1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2017 Joyent, Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 * Copyright (c) 2019, Datto Inc. All rights reserved. 31 * Copyright [2021] Hewlett Packard Enterprise Development LP 32 */ 33 34 #include <sys/zfs_context.h> 35 #include <sys/fm/fs/zfs.h> 36 #include <sys/spa.h> 37 #include <sys/spa_impl.h> 38 #include <sys/bpobj.h> 39 #include <sys/dmu.h> 40 #include <sys/dmu_tx.h> 41 #include <sys/dsl_dir.h> 42 #include <sys/vdev_impl.h> 43 #include <sys/vdev_rebuild.h> 44 #include <sys/vdev_draid.h> 45 #include <sys/uberblock_impl.h> 46 #include <sys/metaslab.h> 47 #include <sys/metaslab_impl.h> 48 #include <sys/space_map.h> 49 #include <sys/space_reftree.h> 50 #include <sys/zio.h> 51 #include <sys/zap.h> 52 #include <sys/fs/zfs.h> 53 #include <sys/arc.h> 54 #include <sys/zil.h> 55 #include <sys/dsl_scan.h> 56 #include <sys/vdev_raidz.h> 57 #include <sys/abd.h> 58 #include <sys/vdev_initialize.h> 59 #include <sys/vdev_trim.h> 60 #include <sys/zvol.h> 61 #include <sys/zfs_ratelimit.h> 62 63 /* 64 * One metaslab from each (normal-class) vdev is used by the ZIL. These are 65 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are 66 * part of the spa_embedded_log_class. The metaslab with the most free space 67 * in each vdev is selected for this purpose when the pool is opened (or a 68 * vdev is added). See vdev_metaslab_init(). 69 * 70 * Log blocks can be allocated from the following locations. Each one is tried 71 * in order until the allocation succeeds: 72 * 1. dedicated log vdevs, aka "slog" (spa_log_class) 73 * 2. embedded slog metaslabs (spa_embedded_log_class) 74 * 3. other metaslabs in normal vdevs (spa_normal_class) 75 * 76 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer 77 * than this number of metaslabs in the vdev. This ensures that we don't set 78 * aside an unreasonable amount of space for the ZIL. If set to less than 79 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced 80 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab. 81 */ 82 int zfs_embedded_slog_min_ms = 64; 83 84 /* default target for number of metaslabs per top-level vdev */ 85 int zfs_vdev_default_ms_count = 200; 86 87 /* minimum number of metaslabs per top-level vdev */ 88 int zfs_vdev_min_ms_count = 16; 89 90 /* practical upper limit of total metaslabs per top-level vdev */ 91 int zfs_vdev_ms_count_limit = 1ULL << 17; 92 93 /* lower limit for metaslab size (512M) */ 94 int zfs_vdev_default_ms_shift = 29; 95 96 /* upper limit for metaslab size (16G) */ 97 int zfs_vdev_max_ms_shift = 34; 98 99 int vdev_validate_skip = B_FALSE; 100 101 /* 102 * Since the DTL space map of a vdev is not expected to have a lot of 103 * entries, we default its block size to 4K. 104 */ 105 int zfs_vdev_dtl_sm_blksz = (1 << 12); 106 107 /* 108 * Rate limit slow IO (delay) events to this many per second. 109 */ 110 unsigned int zfs_slow_io_events_per_second = 20; 111 112 /* 113 * Rate limit checksum events after this many checksum errors per second. 114 */ 115 unsigned int zfs_checksum_events_per_second = 20; 116 117 /* 118 * Ignore errors during scrub/resilver. Allows to work around resilver 119 * upon import when there are pool errors. 120 */ 121 int zfs_scan_ignore_errors = 0; 122 123 /* 124 * vdev-wide space maps that have lots of entries written to them at 125 * the end of each transaction can benefit from a higher I/O bandwidth 126 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 127 */ 128 int zfs_vdev_standard_sm_blksz = (1 << 17); 129 130 /* 131 * Tunable parameter for debugging or performance analysis. Setting this 132 * will cause pool corruption on power loss if a volatile out-of-order 133 * write cache is enabled. 134 */ 135 int zfs_nocacheflush = 0; 136 137 uint64_t zfs_vdev_max_auto_ashift = ASHIFT_MAX; 138 uint64_t zfs_vdev_min_auto_ashift = ASHIFT_MIN; 139 140 /*PRINTFLIKE2*/ 141 void 142 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 143 { 144 va_list adx; 145 char buf[256]; 146 147 va_start(adx, fmt); 148 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 149 va_end(adx); 150 151 if (vd->vdev_path != NULL) { 152 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 153 vd->vdev_path, buf); 154 } else { 155 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 156 vd->vdev_ops->vdev_op_type, 157 (u_longlong_t)vd->vdev_id, 158 (u_longlong_t)vd->vdev_guid, buf); 159 } 160 } 161 162 void 163 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 164 { 165 char state[20]; 166 167 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 168 zfs_dbgmsg("%*svdev %llu: %s", indent, "", 169 (u_longlong_t)vd->vdev_id, 170 vd->vdev_ops->vdev_op_type); 171 return; 172 } 173 174 switch (vd->vdev_state) { 175 case VDEV_STATE_UNKNOWN: 176 (void) snprintf(state, sizeof (state), "unknown"); 177 break; 178 case VDEV_STATE_CLOSED: 179 (void) snprintf(state, sizeof (state), "closed"); 180 break; 181 case VDEV_STATE_OFFLINE: 182 (void) snprintf(state, sizeof (state), "offline"); 183 break; 184 case VDEV_STATE_REMOVED: 185 (void) snprintf(state, sizeof (state), "removed"); 186 break; 187 case VDEV_STATE_CANT_OPEN: 188 (void) snprintf(state, sizeof (state), "can't open"); 189 break; 190 case VDEV_STATE_FAULTED: 191 (void) snprintf(state, sizeof (state), "faulted"); 192 break; 193 case VDEV_STATE_DEGRADED: 194 (void) snprintf(state, sizeof (state), "degraded"); 195 break; 196 case VDEV_STATE_HEALTHY: 197 (void) snprintf(state, sizeof (state), "healthy"); 198 break; 199 default: 200 (void) snprintf(state, sizeof (state), "<state %u>", 201 (uint_t)vd->vdev_state); 202 } 203 204 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 205 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 206 vd->vdev_islog ? " (log)" : "", 207 (u_longlong_t)vd->vdev_guid, 208 vd->vdev_path ? vd->vdev_path : "N/A", state); 209 210 for (uint64_t i = 0; i < vd->vdev_children; i++) 211 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 212 } 213 214 /* 215 * Virtual device management. 216 */ 217 218 static vdev_ops_t *vdev_ops_table[] = { 219 &vdev_root_ops, 220 &vdev_raidz_ops, 221 &vdev_draid_ops, 222 &vdev_draid_spare_ops, 223 &vdev_mirror_ops, 224 &vdev_replacing_ops, 225 &vdev_spare_ops, 226 &vdev_disk_ops, 227 &vdev_file_ops, 228 &vdev_missing_ops, 229 &vdev_hole_ops, 230 &vdev_indirect_ops, 231 NULL 232 }; 233 234 /* 235 * Given a vdev type, return the appropriate ops vector. 236 */ 237 static vdev_ops_t * 238 vdev_getops(const char *type) 239 { 240 vdev_ops_t *ops, **opspp; 241 242 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 243 if (strcmp(ops->vdev_op_type, type) == 0) 244 break; 245 246 return (ops); 247 } 248 249 /* 250 * Given a vdev and a metaslab class, find which metaslab group we're 251 * interested in. All vdevs may belong to two different metaslab classes. 252 * Dedicated slog devices use only the primary metaslab group, rather than a 253 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL. 254 */ 255 metaslab_group_t * 256 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc) 257 { 258 if (mc == spa_embedded_log_class(vd->vdev_spa) && 259 vd->vdev_log_mg != NULL) 260 return (vd->vdev_log_mg); 261 else 262 return (vd->vdev_mg); 263 } 264 265 /* ARGSUSED */ 266 void 267 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 268 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 269 { 270 physical_rs->rs_start = logical_rs->rs_start; 271 physical_rs->rs_end = logical_rs->rs_end; 272 } 273 274 /* 275 * Derive the enumerated allocation bias from string input. 276 * String origin is either the per-vdev zap or zpool(8). 277 */ 278 static vdev_alloc_bias_t 279 vdev_derive_alloc_bias(const char *bias) 280 { 281 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 282 283 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) 284 alloc_bias = VDEV_BIAS_LOG; 285 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) 286 alloc_bias = VDEV_BIAS_SPECIAL; 287 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) 288 alloc_bias = VDEV_BIAS_DEDUP; 289 290 return (alloc_bias); 291 } 292 293 /* 294 * Default asize function: return the MAX of psize with the asize of 295 * all children. This is what's used by anything other than RAID-Z. 296 */ 297 uint64_t 298 vdev_default_asize(vdev_t *vd, uint64_t psize) 299 { 300 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 301 uint64_t csize; 302 303 for (int c = 0; c < vd->vdev_children; c++) { 304 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 305 asize = MAX(asize, csize); 306 } 307 308 return (asize); 309 } 310 311 uint64_t 312 vdev_default_min_asize(vdev_t *vd) 313 { 314 return (vd->vdev_min_asize); 315 } 316 317 /* 318 * Get the minimum allocatable size. We define the allocatable size as 319 * the vdev's asize rounded to the nearest metaslab. This allows us to 320 * replace or attach devices which don't have the same physical size but 321 * can still satisfy the same number of allocations. 322 */ 323 uint64_t 324 vdev_get_min_asize(vdev_t *vd) 325 { 326 vdev_t *pvd = vd->vdev_parent; 327 328 /* 329 * If our parent is NULL (inactive spare or cache) or is the root, 330 * just return our own asize. 331 */ 332 if (pvd == NULL) 333 return (vd->vdev_asize); 334 335 /* 336 * The top-level vdev just returns the allocatable size rounded 337 * to the nearest metaslab. 338 */ 339 if (vd == vd->vdev_top) 340 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 341 342 return (pvd->vdev_ops->vdev_op_min_asize(pvd)); 343 } 344 345 void 346 vdev_set_min_asize(vdev_t *vd) 347 { 348 vd->vdev_min_asize = vdev_get_min_asize(vd); 349 350 for (int c = 0; c < vd->vdev_children; c++) 351 vdev_set_min_asize(vd->vdev_child[c]); 352 } 353 354 /* 355 * Get the minimal allocation size for the top-level vdev. 356 */ 357 uint64_t 358 vdev_get_min_alloc(vdev_t *vd) 359 { 360 uint64_t min_alloc = 1ULL << vd->vdev_ashift; 361 362 if (vd->vdev_ops->vdev_op_min_alloc != NULL) 363 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd); 364 365 return (min_alloc); 366 } 367 368 /* 369 * Get the parity level for a top-level vdev. 370 */ 371 uint64_t 372 vdev_get_nparity(vdev_t *vd) 373 { 374 uint64_t nparity = 0; 375 376 if (vd->vdev_ops->vdev_op_nparity != NULL) 377 nparity = vd->vdev_ops->vdev_op_nparity(vd); 378 379 return (nparity); 380 } 381 382 /* 383 * Get the number of data disks for a top-level vdev. 384 */ 385 uint64_t 386 vdev_get_ndisks(vdev_t *vd) 387 { 388 uint64_t ndisks = 1; 389 390 if (vd->vdev_ops->vdev_op_ndisks != NULL) 391 ndisks = vd->vdev_ops->vdev_op_ndisks(vd); 392 393 return (ndisks); 394 } 395 396 vdev_t * 397 vdev_lookup_top(spa_t *spa, uint64_t vdev) 398 { 399 vdev_t *rvd = spa->spa_root_vdev; 400 401 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 402 403 if (vdev < rvd->vdev_children) { 404 ASSERT(rvd->vdev_child[vdev] != NULL); 405 return (rvd->vdev_child[vdev]); 406 } 407 408 return (NULL); 409 } 410 411 vdev_t * 412 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 413 { 414 vdev_t *mvd; 415 416 if (vd->vdev_guid == guid) 417 return (vd); 418 419 for (int c = 0; c < vd->vdev_children; c++) 420 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 421 NULL) 422 return (mvd); 423 424 return (NULL); 425 } 426 427 static int 428 vdev_count_leaves_impl(vdev_t *vd) 429 { 430 int n = 0; 431 432 if (vd->vdev_ops->vdev_op_leaf) 433 return (1); 434 435 for (int c = 0; c < vd->vdev_children; c++) 436 n += vdev_count_leaves_impl(vd->vdev_child[c]); 437 438 return (n); 439 } 440 441 int 442 vdev_count_leaves(spa_t *spa) 443 { 444 int rc; 445 446 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 447 rc = vdev_count_leaves_impl(spa->spa_root_vdev); 448 spa_config_exit(spa, SCL_VDEV, FTAG); 449 450 return (rc); 451 } 452 453 void 454 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 455 { 456 size_t oldsize, newsize; 457 uint64_t id = cvd->vdev_id; 458 vdev_t **newchild; 459 460 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 461 ASSERT(cvd->vdev_parent == NULL); 462 463 cvd->vdev_parent = pvd; 464 465 if (pvd == NULL) 466 return; 467 468 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 469 470 oldsize = pvd->vdev_children * sizeof (vdev_t *); 471 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 472 newsize = pvd->vdev_children * sizeof (vdev_t *); 473 474 newchild = kmem_alloc(newsize, KM_SLEEP); 475 if (pvd->vdev_child != NULL) { 476 bcopy(pvd->vdev_child, newchild, oldsize); 477 kmem_free(pvd->vdev_child, oldsize); 478 } 479 480 pvd->vdev_child = newchild; 481 pvd->vdev_child[id] = cvd; 482 483 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 484 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 485 486 /* 487 * Walk up all ancestors to update guid sum. 488 */ 489 for (; pvd != NULL; pvd = pvd->vdev_parent) 490 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 491 492 if (cvd->vdev_ops->vdev_op_leaf) { 493 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); 494 cvd->vdev_spa->spa_leaf_list_gen++; 495 } 496 } 497 498 void 499 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 500 { 501 int c; 502 uint_t id = cvd->vdev_id; 503 504 ASSERT(cvd->vdev_parent == pvd); 505 506 if (pvd == NULL) 507 return; 508 509 ASSERT(id < pvd->vdev_children); 510 ASSERT(pvd->vdev_child[id] == cvd); 511 512 pvd->vdev_child[id] = NULL; 513 cvd->vdev_parent = NULL; 514 515 for (c = 0; c < pvd->vdev_children; c++) 516 if (pvd->vdev_child[c]) 517 break; 518 519 if (c == pvd->vdev_children) { 520 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 521 pvd->vdev_child = NULL; 522 pvd->vdev_children = 0; 523 } 524 525 if (cvd->vdev_ops->vdev_op_leaf) { 526 spa_t *spa = cvd->vdev_spa; 527 list_remove(&spa->spa_leaf_list, cvd); 528 spa->spa_leaf_list_gen++; 529 } 530 531 /* 532 * Walk up all ancestors to update guid sum. 533 */ 534 for (; pvd != NULL; pvd = pvd->vdev_parent) 535 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 536 } 537 538 /* 539 * Remove any holes in the child array. 540 */ 541 void 542 vdev_compact_children(vdev_t *pvd) 543 { 544 vdev_t **newchild, *cvd; 545 int oldc = pvd->vdev_children; 546 int newc; 547 548 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 549 550 if (oldc == 0) 551 return; 552 553 for (int c = newc = 0; c < oldc; c++) 554 if (pvd->vdev_child[c]) 555 newc++; 556 557 if (newc > 0) { 558 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP); 559 560 for (int c = newc = 0; c < oldc; c++) { 561 if ((cvd = pvd->vdev_child[c]) != NULL) { 562 newchild[newc] = cvd; 563 cvd->vdev_id = newc++; 564 } 565 } 566 } else { 567 newchild = NULL; 568 } 569 570 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 571 pvd->vdev_child = newchild; 572 pvd->vdev_children = newc; 573 } 574 575 /* 576 * Allocate and minimally initialize a vdev_t. 577 */ 578 vdev_t * 579 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 580 { 581 vdev_t *vd; 582 vdev_indirect_config_t *vic; 583 584 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 585 vic = &vd->vdev_indirect_config; 586 587 if (spa->spa_root_vdev == NULL) { 588 ASSERT(ops == &vdev_root_ops); 589 spa->spa_root_vdev = vd; 590 spa->spa_load_guid = spa_generate_guid(NULL); 591 } 592 593 if (guid == 0 && ops != &vdev_hole_ops) { 594 if (spa->spa_root_vdev == vd) { 595 /* 596 * The root vdev's guid will also be the pool guid, 597 * which must be unique among all pools. 598 */ 599 guid = spa_generate_guid(NULL); 600 } else { 601 /* 602 * Any other vdev's guid must be unique within the pool. 603 */ 604 guid = spa_generate_guid(spa); 605 } 606 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 607 } 608 609 vd->vdev_spa = spa; 610 vd->vdev_id = id; 611 vd->vdev_guid = guid; 612 vd->vdev_guid_sum = guid; 613 vd->vdev_ops = ops; 614 vd->vdev_state = VDEV_STATE_CLOSED; 615 vd->vdev_ishole = (ops == &vdev_hole_ops); 616 vic->vic_prev_indirect_vdev = UINT64_MAX; 617 618 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 619 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 620 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL, 621 0, 0); 622 623 /* 624 * Initialize rate limit structs for events. We rate limit ZIO delay 625 * and checksum events so that we don't overwhelm ZED with thousands 626 * of events when a disk is acting up. 627 */ 628 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second, 629 1); 630 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_slow_io_events_per_second, 631 1); 632 zfs_ratelimit_init(&vd->vdev_checksum_rl, 633 &zfs_checksum_events_per_second, 1); 634 635 list_link_init(&vd->vdev_config_dirty_node); 636 list_link_init(&vd->vdev_state_dirty_node); 637 list_link_init(&vd->vdev_initialize_node); 638 list_link_init(&vd->vdev_leaf_node); 639 list_link_init(&vd->vdev_trim_node); 640 641 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL); 642 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 643 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 644 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); 645 646 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 647 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 648 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 649 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 650 651 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL); 652 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL); 653 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL); 654 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL); 655 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL); 656 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL); 657 658 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL); 659 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL); 660 661 for (int t = 0; t < DTL_TYPES; t++) { 662 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 663 0); 664 } 665 666 txg_list_create(&vd->vdev_ms_list, spa, 667 offsetof(struct metaslab, ms_txg_node)); 668 txg_list_create(&vd->vdev_dtl_list, spa, 669 offsetof(struct vdev, vdev_dtl_node)); 670 vd->vdev_stat.vs_timestamp = gethrtime(); 671 vdev_queue_init(vd); 672 vdev_cache_init(vd); 673 674 return (vd); 675 } 676 677 /* 678 * Allocate a new vdev. The 'alloctype' is used to control whether we are 679 * creating a new vdev or loading an existing one - the behavior is slightly 680 * different for each case. 681 */ 682 int 683 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 684 int alloctype) 685 { 686 vdev_ops_t *ops; 687 char *type; 688 uint64_t guid = 0, islog; 689 vdev_t *vd; 690 vdev_indirect_config_t *vic; 691 char *tmp = NULL; 692 int rc; 693 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 694 boolean_t top_level = (parent && !parent->vdev_parent); 695 696 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 697 698 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 699 return (SET_ERROR(EINVAL)); 700 701 if ((ops = vdev_getops(type)) == NULL) 702 return (SET_ERROR(EINVAL)); 703 704 /* 705 * If this is a load, get the vdev guid from the nvlist. 706 * Otherwise, vdev_alloc_common() will generate one for us. 707 */ 708 if (alloctype == VDEV_ALLOC_LOAD) { 709 uint64_t label_id; 710 711 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 712 label_id != id) 713 return (SET_ERROR(EINVAL)); 714 715 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 716 return (SET_ERROR(EINVAL)); 717 } else if (alloctype == VDEV_ALLOC_SPARE) { 718 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 719 return (SET_ERROR(EINVAL)); 720 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 721 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 722 return (SET_ERROR(EINVAL)); 723 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 724 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 725 return (SET_ERROR(EINVAL)); 726 } 727 728 /* 729 * The first allocated vdev must be of type 'root'. 730 */ 731 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 732 return (SET_ERROR(EINVAL)); 733 734 /* 735 * Determine whether we're a log vdev. 736 */ 737 islog = 0; 738 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 739 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 740 return (SET_ERROR(ENOTSUP)); 741 742 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 743 return (SET_ERROR(ENOTSUP)); 744 745 if (top_level && alloctype == VDEV_ALLOC_ADD) { 746 char *bias; 747 748 /* 749 * If creating a top-level vdev, check for allocation 750 * classes input. 751 */ 752 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 753 &bias) == 0) { 754 alloc_bias = vdev_derive_alloc_bias(bias); 755 756 /* spa_vdev_add() expects feature to be enabled */ 757 if (spa->spa_load_state != SPA_LOAD_CREATE && 758 !spa_feature_is_enabled(spa, 759 SPA_FEATURE_ALLOCATION_CLASSES)) { 760 return (SET_ERROR(ENOTSUP)); 761 } 762 } 763 764 /* spa_vdev_add() expects feature to be enabled */ 765 if (ops == &vdev_draid_ops && 766 spa->spa_load_state != SPA_LOAD_CREATE && 767 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) { 768 return (SET_ERROR(ENOTSUP)); 769 } 770 } 771 772 /* 773 * Initialize the vdev specific data. This is done before calling 774 * vdev_alloc_common() since it may fail and this simplifies the 775 * error reporting and cleanup code paths. 