTL_TYPES); 2823 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2824 2825 /* 2826 * While we are loading the pool, the DTLs have not been loaded yet. 2827 * This isn't a problem but it can result in devices being tried 2828 * which are known to not have the data. In which case, the import 2829 * is relying on the checksum to ensure that we get the right data. 2830 * Note that while importing we are only reading the MOS, which is 2831 * always checksummed. 2832 */ 2833 mutex_enter(&vd->vdev_dtl_lock); 2834 if (!range_tree_is_empty(rt)) 2835 dirty = range_tree_contains(rt, txg, size); 2836 mutex_exit(&vd->vdev_dtl_lock); 2837 2838 return (dirty); 2839 } 2840 2841 boolean_t 2842 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 2843 { 2844 range_tree_t *rt = vd->vdev_dtl[t]; 2845 boolean_t empty; 2846 2847 mutex_enter(&vd->vdev_dtl_lock); 2848 empty = range_tree_is_empty(rt); 2849 mutex_exit(&vd->vdev_dtl_lock); 2850 2851 return (empty); 2852 } 2853 2854 /* 2855 * Check if the txg falls within the range which must be 2856 * resilvered. DVAs outside this range can always be skipped. 2857 */ 2858 boolean_t 2859 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 2860 uint64_t phys_birth) 2861 { 2862 /* Set by sequential resilver. */ 2863 if (phys_birth == TXG_UNKNOWN) 2864 return (B_TRUE); 2865 2866 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)); 2867 } 2868 2869 /* 2870 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered. 2871 */ 2872 boolean_t 2873 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 2874 uint64_t phys_birth) 2875 { 2876 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2877 2878 if (vd->vdev_ops->vdev_op_need_resilver == NULL || 2879 vd->vdev_ops->vdev_op_leaf) 2880 return (B_TRUE); 2881 2882 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize, 2883 phys_birth)); 2884 } 2885 2886 /* 2887 * Returns the lowest txg in the DTL range. 2888 */ 2889 static uint64_t 2890 vdev_dtl_min(vdev_t *vd) 2891 { 2892 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2893 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2894 ASSERT0(vd->vdev_children); 2895 2896 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1); 2897 } 2898 2899 /* 2900 * Returns the highest txg in the DTL. 2901 */ 2902 static uint64_t 2903 vdev_dtl_max(vdev_t *vd) 2904 { 2905 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2906 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2907 ASSERT0(vd->vdev_children); 2908 2909 return (range_tree_max(vd->vdev_dtl[DTL_MISSING])); 2910 } 2911 2912 /* 2913 * Determine if a resilvering vdev should remove any DTL entries from 2914 * its range. If the vdev was resilvering for the entire duration of the 2915 * scan then it should excise that range from its DTLs. Otherwise, this 2916 * vdev is considered partially resilvered and should leave its DTL 2917 * entries intact. The comment in vdev_dtl_reassess() describes how we 2918 * excise the DTLs. 2919 */ 2920 static boolean_t 2921 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done) 2922 { 2923 ASSERT0(vd->vdev_children); 2924 2925 if (vd->vdev_state < VDEV_STATE_DEGRADED) 2926 return (B_FALSE); 2927 2928 if (vd->vdev_resilver_deferred) 2929 return (B_FALSE); 2930 2931 if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 2932 return (B_TRUE); 2933 2934 if (rebuild_done) { 2935 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 2936 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 2937 2938 /* Rebuild not initiated by attach */ 2939 if (vd->vdev_rebuild_txg == 0) 2940 return (B_TRUE); 2941 2942 /* 2943 * When a rebuild completes without error then all missing data 2944 * up to the rebuild max txg has been reconstructed and the DTL 2945 * is eligible for excision. 2946 */ 2947 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE && 2948 vdev_dtl_max(vd) <= vrp->vrp_max_txg) { 2949 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd)); 2950 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg); 2951 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg); 2952 return (B_TRUE); 2953 } 2954 } else { 2955 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 2956 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys; 2957 2958 /* Resilver not initiated by attach */ 2959 if (vd->vdev_resilver_txg == 0) 2960 return (B_TRUE); 2961 2962 /* 2963 * When a resilver is initiated the scan will assign the 2964 * scn_max_txg value to the highest txg value that exists 2965 * in all DTLs. If this device's max DTL is not part of this 2966 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg] 2967 * then it is not eligible for excision. 2968 */ 2969 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 2970 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd)); 2971 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg); 2972 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg); 2973 return (B_TRUE); 2974 } 2975 } 2976 2977 return (B_FALSE); 2978 } 2979 2980 /* 2981 * Reassess DTLs after a config change or scrub completion. If txg == 0 no 2982 * write operations will be issued to the pool. 2983 */ 2984 void 2985 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, 2986 boolean_t scrub_done, boolean_t rebuild_done) 2987 { 2988 spa_t *spa = vd->vdev_spa; 2989 avl_tree_t reftree; 2990 int minref; 2991 2992 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2993 2994 for (int c = 0; c < vd->vdev_children; c++) 2995 vdev_dtl_reassess(vd->vdev_child[c], txg, 2996 scrub_txg, scrub_done, rebuild_done); 2997 2998 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 2999 return; 3000 3001 if (vd->vdev_ops->vdev_op_leaf) { 3002 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 3003 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3004 boolean_t check_excise = B_FALSE; 3005 boolean_t wasempty = B_TRUE; 3006 3007 mutex_enter(&vd->vdev_dtl_lock); 3008 3009 /* 3010 * If requested, pretend the scan or rebuild completed cleanly. 3011 */ 3012 if (zfs_scan_ignore_errors) { 3013 if (scn != NULL) 3014 scn->scn_phys.scn_errors = 0; 3015 if (vr != NULL) 3016 vr->vr_rebuild_phys.vrp_errors = 0; 3017 } 3018 3019 if (scrub_txg != 0 && 3020 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3021 wasempty = B_FALSE; 3022 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d " 3023 "dtl:%llu/%llu errors:%llu", 3024 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg, 3025 (u_longlong_t)scrub_txg, spa->spa_scrub_started, 3026 (u_longlong_t)vdev_dtl_min(vd), 3027 (u_longlong_t)vdev_dtl_max(vd), 3028 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0)); 3029 } 3030 3031 /* 3032 * If we've completed a scrub/resilver or a rebuild cleanly 3033 * then determine if this vdev should remove any DTLs. We 3034 * only want to excise regions on vdevs that were available 3035 * during the entire duration of this scan. 3036 */ 3037 if (rebuild_done && 3038 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) { 3039 check_excise = B_TRUE; 3040 } else { 3041 if (spa->spa_scrub_started || 3042 (scn != NULL && scn->scn_phys.scn_errors == 0)) { 3043 check_excise = B_TRUE; 3044 } 3045 } 3046 3047 if (scrub_txg && check_excise && 3048 vdev_dtl_should_excise(vd, rebuild_done)) { 3049 /* 3050 * We completed a scrub, resilver or rebuild up to 3051 * scrub_txg. If we did it without rebooting, then 3052 * the scrub dtl will be valid, so excise the old 3053 * region and fold in the scrub dtl. Otherwise, 3054 * leave the dtl as-is if there was an error. 3055 * 3056 * There's little trick here: to excise the beginning 3057 * of the DTL_MISSING map, we put it into a reference 3058 * tree and then add a segment with refcnt -1 that 3059 * covers the range [0, scrub_txg). This means 3060 * that each txg in that range has refcnt -1 or 0. 3061 * We then add DTL_SCRUB with a refcnt of 2, so that 3062 * entries in the range [0, scrub_txg) will have a 3063 * positive refcnt -- either 1 or 2. We then convert 3064 * the reference tree into the new DTL_MISSING map. 3065 */ 3066 space_reftree_create(&reftree); 3067 space_reftree_add_map(&reftree, 3068 vd->vdev_dtl[DTL_MISSING], 1); 3069 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 3070 space_reftree_add_map(&reftree, 3071 vd->vdev_dtl[DTL_SCRUB], 2); 3072 space_reftree_generate_map(&reftree, 3073 vd->vdev_dtl[DTL_MISSING], 1); 3074 space_reftree_destroy(&reftree); 3075 3076 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3077 zfs_dbgmsg("update DTL_MISSING:%llu/%llu", 3078 (u_longlong_t)vdev_dtl_min(vd), 3079 (u_longlong_t)vdev_dtl_max(vd)); 3080 } else if (!wasempty) { 3081 zfs_dbgmsg("DTL_MISSING is now empty"); 3082 } 3083 } 3084 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 3085 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3086 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 3087 if (scrub_done) 3088 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 3089 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 3090 if (!vdev_readable(vd)) 3091 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 3092 else 3093 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3094 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 3095 3096 /* 3097 * If the vdev was resilvering or rebuilding and no longer 3098 * has any DTLs then reset the appropriate flag and dirty 3099 * the top level so that we persist the change. 3100 */ 3101 if (txg != 0 && 3102 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3103 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) { 3104 if (vd->vdev_rebuild_txg != 0) { 3105 vd->vdev_rebuild_txg = 0; 3106 vdev_config_dirty(vd->vdev_top); 3107 } else if (vd->vdev_resilver_txg != 0) { 3108 vd->vdev_resilver_txg = 0; 3109 vdev_config_dirty(vd->vdev_top); 3110 } 3111 } 3112 3113 mutex_exit(&vd->vdev_dtl_lock); 3114 3115 if (txg != 0) 3116 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 3117 return; 3118 } 3119 3120 mutex_enter(&vd->vdev_dtl_lock); 3121 for (int t = 0; t < DTL_TYPES; t++) { 3122 /* account for child's outage in parent's missing map */ 3123 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 3124 if (t == DTL_SCRUB) 3125 continue; /* leaf vdevs only */ 3126 if (t == DTL_PARTIAL) 3127 minref = 1; /* i.e. non-zero */ 3128 else if (vdev_get_nparity(vd) != 0) 3129 minref = vdev_get_nparity(vd) + 1; /* RAID-Z, dRAID */ 3130 else 3131 minref = vd->vdev_children; /* any kind of mirror */ 3132 space_reftree_create(&reftree); 3133 for (int c = 0; c < vd->vdev_children; c++) { 3134 vdev_t *cvd = vd->vdev_child[c]; 3135 mutex_enter(&cvd->vdev_dtl_lock); 3136 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 3137 mutex_exit(&cvd->vdev_dtl_lock); 3138 } 3139 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 3140 space_reftree_destroy(&reftree); 3141 } 3142 mutex_exit(&vd->vdev_dtl_lock); 3143 } 3144 3145 int 3146 vdev_dtl_load(vdev_t *vd) 3147 { 3148 spa_t *spa = vd->vdev_spa; 3149 objset_t *mos = spa->spa_meta_objset; 3150 range_tree_t *rt; 3151 int error = 0; 3152 3153 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 3154 ASSERT(vdev_is_concrete(vd)); 3155 3156 /* 3157 * If the dtl cannot be sync'd there is no need to open it. 3158 */ 3159 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps) 3160 return (0); 3161 3162 error = space_map_open(&vd->vdev_dtl_sm, mos, 3163 vd->vdev_dtl_object, 0, -1ULL, 0); 3164 if (error) 3165 return (error); 3166 ASSERT(vd->vdev_dtl_sm != NULL); 3167 3168 rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3169 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC); 3170 if (error == 0) { 3171 mutex_enter(&vd->vdev_dtl_lock); 3172 range_tree_walk(rt, range_tree_add, 3173 vd->vdev_dtl[DTL_MISSING]); 3174 mutex_exit(&vd->vdev_dtl_lock); 3175 } 3176 3177 range_tree_vacate(rt, NULL, NULL); 3178 range_tree_destroy(rt); 3179 3180 return (error); 3181 } 3182 3183 for (int c = 0; c < vd->vdev_children; c++) { 3184 error = vdev_dtl_load(vd->vdev_child[c]); 3185 if (error != 0) 3186 break; 3187 } 3188 3189 return (error); 3190 } 3191 3192 static void 3193 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) 3194 { 3195 spa_t *spa = vd->vdev_spa; 3196 objset_t *mos = spa->spa_meta_objset; 3197 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 3198 const char *string; 3199 3200 ASSERT(alloc_bias != VDEV_BIAS_NONE); 3201 3202 string = 3203 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : 3204 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : 3205 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; 3206 3207 ASSERT(string != NULL); 3208 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 3209 1, strlen(string) + 1, string, tx)); 3210 3211 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { 3212 spa_activate_allocation_classes(spa, tx); 3213 } 3214 } 3215 3216 void 3217 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 3218 { 3219 spa_t *spa = vd->vdev_spa; 3220 3221 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 3222 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3223 zapobj, tx)); 3224 } 3225 3226 uint64_t 3227 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 3228 { 3229 spa_t *spa = vd->vdev_spa; 3230 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 3231 DMU_OT_NONE, 0, tx); 3232 3233 ASSERT(zap != 0); 3234 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3235 zap, tx)); 3236 3237 return (zap); 3238 } 3239 3240 void 3241 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 3242 { 3243 if (vd->vdev_ops != &vdev_hole_ops && 3244 vd->vdev_ops != &vdev_missing_ops && 3245 vd->vdev_ops != &vdev_root_ops && 3246 !vd->vdev_top->vdev_removing) { 3247 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 3248 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 3249 } 3250 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 3251 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 3252 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) 3253 vdev_zap_allocation_data(vd, tx); 3254 } 3255 } 3256 3257 for (uint64_t i = 0; i < vd->vdev_children; i++) { 3258 vdev_construct_zaps(vd->vdev_child[i], tx); 3259 } 3260 } 3261 3262 static void 3263 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 3264 { 3265 spa_t *spa = vd->vdev_spa; 3266 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 3267 objset_t *mos = spa->spa_meta_objset; 3268 range_tree_t *rtsync; 3269 dmu_tx_t *tx; 3270 uint64_t object = space_map_object(vd->vdev_dtl_sm); 3271 3272 ASSERT(vdev_is_concrete(vd)); 3273 ASSERT(vd->vdev_ops->vdev_op_leaf); 3274 3275 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3276 3277 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 3278 mutex_enter(&vd->vdev_dtl_lock); 3279 space_map_free(vd->vdev_dtl_sm, tx); 3280 space_map_close(vd->vdev_dtl_sm); 3281 vd->vdev_dtl_sm = NULL; 3282 mutex_exit(&vd->vdev_dtl_lock); 3283 3284 /* 3285 * We only destroy the leaf ZAP for detached leaves or for 3286 * removed log devices. Removed data devices handle leaf ZAP 3287 * cleanup later, once cancellation is no longer possible. 3288 */ 3289 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 3290 vd->vdev_top->vdev_islog)) { 3291 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 3292 vd->vdev_leaf_zap = 0; 3293 } 3294 3295 dmu_tx_commit(tx); 3296 return; 3297 } 3298 3299 if (vd->vdev_dtl_sm == NULL) { 3300 uint64_t new_object; 3301 3302 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx); 3303 VERIFY3U(new_object, !=, 0); 3304 3305 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 3306 0, -1ULL, 0)); 3307 ASSERT(vd->vdev_dtl_sm != NULL); 3308 } 3309 3310 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3311 3312 mutex_enter(&vd->vdev_dtl_lock); 3313 range_tree_walk(rt, range_tree_add, rtsync); 3314 mutex_exit(&vd->vdev_dtl_lock); 3315 3316 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx); 3317 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 3318 range_tree_vacate(rtsync, NULL, NULL); 3319 3320 range_tree_destroy(rtsync); 3321 3322 /* 3323 * If the object for the space map has changed then dirty 3324 * the top level so that we update the config. 3325 */ 3326 if (object != space_map_object(vd->vdev_dtl_sm)) { 3327 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 3328 "new object %llu", (u_longlong_t)txg, spa_name(spa), 3329 (u_longlong_t)object, 3330 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 3331 vdev_config_dirty(vd->vdev_top); 3332 } 3333 3334 dmu_tx_commit(tx); 3335 } 3336 3337 /* 3338 * Determine whether the specified vdev can be offlined/detached/removed 3339 * without losing data. 3340 */ 3341 boolean_t 3342 vdev_dtl_required(vdev_t *vd) 3343 { 3344 spa_t *spa = vd->vdev_spa; 3345 vdev_t *tvd = vd->vdev_top; 3346 uint8_t cant_read = vd->vdev_cant_read; 3347 boolean_t required; 3348 3349 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3350 3351 if (vd == spa->spa_root_vdev || vd == tvd) 3352 return (B_TRUE); 3353 3354 /* 3355 * Temporarily mark the device as unreadable, and then determine 3356 * whether this results in any DTL outages in the top-level vdev. 3357 * If not, we can safely offline/detach/remove the device. 3358 */ 3359 vd->vdev_cant_read = B_TRUE; 3360 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3361 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 3362 vd->vdev_cant_read = cant_read; 3363 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3364 3365 if (!required && zio_injection_enabled) { 3366 required = !!zio_handle_device_injection(vd, NULL, 3367 SET_ERROR(ECHILD)); 3368 } 3369 3370 return (required); 3371 } 3372 3373 /* 3374 * Determine if resilver is needed, and if so the txg range. 3375 */ 3376 boolean_t 3377 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 3378 { 3379 boolean_t needed = B_FALSE; 3380 uint64_t thismin = UINT64_MAX; 3381 uint64_t thismax = 0; 3382 3383 if (vd->vdev_children == 0) { 3384 mutex_enter(&vd->vdev_dtl_lock); 3385 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3386 vdev_writeable(vd)) { 3387 3388 thismin = vdev_dtl_min(vd); 3389 thismax = vdev_dtl_max(vd); 3390 needed = B_TRUE; 3391 } 3392 mutex_exit(&vd->vdev_dtl_lock); 3393 } else { 3394 for (int c = 0; c < vd->vdev_children; c++) { 3395 vdev_t *cvd = vd->vdev_child[c]; 3396 uint64_t cmin, cmax; 3397 3398 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 3399 thismin = MIN(thismin, cmin); 3400 thismax = MAX(thismax, cmax); 3401 needed = B_TRUE; 3402 } 3403 } 3404 } 3405 3406 if (needed && minp) { 3407 *minp = thismin; 3408 *maxp = thismax; 3409 } 3410 return (needed); 3411 } 3412 3413 /* 3414 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj 3415 * will contain either the checkpoint spacemap object or zero if none exists. 3416 * All other errors are returned to the caller. 3417 */ 3418 int 3419 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj) 3420 { 3421 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 3422 3423 if (vd->vdev_top_zap == 0) { 3424 *sm_obj = 0; 3425 return (0); 3426 } 3427 3428 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 3429 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj); 3430 if (error == ENOENT) { 3431 *sm_obj = 0; 3432 error = 0; 3433 } 3434 3435 return (error); 3436 } 3437 3438 int 3439 vdev_load(vdev_t *vd) 3440 { 3441 int children = vd->vdev_children; 3442 int error = 0; 3443 taskq_t *tq = NULL; 3444 3445 /* 3446 * It's only worthwhile to use the taskq for the root vdev, because the 3447 * slow part is metaslab_init, and that only happens for top-level 3448 * vdevs. 3449 */ 3450 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) { 3451 tq = taskq_create("vdev_load", children, minclsyspri, 3452 children, children, TASKQ_PREPOPULATE); 3453 } 3454 3455 /* 3456 * Recursively load all children. 3457 */ 3458 for (int c = 0; c < vd->vdev_children; c++) { 3459 vdev_t *cvd = vd->vdev_child[c]; 3460 3461 if (tq == NULL || vdev_uses_zvols(cvd)) { 3462 cvd->vdev_load_error = vdev_load(cvd); 3463 } else { 3464 VERIFY(taskq_dispatch(tq, vdev_load_child, 3465 cvd, TQ_SLEEP) != TASKQID_INVALID); 3466 } 3467 } 3468 3469 if (tq != NULL) { 3470 taskq_wait(tq); 3471 taskq_destroy(tq); 3472 } 3473 3474 for (int c = 0; c < vd->vdev_children; c++) { 3475 int error = vd->vdev_child[c]->vdev_load_error; 3476 3477 if (error != 0) 3478 return (error); 3479 } 3480 3481 vdev_set_deflate_ratio(vd); 3482 3483 /* 3484 * On spa_load path, grab the allocation bias from our zap 3485 */ 3486 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3487 spa_t *spa = vd->vdev_spa; 3488 char bias_str[64]; 3489 3490 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3491 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), 3492 bias_str); 3493 if (error == 0) { 3494 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); 3495 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); 3496 } else if (error != ENOENT) { 3497 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3498 VDEV_AUX_CORRUPT_DATA); 3499 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) " 3500 "failed [error=%d]", 3501 (u_longlong_t)vd->vdev_top_zap, error); 3502 return (error); 3503 } 3504 } 3505 3506 /* 3507 * Load any rebuild state from the top-level vdev zap. 3508 */ 3509 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3510 error = vdev_rebuild_load(vd); 3511 if (error && error != ENOTSUP) { 3512 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3513 VDEV_AUX_CORRUPT_DATA); 3514 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load " 3515 "failed [error=%d]", error); 3516 return (error); 3517 } 3518 } 3519 3520 /* 3521 * If this is a top-level vdev, initialize its metaslabs. 3522 */ 3523 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 3524 vdev_metaslab_group_create(vd); 3525 3526 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 3527 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3528 VDEV_AUX_CORRUPT_DATA); 3529 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 3530 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 3531 (u_longlong_t)vd->vdev_asize); 3532 return (SET_ERROR(ENXIO)); 3533 } 3534 3535 error = vdev_metaslab_init(vd, 0); 3536 if (error != 0) { 3537 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 3538 "[error=%d]", error); 3539 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3540 VDEV_AUX_CORRUPT_DATA); 3541 return (error); 3542 } 3543 3544 uint64_t checkpoint_sm_obj; 3545 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj); 3546 if (error == 0 && checkpoint_sm_obj != 0) { 3547 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3548 ASSERT(vd->vdev_asize != 0); 3549 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); 3550 3551 error = space_map_open(&vd->vdev_checkpoint_sm, 3552 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 3553 vd->vdev_ashift); 3554 if (error != 0) { 3555 vdev_dbgmsg(vd, "vdev_load: space_map_open " 3556 "failed for checkpoint spacemap (obj %llu) " 3557 "[error=%d]", 3558 (u_longlong_t)checkpoint_sm_obj, error); 3559 return (error); 3560 } 3561 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 3562 3563 /* 3564 * Since the checkpoint_sm contains free entries 3565 * exclusively we can use space_map_allocated() to 3566 * indicate the cumulative checkpointed space that 3567 * has been freed. 3568 */ 3569 vd->vdev_stat.vs_checkpoint_space = 3570 -space_map_allocated(vd->vdev_checkpoint_sm); 3571 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 3572 vd->vdev_stat.vs_checkpoint_space; 3573 } else if (error != 0) { 3574 vdev_dbgmsg(vd, "vdev_load: failed to retrieve " 3575 "checkpoint space map object from vdev ZAP " 3576 "[error=%d]", error); 3577 return (error); 3578 } 3579 } 3580 3581 /* 3582 * If this is a leaf vdev, load its DTL. 3583 */ 3584 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 3585 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3586 VDEV_AUX_CORRUPT_DATA); 3587 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 3588 "[error=%d]", error); 3589 return (error); 3590 } 3591 3592 uint64_t obsolete_sm_object; 3593 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object); 3594 if (error == 0 && obsolete_sm_object != 0) { 3595 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3596 ASSERT(vd->vdev_asize != 0); 3597 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 3598 3599 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 3600 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 3601 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3602 VDEV_AUX_CORRUPT_DATA); 3603 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 3604 "obsolete spacemap (obj %llu) [error=%d]", 3605 (u_longlong_t)obsolete_sm_object, error); 3606 return (error); 3607 } 3608 } else if (error != 0) { 3609 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete " 3610 "space map object from vdev ZAP [error=%d]", error); 3611 return (error); 3612 } 3613 3614 return (0); 3615 } 3616 3617 /* 3618 * The special vdev case is used for hot spares and l2cache devices. Its 3619 * sole purpose it to set the vdev state for the associated vdev. To do this, 3620 * we make sure that we can open the underlying device, then try to read the 3621 * label, and make sure that the label is sane and that it hasn't been 3622 * repurposed to another pool. 3623 */ 3624 int 3625 vdev_validate_aux(vdev_t *vd) 3626 { 3627 nvlist_t *label; 3628 uint64_t guid, version; 3629 uint64_t state; 3630 3631 if (!vdev_readable(vd)) 3632 return (0); 3633 3634 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 3635 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3636 VDEV_AUX_CORRUPT_DATA); 3637 return (-1); 3638 } 3639 3640 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 3641 !SPA_VERSION_IS_SUPPORTED(version) || 3642 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 3643 guid != vd->vdev_guid || 3644 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 3645 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3646 VDEV_AUX_CORRUPT_DATA); 3647 nvlist_free(label); 3648 return (-1); 3649 } 3650 3651 /* 3652 * We don't actually check the pool state here. If it's in fact in 3653 * use by another pool, we update this fact on the fly when requested. 