1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2017 Joyent, Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 * Copyright (c) 2019, Datto Inc. All rights reserved. 31 * Copyright (c) 2021, Klara Inc. 32 * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP. 33 */ 34 35 #include <sys/zfs_context.h> 36 #include <sys/fm/fs/zfs.h> 37 #include <sys/spa.h> 38 #include <sys/spa_impl.h> 39 #include <sys/bpobj.h> 40 #include <sys/dmu.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_dir.h> 43 #include <sys/vdev_impl.h> 44 #include <sys/vdev_rebuild.h> 45 #include <sys/vdev_draid.h> 46 #include <sys/uberblock_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/space_map.h> 50 #include <sys/space_reftree.h> 51 #include <sys/zio.h> 52 #include <sys/zap.h> 53 #include <sys/fs/zfs.h> 54 #include <sys/arc.h> 55 #include <sys/zil.h> 56 #include <sys/dsl_scan.h> 57 #include <sys/vdev_raidz.h> 58 #include <sys/abd.h> 59 #include <sys/vdev_initialize.h> 60 #include <sys/vdev_trim.h> 61 #include <sys/zvol.h> 62 #include <sys/zfs_ratelimit.h> 63 #include "zfs_prop.h" 64 65 /* 66 * One metaslab from each (normal-class) vdev is used by the ZIL. These are 67 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are 68 * part of the spa_embedded_log_class. The metaslab with the most free space 69 * in each vdev is selected for this purpose when the pool is opened (or a 70 * vdev is added). See vdev_metaslab_init(). 71 * 72 * Log blocks can be allocated from the following locations. Each one is tried 73 * in order until the allocation succeeds: 74 * 1. dedicated log vdevs, aka "slog" (spa_log_class) 75 * 2. embedded slog metaslabs (spa_embedded_log_class) 76 * 3. other metaslabs in normal vdevs (spa_normal_class) 77 * 78 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer 79 * than this number of metaslabs in the vdev. This ensures that we don't set 80 * aside an unreasonable amount of space for the ZIL. If set to less than 81 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced 82 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab. 83 */ 84 static uint_t zfs_embedded_slog_min_ms = 64; 85 86 /* default target for number of metaslabs per top-level vdev */ 87 static uint_t zfs_vdev_default_ms_count = 200; 88 89 /* minimum number of metaslabs per top-level vdev */ 90 static uint_t zfs_vdev_min_ms_count = 16; 91 92 /* practical upper limit of total metaslabs per top-level vdev */ 93 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17; 94 95 /* lower limit for metaslab size (512M) */ 96 static uint_t zfs_vdev_default_ms_shift = 29; 97 98 /* upper limit for metaslab size (16G) */ 99 static uint_t zfs_vdev_max_ms_shift = 34; 100 101 int vdev_validate_skip = B_FALSE; 102 103 /* 104 * Since the DTL space map of a vdev is not expected to have a lot of 105 * entries, we default its block size to 4K. 106 */ 107 int zfs_vdev_dtl_sm_blksz = (1 << 12); 108 109 /* 110 * Rate limit slow IO (delay) events to this many per second. 111 */ 112 static unsigned int zfs_slow_io_events_per_second = 20; 113 114 /* 115 * Rate limit checksum events after this many checksum errors per second. 116 */ 117 static unsigned int zfs_checksum_events_per_second = 20; 118 119 /* 120 * Ignore errors during scrub/resilver. Allows to work around resilver 121 * upon import when there are pool errors. 122 */ 123 static int zfs_scan_ignore_errors = 0; 124 125 /* 126 * vdev-wide space maps that have lots of entries written to them at 127 * the end of each transaction can benefit from a higher I/O bandwidth 128 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 129 */ 130 int zfs_vdev_standard_sm_blksz = (1 << 17); 131 132 /* 133 * Tunable parameter for debugging or performance analysis. Setting this 134 * will cause pool corruption on power loss if a volatile out-of-order 135 * write cache is enabled. 136 */ 137 int zfs_nocacheflush = 0; 138 139 /* 140 * Maximum and minimum ashift values that can be automatically set based on 141 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX 142 * is higher than the maximum value, it is intentionally limited here to not 143 * excessively impact pool space efficiency. Higher ashift values may still 144 * be forced by vdev logical ashift or by user via ashift property, but won't 145 * be set automatically as a performance optimization. 146 */ 147 uint_t zfs_vdev_max_auto_ashift = 14; 148 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN; 149 150 void 151 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 152 { 153 va_list adx; 154 char buf[256]; 155 156 va_start(adx, fmt); 157 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 158 va_end(adx); 159 160 if (vd->vdev_path != NULL) { 161 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 162 vd->vdev_path, buf); 163 } else { 164 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 165 vd->vdev_ops->vdev_op_type, 166 (u_longlong_t)vd->vdev_id, 167 (u_longlong_t)vd->vdev_guid, buf); 168 } 169 } 170 171 void 172 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 173 { 174 char state[20]; 175 176 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 177 zfs_dbgmsg("%*svdev %llu: %s", indent, "", 178 (u_longlong_t)vd->vdev_id, 179 vd->vdev_ops->vdev_op_type); 180 return; 181 } 182 183 switch (vd->vdev_state) { 184 case VDEV_STATE_UNKNOWN: 185 (void) snprintf(state, sizeof (state), "unknown"); 186 break; 187 case VDEV_STATE_CLOSED: 188 (void) snprintf(state, sizeof (state), "closed"); 189 break; 190 case VDEV_STATE_OFFLINE: 191 (void) snprintf(state, sizeof (state), "offline"); 192 break; 193 case VDEV_STATE_REMOVED: 194 (void) snprintf(state, sizeof (state), "removed"); 195 break; 196 case VDEV_STATE_CANT_OPEN: 197 (void) snprintf(state, sizeof (state), "can't open"); 198 break; 199 case VDEV_STATE_FAULTED: 200 (void) snprintf(state, sizeof (state), "faulted"); 201 break; 202 case VDEV_STATE_DEGRADED: 203 (void) snprintf(state, sizeof (state), "degraded"); 204 break; 205 case VDEV_STATE_HEALTHY: 206 (void) snprintf(state, sizeof (state), "healthy"); 207 break; 208 default: 209 (void) snprintf(state, sizeof (state), "<state %u>", 210 (uint_t)vd->vdev_state); 211 } 212 213 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 214 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 215 vd->vdev_islog ? " (log)" : "", 216 (u_longlong_t)vd->vdev_guid, 217 vd->vdev_path ? vd->vdev_path : "N/A", state); 218 219 for (uint64_t i = 0; i < vd->vdev_children; i++) 220 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 221 } 222 223 /* 224 * Virtual device management. 225 */ 226 227 static vdev_ops_t *const vdev_ops_table[] = { 228 &vdev_root_ops, 229 &vdev_raidz_ops, 230 &vdev_draid_ops, 231 &vdev_draid_spare_ops, 232 &vdev_mirror_ops, 233 &vdev_replacing_ops, 234 &vdev_spare_ops, 235 &vdev_disk_ops, 236 &vdev_file_ops, 237 &vdev_missing_ops, 238 &vdev_hole_ops, 239 &vdev_indirect_ops, 240 NULL 241 }; 242 243 /* 244 * Given a vdev type, return the appropriate ops vector. 245 */ 246 static vdev_ops_t * 247 vdev_getops(const char *type) 248 { 249 vdev_ops_t *ops, *const *opspp; 250 251 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 252 if (strcmp(ops->vdev_op_type, type) == 0) 253 break; 254 255 return (ops); 256 } 257 258 /* 259 * Given a vdev and a metaslab class, find which metaslab group we're 260 * interested in. All vdevs may belong to two different metaslab classes. 261 * Dedicated slog devices use only the primary metaslab group, rather than a 262 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL. 263 */ 264 metaslab_group_t * 265 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc) 266 { 267 if (mc == spa_embedded_log_class(vd->vdev_spa) && 268 vd->vdev_log_mg != NULL) 269 return (vd->vdev_log_mg); 270 else 271 return (vd->vdev_mg); 272 } 273 274 void 275 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 276 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 277 { 278 (void) vd, (void) remain_rs; 279 280 physical_rs->rs_start = logical_rs->rs_start; 281 physical_rs->rs_end = logical_rs->rs_end; 282 } 283 284 /* 285 * Derive the enumerated allocation bias from string input. 286 * String origin is either the per-vdev zap or zpool(8). 287 */ 288 static vdev_alloc_bias_t 289 vdev_derive_alloc_bias(const char *bias) 290 { 291 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 292 293 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) 294 alloc_bias = VDEV_BIAS_LOG; 295 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) 296 alloc_bias = VDEV_BIAS_SPECIAL; 297 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) 298 alloc_bias = VDEV_BIAS_DEDUP; 299 300 return (alloc_bias); 301 } 302 303 /* 304 * Default asize function: return the MAX of psize with the asize of 305 * all children. This is what's used by anything other than RAID-Z. 306 */ 307 uint64_t 308 vdev_default_asize(vdev_t *vd, uint64_t psize) 309 { 310 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 311 uint64_t csize; 312 313 for (int c = 0; c < vd->vdev_children; c++) { 314 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 315 asize = MAX(asize, csize); 316 } 317 318 return (asize); 319 } 320 321 uint64_t 322 vdev_default_min_asize(vdev_t *vd) 323 { 324 return (vd->vdev_min_asize); 325 } 326 327 /* 328 * Get the minimum allocatable size. We define the allocatable size as 329 * the vdev's asize rounded to the nearest metaslab. This allows us to 330 * replace or attach devices which don't have the same physical size but 331 * can still satisfy the same number of allocations. 332 */ 333 uint64_t 334 vdev_get_min_asize(vdev_t *vd) 335 { 336 vdev_t *pvd = vd->vdev_parent; 337 338 /* 339 * If our parent is NULL (inactive spare or cache) or is the root, 340 * just return our own asize. 341 */ 342 if (pvd == NULL) 343 return (vd->vdev_asize); 344 345 /* 346 * The top-level vdev just returns the allocatable size rounded 347 * to the nearest metaslab. 348 */ 349 if (vd == vd->vdev_top) 350 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 351 352 return (pvd->vdev_ops->vdev_op_min_asize(pvd)); 353 } 354 355 void 356 vdev_set_min_asize(vdev_t *vd) 357 { 358 vd->vdev_min_asize = vdev_get_min_asize(vd); 359 360 for (int c = 0; c < vd->vdev_children; c++) 361 vdev_set_min_asize(vd->vdev_child[c]); 362 } 363 364 /* 365 * Get the minimal allocation size for the top-level vdev. 366 */ 367 uint64_t 368 vdev_get_min_alloc(vdev_t *vd) 369 { 370 uint64_t min_alloc = 1ULL << vd->vdev_ashift; 371 372 if (vd->vdev_ops->vdev_op_min_alloc != NULL) 373 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd); 374 375 return (min_alloc); 376 } 377 378 /* 379 * Get the parity level for a top-level vdev. 380 */ 381 uint64_t 382 vdev_get_nparity(vdev_t *vd) 383 { 384 uint64_t nparity = 0; 385 386 if (vd->vdev_ops->vdev_op_nparity != NULL) 387 nparity = vd->vdev_ops->vdev_op_nparity(vd); 388 389 return (nparity); 390 } 391 392 static int 393 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value) 394 { 395 spa_t *spa = vd->vdev_spa; 396 objset_t *mos = spa->spa_meta_objset; 397 uint64_t objid; 398 int err; 399 400 if (vd->vdev_root_zap != 0) { 401 objid = vd->vdev_root_zap; 402 } else if (vd->vdev_top_zap != 0) { 403 objid = vd->vdev_top_zap; 404 } else if (vd->vdev_leaf_zap != 0) { 405 objid = vd->vdev_leaf_zap; 406 } else { 407 return (EINVAL); 408 } 409 410 err = zap_lookup(mos, objid, vdev_prop_to_name(prop), 411 sizeof (uint64_t), 1, value); 412 413 if (err == ENOENT) 414 *value = vdev_prop_default_numeric(prop); 415 416 return (err); 417 } 418 419 /* 420 * Get the number of data disks for a top-level vdev. 421 */ 422 uint64_t 423 vdev_get_ndisks(vdev_t *vd) 424 { 425 uint64_t ndisks = 1; 426 427 if (vd->vdev_ops->vdev_op_ndisks != NULL) 428 ndisks = vd->vdev_ops->vdev_op_ndisks(vd); 429 430 return (ndisks); 431 } 432 433 vdev_t * 434 vdev_lookup_top(spa_t *spa, uint64_t vdev) 435 { 436 vdev_t *rvd = spa->spa_root_vdev; 437 438 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 439 440 if (vdev < rvd->vdev_children) { 441 ASSERT(rvd->vdev_child[vdev] != NULL); 442 return (rvd->vdev_child[vdev]); 443 } 444 445 return (NULL); 446 } 447 448 vdev_t * 449 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 450 { 451 vdev_t *mvd; 452 453 if (vd->vdev_guid == guid) 454 return (vd); 455 456 for (int c = 0; c < vd->vdev_children; c++) 457 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 458 NULL) 459 return (mvd); 460 461 return (NULL); 462 } 463 464 static int 465 vdev_count_leaves_impl(vdev_t *vd) 466 { 467 int n = 0; 468 469 if (vd->vdev_ops->vdev_op_leaf) 470 return (1); 471 472 for (int c = 0; c < vd->vdev_children; c++) 473 n += vdev_count_leaves_impl(vd->vdev_child[c]); 474 475 return (n); 476 } 477 478 int 479 vdev_count_leaves(spa_t *spa) 480 { 481 int rc; 482 483 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 484 rc = vdev_count_leaves_impl(spa->spa_root_vdev); 485 spa_config_exit(spa, SCL_VDEV, FTAG); 486 487 return (rc); 488 } 489 490 void 491 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 492 { 493 size_t oldsize, newsize; 494 uint64_t id = cvd->vdev_id; 495 vdev_t **newchild; 496 497 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 498 ASSERT(cvd->vdev_parent == NULL); 499 500 cvd->vdev_parent = pvd; 501 502 if (pvd == NULL) 503 return; 504 505 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 506 507 oldsize = pvd->vdev_children * sizeof (vdev_t *); 508 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 509 newsize = pvd->vdev_children * sizeof (vdev_t *); 510 511 newchild = kmem_alloc(newsize, KM_SLEEP); 512 if (pvd->vdev_child != NULL) { 513 memcpy(newchild, pvd->vdev_child, oldsize); 514 kmem_free(pvd->vdev_child, oldsize); 515 } 516 517 pvd->vdev_child = newchild; 518 pvd->vdev_child[id] = cvd; 519 520 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 521 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 522 523 /* 524 * Walk up all ancestors to update guid sum. 525 */ 526 for (; pvd != NULL; pvd = pvd->vdev_parent) 527 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 528 529 if (cvd->vdev_ops->vdev_op_leaf) { 530 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); 531 cvd->vdev_spa->spa_leaf_list_gen++; 532 } 533 } 534 535 void 536 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 537 { 538 int c; 539 uint_t id = cvd->vdev_id; 540 541 ASSERT(cvd->vdev_parent == pvd); 542 543 if (pvd == NULL) 544 return; 545 546 ASSERT(id < pvd->vdev_children); 547 ASSERT(pvd->vdev_child[id] == cvd); 548 549 pvd->vdev_child[id] = NULL; 550 cvd->vdev_parent = NULL; 551 552 for (c = 0; c < pvd->vdev_children; c++) 553 if (pvd->vdev_child[c]) 554 break; 555 556 if (c == pvd->vdev_children) { 557 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 558 pvd->vdev_child = NULL; 559 pvd->vdev_children = 0; 560 } 561 562 if (cvd->vdev_ops->vdev_op_leaf) { 563 spa_t *spa = cvd->vdev_spa; 564 list_remove(&spa->spa_leaf_list, cvd); 565 spa->spa_leaf_list_gen++; 566 } 567 568 /* 569 * Walk up all ancestors to update guid sum. 570 */ 571 for (; pvd != NULL; pvd = pvd->vdev_parent) 572 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 573 } 574 575 /* 576 * Remove any holes in the child array. 577 */ 578 void 579 vdev_compact_children(vdev_t *pvd) 580 { 581 vdev_t **newchild, *cvd; 582 int oldc = pvd->vdev_children; 583 int newc; 584 585 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 586 587 if (oldc == 0) 588 return; 589 590 for (int c = newc = 0; c < oldc; c++) 591 if (pvd->vdev_child[c]) 592 newc++; 593 594 if (newc > 0) { 595 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP); 596 597 for (int c = newc = 0; c < oldc; c++) { 598 if ((cvd = pvd->vdev_child[c]) != NULL) { 599 newchild[newc] = cvd; 600 cvd->vdev_id = newc++; 601 } 602 } 603 } else { 604 newchild = NULL; 605 } 606 607 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 608 pvd->vdev_child = newchild; 609 pvd->vdev_children = newc; 610 } 611 612 /* 613 * Allocate and minimally initialize a vdev_t. 614 */ 615 vdev_t * 616 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 617 { 618 vdev_t *vd; 619 vdev_indirect_config_t *vic; 620 621 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 622 vic = &vd->vdev_indirect_config; 623 624 if (spa->spa_root_vdev == NULL) { 625 ASSERT(ops == &vdev_root_ops); 626 spa->spa_root_vdev = vd; 627 spa->spa_load_guid = spa_generate_guid(NULL); 628 } 629 630 if (guid == 0 && ops != &vdev_hole_ops) { 631 if (spa->spa_root_vdev == vd) { 632 /* 633 * The root vdev's guid will also be the pool guid, 634 * which must be unique among all pools. 635 */ 636 guid = spa_generate_guid(NULL); 637 } else { 638 /* 639 * Any other vdev's guid must be unique within the pool. 640 */ 641 guid = spa_generate_guid(spa); 642 } 643 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 644 } 645 646 vd->vdev_spa = spa; 647 vd->vdev_id = id; 648 vd->vdev_guid = guid; 649 vd->vdev_guid_sum = guid; 650 vd->vdev_ops = ops; 651 vd->vdev_state = VDEV_STATE_CLOSED; 652 vd->vdev_ishole = (ops == &vdev_hole_ops); 653 vic->vic_prev_indirect_vdev = UINT64_MAX; 654 655 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 656 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 657 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL, 658 0, 0); 659 660 /* 661 * Initialize rate limit structs for events. We rate limit ZIO delay 662 * and checksum events so that we don't overwhelm ZED with thousands 663 * of events when a disk is acting up. 664 */ 665 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second, 666 1); 667 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_slow_io_events_per_second, 668 1); 669 zfs_ratelimit_init(&vd->vdev_checksum_rl, 670 &zfs_checksum_events_per_second, 1); 671 672 /* 673 * Default Thresholds for tuning ZED 674 */ 675 vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N); 676 vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T); 677 vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N); 678 vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T); 679 680 list_link_init(&vd->vdev_config_dirty_node); 681 list_link_init(&vd->vdev_state_dirty_node); 682 list_link_init(&vd->vdev_initialize_node); 683 list_link_init(&vd->vdev_leaf_node); 684 list_link_init(&vd->vdev_trim_node); 685 686 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL); 687 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 688 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 689 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); 690 691 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 692 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 693 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 694 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 695 696 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL); 697 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL); 698 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL); 699 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL); 700 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL); 701 cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL); 702 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL); 703 704 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL); 705 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL); 706 707 for (int t = 0; t < DTL_TYPES; t++) { 708 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 709 0); 710 } 711 712 txg_list_create(&vd->vdev_ms_list, spa, 713 offsetof(struct metaslab, ms_txg_node)); 714 txg_list_create(&vd->vdev_dtl_list, spa, 715 offsetof(struct vdev, vdev_dtl_node)); 716 vd->vdev_stat.vs_timestamp = gethrtime(); 717 vdev_queue_init(vd); 718 719 return (vd); 720 } 721 722 /* 723 * Allocate a new vdev. The 'alloctype' is used to control whether we are 724 * creating a new vdev or loading an existing one - the behavior is slightly 725 * different for each case. 726 */ 727 int 728 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 729 int alloctype) 730 { 731 vdev_ops_t *ops; 732 const char *type; 733 uint64_t guid = 0, islog; 734 vdev_t *vd; 735 vdev_indirect_config_t *vic; 736 const char *tmp = NULL; 737 int rc; 738 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 739 boolean_t top_level = (parent && !parent->vdev_parent); 740 741 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 742 743 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 744 return (SET_ERROR(EINVAL)); 745 746 if ((ops = vdev_getops(type)) == NULL) 747 return (SET_ERROR(EINVAL)); 748 749 /* 750 * If this is a load, get the vdev guid from the nvlist. 751 * Otherwise, vdev_alloc_common() will generate one for us. 752 */ 753 if (alloctype == VDEV_ALLOC_LOAD) { 754 uint64_t label_id; 755 756 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 757 label_id != id) 758 return (SET_ERROR(EINVAL)); 759 760 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 761 return (SET_ERROR(EINVAL)); 762 } else if (alloctype == VDEV_ALLOC_SPARE) { 763 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 764 return (SET_ERROR(EINVAL)); 765 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 766 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 767 return (SET_ERROR(EINVAL)); 768 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 769 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 770 return (SET_ERROR(EINVAL)); 771 } 772 773 /* 774 * The first allocated vdev must be of type 'root'. 775 */ 776 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 777 return (SET_ERROR(EINVAL)); 778 779 /* 780 * Determine whether we're a log vdev. 781 */ 782 islog = 0; 783 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 784 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 785 return (SET_ERROR(ENOTSUP)); 786 787 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 788 return (SET_ERROR(ENOTSUP)); 789 790 if (top_level && alloctype == VDEV_ALLOC_ADD) { 791 const char *bias; 792 793 /* 794 * If creating a top-level vdev, check for allocation 795 * classes input. 796 */ 797 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 798 &bias) == 0) { 799 alloc_bias = vdev_derive_alloc_bias(bias); 800 801 /* spa_vdev_add() expects feature to be enabled */ 802 if (spa->spa_load_state != SPA_LOAD_CREATE && 803 !spa_feature_is_enabled(spa, 804 SPA_FEATURE_ALLOCATION_CLASSES)) { 805 return (SET_ERROR(ENOTSUP)); 806 } 807 } 808 809 /* spa_vdev_add() expects feature to be enabled */ 810 if (ops == &vdev_draid_ops && 811 spa->spa_load_state != SPA_LOAD_CREATE && 812 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) { 813 return (SET_ERROR(ENOTSUP)); 814 } 815 } 816 817 /* 818 * Initialize the vdev specific data. This is done before calling 819 * vdev_alloc_common() since it may fail and this simplifies the 820 * error reporting and cleanup code paths. 821 */ 822 void *tsd = NULL; 823 if (ops->vdev_op_init != NULL) { 824 rc = ops->vdev_op_init(spa, nv, &tsd); 825 if (rc != 0) { 826 return (rc); 827 } 828 } 829 830 vd = vdev_alloc_common(spa, id, guid, ops); 831 vd->vdev_tsd = tsd; 832 vd->vdev_islog = islog; 833 834 if (top_level && alloc_bias != VDEV_BIAS_NONE) 835 vd->vdev_alloc_bias = alloc_bias; 836 837 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0) 838 vd->vdev_path = spa_strdup(tmp); 839 840 /* 841 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a 842 * fault on a vdev and want it to persist across imports (like with 843 * zpool offline -f). 844 */ 845 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp); 846 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) { 847 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 848 vd->vdev_faulted = 1; 849 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 850 } 851 852 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0) 853 vd->vdev_devid = spa_strdup(tmp); 854 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0) 855 vd->vdev_physpath = spa_strdup(tmp); 856 857 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 858 &tmp) == 0) 859 vd->vdev_enc_sysfs_path = spa_strdup(tmp); 860 861 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0) 862 vd->vdev_fru = spa_strdup(tmp); 863 864 /* 865 * Set the whole_disk property. If it's not specified, leave the value 866 * as -1. 