xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev.c (revision 76cc4c20473495c839c4df9cfe0bf46632738f03)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  * Copyright 2017 Joyent, Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  * Copyright (c) 2019, Datto Inc. All rights reserved.
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa.h>
36 #include <sys/spa_impl.h>
37 #include <sys/bpobj.h>
38 #include <sys/dmu.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/vdev_rebuild.h>
43 #include <sys/uberblock_impl.h>
44 #include <sys/metaslab.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/space_map.h>
47 #include <sys/space_reftree.h>
48 #include <sys/zio.h>
49 #include <sys/zap.h>
50 #include <sys/fs/zfs.h>
51 #include <sys/arc.h>
52 #include <sys/zil.h>
53 #include <sys/dsl_scan.h>
54 #include <sys/abd.h>
55 #include <sys/vdev_initialize.h>
56 #include <sys/vdev_trim.h>
57 #include <sys/zvol.h>
58 #include <sys/zfs_ratelimit.h>
59 
60 /* default target for number of metaslabs per top-level vdev */
61 int zfs_vdev_default_ms_count = 200;
62 
63 /* minimum number of metaslabs per top-level vdev */
64 int zfs_vdev_min_ms_count = 16;
65 
66 /* practical upper limit of total metaslabs per top-level vdev */
67 int zfs_vdev_ms_count_limit = 1ULL << 17;
68 
69 /* lower limit for metaslab size (512M) */
70 int zfs_vdev_default_ms_shift = 29;
71 
72 /* upper limit for metaslab size (16G) */
73 int zfs_vdev_max_ms_shift = 34;
74 
75 int vdev_validate_skip = B_FALSE;
76 
77 /*
78  * Since the DTL space map of a vdev is not expected to have a lot of
79  * entries, we default its block size to 4K.
80  */
81 int zfs_vdev_dtl_sm_blksz = (1 << 12);
82 
83 /*
84  * Rate limit slow IO (delay) events to this many per second.
85  */
86 unsigned int zfs_slow_io_events_per_second = 20;
87 
88 /*
89  * Rate limit checksum events after this many checksum errors per second.
90  */
91 unsigned int zfs_checksum_events_per_second = 20;
92 
93 /*
94  * Ignore errors during scrub/resilver.  Allows to work around resilver
95  * upon import when there are pool errors.
96  */
97 int zfs_scan_ignore_errors = 0;
98 
99 /*
100  * vdev-wide space maps that have lots of entries written to them at
101  * the end of each transaction can benefit from a higher I/O bandwidth
102  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
103  */
104 int zfs_vdev_standard_sm_blksz = (1 << 17);
105 
106 /*
107  * Tunable parameter for debugging or performance analysis. Setting this
108  * will cause pool corruption on power loss if a volatile out-of-order
109  * write cache is enabled.
110  */
111 int zfs_nocacheflush = 0;
112 
113 uint64_t zfs_vdev_max_auto_ashift = ASHIFT_MAX;
114 uint64_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
115 
116 /*PRINTFLIKE2*/
117 void
118 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
119 {
120 	va_list adx;
121 	char buf[256];
122 
123 	va_start(adx, fmt);
124 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
125 	va_end(adx);
126 
127 	if (vd->vdev_path != NULL) {
128 		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
129 		    vd->vdev_path, buf);
130 	} else {
131 		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
132 		    vd->vdev_ops->vdev_op_type,
133 		    (u_longlong_t)vd->vdev_id,
134 		    (u_longlong_t)vd->vdev_guid, buf);
135 	}
136 }
137 
138 void
139 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
140 {
141 	char state[20];
142 
143 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
144 		zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
145 		    vd->vdev_ops->vdev_op_type);
146 		return;
147 	}
148 
149 	switch (vd->vdev_state) {
150 	case VDEV_STATE_UNKNOWN:
151 		(void) snprintf(state, sizeof (state), "unknown");
152 		break;
153 	case VDEV_STATE_CLOSED:
154 		(void) snprintf(state, sizeof (state), "closed");
155 		break;
156 	case VDEV_STATE_OFFLINE:
157 		(void) snprintf(state, sizeof (state), "offline");
158 		break;
159 	case VDEV_STATE_REMOVED:
160 		(void) snprintf(state, sizeof (state), "removed");
161 		break;
162 	case VDEV_STATE_CANT_OPEN:
163 		(void) snprintf(state, sizeof (state), "can't open");
164 		break;
165 	case VDEV_STATE_FAULTED:
166 		(void) snprintf(state, sizeof (state), "faulted");
167 		break;
168 	case VDEV_STATE_DEGRADED:
169 		(void) snprintf(state, sizeof (state), "degraded");
170 		break;
171 	case VDEV_STATE_HEALTHY:
172 		(void) snprintf(state, sizeof (state), "healthy");
173 		break;
174 	default:
175 		(void) snprintf(state, sizeof (state), "<state %u>",
176 		    (uint_t)vd->vdev_state);
177 	}
178 
179 	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
180 	    "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
181 	    vd->vdev_islog ? " (log)" : "",
182 	    (u_longlong_t)vd->vdev_guid,
183 	    vd->vdev_path ? vd->vdev_path : "N/A", state);
184 
185 	for (uint64_t i = 0; i < vd->vdev_children; i++)
186 		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
187 }
188 
189 /*
190  * Virtual device management.
191  */
192 
193 static vdev_ops_t *vdev_ops_table[] = {
194 	&vdev_root_ops,
195 	&vdev_raidz_ops,
196 	&vdev_mirror_ops,
197 	&vdev_replacing_ops,
198 	&vdev_spare_ops,
199 	&vdev_disk_ops,
200 	&vdev_file_ops,
201 	&vdev_missing_ops,
202 	&vdev_hole_ops,
203 	&vdev_indirect_ops,
204 	NULL
205 };
206 
207 /*
208  * Given a vdev type, return the appropriate ops vector.
209  */
210 static vdev_ops_t *
211 vdev_getops(const char *type)
212 {
213 	vdev_ops_t *ops, **opspp;
214 
215 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
216 		if (strcmp(ops->vdev_op_type, type) == 0)
217 			break;
218 
219 	return (ops);
220 }
221 
222 /* ARGSUSED */
223 void
224 vdev_default_xlate(vdev_t *vd, const range_seg64_t *in, range_seg64_t *res)
225 {
226 	res->rs_start = in->rs_start;
227 	res->rs_end = in->rs_end;
228 }
229 
230 /*
231  * Derive the enumerated allocation bias from string input.
232  * String origin is either the per-vdev zap or zpool(1M).
233  */
234 static vdev_alloc_bias_t
235 vdev_derive_alloc_bias(const char *bias)
236 {
237 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
238 
239 	if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
240 		alloc_bias = VDEV_BIAS_LOG;
241 	else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
242 		alloc_bias = VDEV_BIAS_SPECIAL;
243 	else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
244 		alloc_bias = VDEV_BIAS_DEDUP;
245 
246 	return (alloc_bias);
247 }
248 
249 /*
250  * Default asize function: return the MAX of psize with the asize of
251  * all children.  This is what's used by anything other than RAID-Z.
252  */
253 uint64_t
254 vdev_default_asize(vdev_t *vd, uint64_t psize)
255 {
256 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
257 	uint64_t csize;
258 
259 	for (int c = 0; c < vd->vdev_children; c++) {
260 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
261 		asize = MAX(asize, csize);
262 	}
263 
264 	return (asize);
265 }
266 
267 /*
268  * Get the minimum allocatable size. We define the allocatable size as
269  * the vdev's asize rounded to the nearest metaslab. This allows us to
270  * replace or attach devices which don't have the same physical size but
271  * can still satisfy the same number of allocations.
272  */
273 uint64_t
274 vdev_get_min_asize(vdev_t *vd)
275 {
276 	vdev_t *pvd = vd->vdev_parent;
277 
278 	/*
279 	 * If our parent is NULL (inactive spare or cache) or is the root,
280 	 * just return our own asize.
281 	 */
282 	if (pvd == NULL)
283 		return (vd->vdev_asize);
284 
285 	/*
286 	 * The top-level vdev just returns the allocatable size rounded
287 	 * to the nearest metaslab.
288 	 */
289 	if (vd == vd->vdev_top)
290 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
291 
292 	/*
293 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
294 	 * so each child must provide at least 1/Nth of its asize.
295 	 */
296 	if (pvd->vdev_ops == &vdev_raidz_ops)
297 		return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
298 		    pvd->vdev_children);
299 
300 	return (pvd->vdev_min_asize);
301 }
302 
303 void
304 vdev_set_min_asize(vdev_t *vd)
305 {
306 	vd->vdev_min_asize = vdev_get_min_asize(vd);
307 
308 	for (int c = 0; c < vd->vdev_children; c++)
309 		vdev_set_min_asize(vd->vdev_child[c]);
310 }
311 
312 vdev_t *
313 vdev_lookup_top(spa_t *spa, uint64_t vdev)
314 {
315 	vdev_t *rvd = spa->spa_root_vdev;
316 
317 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
318 
319 	if (vdev < rvd->vdev_children) {
320 		ASSERT(rvd->vdev_child[vdev] != NULL);
321 		return (rvd->vdev_child[vdev]);
322 	}
323 
324 	return (NULL);
325 }
326 
327 vdev_t *
328 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
329 {
330 	vdev_t *mvd;
331 
332 	if (vd->vdev_guid == guid)
333 		return (vd);
334 
335 	for (int c = 0; c < vd->vdev_children; c++)
336 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
337 		    NULL)
338 			return (mvd);
339 
340 	return (NULL);
341 }
342 
343 static int
344 vdev_count_leaves_impl(vdev_t *vd)
345 {
346 	int n = 0;
347 
348 	if (vd->vdev_ops->vdev_op_leaf)
349 		return (1);
350 
351 	for (int c = 0; c < vd->vdev_children; c++)
352 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
353 
354 	return (n);
355 }
356 
357 int
358 vdev_count_leaves(spa_t *spa)
359 {
360 	int rc;
361 
362 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
363 	rc = vdev_count_leaves_impl(spa->spa_root_vdev);
364 	spa_config_exit(spa, SCL_VDEV, FTAG);
365 
366 	return (rc);
367 }
368 
369 void
370 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
371 {
372 	size_t oldsize, newsize;
373 	uint64_t id = cvd->vdev_id;
374 	vdev_t **newchild;
375 
376 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
377 	ASSERT(cvd->vdev_parent == NULL);
378 
379 	cvd->vdev_parent = pvd;
380 
381 	if (pvd == NULL)
382 		return;
383 
384 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
385 
386 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
387 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
388 	newsize = pvd->vdev_children * sizeof (vdev_t *);
389 
390 	newchild = kmem_alloc(newsize, KM_SLEEP);
391 	if (pvd->vdev_child != NULL) {
392 		bcopy(pvd->vdev_child, newchild, oldsize);
393 		kmem_free(pvd->vdev_child, oldsize);
394 	}
395 
396 	pvd->vdev_child = newchild;
397 	pvd->vdev_child[id] = cvd;
398 
399 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
400 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
401 
402 	/*
403 	 * Walk up all ancestors to update guid sum.
404 	 */
405 	for (; pvd != NULL; pvd = pvd->vdev_parent)
406 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
407 
408 	if (cvd->vdev_ops->vdev_op_leaf) {
409 		list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
410 		cvd->vdev_spa->spa_leaf_list_gen++;
411 	}
412 }
413 
414 void
415 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
416 {
417 	int c;
418 	uint_t id = cvd->vdev_id;
419 
420 	ASSERT(cvd->vdev_parent == pvd);
421 
422 	if (pvd == NULL)
423 		return;
424 
425 	ASSERT(id < pvd->vdev_children);
426 	ASSERT(pvd->vdev_child[id] == cvd);
427 
428 	pvd->vdev_child[id] = NULL;
429 	cvd->vdev_parent = NULL;
430 
431 	for (c = 0; c < pvd->vdev_children; c++)
432 		if (pvd->vdev_child[c])
433 			break;
434 
435 	if (c == pvd->vdev_children) {
436 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
437 		pvd->vdev_child = NULL;
438 		pvd->vdev_children = 0;
439 	}
440 
441 	if (cvd->vdev_ops->vdev_op_leaf) {
442 		spa_t *spa = cvd->vdev_spa;
443 		list_remove(&spa->spa_leaf_list, cvd);
444 		spa->spa_leaf_list_gen++;
445 	}
446 
447 	/*
448 	 * Walk up all ancestors to update guid sum.
449 	 */
450 	for (; pvd != NULL; pvd = pvd->vdev_parent)
451 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
452 }
453 
454 /*
455  * Remove any holes in the child array.
456  */
457 void
458 vdev_compact_children(vdev_t *pvd)
459 {
460 	vdev_t **newchild, *cvd;
461 	int oldc = pvd->vdev_children;
462 	int newc;
463 
464 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
465 
466 	if (oldc == 0)
467 		return;
468 
469 	for (int c = newc = 0; c < oldc; c++)
470 		if (pvd->vdev_child[c])
471 			newc++;
472 
473 	if (newc > 0) {
474 		newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
475 
476 		for (int c = newc = 0; c < oldc; c++) {
477 			if ((cvd = pvd->vdev_child[c]) != NULL) {
478 				newchild[newc] = cvd;
479 				cvd->vdev_id = newc++;
480 			}
481 		}
482 	} else {
483 		newchild = NULL;
484 	}
485 
486 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
487 	pvd->vdev_child = newchild;
488 	pvd->vdev_children = newc;
489 }
490 
491 /*
492  * Allocate and minimally initialize a vdev_t.
493  */
494 vdev_t *
495 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
496 {
497 	vdev_t *vd;
498 	vdev_indirect_config_t *vic;
499 
500 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
501 	vic = &vd->vdev_indirect_config;
502 
503 	if (spa->spa_root_vdev == NULL) {
504 		ASSERT(ops == &vdev_root_ops);
505 		spa->spa_root_vdev = vd;
506 		spa->spa_load_guid = spa_generate_guid(NULL);
507 	}
508 
509 	if (guid == 0 && ops != &vdev_hole_ops) {
510 		if (spa->spa_root_vdev == vd) {
511 			/*
512 			 * The root vdev's guid will also be the pool guid,
513 			 * which must be unique among all pools.
514 			 */
515 			guid = spa_generate_guid(NULL);
516 		} else {
517 			/*
518 			 * Any other vdev's guid must be unique within the pool.
519 			 */
520 			guid = spa_generate_guid(spa);
521 		}
522 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
523 	}
524 
525 	vd->vdev_spa = spa;
526 	vd->vdev_id = id;
527 	vd->vdev_guid = guid;
528 	vd->vdev_guid_sum = guid;
529 	vd->vdev_ops = ops;
530 	vd->vdev_state = VDEV_STATE_CLOSED;
531 	vd->vdev_ishole = (ops == &vdev_hole_ops);
532 	vic->vic_prev_indirect_vdev = UINT64_MAX;
533 
534 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
535 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
536 	vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
537 	    0, 0);
538 
539 	/*
540 	 * Initialize rate limit structs for events.  We rate limit ZIO delay
541 	 * and checksum events so that we don't overwhelm ZED with thousands
542 	 * of events when a disk is acting up.
543 	 */
544 	zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
545 	    1);
546 	zfs_ratelimit_init(&vd->vdev_checksum_rl,
547 	    &zfs_checksum_events_per_second, 1);
548 
549 	list_link_init(&vd->vdev_config_dirty_node);
550 	list_link_init(&vd->vdev_state_dirty_node);
551 	list_link_init(&vd->vdev_initialize_node);
552 	list_link_init(&vd->vdev_leaf_node);
553 	list_link_init(&vd->vdev_trim_node);
554 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
555 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
556 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
557 	mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
558 
559 	mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
560 	mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
561 	cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
562 	cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
563 
564 	mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
565 	mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
566 	mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
567 	cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
568 	cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
569 	cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
570 
571 	mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
572 	mutex_init(&vd->vdev_rebuild_io_lock, NULL, MUTEX_DEFAULT, NULL);
573 	cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
574 	cv_init(&vd->vdev_rebuild_io_cv, NULL, CV_DEFAULT, NULL);
575 
576 	for (int t = 0; t < DTL_TYPES; t++) {
577 		vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
578 		    0);
579 	}
580 
581 	txg_list_create(&vd->vdev_ms_list, spa,
582 	    offsetof(struct metaslab, ms_txg_node));
583 	txg_list_create(&vd->vdev_dtl_list, spa,
584 	    offsetof(struct vdev, vdev_dtl_node));
585 	vd->vdev_stat.vs_timestamp = gethrtime();
586 	vdev_queue_init(vd);
587 	vdev_cache_init(vd);
588 
589 	return (vd);
590 }
591 
592 /*
593  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
594  * creating a new vdev or loading an existing one - the behavior is slightly
595  * different for each case.
596  */
597 int
598 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
599     int alloctype)
600 {
601 	vdev_ops_t *ops;
602 	char *type;
603 	uint64_t guid = 0, islog, nparity;
604 	vdev_t *vd;
605 	vdev_indirect_config_t *vic;
606 	char *tmp = NULL;
607 	int rc;
608 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
609 	boolean_t top_level = (parent && !parent->vdev_parent);
610 
611 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
612 
613 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
614 		return (SET_ERROR(EINVAL));
615 
616 	if ((ops = vdev_getops(type)) == NULL)
617 		return (SET_ERROR(EINVAL));
618 
619 	/*
620 	 * If this is a load, get the vdev guid from the nvlist.
621 	 * Otherwise, vdev_alloc_common() will generate one for us.
622 	 */
623 	if (alloctype == VDEV_ALLOC_LOAD) {
624 		uint64_t label_id;
625 
626 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
627 		    label_id != id)
628 			return (SET_ERROR(EINVAL));
629 
630 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
631 			return (SET_ERROR(EINVAL));
632 	} else if (alloctype == VDEV_ALLOC_SPARE) {
633 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
634 			return (SET_ERROR(EINVAL));
635 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
636 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
637 			return (SET_ERROR(EINVAL));
638 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
639 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
640 			return (SET_ERROR(EINVAL));
641 	}
642 
643 	/*
644 	 * The first allocated vdev must be of type 'root'.
645 	 */
646 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
647 		return (SET_ERROR(EINVAL));
648 
649 	/*
650 	 * Determine whether we're a log vdev.
651 	 */
652 	islog = 0;
653 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
654 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
655 		return (SET_ERROR(ENOTSUP));
656 
657 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
658 		return (SET_ERROR(ENOTSUP));
659 
660 	/*
661 	 * Set the nparity property for RAID-Z vdevs.
662 	 */
663 	nparity = -1ULL;
664 	if (ops == &vdev_raidz_ops) {
665 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
666 		    &nparity) == 0) {
667 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
668 				return (SET_ERROR(EINVAL));
669 			/*
670 			 * Previous versions could only support 1 or 2 parity
671 			 * device.
672 			 */
673 			if (nparity > 1 &&
674 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
675 				return (SET_ERROR(ENOTSUP));
676 			if (nparity > 2 &&
677 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
678 				return (SET_ERROR(ENOTSUP));
679 		} else {
680 			/*
681 			 * We require the parity to be specified for SPAs that
682 			 * support multiple parity levels.
683 			 */
684 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
685 				return (SET_ERROR(EINVAL));
686 			/*
687 			 * Otherwise, we default to 1 parity device for RAID-Z.
688 			 */
689 			nparity = 1;
690 		}
691 	} else {
692 		nparity = 0;
693 	}
694 	ASSERT(nparity != -1ULL);
695 
696 	/*
697 	 * If creating a top-level vdev, check for allocation classes input
698 	 */
699 	if (top_level && alloctype == VDEV_ALLOC_ADD) {
700 		char *bias;
701 
702 		if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
703 		    &bias) == 0) {
704 			alloc_bias = vdev_derive_alloc_bias(bias);
705 
706 			/* spa_vdev_add() expects feature to be enabled */
707 			if (spa->spa_load_state != SPA_LOAD_CREATE &&
708 			    !spa_feature_is_enabled(spa,
709 			    SPA_FEATURE_ALLOCATION_CLASSES)) {
710 				return (SET_ERROR(ENOTSUP));
711 			}
712 		}
713 	}
714 
715 	vd = vdev_alloc_common(spa, id, guid, ops);
716 	vic = &vd->vdev_indirect_config;
717 
718 	vd->vdev_islog = islog;
719 	vd->vdev_nparity = nparity;
720 	if (top_level && alloc_bias != VDEV_BIAS_NONE)
721 		vd->vdev_alloc_bias = alloc_bias;
722 
723 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
724 		vd->vdev_path = spa_strdup(vd->vdev_path);
725 
726 	/*
727 	 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
728 	 * fault on a vdev and want it to persist across imports (like with
729 	 * zpool offline -f).
