xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev.c (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  * Copyright 2017 Joyent, Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  * Copyright (c) 2019, Datto Inc. All rights reserved.
31  * Copyright (c) 2021, Klara Inc.
32  * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP.
33  */
34 
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa.h>
38 #include <sys/spa_impl.h>
39 #include <sys/bpobj.h>
40 #include <sys/dmu.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/vdev_rebuild.h>
45 #include <sys/vdev_draid.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/space_map.h>
50 #include <sys/space_reftree.h>
51 #include <sys/zio.h>
52 #include <sys/zap.h>
53 #include <sys/fs/zfs.h>
54 #include <sys/arc.h>
55 #include <sys/zil.h>
56 #include <sys/dsl_scan.h>
57 #include <sys/vdev_raidz.h>
58 #include <sys/abd.h>
59 #include <sys/vdev_initialize.h>
60 #include <sys/vdev_trim.h>
61 #include <sys/vdev_raidz.h>
62 #include <sys/zvol.h>
63 #include <sys/zfs_ratelimit.h>
64 #include "zfs_prop.h"
65 
66 /*
67  * One metaslab from each (normal-class) vdev is used by the ZIL.  These are
68  * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
69  * part of the spa_embedded_log_class.  The metaslab with the most free space
70  * in each vdev is selected for this purpose when the pool is opened (or a
71  * vdev is added).  See vdev_metaslab_init().
72  *
73  * Log blocks can be allocated from the following locations.  Each one is tried
74  * in order until the allocation succeeds:
75  * 1. dedicated log vdevs, aka "slog" (spa_log_class)
76  * 2. embedded slog metaslabs (spa_embedded_log_class)
77  * 3. other metaslabs in normal vdevs (spa_normal_class)
78  *
79  * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
80  * than this number of metaslabs in the vdev.  This ensures that we don't set
81  * aside an unreasonable amount of space for the ZIL.  If set to less than
82  * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
83  * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
84  */
85 static uint_t zfs_embedded_slog_min_ms = 64;
86 
87 /* default target for number of metaslabs per top-level vdev */
88 static uint_t zfs_vdev_default_ms_count = 200;
89 
90 /* minimum number of metaslabs per top-level vdev */
91 static uint_t zfs_vdev_min_ms_count = 16;
92 
93 /* practical upper limit of total metaslabs per top-level vdev */
94 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17;
95 
96 /* lower limit for metaslab size (512M) */
97 static uint_t zfs_vdev_default_ms_shift = 29;
98 
99 /* upper limit for metaslab size (16G) */
100 static uint_t zfs_vdev_max_ms_shift = 34;
101 
102 int vdev_validate_skip = B_FALSE;
103 
104 /*
105  * Since the DTL space map of a vdev is not expected to have a lot of
106  * entries, we default its block size to 4K.
107  */
108 int zfs_vdev_dtl_sm_blksz = (1 << 12);
109 
110 /*
111  * Rate limit slow IO (delay) events to this many per second.
112  */
113 static unsigned int zfs_slow_io_events_per_second = 20;
114 
115 /*
116  * Rate limit deadman "hung IO" events to this many per second.
117  */
118 static unsigned int zfs_deadman_events_per_second = 1;
119 
120 /*
121  * Rate limit checksum events after this many checksum errors per second.
122  */
123 static unsigned int zfs_checksum_events_per_second = 20;
124 
125 /*
126  * Ignore errors during scrub/resilver.  Allows to work around resilver
127  * upon import when there are pool errors.
128  */
129 static int zfs_scan_ignore_errors = 0;
130 
131 /*
132  * vdev-wide space maps that have lots of entries written to them at
133  * the end of each transaction can benefit from a higher I/O bandwidth
134  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
135  */
136 int zfs_vdev_standard_sm_blksz = (1 << 17);
137 
138 /*
139  * Tunable parameter for debugging or performance analysis. Setting this
140  * will cause pool corruption on power loss if a volatile out-of-order
141  * write cache is enabled.
142  */
143 int zfs_nocacheflush = 0;
144 
145 /*
146  * Maximum and minimum ashift values that can be automatically set based on
147  * vdev's physical ashift (disk's physical sector size).  While ASHIFT_MAX
148  * is higher than the maximum value, it is intentionally limited here to not
149  * excessively impact pool space efficiency.  Higher ashift values may still
150  * be forced by vdev logical ashift or by user via ashift property, but won't
151  * be set automatically as a performance optimization.
152  */
153 uint_t zfs_vdev_max_auto_ashift = 14;
154 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
155 
156 void
157 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
158 {
159 	va_list adx;
160 	char buf[256];
161 
162 	va_start(adx, fmt);
163 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
164 	va_end(adx);
165 
166 	if (vd->vdev_path != NULL) {
167 		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
168 		    vd->vdev_path, buf);
169 	} else {
170 		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
171 		    vd->vdev_ops->vdev_op_type,
172 		    (u_longlong_t)vd->vdev_id,
173 		    (u_longlong_t)vd->vdev_guid, buf);
174 	}
175 }
176 
177 void
178 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
179 {
180 	char state[20];
181 
182 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
183 		zfs_dbgmsg("%*svdev %llu: %s", indent, "",
184 		    (u_longlong_t)vd->vdev_id,
185 		    vd->vdev_ops->vdev_op_type);
186 		return;
187 	}
188 
189 	switch (vd->vdev_state) {
190 	case VDEV_STATE_UNKNOWN:
191 		(void) snprintf(state, sizeof (state), "unknown");
192 		break;
193 	case VDEV_STATE_CLOSED:
194 		(void) snprintf(state, sizeof (state), "closed");
195 		break;
196 	case VDEV_STATE_OFFLINE:
197 		(void) snprintf(state, sizeof (state), "offline");
198 		break;
199 	case VDEV_STATE_REMOVED:
200 		(void) snprintf(state, sizeof (state), "removed");
201 		break;
202 	case VDEV_STATE_CANT_OPEN:
203 		(void) snprintf(state, sizeof (state), "can't open");
204 		break;
205 	case VDEV_STATE_FAULTED:
206 		(void) snprintf(state, sizeof (state), "faulted");
207 		break;
208 	case VDEV_STATE_DEGRADED:
209 		(void) snprintf(state, sizeof (state), "degraded");
210 		break;
211 	case VDEV_STATE_HEALTHY:
212 		(void) snprintf(state, sizeof (state), "healthy");
213 		break;
214 	default:
215 		(void) snprintf(state, sizeof (state), "<state %u>",
216 		    (uint_t)vd->vdev_state);
217 	}
218 
219 	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
220 	    "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
221 	    vd->vdev_islog ? " (log)" : "",
222 	    (u_longlong_t)vd->vdev_guid,
223 	    vd->vdev_path ? vd->vdev_path : "N/A", state);
224 
225 	for (uint64_t i = 0; i < vd->vdev_children; i++)
226 		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
227 }
228 
229 /*
230  * Virtual device management.
231  */
232 
233 static vdev_ops_t *const vdev_ops_table[] = {
234 	&vdev_root_ops,
235 	&vdev_raidz_ops,
236 	&vdev_draid_ops,
237 	&vdev_draid_spare_ops,
238 	&vdev_mirror_ops,
239 	&vdev_replacing_ops,
240 	&vdev_spare_ops,
241 	&vdev_disk_ops,
242 	&vdev_file_ops,
243 	&vdev_missing_ops,
244 	&vdev_hole_ops,
245 	&vdev_indirect_ops,
246 	NULL
247 };
248 
249 /*
250  * Given a vdev type, return the appropriate ops vector.
251  */
252 static vdev_ops_t *
253 vdev_getops(const char *type)
254 {
255 	vdev_ops_t *ops, *const *opspp;
256 
257 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
258 		if (strcmp(ops->vdev_op_type, type) == 0)
259 			break;
260 
261 	return (ops);
262 }
263 
264 /*
265  * Given a vdev and a metaslab class, find which metaslab group we're
266  * interested in. All vdevs may belong to two different metaslab classes.
267  * Dedicated slog devices use only the primary metaslab group, rather than a
268  * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
269  */
270 metaslab_group_t *
271 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
272 {
273 	if (mc == spa_embedded_log_class(vd->vdev_spa) &&
274 	    vd->vdev_log_mg != NULL)
275 		return (vd->vdev_log_mg);
276 	else
277 		return (vd->vdev_mg);
278 }
279 
280 void
281 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
282     range_seg64_t *physical_rs, range_seg64_t *remain_rs)
283 {
284 	(void) vd, (void) remain_rs;
285 
286 	physical_rs->rs_start = logical_rs->rs_start;
287 	physical_rs->rs_end = logical_rs->rs_end;
288 }
289 
290 /*
291  * Derive the enumerated allocation bias from string input.
292  * String origin is either the per-vdev zap or zpool(8).
293  */
294 static vdev_alloc_bias_t
295 vdev_derive_alloc_bias(const char *bias)
296 {
297 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
298 
299 	if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
300 		alloc_bias = VDEV_BIAS_LOG;
301 	else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
302 		alloc_bias = VDEV_BIAS_SPECIAL;
303 	else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
304 		alloc_bias = VDEV_BIAS_DEDUP;
305 
306 	return (alloc_bias);
307 }
308 
309 /*
310  * Default asize function: return the MAX of psize with the asize of
311  * all children.  This is what's used by anything other than RAID-Z.
312  */
313 uint64_t
314 vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg)
315 {
316 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
317 	uint64_t csize;
318 
319 	for (int c = 0; c < vd->vdev_children; c++) {
320 		csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg);
321 		asize = MAX(asize, csize);
322 	}
323 
324 	return (asize);
325 }
326 
327 uint64_t
328 vdev_default_min_asize(vdev_t *vd)
329 {
330 	return (vd->vdev_min_asize);
331 }
332 
333 /*
334  * Get the minimum allocatable size. We define the allocatable size as
335  * the vdev's asize rounded to the nearest metaslab. This allows us to
336  * replace or attach devices which don't have the same physical size but
337  * can still satisfy the same number of allocations.
338  */
339 uint64_t
340 vdev_get_min_asize(vdev_t *vd)
341 {
342 	vdev_t *pvd = vd->vdev_parent;
343 
344 	/*
345 	 * If our parent is NULL (inactive spare or cache) or is the root,
346 	 * just return our own asize.
347 	 */
348 	if (pvd == NULL)
349 		return (vd->vdev_asize);
350 
351 	/*
352 	 * The top-level vdev just returns the allocatable size rounded
353 	 * to the nearest metaslab.
354 	 */
355 	if (vd == vd->vdev_top)
356 		return (P2ALIGN_TYPED(vd->vdev_asize, 1ULL << vd->vdev_ms_shift,
357 		    uint64_t));
358 
359 	return (pvd->vdev_ops->vdev_op_min_asize(pvd));
360 }
361 
362 void
363 vdev_set_min_asize(vdev_t *vd)
364 {
365 	vd->vdev_min_asize = vdev_get_min_asize(vd);
366 
367 	for (int c = 0; c < vd->vdev_children; c++)
368 		vdev_set_min_asize(vd->vdev_child[c]);
369 }
370 
371 /*
372  * Get the minimal allocation size for the top-level vdev.
373  */
374 uint64_t
375 vdev_get_min_alloc(vdev_t *vd)
376 {
377 	uint64_t min_alloc = 1ULL << vd->vdev_ashift;
378 
379 	if (vd->vdev_ops->vdev_op_min_alloc != NULL)
380 		min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
381 
382 	return (min_alloc);
383 }
384 
385 /*
386  * Get the parity level for a top-level vdev.
387  */
388 uint64_t
389 vdev_get_nparity(vdev_t *vd)
390 {
391 	uint64_t nparity = 0;
392 
393 	if (vd->vdev_ops->vdev_op_nparity != NULL)
394 		nparity = vd->vdev_ops->vdev_op_nparity(vd);
395 
396 	return (nparity);
397 }
398 
399 static int
400 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value)
401 {
402 	spa_t *spa = vd->vdev_spa;
403 	objset_t *mos = spa->spa_meta_objset;
404 	uint64_t objid;
405 	int err;
406 
407 	if (vd->vdev_root_zap != 0) {
408 		objid = vd->vdev_root_zap;
409 	} else if (vd->vdev_top_zap != 0) {
410 		objid = vd->vdev_top_zap;
411 	} else if (vd->vdev_leaf_zap != 0) {
412 		objid = vd->vdev_leaf_zap;
413 	} else {
414 		return (EINVAL);
415 	}
416 
417 	err = zap_lookup(mos, objid, vdev_prop_to_name(prop),
418 	    sizeof (uint64_t), 1, value);
419 
420 	if (err == ENOENT)
421 		*value = vdev_prop_default_numeric(prop);
422 
423 	return (err);
424 }
425 
426 /*
427  * Get the number of data disks for a top-level vdev.
428  */
429 uint64_t
430 vdev_get_ndisks(vdev_t *vd)
431 {
432 	uint64_t ndisks = 1;
433 
434 	if (vd->vdev_ops->vdev_op_ndisks != NULL)
435 		ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
436 
437 	return (ndisks);
438 }
439 
440 vdev_t *
441 vdev_lookup_top(spa_t *spa, uint64_t vdev)
442 {
443 	vdev_t *rvd = spa->spa_root_vdev;
444 
445 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
446 
447 	if (vdev < rvd->vdev_children) {
448 		ASSERT(rvd->vdev_child[vdev] != NULL);
449 		return (rvd->vdev_child[vdev]);
450 	}
451 
452 	return (NULL);
453 }
454 
455 vdev_t *
456 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
457 {
458 	vdev_t *mvd;
459 
460 	if (vd->vdev_guid == guid)
461 		return (vd);
462 
463 	for (int c = 0; c < vd->vdev_children; c++)
464 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
465 		    NULL)
466 			return (mvd);
467 
468 	return (NULL);
469 }
470 
471 static int
472 vdev_count_leaves_impl(vdev_t *vd)
473 {
474 	int n = 0;
475 
476 	if (vd->vdev_ops->vdev_op_leaf)
477 		return (1);
478 
479 	for (int c = 0; c < vd->vdev_children; c++)
480 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
481 
482 	return (n);
483 }
484 
485 int
486 vdev_count_leaves(spa_t *spa)
487 {
488 	int rc;
489 
490 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
491 	rc = vdev_count_leaves_impl(spa->spa_root_vdev);
492 	spa_config_exit(spa, SCL_VDEV, FTAG);
493 
494 	return (rc);
495 }
496 
497 void
498 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
499 {
500 	size_t oldsize, newsize;
501 	uint64_t id = cvd->vdev_id;
502 	vdev_t **newchild;
503 
504 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
505 	ASSERT(cvd->vdev_parent == NULL);
506 
507 	cvd->vdev_parent = pvd;
508 
509 	if (pvd == NULL)
510 		return;
511 
512 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
513 
514 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
515 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
516 	newsize = pvd->vdev_children * sizeof (vdev_t *);
517 
518 	newchild = kmem_alloc(newsize, KM_SLEEP);
519 	if (pvd->vdev_child != NULL) {
520 		memcpy(newchild, pvd->vdev_child, oldsize);
521 		kmem_free(pvd->vdev_child, oldsize);
522 	}
523 
524 	pvd->vdev_child = newchild;
525 	pvd->vdev_child[id] = cvd;
526 
527 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
528 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
529 
530 	/*
531 	 * Walk up all ancestors to update guid sum.
532 	 */
533 	for (; pvd != NULL; pvd = pvd->vdev_parent)
534 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
535 
536 	if (cvd->vdev_ops->vdev_op_leaf) {
537 		list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
538 		cvd->vdev_spa->spa_leaf_list_gen++;
539 	}
540 }
541 
542 void
543 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
544 {
545 	int c;
546 	uint_t id = cvd->vdev_id;
547 
548 	ASSERT(cvd->vdev_parent == pvd);
549 
550 	if (pvd == NULL)
551 		return;
552 
553 	ASSERT(id < pvd->vdev_children);
554 	ASSERT(pvd->vdev_child[id] == cvd);
555 
556 	pvd->vdev_child[id] = NULL;
557 	cvd->vdev_parent = NULL;
558 
559 	for (c = 0; c < pvd->vdev_children; c++)
560 		if (pvd->vdev_child[c])
561 			break;
562 
563 	if (c == pvd->vdev_children) {
564 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
565 		pvd->vdev_child = NULL;
566 		pvd->vdev_children = 0;
567 	}
568 
569 	if (cvd->vdev_ops->vdev_op_leaf) {
570 		spa_t *spa = cvd->vdev_spa;
571 		list_remove(&spa->spa_leaf_list, cvd);
572 		spa->spa_leaf_list_gen++;
573 	}
574 
575 	/*
576 	 * Walk up all ancestors to update guid sum.
577 	 */
578 	for (; pvd != NULL; pvd = pvd->vdev_parent)
579 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
580 }
581 
582 /*
583  * Remove any holes in the child array.
584  */
585 void
586 vdev_compact_children(vdev_t *pvd)
587 {
588 	vdev_t **newchild, *cvd;
589 	int oldc = pvd->vdev_children;
590 	int newc;
591 
592 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
593 
594 	if (oldc == 0)
595 		return;
596 
597 	for (int c = newc = 0; c < oldc; c++)
598 		if (pvd->vdev_child[c])
599 			newc++;
600 
601 	if (newc > 0) {
602 		newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
603 
604 		for (int c = newc = 0; c < oldc; c++) {
605 			if ((cvd = pvd->vdev_child[c]) != NULL) {
606 				newchild[newc] = cvd;
607 				cvd->vdev_id = newc++;
608 			}
609 		}
610 	} else {
611 		newchild = NULL;
612 	}
613 
614 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
615 	pvd->vdev_child = newchild;
616 	pvd->vdev_children = newc;
617 }
618 
619 /*
620  * Allocate and minimally initialize a vdev_t.
621  */
622 vdev_t *
623 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
624 {
625 	vdev_t *vd;
626 	vdev_indirect_config_t *vic;
627 
628 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
629 	vic = &vd->vdev_indirect_config;
630 
631 	if (spa->spa_root_vdev == NULL) {
632 		ASSERT(ops == &vdev_root_ops);
633 		spa->spa_root_vdev = vd;
634 		spa->spa_load_guid = spa_generate_guid(NULL);
635 	}
636 
637 	if (guid == 0 && ops != &vdev_hole_ops) {
638 		if (spa->spa_root_vdev == vd) {
639 			/*
640 			 * The root vdev's guid will also be the pool guid,
641 			 * which must be unique among all pools.
642 			 */
643 			guid = spa_generate_guid(NULL);
644 		} else {
645 			/*
646 			 * Any other vdev's guid must be unique within the pool.
647 			 */
648 			guid = spa_generate_guid(spa);
649 		}
650 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
651 	}
652 
653 	vd->vdev_spa = spa;
654 	vd->vdev_id = id;
655 	vd->vdev_guid = guid;
656 	vd->vdev_guid_sum = guid;
657 	vd->vdev_ops = ops;
658 	vd->vdev_state = VDEV_STATE_CLOSED;
659 	vd->vdev_ishole = (ops == &vdev_hole_ops);
660 	vic->vic_prev_indirect_vdev = UINT64_MAX;
661 
662 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
663 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
664 	vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
665 	    0, 0);
666 
667 	/*
668 	 * Initialize rate limit structs for events.  We rate limit ZIO delay
669 	 * and checksum events so that we don't overwhelm ZED with thousands
670 	 * of events when a disk is acting up.
671 	 */
672 	zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
673 	    1);
674 	zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_deadman_events_per_second,
675 	    1);
676 	zfs_ratelimit_init(&vd->vdev_checksum_rl,
677 	    &zfs_checksum_events_per_second, 1);
678 
679 	/*
680 	 * Default Thresholds for tuning ZED
681 	 */
682 	vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N);
683 	vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T);
684 	vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N);
685 	vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T);
686 	vd->vdev_slow_io_n = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N);
687 	vd->vdev_slow_io_t = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T);
688 
689 	list_link_init(&vd->vdev_config_dirty_node);
690 	list_link_init(&vd->vdev_state_dirty_node);
691 	list_link_init(&vd->vdev_initialize_node);
692 	list_link_init(&vd->vdev_leaf_node);
693 	list_link_init(&vd->vdev_trim_node);
694 
695 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
696 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
697 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
698 	mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
699 
700 	mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
701 	mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
702 	cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
703 	cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
704 
705 	mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
706 	mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
707 	mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
708 	cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
709 	cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
710 	cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL);
711 	cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
712 
713 	mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
714 	cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
715 
716 	for (int t = 0; t < DTL_TYPES; t++) {
717 		vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
718 		    0);
719 	}
720 
721 	txg_list_create(&vd->vdev_ms_list, spa,
722 	    offsetof(struct metaslab, ms_txg_node));
723 	txg_list_create(&vd->vdev_dtl_list, spa,
724 	    offsetof(struct vdev, vdev_dtl_node));
725 	vd->vdev_stat.vs_timestamp = gethrtime();
726 	vdev_queue_init(vd);
727 
728 	return (vd);
729 }
730 
731 /*
732  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
733  * creating a new vdev or loading an existing one - the behavior is slightly
734  * different for each case.
735  */
736 int
737 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
738     int alloctype)
739 {
740 	vdev_ops_t *ops;
741 	const char *type;
742 	uint64_t guid = 0, islog;
743 	vdev_t *vd;
744 	vdev_indirect_config_t *vic;
745 	const char *tmp = NULL;
746 	int rc;
747 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
748 	boolean_t top_level = (parent && !parent->vdev_parent);
749 
750 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
751 
752 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
753 		return (SET_ERROR(EINVAL));
754 
755 	if ((ops = vdev_getops(type)) == NULL)
756 		return (SET_ERROR(EINVAL));
757 
758 	/*
759 	 * If this is a load, get the vdev guid from the nvlist.
760 	 * Otherwise, vdev_alloc_common() will generate one for us.
761 	 */
762 	if (alloctype == VDEV_ALLOC_LOAD) {
763 		uint64_t label_id;
764 
765 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
766 		    label_id != id)
767 			return (SET_ERROR(EINVAL));
768 
769 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
770 			return (SET_ERROR(EINVAL));
771 	} else if (alloctype == VDEV_ALLOC_SPARE) {
772 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
773 			return (SET_ERROR(EINVAL));
774 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
775 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
776 			return (SET_ERROR(EINVAL));
777 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
778 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
779 			return (SET_ERROR(EINVAL));
780 	}
781 
782 	/*
783 	 * The first allocated vdev must be of type 'root'.
784 	 */
785 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
786 		return (SET_ERROR(EINVAL));
787 
788 	/*
789 	 * Determine whether we're a log vdev.
790 	 */
791 	islog = 0;
792 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
793 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
794 		return (SET_ERROR(ENOTSUP));
795 
796 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
797 		return (SET_ERROR(ENOTSUP));
798 
799 	if (top_level && alloctype == VDEV_ALLOC_ADD) {
800 		const char *bias;
801 
802 		/*
803 		 * If creating a top-level vdev, check for allocation
804 		 * classes input.
805 		 */
806 		if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
807 		    &bias) == 0) {
808 			alloc_bias = vdev_derive_alloc_bias(bias);
809 
810 			/* spa_vdev_add() expects feature to be enabled */
811 			if (spa->spa_load_state != SPA_LOAD_CREATE &&
812 			    !spa_feature_is_enabled(spa,
813 			    SPA_FEATURE_ALLOCATION_CLASSES)) {
814 				return (SET_ERROR(ENOTSUP));
815 			}
816 		}
817 
818 		/* spa_vdev_add() expects feature to be enabled */
819 		if (ops == &vdev_draid_ops &&
820 		    spa->spa_load_state != SPA_LOAD_CREATE &&
821 		    !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
822 			return (SET_ERROR(ENOTSUP));
823 		}
824 	}
825 
826 	/*
827 	 * Initialize the vdev specific data.  This is done before calling
828 	 * vdev_alloc_common() since it may fail and this simplifies the
829 	 * error reporting and cleanup code paths.
830 	 */
831 	void *tsd = NULL;
832 	if (ops->vdev_op_init != NULL) {
833 		rc = ops->vdev_op_init(spa, nv, &tsd);
834 		if (rc != 0) {
835 			return (rc);
836 		}
837 	}
838 
839 	vd = vdev_alloc_common(spa, id, guid, ops);
840 	vd->vdev_tsd = tsd;
841 	vd->vdev_islog = islog;
842 
843 	if (top_level && alloc_bias != VDEV_BIAS_NONE)
844 		vd->vdev_alloc_bias = alloc_bias;
845 
846 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0)
847 		vd->vdev_path = spa_strdup(tmp);
848 
849 	/*
850 	 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
851 	 * fault on a vdev and want it to persist across imports (like with
852 	 * zpool offline -f).
853 	 */
854 	rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
855 	if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
856 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
857 		vd->vdev_faulted = 1;
858 		vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
859 	}
860 
861 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0)
862 		vd->vdev_devid = spa_strdup(tmp);
863 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0)
864 		vd->vdev_physpath = spa_strdup(tmp);
865 
866 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
867 	    &tmp) == 0)
868 		vd->vdev_enc_sysfs_path = spa_strdup(tmp);
869 
870 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0)
871 		vd->vdev_fru = spa_strdup(tmp);
872 
873 	/*
874 	 * Set the whole_disk property.  If it's not specified, leave the value
875 	 * as -1.
876 	 */
877 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
878 	    &vd->vdev_wholedisk) != 0)
879 		vd->vdev_wholedisk = -1ULL;
880 
881 	vic = &vd->vdev_indirect_config;
882 
883 	ASSERT0(vic->vic_mapping_object);
884 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
885 	    &vic->vic_mapping_object);
886 	ASSERT0(vic->vic_births_object);
887 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
888 	    &vic->vic_births_object);
889 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
890 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
891 	    &vic->vic_prev_indirect_vdev);
892 
893 	/*
894 	 * Look for the 'not present' flag.  This will only be set if the device
895 	 * was not present at the time of import.
896 	 */
897 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
898 	    &vd->vdev_not_present);
899 
900 	/*
901 	 * Get the alignment requirement. Ignore pool ashift for vdev
902 	 * attach case.
903 	 */
904 	if (alloctype != VDEV_ALLOC_ATTACH) {
905 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT,
906 		    &vd->vdev_ashift);
907 	} else {
908 		vd->vdev_attaching = B_TRUE;
909 	}
910 
911 	/*
912 	 * Retrieve the vdev creation time.
913 	 */
914 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
915 	    &vd->vdev_crtxg);
916 
917 	if (vd->vdev_ops == &vdev_root_ops &&
918 	    (alloctype == VDEV_ALLOC_LOAD ||
919 	    alloctype == VDEV_ALLOC_SPLIT ||
920 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
921 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP,
922 		    &vd->vdev_root_zap);
923 	}
924 
925 	/*
926 	 * If we're a top-level vdev, try to load the allocation parameters.
