1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 26 * Copyright 2017 Nexenta Systems, Inc. 27 * Copyright (c) 2014 Integros [integros.com] 28 * Copyright 2016 Toomas Soome <tsoome@me.com> 29 * Copyright 2017 Joyent, Inc. 30 * Copyright (c) 2017, Intel Corporation. 31 * Copyright (c) 2019, Datto Inc. All rights reserved. 32 * Copyright (c) 2021, 2025, Klara, Inc. 33 * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP. 34 */ 35 36 #include <sys/zfs_context.h> 37 #include <sys/fm/fs/zfs.h> 38 #include <sys/spa.h> 39 #include <sys/spa_impl.h> 40 #include <sys/bpobj.h> 41 #include <sys/dmu.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/dsl_dir.h> 44 #include <sys/vdev_impl.h> 45 #include <sys/vdev_rebuild.h> 46 #include <sys/vdev_draid.h> 47 #include <sys/uberblock_impl.h> 48 #include <sys/metaslab.h> 49 #include <sys/metaslab_impl.h> 50 #include <sys/space_map.h> 51 #include <sys/space_reftree.h> 52 #include <sys/zio.h> 53 #include <sys/zap.h> 54 #include <sys/fs/zfs.h> 55 #include <sys/arc.h> 56 #include <sys/zil.h> 57 #include <sys/dsl_scan.h> 58 #include <sys/vdev_raidz.h> 59 #include <sys/abd.h> 60 #include <sys/vdev_initialize.h> 61 #include <sys/vdev_trim.h> 62 #include <sys/vdev_raidz.h> 63 #include <sys/zvol.h> 64 #include <sys/zfs_ratelimit.h> 65 #include "zfs_prop.h" 66 67 /* 68 * One metaslab from each (normal-class) vdev is used by the ZIL. These are 69 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are 70 * part of the spa_embedded_log_class. The metaslab with the most free space 71 * in each vdev is selected for this purpose when the pool is opened (or a 72 * vdev is added). See vdev_metaslab_init(). 73 * 74 * Log blocks can be allocated from the following locations. Each one is tried 75 * in order until the allocation succeeds: 76 * 1. dedicated log vdevs, aka "slog" (spa_log_class) 77 * 2. embedded slog metaslabs (spa_embedded_log_class) 78 * 3. other metaslabs in normal vdevs (spa_normal_class) 79 * 80 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer 81 * than this number of metaslabs in the vdev. This ensures that we don't set 82 * aside an unreasonable amount of space for the ZIL. If set to less than 83 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced 84 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab. 85 */ 86 static uint_t zfs_embedded_slog_min_ms = 64; 87 88 /* default target for number of metaslabs per top-level vdev */ 89 static uint_t zfs_vdev_default_ms_count = 200; 90 91 /* minimum number of metaslabs per top-level vdev */ 92 static uint_t zfs_vdev_min_ms_count = 16; 93 94 /* practical upper limit of total metaslabs per top-level vdev */ 95 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17; 96 97 /* lower limit for metaslab size (512M) */ 98 static uint_t zfs_vdev_default_ms_shift = 29; 99 100 /* upper limit for metaslab size (16G) */ 101 static uint_t zfs_vdev_max_ms_shift = 34; 102 103 int vdev_validate_skip = B_FALSE; 104 105 /* 106 * Since the DTL space map of a vdev is not expected to have a lot of 107 * entries, we default its block size to 4K. 108 */ 109 int zfs_vdev_dtl_sm_blksz = (1 << 12); 110 111 /* 112 * Rate limit slow IO (delay) events to this many per second. 113 */ 114 static unsigned int zfs_slow_io_events_per_second = 20; 115 116 /* 117 * Rate limit deadman "hung IO" events to this many per second. 118 */ 119 static unsigned int zfs_deadman_events_per_second = 1; 120 121 /* 122 * Rate limit direct write IO verify failures to this many per scond. 123 */ 124 static unsigned int zfs_dio_write_verify_events_per_second = 20; 125 126 /* 127 * Rate limit checksum events after this many checksum errors per second. 128 */ 129 static unsigned int zfs_checksum_events_per_second = 20; 130 131 /* 132 * Ignore errors during scrub/resilver. Allows to work around resilver 133 * upon import when there are pool errors. 134 */ 135 static int zfs_scan_ignore_errors = 0; 136 137 /* 138 * vdev-wide space maps that have lots of entries written to them at 139 * the end of each transaction can benefit from a higher I/O bandwidth 140 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 141 */ 142 int zfs_vdev_standard_sm_blksz = (1 << 17); 143 144 /* 145 * Tunable parameter for debugging or performance analysis. Setting this 146 * will cause pool corruption on power loss if a volatile out-of-order 147 * write cache is enabled. 148 */ 149 int zfs_nocacheflush = 0; 150 151 /* 152 * Maximum and minimum ashift values that can be automatically set based on 153 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX 154 * is higher than the maximum value, it is intentionally limited here to not 155 * excessively impact pool space efficiency. Higher ashift values may still 156 * be forced by vdev logical ashift or by user via ashift property, but won't 157 * be set automatically as a performance optimization. 158 */ 159 uint_t zfs_vdev_max_auto_ashift = 14; 160 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN; 161 162 /* 163 * VDEV checksum verification for Direct I/O writes. This is neccessary for 164 * Linux, because anonymous pages can not be placed under write protection 165 * during Direct I/O writes. 166 */ 167 #if !defined(__FreeBSD__) 168 uint_t zfs_vdev_direct_write_verify = 1; 169 #else 170 uint_t zfs_vdev_direct_write_verify = 0; 171 #endif 172 173 void 174 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 175 { 176 va_list adx; 177 char buf[256]; 178 179 va_start(adx, fmt); 180 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 181 va_end(adx); 182 183 if (vd->vdev_path != NULL) { 184 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 185 vd->vdev_path, buf); 186 } else { 187 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 188 vd->vdev_ops->vdev_op_type, 189 (u_longlong_t)vd->vdev_id, 190 (u_longlong_t)vd->vdev_guid, buf); 191 } 192 } 193 194 void 195 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 196 { 197 char state[20]; 198 199 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 200 zfs_dbgmsg("%*svdev %llu: %s", indent, "", 201 (u_longlong_t)vd->vdev_id, 202 vd->vdev_ops->vdev_op_type); 203 return; 204 } 205 206 switch (vd->vdev_state) { 207 case VDEV_STATE_UNKNOWN: 208 (void) snprintf(state, sizeof (state), "unknown"); 209 break; 210 case VDEV_STATE_CLOSED: 211 (void) snprintf(state, sizeof (state), "closed"); 212 break; 213 case VDEV_STATE_OFFLINE: 214 (void) snprintf(state, sizeof (state), "offline"); 215 break; 216 case VDEV_STATE_REMOVED: 217 (void) snprintf(state, sizeof (state), "removed"); 218 break; 219 case VDEV_STATE_CANT_OPEN: 220 (void) snprintf(state, sizeof (state), "can't open"); 221 break; 222 case VDEV_STATE_FAULTED: 223 (void) snprintf(state, sizeof (state), "faulted"); 224 break; 225 case VDEV_STATE_DEGRADED: 226 (void) snprintf(state, sizeof (state), "degraded"); 227 break; 228 case VDEV_STATE_HEALTHY: 229 (void) snprintf(state, sizeof (state), "healthy"); 230 break; 231 default: 232 (void) snprintf(state, sizeof (state), "<state %u>", 233 (uint_t)vd->vdev_state); 234 } 235 236 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 237 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 238 vd->vdev_islog ? " (log)" : "", 239 (u_longlong_t)vd->vdev_guid, 240 vd->vdev_path ? vd->vdev_path : "N/A", state); 241 242 for (uint64_t i = 0; i < vd->vdev_children; i++) 243 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 244 } 245 246 char * 247 vdev_rt_name(vdev_t *vd, const char *name) 248 { 249 return (kmem_asprintf("{spa=%s vdev_guid=%llu %s}", 250 spa_name(vd->vdev_spa), 251 (u_longlong_t)vd->vdev_guid, 252 name)); 253 } 254 255 static char * 256 vdev_rt_name_dtl(vdev_t *vd, const char *name, vdev_dtl_type_t dtl_type) 257 { 258 return (kmem_asprintf("{spa=%s vdev_guid=%llu %s[%d]}", 259 spa_name(vd->vdev_spa), 260 (u_longlong_t)vd->vdev_guid, 261 name, 262 dtl_type)); 263 } 264 265 /* 266 * Virtual device management. 267 */ 268 269 static vdev_ops_t *const vdev_ops_table[] = { 270 &vdev_root_ops, 271 &vdev_raidz_ops, 272 &vdev_draid_ops, 273 &vdev_draid_spare_ops, 274 &vdev_mirror_ops, 275 &vdev_replacing_ops, 276 &vdev_spare_ops, 277 &vdev_disk_ops, 278 &vdev_file_ops, 279 &vdev_missing_ops, 280 &vdev_hole_ops, 281 &vdev_indirect_ops, 282 NULL 283 }; 284 285 /* 286 * Given a vdev type, return the appropriate ops vector. 287 */ 288 static vdev_ops_t * 289 vdev_getops(const char *type) 290 { 291 vdev_ops_t *ops, *const *opspp; 292 293 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 294 if (strcmp(ops->vdev_op_type, type) == 0) 295 break; 296 297 return (ops); 298 } 299 300 /* 301 * Given a vdev and a metaslab class, find which metaslab group we're 302 * interested in. All vdevs may belong to two different metaslab classes. 303 * Dedicated slog devices use only the primary metaslab group, rather than a 304 * separate log group. For embedded slogs, vdev_log_mg will be non-NULL and 305 * will point to a metaslab group of either embedded_log_class (for normal 306 * vdevs) or special_embedded_log_class (for special vdevs). 307 */ 308 metaslab_group_t * 309 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc) 310 { 311 if ((mc == spa_embedded_log_class(vd->vdev_spa) || 312 mc == spa_special_embedded_log_class(vd->vdev_spa)) && 313 vd->vdev_log_mg != NULL) 314 return (vd->vdev_log_mg); 315 else 316 return (vd->vdev_mg); 317 } 318 319 void 320 vdev_default_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs, 321 zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs) 322 { 323 (void) vd, (void) remain_rs; 324 325 physical_rs->rs_start = logical_rs->rs_start; 326 physical_rs->rs_end = logical_rs->rs_end; 327 } 328 329 /* 330 * Derive the enumerated allocation bias from string input. 331 * String origin is either the per-vdev zap or zpool(8). 332 */ 333 static vdev_alloc_bias_t 334 vdev_derive_alloc_bias(const char *bias) 335 { 336 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 337 338 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) 339 alloc_bias = VDEV_BIAS_LOG; 340 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) 341 alloc_bias = VDEV_BIAS_SPECIAL; 342 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) 343 alloc_bias = VDEV_BIAS_DEDUP; 344 345 return (alloc_bias); 346 } 347 348 uint64_t 349 vdev_default_psize(vdev_t *vd, uint64_t asize, uint64_t txg) 350 { 351 ASSERT0(asize % (1ULL << vd->vdev_top->vdev_ashift)); 352 uint64_t csize, psize = asize; 353 for (int c = 0; c < vd->vdev_children; c++) { 354 csize = vdev_asize_to_psize_txg(vd->vdev_child[c], asize, txg); 355 psize = MIN(psize, csize); 356 } 357 358 return (psize); 359 } 360 361 /* 362 * Default asize function: return the MAX of psize with the asize of 363 * all children. This is what's used by anything other than RAID-Z. 364 */ 365 uint64_t 366 vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg) 367 { 368 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 369 uint64_t csize; 370 371 for (int c = 0; c < vd->vdev_children; c++) { 372 csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg); 373 asize = MAX(asize, csize); 374 } 375 376 return (asize); 377 } 378 379 uint64_t 380 vdev_default_min_asize(vdev_t *vd) 381 { 382 return (vd->vdev_min_asize); 383 } 384 385 /* 386 * Get the minimum allocatable size. We define the allocatable size as 387 * the vdev's asize rounded to the nearest metaslab. This allows us to 388 * replace or attach devices which don't have the same physical size but 389 * can still satisfy the same number of allocations. 390 */ 391 uint64_t 392 vdev_get_min_asize(vdev_t *vd) 393 { 394 vdev_t *pvd = vd->vdev_parent; 395 396 /* 397 * If our parent is NULL (inactive spare or cache) or is the root, 398 * just return our own asize. 399 */ 400 if (pvd == NULL) 401 return (vd->vdev_asize); 402 403 /* 404 * The top-level vdev just returns the allocatable size rounded 405 * to the nearest metaslab. 406 */ 407 if (vd == vd->vdev_top) 408 return (P2ALIGN_TYPED(vd->vdev_asize, 1ULL << vd->vdev_ms_shift, 409 uint64_t)); 410 411 return (pvd->vdev_ops->vdev_op_min_asize(pvd)); 412 } 413 414 void 415 vdev_set_min_asize(vdev_t *vd) 416 { 417 vd->vdev_min_asize = vdev_get_min_asize(vd); 418 419 for (int c = 0; c < vd->vdev_children; c++) 420 vdev_set_min_asize(vd->vdev_child[c]); 421 } 422 423 /* 424 * Get the minimal allocation size for the top-level vdev. 425 */ 426 uint64_t 427 vdev_get_min_alloc(vdev_t *vd) 428 { 429 uint64_t min_alloc = 1ULL << vd->vdev_ashift; 430 431 if (vd->vdev_ops->vdev_op_min_alloc != NULL) 432 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd); 433 434 return (min_alloc); 435 } 436 437 /* 438 * Get the parity level for a top-level vdev. 439 */ 440 uint64_t 441 vdev_get_nparity(vdev_t *vd) 442 { 443 uint64_t nparity = 0; 444 445 if (vd->vdev_ops->vdev_op_nparity != NULL) 446 nparity = vd->vdev_ops->vdev_op_nparity(vd); 447 448 return (nparity); 449 } 450 451 static int 452 vdev_prop_get_objid(vdev_t *vd, uint64_t *objid) 453 { 454 455 if (vd->vdev_root_zap != 0) { 456 *objid = vd->vdev_root_zap; 457 } else if (vd->vdev_top_zap != 0) { 458 *objid = vd->vdev_top_zap; 459 } else if (vd->vdev_leaf_zap != 0) { 460 *objid = vd->vdev_leaf_zap; 461 } else { 462 return (EINVAL); 463 } 464 465 return (0); 466 } 467 468 static int 469 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value) 470 { 471 spa_t *spa = vd->vdev_spa; 472 objset_t *mos = spa->spa_meta_objset; 473 uint64_t objid; 474 int err; 475 476 if (vdev_prop_get_objid(vd, &objid) != 0) 477 return (EINVAL); 478 479 err = zap_lookup(mos, objid, vdev_prop_to_name(prop), 480 sizeof (uint64_t), 1, value); 481 if (err == ENOENT) 482 *value = vdev_prop_default_numeric(prop); 483 484 return (err); 485 } 486 487 static int 488 vdev_prop_get_bool(vdev_t *vd, vdev_prop_t prop, boolean_t *bvalue) 489 { 490 int err; 491 uint64_t ivalue; 492 493 err = vdev_prop_get_int(vd, prop, &ivalue); 494 *bvalue = ivalue != 0; 495 496 return (err); 497 } 498 499 /* 500 * Get the number of data disks for a top-level vdev. 501 */ 502 uint64_t 503 vdev_get_ndisks(vdev_t *vd) 504 { 505 uint64_t ndisks = 1; 506 507 if (vd->vdev_ops->vdev_op_ndisks != NULL) 508 ndisks = vd->vdev_ops->vdev_op_ndisks(vd); 509 510 return (ndisks); 511 } 512 513 vdev_t * 514 vdev_lookup_top(spa_t *spa, uint64_t vdev) 515 { 516 vdev_t *rvd = spa->spa_root_vdev; 517 518 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 519 520 if (vdev < rvd->vdev_children) { 521 ASSERT(rvd->vdev_child[vdev] != NULL); 522 return (rvd->vdev_child[vdev]); 523 } 524 525 return (NULL); 526 } 527 528 vdev_t * 529 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 530 { 531 vdev_t *mvd; 532 533 if (vd->vdev_guid == guid) 534 return (vd); 535 536 for (int c = 0; c < vd->vdev_children; c++) 537 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 538 NULL) 539 return (mvd); 540 541 return (NULL); 542 } 543 544 static int 545 vdev_count_leaves_impl(vdev_t *vd) 546 { 547 int n = 0; 548 549 if (vd->vdev_ops->vdev_op_leaf) 550 return (1); 551 552 for (int c = 0; c < vd->vdev_children; c++) 553 n += vdev_count_leaves_impl(vd->vdev_child[c]); 554 555 return (n); 556 } 557 558 int 559 vdev_count_leaves(spa_t *spa) 560 { 561 int rc; 562 563 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 564 rc = vdev_count_leaves_impl(spa->spa_root_vdev); 565 spa_config_exit(spa, SCL_VDEV, FTAG); 566 567 return (rc); 568 } 569 570 void 571 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 572 { 573 size_t oldsize, newsize; 574 uint64_t id = cvd->vdev_id; 575 vdev_t **newchild; 576 577 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 578 ASSERT0P(cvd->vdev_parent); 579 580 cvd->vdev_parent = pvd; 581 582 if (pvd == NULL) 583 return; 584 585 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 586 587 oldsize = pvd->vdev_children * sizeof (vdev_t *); 588 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 589 newsize = pvd->vdev_children * sizeof (vdev_t *); 590 591 newchild = kmem_alloc(newsize, KM_SLEEP); 592 if (pvd->vdev_child != NULL) { 593 memcpy(newchild, pvd->vdev_child, oldsize); 594 kmem_free(pvd->vdev_child, oldsize); 595 } 596 597 pvd->vdev_child = newchild; 598 pvd->vdev_child[id] = cvd; 599 pvd->vdev_nonrot &= cvd->vdev_nonrot; 600 601 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 602 ASSERT0P(cvd->vdev_top->vdev_parent->vdev_parent); 603 604 /* 605 * Walk up all ancestors to update guid sum. 606 */ 607 for (; pvd != NULL; pvd = pvd->vdev_parent) 608 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 609 610 if (cvd->vdev_ops->vdev_op_leaf) { 611 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); 612 cvd->vdev_spa->spa_leaf_list_gen++; 613 } 614 } 615 616 void 617 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 618 { 619 int c; 620 uint_t id = cvd->vdev_id; 621 622 ASSERT(cvd->vdev_parent == pvd); 623 624 if (pvd == NULL) 625 return; 626 627 ASSERT(id < pvd->vdev_children); 628 ASSERT(pvd->vdev_child[id] == cvd); 629 630 pvd->vdev_child[id] = NULL; 631 cvd->vdev_parent = NULL; 632 633 for (c = 0; c < pvd->vdev_children; c++) 634 if (pvd->vdev_child[c]) 635 break; 636 637 if (c == pvd->vdev_children) { 638 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 639 pvd->vdev_child = NULL; 640 pvd->vdev_children = 0; 641 } 642 643 if (cvd->vdev_ops->vdev_op_leaf) { 644 spa_t *spa = cvd->vdev_spa; 645 list_remove(&spa->spa_leaf_list, cvd); 646 spa->spa_leaf_list_gen++; 647 } 648 649 /* 650 * Walk up all ancestors to update guid sum. 651 */ 652 for (; pvd != NULL; pvd = pvd->vdev_parent) 653 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 654 } 655 656 /* 657 * Remove any holes in the child array. 658 */ 659 void 660 vdev_compact_children(vdev_t *pvd) 661 { 662 vdev_t **newchild, *cvd; 663 int oldc = pvd->vdev_children; 664 int newc; 665 666 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 667 668 if (oldc == 0) 669 return; 670 671 for (int c = newc = 0; c < oldc; c++) 672 if (pvd->vdev_child[c]) 673 newc++; 674 675 if (newc > 0) { 676 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP); 677 678 for (int c = newc = 0; c < oldc; c++) { 679 if ((cvd = pvd->vdev_child[c]) != NULL) { 680 newchild[newc] = cvd; 681 cvd->vdev_id = newc++; 682 } 683 } 684 } else { 685 newchild = NULL; 686 } 687 688 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 689 pvd->vdev_child = newchild; 690 pvd->vdev_children = newc; 691 } 692 693 /* 694 * Allocate and minimally initialize a vdev_t. 695 */ 696 vdev_t * 697 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 698 { 699 vdev_t *vd; 700 vdev_indirect_config_t *vic; 701 702 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 703 vic = &vd->vdev_indirect_config; 704 705 if (spa->spa_root_vdev == NULL) { 706 ASSERT(ops == &vdev_root_ops); 707 spa->spa_root_vdev = vd; 708 spa->spa_load_guid = spa_generate_load_guid(); 709 } 710 711 if (guid == 0 && ops != &vdev_hole_ops) { 712 if (spa->spa_root_vdev == vd) { 713 /* 714 * The root vdev's guid will also be the pool guid, 715 * which must be unique among all pools. 716 */ 717 guid = spa_generate_guid(NULL); 718 } else { 719 /* 720 * Any other vdev's guid must be unique within the pool. 721 */ 722 guid = spa_generate_guid(spa); 723 } 724 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 725 } 726 727 vd->vdev_spa = spa; 728 vd->vdev_id = id; 729 vd->vdev_guid = guid; 730 vd->vdev_guid_sum = guid; 731 vd->vdev_ops = ops; 732 vd->vdev_state = VDEV_STATE_CLOSED; 733 vd->vdev_ishole = (ops == &vdev_hole_ops); 734 vic->vic_prev_indirect_vdev = UINT64_MAX; 735 736 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 737 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 738 vd->vdev_obsolete_segments = zfs_range_tree_create_flags( 739 NULL, ZFS_RANGE_SEG64, NULL, 0, 0, 740 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "vdev_obsolete_segments")); 741 742 /* 743 * Initialize rate limit structs for events. We rate limit ZIO delay 744 * and checksum events so that we don't overwhelm ZED with thousands 745 * of events when a disk is acting up. 746 */ 747 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second, 748 1); 749 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_deadman_events_per_second, 750 1); 751 zfs_ratelimit_init(&vd->vdev_dio_verify_rl, 752 &zfs_dio_write_verify_events_per_second, 1); 753 zfs_ratelimit_init(&vd->vdev_checksum_rl, 754 &zfs_checksum_events_per_second, 1); 755 756 /* 757 * Default Thresholds for tuning ZED 758 */ 759 vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N); 760 vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T); 761 762 vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N); 763 vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T); 764 765 vd->vdev_slow_io_events = vdev_prop_default_numeric( 766 VDEV_PROP_SLOW_IO_EVENTS); 767 vd->vdev_slow_io_n = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N); 768 vd->vdev_slow_io_t = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T); 769 770 list_link_init(&vd->vdev_config_dirty_node); 771 list_link_init(&vd->vdev_state_dirty_node); 772 list_link_init(&vd->vdev_initialize_node); 773 list_link_init(&vd->vdev_leaf_node); 774 list_link_init(&vd->vdev_trim_node); 775 776 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL); 777 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 778 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 779 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); 780 781 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 782 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 783 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 784 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 785 786 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL); 787 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL); 788 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL); 789 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL); 790 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL); 791 cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL); 792 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL); 793 794 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL); 795 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL); 796 797 for (int t = 0; t < DTL_TYPES; t++) { 798 vd->vdev_dtl[t] = zfs_range_tree_create_flags( 799 NULL, ZFS_RANGE_SEG64, NULL, 0, 0, 800 ZFS_RT_F_DYN_NAME, vdev_rt_name_dtl(vd, "vdev_dtl", t)); 801 } 802 803 txg_list_create(&vd->vdev_ms_list, spa, 804 offsetof(struct metaslab, ms_txg_node)); 805 txg_list_create(&vd->vdev_dtl_list, spa, 806 offsetof(struct vdev, vdev_dtl_node)); 807 vd->vdev_stat.vs_timestamp = gethrtime(); 808 vdev_queue_init(vd); 809 810 return (vd); 811 } 812 813 /* 814 * Allocate a new vdev. The 'alloctype' is used to control whether we are 815 * creating a new vdev or loading an existing one - the behavior is slightly 816 * different for each case. 817 */ 818 int 819 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 820 int alloctype) 821 { 822 vdev_ops_t *ops; 823 const char *type; 824 uint64_t guid = 0, islog; 825 vdev_t *vd; 826 vdev_indirect_config_t *vic; 827 const char *tmp = NULL; 828 int rc; 829 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 830 boolean_t top_level = (parent && !parent->vdev_parent); 831 832 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 833 834 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 835 return (SET_ERROR(EINVAL)); 836 837 if ((ops = vdev_getops(type)) == NULL) 838 return (SET_ERROR(EINVAL)); 839 840 /* 841 * If this is a load, get the vdev guid from the nvlist. 842 * Otherwise, vdev_alloc_common() will generate one for us. 843 */ 844 if (alloctype == VDEV_ALLOC_LOAD) { 845 uint64_t label_id; 846 847 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 848 label_id != id) 849 return (SET_ERROR(EINVAL)); 850 851 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 852 return (SET_ERROR(EINVAL)); 853 } else if (alloctype == VDEV_ALLOC_SPARE) { 854 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 855 return (SET_ERROR(EINVAL)); 856 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 857 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 858 return (SET_ERROR(EINVAL)); 859 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 860 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 861 return (SET_ERROR(EINVAL)); 862 } 863 864 /* 865 * The first allocated vdev must be of type 'root'. 866 */ 867 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 868 return (SET_ERROR(EINVAL)); 869 870 /* 871 * Determine whether we're a log vdev. 872 */ 873 islog = 0; 874 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 875 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 876 return (SET_ERROR(ENOTSUP)); 877 878 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 879 return (SET_ERROR(ENOTSUP)); 880 881 if (top_level && alloctype == VDEV_ALLOC_ADD) { 882 const char *bias; 883 884 /* 885 * If creating a top-level vdev, check for allocation 886 * classes input. 887 */ 888 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 889 &bias) == 0) { 890 alloc_bias = vdev_derive_alloc_bias(bias); 891 892 /* spa_vdev_add() expects feature to be enabled */ 893 if (spa->spa_load_state != SPA_LOAD_CREATE && 894 !spa_feature_is_enabled(spa, 895 SPA_FEATURE_ALLOCATION_CLASSES)) { 896 return (SET_ERROR(ENOTSUP)); 897 } 898 } 899 900 /* spa_vdev_add() expects feature to be enabled */ 901 if (ops == &vdev_draid_ops && 902 spa->spa_load_state != SPA_LOAD_CREATE && 903 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) { 904 return (SET_ERROR(ENOTSUP)); 905 } 906 } 907 908 /* 909 * Initialize the vdev specific data. This is done before calling 910 * vdev_alloc_common() since it may fail and this simplifies the 911 * error reporting and cleanup code paths. 912 */ 913 void *tsd = NULL; 914 if (ops->vdev_op_init != NULL) { 915 rc = ops->vdev_op_init(spa, nv, &tsd); 916 if (rc != 0) { 917 return (rc); 918 } 919 } 920 921 vd = vdev_alloc_common(spa, id, guid, ops); 922 vd->vdev_tsd = tsd; 923 vd->vdev_islog = islog; 924 925 if (top_level && alloc_bias != VDEV_BIAS_NONE) 926 vd->vdev_alloc_bias = alloc_bias; 927 928 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0) 929 vd->vdev_path = spa_strdup(tmp); 930 931 /* 932 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a 933 * fault on a vdev and want it to persist across imports (like with 934 * zpool offline -f). 