xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev.c (revision 3332f1b444d4a73238e9f59cca27bfc95fe936bd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  * Copyright 2017 Joyent, Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  * Copyright (c) 2019, Datto Inc. All rights reserved.
31  * Copyright [2021] Hewlett Packard Enterprise Development LP
32  */
33 
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa.h>
37 #include <sys/spa_impl.h>
38 #include <sys/bpobj.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/vdev_impl.h>
43 #include <sys/vdev_rebuild.h>
44 #include <sys/vdev_draid.h>
45 #include <sys/uberblock_impl.h>
46 #include <sys/metaslab.h>
47 #include <sys/metaslab_impl.h>
48 #include <sys/space_map.h>
49 #include <sys/space_reftree.h>
50 #include <sys/zio.h>
51 #include <sys/zap.h>
52 #include <sys/fs/zfs.h>
53 #include <sys/arc.h>
54 #include <sys/zil.h>
55 #include <sys/dsl_scan.h>
56 #include <sys/vdev_raidz.h>
57 #include <sys/abd.h>
58 #include <sys/vdev_initialize.h>
59 #include <sys/vdev_trim.h>
60 #include <sys/zvol.h>
61 #include <sys/zfs_ratelimit.h>
62 
63 /*
64  * One metaslab from each (normal-class) vdev is used by the ZIL.  These are
65  * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
66  * part of the spa_embedded_log_class.  The metaslab with the most free space
67  * in each vdev is selected for this purpose when the pool is opened (or a
68  * vdev is added).  See vdev_metaslab_init().
69  *
70  * Log blocks can be allocated from the following locations.  Each one is tried
71  * in order until the allocation succeeds:
72  * 1. dedicated log vdevs, aka "slog" (spa_log_class)
73  * 2. embedded slog metaslabs (spa_embedded_log_class)
74  * 3. other metaslabs in normal vdevs (spa_normal_class)
75  *
76  * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
77  * than this number of metaslabs in the vdev.  This ensures that we don't set
78  * aside an unreasonable amount of space for the ZIL.  If set to less than
79  * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
80  * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
81  */
82 int zfs_embedded_slog_min_ms = 64;
83 
84 /* default target for number of metaslabs per top-level vdev */
85 int zfs_vdev_default_ms_count = 200;
86 
87 /* minimum number of metaslabs per top-level vdev */
88 int zfs_vdev_min_ms_count = 16;
89 
90 /* practical upper limit of total metaslabs per top-level vdev */
91 int zfs_vdev_ms_count_limit = 1ULL << 17;
92 
93 /* lower limit for metaslab size (512M) */
94 int zfs_vdev_default_ms_shift = 29;
95 
96 /* upper limit for metaslab size (16G) */
97 int zfs_vdev_max_ms_shift = 34;
98 
99 int vdev_validate_skip = B_FALSE;
100 
101 /*
102  * Since the DTL space map of a vdev is not expected to have a lot of
103  * entries, we default its block size to 4K.
104  */
105 int zfs_vdev_dtl_sm_blksz = (1 << 12);
106 
107 /*
108  * Rate limit slow IO (delay) events to this many per second.
109  */
110 unsigned int zfs_slow_io_events_per_second = 20;
111 
112 /*
113  * Rate limit checksum events after this many checksum errors per second.
114  */
115 unsigned int zfs_checksum_events_per_second = 20;
116 
117 /*
118  * Ignore errors during scrub/resilver.  Allows to work around resilver
119  * upon import when there are pool errors.
120  */
121 int zfs_scan_ignore_errors = 0;
122 
123 /*
124  * vdev-wide space maps that have lots of entries written to them at
125  * the end of each transaction can benefit from a higher I/O bandwidth
126  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
127  */
128 int zfs_vdev_standard_sm_blksz = (1 << 17);
129 
130 /*
131  * Tunable parameter for debugging or performance analysis. Setting this
132  * will cause pool corruption on power loss if a volatile out-of-order
133  * write cache is enabled.
134  */
135 int zfs_nocacheflush = 0;
136 
137 uint64_t zfs_vdev_max_auto_ashift = ASHIFT_MAX;
138 uint64_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
139 
140 void
141 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
142 {
143 	va_list adx;
144 	char buf[256];
145 
146 	va_start(adx, fmt);
147 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
148 	va_end(adx);
149 
150 	if (vd->vdev_path != NULL) {
151 		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
152 		    vd->vdev_path, buf);
153 	} else {
154 		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
155 		    vd->vdev_ops->vdev_op_type,
156 		    (u_longlong_t)vd->vdev_id,
157 		    (u_longlong_t)vd->vdev_guid, buf);
158 	}
159 }
160 
161 void
162 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
163 {
164 	char state[20];
165 
166 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
167 		zfs_dbgmsg("%*svdev %llu: %s", indent, "",
168 		    (u_longlong_t)vd->vdev_id,
169 		    vd->vdev_ops->vdev_op_type);
170 		return;
171 	}
172 
173 	switch (vd->vdev_state) {
174 	case VDEV_STATE_UNKNOWN:
175 		(void) snprintf(state, sizeof (state), "unknown");
176 		break;
177 	case VDEV_STATE_CLOSED:
178 		(void) snprintf(state, sizeof (state), "closed");
179 		break;
180 	case VDEV_STATE_OFFLINE:
181 		(void) snprintf(state, sizeof (state), "offline");
182 		break;
183 	case VDEV_STATE_REMOVED:
184 		(void) snprintf(state, sizeof (state), "removed");
185 		break;
186 	case VDEV_STATE_CANT_OPEN:
187 		(void) snprintf(state, sizeof (state), "can't open");
188 		break;
189 	case VDEV_STATE_FAULTED:
190 		(void) snprintf(state, sizeof (state), "faulted");
191 		break;
192 	case VDEV_STATE_DEGRADED:
193 		(void) snprintf(state, sizeof (state), "degraded");
194 		break;
195 	case VDEV_STATE_HEALTHY:
196 		(void) snprintf(state, sizeof (state), "healthy");
197 		break;
198 	default:
199 		(void) snprintf(state, sizeof (state), "<state %u>",
200 		    (uint_t)vd->vdev_state);
201 	}
202 
203 	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
204 	    "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
205 	    vd->vdev_islog ? " (log)" : "",
206 	    (u_longlong_t)vd->vdev_guid,
207 	    vd->vdev_path ? vd->vdev_path : "N/A", state);
208 
209 	for (uint64_t i = 0; i < vd->vdev_children; i++)
210 		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
211 }
212 
213 /*
214  * Virtual device management.