776 */ 777 void *tsd = NULL; 778 if (ops->vdev_op_init != NULL) { 779 rc = ops->vdev_op_init(spa, nv, &tsd); 780 if (rc != 0) { 781 return (rc); 782 } 783 } 784 785 vd = vdev_alloc_common(spa, id, guid, ops); 786 vd->vdev_tsd = tsd; 787 vd->vdev_islog = islog; 788 789 if (top_level && alloc_bias != VDEV_BIAS_NONE) 790 vd->vdev_alloc_bias = alloc_bias; 791 792 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 793 vd->vdev_path = spa_strdup(vd->vdev_path); 794 795 /* 796 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a 797 * fault on a vdev and want it to persist across imports (like with 798 * zpool offline -f). 799 */ 800 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp); 801 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) { 802 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 803 vd->vdev_faulted = 1; 804 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 805 } 806 807 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 808 vd->vdev_devid = spa_strdup(vd->vdev_devid); 809 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 810 &vd->vdev_physpath) == 0) 811 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 812 813 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 814 &vd->vdev_enc_sysfs_path) == 0) 815 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path); 816 817 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 818 vd->vdev_fru = spa_strdup(vd->vdev_fru); 819 820 /* 821 * Set the whole_disk property. If it's not specified, leave the value 822 * as -1. 823 */ 824 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 825 &vd->vdev_wholedisk) != 0) 826 vd->vdev_wholedisk = -1ULL; 827 828 vic = &vd->vdev_indirect_config; 829 830 ASSERT0(vic->vic_mapping_object); 831 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 832 &vic->vic_mapping_object); 833 ASSERT0(vic->vic_births_object); 834 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 835 &vic->vic_births_object); 836 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 837 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 838 &vic->vic_prev_indirect_vdev); 839 840 /* 841 * Look for the 'not present' flag. This will only be set if the device 842 * was not present at the time of import. 843 */ 844 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 845 &vd->vdev_not_present); 846 847 /* 848 * Get the alignment requirement. 849 */ 850 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 851 852 /* 853 * Retrieve the vdev creation time. 854 */ 855 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 856 &vd->vdev_crtxg); 857 858 /* 859 * If we're a top-level vdev, try to load the allocation parameters. 860 */ 861 if (top_level && 862 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 863 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 864 &vd->vdev_ms_array); 865 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 866 &vd->vdev_ms_shift); 867 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 868 &vd->vdev_asize); 869 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 870 &vd->vdev_removing); 871 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 872 &vd->vdev_top_zap); 873 } else { 874 ASSERT0(vd->vdev_top_zap); 875 } 876 877 if (top_level && alloctype != VDEV_ALLOC_ATTACH) { 878 ASSERT(alloctype == VDEV_ALLOC_LOAD || 879 alloctype == VDEV_ALLOC_ADD || 880 alloctype == VDEV_ALLOC_SPLIT || 881 alloctype == VDEV_ALLOC_ROOTPOOL); 882 /* Note: metaslab_group_create() is now deferred */ 883 } 884 885 if (vd->vdev_ops->vdev_op_leaf && 886 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 887 (void) nvlist_lookup_uint64(nv, 888 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 889 } else { 890 ASSERT0(vd->vdev_leaf_zap); 891 } 892 893 /* 894 * If we're a leaf vdev, try to load the DTL object and other state. 895 */ 896 897 if (vd->vdev_ops->vdev_op_leaf && 898 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 899 alloctype == VDEV_ALLOC_ROOTPOOL)) { 900 if (alloctype == VDEV_ALLOC_LOAD) { 901 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 902 &vd->vdev_dtl_object); 903 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 904 &vd->vdev_unspare); 905 } 906 907 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 908 uint64_t spare = 0; 909 910 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 911 &spare) == 0 && spare) 912 spa_spare_add(vd); 913 } 914 915 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 916 &vd->vdev_offline); 917 918 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 919 &vd->vdev_resilver_txg); 920 921 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 922 &vd->vdev_rebuild_txg); 923 924 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) 925 vdev_defer_resilver(vd); 926 927 /* 928 * In general, when importing a pool we want to ignore the 929 * persistent fault state, as the diagnosis made on another 930 * system may not be valid in the current context. The only 931 * exception is if we forced a vdev to a persistently faulted 932 * state with 'zpool offline -f'. The persistent fault will 933 * remain across imports until cleared. 934 * 935 * Local vdevs will remain in the faulted state. 936 */ 937 if (spa_load_state(spa) == SPA_LOAD_OPEN || 938 spa_load_state(spa) == SPA_LOAD_IMPORT) { 939 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 940 &vd->vdev_faulted); 941 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 942 &vd->vdev_degraded); 943 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 944 &vd->vdev_removed); 945 946 if (vd->vdev_faulted || vd->vdev_degraded) { 947 char *aux; 948 949 vd->vdev_label_aux = 950 VDEV_AUX_ERR_EXCEEDED; 951 if (nvlist_lookup_string(nv, 952 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 953 strcmp(aux, "external") == 0) 954 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 955 else 956 vd->vdev_faulted = 0ULL; 957 } 958 } 959 } 960 961 /* 962 * Add ourselves to the parent's list of children. 963 */ 964 vdev_add_child(parent, vd); 965 966 *vdp = vd; 967 968 return (0); 969 } 970 971 void 972 vdev_free(vdev_t *vd) 973 { 974 spa_t *spa = vd->vdev_spa; 975 976 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 977 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 978 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 979 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); 980 981 /* 982 * Scan queues are normally destroyed at the end of a scan. If the 983 * queue exists here, that implies the vdev is being removed while 984 * the scan is still running. 985 */ 986 if (vd->vdev_scan_io_queue != NULL) { 987 mutex_enter(&vd->vdev_scan_io_queue_lock); 988 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); 989 vd->vdev_scan_io_queue = NULL; 990 mutex_exit(&vd->vdev_scan_io_queue_lock); 991 } 992 993 /* 994 * vdev_free() implies closing the vdev first. This is simpler than 995 * trying to ensure complicated semantics for all callers. 996 */ 997 vdev_close(vd); 998 999 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 1000 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 1001 1002 /* 1003 * Free all children. 1004 */ 1005 for (int c = 0; c < vd->vdev_children; c++) 1006 vdev_free(vd->vdev_child[c]); 1007 1008 ASSERT(vd->vdev_child == NULL); 1009 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 1010 1011 if (vd->vdev_ops->vdev_op_fini != NULL) 1012 vd->vdev_ops->vdev_op_fini(vd); 1013 1014 /* 1015 * Discard allocation state. 1016 */ 1017 if (vd->vdev_mg != NULL) { 1018 vdev_metaslab_fini(vd); 1019 metaslab_group_destroy(vd->vdev_mg); 1020 vd->vdev_mg = NULL; 1021 } 1022 if (vd->vdev_log_mg != NULL) { 1023 ASSERT0(vd->vdev_ms_count); 1024 metaslab_group_destroy(vd->vdev_log_mg); 1025 vd->vdev_log_mg = NULL; 1026 } 1027 1028 ASSERT0(vd->vdev_stat.vs_space); 1029 ASSERT0(vd->vdev_stat.vs_dspace); 1030 ASSERT0(vd->vdev_stat.vs_alloc); 1031 1032 /* 1033 * Remove this vdev from its parent's child list. 1034 */ 1035 vdev_remove_child(vd->vdev_parent, vd); 1036 1037 ASSERT(vd->vdev_parent == NULL); 1038 ASSERT(!list_link_active(&vd->vdev_leaf_node)); 1039 1040 /* 1041 * Clean up vdev structure. 1042 */ 1043 vdev_queue_fini(vd); 1044 vdev_cache_fini(vd); 1045 1046 if (vd->vdev_path) 1047 spa_strfree(vd->vdev_path); 1048 if (vd->vdev_devid) 1049 spa_strfree(vd->vdev_devid); 1050 if (vd->vdev_physpath) 1051 spa_strfree(vd->vdev_physpath); 1052 1053 if (vd->vdev_enc_sysfs_path) 1054 spa_strfree(vd->vdev_enc_sysfs_path); 1055 1056 if (vd->vdev_fru) 1057 spa_strfree(vd->vdev_fru); 1058 1059 if (vd->vdev_isspare) 1060 spa_spare_remove(vd); 1061 if (vd->vdev_isl2cache) 1062 spa_l2cache_remove(vd); 1063 1064 txg_list_destroy(&vd->vdev_ms_list); 1065 txg_list_destroy(&vd->vdev_dtl_list); 1066 1067 mutex_enter(&vd->vdev_dtl_lock); 1068 space_map_close(vd->vdev_dtl_sm); 1069 for (int t = 0; t < DTL_TYPES; t++) { 1070 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 1071 range_tree_destroy(vd->vdev_dtl[t]); 1072 } 1073 mutex_exit(&vd->vdev_dtl_lock); 1074 1075 EQUIV(vd->vdev_indirect_births != NULL, 1076 vd->vdev_indirect_mapping != NULL); 1077 if (vd->vdev_indirect_births != NULL) { 1078 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1079 vdev_indirect_births_close(vd->vdev_indirect_births); 1080 } 1081 1082 if (vd->vdev_obsolete_sm != NULL) { 1083 ASSERT(vd->vdev_removing || 1084 vd->vdev_ops == &vdev_indirect_ops); 1085 space_map_close(vd->vdev_obsolete_sm); 1086 vd->vdev_obsolete_sm = NULL; 1087 } 1088 range_tree_destroy(vd->vdev_obsolete_segments); 1089 rw_destroy(&vd->vdev_indirect_rwlock); 1090 mutex_destroy(&vd->vdev_obsolete_lock); 1091 1092 mutex_destroy(&vd->vdev_dtl_lock); 1093 mutex_destroy(&vd->vdev_stat_lock); 1094 mutex_destroy(&vd->vdev_probe_lock); 1095 mutex_destroy(&vd->vdev_scan_io_queue_lock); 1096 1097 mutex_destroy(&vd->vdev_initialize_lock); 1098 mutex_destroy(&vd->vdev_initialize_io_lock); 1099 cv_destroy(&vd->vdev_initialize_io_cv); 1100 cv_destroy(&vd->vdev_initialize_cv); 1101 1102 mutex_destroy(&vd->vdev_trim_lock); 1103 mutex_destroy(&vd->vdev_autotrim_lock); 1104 mutex_destroy(&vd->vdev_trim_io_lock); 1105 cv_destroy(&vd->vdev_trim_cv); 1106 cv_destroy(&vd->vdev_autotrim_cv); 1107 cv_destroy(&vd->vdev_trim_io_cv); 1108 1109 mutex_destroy(&vd->vdev_rebuild_lock); 1110 cv_destroy(&vd->vdev_rebuild_cv); 1111 1112 zfs_ratelimit_fini(&vd->vdev_delay_rl); 1113 zfs_ratelimit_fini(&vd->vdev_deadman_rl); 1114 zfs_ratelimit_fini(&vd->vdev_checksum_rl); 1115 1116 if (vd == spa->spa_root_vdev) 1117 spa->spa_root_vdev = NULL; 1118 1119 kmem_free(vd, sizeof (vdev_t)); 1120 } 1121 1122 /* 1123 * Transfer top-level vdev state from svd to tvd. 1124 */ 1125 static void 1126 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 1127 { 1128 spa_t *spa = svd->vdev_spa; 1129 metaslab_t *msp; 1130 vdev_t *vd; 1131 int t; 1132 1133 ASSERT(tvd == tvd->vdev_top); 1134 1135 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite; 1136 tvd->vdev_ms_array = svd->vdev_ms_array; 1137 tvd->vdev_ms_shift = svd->vdev_ms_shift; 1138 tvd->vdev_ms_count = svd->vdev_ms_count; 1139 tvd->vdev_top_zap = svd->vdev_top_zap; 1140 1141 svd->vdev_ms_array = 0; 1142 svd->vdev_ms_shift = 0; 1143 svd->vdev_ms_count = 0; 1144 svd->vdev_top_zap = 0; 1145 1146 if (tvd->vdev_mg) 1147 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 1148 if (tvd->vdev_log_mg) 1149 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg); 1150 tvd->vdev_mg = svd->vdev_mg; 1151 tvd->vdev_log_mg = svd->vdev_log_mg; 1152 tvd->vdev_ms = svd->vdev_ms; 1153 1154 svd->vdev_mg = NULL; 1155 svd->vdev_log_mg = NULL; 1156 svd->vdev_ms = NULL; 1157 1158 if (tvd->vdev_mg != NULL) 1159 tvd->vdev_mg->mg_vd = tvd; 1160 if (tvd->vdev_log_mg != NULL) 1161 tvd->vdev_log_mg->mg_vd = tvd; 1162 1163 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 1164 svd->vdev_checkpoint_sm = NULL; 1165 1166 tvd->vdev_alloc_bias = svd->vdev_alloc_bias; 1167 svd->vdev_alloc_bias = VDEV_BIAS_NONE; 1168 1169 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 1170 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 1171 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 1172 1173 svd->vdev_stat.vs_alloc = 0; 1174 svd->vdev_stat.vs_space = 0; 1175 svd->vdev_stat.vs_dspace = 0; 1176 1177 /* 1178 * State which may be set on a top-level vdev that's in the 1179 * process of being removed. 1180 */ 1181 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 1182 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 1183 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 1184 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); 1185 ASSERT3P(tvd->vdev_indirect_births, ==, NULL); 1186 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); 1187 ASSERT0(tvd->vdev_removing); 1188 ASSERT0(tvd->vdev_rebuilding); 1189 tvd->vdev_removing = svd->vdev_removing; 1190 tvd->vdev_rebuilding = svd->vdev_rebuilding; 1191 tvd->vdev_rebuild_config = svd->vdev_rebuild_config; 1192 tvd->vdev_indirect_config = svd->vdev_indirect_config; 1193 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 1194 tvd->vdev_indirect_births = svd->vdev_indirect_births; 1195 range_tree_swap(&svd->vdev_obsolete_segments, 1196 &tvd->vdev_obsolete_segments); 1197 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 1198 svd->vdev_indirect_config.vic_mapping_object = 0; 1199 svd->vdev_indirect_config.vic_births_object = 0; 1200 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 1201 svd->vdev_indirect_mapping = NULL; 1202 svd->vdev_indirect_births = NULL; 1203 svd->vdev_obsolete_sm = NULL; 1204 svd->vdev_removing = 0; 1205 svd->vdev_rebuilding = 0; 1206 1207 for (t = 0; t < TXG_SIZE; t++) { 1208 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 1209 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 1210 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 1211 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 1212 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 1213 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 1214 } 1215 1216 if (list_link_active(&svd->vdev_config_dirty_node)) { 1217 vdev_config_clean(svd); 1218 vdev_config_dirty(tvd); 1219 } 1220 1221 if (list_link_active(&svd->vdev_state_dirty_node)) { 1222 vdev_state_clean(svd); 1223 vdev_state_dirty(tvd); 1224 } 1225 1226 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 1227 svd->vdev_deflate_ratio = 0; 1228 1229 tvd->vdev_islog = svd->vdev_islog; 1230 svd->vdev_islog = 0; 1231 1232 dsl_scan_io_queue_vdev_xfer(svd, tvd); 1233 } 1234 1235 static void 1236 vdev_top_update(vdev_t *tvd, vdev_t *vd) 1237 { 1238 if (vd == NULL) 1239 return; 1240 1241 vd->vdev_top = tvd; 1242 1243 for (int c = 0; c < vd->vdev_children; c++) 1244 vdev_top_update(tvd, vd->vdev_child[c]); 1245 } 1246 1247 /* 1248 * Add a mirror/replacing vdev above an existing vdev. There is no need to 1249 * call .vdev_op_init() since mirror/replacing vdevs do not have private state. 1250 */ 1251 vdev_t * 1252 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 1253 { 1254 spa_t *spa = cvd->vdev_spa; 1255 vdev_t *pvd = cvd->vdev_parent; 1256 vdev_t *mvd; 1257 1258 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1259 1260 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 1261 1262 mvd->vdev_asize = cvd->vdev_asize; 1263 mvd->vdev_min_asize = cvd->vdev_min_asize; 1264 mvd->vdev_max_asize = cvd->vdev_max_asize; 1265 mvd->vdev_psize = cvd->vdev_psize; 1266 mvd->vdev_ashift = cvd->vdev_ashift; 1267 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift; 1268 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift; 1269 mvd->vdev_state = cvd->vdev_state; 1270 mvd->vdev_crtxg = cvd->vdev_crtxg; 1271 1272 vdev_remove_child(pvd, cvd); 1273 vdev_add_child(pvd, mvd); 1274 cvd->vdev_id = mvd->vdev_children; 1275 vdev_add_child(mvd, cvd); 1276 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1277 1278 if (mvd == mvd->vdev_top) 1279 vdev_top_transfer(cvd, mvd); 1280 1281 return (mvd); 1282 } 1283 1284 /* 1285 * Remove a 1-way mirror/replacing vdev from the tree. 1286 */ 1287 void 1288 vdev_remove_parent(vdev_t *cvd) 1289 { 1290 vdev_t *mvd = cvd->vdev_parent; 1291 vdev_t *pvd = mvd->vdev_parent; 1292 1293 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1294 1295 ASSERT(mvd->vdev_children == 1); 1296 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1297 mvd->vdev_ops == &vdev_replacing_ops || 1298 mvd->vdev_ops == &vdev_spare_ops); 1299 cvd->vdev_ashift = mvd->vdev_ashift; 1300 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift; 1301 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift; 1302 vdev_remove_child(mvd, cvd); 1303 vdev_remove_child(pvd, mvd); 1304 1305 /* 1306 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1307 * Otherwise, we could have detached an offline device, and when we 1308 * go to import the pool we'll think we have two top-level vdevs, 1309 * instead of a different version of the same top-level vdev. 1310 */ 1311 if (mvd->vdev_top == mvd) { 1312 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1313 cvd->vdev_orig_guid = cvd->vdev_guid; 1314 cvd->vdev_guid += guid_delta; 1315 cvd->vdev_guid_sum += guid_delta; 1316 1317 /* 1318 * If pool not set for autoexpand, we need to also preserve 1319 * mvd's asize to prevent automatic expansion of cvd. 1320 * Otherwise if we are adjusting the mirror by attaching and 1321 * detaching children of non-uniform sizes, the mirror could 1322 * autoexpand, unexpectedly requiring larger devices to 1323 * re-establish the mirror. 1324 */ 1325 if (!cvd->vdev_spa->spa_autoexpand) 1326 cvd->vdev_asize = mvd->vdev_asize; 1327 } 1328 cvd->vdev_id = mvd->vdev_id; 1329 vdev_add_child(pvd, cvd); 1330 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1331 1332 if (cvd == cvd->vdev_top) 1333 vdev_top_transfer(mvd, cvd); 1334 1335 ASSERT(mvd->vdev_children == 0); 1336 vdev_free(mvd); 1337 } 1338 1339 void 1340 vdev_metaslab_group_create(vdev_t *vd) 1341 { 1342 spa_t *spa = vd->vdev_spa; 1343 1344 /* 1345 * metaslab_group_create was delayed until allocation bias was available 1346 */ 1347 if (vd->vdev_mg == NULL) { 1348 metaslab_class_t *mc; 1349 1350 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) 1351 vd->vdev_alloc_bias = VDEV_BIAS_LOG; 1352 1353 ASSERT3U(vd->vdev_islog, ==, 1354 (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); 1355 1356 switch (vd->vdev_alloc_bias) { 1357 case VDEV_BIAS_LOG: 1358 mc = spa_log_class(spa); 1359 break; 1360 case VDEV_BIAS_SPECIAL: 1361 mc = spa_special_class(spa); 1362 break; 1363 case VDEV_BIAS_DEDUP: 1364 mc = spa_dedup_class(spa); 1365 break; 1366 default: 1367 mc = spa_normal_class(spa); 1368 } 1369 1370 vd->vdev_mg = metaslab_group_create(mc, vd, 1371 spa->spa_alloc_count); 1372 1373 if (!vd->vdev_islog) { 1374 vd->vdev_log_mg = metaslab_group_create( 1375 spa_embedded_log_class(spa), vd, 1); 1376 } 1377 1378 /* 1379 * The spa ashift min/max only apply for the normal metaslab 1380 * class. Class destination is late binding so ashift boundary 1381 * setting had to wait until now. 1382 */ 1383 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1384 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { 1385 if (vd->vdev_ashift > spa->spa_max_ashift) 1386 spa->spa_max_ashift = vd->vdev_ashift; 1387 if (vd->vdev_ashift < spa->spa_min_ashift) 1388 spa->spa_min_ashift = vd->vdev_ashift; 1389 1390 uint64_t min_alloc = vdev_get_min_alloc(vd); 1391 if (min_alloc < spa->spa_min_alloc) 1392 spa->spa_min_alloc = min_alloc; 1393 } 1394 } 1395 } 1396 1397 int 1398 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1399 { 1400 spa_t *spa = vd->vdev_spa; 1401 uint64_t oldc = vd->vdev_ms_count; 1402 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1403 metaslab_t **mspp; 1404 int error; 1405 boolean_t expanding = (oldc != 0); 1406 1407 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1408 1409 /* 1410 * This vdev is not being allocated from yet or is a hole. 1411 */ 1412 if (vd->vdev_ms_shift == 0) 1413 return (0); 1414 1415 ASSERT(!vd->vdev_ishole); 1416 1417 ASSERT(oldc <= newc); 1418 1419 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1420 1421 if (expanding) { 1422 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 1423 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1424 } 1425 1426 vd->vdev_ms = mspp; 1427 vd->vdev_ms_count = newc; 1428 1429 for (uint64_t m = oldc; m < newc; m++) { 1430 uint64_t object = 0; 1431 /* 1432 * vdev_ms_array may be 0 if we are creating the "fake" 1433 * metaslabs for an indirect vdev for zdb's leak detection. 1434 * See zdb_leak_init(). 