730 	 */
731 	rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
732 	if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
733 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
734 		vd->vdev_faulted = 1;
735 		vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
736 	}
737 
738 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
739 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
740 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
741 	    &vd->vdev_physpath) == 0)
742 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
743 
744 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
745 	    &vd->vdev_enc_sysfs_path) == 0)
746 		vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
747 
748 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
749 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
750 
751 	/*
752 	 * Set the whole_disk property.  If it's not specified, leave the value
753 	 * as -1.
754 	 */
755 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
756 	    &vd->vdev_wholedisk) != 0)
757 		vd->vdev_wholedisk = -1ULL;
758 
759 	ASSERT0(vic->vic_mapping_object);
760 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
761 	    &vic->vic_mapping_object);
762 	ASSERT0(vic->vic_births_object);
763 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
764 	    &vic->vic_births_object);
765 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
766 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
767 	    &vic->vic_prev_indirect_vdev);
768 
769 	/*
770 	 * Look for the 'not present' flag.  This will only be set if the device
771 	 * was not present at the time of import.
772 	 */
773 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
774 	    &vd->vdev_not_present);
775 
776 	/*
777 	 * Get the alignment requirement.
778 	 */
779 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
780 
781 	/*
782 	 * Retrieve the vdev creation time.
783 	 */
784 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
785 	    &vd->vdev_crtxg);
786 
787 	/*
788 	 * If we're a top-level vdev, try to load the allocation parameters.
789 	 */
790 	if (top_level &&
791 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
792 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
793 		    &vd->vdev_ms_array);
794 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
795 		    &vd->vdev_ms_shift);
796 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
797 		    &vd->vdev_asize);
798 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
799 		    &vd->vdev_removing);
800 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
801 		    &vd->vdev_top_zap);
802 	} else {
803 		ASSERT0(vd->vdev_top_zap);
804 	}
805 
806 	if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
807 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
808 		    alloctype == VDEV_ALLOC_ADD ||
809 		    alloctype == VDEV_ALLOC_SPLIT ||
810 		    alloctype == VDEV_ALLOC_ROOTPOOL);
811 		/* Note: metaslab_group_create() is now deferred */
812 	}
813 
814 	if (vd->vdev_ops->vdev_op_leaf &&
815 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
816 		(void) nvlist_lookup_uint64(nv,
817 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
818 	} else {
819 		ASSERT0(vd->vdev_leaf_zap);
820 	}
821 
822 	/*
823 	 * If we're a leaf vdev, try to load the DTL object and other state.
824 	 */
825 
826 	if (vd->vdev_ops->vdev_op_leaf &&
827 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
828 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
829 		if (alloctype == VDEV_ALLOC_LOAD) {
830 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
831 			    &vd->vdev_dtl_object);
832 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
833 			    &vd->vdev_unspare);
834 		}
835 
836 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
837 			uint64_t spare = 0;
838 
839 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
840 			    &spare) == 0 && spare)
841 				spa_spare_add(vd);
842 		}
843 
844 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
845 		    &vd->vdev_offline);
846 
847 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
848 		    &vd->vdev_resilver_txg);
849 
850 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
851 		    &vd->vdev_rebuild_txg);
852 
853 		if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
854 			vdev_defer_resilver(vd);
855 
856 		/*
857 		 * In general, when importing a pool we want to ignore the
858 		 * persistent fault state, as the diagnosis made on another
859 		 * system may not be valid in the current context.  The only
860 		 * exception is if we forced a vdev to a persistently faulted
861 		 * state with 'zpool offline -f'.  The persistent fault will
862 		 * remain across imports until cleared.
863 		 *
864 		 * Local vdevs will remain in the faulted state.
865 		 */
866 		if (spa_load_state(spa) == SPA_LOAD_OPEN ||
867 		    spa_load_state(spa) == SPA_LOAD_IMPORT) {
868 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
869 			    &vd->vdev_faulted);
870 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
871 			    &vd->vdev_degraded);
872 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
873 			    &vd->vdev_removed);
874 
875 			if (vd->vdev_faulted || vd->vdev_degraded) {
876 				char *aux;
877 
878 				vd->vdev_label_aux =
879 				    VDEV_AUX_ERR_EXCEEDED;
880 				if (nvlist_lookup_string(nv,
881 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
882 				    strcmp(aux, "external") == 0)
883 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
884 				else
885 					vd->vdev_faulted = 0ULL;
886 			}
887 		}
888 	}
889 
890 	/*
891 	 * Add ourselves to the parent's list of children.
892 	 */
893 	vdev_add_child(parent, vd);
894 
895 	*vdp = vd;
896 
897 	return (0);
898 }
899 
900 void
901 vdev_free(vdev_t *vd)
902 {
903 	spa_t *spa = vd->vdev_spa;
904 
905 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
906 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
907 	ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
908 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
909 
910 	/*
911 	 * Scan queues are normally destroyed at the end of a scan. If the
912 	 * queue exists here, that implies the vdev is being removed while
913 	 * the scan is still running.
914 	 */
915 	if (vd->vdev_scan_io_queue != NULL) {
916 		mutex_enter(&vd->vdev_scan_io_queue_lock);
917 		dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
918 		vd->vdev_scan_io_queue = NULL;
919 		mutex_exit(&vd->vdev_scan_io_queue_lock);
920 	}
921 
922 	/*
923 	 * vdev_free() implies closing the vdev first.  This is simpler than
924 	 * trying to ensure complicated semantics for all callers.
925 	 */
926 	vdev_close(vd);
927 
928 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
929 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
930 
931 	/*
932 	 * Free all children.
933 	 */
934 	for (int c = 0; c < vd->vdev_children; c++)
935 		vdev_free(vd->vdev_child[c]);
936 
937 	ASSERT(vd->vdev_child == NULL);
938 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
939 
940 	/*
941 	 * Discard allocation state.
942 	 */
943 	if (vd->vdev_mg != NULL) {
944 		vdev_metaslab_fini(vd);
945 		metaslab_group_destroy(vd->vdev_mg);
946 		vd->vdev_mg = NULL;
947 	}
948 
949 	ASSERT0(vd->vdev_stat.vs_space);
950 	ASSERT0(vd->vdev_stat.vs_dspace);
951 	ASSERT0(vd->vdev_stat.vs_alloc);
952 
953 	/*
954 	 * Remove this vdev from its parent's child list.
955 	 */
956 	vdev_remove_child(vd->vdev_parent, vd);
957 
958 	ASSERT(vd->vdev_parent == NULL);
959 	ASSERT(!list_link_active(&vd->vdev_leaf_node));
960 
961 	/*
962 	 * Clean up vdev structure.
963 	 */
964 	vdev_queue_fini(vd);
965 	vdev_cache_fini(vd);
966 
967 	if (vd->vdev_path)
968 		spa_strfree(vd->vdev_path);
969 	if (vd->vdev_devid)
970 		spa_strfree(vd->vdev_devid);
971 	if (vd->vdev_physpath)
972 		spa_strfree(vd->vdev_physpath);
973 
974 	if (vd->vdev_enc_sysfs_path)
975 		spa_strfree(vd->vdev_enc_sysfs_path);
976 
977 	if (vd->vdev_fru)
978 		spa_strfree(vd->vdev_fru);
979 
980 	if (vd->vdev_isspare)
981 		spa_spare_remove(vd);
982 	if (vd->vdev_isl2cache)
983 		spa_l2cache_remove(vd);
984 
985 	txg_list_destroy(&vd->vdev_ms_list);
986 	txg_list_destroy(&vd->vdev_dtl_list);
987 
988 	mutex_enter(&vd->vdev_dtl_lock);
989 	space_map_close(vd->vdev_dtl_sm);
990 	for (int t = 0; t < DTL_TYPES; t++) {
991 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
992 		range_tree_destroy(vd->vdev_dtl[t]);
993 	}
994 	mutex_exit(&vd->vdev_dtl_lock);
995 
996 	EQUIV(vd->vdev_indirect_births != NULL,
997 	    vd->vdev_indirect_mapping != NULL);
998 	if (vd->vdev_indirect_births != NULL) {
999 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1000 		vdev_indirect_births_close(vd->vdev_indirect_births);
1001 	}
1002 
1003 	if (vd->vdev_obsolete_sm != NULL) {
1004 		ASSERT(vd->vdev_removing ||
1005 		    vd->vdev_ops == &vdev_indirect_ops);
1006 		space_map_close(vd->vdev_obsolete_sm);
1007 		vd->vdev_obsolete_sm = NULL;
1008 	}
1009 	range_tree_destroy(vd->vdev_obsolete_segments);
1010 	rw_destroy(&vd->vdev_indirect_rwlock);
1011 	mutex_destroy(&vd->vdev_obsolete_lock);
1012 
1013 	mutex_destroy(&vd->vdev_dtl_lock);
1014 	mutex_destroy(&vd->vdev_stat_lock);
1015 	mutex_destroy(&vd->vdev_probe_lock);
1016 	mutex_destroy(&vd->vdev_scan_io_queue_lock);
1017 
1018 	mutex_destroy(&vd->vdev_initialize_lock);
1019 	mutex_destroy(&vd->vdev_initialize_io_lock);
1020 	cv_destroy(&vd->vdev_initialize_io_cv);
1021 	cv_destroy(&vd->vdev_initialize_cv);
1022 
1023 	mutex_destroy(&vd->vdev_trim_lock);
1024 	mutex_destroy(&vd->vdev_autotrim_lock);
1025 	mutex_destroy(&vd->vdev_trim_io_lock);
1026 	cv_destroy(&vd->vdev_trim_cv);
1027 	cv_destroy(&vd->vdev_autotrim_cv);
1028 	cv_destroy(&vd->vdev_trim_io_cv);
1029 
1030 	mutex_destroy(&vd->vdev_rebuild_lock);
1031 	mutex_destroy(&vd->vdev_rebuild_io_lock);
1032 	cv_destroy(&vd->vdev_rebuild_cv);
1033 	cv_destroy(&vd->vdev_rebuild_io_cv);
1034 
1035 	zfs_ratelimit_fini(&vd->vdev_delay_rl);
1036 	zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1037 
1038 	if (vd == spa->spa_root_vdev)
1039 		spa->spa_root_vdev = NULL;
1040 
1041 	kmem_free(vd, sizeof (vdev_t));
1042 }
1043 
1044 /*
1045  * Transfer top-level vdev state from svd to tvd.
1046  */
1047 static void
1048 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1049 {
1050 	spa_t *spa = svd->vdev_spa;
1051 	metaslab_t *msp;
1052 	vdev_t *vd;
1053 	int t;
1054 
1055 	ASSERT(tvd == tvd->vdev_top);
1056 
1057 	tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
1058 	tvd->vdev_ms_array = svd->vdev_ms_array;
1059 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
1060 	tvd->vdev_ms_count = svd->vdev_ms_count;
1061 	tvd->vdev_top_zap = svd->vdev_top_zap;
1062 
1063 	svd->vdev_ms_array = 0;
1064 	svd->vdev_ms_shift = 0;
1065 	svd->vdev_ms_count = 0;
1066 	svd->vdev_top_zap = 0;
1067 
1068 	if (tvd->vdev_mg)
1069 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1070 	tvd->vdev_mg = svd->vdev_mg;
1071 	tvd->vdev_ms = svd->vdev_ms;
1072 
1073 	svd->vdev_mg = NULL;
1074 	svd->vdev_ms = NULL;
1075 
1076 	if (tvd->vdev_mg != NULL)
1077 		tvd->vdev_mg->mg_vd = tvd;
1078 
1079 	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1080 	svd->vdev_checkpoint_sm = NULL;
1081 
1082 	tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1083 	svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1084 
1085 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1086 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1087 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1088 
1089 	svd->vdev_stat.vs_alloc = 0;
1090 	svd->vdev_stat.vs_space = 0;
1091 	svd->vdev_stat.vs_dspace = 0;
1092 
1093 	/*
1094 	 * State which may be set on a top-level vdev that's in the
1095 	 * process of being removed.
1096 	 */
1097 	ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1098 	ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1099 	ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1100 	ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1101 	ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1102 	ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1103 	ASSERT0(tvd->vdev_removing);
1104 	ASSERT0(tvd->vdev_rebuilding);
1105 	tvd->vdev_removing = svd->vdev_removing;
1106 	tvd->vdev_rebuilding = svd->vdev_rebuilding;
1107 	tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1108 	tvd->vdev_indirect_config = svd->vdev_indirect_config;
1109 	tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1110 	tvd->vdev_indirect_births = svd->vdev_indirect_births;
1111 	range_tree_swap(&svd->vdev_obsolete_segments,
1112 	    &tvd->vdev_obsolete_segments);
1113 	tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1114 	svd->vdev_indirect_config.vic_mapping_object = 0;
1115 	svd->vdev_indirect_config.vic_births_object = 0;
1116 	svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1117 	svd->vdev_indirect_mapping = NULL;
1118 	svd->vdev_indirect_births = NULL;
1119 	svd->vdev_obsolete_sm = NULL;
1120 	svd->vdev_removing = 0;
1121 	svd->vdev_rebuilding = 0;
1122 
1123 	for (t = 0; t < TXG_SIZE; t++) {
1124 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1125 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1126 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1127 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1128 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1129 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1130 	}
1131 
1132 	if (list_link_active(&svd->vdev_config_dirty_node)) {
1133 		vdev_config_clean(svd);
1134 		vdev_config_dirty(tvd);
1135 	}
1136 
1137 	if (list_link_active(&svd->vdev_state_dirty_node)) {
1138 		vdev_state_clean(svd);
1139 		vdev_state_dirty(tvd);
1140 	}
1141 
1142 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1143 	svd->vdev_deflate_ratio = 0;
1144 
1145 	tvd->vdev_islog = svd->vdev_islog;
1146 	svd->vdev_islog = 0;
1147 
1148 	dsl_scan_io_queue_vdev_xfer(svd, tvd);
1149 }
1150 
1151 static void
1152 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1153 {
1154 	if (vd == NULL)
1155 		return;
1156 
1157 	vd->vdev_top = tvd;
1158 
1159 	for (int c = 0; c < vd->vdev_children; c++)
1160 		vdev_top_update(tvd, vd->vdev_child[c]);
1161 }
1162 
1163 /*
1164  * Add a mirror/replacing vdev above an existing vdev.
1165  */
1166 vdev_t *
1167 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1168 {
1169 	spa_t *spa = cvd->vdev_spa;
1170 	vdev_t *pvd = cvd->vdev_parent;
1171 	vdev_t *mvd;
1172 
1173 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1174 
1175 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1176 
1177 	mvd->vdev_asize = cvd->vdev_asize;
1178 	mvd->vdev_min_asize = cvd->vdev_min_asize;
1179 	mvd->vdev_max_asize = cvd->vdev_max_asize;
1180 	mvd->vdev_psize = cvd->vdev_psize;
1181 	mvd->vdev_ashift = cvd->vdev_ashift;
1182 	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1183 	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1184 	mvd->vdev_state = cvd->vdev_state;
1185 	mvd->vdev_crtxg = cvd->vdev_crtxg;
1186 
1187 	vdev_remove_child(pvd, cvd);
1188 	vdev_add_child(pvd, mvd);
1189 	cvd->vdev_id = mvd->vdev_children;
1190 	vdev_add_child(mvd, cvd);
1191 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1192 
1193 	if (mvd == mvd->vdev_top)
1194 		vdev_top_transfer(cvd, mvd);
1195 
1196 	return (mvd);
1197 }
1198 
1199 /*
1200  * Remove a 1-way mirror/replacing vdev from the tree.
1201  */
1202 void
1203 vdev_remove_parent(vdev_t *cvd)
1204 {
1205 	vdev_t *mvd = cvd->vdev_parent;
1206 	vdev_t *pvd = mvd->vdev_parent;
1207 
1208 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1209 
1210 	ASSERT(mvd->vdev_children == 1);
1211 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1212 	    mvd->vdev_ops == &vdev_replacing_ops ||
1213 	    mvd->vdev_ops == &vdev_spare_ops);
1214 	cvd->vdev_ashift = mvd->vdev_ashift;
1215 	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1216 	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1217 	vdev_remove_child(mvd, cvd);
1218 	vdev_remove_child(pvd, mvd);
1219 
1220 	/*
1221 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1222 	 * Otherwise, we could have detached an offline device, and when we
1223 	 * go to import the pool we'll think we have two top-level vdevs,
1224 	 * instead of a different version of the same top-level vdev.
1225 	 */
1226 	if (mvd->vdev_top == mvd) {
1227 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1228 		cvd->vdev_orig_guid = cvd->vdev_guid;
1229 		cvd->vdev_guid += guid_delta;
1230 		cvd->vdev_guid_sum += guid_delta;
1231 
1232 		/*
1233 		 * If pool not set for autoexpand, we need to also preserve
1234 		 * mvd's asize to prevent automatic expansion of cvd.
1235 		 * Otherwise if we are adjusting the mirror by attaching and
1236 		 * detaching children of non-uniform sizes, the mirror could
1237 		 * autoexpand, unexpectedly requiring larger devices to
1238 		 * re-establish the mirror.
1239 		 */
1240 		if (!cvd->vdev_spa->spa_autoexpand)
1241 			cvd->vdev_asize = mvd->vdev_asize;
1242 	}
1243 	cvd->vdev_id = mvd->vdev_id;
1244 	vdev_add_child(pvd, cvd);
1245 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1246 
1247 	if (cvd == cvd->vdev_top)
1248 		vdev_top_transfer(mvd, cvd);
1249 
1250 	ASSERT(mvd->vdev_children == 0);
1251 	vdev_free(mvd);
1252 }
1253 
1254 static void
1255 vdev_metaslab_group_create(vdev_t *vd)
1256 {
1257 	spa_t *spa = vd->vdev_spa;
1258 
1259 	/*
1260 	 * metaslab_group_create was delayed until allocation bias was available
1261 	 */
1262 	if (vd->vdev_mg == NULL) {
1263 		metaslab_class_t *mc;
1264 
1265 		if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1266 			vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1267 
1268 		ASSERT3U(vd->vdev_islog, ==,
1269 		    (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1270 
1271 		switch (vd->vdev_alloc_bias) {
1272 		case VDEV_BIAS_LOG:
1273 			mc = spa_log_class(spa);
1274 			break;
1275 		case VDEV_BIAS_SPECIAL:
1276 			mc = spa_special_class(spa);
1277 			break;
1278 		case VDEV_BIAS_DEDUP:
1279 			mc = spa_dedup_class(spa);
1280 			break;
1281 		default:
1282 			mc = spa_normal_class(spa);
1283 		}
1284 
1285 		vd->vdev_mg = metaslab_group_create(mc, vd,
1286 		    spa->spa_alloc_count);
1287 
1288 		/*
1289 		 * The spa ashift values currently only reflect the
1290 		 * general vdev classes. Class destination is late
1291 		 * binding so ashift checking had to wait until now
1292 		 */
1293 		if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1294 		    mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1295 			if (vd->vdev_ashift > spa->spa_max_ashift)
1296 				spa->spa_max_ashift = vd->vdev_ashift;
1297 			if (vd->vdev_ashift < spa->spa_min_ashift)
1298 				spa->spa_min_ashift = vd->vdev_ashift;
1299 		}
1300 	}
1301 }
1302 
1303 int
1304 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1305 {
1306 	spa_t *spa = vd->vdev_spa;
1307 	objset_t *mos = spa->spa_meta_objset;
1308 	uint64_t m;
1309 	uint64_t oldc = vd->vdev_ms_count;
1310 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1311 	metaslab_t **mspp;
1312 	int error;
1313 	boolean_t expanding = (oldc != 0);
1314 
1315 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1316 
1317 	/*
1318 	 * This vdev is not being allocated from yet or is a hole.
1319 	 */
1320 	if (vd->vdev_ms_shift == 0)
1321 		return (0);
1322 
1323 	ASSERT(!vd->vdev_ishole);
1324 
1325 	ASSERT(oldc <= newc);
1326 
1327 	mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1328 
1329 	if (expanding) {
1330 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1331 		vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1332 	}
1333 
1334 	vd->vdev_ms = mspp;
1335 	vd->vdev_ms_count = newc;
1336 	for (m = oldc; m < newc; m++) {
1337 		uint64_t object = 0;
1338 
1339 		/*
1340 		 * vdev_ms_array may be 0 if we are creating the "fake"
1341 		 * metaslabs for an indirect vdev for zdb's leak detection.
1342 		 * See zdb_leak_init().