935 */ 936 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp); 937 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) { 938 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 939 vd->vdev_faulted = 1; 940 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 941 } 942 943 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0) 944 vd->vdev_devid = spa_strdup(tmp); 945 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0) 946 vd->vdev_physpath = spa_strdup(tmp); 947 948 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 949 &tmp) == 0) 950 vd->vdev_enc_sysfs_path = spa_strdup(tmp); 951 952 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0) 953 vd->vdev_fru = spa_strdup(tmp); 954 955 /* 956 * Set the whole_disk property. If it's not specified, leave the value 957 * as -1. 958 */ 959 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 960 &vd->vdev_wholedisk) != 0) 961 vd->vdev_wholedisk = -1ULL; 962 963 vic = &vd->vdev_indirect_config; 964 965 ASSERT0(vic->vic_mapping_object); 966 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 967 &vic->vic_mapping_object); 968 ASSERT0(vic->vic_births_object); 969 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 970 &vic->vic_births_object); 971 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 972 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 973 &vic->vic_prev_indirect_vdev); 974 975 /* 976 * Look for the 'not present' flag. This will only be set if the device 977 * was not present at the time of import. 978 */ 979 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 980 &vd->vdev_not_present); 981 982 /* 983 * Get the alignment requirement. Ignore pool ashift for vdev 984 * attach case. 985 */ 986 if (alloctype != VDEV_ALLOC_ATTACH) { 987 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, 988 &vd->vdev_ashift); 989 } else { 990 vd->vdev_attaching = B_TRUE; 991 } 992 993 /* 994 * Retrieve the vdev creation time. 995 */ 996 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 997 &vd->vdev_crtxg); 998 999 if (vd->vdev_ops == &vdev_root_ops && 1000 (alloctype == VDEV_ALLOC_LOAD || 1001 alloctype == VDEV_ALLOC_SPLIT || 1002 alloctype == VDEV_ALLOC_ROOTPOOL)) { 1003 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP, 1004 &vd->vdev_root_zap); 1005 } 1006 1007 /* 1008 * If we're a top-level vdev, try to load the allocation parameters. 1009 */ 1010 if (top_level && 1011 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 1012 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 1013 &vd->vdev_ms_array); 1014 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 1015 &vd->vdev_ms_shift); 1016 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 1017 &vd->vdev_asize); 1018 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING, 1019 &vd->vdev_noalloc); 1020 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 1021 &vd->vdev_removing); 1022 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 1023 &vd->vdev_top_zap); 1024 vd->vdev_rz_expanding = nvlist_exists(nv, 1025 ZPOOL_CONFIG_RAIDZ_EXPANDING); 1026 } else { 1027 ASSERT0(vd->vdev_top_zap); 1028 } 1029 1030 if (top_level && alloctype != VDEV_ALLOC_ATTACH) { 1031 ASSERT(alloctype == VDEV_ALLOC_LOAD || 1032 alloctype == VDEV_ALLOC_ADD || 1033 alloctype == VDEV_ALLOC_SPLIT || 1034 alloctype == VDEV_ALLOC_ROOTPOOL); 1035 /* Note: metaslab_group_create() is now deferred */ 1036 } 1037 1038 if (vd->vdev_ops->vdev_op_leaf && 1039 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 1040 (void) nvlist_lookup_uint64(nv, 1041 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 1042 } else { 1043 ASSERT0(vd->vdev_leaf_zap); 1044 } 1045 1046 /* 1047 * If we're a leaf vdev, try to load the DTL object and other state. 1048 */ 1049 1050 if (vd->vdev_ops->vdev_op_leaf && 1051 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 1052 alloctype == VDEV_ALLOC_ROOTPOOL)) { 1053 if (alloctype == VDEV_ALLOC_LOAD) { 1054 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 1055 &vd->vdev_dtl_object); 1056 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 1057 &vd->vdev_unspare); 1058 } 1059 1060 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 1061 uint64_t spare = 0; 1062 1063 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1064 &spare) == 0 && spare) 1065 spa_spare_add(vd); 1066 } 1067 1068 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 1069 &vd->vdev_offline); 1070 1071 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 1072 &vd->vdev_resilver_txg); 1073 1074 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 1075 &vd->vdev_rebuild_txg); 1076 1077 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) 1078 vdev_defer_resilver(vd); 1079 1080 /* 1081 * In general, when importing a pool we want to ignore the 1082 * persistent fault state, as the diagnosis made on another 1083 * system may not be valid in the current context. The only 1084 * exception is if we forced a vdev to a persistently faulted 1085 * state with 'zpool offline -f'. The persistent fault will 1086 * remain across imports until cleared. 1087 * 1088 * Local vdevs will remain in the faulted state. 1089 */ 1090 if (spa_load_state(spa) == SPA_LOAD_OPEN || 1091 spa_load_state(spa) == SPA_LOAD_IMPORT) { 1092 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 1093 &vd->vdev_faulted); 1094 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 1095 &vd->vdev_degraded); 1096 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 1097 &vd->vdev_removed); 1098 1099 if (vd->vdev_faulted || vd->vdev_degraded) { 1100 const char *aux; 1101 1102 vd->vdev_label_aux = 1103 VDEV_AUX_ERR_EXCEEDED; 1104 if (nvlist_lookup_string(nv, 1105 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 1106 strcmp(aux, "external") == 0) 1107 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 1108 else 1109 vd->vdev_faulted = 0ULL; 1110 } 1111 } 1112 } 1113 1114 if (top_level && (ops == &vdev_raidz_ops || ops == &vdev_draid_ops)) 1115 vd->vdev_autosit = 1116 vdev_prop_default_numeric(VDEV_PROP_AUTOSIT); 1117 1118 /* 1119 * Add ourselves to the parent's list of children. 1120 */ 1121 vdev_add_child(parent, vd); 1122 1123 *vdp = vd; 1124 1125 return (0); 1126 } 1127 1128 void 1129 vdev_free(vdev_t *vd) 1130 { 1131 spa_t *spa = vd->vdev_spa; 1132 1133 ASSERT0P(vd->vdev_initialize_thread); 1134 ASSERT0P(vd->vdev_trim_thread); 1135 ASSERT0P(vd->vdev_autotrim_thread); 1136 ASSERT0P(vd->vdev_rebuild_thread); 1137 1138 /* 1139 * Scan queues are normally destroyed at the end of a scan. If the 1140 * queue exists here, that implies the vdev is being removed while 1141 * the scan is still running. 1142 */ 1143 if (vd->vdev_scan_io_queue != NULL) { 1144 mutex_enter(&vd->vdev_scan_io_queue_lock); 1145 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); 1146 vd->vdev_scan_io_queue = NULL; 1147 mutex_exit(&vd->vdev_scan_io_queue_lock); 1148 } 1149 1150 /* 1151 * vdev_free() implies closing the vdev first. This is simpler than 1152 * trying to ensure complicated semantics for all callers. 1153 */ 1154 vdev_close(vd); 1155 1156 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 1157 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 1158 1159 /* 1160 * Free all children. 1161 */ 1162 for (int c = 0; c < vd->vdev_children; c++) 1163 vdev_free(vd->vdev_child[c]); 1164 1165 ASSERT0P(vd->vdev_child); 1166 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 1167 1168 if (vd->vdev_ops->vdev_op_fini != NULL) 1169 vd->vdev_ops->vdev_op_fini(vd); 1170 1171 /* 1172 * Discard allocation state. 1173 */ 1174 if (vd->vdev_mg != NULL) { 1175 vdev_metaslab_fini(vd); 1176 metaslab_group_destroy(vd->vdev_mg); 1177 vd->vdev_mg = NULL; 1178 } 1179 if (vd->vdev_log_mg != NULL) { 1180 ASSERT0(vd->vdev_ms_count); 1181 metaslab_group_destroy(vd->vdev_log_mg); 1182 vd->vdev_log_mg = NULL; 1183 } 1184 1185 ASSERT0(vd->vdev_stat.vs_space); 1186 ASSERT0(vd->vdev_stat.vs_dspace); 1187 ASSERT0(vd->vdev_stat.vs_alloc); 1188 1189 /* 1190 * Remove this vdev from its parent's child list. 1191 */ 1192 vdev_remove_child(vd->vdev_parent, vd); 1193 1194 ASSERT0P(vd->vdev_parent); 1195 ASSERT(!list_link_active(&vd->vdev_leaf_node)); 1196 1197 /* 1198 * Clean up vdev structure. 1199 */ 1200 vdev_queue_fini(vd); 1201 1202 if (vd->vdev_path) 1203 spa_strfree(vd->vdev_path); 1204 if (vd->vdev_devid) 1205 spa_strfree(vd->vdev_devid); 1206 if (vd->vdev_physpath) 1207 spa_strfree(vd->vdev_physpath); 1208 1209 if (vd->vdev_enc_sysfs_path) 1210 spa_strfree(vd->vdev_enc_sysfs_path); 1211 1212 if (vd->vdev_fru) 1213 spa_strfree(vd->vdev_fru); 1214 1215 if (vd->vdev_isspare) 1216 spa_spare_remove(vd); 1217 if (vd->vdev_isl2cache) 1218 spa_l2cache_remove(vd); 1219 if (vd->vdev_prev_histo) 1220 kmem_free(vd->vdev_prev_histo, 1221 sizeof (uint64_t) * VDEV_L_HISTO_BUCKETS); 1222 1223 txg_list_destroy(&vd->vdev_ms_list); 1224 txg_list_destroy(&vd->vdev_dtl_list); 1225 1226 mutex_enter(&vd->vdev_dtl_lock); 1227 space_map_close(vd->vdev_dtl_sm); 1228 for (int t = 0; t < DTL_TYPES; t++) { 1229 zfs_range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 1230 zfs_range_tree_destroy(vd->vdev_dtl[t]); 1231 } 1232 mutex_exit(&vd->vdev_dtl_lock); 1233 1234 EQUIV(vd->vdev_indirect_births != NULL, 1235 vd->vdev_indirect_mapping != NULL); 1236 if (vd->vdev_indirect_births != NULL) { 1237 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1238 vdev_indirect_births_close(vd->vdev_indirect_births); 1239 } 1240 1241 if (vd->vdev_obsolete_sm != NULL) { 1242 ASSERT(vd->vdev_removing || 1243 vd->vdev_ops == &vdev_indirect_ops); 1244 space_map_close(vd->vdev_obsolete_sm); 1245 vd->vdev_obsolete_sm = NULL; 1246 } 1247 zfs_range_tree_destroy(vd->vdev_obsolete_segments); 1248 rw_destroy(&vd->vdev_indirect_rwlock); 1249 mutex_destroy(&vd->vdev_obsolete_lock); 1250 1251 mutex_destroy(&vd->vdev_dtl_lock); 1252 mutex_destroy(&vd->vdev_stat_lock); 1253 mutex_destroy(&vd->vdev_probe_lock); 1254 mutex_destroy(&vd->vdev_scan_io_queue_lock); 1255 1256 mutex_destroy(&vd->vdev_initialize_lock); 1257 mutex_destroy(&vd->vdev_initialize_io_lock); 1258 cv_destroy(&vd->vdev_initialize_io_cv); 1259 cv_destroy(&vd->vdev_initialize_cv); 1260 1261 mutex_destroy(&vd->vdev_trim_lock); 1262 mutex_destroy(&vd->vdev_autotrim_lock); 1263 mutex_destroy(&vd->vdev_trim_io_lock); 1264 cv_destroy(&vd->vdev_trim_cv); 1265 cv_destroy(&vd->vdev_autotrim_cv); 1266 cv_destroy(&vd->vdev_autotrim_kick_cv); 1267 cv_destroy(&vd->vdev_trim_io_cv); 1268 1269 mutex_destroy(&vd->vdev_rebuild_lock); 1270 cv_destroy(&vd->vdev_rebuild_cv); 1271 1272 zfs_ratelimit_fini(&vd->vdev_delay_rl); 1273 zfs_ratelimit_fini(&vd->vdev_deadman_rl); 1274 zfs_ratelimit_fini(&vd->vdev_dio_verify_rl); 1275 zfs_ratelimit_fini(&vd->vdev_checksum_rl); 1276 1277 if (vd == spa->spa_root_vdev) 1278 spa->spa_root_vdev = NULL; 1279 1280 kmem_free(vd, sizeof (vdev_t)); 1281 } 1282 1283 /* 1284 * Transfer top-level vdev state from svd to tvd. 1285 */ 1286 static void 1287 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 1288 { 1289 spa_t *spa = svd->vdev_spa; 1290 metaslab_t *msp; 1291 vdev_t *vd; 1292 int t; 1293 1294 ASSERT(tvd == tvd->vdev_top); 1295 1296 tvd->vdev_ms_array = svd->vdev_ms_array; 1297 tvd->vdev_ms_shift = svd->vdev_ms_shift; 1298 tvd->vdev_ms_count = svd->vdev_ms_count; 1299 tvd->vdev_top_zap = svd->vdev_top_zap; 1300 1301 svd->vdev_ms_array = 0; 1302 svd->vdev_ms_shift = 0; 1303 svd->vdev_ms_count = 0; 1304 svd->vdev_top_zap = 0; 1305 1306 if (tvd->vdev_mg) 1307 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 1308 if (tvd->vdev_log_mg) 1309 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg); 1310 tvd->vdev_mg = svd->vdev_mg; 1311 tvd->vdev_log_mg = svd->vdev_log_mg; 1312 tvd->vdev_ms = svd->vdev_ms; 1313 1314 svd->vdev_mg = NULL; 1315 svd->vdev_log_mg = NULL; 1316 svd->vdev_ms = NULL; 1317 1318 if (tvd->vdev_mg != NULL) 1319 tvd->vdev_mg->mg_vd = tvd; 1320 if (tvd->vdev_log_mg != NULL) 1321 tvd->vdev_log_mg->mg_vd = tvd; 1322 1323 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 1324 svd->vdev_checkpoint_sm = NULL; 1325 1326 tvd->vdev_alloc_bias = svd->vdev_alloc_bias; 1327 svd->vdev_alloc_bias = VDEV_BIAS_NONE; 1328 1329 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 1330 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 1331 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 1332 1333 svd->vdev_stat.vs_alloc = 0; 1334 svd->vdev_stat.vs_space = 0; 1335 svd->vdev_stat.vs_dspace = 0; 1336 1337 /* 1338 * State which may be set on a top-level vdev that's in the 1339 * process of being removed. 1340 */ 1341 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 1342 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 1343 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 1344 ASSERT0P(tvd->vdev_indirect_mapping); 1345 ASSERT0P(tvd->vdev_indirect_births); 1346 ASSERT0P(tvd->vdev_obsolete_sm); 1347 ASSERT0(tvd->vdev_noalloc); 1348 ASSERT0(tvd->vdev_removing); 1349 ASSERT0(tvd->vdev_rebuilding); 1350 tvd->vdev_noalloc = svd->vdev_noalloc; 1351 tvd->vdev_removing = svd->vdev_removing; 1352 tvd->vdev_rebuilding = svd->vdev_rebuilding; 1353 tvd->vdev_rebuild_config = svd->vdev_rebuild_config; 1354 tvd->vdev_indirect_config = svd->vdev_indirect_config; 1355 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 1356 tvd->vdev_indirect_births = svd->vdev_indirect_births; 1357 zfs_range_tree_swap(&svd->vdev_obsolete_segments, 1358 &tvd->vdev_obsolete_segments); 1359 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 1360 svd->vdev_indirect_config.vic_mapping_object = 0; 1361 svd->vdev_indirect_config.vic_births_object = 0; 1362 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 1363 svd->vdev_indirect_mapping = NULL; 1364 svd->vdev_indirect_births = NULL; 1365 svd->vdev_obsolete_sm = NULL; 1366 svd->vdev_noalloc = 0; 1367 svd->vdev_removing = 0; 1368 svd->vdev_rebuilding = 0; 1369 1370 for (t = 0; t < TXG_SIZE; t++) { 1371 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 1372 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 1373 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 1374 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 1375 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 1376 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 1377 } 1378 1379 if (list_link_active(&svd->vdev_config_dirty_node)) { 1380 vdev_config_clean(svd); 1381 vdev_config_dirty(tvd); 1382 } 1383 1384 if (list_link_active(&svd->vdev_state_dirty_node)) { 1385 vdev_state_clean(svd); 1386 vdev_state_dirty(tvd); 1387 } 1388 1389 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 1390 svd->vdev_deflate_ratio = 0; 1391 1392 tvd->vdev_islog = svd->vdev_islog; 1393 svd->vdev_islog = 0; 1394 1395 dsl_scan_io_queue_vdev_xfer(svd, tvd); 1396 } 1397 1398 static void 1399 vdev_top_update(vdev_t *tvd, vdev_t *vd) 1400 { 1401 if (vd == NULL) 1402 return; 1403 1404 vd->vdev_top = tvd; 1405 1406 for (int c = 0; c < vd->vdev_children; c++) 1407 vdev_top_update(tvd, vd->vdev_child[c]); 1408 } 1409 1410 /* 1411 * Add a mirror/replacing vdev above an existing vdev. There is no need to 1412 * call .vdev_op_init() since mirror/replacing vdevs do not have private state. 1413 */ 1414 vdev_t * 1415 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 1416 { 1417 spa_t *spa = cvd->vdev_spa; 1418 vdev_t *pvd = cvd->vdev_parent; 1419 vdev_t *mvd; 1420 1421 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1422 1423 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 1424 1425 mvd->vdev_asize = cvd->vdev_asize; 1426 mvd->vdev_min_asize = cvd->vdev_min_asize; 1427 mvd->vdev_max_asize = cvd->vdev_max_asize; 1428 mvd->vdev_psize = cvd->vdev_psize; 1429 mvd->vdev_ashift = cvd->vdev_ashift; 1430 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift; 1431 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift; 1432 mvd->vdev_state = cvd->vdev_state; 1433 mvd->vdev_crtxg = cvd->vdev_crtxg; 1434 mvd->vdev_nonrot = cvd->vdev_nonrot; 1435 1436 vdev_remove_child(pvd, cvd); 1437 vdev_add_child(pvd, mvd); 1438 cvd->vdev_id = mvd->vdev_children; 1439 vdev_add_child(mvd, cvd); 1440 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1441 1442 if (mvd == mvd->vdev_top) 1443 vdev_top_transfer(cvd, mvd); 1444 1445 return (mvd); 1446 } 1447 1448 /* 1449 * Remove a 1-way mirror/replacing vdev from the tree. 1450 */ 1451 void 1452 vdev_remove_parent(vdev_t *cvd) 1453 { 1454 vdev_t *mvd = cvd->vdev_parent; 1455 vdev_t *pvd = mvd->vdev_parent; 1456 1457 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1458 1459 ASSERT(mvd->vdev_children == 1); 1460 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1461 mvd->vdev_ops == &vdev_replacing_ops || 1462 mvd->vdev_ops == &vdev_spare_ops); 1463 cvd->vdev_ashift = mvd->vdev_ashift; 1464 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift; 1465 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift; 1466 vdev_remove_child(mvd, cvd); 1467 vdev_remove_child(pvd, mvd); 1468 1469 /* 1470 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1471 * Otherwise, we could have detached an offline device, and when we 1472 * go to import the pool we'll think we have two top-level vdevs, 1473 * instead of a different version of the same top-level vdev. 1474 */ 1475 if (mvd->vdev_top == mvd) { 1476 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1477 cvd->vdev_orig_guid = cvd->vdev_guid; 1478 cvd->vdev_guid += guid_delta; 1479 cvd->vdev_guid_sum += guid_delta; 1480 1481 /* 1482 * If pool not set for autoexpand, we need to also preserve 1483 * mvd's asize to prevent automatic expansion of cvd. 1484 * Otherwise if we are adjusting the mirror by attaching and 1485 * detaching children of non-uniform sizes, the mirror could 1486 * autoexpand, unexpectedly requiring larger devices to 1487 * re-establish the mirror. 1488 */ 1489 if (!cvd->vdev_spa->spa_autoexpand) 1490 cvd->vdev_asize = mvd->vdev_asize; 1491 } 1492 cvd->vdev_id = mvd->vdev_id; 1493 vdev_add_child(pvd, cvd); 1494 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1495 1496 if (cvd == cvd->vdev_top) 1497 vdev_top_transfer(mvd, cvd); 1498 1499 ASSERT0(mvd->vdev_children); 1500 vdev_free(mvd); 1501 } 1502 1503 /* 1504 * Choose GCD for spa_gcd_alloc. 1505 */ 1506 static uint64_t 1507 vdev_gcd(uint64_t a, uint64_t b) 1508 { 1509 while (b != 0) { 1510 uint64_t t = b; 1511 b = a % b; 1512 a = t; 1513 } 1514 return (a); 1515 } 1516 1517 /* 1518 * Set spa_min_alloc and spa_gcd_alloc. 1519 */ 1520 static void 1521 vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc) 1522 { 1523 if (min_alloc < spa->spa_min_alloc) 1524 spa->spa_min_alloc = min_alloc; 1525 1526 if (min_alloc > spa->spa_max_alloc) 1527 spa->spa_max_alloc = min_alloc; 1528 1529 if (spa->spa_gcd_alloc == INT_MAX) 1530 spa->spa_gcd_alloc = min_alloc; 1531 else 1532 spa->spa_gcd_alloc = vdev_gcd(min_alloc, spa->spa_gcd_alloc); 1533 } 1534 1535 void 1536 vdev_metaslab_group_create(vdev_t *vd) 1537 { 1538 spa_t *spa = vd->vdev_spa; 1539 1540 /* 1541 * metaslab_group_create was delayed until allocation bias was available 1542 */ 1543 if (vd->vdev_mg == NULL) { 1544 metaslab_class_t *mc; 1545 1546 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) 1547 vd->vdev_alloc_bias = VDEV_BIAS_LOG; 1548 1549 ASSERT3U(vd->vdev_islog, ==, 1550 (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); 1551 1552 switch (vd->vdev_alloc_bias) { 1553 case VDEV_BIAS_LOG: 1554 mc = spa_log_class(spa); 1555 break; 1556 case VDEV_BIAS_SPECIAL: 1557 mc = spa_special_class(spa); 1558 break; 1559 case VDEV_BIAS_DEDUP: 1560 mc = spa_dedup_class(spa); 1561 break; 1562 default: 1563 mc = spa_normal_class(spa); 1564 } 1565 1566 vd->vdev_mg = metaslab_group_create(mc, vd); 1567 1568 if (!vd->vdev_islog) { 1569 if (mc == spa_special_class(spa)) { 1570 vd->vdev_log_mg = metaslab_group_create( 1571 spa_special_embedded_log_class(spa), vd); 1572 } else { 1573 vd->vdev_log_mg = metaslab_group_create( 1574 spa_embedded_log_class(spa), vd); 1575 } 1576 } 1577 1578 /* 1579 * The spa ashift min/max only apply for the normal metaslab 1580 * class. Class destination is late binding so ashift boundary 1581 * setting had to wait until now. 1582 */ 1583 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1584 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { 1585 if (vd->vdev_ashift > spa->spa_max_ashift) 1586 spa->spa_max_ashift = vd->vdev_ashift; 1587 if (vd->vdev_ashift < spa->spa_min_ashift) 1588 spa->spa_min_ashift = vd->vdev_ashift; 1589 1590 vdev_spa_set_alloc(spa, vdev_get_min_alloc(vd)); 1591 } 1592 } 1593 } 1594 1595 void 1596 vdev_update_nonallocating_space(vdev_t *vd, boolean_t add) 1597 { 1598 spa_t *spa = vd->vdev_spa; 1599 1600 if (vd->vdev_mg->mg_class != spa_normal_class(spa)) 1601 return; 1602 1603 uint64_t raw_space = metaslab_group_get_space(vd->vdev_mg); 1604 uint64_t dspace = spa_deflate(spa) ? 1605 vdev_deflated_space(vd, raw_space) : raw_space; 1606 if (add) { 1607 spa->spa_nonallocating_dspace += dspace; 1608 } else { 1609 ASSERT3U(spa->spa_nonallocating_dspace, >=, dspace); 1610 spa->spa_nonallocating_dspace -= dspace; 1611 } 1612 } 1613 1614 int 1615 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1616 { 1617 spa_t *spa = vd->vdev_spa; 1618 uint64_t oldc = vd->vdev_ms_count; 1619 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1620 metaslab_t **mspp; 1621 int error; 1622 boolean_t expanding = (oldc != 0); 1623 1624 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1625 1626 /* 1627 * This vdev is not being allocated from yet or is a hole. 1628 */ 1629 if (vd->vdev_ms_shift == 0) 1630 return (0); 1631 1632 ASSERT(!vd->vdev_ishole); 1633 1634 ASSERT(oldc <= newc); 1635 1636 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1637 1638 if (expanding) { 1639 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp)); 1640 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1641 } 1642 1643 vd->vdev_ms = mspp; 1644 vd->vdev_ms_count = newc; 1645 1646 /* 1647 * Weighting algorithms can depend on the number of metaslabs in the 1648 * vdev. In order to ensure that all weights are correct at all times, 1649 * we need to recalculate here. 1650 */ 1651 for (uint64_t m = 0; m < oldc; m++) { 1652 metaslab_t *msp = vd->vdev_ms[m]; 1653 mutex_enter(&msp->ms_lock); 1654 metaslab_recalculate_weight_and_sort(msp); 1655 mutex_exit(&msp->ms_lock); 1656 } 1657 1658 for (uint64_t m = oldc; m < newc; m++) { 1659 uint64_t object = 0; 1660 /* 1661 * vdev_ms_array may be 0 if we are creating the "fake" 1662 * metaslabs for an indirect vdev for zdb's leak detection. 1663 * See zdb_leak_init(). 1664 */ 1665 if (txg == 0 && vd->vdev_ms_array != 0) { 1666 error = dmu_read(spa->spa_meta_objset, 1667 vd->vdev_ms_array, 1668 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1669 DMU_READ_PREFETCH); 1670 if (error != 0) { 1671 vdev_dbgmsg(vd, "unable to read the metaslab " 1672 "array [error=%d]", error); 1673 return (error); 1674 } 1675 } 1676 1677 error = metaslab_init(vd->vdev_mg, m, object, txg, 1678 &(vd->vdev_ms[m])); 1679 if (error != 0) { 1680 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1681 error); 1682 return (error); 1683 } 1684 } 1685 1686 /* 1687 * Find the emptiest metaslab on the vdev and mark it for use for 1688 * embedded slog by moving it from the regular to the log metaslab 1689 * group. This works for normal and special vdevs. 1690 */ 1691 if ((vd->vdev_mg->mg_class == spa_normal_class(spa) || 1692 vd->vdev_mg->mg_class == spa_special_class(spa)) && 1693 vd->vdev_ms_count > zfs_embedded_slog_min_ms && 1694 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) { 1695 uint64_t slog_msid = 0; 1696 uint64_t smallest = UINT64_MAX; 1697 1698 /* 1699 * Note, we only search the new metaslabs, because the old 1700 * (pre-existing) ones may be active (e.g. have non-empty 1701 * range_tree's), and we don't move them to the new 1702 * metaslab_t. 1703 */ 1704 for (uint64_t m = oldc; m < newc; m++) { 1705 uint64_t alloc = 1706 space_map_allocated(vd->vdev_ms[m]->ms_sm); 1707 if (alloc < smallest) { 1708 slog_msid = m; 1709 smallest = alloc; 1710 } 1711 } 1712 metaslab_t *slog_ms = vd->vdev_ms[slog_msid]; 1713 /* 1714 * The metaslab was marked as dirty at the end of 1715 * metaslab_init(). Remove it from the dirty list so that we 1716 * can uninitialize and reinitialize it to the new class. 1717 */ 1718 if (txg != 0) { 1719 (void) txg_list_remove_this(&vd->vdev_ms_list, 1720 slog_ms, txg); 1721 } 1722 uint64_t sm_obj = space_map_object(slog_ms->ms_sm); 1723 metaslab_fini(slog_ms); 1724 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg, 1725 &vd->vdev_ms[slog_msid])); 1726 } 1727 1728 if (txg == 0) 1729 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1730 1731 /* 1732 * If the vdev is marked as non-allocating then don't 1733 * activate the metaslabs since we want to ensure that 1734 * no allocations are performed on this device. 1735 */ 1736 if (vd->vdev_noalloc) { 1737 /* track non-allocating vdev space */ 1738 vdev_update_nonallocating_space(vd, B_TRUE); 1739 } else if (!expanding) { 1740 metaslab_group_activate(vd->vdev_mg); 1741 if (vd->vdev_log_mg != NULL) 1742 metaslab_group_activate(vd->vdev_log_mg); 1743 } 1744 1745 if (txg == 0) 1746 spa_config_exit(spa, SCL_ALLOC, FTAG); 1747 1748 return (0); 1749 } 1750 1751 void 1752 vdev_metaslab_fini(vdev_t *vd) 1753 { 1754 if (vd->vdev_checkpoint_sm != NULL) { 1755 ASSERT(spa_feature_is_active(vd->vdev_spa, 1756 SPA_FEATURE_POOL_CHECKPOINT)); 1757 space_map_close(vd->vdev_checkpoint_sm); 1758 /* 1759 * Even though we close the space map, we need to set its 1760 * pointer to NULL. The reason is that vdev_metaslab_fini() 1761 * may be called multiple times for certain operations 1762 * (i.e. when destroying a pool) so we need to ensure that 1763 * this clause never executes twice. This logic is similar 1764 * to the one used for the vdev_ms clause below. 