867 */ 868 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 869 &vd->vdev_wholedisk) != 0) 870 vd->vdev_wholedisk = -1ULL; 871 872 vic = &vd->vdev_indirect_config; 873 874 ASSERT0(vic->vic_mapping_object); 875 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 876 &vic->vic_mapping_object); 877 ASSERT0(vic->vic_births_object); 878 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 879 &vic->vic_births_object); 880 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 881 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 882 &vic->vic_prev_indirect_vdev); 883 884 /* 885 * Look for the 'not present' flag. This will only be set if the device 886 * was not present at the time of import. 887 */ 888 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 889 &vd->vdev_not_present); 890 891 /* 892 * Get the alignment requirement. 893 */ 894 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 895 896 /* 897 * Retrieve the vdev creation time. 898 */ 899 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 900 &vd->vdev_crtxg); 901 902 if (vd->vdev_ops == &vdev_root_ops && 903 (alloctype == VDEV_ALLOC_LOAD || 904 alloctype == VDEV_ALLOC_SPLIT || 905 alloctype == VDEV_ALLOC_ROOTPOOL)) { 906 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP, 907 &vd->vdev_root_zap); 908 } 909 910 /* 911 * If we're a top-level vdev, try to load the allocation parameters. 912 */ 913 if (top_level && 914 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 915 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 916 &vd->vdev_ms_array); 917 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 918 &vd->vdev_ms_shift); 919 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 920 &vd->vdev_asize); 921 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING, 922 &vd->vdev_noalloc); 923 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 924 &vd->vdev_removing); 925 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 926 &vd->vdev_top_zap); 927 } else { 928 ASSERT0(vd->vdev_top_zap); 929 } 930 931 if (top_level && alloctype != VDEV_ALLOC_ATTACH) { 932 ASSERT(alloctype == VDEV_ALLOC_LOAD || 933 alloctype == VDEV_ALLOC_ADD || 934 alloctype == VDEV_ALLOC_SPLIT || 935 alloctype == VDEV_ALLOC_ROOTPOOL); 936 /* Note: metaslab_group_create() is now deferred */ 937 } 938 939 if (vd->vdev_ops->vdev_op_leaf && 940 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 941 (void) nvlist_lookup_uint64(nv, 942 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 943 } else { 944 ASSERT0(vd->vdev_leaf_zap); 945 } 946 947 /* 948 * If we're a leaf vdev, try to load the DTL object and other state. 949 */ 950 951 if (vd->vdev_ops->vdev_op_leaf && 952 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 953 alloctype == VDEV_ALLOC_ROOTPOOL)) { 954 if (alloctype == VDEV_ALLOC_LOAD) { 955 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 956 &vd->vdev_dtl_object); 957 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 958 &vd->vdev_unspare); 959 } 960 961 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 962 uint64_t spare = 0; 963 964 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 965 &spare) == 0 && spare) 966 spa_spare_add(vd); 967 } 968 969 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 970 &vd->vdev_offline); 971 972 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 973 &vd->vdev_resilver_txg); 974 975 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 976 &vd->vdev_rebuild_txg); 977 978 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) 979 vdev_defer_resilver(vd); 980 981 /* 982 * In general, when importing a pool we want to ignore the 983 * persistent fault state, as the diagnosis made on another 984 * system may not be valid in the current context. The only 985 * exception is if we forced a vdev to a persistently faulted 986 * state with 'zpool offline -f'. The persistent fault will 987 * remain across imports until cleared. 988 * 989 * Local vdevs will remain in the faulted state. 990 */ 991 if (spa_load_state(spa) == SPA_LOAD_OPEN || 992 spa_load_state(spa) == SPA_LOAD_IMPORT) { 993 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 994 &vd->vdev_faulted); 995 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 996 &vd->vdev_degraded); 997 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 998 &vd->vdev_removed); 999 1000 if (vd->vdev_faulted || vd->vdev_degraded) { 1001 const char *aux; 1002 1003 vd->vdev_label_aux = 1004 VDEV_AUX_ERR_EXCEEDED; 1005 if (nvlist_lookup_string(nv, 1006 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 1007 strcmp(aux, "external") == 0) 1008 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 1009 else 1010 vd->vdev_faulted = 0ULL; 1011 } 1012 } 1013 } 1014 1015 /* 1016 * Add ourselves to the parent's list of children. 1017 */ 1018 vdev_add_child(parent, vd); 1019 1020 *vdp = vd; 1021 1022 return (0); 1023 } 1024 1025 void 1026 vdev_free(vdev_t *vd) 1027 { 1028 spa_t *spa = vd->vdev_spa; 1029 1030 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 1031 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1032 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 1033 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); 1034 1035 /* 1036 * Scan queues are normally destroyed at the end of a scan. If the 1037 * queue exists here, that implies the vdev is being removed while 1038 * the scan is still running. 1039 */ 1040 if (vd->vdev_scan_io_queue != NULL) { 1041 mutex_enter(&vd->vdev_scan_io_queue_lock); 1042 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); 1043 vd->vdev_scan_io_queue = NULL; 1044 mutex_exit(&vd->vdev_scan_io_queue_lock); 1045 } 1046 1047 /* 1048 * vdev_free() implies closing the vdev first. This is simpler than 1049 * trying to ensure complicated semantics for all callers. 1050 */ 1051 vdev_close(vd); 1052 1053 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 1054 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 1055 1056 /* 1057 * Free all children. 1058 */ 1059 for (int c = 0; c < vd->vdev_children; c++) 1060 vdev_free(vd->vdev_child[c]); 1061 1062 ASSERT(vd->vdev_child == NULL); 1063 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 1064 1065 if (vd->vdev_ops->vdev_op_fini != NULL) 1066 vd->vdev_ops->vdev_op_fini(vd); 1067 1068 /* 1069 * Discard allocation state. 1070 */ 1071 if (vd->vdev_mg != NULL) { 1072 vdev_metaslab_fini(vd); 1073 metaslab_group_destroy(vd->vdev_mg); 1074 vd->vdev_mg = NULL; 1075 } 1076 if (vd->vdev_log_mg != NULL) { 1077 ASSERT0(vd->vdev_ms_count); 1078 metaslab_group_destroy(vd->vdev_log_mg); 1079 vd->vdev_log_mg = NULL; 1080 } 1081 1082 ASSERT0(vd->vdev_stat.vs_space); 1083 ASSERT0(vd->vdev_stat.vs_dspace); 1084 ASSERT0(vd->vdev_stat.vs_alloc); 1085 1086 /* 1087 * Remove this vdev from its parent's child list. 1088 */ 1089 vdev_remove_child(vd->vdev_parent, vd); 1090 1091 ASSERT(vd->vdev_parent == NULL); 1092 ASSERT(!list_link_active(&vd->vdev_leaf_node)); 1093 1094 /* 1095 * Clean up vdev structure. 1096 */ 1097 vdev_queue_fini(vd); 1098 1099 if (vd->vdev_path) 1100 spa_strfree(vd->vdev_path); 1101 if (vd->vdev_devid) 1102 spa_strfree(vd->vdev_devid); 1103 if (vd->vdev_physpath) 1104 spa_strfree(vd->vdev_physpath); 1105 1106 if (vd->vdev_enc_sysfs_path) 1107 spa_strfree(vd->vdev_enc_sysfs_path); 1108 1109 if (vd->vdev_fru) 1110 spa_strfree(vd->vdev_fru); 1111 1112 if (vd->vdev_isspare) 1113 spa_spare_remove(vd); 1114 if (vd->vdev_isl2cache) 1115 spa_l2cache_remove(vd); 1116 1117 txg_list_destroy(&vd->vdev_ms_list); 1118 txg_list_destroy(&vd->vdev_dtl_list); 1119 1120 mutex_enter(&vd->vdev_dtl_lock); 1121 space_map_close(vd->vdev_dtl_sm); 1122 for (int t = 0; t < DTL_TYPES; t++) { 1123 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 1124 range_tree_destroy(vd->vdev_dtl[t]); 1125 } 1126 mutex_exit(&vd->vdev_dtl_lock); 1127 1128 EQUIV(vd->vdev_indirect_births != NULL, 1129 vd->vdev_indirect_mapping != NULL); 1130 if (vd->vdev_indirect_births != NULL) { 1131 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1132 vdev_indirect_births_close(vd->vdev_indirect_births); 1133 } 1134 1135 if (vd->vdev_obsolete_sm != NULL) { 1136 ASSERT(vd->vdev_removing || 1137 vd->vdev_ops == &vdev_indirect_ops); 1138 space_map_close(vd->vdev_obsolete_sm); 1139 vd->vdev_obsolete_sm = NULL; 1140 } 1141 range_tree_destroy(vd->vdev_obsolete_segments); 1142 rw_destroy(&vd->vdev_indirect_rwlock); 1143 mutex_destroy(&vd->vdev_obsolete_lock); 1144 1145 mutex_destroy(&vd->vdev_dtl_lock); 1146 mutex_destroy(&vd->vdev_stat_lock); 1147 mutex_destroy(&vd->vdev_probe_lock); 1148 mutex_destroy(&vd->vdev_scan_io_queue_lock); 1149 1150 mutex_destroy(&vd->vdev_initialize_lock); 1151 mutex_destroy(&vd->vdev_initialize_io_lock); 1152 cv_destroy(&vd->vdev_initialize_io_cv); 1153 cv_destroy(&vd->vdev_initialize_cv); 1154 1155 mutex_destroy(&vd->vdev_trim_lock); 1156 mutex_destroy(&vd->vdev_autotrim_lock); 1157 mutex_destroy(&vd->vdev_trim_io_lock); 1158 cv_destroy(&vd->vdev_trim_cv); 1159 cv_destroy(&vd->vdev_autotrim_cv); 1160 cv_destroy(&vd->vdev_autotrim_kick_cv); 1161 cv_destroy(&vd->vdev_trim_io_cv); 1162 1163 mutex_destroy(&vd->vdev_rebuild_lock); 1164 cv_destroy(&vd->vdev_rebuild_cv); 1165 1166 zfs_ratelimit_fini(&vd->vdev_delay_rl); 1167 zfs_ratelimit_fini(&vd->vdev_deadman_rl); 1168 zfs_ratelimit_fini(&vd->vdev_checksum_rl); 1169 1170 if (vd == spa->spa_root_vdev) 1171 spa->spa_root_vdev = NULL; 1172 1173 kmem_free(vd, sizeof (vdev_t)); 1174 } 1175 1176 /* 1177 * Transfer top-level vdev state from svd to tvd. 1178 */ 1179 static void 1180 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 1181 { 1182 spa_t *spa = svd->vdev_spa; 1183 metaslab_t *msp; 1184 vdev_t *vd; 1185 int t; 1186 1187 ASSERT(tvd == tvd->vdev_top); 1188 1189 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite; 1190 tvd->vdev_ms_array = svd->vdev_ms_array; 1191 tvd->vdev_ms_shift = svd->vdev_ms_shift; 1192 tvd->vdev_ms_count = svd->vdev_ms_count; 1193 tvd->vdev_top_zap = svd->vdev_top_zap; 1194 1195 svd->vdev_ms_array = 0; 1196 svd->vdev_ms_shift = 0; 1197 svd->vdev_ms_count = 0; 1198 svd->vdev_top_zap = 0; 1199 1200 if (tvd->vdev_mg) 1201 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 1202 if (tvd->vdev_log_mg) 1203 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg); 1204 tvd->vdev_mg = svd->vdev_mg; 1205 tvd->vdev_log_mg = svd->vdev_log_mg; 1206 tvd->vdev_ms = svd->vdev_ms; 1207 1208 svd->vdev_mg = NULL; 1209 svd->vdev_log_mg = NULL; 1210 svd->vdev_ms = NULL; 1211 1212 if (tvd->vdev_mg != NULL) 1213 tvd->vdev_mg->mg_vd = tvd; 1214 if (tvd->vdev_log_mg != NULL) 1215 tvd->vdev_log_mg->mg_vd = tvd; 1216 1217 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 1218 svd->vdev_checkpoint_sm = NULL; 1219 1220 tvd->vdev_alloc_bias = svd->vdev_alloc_bias; 1221 svd->vdev_alloc_bias = VDEV_BIAS_NONE; 1222 1223 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 1224 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 1225 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 1226 1227 svd->vdev_stat.vs_alloc = 0; 1228 svd->vdev_stat.vs_space = 0; 1229 svd->vdev_stat.vs_dspace = 0; 1230 1231 /* 1232 * State which may be set on a top-level vdev that's in the 1233 * process of being removed. 1234 */ 1235 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 1236 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 1237 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 1238 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); 1239 ASSERT3P(tvd->vdev_indirect_births, ==, NULL); 1240 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); 1241 ASSERT0(tvd->vdev_noalloc); 1242 ASSERT0(tvd->vdev_removing); 1243 ASSERT0(tvd->vdev_rebuilding); 1244 tvd->vdev_noalloc = svd->vdev_noalloc; 1245 tvd->vdev_removing = svd->vdev_removing; 1246 tvd->vdev_rebuilding = svd->vdev_rebuilding; 1247 tvd->vdev_rebuild_config = svd->vdev_rebuild_config; 1248 tvd->vdev_indirect_config = svd->vdev_indirect_config; 1249 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 1250 tvd->vdev_indirect_births = svd->vdev_indirect_births; 1251 range_tree_swap(&svd->vdev_obsolete_segments, 1252 &tvd->vdev_obsolete_segments); 1253 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 1254 svd->vdev_indirect_config.vic_mapping_object = 0; 1255 svd->vdev_indirect_config.vic_births_object = 0; 1256 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 1257 svd->vdev_indirect_mapping = NULL; 1258 svd->vdev_indirect_births = NULL; 1259 svd->vdev_obsolete_sm = NULL; 1260 svd->vdev_noalloc = 0; 1261 svd->vdev_removing = 0; 1262 svd->vdev_rebuilding = 0; 1263 1264 for (t = 0; t < TXG_SIZE; t++) { 1265 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 1266 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 1267 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 1268 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 1269 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 1270 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 1271 } 1272 1273 if (list_link_active(&svd->vdev_config_dirty_node)) { 1274 vdev_config_clean(svd); 1275 vdev_config_dirty(tvd); 1276 } 1277 1278 if (list_link_active(&svd->vdev_state_dirty_node)) { 1279 vdev_state_clean(svd); 1280 vdev_state_dirty(tvd); 1281 } 1282 1283 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 1284 svd->vdev_deflate_ratio = 0; 1285 1286 tvd->vdev_islog = svd->vdev_islog; 1287 svd->vdev_islog = 0; 1288 1289 dsl_scan_io_queue_vdev_xfer(svd, tvd); 1290 } 1291 1292 static void 1293 vdev_top_update(vdev_t *tvd, vdev_t *vd) 1294 { 1295 if (vd == NULL) 1296 return; 1297 1298 vd->vdev_top = tvd; 1299 1300 for (int c = 0; c < vd->vdev_children; c++) 1301 vdev_top_update(tvd, vd->vdev_child[c]); 1302 } 1303 1304 /* 1305 * Add a mirror/replacing vdev above an existing vdev. There is no need to 1306 * call .vdev_op_init() since mirror/replacing vdevs do not have private state. 1307 */ 1308 vdev_t * 1309 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 1310 { 1311 spa_t *spa = cvd->vdev_spa; 1312 vdev_t *pvd = cvd->vdev_parent; 1313 vdev_t *mvd; 1314 1315 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1316 1317 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 1318 1319 mvd->vdev_asize = cvd->vdev_asize; 1320 mvd->vdev_min_asize = cvd->vdev_min_asize; 1321 mvd->vdev_max_asize = cvd->vdev_max_asize; 1322 mvd->vdev_psize = cvd->vdev_psize; 1323 mvd->vdev_ashift = cvd->vdev_ashift; 1324 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift; 1325 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift; 1326 mvd->vdev_state = cvd->vdev_state; 1327 mvd->vdev_crtxg = cvd->vdev_crtxg; 1328 1329 vdev_remove_child(pvd, cvd); 1330 vdev_add_child(pvd, mvd); 1331 cvd->vdev_id = mvd->vdev_children; 1332 vdev_add_child(mvd, cvd); 1333 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1334 1335 if (mvd == mvd->vdev_top) 1336 vdev_top_transfer(cvd, mvd); 1337 1338 return (mvd); 1339 } 1340 1341 /* 1342 * Remove a 1-way mirror/replacing vdev from the tree. 1343 */ 1344 void 1345 vdev_remove_parent(vdev_t *cvd) 1346 { 1347 vdev_t *mvd = cvd->vdev_parent; 1348 vdev_t *pvd = mvd->vdev_parent; 1349 1350 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1351 1352 ASSERT(mvd->vdev_children == 1); 1353 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1354 mvd->vdev_ops == &vdev_replacing_ops || 1355 mvd->vdev_ops == &vdev_spare_ops); 1356 cvd->vdev_ashift = mvd->vdev_ashift; 1357 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift; 1358 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift; 1359 vdev_remove_child(mvd, cvd); 1360 vdev_remove_child(pvd, mvd); 1361 1362 /* 1363 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1364 * Otherwise, we could have detached an offline device, and when we 1365 * go to import the pool we'll think we have two top-level vdevs, 1366 * instead of a different version of the same top-level vdev. 1367 */ 1368 if (mvd->vdev_top == mvd) { 1369 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1370 cvd->vdev_orig_guid = cvd->vdev_guid; 1371 cvd->vdev_guid += guid_delta; 1372 cvd->vdev_guid_sum += guid_delta; 1373 1374 /* 1375 * If pool not set for autoexpand, we need to also preserve 1376 * mvd's asize to prevent automatic expansion of cvd. 1377 * Otherwise if we are adjusting the mirror by attaching and 1378 * detaching children of non-uniform sizes, the mirror could 1379 * autoexpand, unexpectedly requiring larger devices to 1380 * re-establish the mirror. 1381 */ 1382 if (!cvd->vdev_spa->spa_autoexpand) 1383 cvd->vdev_asize = mvd->vdev_asize; 1384 } 1385 cvd->vdev_id = mvd->vdev_id; 1386 vdev_add_child(pvd, cvd); 1387 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1388 1389 if (cvd == cvd->vdev_top) 1390 vdev_top_transfer(mvd, cvd); 1391 1392 ASSERT(mvd->vdev_children == 0); 1393 vdev_free(mvd); 1394 } 1395 1396 void 1397 vdev_metaslab_group_create(vdev_t *vd) 1398 { 1399 spa_t *spa = vd->vdev_spa; 1400 1401 /* 1402 * metaslab_group_create was delayed until allocation bias was available 1403 */ 1404 if (vd->vdev_mg == NULL) { 1405 metaslab_class_t *mc; 1406 1407 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) 1408 vd->vdev_alloc_bias = VDEV_BIAS_LOG; 1409 1410 ASSERT3U(vd->vdev_islog, ==, 1411 (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); 1412 1413 switch (vd->vdev_alloc_bias) { 1414 case VDEV_BIAS_LOG: 1415 mc = spa_log_class(spa); 1416 break; 1417 case VDEV_BIAS_SPECIAL: 1418 mc = spa_special_class(spa); 1419 break; 1420 case VDEV_BIAS_DEDUP: 1421 mc = spa_dedup_class(spa); 1422 break; 1423 default: 1424 mc = spa_normal_class(spa); 1425 } 1426 1427 vd->vdev_mg = metaslab_group_create(mc, vd, 1428 spa->spa_alloc_count); 1429 1430 if (!vd->vdev_islog) { 1431 vd->vdev_log_mg = metaslab_group_create( 1432 spa_embedded_log_class(spa), vd, 1); 1433 } 1434 1435 /* 1436 * The spa ashift min/max only apply for the normal metaslab 1437 * class. Class destination is late binding so ashift boundary 1438 * setting had to wait until now. 1439 */ 1440 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1441 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { 1442 if (vd->vdev_ashift > spa->spa_max_ashift) 1443 spa->spa_max_ashift = vd->vdev_ashift; 1444 if (vd->vdev_ashift < spa->spa_min_ashift) 1445 spa->spa_min_ashift = vd->vdev_ashift; 1446 1447 uint64_t min_alloc = vdev_get_min_alloc(vd); 1448 if (min_alloc < spa->spa_min_alloc) 1449 spa->spa_min_alloc = min_alloc; 1450 } 1451 } 1452 } 1453 1454 int 1455 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1456 { 1457 spa_t *spa = vd->vdev_spa; 1458 uint64_t oldc = vd->vdev_ms_count; 1459 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1460 metaslab_t **mspp; 1461 int error; 1462 boolean_t expanding = (oldc != 0); 1463 1464 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1465 1466 /* 1467 * This vdev is not being allocated from yet or is a hole. 1468 */ 1469 if (vd->vdev_ms_shift == 0) 1470 return (0); 1471 1472 ASSERT(!vd->vdev_ishole); 1473 1474 ASSERT(oldc <= newc); 1475 1476 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1477 1478 if (expanding) { 1479 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp)); 1480 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1481 } 1482 1483 vd->vdev_ms = mspp; 1484 vd->vdev_ms_count = newc; 1485 1486 for (uint64_t m = oldc; m < newc; m++) { 1487 uint64_t object = 0; 1488 /* 1489 * vdev_ms_array may be 0 if we are creating the "fake" 1490 * metaslabs for an indirect vdev for zdb's leak detection. 1491 * See zdb_leak_init(). 1492 */ 1493 if (txg == 0 && vd->vdev_ms_array != 0) { 1494 error = dmu_read(spa->spa_meta_objset, 1495 vd->vdev_ms_array, 1496 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1497 DMU_READ_PREFETCH); 1498 if (error != 0) { 1499 vdev_dbgmsg(vd, "unable to read the metaslab " 1500 "array [error=%d]", error); 1501 return (error); 1502 } 1503 } 1504 1505 error = metaslab_init(vd->vdev_mg, m, object, txg, 1506 &(vd->vdev_ms[m])); 1507 if (error != 0) { 1508 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1509 error); 1510 return (error); 1511 } 1512 } 1513 1514 /* 1515 * Find the emptiest metaslab on the vdev and mark it for use for 1516 * embedded slog by moving it from the regular to the log metaslab 1517 * group. 1518 */ 1519 if (vd->vdev_mg->mg_class == spa_normal_class(spa) && 1520 vd->vdev_ms_count > zfs_embedded_slog_min_ms && 1521 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) { 1522 uint64_t slog_msid = 0; 1523 uint64_t smallest = UINT64_MAX; 1524 1525 /* 1526 * Note, we only search the new metaslabs, because the old 1527 * (pre-existing) ones may be active (e.g. have non-empty 1528 * range_tree's), and we don't move them to the new 1529 * metaslab_t. 1530 */ 1531 for (uint64_t m = oldc; m < newc; m++) { 1532 uint64_t alloc = 1533 space_map_allocated(vd->vdev_ms[m]->ms_sm); 1534 if (alloc < smallest) { 1535 slog_msid = m; 1536 smallest = alloc; 1537 } 1538 } 1539 metaslab_t *slog_ms = vd->vdev_ms[slog_msid]; 1540 /* 1541 * The metaslab was marked as dirty at the end of 1542 * metaslab_init(). Remove it from the dirty list so that we 1543 * can uninitialize and reinitialize it to the new class. 1544 */ 1545 if (txg != 0) { 1546 (void) txg_list_remove_this(&vd->vdev_ms_list, 1547 slog_ms, txg); 1548 } 1549 uint64_t sm_obj = space_map_object(slog_ms->ms_sm); 1550 metaslab_fini(slog_ms); 1551 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg, 1552 &vd->vdev_ms[slog_msid])); 1553 } 1554 1555 if (txg == 0) 1556 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1557 1558 /* 1559 * If the vdev is marked as non-allocating then don't 1560 * activate the metaslabs since we want to ensure that 1561 * no allocations are performed on this device. 1562 */ 1563 if (vd->vdev_noalloc) { 1564 /* track non-allocating vdev space */ 1565 spa->spa_nonallocating_dspace += spa_deflate(spa) ? 1566 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 1567 } else if (!expanding) { 1568 metaslab_group_activate(vd->vdev_mg); 1569 if (vd->vdev_log_mg != NULL) 1570 metaslab_group_activate(vd->vdev_log_mg); 1571 } 1572 1573 if (txg == 0) 1574 spa_config_exit(spa, SCL_ALLOC, FTAG); 1575 1576 return (0); 1577 } 1578 1579 void 1580 vdev_metaslab_fini(vdev_t *vd) 1581 { 1582 if (vd->vdev_checkpoint_sm != NULL) { 1583 ASSERT(spa_feature_is_active(vd->vdev_spa, 1584 SPA_FEATURE_POOL_CHECKPOINT)); 1585 space_map_close(vd->vdev_checkpoint_sm); 1586 /* 1587 * Even though we close the space map, we need to set its 1588 * pointer to NULL. The reason is that vdev_metaslab_fini() 1589 * may be called multiple times for certain operations 1590 * (i.e. when destroying a pool) so we need to ensure that 1591 * this clause never executes twice. This logic is similar 1592 * to the one used for the vdev_ms clause below. 1593 */ 1594 vd->vdev_checkpoint_sm = NULL; 1595 } 1596 1597 if (vd->vdev_ms != NULL) { 1598 metaslab_group_t *mg = vd->vdev_mg; 1599 1600 metaslab_group_passivate(mg); 1601 if (vd->vdev_log_mg != NULL) { 1602 ASSERT(!vd->vdev_islog); 1603 metaslab_group_passivate(vd->vdev_log_mg); 1604 } 1605 1606 uint64_t count = vd->vdev_ms_count; 1607 for (uint64_t m = 0; m < count; m++) { 1608 metaslab_t *msp = vd->vdev_ms[m]; 1609 if (msp != NULL) 1610 metaslab_fini(msp); 1611 } 1612 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1613 vd->vdev_ms = NULL; 1614 vd->vdev_ms_count = 0; 1615 1616 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 1617 ASSERT0(mg->mg_histogram[i]); 1618 if (vd->vdev_log_mg != NULL) 1619 ASSERT0(vd->vdev_log_mg->mg_histogram[i]); 1620 } 1621 } 1622 ASSERT0(vd->vdev_ms_count); 1623 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0); 1624 } 1625 1626 typedef struct vdev_probe_stats { 1627 boolean_t vps_readable; 1628 boolean_t vps_writeable; 1629 int vps_flags; 1630 } vdev_probe_stats_t; 1631 1632 static void 1633 vdev_probe_done(zio_t *zio) 1634 { 1635 spa_t *spa = zio->io_spa; 1636 vdev_t *vd = zio->io_vd; 1637 vdev_probe_stats_t *vps = zio->io_private; 1638 1639 ASSERT(vd->vdev_probe_zio != NULL); 1640 1641 if (zio->io_type == ZIO_TYPE_READ) { 1642 if (zio->io_error == 0) 1643 vps->vps_readable = 1; 1644 if (zio->io_error == 0 && spa_writeable(spa)) { 1645 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1646 zio->io_offset, zio->io_size, zio->io_abd, 1647 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1648 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1649 } else { 1650 abd_free(zio->io_abd); 1651 } 1652 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1653 if (zio->io_error == 0) 1654 vps->vps_writeable = 1; 1655 abd_free(zio->io_abd); 1656 } else if (zio->io_type == ZIO_TYPE_NULL) { 1657 zio_t *pio; 1658 zio_link_t *zl; 1659 1660 vd->vdev_cant_read |= !vps->vps_readable; 1661 vd->vdev_cant_write |= !vps->vps_writeable; 1662 1663 if (vdev_readable(vd) && 1664 (vdev_writeable(vd) || !spa_writeable(spa))) { 1665 zio->io_error = 0; 1666 } else { 1667 ASSERT(zio->io_error != 0); 1668 vdev_dbgmsg(vd, "failed probe"); 1669 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1670 spa, vd, NULL, NULL, 0); 1671 zio->io_error = SET_ERROR(ENXIO); 1672 } 1673 1674 mutex_enter(&vd->vdev_probe_lock); 1675 ASSERT(vd->vdev_probe_zio == zio); 1676 vd->vdev_probe_zio = NULL; 1677 mutex_exit(&vd->vdev_probe_lock); 1678 1679 zl = NULL; 1680 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1681 if (!vdev_accessible(vd, pio)) 1682 pio->io_error = SET_ERROR(ENXIO); 1683 1684 kmem_free(vps, sizeof (*vps)); 1685 } 1686 } 1687 1688 /* 1689 * Determine whether this device is accessible. 