1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2017 Joyent, Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 * Copyright (c) 2019, Datto Inc. All rights reserved. 31 * Copyright (c) 2021, Klara Inc. 32 * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP. 33 */ 34 35 #include <sys/zfs_context.h> 36 #include <sys/fm/fs/zfs.h> 37 #include <sys/spa.h> 38 #include <sys/spa_impl.h> 39 #include <sys/bpobj.h> 40 #include <sys/dmu.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_dir.h> 43 #include <sys/vdev_impl.h> 44 #include <sys/vdev_rebuild.h> 45 #include <sys/vdev_draid.h> 46 #include <sys/uberblock_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/space_map.h> 50 #include <sys/space_reftree.h> 51 #include <sys/zio.h> 52 #include <sys/zap.h> 53 #include <sys/fs/zfs.h> 54 #include <sys/arc.h> 55 #include <sys/zil.h> 56 #include <sys/dsl_scan.h> 57 #include <sys/vdev_raidz.h> 58 #include <sys/abd.h> 59 #include <sys/vdev_initialize.h> 60 #include <sys/vdev_trim.h> 61 #include <sys/vdev_raidz.h> 62 #include <sys/zvol.h> 63 #include <sys/zfs_ratelimit.h> 64 #include "zfs_prop.h" 65 66 /* 67 * One metaslab from each (normal-class) vdev is used by the ZIL. These are 68 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are 69 * part of the spa_embedded_log_class. The metaslab with the most free space 70 * in each vdev is selected for this purpose when the pool is opened (or a 71 * vdev is added). See vdev_metaslab_init(). 72 * 73 * Log blocks can be allocated from the following locations. Each one is tried 74 * in order until the allocation succeeds: 75 * 1. dedicated log vdevs, aka "slog" (spa_log_class) 76 * 2. embedded slog metaslabs (spa_embedded_log_class) 77 * 3. other metaslabs in normal vdevs (spa_normal_class) 78 * 79 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer 80 * than this number of metaslabs in the vdev. This ensures that we don't set 81 * aside an unreasonable amount of space for the ZIL. If set to less than 82 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced 83 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab. 84 */ 85 static uint_t zfs_embedded_slog_min_ms = 64; 86 87 /* default target for number of metaslabs per top-level vdev */ 88 static uint_t zfs_vdev_default_ms_count = 200; 89 90 /* minimum number of metaslabs per top-level vdev */ 91 static uint_t zfs_vdev_min_ms_count = 16; 92 93 /* practical upper limit of total metaslabs per top-level vdev */ 94 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17; 95 96 /* lower limit for metaslab size (512M) */ 97 static uint_t zfs_vdev_default_ms_shift = 29; 98 99 /* upper limit for metaslab size (16G) */ 100 static uint_t zfs_vdev_max_ms_shift = 34; 101 102 int vdev_validate_skip = B_FALSE; 103 104 /* 105 * Since the DTL space map of a vdev is not expected to have a lot of 106 * entries, we default its block size to 4K. 107 */ 108 int zfs_vdev_dtl_sm_blksz = (1 << 12); 109 110 /* 111 * Rate limit slow IO (delay) events to this many per second. 112 */ 113 static unsigned int zfs_slow_io_events_per_second = 20; 114 115 /* 116 * Rate limit deadman "hung IO" events to this many per second. 117 */ 118 static unsigned int zfs_deadman_events_per_second = 1; 119 120 /* 121 * Rate limit direct write IO verify failures to this many per scond. 122 */ 123 static unsigned int zfs_dio_write_verify_events_per_second = 20; 124 125 /* 126 * Rate limit checksum events after this many checksum errors per second. 127 */ 128 static unsigned int zfs_checksum_events_per_second = 20; 129 130 /* 131 * Ignore errors during scrub/resilver. Allows to work around resilver 132 * upon import when there are pool errors. 133 */ 134 static int zfs_scan_ignore_errors = 0; 135 136 /* 137 * vdev-wide space maps that have lots of entries written to them at 138 * the end of each transaction can benefit from a higher I/O bandwidth 139 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 140 */ 141 int zfs_vdev_standard_sm_blksz = (1 << 17); 142 143 /* 144 * Tunable parameter for debugging or performance analysis. Setting this 145 * will cause pool corruption on power loss if a volatile out-of-order 146 * write cache is enabled. 147 */ 148 int zfs_nocacheflush = 0; 149 150 /* 151 * Maximum and minimum ashift values that can be automatically set based on 152 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX 153 * is higher than the maximum value, it is intentionally limited here to not 154 * excessively impact pool space efficiency. Higher ashift values may still 155 * be forced by vdev logical ashift or by user via ashift property, but won't 156 * be set automatically as a performance optimization. 157 */ 158 uint_t zfs_vdev_max_auto_ashift = 14; 159 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN; 160 161 /* 162 * VDEV checksum verification for Direct I/O writes. This is neccessary for 163 * Linux, because anonymous pages can not be placed under write protection 164 * during Direct I/O writes. 165 */ 166 #if !defined(__FreeBSD__) 167 uint_t zfs_vdev_direct_write_verify = 1; 168 #else 169 uint_t zfs_vdev_direct_write_verify = 0; 170 #endif 171 172 void 173 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 174 { 175 va_list adx; 176 char buf[256]; 177 178 va_start(adx, fmt); 179 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 180 va_end(adx); 181 182 if (vd->vdev_path != NULL) { 183 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 184 vd->vdev_path, buf); 185 } else { 186 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 187 vd->vdev_ops->vdev_op_type, 188 (u_longlong_t)vd->vdev_id, 189 (u_longlong_t)vd->vdev_guid, buf); 190 } 191 } 192 193 void 194 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 195 { 196 char state[20]; 197 198 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 199 zfs_dbgmsg("%*svdev %llu: %s", indent, "", 200 (u_longlong_t)vd->vdev_id, 201 vd->vdev_ops->vdev_op_type); 202 return; 203 } 204 205 switch (vd->vdev_state) { 206 case VDEV_STATE_UNKNOWN: 207 (void) snprintf(state, sizeof (state), "unknown"); 208 break; 209 case VDEV_STATE_CLOSED: 210 (void) snprintf(state, sizeof (state), "closed"); 211 break; 212 case VDEV_STATE_OFFLINE: 213 (void) snprintf(state, sizeof (state), "offline"); 214 break; 215 case VDEV_STATE_REMOVED: 216 (void) snprintf(state, sizeof (state), "removed"); 217 break; 218 case VDEV_STATE_CANT_OPEN: 219 (void) snprintf(state, sizeof (state), "can't open"); 220 break; 221 case VDEV_STATE_FAULTED: 222 (void) snprintf(state, sizeof (state), "faulted"); 223 break; 224 case VDEV_STATE_DEGRADED: 225 (void) snprintf(state, sizeof (state), "degraded"); 226 break; 227 case VDEV_STATE_HEALTHY: 228 (void) snprintf(state, sizeof (state), "healthy"); 229 break; 230 default: 231 (void) snprintf(state, sizeof (state), "<state %u>", 232 (uint_t)vd->vdev_state); 233 } 234 235 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 236 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 237 vd->vdev_islog ? " (log)" : "", 238 (u_longlong_t)vd->vdev_guid, 239 vd->vdev_path ? vd->vdev_path : "N/A", state); 240 241 for (uint64_t i = 0; i < vd->vdev_children; i++) 242 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 243 } 244 245 /* 246 * Virtual device management. 247 */ 248 249 static vdev_ops_t *const vdev_ops_table[] = { 250 &vdev_root_ops, 251 &vdev_raidz_ops, 252 &vdev_draid_ops, 253 &vdev_draid_spare_ops, 254 &vdev_mirror_ops, 255 &vdev_replacing_ops, 256 &vdev_spare_ops, 257 &vdev_disk_ops, 258 &vdev_file_ops, 259 &vdev_missing_ops, 260 &vdev_hole_ops, 261 &vdev_indirect_ops, 262 NULL 263 }; 264 265 /* 266 * Given a vdev type, return the appropriate ops vector. 267 */ 268 static vdev_ops_t * 269 vdev_getops(const char *type) 270 { 271 vdev_ops_t *ops, *const *opspp; 272 273 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 274 if (strcmp(ops->vdev_op_type, type) == 0) 275 break; 276 277 return (ops); 278 } 279 280 /* 281 * Given a vdev and a metaslab class, find which metaslab group we're 282 * interested in. All vdevs may belong to two different metaslab classes. 283 * Dedicated slog devices use only the primary metaslab group, rather than a 284 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL. 285 */ 286 metaslab_group_t * 287 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc) 288 { 289 if (mc == spa_embedded_log_class(vd->vdev_spa) && 290 vd->vdev_log_mg != NULL) 291 return (vd->vdev_log_mg); 292 else 293 return (vd->vdev_mg); 294 } 295 296 void 297 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 298 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 299 { 300 (void) vd, (void) remain_rs; 301 302 physical_rs->rs_start = logical_rs->rs_start; 303 physical_rs->rs_end = logical_rs->rs_end; 304 } 305 306 /* 307 * Derive the enumerated allocation bias from string input. 308 * String origin is either the per-vdev zap or zpool(8). 309 */ 310 static vdev_alloc_bias_t 311 vdev_derive_alloc_bias(const char *bias) 312 { 313 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 314 315 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) 316 alloc_bias = VDEV_BIAS_LOG; 317 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) 318 alloc_bias = VDEV_BIAS_SPECIAL; 319 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) 320 alloc_bias = VDEV_BIAS_DEDUP; 321 322 return (alloc_bias); 323 } 324 325 /* 326 * Default asize function: return the MAX of psize with the asize of 327 * all children. This is what's used by anything other than RAID-Z. 328 */ 329 uint64_t 330 vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg) 331 { 332 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 333 uint64_t csize; 334 335 for (int c = 0; c < vd->vdev_children; c++) { 336 csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg); 337 asize = MAX(asize, csize); 338 } 339 340 return (asize); 341 } 342 343 uint64_t 344 vdev_default_min_asize(vdev_t *vd) 345 { 346 return (vd->vdev_min_asize); 347 } 348 349 /* 350 * Get the minimum allocatable size. We define the allocatable size as 351 * the vdev's asize rounded to the nearest metaslab. This allows us to 352 * replace or attach devices which don't have the same physical size but 353 * can still satisfy the same number of allocations. 354 */ 355 uint64_t 356 vdev_get_min_asize(vdev_t *vd) 357 { 358 vdev_t *pvd = vd->vdev_parent; 359 360 /* 361 * If our parent is NULL (inactive spare or cache) or is the root, 362 * just return our own asize. 363 */ 364 if (pvd == NULL) 365 return (vd->vdev_asize); 366 367 /* 368 * The top-level vdev just returns the allocatable size rounded 369 * to the nearest metaslab. 370 */ 371 if (vd == vd->vdev_top) 372 return (P2ALIGN_TYPED(vd->vdev_asize, 1ULL << vd->vdev_ms_shift, 373 uint64_t)); 374 375 return (pvd->vdev_ops->vdev_op_min_asize(pvd)); 376 } 377 378 void 379 vdev_set_min_asize(vdev_t *vd) 380 { 381 vd->vdev_min_asize = vdev_get_min_asize(vd); 382 383 for (int c = 0; c < vd->vdev_children; c++) 384 vdev_set_min_asize(vd->vdev_child[c]); 385 } 386 387 /* 388 * Get the minimal allocation size for the top-level vdev. 389 */ 390 uint64_t 391 vdev_get_min_alloc(vdev_t *vd) 392 { 393 uint64_t min_alloc = 1ULL << vd->vdev_ashift; 394 395 if (vd->vdev_ops->vdev_op_min_alloc != NULL) 396 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd); 397 398 return (min_alloc); 399 } 400 401 /* 402 * Get the parity level for a top-level vdev. 403 */ 404 uint64_t 405 vdev_get_nparity(vdev_t *vd) 406 { 407 uint64_t nparity = 0; 408 409 if (vd->vdev_ops->vdev_op_nparity != NULL) 410 nparity = vd->vdev_ops->vdev_op_nparity(vd); 411 412 return (nparity); 413 } 414 415 static int 416 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value) 417 { 418 spa_t *spa = vd->vdev_spa; 419 objset_t *mos = spa->spa_meta_objset; 420 uint64_t objid; 421 int err; 422 423 if (vd->vdev_root_zap != 0) { 424 objid = vd->vdev_root_zap; 425 } else if (vd->vdev_top_zap != 0) { 426 objid = vd->vdev_top_zap; 427 } else if (vd->vdev_leaf_zap != 0) { 428 objid = vd->vdev_leaf_zap; 429 } else { 430 return (EINVAL); 431 } 432 433 err = zap_lookup(mos, objid, vdev_prop_to_name(prop), 434 sizeof (uint64_t), 1, value); 435 436 if (err == ENOENT) 437 *value = vdev_prop_default_numeric(prop); 438 439 return (err); 440 } 441 442 /* 443 * Get the number of data disks for a top-level vdev. 444 */ 445 uint64_t 446 vdev_get_ndisks(vdev_t *vd) 447 { 448 uint64_t ndisks = 1; 449 450 if (vd->vdev_ops->vdev_op_ndisks != NULL) 451 ndisks = vd->vdev_ops->vdev_op_ndisks(vd); 452 453 return (ndisks); 454 } 455 456 vdev_t * 457 vdev_lookup_top(spa_t *spa, uint64_t vdev) 458 { 459 vdev_t *rvd = spa->spa_root_vdev; 460 461 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 462 463 if (vdev < rvd->vdev_children) { 464 ASSERT(rvd->vdev_child[vdev] != NULL); 465 return (rvd->vdev_child[vdev]); 466 } 467 468 return (NULL); 469 } 470 471 vdev_t * 472 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 473 { 474 vdev_t *mvd; 475 476 if (vd->vdev_guid == guid) 477 return (vd); 478 479 for (int c = 0; c < vd->vdev_children; c++) 480 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 481 NULL) 482 return (mvd); 483 484 return (NULL); 485 } 486 487 static int 488 vdev_count_leaves_impl(vdev_t *vd) 489 { 490 int n = 0; 491 492 if (vd->vdev_ops->vdev_op_leaf) 493 return (1); 494 495 for (int c = 0; c < vd->vdev_children; c++) 496 n += vdev_count_leaves_impl(vd->vdev_child[c]); 497 498 return (n); 499 } 500 501 int 502 vdev_count_leaves(spa_t *spa) 503 { 504 int rc; 505 506 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 507 rc = vdev_count_leaves_impl(spa->spa_root_vdev); 508 spa_config_exit(spa, SCL_VDEV, FTAG); 509 510 return (rc); 511 } 512 513 void 514 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 515 { 516 size_t oldsize, newsize; 517 uint64_t id = cvd->vdev_id; 518 vdev_t **newchild; 519 520 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 521 ASSERT(cvd->vdev_parent == NULL); 522 523 cvd->vdev_parent = pvd; 524 525 if (pvd == NULL) 526 return; 527 528 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 529 530 oldsize = pvd->vdev_children * sizeof (vdev_t *); 531 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 532 newsize = pvd->vdev_children * sizeof (vdev_t *); 533 534 newchild = kmem_alloc(newsize, KM_SLEEP); 535 if (pvd->vdev_child != NULL) { 536 memcpy(newchild, pvd->vdev_child, oldsize); 537 kmem_free(pvd->vdev_child, oldsize); 538 } 539 540 pvd->vdev_child = newchild; 541 pvd->vdev_child[id] = cvd; 542 543 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 544 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 545 546 /* 547 * Walk up all ancestors to update guid sum. 548 */ 549 for (; pvd != NULL; pvd = pvd->vdev_parent) 550 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 551 552 if (cvd->vdev_ops->vdev_op_leaf) { 553 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); 554 cvd->vdev_spa->spa_leaf_list_gen++; 555 } 556 } 557 558 void 559 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 560 { 561 int c; 562 uint_t id = cvd->vdev_id; 563 564 ASSERT(cvd->vdev_parent == pvd); 565 566 if (pvd == NULL) 567 return; 568 569 ASSERT(id < pvd->vdev_children); 570 ASSERT(pvd->vdev_child[id] == cvd); 571 572 pvd->vdev_child[id] = NULL; 573 cvd->vdev_parent = NULL; 574 575 for (c = 0; c < pvd->vdev_children; c++) 576 if (pvd->vdev_child[c]) 577 break; 578 579 if (c == pvd->vdev_children) { 580 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 581 pvd->vdev_child = NULL; 582 pvd->vdev_children = 0; 583 } 584 585 if (cvd->vdev_ops->vdev_op_leaf) { 586 spa_t *spa = cvd->vdev_spa; 587 list_remove(&spa->spa_leaf_list, cvd); 588 spa->spa_leaf_list_gen++; 589 } 590 591 /* 592 * Walk up all ancestors to update guid sum. 593 */ 594 for (; pvd != NULL; pvd = pvd->vdev_parent) 595 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 596 } 597 598 /* 599 * Remove any holes in the child array. 600 */ 601 void 602 vdev_compact_children(vdev_t *pvd) 603 { 604 vdev_t **newchild, *cvd; 605 int oldc = pvd->vdev_children; 606 int newc; 607 608 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 609 610 if (oldc == 0) 611 return; 612 613 for (int c = newc = 0; c < oldc; c++) 614 if (pvd->vdev_child[c]) 615 newc++; 616 617 if (newc > 0) { 618 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP); 619 620 for (int c = newc = 0; c < oldc; c++) { 621 if ((cvd = pvd->vdev_child[c]) != NULL) { 622 newchild[newc] = cvd; 623 cvd->vdev_id = newc++; 624 } 625 } 626 } else { 627 newchild = NULL; 628 } 629 630 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 631 pvd->vdev_child = newchild; 632 pvd->vdev_children = newc; 633 } 634 635 /* 636 * Allocate and minimally initialize a vdev_t. 637 */ 638 vdev_t * 639 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 640 { 641 vdev_t *vd; 642 vdev_indirect_config_t *vic; 643 644 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 645 vic = &vd->vdev_indirect_config; 646 647 if (spa->spa_root_vdev == NULL) { 648 ASSERT(ops == &vdev_root_ops); 649 spa->spa_root_vdev = vd; 650 spa->spa_load_guid = spa_generate_load_guid(); 651 } 652 653 if (guid == 0 && ops != &vdev_hole_ops) { 654 if (spa->spa_root_vdev == vd) { 655 /* 656 * The root vdev's guid will also be the pool guid, 657 * which must be unique among all pools. 658 */ 659 guid = spa_generate_guid(NULL); 660 } else { 661 /* 662 * Any other vdev's guid must be unique within the pool. 663 */ 664 guid = spa_generate_guid(spa); 665 } 666 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 667 } 668 669 vd->vdev_spa = spa; 670 vd->vdev_id = id; 671 vd->vdev_guid = guid; 672 vd->vdev_guid_sum = guid; 673 vd->vdev_ops = ops; 674 vd->vdev_state = VDEV_STATE_CLOSED; 675 vd->vdev_ishole = (ops == &vdev_hole_ops); 676 vic->vic_prev_indirect_vdev = UINT64_MAX; 677 678 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 679 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 680 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL, 681 0, 0); 682 683 /* 684 * Initialize rate limit structs for events. We rate limit ZIO delay 685 * and checksum events so that we don't overwhelm ZED with thousands 686 * of events when a disk is acting up. 687 */ 688 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second, 689 1); 690 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_deadman_events_per_second, 691 1); 692 zfs_ratelimit_init(&vd->vdev_dio_verify_rl, 693 &zfs_dio_write_verify_events_per_second, 1); 694 zfs_ratelimit_init(&vd->vdev_checksum_rl, 695 &zfs_checksum_events_per_second, 1); 696 697 /* 698 * Default Thresholds for tuning ZED 699 */ 700 vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N); 701 vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T); 702 vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N); 703 vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T); 704 vd->vdev_slow_io_n = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N); 705 vd->vdev_slow_io_t = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T); 706 707 list_link_init(&vd->vdev_config_dirty_node); 708 list_link_init(&vd->vdev_state_dirty_node); 709 list_link_init(&vd->vdev_initialize_node); 710 list_link_init(&vd->vdev_leaf_node); 711 list_link_init(&vd->vdev_trim_node); 712 713 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL); 714 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 715 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 716 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); 717 718 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 719 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 720 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 721 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 722 723 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL); 724 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL); 725 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL); 726 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL); 727 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL); 728 cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL); 729 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL); 730 731 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL); 732 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL); 733 734 for (int t = 0; t < DTL_TYPES; t++) { 735 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 736 0); 737 } 738 739 txg_list_create(&vd->vdev_ms_list, spa, 740 offsetof(struct metaslab, ms_txg_node)); 741 txg_list_create(&vd->vdev_dtl_list, spa, 742 offsetof(struct vdev, vdev_dtl_node)); 743 vd->vdev_stat.vs_timestamp = gethrtime(); 744 vdev_queue_init(vd); 745 746 return (vd); 747 } 748 749 /* 750 * Allocate a new vdev. The 'alloctype' is used to control whether we are 751 * creating a new vdev or loading an existing one - the behavior is slightly 752 * different for each case. 753 */ 754 int 755 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 756 int alloctype) 757 { 758 vdev_ops_t *ops; 759 const char *type; 760 uint64_t guid = 0, islog; 761 vdev_t *vd; 762 vdev_indirect_config_t *vic; 763 const char *tmp = NULL; 764 int rc; 765 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 766 boolean_t top_level = (parent && !parent->vdev_parent); 767 768 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 769 770 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 771 return (SET_ERROR(EINVAL)); 772 773 if ((ops = vdev_getops(type)) == NULL) 774 return (SET_ERROR(EINVAL)); 775 776 /* 777 * If this is a load, get the vdev guid from the nvlist. 778 * Otherwise, vdev_alloc_common() will generate one for us. 779 */ 780 if (alloctype == VDEV_ALLOC_LOAD) { 781 uint64_t label_id; 782 783 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 784 label_id != id) 785 return (SET_ERROR(EINVAL)); 786 787 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 788 return (SET_ERROR(EINVAL)); 789 } else if (alloctype == VDEV_ALLOC_SPARE) { 790 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 791 return (SET_ERROR(EINVAL)); 792 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 793 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 794 return (SET_ERROR(EINVAL)); 795 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 796 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 797 return (SET_ERROR(EINVAL)); 798 } 799 800 /* 801 * The first allocated vdev must be of type 'root'. 802 */ 803 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 804 return (SET_ERROR(EINVAL)); 805 806 /* 807 * Determine whether we're a log vdev. 808 */ 809 islog = 0; 810 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 811 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 812 return (SET_ERROR(ENOTSUP)); 813 814 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 815 return (SET_ERROR(ENOTSUP)); 816 817 if (top_level && alloctype == VDEV_ALLOC_ADD) { 818 const char *bias; 819 820 /* 821 * If creating a top-level vdev, check for allocation 822 * classes input. 823 */ 824 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 825 &bias) == 0) { 826 alloc_bias = vdev_derive_alloc_bias(bias); 827 828 /* spa_vdev_add() expects feature to be enabled */ 829 if (spa->spa_load_state != SPA_LOAD_CREATE && 830 !spa_feature_is_enabled(spa, 831 SPA_FEATURE_ALLOCATION_CLASSES)) { 832 return (SET_ERROR(ENOTSUP)); 833 } 834 } 835 836 /* spa_vdev_add() expects feature to be enabled */ 837 if (ops == &vdev_draid_ops && 838 spa->spa_load_state != SPA_LOAD_CREATE && 839 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) { 840 return (SET_ERROR(ENOTSUP)); 841 } 842 } 843 844 /* 845 * Initialize the vdev specific data. This is done before calling 846 * vdev_alloc_common() since it may fail and this simplifies the 847 * error reporting and cleanup code paths. 848 */ 849 void *tsd = NULL; 850 if (ops->vdev_op_init != NULL) { 851 rc = ops->vdev_op_init(spa, nv, &tsd); 852 if (rc != 0) { 853 return (rc); 854 } 855 } 856 857 vd = vdev_alloc_common(spa, id, guid, ops); 858 vd->vdev_tsd = tsd; 859 vd->vdev_islog = islog; 860 861 if (top_level && alloc_bias != VDEV_BIAS_NONE) 862 vd->vdev_alloc_bias = alloc_bias; 863 864 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0) 865 vd->vdev_path = spa_strdup(tmp); 866 867 /* 868 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a 869 * fault on a vdev and want it to persist across imports (like with 870 * zpool offline -f). 871 */ 872 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp); 873 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) { 874 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 875 vd->vdev_faulted = 1; 876 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 877 } 878 879 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0) 880 vd->vdev_devid = spa_strdup(tmp); 881 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0) 882 vd->vdev_physpath = spa_strdup(tmp); 883 884 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 885 &tmp) == 0) 886 vd->vdev_enc_sysfs_path = spa_strdup(tmp); 887 888 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0) 889 vd->vdev_fru = spa_strdup(tmp); 890 891 /* 892 * Set the whole_disk property. If it's not specified, leave the value 893 * as -1. 