927 	 */
928 	if (top_level &&
929 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
930 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
931 		    &vd->vdev_ms_array);
932 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
933 		    &vd->vdev_ms_shift);
934 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
935 		    &vd->vdev_asize);
936 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
937 		    &vd->vdev_noalloc);
938 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
939 		    &vd->vdev_removing);
940 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
941 		    &vd->vdev_top_zap);
942 		vd->vdev_rz_expanding = nvlist_exists(nv,
943 		    ZPOOL_CONFIG_RAIDZ_EXPANDING);
944 	} else {
945 		ASSERT0(vd->vdev_top_zap);
946 	}
947 
948 	if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
949 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
950 		    alloctype == VDEV_ALLOC_ADD ||
951 		    alloctype == VDEV_ALLOC_SPLIT ||
952 		    alloctype == VDEV_ALLOC_ROOTPOOL);
953 		/* Note: metaslab_group_create() is now deferred */
954 	}
955 
956 	if (vd->vdev_ops->vdev_op_leaf &&
957 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
958 		(void) nvlist_lookup_uint64(nv,
959 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
960 	} else {
961 		ASSERT0(vd->vdev_leaf_zap);
962 	}
963 
964 	/*
965 	 * If we're a leaf vdev, try to load the DTL object and other state.
966 	 */
967 
968 	if (vd->vdev_ops->vdev_op_leaf &&
969 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
970 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
971 		if (alloctype == VDEV_ALLOC_LOAD) {
972 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
973 			    &vd->vdev_dtl_object);
974 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
975 			    &vd->vdev_unspare);
976 		}
977 
978 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
979 			uint64_t spare = 0;
980 
981 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
982 			    &spare) == 0 && spare)
983 				spa_spare_add(vd);
984 		}
985 
986 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
987 		    &vd->vdev_offline);
988 
989 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
990 		    &vd->vdev_resilver_txg);
991 
992 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
993 		    &vd->vdev_rebuild_txg);
994 
995 		if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
996 			vdev_defer_resilver(vd);
997 
998 		/*
999 		 * In general, when importing a pool we want to ignore the
1000 		 * persistent fault state, as the diagnosis made on another
1001 		 * system may not be valid in the current context.  The only
1002 		 * exception is if we forced a vdev to a persistently faulted
1003 		 * state with 'zpool offline -f'.  The persistent fault will
1004 		 * remain across imports until cleared.
1005 		 *
1006 		 * Local vdevs will remain in the faulted state.
1007 		 */
1008 		if (spa_load_state(spa) == SPA_LOAD_OPEN ||
1009 		    spa_load_state(spa) == SPA_LOAD_IMPORT) {
1010 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
1011 			    &vd->vdev_faulted);
1012 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
1013 			    &vd->vdev_degraded);
1014 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
1015 			    &vd->vdev_removed);
1016 
1017 			if (vd->vdev_faulted || vd->vdev_degraded) {
1018 				const char *aux;
1019 
1020 				vd->vdev_label_aux =
1021 				    VDEV_AUX_ERR_EXCEEDED;
1022 				if (nvlist_lookup_string(nv,
1023 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
1024 				    strcmp(aux, "external") == 0)
1025 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
1026 				else
1027 					vd->vdev_faulted = 0ULL;
1028 			}
1029 		}
1030 	}
1031 
1032 	/*
1033 	 * Add ourselves to the parent's list of children.
1034 	 */
1035 	vdev_add_child(parent, vd);
1036 
1037 	*vdp = vd;
1038 
1039 	return (0);
1040 }
1041 
1042 void
1043 vdev_free(vdev_t *vd)
1044 {
1045 	spa_t *spa = vd->vdev_spa;
1046 
1047 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1048 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1049 	ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1050 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
1051 
1052 	/*
1053 	 * Scan queues are normally destroyed at the end of a scan. If the
1054 	 * queue exists here, that implies the vdev is being removed while
1055 	 * the scan is still running.
1056 	 */
1057 	if (vd->vdev_scan_io_queue != NULL) {
1058 		mutex_enter(&vd->vdev_scan_io_queue_lock);
1059 		dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
1060 		vd->vdev_scan_io_queue = NULL;
1061 		mutex_exit(&vd->vdev_scan_io_queue_lock);
1062 	}
1063 
1064 	/*
1065 	 * vdev_free() implies closing the vdev first.  This is simpler than
1066 	 * trying to ensure complicated semantics for all callers.
1067 	 */
1068 	vdev_close(vd);
1069 
1070 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
1071 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1072 
1073 	/*
1074 	 * Free all children.
1075 	 */
1076 	for (int c = 0; c < vd->vdev_children; c++)
1077 		vdev_free(vd->vdev_child[c]);
1078 
1079 	ASSERT(vd->vdev_child == NULL);
1080 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1081 
1082 	if (vd->vdev_ops->vdev_op_fini != NULL)
1083 		vd->vdev_ops->vdev_op_fini(vd);
1084 
1085 	/*
1086 	 * Discard allocation state.
1087 	 */
1088 	if (vd->vdev_mg != NULL) {
1089 		vdev_metaslab_fini(vd);
1090 		metaslab_group_destroy(vd->vdev_mg);
1091 		vd->vdev_mg = NULL;
1092 	}
1093 	if (vd->vdev_log_mg != NULL) {
1094 		ASSERT0(vd->vdev_ms_count);
1095 		metaslab_group_destroy(vd->vdev_log_mg);
1096 		vd->vdev_log_mg = NULL;
1097 	}
1098 
1099 	ASSERT0(vd->vdev_stat.vs_space);
1100 	ASSERT0(vd->vdev_stat.vs_dspace);
1101 	ASSERT0(vd->vdev_stat.vs_alloc);
1102 
1103 	/*
1104 	 * Remove this vdev from its parent's child list.
1105 	 */
1106 	vdev_remove_child(vd->vdev_parent, vd);
1107 
1108 	ASSERT(vd->vdev_parent == NULL);
1109 	ASSERT(!list_link_active(&vd->vdev_leaf_node));
1110 
1111 	/*
1112 	 * Clean up vdev structure.
1113 	 */
1114 	vdev_queue_fini(vd);
1115 
1116 	if (vd->vdev_path)
1117 		spa_strfree(vd->vdev_path);
1118 	if (vd->vdev_devid)
1119 		spa_strfree(vd->vdev_devid);
1120 	if (vd->vdev_physpath)
1121 		spa_strfree(vd->vdev_physpath);
1122 
1123 	if (vd->vdev_enc_sysfs_path)
1124 		spa_strfree(vd->vdev_enc_sysfs_path);
1125 
1126 	if (vd->vdev_fru)
1127 		spa_strfree(vd->vdev_fru);
1128 
1129 	if (vd->vdev_isspare)
1130 		spa_spare_remove(vd);
1131 	if (vd->vdev_isl2cache)
1132 		spa_l2cache_remove(vd);
1133 
1134 	txg_list_destroy(&vd->vdev_ms_list);
1135 	txg_list_destroy(&vd->vdev_dtl_list);
1136 
1137 	mutex_enter(&vd->vdev_dtl_lock);
1138 	space_map_close(vd->vdev_dtl_sm);
1139 	for (int t = 0; t < DTL_TYPES; t++) {
1140 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1141 		range_tree_destroy(vd->vdev_dtl[t]);
1142 	}
1143 	mutex_exit(&vd->vdev_dtl_lock);
1144 
1145 	EQUIV(vd->vdev_indirect_births != NULL,
1146 	    vd->vdev_indirect_mapping != NULL);
1147 	if (vd->vdev_indirect_births != NULL) {
1148 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1149 		vdev_indirect_births_close(vd->vdev_indirect_births);
1150 	}
1151 
1152 	if (vd->vdev_obsolete_sm != NULL) {
1153 		ASSERT(vd->vdev_removing ||
1154 		    vd->vdev_ops == &vdev_indirect_ops);
1155 		space_map_close(vd->vdev_obsolete_sm);
1156 		vd->vdev_obsolete_sm = NULL;
1157 	}
1158 	range_tree_destroy(vd->vdev_obsolete_segments);
1159 	rw_destroy(&vd->vdev_indirect_rwlock);
1160 	mutex_destroy(&vd->vdev_obsolete_lock);
1161 
1162 	mutex_destroy(&vd->vdev_dtl_lock);
1163 	mutex_destroy(&vd->vdev_stat_lock);
1164 	mutex_destroy(&vd->vdev_probe_lock);
1165 	mutex_destroy(&vd->vdev_scan_io_queue_lock);
1166 
1167 	mutex_destroy(&vd->vdev_initialize_lock);
1168 	mutex_destroy(&vd->vdev_initialize_io_lock);
1169 	cv_destroy(&vd->vdev_initialize_io_cv);
1170 	cv_destroy(&vd->vdev_initialize_cv);
1171 
1172 	mutex_destroy(&vd->vdev_trim_lock);
1173 	mutex_destroy(&vd->vdev_autotrim_lock);
1174 	mutex_destroy(&vd->vdev_trim_io_lock);
1175 	cv_destroy(&vd->vdev_trim_cv);
1176 	cv_destroy(&vd->vdev_autotrim_cv);
1177 	cv_destroy(&vd->vdev_autotrim_kick_cv);
1178 	cv_destroy(&vd->vdev_trim_io_cv);
1179 
1180 	mutex_destroy(&vd->vdev_rebuild_lock);
1181 	cv_destroy(&vd->vdev_rebuild_cv);
1182 
1183 	zfs_ratelimit_fini(&vd->vdev_delay_rl);
1184 	zfs_ratelimit_fini(&vd->vdev_deadman_rl);
1185 	zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1186 
1187 	if (vd == spa->spa_root_vdev)
1188 		spa->spa_root_vdev = NULL;
1189 
1190 	kmem_free(vd, sizeof (vdev_t));
1191 }
1192 
1193 /*
1194  * Transfer top-level vdev state from svd to tvd.
1195  */
1196 static void
1197 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1198 {
1199 	spa_t *spa = svd->vdev_spa;
1200 	metaslab_t *msp;
1201 	vdev_t *vd;
1202 	int t;
1203 
1204 	ASSERT(tvd == tvd->vdev_top);
1205 
1206 	tvd->vdev_ms_array = svd->vdev_ms_array;
1207 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
1208 	tvd->vdev_ms_count = svd->vdev_ms_count;
1209 	tvd->vdev_top_zap = svd->vdev_top_zap;
1210 
1211 	svd->vdev_ms_array = 0;
1212 	svd->vdev_ms_shift = 0;
1213 	svd->vdev_ms_count = 0;
1214 	svd->vdev_top_zap = 0;
1215 
1216 	if (tvd->vdev_mg)
1217 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1218 	if (tvd->vdev_log_mg)
1219 		ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1220 	tvd->vdev_mg = svd->vdev_mg;
1221 	tvd->vdev_log_mg = svd->vdev_log_mg;
1222 	tvd->vdev_ms = svd->vdev_ms;
1223 
1224 	svd->vdev_mg = NULL;
1225 	svd->vdev_log_mg = NULL;
1226 	svd->vdev_ms = NULL;
1227 
1228 	if (tvd->vdev_mg != NULL)
1229 		tvd->vdev_mg->mg_vd = tvd;
1230 	if (tvd->vdev_log_mg != NULL)
1231 		tvd->vdev_log_mg->mg_vd = tvd;
1232 
1233 	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1234 	svd->vdev_checkpoint_sm = NULL;
1235 
1236 	tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1237 	svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1238 
1239 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1240 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1241 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1242 
1243 	svd->vdev_stat.vs_alloc = 0;
1244 	svd->vdev_stat.vs_space = 0;
1245 	svd->vdev_stat.vs_dspace = 0;
1246 
1247 	/*
1248 	 * State which may be set on a top-level vdev that's in the
1249 	 * process of being removed.
1250 	 */
1251 	ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1252 	ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1253 	ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1254 	ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1255 	ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1256 	ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1257 	ASSERT0(tvd->vdev_noalloc);
1258 	ASSERT0(tvd->vdev_removing);
1259 	ASSERT0(tvd->vdev_rebuilding);
1260 	tvd->vdev_noalloc = svd->vdev_noalloc;
1261 	tvd->vdev_removing = svd->vdev_removing;
1262 	tvd->vdev_rebuilding = svd->vdev_rebuilding;
1263 	tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1264 	tvd->vdev_indirect_config = svd->vdev_indirect_config;
1265 	tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1266 	tvd->vdev_indirect_births = svd->vdev_indirect_births;
1267 	range_tree_swap(&svd->vdev_obsolete_segments,
1268 	    &tvd->vdev_obsolete_segments);
1269 	tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1270 	svd->vdev_indirect_config.vic_mapping_object = 0;
1271 	svd->vdev_indirect_config.vic_births_object = 0;
1272 	svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1273 	svd->vdev_indirect_mapping = NULL;
1274 	svd->vdev_indirect_births = NULL;
1275 	svd->vdev_obsolete_sm = NULL;
1276 	svd->vdev_noalloc = 0;
1277 	svd->vdev_removing = 0;
1278 	svd->vdev_rebuilding = 0;
1279 
1280 	for (t = 0; t < TXG_SIZE; t++) {
1281 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1282 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1283 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1284 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1285 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1286 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1287 	}
1288 
1289 	if (list_link_active(&svd->vdev_config_dirty_node)) {
1290 		vdev_config_clean(svd);
1291 		vdev_config_dirty(tvd);
1292 	}
1293 
1294 	if (list_link_active(&svd->vdev_state_dirty_node)) {
1295 		vdev_state_clean(svd);
1296 		vdev_state_dirty(tvd);
1297 	}
1298 
1299 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1300 	svd->vdev_deflate_ratio = 0;
1301 
1302 	tvd->vdev_islog = svd->vdev_islog;
1303 	svd->vdev_islog = 0;
1304 
1305 	dsl_scan_io_queue_vdev_xfer(svd, tvd);
1306 }
1307 
1308 static void
1309 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1310 {
1311 	if (vd == NULL)
1312 		return;
1313 
1314 	vd->vdev_top = tvd;
1315 
1316 	for (int c = 0; c < vd->vdev_children; c++)
1317 		vdev_top_update(tvd, vd->vdev_child[c]);
1318 }
1319 
1320 /*
1321  * Add a mirror/replacing vdev above an existing vdev.  There is no need to
1322  * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1323  */
1324 vdev_t *
1325 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1326 {
1327 	spa_t *spa = cvd->vdev_spa;
1328 	vdev_t *pvd = cvd->vdev_parent;
1329 	vdev_t *mvd;
1330 
1331 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1332 
1333 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1334 
1335 	mvd->vdev_asize = cvd->vdev_asize;
1336 	mvd->vdev_min_asize = cvd->vdev_min_asize;
1337 	mvd->vdev_max_asize = cvd->vdev_max_asize;
1338 	mvd->vdev_psize = cvd->vdev_psize;
1339 	mvd->vdev_ashift = cvd->vdev_ashift;
1340 	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1341 	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1342 	mvd->vdev_state = cvd->vdev_state;
1343 	mvd->vdev_crtxg = cvd->vdev_crtxg;
1344 
1345 	vdev_remove_child(pvd, cvd);
1346 	vdev_add_child(pvd, mvd);
1347 	cvd->vdev_id = mvd->vdev_children;
1348 	vdev_add_child(mvd, cvd);
1349 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1350 
1351 	if (mvd == mvd->vdev_top)
1352 		vdev_top_transfer(cvd, mvd);
1353 
1354 	return (mvd);
1355 }
1356 
1357 /*
1358  * Remove a 1-way mirror/replacing vdev from the tree.
1359  */
1360 void
1361 vdev_remove_parent(vdev_t *cvd)
1362 {
1363 	vdev_t *mvd = cvd->vdev_parent;
1364 	vdev_t *pvd = mvd->vdev_parent;
1365 
1366 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1367 
1368 	ASSERT(mvd->vdev_children == 1);
1369 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1370 	    mvd->vdev_ops == &vdev_replacing_ops ||
1371 	    mvd->vdev_ops == &vdev_spare_ops);
1372 	cvd->vdev_ashift = mvd->vdev_ashift;
1373 	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1374 	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1375 	vdev_remove_child(mvd, cvd);
1376 	vdev_remove_child(pvd, mvd);
1377 
1378 	/*
1379 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1380 	 * Otherwise, we could have detached an offline device, and when we
1381 	 * go to import the pool we'll think we have two top-level vdevs,
1382 	 * instead of a different version of the same top-level vdev.
1383 	 */
1384 	if (mvd->vdev_top == mvd) {
1385 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1386 		cvd->vdev_orig_guid = cvd->vdev_guid;
1387 		cvd->vdev_guid += guid_delta;
1388 		cvd->vdev_guid_sum += guid_delta;
1389 
1390 		/*
1391 		 * If pool not set for autoexpand, we need to also preserve
1392 		 * mvd's asize to prevent automatic expansion of cvd.
1393 		 * Otherwise if we are adjusting the mirror by attaching and
1394 		 * detaching children of non-uniform sizes, the mirror could
1395 		 * autoexpand, unexpectedly requiring larger devices to
1396 		 * re-establish the mirror.
1397 		 */
1398 		if (!cvd->vdev_spa->spa_autoexpand)
1399 			cvd->vdev_asize = mvd->vdev_asize;
1400 	}
1401 	cvd->vdev_id = mvd->vdev_id;
1402 	vdev_add_child(pvd, cvd);
1403 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1404 
1405 	if (cvd == cvd->vdev_top)
1406 		vdev_top_transfer(mvd, cvd);
1407 
1408 	ASSERT(mvd->vdev_children == 0);
1409 	vdev_free(mvd);
1410 }
1411 
1412 /*
1413  * Choose GCD for spa_gcd_alloc.
1414  */
1415 static uint64_t
1416 vdev_gcd(uint64_t a, uint64_t b)
1417 {
1418 	while (b != 0) {
1419 		uint64_t t = b;
1420 		b = a % b;
1421 		a = t;
1422 	}
1423 	return (a);
1424 }
1425 
1426 /*
1427  * Set spa_min_alloc and spa_gcd_alloc.
1428  */
1429 static void
1430 vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc)
1431 {
1432 	if (min_alloc < spa->spa_min_alloc)
1433 		spa->spa_min_alloc = min_alloc;
1434 	if (spa->spa_gcd_alloc == INT_MAX) {
1435 		spa->spa_gcd_alloc = min_alloc;
1436 	} else {
1437 		spa->spa_gcd_alloc = vdev_gcd(min_alloc,
1438 		    spa->spa_gcd_alloc);
1439 	}
1440 }
1441 
1442 void
1443 vdev_metaslab_group_create(vdev_t *vd)
1444 {
1445 	spa_t *spa = vd->vdev_spa;
1446 
1447 	/*
1448 	 * metaslab_group_create was delayed until allocation bias was available
1449 	 */
1450 	if (vd->vdev_mg == NULL) {
1451 		metaslab_class_t *mc;
1452 
1453 		if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1454 			vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1455 
1456 		ASSERT3U(vd->vdev_islog, ==,
1457 		    (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1458 
1459 		switch (vd->vdev_alloc_bias) {
1460 		case VDEV_BIAS_LOG:
1461 			mc = spa_log_class(spa);
1462 			break;
1463 		case VDEV_BIAS_SPECIAL:
1464 			mc = spa_special_class(spa);
1465 			break;
1466 		case VDEV_BIAS_DEDUP:
1467 			mc = spa_dedup_class(spa);
1468 			break;
1469 		default:
1470 			mc = spa_normal_class(spa);
1471 		}
1472 
1473 		vd->vdev_mg = metaslab_group_create(mc, vd,
1474 		    spa->spa_alloc_count);
1475 
1476 		if (!vd->vdev_islog) {
1477 			vd->vdev_log_mg = metaslab_group_create(
1478 			    spa_embedded_log_class(spa), vd, 1);
1479 		}
1480 
1481 		/*
1482 		 * The spa ashift min/max only apply for the normal metaslab
1483 		 * class. Class destination is late binding so ashift boundary
1484 		 * setting had to wait until now.
1485 		 */
1486 		if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1487 		    mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1488 			if (vd->vdev_ashift > spa->spa_max_ashift)
1489 				spa->spa_max_ashift = vd->vdev_ashift;
1490 			if (vd->vdev_ashift < spa->spa_min_ashift)
1491 				spa->spa_min_ashift = vd->vdev_ashift;
1492 
1493 			uint64_t min_alloc = vdev_get_min_alloc(vd);
1494 			vdev_spa_set_alloc(spa, min_alloc);
1495 		}
1496 	}
1497 }
1498 
1499 int
1500 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1501 {
1502 	spa_t *spa = vd->vdev_spa;
1503 	uint64_t oldc = vd->vdev_ms_count;
1504 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1505 	metaslab_t **mspp;
1506 	int error;
1507 	boolean_t expanding = (oldc != 0);
1508 
1509 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1510 
1511 	/*
1512 	 * This vdev is not being allocated from yet or is a hole.
1513 	 */
1514 	if (vd->vdev_ms_shift == 0)
1515 		return (0);
1516 
1517 	ASSERT(!vd->vdev_ishole);
1518 
1519 	ASSERT(oldc <= newc);
1520 
1521 	mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1522 
1523 	if (expanding) {
1524 		memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp));
1525 		vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1526 	}
1527 
1528 	vd->vdev_ms = mspp;
1529 	vd->vdev_ms_count = newc;
1530 
1531 	for (uint64_t m = oldc; m < newc; m++) {
1532 		uint64_t object = 0;
1533 		/*
1534 		 * vdev_ms_array may be 0 if we are creating the "fake"
1535 		 * metaslabs for an indirect vdev for zdb's leak detection.
1536 		 * See zdb_leak_init().
1537 		 */
1538 		if (txg == 0 && vd->vdev_ms_array != 0) {
1539 			error = dmu_read(spa->spa_meta_objset,
1540 			    vd->vdev_ms_array,
1541 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1542 			    DMU_READ_PREFETCH);
1543 			if (error != 0) {
1544 				vdev_dbgmsg(vd, "unable to read the metaslab "
1545 				    "array [error=%d]", error);
1546 				return (error);
1547 			}
1548 		}
1549 
1550 		error = metaslab_init(vd->vdev_mg, m, object, txg,
1551 		    &(vd->vdev_ms[m]));
1552 		if (error != 0) {
1553 			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1554 			    error);
1555 			return (error);
1556 		}
1557 	}
1558 
1559 	/*
1560 	 * Find the emptiest metaslab on the vdev and mark it for use for
1561 	 * embedded slog by moving it from the regular to the log metaslab
1562 	 * group.
1563 	 */
1564 	if (vd->vdev_mg->mg_class == spa_normal_class(spa) &&
1565 	    vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1566 	    avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1567 		uint64_t slog_msid = 0;
1568 		uint64_t smallest = UINT64_MAX;
1569 
1570 		/*
1571 		 * Note, we only search the new metaslabs, because the old
1572 		 * (pre-existing) ones may be active (e.g. have non-empty
1573 		 * range_tree's), and we don't move them to the new
1574 		 * metaslab_t.
1575 		 */
1576 		for (uint64_t m = oldc; m < newc; m++) {
1577 			uint64_t alloc =
1578 			    space_map_allocated(vd->vdev_ms[m]->ms_sm);
1579 			if (alloc < smallest) {
1580 				slog_msid = m;
1581 				smallest = alloc;
1582 			}
1583 		}
1584 		metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1585 		/*
1586 		 * The metaslab was marked as dirty at the end of
1587 		 * metaslab_init(). Remove it from the dirty list so that we
1588 		 * can uninitialize and reinitialize it to the new class.
1589 		 */
1590 		if (txg != 0) {
1591 			(void) txg_list_remove_this(&vd->vdev_ms_list,
1592 			    slog_ms, txg);
1593 		}
1594 		uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1595 		metaslab_fini(slog_ms);
1596 		VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1597 		    &vd->vdev_ms[slog_msid]));
1598 	}
1599 
1600 	if (txg == 0)
1601 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1602 
1603 	/*
1604 	 * If the vdev is marked as non-allocating then don't
1605 	 * activate the metaslabs since we want to ensure that
1606 	 * no allocations are performed on this device.
1607 	 */
1608 	if (vd->vdev_noalloc) {
1609 		/* track non-allocating vdev space */
1610 		spa->spa_nonallocating_dspace += spa_deflate(spa) ?
1611 		    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1612 	} else if (!expanding) {
1613 		metaslab_group_activate(vd->vdev_mg);
1614 		if (vd->vdev_log_mg != NULL)
1615 			metaslab_group_activate(vd->vdev_log_mg);
1616 	}
1617 
1618 	if (txg == 0)
1619 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1620 
1621 	return (0);
1622 }
1623 
1624 void
1625 vdev_metaslab_fini(vdev_t *vd)
1626 {
1627 	if (vd->vdev_checkpoint_sm != NULL) {
1628 		ASSERT(spa_feature_is_active(vd->vdev_spa,
1629 		    SPA_FEATURE_POOL_CHECKPOINT));
1630 		space_map_close(vd->vdev_checkpoint_sm);
1631 		/*
1632 		 * Even though we close the space map, we need to set its
1633 		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1634 		 * may be called multiple times for certain operations
1635 		 * (i.e. when destroying a pool) so we need to ensure that
1636 		 * this clause never executes twice. This logic is similar
1637 		 * to the one used for the vdev_ms clause below.
1638 		 */
1639 		vd->vdev_checkpoint_sm = NULL;
1640 	}
1641 
1642 	if (vd->vdev_ms != NULL) {
1643 		metaslab_group_t *mg = vd->vdev_mg;
1644 
1645 		metaslab_group_passivate(mg);
1646 		if (vd->vdev_log_mg != NULL) {
1647 			ASSERT(!vd->vdev_islog);
1648 			metaslab_group_passivate(vd->vdev_log_mg);
1649 		}
1650 
1651 		uint64_t count = vd->vdev_ms_count;
1652 		for (uint64_t m = 0; m < count; m++) {
1653 			metaslab_t *msp = vd->vdev_ms[m];
1654 			if (msp != NULL)
1655 				metaslab_fini(msp);
1656 		}
1657 		vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1658 		vd->vdev_ms = NULL;
1659 		vd->vdev_ms_count = 0;
1660 
1661 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1662 			ASSERT0(mg->mg_histogram[i]);
1663 			if (vd->vdev_log_mg != NULL)
1664 				ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1665 		}
1666 	}
1667 	ASSERT0(vd->vdev_ms_count);
1668 }
1669 
1670 typedef struct vdev_probe_stats {
1671 	boolean_t	vps_readable;
1672 	boolean_t	vps_writeable;
1673 	boolean_t	vps_zio_done_probe;
1674 	int		vps_flags;
1675 } vdev_probe_stats_t;
1676 
1677 static void
1678 vdev_probe_done(zio_t *zio)
1679 {
1680 	spa_t *spa = zio->io_spa;
1681 	vdev_t *vd = zio->io_vd;
1682 	vdev_probe_stats_t *vps = zio->io_private;
1683 
1684 	ASSERT(vd->vdev_probe_zio != NULL);
1685 
1686 	if (zio->io_type == ZIO_TYPE_READ) {
1687 		if (zio->io_error == 0)
1688 			vps->vps_readable = 1;
1689 		if (zio->io_error == 0 && spa_writeable(spa)) {
1690 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1691 			    zio->io_offset, zio->io_size, zio->io_abd,
1692 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1693 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1694 		} else {
1695 			abd_free(zio->io_abd);
1696 		}
1697 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1698 		if (zio->io_error == 0)
1699 			vps->vps_writeable = 1;
1700 		abd_free(zio->io_abd);
1701 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1702 		zio_t *pio;
1703 		zio_link_t *zl;
1704 
1705 		vd->vdev_cant_read |= !vps->vps_readable;
1706 		vd->vdev_cant_write |= !vps->vps_writeable;
1707 		vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u",
1708 		    vd->vdev_cant_read, vd->vdev_cant_write);
1709 
1710 		if (vdev_readable(vd) &&
1711 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1712 			zio->io_error = 0;
1713 		} else {
1714 			ASSERT(zio->io_error != 0);
1715 			vdev_dbgmsg(vd, "failed probe");
1716 			(void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1717 			    spa, vd, NULL, NULL, 0);
1718 			zio->io_error = SET_ERROR(ENXIO);
1719 
1720 			/*
1721 			 * If this probe was initiated from zio pipeline, then
1722 			 * change the state in a spa_async_request. Probes that
1723 			 * were initiated from a vdev_open can change the state
1724 			 * as part of the open call.