1690 * 1691 * Read and write to several known locations: the pad regions of each 1692 * vdev label but the first, which we leave alone in case it contains 1693 * a VTOC. 1694 */ 1695 zio_t * 1696 vdev_probe(vdev_t *vd, zio_t *zio) 1697 { 1698 spa_t *spa = vd->vdev_spa; 1699 vdev_probe_stats_t *vps = NULL; 1700 zio_t *pio; 1701 1702 ASSERT(vd->vdev_ops->vdev_op_leaf); 1703 1704 /* 1705 * Don't probe the probe. 1706 */ 1707 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1708 return (NULL); 1709 1710 /* 1711 * To prevent 'probe storms' when a device fails, we create 1712 * just one probe i/o at a time. All zios that want to probe 1713 * this vdev will become parents of the probe io. 1714 */ 1715 mutex_enter(&vd->vdev_probe_lock); 1716 1717 if ((pio = vd->vdev_probe_zio) == NULL) { 1718 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1719 1720 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1721 ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD; 1722 1723 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1724 /* 1725 * vdev_cant_read and vdev_cant_write can only 1726 * transition from TRUE to FALSE when we have the 1727 * SCL_ZIO lock as writer; otherwise they can only 1728 * transition from FALSE to TRUE. This ensures that 1729 * any zio looking at these values can assume that 1730 * failures persist for the life of the I/O. That's 1731 * important because when a device has intermittent 1732 * connectivity problems, we want to ensure that 1733 * they're ascribed to the device (ENXIO) and not 1734 * the zio (EIO). 1735 * 1736 * Since we hold SCL_ZIO as writer here, clear both 1737 * values so the probe can reevaluate from first 1738 * principles. 1739 */ 1740 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1741 vd->vdev_cant_read = B_FALSE; 1742 vd->vdev_cant_write = B_FALSE; 1743 } 1744 1745 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1746 vdev_probe_done, vps, 1747 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1748 1749 /* 1750 * We can't change the vdev state in this context, so we 1751 * kick off an async task to do it on our behalf. 1752 */ 1753 if (zio != NULL) { 1754 vd->vdev_probe_wanted = B_TRUE; 1755 spa_async_request(spa, SPA_ASYNC_PROBE); 1756 } 1757 } 1758 1759 if (zio != NULL) 1760 zio_add_child(zio, pio); 1761 1762 mutex_exit(&vd->vdev_probe_lock); 1763 1764 if (vps == NULL) { 1765 ASSERT(zio != NULL); 1766 return (NULL); 1767 } 1768 1769 for (int l = 1; l < VDEV_LABELS; l++) { 1770 zio_nowait(zio_read_phys(pio, vd, 1771 vdev_label_offset(vd->vdev_psize, l, 1772 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE, 1773 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1774 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1775 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1776 } 1777 1778 if (zio == NULL) 1779 return (pio); 1780 1781 zio_nowait(pio); 1782 return (NULL); 1783 } 1784 1785 static void 1786 vdev_load_child(void *arg) 1787 { 1788 vdev_t *vd = arg; 1789 1790 vd->vdev_load_error = vdev_load(vd); 1791 } 1792 1793 static void 1794 vdev_open_child(void *arg) 1795 { 1796 vdev_t *vd = arg; 1797 1798 vd->vdev_open_thread = curthread; 1799 vd->vdev_open_error = vdev_open(vd); 1800 vd->vdev_open_thread = NULL; 1801 } 1802 1803 static boolean_t 1804 vdev_uses_zvols(vdev_t *vd) 1805 { 1806 #ifdef _KERNEL 1807 if (zvol_is_zvol(vd->vdev_path)) 1808 return (B_TRUE); 1809 #endif 1810 1811 for (int c = 0; c < vd->vdev_children; c++) 1812 if (vdev_uses_zvols(vd->vdev_child[c])) 1813 return (B_TRUE); 1814 1815 return (B_FALSE); 1816 } 1817 1818 /* 1819 * Returns B_TRUE if the passed child should be opened. 1820 */ 1821 static boolean_t 1822 vdev_default_open_children_func(vdev_t *vd) 1823 { 1824 (void) vd; 1825 return (B_TRUE); 1826 } 1827 1828 /* 1829 * Open the requested child vdevs. If any of the leaf vdevs are using 1830 * a ZFS volume then do the opens in a single thread. This avoids a 1831 * deadlock when the current thread is holding the spa_namespace_lock. 1832 */ 1833 static void 1834 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func) 1835 { 1836 int children = vd->vdev_children; 1837 1838 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri, 1839 children, children, TASKQ_PREPOPULATE); 1840 vd->vdev_nonrot = B_TRUE; 1841 1842 for (int c = 0; c < children; c++) { 1843 vdev_t *cvd = vd->vdev_child[c]; 1844 1845 if (open_func(cvd) == B_FALSE) 1846 continue; 1847 1848 if (tq == NULL || vdev_uses_zvols(vd)) { 1849 cvd->vdev_open_error = vdev_open(cvd); 1850 } else { 1851 VERIFY(taskq_dispatch(tq, vdev_open_child, 1852 cvd, TQ_SLEEP) != TASKQID_INVALID); 1853 } 1854 1855 vd->vdev_nonrot &= cvd->vdev_nonrot; 1856 } 1857 1858 if (tq != NULL) { 1859 taskq_wait(tq); 1860 taskq_destroy(tq); 1861 } 1862 } 1863 1864 /* 1865 * Open all child vdevs. 1866 */ 1867 void 1868 vdev_open_children(vdev_t *vd) 1869 { 1870 vdev_open_children_impl(vd, vdev_default_open_children_func); 1871 } 1872 1873 /* 1874 * Conditionally open a subset of child vdevs. 1875 */ 1876 void 1877 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func) 1878 { 1879 vdev_open_children_impl(vd, open_func); 1880 } 1881 1882 /* 1883 * Compute the raidz-deflation ratio. Note, we hard-code 1884 * in 128k (1 << 17) because it is the "typical" blocksize. 1885 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 1886 * otherwise it would inconsistently account for existing bp's. 1887 */ 1888 static void 1889 vdev_set_deflate_ratio(vdev_t *vd) 1890 { 1891 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 1892 vd->vdev_deflate_ratio = (1 << 17) / 1893 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 1894 } 1895 } 1896 1897 /* 1898 * Choose the best of two ashifts, preferring one between logical ashift 1899 * (absolute minimum) and administrator defined maximum, otherwise take 1900 * the biggest of the two. 1901 */ 1902 uint64_t 1903 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b) 1904 { 1905 if (a > logical && a <= zfs_vdev_max_auto_ashift) { 1906 if (b <= logical || b > zfs_vdev_max_auto_ashift) 1907 return (a); 1908 else 1909 return (MAX(a, b)); 1910 } else if (b <= logical || b > zfs_vdev_max_auto_ashift) 1911 return (MAX(a, b)); 1912 return (b); 1913 } 1914 1915 /* 1916 * Maximize performance by inflating the configured ashift for top level 1917 * vdevs to be as close to the physical ashift as possible while maintaining 1918 * administrator defined limits and ensuring it doesn't go below the 1919 * logical ashift. 1920 */ 1921 static void 1922 vdev_ashift_optimize(vdev_t *vd) 1923 { 1924 ASSERT(vd == vd->vdev_top); 1925 1926 if (vd->vdev_ashift < vd->vdev_physical_ashift && 1927 vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) { 1928 vd->vdev_ashift = MIN( 1929 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift), 1930 MAX(zfs_vdev_min_auto_ashift, 1931 vd->vdev_physical_ashift)); 1932 } else { 1933 /* 1934 * If the logical and physical ashifts are the same, then 1935 * we ensure that the top-level vdev's ashift is not smaller 1936 * than our minimum ashift value. For the unusual case 1937 * where logical ashift > physical ashift, we can't cap 1938 * the calculated ashift based on max ashift as that 1939 * would cause failures. 1940 * We still check if we need to increase it to match 1941 * the min ashift. 1942 */ 1943 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift, 1944 vd->vdev_ashift); 1945 } 1946 } 1947 1948 /* 1949 * Prepare a virtual device for access. 1950 */ 1951 int 1952 vdev_open(vdev_t *vd) 1953 { 1954 spa_t *spa = vd->vdev_spa; 1955 int error; 1956 uint64_t osize = 0; 1957 uint64_t max_osize = 0; 1958 uint64_t asize, max_asize, psize; 1959 uint64_t logical_ashift = 0; 1960 uint64_t physical_ashift = 0; 1961 1962 ASSERT(vd->vdev_open_thread == curthread || 1963 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1964 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1965 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1966 vd->vdev_state == VDEV_STATE_OFFLINE); 1967 1968 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1969 vd->vdev_cant_read = B_FALSE; 1970 vd->vdev_cant_write = B_FALSE; 1971 vd->vdev_min_asize = vdev_get_min_asize(vd); 1972 1973 /* 1974 * If this vdev is not removed, check its fault status. If it's 1975 * faulted, bail out of the open. 1976 */ 1977 if (!vd->vdev_removed && vd->vdev_faulted) { 1978 ASSERT(vd->vdev_children == 0); 1979 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1980 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1981 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1982 vd->vdev_label_aux); 1983 return (SET_ERROR(ENXIO)); 1984 } else if (vd->vdev_offline) { 1985 ASSERT(vd->vdev_children == 0); 1986 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1987 return (SET_ERROR(ENXIO)); 1988 } 1989 1990 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, 1991 &logical_ashift, &physical_ashift); 1992 1993 /* Keep the device in removed state if unplugged */ 1994 if (error == ENOENT && vd->vdev_removed) { 1995 vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED, 1996 VDEV_AUX_NONE); 1997 return (error); 1998 } 1999 2000 /* 2001 * Physical volume size should never be larger than its max size, unless 2002 * the disk has shrunk while we were reading it or the device is buggy 2003 * or damaged: either way it's not safe for use, bail out of the open. 2004 */ 2005 if (osize > max_osize) { 2006 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2007 VDEV_AUX_OPEN_FAILED); 2008 return (SET_ERROR(ENXIO)); 2009 } 2010 2011 /* 2012 * Reset the vdev_reopening flag so that we actually close 2013 * the vdev on error. 2014 */ 2015 vd->vdev_reopening = B_FALSE; 2016 if (zio_injection_enabled && error == 0) 2017 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO)); 2018 2019 if (error) { 2020 if (vd->vdev_removed && 2021 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 2022 vd->vdev_removed = B_FALSE; 2023 2024 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 2025 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 2026 vd->vdev_stat.vs_aux); 2027 } else { 2028 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2029 vd->vdev_stat.vs_aux); 2030 } 2031 return (error); 2032 } 2033 2034 vd->vdev_removed = B_FALSE; 2035 2036 /* 2037 * Recheck the faulted flag now that we have confirmed that 2038 * the vdev is accessible. If we're faulted, bail. 2039 */ 2040 if (vd->vdev_faulted) { 2041 ASSERT(vd->vdev_children == 0); 2042 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 2043 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 2044 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2045 vd->vdev_label_aux); 2046 return (SET_ERROR(ENXIO)); 2047 } 2048 2049 if (vd->vdev_degraded) { 2050 ASSERT(vd->vdev_children == 0); 2051 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2052 VDEV_AUX_ERR_EXCEEDED); 2053 } else { 2054 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 2055 } 2056 2057 /* 2058 * For hole or missing vdevs we just return success. 2059 */ 2060 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 2061 return (0); 2062 2063 for (int c = 0; c < vd->vdev_children; c++) { 2064 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 2065 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2066 VDEV_AUX_NONE); 2067 break; 2068 } 2069 } 2070 2071 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 2072 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 2073 2074 if (vd->vdev_children == 0) { 2075 if (osize < SPA_MINDEVSIZE) { 2076 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2077 VDEV_AUX_TOO_SMALL); 2078 return (SET_ERROR(EOVERFLOW)); 2079 } 2080 psize = osize; 2081 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 2082 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 2083 VDEV_LABEL_END_SIZE); 2084 } else { 2085 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 2086 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 2087 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2088 VDEV_AUX_TOO_SMALL); 2089 return (SET_ERROR(EOVERFLOW)); 2090 } 2091 psize = 0; 2092 asize = osize; 2093 max_asize = max_osize; 2094 } 2095 2096 /* 2097 * If the vdev was expanded, record this so that we can re-create the 2098 * uberblock rings in labels {2,3}, during the next sync. 2099 */ 2100 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0)) 2101 vd->vdev_copy_uberblocks = B_TRUE; 2102 2103 vd->vdev_psize = psize; 2104 2105 /* 2106 * Make sure the allocatable size hasn't shrunk too much. 2107 */ 2108 if (asize < vd->vdev_min_asize) { 2109 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2110 VDEV_AUX_BAD_LABEL); 2111 return (SET_ERROR(EINVAL)); 2112 } 2113 2114 /* 2115 * We can always set the logical/physical ashift members since 2116 * their values are only used to calculate the vdev_ashift when 2117 * the device is first added to the config. These values should 2118 * not be used for anything else since they may change whenever 2119 * the device is reopened and we don't store them in the label. 2120 */ 2121 vd->vdev_physical_ashift = 2122 MAX(physical_ashift, vd->vdev_physical_ashift); 2123 vd->vdev_logical_ashift = MAX(logical_ashift, 2124 vd->vdev_logical_ashift); 2125 2126 if (vd->vdev_asize == 0) { 2127 /* 2128 * This is the first-ever open, so use the computed values. 2129 * For compatibility, a different ashift can be requested. 2130 */ 2131 vd->vdev_asize = asize; 2132 vd->vdev_max_asize = max_asize; 2133 2134 /* 2135 * If the vdev_ashift was not overridden at creation time, 2136 * then set it the logical ashift and optimize the ashift. 2137 */ 2138 if (vd->vdev_ashift == 0) { 2139 vd->vdev_ashift = vd->vdev_logical_ashift; 2140 2141 if (vd->vdev_logical_ashift > ASHIFT_MAX) { 2142 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2143 VDEV_AUX_ASHIFT_TOO_BIG); 2144 return (SET_ERROR(EDOM)); 2145 } 2146 2147 if (vd->vdev_top == vd) { 2148 vdev_ashift_optimize(vd); 2149 } 2150 } 2151 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN || 2152 vd->vdev_ashift > ASHIFT_MAX)) { 2153 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2154 VDEV_AUX_BAD_ASHIFT); 2155 return (SET_ERROR(EDOM)); 2156 } 2157 } else { 2158 /* 2159 * Make sure the alignment required hasn't increased. 2160 */ 2161 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift && 2162 vd->vdev_ops->vdev_op_leaf) { 2163 (void) zfs_ereport_post( 2164 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT, 2165 spa, vd, NULL, NULL, 0); 2166 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2167 VDEV_AUX_BAD_LABEL); 2168 return (SET_ERROR(EDOM)); 2169 } 2170 vd->vdev_max_asize = max_asize; 2171 } 2172 2173 /* 2174 * If all children are healthy we update asize if either: 2175 * The asize has increased, due to a device expansion caused by dynamic 2176 * LUN growth or vdev replacement, and automatic expansion is enabled; 2177 * making the additional space available. 2178 * 2179 * The asize has decreased, due to a device shrink usually caused by a 2180 * vdev replace with a smaller device. This ensures that calculations 2181 * based of max_asize and asize e.g. esize are always valid. It's safe 2182 * to do this as we've already validated that asize is greater than 2183 * vdev_min_asize. 2184 */ 2185 if (vd->vdev_state == VDEV_STATE_HEALTHY && 2186 ((asize > vd->vdev_asize && 2187 (vd->vdev_expanding || spa->spa_autoexpand)) || 2188 (asize < vd->vdev_asize))) 2189 vd->vdev_asize = asize; 2190 2191 vdev_set_min_asize(vd); 2192 2193 /* 2194 * Ensure we can issue some IO before declaring the 2195 * vdev open for business. 2196 */ 2197 if (vd->vdev_ops->vdev_op_leaf && 2198 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 2199 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2200 VDEV_AUX_ERR_EXCEEDED); 2201 return (error); 2202 } 2203 2204 /* 2205 * Track the minimum allocation size. 2206 */ 2207 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 2208 vd->vdev_islog == 0 && vd->vdev_aux == NULL) { 2209 uint64_t min_alloc = vdev_get_min_alloc(vd); 2210 if (min_alloc < spa->spa_min_alloc) 2211 spa->spa_min_alloc = min_alloc; 2212 } 2213 2214 /* 2215 * If this is a leaf vdev, assess whether a resilver is needed. 2216 * But don't do this if we are doing a reopen for a scrub, since 2217 * this would just restart the scrub we are already doing. 2218 */ 2219 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen) 2220 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd); 2221 2222 return (0); 2223 } 2224 2225 static void 2226 vdev_validate_child(void *arg) 2227 { 2228 vdev_t *vd = arg; 2229 2230 vd->vdev_validate_thread = curthread; 2231 vd->vdev_validate_error = vdev_validate(vd); 2232 vd->vdev_validate_thread = NULL; 2233 } 2234 2235 /* 2236 * Called once the vdevs are all opened, this routine validates the label 2237 * contents. This needs to be done before vdev_load() so that we don't 2238 * inadvertently do repair I/Os to the wrong device. 2239 * 2240 * This function will only return failure if one of the vdevs indicates that it 2241 * has since been destroyed or exported. This is only possible if 2242 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 2243 * will be updated but the function will return 0. 2244 */ 2245 int 2246 vdev_validate(vdev_t *vd) 2247 { 2248 spa_t *spa = vd->vdev_spa; 2249 taskq_t *tq = NULL; 2250 nvlist_t *label; 2251 uint64_t guid = 0, aux_guid = 0, top_guid; 2252 uint64_t state; 2253 nvlist_t *nvl; 2254 uint64_t txg; 2255 int children = vd->vdev_children; 2256 2257 if (vdev_validate_skip) 2258 return (0); 2259 2260 if (children > 0) { 2261 tq = taskq_create("vdev_validate", children, minclsyspri, 2262 children, children, TASKQ_PREPOPULATE); 2263 } 2264 2265 for (uint64_t c = 0; c < children; c++) { 2266 vdev_t *cvd = vd->vdev_child[c]; 2267 2268 if (tq == NULL || vdev_uses_zvols(cvd)) { 2269 vdev_validate_child(cvd); 2270 } else { 2271 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd, 2272 TQ_SLEEP) != TASKQID_INVALID); 2273 } 2274 } 2275 if (tq != NULL) { 2276 taskq_wait(tq); 2277 taskq_destroy(tq); 2278 } 2279 for (int c = 0; c < children; c++) { 2280 int error = vd->vdev_child[c]->vdev_validate_error; 2281 2282 if (error != 0) 2283 return (SET_ERROR(EBADF)); 2284 } 2285 2286 2287 /* 2288 * If the device has already failed, or was marked offline, don't do 2289 * any further validation. Otherwise, label I/O will fail and we will 2290 * overwrite the previous state. 2291 */ 2292 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 2293 return (0); 2294 2295 /* 2296 * If we are performing an extreme rewind, we allow for a label that 2297 * was modified at a point after the current txg. 2298 * If config lock is not held do not check for the txg. spa_sync could 2299 * be updating the vdev's label before updating spa_last_synced_txg. 2300 */ 2301 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 2302 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 2303 txg = UINT64_MAX; 2304 else 2305 txg = spa_last_synced_txg(spa); 2306 2307 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 2308 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2309 VDEV_AUX_BAD_LABEL); 2310 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 2311 "txg %llu", (u_longlong_t)txg); 2312 return (0); 2313 } 2314 2315 /* 2316 * Determine if this vdev has been split off into another 2317 * pool. If so, then refuse to open it. 2318 */ 2319 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 2320 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 2321 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2322 VDEV_AUX_SPLIT_POOL); 2323 nvlist_free(label); 2324 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 2325 return (0); 2326 } 2327 2328 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 2329 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2330 VDEV_AUX_CORRUPT_DATA); 2331 nvlist_free(label); 2332 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2333 ZPOOL_CONFIG_POOL_GUID); 2334 return (0); 2335 } 2336 2337 /* 2338 * If config is not trusted then ignore the spa guid check. This is 2339 * necessary because if the machine crashed during a re-guid the new 2340 * guid might have been written to all of the vdev labels, but not the 2341 * cached config. The check will be performed again once we have the 2342 * trusted config from the MOS. 2343 */ 2344 if (spa->spa_trust_config && guid != spa_guid(spa)) { 2345 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2346 VDEV_AUX_CORRUPT_DATA); 2347 nvlist_free(label); 2348 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 2349 "match config (%llu != %llu)", (u_longlong_t)guid, 2350 (u_longlong_t)spa_guid(spa)); 2351 return (0); 2352 } 2353 2354 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 2355 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 2356 &aux_guid) != 0) 2357 aux_guid = 0; 2358 2359 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 2360 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2361 VDEV_AUX_CORRUPT_DATA); 2362 nvlist_free(label); 2363 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2364 ZPOOL_CONFIG_GUID); 2365 return (0); 2366 } 2367 2368 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 2369 != 0) { 2370 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2371 VDEV_AUX_CORRUPT_DATA); 2372 nvlist_free(label); 2373 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2374 ZPOOL_CONFIG_TOP_GUID); 2375 return (0); 2376 } 2377 2378 /* 2379 * If this vdev just became a top-level vdev because its sibling was 2380 * detached, it will have adopted the parent's vdev guid -- but the 2381 * label may or may not be on disk yet. Fortunately, either version 2382 * of the label will have the same top guid, so if we're a top-level 2383 * vdev, we can safely compare to that instead. 2384 * However, if the config comes from a cachefile that failed to update 2385 * after the detach, a top-level vdev will appear as a non top-level 2386 * vdev in the config. Also relax the constraints if we perform an 2387 * extreme rewind. 2388 * 2389 * If we split this vdev off instead, then we also check the 2390 * original pool's guid. We don't want to consider the vdev 2391 * corrupt if it is partway through a split operation. 