894 */ 895 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 896 &vd->vdev_wholedisk) != 0) 897 vd->vdev_wholedisk = -1ULL; 898 899 vic = &vd->vdev_indirect_config; 900 901 ASSERT0(vic->vic_mapping_object); 902 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 903 &vic->vic_mapping_object); 904 ASSERT0(vic->vic_births_object); 905 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 906 &vic->vic_births_object); 907 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 908 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 909 &vic->vic_prev_indirect_vdev); 910 911 /* 912 * Look for the 'not present' flag. This will only be set if the device 913 * was not present at the time of import. 914 */ 915 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 916 &vd->vdev_not_present); 917 918 /* 919 * Get the alignment requirement. Ignore pool ashift for vdev 920 * attach case. 921 */ 922 if (alloctype != VDEV_ALLOC_ATTACH) { 923 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, 924 &vd->vdev_ashift); 925 } else { 926 vd->vdev_attaching = B_TRUE; 927 } 928 929 /* 930 * Retrieve the vdev creation time. 931 */ 932 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 933 &vd->vdev_crtxg); 934 935 if (vd->vdev_ops == &vdev_root_ops && 936 (alloctype == VDEV_ALLOC_LOAD || 937 alloctype == VDEV_ALLOC_SPLIT || 938 alloctype == VDEV_ALLOC_ROOTPOOL)) { 939 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP, 940 &vd->vdev_root_zap); 941 } 942 943 /* 944 * If we're a top-level vdev, try to load the allocation parameters. 945 */ 946 if (top_level && 947 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 948 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 949 &vd->vdev_ms_array); 950 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 951 &vd->vdev_ms_shift); 952 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 953 &vd->vdev_asize); 954 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING, 955 &vd->vdev_noalloc); 956 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 957 &vd->vdev_removing); 958 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 959 &vd->vdev_top_zap); 960 vd->vdev_rz_expanding = nvlist_exists(nv, 961 ZPOOL_CONFIG_RAIDZ_EXPANDING); 962 } else { 963 ASSERT0(vd->vdev_top_zap); 964 } 965 966 if (top_level && alloctype != VDEV_ALLOC_ATTACH) { 967 ASSERT(alloctype == VDEV_ALLOC_LOAD || 968 alloctype == VDEV_ALLOC_ADD || 969 alloctype == VDEV_ALLOC_SPLIT || 970 alloctype == VDEV_ALLOC_ROOTPOOL); 971 /* Note: metaslab_group_create() is now deferred */ 972 } 973 974 if (vd->vdev_ops->vdev_op_leaf && 975 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 976 (void) nvlist_lookup_uint64(nv, 977 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 978 } else { 979 ASSERT0(vd->vdev_leaf_zap); 980 } 981 982 /* 983 * If we're a leaf vdev, try to load the DTL object and other state. 984 */ 985 986 if (vd->vdev_ops->vdev_op_leaf && 987 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 988 alloctype == VDEV_ALLOC_ROOTPOOL)) { 989 if (alloctype == VDEV_ALLOC_LOAD) { 990 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 991 &vd->vdev_dtl_object); 992 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 993 &vd->vdev_unspare); 994 } 995 996 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 997 uint64_t spare = 0; 998 999 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1000 &spare) == 0 && spare) 1001 spa_spare_add(vd); 1002 } 1003 1004 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 1005 &vd->vdev_offline); 1006 1007 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 1008 &vd->vdev_resilver_txg); 1009 1010 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 1011 &vd->vdev_rebuild_txg); 1012 1013 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) 1014 vdev_defer_resilver(vd); 1015 1016 /* 1017 * In general, when importing a pool we want to ignore the 1018 * persistent fault state, as the diagnosis made on another 1019 * system may not be valid in the current context. The only 1020 * exception is if we forced a vdev to a persistently faulted 1021 * state with 'zpool offline -f'. The persistent fault will 1022 * remain across imports until cleared. 1023 * 1024 * Local vdevs will remain in the faulted state. 1025 */ 1026 if (spa_load_state(spa) == SPA_LOAD_OPEN || 1027 spa_load_state(spa) == SPA_LOAD_IMPORT) { 1028 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 1029 &vd->vdev_faulted); 1030 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 1031 &vd->vdev_degraded); 1032 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 1033 &vd->vdev_removed); 1034 1035 if (vd->vdev_faulted || vd->vdev_degraded) { 1036 const char *aux; 1037 1038 vd->vdev_label_aux = 1039 VDEV_AUX_ERR_EXCEEDED; 1040 if (nvlist_lookup_string(nv, 1041 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 1042 strcmp(aux, "external") == 0) 1043 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 1044 else 1045 vd->vdev_faulted = 0ULL; 1046 } 1047 } 1048 } 1049 1050 /* 1051 * Add ourselves to the parent's list of children. 1052 */ 1053 vdev_add_child(parent, vd); 1054 1055 *vdp = vd; 1056 1057 return (0); 1058 } 1059 1060 void 1061 vdev_free(vdev_t *vd) 1062 { 1063 spa_t *spa = vd->vdev_spa; 1064 1065 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 1066 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1067 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 1068 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); 1069 1070 /* 1071 * Scan queues are normally destroyed at the end of a scan. If the 1072 * queue exists here, that implies the vdev is being removed while 1073 * the scan is still running. 1074 */ 1075 if (vd->vdev_scan_io_queue != NULL) { 1076 mutex_enter(&vd->vdev_scan_io_queue_lock); 1077 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); 1078 vd->vdev_scan_io_queue = NULL; 1079 mutex_exit(&vd->vdev_scan_io_queue_lock); 1080 } 1081 1082 /* 1083 * vdev_free() implies closing the vdev first. This is simpler than 1084 * trying to ensure complicated semantics for all callers. 1085 */ 1086 vdev_close(vd); 1087 1088 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 1089 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 1090 1091 /* 1092 * Free all children. 1093 */ 1094 for (int c = 0; c < vd->vdev_children; c++) 1095 vdev_free(vd->vdev_child[c]); 1096 1097 ASSERT(vd->vdev_child == NULL); 1098 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 1099 1100 if (vd->vdev_ops->vdev_op_fini != NULL) 1101 vd->vdev_ops->vdev_op_fini(vd); 1102 1103 /* 1104 * Discard allocation state. 1105 */ 1106 if (vd->vdev_mg != NULL) { 1107 vdev_metaslab_fini(vd); 1108 metaslab_group_destroy(vd->vdev_mg); 1109 vd->vdev_mg = NULL; 1110 } 1111 if (vd->vdev_log_mg != NULL) { 1112 ASSERT0(vd->vdev_ms_count); 1113 metaslab_group_destroy(vd->vdev_log_mg); 1114 vd->vdev_log_mg = NULL; 1115 } 1116 1117 ASSERT0(vd->vdev_stat.vs_space); 1118 ASSERT0(vd->vdev_stat.vs_dspace); 1119 ASSERT0(vd->vdev_stat.vs_alloc); 1120 1121 /* 1122 * Remove this vdev from its parent's child list. 1123 */ 1124 vdev_remove_child(vd->vdev_parent, vd); 1125 1126 ASSERT(vd->vdev_parent == NULL); 1127 ASSERT(!list_link_active(&vd->vdev_leaf_node)); 1128 1129 /* 1130 * Clean up vdev structure. 1131 */ 1132 vdev_queue_fini(vd); 1133 1134 if (vd->vdev_path) 1135 spa_strfree(vd->vdev_path); 1136 if (vd->vdev_devid) 1137 spa_strfree(vd->vdev_devid); 1138 if (vd->vdev_physpath) 1139 spa_strfree(vd->vdev_physpath); 1140 1141 if (vd->vdev_enc_sysfs_path) 1142 spa_strfree(vd->vdev_enc_sysfs_path); 1143 1144 if (vd->vdev_fru) 1145 spa_strfree(vd->vdev_fru); 1146 1147 if (vd->vdev_isspare) 1148 spa_spare_remove(vd); 1149 if (vd->vdev_isl2cache) 1150 spa_l2cache_remove(vd); 1151 1152 txg_list_destroy(&vd->vdev_ms_list); 1153 txg_list_destroy(&vd->vdev_dtl_list); 1154 1155 mutex_enter(&vd->vdev_dtl_lock); 1156 space_map_close(vd->vdev_dtl_sm); 1157 for (int t = 0; t < DTL_TYPES; t++) { 1158 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 1159 range_tree_destroy(vd->vdev_dtl[t]); 1160 } 1161 mutex_exit(&vd->vdev_dtl_lock); 1162 1163 EQUIV(vd->vdev_indirect_births != NULL, 1164 vd->vdev_indirect_mapping != NULL); 1165 if (vd->vdev_indirect_births != NULL) { 1166 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1167 vdev_indirect_births_close(vd->vdev_indirect_births); 1168 } 1169 1170 if (vd->vdev_obsolete_sm != NULL) { 1171 ASSERT(vd->vdev_removing || 1172 vd->vdev_ops == &vdev_indirect_ops); 1173 space_map_close(vd->vdev_obsolete_sm); 1174 vd->vdev_obsolete_sm = NULL; 1175 } 1176 range_tree_destroy(vd->vdev_obsolete_segments); 1177 rw_destroy(&vd->vdev_indirect_rwlock); 1178 mutex_destroy(&vd->vdev_obsolete_lock); 1179 1180 mutex_destroy(&vd->vdev_dtl_lock); 1181 mutex_destroy(&vd->vdev_stat_lock); 1182 mutex_destroy(&vd->vdev_probe_lock); 1183 mutex_destroy(&vd->vdev_scan_io_queue_lock); 1184 1185 mutex_destroy(&vd->vdev_initialize_lock); 1186 mutex_destroy(&vd->vdev_initialize_io_lock); 1187 cv_destroy(&vd->vdev_initialize_io_cv); 1188 cv_destroy(&vd->vdev_initialize_cv); 1189 1190 mutex_destroy(&vd->vdev_trim_lock); 1191 mutex_destroy(&vd->vdev_autotrim_lock); 1192 mutex_destroy(&vd->vdev_trim_io_lock); 1193 cv_destroy(&vd->vdev_trim_cv); 1194 cv_destroy(&vd->vdev_autotrim_cv); 1195 cv_destroy(&vd->vdev_autotrim_kick_cv); 1196 cv_destroy(&vd->vdev_trim_io_cv); 1197 1198 mutex_destroy(&vd->vdev_rebuild_lock); 1199 cv_destroy(&vd->vdev_rebuild_cv); 1200 1201 zfs_ratelimit_fini(&vd->vdev_delay_rl); 1202 zfs_ratelimit_fini(&vd->vdev_deadman_rl); 1203 zfs_ratelimit_fini(&vd->vdev_dio_verify_rl); 1204 zfs_ratelimit_fini(&vd->vdev_checksum_rl); 1205 1206 if (vd == spa->spa_root_vdev) 1207 spa->spa_root_vdev = NULL; 1208 1209 kmem_free(vd, sizeof (vdev_t)); 1210 } 1211 1212 /* 1213 * Transfer top-level vdev state from svd to tvd. 1214 */ 1215 static void 1216 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 1217 { 1218 spa_t *spa = svd->vdev_spa; 1219 metaslab_t *msp; 1220 vdev_t *vd; 1221 int t; 1222 1223 ASSERT(tvd == tvd->vdev_top); 1224 1225 tvd->vdev_ms_array = svd->vdev_ms_array; 1226 tvd->vdev_ms_shift = svd->vdev_ms_shift; 1227 tvd->vdev_ms_count = svd->vdev_ms_count; 1228 tvd->vdev_top_zap = svd->vdev_top_zap; 1229 1230 svd->vdev_ms_array = 0; 1231 svd->vdev_ms_shift = 0; 1232 svd->vdev_ms_count = 0; 1233 svd->vdev_top_zap = 0; 1234 1235 if (tvd->vdev_mg) 1236 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 1237 if (tvd->vdev_log_mg) 1238 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg); 1239 tvd->vdev_mg = svd->vdev_mg; 1240 tvd->vdev_log_mg = svd->vdev_log_mg; 1241 tvd->vdev_ms = svd->vdev_ms; 1242 1243 svd->vdev_mg = NULL; 1244 svd->vdev_log_mg = NULL; 1245 svd->vdev_ms = NULL; 1246 1247 if (tvd->vdev_mg != NULL) 1248 tvd->vdev_mg->mg_vd = tvd; 1249 if (tvd->vdev_log_mg != NULL) 1250 tvd->vdev_log_mg->mg_vd = tvd; 1251 1252 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 1253 svd->vdev_checkpoint_sm = NULL; 1254 1255 tvd->vdev_alloc_bias = svd->vdev_alloc_bias; 1256 svd->vdev_alloc_bias = VDEV_BIAS_NONE; 1257 1258 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 1259 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 1260 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 1261 1262 svd->vdev_stat.vs_alloc = 0; 1263 svd->vdev_stat.vs_space = 0; 1264 svd->vdev_stat.vs_dspace = 0; 1265 1266 /* 1267 * State which may be set on a top-level vdev that's in the 1268 * process of being removed. 1269 */ 1270 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 1271 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 1272 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 1273 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); 1274 ASSERT3P(tvd->vdev_indirect_births, ==, NULL); 1275 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); 1276 ASSERT0(tvd->vdev_noalloc); 1277 ASSERT0(tvd->vdev_removing); 1278 ASSERT0(tvd->vdev_rebuilding); 1279 tvd->vdev_noalloc = svd->vdev_noalloc; 1280 tvd->vdev_removing = svd->vdev_removing; 1281 tvd->vdev_rebuilding = svd->vdev_rebuilding; 1282 tvd->vdev_rebuild_config = svd->vdev_rebuild_config; 1283 tvd->vdev_indirect_config = svd->vdev_indirect_config; 1284 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 1285 tvd->vdev_indirect_births = svd->vdev_indirect_births; 1286 range_tree_swap(&svd->vdev_obsolete_segments, 1287 &tvd->vdev_obsolete_segments); 1288 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 1289 svd->vdev_indirect_config.vic_mapping_object = 0; 1290 svd->vdev_indirect_config.vic_births_object = 0; 1291 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 1292 svd->vdev_indirect_mapping = NULL; 1293 svd->vdev_indirect_births = NULL; 1294 svd->vdev_obsolete_sm = NULL; 1295 svd->vdev_noalloc = 0; 1296 svd->vdev_removing = 0; 1297 svd->vdev_rebuilding = 0; 1298 1299 for (t = 0; t < TXG_SIZE; t++) { 1300 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 1301 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 1302 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 1303 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 1304 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 1305 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 1306 } 1307 1308 if (list_link_active(&svd->vdev_config_dirty_node)) { 1309 vdev_config_clean(svd); 1310 vdev_config_dirty(tvd); 1311 } 1312 1313 if (list_link_active(&svd->vdev_state_dirty_node)) { 1314 vdev_state_clean(svd); 1315 vdev_state_dirty(tvd); 1316 } 1317 1318 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 1319 svd->vdev_deflate_ratio = 0; 1320 1321 tvd->vdev_islog = svd->vdev_islog; 1322 svd->vdev_islog = 0; 1323 1324 dsl_scan_io_queue_vdev_xfer(svd, tvd); 1325 } 1326 1327 static void 1328 vdev_top_update(vdev_t *tvd, vdev_t *vd) 1329 { 1330 if (vd == NULL) 1331 return; 1332 1333 vd->vdev_top = tvd; 1334 1335 for (int c = 0; c < vd->vdev_children; c++) 1336 vdev_top_update(tvd, vd->vdev_child[c]); 1337 } 1338 1339 /* 1340 * Add a mirror/replacing vdev above an existing vdev. There is no need to 1341 * call .vdev_op_init() since mirror/replacing vdevs do not have private state. 1342 */ 1343 vdev_t * 1344 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 1345 { 1346 spa_t *spa = cvd->vdev_spa; 1347 vdev_t *pvd = cvd->vdev_parent; 1348 vdev_t *mvd; 1349 1350 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1351 1352 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 1353 1354 mvd->vdev_asize = cvd->vdev_asize; 1355 mvd->vdev_min_asize = cvd->vdev_min_asize; 1356 mvd->vdev_max_asize = cvd->vdev_max_asize; 1357 mvd->vdev_psize = cvd->vdev_psize; 1358 mvd->vdev_ashift = cvd->vdev_ashift; 1359 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift; 1360 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift; 1361 mvd->vdev_state = cvd->vdev_state; 1362 mvd->vdev_crtxg = cvd->vdev_crtxg; 1363 1364 vdev_remove_child(pvd, cvd); 1365 vdev_add_child(pvd, mvd); 1366 cvd->vdev_id = mvd->vdev_children; 1367 vdev_add_child(mvd, cvd); 1368 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1369 1370 if (mvd == mvd->vdev_top) 1371 vdev_top_transfer(cvd, mvd); 1372 1373 return (mvd); 1374 } 1375 1376 /* 1377 * Remove a 1-way mirror/replacing vdev from the tree. 1378 */ 1379 void 1380 vdev_remove_parent(vdev_t *cvd) 1381 { 1382 vdev_t *mvd = cvd->vdev_parent; 1383 vdev_t *pvd = mvd->vdev_parent; 1384 1385 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1386 1387 ASSERT(mvd->vdev_children == 1); 1388 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1389 mvd->vdev_ops == &vdev_replacing_ops || 1390 mvd->vdev_ops == &vdev_spare_ops); 1391 cvd->vdev_ashift = mvd->vdev_ashift; 1392 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift; 1393 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift; 1394 vdev_remove_child(mvd, cvd); 1395 vdev_remove_child(pvd, mvd); 1396 1397 /* 1398 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1399 * Otherwise, we could have detached an offline device, and when we 1400 * go to import the pool we'll think we have two top-level vdevs, 1401 * instead of a different version of the same top-level vdev. 1402 */ 1403 if (mvd->vdev_top == mvd) { 1404 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1405 cvd->vdev_orig_guid = cvd->vdev_guid; 1406 cvd->vdev_guid += guid_delta; 1407 cvd->vdev_guid_sum += guid_delta; 1408 1409 /* 1410 * If pool not set for autoexpand, we need to also preserve 1411 * mvd's asize to prevent automatic expansion of cvd. 1412 * Otherwise if we are adjusting the mirror by attaching and 1413 * detaching children of non-uniform sizes, the mirror could 1414 * autoexpand, unexpectedly requiring larger devices to 1415 * re-establish the mirror. 1416 */ 1417 if (!cvd->vdev_spa->spa_autoexpand) 1418 cvd->vdev_asize = mvd->vdev_asize; 1419 } 1420 cvd->vdev_id = mvd->vdev_id; 1421 vdev_add_child(pvd, cvd); 1422 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1423 1424 if (cvd == cvd->vdev_top) 1425 vdev_top_transfer(mvd, cvd); 1426 1427 ASSERT(mvd->vdev_children == 0); 1428 vdev_free(mvd); 1429 } 1430 1431 /* 1432 * Choose GCD for spa_gcd_alloc. 1433 */ 1434 static uint64_t 1435 vdev_gcd(uint64_t a, uint64_t b) 1436 { 1437 while (b != 0) { 1438 uint64_t t = b; 1439 b = a % b; 1440 a = t; 1441 } 1442 return (a); 1443 } 1444 1445 /* 1446 * Set spa_min_alloc and spa_gcd_alloc. 1447 */ 1448 static void 1449 vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc) 1450 { 1451 if (min_alloc < spa->spa_min_alloc) 1452 spa->spa_min_alloc = min_alloc; 1453 if (spa->spa_gcd_alloc == INT_MAX) { 1454 spa->spa_gcd_alloc = min_alloc; 1455 } else { 1456 spa->spa_gcd_alloc = vdev_gcd(min_alloc, 1457 spa->spa_gcd_alloc); 1458 } 1459 } 1460 1461 void 1462 vdev_metaslab_group_create(vdev_t *vd) 1463 { 1464 spa_t *spa = vd->vdev_spa; 1465 1466 /* 1467 * metaslab_group_create was delayed until allocation bias was available 1468 */ 1469 if (vd->vdev_mg == NULL) { 1470 metaslab_class_t *mc; 1471 1472 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) 1473 vd->vdev_alloc_bias = VDEV_BIAS_LOG; 1474 1475 ASSERT3U(vd->vdev_islog, ==, 1476 (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); 1477 1478 switch (vd->vdev_alloc_bias) { 1479 case VDEV_BIAS_LOG: 1480 mc = spa_log_class(spa); 1481 break; 1482 case VDEV_BIAS_SPECIAL: 1483 mc = spa_special_class(spa); 1484 break; 1485 case VDEV_BIAS_DEDUP: 1486 mc = spa_dedup_class(spa); 1487 break; 1488 default: 1489 mc = spa_normal_class(spa); 1490 } 1491 1492 vd->vdev_mg = metaslab_group_create(mc, vd, 1493 spa->spa_alloc_count); 1494 1495 if (!vd->vdev_islog) { 1496 vd->vdev_log_mg = metaslab_group_create( 1497 spa_embedded_log_class(spa), vd, 1); 1498 } 1499 1500 /* 1501 * The spa ashift min/max only apply for the normal metaslab 1502 * class. Class destination is late binding so ashift boundary 1503 * setting had to wait until now. 1504 */ 1505 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1506 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { 1507 if (vd->vdev_ashift > spa->spa_max_ashift) 1508 spa->spa_max_ashift = vd->vdev_ashift; 1509 if (vd->vdev_ashift < spa->spa_min_ashift) 1510 spa->spa_min_ashift = vd->vdev_ashift; 1511 1512 uint64_t min_alloc = vdev_get_min_alloc(vd); 1513 vdev_spa_set_alloc(spa, min_alloc); 1514 } 1515 } 1516 } 1517 1518 int 1519 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1520 { 1521 spa_t *spa = vd->vdev_spa; 1522 uint64_t oldc = vd->vdev_ms_count; 1523 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1524 metaslab_t **mspp; 1525 int error; 1526 boolean_t expanding = (oldc != 0); 1527 1528 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1529 1530 /* 1531 * This vdev is not being allocated from yet or is a hole. 1532 */ 1533 if (vd->vdev_ms_shift == 0) 1534 return (0); 1535 1536 ASSERT(!vd->vdev_ishole); 1537 1538 ASSERT(oldc <= newc); 1539 1540 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1541 1542 if (expanding) { 1543 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp)); 1544 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1545 } 1546 1547 vd->vdev_ms = mspp; 1548 vd->vdev_ms_count = newc; 1549 1550 for (uint64_t m = oldc; m < newc; m++) { 1551 uint64_t object = 0; 1552 /* 1553 * vdev_ms_array may be 0 if we are creating the "fake" 1554 * metaslabs for an indirect vdev for zdb's leak detection. 1555 * See zdb_leak_init(). 1556 */ 1557 if (txg == 0 && vd->vdev_ms_array != 0) { 1558 error = dmu_read(spa->spa_meta_objset, 1559 vd->vdev_ms_array, 1560 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1561 DMU_READ_PREFETCH); 1562 if (error != 0) { 1563 vdev_dbgmsg(vd, "unable to read the metaslab " 1564 "array [error=%d]", error); 1565 return (error); 1566 } 1567 } 1568 1569 error = metaslab_init(vd->vdev_mg, m, object, txg, 1570 &(vd->vdev_ms[m])); 1571 if (error != 0) { 1572 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1573 error); 1574 return (error); 1575 } 1576 } 1577 1578 /* 1579 * Find the emptiest metaslab on the vdev and mark it for use for 1580 * embedded slog by moving it from the regular to the log metaslab 1581 * group. 1582 */ 1583 if (vd->vdev_mg->mg_class == spa_normal_class(spa) && 1584 vd->vdev_ms_count > zfs_embedded_slog_min_ms && 1585 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) { 1586 uint64_t slog_msid = 0; 1587 uint64_t smallest = UINT64_MAX; 1588 1589 /* 1590 * Note, we only search the new metaslabs, because the old 1591 * (pre-existing) ones may be active (e.g. have non-empty 1592 * range_tree's), and we don't move them to the new 1593 * metaslab_t. 1594 */ 1595 for (uint64_t m = oldc; m < newc; m++) { 1596 uint64_t alloc = 1597 space_map_allocated(vd->vdev_ms[m]->ms_sm); 1598 if (alloc < smallest) { 1599 slog_msid = m; 1600 smallest = alloc; 1601 } 1602 } 1603 metaslab_t *slog_ms = vd->vdev_ms[slog_msid]; 1604 /* 1605 * The metaslab was marked as dirty at the end of 1606 * metaslab_init(). Remove it from the dirty list so that we 1607 * can uninitialize and reinitialize it to the new class. 1608 */ 1609 if (txg != 0) { 1610 (void) txg_list_remove_this(&vd->vdev_ms_list, 1611 slog_ms, txg); 1612 } 1613 uint64_t sm_obj = space_map_object(slog_ms->ms_sm); 1614 metaslab_fini(slog_ms); 1615 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg, 1616 &vd->vdev_ms[slog_msid])); 1617 } 1618 1619 if (txg == 0) 1620 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1621 1622 /* 1623 * If the vdev is marked as non-allocating then don't 1624 * activate the metaslabs since we want to ensure that 1625 * no allocations are performed on this device. 1626 */ 1627 if (vd->vdev_noalloc) { 1628 /* track non-allocating vdev space */ 1629 spa->spa_nonallocating_dspace += spa_deflate(spa) ? 1630 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 1631 } else if (!expanding) { 1632 metaslab_group_activate(vd->vdev_mg); 1633 if (vd->vdev_log_mg != NULL) 1634 metaslab_group_activate(vd->vdev_log_mg); 1635 } 1636 1637 if (txg == 0) 1638 spa_config_exit(spa, SCL_ALLOC, FTAG); 1639 1640 return (0); 1641 } 1642 1643 void 1644 vdev_metaslab_fini(vdev_t *vd) 1645 { 1646 if (vd->vdev_checkpoint_sm != NULL) { 1647 ASSERT(spa_feature_is_active(vd->vdev_spa, 1648 SPA_FEATURE_POOL_CHECKPOINT)); 1649 space_map_close(vd->vdev_checkpoint_sm); 1650 /* 1651 * Even though we close the space map, we need to set its 1652 * pointer to NULL. The reason is that vdev_metaslab_fini() 1653 * may be called multiple times for certain operations 1654 * (i.e. when destroying a pool) so we need to ensure that 1655 * this clause never executes twice. This logic is similar 1656 * to the one used for the vdev_ms clause below. 1657 */ 1658 vd->vdev_checkpoint_sm = NULL; 1659 } 1660 1661 if (vd->vdev_ms != NULL) { 1662 metaslab_group_t *mg = vd->vdev_mg; 1663 1664 metaslab_group_passivate(mg); 1665 if (vd->vdev_log_mg != NULL) { 1666 ASSERT(!vd->vdev_islog); 1667 metaslab_group_passivate(vd->vdev_log_mg); 1668 } 1669 1670 uint64_t count = vd->vdev_ms_count; 1671 for (uint64_t m = 0; m < count; m++) { 1672 metaslab_t *msp = vd->vdev_ms[m]; 1673 if (msp != NULL) 1674 metaslab_fini(msp); 1675 } 1676 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1677 vd->vdev_ms = NULL; 1678 vd->vdev_ms_count = 0; 1679 1680 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 1681 ASSERT0(mg->mg_histogram[i]); 1682 if (vd->vdev_log_mg != NULL) 1683 ASSERT0(vd->vdev_log_mg->mg_histogram[i]); 1684 } 1685 } 1686 ASSERT0(vd->vdev_ms_count); 1687 } 1688 1689 typedef struct vdev_probe_stats { 1690 boolean_t vps_readable; 1691 boolean_t vps_writeable; 1692 boolean_t vps_zio_done_probe; 1693 int vps_flags; 1694 } vdev_probe_stats_t; 1695 1696 static void 1697 vdev_probe_done(zio_t *zio) 1698 { 1699 spa_t *spa = zio->io_spa; 1700 vdev_t *vd = zio->io_vd; 1701 vdev_probe_stats_t *vps = zio->io_private; 1702 1703 ASSERT(vd->vdev_probe_zio != NULL); 1704 1705 if (zio->io_type == ZIO_TYPE_READ) { 1706 if (zio->io_error == 0) 1707 vps->vps_readable = 1; 1708 if (zio->io_error == 0 && spa_writeable(spa)) { 1709 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1710 zio->io_offset, zio->io_size, zio->io_abd, 1711 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1712 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1713 } else { 1714 abd_free(zio->io_abd); 1715 } 1716 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1717 if (zio->io_error == 0) 1718 vps->vps_writeable = 1; 1719 abd_free(zio->io_abd); 1720 } else if (zio->io_type == ZIO_TYPE_NULL) { 1721 zio_t *pio; 1722 zio_link_t *zl; 1723 1724 vd->vdev_cant_read |= !vps->vps_readable; 1725 vd->vdev_cant_write |= !vps->vps_writeable; 1726 vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u", 1727 vd->vdev_cant_read, vd->vdev_cant_write); 1728 1729 if (vdev_readable(vd) && 1730 (vdev_writeable(vd) || !spa_writeable(spa))) { 1731 zio->io_error = 0; 1732 } else { 1733 ASSERT(zio->io_error != 0); 1734 vdev_dbgmsg(vd, "failed probe"); 1735 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1736 spa, vd, NULL, NULL, 0); 1737 zio->io_error = SET_ERROR(ENXIO); 1738 1739 /* 1740 * If this probe was initiated from zio pipeline, then 1741 * change the state in a spa_async_request. Probes that 1742 * were initiated from a vdev_open can change the state 1743 * as part of the open call. 1744 */ 1745 if (vps->vps_zio_done_probe) { 1746 vd->vdev_fault_wanted = B_TRUE; 1747 spa_async_request(spa, SPA_ASYNC_FAULT_VDEV); 1748 } 1749 } 1750 1751 mutex_enter(&vd->vdev_probe_lock); 1752 ASSERT(vd->vdev_probe_zio == zio); 1753 vd->vdev_probe_zio = NULL; 1754 mutex_exit(&vd->vdev_probe_lock); 1755 1756 zl = NULL; 1757 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1758 if (!vdev_accessible(vd, pio)) 1759 pio->io_error = SET_ERROR(ENXIO); 1760 1761 kmem_free(vps, sizeof (*vps)); 1762 } 1763 } 1764 1765 /* 1766 * Determine whether this device is accessible. 