1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2017 Joyent, Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 * Copyright (c) 2019, Datto Inc. All rights reserved. 31 * Copyright (c) 2021, Klara Inc. 32 * Copyright [2021] Hewlett Packard Enterprise Development LP 33 */ 34 35 #include <sys/zfs_context.h> 36 #include <sys/fm/fs/zfs.h> 37 #include <sys/spa.h> 38 #include <sys/spa_impl.h> 39 #include <sys/bpobj.h> 40 #include <sys/dmu.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_dir.h> 43 #include <sys/vdev_impl.h> 44 #include <sys/vdev_rebuild.h> 45 #include <sys/vdev_draid.h> 46 #include <sys/uberblock_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/space_map.h> 50 #include <sys/space_reftree.h> 51 #include <sys/zio.h> 52 #include <sys/zap.h> 53 #include <sys/fs/zfs.h> 54 #include <sys/arc.h> 55 #include <sys/zil.h> 56 #include <sys/dsl_scan.h> 57 #include <sys/vdev_raidz.h> 58 #include <sys/abd.h> 59 #include <sys/vdev_initialize.h> 60 #include <sys/vdev_trim.h> 61 #include <sys/zvol.h> 62 #include <sys/zfs_ratelimit.h> 63 #include "zfs_prop.h" 64 65 /* 66 * One metaslab from each (normal-class) vdev is used by the ZIL. These are 67 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are 68 * part of the spa_embedded_log_class. The metaslab with the most free space 69 * in each vdev is selected for this purpose when the pool is opened (or a 70 * vdev is added). See vdev_metaslab_init(). 71 * 72 * Log blocks can be allocated from the following locations. Each one is tried 73 * in order until the allocation succeeds: 74 * 1. dedicated log vdevs, aka "slog" (spa_log_class) 75 * 2. embedded slog metaslabs (spa_embedded_log_class) 76 * 3. other metaslabs in normal vdevs (spa_normal_class) 77 * 78 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer 79 * than this number of metaslabs in the vdev. This ensures that we don't set 80 * aside an unreasonable amount of space for the ZIL. If set to less than 81 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced 82 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab. 83 */ 84 static int zfs_embedded_slog_min_ms = 64; 85 86 /* default target for number of metaslabs per top-level vdev */ 87 static int zfs_vdev_default_ms_count = 200; 88 89 /* minimum number of metaslabs per top-level vdev */ 90 static int zfs_vdev_min_ms_count = 16; 91 92 /* practical upper limit of total metaslabs per top-level vdev */ 93 static int zfs_vdev_ms_count_limit = 1ULL << 17; 94 95 /* lower limit for metaslab size (512M) */ 96 static int zfs_vdev_default_ms_shift = 29; 97 98 /* upper limit for metaslab size (16G) */ 99 static const int zfs_vdev_max_ms_shift = 34; 100 101 int vdev_validate_skip = B_FALSE; 102 103 /* 104 * Since the DTL space map of a vdev is not expected to have a lot of 105 * entries, we default its block size to 4K. 106 */ 107 int zfs_vdev_dtl_sm_blksz = (1 << 12); 108 109 /* 110 * Rate limit slow IO (delay) events to this many per second. 111 */ 112 static unsigned int zfs_slow_io_events_per_second = 20; 113 114 /* 115 * Rate limit checksum events after this many checksum errors per second. 116 */ 117 static unsigned int zfs_checksum_events_per_second = 20; 118 119 /* 120 * Ignore errors during scrub/resilver. Allows to work around resilver 121 * upon import when there are pool errors. 122 */ 123 static int zfs_scan_ignore_errors = 0; 124 125 /* 126 * vdev-wide space maps that have lots of entries written to them at 127 * the end of each transaction can benefit from a higher I/O bandwidth 128 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 129 */ 130 int zfs_vdev_standard_sm_blksz = (1 << 17); 131 132 /* 133 * Tunable parameter for debugging or performance analysis. Setting this 134 * will cause pool corruption on power loss if a volatile out-of-order 135 * write cache is enabled. 136 */ 137 int zfs_nocacheflush = 0; 138 139 uint64_t zfs_vdev_max_auto_ashift = ASHIFT_MAX; 140 uint64_t zfs_vdev_min_auto_ashift = ASHIFT_MIN; 141 142 void 143 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 144 { 145 va_list adx; 146 char buf[256]; 147 148 va_start(adx, fmt); 149 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 150 va_end(adx); 151 152 if (vd->vdev_path != NULL) { 153 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 154 vd->vdev_path, buf); 155 } else { 156 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 157 vd->vdev_ops->vdev_op_type, 158 (u_longlong_t)vd->vdev_id, 159 (u_longlong_t)vd->vdev_guid, buf); 160 } 161 } 162 163 void 164 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 165 { 166 char state[20]; 167 168 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 169 zfs_dbgmsg("%*svdev %llu: %s", indent, "", 170 (u_longlong_t)vd->vdev_id, 171 vd->vdev_ops->vdev_op_type); 172 return; 173 } 174 175 switch (vd->vdev_state) { 176 case VDEV_STATE_UNKNOWN: 177 (void) snprintf(state, sizeof (state), "unknown"); 178 break; 179 case VDEV_STATE_CLOSED: 180 (void) snprintf(state, sizeof (state), "closed"); 181 break; 182 case VDEV_STATE_OFFLINE: 183 (void) snprintf(state, sizeof (state), "offline"); 184 break; 185 case VDEV_STATE_REMOVED: 186 (void) snprintf(state, sizeof (state), "removed"); 187 break; 188 case VDEV_STATE_CANT_OPEN: 189 (void) snprintf(state, sizeof (state), "can't open"); 190 break; 191 case VDEV_STATE_FAULTED: 192 (void) snprintf(state, sizeof (state), "faulted"); 193 break; 194 case VDEV_STATE_DEGRADED: 195 (void) snprintf(state, sizeof (state), "degraded"); 196 break; 197 case VDEV_STATE_HEALTHY: 198 (void) snprintf(state, sizeof (state), "healthy"); 199 break; 200 default: 201 (void) snprintf(state, sizeof (state), "<state %u>", 202 (uint_t)vd->vdev_state); 203 } 204 205 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 206 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 207 vd->vdev_islog ? " (log)" : "", 208 (u_longlong_t)vd->vdev_guid, 209 vd->vdev_path ? vd->vdev_path : "N/A", state); 210 211 for (uint64_t i = 0; i < vd->vdev_children; i++) 212 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 213 } 214 215 /* 216 * Virtual device management. 217 */ 218 219 static const vdev_ops_t *const vdev_ops_table[] = { 220 &vdev_root_ops, 221 &vdev_raidz_ops, 222 &vdev_draid_ops, 223 &vdev_draid_spare_ops, 224 &vdev_mirror_ops, 225 &vdev_replacing_ops, 226 &vdev_spare_ops, 227 &vdev_disk_ops, 228 &vdev_file_ops, 229 &vdev_missing_ops, 230 &vdev_hole_ops, 231 &vdev_indirect_ops, 232 NULL 233 }; 234 235 /* 236 * Given a vdev type, return the appropriate ops vector. 237 */ 238 static vdev_ops_t * 239 vdev_getops(const char *type) 240 { 241 const vdev_ops_t *ops, *const *opspp; 242 243 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 244 if (strcmp(ops->vdev_op_type, type) == 0) 245 break; 246 247 return (ops); 248 } 249 250 /* 251 * Given a vdev and a metaslab class, find which metaslab group we're 252 * interested in. All vdevs may belong to two different metaslab classes. 253 * Dedicated slog devices use only the primary metaslab group, rather than a 254 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL. 255 */ 256 metaslab_group_t * 257 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc) 258 { 259 if (mc == spa_embedded_log_class(vd->vdev_spa) && 260 vd->vdev_log_mg != NULL) 261 return (vd->vdev_log_mg); 262 else 263 return (vd->vdev_mg); 264 } 265 266 void 267 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 268 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 269 { 270 (void) vd, (void) remain_rs; 271 272 physical_rs->rs_start = logical_rs->rs_start; 273 physical_rs->rs_end = logical_rs->rs_end; 274 } 275 276 /* 277 * Derive the enumerated allocation bias from string input. 278 * String origin is either the per-vdev zap or zpool(8). 279 */ 280 static vdev_alloc_bias_t 281 vdev_derive_alloc_bias(const char *bias) 282 { 283 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 284 285 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) 286 alloc_bias = VDEV_BIAS_LOG; 287 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) 288 alloc_bias = VDEV_BIAS_SPECIAL; 289 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) 290 alloc_bias = VDEV_BIAS_DEDUP; 291 292 return (alloc_bias); 293 } 294 295 /* 296 * Default asize function: return the MAX of psize with the asize of 297 * all children. This is what's used by anything other than RAID-Z. 298 */ 299 uint64_t 300 vdev_default_asize(vdev_t *vd, uint64_t psize) 301 { 302 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 303 uint64_t csize; 304 305 for (int c = 0; c < vd->vdev_children; c++) { 306 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 307 asize = MAX(asize, csize); 308 } 309 310 return (asize); 311 } 312 313 uint64_t 314 vdev_default_min_asize(vdev_t *vd) 315 { 316 return (vd->vdev_min_asize); 317 } 318 319 /* 320 * Get the minimum allocatable size. We define the allocatable size as 321 * the vdev's asize rounded to the nearest metaslab. This allows us to 322 * replace or attach devices which don't have the same physical size but 323 * can still satisfy the same number of allocations. 324 */ 325 uint64_t 326 vdev_get_min_asize(vdev_t *vd) 327 { 328 vdev_t *pvd = vd->vdev_parent; 329 330 /* 331 * If our parent is NULL (inactive spare or cache) or is the root, 332 * just return our own asize. 333 */ 334 if (pvd == NULL) 335 return (vd->vdev_asize); 336 337 /* 338 * The top-level vdev just returns the allocatable size rounded 339 * to the nearest metaslab. 340 */ 341 if (vd == vd->vdev_top) 342 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 343 344 return (pvd->vdev_ops->vdev_op_min_asize(pvd)); 345 } 346 347 void 348 vdev_set_min_asize(vdev_t *vd) 349 { 350 vd->vdev_min_asize = vdev_get_min_asize(vd); 351 352 for (int c = 0; c < vd->vdev_children; c++) 353 vdev_set_min_asize(vd->vdev_child[c]); 354 } 355 356 /* 357 * Get the minimal allocation size for the top-level vdev. 358 */ 359 uint64_t 360 vdev_get_min_alloc(vdev_t *vd) 361 { 362 uint64_t min_alloc = 1ULL << vd->vdev_ashift; 363 364 if (vd->vdev_ops->vdev_op_min_alloc != NULL) 365 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd); 366 367 return (min_alloc); 368 } 369 370 /* 371 * Get the parity level for a top-level vdev. 372 */ 373 uint64_t 374 vdev_get_nparity(vdev_t *vd) 375 { 376 uint64_t nparity = 0; 377 378 if (vd->vdev_ops->vdev_op_nparity != NULL) 379 nparity = vd->vdev_ops->vdev_op_nparity(vd); 380 381 return (nparity); 382 } 383 384 /* 385 * Get the number of data disks for a top-level vdev. 386 */ 387 uint64_t 388 vdev_get_ndisks(vdev_t *vd) 389 { 390 uint64_t ndisks = 1; 391 392 if (vd->vdev_ops->vdev_op_ndisks != NULL) 393 ndisks = vd->vdev_ops->vdev_op_ndisks(vd); 394 395 return (ndisks); 396 } 397 398 vdev_t * 399 vdev_lookup_top(spa_t *spa, uint64_t vdev) 400 { 401 vdev_t *rvd = spa->spa_root_vdev; 402 403 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 404 405 if (vdev < rvd->vdev_children) { 406 ASSERT(rvd->vdev_child[vdev] != NULL); 407 return (rvd->vdev_child[vdev]); 408 } 409 410 return (NULL); 411 } 412 413 vdev_t * 414 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 415 { 416 vdev_t *mvd; 417 418 if (vd->vdev_guid == guid) 419 return (vd); 420 421 for (int c = 0; c < vd->vdev_children; c++) 422 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 423 NULL) 424 return (mvd); 425 426 return (NULL); 427 } 428 429 static int 430 vdev_count_leaves_impl(vdev_t *vd) 431 { 432 int n = 0; 433 434 if (vd->vdev_ops->vdev_op_leaf) 435 return (1); 436 437 for (int c = 0; c < vd->vdev_children; c++) 438 n += vdev_count_leaves_impl(vd->vdev_child[c]); 439 440 return (n); 441 } 442 443 int 444 vdev_count_leaves(spa_t *spa) 445 { 446 int rc; 447 448 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 449 rc = vdev_count_leaves_impl(spa->spa_root_vdev); 450 spa_config_exit(spa, SCL_VDEV, FTAG); 451 452 return (rc); 453 } 454 455 void 456 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 457 { 458 size_t oldsize, newsize; 459 uint64_t id = cvd->vdev_id; 460 vdev_t **newchild; 461 462 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 463 ASSERT(cvd->vdev_parent == NULL); 464 465 cvd->vdev_parent = pvd; 466 467 if (pvd == NULL) 468 return; 469 470 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 471 472 oldsize = pvd->vdev_children * sizeof (vdev_t *); 473 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 474 newsize = pvd->vdev_children * sizeof (vdev_t *); 475 476 newchild = kmem_alloc(newsize, KM_SLEEP); 477 if (pvd->vdev_child != NULL) { 478 bcopy(pvd->vdev_child, newchild, oldsize); 479 kmem_free(pvd->vdev_child, oldsize); 480 } 481 482 pvd->vdev_child = newchild; 483 pvd->vdev_child[id] = cvd; 484 485 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 486 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 487 488 /* 489 * Walk up all ancestors to update guid sum. 490 */ 491 for (; pvd != NULL; pvd = pvd->vdev_parent) 492 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 493 494 if (cvd->vdev_ops->vdev_op_leaf) { 495 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); 496 cvd->vdev_spa->spa_leaf_list_gen++; 497 } 498 } 499 500 void 501 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 502 { 503 int c; 504 uint_t id = cvd->vdev_id; 505 506 ASSERT(cvd->vdev_parent == pvd); 507 508 if (pvd == NULL) 509 return; 510 511 ASSERT(id < pvd->vdev_children); 512 ASSERT(pvd->vdev_child[id] == cvd); 513 514 pvd->vdev_child[id] = NULL; 515 cvd->vdev_parent = NULL; 516 517 for (c = 0; c < pvd->vdev_children; c++) 518 if (pvd->vdev_child[c]) 519 break; 520 521 if (c == pvd->vdev_children) { 522 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 523 pvd->vdev_child = NULL; 524 pvd->vdev_children = 0; 525 } 526 527 if (cvd->vdev_ops->vdev_op_leaf) { 528 spa_t *spa = cvd->vdev_spa; 529 list_remove(&spa->spa_leaf_list, cvd); 530 spa->spa_leaf_list_gen++; 531 } 532 533 /* 534 * Walk up all ancestors to update guid sum. 535 */ 536 for (; pvd != NULL; pvd = pvd->vdev_parent) 537 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 538 } 539 540 /* 541 * Remove any holes in the child array. 542 */ 543 void 544 vdev_compact_children(vdev_t *pvd) 545 { 546 vdev_t **newchild, *cvd; 547 int oldc = pvd->vdev_children; 548 int newc; 549 550 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 551 552 if (oldc == 0) 553 return; 554 555 for (int c = newc = 0; c < oldc; c++) 556 if (pvd->vdev_child[c]) 557 newc++; 558 559 if (newc > 0) { 560 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP); 561 562 for (int c = newc = 0; c < oldc; c++) { 563 if ((cvd = pvd->vdev_child[c]) != NULL) { 564 newchild[newc] = cvd; 565 cvd->vdev_id = newc++; 566 } 567 } 568 } else { 569 newchild = NULL; 570 } 571 572 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 573 pvd->vdev_child = newchild; 574 pvd->vdev_children = newc; 575 } 576 577 /* 578 * Allocate and minimally initialize a vdev_t. 579 */ 580 vdev_t * 581 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 582 { 583 vdev_t *vd; 584 vdev_indirect_config_t *vic; 585 586 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 587 vic = &vd->vdev_indirect_config; 588 589 if (spa->spa_root_vdev == NULL) { 590 ASSERT(ops == &vdev_root_ops); 591 spa->spa_root_vdev = vd; 592 spa->spa_load_guid = spa_generate_guid(NULL); 593 } 594 595 if (guid == 0 && ops != &vdev_hole_ops) { 596 if (spa->spa_root_vdev == vd) { 597 /* 598 * The root vdev's guid will also be the pool guid, 599 * which must be unique among all pools. 600 */ 601 guid = spa_generate_guid(NULL); 602 } else { 603 /* 604 * Any other vdev's guid must be unique within the pool. 605 */ 606 guid = spa_generate_guid(spa); 607 } 608 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 609 } 610 611 vd->vdev_spa = spa; 612 vd->vdev_id = id; 613 vd->vdev_guid = guid; 614 vd->vdev_guid_sum = guid; 615 vd->vdev_ops = ops; 616 vd->vdev_state = VDEV_STATE_CLOSED; 617 vd->vdev_ishole = (ops == &vdev_hole_ops); 618 vic->vic_prev_indirect_vdev = UINT64_MAX; 619 620 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 621 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 622 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL, 623 0, 0); 624 625 /* 626 * Initialize rate limit structs for events. We rate limit ZIO delay 627 * and checksum events so that we don't overwhelm ZED with thousands 628 * of events when a disk is acting up. 629 */ 630 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second, 631 1); 632 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_slow_io_events_per_second, 633 1); 634 zfs_ratelimit_init(&vd->vdev_checksum_rl, 635 &zfs_checksum_events_per_second, 1); 636 637 list_link_init(&vd->vdev_config_dirty_node); 638 list_link_init(&vd->vdev_state_dirty_node); 639 list_link_init(&vd->vdev_initialize_node); 640 list_link_init(&vd->vdev_leaf_node); 641 list_link_init(&vd->vdev_trim_node); 642 643 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL); 644 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 645 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 646 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); 647 648 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 649 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 650 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 651 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 652 653 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL); 654 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL); 655 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL); 656 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL); 657 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL); 658 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL); 659 660 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL); 661 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL); 662 663 for (int t = 0; t < DTL_TYPES; t++) { 664 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 665 0); 666 } 667 668 txg_list_create(&vd->vdev_ms_list, spa, 669 offsetof(struct metaslab, ms_txg_node)); 670 txg_list_create(&vd->vdev_dtl_list, spa, 671 offsetof(struct vdev, vdev_dtl_node)); 672 vd->vdev_stat.vs_timestamp = gethrtime(); 673 vdev_queue_init(vd); 674 vdev_cache_init(vd); 675 676 return (vd); 677 } 678 679 /* 680 * Allocate a new vdev. The 'alloctype' is used to control whether we are 681 * creating a new vdev or loading an existing one - the behavior is slightly 682 * different for each case. 683 */ 684 int 685 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 686 int alloctype) 687 { 688 vdev_ops_t *ops; 689 char *type; 690 uint64_t guid = 0, islog; 691 vdev_t *vd; 692 vdev_indirect_config_t *vic; 693 char *tmp = NULL; 694 int rc; 695 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 696 boolean_t top_level = (parent && !parent->vdev_parent); 697 698 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 699 700 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 701 return (SET_ERROR(EINVAL)); 702 703 if ((ops = vdev_getops(type)) == NULL) 704 return (SET_ERROR(EINVAL)); 705 706 /* 707 * If this is a load, get the vdev guid from the nvlist. 708 * Otherwise, vdev_alloc_common() will generate one for us. 709 */ 710 if (alloctype == VDEV_ALLOC_LOAD) { 711 uint64_t label_id; 712 713 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 714 label_id != id) 715 return (SET_ERROR(EINVAL)); 716 717 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 718 return (SET_ERROR(EINVAL)); 719 } else if (alloctype == VDEV_ALLOC_SPARE) { 720 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 721 return (SET_ERROR(EINVAL)); 722 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 723 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 724 return (SET_ERROR(EINVAL)); 725 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 726 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 727 return (SET_ERROR(EINVAL)); 728 } 729 730 /* 731 * The first allocated vdev must be of type 'root'. 732 */ 733 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 734 return (SET_ERROR(EINVAL)); 735 736 /* 737 * Determine whether we're a log vdev. 738 */ 739 islog = 0; 740 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 741 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 742 return (SET_ERROR(ENOTSUP)); 743 744 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 745 return (SET_ERROR(ENOTSUP)); 746 747 if (top_level && alloctype == VDEV_ALLOC_ADD) { 748 char *bias; 749 750 /* 751 * If creating a top-level vdev, check for allocation 752 * classes input. 753 */ 754 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 755 &bias) == 0) { 756 alloc_bias = vdev_derive_alloc_bias(bias); 757 758 /* spa_vdev_add() expects feature to be enabled */ 759 if (spa->spa_load_state != SPA_LOAD_CREATE && 760 !spa_feature_is_enabled(spa, 761 SPA_FEATURE_ALLOCATION_CLASSES)) { 762 return (SET_ERROR(ENOTSUP)); 763 } 764 } 765 766 /* spa_vdev_add() expects feature to be enabled */ 767 if (ops == &vdev_draid_ops && 768 spa->spa_load_state != SPA_LOAD_CREATE && 769 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) { 770 return (SET_ERROR(ENOTSUP)); 771 } 772 } 773 774 /* 775 * Initialize the vdev specific data. This is done before calling 776 * vdev_alloc_common() since it may fail and this simplifies the 777 * error reporting and cleanup code paths. 778 */ 779 void *tsd = NULL; 780 if (ops->vdev_op_init != NULL) { 781 rc = ops->vdev_op_init(spa, nv, &tsd); 782 if (rc != 0) { 783 return (rc); 784 } 785 } 786 787 vd = vdev_alloc_common(spa, id, guid, ops); 788 vd->vdev_tsd = tsd; 789 vd->vdev_islog = islog; 790 791 if (top_level && alloc_bias != VDEV_BIAS_NONE) 792 vd->vdev_alloc_bias = alloc_bias; 793 794 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 795 vd->vdev_path = spa_strdup(vd->vdev_path); 796 797 /* 798 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a 799 * fault on a vdev and want it to persist across imports (like with 800 * zpool offline -f). 801 */ 802 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp); 803 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) { 804 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 805 vd->vdev_faulted = 1; 806 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 807 } 808 809 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 810 vd->vdev_devid = spa_strdup(vd->vdev_devid); 811 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 812 &vd->vdev_physpath) == 0) 813 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 814 815 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 816 &vd->vdev_enc_sysfs_path) == 0) 817 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path); 818 819 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 820 vd->vdev_fru = spa_strdup(vd->vdev_fru); 821 822 /* 823 * Set the whole_disk property. If it's not specified, leave the value 824 * as -1. 825 */ 826 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 827 &vd->vdev_wholedisk) != 0) 828 vd->vdev_wholedisk = -1ULL; 829 830 vic = &vd->vdev_indirect_config; 831 832 ASSERT0(vic->vic_mapping_object); 833 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 834 &vic->vic_mapping_object); 835 ASSERT0(vic->vic_births_object); 836 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 837 &vic->vic_births_object); 838 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 839 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 840 &vic->vic_prev_indirect_vdev); 841 842 /* 843 * Look for the 'not present' flag. This will only be set if the device 844 * was not present at the time of import. 