1343 		 */
1344 		if (txg == 0 && vd->vdev_ms_array != 0) {
1345 			error = dmu_read(mos, vd->vdev_ms_array,
1346 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1347 			    DMU_READ_PREFETCH);
1348 			if (error != 0) {
1349 				vdev_dbgmsg(vd, "unable to read the metaslab "
1350 				    "array [error=%d]", error);
1351 				return (error);
1352 			}
1353 		}
1354 
1355 #ifndef _KERNEL
1356 		/*
1357 		 * To accommodate zdb_leak_init() fake indirect
1358 		 * metaslabs, we allocate a metaslab group for
1359 		 * indirect vdevs which normally don't have one.
1360 		 */
1361 		if (vd->vdev_mg == NULL) {
1362 			ASSERT0(vdev_is_concrete(vd));
1363 			vdev_metaslab_group_create(vd);
1364 		}
1365 #endif
1366 		error = metaslab_init(vd->vdev_mg, m, object, txg,
1367 		    &(vd->vdev_ms[m]));
1368 		if (error != 0) {
1369 			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1370 			    error);
1371 			return (error);
1372 		}
1373 	}
1374 
1375 	if (txg == 0)
1376 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1377 
1378 	/*
1379 	 * If the vdev is being removed we don't activate
1380 	 * the metaslabs since we want to ensure that no new
1381 	 * allocations are performed on this device.
1382 	 */
1383 	if (!expanding && !vd->vdev_removing) {
1384 		metaslab_group_activate(vd->vdev_mg);
1385 	}
1386 
1387 	if (txg == 0)
1388 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1389 
1390 	/*
1391 	 * Regardless whether this vdev was just added or it is being
1392 	 * expanded, the metaslab count has changed. Recalculate the
1393 	 * block limit.
1394 	 */
1395 	spa_log_sm_set_blocklimit(spa);
1396 
1397 	return (0);
1398 }
1399 
1400 void
1401 vdev_metaslab_fini(vdev_t *vd)
1402 {
1403 	if (vd->vdev_checkpoint_sm != NULL) {
1404 		ASSERT(spa_feature_is_active(vd->vdev_spa,
1405 		    SPA_FEATURE_POOL_CHECKPOINT));
1406 		space_map_close(vd->vdev_checkpoint_sm);
1407 		/*
1408 		 * Even though we close the space map, we need to set its
1409 		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1410 		 * may be called multiple times for certain operations
1411 		 * (i.e. when destroying a pool) so we need to ensure that
1412 		 * this clause never executes twice. This logic is similar
1413 		 * to the one used for the vdev_ms clause below.
1414 		 */
1415 		vd->vdev_checkpoint_sm = NULL;
1416 	}
1417 
1418 	if (vd->vdev_ms != NULL) {
1419 		metaslab_group_t *mg = vd->vdev_mg;
1420 		metaslab_group_passivate(mg);
1421 
1422 		uint64_t count = vd->vdev_ms_count;
1423 		for (uint64_t m = 0; m < count; m++) {
1424 			metaslab_t *msp = vd->vdev_ms[m];
1425 			if (msp != NULL)
1426 				metaslab_fini(msp);
1427 		}
1428 		vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1429 		vd->vdev_ms = NULL;
1430 
1431 		vd->vdev_ms_count = 0;
1432 
1433 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
1434 			ASSERT0(mg->mg_histogram[i]);
1435 	}
1436 	ASSERT0(vd->vdev_ms_count);
1437 	ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
1438 }
1439 
1440 typedef struct vdev_probe_stats {
1441 	boolean_t	vps_readable;
1442 	boolean_t	vps_writeable;
1443 	int		vps_flags;
1444 } vdev_probe_stats_t;
1445 
1446 static void
1447 vdev_probe_done(zio_t *zio)
1448 {
1449 	spa_t *spa = zio->io_spa;
1450 	vdev_t *vd = zio->io_vd;
1451 	vdev_probe_stats_t *vps = zio->io_private;
1452 
1453 	ASSERT(vd->vdev_probe_zio != NULL);
1454 
1455 	if (zio->io_type == ZIO_TYPE_READ) {
1456 		if (zio->io_error == 0)
1457 			vps->vps_readable = 1;
1458 		if (zio->io_error == 0 && spa_writeable(spa)) {
1459 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1460 			    zio->io_offset, zio->io_size, zio->io_abd,
1461 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1462 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1463 		} else {
1464 			abd_free(zio->io_abd);
1465 		}
1466 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1467 		if (zio->io_error == 0)
1468 			vps->vps_writeable = 1;
1469 		abd_free(zio->io_abd);
1470 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1471 		zio_t *pio;
1472 		zio_link_t *zl;
1473 
1474 		vd->vdev_cant_read |= !vps->vps_readable;
1475 		vd->vdev_cant_write |= !vps->vps_writeable;
1476 
1477 		if (vdev_readable(vd) &&
1478 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1479 			zio->io_error = 0;
1480 		} else {
1481 			ASSERT(zio->io_error != 0);
1482 			vdev_dbgmsg(vd, "failed probe");
1483 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1484 			    spa, vd, NULL, NULL, 0, 0);
1485 			zio->io_error = SET_ERROR(ENXIO);
1486 		}
1487 
1488 		mutex_enter(&vd->vdev_probe_lock);
1489 		ASSERT(vd->vdev_probe_zio == zio);
1490 		vd->vdev_probe_zio = NULL;
1491 		mutex_exit(&vd->vdev_probe_lock);
1492 
1493 		zl = NULL;
1494 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1495 			if (!vdev_accessible(vd, pio))
1496 				pio->io_error = SET_ERROR(ENXIO);
1497 
1498 		kmem_free(vps, sizeof (*vps));
1499 	}
1500 }
1501 
1502 /*
1503  * Determine whether this device is accessible.
1504  *
1505  * Read and write to several known locations: the pad regions of each
1506  * vdev label but the first, which we leave alone in case it contains
1507  * a VTOC.
1508  */
1509 zio_t *
1510 vdev_probe(vdev_t *vd, zio_t *zio)
1511 {
1512 	spa_t *spa = vd->vdev_spa;
1513 	vdev_probe_stats_t *vps = NULL;
1514 	zio_t *pio;
1515 
1516 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1517 
1518 	/*
1519 	 * Don't probe the probe.
1520 	 */
1521 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1522 		return (NULL);
1523 
1524 	/*
1525 	 * To prevent 'probe storms' when a device fails, we create
1526 	 * just one probe i/o at a time.  All zios that want to probe
1527 	 * this vdev will become parents of the probe io.
1528 	 */
1529 	mutex_enter(&vd->vdev_probe_lock);
1530 
1531 	if ((pio = vd->vdev_probe_zio) == NULL) {
1532 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1533 
1534 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1535 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1536 		    ZIO_FLAG_TRYHARD;
1537 
1538 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1539 			/*
1540 			 * vdev_cant_read and vdev_cant_write can only
1541 			 * transition from TRUE to FALSE when we have the
1542 			 * SCL_ZIO lock as writer; otherwise they can only
1543 			 * transition from FALSE to TRUE.  This ensures that
1544 			 * any zio looking at these values can assume that
1545 			 * failures persist for the life of the I/O.  That's
1546 			 * important because when a device has intermittent
1547 			 * connectivity problems, we want to ensure that
1548 			 * they're ascribed to the device (ENXIO) and not
1549 			 * the zio (EIO).
1550 			 *
1551 			 * Since we hold SCL_ZIO as writer here, clear both
1552 			 * values so the probe can reevaluate from first
1553 			 * principles.
1554 			 */
1555 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1556 			vd->vdev_cant_read = B_FALSE;
1557 			vd->vdev_cant_write = B_FALSE;
1558 		}
1559 
1560 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1561 		    vdev_probe_done, vps,
1562 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1563 
1564 		/*
1565 		 * We can't change the vdev state in this context, so we
1566 		 * kick off an async task to do it on our behalf.
1567 		 */
1568 		if (zio != NULL) {
1569 			vd->vdev_probe_wanted = B_TRUE;
1570 			spa_async_request(spa, SPA_ASYNC_PROBE);
1571 		}
1572 	}
1573 
1574 	if (zio != NULL)
1575 		zio_add_child(zio, pio);
1576 
1577 	mutex_exit(&vd->vdev_probe_lock);
1578 
1579 	if (vps == NULL) {
1580 		ASSERT(zio != NULL);
1581 		return (NULL);
1582 	}
1583 
1584 	for (int l = 1; l < VDEV_LABELS; l++) {
1585 		zio_nowait(zio_read_phys(pio, vd,
1586 		    vdev_label_offset(vd->vdev_psize, l,
1587 		    offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1588 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1589 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1590 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1591 	}
1592 
1593 	if (zio == NULL)
1594 		return (pio);
1595 
1596 	zio_nowait(pio);
1597 	return (NULL);
1598 }
1599 
1600 static void
1601 vdev_open_child(void *arg)
1602 {
1603 	vdev_t *vd = arg;
1604 
1605 	vd->vdev_open_thread = curthread;
1606 	vd->vdev_open_error = vdev_open(vd);
1607 	vd->vdev_open_thread = NULL;
1608 }
1609 
1610 static boolean_t
1611 vdev_uses_zvols(vdev_t *vd)
1612 {
1613 #ifdef _KERNEL
1614 	if (zvol_is_zvol(vd->vdev_path))
1615 		return (B_TRUE);
1616 #endif
1617 
1618 	for (int c = 0; c < vd->vdev_children; c++)
1619 		if (vdev_uses_zvols(vd->vdev_child[c]))
1620 			return (B_TRUE);
1621 
1622 	return (B_FALSE);
1623 }
1624 
1625 void
1626 vdev_open_children(vdev_t *vd)
1627 {
1628 	taskq_t *tq;
1629 	int children = vd->vdev_children;
1630 
1631 	/*
1632 	 * in order to handle pools on top of zvols, do the opens
1633 	 * in a single thread so that the same thread holds the
1634 	 * spa_namespace_lock
1635 	 */
1636 	if (vdev_uses_zvols(vd)) {
1637 retry_sync:
1638 		for (int c = 0; c < children; c++)
1639 			vd->vdev_child[c]->vdev_open_error =
1640 			    vdev_open(vd->vdev_child[c]);
1641 	} else {
1642 		tq = taskq_create("vdev_open", children, minclsyspri,
1643 		    children, children, TASKQ_PREPOPULATE);
1644 		if (tq == NULL)
1645 			goto retry_sync;
1646 
1647 		for (int c = 0; c < children; c++)
1648 			VERIFY(taskq_dispatch(tq, vdev_open_child,
1649 			    vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
1650 
1651 		taskq_destroy(tq);
1652 	}
1653 
1654 	vd->vdev_nonrot = B_TRUE;
1655 
1656 	for (int c = 0; c < children; c++)
1657 		vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1658 }
1659 
1660 /*
1661  * Compute the raidz-deflation ratio.  Note, we hard-code
1662  * in 128k (1 << 17) because it is the "typical" blocksize.
1663  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1664  * otherwise it would inconsistently account for existing bp's.
1665  */
1666 static void
1667 vdev_set_deflate_ratio(vdev_t *vd)
1668 {
1669 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1670 		vd->vdev_deflate_ratio = (1 << 17) /
1671 		    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1672 	}
1673 }
1674 
1675 /*
1676  * Prepare a virtual device for access.
1677  */
1678 int
1679 vdev_open(vdev_t *vd)
1680 {
1681 	spa_t *spa = vd->vdev_spa;
1682 	int error;
1683 	uint64_t osize = 0;
1684 	uint64_t max_osize = 0;
1685 	uint64_t asize, max_asize, psize;
1686 	uint64_t logical_ashift = 0;
1687 	uint64_t physical_ashift = 0;
1688 
1689 	ASSERT(vd->vdev_open_thread == curthread ||
1690 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1691 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1692 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1693 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1694 
1695 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1696 	vd->vdev_cant_read = B_FALSE;
1697 	vd->vdev_cant_write = B_FALSE;
1698 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1699 
1700 	/*
1701 	 * If this vdev is not removed, check its fault status.  If it's
1702 	 * faulted, bail out of the open.
1703 	 */
1704 	if (!vd->vdev_removed && vd->vdev_faulted) {
1705 		ASSERT(vd->vdev_children == 0);
1706 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1707 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1708 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1709 		    vd->vdev_label_aux);
1710 		return (SET_ERROR(ENXIO));
1711 	} else if (vd->vdev_offline) {
1712 		ASSERT(vd->vdev_children == 0);
1713 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1714 		return (SET_ERROR(ENXIO));
1715 	}
1716 
1717 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1718 	    &logical_ashift, &physical_ashift);
1719 	/*
1720 	 * Physical volume size should never be larger than its max size, unless
1721 	 * the disk has shrunk while we were reading it or the device is buggy
1722 	 * or damaged: either way it's not safe for use, bail out of the open.
1723 	 */
1724 	if (osize > max_osize) {
1725 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1726 		    VDEV_AUX_OPEN_FAILED);
1727 		return (SET_ERROR(ENXIO));
1728 	}
1729 
1730 	/*
1731 	 * Reset the vdev_reopening flag so that we actually close
1732 	 * the vdev on error.
1733 	 */
1734 	vd->vdev_reopening = B_FALSE;
1735 	if (zio_injection_enabled && error == 0)
1736 		error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
1737 
1738 	if (error) {
1739 		if (vd->vdev_removed &&
1740 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1741 			vd->vdev_removed = B_FALSE;
1742 
1743 		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1744 			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1745 			    vd->vdev_stat.vs_aux);
1746 		} else {
1747 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1748 			    vd->vdev_stat.vs_aux);
1749 		}
1750 		return (error);
1751 	}
1752 
1753 	vd->vdev_removed = B_FALSE;
1754 
1755 	/*
1756 	 * Recheck the faulted flag now that we have confirmed that
1757 	 * the vdev is accessible.  If we're faulted, bail.
1758 	 */
1759 	if (vd->vdev_faulted) {
1760 		ASSERT(vd->vdev_children == 0);
1761 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1762 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1763 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1764 		    vd->vdev_label_aux);
1765 		return (SET_ERROR(ENXIO));
1766 	}
1767 
1768 	if (vd->vdev_degraded) {
1769 		ASSERT(vd->vdev_children == 0);
1770 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1771 		    VDEV_AUX_ERR_EXCEEDED);
1772 	} else {
1773 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1774 	}
1775 
1776 	/*
1777 	 * For hole or missing vdevs we just return success.
1778 	 */
1779 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1780 		return (0);
1781 
1782 	for (int c = 0; c < vd->vdev_children; c++) {
1783 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1784 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1785 			    VDEV_AUX_NONE);
1786 			break;
1787 		}
1788 	}
1789 
1790 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1791 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1792 
1793 	if (vd->vdev_children == 0) {
1794 		if (osize < SPA_MINDEVSIZE) {
1795 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1796 			    VDEV_AUX_TOO_SMALL);
1797 			return (SET_ERROR(EOVERFLOW));
1798 		}
1799 		psize = osize;
1800 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1801 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1802 		    VDEV_LABEL_END_SIZE);
1803 	} else {
1804 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1805 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1806 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1807 			    VDEV_AUX_TOO_SMALL);
1808 			return (SET_ERROR(EOVERFLOW));
1809 		}
1810 		psize = 0;
1811 		asize = osize;
1812 		max_asize = max_osize;
1813 	}
1814 
1815 	/*
1816 	 * If the vdev was expanded, record this so that we can re-create the
1817 	 * uberblock rings in labels {2,3}, during the next sync.
1818 	 */
1819 	if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
1820 		vd->vdev_copy_uberblocks = B_TRUE;
1821 
1822 	vd->vdev_psize = psize;
1823 
1824 	/*
1825 	 * Make sure the allocatable size hasn't shrunk too much.
1826 	 */
1827 	if (asize < vd->vdev_min_asize) {
1828 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1829 		    VDEV_AUX_BAD_LABEL);
1830 		return (SET_ERROR(EINVAL));
1831 	}
1832 
1833 	vd->vdev_physical_ashift =
1834 	    MAX(physical_ashift, vd->vdev_physical_ashift);
1835 	vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1836 	vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1837 
1838 	if (vd->vdev_logical_ashift > ASHIFT_MAX) {
1839 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1840 		    VDEV_AUX_ASHIFT_TOO_BIG);
1841 		return (SET_ERROR(EDOM));
1842 	}
1843 
1844 	if (vd->vdev_asize == 0) {
1845 		/*
1846 		 * This is the first-ever open, so use the computed values.
1847 		 * For compatibility, a different ashift can be requested.
1848 		 */
1849 		vd->vdev_asize = asize;
1850 		vd->vdev_max_asize = max_asize;
1851 		if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
1852 		    vd->vdev_ashift > ASHIFT_MAX)) {
1853 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1854 			    VDEV_AUX_BAD_ASHIFT);
1855 			return (SET_ERROR(EDOM));
1856 		}
1857 	} else {
1858 		/*
1859 		 * Make sure the alignment required hasn't increased.
1860 		 */
1861 		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1862 		    vd->vdev_ops->vdev_op_leaf) {
1863 			zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1864 			    spa, vd, NULL, NULL, 0, 0);
1865 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1866 			    VDEV_AUX_BAD_LABEL);
1867 			return (SET_ERROR(EDOM));
1868 
1869 		}
1870 		vd->vdev_max_asize = max_asize;
1871 	}
1872 
1873 	/*
1874 	 * If all children are healthy we update asize if either:
1875 	 * The asize has increased, due to a device expansion caused by dynamic
1876 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
1877 	 * making the additional space available.
1878 	 *
1879 	 * The asize has decreased, due to a device shrink usually caused by a
1880 	 * vdev replace with a smaller device. This ensures that calculations
1881 	 * based of max_asize and asize e.g. esize are always valid. It's safe
1882 	 * to do this as we've already validated that asize is greater than
1883 	 * vdev_min_asize.
1884 	 */
1885 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1886 	    ((asize > vd->vdev_asize &&
1887 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
1888 	    (asize < vd->vdev_asize)))
1889 		vd->vdev_asize = asize;
1890 
1891 	vdev_set_min_asize(vd);
1892 
1893 	/*
1894 	 * Ensure we can issue some IO before declaring the
1895 	 * vdev open for business.
1896 	 */
1897 	if (vd->vdev_ops->vdev_op_leaf &&
1898 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1899 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1900 		    VDEV_AUX_ERR_EXCEEDED);
1901 		return (error);
1902 	}
1903 
1904 	/*
1905 	 * Track the min and max ashift values for normal data devices.
1906 	 */
1907 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1908 	    vd->vdev_alloc_bias == VDEV_BIAS_NONE &&
1909 	    vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
1910 		if (vd->vdev_ashift > spa->spa_max_ashift)
1911 			spa->spa_max_ashift = vd->vdev_ashift;
1912 		if (vd->vdev_ashift < spa->spa_min_ashift)
1913 			spa->spa_min_ashift = vd->vdev_ashift;
1914 	}
1915 
1916 	/*
1917 	 * If this is a leaf vdev, assess whether a resilver is needed.
1918 	 * But don't do this if we are doing a reopen for a scrub, since
1919 	 * this would just restart the scrub we are already doing.
1920 	 */
1921 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
1922 		dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
1923 
1924 	return (0);
1925 }
1926 
1927 /*
1928  * Called once the vdevs are all opened, this routine validates the label
1929  * contents. This needs to be done before vdev_load() so that we don't
1930  * inadvertently do repair I/Os to the wrong device.
1931  *
1932  * This function will only return failure if one of the vdevs indicates that it
1933  * has since been destroyed or exported.  This is only possible if
1934  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1935  * will be updated but the function will return 0.
1936  */
1937 int
1938 vdev_validate(vdev_t *vd)
1939 {
1940 	spa_t *spa = vd->vdev_spa;
1941 	nvlist_t *label;
1942 	uint64_t guid = 0, aux_guid = 0, top_guid;
1943 	uint64_t state;
1944 	nvlist_t *nvl;
1945 	uint64_t txg;
1946 
1947 	if (vdev_validate_skip)
1948 		return (0);
1949 
1950 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1951 		if (vdev_validate(vd->vdev_child[c]) != 0)
1952 			return (SET_ERROR(EBADF));
1953 
1954 	/*
1955 	 * If the device has already failed, or was marked offline, don't do
1956 	 * any further validation.  Otherwise, label I/O will fail and we will
1957 	 * overwrite the previous state.
1958 	 */
1959 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1960 		return (0);
1961 
1962 	/*
1963 	 * If we are performing an extreme rewind, we allow for a label that
1964 	 * was modified at a point after the current txg.