1435 */ 1436 if (txg == 0 && vd->vdev_ms_array != 0) { 1437 error = dmu_read(spa->spa_meta_objset, 1438 vd->vdev_ms_array, 1439 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1440 DMU_READ_PREFETCH); 1441 if (error != 0) { 1442 vdev_dbgmsg(vd, "unable to read the metaslab " 1443 "array [error=%d]", error); 1444 return (error); 1445 } 1446 } 1447 1448 error = metaslab_init(vd->vdev_mg, m, object, txg, 1449 &(vd->vdev_ms[m])); 1450 if (error != 0) { 1451 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1452 error); 1453 return (error); 1454 } 1455 } 1456 1457 /* 1458 * Find the emptiest metaslab on the vdev and mark it for use for 1459 * embedded slog by moving it from the regular to the log metaslab 1460 * group. 1461 */ 1462 if (vd->vdev_mg->mg_class == spa_normal_class(spa) && 1463 vd->vdev_ms_count > zfs_embedded_slog_min_ms && 1464 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) { 1465 uint64_t slog_msid = 0; 1466 uint64_t smallest = UINT64_MAX; 1467 1468 /* 1469 * Note, we only search the new metaslabs, because the old 1470 * (pre-existing) ones may be active (e.g. have non-empty 1471 * range_tree's), and we don't move them to the new 1472 * metaslab_t. 1473 */ 1474 for (uint64_t m = oldc; m < newc; m++) { 1475 uint64_t alloc = 1476 space_map_allocated(vd->vdev_ms[m]->ms_sm); 1477 if (alloc < smallest) { 1478 slog_msid = m; 1479 smallest = alloc; 1480 } 1481 } 1482 metaslab_t *slog_ms = vd->vdev_ms[slog_msid]; 1483 /* 1484 * The metaslab was marked as dirty at the end of 1485 * metaslab_init(). Remove it from the dirty list so that we 1486 * can uninitialize and reinitialize it to the new class. 1487 */ 1488 if (txg != 0) { 1489 (void) txg_list_remove_this(&vd->vdev_ms_list, 1490 slog_ms, txg); 1491 } 1492 uint64_t sm_obj = space_map_object(slog_ms->ms_sm); 1493 metaslab_fini(slog_ms); 1494 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg, 1495 &vd->vdev_ms[slog_msid])); 1496 } 1497 1498 if (txg == 0) 1499 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1500 1501 /* 1502 * If the vdev is being removed we don't activate 1503 * the metaslabs since we want to ensure that no new 1504 * allocations are performed on this device. 1505 */ 1506 if (!expanding && !vd->vdev_removing) { 1507 metaslab_group_activate(vd->vdev_mg); 1508 if (vd->vdev_log_mg != NULL) 1509 metaslab_group_activate(vd->vdev_log_mg); 1510 } 1511 1512 if (txg == 0) 1513 spa_config_exit(spa, SCL_ALLOC, FTAG); 1514 1515 /* 1516 * Regardless whether this vdev was just added or it is being 1517 * expanded, the metaslab count has changed. Recalculate the 1518 * block limit. 1519 */ 1520 spa_log_sm_set_blocklimit(spa); 1521 1522 return (0); 1523 } 1524 1525 void 1526 vdev_metaslab_fini(vdev_t *vd) 1527 { 1528 if (vd->vdev_checkpoint_sm != NULL) { 1529 ASSERT(spa_feature_is_active(vd->vdev_spa, 1530 SPA_FEATURE_POOL_CHECKPOINT)); 1531 space_map_close(vd->vdev_checkpoint_sm); 1532 /* 1533 * Even though we close the space map, we need to set its 1534 * pointer to NULL. The reason is that vdev_metaslab_fini() 1535 * may be called multiple times for certain operations 1536 * (i.e. when destroying a pool) so we need to ensure that 1537 * this clause never executes twice. This logic is similar 1538 * to the one used for the vdev_ms clause below. 1539 */ 1540 vd->vdev_checkpoint_sm = NULL; 1541 } 1542 1543 if (vd->vdev_ms != NULL) { 1544 metaslab_group_t *mg = vd->vdev_mg; 1545 1546 metaslab_group_passivate(mg); 1547 if (vd->vdev_log_mg != NULL) { 1548 ASSERT(!vd->vdev_islog); 1549 metaslab_group_passivate(vd->vdev_log_mg); 1550 } 1551 1552 uint64_t count = vd->vdev_ms_count; 1553 for (uint64_t m = 0; m < count; m++) { 1554 metaslab_t *msp = vd->vdev_ms[m]; 1555 if (msp != NULL) 1556 metaslab_fini(msp); 1557 } 1558 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1559 vd->vdev_ms = NULL; 1560 vd->vdev_ms_count = 0; 1561 1562 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 1563 ASSERT0(mg->mg_histogram[i]); 1564 if (vd->vdev_log_mg != NULL) 1565 ASSERT0(vd->vdev_log_mg->mg_histogram[i]); 1566 } 1567 } 1568 ASSERT0(vd->vdev_ms_count); 1569 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0); 1570 } 1571 1572 typedef struct vdev_probe_stats { 1573 boolean_t vps_readable; 1574 boolean_t vps_writeable; 1575 int vps_flags; 1576 } vdev_probe_stats_t; 1577 1578 static void 1579 vdev_probe_done(zio_t *zio) 1580 { 1581 spa_t *spa = zio->io_spa; 1582 vdev_t *vd = zio->io_vd; 1583 vdev_probe_stats_t *vps = zio->io_private; 1584 1585 ASSERT(vd->vdev_probe_zio != NULL); 1586 1587 if (zio->io_type == ZIO_TYPE_READ) { 1588 if (zio->io_error == 0) 1589 vps->vps_readable = 1; 1590 if (zio->io_error == 0 && spa_writeable(spa)) { 1591 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1592 zio->io_offset, zio->io_size, zio->io_abd, 1593 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1594 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1595 } else { 1596 abd_free(zio->io_abd); 1597 } 1598 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1599 if (zio->io_error == 0) 1600 vps->vps_writeable = 1; 1601 abd_free(zio->io_abd); 1602 } else if (zio->io_type == ZIO_TYPE_NULL) { 1603 zio_t *pio; 1604 zio_link_t *zl; 1605 1606 vd->vdev_cant_read |= !vps->vps_readable; 1607 vd->vdev_cant_write |= !vps->vps_writeable; 1608 1609 if (vdev_readable(vd) && 1610 (vdev_writeable(vd) || !spa_writeable(spa))) { 1611 zio->io_error = 0; 1612 } else { 1613 ASSERT(zio->io_error != 0); 1614 vdev_dbgmsg(vd, "failed probe"); 1615 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1616 spa, vd, NULL, NULL, 0); 1617 zio->io_error = SET_ERROR(ENXIO); 1618 } 1619 1620 mutex_enter(&vd->vdev_probe_lock); 1621 ASSERT(vd->vdev_probe_zio == zio); 1622 vd->vdev_probe_zio = NULL; 1623 mutex_exit(&vd->vdev_probe_lock); 1624 1625 zl = NULL; 1626 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1627 if (!vdev_accessible(vd, pio)) 1628 pio->io_error = SET_ERROR(ENXIO); 1629 1630 kmem_free(vps, sizeof (*vps)); 1631 } 1632 } 1633 1634 /* 1635 * Determine whether this device is accessible. 1636 * 1637 * Read and write to several known locations: the pad regions of each 1638 * vdev label but the first, which we leave alone in case it contains 1639 * a VTOC. 1640 */ 1641 zio_t * 1642 vdev_probe(vdev_t *vd, zio_t *zio) 1643 { 1644 spa_t *spa = vd->vdev_spa; 1645 vdev_probe_stats_t *vps = NULL; 1646 zio_t *pio; 1647 1648 ASSERT(vd->vdev_ops->vdev_op_leaf); 1649 1650 /* 1651 * Don't probe the probe. 1652 */ 1653 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1654 return (NULL); 1655 1656 /* 1657 * To prevent 'probe storms' when a device fails, we create 1658 * just one probe i/o at a time. All zios that want to probe 1659 * this vdev will become parents of the probe io. 1660 */ 1661 mutex_enter(&vd->vdev_probe_lock); 1662 1663 if ((pio = vd->vdev_probe_zio) == NULL) { 1664 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1665 1666 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1667 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1668 ZIO_FLAG_TRYHARD; 1669 1670 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1671 /* 1672 * vdev_cant_read and vdev_cant_write can only 1673 * transition from TRUE to FALSE when we have the 1674 * SCL_ZIO lock as writer; otherwise they can only 1675 * transition from FALSE to TRUE. This ensures that 1676 * any zio looking at these values can assume that 1677 * failures persist for the life of the I/O. That's 1678 * important because when a device has intermittent 1679 * connectivity problems, we want to ensure that 1680 * they're ascribed to the device (ENXIO) and not 1681 * the zio (EIO). 1682 * 1683 * Since we hold SCL_ZIO as writer here, clear both 1684 * values so the probe can reevaluate from first 1685 * principles. 1686 */ 1687 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1688 vd->vdev_cant_read = B_FALSE; 1689 vd->vdev_cant_write = B_FALSE; 1690 } 1691 1692 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1693 vdev_probe_done, vps, 1694 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1695 1696 /* 1697 * We can't change the vdev state in this context, so we 1698 * kick off an async task to do it on our behalf. 1699 */ 1700 if (zio != NULL) { 1701 vd->vdev_probe_wanted = B_TRUE; 1702 spa_async_request(spa, SPA_ASYNC_PROBE); 1703 } 1704 } 1705 1706 if (zio != NULL) 1707 zio_add_child(zio, pio); 1708 1709 mutex_exit(&vd->vdev_probe_lock); 1710 1711 if (vps == NULL) { 1712 ASSERT(zio != NULL); 1713 return (NULL); 1714 } 1715 1716 for (int l = 1; l < VDEV_LABELS; l++) { 1717 zio_nowait(zio_read_phys(pio, vd, 1718 vdev_label_offset(vd->vdev_psize, l, 1719 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE, 1720 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1721 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1722 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1723 } 1724 1725 if (zio == NULL) 1726 return (pio); 1727 1728 zio_nowait(pio); 1729 return (NULL); 1730 } 1731 1732 static void 1733 vdev_load_child(void *arg) 1734 { 1735 vdev_t *vd = arg; 1736 1737 vd->vdev_load_error = vdev_load(vd); 1738 } 1739 1740 static void 1741 vdev_open_child(void *arg) 1742 { 1743 vdev_t *vd = arg; 1744 1745 vd->vdev_open_thread = curthread; 1746 vd->vdev_open_error = vdev_open(vd); 1747 vd->vdev_open_thread = NULL; 1748 } 1749 1750 static boolean_t 1751 vdev_uses_zvols(vdev_t *vd) 1752 { 1753 #ifdef _KERNEL 1754 if (zvol_is_zvol(vd->vdev_path)) 1755 return (B_TRUE); 1756 #endif 1757 1758 for (int c = 0; c < vd->vdev_children; c++) 1759 if (vdev_uses_zvols(vd->vdev_child[c])) 1760 return (B_TRUE); 1761 1762 return (B_FALSE); 1763 } 1764 1765 /* 1766 * Returns B_TRUE if the passed child should be opened. 1767 */ 1768 static boolean_t 1769 vdev_default_open_children_func(vdev_t *vd) 1770 { 1771 return (B_TRUE); 1772 } 1773 1774 /* 1775 * Open the requested child vdevs. If any of the leaf vdevs are using 1776 * a ZFS volume then do the opens in a single thread. This avoids a 1777 * deadlock when the current thread is holding the spa_namespace_lock. 1778 */ 1779 static void 1780 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func) 1781 { 1782 int children = vd->vdev_children; 1783 1784 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri, 1785 children, children, TASKQ_PREPOPULATE); 1786 vd->vdev_nonrot = B_TRUE; 1787 1788 for (int c = 0; c < children; c++) { 1789 vdev_t *cvd = vd->vdev_child[c]; 1790 1791 if (open_func(cvd) == B_FALSE) 1792 continue; 1793 1794 if (tq == NULL || vdev_uses_zvols(vd)) { 1795 cvd->vdev_open_error = vdev_open(cvd); 1796 } else { 1797 VERIFY(taskq_dispatch(tq, vdev_open_child, 1798 cvd, TQ_SLEEP) != TASKQID_INVALID); 1799 } 1800 1801 vd->vdev_nonrot &= cvd->vdev_nonrot; 1802 } 1803 1804 if (tq != NULL) { 1805 taskq_wait(tq); 1806 taskq_destroy(tq); 1807 } 1808 } 1809 1810 /* 1811 * Open all child vdevs. 1812 */ 1813 void 1814 vdev_open_children(vdev_t *vd) 1815 { 1816 vdev_open_children_impl(vd, vdev_default_open_children_func); 1817 } 1818 1819 /* 1820 * Conditionally open a subset of child vdevs. 1821 */ 1822 void 1823 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func) 1824 { 1825 vdev_open_children_impl(vd, open_func); 1826 } 1827 1828 /* 1829 * Compute the raidz-deflation ratio. Note, we hard-code 1830 * in 128k (1 << 17) because it is the "typical" blocksize. 1831 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 1832 * otherwise it would inconsistently account for existing bp's. 1833 */ 1834 static void 1835 vdev_set_deflate_ratio(vdev_t *vd) 1836 { 1837 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 1838 vd->vdev_deflate_ratio = (1 << 17) / 1839 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 1840 } 1841 } 1842 1843 /* 1844 * Maximize performance by inflating the configured ashift for top level 1845 * vdevs to be as close to the physical ashift as possible while maintaining 1846 * administrator defined limits and ensuring it doesn't go below the 1847 * logical ashift. 1848 */ 1849 static void 1850 vdev_ashift_optimize(vdev_t *vd) 1851 { 1852 ASSERT(vd == vd->vdev_top); 1853 1854 if (vd->vdev_ashift < vd->vdev_physical_ashift) { 1855 vd->vdev_ashift = MIN( 1856 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift), 1857 MAX(zfs_vdev_min_auto_ashift, 1858 vd->vdev_physical_ashift)); 1859 } else { 1860 /* 1861 * If the logical and physical ashifts are the same, then 1862 * we ensure that the top-level vdev's ashift is not smaller 1863 * than our minimum ashift value. For the unusual case 1864 * where logical ashift > physical ashift, we can't cap 1865 * the calculated ashift based on max ashift as that 1866 * would cause failures. 1867 * We still check if we need to increase it to match 1868 * the min ashift. 1869 */ 1870 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift, 1871 vd->vdev_ashift); 1872 } 1873 } 1874 1875 /* 1876 * Prepare a virtual device for access. 1877 */ 1878 int 1879 vdev_open(vdev_t *vd) 1880 { 1881 spa_t *spa = vd->vdev_spa; 1882 int error; 1883 uint64_t osize = 0; 1884 uint64_t max_osize = 0; 1885 uint64_t asize, max_asize, psize; 1886 uint64_t logical_ashift = 0; 1887 uint64_t physical_ashift = 0; 1888 1889 ASSERT(vd->vdev_open_thread == curthread || 1890 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1891 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1892 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1893 vd->vdev_state == VDEV_STATE_OFFLINE); 1894 1895 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1896 vd->vdev_cant_read = B_FALSE; 1897 vd->vdev_cant_write = B_FALSE; 1898 vd->vdev_min_asize = vdev_get_min_asize(vd); 1899 1900 /* 1901 * If this vdev is not removed, check its fault status. If it's 1902 * faulted, bail out of the open. 1903 */ 1904 if (!vd->vdev_removed && vd->vdev_faulted) { 1905 ASSERT(vd->vdev_children == 0); 1906 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1907 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1908 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1909 vd->vdev_label_aux); 1910 return (SET_ERROR(ENXIO)); 1911 } else if (vd->vdev_offline) { 1912 ASSERT(vd->vdev_children == 0); 1913 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1914 return (SET_ERROR(ENXIO)); 1915 } 1916 1917 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, 1918 &logical_ashift, &physical_ashift); 1919 /* 1920 * Physical volume size should never be larger than its max size, unless 1921 * the disk has shrunk while we were reading it or the device is buggy 1922 * or damaged: either way it's not safe for use, bail out of the open. 1923 */ 1924 if (osize > max_osize) { 1925 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1926 VDEV_AUX_OPEN_FAILED); 1927 return (SET_ERROR(ENXIO)); 1928 } 1929 1930 /* 1931 * Reset the vdev_reopening flag so that we actually close 1932 * the vdev on error. 1933 */ 1934 vd->vdev_reopening = B_FALSE; 1935 if (zio_injection_enabled && error == 0) 1936 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO)); 1937 1938 if (error) { 1939 if (vd->vdev_removed && 1940 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1941 vd->vdev_removed = B_FALSE; 1942 1943 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 1944 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 1945 vd->vdev_stat.vs_aux); 1946 } else { 1947 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1948 vd->vdev_stat.vs_aux); 1949 } 1950 return (error); 1951 } 1952 1953 vd->vdev_removed = B_FALSE; 1954 1955 /* 1956 * Recheck the faulted flag now that we have confirmed that 1957 * the vdev is accessible. If we're faulted, bail. 1958 */ 1959 if (vd->vdev_faulted) { 1960 ASSERT(vd->vdev_children == 0); 1961 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1962 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1963 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1964 vd->vdev_label_aux); 1965 return (SET_ERROR(ENXIO)); 1966 } 1967 1968 if (vd->vdev_degraded) { 1969 ASSERT(vd->vdev_children == 0); 1970 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1971 VDEV_AUX_ERR_EXCEEDED); 1972 } else { 1973 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1974 } 1975 1976 /* 1977 * For hole or missing vdevs we just return success. 1978 */ 1979 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1980 return (0); 1981 1982 for (int c = 0; c < vd->vdev_children; c++) { 1983 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1984 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1985 VDEV_AUX_NONE); 1986 break; 1987 } 1988 } 1989 1990 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1991 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1992 1993 if (vd->vdev_children == 0) { 1994 if (osize < SPA_MINDEVSIZE) { 1995 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1996 VDEV_AUX_TOO_SMALL); 1997 return (SET_ERROR(EOVERFLOW)); 1998 } 1999 psize = osize; 2000 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 2001 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 2002 VDEV_LABEL_END_SIZE); 2003 } else { 2004 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 2005 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 2006 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2007 VDEV_AUX_TOO_SMALL); 2008 return (SET_ERROR(EOVERFLOW)); 2009 } 2010 psize = 0; 2011 asize = osize; 2012 max_asize = max_osize; 2013 } 2014 2015 /* 2016 * If the vdev was expanded, record this so that we can re-create the 2017 * uberblock rings in labels {2,3}, during the next sync. 2018 */ 2019 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0)) 2020 vd->vdev_copy_uberblocks = B_TRUE; 2021 2022 vd->vdev_psize = psize; 2023 2024 /* 2025 * Make sure the allocatable size hasn't shrunk too much. 2026 */ 2027 if (asize < vd->vdev_min_asize) { 2028 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2029 VDEV_AUX_BAD_LABEL); 2030 return (SET_ERROR(EINVAL)); 2031 } 2032 2033 /* 2034 * We can always set the logical/physical ashift members since 2035 * their values are only used to calculate the vdev_ashift when 2036 * the device is first added to the config. These values should 2037 * not be used for anything else since they may change whenever 2038 * the device is reopened and we don't store them in the label. 2039 */ 2040 vd->vdev_physical_ashift = 2041 MAX(physical_ashift, vd->vdev_physical_ashift); 2042 vd->vdev_logical_ashift = MAX(logical_ashift, 2043 vd->vdev_logical_ashift); 2044 2045 if (vd->vdev_asize == 0) { 2046 /* 2047 * This is the first-ever open, so use the computed values. 2048 * For compatibility, a different ashift can be requested. 2049 */ 2050 vd->vdev_asize = asize; 2051 vd->vdev_max_asize = max_asize; 2052 2053 /* 2054 * If the vdev_ashift was not overridden at creation time, 2055 * then set it the logical ashift and optimize the ashift. 2056 */ 2057 if (vd->vdev_ashift == 0) { 2058 vd->vdev_ashift = vd->vdev_logical_ashift; 2059 2060 if (vd->vdev_logical_ashift > ASHIFT_MAX) { 2061 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2062 VDEV_AUX_ASHIFT_TOO_BIG); 2063 return (SET_ERROR(EDOM)); 2064 } 2065 2066 if (vd->vdev_top == vd) { 2067 vdev_ashift_optimize(vd); 2068 } 2069 } 2070 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN || 2071 vd->vdev_ashift > ASHIFT_MAX)) { 2072 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2073 VDEV_AUX_BAD_ASHIFT); 2074 return (SET_ERROR(EDOM)); 2075 } 2076 } else { 2077 /* 2078 * Make sure the alignment required hasn't increased. 2079 */ 2080 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift && 2081 vd->vdev_ops->vdev_op_leaf) { 2082 (void) zfs_ereport_post( 2083 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT, 2084 spa, vd, NULL, NULL, 0); 2085 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2086 VDEV_AUX_BAD_LABEL); 2087 return (SET_ERROR(EDOM)); 2088 } 2089 vd->vdev_max_asize = max_asize; 2090 } 2091 2092 /* 2093 * If all children are healthy we update asize if either: 2094 * The asize has increased, due to a device expansion caused by dynamic 2095 * LUN growth or vdev replacement, and automatic expansion is enabled; 2096 * making the additional space available. 2097 * 2098 * The asize has decreased, due to a device shrink usually caused by a 2099 * vdev replace with a smaller device. This ensures that calculations 2100 * based of max_asize and asize e.g. esize are always valid. It's safe 2101 * to do this as we've already validated that asize is greater than 2102 * vdev_min_asize. 2103 */ 2104 if (vd->vdev_state == VDEV_STATE_HEALTHY && 2105 ((asize > vd->vdev_asize && 2106 (vd->vdev_expanding || spa->spa_autoexpand)) || 2107 (asize < vd->vdev_asize))) 2108 vd->vdev_asize = asize; 2109 2110 vdev_set_min_asize(vd); 2111 2112 /* 2113 * Ensure we can issue some IO before declaring the 2114 * vdev open for business. 2115 */ 2116 if (vd->vdev_ops->vdev_op_leaf && 2117 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 2118 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2119 VDEV_AUX_ERR_EXCEEDED); 2120 return (error); 2121 } 2122 2123 /* 2124 * Track the minimum allocation size. 2125 */ 2126 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 2127 vd->vdev_islog == 0 && vd->vdev_aux == NULL) { 2128 uint64_t min_alloc = vdev_get_min_alloc(vd); 2129 if (min_alloc < spa->spa_min_alloc) 2130 spa->spa_min_alloc = min_alloc; 2131 } 2132 2133 /* 2134 * If this is a leaf vdev, assess whether a resilver is needed. 