3654 */ 3655 nvlist_free(label); 3656 return (0); 3657 } 3658 3659 static void 3660 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx) 3661 { 3662 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3663 3664 if (vd->vdev_top_zap == 0) 3665 return; 3666 3667 uint64_t object = 0; 3668 int err = zap_lookup(mos, vd->vdev_top_zap, 3669 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object); 3670 if (err == ENOENT) 3671 return; 3672 VERIFY0(err); 3673 3674 VERIFY0(dmu_object_free(mos, object, tx)); 3675 VERIFY0(zap_remove(mos, vd->vdev_top_zap, 3676 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx)); 3677 } 3678 3679 /* 3680 * Free the objects used to store this vdev's spacemaps, and the array 3681 * that points to them. 3682 */ 3683 void 3684 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 3685 { 3686 if (vd->vdev_ms_array == 0) 3687 return; 3688 3689 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3690 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 3691 size_t array_bytes = array_count * sizeof (uint64_t); 3692 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 3693 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 3694 array_bytes, smobj_array, 0)); 3695 3696 for (uint64_t i = 0; i < array_count; i++) { 3697 uint64_t smobj = smobj_array[i]; 3698 if (smobj == 0) 3699 continue; 3700 3701 space_map_free_obj(mos, smobj, tx); 3702 } 3703 3704 kmem_free(smobj_array, array_bytes); 3705 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 3706 vdev_destroy_ms_flush_data(vd, tx); 3707 vd->vdev_ms_array = 0; 3708 } 3709 3710 static void 3711 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 3712 { 3713 spa_t *spa = vd->vdev_spa; 3714 3715 ASSERT(vd->vdev_islog); 3716 ASSERT(vd == vd->vdev_top); 3717 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 3718 3719 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3720 3721 vdev_destroy_spacemaps(vd, tx); 3722 if (vd->vdev_top_zap != 0) { 3723 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 3724 vd->vdev_top_zap = 0; 3725 } 3726 3727 dmu_tx_commit(tx); 3728 } 3729 3730 void 3731 vdev_sync_done(vdev_t *vd, uint64_t txg) 3732 { 3733 metaslab_t *msp; 3734 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 3735 3736 ASSERT(vdev_is_concrete(vd)); 3737 3738 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 3739 != NULL) 3740 metaslab_sync_done(msp, txg); 3741 3742 if (reassess) { 3743 metaslab_sync_reassess(vd->vdev_mg); 3744 if (vd->vdev_log_mg != NULL) 3745 metaslab_sync_reassess(vd->vdev_log_mg); 3746 } 3747 } 3748 3749 void 3750 vdev_sync(vdev_t *vd, uint64_t txg) 3751 { 3752 spa_t *spa = vd->vdev_spa; 3753 vdev_t *lvd; 3754 metaslab_t *msp; 3755 3756 ASSERT3U(txg, ==, spa->spa_syncing_txg); 3757 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3758 if (range_tree_space(vd->vdev_obsolete_segments) > 0) { 3759 ASSERT(vd->vdev_removing || 3760 vd->vdev_ops == &vdev_indirect_ops); 3761 3762 vdev_indirect_sync_obsolete(vd, tx); 3763 3764 /* 3765 * If the vdev is indirect, it can't have dirty 3766 * metaslabs or DTLs. 3767 */ 3768 if (vd->vdev_ops == &vdev_indirect_ops) { 3769 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 3770 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 3771 dmu_tx_commit(tx); 3772 return; 3773 } 3774 } 3775 3776 ASSERT(vdev_is_concrete(vd)); 3777 3778 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 3779 !vd->vdev_removing) { 3780 ASSERT(vd == vd->vdev_top); 3781 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 3782 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 3783 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 3784 ASSERT(vd->vdev_ms_array != 0); 3785 vdev_config_dirty(vd); 3786 } 3787 3788 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 3789 metaslab_sync(msp, txg); 3790 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 3791 } 3792 3793 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 3794 vdev_dtl_sync(lvd, txg); 3795 3796 /* 3797 * If this is an empty log device being removed, destroy the 3798 * metadata associated with it. 3799 */ 3800 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 3801 vdev_remove_empty_log(vd, txg); 3802 3803 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 3804 dmu_tx_commit(tx); 3805 } 3806 3807 uint64_t 3808 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 3809 { 3810 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 3811 } 3812 3813 /* 3814 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 3815 * not be opened, and no I/O is attempted. 3816 */ 3817 int 3818 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3819 { 3820 vdev_t *vd, *tvd; 3821 3822 spa_vdev_state_enter(spa, SCL_NONE); 3823 3824 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3825 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 3826 3827 if (!vd->vdev_ops->vdev_op_leaf) 3828 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 3829 3830 tvd = vd->vdev_top; 3831 3832 /* 3833 * If user did a 'zpool offline -f' then make the fault persist across 3834 * reboots. 3835 */ 3836 if (aux == VDEV_AUX_EXTERNAL_PERSIST) { 3837 /* 3838 * There are two kinds of forced faults: temporary and 3839 * persistent. Temporary faults go away at pool import, while 3840 * persistent faults stay set. Both types of faults can be 3841 * cleared with a zpool clear. 3842 * 3843 * We tell if a vdev is persistently faulted by looking at the 3844 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at 3845 * import then it's a persistent fault. Otherwise, it's 3846 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external" 3847 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This 3848 * tells vdev_config_generate() (which gets run later) to set 3849 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist. 3850 */ 3851 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 3852 vd->vdev_tmpoffline = B_FALSE; 3853 aux = VDEV_AUX_EXTERNAL; 3854 } else { 3855 vd->vdev_tmpoffline = B_TRUE; 3856 } 3857 3858 /* 3859 * We don't directly use the aux state here, but if we do a 3860 * vdev_reopen(), we need this value to be present to remember why we 3861 * were faulted. 3862 */ 3863 vd->vdev_label_aux = aux; 3864 3865 /* 3866 * Faulted state takes precedence over degraded. 3867 */ 3868 vd->vdev_delayed_close = B_FALSE; 3869 vd->vdev_faulted = 1ULL; 3870 vd->vdev_degraded = 0ULL; 3871 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 3872 3873 /* 3874 * If this device has the only valid copy of the data, then 3875 * back off and simply mark the vdev as degraded instead. 3876 */ 3877 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 3878 vd->vdev_degraded = 1ULL; 3879 vd->vdev_faulted = 0ULL; 3880 3881 /* 3882 * If we reopen the device and it's not dead, only then do we 3883 * mark it degraded. 3884 */ 3885 vdev_reopen(tvd); 3886 3887 if (vdev_readable(vd)) 3888 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 3889 } 3890 3891 return (spa_vdev_state_exit(spa, vd, 0)); 3892 } 3893 3894 /* 3895 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 3896 * user that something is wrong. The vdev continues to operate as normal as far 3897 * as I/O is concerned. 3898 */ 3899 int 3900 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3901 { 3902 vdev_t *vd; 3903 3904 spa_vdev_state_enter(spa, SCL_NONE); 3905 3906 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3907 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 3908 3909 if (!vd->vdev_ops->vdev_op_leaf) 3910 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 3911 3912 /* 3913 * If the vdev is already faulted, then don't do anything. 3914 */ 3915 if (vd->vdev_faulted || vd->vdev_degraded) 3916 return (spa_vdev_state_exit(spa, NULL, 0)); 3917 3918 vd->vdev_degraded = 1ULL; 3919 if (!vdev_is_dead(vd)) 3920 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 3921 aux); 3922 3923 return (spa_vdev_state_exit(spa, vd, 0)); 3924 } 3925 3926 /* 3927 * Online the given vdev. 3928 * 3929 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 3930 * spare device should be detached when the device finishes resilvering. 3931 * Second, the online should be treated like a 'test' online case, so no FMA 3932 * events are generated if the device fails to open. 3933 */ 3934 int 3935 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 3936 { 3937 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 3938 boolean_t wasoffline; 3939 vdev_state_t oldstate; 3940 3941 spa_vdev_state_enter(spa, SCL_NONE); 3942 3943 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3944 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 3945 3946 if (!vd->vdev_ops->vdev_op_leaf) 3947 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 3948 3949 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 3950 oldstate = vd->vdev_state; 3951 3952 tvd = vd->vdev_top; 3953 vd->vdev_offline = B_FALSE; 3954 vd->vdev_tmpoffline = B_FALSE; 3955 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 3956 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 3957 3958 /* XXX - L2ARC 1.0 does not support expansion */ 3959 if (!vd->vdev_aux) { 3960 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3961 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) || 3962 spa->spa_autoexpand); 3963 vd->vdev_expansion_time = gethrestime_sec(); 3964 } 3965 3966 vdev_reopen(tvd); 3967 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 3968 3969 if (!vd->vdev_aux) { 3970 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3971 pvd->vdev_expanding = B_FALSE; 3972 } 3973 3974 if (newstate) 3975 *newstate = vd->vdev_state; 3976 if ((flags & ZFS_ONLINE_UNSPARE) && 3977 !vdev_is_dead(vd) && vd->vdev_parent && 3978 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 3979 vd->vdev_parent->vdev_child[0] == vd) 3980 vd->vdev_unspare = B_TRUE; 3981 3982 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 3983 3984 /* XXX - L2ARC 1.0 does not support expansion */ 3985 if (vd->vdev_aux) 3986 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 3987 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 3988 } 3989 3990 /* Restart initializing if necessary */ 3991 mutex_enter(&vd->vdev_initialize_lock); 3992 if (vdev_writeable(vd) && 3993 vd->vdev_initialize_thread == NULL && 3994 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 3995 (void) vdev_initialize(vd); 3996 } 3997 mutex_exit(&vd->vdev_initialize_lock); 3998 3999 /* 4000 * Restart trimming if necessary. We do not restart trimming for cache 4001 * devices here. This is triggered by l2arc_rebuild_vdev() 4002 * asynchronously for the whole device or in l2arc_evict() as it evicts 4003 * space for upcoming writes. 4004 */ 4005 mutex_enter(&vd->vdev_trim_lock); 4006 if (vdev_writeable(vd) && !vd->vdev_isl2cache && 4007 vd->vdev_trim_thread == NULL && 4008 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { 4009 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, 4010 vd->vdev_trim_secure); 4011 } 4012 mutex_exit(&vd->vdev_trim_lock); 4013 4014 if (wasoffline || 4015 (oldstate < VDEV_STATE_DEGRADED && 4016 vd->vdev_state >= VDEV_STATE_DEGRADED)) 4017 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 4018 4019 return (spa_vdev_state_exit(spa, vd, 0)); 4020 } 4021 4022 static int 4023 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 4024 { 4025 vdev_t *vd, *tvd; 4026 int error = 0; 4027 uint64_t generation; 4028 metaslab_group_t *mg; 4029 4030 top: 4031 spa_vdev_state_enter(spa, SCL_ALLOC); 4032 4033 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4034 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4035 4036 if (!vd->vdev_ops->vdev_op_leaf) 4037 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4038 4039 if (vd->vdev_ops == &vdev_draid_spare_ops) 4040 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4041 4042 tvd = vd->vdev_top; 4043 mg = tvd->vdev_mg; 4044 generation = spa->spa_config_generation + 1; 4045 4046 /* 4047 * If the device isn't already offline, try to offline it. 4048 */ 4049 if (!vd->vdev_offline) { 4050 /* 4051 * If this device has the only valid copy of some data, 4052 * don't allow it to be offlined. Log devices are always 4053 * expendable. 