1765 */ 1766 vd->vdev_checkpoint_sm = NULL; 1767 } 1768 1769 if (vd->vdev_ms != NULL) { 1770 metaslab_group_t *mg = vd->vdev_mg; 1771 1772 metaslab_group_passivate(mg); 1773 if (vd->vdev_log_mg != NULL) { 1774 ASSERT(!vd->vdev_islog); 1775 metaslab_group_passivate(vd->vdev_log_mg); 1776 } 1777 1778 uint64_t count = vd->vdev_ms_count; 1779 for (uint64_t m = 0; m < count; m++) { 1780 metaslab_t *msp = vd->vdev_ms[m]; 1781 if (msp != NULL) 1782 metaslab_fini(msp); 1783 } 1784 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1785 vd->vdev_ms = NULL; 1786 vd->vdev_ms_count = 0; 1787 1788 for (int i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) { 1789 ASSERT0(mg->mg_histogram[i]); 1790 if (vd->vdev_log_mg != NULL) 1791 ASSERT0(vd->vdev_log_mg->mg_histogram[i]); 1792 } 1793 } 1794 ASSERT0(vd->vdev_ms_count); 1795 } 1796 1797 typedef struct vdev_probe_stats { 1798 boolean_t vps_readable; 1799 boolean_t vps_writeable; 1800 boolean_t vps_zio_done_probe; 1801 int vps_flags; 1802 } vdev_probe_stats_t; 1803 1804 static void 1805 vdev_probe_done(zio_t *zio) 1806 { 1807 spa_t *spa = zio->io_spa; 1808 vdev_t *vd = zio->io_vd; 1809 vdev_probe_stats_t *vps = zio->io_private; 1810 1811 ASSERT(vd->vdev_probe_zio != NULL); 1812 1813 if (zio->io_type == ZIO_TYPE_READ) { 1814 if (zio->io_error == 0) 1815 vps->vps_readable = 1; 1816 if (zio->io_error == 0 && spa_writeable(spa)) { 1817 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1818 zio->io_offset, zio->io_size, zio->io_abd, 1819 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1820 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1821 } else { 1822 abd_free(zio->io_abd); 1823 } 1824 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1825 if (zio->io_error == 0) 1826 vps->vps_writeable = 1; 1827 abd_free(zio->io_abd); 1828 } else if (zio->io_type == ZIO_TYPE_NULL) { 1829 zio_t *pio; 1830 zio_link_t *zl; 1831 1832 vd->vdev_cant_read |= !vps->vps_readable; 1833 vd->vdev_cant_write |= !vps->vps_writeable; 1834 vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u", 1835 vd->vdev_cant_read, vd->vdev_cant_write); 1836 1837 if (vdev_readable(vd) && 1838 (vdev_writeable(vd) || !spa_writeable(spa))) { 1839 zio->io_error = 0; 1840 } else { 1841 ASSERT(zio->io_error != 0); 1842 vdev_dbgmsg(vd, "failed probe"); 1843 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1844 spa, vd, NULL, NULL, 0); 1845 zio->io_error = SET_ERROR(ENXIO); 1846 1847 /* 1848 * If this probe was initiated from zio pipeline, then 1849 * change the state in a spa_async_request. Probes that 1850 * were initiated from a vdev_open can change the state 1851 * as part of the open call. 1852 * Skip fault injection if this vdev is already removed 1853 * or a removal is pending. 1854 */ 1855 if (vps->vps_zio_done_probe && 1856 !vd->vdev_remove_wanted && !vd->vdev_removed) { 1857 vd->vdev_fault_wanted = B_TRUE; 1858 spa_async_request(spa, SPA_ASYNC_FAULT_VDEV); 1859 } 1860 } 1861 1862 mutex_enter(&vd->vdev_probe_lock); 1863 ASSERT(vd->vdev_probe_zio == zio); 1864 vd->vdev_probe_zio = NULL; 1865 mutex_exit(&vd->vdev_probe_lock); 1866 1867 zl = NULL; 1868 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1869 if (!vdev_accessible(vd, pio)) 1870 pio->io_error = SET_ERROR(ENXIO); 1871 1872 kmem_free(vps, sizeof (*vps)); 1873 } 1874 } 1875 1876 /* 1877 * Determine whether this device is accessible. 1878 * 1879 * Read and write to several known locations: the pad regions of each 1880 * vdev label but the first, which we leave alone in case it contains 1881 * a VTOC. 1882 */ 1883 zio_t * 1884 vdev_probe(vdev_t *vd, zio_t *zio) 1885 { 1886 spa_t *spa = vd->vdev_spa; 1887 vdev_probe_stats_t *vps = NULL; 1888 zio_t *pio; 1889 1890 ASSERT(vd->vdev_ops->vdev_op_leaf); 1891 1892 /* 1893 * Don't probe the probe. 1894 */ 1895 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1896 return (NULL); 1897 1898 /* 1899 * To prevent 'probe storms' when a device fails, we create 1900 * just one probe i/o at a time. All zios that want to probe 1901 * this vdev will become parents of the probe io. 1902 */ 1903 mutex_enter(&vd->vdev_probe_lock); 1904 1905 if ((pio = vd->vdev_probe_zio) == NULL) { 1906 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1907 1908 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1909 ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD; 1910 vps->vps_zio_done_probe = (zio != NULL); 1911 1912 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1913 /* 1914 * vdev_cant_read and vdev_cant_write can only 1915 * transition from TRUE to FALSE when we have the 1916 * SCL_ZIO lock as writer; otherwise they can only 1917 * transition from FALSE to TRUE. This ensures that 1918 * any zio looking at these values can assume that 1919 * failures persist for the life of the I/O. That's 1920 * important because when a device has intermittent 1921 * connectivity problems, we want to ensure that 1922 * they're ascribed to the device (ENXIO) and not 1923 * the zio (EIO). 1924 * 1925 * Since we hold SCL_ZIO as writer here, clear both 1926 * values so the probe can reevaluate from first 1927 * principles. 1928 */ 1929 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1930 vd->vdev_cant_read = B_FALSE; 1931 vd->vdev_cant_write = B_FALSE; 1932 } 1933 1934 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1935 vdev_probe_done, vps, 1936 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1937 } 1938 1939 if (zio != NULL) 1940 zio_add_child(zio, pio); 1941 1942 mutex_exit(&vd->vdev_probe_lock); 1943 1944 if (vps == NULL) { 1945 ASSERT(zio != NULL); 1946 return (NULL); 1947 } 1948 1949 for (int l = 1; l < VDEV_LABELS; l++) { 1950 zio_nowait(zio_read_phys(pio, vd, 1951 vdev_label_offset(vd->vdev_psize, l, 1952 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE, 1953 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1954 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1955 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1956 } 1957 1958 if (zio == NULL) 1959 return (pio); 1960 1961 zio_nowait(pio); 1962 return (NULL); 1963 } 1964 1965 static void 1966 vdev_load_child(void *arg) 1967 { 1968 vdev_t *vd = arg; 1969 1970 vd->vdev_load_error = vdev_load(vd); 1971 } 1972 1973 static void 1974 vdev_open_child(void *arg) 1975 { 1976 vdev_t *vd = arg; 1977 1978 vd->vdev_open_thread = curthread; 1979 vd->vdev_open_error = vdev_open(vd); 1980 vd->vdev_open_thread = NULL; 1981 } 1982 1983 static boolean_t 1984 vdev_uses_zvols(vdev_t *vd) 1985 { 1986 #ifdef _KERNEL 1987 if (zvol_is_zvol(vd->vdev_path)) 1988 return (B_TRUE); 1989 #endif 1990 1991 for (int c = 0; c < vd->vdev_children; c++) 1992 if (vdev_uses_zvols(vd->vdev_child[c])) 1993 return (B_TRUE); 1994 1995 return (B_FALSE); 1996 } 1997 1998 /* 1999 * Returns B_TRUE if the passed child should be opened. 2000 */ 2001 static boolean_t 2002 vdev_default_open_children_func(vdev_t *vd) 2003 { 2004 (void) vd; 2005 return (B_TRUE); 2006 } 2007 2008 /* 2009 * Open the requested child vdevs. If any of the leaf vdevs are using 2010 * a ZFS volume then do the opens in a single thread. This avoids a 2011 * deadlock when the current thread is holding the spa_namespace_lock. 2012 */ 2013 static void 2014 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func) 2015 { 2016 int children = vd->vdev_children; 2017 2018 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri, 2019 children, children, TASKQ_PREPOPULATE); 2020 vd->vdev_nonrot = B_TRUE; 2021 2022 for (int c = 0; c < children; c++) { 2023 vdev_t *cvd = vd->vdev_child[c]; 2024 2025 if (open_func(cvd) == B_FALSE) 2026 continue; 2027 2028 if (tq == NULL || vdev_uses_zvols(vd)) { 2029 cvd->vdev_open_error = vdev_open(cvd); 2030 } else { 2031 VERIFY(taskq_dispatch(tq, vdev_open_child, 2032 cvd, TQ_SLEEP) != TASKQID_INVALID); 2033 } 2034 } 2035 2036 if (tq != NULL) 2037 taskq_wait(tq); 2038 for (int c = 0; c < children; c++) { 2039 vdev_t *cvd = vd->vdev_child[c]; 2040 2041 if (open_func(cvd) == B_FALSE || 2042 cvd->vdev_state <= VDEV_STATE_FAULTED) 2043 continue; 2044 vd->vdev_nonrot &= cvd->vdev_nonrot; 2045 } 2046 2047 if (tq != NULL) 2048 taskq_destroy(tq); 2049 } 2050 2051 /* 2052 * Open all child vdevs. 2053 */ 2054 void 2055 vdev_open_children(vdev_t *vd) 2056 { 2057 vdev_open_children_impl(vd, vdev_default_open_children_func); 2058 } 2059 2060 /* 2061 * Conditionally open a subset of child vdevs. 2062 */ 2063 void 2064 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func) 2065 { 2066 vdev_open_children_impl(vd, open_func); 2067 } 2068 2069 /* 2070 * Compute the raidz-deflation ratio. Note, we hard-code 128k (1 << 17) 2071 * because it is the "typical" blocksize. Even though SPA_MAXBLOCKSIZE 2072 * changed, this algorithm can not change, otherwise it would inconsistently 2073 * account for existing bp's. We also hard-code txg 0 for the same reason 2074 * since expanded RAIDZ vdevs can use a different asize for different birth 2075 * txg's. 2076 */ 2077 static void 2078 vdev_set_deflate_ratio(vdev_t *vd) 2079 { 2080 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 2081 vd->vdev_deflate_ratio = (1 << 17) / 2082 (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >> 2083 SPA_MINBLOCKSHIFT); 2084 } 2085 } 2086 2087 /* 2088 * Choose the best of two ashifts, preferring one between logical ashift 2089 * (absolute minimum) and administrator defined maximum, otherwise take 2090 * the biggest of the two. 2091 */ 2092 uint64_t 2093 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b) 2094 { 2095 if (a > logical && a <= zfs_vdev_max_auto_ashift) { 2096 if (b <= logical || b > zfs_vdev_max_auto_ashift) 2097 return (a); 2098 else 2099 return (MAX(a, b)); 2100 } else if (b <= logical || b > zfs_vdev_max_auto_ashift) 2101 return (MAX(a, b)); 2102 return (b); 2103 } 2104 2105 /* 2106 * Maximize performance by inflating the configured ashift for top level 2107 * vdevs to be as close to the physical ashift as possible while maintaining 2108 * administrator defined limits and ensuring it doesn't go below the 2109 * logical ashift. 2110 */ 2111 static void 2112 vdev_ashift_optimize(vdev_t *vd) 2113 { 2114 ASSERT(vd == vd->vdev_top); 2115 2116 if (vd->vdev_ashift < vd->vdev_physical_ashift && 2117 vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) { 2118 vd->vdev_ashift = MIN( 2119 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift), 2120 MAX(zfs_vdev_min_auto_ashift, 2121 vd->vdev_physical_ashift)); 2122 } else { 2123 /* 2124 * If the logical and physical ashifts are the same, then 2125 * we ensure that the top-level vdev's ashift is not smaller 2126 * than our minimum ashift value. For the unusual case 2127 * where logical ashift > physical ashift, we can't cap 2128 * the calculated ashift based on max ashift as that 2129 * would cause failures. 2130 * We still check if we need to increase it to match 2131 * the min ashift. 2132 */ 2133 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift, 2134 vd->vdev_ashift); 2135 } 2136 } 2137 2138 /* 2139 * Prepare a virtual device for access. 2140 */ 2141 int 2142 vdev_open(vdev_t *vd) 2143 { 2144 spa_t *spa = vd->vdev_spa; 2145 int error; 2146 uint64_t osize = 0; 2147 uint64_t max_osize = 0; 2148 uint64_t asize, max_asize, psize; 2149 uint64_t logical_ashift = 0; 2150 uint64_t physical_ashift = 0; 2151 2152 ASSERT(vd->vdev_open_thread == curthread || 2153 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2154 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 2155 vd->vdev_state == VDEV_STATE_CANT_OPEN || 2156 vd->vdev_state == VDEV_STATE_OFFLINE); 2157 2158 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2159 vd->vdev_cant_read = B_FALSE; 2160 vd->vdev_cant_write = B_FALSE; 2161 vd->vdev_fault_wanted = B_FALSE; 2162 vd->vdev_remove_wanted = B_FALSE; 2163 vd->vdev_min_asize = vdev_get_min_asize(vd); 2164 2165 /* 2166 * If this vdev is not removed, check its fault status. If it's 2167 * faulted, bail out of the open. 2168 */ 2169 if (!vd->vdev_removed && vd->vdev_faulted) { 2170 ASSERT0(vd->vdev_children); 2171 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 2172 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 2173 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2174 vd->vdev_label_aux); 2175 return (SET_ERROR(ENXIO)); 2176 } else if (vd->vdev_offline) { 2177 ASSERT0(vd->vdev_children); 2178 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 2179 return (SET_ERROR(ENXIO)); 2180 } 2181 2182 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, 2183 &logical_ashift, &physical_ashift); 2184 2185 /* Keep the device in removed state if unplugged */ 2186 if (error == ENOENT && vd->vdev_removed) { 2187 vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED, 2188 VDEV_AUX_NONE); 2189 return (error); 2190 } 2191 2192 /* 2193 * Physical volume size should never be larger than its max size, unless 2194 * the disk has shrunk while we were reading it or the device is buggy 2195 * or damaged: either way it's not safe for use, bail out of the open. 2196 */ 2197 if (osize > max_osize) { 2198 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2199 VDEV_AUX_OPEN_FAILED); 2200 return (SET_ERROR(ENXIO)); 2201 } 2202 2203 /* 2204 * Reset the vdev_reopening flag so that we actually close 2205 * the vdev on error. 2206 */ 2207 vd->vdev_reopening = B_FALSE; 2208 if (zio_injection_enabled && error == 0) 2209 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO)); 2210 2211 if (error) { 2212 if (vd->vdev_removed && 2213 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 2214 vd->vdev_removed = B_FALSE; 2215 2216 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 2217 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 2218 vd->vdev_stat.vs_aux); 2219 } else { 2220 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2221 vd->vdev_stat.vs_aux); 2222 } 2223 return (error); 2224 } 2225 2226 vd->vdev_removed = B_FALSE; 2227 2228 /* 2229 * Recheck the faulted flag now that we have confirmed that 2230 * the vdev is accessible. If we're faulted, bail. 2231 */ 2232 if (vd->vdev_faulted) { 2233 ASSERT0(vd->vdev_children); 2234 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 2235 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 2236 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2237 vd->vdev_label_aux); 2238 return (SET_ERROR(ENXIO)); 2239 } 2240 2241 if (vd->vdev_degraded) { 2242 ASSERT0(vd->vdev_children); 2243 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2244 VDEV_AUX_ERR_EXCEEDED); 2245 } else { 2246 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 2247 } 2248 2249 /* 2250 * For hole or missing vdevs we just return success. 2251 */ 2252 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 2253 return (0); 2254 2255 for (int c = 0; c < vd->vdev_children; c++) { 2256 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 2257 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2258 VDEV_AUX_NONE); 2259 break; 2260 } 2261 } 2262 2263 osize = P2ALIGN_TYPED(osize, sizeof (vdev_label_t), uint64_t); 2264 max_osize = P2ALIGN_TYPED(max_osize, sizeof (vdev_label_t), uint64_t); 2265 2266 if (vd->vdev_children == 0) { 2267 if (osize < SPA_MINDEVSIZE) { 2268 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2269 VDEV_AUX_TOO_SMALL); 2270 return (SET_ERROR(EOVERFLOW)); 2271 } 2272 psize = osize; 2273 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 2274 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 2275 VDEV_LABEL_END_SIZE); 2276 } else { 2277 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 2278 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 2279 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2280 VDEV_AUX_TOO_SMALL); 2281 return (SET_ERROR(EOVERFLOW)); 2282 } 2283 psize = 0; 2284 asize = osize; 2285 max_asize = max_osize; 2286 } 2287 2288 /* 2289 * If the vdev was expanded, record this so that we can re-create the 2290 * uberblock rings in labels {2,3}, during the next sync. 2291 */ 2292 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0)) 2293 vd->vdev_copy_uberblocks = B_TRUE; 2294 2295 vd->vdev_psize = psize; 2296 2297 /* 2298 * Make sure the allocatable size hasn't shrunk too much. 2299 */ 2300 if (asize < vd->vdev_min_asize) { 2301 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2302 VDEV_AUX_BAD_LABEL); 2303 return (SET_ERROR(EINVAL)); 2304 } 2305 2306 /* 2307 * We can always set the logical/physical ashift members since 2308 * their values are only used to calculate the vdev_ashift when 2309 * the device is first added to the config. These values should 2310 * not be used for anything else since they may change whenever 2311 * the device is reopened and we don't store them in the label. 2312 */ 2313 vd->vdev_physical_ashift = 2314 MAX(physical_ashift, vd->vdev_physical_ashift); 2315 vd->vdev_logical_ashift = MAX(logical_ashift, 2316 vd->vdev_logical_ashift); 2317 2318 if (vd->vdev_asize == 0) { 2319 /* 2320 * This is the first-ever open, so use the computed values. 2321 * For compatibility, a different ashift can be requested. 2322 */ 2323 vd->vdev_asize = asize; 2324 vd->vdev_max_asize = max_asize; 2325 2326 /* 2327 * If the vdev_ashift was not overridden at creation time 2328 * (0) or the override value is impossible for the device, 2329 * then set it the logical ashift and optimize the ashift. 2330 */ 2331 if (vd->vdev_ashift < vd->vdev_logical_ashift) { 2332 vd->vdev_ashift = vd->vdev_logical_ashift; 2333 2334 if (vd->vdev_logical_ashift > ASHIFT_MAX) { 2335 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2336 VDEV_AUX_ASHIFT_TOO_BIG); 2337 return (SET_ERROR(EDOM)); 2338 } 2339 2340 if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE) 2341 vdev_ashift_optimize(vd); 2342 vd->vdev_attaching = B_FALSE; 2343 } 2344 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN || 2345 vd->vdev_ashift > ASHIFT_MAX)) { 2346 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2347 VDEV_AUX_BAD_ASHIFT); 2348 return (SET_ERROR(EDOM)); 2349 } 2350 } else { 2351 /* 2352 * Make sure the alignment required hasn't increased. 2353 */ 2354 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift && 2355 vd->vdev_ops->vdev_op_leaf) { 2356 (void) zfs_ereport_post( 2357 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT, 2358 spa, vd, NULL, NULL, 0); 2359 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2360 VDEV_AUX_BAD_LABEL); 2361 return (SET_ERROR(EDOM)); 2362 } 2363 vd->vdev_max_asize = max_asize; 2364 } 2365 2366 /* 2367 * If all children are healthy we update asize if either: 2368 * The asize has increased, due to a device expansion caused by dynamic 2369 * LUN growth or vdev replacement, and automatic expansion is enabled; 2370 * making the additional space available. 2371 * 2372 * The asize has decreased, due to a device shrink usually caused by a 2373 * vdev replace with a smaller device. This ensures that calculations 2374 * based of max_asize and asize e.g. esize are always valid. It's safe 2375 * to do this as we've already validated that asize is greater than 2376 * vdev_min_asize. 2377 */ 2378 if (vd->vdev_state == VDEV_STATE_HEALTHY && 2379 ((asize > vd->vdev_asize && 2380 (vd->vdev_expanding || spa->spa_autoexpand)) || 2381 (asize < vd->vdev_asize))) 2382 vd->vdev_asize = asize; 2383 2384 vdev_set_min_asize(vd); 2385 2386 /* 2387 * Ensure we can issue some IO before declaring the 2388 * vdev open for business. 2389 */ 2390 if (vd->vdev_ops->vdev_op_leaf && 2391 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 2392 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2393 VDEV_AUX_ERR_EXCEEDED); 2394 return (error); 2395 } 2396 2397 /* 2398 * Track the minimum allocation size. 2399 */ 2400 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 2401 vd->vdev_islog == 0 && vd->vdev_aux == NULL) { 2402 uint64_t min_alloc = vdev_get_min_alloc(vd); 2403 vdev_spa_set_alloc(spa, min_alloc); 2404 } 2405 2406 /* 2407 * If this is a leaf vdev, assess whether a resilver is needed. 2408 * But don't do this if we are doing a reopen for a scrub, since 2409 * this would just restart the scrub we are already doing. 2410 */ 2411 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen) 2412 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd); 2413 2414 return (0); 2415 } 2416 2417 static void 2418 vdev_validate_child(void *arg) 2419 { 2420 vdev_t *vd = arg; 2421 2422 vd->vdev_validate_thread = curthread; 2423 vd->vdev_validate_error = vdev_validate(vd); 2424 vd->vdev_validate_thread = NULL; 2425 } 2426 2427 /* 2428 * Called once the vdevs are all opened, this routine validates the label 2429 * contents. This needs to be done before vdev_load() so that we don't 2430 * inadvertently do repair I/Os to the wrong device. 2431 * 2432 * This function will only return failure if one of the vdevs indicates that it 2433 * has since been destroyed or exported. This is only possible if 2434 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 2435 * will be updated but the function will return 0. 2436 */ 2437 int 2438 vdev_validate(vdev_t *vd) 2439 { 2440 spa_t *spa = vd->vdev_spa; 2441 taskq_t *tq = NULL; 2442 nvlist_t *label; 2443 uint64_t guid = 0, aux_guid = 0, top_guid; 2444 uint64_t state; 2445 nvlist_t *nvl; 2446 uint64_t txg; 2447 int children = vd->vdev_children; 2448 2449 if (vdev_validate_skip) 2450 return (0); 2451 2452 if (children > 0) { 2453 tq = taskq_create("vdev_validate", children, minclsyspri, 2454 children, children, TASKQ_PREPOPULATE); 2455 } 2456 2457 for (uint64_t c = 0; c < children; c++) { 2458 vdev_t *cvd = vd->vdev_child[c]; 2459 2460 if (tq == NULL || vdev_uses_zvols(cvd)) { 2461 vdev_validate_child(cvd); 2462 } else { 2463 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd, 2464 TQ_SLEEP) != TASKQID_INVALID); 2465 } 2466 } 2467 if (tq != NULL) { 2468 taskq_wait(tq); 2469 taskq_destroy(tq); 2470 } 2471 for (int c = 0; c < children; c++) { 2472 int error = vd->vdev_child[c]->vdev_validate_error; 2473 2474 if (error != 0) 2475 return (SET_ERROR(EBADF)); 2476 } 2477 2478 2479 /* 2480 * If the device has already failed, or was marked offline, don't do 2481 * any further validation. Otherwise, label I/O will fail and we will 2482 * overwrite the previous state. 2483 */ 2484 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 2485 return (0); 2486 2487 /* 2488 * If we are performing an extreme rewind, we allow for a label that 2489 * was modified at a point after the current txg. 2490 * If config lock is not held do not check for the txg. spa_sync could 2491 * be updating the vdev's label before updating spa_last_synced_txg. 2492 */ 2493 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 2494 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 2495 txg = UINT64_MAX; 2496 else 2497 txg = spa_last_synced_txg(spa); 2498 2499 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 2500 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2501 VDEV_AUX_BAD_LABEL); 2502 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 2503 "txg %llu", (u_longlong_t)txg); 2504 return (0); 2505 } 2506 2507 /* 2508 * Determine if this vdev has been split off into another 2509 * pool. If so, then refuse to open it. 2510 */ 2511 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 2512 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 2513 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2514 VDEV_AUX_SPLIT_POOL); 2515 nvlist_free(label); 2516 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 2517 return (0); 2518 } 2519 2520 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 2521 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2522 VDEV_AUX_CORRUPT_DATA); 2523 nvlist_free(label); 2524 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2525 ZPOOL_CONFIG_POOL_GUID); 2526 return (0); 2527 } 2528 2529 /* 2530 * If config is not trusted then ignore the spa guid check. This is 2531 * necessary because if the machine crashed during a re-guid the new 2532 * guid might have been written to all of the vdev labels, but not the 2533 * cached config. The check will be performed again once we have the 2534 * trusted config from the MOS. 2535 */ 2536 if (spa->spa_trust_config && guid != spa_guid(spa)) { 2537 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2538 VDEV_AUX_CORRUPT_DATA); 2539 nvlist_free(label); 2540 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 2541 "match config (%llu != %llu)", (u_longlong_t)guid, 2542 (u_longlong_t)spa_guid(spa)); 2543 return (0); 2544 } 2545 2546 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 2547 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 2548 &aux_guid) != 0) 2549 aux_guid = 0; 2550 2551 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 2552 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2553 VDEV_AUX_CORRUPT_DATA); 2554 nvlist_free(label); 2555 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2556 ZPOOL_CONFIG_GUID); 2557 return (0); 2558 } 2559 2560 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 2561 != 0) { 2562 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2563 VDEV_AUX_CORRUPT_DATA); 2564 nvlist_free(label); 2565 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2566 ZPOOL_CONFIG_TOP_GUID); 2567 return (0); 2568 } 2569 2570 /* 2571 * If this vdev just became a top-level vdev because its sibling was 2572 * detached, it will have adopted the parent's vdev guid -- but the 2573 * label may or may not be on disk yet. Fortunately, either version 2574 * of the label will have the same top guid, so if we're a top-level 2575 * vdev, we can safely compare to that instead. 2576 * However, if the config comes from a cachefile that failed to update 2577 * after the detach, a top-level vdev will appear as a non top-level 2578 * vdev in the config. Also relax the constraints if we perform an 2579 * extreme rewind. 2580 * 2581 * If we split this vdev off instead, then we also check the 2582 * original pool's guid. We don't want to consider the vdev 2583 * corrupt if it is partway through a split operation. 