1725 			 */
1726 			if (vps->vps_zio_done_probe) {
1727 				vd->vdev_fault_wanted = B_TRUE;
1728 				spa_async_request(spa, SPA_ASYNC_FAULT_VDEV);
1729 			}
1730 		}
1731 
1732 		mutex_enter(&vd->vdev_probe_lock);
1733 		ASSERT(vd->vdev_probe_zio == zio);
1734 		vd->vdev_probe_zio = NULL;
1735 		mutex_exit(&vd->vdev_probe_lock);
1736 
1737 		zl = NULL;
1738 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1739 			if (!vdev_accessible(vd, pio))
1740 				pio->io_error = SET_ERROR(ENXIO);
1741 
1742 		kmem_free(vps, sizeof (*vps));
1743 	}
1744 }
1745 
1746 /*
1747  * Determine whether this device is accessible.
1748  *
1749  * Read and write to several known locations: the pad regions of each
1750  * vdev label but the first, which we leave alone in case it contains
1751  * a VTOC.
1752  */
1753 zio_t *
1754 vdev_probe(vdev_t *vd, zio_t *zio)
1755 {
1756 	spa_t *spa = vd->vdev_spa;
1757 	vdev_probe_stats_t *vps = NULL;
1758 	zio_t *pio;
1759 
1760 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1761 
1762 	/*
1763 	 * Don't probe the probe.
1764 	 */
1765 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1766 		return (NULL);
1767 
1768 	/*
1769 	 * To prevent 'probe storms' when a device fails, we create
1770 	 * just one probe i/o at a time.  All zios that want to probe
1771 	 * this vdev will become parents of the probe io.
1772 	 */
1773 	mutex_enter(&vd->vdev_probe_lock);
1774 
1775 	if ((pio = vd->vdev_probe_zio) == NULL) {
1776 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1777 
1778 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1779 		    ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD;
1780 		vps->vps_zio_done_probe = (zio != NULL);
1781 
1782 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1783 			/*
1784 			 * vdev_cant_read and vdev_cant_write can only
1785 			 * transition from TRUE to FALSE when we have the
1786 			 * SCL_ZIO lock as writer; otherwise they can only
1787 			 * transition from FALSE to TRUE.  This ensures that
1788 			 * any zio looking at these values can assume that
1789 			 * failures persist for the life of the I/O.  That's
1790 			 * important because when a device has intermittent
1791 			 * connectivity problems, we want to ensure that
1792 			 * they're ascribed to the device (ENXIO) and not
1793 			 * the zio (EIO).
1794 			 *
1795 			 * Since we hold SCL_ZIO as writer here, clear both
1796 			 * values so the probe can reevaluate from first
1797 			 * principles.
1798 			 */
1799 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1800 			vd->vdev_cant_read = B_FALSE;
1801 			vd->vdev_cant_write = B_FALSE;
1802 		}
1803 
1804 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1805 		    vdev_probe_done, vps,
1806 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1807 	}
1808 
1809 	if (zio != NULL)
1810 		zio_add_child(zio, pio);
1811 
1812 	mutex_exit(&vd->vdev_probe_lock);
1813 
1814 	if (vps == NULL) {
1815 		ASSERT(zio != NULL);
1816 		return (NULL);
1817 	}
1818 
1819 	for (int l = 1; l < VDEV_LABELS; l++) {
1820 		zio_nowait(zio_read_phys(pio, vd,
1821 		    vdev_label_offset(vd->vdev_psize, l,
1822 		    offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1823 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1824 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1825 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1826 	}
1827 
1828 	if (zio == NULL)
1829 		return (pio);
1830 
1831 	zio_nowait(pio);
1832 	return (NULL);
1833 }
1834 
1835 static void
1836 vdev_load_child(void *arg)
1837 {
1838 	vdev_t *vd = arg;
1839 
1840 	vd->vdev_load_error = vdev_load(vd);
1841 }
1842 
1843 static void
1844 vdev_open_child(void *arg)
1845 {
1846 	vdev_t *vd = arg;
1847 
1848 	vd->vdev_open_thread = curthread;
1849 	vd->vdev_open_error = vdev_open(vd);
1850 	vd->vdev_open_thread = NULL;
1851 }
1852 
1853 static boolean_t
1854 vdev_uses_zvols(vdev_t *vd)
1855 {
1856 #ifdef _KERNEL
1857 	if (zvol_is_zvol(vd->vdev_path))
1858 		return (B_TRUE);
1859 #endif
1860 
1861 	for (int c = 0; c < vd->vdev_children; c++)
1862 		if (vdev_uses_zvols(vd->vdev_child[c]))
1863 			return (B_TRUE);
1864 
1865 	return (B_FALSE);
1866 }
1867 
1868 /*
1869  * Returns B_TRUE if the passed child should be opened.
1870  */
1871 static boolean_t
1872 vdev_default_open_children_func(vdev_t *vd)
1873 {
1874 	(void) vd;
1875 	return (B_TRUE);
1876 }
1877 
1878 /*
1879  * Open the requested child vdevs.  If any of the leaf vdevs are using
1880  * a ZFS volume then do the opens in a single thread.  This avoids a
1881  * deadlock when the current thread is holding the spa_namespace_lock.
1882  */
1883 static void
1884 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1885 {
1886 	int children = vd->vdev_children;
1887 
1888 	taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1889 	    children, children, TASKQ_PREPOPULATE);
1890 	vd->vdev_nonrot = B_TRUE;
1891 
1892 	for (int c = 0; c < children; c++) {
1893 		vdev_t *cvd = vd->vdev_child[c];
1894 
1895 		if (open_func(cvd) == B_FALSE)
1896 			continue;
1897 
1898 		if (tq == NULL || vdev_uses_zvols(vd)) {
1899 			cvd->vdev_open_error = vdev_open(cvd);
1900 		} else {
1901 			VERIFY(taskq_dispatch(tq, vdev_open_child,
1902 			    cvd, TQ_SLEEP) != TASKQID_INVALID);
1903 		}
1904 
1905 		vd->vdev_nonrot &= cvd->vdev_nonrot;
1906 	}
1907 
1908 	if (tq != NULL) {
1909 		taskq_wait(tq);
1910 		taskq_destroy(tq);
1911 	}
1912 }
1913 
1914 /*
1915  * Open all child vdevs.
1916  */
1917 void
1918 vdev_open_children(vdev_t *vd)
1919 {
1920 	vdev_open_children_impl(vd, vdev_default_open_children_func);
1921 }
1922 
1923 /*
1924  * Conditionally open a subset of child vdevs.
1925  */
1926 void
1927 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
1928 {
1929 	vdev_open_children_impl(vd, open_func);
1930 }
1931 
1932 /*
1933  * Compute the raidz-deflation ratio.  Note, we hard-code 128k (1 << 17)
1934  * because it is the "typical" blocksize.  Even though SPA_MAXBLOCKSIZE
1935  * changed, this algorithm can not change, otherwise it would inconsistently
1936  * account for existing bp's.  We also hard-code txg 0 for the same reason
1937  * since expanded RAIDZ vdevs can use a different asize for different birth
1938  * txg's.
1939  */
1940 static void
1941 vdev_set_deflate_ratio(vdev_t *vd)
1942 {
1943 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1944 		vd->vdev_deflate_ratio = (1 << 17) /
1945 		    (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >>
1946 		    SPA_MINBLOCKSHIFT);
1947 	}
1948 }
1949 
1950 /*
1951  * Choose the best of two ashifts, preferring one between logical ashift
1952  * (absolute minimum) and administrator defined maximum, otherwise take
1953  * the biggest of the two.
1954  */
1955 uint64_t
1956 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b)
1957 {
1958 	if (a > logical && a <= zfs_vdev_max_auto_ashift) {
1959 		if (b <= logical || b > zfs_vdev_max_auto_ashift)
1960 			return (a);
1961 		else
1962 			return (MAX(a, b));
1963 	} else if (b <= logical || b > zfs_vdev_max_auto_ashift)
1964 		return (MAX(a, b));
1965 	return (b);
1966 }
1967 
1968 /*
1969  * Maximize performance by inflating the configured ashift for top level
1970  * vdevs to be as close to the physical ashift as possible while maintaining
1971  * administrator defined limits and ensuring it doesn't go below the
1972  * logical ashift.
1973  */
1974 static void
1975 vdev_ashift_optimize(vdev_t *vd)
1976 {
1977 	ASSERT(vd == vd->vdev_top);
1978 
1979 	if (vd->vdev_ashift < vd->vdev_physical_ashift &&
1980 	    vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) {
1981 		vd->vdev_ashift = MIN(
1982 		    MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
1983 		    MAX(zfs_vdev_min_auto_ashift,
1984 		    vd->vdev_physical_ashift));
1985 	} else {
1986 		/*
1987 		 * If the logical and physical ashifts are the same, then
1988 		 * we ensure that the top-level vdev's ashift is not smaller
1989 		 * than our minimum ashift value. For the unusual case
1990 		 * where logical ashift > physical ashift, we can't cap
1991 		 * the calculated ashift based on max ashift as that
1992 		 * would cause failures.
1993 		 * We still check if we need to increase it to match
1994 		 * the min ashift.
1995 		 */
1996 		vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
1997 		    vd->vdev_ashift);
1998 	}
1999 }
2000 
2001 /*
2002  * Prepare a virtual device for access.
2003  */
2004 int
2005 vdev_open(vdev_t *vd)
2006 {
2007 	spa_t *spa = vd->vdev_spa;
2008 	int error;
2009 	uint64_t osize = 0;
2010 	uint64_t max_osize = 0;
2011 	uint64_t asize, max_asize, psize;
2012 	uint64_t logical_ashift = 0;
2013 	uint64_t physical_ashift = 0;
2014 
2015 	ASSERT(vd->vdev_open_thread == curthread ||
2016 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2017 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
2018 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
2019 	    vd->vdev_state == VDEV_STATE_OFFLINE);
2020 
2021 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2022 	vd->vdev_cant_read = B_FALSE;
2023 	vd->vdev_cant_write = B_FALSE;
2024 	vd->vdev_fault_wanted = B_FALSE;
2025 	vd->vdev_min_asize = vdev_get_min_asize(vd);
2026 
2027 	/*
2028 	 * If this vdev is not removed, check its fault status.  If it's
2029 	 * faulted, bail out of the open.
2030 	 */
2031 	if (!vd->vdev_removed && vd->vdev_faulted) {
2032 		ASSERT(vd->vdev_children == 0);
2033 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2034 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2035 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2036 		    vd->vdev_label_aux);
2037 		return (SET_ERROR(ENXIO));
2038 	} else if (vd->vdev_offline) {
2039 		ASSERT(vd->vdev_children == 0);
2040 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
2041 		return (SET_ERROR(ENXIO));
2042 	}
2043 
2044 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
2045 	    &logical_ashift, &physical_ashift);
2046 
2047 	/* Keep the device in removed state if unplugged */
2048 	if (error == ENOENT && vd->vdev_removed) {
2049 		vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED,
2050 		    VDEV_AUX_NONE);
2051 		return (error);
2052 	}
2053 
2054 	/*
2055 	 * Physical volume size should never be larger than its max size, unless
2056 	 * the disk has shrunk while we were reading it or the device is buggy
2057 	 * or damaged: either way it's not safe for use, bail out of the open.
2058 	 */
2059 	if (osize > max_osize) {
2060 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2061 		    VDEV_AUX_OPEN_FAILED);
2062 		return (SET_ERROR(ENXIO));
2063 	}
2064 
2065 	/*
2066 	 * Reset the vdev_reopening flag so that we actually close
2067 	 * the vdev on error.
2068 	 */
2069 	vd->vdev_reopening = B_FALSE;
2070 	if (zio_injection_enabled && error == 0)
2071 		error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
2072 
2073 	if (error) {
2074 		if (vd->vdev_removed &&
2075 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
2076 			vd->vdev_removed = B_FALSE;
2077 
2078 		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
2079 			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
2080 			    vd->vdev_stat.vs_aux);
2081 		} else {
2082 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2083 			    vd->vdev_stat.vs_aux);
2084 		}
2085 		return (error);
2086 	}
2087 
2088 	vd->vdev_removed = B_FALSE;
2089 
2090 	/*
2091 	 * Recheck the faulted flag now that we have confirmed that
2092 	 * the vdev is accessible.  If we're faulted, bail.
2093 	 */
2094 	if (vd->vdev_faulted) {
2095 		ASSERT(vd->vdev_children == 0);
2096 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2097 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2098 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2099 		    vd->vdev_label_aux);
2100 		return (SET_ERROR(ENXIO));
2101 	}
2102 
2103 	if (vd->vdev_degraded) {
2104 		ASSERT(vd->vdev_children == 0);
2105 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2106 		    VDEV_AUX_ERR_EXCEEDED);
2107 	} else {
2108 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
2109 	}
2110 
2111 	/*
2112 	 * For hole or missing vdevs we just return success.
2113 	 */
2114 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
2115 		return (0);
2116 
2117 	for (int c = 0; c < vd->vdev_children; c++) {
2118 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
2119 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2120 			    VDEV_AUX_NONE);
2121 			break;
2122 		}
2123 	}
2124 
2125 	osize = P2ALIGN_TYPED(osize, sizeof (vdev_label_t), uint64_t);
2126 	max_osize = P2ALIGN_TYPED(max_osize, sizeof (vdev_label_t), uint64_t);
2127 
2128 	if (vd->vdev_children == 0) {
2129 		if (osize < SPA_MINDEVSIZE) {
2130 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2131 			    VDEV_AUX_TOO_SMALL);
2132 			return (SET_ERROR(EOVERFLOW));
2133 		}
2134 		psize = osize;
2135 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
2136 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
2137 		    VDEV_LABEL_END_SIZE);
2138 	} else {
2139 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2140 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2141 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2142 			    VDEV_AUX_TOO_SMALL);
2143 			return (SET_ERROR(EOVERFLOW));
2144 		}
2145 		psize = 0;
2146 		asize = osize;
2147 		max_asize = max_osize;
2148 	}
2149 
2150 	/*
2151 	 * If the vdev was expanded, record this so that we can re-create the
2152 	 * uberblock rings in labels {2,3}, during the next sync.
2153 	 */
2154 	if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2155 		vd->vdev_copy_uberblocks = B_TRUE;
2156 
2157 	vd->vdev_psize = psize;
2158 
2159 	/*
2160 	 * Make sure the allocatable size hasn't shrunk too much.
2161 	 */
2162 	if (asize < vd->vdev_min_asize) {
2163 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2164 		    VDEV_AUX_BAD_LABEL);
2165 		return (SET_ERROR(EINVAL));
2166 	}
2167 
2168 	/*
2169 	 * We can always set the logical/physical ashift members since
2170 	 * their values are only used to calculate the vdev_ashift when
2171 	 * the device is first added to the config. These values should
2172 	 * not be used for anything else since they may change whenever
2173 	 * the device is reopened and we don't store them in the label.
2174 	 */
2175 	vd->vdev_physical_ashift =
2176 	    MAX(physical_ashift, vd->vdev_physical_ashift);
2177 	vd->vdev_logical_ashift = MAX(logical_ashift,
2178 	    vd->vdev_logical_ashift);
2179 
2180 	if (vd->vdev_asize == 0) {
2181 		/*
2182 		 * This is the first-ever open, so use the computed values.
2183 		 * For compatibility, a different ashift can be requested.
2184 		 */
2185 		vd->vdev_asize = asize;
2186 		vd->vdev_max_asize = max_asize;
2187 
2188 		/*
2189 		 * If the vdev_ashift was not overridden at creation time,
2190 		 * then set it the logical ashift and optimize the ashift.
2191 		 */
2192 		if (vd->vdev_ashift == 0) {
2193 			vd->vdev_ashift = vd->vdev_logical_ashift;
2194 
2195 			if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2196 				vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2197 				    VDEV_AUX_ASHIFT_TOO_BIG);
2198 				return (SET_ERROR(EDOM));
2199 			}
2200 
2201 			if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE)
2202 				vdev_ashift_optimize(vd);
2203 			vd->vdev_attaching = B_FALSE;
2204 		}
2205 		if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2206 		    vd->vdev_ashift > ASHIFT_MAX)) {
2207 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2208 			    VDEV_AUX_BAD_ASHIFT);
2209 			return (SET_ERROR(EDOM));
2210 		}
2211 	} else {
2212 		/*
2213 		 * Make sure the alignment required hasn't increased.
2214 		 */
2215 		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2216 		    vd->vdev_ops->vdev_op_leaf) {
2217 			(void) zfs_ereport_post(
2218 			    FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2219 			    spa, vd, NULL, NULL, 0);
2220 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2221 			    VDEV_AUX_BAD_LABEL);
2222 			return (SET_ERROR(EDOM));
2223 		}
2224 		vd->vdev_max_asize = max_asize;
2225 	}
2226 
2227 	/*
2228 	 * If all children are healthy we update asize if either:
2229 	 * The asize has increased, due to a device expansion caused by dynamic
2230 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
2231 	 * making the additional space available.
2232 	 *
2233 	 * The asize has decreased, due to a device shrink usually caused by a
2234 	 * vdev replace with a smaller device. This ensures that calculations
2235 	 * based of max_asize and asize e.g. esize are always valid. It's safe
2236 	 * to do this as we've already validated that asize is greater than
2237 	 * vdev_min_asize.
2238 	 */
2239 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2240 	    ((asize > vd->vdev_asize &&
2241 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
2242 	    (asize < vd->vdev_asize)))
2243 		vd->vdev_asize = asize;
2244 
2245 	vdev_set_min_asize(vd);
2246 
2247 	/*
2248 	 * Ensure we can issue some IO before declaring the
2249 	 * vdev open for business.
2250 	 */
2251 	if (vd->vdev_ops->vdev_op_leaf &&
2252 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2253 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2254 		    VDEV_AUX_ERR_EXCEEDED);
2255 		return (error);
2256 	}
2257 
2258 	/*
2259 	 * Track the minimum allocation size.
2260 	 */
2261 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2262 	    vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2263 		uint64_t min_alloc = vdev_get_min_alloc(vd);
2264 		vdev_spa_set_alloc(spa, min_alloc);
2265 	}
2266 
2267 	/*
2268 	 * If this is a leaf vdev, assess whether a resilver is needed.
2269 	 * But don't do this if we are doing a reopen for a scrub, since
2270 	 * this would just restart the scrub we are already doing.
2271 	 */
2272 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2273 		dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2274 
2275 	return (0);
2276 }
2277 
2278 static void
2279 vdev_validate_child(void *arg)
2280 {
2281 	vdev_t *vd = arg;
2282 
2283 	vd->vdev_validate_thread = curthread;
2284 	vd->vdev_validate_error = vdev_validate(vd);
2285 	vd->vdev_validate_thread = NULL;
2286 }
2287 
2288 /*
2289  * Called once the vdevs are all opened, this routine validates the label
2290  * contents. This needs to be done before vdev_load() so that we don't
2291  * inadvertently do repair I/Os to the wrong device.
2292  *
2293  * This function will only return failure if one of the vdevs indicates that it
2294  * has since been destroyed or exported.  This is only possible if
2295  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
2296  * will be updated but the function will return 0.
2297  */
2298 int
2299 vdev_validate(vdev_t *vd)
2300 {
2301 	spa_t *spa = vd->vdev_spa;
2302 	taskq_t *tq = NULL;
2303 	nvlist_t *label;
2304 	uint64_t guid = 0, aux_guid = 0, top_guid;
2305 	uint64_t state;
2306 	nvlist_t *nvl;
2307 	uint64_t txg;
2308 	int children = vd->vdev_children;
2309 
2310 	if (vdev_validate_skip)
2311 		return (0);
2312 
2313 	if (children > 0) {
2314 		tq = taskq_create("vdev_validate", children, minclsyspri,
2315 		    children, children, TASKQ_PREPOPULATE);
2316 	}
2317 
2318 	for (uint64_t c = 0; c < children; c++) {
2319 		vdev_t *cvd = vd->vdev_child[c];
2320 
2321 		if (tq == NULL || vdev_uses_zvols(cvd)) {
2322 			vdev_validate_child(cvd);
2323 		} else {
2324 			VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2325 			    TQ_SLEEP) != TASKQID_INVALID);
2326 		}
2327 	}
2328 	if (tq != NULL) {
2329 		taskq_wait(tq);
2330 		taskq_destroy(tq);
2331 	}
2332 	for (int c = 0; c < children; c++) {
2333 		int error = vd->vdev_child[c]->vdev_validate_error;
2334 
2335 		if (error != 0)
2336 			return (SET_ERROR(EBADF));
2337 	}
2338 
2339 
2340 	/*
2341 	 * If the device has already failed, or was marked offline, don't do
2342 	 * any further validation.  Otherwise, label I/O will fail and we will
2343 	 * overwrite the previous state.
2344 	 */
2345 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2346 		return (0);
2347 
2348 	/*
2349 	 * If we are performing an extreme rewind, we allow for a label that
2350 	 * was modified at a point after the current txg.
2351 	 * If config lock is not held do not check for the txg. spa_sync could
2352 	 * be updating the vdev's label before updating spa_last_synced_txg.
2353 	 */
2354 	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2355 	    spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2356 		txg = UINT64_MAX;
2357 	else
2358 		txg = spa_last_synced_txg(spa);
2359 
2360 	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2361 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2362 		    VDEV_AUX_BAD_LABEL);
2363 		vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2364 		    "txg %llu", (u_longlong_t)txg);
2365 		return (0);
2366 	}
2367 
2368 	/*
2369 	 * Determine if this vdev has been split off into another
2370 	 * pool.  If so, then refuse to open it.
2371 	 */
2372 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2373 	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2374 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2375 		    VDEV_AUX_SPLIT_POOL);
2376 		nvlist_free(label);
2377 		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2378 		return (0);
2379 	}
2380 
2381 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2382 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2383 		    VDEV_AUX_CORRUPT_DATA);
2384 		nvlist_free(label);
2385 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2386 		    ZPOOL_CONFIG_POOL_GUID);
2387 		return (0);
2388 	}
2389 
2390 	/*
2391 	 * If config is not trusted then ignore the spa guid check. This is
2392 	 * necessary because if the machine crashed during a re-guid the new
2393 	 * guid might have been written to all of the vdev labels, but not the
2394 	 * cached config. The check will be performed again once we have the
2395 	 * trusted config from the MOS.
2396 	 */
2397 	if (spa->spa_trust_config && guid != spa_guid(spa)) {
2398 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2399 		    VDEV_AUX_CORRUPT_DATA);
2400 		nvlist_free(label);
2401 		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2402 		    "match config (%llu != %llu)", (u_longlong_t)guid,
2403 		    (u_longlong_t)spa_guid(spa));
2404 		return (0);
2405 	}
2406 
2407 	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2408 	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2409 	    &aux_guid) != 0)
2410 		aux_guid = 0;
2411 
2412 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2413 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2414 		    VDEV_AUX_CORRUPT_DATA);
2415 		nvlist_free(label);
2416 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2417 		    ZPOOL_CONFIG_GUID);
2418 		return (0);
2419 	}
2420 
2421 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2422 	    != 0) {
2423 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2424 		    VDEV_AUX_CORRUPT_DATA);
2425 		nvlist_free(label);
2426 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2427 		    ZPOOL_CONFIG_TOP_GUID);
2428 		return (0);
2429 	}
2430 
2431 	/*
2432 	 * If this vdev just became a top-level vdev because its sibling was
2433 	 * detached, it will have adopted the parent's vdev guid -- but the
2434 	 * label may or may not be on disk yet. Fortunately, either version
2435 	 * of the label will have the same top guid, so if we're a top-level
2436 	 * vdev, we can safely compare to that instead.
2437 	 * However, if the config comes from a cachefile that failed to update
2438 	 * after the detach, a top-level vdev will appear as a non top-level
2439 	 * vdev in the config. Also relax the constraints if we perform an
2440 	 * extreme rewind.
2441 	 *
2442 	 * If we split this vdev off instead, then we also check the
2443 	 * original pool's guid. We don't want to consider the vdev
2444 	 * corrupt if it is partway through a split operation.
2445 	 */
2446 	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2447 		boolean_t mismatch = B_FALSE;
2448 		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2449 			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2450 				mismatch = B_TRUE;
2451 		} else {
2452 			if (vd->vdev_guid != top_guid &&
2453 			    vd->vdev_top->vdev_guid != guid)
2454 				mismatch = B_TRUE;
2455 		}
2456 
2457 		if (mismatch) {
2458 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2459 			    VDEV_AUX_CORRUPT_DATA);
2460 			nvlist_free(label);
2461 			vdev_dbgmsg(vd, "vdev_validate: config guid "
2462 			    "doesn't match label guid");
2463 			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2464 			    (u_longlong_t)vd->vdev_guid,
2465 			    (u_longlong_t)vd->vdev_top->vdev_guid);
2466 			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2467 			    "aux_guid %llu", (u_longlong_t)guid,
2468 			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2469 			return (0);
2470 		}
2471 	}
2472 
2473 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2474 	    &state) != 0) {
2475 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2476 		    VDEV_AUX_CORRUPT_DATA);
2477 		nvlist_free(label);
2478 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2479 		    ZPOOL_CONFIG_POOL_STATE);
2480 		return (0);
2481 	}
2482 
2483 	nvlist_free(label);
2484 
2485 	/*
2486 	 * If this is a verbatim import, no need to check the
2487 	 * state of the pool.
2488 	 */
2489 	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2490 	    spa_load_state(spa) == SPA_LOAD_OPEN &&
2491 	    state != POOL_STATE_ACTIVE) {
2492 		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2493 		    "for spa %s", (u_longlong_t)state, spa->spa_name);
2494 		return (SET_ERROR(EBADF));
2495 	}
2496 
2497 	/*
2498 	 * If we were able to open and validate a vdev that was
2499 	 * previously marked permanently unavailable, clear that state
2500 	 * now.