2135 * But don't do this if we are doing a reopen for a scrub, since 2136 * this would just restart the scrub we are already doing. 2137 */ 2138 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen) 2139 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd); 2140 2141 return (0); 2142 } 2143 2144 static void 2145 vdev_validate_child(void *arg) 2146 { 2147 vdev_t *vd = arg; 2148 2149 vd->vdev_validate_thread = curthread; 2150 vd->vdev_validate_error = vdev_validate(vd); 2151 vd->vdev_validate_thread = NULL; 2152 } 2153 2154 /* 2155 * Called once the vdevs are all opened, this routine validates the label 2156 * contents. This needs to be done before vdev_load() so that we don't 2157 * inadvertently do repair I/Os to the wrong device. 2158 * 2159 * This function will only return failure if one of the vdevs indicates that it 2160 * has since been destroyed or exported. This is only possible if 2161 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 2162 * will be updated but the function will return 0. 2163 */ 2164 int 2165 vdev_validate(vdev_t *vd) 2166 { 2167 spa_t *spa = vd->vdev_spa; 2168 taskq_t *tq = NULL; 2169 nvlist_t *label; 2170 uint64_t guid = 0, aux_guid = 0, top_guid; 2171 uint64_t state; 2172 nvlist_t *nvl; 2173 uint64_t txg; 2174 int children = vd->vdev_children; 2175 2176 if (vdev_validate_skip) 2177 return (0); 2178 2179 if (children > 0) { 2180 tq = taskq_create("vdev_validate", children, minclsyspri, 2181 children, children, TASKQ_PREPOPULATE); 2182 } 2183 2184 for (uint64_t c = 0; c < children; c++) { 2185 vdev_t *cvd = vd->vdev_child[c]; 2186 2187 if (tq == NULL || vdev_uses_zvols(cvd)) { 2188 vdev_validate_child(cvd); 2189 } else { 2190 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd, 2191 TQ_SLEEP) != TASKQID_INVALID); 2192 } 2193 } 2194 if (tq != NULL) { 2195 taskq_wait(tq); 2196 taskq_destroy(tq); 2197 } 2198 for (int c = 0; c < children; c++) { 2199 int error = vd->vdev_child[c]->vdev_validate_error; 2200 2201 if (error != 0) 2202 return (SET_ERROR(EBADF)); 2203 } 2204 2205 2206 /* 2207 * If the device has already failed, or was marked offline, don't do 2208 * any further validation. Otherwise, label I/O will fail and we will 2209 * overwrite the previous state. 2210 */ 2211 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 2212 return (0); 2213 2214 /* 2215 * If we are performing an extreme rewind, we allow for a label that 2216 * was modified at a point after the current txg. 2217 * If config lock is not held do not check for the txg. spa_sync could 2218 * be updating the vdev's label before updating spa_last_synced_txg. 2219 */ 2220 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 2221 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 2222 txg = UINT64_MAX; 2223 else 2224 txg = spa_last_synced_txg(spa); 2225 2226 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 2227 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2228 VDEV_AUX_BAD_LABEL); 2229 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 2230 "txg %llu", (u_longlong_t)txg); 2231 return (0); 2232 } 2233 2234 /* 2235 * Determine if this vdev has been split off into another 2236 * pool. If so, then refuse to open it. 2237 */ 2238 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 2239 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 2240 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2241 VDEV_AUX_SPLIT_POOL); 2242 nvlist_free(label); 2243 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 2244 return (0); 2245 } 2246 2247 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 2248 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2249 VDEV_AUX_CORRUPT_DATA); 2250 nvlist_free(label); 2251 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2252 ZPOOL_CONFIG_POOL_GUID); 2253 return (0); 2254 } 2255 2256 /* 2257 * If config is not trusted then ignore the spa guid check. This is 2258 * necessary because if the machine crashed during a re-guid the new 2259 * guid might have been written to all of the vdev labels, but not the 2260 * cached config. The check will be performed again once we have the 2261 * trusted config from the MOS. 2262 */ 2263 if (spa->spa_trust_config && guid != spa_guid(spa)) { 2264 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2265 VDEV_AUX_CORRUPT_DATA); 2266 nvlist_free(label); 2267 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 2268 "match config (%llu != %llu)", (u_longlong_t)guid, 2269 (u_longlong_t)spa_guid(spa)); 2270 return (0); 2271 } 2272 2273 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 2274 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 2275 &aux_guid) != 0) 2276 aux_guid = 0; 2277 2278 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 2279 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2280 VDEV_AUX_CORRUPT_DATA); 2281 nvlist_free(label); 2282 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2283 ZPOOL_CONFIG_GUID); 2284 return (0); 2285 } 2286 2287 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 2288 != 0) { 2289 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2290 VDEV_AUX_CORRUPT_DATA); 2291 nvlist_free(label); 2292 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2293 ZPOOL_CONFIG_TOP_GUID); 2294 return (0); 2295 } 2296 2297 /* 2298 * If this vdev just became a top-level vdev because its sibling was 2299 * detached, it will have adopted the parent's vdev guid -- but the 2300 * label may or may not be on disk yet. Fortunately, either version 2301 * of the label will have the same top guid, so if we're a top-level 2302 * vdev, we can safely compare to that instead. 2303 * However, if the config comes from a cachefile that failed to update 2304 * after the detach, a top-level vdev will appear as a non top-level 2305 * vdev in the config. Also relax the constraints if we perform an 2306 * extreme rewind. 2307 * 2308 * If we split this vdev off instead, then we also check the 2309 * original pool's guid. We don't want to consider the vdev 2310 * corrupt if it is partway through a split operation. 2311 */ 2312 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 2313 boolean_t mismatch = B_FALSE; 2314 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 2315 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 2316 mismatch = B_TRUE; 2317 } else { 2318 if (vd->vdev_guid != top_guid && 2319 vd->vdev_top->vdev_guid != guid) 2320 mismatch = B_TRUE; 2321 } 2322 2323 if (mismatch) { 2324 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2325 VDEV_AUX_CORRUPT_DATA); 2326 nvlist_free(label); 2327 vdev_dbgmsg(vd, "vdev_validate: config guid " 2328 "doesn't match label guid"); 2329 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 2330 (u_longlong_t)vd->vdev_guid, 2331 (u_longlong_t)vd->vdev_top->vdev_guid); 2332 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 2333 "aux_guid %llu", (u_longlong_t)guid, 2334 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 2335 return (0); 2336 } 2337 } 2338 2339 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 2340 &state) != 0) { 2341 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2342 VDEV_AUX_CORRUPT_DATA); 2343 nvlist_free(label); 2344 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2345 ZPOOL_CONFIG_POOL_STATE); 2346 return (0); 2347 } 2348 2349 nvlist_free(label); 2350 2351 /* 2352 * If this is a verbatim import, no need to check the 2353 * state of the pool. 2354 */ 2355 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 2356 spa_load_state(spa) == SPA_LOAD_OPEN && 2357 state != POOL_STATE_ACTIVE) { 2358 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 2359 "for spa %s", (u_longlong_t)state, spa->spa_name); 2360 return (SET_ERROR(EBADF)); 2361 } 2362 2363 /* 2364 * If we were able to open and validate a vdev that was 2365 * previously marked permanently unavailable, clear that state 2366 * now. 2367 */ 2368 if (vd->vdev_not_present) 2369 vd->vdev_not_present = 0; 2370 2371 return (0); 2372 } 2373 2374 static void 2375 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 2376 { 2377 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) { 2378 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) { 2379 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed " 2380 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2381 dvd->vdev_path, svd->vdev_path); 2382 spa_strfree(dvd->vdev_path); 2383 dvd->vdev_path = spa_strdup(svd->vdev_path); 2384 } 2385 } else if (svd->vdev_path != NULL) { 2386 dvd->vdev_path = spa_strdup(svd->vdev_path); 2387 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 2388 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path); 2389 } 2390 } 2391 2392 /* 2393 * Recursively copy vdev paths from one vdev to another. Source and destination 2394 * vdev trees must have same geometry otherwise return error. Intended to copy 2395 * paths from userland config into MOS config. 2396 */ 2397 int 2398 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 2399 { 2400 if ((svd->vdev_ops == &vdev_missing_ops) || 2401 (svd->vdev_ishole && dvd->vdev_ishole) || 2402 (dvd->vdev_ops == &vdev_indirect_ops)) 2403 return (0); 2404 2405 if (svd->vdev_ops != dvd->vdev_ops) { 2406 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 2407 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 2408 return (SET_ERROR(EINVAL)); 2409 } 2410 2411 if (svd->vdev_guid != dvd->vdev_guid) { 2412 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 2413 "%llu)", (u_longlong_t)svd->vdev_guid, 2414 (u_longlong_t)dvd->vdev_guid); 2415 return (SET_ERROR(EINVAL)); 2416 } 2417 2418 if (svd->vdev_children != dvd->vdev_children) { 2419 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 2420 "%llu != %llu", (u_longlong_t)svd->vdev_children, 2421 (u_longlong_t)dvd->vdev_children); 2422 return (SET_ERROR(EINVAL)); 2423 } 2424 2425 for (uint64_t i = 0; i < svd->vdev_children; i++) { 2426 int error = vdev_copy_path_strict(svd->vdev_child[i], 2427 dvd->vdev_child[i]); 2428 if (error != 0) 2429 return (error); 2430 } 2431 2432 if (svd->vdev_ops->vdev_op_leaf) 2433 vdev_copy_path_impl(svd, dvd); 2434 2435 return (0); 2436 } 2437 2438 static void 2439 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 2440 { 2441 ASSERT(stvd->vdev_top == stvd); 2442 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 2443 2444 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 2445 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 2446 } 2447 2448 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 2449 return; 2450 2451 /* 2452 * The idea here is that while a vdev can shift positions within 2453 * a top vdev (when replacing, attaching mirror, etc.) it cannot 2454 * step outside of it. 2455 */ 2456 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 2457 2458 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 2459 return; 2460 2461 ASSERT(vd->vdev_ops->vdev_op_leaf); 2462 2463 vdev_copy_path_impl(vd, dvd); 2464 } 2465 2466 /* 2467 * Recursively copy vdev paths from one root vdev to another. Source and 2468 * destination vdev trees may differ in geometry. For each destination leaf 2469 * vdev, search a vdev with the same guid and top vdev id in the source. 2470 * Intended to copy paths from userland config into MOS config. 2471 */ 2472 void 2473 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 2474 { 2475 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 2476 ASSERT(srvd->vdev_ops == &vdev_root_ops); 2477 ASSERT(drvd->vdev_ops == &vdev_root_ops); 2478 2479 for (uint64_t i = 0; i < children; i++) { 2480 vdev_copy_path_search(srvd->vdev_child[i], 2481 drvd->vdev_child[i]); 2482 } 2483 } 2484 2485 /* 2486 * Close a virtual device. 2487 */ 2488 void 2489 vdev_close(vdev_t *vd) 2490 { 2491 vdev_t *pvd = vd->vdev_parent; 2492 spa_t *spa __maybe_unused = vd->vdev_spa; 2493 2494 ASSERT(vd != NULL); 2495 ASSERT(vd->vdev_open_thread == curthread || 2496 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2497 2498 /* 2499 * If our parent is reopening, then we are as well, unless we are 2500 * going offline. 2501 */ 2502 if (pvd != NULL && pvd->vdev_reopening) 2503 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 2504 2505 vd->vdev_ops->vdev_op_close(vd); 2506 2507 vdev_cache_purge(vd); 2508 2509 /* 2510 * We record the previous state before we close it, so that if we are 2511 * doing a reopen(), we don't generate FMA ereports if we notice that 2512 * it's still faulted. 2513 */ 2514 vd->vdev_prevstate = vd->vdev_state; 2515 2516 if (vd->vdev_offline) 2517 vd->vdev_state = VDEV_STATE_OFFLINE; 2518 else 2519 vd->vdev_state = VDEV_STATE_CLOSED; 2520 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2521 } 2522 2523 void 2524 vdev_hold(vdev_t *vd) 2525 { 2526 spa_t *spa = vd->vdev_spa; 2527 2528 ASSERT(spa_is_root(spa)); 2529 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 2530 return; 2531 2532 for (int c = 0; c < vd->vdev_children; c++) 2533 vdev_hold(vd->vdev_child[c]); 2534 2535 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL) 2536 vd->vdev_ops->vdev_op_hold(vd); 2537 } 2538 2539 void 2540 vdev_rele(vdev_t *vd) 2541 { 2542 ASSERT(spa_is_root(vd->vdev_spa)); 2543 for (int c = 0; c < vd->vdev_children; c++) 2544 vdev_rele(vd->vdev_child[c]); 2545 2546 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL) 2547 vd->vdev_ops->vdev_op_rele(vd); 2548 } 2549 2550 /* 2551 * Reopen all interior vdevs and any unopened leaves. We don't actually 2552 * reopen leaf vdevs which had previously been opened as they might deadlock 2553 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 2554 * If the leaf has never been opened then open it, as usual. 2555 */ 2556 void 2557 vdev_reopen(vdev_t *vd) 2558 { 2559 spa_t *spa = vd->vdev_spa; 2560 2561 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2562 2563 /* set the reopening flag unless we're taking the vdev offline */ 2564 vd->vdev_reopening = !vd->vdev_offline; 2565 vdev_close(vd); 2566 (void) vdev_open(vd); 2567 2568 /* 2569 * Call vdev_validate() here to make sure we have the same device. 2570 * Otherwise, a device with an invalid label could be successfully 2571 * opened in response to vdev_reopen(). 2572 */ 2573 if (vd->vdev_aux) { 2574 (void) vdev_validate_aux(vd); 2575 if (vdev_readable(vd) && vdev_writeable(vd) && 2576 vd->vdev_aux == &spa->spa_l2cache) { 2577 /* 2578 * In case the vdev is present we should evict all ARC 2579 * buffers and pointers to log blocks and reclaim their 2580 * space before restoring its contents to L2ARC. 2581 */ 2582 if (l2arc_vdev_present(vd)) { 2583 l2arc_rebuild_vdev(vd, B_TRUE); 2584 } else { 2585 l2arc_add_vdev(spa, vd); 2586 } 2587 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2588 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 2589 } 2590 } else { 2591 (void) vdev_validate(vd); 2592 } 2593 2594 /* 2595 * Reassess parent vdev's health. 2596 */ 2597 vdev_propagate_state(vd); 2598 } 2599 2600 int 2601 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2602 { 2603 int error; 2604 2605 /* 2606 * Normally, partial opens (e.g. of a mirror) are allowed. 2607 * For a create, however, we want to fail the request if 2608 * there are any components we can't open. 2609 */ 2610 error = vdev_open(vd); 2611 2612 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2613 vdev_close(vd); 2614 return (error ? error : SET_ERROR(ENXIO)); 2615 } 2616 2617 /* 2618 * Recursively load DTLs and initialize all labels. 2619 */ 2620 if ((error = vdev_dtl_load(vd)) != 0 || 2621 (error = vdev_label_init(vd, txg, isreplacing ? 2622 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2623 vdev_close(vd); 2624 return (error); 2625 } 2626 2627 return (0); 2628 } 2629 2630 void 2631 vdev_metaslab_set_size(vdev_t *vd) 2632 { 2633 uint64_t asize = vd->vdev_asize; 2634 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2635 uint64_t ms_shift; 2636 2637 /* 2638 * There are two dimensions to the metaslab sizing calculation: 2639 * the size of the metaslab and the count of metaslabs per vdev. 2640 * 2641 * The default values used below are a good balance between memory 2642 * usage (larger metaslab size means more memory needed for loaded 2643 * metaslabs; more metaslabs means more memory needed for the 2644 * metaslab_t structs), metaslab load time (larger metaslabs take 2645 * longer to load), and metaslab sync time (more metaslabs means 2646 * more time spent syncing all of them). 2647 * 2648 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2649 * The range of the dimensions are as follows: 2650 * 2651 * 2^29 <= ms_size <= 2^34 2652 * 16 <= ms_count <= 131,072 2653 * 2654 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2655 * at least 512MB (2^29) to minimize fragmentation effects when 2656 * testing with smaller devices. However, the count constraint 2657 * of at least 16 metaslabs will override this minimum size goal. 2658 * 2659 * On the upper end of vdev sizes, we aim for a maximum metaslab 2660 * size of 16GB. However, we will cap the total count to 2^17 2661 * metaslabs to keep our memory footprint in check and let the 2662 * metaslab size grow from there if that limit is hit. 2663 * 2664 * The net effect of applying above constrains is summarized below. 2665 * 2666 * vdev size metaslab count 2667 * --------------|----------------- 2668 * < 8GB ~16 2669 * 8GB - 100GB one per 512MB 2670 * 100GB - 3TB ~200 2671 * 3TB - 2PB one per 16GB 2672 * > 2PB ~131,072 2673 * -------------------------------- 2674 * 2675 * Finally, note that all of the above calculate the initial 2676 * number of metaslabs. Expanding a top-level vdev will result 2677 * in additional metaslabs being allocated making it possible 2678 * to exceed the zfs_vdev_ms_count_limit. 2679 */ 2680 2681 if (ms_count < zfs_vdev_min_ms_count) 2682 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 2683 else if (ms_count > zfs_vdev_default_ms_count) 2684 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 2685 else 2686 ms_shift = zfs_vdev_default_ms_shift; 2687 2688 if (ms_shift < SPA_MAXBLOCKSHIFT) { 2689 ms_shift = SPA_MAXBLOCKSHIFT; 2690 } else if (ms_shift > zfs_vdev_max_ms_shift) { 2691 ms_shift = zfs_vdev_max_ms_shift; 2692 /* cap the total count to constrain memory footprint */ 2693 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 2694 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 2695 } 2696 2697 vd->vdev_ms_shift = ms_shift; 2698 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 2699 } 2700 2701 void 2702 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 2703 { 2704 ASSERT(vd == vd->vdev_top); 2705 /* indirect vdevs don't have metaslabs or dtls */ 2706 ASSERT(vdev_is_concrete(vd) || flags == 0); 2707 ASSERT(ISP2(flags)); 2708 ASSERT(spa_writeable(vd->vdev_spa)); 2709 2710 if (flags & VDD_METASLAB) 2711 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 2712 2713 if (flags & VDD_DTL) 2714 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 2715 2716 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 2717 } 2718 2719 void 2720 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 2721 { 2722 for (int c = 0; c < vd->vdev_children; c++) 2723 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 2724 2725 if (vd->vdev_ops->vdev_op_leaf) 2726 vdev_dirty(vd->vdev_top, flags, vd, txg); 2727 } 2728 2729 /* 2730 * DTLs. 2731 * 2732 * A vdev's DTL (dirty time log) is the set of transaction groups for which 2733 * the vdev has less than perfect replication. There are four kinds of DTL: 2734 * 2735 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 2736 * 2737 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 2738 * 2739 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 2740 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 2741 * txgs that was scrubbed. 2742 * 2743 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 2744 * persistent errors or just some device being offline. 2745 * Unlike the other three, the DTL_OUTAGE map is not generally 2746 * maintained; it's only computed when needed, typically to 2747 * determine whether a device can be detached. 2748 * 2749 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 2750 * either has the data or it doesn't. 2751 * 2752 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 2753 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 2754 * if any child is less than fully replicated, then so is its parent. 