1965 	 * If config lock is not held do not check for the txg. spa_sync could
1966 	 * be updating the vdev's label before updating spa_last_synced_txg.
1967 	 */
1968 	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
1969 	    spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
1970 		txg = UINT64_MAX;
1971 	else
1972 		txg = spa_last_synced_txg(spa);
1973 
1974 	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1975 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1976 		    VDEV_AUX_BAD_LABEL);
1977 		vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
1978 		    "txg %llu", (u_longlong_t)txg);
1979 		return (0);
1980 	}
1981 
1982 	/*
1983 	 * Determine if this vdev has been split off into another
1984 	 * pool.  If so, then refuse to open it.
1985 	 */
1986 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1987 	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1988 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1989 		    VDEV_AUX_SPLIT_POOL);
1990 		nvlist_free(label);
1991 		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1992 		return (0);
1993 	}
1994 
1995 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1996 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1997 		    VDEV_AUX_CORRUPT_DATA);
1998 		nvlist_free(label);
1999 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2000 		    ZPOOL_CONFIG_POOL_GUID);
2001 		return (0);
2002 	}
2003 
2004 	/*
2005 	 * If config is not trusted then ignore the spa guid check. This is
2006 	 * necessary because if the machine crashed during a re-guid the new
2007 	 * guid might have been written to all of the vdev labels, but not the
2008 	 * cached config. The check will be performed again once we have the
2009 	 * trusted config from the MOS.
2010 	 */
2011 	if (spa->spa_trust_config && guid != spa_guid(spa)) {
2012 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2013 		    VDEV_AUX_CORRUPT_DATA);
2014 		nvlist_free(label);
2015 		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2016 		    "match config (%llu != %llu)", (u_longlong_t)guid,
2017 		    (u_longlong_t)spa_guid(spa));
2018 		return (0);
2019 	}
2020 
2021 	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2022 	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2023 	    &aux_guid) != 0)
2024 		aux_guid = 0;
2025 
2026 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2027 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2028 		    VDEV_AUX_CORRUPT_DATA);
2029 		nvlist_free(label);
2030 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2031 		    ZPOOL_CONFIG_GUID);
2032 		return (0);
2033 	}
2034 
2035 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2036 	    != 0) {
2037 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2038 		    VDEV_AUX_CORRUPT_DATA);
2039 		nvlist_free(label);
2040 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2041 		    ZPOOL_CONFIG_TOP_GUID);
2042 		return (0);
2043 	}
2044 
2045 	/*
2046 	 * If this vdev just became a top-level vdev because its sibling was
2047 	 * detached, it will have adopted the parent's vdev guid -- but the
2048 	 * label may or may not be on disk yet. Fortunately, either version
2049 	 * of the label will have the same top guid, so if we're a top-level
2050 	 * vdev, we can safely compare to that instead.
2051 	 * However, if the config comes from a cachefile that failed to update
2052 	 * after the detach, a top-level vdev will appear as a non top-level
2053 	 * vdev in the config. Also relax the constraints if we perform an
2054 	 * extreme rewind.
2055 	 *
2056 	 * If we split this vdev off instead, then we also check the
2057 	 * original pool's guid. We don't want to consider the vdev
2058 	 * corrupt if it is partway through a split operation.
2059 	 */
2060 	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2061 		boolean_t mismatch = B_FALSE;
2062 		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2063 			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2064 				mismatch = B_TRUE;
2065 		} else {
2066 			if (vd->vdev_guid != top_guid &&
2067 			    vd->vdev_top->vdev_guid != guid)
2068 				mismatch = B_TRUE;
2069 		}
2070 
2071 		if (mismatch) {
2072 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2073 			    VDEV_AUX_CORRUPT_DATA);
2074 			nvlist_free(label);
2075 			vdev_dbgmsg(vd, "vdev_validate: config guid "
2076 			    "doesn't match label guid");
2077 			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2078 			    (u_longlong_t)vd->vdev_guid,
2079 			    (u_longlong_t)vd->vdev_top->vdev_guid);
2080 			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2081 			    "aux_guid %llu", (u_longlong_t)guid,
2082 			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2083 			return (0);
2084 		}
2085 	}
2086 
2087 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2088 	    &state) != 0) {
2089 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2090 		    VDEV_AUX_CORRUPT_DATA);
2091 		nvlist_free(label);
2092 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2093 		    ZPOOL_CONFIG_POOL_STATE);
2094 		return (0);
2095 	}
2096 
2097 	nvlist_free(label);
2098 
2099 	/*
2100 	 * If this is a verbatim import, no need to check the
2101 	 * state of the pool.
2102 	 */
2103 	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2104 	    spa_load_state(spa) == SPA_LOAD_OPEN &&
2105 	    state != POOL_STATE_ACTIVE) {
2106 		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2107 		    "for spa %s", (u_longlong_t)state, spa->spa_name);
2108 		return (SET_ERROR(EBADF));
2109 	}
2110 
2111 	/*
2112 	 * If we were able to open and validate a vdev that was
2113 	 * previously marked permanently unavailable, clear that state
2114 	 * now.
2115 	 */
2116 	if (vd->vdev_not_present)
2117 		vd->vdev_not_present = 0;
2118 
2119 	return (0);
2120 }
2121 
2122 static void
2123 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2124 {
2125 	if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
2126 		if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
2127 			zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2128 			    "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2129 			    dvd->vdev_path, svd->vdev_path);
2130 			spa_strfree(dvd->vdev_path);
2131 			dvd->vdev_path = spa_strdup(svd->vdev_path);
2132 		}
2133 	} else if (svd->vdev_path != NULL) {
2134 		dvd->vdev_path = spa_strdup(svd->vdev_path);
2135 		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2136 		    (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
2137 	}
2138 }
2139 
2140 /*
2141  * Recursively copy vdev paths from one vdev to another. Source and destination
2142  * vdev trees must have same geometry otherwise return error. Intended to copy
2143  * paths from userland config into MOS config.
2144  */
2145 int
2146 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2147 {
2148 	if ((svd->vdev_ops == &vdev_missing_ops) ||
2149 	    (svd->vdev_ishole && dvd->vdev_ishole) ||
2150 	    (dvd->vdev_ops == &vdev_indirect_ops))
2151 		return (0);
2152 
2153 	if (svd->vdev_ops != dvd->vdev_ops) {
2154 		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2155 		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2156 		return (SET_ERROR(EINVAL));
2157 	}
2158 
2159 	if (svd->vdev_guid != dvd->vdev_guid) {
2160 		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2161 		    "%llu)", (u_longlong_t)svd->vdev_guid,
2162 		    (u_longlong_t)dvd->vdev_guid);
2163 		return (SET_ERROR(EINVAL));
2164 	}
2165 
2166 	if (svd->vdev_children != dvd->vdev_children) {
2167 		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2168 		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
2169 		    (u_longlong_t)dvd->vdev_children);
2170 		return (SET_ERROR(EINVAL));
2171 	}
2172 
2173 	for (uint64_t i = 0; i < svd->vdev_children; i++) {
2174 		int error = vdev_copy_path_strict(svd->vdev_child[i],
2175 		    dvd->vdev_child[i]);
2176 		if (error != 0)
2177 			return (error);
2178 	}
2179 
2180 	if (svd->vdev_ops->vdev_op_leaf)
2181 		vdev_copy_path_impl(svd, dvd);
2182 
2183 	return (0);
2184 }
2185 
2186 static void
2187 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2188 {
2189 	ASSERT(stvd->vdev_top == stvd);
2190 	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2191 
2192 	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2193 		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2194 	}
2195 
2196 	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2197 		return;
2198 
2199 	/*
2200 	 * The idea here is that while a vdev can shift positions within
2201 	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2202 	 * step outside of it.
2203 	 */
2204 	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2205 
2206 	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2207 		return;
2208 
2209 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2210 
2211 	vdev_copy_path_impl(vd, dvd);
2212 }
2213 
2214 /*
2215  * Recursively copy vdev paths from one root vdev to another. Source and
2216  * destination vdev trees may differ in geometry. For each destination leaf
2217  * vdev, search a vdev with the same guid and top vdev id in the source.
2218  * Intended to copy paths from userland config into MOS config.
2219  */
2220 void
2221 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2222 {
2223 	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2224 	ASSERT(srvd->vdev_ops == &vdev_root_ops);
2225 	ASSERT(drvd->vdev_ops == &vdev_root_ops);
2226 
2227 	for (uint64_t i = 0; i < children; i++) {
2228 		vdev_copy_path_search(srvd->vdev_child[i],
2229 		    drvd->vdev_child[i]);
2230 	}
2231 }
2232 
2233 /*
2234  * Close a virtual device.
2235  */
2236 void
2237 vdev_close(vdev_t *vd)
2238 {
2239 	vdev_t *pvd = vd->vdev_parent;
2240 	spa_t *spa __maybe_unused = vd->vdev_spa;
2241 
2242 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2243 
2244 	/*
2245 	 * If our parent is reopening, then we are as well, unless we are
2246 	 * going offline.
2247 	 */
2248 	if (pvd != NULL && pvd->vdev_reopening)
2249 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2250 
2251 	vd->vdev_ops->vdev_op_close(vd);
2252 
2253 	vdev_cache_purge(vd);
2254 
2255 	/*
2256 	 * We record the previous state before we close it, so that if we are
2257 	 * doing a reopen(), we don't generate FMA ereports if we notice that
2258 	 * it's still faulted.
2259 	 */
2260 	vd->vdev_prevstate = vd->vdev_state;
2261 
2262 	if (vd->vdev_offline)
2263 		vd->vdev_state = VDEV_STATE_OFFLINE;
2264 	else
2265 		vd->vdev_state = VDEV_STATE_CLOSED;
2266 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2267 }
2268 
2269 void
2270 vdev_hold(vdev_t *vd)
2271 {
2272 	spa_t *spa = vd->vdev_spa;
2273 
2274 	ASSERT(spa_is_root(spa));
2275 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2276 		return;
2277 
2278 	for (int c = 0; c < vd->vdev_children; c++)
2279 		vdev_hold(vd->vdev_child[c]);
2280 
2281 	if (vd->vdev_ops->vdev_op_leaf)
2282 		vd->vdev_ops->vdev_op_hold(vd);
2283 }
2284 
2285 void
2286 vdev_rele(vdev_t *vd)
2287 {
2288 	ASSERT(spa_is_root(vd->vdev_spa));
2289 	for (int c = 0; c < vd->vdev_children; c++)
2290 		vdev_rele(vd->vdev_child[c]);
2291 
2292 	if (vd->vdev_ops->vdev_op_leaf)
2293 		vd->vdev_ops->vdev_op_rele(vd);
2294 }
2295 
2296 /*
2297  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2298  * reopen leaf vdevs which had previously been opened as they might deadlock
2299  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2300  * If the leaf has never been opened then open it, as usual.
2301  */
2302 void
2303 vdev_reopen(vdev_t *vd)
2304 {
2305 	spa_t *spa = vd->vdev_spa;
2306 
2307 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2308 
2309 	/* set the reopening flag unless we're taking the vdev offline */
2310 	vd->vdev_reopening = !vd->vdev_offline;
2311 	vdev_close(vd);
2312 	(void) vdev_open(vd);
2313 
2314 	/*
2315 	 * Call vdev_validate() here to make sure we have the same device.
2316 	 * Otherwise, a device with an invalid label could be successfully
2317 	 * opened in response to vdev_reopen().
2318 	 */
2319 	if (vd->vdev_aux) {
2320 		(void) vdev_validate_aux(vd);
2321 		if (vdev_readable(vd) && vdev_writeable(vd) &&
2322 		    vd->vdev_aux == &spa->spa_l2cache) {
2323 			/*
2324 			 * In case the vdev is present we should evict all ARC
2325 			 * buffers and pointers to log blocks and reclaim their
2326 			 * space before restoring its contents to L2ARC.
2327 			 */
2328 			if (l2arc_vdev_present(vd)) {
2329 				l2arc_rebuild_vdev(vd, B_TRUE);
2330 			} else {
2331 				l2arc_add_vdev(spa, vd);
2332 			}
2333 			spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2334 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2335 		}
2336 	} else {
2337 		(void) vdev_validate(vd);
2338 	}
2339 
2340 	/*
2341 	 * Reassess parent vdev's health.
2342 	 */
2343 	vdev_propagate_state(vd);
2344 }
2345 
2346 int
2347 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2348 {
2349 	int error;
2350 
2351 	/*
2352 	 * Normally, partial opens (e.g. of a mirror) are allowed.
2353 	 * For a create, however, we want to fail the request if
2354 	 * there are any components we can't open.
2355 	 */
2356 	error = vdev_open(vd);
2357 
2358 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2359 		vdev_close(vd);
2360 		return (error ? error : SET_ERROR(ENXIO));
2361 	}
2362 
2363 	/*
2364 	 * Recursively load DTLs and initialize all labels.
2365 	 */
2366 	if ((error = vdev_dtl_load(vd)) != 0 ||
2367 	    (error = vdev_label_init(vd, txg, isreplacing ?
2368 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2369 		vdev_close(vd);
2370 		return (error);
2371 	}
2372 
2373 	return (0);
2374 }
2375 
2376 void
2377 vdev_metaslab_set_size(vdev_t *vd)
2378 {
2379 	uint64_t asize = vd->vdev_asize;
2380 	uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2381 	uint64_t ms_shift;
2382 
2383 	/*
2384 	 * There are two dimensions to the metaslab sizing calculation:
2385 	 * the size of the metaslab and the count of metaslabs per vdev.
2386 	 *
2387 	 * The default values used below are a good balance between memory
2388 	 * usage (larger metaslab size means more memory needed for loaded
2389 	 * metaslabs; more metaslabs means more memory needed for the
2390 	 * metaslab_t structs), metaslab load time (larger metaslabs take
2391 	 * longer to load), and metaslab sync time (more metaslabs means
2392 	 * more time spent syncing all of them).
2393 	 *
2394 	 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2395 	 * The range of the dimensions are as follows:
2396 	 *
2397 	 *	2^29 <= ms_size  <= 2^34
2398 	 *	  16 <= ms_count <= 131,072
2399 	 *
2400 	 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2401 	 * at least 512MB (2^29) to minimize fragmentation effects when
2402 	 * testing with smaller devices.  However, the count constraint
2403 	 * of at least 16 metaslabs will override this minimum size goal.
2404 	 *
2405 	 * On the upper end of vdev sizes, we aim for a maximum metaslab
2406 	 * size of 16GB.  However, we will cap the total count to 2^17
2407 	 * metaslabs to keep our memory footprint in check and let the
2408 	 * metaslab size grow from there if that limit is hit.
2409 	 *
2410 	 * The net effect of applying above constrains is summarized below.
2411 	 *
2412 	 *   vdev size       metaslab count
2413 	 *  --------------|-----------------
2414 	 *      < 8GB        ~16
2415 	 *  8GB   - 100GB   one per 512MB
2416 	 *  100GB - 3TB     ~200
2417 	 *  3TB   - 2PB     one per 16GB
2418 	 *      > 2PB       ~131,072
2419 	 *  --------------------------------
2420 	 *
2421 	 *  Finally, note that all of the above calculate the initial
2422 	 *  number of metaslabs. Expanding a top-level vdev will result
2423 	 *  in additional metaslabs being allocated making it possible
2424 	 *  to exceed the zfs_vdev_ms_count_limit.
2425 	 */
2426 
2427 	if (ms_count < zfs_vdev_min_ms_count)
2428 		ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2429 	else if (ms_count > zfs_vdev_default_ms_count)
2430 		ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2431 	else
2432 		ms_shift = zfs_vdev_default_ms_shift;
2433 
2434 	if (ms_shift < SPA_MAXBLOCKSHIFT) {
2435 		ms_shift = SPA_MAXBLOCKSHIFT;
2436 	} else if (ms_shift > zfs_vdev_max_ms_shift) {
2437 		ms_shift = zfs_vdev_max_ms_shift;
2438 		/* cap the total count to constrain memory footprint */
2439 		if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2440 			ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2441 	}
2442 
2443 	vd->vdev_ms_shift = ms_shift;
2444 	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2445 }
2446 
2447 /*
2448  * Maximize performance by inflating the configured ashift for top level
2449  * vdevs to be as close to the physical ashift as possible while maintaining
2450  * administrator defined limits and ensuring it doesn't go below the
2451  * logical ashift.
2452  */
2453 void
2454 vdev_ashift_optimize(vdev_t *vd)
2455 {
2456 	if (vd == vd->vdev_top) {
2457 		if (vd->vdev_ashift < vd->vdev_physical_ashift) {
2458 			vd->vdev_ashift = MIN(
2459 			    MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
2460 			    MAX(zfs_vdev_min_auto_ashift,
2461 			    vd->vdev_physical_ashift));
2462 		} else {
2463 			/*
2464 			 * Unusual case where logical ashift > physical ashift
2465 			 * so we can't cap the calculated ashift based on max
2466 			 * ashift as that would cause failures.
2467 			 * We still check if we need to increase it to match
2468 			 * the min ashift.
2469 			 */
2470 			vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
2471 			    vd->vdev_ashift);
2472 		}
2473 	}
2474 }
2475 
2476 void
2477 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2478 {
2479 	ASSERT(vd == vd->vdev_top);
2480 	/* indirect vdevs don't have metaslabs or dtls */
2481 	ASSERT(vdev_is_concrete(vd) || flags == 0);
2482 	ASSERT(ISP2(flags));
2483 	ASSERT(spa_writeable(vd->vdev_spa));
2484 
2485 	if (flags & VDD_METASLAB)
2486 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2487 
2488 	if (flags & VDD_DTL)
2489 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2490 
2491 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2492 }
2493 
2494 void
2495 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2496 {
2497 	for (int c = 0; c < vd->vdev_children; c++)
2498 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2499 
2500 	if (vd->vdev_ops->vdev_op_leaf)
2501 		vdev_dirty(vd->vdev_top, flags, vd, txg);
2502 }
2503 
2504 /*
2505  * DTLs.
2506  *
2507  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2508  * the vdev has less than perfect replication.  There are four kinds of DTL:
2509  *
2510  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2511  *
2512  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2513  *
2514  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2515  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2516  *	txgs that was scrubbed.
2517  *
2518  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2519  *	persistent errors or just some device being offline.
2520  *	Unlike the other three, the DTL_OUTAGE map is not generally
2521  *	maintained; it's only computed when needed, typically to
2522  *	determine whether a device can be detached.
2523  *
2524  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2525  * either has the data or it doesn't.
2526  *
2527  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2528  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2529  * if any child is less than fully replicated, then so is its parent.
2530  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2531  * comprising only those txgs which appear in 'maxfaults' or more children;
2532  * those are the txgs we don't have enough replication to read.  For example,
2533  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2534  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2535  * two child DTL_MISSING maps.
2536  *
2537  * It should be clear from the above that to compute the DTLs and outage maps
2538  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2539  * Therefore, that is all we keep on disk.  When loading the pool, or after
2540  * a configuration change, we generate all other DTLs from first principles.
2541  */
2542 void
2543 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2544 {
2545 	range_tree_t *rt = vd->vdev_dtl[t];
2546 
2547 	ASSERT(t < DTL_TYPES);
2548 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2549 	ASSERT(spa_writeable(vd->vdev_spa));
2550 
2551 	mutex_enter(&vd->vdev_dtl_lock);
2552 	if (!range_tree_contains(rt, txg, size))
2553 		range_tree_add(rt, txg, size);
2554 	mutex_exit(&vd->vdev_dtl_lock);
2555 }
2556 
2557 boolean_t
2558 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2559 {
2560 	range_tree_t *rt = vd->vdev_dtl[t];
2561 	boolean_t dirty = B_FALSE;
2562 
2563 	ASSERT(t < DTL_TYPES);
2564 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2565 
2566 	/*
2567 	 * While we are loading the pool, the DTLs have not been loaded yet.
2568 	 * Ignore the DTLs and try all devices.  This avoids a recursive
2569 	 * mutex enter on the vdev_dtl_lock, and also makes us try hard
2570 	 * when loading the pool (relying on the checksum to ensure that
2571 	 * we get the right data -- note that we while loading, we are
2572 	 * only reading the MOS, which is always checksummed).