2392 */ 2393 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 2394 boolean_t mismatch = B_FALSE; 2395 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 2396 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 2397 mismatch = B_TRUE; 2398 } else { 2399 if (vd->vdev_guid != top_guid && 2400 vd->vdev_top->vdev_guid != guid) 2401 mismatch = B_TRUE; 2402 } 2403 2404 if (mismatch) { 2405 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2406 VDEV_AUX_CORRUPT_DATA); 2407 nvlist_free(label); 2408 vdev_dbgmsg(vd, "vdev_validate: config guid " 2409 "doesn't match label guid"); 2410 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 2411 (u_longlong_t)vd->vdev_guid, 2412 (u_longlong_t)vd->vdev_top->vdev_guid); 2413 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 2414 "aux_guid %llu", (u_longlong_t)guid, 2415 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 2416 return (0); 2417 } 2418 } 2419 2420 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 2421 &state) != 0) { 2422 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2423 VDEV_AUX_CORRUPT_DATA); 2424 nvlist_free(label); 2425 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2426 ZPOOL_CONFIG_POOL_STATE); 2427 return (0); 2428 } 2429 2430 nvlist_free(label); 2431 2432 /* 2433 * If this is a verbatim import, no need to check the 2434 * state of the pool. 2435 */ 2436 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 2437 spa_load_state(spa) == SPA_LOAD_OPEN && 2438 state != POOL_STATE_ACTIVE) { 2439 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 2440 "for spa %s", (u_longlong_t)state, spa->spa_name); 2441 return (SET_ERROR(EBADF)); 2442 } 2443 2444 /* 2445 * If we were able to open and validate a vdev that was 2446 * previously marked permanently unavailable, clear that state 2447 * now. 2448 */ 2449 if (vd->vdev_not_present) 2450 vd->vdev_not_present = 0; 2451 2452 return (0); 2453 } 2454 2455 static void 2456 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 2457 { 2458 char *old, *new; 2459 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) { 2460 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) { 2461 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed " 2462 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2463 dvd->vdev_path, svd->vdev_path); 2464 spa_strfree(dvd->vdev_path); 2465 dvd->vdev_path = spa_strdup(svd->vdev_path); 2466 } 2467 } else if (svd->vdev_path != NULL) { 2468 dvd->vdev_path = spa_strdup(svd->vdev_path); 2469 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 2470 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path); 2471 } 2472 2473 /* 2474 * Our enclosure sysfs path may have changed between imports 2475 */ 2476 old = dvd->vdev_enc_sysfs_path; 2477 new = svd->vdev_enc_sysfs_path; 2478 if ((old != NULL && new == NULL) || 2479 (old == NULL && new != NULL) || 2480 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) { 2481 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path " 2482 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2483 old, new); 2484 2485 if (dvd->vdev_enc_sysfs_path) 2486 spa_strfree(dvd->vdev_enc_sysfs_path); 2487 2488 if (svd->vdev_enc_sysfs_path) { 2489 dvd->vdev_enc_sysfs_path = spa_strdup( 2490 svd->vdev_enc_sysfs_path); 2491 } else { 2492 dvd->vdev_enc_sysfs_path = NULL; 2493 } 2494 } 2495 } 2496 2497 /* 2498 * Recursively copy vdev paths from one vdev to another. Source and destination 2499 * vdev trees must have same geometry otherwise return error. Intended to copy 2500 * paths from userland config into MOS config. 2501 */ 2502 int 2503 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 2504 { 2505 if ((svd->vdev_ops == &vdev_missing_ops) || 2506 (svd->vdev_ishole && dvd->vdev_ishole) || 2507 (dvd->vdev_ops == &vdev_indirect_ops)) 2508 return (0); 2509 2510 if (svd->vdev_ops != dvd->vdev_ops) { 2511 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 2512 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 2513 return (SET_ERROR(EINVAL)); 2514 } 2515 2516 if (svd->vdev_guid != dvd->vdev_guid) { 2517 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 2518 "%llu)", (u_longlong_t)svd->vdev_guid, 2519 (u_longlong_t)dvd->vdev_guid); 2520 return (SET_ERROR(EINVAL)); 2521 } 2522 2523 if (svd->vdev_children != dvd->vdev_children) { 2524 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 2525 "%llu != %llu", (u_longlong_t)svd->vdev_children, 2526 (u_longlong_t)dvd->vdev_children); 2527 return (SET_ERROR(EINVAL)); 2528 } 2529 2530 for (uint64_t i = 0; i < svd->vdev_children; i++) { 2531 int error = vdev_copy_path_strict(svd->vdev_child[i], 2532 dvd->vdev_child[i]); 2533 if (error != 0) 2534 return (error); 2535 } 2536 2537 if (svd->vdev_ops->vdev_op_leaf) 2538 vdev_copy_path_impl(svd, dvd); 2539 2540 return (0); 2541 } 2542 2543 static void 2544 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 2545 { 2546 ASSERT(stvd->vdev_top == stvd); 2547 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 2548 2549 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 2550 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 2551 } 2552 2553 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 2554 return; 2555 2556 /* 2557 * The idea here is that while a vdev can shift positions within 2558 * a top vdev (when replacing, attaching mirror, etc.) it cannot 2559 * step outside of it. 2560 */ 2561 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 2562 2563 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 2564 return; 2565 2566 ASSERT(vd->vdev_ops->vdev_op_leaf); 2567 2568 vdev_copy_path_impl(vd, dvd); 2569 } 2570 2571 /* 2572 * Recursively copy vdev paths from one root vdev to another. Source and 2573 * destination vdev trees may differ in geometry. For each destination leaf 2574 * vdev, search a vdev with the same guid and top vdev id in the source. 2575 * Intended to copy paths from userland config into MOS config. 2576 */ 2577 void 2578 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 2579 { 2580 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 2581 ASSERT(srvd->vdev_ops == &vdev_root_ops); 2582 ASSERT(drvd->vdev_ops == &vdev_root_ops); 2583 2584 for (uint64_t i = 0; i < children; i++) { 2585 vdev_copy_path_search(srvd->vdev_child[i], 2586 drvd->vdev_child[i]); 2587 } 2588 } 2589 2590 /* 2591 * Close a virtual device. 2592 */ 2593 void 2594 vdev_close(vdev_t *vd) 2595 { 2596 vdev_t *pvd = vd->vdev_parent; 2597 spa_t *spa __maybe_unused = vd->vdev_spa; 2598 2599 ASSERT(vd != NULL); 2600 ASSERT(vd->vdev_open_thread == curthread || 2601 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2602 2603 /* 2604 * If our parent is reopening, then we are as well, unless we are 2605 * going offline. 2606 */ 2607 if (pvd != NULL && pvd->vdev_reopening) 2608 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 2609 2610 vd->vdev_ops->vdev_op_close(vd); 2611 2612 /* 2613 * We record the previous state before we close it, so that if we are 2614 * doing a reopen(), we don't generate FMA ereports if we notice that 2615 * it's still faulted. 2616 */ 2617 vd->vdev_prevstate = vd->vdev_state; 2618 2619 if (vd->vdev_offline) 2620 vd->vdev_state = VDEV_STATE_OFFLINE; 2621 else 2622 vd->vdev_state = VDEV_STATE_CLOSED; 2623 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2624 } 2625 2626 void 2627 vdev_hold(vdev_t *vd) 2628 { 2629 spa_t *spa = vd->vdev_spa; 2630 2631 ASSERT(spa_is_root(spa)); 2632 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 2633 return; 2634 2635 for (int c = 0; c < vd->vdev_children; c++) 2636 vdev_hold(vd->vdev_child[c]); 2637 2638 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL) 2639 vd->vdev_ops->vdev_op_hold(vd); 2640 } 2641 2642 void 2643 vdev_rele(vdev_t *vd) 2644 { 2645 ASSERT(spa_is_root(vd->vdev_spa)); 2646 for (int c = 0; c < vd->vdev_children; c++) 2647 vdev_rele(vd->vdev_child[c]); 2648 2649 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL) 2650 vd->vdev_ops->vdev_op_rele(vd); 2651 } 2652 2653 /* 2654 * Reopen all interior vdevs and any unopened leaves. We don't actually 2655 * reopen leaf vdevs which had previously been opened as they might deadlock 2656 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 2657 * If the leaf has never been opened then open it, as usual. 2658 */ 2659 void 2660 vdev_reopen(vdev_t *vd) 2661 { 2662 spa_t *spa = vd->vdev_spa; 2663 2664 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2665 2666 /* set the reopening flag unless we're taking the vdev offline */ 2667 vd->vdev_reopening = !vd->vdev_offline; 2668 vdev_close(vd); 2669 (void) vdev_open(vd); 2670 2671 /* 2672 * Call vdev_validate() here to make sure we have the same device. 2673 * Otherwise, a device with an invalid label could be successfully 2674 * opened in response to vdev_reopen(). 2675 */ 2676 if (vd->vdev_aux) { 2677 (void) vdev_validate_aux(vd); 2678 if (vdev_readable(vd) && vdev_writeable(vd) && 2679 vd->vdev_aux == &spa->spa_l2cache) { 2680 /* 2681 * In case the vdev is present we should evict all ARC 2682 * buffers and pointers to log blocks and reclaim their 2683 * space before restoring its contents to L2ARC. 2684 */ 2685 if (l2arc_vdev_present(vd)) { 2686 l2arc_rebuild_vdev(vd, B_TRUE); 2687 } else { 2688 l2arc_add_vdev(spa, vd); 2689 } 2690 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2691 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 2692 } 2693 } else { 2694 (void) vdev_validate(vd); 2695 } 2696 2697 /* 2698 * Recheck if resilver is still needed and cancel any 2699 * scheduled resilver if resilver is unneeded. 2700 */ 2701 if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) && 2702 spa->spa_async_tasks & SPA_ASYNC_RESILVER) { 2703 mutex_enter(&spa->spa_async_lock); 2704 spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER; 2705 mutex_exit(&spa->spa_async_lock); 2706 } 2707 2708 /* 2709 * Reassess parent vdev's health. 2710 */ 2711 vdev_propagate_state(vd); 2712 } 2713 2714 int 2715 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2716 { 2717 int error; 2718 2719 /* 2720 * Normally, partial opens (e.g. of a mirror) are allowed. 2721 * For a create, however, we want to fail the request if 2722 * there are any components we can't open. 2723 */ 2724 error = vdev_open(vd); 2725 2726 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2727 vdev_close(vd); 2728 return (error ? error : SET_ERROR(ENXIO)); 2729 } 2730 2731 /* 2732 * Recursively load DTLs and initialize all labels. 2733 */ 2734 if ((error = vdev_dtl_load(vd)) != 0 || 2735 (error = vdev_label_init(vd, txg, isreplacing ? 2736 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2737 vdev_close(vd); 2738 return (error); 2739 } 2740 2741 return (0); 2742 } 2743 2744 void 2745 vdev_metaslab_set_size(vdev_t *vd) 2746 { 2747 uint64_t asize = vd->vdev_asize; 2748 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2749 uint64_t ms_shift; 2750 2751 /* 2752 * There are two dimensions to the metaslab sizing calculation: 2753 * the size of the metaslab and the count of metaslabs per vdev. 2754 * 2755 * The default values used below are a good balance between memory 2756 * usage (larger metaslab size means more memory needed for loaded 2757 * metaslabs; more metaslabs means more memory needed for the 2758 * metaslab_t structs), metaslab load time (larger metaslabs take 2759 * longer to load), and metaslab sync time (more metaslabs means 2760 * more time spent syncing all of them). 2761 * 2762 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2763 * The range of the dimensions are as follows: 2764 * 2765 * 2^29 <= ms_size <= 2^34 2766 * 16 <= ms_count <= 131,072 2767 * 2768 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2769 * at least 512MB (2^29) to minimize fragmentation effects when 2770 * testing with smaller devices. However, the count constraint 2771 * of at least 16 metaslabs will override this minimum size goal. 2772 * 2773 * On the upper end of vdev sizes, we aim for a maximum metaslab 2774 * size of 16GB. However, we will cap the total count to 2^17 2775 * metaslabs to keep our memory footprint in check and let the 2776 * metaslab size grow from there if that limit is hit. 2777 * 2778 * The net effect of applying above constrains is summarized below. 2779 * 2780 * vdev size metaslab count 2781 * --------------|----------------- 2782 * < 8GB ~16 2783 * 8GB - 100GB one per 512MB 2784 * 100GB - 3TB ~200 2785 * 3TB - 2PB one per 16GB 2786 * > 2PB ~131,072 2787 * -------------------------------- 2788 * 2789 * Finally, note that all of the above calculate the initial 2790 * number of metaslabs. Expanding a top-level vdev will result 2791 * in additional metaslabs being allocated making it possible 2792 * to exceed the zfs_vdev_ms_count_limit. 2793 */ 2794 2795 if (ms_count < zfs_vdev_min_ms_count) 2796 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 2797 else if (ms_count > zfs_vdev_default_ms_count) 2798 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 2799 else 2800 ms_shift = zfs_vdev_default_ms_shift; 2801 2802 if (ms_shift < SPA_MAXBLOCKSHIFT) { 2803 ms_shift = SPA_MAXBLOCKSHIFT; 2804 } else if (ms_shift > zfs_vdev_max_ms_shift) { 2805 ms_shift = zfs_vdev_max_ms_shift; 2806 /* cap the total count to constrain memory footprint */ 2807 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 2808 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 2809 } 2810 2811 vd->vdev_ms_shift = ms_shift; 2812 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 2813 } 2814 2815 void 2816 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 2817 { 2818 ASSERT(vd == vd->vdev_top); 2819 /* indirect vdevs don't have metaslabs or dtls */ 2820 ASSERT(vdev_is_concrete(vd) || flags == 0); 2821 ASSERT(ISP2(flags)); 2822 ASSERT(spa_writeable(vd->vdev_spa)); 2823 2824 if (flags & VDD_METASLAB) 2825 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 2826 2827 if (flags & VDD_DTL) 2828 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 2829 2830 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 2831 } 2832 2833 void 2834 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 2835 { 2836 for (int c = 0; c < vd->vdev_children; c++) 2837 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 2838 2839 if (vd->vdev_ops->vdev_op_leaf) 2840 vdev_dirty(vd->vdev_top, flags, vd, txg); 2841 } 2842 2843 /* 2844 * DTLs. 2845 * 2846 * A vdev's DTL (dirty time log) is the set of transaction groups for which 2847 * the vdev has less than perfect replication. There are four kinds of DTL: 2848 * 2849 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 2850 * 2851 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 2852 * 2853 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 2854 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 2855 * txgs that was scrubbed. 2856 * 2857 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 2858 * persistent errors or just some device being offline. 2859 * Unlike the other three, the DTL_OUTAGE map is not generally 2860 * maintained; it's only computed when needed, typically to 2861 * determine whether a device can be detached. 2862 * 2863 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 2864 * either has the data or it doesn't. 2865 * 2866 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 2867 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 2868 * if any child is less than fully replicated, then so is its parent. 2869 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 2870 * comprising only those txgs which appear in 'maxfaults' or more children; 2871 * those are the txgs we don't have enough replication to read. For example, 2872 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 2873 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 2874 * two child DTL_MISSING maps. 2875 * 2876 * It should be clear from the above that to compute the DTLs and outage maps 2877 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 2878 * Therefore, that is all we keep on disk. When loading the pool, or after 2879 * a configuration change, we generate all other DTLs from first principles. 2880 */ 2881 void 2882 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2883 { 2884 range_tree_t *rt = vd->vdev_dtl[t]; 2885 2886 ASSERT(t < DTL_TYPES); 2887 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2888 ASSERT(spa_writeable(vd->vdev_spa)); 2889 2890 mutex_enter(&vd->vdev_dtl_lock); 2891 if (!range_tree_contains(rt, txg, size)) 2892 range_tree_add(rt, txg, size); 2893 mutex_exit(&vd->vdev_dtl_lock); 2894 } 2895 2896 boolean_t 2897 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2898 { 2899 range_tree_t *rt = vd->vdev_dtl[t]; 2900 boolean_t dirty = B_FALSE; 2901 2902 ASSERT(t < DTL_TYPES); 2903 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2904 2905 /* 2906 * While we are loading the pool, the DTLs have not been loaded yet. 2907 * This isn't a problem but it can result in devices being tried 2908 * which are known to not have the data. In which case, the import 2909 * is relying on the checksum to ensure that we get the right data. 2910 * Note that while importing we are only reading the MOS, which is 2911 * always checksummed. 2912 */ 2913 mutex_enter(&vd->vdev_dtl_lock); 2914 if (!range_tree_is_empty(rt)) 2915 dirty = range_tree_contains(rt, txg, size); 2916 mutex_exit(&vd->vdev_dtl_lock); 2917 2918 return (dirty); 2919 } 2920 2921 boolean_t 2922 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 2923 { 2924 range_tree_t *rt = vd->vdev_dtl[t]; 2925 boolean_t empty; 2926 2927 mutex_enter(&vd->vdev_dtl_lock); 2928 empty = range_tree_is_empty(rt); 2929 mutex_exit(&vd->vdev_dtl_lock); 2930 2931 return (empty); 2932 } 2933 2934 /* 2935 * Check if the txg falls within the range which must be 2936 * resilvered. DVAs outside this range can always be skipped. 2937 */ 2938 boolean_t 2939 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 2940 uint64_t phys_birth) 2941 { 2942 (void) dva, (void) psize; 2943 2944 /* Set by sequential resilver. */ 2945 if (phys_birth == TXG_UNKNOWN) 2946 return (B_TRUE); 2947 2948 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)); 2949 } 2950 2951 /* 2952 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered. 2953 */ 2954 boolean_t 2955 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 2956 uint64_t phys_birth) 2957 { 2958 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2959 2960 if (vd->vdev_ops->vdev_op_need_resilver == NULL || 2961 vd->vdev_ops->vdev_op_leaf) 2962 return (B_TRUE); 2963 2964 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize, 2965 phys_birth)); 2966 } 2967 2968 /* 2969 * Returns the lowest txg in the DTL range. 2970 */ 2971 static uint64_t 2972 vdev_dtl_min(vdev_t *vd) 2973 { 2974 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2975 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2976 ASSERT0(vd->vdev_children); 2977 2978 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1); 2979 } 2980 2981 /* 2982 * Returns the highest txg in the DTL. 2983 */ 2984 static uint64_t 2985 vdev_dtl_max(vdev_t *vd) 2986 { 2987 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2988 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2989 ASSERT0(vd->vdev_children); 2990 2991 return (range_tree_max(vd->vdev_dtl[DTL_MISSING])); 2992 } 2993 2994 /* 2995 * Determine if a resilvering vdev should remove any DTL entries from 2996 * its range. If the vdev was resilvering for the entire duration of the 2997 * scan then it should excise that range from its DTLs. Otherwise, this 2998 * vdev is considered partially resilvered and should leave its DTL 2999 * entries intact. The comment in vdev_dtl_reassess() describes how we 3000 * excise the DTLs. 3001 */ 3002 static boolean_t 3003 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done) 3004 { 3005 ASSERT0(vd->vdev_children); 3006 3007 if (vd->vdev_state < VDEV_STATE_DEGRADED) 3008 return (B_FALSE); 3009 3010 if (vd->vdev_resilver_deferred) 3011 return (B_FALSE); 3012 3013 if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 3014 return (B_TRUE); 3015 3016 if (rebuild_done) { 3017 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3018 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 3019 3020 /* Rebuild not initiated by attach */ 3021 if (vd->vdev_rebuild_txg == 0) 3022 return (B_TRUE); 3023 3024 /* 3025 * When a rebuild completes without error then all missing data 3026 * up to the rebuild max txg has been reconstructed and the DTL 3027 * is eligible for excision. 3028 */ 3029 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE && 3030 vdev_dtl_max(vd) <= vrp->vrp_max_txg) { 3031 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd)); 3032 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg); 3033 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg); 3034 return (B_TRUE); 3035 } 3036 } else { 3037 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 3038 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys; 3039 3040 /* Resilver not initiated by attach */ 3041 if (vd->vdev_resilver_txg == 0) 3042 return (B_TRUE); 3043 3044 /* 3045 * When a resilver is initiated the scan will assign the 3046 * scn_max_txg value to the highest txg value that exists 3047 * in all DTLs. If this device's max DTL is not part of this 3048 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg] 3049 * then it is not eligible for excision. 3050 */ 3051 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 3052 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd)); 3053 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg); 3054 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg); 3055 return (B_TRUE); 3056 } 3057 } 3058 3059 return (B_FALSE); 3060 } 3061 3062 /* 3063 * Reassess DTLs after a config change or scrub completion. If txg == 0 no 3064 * write operations will be issued to the pool. 3065 */ 3066 void 3067 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, 3068 boolean_t scrub_done, boolean_t rebuild_done) 3069 { 3070 spa_t *spa = vd->vdev_spa; 3071 avl_tree_t reftree; 3072 int minref; 3073 3074 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 3075 3076 for (int c = 0; c < vd->vdev_children; c++) 3077 vdev_dtl_reassess(vd->vdev_child[c], txg, 3078 scrub_txg, scrub_done, rebuild_done); 3079 3080 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 3081 return; 3082 3083 if (vd->vdev_ops->vdev_op_leaf) { 3084 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 3085 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3086 boolean_t check_excise = B_FALSE; 3087 boolean_t wasempty = B_TRUE; 3088 3089 mutex_enter(&vd->vdev_dtl_lock); 3090 3091 /* 3092 * If requested, pretend the scan or rebuild completed cleanly. 3093 */ 3094 if (zfs_scan_ignore_errors) { 3095 if (scn != NULL) 3096 scn->scn_phys.scn_errors = 0; 3097 if (vr != NULL) 3098 vr->vr_rebuild_phys.vrp_errors = 0; 3099 } 3100 3101 if (scrub_txg != 0 && 3102 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3103 wasempty = B_FALSE; 3104 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d " 3105 "dtl:%llu/%llu errors:%llu", 3106 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg, 3107 (u_longlong_t)scrub_txg, spa->spa_scrub_started, 3108 (u_longlong_t)vdev_dtl_min(vd), 3109 (u_longlong_t)vdev_dtl_max(vd), 3110 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0)); 3111 } 3112 3113 /* 3114 * If we've completed a scrub/resilver or a rebuild cleanly 3115 * then determine if this vdev should remove any DTLs. We 3116 * only want to excise regions on vdevs that were available 3117 * during the entire duration of this scan. 3118 */ 3119 if (rebuild_done && 3120 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) { 3121 check_excise = B_TRUE; 3122 } else { 3123 if (spa->spa_scrub_started || 3124 (scn != NULL && scn->scn_phys.scn_errors == 0)) { 3125 check_excise = B_TRUE; 3126 } 3127 } 3128 3129 if (scrub_txg && check_excise && 3130 vdev_dtl_should_excise(vd, rebuild_done)) { 3131 /* 3132 * We completed a scrub, resilver or rebuild up to 3133 * scrub_txg. If we did it without rebooting, then 3134 * the scrub dtl will be valid, so excise the old 3135 * region and fold in the scrub dtl. Otherwise, 3136 * leave the dtl as-is if there was an error. 3137 * 3138 * There's little trick here: to excise the beginning 3139 * of the DTL_MISSING map, we put it into a reference 3140 * tree and then add a segment with refcnt -1 that 3141 * covers the range [0, scrub_txg). This means 3142 * that each txg in that range has refcnt -1 or 0. 3143 * We then add DTL_SCRUB with a refcnt of 2, so that 3144 * entries in the range [0, scrub_txg) will have a 3145 * positive refcnt -- either 1 or 2. We then convert 3146 * the reference tree into the new DTL_MISSING map. 3147 */ 3148 space_reftree_create(&reftree); 3149 space_reftree_add_map(&reftree, 3150 vd->vdev_dtl[DTL_MISSING], 1); 3151 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 3152 space_reftree_add_map(&reftree, 3153 vd->vdev_dtl[DTL_SCRUB], 2); 3154 space_reftree_generate_map(&reftree, 3155 vd->vdev_dtl[DTL_MISSING], 1); 3156 space_reftree_destroy(&reftree); 3157 3158 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3159 zfs_dbgmsg("update DTL_MISSING:%llu/%llu", 3160 (u_longlong_t)vdev_dtl_min(vd), 3161 (u_longlong_t)vdev_dtl_max(vd)); 3162 } else if (!wasempty) { 3163 zfs_dbgmsg("DTL_MISSING is now empty"); 3164 } 3165 } 3166 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 3167 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3168 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 3169 if (scrub_done) 3170 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 3171 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 3172 if (!vdev_readable(vd)) 3173 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 3174 else 3175 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3176 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 3177 3178 /* 3179 * If the vdev was resilvering or rebuilding and no longer 3180 * has any DTLs then reset the appropriate flag and dirty 3181 * the top level so that we persist the change. 