1767 * 1768 * Read and write to several known locations: the pad regions of each 1769 * vdev label but the first, which we leave alone in case it contains 1770 * a VTOC. 1771 */ 1772 zio_t * 1773 vdev_probe(vdev_t *vd, zio_t *zio) 1774 { 1775 spa_t *spa = vd->vdev_spa; 1776 vdev_probe_stats_t *vps = NULL; 1777 zio_t *pio; 1778 1779 ASSERT(vd->vdev_ops->vdev_op_leaf); 1780 1781 /* 1782 * Don't probe the probe. 1783 */ 1784 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1785 return (NULL); 1786 1787 /* 1788 * To prevent 'probe storms' when a device fails, we create 1789 * just one probe i/o at a time. All zios that want to probe 1790 * this vdev will become parents of the probe io. 1791 */ 1792 mutex_enter(&vd->vdev_probe_lock); 1793 1794 if ((pio = vd->vdev_probe_zio) == NULL) { 1795 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1796 1797 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1798 ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD; 1799 vps->vps_zio_done_probe = (zio != NULL); 1800 1801 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1802 /* 1803 * vdev_cant_read and vdev_cant_write can only 1804 * transition from TRUE to FALSE when we have the 1805 * SCL_ZIO lock as writer; otherwise they can only 1806 * transition from FALSE to TRUE. This ensures that 1807 * any zio looking at these values can assume that 1808 * failures persist for the life of the I/O. That's 1809 * important because when a device has intermittent 1810 * connectivity problems, we want to ensure that 1811 * they're ascribed to the device (ENXIO) and not 1812 * the zio (EIO). 1813 * 1814 * Since we hold SCL_ZIO as writer here, clear both 1815 * values so the probe can reevaluate from first 1816 * principles. 1817 */ 1818 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1819 vd->vdev_cant_read = B_FALSE; 1820 vd->vdev_cant_write = B_FALSE; 1821 } 1822 1823 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1824 vdev_probe_done, vps, 1825 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1826 } 1827 1828 if (zio != NULL) 1829 zio_add_child(zio, pio); 1830 1831 mutex_exit(&vd->vdev_probe_lock); 1832 1833 if (vps == NULL) { 1834 ASSERT(zio != NULL); 1835 return (NULL); 1836 } 1837 1838 for (int l = 1; l < VDEV_LABELS; l++) { 1839 zio_nowait(zio_read_phys(pio, vd, 1840 vdev_label_offset(vd->vdev_psize, l, 1841 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE, 1842 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1843 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1844 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1845 } 1846 1847 if (zio == NULL) 1848 return (pio); 1849 1850 zio_nowait(pio); 1851 return (NULL); 1852 } 1853 1854 static void 1855 vdev_load_child(void *arg) 1856 { 1857 vdev_t *vd = arg; 1858 1859 vd->vdev_load_error = vdev_load(vd); 1860 } 1861 1862 static void 1863 vdev_open_child(void *arg) 1864 { 1865 vdev_t *vd = arg; 1866 1867 vd->vdev_open_thread = curthread; 1868 vd->vdev_open_error = vdev_open(vd); 1869 vd->vdev_open_thread = NULL; 1870 } 1871 1872 static boolean_t 1873 vdev_uses_zvols(vdev_t *vd) 1874 { 1875 #ifdef _KERNEL 1876 if (zvol_is_zvol(vd->vdev_path)) 1877 return (B_TRUE); 1878 #endif 1879 1880 for (int c = 0; c < vd->vdev_children; c++) 1881 if (vdev_uses_zvols(vd->vdev_child[c])) 1882 return (B_TRUE); 1883 1884 return (B_FALSE); 1885 } 1886 1887 /* 1888 * Returns B_TRUE if the passed child should be opened. 1889 */ 1890 static boolean_t 1891 vdev_default_open_children_func(vdev_t *vd) 1892 { 1893 (void) vd; 1894 return (B_TRUE); 1895 } 1896 1897 /* 1898 * Open the requested child vdevs. If any of the leaf vdevs are using 1899 * a ZFS volume then do the opens in a single thread. This avoids a 1900 * deadlock when the current thread is holding the spa_namespace_lock. 1901 */ 1902 static void 1903 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func) 1904 { 1905 int children = vd->vdev_children; 1906 1907 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri, 1908 children, children, TASKQ_PREPOPULATE); 1909 vd->vdev_nonrot = B_TRUE; 1910 1911 for (int c = 0; c < children; c++) { 1912 vdev_t *cvd = vd->vdev_child[c]; 1913 1914 if (open_func(cvd) == B_FALSE) 1915 continue; 1916 1917 if (tq == NULL || vdev_uses_zvols(vd)) { 1918 cvd->vdev_open_error = vdev_open(cvd); 1919 } else { 1920 VERIFY(taskq_dispatch(tq, vdev_open_child, 1921 cvd, TQ_SLEEP) != TASKQID_INVALID); 1922 } 1923 1924 vd->vdev_nonrot &= cvd->vdev_nonrot; 1925 } 1926 1927 if (tq != NULL) { 1928 taskq_wait(tq); 1929 taskq_destroy(tq); 1930 } 1931 } 1932 1933 /* 1934 * Open all child vdevs. 1935 */ 1936 void 1937 vdev_open_children(vdev_t *vd) 1938 { 1939 vdev_open_children_impl(vd, vdev_default_open_children_func); 1940 } 1941 1942 /* 1943 * Conditionally open a subset of child vdevs. 1944 */ 1945 void 1946 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func) 1947 { 1948 vdev_open_children_impl(vd, open_func); 1949 } 1950 1951 /* 1952 * Compute the raidz-deflation ratio. Note, we hard-code 128k (1 << 17) 1953 * because it is the "typical" blocksize. Even though SPA_MAXBLOCKSIZE 1954 * changed, this algorithm can not change, otherwise it would inconsistently 1955 * account for existing bp's. We also hard-code txg 0 for the same reason 1956 * since expanded RAIDZ vdevs can use a different asize for different birth 1957 * txg's. 1958 */ 1959 static void 1960 vdev_set_deflate_ratio(vdev_t *vd) 1961 { 1962 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 1963 vd->vdev_deflate_ratio = (1 << 17) / 1964 (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >> 1965 SPA_MINBLOCKSHIFT); 1966 } 1967 } 1968 1969 /* 1970 * Choose the best of two ashifts, preferring one between logical ashift 1971 * (absolute minimum) and administrator defined maximum, otherwise take 1972 * the biggest of the two. 1973 */ 1974 uint64_t 1975 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b) 1976 { 1977 if (a > logical && a <= zfs_vdev_max_auto_ashift) { 1978 if (b <= logical || b > zfs_vdev_max_auto_ashift) 1979 return (a); 1980 else 1981 return (MAX(a, b)); 1982 } else if (b <= logical || b > zfs_vdev_max_auto_ashift) 1983 return (MAX(a, b)); 1984 return (b); 1985 } 1986 1987 /* 1988 * Maximize performance by inflating the configured ashift for top level 1989 * vdevs to be as close to the physical ashift as possible while maintaining 1990 * administrator defined limits and ensuring it doesn't go below the 1991 * logical ashift. 1992 */ 1993 static void 1994 vdev_ashift_optimize(vdev_t *vd) 1995 { 1996 ASSERT(vd == vd->vdev_top); 1997 1998 if (vd->vdev_ashift < vd->vdev_physical_ashift && 1999 vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) { 2000 vd->vdev_ashift = MIN( 2001 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift), 2002 MAX(zfs_vdev_min_auto_ashift, 2003 vd->vdev_physical_ashift)); 2004 } else { 2005 /* 2006 * If the logical and physical ashifts are the same, then 2007 * we ensure that the top-level vdev's ashift is not smaller 2008 * than our minimum ashift value. For the unusual case 2009 * where logical ashift > physical ashift, we can't cap 2010 * the calculated ashift based on max ashift as that 2011 * would cause failures. 2012 * We still check if we need to increase it to match 2013 * the min ashift. 2014 */ 2015 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift, 2016 vd->vdev_ashift); 2017 } 2018 } 2019 2020 /* 2021 * Prepare a virtual device for access. 2022 */ 2023 int 2024 vdev_open(vdev_t *vd) 2025 { 2026 spa_t *spa = vd->vdev_spa; 2027 int error; 2028 uint64_t osize = 0; 2029 uint64_t max_osize = 0; 2030 uint64_t asize, max_asize, psize; 2031 uint64_t logical_ashift = 0; 2032 uint64_t physical_ashift = 0; 2033 2034 ASSERT(vd->vdev_open_thread == curthread || 2035 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2036 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 2037 vd->vdev_state == VDEV_STATE_CANT_OPEN || 2038 vd->vdev_state == VDEV_STATE_OFFLINE); 2039 2040 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2041 vd->vdev_cant_read = B_FALSE; 2042 vd->vdev_cant_write = B_FALSE; 2043 vd->vdev_fault_wanted = B_FALSE; 2044 vd->vdev_min_asize = vdev_get_min_asize(vd); 2045 2046 /* 2047 * If this vdev is not removed, check its fault status. If it's 2048 * faulted, bail out of the open. 2049 */ 2050 if (!vd->vdev_removed && vd->vdev_faulted) { 2051 ASSERT(vd->vdev_children == 0); 2052 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 2053 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 2054 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2055 vd->vdev_label_aux); 2056 return (SET_ERROR(ENXIO)); 2057 } else if (vd->vdev_offline) { 2058 ASSERT(vd->vdev_children == 0); 2059 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 2060 return (SET_ERROR(ENXIO)); 2061 } 2062 2063 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, 2064 &logical_ashift, &physical_ashift); 2065 2066 /* Keep the device in removed state if unplugged */ 2067 if (error == ENOENT && vd->vdev_removed) { 2068 vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED, 2069 VDEV_AUX_NONE); 2070 return (error); 2071 } 2072 2073 /* 2074 * Physical volume size should never be larger than its max size, unless 2075 * the disk has shrunk while we were reading it or the device is buggy 2076 * or damaged: either way it's not safe for use, bail out of the open. 2077 */ 2078 if (osize > max_osize) { 2079 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2080 VDEV_AUX_OPEN_FAILED); 2081 return (SET_ERROR(ENXIO)); 2082 } 2083 2084 /* 2085 * Reset the vdev_reopening flag so that we actually close 2086 * the vdev on error. 2087 */ 2088 vd->vdev_reopening = B_FALSE; 2089 if (zio_injection_enabled && error == 0) 2090 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO)); 2091 2092 if (error) { 2093 if (vd->vdev_removed && 2094 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 2095 vd->vdev_removed = B_FALSE; 2096 2097 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 2098 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 2099 vd->vdev_stat.vs_aux); 2100 } else { 2101 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2102 vd->vdev_stat.vs_aux); 2103 } 2104 return (error); 2105 } 2106 2107 vd->vdev_removed = B_FALSE; 2108 2109 /* 2110 * Recheck the faulted flag now that we have confirmed that 2111 * the vdev is accessible. If we're faulted, bail. 2112 */ 2113 if (vd->vdev_faulted) { 2114 ASSERT(vd->vdev_children == 0); 2115 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 2116 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 2117 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2118 vd->vdev_label_aux); 2119 return (SET_ERROR(ENXIO)); 2120 } 2121 2122 if (vd->vdev_degraded) { 2123 ASSERT(vd->vdev_children == 0); 2124 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2125 VDEV_AUX_ERR_EXCEEDED); 2126 } else { 2127 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 2128 } 2129 2130 /* 2131 * For hole or missing vdevs we just return success. 2132 */ 2133 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 2134 return (0); 2135 2136 for (int c = 0; c < vd->vdev_children; c++) { 2137 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 2138 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2139 VDEV_AUX_NONE); 2140 break; 2141 } 2142 } 2143 2144 osize = P2ALIGN_TYPED(osize, sizeof (vdev_label_t), uint64_t); 2145 max_osize = P2ALIGN_TYPED(max_osize, sizeof (vdev_label_t), uint64_t); 2146 2147 if (vd->vdev_children == 0) { 2148 if (osize < SPA_MINDEVSIZE) { 2149 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2150 VDEV_AUX_TOO_SMALL); 2151 return (SET_ERROR(EOVERFLOW)); 2152 } 2153 psize = osize; 2154 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 2155 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 2156 VDEV_LABEL_END_SIZE); 2157 } else { 2158 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 2159 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 2160 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2161 VDEV_AUX_TOO_SMALL); 2162 return (SET_ERROR(EOVERFLOW)); 2163 } 2164 psize = 0; 2165 asize = osize; 2166 max_asize = max_osize; 2167 } 2168 2169 /* 2170 * If the vdev was expanded, record this so that we can re-create the 2171 * uberblock rings in labels {2,3}, during the next sync. 2172 */ 2173 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0)) 2174 vd->vdev_copy_uberblocks = B_TRUE; 2175 2176 vd->vdev_psize = psize; 2177 2178 /* 2179 * Make sure the allocatable size hasn't shrunk too much. 2180 */ 2181 if (asize < vd->vdev_min_asize) { 2182 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2183 VDEV_AUX_BAD_LABEL); 2184 return (SET_ERROR(EINVAL)); 2185 } 2186 2187 /* 2188 * We can always set the logical/physical ashift members since 2189 * their values are only used to calculate the vdev_ashift when 2190 * the device is first added to the config. These values should 2191 * not be used for anything else since they may change whenever 2192 * the device is reopened and we don't store them in the label. 2193 */ 2194 vd->vdev_physical_ashift = 2195 MAX(physical_ashift, vd->vdev_physical_ashift); 2196 vd->vdev_logical_ashift = MAX(logical_ashift, 2197 vd->vdev_logical_ashift); 2198 2199 if (vd->vdev_asize == 0) { 2200 /* 2201 * This is the first-ever open, so use the computed values. 2202 * For compatibility, a different ashift can be requested. 2203 */ 2204 vd->vdev_asize = asize; 2205 vd->vdev_max_asize = max_asize; 2206 2207 /* 2208 * If the vdev_ashift was not overridden at creation time 2209 * (0) or the override value is impossible for the device, 2210 * then set it the logical ashift and optimize the ashift. 2211 */ 2212 if (vd->vdev_ashift < vd->vdev_logical_ashift) { 2213 vd->vdev_ashift = vd->vdev_logical_ashift; 2214 2215 if (vd->vdev_logical_ashift > ASHIFT_MAX) { 2216 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2217 VDEV_AUX_ASHIFT_TOO_BIG); 2218 return (SET_ERROR(EDOM)); 2219 } 2220 2221 if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE) 2222 vdev_ashift_optimize(vd); 2223 vd->vdev_attaching = B_FALSE; 2224 } 2225 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN || 2226 vd->vdev_ashift > ASHIFT_MAX)) { 2227 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2228 VDEV_AUX_BAD_ASHIFT); 2229 return (SET_ERROR(EDOM)); 2230 } 2231 } else { 2232 /* 2233 * Make sure the alignment required hasn't increased. 2234 */ 2235 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift && 2236 vd->vdev_ops->vdev_op_leaf) { 2237 (void) zfs_ereport_post( 2238 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT, 2239 spa, vd, NULL, NULL, 0); 2240 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2241 VDEV_AUX_BAD_LABEL); 2242 return (SET_ERROR(EDOM)); 2243 } 2244 vd->vdev_max_asize = max_asize; 2245 } 2246 2247 /* 2248 * If all children are healthy we update asize if either: 2249 * The asize has increased, due to a device expansion caused by dynamic 2250 * LUN growth or vdev replacement, and automatic expansion is enabled; 2251 * making the additional space available. 2252 * 2253 * The asize has decreased, due to a device shrink usually caused by a 2254 * vdev replace with a smaller device. This ensures that calculations 2255 * based of max_asize and asize e.g. esize are always valid. It's safe 2256 * to do this as we've already validated that asize is greater than 2257 * vdev_min_asize. 2258 */ 2259 if (vd->vdev_state == VDEV_STATE_HEALTHY && 2260 ((asize > vd->vdev_asize && 2261 (vd->vdev_expanding || spa->spa_autoexpand)) || 2262 (asize < vd->vdev_asize))) 2263 vd->vdev_asize = asize; 2264 2265 vdev_set_min_asize(vd); 2266 2267 /* 2268 * Ensure we can issue some IO before declaring the 2269 * vdev open for business. 2270 */ 2271 if (vd->vdev_ops->vdev_op_leaf && 2272 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 2273 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2274 VDEV_AUX_ERR_EXCEEDED); 2275 return (error); 2276 } 2277 2278 /* 2279 * Track the minimum allocation size. 2280 */ 2281 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 2282 vd->vdev_islog == 0 && vd->vdev_aux == NULL) { 2283 uint64_t min_alloc = vdev_get_min_alloc(vd); 2284 vdev_spa_set_alloc(spa, min_alloc); 2285 } 2286 2287 /* 2288 * If this is a leaf vdev, assess whether a resilver is needed. 2289 * But don't do this if we are doing a reopen for a scrub, since 2290 * this would just restart the scrub we are already doing. 2291 */ 2292 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen) 2293 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd); 2294 2295 return (0); 2296 } 2297 2298 static void 2299 vdev_validate_child(void *arg) 2300 { 2301 vdev_t *vd = arg; 2302 2303 vd->vdev_validate_thread = curthread; 2304 vd->vdev_validate_error = vdev_validate(vd); 2305 vd->vdev_validate_thread = NULL; 2306 } 2307 2308 /* 2309 * Called once the vdevs are all opened, this routine validates the label 2310 * contents. This needs to be done before vdev_load() so that we don't 2311 * inadvertently do repair I/Os to the wrong device. 2312 * 2313 * This function will only return failure if one of the vdevs indicates that it 2314 * has since been destroyed or exported. This is only possible if 2315 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 2316 * will be updated but the function will return 0. 2317 */ 2318 int 2319 vdev_validate(vdev_t *vd) 2320 { 2321 spa_t *spa = vd->vdev_spa; 2322 taskq_t *tq = NULL; 2323 nvlist_t *label; 2324 uint64_t guid = 0, aux_guid = 0, top_guid; 2325 uint64_t state; 2326 nvlist_t *nvl; 2327 uint64_t txg; 2328 int children = vd->vdev_children; 2329 2330 if (vdev_validate_skip) 2331 return (0); 2332 2333 if (children > 0) { 2334 tq = taskq_create("vdev_validate", children, minclsyspri, 2335 children, children, TASKQ_PREPOPULATE); 2336 } 2337 2338 for (uint64_t c = 0; c < children; c++) { 2339 vdev_t *cvd = vd->vdev_child[c]; 2340 2341 if (tq == NULL || vdev_uses_zvols(cvd)) { 2342 vdev_validate_child(cvd); 2343 } else { 2344 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd, 2345 TQ_SLEEP) != TASKQID_INVALID); 2346 } 2347 } 2348 if (tq != NULL) { 2349 taskq_wait(tq); 2350 taskq_destroy(tq); 2351 } 2352 for (int c = 0; c < children; c++) { 2353 int error = vd->vdev_child[c]->vdev_validate_error; 2354 2355 if (error != 0) 2356 return (SET_ERROR(EBADF)); 2357 } 2358 2359 2360 /* 2361 * If the device has already failed, or was marked offline, don't do 2362 * any further validation. Otherwise, label I/O will fail and we will 2363 * overwrite the previous state. 2364 */ 2365 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 2366 return (0); 2367 2368 /* 2369 * If we are performing an extreme rewind, we allow for a label that 2370 * was modified at a point after the current txg. 2371 * If config lock is not held do not check for the txg. spa_sync could 2372 * be updating the vdev's label before updating spa_last_synced_txg. 2373 */ 2374 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 2375 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 2376 txg = UINT64_MAX; 2377 else 2378 txg = spa_last_synced_txg(spa); 2379 2380 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 2381 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2382 VDEV_AUX_BAD_LABEL); 2383 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 2384 "txg %llu", (u_longlong_t)txg); 2385 return (0); 2386 } 2387 2388 /* 2389 * Determine if this vdev has been split off into another 2390 * pool. If so, then refuse to open it. 2391 */ 2392 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 2393 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 2394 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2395 VDEV_AUX_SPLIT_POOL); 2396 nvlist_free(label); 2397 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 2398 return (0); 2399 } 2400 2401 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 2402 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2403 VDEV_AUX_CORRUPT_DATA); 2404 nvlist_free(label); 2405 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2406 ZPOOL_CONFIG_POOL_GUID); 2407 return (0); 2408 } 2409 2410 /* 2411 * If config is not trusted then ignore the spa guid check. This is 2412 * necessary because if the machine crashed during a re-guid the new 2413 * guid might have been written to all of the vdev labels, but not the 2414 * cached config. The check will be performed again once we have the 2415 * trusted config from the MOS. 2416 */ 2417 if (spa->spa_trust_config && guid != spa_guid(spa)) { 2418 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2419 VDEV_AUX_CORRUPT_DATA); 2420 nvlist_free(label); 2421 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 2422 "match config (%llu != %llu)", (u_longlong_t)guid, 2423 (u_longlong_t)spa_guid(spa)); 2424 return (0); 2425 } 2426 2427 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 2428 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 2429 &aux_guid) != 0) 2430 aux_guid = 0; 2431 2432 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 2433 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2434 VDEV_AUX_CORRUPT_DATA); 2435 nvlist_free(label); 2436 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2437 ZPOOL_CONFIG_GUID); 2438 return (0); 2439 } 2440 2441 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 2442 != 0) { 2443 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2444 VDEV_AUX_CORRUPT_DATA); 2445 nvlist_free(label); 2446 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2447 ZPOOL_CONFIG_TOP_GUID); 2448 return (0); 2449 } 2450 2451 /* 2452 * If this vdev just became a top-level vdev because its sibling was 2453 * detached, it will have adopted the parent's vdev guid -- but the 2454 * label may or may not be on disk yet. Fortunately, either version 2455 * of the label will have the same top guid, so if we're a top-level 2456 * vdev, we can safely compare to that instead. 2457 * However, if the config comes from a cachefile that failed to update 2458 * after the detach, a top-level vdev will appear as a non top-level 2459 * vdev in the config. Also relax the constraints if we perform an 2460 * extreme rewind. 2461 * 2462 * If we split this vdev off instead, then we also check the 2463 * original pool's guid. We don't want to consider the vdev 2464 * corrupt if it is partway through a split operation. 