2573 	 */
2574 	if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2575 		return (B_FALSE);
2576 
2577 	mutex_enter(&vd->vdev_dtl_lock);
2578 	if (!range_tree_is_empty(rt))
2579 		dirty = range_tree_contains(rt, txg, size);
2580 	mutex_exit(&vd->vdev_dtl_lock);
2581 
2582 	return (dirty);
2583 }
2584 
2585 boolean_t
2586 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2587 {
2588 	range_tree_t *rt = vd->vdev_dtl[t];
2589 	boolean_t empty;
2590 
2591 	mutex_enter(&vd->vdev_dtl_lock);
2592 	empty = range_tree_is_empty(rt);
2593 	mutex_exit(&vd->vdev_dtl_lock);
2594 
2595 	return (empty);
2596 }
2597 
2598 /*
2599  * Returns B_TRUE if vdev determines offset needs to be resilvered.
2600  */
2601 boolean_t
2602 vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
2603 {
2604 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2605 
2606 	if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2607 	    vd->vdev_ops->vdev_op_leaf)
2608 		return (B_TRUE);
2609 
2610 	return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
2611 }
2612 
2613 /*
2614  * Returns the lowest txg in the DTL range.
2615  */
2616 static uint64_t
2617 vdev_dtl_min(vdev_t *vd)
2618 {
2619 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2620 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2621 	ASSERT0(vd->vdev_children);
2622 
2623 	return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
2624 }
2625 
2626 /*
2627  * Returns the highest txg in the DTL.
2628  */
2629 static uint64_t
2630 vdev_dtl_max(vdev_t *vd)
2631 {
2632 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2633 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2634 	ASSERT0(vd->vdev_children);
2635 
2636 	return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
2637 }
2638 
2639 /*
2640  * Determine if a resilvering vdev should remove any DTL entries from
2641  * its range. If the vdev was resilvering for the entire duration of the
2642  * scan then it should excise that range from its DTLs. Otherwise, this
2643  * vdev is considered partially resilvered and should leave its DTL
2644  * entries intact. The comment in vdev_dtl_reassess() describes how we
2645  * excise the DTLs.
2646  */
2647 static boolean_t
2648 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
2649 {
2650 	ASSERT0(vd->vdev_children);
2651 
2652 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
2653 		return (B_FALSE);
2654 
2655 	if (vd->vdev_resilver_deferred)
2656 		return (B_FALSE);
2657 
2658 	if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2659 		return (B_TRUE);
2660 
2661 	if (rebuild_done) {
2662 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
2663 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
2664 
2665 		/* Rebuild not initiated by attach */
2666 		if (vd->vdev_rebuild_txg == 0)
2667 			return (B_TRUE);
2668 
2669 		/*
2670 		 * When a rebuild completes without error then all missing data
2671 		 * up to the rebuild max txg has been reconstructed and the DTL
2672 		 * is eligible for excision.
2673 		 */
2674 		if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
2675 		    vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
2676 			ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
2677 			ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
2678 			ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
2679 			return (B_TRUE);
2680 		}
2681 	} else {
2682 		dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
2683 		dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
2684 
2685 		/* Resilver not initiated by attach */
2686 		if (vd->vdev_resilver_txg == 0)
2687 			return (B_TRUE);
2688 
2689 		/*
2690 		 * When a resilver is initiated the scan will assign the
2691 		 * scn_max_txg value to the highest txg value that exists
2692 		 * in all DTLs. If this device's max DTL is not part of this
2693 		 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
2694 		 * then it is not eligible for excision.
2695 		 */
2696 		if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2697 			ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
2698 			ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
2699 			ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
2700 			return (B_TRUE);
2701 		}
2702 	}
2703 
2704 	return (B_FALSE);
2705 }
2706 
2707 /*
2708  * Reassess DTLs after a config change or scrub completion. If txg == 0 no
2709  * write operations will be issued to the pool.
2710  */
2711 void
2712 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
2713     boolean_t scrub_done, boolean_t rebuild_done)
2714 {
2715 	spa_t *spa = vd->vdev_spa;
2716 	avl_tree_t reftree;
2717 	int minref;
2718 
2719 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2720 
2721 	for (int c = 0; c < vd->vdev_children; c++)
2722 		vdev_dtl_reassess(vd->vdev_child[c], txg,
2723 		    scrub_txg, scrub_done, rebuild_done);
2724 
2725 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2726 		return;
2727 
2728 	if (vd->vdev_ops->vdev_op_leaf) {
2729 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2730 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
2731 		boolean_t check_excise = B_FALSE;
2732 		boolean_t wasempty = B_TRUE;
2733 
2734 		mutex_enter(&vd->vdev_dtl_lock);
2735 
2736 		/*
2737 		 * If requested, pretend the scan or rebuild completed cleanly.
2738 		 */
2739 		if (zfs_scan_ignore_errors) {
2740 			if (scn != NULL)
2741 				scn->scn_phys.scn_errors = 0;
2742 			if (vr != NULL)
2743 				vr->vr_rebuild_phys.vrp_errors = 0;
2744 		}
2745 
2746 		if (scrub_txg != 0 &&
2747 		    !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
2748 			wasempty = B_FALSE;
2749 			zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
2750 			    "dtl:%llu/%llu errors:%llu",
2751 			    (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
2752 			    (u_longlong_t)scrub_txg, spa->spa_scrub_started,
2753 			    (u_longlong_t)vdev_dtl_min(vd),
2754 			    (u_longlong_t)vdev_dtl_max(vd),
2755 			    (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
2756 		}
2757 
2758 		/*
2759 		 * If we've completed a scrub/resilver or a rebuild cleanly
2760 		 * then determine if this vdev should remove any DTLs. We
2761 		 * only want to excise regions on vdevs that were available
2762 		 * during the entire duration of this scan.
2763 		 */
2764 		if (rebuild_done &&
2765 		    vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
2766 			check_excise = B_TRUE;
2767 		} else {
2768 			if (spa->spa_scrub_started ||
2769 			    (scn != NULL && scn->scn_phys.scn_errors == 0)) {
2770 				check_excise = B_TRUE;
2771 			}
2772 		}
2773 
2774 		if (scrub_txg && check_excise &&
2775 		    vdev_dtl_should_excise(vd, rebuild_done)) {
2776 			/*
2777 			 * We completed a scrub, resilver or rebuild up to
2778 			 * scrub_txg.  If we did it without rebooting, then
2779 			 * the scrub dtl will be valid, so excise the old
2780 			 * region and fold in the scrub dtl.  Otherwise,
2781 			 * leave the dtl as-is if there was an error.
2782 			 *
2783 			 * There's little trick here: to excise the beginning
2784 			 * of the DTL_MISSING map, we put it into a reference
2785 			 * tree and then add a segment with refcnt -1 that
2786 			 * covers the range [0, scrub_txg).  This means
2787 			 * that each txg in that range has refcnt -1 or 0.
2788 			 * We then add DTL_SCRUB with a refcnt of 2, so that
2789 			 * entries in the range [0, scrub_txg) will have a
2790 			 * positive refcnt -- either 1 or 2.  We then convert
2791 			 * the reference tree into the new DTL_MISSING map.
2792 			 */
2793 			space_reftree_create(&reftree);
2794 			space_reftree_add_map(&reftree,
2795 			    vd->vdev_dtl[DTL_MISSING], 1);
2796 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2797 			space_reftree_add_map(&reftree,
2798 			    vd->vdev_dtl[DTL_SCRUB], 2);
2799 			space_reftree_generate_map(&reftree,
2800 			    vd->vdev_dtl[DTL_MISSING], 1);
2801 			space_reftree_destroy(&reftree);
2802 
2803 			if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
2804 				zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
2805 				    (u_longlong_t)vdev_dtl_min(vd),
2806 				    (u_longlong_t)vdev_dtl_max(vd));
2807 			} else if (!wasempty) {
2808 				zfs_dbgmsg("DTL_MISSING is now empty");
2809 			}
2810 		}
2811 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2812 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2813 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2814 		if (scrub_done)
2815 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2816 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2817 		if (!vdev_readable(vd))
2818 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2819 		else
2820 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2821 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2822 
2823 		/*
2824 		 * If the vdev was resilvering or rebuilding and no longer
2825 		 * has any DTLs then reset the appropriate flag and dirty
2826 		 * the top level so that we persist the change.
2827 		 */
2828 		if (txg != 0 &&
2829 		    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2830 		    range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
2831 			if (vd->vdev_rebuild_txg != 0) {
2832 				vd->vdev_rebuild_txg = 0;
2833 				vdev_config_dirty(vd->vdev_top);
2834 			} else if (vd->vdev_resilver_txg != 0) {
2835 				vd->vdev_resilver_txg = 0;
2836 				vdev_config_dirty(vd->vdev_top);
2837 			}
2838 		}
2839 
2840 		mutex_exit(&vd->vdev_dtl_lock);
2841 
2842 		if (txg != 0)
2843 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2844 		return;
2845 	}
2846 
2847 	mutex_enter(&vd->vdev_dtl_lock);
2848 	for (int t = 0; t < DTL_TYPES; t++) {
2849 		/* account for child's outage in parent's missing map */
2850 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2851 		if (t == DTL_SCRUB)
2852 			continue;			/* leaf vdevs only */
2853 		if (t == DTL_PARTIAL)
2854 			minref = 1;			/* i.e. non-zero */
2855 		else if (vd->vdev_nparity != 0)
2856 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
2857 		else
2858 			minref = vd->vdev_children;	/* any kind of mirror */
2859 		space_reftree_create(&reftree);
2860 		for (int c = 0; c < vd->vdev_children; c++) {
2861 			vdev_t *cvd = vd->vdev_child[c];
2862 			mutex_enter(&cvd->vdev_dtl_lock);
2863 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2864 			mutex_exit(&cvd->vdev_dtl_lock);
2865 		}
2866 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2867 		space_reftree_destroy(&reftree);
2868 	}
2869 	mutex_exit(&vd->vdev_dtl_lock);
2870 }
2871 
2872 int
2873 vdev_dtl_load(vdev_t *vd)
2874 {
2875 	spa_t *spa = vd->vdev_spa;
2876 	objset_t *mos = spa->spa_meta_objset;
2877 	int error = 0;
2878 
2879 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2880 		ASSERT(vdev_is_concrete(vd));
2881 
2882 		error = space_map_open(&vd->vdev_dtl_sm, mos,
2883 		    vd->vdev_dtl_object, 0, -1ULL, 0);
2884 		if (error)
2885 			return (error);
2886 		ASSERT(vd->vdev_dtl_sm != NULL);
2887 
2888 		mutex_enter(&vd->vdev_dtl_lock);
2889 		error = space_map_load(vd->vdev_dtl_sm,
2890 		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2891 		mutex_exit(&vd->vdev_dtl_lock);
2892 
2893 		return (error);
2894 	}
2895 
2896 	for (int c = 0; c < vd->vdev_children; c++) {
2897 		error = vdev_dtl_load(vd->vdev_child[c]);
2898 		if (error != 0)
2899 			break;
2900 	}
2901 
2902 	return (error);
2903 }
2904 
2905 static void
2906 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
2907 {
2908 	spa_t *spa = vd->vdev_spa;
2909 	objset_t *mos = spa->spa_meta_objset;
2910 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
2911 	const char *string;
2912 
2913 	ASSERT(alloc_bias != VDEV_BIAS_NONE);
2914 
2915 	string =
2916 	    (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
2917 	    (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
2918 	    (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
2919 
2920 	ASSERT(string != NULL);
2921 	VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
2922 	    1, strlen(string) + 1, string, tx));
2923 
2924 	if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
2925 		spa_activate_allocation_classes(spa, tx);
2926 	}
2927 }
2928 
2929 void
2930 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2931 {
2932 	spa_t *spa = vd->vdev_spa;
2933 
2934 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2935 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2936 	    zapobj, tx));
2937 }
2938 
2939 uint64_t
2940 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2941 {
2942 	spa_t *spa = vd->vdev_spa;
2943 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2944 	    DMU_OT_NONE, 0, tx);
2945 
2946 	ASSERT(zap != 0);
2947 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2948 	    zap, tx));
2949 
2950 	return (zap);
2951 }
2952 
2953 void
2954 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2955 {
2956 	if (vd->vdev_ops != &vdev_hole_ops &&
2957 	    vd->vdev_ops != &vdev_missing_ops &&
2958 	    vd->vdev_ops != &vdev_root_ops &&
2959 	    !vd->vdev_top->vdev_removing) {
2960 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2961 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2962 		}
2963 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2964 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2965 			if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
2966 				vdev_zap_allocation_data(vd, tx);
2967 		}
2968 	}
2969 
2970 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2971 		vdev_construct_zaps(vd->vdev_child[i], tx);
2972 	}
2973 }
2974 
2975 static void
2976 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2977 {
2978 	spa_t *spa = vd->vdev_spa;
2979 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2980 	objset_t *mos = spa->spa_meta_objset;
2981 	range_tree_t *rtsync;
2982 	dmu_tx_t *tx;
2983 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2984 
2985 	ASSERT(vdev_is_concrete(vd));
2986 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2987 
2988 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2989 
2990 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2991 		mutex_enter(&vd->vdev_dtl_lock);
2992 		space_map_free(vd->vdev_dtl_sm, tx);
2993 		space_map_close(vd->vdev_dtl_sm);
2994 		vd->vdev_dtl_sm = NULL;
2995 		mutex_exit(&vd->vdev_dtl_lock);
2996 
2997 		/*
2998 		 * We only destroy the leaf ZAP for detached leaves or for
2999 		 * removed log devices. Removed data devices handle leaf ZAP
3000 		 * cleanup later, once cancellation is no longer possible.
3001 		 */
3002 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3003 		    vd->vdev_top->vdev_islog)) {
3004 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3005 			vd->vdev_leaf_zap = 0;
3006 		}
3007 
3008 		dmu_tx_commit(tx);
3009 		return;
3010 	}
3011 
3012 	if (vd->vdev_dtl_sm == NULL) {
3013 		uint64_t new_object;
3014 
3015 		new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3016 		VERIFY3U(new_object, !=, 0);
3017 
3018 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3019 		    0, -1ULL, 0));
3020 		ASSERT(vd->vdev_dtl_sm != NULL);
3021 	}
3022 
3023 	rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3024 
3025 	mutex_enter(&vd->vdev_dtl_lock);
3026 	range_tree_walk(rt, range_tree_add, rtsync);
3027 	mutex_exit(&vd->vdev_dtl_lock);
3028 
3029 	space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3030 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3031 	range_tree_vacate(rtsync, NULL, NULL);
3032 
3033 	range_tree_destroy(rtsync);
3034 
3035 	/*
3036 	 * If the object for the space map has changed then dirty
3037 	 * the top level so that we update the config.
3038 	 */
3039 	if (object != space_map_object(vd->vdev_dtl_sm)) {
3040 		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3041 		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
3042 		    (u_longlong_t)object,
3043 		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3044 		vdev_config_dirty(vd->vdev_top);
3045 	}
3046 
3047 	dmu_tx_commit(tx);
3048 }
3049 
3050 /*
3051  * Determine whether the specified vdev can be offlined/detached/removed
3052  * without losing data.
3053  */
3054 boolean_t
3055 vdev_dtl_required(vdev_t *vd)
3056 {
3057 	spa_t *spa = vd->vdev_spa;
3058 	vdev_t *tvd = vd->vdev_top;
3059 	uint8_t cant_read = vd->vdev_cant_read;
3060 	boolean_t required;
3061 
3062 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3063 
3064 	if (vd == spa->spa_root_vdev || vd == tvd)
3065 		return (B_TRUE);
3066 
3067 	/*
3068 	 * Temporarily mark the device as unreadable, and then determine
3069 	 * whether this results in any DTL outages in the top-level vdev.
3070 	 * If not, we can safely offline/detach/remove the device.
3071 	 */
3072 	vd->vdev_cant_read = B_TRUE;
3073 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3074 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3075 	vd->vdev_cant_read = cant_read;
3076 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3077 
3078 	if (!required && zio_injection_enabled) {
3079 		required = !!zio_handle_device_injection(vd, NULL,
3080 		    SET_ERROR(ECHILD));
3081 	}
3082 
3083 	return (required);
3084 }
3085 
3086 /*
3087  * Determine if resilver is needed, and if so the txg range.
3088  */
3089 boolean_t
3090 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3091 {
3092 	boolean_t needed = B_FALSE;
3093 	uint64_t thismin = UINT64_MAX;
3094 	uint64_t thismax = 0;
3095 
3096 	if (vd->vdev_children == 0) {
3097 		mutex_enter(&vd->vdev_dtl_lock);
3098 		if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3099 		    vdev_writeable(vd)) {
3100 
3101 			thismin = vdev_dtl_min(vd);
3102 			thismax = vdev_dtl_max(vd);
3103 			needed = B_TRUE;
3104 		}
3105 		mutex_exit(&vd->vdev_dtl_lock);
3106 	} else {
3107 		for (int c = 0; c < vd->vdev_children; c++) {
3108 			vdev_t *cvd = vd->vdev_child[c];
3109 			uint64_t cmin, cmax;
3110 
3111 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3112 				thismin = MIN(thismin, cmin);
3113 				thismax = MAX(thismax, cmax);
3114 				needed = B_TRUE;
3115 			}
3116 		}
3117 	}
3118 
3119 	if (needed && minp) {
3120 		*minp = thismin;
3121 		*maxp = thismax;
3122 	}
3123 	return (needed);
3124 }
3125 
3126 /*
3127  * Gets the checkpoint space map object from the vdev's ZAP.  On success sm_obj
3128  * will contain either the checkpoint spacemap object or zero if none exists.
3129  * All other errors are returned to the caller.
3130  */
3131 int
3132 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3133 {
3134 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3135 
3136 	if (vd->vdev_top_zap == 0) {
3137 		*sm_obj = 0;
3138 		return (0);
3139 	}
3140 
3141 	int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3142 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3143 	if (error == ENOENT) {
3144 		*sm_obj = 0;
3145 		error = 0;
3146 	}
3147 
3148 	return (error);
3149 }
3150 
3151 int
3152 vdev_load(vdev_t *vd)
3153 {
3154 	int error = 0;
3155 
3156 	/*
3157 	 * Recursively load all children.
3158 	 */
3159 	for (int c = 0; c < vd->vdev_children; c++) {
3160 		error = vdev_load(vd->vdev_child[c]);
3161 		if (error != 0) {
3162 			return (error);
3163 		}
3164 	}
3165 
3166 	vdev_set_deflate_ratio(vd);
3167 
3168 	/*
3169 	 * On spa_load path, grab the allocation bias from our zap
3170 	 */
3171 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3172 		spa_t *spa = vd->vdev_spa;
3173 		char bias_str[64];
3174 
3175 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3176 		    VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3177 		    bias_str);
3178 		if (error == 0) {
3179 			ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3180 			vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3181 		} else if (error != ENOENT) {
3182 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3183 			    VDEV_AUX_CORRUPT_DATA);
3184 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3185 			    "failed [error=%d]", vd->vdev_top_zap, error);
3186 			return (error);
3187 		}
3188 	}
3189 
3190 	/*
3191 	 * Load any rebuild state from the top-level vdev zap.
3192 	 */
3193 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3194 		error = vdev_rebuild_load(vd);
3195 		if (error && error != ENOTSUP) {
3196 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3197 			    VDEV_AUX_CORRUPT_DATA);
3198 			vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3199 			    "failed [error=%d]", error);
3200 			return (error);
3201 		}
3202 	}
3203 
3204 	/*
3205 	 * If this is a top-level vdev, initialize its metaslabs.
3206 	 */
3207 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3208 		vdev_metaslab_group_create(vd);
3209 
3210 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3211 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3212 			    VDEV_AUX_CORRUPT_DATA);
3213 			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3214 			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3215 			    (u_longlong_t)vd->vdev_asize);
3216 			return (SET_ERROR(ENXIO));
3217 		}
3218 
3219 		error = vdev_metaslab_init(vd, 0);
3220 		if (error != 0) {
3221 			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3222 			    "[error=%d]", error);
3223 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3224 			    VDEV_AUX_CORRUPT_DATA);
3225 			return (error);
3226 		}
3227 
3228 		uint64_t checkpoint_sm_obj;
3229 		error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3230 		if (error == 0 && checkpoint_sm_obj != 0) {
3231 			objset_t *mos = spa_meta_objset(vd->vdev_spa);
3232 			ASSERT(vd->vdev_asize != 0);
3233 			ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3234 
3235 			error = space_map_open(&vd->vdev_checkpoint_sm,
3236 			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3237 			    vd->vdev_ashift);
3238 			if (error != 0) {
3239 				vdev_dbgmsg(vd, "vdev_load: space_map_open "
3240 				    "failed for checkpoint spacemap (obj %llu) "
3241 				    "[error=%d]",
3242 				    (u_longlong_t)checkpoint_sm_obj, error);
3243 				return (error);
3244 			}
3245 			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3246 
3247 			/*
3248 			 * Since the checkpoint_sm contains free entries
3249 			 * exclusively we can use space_map_allocated() to
3250 			 * indicate the cumulative checkpointed space that
3251 			 * has been freed.