2501 	 */
2502 	if (vd->vdev_not_present)
2503 		vd->vdev_not_present = 0;
2504 
2505 	return (0);
2506 }
2507 
2508 static void
2509 vdev_update_path(const char *prefix, char *svd, char **dvd, uint64_t guid)
2510 {
2511 	if (svd != NULL && *dvd != NULL) {
2512 		if (strcmp(svd, *dvd) != 0) {
2513 			zfs_dbgmsg("vdev_copy_path: vdev %llu: %s changed "
2514 			    "from '%s' to '%s'", (u_longlong_t)guid, prefix,
2515 			    *dvd, svd);
2516 			spa_strfree(*dvd);
2517 			*dvd = spa_strdup(svd);
2518 		}
2519 	} else if (svd != NULL) {
2520 		*dvd = spa_strdup(svd);
2521 		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2522 		    (u_longlong_t)guid, *dvd);
2523 	}
2524 }
2525 
2526 static void
2527 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2528 {
2529 	char *old, *new;
2530 
2531 	vdev_update_path("vdev_path", svd->vdev_path, &dvd->vdev_path,
2532 	    dvd->vdev_guid);
2533 
2534 	vdev_update_path("vdev_devid", svd->vdev_devid, &dvd->vdev_devid,
2535 	    dvd->vdev_guid);
2536 
2537 	vdev_update_path("vdev_physpath", svd->vdev_physpath,
2538 	    &dvd->vdev_physpath, dvd->vdev_guid);
2539 
2540 	/*
2541 	 * Our enclosure sysfs path may have changed between imports
2542 	 */
2543 	old = dvd->vdev_enc_sysfs_path;
2544 	new = svd->vdev_enc_sysfs_path;
2545 	if ((old != NULL && new == NULL) ||
2546 	    (old == NULL && new != NULL) ||
2547 	    ((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
2548 		zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2549 		    "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2550 		    old, new);
2551 
2552 		if (dvd->vdev_enc_sysfs_path)
2553 			spa_strfree(dvd->vdev_enc_sysfs_path);
2554 
2555 		if (svd->vdev_enc_sysfs_path) {
2556 			dvd->vdev_enc_sysfs_path = spa_strdup(
2557 			    svd->vdev_enc_sysfs_path);
2558 		} else {
2559 			dvd->vdev_enc_sysfs_path = NULL;
2560 		}
2561 	}
2562 }
2563 
2564 /*
2565  * Recursively copy vdev paths from one vdev to another. Source and destination
2566  * vdev trees must have same geometry otherwise return error. Intended to copy
2567  * paths from userland config into MOS config.
2568  */
2569 int
2570 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2571 {
2572 	if ((svd->vdev_ops == &vdev_missing_ops) ||
2573 	    (svd->vdev_ishole && dvd->vdev_ishole) ||
2574 	    (dvd->vdev_ops == &vdev_indirect_ops))
2575 		return (0);
2576 
2577 	if (svd->vdev_ops != dvd->vdev_ops) {
2578 		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2579 		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2580 		return (SET_ERROR(EINVAL));
2581 	}
2582 
2583 	if (svd->vdev_guid != dvd->vdev_guid) {
2584 		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2585 		    "%llu)", (u_longlong_t)svd->vdev_guid,
2586 		    (u_longlong_t)dvd->vdev_guid);
2587 		return (SET_ERROR(EINVAL));
2588 	}
2589 
2590 	if (svd->vdev_children != dvd->vdev_children) {
2591 		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2592 		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
2593 		    (u_longlong_t)dvd->vdev_children);
2594 		return (SET_ERROR(EINVAL));
2595 	}
2596 
2597 	for (uint64_t i = 0; i < svd->vdev_children; i++) {
2598 		int error = vdev_copy_path_strict(svd->vdev_child[i],
2599 		    dvd->vdev_child[i]);
2600 		if (error != 0)
2601 			return (error);
2602 	}
2603 
2604 	if (svd->vdev_ops->vdev_op_leaf)
2605 		vdev_copy_path_impl(svd, dvd);
2606 
2607 	return (0);
2608 }
2609 
2610 static void
2611 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2612 {
2613 	ASSERT(stvd->vdev_top == stvd);
2614 	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2615 
2616 	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2617 		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2618 	}
2619 
2620 	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2621 		return;
2622 
2623 	/*
2624 	 * The idea here is that while a vdev can shift positions within
2625 	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2626 	 * step outside of it.
2627 	 */
2628 	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2629 
2630 	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2631 		return;
2632 
2633 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2634 
2635 	vdev_copy_path_impl(vd, dvd);
2636 }
2637 
2638 /*
2639  * Recursively copy vdev paths from one root vdev to another. Source and
2640  * destination vdev trees may differ in geometry. For each destination leaf
2641  * vdev, search a vdev with the same guid and top vdev id in the source.
2642  * Intended to copy paths from userland config into MOS config.
2643  */
2644 void
2645 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2646 {
2647 	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2648 	ASSERT(srvd->vdev_ops == &vdev_root_ops);
2649 	ASSERT(drvd->vdev_ops == &vdev_root_ops);
2650 
2651 	for (uint64_t i = 0; i < children; i++) {
2652 		vdev_copy_path_search(srvd->vdev_child[i],
2653 		    drvd->vdev_child[i]);
2654 	}
2655 }
2656 
2657 /*
2658  * Close a virtual device.
2659  */
2660 void
2661 vdev_close(vdev_t *vd)
2662 {
2663 	vdev_t *pvd = vd->vdev_parent;
2664 	spa_t *spa __maybe_unused = vd->vdev_spa;
2665 
2666 	ASSERT(vd != NULL);
2667 	ASSERT(vd->vdev_open_thread == curthread ||
2668 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2669 
2670 	/*
2671 	 * If our parent is reopening, then we are as well, unless we are
2672 	 * going offline.
2673 	 */
2674 	if (pvd != NULL && pvd->vdev_reopening)
2675 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2676 
2677 	vd->vdev_ops->vdev_op_close(vd);
2678 
2679 	/*
2680 	 * We record the previous state before we close it, so that if we are
2681 	 * doing a reopen(), we don't generate FMA ereports if we notice that
2682 	 * it's still faulted.
2683 	 */
2684 	vd->vdev_prevstate = vd->vdev_state;
2685 
2686 	if (vd->vdev_offline)
2687 		vd->vdev_state = VDEV_STATE_OFFLINE;
2688 	else
2689 		vd->vdev_state = VDEV_STATE_CLOSED;
2690 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2691 }
2692 
2693 void
2694 vdev_hold(vdev_t *vd)
2695 {
2696 	spa_t *spa = vd->vdev_spa;
2697 
2698 	ASSERT(spa_is_root(spa));
2699 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2700 		return;
2701 
2702 	for (int c = 0; c < vd->vdev_children; c++)
2703 		vdev_hold(vd->vdev_child[c]);
2704 
2705 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
2706 		vd->vdev_ops->vdev_op_hold(vd);
2707 }
2708 
2709 void
2710 vdev_rele(vdev_t *vd)
2711 {
2712 	ASSERT(spa_is_root(vd->vdev_spa));
2713 	for (int c = 0; c < vd->vdev_children; c++)
2714 		vdev_rele(vd->vdev_child[c]);
2715 
2716 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
2717 		vd->vdev_ops->vdev_op_rele(vd);
2718 }
2719 
2720 /*
2721  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2722  * reopen leaf vdevs which had previously been opened as they might deadlock
2723  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2724  * If the leaf has never been opened then open it, as usual.
2725  */
2726 void
2727 vdev_reopen(vdev_t *vd)
2728 {
2729 	spa_t *spa = vd->vdev_spa;
2730 
2731 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2732 
2733 	/* set the reopening flag unless we're taking the vdev offline */
2734 	vd->vdev_reopening = !vd->vdev_offline;
2735 	vdev_close(vd);
2736 	(void) vdev_open(vd);
2737 
2738 	/*
2739 	 * Call vdev_validate() here to make sure we have the same device.
2740 	 * Otherwise, a device with an invalid label could be successfully
2741 	 * opened in response to vdev_reopen().
2742 	 */
2743 	if (vd->vdev_aux) {
2744 		(void) vdev_validate_aux(vd);
2745 		if (vdev_readable(vd) && vdev_writeable(vd) &&
2746 		    vd->vdev_aux == &spa->spa_l2cache) {
2747 			/*
2748 			 * In case the vdev is present we should evict all ARC
2749 			 * buffers and pointers to log blocks and reclaim their
2750 			 * space before restoring its contents to L2ARC.
2751 			 */
2752 			if (l2arc_vdev_present(vd)) {
2753 				l2arc_rebuild_vdev(vd, B_TRUE);
2754 			} else {
2755 				l2arc_add_vdev(spa, vd);
2756 			}
2757 			spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2758 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2759 		}
2760 	} else {
2761 		(void) vdev_validate(vd);
2762 	}
2763 
2764 	/*
2765 	 * Recheck if resilver is still needed and cancel any
2766 	 * scheduled resilver if resilver is unneeded.
2767 	 */
2768 	if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) &&
2769 	    spa->spa_async_tasks & SPA_ASYNC_RESILVER) {
2770 		mutex_enter(&spa->spa_async_lock);
2771 		spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER;
2772 		mutex_exit(&spa->spa_async_lock);
2773 	}
2774 
2775 	/*
2776 	 * Reassess parent vdev's health.
2777 	 */
2778 	vdev_propagate_state(vd);
2779 }
2780 
2781 int
2782 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2783 {
2784 	int error;
2785 
2786 	/*
2787 	 * Normally, partial opens (e.g. of a mirror) are allowed.
2788 	 * For a create, however, we want to fail the request if
2789 	 * there are any components we can't open.
2790 	 */
2791 	error = vdev_open(vd);
2792 
2793 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2794 		vdev_close(vd);
2795 		return (error ? error : SET_ERROR(ENXIO));
2796 	}
2797 
2798 	/*
2799 	 * Recursively load DTLs and initialize all labels.
2800 	 */
2801 	if ((error = vdev_dtl_load(vd)) != 0 ||
2802 	    (error = vdev_label_init(vd, txg, isreplacing ?
2803 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2804 		vdev_close(vd);
2805 		return (error);
2806 	}
2807 
2808 	return (0);
2809 }
2810 
2811 void
2812 vdev_metaslab_set_size(vdev_t *vd)
2813 {
2814 	uint64_t asize = vd->vdev_asize;
2815 	uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2816 	uint64_t ms_shift;
2817 
2818 	/*
2819 	 * There are two dimensions to the metaslab sizing calculation:
2820 	 * the size of the metaslab and the count of metaslabs per vdev.
2821 	 *
2822 	 * The default values used below are a good balance between memory
2823 	 * usage (larger metaslab size means more memory needed for loaded
2824 	 * metaslabs; more metaslabs means more memory needed for the
2825 	 * metaslab_t structs), metaslab load time (larger metaslabs take
2826 	 * longer to load), and metaslab sync time (more metaslabs means
2827 	 * more time spent syncing all of them).
2828 	 *
2829 	 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2830 	 * The range of the dimensions are as follows:
2831 	 *
2832 	 *	2^29 <= ms_size  <= 2^34
2833 	 *	  16 <= ms_count <= 131,072
2834 	 *
2835 	 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2836 	 * at least 512MB (2^29) to minimize fragmentation effects when
2837 	 * testing with smaller devices.  However, the count constraint
2838 	 * of at least 16 metaslabs will override this minimum size goal.
2839 	 *
2840 	 * On the upper end of vdev sizes, we aim for a maximum metaslab
2841 	 * size of 16GB.  However, we will cap the total count to 2^17
2842 	 * metaslabs to keep our memory footprint in check and let the
2843 	 * metaslab size grow from there if that limit is hit.
2844 	 *
2845 	 * The net effect of applying above constrains is summarized below.
2846 	 *
2847 	 *   vdev size       metaslab count
2848 	 *  --------------|-----------------
2849 	 *      < 8GB        ~16
2850 	 *  8GB   - 100GB   one per 512MB
2851 	 *  100GB - 3TB     ~200
2852 	 *  3TB   - 2PB     one per 16GB
2853 	 *      > 2PB       ~131,072
2854 	 *  --------------------------------
2855 	 *
2856 	 *  Finally, note that all of the above calculate the initial
2857 	 *  number of metaslabs. Expanding a top-level vdev will result
2858 	 *  in additional metaslabs being allocated making it possible
2859 	 *  to exceed the zfs_vdev_ms_count_limit.
2860 	 */
2861 
2862 	if (ms_count < zfs_vdev_min_ms_count)
2863 		ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2864 	else if (ms_count > zfs_vdev_default_ms_count)
2865 		ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2866 	else
2867 		ms_shift = zfs_vdev_default_ms_shift;
2868 
2869 	if (ms_shift < SPA_MAXBLOCKSHIFT) {
2870 		ms_shift = SPA_MAXBLOCKSHIFT;
2871 	} else if (ms_shift > zfs_vdev_max_ms_shift) {
2872 		ms_shift = zfs_vdev_max_ms_shift;
2873 		/* cap the total count to constrain memory footprint */
2874 		if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2875 			ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2876 	}
2877 
2878 	vd->vdev_ms_shift = ms_shift;
2879 	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2880 }
2881 
2882 void
2883 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2884 {
2885 	ASSERT(vd == vd->vdev_top);
2886 	/* indirect vdevs don't have metaslabs or dtls */
2887 	ASSERT(vdev_is_concrete(vd) || flags == 0);
2888 	ASSERT(ISP2(flags));
2889 	ASSERT(spa_writeable(vd->vdev_spa));
2890 
2891 	if (flags & VDD_METASLAB)
2892 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2893 
2894 	if (flags & VDD_DTL)
2895 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2896 
2897 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2898 }
2899 
2900 void
2901 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2902 {
2903 	for (int c = 0; c < vd->vdev_children; c++)
2904 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2905 
2906 	if (vd->vdev_ops->vdev_op_leaf)
2907 		vdev_dirty(vd->vdev_top, flags, vd, txg);
2908 }
2909 
2910 /*
2911  * DTLs.
2912  *
2913  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2914  * the vdev has less than perfect replication.  There are four kinds of DTL:
2915  *
2916  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2917  *
2918  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2919  *
2920  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2921  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2922  *	txgs that was scrubbed.
2923  *
2924  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2925  *	persistent errors or just some device being offline.
2926  *	Unlike the other three, the DTL_OUTAGE map is not generally
2927  *	maintained; it's only computed when needed, typically to
2928  *	determine whether a device can be detached.
2929  *
2930  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2931  * either has the data or it doesn't.
2932  *
2933  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2934  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2935  * if any child is less than fully replicated, then so is its parent.
2936  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2937  * comprising only those txgs which appear in 'maxfaults' or more children;
2938  * those are the txgs we don't have enough replication to read.  For example,
2939  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2940  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2941  * two child DTL_MISSING maps.
2942  *
2943  * It should be clear from the above that to compute the DTLs and outage maps
2944  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2945  * Therefore, that is all we keep on disk.  When loading the pool, or after
2946  * a configuration change, we generate all other DTLs from first principles.
2947  */
2948 void
2949 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2950 {
2951 	range_tree_t *rt = vd->vdev_dtl[t];
2952 
2953 	ASSERT(t < DTL_TYPES);
2954 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2955 	ASSERT(spa_writeable(vd->vdev_spa));
2956 
2957 	mutex_enter(&vd->vdev_dtl_lock);
2958 	if (!range_tree_contains(rt, txg, size))
2959 		range_tree_add(rt, txg, size);
2960 	mutex_exit(&vd->vdev_dtl_lock);
2961 }
2962 
2963 boolean_t
2964 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2965 {
2966 	range_tree_t *rt = vd->vdev_dtl[t];
2967 	boolean_t dirty = B_FALSE;
2968 
2969 	ASSERT(t < DTL_TYPES);
2970 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2971 
2972 	/*
2973 	 * While we are loading the pool, the DTLs have not been loaded yet.
2974 	 * This isn't a problem but it can result in devices being tried
2975 	 * which are known to not have the data.  In which case, the import
2976 	 * is relying on the checksum to ensure that we get the right data.
2977 	 * Note that while importing we are only reading the MOS, which is
2978 	 * always checksummed.
2979 	 */
2980 	mutex_enter(&vd->vdev_dtl_lock);
2981 	if (!range_tree_is_empty(rt))
2982 		dirty = range_tree_contains(rt, txg, size);
2983 	mutex_exit(&vd->vdev_dtl_lock);
2984 
2985 	return (dirty);
2986 }
2987 
2988 boolean_t
2989 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2990 {
2991 	range_tree_t *rt = vd->vdev_dtl[t];
2992 	boolean_t empty;
2993 
2994 	mutex_enter(&vd->vdev_dtl_lock);
2995 	empty = range_tree_is_empty(rt);
2996 	mutex_exit(&vd->vdev_dtl_lock);
2997 
2998 	return (empty);
2999 }
3000 
3001 /*
3002  * Check if the txg falls within the range which must be
3003  * resilvered.  DVAs outside this range can always be skipped.
3004  */
3005 boolean_t
3006 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3007     uint64_t phys_birth)
3008 {
3009 	(void) dva, (void) psize;
3010 
3011 	/* Set by sequential resilver. */
3012 	if (phys_birth == TXG_UNKNOWN)
3013 		return (B_TRUE);
3014 
3015 	return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
3016 }
3017 
3018 /*
3019  * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
3020  */
3021 boolean_t
3022 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3023     uint64_t phys_birth)
3024 {
3025 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3026 
3027 	if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
3028 	    vd->vdev_ops->vdev_op_leaf)
3029 		return (B_TRUE);
3030 
3031 	return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
3032 	    phys_birth));
3033 }
3034 
3035 /*
3036  * Returns the lowest txg in the DTL range.
3037  */
3038 static uint64_t
3039 vdev_dtl_min(vdev_t *vd)
3040 {
3041 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3042 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3043 	ASSERT0(vd->vdev_children);
3044 
3045 	return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
3046 }
3047 
3048 /*
3049  * Returns the highest txg in the DTL.
3050  */
3051 static uint64_t
3052 vdev_dtl_max(vdev_t *vd)
3053 {
3054 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3055 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3056 	ASSERT0(vd->vdev_children);
3057 
3058 	return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
3059 }
3060 
3061 /*
3062  * Determine if a resilvering vdev should remove any DTL entries from
3063  * its range. If the vdev was resilvering for the entire duration of the
3064  * scan then it should excise that range from its DTLs. Otherwise, this
3065  * vdev is considered partially resilvered and should leave its DTL
3066  * entries intact. The comment in vdev_dtl_reassess() describes how we
3067  * excise the DTLs.
3068  */
3069 static boolean_t
3070 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
3071 {
3072 	ASSERT0(vd->vdev_children);
3073 
3074 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
3075 		return (B_FALSE);
3076 
3077 	if (vd->vdev_resilver_deferred)
3078 		return (B_FALSE);
3079 
3080 	if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
3081 		return (B_TRUE);
3082 
3083 	if (rebuild_done) {
3084 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3085 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
3086 
3087 		/* Rebuild not initiated by attach */
3088 		if (vd->vdev_rebuild_txg == 0)
3089 			return (B_TRUE);
3090 
3091 		/*
3092 		 * When a rebuild completes without error then all missing data
3093 		 * up to the rebuild max txg has been reconstructed and the DTL
3094 		 * is eligible for excision.
3095 		 */
3096 		if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
3097 		    vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
3098 			ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
3099 			ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
3100 			ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
3101 			return (B_TRUE);
3102 		}
3103 	} else {
3104 		dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
3105 		dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
3106 
3107 		/* Resilver not initiated by attach */
3108 		if (vd->vdev_resilver_txg == 0)
3109 			return (B_TRUE);
3110 
3111 		/*
3112 		 * When a resilver is initiated the scan will assign the
3113 		 * scn_max_txg value to the highest txg value that exists
3114 		 * in all DTLs. If this device's max DTL is not part of this
3115 		 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
3116 		 * then it is not eligible for excision.
3117 		 */
3118 		if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
3119 			ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
3120 			ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
3121 			ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
3122 			return (B_TRUE);
3123 		}
3124 	}
3125 
3126 	return (B_FALSE);
3127 }
3128 
3129 /*
3130  * Reassess DTLs after a config change or scrub completion. If txg == 0 no
3131  * write operations will be issued to the pool.
3132  */
3133 void
3134 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3135     boolean_t scrub_done, boolean_t rebuild_done)
3136 {
3137 	spa_t *spa = vd->vdev_spa;
3138 	avl_tree_t reftree;
3139 	int minref;
3140 
3141 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3142 
3143 	for (int c = 0; c < vd->vdev_children; c++)
3144 		vdev_dtl_reassess(vd->vdev_child[c], txg,
3145 		    scrub_txg, scrub_done, rebuild_done);
3146 
3147 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
3148 		return;
3149 
3150 	if (vd->vdev_ops->vdev_op_leaf) {
3151 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
3152 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3153 		boolean_t check_excise = B_FALSE;
3154 		boolean_t wasempty = B_TRUE;
3155 
3156 		mutex_enter(&vd->vdev_dtl_lock);
3157 
3158 		/*
3159 		 * If requested, pretend the scan or rebuild completed cleanly.
3160 		 */
3161 		if (zfs_scan_ignore_errors) {
3162 			if (scn != NULL)
3163 				scn->scn_phys.scn_errors = 0;
3164 			if (vr != NULL)
3165 				vr->vr_rebuild_phys.vrp_errors = 0;
3166 		}
3167 
3168 		if (scrub_txg != 0 &&
3169 		    !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3170 			wasempty = B_FALSE;
3171 			zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3172 			    "dtl:%llu/%llu errors:%llu",
3173 			    (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
3174 			    (u_longlong_t)scrub_txg, spa->spa_scrub_started,
3175 			    (u_longlong_t)vdev_dtl_min(vd),
3176 			    (u_longlong_t)vdev_dtl_max(vd),
3177 			    (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
3178 		}
3179 
3180 		/*
3181 		 * If we've completed a scrub/resilver or a rebuild cleanly
3182 		 * then determine if this vdev should remove any DTLs. We
3183 		 * only want to excise regions on vdevs that were available
3184 		 * during the entire duration of this scan.
3185 		 */
3186 		if (rebuild_done &&
3187 		    vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3188 			check_excise = B_TRUE;
3189 		} else {
3190 			if (spa->spa_scrub_started ||
3191 			    (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3192 				check_excise = B_TRUE;
3193 			}
3194 		}
3195 
3196 		if (scrub_txg && check_excise &&
3197 		    vdev_dtl_should_excise(vd, rebuild_done)) {
3198 			/*
3199 			 * We completed a scrub, resilver or rebuild up to
3200 			 * scrub_txg.  If we did it without rebooting, then
3201 			 * the scrub dtl will be valid, so excise the old
3202 			 * region and fold in the scrub dtl.  Otherwise,
3203 			 * leave the dtl as-is if there was an error.
3204 			 *
3205 			 * There's little trick here: to excise the beginning
3206 			 * of the DTL_MISSING map, we put it into a reference
3207 			 * tree and then add a segment with refcnt -1 that
3208 			 * covers the range [0, scrub_txg).  This means
3209 			 * that each txg in that range has refcnt -1 or 0.
3210 			 * We then add DTL_SCRUB with a refcnt of 2, so that
3211 			 * entries in the range [0, scrub_txg) will have a
3212 			 * positive refcnt -- either 1 or 2.  We then convert
3213 			 * the reference tree into the new DTL_MISSING map.
3214 			 */
3215 			space_reftree_create(&reftree);
3216 			space_reftree_add_map(&reftree,
3217 			    vd->vdev_dtl[DTL_MISSING], 1);
3218 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3219 			space_reftree_add_map(&reftree,
3220 			    vd->vdev_dtl[DTL_SCRUB], 2);
3221 			space_reftree_generate_map(&reftree,
3222 			    vd->vdev_dtl[DTL_MISSING], 1);
3223 			space_reftree_destroy(&reftree);
3224 
3225 			if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3226 				zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3227 				    (u_longlong_t)vdev_dtl_min(vd),
3228 				    (u_longlong_t)vdev_dtl_max(vd));
3229 			} else if (!wasempty) {
3230 				zfs_dbgmsg("DTL_MISSING is now empty");
3231 			}
3232 		}
3233 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3234 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3235 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3236 		if (scrub_done)
3237 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
3238 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3239 		if (!vdev_readable(vd))
3240 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3241 		else
3242 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3243 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3244 
3245 		/*
3246 		 * If the vdev was resilvering or rebuilding and no longer
3247 		 * has any DTLs then reset the appropriate flag and dirty
3248 		 * the top level so that we persist the change.
3249 		 */
3250 		if (txg != 0 &&
3251 		    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3252 		    range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3253 			if (vd->vdev_rebuild_txg != 0) {
3254 				vd->vdev_rebuild_txg = 0;
3255 				vdev_config_dirty(vd->vdev_top);
3256 			} else if (vd->vdev_resilver_txg != 0) {
3257 				vd->vdev_resilver_txg = 0;
3258 				vdev_config_dirty(vd->vdev_top);
3259 			}
3260 		}
3261 
3262 		mutex_exit(&vd->vdev_dtl_lock);
3263 
3264 		if (txg != 0)
3265 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3266 	} else {
3267 		mutex_enter(&vd->vdev_dtl_lock);
3268 		for (int t = 0; t < DTL_TYPES; t++) {
3269 			/* account for child's outage in parent's missing map */
3270 			int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3271 			if (t == DTL_SCRUB) {
3272 				/* leaf vdevs only */
3273 				continue;
3274 			}
3275 			if (t == DTL_PARTIAL) {
3276 				/* i.e. non-zero */
3277 				minref = 1;
3278 			} else if (vdev_get_nparity(vd) != 0) {
3279 				/* RAIDZ, DRAID */
3280 				minref = vdev_get_nparity(vd) + 1;
3281 			} else {
3282 				/* any kind of mirror */
3283 				minref = vd->vdev_children;
3284 			}
3285 			space_reftree_create(&reftree);
3286 			for (int c = 0; c < vd->vdev_children; c++) {
3287 				vdev_t *cvd = vd->vdev_child[c];
3288 				mutex_enter(&cvd->vdev_dtl_lock);
3289 				space_reftree_add_map(&reftree,
3290 				    cvd->vdev_dtl[s], 1);
3291 				mutex_exit(&cvd->vdev_dtl_lock);
3292 			}
3293 			space_reftree_generate_map(&reftree,
3294 			    vd->vdev_dtl[t], minref);
3295 			space_reftree_destroy(&reftree);
3296 		}
3297 		mutex_exit(&vd->vdev_dtl_lock);
3298 	}
3299 
3300 	if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) {
3301 		raidz_dtl_reassessed(vd);
3302 	}
3303 }
3304 
3305 /*
3306  * Iterate over all the vdevs except spare, and post kobj events
3307  */
3308 void
3309 vdev_post_kobj_evt(vdev_t *vd)
3310 {
3311 	if (vd->vdev_ops->vdev_op_kobj_evt_post &&
3312 	    vd->vdev_kobj_flag == B_FALSE) {
3313 		vd->vdev_kobj_flag = B_TRUE;
3314 		vd->vdev_ops->vdev_op_kobj_evt_post(vd);
3315 	}
3316 
3317 	for (int c = 0; c < vd->vdev_children; c++)
3318 		vdev_post_kobj_evt(vd->vdev_child[c]);
3319 }
3320 
3321 /*
3322  * Iterate over all the vdevs except spare, and clear kobj events
3323  */
3324 void
3325 vdev_clear_kobj_evt(vdev_t *vd)
3326 {
3327 	vd->vdev_kobj_flag = B_FALSE;
3328 
3329 	for (int c = 0; c < vd->vdev_children; c++)
3330 		vdev_clear_kobj_evt(vd->vdev_child[c]);
3331 }
3332 
3333 int
3334 vdev_dtl_load(vdev_t *vd)
3335 {
3336 	spa_t *spa = vd->vdev_spa;
3337 	objset_t *mos = spa->spa_meta_objset;
3338 	range_tree_t *rt;
3339 	int error = 0;
3340 
3341 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3342 		ASSERT(vdev_is_concrete(vd));
3343 
3344 		/*
3345 		 * If the dtl cannot be sync'd there is no need to open it.