845 */ 846 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 847 &vd->vdev_not_present); 848 849 /* 850 * Get the alignment requirement. 851 */ 852 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 853 854 /* 855 * Retrieve the vdev creation time. 856 */ 857 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 858 &vd->vdev_crtxg); 859 860 /* 861 * If we're a top-level vdev, try to load the allocation parameters. 862 */ 863 if (top_level && 864 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 865 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 866 &vd->vdev_ms_array); 867 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 868 &vd->vdev_ms_shift); 869 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 870 &vd->vdev_asize); 871 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING, 872 &vd->vdev_noalloc); 873 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 874 &vd->vdev_removing); 875 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 876 &vd->vdev_top_zap); 877 } else { 878 ASSERT0(vd->vdev_top_zap); 879 } 880 881 if (top_level && alloctype != VDEV_ALLOC_ATTACH) { 882 ASSERT(alloctype == VDEV_ALLOC_LOAD || 883 alloctype == VDEV_ALLOC_ADD || 884 alloctype == VDEV_ALLOC_SPLIT || 885 alloctype == VDEV_ALLOC_ROOTPOOL); 886 /* Note: metaslab_group_create() is now deferred */ 887 } 888 889 if (vd->vdev_ops->vdev_op_leaf && 890 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 891 (void) nvlist_lookup_uint64(nv, 892 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 893 } else { 894 ASSERT0(vd->vdev_leaf_zap); 895 } 896 897 /* 898 * If we're a leaf vdev, try to load the DTL object and other state. 899 */ 900 901 if (vd->vdev_ops->vdev_op_leaf && 902 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 903 alloctype == VDEV_ALLOC_ROOTPOOL)) { 904 if (alloctype == VDEV_ALLOC_LOAD) { 905 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 906 &vd->vdev_dtl_object); 907 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 908 &vd->vdev_unspare); 909 } 910 911 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 912 uint64_t spare = 0; 913 914 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 915 &spare) == 0 && spare) 916 spa_spare_add(vd); 917 } 918 919 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 920 &vd->vdev_offline); 921 922 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 923 &vd->vdev_resilver_txg); 924 925 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 926 &vd->vdev_rebuild_txg); 927 928 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) 929 vdev_defer_resilver(vd); 930 931 /* 932 * In general, when importing a pool we want to ignore the 933 * persistent fault state, as the diagnosis made on another 934 * system may not be valid in the current context. The only 935 * exception is if we forced a vdev to a persistently faulted 936 * state with 'zpool offline -f'. The persistent fault will 937 * remain across imports until cleared. 938 * 939 * Local vdevs will remain in the faulted state. 940 */ 941 if (spa_load_state(spa) == SPA_LOAD_OPEN || 942 spa_load_state(spa) == SPA_LOAD_IMPORT) { 943 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 944 &vd->vdev_faulted); 945 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 946 &vd->vdev_degraded); 947 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 948 &vd->vdev_removed); 949 950 if (vd->vdev_faulted || vd->vdev_degraded) { 951 char *aux; 952 953 vd->vdev_label_aux = 954 VDEV_AUX_ERR_EXCEEDED; 955 if (nvlist_lookup_string(nv, 956 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 957 strcmp(aux, "external") == 0) 958 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 959 else 960 vd->vdev_faulted = 0ULL; 961 } 962 } 963 } 964 965 /* 966 * Add ourselves to the parent's list of children. 967 */ 968 vdev_add_child(parent, vd); 969 970 *vdp = vd; 971 972 return (0); 973 } 974 975 void 976 vdev_free(vdev_t *vd) 977 { 978 spa_t *spa = vd->vdev_spa; 979 980 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 981 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 982 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 983 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); 984 985 /* 986 * Scan queues are normally destroyed at the end of a scan. If the 987 * queue exists here, that implies the vdev is being removed while 988 * the scan is still running. 989 */ 990 if (vd->vdev_scan_io_queue != NULL) { 991 mutex_enter(&vd->vdev_scan_io_queue_lock); 992 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); 993 vd->vdev_scan_io_queue = NULL; 994 mutex_exit(&vd->vdev_scan_io_queue_lock); 995 } 996 997 /* 998 * vdev_free() implies closing the vdev first. This is simpler than 999 * trying to ensure complicated semantics for all callers. 1000 */ 1001 vdev_close(vd); 1002 1003 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 1004 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 1005 1006 /* 1007 * Free all children. 1008 */ 1009 for (int c = 0; c < vd->vdev_children; c++) 1010 vdev_free(vd->vdev_child[c]); 1011 1012 ASSERT(vd->vdev_child == NULL); 1013 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 1014 1015 if (vd->vdev_ops->vdev_op_fini != NULL) 1016 vd->vdev_ops->vdev_op_fini(vd); 1017 1018 /* 1019 * Discard allocation state. 1020 */ 1021 if (vd->vdev_mg != NULL) { 1022 vdev_metaslab_fini(vd); 1023 metaslab_group_destroy(vd->vdev_mg); 1024 vd->vdev_mg = NULL; 1025 } 1026 if (vd->vdev_log_mg != NULL) { 1027 ASSERT0(vd->vdev_ms_count); 1028 metaslab_group_destroy(vd->vdev_log_mg); 1029 vd->vdev_log_mg = NULL; 1030 } 1031 1032 ASSERT0(vd->vdev_stat.vs_space); 1033 ASSERT0(vd->vdev_stat.vs_dspace); 1034 ASSERT0(vd->vdev_stat.vs_alloc); 1035 1036 /* 1037 * Remove this vdev from its parent's child list. 1038 */ 1039 vdev_remove_child(vd->vdev_parent, vd); 1040 1041 ASSERT(vd->vdev_parent == NULL); 1042 ASSERT(!list_link_active(&vd->vdev_leaf_node)); 1043 1044 /* 1045 * Clean up vdev structure. 1046 */ 1047 vdev_queue_fini(vd); 1048 vdev_cache_fini(vd); 1049 1050 if (vd->vdev_path) 1051 spa_strfree(vd->vdev_path); 1052 if (vd->vdev_devid) 1053 spa_strfree(vd->vdev_devid); 1054 if (vd->vdev_physpath) 1055 spa_strfree(vd->vdev_physpath); 1056 1057 if (vd->vdev_enc_sysfs_path) 1058 spa_strfree(vd->vdev_enc_sysfs_path); 1059 1060 if (vd->vdev_fru) 1061 spa_strfree(vd->vdev_fru); 1062 1063 if (vd->vdev_isspare) 1064 spa_spare_remove(vd); 1065 if (vd->vdev_isl2cache) 1066 spa_l2cache_remove(vd); 1067 1068 txg_list_destroy(&vd->vdev_ms_list); 1069 txg_list_destroy(&vd->vdev_dtl_list); 1070 1071 mutex_enter(&vd->vdev_dtl_lock); 1072 space_map_close(vd->vdev_dtl_sm); 1073 for (int t = 0; t < DTL_TYPES; t++) { 1074 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 1075 range_tree_destroy(vd->vdev_dtl[t]); 1076 } 1077 mutex_exit(&vd->vdev_dtl_lock); 1078 1079 EQUIV(vd->vdev_indirect_births != NULL, 1080 vd->vdev_indirect_mapping != NULL); 1081 if (vd->vdev_indirect_births != NULL) { 1082 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1083 vdev_indirect_births_close(vd->vdev_indirect_births); 1084 } 1085 1086 if (vd->vdev_obsolete_sm != NULL) { 1087 ASSERT(vd->vdev_removing || 1088 vd->vdev_ops == &vdev_indirect_ops); 1089 space_map_close(vd->vdev_obsolete_sm); 1090 vd->vdev_obsolete_sm = NULL; 1091 } 1092 range_tree_destroy(vd->vdev_obsolete_segments); 1093 rw_destroy(&vd->vdev_indirect_rwlock); 1094 mutex_destroy(&vd->vdev_obsolete_lock); 1095 1096 mutex_destroy(&vd->vdev_dtl_lock); 1097 mutex_destroy(&vd->vdev_stat_lock); 1098 mutex_destroy(&vd->vdev_probe_lock); 1099 mutex_destroy(&vd->vdev_scan_io_queue_lock); 1100 1101 mutex_destroy(&vd->vdev_initialize_lock); 1102 mutex_destroy(&vd->vdev_initialize_io_lock); 1103 cv_destroy(&vd->vdev_initialize_io_cv); 1104 cv_destroy(&vd->vdev_initialize_cv); 1105 1106 mutex_destroy(&vd->vdev_trim_lock); 1107 mutex_destroy(&vd->vdev_autotrim_lock); 1108 mutex_destroy(&vd->vdev_trim_io_lock); 1109 cv_destroy(&vd->vdev_trim_cv); 1110 cv_destroy(&vd->vdev_autotrim_cv); 1111 cv_destroy(&vd->vdev_trim_io_cv); 1112 1113 mutex_destroy(&vd->vdev_rebuild_lock); 1114 cv_destroy(&vd->vdev_rebuild_cv); 1115 1116 zfs_ratelimit_fini(&vd->vdev_delay_rl); 1117 zfs_ratelimit_fini(&vd->vdev_deadman_rl); 1118 zfs_ratelimit_fini(&vd->vdev_checksum_rl); 1119 1120 if (vd == spa->spa_root_vdev) 1121 spa->spa_root_vdev = NULL; 1122 1123 kmem_free(vd, sizeof (vdev_t)); 1124 } 1125 1126 /* 1127 * Transfer top-level vdev state from svd to tvd. 1128 */ 1129 static void 1130 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 1131 { 1132 spa_t *spa = svd->vdev_spa; 1133 metaslab_t *msp; 1134 vdev_t *vd; 1135 int t; 1136 1137 ASSERT(tvd == tvd->vdev_top); 1138 1139 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite; 1140 tvd->vdev_ms_array = svd->vdev_ms_array; 1141 tvd->vdev_ms_shift = svd->vdev_ms_shift; 1142 tvd->vdev_ms_count = svd->vdev_ms_count; 1143 tvd->vdev_top_zap = svd->vdev_top_zap; 1144 1145 svd->vdev_ms_array = 0; 1146 svd->vdev_ms_shift = 0; 1147 svd->vdev_ms_count = 0; 1148 svd->vdev_top_zap = 0; 1149 1150 if (tvd->vdev_mg) 1151 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 1152 if (tvd->vdev_log_mg) 1153 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg); 1154 tvd->vdev_mg = svd->vdev_mg; 1155 tvd->vdev_log_mg = svd->vdev_log_mg; 1156 tvd->vdev_ms = svd->vdev_ms; 1157 1158 svd->vdev_mg = NULL; 1159 svd->vdev_log_mg = NULL; 1160 svd->vdev_ms = NULL; 1161 1162 if (tvd->vdev_mg != NULL) 1163 tvd->vdev_mg->mg_vd = tvd; 1164 if (tvd->vdev_log_mg != NULL) 1165 tvd->vdev_log_mg->mg_vd = tvd; 1166 1167 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 1168 svd->vdev_checkpoint_sm = NULL; 1169 1170 tvd->vdev_alloc_bias = svd->vdev_alloc_bias; 1171 svd->vdev_alloc_bias = VDEV_BIAS_NONE; 1172 1173 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 1174 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 1175 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 1176 1177 svd->vdev_stat.vs_alloc = 0; 1178 svd->vdev_stat.vs_space = 0; 1179 svd->vdev_stat.vs_dspace = 0; 1180 1181 /* 1182 * State which may be set on a top-level vdev that's in the 1183 * process of being removed. 1184 */ 1185 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 1186 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 1187 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 1188 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); 1189 ASSERT3P(tvd->vdev_indirect_births, ==, NULL); 1190 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); 1191 ASSERT0(tvd->vdev_noalloc); 1192 ASSERT0(tvd->vdev_removing); 1193 ASSERT0(tvd->vdev_rebuilding); 1194 tvd->vdev_noalloc = svd->vdev_noalloc; 1195 tvd->vdev_removing = svd->vdev_removing; 1196 tvd->vdev_rebuilding = svd->vdev_rebuilding; 1197 tvd->vdev_rebuild_config = svd->vdev_rebuild_config; 1198 tvd->vdev_indirect_config = svd->vdev_indirect_config; 1199 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 1200 tvd->vdev_indirect_births = svd->vdev_indirect_births; 1201 range_tree_swap(&svd->vdev_obsolete_segments, 1202 &tvd->vdev_obsolete_segments); 1203 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 1204 svd->vdev_indirect_config.vic_mapping_object = 0; 1205 svd->vdev_indirect_config.vic_births_object = 0; 1206 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 1207 svd->vdev_indirect_mapping = NULL; 1208 svd->vdev_indirect_births = NULL; 1209 svd->vdev_obsolete_sm = NULL; 1210 svd->vdev_noalloc = 0; 1211 svd->vdev_removing = 0; 1212 svd->vdev_rebuilding = 0; 1213 1214 for (t = 0; t < TXG_SIZE; t++) { 1215 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 1216 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 1217 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 1218 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 1219 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 1220 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 1221 } 1222 1223 if (list_link_active(&svd->vdev_config_dirty_node)) { 1224 vdev_config_clean(svd); 1225 vdev_config_dirty(tvd); 1226 } 1227 1228 if (list_link_active(&svd->vdev_state_dirty_node)) { 1229 vdev_state_clean(svd); 1230 vdev_state_dirty(tvd); 1231 } 1232 1233 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 1234 svd->vdev_deflate_ratio = 0; 1235 1236 tvd->vdev_islog = svd->vdev_islog; 1237 svd->vdev_islog = 0; 1238 1239 dsl_scan_io_queue_vdev_xfer(svd, tvd); 1240 } 1241 1242 static void 1243 vdev_top_update(vdev_t *tvd, vdev_t *vd) 1244 { 1245 if (vd == NULL) 1246 return; 1247 1248 vd->vdev_top = tvd; 1249 1250 for (int c = 0; c < vd->vdev_children; c++) 1251 vdev_top_update(tvd, vd->vdev_child[c]); 1252 } 1253 1254 /* 1255 * Add a mirror/replacing vdev above an existing vdev. There is no need to 1256 * call .vdev_op_init() since mirror/replacing vdevs do not have private state. 1257 */ 1258 vdev_t * 1259 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 1260 { 1261 spa_t *spa = cvd->vdev_spa; 1262 vdev_t *pvd = cvd->vdev_parent; 1263 vdev_t *mvd; 1264 1265 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1266 1267 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 1268 1269 mvd->vdev_asize = cvd->vdev_asize; 1270 mvd->vdev_min_asize = cvd->vdev_min_asize; 1271 mvd->vdev_max_asize = cvd->vdev_max_asize; 1272 mvd->vdev_psize = cvd->vdev_psize; 1273 mvd->vdev_ashift = cvd->vdev_ashift; 1274 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift; 1275 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift; 1276 mvd->vdev_state = cvd->vdev_state; 1277 mvd->vdev_crtxg = cvd->vdev_crtxg; 1278 1279 vdev_remove_child(pvd, cvd); 1280 vdev_add_child(pvd, mvd); 1281 cvd->vdev_id = mvd->vdev_children; 1282 vdev_add_child(mvd, cvd); 1283 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1284 1285 if (mvd == mvd->vdev_top) 1286 vdev_top_transfer(cvd, mvd); 1287 1288 return (mvd); 1289 } 1290 1291 /* 1292 * Remove a 1-way mirror/replacing vdev from the tree. 1293 */ 1294 void 1295 vdev_remove_parent(vdev_t *cvd) 1296 { 1297 vdev_t *mvd = cvd->vdev_parent; 1298 vdev_t *pvd = mvd->vdev_parent; 1299 1300 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1301 1302 ASSERT(mvd->vdev_children == 1); 1303 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1304 mvd->vdev_ops == &vdev_replacing_ops || 1305 mvd->vdev_ops == &vdev_spare_ops); 1306 cvd->vdev_ashift = mvd->vdev_ashift; 1307 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift; 1308 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift; 1309 vdev_remove_child(mvd, cvd); 1310 vdev_remove_child(pvd, mvd); 1311 1312 /* 1313 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1314 * Otherwise, we could have detached an offline device, and when we 1315 * go to import the pool we'll think we have two top-level vdevs, 1316 * instead of a different version of the same top-level vdev. 1317 */ 1318 if (mvd->vdev_top == mvd) { 1319 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1320 cvd->vdev_orig_guid = cvd->vdev_guid; 1321 cvd->vdev_guid += guid_delta; 1322 cvd->vdev_guid_sum += guid_delta; 1323 1324 /* 1325 * If pool not set for autoexpand, we need to also preserve 1326 * mvd's asize to prevent automatic expansion of cvd. 1327 * Otherwise if we are adjusting the mirror by attaching and 1328 * detaching children of non-uniform sizes, the mirror could 1329 * autoexpand, unexpectedly requiring larger devices to 1330 * re-establish the mirror. 1331 */ 1332 if (!cvd->vdev_spa->spa_autoexpand) 1333 cvd->vdev_asize = mvd->vdev_asize; 1334 } 1335 cvd->vdev_id = mvd->vdev_id; 1336 vdev_add_child(pvd, cvd); 1337 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1338 1339 if (cvd == cvd->vdev_top) 1340 vdev_top_transfer(mvd, cvd); 1341 1342 ASSERT(mvd->vdev_children == 0); 1343 vdev_free(mvd); 1344 } 1345 1346 void 1347 vdev_metaslab_group_create(vdev_t *vd) 1348 { 1349 spa_t *spa = vd->vdev_spa; 1350 1351 /* 1352 * metaslab_group_create was delayed until allocation bias was available 1353 */ 1354 if (vd->vdev_mg == NULL) { 1355 metaslab_class_t *mc; 1356 1357 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) 1358 vd->vdev_alloc_bias = VDEV_BIAS_LOG; 1359 1360 ASSERT3U(vd->vdev_islog, ==, 1361 (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); 1362 1363 switch (vd->vdev_alloc_bias) { 1364 case VDEV_BIAS_LOG: 1365 mc = spa_log_class(spa); 1366 break; 1367 case VDEV_BIAS_SPECIAL: 1368 mc = spa_special_class(spa); 1369 break; 1370 case VDEV_BIAS_DEDUP: 1371 mc = spa_dedup_class(spa); 1372 break; 1373 default: 1374 mc = spa_normal_class(spa); 1375 } 1376 1377 vd->vdev_mg = metaslab_group_create(mc, vd, 1378 spa->spa_alloc_count); 1379 1380 if (!vd->vdev_islog) { 1381 vd->vdev_log_mg = metaslab_group_create( 1382 spa_embedded_log_class(spa), vd, 1); 1383 } 1384 1385 /* 1386 * The spa ashift min/max only apply for the normal metaslab 1387 * class. Class destination is late binding so ashift boundary 1388 * setting had to wait until now. 1389 */ 1390 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1391 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { 1392 if (vd->vdev_ashift > spa->spa_max_ashift) 1393 spa->spa_max_ashift = vd->vdev_ashift; 1394 if (vd->vdev_ashift < spa->spa_min_ashift) 1395 spa->spa_min_ashift = vd->vdev_ashift; 1396 1397 uint64_t min_alloc = vdev_get_min_alloc(vd); 1398 if (min_alloc < spa->spa_min_alloc) 1399 spa->spa_min_alloc = min_alloc; 1400 } 1401 } 1402 } 1403 1404 int 1405 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1406 { 1407 spa_t *spa = vd->vdev_spa; 1408 uint64_t oldc = vd->vdev_ms_count; 1409 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1410 metaslab_t **mspp; 1411 int error; 1412 boolean_t expanding = (oldc != 0); 1413 1414 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1415 1416 /* 1417 * This vdev is not being allocated from yet or is a hole. 1418 */ 1419 if (vd->vdev_ms_shift == 0) 1420 return (0); 1421 1422 ASSERT(!vd->vdev_ishole); 1423 1424 ASSERT(oldc <= newc); 1425 1426 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1427 1428 if (expanding) { 1429 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 1430 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1431 } 1432 1433 vd->vdev_ms = mspp; 1434 vd->vdev_ms_count = newc; 1435 1436 for (uint64_t m = oldc; m < newc; m++) { 1437 uint64_t object = 0; 1438 /* 1439 * vdev_ms_array may be 0 if we are creating the "fake" 1440 * metaslabs for an indirect vdev for zdb's leak detection. 1441 * See zdb_leak_init(). 1442 */ 1443 if (txg == 0 && vd->vdev_ms_array != 0) { 1444 error = dmu_read(spa->spa_meta_objset, 1445 vd->vdev_ms_array, 1446 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1447 DMU_READ_PREFETCH); 1448 if (error != 0) { 1449 vdev_dbgmsg(vd, "unable to read the metaslab " 1450 "array [error=%d]", error); 1451 return (error); 1452 } 1453 } 1454 1455 error = metaslab_init(vd->vdev_mg, m, object, txg, 1456 &(vd->vdev_ms[m])); 1457 if (error != 0) { 1458 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1459 error); 1460 return (error); 1461 } 1462 } 1463 1464 /* 1465 * Find the emptiest metaslab on the vdev and mark it for use for 1466 * embedded slog by moving it from the regular to the log metaslab 1467 * group. 1468 */ 1469 if (vd->vdev_mg->mg_class == spa_normal_class(spa) && 1470 vd->vdev_ms_count > zfs_embedded_slog_min_ms && 1471 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) { 1472 uint64_t slog_msid = 0; 1473 uint64_t smallest = UINT64_MAX; 1474 1475 /* 1476 * Note, we only search the new metaslabs, because the old 1477 * (pre-existing) ones may be active (e.g. have non-empty 1478 * range_tree's), and we don't move them to the new 1479 * metaslab_t. 1480 */ 1481 for (uint64_t m = oldc; m < newc; m++) { 1482 uint64_t alloc = 1483 space_map_allocated(vd->vdev_ms[m]->ms_sm); 1484 if (alloc < smallest) { 1485 slog_msid = m; 1486 smallest = alloc; 1487 } 1488 } 1489 metaslab_t *slog_ms = vd->vdev_ms[slog_msid]; 1490 /* 1491 * The metaslab was marked as dirty at the end of 1492 * metaslab_init(). Remove it from the dirty list so that we 1493 * can uninitialize and reinitialize it to the new class. 1494 */ 1495 if (txg != 0) { 1496 (void) txg_list_remove_this(&vd->vdev_ms_list, 1497 slog_ms, txg); 1498 } 1499 uint64_t sm_obj = space_map_object(slog_ms->ms_sm); 1500 metaslab_fini(slog_ms); 1501 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg, 1502 &vd->vdev_ms[slog_msid])); 1503 } 1504 1505 if (txg == 0) 1506 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1507 1508 /* 1509 * If the vdev is marked as non-allocating then don't 1510 * activate the metaslabs since we want to ensure that 1511 * no allocations are performed on this device. 1512 */ 1513 if (vd->vdev_noalloc) { 1514 /* track non-allocating vdev space */ 1515 spa->spa_nonallocating_dspace += spa_deflate(spa) ? 1516 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 1517 } else if (!expanding) { 1518 metaslab_group_activate(vd->vdev_mg); 1519 if (vd->vdev_log_mg != NULL) 1520 metaslab_group_activate(vd->vdev_log_mg); 1521 } 1522 1523 if (txg == 0) 1524 spa_config_exit(spa, SCL_ALLOC, FTAG); 1525 1526 /* 1527 * Regardless whether this vdev was just added or it is being 1528 * expanded, the metaslab count has changed. Recalculate the 1529 * block limit. 1530 */ 1531 spa_log_sm_set_blocklimit(spa); 1532 1533 return (0); 1534 } 1535 1536 void 1537 vdev_metaslab_fini(vdev_t *vd) 1538 { 1539 if (vd->vdev_checkpoint_sm != NULL) { 1540 ASSERT(spa_feature_is_active(vd->vdev_spa, 1541 SPA_FEATURE_POOL_CHECKPOINT)); 1542 space_map_close(vd->vdev_checkpoint_sm); 1543 /* 1544 * Even though we close the space map, we need to set its 1545 * pointer to NULL. The reason is that vdev_metaslab_fini() 1546 * may be called multiple times for certain operations 1547 * (i.e. when destroying a pool) so we need to ensure that 1548 * this clause never executes twice. This logic is similar 1549 * to the one used for the vdev_ms clause below. 