2465 */ 2466 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 2467 boolean_t mismatch = B_FALSE; 2468 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 2469 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 2470 mismatch = B_TRUE; 2471 } else { 2472 if (vd->vdev_guid != top_guid && 2473 vd->vdev_top->vdev_guid != guid) 2474 mismatch = B_TRUE; 2475 } 2476 2477 if (mismatch) { 2478 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2479 VDEV_AUX_CORRUPT_DATA); 2480 nvlist_free(label); 2481 vdev_dbgmsg(vd, "vdev_validate: config guid " 2482 "doesn't match label guid"); 2483 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 2484 (u_longlong_t)vd->vdev_guid, 2485 (u_longlong_t)vd->vdev_top->vdev_guid); 2486 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 2487 "aux_guid %llu", (u_longlong_t)guid, 2488 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 2489 return (0); 2490 } 2491 } 2492 2493 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 2494 &state) != 0) { 2495 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2496 VDEV_AUX_CORRUPT_DATA); 2497 nvlist_free(label); 2498 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2499 ZPOOL_CONFIG_POOL_STATE); 2500 return (0); 2501 } 2502 2503 nvlist_free(label); 2504 2505 /* 2506 * If this is a verbatim import, no need to check the 2507 * state of the pool. 2508 */ 2509 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 2510 spa_load_state(spa) == SPA_LOAD_OPEN && 2511 state != POOL_STATE_ACTIVE) { 2512 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 2513 "for spa %s", (u_longlong_t)state, spa->spa_name); 2514 return (SET_ERROR(EBADF)); 2515 } 2516 2517 /* 2518 * If we were able to open and validate a vdev that was 2519 * previously marked permanently unavailable, clear that state 2520 * now. 2521 */ 2522 if (vd->vdev_not_present) 2523 vd->vdev_not_present = 0; 2524 2525 return (0); 2526 } 2527 2528 static void 2529 vdev_update_path(const char *prefix, char *svd, char **dvd, uint64_t guid) 2530 { 2531 if (svd != NULL && *dvd != NULL) { 2532 if (strcmp(svd, *dvd) != 0) { 2533 zfs_dbgmsg("vdev_copy_path: vdev %llu: %s changed " 2534 "from '%s' to '%s'", (u_longlong_t)guid, prefix, 2535 *dvd, svd); 2536 spa_strfree(*dvd); 2537 *dvd = spa_strdup(svd); 2538 } 2539 } else if (svd != NULL) { 2540 *dvd = spa_strdup(svd); 2541 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 2542 (u_longlong_t)guid, *dvd); 2543 } 2544 } 2545 2546 static void 2547 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 2548 { 2549 char *old, *new; 2550 2551 vdev_update_path("vdev_path", svd->vdev_path, &dvd->vdev_path, 2552 dvd->vdev_guid); 2553 2554 vdev_update_path("vdev_devid", svd->vdev_devid, &dvd->vdev_devid, 2555 dvd->vdev_guid); 2556 2557 vdev_update_path("vdev_physpath", svd->vdev_physpath, 2558 &dvd->vdev_physpath, dvd->vdev_guid); 2559 2560 /* 2561 * Our enclosure sysfs path may have changed between imports 2562 */ 2563 old = dvd->vdev_enc_sysfs_path; 2564 new = svd->vdev_enc_sysfs_path; 2565 if ((old != NULL && new == NULL) || 2566 (old == NULL && new != NULL) || 2567 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) { 2568 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path " 2569 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2570 old, new); 2571 2572 if (dvd->vdev_enc_sysfs_path) 2573 spa_strfree(dvd->vdev_enc_sysfs_path); 2574 2575 if (svd->vdev_enc_sysfs_path) { 2576 dvd->vdev_enc_sysfs_path = spa_strdup( 2577 svd->vdev_enc_sysfs_path); 2578 } else { 2579 dvd->vdev_enc_sysfs_path = NULL; 2580 } 2581 } 2582 } 2583 2584 /* 2585 * Recursively copy vdev paths from one vdev to another. Source and destination 2586 * vdev trees must have same geometry otherwise return error. Intended to copy 2587 * paths from userland config into MOS config. 2588 */ 2589 int 2590 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 2591 { 2592 if ((svd->vdev_ops == &vdev_missing_ops) || 2593 (svd->vdev_ishole && dvd->vdev_ishole) || 2594 (dvd->vdev_ops == &vdev_indirect_ops)) 2595 return (0); 2596 2597 if (svd->vdev_ops != dvd->vdev_ops) { 2598 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 2599 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 2600 return (SET_ERROR(EINVAL)); 2601 } 2602 2603 if (svd->vdev_guid != dvd->vdev_guid) { 2604 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 2605 "%llu)", (u_longlong_t)svd->vdev_guid, 2606 (u_longlong_t)dvd->vdev_guid); 2607 return (SET_ERROR(EINVAL)); 2608 } 2609 2610 if (svd->vdev_children != dvd->vdev_children) { 2611 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 2612 "%llu != %llu", (u_longlong_t)svd->vdev_children, 2613 (u_longlong_t)dvd->vdev_children); 2614 return (SET_ERROR(EINVAL)); 2615 } 2616 2617 for (uint64_t i = 0; i < svd->vdev_children; i++) { 2618 int error = vdev_copy_path_strict(svd->vdev_child[i], 2619 dvd->vdev_child[i]); 2620 if (error != 0) 2621 return (error); 2622 } 2623 2624 if (svd->vdev_ops->vdev_op_leaf) 2625 vdev_copy_path_impl(svd, dvd); 2626 2627 return (0); 2628 } 2629 2630 static void 2631 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 2632 { 2633 ASSERT(stvd->vdev_top == stvd); 2634 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 2635 2636 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 2637 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 2638 } 2639 2640 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 2641 return; 2642 2643 /* 2644 * The idea here is that while a vdev can shift positions within 2645 * a top vdev (when replacing, attaching mirror, etc.) it cannot 2646 * step outside of it. 2647 */ 2648 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 2649 2650 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 2651 return; 2652 2653 ASSERT(vd->vdev_ops->vdev_op_leaf); 2654 2655 vdev_copy_path_impl(vd, dvd); 2656 } 2657 2658 /* 2659 * Recursively copy vdev paths from one root vdev to another. Source and 2660 * destination vdev trees may differ in geometry. For each destination leaf 2661 * vdev, search a vdev with the same guid and top vdev id in the source. 2662 * Intended to copy paths from userland config into MOS config. 2663 */ 2664 void 2665 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 2666 { 2667 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 2668 ASSERT(srvd->vdev_ops == &vdev_root_ops); 2669 ASSERT(drvd->vdev_ops == &vdev_root_ops); 2670 2671 for (uint64_t i = 0; i < children; i++) { 2672 vdev_copy_path_search(srvd->vdev_child[i], 2673 drvd->vdev_child[i]); 2674 } 2675 } 2676 2677 /* 2678 * Close a virtual device. 2679 */ 2680 void 2681 vdev_close(vdev_t *vd) 2682 { 2683 vdev_t *pvd = vd->vdev_parent; 2684 spa_t *spa __maybe_unused = vd->vdev_spa; 2685 2686 ASSERT(vd != NULL); 2687 ASSERT(vd->vdev_open_thread == curthread || 2688 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2689 2690 /* 2691 * If our parent is reopening, then we are as well, unless we are 2692 * going offline. 2693 */ 2694 if (pvd != NULL && pvd->vdev_reopening) 2695 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 2696 2697 vd->vdev_ops->vdev_op_close(vd); 2698 2699 /* 2700 * We record the previous state before we close it, so that if we are 2701 * doing a reopen(), we don't generate FMA ereports if we notice that 2702 * it's still faulted. 2703 */ 2704 vd->vdev_prevstate = vd->vdev_state; 2705 2706 if (vd->vdev_offline) 2707 vd->vdev_state = VDEV_STATE_OFFLINE; 2708 else 2709 vd->vdev_state = VDEV_STATE_CLOSED; 2710 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2711 } 2712 2713 void 2714 vdev_hold(vdev_t *vd) 2715 { 2716 spa_t *spa = vd->vdev_spa; 2717 2718 ASSERT(spa_is_root(spa)); 2719 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 2720 return; 2721 2722 for (int c = 0; c < vd->vdev_children; c++) 2723 vdev_hold(vd->vdev_child[c]); 2724 2725 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL) 2726 vd->vdev_ops->vdev_op_hold(vd); 2727 } 2728 2729 void 2730 vdev_rele(vdev_t *vd) 2731 { 2732 ASSERT(spa_is_root(vd->vdev_spa)); 2733 for (int c = 0; c < vd->vdev_children; c++) 2734 vdev_rele(vd->vdev_child[c]); 2735 2736 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL) 2737 vd->vdev_ops->vdev_op_rele(vd); 2738 } 2739 2740 /* 2741 * Reopen all interior vdevs and any unopened leaves. We don't actually 2742 * reopen leaf vdevs which had previously been opened as they might deadlock 2743 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 2744 * If the leaf has never been opened then open it, as usual. 2745 */ 2746 void 2747 vdev_reopen(vdev_t *vd) 2748 { 2749 spa_t *spa = vd->vdev_spa; 2750 2751 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2752 2753 /* set the reopening flag unless we're taking the vdev offline */ 2754 vd->vdev_reopening = !vd->vdev_offline; 2755 vdev_close(vd); 2756 (void) vdev_open(vd); 2757 2758 /* 2759 * Call vdev_validate() here to make sure we have the same device. 2760 * Otherwise, a device with an invalid label could be successfully 2761 * opened in response to vdev_reopen(). 2762 */ 2763 if (vd->vdev_aux) { 2764 (void) vdev_validate_aux(vd); 2765 if (vdev_readable(vd) && vdev_writeable(vd) && 2766 vd->vdev_aux == &spa->spa_l2cache) { 2767 /* 2768 * In case the vdev is present we should evict all ARC 2769 * buffers and pointers to log blocks and reclaim their 2770 * space before restoring its contents to L2ARC. 2771 */ 2772 if (l2arc_vdev_present(vd)) { 2773 l2arc_rebuild_vdev(vd, B_TRUE); 2774 } else { 2775 l2arc_add_vdev(spa, vd); 2776 } 2777 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2778 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 2779 } 2780 } else { 2781 (void) vdev_validate(vd); 2782 } 2783 2784 /* 2785 * Recheck if resilver is still needed and cancel any 2786 * scheduled resilver if resilver is unneeded. 2787 */ 2788 if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) && 2789 spa->spa_async_tasks & SPA_ASYNC_RESILVER) { 2790 mutex_enter(&spa->spa_async_lock); 2791 spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER; 2792 mutex_exit(&spa->spa_async_lock); 2793 } 2794 2795 /* 2796 * Reassess parent vdev's health. 2797 */ 2798 vdev_propagate_state(vd); 2799 } 2800 2801 int 2802 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2803 { 2804 int error; 2805 2806 /* 2807 * Normally, partial opens (e.g. of a mirror) are allowed. 2808 * For a create, however, we want to fail the request if 2809 * there are any components we can't open. 2810 */ 2811 error = vdev_open(vd); 2812 2813 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2814 vdev_close(vd); 2815 return (error ? error : SET_ERROR(ENXIO)); 2816 } 2817 2818 /* 2819 * Recursively load DTLs and initialize all labels. 2820 */ 2821 if ((error = vdev_dtl_load(vd)) != 0 || 2822 (error = vdev_label_init(vd, txg, isreplacing ? 2823 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2824 vdev_close(vd); 2825 return (error); 2826 } 2827 2828 return (0); 2829 } 2830 2831 void 2832 vdev_metaslab_set_size(vdev_t *vd) 2833 { 2834 uint64_t asize = vd->vdev_asize; 2835 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2836 uint64_t ms_shift; 2837 2838 /* 2839 * There are two dimensions to the metaslab sizing calculation: 2840 * the size of the metaslab and the count of metaslabs per vdev. 2841 * 2842 * The default values used below are a good balance between memory 2843 * usage (larger metaslab size means more memory needed for loaded 2844 * metaslabs; more metaslabs means more memory needed for the 2845 * metaslab_t structs), metaslab load time (larger metaslabs take 2846 * longer to load), and metaslab sync time (more metaslabs means 2847 * more time spent syncing all of them). 2848 * 2849 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2850 * The range of the dimensions are as follows: 2851 * 2852 * 2^29 <= ms_size <= 2^34 2853 * 16 <= ms_count <= 131,072 2854 * 2855 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2856 * at least 512MB (2^29) to minimize fragmentation effects when 2857 * testing with smaller devices. However, the count constraint 2858 * of at least 16 metaslabs will override this minimum size goal. 2859 * 2860 * On the upper end of vdev sizes, we aim for a maximum metaslab 2861 * size of 16GB. However, we will cap the total count to 2^17 2862 * metaslabs to keep our memory footprint in check and let the 2863 * metaslab size grow from there if that limit is hit. 2864 * 2865 * The net effect of applying above constrains is summarized below. 2866 * 2867 * vdev size metaslab count 2868 * --------------|----------------- 2869 * < 8GB ~16 2870 * 8GB - 100GB one per 512MB 2871 * 100GB - 3TB ~200 2872 * 3TB - 2PB one per 16GB 2873 * > 2PB ~131,072 2874 * -------------------------------- 2875 * 2876 * Finally, note that all of the above calculate the initial 2877 * number of metaslabs. Expanding a top-level vdev will result 2878 * in additional metaslabs being allocated making it possible 2879 * to exceed the zfs_vdev_ms_count_limit. 2880 */ 2881 2882 if (ms_count < zfs_vdev_min_ms_count) 2883 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 2884 else if (ms_count > zfs_vdev_default_ms_count) 2885 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 2886 else 2887 ms_shift = zfs_vdev_default_ms_shift; 2888 2889 if (ms_shift < SPA_MAXBLOCKSHIFT) { 2890 ms_shift = SPA_MAXBLOCKSHIFT; 2891 } else if (ms_shift > zfs_vdev_max_ms_shift) { 2892 ms_shift = zfs_vdev_max_ms_shift; 2893 /* cap the total count to constrain memory footprint */ 2894 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 2895 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 2896 } 2897 2898 vd->vdev_ms_shift = ms_shift; 2899 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 2900 } 2901 2902 void 2903 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 2904 { 2905 ASSERT(vd == vd->vdev_top); 2906 /* indirect vdevs don't have metaslabs or dtls */ 2907 ASSERT(vdev_is_concrete(vd) || flags == 0); 2908 ASSERT(ISP2(flags)); 2909 ASSERT(spa_writeable(vd->vdev_spa)); 2910 2911 if (flags & VDD_METASLAB) 2912 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 2913 2914 if (flags & VDD_DTL) 2915 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 2916 2917 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 2918 } 2919 2920 void 2921 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 2922 { 2923 for (int c = 0; c < vd->vdev_children; c++) 2924 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 2925 2926 if (vd->vdev_ops->vdev_op_leaf) 2927 vdev_dirty(vd->vdev_top, flags, vd, txg); 2928 } 2929 2930 /* 2931 * DTLs. 2932 * 2933 * A vdev's DTL (dirty time log) is the set of transaction groups for which 2934 * the vdev has less than perfect replication. There are four kinds of DTL: 2935 * 2936 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 2937 * 2938 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 2939 * 2940 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 2941 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 2942 * txgs that was scrubbed. 2943 * 2944 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 2945 * persistent errors or just some device being offline. 2946 * Unlike the other three, the DTL_OUTAGE map is not generally 2947 * maintained; it's only computed when needed, typically to 2948 * determine whether a device can be detached. 2949 * 2950 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 2951 * either has the data or it doesn't. 2952 * 2953 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 2954 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 2955 * if any child is less than fully replicated, then so is its parent. 2956 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 2957 * comprising only those txgs which appear in 'maxfaults' or more children; 2958 * those are the txgs we don't have enough replication to read. For example, 2959 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 2960 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 2961 * two child DTL_MISSING maps. 2962 * 2963 * It should be clear from the above that to compute the DTLs and outage maps 2964 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 2965 * Therefore, that is all we keep on disk. When loading the pool, or after 2966 * a configuration change, we generate all other DTLs from first principles. 2967 */ 2968 void 2969 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2970 { 2971 range_tree_t *rt = vd->vdev_dtl[t]; 2972 2973 ASSERT(t < DTL_TYPES); 2974 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2975 ASSERT(spa_writeable(vd->vdev_spa)); 2976 2977 mutex_enter(&vd->vdev_dtl_lock); 2978 if (!range_tree_contains(rt, txg, size)) 2979 range_tree_add(rt, txg, size); 2980 mutex_exit(&vd->vdev_dtl_lock); 2981 } 2982 2983 boolean_t 2984 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2985 { 2986 range_tree_t *rt = vd->vdev_dtl[t]; 2987 boolean_t dirty = B_FALSE; 2988 2989 ASSERT(t < DTL_TYPES); 2990 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2991 2992 /* 2993 * While we are loading the pool, the DTLs have not been loaded yet. 2994 * This isn't a problem but it can result in devices being tried 2995 * which are known to not have the data. In which case, the import 2996 * is relying on the checksum to ensure that we get the right data. 2997 * Note that while importing we are only reading the MOS, which is 2998 * always checksummed. 2999 */ 3000 mutex_enter(&vd->vdev_dtl_lock); 3001 if (!range_tree_is_empty(rt)) 3002 dirty = range_tree_contains(rt, txg, size); 3003 mutex_exit(&vd->vdev_dtl_lock); 3004 3005 return (dirty); 3006 } 3007 3008 boolean_t 3009 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 3010 { 3011 range_tree_t *rt = vd->vdev_dtl[t]; 3012 boolean_t empty; 3013 3014 mutex_enter(&vd->vdev_dtl_lock); 3015 empty = range_tree_is_empty(rt); 3016 mutex_exit(&vd->vdev_dtl_lock); 3017 3018 return (empty); 3019 } 3020 3021 /* 3022 * Check if the txg falls within the range which must be 3023 * resilvered. DVAs outside this range can always be skipped. 3024 */ 3025 boolean_t 3026 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 3027 uint64_t phys_birth) 3028 { 3029 (void) dva, (void) psize; 3030 3031 /* Set by sequential resilver. */ 3032 if (phys_birth == TXG_UNKNOWN) 3033 return (B_TRUE); 3034 3035 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)); 3036 } 3037 3038 /* 3039 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered. 3040 */ 3041 boolean_t 3042 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 3043 uint64_t phys_birth) 3044 { 3045 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 3046 3047 if (vd->vdev_ops->vdev_op_need_resilver == NULL || 3048 vd->vdev_ops->vdev_op_leaf) 3049 return (B_TRUE); 3050 3051 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize, 3052 phys_birth)); 3053 } 3054 3055 /* 3056 * Returns the lowest txg in the DTL range. 3057 */ 3058 static uint64_t 3059 vdev_dtl_min(vdev_t *vd) 3060 { 3061 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 3062 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 3063 ASSERT0(vd->vdev_children); 3064 3065 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1); 3066 } 3067 3068 /* 3069 * Returns the highest txg in the DTL. 3070 */ 3071 static uint64_t 3072 vdev_dtl_max(vdev_t *vd) 3073 { 3074 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 3075 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 3076 ASSERT0(vd->vdev_children); 3077 3078 return (range_tree_max(vd->vdev_dtl[DTL_MISSING])); 3079 } 3080 3081 /* 3082 * Determine if a resilvering vdev should remove any DTL entries from 3083 * its range. If the vdev was resilvering for the entire duration of the 3084 * scan then it should excise that range from its DTLs. Otherwise, this 3085 * vdev is considered partially resilvered and should leave its DTL 3086 * entries intact. The comment in vdev_dtl_reassess() describes how we 3087 * excise the DTLs. 3088 */ 3089 static boolean_t 3090 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done) 3091 { 3092 ASSERT0(vd->vdev_children); 3093 3094 if (vd->vdev_state < VDEV_STATE_DEGRADED) 3095 return (B_FALSE); 3096 3097 if (vd->vdev_resilver_deferred) 3098 return (B_FALSE); 3099 3100 if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 3101 return (B_TRUE); 3102 3103 if (rebuild_done) { 3104 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3105 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 3106 3107 /* Rebuild not initiated by attach */ 3108 if (vd->vdev_rebuild_txg == 0) 3109 return (B_TRUE); 3110 3111 /* 3112 * When a rebuild completes without error then all missing data 3113 * up to the rebuild max txg has been reconstructed and the DTL 3114 * is eligible for excision. 3115 */ 3116 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE && 3117 vdev_dtl_max(vd) <= vrp->vrp_max_txg) { 3118 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd)); 3119 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg); 3120 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg); 3121 return (B_TRUE); 3122 } 3123 } else { 3124 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 3125 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys; 3126 3127 /* Resilver not initiated by attach */ 3128 if (vd->vdev_resilver_txg == 0) 3129 return (B_TRUE); 3130 3131 /* 3132 * When a resilver is initiated the scan will assign the 3133 * scn_max_txg value to the highest txg value that exists 3134 * in all DTLs. If this device's max DTL is not part of this 3135 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg] 3136 * then it is not eligible for excision. 3137 */ 3138 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 3139 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd)); 3140 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg); 3141 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg); 3142 return (B_TRUE); 3143 } 3144 } 3145 3146 return (B_FALSE); 3147 } 3148 3149 /* 3150 * Reassess DTLs after a config change or scrub completion. If txg == 0 no 3151 * write operations will be issued to the pool. 3152 */ 3153 static void 3154 vdev_dtl_reassess_impl(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, 3155 boolean_t scrub_done, boolean_t rebuild_done, boolean_t faulting) 3156 { 3157 spa_t *spa = vd->vdev_spa; 3158 avl_tree_t reftree; 3159 int minref; 3160 3161 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 3162 3163 for (int c = 0; c < vd->vdev_children; c++) 3164 vdev_dtl_reassess_impl(vd->vdev_child[c], txg, 3165 scrub_txg, scrub_done, rebuild_done, faulting); 3166 3167 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 3168 return; 3169 3170 if (vd->vdev_ops->vdev_op_leaf) { 3171 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 3172 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3173 boolean_t check_excise = B_FALSE; 3174 boolean_t wasempty = B_TRUE; 3175 3176 mutex_enter(&vd->vdev_dtl_lock); 3177 3178 /* 3179 * If requested, pretend the scan or rebuild completed cleanly. 3180 */ 3181 if (zfs_scan_ignore_errors) { 3182 if (scn != NULL) 3183 scn->scn_phys.scn_errors = 0; 3184 if (vr != NULL) 3185 vr->vr_rebuild_phys.vrp_errors = 0; 3186 } 3187 3188 if (scrub_txg != 0 && 3189 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3190 wasempty = B_FALSE; 3191 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d " 3192 "dtl:%llu/%llu errors:%llu", 3193 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg, 3194 (u_longlong_t)scrub_txg, spa->spa_scrub_started, 3195 (u_longlong_t)vdev_dtl_min(vd), 3196 (u_longlong_t)vdev_dtl_max(vd), 3197 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0)); 3198 } 3199 3200 /* 3201 * If we've completed a scrub/resilver or a rebuild cleanly 3202 * then determine if this vdev should remove any DTLs. We 3203 * only want to excise regions on vdevs that were available 3204 * during the entire duration of this scan. 3205 */ 3206 if (rebuild_done && 3207 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) { 3208 check_excise = B_TRUE; 3209 } else { 3210 if (spa->spa_scrub_started || 3211 (scn != NULL && scn->scn_phys.scn_errors == 0)) { 3212 check_excise = B_TRUE; 3213 } 3214 } 3215 3216 if (scrub_txg && check_excise && 3217 vdev_dtl_should_excise(vd, rebuild_done)) { 3218 /* 3219 * We completed a scrub, resilver or rebuild up to 3220 * scrub_txg. If we did it without rebooting, then 3221 * the scrub dtl will be valid, so excise the old 3222 * region and fold in the scrub dtl. Otherwise, 3223 * leave the dtl as-is if there was an error. 3224 * 3225 * There's little trick here: to excise the beginning 3226 * of the DTL_MISSING map, we put it into a reference 3227 * tree and then add a segment with refcnt -1 that 3228 * covers the range [0, scrub_txg). This means 3229 * that each txg in that range has refcnt -1 or 0. 3230 * We then add DTL_SCRUB with a refcnt of 2, so that 3231 * entries in the range [0, scrub_txg) will have a 3232 * positive refcnt -- either 1 or 2. We then convert 3233 * the reference tree into the new DTL_MISSING map. 3234 */ 3235 space_reftree_create(&reftree); 3236 space_reftree_add_map(&reftree, 3237 vd->vdev_dtl[DTL_MISSING], 1); 3238 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 3239 space_reftree_add_map(&reftree, 3240 vd->vdev_dtl[DTL_SCRUB], 2); 3241 space_reftree_generate_map(&reftree, 3242 vd->vdev_dtl[DTL_MISSING], 1); 3243 space_reftree_destroy(&reftree); 3244 3245 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3246 zfs_dbgmsg("update DTL_MISSING:%llu/%llu", 3247 (u_longlong_t)vdev_dtl_min(vd), 3248 (u_longlong_t)vdev_dtl_max(vd)); 3249 } else if (!wasempty) { 3250 zfs_dbgmsg("DTL_MISSING is now empty"); 3251 } 3252 } 3253 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 3254 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3255 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 3256 if (scrub_done) 3257 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 3258 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 3259 3260 /* 3261 * For the faulting case, treat members of a replacing vdev 3262 * as if they are not available. It's more likely than not that 3263 * a vdev in a replacing vdev could encounter read errors so 3264 * treat it as not being able to contribute. 3265 */ 3266 if (!vdev_readable(vd) || 3267 (faulting && vd->vdev_parent != NULL && 3268 vd->vdev_parent->vdev_ops == &vdev_replacing_ops)) { 3269 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 3270 } else { 3271 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3272 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 3273 } 3274 3275 /* 3276 * If the vdev was resilvering or rebuilding and no longer 3277 * has any DTLs then reset the appropriate flag and dirty 3278 * the top level so that we persist the change. 