215  */
216 
217 static vdev_ops_t *vdev_ops_table[] = {
218 	&vdev_root_ops,
219 	&vdev_raidz_ops,
220 	&vdev_draid_ops,
221 	&vdev_draid_spare_ops,
222 	&vdev_mirror_ops,
223 	&vdev_replacing_ops,
224 	&vdev_spare_ops,
225 	&vdev_disk_ops,
226 	&vdev_file_ops,
227 	&vdev_missing_ops,
228 	&vdev_hole_ops,
229 	&vdev_indirect_ops,
230 	NULL
231 };
232 
233 /*
234  * Given a vdev type, return the appropriate ops vector.
235  */
236 static vdev_ops_t *
237 vdev_getops(const char *type)
238 {
239 	vdev_ops_t *ops, **opspp;
240 
241 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
242 		if (strcmp(ops->vdev_op_type, type) == 0)
243 			break;
244 
245 	return (ops);
246 }
247 
248 /*
249  * Given a vdev and a metaslab class, find which metaslab group we're
250  * interested in. All vdevs may belong to two different metaslab classes.
251  * Dedicated slog devices use only the primary metaslab group, rather than a
252  * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
253  */
254 metaslab_group_t *
255 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
256 {
257 	if (mc == spa_embedded_log_class(vd->vdev_spa) &&
258 	    vd->vdev_log_mg != NULL)
259 		return (vd->vdev_log_mg);
260 	else
261 		return (vd->vdev_mg);
262 }
263 
264 /* ARGSUSED */
265 void
266 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
267     range_seg64_t *physical_rs, range_seg64_t *remain_rs)
268 {
269 	physical_rs->rs_start = logical_rs->rs_start;
270 	physical_rs->rs_end = logical_rs->rs_end;
271 }
272 
273 /*
274  * Derive the enumerated allocation bias from string input.
275  * String origin is either the per-vdev zap or zpool(8).
276  */
277 static vdev_alloc_bias_t
278 vdev_derive_alloc_bias(const char *bias)
279 {
280 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
281 
282 	if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
283 		alloc_bias = VDEV_BIAS_LOG;
284 	else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
285 		alloc_bias = VDEV_BIAS_SPECIAL;
286 	else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
287 		alloc_bias = VDEV_BIAS_DEDUP;
288 
289 	return (alloc_bias);
290 }
291 
292 /*
293  * Default asize function: return the MAX of psize with the asize of
294  * all children.  This is what's used by anything other than RAID-Z.
295  */
296 uint64_t
297 vdev_default_asize(vdev_t *vd, uint64_t psize)
298 {
299 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
300 	uint64_t csize;
301 
302 	for (int c = 0; c < vd->vdev_children; c++) {
303 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
304 		asize = MAX(asize, csize);
305 	}
306 
307 	return (asize);
308 }
309 
310 uint64_t
311 vdev_default_min_asize(vdev_t *vd)
312 {
313 	return (vd->vdev_min_asize);
314 }
315 
316 /*
317  * Get the minimum allocatable size. We define the allocatable size as
318  * the vdev's asize rounded to the nearest metaslab. This allows us to
319  * replace or attach devices which don't have the same physical size but
320  * can still satisfy the same number of allocations.
321  */
322 uint64_t
323 vdev_get_min_asize(vdev_t *vd)
324 {
325 	vdev_t *pvd = vd->vdev_parent;
326 
327 	/*
328 	 * If our parent is NULL (inactive spare or cache) or is the root,
329 	 * just return our own asize.
330 	 */
331 	if (pvd == NULL)
332 		return (vd->vdev_asize);
333 
334 	/*
335 	 * The top-level vdev just returns the allocatable size rounded
336 	 * to the nearest metaslab.
337 	 */
338 	if (vd == vd->vdev_top)
339 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
340 
341 	return (pvd->vdev_ops->vdev_op_min_asize(pvd));
342 }
343 
344 void
345 vdev_set_min_asize(vdev_t *vd)
346 {
347 	vd->vdev_min_asize = vdev_get_min_asize(vd);
348 
349 	for (int c = 0; c < vd->vdev_children; c++)
350 		vdev_set_min_asize(vd->vdev_child[c]);
351 }
352 
353 /*
354  * Get the minimal allocation size for the top-level vdev.
355  */
356 uint64_t
357 vdev_get_min_alloc(vdev_t *vd)
358 {
359 	uint64_t min_alloc = 1ULL << vd->vdev_ashift;
360 
361 	if (vd->vdev_ops->vdev_op_min_alloc != NULL)
362 		min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
363 
364 	return (min_alloc);
365 }
366 
367 /*
368  * Get the parity level for a top-level vdev.
369  */
370 uint64_t
371 vdev_get_nparity(vdev_t *vd)
372 {
373 	uint64_t nparity = 0;
374 
375 	if (vd->vdev_ops->vdev_op_nparity != NULL)
376 		nparity = vd->vdev_ops->vdev_op_nparity(vd);
377 
378 	return (nparity);
379 }
380 
381 /*
382  * Get the number of data disks for a top-level vdev.