2584 */ 2585 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 2586 boolean_t mismatch = B_FALSE; 2587 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 2588 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 2589 mismatch = B_TRUE; 2590 } else { 2591 if (vd->vdev_guid != top_guid && 2592 vd->vdev_top->vdev_guid != guid) 2593 mismatch = B_TRUE; 2594 } 2595 2596 if (mismatch) { 2597 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2598 VDEV_AUX_CORRUPT_DATA); 2599 nvlist_free(label); 2600 vdev_dbgmsg(vd, "vdev_validate: config guid " 2601 "doesn't match label guid"); 2602 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 2603 (u_longlong_t)vd->vdev_guid, 2604 (u_longlong_t)vd->vdev_top->vdev_guid); 2605 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 2606 "aux_guid %llu", (u_longlong_t)guid, 2607 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 2608 return (0); 2609 } 2610 } 2611 2612 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 2613 &state) != 0) { 2614 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2615 VDEV_AUX_CORRUPT_DATA); 2616 nvlist_free(label); 2617 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2618 ZPOOL_CONFIG_POOL_STATE); 2619 return (0); 2620 } 2621 2622 nvlist_free(label); 2623 2624 /* 2625 * If this is a verbatim import, no need to check the 2626 * state of the pool. 2627 */ 2628 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 2629 spa_load_state(spa) == SPA_LOAD_OPEN && 2630 state != POOL_STATE_ACTIVE) { 2631 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 2632 "for spa %s", (u_longlong_t)state, spa->spa_name); 2633 return (SET_ERROR(EBADF)); 2634 } 2635 2636 /* 2637 * If we were able to open and validate a vdev that was 2638 * previously marked permanently unavailable, clear that state 2639 * now. 2640 */ 2641 if (vd->vdev_not_present) 2642 vd->vdev_not_present = 0; 2643 2644 return (0); 2645 } 2646 2647 static void 2648 vdev_update_path(const char *prefix, char *svd, char **dvd, uint64_t guid) 2649 { 2650 if (svd != NULL && *dvd != NULL) { 2651 if (strcmp(svd, *dvd) != 0) { 2652 zfs_dbgmsg("vdev_copy_path: vdev %llu: %s changed " 2653 "from '%s' to '%s'", (u_longlong_t)guid, prefix, 2654 *dvd, svd); 2655 spa_strfree(*dvd); 2656 *dvd = spa_strdup(svd); 2657 } 2658 } else if (svd != NULL) { 2659 *dvd = spa_strdup(svd); 2660 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 2661 (u_longlong_t)guid, *dvd); 2662 } 2663 } 2664 2665 static void 2666 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 2667 { 2668 char *old, *new; 2669 2670 vdev_update_path("vdev_path", svd->vdev_path, &dvd->vdev_path, 2671 dvd->vdev_guid); 2672 2673 vdev_update_path("vdev_devid", svd->vdev_devid, &dvd->vdev_devid, 2674 dvd->vdev_guid); 2675 2676 vdev_update_path("vdev_physpath", svd->vdev_physpath, 2677 &dvd->vdev_physpath, dvd->vdev_guid); 2678 2679 /* 2680 * Our enclosure sysfs path may have changed between imports 2681 */ 2682 old = dvd->vdev_enc_sysfs_path; 2683 new = svd->vdev_enc_sysfs_path; 2684 if ((old != NULL && new == NULL) || 2685 (old == NULL && new != NULL) || 2686 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) { 2687 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path " 2688 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2689 old, new); 2690 2691 if (dvd->vdev_enc_sysfs_path) 2692 spa_strfree(dvd->vdev_enc_sysfs_path); 2693 2694 if (svd->vdev_enc_sysfs_path) { 2695 dvd->vdev_enc_sysfs_path = spa_strdup( 2696 svd->vdev_enc_sysfs_path); 2697 } else { 2698 dvd->vdev_enc_sysfs_path = NULL; 2699 } 2700 } 2701 } 2702 2703 /* 2704 * Recursively copy vdev paths from one vdev to another. Source and destination 2705 * vdev trees must have same geometry otherwise return error. Intended to copy 2706 * paths from userland config into MOS config. 2707 */ 2708 int 2709 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 2710 { 2711 if ((svd->vdev_ops == &vdev_missing_ops) || 2712 (svd->vdev_ishole && dvd->vdev_ishole) || 2713 (dvd->vdev_ops == &vdev_indirect_ops)) 2714 return (0); 2715 2716 if (svd->vdev_ops != dvd->vdev_ops) { 2717 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 2718 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 2719 return (SET_ERROR(EINVAL)); 2720 } 2721 2722 if (svd->vdev_guid != dvd->vdev_guid) { 2723 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 2724 "%llu)", (u_longlong_t)svd->vdev_guid, 2725 (u_longlong_t)dvd->vdev_guid); 2726 return (SET_ERROR(EINVAL)); 2727 } 2728 2729 if (svd->vdev_children != dvd->vdev_children) { 2730 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 2731 "%llu != %llu", (u_longlong_t)svd->vdev_children, 2732 (u_longlong_t)dvd->vdev_children); 2733 return (SET_ERROR(EINVAL)); 2734 } 2735 2736 for (uint64_t i = 0; i < svd->vdev_children; i++) { 2737 int error = vdev_copy_path_strict(svd->vdev_child[i], 2738 dvd->vdev_child[i]); 2739 if (error != 0) 2740 return (error); 2741 } 2742 2743 if (svd->vdev_ops->vdev_op_leaf) 2744 vdev_copy_path_impl(svd, dvd); 2745 2746 return (0); 2747 } 2748 2749 static void 2750 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 2751 { 2752 ASSERT(stvd->vdev_top == stvd); 2753 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 2754 2755 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 2756 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 2757 } 2758 2759 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 2760 return; 2761 2762 /* 2763 * The idea here is that while a vdev can shift positions within 2764 * a top vdev (when replacing, attaching mirror, etc.) it cannot 2765 * step outside of it. 2766 */ 2767 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 2768 2769 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 2770 return; 2771 2772 ASSERT(vd->vdev_ops->vdev_op_leaf); 2773 2774 vdev_copy_path_impl(vd, dvd); 2775 } 2776 2777 /* 2778 * Recursively copy vdev paths from one root vdev to another. Source and 2779 * destination vdev trees may differ in geometry. For each destination leaf 2780 * vdev, search a vdev with the same guid and top vdev id in the source. 2781 * Intended to copy paths from userland config into MOS config. 2782 */ 2783 void 2784 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 2785 { 2786 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 2787 ASSERT(srvd->vdev_ops == &vdev_root_ops); 2788 ASSERT(drvd->vdev_ops == &vdev_root_ops); 2789 2790 for (uint64_t i = 0; i < children; i++) { 2791 vdev_copy_path_search(srvd->vdev_child[i], 2792 drvd->vdev_child[i]); 2793 } 2794 } 2795 2796 /* 2797 * Close a virtual device. 2798 */ 2799 void 2800 vdev_close(vdev_t *vd) 2801 { 2802 vdev_t *pvd = vd->vdev_parent; 2803 spa_t *spa __maybe_unused = vd->vdev_spa; 2804 2805 ASSERT(vd != NULL); 2806 ASSERT(vd->vdev_open_thread == curthread || 2807 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2808 2809 /* 2810 * If our parent is reopening, then we are as well, unless we are 2811 * going offline. 2812 */ 2813 if (pvd != NULL && pvd->vdev_reopening) 2814 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 2815 2816 vd->vdev_ops->vdev_op_close(vd); 2817 2818 /* 2819 * We record the previous state before we close it, so that if we are 2820 * doing a reopen(), we don't generate FMA ereports if we notice that 2821 * it's still faulted. 2822 */ 2823 vd->vdev_prevstate = vd->vdev_state; 2824 2825 if (vd->vdev_offline) 2826 vd->vdev_state = VDEV_STATE_OFFLINE; 2827 else 2828 vd->vdev_state = VDEV_STATE_CLOSED; 2829 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2830 } 2831 2832 void 2833 vdev_hold(vdev_t *vd) 2834 { 2835 spa_t *spa = vd->vdev_spa; 2836 2837 ASSERT(spa_is_root(spa)); 2838 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 2839 return; 2840 2841 for (int c = 0; c < vd->vdev_children; c++) 2842 vdev_hold(vd->vdev_child[c]); 2843 2844 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL) 2845 vd->vdev_ops->vdev_op_hold(vd); 2846 } 2847 2848 void 2849 vdev_rele(vdev_t *vd) 2850 { 2851 ASSERT(spa_is_root(vd->vdev_spa)); 2852 for (int c = 0; c < vd->vdev_children; c++) 2853 vdev_rele(vd->vdev_child[c]); 2854 2855 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL) 2856 vd->vdev_ops->vdev_op_rele(vd); 2857 } 2858 2859 /* 2860 * Reopen all interior vdevs and any unopened leaves. We don't actually 2861 * reopen leaf vdevs which had previously been opened as they might deadlock 2862 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 2863 * If the leaf has never been opened then open it, as usual. 2864 */ 2865 void 2866 vdev_reopen(vdev_t *vd) 2867 { 2868 spa_t *spa = vd->vdev_spa; 2869 2870 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2871 2872 /* set the reopening flag unless we're taking the vdev offline */ 2873 vd->vdev_reopening = !vd->vdev_offline; 2874 vdev_close(vd); 2875 (void) vdev_open(vd); 2876 2877 /* 2878 * Call vdev_validate() here to make sure we have the same device. 2879 * Otherwise, a device with an invalid label could be successfully 2880 * opened in response to vdev_reopen(). 2881 */ 2882 if (vd->vdev_aux) { 2883 (void) vdev_validate_aux(vd); 2884 if (vdev_readable(vd) && vdev_writeable(vd) && 2885 vd->vdev_aux == &spa->spa_l2cache) { 2886 /* 2887 * In case the vdev is present we should evict all ARC 2888 * buffers and pointers to log blocks and reclaim their 2889 * space before restoring its contents to L2ARC. 2890 */ 2891 if (l2arc_vdev_present(vd)) { 2892 l2arc_rebuild_vdev(vd, B_TRUE); 2893 } else { 2894 l2arc_add_vdev(spa, vd); 2895 } 2896 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2897 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 2898 } 2899 } else { 2900 (void) vdev_validate(vd); 2901 } 2902 2903 /* 2904 * Recheck if resilver is still needed and cancel any 2905 * scheduled resilver if resilver is unneeded. 2906 */ 2907 if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) && 2908 spa->spa_async_tasks & SPA_ASYNC_RESILVER) { 2909 mutex_enter(&spa->spa_async_lock); 2910 spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER; 2911 mutex_exit(&spa->spa_async_lock); 2912 } 2913 2914 /* 2915 * Reassess parent vdev's health. 2916 */ 2917 vdev_propagate_state(vd); 2918 } 2919 2920 int 2921 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2922 { 2923 int error; 2924 2925 /* 2926 * Normally, partial opens (e.g. of a mirror) are allowed. 2927 * For a create, however, we want to fail the request if 2928 * there are any components we can't open. 2929 */ 2930 error = vdev_open(vd); 2931 2932 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2933 vdev_close(vd); 2934 return (error ? error : SET_ERROR(ENXIO)); 2935 } 2936 2937 /* 2938 * Recursively load DTLs and initialize all labels. 2939 */ 2940 if ((error = vdev_dtl_load(vd)) != 0 || 2941 (error = vdev_label_init(vd, txg, isreplacing ? 2942 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2943 vdev_close(vd); 2944 return (error); 2945 } 2946 2947 return (0); 2948 } 2949 2950 void 2951 vdev_metaslab_set_size(vdev_t *vd) 2952 { 2953 uint64_t asize = vd->vdev_asize; 2954 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2955 uint64_t ms_shift; 2956 2957 /* 2958 * There are two dimensions to the metaslab sizing calculation: 2959 * the size of the metaslab and the count of metaslabs per vdev. 2960 * 2961 * The default values used below are a good balance between memory 2962 * usage (larger metaslab size means more memory needed for loaded 2963 * metaslabs; more metaslabs means more memory needed for the 2964 * metaslab_t structs), metaslab load time (larger metaslabs take 2965 * longer to load), and metaslab sync time (more metaslabs means 2966 * more time spent syncing all of them). 2967 * 2968 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2969 * The range of the dimensions are as follows: 2970 * 2971 * 2^29 <= ms_size <= 2^34 2972 * 16 <= ms_count <= 131,072 2973 * 2974 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2975 * at least 512MB (2^29) to minimize fragmentation effects when 2976 * testing with smaller devices. However, the count constraint 2977 * of at least 16 metaslabs will override this minimum size goal. 2978 * 2979 * On the upper end of vdev sizes, we aim for a maximum metaslab 2980 * size of 16GB. However, we will cap the total count to 2^17 2981 * metaslabs to keep our memory footprint in check and let the 2982 * metaslab size grow from there if that limit is hit. 2983 * 2984 * The net effect of applying above constrains is summarized below. 2985 * 2986 * vdev size metaslab count 2987 * --------------|----------------- 2988 * < 8GB ~16 2989 * 8GB - 100GB one per 512MB 2990 * 100GB - 3TB ~200 2991 * 3TB - 2PB one per 16GB 2992 * > 2PB ~131,072 2993 * -------------------------------- 2994 * 2995 * Finally, note that all of the above calculate the initial 2996 * number of metaslabs. Expanding a top-level vdev will result 2997 * in additional metaslabs being allocated making it possible 2998 * to exceed the zfs_vdev_ms_count_limit. 2999 */ 3000 3001 if (ms_count < zfs_vdev_min_ms_count) 3002 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 3003 else if (ms_count > zfs_vdev_default_ms_count) 3004 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 3005 else 3006 ms_shift = zfs_vdev_default_ms_shift; 3007 3008 if (ms_shift < SPA_MAXBLOCKSHIFT) { 3009 ms_shift = SPA_MAXBLOCKSHIFT; 3010 } else if (ms_shift > zfs_vdev_max_ms_shift) { 3011 ms_shift = zfs_vdev_max_ms_shift; 3012 /* cap the total count to constrain memory footprint */ 3013 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 3014 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 3015 } 3016 3017 vd->vdev_ms_shift = ms_shift; 3018 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 3019 } 3020 3021 void 3022 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 3023 { 3024 ASSERT(vd == vd->vdev_top); 3025 /* indirect vdevs don't have metaslabs or dtls */ 3026 ASSERT(vdev_is_concrete(vd) || flags == 0); 3027 ASSERT(ISP2(flags)); 3028 ASSERT(spa_writeable(vd->vdev_spa)); 3029 3030 if (flags & VDD_METASLAB) 3031 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 3032 3033 if (flags & VDD_DTL) 3034 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 3035 3036 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 3037 } 3038 3039 void 3040 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 3041 { 3042 for (int c = 0; c < vd->vdev_children; c++) 3043 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 3044 3045 if (vd->vdev_ops->vdev_op_leaf) 3046 vdev_dirty(vd->vdev_top, flags, vd, txg); 3047 } 3048 3049 /* 3050 * DTLs. 3051 * 3052 * A vdev's DTL (dirty time log) is the set of transaction groups for which 3053 * the vdev has less than perfect replication. There are four kinds of DTL: 3054 * 3055 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 3056 * 3057 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 3058 * 3059 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 3060 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 3061 * txgs that was scrubbed. 3062 * 3063 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 3064 * persistent errors or just some device being offline. 3065 * Unlike the other three, the DTL_OUTAGE map is not generally 3066 * maintained; it's only computed when needed, typically to 3067 * determine whether a device can be detached. 3068 * 3069 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 3070 * either has the data or it doesn't. 3071 * 3072 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 3073 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 3074 * if any child is less than fully replicated, then so is its parent. 3075 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 3076 * comprising only those txgs which appear in 'maxfaults' or more children; 3077 * those are the txgs we don't have enough replication to read. For example, 3078 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 3079 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 3080 * two child DTL_MISSING maps. 3081 * 3082 * It should be clear from the above that to compute the DTLs and outage maps 3083 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 3084 * Therefore, that is all we keep on disk. When loading the pool, or after 3085 * a configuration change, we generate all other DTLs from first principles. 3086 */ 3087 void 3088 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 3089 { 3090 zfs_range_tree_t *rt = vd->vdev_dtl[t]; 3091 3092 ASSERT(t < DTL_TYPES); 3093 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 3094 ASSERT(spa_writeable(vd->vdev_spa)); 3095 3096 mutex_enter(&vd->vdev_dtl_lock); 3097 if (!zfs_range_tree_contains(rt, txg, size)) 3098 zfs_range_tree_add(rt, txg, size); 3099 mutex_exit(&vd->vdev_dtl_lock); 3100 } 3101 3102 boolean_t 3103 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 3104 { 3105 zfs_range_tree_t *rt = vd->vdev_dtl[t]; 3106 boolean_t dirty = B_FALSE; 3107 3108 ASSERT(t < DTL_TYPES); 3109 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 3110 3111 /* 3112 * While we are loading the pool, the DTLs have not been loaded yet. 3113 * This isn't a problem but it can result in devices being tried 3114 * which are known to not have the data. In which case, the import 3115 * is relying on the checksum to ensure that we get the right data. 3116 * Note that while importing we are only reading the MOS, which is 3117 * always checksummed. 3118 */ 3119 mutex_enter(&vd->vdev_dtl_lock); 3120 if (!zfs_range_tree_is_empty(rt)) 3121 dirty = zfs_range_tree_contains(rt, txg, size); 3122 mutex_exit(&vd->vdev_dtl_lock); 3123 3124 return (dirty); 3125 } 3126 3127 boolean_t 3128 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 3129 { 3130 zfs_range_tree_t *rt = vd->vdev_dtl[t]; 3131 boolean_t empty; 3132 3133 mutex_enter(&vd->vdev_dtl_lock); 3134 empty = zfs_range_tree_is_empty(rt); 3135 mutex_exit(&vd->vdev_dtl_lock); 3136 3137 return (empty); 3138 } 3139 3140 /* 3141 * Check if the txg falls within the range which must be 3142 * resilvered. DVAs outside this range can always be skipped. 3143 */ 3144 boolean_t 3145 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 3146 uint64_t phys_birth) 3147 { 3148 (void) dva, (void) psize; 3149 3150 /* Set by sequential resilver. */ 3151 if (phys_birth == TXG_UNKNOWN) 3152 return (B_TRUE); 3153 3154 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)); 3155 } 3156 3157 /* 3158 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered. 3159 */ 3160 boolean_t 3161 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 3162 uint64_t phys_birth) 3163 { 3164 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 3165 3166 if (vd->vdev_ops->vdev_op_need_resilver == NULL || 3167 vd->vdev_ops->vdev_op_leaf) 3168 return (B_TRUE); 3169 3170 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize, 3171 phys_birth)); 3172 } 3173 3174 /* 3175 * Returns the lowest txg in the DTL range. 3176 */ 3177 static uint64_t 3178 vdev_dtl_min(vdev_t *vd) 3179 { 3180 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 3181 ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 3182 ASSERT0(vd->vdev_children); 3183 3184 return (zfs_range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1); 3185 } 3186 3187 /* 3188 * Returns the highest txg in the DTL. 3189 */ 3190 static uint64_t 3191 vdev_dtl_max(vdev_t *vd) 3192 { 3193 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 3194 ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 3195 ASSERT0(vd->vdev_children); 3196 3197 return (zfs_range_tree_max(vd->vdev_dtl[DTL_MISSING])); 3198 } 3199 3200 /* 3201 * Determine if a resilvering vdev should remove any DTL entries from 3202 * its range. If the vdev was resilvering for the entire duration of the 3203 * scan then it should excise that range from its DTLs. Otherwise, this 3204 * vdev is considered partially resilvered and should leave its DTL 3205 * entries intact. The comment in vdev_dtl_reassess() describes how we 3206 * excise the DTLs. 3207 */ 3208 static boolean_t 3209 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done) 3210 { 3211 ASSERT0(vd->vdev_children); 3212 3213 if (vd->vdev_state < VDEV_STATE_DEGRADED) 3214 return (B_FALSE); 3215 3216 if (vd->vdev_resilver_deferred) 3217 return (B_FALSE); 3218 3219 if (zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 3220 return (B_TRUE); 3221 3222 if (rebuild_done) { 3223 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3224 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 3225 3226 /* Rebuild not initiated by attach */ 3227 if (vd->vdev_rebuild_txg == 0) 3228 return (B_TRUE); 3229 3230 /* 3231 * When a rebuild completes without error then all missing data 3232 * up to the rebuild max txg has been reconstructed and the DTL 3233 * is eligible for excision. 3234 */ 3235 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE && 3236 vdev_dtl_max(vd) <= vrp->vrp_max_txg) { 3237 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd)); 3238 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg); 3239 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg); 3240 return (B_TRUE); 3241 } 3242 } else { 3243 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 3244 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys; 3245 3246 /* Resilver not initiated by attach */ 3247 if (vd->vdev_resilver_txg == 0) 3248 return (B_TRUE); 3249 3250 /* 3251 * When a resilver is initiated the scan will assign the 3252 * scn_max_txg value to the highest txg value that exists 3253 * in all DTLs. If this device's max DTL is not part of this 3254 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg] 3255 * then it is not eligible for excision. 3256 */ 3257 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 3258 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd)); 3259 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg); 3260 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg); 3261 return (B_TRUE); 3262 } 3263 } 3264 3265 return (B_FALSE); 3266 } 3267 3268 /* 3269 * Reassess DTLs after a config change or scrub completion. If txg == 0 no 3270 * write operations will be issued to the pool. 3271 */ 3272 static void 3273 vdev_dtl_reassess_impl(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, 3274 boolean_t scrub_done, boolean_t rebuild_done, boolean_t faulting) 3275 { 3276 spa_t *spa = vd->vdev_spa; 3277 avl_tree_t reftree; 3278 int minref; 3279 3280 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 3281 3282 for (int c = 0; c < vd->vdev_children; c++) 3283 vdev_dtl_reassess_impl(vd->vdev_child[c], txg, 3284 scrub_txg, scrub_done, rebuild_done, faulting); 3285 3286 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 3287 return; 3288 3289 if (vd->vdev_ops->vdev_op_leaf) { 3290 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 3291 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3292 boolean_t check_excise = B_FALSE; 3293 boolean_t wasempty = B_TRUE; 3294 3295 mutex_enter(&vd->vdev_dtl_lock); 3296 3297 /* 3298 * If requested, pretend the scan or rebuild completed cleanly. 3299 */ 3300 if (zfs_scan_ignore_errors) { 3301 if (scn != NULL) 3302 scn->scn_phys.scn_errors = 0; 3303 if (vr != NULL) 3304 vr->vr_rebuild_phys.vrp_errors = 0; 3305 } 3306 3307 if (scrub_txg != 0 && 3308 !zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3309 wasempty = B_FALSE; 3310 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d " 3311 "dtl:%llu/%llu errors:%llu", 3312 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg, 3313 (u_longlong_t)scrub_txg, spa->spa_scrub_started, 3314 (u_longlong_t)vdev_dtl_min(vd), 3315 (u_longlong_t)vdev_dtl_max(vd), 3316 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0)); 3317 } 3318 3319 /* 3320 * If we've completed a scrub/resilver or a rebuild cleanly 3321 * then determine if this vdev should remove any DTLs. We 3322 * only want to excise regions on vdevs that were available 3323 * during the entire duration of this scan. 3324 */ 3325 if (rebuild_done && 3326 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) { 3327 check_excise = B_TRUE; 3328 } else { 3329 if (spa->spa_scrub_started || 3330 (scn != NULL && scn->scn_phys.scn_errors == 0)) { 3331 check_excise = B_TRUE; 3332 } 3333 } 3334 3335 if (scrub_txg && check_excise && 3336 vdev_dtl_should_excise(vd, rebuild_done)) { 3337 /* 3338 * We completed a scrub, resilver or rebuild up to 3339 * scrub_txg. If we did it without rebooting, then 3340 * the scrub dtl will be valid, so excise the old 3341 * region and fold in the scrub dtl. Otherwise, 3342 * leave the dtl as-is if there was an error. 3343 * 3344 * There's little trick here: to excise the beginning 3345 * of the DTL_MISSING map, we put it into a reference 3346 * tree and then add a segment with refcnt -1 that 3347 * covers the range [0, scrub_txg). This means 3348 * that each txg in that range has refcnt -1 or 0. 3349 * We then add DTL_SCRUB with a refcnt of 2, so that 3350 * entries in the range [0, scrub_txg) will have a 3351 * positive refcnt -- either 1 or 2. We then convert 3352 * the reference tree into the new DTL_MISSING map. 3353 */ 3354 space_reftree_create(&reftree); 3355 space_reftree_add_map(&reftree, 3356 vd->vdev_dtl[DTL_MISSING], 1); 3357 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 3358 space_reftree_add_map(&reftree, 3359 vd->vdev_dtl[DTL_SCRUB], 2); 3360 space_reftree_generate_map(&reftree, 3361 vd->vdev_dtl[DTL_MISSING], 1); 3362 space_reftree_destroy(&reftree); 3363 3364 if (!zfs_range_tree_is_empty( 3365 vd->vdev_dtl[DTL_MISSING])) { 3366 zfs_dbgmsg("update DTL_MISSING:%llu/%llu", 3367 (u_longlong_t)vdev_dtl_min(vd), 3368 (u_longlong_t)vdev_dtl_max(vd)); 3369 } else if (!wasempty) { 3370 zfs_dbgmsg("DTL_MISSING is now empty"); 3371 } 3372 } 3373 zfs_range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 3374 zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3375 zfs_range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 3376 if (scrub_done) 3377 zfs_range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, 3378 NULL); 3379 zfs_range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 3380 3381 /* 3382 * For the faulting case, treat members of a replacing vdev 3383 * as if they are not available. It's more likely than not that 3384 * a vdev in a replacing vdev could encounter read errors so 3385 * treat it as not being able to contribute. 3386 */ 3387 if (!vdev_readable(vd) || 3388 (faulting && vd->vdev_parent != NULL && 3389 vd->vdev_parent->vdev_ops == &vdev_replacing_ops)) { 3390 zfs_range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 3391 } else { 3392 zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3393 zfs_range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 3394 } 3395 3396 /* 3397 * If the vdev was resilvering or rebuilding and no longer 3398 * has any DTLs then reset the appropriate flag and dirty 3399 * the top level so that we persist the change. 