3279 */ 3280 if (txg != 0 && 3281 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3282 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) { 3283 if (vd->vdev_rebuild_txg != 0) { 3284 vd->vdev_rebuild_txg = 0; 3285 vdev_config_dirty(vd->vdev_top); 3286 } else if (vd->vdev_resilver_txg != 0) { 3287 vd->vdev_resilver_txg = 0; 3288 vdev_config_dirty(vd->vdev_top); 3289 } 3290 } 3291 3292 mutex_exit(&vd->vdev_dtl_lock); 3293 3294 if (txg != 0) 3295 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 3296 } else { 3297 mutex_enter(&vd->vdev_dtl_lock); 3298 for (int t = 0; t < DTL_TYPES; t++) { 3299 /* account for child's outage in parent's missing map */ 3300 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 3301 if (t == DTL_SCRUB) { 3302 /* leaf vdevs only */ 3303 continue; 3304 } 3305 if (t == DTL_PARTIAL) { 3306 /* i.e. non-zero */ 3307 minref = 1; 3308 } else if (vdev_get_nparity(vd) != 0) { 3309 /* RAIDZ, DRAID */ 3310 minref = vdev_get_nparity(vd) + 1; 3311 } else { 3312 /* any kind of mirror */ 3313 minref = vd->vdev_children; 3314 } 3315 space_reftree_create(&reftree); 3316 for (int c = 0; c < vd->vdev_children; c++) { 3317 vdev_t *cvd = vd->vdev_child[c]; 3318 mutex_enter(&cvd->vdev_dtl_lock); 3319 space_reftree_add_map(&reftree, 3320 cvd->vdev_dtl[s], 1); 3321 mutex_exit(&cvd->vdev_dtl_lock); 3322 } 3323 space_reftree_generate_map(&reftree, 3324 vd->vdev_dtl[t], minref); 3325 space_reftree_destroy(&reftree); 3326 } 3327 mutex_exit(&vd->vdev_dtl_lock); 3328 } 3329 3330 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) { 3331 raidz_dtl_reassessed(vd); 3332 } 3333 } 3334 3335 void 3336 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, 3337 boolean_t scrub_done, boolean_t rebuild_done) 3338 { 3339 return (vdev_dtl_reassess_impl(vd, txg, scrub_txg, scrub_done, 3340 rebuild_done, B_FALSE)); 3341 } 3342 3343 /* 3344 * Iterate over all the vdevs except spare, and post kobj events 3345 */ 3346 void 3347 vdev_post_kobj_evt(vdev_t *vd) 3348 { 3349 if (vd->vdev_ops->vdev_op_kobj_evt_post && 3350 vd->vdev_kobj_flag == B_FALSE) { 3351 vd->vdev_kobj_flag = B_TRUE; 3352 vd->vdev_ops->vdev_op_kobj_evt_post(vd); 3353 } 3354 3355 for (int c = 0; c < vd->vdev_children; c++) 3356 vdev_post_kobj_evt(vd->vdev_child[c]); 3357 } 3358 3359 /* 3360 * Iterate over all the vdevs except spare, and clear kobj events 3361 */ 3362 void 3363 vdev_clear_kobj_evt(vdev_t *vd) 3364 { 3365 vd->vdev_kobj_flag = B_FALSE; 3366 3367 for (int c = 0; c < vd->vdev_children; c++) 3368 vdev_clear_kobj_evt(vd->vdev_child[c]); 3369 } 3370 3371 int 3372 vdev_dtl_load(vdev_t *vd) 3373 { 3374 spa_t *spa = vd->vdev_spa; 3375 objset_t *mos = spa->spa_meta_objset; 3376 range_tree_t *rt; 3377 int error = 0; 3378 3379 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 3380 ASSERT(vdev_is_concrete(vd)); 3381 3382 /* 3383 * If the dtl cannot be sync'd there is no need to open it. 3384 */ 3385 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps) 3386 return (0); 3387 3388 error = space_map_open(&vd->vdev_dtl_sm, mos, 3389 vd->vdev_dtl_object, 0, -1ULL, 0); 3390 if (error) 3391 return (error); 3392 ASSERT(vd->vdev_dtl_sm != NULL); 3393 3394 rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3395 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC); 3396 if (error == 0) { 3397 mutex_enter(&vd->vdev_dtl_lock); 3398 range_tree_walk(rt, range_tree_add, 3399 vd->vdev_dtl[DTL_MISSING]); 3400 mutex_exit(&vd->vdev_dtl_lock); 3401 } 3402 3403 range_tree_vacate(rt, NULL, NULL); 3404 range_tree_destroy(rt); 3405 3406 return (error); 3407 } 3408 3409 for (int c = 0; c < vd->vdev_children; c++) { 3410 error = vdev_dtl_load(vd->vdev_child[c]); 3411 if (error != 0) 3412 break; 3413 } 3414 3415 return (error); 3416 } 3417 3418 static void 3419 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) 3420 { 3421 spa_t *spa = vd->vdev_spa; 3422 objset_t *mos = spa->spa_meta_objset; 3423 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 3424 const char *string; 3425 3426 ASSERT(alloc_bias != VDEV_BIAS_NONE); 3427 3428 string = 3429 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : 3430 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : 3431 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; 3432 3433 ASSERT(string != NULL); 3434 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 3435 1, strlen(string) + 1, string, tx)); 3436 3437 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { 3438 spa_activate_allocation_classes(spa, tx); 3439 } 3440 } 3441 3442 void 3443 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 3444 { 3445 spa_t *spa = vd->vdev_spa; 3446 3447 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 3448 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3449 zapobj, tx)); 3450 } 3451 3452 uint64_t 3453 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 3454 { 3455 spa_t *spa = vd->vdev_spa; 3456 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 3457 DMU_OT_NONE, 0, tx); 3458 3459 ASSERT(zap != 0); 3460 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3461 zap, tx)); 3462 3463 return (zap); 3464 } 3465 3466 void 3467 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 3468 { 3469 if (vd->vdev_ops != &vdev_hole_ops && 3470 vd->vdev_ops != &vdev_missing_ops && 3471 vd->vdev_ops != &vdev_root_ops && 3472 !vd->vdev_top->vdev_removing) { 3473 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 3474 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 3475 } 3476 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 3477 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 3478 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) 3479 vdev_zap_allocation_data(vd, tx); 3480 } 3481 } 3482 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 && 3483 spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) { 3484 if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) 3485 spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx); 3486 vd->vdev_root_zap = vdev_create_link_zap(vd, tx); 3487 } 3488 3489 for (uint64_t i = 0; i < vd->vdev_children; i++) { 3490 vdev_construct_zaps(vd->vdev_child[i], tx); 3491 } 3492 } 3493 3494 static void 3495 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 3496 { 3497 spa_t *spa = vd->vdev_spa; 3498 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 3499 objset_t *mos = spa->spa_meta_objset; 3500 range_tree_t *rtsync; 3501 dmu_tx_t *tx; 3502 uint64_t object = space_map_object(vd->vdev_dtl_sm); 3503 3504 ASSERT(vdev_is_concrete(vd)); 3505 ASSERT(vd->vdev_ops->vdev_op_leaf); 3506 3507 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3508 3509 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 3510 mutex_enter(&vd->vdev_dtl_lock); 3511 space_map_free(vd->vdev_dtl_sm, tx); 3512 space_map_close(vd->vdev_dtl_sm); 3513 vd->vdev_dtl_sm = NULL; 3514 mutex_exit(&vd->vdev_dtl_lock); 3515 3516 /* 3517 * We only destroy the leaf ZAP for detached leaves or for 3518 * removed log devices. Removed data devices handle leaf ZAP 3519 * cleanup later, once cancellation is no longer possible. 3520 */ 3521 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 3522 vd->vdev_top->vdev_islog)) { 3523 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 3524 vd->vdev_leaf_zap = 0; 3525 } 3526 3527 dmu_tx_commit(tx); 3528 return; 3529 } 3530 3531 if (vd->vdev_dtl_sm == NULL) { 3532 uint64_t new_object; 3533 3534 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx); 3535 VERIFY3U(new_object, !=, 0); 3536 3537 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 3538 0, -1ULL, 0)); 3539 ASSERT(vd->vdev_dtl_sm != NULL); 3540 } 3541 3542 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3543 3544 mutex_enter(&vd->vdev_dtl_lock); 3545 range_tree_walk(rt, range_tree_add, rtsync); 3546 mutex_exit(&vd->vdev_dtl_lock); 3547 3548 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx); 3549 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 3550 range_tree_vacate(rtsync, NULL, NULL); 3551 3552 range_tree_destroy(rtsync); 3553 3554 /* 3555 * If the object for the space map has changed then dirty 3556 * the top level so that we update the config. 3557 */ 3558 if (object != space_map_object(vd->vdev_dtl_sm)) { 3559 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 3560 "new object %llu", (u_longlong_t)txg, spa_name(spa), 3561 (u_longlong_t)object, 3562 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 3563 vdev_config_dirty(vd->vdev_top); 3564 } 3565 3566 dmu_tx_commit(tx); 3567 } 3568 3569 /* 3570 * Determine whether the specified vdev can be 3571 * - offlined 3572 * - detached 3573 * - removed 3574 * - faulted 3575 * without losing data. 3576 */ 3577 boolean_t 3578 vdev_dtl_required(vdev_t *vd) 3579 { 3580 spa_t *spa = vd->vdev_spa; 3581 vdev_t *tvd = vd->vdev_top; 3582 uint8_t cant_read = vd->vdev_cant_read; 3583 boolean_t required; 3584 boolean_t faulting = vd->vdev_state == VDEV_STATE_FAULTED; 3585 3586 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3587 3588 if (vd == spa->spa_root_vdev || vd == tvd) 3589 return (B_TRUE); 3590 3591 /* 3592 * Temporarily mark the device as unreadable, and then determine 3593 * whether this results in any DTL outages in the top-level vdev. 3594 * If not, we can safely offline/detach/remove the device. 3595 */ 3596 vd->vdev_cant_read = B_TRUE; 3597 vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting); 3598 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 3599 vd->vdev_cant_read = cant_read; 3600 vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting); 3601 3602 if (!required && zio_injection_enabled) { 3603 required = !!zio_handle_device_injection(vd, NULL, 3604 SET_ERROR(ECHILD)); 3605 } 3606 3607 return (required); 3608 } 3609 3610 /* 3611 * Determine if resilver is needed, and if so the txg range. 3612 */ 3613 boolean_t 3614 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 3615 { 3616 boolean_t needed = B_FALSE; 3617 uint64_t thismin = UINT64_MAX; 3618 uint64_t thismax = 0; 3619 3620 if (vd->vdev_children == 0) { 3621 mutex_enter(&vd->vdev_dtl_lock); 3622 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3623 vdev_writeable(vd)) { 3624 3625 thismin = vdev_dtl_min(vd); 3626 thismax = vdev_dtl_max(vd); 3627 needed = B_TRUE; 3628 } 3629 mutex_exit(&vd->vdev_dtl_lock); 3630 } else { 3631 for (int c = 0; c < vd->vdev_children; c++) { 3632 vdev_t *cvd = vd->vdev_child[c]; 3633 uint64_t cmin, cmax; 3634 3635 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 3636 thismin = MIN(thismin, cmin); 3637 thismax = MAX(thismax, cmax); 3638 needed = B_TRUE; 3639 } 3640 } 3641 } 3642 3643 if (needed && minp) { 3644 *minp = thismin; 3645 *maxp = thismax; 3646 } 3647 return (needed); 3648 } 3649 3650 /* 3651 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj 3652 * will contain either the checkpoint spacemap object or zero if none exists. 3653 * All other errors are returned to the caller. 3654 */ 3655 int 3656 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj) 3657 { 3658 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 3659 3660 if (vd->vdev_top_zap == 0) { 3661 *sm_obj = 0; 3662 return (0); 3663 } 3664 3665 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 3666 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj); 3667 if (error == ENOENT) { 3668 *sm_obj = 0; 3669 error = 0; 3670 } 3671 3672 return (error); 3673 } 3674 3675 int 3676 vdev_load(vdev_t *vd) 3677 { 3678 int children = vd->vdev_children; 3679 int error = 0; 3680 taskq_t *tq = NULL; 3681 3682 /* 3683 * It's only worthwhile to use the taskq for the root vdev, because the 3684 * slow part is metaslab_init, and that only happens for top-level 3685 * vdevs. 3686 */ 3687 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) { 3688 tq = taskq_create("vdev_load", children, minclsyspri, 3689 children, children, TASKQ_PREPOPULATE); 3690 } 3691 3692 /* 3693 * Recursively load all children. 3694 */ 3695 for (int c = 0; c < vd->vdev_children; c++) { 3696 vdev_t *cvd = vd->vdev_child[c]; 3697 3698 if (tq == NULL || vdev_uses_zvols(cvd)) { 3699 cvd->vdev_load_error = vdev_load(cvd); 3700 } else { 3701 VERIFY(taskq_dispatch(tq, vdev_load_child, 3702 cvd, TQ_SLEEP) != TASKQID_INVALID); 3703 } 3704 } 3705 3706 if (tq != NULL) { 3707 taskq_wait(tq); 3708 taskq_destroy(tq); 3709 } 3710 3711 for (int c = 0; c < vd->vdev_children; c++) { 3712 int error = vd->vdev_child[c]->vdev_load_error; 3713 3714 if (error != 0) 3715 return (error); 3716 } 3717 3718 vdev_set_deflate_ratio(vd); 3719 3720 if (vd->vdev_ops == &vdev_raidz_ops) { 3721 error = vdev_raidz_load(vd); 3722 if (error != 0) 3723 return (error); 3724 } 3725 3726 /* 3727 * On spa_load path, grab the allocation bias from our zap 3728 */ 3729 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3730 spa_t *spa = vd->vdev_spa; 3731 char bias_str[64]; 3732 3733 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3734 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), 3735 bias_str); 3736 if (error == 0) { 3737 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); 3738 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); 3739 } else if (error != ENOENT) { 3740 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3741 VDEV_AUX_CORRUPT_DATA); 3742 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) " 3743 "failed [error=%d]", 3744 (u_longlong_t)vd->vdev_top_zap, error); 3745 return (error); 3746 } 3747 } 3748 3749 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3750 spa_t *spa = vd->vdev_spa; 3751 uint64_t failfast; 3752 3753 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3754 vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast), 3755 1, &failfast); 3756 if (error == 0) { 3757 vd->vdev_failfast = failfast & 1; 3758 } else if (error == ENOENT) { 3759 vd->vdev_failfast = vdev_prop_default_numeric( 3760 VDEV_PROP_FAILFAST); 3761 } else { 3762 vdev_dbgmsg(vd, 3763 "vdev_load: zap_lookup(top_zap=%llu) " 3764 "failed [error=%d]", 3765 (u_longlong_t)vd->vdev_top_zap, error); 3766 } 3767 } 3768 3769 /* 3770 * Load any rebuild state from the top-level vdev zap. 3771 */ 3772 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3773 error = vdev_rebuild_load(vd); 3774 if (error && error != ENOTSUP) { 3775 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3776 VDEV_AUX_CORRUPT_DATA); 3777 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load " 3778 "failed [error=%d]", error); 3779 return (error); 3780 } 3781 } 3782 3783 if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) { 3784 uint64_t zapobj; 3785 3786 if (vd->vdev_top_zap != 0) 3787 zapobj = vd->vdev_top_zap; 3788 else 3789 zapobj = vd->vdev_leaf_zap; 3790 3791 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N, 3792 &vd->vdev_checksum_n); 3793 if (error && error != ENOENT) 3794 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3795 "failed [error=%d]", (u_longlong_t)zapobj, error); 3796 3797 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T, 3798 &vd->vdev_checksum_t); 3799 if (error && error != ENOENT) 3800 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3801 "failed [error=%d]", (u_longlong_t)zapobj, error); 3802 3803 error = vdev_prop_get_int(vd, VDEV_PROP_IO_N, 3804 &vd->vdev_io_n); 3805 if (error && error != ENOENT) 3806 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3807 "failed [error=%d]", (u_longlong_t)zapobj, error); 3808 3809 error = vdev_prop_get_int(vd, VDEV_PROP_IO_T, 3810 &vd->vdev_io_t); 3811 if (error && error != ENOENT) 3812 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3813 "failed [error=%d]", (u_longlong_t)zapobj, error); 3814 3815 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_N, 3816 &vd->vdev_slow_io_n); 3817 if (error && error != ENOENT) 3818 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3819 "failed [error=%d]", (u_longlong_t)zapobj, error); 3820 3821 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_T, 3822 &vd->vdev_slow_io_t); 3823 if (error && error != ENOENT) 3824 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3825 "failed [error=%d]", (u_longlong_t)zapobj, error); 3826 } 3827 3828 /* 3829 * If this is a top-level vdev, initialize its metaslabs. 3830 */ 3831 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 3832 vdev_metaslab_group_create(vd); 3833 3834 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 3835 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3836 VDEV_AUX_CORRUPT_DATA); 3837 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 3838 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 3839 (u_longlong_t)vd->vdev_asize); 3840 return (SET_ERROR(ENXIO)); 3841 } 3842 3843 error = vdev_metaslab_init(vd, 0); 3844 if (error != 0) { 3845 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 3846 "[error=%d]", error); 3847 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3848 VDEV_AUX_CORRUPT_DATA); 3849 return (error); 3850 } 3851 3852 uint64_t checkpoint_sm_obj; 3853 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj); 3854 if (error == 0 && checkpoint_sm_obj != 0) { 3855 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3856 ASSERT(vd->vdev_asize != 0); 3857 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); 3858 3859 error = space_map_open(&vd->vdev_checkpoint_sm, 3860 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 3861 vd->vdev_ashift); 3862 if (error != 0) { 3863 vdev_dbgmsg(vd, "vdev_load: space_map_open " 3864 "failed for checkpoint spacemap (obj %llu) " 3865 "[error=%d]", 3866 (u_longlong_t)checkpoint_sm_obj, error); 3867 return (error); 3868 } 3869 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 3870 3871 /* 3872 * Since the checkpoint_sm contains free entries 3873 * exclusively we can use space_map_allocated() to 3874 * indicate the cumulative checkpointed space that 3875 * has been freed. 3876 */ 3877 vd->vdev_stat.vs_checkpoint_space = 3878 -space_map_allocated(vd->vdev_checkpoint_sm); 3879 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 3880 vd->vdev_stat.vs_checkpoint_space; 3881 } else if (error != 0) { 3882 vdev_dbgmsg(vd, "vdev_load: failed to retrieve " 3883 "checkpoint space map object from vdev ZAP " 3884 "[error=%d]", error); 3885 return (error); 3886 } 3887 } 3888 3889 /* 3890 * If this is a leaf vdev, load its DTL. 3891 */ 3892 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 3893 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3894 VDEV_AUX_CORRUPT_DATA); 3895 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 3896 "[error=%d]", error); 3897 return (error); 3898 } 3899 3900 uint64_t obsolete_sm_object; 3901 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object); 3902 if (error == 0 && obsolete_sm_object != 0) { 3903 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3904 ASSERT(vd->vdev_asize != 0); 3905 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 3906 3907 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 3908 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 3909 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3910 VDEV_AUX_CORRUPT_DATA); 3911 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 3912 "obsolete spacemap (obj %llu) [error=%d]", 3913 (u_longlong_t)obsolete_sm_object, error); 3914 return (error); 3915 } 3916 } else if (error != 0) { 3917 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete " 3918 "space map object from vdev ZAP [error=%d]", error); 3919 return (error); 3920 } 3921 3922 return (0); 3923 } 3924 3925 /* 3926 * The special vdev case is used for hot spares and l2cache devices. Its 3927 * sole purpose it to set the vdev state for the associated vdev. To do this, 3928 * we make sure that we can open the underlying device, then try to read the 3929 * label, and make sure that the label is sane and that it hasn't been 3930 * repurposed to another pool. 3931 */ 3932 int 3933 vdev_validate_aux(vdev_t *vd) 3934 { 3935 nvlist_t *label; 3936 uint64_t guid, version; 3937 uint64_t state; 3938 3939 if (!vdev_readable(vd)) 3940 return (0); 3941 3942 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 3943 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3944 VDEV_AUX_CORRUPT_DATA); 3945 return (-1); 3946 } 3947 3948 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 3949 !SPA_VERSION_IS_SUPPORTED(version) || 3950 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 3951 guid != vd->vdev_guid || 3952 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 3953 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3954 VDEV_AUX_CORRUPT_DATA); 3955 nvlist_free(label); 3956 return (-1); 3957 } 3958 3959 /* 3960 * We don't actually check the pool state here. If it's in fact in 3961 * use by another pool, we update this fact on the fly when requested. 3962 */ 3963 nvlist_free(label); 3964 return (0); 3965 } 3966 3967 static void 3968 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx) 3969 { 3970 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3971 3972 if (vd->vdev_top_zap == 0) 3973 return; 3974 3975 uint64_t object = 0; 3976 int err = zap_lookup(mos, vd->vdev_top_zap, 3977 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object); 3978 if (err == ENOENT) 3979 return; 3980 VERIFY0(err); 3981 3982 VERIFY0(dmu_object_free(mos, object, tx)); 3983 VERIFY0(zap_remove(mos, vd->vdev_top_zap, 3984 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx)); 3985 } 3986 3987 /* 3988 * Free the objects used to store this vdev's spacemaps, and the array 3989 * that points to them. 3990 */ 3991 void 3992 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 3993 { 3994 if (vd->vdev_ms_array == 0) 3995 return; 3996 3997 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3998 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 3999 size_t array_bytes = array_count * sizeof (uint64_t); 4000 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 4001 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 4002 array_bytes, smobj_array, 0)); 4003 4004 for (uint64_t i = 0; i < array_count; i++) { 4005 uint64_t smobj = smobj_array[i]; 4006 if (smobj == 0) 4007 continue; 4008 4009 space_map_free_obj(mos, smobj, tx); 4010 } 4011 4012 kmem_free(smobj_array, array_bytes); 4013 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 4014 vdev_destroy_ms_flush_data(vd, tx); 4015 vd->vdev_ms_array = 0; 4016 } 4017 4018 static void 4019 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 4020 { 4021 spa_t *spa = vd->vdev_spa; 4022 4023 ASSERT(vd->vdev_islog); 4024 ASSERT(vd == vd->vdev_top); 4025 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 4026 4027 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 4028 4029 vdev_destroy_spacemaps(vd, tx); 4030 if (vd->vdev_top_zap != 0) { 4031 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 4032 vd->vdev_top_zap = 0; 4033 } 4034 4035 dmu_tx_commit(tx); 4036 } 4037 4038 void 4039 vdev_sync_done(vdev_t *vd, uint64_t txg) 4040 { 4041 metaslab_t *msp; 4042 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 4043 4044 ASSERT(vdev_is_concrete(vd)); 4045 4046 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 4047 != NULL) 4048 metaslab_sync_done(msp, txg); 4049 4050 if (reassess) { 4051 metaslab_sync_reassess(vd->vdev_mg); 4052 if (vd->vdev_log_mg != NULL) 4053 metaslab_sync_reassess(vd->vdev_log_mg); 4054 } 4055 } 4056 4057 void 4058 vdev_sync(vdev_t *vd, uint64_t txg) 4059 { 4060 spa_t *spa = vd->vdev_spa; 4061 vdev_t *lvd; 4062 metaslab_t *msp; 4063 4064 ASSERT3U(txg, ==, spa->spa_syncing_txg); 4065 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 4066 if (range_tree_space(vd->vdev_obsolete_segments) > 0) { 4067 ASSERT(vd->vdev_removing || 4068 vd->vdev_ops == &vdev_indirect_ops); 4069 4070 vdev_indirect_sync_obsolete(vd, tx); 4071 4072 /* 4073 * If the vdev is indirect, it can't have dirty 4074 * metaslabs or DTLs. 4075 */ 4076 if (vd->vdev_ops == &vdev_indirect_ops) { 4077 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 4078 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 4079 dmu_tx_commit(tx); 4080 return; 4081 } 4082 } 4083 4084 ASSERT(vdev_is_concrete(vd)); 4085 4086 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 4087 !vd->vdev_removing) { 4088 ASSERT(vd == vd->vdev_top); 4089 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 4090 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 4091 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 4092 ASSERT(vd->vdev_ms_array != 0); 4093 vdev_config_dirty(vd); 4094 } 4095 4096 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 4097 metaslab_sync(msp, txg); 4098 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 4099 } 4100 4101 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 4102 vdev_dtl_sync(lvd, txg); 4103 4104 /* 4105 * If this is an empty log device being removed, destroy the 4106 * metadata associated with it. 4107 */ 4108 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 4109 vdev_remove_empty_log(vd, txg); 4110 4111 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 4112 dmu_tx_commit(tx); 4113 } 4114 4115 /* 4116 * Return the amount of space that should be (or was) allocated for the given 4117 * psize (compressed block size) in the given TXG. Note that for expanded 4118 * RAIDZ vdevs, the size allocated for older BP's may be larger. See 4119 * vdev_raidz_asize(). 