1550 */ 1551 vd->vdev_checkpoint_sm = NULL; 1552 } 1553 1554 if (vd->vdev_ms != NULL) { 1555 metaslab_group_t *mg = vd->vdev_mg; 1556 1557 metaslab_group_passivate(mg); 1558 if (vd->vdev_log_mg != NULL) { 1559 ASSERT(!vd->vdev_islog); 1560 metaslab_group_passivate(vd->vdev_log_mg); 1561 } 1562 1563 uint64_t count = vd->vdev_ms_count; 1564 for (uint64_t m = 0; m < count; m++) { 1565 metaslab_t *msp = vd->vdev_ms[m]; 1566 if (msp != NULL) 1567 metaslab_fini(msp); 1568 } 1569 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1570 vd->vdev_ms = NULL; 1571 vd->vdev_ms_count = 0; 1572 1573 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 1574 ASSERT0(mg->mg_histogram[i]); 1575 if (vd->vdev_log_mg != NULL) 1576 ASSERT0(vd->vdev_log_mg->mg_histogram[i]); 1577 } 1578 } 1579 ASSERT0(vd->vdev_ms_count); 1580 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0); 1581 } 1582 1583 typedef struct vdev_probe_stats { 1584 boolean_t vps_readable; 1585 boolean_t vps_writeable; 1586 int vps_flags; 1587 } vdev_probe_stats_t; 1588 1589 static void 1590 vdev_probe_done(zio_t *zio) 1591 { 1592 spa_t *spa = zio->io_spa; 1593 vdev_t *vd = zio->io_vd; 1594 vdev_probe_stats_t *vps = zio->io_private; 1595 1596 ASSERT(vd->vdev_probe_zio != NULL); 1597 1598 if (zio->io_type == ZIO_TYPE_READ) { 1599 if (zio->io_error == 0) 1600 vps->vps_readable = 1; 1601 if (zio->io_error == 0 && spa_writeable(spa)) { 1602 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1603 zio->io_offset, zio->io_size, zio->io_abd, 1604 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1605 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1606 } else { 1607 abd_free(zio->io_abd); 1608 } 1609 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1610 if (zio->io_error == 0) 1611 vps->vps_writeable = 1; 1612 abd_free(zio->io_abd); 1613 } else if (zio->io_type == ZIO_TYPE_NULL) { 1614 zio_t *pio; 1615 zio_link_t *zl; 1616 1617 vd->vdev_cant_read |= !vps->vps_readable; 1618 vd->vdev_cant_write |= !vps->vps_writeable; 1619 1620 if (vdev_readable(vd) && 1621 (vdev_writeable(vd) || !spa_writeable(spa))) { 1622 zio->io_error = 0; 1623 } else { 1624 ASSERT(zio->io_error != 0); 1625 vdev_dbgmsg(vd, "failed probe"); 1626 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1627 spa, vd, NULL, NULL, 0); 1628 zio->io_error = SET_ERROR(ENXIO); 1629 } 1630 1631 mutex_enter(&vd->vdev_probe_lock); 1632 ASSERT(vd->vdev_probe_zio == zio); 1633 vd->vdev_probe_zio = NULL; 1634 mutex_exit(&vd->vdev_probe_lock); 1635 1636 zl = NULL; 1637 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1638 if (!vdev_accessible(vd, pio)) 1639 pio->io_error = SET_ERROR(ENXIO); 1640 1641 kmem_free(vps, sizeof (*vps)); 1642 } 1643 } 1644 1645 /* 1646 * Determine whether this device is accessible. 1647 * 1648 * Read and write to several known locations: the pad regions of each 1649 * vdev label but the first, which we leave alone in case it contains 1650 * a VTOC. 1651 */ 1652 zio_t * 1653 vdev_probe(vdev_t *vd, zio_t *zio) 1654 { 1655 spa_t *spa = vd->vdev_spa; 1656 vdev_probe_stats_t *vps = NULL; 1657 zio_t *pio; 1658 1659 ASSERT(vd->vdev_ops->vdev_op_leaf); 1660 1661 /* 1662 * Don't probe the probe. 1663 */ 1664 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1665 return (NULL); 1666 1667 /* 1668 * To prevent 'probe storms' when a device fails, we create 1669 * just one probe i/o at a time. All zios that want to probe 1670 * this vdev will become parents of the probe io. 1671 */ 1672 mutex_enter(&vd->vdev_probe_lock); 1673 1674 if ((pio = vd->vdev_probe_zio) == NULL) { 1675 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1676 1677 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1678 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1679 ZIO_FLAG_TRYHARD; 1680 1681 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1682 /* 1683 * vdev_cant_read and vdev_cant_write can only 1684 * transition from TRUE to FALSE when we have the 1685 * SCL_ZIO lock as writer; otherwise they can only 1686 * transition from FALSE to TRUE. This ensures that 1687 * any zio looking at these values can assume that 1688 * failures persist for the life of the I/O. That's 1689 * important because when a device has intermittent 1690 * connectivity problems, we want to ensure that 1691 * they're ascribed to the device (ENXIO) and not 1692 * the zio (EIO). 1693 * 1694 * Since we hold SCL_ZIO as writer here, clear both 1695 * values so the probe can reevaluate from first 1696 * principles. 1697 */ 1698 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1699 vd->vdev_cant_read = B_FALSE; 1700 vd->vdev_cant_write = B_FALSE; 1701 } 1702 1703 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1704 vdev_probe_done, vps, 1705 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1706 1707 /* 1708 * We can't change the vdev state in this context, so we 1709 * kick off an async task to do it on our behalf. 1710 */ 1711 if (zio != NULL) { 1712 vd->vdev_probe_wanted = B_TRUE; 1713 spa_async_request(spa, SPA_ASYNC_PROBE); 1714 } 1715 } 1716 1717 if (zio != NULL) 1718 zio_add_child(zio, pio); 1719 1720 mutex_exit(&vd->vdev_probe_lock); 1721 1722 if (vps == NULL) { 1723 ASSERT(zio != NULL); 1724 return (NULL); 1725 } 1726 1727 for (int l = 1; l < VDEV_LABELS; l++) { 1728 zio_nowait(zio_read_phys(pio, vd, 1729 vdev_label_offset(vd->vdev_psize, l, 1730 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE, 1731 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1732 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1733 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1734 } 1735 1736 if (zio == NULL) 1737 return (pio); 1738 1739 zio_nowait(pio); 1740 return (NULL); 1741 } 1742 1743 static void 1744 vdev_load_child(void *arg) 1745 { 1746 vdev_t *vd = arg; 1747 1748 vd->vdev_load_error = vdev_load(vd); 1749 } 1750 1751 static void 1752 vdev_open_child(void *arg) 1753 { 1754 vdev_t *vd = arg; 1755 1756 vd->vdev_open_thread = curthread; 1757 vd->vdev_open_error = vdev_open(vd); 1758 vd->vdev_open_thread = NULL; 1759 } 1760 1761 static boolean_t 1762 vdev_uses_zvols(vdev_t *vd) 1763 { 1764 #ifdef _KERNEL 1765 if (zvol_is_zvol(vd->vdev_path)) 1766 return (B_TRUE); 1767 #endif 1768 1769 for (int c = 0; c < vd->vdev_children; c++) 1770 if (vdev_uses_zvols(vd->vdev_child[c])) 1771 return (B_TRUE); 1772 1773 return (B_FALSE); 1774 } 1775 1776 /* 1777 * Returns B_TRUE if the passed child should be opened. 1778 */ 1779 static boolean_t 1780 vdev_default_open_children_func(vdev_t *vd) 1781 { 1782 (void) vd; 1783 return (B_TRUE); 1784 } 1785 1786 /* 1787 * Open the requested child vdevs. If any of the leaf vdevs are using 1788 * a ZFS volume then do the opens in a single thread. This avoids a 1789 * deadlock when the current thread is holding the spa_namespace_lock. 1790 */ 1791 static void 1792 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func) 1793 { 1794 int children = vd->vdev_children; 1795 1796 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri, 1797 children, children, TASKQ_PREPOPULATE); 1798 vd->vdev_nonrot = B_TRUE; 1799 1800 for (int c = 0; c < children; c++) { 1801 vdev_t *cvd = vd->vdev_child[c]; 1802 1803 if (open_func(cvd) == B_FALSE) 1804 continue; 1805 1806 if (tq == NULL || vdev_uses_zvols(vd)) { 1807 cvd->vdev_open_error = vdev_open(cvd); 1808 } else { 1809 VERIFY(taskq_dispatch(tq, vdev_open_child, 1810 cvd, TQ_SLEEP) != TASKQID_INVALID); 1811 } 1812 1813 vd->vdev_nonrot &= cvd->vdev_nonrot; 1814 } 1815 1816 if (tq != NULL) { 1817 taskq_wait(tq); 1818 taskq_destroy(tq); 1819 } 1820 } 1821 1822 /* 1823 * Open all child vdevs. 1824 */ 1825 void 1826 vdev_open_children(vdev_t *vd) 1827 { 1828 vdev_open_children_impl(vd, vdev_default_open_children_func); 1829 } 1830 1831 /* 1832 * Conditionally open a subset of child vdevs. 1833 */ 1834 void 1835 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func) 1836 { 1837 vdev_open_children_impl(vd, open_func); 1838 } 1839 1840 /* 1841 * Compute the raidz-deflation ratio. Note, we hard-code 1842 * in 128k (1 << 17) because it is the "typical" blocksize. 1843 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 1844 * otherwise it would inconsistently account for existing bp's. 1845 */ 1846 static void 1847 vdev_set_deflate_ratio(vdev_t *vd) 1848 { 1849 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 1850 vd->vdev_deflate_ratio = (1 << 17) / 1851 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 1852 } 1853 } 1854 1855 /* 1856 * Maximize performance by inflating the configured ashift for top level 1857 * vdevs to be as close to the physical ashift as possible while maintaining 1858 * administrator defined limits and ensuring it doesn't go below the 1859 * logical ashift. 1860 */ 1861 static void 1862 vdev_ashift_optimize(vdev_t *vd) 1863 { 1864 ASSERT(vd == vd->vdev_top); 1865 1866 if (vd->vdev_ashift < vd->vdev_physical_ashift) { 1867 vd->vdev_ashift = MIN( 1868 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift), 1869 MAX(zfs_vdev_min_auto_ashift, 1870 vd->vdev_physical_ashift)); 1871 } else { 1872 /* 1873 * If the logical and physical ashifts are the same, then 1874 * we ensure that the top-level vdev's ashift is not smaller 1875 * than our minimum ashift value. For the unusual case 1876 * where logical ashift > physical ashift, we can't cap 1877 * the calculated ashift based on max ashift as that 1878 * would cause failures. 1879 * We still check if we need to increase it to match 1880 * the min ashift. 1881 */ 1882 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift, 1883 vd->vdev_ashift); 1884 } 1885 } 1886 1887 /* 1888 * Prepare a virtual device for access. 1889 */ 1890 int 1891 vdev_open(vdev_t *vd) 1892 { 1893 spa_t *spa = vd->vdev_spa; 1894 int error; 1895 uint64_t osize = 0; 1896 uint64_t max_osize = 0; 1897 uint64_t asize, max_asize, psize; 1898 uint64_t logical_ashift = 0; 1899 uint64_t physical_ashift = 0; 1900 1901 ASSERT(vd->vdev_open_thread == curthread || 1902 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1903 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1904 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1905 vd->vdev_state == VDEV_STATE_OFFLINE); 1906 1907 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1908 vd->vdev_cant_read = B_FALSE; 1909 vd->vdev_cant_write = B_FALSE; 1910 vd->vdev_min_asize = vdev_get_min_asize(vd); 1911 1912 /* 1913 * If this vdev is not removed, check its fault status. If it's 1914 * faulted, bail out of the open. 1915 */ 1916 if (!vd->vdev_removed && vd->vdev_faulted) { 1917 ASSERT(vd->vdev_children == 0); 1918 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1919 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1920 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1921 vd->vdev_label_aux); 1922 return (SET_ERROR(ENXIO)); 1923 } else if (vd->vdev_offline) { 1924 ASSERT(vd->vdev_children == 0); 1925 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1926 return (SET_ERROR(ENXIO)); 1927 } 1928 1929 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, 1930 &logical_ashift, &physical_ashift); 1931 /* 1932 * Physical volume size should never be larger than its max size, unless 1933 * the disk has shrunk while we were reading it or the device is buggy 1934 * or damaged: either way it's not safe for use, bail out of the open. 1935 */ 1936 if (osize > max_osize) { 1937 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1938 VDEV_AUX_OPEN_FAILED); 1939 return (SET_ERROR(ENXIO)); 1940 } 1941 1942 /* 1943 * Reset the vdev_reopening flag so that we actually close 1944 * the vdev on error. 1945 */ 1946 vd->vdev_reopening = B_FALSE; 1947 if (zio_injection_enabled && error == 0) 1948 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO)); 1949 1950 if (error) { 1951 if (vd->vdev_removed && 1952 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1953 vd->vdev_removed = B_FALSE; 1954 1955 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 1956 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 1957 vd->vdev_stat.vs_aux); 1958 } else { 1959 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1960 vd->vdev_stat.vs_aux); 1961 } 1962 return (error); 1963 } 1964 1965 vd->vdev_removed = B_FALSE; 1966 1967 /* 1968 * Recheck the faulted flag now that we have confirmed that 1969 * the vdev is accessible. If we're faulted, bail. 1970 */ 1971 if (vd->vdev_faulted) { 1972 ASSERT(vd->vdev_children == 0); 1973 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1974 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1975 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1976 vd->vdev_label_aux); 1977 return (SET_ERROR(ENXIO)); 1978 } 1979 1980 if (vd->vdev_degraded) { 1981 ASSERT(vd->vdev_children == 0); 1982 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1983 VDEV_AUX_ERR_EXCEEDED); 1984 } else { 1985 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1986 } 1987 1988 /* 1989 * For hole or missing vdevs we just return success. 1990 */ 1991 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1992 return (0); 1993 1994 for (int c = 0; c < vd->vdev_children; c++) { 1995 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1996 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1997 VDEV_AUX_NONE); 1998 break; 1999 } 2000 } 2001 2002 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 2003 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 2004 2005 if (vd->vdev_children == 0) { 2006 if (osize < SPA_MINDEVSIZE) { 2007 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2008 VDEV_AUX_TOO_SMALL); 2009 return (SET_ERROR(EOVERFLOW)); 2010 } 2011 psize = osize; 2012 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 2013 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 2014 VDEV_LABEL_END_SIZE); 2015 } else { 2016 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 2017 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 2018 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2019 VDEV_AUX_TOO_SMALL); 2020 return (SET_ERROR(EOVERFLOW)); 2021 } 2022 psize = 0; 2023 asize = osize; 2024 max_asize = max_osize; 2025 } 2026 2027 /* 2028 * If the vdev was expanded, record this so that we can re-create the 2029 * uberblock rings in labels {2,3}, during the next sync. 2030 */ 2031 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0)) 2032 vd->vdev_copy_uberblocks = B_TRUE; 2033 2034 vd->vdev_psize = psize; 2035 2036 /* 2037 * Make sure the allocatable size hasn't shrunk too much. 2038 */ 2039 if (asize < vd->vdev_min_asize) { 2040 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2041 VDEV_AUX_BAD_LABEL); 2042 return (SET_ERROR(EINVAL)); 2043 } 2044 2045 /* 2046 * We can always set the logical/physical ashift members since 2047 * their values are only used to calculate the vdev_ashift when 2048 * the device is first added to the config. These values should 2049 * not be used for anything else since they may change whenever 2050 * the device is reopened and we don't store them in the label. 2051 */ 2052 vd->vdev_physical_ashift = 2053 MAX(physical_ashift, vd->vdev_physical_ashift); 2054 vd->vdev_logical_ashift = MAX(logical_ashift, 2055 vd->vdev_logical_ashift); 2056 2057 if (vd->vdev_asize == 0) { 2058 /* 2059 * This is the first-ever open, so use the computed values. 2060 * For compatibility, a different ashift can be requested. 2061 */ 2062 vd->vdev_asize = asize; 2063 vd->vdev_max_asize = max_asize; 2064 2065 /* 2066 * If the vdev_ashift was not overridden at creation time, 2067 * then set it the logical ashift and optimize the ashift. 2068 */ 2069 if (vd->vdev_ashift == 0) { 2070 vd->vdev_ashift = vd->vdev_logical_ashift; 2071 2072 if (vd->vdev_logical_ashift > ASHIFT_MAX) { 2073 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2074 VDEV_AUX_ASHIFT_TOO_BIG); 2075 return (SET_ERROR(EDOM)); 2076 } 2077 2078 if (vd->vdev_top == vd) { 2079 vdev_ashift_optimize(vd); 2080 } 2081 } 2082 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN || 2083 vd->vdev_ashift > ASHIFT_MAX)) { 2084 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2085 VDEV_AUX_BAD_ASHIFT); 2086 return (SET_ERROR(EDOM)); 2087 } 2088 } else { 2089 /* 2090 * Make sure the alignment required hasn't increased. 2091 */ 2092 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift && 2093 vd->vdev_ops->vdev_op_leaf) { 2094 (void) zfs_ereport_post( 2095 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT, 2096 spa, vd, NULL, NULL, 0); 2097 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2098 VDEV_AUX_BAD_LABEL); 2099 return (SET_ERROR(EDOM)); 2100 } 2101 vd->vdev_max_asize = max_asize; 2102 } 2103 2104 /* 2105 * If all children are healthy we update asize if either: 2106 * The asize has increased, due to a device expansion caused by dynamic 2107 * LUN growth or vdev replacement, and automatic expansion is enabled; 2108 * making the additional space available. 2109 * 2110 * The asize has decreased, due to a device shrink usually caused by a 2111 * vdev replace with a smaller device. This ensures that calculations 2112 * based of max_asize and asize e.g. esize are always valid. It's safe 2113 * to do this as we've already validated that asize is greater than 2114 * vdev_min_asize. 2115 */ 2116 if (vd->vdev_state == VDEV_STATE_HEALTHY && 2117 ((asize > vd->vdev_asize && 2118 (vd->vdev_expanding || spa->spa_autoexpand)) || 2119 (asize < vd->vdev_asize))) 2120 vd->vdev_asize = asize; 2121 2122 vdev_set_min_asize(vd); 2123 2124 /* 2125 * Ensure we can issue some IO before declaring the 2126 * vdev open for business. 2127 */ 2128 if (vd->vdev_ops->vdev_op_leaf && 2129 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 2130 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2131 VDEV_AUX_ERR_EXCEEDED); 2132 return (error); 2133 } 2134 2135 /* 2136 * Track the minimum allocation size. 2137 */ 2138 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 2139 vd->vdev_islog == 0 && vd->vdev_aux == NULL) { 2140 uint64_t min_alloc = vdev_get_min_alloc(vd); 2141 if (min_alloc < spa->spa_min_alloc) 2142 spa->spa_min_alloc = min_alloc; 2143 } 2144 2145 /* 2146 * If this is a leaf vdev, assess whether a resilver is needed. 2147 * But don't do this if we are doing a reopen for a scrub, since 2148 * this would just restart the scrub we are already doing. 2149 */ 2150 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen) 2151 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd); 2152 2153 return (0); 2154 } 2155 2156 static void 2157 vdev_validate_child(void *arg) 2158 { 2159 vdev_t *vd = arg; 2160 2161 vd->vdev_validate_thread = curthread; 2162 vd->vdev_validate_error = vdev_validate(vd); 2163 vd->vdev_validate_thread = NULL; 2164 } 2165 2166 /* 2167 * Called once the vdevs are all opened, this routine validates the label 2168 * contents. This needs to be done before vdev_load() so that we don't 2169 * inadvertently do repair I/Os to the wrong device. 2170 * 2171 * This function will only return failure if one of the vdevs indicates that it 2172 * has since been destroyed or exported. This is only possible if 2173 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 2174 * will be updated but the function will return 0. 2175 */ 2176 int 2177 vdev_validate(vdev_t *vd) 2178 { 2179 spa_t *spa = vd->vdev_spa; 2180 taskq_t *tq = NULL; 2181 nvlist_t *label; 2182 uint64_t guid = 0, aux_guid = 0, top_guid; 2183 uint64_t state; 2184 nvlist_t *nvl; 2185 uint64_t txg; 2186 int children = vd->vdev_children; 2187 2188 if (vdev_validate_skip) 2189 return (0); 2190 2191 if (children > 0) { 2192 tq = taskq_create("vdev_validate", children, minclsyspri, 2193 children, children, TASKQ_PREPOPULATE); 2194 } 2195 2196 for (uint64_t c = 0; c < children; c++) { 2197 vdev_t *cvd = vd->vdev_child[c]; 2198 2199 if (tq == NULL || vdev_uses_zvols(cvd)) { 2200 vdev_validate_child(cvd); 2201 } else { 2202 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd, 2203 TQ_SLEEP) != TASKQID_INVALID); 2204 } 2205 } 2206 if (tq != NULL) { 2207 taskq_wait(tq); 2208 taskq_destroy(tq); 2209 } 2210 for (int c = 0; c < children; c++) { 2211 int error = vd->vdev_child[c]->vdev_validate_error; 2212 2213 if (error != 0) 2214 return (SET_ERROR(EBADF)); 2215 } 2216 2217 2218 /* 2219 * If the device has already failed, or was marked offline, don't do 2220 * any further validation. Otherwise, label I/O will fail and we will 2221 * overwrite the previous state. 2222 */ 2223 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 2224 return (0); 2225 2226 /* 2227 * If we are performing an extreme rewind, we allow for a label that 2228 * was modified at a point after the current txg. 2229 * If config lock is not held do not check for the txg. spa_sync could 2230 * be updating the vdev's label before updating spa_last_synced_txg. 2231 */ 2232 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 2233 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 2234 txg = UINT64_MAX; 2235 else 2236 txg = spa_last_synced_txg(spa); 2237 2238 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 2239 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2240 VDEV_AUX_BAD_LABEL); 2241 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 2242 "txg %llu", (u_longlong_t)txg); 2243 return (0); 2244 } 2245 2246 /* 2247 * Determine if this vdev has been split off into another 2248 * pool. If so, then refuse to open it. 2249 */ 2250 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 2251 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 2252 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2253 VDEV_AUX_SPLIT_POOL); 2254 nvlist_free(label); 2255 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 2256 return (0); 2257 } 2258 2259 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 2260 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2261 VDEV_AUX_CORRUPT_DATA); 2262 nvlist_free(label); 2263 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2264 ZPOOL_CONFIG_POOL_GUID); 2265 return (0); 2266 } 2267 2268 /* 2269 * If config is not trusted then ignore the spa guid check. This is 2270 * necessary because if the machine crashed during a re-guid the new 2271 * guid might have been written to all of the vdev labels, but not the 2272 * cached config. The check will be performed again once we have the 2273 * trusted config from the MOS. 2274 */ 2275 if (spa->spa_trust_config && guid != spa_guid(spa)) { 2276 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2277 VDEV_AUX_CORRUPT_DATA); 2278 nvlist_free(label); 2279 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 2280 "match config (%llu != %llu)", (u_longlong_t)guid, 2281 (u_longlong_t)spa_guid(spa)); 2282 return (0); 2283 } 2284 2285 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 2286 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 2287 &aux_guid) != 0) 2288 aux_guid = 0; 2289 2290 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 2291 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2292 VDEV_AUX_CORRUPT_DATA); 2293 nvlist_free(label); 2294 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2295 ZPOOL_CONFIG_GUID); 2296 return (0); 2297 } 2298 2299 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 2300 != 0) { 2301 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2302 VDEV_AUX_CORRUPT_DATA); 2303 nvlist_free(label); 2304 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2305 ZPOOL_CONFIG_TOP_GUID); 2306 return (0); 2307 } 2308 2309 /* 2310 * If this vdev just became a top-level vdev because its sibling was 2311 * detached, it will have adopted the parent's vdev guid -- but the 2312 * label may or may not be on disk yet. Fortunately, either version 2313 * of the label will have the same top guid, so if we're a top-level 2314 * vdev, we can safely compare to that instead. 2315 * However, if the config comes from a cachefile that failed to update 2316 * after the detach, a top-level vdev will appear as a non top-level 2317 * vdev in the config. Also relax the constraints if we perform an 2318 * extreme rewind. 2319 * 2320 * If we split this vdev off instead, then we also check the 2321 * original pool's guid. We don't want to consider the vdev 2322 * corrupt if it is partway through a split operation. 