3346 		 */
3347 		if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps)
3348 			return (0);
3349 
3350 		error = space_map_open(&vd->vdev_dtl_sm, mos,
3351 		    vd->vdev_dtl_object, 0, -1ULL, 0);
3352 		if (error)
3353 			return (error);
3354 		ASSERT(vd->vdev_dtl_sm != NULL);
3355 
3356 		rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3357 		error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3358 		if (error == 0) {
3359 			mutex_enter(&vd->vdev_dtl_lock);
3360 			range_tree_walk(rt, range_tree_add,
3361 			    vd->vdev_dtl[DTL_MISSING]);
3362 			mutex_exit(&vd->vdev_dtl_lock);
3363 		}
3364 
3365 		range_tree_vacate(rt, NULL, NULL);
3366 		range_tree_destroy(rt);
3367 
3368 		return (error);
3369 	}
3370 
3371 	for (int c = 0; c < vd->vdev_children; c++) {
3372 		error = vdev_dtl_load(vd->vdev_child[c]);
3373 		if (error != 0)
3374 			break;
3375 	}
3376 
3377 	return (error);
3378 }
3379 
3380 static void
3381 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3382 {
3383 	spa_t *spa = vd->vdev_spa;
3384 	objset_t *mos = spa->spa_meta_objset;
3385 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3386 	const char *string;
3387 
3388 	ASSERT(alloc_bias != VDEV_BIAS_NONE);
3389 
3390 	string =
3391 	    (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3392 	    (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3393 	    (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3394 
3395 	ASSERT(string != NULL);
3396 	VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3397 	    1, strlen(string) + 1, string, tx));
3398 
3399 	if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3400 		spa_activate_allocation_classes(spa, tx);
3401 	}
3402 }
3403 
3404 void
3405 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3406 {
3407 	spa_t *spa = vd->vdev_spa;
3408 
3409 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3410 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3411 	    zapobj, tx));
3412 }
3413 
3414 uint64_t
3415 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3416 {
3417 	spa_t *spa = vd->vdev_spa;
3418 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3419 	    DMU_OT_NONE, 0, tx);
3420 
3421 	ASSERT(zap != 0);
3422 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3423 	    zap, tx));
3424 
3425 	return (zap);
3426 }
3427 
3428 void
3429 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3430 {
3431 	if (vd->vdev_ops != &vdev_hole_ops &&
3432 	    vd->vdev_ops != &vdev_missing_ops &&
3433 	    vd->vdev_ops != &vdev_root_ops &&
3434 	    !vd->vdev_top->vdev_removing) {
3435 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3436 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3437 		}
3438 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3439 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3440 			if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3441 				vdev_zap_allocation_data(vd, tx);
3442 		}
3443 	}
3444 	if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 &&
3445 	    spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) {
3446 		if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2))
3447 			spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx);
3448 		vd->vdev_root_zap = vdev_create_link_zap(vd, tx);
3449 	}
3450 
3451 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3452 		vdev_construct_zaps(vd->vdev_child[i], tx);
3453 	}
3454 }
3455 
3456 static void
3457 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3458 {
3459 	spa_t *spa = vd->vdev_spa;
3460 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3461 	objset_t *mos = spa->spa_meta_objset;
3462 	range_tree_t *rtsync;
3463 	dmu_tx_t *tx;
3464 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
3465 
3466 	ASSERT(vdev_is_concrete(vd));
3467 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3468 
3469 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3470 
3471 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3472 		mutex_enter(&vd->vdev_dtl_lock);
3473 		space_map_free(vd->vdev_dtl_sm, tx);
3474 		space_map_close(vd->vdev_dtl_sm);
3475 		vd->vdev_dtl_sm = NULL;
3476 		mutex_exit(&vd->vdev_dtl_lock);
3477 
3478 		/*
3479 		 * We only destroy the leaf ZAP for detached leaves or for
3480 		 * removed log devices. Removed data devices handle leaf ZAP
3481 		 * cleanup later, once cancellation is no longer possible.
3482 		 */
3483 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3484 		    vd->vdev_top->vdev_islog)) {
3485 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3486 			vd->vdev_leaf_zap = 0;
3487 		}
3488 
3489 		dmu_tx_commit(tx);
3490 		return;
3491 	}
3492 
3493 	if (vd->vdev_dtl_sm == NULL) {
3494 		uint64_t new_object;
3495 
3496 		new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3497 		VERIFY3U(new_object, !=, 0);
3498 
3499 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3500 		    0, -1ULL, 0));
3501 		ASSERT(vd->vdev_dtl_sm != NULL);
3502 	}
3503 
3504 	rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3505 
3506 	mutex_enter(&vd->vdev_dtl_lock);
3507 	range_tree_walk(rt, range_tree_add, rtsync);
3508 	mutex_exit(&vd->vdev_dtl_lock);
3509 
3510 	space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3511 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3512 	range_tree_vacate(rtsync, NULL, NULL);
3513 
3514 	range_tree_destroy(rtsync);
3515 
3516 	/*
3517 	 * If the object for the space map has changed then dirty
3518 	 * the top level so that we update the config.
3519 	 */
3520 	if (object != space_map_object(vd->vdev_dtl_sm)) {
3521 		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3522 		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
3523 		    (u_longlong_t)object,
3524 		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3525 		vdev_config_dirty(vd->vdev_top);
3526 	}
3527 
3528 	dmu_tx_commit(tx);
3529 }
3530 
3531 /*
3532  * Determine whether the specified vdev can be offlined/detached/removed
3533  * without losing data.
3534  */
3535 boolean_t
3536 vdev_dtl_required(vdev_t *vd)
3537 {
3538 	spa_t *spa = vd->vdev_spa;
3539 	vdev_t *tvd = vd->vdev_top;
3540 	uint8_t cant_read = vd->vdev_cant_read;
3541 	boolean_t required;
3542 
3543 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3544 
3545 	if (vd == spa->spa_root_vdev || vd == tvd)
3546 		return (B_TRUE);
3547 
3548 	/*
3549 	 * Temporarily mark the device as unreadable, and then determine
3550 	 * whether this results in any DTL outages in the top-level vdev.
3551 	 * If not, we can safely offline/detach/remove the device.
3552 	 */
3553 	vd->vdev_cant_read = B_TRUE;
3554 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3555 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3556 	vd->vdev_cant_read = cant_read;
3557 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3558 
3559 	if (!required && zio_injection_enabled) {
3560 		required = !!zio_handle_device_injection(vd, NULL,
3561 		    SET_ERROR(ECHILD));
3562 	}
3563 
3564 	return (required);
3565 }
3566 
3567 /*
3568  * Determine if resilver is needed, and if so the txg range.
3569  */
3570 boolean_t
3571 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3572 {
3573 	boolean_t needed = B_FALSE;
3574 	uint64_t thismin = UINT64_MAX;
3575 	uint64_t thismax = 0;
3576 
3577 	if (vd->vdev_children == 0) {
3578 		mutex_enter(&vd->vdev_dtl_lock);
3579 		if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3580 		    vdev_writeable(vd)) {
3581 
3582 			thismin = vdev_dtl_min(vd);
3583 			thismax = vdev_dtl_max(vd);
3584 			needed = B_TRUE;
3585 		}
3586 		mutex_exit(&vd->vdev_dtl_lock);
3587 	} else {
3588 		for (int c = 0; c < vd->vdev_children; c++) {
3589 			vdev_t *cvd = vd->vdev_child[c];
3590 			uint64_t cmin, cmax;
3591 
3592 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3593 				thismin = MIN(thismin, cmin);
3594 				thismax = MAX(thismax, cmax);
3595 				needed = B_TRUE;
3596 			}
3597 		}
3598 	}
3599 
3600 	if (needed && minp) {
3601 		*minp = thismin;
3602 		*maxp = thismax;
3603 	}
3604 	return (needed);
3605 }
3606 
3607 /*
3608  * Gets the checkpoint space map object from the vdev's ZAP.  On success sm_obj
3609  * will contain either the checkpoint spacemap object or zero if none exists.
3610  * All other errors are returned to the caller.
3611  */
3612 int
3613 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3614 {
3615 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3616 
3617 	if (vd->vdev_top_zap == 0) {
3618 		*sm_obj = 0;
3619 		return (0);
3620 	}
3621 
3622 	int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3623 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3624 	if (error == ENOENT) {
3625 		*sm_obj = 0;
3626 		error = 0;
3627 	}
3628 
3629 	return (error);
3630 }
3631 
3632 int
3633 vdev_load(vdev_t *vd)
3634 {
3635 	int children = vd->vdev_children;
3636 	int error = 0;
3637 	taskq_t *tq = NULL;
3638 
3639 	/*
3640 	 * It's only worthwhile to use the taskq for the root vdev, because the
3641 	 * slow part is metaslab_init, and that only happens for top-level
3642 	 * vdevs.
3643 	 */
3644 	if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3645 		tq = taskq_create("vdev_load", children, minclsyspri,
3646 		    children, children, TASKQ_PREPOPULATE);
3647 	}
3648 
3649 	/*
3650 	 * Recursively load all children.
3651 	 */
3652 	for (int c = 0; c < vd->vdev_children; c++) {
3653 		vdev_t *cvd = vd->vdev_child[c];
3654 
3655 		if (tq == NULL || vdev_uses_zvols(cvd)) {
3656 			cvd->vdev_load_error = vdev_load(cvd);
3657 		} else {
3658 			VERIFY(taskq_dispatch(tq, vdev_load_child,
3659 			    cvd, TQ_SLEEP) != TASKQID_INVALID);
3660 		}
3661 	}
3662 
3663 	if (tq != NULL) {
3664 		taskq_wait(tq);
3665 		taskq_destroy(tq);
3666 	}
3667 
3668 	for (int c = 0; c < vd->vdev_children; c++) {
3669 		int error = vd->vdev_child[c]->vdev_load_error;
3670 
3671 		if (error != 0)
3672 			return (error);
3673 	}
3674 
3675 	vdev_set_deflate_ratio(vd);
3676 
3677 	if (vd->vdev_ops == &vdev_raidz_ops) {
3678 		error = vdev_raidz_load(vd);
3679 		if (error != 0)
3680 			return (error);
3681 	}
3682 
3683 	/*
3684 	 * On spa_load path, grab the allocation bias from our zap
3685 	 */
3686 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3687 		spa_t *spa = vd->vdev_spa;
3688 		char bias_str[64];
3689 
3690 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3691 		    VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3692 		    bias_str);
3693 		if (error == 0) {
3694 			ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3695 			vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3696 		} else if (error != ENOENT) {
3697 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3698 			    VDEV_AUX_CORRUPT_DATA);
3699 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3700 			    "failed [error=%d]",
3701 			    (u_longlong_t)vd->vdev_top_zap, error);
3702 			return (error);
3703 		}
3704 	}
3705 
3706 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3707 		spa_t *spa = vd->vdev_spa;
3708 		uint64_t failfast;
3709 
3710 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3711 		    vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast),
3712 		    1, &failfast);
3713 		if (error == 0) {
3714 			vd->vdev_failfast = failfast & 1;
3715 		} else if (error == ENOENT) {
3716 			vd->vdev_failfast = vdev_prop_default_numeric(
3717 			    VDEV_PROP_FAILFAST);
3718 		} else {
3719 			vdev_dbgmsg(vd,
3720 			    "vdev_load: zap_lookup(top_zap=%llu) "
3721 			    "failed [error=%d]",
3722 			    (u_longlong_t)vd->vdev_top_zap, error);
3723 		}
3724 	}
3725 
3726 	/*
3727 	 * Load any rebuild state from the top-level vdev zap.
3728 	 */
3729 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3730 		error = vdev_rebuild_load(vd);
3731 		if (error && error != ENOTSUP) {
3732 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3733 			    VDEV_AUX_CORRUPT_DATA);
3734 			vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3735 			    "failed [error=%d]", error);
3736 			return (error);
3737 		}
3738 	}
3739 
3740 	if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) {
3741 		uint64_t zapobj;
3742 
3743 		if (vd->vdev_top_zap != 0)
3744 			zapobj = vd->vdev_top_zap;
3745 		else
3746 			zapobj = vd->vdev_leaf_zap;
3747 
3748 		error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N,
3749 		    &vd->vdev_checksum_n);
3750 		if (error && error != ENOENT)
3751 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3752 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3753 
3754 		error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T,
3755 		    &vd->vdev_checksum_t);
3756 		if (error && error != ENOENT)
3757 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3758 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3759 
3760 		error = vdev_prop_get_int(vd, VDEV_PROP_IO_N,
3761 		    &vd->vdev_io_n);
3762 		if (error && error != ENOENT)
3763 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3764 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3765 
3766 		error = vdev_prop_get_int(vd, VDEV_PROP_IO_T,
3767 		    &vd->vdev_io_t);
3768 		if (error && error != ENOENT)
3769 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3770 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3771 
3772 		error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_N,
3773 		    &vd->vdev_slow_io_n);
3774 		if (error && error != ENOENT)
3775 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3776 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3777 
3778 		error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_T,
3779 		    &vd->vdev_slow_io_t);
3780 		if (error && error != ENOENT)
3781 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3782 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3783 	}
3784 
3785 	/*
3786 	 * If this is a top-level vdev, initialize its metaslabs.
3787 	 */
3788 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3789 		vdev_metaslab_group_create(vd);
3790 
3791 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3792 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3793 			    VDEV_AUX_CORRUPT_DATA);
3794 			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3795 			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3796 			    (u_longlong_t)vd->vdev_asize);
3797 			return (SET_ERROR(ENXIO));
3798 		}
3799 
3800 		error = vdev_metaslab_init(vd, 0);
3801 		if (error != 0) {
3802 			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3803 			    "[error=%d]", error);
3804 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3805 			    VDEV_AUX_CORRUPT_DATA);
3806 			return (error);
3807 		}
3808 
3809 		uint64_t checkpoint_sm_obj;
3810 		error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3811 		if (error == 0 && checkpoint_sm_obj != 0) {
3812 			objset_t *mos = spa_meta_objset(vd->vdev_spa);
3813 			ASSERT(vd->vdev_asize != 0);
3814 			ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3815 
3816 			error = space_map_open(&vd->vdev_checkpoint_sm,
3817 			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3818 			    vd->vdev_ashift);
3819 			if (error != 0) {
3820 				vdev_dbgmsg(vd, "vdev_load: space_map_open "
3821 				    "failed for checkpoint spacemap (obj %llu) "
3822 				    "[error=%d]",
3823 				    (u_longlong_t)checkpoint_sm_obj, error);
3824 				return (error);
3825 			}
3826 			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3827 
3828 			/*
3829 			 * Since the checkpoint_sm contains free entries
3830 			 * exclusively we can use space_map_allocated() to
3831 			 * indicate the cumulative checkpointed space that
3832 			 * has been freed.
3833 			 */
3834 			vd->vdev_stat.vs_checkpoint_space =
3835 			    -space_map_allocated(vd->vdev_checkpoint_sm);
3836 			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3837 			    vd->vdev_stat.vs_checkpoint_space;
3838 		} else if (error != 0) {
3839 			vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3840 			    "checkpoint space map object from vdev ZAP "
3841 			    "[error=%d]", error);
3842 			return (error);
3843 		}
3844 	}
3845 
3846 	/*
3847 	 * If this is a leaf vdev, load its DTL.
3848 	 */
3849 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3850 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3851 		    VDEV_AUX_CORRUPT_DATA);
3852 		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3853 		    "[error=%d]", error);
3854 		return (error);
3855 	}
3856 
3857 	uint64_t obsolete_sm_object;
3858 	error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3859 	if (error == 0 && obsolete_sm_object != 0) {
3860 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
3861 		ASSERT(vd->vdev_asize != 0);
3862 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3863 
3864 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3865 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3866 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3867 			    VDEV_AUX_CORRUPT_DATA);
3868 			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3869 			    "obsolete spacemap (obj %llu) [error=%d]",
3870 			    (u_longlong_t)obsolete_sm_object, error);
3871 			return (error);
3872 		}
3873 	} else if (error != 0) {
3874 		vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3875 		    "space map object from vdev ZAP [error=%d]", error);
3876 		return (error);
3877 	}
3878 
3879 	return (0);
3880 }
3881 
3882 /*
3883  * The special vdev case is used for hot spares and l2cache devices.  Its
3884  * sole purpose it to set the vdev state for the associated vdev.  To do this,
3885  * we make sure that we can open the underlying device, then try to read the
3886  * label, and make sure that the label is sane and that it hasn't been
3887  * repurposed to another pool.
3888  */
3889 int
3890 vdev_validate_aux(vdev_t *vd)
3891 {
3892 	nvlist_t *label;
3893 	uint64_t guid, version;
3894 	uint64_t state;
3895 
3896 	if (!vdev_readable(vd))
3897 		return (0);
3898 
3899 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3900 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3901 		    VDEV_AUX_CORRUPT_DATA);
3902 		return (-1);
3903 	}
3904 
3905 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3906 	    !SPA_VERSION_IS_SUPPORTED(version) ||
3907 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3908 	    guid != vd->vdev_guid ||
3909 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3910 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3911 		    VDEV_AUX_CORRUPT_DATA);
3912 		nvlist_free(label);
3913 		return (-1);
3914 	}
3915 
3916 	/*
3917 	 * We don't actually check the pool state here.  If it's in fact in
3918 	 * use by another pool, we update this fact on the fly when requested.
3919 	 */
3920 	nvlist_free(label);
3921 	return (0);
3922 }
3923 
3924 static void
3925 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3926 {
3927 	objset_t *mos = spa_meta_objset(vd->vdev_spa);
3928 
3929 	if (vd->vdev_top_zap == 0)
3930 		return;
3931 
3932 	uint64_t object = 0;
3933 	int err = zap_lookup(mos, vd->vdev_top_zap,
3934 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3935 	if (err == ENOENT)
3936 		return;
3937 	VERIFY0(err);
3938 
3939 	VERIFY0(dmu_object_free(mos, object, tx));
3940 	VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3941 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3942 }
3943 
3944 /*
3945  * Free the objects used to store this vdev's spacemaps, and the array
3946  * that points to them.
3947  */
3948 void
3949 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3950 {
3951 	if (vd->vdev_ms_array == 0)
3952 		return;
3953 
3954 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
3955 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3956 	size_t array_bytes = array_count * sizeof (uint64_t);
3957 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3958 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3959 	    array_bytes, smobj_array, 0));
3960 
3961 	for (uint64_t i = 0; i < array_count; i++) {
3962 		uint64_t smobj = smobj_array[i];
3963 		if (smobj == 0)
3964 			continue;
3965 
3966 		space_map_free_obj(mos, smobj, tx);
3967 	}
3968 
3969 	kmem_free(smobj_array, array_bytes);
3970 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3971 	vdev_destroy_ms_flush_data(vd, tx);
3972 	vd->vdev_ms_array = 0;
3973 }
3974 
3975 static void
3976 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3977 {
3978 	spa_t *spa = vd->vdev_spa;
3979 
3980 	ASSERT(vd->vdev_islog);
3981 	ASSERT(vd == vd->vdev_top);
3982 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
3983 
3984 	dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3985 
3986 	vdev_destroy_spacemaps(vd, tx);
3987 	if (vd->vdev_top_zap != 0) {
3988 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3989 		vd->vdev_top_zap = 0;
3990 	}
3991 
3992 	dmu_tx_commit(tx);
3993 }
3994 
3995 void
3996 vdev_sync_done(vdev_t *vd, uint64_t txg)
3997 {
3998 	metaslab_t *msp;
3999 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
4000 
4001 	ASSERT(vdev_is_concrete(vd));
4002 
4003 	while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
4004 	    != NULL)
4005 		metaslab_sync_done(msp, txg);
4006 
4007 	if (reassess) {
4008 		metaslab_sync_reassess(vd->vdev_mg);
4009 		if (vd->vdev_log_mg != NULL)
4010 			metaslab_sync_reassess(vd->vdev_log_mg);
4011 	}
4012 }
4013 
4014 void
4015 vdev_sync(vdev_t *vd, uint64_t txg)
4016 {
4017 	spa_t *spa = vd->vdev_spa;
4018 	vdev_t *lvd;
4019 	metaslab_t *msp;
4020 
4021 	ASSERT3U(txg, ==, spa->spa_syncing_txg);
4022 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
4023 	if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
4024 		ASSERT(vd->vdev_removing ||
4025 		    vd->vdev_ops == &vdev_indirect_ops);
4026 
4027 		vdev_indirect_sync_obsolete(vd, tx);
4028 
4029 		/*
4030 		 * If the vdev is indirect, it can't have dirty
4031 		 * metaslabs or DTLs.
4032 		 */
4033 		if (vd->vdev_ops == &vdev_indirect_ops) {
4034 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
4035 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
4036 			dmu_tx_commit(tx);
4037 			return;
4038 		}
4039 	}
4040 
4041 	ASSERT(vdev_is_concrete(vd));
4042 
4043 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
4044 	    !vd->vdev_removing) {
4045 		ASSERT(vd == vd->vdev_top);
4046 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
4047 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
4048 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
4049 		ASSERT(vd->vdev_ms_array != 0);
4050 		vdev_config_dirty(vd);
4051 	}
4052 
4053 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
4054 		metaslab_sync(msp, txg);
4055 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
4056 	}
4057 
4058 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
4059 		vdev_dtl_sync(lvd, txg);
4060 
4061 	/*
4062 	 * If this is an empty log device being removed, destroy the
4063 	 * metadata associated with it.
4064 	 */
4065 	if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
4066 		vdev_remove_empty_log(vd, txg);
4067 
4068 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
4069 	dmu_tx_commit(tx);
4070 }
4071 
4072 /*
4073  * Return the amount of space that should be (or was) allocated for the given
4074  * psize (compressed block size) in the given TXG. Note that for expanded
4075  * RAIDZ vdevs, the size allocated for older BP's may be larger. See
4076  * vdev_raidz_asize().
4077  */
4078 uint64_t
4079 vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg)
4080 {
4081 	return (vd->vdev_ops->vdev_op_asize(vd, psize, txg));
4082 }
4083 
4084 uint64_t
4085 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
4086 {
4087 	return (vdev_psize_to_asize_txg(vd, psize, 0));
4088 }
4089 
4090 /*
4091  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
4092  * not be opened, and no I/O is attempted.
4093  */
4094 int
4095 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4096 {
4097 	vdev_t *vd, *tvd;
4098 
4099 	spa_vdev_state_enter(spa, SCL_NONE);
4100 
4101 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4102 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4103 
4104 	if (!vd->vdev_ops->vdev_op_leaf)
4105 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4106 
4107 	tvd = vd->vdev_top;
4108 
4109 	/*
4110 	 * If user did a 'zpool offline -f' then make the fault persist across
4111 	 * reboots.
4112 	 */
4113 	if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
4114 		/*
4115 		 * There are two kinds of forced faults: temporary and
4116 		 * persistent.  Temporary faults go away at pool import, while
4117 		 * persistent faults stay set.  Both types of faults can be
4118 		 * cleared with a zpool clear.
4119 		 *
4120 		 * We tell if a vdev is persistently faulted by looking at the
4121 		 * ZPOOL_CONFIG_AUX_STATE nvpair.  If it's set to "external" at
4122 		 * import then it's a persistent fault.  Otherwise, it's
4123 		 * temporary.  We get ZPOOL_CONFIG_AUX_STATE set to "external"
4124 		 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL.  This
4125 		 * tells vdev_config_generate() (which gets run later) to set
4126 		 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
4127 		 */
4128 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
4129 		vd->vdev_tmpoffline = B_FALSE;
4130 		aux = VDEV_AUX_EXTERNAL;
4131 	} else {
4132 		vd->vdev_tmpoffline = B_TRUE;
4133 	}
4134 
4135 	/*
4136 	 * We don't directly use the aux state here, but if we do a
4137 	 * vdev_reopen(), we need this value to be present to remember why we
4138 	 * were faulted.
4139 	 */
4140 	vd->vdev_label_aux = aux;
4141 
4142 	/*
4143 	 * Faulted state takes precedence over degraded.
4144 	 */
4145 	vd->vdev_delayed_close = B_FALSE;
4146 	vd->vdev_faulted = 1ULL;
4147 	vd->vdev_degraded = 0ULL;
4148 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
4149 
4150 	/*
4151 	 * If this device has the only valid copy of the data, then
4152 	 * back off and simply mark the vdev as degraded instead.
4153 	 */
4154 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
4155 		vd->vdev_degraded = 1ULL;
4156 		vd->vdev_faulted = 0ULL;
4157 
4158 		/*
4159 		 * If we reopen the device and it's not dead, only then do we
4160 		 * mark it degraded.
4161 		 */
4162 		vdev_reopen(tvd);
4163 
4164 		if (vdev_readable(vd))
4165 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
4166 	}
4167 
4168 	return (spa_vdev_state_exit(spa, vd, 0));
4169 }
4170 
4171 /*
4172  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
4173  * user that something is wrong.  The vdev continues to operate as normal as far
4174  * as I/O is concerned.
4175  */
4176 int
4177 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4178 {
4179 	vdev_t *vd;
4180 
4181 	spa_vdev_state_enter(spa, SCL_NONE);
4182 
4183 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4184 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4185 
4186 	if (!vd->vdev_ops->vdev_op_leaf)
4187 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4188 
4189 	/*
4190 	 * If the vdev is already faulted, then don't do anything.
4191 	 */
4192 	if (vd->vdev_faulted || vd->vdev_degraded)
4193 		return (spa_vdev_state_exit(spa, NULL, 0));
4194 
4195 	vd->vdev_degraded = 1ULL;
4196 	if (!vdev_is_dead(vd))
4197 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
4198 		    aux);
4199 
4200 	return (spa_vdev_state_exit(spa, vd, 0));
4201 }
4202 
4203 int
4204 vdev_remove_wanted(spa_t *spa, uint64_t guid)
4205 {
4206 	vdev_t *vd;
4207 
4208 	spa_vdev_state_enter(spa, SCL_NONE);
4209 
4210 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4211 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4212 
4213 	/*
4214 	 * If the vdev is already removed, or expanding which can trigger
4215 	 * repartition add/remove events, then don't do anything.
4216 	 */
4217 	if (vd->vdev_removed || vd->vdev_expanding)
4218 		return (spa_vdev_state_exit(spa, NULL, 0));
4219 
4220 	/*
4221 	 * Confirm the vdev has been removed, otherwise don't do anything.
4222 	 */
4223 	if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL)))
4224 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST)));
4225 
4226 	vd->vdev_remove_wanted = B_TRUE;
4227 	spa_async_request(spa, SPA_ASYNC_REMOVE);
4228 
4229 	return (spa_vdev_state_exit(spa, vd, 0));
4230 }
4231 
4232 
4233 /*
4234  * Online the given vdev.