3400 */ 3401 if (txg != 0 && 3402 zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3403 zfs_range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) { 3404 if (vd->vdev_rebuild_txg != 0) { 3405 vd->vdev_rebuild_txg = 0; 3406 vdev_config_dirty(vd->vdev_top); 3407 } else if (vd->vdev_resilver_txg != 0) { 3408 vd->vdev_resilver_txg = 0; 3409 vdev_config_dirty(vd->vdev_top); 3410 } 3411 } 3412 3413 mutex_exit(&vd->vdev_dtl_lock); 3414 3415 if (txg != 0) 3416 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 3417 } else { 3418 mutex_enter(&vd->vdev_dtl_lock); 3419 for (int t = 0; t < DTL_TYPES; t++) { 3420 /* account for child's outage in parent's missing map */ 3421 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 3422 if (t == DTL_SCRUB) { 3423 /* leaf vdevs only */ 3424 continue; 3425 } 3426 if (t == DTL_PARTIAL) { 3427 /* i.e. non-zero */ 3428 minref = 1; 3429 } else if (vdev_get_nparity(vd) != 0) { 3430 /* RAIDZ, DRAID */ 3431 minref = vdev_get_nparity(vd) + 1; 3432 } else { 3433 /* any kind of mirror */ 3434 minref = vd->vdev_children; 3435 } 3436 space_reftree_create(&reftree); 3437 for (int c = 0; c < vd->vdev_children; c++) { 3438 vdev_t *cvd = vd->vdev_child[c]; 3439 mutex_enter(&cvd->vdev_dtl_lock); 3440 space_reftree_add_map(&reftree, 3441 cvd->vdev_dtl[s], 1); 3442 mutex_exit(&cvd->vdev_dtl_lock); 3443 } 3444 space_reftree_generate_map(&reftree, 3445 vd->vdev_dtl[t], minref); 3446 space_reftree_destroy(&reftree); 3447 } 3448 mutex_exit(&vd->vdev_dtl_lock); 3449 } 3450 3451 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) { 3452 raidz_dtl_reassessed(vd); 3453 } 3454 } 3455 3456 void 3457 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, 3458 boolean_t scrub_done, boolean_t rebuild_done) 3459 { 3460 return (vdev_dtl_reassess_impl(vd, txg, scrub_txg, scrub_done, 3461 rebuild_done, B_FALSE)); 3462 } 3463 3464 /* 3465 * Iterate over all the vdevs except spare, and post kobj events 3466 */ 3467 void 3468 vdev_post_kobj_evt(vdev_t *vd) 3469 { 3470 if (vd->vdev_ops->vdev_op_kobj_evt_post && 3471 vd->vdev_kobj_flag == B_FALSE) { 3472 vd->vdev_kobj_flag = B_TRUE; 3473 vd->vdev_ops->vdev_op_kobj_evt_post(vd); 3474 } 3475 3476 for (int c = 0; c < vd->vdev_children; c++) 3477 vdev_post_kobj_evt(vd->vdev_child[c]); 3478 } 3479 3480 /* 3481 * Iterate over all the vdevs except spare, and clear kobj events 3482 */ 3483 void 3484 vdev_clear_kobj_evt(vdev_t *vd) 3485 { 3486 vd->vdev_kobj_flag = B_FALSE; 3487 3488 for (int c = 0; c < vd->vdev_children; c++) 3489 vdev_clear_kobj_evt(vd->vdev_child[c]); 3490 } 3491 3492 int 3493 vdev_dtl_load(vdev_t *vd) 3494 { 3495 spa_t *spa = vd->vdev_spa; 3496 objset_t *mos = spa->spa_meta_objset; 3497 zfs_range_tree_t *rt; 3498 int error = 0; 3499 3500 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 3501 ASSERT(vdev_is_concrete(vd)); 3502 3503 /* 3504 * If the dtl cannot be sync'd there is no need to open it. 3505 */ 3506 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps) 3507 return (0); 3508 3509 error = space_map_open(&vd->vdev_dtl_sm, mos, 3510 vd->vdev_dtl_object, 0, -1ULL, 0); 3511 if (error) 3512 return (error); 3513 ASSERT(vd->vdev_dtl_sm != NULL); 3514 3515 rt = zfs_range_tree_create_flags( 3516 NULL, ZFS_RANGE_SEG64, NULL, 0, 0, 3517 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "vdev_dtl_load:rt")); 3518 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC); 3519 if (error == 0) { 3520 mutex_enter(&vd->vdev_dtl_lock); 3521 zfs_range_tree_walk(rt, zfs_range_tree_add, 3522 vd->vdev_dtl[DTL_MISSING]); 3523 mutex_exit(&vd->vdev_dtl_lock); 3524 } 3525 3526 zfs_range_tree_vacate(rt, NULL, NULL); 3527 zfs_range_tree_destroy(rt); 3528 3529 return (error); 3530 } 3531 3532 for (int c = 0; c < vd->vdev_children; c++) { 3533 error = vdev_dtl_load(vd->vdev_child[c]); 3534 if (error != 0) 3535 break; 3536 } 3537 3538 return (error); 3539 } 3540 3541 static void 3542 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) 3543 { 3544 spa_t *spa = vd->vdev_spa; 3545 objset_t *mos = spa->spa_meta_objset; 3546 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 3547 const char *string; 3548 3549 ASSERT(alloc_bias != VDEV_BIAS_NONE); 3550 3551 string = 3552 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : 3553 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : 3554 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; 3555 3556 ASSERT(string != NULL); 3557 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 3558 1, strlen(string) + 1, string, tx)); 3559 3560 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { 3561 spa_activate_allocation_classes(spa, tx); 3562 } 3563 } 3564 3565 void 3566 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 3567 { 3568 spa_t *spa = vd->vdev_spa; 3569 3570 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 3571 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3572 zapobj, tx)); 3573 } 3574 3575 uint64_t 3576 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 3577 { 3578 spa_t *spa = vd->vdev_spa; 3579 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 3580 DMU_OT_NONE, 0, tx); 3581 3582 ASSERT(zap != 0); 3583 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3584 zap, tx)); 3585 3586 return (zap); 3587 } 3588 3589 void 3590 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 3591 { 3592 if (vd->vdev_ops != &vdev_hole_ops && 3593 vd->vdev_ops != &vdev_missing_ops && 3594 vd->vdev_ops != &vdev_root_ops && 3595 !vd->vdev_top->vdev_removing) { 3596 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 3597 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 3598 } 3599 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 3600 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 3601 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) 3602 vdev_zap_allocation_data(vd, tx); 3603 } 3604 } 3605 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 && 3606 spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) { 3607 if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) 3608 spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx); 3609 vd->vdev_root_zap = vdev_create_link_zap(vd, tx); 3610 } 3611 3612 for (uint64_t i = 0; i < vd->vdev_children; i++) { 3613 vdev_construct_zaps(vd->vdev_child[i], tx); 3614 } 3615 } 3616 3617 static void 3618 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 3619 { 3620 spa_t *spa = vd->vdev_spa; 3621 zfs_range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 3622 objset_t *mos = spa->spa_meta_objset; 3623 zfs_range_tree_t *rtsync; 3624 dmu_tx_t *tx; 3625 uint64_t object = space_map_object(vd->vdev_dtl_sm); 3626 3627 ASSERT(vdev_is_concrete(vd)); 3628 ASSERT(vd->vdev_ops->vdev_op_leaf); 3629 3630 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3631 3632 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 3633 mutex_enter(&vd->vdev_dtl_lock); 3634 space_map_free(vd->vdev_dtl_sm, tx); 3635 space_map_close(vd->vdev_dtl_sm); 3636 vd->vdev_dtl_sm = NULL; 3637 mutex_exit(&vd->vdev_dtl_lock); 3638 3639 /* 3640 * We only destroy the leaf ZAP for detached leaves or for 3641 * removed log devices. Removed data devices handle leaf ZAP 3642 * cleanup later, once cancellation is no longer possible. 3643 */ 3644 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 3645 vd->vdev_top->vdev_islog)) { 3646 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 3647 vd->vdev_leaf_zap = 0; 3648 } 3649 3650 dmu_tx_commit(tx); 3651 return; 3652 } 3653 3654 if (vd->vdev_dtl_sm == NULL) { 3655 uint64_t new_object; 3656 3657 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx); 3658 VERIFY3U(new_object, !=, 0); 3659 3660 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 3661 0, -1ULL, 0)); 3662 ASSERT(vd->vdev_dtl_sm != NULL); 3663 } 3664 3665 rtsync = zfs_range_tree_create_flags(NULL, ZFS_RANGE_SEG64, NULL, 0, 0, 3666 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "rtsync")); 3667 3668 mutex_enter(&vd->vdev_dtl_lock); 3669 zfs_range_tree_walk(rt, zfs_range_tree_add, rtsync); 3670 mutex_exit(&vd->vdev_dtl_lock); 3671 3672 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx); 3673 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 3674 zfs_range_tree_vacate(rtsync, NULL, NULL); 3675 3676 zfs_range_tree_destroy(rtsync); 3677 3678 /* 3679 * If the object for the space map has changed then dirty 3680 * the top level so that we update the config. 3681 */ 3682 if (object != space_map_object(vd->vdev_dtl_sm)) { 3683 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 3684 "new object %llu", (u_longlong_t)txg, spa_name(spa), 3685 (u_longlong_t)object, 3686 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 3687 vdev_config_dirty(vd->vdev_top); 3688 } 3689 3690 dmu_tx_commit(tx); 3691 } 3692 3693 /* 3694 * Determine whether the specified vdev can be 3695 * - offlined 3696 * - detached 3697 * - removed 3698 * - faulted 3699 * without losing data. 3700 */ 3701 boolean_t 3702 vdev_dtl_required(vdev_t *vd) 3703 { 3704 spa_t *spa = vd->vdev_spa; 3705 vdev_t *tvd = vd->vdev_top; 3706 uint8_t cant_read = vd->vdev_cant_read; 3707 boolean_t required; 3708 boolean_t faulting = vd->vdev_state == VDEV_STATE_FAULTED; 3709 3710 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3711 3712 if (vd == spa->spa_root_vdev || vd == tvd) 3713 return (B_TRUE); 3714 3715 /* 3716 * Temporarily mark the device as unreadable, and then determine 3717 * whether this results in any DTL outages in the top-level vdev. 3718 * If not, we can safely offline/detach/remove the device. 3719 */ 3720 vd->vdev_cant_read = B_TRUE; 3721 vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting); 3722 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 3723 vd->vdev_cant_read = cant_read; 3724 vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting); 3725 3726 if (!required && zio_injection_enabled) { 3727 required = !!zio_handle_device_injection(vd, NULL, 3728 SET_ERROR(ECHILD)); 3729 } 3730 3731 return (required); 3732 } 3733 3734 /* 3735 * Determine if resilver is needed, and if so the txg range. 3736 */ 3737 boolean_t 3738 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 3739 { 3740 boolean_t needed = B_FALSE; 3741 uint64_t thismin = UINT64_MAX; 3742 uint64_t thismax = 0; 3743 3744 if (vd->vdev_children == 0) { 3745 mutex_enter(&vd->vdev_dtl_lock); 3746 if (!zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3747 vdev_writeable(vd)) { 3748 3749 thismin = vdev_dtl_min(vd); 3750 thismax = vdev_dtl_max(vd); 3751 needed = B_TRUE; 3752 } 3753 mutex_exit(&vd->vdev_dtl_lock); 3754 } else { 3755 for (int c = 0; c < vd->vdev_children; c++) { 3756 vdev_t *cvd = vd->vdev_child[c]; 3757 uint64_t cmin, cmax; 3758 3759 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 3760 thismin = MIN(thismin, cmin); 3761 thismax = MAX(thismax, cmax); 3762 needed = B_TRUE; 3763 } 3764 } 3765 } 3766 3767 if (needed && minp) { 3768 *minp = thismin; 3769 *maxp = thismax; 3770 } 3771 return (needed); 3772 } 3773 3774 /* 3775 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj 3776 * will contain either the checkpoint spacemap object or zero if none exists. 3777 * All other errors are returned to the caller. 3778 */ 3779 int 3780 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj) 3781 { 3782 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 3783 3784 if (vd->vdev_top_zap == 0) { 3785 *sm_obj = 0; 3786 return (0); 3787 } 3788 3789 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 3790 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj); 3791 if (error == ENOENT) { 3792 *sm_obj = 0; 3793 error = 0; 3794 } 3795 3796 return (error); 3797 } 3798 3799 int 3800 vdev_load(vdev_t *vd) 3801 { 3802 int children = vd->vdev_children; 3803 int error = 0; 3804 taskq_t *tq = NULL; 3805 3806 /* 3807 * It's only worthwhile to use the taskq for the root vdev, because the 3808 * slow part is metaslab_init, and that only happens for top-level 3809 * vdevs. 3810 */ 3811 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) { 3812 tq = taskq_create("vdev_load", children, minclsyspri, 3813 children, children, TASKQ_PREPOPULATE); 3814 } 3815 3816 /* 3817 * Recursively load all children. 3818 */ 3819 for (int c = 0; c < vd->vdev_children; c++) { 3820 vdev_t *cvd = vd->vdev_child[c]; 3821 3822 if (tq == NULL || vdev_uses_zvols(cvd)) { 3823 cvd->vdev_load_error = vdev_load(cvd); 3824 } else { 3825 VERIFY(taskq_dispatch(tq, vdev_load_child, 3826 cvd, TQ_SLEEP) != TASKQID_INVALID); 3827 } 3828 } 3829 3830 if (tq != NULL) { 3831 taskq_wait(tq); 3832 taskq_destroy(tq); 3833 } 3834 3835 for (int c = 0; c < vd->vdev_children; c++) { 3836 int error = vd->vdev_child[c]->vdev_load_error; 3837 3838 if (error != 0) 3839 return (error); 3840 } 3841 3842 vdev_set_deflate_ratio(vd); 3843 3844 if (vd->vdev_ops == &vdev_raidz_ops) { 3845 error = vdev_raidz_load(vd); 3846 if (error != 0) 3847 return (error); 3848 } 3849 3850 /* 3851 * On spa_load path, grab the allocation bias from our zap 3852 */ 3853 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3854 spa_t *spa = vd->vdev_spa; 3855 char bias_str[64]; 3856 3857 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3858 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), 3859 bias_str); 3860 if (error == 0) { 3861 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); 3862 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); 3863 } else if (error != ENOENT) { 3864 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3865 VDEV_AUX_CORRUPT_DATA); 3866 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) " 3867 "failed [error=%d]", 3868 (u_longlong_t)vd->vdev_top_zap, error); 3869 return (error); 3870 } 3871 } 3872 3873 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3874 spa_t *spa = vd->vdev_spa; 3875 uint64_t failfast; 3876 3877 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3878 vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast), 3879 1, &failfast); 3880 if (error == 0) { 3881 vd->vdev_failfast = failfast & 1; 3882 } else if (error == ENOENT) { 3883 vd->vdev_failfast = vdev_prop_default_numeric( 3884 VDEV_PROP_FAILFAST); 3885 } else { 3886 vdev_dbgmsg(vd, 3887 "vdev_load: zap_lookup(top_zap=%llu) " 3888 "failed [error=%d]", 3889 (u_longlong_t)vd->vdev_top_zap, error); 3890 } 3891 } 3892 3893 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3894 spa_t *spa = vd->vdev_spa; 3895 uint64_t autosit; 3896 3897 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3898 vdev_prop_to_name(VDEV_PROP_AUTOSIT), sizeof (autosit), 3899 1, &autosit); 3900 if (error == 0) { 3901 vd->vdev_autosit = autosit == 1; 3902 } else if (error == ENOENT) { 3903 vd->vdev_autosit = vdev_prop_default_numeric( 3904 VDEV_PROP_AUTOSIT); 3905 } else { 3906 vdev_dbgmsg(vd, 3907 "vdev_load: zap_lookup(top_zap=%llu) " 3908 "failed [error=%d]", 3909 (u_longlong_t)vd->vdev_top_zap, error); 3910 } 3911 } 3912 3913 /* 3914 * Load any rebuild state from the top-level vdev zap. 3915 */ 3916 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3917 error = vdev_rebuild_load(vd); 3918 if (error && error != ENOTSUP) { 3919 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3920 VDEV_AUX_CORRUPT_DATA); 3921 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load " 3922 "failed [error=%d]", error); 3923 return (error); 3924 } 3925 } 3926 3927 if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) { 3928 uint64_t zapobj; 3929 3930 if (vd->vdev_top_zap != 0) 3931 zapobj = vd->vdev_top_zap; 3932 else 3933 zapobj = vd->vdev_leaf_zap; 3934 3935 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N, 3936 &vd->vdev_checksum_n); 3937 if (error && error != ENOENT) 3938 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3939 "failed [error=%d]", (u_longlong_t)zapobj, error); 3940 3941 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T, 3942 &vd->vdev_checksum_t); 3943 if (error && error != ENOENT) 3944 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3945 "failed [error=%d]", (u_longlong_t)zapobj, error); 3946 3947 error = vdev_prop_get_int(vd, VDEV_PROP_IO_N, 3948 &vd->vdev_io_n); 3949 if (error && error != ENOENT) 3950 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3951 "failed [error=%d]", (u_longlong_t)zapobj, error); 3952 3953 error = vdev_prop_get_int(vd, VDEV_PROP_IO_T, 3954 &vd->vdev_io_t); 3955 if (error && error != ENOENT) 3956 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3957 "failed [error=%d]", (u_longlong_t)zapobj, error); 3958 3959 error = vdev_prop_get_bool(vd, VDEV_PROP_SLOW_IO_EVENTS, 3960 &vd->vdev_slow_io_events); 3961 if (error && error != ENOENT) 3962 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3963 "failed [error=%d]", (u_longlong_t)zapobj, error); 3964 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_N, 3965 &vd->vdev_slow_io_n); 3966 if (error && error != ENOENT) 3967 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3968 "failed [error=%d]", (u_longlong_t)zapobj, error); 3969 3970 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_T, 3971 &vd->vdev_slow_io_t); 3972 if (error && error != ENOENT) 3973 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3974 "failed [error=%d]", (u_longlong_t)zapobj, error); 3975 } 3976 3977 /* 3978 * If this is a top-level vdev, initialize its metaslabs. 3979 */ 3980 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 3981 vdev_metaslab_group_create(vd); 3982 3983 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 3984 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3985 VDEV_AUX_CORRUPT_DATA); 3986 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 3987 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 3988 (u_longlong_t)vd->vdev_asize); 3989 return (SET_ERROR(ENXIO)); 3990 } 3991 3992 error = vdev_metaslab_init(vd, 0); 3993 if (error != 0) { 3994 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 3995 "[error=%d]", error); 3996 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3997 VDEV_AUX_CORRUPT_DATA); 3998 return (error); 3999 } 4000 4001 uint64_t checkpoint_sm_obj; 4002 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj); 4003 if (error == 0 && checkpoint_sm_obj != 0) { 4004 objset_t *mos = spa_meta_objset(vd->vdev_spa); 4005 ASSERT(vd->vdev_asize != 0); 4006 ASSERT0P(vd->vdev_checkpoint_sm); 4007 4008 error = space_map_open(&vd->vdev_checkpoint_sm, 4009 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 4010 vd->vdev_ashift); 4011 if (error != 0) { 4012 vdev_dbgmsg(vd, "vdev_load: space_map_open " 4013 "failed for checkpoint spacemap (obj %llu) " 4014 "[error=%d]", 4015 (u_longlong_t)checkpoint_sm_obj, error); 4016 return (error); 4017 } 4018 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4019 4020 /* 4021 * Since the checkpoint_sm contains free entries 4022 * exclusively we can use space_map_allocated() to 4023 * indicate the cumulative checkpointed space that 4024 * has been freed. 4025 */ 4026 vd->vdev_stat.vs_checkpoint_space = 4027 -space_map_allocated(vd->vdev_checkpoint_sm); 4028 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 4029 vd->vdev_stat.vs_checkpoint_space; 4030 } else if (error != 0) { 4031 vdev_dbgmsg(vd, "vdev_load: failed to retrieve " 4032 "checkpoint space map object from vdev ZAP " 4033 "[error=%d]", error); 4034 return (error); 4035 } 4036 } 4037 4038 /* 4039 * If this is a leaf vdev, load its DTL. 4040 */ 4041 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 4042 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 4043 VDEV_AUX_CORRUPT_DATA); 4044 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 4045 "[error=%d]", error); 4046 return (error); 4047 } 4048 4049 uint64_t obsolete_sm_object; 4050 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object); 4051 if (error == 0 && obsolete_sm_object != 0) { 4052 objset_t *mos = vd->vdev_spa->spa_meta_objset; 4053 ASSERT(vd->vdev_asize != 0); 4054 ASSERT0P(vd->vdev_obsolete_sm); 4055 4056 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 4057 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 4058 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 4059 VDEV_AUX_CORRUPT_DATA); 4060 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 4061 "obsolete spacemap (obj %llu) [error=%d]", 4062 (u_longlong_t)obsolete_sm_object, error); 4063 return (error); 4064 } 4065 } else if (error != 0) { 4066 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete " 4067 "space map object from vdev ZAP [error=%d]", error); 4068 return (error); 4069 } 4070 4071 return (0); 4072 } 4073 4074 /* 4075 * The special vdev case is used for hot spares and l2cache devices. Its 4076 * sole purpose it to set the vdev state for the associated vdev. To do this, 4077 * we make sure that we can open the underlying device, then try to read the 4078 * label, and make sure that the label is sane and that it hasn't been 4079 * repurposed to another pool. 4080 */ 4081 int 4082 vdev_validate_aux(vdev_t *vd) 4083 { 4084 nvlist_t *label; 4085 uint64_t guid, version; 4086 uint64_t state; 4087 4088 if (!vdev_readable(vd)) 4089 return (0); 4090 4091 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 4092 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 4093 VDEV_AUX_CORRUPT_DATA); 4094 return (-1); 4095 } 4096 4097 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 4098 !SPA_VERSION_IS_SUPPORTED(version) || 4099 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 4100 guid != vd->vdev_guid || 4101 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 4102 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 4103 VDEV_AUX_CORRUPT_DATA); 4104 nvlist_free(label); 4105 return (-1); 4106 } 4107 4108 /* 4109 * We don't actually check the pool state here. If it's in fact in 4110 * use by another pool, we update this fact on the fly when requested. 4111 */ 4112 nvlist_free(label); 4113 return (0); 4114 } 4115 4116 static void 4117 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx) 4118 { 4119 objset_t *mos = spa_meta_objset(vd->vdev_spa); 4120 4121 if (vd->vdev_top_zap == 0) 4122 return; 4123 4124 uint64_t object = 0; 4125 int err = zap_lookup(mos, vd->vdev_top_zap, 4126 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object); 4127 if (err == ENOENT) 4128 return; 4129 VERIFY0(err); 4130 4131 VERIFY0(dmu_object_free(mos, object, tx)); 4132 VERIFY0(zap_remove(mos, vd->vdev_top_zap, 4133 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx)); 4134 } 4135 4136 /* 4137 * Free the objects used to store this vdev's spacemaps, and the array 4138 * that points to them. 4139 */ 4140 void 4141 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 4142 { 4143 if (vd->vdev_ms_array == 0) 4144 return; 4145 4146 objset_t *mos = vd->vdev_spa->spa_meta_objset; 4147 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 4148 size_t array_bytes = array_count * sizeof (uint64_t); 4149 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 4150 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 4151 array_bytes, smobj_array, 0)); 4152 4153 for (uint64_t i = 0; i < array_count; i++) { 4154 uint64_t smobj = smobj_array[i]; 4155 if (smobj == 0) 4156 continue; 4157 4158 space_map_free_obj(mos, smobj, tx); 4159 } 4160 4161 kmem_free(smobj_array, array_bytes); 4162 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 4163 vdev_destroy_ms_flush_data(vd, tx); 4164 vd->vdev_ms_array = 0; 4165 } 4166 4167 static void 4168 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 4169 { 4170 spa_t *spa = vd->vdev_spa; 4171 4172 ASSERT(vd->vdev_islog); 4173 ASSERT(vd == vd->vdev_top); 4174 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 4175 4176 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 4177 4178 vdev_destroy_spacemaps(vd, tx); 4179 if (vd->vdev_top_zap != 0) { 4180 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 4181 vd->vdev_top_zap = 0; 4182 } 4183 4184 dmu_tx_commit(tx); 4185 } 4186 4187 void 4188 vdev_sync_done(vdev_t *vd, uint64_t txg) 4189 { 4190 metaslab_t *msp; 4191 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 4192 4193 ASSERT(vdev_is_concrete(vd)); 4194 4195 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 4196 != NULL) 4197 metaslab_sync_done(msp, txg); 4198 4199 if (reassess) { 4200 metaslab_sync_reassess(vd->vdev_mg); 4201 if (vd->vdev_log_mg != NULL) 4202 metaslab_sync_reassess(vd->vdev_log_mg); 4203 } 4204 } 4205 4206 void 4207 vdev_sync(vdev_t *vd, uint64_t txg) 4208 { 4209 spa_t *spa = vd->vdev_spa; 4210 vdev_t *lvd; 4211 metaslab_t *msp; 4212 4213 ASSERT3U(txg, ==, spa->spa_syncing_txg); 4214 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 4215 if (zfs_range_tree_space(vd->vdev_obsolete_segments) > 0) { 4216 ASSERT(vd->vdev_removing || 4217 vd->vdev_ops == &vdev_indirect_ops); 4218 4219 vdev_indirect_sync_obsolete(vd, tx); 4220 4221 /* 4222 * If the vdev is indirect, it can't have dirty 4223 * metaslabs or DTLs. 4224 */ 4225 if (vd->vdev_ops == &vdev_indirect_ops) { 4226 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 4227 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 4228 dmu_tx_commit(tx); 4229 return; 4230 } 4231 } 4232 4233 ASSERT(vdev_is_concrete(vd)); 4234 4235 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 4236 !vd->vdev_removing) { 4237 ASSERT(vd == vd->vdev_top); 4238 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 4239 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 4240 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 4241 ASSERT(vd->vdev_ms_array != 0); 4242 vdev_config_dirty(vd); 4243 } 4244 4245 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 4246 metaslab_sync(msp, txg); 4247 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 4248 } 4249 4250 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 4251 vdev_dtl_sync(lvd, txg); 4252 4253 /* 4254 * If this is an empty log device being removed, destroy the 4255 * metadata associated with it. 4256 */ 4257 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 4258 vdev_remove_empty_log(vd, txg); 4259 4260 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 4261 dmu_tx_commit(tx); 4262 } 4263 uint64_t 4264 vdev_asize_to_psize_txg(vdev_t *vd, uint64_t asize, uint64_t txg) 4265 { 4266 return (vd->vdev_ops->vdev_op_asize_to_psize(vd, asize, txg)); 4267 } 4268 4269 /* 4270 * Return the amount of space that should be (or was) allocated for the given 4271 * psize (compressed block size) in the given TXG. Note that for expanded 4272 * RAIDZ vdevs, the size allocated for older BP's may be larger. See 4273 * vdev_raidz_psize_to_asize(). 