2323 */ 2324 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 2325 boolean_t mismatch = B_FALSE; 2326 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 2327 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 2328 mismatch = B_TRUE; 2329 } else { 2330 if (vd->vdev_guid != top_guid && 2331 vd->vdev_top->vdev_guid != guid) 2332 mismatch = B_TRUE; 2333 } 2334 2335 if (mismatch) { 2336 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2337 VDEV_AUX_CORRUPT_DATA); 2338 nvlist_free(label); 2339 vdev_dbgmsg(vd, "vdev_validate: config guid " 2340 "doesn't match label guid"); 2341 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 2342 (u_longlong_t)vd->vdev_guid, 2343 (u_longlong_t)vd->vdev_top->vdev_guid); 2344 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 2345 "aux_guid %llu", (u_longlong_t)guid, 2346 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 2347 return (0); 2348 } 2349 } 2350 2351 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 2352 &state) != 0) { 2353 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2354 VDEV_AUX_CORRUPT_DATA); 2355 nvlist_free(label); 2356 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2357 ZPOOL_CONFIG_POOL_STATE); 2358 return (0); 2359 } 2360 2361 nvlist_free(label); 2362 2363 /* 2364 * If this is a verbatim import, no need to check the 2365 * state of the pool. 2366 */ 2367 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 2368 spa_load_state(spa) == SPA_LOAD_OPEN && 2369 state != POOL_STATE_ACTIVE) { 2370 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 2371 "for spa %s", (u_longlong_t)state, spa->spa_name); 2372 return (SET_ERROR(EBADF)); 2373 } 2374 2375 /* 2376 * If we were able to open and validate a vdev that was 2377 * previously marked permanently unavailable, clear that state 2378 * now. 2379 */ 2380 if (vd->vdev_not_present) 2381 vd->vdev_not_present = 0; 2382 2383 return (0); 2384 } 2385 2386 static void 2387 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 2388 { 2389 char *old, *new; 2390 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) { 2391 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) { 2392 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed " 2393 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2394 dvd->vdev_path, svd->vdev_path); 2395 spa_strfree(dvd->vdev_path); 2396 dvd->vdev_path = spa_strdup(svd->vdev_path); 2397 } 2398 } else if (svd->vdev_path != NULL) { 2399 dvd->vdev_path = spa_strdup(svd->vdev_path); 2400 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 2401 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path); 2402 } 2403 2404 /* 2405 * Our enclosure sysfs path may have changed between imports 2406 */ 2407 old = dvd->vdev_enc_sysfs_path; 2408 new = svd->vdev_enc_sysfs_path; 2409 if ((old != NULL && new == NULL) || 2410 (old == NULL && new != NULL) || 2411 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) { 2412 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path " 2413 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2414 old, new); 2415 2416 if (dvd->vdev_enc_sysfs_path) 2417 spa_strfree(dvd->vdev_enc_sysfs_path); 2418 2419 if (svd->vdev_enc_sysfs_path) { 2420 dvd->vdev_enc_sysfs_path = spa_strdup( 2421 svd->vdev_enc_sysfs_path); 2422 } else { 2423 dvd->vdev_enc_sysfs_path = NULL; 2424 } 2425 } 2426 } 2427 2428 /* 2429 * Recursively copy vdev paths from one vdev to another. Source and destination 2430 * vdev trees must have same geometry otherwise return error. Intended to copy 2431 * paths from userland config into MOS config. 2432 */ 2433 int 2434 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 2435 { 2436 if ((svd->vdev_ops == &vdev_missing_ops) || 2437 (svd->vdev_ishole && dvd->vdev_ishole) || 2438 (dvd->vdev_ops == &vdev_indirect_ops)) 2439 return (0); 2440 2441 if (svd->vdev_ops != dvd->vdev_ops) { 2442 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 2443 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 2444 return (SET_ERROR(EINVAL)); 2445 } 2446 2447 if (svd->vdev_guid != dvd->vdev_guid) { 2448 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 2449 "%llu)", (u_longlong_t)svd->vdev_guid, 2450 (u_longlong_t)dvd->vdev_guid); 2451 return (SET_ERROR(EINVAL)); 2452 } 2453 2454 if (svd->vdev_children != dvd->vdev_children) { 2455 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 2456 "%llu != %llu", (u_longlong_t)svd->vdev_children, 2457 (u_longlong_t)dvd->vdev_children); 2458 return (SET_ERROR(EINVAL)); 2459 } 2460 2461 for (uint64_t i = 0; i < svd->vdev_children; i++) { 2462 int error = vdev_copy_path_strict(svd->vdev_child[i], 2463 dvd->vdev_child[i]); 2464 if (error != 0) 2465 return (error); 2466 } 2467 2468 if (svd->vdev_ops->vdev_op_leaf) 2469 vdev_copy_path_impl(svd, dvd); 2470 2471 return (0); 2472 } 2473 2474 static void 2475 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 2476 { 2477 ASSERT(stvd->vdev_top == stvd); 2478 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 2479 2480 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 2481 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 2482 } 2483 2484 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 2485 return; 2486 2487 /* 2488 * The idea here is that while a vdev can shift positions within 2489 * a top vdev (when replacing, attaching mirror, etc.) it cannot 2490 * step outside of it. 2491 */ 2492 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 2493 2494 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 2495 return; 2496 2497 ASSERT(vd->vdev_ops->vdev_op_leaf); 2498 2499 vdev_copy_path_impl(vd, dvd); 2500 } 2501 2502 /* 2503 * Recursively copy vdev paths from one root vdev to another. Source and 2504 * destination vdev trees may differ in geometry. For each destination leaf 2505 * vdev, search a vdev with the same guid and top vdev id in the source. 2506 * Intended to copy paths from userland config into MOS config. 2507 */ 2508 void 2509 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 2510 { 2511 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 2512 ASSERT(srvd->vdev_ops == &vdev_root_ops); 2513 ASSERT(drvd->vdev_ops == &vdev_root_ops); 2514 2515 for (uint64_t i = 0; i < children; i++) { 2516 vdev_copy_path_search(srvd->vdev_child[i], 2517 drvd->vdev_child[i]); 2518 } 2519 } 2520 2521 /* 2522 * Close a virtual device. 2523 */ 2524 void 2525 vdev_close(vdev_t *vd) 2526 { 2527 vdev_t *pvd = vd->vdev_parent; 2528 spa_t *spa __maybe_unused = vd->vdev_spa; 2529 2530 ASSERT(vd != NULL); 2531 ASSERT(vd->vdev_open_thread == curthread || 2532 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2533 2534 /* 2535 * If our parent is reopening, then we are as well, unless we are 2536 * going offline. 2537 */ 2538 if (pvd != NULL && pvd->vdev_reopening) 2539 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 2540 2541 vd->vdev_ops->vdev_op_close(vd); 2542 2543 vdev_cache_purge(vd); 2544 2545 /* 2546 * We record the previous state before we close it, so that if we are 2547 * doing a reopen(), we don't generate FMA ereports if we notice that 2548 * it's still faulted. 2549 */ 2550 vd->vdev_prevstate = vd->vdev_state; 2551 2552 if (vd->vdev_offline) 2553 vd->vdev_state = VDEV_STATE_OFFLINE; 2554 else 2555 vd->vdev_state = VDEV_STATE_CLOSED; 2556 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2557 } 2558 2559 void 2560 vdev_hold(vdev_t *vd) 2561 { 2562 spa_t *spa = vd->vdev_spa; 2563 2564 ASSERT(spa_is_root(spa)); 2565 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 2566 return; 2567 2568 for (int c = 0; c < vd->vdev_children; c++) 2569 vdev_hold(vd->vdev_child[c]); 2570 2571 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL) 2572 vd->vdev_ops->vdev_op_hold(vd); 2573 } 2574 2575 void 2576 vdev_rele(vdev_t *vd) 2577 { 2578 ASSERT(spa_is_root(vd->vdev_spa)); 2579 for (int c = 0; c < vd->vdev_children; c++) 2580 vdev_rele(vd->vdev_child[c]); 2581 2582 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL) 2583 vd->vdev_ops->vdev_op_rele(vd); 2584 } 2585 2586 /* 2587 * Reopen all interior vdevs and any unopened leaves. We don't actually 2588 * reopen leaf vdevs which had previously been opened as they might deadlock 2589 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 2590 * If the leaf has never been opened then open it, as usual. 2591 */ 2592 void 2593 vdev_reopen(vdev_t *vd) 2594 { 2595 spa_t *spa = vd->vdev_spa; 2596 2597 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2598 2599 /* set the reopening flag unless we're taking the vdev offline */ 2600 vd->vdev_reopening = !vd->vdev_offline; 2601 vdev_close(vd); 2602 (void) vdev_open(vd); 2603 2604 /* 2605 * Call vdev_validate() here to make sure we have the same device. 2606 * Otherwise, a device with an invalid label could be successfully 2607 * opened in response to vdev_reopen(). 2608 */ 2609 if (vd->vdev_aux) { 2610 (void) vdev_validate_aux(vd); 2611 if (vdev_readable(vd) && vdev_writeable(vd) && 2612 vd->vdev_aux == &spa->spa_l2cache) { 2613 /* 2614 * In case the vdev is present we should evict all ARC 2615 * buffers and pointers to log blocks and reclaim their 2616 * space before restoring its contents to L2ARC. 2617 */ 2618 if (l2arc_vdev_present(vd)) { 2619 l2arc_rebuild_vdev(vd, B_TRUE); 2620 } else { 2621 l2arc_add_vdev(spa, vd); 2622 } 2623 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2624 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 2625 } 2626 } else { 2627 (void) vdev_validate(vd); 2628 } 2629 2630 /* 2631 * Reassess parent vdev's health. 2632 */ 2633 vdev_propagate_state(vd); 2634 } 2635 2636 int 2637 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2638 { 2639 int error; 2640 2641 /* 2642 * Normally, partial opens (e.g. of a mirror) are allowed. 2643 * For a create, however, we want to fail the request if 2644 * there are any components we can't open. 2645 */ 2646 error = vdev_open(vd); 2647 2648 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2649 vdev_close(vd); 2650 return (error ? error : SET_ERROR(ENXIO)); 2651 } 2652 2653 /* 2654 * Recursively load DTLs and initialize all labels. 2655 */ 2656 if ((error = vdev_dtl_load(vd)) != 0 || 2657 (error = vdev_label_init(vd, txg, isreplacing ? 2658 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2659 vdev_close(vd); 2660 return (error); 2661 } 2662 2663 return (0); 2664 } 2665 2666 void 2667 vdev_metaslab_set_size(vdev_t *vd) 2668 { 2669 uint64_t asize = vd->vdev_asize; 2670 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2671 uint64_t ms_shift; 2672 2673 /* 2674 * There are two dimensions to the metaslab sizing calculation: 2675 * the size of the metaslab and the count of metaslabs per vdev. 2676 * 2677 * The default values used below are a good balance between memory 2678 * usage (larger metaslab size means more memory needed for loaded 2679 * metaslabs; more metaslabs means more memory needed for the 2680 * metaslab_t structs), metaslab load time (larger metaslabs take 2681 * longer to load), and metaslab sync time (more metaslabs means 2682 * more time spent syncing all of them). 2683 * 2684 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2685 * The range of the dimensions are as follows: 2686 * 2687 * 2^29 <= ms_size <= 2^34 2688 * 16 <= ms_count <= 131,072 2689 * 2690 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2691 * at least 512MB (2^29) to minimize fragmentation effects when 2692 * testing with smaller devices. However, the count constraint 2693 * of at least 16 metaslabs will override this minimum size goal. 2694 * 2695 * On the upper end of vdev sizes, we aim for a maximum metaslab 2696 * size of 16GB. However, we will cap the total count to 2^17 2697 * metaslabs to keep our memory footprint in check and let the 2698 * metaslab size grow from there if that limit is hit. 2699 * 2700 * The net effect of applying above constrains is summarized below. 2701 * 2702 * vdev size metaslab count 2703 * --------------|----------------- 2704 * < 8GB ~16 2705 * 8GB - 100GB one per 512MB 2706 * 100GB - 3TB ~200 2707 * 3TB - 2PB one per 16GB 2708 * > 2PB ~131,072 2709 * -------------------------------- 2710 * 2711 * Finally, note that all of the above calculate the initial 2712 * number of metaslabs. Expanding a top-level vdev will result 2713 * in additional metaslabs being allocated making it possible 2714 * to exceed the zfs_vdev_ms_count_limit. 2715 */ 2716 2717 if (ms_count < zfs_vdev_min_ms_count) 2718 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 2719 else if (ms_count > zfs_vdev_default_ms_count) 2720 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 2721 else 2722 ms_shift = zfs_vdev_default_ms_shift; 2723 2724 if (ms_shift < SPA_MAXBLOCKSHIFT) { 2725 ms_shift = SPA_MAXBLOCKSHIFT; 2726 } else if (ms_shift > zfs_vdev_max_ms_shift) { 2727 ms_shift = zfs_vdev_max_ms_shift; 2728 /* cap the total count to constrain memory footprint */ 2729 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 2730 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 2731 } 2732 2733 vd->vdev_ms_shift = ms_shift; 2734 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 2735 } 2736 2737 void 2738 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 2739 { 2740 ASSERT(vd == vd->vdev_top); 2741 /* indirect vdevs don't have metaslabs or dtls */ 2742 ASSERT(vdev_is_concrete(vd) || flags == 0); 2743 ASSERT(ISP2(flags)); 2744 ASSERT(spa_writeable(vd->vdev_spa)); 2745 2746 if (flags & VDD_METASLAB) 2747 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 2748 2749 if (flags & VDD_DTL) 2750 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 2751 2752 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 2753 } 2754 2755 void 2756 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 2757 { 2758 for (int c = 0; c < vd->vdev_children; c++) 2759 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 2760 2761 if (vd->vdev_ops->vdev_op_leaf) 2762 vdev_dirty(vd->vdev_top, flags, vd, txg); 2763 } 2764 2765 /* 2766 * DTLs. 2767 * 2768 * A vdev's DTL (dirty time log) is the set of transaction groups for which 2769 * the vdev has less than perfect replication. There are four kinds of DTL: 2770 * 2771 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 2772 * 2773 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 2774 * 2775 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 2776 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 2777 * txgs that was scrubbed. 2778 * 2779 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 2780 * persistent errors or just some device being offline. 2781 * Unlike the other three, the DTL_OUTAGE map is not generally 2782 * maintained; it's only computed when needed, typically to 2783 * determine whether a device can be detached. 2784 * 2785 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 2786 * either has the data or it doesn't. 2787 * 2788 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 2789 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 2790 * if any child is less than fully replicated, then so is its parent. 2791 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 2792 * comprising only those txgs which appear in 'maxfaults' or more children; 2793 * those are the txgs we don't have enough replication to read. For example, 2794 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 2795 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 2796 * two child DTL_MISSING maps. 2797 * 2798 * It should be clear from the above that to compute the DTLs and outage maps 2799 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 2800 * Therefore, that is all we keep on disk. When loading the pool, or after 2801 * a configuration change, we generate all other DTLs from first principles. 2802 */ 2803 void 2804 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2805 { 2806 range_tree_t *rt = vd->vdev_dtl[t]; 2807 2808 ASSERT(t < DTL_TYPES); 2809 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2810 ASSERT(spa_writeable(vd->vdev_spa)); 2811 2812 mutex_enter(&vd->vdev_dtl_lock); 2813 if (!range_tree_contains(rt, txg, size)) 2814 range_tree_add(rt, txg, size); 2815 mutex_exit(&vd->vdev_dtl_lock); 2816 } 2817 2818 boolean_t 2819 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2820 { 2821 range_tree_t *rt = vd->vdev_dtl[t]; 2822 boolean_t dirty = B_FALSE; 2823 2824 ASSERT(t < DTL_TYPES); 2825 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2826 2827 /* 2828 * While we are loading the pool, the DTLs have not been loaded yet. 2829 * This isn't a problem but it can result in devices being tried 2830 * which are known to not have the data. In which case, the import 2831 * is relying on the checksum to ensure that we get the right data. 2832 * Note that while importing we are only reading the MOS, which is 2833 * always checksummed. 2834 */ 2835 mutex_enter(&vd->vdev_dtl_lock); 2836 if (!range_tree_is_empty(rt)) 2837 dirty = range_tree_contains(rt, txg, size); 2838 mutex_exit(&vd->vdev_dtl_lock); 2839 2840 return (dirty); 2841 } 2842 2843 boolean_t 2844 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 2845 { 2846 range_tree_t *rt = vd->vdev_dtl[t]; 2847 boolean_t empty; 2848 2849 mutex_enter(&vd->vdev_dtl_lock); 2850 empty = range_tree_is_empty(rt); 2851 mutex_exit(&vd->vdev_dtl_lock); 2852 2853 return (empty); 2854 } 2855 2856 /* 2857 * Check if the txg falls within the range which must be 2858 * resilvered. DVAs outside this range can always be skipped. 2859 */ 2860 boolean_t 2861 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 2862 uint64_t phys_birth) 2863 { 2864 (void) dva, (void) psize; 2865 2866 /* Set by sequential resilver. */ 2867 if (phys_birth == TXG_UNKNOWN) 2868 return (B_TRUE); 2869 2870 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)); 2871 } 2872 2873 /* 2874 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered. 2875 */ 2876 boolean_t 2877 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 2878 uint64_t phys_birth) 2879 { 2880 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2881 2882 if (vd->vdev_ops->vdev_op_need_resilver == NULL || 2883 vd->vdev_ops->vdev_op_leaf) 2884 return (B_TRUE); 2885 2886 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize, 2887 phys_birth)); 2888 } 2889 2890 /* 2891 * Returns the lowest txg in the DTL range. 2892 */ 2893 static uint64_t 2894 vdev_dtl_min(vdev_t *vd) 2895 { 2896 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2897 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2898 ASSERT0(vd->vdev_children); 2899 2900 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1); 2901 } 2902 2903 /* 2904 * Returns the highest txg in the DTL. 2905 */ 2906 static uint64_t 2907 vdev_dtl_max(vdev_t *vd) 2908 { 2909 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2910 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2911 ASSERT0(vd->vdev_children); 2912 2913 return (range_tree_max(vd->vdev_dtl[DTL_MISSING])); 2914 } 2915 2916 /* 2917 * Determine if a resilvering vdev should remove any DTL entries from 2918 * its range. If the vdev was resilvering for the entire duration of the 2919 * scan then it should excise that range from its DTLs. Otherwise, this 2920 * vdev is considered partially resilvered and should leave its DTL 2921 * entries intact. The comment in vdev_dtl_reassess() describes how we 2922 * excise the DTLs. 2923 */ 2924 static boolean_t 2925 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done) 2926 { 2927 ASSERT0(vd->vdev_children); 2928 2929 if (vd->vdev_state < VDEV_STATE_DEGRADED) 2930 return (B_FALSE); 2931 2932 if (vd->vdev_resilver_deferred) 2933 return (B_FALSE); 2934 2935 if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 2936 return (B_TRUE); 2937 2938 if (rebuild_done) { 2939 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 2940 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 2941 2942 /* Rebuild not initiated by attach */ 2943 if (vd->vdev_rebuild_txg == 0) 2944 return (B_TRUE); 2945 2946 /* 2947 * When a rebuild completes without error then all missing data 2948 * up to the rebuild max txg has been reconstructed and the DTL 2949 * is eligible for excision. 2950 */ 2951 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE && 2952 vdev_dtl_max(vd) <= vrp->vrp_max_txg) { 2953 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd)); 2954 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg); 2955 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg); 2956 return (B_TRUE); 2957 } 2958 } else { 2959 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 2960 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys; 2961 2962 /* Resilver not initiated by attach */ 2963 if (vd->vdev_resilver_txg == 0) 2964 return (B_TRUE); 2965 2966 /* 2967 * When a resilver is initiated the scan will assign the 2968 * scn_max_txg value to the highest txg value that exists 2969 * in all DTLs. If this device's max DTL is not part of this 2970 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg] 2971 * then it is not eligible for excision. 2972 */ 2973 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 2974 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd)); 2975 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg); 2976 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg); 2977 return (B_TRUE); 2978 } 2979 } 2980 2981 return (B_FALSE); 2982 } 2983 2984 /* 2985 * Reassess DTLs after a config change or scrub completion. If txg == 0 no 2986 * write operations will be issued to the pool. 2987 */ 2988 void 2989 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, 2990 boolean_t scrub_done, boolean_t rebuild_done) 2991 { 2992 spa_t *spa = vd->vdev_spa; 2993 avl_tree_t reftree; 2994 int minref; 2995 2996 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2997 2998 for (int c = 0; c < vd->vdev_children; c++) 2999 vdev_dtl_reassess(vd->vdev_child[c], txg, 3000 scrub_txg, scrub_done, rebuild_done); 3001 3002 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 3003 return; 3004 3005 if (vd->vdev_ops->vdev_op_leaf) { 3006 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 3007 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3008 boolean_t check_excise = B_FALSE; 3009 boolean_t wasempty = B_TRUE; 3010 3011 mutex_enter(&vd->vdev_dtl_lock); 3012 3013 /* 3014 * If requested, pretend the scan or rebuild completed cleanly. 3015 */ 3016 if (zfs_scan_ignore_errors) { 3017 if (scn != NULL) 3018 scn->scn_phys.scn_errors = 0; 3019 if (vr != NULL) 3020 vr->vr_rebuild_phys.vrp_errors = 0; 3021 } 3022 3023 if (scrub_txg != 0 && 3024 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3025 wasempty = B_FALSE; 3026 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d " 3027 "dtl:%llu/%llu errors:%llu", 3028 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg, 3029 (u_longlong_t)scrub_txg, spa->spa_scrub_started, 3030 (u_longlong_t)vdev_dtl_min(vd), 3031 (u_longlong_t)vdev_dtl_max(vd), 3032 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0)); 3033 } 3034 3035 /* 3036 * If we've completed a scrub/resilver or a rebuild cleanly 3037 * then determine if this vdev should remove any DTLs. We 3038 * only want to excise regions on vdevs that were available 3039 * during the entire duration of this scan. 3040 */ 3041 if (rebuild_done && 3042 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) { 3043 check_excise = B_TRUE; 3044 } else { 3045 if (spa->spa_scrub_started || 3046 (scn != NULL && scn->scn_phys.scn_errors == 0)) { 3047 check_excise = B_TRUE; 3048 } 3049 } 3050 3051 if (scrub_txg && check_excise && 3052 vdev_dtl_should_excise(vd, rebuild_done)) { 3053 /* 3054 * We completed a scrub, resilver or rebuild up to 3055 * scrub_txg. If we did it without rebooting, then 3056 * the scrub dtl will be valid, so excise the old 3057 * region and fold in the scrub dtl. Otherwise, 3058 * leave the dtl as-is if there was an error. 