4054 */ 4055 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4056 vdev_dtl_required(vd)) 4057 return (spa_vdev_state_exit(spa, NULL, 4058 SET_ERROR(EBUSY))); 4059 4060 /* 4061 * If the top-level is a slog and it has had allocations 4062 * then proceed. We check that the vdev's metaslab group 4063 * is not NULL since it's possible that we may have just 4064 * added this vdev but not yet initialized its metaslabs. 4065 */ 4066 if (tvd->vdev_islog && mg != NULL) { 4067 /* 4068 * Prevent any future allocations. 4069 */ 4070 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 4071 metaslab_group_passivate(mg); 4072 (void) spa_vdev_state_exit(spa, vd, 0); 4073 4074 error = spa_reset_logs(spa); 4075 4076 /* 4077 * If the log device was successfully reset but has 4078 * checkpointed data, do not offline it. 4079 */ 4080 if (error == 0 && 4081 tvd->vdev_checkpoint_sm != NULL) { 4082 ASSERT3U(space_map_allocated( 4083 tvd->vdev_checkpoint_sm), !=, 0); 4084 error = ZFS_ERR_CHECKPOINT_EXISTS; 4085 } 4086 4087 spa_vdev_state_enter(spa, SCL_ALLOC); 4088 4089 /* 4090 * Check to see if the config has changed. 4091 */ 4092 if (error || generation != spa->spa_config_generation) { 4093 metaslab_group_activate(mg); 4094 if (error) 4095 return (spa_vdev_state_exit(spa, 4096 vd, error)); 4097 (void) spa_vdev_state_exit(spa, vd, 0); 4098 goto top; 4099 } 4100 ASSERT0(tvd->vdev_stat.vs_alloc); 4101 } 4102 4103 /* 4104 * Offline this device and reopen its top-level vdev. 4105 * If the top-level vdev is a log device then just offline 4106 * it. Otherwise, if this action results in the top-level 4107 * vdev becoming unusable, undo it and fail the request. 4108 */ 4109 vd->vdev_offline = B_TRUE; 4110 vdev_reopen(tvd); 4111 4112 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4113 vdev_is_dead(tvd)) { 4114 vd->vdev_offline = B_FALSE; 4115 vdev_reopen(tvd); 4116 return (spa_vdev_state_exit(spa, NULL, 4117 SET_ERROR(EBUSY))); 4118 } 4119 4120 /* 4121 * Add the device back into the metaslab rotor so that 4122 * once we online the device it's open for business. 4123 */ 4124 if (tvd->vdev_islog && mg != NULL) 4125 metaslab_group_activate(mg); 4126 } 4127 4128 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 4129 4130 return (spa_vdev_state_exit(spa, vd, 0)); 4131 } 4132 4133 int 4134 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 4135 { 4136 int error; 4137 4138 mutex_enter(&spa->spa_vdev_top_lock); 4139 error = vdev_offline_locked(spa, guid, flags); 4140 mutex_exit(&spa->spa_vdev_top_lock); 4141 4142 return (error); 4143 } 4144 4145 /* 4146 * Clear the error counts associated with this vdev. Unlike vdev_online() and 4147 * vdev_offline(), we assume the spa config is locked. We also clear all 4148 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 4149 */ 4150 void 4151 vdev_clear(spa_t *spa, vdev_t *vd) 4152 { 4153 vdev_t *rvd = spa->spa_root_vdev; 4154 4155 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 4156 4157 if (vd == NULL) 4158 vd = rvd; 4159 4160 vd->vdev_stat.vs_read_errors = 0; 4161 vd->vdev_stat.vs_write_errors = 0; 4162 vd->vdev_stat.vs_checksum_errors = 0; 4163 vd->vdev_stat.vs_slow_ios = 0; 4164 4165 for (int c = 0; c < vd->vdev_children; c++) 4166 vdev_clear(spa, vd->vdev_child[c]); 4167 4168 /* 4169 * It makes no sense to "clear" an indirect vdev. 4170 */ 4171 if (!vdev_is_concrete(vd)) 4172 return; 4173 4174 /* 4175 * If we're in the FAULTED state or have experienced failed I/O, then 4176 * clear the persistent state and attempt to reopen the device. We 4177 * also mark the vdev config dirty, so that the new faulted state is 4178 * written out to disk. 4179 */ 4180 if (vd->vdev_faulted || vd->vdev_degraded || 4181 !vdev_readable(vd) || !vdev_writeable(vd)) { 4182 /* 4183 * When reopening in response to a clear event, it may be due to 4184 * a fmadm repair request. In this case, if the device is 4185 * still broken, we want to still post the ereport again. 4186 */ 4187 vd->vdev_forcefault = B_TRUE; 4188 4189 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 4190 vd->vdev_cant_read = B_FALSE; 4191 vd->vdev_cant_write = B_FALSE; 4192 vd->vdev_stat.vs_aux = 0; 4193 4194 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 4195 4196 vd->vdev_forcefault = B_FALSE; 4197 4198 if (vd != rvd && vdev_writeable(vd->vdev_top)) 4199 vdev_state_dirty(vd->vdev_top); 4200 4201 /* If a resilver isn't required, check if vdevs can be culled */ 4202 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) && 4203 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4204 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool)) 4205 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4206 4207 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 4208 } 4209 4210 /* 4211 * When clearing a FMA-diagnosed fault, we always want to 4212 * unspare the device, as we assume that the original spare was 4213 * done in response to the FMA fault. 4214 */ 4215 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 4216 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4217 vd->vdev_parent->vdev_child[0] == vd) 4218 vd->vdev_unspare = B_TRUE; 4219 4220 /* Clear recent error events cache (i.e. duplicate events tracking) */ 4221 zfs_ereport_clear(spa, vd); 4222 } 4223 4224 boolean_t 4225 vdev_is_dead(vdev_t *vd) 4226 { 4227 /* 4228 * Holes and missing devices are always considered "dead". 4229 * This simplifies the code since we don't have to check for 4230 * these types of devices in the various code paths. 4231 * Instead we rely on the fact that we skip over dead devices 4232 * before issuing I/O to them. 4233 */ 4234 return (vd->vdev_state < VDEV_STATE_DEGRADED || 4235 vd->vdev_ops == &vdev_hole_ops || 4236 vd->vdev_ops == &vdev_missing_ops); 4237 } 4238 4239 boolean_t 4240 vdev_readable(vdev_t *vd) 4241 { 4242 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 4243 } 4244 4245 boolean_t 4246 vdev_writeable(vdev_t *vd) 4247 { 4248 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 4249 vdev_is_concrete(vd)); 4250 } 4251 4252 boolean_t 4253 vdev_allocatable(vdev_t *vd) 4254 { 4255 uint64_t state = vd->vdev_state; 4256 4257 /* 4258 * We currently allow allocations from vdevs which may be in the 4259 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 4260 * fails to reopen then we'll catch it later when we're holding 4261 * the proper locks. Note that we have to get the vdev state 4262 * in a local variable because although it changes atomically, 4263 * we're asking two separate questions about it. 4264 */ 4265 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 4266 !vd->vdev_cant_write && vdev_is_concrete(vd) && 4267 vd->vdev_mg->mg_initialized); 4268 } 4269 4270 boolean_t 4271 vdev_accessible(vdev_t *vd, zio_t *zio) 4272 { 4273 ASSERT(zio->io_vd == vd); 4274 4275 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 4276 return (B_FALSE); 4277 4278 if (zio->io_type == ZIO_TYPE_READ) 4279 return (!vd->vdev_cant_read); 4280 4281 if (zio->io_type == ZIO_TYPE_WRITE) 4282 return (!vd->vdev_cant_write); 4283 4284 return (B_TRUE); 4285 } 4286 4287 static void 4288 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs) 4289 { 4290 /* 4291 * Exclude the dRAID spare when aggregating to avoid double counting 4292 * the ops and bytes. These IOs are counted by the physical leaves. 4293 */ 4294 if (cvd->vdev_ops == &vdev_draid_spare_ops) 4295 return; 4296 4297 for (int t = 0; t < VS_ZIO_TYPES; t++) { 4298 vs->vs_ops[t] += cvs->vs_ops[t]; 4299 vs->vs_bytes[t] += cvs->vs_bytes[t]; 4300 } 4301 4302 cvs->vs_scan_removing = cvd->vdev_removing; 4303 } 4304 4305 /* 4306 * Get extended stats 4307 */ 4308 static void 4309 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx) 4310 { 4311 int t, b; 4312 for (t = 0; t < ZIO_TYPES; t++) { 4313 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++) 4314 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b]; 4315 4316 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) { 4317 vsx->vsx_total_histo[t][b] += 4318 cvsx->vsx_total_histo[t][b]; 4319 } 4320 } 4321 4322 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4323 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) { 4324 vsx->vsx_queue_histo[t][b] += 4325 cvsx->vsx_queue_histo[t][b]; 4326 } 4327 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t]; 4328 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t]; 4329 4330 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++) 4331 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b]; 4332 4333 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++) 4334 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b]; 4335 } 4336 4337 } 4338 4339 boolean_t 4340 vdev_is_spacemap_addressable(vdev_t *vd) 4341 { 4342 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 4343 return (B_TRUE); 4344 4345 /* 4346 * If double-word space map entries are not enabled we assume 4347 * 47 bits of the space map entry are dedicated to the entry's 4348 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 4349 * to calculate the maximum address that can be described by a 4350 * space map entry for the given device. 4351 */ 4352 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 4353 4354 if (shift >= 63) /* detect potential overflow */ 4355 return (B_TRUE); 4356 4357 return (vd->vdev_asize < (1ULL << shift)); 4358 } 4359 4360 /* 4361 * Get statistics for the given vdev. 4362 */ 4363 static void 4364 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4365 { 4366 int t; 4367 /* 4368 * If we're getting stats on the root vdev, aggregate the I/O counts 4369 * over all top-level vdevs (i.e. the direct children of the root). 4370 */ 4371 if (!vd->vdev_ops->vdev_op_leaf) { 4372 if (vs) { 4373 memset(vs->vs_ops, 0, sizeof (vs->vs_ops)); 4374 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes)); 4375 } 4376 if (vsx) 4377 memset(vsx, 0, sizeof (*vsx)); 4378 4379 for (int c = 0; c < vd->vdev_children; c++) { 4380 vdev_t *cvd = vd->vdev_child[c]; 4381 vdev_stat_t *cvs = &cvd->vdev_stat; 4382 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex; 4383 4384 vdev_get_stats_ex_impl(cvd, cvs, cvsx); 4385 if (vs) 4386 vdev_get_child_stat(cvd, vs, cvs); 4387 if (vsx) 4388 vdev_get_child_stat_ex(cvd, vsx, cvsx); 4389 } 4390 } else { 4391 /* 4392 * We're a leaf. Just copy our ZIO active queue stats in. The 4393 * other leaf stats are updated in vdev_stat_update(). 4394 */ 4395 if (!vsx) 4396 return; 4397 4398 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex)); 4399 4400 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) { 4401 vsx->vsx_active_queue[t] = 4402 vd->vdev_queue.vq_class[t].vqc_active; 4403 vsx->vsx_pend_queue[t] = avl_numnodes( 4404 &vd->vdev_queue.vq_class[t].vqc_queued_tree); 4405 } 4406 } 4407 } 4408 4409 void 4410 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4411 { 4412 vdev_t *tvd = vd->vdev_top; 4413 mutex_enter(&vd->vdev_stat_lock); 4414 if (vs) { 4415 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 4416 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 4417 vs->vs_state = vd->vdev_state; 4418 vs->vs_rsize = vdev_get_min_asize(vd); 4419 4420 if (vd->vdev_ops->vdev_op_leaf) { 4421 vs->vs_rsize += VDEV_LABEL_START_SIZE + 4422 VDEV_LABEL_END_SIZE; 4423 /* 4424 * Report initializing progress. Since we don't 4425 * have the initializing locks held, this is only 4426 * an estimate (although a fairly accurate one). 4427 */ 4428 vs->vs_initialize_bytes_done = 4429 vd->vdev_initialize_bytes_done; 4430 vs->vs_initialize_bytes_est = 4431 vd->vdev_initialize_bytes_est; 4432 vs->vs_initialize_state = vd->vdev_initialize_state; 4433 vs->vs_initialize_action_time = 4434 vd->vdev_initialize_action_time; 4435 4436 /* 4437 * Report manual TRIM progress. Since we don't have 4438 * the manual TRIM locks held, this is only an 4439 * estimate (although fairly accurate one). 