3182 */ 3183 if (txg != 0 && 3184 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3185 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) { 3186 if (vd->vdev_rebuild_txg != 0) { 3187 vd->vdev_rebuild_txg = 0; 3188 vdev_config_dirty(vd->vdev_top); 3189 } else if (vd->vdev_resilver_txg != 0) { 3190 vd->vdev_resilver_txg = 0; 3191 vdev_config_dirty(vd->vdev_top); 3192 } 3193 } 3194 3195 mutex_exit(&vd->vdev_dtl_lock); 3196 3197 if (txg != 0) 3198 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 3199 return; 3200 } 3201 3202 mutex_enter(&vd->vdev_dtl_lock); 3203 for (int t = 0; t < DTL_TYPES; t++) { 3204 /* account for child's outage in parent's missing map */ 3205 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 3206 if (t == DTL_SCRUB) 3207 continue; /* leaf vdevs only */ 3208 if (t == DTL_PARTIAL) 3209 minref = 1; /* i.e. non-zero */ 3210 else if (vdev_get_nparity(vd) != 0) 3211 minref = vdev_get_nparity(vd) + 1; /* RAID-Z, dRAID */ 3212 else 3213 minref = vd->vdev_children; /* any kind of mirror */ 3214 space_reftree_create(&reftree); 3215 for (int c = 0; c < vd->vdev_children; c++) { 3216 vdev_t *cvd = vd->vdev_child[c]; 3217 mutex_enter(&cvd->vdev_dtl_lock); 3218 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 3219 mutex_exit(&cvd->vdev_dtl_lock); 3220 } 3221 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 3222 space_reftree_destroy(&reftree); 3223 } 3224 mutex_exit(&vd->vdev_dtl_lock); 3225 } 3226 3227 /* 3228 * Iterate over all the vdevs except spare, and post kobj events 3229 */ 3230 void 3231 vdev_post_kobj_evt(vdev_t *vd) 3232 { 3233 if (vd->vdev_ops->vdev_op_kobj_evt_post && 3234 vd->vdev_kobj_flag == B_FALSE) { 3235 vd->vdev_kobj_flag = B_TRUE; 3236 vd->vdev_ops->vdev_op_kobj_evt_post(vd); 3237 } 3238 3239 for (int c = 0; c < vd->vdev_children; c++) 3240 vdev_post_kobj_evt(vd->vdev_child[c]); 3241 } 3242 3243 /* 3244 * Iterate over all the vdevs except spare, and clear kobj events 3245 */ 3246 void 3247 vdev_clear_kobj_evt(vdev_t *vd) 3248 { 3249 vd->vdev_kobj_flag = B_FALSE; 3250 3251 for (int c = 0; c < vd->vdev_children; c++) 3252 vdev_clear_kobj_evt(vd->vdev_child[c]); 3253 } 3254 3255 int 3256 vdev_dtl_load(vdev_t *vd) 3257 { 3258 spa_t *spa = vd->vdev_spa; 3259 objset_t *mos = spa->spa_meta_objset; 3260 range_tree_t *rt; 3261 int error = 0; 3262 3263 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 3264 ASSERT(vdev_is_concrete(vd)); 3265 3266 /* 3267 * If the dtl cannot be sync'd there is no need to open it. 3268 */ 3269 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps) 3270 return (0); 3271 3272 error = space_map_open(&vd->vdev_dtl_sm, mos, 3273 vd->vdev_dtl_object, 0, -1ULL, 0); 3274 if (error) 3275 return (error); 3276 ASSERT(vd->vdev_dtl_sm != NULL); 3277 3278 rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3279 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC); 3280 if (error == 0) { 3281 mutex_enter(&vd->vdev_dtl_lock); 3282 range_tree_walk(rt, range_tree_add, 3283 vd->vdev_dtl[DTL_MISSING]); 3284 mutex_exit(&vd->vdev_dtl_lock); 3285 } 3286 3287 range_tree_vacate(rt, NULL, NULL); 3288 range_tree_destroy(rt); 3289 3290 return (error); 3291 } 3292 3293 for (int c = 0; c < vd->vdev_children; c++) { 3294 error = vdev_dtl_load(vd->vdev_child[c]); 3295 if (error != 0) 3296 break; 3297 } 3298 3299 return (error); 3300 } 3301 3302 static void 3303 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) 3304 { 3305 spa_t *spa = vd->vdev_spa; 3306 objset_t *mos = spa->spa_meta_objset; 3307 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 3308 const char *string; 3309 3310 ASSERT(alloc_bias != VDEV_BIAS_NONE); 3311 3312 string = 3313 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : 3314 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : 3315 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; 3316 3317 ASSERT(string != NULL); 3318 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 3319 1, strlen(string) + 1, string, tx)); 3320 3321 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { 3322 spa_activate_allocation_classes(spa, tx); 3323 } 3324 } 3325 3326 void 3327 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 3328 { 3329 spa_t *spa = vd->vdev_spa; 3330 3331 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 3332 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3333 zapobj, tx)); 3334 } 3335 3336 uint64_t 3337 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 3338 { 3339 spa_t *spa = vd->vdev_spa; 3340 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 3341 DMU_OT_NONE, 0, tx); 3342 3343 ASSERT(zap != 0); 3344 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3345 zap, tx)); 3346 3347 return (zap); 3348 } 3349 3350 void 3351 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 3352 { 3353 if (vd->vdev_ops != &vdev_hole_ops && 3354 vd->vdev_ops != &vdev_missing_ops && 3355 vd->vdev_ops != &vdev_root_ops && 3356 !vd->vdev_top->vdev_removing) { 3357 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 3358 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 3359 } 3360 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 3361 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 3362 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) 3363 vdev_zap_allocation_data(vd, tx); 3364 } 3365 } 3366 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 && 3367 spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) { 3368 if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) 3369 spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx); 3370 vd->vdev_root_zap = vdev_create_link_zap(vd, tx); 3371 } 3372 3373 for (uint64_t i = 0; i < vd->vdev_children; i++) { 3374 vdev_construct_zaps(vd->vdev_child[i], tx); 3375 } 3376 } 3377 3378 static void 3379 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 3380 { 3381 spa_t *spa = vd->vdev_spa; 3382 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 3383 objset_t *mos = spa->spa_meta_objset; 3384 range_tree_t *rtsync; 3385 dmu_tx_t *tx; 3386 uint64_t object = space_map_object(vd->vdev_dtl_sm); 3387 3388 ASSERT(vdev_is_concrete(vd)); 3389 ASSERT(vd->vdev_ops->vdev_op_leaf); 3390 3391 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3392 3393 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 3394 mutex_enter(&vd->vdev_dtl_lock); 3395 space_map_free(vd->vdev_dtl_sm, tx); 3396 space_map_close(vd->vdev_dtl_sm); 3397 vd->vdev_dtl_sm = NULL; 3398 mutex_exit(&vd->vdev_dtl_lock); 3399 3400 /* 3401 * We only destroy the leaf ZAP for detached leaves or for 3402 * removed log devices. Removed data devices handle leaf ZAP 3403 * cleanup later, once cancellation is no longer possible. 3404 */ 3405 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 3406 vd->vdev_top->vdev_islog)) { 3407 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 3408 vd->vdev_leaf_zap = 0; 3409 } 3410 3411 dmu_tx_commit(tx); 3412 return; 3413 } 3414 3415 if (vd->vdev_dtl_sm == NULL) { 3416 uint64_t new_object; 3417 3418 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx); 3419 VERIFY3U(new_object, !=, 0); 3420 3421 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 3422 0, -1ULL, 0)); 3423 ASSERT(vd->vdev_dtl_sm != NULL); 3424 } 3425 3426 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3427 3428 mutex_enter(&vd->vdev_dtl_lock); 3429 range_tree_walk(rt, range_tree_add, rtsync); 3430 mutex_exit(&vd->vdev_dtl_lock); 3431 3432 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx); 3433 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 3434 range_tree_vacate(rtsync, NULL, NULL); 3435 3436 range_tree_destroy(rtsync); 3437 3438 /* 3439 * If the object for the space map has changed then dirty 3440 * the top level so that we update the config. 3441 */ 3442 if (object != space_map_object(vd->vdev_dtl_sm)) { 3443 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 3444 "new object %llu", (u_longlong_t)txg, spa_name(spa), 3445 (u_longlong_t)object, 3446 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 3447 vdev_config_dirty(vd->vdev_top); 3448 } 3449 3450 dmu_tx_commit(tx); 3451 } 3452 3453 /* 3454 * Determine whether the specified vdev can be offlined/detached/removed 3455 * without losing data. 3456 */ 3457 boolean_t 3458 vdev_dtl_required(vdev_t *vd) 3459 { 3460 spa_t *spa = vd->vdev_spa; 3461 vdev_t *tvd = vd->vdev_top; 3462 uint8_t cant_read = vd->vdev_cant_read; 3463 boolean_t required; 3464 3465 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3466 3467 if (vd == spa->spa_root_vdev || vd == tvd) 3468 return (B_TRUE); 3469 3470 /* 3471 * Temporarily mark the device as unreadable, and then determine 3472 * whether this results in any DTL outages in the top-level vdev. 3473 * If not, we can safely offline/detach/remove the device. 3474 */ 3475 vd->vdev_cant_read = B_TRUE; 3476 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3477 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 3478 vd->vdev_cant_read = cant_read; 3479 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3480 3481 if (!required && zio_injection_enabled) { 3482 required = !!zio_handle_device_injection(vd, NULL, 3483 SET_ERROR(ECHILD)); 3484 } 3485 3486 return (required); 3487 } 3488 3489 /* 3490 * Determine if resilver is needed, and if so the txg range. 3491 */ 3492 boolean_t 3493 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 3494 { 3495 boolean_t needed = B_FALSE; 3496 uint64_t thismin = UINT64_MAX; 3497 uint64_t thismax = 0; 3498 3499 if (vd->vdev_children == 0) { 3500 mutex_enter(&vd->vdev_dtl_lock); 3501 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3502 vdev_writeable(vd)) { 3503 3504 thismin = vdev_dtl_min(vd); 3505 thismax = vdev_dtl_max(vd); 3506 needed = B_TRUE; 3507 } 3508 mutex_exit(&vd->vdev_dtl_lock); 3509 } else { 3510 for (int c = 0; c < vd->vdev_children; c++) { 3511 vdev_t *cvd = vd->vdev_child[c]; 3512 uint64_t cmin, cmax; 3513 3514 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 3515 thismin = MIN(thismin, cmin); 3516 thismax = MAX(thismax, cmax); 3517 needed = B_TRUE; 3518 } 3519 } 3520 } 3521 3522 if (needed && minp) { 3523 *minp = thismin; 3524 *maxp = thismax; 3525 } 3526 return (needed); 3527 } 3528 3529 /* 3530 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj 3531 * will contain either the checkpoint spacemap object or zero if none exists. 3532 * All other errors are returned to the caller. 3533 */ 3534 int 3535 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj) 3536 { 3537 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 3538 3539 if (vd->vdev_top_zap == 0) { 3540 *sm_obj = 0; 3541 return (0); 3542 } 3543 3544 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 3545 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj); 3546 if (error == ENOENT) { 3547 *sm_obj = 0; 3548 error = 0; 3549 } 3550 3551 return (error); 3552 } 3553 3554 int 3555 vdev_load(vdev_t *vd) 3556 { 3557 int children = vd->vdev_children; 3558 int error = 0; 3559 taskq_t *tq = NULL; 3560 3561 /* 3562 * It's only worthwhile to use the taskq for the root vdev, because the 3563 * slow part is metaslab_init, and that only happens for top-level 3564 * vdevs. 3565 */ 3566 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) { 3567 tq = taskq_create("vdev_load", children, minclsyspri, 3568 children, children, TASKQ_PREPOPULATE); 3569 } 3570 3571 /* 3572 * Recursively load all children. 3573 */ 3574 for (int c = 0; c < vd->vdev_children; c++) { 3575 vdev_t *cvd = vd->vdev_child[c]; 3576 3577 if (tq == NULL || vdev_uses_zvols(cvd)) { 3578 cvd->vdev_load_error = vdev_load(cvd); 3579 } else { 3580 VERIFY(taskq_dispatch(tq, vdev_load_child, 3581 cvd, TQ_SLEEP) != TASKQID_INVALID); 3582 } 3583 } 3584 3585 if (tq != NULL) { 3586 taskq_wait(tq); 3587 taskq_destroy(tq); 3588 } 3589 3590 for (int c = 0; c < vd->vdev_children; c++) { 3591 int error = vd->vdev_child[c]->vdev_load_error; 3592 3593 if (error != 0) 3594 return (error); 3595 } 3596 3597 vdev_set_deflate_ratio(vd); 3598 3599 /* 3600 * On spa_load path, grab the allocation bias from our zap 3601 */ 3602 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3603 spa_t *spa = vd->vdev_spa; 3604 char bias_str[64]; 3605 3606 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3607 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), 3608 bias_str); 3609 if (error == 0) { 3610 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); 3611 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); 3612 } else if (error != ENOENT) { 3613 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3614 VDEV_AUX_CORRUPT_DATA); 3615 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) " 3616 "failed [error=%d]", 3617 (u_longlong_t)vd->vdev_top_zap, error); 3618 return (error); 3619 } 3620 } 3621 3622 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3623 spa_t *spa = vd->vdev_spa; 3624 uint64_t failfast; 3625 3626 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3627 vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast), 3628 1, &failfast); 3629 if (error == 0) { 3630 vd->vdev_failfast = failfast & 1; 3631 } else if (error == ENOENT) { 3632 vd->vdev_failfast = vdev_prop_default_numeric( 3633 VDEV_PROP_FAILFAST); 3634 } else { 3635 vdev_dbgmsg(vd, 3636 "vdev_load: zap_lookup(top_zap=%llu) " 3637 "failed [error=%d]", 3638 (u_longlong_t)vd->vdev_top_zap, error); 3639 } 3640 } 3641 3642 /* 3643 * Load any rebuild state from the top-level vdev zap. 3644 */ 3645 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3646 error = vdev_rebuild_load(vd); 3647 if (error && error != ENOTSUP) { 3648 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3649 VDEV_AUX_CORRUPT_DATA); 3650 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load " 3651 "failed [error=%d]", error); 3652 return (error); 3653 } 3654 } 3655 3656 if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) { 3657 uint64_t zapobj; 3658 3659 if (vd->vdev_top_zap != 0) 3660 zapobj = vd->vdev_top_zap; 3661 else 3662 zapobj = vd->vdev_leaf_zap; 3663 3664 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N, 3665 &vd->vdev_checksum_n); 3666 if (error && error != ENOENT) 3667 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3668 "failed [error=%d]", (u_longlong_t)zapobj, error); 3669 3670 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T, 3671 &vd->vdev_checksum_t); 3672 if (error && error != ENOENT) 3673 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3674 "failed [error=%d]", (u_longlong_t)zapobj, error); 3675 3676 error = vdev_prop_get_int(vd, VDEV_PROP_IO_N, 3677 &vd->vdev_io_n); 3678 if (error && error != ENOENT) 3679 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3680 "failed [error=%d]", (u_longlong_t)zapobj, error); 3681 3682 error = vdev_prop_get_int(vd, VDEV_PROP_IO_T, 3683 &vd->vdev_io_t); 3684 if (error && error != ENOENT) 3685 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3686 "failed [error=%d]", (u_longlong_t)zapobj, error); 3687 } 3688 3689 /* 3690 * If this is a top-level vdev, initialize its metaslabs. 3691 */ 3692 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 3693 vdev_metaslab_group_create(vd); 3694 3695 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 3696 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3697 VDEV_AUX_CORRUPT_DATA); 3698 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 3699 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 3700 (u_longlong_t)vd->vdev_asize); 3701 return (SET_ERROR(ENXIO)); 3702 } 3703 3704 error = vdev_metaslab_init(vd, 0); 3705 if (error != 0) { 3706 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 3707 "[error=%d]", error); 3708 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3709 VDEV_AUX_CORRUPT_DATA); 3710 return (error); 3711 } 3712 3713 uint64_t checkpoint_sm_obj; 3714 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj); 3715 if (error == 0 && checkpoint_sm_obj != 0) { 3716 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3717 ASSERT(vd->vdev_asize != 0); 3718 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); 3719 3720 error = space_map_open(&vd->vdev_checkpoint_sm, 3721 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 3722 vd->vdev_ashift); 3723 if (error != 0) { 3724 vdev_dbgmsg(vd, "vdev_load: space_map_open " 3725 "failed for checkpoint spacemap (obj %llu) " 3726 "[error=%d]", 3727 (u_longlong_t)checkpoint_sm_obj, error); 3728 return (error); 3729 } 3730 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 3731 3732 /* 3733 * Since the checkpoint_sm contains free entries 3734 * exclusively we can use space_map_allocated() to 3735 * indicate the cumulative checkpointed space that 3736 * has been freed. 3737 */ 3738 vd->vdev_stat.vs_checkpoint_space = 3739 -space_map_allocated(vd->vdev_checkpoint_sm); 3740 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 3741 vd->vdev_stat.vs_checkpoint_space; 3742 } else if (error != 0) { 3743 vdev_dbgmsg(vd, "vdev_load: failed to retrieve " 3744 "checkpoint space map object from vdev ZAP " 3745 "[error=%d]", error); 3746 return (error); 3747 } 3748 } 3749 3750 /* 3751 * If this is a leaf vdev, load its DTL. 3752 */ 3753 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 3754 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3755 VDEV_AUX_CORRUPT_DATA); 3756 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 3757 "[error=%d]", error); 3758 return (error); 3759 } 3760 3761 uint64_t obsolete_sm_object; 3762 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object); 3763 if (error == 0 && obsolete_sm_object != 0) { 3764 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3765 ASSERT(vd->vdev_asize != 0); 3766 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 3767 3768 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 3769 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 3770 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3771 VDEV_AUX_CORRUPT_DATA); 3772 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 3773 "obsolete spacemap (obj %llu) [error=%d]", 3774 (u_longlong_t)obsolete_sm_object, error); 3775 return (error); 3776 } 3777 } else if (error != 0) { 3778 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete " 3779 "space map object from vdev ZAP [error=%d]", error); 3780 return (error); 3781 } 3782 3783 return (0); 3784 } 3785 3786 /* 3787 * The special vdev case is used for hot spares and l2cache devices. Its 3788 * sole purpose it to set the vdev state for the associated vdev. To do this, 3789 * we make sure that we can open the underlying device, then try to read the 3790 * label, and make sure that the label is sane and that it hasn't been 3791 * repurposed to another pool. 3792 */ 3793 int 3794 vdev_validate_aux(vdev_t *vd) 3795 { 3796 nvlist_t *label; 3797 uint64_t guid, version; 3798 uint64_t state; 3799 3800 if (!vdev_readable(vd)) 3801 return (0); 3802 3803 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 3804 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3805 VDEV_AUX_CORRUPT_DATA); 3806 return (-1); 3807 } 3808 3809 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 3810 !SPA_VERSION_IS_SUPPORTED(version) || 3811 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 3812 guid != vd->vdev_guid || 3813 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 3814 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3815 VDEV_AUX_CORRUPT_DATA); 3816 nvlist_free(label); 3817 return (-1); 3818 } 3819 3820 /* 3821 * We don't actually check the pool state here. If it's in fact in 3822 * use by another pool, we update this fact on the fly when requested. 3823 */ 3824 nvlist_free(label); 3825 return (0); 3826 } 3827 3828 static void 3829 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx) 3830 { 3831 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3832 3833 if (vd->vdev_top_zap == 0) 3834 return; 3835 3836 uint64_t object = 0; 3837 int err = zap_lookup(mos, vd->vdev_top_zap, 3838 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object); 3839 if (err == ENOENT) 3840 return; 3841 VERIFY0(err); 3842 3843 VERIFY0(dmu_object_free(mos, object, tx)); 3844 VERIFY0(zap_remove(mos, vd->vdev_top_zap, 3845 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx)); 3846 } 3847 3848 /* 3849 * Free the objects used to store this vdev's spacemaps, and the array 3850 * that points to them. 3851 */ 3852 void 3853 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 3854 { 3855 if (vd->vdev_ms_array == 0) 3856 return; 3857 3858 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3859 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 3860 size_t array_bytes = array_count * sizeof (uint64_t); 3861 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 3862 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 3863 array_bytes, smobj_array, 0)); 3864 3865 for (uint64_t i = 0; i < array_count; i++) { 3866 uint64_t smobj = smobj_array[i]; 3867 if (smobj == 0) 3868 continue; 3869 3870 space_map_free_obj(mos, smobj, tx); 3871 } 3872 3873 kmem_free(smobj_array, array_bytes); 3874 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 3875 vdev_destroy_ms_flush_data(vd, tx); 3876 vd->vdev_ms_array = 0; 3877 } 3878 3879 static void 3880 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 3881 { 3882 spa_t *spa = vd->vdev_spa; 3883 3884 ASSERT(vd->vdev_islog); 3885 ASSERT(vd == vd->vdev_top); 3886 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 3887 3888 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3889 3890 vdev_destroy_spacemaps(vd, tx); 3891 if (vd->vdev_top_zap != 0) { 3892 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 3893 vd->vdev_top_zap = 0; 3894 } 3895 3896 dmu_tx_commit(tx); 3897 } 3898 3899 void 3900 vdev_sync_done(vdev_t *vd, uint64_t txg) 3901 { 3902 metaslab_t *msp; 3903 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 3904 3905 ASSERT(vdev_is_concrete(vd)); 3906 3907 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 3908 != NULL) 3909 metaslab_sync_done(msp, txg); 3910 3911 if (reassess) { 3912 metaslab_sync_reassess(vd->vdev_mg); 3913 if (vd->vdev_log_mg != NULL) 3914 metaslab_sync_reassess(vd->vdev_log_mg); 3915 } 3916 } 3917 3918 void 3919 vdev_sync(vdev_t *vd, uint64_t txg) 3920 { 3921 spa_t *spa = vd->vdev_spa; 3922 vdev_t *lvd; 3923 metaslab_t *msp; 3924 3925 ASSERT3U(txg, ==, spa->spa_syncing_txg); 3926 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3927 if (range_tree_space(vd->vdev_obsolete_segments) > 0) { 3928 ASSERT(vd->vdev_removing || 3929 vd->vdev_ops == &vdev_indirect_ops); 3930 3931 vdev_indirect_sync_obsolete(vd, tx); 3932 3933 /* 3934 * If the vdev is indirect, it can't have dirty 3935 * metaslabs or DTLs. 3936 */ 3937 if (vd->vdev_ops == &vdev_indirect_ops) { 3938 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 3939 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 3940 dmu_tx_commit(tx); 3941 return; 3942 } 3943 } 3944 3945 ASSERT(vdev_is_concrete(vd)); 3946 3947 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 3948 !vd->vdev_removing) { 3949 ASSERT(vd == vd->vdev_top); 3950 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 3951 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 3952 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 3953 ASSERT(vd->vdev_ms_array != 0); 3954 vdev_config_dirty(vd); 3955 } 3956 3957 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 3958 metaslab_sync(msp, txg); 3959 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 3960 } 3961 3962 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 3963 vdev_dtl_sync(lvd, txg); 3964 3965 /* 3966 * If this is an empty log device being removed, destroy the 3967 * metadata associated with it. 3968 */ 3969 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 3970 vdev_remove_empty_log(vd, txg); 3971 3972 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 3973 dmu_tx_commit(tx); 3974 } 3975 3976 uint64_t 3977 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 3978 { 3979 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 3980 } 3981 3982 /* 3983 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 3984 * not be opened, and no I/O is attempted. 