4235  *
4236  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
4237  * spare device should be detached when the device finishes resilvering.
4238  * Second, the online should be treated like a 'test' online case, so no FMA
4239  * events are generated if the device fails to open.
4240  */
4241 int
4242 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
4243 {
4244 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
4245 	boolean_t wasoffline;
4246 	vdev_state_t oldstate;
4247 
4248 	spa_vdev_state_enter(spa, SCL_NONE);
4249 
4250 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4251 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4252 
4253 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
4254 	oldstate = vd->vdev_state;
4255 
4256 	tvd = vd->vdev_top;
4257 	vd->vdev_offline = B_FALSE;
4258 	vd->vdev_tmpoffline = B_FALSE;
4259 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
4260 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
4261 
4262 	/* XXX - L2ARC 1.0 does not support expansion */
4263 	if (!vd->vdev_aux) {
4264 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4265 			pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
4266 			    spa->spa_autoexpand);
4267 		vd->vdev_expansion_time = gethrestime_sec();
4268 	}
4269 
4270 	vdev_reopen(tvd);
4271 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
4272 
4273 	if (!vd->vdev_aux) {
4274 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4275 			pvd->vdev_expanding = B_FALSE;
4276 	}
4277 
4278 	if (newstate)
4279 		*newstate = vd->vdev_state;
4280 	if ((flags & ZFS_ONLINE_UNSPARE) &&
4281 	    !vdev_is_dead(vd) && vd->vdev_parent &&
4282 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4283 	    vd->vdev_parent->vdev_child[0] == vd)
4284 		vd->vdev_unspare = B_TRUE;
4285 
4286 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
4287 
4288 		/* XXX - L2ARC 1.0 does not support expansion */
4289 		if (vd->vdev_aux)
4290 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
4291 		spa->spa_ccw_fail_time = 0;
4292 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4293 	}
4294 
4295 	/* Restart initializing if necessary */
4296 	mutex_enter(&vd->vdev_initialize_lock);
4297 	if (vdev_writeable(vd) &&
4298 	    vd->vdev_initialize_thread == NULL &&
4299 	    vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
4300 		(void) vdev_initialize(vd);
4301 	}
4302 	mutex_exit(&vd->vdev_initialize_lock);
4303 
4304 	/*
4305 	 * Restart trimming if necessary. We do not restart trimming for cache
4306 	 * devices here. This is triggered by l2arc_rebuild_vdev()
4307 	 * asynchronously for the whole device or in l2arc_evict() as it evicts
4308 	 * space for upcoming writes.
4309 	 */
4310 	mutex_enter(&vd->vdev_trim_lock);
4311 	if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
4312 	    vd->vdev_trim_thread == NULL &&
4313 	    vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
4314 		(void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
4315 		    vd->vdev_trim_secure);
4316 	}
4317 	mutex_exit(&vd->vdev_trim_lock);
4318 
4319 	if (wasoffline ||
4320 	    (oldstate < VDEV_STATE_DEGRADED &&
4321 	    vd->vdev_state >= VDEV_STATE_DEGRADED)) {
4322 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
4323 
4324 		/*
4325 		 * Asynchronously detach spare vdev if resilver or
4326 		 * rebuild is not required
4327 		 */
4328 		if (vd->vdev_unspare &&
4329 		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4330 		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) &&
4331 		    !vdev_rebuild_active(tvd))
4332 			spa_async_request(spa, SPA_ASYNC_DETACH_SPARE);
4333 	}
4334 	return (spa_vdev_state_exit(spa, vd, 0));
4335 }
4336 
4337 static int
4338 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
4339 {
4340 	vdev_t *vd, *tvd;
4341 	int error = 0;
4342 	uint64_t generation;
4343 	metaslab_group_t *mg;
4344 
4345 top:
4346 	spa_vdev_state_enter(spa, SCL_ALLOC);
4347 
4348 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4349 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4350 
4351 	if (!vd->vdev_ops->vdev_op_leaf)
4352 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4353 
4354 	if (vd->vdev_ops == &vdev_draid_spare_ops)
4355 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4356 
4357 	tvd = vd->vdev_top;
4358 	mg = tvd->vdev_mg;
4359 	generation = spa->spa_config_generation + 1;
4360 
4361 	/*
4362 	 * If the device isn't already offline, try to offline it.
4363 	 */
4364 	if (!vd->vdev_offline) {
4365 		/*
4366 		 * If this device has the only valid copy of some data,
4367 		 * don't allow it to be offlined. Log devices are always
4368 		 * expendable.
4369 		 */
4370 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4371 		    vdev_dtl_required(vd))
4372 			return (spa_vdev_state_exit(spa, NULL,
4373 			    SET_ERROR(EBUSY)));
4374 
4375 		/*
4376 		 * If the top-level is a slog and it has had allocations
4377 		 * then proceed.  We check that the vdev's metaslab group
4378 		 * is not NULL since it's possible that we may have just
4379 		 * added this vdev but not yet initialized its metaslabs.
4380 		 */
4381 		if (tvd->vdev_islog && mg != NULL) {
4382 			/*
4383 			 * Prevent any future allocations.
4384 			 */
4385 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
4386 			metaslab_group_passivate(mg);
4387 			(void) spa_vdev_state_exit(spa, vd, 0);
4388 
4389 			error = spa_reset_logs(spa);
4390 
4391 			/*
4392 			 * If the log device was successfully reset but has
4393 			 * checkpointed data, do not offline it.
4394 			 */
4395 			if (error == 0 &&
4396 			    tvd->vdev_checkpoint_sm != NULL) {
4397 				ASSERT3U(space_map_allocated(
4398 				    tvd->vdev_checkpoint_sm), !=, 0);
4399 				error = ZFS_ERR_CHECKPOINT_EXISTS;
4400 			}
4401 
4402 			spa_vdev_state_enter(spa, SCL_ALLOC);
4403 
4404 			/*
4405 			 * Check to see if the config has changed.
4406 			 */
4407 			if (error || generation != spa->spa_config_generation) {
4408 				metaslab_group_activate(mg);
4409 				if (error)
4410 					return (spa_vdev_state_exit(spa,
4411 					    vd, error));
4412 				(void) spa_vdev_state_exit(spa, vd, 0);
4413 				goto top;
4414 			}
4415 			ASSERT0(tvd->vdev_stat.vs_alloc);
4416 		}
4417 
4418 		/*
4419 		 * Offline this device and reopen its top-level vdev.
4420 		 * If the top-level vdev is a log device then just offline
4421 		 * it. Otherwise, if this action results in the top-level
4422 		 * vdev becoming unusable, undo it and fail the request.
4423 		 */
4424 		vd->vdev_offline = B_TRUE;
4425 		vdev_reopen(tvd);
4426 
4427 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4428 		    vdev_is_dead(tvd)) {
4429 			vd->vdev_offline = B_FALSE;
4430 			vdev_reopen(tvd);
4431 			return (spa_vdev_state_exit(spa, NULL,
4432 			    SET_ERROR(EBUSY)));
4433 		}
4434 
4435 		/*
4436 		 * Add the device back into the metaslab rotor so that
4437 		 * once we online the device it's open for business.
4438 		 */
4439 		if (tvd->vdev_islog && mg != NULL)
4440 			metaslab_group_activate(mg);
4441 	}
4442 
4443 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4444 
4445 	return (spa_vdev_state_exit(spa, vd, 0));
4446 }
4447 
4448 int
4449 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4450 {
4451 	int error;
4452 
4453 	mutex_enter(&spa->spa_vdev_top_lock);
4454 	error = vdev_offline_locked(spa, guid, flags);
4455 	mutex_exit(&spa->spa_vdev_top_lock);
4456 
4457 	return (error);
4458 }
4459 
4460 /*
4461  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
4462  * vdev_offline(), we assume the spa config is locked.  We also clear all
4463  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
4464  */
4465 void
4466 vdev_clear(spa_t *spa, vdev_t *vd)
4467 {
4468 	vdev_t *rvd = spa->spa_root_vdev;
4469 
4470 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4471 
4472 	if (vd == NULL)
4473 		vd = rvd;
4474 
4475 	vd->vdev_stat.vs_read_errors = 0;
4476 	vd->vdev_stat.vs_write_errors = 0;
4477 	vd->vdev_stat.vs_checksum_errors = 0;
4478 	vd->vdev_stat.vs_slow_ios = 0;
4479 
4480 	for (int c = 0; c < vd->vdev_children; c++)
4481 		vdev_clear(spa, vd->vdev_child[c]);
4482 
4483 	/*
4484 	 * It makes no sense to "clear" an indirect  or removed vdev.
4485 	 */
4486 	if (!vdev_is_concrete(vd) || vd->vdev_removed)
4487 		return;
4488 
4489 	/*
4490 	 * If we're in the FAULTED state or have experienced failed I/O, then
4491 	 * clear the persistent state and attempt to reopen the device.  We
4492 	 * also mark the vdev config dirty, so that the new faulted state is
4493 	 * written out to disk.
4494 	 */
4495 	if (vd->vdev_faulted || vd->vdev_degraded ||
4496 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
4497 		/*
4498 		 * When reopening in response to a clear event, it may be due to
4499 		 * a fmadm repair request.  In this case, if the device is
4500 		 * still broken, we want to still post the ereport again.
4501 		 */
4502 		vd->vdev_forcefault = B_TRUE;
4503 
4504 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4505 		vd->vdev_cant_read = B_FALSE;
4506 		vd->vdev_cant_write = B_FALSE;
4507 		vd->vdev_stat.vs_aux = 0;
4508 
4509 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4510 
4511 		vd->vdev_forcefault = B_FALSE;
4512 
4513 		if (vd != rvd && vdev_writeable(vd->vdev_top))
4514 			vdev_state_dirty(vd->vdev_top);
4515 
4516 		/* If a resilver isn't required, check if vdevs can be culled */
4517 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4518 		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4519 		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4520 			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4521 
4522 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4523 	}
4524 
4525 	/*
4526 	 * When clearing a FMA-diagnosed fault, we always want to
4527 	 * unspare the device, as we assume that the original spare was
4528 	 * done in response to the FMA fault.
4529 	 */
4530 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4531 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4532 	    vd->vdev_parent->vdev_child[0] == vd)
4533 		vd->vdev_unspare = B_TRUE;
4534 
4535 	/* Clear recent error events cache (i.e. duplicate events tracking) */
4536 	zfs_ereport_clear(spa, vd);
4537 }
4538 
4539 boolean_t
4540 vdev_is_dead(vdev_t *vd)
4541 {
4542 	/*
4543 	 * Holes and missing devices are always considered "dead".
4544 	 * This simplifies the code since we don't have to check for
4545 	 * these types of devices in the various code paths.
4546 	 * Instead we rely on the fact that we skip over dead devices
4547 	 * before issuing I/O to them.
4548 	 */
4549 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4550 	    vd->vdev_ops == &vdev_hole_ops ||
4551 	    vd->vdev_ops == &vdev_missing_ops);
4552 }
4553 
4554 boolean_t
4555 vdev_readable(vdev_t *vd)
4556 {
4557 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4558 }
4559 
4560 boolean_t
4561 vdev_writeable(vdev_t *vd)
4562 {
4563 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4564 	    vdev_is_concrete(vd));
4565 }
4566 
4567 boolean_t
4568 vdev_allocatable(vdev_t *vd)
4569 {
4570 	uint64_t state = vd->vdev_state;
4571 
4572 	/*
4573 	 * We currently allow allocations from vdevs which may be in the
4574 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4575 	 * fails to reopen then we'll catch it later when we're holding
4576 	 * the proper locks.  Note that we have to get the vdev state
4577 	 * in a local variable because although it changes atomically,
4578 	 * we're asking two separate questions about it.
4579 	 */
4580 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4581 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4582 	    vd->vdev_mg->mg_initialized);
4583 }
4584 
4585 boolean_t
4586 vdev_accessible(vdev_t *vd, zio_t *zio)
4587 {
4588 	ASSERT(zio->io_vd == vd);
4589 
4590 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4591 		return (B_FALSE);
4592 
4593 	if (zio->io_type == ZIO_TYPE_READ)
4594 		return (!vd->vdev_cant_read);
4595 
4596 	if (zio->io_type == ZIO_TYPE_WRITE)
4597 		return (!vd->vdev_cant_write);
4598 
4599 	return (B_TRUE);
4600 }
4601 
4602 static void
4603 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4604 {
4605 	/*
4606 	 * Exclude the dRAID spare when aggregating to avoid double counting
4607 	 * the ops and bytes.  These IOs are counted by the physical leaves.
4608 	 */
4609 	if (cvd->vdev_ops == &vdev_draid_spare_ops)
4610 		return;
4611 
4612 	for (int t = 0; t < VS_ZIO_TYPES; t++) {
4613 		vs->vs_ops[t] += cvs->vs_ops[t];
4614 		vs->vs_bytes[t] += cvs->vs_bytes[t];
4615 	}
4616 
4617 	cvs->vs_scan_removing = cvd->vdev_removing;
4618 }
4619 
4620 /*
4621  * Get extended stats
4622  */
4623 static void
4624 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4625 {
4626 	(void) cvd;
4627 
4628 	int t, b;
4629 	for (t = 0; t < ZIO_TYPES; t++) {
4630 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4631 			vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4632 
4633 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4634 			vsx->vsx_total_histo[t][b] +=
4635 			    cvsx->vsx_total_histo[t][b];
4636 		}
4637 	}
4638 
4639 	for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4640 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4641 			vsx->vsx_queue_histo[t][b] +=
4642 			    cvsx->vsx_queue_histo[t][b];
4643 		}
4644 		vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4645 		vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4646 
4647 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4648 			vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4649 
4650 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4651 			vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4652 	}
4653 
4654 }
4655 
4656 boolean_t
4657 vdev_is_spacemap_addressable(vdev_t *vd)
4658 {
4659 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4660 		return (B_TRUE);
4661 
4662 	/*
4663 	 * If double-word space map entries are not enabled we assume
4664 	 * 47 bits of the space map entry are dedicated to the entry's
4665 	 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4666 	 * to calculate the maximum address that can be described by a
4667 	 * space map entry for the given device.
4668 	 */
4669 	uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4670 
4671 	if (shift >= 63) /* detect potential overflow */
4672 		return (B_TRUE);
4673 
4674 	return (vd->vdev_asize < (1ULL << shift));
4675 }
4676 
4677 /*
4678  * Get statistics for the given vdev.
4679  */
4680 static void
4681 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4682 {
4683 	int t;
4684 	/*
4685 	 * If we're getting stats on the root vdev, aggregate the I/O counts
4686 	 * over all top-level vdevs (i.e. the direct children of the root).
4687 	 */
4688 	if (!vd->vdev_ops->vdev_op_leaf) {
4689 		if (vs) {
4690 			memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4691 			memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4692 		}
4693 		if (vsx)
4694 			memset(vsx, 0, sizeof (*vsx));
4695 
4696 		for (int c = 0; c < vd->vdev_children; c++) {
4697 			vdev_t *cvd = vd->vdev_child[c];
4698 			vdev_stat_t *cvs = &cvd->vdev_stat;
4699 			vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4700 
4701 			vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4702 			if (vs)
4703 				vdev_get_child_stat(cvd, vs, cvs);
4704 			if (vsx)
4705 				vdev_get_child_stat_ex(cvd, vsx, cvsx);
4706 		}
4707 	} else {
4708 		/*
4709 		 * We're a leaf.  Just copy our ZIO active queue stats in.  The
4710 		 * other leaf stats are updated in vdev_stat_update().
4711 		 */
4712 		if (!vsx)
4713 			return;
4714 
4715 		memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4716 
4717 		for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4718 			vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t];
4719 			vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t);
4720 		}
4721 	}
4722 }
4723 
4724 void
4725 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4726 {
4727 	vdev_t *tvd = vd->vdev_top;
4728 	mutex_enter(&vd->vdev_stat_lock);
4729 	if (vs) {
4730 		memcpy(vs, &vd->vdev_stat, sizeof (*vs));
4731 		vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4732 		vs->vs_state = vd->vdev_state;
4733 		vs->vs_rsize = vdev_get_min_asize(vd);
4734 
4735 		if (vd->vdev_ops->vdev_op_leaf) {
4736 			vs->vs_pspace = vd->vdev_psize;
4737 			vs->vs_rsize += VDEV_LABEL_START_SIZE +
4738 			    VDEV_LABEL_END_SIZE;
4739 			/*
4740 			 * Report initializing progress. Since we don't
4741 			 * have the initializing locks held, this is only
4742 			 * an estimate (although a fairly accurate one).
4743 			 */
4744 			vs->vs_initialize_bytes_done =
4745 			    vd->vdev_initialize_bytes_done;
4746 			vs->vs_initialize_bytes_est =
4747 			    vd->vdev_initialize_bytes_est;
4748 			vs->vs_initialize_state = vd->vdev_initialize_state;
4749 			vs->vs_initialize_action_time =
4750 			    vd->vdev_initialize_action_time;
4751 
4752 			/*
4753 			 * Report manual TRIM progress. Since we don't have
4754 			 * the manual TRIM locks held, this is only an
4755 			 * estimate (although fairly accurate one).
4756 			 */
4757 			vs->vs_trim_notsup = !vd->vdev_has_trim;
4758 			vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4759 			vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4760 			vs->vs_trim_state = vd->vdev_trim_state;
4761 			vs->vs_trim_action_time = vd->vdev_trim_action_time;
4762 
4763 			/* Set when there is a deferred resilver. */
4764 			vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4765 		}
4766 
4767 		/*
4768 		 * Report expandable space on top-level, non-auxiliary devices
4769 		 * only. The expandable space is reported in terms of metaslab
4770 		 * sized units since that determines how much space the pool
4771 		 * can expand.
4772 		 */
4773 		if (vd->vdev_aux == NULL && tvd != NULL) {
4774 			vs->vs_esize = P2ALIGN_TYPED(
4775 			    vd->vdev_max_asize - vd->vdev_asize,
4776 			    1ULL << tvd->vdev_ms_shift, uint64_t);
4777 		}
4778 
4779 		vs->vs_configured_ashift = vd->vdev_top != NULL
4780 		    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4781 		vs->vs_logical_ashift = vd->vdev_logical_ashift;
4782 		if (vd->vdev_physical_ashift <= ASHIFT_MAX)
4783 			vs->vs_physical_ashift = vd->vdev_physical_ashift;
4784 		else
4785 			vs->vs_physical_ashift = 0;
4786 
4787 		/*
4788 		 * Report fragmentation and rebuild progress for top-level,
4789 		 * non-auxiliary, concrete devices.
4790 		 */
4791 		if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4792 		    vdev_is_concrete(vd)) {
4793 			/*
4794 			 * The vdev fragmentation rating doesn't take into
4795 			 * account the embedded slog metaslab (vdev_log_mg).
4796 			 * Since it's only one metaslab, it would have a tiny
4797 			 * impact on the overall fragmentation.
4798 			 */
4799 			vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4800 			    vd->vdev_mg->mg_fragmentation : 0;
4801 		}
4802 		vs->vs_noalloc = MAX(vd->vdev_noalloc,
4803 		    tvd ? tvd->vdev_noalloc : 0);
4804 	}
4805 
4806 	vdev_get_stats_ex_impl(vd, vs, vsx);
4807 	mutex_exit(&vd->vdev_stat_lock);
4808 }
4809 
4810 void
4811 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4812 {
4813 	return (vdev_get_stats_ex(vd, vs, NULL));
4814 }
4815 
4816 void
4817 vdev_clear_stats(vdev_t *vd)
4818 {
4819 	mutex_enter(&vd->vdev_stat_lock);
4820 	vd->vdev_stat.vs_space = 0;
4821 	vd->vdev_stat.vs_dspace = 0;
4822 	vd->vdev_stat.vs_alloc = 0;
4823 	mutex_exit(&vd->vdev_stat_lock);
4824 }
4825 
4826 void
4827 vdev_scan_stat_init(vdev_t *vd)
4828 {
4829 	vdev_stat_t *vs = &vd->vdev_stat;
4830 
4831 	for (int c = 0; c < vd->vdev_children; c++)
4832 		vdev_scan_stat_init(vd->vdev_child[c]);
4833 
4834 	mutex_enter(&vd->vdev_stat_lock);
4835 	vs->vs_scan_processed = 0;
4836 	mutex_exit(&vd->vdev_stat_lock);
4837 }
4838 
4839 void
4840 vdev_stat_update(zio_t *zio, uint64_t psize)
4841 {
4842 	spa_t *spa = zio->io_spa;
4843 	vdev_t *rvd = spa->spa_root_vdev;
4844 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4845 	vdev_t *pvd;
4846 	uint64_t txg = zio->io_txg;
4847 /* Suppress ASAN false positive */
4848 #ifdef __SANITIZE_ADDRESS__
4849 	vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL;
4850 	vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL;
4851 #else
4852 	vdev_stat_t *vs = &vd->vdev_stat;
4853 	vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4854 #endif
4855 	zio_type_t type = zio->io_type;
4856 	int flags = zio->io_flags;
4857 
4858 	/*
4859 	 * If this i/o is a gang leader, it didn't do any actual work.
4860 	 */
4861 	if (zio->io_gang_tree)
4862 		return;
4863 
4864 	if (zio->io_error == 0) {
4865 		/*
4866 		 * If this is a root i/o, don't count it -- we've already
4867 		 * counted the top-level vdevs, and vdev_get_stats() will
4868 		 * aggregate them when asked.  This reduces contention on
4869 		 * the root vdev_stat_lock and implicitly handles blocks
4870 		 * that compress away to holes, for which there is no i/o.
4871 		 * (Holes never create vdev children, so all the counters
4872 		 * remain zero, which is what we want.)
4873 		 *
4874 		 * Note: this only applies to successful i/o (io_error == 0)
4875 		 * because unlike i/o counts, errors are not additive.
4876 		 * When reading a ditto block, for example, failure of
4877 		 * one top-level vdev does not imply a root-level error.
4878 		 */
4879 		if (vd == rvd)
4880 			return;
4881 
4882 		ASSERT(vd == zio->io_vd);
4883 
4884 		if (flags & ZIO_FLAG_IO_BYPASS)
4885 			return;
4886 
4887 		mutex_enter(&vd->vdev_stat_lock);
4888 
4889 		if (flags & ZIO_FLAG_IO_REPAIR) {
4890 			/*
4891 			 * Repair is the result of a resilver issued by the
4892 			 * scan thread (spa_sync).
4893 			 */
4894 			if (flags & ZIO_FLAG_SCAN_THREAD) {
4895 				dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4896 				dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4897 				uint64_t *processed = &scn_phys->scn_processed;
4898 
4899 				if (vd->vdev_ops->vdev_op_leaf)
4900 					atomic_add_64(processed, psize);
4901 				vs->vs_scan_processed += psize;
4902 			}
4903 
4904 			/*
4905 			 * Repair is the result of a rebuild issued by the
4906 			 * rebuild thread (vdev_rebuild_thread).  To avoid
4907 			 * double counting repaired bytes the virtual dRAID
4908 			 * spare vdev is excluded from the processed bytes.
4909 			 */
4910 			if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
4911 				vdev_t *tvd = vd->vdev_top;
4912 				vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
4913 				vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
4914 				uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
4915 
4916 				if (vd->vdev_ops->vdev_op_leaf &&
4917 				    vd->vdev_ops != &vdev_draid_spare_ops) {
4918 					atomic_add_64(rebuilt, psize);
4919 				}
4920 				vs->vs_rebuild_processed += psize;
4921 			}
4922 
4923 			if (flags & ZIO_FLAG_SELF_HEAL)
4924 				vs->vs_self_healed += psize;
4925 		}
4926 
4927 		/*
4928 		 * The bytes/ops/histograms are recorded at the leaf level and
4929 		 * aggregated into the higher level vdevs in vdev_get_stats().
4930 		 */
4931 		if (vd->vdev_ops->vdev_op_leaf &&
4932 		    (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4933 			zio_type_t vs_type = type;
4934 			zio_priority_t priority = zio->io_priority;
4935 
4936 			/*
4937 			 * TRIM ops and bytes are reported to user space as
4938 			 * ZIO_TYPE_FLUSH.  This is done to preserve the
4939 			 * vdev_stat_t structure layout for user space.
4940 			 */
4941 			if (type == ZIO_TYPE_TRIM)
4942 				vs_type = ZIO_TYPE_FLUSH;
4943 
4944 			/*
4945 			 * Solely for the purposes of 'zpool iostat -lqrw'
4946 			 * reporting use the priority to categorize the IO.
4947 			 * Only the following are reported to user space:
4948 			 *
4949 			 *   ZIO_PRIORITY_SYNC_READ,
4950 			 *   ZIO_PRIORITY_SYNC_WRITE,
4951 			 *   ZIO_PRIORITY_ASYNC_READ,
4952 			 *   ZIO_PRIORITY_ASYNC_WRITE,
4953 			 *   ZIO_PRIORITY_SCRUB,
4954 			 *   ZIO_PRIORITY_TRIM,
4955 			 *   ZIO_PRIORITY_REBUILD.
4956 			 */
4957 			if (priority == ZIO_PRIORITY_INITIALIZING) {
4958 				ASSERT3U(type, ==, ZIO_TYPE_WRITE);
4959 				priority = ZIO_PRIORITY_ASYNC_WRITE;
4960 			} else if (priority == ZIO_PRIORITY_REMOVAL) {
4961 				priority = ((type == ZIO_TYPE_WRITE) ?
4962 				    ZIO_PRIORITY_ASYNC_WRITE :
4963 				    ZIO_PRIORITY_ASYNC_READ);
4964 			}
4965 
4966 			vs->vs_ops[vs_type]++;
4967 			vs->vs_bytes[vs_type] += psize;
4968 
4969 			if (flags & ZIO_FLAG_DELEGATED) {
4970 				vsx->vsx_agg_histo[priority]
4971 				    [RQ_HISTO(zio->io_size)]++;
4972 			} else {
4973 				vsx->vsx_ind_histo[priority]
4974 				    [RQ_HISTO(zio->io_size)]++;
4975 			}
4976 
4977 			if (zio->io_delta && zio->io_delay) {
4978 				vsx->vsx_queue_histo[priority]
4979 				    [L_HISTO(zio->io_delta - zio->io_delay)]++;
4980 				vsx->vsx_disk_histo[type]
4981 				    [L_HISTO(zio->io_delay)]++;
4982 				vsx->vsx_total_histo[type]
4983 				    [L_HISTO(zio->io_delta)]++;
4984 			}
4985 		}
4986 
4987 		mutex_exit(&vd->vdev_stat_lock);
4988 		return;
4989 	}
4990 
4991 	if (flags & ZIO_FLAG_SPECULATIVE)
4992 		return;
4993 
4994 	/*
4995 	 * If this is an I/O error that is going to be retried, then ignore the
4996 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
4997 	 * hard errors, when in reality they can happen for any number of
4998 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
4999 	 */
5000 	if (zio->io_error == EIO &&
5001 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
5002 		return;
5003 
5004 	/*
5005 	 * Intent logs writes won't propagate their error to the root
5006 	 * I/O so don't mark these types of failures as pool-level
5007 	 * errors.