2755 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 2756 * comprising only those txgs which appear in 'maxfaults' or more children; 2757 * those are the txgs we don't have enough replication to read. For example, 2758 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 2759 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 2760 * two child DTL_MISSING maps. 2761 * 2762 * It should be clear from the above that to compute the DTLs and outage maps 2763 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 2764 * Therefore, that is all we keep on disk. When loading the pool, or after 2765 * a configuration change, we generate all other DTLs from first principles. 2766 */ 2767 void 2768 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2769 { 2770 range_tree_t *rt = vd->vdev_dtl[t]; 2771 2772 ASSERT(t < DTL_TYPES); 2773 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2774 ASSERT(spa_writeable(vd->vdev_spa)); 2775 2776 mutex_enter(&vd->vdev_dtl_lock); 2777 if (!range_tree_contains(rt, txg, size)) 2778 range_tree_add(rt, txg, size); 2779 mutex_exit(&vd->vdev_dtl_lock); 2780 } 2781 2782 boolean_t 2783 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2784 { 2785 range_tree_t *rt = vd->vdev_dtl[t]; 2786 boolean_t dirty = B_FALSE; 2787 2788 ASSERT(t < DTL_TYPES); 2789 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2790 2791 /* 2792 * While we are loading the pool, the DTLs have not been loaded yet. 2793 * This isn't a problem but it can result in devices being tried 2794 * which are known to not have the data. In which case, the import 2795 * is relying on the checksum to ensure that we get the right data. 2796 * Note that while importing we are only reading the MOS, which is 2797 * always checksummed. 2798 */ 2799 mutex_enter(&vd->vdev_dtl_lock); 2800 if (!range_tree_is_empty(rt)) 2801 dirty = range_tree_contains(rt, txg, size); 2802 mutex_exit(&vd->vdev_dtl_lock); 2803 2804 return (dirty); 2805 } 2806 2807 boolean_t 2808 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 2809 { 2810 range_tree_t *rt = vd->vdev_dtl[t]; 2811 boolean_t empty; 2812 2813 mutex_enter(&vd->vdev_dtl_lock); 2814 empty = range_tree_is_empty(rt); 2815 mutex_exit(&vd->vdev_dtl_lock); 2816 2817 return (empty); 2818 } 2819 2820 /* 2821 * Check if the txg falls within the range which must be 2822 * resilvered. DVAs outside this range can always be skipped. 2823 */ 2824 boolean_t 2825 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 2826 uint64_t phys_birth) 2827 { 2828 /* Set by sequential resilver. */ 2829 if (phys_birth == TXG_UNKNOWN) 2830 return (B_TRUE); 2831 2832 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)); 2833 } 2834 2835 /* 2836 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered. 2837 */ 2838 boolean_t 2839 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 2840 uint64_t phys_birth) 2841 { 2842 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2843 2844 if (vd->vdev_ops->vdev_op_need_resilver == NULL || 2845 vd->vdev_ops->vdev_op_leaf) 2846 return (B_TRUE); 2847 2848 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize, 2849 phys_birth)); 2850 } 2851 2852 /* 2853 * Returns the lowest txg in the DTL range. 2854 */ 2855 static uint64_t 2856 vdev_dtl_min(vdev_t *vd) 2857 { 2858 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2859 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2860 ASSERT0(vd->vdev_children); 2861 2862 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1); 2863 } 2864 2865 /* 2866 * Returns the highest txg in the DTL. 2867 */ 2868 static uint64_t 2869 vdev_dtl_max(vdev_t *vd) 2870 { 2871 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2872 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2873 ASSERT0(vd->vdev_children); 2874 2875 return (range_tree_max(vd->vdev_dtl[DTL_MISSING])); 2876 } 2877 2878 /* 2879 * Determine if a resilvering vdev should remove any DTL entries from 2880 * its range. If the vdev was resilvering for the entire duration of the 2881 * scan then it should excise that range from its DTLs. Otherwise, this 2882 * vdev is considered partially resilvered and should leave its DTL 2883 * entries intact. The comment in vdev_dtl_reassess() describes how we 2884 * excise the DTLs. 2885 */ 2886 static boolean_t 2887 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done) 2888 { 2889 ASSERT0(vd->vdev_children); 2890 2891 if (vd->vdev_state < VDEV_STATE_DEGRADED) 2892 return (B_FALSE); 2893 2894 if (vd->vdev_resilver_deferred) 2895 return (B_FALSE); 2896 2897 if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 2898 return (B_TRUE); 2899 2900 if (rebuild_done) { 2901 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 2902 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 2903 2904 /* Rebuild not initiated by attach */ 2905 if (vd->vdev_rebuild_txg == 0) 2906 return (B_TRUE); 2907 2908 /* 2909 * When a rebuild completes without error then all missing data 2910 * up to the rebuild max txg has been reconstructed and the DTL 2911 * is eligible for excision. 2912 */ 2913 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE && 2914 vdev_dtl_max(vd) <= vrp->vrp_max_txg) { 2915 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd)); 2916 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg); 2917 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg); 2918 return (B_TRUE); 2919 } 2920 } else { 2921 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 2922 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys; 2923 2924 /* Resilver not initiated by attach */ 2925 if (vd->vdev_resilver_txg == 0) 2926 return (B_TRUE); 2927 2928 /* 2929 * When a resilver is initiated the scan will assign the 2930 * scn_max_txg value to the highest txg value that exists 2931 * in all DTLs. If this device's max DTL is not part of this 2932 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg] 2933 * then it is not eligible for excision. 2934 */ 2935 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 2936 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd)); 2937 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg); 2938 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg); 2939 return (B_TRUE); 2940 } 2941 } 2942 2943 return (B_FALSE); 2944 } 2945 2946 /* 2947 * Reassess DTLs after a config change or scrub completion. If txg == 0 no 2948 * write operations will be issued to the pool. 2949 */ 2950 void 2951 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, 2952 boolean_t scrub_done, boolean_t rebuild_done) 2953 { 2954 spa_t *spa = vd->vdev_spa; 2955 avl_tree_t reftree; 2956 int minref; 2957 2958 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2959 2960 for (int c = 0; c < vd->vdev_children; c++) 2961 vdev_dtl_reassess(vd->vdev_child[c], txg, 2962 scrub_txg, scrub_done, rebuild_done); 2963 2964 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 2965 return; 2966 2967 if (vd->vdev_ops->vdev_op_leaf) { 2968 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 2969 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 2970 boolean_t check_excise = B_FALSE; 2971 boolean_t wasempty = B_TRUE; 2972 2973 mutex_enter(&vd->vdev_dtl_lock); 2974 2975 /* 2976 * If requested, pretend the scan or rebuild completed cleanly. 2977 */ 2978 if (zfs_scan_ignore_errors) { 2979 if (scn != NULL) 2980 scn->scn_phys.scn_errors = 0; 2981 if (vr != NULL) 2982 vr->vr_rebuild_phys.vrp_errors = 0; 2983 } 2984 2985 if (scrub_txg != 0 && 2986 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 2987 wasempty = B_FALSE; 2988 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d " 2989 "dtl:%llu/%llu errors:%llu", 2990 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg, 2991 (u_longlong_t)scrub_txg, spa->spa_scrub_started, 2992 (u_longlong_t)vdev_dtl_min(vd), 2993 (u_longlong_t)vdev_dtl_max(vd), 2994 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0)); 2995 } 2996 2997 /* 2998 * If we've completed a scrub/resilver or a rebuild cleanly 2999 * then determine if this vdev should remove any DTLs. We 3000 * only want to excise regions on vdevs that were available 3001 * during the entire duration of this scan. 3002 */ 3003 if (rebuild_done && 3004 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) { 3005 check_excise = B_TRUE; 3006 } else { 3007 if (spa->spa_scrub_started || 3008 (scn != NULL && scn->scn_phys.scn_errors == 0)) { 3009 check_excise = B_TRUE; 3010 } 3011 } 3012 3013 if (scrub_txg && check_excise && 3014 vdev_dtl_should_excise(vd, rebuild_done)) { 3015 /* 3016 * We completed a scrub, resilver or rebuild up to 3017 * scrub_txg. If we did it without rebooting, then 3018 * the scrub dtl will be valid, so excise the old 3019 * region and fold in the scrub dtl. Otherwise, 3020 * leave the dtl as-is if there was an error. 3021 * 3022 * There's little trick here: to excise the beginning 3023 * of the DTL_MISSING map, we put it into a reference 3024 * tree and then add a segment with refcnt -1 that 3025 * covers the range [0, scrub_txg). This means 3026 * that each txg in that range has refcnt -1 or 0. 3027 * We then add DTL_SCRUB with a refcnt of 2, so that 3028 * entries in the range [0, scrub_txg) will have a 3029 * positive refcnt -- either 1 or 2. We then convert 3030 * the reference tree into the new DTL_MISSING map. 3031 */ 3032 space_reftree_create(&reftree); 3033 space_reftree_add_map(&reftree, 3034 vd->vdev_dtl[DTL_MISSING], 1); 3035 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 3036 space_reftree_add_map(&reftree, 3037 vd->vdev_dtl[DTL_SCRUB], 2); 3038 space_reftree_generate_map(&reftree, 3039 vd->vdev_dtl[DTL_MISSING], 1); 3040 space_reftree_destroy(&reftree); 3041 3042 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3043 zfs_dbgmsg("update DTL_MISSING:%llu/%llu", 3044 (u_longlong_t)vdev_dtl_min(vd), 3045 (u_longlong_t)vdev_dtl_max(vd)); 3046 } else if (!wasempty) { 3047 zfs_dbgmsg("DTL_MISSING is now empty"); 3048 } 3049 } 3050 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 3051 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3052 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 3053 if (scrub_done) 3054 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 3055 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 3056 if (!vdev_readable(vd)) 3057 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 3058 else 3059 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3060 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 3061 3062 /* 3063 * If the vdev was resilvering or rebuilding and no longer 3064 * has any DTLs then reset the appropriate flag and dirty 3065 * the top level so that we persist the change. 3066 */ 3067 if (txg != 0 && 3068 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3069 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) { 3070 if (vd->vdev_rebuild_txg != 0) { 3071 vd->vdev_rebuild_txg = 0; 3072 vdev_config_dirty(vd->vdev_top); 3073 } else if (vd->vdev_resilver_txg != 0) { 3074 vd->vdev_resilver_txg = 0; 3075 vdev_config_dirty(vd->vdev_top); 3076 } 3077 } 3078 3079 mutex_exit(&vd->vdev_dtl_lock); 3080 3081 if (txg != 0) 3082 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 3083 return; 3084 } 3085 3086 mutex_enter(&vd->vdev_dtl_lock); 3087 for (int t = 0; t < DTL_TYPES; t++) { 3088 /* account for child's outage in parent's missing map */ 3089 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 3090 if (t == DTL_SCRUB) 3091 continue; /* leaf vdevs only */ 3092 if (t == DTL_PARTIAL) 3093 minref = 1; /* i.e. non-zero */ 3094 else if (vdev_get_nparity(vd) != 0) 3095 minref = vdev_get_nparity(vd) + 1; /* RAID-Z, dRAID */ 3096 else 3097 minref = vd->vdev_children; /* any kind of mirror */ 3098 space_reftree_create(&reftree); 3099 for (int c = 0; c < vd->vdev_children; c++) { 3100 vdev_t *cvd = vd->vdev_child[c]; 3101 mutex_enter(&cvd->vdev_dtl_lock); 3102 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 3103 mutex_exit(&cvd->vdev_dtl_lock); 3104 } 3105 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 3106 space_reftree_destroy(&reftree); 3107 } 3108 mutex_exit(&vd->vdev_dtl_lock); 3109 } 3110 3111 int 3112 vdev_dtl_load(vdev_t *vd) 3113 { 3114 spa_t *spa = vd->vdev_spa; 3115 objset_t *mos = spa->spa_meta_objset; 3116 range_tree_t *rt; 3117 int error = 0; 3118 3119 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 3120 ASSERT(vdev_is_concrete(vd)); 3121 3122 error = space_map_open(&vd->vdev_dtl_sm, mos, 3123 vd->vdev_dtl_object, 0, -1ULL, 0); 3124 if (error) 3125 return (error); 3126 ASSERT(vd->vdev_dtl_sm != NULL); 3127 3128 rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3129 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC); 3130 if (error == 0) { 3131 mutex_enter(&vd->vdev_dtl_lock); 3132 range_tree_walk(rt, range_tree_add, 3133 vd->vdev_dtl[DTL_MISSING]); 3134 mutex_exit(&vd->vdev_dtl_lock); 3135 } 3136 3137 range_tree_vacate(rt, NULL, NULL); 3138 range_tree_destroy(rt); 3139 3140 return (error); 3141 } 3142 3143 for (int c = 0; c < vd->vdev_children; c++) { 3144 error = vdev_dtl_load(vd->vdev_child[c]); 3145 if (error != 0) 3146 break; 3147 } 3148 3149 return (error); 3150 } 3151 3152 static void 3153 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) 3154 { 3155 spa_t *spa = vd->vdev_spa; 3156 objset_t *mos = spa->spa_meta_objset; 3157 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 3158 const char *string; 3159 3160 ASSERT(alloc_bias != VDEV_BIAS_NONE); 3161 3162 string = 3163 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : 3164 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : 3165 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; 3166 3167 ASSERT(string != NULL); 3168 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 3169 1, strlen(string) + 1, string, tx)); 3170 3171 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { 3172 spa_activate_allocation_classes(spa, tx); 3173 } 3174 } 3175 3176 void 3177 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 3178 { 3179 spa_t *spa = vd->vdev_spa; 3180 3181 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 3182 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3183 zapobj, tx)); 3184 } 3185 3186 uint64_t 3187 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 3188 { 3189 spa_t *spa = vd->vdev_spa; 3190 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 3191 DMU_OT_NONE, 0, tx); 3192 3193 ASSERT(zap != 0); 3194 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3195 zap, tx)); 3196 3197 return (zap); 3198 } 3199 3200 void 3201 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 3202 { 3203 if (vd->vdev_ops != &vdev_hole_ops && 3204 vd->vdev_ops != &vdev_missing_ops && 3205 vd->vdev_ops != &vdev_root_ops && 3206 !vd->vdev_top->vdev_removing) { 3207 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 3208 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 3209 } 3210 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 3211 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 3212 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) 3213 vdev_zap_allocation_data(vd, tx); 3214 } 3215 } 3216 3217 for (uint64_t i = 0; i < vd->vdev_children; i++) { 3218 vdev_construct_zaps(vd->vdev_child[i], tx); 3219 } 3220 } 3221 3222 static void 3223 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 3224 { 3225 spa_t *spa = vd->vdev_spa; 3226 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 3227 objset_t *mos = spa->spa_meta_objset; 3228 range_tree_t *rtsync; 3229 dmu_tx_t *tx; 3230 uint64_t object = space_map_object(vd->vdev_dtl_sm); 3231 3232 ASSERT(vdev_is_concrete(vd)); 3233 ASSERT(vd->vdev_ops->vdev_op_leaf); 3234 3235 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3236 3237 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 3238 mutex_enter(&vd->vdev_dtl_lock); 3239 space_map_free(vd->vdev_dtl_sm, tx); 3240 space_map_close(vd->vdev_dtl_sm); 3241 vd->vdev_dtl_sm = NULL; 3242 mutex_exit(&vd->vdev_dtl_lock); 3243 3244 /* 3245 * We only destroy the leaf ZAP for detached leaves or for 3246 * removed log devices. Removed data devices handle leaf ZAP 3247 * cleanup later, once cancellation is no longer possible. 3248 */ 3249 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 3250 vd->vdev_top->vdev_islog)) { 3251 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 3252 vd->vdev_leaf_zap = 0; 3253 } 3254 3255 dmu_tx_commit(tx); 3256 return; 3257 } 3258 3259 if (vd->vdev_dtl_sm == NULL) { 3260 uint64_t new_object; 3261 3262 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx); 3263 VERIFY3U(new_object, !=, 0); 3264 3265 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 3266 0, -1ULL, 0)); 3267 ASSERT(vd->vdev_dtl_sm != NULL); 3268 } 3269 3270 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3271 3272 mutex_enter(&vd->vdev_dtl_lock); 3273 range_tree_walk(rt, range_tree_add, rtsync); 3274 mutex_exit(&vd->vdev_dtl_lock); 3275 3276 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx); 3277 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 3278 range_tree_vacate(rtsync, NULL, NULL); 3279 3280 range_tree_destroy(rtsync); 3281 3282 /* 3283 * If the object for the space map has changed then dirty 3284 * the top level so that we update the config. 3285 */ 3286 if (object != space_map_object(vd->vdev_dtl_sm)) { 3287 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 3288 "new object %llu", (u_longlong_t)txg, spa_name(spa), 3289 (u_longlong_t)object, 3290 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 3291 vdev_config_dirty(vd->vdev_top); 3292 } 3293 3294 dmu_tx_commit(tx); 3295 } 3296 3297 /* 3298 * Determine whether the specified vdev can be offlined/detached/removed 3299 * without losing data. 3300 */ 3301 boolean_t 3302 vdev_dtl_required(vdev_t *vd) 3303 { 3304 spa_t *spa = vd->vdev_spa; 3305 vdev_t *tvd = vd->vdev_top; 3306 uint8_t cant_read = vd->vdev_cant_read; 3307 boolean_t required; 3308 3309 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3310 3311 if (vd == spa->spa_root_vdev || vd == tvd) 3312 return (B_TRUE); 3313 3314 /* 3315 * Temporarily mark the device as unreadable, and then determine 3316 * whether this results in any DTL outages in the top-level vdev. 3317 * If not, we can safely offline/detach/remove the device. 3318 */ 3319 vd->vdev_cant_read = B_TRUE; 3320 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3321 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 3322 vd->vdev_cant_read = cant_read; 3323 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3324 3325 if (!required && zio_injection_enabled) { 3326 required = !!zio_handle_device_injection(vd, NULL, 3327 SET_ERROR(ECHILD)); 3328 } 3329 3330 return (required); 3331 } 3332 3333 /* 3334 * Determine if resilver is needed, and if so the txg range. 3335 */ 3336 boolean_t 3337 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 3338 { 3339 boolean_t needed = B_FALSE; 3340 uint64_t thismin = UINT64_MAX; 3341 uint64_t thismax = 0; 3342 3343 if (vd->vdev_children == 0) { 3344 mutex_enter(&vd->vdev_dtl_lock); 3345 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3346 vdev_writeable(vd)) { 3347 3348 thismin = vdev_dtl_min(vd); 3349 thismax = vdev_dtl_max(vd); 3350 needed = B_TRUE; 3351 } 3352 mutex_exit(&vd->vdev_dtl_lock); 3353 } else { 3354 for (int c = 0; c < vd->vdev_children; c++) { 3355 vdev_t *cvd = vd->vdev_child[c]; 3356 uint64_t cmin, cmax; 3357 3358 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 3359 thismin = MIN(thismin, cmin); 3360 thismax = MAX(thismax, cmax); 3361 needed = B_TRUE; 3362 } 3363 } 3364 } 3365 3366 if (needed && minp) { 3367 *minp = thismin; 3368 *maxp = thismax; 3369 } 3370 return (needed); 3371 } 3372 3373 /* 3374 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj 3375 * will contain either the checkpoint spacemap object or zero if none exists. 3376 * All other errors are returned to the caller. 3377 */ 3378 int 3379 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj) 3380 { 3381 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 3382 3383 if (vd->vdev_top_zap == 0) { 3384 *sm_obj = 0; 3385 return (0); 3386 } 3387 3388 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 3389 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj); 3390 if (error == ENOENT) { 3391 *sm_obj = 0; 3392 error = 0; 3393 } 3394 3395 return (error); 3396 } 3397 3398 int 3399 vdev_load(vdev_t *vd) 3400 { 3401 int children = vd->vdev_children; 3402 int error = 0; 3403 taskq_t *tq = NULL; 3404 3405 /* 3406 * It's only worthwhile to use the taskq for the root vdev, because the 3407 * slow part is metaslab_init, and that only happens for top-level 3408 * vdevs. 3409 */ 3410 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) { 3411 tq = taskq_create("vdev_load", children, minclsyspri, 3412 children, children, TASKQ_PREPOPULATE); 3413 } 3414 3415 /* 3416 * Recursively load all children. 