3059 * 3060 * There's little trick here: to excise the beginning 3061 * of the DTL_MISSING map, we put it into a reference 3062 * tree and then add a segment with refcnt -1 that 3063 * covers the range [0, scrub_txg). This means 3064 * that each txg in that range has refcnt -1 or 0. 3065 * We then add DTL_SCRUB with a refcnt of 2, so that 3066 * entries in the range [0, scrub_txg) will have a 3067 * positive refcnt -- either 1 or 2. We then convert 3068 * the reference tree into the new DTL_MISSING map. 3069 */ 3070 space_reftree_create(&reftree); 3071 space_reftree_add_map(&reftree, 3072 vd->vdev_dtl[DTL_MISSING], 1); 3073 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 3074 space_reftree_add_map(&reftree, 3075 vd->vdev_dtl[DTL_SCRUB], 2); 3076 space_reftree_generate_map(&reftree, 3077 vd->vdev_dtl[DTL_MISSING], 1); 3078 space_reftree_destroy(&reftree); 3079 3080 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3081 zfs_dbgmsg("update DTL_MISSING:%llu/%llu", 3082 (u_longlong_t)vdev_dtl_min(vd), 3083 (u_longlong_t)vdev_dtl_max(vd)); 3084 } else if (!wasempty) { 3085 zfs_dbgmsg("DTL_MISSING is now empty"); 3086 } 3087 } 3088 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 3089 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3090 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 3091 if (scrub_done) 3092 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 3093 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 3094 if (!vdev_readable(vd)) 3095 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 3096 else 3097 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3098 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 3099 3100 /* 3101 * If the vdev was resilvering or rebuilding and no longer 3102 * has any DTLs then reset the appropriate flag and dirty 3103 * the top level so that we persist the change. 3104 */ 3105 if (txg != 0 && 3106 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3107 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) { 3108 if (vd->vdev_rebuild_txg != 0) { 3109 vd->vdev_rebuild_txg = 0; 3110 vdev_config_dirty(vd->vdev_top); 3111 } else if (vd->vdev_resilver_txg != 0) { 3112 vd->vdev_resilver_txg = 0; 3113 vdev_config_dirty(vd->vdev_top); 3114 } 3115 } 3116 3117 mutex_exit(&vd->vdev_dtl_lock); 3118 3119 if (txg != 0) 3120 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 3121 return; 3122 } 3123 3124 mutex_enter(&vd->vdev_dtl_lock); 3125 for (int t = 0; t < DTL_TYPES; t++) { 3126 /* account for child's outage in parent's missing map */ 3127 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 3128 if (t == DTL_SCRUB) 3129 continue; /* leaf vdevs only */ 3130 if (t == DTL_PARTIAL) 3131 minref = 1; /* i.e. non-zero */ 3132 else if (vdev_get_nparity(vd) != 0) 3133 minref = vdev_get_nparity(vd) + 1; /* RAID-Z, dRAID */ 3134 else 3135 minref = vd->vdev_children; /* any kind of mirror */ 3136 space_reftree_create(&reftree); 3137 for (int c = 0; c < vd->vdev_children; c++) { 3138 vdev_t *cvd = vd->vdev_child[c]; 3139 mutex_enter(&cvd->vdev_dtl_lock); 3140 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 3141 mutex_exit(&cvd->vdev_dtl_lock); 3142 } 3143 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 3144 space_reftree_destroy(&reftree); 3145 } 3146 mutex_exit(&vd->vdev_dtl_lock); 3147 } 3148 3149 int 3150 vdev_dtl_load(vdev_t *vd) 3151 { 3152 spa_t *spa = vd->vdev_spa; 3153 objset_t *mos = spa->spa_meta_objset; 3154 range_tree_t *rt; 3155 int error = 0; 3156 3157 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 3158 ASSERT(vdev_is_concrete(vd)); 3159 3160 /* 3161 * If the dtl cannot be sync'd there is no need to open it. 3162 */ 3163 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps) 3164 return (0); 3165 3166 error = space_map_open(&vd->vdev_dtl_sm, mos, 3167 vd->vdev_dtl_object, 0, -1ULL, 0); 3168 if (error) 3169 return (error); 3170 ASSERT(vd->vdev_dtl_sm != NULL); 3171 3172 rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3173 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC); 3174 if (error == 0) { 3175 mutex_enter(&vd->vdev_dtl_lock); 3176 range_tree_walk(rt, range_tree_add, 3177 vd->vdev_dtl[DTL_MISSING]); 3178 mutex_exit(&vd->vdev_dtl_lock); 3179 } 3180 3181 range_tree_vacate(rt, NULL, NULL); 3182 range_tree_destroy(rt); 3183 3184 return (error); 3185 } 3186 3187 for (int c = 0; c < vd->vdev_children; c++) { 3188 error = vdev_dtl_load(vd->vdev_child[c]); 3189 if (error != 0) 3190 break; 3191 } 3192 3193 return (error); 3194 } 3195 3196 static void 3197 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) 3198 { 3199 spa_t *spa = vd->vdev_spa; 3200 objset_t *mos = spa->spa_meta_objset; 3201 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 3202 const char *string; 3203 3204 ASSERT(alloc_bias != VDEV_BIAS_NONE); 3205 3206 string = 3207 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : 3208 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : 3209 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; 3210 3211 ASSERT(string != NULL); 3212 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 3213 1, strlen(string) + 1, string, tx)); 3214 3215 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { 3216 spa_activate_allocation_classes(spa, tx); 3217 } 3218 } 3219 3220 void 3221 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 3222 { 3223 spa_t *spa = vd->vdev_spa; 3224 3225 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 3226 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3227 zapobj, tx)); 3228 } 3229 3230 uint64_t 3231 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 3232 { 3233 spa_t *spa = vd->vdev_spa; 3234 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 3235 DMU_OT_NONE, 0, tx); 3236 3237 ASSERT(zap != 0); 3238 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3239 zap, tx)); 3240 3241 return (zap); 3242 } 3243 3244 void 3245 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 3246 { 3247 if (vd->vdev_ops != &vdev_hole_ops && 3248 vd->vdev_ops != &vdev_missing_ops && 3249 vd->vdev_ops != &vdev_root_ops && 3250 !vd->vdev_top->vdev_removing) { 3251 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 3252 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 3253 } 3254 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 3255 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 3256 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) 3257 vdev_zap_allocation_data(vd, tx); 3258 } 3259 } 3260 3261 for (uint64_t i = 0; i < vd->vdev_children; i++) { 3262 vdev_construct_zaps(vd->vdev_child[i], tx); 3263 } 3264 } 3265 3266 static void 3267 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 3268 { 3269 spa_t *spa = vd->vdev_spa; 3270 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 3271 objset_t *mos = spa->spa_meta_objset; 3272 range_tree_t *rtsync; 3273 dmu_tx_t *tx; 3274 uint64_t object = space_map_object(vd->vdev_dtl_sm); 3275 3276 ASSERT(vdev_is_concrete(vd)); 3277 ASSERT(vd->vdev_ops->vdev_op_leaf); 3278 3279 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3280 3281 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 3282 mutex_enter(&vd->vdev_dtl_lock); 3283 space_map_free(vd->vdev_dtl_sm, tx); 3284 space_map_close(vd->vdev_dtl_sm); 3285 vd->vdev_dtl_sm = NULL; 3286 mutex_exit(&vd->vdev_dtl_lock); 3287 3288 /* 3289 * We only destroy the leaf ZAP for detached leaves or for 3290 * removed log devices. Removed data devices handle leaf ZAP 3291 * cleanup later, once cancellation is no longer possible. 3292 */ 3293 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 3294 vd->vdev_top->vdev_islog)) { 3295 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 3296 vd->vdev_leaf_zap = 0; 3297 } 3298 3299 dmu_tx_commit(tx); 3300 return; 3301 } 3302 3303 if (vd->vdev_dtl_sm == NULL) { 3304 uint64_t new_object; 3305 3306 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx); 3307 VERIFY3U(new_object, !=, 0); 3308 3309 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 3310 0, -1ULL, 0)); 3311 ASSERT(vd->vdev_dtl_sm != NULL); 3312 } 3313 3314 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3315 3316 mutex_enter(&vd->vdev_dtl_lock); 3317 range_tree_walk(rt, range_tree_add, rtsync); 3318 mutex_exit(&vd->vdev_dtl_lock); 3319 3320 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx); 3321 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 3322 range_tree_vacate(rtsync, NULL, NULL); 3323 3324 range_tree_destroy(rtsync); 3325 3326 /* 3327 * If the object for the space map has changed then dirty 3328 * the top level so that we update the config. 3329 */ 3330 if (object != space_map_object(vd->vdev_dtl_sm)) { 3331 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 3332 "new object %llu", (u_longlong_t)txg, spa_name(spa), 3333 (u_longlong_t)object, 3334 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 3335 vdev_config_dirty(vd->vdev_top); 3336 } 3337 3338 dmu_tx_commit(tx); 3339 } 3340 3341 /* 3342 * Determine whether the specified vdev can be offlined/detached/removed 3343 * without losing data. 3344 */ 3345 boolean_t 3346 vdev_dtl_required(vdev_t *vd) 3347 { 3348 spa_t *spa = vd->vdev_spa; 3349 vdev_t *tvd = vd->vdev_top; 3350 uint8_t cant_read = vd->vdev_cant_read; 3351 boolean_t required; 3352 3353 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3354 3355 if (vd == spa->spa_root_vdev || vd == tvd) 3356 return (B_TRUE); 3357 3358 /* 3359 * Temporarily mark the device as unreadable, and then determine 3360 * whether this results in any DTL outages in the top-level vdev. 3361 * If not, we can safely offline/detach/remove the device. 3362 */ 3363 vd->vdev_cant_read = B_TRUE; 3364 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3365 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 3366 vd->vdev_cant_read = cant_read; 3367 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3368 3369 if (!required && zio_injection_enabled) { 3370 required = !!zio_handle_device_injection(vd, NULL, 3371 SET_ERROR(ECHILD)); 3372 } 3373 3374 return (required); 3375 } 3376 3377 /* 3378 * Determine if resilver is needed, and if so the txg range. 3379 */ 3380 boolean_t 3381 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 3382 { 3383 boolean_t needed = B_FALSE; 3384 uint64_t thismin = UINT64_MAX; 3385 uint64_t thismax = 0; 3386 3387 if (vd->vdev_children == 0) { 3388 mutex_enter(&vd->vdev_dtl_lock); 3389 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3390 vdev_writeable(vd)) { 3391 3392 thismin = vdev_dtl_min(vd); 3393 thismax = vdev_dtl_max(vd); 3394 needed = B_TRUE; 3395 } 3396 mutex_exit(&vd->vdev_dtl_lock); 3397 } else { 3398 for (int c = 0; c < vd->vdev_children; c++) { 3399 vdev_t *cvd = vd->vdev_child[c]; 3400 uint64_t cmin, cmax; 3401 3402 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 3403 thismin = MIN(thismin, cmin); 3404 thismax = MAX(thismax, cmax); 3405 needed = B_TRUE; 3406 } 3407 } 3408 } 3409 3410 if (needed && minp) { 3411 *minp = thismin; 3412 *maxp = thismax; 3413 } 3414 return (needed); 3415 } 3416 3417 /* 3418 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj 3419 * will contain either the checkpoint spacemap object or zero if none exists. 3420 * All other errors are returned to the caller. 3421 */ 3422 int 3423 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj) 3424 { 3425 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 3426 3427 if (vd->vdev_top_zap == 0) { 3428 *sm_obj = 0; 3429 return (0); 3430 } 3431 3432 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 3433 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj); 3434 if (error == ENOENT) { 3435 *sm_obj = 0; 3436 error = 0; 3437 } 3438 3439 return (error); 3440 } 3441 3442 int 3443 vdev_load(vdev_t *vd) 3444 { 3445 int children = vd->vdev_children; 3446 int error = 0; 3447 taskq_t *tq = NULL; 3448 3449 /* 3450 * It's only worthwhile to use the taskq for the root vdev, because the 3451 * slow part is metaslab_init, and that only happens for top-level 3452 * vdevs. 3453 */ 3454 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) { 3455 tq = taskq_create("vdev_load", children, minclsyspri, 3456 children, children, TASKQ_PREPOPULATE); 3457 } 3458 3459 /* 3460 * Recursively load all children. 3461 */ 3462 for (int c = 0; c < vd->vdev_children; c++) { 3463 vdev_t *cvd = vd->vdev_child[c]; 3464 3465 if (tq == NULL || vdev_uses_zvols(cvd)) { 3466 cvd->vdev_load_error = vdev_load(cvd); 3467 } else { 3468 VERIFY(taskq_dispatch(tq, vdev_load_child, 3469 cvd, TQ_SLEEP) != TASKQID_INVALID); 3470 } 3471 } 3472 3473 if (tq != NULL) { 3474 taskq_wait(tq); 3475 taskq_destroy(tq); 3476 } 3477 3478 for (int c = 0; c < vd->vdev_children; c++) { 3479 int error = vd->vdev_child[c]->vdev_load_error; 3480 3481 if (error != 0) 3482 return (error); 3483 } 3484 3485 vdev_set_deflate_ratio(vd); 3486 3487 /* 3488 * On spa_load path, grab the allocation bias from our zap 3489 */ 3490 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3491 spa_t *spa = vd->vdev_spa; 3492 char bias_str[64]; 3493 3494 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3495 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), 3496 bias_str); 3497 if (error == 0) { 3498 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); 3499 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); 3500 } else if (error != ENOENT) { 3501 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3502 VDEV_AUX_CORRUPT_DATA); 3503 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) " 3504 "failed [error=%d]", 3505 (u_longlong_t)vd->vdev_top_zap, error); 3506 return (error); 3507 } 3508 } 3509 3510 /* 3511 * Load any rebuild state from the top-level vdev zap. 3512 */ 3513 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3514 error = vdev_rebuild_load(vd); 3515 if (error && error != ENOTSUP) { 3516 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3517 VDEV_AUX_CORRUPT_DATA); 3518 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load " 3519 "failed [error=%d]", error); 3520 return (error); 3521 } 3522 } 3523 3524 /* 3525 * If this is a top-level vdev, initialize its metaslabs. 3526 */ 3527 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 3528 vdev_metaslab_group_create(vd); 3529 3530 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 3531 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3532 VDEV_AUX_CORRUPT_DATA); 3533 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 3534 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 3535 (u_longlong_t)vd->vdev_asize); 3536 return (SET_ERROR(ENXIO)); 3537 } 3538 3539 error = vdev_metaslab_init(vd, 0); 3540 if (error != 0) { 3541 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 3542 "[error=%d]", error); 3543 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3544 VDEV_AUX_CORRUPT_DATA); 3545 return (error); 3546 } 3547 3548 uint64_t checkpoint_sm_obj; 3549 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj); 3550 if (error == 0 && checkpoint_sm_obj != 0) { 3551 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3552 ASSERT(vd->vdev_asize != 0); 3553 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); 3554 3555 error = space_map_open(&vd->vdev_checkpoint_sm, 3556 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 3557 vd->vdev_ashift); 3558 if (error != 0) { 3559 vdev_dbgmsg(vd, "vdev_load: space_map_open " 3560 "failed for checkpoint spacemap (obj %llu) " 3561 "[error=%d]", 3562 (u_longlong_t)checkpoint_sm_obj, error); 3563 return (error); 3564 } 3565 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 3566 3567 /* 3568 * Since the checkpoint_sm contains free entries 3569 * exclusively we can use space_map_allocated() to 3570 * indicate the cumulative checkpointed space that 3571 * has been freed. 3572 */ 3573 vd->vdev_stat.vs_checkpoint_space = 3574 -space_map_allocated(vd->vdev_checkpoint_sm); 3575 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 3576 vd->vdev_stat.vs_checkpoint_space; 3577 } else if (error != 0) { 3578 vdev_dbgmsg(vd, "vdev_load: failed to retrieve " 3579 "checkpoint space map object from vdev ZAP " 3580 "[error=%d]", error); 3581 return (error); 3582 } 3583 } 3584 3585 /* 3586 * If this is a leaf vdev, load its DTL. 3587 */ 3588 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 3589 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3590 VDEV_AUX_CORRUPT_DATA); 3591 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 3592 "[error=%d]", error); 3593 return (error); 3594 } 3595 3596 uint64_t obsolete_sm_object; 3597 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object); 3598 if (error == 0 && obsolete_sm_object != 0) { 3599 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3600 ASSERT(vd->vdev_asize != 0); 3601 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 3602 3603 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 3604 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 3605 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3606 VDEV_AUX_CORRUPT_DATA); 3607 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 3608 "obsolete spacemap (obj %llu) [error=%d]", 3609 (u_longlong_t)obsolete_sm_object, error); 3610 return (error); 3611 } 3612 } else if (error != 0) { 3613 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete " 3614 "space map object from vdev ZAP [error=%d]", error); 3615 return (error); 3616 } 3617 3618 return (0); 3619 } 3620 3621 /* 3622 * The special vdev case is used for hot spares and l2cache devices. Its 3623 * sole purpose it to set the vdev state for the associated vdev. To do this, 3624 * we make sure that we can open the underlying device, then try to read the 3625 * label, and make sure that the label is sane and that it hasn't been 3626 * repurposed to another pool. 3627 */ 3628 int 3629 vdev_validate_aux(vdev_t *vd) 3630 { 3631 nvlist_t *label; 3632 uint64_t guid, version; 3633 uint64_t state; 3634 3635 if (!vdev_readable(vd)) 3636 return (0); 3637 3638 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 3639 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3640 VDEV_AUX_CORRUPT_DATA); 3641 return (-1); 3642 } 3643 3644 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 3645 !SPA_VERSION_IS_SUPPORTED(version) || 3646 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 3647 guid != vd->vdev_guid || 3648 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 3649 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3650 VDEV_AUX_CORRUPT_DATA); 3651 nvlist_free(label); 3652 return (-1); 3653 } 3654 3655 /* 3656 * We don't actually check the pool state here. If it's in fact in 3657 * use by another pool, we update this fact on the fly when requested. 3658 */ 3659 nvlist_free(label); 3660 return (0); 3661 } 3662 3663 static void 3664 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx) 3665 { 3666 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3667 3668 if (vd->vdev_top_zap == 0) 3669 return; 3670 3671 uint64_t object = 0; 3672 int err = zap_lookup(mos, vd->vdev_top_zap, 3673 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object); 3674 if (err == ENOENT) 3675 return; 3676 VERIFY0(err); 3677 3678 VERIFY0(dmu_object_free(mos, object, tx)); 3679 VERIFY0(zap_remove(mos, vd->vdev_top_zap, 3680 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx)); 3681 } 3682 3683 /* 3684 * Free the objects used to store this vdev's spacemaps, and the array 3685 * that points to them. 3686 */ 3687 void 3688 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 3689 { 3690 if (vd->vdev_ms_array == 0) 3691 return; 3692 3693 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3694 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 3695 size_t array_bytes = array_count * sizeof (uint64_t); 3696 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 3697 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 3698 array_bytes, smobj_array, 0)); 3699 3700 for (uint64_t i = 0; i < array_count; i++) { 3701 uint64_t smobj = smobj_array[i]; 3702 if (smobj == 0) 3703 continue; 3704 3705 space_map_free_obj(mos, smobj, tx); 3706 } 3707 3708 kmem_free(smobj_array, array_bytes); 3709 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 3710 vdev_destroy_ms_flush_data(vd, tx); 3711 vd->vdev_ms_array = 0; 3712 } 3713 3714 static void 3715 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 3716 { 3717 spa_t *spa = vd->vdev_spa; 3718 3719 ASSERT(vd->vdev_islog); 3720 ASSERT(vd == vd->vdev_top); 3721 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 3722 3723 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3724 3725 vdev_destroy_spacemaps(vd, tx); 3726 if (vd->vdev_top_zap != 0) { 3727 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 3728 vd->vdev_top_zap = 0; 3729 } 3730 3731 dmu_tx_commit(tx); 3732 } 3733 3734 void 3735 vdev_sync_done(vdev_t *vd, uint64_t txg) 3736 { 3737 metaslab_t *msp; 3738 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 3739 3740 ASSERT(vdev_is_concrete(vd)); 3741 3742 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 3743 != NULL) 3744 metaslab_sync_done(msp, txg); 3745 3746 if (reassess) { 3747 metaslab_sync_reassess(vd->vdev_mg); 3748 if (vd->vdev_log_mg != NULL) 3749 metaslab_sync_reassess(vd->vdev_log_mg); 3750 } 3751 } 3752 3753 void 3754 vdev_sync(vdev_t *vd, uint64_t txg) 3755 { 3756 spa_t *spa = vd->vdev_spa; 3757 vdev_t *lvd; 3758 metaslab_t *msp; 3759 3760 ASSERT3U(txg, ==, spa->spa_syncing_txg); 3761 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3762 if (range_tree_space(vd->vdev_obsolete_segments) > 0) { 3763 ASSERT(vd->vdev_removing || 3764 vd->vdev_ops == &vdev_indirect_ops); 3765 3766 vdev_indirect_sync_obsolete(vd, tx); 3767 3768 /* 3769 * If the vdev is indirect, it can't have dirty 3770 * metaslabs or DTLs. 3771 */ 3772 if (vd->vdev_ops == &vdev_indirect_ops) { 3773 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 3774 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 3775 dmu_tx_commit(tx); 3776 return; 3777 } 3778 } 3779 3780 ASSERT(vdev_is_concrete(vd)); 3781 3782 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 3783 !vd->vdev_removing) { 3784 ASSERT(vd == vd->vdev_top); 3785 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 3786 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 3787 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 3788 ASSERT(vd->vdev_ms_array != 0); 3789 vdev_config_dirty(vd); 3790 } 3791 3792 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 3793 metaslab_sync(msp, txg); 3794 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 3795 } 3796 3797 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 3798 vdev_dtl_sync(lvd, txg); 3799 3800 /* 3801 * If this is an empty log device being removed, destroy the 3802 * metadata associated with it. 3803 */ 3804 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 3805 vdev_remove_empty_log(vd, txg); 3806 3807 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 3808 dmu_tx_commit(tx); 3809 } 3810 3811 uint64_t 3812 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 3813 { 3814 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 3815 } 3816 3817 /* 3818 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 3819 * not be opened, and no I/O is attempted. 