5008 	 */
5009 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
5010 		return;
5011 
5012 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
5013 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
5014 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
5015 	    spa->spa_claiming)) {
5016 		/*
5017 		 * This is either a normal write (not a repair), or it's
5018 		 * a repair induced by the scrub thread, or it's a repair
5019 		 * made by zil_claim() during spa_load() in the first txg.
5020 		 * In the normal case, we commit the DTL change in the same
5021 		 * txg as the block was born.  In the scrub-induced repair
5022 		 * case, we know that scrubs run in first-pass syncing context,
5023 		 * so we commit the DTL change in spa_syncing_txg(spa).
5024 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
5025 		 *
5026 		 * We currently do not make DTL entries for failed spontaneous
5027 		 * self-healing writes triggered by normal (non-scrubbing)
5028 		 * reads, because we have no transactional context in which to
5029 		 * do so -- and it's not clear that it'd be desirable anyway.
5030 		 */
5031 		if (vd->vdev_ops->vdev_op_leaf) {
5032 			uint64_t commit_txg = txg;
5033 			if (flags & ZIO_FLAG_SCAN_THREAD) {
5034 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5035 				ASSERT(spa_sync_pass(spa) == 1);
5036 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
5037 				commit_txg = spa_syncing_txg(spa);
5038 			} else if (spa->spa_claiming) {
5039 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5040 				commit_txg = spa_first_txg(spa);
5041 			}
5042 			ASSERT(commit_txg >= spa_syncing_txg(spa));
5043 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
5044 				return;
5045 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
5046 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
5047 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
5048 		}
5049 		if (vd != rvd)
5050 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
5051 	}
5052 }
5053 
5054 int64_t
5055 vdev_deflated_space(vdev_t *vd, int64_t space)
5056 {
5057 	ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
5058 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
5059 
5060 	return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
5061 }
5062 
5063 /*
5064  * Update the in-core space usage stats for this vdev, its metaslab class,
5065  * and the root vdev.
5066  */
5067 void
5068 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
5069     int64_t space_delta)
5070 {
5071 	(void) defer_delta;
5072 	int64_t dspace_delta;
5073 	spa_t *spa = vd->vdev_spa;
5074 	vdev_t *rvd = spa->spa_root_vdev;
5075 
5076 	ASSERT(vd == vd->vdev_top);
5077 
5078 	/*
5079 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
5080 	 * factor.  We must calculate this here and not at the root vdev
5081 	 * because the root vdev's psize-to-asize is simply the max of its
5082 	 * children's, thus not accurate enough for us.
5083 	 */
5084 	dspace_delta = vdev_deflated_space(vd, space_delta);
5085 
5086 	mutex_enter(&vd->vdev_stat_lock);
5087 	/* ensure we won't underflow */
5088 	if (alloc_delta < 0) {
5089 		ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
5090 	}
5091 
5092 	vd->vdev_stat.vs_alloc += alloc_delta;
5093 	vd->vdev_stat.vs_space += space_delta;
5094 	vd->vdev_stat.vs_dspace += dspace_delta;
5095 	mutex_exit(&vd->vdev_stat_lock);
5096 
5097 	/* every class but log contributes to root space stats */
5098 	if (vd->vdev_mg != NULL && !vd->vdev_islog) {
5099 		ASSERT(!vd->vdev_isl2cache);
5100 		mutex_enter(&rvd->vdev_stat_lock);
5101 		rvd->vdev_stat.vs_alloc += alloc_delta;
5102 		rvd->vdev_stat.vs_space += space_delta;
5103 		rvd->vdev_stat.vs_dspace += dspace_delta;
5104 		mutex_exit(&rvd->vdev_stat_lock);
5105 	}
5106 	/* Note: metaslab_class_space_update moved to metaslab_space_update */
5107 }
5108 
5109 /*
5110  * Mark a top-level vdev's config as dirty, placing it on the dirty list
5111  * so that it will be written out next time the vdev configuration is synced.
5112  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
5113  */
5114 void
5115 vdev_config_dirty(vdev_t *vd)
5116 {
5117 	spa_t *spa = vd->vdev_spa;
5118 	vdev_t *rvd = spa->spa_root_vdev;
5119 	int c;
5120 
5121 	ASSERT(spa_writeable(spa));
5122 
5123 	/*
5124 	 * If this is an aux vdev (as with l2cache and spare devices), then we
5125 	 * update the vdev config manually and set the sync flag.
5126 	 */
5127 	if (vd->vdev_aux != NULL) {
5128 		spa_aux_vdev_t *sav = vd->vdev_aux;
5129 		nvlist_t **aux;
5130 		uint_t naux;
5131 
5132 		for (c = 0; c < sav->sav_count; c++) {
5133 			if (sav->sav_vdevs[c] == vd)
5134 				break;
5135 		}
5136 
5137 		if (c == sav->sav_count) {
5138 			/*
5139 			 * We're being removed.  There's nothing more to do.
5140 			 */
5141 			ASSERT(sav->sav_sync == B_TRUE);
5142 			return;
5143 		}
5144 
5145 		sav->sav_sync = B_TRUE;
5146 
5147 		if (nvlist_lookup_nvlist_array(sav->sav_config,
5148 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
5149 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
5150 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
5151 		}
5152 
5153 		ASSERT(c < naux);
5154 
5155 		/*
5156 		 * Setting the nvlist in the middle if the array is a little
5157 		 * sketchy, but it will work.
5158 		 */
5159 		nvlist_free(aux[c]);
5160 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
5161 
5162 		return;
5163 	}
5164 
5165 	/*
5166 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
5167 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
5168 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
5169 	 * so this is sufficient to ensure mutual exclusion.
5170 	 */
5171 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5172 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5173 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
5174 
5175 	if (vd == rvd) {
5176 		for (c = 0; c < rvd->vdev_children; c++)
5177 			vdev_config_dirty(rvd->vdev_child[c]);
5178 	} else {
5179 		ASSERT(vd == vd->vdev_top);
5180 
5181 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
5182 		    vdev_is_concrete(vd)) {
5183 			list_insert_head(&spa->spa_config_dirty_list, vd);
5184 		}
5185 	}
5186 }
5187 
5188 void
5189 vdev_config_clean(vdev_t *vd)
5190 {
5191 	spa_t *spa = vd->vdev_spa;
5192 
5193 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5194 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5195 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
5196 
5197 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
5198 	list_remove(&spa->spa_config_dirty_list, vd);
5199 }
5200 
5201 /*
5202  * Mark a top-level vdev's state as dirty, so that the next pass of
5203  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
5204  * the state changes from larger config changes because they require
5205  * much less locking, and are often needed for administrative actions.
5206  */
5207 void
5208 vdev_state_dirty(vdev_t *vd)
5209 {
5210 	spa_t *spa = vd->vdev_spa;
5211 
5212 	ASSERT(spa_writeable(spa));
5213 	ASSERT(vd == vd->vdev_top);
5214 
5215 	/*
5216 	 * The state list is protected by the SCL_STATE lock.  The caller
5217 	 * must either hold SCL_STATE as writer, or must be the sync thread
5218 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
5219 	 * so this is sufficient to ensure mutual exclusion.
5220 	 */
5221 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5222 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5223 	    spa_config_held(spa, SCL_STATE, RW_READER)));
5224 
5225 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
5226 	    vdev_is_concrete(vd))
5227 		list_insert_head(&spa->spa_state_dirty_list, vd);
5228 }
5229 
5230 void
5231 vdev_state_clean(vdev_t *vd)
5232 {
5233 	spa_t *spa = vd->vdev_spa;
5234 
5235 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5236 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5237 	    spa_config_held(spa, SCL_STATE, RW_READER)));
5238 
5239 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
5240 	list_remove(&spa->spa_state_dirty_list, vd);
5241 }
5242 
5243 /*
5244  * Propagate vdev state up from children to parent.
5245  */
5246 void
5247 vdev_propagate_state(vdev_t *vd)
5248 {
5249 	spa_t *spa = vd->vdev_spa;
5250 	vdev_t *rvd = spa->spa_root_vdev;
5251 	int degraded = 0, faulted = 0;
5252 	int corrupted = 0;
5253 	vdev_t *child;
5254 
5255 	if (vd->vdev_children > 0) {
5256 		for (int c = 0; c < vd->vdev_children; c++) {
5257 			child = vd->vdev_child[c];
5258 
5259 			/*
5260 			 * Don't factor holes or indirect vdevs into the
5261 			 * decision.
5262 			 */
5263 			if (!vdev_is_concrete(child))
5264 				continue;
5265 
5266 			if (!vdev_readable(child) ||
5267 			    (!vdev_writeable(child) && spa_writeable(spa))) {
5268 				/*
5269 				 * Root special: if there is a top-level log
5270 				 * device, treat the root vdev as if it were
5271 				 * degraded.
5272 				 */
5273 				if (child->vdev_islog && vd == rvd)
5274 					degraded++;
5275 				else
5276 					faulted++;
5277 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
5278 				degraded++;
5279 			}
5280 
5281 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
5282 				corrupted++;
5283 		}
5284 
5285 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
5286 
5287 		/*
5288 		 * Root special: if there is a top-level vdev that cannot be
5289 		 * opened due to corrupted metadata, then propagate the root
5290 		 * vdev's aux state as 'corrupt' rather than 'insufficient
5291 		 * replicas'.
5292 		 */
5293 		if (corrupted && vd == rvd &&
5294 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
5295 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
5296 			    VDEV_AUX_CORRUPT_DATA);
5297 	}
5298 
5299 	if (vd->vdev_parent)
5300 		vdev_propagate_state(vd->vdev_parent);
5301 }
5302 
5303 /*
5304  * Set a vdev's state.  If this is during an open, we don't update the parent
5305  * state, because we're in the process of opening children depth-first.
5306  * Otherwise, we propagate the change to the parent.
5307  *
5308  * If this routine places a device in a faulted state, an appropriate ereport is
5309  * generated.
5310  */
5311 void
5312 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
5313 {
5314 	uint64_t save_state;
5315 	spa_t *spa = vd->vdev_spa;
5316 
5317 	if (state == vd->vdev_state) {
5318 		/*
5319 		 * Since vdev_offline() code path is already in an offline
5320 		 * state we can miss a statechange event to OFFLINE. Check
5321 		 * the previous state to catch this condition.
5322 		 */
5323 		if (vd->vdev_ops->vdev_op_leaf &&
5324 		    (state == VDEV_STATE_OFFLINE) &&
5325 		    (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
5326 			/* post an offline state change */
5327 			zfs_post_state_change(spa, vd, vd->vdev_prevstate);
5328 		}
5329 		vd->vdev_stat.vs_aux = aux;
5330 		return;
5331 	}
5332 
5333 	save_state = vd->vdev_state;
5334 
5335 	vd->vdev_state = state;
5336 	vd->vdev_stat.vs_aux = aux;
5337 
5338 	/*
5339 	 * If we are setting the vdev state to anything but an open state, then
5340 	 * always close the underlying device unless the device has requested
5341 	 * a delayed close (i.e. we're about to remove or fault the device).
5342 	 * Otherwise, we keep accessible but invalid devices open forever.
5343 	 * We don't call vdev_close() itself, because that implies some extra
5344 	 * checks (offline, etc) that we don't want here.  This is limited to
5345 	 * leaf devices, because otherwise closing the device will affect other
5346 	 * children.
5347 	 */
5348 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
5349 	    vd->vdev_ops->vdev_op_leaf)
5350 		vd->vdev_ops->vdev_op_close(vd);
5351 
5352 	if (vd->vdev_removed &&
5353 	    state == VDEV_STATE_CANT_OPEN &&
5354 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
5355 		/*
5356 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
5357 		 * device was previously marked removed and someone attempted to
5358 		 * reopen it.  If this failed due to a nonexistent device, then
5359 		 * keep the device in the REMOVED state.  We also let this be if
5360 		 * it is one of our special test online cases, which is only
5361 		 * attempting to online the device and shouldn't generate an FMA
5362 		 * fault.
5363 		 */
5364 		vd->vdev_state = VDEV_STATE_REMOVED;
5365 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
5366 	} else if (state == VDEV_STATE_REMOVED) {
5367 		vd->vdev_removed = B_TRUE;
5368 	} else if (state == VDEV_STATE_CANT_OPEN) {
5369 		/*
5370 		 * If we fail to open a vdev during an import or recovery, we
5371 		 * mark it as "not available", which signifies that it was
5372 		 * never there to begin with.  Failure to open such a device
5373 		 * is not considered an error.
5374 		 */
5375 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5376 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5377 		    vd->vdev_ops->vdev_op_leaf)
5378 			vd->vdev_not_present = 1;
5379 
5380 		/*
5381 		 * Post the appropriate ereport.  If the 'prevstate' field is
5382 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5383 		 * that this is part of a vdev_reopen().  In this case, we don't
5384 		 * want to post the ereport if the device was already in the
5385 		 * CANT_OPEN state beforehand.
5386 		 *
5387 		 * If the 'checkremove' flag is set, then this is an attempt to
5388 		 * online the device in response to an insertion event.  If we
5389 		 * hit this case, then we have detected an insertion event for a
5390 		 * faulted or offline device that wasn't in the removed state.
5391 		 * In this scenario, we don't post an ereport because we are
5392 		 * about to replace the device, or attempt an online with
5393 		 * vdev_forcefault, which will generate the fault for us.
5394 		 */
5395 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5396 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
5397 		    vd != spa->spa_root_vdev) {
5398 			const char *class;
5399 
5400 			switch (aux) {
5401 			case VDEV_AUX_OPEN_FAILED:
5402 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5403 				break;
5404 			case VDEV_AUX_CORRUPT_DATA:
5405 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5406 				break;
5407 			case VDEV_AUX_NO_REPLICAS:
5408 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5409 				break;
5410 			case VDEV_AUX_BAD_GUID_SUM:
5411 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5412 				break;
5413 			case VDEV_AUX_TOO_SMALL:
5414 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5415 				break;
5416 			case VDEV_AUX_BAD_LABEL:
5417 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5418 				break;
5419 			case VDEV_AUX_BAD_ASHIFT:
5420 				class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5421 				break;
5422 			default:
5423 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5424 			}
5425 
5426 			(void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5427 			    save_state);
5428 		}
5429 
5430 		/* Erase any notion of persistent removed state */
5431 		vd->vdev_removed = B_FALSE;
5432 	} else {
5433 		vd->vdev_removed = B_FALSE;
5434 	}
5435 
5436 	/*
5437 	 * Notify ZED of any significant state-change on a leaf vdev.
5438 	 *
5439 	 */
5440 	if (vd->vdev_ops->vdev_op_leaf) {
5441 		/* preserve original state from a vdev_reopen() */
5442 		if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5443 		    (vd->vdev_prevstate != vd->vdev_state) &&
5444 		    (save_state <= VDEV_STATE_CLOSED))
5445 			save_state = vd->vdev_prevstate;
5446 
5447 		/* filter out state change due to initial vdev_open */
5448 		if (save_state > VDEV_STATE_CLOSED)
5449 			zfs_post_state_change(spa, vd, save_state);
5450 	}
5451 
5452 	if (!isopen && vd->vdev_parent)
5453 		vdev_propagate_state(vd->vdev_parent);
5454 }
5455 
5456 boolean_t
5457 vdev_children_are_offline(vdev_t *vd)
5458 {
5459 	ASSERT(!vd->vdev_ops->vdev_op_leaf);
5460 
5461 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
5462 		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5463 			return (B_FALSE);
5464 	}
5465 
5466 	return (B_TRUE);
5467 }
5468 
5469 /*
5470  * Check the vdev configuration to ensure that it's capable of supporting
5471  * a root pool. We do not support partial configuration.
5472  */
5473 boolean_t
5474 vdev_is_bootable(vdev_t *vd)
5475 {
5476 	if (!vd->vdev_ops->vdev_op_leaf) {
5477 		const char *vdev_type = vd->vdev_ops->vdev_op_type;
5478 
5479 		if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
5480 			return (B_FALSE);
5481 	}
5482 
5483 	for (int c = 0; c < vd->vdev_children; c++) {
5484 		if (!vdev_is_bootable(vd->vdev_child[c]))
5485 			return (B_FALSE);
5486 	}
5487 	return (B_TRUE);
5488 }
5489 
5490 boolean_t
5491 vdev_is_concrete(vdev_t *vd)
5492 {
5493 	vdev_ops_t *ops = vd->vdev_ops;
5494 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5495 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5496 		return (B_FALSE);
5497 	} else {
5498 		return (B_TRUE);
5499 	}
5500 }
5501 
5502 /*
5503  * Determine if a log device has valid content.  If the vdev was
5504  * removed or faulted in the MOS config then we know that
5505  * the content on the log device has already been written to the pool.
5506  */
5507 boolean_t
5508 vdev_log_state_valid(vdev_t *vd)
5509 {
5510 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5511 	    !vd->vdev_removed)
5512 		return (B_TRUE);
5513 
5514 	for (int c = 0; c < vd->vdev_children; c++)
5515 		if (vdev_log_state_valid(vd->vdev_child[c]))
5516 			return (B_TRUE);
5517 
5518 	return (B_FALSE);
5519 }
5520 
5521 /*
5522  * Expand a vdev if possible.
5523  */
5524 void
5525 vdev_expand(vdev_t *vd, uint64_t txg)
5526 {
5527 	ASSERT(vd->vdev_top == vd);
5528 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5529 	ASSERT(vdev_is_concrete(vd));
5530 
5531 	vdev_set_deflate_ratio(vd);
5532 
5533 	if ((vd->vdev_spa->spa_raidz_expand == NULL ||
5534 	    vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) &&
5535 	    (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5536 	    vdev_is_concrete(vd)) {
5537 		vdev_metaslab_group_create(vd);
5538 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
5539 		vdev_config_dirty(vd);
5540 	}
5541 }
5542 
5543 /*
5544  * Split a vdev.
5545  */
5546 void
5547 vdev_split(vdev_t *vd)
5548 {
5549 	vdev_t *cvd, *pvd = vd->vdev_parent;
5550 
5551 	VERIFY3U(pvd->vdev_children, >, 1);
5552 
5553 	vdev_remove_child(pvd, vd);
5554 	vdev_compact_children(pvd);
5555 
5556 	ASSERT3P(pvd->vdev_child, !=, NULL);
5557 
5558 	cvd = pvd->vdev_child[0];
5559 	if (pvd->vdev_children == 1) {
5560 		vdev_remove_parent(cvd);
5561 		cvd->vdev_splitting = B_TRUE;
5562 	}
5563 	vdev_propagate_state(cvd);
5564 }
5565 
5566 void
5567 vdev_deadman(vdev_t *vd, const char *tag)
5568 {
5569 	for (int c = 0; c < vd->vdev_children; c++) {
5570 		vdev_t *cvd = vd->vdev_child[c];
5571 
5572 		vdev_deadman(cvd, tag);
5573 	}
5574 
5575 	if (vd->vdev_ops->vdev_op_leaf) {
5576 		vdev_queue_t *vq = &vd->vdev_queue;
5577 
5578 		mutex_enter(&vq->vq_lock);
5579 		if (vq->vq_active > 0) {
5580 			spa_t *spa = vd->vdev_spa;
5581 			zio_t *fio;
5582 			uint64_t delta;
5583 
5584 			zfs_dbgmsg("slow vdev: %s has %u active IOs",
5585 			    vd->vdev_path, vq->vq_active);
5586 
5587 			/*
5588 			 * Look at the head of all the pending queues,
5589 			 * if any I/O has been outstanding for longer than
5590 			 * the spa_deadman_synctime invoke the deadman logic.
5591 			 */
5592 			fio = list_head(&vq->vq_active_list);
5593 			delta = gethrtime() - fio->io_timestamp;
5594 			if (delta > spa_deadman_synctime(spa))
5595 				zio_deadman(fio, tag);
5596 		}
5597 		mutex_exit(&vq->vq_lock);
5598 	}
5599 }
5600 
5601 void
5602 vdev_defer_resilver(vdev_t *vd)
5603 {
5604 	ASSERT(vd->vdev_ops->vdev_op_leaf);
5605 
5606 	vd->vdev_resilver_deferred = B_TRUE;
5607 	vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5608 }
5609 
5610 /*
5611  * Clears the resilver deferred flag on all leaf devs under vd. Returns
5612  * B_TRUE if we have devices that need to be resilvered and are available to
5613  * accept resilver I/Os.
5614  */
5615 boolean_t
5616 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5617 {
5618 	boolean_t resilver_needed = B_FALSE;
5619 	spa_t *spa = vd->vdev_spa;
5620 
5621 	for (int c = 0; c < vd->vdev_children; c++) {
5622 		vdev_t *cvd = vd->vdev_child[c];
5623 		resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5624 	}
5625 
5626 	if (vd == spa->spa_root_vdev &&
5627 	    spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5628 		spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5629 		vdev_config_dirty(vd);
5630 		spa->spa_resilver_deferred = B_FALSE;
5631 		return (resilver_needed);
5632 	}
5633 
5634 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5635 	    !vd->vdev_ops->vdev_op_leaf)
5636 		return (resilver_needed);
5637 
5638 	vd->vdev_resilver_deferred = B_FALSE;
5639 
5640 	return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5641 	    vdev_resilver_needed(vd, NULL, NULL));
5642 }
5643 
5644 boolean_t
5645 vdev_xlate_is_empty(range_seg64_t *rs)
5646 {
5647 	return (rs->rs_start == rs->rs_end);
5648 }
5649 
5650 /*
5651  * Translate a logical range to the first contiguous physical range for the
5652  * specified vdev_t.  This function is initially called with a leaf vdev and
5653  * will walk each parent vdev until it reaches a top-level vdev. Once the
5654  * top-level is reached the physical range is initialized and the recursive
5655  * function begins to unwind. As it unwinds it calls the parent's vdev
5656  * specific translation function to do the real conversion.
5657  */
5658 void
5659 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
5660     range_seg64_t *physical_rs, range_seg64_t *remain_rs)
5661 {
5662 	/*
5663 	 * Walk up the vdev tree
5664 	 */
5665 	if (vd != vd->vdev_top) {
5666 		vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5667 		    remain_rs);
5668 	} else {
5669 		/*
5670 		 * We've reached the top-level vdev, initialize the physical
5671 		 * range to the logical range and set an empty remaining
5672 		 * range then start to unwind.
5673 		 */
5674 		physical_rs->rs_start = logical_rs->rs_start;
5675 		physical_rs->rs_end = logical_rs->rs_end;
5676 
5677 		remain_rs->rs_start = logical_rs->rs_start;
5678 		remain_rs->rs_end = logical_rs->rs_start;
5679 
5680 		return;
5681 	}
5682 
5683 	vdev_t *pvd = vd->vdev_parent;
5684 	ASSERT3P(pvd, !=, NULL);
5685 	ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5686 
5687 	/*
5688 	 * As this recursive function unwinds, translate the logical
5689 	 * range into its physical and any remaining components by calling
5690 	 * the vdev specific translate function.
5691 	 */
5692 	range_seg64_t intermediate = { 0 };
5693 	pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5694 
5695 	physical_rs->rs_start = intermediate.rs_start;
5696 	physical_rs->rs_end = intermediate.rs_end;
5697 }
5698 
5699 void
5700 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs,
5701     vdev_xlate_func_t *func, void *arg)
5702 {
5703 	range_seg64_t iter_rs = *logical_rs;
5704 	range_seg64_t physical_rs;
5705 	range_seg64_t remain_rs;
5706 
5707 	while (!vdev_xlate_is_empty(&iter_rs)) {
5708 
5709 		vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5710 
5711 		/*
5712 		 * With raidz and dRAID, it's possible that the logical range
5713 		 * does not live on this leaf vdev. Only when there is a non-
5714 		 * zero physical size call the provided function.
5715 		 */
5716 		if (!vdev_xlate_is_empty(&physical_rs))
5717 			func(arg, &physical_rs);
5718 
5719 		iter_rs = remain_rs;
5720 	}
5721 }
5722 
5723 static char *
5724 vdev_name(vdev_t *vd, char *buf, int buflen)
5725 {
5726 	if (vd->vdev_path == NULL) {
5727 		if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) {
5728 			strlcpy(buf, vd->vdev_spa->spa_name, buflen);
5729 		} else if (!vd->vdev_ops->vdev_op_leaf) {
5730 			snprintf(buf, buflen, "%s-%llu",
5731 			    vd->vdev_ops->vdev_op_type,
5732 			    (u_longlong_t)vd->vdev_id);
5733 		}
5734 	} else {
5735 		strlcpy(buf, vd->vdev_path, buflen);
5736 	}
5737 	return (buf);
5738 }
5739 
5740 /*
5741  * Look at the vdev tree and determine whether any devices are currently being
5742  * replaced.
5743  */
5744 boolean_t
5745 vdev_replace_in_progress(vdev_t *vdev)
5746 {
5747 	ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5748 
5749 	if (vdev->vdev_ops == &vdev_replacing_ops)
5750 		return (B_TRUE);
5751 
5752 	/*
5753 	 * A 'spare' vdev indicates that we have a replace in progress, unless
5754 	 * it has exactly two children, and the second, the hot spare, has
5755 	 * finished being resilvered.
5756 	 */
5757 	if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5758 	    !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5759 		return (B_TRUE);
5760 
5761 	for (int i = 0; i < vdev->vdev_children; i++) {
5762 		if (vdev_replace_in_progress(vdev->vdev_child[i]))
5763 			return (B_TRUE);
5764 	}
5765 
5766 	return (B_FALSE);
5767 }
5768 
5769 /*
5770  * Add a (source=src, propname=propval) list to an nvlist.
5771  */
5772 static void
5773 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval,
5774     uint64_t intval, zprop_source_t src)
5775 {
5776 	nvlist_t *propval;
5777 
5778 	propval = fnvlist_alloc();
5779 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
5780 
5781 	if (strval != NULL)
5782 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
5783 	else
5784 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
5785 
5786 	fnvlist_add_nvlist(nvl, propname, propval);
5787 	nvlist_free(propval);
5788 }
5789 
5790 static void
5791 vdev_props_set_sync(void *arg, dmu_tx_t *tx)
5792 {
5793 	vdev_t *vd;
5794 	nvlist_t *nvp = arg;
5795 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5796 	objset_t *mos = spa->spa_meta_objset;
5797 	nvpair_t *elem = NULL;
5798 	uint64_t vdev_guid;
5799 	uint64_t objid;
5800 	nvlist_t *nvprops;
5801 
5802 	vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV);
5803 	nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS);
5804 	vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE);
5805 
5806 	/* this vdev could get removed while waiting for this sync task */
5807 	if (vd == NULL)
5808 		return;
5809 
5810 	/*
5811 	 * Set vdev property values in the vdev props mos object.