3417 */ 3418 for (int c = 0; c < vd->vdev_children; c++) { 3419 vdev_t *cvd = vd->vdev_child[c]; 3420 3421 if (tq == NULL || vdev_uses_zvols(cvd)) { 3422 cvd->vdev_load_error = vdev_load(cvd); 3423 } else { 3424 VERIFY(taskq_dispatch(tq, vdev_load_child, 3425 cvd, TQ_SLEEP) != TASKQID_INVALID); 3426 } 3427 } 3428 3429 if (tq != NULL) { 3430 taskq_wait(tq); 3431 taskq_destroy(tq); 3432 } 3433 3434 for (int c = 0; c < vd->vdev_children; c++) { 3435 int error = vd->vdev_child[c]->vdev_load_error; 3436 3437 if (error != 0) 3438 return (error); 3439 } 3440 3441 vdev_set_deflate_ratio(vd); 3442 3443 /* 3444 * On spa_load path, grab the allocation bias from our zap 3445 */ 3446 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3447 spa_t *spa = vd->vdev_spa; 3448 char bias_str[64]; 3449 3450 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3451 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), 3452 bias_str); 3453 if (error == 0) { 3454 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); 3455 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); 3456 } else if (error != ENOENT) { 3457 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3458 VDEV_AUX_CORRUPT_DATA); 3459 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) " 3460 "failed [error=%d]", vd->vdev_top_zap, error); 3461 return (error); 3462 } 3463 } 3464 3465 /* 3466 * Load any rebuild state from the top-level vdev zap. 3467 */ 3468 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3469 error = vdev_rebuild_load(vd); 3470 if (error && error != ENOTSUP) { 3471 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3472 VDEV_AUX_CORRUPT_DATA); 3473 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load " 3474 "failed [error=%d]", error); 3475 return (error); 3476 } 3477 } 3478 3479 /* 3480 * If this is a top-level vdev, initialize its metaslabs. 3481 */ 3482 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 3483 vdev_metaslab_group_create(vd); 3484 3485 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 3486 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3487 VDEV_AUX_CORRUPT_DATA); 3488 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 3489 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 3490 (u_longlong_t)vd->vdev_asize); 3491 return (SET_ERROR(ENXIO)); 3492 } 3493 3494 error = vdev_metaslab_init(vd, 0); 3495 if (error != 0) { 3496 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 3497 "[error=%d]", error); 3498 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3499 VDEV_AUX_CORRUPT_DATA); 3500 return (error); 3501 } 3502 3503 uint64_t checkpoint_sm_obj; 3504 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj); 3505 if (error == 0 && checkpoint_sm_obj != 0) { 3506 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3507 ASSERT(vd->vdev_asize != 0); 3508 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); 3509 3510 error = space_map_open(&vd->vdev_checkpoint_sm, 3511 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 3512 vd->vdev_ashift); 3513 if (error != 0) { 3514 vdev_dbgmsg(vd, "vdev_load: space_map_open " 3515 "failed for checkpoint spacemap (obj %llu) " 3516 "[error=%d]", 3517 (u_longlong_t)checkpoint_sm_obj, error); 3518 return (error); 3519 } 3520 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 3521 3522 /* 3523 * Since the checkpoint_sm contains free entries 3524 * exclusively we can use space_map_allocated() to 3525 * indicate the cumulative checkpointed space that 3526 * has been freed. 3527 */ 3528 vd->vdev_stat.vs_checkpoint_space = 3529 -space_map_allocated(vd->vdev_checkpoint_sm); 3530 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 3531 vd->vdev_stat.vs_checkpoint_space; 3532 } else if (error != 0) { 3533 vdev_dbgmsg(vd, "vdev_load: failed to retrieve " 3534 "checkpoint space map object from vdev ZAP " 3535 "[error=%d]", error); 3536 return (error); 3537 } 3538 } 3539 3540 /* 3541 * If this is a leaf vdev, load its DTL. 3542 */ 3543 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 3544 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3545 VDEV_AUX_CORRUPT_DATA); 3546 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 3547 "[error=%d]", error); 3548 return (error); 3549 } 3550 3551 uint64_t obsolete_sm_object; 3552 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object); 3553 if (error == 0 && obsolete_sm_object != 0) { 3554 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3555 ASSERT(vd->vdev_asize != 0); 3556 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 3557 3558 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 3559 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 3560 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3561 VDEV_AUX_CORRUPT_DATA); 3562 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 3563 "obsolete spacemap (obj %llu) [error=%d]", 3564 (u_longlong_t)obsolete_sm_object, error); 3565 return (error); 3566 } 3567 } else if (error != 0) { 3568 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete " 3569 "space map object from vdev ZAP [error=%d]", error); 3570 return (error); 3571 } 3572 3573 return (0); 3574 } 3575 3576 /* 3577 * The special vdev case is used for hot spares and l2cache devices. Its 3578 * sole purpose it to set the vdev state for the associated vdev. To do this, 3579 * we make sure that we can open the underlying device, then try to read the 3580 * label, and make sure that the label is sane and that it hasn't been 3581 * repurposed to another pool. 3582 */ 3583 int 3584 vdev_validate_aux(vdev_t *vd) 3585 { 3586 nvlist_t *label; 3587 uint64_t guid, version; 3588 uint64_t state; 3589 3590 if (!vdev_readable(vd)) 3591 return (0); 3592 3593 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 3594 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3595 VDEV_AUX_CORRUPT_DATA); 3596 return (-1); 3597 } 3598 3599 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 3600 !SPA_VERSION_IS_SUPPORTED(version) || 3601 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 3602 guid != vd->vdev_guid || 3603 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 3604 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3605 VDEV_AUX_CORRUPT_DATA); 3606 nvlist_free(label); 3607 return (-1); 3608 } 3609 3610 /* 3611 * We don't actually check the pool state here. If it's in fact in 3612 * use by another pool, we update this fact on the fly when requested. 3613 */ 3614 nvlist_free(label); 3615 return (0); 3616 } 3617 3618 static void 3619 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx) 3620 { 3621 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3622 3623 if (vd->vdev_top_zap == 0) 3624 return; 3625 3626 uint64_t object = 0; 3627 int err = zap_lookup(mos, vd->vdev_top_zap, 3628 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object); 3629 if (err == ENOENT) 3630 return; 3631 VERIFY0(err); 3632 3633 VERIFY0(dmu_object_free(mos, object, tx)); 3634 VERIFY0(zap_remove(mos, vd->vdev_top_zap, 3635 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx)); 3636 } 3637 3638 /* 3639 * Free the objects used to store this vdev's spacemaps, and the array 3640 * that points to them. 3641 */ 3642 void 3643 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 3644 { 3645 if (vd->vdev_ms_array == 0) 3646 return; 3647 3648 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3649 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 3650 size_t array_bytes = array_count * sizeof (uint64_t); 3651 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 3652 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 3653 array_bytes, smobj_array, 0)); 3654 3655 for (uint64_t i = 0; i < array_count; i++) { 3656 uint64_t smobj = smobj_array[i]; 3657 if (smobj == 0) 3658 continue; 3659 3660 space_map_free_obj(mos, smobj, tx); 3661 } 3662 3663 kmem_free(smobj_array, array_bytes); 3664 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 3665 vdev_destroy_ms_flush_data(vd, tx); 3666 vd->vdev_ms_array = 0; 3667 } 3668 3669 static void 3670 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 3671 { 3672 spa_t *spa = vd->vdev_spa; 3673 3674 ASSERT(vd->vdev_islog); 3675 ASSERT(vd == vd->vdev_top); 3676 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 3677 3678 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3679 3680 vdev_destroy_spacemaps(vd, tx); 3681 if (vd->vdev_top_zap != 0) { 3682 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 3683 vd->vdev_top_zap = 0; 3684 } 3685 3686 dmu_tx_commit(tx); 3687 } 3688 3689 void 3690 vdev_sync_done(vdev_t *vd, uint64_t txg) 3691 { 3692 metaslab_t *msp; 3693 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 3694 3695 ASSERT(vdev_is_concrete(vd)); 3696 3697 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 3698 != NULL) 3699 metaslab_sync_done(msp, txg); 3700 3701 if (reassess) { 3702 metaslab_sync_reassess(vd->vdev_mg); 3703 if (vd->vdev_log_mg != NULL) 3704 metaslab_sync_reassess(vd->vdev_log_mg); 3705 } 3706 } 3707 3708 void 3709 vdev_sync(vdev_t *vd, uint64_t txg) 3710 { 3711 spa_t *spa = vd->vdev_spa; 3712 vdev_t *lvd; 3713 metaslab_t *msp; 3714 3715 ASSERT3U(txg, ==, spa->spa_syncing_txg); 3716 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3717 if (range_tree_space(vd->vdev_obsolete_segments) > 0) { 3718 ASSERT(vd->vdev_removing || 3719 vd->vdev_ops == &vdev_indirect_ops); 3720 3721 vdev_indirect_sync_obsolete(vd, tx); 3722 3723 /* 3724 * If the vdev is indirect, it can't have dirty 3725 * metaslabs or DTLs. 3726 */ 3727 if (vd->vdev_ops == &vdev_indirect_ops) { 3728 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 3729 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 3730 dmu_tx_commit(tx); 3731 return; 3732 } 3733 } 3734 3735 ASSERT(vdev_is_concrete(vd)); 3736 3737 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 3738 !vd->vdev_removing) { 3739 ASSERT(vd == vd->vdev_top); 3740 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 3741 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 3742 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 3743 ASSERT(vd->vdev_ms_array != 0); 3744 vdev_config_dirty(vd); 3745 } 3746 3747 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 3748 metaslab_sync(msp, txg); 3749 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 3750 } 3751 3752 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 3753 vdev_dtl_sync(lvd, txg); 3754 3755 /* 3756 * If this is an empty log device being removed, destroy the 3757 * metadata associated with it. 3758 */ 3759 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 3760 vdev_remove_empty_log(vd, txg); 3761 3762 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 3763 dmu_tx_commit(tx); 3764 } 3765 3766 uint64_t 3767 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 3768 { 3769 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 3770 } 3771 3772 /* 3773 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 3774 * not be opened, and no I/O is attempted. 3775 */ 3776 int 3777 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3778 { 3779 vdev_t *vd, *tvd; 3780 3781 spa_vdev_state_enter(spa, SCL_NONE); 3782 3783 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3784 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 3785 3786 if (!vd->vdev_ops->vdev_op_leaf) 3787 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 3788 3789 tvd = vd->vdev_top; 3790 3791 /* 3792 * If user did a 'zpool offline -f' then make the fault persist across 3793 * reboots. 3794 */ 3795 if (aux == VDEV_AUX_EXTERNAL_PERSIST) { 3796 /* 3797 * There are two kinds of forced faults: temporary and 3798 * persistent. Temporary faults go away at pool import, while 3799 * persistent faults stay set. Both types of faults can be 3800 * cleared with a zpool clear. 3801 * 3802 * We tell if a vdev is persistently faulted by looking at the 3803 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at 3804 * import then it's a persistent fault. Otherwise, it's 3805 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external" 3806 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This 3807 * tells vdev_config_generate() (which gets run later) to set 3808 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist. 3809 */ 3810 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 3811 vd->vdev_tmpoffline = B_FALSE; 3812 aux = VDEV_AUX_EXTERNAL; 3813 } else { 3814 vd->vdev_tmpoffline = B_TRUE; 3815 } 3816 3817 /* 3818 * We don't directly use the aux state here, but if we do a 3819 * vdev_reopen(), we need this value to be present to remember why we 3820 * were faulted. 3821 */ 3822 vd->vdev_label_aux = aux; 3823 3824 /* 3825 * Faulted state takes precedence over degraded. 3826 */ 3827 vd->vdev_delayed_close = B_FALSE; 3828 vd->vdev_faulted = 1ULL; 3829 vd->vdev_degraded = 0ULL; 3830 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 3831 3832 /* 3833 * If this device has the only valid copy of the data, then 3834 * back off and simply mark the vdev as degraded instead. 3835 */ 3836 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 3837 vd->vdev_degraded = 1ULL; 3838 vd->vdev_faulted = 0ULL; 3839 3840 /* 3841 * If we reopen the device and it's not dead, only then do we 3842 * mark it degraded. 3843 */ 3844 vdev_reopen(tvd); 3845 3846 if (vdev_readable(vd)) 3847 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 3848 } 3849 3850 return (spa_vdev_state_exit(spa, vd, 0)); 3851 } 3852 3853 /* 3854 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 3855 * user that something is wrong. The vdev continues to operate as normal as far 3856 * as I/O is concerned. 3857 */ 3858 int 3859 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3860 { 3861 vdev_t *vd; 3862 3863 spa_vdev_state_enter(spa, SCL_NONE); 3864 3865 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3866 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 3867 3868 if (!vd->vdev_ops->vdev_op_leaf) 3869 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 3870 3871 /* 3872 * If the vdev is already faulted, then don't do anything. 3873 */ 3874 if (vd->vdev_faulted || vd->vdev_degraded) 3875 return (spa_vdev_state_exit(spa, NULL, 0)); 3876 3877 vd->vdev_degraded = 1ULL; 3878 if (!vdev_is_dead(vd)) 3879 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 3880 aux); 3881 3882 return (spa_vdev_state_exit(spa, vd, 0)); 3883 } 3884 3885 /* 3886 * Online the given vdev. 3887 * 3888 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 3889 * spare device should be detached when the device finishes resilvering. 3890 * Second, the online should be treated like a 'test' online case, so no FMA 3891 * events are generated if the device fails to open. 3892 */ 3893 int 3894 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 3895 { 3896 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 3897 boolean_t wasoffline; 3898 vdev_state_t oldstate; 3899 3900 spa_vdev_state_enter(spa, SCL_NONE); 3901 3902 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3903 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 3904 3905 if (!vd->vdev_ops->vdev_op_leaf) 3906 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 3907 3908 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 3909 oldstate = vd->vdev_state; 3910 3911 tvd = vd->vdev_top; 3912 vd->vdev_offline = B_FALSE; 3913 vd->vdev_tmpoffline = B_FALSE; 3914 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 3915 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 3916 3917 /* XXX - L2ARC 1.0 does not support expansion */ 3918 if (!vd->vdev_aux) { 3919 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3920 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) || 3921 spa->spa_autoexpand); 3922 vd->vdev_expansion_time = gethrestime_sec(); 3923 } 3924 3925 vdev_reopen(tvd); 3926 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 3927 3928 if (!vd->vdev_aux) { 3929 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3930 pvd->vdev_expanding = B_FALSE; 3931 } 3932 3933 if (newstate) 3934 *newstate = vd->vdev_state; 3935 if ((flags & ZFS_ONLINE_UNSPARE) && 3936 !vdev_is_dead(vd) && vd->vdev_parent && 3937 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 3938 vd->vdev_parent->vdev_child[0] == vd) 3939 vd->vdev_unspare = B_TRUE; 3940 3941 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 3942 3943 /* XXX - L2ARC 1.0 does not support expansion */ 3944 if (vd->vdev_aux) 3945 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 3946 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 3947 } 3948 3949 /* Restart initializing if necessary */ 3950 mutex_enter(&vd->vdev_initialize_lock); 3951 if (vdev_writeable(vd) && 3952 vd->vdev_initialize_thread == NULL && 3953 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 3954 (void) vdev_initialize(vd); 3955 } 3956 mutex_exit(&vd->vdev_initialize_lock); 3957 3958 /* 3959 * Restart trimming if necessary. We do not restart trimming for cache 3960 * devices here. This is triggered by l2arc_rebuild_vdev() 3961 * asynchronously for the whole device or in l2arc_evict() as it evicts 3962 * space for upcoming writes. 3963 */ 3964 mutex_enter(&vd->vdev_trim_lock); 3965 if (vdev_writeable(vd) && !vd->vdev_isl2cache && 3966 vd->vdev_trim_thread == NULL && 3967 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { 3968 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, 3969 vd->vdev_trim_secure); 3970 } 3971 mutex_exit(&vd->vdev_trim_lock); 3972 3973 if (wasoffline || 3974 (oldstate < VDEV_STATE_DEGRADED && 3975 vd->vdev_state >= VDEV_STATE_DEGRADED)) 3976 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 3977 3978 return (spa_vdev_state_exit(spa, vd, 0)); 3979 } 3980 3981 static int 3982 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 3983 { 3984 vdev_t *vd, *tvd; 3985 int error = 0; 3986 uint64_t generation; 3987 metaslab_group_t *mg; 3988 3989 top: 3990 spa_vdev_state_enter(spa, SCL_ALLOC); 3991 3992 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3993 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 3994 3995 if (!vd->vdev_ops->vdev_op_leaf) 3996 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 3997 3998 if (vd->vdev_ops == &vdev_draid_spare_ops) 3999 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4000 4001 tvd = vd->vdev_top; 4002 mg = tvd->vdev_mg; 4003 generation = spa->spa_config_generation + 1; 4004 4005 /* 4006 * If the device isn't already offline, try to offline it. 4007 */ 4008 if (!vd->vdev_offline) { 4009 /* 4010 * If this device has the only valid copy of some data, 4011 * don't allow it to be offlined. Log devices are always 4012 * expendable. 4013 */ 4014 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4015 vdev_dtl_required(vd)) 4016 return (spa_vdev_state_exit(spa, NULL, 4017 SET_ERROR(EBUSY))); 4018 4019 /* 4020 * If the top-level is a slog and it has had allocations 4021 * then proceed. We check that the vdev's metaslab group 4022 * is not NULL since it's possible that we may have just 4023 * added this vdev but not yet initialized its metaslabs. 4024 */ 4025 if (tvd->vdev_islog && mg != NULL) { 4026 /* 4027 * Prevent any future allocations. 4028 */ 4029 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 4030 metaslab_group_passivate(mg); 4031 (void) spa_vdev_state_exit(spa, vd, 0); 4032 4033 error = spa_reset_logs(spa); 4034 4035 /* 4036 * If the log device was successfully reset but has 4037 * checkpointed data, do not offline it. 4038 */ 4039 if (error == 0 && 4040 tvd->vdev_checkpoint_sm != NULL) { 4041 ASSERT3U(space_map_allocated( 4042 tvd->vdev_checkpoint_sm), !=, 0); 4043 error = ZFS_ERR_CHECKPOINT_EXISTS; 4044 } 4045 4046 spa_vdev_state_enter(spa, SCL_ALLOC); 4047 4048 /* 4049 * Check to see if the config has changed. 4050 */ 4051 if (error || generation != spa->spa_config_generation) { 4052 metaslab_group_activate(mg); 4053 if (error) 4054 return (spa_vdev_state_exit(spa, 4055 vd, error)); 4056 (void) spa_vdev_state_exit(spa, vd, 0); 4057 goto top; 4058 } 4059 ASSERT0(tvd->vdev_stat.vs_alloc); 4060 } 4061 4062 /* 4063 * Offline this device and reopen its top-level vdev. 4064 * If the top-level vdev is a log device then just offline 4065 * it. Otherwise, if this action results in the top-level 4066 * vdev becoming unusable, undo it and fail the request. 4067 */ 4068 vd->vdev_offline = B_TRUE; 4069 vdev_reopen(tvd); 4070 4071 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4072 vdev_is_dead(tvd)) { 4073 vd->vdev_offline = B_FALSE; 4074 vdev_reopen(tvd); 4075 return (spa_vdev_state_exit(spa, NULL, 4076 SET_ERROR(EBUSY))); 4077 } 4078 4079 /* 4080 * Add the device back into the metaslab rotor so that 4081 * once we online the device it's open for business. 