4120 */ 4121 uint64_t 4122 vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg) 4123 { 4124 return (vd->vdev_ops->vdev_op_asize(vd, psize, txg)); 4125 } 4126 4127 uint64_t 4128 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 4129 { 4130 return (vdev_psize_to_asize_txg(vd, psize, 0)); 4131 } 4132 4133 /* 4134 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 4135 * not be opened, and no I/O is attempted. 4136 */ 4137 int 4138 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 4139 { 4140 vdev_t *vd, *tvd; 4141 4142 spa_vdev_state_enter(spa, SCL_NONE); 4143 4144 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4145 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4146 4147 if (!vd->vdev_ops->vdev_op_leaf) 4148 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4149 4150 tvd = vd->vdev_top; 4151 4152 /* 4153 * If user did a 'zpool offline -f' then make the fault persist across 4154 * reboots. 4155 */ 4156 if (aux == VDEV_AUX_EXTERNAL_PERSIST) { 4157 /* 4158 * There are two kinds of forced faults: temporary and 4159 * persistent. Temporary faults go away at pool import, while 4160 * persistent faults stay set. Both types of faults can be 4161 * cleared with a zpool clear. 4162 * 4163 * We tell if a vdev is persistently faulted by looking at the 4164 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at 4165 * import then it's a persistent fault. Otherwise, it's 4166 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external" 4167 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This 4168 * tells vdev_config_generate() (which gets run later) to set 4169 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist. 4170 */ 4171 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 4172 vd->vdev_tmpoffline = B_FALSE; 4173 aux = VDEV_AUX_EXTERNAL; 4174 } else { 4175 vd->vdev_tmpoffline = B_TRUE; 4176 } 4177 4178 /* 4179 * We don't directly use the aux state here, but if we do a 4180 * vdev_reopen(), we need this value to be present to remember why we 4181 * were faulted. 4182 */ 4183 vd->vdev_label_aux = aux; 4184 4185 /* 4186 * Faulted state takes precedence over degraded. 4187 */ 4188 vd->vdev_delayed_close = B_FALSE; 4189 vd->vdev_faulted = 1ULL; 4190 vd->vdev_degraded = 0ULL; 4191 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 4192 4193 /* 4194 * If this device has the only valid copy of the data, then 4195 * back off and simply mark the vdev as degraded instead. 4196 */ 4197 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 4198 vd->vdev_degraded = 1ULL; 4199 vd->vdev_faulted = 0ULL; 4200 4201 /* 4202 * If we reopen the device and it's not dead, only then do we 4203 * mark it degraded. 4204 */ 4205 vdev_reopen(tvd); 4206 4207 if (vdev_readable(vd)) 4208 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 4209 } 4210 4211 return (spa_vdev_state_exit(spa, vd, 0)); 4212 } 4213 4214 /* 4215 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 4216 * user that something is wrong. The vdev continues to operate as normal as far 4217 * as I/O is concerned. 4218 */ 4219 int 4220 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 4221 { 4222 vdev_t *vd; 4223 4224 spa_vdev_state_enter(spa, SCL_NONE); 4225 4226 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4227 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4228 4229 if (!vd->vdev_ops->vdev_op_leaf) 4230 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4231 4232 /* 4233 * If the vdev is already faulted, then don't do anything. 4234 */ 4235 if (vd->vdev_faulted || vd->vdev_degraded) 4236 return (spa_vdev_state_exit(spa, NULL, 0)); 4237 4238 vd->vdev_degraded = 1ULL; 4239 if (!vdev_is_dead(vd)) 4240 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 4241 aux); 4242 4243 return (spa_vdev_state_exit(spa, vd, 0)); 4244 } 4245 4246 int 4247 vdev_remove_wanted(spa_t *spa, uint64_t guid) 4248 { 4249 vdev_t *vd; 4250 4251 spa_vdev_state_enter(spa, SCL_NONE); 4252 4253 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4254 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4255 4256 /* 4257 * If the vdev is already removed, or expanding which can trigger 4258 * repartition add/remove events, then don't do anything. 4259 */ 4260 if (vd->vdev_removed || vd->vdev_expanding) 4261 return (spa_vdev_state_exit(spa, NULL, 0)); 4262 4263 /* 4264 * Confirm the vdev has been removed, otherwise don't do anything. 4265 */ 4266 if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL))) 4267 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST))); 4268 4269 vd->vdev_remove_wanted = B_TRUE; 4270 spa_async_request(spa, SPA_ASYNC_REMOVE); 4271 4272 return (spa_vdev_state_exit(spa, vd, 0)); 4273 } 4274 4275 4276 /* 4277 * Online the given vdev. 4278 * 4279 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 4280 * spare device should be detached when the device finishes resilvering. 4281 * Second, the online should be treated like a 'test' online case, so no FMA 4282 * events are generated if the device fails to open. 4283 */ 4284 int 4285 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 4286 { 4287 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 4288 boolean_t wasoffline; 4289 vdev_state_t oldstate; 4290 4291 spa_vdev_state_enter(spa, SCL_NONE); 4292 4293 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4294 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4295 4296 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 4297 oldstate = vd->vdev_state; 4298 4299 tvd = vd->vdev_top; 4300 vd->vdev_offline = B_FALSE; 4301 vd->vdev_tmpoffline = B_FALSE; 4302 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 4303 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 4304 4305 /* XXX - L2ARC 1.0 does not support expansion */ 4306 if (!vd->vdev_aux) { 4307 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4308 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) || 4309 spa->spa_autoexpand); 4310 vd->vdev_expansion_time = gethrestime_sec(); 4311 } 4312 4313 vdev_reopen(tvd); 4314 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 4315 4316 if (!vd->vdev_aux) { 4317 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4318 pvd->vdev_expanding = B_FALSE; 4319 } 4320 4321 if (newstate) 4322 *newstate = vd->vdev_state; 4323 if ((flags & ZFS_ONLINE_UNSPARE) && 4324 !vdev_is_dead(vd) && vd->vdev_parent && 4325 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4326 vd->vdev_parent->vdev_child[0] == vd) 4327 vd->vdev_unspare = B_TRUE; 4328 4329 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 4330 4331 /* XXX - L2ARC 1.0 does not support expansion */ 4332 if (vd->vdev_aux) 4333 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 4334 spa->spa_ccw_fail_time = 0; 4335 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 4336 } 4337 4338 /* Restart initializing if necessary */ 4339 mutex_enter(&vd->vdev_initialize_lock); 4340 if (vdev_writeable(vd) && 4341 vd->vdev_initialize_thread == NULL && 4342 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 4343 (void) vdev_initialize(vd); 4344 } 4345 mutex_exit(&vd->vdev_initialize_lock); 4346 4347 /* 4348 * Restart trimming if necessary. We do not restart trimming for cache 4349 * devices here. This is triggered by l2arc_rebuild_vdev() 4350 * asynchronously for the whole device or in l2arc_evict() as it evicts 4351 * space for upcoming writes. 4352 */ 4353 mutex_enter(&vd->vdev_trim_lock); 4354 if (vdev_writeable(vd) && !vd->vdev_isl2cache && 4355 vd->vdev_trim_thread == NULL && 4356 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { 4357 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, 4358 vd->vdev_trim_secure); 4359 } 4360 mutex_exit(&vd->vdev_trim_lock); 4361 4362 if (wasoffline || 4363 (oldstate < VDEV_STATE_DEGRADED && 4364 vd->vdev_state >= VDEV_STATE_DEGRADED)) { 4365 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 4366 4367 /* 4368 * Asynchronously detach spare vdev if resilver or 4369 * rebuild is not required 4370 */ 4371 if (vd->vdev_unspare && 4372 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4373 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) && 4374 !vdev_rebuild_active(tvd)) 4375 spa_async_request(spa, SPA_ASYNC_DETACH_SPARE); 4376 } 4377 return (spa_vdev_state_exit(spa, vd, 0)); 4378 } 4379 4380 static int 4381 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 4382 { 4383 vdev_t *vd, *tvd; 4384 int error = 0; 4385 uint64_t generation; 4386 metaslab_group_t *mg; 4387 4388 top: 4389 spa_vdev_state_enter(spa, SCL_ALLOC); 4390 4391 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4392 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4393 4394 if (!vd->vdev_ops->vdev_op_leaf) 4395 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4396 4397 if (vd->vdev_ops == &vdev_draid_spare_ops) 4398 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4399 4400 tvd = vd->vdev_top; 4401 mg = tvd->vdev_mg; 4402 generation = spa->spa_config_generation + 1; 4403 4404 /* 4405 * If the device isn't already offline, try to offline it. 4406 */ 4407 if (!vd->vdev_offline) { 4408 /* 4409 * If this device has the only valid copy of some data, 4410 * don't allow it to be offlined. Log devices are always 4411 * expendable. 4412 */ 4413 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4414 vdev_dtl_required(vd)) 4415 return (spa_vdev_state_exit(spa, NULL, 4416 SET_ERROR(EBUSY))); 4417 4418 /* 4419 * If the top-level is a slog and it has had allocations 4420 * then proceed. We check that the vdev's metaslab group 4421 * is not NULL since it's possible that we may have just 4422 * added this vdev but not yet initialized its metaslabs. 4423 */ 4424 if (tvd->vdev_islog && mg != NULL) { 4425 /* 4426 * Prevent any future allocations. 4427 */ 4428 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 4429 metaslab_group_passivate(mg); 4430 (void) spa_vdev_state_exit(spa, vd, 0); 4431 4432 error = spa_reset_logs(spa); 4433 4434 /* 4435 * If the log device was successfully reset but has 4436 * checkpointed data, do not offline it. 4437 */ 4438 if (error == 0 && 4439 tvd->vdev_checkpoint_sm != NULL) { 4440 ASSERT3U(space_map_allocated( 4441 tvd->vdev_checkpoint_sm), !=, 0); 4442 error = ZFS_ERR_CHECKPOINT_EXISTS; 4443 } 4444 4445 spa_vdev_state_enter(spa, SCL_ALLOC); 4446 4447 /* 4448 * Check to see if the config has changed. 4449 */ 4450 if (error || generation != spa->spa_config_generation) { 4451 metaslab_group_activate(mg); 4452 if (error) 4453 return (spa_vdev_state_exit(spa, 4454 vd, error)); 4455 (void) spa_vdev_state_exit(spa, vd, 0); 4456 goto top; 4457 } 4458 ASSERT0(tvd->vdev_stat.vs_alloc); 4459 } 4460 4461 /* 4462 * Offline this device and reopen its top-level vdev. 4463 * If the top-level vdev is a log device then just offline 4464 * it. Otherwise, if this action results in the top-level 4465 * vdev becoming unusable, undo it and fail the request. 4466 */ 4467 vd->vdev_offline = B_TRUE; 4468 vdev_reopen(tvd); 4469 4470 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4471 vdev_is_dead(tvd)) { 4472 vd->vdev_offline = B_FALSE; 4473 vdev_reopen(tvd); 4474 return (spa_vdev_state_exit(spa, NULL, 4475 SET_ERROR(EBUSY))); 4476 } 4477 4478 /* 4479 * Add the device back into the metaslab rotor so that 4480 * once we online the device it's open for business. 4481 */ 4482 if (tvd->vdev_islog && mg != NULL) 4483 metaslab_group_activate(mg); 4484 } 4485 4486 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 4487 4488 return (spa_vdev_state_exit(spa, vd, 0)); 4489 } 4490 4491 int 4492 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 4493 { 4494 int error; 4495 4496 mutex_enter(&spa->spa_vdev_top_lock); 4497 error = vdev_offline_locked(spa, guid, flags); 4498 mutex_exit(&spa->spa_vdev_top_lock); 4499 4500 return (error); 4501 } 4502 4503 /* 4504 * Clear the error counts associated with this vdev. Unlike vdev_online() and 4505 * vdev_offline(), we assume the spa config is locked. We also clear all 4506 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 4507 */ 4508 void 4509 vdev_clear(spa_t *spa, vdev_t *vd) 4510 { 4511 vdev_t *rvd = spa->spa_root_vdev; 4512 4513 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 4514 4515 if (vd == NULL) 4516 vd = rvd; 4517 4518 vd->vdev_stat.vs_read_errors = 0; 4519 vd->vdev_stat.vs_write_errors = 0; 4520 vd->vdev_stat.vs_checksum_errors = 0; 4521 vd->vdev_stat.vs_dio_verify_errors = 0; 4522 vd->vdev_stat.vs_slow_ios = 0; 4523 4524 for (int c = 0; c < vd->vdev_children; c++) 4525 vdev_clear(spa, vd->vdev_child[c]); 4526 4527 /* 4528 * It makes no sense to "clear" an indirect or removed vdev. 4529 */ 4530 if (!vdev_is_concrete(vd) || vd->vdev_removed) 4531 return; 4532 4533 /* 4534 * If we're in the FAULTED state or have experienced failed I/O, then 4535 * clear the persistent state and attempt to reopen the device. We 4536 * also mark the vdev config dirty, so that the new faulted state is 4537 * written out to disk. 4538 */ 4539 if (vd->vdev_faulted || vd->vdev_degraded || 4540 !vdev_readable(vd) || !vdev_writeable(vd)) { 4541 /* 4542 * When reopening in response to a clear event, it may be due to 4543 * a fmadm repair request. In this case, if the device is 4544 * still broken, we want to still post the ereport again. 4545 */ 4546 vd->vdev_forcefault = B_TRUE; 4547 4548 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 4549 vd->vdev_cant_read = B_FALSE; 4550 vd->vdev_cant_write = B_FALSE; 4551 vd->vdev_stat.vs_aux = 0; 4552 4553 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 4554 4555 vd->vdev_forcefault = B_FALSE; 4556 4557 if (vd != rvd && vdev_writeable(vd->vdev_top)) 4558 vdev_state_dirty(vd->vdev_top); 4559 4560 /* If a resilver isn't required, check if vdevs can be culled */ 4561 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) && 4562 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4563 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool)) 4564 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4565 4566 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 4567 } 4568 4569 /* 4570 * When clearing a FMA-diagnosed fault, we always want to 4571 * unspare the device, as we assume that the original spare was 4572 * done in response to the FMA fault. 4573 */ 4574 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 4575 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4576 vd->vdev_parent->vdev_child[0] == vd) 4577 vd->vdev_unspare = B_TRUE; 4578 4579 /* Clear recent error events cache (i.e. duplicate events tracking) */ 4580 zfs_ereport_clear(spa, vd); 4581 } 4582 4583 boolean_t 4584 vdev_is_dead(vdev_t *vd) 4585 { 4586 /* 4587 * Holes and missing devices are always considered "dead". 4588 * This simplifies the code since we don't have to check for 4589 * these types of devices in the various code paths. 4590 * Instead we rely on the fact that we skip over dead devices 4591 * before issuing I/O to them. 4592 */ 4593 return (vd->vdev_state < VDEV_STATE_DEGRADED || 4594 vd->vdev_ops == &vdev_hole_ops || 4595 vd->vdev_ops == &vdev_missing_ops); 4596 } 4597 4598 boolean_t 4599 vdev_readable(vdev_t *vd) 4600 { 4601 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 4602 } 4603 4604 boolean_t 4605 vdev_writeable(vdev_t *vd) 4606 { 4607 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 4608 vdev_is_concrete(vd)); 4609 } 4610 4611 boolean_t 4612 vdev_allocatable(vdev_t *vd) 4613 { 4614 uint64_t state = vd->vdev_state; 4615 4616 /* 4617 * We currently allow allocations from vdevs which may be in the 4618 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 4619 * fails to reopen then we'll catch it later when we're holding 4620 * the proper locks. Note that we have to get the vdev state 4621 * in a local variable because although it changes atomically, 4622 * we're asking two separate questions about it. 4623 */ 4624 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 4625 !vd->vdev_cant_write && vdev_is_concrete(vd) && 4626 vd->vdev_mg->mg_initialized); 4627 } 4628 4629 boolean_t 4630 vdev_accessible(vdev_t *vd, zio_t *zio) 4631 { 4632 ASSERT(zio->io_vd == vd); 4633 4634 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 4635 return (B_FALSE); 4636 4637 if (zio->io_type == ZIO_TYPE_READ) 4638 return (!vd->vdev_cant_read); 4639 4640 if (zio->io_type == ZIO_TYPE_WRITE) 4641 return (!vd->vdev_cant_write); 4642 4643 return (B_TRUE); 4644 } 4645 4646 static void 4647 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs) 4648 { 4649 /* 4650 * Exclude the dRAID spare when aggregating to avoid double counting 4651 * the ops and bytes. These IOs are counted by the physical leaves. 4652 */ 4653 if (cvd->vdev_ops == &vdev_draid_spare_ops) 4654 return; 4655 4656 for (int t = 0; t < VS_ZIO_TYPES; t++) { 4657 vs->vs_ops[t] += cvs->vs_ops[t]; 4658 vs->vs_bytes[t] += cvs->vs_bytes[t]; 4659 } 4660 4661 cvs->vs_scan_removing = cvd->vdev_removing; 4662 } 4663 4664 /* 4665 * Get extended stats 4666 */ 4667 static void 4668 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx) 4669 { 4670 (void) cvd; 4671 4672 int t, b; 4673 for (t = 0; t < ZIO_TYPES; t++) { 4674 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++) 4675 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b]; 4676 4677 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) { 4678 vsx->vsx_total_histo[t][b] += 4679 cvsx->vsx_total_histo[t][b]; 4680 } 4681 } 4682 4683 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4684 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) { 4685 vsx->vsx_queue_histo[t][b] += 4686 cvsx->vsx_queue_histo[t][b]; 4687 } 4688 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t]; 4689 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t]; 4690 4691 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++) 4692 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b]; 4693 4694 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++) 4695 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b]; 4696 } 4697 4698 } 4699 4700 boolean_t 4701 vdev_is_spacemap_addressable(vdev_t *vd) 4702 { 4703 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 4704 return (B_TRUE); 4705 4706 /* 4707 * If double-word space map entries are not enabled we assume 4708 * 47 bits of the space map entry are dedicated to the entry's 4709 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 4710 * to calculate the maximum address that can be described by a 4711 * space map entry for the given device. 4712 */ 4713 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 4714 4715 if (shift >= 63) /* detect potential overflow */ 4716 return (B_TRUE); 4717 4718 return (vd->vdev_asize < (1ULL << shift)); 4719 } 4720 4721 /* 4722 * Get statistics for the given vdev. 4723 */ 4724 static void 4725 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4726 { 4727 int t; 4728 /* 4729 * If we're getting stats on the root vdev, aggregate the I/O counts 4730 * over all top-level vdevs (i.e. the direct children of the root). 4731 */ 4732 if (!vd->vdev_ops->vdev_op_leaf) { 4733 if (vs) { 4734 memset(vs->vs_ops, 0, sizeof (vs->vs_ops)); 4735 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes)); 4736 } 4737 if (vsx) 4738 memset(vsx, 0, sizeof (*vsx)); 4739 4740 for (int c = 0; c < vd->vdev_children; c++) { 4741 vdev_t *cvd = vd->vdev_child[c]; 4742 vdev_stat_t *cvs = &cvd->vdev_stat; 4743 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex; 4744 4745 vdev_get_stats_ex_impl(cvd, cvs, cvsx); 4746 if (vs) 4747 vdev_get_child_stat(cvd, vs, cvs); 4748 if (vsx) 4749 vdev_get_child_stat_ex(cvd, vsx, cvsx); 4750 } 4751 } else { 4752 /* 4753 * We're a leaf. Just copy our ZIO active queue stats in. The 4754 * other leaf stats are updated in vdev_stat_update(). 4755 */ 4756 if (!vsx) 4757 return; 4758 4759 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex)); 4760 4761 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4762 vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t]; 4763 vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t); 4764 } 4765 } 4766 } 4767 4768 void 4769 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4770 { 4771 vdev_t *tvd = vd->vdev_top; 4772 mutex_enter(&vd->vdev_stat_lock); 4773 if (vs) { 4774 memcpy(vs, &vd->vdev_stat, sizeof (*vs)); 4775 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 4776 vs->vs_state = vd->vdev_state; 4777 vs->vs_rsize = vdev_get_min_asize(vd); 4778 4779 if (vd->vdev_ops->vdev_op_leaf) { 4780 vs->vs_pspace = vd->vdev_psize; 4781 vs->vs_rsize += VDEV_LABEL_START_SIZE + 4782 VDEV_LABEL_END_SIZE; 4783 /* 4784 * Report initializing progress. Since we don't 4785 * have the initializing locks held, this is only 4786 * an estimate (although a fairly accurate one). 4787 */ 4788 vs->vs_initialize_bytes_done = 4789 vd->vdev_initialize_bytes_done; 4790 vs->vs_initialize_bytes_est = 4791 vd->vdev_initialize_bytes_est; 4792 vs->vs_initialize_state = vd->vdev_initialize_state; 4793 vs->vs_initialize_action_time = 4794 vd->vdev_initialize_action_time; 4795 4796 /* 4797 * Report manual TRIM progress. Since we don't have 4798 * the manual TRIM locks held, this is only an 4799 * estimate (although fairly accurate one). 4800 */ 4801 vs->vs_trim_notsup = !vd->vdev_has_trim; 4802 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done; 4803 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est; 4804 vs->vs_trim_state = vd->vdev_trim_state; 4805 vs->vs_trim_action_time = vd->vdev_trim_action_time; 4806 4807 /* Set when there is a deferred resilver. */ 4808 vs->vs_resilver_deferred = vd->vdev_resilver_deferred; 4809 } 4810 4811 /* 4812 * Report expandable space on top-level, non-auxiliary devices 4813 * only. The expandable space is reported in terms of metaslab 4814 * sized units since that determines how much space the pool 4815 * can expand. 4816 */ 4817 if (vd->vdev_aux == NULL && tvd != NULL) { 4818 vs->vs_esize = P2ALIGN_TYPED( 4819 vd->vdev_max_asize - vd->vdev_asize, 4820 1ULL << tvd->vdev_ms_shift, uint64_t); 4821 } 4822 4823 vs->vs_configured_ashift = vd->vdev_top != NULL 4824 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift; 4825 vs->vs_logical_ashift = vd->vdev_logical_ashift; 4826 if (vd->vdev_physical_ashift <= ASHIFT_MAX) 4827 vs->vs_physical_ashift = vd->vdev_physical_ashift; 4828 else 4829 vs->vs_physical_ashift = 0; 4830 4831 /* 4832 * Report fragmentation and rebuild progress for top-level, 4833 * non-auxiliary, concrete devices. 4834 */ 4835 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 4836 vdev_is_concrete(vd)) { 4837 /* 4838 * The vdev fragmentation rating doesn't take into 4839 * account the embedded slog metaslab (vdev_log_mg). 4840 * Since it's only one metaslab, it would have a tiny 4841 * impact on the overall fragmentation. 4842 */ 4843 vs->vs_fragmentation = (vd->vdev_mg != NULL) ? 4844 vd->vdev_mg->mg_fragmentation : 0; 4845 } 4846 vs->vs_noalloc = MAX(vd->vdev_noalloc, 4847 tvd ? tvd->vdev_noalloc : 0); 4848 } 4849 4850 vdev_get_stats_ex_impl(vd, vs, vsx); 4851 mutex_exit(&vd->vdev_stat_lock); 4852 } 4853 4854 void 4855 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 4856 { 4857 return (vdev_get_stats_ex(vd, vs, NULL)); 4858 } 4859 4860 void 4861 vdev_clear_stats(vdev_t *vd) 4862 { 4863 mutex_enter(&vd->vdev_stat_lock); 4864 vd->vdev_stat.vs_space = 0; 4865 vd->vdev_stat.vs_dspace = 0; 4866 vd->vdev_stat.vs_alloc = 0; 4867 mutex_exit(&vd->vdev_stat_lock); 4868 } 4869 4870 void 4871 vdev_scan_stat_init(vdev_t *vd) 4872 { 4873 vdev_stat_t *vs = &vd->vdev_stat; 4874 4875 for (int c = 0; c < vd->vdev_children; c++) 4876 vdev_scan_stat_init(vd->vdev_child[c]); 4877 4878 mutex_enter(&vd->vdev_stat_lock); 4879 vs->vs_scan_processed = 0; 4880 mutex_exit(&vd->vdev_stat_lock); 4881 } 4882 4883 void 4884 vdev_stat_update(zio_t *zio, uint64_t psize) 4885 { 4886 spa_t *spa = zio->io_spa; 4887 vdev_t *rvd = spa->spa_root_vdev; 4888 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 4889 vdev_t *pvd; 4890 uint64_t txg = zio->io_txg; 4891 /* Suppress ASAN false positive */ 4892 #ifdef __SANITIZE_ADDRESS__ 4893 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL; 4894 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL; 4895 #else 4896 vdev_stat_t *vs = &vd->vdev_stat; 4897 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex; 4898 #endif 4899 zio_type_t type = zio->io_type; 4900 int flags = zio->io_flags; 4901 4902 /* 4903 * If this i/o is a gang leader, it didn't do any actual work. 4904 */ 4905 if (zio->io_gang_tree) 4906 return; 4907 4908 if (zio->io_error == 0) { 4909 /* 4910 * If this is a root i/o, don't count it -- we've already 4911 * counted the top-level vdevs, and vdev_get_stats() will 4912 * aggregate them when asked. This reduces contention on 4913 * the root vdev_stat_lock and implicitly handles blocks 4914 * that compress away to holes, for which there is no i/o. 4915 * (Holes never create vdev children, so all the counters 4916 * remain zero, which is what we want.) 4917 * 4918 * Note: this only applies to successful i/o (io_error == 0) 4919 * because unlike i/o counts, errors are not additive. 