3820 */ 3821 int 3822 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3823 { 3824 vdev_t *vd, *tvd; 3825 3826 spa_vdev_state_enter(spa, SCL_NONE); 3827 3828 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3829 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 3830 3831 if (!vd->vdev_ops->vdev_op_leaf) 3832 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 3833 3834 tvd = vd->vdev_top; 3835 3836 /* 3837 * If user did a 'zpool offline -f' then make the fault persist across 3838 * reboots. 3839 */ 3840 if (aux == VDEV_AUX_EXTERNAL_PERSIST) { 3841 /* 3842 * There are two kinds of forced faults: temporary and 3843 * persistent. Temporary faults go away at pool import, while 3844 * persistent faults stay set. Both types of faults can be 3845 * cleared with a zpool clear. 3846 * 3847 * We tell if a vdev is persistently faulted by looking at the 3848 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at 3849 * import then it's a persistent fault. Otherwise, it's 3850 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external" 3851 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This 3852 * tells vdev_config_generate() (which gets run later) to set 3853 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist. 3854 */ 3855 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 3856 vd->vdev_tmpoffline = B_FALSE; 3857 aux = VDEV_AUX_EXTERNAL; 3858 } else { 3859 vd->vdev_tmpoffline = B_TRUE; 3860 } 3861 3862 /* 3863 * We don't directly use the aux state here, but if we do a 3864 * vdev_reopen(), we need this value to be present to remember why we 3865 * were faulted. 3866 */ 3867 vd->vdev_label_aux = aux; 3868 3869 /* 3870 * Faulted state takes precedence over degraded. 3871 */ 3872 vd->vdev_delayed_close = B_FALSE; 3873 vd->vdev_faulted = 1ULL; 3874 vd->vdev_degraded = 0ULL; 3875 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 3876 3877 /* 3878 * If this device has the only valid copy of the data, then 3879 * back off and simply mark the vdev as degraded instead. 3880 */ 3881 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 3882 vd->vdev_degraded = 1ULL; 3883 vd->vdev_faulted = 0ULL; 3884 3885 /* 3886 * If we reopen the device and it's not dead, only then do we 3887 * mark it degraded. 3888 */ 3889 vdev_reopen(tvd); 3890 3891 if (vdev_readable(vd)) 3892 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 3893 } 3894 3895 return (spa_vdev_state_exit(spa, vd, 0)); 3896 } 3897 3898 /* 3899 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 3900 * user that something is wrong. The vdev continues to operate as normal as far 3901 * as I/O is concerned. 3902 */ 3903 int 3904 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3905 { 3906 vdev_t *vd; 3907 3908 spa_vdev_state_enter(spa, SCL_NONE); 3909 3910 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3911 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 3912 3913 if (!vd->vdev_ops->vdev_op_leaf) 3914 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 3915 3916 /* 3917 * If the vdev is already faulted, then don't do anything. 3918 */ 3919 if (vd->vdev_faulted || vd->vdev_degraded) 3920 return (spa_vdev_state_exit(spa, NULL, 0)); 3921 3922 vd->vdev_degraded = 1ULL; 3923 if (!vdev_is_dead(vd)) 3924 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 3925 aux); 3926 3927 return (spa_vdev_state_exit(spa, vd, 0)); 3928 } 3929 3930 /* 3931 * Online the given vdev. 3932 * 3933 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 3934 * spare device should be detached when the device finishes resilvering. 3935 * Second, the online should be treated like a 'test' online case, so no FMA 3936 * events are generated if the device fails to open. 3937 */ 3938 int 3939 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 3940 { 3941 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 3942 boolean_t wasoffline; 3943 vdev_state_t oldstate; 3944 3945 spa_vdev_state_enter(spa, SCL_NONE); 3946 3947 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3948 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 3949 3950 if (!vd->vdev_ops->vdev_op_leaf) 3951 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 3952 3953 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 3954 oldstate = vd->vdev_state; 3955 3956 tvd = vd->vdev_top; 3957 vd->vdev_offline = B_FALSE; 3958 vd->vdev_tmpoffline = B_FALSE; 3959 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 3960 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 3961 3962 /* XXX - L2ARC 1.0 does not support expansion */ 3963 if (!vd->vdev_aux) { 3964 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3965 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) || 3966 spa->spa_autoexpand); 3967 vd->vdev_expansion_time = gethrestime_sec(); 3968 } 3969 3970 vdev_reopen(tvd); 3971 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 3972 3973 if (!vd->vdev_aux) { 3974 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3975 pvd->vdev_expanding = B_FALSE; 3976 } 3977 3978 if (newstate) 3979 *newstate = vd->vdev_state; 3980 if ((flags & ZFS_ONLINE_UNSPARE) && 3981 !vdev_is_dead(vd) && vd->vdev_parent && 3982 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 3983 vd->vdev_parent->vdev_child[0] == vd) 3984 vd->vdev_unspare = B_TRUE; 3985 3986 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 3987 3988 /* XXX - L2ARC 1.0 does not support expansion */ 3989 if (vd->vdev_aux) 3990 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 3991 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 3992 } 3993 3994 /* Restart initializing if necessary */ 3995 mutex_enter(&vd->vdev_initialize_lock); 3996 if (vdev_writeable(vd) && 3997 vd->vdev_initialize_thread == NULL && 3998 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 3999 (void) vdev_initialize(vd); 4000 } 4001 mutex_exit(&vd->vdev_initialize_lock); 4002 4003 /* 4004 * Restart trimming if necessary. We do not restart trimming for cache 4005 * devices here. This is triggered by l2arc_rebuild_vdev() 4006 * asynchronously for the whole device or in l2arc_evict() as it evicts 4007 * space for upcoming writes. 4008 */ 4009 mutex_enter(&vd->vdev_trim_lock); 4010 if (vdev_writeable(vd) && !vd->vdev_isl2cache && 4011 vd->vdev_trim_thread == NULL && 4012 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { 4013 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, 4014 vd->vdev_trim_secure); 4015 } 4016 mutex_exit(&vd->vdev_trim_lock); 4017 4018 if (wasoffline || 4019 (oldstate < VDEV_STATE_DEGRADED && 4020 vd->vdev_state >= VDEV_STATE_DEGRADED)) 4021 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 4022 4023 return (spa_vdev_state_exit(spa, vd, 0)); 4024 } 4025 4026 static int 4027 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 4028 { 4029 vdev_t *vd, *tvd; 4030 int error = 0; 4031 uint64_t generation; 4032 metaslab_group_t *mg; 4033 4034 top: 4035 spa_vdev_state_enter(spa, SCL_ALLOC); 4036 4037 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4038 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4039 4040 if (!vd->vdev_ops->vdev_op_leaf) 4041 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4042 4043 if (vd->vdev_ops == &vdev_draid_spare_ops) 4044 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4045 4046 tvd = vd->vdev_top; 4047 mg = tvd->vdev_mg; 4048 generation = spa->spa_config_generation + 1; 4049 4050 /* 4051 * If the device isn't already offline, try to offline it. 4052 */ 4053 if (!vd->vdev_offline) { 4054 /* 4055 * If this device has the only valid copy of some data, 4056 * don't allow it to be offlined. Log devices are always 4057 * expendable. 4058 */ 4059 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4060 vdev_dtl_required(vd)) 4061 return (spa_vdev_state_exit(spa, NULL, 4062 SET_ERROR(EBUSY))); 4063 4064 /* 4065 * If the top-level is a slog and it has had allocations 4066 * then proceed. We check that the vdev's metaslab group 4067 * is not NULL since it's possible that we may have just 4068 * added this vdev but not yet initialized its metaslabs. 4069 */ 4070 if (tvd->vdev_islog && mg != NULL) { 4071 /* 4072 * Prevent any future allocations. 4073 */ 4074 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 4075 metaslab_group_passivate(mg); 4076 (void) spa_vdev_state_exit(spa, vd, 0); 4077 4078 error = spa_reset_logs(spa); 4079 4080 /* 4081 * If the log device was successfully reset but has 4082 * checkpointed data, do not offline it. 4083 */ 4084 if (error == 0 && 4085 tvd->vdev_checkpoint_sm != NULL) { 4086 ASSERT3U(space_map_allocated( 4087 tvd->vdev_checkpoint_sm), !=, 0); 4088 error = ZFS_ERR_CHECKPOINT_EXISTS; 4089 } 4090 4091 spa_vdev_state_enter(spa, SCL_ALLOC); 4092 4093 /* 4094 * Check to see if the config has changed. 4095 */ 4096 if (error || generation != spa->spa_config_generation) { 4097 metaslab_group_activate(mg); 4098 if (error) 4099 return (spa_vdev_state_exit(spa, 4100 vd, error)); 4101 (void) spa_vdev_state_exit(spa, vd, 0); 4102 goto top; 4103 } 4104 ASSERT0(tvd->vdev_stat.vs_alloc); 4105 } 4106 4107 /* 4108 * Offline this device and reopen its top-level vdev. 4109 * If the top-level vdev is a log device then just offline 4110 * it. Otherwise, if this action results in the top-level 4111 * vdev becoming unusable, undo it and fail the request. 4112 */ 4113 vd->vdev_offline = B_TRUE; 4114 vdev_reopen(tvd); 4115 4116 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4117 vdev_is_dead(tvd)) { 4118 vd->vdev_offline = B_FALSE; 4119 vdev_reopen(tvd); 4120 return (spa_vdev_state_exit(spa, NULL, 4121 SET_ERROR(EBUSY))); 4122 } 4123 4124 /* 4125 * Add the device back into the metaslab rotor so that 4126 * once we online the device it's open for business. 4127 */ 4128 if (tvd->vdev_islog && mg != NULL) 4129 metaslab_group_activate(mg); 4130 } 4131 4132 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 4133 4134 return (spa_vdev_state_exit(spa, vd, 0)); 4135 } 4136 4137 int 4138 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 4139 { 4140 int error; 4141 4142 mutex_enter(&spa->spa_vdev_top_lock); 4143 error = vdev_offline_locked(spa, guid, flags); 4144 mutex_exit(&spa->spa_vdev_top_lock); 4145 4146 return (error); 4147 } 4148 4149 /* 4150 * Clear the error counts associated with this vdev. Unlike vdev_online() and 4151 * vdev_offline(), we assume the spa config is locked. We also clear all 4152 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 4153 */ 4154 void 4155 vdev_clear(spa_t *spa, vdev_t *vd) 4156 { 4157 vdev_t *rvd = spa->spa_root_vdev; 4158 4159 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 4160 4161 if (vd == NULL) 4162 vd = rvd; 4163 4164 vd->vdev_stat.vs_read_errors = 0; 4165 vd->vdev_stat.vs_write_errors = 0; 4166 vd->vdev_stat.vs_checksum_errors = 0; 4167 vd->vdev_stat.vs_slow_ios = 0; 4168 4169 for (int c = 0; c < vd->vdev_children; c++) 4170 vdev_clear(spa, vd->vdev_child[c]); 4171 4172 /* 4173 * It makes no sense to "clear" an indirect vdev. 4174 */ 4175 if (!vdev_is_concrete(vd)) 4176 return; 4177 4178 /* 4179 * If we're in the FAULTED state or have experienced failed I/O, then 4180 * clear the persistent state and attempt to reopen the device. We 4181 * also mark the vdev config dirty, so that the new faulted state is 4182 * written out to disk. 4183 */ 4184 if (vd->vdev_faulted || vd->vdev_degraded || 4185 !vdev_readable(vd) || !vdev_writeable(vd)) { 4186 /* 4187 * When reopening in response to a clear event, it may be due to 4188 * a fmadm repair request. In this case, if the device is 4189 * still broken, we want to still post the ereport again. 4190 */ 4191 vd->vdev_forcefault = B_TRUE; 4192 4193 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 4194 vd->vdev_cant_read = B_FALSE; 4195 vd->vdev_cant_write = B_FALSE; 4196 vd->vdev_stat.vs_aux = 0; 4197 4198 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 4199 4200 vd->vdev_forcefault = B_FALSE; 4201 4202 if (vd != rvd && vdev_writeable(vd->vdev_top)) 4203 vdev_state_dirty(vd->vdev_top); 4204 4205 /* If a resilver isn't required, check if vdevs can be culled */ 4206 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) && 4207 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4208 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool)) 4209 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4210 4211 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 4212 } 4213 4214 /* 4215 * When clearing a FMA-diagnosed fault, we always want to 4216 * unspare the device, as we assume that the original spare was 4217 * done in response to the FMA fault. 4218 */ 4219 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 4220 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4221 vd->vdev_parent->vdev_child[0] == vd) 4222 vd->vdev_unspare = B_TRUE; 4223 4224 /* Clear recent error events cache (i.e. duplicate events tracking) */ 4225 zfs_ereport_clear(spa, vd); 4226 } 4227 4228 boolean_t 4229 vdev_is_dead(vdev_t *vd) 4230 { 4231 /* 4232 * Holes and missing devices are always considered "dead". 4233 * This simplifies the code since we don't have to check for 4234 * these types of devices in the various code paths. 4235 * Instead we rely on the fact that we skip over dead devices 4236 * before issuing I/O to them. 4237 */ 4238 return (vd->vdev_state < VDEV_STATE_DEGRADED || 4239 vd->vdev_ops == &vdev_hole_ops || 4240 vd->vdev_ops == &vdev_missing_ops); 4241 } 4242 4243 boolean_t 4244 vdev_readable(vdev_t *vd) 4245 { 4246 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 4247 } 4248 4249 boolean_t 4250 vdev_writeable(vdev_t *vd) 4251 { 4252 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 4253 vdev_is_concrete(vd)); 4254 } 4255 4256 boolean_t 4257 vdev_allocatable(vdev_t *vd) 4258 { 4259 uint64_t state = vd->vdev_state; 4260 4261 /* 4262 * We currently allow allocations from vdevs which may be in the 4263 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 4264 * fails to reopen then we'll catch it later when we're holding 4265 * the proper locks. Note that we have to get the vdev state 4266 * in a local variable because although it changes atomically, 4267 * we're asking two separate questions about it. 4268 */ 4269 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 4270 !vd->vdev_cant_write && vdev_is_concrete(vd) && 4271 vd->vdev_mg->mg_initialized); 4272 } 4273 4274 boolean_t 4275 vdev_accessible(vdev_t *vd, zio_t *zio) 4276 { 4277 ASSERT(zio->io_vd == vd); 4278 4279 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 4280 return (B_FALSE); 4281 4282 if (zio->io_type == ZIO_TYPE_READ) 4283 return (!vd->vdev_cant_read); 4284 4285 if (zio->io_type == ZIO_TYPE_WRITE) 4286 return (!vd->vdev_cant_write); 4287 4288 return (B_TRUE); 4289 } 4290 4291 static void 4292 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs) 4293 { 4294 /* 4295 * Exclude the dRAID spare when aggregating to avoid double counting 4296 * the ops and bytes. These IOs are counted by the physical leaves. 4297 */ 4298 if (cvd->vdev_ops == &vdev_draid_spare_ops) 4299 return; 4300 4301 for (int t = 0; t < VS_ZIO_TYPES; t++) { 4302 vs->vs_ops[t] += cvs->vs_ops[t]; 4303 vs->vs_bytes[t] += cvs->vs_bytes[t]; 4304 } 4305 4306 cvs->vs_scan_removing = cvd->vdev_removing; 4307 } 4308 4309 /* 4310 * Get extended stats 4311 */ 4312 static void 4313 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx) 4314 { 4315 (void) cvd; 4316 4317 int t, b; 4318 for (t = 0; t < ZIO_TYPES; t++) { 4319 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++) 4320 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b]; 4321 4322 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) { 4323 vsx->vsx_total_histo[t][b] += 4324 cvsx->vsx_total_histo[t][b]; 4325 } 4326 } 4327 4328 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4329 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) { 4330 vsx->vsx_queue_histo[t][b] += 4331 cvsx->vsx_queue_histo[t][b]; 4332 } 4333 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t]; 4334 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t]; 4335 4336 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++) 4337 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b]; 4338 4339 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++) 4340 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b]; 4341 } 4342 4343 } 4344 4345 boolean_t 4346 vdev_is_spacemap_addressable(vdev_t *vd) 4347 { 4348 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 4349 return (B_TRUE); 4350 4351 /* 4352 * If double-word space map entries are not enabled we assume 4353 * 47 bits of the space map entry are dedicated to the entry's 4354 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 4355 * to calculate the maximum address that can be described by a 4356 * space map entry for the given device. 4357 */ 4358 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 4359 4360 if (shift >= 63) /* detect potential overflow */ 4361 return (B_TRUE); 4362 4363 return (vd->vdev_asize < (1ULL << shift)); 4364 } 4365 4366 /* 4367 * Get statistics for the given vdev. 4368 */ 4369 static void 4370 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4371 { 4372 int t; 4373 /* 4374 * If we're getting stats on the root vdev, aggregate the I/O counts 4375 * over all top-level vdevs (i.e. the direct children of the root). 4376 */ 4377 if (!vd->vdev_ops->vdev_op_leaf) { 4378 if (vs) { 4379 memset(vs->vs_ops, 0, sizeof (vs->vs_ops)); 4380 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes)); 4381 } 4382 if (vsx) 4383 memset(vsx, 0, sizeof (*vsx)); 4384 4385 for (int c = 0; c < vd->vdev_children; c++) { 4386 vdev_t *cvd = vd->vdev_child[c]; 4387 vdev_stat_t *cvs = &cvd->vdev_stat; 4388 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex; 4389 4390 vdev_get_stats_ex_impl(cvd, cvs, cvsx); 4391 if (vs) 4392 vdev_get_child_stat(cvd, vs, cvs); 4393 if (vsx) 4394 vdev_get_child_stat_ex(cvd, vsx, cvsx); 4395 } 4396 } else { 4397 /* 4398 * We're a leaf. Just copy our ZIO active queue stats in. The 4399 * other leaf stats are updated in vdev_stat_update(). 4400 */ 4401 if (!vsx) 4402 return; 4403 4404 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex)); 4405 4406 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) { 4407 vsx->vsx_active_queue[t] = 4408 vd->vdev_queue.vq_class[t].vqc_active; 4409 vsx->vsx_pend_queue[t] = avl_numnodes( 4410 &vd->vdev_queue.vq_class[t].vqc_queued_tree); 4411 } 4412 } 4413 } 4414 4415 void 4416 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4417 { 4418 vdev_t *tvd = vd->vdev_top; 4419 mutex_enter(&vd->vdev_stat_lock); 4420 if (vs) { 4421 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 4422 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 4423 vs->vs_state = vd->vdev_state; 4424 vs->vs_rsize = vdev_get_min_asize(vd); 4425 4426 if (vd->vdev_ops->vdev_op_leaf) { 4427 vs->vs_rsize += VDEV_LABEL_START_SIZE + 4428 VDEV_LABEL_END_SIZE; 4429 /* 4430 * Report initializing progress. Since we don't 4431 * have the initializing locks held, this is only 4432 * an estimate (although a fairly accurate one). 4433 */ 4434 vs->vs_initialize_bytes_done = 4435 vd->vdev_initialize_bytes_done; 4436 vs->vs_initialize_bytes_est = 4437 vd->vdev_initialize_bytes_est; 4438 vs->vs_initialize_state = vd->vdev_initialize_state; 4439 vs->vs_initialize_action_time = 4440 vd->vdev_initialize_action_time; 4441 4442 /* 4443 * Report manual TRIM progress. Since we don't have 4444 * the manual TRIM locks held, this is only an 4445 * estimate (although fairly accurate one). 4446 */ 4447 vs->vs_trim_notsup = !vd->vdev_has_trim; 4448 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done; 4449 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est; 4450 vs->vs_trim_state = vd->vdev_trim_state; 4451 vs->vs_trim_action_time = vd->vdev_trim_action_time; 4452 4453 /* Set when there is a deferred resilver. */ 4454 vs->vs_resilver_deferred = vd->vdev_resilver_deferred; 4455 } 4456 4457 /* 4458 * Report expandable space on top-level, non-auxiliary devices 4459 * only. The expandable space is reported in terms of metaslab 4460 * sized units since that determines how much space the pool 4461 * can expand. 4462 */ 4463 if (vd->vdev_aux == NULL && tvd != NULL) { 4464 vs->vs_esize = P2ALIGN( 4465 vd->vdev_max_asize - vd->vdev_asize, 4466 1ULL << tvd->vdev_ms_shift); 4467 } 4468 4469 vs->vs_configured_ashift = vd->vdev_top != NULL 4470 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift; 4471 vs->vs_logical_ashift = vd->vdev_logical_ashift; 4472 vs->vs_physical_ashift = vd->vdev_physical_ashift; 4473 4474 /* 4475 * Report fragmentation and rebuild progress for top-level, 4476 * non-auxiliary, concrete devices. 4477 */ 4478 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 4479 vdev_is_concrete(vd)) { 4480 /* 4481 * The vdev fragmentation rating doesn't take into 4482 * account the embedded slog metaslab (vdev_log_mg). 4483 * Since it's only one metaslab, it would have a tiny 4484 * impact on the overall fragmentation. 4485 */ 4486 vs->vs_fragmentation = (vd->vdev_mg != NULL) ? 4487 vd->vdev_mg->mg_fragmentation : 0; 4488 } 4489 vs->vs_noalloc = MAX(vd->vdev_noalloc, 4490 tvd ? tvd->vdev_noalloc : 0); 4491 } 4492 4493 vdev_get_stats_ex_impl(vd, vs, vsx); 4494 mutex_exit(&vd->vdev_stat_lock); 4495 } 4496 4497 void 4498 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 4499 { 4500 return (vdev_get_stats_ex(vd, vs, NULL)); 4501 } 4502 4503 void 4504 vdev_clear_stats(vdev_t *vd) 4505 { 4506 mutex_enter(&vd->vdev_stat_lock); 4507 vd->vdev_stat.vs_space = 0; 4508 vd->vdev_stat.vs_dspace = 0; 4509 vd->vdev_stat.vs_alloc = 0; 4510 mutex_exit(&vd->vdev_stat_lock); 4511 } 4512 4513 void 4514 vdev_scan_stat_init(vdev_t *vd) 4515 { 4516 vdev_stat_t *vs = &vd->vdev_stat; 4517 4518 for (int c = 0; c < vd->vdev_children; c++) 4519 vdev_scan_stat_init(vd->vdev_child[c]); 4520 4521 mutex_enter(&vd->vdev_stat_lock); 4522 vs->vs_scan_processed = 0; 4523 mutex_exit(&vd->vdev_stat_lock); 4524 } 4525 4526 void 4527 vdev_stat_update(zio_t *zio, uint64_t psize) 4528 { 4529 spa_t *spa = zio->io_spa; 4530 vdev_t *rvd = spa->spa_root_vdev; 4531 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 4532 vdev_t *pvd; 4533 uint64_t txg = zio->io_txg; 4534 vdev_stat_t *vs = &vd->vdev_stat; 4535 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex; 4536 zio_type_t type = zio->io_type; 4537 int flags = zio->io_flags; 4538 4539 /* 4540 * If this i/o is a gang leader, it didn't do any actual work. 4541 */ 4542 if (zio->io_gang_tree) 4543 return; 4544 4545 if (zio->io_error == 0) { 4546 /* 4547 * If this is a root i/o, don't count it -- we've already 4548 * counted the top-level vdevs, and vdev_get_stats() will 4549 * aggregate them when asked. This reduces contention on 4550 * the root vdev_stat_lock and implicitly handles blocks 4551 * that compress away to holes, for which there is no i/o. 4552 * (Holes never create vdev children, so all the counters 4553 * remain zero, which is what we want.) 4554 * 4555 * Note: this only applies to successful i/o (io_error == 0) 4556 * because unlike i/o counts, errors are not additive. 