4440 */ 4441 vs->vs_trim_notsup = !vd->vdev_has_trim; 4442 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done; 4443 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est; 4444 vs->vs_trim_state = vd->vdev_trim_state; 4445 vs->vs_trim_action_time = vd->vdev_trim_action_time; 4446 4447 /* Set when there is a deferred resilver. */ 4448 vs->vs_resilver_deferred = vd->vdev_resilver_deferred; 4449 } 4450 4451 /* 4452 * Report expandable space on top-level, non-auxiliary devices 4453 * only. The expandable space is reported in terms of metaslab 4454 * sized units since that determines how much space the pool 4455 * can expand. 4456 */ 4457 if (vd->vdev_aux == NULL && tvd != NULL) { 4458 vs->vs_esize = P2ALIGN( 4459 vd->vdev_max_asize - vd->vdev_asize, 4460 1ULL << tvd->vdev_ms_shift); 4461 } 4462 4463 vs->vs_configured_ashift = vd->vdev_top != NULL 4464 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift; 4465 vs->vs_logical_ashift = vd->vdev_logical_ashift; 4466 vs->vs_physical_ashift = vd->vdev_physical_ashift; 4467 4468 /* 4469 * Report fragmentation and rebuild progress for top-level, 4470 * non-auxiliary, concrete devices. 4471 */ 4472 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 4473 vdev_is_concrete(vd)) { 4474 /* 4475 * The vdev fragmentation rating doesn't take into 4476 * account the embedded slog metaslab (vdev_log_mg). 4477 * Since it's only one metaslab, it would have a tiny 4478 * impact on the overall fragmentation. 4479 */ 4480 vs->vs_fragmentation = (vd->vdev_mg != NULL) ? 4481 vd->vdev_mg->mg_fragmentation : 0; 4482 } 4483 vs->vs_noalloc = MAX(vd->vdev_noalloc, 4484 tvd ? tvd->vdev_noalloc : 0); 4485 } 4486 4487 vdev_get_stats_ex_impl(vd, vs, vsx); 4488 mutex_exit(&vd->vdev_stat_lock); 4489 } 4490 4491 void 4492 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 4493 { 4494 return (vdev_get_stats_ex(vd, vs, NULL)); 4495 } 4496 4497 void 4498 vdev_clear_stats(vdev_t *vd) 4499 { 4500 mutex_enter(&vd->vdev_stat_lock); 4501 vd->vdev_stat.vs_space = 0; 4502 vd->vdev_stat.vs_dspace = 0; 4503 vd->vdev_stat.vs_alloc = 0; 4504 mutex_exit(&vd->vdev_stat_lock); 4505 } 4506 4507 void 4508 vdev_scan_stat_init(vdev_t *vd) 4509 { 4510 vdev_stat_t *vs = &vd->vdev_stat; 4511 4512 for (int c = 0; c < vd->vdev_children; c++) 4513 vdev_scan_stat_init(vd->vdev_child[c]); 4514 4515 mutex_enter(&vd->vdev_stat_lock); 4516 vs->vs_scan_processed = 0; 4517 mutex_exit(&vd->vdev_stat_lock); 4518 } 4519 4520 void 4521 vdev_stat_update(zio_t *zio, uint64_t psize) 4522 { 4523 spa_t *spa = zio->io_spa; 4524 vdev_t *rvd = spa->spa_root_vdev; 4525 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 4526 vdev_t *pvd; 4527 uint64_t txg = zio->io_txg; 4528 vdev_stat_t *vs = &vd->vdev_stat; 4529 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex; 4530 zio_type_t type = zio->io_type; 4531 int flags = zio->io_flags; 4532 4533 /* 4534 * If this i/o is a gang leader, it didn't do any actual work. 4535 */ 4536 if (zio->io_gang_tree) 4537 return; 4538 4539 if (zio->io_error == 0) { 4540 /* 4541 * If this is a root i/o, don't count it -- we've already 4542 * counted the top-level vdevs, and vdev_get_stats() will 4543 * aggregate them when asked. This reduces contention on 4544 * the root vdev_stat_lock and implicitly handles blocks 4545 * that compress away to holes, for which there is no i/o. 4546 * (Holes never create vdev children, so all the counters 4547 * remain zero, which is what we want.) 4548 * 4549 * Note: this only applies to successful i/o (io_error == 0) 4550 * because unlike i/o counts, errors are not additive. 4551 * When reading a ditto block, for example, failure of 4552 * one top-level vdev does not imply a root-level error. 4553 */ 4554 if (vd == rvd) 4555 return; 4556 4557 ASSERT(vd == zio->io_vd); 4558 4559 if (flags & ZIO_FLAG_IO_BYPASS) 4560 return; 4561 4562 mutex_enter(&vd->vdev_stat_lock); 4563 4564 if (flags & ZIO_FLAG_IO_REPAIR) { 4565 /* 4566 * Repair is the result of a resilver issued by the 4567 * scan thread (spa_sync). 4568 */ 4569 if (flags & ZIO_FLAG_SCAN_THREAD) { 4570 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 4571 dsl_scan_phys_t *scn_phys = &scn->scn_phys; 4572 uint64_t *processed = &scn_phys->scn_processed; 4573 4574 if (vd->vdev_ops->vdev_op_leaf) 4575 atomic_add_64(processed, psize); 4576 vs->vs_scan_processed += psize; 4577 } 4578 4579 /* 4580 * Repair is the result of a rebuild issued by the 4581 * rebuild thread (vdev_rebuild_thread). To avoid 4582 * double counting repaired bytes the virtual dRAID 4583 * spare vdev is excluded from the processed bytes. 4584 */ 4585 if (zio->io_priority == ZIO_PRIORITY_REBUILD) { 4586 vdev_t *tvd = vd->vdev_top; 4587 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config; 4588 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 4589 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt; 4590 4591 if (vd->vdev_ops->vdev_op_leaf && 4592 vd->vdev_ops != &vdev_draid_spare_ops) { 4593 atomic_add_64(rebuilt, psize); 4594 } 4595 vs->vs_rebuild_processed += psize; 4596 } 4597 4598 if (flags & ZIO_FLAG_SELF_HEAL) 4599 vs->vs_self_healed += psize; 4600 } 4601 4602 /* 4603 * The bytes/ops/histograms are recorded at the leaf level and 4604 * aggregated into the higher level vdevs in vdev_get_stats(). 4605 */ 4606 if (vd->vdev_ops->vdev_op_leaf && 4607 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) { 4608 zio_type_t vs_type = type; 4609 zio_priority_t priority = zio->io_priority; 4610 4611 /* 4612 * TRIM ops and bytes are reported to user space as 4613 * ZIO_TYPE_IOCTL. This is done to preserve the 4614 * vdev_stat_t structure layout for user space. 4615 */ 4616 if (type == ZIO_TYPE_TRIM) 4617 vs_type = ZIO_TYPE_IOCTL; 4618 4619 /* 4620 * Solely for the purposes of 'zpool iostat -lqrw' 4621 * reporting use the priority to categorize the IO. 4622 * Only the following are reported to user space: 4623 * 4624 * ZIO_PRIORITY_SYNC_READ, 4625 * ZIO_PRIORITY_SYNC_WRITE, 4626 * ZIO_PRIORITY_ASYNC_READ, 4627 * ZIO_PRIORITY_ASYNC_WRITE, 4628 * ZIO_PRIORITY_SCRUB, 4629 * ZIO_PRIORITY_TRIM, 4630 * ZIO_PRIORITY_REBUILD. 4631 */ 4632 if (priority == ZIO_PRIORITY_INITIALIZING) { 4633 ASSERT3U(type, ==, ZIO_TYPE_WRITE); 4634 priority = ZIO_PRIORITY_ASYNC_WRITE; 4635 } else if (priority == ZIO_PRIORITY_REMOVAL) { 4636 priority = ((type == ZIO_TYPE_WRITE) ? 4637 ZIO_PRIORITY_ASYNC_WRITE : 4638 ZIO_PRIORITY_ASYNC_READ); 4639 } 4640 4641 vs->vs_ops[vs_type]++; 4642 vs->vs_bytes[vs_type] += psize; 4643 4644 if (flags & ZIO_FLAG_DELEGATED) { 4645 vsx->vsx_agg_histo[priority] 4646 [RQ_HISTO(zio->io_size)]++; 4647 } else { 4648 vsx->vsx_ind_histo[priority] 4649 [RQ_HISTO(zio->io_size)]++; 4650 } 4651 4652 if (zio->io_delta && zio->io_delay) { 4653 vsx->vsx_queue_histo[priority] 4654 [L_HISTO(zio->io_delta - zio->io_delay)]++; 4655 vsx->vsx_disk_histo[type] 4656 [L_HISTO(zio->io_delay)]++; 4657 vsx->vsx_total_histo[type] 4658 [L_HISTO(zio->io_delta)]++; 4659 } 4660 } 4661 4662 mutex_exit(&vd->vdev_stat_lock); 4663 return; 4664 } 4665 4666 if (flags & ZIO_FLAG_SPECULATIVE) 4667 return; 4668 4669 /* 4670 * If this is an I/O error that is going to be retried, then ignore the 4671 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 4672 * hard errors, when in reality they can happen for any number of 4673 * innocuous reasons (bus resets, MPxIO link failure, etc). 4674 */ 4675 if (zio->io_error == EIO && 4676 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 4677 return; 4678 4679 /* 4680 * Intent logs writes won't propagate their error to the root 4681 * I/O so don't mark these types of failures as pool-level 4682 * errors. 4683 */ 4684 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 4685 return; 4686 4687 if (type == ZIO_TYPE_WRITE && txg != 0 && 4688 (!(flags & ZIO_FLAG_IO_REPAIR) || 4689 (flags & ZIO_FLAG_SCAN_THREAD) || 4690 spa->spa_claiming)) { 4691 /* 4692 * This is either a normal write (not a repair), or it's 4693 * a repair induced by the scrub thread, or it's a repair 4694 * made by zil_claim() during spa_load() in the first txg. 4695 * In the normal case, we commit the DTL change in the same 4696 * txg as the block was born. In the scrub-induced repair 4697 * case, we know that scrubs run in first-pass syncing context, 4698 * so we commit the DTL change in spa_syncing_txg(spa). 4699 * In the zil_claim() case, we commit in spa_first_txg(spa). 4700 * 4701 * We currently do not make DTL entries for failed spontaneous 4702 * self-healing writes triggered by normal (non-scrubbing) 4703 * reads, because we have no transactional context in which to 4704 * do so -- and it's not clear that it'd be desirable anyway. 4705 */ 4706 if (vd->vdev_ops->vdev_op_leaf) { 4707 uint64_t commit_txg = txg; 4708 if (flags & ZIO_FLAG_SCAN_THREAD) { 4709 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4710 ASSERT(spa_sync_pass(spa) == 1); 4711 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 4712 commit_txg = spa_syncing_txg(spa); 4713 } else if (spa->spa_claiming) { 4714 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4715 commit_txg = spa_first_txg(spa); 4716 } 4717 ASSERT(commit_txg >= spa_syncing_txg(spa)); 4718 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 4719 return; 4720 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4721 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 4722 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 4723 } 4724 if (vd != rvd) 4725 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 4726 } 4727 } 4728 4729 int64_t 4730 vdev_deflated_space(vdev_t *vd, int64_t space) 4731 { 4732 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); 4733 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 4734 4735 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); 4736 } 4737 4738 /* 4739 * Update the in-core space usage stats for this vdev, its metaslab class, 4740 * and the root vdev. 4741 */ 4742 void 4743 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 4744 int64_t space_delta) 4745 { 4746 int64_t dspace_delta; 4747 spa_t *spa = vd->vdev_spa; 4748 vdev_t *rvd = spa->spa_root_vdev; 4749 4750 ASSERT(vd == vd->vdev_top); 4751 4752 /* 4753 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 4754 * factor. We must calculate this here and not at the root vdev 4755 * because the root vdev's psize-to-asize is simply the max of its 4756 * children's, thus not accurate enough for us. 4757 */ 4758 dspace_delta = vdev_deflated_space(vd, space_delta); 4759 4760 mutex_enter(&vd->vdev_stat_lock); 4761 /* ensure we won't underflow */ 4762 if (alloc_delta < 0) { 4763 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); 4764 } 4765 4766 vd->vdev_stat.vs_alloc += alloc_delta; 4767 vd->vdev_stat.vs_space += space_delta; 4768 vd->vdev_stat.vs_dspace += dspace_delta; 4769 mutex_exit(&vd->vdev_stat_lock); 4770 4771 /* every class but log contributes to root space stats */ 4772 if (vd->vdev_mg != NULL && !vd->vdev_islog) { 4773 ASSERT(!vd->vdev_isl2cache); 4774 mutex_enter(&rvd->vdev_stat_lock); 4775 rvd->vdev_stat.vs_alloc += alloc_delta; 4776 rvd->vdev_stat.vs_space += space_delta; 4777 rvd->vdev_stat.vs_dspace += dspace_delta; 4778 mutex_exit(&rvd->vdev_stat_lock); 4779 } 4780 /* Note: metaslab_class_space_update moved to metaslab_space_update */ 4781 } 4782 4783 /* 4784 * Mark a top-level vdev's config as dirty, placing it on the dirty list 4785 * so that it will be written out next time the vdev configuration is synced. 4786 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 4787 */ 4788 void 4789 vdev_config_dirty(vdev_t *vd) 4790 { 4791 spa_t *spa = vd->vdev_spa; 4792 vdev_t *rvd = spa->spa_root_vdev; 4793 int c; 4794 4795 ASSERT(spa_writeable(spa)); 4796 4797 /* 4798 * If this is an aux vdev (as with l2cache and spare devices), then we 4799 * update the vdev config manually and set the sync flag. 4800 */ 4801 if (vd->vdev_aux != NULL) { 4802 spa_aux_vdev_t *sav = vd->vdev_aux; 4803 nvlist_t **aux; 4804 uint_t naux; 4805 4806 for (c = 0; c < sav->sav_count; c++) { 4807 if (sav->sav_vdevs[c] == vd) 4808 break; 4809 } 4810 4811 if (c == sav->sav_count) { 4812 /* 4813 * We're being removed. There's nothing more to do. 4814 */ 4815 ASSERT(sav->sav_sync == B_TRUE); 4816 return; 4817 } 4818 4819 sav->sav_sync = B_TRUE; 4820 4821 if (nvlist_lookup_nvlist_array(sav->sav_config, 4822 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 4823 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 4824 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 4825 } 4826 4827 ASSERT(c < naux); 4828 4829 /* 4830 * Setting the nvlist in the middle if the array is a little 4831 * sketchy, but it will work. 4832 */ 4833 nvlist_free(aux[c]); 4834 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 4835 4836 return; 4837 } 4838 4839 /* 4840 * The dirty list is protected by the SCL_CONFIG lock. The caller 4841 * must either hold SCL_CONFIG as writer, or must be the sync thread 4842 * (which holds SCL_CONFIG as reader). There's only one sync thread, 4843 * so this is sufficient to ensure mutual exclusion. 