4920 * When reading a ditto block, for example, failure of 4921 * one top-level vdev does not imply a root-level error. 4922 */ 4923 if (vd == rvd) 4924 return; 4925 4926 ASSERT(vd == zio->io_vd); 4927 4928 if (flags & ZIO_FLAG_IO_BYPASS) 4929 return; 4930 4931 mutex_enter(&vd->vdev_stat_lock); 4932 4933 if (flags & ZIO_FLAG_IO_REPAIR) { 4934 /* 4935 * Repair is the result of a resilver issued by the 4936 * scan thread (spa_sync). 4937 */ 4938 if (flags & ZIO_FLAG_SCAN_THREAD) { 4939 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 4940 dsl_scan_phys_t *scn_phys = &scn->scn_phys; 4941 uint64_t *processed = &scn_phys->scn_processed; 4942 4943 if (vd->vdev_ops->vdev_op_leaf) 4944 atomic_add_64(processed, psize); 4945 vs->vs_scan_processed += psize; 4946 } 4947 4948 /* 4949 * Repair is the result of a rebuild issued by the 4950 * rebuild thread (vdev_rebuild_thread). To avoid 4951 * double counting repaired bytes the virtual dRAID 4952 * spare vdev is excluded from the processed bytes. 4953 */ 4954 if (zio->io_priority == ZIO_PRIORITY_REBUILD) { 4955 vdev_t *tvd = vd->vdev_top; 4956 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config; 4957 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 4958 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt; 4959 4960 if (vd->vdev_ops->vdev_op_leaf && 4961 vd->vdev_ops != &vdev_draid_spare_ops) { 4962 atomic_add_64(rebuilt, psize); 4963 } 4964 vs->vs_rebuild_processed += psize; 4965 } 4966 4967 if (flags & ZIO_FLAG_SELF_HEAL) 4968 vs->vs_self_healed += psize; 4969 } 4970 4971 /* 4972 * The bytes/ops/histograms are recorded at the leaf level and 4973 * aggregated into the higher level vdevs in vdev_get_stats(). 4974 */ 4975 if (vd->vdev_ops->vdev_op_leaf && 4976 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) { 4977 zio_type_t vs_type = type; 4978 zio_priority_t priority = zio->io_priority; 4979 4980 /* 4981 * TRIM ops and bytes are reported to user space as 4982 * ZIO_TYPE_FLUSH. This is done to preserve the 4983 * vdev_stat_t structure layout for user space. 4984 */ 4985 if (type == ZIO_TYPE_TRIM) 4986 vs_type = ZIO_TYPE_FLUSH; 4987 4988 /* 4989 * Solely for the purposes of 'zpool iostat -lqrw' 4990 * reporting use the priority to categorize the IO. 4991 * Only the following are reported to user space: 4992 * 4993 * ZIO_PRIORITY_SYNC_READ, 4994 * ZIO_PRIORITY_SYNC_WRITE, 4995 * ZIO_PRIORITY_ASYNC_READ, 4996 * ZIO_PRIORITY_ASYNC_WRITE, 4997 * ZIO_PRIORITY_SCRUB, 4998 * ZIO_PRIORITY_TRIM, 4999 * ZIO_PRIORITY_REBUILD. 5000 */ 5001 if (priority == ZIO_PRIORITY_INITIALIZING) { 5002 ASSERT3U(type, ==, ZIO_TYPE_WRITE); 5003 priority = ZIO_PRIORITY_ASYNC_WRITE; 5004 } else if (priority == ZIO_PRIORITY_REMOVAL) { 5005 priority = ((type == ZIO_TYPE_WRITE) ? 5006 ZIO_PRIORITY_ASYNC_WRITE : 5007 ZIO_PRIORITY_ASYNC_READ); 5008 } 5009 5010 vs->vs_ops[vs_type]++; 5011 vs->vs_bytes[vs_type] += psize; 5012 5013 if (flags & ZIO_FLAG_DELEGATED) { 5014 vsx->vsx_agg_histo[priority] 5015 [RQ_HISTO(zio->io_size)]++; 5016 } else { 5017 vsx->vsx_ind_histo[priority] 5018 [RQ_HISTO(zio->io_size)]++; 5019 } 5020 5021 if (zio->io_delta && zio->io_delay) { 5022 vsx->vsx_queue_histo[priority] 5023 [L_HISTO(zio->io_delta - zio->io_delay)]++; 5024 vsx->vsx_disk_histo[type] 5025 [L_HISTO(zio->io_delay)]++; 5026 vsx->vsx_total_histo[type] 5027 [L_HISTO(zio->io_delta)]++; 5028 } 5029 } 5030 5031 mutex_exit(&vd->vdev_stat_lock); 5032 return; 5033 } 5034 5035 if (flags & ZIO_FLAG_SPECULATIVE) 5036 return; 5037 5038 /* 5039 * If this is an I/O error that is going to be retried, then ignore the 5040 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 5041 * hard errors, when in reality they can happen for any number of 5042 * innocuous reasons (bus resets, MPxIO link failure, etc). 5043 */ 5044 if (zio->io_error == EIO && 5045 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 5046 return; 5047 5048 /* 5049 * Intent logs writes won't propagate their error to the root 5050 * I/O so don't mark these types of failures as pool-level 5051 * errors. 5052 */ 5053 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 5054 return; 5055 5056 if (type == ZIO_TYPE_WRITE && txg != 0 && 5057 (!(flags & ZIO_FLAG_IO_REPAIR) || 5058 (flags & ZIO_FLAG_SCAN_THREAD) || 5059 spa->spa_claiming)) { 5060 /* 5061 * This is either a normal write (not a repair), or it's 5062 * a repair induced by the scrub thread, or it's a repair 5063 * made by zil_claim() during spa_load() in the first txg. 5064 * In the normal case, we commit the DTL change in the same 5065 * txg as the block was born. In the scrub-induced repair 5066 * case, we know that scrubs run in first-pass syncing context, 5067 * so we commit the DTL change in spa_syncing_txg(spa). 5068 * In the zil_claim() case, we commit in spa_first_txg(spa). 5069 * 5070 * We currently do not make DTL entries for failed spontaneous 5071 * self-healing writes triggered by normal (non-scrubbing) 5072 * reads, because we have no transactional context in which to 5073 * do so -- and it's not clear that it'd be desirable anyway. 5074 */ 5075 if (vd->vdev_ops->vdev_op_leaf) { 5076 uint64_t commit_txg = txg; 5077 if (flags & ZIO_FLAG_SCAN_THREAD) { 5078 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 5079 ASSERT(spa_sync_pass(spa) == 1); 5080 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 5081 commit_txg = spa_syncing_txg(spa); 5082 } else if (spa->spa_claiming) { 5083 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 5084 commit_txg = spa_first_txg(spa); 5085 } 5086 ASSERT(commit_txg >= spa_syncing_txg(spa)); 5087 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 5088 return; 5089 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 5090 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 5091 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 5092 } 5093 if (vd != rvd) 5094 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 5095 } 5096 } 5097 5098 int64_t 5099 vdev_deflated_space(vdev_t *vd, int64_t space) 5100 { 5101 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); 5102 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 5103 5104 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); 5105 } 5106 5107 /* 5108 * Update the in-core space usage stats for this vdev, its metaslab class, 5109 * and the root vdev. 5110 */ 5111 void 5112 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 5113 int64_t space_delta) 5114 { 5115 (void) defer_delta; 5116 int64_t dspace_delta; 5117 spa_t *spa = vd->vdev_spa; 5118 vdev_t *rvd = spa->spa_root_vdev; 5119 5120 ASSERT(vd == vd->vdev_top); 5121 5122 /* 5123 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 5124 * factor. We must calculate this here and not at the root vdev 5125 * because the root vdev's psize-to-asize is simply the max of its 5126 * children's, thus not accurate enough for us. 5127 */ 5128 dspace_delta = vdev_deflated_space(vd, space_delta); 5129 5130 mutex_enter(&vd->vdev_stat_lock); 5131 /* ensure we won't underflow */ 5132 if (alloc_delta < 0) { 5133 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); 5134 } 5135 5136 vd->vdev_stat.vs_alloc += alloc_delta; 5137 vd->vdev_stat.vs_space += space_delta; 5138 vd->vdev_stat.vs_dspace += dspace_delta; 5139 mutex_exit(&vd->vdev_stat_lock); 5140 5141 /* every class but log contributes to root space stats */ 5142 if (vd->vdev_mg != NULL && !vd->vdev_islog) { 5143 ASSERT(!vd->vdev_isl2cache); 5144 mutex_enter(&rvd->vdev_stat_lock); 5145 rvd->vdev_stat.vs_alloc += alloc_delta; 5146 rvd->vdev_stat.vs_space += space_delta; 5147 rvd->vdev_stat.vs_dspace += dspace_delta; 5148 mutex_exit(&rvd->vdev_stat_lock); 5149 } 5150 /* Note: metaslab_class_space_update moved to metaslab_space_update */ 5151 } 5152 5153 /* 5154 * Mark a top-level vdev's config as dirty, placing it on the dirty list 5155 * so that it will be written out next time the vdev configuration is synced. 5156 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 5157 */ 5158 void 5159 vdev_config_dirty(vdev_t *vd) 5160 { 5161 spa_t *spa = vd->vdev_spa; 5162 vdev_t *rvd = spa->spa_root_vdev; 5163 int c; 5164 5165 ASSERT(spa_writeable(spa)); 5166 5167 /* 5168 * If this is an aux vdev (as with l2cache and spare devices), then we 5169 * update the vdev config manually and set the sync flag. 5170 */ 5171 if (vd->vdev_aux != NULL) { 5172 spa_aux_vdev_t *sav = vd->vdev_aux; 5173 nvlist_t **aux; 5174 uint_t naux; 5175 5176 for (c = 0; c < sav->sav_count; c++) { 5177 if (sav->sav_vdevs[c] == vd) 5178 break; 5179 } 5180 5181 if (c == sav->sav_count) { 5182 /* 5183 * We're being removed. There's nothing more to do. 5184 */ 5185 ASSERT(sav->sav_sync == B_TRUE); 5186 return; 5187 } 5188 5189 sav->sav_sync = B_TRUE; 5190 5191 if (nvlist_lookup_nvlist_array(sav->sav_config, 5192 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 5193 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 5194 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 5195 } 5196 5197 ASSERT(c < naux); 5198 5199 /* 5200 * Setting the nvlist in the middle if the array is a little 5201 * sketchy, but it will work. 5202 */ 5203 nvlist_free(aux[c]); 5204 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 5205 5206 return; 5207 } 5208 5209 /* 5210 * The dirty list is protected by the SCL_CONFIG lock. The caller 5211 * must either hold SCL_CONFIG as writer, or must be the sync thread 5212 * (which holds SCL_CONFIG as reader). There's only one sync thread, 5213 * so this is sufficient to ensure mutual exclusion. 5214 */ 5215 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5216 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5217 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5218 5219 if (vd == rvd) { 5220 for (c = 0; c < rvd->vdev_children; c++) 5221 vdev_config_dirty(rvd->vdev_child[c]); 5222 } else { 5223 ASSERT(vd == vd->vdev_top); 5224 5225 if (!list_link_active(&vd->vdev_config_dirty_node) && 5226 vdev_is_concrete(vd)) { 5227 list_insert_head(&spa->spa_config_dirty_list, vd); 5228 } 5229 } 5230 } 5231 5232 void 5233 vdev_config_clean(vdev_t *vd) 5234 { 5235 spa_t *spa = vd->vdev_spa; 5236 5237 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5238 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5239 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5240 5241 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 5242 list_remove(&spa->spa_config_dirty_list, vd); 5243 } 5244 5245 /* 5246 * Mark a top-level vdev's state as dirty, so that the next pass of 5247 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 5248 * the state changes from larger config changes because they require 5249 * much less locking, and are often needed for administrative actions. 5250 */ 5251 void 5252 vdev_state_dirty(vdev_t *vd) 5253 { 5254 spa_t *spa = vd->vdev_spa; 5255 5256 ASSERT(spa_writeable(spa)); 5257 ASSERT(vd == vd->vdev_top); 5258 5259 /* 5260 * The state list is protected by the SCL_STATE lock. The caller 5261 * must either hold SCL_STATE as writer, or must be the sync thread 5262 * (which holds SCL_STATE as reader). There's only one sync thread, 5263 * so this is sufficient to ensure mutual exclusion. 5264 */ 5265 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5266 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5267 spa_config_held(spa, SCL_STATE, RW_READER))); 5268 5269 if (!list_link_active(&vd->vdev_state_dirty_node) && 5270 vdev_is_concrete(vd)) 5271 list_insert_head(&spa->spa_state_dirty_list, vd); 5272 } 5273 5274 void 5275 vdev_state_clean(vdev_t *vd) 5276 { 5277 spa_t *spa = vd->vdev_spa; 5278 5279 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5280 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5281 spa_config_held(spa, SCL_STATE, RW_READER))); 5282 5283 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 5284 list_remove(&spa->spa_state_dirty_list, vd); 5285 } 5286 5287 /* 5288 * Propagate vdev state up from children to parent. 5289 */ 5290 void 5291 vdev_propagate_state(vdev_t *vd) 5292 { 5293 spa_t *spa = vd->vdev_spa; 5294 vdev_t *rvd = spa->spa_root_vdev; 5295 int degraded = 0, faulted = 0; 5296 int corrupted = 0; 5297 vdev_t *child; 5298 5299 if (vd->vdev_children > 0) { 5300 for (int c = 0; c < vd->vdev_children; c++) { 5301 child = vd->vdev_child[c]; 5302 5303 /* 5304 * Don't factor holes or indirect vdevs into the 5305 * decision. 5306 */ 5307 if (!vdev_is_concrete(child)) 5308 continue; 5309 5310 if (!vdev_readable(child) || 5311 (!vdev_writeable(child) && spa_writeable(spa))) { 5312 /* 5313 * Root special: if there is a top-level log 5314 * device, treat the root vdev as if it were 5315 * degraded. 5316 */ 5317 if (child->vdev_islog && vd == rvd) 5318 degraded++; 5319 else 5320 faulted++; 5321 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 5322 degraded++; 5323 } 5324 5325 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 5326 corrupted++; 5327 } 5328 5329 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 5330 5331 /* 5332 * Root special: if there is a top-level vdev that cannot be 5333 * opened due to corrupted metadata, then propagate the root 5334 * vdev's aux state as 'corrupt' rather than 'insufficient 5335 * replicas'. 5336 */ 5337 if (corrupted && vd == rvd && 5338 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 5339 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 5340 VDEV_AUX_CORRUPT_DATA); 5341 } 5342 5343 if (vd->vdev_parent) 5344 vdev_propagate_state(vd->vdev_parent); 5345 } 5346 5347 /* 5348 * Set a vdev's state. If this is during an open, we don't update the parent 5349 * state, because we're in the process of opening children depth-first. 5350 * Otherwise, we propagate the change to the parent. 5351 * 5352 * If this routine places a device in a faulted state, an appropriate ereport is 5353 * generated. 5354 */ 5355 void 5356 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 5357 { 5358 uint64_t save_state; 5359 spa_t *spa = vd->vdev_spa; 5360 5361 if (state == vd->vdev_state) { 5362 /* 5363 * Since vdev_offline() code path is already in an offline 5364 * state we can miss a statechange event to OFFLINE. Check 5365 * the previous state to catch this condition. 5366 */ 5367 if (vd->vdev_ops->vdev_op_leaf && 5368 (state == VDEV_STATE_OFFLINE) && 5369 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) { 5370 /* post an offline state change */ 5371 zfs_post_state_change(spa, vd, vd->vdev_prevstate); 5372 } 5373 vd->vdev_stat.vs_aux = aux; 5374 return; 5375 } 5376 5377 save_state = vd->vdev_state; 5378 5379 vd->vdev_state = state; 5380 vd->vdev_stat.vs_aux = aux; 5381 5382 /* 5383 * If we are setting the vdev state to anything but an open state, then 5384 * always close the underlying device unless the device has requested 5385 * a delayed close (i.e. we're about to remove or fault the device). 5386 * Otherwise, we keep accessible but invalid devices open forever. 5387 * We don't call vdev_close() itself, because that implies some extra 5388 * checks (offline, etc) that we don't want here. This is limited to 5389 * leaf devices, because otherwise closing the device will affect other 5390 * children. 5391 */ 5392 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 5393 vd->vdev_ops->vdev_op_leaf) 5394 vd->vdev_ops->vdev_op_close(vd); 5395 5396 if (vd->vdev_removed && 5397 state == VDEV_STATE_CANT_OPEN && 5398 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 5399 /* 5400 * If the previous state is set to VDEV_STATE_REMOVED, then this 5401 * device was previously marked removed and someone attempted to 5402 * reopen it. If this failed due to a nonexistent device, then 5403 * keep the device in the REMOVED state. We also let this be if 5404 * it is one of our special test online cases, which is only 5405 * attempting to online the device and shouldn't generate an FMA 5406 * fault. 5407 */ 5408 vd->vdev_state = VDEV_STATE_REMOVED; 5409 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 5410 } else if (state == VDEV_STATE_REMOVED) { 5411 vd->vdev_removed = B_TRUE; 5412 } else if (state == VDEV_STATE_CANT_OPEN) { 5413 /* 5414 * If we fail to open a vdev during an import or recovery, we 5415 * mark it as "not available", which signifies that it was 5416 * never there to begin with. Failure to open such a device 5417 * is not considered an error. 5418 */ 5419 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 5420 spa_load_state(spa) == SPA_LOAD_RECOVER) && 5421 vd->vdev_ops->vdev_op_leaf) 5422 vd->vdev_not_present = 1; 5423 5424 /* 5425 * Post the appropriate ereport. If the 'prevstate' field is 5426 * set to something other than VDEV_STATE_UNKNOWN, it indicates 5427 * that this is part of a vdev_reopen(). In this case, we don't 5428 * want to post the ereport if the device was already in the 5429 * CANT_OPEN state beforehand. 5430 * 5431 * If the 'checkremove' flag is set, then this is an attempt to 5432 * online the device in response to an insertion event. If we 5433 * hit this case, then we have detected an insertion event for a 5434 * faulted or offline device that wasn't in the removed state. 5435 * In this scenario, we don't post an ereport because we are 5436 * about to replace the device, or attempt an online with 5437 * vdev_forcefault, which will generate the fault for us. 5438 */ 5439 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 5440 !vd->vdev_not_present && !vd->vdev_checkremove && 5441 vd != spa->spa_root_vdev) { 5442 const char *class; 5443 5444 switch (aux) { 5445 case VDEV_AUX_OPEN_FAILED: 5446 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 5447 break; 5448 case VDEV_AUX_CORRUPT_DATA: 5449 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 5450 break; 5451 case VDEV_AUX_NO_REPLICAS: 5452 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 5453 break; 5454 case VDEV_AUX_BAD_GUID_SUM: 5455 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 5456 break; 5457 case VDEV_AUX_TOO_SMALL: 5458 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 5459 break; 5460 case VDEV_AUX_BAD_LABEL: 5461 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 5462 break; 5463 case VDEV_AUX_BAD_ASHIFT: 5464 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT; 5465 break; 5466 default: 5467 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 5468 } 5469 5470 (void) zfs_ereport_post(class, spa, vd, NULL, NULL, 5471 save_state); 5472 } 5473 5474 /* Erase any notion of persistent removed state */ 5475 vd->vdev_removed = B_FALSE; 5476 } else { 5477 vd->vdev_removed = B_FALSE; 5478 } 5479 5480 /* 5481 * Notify ZED of any significant state-change on a leaf vdev. 5482 * 5483 */ 5484 if (vd->vdev_ops->vdev_op_leaf) { 5485 /* preserve original state from a vdev_reopen() */ 5486 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) && 5487 (vd->vdev_prevstate != vd->vdev_state) && 5488 (save_state <= VDEV_STATE_CLOSED)) 5489 save_state = vd->vdev_prevstate; 5490 5491 /* filter out state change due to initial vdev_open */ 5492 if (save_state > VDEV_STATE_CLOSED) 5493 zfs_post_state_change(spa, vd, save_state); 5494 } 5495 5496 if (!isopen && vd->vdev_parent) 5497 vdev_propagate_state(vd->vdev_parent); 5498 } 5499 5500 boolean_t 5501 vdev_children_are_offline(vdev_t *vd) 5502 { 5503 ASSERT(!vd->vdev_ops->vdev_op_leaf); 5504 5505 for (uint64_t i = 0; i < vd->vdev_children; i++) { 5506 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 5507 return (B_FALSE); 5508 } 5509 5510 return (B_TRUE); 5511 } 5512 5513 /* 5514 * Check the vdev configuration to ensure that it's capable of supporting 5515 * a root pool. We do not support partial configuration. 5516 */ 5517 boolean_t 5518 vdev_is_bootable(vdev_t *vd) 5519 { 5520 if (!vd->vdev_ops->vdev_op_leaf) { 5521 const char *vdev_type = vd->vdev_ops->vdev_op_type; 5522 5523 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) 5524 return (B_FALSE); 5525 } 5526 5527 for (int c = 0; c < vd->vdev_children; c++) { 5528 if (!vdev_is_bootable(vd->vdev_child[c])) 5529 return (B_FALSE); 5530 } 5531 return (B_TRUE); 5532 } 5533 5534 boolean_t 5535 vdev_is_concrete(vdev_t *vd) 5536 { 5537 vdev_ops_t *ops = vd->vdev_ops; 5538 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 5539 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 5540 return (B_FALSE); 5541 } else { 5542 return (B_TRUE); 5543 } 5544 } 5545 5546 /* 5547 * Determine if a log device has valid content. If the vdev was 5548 * removed or faulted in the MOS config then we know that 5549 * the content on the log device has already been written to the pool. 5550 */ 5551 boolean_t 5552 vdev_log_state_valid(vdev_t *vd) 5553 { 5554 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 5555 !vd->vdev_removed) 5556 return (B_TRUE); 5557 5558 for (int c = 0; c < vd->vdev_children; c++) 5559 if (vdev_log_state_valid(vd->vdev_child[c])) 5560 return (B_TRUE); 5561 5562 return (B_FALSE); 5563 } 5564 5565 /* 5566 * Expand a vdev if possible. 5567 */ 5568 void 5569 vdev_expand(vdev_t *vd, uint64_t txg) 5570 { 5571 ASSERT(vd->vdev_top == vd); 5572 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5573 ASSERT(vdev_is_concrete(vd)); 5574 5575 vdev_set_deflate_ratio(vd); 5576 5577 if ((vd->vdev_spa->spa_raidz_expand == NULL || 5578 vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) && 5579 (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 5580 vdev_is_concrete(vd)) { 5581 vdev_metaslab_group_create(vd); 5582 VERIFY(vdev_metaslab_init(vd, txg) == 0); 5583 vdev_config_dirty(vd); 5584 } 5585 } 5586 5587 /* 5588 * Split a vdev. 5589 */ 5590 void 5591 vdev_split(vdev_t *vd) 5592 { 5593 vdev_t *cvd, *pvd = vd->vdev_parent; 5594 5595 VERIFY3U(pvd->vdev_children, >, 1); 5596 5597 vdev_remove_child(pvd, vd); 5598 vdev_compact_children(pvd); 5599 5600 ASSERT3P(pvd->vdev_child, !=, NULL); 5601 5602 cvd = pvd->vdev_child[0]; 5603 if (pvd->vdev_children == 1) { 5604 vdev_remove_parent(cvd); 5605 cvd->vdev_splitting = B_TRUE; 5606 } 5607 vdev_propagate_state(cvd); 5608 } 5609 5610 void 5611 vdev_deadman(vdev_t *vd, const char *tag) 5612 { 5613 for (int c = 0; c < vd->vdev_children; c++) { 5614 vdev_t *cvd = vd->vdev_child[c]; 5615 5616 vdev_deadman(cvd, tag); 5617 } 5618 5619 if (vd->vdev_ops->vdev_op_leaf) { 5620 vdev_queue_t *vq = &vd->vdev_queue; 5621 5622 mutex_enter(&vq->vq_lock); 5623 if (vq->vq_active > 0) { 5624 spa_t *spa = vd->vdev_spa; 5625 zio_t *fio; 5626 uint64_t delta; 5627 5628 zfs_dbgmsg("slow vdev: %s has %u active IOs", 5629 vd->vdev_path, vq->vq_active); 5630 5631 /* 5632 * Look at the head of all the pending queues, 5633 * if any I/O has been outstanding for longer than 5634 * the spa_deadman_synctime invoke the deadman logic. 5635 */ 5636 fio = list_head(&vq->vq_active_list); 5637 delta = gethrtime() - fio->io_timestamp; 5638 if (delta > spa_deadman_synctime(spa)) 5639 zio_deadman(fio, tag); 5640 } 5641 mutex_exit(&vq->vq_lock); 5642 } 5643 } 5644 5645 void 5646 vdev_defer_resilver(vdev_t *vd) 5647 { 5648 ASSERT(vd->vdev_ops->vdev_op_leaf); 5649 5650 vd->vdev_resilver_deferred = B_TRUE; 5651 vd->vdev_spa->spa_resilver_deferred = B_TRUE; 5652 } 5653 5654 /* 5655 * Clears the resilver deferred flag on all leaf devs under vd. Returns 5656 * B_TRUE if we have devices that need to be resilvered and are available to 5657 * accept resilver I/Os. 5658 */ 5659 boolean_t 5660 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx) 5661 { 5662 boolean_t resilver_needed = B_FALSE; 5663 spa_t *spa = vd->vdev_spa; 5664 5665 for (int c = 0; c < vd->vdev_children; c++) { 5666 vdev_t *cvd = vd->vdev_child[c]; 5667 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx); 5668 } 5669 5670 if (vd == spa->spa_root_vdev && 5671 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { 5672 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 5673 vdev_config_dirty(vd); 5674 spa->spa_resilver_deferred = B_FALSE; 5675 return (resilver_needed); 5676 } 5677 5678 if (!vdev_is_concrete(vd) || vd->vdev_aux || 5679 !vd->vdev_ops->vdev_op_leaf) 5680 return (resilver_needed); 5681 5682 vd->vdev_resilver_deferred = B_FALSE; 5683 5684 return (!vdev_is_dead(vd) && !vd->vdev_offline && 5685 vdev_resilver_needed(vd, NULL, NULL)); 5686 } 5687 5688 boolean_t 5689 vdev_xlate_is_empty(range_seg64_t *rs) 5690 { 5691 return (rs->rs_start == rs->rs_end); 5692 } 5693 5694 /* 5695 * Translate a logical range to the first contiguous physical range for the 5696 * specified vdev_t. This function is initially called with a leaf vdev and 5697 * will walk each parent vdev until it reaches a top-level vdev. Once the 5698 * top-level is reached the physical range is initialized and the recursive 5699 * function begins to unwind. As it unwinds it calls the parent's vdev 5700 * specific translation function to do the real conversion. 5701 */ 5702 void 5703 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 5704 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 5705 { 5706 /* 5707 * Walk up the vdev tree 5708 */ 5709 if (vd != vd->vdev_top) { 5710 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs, 5711 remain_rs); 5712 } else { 5713 /* 5714 * We've reached the top-level vdev, initialize the physical 5715 * range to the logical range and set an empty remaining 5716 * range then start to unwind. 