383  */
384 uint64_t
385 vdev_get_ndisks(vdev_t *vd)
386 {
387 	uint64_t ndisks = 1;
388 
389 	if (vd->vdev_ops->vdev_op_ndisks != NULL)
390 		ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
391 
392 	return (ndisks);
393 }
394 
395 vdev_t *
396 vdev_lookup_top(spa_t *spa, uint64_t vdev)
397 {
398 	vdev_t *rvd = spa->spa_root_vdev;
399 
400 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
401 
402 	if (vdev < rvd->vdev_children) {
403 		ASSERT(rvd->vdev_child[vdev] != NULL);
404 		return (rvd->vdev_child[vdev]);
405 	}
406 
407 	return (NULL);
408 }
409 
410 vdev_t *
411 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
412 {
413 	vdev_t *mvd;
414 
415 	if (vd->vdev_guid == guid)
416 		return (vd);
417 
418 	for (int c = 0; c < vd->vdev_children; c++)
419 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
420 		    NULL)
421 			return (mvd);
422 
423 	return (NULL);
424 }
425 
426 static int
427 vdev_count_leaves_impl(vdev_t *vd)
428 {
429 	int n = 0;
430 
431 	if (vd->vdev_ops->vdev_op_leaf)
432 		return (1);
433 
434 	for (int c = 0; c < vd->vdev_children; c++)
435 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
436 
437 	return (n);
438 }
439 
440 int
441 vdev_count_leaves(spa_t *spa)
442 {
443 	int rc;
444 
445 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
446 	rc = vdev_count_leaves_impl(spa->spa_root_vdev);
447 	spa_config_exit(spa, SCL_VDEV, FTAG);
448 
449 	return (rc);
450 }
451 
452 void
453 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
454 {
455 	size_t oldsize, newsize;
456 	uint64_t id = cvd->vdev_id;
457 	vdev_t **newchild;
458 
459 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
460 	ASSERT(cvd->vdev_parent == NULL);
461 
462 	cvd->vdev_parent = pvd;
463 
464 	if (pvd == NULL)
465 		return;
466 
467 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
468 
469 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
470 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
471 	newsize = pvd->vdev_children * sizeof (vdev_t *);
472 
473 	newchild = kmem_alloc(newsize, KM_SLEEP);
474 	if (pvd->vdev_child != NULL) {
475 		bcopy(pvd->vdev_child, newchild, oldsize);
476 		kmem_free(pvd->vdev_child, oldsize);
477 	}
478 
479 	pvd->vdev_child = newchild;
480 	pvd->vdev_child[id] = cvd;
481 
482 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
483 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
484 
485 	/*
486 	 * Walk up all ancestors to update guid sum.
487 	 */
488 	for (; pvd != NULL; pvd = pvd->vdev_parent)
489 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
490 
491 	if (cvd->vdev_ops->vdev_op_leaf) {
492 		list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
493 		cvd->vdev_spa->spa_leaf_list_gen++;
494 	}
495 }
496 
497 void
498 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
499 {
500 	int c;
501 	uint_t id = cvd->vdev_id;
502 
503 	ASSERT(cvd->vdev_parent == pvd);
504 
505 	if (pvd == NULL)
506 		return;
507 
508 	ASSERT(id < pvd->vdev_children);
509 	ASSERT(pvd->vdev_child[id] == cvd);
510 
511 	pvd->vdev_child[id] = NULL;
512 	cvd->vdev_parent = NULL;
513 
514 	for (c = 0; c < pvd->vdev_children; c++)
515 		if (pvd->vdev_child[c])
516 			break;
517 
518 	if (c == pvd->vdev_children) {
519 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
520 		pvd->vdev_child = NULL;
521 		pvd->vdev_children = 0;
522 	}
523 
524 	if (cvd->vdev_ops->vdev_op_leaf) {
525 		spa_t *spa = cvd->vdev_spa;
526 		list_remove(&spa->spa_leaf_list, cvd);
527 		spa->spa_leaf_list_gen++;
528 	}
529 
530 	/*
531 	 * Walk up all ancestors to update guid sum.
532 	 */
533 	for (; pvd != NULL; pvd = pvd->vdev_parent)
534 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
535 }
536 
537 /*
538  * Remove any holes in the child array.
539  */
540 void
541 vdev_compact_children(vdev_t *pvd)
542 {
543 	vdev_t **newchild, *cvd;
544 	int oldc = pvd->vdev_children;
545 	int newc;
546 
547 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
548 
549 	if (oldc == 0)
550 		return;
551 
552 	for (int c = newc = 0; c < oldc; c++)
553 		if (pvd->vdev_child[c])
554 			newc++;
555 
556 	if (newc > 0) {
557 		newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
558 
559 		for (int c = newc = 0; c < oldc; c++) {
560 			if ((cvd = pvd->vdev_child[c]) != NULL) {
561 				newchild[newc] = cvd;
562 				cvd->vdev_id = newc++;
563 			}
564 		}
565 	} else {
566 		newchild = NULL;
567 	}
568 
569 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
570 	pvd->vdev_child = newchild;
571 	pvd->vdev_children = newc;
572 }
573 
574 /*
575  * Allocate and minimally initialize a vdev_t.
576  */
577 vdev_t *
578 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
579 {
580 	vdev_t *vd;
581 	vdev_indirect_config_t *vic;
582 
583 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
584 	vic = &vd->vdev_indirect_config;
585 
586 	if (spa->spa_root_vdev == NULL) {
587 		ASSERT(ops == &vdev_root_ops);
588 		spa->spa_root_vdev = vd;
589 		spa->spa_load_guid = spa_generate_guid(NULL);
590 	}
591 
592 	if (guid == 0 && ops != &vdev_hole_ops) {
593 		if (spa->spa_root_vdev == vd) {
594 			/*
595 			 * The root vdev's guid will also be the pool guid,
596 			 * which must be unique among all pools.
597 			 */
598 			guid = spa_generate_guid(NULL);
599 		} else {
600 			/*
601 			 * Any other vdev's guid must be unique within the pool.
602 			 */
603 			guid = spa_generate_guid(spa);
604 		}
605 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
606 	}
607 
608 	vd->vdev_spa = spa;
609 	vd->vdev_id = id;
610 	vd->vdev_guid = guid;
611 	vd->vdev_guid_sum = guid;
612 	vd->vdev_ops = ops;
613 	vd->vdev_state = VDEV_STATE_CLOSED;
614 	vd->vdev_ishole = (ops == &vdev_hole_ops);
615 	vic->vic_prev_indirect_vdev = UINT64_MAX;
616 
617 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
618 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
619 	vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
620 	    0, 0);
621 
622 	/*
623 	 * Initialize rate limit structs for events.  We rate limit ZIO delay
624 	 * and checksum events so that we don't overwhelm ZED with thousands
625 	 * of events when a disk is acting up.