3985 */ 3986 int 3987 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3988 { 3989 vdev_t *vd, *tvd; 3990 3991 spa_vdev_state_enter(spa, SCL_NONE); 3992 3993 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3994 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 3995 3996 if (!vd->vdev_ops->vdev_op_leaf) 3997 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 3998 3999 tvd = vd->vdev_top; 4000 4001 /* 4002 * If user did a 'zpool offline -f' then make the fault persist across 4003 * reboots. 4004 */ 4005 if (aux == VDEV_AUX_EXTERNAL_PERSIST) { 4006 /* 4007 * There are two kinds of forced faults: temporary and 4008 * persistent. Temporary faults go away at pool import, while 4009 * persistent faults stay set. Both types of faults can be 4010 * cleared with a zpool clear. 4011 * 4012 * We tell if a vdev is persistently faulted by looking at the 4013 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at 4014 * import then it's a persistent fault. Otherwise, it's 4015 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external" 4016 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This 4017 * tells vdev_config_generate() (which gets run later) to set 4018 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist. 4019 */ 4020 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 4021 vd->vdev_tmpoffline = B_FALSE; 4022 aux = VDEV_AUX_EXTERNAL; 4023 } else { 4024 vd->vdev_tmpoffline = B_TRUE; 4025 } 4026 4027 /* 4028 * We don't directly use the aux state here, but if we do a 4029 * vdev_reopen(), we need this value to be present to remember why we 4030 * were faulted. 4031 */ 4032 vd->vdev_label_aux = aux; 4033 4034 /* 4035 * Faulted state takes precedence over degraded. 4036 */ 4037 vd->vdev_delayed_close = B_FALSE; 4038 vd->vdev_faulted = 1ULL; 4039 vd->vdev_degraded = 0ULL; 4040 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 4041 4042 /* 4043 * If this device has the only valid copy of the data, then 4044 * back off and simply mark the vdev as degraded instead. 4045 */ 4046 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 4047 vd->vdev_degraded = 1ULL; 4048 vd->vdev_faulted = 0ULL; 4049 4050 /* 4051 * If we reopen the device and it's not dead, only then do we 4052 * mark it degraded. 4053 */ 4054 vdev_reopen(tvd); 4055 4056 if (vdev_readable(vd)) 4057 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 4058 } 4059 4060 return (spa_vdev_state_exit(spa, vd, 0)); 4061 } 4062 4063 /* 4064 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 4065 * user that something is wrong. The vdev continues to operate as normal as far 4066 * as I/O is concerned. 4067 */ 4068 int 4069 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 4070 { 4071 vdev_t *vd; 4072 4073 spa_vdev_state_enter(spa, SCL_NONE); 4074 4075 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4076 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4077 4078 if (!vd->vdev_ops->vdev_op_leaf) 4079 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4080 4081 /* 4082 * If the vdev is already faulted, then don't do anything. 4083 */ 4084 if (vd->vdev_faulted || vd->vdev_degraded) 4085 return (spa_vdev_state_exit(spa, NULL, 0)); 4086 4087 vd->vdev_degraded = 1ULL; 4088 if (!vdev_is_dead(vd)) 4089 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 4090 aux); 4091 4092 return (spa_vdev_state_exit(spa, vd, 0)); 4093 } 4094 4095 int 4096 vdev_remove_wanted(spa_t *spa, uint64_t guid) 4097 { 4098 vdev_t *vd; 4099 4100 spa_vdev_state_enter(spa, SCL_NONE); 4101 4102 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4103 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4104 4105 /* 4106 * If the vdev is already removed, or expanding which can trigger 4107 * repartition add/remove events, then don't do anything. 4108 */ 4109 if (vd->vdev_removed || vd->vdev_expanding) 4110 return (spa_vdev_state_exit(spa, NULL, 0)); 4111 4112 /* 4113 * Confirm the vdev has been removed, otherwise don't do anything. 4114 */ 4115 if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL))) 4116 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST))); 4117 4118 vd->vdev_remove_wanted = B_TRUE; 4119 spa_async_request(spa, SPA_ASYNC_REMOVE); 4120 4121 return (spa_vdev_state_exit(spa, vd, 0)); 4122 } 4123 4124 4125 /* 4126 * Online the given vdev. 4127 * 4128 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 4129 * spare device should be detached when the device finishes resilvering. 4130 * Second, the online should be treated like a 'test' online case, so no FMA 4131 * events are generated if the device fails to open. 4132 */ 4133 int 4134 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 4135 { 4136 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 4137 boolean_t wasoffline; 4138 vdev_state_t oldstate; 4139 4140 spa_vdev_state_enter(spa, SCL_NONE); 4141 4142 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4143 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4144 4145 if (!vd->vdev_ops->vdev_op_leaf) 4146 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4147 4148 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 4149 oldstate = vd->vdev_state; 4150 4151 tvd = vd->vdev_top; 4152 vd->vdev_offline = B_FALSE; 4153 vd->vdev_tmpoffline = B_FALSE; 4154 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 4155 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 4156 4157 /* XXX - L2ARC 1.0 does not support expansion */ 4158 if (!vd->vdev_aux) { 4159 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4160 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) || 4161 spa->spa_autoexpand); 4162 vd->vdev_expansion_time = gethrestime_sec(); 4163 } 4164 4165 vdev_reopen(tvd); 4166 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 4167 4168 if (!vd->vdev_aux) { 4169 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4170 pvd->vdev_expanding = B_FALSE; 4171 } 4172 4173 if (newstate) 4174 *newstate = vd->vdev_state; 4175 if ((flags & ZFS_ONLINE_UNSPARE) && 4176 !vdev_is_dead(vd) && vd->vdev_parent && 4177 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4178 vd->vdev_parent->vdev_child[0] == vd) 4179 vd->vdev_unspare = B_TRUE; 4180 4181 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 4182 4183 /* XXX - L2ARC 1.0 does not support expansion */ 4184 if (vd->vdev_aux) 4185 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 4186 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 4187 } 4188 4189 /* Restart initializing if necessary */ 4190 mutex_enter(&vd->vdev_initialize_lock); 4191 if (vdev_writeable(vd) && 4192 vd->vdev_initialize_thread == NULL && 4193 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 4194 (void) vdev_initialize(vd); 4195 } 4196 mutex_exit(&vd->vdev_initialize_lock); 4197 4198 /* 4199 * Restart trimming if necessary. We do not restart trimming for cache 4200 * devices here. This is triggered by l2arc_rebuild_vdev() 4201 * asynchronously for the whole device or in l2arc_evict() as it evicts 4202 * space for upcoming writes. 4203 */ 4204 mutex_enter(&vd->vdev_trim_lock); 4205 if (vdev_writeable(vd) && !vd->vdev_isl2cache && 4206 vd->vdev_trim_thread == NULL && 4207 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { 4208 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, 4209 vd->vdev_trim_secure); 4210 } 4211 mutex_exit(&vd->vdev_trim_lock); 4212 4213 if (wasoffline || 4214 (oldstate < VDEV_STATE_DEGRADED && 4215 vd->vdev_state >= VDEV_STATE_DEGRADED)) { 4216 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 4217 4218 /* 4219 * Asynchronously detach spare vdev if resilver or 4220 * rebuild is not required 4221 */ 4222 if (vd->vdev_unspare && 4223 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4224 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) && 4225 !vdev_rebuild_active(tvd)) 4226 spa_async_request(spa, SPA_ASYNC_DETACH_SPARE); 4227 } 4228 return (spa_vdev_state_exit(spa, vd, 0)); 4229 } 4230 4231 static int 4232 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 4233 { 4234 vdev_t *vd, *tvd; 4235 int error = 0; 4236 uint64_t generation; 4237 metaslab_group_t *mg; 4238 4239 top: 4240 spa_vdev_state_enter(spa, SCL_ALLOC); 4241 4242 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4243 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4244 4245 if (!vd->vdev_ops->vdev_op_leaf) 4246 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4247 4248 if (vd->vdev_ops == &vdev_draid_spare_ops) 4249 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4250 4251 tvd = vd->vdev_top; 4252 mg = tvd->vdev_mg; 4253 generation = spa->spa_config_generation + 1; 4254 4255 /* 4256 * If the device isn't already offline, try to offline it. 4257 */ 4258 if (!vd->vdev_offline) { 4259 /* 4260 * If this device has the only valid copy of some data, 4261 * don't allow it to be offlined. Log devices are always 4262 * expendable. 4263 */ 4264 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4265 vdev_dtl_required(vd)) 4266 return (spa_vdev_state_exit(spa, NULL, 4267 SET_ERROR(EBUSY))); 4268 4269 /* 4270 * If the top-level is a slog and it has had allocations 4271 * then proceed. We check that the vdev's metaslab group 4272 * is not NULL since it's possible that we may have just 4273 * added this vdev but not yet initialized its metaslabs. 4274 */ 4275 if (tvd->vdev_islog && mg != NULL) { 4276 /* 4277 * Prevent any future allocations. 4278 */ 4279 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 4280 metaslab_group_passivate(mg); 4281 (void) spa_vdev_state_exit(spa, vd, 0); 4282 4283 error = spa_reset_logs(spa); 4284 4285 /* 4286 * If the log device was successfully reset but has 4287 * checkpointed data, do not offline it. 4288 */ 4289 if (error == 0 && 4290 tvd->vdev_checkpoint_sm != NULL) { 4291 ASSERT3U(space_map_allocated( 4292 tvd->vdev_checkpoint_sm), !=, 0); 4293 error = ZFS_ERR_CHECKPOINT_EXISTS; 4294 } 4295 4296 spa_vdev_state_enter(spa, SCL_ALLOC); 4297 4298 /* 4299 * Check to see if the config has changed. 4300 */ 4301 if (error || generation != spa->spa_config_generation) { 4302 metaslab_group_activate(mg); 4303 if (error) 4304 return (spa_vdev_state_exit(spa, 4305 vd, error)); 4306 (void) spa_vdev_state_exit(spa, vd, 0); 4307 goto top; 4308 } 4309 ASSERT0(tvd->vdev_stat.vs_alloc); 4310 } 4311 4312 /* 4313 * Offline this device and reopen its top-level vdev. 4314 * If the top-level vdev is a log device then just offline 4315 * it. Otherwise, if this action results in the top-level 4316 * vdev becoming unusable, undo it and fail the request. 4317 */ 4318 vd->vdev_offline = B_TRUE; 4319 vdev_reopen(tvd); 4320 4321 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4322 vdev_is_dead(tvd)) { 4323 vd->vdev_offline = B_FALSE; 4324 vdev_reopen(tvd); 4325 return (spa_vdev_state_exit(spa, NULL, 4326 SET_ERROR(EBUSY))); 4327 } 4328 4329 /* 4330 * Add the device back into the metaslab rotor so that 4331 * once we online the device it's open for business. 4332 */ 4333 if (tvd->vdev_islog && mg != NULL) 4334 metaslab_group_activate(mg); 4335 } 4336 4337 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 4338 4339 return (spa_vdev_state_exit(spa, vd, 0)); 4340 } 4341 4342 int 4343 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 4344 { 4345 int error; 4346 4347 mutex_enter(&spa->spa_vdev_top_lock); 4348 error = vdev_offline_locked(spa, guid, flags); 4349 mutex_exit(&spa->spa_vdev_top_lock); 4350 4351 return (error); 4352 } 4353 4354 /* 4355 * Clear the error counts associated with this vdev. Unlike vdev_online() and 4356 * vdev_offline(), we assume the spa config is locked. We also clear all 4357 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 4358 */ 4359 void 4360 vdev_clear(spa_t *spa, vdev_t *vd) 4361 { 4362 vdev_t *rvd = spa->spa_root_vdev; 4363 4364 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 4365 4366 if (vd == NULL) 4367 vd = rvd; 4368 4369 vd->vdev_stat.vs_read_errors = 0; 4370 vd->vdev_stat.vs_write_errors = 0; 4371 vd->vdev_stat.vs_checksum_errors = 0; 4372 vd->vdev_stat.vs_slow_ios = 0; 4373 4374 for (int c = 0; c < vd->vdev_children; c++) 4375 vdev_clear(spa, vd->vdev_child[c]); 4376 4377 /* 4378 * It makes no sense to "clear" an indirect or removed vdev. 4379 */ 4380 if (!vdev_is_concrete(vd) || vd->vdev_removed) 4381 return; 4382 4383 /* 4384 * If we're in the FAULTED state or have experienced failed I/O, then 4385 * clear the persistent state and attempt to reopen the device. We 4386 * also mark the vdev config dirty, so that the new faulted state is 4387 * written out to disk. 4388 */ 4389 if (vd->vdev_faulted || vd->vdev_degraded || 4390 !vdev_readable(vd) || !vdev_writeable(vd)) { 4391 /* 4392 * When reopening in response to a clear event, it may be due to 4393 * a fmadm repair request. In this case, if the device is 4394 * still broken, we want to still post the ereport again. 4395 */ 4396 vd->vdev_forcefault = B_TRUE; 4397 4398 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 4399 vd->vdev_cant_read = B_FALSE; 4400 vd->vdev_cant_write = B_FALSE; 4401 vd->vdev_stat.vs_aux = 0; 4402 4403 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 4404 4405 vd->vdev_forcefault = B_FALSE; 4406 4407 if (vd != rvd && vdev_writeable(vd->vdev_top)) 4408 vdev_state_dirty(vd->vdev_top); 4409 4410 /* If a resilver isn't required, check if vdevs can be culled */ 4411 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) && 4412 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4413 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool)) 4414 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4415 4416 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 4417 } 4418 4419 /* 4420 * When clearing a FMA-diagnosed fault, we always want to 4421 * unspare the device, as we assume that the original spare was 4422 * done in response to the FMA fault. 4423 */ 4424 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 4425 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4426 vd->vdev_parent->vdev_child[0] == vd) 4427 vd->vdev_unspare = B_TRUE; 4428 4429 /* Clear recent error events cache (i.e. duplicate events tracking) */ 4430 zfs_ereport_clear(spa, vd); 4431 } 4432 4433 boolean_t 4434 vdev_is_dead(vdev_t *vd) 4435 { 4436 /* 4437 * Holes and missing devices are always considered "dead". 4438 * This simplifies the code since we don't have to check for 4439 * these types of devices in the various code paths. 4440 * Instead we rely on the fact that we skip over dead devices 4441 * before issuing I/O to them. 4442 */ 4443 return (vd->vdev_state < VDEV_STATE_DEGRADED || 4444 vd->vdev_ops == &vdev_hole_ops || 4445 vd->vdev_ops == &vdev_missing_ops); 4446 } 4447 4448 boolean_t 4449 vdev_readable(vdev_t *vd) 4450 { 4451 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 4452 } 4453 4454 boolean_t 4455 vdev_writeable(vdev_t *vd) 4456 { 4457 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 4458 vdev_is_concrete(vd)); 4459 } 4460 4461 boolean_t 4462 vdev_allocatable(vdev_t *vd) 4463 { 4464 uint64_t state = vd->vdev_state; 4465 4466 /* 4467 * We currently allow allocations from vdevs which may be in the 4468 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 4469 * fails to reopen then we'll catch it later when we're holding 4470 * the proper locks. Note that we have to get the vdev state 4471 * in a local variable because although it changes atomically, 4472 * we're asking two separate questions about it. 4473 */ 4474 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 4475 !vd->vdev_cant_write && vdev_is_concrete(vd) && 4476 vd->vdev_mg->mg_initialized); 4477 } 4478 4479 boolean_t 4480 vdev_accessible(vdev_t *vd, zio_t *zio) 4481 { 4482 ASSERT(zio->io_vd == vd); 4483 4484 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 4485 return (B_FALSE); 4486 4487 if (zio->io_type == ZIO_TYPE_READ) 4488 return (!vd->vdev_cant_read); 4489 4490 if (zio->io_type == ZIO_TYPE_WRITE) 4491 return (!vd->vdev_cant_write); 4492 4493 return (B_TRUE); 4494 } 4495 4496 static void 4497 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs) 4498 { 4499 /* 4500 * Exclude the dRAID spare when aggregating to avoid double counting 4501 * the ops and bytes. These IOs are counted by the physical leaves. 4502 */ 4503 if (cvd->vdev_ops == &vdev_draid_spare_ops) 4504 return; 4505 4506 for (int t = 0; t < VS_ZIO_TYPES; t++) { 4507 vs->vs_ops[t] += cvs->vs_ops[t]; 4508 vs->vs_bytes[t] += cvs->vs_bytes[t]; 4509 } 4510 4511 cvs->vs_scan_removing = cvd->vdev_removing; 4512 } 4513 4514 /* 4515 * Get extended stats 4516 */ 4517 static void 4518 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx) 4519 { 4520 (void) cvd; 4521 4522 int t, b; 4523 for (t = 0; t < ZIO_TYPES; t++) { 4524 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++) 4525 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b]; 4526 4527 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) { 4528 vsx->vsx_total_histo[t][b] += 4529 cvsx->vsx_total_histo[t][b]; 4530 } 4531 } 4532 4533 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4534 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) { 4535 vsx->vsx_queue_histo[t][b] += 4536 cvsx->vsx_queue_histo[t][b]; 4537 } 4538 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t]; 4539 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t]; 4540 4541 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++) 4542 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b]; 4543 4544 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++) 4545 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b]; 4546 } 4547 4548 } 4549 4550 boolean_t 4551 vdev_is_spacemap_addressable(vdev_t *vd) 4552 { 4553 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 4554 return (B_TRUE); 4555 4556 /* 4557 * If double-word space map entries are not enabled we assume 4558 * 47 bits of the space map entry are dedicated to the entry's 4559 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 4560 * to calculate the maximum address that can be described by a 4561 * space map entry for the given device. 4562 */ 4563 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 4564 4565 if (shift >= 63) /* detect potential overflow */ 4566 return (B_TRUE); 4567 4568 return (vd->vdev_asize < (1ULL << shift)); 4569 } 4570 4571 /* 4572 * Get statistics for the given vdev. 4573 */ 4574 static void 4575 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4576 { 4577 int t; 4578 /* 4579 * If we're getting stats on the root vdev, aggregate the I/O counts 4580 * over all top-level vdevs (i.e. the direct children of the root). 4581 */ 4582 if (!vd->vdev_ops->vdev_op_leaf) { 4583 if (vs) { 4584 memset(vs->vs_ops, 0, sizeof (vs->vs_ops)); 4585 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes)); 4586 } 4587 if (vsx) 4588 memset(vsx, 0, sizeof (*vsx)); 4589 4590 for (int c = 0; c < vd->vdev_children; c++) { 4591 vdev_t *cvd = vd->vdev_child[c]; 4592 vdev_stat_t *cvs = &cvd->vdev_stat; 4593 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex; 4594 4595 vdev_get_stats_ex_impl(cvd, cvs, cvsx); 4596 if (vs) 4597 vdev_get_child_stat(cvd, vs, cvs); 4598 if (vsx) 4599 vdev_get_child_stat_ex(cvd, vsx, cvsx); 4600 } 4601 } else { 4602 /* 4603 * We're a leaf. Just copy our ZIO active queue stats in. The 4604 * other leaf stats are updated in vdev_stat_update(). 4605 */ 4606 if (!vsx) 4607 return; 4608 4609 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex)); 4610 4611 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4612 vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t]; 4613 vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t); 4614 } 4615 } 4616 } 4617 4618 void 4619 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4620 { 4621 vdev_t *tvd = vd->vdev_top; 4622 mutex_enter(&vd->vdev_stat_lock); 4623 if (vs) { 4624 memcpy(vs, &vd->vdev_stat, sizeof (*vs)); 4625 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 4626 vs->vs_state = vd->vdev_state; 4627 vs->vs_rsize = vdev_get_min_asize(vd); 4628 4629 if (vd->vdev_ops->vdev_op_leaf) { 4630 vs->vs_pspace = vd->vdev_psize; 4631 vs->vs_rsize += VDEV_LABEL_START_SIZE + 4632 VDEV_LABEL_END_SIZE; 4633 /* 4634 * Report initializing progress. Since we don't 4635 * have the initializing locks held, this is only 4636 * an estimate (although a fairly accurate one). 4637 */ 4638 vs->vs_initialize_bytes_done = 4639 vd->vdev_initialize_bytes_done; 4640 vs->vs_initialize_bytes_est = 4641 vd->vdev_initialize_bytes_est; 4642 vs->vs_initialize_state = vd->vdev_initialize_state; 4643 vs->vs_initialize_action_time = 4644 vd->vdev_initialize_action_time; 4645 4646 /* 4647 * Report manual TRIM progress. Since we don't have 4648 * the manual TRIM locks held, this is only an 4649 * estimate (although fairly accurate one). 4650 */ 4651 vs->vs_trim_notsup = !vd->vdev_has_trim; 4652 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done; 4653 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est; 4654 vs->vs_trim_state = vd->vdev_trim_state; 4655 vs->vs_trim_action_time = vd->vdev_trim_action_time; 4656 4657 /* Set when there is a deferred resilver. */ 4658 vs->vs_resilver_deferred = vd->vdev_resilver_deferred; 4659 } 4660 4661 /* 4662 * Report expandable space on top-level, non-auxiliary devices 4663 * only. The expandable space is reported in terms of metaslab 4664 * sized units since that determines how much space the pool 4665 * can expand. 4666 */ 4667 if (vd->vdev_aux == NULL && tvd != NULL) { 4668 vs->vs_esize = P2ALIGN( 4669 vd->vdev_max_asize - vd->vdev_asize, 4670 1ULL << tvd->vdev_ms_shift); 4671 } 4672 4673 vs->vs_configured_ashift = vd->vdev_top != NULL 4674 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift; 4675 vs->vs_logical_ashift = vd->vdev_logical_ashift; 4676 if (vd->vdev_physical_ashift <= ASHIFT_MAX) 4677 vs->vs_physical_ashift = vd->vdev_physical_ashift; 4678 else 4679 vs->vs_physical_ashift = 0; 4680 4681 /* 4682 * Report fragmentation and rebuild progress for top-level, 4683 * non-auxiliary, concrete devices. 4684 */ 4685 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 4686 vdev_is_concrete(vd)) { 4687 /* 4688 * The vdev fragmentation rating doesn't take into 4689 * account the embedded slog metaslab (vdev_log_mg). 4690 * Since it's only one metaslab, it would have a tiny 4691 * impact on the overall fragmentation. 4692 */ 4693 vs->vs_fragmentation = (vd->vdev_mg != NULL) ? 4694 vd->vdev_mg->mg_fragmentation : 0; 4695 } 4696 vs->vs_noalloc = MAX(vd->vdev_noalloc, 4697 tvd ? tvd->vdev_noalloc : 0); 4698 } 4699 4700 vdev_get_stats_ex_impl(vd, vs, vsx); 4701 mutex_exit(&vd->vdev_stat_lock); 4702 } 4703 4704 void 4705 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 4706 { 4707 return (vdev_get_stats_ex(vd, vs, NULL)); 4708 } 4709 4710 void 4711 vdev_clear_stats(vdev_t *vd) 4712 { 4713 mutex_enter(&vd->vdev_stat_lock); 4714 vd->vdev_stat.vs_space = 0; 4715 vd->vdev_stat.vs_dspace = 0; 4716 vd->vdev_stat.vs_alloc = 0; 4717 mutex_exit(&vd->vdev_stat_lock); 4718 } 4719 4720 void 4721 vdev_scan_stat_init(vdev_t *vd) 4722 { 4723 vdev_stat_t *vs = &vd->vdev_stat; 4724 4725 for (int c = 0; c < vd->vdev_children; c++) 4726 vdev_scan_stat_init(vd->vdev_child[c]); 4727 4728 mutex_enter(&vd->vdev_stat_lock); 4729 vs->vs_scan_processed = 0; 4730 mutex_exit(&vd->vdev_stat_lock); 4731 } 4732 4733 void 4734 vdev_stat_update(zio_t *zio, uint64_t psize) 4735 { 4736 spa_t *spa = zio->io_spa; 4737 vdev_t *rvd = spa->spa_root_vdev; 4738 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 4739 vdev_t *pvd; 4740 uint64_t txg = zio->io_txg; 4741 /* Suppress ASAN false positive */ 4742 #ifdef __SANITIZE_ADDRESS__ 4743 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL; 4744 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL; 4745 #else 4746 vdev_stat_t *vs = &vd->vdev_stat; 4747 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex; 4748 #endif 4749 zio_type_t type = zio->io_type; 4750 int flags = zio->io_flags; 4751 4752 /* 4753 * If this i/o is a gang leader, it didn't do any actual work. 4754 */ 4755 if (zio->io_gang_tree) 4756 return; 4757 4758 if (zio->io_error == 0) { 4759 /* 4760 * If this is a root i/o, don't count it -- we've already 4761 * counted the top-level vdevs, and vdev_get_stats() will 4762 * aggregate them when asked. This reduces contention on 4763 * the root vdev_stat_lock and implicitly handles blocks 4764 * that compress away to holes, for which there is no i/o. 4765 * (Holes never create vdev children, so all the counters 4766 * remain zero, which is what we want.) 4767 * 4768 * Note: this only applies to successful i/o (io_error == 0) 4769 * because unlike i/o counts, errors are not additive. 