4274 */ 4275 uint64_t 4276 vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg) 4277 { 4278 return (vd->vdev_ops->vdev_op_psize_to_asize(vd, psize, txg)); 4279 } 4280 4281 uint64_t 4282 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 4283 { 4284 return (vdev_psize_to_asize_txg(vd, psize, 0)); 4285 } 4286 4287 /* 4288 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 4289 * not be opened, and no I/O is attempted. 4290 */ 4291 int 4292 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 4293 { 4294 vdev_t *vd, *tvd; 4295 4296 spa_vdev_state_enter(spa, SCL_NONE); 4297 4298 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4299 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4300 4301 if (!vd->vdev_ops->vdev_op_leaf) 4302 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4303 4304 tvd = vd->vdev_top; 4305 4306 /* 4307 * If user did a 'zpool offline -f' then make the fault persist across 4308 * reboots. 4309 */ 4310 if (aux == VDEV_AUX_EXTERNAL_PERSIST) { 4311 /* 4312 * There are two kinds of forced faults: temporary and 4313 * persistent. Temporary faults go away at pool import, while 4314 * persistent faults stay set. Both types of faults can be 4315 * cleared with a zpool clear. 4316 * 4317 * We tell if a vdev is persistently faulted by looking at the 4318 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at 4319 * import then it's a persistent fault. Otherwise, it's 4320 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external" 4321 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This 4322 * tells vdev_config_generate() (which gets run later) to set 4323 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist. 4324 */ 4325 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 4326 vd->vdev_tmpoffline = B_FALSE; 4327 aux = VDEV_AUX_EXTERNAL; 4328 } else { 4329 vd->vdev_tmpoffline = B_TRUE; 4330 } 4331 4332 /* 4333 * We don't directly use the aux state here, but if we do a 4334 * vdev_reopen(), we need this value to be present to remember why we 4335 * were faulted. 4336 */ 4337 vd->vdev_label_aux = aux; 4338 4339 /* 4340 * Faulted state takes precedence over degraded. 4341 */ 4342 vd->vdev_delayed_close = B_FALSE; 4343 vd->vdev_faulted = 1ULL; 4344 vd->vdev_degraded = 0ULL; 4345 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 4346 4347 /* 4348 * If this device has the only valid copy of the data, then 4349 * back off and simply mark the vdev as degraded instead. 4350 */ 4351 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 4352 vd->vdev_degraded = 1ULL; 4353 vd->vdev_faulted = 0ULL; 4354 4355 /* 4356 * If we reopen the device and it's not dead, only then do we 4357 * mark it degraded. 4358 */ 4359 vdev_reopen(tvd); 4360 4361 if (vdev_readable(vd)) 4362 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 4363 } 4364 4365 return (spa_vdev_state_exit(spa, vd, 0)); 4366 } 4367 4368 /* 4369 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 4370 * user that something is wrong. The vdev continues to operate as normal as far 4371 * as I/O is concerned. 4372 */ 4373 int 4374 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 4375 { 4376 vdev_t *vd; 4377 4378 spa_vdev_state_enter(spa, SCL_NONE); 4379 4380 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4381 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4382 4383 if (!vd->vdev_ops->vdev_op_leaf) 4384 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4385 4386 /* 4387 * If the vdev is already faulted, then don't do anything. 4388 */ 4389 if (vd->vdev_faulted || vd->vdev_degraded) 4390 return (spa_vdev_state_exit(spa, NULL, 0)); 4391 4392 vd->vdev_degraded = 1ULL; 4393 if (!vdev_is_dead(vd)) 4394 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 4395 aux); 4396 4397 return (spa_vdev_state_exit(spa, vd, 0)); 4398 } 4399 4400 int 4401 vdev_remove_wanted(spa_t *spa, uint64_t guid) 4402 { 4403 vdev_t *vd; 4404 4405 spa_vdev_state_enter(spa, SCL_NONE); 4406 4407 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4408 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4409 4410 /* 4411 * If the vdev is already removed, or expanding which can trigger 4412 * repartition add/remove events, then don't do anything. 4413 */ 4414 if (vd->vdev_removed || vd->vdev_expanding) 4415 return (spa_vdev_state_exit(spa, NULL, 0)); 4416 4417 /* 4418 * Confirm the vdev has been removed, otherwise don't do anything. 4419 */ 4420 if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL))) 4421 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST))); 4422 4423 vd->vdev_remove_wanted = B_TRUE; 4424 spa_async_request(spa, SPA_ASYNC_REMOVE_BY_USER); 4425 4426 return (spa_vdev_state_exit(spa, vd, 0)); 4427 } 4428 4429 4430 /* 4431 * Online the given vdev. 4432 * 4433 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 4434 * spare device should be detached when the device finishes resilvering. 4435 * Second, the online should be treated like a 'test' online case, so no FMA 4436 * events are generated if the device fails to open. 4437 */ 4438 int 4439 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 4440 { 4441 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 4442 boolean_t wasoffline; 4443 vdev_state_t oldstate; 4444 4445 spa_vdev_state_enter(spa, SCL_NONE); 4446 4447 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4448 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4449 4450 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 4451 oldstate = vd->vdev_state; 4452 4453 tvd = vd->vdev_top; 4454 vd->vdev_offline = B_FALSE; 4455 vd->vdev_tmpoffline = B_FALSE; 4456 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 4457 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 4458 4459 /* XXX - L2ARC 1.0 does not support expansion */ 4460 if (!vd->vdev_aux) { 4461 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4462 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) || 4463 spa->spa_autoexpand); 4464 vd->vdev_expansion_time = gethrestime_sec(); 4465 } 4466 4467 vdev_reopen(tvd); 4468 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 4469 4470 if (!vd->vdev_aux) { 4471 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4472 pvd->vdev_expanding = B_FALSE; 4473 } 4474 4475 if (newstate) 4476 *newstate = vd->vdev_state; 4477 if ((flags & ZFS_ONLINE_UNSPARE) && 4478 !vdev_is_dead(vd) && vd->vdev_parent && 4479 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4480 vd->vdev_parent->vdev_child[0] == vd) 4481 vd->vdev_unspare = B_TRUE; 4482 4483 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 4484 4485 /* XXX - L2ARC 1.0 does not support expansion */ 4486 if (vd->vdev_aux) 4487 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 4488 spa->spa_ccw_fail_time = 0; 4489 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 4490 } 4491 4492 /* Restart initializing if necessary */ 4493 mutex_enter(&vd->vdev_initialize_lock); 4494 if (vdev_writeable(vd) && 4495 vd->vdev_initialize_thread == NULL && 4496 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 4497 (void) vdev_initialize(vd); 4498 } 4499 mutex_exit(&vd->vdev_initialize_lock); 4500 4501 /* 4502 * Restart trimming if necessary. We do not restart trimming for cache 4503 * devices here. This is triggered by l2arc_rebuild_vdev() 4504 * asynchronously for the whole device or in l2arc_evict() as it evicts 4505 * space for upcoming writes. 4506 */ 4507 mutex_enter(&vd->vdev_trim_lock); 4508 if (vdev_writeable(vd) && !vd->vdev_isl2cache && 4509 vd->vdev_trim_thread == NULL && 4510 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { 4511 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, 4512 vd->vdev_trim_secure); 4513 } 4514 mutex_exit(&vd->vdev_trim_lock); 4515 4516 if (wasoffline || 4517 (oldstate < VDEV_STATE_DEGRADED && 4518 vd->vdev_state >= VDEV_STATE_DEGRADED)) { 4519 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 4520 4521 /* 4522 * Asynchronously detach spare vdev if resilver or 4523 * rebuild is not required 4524 */ 4525 if (vd->vdev_unspare && 4526 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4527 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) && 4528 !vdev_rebuild_active(tvd)) 4529 spa_async_request(spa, SPA_ASYNC_DETACH_SPARE); 4530 } 4531 return (spa_vdev_state_exit(spa, vd, 0)); 4532 } 4533 4534 static int 4535 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 4536 { 4537 vdev_t *vd, *tvd; 4538 int error = 0; 4539 uint64_t generation; 4540 metaslab_group_t *mg; 4541 4542 top: 4543 spa_vdev_state_enter(spa, SCL_ALLOC); 4544 4545 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4546 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4547 4548 if (!vd->vdev_ops->vdev_op_leaf) 4549 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4550 4551 if (vd->vdev_ops == &vdev_draid_spare_ops) 4552 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4553 4554 tvd = vd->vdev_top; 4555 mg = tvd->vdev_mg; 4556 generation = spa->spa_config_generation + 1; 4557 4558 /* 4559 * If the device isn't already offline, try to offline it. 4560 */ 4561 if (!vd->vdev_offline) { 4562 /* 4563 * If this device has the only valid copy of some data, 4564 * don't allow it to be offlined. Log devices are always 4565 * expendable. 4566 */ 4567 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4568 vdev_dtl_required(vd)) 4569 return (spa_vdev_state_exit(spa, NULL, 4570 SET_ERROR(EBUSY))); 4571 4572 /* 4573 * If the top-level is a slog and it has had allocations 4574 * then proceed. We check that the vdev's metaslab group 4575 * is not NULL since it's possible that we may have just 4576 * added this vdev but not yet initialized its metaslabs. 4577 */ 4578 if (tvd->vdev_islog && mg != NULL) { 4579 /* 4580 * Prevent any future allocations. 4581 */ 4582 ASSERT0P(tvd->vdev_log_mg); 4583 metaslab_group_passivate(mg); 4584 (void) spa_vdev_state_exit(spa, vd, 0); 4585 4586 error = spa_reset_logs(spa); 4587 4588 /* 4589 * If the log device was successfully reset but has 4590 * checkpointed data, do not offline it. 4591 */ 4592 if (error == 0 && 4593 tvd->vdev_checkpoint_sm != NULL) { 4594 ASSERT3U(space_map_allocated( 4595 tvd->vdev_checkpoint_sm), !=, 0); 4596 error = ZFS_ERR_CHECKPOINT_EXISTS; 4597 } 4598 4599 spa_vdev_state_enter(spa, SCL_ALLOC); 4600 4601 /* 4602 * Check to see if the config has changed. 4603 */ 4604 if (error || generation != spa->spa_config_generation) { 4605 metaslab_group_activate(mg); 4606 if (error) 4607 return (spa_vdev_state_exit(spa, 4608 vd, error)); 4609 (void) spa_vdev_state_exit(spa, vd, 0); 4610 goto top; 4611 } 4612 ASSERT0(tvd->vdev_stat.vs_alloc); 4613 } 4614 4615 /* 4616 * Offline this device and reopen its top-level vdev. 4617 * If the top-level vdev is a log device then just offline 4618 * it. Otherwise, if this action results in the top-level 4619 * vdev becoming unusable, undo it and fail the request. 4620 */ 4621 vd->vdev_offline = B_TRUE; 4622 vdev_reopen(tvd); 4623 4624 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4625 vdev_is_dead(tvd)) { 4626 vd->vdev_offline = B_FALSE; 4627 vdev_reopen(tvd); 4628 return (spa_vdev_state_exit(spa, NULL, 4629 SET_ERROR(EBUSY))); 4630 } 4631 4632 /* 4633 * Add the device back into the metaslab rotor so that 4634 * once we online the device it's open for business. 4635 */ 4636 if (tvd->vdev_islog && mg != NULL) 4637 metaslab_group_activate(mg); 4638 } 4639 4640 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 4641 4642 return (spa_vdev_state_exit(spa, vd, 0)); 4643 } 4644 4645 int 4646 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 4647 { 4648 int error; 4649 4650 mutex_enter(&spa->spa_vdev_top_lock); 4651 error = vdev_offline_locked(spa, guid, flags); 4652 mutex_exit(&spa->spa_vdev_top_lock); 4653 4654 return (error); 4655 } 4656 4657 /* 4658 * Clear the error counts associated with this vdev. Unlike vdev_online() and 4659 * vdev_offline(), we assume the spa config is locked. We also clear all 4660 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 4661 */ 4662 void 4663 vdev_clear(spa_t *spa, vdev_t *vd) 4664 { 4665 vdev_t *rvd = spa->spa_root_vdev; 4666 4667 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 4668 4669 if (vd == NULL) 4670 vd = rvd; 4671 4672 vd->vdev_stat.vs_read_errors = 0; 4673 vd->vdev_stat.vs_write_errors = 0; 4674 vd->vdev_stat.vs_checksum_errors = 0; 4675 vd->vdev_stat.vs_dio_verify_errors = 0; 4676 vd->vdev_stat.vs_slow_ios = 0; 4677 atomic_store_64(&vd->vdev_outlier_count, 0); 4678 vd->vdev_read_sit_out_expire = 0; 4679 4680 for (int c = 0; c < vd->vdev_children; c++) 4681 vdev_clear(spa, vd->vdev_child[c]); 4682 4683 /* 4684 * It makes no sense to "clear" an indirect or removed vdev. 4685 */ 4686 if (!vdev_is_concrete(vd) || vd->vdev_removed) 4687 return; 4688 4689 /* 4690 * If we're in the FAULTED state or have experienced failed I/O, then 4691 * clear the persistent state and attempt to reopen the device. We 4692 * also mark the vdev config dirty, so that the new faulted state is 4693 * written out to disk. 4694 */ 4695 if (vd->vdev_faulted || vd->vdev_degraded || 4696 !vdev_readable(vd) || !vdev_writeable(vd)) { 4697 /* 4698 * When reopening in response to a clear event, it may be due to 4699 * a fmadm repair request. In this case, if the device is 4700 * still broken, we want to still post the ereport again. 4701 */ 4702 vd->vdev_forcefault = B_TRUE; 4703 4704 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 4705 vd->vdev_cant_read = B_FALSE; 4706 vd->vdev_cant_write = B_FALSE; 4707 vd->vdev_stat.vs_aux = 0; 4708 4709 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 4710 4711 vd->vdev_forcefault = B_FALSE; 4712 4713 if (vd != rvd && vdev_writeable(vd->vdev_top)) 4714 vdev_state_dirty(vd->vdev_top); 4715 4716 /* If a resilver isn't required, check if vdevs can be culled */ 4717 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) && 4718 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4719 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool)) 4720 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4721 4722 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 4723 } 4724 4725 /* 4726 * When clearing a FMA-diagnosed fault, we always want to 4727 * unspare the device, as we assume that the original spare was 4728 * done in response to the FMA fault. 4729 */ 4730 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 4731 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4732 vd->vdev_parent->vdev_child[0] == vd) 4733 vd->vdev_unspare = B_TRUE; 4734 4735 /* Clear recent error events cache (i.e. duplicate events tracking) */ 4736 zfs_ereport_clear(spa, vd); 4737 } 4738 4739 boolean_t 4740 vdev_is_dead(vdev_t *vd) 4741 { 4742 /* 4743 * Holes and missing devices are always considered "dead". 4744 * This simplifies the code since we don't have to check for 4745 * these types of devices in the various code paths. 4746 * Instead we rely on the fact that we skip over dead devices 4747 * before issuing I/O to them. 4748 */ 4749 return (vd->vdev_state < VDEV_STATE_DEGRADED || 4750 vd->vdev_ops == &vdev_hole_ops || 4751 vd->vdev_ops == &vdev_missing_ops); 4752 } 4753 4754 boolean_t 4755 vdev_readable(vdev_t *vd) 4756 { 4757 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 4758 } 4759 4760 boolean_t 4761 vdev_writeable(vdev_t *vd) 4762 { 4763 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 4764 vdev_is_concrete(vd)); 4765 } 4766 4767 boolean_t 4768 vdev_allocatable(vdev_t *vd) 4769 { 4770 uint64_t state = vd->vdev_state; 4771 4772 /* 4773 * We currently allow allocations from vdevs which may be in the 4774 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 4775 * fails to reopen then we'll catch it later when we're holding 4776 * the proper locks. Note that we have to get the vdev state 4777 * in a local variable because although it changes atomically, 4778 * we're asking two separate questions about it. 4779 */ 4780 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 4781 !vd->vdev_cant_write && vdev_is_concrete(vd) && 4782 vd->vdev_mg->mg_initialized); 4783 } 4784 4785 boolean_t 4786 vdev_accessible(vdev_t *vd, zio_t *zio) 4787 { 4788 ASSERT(zio->io_vd == vd); 4789 4790 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 4791 return (B_FALSE); 4792 4793 if (zio->io_type == ZIO_TYPE_READ) 4794 return (!vd->vdev_cant_read); 4795 4796 if (zio->io_type == ZIO_TYPE_WRITE) 4797 return (!vd->vdev_cant_write); 4798 4799 return (B_TRUE); 4800 } 4801 4802 static void 4803 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs) 4804 { 4805 /* 4806 * Exclude the dRAID spare when aggregating to avoid double counting 4807 * the ops and bytes. These IOs are counted by the physical leaves. 4808 */ 4809 if (cvd->vdev_ops == &vdev_draid_spare_ops) 4810 return; 4811 4812 for (int t = 0; t < VS_ZIO_TYPES; t++) { 4813 vs->vs_ops[t] += cvs->vs_ops[t]; 4814 vs->vs_bytes[t] += cvs->vs_bytes[t]; 4815 } 4816 4817 cvs->vs_scan_removing = cvd->vdev_removing; 4818 } 4819 4820 /* 4821 * Get extended stats 4822 */ 4823 static void 4824 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx) 4825 { 4826 (void) cvd; 4827 4828 int t, b; 4829 for (t = 0; t < ZIO_TYPES; t++) { 4830 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++) 4831 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b]; 4832 4833 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) { 4834 vsx->vsx_total_histo[t][b] += 4835 cvsx->vsx_total_histo[t][b]; 4836 } 4837 } 4838 4839 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4840 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) { 4841 vsx->vsx_queue_histo[t][b] += 4842 cvsx->vsx_queue_histo[t][b]; 4843 } 4844 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t]; 4845 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t]; 4846 4847 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++) 4848 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b]; 4849 4850 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++) 4851 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b]; 4852 } 4853 4854 } 4855 4856 boolean_t 4857 vdev_is_spacemap_addressable(vdev_t *vd) 4858 { 4859 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 4860 return (B_TRUE); 4861 4862 /* 4863 * If double-word space map entries are not enabled we assume 4864 * 47 bits of the space map entry are dedicated to the entry's 4865 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 4866 * to calculate the maximum address that can be described by a 4867 * space map entry for the given device. 4868 */ 4869 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 4870 4871 if (shift >= 63) /* detect potential overflow */ 4872 return (B_TRUE); 4873 4874 return (vd->vdev_asize < (1ULL << shift)); 4875 } 4876 4877 /* 4878 * Get statistics for the given vdev. 4879 */ 4880 static void 4881 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4882 { 4883 int t; 4884 /* 4885 * If we're getting stats on the root vdev, aggregate the I/O counts 4886 * over all top-level vdevs (i.e. the direct children of the root). 4887 */ 4888 if (!vd->vdev_ops->vdev_op_leaf) { 4889 if (vs) { 4890 memset(vs->vs_ops, 0, sizeof (vs->vs_ops)); 4891 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes)); 4892 } 4893 if (vsx) 4894 memset(vsx, 0, sizeof (*vsx)); 4895 4896 for (int c = 0; c < vd->vdev_children; c++) { 4897 vdev_t *cvd = vd->vdev_child[c]; 4898 vdev_stat_t *cvs = &cvd->vdev_stat; 4899 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex; 4900 4901 vdev_get_stats_ex_impl(cvd, cvs, cvsx); 4902 if (vs) 4903 vdev_get_child_stat(cvd, vs, cvs); 4904 if (vsx) 4905 vdev_get_child_stat_ex(cvd, vsx, cvsx); 4906 } 4907 } else { 4908 /* 4909 * We're a leaf. Just copy our ZIO active queue stats in. The 4910 * other leaf stats are updated in vdev_stat_update(). 4911 */ 4912 if (!vsx) 4913 return; 4914 4915 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex)); 4916 4917 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4918 vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t]; 4919 vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t); 4920 } 4921 } 4922 } 4923 4924 void 4925 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4926 { 4927 vdev_t *tvd = vd->vdev_top; 4928 mutex_enter(&vd->vdev_stat_lock); 4929 if (vs) { 4930 memcpy(vs, &vd->vdev_stat, sizeof (*vs)); 4931 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 4932 vs->vs_state = vd->vdev_state; 4933 vs->vs_rsize = vdev_get_min_asize(vd); 4934 4935 if (vd->vdev_ops->vdev_op_leaf) { 4936 vs->vs_pspace = vd->vdev_psize; 4937 vs->vs_rsize += VDEV_LABEL_START_SIZE + 4938 VDEV_LABEL_END_SIZE; 4939 /* 4940 * Report initializing progress. Since we don't 4941 * have the initializing locks held, this is only 4942 * an estimate (although a fairly accurate one). 4943 */ 4944 vs->vs_initialize_bytes_done = 4945 vd->vdev_initialize_bytes_done; 4946 vs->vs_initialize_bytes_est = 4947 vd->vdev_initialize_bytes_est; 4948 vs->vs_initialize_state = vd->vdev_initialize_state; 4949 vs->vs_initialize_action_time = 4950 vd->vdev_initialize_action_time; 4951 4952 /* 4953 * Report manual TRIM progress. Since we don't have 4954 * the manual TRIM locks held, this is only an 4955 * estimate (although fairly accurate one). 4956 */ 4957 vs->vs_trim_notsup = !vd->vdev_has_trim; 4958 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done; 4959 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est; 4960 vs->vs_trim_state = vd->vdev_trim_state; 4961 vs->vs_trim_action_time = vd->vdev_trim_action_time; 4962 4963 /* Set when there is a deferred resilver. */ 4964 vs->vs_resilver_deferred = vd->vdev_resilver_deferred; 4965 } 4966 4967 /* 4968 * Report expandable space on top-level, non-auxiliary devices 4969 * only. The expandable space is reported in terms of metaslab 4970 * sized units since that determines how much space the pool 4971 * can expand. 4972 */ 4973 if (vd->vdev_aux == NULL && tvd != NULL) { 4974 vs->vs_esize = P2ALIGN_TYPED( 4975 vd->vdev_max_asize - vd->vdev_asize, 4976 1ULL << tvd->vdev_ms_shift, uint64_t); 4977 } 4978 4979 vs->vs_configured_ashift = vd->vdev_top != NULL 4980 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift; 4981 vs->vs_logical_ashift = vd->vdev_logical_ashift; 4982 if (vd->vdev_physical_ashift <= ASHIFT_MAX) 4983 vs->vs_physical_ashift = vd->vdev_physical_ashift; 4984 else 4985 vs->vs_physical_ashift = 0; 4986 4987 /* 4988 * Report fragmentation and rebuild progress for top-level, 4989 * non-auxiliary, concrete devices. 4990 */ 4991 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 4992 vdev_is_concrete(vd)) { 4993 /* 4994 * The vdev fragmentation rating doesn't take into 4995 * account the embedded slog metaslab (vdev_log_mg). 4996 * Since it's only one metaslab, it would have a tiny 4997 * impact on the overall fragmentation. 4998 */ 4999 vs->vs_fragmentation = (vd->vdev_mg != NULL) ? 5000 vd->vdev_mg->mg_fragmentation : 0; 5001 } 5002 vs->vs_noalloc = MAX(vd->vdev_noalloc, 5003 tvd ? tvd->vdev_noalloc : 0); 5004 } 5005 5006 vdev_get_stats_ex_impl(vd, vs, vsx); 5007 mutex_exit(&vd->vdev_stat_lock); 5008 } 5009 5010 void 5011 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 5012 { 5013 return (vdev_get_stats_ex(vd, vs, NULL)); 5014 } 5015 5016 void 5017 vdev_clear_stats(vdev_t *vd) 5018 { 5019 mutex_enter(&vd->vdev_stat_lock); 5020 vd->vdev_stat.vs_space = 0; 5021 vd->vdev_stat.vs_dspace = 0; 5022 vd->vdev_stat.vs_alloc = 0; 5023 mutex_exit(&vd->vdev_stat_lock); 5024 } 5025 5026 void 5027 vdev_scan_stat_init(vdev_t *vd) 5028 { 5029 vdev_stat_t *vs = &vd->vdev_stat; 5030 5031 for (int c = 0; c < vd->vdev_children; c++) 5032 vdev_scan_stat_init(vd->vdev_child[c]); 5033 5034 mutex_enter(&vd->vdev_stat_lock); 5035 vs->vs_scan_processed = 0; 5036 mutex_exit(&vd->vdev_stat_lock); 5037 } 5038 5039 void 5040 vdev_stat_update(zio_t *zio, uint64_t psize) 5041 { 5042 spa_t *spa = zio->io_spa; 5043 vdev_t *rvd = spa->spa_root_vdev; 5044 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 5045 vdev_t *pvd; 5046 uint64_t txg = zio->io_txg; 5047 /* Suppress ASAN false positive */ 5048 #ifdef __SANITIZE_ADDRESS__ 5049 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL; 5050 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL; 5051 #else 5052 vdev_stat_t *vs = &vd->vdev_stat; 5053 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex; 5054 #endif 5055 zio_type_t type = zio->io_type; 5056 int flags = zio->io_flags; 5057 5058 /* 5059 * If this i/o is a gang leader, it didn't do any actual work. 5060 */ 5061 if (zio->io_gang_tree) 5062 return; 5063 5064 if (zio->io_error == 0) { 5065 /* 5066 * If this is a root i/o, don't count it -- we've already 5067 * counted the top-level vdevs, and vdev_get_stats() will 5068 * aggregate them when asked. This reduces contention on 5069 * the root vdev_stat_lock and implicitly handles blocks 5070 * that compress away to holes, for which there is no i/o. 5071 * (Holes never create vdev children, so all the counters 5072 * remain zero, which is what we want.) 5073 * 5074 * Note: this only applies to successful i/o (io_error == 0) 5075 * because unlike i/o counts, errors are not additive. 5076 * When reading a ditto block, for example, failure of 5077 * one top-level vdev does not imply a root-level error. 5078 */ 5079 if (vd == rvd) 5080 return; 5081 5082 ASSERT(vd == zio->io_vd); 5083 5084 if (flags & ZIO_FLAG_IO_BYPASS) 5085 return; 5086 5087 mutex_enter(&vd->vdev_stat_lock); 5088 5089 if (flags & ZIO_FLAG_IO_REPAIR) { 5090 /* 5091 * Repair is the result of a resilver issued by the 5092 * scan thread (spa_sync). 