626 	 */
627 	zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
628 	    1);
629 	zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_slow_io_events_per_second,
630 	    1);
631 	zfs_ratelimit_init(&vd->vdev_checksum_rl,
632 	    &zfs_checksum_events_per_second, 1);
633 
634 	list_link_init(&vd->vdev_config_dirty_node);
635 	list_link_init(&vd->vdev_state_dirty_node);
636 	list_link_init(&vd->vdev_initialize_node);
637 	list_link_init(&vd->vdev_leaf_node);
638 	list_link_init(&vd->vdev_trim_node);
639 
640 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
641 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
642 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
643 	mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
644 
645 	mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
646 	mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
647 	cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
648 	cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
649 
650 	mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
651 	mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
652 	mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
653 	cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
654 	cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
655 	cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
656 
657 	mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
658 	cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
659 
660 	for (int t = 0; t < DTL_TYPES; t++) {
661 		vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
662 		    0);
663 	}
664 
665 	txg_list_create(&vd->vdev_ms_list, spa,
666 	    offsetof(struct metaslab, ms_txg_node));
667 	txg_list_create(&vd->vdev_dtl_list, spa,
668 	    offsetof(struct vdev, vdev_dtl_node));
669 	vd->vdev_stat.vs_timestamp = gethrtime();
670 	vdev_queue_init(vd);
671 	vdev_cache_init(vd);
672 
673 	return (vd);
674 }
675 
676 /*
677  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
678  * creating a new vdev or loading an existing one - the behavior is slightly
679  * different for each case.
680  */
681 int
682 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
683     int alloctype)
684 {
685 	vdev_ops_t *ops;
686 	char *type;
687 	uint64_t guid = 0, islog;
688 	vdev_t *vd;
689 	vdev_indirect_config_t *vic;
690 	char *tmp = NULL;
691 	int rc;
692 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
693 	boolean_t top_level = (parent && !parent->vdev_parent);
694 
695 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
696 
697 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
698 		return (SET_ERROR(EINVAL));
699 
700 	if ((ops = vdev_getops(type)) == NULL)
701 		return (SET_ERROR(EINVAL));
702 
703 	/*
704 	 * If this is a load, get the vdev guid from the nvlist.
705 	 * Otherwise, vdev_alloc_common() will generate one for us.
706 	 */
707 	if (alloctype == VDEV_ALLOC_LOAD) {
708 		uint64_t label_id;
709 
710 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
711 		    label_id != id)
712 			return (SET_ERROR(EINVAL));
713 
714 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
715 			return (SET_ERROR(EINVAL));
716 	} else if (alloctype == VDEV_ALLOC_SPARE) {
717 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
718 			return (SET_ERROR(EINVAL));
719 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
720 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
721 			return (SET_ERROR(EINVAL));
722 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
723 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
724 			return (SET_ERROR(EINVAL));
725 	}
726 
727 	/*
728 	 * The first allocated vdev must be of type 'root'.
729 	 */
730 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
731 		return (SET_ERROR(EINVAL));
732 
733 	/*
734 	 * Determine whether we're a log vdev.
735 	 */
736 	islog = 0;
737 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
738 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
739 		return (SET_ERROR(ENOTSUP));
740 
741 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
742 		return (SET_ERROR(ENOTSUP));
743 
744 	if (top_level && alloctype == VDEV_ALLOC_ADD) {
745 		char *bias;
746 
747 		/*
748 		 * If creating a top-level vdev, check for allocation
749 		 * classes input.
750 		 */
751 		if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
752 		    &bias) == 0) {
753 			alloc_bias = vdev_derive_alloc_bias(bias);
754 
755 			/* spa_vdev_add() expects feature to be enabled */
756 			if (spa->spa_load_state != SPA_LOAD_CREATE &&
757 			    !spa_feature_is_enabled(spa,
758 			    SPA_FEATURE_ALLOCATION_CLASSES)) {
759 				return (SET_ERROR(ENOTSUP));
760 			}
761 		}
762 
763 		/* spa_vdev_add() expects feature to be enabled */
764 		if (ops == &vdev_draid_ops &&
765 		    spa->spa_load_state != SPA_LOAD_CREATE &&
766 		    !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
767 			return (SET_ERROR(ENOTSUP));
768 		}
769 	}
770 
771 	/*
772 	 * Initialize the vdev specific data.  This is done before calling
773 	 * vdev_alloc_common() since it may fail and this simplifies the
774 	 * error reporting and cleanup code paths.
775 	 */
776 	void *tsd = NULL;
777 	if (ops->vdev_op_init != NULL) {
778 		rc = ops->vdev_op_init(spa, nv, &tsd);
779 		if (rc != 0) {
780 			return (rc);
781 		}
782 	}
783 
784 	vd = vdev_alloc_common(spa, id, guid, ops);
785 	vd->vdev_tsd = tsd;
786 	vd->vdev_islog = islog;
787 
788 	if (top_level && alloc_bias != VDEV_BIAS_NONE)
789 		vd->vdev_alloc_bias = alloc_bias;
790 
791 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
792 		vd->vdev_path = spa_strdup(vd->vdev_path);
793 
794 	/*
795 	 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
796 	 * fault on a vdev and want it to persist across imports (like with
797 	 * zpool offline -f).
798 	 */
799 	rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
800 	if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
801 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
802 		vd->vdev_faulted = 1;
803 		vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
804 	}
805 
806 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
807 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
808 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
809 	    &vd->vdev_physpath) == 0)
810 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
811 
812 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
813 	    &vd->vdev_enc_sysfs_path) == 0)
814 		vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
815 
816 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
817 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
818 
819 	/*
820 	 * Set the whole_disk property.  If it's not specified, leave the value
821 	 * as -1.
822 	 */
823 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
824 	    &vd->vdev_wholedisk) != 0)
825 		vd->vdev_wholedisk = -1ULL;
826 
827 	vic = &vd->vdev_indirect_config;
828 
829 	ASSERT0(vic->vic_mapping_object);
830 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
831 	    &vic->vic_mapping_object);
832 	ASSERT0(vic->vic_births_object);
833 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
834 	    &vic->vic_births_object);
835 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
836 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
837 	    &vic->vic_prev_indirect_vdev);
838 
839 	/*
840 	 * Look for the 'not present' flag.  This will only be set if the device
841 	 * was not present at the time of import.
842 	 */
843 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
844 	    &vd->vdev_not_present);
845 
846 	/*
847 	 * Get the alignment requirement.
848 	 */
849 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
850 
851 	/*
852 	 * Retrieve the vdev creation time.
853 	 */
854 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
855 	    &vd->vdev_crtxg);
856 
857 	/*
858 	 * If we're a top-level vdev, try to load the allocation parameters.