4844 */ 4845 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 4846 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4847 spa_config_held(spa, SCL_CONFIG, RW_READER))); 4848 4849 if (vd == rvd) { 4850 for (c = 0; c < rvd->vdev_children; c++) 4851 vdev_config_dirty(rvd->vdev_child[c]); 4852 } else { 4853 ASSERT(vd == vd->vdev_top); 4854 4855 if (!list_link_active(&vd->vdev_config_dirty_node) && 4856 vdev_is_concrete(vd)) { 4857 list_insert_head(&spa->spa_config_dirty_list, vd); 4858 } 4859 } 4860 } 4861 4862 void 4863 vdev_config_clean(vdev_t *vd) 4864 { 4865 spa_t *spa = vd->vdev_spa; 4866 4867 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 4868 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4869 spa_config_held(spa, SCL_CONFIG, RW_READER))); 4870 4871 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 4872 list_remove(&spa->spa_config_dirty_list, vd); 4873 } 4874 4875 /* 4876 * Mark a top-level vdev's state as dirty, so that the next pass of 4877 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 4878 * the state changes from larger config changes because they require 4879 * much less locking, and are often needed for administrative actions. 4880 */ 4881 void 4882 vdev_state_dirty(vdev_t *vd) 4883 { 4884 spa_t *spa = vd->vdev_spa; 4885 4886 ASSERT(spa_writeable(spa)); 4887 ASSERT(vd == vd->vdev_top); 4888 4889 /* 4890 * The state list is protected by the SCL_STATE lock. The caller 4891 * must either hold SCL_STATE as writer, or must be the sync thread 4892 * (which holds SCL_STATE as reader). There's only one sync thread, 4893 * so this is sufficient to ensure mutual exclusion. 4894 */ 4895 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 4896 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4897 spa_config_held(spa, SCL_STATE, RW_READER))); 4898 4899 if (!list_link_active(&vd->vdev_state_dirty_node) && 4900 vdev_is_concrete(vd)) 4901 list_insert_head(&spa->spa_state_dirty_list, vd); 4902 } 4903 4904 void 4905 vdev_state_clean(vdev_t *vd) 4906 { 4907 spa_t *spa = vd->vdev_spa; 4908 4909 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 4910 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4911 spa_config_held(spa, SCL_STATE, RW_READER))); 4912 4913 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 4914 list_remove(&spa->spa_state_dirty_list, vd); 4915 } 4916 4917 /* 4918 * Propagate vdev state up from children to parent. 4919 */ 4920 void 4921 vdev_propagate_state(vdev_t *vd) 4922 { 4923 spa_t *spa = vd->vdev_spa; 4924 vdev_t *rvd = spa->spa_root_vdev; 4925 int degraded = 0, faulted = 0; 4926 int corrupted = 0; 4927 vdev_t *child; 4928 4929 if (vd->vdev_children > 0) { 4930 for (int c = 0; c < vd->vdev_children; c++) { 4931 child = vd->vdev_child[c]; 4932 4933 /* 4934 * Don't factor holes or indirect vdevs into the 4935 * decision. 4936 */ 4937 if (!vdev_is_concrete(child)) 4938 continue; 4939 4940 if (!vdev_readable(child) || 4941 (!vdev_writeable(child) && spa_writeable(spa))) { 4942 /* 4943 * Root special: if there is a top-level log 4944 * device, treat the root vdev as if it were 4945 * degraded. 4946 */ 4947 if (child->vdev_islog && vd == rvd) 4948 degraded++; 4949 else 4950 faulted++; 4951 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 4952 degraded++; 4953 } 4954 4955 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 4956 corrupted++; 4957 } 4958 4959 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 4960 4961 /* 4962 * Root special: if there is a top-level vdev that cannot be 4963 * opened due to corrupted metadata, then propagate the root 4964 * vdev's aux state as 'corrupt' rather than 'insufficient 4965 * replicas'. 4966 */ 4967 if (corrupted && vd == rvd && 4968 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 4969 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 4970 VDEV_AUX_CORRUPT_DATA); 4971 } 4972 4973 if (vd->vdev_parent) 4974 vdev_propagate_state(vd->vdev_parent); 4975 } 4976 4977 /* 4978 * Set a vdev's state. If this is during an open, we don't update the parent 4979 * state, because we're in the process of opening children depth-first. 4980 * Otherwise, we propagate the change to the parent. 4981 * 4982 * If this routine places a device in a faulted state, an appropriate ereport is 4983 * generated. 4984 */ 4985 void 4986 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 4987 { 4988 uint64_t save_state; 4989 spa_t *spa = vd->vdev_spa; 4990 4991 if (state == vd->vdev_state) { 4992 /* 4993 * Since vdev_offline() code path is already in an offline 4994 * state we can miss a statechange event to OFFLINE. Check 4995 * the previous state to catch this condition. 4996 */ 4997 if (vd->vdev_ops->vdev_op_leaf && 4998 (state == VDEV_STATE_OFFLINE) && 4999 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) { 5000 /* post an offline state change */ 5001 zfs_post_state_change(spa, vd, vd->vdev_prevstate); 5002 } 5003 vd->vdev_stat.vs_aux = aux; 5004 return; 5005 } 5006 5007 save_state = vd->vdev_state; 5008 5009 vd->vdev_state = state; 5010 vd->vdev_stat.vs_aux = aux; 5011 5012 /* 5013 * If we are setting the vdev state to anything but an open state, then 5014 * always close the underlying device unless the device has requested 5015 * a delayed close (i.e. we're about to remove or fault the device). 5016 * Otherwise, we keep accessible but invalid devices open forever. 5017 * We don't call vdev_close() itself, because that implies some extra 5018 * checks (offline, etc) that we don't want here. This is limited to 5019 * leaf devices, because otherwise closing the device will affect other 5020 * children. 5021 */ 5022 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 5023 vd->vdev_ops->vdev_op_leaf) 5024 vd->vdev_ops->vdev_op_close(vd); 5025 5026 if (vd->vdev_removed && 5027 state == VDEV_STATE_CANT_OPEN && 5028 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 5029 /* 5030 * If the previous state is set to VDEV_STATE_REMOVED, then this 5031 * device was previously marked removed and someone attempted to 5032 * reopen it. If this failed due to a nonexistent device, then 5033 * keep the device in the REMOVED state. We also let this be if 5034 * it is one of our special test online cases, which is only 5035 * attempting to online the device and shouldn't generate an FMA 5036 * fault. 5037 */ 5038 vd->vdev_state = VDEV_STATE_REMOVED; 5039 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 5040 } else if (state == VDEV_STATE_REMOVED) { 5041 vd->vdev_removed = B_TRUE; 5042 } else if (state == VDEV_STATE_CANT_OPEN) { 5043 /* 5044 * If we fail to open a vdev during an import or recovery, we 5045 * mark it as "not available", which signifies that it was 5046 * never there to begin with. Failure to open such a device 5047 * is not considered an error. 5048 */ 5049 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 5050 spa_load_state(spa) == SPA_LOAD_RECOVER) && 5051 vd->vdev_ops->vdev_op_leaf) 5052 vd->vdev_not_present = 1; 5053 5054 /* 5055 * Post the appropriate ereport. If the 'prevstate' field is 5056 * set to something other than VDEV_STATE_UNKNOWN, it indicates 5057 * that this is part of a vdev_reopen(). In this case, we don't 5058 * want to post the ereport if the device was already in the 5059 * CANT_OPEN state beforehand. 5060 * 5061 * If the 'checkremove' flag is set, then this is an attempt to 5062 * online the device in response to an insertion event. If we 5063 * hit this case, then we have detected an insertion event for a 5064 * faulted or offline device that wasn't in the removed state. 5065 * In this scenario, we don't post an ereport because we are 5066 * about to replace the device, or attempt an online with 5067 * vdev_forcefault, which will generate the fault for us. 5068 */ 5069 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 5070 !vd->vdev_not_present && !vd->vdev_checkremove && 5071 vd != spa->spa_root_vdev) { 5072 const char *class; 5073 5074 switch (aux) { 5075 case VDEV_AUX_OPEN_FAILED: 5076 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 5077 break; 5078 case VDEV_AUX_CORRUPT_DATA: 5079 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 5080 break; 5081 case VDEV_AUX_NO_REPLICAS: 5082 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 5083 break; 5084 case VDEV_AUX_BAD_GUID_SUM: 5085 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 5086 break; 5087 case VDEV_AUX_TOO_SMALL: 5088 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 5089 break; 5090 case VDEV_AUX_BAD_LABEL: 5091 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 5092 break; 5093 case VDEV_AUX_BAD_ASHIFT: 5094 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT; 5095 break; 5096 default: 5097 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 5098 } 5099 5100 (void) zfs_ereport_post(class, spa, vd, NULL, NULL, 5101 save_state); 5102 } 5103 5104 /* Erase any notion of persistent removed state */ 5105 vd->vdev_removed = B_FALSE; 5106 } else { 5107 vd->vdev_removed = B_FALSE; 5108 } 5109 5110 /* 5111 * Notify ZED of any significant state-change on a leaf vdev. 5112 * 5113 */ 5114 if (vd->vdev_ops->vdev_op_leaf) { 5115 /* preserve original state from a vdev_reopen() */ 5116 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) && 5117 (vd->vdev_prevstate != vd->vdev_state) && 5118 (save_state <= VDEV_STATE_CLOSED)) 5119 save_state = vd->vdev_prevstate; 5120 5121 /* filter out state change due to initial vdev_open */ 5122 if (save_state > VDEV_STATE_CLOSED) 5123 zfs_post_state_change(spa, vd, save_state); 5124 } 5125 5126 if (!isopen && vd->vdev_parent) 5127 vdev_propagate_state(vd->vdev_parent); 5128 } 5129 5130 boolean_t 5131 vdev_children_are_offline(vdev_t *vd) 5132 { 5133 ASSERT(!vd->vdev_ops->vdev_op_leaf); 5134 5135 for (uint64_t i = 0; i < vd->vdev_children; i++) { 5136 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 5137 return (B_FALSE); 5138 } 5139 5140 return (B_TRUE); 5141 } 5142 5143 /* 5144 * Check the vdev configuration to ensure that it's capable of supporting 5145 * a root pool. We do not support partial configuration. 5146 */ 5147 boolean_t 5148 vdev_is_bootable(vdev_t *vd) 5149 { 5150 if (!vd->vdev_ops->vdev_op_leaf) { 5151 const char *vdev_type = vd->vdev_ops->vdev_op_type; 5152 5153 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) 5154 return (B_FALSE); 5155 } 5156 5157 for (int c = 0; c < vd->vdev_children; c++) { 5158 if (!vdev_is_bootable(vd->vdev_child[c])) 5159 return (B_FALSE); 5160 } 5161 return (B_TRUE); 5162 } 5163 5164 boolean_t 5165 vdev_is_concrete(vdev_t *vd) 5166 { 5167 vdev_ops_t *ops = vd->vdev_ops; 5168 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 5169 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 5170 return (B_FALSE); 5171 } else { 5172 return (B_TRUE); 5173 } 5174 } 5175 5176 /* 5177 * Determine if a log device has valid content. If the vdev was 5178 * removed or faulted in the MOS config then we know that 5179 * the content on the log device has already been written to the pool. 5180 */ 5181 boolean_t 5182 vdev_log_state_valid(vdev_t *vd) 5183 { 5184 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 5185 !vd->vdev_removed) 5186 return (B_TRUE); 5187 5188 for (int c = 0; c < vd->vdev_children; c++) 5189 if (vdev_log_state_valid(vd->vdev_child[c])) 5190 return (B_TRUE); 5191 5192 return (B_FALSE); 5193 } 5194 5195 /* 5196 * Expand a vdev if possible. 