4082 */ 4083 if (tvd->vdev_islog && mg != NULL) 4084 metaslab_group_activate(mg); 4085 } 4086 4087 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 4088 4089 return (spa_vdev_state_exit(spa, vd, 0)); 4090 } 4091 4092 int 4093 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 4094 { 4095 int error; 4096 4097 mutex_enter(&spa->spa_vdev_top_lock); 4098 error = vdev_offline_locked(spa, guid, flags); 4099 mutex_exit(&spa->spa_vdev_top_lock); 4100 4101 return (error); 4102 } 4103 4104 /* 4105 * Clear the error counts associated with this vdev. Unlike vdev_online() and 4106 * vdev_offline(), we assume the spa config is locked. We also clear all 4107 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 4108 */ 4109 void 4110 vdev_clear(spa_t *spa, vdev_t *vd) 4111 { 4112 vdev_t *rvd = spa->spa_root_vdev; 4113 4114 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 4115 4116 if (vd == NULL) 4117 vd = rvd; 4118 4119 vd->vdev_stat.vs_read_errors = 0; 4120 vd->vdev_stat.vs_write_errors = 0; 4121 vd->vdev_stat.vs_checksum_errors = 0; 4122 vd->vdev_stat.vs_slow_ios = 0; 4123 4124 for (int c = 0; c < vd->vdev_children; c++) 4125 vdev_clear(spa, vd->vdev_child[c]); 4126 4127 /* 4128 * It makes no sense to "clear" an indirect vdev. 4129 */ 4130 if (!vdev_is_concrete(vd)) 4131 return; 4132 4133 /* 4134 * If we're in the FAULTED state or have experienced failed I/O, then 4135 * clear the persistent state and attempt to reopen the device. We 4136 * also mark the vdev config dirty, so that the new faulted state is 4137 * written out to disk. 4138 */ 4139 if (vd->vdev_faulted || vd->vdev_degraded || 4140 !vdev_readable(vd) || !vdev_writeable(vd)) { 4141 /* 4142 * When reopening in response to a clear event, it may be due to 4143 * a fmadm repair request. In this case, if the device is 4144 * still broken, we want to still post the ereport again. 4145 */ 4146 vd->vdev_forcefault = B_TRUE; 4147 4148 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 4149 vd->vdev_cant_read = B_FALSE; 4150 vd->vdev_cant_write = B_FALSE; 4151 vd->vdev_stat.vs_aux = 0; 4152 4153 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 4154 4155 vd->vdev_forcefault = B_FALSE; 4156 4157 if (vd != rvd && vdev_writeable(vd->vdev_top)) 4158 vdev_state_dirty(vd->vdev_top); 4159 4160 /* If a resilver isn't required, check if vdevs can be culled */ 4161 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) && 4162 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4163 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool)) 4164 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4165 4166 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 4167 } 4168 4169 /* 4170 * When clearing a FMA-diagnosed fault, we always want to 4171 * unspare the device, as we assume that the original spare was 4172 * done in response to the FMA fault. 4173 */ 4174 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 4175 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4176 vd->vdev_parent->vdev_child[0] == vd) 4177 vd->vdev_unspare = B_TRUE; 4178 4179 /* Clear recent error events cache (i.e. duplicate events tracking) */ 4180 zfs_ereport_clear(spa, vd); 4181 } 4182 4183 boolean_t 4184 vdev_is_dead(vdev_t *vd) 4185 { 4186 /* 4187 * Holes and missing devices are always considered "dead". 4188 * This simplifies the code since we don't have to check for 4189 * these types of devices in the various code paths. 4190 * Instead we rely on the fact that we skip over dead devices 4191 * before issuing I/O to them. 4192 */ 4193 return (vd->vdev_state < VDEV_STATE_DEGRADED || 4194 vd->vdev_ops == &vdev_hole_ops || 4195 vd->vdev_ops == &vdev_missing_ops); 4196 } 4197 4198 boolean_t 4199 vdev_readable(vdev_t *vd) 4200 { 4201 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 4202 } 4203 4204 boolean_t 4205 vdev_writeable(vdev_t *vd) 4206 { 4207 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 4208 vdev_is_concrete(vd)); 4209 } 4210 4211 boolean_t 4212 vdev_allocatable(vdev_t *vd) 4213 { 4214 uint64_t state = vd->vdev_state; 4215 4216 /* 4217 * We currently allow allocations from vdevs which may be in the 4218 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 4219 * fails to reopen then we'll catch it later when we're holding 4220 * the proper locks. Note that we have to get the vdev state 4221 * in a local variable because although it changes atomically, 4222 * we're asking two separate questions about it. 4223 */ 4224 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 4225 !vd->vdev_cant_write && vdev_is_concrete(vd) && 4226 vd->vdev_mg->mg_initialized); 4227 } 4228 4229 boolean_t 4230 vdev_accessible(vdev_t *vd, zio_t *zio) 4231 { 4232 ASSERT(zio->io_vd == vd); 4233 4234 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 4235 return (B_FALSE); 4236 4237 if (zio->io_type == ZIO_TYPE_READ) 4238 return (!vd->vdev_cant_read); 4239 4240 if (zio->io_type == ZIO_TYPE_WRITE) 4241 return (!vd->vdev_cant_write); 4242 4243 return (B_TRUE); 4244 } 4245 4246 static void 4247 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs) 4248 { 4249 /* 4250 * Exclude the dRAID spare when aggregating to avoid double counting 4251 * the ops and bytes. These IOs are counted by the physical leaves. 4252 */ 4253 if (cvd->vdev_ops == &vdev_draid_spare_ops) 4254 return; 4255 4256 for (int t = 0; t < VS_ZIO_TYPES; t++) { 4257 vs->vs_ops[t] += cvs->vs_ops[t]; 4258 vs->vs_bytes[t] += cvs->vs_bytes[t]; 4259 } 4260 4261 cvs->vs_scan_removing = cvd->vdev_removing; 4262 } 4263 4264 /* 4265 * Get extended stats 4266 */ 4267 static void 4268 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx) 4269 { 4270 int t, b; 4271 for (t = 0; t < ZIO_TYPES; t++) { 4272 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++) 4273 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b]; 4274 4275 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) { 4276 vsx->vsx_total_histo[t][b] += 4277 cvsx->vsx_total_histo[t][b]; 4278 } 4279 } 4280 4281 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4282 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) { 4283 vsx->vsx_queue_histo[t][b] += 4284 cvsx->vsx_queue_histo[t][b]; 4285 } 4286 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t]; 4287 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t]; 4288 4289 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++) 4290 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b]; 4291 4292 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++) 4293 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b]; 4294 } 4295 4296 } 4297 4298 boolean_t 4299 vdev_is_spacemap_addressable(vdev_t *vd) 4300 { 4301 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 4302 return (B_TRUE); 4303 4304 /* 4305 * If double-word space map entries are not enabled we assume 4306 * 47 bits of the space map entry are dedicated to the entry's 4307 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 4308 * to calculate the maximum address that can be described by a 4309 * space map entry for the given device. 4310 */ 4311 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 4312 4313 if (shift >= 63) /* detect potential overflow */ 4314 return (B_TRUE); 4315 4316 return (vd->vdev_asize < (1ULL << shift)); 4317 } 4318 4319 /* 4320 * Get statistics for the given vdev. 4321 */ 4322 static void 4323 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4324 { 4325 int t; 4326 /* 4327 * If we're getting stats on the root vdev, aggregate the I/O counts 4328 * over all top-level vdevs (i.e. the direct children of the root). 4329 */ 4330 if (!vd->vdev_ops->vdev_op_leaf) { 4331 if (vs) { 4332 memset(vs->vs_ops, 0, sizeof (vs->vs_ops)); 4333 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes)); 4334 } 4335 if (vsx) 4336 memset(vsx, 0, sizeof (*vsx)); 4337 4338 for (int c = 0; c < vd->vdev_children; c++) { 4339 vdev_t *cvd = vd->vdev_child[c]; 4340 vdev_stat_t *cvs = &cvd->vdev_stat; 4341 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex; 4342 4343 vdev_get_stats_ex_impl(cvd, cvs, cvsx); 4344 if (vs) 4345 vdev_get_child_stat(cvd, vs, cvs); 4346 if (vsx) 4347 vdev_get_child_stat_ex(cvd, vsx, cvsx); 4348 } 4349 } else { 4350 /* 4351 * We're a leaf. Just copy our ZIO active queue stats in. The 4352 * other leaf stats are updated in vdev_stat_update(). 4353 */ 4354 if (!vsx) 4355 return; 4356 4357 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex)); 4358 4359 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) { 4360 vsx->vsx_active_queue[t] = 4361 vd->vdev_queue.vq_class[t].vqc_active; 4362 vsx->vsx_pend_queue[t] = avl_numnodes( 4363 &vd->vdev_queue.vq_class[t].vqc_queued_tree); 4364 } 4365 } 4366 } 4367 4368 void 4369 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4370 { 4371 vdev_t *tvd = vd->vdev_top; 4372 mutex_enter(&vd->vdev_stat_lock); 4373 if (vs) { 4374 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 4375 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 4376 vs->vs_state = vd->vdev_state; 4377 vs->vs_rsize = vdev_get_min_asize(vd); 4378 4379 if (vd->vdev_ops->vdev_op_leaf) { 4380 vs->vs_rsize += VDEV_LABEL_START_SIZE + 4381 VDEV_LABEL_END_SIZE; 4382 /* 4383 * Report initializing progress. Since we don't 4384 * have the initializing locks held, this is only 4385 * an estimate (although a fairly accurate one). 4386 */ 4387 vs->vs_initialize_bytes_done = 4388 vd->vdev_initialize_bytes_done; 4389 vs->vs_initialize_bytes_est = 4390 vd->vdev_initialize_bytes_est; 4391 vs->vs_initialize_state = vd->vdev_initialize_state; 4392 vs->vs_initialize_action_time = 4393 vd->vdev_initialize_action_time; 4394 4395 /* 4396 * Report manual TRIM progress. Since we don't have 4397 * the manual TRIM locks held, this is only an 4398 * estimate (although fairly accurate one). 4399 */ 4400 vs->vs_trim_notsup = !vd->vdev_has_trim; 4401 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done; 4402 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est; 4403 vs->vs_trim_state = vd->vdev_trim_state; 4404 vs->vs_trim_action_time = vd->vdev_trim_action_time; 4405 4406 /* Set when there is a deferred resilver. */ 4407 vs->vs_resilver_deferred = vd->vdev_resilver_deferred; 4408 } 4409 4410 /* 4411 * Report expandable space on top-level, non-auxiliary devices 4412 * only. The expandable space is reported in terms of metaslab 4413 * sized units since that determines how much space the pool 4414 * can expand. 4415 */ 4416 if (vd->vdev_aux == NULL && tvd != NULL) { 4417 vs->vs_esize = P2ALIGN( 4418 vd->vdev_max_asize - vd->vdev_asize, 4419 1ULL << tvd->vdev_ms_shift); 4420 } 4421 4422 vs->vs_configured_ashift = vd->vdev_top != NULL 4423 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift; 4424 vs->vs_logical_ashift = vd->vdev_logical_ashift; 4425 vs->vs_physical_ashift = vd->vdev_physical_ashift; 4426 4427 /* 4428 * Report fragmentation and rebuild progress for top-level, 4429 * non-auxiliary, concrete devices. 4430 */ 4431 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 4432 vdev_is_concrete(vd)) { 4433 /* 4434 * The vdev fragmentation rating doesn't take into 4435 * account the embedded slog metaslab (vdev_log_mg). 4436 * Since it's only one metaslab, it would have a tiny 4437 * impact on the overall fragmentation. 4438 */ 4439 vs->vs_fragmentation = (vd->vdev_mg != NULL) ? 4440 vd->vdev_mg->mg_fragmentation : 0; 4441 } 4442 } 4443 4444 vdev_get_stats_ex_impl(vd, vs, vsx); 4445 mutex_exit(&vd->vdev_stat_lock); 4446 } 4447 4448 void 4449 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 4450 { 4451 return (vdev_get_stats_ex(vd, vs, NULL)); 4452 } 4453 4454 void 4455 vdev_clear_stats(vdev_t *vd) 4456 { 4457 mutex_enter(&vd->vdev_stat_lock); 4458 vd->vdev_stat.vs_space = 0; 4459 vd->vdev_stat.vs_dspace = 0; 4460 vd->vdev_stat.vs_alloc = 0; 4461 mutex_exit(&vd->vdev_stat_lock); 4462 } 4463 4464 void 4465 vdev_scan_stat_init(vdev_t *vd) 4466 { 4467 vdev_stat_t *vs = &vd->vdev_stat; 4468 4469 for (int c = 0; c < vd->vdev_children; c++) 4470 vdev_scan_stat_init(vd->vdev_child[c]); 4471 4472 mutex_enter(&vd->vdev_stat_lock); 4473 vs->vs_scan_processed = 0; 4474 mutex_exit(&vd->vdev_stat_lock); 4475 } 4476 4477 void 4478 vdev_stat_update(zio_t *zio, uint64_t psize) 4479 { 4480 spa_t *spa = zio->io_spa; 4481 vdev_t *rvd = spa->spa_root_vdev; 4482 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 4483 vdev_t *pvd; 4484 uint64_t txg = zio->io_txg; 4485 vdev_stat_t *vs = &vd->vdev_stat; 4486 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex; 4487 zio_type_t type = zio->io_type; 4488 int flags = zio->io_flags; 4489 4490 /* 4491 * If this i/o is a gang leader, it didn't do any actual work. 4492 */ 4493 if (zio->io_gang_tree) 4494 return; 4495 4496 if (zio->io_error == 0) { 4497 /* 4498 * If this is a root i/o, don't count it -- we've already 4499 * counted the top-level vdevs, and vdev_get_stats() will 4500 * aggregate them when asked. This reduces contention on 4501 * the root vdev_stat_lock and implicitly handles blocks 4502 * that compress away to holes, for which there is no i/o. 4503 * (Holes never create vdev children, so all the counters 4504 * remain zero, which is what we want.) 4505 * 4506 * Note: this only applies to successful i/o (io_error == 0) 4507 * because unlike i/o counts, errors are not additive. 4508 * When reading a ditto block, for example, failure of 4509 * one top-level vdev does not imply a root-level error. 4510 */ 4511 if (vd == rvd) 4512 return; 4513 4514 ASSERT(vd == zio->io_vd); 4515 4516 if (flags & ZIO_FLAG_IO_BYPASS) 4517 return; 4518 4519 mutex_enter(&vd->vdev_stat_lock); 4520 4521 if (flags & ZIO_FLAG_IO_REPAIR) { 4522 /* 4523 * Repair is the result of a resilver issued by the 4524 * scan thread (spa_sync). 4525 */ 4526 if (flags & ZIO_FLAG_SCAN_THREAD) { 4527 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 4528 dsl_scan_phys_t *scn_phys = &scn->scn_phys; 4529 uint64_t *processed = &scn_phys->scn_processed; 4530 4531 if (vd->vdev_ops->vdev_op_leaf) 4532 atomic_add_64(processed, psize); 4533 vs->vs_scan_processed += psize; 4534 } 4535 4536 /* 4537 * Repair is the result of a rebuild issued by the 4538 * rebuild thread (vdev_rebuild_thread). To avoid 4539 * double counting repaired bytes the virtual dRAID 4540 * spare vdev is excluded from the processed bytes. 4541 */ 4542 if (zio->io_priority == ZIO_PRIORITY_REBUILD) { 4543 vdev_t *tvd = vd->vdev_top; 4544 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config; 4545 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 4546 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt; 4547 4548 if (vd->vdev_ops->vdev_op_leaf && 4549 vd->vdev_ops != &vdev_draid_spare_ops) { 4550 atomic_add_64(rebuilt, psize); 4551 } 4552 vs->vs_rebuild_processed += psize; 4553 } 4554 4555 if (flags & ZIO_FLAG_SELF_HEAL) 4556 vs->vs_self_healed += psize; 4557 } 4558 4559 /* 4560 * The bytes/ops/histograms are recorded at the leaf level and 4561 * aggregated into the higher level vdevs in vdev_get_stats(). 4562 */ 4563 if (vd->vdev_ops->vdev_op_leaf && 4564 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) { 4565 zio_type_t vs_type = type; 4566 zio_priority_t priority = zio->io_priority; 4567 4568 /* 4569 * TRIM ops and bytes are reported to user space as 4570 * ZIO_TYPE_IOCTL. This is done to preserve the 4571 * vdev_stat_t structure layout for user space. 4572 */ 4573 if (type == ZIO_TYPE_TRIM) 4574 vs_type = ZIO_TYPE_IOCTL; 4575 4576 /* 4577 * Solely for the purposes of 'zpool iostat -lqrw' 4578 * reporting use the priority to categorize the IO. 4579 * Only the following are reported to user space: 4580 * 4581 * ZIO_PRIORITY_SYNC_READ, 4582 * ZIO_PRIORITY_SYNC_WRITE, 4583 * ZIO_PRIORITY_ASYNC_READ, 4584 * ZIO_PRIORITY_ASYNC_WRITE, 4585 * ZIO_PRIORITY_SCRUB, 4586 * ZIO_PRIORITY_TRIM. 4587 */ 4588 if (priority == ZIO_PRIORITY_REBUILD) { 4589 priority = ((type == ZIO_TYPE_WRITE) ? 4590 ZIO_PRIORITY_ASYNC_WRITE : 4591 ZIO_PRIORITY_SCRUB); 4592 } else if (priority == ZIO_PRIORITY_INITIALIZING) { 4593 ASSERT3U(type, ==, ZIO_TYPE_WRITE); 4594 priority = ZIO_PRIORITY_ASYNC_WRITE; 4595 } else if (priority == ZIO_PRIORITY_REMOVAL) { 4596 priority = ((type == ZIO_TYPE_WRITE) ? 4597 ZIO_PRIORITY_ASYNC_WRITE : 4598 ZIO_PRIORITY_ASYNC_READ); 4599 } 4600 4601 vs->vs_ops[vs_type]++; 4602 vs->vs_bytes[vs_type] += psize; 4603 4604 if (flags & ZIO_FLAG_DELEGATED) { 4605 vsx->vsx_agg_histo[priority] 4606 [RQ_HISTO(zio->io_size)]++; 4607 } else { 4608 vsx->vsx_ind_histo[priority] 4609 [RQ_HISTO(zio->io_size)]++; 4610 } 4611 4612 if (zio->io_delta && zio->io_delay) { 4613 vsx->vsx_queue_histo[priority] 4614 [L_HISTO(zio->io_delta - zio->io_delay)]++; 4615 vsx->vsx_disk_histo[type] 4616 [L_HISTO(zio->io_delay)]++; 4617 vsx->vsx_total_histo[type] 4618 [L_HISTO(zio->io_delta)]++; 4619 } 4620 } 4621 4622 mutex_exit(&vd->vdev_stat_lock); 4623 return; 4624 } 4625 4626 if (flags & ZIO_FLAG_SPECULATIVE) 4627 return; 4628 4629 /* 4630 * If this is an I/O error that is going to be retried, then ignore the 4631 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 4632 * hard errors, when in reality they can happen for any number of 4633 * innocuous reasons (bus resets, MPxIO link failure, etc). 4634 */ 4635 if (zio->io_error == EIO && 4636 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 4637 return; 4638 4639 /* 4640 * Intent logs writes won't propagate their error to the root 4641 * I/O so don't mark these types of failures as pool-level 4642 * errors. 4643 */ 4644 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 4645 return; 4646 4647 if (type == ZIO_TYPE_WRITE && txg != 0 && 4648 (!(flags & ZIO_FLAG_IO_REPAIR) || 4649 (flags & ZIO_FLAG_SCAN_THREAD) || 4650 spa->spa_claiming)) { 4651 /* 4652 * This is either a normal write (not a repair), or it's 4653 * a repair induced by the scrub thread, or it's a repair 4654 * made by zil_claim() during spa_load() in the first txg. 4655 * In the normal case, we commit the DTL change in the same 4656 * txg as the block was born. In the scrub-induced repair 4657 * case, we know that scrubs run in first-pass syncing context, 4658 * so we commit the DTL change in spa_syncing_txg(spa). 4659 * In the zil_claim() case, we commit in spa_first_txg(spa). 4660 * 4661 * We currently do not make DTL entries for failed spontaneous 4662 * self-healing writes triggered by normal (non-scrubbing) 4663 * reads, because we have no transactional context in which to 4664 * do so -- and it's not clear that it'd be desirable anyway. 4665 */ 4666 if (vd->vdev_ops->vdev_op_leaf) { 4667 uint64_t commit_txg = txg; 4668 if (flags & ZIO_FLAG_SCAN_THREAD) { 4669 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4670 ASSERT(spa_sync_pass(spa) == 1); 4671 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 4672 commit_txg = spa_syncing_txg(spa); 4673 } else if (spa->spa_claiming) { 4674 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4675 commit_txg = spa_first_txg(spa); 4676 } 4677 ASSERT(commit_txg >= spa_syncing_txg(spa)); 4678 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 4679 return; 4680 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4681 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 4682 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 4683 } 4684 if (vd != rvd) 4685 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 4686 } 4687 } 4688 4689 int64_t 4690 vdev_deflated_space(vdev_t *vd, int64_t space) 4691 { 4692 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); 4693 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 4694 4695 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); 4696 } 4697 4698 /* 4699 * Update the in-core space usage stats for this vdev, its metaslab class, 4700 * and the root vdev. 4701 */ 4702 void 4703 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 4704 int64_t space_delta) 4705 { 4706 int64_t dspace_delta; 4707 spa_t *spa = vd->vdev_spa; 4708 vdev_t *rvd = spa->spa_root_vdev; 4709 4710 ASSERT(vd == vd->vdev_top); 4711 4712 /* 4713 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 4714 * factor. We must calculate this here and not at the root vdev 4715 * because the root vdev's psize-to-asize is simply the max of its 4716 * children's, thus not accurate enough for us. 4717 */ 4718 dspace_delta = vdev_deflated_space(vd, space_delta); 4719 4720 mutex_enter(&vd->vdev_stat_lock); 4721 /* ensure we won't underflow */ 4722 if (alloc_delta < 0) { 4723 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); 4724 } 4725 4726 vd->vdev_stat.vs_alloc += alloc_delta; 4727 vd->vdev_stat.vs_space += space_delta; 4728 vd->vdev_stat.vs_dspace += dspace_delta; 4729 mutex_exit(&vd->vdev_stat_lock); 4730 4731 /* every class but log contributes to root space stats */ 4732 if (vd->vdev_mg != NULL && !vd->vdev_islog) { 4733 ASSERT(!vd->vdev_isl2cache); 4734 mutex_enter(&rvd->vdev_stat_lock); 4735 rvd->vdev_stat.vs_alloc += alloc_delta; 4736 rvd->vdev_stat.vs_space += space_delta; 4737 rvd->vdev_stat.vs_dspace += dspace_delta; 4738 mutex_exit(&rvd->vdev_stat_lock); 4739 } 4740 /* Note: metaslab_class_space_update moved to metaslab_space_update */ 4741 } 4742 4743 /* 4744 * Mark a top-level vdev's config as dirty, placing it on the dirty list 4745 * so that it will be written out next time the vdev configuration is synced. 