859 	 */
860 	if (top_level &&
861 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
862 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
863 		    &vd->vdev_ms_array);
864 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
865 		    &vd->vdev_ms_shift);
866 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
867 		    &vd->vdev_asize);
868 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
869 		    &vd->vdev_removing);
870 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
871 		    &vd->vdev_top_zap);
872 	} else {
873 		ASSERT0(vd->vdev_top_zap);
874 	}
875 
876 	if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
877 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
878 		    alloctype == VDEV_ALLOC_ADD ||
879 		    alloctype == VDEV_ALLOC_SPLIT ||
880 		    alloctype == VDEV_ALLOC_ROOTPOOL);
881 		/* Note: metaslab_group_create() is now deferred */
882 	}
883 
884 	if (vd->vdev_ops->vdev_op_leaf &&
885 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
886 		(void) nvlist_lookup_uint64(nv,
887 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
888 	} else {
889 		ASSERT0(vd->vdev_leaf_zap);
890 	}
891 
892 	/*
893 	 * If we're a leaf vdev, try to load the DTL object and other state.
894 	 */
895 
896 	if (vd->vdev_ops->vdev_op_leaf &&
897 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
898 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
899 		if (alloctype == VDEV_ALLOC_LOAD) {
900 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
901 			    &vd->vdev_dtl_object);
902 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
903 			    &vd->vdev_unspare);
904 		}
905 
906 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
907 			uint64_t spare = 0;
908 
909 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
910 			    &spare) == 0 && spare)
911 				spa_spare_add(vd);
912 		}
913 
914 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
915 		    &vd->vdev_offline);
916 
917 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
918 		    &vd->vdev_resilver_txg);
919 
920 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
921 		    &vd->vdev_rebuild_txg);
922 
923 		if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
924 			vdev_defer_resilver(vd);
925 
926 		/*
927 		 * In general, when importing a pool we want to ignore the
928 		 * persistent fault state, as the diagnosis made on another
929 		 * system may not be valid in the current context.  The only
930 		 * exception is if we forced a vdev to a persistently faulted
931 		 * state with 'zpool offline -f'.  The persistent fault will
932 		 * remain across imports until cleared.
933 		 *
934 		 * Local vdevs will remain in the faulted state.
935 		 */
936 		if (spa_load_state(spa) == SPA_LOAD_OPEN ||
937 		    spa_load_state(spa) == SPA_LOAD_IMPORT) {
938 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
939 			    &vd->vdev_faulted);
940 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
941 			    &vd->vdev_degraded);
942 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
943 			    &vd->vdev_removed);
944 
945 			if (vd->vdev_faulted || vd->vdev_degraded) {
946 				char *aux;
947 
948 				vd->vdev_label_aux =
949 				    VDEV_AUX_ERR_EXCEEDED;
950 				if (nvlist_lookup_string(nv,
951 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
952 				    strcmp(aux, "external") == 0)
953 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
954 				else
955 					vd->vdev_faulted = 0ULL;
956 			}
957 		}
958 	}
959 
960 	/*
961 	 * Add ourselves to the parent's list of children.
962 	 */
963 	vdev_add_child(parent, vd);
964 
965 	*vdp = vd;
966 
967 	return (0);
968 }
969 
970 void
971 vdev_free(vdev_t *vd)
972 {
973 	spa_t *spa = vd->vdev_spa;
974 
975 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
976 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
977 	ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
978 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
979 
980 	/*
981 	 * Scan queues are normally destroyed at the end of a scan. If the
982 	 * queue exists here, that implies the vdev is being removed while
983 	 * the scan is still running.
984 	 */
985 	if (vd->vdev_scan_io_queue != NULL) {
986 		mutex_enter(&vd->vdev_scan_io_queue_lock);
987 		dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
988 		vd->vdev_scan_io_queue = NULL;
989 		mutex_exit(&vd->vdev_scan_io_queue_lock);
990 	}
991 
992 	/*
993 	 * vdev_free() implies closing the vdev first.  This is simpler than
994 	 * trying to ensure complicated semantics for all callers.
995 	 */
996 	vdev_close(vd);
997 
998 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
999 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1000 
1001 	/*
1002 	 * Free all children.
1003 	 */
1004 	for (int c = 0; c < vd->vdev_children; c++)
1005 		vdev_free(vd->vdev_child[c]);
1006 
1007 	ASSERT(vd->vdev_child == NULL);
1008 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1009 
1010 	if (vd->vdev_ops->vdev_op_fini != NULL)
1011 		vd->vdev_ops->vdev_op_fini(vd);
1012 
1013 	/*
1014 	 * Discard allocation state.
1015 	 */
1016 	if (vd->vdev_mg != NULL) {
1017 		vdev_metaslab_fini(vd);
1018 		metaslab_group_destroy(vd->vdev_mg);
1019 		vd->vdev_mg = NULL;
1020 	}
1021 	if (vd->vdev_log_mg != NULL) {
1022 		ASSERT0(vd->vdev_ms_count);
1023 		metaslab_group_destroy(vd->vdev_log_mg);
1024 		vd->vdev_log_mg = NULL;
1025 	}
1026 
1027 	ASSERT0(vd->vdev_stat.vs_space);
1028 	ASSERT0(vd->vdev_stat.vs_dspace);
1029 	ASSERT0(vd->vdev_stat.vs_alloc);
1030 
1031 	/*
1032 	 * Remove this vdev from its parent's child list.
1033 	 */
1034 	vdev_remove_child(vd->vdev_parent, vd);
1035 
1036 	ASSERT(vd->vdev_parent == NULL);
1037 	ASSERT(!list_link_active(&vd->vdev_leaf_node));
1038 
1039 	/*
1040 	 * Clean up vdev structure.