4770 * When reading a ditto block, for example, failure of 4771 * one top-level vdev does not imply a root-level error. 4772 */ 4773 if (vd == rvd) 4774 return; 4775 4776 ASSERT(vd == zio->io_vd); 4777 4778 if (flags & ZIO_FLAG_IO_BYPASS) 4779 return; 4780 4781 mutex_enter(&vd->vdev_stat_lock); 4782 4783 if (flags & ZIO_FLAG_IO_REPAIR) { 4784 /* 4785 * Repair is the result of a resilver issued by the 4786 * scan thread (spa_sync). 4787 */ 4788 if (flags & ZIO_FLAG_SCAN_THREAD) { 4789 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 4790 dsl_scan_phys_t *scn_phys = &scn->scn_phys; 4791 uint64_t *processed = &scn_phys->scn_processed; 4792 4793 if (vd->vdev_ops->vdev_op_leaf) 4794 atomic_add_64(processed, psize); 4795 vs->vs_scan_processed += psize; 4796 } 4797 4798 /* 4799 * Repair is the result of a rebuild issued by the 4800 * rebuild thread (vdev_rebuild_thread). To avoid 4801 * double counting repaired bytes the virtual dRAID 4802 * spare vdev is excluded from the processed bytes. 4803 */ 4804 if (zio->io_priority == ZIO_PRIORITY_REBUILD) { 4805 vdev_t *tvd = vd->vdev_top; 4806 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config; 4807 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 4808 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt; 4809 4810 if (vd->vdev_ops->vdev_op_leaf && 4811 vd->vdev_ops != &vdev_draid_spare_ops) { 4812 atomic_add_64(rebuilt, psize); 4813 } 4814 vs->vs_rebuild_processed += psize; 4815 } 4816 4817 if (flags & ZIO_FLAG_SELF_HEAL) 4818 vs->vs_self_healed += psize; 4819 } 4820 4821 /* 4822 * The bytes/ops/histograms are recorded at the leaf level and 4823 * aggregated into the higher level vdevs in vdev_get_stats(). 4824 */ 4825 if (vd->vdev_ops->vdev_op_leaf && 4826 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) { 4827 zio_type_t vs_type = type; 4828 zio_priority_t priority = zio->io_priority; 4829 4830 /* 4831 * TRIM ops and bytes are reported to user space as 4832 * ZIO_TYPE_IOCTL. This is done to preserve the 4833 * vdev_stat_t structure layout for user space. 4834 */ 4835 if (type == ZIO_TYPE_TRIM) 4836 vs_type = ZIO_TYPE_IOCTL; 4837 4838 /* 4839 * Solely for the purposes of 'zpool iostat -lqrw' 4840 * reporting use the priority to categorize the IO. 4841 * Only the following are reported to user space: 4842 * 4843 * ZIO_PRIORITY_SYNC_READ, 4844 * ZIO_PRIORITY_SYNC_WRITE, 4845 * ZIO_PRIORITY_ASYNC_READ, 4846 * ZIO_PRIORITY_ASYNC_WRITE, 4847 * ZIO_PRIORITY_SCRUB, 4848 * ZIO_PRIORITY_TRIM, 4849 * ZIO_PRIORITY_REBUILD. 4850 */ 4851 if (priority == ZIO_PRIORITY_INITIALIZING) { 4852 ASSERT3U(type, ==, ZIO_TYPE_WRITE); 4853 priority = ZIO_PRIORITY_ASYNC_WRITE; 4854 } else if (priority == ZIO_PRIORITY_REMOVAL) { 4855 priority = ((type == ZIO_TYPE_WRITE) ? 4856 ZIO_PRIORITY_ASYNC_WRITE : 4857 ZIO_PRIORITY_ASYNC_READ); 4858 } 4859 4860 vs->vs_ops[vs_type]++; 4861 vs->vs_bytes[vs_type] += psize; 4862 4863 if (flags & ZIO_FLAG_DELEGATED) { 4864 vsx->vsx_agg_histo[priority] 4865 [RQ_HISTO(zio->io_size)]++; 4866 } else { 4867 vsx->vsx_ind_histo[priority] 4868 [RQ_HISTO(zio->io_size)]++; 4869 } 4870 4871 if (zio->io_delta && zio->io_delay) { 4872 vsx->vsx_queue_histo[priority] 4873 [L_HISTO(zio->io_delta - zio->io_delay)]++; 4874 vsx->vsx_disk_histo[type] 4875 [L_HISTO(zio->io_delay)]++; 4876 vsx->vsx_total_histo[type] 4877 [L_HISTO(zio->io_delta)]++; 4878 } 4879 } 4880 4881 mutex_exit(&vd->vdev_stat_lock); 4882 return; 4883 } 4884 4885 if (flags & ZIO_FLAG_SPECULATIVE) 4886 return; 4887 4888 /* 4889 * If this is an I/O error that is going to be retried, then ignore the 4890 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 4891 * hard errors, when in reality they can happen for any number of 4892 * innocuous reasons (bus resets, MPxIO link failure, etc). 4893 */ 4894 if (zio->io_error == EIO && 4895 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 4896 return; 4897 4898 /* 4899 * Intent logs writes won't propagate their error to the root 4900 * I/O so don't mark these types of failures as pool-level 4901 * errors. 4902 */ 4903 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 4904 return; 4905 4906 if (type == ZIO_TYPE_WRITE && txg != 0 && 4907 (!(flags & ZIO_FLAG_IO_REPAIR) || 4908 (flags & ZIO_FLAG_SCAN_THREAD) || 4909 spa->spa_claiming)) { 4910 /* 4911 * This is either a normal write (not a repair), or it's 4912 * a repair induced by the scrub thread, or it's a repair 4913 * made by zil_claim() during spa_load() in the first txg. 4914 * In the normal case, we commit the DTL change in the same 4915 * txg as the block was born. In the scrub-induced repair 4916 * case, we know that scrubs run in first-pass syncing context, 4917 * so we commit the DTL change in spa_syncing_txg(spa). 4918 * In the zil_claim() case, we commit in spa_first_txg(spa). 4919 * 4920 * We currently do not make DTL entries for failed spontaneous 4921 * self-healing writes triggered by normal (non-scrubbing) 4922 * reads, because we have no transactional context in which to 4923 * do so -- and it's not clear that it'd be desirable anyway. 4924 */ 4925 if (vd->vdev_ops->vdev_op_leaf) { 4926 uint64_t commit_txg = txg; 4927 if (flags & ZIO_FLAG_SCAN_THREAD) { 4928 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4929 ASSERT(spa_sync_pass(spa) == 1); 4930 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 4931 commit_txg = spa_syncing_txg(spa); 4932 } else if (spa->spa_claiming) { 4933 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4934 commit_txg = spa_first_txg(spa); 4935 } 4936 ASSERT(commit_txg >= spa_syncing_txg(spa)); 4937 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 4938 return; 4939 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4940 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 4941 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 4942 } 4943 if (vd != rvd) 4944 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 4945 } 4946 } 4947 4948 int64_t 4949 vdev_deflated_space(vdev_t *vd, int64_t space) 4950 { 4951 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); 4952 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 4953 4954 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); 4955 } 4956 4957 /* 4958 * Update the in-core space usage stats for this vdev, its metaslab class, 4959 * and the root vdev. 4960 */ 4961 void 4962 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 4963 int64_t space_delta) 4964 { 4965 (void) defer_delta; 4966 int64_t dspace_delta; 4967 spa_t *spa = vd->vdev_spa; 4968 vdev_t *rvd = spa->spa_root_vdev; 4969 4970 ASSERT(vd == vd->vdev_top); 4971 4972 /* 4973 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 4974 * factor. We must calculate this here and not at the root vdev 4975 * because the root vdev's psize-to-asize is simply the max of its 4976 * children's, thus not accurate enough for us. 4977 */ 4978 dspace_delta = vdev_deflated_space(vd, space_delta); 4979 4980 mutex_enter(&vd->vdev_stat_lock); 4981 /* ensure we won't underflow */ 4982 if (alloc_delta < 0) { 4983 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); 4984 } 4985 4986 vd->vdev_stat.vs_alloc += alloc_delta; 4987 vd->vdev_stat.vs_space += space_delta; 4988 vd->vdev_stat.vs_dspace += dspace_delta; 4989 mutex_exit(&vd->vdev_stat_lock); 4990 4991 /* every class but log contributes to root space stats */ 4992 if (vd->vdev_mg != NULL && !vd->vdev_islog) { 4993 ASSERT(!vd->vdev_isl2cache); 4994 mutex_enter(&rvd->vdev_stat_lock); 4995 rvd->vdev_stat.vs_alloc += alloc_delta; 4996 rvd->vdev_stat.vs_space += space_delta; 4997 rvd->vdev_stat.vs_dspace += dspace_delta; 4998 mutex_exit(&rvd->vdev_stat_lock); 4999 } 5000 /* Note: metaslab_class_space_update moved to metaslab_space_update */ 5001 } 5002 5003 /* 5004 * Mark a top-level vdev's config as dirty, placing it on the dirty list 5005 * so that it will be written out next time the vdev configuration is synced. 5006 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 5007 */ 5008 void 5009 vdev_config_dirty(vdev_t *vd) 5010 { 5011 spa_t *spa = vd->vdev_spa; 5012 vdev_t *rvd = spa->spa_root_vdev; 5013 int c; 5014 5015 ASSERT(spa_writeable(spa)); 5016 5017 /* 5018 * If this is an aux vdev (as with l2cache and spare devices), then we 5019 * update the vdev config manually and set the sync flag. 5020 */ 5021 if (vd->vdev_aux != NULL) { 5022 spa_aux_vdev_t *sav = vd->vdev_aux; 5023 nvlist_t **aux; 5024 uint_t naux; 5025 5026 for (c = 0; c < sav->sav_count; c++) { 5027 if (sav->sav_vdevs[c] == vd) 5028 break; 5029 } 5030 5031 if (c == sav->sav_count) { 5032 /* 5033 * We're being removed. There's nothing more to do. 5034 */ 5035 ASSERT(sav->sav_sync == B_TRUE); 5036 return; 5037 } 5038 5039 sav->sav_sync = B_TRUE; 5040 5041 if (nvlist_lookup_nvlist_array(sav->sav_config, 5042 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 5043 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 5044 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 5045 } 5046 5047 ASSERT(c < naux); 5048 5049 /* 5050 * Setting the nvlist in the middle if the array is a little 5051 * sketchy, but it will work. 5052 */ 5053 nvlist_free(aux[c]); 5054 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 5055 5056 return; 5057 } 5058 5059 /* 5060 * The dirty list is protected by the SCL_CONFIG lock. The caller 5061 * must either hold SCL_CONFIG as writer, or must be the sync thread 5062 * (which holds SCL_CONFIG as reader). There's only one sync thread, 5063 * so this is sufficient to ensure mutual exclusion. 5064 */ 5065 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5066 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5067 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5068 5069 if (vd == rvd) { 5070 for (c = 0; c < rvd->vdev_children; c++) 5071 vdev_config_dirty(rvd->vdev_child[c]); 5072 } else { 5073 ASSERT(vd == vd->vdev_top); 5074 5075 if (!list_link_active(&vd->vdev_config_dirty_node) && 5076 vdev_is_concrete(vd)) { 5077 list_insert_head(&spa->spa_config_dirty_list, vd); 5078 } 5079 } 5080 } 5081 5082 void 5083 vdev_config_clean(vdev_t *vd) 5084 { 5085 spa_t *spa = vd->vdev_spa; 5086 5087 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5088 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5089 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5090 5091 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 5092 list_remove(&spa->spa_config_dirty_list, vd); 5093 } 5094 5095 /* 5096 * Mark a top-level vdev's state as dirty, so that the next pass of 5097 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 5098 * the state changes from larger config changes because they require 5099 * much less locking, and are often needed for administrative actions. 5100 */ 5101 void 5102 vdev_state_dirty(vdev_t *vd) 5103 { 5104 spa_t *spa = vd->vdev_spa; 5105 5106 ASSERT(spa_writeable(spa)); 5107 ASSERT(vd == vd->vdev_top); 5108 5109 /* 5110 * The state list is protected by the SCL_STATE lock. The caller 5111 * must either hold SCL_STATE as writer, or must be the sync thread 5112 * (which holds SCL_STATE as reader). There's only one sync thread, 5113 * so this is sufficient to ensure mutual exclusion. 5114 */ 5115 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5116 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5117 spa_config_held(spa, SCL_STATE, RW_READER))); 5118 5119 if (!list_link_active(&vd->vdev_state_dirty_node) && 5120 vdev_is_concrete(vd)) 5121 list_insert_head(&spa->spa_state_dirty_list, vd); 5122 } 5123 5124 void 5125 vdev_state_clean(vdev_t *vd) 5126 { 5127 spa_t *spa = vd->vdev_spa; 5128 5129 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5130 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5131 spa_config_held(spa, SCL_STATE, RW_READER))); 5132 5133 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 5134 list_remove(&spa->spa_state_dirty_list, vd); 5135 } 5136 5137 /* 5138 * Propagate vdev state up from children to parent. 5139 */ 5140 void 5141 vdev_propagate_state(vdev_t *vd) 5142 { 5143 spa_t *spa = vd->vdev_spa; 5144 vdev_t *rvd = spa->spa_root_vdev; 5145 int degraded = 0, faulted = 0; 5146 int corrupted = 0; 5147 vdev_t *child; 5148 5149 if (vd->vdev_children > 0) { 5150 for (int c = 0; c < vd->vdev_children; c++) { 5151 child = vd->vdev_child[c]; 5152 5153 /* 5154 * Don't factor holes or indirect vdevs into the 5155 * decision. 5156 */ 5157 if (!vdev_is_concrete(child)) 5158 continue; 5159 5160 if (!vdev_readable(child) || 5161 (!vdev_writeable(child) && spa_writeable(spa))) { 5162 /* 5163 * Root special: if there is a top-level log 5164 * device, treat the root vdev as if it were 5165 * degraded. 5166 */ 5167 if (child->vdev_islog && vd == rvd) 5168 degraded++; 5169 else 5170 faulted++; 5171 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 5172 degraded++; 5173 } 5174 5175 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 5176 corrupted++; 5177 } 5178 5179 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 5180 5181 /* 5182 * Root special: if there is a top-level vdev that cannot be 5183 * opened due to corrupted metadata, then propagate the root 5184 * vdev's aux state as 'corrupt' rather than 'insufficient 5185 * replicas'. 5186 */ 5187 if (corrupted && vd == rvd && 5188 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 5189 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 5190 VDEV_AUX_CORRUPT_DATA); 5191 } 5192 5193 if (vd->vdev_parent) 5194 vdev_propagate_state(vd->vdev_parent); 5195 } 5196 5197 /* 5198 * Set a vdev's state. If this is during an open, we don't update the parent 5199 * state, because we're in the process of opening children depth-first. 5200 * Otherwise, we propagate the change to the parent. 5201 * 5202 * If this routine places a device in a faulted state, an appropriate ereport is 5203 * generated. 5204 */ 5205 void 5206 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 5207 { 5208 uint64_t save_state; 5209 spa_t *spa = vd->vdev_spa; 5210 5211 if (state == vd->vdev_state) { 5212 /* 5213 * Since vdev_offline() code path is already in an offline 5214 * state we can miss a statechange event to OFFLINE. Check 5215 * the previous state to catch this condition. 5216 */ 5217 if (vd->vdev_ops->vdev_op_leaf && 5218 (state == VDEV_STATE_OFFLINE) && 5219 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) { 5220 /* post an offline state change */ 5221 zfs_post_state_change(spa, vd, vd->vdev_prevstate); 5222 } 5223 vd->vdev_stat.vs_aux = aux; 5224 return; 5225 } 5226 5227 save_state = vd->vdev_state; 5228 5229 vd->vdev_state = state; 5230 vd->vdev_stat.vs_aux = aux; 5231 5232 /* 5233 * If we are setting the vdev state to anything but an open state, then 5234 * always close the underlying device unless the device has requested 5235 * a delayed close (i.e. we're about to remove or fault the device). 5236 * Otherwise, we keep accessible but invalid devices open forever. 5237 * We don't call vdev_close() itself, because that implies some extra 5238 * checks (offline, etc) that we don't want here. This is limited to 5239 * leaf devices, because otherwise closing the device will affect other 5240 * children. 5241 */ 5242 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 5243 vd->vdev_ops->vdev_op_leaf) 5244 vd->vdev_ops->vdev_op_close(vd); 5245 5246 if (vd->vdev_removed && 5247 state == VDEV_STATE_CANT_OPEN && 5248 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 5249 /* 5250 * If the previous state is set to VDEV_STATE_REMOVED, then this 5251 * device was previously marked removed and someone attempted to 5252 * reopen it. If this failed due to a nonexistent device, then 5253 * keep the device in the REMOVED state. We also let this be if 5254 * it is one of our special test online cases, which is only 5255 * attempting to online the device and shouldn't generate an FMA 5256 * fault. 5257 */ 5258 vd->vdev_state = VDEV_STATE_REMOVED; 5259 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 5260 } else if (state == VDEV_STATE_REMOVED) { 5261 vd->vdev_removed = B_TRUE; 5262 } else if (state == VDEV_STATE_CANT_OPEN) { 5263 /* 5264 * If we fail to open a vdev during an import or recovery, we 5265 * mark it as "not available", which signifies that it was 5266 * never there to begin with. Failure to open such a device 5267 * is not considered an error. 5268 */ 5269 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 5270 spa_load_state(spa) == SPA_LOAD_RECOVER) && 5271 vd->vdev_ops->vdev_op_leaf) 5272 vd->vdev_not_present = 1; 5273 5274 /* 5275 * Post the appropriate ereport. If the 'prevstate' field is 5276 * set to something other than VDEV_STATE_UNKNOWN, it indicates 5277 * that this is part of a vdev_reopen(). In this case, we don't 5278 * want to post the ereport if the device was already in the 5279 * CANT_OPEN state beforehand. 5280 * 5281 * If the 'checkremove' flag is set, then this is an attempt to 5282 * online the device in response to an insertion event. If we 5283 * hit this case, then we have detected an insertion event for a 5284 * faulted or offline device that wasn't in the removed state. 5285 * In this scenario, we don't post an ereport because we are 5286 * about to replace the device, or attempt an online with 5287 * vdev_forcefault, which will generate the fault for us. 5288 */ 5289 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 5290 !vd->vdev_not_present && !vd->vdev_checkremove && 5291 vd != spa->spa_root_vdev) { 5292 const char *class; 5293 5294 switch (aux) { 5295 case VDEV_AUX_OPEN_FAILED: 5296 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 5297 break; 5298 case VDEV_AUX_CORRUPT_DATA: 5299 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 5300 break; 5301 case VDEV_AUX_NO_REPLICAS: 5302 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 5303 break; 5304 case VDEV_AUX_BAD_GUID_SUM: 5305 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 5306 break; 5307 case VDEV_AUX_TOO_SMALL: 5308 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 5309 break; 5310 case VDEV_AUX_BAD_LABEL: 5311 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 5312 break; 5313 case VDEV_AUX_BAD_ASHIFT: 5314 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT; 5315 break; 5316 default: 5317 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 5318 } 5319 5320 (void) zfs_ereport_post(class, spa, vd, NULL, NULL, 5321 save_state); 5322 } 5323 5324 /* Erase any notion of persistent removed state */ 5325 vd->vdev_removed = B_FALSE; 5326 } else { 5327 vd->vdev_removed = B_FALSE; 5328 } 5329 5330 /* 5331 * Notify ZED of any significant state-change on a leaf vdev. 5332 * 5333 */ 5334 if (vd->vdev_ops->vdev_op_leaf) { 5335 /* preserve original state from a vdev_reopen() */ 5336 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) && 5337 (vd->vdev_prevstate != vd->vdev_state) && 5338 (save_state <= VDEV_STATE_CLOSED)) 5339 save_state = vd->vdev_prevstate; 5340 5341 /* filter out state change due to initial vdev_open */ 5342 if (save_state > VDEV_STATE_CLOSED) 5343 zfs_post_state_change(spa, vd, save_state); 5344 } 5345 5346 if (!isopen && vd->vdev_parent) 5347 vdev_propagate_state(vd->vdev_parent); 5348 } 5349 5350 boolean_t 5351 vdev_children_are_offline(vdev_t *vd) 5352 { 5353 ASSERT(!vd->vdev_ops->vdev_op_leaf); 5354 5355 for (uint64_t i = 0; i < vd->vdev_children; i++) { 5356 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 5357 return (B_FALSE); 5358 } 5359 5360 return (B_TRUE); 5361 } 5362 5363 /* 5364 * Check the vdev configuration to ensure that it's capable of supporting 5365 * a root pool. We do not support partial configuration. 5366 */ 5367 boolean_t 5368 vdev_is_bootable(vdev_t *vd) 5369 { 5370 if (!vd->vdev_ops->vdev_op_leaf) { 5371 const char *vdev_type = vd->vdev_ops->vdev_op_type; 5372 5373 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) 5374 return (B_FALSE); 5375 } 5376 5377 for (int c = 0; c < vd->vdev_children; c++) { 5378 if (!vdev_is_bootable(vd->vdev_child[c])) 5379 return (B_FALSE); 5380 } 5381 return (B_TRUE); 5382 } 5383 5384 boolean_t 5385 vdev_is_concrete(vdev_t *vd) 5386 { 5387 vdev_ops_t *ops = vd->vdev_ops; 5388 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 5389 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 5390 return (B_FALSE); 5391 } else { 5392 return (B_TRUE); 5393 } 5394 } 5395 5396 /* 5397 * Determine if a log device has valid content. If the vdev was 5398 * removed or faulted in the MOS config then we know that 5399 * the content on the log device has already been written to the pool. 5400 */ 5401 boolean_t 5402 vdev_log_state_valid(vdev_t *vd) 5403 { 5404 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 5405 !vd->vdev_removed) 5406 return (B_TRUE); 5407 5408 for (int c = 0; c < vd->vdev_children; c++) 5409 if (vdev_log_state_valid(vd->vdev_child[c])) 5410 return (B_TRUE); 5411 5412 return (B_FALSE); 5413 } 5414 5415 /* 5416 * Expand a vdev if possible. 5417 */ 5418 void 5419 vdev_expand(vdev_t *vd, uint64_t txg) 5420 { 5421 ASSERT(vd->vdev_top == vd); 5422 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5423 ASSERT(vdev_is_concrete(vd)); 5424 5425 vdev_set_deflate_ratio(vd); 5426 5427 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 5428 vdev_is_concrete(vd)) { 5429 vdev_metaslab_group_create(vd); 5430 VERIFY(vdev_metaslab_init(vd, txg) == 0); 5431 vdev_config_dirty(vd); 5432 } 5433 } 5434 5435 /* 5436 * Split a vdev. 5437 */ 5438 void 5439 vdev_split(vdev_t *vd) 5440 { 5441 vdev_t *cvd, *pvd = vd->vdev_parent; 5442 5443 VERIFY3U(pvd->vdev_children, >, 1); 5444 5445 vdev_remove_child(pvd, vd); 5446 vdev_compact_children(pvd); 5447 5448 ASSERT3P(pvd->vdev_child, !=, NULL); 5449 5450 cvd = pvd->vdev_child[0]; 5451 if (pvd->vdev_children == 1) { 5452 vdev_remove_parent(cvd); 5453 cvd->vdev_splitting = B_TRUE; 5454 } 5455 vdev_propagate_state(cvd); 5456 } 5457 5458 void 5459 vdev_deadman(vdev_t *vd, const char *tag) 5460 { 5461 for (int c = 0; c < vd->vdev_children; c++) { 5462 vdev_t *cvd = vd->vdev_child[c]; 5463 5464 vdev_deadman(cvd, tag); 5465 } 5466 5467 if (vd->vdev_ops->vdev_op_leaf) { 5468 vdev_queue_t *vq = &vd->vdev_queue; 5469 5470 mutex_enter(&vq->vq_lock); 5471 if (vq->vq_active > 0) { 5472 spa_t *spa = vd->vdev_spa; 5473 zio_t *fio; 5474 uint64_t delta; 5475 5476 zfs_dbgmsg("slow vdev: %s has %u active IOs", 5477 vd->vdev_path, vq->vq_active); 5478 5479 /* 5480 * Look at the head of all the pending queues, 5481 * if any I/O has been outstanding for longer than 5482 * the spa_deadman_synctime invoke the deadman logic. 5483 */ 5484 fio = list_head(&vq->vq_active_list); 5485 delta = gethrtime() - fio->io_timestamp; 5486 if (delta > spa_deadman_synctime(spa)) 5487 zio_deadman(fio, tag); 5488 } 5489 mutex_exit(&vq->vq_lock); 5490 } 5491 } 5492 5493 void 5494 vdev_defer_resilver(vdev_t *vd) 5495 { 5496 ASSERT(vd->vdev_ops->vdev_op_leaf); 5497 5498 vd->vdev_resilver_deferred = B_TRUE; 5499 vd->vdev_spa->spa_resilver_deferred = B_TRUE; 5500 } 5501 5502 /* 5503 * Clears the resilver deferred flag on all leaf devs under vd. Returns 5504 * B_TRUE if we have devices that need to be resilvered and are available to 5505 * accept resilver I/Os. 5506 */ 5507 boolean_t 5508 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx) 5509 { 5510 boolean_t resilver_needed = B_FALSE; 5511 spa_t *spa = vd->vdev_spa; 5512 5513 for (int c = 0; c < vd->vdev_children; c++) { 5514 vdev_t *cvd = vd->vdev_child[c]; 5515 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx); 5516 } 5517 5518 if (vd == spa->spa_root_vdev && 5519 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { 5520 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 5521 vdev_config_dirty(vd); 5522 spa->spa_resilver_deferred = B_FALSE; 5523 return (resilver_needed); 5524 } 5525 5526 if (!vdev_is_concrete(vd) || vd->vdev_aux || 5527 !vd->vdev_ops->vdev_op_leaf) 5528 return (resilver_needed); 5529 5530 vd->vdev_resilver_deferred = B_FALSE; 5531 5532 return (!vdev_is_dead(vd) && !vd->vdev_offline && 5533 vdev_resilver_needed(vd, NULL, NULL)); 5534 } 5535 5536 boolean_t 5537 vdev_xlate_is_empty(range_seg64_t *rs) 5538 { 5539 return (rs->rs_start == rs->rs_end); 5540 } 5541 5542 /* 5543 * Translate a logical range to the first contiguous physical range for the 5544 * specified vdev_t. This function is initially called with a leaf vdev and 5545 * will walk each parent vdev until it reaches a top-level vdev. Once the 5546 * top-level is reached the physical range is initialized and the recursive 5547 * function begins to unwind. As it unwinds it calls the parent's vdev 5548 * specific translation function to do the real conversion. 