5093 */ 5094 if (flags & ZIO_FLAG_SCAN_THREAD) { 5095 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 5096 dsl_scan_phys_t *scn_phys = &scn->scn_phys; 5097 uint64_t *processed = &scn_phys->scn_processed; 5098 5099 if (vd->vdev_ops->vdev_op_leaf) 5100 atomic_add_64(processed, psize); 5101 vs->vs_scan_processed += psize; 5102 } 5103 5104 /* 5105 * Repair is the result of a rebuild issued by the 5106 * rebuild thread (vdev_rebuild_thread). To avoid 5107 * double counting repaired bytes the virtual dRAID 5108 * spare vdev is excluded from the processed bytes. 5109 */ 5110 if (zio->io_priority == ZIO_PRIORITY_REBUILD) { 5111 vdev_t *tvd = vd->vdev_top; 5112 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config; 5113 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 5114 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt; 5115 5116 if (vd->vdev_ops->vdev_op_leaf && 5117 vd->vdev_ops != &vdev_draid_spare_ops) { 5118 atomic_add_64(rebuilt, psize); 5119 } 5120 vs->vs_rebuild_processed += psize; 5121 } 5122 5123 if (flags & ZIO_FLAG_SELF_HEAL) 5124 vs->vs_self_healed += psize; 5125 } 5126 5127 /* 5128 * The bytes/ops/histograms are recorded at the leaf level and 5129 * aggregated into the higher level vdevs in vdev_get_stats(). 5130 */ 5131 if (vd->vdev_ops->vdev_op_leaf && 5132 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) { 5133 zio_type_t vs_type = type; 5134 zio_priority_t priority = zio->io_priority; 5135 5136 /* 5137 * TRIM ops and bytes are reported to user space as 5138 * ZIO_TYPE_FLUSH. This is done to preserve the 5139 * vdev_stat_t structure layout for user space. 5140 */ 5141 if (type == ZIO_TYPE_TRIM) 5142 vs_type = ZIO_TYPE_FLUSH; 5143 5144 /* 5145 * Solely for the purposes of 'zpool iostat -lqrw' 5146 * reporting use the priority to categorize the IO. 5147 * Only the following are reported to user space: 5148 * 5149 * ZIO_PRIORITY_SYNC_READ, 5150 * ZIO_PRIORITY_SYNC_WRITE, 5151 * ZIO_PRIORITY_ASYNC_READ, 5152 * ZIO_PRIORITY_ASYNC_WRITE, 5153 * ZIO_PRIORITY_SCRUB, 5154 * ZIO_PRIORITY_TRIM, 5155 * ZIO_PRIORITY_REBUILD. 5156 */ 5157 if (priority == ZIO_PRIORITY_INITIALIZING) { 5158 ASSERT3U(type, ==, ZIO_TYPE_WRITE); 5159 priority = ZIO_PRIORITY_ASYNC_WRITE; 5160 } else if (priority == ZIO_PRIORITY_REMOVAL) { 5161 priority = ((type == ZIO_TYPE_WRITE) ? 5162 ZIO_PRIORITY_ASYNC_WRITE : 5163 ZIO_PRIORITY_ASYNC_READ); 5164 } 5165 5166 vs->vs_ops[vs_type]++; 5167 vs->vs_bytes[vs_type] += psize; 5168 5169 if (flags & ZIO_FLAG_DELEGATED) { 5170 vsx->vsx_agg_histo[priority] 5171 [RQ_HISTO(zio->io_size)]++; 5172 } else { 5173 vsx->vsx_ind_histo[priority] 5174 [RQ_HISTO(zio->io_size)]++; 5175 } 5176 5177 if (zio->io_delta && zio->io_delay) { 5178 vsx->vsx_queue_histo[priority] 5179 [L_HISTO(zio->io_delta - zio->io_delay)]++; 5180 vsx->vsx_disk_histo[type] 5181 [L_HISTO(zio->io_delay)]++; 5182 vsx->vsx_total_histo[type] 5183 [L_HISTO(zio->io_delta)]++; 5184 } 5185 } 5186 5187 mutex_exit(&vd->vdev_stat_lock); 5188 return; 5189 } 5190 5191 if (flags & ZIO_FLAG_SPECULATIVE) 5192 return; 5193 5194 /* 5195 * If this is an I/O error that is going to be retried, then ignore the 5196 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 5197 * hard errors, when in reality they can happen for any number of 5198 * innocuous reasons (bus resets, MPxIO link failure, etc). 5199 */ 5200 if (zio->io_error == EIO && 5201 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 5202 return; 5203 5204 /* 5205 * Intent logs writes won't propagate their error to the root 5206 * I/O so don't mark these types of failures as pool-level 5207 * errors. 5208 */ 5209 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 5210 return; 5211 5212 if (type == ZIO_TYPE_WRITE && txg != 0 && 5213 (!(flags & ZIO_FLAG_IO_REPAIR) || 5214 (flags & ZIO_FLAG_SCAN_THREAD) || 5215 spa->spa_claiming)) { 5216 /* 5217 * This is either a normal write (not a repair), or it's 5218 * a repair induced by the scrub thread, or it's a repair 5219 * made by zil_claim() during spa_load() in the first txg. 5220 * In the normal case, we commit the DTL change in the same 5221 * txg as the block was born. In the scrub-induced repair 5222 * case, we know that scrubs run in first-pass syncing context, 5223 * so we commit the DTL change in spa_syncing_txg(spa). 5224 * In the zil_claim() case, we commit in spa_first_txg(spa). 5225 * 5226 * We currently do not make DTL entries for failed spontaneous 5227 * self-healing writes triggered by normal (non-scrubbing) 5228 * reads, because we have no transactional context in which to 5229 * do so -- and it's not clear that it'd be desirable anyway. 5230 */ 5231 if (vd->vdev_ops->vdev_op_leaf) { 5232 uint64_t commit_txg = txg; 5233 if (flags & ZIO_FLAG_SCAN_THREAD) { 5234 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 5235 ASSERT(spa_sync_pass(spa) == 1); 5236 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 5237 commit_txg = spa_syncing_txg(spa); 5238 } else if (spa->spa_claiming) { 5239 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 5240 commit_txg = spa_first_txg(spa); 5241 } 5242 ASSERT(commit_txg >= spa_syncing_txg(spa)); 5243 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 5244 return; 5245 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 5246 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 5247 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 5248 } 5249 if (vd != rvd) 5250 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 5251 } 5252 } 5253 5254 int64_t 5255 vdev_deflated_space(vdev_t *vd, int64_t space) 5256 { 5257 ASSERT0((space & (SPA_MINBLOCKSIZE-1))); 5258 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 5259 5260 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); 5261 } 5262 5263 /* 5264 * Update the in-core space usage stats for this vdev, its metaslab class, 5265 * and the root vdev. 5266 */ 5267 void 5268 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 5269 int64_t space_delta) 5270 { 5271 (void) defer_delta; 5272 int64_t dspace_delta; 5273 spa_t *spa = vd->vdev_spa; 5274 vdev_t *rvd = spa->spa_root_vdev; 5275 5276 ASSERT(vd == vd->vdev_top); 5277 5278 /* 5279 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 5280 * factor. We must calculate this here and not at the root vdev 5281 * because the root vdev's psize-to-asize is simply the max of its 5282 * children's, thus not accurate enough for us. 5283 */ 5284 dspace_delta = vdev_deflated_space(vd, space_delta); 5285 5286 mutex_enter(&vd->vdev_stat_lock); 5287 /* ensure we won't underflow */ 5288 if (alloc_delta < 0) { 5289 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); 5290 } 5291 5292 vd->vdev_stat.vs_alloc += alloc_delta; 5293 vd->vdev_stat.vs_space += space_delta; 5294 vd->vdev_stat.vs_dspace += dspace_delta; 5295 mutex_exit(&vd->vdev_stat_lock); 5296 5297 /* every class but log contributes to root space stats */ 5298 if (vd->vdev_mg != NULL && !vd->vdev_islog) { 5299 ASSERT(!vd->vdev_isl2cache); 5300 mutex_enter(&rvd->vdev_stat_lock); 5301 rvd->vdev_stat.vs_alloc += alloc_delta; 5302 rvd->vdev_stat.vs_space += space_delta; 5303 rvd->vdev_stat.vs_dspace += dspace_delta; 5304 mutex_exit(&rvd->vdev_stat_lock); 5305 } 5306 /* Note: metaslab_class_space_update moved to metaslab_space_update */ 5307 } 5308 5309 /* 5310 * Mark a top-level vdev's config as dirty, placing it on the dirty list 5311 * so that it will be written out next time the vdev configuration is synced. 5312 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 5313 */ 5314 void 5315 vdev_config_dirty(vdev_t *vd) 5316 { 5317 spa_t *spa = vd->vdev_spa; 5318 vdev_t *rvd = spa->spa_root_vdev; 5319 int c; 5320 5321 ASSERT(spa_writeable(spa)); 5322 5323 /* 5324 * If this is an aux vdev (as with l2cache and spare devices), then we 5325 * update the vdev config manually and set the sync flag. 5326 */ 5327 if (vd->vdev_aux != NULL) { 5328 spa_aux_vdev_t *sav = vd->vdev_aux; 5329 nvlist_t **aux; 5330 uint_t naux; 5331 5332 for (c = 0; c < sav->sav_count; c++) { 5333 if (sav->sav_vdevs[c] == vd) 5334 break; 5335 } 5336 5337 if (c == sav->sav_count) { 5338 /* 5339 * We're being removed. There's nothing more to do. 5340 */ 5341 ASSERT(sav->sav_sync == B_TRUE); 5342 return; 5343 } 5344 5345 sav->sav_sync = B_TRUE; 5346 5347 if (nvlist_lookup_nvlist_array(sav->sav_config, 5348 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 5349 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, 5350 ZPOOL_CONFIG_SPARES, &aux, &naux)); 5351 } 5352 5353 ASSERT(c < naux); 5354 5355 /* 5356 * Setting the nvlist in the middle if the array is a little 5357 * sketchy, but it will work. 5358 */ 5359 nvlist_free(aux[c]); 5360 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 5361 5362 return; 5363 } 5364 5365 /* 5366 * The dirty list is protected by the SCL_CONFIG lock. The caller 5367 * must either hold SCL_CONFIG as writer, or must be the sync thread 5368 * (which holds SCL_CONFIG as reader). There's only one sync thread, 5369 * so this is sufficient to ensure mutual exclusion. 5370 */ 5371 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5372 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5373 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5374 5375 if (vd == rvd) { 5376 for (c = 0; c < rvd->vdev_children; c++) 5377 vdev_config_dirty(rvd->vdev_child[c]); 5378 } else { 5379 ASSERT(vd == vd->vdev_top); 5380 5381 if (!list_link_active(&vd->vdev_config_dirty_node) && 5382 vdev_is_concrete(vd)) { 5383 list_insert_head(&spa->spa_config_dirty_list, vd); 5384 } 5385 } 5386 } 5387 5388 void 5389 vdev_config_clean(vdev_t *vd) 5390 { 5391 spa_t *spa = vd->vdev_spa; 5392 5393 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5394 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5395 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5396 5397 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 5398 list_remove(&spa->spa_config_dirty_list, vd); 5399 } 5400 5401 /* 5402 * Mark a top-level vdev's state as dirty, so that the next pass of 5403 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 5404 * the state changes from larger config changes because they require 5405 * much less locking, and are often needed for administrative actions. 5406 */ 5407 void 5408 vdev_state_dirty(vdev_t *vd) 5409 { 5410 spa_t *spa = vd->vdev_spa; 5411 5412 ASSERT(spa_writeable(spa)); 5413 ASSERT(vd == vd->vdev_top); 5414 5415 /* 5416 * The state list is protected by the SCL_STATE lock. The caller 5417 * must either hold SCL_STATE as writer, or must be the sync thread 5418 * (which holds SCL_STATE as reader). There's only one sync thread, 5419 * so this is sufficient to ensure mutual exclusion. 5420 */ 5421 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5422 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5423 spa_config_held(spa, SCL_STATE, RW_READER))); 5424 5425 if (!list_link_active(&vd->vdev_state_dirty_node) && 5426 vdev_is_concrete(vd)) 5427 list_insert_head(&spa->spa_state_dirty_list, vd); 5428 } 5429 5430 void 5431 vdev_state_clean(vdev_t *vd) 5432 { 5433 spa_t *spa = vd->vdev_spa; 5434 5435 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5436 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5437 spa_config_held(spa, SCL_STATE, RW_READER))); 5438 5439 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 5440 list_remove(&spa->spa_state_dirty_list, vd); 5441 } 5442 5443 /* 5444 * Propagate vdev state up from children to parent. 5445 */ 5446 void 5447 vdev_propagate_state(vdev_t *vd) 5448 { 5449 spa_t *spa = vd->vdev_spa; 5450 vdev_t *rvd = spa->spa_root_vdev; 5451 int degraded = 0, faulted = 0; 5452 int corrupted = 0; 5453 vdev_t *child; 5454 5455 if (vd->vdev_children > 0) { 5456 for (int c = 0; c < vd->vdev_children; c++) { 5457 child = vd->vdev_child[c]; 5458 5459 /* 5460 * Don't factor holes or indirect vdevs into the 5461 * decision. 5462 */ 5463 if (!vdev_is_concrete(child)) 5464 continue; 5465 5466 if (!vdev_readable(child) || 5467 (!vdev_writeable(child) && spa_writeable(spa))) { 5468 /* 5469 * Root special: if there is a top-level log 5470 * device, treat the root vdev as if it were 5471 * degraded. 5472 */ 5473 if (child->vdev_islog && vd == rvd) 5474 degraded++; 5475 else 5476 faulted++; 5477 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 5478 degraded++; 5479 } 5480 5481 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 5482 corrupted++; 5483 } 5484 5485 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 5486 5487 /* 5488 * Root special: if there is a top-level vdev that cannot be 5489 * opened due to corrupted metadata, then propagate the root 5490 * vdev's aux state as 'corrupt' rather than 'insufficient 5491 * replicas'. 5492 */ 5493 if (corrupted && vd == rvd && 5494 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 5495 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 5496 VDEV_AUX_CORRUPT_DATA); 5497 } 5498 5499 if (vd->vdev_parent) 5500 vdev_propagate_state(vd->vdev_parent); 5501 } 5502 5503 /* 5504 * Set a vdev's state. If this is during an open, we don't update the parent 5505 * state, because we're in the process of opening children depth-first. 5506 * Otherwise, we propagate the change to the parent. 5507 * 5508 * If this routine places a device in a faulted state, an appropriate ereport is 5509 * generated. 5510 */ 5511 void 5512 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 5513 { 5514 uint64_t save_state; 5515 spa_t *spa = vd->vdev_spa; 5516 5517 if (state == vd->vdev_state) { 5518 /* 5519 * Since vdev_offline() code path is already in an offline 5520 * state we can miss a statechange event to OFFLINE. Check 5521 * the previous state to catch this condition. 5522 */ 5523 if (vd->vdev_ops->vdev_op_leaf && 5524 (state == VDEV_STATE_OFFLINE) && 5525 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) { 5526 /* post an offline state change */ 5527 zfs_post_state_change(spa, vd, vd->vdev_prevstate); 5528 } 5529 vd->vdev_stat.vs_aux = aux; 5530 return; 5531 } 5532 5533 save_state = vd->vdev_state; 5534 5535 vd->vdev_state = state; 5536 vd->vdev_stat.vs_aux = aux; 5537 5538 /* 5539 * If we are setting the vdev state to anything but an open state, then 5540 * always close the underlying device unless the device has requested 5541 * a delayed close (i.e. we're about to remove or fault the device). 5542 * Otherwise, we keep accessible but invalid devices open forever. 5543 * We don't call vdev_close() itself, because that implies some extra 5544 * checks (offline, etc) that we don't want here. This is limited to 5545 * leaf devices, because otherwise closing the device will affect other 5546 * children. 5547 */ 5548 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 5549 vd->vdev_ops->vdev_op_leaf) 5550 vd->vdev_ops->vdev_op_close(vd); 5551 5552 if (vd->vdev_removed && 5553 state == VDEV_STATE_CANT_OPEN && 5554 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 5555 /* 5556 * If the previous state is set to VDEV_STATE_REMOVED, then this 5557 * device was previously marked removed and someone attempted to 5558 * reopen it. If this failed due to a nonexistent device, then 5559 * keep the device in the REMOVED state. We also let this be if 5560 * it is one of our special test online cases, which is only 5561 * attempting to online the device and shouldn't generate an FMA 5562 * fault. 5563 */ 5564 vd->vdev_state = VDEV_STATE_REMOVED; 5565 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 5566 } else if (state == VDEV_STATE_REMOVED) { 5567 vd->vdev_removed = B_TRUE; 5568 } else if (state == VDEV_STATE_CANT_OPEN) { 5569 /* 5570 * If we fail to open a vdev during an import or recovery, we 5571 * mark it as "not available", which signifies that it was 5572 * never there to begin with. Failure to open such a device 5573 * is not considered an error. 5574 */ 5575 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 5576 spa_load_state(spa) == SPA_LOAD_RECOVER) && 5577 vd->vdev_ops->vdev_op_leaf) 5578 vd->vdev_not_present = 1; 5579 5580 /* 5581 * Post the appropriate ereport. If the 'prevstate' field is 5582 * set to something other than VDEV_STATE_UNKNOWN, it indicates 5583 * that this is part of a vdev_reopen(). In this case, we don't 5584 * want to post the ereport if the device was already in the 5585 * CANT_OPEN state beforehand. 5586 * 5587 * If the 'checkremove' flag is set, then this is an attempt to 5588 * online the device in response to an insertion event. If we 5589 * hit this case, then we have detected an insertion event for a 5590 * faulted or offline device that wasn't in the removed state. 5591 * In this scenario, we don't post an ereport because we are 5592 * about to replace the device, or attempt an online with 5593 * vdev_forcefault, which will generate the fault for us. 5594 */ 5595 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 5596 !vd->vdev_not_present && !vd->vdev_checkremove && 5597 vd != spa->spa_root_vdev) { 5598 const char *class; 5599 5600 switch (aux) { 5601 case VDEV_AUX_OPEN_FAILED: 5602 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 5603 break; 5604 case VDEV_AUX_CORRUPT_DATA: 5605 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 5606 break; 5607 case VDEV_AUX_NO_REPLICAS: 5608 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 5609 break; 5610 case VDEV_AUX_BAD_GUID_SUM: 5611 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 5612 break; 5613 case VDEV_AUX_TOO_SMALL: 5614 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 5615 break; 5616 case VDEV_AUX_BAD_LABEL: 5617 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 5618 break; 5619 case VDEV_AUX_BAD_ASHIFT: 5620 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT; 5621 break; 5622 default: 5623 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 5624 } 5625 5626 (void) zfs_ereport_post(class, spa, vd, NULL, NULL, 5627 save_state); 5628 } 5629 5630 /* Erase any notion of persistent removed state */ 5631 vd->vdev_removed = B_FALSE; 5632 } else { 5633 vd->vdev_removed = B_FALSE; 5634 } 5635 5636 /* 5637 * Notify ZED of any significant state-change on a leaf vdev. 5638 * 5639 */ 5640 if (vd->vdev_ops->vdev_op_leaf) { 5641 /* preserve original state from a vdev_reopen() */ 5642 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) && 5643 (vd->vdev_prevstate != vd->vdev_state) && 5644 (save_state <= VDEV_STATE_CLOSED)) 5645 save_state = vd->vdev_prevstate; 5646 5647 /* filter out state change due to initial vdev_open */ 5648 if (save_state > VDEV_STATE_CLOSED) 5649 zfs_post_state_change(spa, vd, save_state); 5650 } 5651 5652 if (!isopen && vd->vdev_parent) 5653 vdev_propagate_state(vd->vdev_parent); 5654 } 5655 5656 boolean_t 5657 vdev_children_are_offline(vdev_t *vd) 5658 { 5659 ASSERT(!vd->vdev_ops->vdev_op_leaf); 5660 5661 for (uint64_t i = 0; i < vd->vdev_children; i++) { 5662 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 5663 return (B_FALSE); 5664 } 5665 5666 return (B_TRUE); 5667 } 5668 5669 /* 5670 * Check the vdev configuration to ensure that it's capable of supporting 5671 * a root pool. We do not support partial configuration. 5672 */ 5673 boolean_t 5674 vdev_is_bootable(vdev_t *vd) 5675 { 5676 if (!vd->vdev_ops->vdev_op_leaf) { 5677 const char *vdev_type = vd->vdev_ops->vdev_op_type; 5678 5679 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) 5680 return (B_FALSE); 5681 } 5682 5683 for (int c = 0; c < vd->vdev_children; c++) { 5684 if (!vdev_is_bootable(vd->vdev_child[c])) 5685 return (B_FALSE); 5686 } 5687 return (B_TRUE); 5688 } 5689 5690 boolean_t 5691 vdev_is_concrete(vdev_t *vd) 5692 { 5693 vdev_ops_t *ops = vd->vdev_ops; 5694 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 5695 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 5696 return (B_FALSE); 5697 } else { 5698 return (B_TRUE); 5699 } 5700 } 5701 5702 /* 5703 * Determine if a log device has valid content. If the vdev was 5704 * removed or faulted in the MOS config then we know that 5705 * the content on the log device has already been written to the pool. 5706 */ 5707 boolean_t 5708 vdev_log_state_valid(vdev_t *vd) 5709 { 5710 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 5711 !vd->vdev_removed) 5712 return (B_TRUE); 5713 5714 for (int c = 0; c < vd->vdev_children; c++) 5715 if (vdev_log_state_valid(vd->vdev_child[c])) 5716 return (B_TRUE); 5717 5718 return (B_FALSE); 5719 } 5720 5721 /* 5722 * Expand a vdev if possible. 5723 */ 5724 void 5725 vdev_expand(vdev_t *vd, uint64_t txg) 5726 { 5727 ASSERT(vd->vdev_top == vd); 5728 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5729 ASSERT(vdev_is_concrete(vd)); 5730 5731 vdev_set_deflate_ratio(vd); 5732 5733 if ((vd->vdev_spa->spa_raidz_expand == NULL || 5734 vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) && 5735 (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 5736 vdev_is_concrete(vd)) { 5737 vdev_metaslab_group_create(vd); 5738 VERIFY0(vdev_metaslab_init(vd, txg)); 5739 vdev_config_dirty(vd); 5740 } 5741 } 5742 5743 /* 5744 * Split a vdev. 5745 */ 5746 void 5747 vdev_split(vdev_t *vd) 5748 { 5749 vdev_t *cvd, *pvd = vd->vdev_parent; 5750 5751 VERIFY3U(pvd->vdev_children, >, 1); 5752 5753 vdev_remove_child(pvd, vd); 5754 vdev_compact_children(pvd); 5755 5756 ASSERT3P(pvd->vdev_child, !=, NULL); 5757 5758 cvd = pvd->vdev_child[0]; 5759 if (pvd->vdev_children == 1) { 5760 vdev_remove_parent(cvd); 5761 cvd->vdev_splitting = B_TRUE; 5762 } 5763 vdev_propagate_state(cvd); 5764 } 5765 5766 void 5767 vdev_deadman(vdev_t *vd, const char *tag) 5768 { 5769 for (int c = 0; c < vd->vdev_children; c++) { 5770 vdev_t *cvd = vd->vdev_child[c]; 5771 5772 vdev_deadman(cvd, tag); 5773 } 5774 5775 if (vd->vdev_ops->vdev_op_leaf) { 5776 vdev_queue_t *vq = &vd->vdev_queue; 5777 5778 mutex_enter(&vq->vq_lock); 5779 if (vq->vq_active > 0) { 5780 spa_t *spa = vd->vdev_spa; 5781 zio_t *fio; 5782 uint64_t delta; 5783 5784 zfs_dbgmsg("slow vdev: %s has %u active IOs", 5785 vd->vdev_path, vq->vq_active); 5786 5787 /* 5788 * Look at the head of all the pending queues, 5789 * if any I/O has been outstanding for longer than 5790 * the spa_deadman_synctime invoke the deadman logic. 5791 */ 5792 fio = list_head(&vq->vq_active_list); 5793 delta = gethrtime() - fio->io_timestamp; 5794 if (delta > spa_deadman_synctime(spa)) 5795 zio_deadman(fio, tag); 5796 } 5797 mutex_exit(&vq->vq_lock); 5798 } 5799 } 5800 5801 void 5802 vdev_defer_resilver(vdev_t *vd) 5803 { 5804 ASSERT(vd->vdev_ops->vdev_op_leaf); 5805 5806 vd->vdev_resilver_deferred = B_TRUE; 5807 vd->vdev_spa->spa_resilver_deferred = B_TRUE; 5808 } 5809 5810 /* 5811 * Clears the resilver deferred flag on all leaf devs under vd. Returns 5812 * B_TRUE if we have devices that need to be resilvered and are available to 5813 * accept resilver I/Os. 5814 */ 5815 boolean_t 5816 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx) 5817 { 5818 boolean_t resilver_needed = B_FALSE; 5819 spa_t *spa = vd->vdev_spa; 5820 5821 for (int c = 0; c < vd->vdev_children; c++) { 5822 vdev_t *cvd = vd->vdev_child[c]; 5823 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx); 5824 } 5825 5826 if (vd == spa->spa_root_vdev && 5827 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { 5828 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 5829 vdev_config_dirty(vd); 5830 spa->spa_resilver_deferred = B_FALSE; 5831 return (resilver_needed); 5832 } 5833 5834 if (!vdev_is_concrete(vd) || vd->vdev_aux || 5835 !vd->vdev_ops->vdev_op_leaf) 5836 return (resilver_needed); 5837 5838 vd->vdev_resilver_deferred = B_FALSE; 5839 5840 return (!vdev_is_dead(vd) && !vd->vdev_offline && 5841 vdev_resilver_needed(vd, NULL, NULL)); 5842 } 5843 5844 boolean_t 5845 vdev_xlate_is_empty(zfs_range_seg64_t *rs) 5846 { 5847 return (rs->rs_start == rs->rs_end); 5848 } 5849 5850 /* 5851 * Translate a logical range to the first contiguous physical range for the 5852 * specified vdev_t. This function is initially called with a leaf vdev and 5853 * will walk each parent vdev until it reaches a top-level vdev. Once the 5854 * top-level is reached the physical range is initialized and the recursive 5855 * function begins to unwind. As it unwinds it calls the parent's vdev 5856 * specific translation function to do the real conversion. 5857 */ 5858 void 5859 vdev_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs, 5860 zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs) 5861 { 5862 /* 5863 * Walk up the vdev tree 5864 */ 5865 if (vd != vd->vdev_top) { 5866 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs, 5867 remain_rs); 5868 } else { 5869 /* 5870 * We've reached the top-level vdev, initialize the physical 5871 * range to the logical range and set an empty remaining 5872 * range then start to unwind. 5873 */ 5874 physical_rs->rs_start = logical_rs->rs_start; 5875 physical_rs->rs_end = logical_rs->rs_end; 5876 5877 remain_rs->rs_start = logical_rs->rs_start; 5878 remain_rs->rs_end = logical_rs->rs_start; 5879 5880 return; 5881 } 5882 5883 vdev_t *pvd = vd->vdev_parent; 5884 ASSERT3P(pvd, !=, NULL); 5885 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL); 5886 5887 /* 5888 * As this recursive function unwinds, translate the logical 5889 * range into its physical and any remaining components by calling 5890 * the vdev specific translate function. 5891 */ 5892 zfs_range_seg64_t intermediate = { 0 }; 5893 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs); 5894 5895 physical_rs->rs_start = intermediate.rs_start; 5896 physical_rs->rs_end = intermediate.rs_end; 5897 } 5898 5899 void 5900 vdev_xlate_walk(vdev_t *vd, const zfs_range_seg64_t *logical_rs, 5901 vdev_xlate_func_t *func, void *arg) 5902 { 5903 zfs_range_seg64_t iter_rs = *logical_rs; 5904 zfs_range_seg64_t physical_rs; 5905 zfs_range_seg64_t remain_rs; 5906 5907 while (!vdev_xlate_is_empty(&iter_rs)) { 5908 5909 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs); 5910 5911 /* 5912 * With raidz and dRAID, it's possible that the logical range 5913 * does not live on this leaf vdev. Only when there is a non- 5914 * zero physical size call the provided function. 