1041 	 */
1042 	vdev_queue_fini(vd);
1043 	vdev_cache_fini(vd);
1044 
1045 	if (vd->vdev_path)
1046 		spa_strfree(vd->vdev_path);
1047 	if (vd->vdev_devid)
1048 		spa_strfree(vd->vdev_devid);
1049 	if (vd->vdev_physpath)
1050 		spa_strfree(vd->vdev_physpath);
1051 
1052 	if (vd->vdev_enc_sysfs_path)
1053 		spa_strfree(vd->vdev_enc_sysfs_path);
1054 
1055 	if (vd->vdev_fru)
1056 		spa_strfree(vd->vdev_fru);
1057 
1058 	if (vd->vdev_isspare)
1059 		spa_spare_remove(vd);
1060 	if (vd->vdev_isl2cache)
1061 		spa_l2cache_remove(vd);
1062 
1063 	txg_list_destroy(&vd->vdev_ms_list);
1064 	txg_list_destroy(&vd->vdev_dtl_list);
1065 
1066 	mutex_enter(&vd->vdev_dtl_lock);
1067 	space_map_close(vd->vdev_dtl_sm);
1068 	for (int t = 0; t < DTL_TYPES; t++) {
1069 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1070 		range_tree_destroy(vd->vdev_dtl[t]);
1071 	}
1072 	mutex_exit(&vd->vdev_dtl_lock);
1073 
1074 	EQUIV(vd->vdev_indirect_births != NULL,
1075 	    vd->vdev_indirect_mapping != NULL);
1076 	if (vd->vdev_indirect_births != NULL) {
1077 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1078 		vdev_indirect_births_close(vd->vdev_indirect_births);
1079 	}
1080 
1081 	if (vd->vdev_obsolete_sm != NULL) {
1082 		ASSERT(vd->vdev_removing ||
1083 		    vd->vdev_ops == &vdev_indirect_ops);
1084 		space_map_close(vd->vdev_obsolete_sm);
1085 		vd->vdev_obsolete_sm = NULL;
1086 	}
1087 	range_tree_destroy(vd->vdev_obsolete_segments);
1088 	rw_destroy(&vd->vdev_indirect_rwlock);
1089 	mutex_destroy(&vd->vdev_obsolete_lock);
1090 
1091 	mutex_destroy(&vd->vdev_dtl_lock);
1092 	mutex_destroy(&vd->vdev_stat_lock);
1093 	mutex_destroy(&vd->vdev_probe_lock);
1094 	mutex_destroy(&vd->vdev_scan_io_queue_lock);
1095 
1096 	mutex_destroy(&vd->vdev_initialize_lock);
1097 	mutex_destroy(&vd->vdev_initialize_io_lock);
1098 	cv_destroy(&vd->vdev_initialize_io_cv);
1099 	cv_destroy(&vd->vdev_initialize_cv);
1100 
1101 	mutex_destroy(&vd->vdev_trim_lock);
1102 	mutex_destroy(&vd->vdev_autotrim_lock);
1103 	mutex_destroy(&vd->vdev_trim_io_lock);
1104 	cv_destroy(&vd->vdev_trim_cv);
1105 	cv_destroy(&vd->vdev_autotrim_cv);
1106 	cv_destroy(&vd->vdev_trim_io_cv);
1107 
1108 	mutex_destroy(&vd->vdev_rebuild_lock);
1109 	cv_destroy(&vd->vdev_rebuild_cv);
1110 
1111 	zfs_ratelimit_fini(&vd->vdev_delay_rl);
1112 	zfs_ratelimit_fini(&vd->vdev_deadman_rl);
1113 	zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1114 
1115 	if (vd == spa->spa_root_vdev)
1116 		spa->spa_root_vdev = NULL;
1117 
1118 	kmem_free(vd, sizeof (vdev_t));
1119 }
1120 
1121 /*
1122  * Transfer top-level vdev state from svd to tvd.
1123  */
1124 static void
1125 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1126 {
1127 	spa_t *spa = svd->vdev_spa;
1128 	metaslab_t *msp;
1129 	vdev_t *vd;
1130 	int t;
1131 
1132 	ASSERT(tvd == tvd->vdev_top);
1133 
1134 	tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
1135 	tvd->vdev_ms_array = svd->vdev_ms_array;
1136 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
1137 	tvd->vdev_ms_count = svd->vdev_ms_count;
1138 	tvd->vdev_top_zap = svd->vdev_top_zap;
1139 
1140 	svd->vdev_ms_array = 0;
1141 	svd->vdev_ms_shift = 0;
1142 	svd->vdev_ms_count = 0;
1143 	svd->vdev_top_zap = 0;
1144 
1145 	if (tvd->vdev_mg)
1146 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1147 	if (tvd->vdev_log_mg)
1148 		ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1149 	tvd->vdev_mg = svd->vdev_mg;
1150 	tvd->vdev_log_mg = svd->vdev_log_mg;
1151 	tvd->vdev_ms = svd->vdev_ms;
1152 
1153 	svd->vdev_mg = NULL;
1154 	svd->vdev_log_mg = NULL;
1155 	svd->vdev_ms = NULL;
1156 
1157 	if (tvd->vdev_mg != NULL)
1158 		tvd->vdev_mg->mg_vd = tvd;
1159 	if (tvd->vdev_log_mg != NULL)
1160 		tvd->vdev_log_mg->mg_vd = tvd;
1161 
1162 	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1163 	svd->vdev_checkpoint_sm = NULL;
1164 
1165 	tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1166 	svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1167 
1168 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1169 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1170 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1171 
1172 	svd->vdev_stat.vs_alloc = 0;
1173 	svd->vdev_stat.vs_space = 0;
1174 	svd->vdev_stat.vs_dspace = 0;
1175 
1176 	/*
1177 	 * State which may be set on a top-level vdev that's in the
1178 	 * process of being removed.