5549 */ 5550 void 5551 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 5552 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 5553 { 5554 /* 5555 * Walk up the vdev tree 5556 */ 5557 if (vd != vd->vdev_top) { 5558 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs, 5559 remain_rs); 5560 } else { 5561 /* 5562 * We've reached the top-level vdev, initialize the physical 5563 * range to the logical range and set an empty remaining 5564 * range then start to unwind. 5565 */ 5566 physical_rs->rs_start = logical_rs->rs_start; 5567 physical_rs->rs_end = logical_rs->rs_end; 5568 5569 remain_rs->rs_start = logical_rs->rs_start; 5570 remain_rs->rs_end = logical_rs->rs_start; 5571 5572 return; 5573 } 5574 5575 vdev_t *pvd = vd->vdev_parent; 5576 ASSERT3P(pvd, !=, NULL); 5577 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL); 5578 5579 /* 5580 * As this recursive function unwinds, translate the logical 5581 * range into its physical and any remaining components by calling 5582 * the vdev specific translate function. 5583 */ 5584 range_seg64_t intermediate = { 0 }; 5585 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs); 5586 5587 physical_rs->rs_start = intermediate.rs_start; 5588 physical_rs->rs_end = intermediate.rs_end; 5589 } 5590 5591 void 5592 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs, 5593 vdev_xlate_func_t *func, void *arg) 5594 { 5595 range_seg64_t iter_rs = *logical_rs; 5596 range_seg64_t physical_rs; 5597 range_seg64_t remain_rs; 5598 5599 while (!vdev_xlate_is_empty(&iter_rs)) { 5600 5601 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs); 5602 5603 /* 5604 * With raidz and dRAID, it's possible that the logical range 5605 * does not live on this leaf vdev. Only when there is a non- 5606 * zero physical size call the provided function. 5607 */ 5608 if (!vdev_xlate_is_empty(&physical_rs)) 5609 func(arg, &physical_rs); 5610 5611 iter_rs = remain_rs; 5612 } 5613 } 5614 5615 static char * 5616 vdev_name(vdev_t *vd, char *buf, int buflen) 5617 { 5618 if (vd->vdev_path == NULL) { 5619 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) { 5620 strlcpy(buf, vd->vdev_spa->spa_name, buflen); 5621 } else if (!vd->vdev_ops->vdev_op_leaf) { 5622 snprintf(buf, buflen, "%s-%llu", 5623 vd->vdev_ops->vdev_op_type, 5624 (u_longlong_t)vd->vdev_id); 5625 } 5626 } else { 5627 strlcpy(buf, vd->vdev_path, buflen); 5628 } 5629 return (buf); 5630 } 5631 5632 /* 5633 * Look at the vdev tree and determine whether any devices are currently being 5634 * replaced. 5635 */ 5636 boolean_t 5637 vdev_replace_in_progress(vdev_t *vdev) 5638 { 5639 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0); 5640 5641 if (vdev->vdev_ops == &vdev_replacing_ops) 5642 return (B_TRUE); 5643 5644 /* 5645 * A 'spare' vdev indicates that we have a replace in progress, unless 5646 * it has exactly two children, and the second, the hot spare, has 5647 * finished being resilvered. 5648 */ 5649 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 || 5650 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING))) 5651 return (B_TRUE); 5652 5653 for (int i = 0; i < vdev->vdev_children; i++) { 5654 if (vdev_replace_in_progress(vdev->vdev_child[i])) 5655 return (B_TRUE); 5656 } 5657 5658 return (B_FALSE); 5659 } 5660 5661 /* 5662 * Add a (source=src, propname=propval) list to an nvlist. 5663 */ 5664 static void 5665 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval, 5666 uint64_t intval, zprop_source_t src) 5667 { 5668 nvlist_t *propval; 5669 5670 propval = fnvlist_alloc(); 5671 fnvlist_add_uint64(propval, ZPROP_SOURCE, src); 5672 5673 if (strval != NULL) 5674 fnvlist_add_string(propval, ZPROP_VALUE, strval); 5675 else 5676 fnvlist_add_uint64(propval, ZPROP_VALUE, intval); 5677 5678 fnvlist_add_nvlist(nvl, propname, propval); 5679 nvlist_free(propval); 5680 } 5681 5682 static void 5683 vdev_props_set_sync(void *arg, dmu_tx_t *tx) 5684 { 5685 vdev_t *vd; 5686 nvlist_t *nvp = arg; 5687 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5688 objset_t *mos = spa->spa_meta_objset; 5689 nvpair_t *elem = NULL; 5690 uint64_t vdev_guid; 5691 nvlist_t *nvprops; 5692 5693 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV); 5694 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS); 5695 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE); 5696 5697 /* this vdev could get removed while waiting for this sync task */ 5698 if (vd == NULL) 5699 return; 5700 5701 mutex_enter(&spa->spa_props_lock); 5702 5703 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5704 uint64_t intval, objid = 0; 5705 const char *strval; 5706 vdev_prop_t prop; 5707 const char *propname = nvpair_name(elem); 5708 zprop_type_t proptype; 5709 5710 /* 5711 * Set vdev property values in the vdev props mos object. 5712 */ 5713 if (vd->vdev_root_zap != 0) { 5714 objid = vd->vdev_root_zap; 5715 } else if (vd->vdev_top_zap != 0) { 5716 objid = vd->vdev_top_zap; 5717 } else if (vd->vdev_leaf_zap != 0) { 5718 objid = vd->vdev_leaf_zap; 5719 } else { 5720 /* 5721 * XXX: implement vdev_props_set_check() 5722 */ 5723 panic("vdev not root/top/leaf"); 5724 } 5725 5726 switch (prop = vdev_name_to_prop(propname)) { 5727 case VDEV_PROP_USERPROP: 5728 if (vdev_prop_user(propname)) { 5729 strval = fnvpair_value_string(elem); 5730 if (strlen(strval) == 0) { 5731 /* remove the property if value == "" */ 5732 (void) zap_remove(mos, objid, propname, 5733 tx); 5734 } else { 5735 VERIFY0(zap_update(mos, objid, propname, 5736 1, strlen(strval) + 1, strval, tx)); 5737 } 5738 spa_history_log_internal(spa, "vdev set", tx, 5739 "vdev_guid=%llu: %s=%s", 5740 (u_longlong_t)vdev_guid, nvpair_name(elem), 5741 strval); 5742 } 5743 break; 5744 default: 5745 /* normalize the property name */ 5746 propname = vdev_prop_to_name(prop); 5747 proptype = vdev_prop_get_type(prop); 5748 5749 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5750 ASSERT(proptype == PROP_TYPE_STRING); 5751 strval = fnvpair_value_string(elem); 5752 VERIFY0(zap_update(mos, objid, propname, 5753 1, strlen(strval) + 1, strval, tx)); 5754 spa_history_log_internal(spa, "vdev set", tx, 5755 "vdev_guid=%llu: %s=%s", 5756 (u_longlong_t)vdev_guid, nvpair_name(elem), 5757 strval); 5758 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5759 intval = fnvpair_value_uint64(elem); 5760 5761 if (proptype == PROP_TYPE_INDEX) { 5762 const char *unused; 5763 VERIFY0(vdev_prop_index_to_string( 5764 prop, intval, &unused)); 5765 } 5766 VERIFY0(zap_update(mos, objid, propname, 5767 sizeof (uint64_t), 1, &intval, tx)); 5768 spa_history_log_internal(spa, "vdev set", tx, 5769 "vdev_guid=%llu: %s=%lld", 5770 (u_longlong_t)vdev_guid, 5771 nvpair_name(elem), (longlong_t)intval); 5772 } else { 5773 panic("invalid vdev property type %u", 5774 nvpair_type(elem)); 5775 } 5776 } 5777 5778 } 5779 5780 mutex_exit(&spa->spa_props_lock); 5781 } 5782 5783 int 5784 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 5785 { 5786 spa_t *spa = vd->vdev_spa; 5787 nvpair_t *elem = NULL; 5788 uint64_t vdev_guid; 5789 nvlist_t *nvprops; 5790 int error = 0; 5791 5792 ASSERT(vd != NULL); 5793 5794 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV, 5795 &vdev_guid) != 0) 5796 return (SET_ERROR(EINVAL)); 5797 5798 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS, 5799 &nvprops) != 0) 5800 return (SET_ERROR(EINVAL)); 5801 5802 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) 5803 return (SET_ERROR(EINVAL)); 5804 5805 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5806 const char *propname = nvpair_name(elem); 5807 vdev_prop_t prop = vdev_name_to_prop(propname); 5808 uint64_t intval = 0; 5809 const char *strval = NULL; 5810 5811 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) { 5812 error = EINVAL; 5813 goto end; 5814 } 5815 5816 if (vdev_prop_readonly(prop)) { 5817 error = EROFS; 5818 goto end; 5819 } 5820 5821 /* Special Processing */ 5822 switch (prop) { 5823 case VDEV_PROP_PATH: 5824 if (vd->vdev_path == NULL) { 5825 error = EROFS; 5826 break; 5827 } 5828 if (nvpair_value_string(elem, &strval) != 0) { 5829 error = EINVAL; 5830 break; 5831 } 5832 /* New path must start with /dev/ */ 5833 if (strncmp(strval, "/dev/", 5)) { 5834 error = EINVAL; 5835 break; 5836 } 5837 error = spa_vdev_setpath(spa, vdev_guid, strval); 5838 break; 5839 case VDEV_PROP_ALLOCATING: 5840 if (nvpair_value_uint64(elem, &intval) != 0) { 5841 error = EINVAL; 5842 break; 5843 } 5844 if (intval != vd->vdev_noalloc) 5845 break; 5846 if (intval == 0) 5847 error = spa_vdev_noalloc(spa, vdev_guid); 5848 else 5849 error = spa_vdev_alloc(spa, vdev_guid); 5850 break; 5851 case VDEV_PROP_FAILFAST: 5852 if (nvpair_value_uint64(elem, &intval) != 0) { 5853 error = EINVAL; 5854 break; 5855 } 5856 vd->vdev_failfast = intval & 1; 5857 break; 5858 case VDEV_PROP_CHECKSUM_N: 5859 if (nvpair_value_uint64(elem, &intval) != 0) { 5860 error = EINVAL; 5861 break; 5862 } 5863 vd->vdev_checksum_n = intval; 5864 break; 5865 case VDEV_PROP_CHECKSUM_T: 5866 if (nvpair_value_uint64(elem, &intval) != 0) { 5867 error = EINVAL; 5868 break; 5869 } 5870 vd->vdev_checksum_t = intval; 5871 break; 5872 case VDEV_PROP_IO_N: 5873 if (nvpair_value_uint64(elem, &intval) != 0) { 5874 error = EINVAL; 5875 break; 5876 } 5877 vd->vdev_io_n = intval; 5878 break; 5879 case VDEV_PROP_IO_T: 5880 if (nvpair_value_uint64(elem, &intval) != 0) { 5881 error = EINVAL; 5882 break; 5883 } 5884 vd->vdev_io_t = intval; 5885 break; 5886 default: 5887 /* Most processing is done in vdev_props_set_sync */ 5888 break; 5889 } 5890 end: 5891 if (error != 0) { 5892 intval = error; 5893 vdev_prop_add_list(outnvl, propname, strval, intval, 0); 5894 return (error); 5895 } 5896 } 5897 5898 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync, 5899 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 5900 } 5901 5902 int 5903 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 5904 { 5905 spa_t *spa = vd->vdev_spa; 5906 objset_t *mos = spa->spa_meta_objset; 5907 int err = 0; 5908 uint64_t objid; 5909 uint64_t vdev_guid; 5910 nvpair_t *elem = NULL; 5911 nvlist_t *nvprops = NULL; 5912 uint64_t intval = 0; 5913 char *strval = NULL; 5914 const char *propname = NULL; 5915 vdev_prop_t prop; 5916 5917 ASSERT(vd != NULL); 5918 ASSERT(mos != NULL); 5919 5920 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV, 5921 &vdev_guid) != 0) 5922 return (SET_ERROR(EINVAL)); 5923 5924 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops); 5925 5926 if (vd->vdev_root_zap != 0) { 5927 objid = vd->vdev_root_zap; 5928 } else if (vd->vdev_top_zap != 0) { 5929 objid = vd->vdev_top_zap; 5930 } else if (vd->vdev_leaf_zap != 0) { 5931 objid = vd->vdev_leaf_zap; 5932 } else { 5933 return (SET_ERROR(EINVAL)); 5934 } 5935 ASSERT(objid != 0); 5936 5937 mutex_enter(&spa->spa_props_lock); 5938 5939 if (nvprops != NULL) { 5940 char namebuf[64] = { 0 }; 5941 5942 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5943 intval = 0; 5944 strval = NULL; 5945 propname = nvpair_name(elem); 5946 prop = vdev_name_to_prop(propname); 5947 zprop_source_t src = ZPROP_SRC_DEFAULT; 5948 uint64_t integer_size, num_integers; 5949 5950 switch (prop) { 5951 /* Special Read-only Properties */ 5952 case VDEV_PROP_NAME: 5953 strval = vdev_name(vd, namebuf, 5954 sizeof (namebuf)); 5955 if (strval == NULL) 5956 continue; 5957 vdev_prop_add_list(outnvl, propname, strval, 0, 5958 ZPROP_SRC_NONE); 5959 continue; 5960 case VDEV_PROP_CAPACITY: 5961 /* percent used */ 5962 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 : 5963 (vd->vdev_stat.vs_alloc * 100 / 5964 vd->vdev_stat.vs_dspace); 5965 vdev_prop_add_list(outnvl, propname, NULL, 5966 intval, ZPROP_SRC_NONE); 5967 continue; 5968 case VDEV_PROP_STATE: 5969 vdev_prop_add_list(outnvl, propname, NULL, 5970 vd->vdev_state, ZPROP_SRC_NONE); 5971 continue; 5972 case VDEV_PROP_GUID: 5973 vdev_prop_add_list(outnvl, propname, NULL, 5974 vd->vdev_guid, ZPROP_SRC_NONE); 5975 continue; 5976 case VDEV_PROP_ASIZE: 5977 vdev_prop_add_list(outnvl, propname, NULL, 5978 vd->vdev_asize, ZPROP_SRC_NONE); 5979 continue; 5980 case VDEV_PROP_PSIZE: 5981 vdev_prop_add_list(outnvl, propname, NULL, 5982 vd->vdev_psize, ZPROP_SRC_NONE); 5983 continue; 5984 case VDEV_PROP_ASHIFT: 5985 vdev_prop_add_list(outnvl, propname, NULL, 5986 vd->vdev_ashift, ZPROP_SRC_NONE); 5987 continue; 5988 case VDEV_PROP_SIZE: 5989 vdev_prop_add_list(outnvl, propname, NULL, 5990 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE); 5991 continue; 5992 case VDEV_PROP_FREE: 5993 vdev_prop_add_list(outnvl, propname, NULL, 5994 vd->vdev_stat.vs_dspace - 5995 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 5996 continue; 5997 case VDEV_PROP_ALLOCATED: 5998 vdev_prop_add_list(outnvl, propname, NULL, 5999 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 6000 continue; 6001 case VDEV_PROP_EXPANDSZ: 6002 vdev_prop_add_list(outnvl, propname, NULL, 6003 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE); 6004 continue; 6005 case VDEV_PROP_FRAGMENTATION: 6006 vdev_prop_add_list(outnvl, propname, NULL, 6007 vd->vdev_stat.vs_fragmentation, 6008 ZPROP_SRC_NONE); 6009 continue; 6010 case VDEV_PROP_PARITY: 6011 vdev_prop_add_list(outnvl, propname, NULL, 6012 vdev_get_nparity(vd), ZPROP_SRC_NONE); 6013 continue; 6014 case VDEV_PROP_PATH: 6015 if (vd->vdev_path == NULL) 6016 continue; 6017 vdev_prop_add_list(outnvl, propname, 6018 vd->vdev_path, 0, ZPROP_SRC_NONE); 6019 continue; 6020 case VDEV_PROP_DEVID: 6021 if (vd->vdev_devid == NULL) 6022 continue; 6023 vdev_prop_add_list(outnvl, propname, 6024 vd->vdev_devid, 0, ZPROP_SRC_NONE); 6025 continue; 6026 case VDEV_PROP_PHYS_PATH: 6027 if (vd->vdev_physpath == NULL) 6028 continue; 6029 vdev_prop_add_list(outnvl, propname, 6030 vd->vdev_physpath, 0, ZPROP_SRC_NONE); 6031 continue; 6032 case VDEV_PROP_ENC_PATH: 6033 if (vd->vdev_enc_sysfs_path == NULL) 6034 continue; 6035 vdev_prop_add_list(outnvl, propname, 6036 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE); 6037 continue; 6038 case VDEV_PROP_FRU: 6039 if (vd->vdev_fru == NULL) 6040 continue; 6041 vdev_prop_add_list(outnvl, propname, 6042 vd->vdev_fru, 0, ZPROP_SRC_NONE); 6043 continue; 6044 case VDEV_PROP_PARENT: 6045 if (vd->vdev_parent != NULL) { 6046 strval = vdev_name(vd->vdev_parent, 6047 namebuf, sizeof (namebuf)); 6048 vdev_prop_add_list(outnvl, propname, 6049 strval, 0, ZPROP_SRC_NONE); 6050 } 6051 continue; 6052 case VDEV_PROP_CHILDREN: 6053 if (vd->vdev_children > 0) 6054 strval = kmem_zalloc(ZAP_MAXVALUELEN, 6055 KM_SLEEP); 6056 for (uint64_t i = 0; i < vd->vdev_children; 6057 i++) { 6058 const char *vname; 6059 6060 vname = vdev_name(vd->vdev_child[i], 6061 namebuf, sizeof (namebuf)); 6062 if (vname == NULL) 6063 vname = "(unknown)"; 6064 if (strlen(strval) > 0) 6065 strlcat(strval, ",", 6066 ZAP_MAXVALUELEN); 6067 strlcat(strval, vname, ZAP_MAXVALUELEN); 6068 } 6069 if (strval != NULL) { 6070 vdev_prop_add_list(outnvl, propname, 6071 strval, 0, ZPROP_SRC_NONE); 6072 kmem_free(strval, ZAP_MAXVALUELEN); 6073 } 6074 continue; 6075 case VDEV_PROP_NUMCHILDREN: 6076 vdev_prop_add_list(outnvl, propname, NULL, 6077 vd->vdev_children, ZPROP_SRC_NONE); 6078 continue; 6079 case VDEV_PROP_READ_ERRORS: 6080 vdev_prop_add_list(outnvl, propname, NULL, 6081 vd->vdev_stat.vs_read_errors, 6082 ZPROP_SRC_NONE); 6083 continue; 6084 case VDEV_PROP_WRITE_ERRORS: 6085 vdev_prop_add_list(outnvl, propname, NULL, 6086 vd->vdev_stat.vs_write_errors, 6087 ZPROP_SRC_NONE); 6088 continue; 6089 case VDEV_PROP_CHECKSUM_ERRORS: 6090 vdev_prop_add_list(outnvl, propname, NULL, 6091 vd->vdev_stat.vs_checksum_errors, 6092 ZPROP_SRC_NONE); 6093 continue; 6094 case VDEV_PROP_INITIALIZE_ERRORS: 6095 vdev_prop_add_list(outnvl, propname, NULL, 6096 vd->vdev_stat.vs_initialize_errors, 6097 ZPROP_SRC_NONE); 6098 continue; 6099 case VDEV_PROP_OPS_NULL: 6100 vdev_prop_add_list(outnvl, propname, NULL, 6101 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL], 6102 ZPROP_SRC_NONE); 6103 continue; 6104 case VDEV_PROP_OPS_READ: 6105 vdev_prop_add_list(outnvl, propname, NULL, 6106 vd->vdev_stat.vs_ops[ZIO_TYPE_READ], 6107 ZPROP_SRC_NONE); 6108 continue; 6109 case VDEV_PROP_OPS_WRITE: 6110 vdev_prop_add_list(outnvl, propname, NULL, 6111 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE], 6112 ZPROP_SRC_NONE); 6113 continue; 6114 case VDEV_PROP_OPS_FREE: 6115 vdev_prop_add_list(outnvl, propname, NULL, 6116 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE], 6117 ZPROP_SRC_NONE); 6118 continue; 6119 case VDEV_PROP_OPS_CLAIM: 6120 vdev_prop_add_list(outnvl, propname, NULL, 6121 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM], 6122 ZPROP_SRC_NONE); 6123 continue; 6124 case VDEV_PROP_OPS_TRIM: 6125 /* 6126 * TRIM ops and bytes are reported to user 6127 * space as ZIO_TYPE_IOCTL. This is done to 6128 * preserve the vdev_stat_t structure layout 6129 * for user space. 6130 */ 6131 vdev_prop_add_list(outnvl, propname, NULL, 6132 vd->vdev_stat.vs_ops[ZIO_TYPE_IOCTL], 6133 ZPROP_SRC_NONE); 6134 continue; 6135 case VDEV_PROP_BYTES_NULL: 6136 vdev_prop_add_list(outnvl, propname, NULL, 6137 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL], 6138 ZPROP_SRC_NONE); 6139 continue; 6140 case VDEV_PROP_BYTES_READ: 6141 vdev_prop_add_list(outnvl, propname, NULL, 6142 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ], 6143 ZPROP_SRC_NONE); 6144 continue; 6145 case VDEV_PROP_BYTES_WRITE: 6146 vdev_prop_add_list(outnvl, propname, NULL, 6147 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE], 6148 ZPROP_SRC_NONE); 6149 continue; 6150 case VDEV_PROP_BYTES_FREE: 6151 vdev_prop_add_list(outnvl, propname, NULL, 6152 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE], 6153 ZPROP_SRC_NONE); 6154 continue; 6155 case VDEV_PROP_BYTES_CLAIM: 6156 vdev_prop_add_list(outnvl, propname, NULL, 6157 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM], 6158 ZPROP_SRC_NONE); 6159 continue; 6160 case VDEV_PROP_BYTES_TRIM: 6161 /* 6162 * TRIM ops and bytes are reported to user 6163 * space as ZIO_TYPE_IOCTL. This is done to 6164 * preserve the vdev_stat_t structure layout 6165 * for user space. 6166 */ 6167 vdev_prop_add_list(outnvl, propname, NULL, 6168 vd->vdev_stat.vs_bytes[ZIO_TYPE_IOCTL], 6169 ZPROP_SRC_NONE); 6170 continue; 6171 case VDEV_PROP_REMOVING: 6172 vdev_prop_add_list(outnvl, propname, NULL, 6173 vd->vdev_removing, ZPROP_SRC_NONE); 6174 continue; 6175 /* Numeric Properites */ 6176 case VDEV_PROP_ALLOCATING: 6177 /* Leaf vdevs cannot have this property */ 6178 if (vd->vdev_mg == NULL && 6179 vd->vdev_top != NULL) { 6180 src = ZPROP_SRC_NONE; 6181 intval = ZPROP_BOOLEAN_NA; 6182 } else { 6183 err = vdev_prop_get_int(vd, prop, 6184 &intval); 6185 if (err && err != ENOENT) 6186 break; 6187 6188 if (intval == 6189 vdev_prop_default_numeric(prop)) 6190 src = ZPROP_SRC_DEFAULT; 6191 else 6192 src = ZPROP_SRC_LOCAL; 6193 } 6194 6195 vdev_prop_add_list(outnvl, propname, NULL, 6196 intval, src); 6197 break; 6198 case VDEV_PROP_FAILFAST: 6199 src = ZPROP_SRC_LOCAL; 6200 strval = NULL; 6201 6202 err = zap_lookup(mos, objid, nvpair_name(elem), 6203 sizeof (uint64_t), 1, &intval); 6204 if (err == ENOENT) { 6205 intval = vdev_prop_default_numeric( 6206 prop); 6207 err = 0; 6208 } else if (err) { 6209 break; 6210 } 6211 if (intval == vdev_prop_default_numeric(prop)) 6212 src = ZPROP_SRC_DEFAULT; 6213 6214 vdev_prop_add_list(outnvl, propname, strval, 6215 intval, src); 6216 break; 6217 case VDEV_PROP_CHECKSUM_N: 6218 case VDEV_PROP_CHECKSUM_T: 6219 case VDEV_PROP_IO_N: 6220 case VDEV_PROP_IO_T: 6221 err = vdev_prop_get_int(vd, prop, &intval); 6222 if (err && err != ENOENT) 6223 break; 6224 6225 if (intval == vdev_prop_default_numeric(prop)) 6226 src = ZPROP_SRC_DEFAULT; 6227 else 6228 src = ZPROP_SRC_LOCAL; 6229 6230 vdev_prop_add_list(outnvl, propname, NULL, 6231 intval, src); 6232 break; 6233 /* Text Properties */ 6234 case VDEV_PROP_COMMENT: 6235 /* Exists in the ZAP below */ 6236 /* FALLTHRU */ 6237 case VDEV_PROP_USERPROP: 6238 /* User Properites */ 6239 src = ZPROP_SRC_LOCAL; 6240 6241 err = zap_length(mos, objid, nvpair_name(elem), 6242 &integer_size, &num_integers); 6243 if (err) 6244 break; 6245 6246 switch (integer_size) { 6247 case 8: 6248 /* User properties cannot be integers */ 6249 err = EINVAL; 6250 break; 6251 case 1: 6252 /* string property */ 6253 strval = kmem_alloc(num_integers, 6254 KM_SLEEP); 6255 err = zap_lookup(mos, objid, 6256 nvpair_name(elem), 1, 6257 num_integers, strval); 6258 if (err) { 6259 kmem_free(strval, 6260 num_integers); 6261 break; 6262 } 6263 vdev_prop_add_list(outnvl, propname, 6264 strval, 0, src); 6265 kmem_free(strval, num_integers); 6266 break; 6267 } 6268 break; 6269 default: 6270 err = ENOENT; 6271 break; 6272 } 6273 if (err) 6274 break; 6275 } 6276 } else { 6277 /* 6278 * Get all properties from the MOS vdev property object. 6279 */ 6280 zap_cursor_t zc; 6281 zap_attribute_t za; 6282 for (zap_cursor_init(&zc, mos, objid); 6283 (err = zap_cursor_retrieve(&zc, &za)) == 0; 6284 zap_cursor_advance(&zc)) { 6285 intval = 0; 6286 strval = NULL; 6287 zprop_source_t src = ZPROP_SRC_DEFAULT; 6288 propname = za.za_name; 6289 6290 switch (za.za_integer_length) { 6291 case 8: 6292 /* We do not allow integer user properties */ 6293 /* This is likely an internal value */ 6294 break; 6295 case 1: 6296 /* string property */ 6297 strval = kmem_alloc(za.za_num_integers, 6298 KM_SLEEP); 6299 err = zap_lookup(mos, objid, za.za_name, 1, 6300 za.za_num_integers, strval); 6301 if (err) { 6302 kmem_free(strval, za.za_num_integers); 6303 break; 6304 } 6305 vdev_prop_add_list(outnvl, propname, strval, 0, 6306 src); 6307 kmem_free(strval, za.za_num_integers); 6308 break; 6309 6310 default: 6311 break; 6312 } 6313 } 6314 zap_cursor_fini(&zc); 6315 } 6316 6317 mutex_exit(&spa->spa_props_lock); 6318 if (err && err != ENOENT) { 6319 return (err); 6320 } 6321 6322 return (0); 6323 } 6324 6325 EXPORT_SYMBOL(vdev_fault); 6326 EXPORT_SYMBOL(vdev_degrade); 6327 EXPORT_SYMBOL(vdev_online); 6328 EXPORT_SYMBOL(vdev_offline); 6329 EXPORT_SYMBOL(vdev_clear); 6330 6331 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW, 6332 "Target number of metaslabs per top-level vdev"); 6333 6334 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW, 6335 "Default lower limit for metaslab size"); 6336 6337 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW, 6338 "Default upper limit for metaslab size"); 6339 6340 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW, 6341 "Minimum number of metaslabs per top-level vdev"); 6342 6343 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW, 6344 "Practical upper limit of total metaslabs per top-level vdev"); 6345 6346 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW, 6347 "Rate limit slow IO (delay) events to this many per second"); 6348 6349 /* BEGIN CSTYLED */ 6350 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW, 6351 "Rate limit checksum events to this many checksum errors per second " 6352 "(do not set below ZED threshold)."); 6353 /* END CSTYLED */ 6354 6355 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW, 6356 "Ignore errors during resilver/scrub"); 6357 6358 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW, 6359 "Bypass vdev_validate()"); 6360 6361 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW, 6362 "Disable cache flushes"); 6363 6364 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW, 6365 "Minimum number of metaslabs required to dedicate one for log blocks"); 6366 6367 /* BEGIN CSTYLED */ 6368 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift, 6369 param_set_min_auto_ashift, param_get_uint, ZMOD_RW, 6370 "Minimum ashift used when creating new top-level vdevs"); 6371 6372 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift, 6373 param_set_max_auto_ashift, param_get_uint, ZMOD_RW, 6374 "Maximum ashift used when optimizing for logical -> physical sector " 6375 "size on new top-level vdevs"); 6376 /* END CSTYLED */ 6377