3252 			 */
3253 			vd->vdev_stat.vs_checkpoint_space =
3254 			    -space_map_allocated(vd->vdev_checkpoint_sm);
3255 			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3256 			    vd->vdev_stat.vs_checkpoint_space;
3257 		} else if (error != 0) {
3258 			vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3259 			    "checkpoint space map object from vdev ZAP "
3260 			    "[error=%d]", error);
3261 			return (error);
3262 		}
3263 	}
3264 
3265 	/*
3266 	 * If this is a leaf vdev, load its DTL.
3267 	 */
3268 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3269 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3270 		    VDEV_AUX_CORRUPT_DATA);
3271 		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3272 		    "[error=%d]", error);
3273 		return (error);
3274 	}
3275 
3276 	uint64_t obsolete_sm_object;
3277 	error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3278 	if (error == 0 && obsolete_sm_object != 0) {
3279 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
3280 		ASSERT(vd->vdev_asize != 0);
3281 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3282 
3283 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3284 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3285 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3286 			    VDEV_AUX_CORRUPT_DATA);
3287 			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3288 			    "obsolete spacemap (obj %llu) [error=%d]",
3289 			    (u_longlong_t)obsolete_sm_object, error);
3290 			return (error);
3291 		}
3292 	} else if (error != 0) {
3293 		vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3294 		    "space map object from vdev ZAP [error=%d]", error);
3295 		return (error);
3296 	}
3297 
3298 	return (0);
3299 }
3300 
3301 /*
3302  * The special vdev case is used for hot spares and l2cache devices.  Its
3303  * sole purpose it to set the vdev state for the associated vdev.  To do this,
3304  * we make sure that we can open the underlying device, then try to read the
3305  * label, and make sure that the label is sane and that it hasn't been
3306  * repurposed to another pool.
3307  */
3308 int
3309 vdev_validate_aux(vdev_t *vd)
3310 {
3311 	nvlist_t *label;
3312 	uint64_t guid, version;
3313 	uint64_t state;
3314 
3315 	if (!vdev_readable(vd))
3316 		return (0);
3317 
3318 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3319 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3320 		    VDEV_AUX_CORRUPT_DATA);
3321 		return (-1);
3322 	}
3323 
3324 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3325 	    !SPA_VERSION_IS_SUPPORTED(version) ||
3326 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3327 	    guid != vd->vdev_guid ||
3328 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3329 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3330 		    VDEV_AUX_CORRUPT_DATA);
3331 		nvlist_free(label);
3332 		return (-1);
3333 	}
3334 
3335 	/*
3336 	 * We don't actually check the pool state here.  If it's in fact in
3337 	 * use by another pool, we update this fact on the fly when requested.
3338 	 */
3339 	nvlist_free(label);
3340 	return (0);
3341 }
3342 
3343 static void
3344 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3345 {
3346 	objset_t *mos = spa_meta_objset(vd->vdev_spa);
3347 
3348 	if (vd->vdev_top_zap == 0)
3349 		return;
3350 
3351 	uint64_t object = 0;
3352 	int err = zap_lookup(mos, vd->vdev_top_zap,
3353 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3354 	if (err == ENOENT)
3355 		return;
3356 	VERIFY0(err);
3357 
3358 	VERIFY0(dmu_object_free(mos, object, tx));
3359 	VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3360 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3361 }
3362 
3363 /*
3364  * Free the objects used to store this vdev's spacemaps, and the array
3365  * that points to them.
3366  */
3367 void
3368 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3369 {
3370 	if (vd->vdev_ms_array == 0)
3371 		return;
3372 
3373 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
3374 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3375 	size_t array_bytes = array_count * sizeof (uint64_t);
3376 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3377 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3378 	    array_bytes, smobj_array, 0));
3379 
3380 	for (uint64_t i = 0; i < array_count; i++) {
3381 		uint64_t smobj = smobj_array[i];
3382 		if (smobj == 0)
3383 			continue;
3384 
3385 		space_map_free_obj(mos, smobj, tx);
3386 	}
3387 
3388 	kmem_free(smobj_array, array_bytes);
3389 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3390 	vdev_destroy_ms_flush_data(vd, tx);
3391 	vd->vdev_ms_array = 0;
3392 }
3393 
3394 static void
3395 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3396 {
3397 	spa_t *spa = vd->vdev_spa;
3398 
3399 	ASSERT(vd->vdev_islog);
3400 	ASSERT(vd == vd->vdev_top);
3401 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
3402 
3403 	dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3404 
3405 	vdev_destroy_spacemaps(vd, tx);
3406 	if (vd->vdev_top_zap != 0) {
3407 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3408 		vd->vdev_top_zap = 0;
3409 	}
3410 
3411 	dmu_tx_commit(tx);
3412 }
3413 
3414 void
3415 vdev_sync_done(vdev_t *vd, uint64_t txg)
3416 {
3417 	metaslab_t *msp;
3418 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3419 
3420 	ASSERT(vdev_is_concrete(vd));
3421 
3422 	while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3423 	    != NULL)
3424 		metaslab_sync_done(msp, txg);
3425 
3426 	if (reassess)
3427 		metaslab_sync_reassess(vd->vdev_mg);
3428 }
3429 
3430 void
3431 vdev_sync(vdev_t *vd, uint64_t txg)
3432 {
3433 	spa_t *spa = vd->vdev_spa;
3434 	vdev_t *lvd;
3435 	metaslab_t *msp;
3436 
3437 	ASSERT3U(txg, ==, spa->spa_syncing_txg);
3438 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3439 	if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3440 		ASSERT(vd->vdev_removing ||
3441 		    vd->vdev_ops == &vdev_indirect_ops);
3442 
3443 		vdev_indirect_sync_obsolete(vd, tx);
3444 
3445 		/*
3446 		 * If the vdev is indirect, it can't have dirty
3447 		 * metaslabs or DTLs.
3448 		 */
3449 		if (vd->vdev_ops == &vdev_indirect_ops) {
3450 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3451 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3452 			dmu_tx_commit(tx);
3453 			return;
3454 		}
3455 	}
3456 
3457 	ASSERT(vdev_is_concrete(vd));
3458 
3459 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3460 	    !vd->vdev_removing) {
3461 		ASSERT(vd == vd->vdev_top);
3462 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3463 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3464 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3465 		ASSERT(vd->vdev_ms_array != 0);
3466 		vdev_config_dirty(vd);
3467 	}
3468 
3469 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3470 		metaslab_sync(msp, txg);
3471 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3472 	}
3473 
3474 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3475 		vdev_dtl_sync(lvd, txg);
3476 
3477 	/*
3478 	 * If this is an empty log device being removed, destroy the
3479 	 * metadata associated with it.
3480 	 */
3481 	if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3482 		vdev_remove_empty_log(vd, txg);
3483 
3484 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3485 	dmu_tx_commit(tx);
3486 }
3487 
3488 uint64_t
3489 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3490 {
3491 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
3492 }
3493 
3494 /*
3495  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
3496  * not be opened, and no I/O is attempted.
3497  */
3498 int
3499 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3500 {
3501 	vdev_t *vd, *tvd;
3502 
3503 	spa_vdev_state_enter(spa, SCL_NONE);
3504 
3505 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3506 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3507 
3508 	if (!vd->vdev_ops->vdev_op_leaf)
3509 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3510 
3511 	tvd = vd->vdev_top;
3512 
3513 	/*
3514 	 * If user did a 'zpool offline -f' then make the fault persist across
3515 	 * reboots.
3516 	 */
3517 	if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
3518 		/*
3519 		 * There are two kinds of forced faults: temporary and
3520 		 * persistent.  Temporary faults go away at pool import, while
3521 		 * persistent faults stay set.  Both types of faults can be
3522 		 * cleared with a zpool clear.
3523 		 *
3524 		 * We tell if a vdev is persistently faulted by looking at the
3525 		 * ZPOOL_CONFIG_AUX_STATE nvpair.  If it's set to "external" at
3526 		 * import then it's a persistent fault.  Otherwise, it's
3527 		 * temporary.  We get ZPOOL_CONFIG_AUX_STATE set to "external"
3528 		 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL.  This
3529 		 * tells vdev_config_generate() (which gets run later) to set
3530 		 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
3531 		 */
3532 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
3533 		vd->vdev_tmpoffline = B_FALSE;
3534 		aux = VDEV_AUX_EXTERNAL;
3535 	} else {
3536 		vd->vdev_tmpoffline = B_TRUE;
3537 	}
3538 
3539 	/*
3540 	 * We don't directly use the aux state here, but if we do a
3541 	 * vdev_reopen(), we need this value to be present to remember why we
3542 	 * were faulted.
3543 	 */
3544 	vd->vdev_label_aux = aux;
3545 
3546 	/*
3547 	 * Faulted state takes precedence over degraded.
3548 	 */
3549 	vd->vdev_delayed_close = B_FALSE;
3550 	vd->vdev_faulted = 1ULL;
3551 	vd->vdev_degraded = 0ULL;
3552 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3553 
3554 	/*
3555 	 * If this device has the only valid copy of the data, then
3556 	 * back off and simply mark the vdev as degraded instead.
3557 	 */
3558 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3559 		vd->vdev_degraded = 1ULL;
3560 		vd->vdev_faulted = 0ULL;
3561 
3562 		/*
3563 		 * If we reopen the device and it's not dead, only then do we
3564 		 * mark it degraded.
3565 		 */
3566 		vdev_reopen(tvd);
3567 
3568 		if (vdev_readable(vd))
3569 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3570 	}
3571 
3572 	return (spa_vdev_state_exit(spa, vd, 0));
3573 }
3574 
3575 /*
3576  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
3577  * user that something is wrong.  The vdev continues to operate as normal as far
3578  * as I/O is concerned.
3579  */
3580 int
3581 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3582 {
3583 	vdev_t *vd;
3584 
3585 	spa_vdev_state_enter(spa, SCL_NONE);
3586 
3587 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3588 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3589 
3590 	if (!vd->vdev_ops->vdev_op_leaf)
3591 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3592 
3593 	/*
3594 	 * If the vdev is already faulted, then don't do anything.
3595 	 */
3596 	if (vd->vdev_faulted || vd->vdev_degraded)
3597 		return (spa_vdev_state_exit(spa, NULL, 0));
3598 
3599 	vd->vdev_degraded = 1ULL;
3600 	if (!vdev_is_dead(vd))
3601 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3602 		    aux);
3603 
3604 	return (spa_vdev_state_exit(spa, vd, 0));
3605 }
3606 
3607 /*
3608  * Online the given vdev.
3609  *
3610  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
3611  * spare device should be detached when the device finishes resilvering.
3612  * Second, the online should be treated like a 'test' online case, so no FMA
3613  * events are generated if the device fails to open.
3614  */
3615 int
3616 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3617 {
3618 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3619 	boolean_t wasoffline;
3620 	vdev_state_t oldstate;
3621 
3622 	spa_vdev_state_enter(spa, SCL_NONE);
3623 
3624 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3625 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3626 
3627 	if (!vd->vdev_ops->vdev_op_leaf)
3628 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3629 
3630 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3631 	oldstate = vd->vdev_state;
3632 
3633 	tvd = vd->vdev_top;
3634 	vd->vdev_offline = B_FALSE;
3635 	vd->vdev_tmpoffline = B_FALSE;
3636 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3637 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3638 
3639 	/* XXX - L2ARC 1.0 does not support expansion */
3640 	if (!vd->vdev_aux) {
3641 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3642 			pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
3643 			    spa->spa_autoexpand);
3644 		vd->vdev_expansion_time = gethrestime_sec();
3645 	}
3646 
3647 	vdev_reopen(tvd);
3648 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3649 
3650 	if (!vd->vdev_aux) {
3651 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3652 			pvd->vdev_expanding = B_FALSE;
3653 	}
3654 
3655 	if (newstate)
3656 		*newstate = vd->vdev_state;
3657 	if ((flags & ZFS_ONLINE_UNSPARE) &&
3658 	    !vdev_is_dead(vd) && vd->vdev_parent &&
3659 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3660 	    vd->vdev_parent->vdev_child[0] == vd)
3661 		vd->vdev_unspare = B_TRUE;
3662 
3663 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3664 
3665 		/* XXX - L2ARC 1.0 does not support expansion */
3666 		if (vd->vdev_aux)
3667 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3668 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3669 	}
3670 
3671 	/* Restart initializing if necessary */
3672 	mutex_enter(&vd->vdev_initialize_lock);
3673 	if (vdev_writeable(vd) &&
3674 	    vd->vdev_initialize_thread == NULL &&
3675 	    vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3676 		(void) vdev_initialize(vd);
3677 	}
3678 	mutex_exit(&vd->vdev_initialize_lock);
3679 
3680 	/*
3681 	 * Restart trimming if necessary. We do not restart trimming for cache
3682 	 * devices here. This is triggered by l2arc_rebuild_vdev()
3683 	 * asynchronously for the whole device or in l2arc_evict() as it evicts
3684 	 * space for upcoming writes.
3685 	 */
3686 	mutex_enter(&vd->vdev_trim_lock);
3687 	if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
3688 	    vd->vdev_trim_thread == NULL &&
3689 	    vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
3690 		(void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
3691 		    vd->vdev_trim_secure);
3692 	}
3693 	mutex_exit(&vd->vdev_trim_lock);
3694 
3695 	if (wasoffline ||
3696 	    (oldstate < VDEV_STATE_DEGRADED &&
3697 	    vd->vdev_state >= VDEV_STATE_DEGRADED))
3698 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3699 
3700 	return (spa_vdev_state_exit(spa, vd, 0));
3701 }
3702 
3703 static int
3704 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3705 {
3706 	vdev_t *vd, *tvd;
3707 	int error = 0;
3708 	uint64_t generation;
3709 	metaslab_group_t *mg;
3710 
3711 top:
3712 	spa_vdev_state_enter(spa, SCL_ALLOC);
3713 
3714 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3715 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3716 
3717 	if (!vd->vdev_ops->vdev_op_leaf)
3718 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3719 
3720 	tvd = vd->vdev_top;
3721 	mg = tvd->vdev_mg;
3722 	generation = spa->spa_config_generation + 1;
3723 
3724 	/*
3725 	 * If the device isn't already offline, try to offline it.
3726 	 */
3727 	if (!vd->vdev_offline) {
3728 		/*
3729 		 * If this device has the only valid copy of some data,
3730 		 * don't allow it to be offlined. Log devices are always
3731 		 * expendable.
3732 		 */
3733 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3734 		    vdev_dtl_required(vd))
3735 			return (spa_vdev_state_exit(spa, NULL,
3736 			    SET_ERROR(EBUSY)));
3737 
3738 		/*
3739 		 * If the top-level is a slog and it has had allocations
3740 		 * then proceed.  We check that the vdev's metaslab group
3741 		 * is not NULL since it's possible that we may have just
3742 		 * added this vdev but not yet initialized its metaslabs.
3743 		 */
3744 		if (tvd->vdev_islog && mg != NULL) {
3745 			/*
3746 			 * Prevent any future allocations.
3747 			 */
3748 			metaslab_group_passivate(mg);
3749 			(void) spa_vdev_state_exit(spa, vd, 0);
3750 
3751 			error = spa_reset_logs(spa);
3752 
3753 			/*
3754 			 * If the log device was successfully reset but has
3755 			 * checkpointed data, do not offline it.
3756 			 */
3757 			if (error == 0 &&
3758 			    tvd->vdev_checkpoint_sm != NULL) {
3759 				ASSERT3U(space_map_allocated(
3760 				    tvd->vdev_checkpoint_sm), !=, 0);
3761 				error = ZFS_ERR_CHECKPOINT_EXISTS;
3762 			}
3763 
3764 			spa_vdev_state_enter(spa, SCL_ALLOC);
3765 
3766 			/*
3767 			 * Check to see if the config has changed.
3768 			 */
3769 			if (error || generation != spa->spa_config_generation) {
3770 				metaslab_group_activate(mg);
3771 				if (error)
3772 					return (spa_vdev_state_exit(spa,
3773 					    vd, error));
3774 				(void) spa_vdev_state_exit(spa, vd, 0);
3775 				goto top;
3776 			}
3777 			ASSERT0(tvd->vdev_stat.vs_alloc);
3778 		}
3779 
3780 		/*
3781 		 * Offline this device and reopen its top-level vdev.
3782 		 * If the top-level vdev is a log device then just offline
3783 		 * it. Otherwise, if this action results in the top-level
3784 		 * vdev becoming unusable, undo it and fail the request.
3785 		 */
3786 		vd->vdev_offline = B_TRUE;
3787 		vdev_reopen(tvd);
3788 
3789 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3790 		    vdev_is_dead(tvd)) {
3791 			vd->vdev_offline = B_FALSE;
3792 			vdev_reopen(tvd);
3793 			return (spa_vdev_state_exit(spa, NULL,
3794 			    SET_ERROR(EBUSY)));
3795 		}
3796 
3797 		/*
3798 		 * Add the device back into the metaslab rotor so that
3799 		 * once we online the device it's open for business.
3800 		 */
3801 		if (tvd->vdev_islog && mg != NULL)
3802 			metaslab_group_activate(mg);
3803 	}
3804 
3805 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3806 
3807 	return (spa_vdev_state_exit(spa, vd, 0));
3808 }
3809 
3810 int
3811 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3812 {
3813 	int error;
3814 
3815 	mutex_enter(&spa->spa_vdev_top_lock);
3816 	error = vdev_offline_locked(spa, guid, flags);
3817 	mutex_exit(&spa->spa_vdev_top_lock);
3818 
3819 	return (error);
3820 }
3821 
3822 /*
3823  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
3824  * vdev_offline(), we assume the spa config is locked.  We also clear all
3825  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
3826  */
3827 void
3828 vdev_clear(spa_t *spa, vdev_t *vd)
3829 {
3830 	vdev_t *rvd = spa->spa_root_vdev;
3831 
3832 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3833 
3834 	if (vd == NULL)
3835 		vd = rvd;
3836 
3837 	vd->vdev_stat.vs_read_errors = 0;
3838 	vd->vdev_stat.vs_write_errors = 0;
3839 	vd->vdev_stat.vs_checksum_errors = 0;
3840 	vd->vdev_stat.vs_slow_ios = 0;
3841 
3842 	for (int c = 0; c < vd->vdev_children; c++)
3843 		vdev_clear(spa, vd->vdev_child[c]);
3844 
3845 	/*
3846 	 * It makes no sense to "clear" an indirect vdev.
3847 	 */
3848 	if (!vdev_is_concrete(vd))
3849 		return;
3850 
3851 	/*
3852 	 * If we're in the FAULTED state or have experienced failed I/O, then
3853 	 * clear the persistent state and attempt to reopen the device.  We
3854 	 * also mark the vdev config dirty, so that the new faulted state is
3855 	 * written out to disk.
3856 	 */
3857 	if (vd->vdev_faulted || vd->vdev_degraded ||
3858 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
3859 		/*
3860 		 * When reopening in response to a clear event, it may be due to
3861 		 * a fmadm repair request.  In this case, if the device is
3862 		 * still broken, we want to still post the ereport again.
3863 		 */
3864 		vd->vdev_forcefault = B_TRUE;
3865 
3866 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3867 		vd->vdev_cant_read = B_FALSE;
3868 		vd->vdev_cant_write = B_FALSE;
3869 		vd->vdev_stat.vs_aux = 0;
3870 
3871 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3872 
3873 		vd->vdev_forcefault = B_FALSE;
3874 
3875 		if (vd != rvd && vdev_writeable(vd->vdev_top))
3876 			vdev_state_dirty(vd->vdev_top);
3877 
3878 		/* If a resilver isn't required, check if vdevs can be culled */
3879 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
3880 		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
3881 		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
3882 			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3883 
3884 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3885 	}
3886 
3887 	/*
3888 	 * When clearing a FMA-diagnosed fault, we always want to
3889 	 * unspare the device, as we assume that the original spare was
3890 	 * done in response to the FMA fault.
3891 	 */
3892 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3893 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3894 	    vd->vdev_parent->vdev_child[0] == vd)
3895 		vd->vdev_unspare = B_TRUE;
3896 }
3897 
3898 boolean_t
3899 vdev_is_dead(vdev_t *vd)
3900 {
3901 	/*
3902 	 * Holes and missing devices are always considered "dead".
3903 	 * This simplifies the code since we don't have to check for
3904 	 * these types of devices in the various code paths.