1179 	 */
1180 	ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1181 	ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1182 	ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1183 	ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1184 	ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1185 	ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1186 	ASSERT0(tvd->vdev_removing);
1187 	ASSERT0(tvd->vdev_rebuilding);
1188 	tvd->vdev_removing = svd->vdev_removing;
1189 	tvd->vdev_rebuilding = svd->vdev_rebuilding;
1190 	tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1191 	tvd->vdev_indirect_config = svd->vdev_indirect_config;
1192 	tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1193 	tvd->vdev_indirect_births = svd->vdev_indirect_births;
1194 	range_tree_swap(&svd->vdev_obsolete_segments,
1195 	    &tvd->vdev_obsolete_segments);
1196 	tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1197 	svd->vdev_indirect_config.vic_mapping_object = 0;
1198 	svd->vdev_indirect_config.vic_births_object = 0;
1199 	svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1200 	svd->vdev_indirect_mapping = NULL;
1201 	svd->vdev_indirect_births = NULL;
1202 	svd->vdev_obsolete_sm = NULL;
1203 	svd->vdev_removing = 0;
1204 	svd->vdev_rebuilding = 0;
1205 
1206 	for (t = 0; t < TXG_SIZE; t++) {
1207 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1208 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1209 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1210 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1211 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1212 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1213 	}
1214 
1215 	if (list_link_active(&svd->vdev_config_dirty_node)) {
1216 		vdev_config_clean(svd);
1217 		vdev_config_dirty(tvd);
1218 	}
1219 
1220 	if (list_link_active(&svd->vdev_state_dirty_node)) {
1221 		vdev_state_clean(svd);
1222 		vdev_state_dirty(tvd);
1223 	}
1224 
1225 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1226 	svd->vdev_deflate_ratio = 0;
1227 
1228 	tvd->vdev_islog = svd->vdev_islog;
1229 	svd->vdev_islog = 0;
1230 
1231 	dsl_scan_io_queue_vdev_xfer(svd, tvd);
1232 }
1233 
1234 static void
1235 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1236 {
1237 	if (vd == NULL)
1238 		return;
1239 
1240 	vd->vdev_top = tvd;
1241 
1242 	for (int c = 0; c < vd->vdev_children; c++)
1243 		vdev_top_update(tvd, vd->vdev_child[c]);
1244 }
1245 
1246 /*
1247  * Add a mirror/replacing vdev above an existing vdev.  There is no need to
1248  * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1249  */
1250 vdev_t *
1251 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1252 {
1253 	spa_t *spa = cvd->vdev_spa;
1254 	vdev_t *pvd = cvd->vdev_parent;
1255 	vdev_t *mvd;
1256 
1257 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1258 
1259 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1260 
1261 	mvd->vdev_asize = cvd->vdev_asize;
1262 	mvd->vdev_min_asize = cvd->vdev_min_asize;
1263 	mvd->vdev_max_asize = cvd->vdev_max_asize;
1264 	mvd->vdev_psize = cvd->vdev_psize;
1265 	mvd->vdev_ashift = cvd->vdev_ashift;
1266 	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1267 	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1268 	mvd->vdev_state = cvd->vdev_state;
1269 	mvd->vdev_crtxg = cvd->vdev_crtxg;
1270 
1271 	vdev_remove_child(pvd, cvd);
1272 	vdev_add_child(pvd, mvd);
1273 	cvd->vdev_id = mvd->vdev_children;
1274 	vdev_add_child(mvd, cvd);
1275 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1276 
1277 	if (mvd == mvd->vdev_top)
1278 		vdev_top_transfer(cvd, mvd);
1279 
1280 	return (mvd);
1281 }
1282 
1283 /*
1284  * Remove a 1-way mirror/replacing vdev from the tree.
1285  */
1286 void
1287 vdev_remove_parent(vdev_t *cvd)
1288 {
1289 	vdev_t *mvd = cvd->vdev_parent;
1290 	vdev_t *pvd = mvd->vdev_parent;
1291 
1292 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1293 
1294 	ASSERT(mvd->vdev_children == 1);
1295 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1296 	    mvd->vdev_ops == &vdev_replacing_ops ||
1297 	    mvd->vdev_ops == &vdev_spare_ops);
1298 	cvd->vdev_ashift = mvd->vdev_ashift;
1299 	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1300 	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1301 	vdev_remove_child(mvd, cvd);
1302 	vdev_remove_child(pvd, mvd);
1303 
1304 	/*
1305 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1306 	 * Otherwise, we could have detached an offline device, and when we
1307 	 * go to import the pool we'll think we have two top-level vdevs,
1308 	 * instead of a different version of the same top-level vdev.
1309 	 */
1310 	if (mvd->vdev_top == mvd) {
1311 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1312 		cvd->vdev_orig_guid = cvd->vdev_guid;
1313 		cvd->vdev_guid += guid_delta;
1314 		cvd->vdev_guid_sum += guid_delta;
1315 
1316 		/*
1317 		 * If pool not set for autoexpand, we need to also preserve
1318 		 * mvd's asize to prevent automatic expansion of cvd.
1319 		 * Otherwise if we are adjusting the mirror by attaching and
1320 		 * detaching children of non-uniform sizes, the mirror could
1321 		 * autoexpand, unexpectedly requiring larger devices to
1322 		 * re-establish the mirror.
1323 		 */
1324 		if (!cvd->vdev_spa->spa_autoexpand)
1325 			cvd->vdev_asize = mvd->vdev_asize;
1326 	}
1327 	cvd->vdev_id = mvd->vdev_id;
1328 	vdev_add_child(pvd, cvd);
1329 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1330 
1331 	if (cvd == cvd->vdev_top)
1332 		vdev_top_transfer(mvd, cvd);
1333 
1334 	ASSERT(mvd->vdev_children == 0);
1335 	vdev_free(mvd);
1336 }
1337 
1338 void
1339 vdev_metaslab_group_create(vdev_t *vd)
1340 {
1341 	spa_t *spa = vd->vdev_spa;
1342 
1343 	/*
1344 	 * metaslab_group_create was delayed until allocation bias was available
1345 	 */
1346 	if (vd->vdev_mg == NULL) {
1347 		metaslab_class_t *mc;
1348 
1349 		if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1350 			vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1351 
1352 		ASSERT3U(vd->vdev_islog, ==,
1353 		    (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1354 
1355 		switch (vd->vdev_alloc_bias) {
1356 		case VDEV_BIAS_LOG:
1357 			mc = spa_log_class(spa);
1358 			break;
1359 		case VDEV_BIAS_SPECIAL:
1360 			mc = spa_special_class(spa);
1361 			break;
1362 		case VDEV_BIAS_DEDUP:
1363 			mc = spa_dedup_class(spa);
1364 			break;
1365 		default:
1366 			mc = spa_normal_class(spa);
1367 		}
1368 
1369 		vd->vdev_mg = metaslab_group_create(mc, vd,
1370 		    spa->spa_alloc_count);
1371 
1372 		if (!vd->vdev_islog) {
1373 			vd->vdev_log_mg = metaslab_group_create(
1374 			    spa_embedded_log_class(spa), vd, 1);
1375 		}
1376 
1377 		/*
1378 		 * The spa ashift min/max only apply for the normal metaslab
1379 		 * class. Class destination is late binding so ashift boundary
1380 		 * setting had to wait until now.