5812 	 */
5813 	if (vd->vdev_root_zap != 0) {
5814 		objid = vd->vdev_root_zap;
5815 	} else if (vd->vdev_top_zap != 0) {
5816 		objid = vd->vdev_top_zap;
5817 	} else if (vd->vdev_leaf_zap != 0) {
5818 		objid = vd->vdev_leaf_zap;
5819 	} else {
5820 		panic("unexpected vdev type");
5821 	}
5822 
5823 	mutex_enter(&spa->spa_props_lock);
5824 
5825 	while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5826 		uint64_t intval;
5827 		const char *strval;
5828 		vdev_prop_t prop;
5829 		const char *propname = nvpair_name(elem);
5830 		zprop_type_t proptype;
5831 
5832 		switch (prop = vdev_name_to_prop(propname)) {
5833 		case VDEV_PROP_USERPROP:
5834 			if (vdev_prop_user(propname)) {
5835 				strval = fnvpair_value_string(elem);
5836 				if (strlen(strval) == 0) {
5837 					/* remove the property if value == "" */
5838 					(void) zap_remove(mos, objid, propname,
5839 					    tx);
5840 				} else {
5841 					VERIFY0(zap_update(mos, objid, propname,
5842 					    1, strlen(strval) + 1, strval, tx));
5843 				}
5844 				spa_history_log_internal(spa, "vdev set", tx,
5845 				    "vdev_guid=%llu: %s=%s",
5846 				    (u_longlong_t)vdev_guid, nvpair_name(elem),
5847 				    strval);
5848 			}
5849 			break;
5850 		default:
5851 			/* normalize the property name */
5852 			propname = vdev_prop_to_name(prop);
5853 			proptype = vdev_prop_get_type(prop);
5854 
5855 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5856 				ASSERT(proptype == PROP_TYPE_STRING);
5857 				strval = fnvpair_value_string(elem);
5858 				VERIFY0(zap_update(mos, objid, propname,
5859 				    1, strlen(strval) + 1, strval, tx));
5860 				spa_history_log_internal(spa, "vdev set", tx,
5861 				    "vdev_guid=%llu: %s=%s",
5862 				    (u_longlong_t)vdev_guid, nvpair_name(elem),
5863 				    strval);
5864 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5865 				intval = fnvpair_value_uint64(elem);
5866 
5867 				if (proptype == PROP_TYPE_INDEX) {
5868 					const char *unused;
5869 					VERIFY0(vdev_prop_index_to_string(
5870 					    prop, intval, &unused));
5871 				}
5872 				VERIFY0(zap_update(mos, objid, propname,
5873 				    sizeof (uint64_t), 1, &intval, tx));
5874 				spa_history_log_internal(spa, "vdev set", tx,
5875 				    "vdev_guid=%llu: %s=%lld",
5876 				    (u_longlong_t)vdev_guid,
5877 				    nvpair_name(elem), (longlong_t)intval);
5878 			} else {
5879 				panic("invalid vdev property type %u",
5880 				    nvpair_type(elem));
5881 			}
5882 		}
5883 
5884 	}
5885 
5886 	mutex_exit(&spa->spa_props_lock);
5887 }
5888 
5889 int
5890 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
5891 {
5892 	spa_t *spa = vd->vdev_spa;
5893 	nvpair_t *elem = NULL;
5894 	uint64_t vdev_guid;
5895 	nvlist_t *nvprops;
5896 	int error = 0;
5897 
5898 	ASSERT(vd != NULL);
5899 
5900 	/* Check that vdev has a zap we can use */
5901 	if (vd->vdev_root_zap == 0 &&
5902 	    vd->vdev_top_zap == 0 &&
5903 	    vd->vdev_leaf_zap == 0)
5904 		return (SET_ERROR(EINVAL));
5905 
5906 	if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV,
5907 	    &vdev_guid) != 0)
5908 		return (SET_ERROR(EINVAL));
5909 
5910 	if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS,
5911 	    &nvprops) != 0)
5912 		return (SET_ERROR(EINVAL));
5913 
5914 	if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL)
5915 		return (SET_ERROR(EINVAL));
5916 
5917 	while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5918 		const char *propname = nvpair_name(elem);
5919 		vdev_prop_t prop = vdev_name_to_prop(propname);
5920 		uint64_t intval = 0;
5921 		const char *strval = NULL;
5922 
5923 		if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) {
5924 			error = EINVAL;
5925 			goto end;
5926 		}
5927 
5928 		if (vdev_prop_readonly(prop)) {
5929 			error = EROFS;
5930 			goto end;
5931 		}
5932 
5933 		/* Special Processing */
5934 		switch (prop) {
5935 		case VDEV_PROP_PATH:
5936 			if (vd->vdev_path == NULL) {
5937 				error = EROFS;
5938 				break;
5939 			}
5940 			if (nvpair_value_string(elem, &strval) != 0) {
5941 				error = EINVAL;
5942 				break;
5943 			}
5944 			/* New path must start with /dev/ */
5945 			if (strncmp(strval, "/dev/", 5)) {
5946 				error = EINVAL;
5947 				break;
5948 			}
5949 			error = spa_vdev_setpath(spa, vdev_guid, strval);
5950 			break;
5951 		case VDEV_PROP_ALLOCATING:
5952 			if (nvpair_value_uint64(elem, &intval) != 0) {
5953 				error = EINVAL;
5954 				break;
5955 			}
5956 			if (intval != vd->vdev_noalloc)
5957 				break;
5958 			if (intval == 0)
5959 				error = spa_vdev_noalloc(spa, vdev_guid);
5960 			else
5961 				error = spa_vdev_alloc(spa, vdev_guid);
5962 			break;
5963 		case VDEV_PROP_FAILFAST:
5964 			if (nvpair_value_uint64(elem, &intval) != 0) {
5965 				error = EINVAL;
5966 				break;
5967 			}
5968 			vd->vdev_failfast = intval & 1;
5969 			break;
5970 		case VDEV_PROP_CHECKSUM_N:
5971 			if (nvpair_value_uint64(elem, &intval) != 0) {
5972 				error = EINVAL;
5973 				break;
5974 			}
5975 			vd->vdev_checksum_n = intval;
5976 			break;
5977 		case VDEV_PROP_CHECKSUM_T:
5978 			if (nvpair_value_uint64(elem, &intval) != 0) {
5979 				error = EINVAL;
5980 				break;
5981 			}
5982 			vd->vdev_checksum_t = intval;
5983 			break;
5984 		case VDEV_PROP_IO_N:
5985 			if (nvpair_value_uint64(elem, &intval) != 0) {
5986 				error = EINVAL;
5987 				break;
5988 			}
5989 			vd->vdev_io_n = intval;
5990 			break;
5991 		case VDEV_PROP_IO_T:
5992 			if (nvpair_value_uint64(elem, &intval) != 0) {
5993 				error = EINVAL;
5994 				break;
5995 			}
5996 			vd->vdev_io_t = intval;
5997 			break;
5998 		case VDEV_PROP_SLOW_IO_N:
5999 			if (nvpair_value_uint64(elem, &intval) != 0) {
6000 				error = EINVAL;
6001 				break;
6002 			}
6003 			vd->vdev_slow_io_n = intval;
6004 			break;
6005 		case VDEV_PROP_SLOW_IO_T:
6006 			if (nvpair_value_uint64(elem, &intval) != 0) {
6007 				error = EINVAL;
6008 				break;
6009 			}
6010 			vd->vdev_slow_io_t = intval;
6011 			break;
6012 		default:
6013 			/* Most processing is done in vdev_props_set_sync */
6014 			break;
6015 		}
6016 end:
6017 		if (error != 0) {
6018 			intval = error;
6019 			vdev_prop_add_list(outnvl, propname, strval, intval, 0);
6020 			return (error);
6021 		}
6022 	}
6023 
6024 	return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync,
6025 	    innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED));
6026 }
6027 
6028 int
6029 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
6030 {
6031 	spa_t *spa = vd->vdev_spa;
6032 	objset_t *mos = spa->spa_meta_objset;
6033 	int err = 0;
6034 	uint64_t objid;
6035 	uint64_t vdev_guid;
6036 	nvpair_t *elem = NULL;
6037 	nvlist_t *nvprops = NULL;
6038 	uint64_t intval = 0;
6039 	char *strval = NULL;
6040 	const char *propname = NULL;
6041 	vdev_prop_t prop;
6042 
6043 	ASSERT(vd != NULL);
6044 	ASSERT(mos != NULL);
6045 
6046 	if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV,
6047 	    &vdev_guid) != 0)
6048 		return (SET_ERROR(EINVAL));
6049 
6050 	nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops);
6051 
6052 	if (vd->vdev_root_zap != 0) {
6053 		objid = vd->vdev_root_zap;
6054 	} else if (vd->vdev_top_zap != 0) {
6055 		objid = vd->vdev_top_zap;
6056 	} else if (vd->vdev_leaf_zap != 0) {
6057 		objid = vd->vdev_leaf_zap;
6058 	} else {
6059 		return (SET_ERROR(EINVAL));
6060 	}
6061 	ASSERT(objid != 0);
6062 
6063 	mutex_enter(&spa->spa_props_lock);
6064 
6065 	if (nvprops != NULL) {
6066 		char namebuf[64] = { 0 };
6067 
6068 		while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
6069 			intval = 0;
6070 			strval = NULL;
6071 			propname = nvpair_name(elem);
6072 			prop = vdev_name_to_prop(propname);
6073 			zprop_source_t src = ZPROP_SRC_DEFAULT;
6074 			uint64_t integer_size, num_integers;
6075 
6076 			switch (prop) {
6077 			/* Special Read-only Properties */
6078 			case VDEV_PROP_NAME:
6079 				strval = vdev_name(vd, namebuf,
6080 				    sizeof (namebuf));
6081 				if (strval == NULL)
6082 					continue;
6083 				vdev_prop_add_list(outnvl, propname, strval, 0,
6084 				    ZPROP_SRC_NONE);
6085 				continue;
6086 			case VDEV_PROP_CAPACITY:
6087 				/* percent used */
6088 				intval = (vd->vdev_stat.vs_dspace == 0) ? 0 :
6089 				    (vd->vdev_stat.vs_alloc * 100 /
6090 				    vd->vdev_stat.vs_dspace);
6091 				vdev_prop_add_list(outnvl, propname, NULL,
6092 				    intval, ZPROP_SRC_NONE);
6093 				continue;
6094 			case VDEV_PROP_STATE:
6095 				vdev_prop_add_list(outnvl, propname, NULL,
6096 				    vd->vdev_state, ZPROP_SRC_NONE);
6097 				continue;
6098 			case VDEV_PROP_GUID:
6099 				vdev_prop_add_list(outnvl, propname, NULL,
6100 				    vd->vdev_guid, ZPROP_SRC_NONE);
6101 				continue;
6102 			case VDEV_PROP_ASIZE:
6103 				vdev_prop_add_list(outnvl, propname, NULL,
6104 				    vd->vdev_asize, ZPROP_SRC_NONE);
6105 				continue;
6106 			case VDEV_PROP_PSIZE:
6107 				vdev_prop_add_list(outnvl, propname, NULL,
6108 				    vd->vdev_psize, ZPROP_SRC_NONE);
6109 				continue;
6110 			case VDEV_PROP_ASHIFT:
6111 				vdev_prop_add_list(outnvl, propname, NULL,
6112 				    vd->vdev_ashift, ZPROP_SRC_NONE);
6113 				continue;
6114 			case VDEV_PROP_SIZE:
6115 				vdev_prop_add_list(outnvl, propname, NULL,
6116 				    vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE);
6117 				continue;
6118 			case VDEV_PROP_FREE:
6119 				vdev_prop_add_list(outnvl, propname, NULL,
6120 				    vd->vdev_stat.vs_dspace -
6121 				    vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6122 				continue;
6123 			case VDEV_PROP_ALLOCATED:
6124 				vdev_prop_add_list(outnvl, propname, NULL,
6125 				    vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6126 				continue;
6127 			case VDEV_PROP_EXPANDSZ:
6128 				vdev_prop_add_list(outnvl, propname, NULL,
6129 				    vd->vdev_stat.vs_esize, ZPROP_SRC_NONE);
6130 				continue;
6131 			case VDEV_PROP_FRAGMENTATION:
6132 				vdev_prop_add_list(outnvl, propname, NULL,
6133 				    vd->vdev_stat.vs_fragmentation,
6134 				    ZPROP_SRC_NONE);
6135 				continue;
6136 			case VDEV_PROP_PARITY:
6137 				vdev_prop_add_list(outnvl, propname, NULL,
6138 				    vdev_get_nparity(vd), ZPROP_SRC_NONE);
6139 				continue;
6140 			case VDEV_PROP_PATH:
6141 				if (vd->vdev_path == NULL)
6142 					continue;
6143 				vdev_prop_add_list(outnvl, propname,
6144 				    vd->vdev_path, 0, ZPROP_SRC_NONE);
6145 				continue;
6146 			case VDEV_PROP_DEVID:
6147 				if (vd->vdev_devid == NULL)
6148 					continue;
6149 				vdev_prop_add_list(outnvl, propname,
6150 				    vd->vdev_devid, 0, ZPROP_SRC_NONE);
6151 				continue;
6152 			case VDEV_PROP_PHYS_PATH:
6153 				if (vd->vdev_physpath == NULL)
6154 					continue;
6155 				vdev_prop_add_list(outnvl, propname,
6156 				    vd->vdev_physpath, 0, ZPROP_SRC_NONE);
6157 				continue;
6158 			case VDEV_PROP_ENC_PATH:
6159 				if (vd->vdev_enc_sysfs_path == NULL)
6160 					continue;
6161 				vdev_prop_add_list(outnvl, propname,
6162 				    vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE);
6163 				continue;
6164 			case VDEV_PROP_FRU:
6165 				if (vd->vdev_fru == NULL)
6166 					continue;
6167 				vdev_prop_add_list(outnvl, propname,
6168 				    vd->vdev_fru, 0, ZPROP_SRC_NONE);
6169 				continue;
6170 			case VDEV_PROP_PARENT:
6171 				if (vd->vdev_parent != NULL) {
6172 					strval = vdev_name(vd->vdev_parent,
6173 					    namebuf, sizeof (namebuf));
6174 					vdev_prop_add_list(outnvl, propname,
6175 					    strval, 0, ZPROP_SRC_NONE);
6176 				}
6177 				continue;
6178 			case VDEV_PROP_CHILDREN:
6179 				if (vd->vdev_children > 0)
6180 					strval = kmem_zalloc(ZAP_MAXVALUELEN,
6181 					    KM_SLEEP);
6182 				for (uint64_t i = 0; i < vd->vdev_children;
6183 				    i++) {
6184 					const char *vname;
6185 
6186 					vname = vdev_name(vd->vdev_child[i],
6187 					    namebuf, sizeof (namebuf));
6188 					if (vname == NULL)
6189 						vname = "(unknown)";
6190 					if (strlen(strval) > 0)
6191 						strlcat(strval, ",",
6192 						    ZAP_MAXVALUELEN);
6193 					strlcat(strval, vname, ZAP_MAXVALUELEN);
6194 				}
6195 				if (strval != NULL) {
6196 					vdev_prop_add_list(outnvl, propname,
6197 					    strval, 0, ZPROP_SRC_NONE);
6198 					kmem_free(strval, ZAP_MAXVALUELEN);
6199 				}
6200 				continue;
6201 			case VDEV_PROP_NUMCHILDREN:
6202 				vdev_prop_add_list(outnvl, propname, NULL,
6203 				    vd->vdev_children, ZPROP_SRC_NONE);
6204 				continue;
6205 			case VDEV_PROP_READ_ERRORS:
6206 				vdev_prop_add_list(outnvl, propname, NULL,
6207 				    vd->vdev_stat.vs_read_errors,
6208 				    ZPROP_SRC_NONE);
6209 				continue;
6210 			case VDEV_PROP_WRITE_ERRORS:
6211 				vdev_prop_add_list(outnvl, propname, NULL,
6212 				    vd->vdev_stat.vs_write_errors,
6213 				    ZPROP_SRC_NONE);
6214 				continue;
6215 			case VDEV_PROP_CHECKSUM_ERRORS:
6216 				vdev_prop_add_list(outnvl, propname, NULL,
6217 				    vd->vdev_stat.vs_checksum_errors,
6218 				    ZPROP_SRC_NONE);
6219 				continue;
6220 			case VDEV_PROP_INITIALIZE_ERRORS:
6221 				vdev_prop_add_list(outnvl, propname, NULL,
6222 				    vd->vdev_stat.vs_initialize_errors,
6223 				    ZPROP_SRC_NONE);
6224 				continue;
6225 			case VDEV_PROP_OPS_NULL:
6226 				vdev_prop_add_list(outnvl, propname, NULL,
6227 				    vd->vdev_stat.vs_ops[ZIO_TYPE_NULL],
6228 				    ZPROP_SRC_NONE);
6229 				continue;
6230 			case VDEV_PROP_OPS_READ:
6231 				vdev_prop_add_list(outnvl, propname, NULL,
6232 				    vd->vdev_stat.vs_ops[ZIO_TYPE_READ],
6233 				    ZPROP_SRC_NONE);
6234 				continue;
6235 			case VDEV_PROP_OPS_WRITE:
6236 				vdev_prop_add_list(outnvl, propname, NULL,
6237 				    vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE],
6238 				    ZPROP_SRC_NONE);
6239 				continue;
6240 			case VDEV_PROP_OPS_FREE:
6241 				vdev_prop_add_list(outnvl, propname, NULL,
6242 				    vd->vdev_stat.vs_ops[ZIO_TYPE_FREE],
6243 				    ZPROP_SRC_NONE);
6244 				continue;
6245 			case VDEV_PROP_OPS_CLAIM:
6246 				vdev_prop_add_list(outnvl, propname, NULL,
6247 				    vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM],
6248 				    ZPROP_SRC_NONE);
6249 				continue;
6250 			case VDEV_PROP_OPS_TRIM:
6251 				/*
6252 				 * TRIM ops and bytes are reported to user
6253 				 * space as ZIO_TYPE_FLUSH.  This is done to
6254 				 * preserve the vdev_stat_t structure layout
6255 				 * for user space.
6256 				 */
6257 				vdev_prop_add_list(outnvl, propname, NULL,
6258 				    vd->vdev_stat.vs_ops[ZIO_TYPE_FLUSH],
6259 				    ZPROP_SRC_NONE);
6260 				continue;
6261 			case VDEV_PROP_BYTES_NULL:
6262 				vdev_prop_add_list(outnvl, propname, NULL,
6263 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL],
6264 				    ZPROP_SRC_NONE);
6265 				continue;
6266 			case VDEV_PROP_BYTES_READ:
6267 				vdev_prop_add_list(outnvl, propname, NULL,
6268 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_READ],
6269 				    ZPROP_SRC_NONE);
6270 				continue;
6271 			case VDEV_PROP_BYTES_WRITE:
6272 				vdev_prop_add_list(outnvl, propname, NULL,
6273 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE],
6274 				    ZPROP_SRC_NONE);
6275 				continue;
6276 			case VDEV_PROP_BYTES_FREE:
6277 				vdev_prop_add_list(outnvl, propname, NULL,
6278 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE],
6279 				    ZPROP_SRC_NONE);
6280 				continue;
6281 			case VDEV_PROP_BYTES_CLAIM:
6282 				vdev_prop_add_list(outnvl, propname, NULL,
6283 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM],
6284 				    ZPROP_SRC_NONE);
6285 				continue;
6286 			case VDEV_PROP_BYTES_TRIM:
6287 				/*
6288 				 * TRIM ops and bytes are reported to user
6289 				 * space as ZIO_TYPE_FLUSH.  This is done to
6290 				 * preserve the vdev_stat_t structure layout
6291 				 * for user space.
6292 				 */
6293 				vdev_prop_add_list(outnvl, propname, NULL,
6294 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_FLUSH],
6295 				    ZPROP_SRC_NONE);
6296 				continue;
6297 			case VDEV_PROP_REMOVING:
6298 				vdev_prop_add_list(outnvl, propname, NULL,
6299 				    vd->vdev_removing, ZPROP_SRC_NONE);
6300 				continue;
6301 			case VDEV_PROP_RAIDZ_EXPANDING:
6302 				/* Only expose this for raidz */
6303 				if (vd->vdev_ops == &vdev_raidz_ops) {
6304 					vdev_prop_add_list(outnvl, propname,
6305 					    NULL, vd->vdev_rz_expanding,
6306 					    ZPROP_SRC_NONE);
6307 				}
6308 				continue;
6309 			/* Numeric Properites */
6310 			case VDEV_PROP_ALLOCATING:
6311 				/* Leaf vdevs cannot have this property */
6312 				if (vd->vdev_mg == NULL &&
6313 				    vd->vdev_top != NULL) {
6314 					src = ZPROP_SRC_NONE;
6315 					intval = ZPROP_BOOLEAN_NA;
6316 				} else {
6317 					err = vdev_prop_get_int(vd, prop,
6318 					    &intval);
6319 					if (err && err != ENOENT)
6320 						break;
6321 
6322 					if (intval ==
6323 					    vdev_prop_default_numeric(prop))
6324 						src = ZPROP_SRC_DEFAULT;
6325 					else
6326 						src = ZPROP_SRC_LOCAL;
6327 				}
6328 
6329 				vdev_prop_add_list(outnvl, propname, NULL,
6330 				    intval, src);
6331 				break;
6332 			case VDEV_PROP_FAILFAST:
6333 				src = ZPROP_SRC_LOCAL;
6334 				strval = NULL;
6335 
6336 				err = zap_lookup(mos, objid, nvpair_name(elem),
6337 				    sizeof (uint64_t), 1, &intval);
6338 				if (err == ENOENT) {
6339 					intval = vdev_prop_default_numeric(
6340 					    prop);
6341 					err = 0;
6342 				} else if (err) {
6343 					break;
6344 				}
6345 				if (intval == vdev_prop_default_numeric(prop))
6346 					src = ZPROP_SRC_DEFAULT;
6347 
6348 				vdev_prop_add_list(outnvl, propname, strval,
6349 				    intval, src);
6350 				break;
6351 			case VDEV_PROP_CHECKSUM_N:
6352 			case VDEV_PROP_CHECKSUM_T:
6353 			case VDEV_PROP_IO_N:
6354 			case VDEV_PROP_IO_T:
6355 			case VDEV_PROP_SLOW_IO_N:
6356 			case VDEV_PROP_SLOW_IO_T:
6357 				err = vdev_prop_get_int(vd, prop, &intval);
6358 				if (err && err != ENOENT)
6359 					break;
6360 
6361 				if (intval == vdev_prop_default_numeric(prop))
6362 					src = ZPROP_SRC_DEFAULT;
6363 				else
6364 					src = ZPROP_SRC_LOCAL;
6365 
6366 				vdev_prop_add_list(outnvl, propname, NULL,
6367 				    intval, src);
6368 				break;
6369 			/* Text Properties */
6370 			case VDEV_PROP_COMMENT:
6371 				/* Exists in the ZAP below */
6372 				/* FALLTHRU */
6373 			case VDEV_PROP_USERPROP:
6374 				/* User Properites */
6375 				src = ZPROP_SRC_LOCAL;
6376 
6377 				err = zap_length(mos, objid, nvpair_name(elem),
6378 				    &integer_size, &num_integers);
6379 				if (err)
6380 					break;
6381 
6382 				switch (integer_size) {
6383 				case 8:
6384 					/* User properties cannot be integers */
6385 					err = EINVAL;
6386 					break;
6387 				case 1:
6388 					/* string property */
6389 					strval = kmem_alloc(num_integers,
6390 					    KM_SLEEP);
6391 					err = zap_lookup(mos, objid,
6392 					    nvpair_name(elem), 1,
6393 					    num_integers, strval);
6394 					if (err) {
6395 						kmem_free(strval,
6396 						    num_integers);
6397 						break;
6398 					}
6399 					vdev_prop_add_list(outnvl, propname,
6400 					    strval, 0, src);
6401 					kmem_free(strval, num_integers);
6402 					break;
6403 				}
6404 				break;
6405 			default:
6406 				err = ENOENT;
6407 				break;
6408 			}
6409 			if (err)
6410 				break;
6411 		}
6412 	} else {
6413 		/*
6414 		 * Get all properties from the MOS vdev property object.
6415 		 */
6416 		zap_cursor_t zc;
6417 		zap_attribute_t za;
6418 		for (zap_cursor_init(&zc, mos, objid);
6419 		    (err = zap_cursor_retrieve(&zc, &za)) == 0;
6420 		    zap_cursor_advance(&zc)) {
6421 			intval = 0;
6422 			strval = NULL;
6423 			zprop_source_t src = ZPROP_SRC_DEFAULT;
6424 			propname = za.za_name;
6425 
6426 			switch (za.za_integer_length) {
6427 			case 8:
6428 				/* We do not allow integer user properties */
6429 				/* This is likely an internal value */
6430 				break;
6431 			case 1:
6432 				/* string property */
6433 				strval = kmem_alloc(za.za_num_integers,
6434 				    KM_SLEEP);
6435 				err = zap_lookup(mos, objid, za.za_name, 1,
6436 				    za.za_num_integers, strval);
6437 				if (err) {
6438 					kmem_free(strval, za.za_num_integers);
6439 					break;
6440 				}
6441 				vdev_prop_add_list(outnvl, propname, strval, 0,
6442 				    src);
6443 				kmem_free(strval, za.za_num_integers);
6444 				break;
6445 
6446 			default:
6447 				break;
6448 			}
6449 		}
6450 		zap_cursor_fini(&zc);
6451 	}
6452 
6453 	mutex_exit(&spa->spa_props_lock);
6454 	if (err && err != ENOENT) {
6455 		return (err);
6456 	}
6457 
6458 	return (0);
6459 }
6460 
6461 EXPORT_SYMBOL(vdev_fault);
6462 EXPORT_SYMBOL(vdev_degrade);
6463 EXPORT_SYMBOL(vdev_online);
6464 EXPORT_SYMBOL(vdev_offline);
6465 EXPORT_SYMBOL(vdev_clear);
6466 
6467 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW,
6468 	"Target number of metaslabs per top-level vdev");
6469 
6470 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW,
6471 	"Default lower limit for metaslab size");
6472 
6473 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW,
6474 	"Default upper limit for metaslab size");
6475 
6476 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW,
6477 	"Minimum number of metaslabs per top-level vdev");
6478 
6479 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW,
6480 	"Practical upper limit of total metaslabs per top-level vdev");
6481 
6482 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
6483 	"Rate limit slow IO (delay) events to this many per second");
6484 
6485 ZFS_MODULE_PARAM(zfs, zfs_, deadman_events_per_second, UINT, ZMOD_RW,
6486 	"Rate limit hung IO (deadman) events to this many per second");
6487 
6488 /* BEGIN CSTYLED */
6489 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
6490 	"Rate limit checksum events to this many checksum errors per second "
6491 	"(do not set below ZED threshold).");
6492 /* END CSTYLED */
6493 
6494 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
6495 	"Ignore errors during resilver/scrub");
6496 
6497 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
6498 	"Bypass vdev_validate()");
6499 
6500 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
6501 	"Disable cache flushes");
6502 
6503 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW,
6504 	"Minimum number of metaslabs required to dedicate one for log blocks");
6505 
6506 /* BEGIN CSTYLED */
6507 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
6508 	param_set_min_auto_ashift, param_get_uint, ZMOD_RW,
6509 	"Minimum ashift used when creating new top-level vdevs");
6510 
6511 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
6512 	param_set_max_auto_ashift, param_get_uint, ZMOD_RW,
6513 	"Maximum ashift used when optimizing for logical -> physical sector "
6514 	"size on new top-level vdevs");
6515 /* END CSTYLED */
6516