3905 	 * Instead we rely on the fact that we skip over dead devices
3906 	 * before issuing I/O to them.
3907 	 */
3908 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3909 	    vd->vdev_ops == &vdev_hole_ops ||
3910 	    vd->vdev_ops == &vdev_missing_ops);
3911 }
3912 
3913 boolean_t
3914 vdev_readable(vdev_t *vd)
3915 {
3916 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3917 }
3918 
3919 boolean_t
3920 vdev_writeable(vdev_t *vd)
3921 {
3922 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3923 	    vdev_is_concrete(vd));
3924 }
3925 
3926 boolean_t
3927 vdev_allocatable(vdev_t *vd)
3928 {
3929 	uint64_t state = vd->vdev_state;
3930 
3931 	/*
3932 	 * We currently allow allocations from vdevs which may be in the
3933 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3934 	 * fails to reopen then we'll catch it later when we're holding
3935 	 * the proper locks.  Note that we have to get the vdev state
3936 	 * in a local variable because although it changes atomically,
3937 	 * we're asking two separate questions about it.
3938 	 */
3939 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3940 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3941 	    vd->vdev_mg->mg_initialized);
3942 }
3943 
3944 boolean_t
3945 vdev_accessible(vdev_t *vd, zio_t *zio)
3946 {
3947 	ASSERT(zio->io_vd == vd);
3948 
3949 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3950 		return (B_FALSE);
3951 
3952 	if (zio->io_type == ZIO_TYPE_READ)
3953 		return (!vd->vdev_cant_read);
3954 
3955 	if (zio->io_type == ZIO_TYPE_WRITE)
3956 		return (!vd->vdev_cant_write);
3957 
3958 	return (B_TRUE);
3959 }
3960 
3961 static void
3962 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
3963 {
3964 	for (int t = 0; t < VS_ZIO_TYPES; t++) {
3965 		vs->vs_ops[t] += cvs->vs_ops[t];
3966 		vs->vs_bytes[t] += cvs->vs_bytes[t];
3967 	}
3968 
3969 	cvs->vs_scan_removing = cvd->vdev_removing;
3970 }
3971 
3972 /*
3973  * Get extended stats
3974  */
3975 static void
3976 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
3977 {
3978 	int t, b;
3979 	for (t = 0; t < ZIO_TYPES; t++) {
3980 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
3981 			vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
3982 
3983 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
3984 			vsx->vsx_total_histo[t][b] +=
3985 			    cvsx->vsx_total_histo[t][b];
3986 		}
3987 	}
3988 
3989 	for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
3990 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
3991 			vsx->vsx_queue_histo[t][b] +=
3992 			    cvsx->vsx_queue_histo[t][b];
3993 		}
3994 		vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
3995 		vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
3996 
3997 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
3998 			vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
3999 
4000 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4001 			vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4002 	}
4003 
4004 }
4005 
4006 boolean_t
4007 vdev_is_spacemap_addressable(vdev_t *vd)
4008 {
4009 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4010 		return (B_TRUE);
4011 
4012 	/*
4013 	 * If double-word space map entries are not enabled we assume
4014 	 * 47 bits of the space map entry are dedicated to the entry's
4015 	 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4016 	 * to calculate the maximum address that can be described by a
4017 	 * space map entry for the given device.
4018 	 */
4019 	uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4020 
4021 	if (shift >= 63) /* detect potential overflow */
4022 		return (B_TRUE);
4023 
4024 	return (vd->vdev_asize < (1ULL << shift));
4025 }
4026 
4027 /*
4028  * Get statistics for the given vdev.
4029  */
4030 static void
4031 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4032 {
4033 	int t;
4034 	/*
4035 	 * If we're getting stats on the root vdev, aggregate the I/O counts
4036 	 * over all top-level vdevs (i.e. the direct children of the root).
4037 	 */
4038 	if (!vd->vdev_ops->vdev_op_leaf) {
4039 		if (vs) {
4040 			memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4041 			memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4042 		}
4043 		if (vsx)
4044 			memset(vsx, 0, sizeof (*vsx));
4045 
4046 		for (int c = 0; c < vd->vdev_children; c++) {
4047 			vdev_t *cvd = vd->vdev_child[c];
4048 			vdev_stat_t *cvs = &cvd->vdev_stat;
4049 			vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4050 
4051 			vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4052 			if (vs)
4053 				vdev_get_child_stat(cvd, vs, cvs);
4054 			if (vsx)
4055 				vdev_get_child_stat_ex(cvd, vsx, cvsx);
4056 
4057 		}
4058 	} else {
4059 		/*
4060 		 * We're a leaf.  Just copy our ZIO active queue stats in.  The
4061 		 * other leaf stats are updated in vdev_stat_update().
4062 		 */
4063 		if (!vsx)
4064 			return;
4065 
4066 		memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4067 
4068 		for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
4069 			vsx->vsx_active_queue[t] =
4070 			    vd->vdev_queue.vq_class[t].vqc_active;
4071 			vsx->vsx_pend_queue[t] = avl_numnodes(
4072 			    &vd->vdev_queue.vq_class[t].vqc_queued_tree);
4073 		}
4074 	}
4075 }
4076 
4077 void
4078 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4079 {
4080 	vdev_t *tvd = vd->vdev_top;
4081 	mutex_enter(&vd->vdev_stat_lock);
4082 	if (vs) {
4083 		bcopy(&vd->vdev_stat, vs, sizeof (*vs));
4084 		vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4085 		vs->vs_state = vd->vdev_state;
4086 		vs->vs_rsize = vdev_get_min_asize(vd);
4087 
4088 		if (vd->vdev_ops->vdev_op_leaf) {
4089 			vs->vs_rsize += VDEV_LABEL_START_SIZE +
4090 			    VDEV_LABEL_END_SIZE;
4091 			/*
4092 			 * Report initializing progress. Since we don't
4093 			 * have the initializing locks held, this is only
4094 			 * an estimate (although a fairly accurate one).
4095 			 */
4096 			vs->vs_initialize_bytes_done =
4097 			    vd->vdev_initialize_bytes_done;
4098 			vs->vs_initialize_bytes_est =
4099 			    vd->vdev_initialize_bytes_est;
4100 			vs->vs_initialize_state = vd->vdev_initialize_state;
4101 			vs->vs_initialize_action_time =
4102 			    vd->vdev_initialize_action_time;
4103 
4104 			/*
4105 			 * Report manual TRIM progress. Since we don't have
4106 			 * the manual TRIM locks held, this is only an
4107 			 * estimate (although fairly accurate one).
4108 			 */
4109 			vs->vs_trim_notsup = !vd->vdev_has_trim;
4110 			vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4111 			vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4112 			vs->vs_trim_state = vd->vdev_trim_state;
4113 			vs->vs_trim_action_time = vd->vdev_trim_action_time;
4114 
4115 			/* Set when there is a deferred resilver. */
4116 			vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4117 		}
4118 
4119 		/*
4120 		 * Report expandable space on top-level, non-auxiliary devices
4121 		 * only. The expandable space is reported in terms of metaslab
4122 		 * sized units since that determines how much space the pool
4123 		 * can expand.
4124 		 */
4125 		if (vd->vdev_aux == NULL && tvd != NULL) {
4126 			vs->vs_esize = P2ALIGN(
4127 			    vd->vdev_max_asize - vd->vdev_asize,
4128 			    1ULL << tvd->vdev_ms_shift);
4129 		}
4130 
4131 		vs->vs_configured_ashift = vd->vdev_top != NULL
4132 		    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4133 		vs->vs_logical_ashift = vd->vdev_logical_ashift;
4134 		vs->vs_physical_ashift = vd->vdev_physical_ashift;
4135 
4136 		/*
4137 		 * Report fragmentation and rebuild progress for top-level,
4138 		 * non-auxiliary, concrete devices.
4139 		 */
4140 		if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4141 		    vdev_is_concrete(vd)) {
4142 			vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4143 			    vd->vdev_mg->mg_fragmentation : 0;
4144 		}
4145 	}
4146 
4147 	vdev_get_stats_ex_impl(vd, vs, vsx);
4148 	mutex_exit(&vd->vdev_stat_lock);
4149 }
4150 
4151 void
4152 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4153 {
4154 	return (vdev_get_stats_ex(vd, vs, NULL));
4155 }
4156 
4157 void
4158 vdev_clear_stats(vdev_t *vd)
4159 {
4160 	mutex_enter(&vd->vdev_stat_lock);
4161 	vd->vdev_stat.vs_space = 0;
4162 	vd->vdev_stat.vs_dspace = 0;
4163 	vd->vdev_stat.vs_alloc = 0;
4164 	mutex_exit(&vd->vdev_stat_lock);
4165 }
4166 
4167 void
4168 vdev_scan_stat_init(vdev_t *vd)
4169 {
4170 	vdev_stat_t *vs = &vd->vdev_stat;
4171 
4172 	for (int c = 0; c < vd->vdev_children; c++)
4173 		vdev_scan_stat_init(vd->vdev_child[c]);
4174 
4175 	mutex_enter(&vd->vdev_stat_lock);
4176 	vs->vs_scan_processed = 0;
4177 	mutex_exit(&vd->vdev_stat_lock);
4178 }
4179 
4180 void
4181 vdev_stat_update(zio_t *zio, uint64_t psize)
4182 {
4183 	spa_t *spa = zio->io_spa;
4184 	vdev_t *rvd = spa->spa_root_vdev;
4185 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4186 	vdev_t *pvd;
4187 	uint64_t txg = zio->io_txg;
4188 	vdev_stat_t *vs = &vd->vdev_stat;
4189 	vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4190 	zio_type_t type = zio->io_type;
4191 	int flags = zio->io_flags;
4192 
4193 	/*
4194 	 * If this i/o is a gang leader, it didn't do any actual work.
4195 	 */
4196 	if (zio->io_gang_tree)
4197 		return;
4198 
4199 	if (zio->io_error == 0) {
4200 		/*
4201 		 * If this is a root i/o, don't count it -- we've already
4202 		 * counted the top-level vdevs, and vdev_get_stats() will
4203 		 * aggregate them when asked.  This reduces contention on
4204 		 * the root vdev_stat_lock and implicitly handles blocks
4205 		 * that compress away to holes, for which there is no i/o.
4206 		 * (Holes never create vdev children, so all the counters
4207 		 * remain zero, which is what we want.)
4208 		 *
4209 		 * Note: this only applies to successful i/o (io_error == 0)
4210 		 * because unlike i/o counts, errors are not additive.
4211 		 * When reading a ditto block, for example, failure of
4212 		 * one top-level vdev does not imply a root-level error.
4213 		 */
4214 		if (vd == rvd)
4215 			return;
4216 
4217 		ASSERT(vd == zio->io_vd);
4218 
4219 		if (flags & ZIO_FLAG_IO_BYPASS)
4220 			return;
4221 
4222 		mutex_enter(&vd->vdev_stat_lock);
4223 
4224 		if (flags & ZIO_FLAG_IO_REPAIR) {
4225 			/*
4226 			 * Repair is the result of a resilver issued by the
4227 			 * scan thread (spa_sync).
4228 			 */
4229 			if (flags & ZIO_FLAG_SCAN_THREAD) {
4230 				dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4231 				dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4232 				uint64_t *processed = &scn_phys->scn_processed;
4233 
4234 				if (vd->vdev_ops->vdev_op_leaf)
4235 					atomic_add_64(processed, psize);
4236 				vs->vs_scan_processed += psize;
4237 			}
4238 
4239 			/*
4240 			 * Repair is the result of a rebuild issued by the
4241 			 * rebuild thread (vdev_rebuild_thread).
4242 			 */
4243 			if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
4244 				vdev_t *tvd = vd->vdev_top;
4245 				vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
4246 				vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
4247 				uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
4248 
4249 				if (vd->vdev_ops->vdev_op_leaf)
4250 					atomic_add_64(rebuilt, psize);
4251 				vs->vs_rebuild_processed += psize;
4252 			}
4253 
4254 			if (flags & ZIO_FLAG_SELF_HEAL)
4255 				vs->vs_self_healed += psize;
4256 		}
4257 
4258 		/*
4259 		 * The bytes/ops/histograms are recorded at the leaf level and
4260 		 * aggregated into the higher level vdevs in vdev_get_stats().
4261 		 */
4262 		if (vd->vdev_ops->vdev_op_leaf &&
4263 		    (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4264 			zio_type_t vs_type = type;
4265 			zio_priority_t priority = zio->io_priority;
4266 
4267 			/*
4268 			 * TRIM ops and bytes are reported to user space as
4269 			 * ZIO_TYPE_IOCTL.  This is done to preserve the
4270 			 * vdev_stat_t structure layout for user space.
4271 			 */
4272 			if (type == ZIO_TYPE_TRIM)
4273 				vs_type = ZIO_TYPE_IOCTL;
4274 
4275 			/*
4276 			 * Solely for the purposes of 'zpool iostat -lqrw'
4277 			 * reporting use the priority to catagorize the IO.
4278 			 * Only the following are reported to user space:
4279 			 *
4280 			 *   ZIO_PRIORITY_SYNC_READ,
4281 			 *   ZIO_PRIORITY_SYNC_WRITE,
4282 			 *   ZIO_PRIORITY_ASYNC_READ,
4283 			 *   ZIO_PRIORITY_ASYNC_WRITE,
4284 			 *   ZIO_PRIORITY_SCRUB,
4285 			 *   ZIO_PRIORITY_TRIM.
4286 			 */
4287 			if (priority == ZIO_PRIORITY_REBUILD) {
4288 				priority = ((type == ZIO_TYPE_WRITE) ?
4289 				    ZIO_PRIORITY_ASYNC_WRITE :
4290 				    ZIO_PRIORITY_SCRUB);
4291 			} else if (priority == ZIO_PRIORITY_INITIALIZING) {
4292 				ASSERT3U(type, ==, ZIO_TYPE_WRITE);
4293 				priority = ZIO_PRIORITY_ASYNC_WRITE;
4294 			} else if (priority == ZIO_PRIORITY_REMOVAL) {
4295 				priority = ((type == ZIO_TYPE_WRITE) ?
4296 				    ZIO_PRIORITY_ASYNC_WRITE :
4297 				    ZIO_PRIORITY_ASYNC_READ);
4298 			}
4299 
4300 			vs->vs_ops[vs_type]++;
4301 			vs->vs_bytes[vs_type] += psize;
4302 
4303 			if (flags & ZIO_FLAG_DELEGATED) {
4304 				vsx->vsx_agg_histo[priority]
4305 				    [RQ_HISTO(zio->io_size)]++;
4306 			} else {
4307 				vsx->vsx_ind_histo[priority]
4308 				    [RQ_HISTO(zio->io_size)]++;
4309 			}
4310 
4311 			if (zio->io_delta && zio->io_delay) {
4312 				vsx->vsx_queue_histo[priority]
4313 				    [L_HISTO(zio->io_delta - zio->io_delay)]++;
4314 				vsx->vsx_disk_histo[type]
4315 				    [L_HISTO(zio->io_delay)]++;
4316 				vsx->vsx_total_histo[type]
4317 				    [L_HISTO(zio->io_delta)]++;
4318 			}
4319 		}
4320 
4321 		mutex_exit(&vd->vdev_stat_lock);
4322 		return;
4323 	}
4324 
4325 	if (flags & ZIO_FLAG_SPECULATIVE)
4326 		return;
4327 
4328 	/*
4329 	 * If this is an I/O error that is going to be retried, then ignore the
4330 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
4331 	 * hard errors, when in reality they can happen for any number of
4332 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
4333 	 */
4334 	if (zio->io_error == EIO &&
4335 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
4336 		return;
4337 
4338 	/*
4339 	 * Intent logs writes won't propagate their error to the root
4340 	 * I/O so don't mark these types of failures as pool-level
4341 	 * errors.
4342 	 */
4343 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
4344 		return;
4345 
4346 	if (spa->spa_load_state == SPA_LOAD_NONE &&
4347 	    type == ZIO_TYPE_WRITE && txg != 0 &&
4348 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
4349 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
4350 	    spa->spa_claiming)) {
4351 		/*
4352 		 * This is either a normal write (not a repair), or it's
4353 		 * a repair induced by the scrub thread, or it's a repair
4354 		 * made by zil_claim() during spa_load() in the first txg.
4355 		 * In the normal case, we commit the DTL change in the same
4356 		 * txg as the block was born.  In the scrub-induced repair
4357 		 * case, we know that scrubs run in first-pass syncing context,
4358 		 * so we commit the DTL change in spa_syncing_txg(spa).
4359 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
4360 		 *
4361 		 * We currently do not make DTL entries for failed spontaneous
4362 		 * self-healing writes triggered by normal (non-scrubbing)
4363 		 * reads, because we have no transactional context in which to
4364 		 * do so -- and it's not clear that it'd be desirable anyway.
4365 		 */
4366 		if (vd->vdev_ops->vdev_op_leaf) {
4367 			uint64_t commit_txg = txg;
4368 			if (flags & ZIO_FLAG_SCAN_THREAD) {
4369 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4370 				ASSERT(spa_sync_pass(spa) == 1);
4371 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
4372 				commit_txg = spa_syncing_txg(spa);
4373 			} else if (spa->spa_claiming) {
4374 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4375 				commit_txg = spa_first_txg(spa);
4376 			}
4377 			ASSERT(commit_txg >= spa_syncing_txg(spa));
4378 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
4379 				return;
4380 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4381 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
4382 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
4383 		}
4384 		if (vd != rvd)
4385 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
4386 	}
4387 }
4388 
4389 int64_t
4390 vdev_deflated_space(vdev_t *vd, int64_t space)
4391 {
4392 	ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
4393 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
4394 
4395 	return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
4396 }
4397 
4398 /*
4399  * Update the in-core space usage stats for this vdev, its metaslab class,
4400  * and the root vdev.
4401  */
4402 void
4403 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
4404     int64_t space_delta)
4405 {
4406 	int64_t dspace_delta;
4407 	spa_t *spa = vd->vdev_spa;
4408 	vdev_t *rvd = spa->spa_root_vdev;
4409 
4410 	ASSERT(vd == vd->vdev_top);
4411 
4412 	/*
4413 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
4414 	 * factor.  We must calculate this here and not at the root vdev
4415 	 * because the root vdev's psize-to-asize is simply the max of its
4416 	 * children's, thus not accurate enough for us.
4417 	 */
4418 	dspace_delta = vdev_deflated_space(vd, space_delta);
4419 
4420 	mutex_enter(&vd->vdev_stat_lock);
4421 	/* ensure we won't underflow */
4422 	if (alloc_delta < 0) {
4423 		ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
4424 	}
4425 
4426 	vd->vdev_stat.vs_alloc += alloc_delta;
4427 	vd->vdev_stat.vs_space += space_delta;
4428 	vd->vdev_stat.vs_dspace += dspace_delta;
4429 	mutex_exit(&vd->vdev_stat_lock);
4430 
4431 	/* every class but log contributes to root space stats */
4432 	if (vd->vdev_mg != NULL && !vd->vdev_islog) {
4433 		ASSERT(!vd->vdev_isl2cache);
4434 		mutex_enter(&rvd->vdev_stat_lock);
4435 		rvd->vdev_stat.vs_alloc += alloc_delta;
4436 		rvd->vdev_stat.vs_space += space_delta;
4437 		rvd->vdev_stat.vs_dspace += dspace_delta;
4438 		mutex_exit(&rvd->vdev_stat_lock);
4439 	}
4440 	/* Note: metaslab_class_space_update moved to metaslab_space_update */
4441 }
4442 
4443 /*
4444  * Mark a top-level vdev's config as dirty, placing it on the dirty list
4445  * so that it will be written out next time the vdev configuration is synced.
4446  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
4447  */
4448 void
4449 vdev_config_dirty(vdev_t *vd)
4450 {
4451 	spa_t *spa = vd->vdev_spa;
4452 	vdev_t *rvd = spa->spa_root_vdev;
4453 	int c;
4454 
4455 	ASSERT(spa_writeable(spa));
4456 
4457 	/*
4458 	 * If this is an aux vdev (as with l2cache and spare devices), then we
4459 	 * update the vdev config manually and set the sync flag.
4460 	 */
4461 	if (vd->vdev_aux != NULL) {
4462 		spa_aux_vdev_t *sav = vd->vdev_aux;
4463 		nvlist_t **aux;
4464 		uint_t naux;
4465 
4466 		for (c = 0; c < sav->sav_count; c++) {
4467 			if (sav->sav_vdevs[c] == vd)
4468 				break;
4469 		}
4470 
4471 		if (c == sav->sav_count) {
4472 			/*
4473 			 * We're being removed.  There's nothing more to do.