4557 * When reading a ditto block, for example, failure of 4558 * one top-level vdev does not imply a root-level error. 4559 */ 4560 if (vd == rvd) 4561 return; 4562 4563 ASSERT(vd == zio->io_vd); 4564 4565 if (flags & ZIO_FLAG_IO_BYPASS) 4566 return; 4567 4568 mutex_enter(&vd->vdev_stat_lock); 4569 4570 if (flags & ZIO_FLAG_IO_REPAIR) { 4571 /* 4572 * Repair is the result of a resilver issued by the 4573 * scan thread (spa_sync). 4574 */ 4575 if (flags & ZIO_FLAG_SCAN_THREAD) { 4576 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 4577 dsl_scan_phys_t *scn_phys = &scn->scn_phys; 4578 uint64_t *processed = &scn_phys->scn_processed; 4579 4580 if (vd->vdev_ops->vdev_op_leaf) 4581 atomic_add_64(processed, psize); 4582 vs->vs_scan_processed += psize; 4583 } 4584 4585 /* 4586 * Repair is the result of a rebuild issued by the 4587 * rebuild thread (vdev_rebuild_thread). To avoid 4588 * double counting repaired bytes the virtual dRAID 4589 * spare vdev is excluded from the processed bytes. 4590 */ 4591 if (zio->io_priority == ZIO_PRIORITY_REBUILD) { 4592 vdev_t *tvd = vd->vdev_top; 4593 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config; 4594 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 4595 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt; 4596 4597 if (vd->vdev_ops->vdev_op_leaf && 4598 vd->vdev_ops != &vdev_draid_spare_ops) { 4599 atomic_add_64(rebuilt, psize); 4600 } 4601 vs->vs_rebuild_processed += psize; 4602 } 4603 4604 if (flags & ZIO_FLAG_SELF_HEAL) 4605 vs->vs_self_healed += psize; 4606 } 4607 4608 /* 4609 * The bytes/ops/histograms are recorded at the leaf level and 4610 * aggregated into the higher level vdevs in vdev_get_stats(). 4611 */ 4612 if (vd->vdev_ops->vdev_op_leaf && 4613 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) { 4614 zio_type_t vs_type = type; 4615 zio_priority_t priority = zio->io_priority; 4616 4617 /* 4618 * TRIM ops and bytes are reported to user space as 4619 * ZIO_TYPE_IOCTL. This is done to preserve the 4620 * vdev_stat_t structure layout for user space. 4621 */ 4622 if (type == ZIO_TYPE_TRIM) 4623 vs_type = ZIO_TYPE_IOCTL; 4624 4625 /* 4626 * Solely for the purposes of 'zpool iostat -lqrw' 4627 * reporting use the priority to categorize the IO. 4628 * Only the following are reported to user space: 4629 * 4630 * ZIO_PRIORITY_SYNC_READ, 4631 * ZIO_PRIORITY_SYNC_WRITE, 4632 * ZIO_PRIORITY_ASYNC_READ, 4633 * ZIO_PRIORITY_ASYNC_WRITE, 4634 * ZIO_PRIORITY_SCRUB, 4635 * ZIO_PRIORITY_TRIM, 4636 * ZIO_PRIORITY_REBUILD. 4637 */ 4638 if (priority == ZIO_PRIORITY_INITIALIZING) { 4639 ASSERT3U(type, ==, ZIO_TYPE_WRITE); 4640 priority = ZIO_PRIORITY_ASYNC_WRITE; 4641 } else if (priority == ZIO_PRIORITY_REMOVAL) { 4642 priority = ((type == ZIO_TYPE_WRITE) ? 4643 ZIO_PRIORITY_ASYNC_WRITE : 4644 ZIO_PRIORITY_ASYNC_READ); 4645 } 4646 4647 vs->vs_ops[vs_type]++; 4648 vs->vs_bytes[vs_type] += psize; 4649 4650 if (flags & ZIO_FLAG_DELEGATED) { 4651 vsx->vsx_agg_histo[priority] 4652 [RQ_HISTO(zio->io_size)]++; 4653 } else { 4654 vsx->vsx_ind_histo[priority] 4655 [RQ_HISTO(zio->io_size)]++; 4656 } 4657 4658 if (zio->io_delta && zio->io_delay) { 4659 vsx->vsx_queue_histo[priority] 4660 [L_HISTO(zio->io_delta - zio->io_delay)]++; 4661 vsx->vsx_disk_histo[type] 4662 [L_HISTO(zio->io_delay)]++; 4663 vsx->vsx_total_histo[type] 4664 [L_HISTO(zio->io_delta)]++; 4665 } 4666 } 4667 4668 mutex_exit(&vd->vdev_stat_lock); 4669 return; 4670 } 4671 4672 if (flags & ZIO_FLAG_SPECULATIVE) 4673 return; 4674 4675 /* 4676 * If this is an I/O error that is going to be retried, then ignore the 4677 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 4678 * hard errors, when in reality they can happen for any number of 4679 * innocuous reasons (bus resets, MPxIO link failure, etc). 4680 */ 4681 if (zio->io_error == EIO && 4682 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 4683 return; 4684 4685 /* 4686 * Intent logs writes won't propagate their error to the root 4687 * I/O so don't mark these types of failures as pool-level 4688 * errors. 4689 */ 4690 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 4691 return; 4692 4693 if (type == ZIO_TYPE_WRITE && txg != 0 && 4694 (!(flags & ZIO_FLAG_IO_REPAIR) || 4695 (flags & ZIO_FLAG_SCAN_THREAD) || 4696 spa->spa_claiming)) { 4697 /* 4698 * This is either a normal write (not a repair), or it's 4699 * a repair induced by the scrub thread, or it's a repair 4700 * made by zil_claim() during spa_load() in the first txg. 4701 * In the normal case, we commit the DTL change in the same 4702 * txg as the block was born. In the scrub-induced repair 4703 * case, we know that scrubs run in first-pass syncing context, 4704 * so we commit the DTL change in spa_syncing_txg(spa). 4705 * In the zil_claim() case, we commit in spa_first_txg(spa). 4706 * 4707 * We currently do not make DTL entries for failed spontaneous 4708 * self-healing writes triggered by normal (non-scrubbing) 4709 * reads, because we have no transactional context in which to 4710 * do so -- and it's not clear that it'd be desirable anyway. 4711 */ 4712 if (vd->vdev_ops->vdev_op_leaf) { 4713 uint64_t commit_txg = txg; 4714 if (flags & ZIO_FLAG_SCAN_THREAD) { 4715 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4716 ASSERT(spa_sync_pass(spa) == 1); 4717 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 4718 commit_txg = spa_syncing_txg(spa); 4719 } else if (spa->spa_claiming) { 4720 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4721 commit_txg = spa_first_txg(spa); 4722 } 4723 ASSERT(commit_txg >= spa_syncing_txg(spa)); 4724 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 4725 return; 4726 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4727 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 4728 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 4729 } 4730 if (vd != rvd) 4731 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 4732 } 4733 } 4734 4735 int64_t 4736 vdev_deflated_space(vdev_t *vd, int64_t space) 4737 { 4738 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); 4739 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 4740 4741 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); 4742 } 4743 4744 /* 4745 * Update the in-core space usage stats for this vdev, its metaslab class, 4746 * and the root vdev. 4747 */ 4748 void 4749 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 4750 int64_t space_delta) 4751 { 4752 (void) defer_delta; 4753 int64_t dspace_delta; 4754 spa_t *spa = vd->vdev_spa; 4755 vdev_t *rvd = spa->spa_root_vdev; 4756 4757 ASSERT(vd == vd->vdev_top); 4758 4759 /* 4760 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 4761 * factor. We must calculate this here and not at the root vdev 4762 * because the root vdev's psize-to-asize is simply the max of its 4763 * children's, thus not accurate enough for us. 4764 */ 4765 dspace_delta = vdev_deflated_space(vd, space_delta); 4766 4767 mutex_enter(&vd->vdev_stat_lock); 4768 /* ensure we won't underflow */ 4769 if (alloc_delta < 0) { 4770 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); 4771 } 4772 4773 vd->vdev_stat.vs_alloc += alloc_delta; 4774 vd->vdev_stat.vs_space += space_delta; 4775 vd->vdev_stat.vs_dspace += dspace_delta; 4776 mutex_exit(&vd->vdev_stat_lock); 4777 4778 /* every class but log contributes to root space stats */ 4779 if (vd->vdev_mg != NULL && !vd->vdev_islog) { 4780 ASSERT(!vd->vdev_isl2cache); 4781 mutex_enter(&rvd->vdev_stat_lock); 4782 rvd->vdev_stat.vs_alloc += alloc_delta; 4783 rvd->vdev_stat.vs_space += space_delta; 4784 rvd->vdev_stat.vs_dspace += dspace_delta; 4785 mutex_exit(&rvd->vdev_stat_lock); 4786 } 4787 /* Note: metaslab_class_space_update moved to metaslab_space_update */ 4788 } 4789 4790 /* 4791 * Mark a top-level vdev's config as dirty, placing it on the dirty list 4792 * so that it will be written out next time the vdev configuration is synced. 4793 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 4794 */ 4795 void 4796 vdev_config_dirty(vdev_t *vd) 4797 { 4798 spa_t *spa = vd->vdev_spa; 4799 vdev_t *rvd = spa->spa_root_vdev; 4800 int c; 4801 4802 ASSERT(spa_writeable(spa)); 4803 4804 /* 4805 * If this is an aux vdev (as with l2cache and spare devices), then we 4806 * update the vdev config manually and set the sync flag. 4807 */ 4808 if (vd->vdev_aux != NULL) { 4809 spa_aux_vdev_t *sav = vd->vdev_aux; 4810 nvlist_t **aux; 4811 uint_t naux; 4812 4813 for (c = 0; c < sav->sav_count; c++) { 4814 if (sav->sav_vdevs[c] == vd) 4815 break; 4816 } 4817 4818 if (c == sav->sav_count) { 4819 /* 4820 * We're being removed. There's nothing more to do. 4821 */ 4822 ASSERT(sav->sav_sync == B_TRUE); 4823 return; 4824 } 4825 4826 sav->sav_sync = B_TRUE; 4827 4828 if (nvlist_lookup_nvlist_array(sav->sav_config, 4829 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 4830 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 4831 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 4832 } 4833 4834 ASSERT(c < naux); 4835 4836 /* 4837 * Setting the nvlist in the middle if the array is a little 4838 * sketchy, but it will work. 4839 */ 4840 nvlist_free(aux[c]); 4841 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 4842 4843 return; 4844 } 4845 4846 /* 4847 * The dirty list is protected by the SCL_CONFIG lock. The caller 4848 * must either hold SCL_CONFIG as writer, or must be the sync thread 4849 * (which holds SCL_CONFIG as reader). There's only one sync thread, 4850 * so this is sufficient to ensure mutual exclusion. 4851 */ 4852 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 4853 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4854 spa_config_held(spa, SCL_CONFIG, RW_READER))); 4855 4856 if (vd == rvd) { 4857 for (c = 0; c < rvd->vdev_children; c++) 4858 vdev_config_dirty(rvd->vdev_child[c]); 4859 } else { 4860 ASSERT(vd == vd->vdev_top); 4861 4862 if (!list_link_active(&vd->vdev_config_dirty_node) && 4863 vdev_is_concrete(vd)) { 4864 list_insert_head(&spa->spa_config_dirty_list, vd); 4865 } 4866 } 4867 } 4868 4869 void 4870 vdev_config_clean(vdev_t *vd) 4871 { 4872 spa_t *spa = vd->vdev_spa; 4873 4874 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 4875 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4876 spa_config_held(spa, SCL_CONFIG, RW_READER))); 4877 4878 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 4879 list_remove(&spa->spa_config_dirty_list, vd); 4880 } 4881 4882 /* 4883 * Mark a top-level vdev's state as dirty, so that the next pass of 4884 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 4885 * the state changes from larger config changes because they require 4886 * much less locking, and are often needed for administrative actions. 4887 */ 4888 void 4889 vdev_state_dirty(vdev_t *vd) 4890 { 4891 spa_t *spa = vd->vdev_spa; 4892 4893 ASSERT(spa_writeable(spa)); 4894 ASSERT(vd == vd->vdev_top); 4895 4896 /* 4897 * The state list is protected by the SCL_STATE lock. The caller 4898 * must either hold SCL_STATE as writer, or must be the sync thread 4899 * (which holds SCL_STATE as reader). There's only one sync thread, 4900 * so this is sufficient to ensure mutual exclusion. 4901 */ 4902 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 4903 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4904 spa_config_held(spa, SCL_STATE, RW_READER))); 4905 4906 if (!list_link_active(&vd->vdev_state_dirty_node) && 4907 vdev_is_concrete(vd)) 4908 list_insert_head(&spa->spa_state_dirty_list, vd); 4909 } 4910 4911 void 4912 vdev_state_clean(vdev_t *vd) 4913 { 4914 spa_t *spa = vd->vdev_spa; 4915 4916 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 4917 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4918 spa_config_held(spa, SCL_STATE, RW_READER))); 4919 4920 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 4921 list_remove(&spa->spa_state_dirty_list, vd); 4922 } 4923 4924 /* 4925 * Propagate vdev state up from children to parent. 4926 */ 4927 void 4928 vdev_propagate_state(vdev_t *vd) 4929 { 4930 spa_t *spa = vd->vdev_spa; 4931 vdev_t *rvd = spa->spa_root_vdev; 4932 int degraded = 0, faulted = 0; 4933 int corrupted = 0; 4934 vdev_t *child; 4935 4936 if (vd->vdev_children > 0) { 4937 for (int c = 0; c < vd->vdev_children; c++) { 4938 child = vd->vdev_child[c]; 4939 4940 /* 4941 * Don't factor holes or indirect vdevs into the 4942 * decision. 4943 */ 4944 if (!vdev_is_concrete(child)) 4945 continue; 4946 4947 if (!vdev_readable(child) || 4948 (!vdev_writeable(child) && spa_writeable(spa))) { 4949 /* 4950 * Root special: if there is a top-level log 4951 * device, treat the root vdev as if it were 4952 * degraded. 4953 */ 4954 if (child->vdev_islog && vd == rvd) 4955 degraded++; 4956 else 4957 faulted++; 4958 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 4959 degraded++; 4960 } 4961 4962 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 4963 corrupted++; 4964 } 4965 4966 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 4967 4968 /* 4969 * Root special: if there is a top-level vdev that cannot be 4970 * opened due to corrupted metadata, then propagate the root 4971 * vdev's aux state as 'corrupt' rather than 'insufficient 4972 * replicas'. 4973 */ 4974 if (corrupted && vd == rvd && 4975 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 4976 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 4977 VDEV_AUX_CORRUPT_DATA); 4978 } 4979 4980 if (vd->vdev_parent) 4981 vdev_propagate_state(vd->vdev_parent); 4982 } 4983 4984 /* 4985 * Set a vdev's state. If this is during an open, we don't update the parent 4986 * state, because we're in the process of opening children depth-first. 4987 * Otherwise, we propagate the change to the parent. 4988 * 4989 * If this routine places a device in a faulted state, an appropriate ereport is 4990 * generated. 4991 */ 4992 void 4993 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 4994 { 4995 uint64_t save_state; 4996 spa_t *spa = vd->vdev_spa; 4997 4998 if (state == vd->vdev_state) { 4999 /* 5000 * Since vdev_offline() code path is already in an offline 5001 * state we can miss a statechange event to OFFLINE. Check 5002 * the previous state to catch this condition. 5003 */ 5004 if (vd->vdev_ops->vdev_op_leaf && 5005 (state == VDEV_STATE_OFFLINE) && 5006 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) { 5007 /* post an offline state change */ 5008 zfs_post_state_change(spa, vd, vd->vdev_prevstate); 5009 } 5010 vd->vdev_stat.vs_aux = aux; 5011 return; 5012 } 5013 5014 save_state = vd->vdev_state; 5015 5016 vd->vdev_state = state; 5017 vd->vdev_stat.vs_aux = aux; 5018 5019 /* 5020 * If we are setting the vdev state to anything but an open state, then 5021 * always close the underlying device unless the device has requested 5022 * a delayed close (i.e. we're about to remove or fault the device). 5023 * Otherwise, we keep accessible but invalid devices open forever. 5024 * We don't call vdev_close() itself, because that implies some extra 5025 * checks (offline, etc) that we don't want here. This is limited to 5026 * leaf devices, because otherwise closing the device will affect other 5027 * children. 5028 */ 5029 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 5030 vd->vdev_ops->vdev_op_leaf) 5031 vd->vdev_ops->vdev_op_close(vd); 5032 5033 if (vd->vdev_removed && 5034 state == VDEV_STATE_CANT_OPEN && 5035 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 5036 /* 5037 * If the previous state is set to VDEV_STATE_REMOVED, then this 5038 * device was previously marked removed and someone attempted to 5039 * reopen it. If this failed due to a nonexistent device, then 5040 * keep the device in the REMOVED state. We also let this be if 5041 * it is one of our special test online cases, which is only 5042 * attempting to online the device and shouldn't generate an FMA 5043 * fault. 5044 */ 5045 vd->vdev_state = VDEV_STATE_REMOVED; 5046 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 5047 } else if (state == VDEV_STATE_REMOVED) { 5048 vd->vdev_removed = B_TRUE; 5049 } else if (state == VDEV_STATE_CANT_OPEN) { 5050 /* 5051 * If we fail to open a vdev during an import or recovery, we 5052 * mark it as "not available", which signifies that it was 5053 * never there to begin with. Failure to open such a device 5054 * is not considered an error. 5055 */ 5056 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 5057 spa_load_state(spa) == SPA_LOAD_RECOVER) && 5058 vd->vdev_ops->vdev_op_leaf) 5059 vd->vdev_not_present = 1; 5060 5061 /* 5062 * Post the appropriate ereport. If the 'prevstate' field is 5063 * set to something other than VDEV_STATE_UNKNOWN, it indicates 5064 * that this is part of a vdev_reopen(). In this case, we don't 5065 * want to post the ereport if the device was already in the 5066 * CANT_OPEN state beforehand. 5067 * 5068 * If the 'checkremove' flag is set, then this is an attempt to 5069 * online the device in response to an insertion event. If we 5070 * hit this case, then we have detected an insertion event for a 5071 * faulted or offline device that wasn't in the removed state. 5072 * In this scenario, we don't post an ereport because we are 5073 * about to replace the device, or attempt an online with 5074 * vdev_forcefault, which will generate the fault for us. 5075 */ 5076 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 5077 !vd->vdev_not_present && !vd->vdev_checkremove && 5078 vd != spa->spa_root_vdev) { 5079 const char *class; 5080 5081 switch (aux) { 5082 case VDEV_AUX_OPEN_FAILED: 5083 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 5084 break; 5085 case VDEV_AUX_CORRUPT_DATA: 5086 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 5087 break; 5088 case VDEV_AUX_NO_REPLICAS: 5089 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 5090 break; 5091 case VDEV_AUX_BAD_GUID_SUM: 5092 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 5093 break; 5094 case VDEV_AUX_TOO_SMALL: 5095 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 5096 break; 5097 case VDEV_AUX_BAD_LABEL: 5098 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 5099 break; 5100 case VDEV_AUX_BAD_ASHIFT: 5101 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT; 5102 break; 5103 default: 5104 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 5105 } 5106 5107 (void) zfs_ereport_post(class, spa, vd, NULL, NULL, 5108 save_state); 5109 } 5110 5111 /* Erase any notion of persistent removed state */ 5112 vd->vdev_removed = B_FALSE; 5113 } else { 5114 vd->vdev_removed = B_FALSE; 5115 } 5116 5117 /* 5118 * Notify ZED of any significant state-change on a leaf vdev. 5119 * 5120 */ 5121 if (vd->vdev_ops->vdev_op_leaf) { 5122 /* preserve original state from a vdev_reopen() */ 5123 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) && 5124 (vd->vdev_prevstate != vd->vdev_state) && 5125 (save_state <= VDEV_STATE_CLOSED)) 5126 save_state = vd->vdev_prevstate; 5127 5128 /* filter out state change due to initial vdev_open */ 5129 if (save_state > VDEV_STATE_CLOSED) 5130 zfs_post_state_change(spa, vd, save_state); 5131 } 5132 5133 if (!isopen && vd->vdev_parent) 5134 vdev_propagate_state(vd->vdev_parent); 5135 } 5136 5137 boolean_t 5138 vdev_children_are_offline(vdev_t *vd) 5139 { 5140 ASSERT(!vd->vdev_ops->vdev_op_leaf); 5141 5142 for (uint64_t i = 0; i < vd->vdev_children; i++) { 5143 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 5144 return (B_FALSE); 5145 } 5146 5147 return (B_TRUE); 5148 } 5149 5150 /* 5151 * Check the vdev configuration to ensure that it's capable of supporting 5152 * a root pool. We do not support partial configuration. 5153 */ 5154 boolean_t 5155 vdev_is_bootable(vdev_t *vd) 5156 { 5157 if (!vd->vdev_ops->vdev_op_leaf) { 5158 const char *vdev_type = vd->vdev_ops->vdev_op_type; 5159 5160 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) 5161 return (B_FALSE); 5162 } 5163 5164 for (int c = 0; c < vd->vdev_children; c++) { 5165 if (!vdev_is_bootable(vd->vdev_child[c])) 5166 return (B_FALSE); 5167 } 5168 return (B_TRUE); 5169 } 5170 5171 boolean_t 5172 vdev_is_concrete(vdev_t *vd) 5173 { 5174 vdev_ops_t *ops = vd->vdev_ops; 5175 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 5176 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 5177 return (B_FALSE); 5178 } else { 5179 return (B_TRUE); 5180 } 5181 } 5182 5183 /* 5184 * Determine if a log device has valid content. If the vdev was 5185 * removed or faulted in the MOS config then we know that 5186 * the content on the log device has already been written to the pool. 5187 */ 5188 boolean_t 5189 vdev_log_state_valid(vdev_t *vd) 5190 { 5191 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 5192 !vd->vdev_removed) 5193 return (B_TRUE); 5194 5195 for (int c = 0; c < vd->vdev_children; c++) 5196 if (vdev_log_state_valid(vd->vdev_child[c])) 5197 return (B_TRUE); 5198 5199 return (B_FALSE); 5200 } 5201 5202 /* 5203 * Expand a vdev if possible. 5204 */ 5205 void 5206 vdev_expand(vdev_t *vd, uint64_t txg) 5207 { 5208 ASSERT(vd->vdev_top == vd); 5209 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5210 ASSERT(vdev_is_concrete(vd)); 5211 5212 vdev_set_deflate_ratio(vd); 5213 5214 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 5215 vdev_is_concrete(vd)) { 5216 vdev_metaslab_group_create(vd); 5217 VERIFY(vdev_metaslab_init(vd, txg) == 0); 5218 vdev_config_dirty(vd); 5219 } 5220 } 5221 5222 /* 5223 * Split a vdev. 5224 */ 5225 void 5226 vdev_split(vdev_t *vd) 5227 { 5228 vdev_t *cvd, *pvd = vd->vdev_parent; 5229 5230 vdev_remove_child(pvd, vd); 5231 vdev_compact_children(pvd); 5232 5233 cvd = pvd->vdev_child[0]; 5234 if (pvd->vdev_children == 1) { 5235 vdev_remove_parent(cvd); 5236 cvd->vdev_splitting = B_TRUE; 5237 } 5238 vdev_propagate_state(cvd); 5239 } 5240 5241 void 5242 vdev_deadman(vdev_t *vd, char *tag) 5243 { 5244 for (int c = 0; c < vd->vdev_children; c++) { 5245 vdev_t *cvd = vd->vdev_child[c]; 5246 5247 vdev_deadman(cvd, tag); 5248 } 5249 5250 if (vd->vdev_ops->vdev_op_leaf) { 5251 vdev_queue_t *vq = &vd->vdev_queue; 5252 5253 mutex_enter(&vq->vq_lock); 5254 if (avl_numnodes(&vq->vq_active_tree) > 0) { 5255 spa_t *spa = vd->vdev_spa; 5256 zio_t *fio; 5257 uint64_t delta; 5258 5259 zfs_dbgmsg("slow vdev: %s has %lu active IOs", 5260 vd->vdev_path, avl_numnodes(&vq->vq_active_tree)); 5261 5262 /* 5263 * Look at the head of all the pending queues, 5264 * if any I/O has been outstanding for longer than 5265 * the spa_deadman_synctime invoke the deadman logic. 