5915 */ 5916 if (!vdev_xlate_is_empty(&physical_rs)) 5917 func(arg, &physical_rs); 5918 5919 iter_rs = remain_rs; 5920 } 5921 } 5922 5923 static char * 5924 vdev_name(vdev_t *vd, char *buf, int buflen) 5925 { 5926 if (vd->vdev_path == NULL) { 5927 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) { 5928 strlcpy(buf, vd->vdev_spa->spa_name, buflen); 5929 } else if (!vd->vdev_ops->vdev_op_leaf) { 5930 snprintf(buf, buflen, "%s-%llu", 5931 vd->vdev_ops->vdev_op_type, 5932 (u_longlong_t)vd->vdev_id); 5933 } 5934 } else { 5935 strlcpy(buf, vd->vdev_path, buflen); 5936 } 5937 return (buf); 5938 } 5939 5940 /* 5941 * Look at the vdev tree and determine whether any devices are currently being 5942 * replaced. 5943 */ 5944 boolean_t 5945 vdev_replace_in_progress(vdev_t *vdev) 5946 { 5947 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0); 5948 5949 if (vdev->vdev_ops == &vdev_replacing_ops) 5950 return (B_TRUE); 5951 5952 /* 5953 * A 'spare' vdev indicates that we have a replace in progress, unless 5954 * it has exactly two children, and the second, the hot spare, has 5955 * finished being resilvered. 5956 */ 5957 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 || 5958 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING))) 5959 return (B_TRUE); 5960 5961 for (int i = 0; i < vdev->vdev_children; i++) { 5962 if (vdev_replace_in_progress(vdev->vdev_child[i])) 5963 return (B_TRUE); 5964 } 5965 5966 return (B_FALSE); 5967 } 5968 5969 /* 5970 * Add a (source=src, propname=propval) list to an nvlist. 5971 */ 5972 static void 5973 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval, 5974 uint64_t intval, zprop_source_t src) 5975 { 5976 nvlist_t *propval; 5977 5978 propval = fnvlist_alloc(); 5979 fnvlist_add_uint64(propval, ZPROP_SOURCE, src); 5980 5981 if (strval != NULL) 5982 fnvlist_add_string(propval, ZPROP_VALUE, strval); 5983 else 5984 fnvlist_add_uint64(propval, ZPROP_VALUE, intval); 5985 5986 fnvlist_add_nvlist(nvl, propname, propval); 5987 nvlist_free(propval); 5988 } 5989 5990 static void 5991 vdev_props_set_sync(void *arg, dmu_tx_t *tx) 5992 { 5993 vdev_t *vd; 5994 nvlist_t *nvp = arg; 5995 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5996 objset_t *mos = spa->spa_meta_objset; 5997 nvpair_t *elem = NULL; 5998 uint64_t vdev_guid; 5999 uint64_t objid; 6000 nvlist_t *nvprops; 6001 6002 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV); 6003 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS); 6004 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE); 6005 6006 /* this vdev could get removed while waiting for this sync task */ 6007 if (vd == NULL) 6008 return; 6009 6010 /* 6011 * Set vdev property values in the vdev props mos object. 6012 */ 6013 if (vdev_prop_get_objid(vd, &objid) != 0) 6014 panic("unexpected vdev type"); 6015 6016 mutex_enter(&spa->spa_props_lock); 6017 6018 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 6019 uint64_t intval; 6020 const char *strval; 6021 vdev_prop_t prop; 6022 const char *propname = nvpair_name(elem); 6023 zprop_type_t proptype; 6024 6025 switch (prop = vdev_name_to_prop(propname)) { 6026 case VDEV_PROP_USERPROP: 6027 if (vdev_prop_user(propname)) { 6028 strval = fnvpair_value_string(elem); 6029 if (strlen(strval) == 0) { 6030 /* remove the property if value == "" */ 6031 (void) zap_remove(mos, objid, propname, 6032 tx); 6033 } else { 6034 VERIFY0(zap_update(mos, objid, propname, 6035 1, strlen(strval) + 1, strval, tx)); 6036 } 6037 spa_history_log_internal(spa, "vdev set", tx, 6038 "vdev_guid=%llu: %s=%s", 6039 (u_longlong_t)vdev_guid, nvpair_name(elem), 6040 strval); 6041 } 6042 break; 6043 default: 6044 /* normalize the property name */ 6045 propname = vdev_prop_to_name(prop); 6046 proptype = vdev_prop_get_type(prop); 6047 6048 if (nvpair_type(elem) == DATA_TYPE_STRING) { 6049 ASSERT(proptype == PROP_TYPE_STRING); 6050 strval = fnvpair_value_string(elem); 6051 VERIFY0(zap_update(mos, objid, propname, 6052 1, strlen(strval) + 1, strval, tx)); 6053 spa_history_log_internal(spa, "vdev set", tx, 6054 "vdev_guid=%llu: %s=%s", 6055 (u_longlong_t)vdev_guid, nvpair_name(elem), 6056 strval); 6057 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 6058 intval = fnvpair_value_uint64(elem); 6059 6060 if (proptype == PROP_TYPE_INDEX) { 6061 const char *unused; 6062 VERIFY0(vdev_prop_index_to_string( 6063 prop, intval, &unused)); 6064 } 6065 VERIFY0(zap_update(mos, objid, propname, 6066 sizeof (uint64_t), 1, &intval, tx)); 6067 spa_history_log_internal(spa, "vdev set", tx, 6068 "vdev_guid=%llu: %s=%lld", 6069 (u_longlong_t)vdev_guid, 6070 nvpair_name(elem), (longlong_t)intval); 6071 } else { 6072 panic("invalid vdev property type %u", 6073 nvpair_type(elem)); 6074 } 6075 } 6076 6077 } 6078 6079 mutex_exit(&spa->spa_props_lock); 6080 } 6081 6082 int 6083 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 6084 { 6085 spa_t *spa = vd->vdev_spa; 6086 nvpair_t *elem = NULL; 6087 uint64_t vdev_guid; 6088 nvlist_t *nvprops; 6089 int error = 0; 6090 6091 ASSERT(vd != NULL); 6092 6093 /* Check that vdev has a zap we can use */ 6094 if (vd->vdev_root_zap == 0 && 6095 vd->vdev_top_zap == 0 && 6096 vd->vdev_leaf_zap == 0) 6097 return (SET_ERROR(EINVAL)); 6098 6099 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV, 6100 &vdev_guid) != 0) 6101 return (SET_ERROR(EINVAL)); 6102 6103 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS, 6104 &nvprops) != 0) 6105 return (SET_ERROR(EINVAL)); 6106 6107 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) 6108 return (SET_ERROR(EINVAL)); 6109 6110 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 6111 const char *propname = nvpair_name(elem); 6112 vdev_prop_t prop = vdev_name_to_prop(propname); 6113 uint64_t intval = 0; 6114 const char *strval = NULL; 6115 6116 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) { 6117 error = EINVAL; 6118 goto end; 6119 } 6120 6121 if (prop != VDEV_PROP_USERPROP && vdev_prop_readonly(prop)) { 6122 error = EROFS; 6123 goto end; 6124 } 6125 6126 /* Special Processing */ 6127 switch (prop) { 6128 case VDEV_PROP_PATH: 6129 if (vd->vdev_path == NULL) { 6130 error = EROFS; 6131 break; 6132 } 6133 if (nvpair_value_string(elem, &strval) != 0) { 6134 error = EINVAL; 6135 break; 6136 } 6137 /* New path must start with /dev/ */ 6138 if (strncmp(strval, "/dev/", 5)) { 6139 error = EINVAL; 6140 break; 6141 } 6142 error = spa_vdev_setpath(spa, vdev_guid, strval); 6143 break; 6144 case VDEV_PROP_ALLOCATING: 6145 if (nvpair_value_uint64(elem, &intval) != 0) { 6146 error = EINVAL; 6147 break; 6148 } 6149 if (intval != vd->vdev_noalloc) 6150 break; 6151 if (intval == 0) 6152 error = spa_vdev_noalloc(spa, vdev_guid); 6153 else 6154 error = spa_vdev_alloc(spa, vdev_guid); 6155 break; 6156 case VDEV_PROP_FAILFAST: 6157 if (nvpair_value_uint64(elem, &intval) != 0) { 6158 error = EINVAL; 6159 break; 6160 } 6161 vd->vdev_failfast = intval & 1; 6162 break; 6163 case VDEV_PROP_SIT_OUT: 6164 /* Only expose this for a draid or raidz leaf */ 6165 if (!vd->vdev_ops->vdev_op_leaf || 6166 vd->vdev_top == NULL || 6167 (vd->vdev_top->vdev_ops != &vdev_raidz_ops && 6168 vd->vdev_top->vdev_ops != &vdev_draid_ops)) { 6169 error = ENOTSUP; 6170 break; 6171 } 6172 if (nvpair_value_uint64(elem, &intval) != 0) { 6173 error = EINVAL; 6174 break; 6175 } 6176 if (intval == 1) { 6177 vdev_t *ancestor = vd; 6178 while (ancestor->vdev_parent != vd->vdev_top) 6179 ancestor = ancestor->vdev_parent; 6180 vdev_t *pvd = vd->vdev_top; 6181 uint_t sitouts = 0; 6182 for (int i = 0; i < pvd->vdev_children; i++) { 6183 if (pvd->vdev_child[i] == ancestor) 6184 continue; 6185 if (vdev_sit_out_reads( 6186 pvd->vdev_child[i], 0)) { 6187 sitouts++; 6188 } 6189 } 6190 if (sitouts >= vdev_get_nparity(pvd)) { 6191 error = ZFS_ERR_TOO_MANY_SITOUTS; 6192 break; 6193 } 6194 if (error == 0) 6195 vdev_raidz_sit_child(vd, 6196 INT64_MAX - gethrestime_sec()); 6197 } else { 6198 vdev_raidz_unsit_child(vd); 6199 } 6200 break; 6201 case VDEV_PROP_AUTOSIT: 6202 if (vd->vdev_ops != &vdev_raidz_ops && 6203 vd->vdev_ops != &vdev_draid_ops) { 6204 error = ENOTSUP; 6205 break; 6206 } 6207 if (nvpair_value_uint64(elem, &intval) != 0) { 6208 error = EINVAL; 6209 break; 6210 } 6211 vd->vdev_autosit = intval == 1; 6212 break; 6213 case VDEV_PROP_CHECKSUM_N: 6214 if (nvpair_value_uint64(elem, &intval) != 0) { 6215 error = EINVAL; 6216 break; 6217 } 6218 vd->vdev_checksum_n = intval; 6219 break; 6220 case VDEV_PROP_CHECKSUM_T: 6221 if (nvpair_value_uint64(elem, &intval) != 0) { 6222 error = EINVAL; 6223 break; 6224 } 6225 vd->vdev_checksum_t = intval; 6226 break; 6227 case VDEV_PROP_IO_N: 6228 if (nvpair_value_uint64(elem, &intval) != 0) { 6229 error = EINVAL; 6230 break; 6231 } 6232 vd->vdev_io_n = intval; 6233 break; 6234 case VDEV_PROP_IO_T: 6235 if (nvpair_value_uint64(elem, &intval) != 0) { 6236 error = EINVAL; 6237 break; 6238 } 6239 vd->vdev_io_t = intval; 6240 break; 6241 case VDEV_PROP_SLOW_IO_EVENTS: 6242 if (nvpair_value_uint64(elem, &intval) != 0) { 6243 error = EINVAL; 6244 break; 6245 } 6246 vd->vdev_slow_io_events = intval != 0; 6247 break; 6248 case VDEV_PROP_SLOW_IO_N: 6249 if (nvpair_value_uint64(elem, &intval) != 0) { 6250 error = EINVAL; 6251 break; 6252 } 6253 vd->vdev_slow_io_n = intval; 6254 break; 6255 case VDEV_PROP_SLOW_IO_T: 6256 if (nvpair_value_uint64(elem, &intval) != 0) { 6257 error = EINVAL; 6258 break; 6259 } 6260 vd->vdev_slow_io_t = intval; 6261 break; 6262 default: 6263 /* Most processing is done in vdev_props_set_sync */ 6264 break; 6265 } 6266 end: 6267 if (error != 0) { 6268 intval = error; 6269 vdev_prop_add_list(outnvl, propname, strval, intval, 0); 6270 return (error); 6271 } 6272 } 6273 6274 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync, 6275 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 6276 } 6277 6278 int 6279 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 6280 { 6281 spa_t *spa = vd->vdev_spa; 6282 objset_t *mos = spa->spa_meta_objset; 6283 int err = 0; 6284 uint64_t objid; 6285 uint64_t vdev_guid; 6286 nvpair_t *elem = NULL; 6287 nvlist_t *nvprops = NULL; 6288 uint64_t intval = 0; 6289 boolean_t boolval = 0; 6290 char *strval = NULL; 6291 const char *propname = NULL; 6292 vdev_prop_t prop; 6293 6294 ASSERT(vd != NULL); 6295 ASSERT(mos != NULL); 6296 6297 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV, 6298 &vdev_guid) != 0) 6299 return (SET_ERROR(EINVAL)); 6300 6301 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops); 6302 6303 if (vdev_prop_get_objid(vd, &objid) != 0) 6304 return (SET_ERROR(EINVAL)); 6305 ASSERT(objid != 0); 6306 6307 mutex_enter(&spa->spa_props_lock); 6308 6309 if (nvprops != NULL) { 6310 char namebuf[64] = { 0 }; 6311 6312 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 6313 intval = 0; 6314 strval = NULL; 6315 propname = nvpair_name(elem); 6316 prop = vdev_name_to_prop(propname); 6317 zprop_source_t src = ZPROP_SRC_DEFAULT; 6318 uint64_t integer_size, num_integers; 6319 6320 switch (prop) { 6321 /* Special Read-only Properties */ 6322 case VDEV_PROP_NAME: 6323 strval = vdev_name(vd, namebuf, 6324 sizeof (namebuf)); 6325 if (strval == NULL) 6326 continue; 6327 vdev_prop_add_list(outnvl, propname, strval, 0, 6328 ZPROP_SRC_NONE); 6329 continue; 6330 case VDEV_PROP_CAPACITY: 6331 /* percent used */ 6332 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 : 6333 (vd->vdev_stat.vs_alloc * 100 / 6334 vd->vdev_stat.vs_dspace); 6335 vdev_prop_add_list(outnvl, propname, NULL, 6336 intval, ZPROP_SRC_NONE); 6337 continue; 6338 case VDEV_PROP_STATE: 6339 vdev_prop_add_list(outnvl, propname, NULL, 6340 vd->vdev_state, ZPROP_SRC_NONE); 6341 continue; 6342 case VDEV_PROP_GUID: 6343 vdev_prop_add_list(outnvl, propname, NULL, 6344 vd->vdev_guid, ZPROP_SRC_NONE); 6345 continue; 6346 case VDEV_PROP_ASIZE: 6347 vdev_prop_add_list(outnvl, propname, NULL, 6348 vd->vdev_asize, ZPROP_SRC_NONE); 6349 continue; 6350 case VDEV_PROP_PSIZE: 6351 vdev_prop_add_list(outnvl, propname, NULL, 6352 vd->vdev_psize, ZPROP_SRC_NONE); 6353 continue; 6354 case VDEV_PROP_ASHIFT: 6355 vdev_prop_add_list(outnvl, propname, NULL, 6356 vd->vdev_ashift, ZPROP_SRC_NONE); 6357 continue; 6358 case VDEV_PROP_SIZE: 6359 vdev_prop_add_list(outnvl, propname, NULL, 6360 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE); 6361 continue; 6362 case VDEV_PROP_FREE: 6363 vdev_prop_add_list(outnvl, propname, NULL, 6364 vd->vdev_stat.vs_dspace - 6365 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 6366 continue; 6367 case VDEV_PROP_ALLOCATED: 6368 vdev_prop_add_list(outnvl, propname, NULL, 6369 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 6370 continue; 6371 case VDEV_PROP_EXPANDSZ: 6372 vdev_prop_add_list(outnvl, propname, NULL, 6373 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE); 6374 continue; 6375 case VDEV_PROP_FRAGMENTATION: 6376 vdev_prop_add_list(outnvl, propname, NULL, 6377 vd->vdev_stat.vs_fragmentation, 6378 ZPROP_SRC_NONE); 6379 continue; 6380 case VDEV_PROP_PARITY: 6381 vdev_prop_add_list(outnvl, propname, NULL, 6382 vdev_get_nparity(vd), ZPROP_SRC_NONE); 6383 continue; 6384 case VDEV_PROP_PATH: 6385 if (vd->vdev_path == NULL) 6386 continue; 6387 vdev_prop_add_list(outnvl, propname, 6388 vd->vdev_path, 0, ZPROP_SRC_NONE); 6389 continue; 6390 case VDEV_PROP_DEVID: 6391 if (vd->vdev_devid == NULL) 6392 continue; 6393 vdev_prop_add_list(outnvl, propname, 6394 vd->vdev_devid, 0, ZPROP_SRC_NONE); 6395 continue; 6396 case VDEV_PROP_PHYS_PATH: 6397 if (vd->vdev_physpath == NULL) 6398 continue; 6399 vdev_prop_add_list(outnvl, propname, 6400 vd->vdev_physpath, 0, ZPROP_SRC_NONE); 6401 continue; 6402 case VDEV_PROP_ENC_PATH: 6403 if (vd->vdev_enc_sysfs_path == NULL) 6404 continue; 6405 vdev_prop_add_list(outnvl, propname, 6406 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE); 6407 continue; 6408 case VDEV_PROP_FRU: 6409 if (vd->vdev_fru == NULL) 6410 continue; 6411 vdev_prop_add_list(outnvl, propname, 6412 vd->vdev_fru, 0, ZPROP_SRC_NONE); 6413 continue; 6414 case VDEV_PROP_PARENT: 6415 if (vd->vdev_parent != NULL) { 6416 strval = vdev_name(vd->vdev_parent, 6417 namebuf, sizeof (namebuf)); 6418 vdev_prop_add_list(outnvl, propname, 6419 strval, 0, ZPROP_SRC_NONE); 6420 } 6421 continue; 6422 case VDEV_PROP_CHILDREN: 6423 if (vd->vdev_children > 0) 6424 strval = kmem_zalloc(ZAP_MAXVALUELEN, 6425 KM_SLEEP); 6426 for (uint64_t i = 0; i < vd->vdev_children; 6427 i++) { 6428 const char *vname; 6429 6430 vname = vdev_name(vd->vdev_child[i], 6431 namebuf, sizeof (namebuf)); 6432 if (vname == NULL) 6433 vname = "(unknown)"; 6434 if (strlen(strval) > 0) 6435 strlcat(strval, ",", 6436 ZAP_MAXVALUELEN); 6437 strlcat(strval, vname, ZAP_MAXVALUELEN); 6438 } 6439 if (strval != NULL) { 6440 vdev_prop_add_list(outnvl, propname, 6441 strval, 0, ZPROP_SRC_NONE); 6442 kmem_free(strval, ZAP_MAXVALUELEN); 6443 } 6444 continue; 6445 case VDEV_PROP_NUMCHILDREN: 6446 vdev_prop_add_list(outnvl, propname, NULL, 6447 vd->vdev_children, ZPROP_SRC_NONE); 6448 continue; 6449 case VDEV_PROP_READ_ERRORS: 6450 vdev_prop_add_list(outnvl, propname, NULL, 6451 vd->vdev_stat.vs_read_errors, 6452 ZPROP_SRC_NONE); 6453 continue; 6454 case VDEV_PROP_WRITE_ERRORS: 6455 vdev_prop_add_list(outnvl, propname, NULL, 6456 vd->vdev_stat.vs_write_errors, 6457 ZPROP_SRC_NONE); 6458 continue; 6459 case VDEV_PROP_CHECKSUM_ERRORS: 6460 vdev_prop_add_list(outnvl, propname, NULL, 6461 vd->vdev_stat.vs_checksum_errors, 6462 ZPROP_SRC_NONE); 6463 continue; 6464 case VDEV_PROP_INITIALIZE_ERRORS: 6465 vdev_prop_add_list(outnvl, propname, NULL, 6466 vd->vdev_stat.vs_initialize_errors, 6467 ZPROP_SRC_NONE); 6468 continue; 6469 case VDEV_PROP_TRIM_ERRORS: 6470 vdev_prop_add_list(outnvl, propname, NULL, 6471 vd->vdev_stat.vs_trim_errors, 6472 ZPROP_SRC_NONE); 6473 continue; 6474 case VDEV_PROP_SLOW_IOS: 6475 vdev_prop_add_list(outnvl, propname, NULL, 6476 vd->vdev_stat.vs_slow_ios, 6477 ZPROP_SRC_NONE); 6478 continue; 6479 case VDEV_PROP_OPS_NULL: 6480 vdev_prop_add_list(outnvl, propname, NULL, 6481 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL], 6482 ZPROP_SRC_NONE); 6483 continue; 6484 case VDEV_PROP_OPS_READ: 6485 vdev_prop_add_list(outnvl, propname, NULL, 6486 vd->vdev_stat.vs_ops[ZIO_TYPE_READ], 6487 ZPROP_SRC_NONE); 6488 continue; 6489 case VDEV_PROP_OPS_WRITE: 6490 vdev_prop_add_list(outnvl, propname, NULL, 6491 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE], 6492 ZPROP_SRC_NONE); 6493 continue; 6494 case VDEV_PROP_OPS_FREE: 6495 vdev_prop_add_list(outnvl, propname, NULL, 6496 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE], 6497 ZPROP_SRC_NONE); 6498 continue; 6499 case VDEV_PROP_OPS_CLAIM: 6500 vdev_prop_add_list(outnvl, propname, NULL, 6501 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM], 6502 ZPROP_SRC_NONE); 6503 continue; 6504 case VDEV_PROP_OPS_TRIM: 6505 /* 6506 * TRIM ops and bytes are reported to user 6507 * space as ZIO_TYPE_FLUSH. This is done to 6508 * preserve the vdev_stat_t structure layout 6509 * for user space. 6510 */ 6511 vdev_prop_add_list(outnvl, propname, NULL, 6512 vd->vdev_stat.vs_ops[ZIO_TYPE_FLUSH], 6513 ZPROP_SRC_NONE); 6514 continue; 6515 case VDEV_PROP_BYTES_NULL: 6516 vdev_prop_add_list(outnvl, propname, NULL, 6517 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL], 6518 ZPROP_SRC_NONE); 6519 continue; 6520 case VDEV_PROP_BYTES_READ: 6521 vdev_prop_add_list(outnvl, propname, NULL, 6522 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ], 6523 ZPROP_SRC_NONE); 6524 continue; 6525 case VDEV_PROP_BYTES_WRITE: 6526 vdev_prop_add_list(outnvl, propname, NULL, 6527 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE], 6528 ZPROP_SRC_NONE); 6529 continue; 6530 case VDEV_PROP_BYTES_FREE: 6531 vdev_prop_add_list(outnvl, propname, NULL, 6532 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE], 6533 ZPROP_SRC_NONE); 6534 continue; 6535 case VDEV_PROP_BYTES_CLAIM: 6536 vdev_prop_add_list(outnvl, propname, NULL, 6537 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM], 6538 ZPROP_SRC_NONE); 6539 continue; 6540 case VDEV_PROP_BYTES_TRIM: 6541 /* 6542 * TRIM ops and bytes are reported to user 6543 * space as ZIO_TYPE_FLUSH. This is done to 6544 * preserve the vdev_stat_t structure layout 6545 * for user space. 6546 */ 6547 vdev_prop_add_list(outnvl, propname, NULL, 6548 vd->vdev_stat.vs_bytes[ZIO_TYPE_FLUSH], 6549 ZPROP_SRC_NONE); 6550 continue; 6551 case VDEV_PROP_REMOVING: 6552 vdev_prop_add_list(outnvl, propname, NULL, 6553 vd->vdev_removing, ZPROP_SRC_NONE); 6554 continue; 6555 case VDEV_PROP_RAIDZ_EXPANDING: 6556 /* Only expose this for raidz */ 6557 if (vd->vdev_ops == &vdev_raidz_ops) { 6558 vdev_prop_add_list(outnvl, propname, 6559 NULL, vd->vdev_rz_expanding, 6560 ZPROP_SRC_NONE); 6561 } 6562 continue; 6563 case VDEV_PROP_SIT_OUT: 6564 /* Only expose this for a draid or raidz leaf */ 6565 if (vd->vdev_ops->vdev_op_leaf && 6566 vd->vdev_top != NULL && 6567 (vd->vdev_top->vdev_ops == 6568 &vdev_raidz_ops || 6569 vd->vdev_top->vdev_ops == 6570 &vdev_draid_ops)) { 6571 vdev_prop_add_list(outnvl, propname, 6572 NULL, vdev_sit_out_reads(vd, 0), 6573 ZPROP_SRC_NONE); 6574 } 6575 continue; 6576 case VDEV_PROP_TRIM_SUPPORT: 6577 /* only valid for leaf vdevs */ 6578 if (vd->vdev_ops->vdev_op_leaf) { 6579 vdev_prop_add_list(outnvl, propname, 6580 NULL, vd->vdev_has_trim, 6581 ZPROP_SRC_NONE); 6582 } 6583 continue; 6584 /* Numeric Properites */ 6585 case VDEV_PROP_ALLOCATING: 6586 /* Leaf vdevs cannot have this property */ 6587 if (vd->vdev_mg == NULL && 6588 vd->vdev_top != NULL) { 6589 src = ZPROP_SRC_NONE; 6590 intval = ZPROP_BOOLEAN_NA; 6591 } else { 6592 err = vdev_prop_get_int(vd, prop, 6593 &intval); 6594 if (err && err != ENOENT) 6595 break; 6596 6597 if (intval == 6598 vdev_prop_default_numeric(prop)) 6599 src = ZPROP_SRC_DEFAULT; 6600 else 6601 src = ZPROP_SRC_LOCAL; 6602 } 6603 6604 vdev_prop_add_list(outnvl, propname, NULL, 6605 intval, src); 6606 break; 6607 case VDEV_PROP_FAILFAST: 6608 src = ZPROP_SRC_LOCAL; 6609 strval = NULL; 6610 6611 err = zap_lookup(mos, objid, nvpair_name(elem), 6612 sizeof (uint64_t), 1, &intval); 6613 if (err == ENOENT) { 6614 intval = vdev_prop_default_numeric( 6615 prop); 6616 err = 0; 6617 } else if (err) { 6618 break; 6619 } 6620 if (intval == vdev_prop_default_numeric(prop)) 6621 src = ZPROP_SRC_DEFAULT; 6622 6623 vdev_prop_add_list(outnvl, propname, strval, 6624 intval, src); 6625 break; 6626 case VDEV_PROP_AUTOSIT: 6627 /* Only raidz vdevs cannot have this property */ 6628 if (vd->vdev_ops != &vdev_raidz_ops && 6629 vd->vdev_ops != &vdev_draid_ops) { 6630 src = ZPROP_SRC_NONE; 6631 intval = ZPROP_BOOLEAN_NA; 6632 } else { 6633 err = vdev_prop_get_int(vd, prop, 6634 &intval); 6635 if (err && err != ENOENT) 6636 break; 6637 6638 if (intval == 6639 vdev_prop_default_numeric(prop)) 6640 src = ZPROP_SRC_DEFAULT; 6641 else 6642 src = ZPROP_SRC_LOCAL; 6643 } 6644 6645 vdev_prop_add_list(outnvl, propname, NULL, 6646 intval, src); 6647 break; 6648 6649 case VDEV_PROP_SLOW_IO_EVENTS: 6650 err = vdev_prop_get_bool(vd, prop, &boolval); 6651 if (err && err != ENOENT) 6652 break; 6653 6654 src = ZPROP_SRC_LOCAL; 6655 if (boolval == vdev_prop_default_numeric(prop)) 6656 src = ZPROP_SRC_DEFAULT; 6657 6658 vdev_prop_add_list(outnvl, propname, NULL, 6659 boolval, src); 6660 break; 6661 case VDEV_PROP_CHECKSUM_N: 6662 case VDEV_PROP_CHECKSUM_T: 6663 case VDEV_PROP_IO_N: 6664 case VDEV_PROP_IO_T: 6665 case VDEV_PROP_SLOW_IO_N: 6666 case VDEV_PROP_SLOW_IO_T: 6667 err = vdev_prop_get_int(vd, prop, &intval); 6668 if (err && err != ENOENT) 6669 break; 6670 6671 if (intval == vdev_prop_default_numeric(prop)) 6672 src = ZPROP_SRC_DEFAULT; 6673 else 6674 src = ZPROP_SRC_LOCAL; 6675 6676 vdev_prop_add_list(outnvl, propname, NULL, 6677 intval, src); 6678 break; 6679 /* Text Properties */ 6680 case VDEV_PROP_COMMENT: 6681 /* Exists in the ZAP below */ 6682 /* FALLTHRU */ 6683 case VDEV_PROP_USERPROP: 6684 /* User Properites */ 6685 src = ZPROP_SRC_LOCAL; 6686 6687 err = zap_length(mos, objid, nvpair_name(elem), 6688 &integer_size, &num_integers); 6689 if (err) 6690 break; 6691 6692 switch (integer_size) { 6693 case 8: 6694 /* User properties cannot be integers */ 6695 err = EINVAL; 6696 break; 6697 case 1: 6698 /* string property */ 6699 strval = kmem_alloc(num_integers, 6700 KM_SLEEP); 6701 err = zap_lookup(mos, objid, 6702 nvpair_name(elem), 1, 6703 num_integers, strval); 6704 if (err) { 6705 kmem_free(strval, 6706 num_integers); 6707 break; 6708 } 6709 vdev_prop_add_list(outnvl, propname, 6710 strval, 0, src); 6711 kmem_free(strval, num_integers); 6712 break; 6713 } 6714 break; 6715 default: 6716 err = ENOENT; 6717 break; 6718 } 6719 if (err) 6720 break; 6721 } 6722 } else { 6723 /* 6724 * Get all properties from the MOS vdev property object. 6725 */ 6726 zap_cursor_t zc; 6727 zap_attribute_t *za = zap_attribute_alloc(); 6728 for (zap_cursor_init(&zc, mos, objid); 6729 (err = zap_cursor_retrieve(&zc, za)) == 0; 6730 zap_cursor_advance(&zc)) { 6731 intval = 0; 6732 strval = NULL; 6733 zprop_source_t src = ZPROP_SRC_DEFAULT; 6734 propname = za->za_name; 6735 6736 switch (za->za_integer_length) { 6737 case 8: 6738 /* We do not allow integer user properties */ 6739 /* This is likely an internal value */ 6740 break; 6741 case 1: 6742 /* string property */ 6743 strval = kmem_alloc(za->za_num_integers, 6744 KM_SLEEP); 6745 err = zap_lookup(mos, objid, za->za_name, 1, 6746 za->za_num_integers, strval); 6747 if (err) { 6748 kmem_free(strval, za->za_num_integers); 6749 break; 6750 } 6751 vdev_prop_add_list(outnvl, propname, strval, 0, 6752 src); 6753 kmem_free(strval, za->za_num_integers); 6754 break; 6755 6756 default: 6757 break; 6758 } 6759 } 6760 zap_cursor_fini(&zc); 6761 zap_attribute_free(za); 6762 } 6763 6764 mutex_exit(&spa->spa_props_lock); 6765 if (err && err != ENOENT) { 6766 return (err); 6767 } 6768 6769 return (0); 6770 } 6771 6772 EXPORT_SYMBOL(vdev_fault); 6773 EXPORT_SYMBOL(vdev_degrade); 6774 EXPORT_SYMBOL(vdev_online); 6775 EXPORT_SYMBOL(vdev_offline); 6776 EXPORT_SYMBOL(vdev_clear); 6777 6778 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW, 6779 "Target number of metaslabs per top-level vdev"); 6780 6781 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW, 6782 "Default lower limit for metaslab size"); 6783 6784 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW, 6785 "Default upper limit for metaslab size"); 6786 6787 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW, 6788 "Minimum number of metaslabs per top-level vdev"); 6789 6790 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW, 6791 "Practical upper limit of total metaslabs per top-level vdev"); 6792 6793 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW, 6794 "Rate limit slow IO (delay) events to this many per second"); 6795 6796 ZFS_MODULE_PARAM(zfs, zfs_, deadman_events_per_second, UINT, ZMOD_RW, 6797 "Rate limit hung IO (deadman) events to this many per second"); 6798 6799 ZFS_MODULE_PARAM(zfs, zfs_, dio_write_verify_events_per_second, UINT, ZMOD_RW, 6800 "Rate Direct I/O write verify events to this many per second"); 6801 6802 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, direct_write_verify, UINT, ZMOD_RW, 6803 "Direct I/O writes will perform for checksum verification before " 6804 "commiting write"); 6805 6806 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW, 6807 "Rate limit checksum events to this many checksum errors per second " 6808 "(do not set below ZED threshold)."); 6809 6810 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW, 6811 "Ignore errors during resilver/scrub"); 6812 6813 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW, 6814 "Bypass vdev_validate()"); 6815 6816 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW, 6817 "Disable cache flushes"); 6818 6819 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW, 6820 "Minimum number of metaslabs required to dedicate one for log blocks"); 6821 6822 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift, 6823 param_set_min_auto_ashift, param_get_uint, ZMOD_RW, 6824 "Minimum ashift used when creating new top-level vdevs"); 6825 6826 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift, 6827 param_set_max_auto_ashift, param_get_uint, ZMOD_RW, 6828 "Maximum ashift used when optimizing for logical -> physical sector " 6829 "size on new top-level vdevs"); 6830 6831 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, raidz_impl, 6832 param_set_raidz_impl, param_get_raidz_impl, ZMOD_RW, 6833 "RAIDZ implementation"); 6834