4746 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 4747 */ 4748 void 4749 vdev_config_dirty(vdev_t *vd) 4750 { 4751 spa_t *spa = vd->vdev_spa; 4752 vdev_t *rvd = spa->spa_root_vdev; 4753 int c; 4754 4755 ASSERT(spa_writeable(spa)); 4756 4757 /* 4758 * If this is an aux vdev (as with l2cache and spare devices), then we 4759 * update the vdev config manually and set the sync flag. 4760 */ 4761 if (vd->vdev_aux != NULL) { 4762 spa_aux_vdev_t *sav = vd->vdev_aux; 4763 nvlist_t **aux; 4764 uint_t naux; 4765 4766 for (c = 0; c < sav->sav_count; c++) { 4767 if (sav->sav_vdevs[c] == vd) 4768 break; 4769 } 4770 4771 if (c == sav->sav_count) { 4772 /* 4773 * We're being removed. There's nothing more to do. 4774 */ 4775 ASSERT(sav->sav_sync == B_TRUE); 4776 return; 4777 } 4778 4779 sav->sav_sync = B_TRUE; 4780 4781 if (nvlist_lookup_nvlist_array(sav->sav_config, 4782 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 4783 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 4784 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 4785 } 4786 4787 ASSERT(c < naux); 4788 4789 /* 4790 * Setting the nvlist in the middle if the array is a little 4791 * sketchy, but it will work. 4792 */ 4793 nvlist_free(aux[c]); 4794 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 4795 4796 return; 4797 } 4798 4799 /* 4800 * The dirty list is protected by the SCL_CONFIG lock. The caller 4801 * must either hold SCL_CONFIG as writer, or must be the sync thread 4802 * (which holds SCL_CONFIG as reader). There's only one sync thread, 4803 * so this is sufficient to ensure mutual exclusion. 4804 */ 4805 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 4806 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4807 spa_config_held(spa, SCL_CONFIG, RW_READER))); 4808 4809 if (vd == rvd) { 4810 for (c = 0; c < rvd->vdev_children; c++) 4811 vdev_config_dirty(rvd->vdev_child[c]); 4812 } else { 4813 ASSERT(vd == vd->vdev_top); 4814 4815 if (!list_link_active(&vd->vdev_config_dirty_node) && 4816 vdev_is_concrete(vd)) { 4817 list_insert_head(&spa->spa_config_dirty_list, vd); 4818 } 4819 } 4820 } 4821 4822 void 4823 vdev_config_clean(vdev_t *vd) 4824 { 4825 spa_t *spa = vd->vdev_spa; 4826 4827 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 4828 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4829 spa_config_held(spa, SCL_CONFIG, RW_READER))); 4830 4831 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 4832 list_remove(&spa->spa_config_dirty_list, vd); 4833 } 4834 4835 /* 4836 * Mark a top-level vdev's state as dirty, so that the next pass of 4837 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 4838 * the state changes from larger config changes because they require 4839 * much less locking, and are often needed for administrative actions. 4840 */ 4841 void 4842 vdev_state_dirty(vdev_t *vd) 4843 { 4844 spa_t *spa = vd->vdev_spa; 4845 4846 ASSERT(spa_writeable(spa)); 4847 ASSERT(vd == vd->vdev_top); 4848 4849 /* 4850 * The state list is protected by the SCL_STATE lock. The caller 4851 * must either hold SCL_STATE as writer, or must be the sync thread 4852 * (which holds SCL_STATE as reader). There's only one sync thread, 4853 * so this is sufficient to ensure mutual exclusion. 4854 */ 4855 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 4856 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4857 spa_config_held(spa, SCL_STATE, RW_READER))); 4858 4859 if (!list_link_active(&vd->vdev_state_dirty_node) && 4860 vdev_is_concrete(vd)) 4861 list_insert_head(&spa->spa_state_dirty_list, vd); 4862 } 4863 4864 void 4865 vdev_state_clean(vdev_t *vd) 4866 { 4867 spa_t *spa = vd->vdev_spa; 4868 4869 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 4870 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4871 spa_config_held(spa, SCL_STATE, RW_READER))); 4872 4873 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 4874 list_remove(&spa->spa_state_dirty_list, vd); 4875 } 4876 4877 /* 4878 * Propagate vdev state up from children to parent. 4879 */ 4880 void 4881 vdev_propagate_state(vdev_t *vd) 4882 { 4883 spa_t *spa = vd->vdev_spa; 4884 vdev_t *rvd = spa->spa_root_vdev; 4885 int degraded = 0, faulted = 0; 4886 int corrupted = 0; 4887 vdev_t *child; 4888 4889 if (vd->vdev_children > 0) { 4890 for (int c = 0; c < vd->vdev_children; c++) { 4891 child = vd->vdev_child[c]; 4892 4893 /* 4894 * Don't factor holes or indirect vdevs into the 4895 * decision. 4896 */ 4897 if (!vdev_is_concrete(child)) 4898 continue; 4899 4900 if (!vdev_readable(child) || 4901 (!vdev_writeable(child) && spa_writeable(spa))) { 4902 /* 4903 * Root special: if there is a top-level log 4904 * device, treat the root vdev as if it were 4905 * degraded. 4906 */ 4907 if (child->vdev_islog && vd == rvd) 4908 degraded++; 4909 else 4910 faulted++; 4911 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 4912 degraded++; 4913 } 4914 4915 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 4916 corrupted++; 4917 } 4918 4919 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 4920 4921 /* 4922 * Root special: if there is a top-level vdev that cannot be 4923 * opened due to corrupted metadata, then propagate the root 4924 * vdev's aux state as 'corrupt' rather than 'insufficient 4925 * replicas'. 4926 */ 4927 if (corrupted && vd == rvd && 4928 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 4929 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 4930 VDEV_AUX_CORRUPT_DATA); 4931 } 4932 4933 if (vd->vdev_parent) 4934 vdev_propagate_state(vd->vdev_parent); 4935 } 4936 4937 /* 4938 * Set a vdev's state. If this is during an open, we don't update the parent 4939 * state, because we're in the process of opening children depth-first. 4940 * Otherwise, we propagate the change to the parent. 4941 * 4942 * If this routine places a device in a faulted state, an appropriate ereport is 4943 * generated. 4944 */ 4945 void 4946 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 4947 { 4948 uint64_t save_state; 4949 spa_t *spa = vd->vdev_spa; 4950 4951 if (state == vd->vdev_state) { 4952 /* 4953 * Since vdev_offline() code path is already in an offline 4954 * state we can miss a statechange event to OFFLINE. Check 4955 * the previous state to catch this condition. 4956 */ 4957 if (vd->vdev_ops->vdev_op_leaf && 4958 (state == VDEV_STATE_OFFLINE) && 4959 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) { 4960 /* post an offline state change */ 4961 zfs_post_state_change(spa, vd, vd->vdev_prevstate); 4962 } 4963 vd->vdev_stat.vs_aux = aux; 4964 return; 4965 } 4966 4967 save_state = vd->vdev_state; 4968 4969 vd->vdev_state = state; 4970 vd->vdev_stat.vs_aux = aux; 4971 4972 /* 4973 * If we are setting the vdev state to anything but an open state, then 4974 * always close the underlying device unless the device has requested 4975 * a delayed close (i.e. we're about to remove or fault the device). 4976 * Otherwise, we keep accessible but invalid devices open forever. 4977 * We don't call vdev_close() itself, because that implies some extra 4978 * checks (offline, etc) that we don't want here. This is limited to 4979 * leaf devices, because otherwise closing the device will affect other 4980 * children. 4981 */ 4982 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 4983 vd->vdev_ops->vdev_op_leaf) 4984 vd->vdev_ops->vdev_op_close(vd); 4985 4986 if (vd->vdev_removed && 4987 state == VDEV_STATE_CANT_OPEN && 4988 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 4989 /* 4990 * If the previous state is set to VDEV_STATE_REMOVED, then this 4991 * device was previously marked removed and someone attempted to 4992 * reopen it. If this failed due to a nonexistent device, then 4993 * keep the device in the REMOVED state. We also let this be if 4994 * it is one of our special test online cases, which is only 4995 * attempting to online the device and shouldn't generate an FMA 4996 * fault. 4997 */ 4998 vd->vdev_state = VDEV_STATE_REMOVED; 4999 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 5000 } else if (state == VDEV_STATE_REMOVED) { 5001 vd->vdev_removed = B_TRUE; 5002 } else if (state == VDEV_STATE_CANT_OPEN) { 5003 /* 5004 * If we fail to open a vdev during an import or recovery, we 5005 * mark it as "not available", which signifies that it was 5006 * never there to begin with. Failure to open such a device 5007 * is not considered an error. 5008 */ 5009 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 5010 spa_load_state(spa) == SPA_LOAD_RECOVER) && 5011 vd->vdev_ops->vdev_op_leaf) 5012 vd->vdev_not_present = 1; 5013 5014 /* 5015 * Post the appropriate ereport. If the 'prevstate' field is 5016 * set to something other than VDEV_STATE_UNKNOWN, it indicates 5017 * that this is part of a vdev_reopen(). In this case, we don't 5018 * want to post the ereport if the device was already in the 5019 * CANT_OPEN state beforehand. 5020 * 5021 * If the 'checkremove' flag is set, then this is an attempt to 5022 * online the device in response to an insertion event. If we 5023 * hit this case, then we have detected an insertion event for a 5024 * faulted or offline device that wasn't in the removed state. 5025 * In this scenario, we don't post an ereport because we are 5026 * about to replace the device, or attempt an online with 5027 * vdev_forcefault, which will generate the fault for us. 5028 */ 5029 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 5030 !vd->vdev_not_present && !vd->vdev_checkremove && 5031 vd != spa->spa_root_vdev) { 5032 const char *class; 5033 5034 switch (aux) { 5035 case VDEV_AUX_OPEN_FAILED: 5036 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 5037 break; 5038 case VDEV_AUX_CORRUPT_DATA: 5039 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 5040 break; 5041 case VDEV_AUX_NO_REPLICAS: 5042 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 5043 break; 5044 case VDEV_AUX_BAD_GUID_SUM: 5045 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 5046 break; 5047 case VDEV_AUX_TOO_SMALL: 5048 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 5049 break; 5050 case VDEV_AUX_BAD_LABEL: 5051 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 5052 break; 5053 case VDEV_AUX_BAD_ASHIFT: 5054 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT; 5055 break; 5056 default: 5057 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 5058 } 5059 5060 (void) zfs_ereport_post(class, spa, vd, NULL, NULL, 5061 save_state); 5062 } 5063 5064 /* Erase any notion of persistent removed state */ 5065 vd->vdev_removed = B_FALSE; 5066 } else { 5067 vd->vdev_removed = B_FALSE; 5068 } 5069 5070 /* 5071 * Notify ZED of any significant state-change on a leaf vdev. 5072 * 5073 */ 5074 if (vd->vdev_ops->vdev_op_leaf) { 5075 /* preserve original state from a vdev_reopen() */ 5076 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) && 5077 (vd->vdev_prevstate != vd->vdev_state) && 5078 (save_state <= VDEV_STATE_CLOSED)) 5079 save_state = vd->vdev_prevstate; 5080 5081 /* filter out state change due to initial vdev_open */ 5082 if (save_state > VDEV_STATE_CLOSED) 5083 zfs_post_state_change(spa, vd, save_state); 5084 } 5085 5086 if (!isopen && vd->vdev_parent) 5087 vdev_propagate_state(vd->vdev_parent); 5088 } 5089 5090 boolean_t 5091 vdev_children_are_offline(vdev_t *vd) 5092 { 5093 ASSERT(!vd->vdev_ops->vdev_op_leaf); 5094 5095 for (uint64_t i = 0; i < vd->vdev_children; i++) { 5096 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 5097 return (B_FALSE); 5098 } 5099 5100 return (B_TRUE); 5101 } 5102 5103 /* 5104 * Check the vdev configuration to ensure that it's capable of supporting 5105 * a root pool. We do not support partial configuration. 5106 */ 5107 boolean_t 5108 vdev_is_bootable(vdev_t *vd) 5109 { 5110 if (!vd->vdev_ops->vdev_op_leaf) { 5111 const char *vdev_type = vd->vdev_ops->vdev_op_type; 5112 5113 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) 5114 return (B_FALSE); 5115 } 5116 5117 for (int c = 0; c < vd->vdev_children; c++) { 5118 if (!vdev_is_bootable(vd->vdev_child[c])) 5119 return (B_FALSE); 5120 } 5121 return (B_TRUE); 5122 } 5123 5124 boolean_t 5125 vdev_is_concrete(vdev_t *vd) 5126 { 5127 vdev_ops_t *ops = vd->vdev_ops; 5128 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 5129 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 5130 return (B_FALSE); 5131 } else { 5132 return (B_TRUE); 5133 } 5134 } 5135 5136 /* 5137 * Determine if a log device has valid content. If the vdev was 5138 * removed or faulted in the MOS config then we know that 5139 * the content on the log device has already been written to the pool. 5140 */ 5141 boolean_t 5142 vdev_log_state_valid(vdev_t *vd) 5143 { 5144 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 5145 !vd->vdev_removed) 5146 return (B_TRUE); 5147 5148 for (int c = 0; c < vd->vdev_children; c++) 5149 if (vdev_log_state_valid(vd->vdev_child[c])) 5150 return (B_TRUE); 5151 5152 return (B_FALSE); 5153 } 5154 5155 /* 5156 * Expand a vdev if possible. 5157 */ 5158 void 5159 vdev_expand(vdev_t *vd, uint64_t txg) 5160 { 5161 ASSERT(vd->vdev_top == vd); 5162 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5163 ASSERT(vdev_is_concrete(vd)); 5164 5165 vdev_set_deflate_ratio(vd); 5166 5167 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 5168 vdev_is_concrete(vd)) { 5169 vdev_metaslab_group_create(vd); 5170 VERIFY(vdev_metaslab_init(vd, txg) == 0); 5171 vdev_config_dirty(vd); 5172 } 5173 } 5174 5175 /* 5176 * Split a vdev. 5177 */ 5178 void 5179 vdev_split(vdev_t *vd) 5180 { 5181 vdev_t *cvd, *pvd = vd->vdev_parent; 5182 5183 vdev_remove_child(pvd, vd); 5184 vdev_compact_children(pvd); 5185 5186 cvd = pvd->vdev_child[0]; 5187 if (pvd->vdev_children == 1) { 5188 vdev_remove_parent(cvd); 5189 cvd->vdev_splitting = B_TRUE; 5190 } 5191 vdev_propagate_state(cvd); 5192 } 5193 5194 void 5195 vdev_deadman(vdev_t *vd, char *tag) 5196 { 5197 for (int c = 0; c < vd->vdev_children; c++) { 5198 vdev_t *cvd = vd->vdev_child[c]; 5199 5200 vdev_deadman(cvd, tag); 5201 } 5202 5203 if (vd->vdev_ops->vdev_op_leaf) { 5204 vdev_queue_t *vq = &vd->vdev_queue; 5205 5206 mutex_enter(&vq->vq_lock); 5207 if (avl_numnodes(&vq->vq_active_tree) > 0) { 5208 spa_t *spa = vd->vdev_spa; 5209 zio_t *fio; 5210 uint64_t delta; 5211 5212 zfs_dbgmsg("slow vdev: %s has %lu active IOs", 5213 vd->vdev_path, avl_numnodes(&vq->vq_active_tree)); 5214 5215 /* 5216 * Look at the head of all the pending queues, 5217 * if any I/O has been outstanding for longer than 5218 * the spa_deadman_synctime invoke the deadman logic. 5219 */ 5220 fio = avl_first(&vq->vq_active_tree); 5221 delta = gethrtime() - fio->io_timestamp; 5222 if (delta > spa_deadman_synctime(spa)) 5223 zio_deadman(fio, tag); 5224 } 5225 mutex_exit(&vq->vq_lock); 5226 } 5227 } 5228 5229 void 5230 vdev_defer_resilver(vdev_t *vd) 5231 { 5232 ASSERT(vd->vdev_ops->vdev_op_leaf); 5233 5234 vd->vdev_resilver_deferred = B_TRUE; 5235 vd->vdev_spa->spa_resilver_deferred = B_TRUE; 5236 } 5237 5238 /* 5239 * Clears the resilver deferred flag on all leaf devs under vd. Returns 5240 * B_TRUE if we have devices that need to be resilvered and are available to 5241 * accept resilver I/Os. 5242 */ 5243 boolean_t 5244 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx) 5245 { 5246 boolean_t resilver_needed = B_FALSE; 5247 spa_t *spa = vd->vdev_spa; 5248 5249 for (int c = 0; c < vd->vdev_children; c++) { 5250 vdev_t *cvd = vd->vdev_child[c]; 5251 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx); 5252 } 5253 5254 if (vd == spa->spa_root_vdev && 5255 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { 5256 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 5257 vdev_config_dirty(vd); 5258 spa->spa_resilver_deferred = B_FALSE; 5259 return (resilver_needed); 5260 } 5261 5262 if (!vdev_is_concrete(vd) || vd->vdev_aux || 5263 !vd->vdev_ops->vdev_op_leaf) 5264 return (resilver_needed); 5265 5266 vd->vdev_resilver_deferred = B_FALSE; 5267 5268 return (!vdev_is_dead(vd) && !vd->vdev_offline && 5269 vdev_resilver_needed(vd, NULL, NULL)); 5270 } 5271 5272 boolean_t 5273 vdev_xlate_is_empty(range_seg64_t *rs) 5274 { 5275 return (rs->rs_start == rs->rs_end); 5276 } 5277 5278 /* 5279 * Translate a logical range to the first contiguous physical range for the 5280 * specified vdev_t. This function is initially called with a leaf vdev and 5281 * will walk each parent vdev until it reaches a top-level vdev. Once the 5282 * top-level is reached the physical range is initialized and the recursive 5283 * function begins to unwind. As it unwinds it calls the parent's vdev 5284 * specific translation function to do the real conversion. 5285 */ 5286 void 5287 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 5288 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 5289 { 5290 /* 5291 * Walk up the vdev tree 5292 */ 5293 if (vd != vd->vdev_top) { 5294 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs, 5295 remain_rs); 5296 } else { 5297 /* 5298 * We've reached the top-level vdev, initialize the physical 5299 * range to the logical range and set an empty remaining 5300 * range then start to unwind. 5301 */ 5302 physical_rs->rs_start = logical_rs->rs_start; 5303 physical_rs->rs_end = logical_rs->rs_end; 5304 5305 remain_rs->rs_start = logical_rs->rs_start; 5306 remain_rs->rs_end = logical_rs->rs_start; 5307 5308 return; 5309 } 5310 5311 vdev_t *pvd = vd->vdev_parent; 5312 ASSERT3P(pvd, !=, NULL); 5313 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL); 5314 5315 /* 5316 * As this recursive function unwinds, translate the logical 5317 * range into its physical and any remaining components by calling 5318 * the vdev specific translate function. 5319 */ 5320 range_seg64_t intermediate = { 0 }; 5321 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs); 5322 5323 physical_rs->rs_start = intermediate.rs_start; 5324 physical_rs->rs_end = intermediate.rs_end; 5325 } 5326 5327 void 5328 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs, 5329 vdev_xlate_func_t *func, void *arg) 5330 { 5331 range_seg64_t iter_rs = *logical_rs; 5332 range_seg64_t physical_rs; 5333 range_seg64_t remain_rs; 5334 5335 while (!vdev_xlate_is_empty(&iter_rs)) { 5336 5337 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs); 5338 5339 /* 5340 * With raidz and dRAID, it's possible that the logical range 5341 * does not live on this leaf vdev. Only when there is a non- 5342 * zero physical size call the provided function. 5343 */ 5344 if (!vdev_xlate_is_empty(&physical_rs)) 5345 func(arg, &physical_rs); 5346 5347 iter_rs = remain_rs; 5348 } 5349 } 5350 5351 /* 5352 * Look at the vdev tree and determine whether any devices are currently being 5353 * replaced. 5354 */ 5355 boolean_t 5356 vdev_replace_in_progress(vdev_t *vdev) 5357 { 5358 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0); 5359 5360 if (vdev->vdev_ops == &vdev_replacing_ops) 5361 return (B_TRUE); 5362 5363 /* 5364 * A 'spare' vdev indicates that we have a replace in progress, unless 5365 * it has exactly two children, and the second, the hot spare, has 5366 * finished being resilvered. 5367 */ 5368 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 || 5369 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING))) 5370 return (B_TRUE); 5371 5372 for (int i = 0; i < vdev->vdev_children; i++) { 5373 if (vdev_replace_in_progress(vdev->vdev_child[i])) 5374 return (B_TRUE); 5375 } 5376 5377 return (B_FALSE); 5378 } 5379 5380 EXPORT_SYMBOL(vdev_fault); 5381 EXPORT_SYMBOL(vdev_degrade); 5382 EXPORT_SYMBOL(vdev_online); 5383 EXPORT_SYMBOL(vdev_offline); 5384 EXPORT_SYMBOL(vdev_clear); 5385 5386 /* BEGIN CSTYLED */ 5387 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, INT, ZMOD_RW, 5388 "Target number of metaslabs per top-level vdev"); 5389 5390 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, INT, ZMOD_RW, 5391 "Default limit for metaslab size"); 5392 5393 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, INT, ZMOD_RW, 5394 "Minimum number of metaslabs per top-level vdev"); 5395 5396 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, INT, ZMOD_RW, 5397 "Practical upper limit of total metaslabs per top-level vdev"); 5398 5399 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW, 5400 "Rate limit slow IO (delay) events to this many per second"); 5401 5402 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW, 5403 "Rate limit checksum events to this many checksum errors per second " 5404 "(do not set below zed threshold)."); 5405 5406 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW, 5407 "Ignore errors during resilver/scrub"); 5408 5409 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW, 5410 "Bypass vdev_validate()"); 5411 5412 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW, 5413 "Disable cache flushes"); 5414 5415 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, INT, ZMOD_RW, 5416 "Minimum number of metaslabs required to dedicate one for log blocks"); 5417 5418 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift, 5419 param_set_min_auto_ashift, param_get_ulong, ZMOD_RW, 5420 "Minimum ashift used when creating new top-level vdevs"); 5421 5422 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift, 5423 param_set_max_auto_ashift, param_get_ulong, ZMOD_RW, 5424 "Maximum ashift used when optimizing for logical -> physical sector " 5425 "size on new top-level vdevs"); 5426 /* END CSTYLED */ 5427