5717 */ 5718 physical_rs->rs_start = logical_rs->rs_start; 5719 physical_rs->rs_end = logical_rs->rs_end; 5720 5721 remain_rs->rs_start = logical_rs->rs_start; 5722 remain_rs->rs_end = logical_rs->rs_start; 5723 5724 return; 5725 } 5726 5727 vdev_t *pvd = vd->vdev_parent; 5728 ASSERT3P(pvd, !=, NULL); 5729 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL); 5730 5731 /* 5732 * As this recursive function unwinds, translate the logical 5733 * range into its physical and any remaining components by calling 5734 * the vdev specific translate function. 5735 */ 5736 range_seg64_t intermediate = { 0 }; 5737 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs); 5738 5739 physical_rs->rs_start = intermediate.rs_start; 5740 physical_rs->rs_end = intermediate.rs_end; 5741 } 5742 5743 void 5744 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs, 5745 vdev_xlate_func_t *func, void *arg) 5746 { 5747 range_seg64_t iter_rs = *logical_rs; 5748 range_seg64_t physical_rs; 5749 range_seg64_t remain_rs; 5750 5751 while (!vdev_xlate_is_empty(&iter_rs)) { 5752 5753 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs); 5754 5755 /* 5756 * With raidz and dRAID, it's possible that the logical range 5757 * does not live on this leaf vdev. Only when there is a non- 5758 * zero physical size call the provided function. 5759 */ 5760 if (!vdev_xlate_is_empty(&physical_rs)) 5761 func(arg, &physical_rs); 5762 5763 iter_rs = remain_rs; 5764 } 5765 } 5766 5767 static char * 5768 vdev_name(vdev_t *vd, char *buf, int buflen) 5769 { 5770 if (vd->vdev_path == NULL) { 5771 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) { 5772 strlcpy(buf, vd->vdev_spa->spa_name, buflen); 5773 } else if (!vd->vdev_ops->vdev_op_leaf) { 5774 snprintf(buf, buflen, "%s-%llu", 5775 vd->vdev_ops->vdev_op_type, 5776 (u_longlong_t)vd->vdev_id); 5777 } 5778 } else { 5779 strlcpy(buf, vd->vdev_path, buflen); 5780 } 5781 return (buf); 5782 } 5783 5784 /* 5785 * Look at the vdev tree and determine whether any devices are currently being 5786 * replaced. 5787 */ 5788 boolean_t 5789 vdev_replace_in_progress(vdev_t *vdev) 5790 { 5791 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0); 5792 5793 if (vdev->vdev_ops == &vdev_replacing_ops) 5794 return (B_TRUE); 5795 5796 /* 5797 * A 'spare' vdev indicates that we have a replace in progress, unless 5798 * it has exactly two children, and the second, the hot spare, has 5799 * finished being resilvered. 5800 */ 5801 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 || 5802 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING))) 5803 return (B_TRUE); 5804 5805 for (int i = 0; i < vdev->vdev_children; i++) { 5806 if (vdev_replace_in_progress(vdev->vdev_child[i])) 5807 return (B_TRUE); 5808 } 5809 5810 return (B_FALSE); 5811 } 5812 5813 /* 5814 * Add a (source=src, propname=propval) list to an nvlist. 5815 */ 5816 static void 5817 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval, 5818 uint64_t intval, zprop_source_t src) 5819 { 5820 nvlist_t *propval; 5821 5822 propval = fnvlist_alloc(); 5823 fnvlist_add_uint64(propval, ZPROP_SOURCE, src); 5824 5825 if (strval != NULL) 5826 fnvlist_add_string(propval, ZPROP_VALUE, strval); 5827 else 5828 fnvlist_add_uint64(propval, ZPROP_VALUE, intval); 5829 5830 fnvlist_add_nvlist(nvl, propname, propval); 5831 nvlist_free(propval); 5832 } 5833 5834 static void 5835 vdev_props_set_sync(void *arg, dmu_tx_t *tx) 5836 { 5837 vdev_t *vd; 5838 nvlist_t *nvp = arg; 5839 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5840 objset_t *mos = spa->spa_meta_objset; 5841 nvpair_t *elem = NULL; 5842 uint64_t vdev_guid; 5843 uint64_t objid; 5844 nvlist_t *nvprops; 5845 5846 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV); 5847 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS); 5848 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE); 5849 5850 /* this vdev could get removed while waiting for this sync task */ 5851 if (vd == NULL) 5852 return; 5853 5854 /* 5855 * Set vdev property values in the vdev props mos object. 5856 */ 5857 if (vd->vdev_root_zap != 0) { 5858 objid = vd->vdev_root_zap; 5859 } else if (vd->vdev_top_zap != 0) { 5860 objid = vd->vdev_top_zap; 5861 } else if (vd->vdev_leaf_zap != 0) { 5862 objid = vd->vdev_leaf_zap; 5863 } else { 5864 panic("unexpected vdev type"); 5865 } 5866 5867 mutex_enter(&spa->spa_props_lock); 5868 5869 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5870 uint64_t intval; 5871 const char *strval; 5872 vdev_prop_t prop; 5873 const char *propname = nvpair_name(elem); 5874 zprop_type_t proptype; 5875 5876 switch (prop = vdev_name_to_prop(propname)) { 5877 case VDEV_PROP_USERPROP: 5878 if (vdev_prop_user(propname)) { 5879 strval = fnvpair_value_string(elem); 5880 if (strlen(strval) == 0) { 5881 /* remove the property if value == "" */ 5882 (void) zap_remove(mos, objid, propname, 5883 tx); 5884 } else { 5885 VERIFY0(zap_update(mos, objid, propname, 5886 1, strlen(strval) + 1, strval, tx)); 5887 } 5888 spa_history_log_internal(spa, "vdev set", tx, 5889 "vdev_guid=%llu: %s=%s", 5890 (u_longlong_t)vdev_guid, nvpair_name(elem), 5891 strval); 5892 } 5893 break; 5894 default: 5895 /* normalize the property name */ 5896 propname = vdev_prop_to_name(prop); 5897 proptype = vdev_prop_get_type(prop); 5898 5899 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5900 ASSERT(proptype == PROP_TYPE_STRING); 5901 strval = fnvpair_value_string(elem); 5902 VERIFY0(zap_update(mos, objid, propname, 5903 1, strlen(strval) + 1, strval, tx)); 5904 spa_history_log_internal(spa, "vdev set", tx, 5905 "vdev_guid=%llu: %s=%s", 5906 (u_longlong_t)vdev_guid, nvpair_name(elem), 5907 strval); 5908 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5909 intval = fnvpair_value_uint64(elem); 5910 5911 if (proptype == PROP_TYPE_INDEX) { 5912 const char *unused; 5913 VERIFY0(vdev_prop_index_to_string( 5914 prop, intval, &unused)); 5915 } 5916 VERIFY0(zap_update(mos, objid, propname, 5917 sizeof (uint64_t), 1, &intval, tx)); 5918 spa_history_log_internal(spa, "vdev set", tx, 5919 "vdev_guid=%llu: %s=%lld", 5920 (u_longlong_t)vdev_guid, 5921 nvpair_name(elem), (longlong_t)intval); 5922 } else { 5923 panic("invalid vdev property type %u", 5924 nvpair_type(elem)); 5925 } 5926 } 5927 5928 } 5929 5930 mutex_exit(&spa->spa_props_lock); 5931 } 5932 5933 int 5934 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 5935 { 5936 spa_t *spa = vd->vdev_spa; 5937 nvpair_t *elem = NULL; 5938 uint64_t vdev_guid; 5939 nvlist_t *nvprops; 5940 int error = 0; 5941 5942 ASSERT(vd != NULL); 5943 5944 /* Check that vdev has a zap we can use */ 5945 if (vd->vdev_root_zap == 0 && 5946 vd->vdev_top_zap == 0 && 5947 vd->vdev_leaf_zap == 0) 5948 return (SET_ERROR(EINVAL)); 5949 5950 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV, 5951 &vdev_guid) != 0) 5952 return (SET_ERROR(EINVAL)); 5953 5954 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS, 5955 &nvprops) != 0) 5956 return (SET_ERROR(EINVAL)); 5957 5958 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) 5959 return (SET_ERROR(EINVAL)); 5960 5961 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5962 const char *propname = nvpair_name(elem); 5963 vdev_prop_t prop = vdev_name_to_prop(propname); 5964 uint64_t intval = 0; 5965 const char *strval = NULL; 5966 5967 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) { 5968 error = EINVAL; 5969 goto end; 5970 } 5971 5972 if (vdev_prop_readonly(prop)) { 5973 error = EROFS; 5974 goto end; 5975 } 5976 5977 /* Special Processing */ 5978 switch (prop) { 5979 case VDEV_PROP_PATH: 5980 if (vd->vdev_path == NULL) { 5981 error = EROFS; 5982 break; 5983 } 5984 if (nvpair_value_string(elem, &strval) != 0) { 5985 error = EINVAL; 5986 break; 5987 } 5988 /* New path must start with /dev/ */ 5989 if (strncmp(strval, "/dev/", 5)) { 5990 error = EINVAL; 5991 break; 5992 } 5993 error = spa_vdev_setpath(spa, vdev_guid, strval); 5994 break; 5995 case VDEV_PROP_ALLOCATING: 5996 if (nvpair_value_uint64(elem, &intval) != 0) { 5997 error = EINVAL; 5998 break; 5999 } 6000 if (intval != vd->vdev_noalloc) 6001 break; 6002 if (intval == 0) 6003 error = spa_vdev_noalloc(spa, vdev_guid); 6004 else 6005 error = spa_vdev_alloc(spa, vdev_guid); 6006 break; 6007 case VDEV_PROP_FAILFAST: 6008 if (nvpair_value_uint64(elem, &intval) != 0) { 6009 error = EINVAL; 6010 break; 6011 } 6012 vd->vdev_failfast = intval & 1; 6013 break; 6014 case VDEV_PROP_CHECKSUM_N: 6015 if (nvpair_value_uint64(elem, &intval) != 0) { 6016 error = EINVAL; 6017 break; 6018 } 6019 vd->vdev_checksum_n = intval; 6020 break; 6021 case VDEV_PROP_CHECKSUM_T: 6022 if (nvpair_value_uint64(elem, &intval) != 0) { 6023 error = EINVAL; 6024 break; 6025 } 6026 vd->vdev_checksum_t = intval; 6027 break; 6028 case VDEV_PROP_IO_N: 6029 if (nvpair_value_uint64(elem, &intval) != 0) { 6030 error = EINVAL; 6031 break; 6032 } 6033 vd->vdev_io_n = intval; 6034 break; 6035 case VDEV_PROP_IO_T: 6036 if (nvpair_value_uint64(elem, &intval) != 0) { 6037 error = EINVAL; 6038 break; 6039 } 6040 vd->vdev_io_t = intval; 6041 break; 6042 case VDEV_PROP_SLOW_IO_N: 6043 if (nvpair_value_uint64(elem, &intval) != 0) { 6044 error = EINVAL; 6045 break; 6046 } 6047 vd->vdev_slow_io_n = intval; 6048 break; 6049 case VDEV_PROP_SLOW_IO_T: 6050 if (nvpair_value_uint64(elem, &intval) != 0) { 6051 error = EINVAL; 6052 break; 6053 } 6054 vd->vdev_slow_io_t = intval; 6055 break; 6056 default: 6057 /* Most processing is done in vdev_props_set_sync */ 6058 break; 6059 } 6060 end: 6061 if (error != 0) { 6062 intval = error; 6063 vdev_prop_add_list(outnvl, propname, strval, intval, 0); 6064 return (error); 6065 } 6066 } 6067 6068 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync, 6069 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 6070 } 6071 6072 int 6073 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 6074 { 6075 spa_t *spa = vd->vdev_spa; 6076 objset_t *mos = spa->spa_meta_objset; 6077 int err = 0; 6078 uint64_t objid; 6079 uint64_t vdev_guid; 6080 nvpair_t *elem = NULL; 6081 nvlist_t *nvprops = NULL; 6082 uint64_t intval = 0; 6083 char *strval = NULL; 6084 const char *propname = NULL; 6085 vdev_prop_t prop; 6086 6087 ASSERT(vd != NULL); 6088 ASSERT(mos != NULL); 6089 6090 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV, 6091 &vdev_guid) != 0) 6092 return (SET_ERROR(EINVAL)); 6093 6094 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops); 6095 6096 if (vd->vdev_root_zap != 0) { 6097 objid = vd->vdev_root_zap; 6098 } else if (vd->vdev_top_zap != 0) { 6099 objid = vd->vdev_top_zap; 6100 } else if (vd->vdev_leaf_zap != 0) { 6101 objid = vd->vdev_leaf_zap; 6102 } else { 6103 return (SET_ERROR(EINVAL)); 6104 } 6105 ASSERT(objid != 0); 6106 6107 mutex_enter(&spa->spa_props_lock); 6108 6109 if (nvprops != NULL) { 6110 char namebuf[64] = { 0 }; 6111 6112 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 6113 intval = 0; 6114 strval = NULL; 6115 propname = nvpair_name(elem); 6116 prop = vdev_name_to_prop(propname); 6117 zprop_source_t src = ZPROP_SRC_DEFAULT; 6118 uint64_t integer_size, num_integers; 6119 6120 switch (prop) { 6121 /* Special Read-only Properties */ 6122 case VDEV_PROP_NAME: 6123 strval = vdev_name(vd, namebuf, 6124 sizeof (namebuf)); 6125 if (strval == NULL) 6126 continue; 6127 vdev_prop_add_list(outnvl, propname, strval, 0, 6128 ZPROP_SRC_NONE); 6129 continue; 6130 case VDEV_PROP_CAPACITY: 6131 /* percent used */ 6132 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 : 6133 (vd->vdev_stat.vs_alloc * 100 / 6134 vd->vdev_stat.vs_dspace); 6135 vdev_prop_add_list(outnvl, propname, NULL, 6136 intval, ZPROP_SRC_NONE); 6137 continue; 6138 case VDEV_PROP_STATE: 6139 vdev_prop_add_list(outnvl, propname, NULL, 6140 vd->vdev_state, ZPROP_SRC_NONE); 6141 continue; 6142 case VDEV_PROP_GUID: 6143 vdev_prop_add_list(outnvl, propname, NULL, 6144 vd->vdev_guid, ZPROP_SRC_NONE); 6145 continue; 6146 case VDEV_PROP_ASIZE: 6147 vdev_prop_add_list(outnvl, propname, NULL, 6148 vd->vdev_asize, ZPROP_SRC_NONE); 6149 continue; 6150 case VDEV_PROP_PSIZE: 6151 vdev_prop_add_list(outnvl, propname, NULL, 6152 vd->vdev_psize, ZPROP_SRC_NONE); 6153 continue; 6154 case VDEV_PROP_ASHIFT: 6155 vdev_prop_add_list(outnvl, propname, NULL, 6156 vd->vdev_ashift, ZPROP_SRC_NONE); 6157 continue; 6158 case VDEV_PROP_SIZE: 6159 vdev_prop_add_list(outnvl, propname, NULL, 6160 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE); 6161 continue; 6162 case VDEV_PROP_FREE: 6163 vdev_prop_add_list(outnvl, propname, NULL, 6164 vd->vdev_stat.vs_dspace - 6165 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 6166 continue; 6167 case VDEV_PROP_ALLOCATED: 6168 vdev_prop_add_list(outnvl, propname, NULL, 6169 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 6170 continue; 6171 case VDEV_PROP_EXPANDSZ: 6172 vdev_prop_add_list(outnvl, propname, NULL, 6173 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE); 6174 continue; 6175 case VDEV_PROP_FRAGMENTATION: 6176 vdev_prop_add_list(outnvl, propname, NULL, 6177 vd->vdev_stat.vs_fragmentation, 6178 ZPROP_SRC_NONE); 6179 continue; 6180 case VDEV_PROP_PARITY: 6181 vdev_prop_add_list(outnvl, propname, NULL, 6182 vdev_get_nparity(vd), ZPROP_SRC_NONE); 6183 continue; 6184 case VDEV_PROP_PATH: 6185 if (vd->vdev_path == NULL) 6186 continue; 6187 vdev_prop_add_list(outnvl, propname, 6188 vd->vdev_path, 0, ZPROP_SRC_NONE); 6189 continue; 6190 case VDEV_PROP_DEVID: 6191 if (vd->vdev_devid == NULL) 6192 continue; 6193 vdev_prop_add_list(outnvl, propname, 6194 vd->vdev_devid, 0, ZPROP_SRC_NONE); 6195 continue; 6196 case VDEV_PROP_PHYS_PATH: 6197 if (vd->vdev_physpath == NULL) 6198 continue; 6199 vdev_prop_add_list(outnvl, propname, 6200 vd->vdev_physpath, 0, ZPROP_SRC_NONE); 6201 continue; 6202 case VDEV_PROP_ENC_PATH: 6203 if (vd->vdev_enc_sysfs_path == NULL) 6204 continue; 6205 vdev_prop_add_list(outnvl, propname, 6206 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE); 6207 continue; 6208 case VDEV_PROP_FRU: 6209 if (vd->vdev_fru == NULL) 6210 continue; 6211 vdev_prop_add_list(outnvl, propname, 6212 vd->vdev_fru, 0, ZPROP_SRC_NONE); 6213 continue; 6214 case VDEV_PROP_PARENT: 6215 if (vd->vdev_parent != NULL) { 6216 strval = vdev_name(vd->vdev_parent, 6217 namebuf, sizeof (namebuf)); 6218 vdev_prop_add_list(outnvl, propname, 6219 strval, 0, ZPROP_SRC_NONE); 6220 } 6221 continue; 6222 case VDEV_PROP_CHILDREN: 6223 if (vd->vdev_children > 0) 6224 strval = kmem_zalloc(ZAP_MAXVALUELEN, 6225 KM_SLEEP); 6226 for (uint64_t i = 0; i < vd->vdev_children; 6227 i++) { 6228 const char *vname; 6229 6230 vname = vdev_name(vd->vdev_child[i], 6231 namebuf, sizeof (namebuf)); 6232 if (vname == NULL) 6233 vname = "(unknown)"; 6234 if (strlen(strval) > 0) 6235 strlcat(strval, ",", 6236 ZAP_MAXVALUELEN); 6237 strlcat(strval, vname, ZAP_MAXVALUELEN); 6238 } 6239 if (strval != NULL) { 6240 vdev_prop_add_list(outnvl, propname, 6241 strval, 0, ZPROP_SRC_NONE); 6242 kmem_free(strval, ZAP_MAXVALUELEN); 6243 } 6244 continue; 6245 case VDEV_PROP_NUMCHILDREN: 6246 vdev_prop_add_list(outnvl, propname, NULL, 6247 vd->vdev_children, ZPROP_SRC_NONE); 6248 continue; 6249 case VDEV_PROP_READ_ERRORS: 6250 vdev_prop_add_list(outnvl, propname, NULL, 6251 vd->vdev_stat.vs_read_errors, 6252 ZPROP_SRC_NONE); 6253 continue; 6254 case VDEV_PROP_WRITE_ERRORS: 6255 vdev_prop_add_list(outnvl, propname, NULL, 6256 vd->vdev_stat.vs_write_errors, 6257 ZPROP_SRC_NONE); 6258 continue; 6259 case VDEV_PROP_CHECKSUM_ERRORS: 6260 vdev_prop_add_list(outnvl, propname, NULL, 6261 vd->vdev_stat.vs_checksum_errors, 6262 ZPROP_SRC_NONE); 6263 continue; 6264 case VDEV_PROP_INITIALIZE_ERRORS: 6265 vdev_prop_add_list(outnvl, propname, NULL, 6266 vd->vdev_stat.vs_initialize_errors, 6267 ZPROP_SRC_NONE); 6268 continue; 6269 case VDEV_PROP_TRIM_ERRORS: 6270 vdev_prop_add_list(outnvl, propname, NULL, 6271 vd->vdev_stat.vs_trim_errors, 6272 ZPROP_SRC_NONE); 6273 continue; 6274 case VDEV_PROP_SLOW_IOS: 6275 vdev_prop_add_list(outnvl, propname, NULL, 6276 vd->vdev_stat.vs_slow_ios, 6277 ZPROP_SRC_NONE); 6278 continue; 6279 case VDEV_PROP_OPS_NULL: 6280 vdev_prop_add_list(outnvl, propname, NULL, 6281 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL], 6282 ZPROP_SRC_NONE); 6283 continue; 6284 case VDEV_PROP_OPS_READ: 6285 vdev_prop_add_list(outnvl, propname, NULL, 6286 vd->vdev_stat.vs_ops[ZIO_TYPE_READ], 6287 ZPROP_SRC_NONE); 6288 continue; 6289 case VDEV_PROP_OPS_WRITE: 6290 vdev_prop_add_list(outnvl, propname, NULL, 6291 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE], 6292 ZPROP_SRC_NONE); 6293 continue; 6294 case VDEV_PROP_OPS_FREE: 6295 vdev_prop_add_list(outnvl, propname, NULL, 6296 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE], 6297 ZPROP_SRC_NONE); 6298 continue; 6299 case VDEV_PROP_OPS_CLAIM: 6300 vdev_prop_add_list(outnvl, propname, NULL, 6301 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM], 6302 ZPROP_SRC_NONE); 6303 continue; 6304 case VDEV_PROP_OPS_TRIM: 6305 /* 6306 * TRIM ops and bytes are reported to user 6307 * space as ZIO_TYPE_FLUSH. This is done to 6308 * preserve the vdev_stat_t structure layout 6309 * for user space. 6310 */ 6311 vdev_prop_add_list(outnvl, propname, NULL, 6312 vd->vdev_stat.vs_ops[ZIO_TYPE_FLUSH], 6313 ZPROP_SRC_NONE); 6314 continue; 6315 case VDEV_PROP_BYTES_NULL: 6316 vdev_prop_add_list(outnvl, propname, NULL, 6317 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL], 6318 ZPROP_SRC_NONE); 6319 continue; 6320 case VDEV_PROP_BYTES_READ: 6321 vdev_prop_add_list(outnvl, propname, NULL, 6322 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ], 6323 ZPROP_SRC_NONE); 6324 continue; 6325 case VDEV_PROP_BYTES_WRITE: 6326 vdev_prop_add_list(outnvl, propname, NULL, 6327 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE], 6328 ZPROP_SRC_NONE); 6329 continue; 6330 case VDEV_PROP_BYTES_FREE: 6331 vdev_prop_add_list(outnvl, propname, NULL, 6332 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE], 6333 ZPROP_SRC_NONE); 6334 continue; 6335 case VDEV_PROP_BYTES_CLAIM: 6336 vdev_prop_add_list(outnvl, propname, NULL, 6337 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM], 6338 ZPROP_SRC_NONE); 6339 continue; 6340 case VDEV_PROP_BYTES_TRIM: 6341 /* 6342 * TRIM ops and bytes are reported to user 6343 * space as ZIO_TYPE_FLUSH. This is done to 6344 * preserve the vdev_stat_t structure layout 6345 * for user space. 6346 */ 6347 vdev_prop_add_list(outnvl, propname, NULL, 6348 vd->vdev_stat.vs_bytes[ZIO_TYPE_FLUSH], 6349 ZPROP_SRC_NONE); 6350 continue; 6351 case VDEV_PROP_REMOVING: 6352 vdev_prop_add_list(outnvl, propname, NULL, 6353 vd->vdev_removing, ZPROP_SRC_NONE); 6354 continue; 6355 case VDEV_PROP_RAIDZ_EXPANDING: 6356 /* Only expose this for raidz */ 6357 if (vd->vdev_ops == &vdev_raidz_ops) { 6358 vdev_prop_add_list(outnvl, propname, 6359 NULL, vd->vdev_rz_expanding, 6360 ZPROP_SRC_NONE); 6361 } 6362 continue; 6363 case VDEV_PROP_TRIM_SUPPORT: 6364 /* only valid for leaf vdevs */ 6365 if (vd->vdev_ops->vdev_op_leaf) { 6366 vdev_prop_add_list(outnvl, propname, 6367 NULL, vd->vdev_has_trim, 6368 ZPROP_SRC_NONE); 6369 } 6370 continue; 6371 /* Numeric Properites */ 6372 case VDEV_PROP_ALLOCATING: 6373 /* Leaf vdevs cannot have this property */ 6374 if (vd->vdev_mg == NULL && 6375 vd->vdev_top != NULL) { 6376 src = ZPROP_SRC_NONE; 6377 intval = ZPROP_BOOLEAN_NA; 6378 } else { 6379 err = vdev_prop_get_int(vd, prop, 6380 &intval); 6381 if (err && err != ENOENT) 6382 break; 6383 6384 if (intval == 6385 vdev_prop_default_numeric(prop)) 6386 src = ZPROP_SRC_DEFAULT; 6387 else 6388 src = ZPROP_SRC_LOCAL; 6389 } 6390 6391 vdev_prop_add_list(outnvl, propname, NULL, 6392 intval, src); 6393 break; 6394 case VDEV_PROP_FAILFAST: 6395 src = ZPROP_SRC_LOCAL; 6396 strval = NULL; 6397 6398 err = zap_lookup(mos, objid, nvpair_name(elem), 6399 sizeof (uint64_t), 1, &intval); 6400 if (err == ENOENT) { 6401 intval = vdev_prop_default_numeric( 6402 prop); 6403 err = 0; 6404 } else if (err) { 6405 break; 6406 } 6407 if (intval == vdev_prop_default_numeric(prop)) 6408 src = ZPROP_SRC_DEFAULT; 6409 6410 vdev_prop_add_list(outnvl, propname, strval, 6411 intval, src); 6412 break; 6413 case VDEV_PROP_CHECKSUM_N: 6414 case VDEV_PROP_CHECKSUM_T: 6415 case VDEV_PROP_IO_N: 6416 case VDEV_PROP_IO_T: 6417 case VDEV_PROP_SLOW_IO_N: 6418 case VDEV_PROP_SLOW_IO_T: 6419 err = vdev_prop_get_int(vd, prop, &intval); 6420 if (err && err != ENOENT) 6421 break; 6422 6423 if (intval == vdev_prop_default_numeric(prop)) 6424 src = ZPROP_SRC_DEFAULT; 6425 else 6426 src = ZPROP_SRC_LOCAL; 6427 6428 vdev_prop_add_list(outnvl, propname, NULL, 6429 intval, src); 6430 break; 6431 /* Text Properties */ 6432 case VDEV_PROP_COMMENT: 6433 /* Exists in the ZAP below */ 6434 /* FALLTHRU */ 6435 case VDEV_PROP_USERPROP: 6436 /* User Properites */ 6437 src = ZPROP_SRC_LOCAL; 6438 6439 err = zap_length(mos, objid, nvpair_name(elem), 6440 &integer_size, &num_integers); 6441 if (err) 6442 break; 6443 6444 switch (integer_size) { 6445 case 8: 6446 /* User properties cannot be integers */ 6447 err = EINVAL; 6448 break; 6449 case 1: 6450 /* string property */ 6451 strval = kmem_alloc(num_integers, 6452 KM_SLEEP); 6453 err = zap_lookup(mos, objid, 6454 nvpair_name(elem), 1, 6455 num_integers, strval); 6456 if (err) { 6457 kmem_free(strval, 6458 num_integers); 6459 break; 6460 } 6461 vdev_prop_add_list(outnvl, propname, 6462 strval, 0, src); 6463 kmem_free(strval, num_integers); 6464 break; 6465 } 6466 break; 6467 default: 6468 err = ENOENT; 6469 break; 6470 } 6471 if (err) 6472 break; 6473 } 6474 } else { 6475 /* 6476 * Get all properties from the MOS vdev property object. 6477 */ 6478 zap_cursor_t zc; 6479 zap_attribute_t *za = zap_attribute_alloc(); 6480 for (zap_cursor_init(&zc, mos, objid); 6481 (err = zap_cursor_retrieve(&zc, za)) == 0; 6482 zap_cursor_advance(&zc)) { 6483 intval = 0; 6484 strval = NULL; 6485 zprop_source_t src = ZPROP_SRC_DEFAULT; 6486 propname = za->za_name; 6487 6488 switch (za->za_integer_length) { 6489 case 8: 6490 /* We do not allow integer user properties */ 6491 /* This is likely an internal value */ 6492 break; 6493 case 1: 6494 /* string property */ 6495 strval = kmem_alloc(za->za_num_integers, 6496 KM_SLEEP); 6497 err = zap_lookup(mos, objid, za->za_name, 1, 6498 za->za_num_integers, strval); 6499 if (err) { 6500 kmem_free(strval, za->za_num_integers); 6501 break; 6502 } 6503 vdev_prop_add_list(outnvl, propname, strval, 0, 6504 src); 6505 kmem_free(strval, za->za_num_integers); 6506 break; 6507 6508 default: 6509 break; 6510 } 6511 } 6512 zap_cursor_fini(&zc); 6513 zap_attribute_free(za); 6514 } 6515 6516 mutex_exit(&spa->spa_props_lock); 6517 if (err && err != ENOENT) { 6518 return (err); 6519 } 6520 6521 return (0); 6522 } 6523 6524 EXPORT_SYMBOL(vdev_fault); 6525 EXPORT_SYMBOL(vdev_degrade); 6526 EXPORT_SYMBOL(vdev_online); 6527 EXPORT_SYMBOL(vdev_offline); 6528 EXPORT_SYMBOL(vdev_clear); 6529 6530 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW, 6531 "Target number of metaslabs per top-level vdev"); 6532 6533 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW, 6534 "Default lower limit for metaslab size"); 6535 6536 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW, 6537 "Default upper limit for metaslab size"); 6538 6539 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW, 6540 "Minimum number of metaslabs per top-level vdev"); 6541 6542 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW, 6543 "Practical upper limit of total metaslabs per top-level vdev"); 6544 6545 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW, 6546 "Rate limit slow IO (delay) events to this many per second"); 6547 6548 ZFS_MODULE_PARAM(zfs, zfs_, deadman_events_per_second, UINT, ZMOD_RW, 6549 "Rate limit hung IO (deadman) events to this many per second"); 6550 6551 ZFS_MODULE_PARAM(zfs, zfs_, dio_write_verify_events_per_second, UINT, ZMOD_RW, 6552 "Rate Direct I/O write verify events to this many per second"); 6553 6554 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, direct_write_verify, UINT, ZMOD_RW, 6555 "Direct I/O writes will perform for checksum verification before " 6556 "commiting write"); 6557 6558 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW, 6559 "Rate limit checksum events to this many checksum errors per second " 6560 "(do not set below ZED threshold)."); 6561 6562 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW, 6563 "Ignore errors during resilver/scrub"); 6564 6565 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW, 6566 "Bypass vdev_validate()"); 6567 6568 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW, 6569 "Disable cache flushes"); 6570 6571 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW, 6572 "Minimum number of metaslabs required to dedicate one for log blocks"); 6573 6574 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift, 6575 param_set_min_auto_ashift, param_get_uint, ZMOD_RW, 6576 "Minimum ashift used when creating new top-level vdevs"); 6577 6578 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift, 6579 param_set_max_auto_ashift, param_get_uint, ZMOD_RW, 6580 "Maximum ashift used when optimizing for logical -> physical sector " 6581 "size on new top-level vdevs"); 6582