4474 			 */
4475 			ASSERT(sav->sav_sync == B_TRUE);
4476 			return;
4477 		}
4478 
4479 		sav->sav_sync = B_TRUE;
4480 
4481 		if (nvlist_lookup_nvlist_array(sav->sav_config,
4482 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
4483 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
4484 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
4485 		}
4486 
4487 		ASSERT(c < naux);
4488 
4489 		/*
4490 		 * Setting the nvlist in the middle if the array is a little
4491 		 * sketchy, but it will work.
4492 		 */
4493 		nvlist_free(aux[c]);
4494 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
4495 
4496 		return;
4497 	}
4498 
4499 	/*
4500 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
4501 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
4502 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
4503 	 * so this is sufficient to ensure mutual exclusion.
4504 	 */
4505 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4506 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4507 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
4508 
4509 	if (vd == rvd) {
4510 		for (c = 0; c < rvd->vdev_children; c++)
4511 			vdev_config_dirty(rvd->vdev_child[c]);
4512 	} else {
4513 		ASSERT(vd == vd->vdev_top);
4514 
4515 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
4516 		    vdev_is_concrete(vd)) {
4517 			list_insert_head(&spa->spa_config_dirty_list, vd);
4518 		}
4519 	}
4520 }
4521 
4522 void
4523 vdev_config_clean(vdev_t *vd)
4524 {
4525 	spa_t *spa = vd->vdev_spa;
4526 
4527 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4528 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4529 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
4530 
4531 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
4532 	list_remove(&spa->spa_config_dirty_list, vd);
4533 }
4534 
4535 /*
4536  * Mark a top-level vdev's state as dirty, so that the next pass of
4537  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
4538  * the state changes from larger config changes because they require
4539  * much less locking, and are often needed for administrative actions.
4540  */
4541 void
4542 vdev_state_dirty(vdev_t *vd)
4543 {
4544 	spa_t *spa = vd->vdev_spa;
4545 
4546 	ASSERT(spa_writeable(spa));
4547 	ASSERT(vd == vd->vdev_top);
4548 
4549 	/*
4550 	 * The state list is protected by the SCL_STATE lock.  The caller
4551 	 * must either hold SCL_STATE as writer, or must be the sync thread
4552 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
4553 	 * so this is sufficient to ensure mutual exclusion.
4554 	 */
4555 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4556 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4557 	    spa_config_held(spa, SCL_STATE, RW_READER)));
4558 
4559 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
4560 	    vdev_is_concrete(vd))
4561 		list_insert_head(&spa->spa_state_dirty_list, vd);
4562 }
4563 
4564 void
4565 vdev_state_clean(vdev_t *vd)
4566 {
4567 	spa_t *spa = vd->vdev_spa;
4568 
4569 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4570 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4571 	    spa_config_held(spa, SCL_STATE, RW_READER)));
4572 
4573 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
4574 	list_remove(&spa->spa_state_dirty_list, vd);
4575 }
4576 
4577 /*
4578  * Propagate vdev state up from children to parent.
4579  */
4580 void
4581 vdev_propagate_state(vdev_t *vd)
4582 {
4583 	spa_t *spa = vd->vdev_spa;
4584 	vdev_t *rvd = spa->spa_root_vdev;
4585 	int degraded = 0, faulted = 0;
4586 	int corrupted = 0;
4587 	vdev_t *child;
4588 
4589 	if (vd->vdev_children > 0) {
4590 		for (int c = 0; c < vd->vdev_children; c++) {
4591 			child = vd->vdev_child[c];
4592 
4593 			/*
4594 			 * Don't factor holes or indirect vdevs into the
4595 			 * decision.
4596 			 */
4597 			if (!vdev_is_concrete(child))
4598 				continue;
4599 
4600 			if (!vdev_readable(child) ||
4601 			    (!vdev_writeable(child) && spa_writeable(spa))) {
4602 				/*
4603 				 * Root special: if there is a top-level log
4604 				 * device, treat the root vdev as if it were
4605 				 * degraded.
4606 				 */
4607 				if (child->vdev_islog && vd == rvd)
4608 					degraded++;
4609 				else
4610 					faulted++;
4611 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
4612 				degraded++;
4613 			}
4614 
4615 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4616 				corrupted++;
4617 		}
4618 
4619 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4620 
4621 		/*
4622 		 * Root special: if there is a top-level vdev that cannot be
4623 		 * opened due to corrupted metadata, then propagate the root
4624 		 * vdev's aux state as 'corrupt' rather than 'insufficient
4625 		 * replicas'.
4626 		 */
4627 		if (corrupted && vd == rvd &&
4628 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4629 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4630 			    VDEV_AUX_CORRUPT_DATA);
4631 	}
4632 
4633 	if (vd->vdev_parent)
4634 		vdev_propagate_state(vd->vdev_parent);
4635 }
4636 
4637 /*
4638  * Set a vdev's state.  If this is during an open, we don't update the parent
4639  * state, because we're in the process of opening children depth-first.
4640  * Otherwise, we propagate the change to the parent.
4641  *
4642  * If this routine places a device in a faulted state, an appropriate ereport is
4643  * generated.
4644  */
4645 void
4646 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4647 {
4648 	uint64_t save_state;
4649 	spa_t *spa = vd->vdev_spa;
4650 
4651 	if (state == vd->vdev_state) {
4652 		/*
4653 		 * Since vdev_offline() code path is already in an offline
4654 		 * state we can miss a statechange event to OFFLINE. Check
4655 		 * the previous state to catch this condition.
4656 		 */
4657 		if (vd->vdev_ops->vdev_op_leaf &&
4658 		    (state == VDEV_STATE_OFFLINE) &&
4659 		    (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
4660 			/* post an offline state change */
4661 			zfs_post_state_change(spa, vd, vd->vdev_prevstate);
4662 		}
4663 		vd->vdev_stat.vs_aux = aux;
4664 		return;
4665 	}
4666 
4667 	save_state = vd->vdev_state;
4668 
4669 	vd->vdev_state = state;
4670 	vd->vdev_stat.vs_aux = aux;
4671 
4672 	/*
4673 	 * If we are setting the vdev state to anything but an open state, then
4674 	 * always close the underlying device unless the device has requested
4675 	 * a delayed close (i.e. we're about to remove or fault the device).
4676 	 * Otherwise, we keep accessible but invalid devices open forever.
4677 	 * We don't call vdev_close() itself, because that implies some extra
4678 	 * checks (offline, etc) that we don't want here.  This is limited to
4679 	 * leaf devices, because otherwise closing the device will affect other
4680 	 * children.
4681 	 */
4682 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
4683 	    vd->vdev_ops->vdev_op_leaf)
4684 		vd->vdev_ops->vdev_op_close(vd);
4685 
4686 	if (vd->vdev_removed &&
4687 	    state == VDEV_STATE_CANT_OPEN &&
4688 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
4689 		/*
4690 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
4691 		 * device was previously marked removed and someone attempted to
4692 		 * reopen it.  If this failed due to a nonexistent device, then
4693 		 * keep the device in the REMOVED state.  We also let this be if
4694 		 * it is one of our special test online cases, which is only
4695 		 * attempting to online the device and shouldn't generate an FMA
4696 		 * fault.
4697 		 */
4698 		vd->vdev_state = VDEV_STATE_REMOVED;
4699 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
4700 	} else if (state == VDEV_STATE_REMOVED) {
4701 		vd->vdev_removed = B_TRUE;
4702 	} else if (state == VDEV_STATE_CANT_OPEN) {
4703 		/*
4704 		 * If we fail to open a vdev during an import or recovery, we
4705 		 * mark it as "not available", which signifies that it was
4706 		 * never there to begin with.  Failure to open such a device
4707 		 * is not considered an error.
4708 		 */
4709 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
4710 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
4711 		    vd->vdev_ops->vdev_op_leaf)
4712 			vd->vdev_not_present = 1;
4713 
4714 		/*
4715 		 * Post the appropriate ereport.  If the 'prevstate' field is
4716 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
4717 		 * that this is part of a vdev_reopen().  In this case, we don't
4718 		 * want to post the ereport if the device was already in the
4719 		 * CANT_OPEN state beforehand.
4720 		 *
4721 		 * If the 'checkremove' flag is set, then this is an attempt to
4722 		 * online the device in response to an insertion event.  If we
4723 		 * hit this case, then we have detected an insertion event for a
4724 		 * faulted or offline device that wasn't in the removed state.
4725 		 * In this scenario, we don't post an ereport because we are
4726 		 * about to replace the device, or attempt an online with
4727 		 * vdev_forcefault, which will generate the fault for us.
4728 		 */
4729 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
4730 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
4731 		    vd != spa->spa_root_vdev) {
4732 			const char *class;
4733 
4734 			switch (aux) {
4735 			case VDEV_AUX_OPEN_FAILED:
4736 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
4737 				break;
4738 			case VDEV_AUX_CORRUPT_DATA:
4739 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
4740 				break;
4741 			case VDEV_AUX_NO_REPLICAS:
4742 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
4743 				break;
4744 			case VDEV_AUX_BAD_GUID_SUM:
4745 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
4746 				break;
4747 			case VDEV_AUX_TOO_SMALL:
4748 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
4749 				break;
4750 			case VDEV_AUX_BAD_LABEL:
4751 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
4752 				break;
4753 			case VDEV_AUX_BAD_ASHIFT:
4754 				class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
4755 				break;
4756 			default:
4757 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
4758 			}
4759 
4760 			zfs_ereport_post(class, spa, vd, NULL, NULL,
4761 			    save_state, 0);
4762 		}
4763 
4764 		/* Erase any notion of persistent removed state */
4765 		vd->vdev_removed = B_FALSE;
4766 	} else {
4767 		vd->vdev_removed = B_FALSE;
4768 	}
4769 
4770 	/*
4771 	 * Notify ZED of any significant state-change on a leaf vdev.
4772 	 *
4773 	 */
4774 	if (vd->vdev_ops->vdev_op_leaf) {
4775 		/* preserve original state from a vdev_reopen() */
4776 		if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
4777 		    (vd->vdev_prevstate != vd->vdev_state) &&
4778 		    (save_state <= VDEV_STATE_CLOSED))
4779 			save_state = vd->vdev_prevstate;
4780 
4781 		/* filter out state change due to initial vdev_open */
4782 		if (save_state > VDEV_STATE_CLOSED)
4783 			zfs_post_state_change(spa, vd, save_state);
4784 	}
4785 
4786 	if (!isopen && vd->vdev_parent)
4787 		vdev_propagate_state(vd->vdev_parent);
4788 }
4789 
4790 boolean_t
4791 vdev_children_are_offline(vdev_t *vd)
4792 {
4793 	ASSERT(!vd->vdev_ops->vdev_op_leaf);
4794 
4795 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
4796 		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
4797 			return (B_FALSE);
4798 	}
4799 
4800 	return (B_TRUE);
4801 }
4802 
4803 /*
4804  * Check the vdev configuration to ensure that it's capable of supporting
4805  * a root pool. We do not support partial configuration.
4806  */
4807 boolean_t
4808 vdev_is_bootable(vdev_t *vd)
4809 {
4810 	if (!vd->vdev_ops->vdev_op_leaf) {
4811 		const char *vdev_type = vd->vdev_ops->vdev_op_type;
4812 
4813 		if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
4814 		    strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
4815 			return (B_FALSE);
4816 		}
4817 	}
4818 
4819 	for (int c = 0; c < vd->vdev_children; c++) {
4820 		if (!vdev_is_bootable(vd->vdev_child[c]))
4821 			return (B_FALSE);
4822 	}
4823 	return (B_TRUE);
4824 }
4825 
4826 boolean_t
4827 vdev_is_concrete(vdev_t *vd)
4828 {
4829 	vdev_ops_t *ops = vd->vdev_ops;
4830 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
4831 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
4832 		return (B_FALSE);
4833 	} else {
4834 		return (B_TRUE);
4835 	}
4836 }
4837 
4838 /*
4839  * Determine if a log device has valid content.  If the vdev was
4840  * removed or faulted in the MOS config then we know that
4841  * the content on the log device has already been written to the pool.
4842  */
4843 boolean_t
4844 vdev_log_state_valid(vdev_t *vd)
4845 {
4846 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
4847 	    !vd->vdev_removed)
4848 		return (B_TRUE);
4849 
4850 	for (int c = 0; c < vd->vdev_children; c++)
4851 		if (vdev_log_state_valid(vd->vdev_child[c]))
4852 			return (B_TRUE);
4853 
4854 	return (B_FALSE);
4855 }
4856 
4857 /*
4858  * Expand a vdev if possible.
4859  */
4860 void
4861 vdev_expand(vdev_t *vd, uint64_t txg)
4862 {
4863 	ASSERT(vd->vdev_top == vd);
4864 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4865 	ASSERT(vdev_is_concrete(vd));
4866 
4867 	vdev_set_deflate_ratio(vd);
4868 
4869 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
4870 	    vdev_is_concrete(vd)) {
4871 		vdev_metaslab_group_create(vd);
4872 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
4873 		vdev_config_dirty(vd);
4874 	}
4875 }
4876 
4877 /*
4878  * Split a vdev.
4879  */
4880 void
4881 vdev_split(vdev_t *vd)
4882 {
4883 	vdev_t *cvd, *pvd = vd->vdev_parent;
4884 
4885 	vdev_remove_child(pvd, vd);
4886 	vdev_compact_children(pvd);
4887 
4888 	cvd = pvd->vdev_child[0];
4889 	if (pvd->vdev_children == 1) {
4890 		vdev_remove_parent(cvd);
4891 		cvd->vdev_splitting = B_TRUE;
4892 	}
4893 	vdev_propagate_state(cvd);
4894 }
4895 
4896 void
4897 vdev_deadman(vdev_t *vd, char *tag)
4898 {
4899 	for (int c = 0; c < vd->vdev_children; c++) {
4900 		vdev_t *cvd = vd->vdev_child[c];
4901 
4902 		vdev_deadman(cvd, tag);
4903 	}
4904 
4905 	if (vd->vdev_ops->vdev_op_leaf) {
4906 		vdev_queue_t *vq = &vd->vdev_queue;
4907 
4908 		mutex_enter(&vq->vq_lock);
4909 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
4910 			spa_t *spa = vd->vdev_spa;
4911 			zio_t *fio;
4912 			uint64_t delta;
4913 
4914 			zfs_dbgmsg("slow vdev: %s has %d active IOs",
4915 			    vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
4916 
4917 			/*
4918 			 * Look at the head of all the pending queues,
4919 			 * if any I/O has been outstanding for longer than
4920 			 * the spa_deadman_synctime invoke the deadman logic.
4921 			 */
4922 			fio = avl_first(&vq->vq_active_tree);
4923 			delta = gethrtime() - fio->io_timestamp;
4924 			if (delta > spa_deadman_synctime(spa))
4925 				zio_deadman(fio, tag);
4926 		}
4927 		mutex_exit(&vq->vq_lock);
4928 	}
4929 }
4930 
4931 void
4932 vdev_defer_resilver(vdev_t *vd)
4933 {
4934 	ASSERT(vd->vdev_ops->vdev_op_leaf);
4935 
4936 	vd->vdev_resilver_deferred = B_TRUE;
4937 	vd->vdev_spa->spa_resilver_deferred = B_TRUE;
4938 }
4939 
4940 /*
4941  * Clears the resilver deferred flag on all leaf devs under vd. Returns
4942  * B_TRUE if we have devices that need to be resilvered and are available to
4943  * accept resilver I/Os.
4944  */
4945 boolean_t
4946 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
4947 {
4948 	boolean_t resilver_needed = B_FALSE;
4949 	spa_t *spa = vd->vdev_spa;
4950 
4951 	for (int c = 0; c < vd->vdev_children; c++) {
4952 		vdev_t *cvd = vd->vdev_child[c];
4953 		resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
4954 	}
4955 
4956 	if (vd == spa->spa_root_vdev &&
4957 	    spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
4958 		spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
4959 		vdev_config_dirty(vd);
4960 		spa->spa_resilver_deferred = B_FALSE;
4961 		return (resilver_needed);
4962 	}
4963 
4964 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
4965 	    !vd->vdev_ops->vdev_op_leaf)
4966 		return (resilver_needed);
4967 
4968 	vd->vdev_resilver_deferred = B_FALSE;
4969 
4970 	return (!vdev_is_dead(vd) && !vd->vdev_offline &&
4971 	    vdev_resilver_needed(vd, NULL, NULL));
4972 }
4973 
4974 /*
4975  * Translate a logical range to the physical range for the specified vdev_t.
4976  * This function is initially called with a leaf vdev and will walk each
4977  * parent vdev until it reaches a top-level vdev. Once the top-level is
4978  * reached the physical range is initialized and the recursive function
4979  * begins to unwind. As it unwinds it calls the parent's vdev specific
4980  * translation function to do the real conversion.
4981  */
4982 void
4983 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
4984     range_seg64_t *physical_rs)
4985 {
4986 	/*
4987 	 * Walk up the vdev tree
4988 	 */
4989 	if (vd != vd->vdev_top) {
4990 		vdev_xlate(vd->vdev_parent, logical_rs, physical_rs);
4991 	} else {
4992 		/*
4993 		 * We've reached the top-level vdev, initialize the
4994 		 * physical range to the logical range and start to
4995 		 * unwind.
4996 		 */
4997 		physical_rs->rs_start = logical_rs->rs_start;
4998 		physical_rs->rs_end = logical_rs->rs_end;
4999 		return;
5000 	}
5001 
5002 	vdev_t *pvd = vd->vdev_parent;
5003 	ASSERT3P(pvd, !=, NULL);
5004 	ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5005 
5006 	/*
5007 	 * As this recursive function unwinds, translate the logical
5008 	 * range into its physical components by calling the
5009 	 * vdev specific translate function.
5010 	 */
5011 	range_seg64_t intermediate = { 0 };
5012 	pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate);
5013 
5014 	physical_rs->rs_start = intermediate.rs_start;
5015 	physical_rs->rs_end = intermediate.rs_end;
5016 }
5017 
5018 /*
5019  * Look at the vdev tree and determine whether any devices are currently being
5020  * replaced.
5021  */
5022 boolean_t
5023 vdev_replace_in_progress(vdev_t *vdev)
5024 {
5025 	ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5026 
5027 	if (vdev->vdev_ops == &vdev_replacing_ops)
5028 		return (B_TRUE);
5029 
5030 	/*
5031 	 * A 'spare' vdev indicates that we have a replace in progress, unless
5032 	 * it has exactly two children, and the second, the hot spare, has
5033 	 * finished being resilvered.
5034 	 */
5035 	if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5036 	    !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5037 		return (B_TRUE);
5038 
5039 	for (int i = 0; i < vdev->vdev_children; i++) {
5040 		if (vdev_replace_in_progress(vdev->vdev_child[i]))
5041 			return (B_TRUE);
5042 	}
5043 
5044 	return (B_FALSE);
5045 }
5046 
5047 EXPORT_SYMBOL(vdev_fault);
5048 EXPORT_SYMBOL(vdev_degrade);
5049 EXPORT_SYMBOL(vdev_online);
5050 EXPORT_SYMBOL(vdev_offline);
5051 EXPORT_SYMBOL(vdev_clear);
5052 
5053 /* BEGIN CSTYLED */
5054 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, INT, ZMOD_RW,
5055 	"Target number of metaslabs per top-level vdev");
5056 
5057 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, INT, ZMOD_RW,
5058 	"Default limit for metaslab size");
5059 
5060 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, INT, ZMOD_RW,
5061 	"Minimum number of metaslabs per top-level vdev");
5062 
5063 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, INT, ZMOD_RW,
5064 	"Practical upper limit of total metaslabs per top-level vdev");
5065 
5066 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
5067 	"Rate limit slow IO (delay) events to this many per second");
5068 
5069 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
5070 	"Rate limit checksum events to this many checksum errors per second "
5071 	"(do not set below zed threshold).");
5072 
5073 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
5074 	"Ignore errors during resilver/scrub");
5075 
5076 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
5077 	"Bypass vdev_validate()");
5078 
5079 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
5080 	"Disable cache flushes");
5081 
5082 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
5083 	param_set_min_auto_ashift, param_get_ulong, ZMOD_RW,
5084 	"Minimum ashift used when creating new top-level vdevs");
5085 
5086 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
5087 	param_set_max_auto_ashift, param_get_ulong, ZMOD_RW,
5088 	"Maximum ashift used when optimizing for logical -> physical sector "
5089 	"size on new top-level vdevs");
5090 /* END CSTYLED */
5091