5197 */ 5198 void 5199 vdev_expand(vdev_t *vd, uint64_t txg) 5200 { 5201 ASSERT(vd->vdev_top == vd); 5202 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5203 ASSERT(vdev_is_concrete(vd)); 5204 5205 vdev_set_deflate_ratio(vd); 5206 5207 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 5208 vdev_is_concrete(vd)) { 5209 vdev_metaslab_group_create(vd); 5210 VERIFY(vdev_metaslab_init(vd, txg) == 0); 5211 vdev_config_dirty(vd); 5212 } 5213 } 5214 5215 /* 5216 * Split a vdev. 5217 */ 5218 void 5219 vdev_split(vdev_t *vd) 5220 { 5221 vdev_t *cvd, *pvd = vd->vdev_parent; 5222 5223 vdev_remove_child(pvd, vd); 5224 vdev_compact_children(pvd); 5225 5226 cvd = pvd->vdev_child[0]; 5227 if (pvd->vdev_children == 1) { 5228 vdev_remove_parent(cvd); 5229 cvd->vdev_splitting = B_TRUE; 5230 } 5231 vdev_propagate_state(cvd); 5232 } 5233 5234 void 5235 vdev_deadman(vdev_t *vd, char *tag) 5236 { 5237 for (int c = 0; c < vd->vdev_children; c++) { 5238 vdev_t *cvd = vd->vdev_child[c]; 5239 5240 vdev_deadman(cvd, tag); 5241 } 5242 5243 if (vd->vdev_ops->vdev_op_leaf) { 5244 vdev_queue_t *vq = &vd->vdev_queue; 5245 5246 mutex_enter(&vq->vq_lock); 5247 if (avl_numnodes(&vq->vq_active_tree) > 0) { 5248 spa_t *spa = vd->vdev_spa; 5249 zio_t *fio; 5250 uint64_t delta; 5251 5252 zfs_dbgmsg("slow vdev: %s has %lu active IOs", 5253 vd->vdev_path, avl_numnodes(&vq->vq_active_tree)); 5254 5255 /* 5256 * Look at the head of all the pending queues, 5257 * if any I/O has been outstanding for longer than 5258 * the spa_deadman_synctime invoke the deadman logic. 5259 */ 5260 fio = avl_first(&vq->vq_active_tree); 5261 delta = gethrtime() - fio->io_timestamp; 5262 if (delta > spa_deadman_synctime(spa)) 5263 zio_deadman(fio, tag); 5264 } 5265 mutex_exit(&vq->vq_lock); 5266 } 5267 } 5268 5269 void 5270 vdev_defer_resilver(vdev_t *vd) 5271 { 5272 ASSERT(vd->vdev_ops->vdev_op_leaf); 5273 5274 vd->vdev_resilver_deferred = B_TRUE; 5275 vd->vdev_spa->spa_resilver_deferred = B_TRUE; 5276 } 5277 5278 /* 5279 * Clears the resilver deferred flag on all leaf devs under vd. Returns 5280 * B_TRUE if we have devices that need to be resilvered and are available to 5281 * accept resilver I/Os. 5282 */ 5283 boolean_t 5284 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx) 5285 { 5286 boolean_t resilver_needed = B_FALSE; 5287 spa_t *spa = vd->vdev_spa; 5288 5289 for (int c = 0; c < vd->vdev_children; c++) { 5290 vdev_t *cvd = vd->vdev_child[c]; 5291 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx); 5292 } 5293 5294 if (vd == spa->spa_root_vdev && 5295 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { 5296 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 5297 vdev_config_dirty(vd); 5298 spa->spa_resilver_deferred = B_FALSE; 5299 return (resilver_needed); 5300 } 5301 5302 if (!vdev_is_concrete(vd) || vd->vdev_aux || 5303 !vd->vdev_ops->vdev_op_leaf) 5304 return (resilver_needed); 5305 5306 vd->vdev_resilver_deferred = B_FALSE; 5307 5308 return (!vdev_is_dead(vd) && !vd->vdev_offline && 5309 vdev_resilver_needed(vd, NULL, NULL)); 5310 } 5311 5312 boolean_t 5313 vdev_xlate_is_empty(range_seg64_t *rs) 5314 { 5315 return (rs->rs_start == rs->rs_end); 5316 } 5317 5318 /* 5319 * Translate a logical range to the first contiguous physical range for the 5320 * specified vdev_t. This function is initially called with a leaf vdev and 5321 * will walk each parent vdev until it reaches a top-level vdev. Once the 5322 * top-level is reached the physical range is initialized and the recursive 5323 * function begins to unwind. As it unwinds it calls the parent's vdev 5324 * specific translation function to do the real conversion. 5325 */ 5326 void 5327 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 5328 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 5329 { 5330 /* 5331 * Walk up the vdev tree 5332 */ 5333 if (vd != vd->vdev_top) { 5334 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs, 5335 remain_rs); 5336 } else { 5337 /* 5338 * We've reached the top-level vdev, initialize the physical 5339 * range to the logical range and set an empty remaining 5340 * range then start to unwind. 5341 */ 5342 physical_rs->rs_start = logical_rs->rs_start; 5343 physical_rs->rs_end = logical_rs->rs_end; 5344 5345 remain_rs->rs_start = logical_rs->rs_start; 5346 remain_rs->rs_end = logical_rs->rs_start; 5347 5348 return; 5349 } 5350 5351 vdev_t *pvd = vd->vdev_parent; 5352 ASSERT3P(pvd, !=, NULL); 5353 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL); 5354 5355 /* 5356 * As this recursive function unwinds, translate the logical 5357 * range into its physical and any remaining components by calling 5358 * the vdev specific translate function. 5359 */ 5360 range_seg64_t intermediate = { 0 }; 5361 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs); 5362 5363 physical_rs->rs_start = intermediate.rs_start; 5364 physical_rs->rs_end = intermediate.rs_end; 5365 } 5366 5367 void 5368 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs, 5369 vdev_xlate_func_t *func, void *arg) 5370 { 5371 range_seg64_t iter_rs = *logical_rs; 5372 range_seg64_t physical_rs; 5373 range_seg64_t remain_rs; 5374 5375 while (!vdev_xlate_is_empty(&iter_rs)) { 5376 5377 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs); 5378 5379 /* 5380 * With raidz and dRAID, it's possible that the logical range 5381 * does not live on this leaf vdev. Only when there is a non- 5382 * zero physical size call the provided function. 5383 */ 5384 if (!vdev_xlate_is_empty(&physical_rs)) 5385 func(arg, &physical_rs); 5386 5387 iter_rs = remain_rs; 5388 } 5389 } 5390 5391 static char * 5392 vdev_name(vdev_t *vd, char *buf, int buflen) 5393 { 5394 if (vd->vdev_path == NULL) { 5395 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) { 5396 strlcpy(buf, vd->vdev_spa->spa_name, buflen); 5397 } else if (!vd->vdev_ops->vdev_op_leaf) { 5398 snprintf(buf, buflen, "%s-%llu", 5399 vd->vdev_ops->vdev_op_type, 5400 (u_longlong_t)vd->vdev_id); 5401 } 5402 } else { 5403 strlcpy(buf, vd->vdev_path, buflen); 5404 } 5405 return (buf); 5406 } 5407 5408 /* 5409 * Look at the vdev tree and determine whether any devices are currently being 5410 * replaced. 5411 */ 5412 boolean_t 5413 vdev_replace_in_progress(vdev_t *vdev) 5414 { 5415 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0); 5416 5417 if (vdev->vdev_ops == &vdev_replacing_ops) 5418 return (B_TRUE); 5419 5420 /* 5421 * A 'spare' vdev indicates that we have a replace in progress, unless 5422 * it has exactly two children, and the second, the hot spare, has 5423 * finished being resilvered. 5424 */ 5425 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 || 5426 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING))) 5427 return (B_TRUE); 5428 5429 for (int i = 0; i < vdev->vdev_children; i++) { 5430 if (vdev_replace_in_progress(vdev->vdev_child[i])) 5431 return (B_TRUE); 5432 } 5433 5434 return (B_FALSE); 5435 } 5436 5437 /* 5438 * Add a (source=src, propname=propval) list to an nvlist. 5439 */ 5440 static void 5441 vdev_prop_add_list(nvlist_t *nvl, const char *propname, char *strval, 5442 uint64_t intval, zprop_source_t src) 5443 { 5444 nvlist_t *propval; 5445 5446 propval = fnvlist_alloc(); 5447 fnvlist_add_uint64(propval, ZPROP_SOURCE, src); 5448 5449 if (strval != NULL) 5450 fnvlist_add_string(propval, ZPROP_VALUE, strval); 5451 else 5452 fnvlist_add_uint64(propval, ZPROP_VALUE, intval); 5453 5454 fnvlist_add_nvlist(nvl, propname, propval); 5455 nvlist_free(propval); 5456 } 5457 5458 static void 5459 vdev_props_set_sync(void *arg, dmu_tx_t *tx) 5460 { 5461 vdev_t *vd; 5462 nvlist_t *nvp = arg; 5463 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5464 objset_t *mos = spa->spa_meta_objset; 5465 nvpair_t *elem = NULL; 5466 uint64_t vdev_guid; 5467 nvlist_t *nvprops; 5468 5469 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV); 5470 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS); 5471 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE); 5472 VERIFY(vd != NULL); 5473 5474 mutex_enter(&spa->spa_props_lock); 5475 5476 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5477 uint64_t intval, objid = 0; 5478 char *strval; 5479 vdev_prop_t prop; 5480 const char *propname = nvpair_name(elem); 5481 zprop_type_t proptype; 5482 5483 /* 5484 * Set vdev property values in the vdev props mos object. 5485 */ 5486 if (vd->vdev_top_zap != 0) { 5487 objid = vd->vdev_top_zap; 5488 } else if (vd->vdev_leaf_zap != 0) { 5489 objid = vd->vdev_leaf_zap; 5490 } else { 5491 panic("vdev not top or leaf"); 5492 } 5493 5494 switch (prop = vdev_name_to_prop(propname)) { 5495 case VDEV_PROP_USER: 5496 if (vdev_prop_user(propname)) { 5497 strval = fnvpair_value_string(elem); 5498 if (strlen(strval) == 0) { 5499 /* remove the property if value == "" */ 5500 (void) zap_remove(mos, objid, propname, 5501 tx); 5502 } else { 5503 VERIFY0(zap_update(mos, objid, propname, 5504 1, strlen(strval) + 1, strval, tx)); 5505 } 5506 spa_history_log_internal(spa, "vdev set", tx, 5507 "vdev_guid=%llu: %s=%s", 5508 (u_longlong_t)vdev_guid, nvpair_name(elem), 5509 strval); 5510 } 5511 break; 5512 default: 5513 /* normalize the property name */ 5514 propname = vdev_prop_to_name(prop); 5515 proptype = vdev_prop_get_type(prop); 5516 5517 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5518 ASSERT(proptype == PROP_TYPE_STRING); 5519 strval = fnvpair_value_string(elem); 5520 VERIFY0(zap_update(mos, objid, propname, 5521 1, strlen(strval) + 1, strval, tx)); 5522 spa_history_log_internal(spa, "vdev set", tx, 5523 "vdev_guid=%llu: %s=%s", 5524 (u_longlong_t)vdev_guid, nvpair_name(elem), 5525 strval); 5526 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5527 intval = fnvpair_value_uint64(elem); 5528 5529 if (proptype == PROP_TYPE_INDEX) { 5530 const char *unused; 5531 VERIFY0(vdev_prop_index_to_string( 5532 prop, intval, &unused)); 5533 } 5534 VERIFY0(zap_update(mos, objid, propname, 5535 sizeof (uint64_t), 1, &intval, tx)); 5536 spa_history_log_internal(spa, "vdev set", tx, 5537 "vdev_guid=%llu: %s=%lld", 5538 (u_longlong_t)vdev_guid, 5539 nvpair_name(elem), (longlong_t)intval); 5540 } else { 5541 panic("invalid vdev property type %u", 5542 nvpair_type(elem)); 5543 } 5544 } 5545 5546 } 5547 5548 mutex_exit(&spa->spa_props_lock); 5549 } 5550 5551 int 5552 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 5553 { 5554 spa_t *spa = vd->vdev_spa; 5555 nvpair_t *elem = NULL; 5556 uint64_t vdev_guid; 5557 nvlist_t *nvprops; 5558 int error; 5559 5560 ASSERT(vd != NULL); 5561 5562 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV, 5563 &vdev_guid) != 0) 5564 return (SET_ERROR(EINVAL)); 5565 5566 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS, 5567 &nvprops) != 0) 5568 return (SET_ERROR(EINVAL)); 5569 5570 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) 5571 return (SET_ERROR(EINVAL)); 5572 5573 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5574 char *propname = nvpair_name(elem); 5575 vdev_prop_t prop = vdev_name_to_prop(propname); 5576 uint64_t intval = 0; 5577 char *strval = NULL; 5578 5579 if (prop == VDEV_PROP_USER && !vdev_prop_user(propname)) { 5580 error = EINVAL; 5581 goto end; 5582 } 5583 5584 if (vdev_prop_readonly(prop)) { 5585 error = EROFS; 5586 goto end; 5587 } 5588 5589 /* Special Processing */ 5590 switch (prop) { 5591 case VDEV_PROP_PATH: 5592 if (vd->vdev_path == NULL) { 5593 error = EROFS; 5594 break; 5595 } 5596 if (nvpair_value_string(elem, &strval) != 0) { 5597 error = EINVAL; 5598 break; 5599 } 5600 /* New path must start with /dev/ */ 5601 if (strncmp(strval, "/dev/", 5)) { 5602 error = EINVAL; 5603 break; 5604 } 5605 error = spa_vdev_setpath(spa, vdev_guid, strval); 5606 break; 5607 case VDEV_PROP_ALLOCATING: 5608 if (nvpair_value_uint64(elem, &intval) != 0) { 5609 error = EINVAL; 5610 break; 5611 } 5612 if (intval != vd->vdev_noalloc) 5613 break; 5614 if (intval == 0) 5615 error = spa_vdev_noalloc(spa, vdev_guid); 5616 else 5617 error = spa_vdev_alloc(spa, vdev_guid); 5618 break; 5619 default: 5620 /* Most processing is done in vdev_props_set_sync */ 5621 break; 5622 } 5623 end: 5624 if (error != 0) { 5625 intval = error; 5626 vdev_prop_add_list(outnvl, propname, strval, intval, 0); 5627 return (error); 5628 } 5629 } 5630 5631 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync, 5632 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 5633 } 5634 5635 int 5636 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 5637 { 5638 spa_t *spa = vd->vdev_spa; 5639 objset_t *mos = spa->spa_meta_objset; 5640 int err = 0; 5641 uint64_t objid; 5642 uint64_t vdev_guid; 5643 nvpair_t *elem = NULL; 5644 nvlist_t *nvprops = NULL; 5645 uint64_t intval = 0; 5646 char *strval = NULL; 5647 const char *propname = NULL; 5648 vdev_prop_t prop; 5649 5650 ASSERT(vd != NULL); 5651 ASSERT(mos != NULL); 5652 5653 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV, 5654 &vdev_guid) != 0) 5655 return (SET_ERROR(EINVAL)); 5656 5657 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops); 5658 5659 if (vd->vdev_top_zap != 0) { 5660 objid = vd->vdev_top_zap; 5661 } else if (vd->vdev_leaf_zap != 0) { 5662 objid = vd->vdev_leaf_zap; 5663 } else { 5664 return (SET_ERROR(EINVAL)); 5665 } 5666 ASSERT(objid != 0); 5667 5668 mutex_enter(&spa->spa_props_lock); 5669 5670 if (nvprops != NULL) { 5671 char namebuf[64] = { 0 }; 5672 5673 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5674 intval = 0; 5675 strval = NULL; 5676 propname = nvpair_name(elem); 5677 prop = vdev_name_to_prop(propname); 5678 zprop_source_t src = ZPROP_SRC_DEFAULT; 5679 uint64_t integer_size, num_integers; 5680 5681 switch (prop) { 5682 /* Special Read-only Properties */ 5683 case VDEV_PROP_NAME: 5684 strval = vdev_name(vd, namebuf, 5685 sizeof (namebuf)); 5686 if (strval == NULL) 5687 continue; 5688 vdev_prop_add_list(outnvl, propname, strval, 0, 5689 ZPROP_SRC_NONE); 5690 continue; 5691 case VDEV_PROP_CAPACITY: 5692 /* percent used */ 5693 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 : 5694 (vd->vdev_stat.vs_alloc * 100 / 5695 vd->vdev_stat.vs_dspace); 5696 vdev_prop_add_list(outnvl, propname, NULL, 5697 intval, ZPROP_SRC_NONE); 5698 continue; 5699 case VDEV_PROP_STATE: 5700 vdev_prop_add_list(outnvl, propname, NULL, 5701 vd->vdev_state, ZPROP_SRC_NONE); 5702 continue; 5703 case VDEV_PROP_GUID: 5704 vdev_prop_add_list(outnvl, propname, NULL, 5705 vd->vdev_guid, ZPROP_SRC_NONE); 5706 continue; 5707 case VDEV_PROP_ASIZE: 5708 vdev_prop_add_list(outnvl, propname, NULL, 5709 vd->vdev_asize, ZPROP_SRC_NONE); 5710 continue; 5711 case VDEV_PROP_PSIZE: 5712 vdev_prop_add_list(outnvl, propname, NULL, 5713 vd->vdev_psize, ZPROP_SRC_NONE); 5714 continue; 5715 case VDEV_PROP_ASHIFT: 5716 vdev_prop_add_list(outnvl, propname, NULL, 5717 vd->vdev_ashift, ZPROP_SRC_NONE); 5718 continue; 5719 case VDEV_PROP_SIZE: 5720 vdev_prop_add_list(outnvl, propname, NULL, 5721 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE); 5722 continue; 5723 case VDEV_PROP_FREE: 5724 vdev_prop_add_list(outnvl, propname, NULL, 5725 vd->vdev_stat.vs_dspace - 5726 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 5727 continue; 5728 case VDEV_PROP_ALLOCATED: 5729 vdev_prop_add_list(outnvl, propname, NULL, 5730 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 5731 continue; 5732 case VDEV_PROP_EXPANDSZ: 5733 vdev_prop_add_list(outnvl, propname, NULL, 5734 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE); 5735 continue; 5736 case VDEV_PROP_FRAGMENTATION: 5737 vdev_prop_add_list(outnvl, propname, NULL, 5738 vd->vdev_stat.vs_fragmentation, 5739 ZPROP_SRC_NONE); 5740 continue; 5741 case VDEV_PROP_PARITY: 5742 vdev_prop_add_list(outnvl, propname, NULL, 5743 vdev_get_nparity(vd), ZPROP_SRC_NONE); 5744 continue; 5745 case VDEV_PROP_PATH: 5746 if (vd->vdev_path == NULL) 5747 continue; 5748 vdev_prop_add_list(outnvl, propname, 5749 vd->vdev_path, 0, ZPROP_SRC_NONE); 5750 continue; 5751 case VDEV_PROP_DEVID: 5752 if (vd->vdev_devid == NULL) 5753 continue; 5754 vdev_prop_add_list(outnvl, propname, 5755 vd->vdev_devid, 0, ZPROP_SRC_NONE); 5756 continue; 5757 case VDEV_PROP_PHYS_PATH: 5758 if (vd->vdev_physpath == NULL) 5759 continue; 5760 vdev_prop_add_list(outnvl, propname, 5761 vd->vdev_physpath, 0, ZPROP_SRC_NONE); 5762 continue; 5763 case VDEV_PROP_ENC_PATH: 5764 if (vd->vdev_enc_sysfs_path == NULL) 5765 continue; 5766 vdev_prop_add_list(outnvl, propname, 5767 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE); 5768 continue; 5769 case VDEV_PROP_FRU: 5770 if (vd->vdev_fru == NULL) 5771 continue; 5772 vdev_prop_add_list(outnvl, propname, 5773 vd->vdev_fru, 0, ZPROP_SRC_NONE); 5774 continue; 5775 case VDEV_PROP_PARENT: 5776 if (vd->vdev_parent != NULL) { 5777 strval = vdev_name(vd->vdev_parent, 5778 namebuf, sizeof (namebuf)); 5779 vdev_prop_add_list(outnvl, propname, 5780 strval, 0, ZPROP_SRC_NONE); 5781 } 5782 continue; 5783 case VDEV_PROP_CHILDREN: 5784 if (vd->vdev_children > 0) 5785 strval = kmem_zalloc(ZAP_MAXVALUELEN, 5786 KM_SLEEP); 5787 for (uint64_t i = 0; i < vd->vdev_children; 5788 i++) { 5789 char *vname; 5790 5791 vname = vdev_name(vd->vdev_child[i], 5792 namebuf, sizeof (namebuf)); 5793 if (vname == NULL) 5794 vname = "(unknown)"; 5795 if (strlen(strval) > 0) 5796 strlcat(strval, ",", 5797 ZAP_MAXVALUELEN); 5798 strlcat(strval, vname, ZAP_MAXVALUELEN); 5799 } 5800 if (strval != NULL) { 5801 vdev_prop_add_list(outnvl, propname, 5802 strval, 0, ZPROP_SRC_NONE); 5803 kmem_free(strval, ZAP_MAXVALUELEN); 5804 } 5805 continue; 5806 case VDEV_PROP_NUMCHILDREN: 5807 vdev_prop_add_list(outnvl, propname, NULL, 5808 vd->vdev_children, ZPROP_SRC_NONE); 5809 continue; 5810 case VDEV_PROP_READ_ERRORS: 5811 vdev_prop_add_list(outnvl, propname, NULL, 5812 vd->vdev_stat.vs_read_errors, 5813 ZPROP_SRC_NONE); 5814 continue; 5815 case VDEV_PROP_WRITE_ERRORS: 5816 vdev_prop_add_list(outnvl, propname, NULL, 5817 vd->vdev_stat.vs_write_errors, 5818 ZPROP_SRC_NONE); 5819 continue; 5820 case VDEV_PROP_CHECKSUM_ERRORS: 5821 vdev_prop_add_list(outnvl, propname, NULL, 5822 vd->vdev_stat.vs_checksum_errors, 5823 ZPROP_SRC_NONE); 5824 continue; 5825 case VDEV_PROP_INITIALIZE_ERRORS: 5826 vdev_prop_add_list(outnvl, propname, NULL, 5827 vd->vdev_stat.vs_initialize_errors, 5828 ZPROP_SRC_NONE); 5829 continue; 5830 case VDEV_PROP_OPS_NULL: 5831 vdev_prop_add_list(outnvl, propname, NULL, 5832 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL], 5833 ZPROP_SRC_NONE); 5834 continue; 5835 case VDEV_PROP_OPS_READ: 5836 vdev_prop_add_list(outnvl, propname, NULL, 5837 vd->vdev_stat.vs_ops[ZIO_TYPE_READ], 5838 ZPROP_SRC_NONE); 5839 continue; 5840 case VDEV_PROP_OPS_WRITE: 5841 vdev_prop_add_list(outnvl, propname, NULL, 5842 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE], 5843 ZPROP_SRC_NONE); 5844 continue; 5845 case VDEV_PROP_OPS_FREE: 5846 vdev_prop_add_list(outnvl, propname, NULL, 5847 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE], 5848 ZPROP_SRC_NONE); 5849 continue; 5850 case VDEV_PROP_OPS_CLAIM: 5851 vdev_prop_add_list(outnvl, propname, NULL, 5852 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM], 5853 ZPROP_SRC_NONE); 5854 continue; 5855 case VDEV_PROP_OPS_TRIM: 5856 /* 5857 * TRIM ops and bytes are reported to user 5858 * space as ZIO_TYPE_IOCTL. This is done to 5859 * preserve the vdev_stat_t structure layout 5860 * for user space. 5861 */ 5862 vdev_prop_add_list(outnvl, propname, NULL, 5863 vd->vdev_stat.vs_ops[ZIO_TYPE_IOCTL], 5864 ZPROP_SRC_NONE); 5865 continue; 5866 case VDEV_PROP_BYTES_NULL: 5867 vdev_prop_add_list(outnvl, propname, NULL, 5868 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL], 5869 ZPROP_SRC_NONE); 5870 continue; 5871 case VDEV_PROP_BYTES_READ: 5872 vdev_prop_add_list(outnvl, propname, NULL, 5873 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ], 5874 ZPROP_SRC_NONE); 5875 continue; 5876 case VDEV_PROP_BYTES_WRITE: 5877 vdev_prop_add_list(outnvl, propname, NULL, 5878 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE], 5879 ZPROP_SRC_NONE); 5880 continue; 5881 case VDEV_PROP_BYTES_FREE: 5882 vdev_prop_add_list(outnvl, propname, NULL, 5883 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE], 5884 ZPROP_SRC_NONE); 5885 continue; 5886 case VDEV_PROP_BYTES_CLAIM: 5887 vdev_prop_add_list(outnvl, propname, NULL, 5888 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM], 5889 ZPROP_SRC_NONE); 5890 continue; 5891 case VDEV_PROP_BYTES_TRIM: 5892 /* 5893 * TRIM ops and bytes are reported to user 5894 * space as ZIO_TYPE_IOCTL. This is done to 5895 * preserve the vdev_stat_t structure layout 5896 * for user space. 5897 */ 5898 vdev_prop_add_list(outnvl, propname, NULL, 5899 vd->vdev_stat.vs_bytes[ZIO_TYPE_IOCTL], 5900 ZPROP_SRC_NONE); 5901 continue; 5902 case VDEV_PROP_REMOVING: 5903 vdev_prop_add_list(outnvl, propname, NULL, 5904 vd->vdev_removing, ZPROP_SRC_NONE); 5905 continue; 5906 /* Numeric Properites */ 5907 case VDEV_PROP_ALLOCATING: 5908 src = ZPROP_SRC_LOCAL; 5909 strval = NULL; 5910 5911 err = zap_lookup(mos, objid, nvpair_name(elem), 5912 sizeof (uint64_t), 1, &intval); 5913 if (err == ENOENT) { 5914 intval = 5915 vdev_prop_default_numeric(prop); 5916 err = 0; 5917 } else if (err) 5918 break; 5919 if (intval == vdev_prop_default_numeric(prop)) 5920 src = ZPROP_SRC_DEFAULT; 5921 5922 /* Leaf vdevs cannot have this property */ 5923 if (vd->vdev_mg == NULL && 5924 vd->vdev_top != NULL) { 5925 src = ZPROP_SRC_NONE; 5926 intval = ZPROP_BOOLEAN_NA; 5927 } 5928 5929 vdev_prop_add_list(outnvl, propname, strval, 5930 intval, src); 5931 break; 5932 /* Text Properties */ 5933 case VDEV_PROP_COMMENT: 5934 /* Exists in the ZAP below */ 5935 /* FALLTHRU */ 5936 case VDEV_PROP_USER: 5937 /* User Properites */ 5938 src = ZPROP_SRC_LOCAL; 5939 5940 err = zap_length(mos, objid, nvpair_name(elem), 5941 &integer_size, &num_integers); 5942 if (err) 5943 break; 5944 5945 switch (integer_size) { 5946 case 8: 5947 /* User properties cannot be integers */ 5948 err = EINVAL; 5949 break; 5950 case 1: 5951 /* string property */ 5952 strval = kmem_alloc(num_integers, 5953 KM_SLEEP); 5954 err = zap_lookup(mos, objid, 5955 nvpair_name(elem), 1, 5956 num_integers, strval); 5957 if (err) { 5958 kmem_free(strval, 5959 num_integers); 5960 break; 5961 } 5962 vdev_prop_add_list(outnvl, propname, 5963 strval, 0, src); 5964 kmem_free(strval, num_integers); 5965 break; 5966 } 5967 break; 5968 default: 5969 err = ENOENT; 5970 break; 5971 } 5972 if (err) 5973 break; 5974 } 5975 } else { 5976 /* 5977 * Get all properties from the MOS vdev property object. 5978 */ 5979 zap_cursor_t zc; 5980 zap_attribute_t za; 5981 for (zap_cursor_init(&zc, mos, objid); 5982 (err = zap_cursor_retrieve(&zc, &za)) == 0; 5983 zap_cursor_advance(&zc)) { 5984 intval = 0; 5985 strval = NULL; 5986 zprop_source_t src = ZPROP_SRC_DEFAULT; 5987 propname = za.za_name; 5988 prop = vdev_name_to_prop(propname); 5989 5990 switch (za.za_integer_length) { 5991 case 8: 5992 /* We do not allow integer user properties */ 5993 /* This is likely an internal value */ 5994 break; 5995 case 1: 5996 /* string property */ 5997 strval = kmem_alloc(za.za_num_integers, 5998 KM_SLEEP); 5999 err = zap_lookup(mos, objid, za.za_name, 1, 6000 za.za_num_integers, strval); 6001 if (err) { 6002 kmem_free(strval, za.za_num_integers); 6003 break; 6004 } 6005 vdev_prop_add_list(outnvl, propname, strval, 0, 6006 src); 6007 kmem_free(strval, za.za_num_integers); 6008 break; 6009 6010 default: 6011 break; 6012 } 6013 } 6014 zap_cursor_fini(&zc); 6015 } 6016 6017 mutex_exit(&spa->spa_props_lock); 6018 if (err && err != ENOENT) { 6019 return (err); 6020 } 6021 6022 return (0); 6023 } 6024 6025 EXPORT_SYMBOL(vdev_fault); 6026 EXPORT_SYMBOL(vdev_degrade); 6027 EXPORT_SYMBOL(vdev_online); 6028 EXPORT_SYMBOL(vdev_offline); 6029 EXPORT_SYMBOL(vdev_clear); 6030 6031 /* BEGIN CSTYLED */ 6032 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, INT, ZMOD_RW, 6033 "Target number of metaslabs per top-level vdev"); 6034 6035 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, INT, ZMOD_RW, 6036 "Default limit for metaslab size"); 6037 6038 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, INT, ZMOD_RW, 6039 "Minimum number of metaslabs per top-level vdev"); 6040 6041 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, INT, ZMOD_RW, 6042 "Practical upper limit of total metaslabs per top-level vdev"); 6043 6044 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW, 6045 "Rate limit slow IO (delay) events to this many per second"); 6046 6047 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW, 6048 "Rate limit checksum events to this many checksum errors per second " 6049 "(do not set below zed threshold)."); 6050 6051 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW, 6052 "Ignore errors during resilver/scrub"); 6053 6054 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW, 6055 "Bypass vdev_validate()"); 6056 6057 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW, 6058 "Disable cache flushes"); 6059 6060 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, INT, ZMOD_RW, 6061 "Minimum number of metaslabs required to dedicate one for log blocks"); 6062 6063 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift, 6064 param_set_min_auto_ashift, param_get_ulong, ZMOD_RW, 6065 "Minimum ashift used when creating new top-level vdevs"); 6066 6067 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift, 6068 param_set_max_auto_ashift, param_get_ulong, ZMOD_RW, 6069 "Maximum ashift used when optimizing for logical -> physical sector " 6070 "size on new top-level vdevs"); 6071 /* END CSTYLED */ 6072