5266 */ 5267 fio = avl_first(&vq->vq_active_tree); 5268 delta = gethrtime() - fio->io_timestamp; 5269 if (delta > spa_deadman_synctime(spa)) 5270 zio_deadman(fio, tag); 5271 } 5272 mutex_exit(&vq->vq_lock); 5273 } 5274 } 5275 5276 void 5277 vdev_defer_resilver(vdev_t *vd) 5278 { 5279 ASSERT(vd->vdev_ops->vdev_op_leaf); 5280 5281 vd->vdev_resilver_deferred = B_TRUE; 5282 vd->vdev_spa->spa_resilver_deferred = B_TRUE; 5283 } 5284 5285 /* 5286 * Clears the resilver deferred flag on all leaf devs under vd. Returns 5287 * B_TRUE if we have devices that need to be resilvered and are available to 5288 * accept resilver I/Os. 5289 */ 5290 boolean_t 5291 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx) 5292 { 5293 boolean_t resilver_needed = B_FALSE; 5294 spa_t *spa = vd->vdev_spa; 5295 5296 for (int c = 0; c < vd->vdev_children; c++) { 5297 vdev_t *cvd = vd->vdev_child[c]; 5298 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx); 5299 } 5300 5301 if (vd == spa->spa_root_vdev && 5302 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { 5303 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 5304 vdev_config_dirty(vd); 5305 spa->spa_resilver_deferred = B_FALSE; 5306 return (resilver_needed); 5307 } 5308 5309 if (!vdev_is_concrete(vd) || vd->vdev_aux || 5310 !vd->vdev_ops->vdev_op_leaf) 5311 return (resilver_needed); 5312 5313 vd->vdev_resilver_deferred = B_FALSE; 5314 5315 return (!vdev_is_dead(vd) && !vd->vdev_offline && 5316 vdev_resilver_needed(vd, NULL, NULL)); 5317 } 5318 5319 boolean_t 5320 vdev_xlate_is_empty(range_seg64_t *rs) 5321 { 5322 return (rs->rs_start == rs->rs_end); 5323 } 5324 5325 /* 5326 * Translate a logical range to the first contiguous physical range for the 5327 * specified vdev_t. This function is initially called with a leaf vdev and 5328 * will walk each parent vdev until it reaches a top-level vdev. Once the 5329 * top-level is reached the physical range is initialized and the recursive 5330 * function begins to unwind. As it unwinds it calls the parent's vdev 5331 * specific translation function to do the real conversion. 5332 */ 5333 void 5334 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 5335 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 5336 { 5337 /* 5338 * Walk up the vdev tree 5339 */ 5340 if (vd != vd->vdev_top) { 5341 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs, 5342 remain_rs); 5343 } else { 5344 /* 5345 * We've reached the top-level vdev, initialize the physical 5346 * range to the logical range and set an empty remaining 5347 * range then start to unwind. 5348 */ 5349 physical_rs->rs_start = logical_rs->rs_start; 5350 physical_rs->rs_end = logical_rs->rs_end; 5351 5352 remain_rs->rs_start = logical_rs->rs_start; 5353 remain_rs->rs_end = logical_rs->rs_start; 5354 5355 return; 5356 } 5357 5358 vdev_t *pvd = vd->vdev_parent; 5359 ASSERT3P(pvd, !=, NULL); 5360 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL); 5361 5362 /* 5363 * As this recursive function unwinds, translate the logical 5364 * range into its physical and any remaining components by calling 5365 * the vdev specific translate function. 5366 */ 5367 range_seg64_t intermediate = { 0 }; 5368 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs); 5369 5370 physical_rs->rs_start = intermediate.rs_start; 5371 physical_rs->rs_end = intermediate.rs_end; 5372 } 5373 5374 void 5375 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs, 5376 vdev_xlate_func_t *func, void *arg) 5377 { 5378 range_seg64_t iter_rs = *logical_rs; 5379 range_seg64_t physical_rs; 5380 range_seg64_t remain_rs; 5381 5382 while (!vdev_xlate_is_empty(&iter_rs)) { 5383 5384 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs); 5385 5386 /* 5387 * With raidz and dRAID, it's possible that the logical range 5388 * does not live on this leaf vdev. Only when there is a non- 5389 * zero physical size call the provided function. 5390 */ 5391 if (!vdev_xlate_is_empty(&physical_rs)) 5392 func(arg, &physical_rs); 5393 5394 iter_rs = remain_rs; 5395 } 5396 } 5397 5398 static char * 5399 vdev_name(vdev_t *vd, char *buf, int buflen) 5400 { 5401 if (vd->vdev_path == NULL) { 5402 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) { 5403 strlcpy(buf, vd->vdev_spa->spa_name, buflen); 5404 } else if (!vd->vdev_ops->vdev_op_leaf) { 5405 snprintf(buf, buflen, "%s-%llu", 5406 vd->vdev_ops->vdev_op_type, 5407 (u_longlong_t)vd->vdev_id); 5408 } 5409 } else { 5410 strlcpy(buf, vd->vdev_path, buflen); 5411 } 5412 return (buf); 5413 } 5414 5415 /* 5416 * Look at the vdev tree and determine whether any devices are currently being 5417 * replaced. 5418 */ 5419 boolean_t 5420 vdev_replace_in_progress(vdev_t *vdev) 5421 { 5422 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0); 5423 5424 if (vdev->vdev_ops == &vdev_replacing_ops) 5425 return (B_TRUE); 5426 5427 /* 5428 * A 'spare' vdev indicates that we have a replace in progress, unless 5429 * it has exactly two children, and the second, the hot spare, has 5430 * finished being resilvered. 5431 */ 5432 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 || 5433 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING))) 5434 return (B_TRUE); 5435 5436 for (int i = 0; i < vdev->vdev_children; i++) { 5437 if (vdev_replace_in_progress(vdev->vdev_child[i])) 5438 return (B_TRUE); 5439 } 5440 5441 return (B_FALSE); 5442 } 5443 5444 /* 5445 * Add a (source=src, propname=propval) list to an nvlist. 5446 */ 5447 static void 5448 vdev_prop_add_list(nvlist_t *nvl, const char *propname, char *strval, 5449 uint64_t intval, zprop_source_t src) 5450 { 5451 nvlist_t *propval; 5452 5453 propval = fnvlist_alloc(); 5454 fnvlist_add_uint64(propval, ZPROP_SOURCE, src); 5455 5456 if (strval != NULL) 5457 fnvlist_add_string(propval, ZPROP_VALUE, strval); 5458 else 5459 fnvlist_add_uint64(propval, ZPROP_VALUE, intval); 5460 5461 fnvlist_add_nvlist(nvl, propname, propval); 5462 nvlist_free(propval); 5463 } 5464 5465 static void 5466 vdev_props_set_sync(void *arg, dmu_tx_t *tx) 5467 { 5468 vdev_t *vd; 5469 nvlist_t *nvp = arg; 5470 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5471 objset_t *mos = spa->spa_meta_objset; 5472 nvpair_t *elem = NULL; 5473 uint64_t vdev_guid; 5474 nvlist_t *nvprops; 5475 5476 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV); 5477 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS); 5478 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE); 5479 5480 /* this vdev could get removed while waiting for this sync task */ 5481 if (vd == NULL) 5482 return; 5483 5484 mutex_enter(&spa->spa_props_lock); 5485 5486 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5487 uint64_t intval, objid = 0; 5488 char *strval; 5489 vdev_prop_t prop; 5490 const char *propname = nvpair_name(elem); 5491 zprop_type_t proptype; 5492 5493 /* 5494 * Set vdev property values in the vdev props mos object. 5495 */ 5496 if (vd->vdev_top_zap != 0) { 5497 objid = vd->vdev_top_zap; 5498 } else if (vd->vdev_leaf_zap != 0) { 5499 objid = vd->vdev_leaf_zap; 5500 } else { 5501 panic("vdev not top or leaf"); 5502 } 5503 5504 switch (prop = vdev_name_to_prop(propname)) { 5505 case VDEV_PROP_USER: 5506 if (vdev_prop_user(propname)) { 5507 strval = fnvpair_value_string(elem); 5508 if (strlen(strval) == 0) { 5509 /* remove the property if value == "" */ 5510 (void) zap_remove(mos, objid, propname, 5511 tx); 5512 } else { 5513 VERIFY0(zap_update(mos, objid, propname, 5514 1, strlen(strval) + 1, strval, tx)); 5515 } 5516 spa_history_log_internal(spa, "vdev set", tx, 5517 "vdev_guid=%llu: %s=%s", 5518 (u_longlong_t)vdev_guid, nvpair_name(elem), 5519 strval); 5520 } 5521 break; 5522 default: 5523 /* normalize the property name */ 5524 propname = vdev_prop_to_name(prop); 5525 proptype = vdev_prop_get_type(prop); 5526 5527 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5528 ASSERT(proptype == PROP_TYPE_STRING); 5529 strval = fnvpair_value_string(elem); 5530 VERIFY0(zap_update(mos, objid, propname, 5531 1, strlen(strval) + 1, strval, tx)); 5532 spa_history_log_internal(spa, "vdev set", tx, 5533 "vdev_guid=%llu: %s=%s", 5534 (u_longlong_t)vdev_guid, nvpair_name(elem), 5535 strval); 5536 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5537 intval = fnvpair_value_uint64(elem); 5538 5539 if (proptype == PROP_TYPE_INDEX) { 5540 const char *unused; 5541 VERIFY0(vdev_prop_index_to_string( 5542 prop, intval, &unused)); 5543 } 5544 VERIFY0(zap_update(mos, objid, propname, 5545 sizeof (uint64_t), 1, &intval, tx)); 5546 spa_history_log_internal(spa, "vdev set", tx, 5547 "vdev_guid=%llu: %s=%lld", 5548 (u_longlong_t)vdev_guid, 5549 nvpair_name(elem), (longlong_t)intval); 5550 } else { 5551 panic("invalid vdev property type %u", 5552 nvpair_type(elem)); 5553 } 5554 } 5555 5556 } 5557 5558 mutex_exit(&spa->spa_props_lock); 5559 } 5560 5561 int 5562 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 5563 { 5564 spa_t *spa = vd->vdev_spa; 5565 nvpair_t *elem = NULL; 5566 uint64_t vdev_guid; 5567 nvlist_t *nvprops; 5568 int error; 5569 5570 ASSERT(vd != NULL); 5571 5572 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV, 5573 &vdev_guid) != 0) 5574 return (SET_ERROR(EINVAL)); 5575 5576 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS, 5577 &nvprops) != 0) 5578 return (SET_ERROR(EINVAL)); 5579 5580 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) 5581 return (SET_ERROR(EINVAL)); 5582 5583 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5584 char *propname = nvpair_name(elem); 5585 vdev_prop_t prop = vdev_name_to_prop(propname); 5586 uint64_t intval = 0; 5587 char *strval = NULL; 5588 5589 if (prop == VDEV_PROP_USER && !vdev_prop_user(propname)) { 5590 error = EINVAL; 5591 goto end; 5592 } 5593 5594 if (vdev_prop_readonly(prop)) { 5595 error = EROFS; 5596 goto end; 5597 } 5598 5599 /* Special Processing */ 5600 switch (prop) { 5601 case VDEV_PROP_PATH: 5602 if (vd->vdev_path == NULL) { 5603 error = EROFS; 5604 break; 5605 } 5606 if (nvpair_value_string(elem, &strval) != 0) { 5607 error = EINVAL; 5608 break; 5609 } 5610 /* New path must start with /dev/ */ 5611 if (strncmp(strval, "/dev/", 5)) { 5612 error = EINVAL; 5613 break; 5614 } 5615 error = spa_vdev_setpath(spa, vdev_guid, strval); 5616 break; 5617 case VDEV_PROP_ALLOCATING: 5618 if (nvpair_value_uint64(elem, &intval) != 0) { 5619 error = EINVAL; 5620 break; 5621 } 5622 if (intval != vd->vdev_noalloc) 5623 break; 5624 if (intval == 0) 5625 error = spa_vdev_noalloc(spa, vdev_guid); 5626 else 5627 error = spa_vdev_alloc(spa, vdev_guid); 5628 break; 5629 default: 5630 /* Most processing is done in vdev_props_set_sync */ 5631 break; 5632 } 5633 end: 5634 if (error != 0) { 5635 intval = error; 5636 vdev_prop_add_list(outnvl, propname, strval, intval, 0); 5637 return (error); 5638 } 5639 } 5640 5641 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync, 5642 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 5643 } 5644 5645 int 5646 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 5647 { 5648 spa_t *spa = vd->vdev_spa; 5649 objset_t *mos = spa->spa_meta_objset; 5650 int err = 0; 5651 uint64_t objid; 5652 uint64_t vdev_guid; 5653 nvpair_t *elem = NULL; 5654 nvlist_t *nvprops = NULL; 5655 uint64_t intval = 0; 5656 char *strval = NULL; 5657 const char *propname = NULL; 5658 vdev_prop_t prop; 5659 5660 ASSERT(vd != NULL); 5661 ASSERT(mos != NULL); 5662 5663 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV, 5664 &vdev_guid) != 0) 5665 return (SET_ERROR(EINVAL)); 5666 5667 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops); 5668 5669 if (vd->vdev_top_zap != 0) { 5670 objid = vd->vdev_top_zap; 5671 } else if (vd->vdev_leaf_zap != 0) { 5672 objid = vd->vdev_leaf_zap; 5673 } else { 5674 return (SET_ERROR(EINVAL)); 5675 } 5676 ASSERT(objid != 0); 5677 5678 mutex_enter(&spa->spa_props_lock); 5679 5680 if (nvprops != NULL) { 5681 char namebuf[64] = { 0 }; 5682 5683 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5684 intval = 0; 5685 strval = NULL; 5686 propname = nvpair_name(elem); 5687 prop = vdev_name_to_prop(propname); 5688 zprop_source_t src = ZPROP_SRC_DEFAULT; 5689 uint64_t integer_size, num_integers; 5690 5691 switch (prop) { 5692 /* Special Read-only Properties */ 5693 case VDEV_PROP_NAME: 5694 strval = vdev_name(vd, namebuf, 5695 sizeof (namebuf)); 5696 if (strval == NULL) 5697 continue; 5698 vdev_prop_add_list(outnvl, propname, strval, 0, 5699 ZPROP_SRC_NONE); 5700 continue; 5701 case VDEV_PROP_CAPACITY: 5702 /* percent used */ 5703 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 : 5704 (vd->vdev_stat.vs_alloc * 100 / 5705 vd->vdev_stat.vs_dspace); 5706 vdev_prop_add_list(outnvl, propname, NULL, 5707 intval, ZPROP_SRC_NONE); 5708 continue; 5709 case VDEV_PROP_STATE: 5710 vdev_prop_add_list(outnvl, propname, NULL, 5711 vd->vdev_state, ZPROP_SRC_NONE); 5712 continue; 5713 case VDEV_PROP_GUID: 5714 vdev_prop_add_list(outnvl, propname, NULL, 5715 vd->vdev_guid, ZPROP_SRC_NONE); 5716 continue; 5717 case VDEV_PROP_ASIZE: 5718 vdev_prop_add_list(outnvl, propname, NULL, 5719 vd->vdev_asize, ZPROP_SRC_NONE); 5720 continue; 5721 case VDEV_PROP_PSIZE: 5722 vdev_prop_add_list(outnvl, propname, NULL, 5723 vd->vdev_psize, ZPROP_SRC_NONE); 5724 continue; 5725 case VDEV_PROP_ASHIFT: 5726 vdev_prop_add_list(outnvl, propname, NULL, 5727 vd->vdev_ashift, ZPROP_SRC_NONE); 5728 continue; 5729 case VDEV_PROP_SIZE: 5730 vdev_prop_add_list(outnvl, propname, NULL, 5731 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE); 5732 continue; 5733 case VDEV_PROP_FREE: 5734 vdev_prop_add_list(outnvl, propname, NULL, 5735 vd->vdev_stat.vs_dspace - 5736 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 5737 continue; 5738 case VDEV_PROP_ALLOCATED: 5739 vdev_prop_add_list(outnvl, propname, NULL, 5740 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 5741 continue; 5742 case VDEV_PROP_EXPANDSZ: 5743 vdev_prop_add_list(outnvl, propname, NULL, 5744 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE); 5745 continue; 5746 case VDEV_PROP_FRAGMENTATION: 5747 vdev_prop_add_list(outnvl, propname, NULL, 5748 vd->vdev_stat.vs_fragmentation, 5749 ZPROP_SRC_NONE); 5750 continue; 5751 case VDEV_PROP_PARITY: 5752 vdev_prop_add_list(outnvl, propname, NULL, 5753 vdev_get_nparity(vd), ZPROP_SRC_NONE); 5754 continue; 5755 case VDEV_PROP_PATH: 5756 if (vd->vdev_path == NULL) 5757 continue; 5758 vdev_prop_add_list(outnvl, propname, 5759 vd->vdev_path, 0, ZPROP_SRC_NONE); 5760 continue; 5761 case VDEV_PROP_DEVID: 5762 if (vd->vdev_devid == NULL) 5763 continue; 5764 vdev_prop_add_list(outnvl, propname, 5765 vd->vdev_devid, 0, ZPROP_SRC_NONE); 5766 continue; 5767 case VDEV_PROP_PHYS_PATH: 5768 if (vd->vdev_physpath == NULL) 5769 continue; 5770 vdev_prop_add_list(outnvl, propname, 5771 vd->vdev_physpath, 0, ZPROP_SRC_NONE); 5772 continue; 5773 case VDEV_PROP_ENC_PATH: 5774 if (vd->vdev_enc_sysfs_path == NULL) 5775 continue; 5776 vdev_prop_add_list(outnvl, propname, 5777 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE); 5778 continue; 5779 case VDEV_PROP_FRU: 5780 if (vd->vdev_fru == NULL) 5781 continue; 5782 vdev_prop_add_list(outnvl, propname, 5783 vd->vdev_fru, 0, ZPROP_SRC_NONE); 5784 continue; 5785 case VDEV_PROP_PARENT: 5786 if (vd->vdev_parent != NULL) { 5787 strval = vdev_name(vd->vdev_parent, 5788 namebuf, sizeof (namebuf)); 5789 vdev_prop_add_list(outnvl, propname, 5790 strval, 0, ZPROP_SRC_NONE); 5791 } 5792 continue; 5793 case VDEV_PROP_CHILDREN: 5794 if (vd->vdev_children > 0) 5795 strval = kmem_zalloc(ZAP_MAXVALUELEN, 5796 KM_SLEEP); 5797 for (uint64_t i = 0; i < vd->vdev_children; 5798 i++) { 5799 char *vname; 5800 5801 vname = vdev_name(vd->vdev_child[i], 5802 namebuf, sizeof (namebuf)); 5803 if (vname == NULL) 5804 vname = "(unknown)"; 5805 if (strlen(strval) > 0) 5806 strlcat(strval, ",", 5807 ZAP_MAXVALUELEN); 5808 strlcat(strval, vname, ZAP_MAXVALUELEN); 5809 } 5810 if (strval != NULL) { 5811 vdev_prop_add_list(outnvl, propname, 5812 strval, 0, ZPROP_SRC_NONE); 5813 kmem_free(strval, ZAP_MAXVALUELEN); 5814 } 5815 continue; 5816 case VDEV_PROP_NUMCHILDREN: 5817 vdev_prop_add_list(outnvl, propname, NULL, 5818 vd->vdev_children, ZPROP_SRC_NONE); 5819 continue; 5820 case VDEV_PROP_READ_ERRORS: 5821 vdev_prop_add_list(outnvl, propname, NULL, 5822 vd->vdev_stat.vs_read_errors, 5823 ZPROP_SRC_NONE); 5824 continue; 5825 case VDEV_PROP_WRITE_ERRORS: 5826 vdev_prop_add_list(outnvl, propname, NULL, 5827 vd->vdev_stat.vs_write_errors, 5828 ZPROP_SRC_NONE); 5829 continue; 5830 case VDEV_PROP_CHECKSUM_ERRORS: 5831 vdev_prop_add_list(outnvl, propname, NULL, 5832 vd->vdev_stat.vs_checksum_errors, 5833 ZPROP_SRC_NONE); 5834 continue; 5835 case VDEV_PROP_INITIALIZE_ERRORS: 5836 vdev_prop_add_list(outnvl, propname, NULL, 5837 vd->vdev_stat.vs_initialize_errors, 5838 ZPROP_SRC_NONE); 5839 continue; 5840 case VDEV_PROP_OPS_NULL: 5841 vdev_prop_add_list(outnvl, propname, NULL, 5842 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL], 5843 ZPROP_SRC_NONE); 5844 continue; 5845 case VDEV_PROP_OPS_READ: 5846 vdev_prop_add_list(outnvl, propname, NULL, 5847 vd->vdev_stat.vs_ops[ZIO_TYPE_READ], 5848 ZPROP_SRC_NONE); 5849 continue; 5850 case VDEV_PROP_OPS_WRITE: 5851 vdev_prop_add_list(outnvl, propname, NULL, 5852 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE], 5853 ZPROP_SRC_NONE); 5854 continue; 5855 case VDEV_PROP_OPS_FREE: 5856 vdev_prop_add_list(outnvl, propname, NULL, 5857 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE], 5858 ZPROP_SRC_NONE); 5859 continue; 5860 case VDEV_PROP_OPS_CLAIM: 5861 vdev_prop_add_list(outnvl, propname, NULL, 5862 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM], 5863 ZPROP_SRC_NONE); 5864 continue; 5865 case VDEV_PROP_OPS_TRIM: 5866 /* 5867 * TRIM ops and bytes are reported to user 5868 * space as ZIO_TYPE_IOCTL. This is done to 5869 * preserve the vdev_stat_t structure layout 5870 * for user space. 5871 */ 5872 vdev_prop_add_list(outnvl, propname, NULL, 5873 vd->vdev_stat.vs_ops[ZIO_TYPE_IOCTL], 5874 ZPROP_SRC_NONE); 5875 continue; 5876 case VDEV_PROP_BYTES_NULL: 5877 vdev_prop_add_list(outnvl, propname, NULL, 5878 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL], 5879 ZPROP_SRC_NONE); 5880 continue; 5881 case VDEV_PROP_BYTES_READ: 5882 vdev_prop_add_list(outnvl, propname, NULL, 5883 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ], 5884 ZPROP_SRC_NONE); 5885 continue; 5886 case VDEV_PROP_BYTES_WRITE: 5887 vdev_prop_add_list(outnvl, propname, NULL, 5888 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE], 5889 ZPROP_SRC_NONE); 5890 continue; 5891 case VDEV_PROP_BYTES_FREE: 5892 vdev_prop_add_list(outnvl, propname, NULL, 5893 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE], 5894 ZPROP_SRC_NONE); 5895 continue; 5896 case VDEV_PROP_BYTES_CLAIM: 5897 vdev_prop_add_list(outnvl, propname, NULL, 5898 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM], 5899 ZPROP_SRC_NONE); 5900 continue; 5901 case VDEV_PROP_BYTES_TRIM: 5902 /* 5903 * TRIM ops and bytes are reported to user 5904 * space as ZIO_TYPE_IOCTL. This is done to 5905 * preserve the vdev_stat_t structure layout 5906 * for user space. 5907 */ 5908 vdev_prop_add_list(outnvl, propname, NULL, 5909 vd->vdev_stat.vs_bytes[ZIO_TYPE_IOCTL], 5910 ZPROP_SRC_NONE); 5911 continue; 5912 case VDEV_PROP_REMOVING: 5913 vdev_prop_add_list(outnvl, propname, NULL, 5914 vd->vdev_removing, ZPROP_SRC_NONE); 5915 continue; 5916 /* Numeric Properites */ 5917 case VDEV_PROP_ALLOCATING: 5918 src = ZPROP_SRC_LOCAL; 5919 strval = NULL; 5920 5921 err = zap_lookup(mos, objid, nvpair_name(elem), 5922 sizeof (uint64_t), 1, &intval); 5923 if (err == ENOENT) { 5924 intval = 5925 vdev_prop_default_numeric(prop); 5926 err = 0; 5927 } else if (err) 5928 break; 5929 if (intval == vdev_prop_default_numeric(prop)) 5930 src = ZPROP_SRC_DEFAULT; 5931 5932 /* Leaf vdevs cannot have this property */ 5933 if (vd->vdev_mg == NULL && 5934 vd->vdev_top != NULL) { 5935 src = ZPROP_SRC_NONE; 5936 intval = ZPROP_BOOLEAN_NA; 5937 } 5938 5939 vdev_prop_add_list(outnvl, propname, strval, 5940 intval, src); 5941 break; 5942 /* Text Properties */ 5943 case VDEV_PROP_COMMENT: 5944 /* Exists in the ZAP below */ 5945 /* FALLTHRU */ 5946 case VDEV_PROP_USER: 5947 /* User Properites */ 5948 src = ZPROP_SRC_LOCAL; 5949 5950 err = zap_length(mos, objid, nvpair_name(elem), 5951 &integer_size, &num_integers); 5952 if (err) 5953 break; 5954 5955 switch (integer_size) { 5956 case 8: 5957 /* User properties cannot be integers */ 5958 err = EINVAL; 5959 break; 5960 case 1: 5961 /* string property */ 5962 strval = kmem_alloc(num_integers, 5963 KM_SLEEP); 5964 err = zap_lookup(mos, objid, 5965 nvpair_name(elem), 1, 5966 num_integers, strval); 5967 if (err) { 5968 kmem_free(strval, 5969 num_integers); 5970 break; 5971 } 5972 vdev_prop_add_list(outnvl, propname, 5973 strval, 0, src); 5974 kmem_free(strval, num_integers); 5975 break; 5976 } 5977 break; 5978 default: 5979 err = ENOENT; 5980 break; 5981 } 5982 if (err) 5983 break; 5984 } 5985 } else { 5986 /* 5987 * Get all properties from the MOS vdev property object. 5988 */ 5989 zap_cursor_t zc; 5990 zap_attribute_t za; 5991 for (zap_cursor_init(&zc, mos, objid); 5992 (err = zap_cursor_retrieve(&zc, &za)) == 0; 5993 zap_cursor_advance(&zc)) { 5994 intval = 0; 5995 strval = NULL; 5996 zprop_source_t src = ZPROP_SRC_DEFAULT; 5997 propname = za.za_name; 5998 prop = vdev_name_to_prop(propname); 5999 6000 switch (za.za_integer_length) { 6001 case 8: 6002 /* We do not allow integer user properties */ 6003 /* This is likely an internal value */ 6004 break; 6005 case 1: 6006 /* string property */ 6007 strval = kmem_alloc(za.za_num_integers, 6008 KM_SLEEP); 6009 err = zap_lookup(mos, objid, za.za_name, 1, 6010 za.za_num_integers, strval); 6011 if (err) { 6012 kmem_free(strval, za.za_num_integers); 6013 break; 6014 } 6015 vdev_prop_add_list(outnvl, propname, strval, 0, 6016 src); 6017 kmem_free(strval, za.za_num_integers); 6018 break; 6019 6020 default: 6021 break; 6022 } 6023 } 6024 zap_cursor_fini(&zc); 6025 } 6026 6027 mutex_exit(&spa->spa_props_lock); 6028 if (err && err != ENOENT) { 6029 return (err); 6030 } 6031 6032 return (0); 6033 } 6034 6035 EXPORT_SYMBOL(vdev_fault); 6036 EXPORT_SYMBOL(vdev_degrade); 6037 EXPORT_SYMBOL(vdev_online); 6038 EXPORT_SYMBOL(vdev_offline); 6039 EXPORT_SYMBOL(vdev_clear); 6040 6041 /* BEGIN CSTYLED */ 6042 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, INT, ZMOD_RW, 6043 "Target number of metaslabs per top-level vdev"); 6044 6045 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, INT, ZMOD_RW, 6046 "Default limit for metaslab size"); 6047 6048 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, INT, ZMOD_RW, 6049 "Minimum number of metaslabs per top-level vdev"); 6050 6051 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, INT, ZMOD_RW, 6052 "Practical upper limit of total metaslabs per top-level vdev"); 6053 6054 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW, 6055 "Rate limit slow IO (delay) events to this many per second"); 6056 6057 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW, 6058 "Rate limit checksum events to this many checksum errors per second " 6059 "(do not set below zed threshold)."); 6060 6061 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW, 6062 "Ignore errors during resilver/scrub"); 6063 6064 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW, 6065 "Bypass vdev_validate()"); 6066 6067 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW, 6068 "Disable cache flushes"); 6069 6070 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, INT, ZMOD_RW, 6071 "Minimum number of metaslabs required to dedicate one for log blocks"); 6072 6073 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift, 6074 param_set_min_auto_ashift, param_get_ulong, ZMOD_RW, 6075 "Minimum ashift used when creating new top-level vdevs"); 6076 6077 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift, 6078 param_set_max_auto_ashift, param_get_ulong, ZMOD_RW, 6079 "Maximum ashift used when optimizing for logical -> physical sector " 6080 "size on new top-level vdevs"); 6081 /* END CSTYLED */ 6082