1381 		 */
1382 		if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1383 		    mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1384 			if (vd->vdev_ashift > spa->spa_max_ashift)
1385 				spa->spa_max_ashift = vd->vdev_ashift;
1386 			if (vd->vdev_ashift < spa->spa_min_ashift)
1387 				spa->spa_min_ashift = vd->vdev_ashift;
1388 
1389 			uint64_t min_alloc = vdev_get_min_alloc(vd);
1390 			if (min_alloc < spa->spa_min_alloc)
1391 				spa->spa_min_alloc = min_alloc;
1392 		}
1393 	}
1394 }
1395 
1396 int
1397 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1398 {
1399 	spa_t *spa = vd->vdev_spa;
1400 	uint64_t oldc = vd->vdev_ms_count;
1401 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1402 	metaslab_t **mspp;
1403 	int error;
1404 	boolean_t expanding = (oldc != 0);
1405 
1406 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1407 
1408 	/*
1409 	 * This vdev is not being allocated from yet or is a hole.
1410 	 */
1411 	if (vd->vdev_ms_shift == 0)
1412 		return (0);
1413 
1414 	ASSERT(!vd->vdev_ishole);
1415 
1416 	ASSERT(oldc <= newc);
1417 
1418 	mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1419 
1420 	if (expanding) {
1421 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1422 		vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1423 	}
1424 
1425 	vd->vdev_ms = mspp;
1426 	vd->vdev_ms_count = newc;
1427 
1428 	for (uint64_t m = oldc; m < newc; m++) {
1429 		uint64_t object = 0;
1430 		/*
1431 		 * vdev_ms_array may be 0 if we are creating the "fake"
1432 		 * metaslabs for an indirect vdev for zdb's leak detection.
1433 		 * See zdb_leak_init().
1434 		 */
1435 		if (txg == 0 && vd->vdev_ms_array != 0) {
1436 			error = dmu_read(spa->spa_meta_objset,
1437 			    vd->vdev_ms_array,
1438 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1439 			    DMU_READ_PREFETCH);
1440 			if (error != 0) {
1441 				vdev_dbgmsg(vd, "unable to read the metaslab "
1442 				    "array [error=%d]", error);
1443 				return (error);
1444 			}
1445 		}
1446 
1447 		error = metaslab_init(vd->vdev_mg, m, object, txg,
1448 		    &(vd->vdev_ms[m]));
1449 		if (error != 0) {
1450 			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1451 			    error);
1452 			return (error);
1453 		}
1454 	}
1455 
1456 	/*
1457 	 * Find the emptiest metaslab on the vdev and mark it for use for
1458 	 * embedded slog by moving it from the regular to the log metaslab
1459 	 * group.
1460 	 */
1461 	if (vd->vdev_mg->mg_class == spa_normal_class(spa) &&
1462 	    vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1463 	    avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1464 		uint64_t slog_msid = 0;
1465 		uint64_t smallest = UINT64_MAX;
1466 
1467 		/*
1468 		 * Note, we only search the new metaslabs, because the old
1469 		 * (pre-existing) ones may be active (e.g. have non-empty
1470 		 * range_tree's), and we don't move them to the new
1471 		 * metaslab_t.
1472 		 */
1473 		for (uint64_t m = oldc; m < newc; m++) {
1474 			uint64_t alloc =
1475 			    space_map_allocated(vd->vdev_ms[m]->ms_sm);
1476 			if (alloc < smallest) {
1477 				slog_msid = m;
1478 				smallest = alloc;
1479 			}
1480 		}
1481 		metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1482 		/*
1483 		 * The metaslab was marked as dirty at the end of
1484 		 * metaslab_init(). Remove it from the dirty list so that we
1485 		 * can uninitialize and reinitialize it to the new class.
1486 		 */
1487 		if (txg != 0) {
1488 			(void) txg_list_remove_this(&vd->vdev_ms_list,
1489 			    slog_ms, txg);
1490 		}
1491 		uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1492 		metaslab_fini(slog_ms);
1493 		VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1494 		    &vd->vdev_ms[slog_msid]));
1495 	}
1496 
1497 	if (txg == 0)
1498 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1499 
1500 	/*
1501 	 * If the vdev is being removed we don't activate
1502 	 * the metaslabs since we want to ensure that no new
1503 	 * allocations are performed on this device.
1504 	 */
1505 	if (!expanding && !vd->vdev_removing) {
1506 		metaslab_group_activate(vd->vdev_mg);
1507 		if (vd->vdev_log_mg != NULL)
1508 			metaslab_group_activate(vd->vdev_log_mg);
1509 	}
1510 
1511 	if (txg == 0)
1512 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1513 
1514 	/*
1515 	 * Regardless whether this vdev was just added or it is being
1516 	 * expanded, the metaslab count has changed. Recalculate the
1517 	 * block limit.
1518 	 */
1519 	spa_log_sm_set_blocklimit(spa);
1520 
1521 	return (0);
1522 }
1523 
1524 void
1525 vdev_metaslab_fini(vdev_t *vd)
1526 {
1527 	if (vd->vdev_checkpoint_sm != NULL) {
1528 		ASSERT(spa_feature_is_active(vd->vdev_spa,
1529 		    SPA_FEATURE_POOL_CHECKPOINT));
1530 		space_map_close(vd->vdev_checkpoint_sm);
1531 		/*
1532 		 * Even though we close the space map, we need to set its
1533 		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1534 		 * may be called multiple times for certain operations
1535 		 * (i.e. when destroying a pool) so we need to ensure that
1536 		 * this clause never executes twice. This logic is similar
1537 		 * to the one used for the vdev_ms clause below.
1538 		 */
1539 		vd->vdev_checkpoint_sm = NULL;
1540 	}
1541 
1542 	if (vd->vdev_ms != NULL) {
1543 		metaslab_group_t *mg = vd->vdev_mg;
1544 
1545 		metaslab_group_passivate(mg);
1546 		if (vd->vdev_log_mg != NULL) {
1547 			ASSERT(!vd->vdev_islog);
1548 			metaslab_group_passivate(vd->vdev_log_mg);
1549 		}
1550 
1551 		uint64_t count = vd->vdev_ms_count;
1552 		for (uint64_t m = 0; m < count; m++) {
1553 			metaslab_t *msp = vd->vdev_ms[m];
1554 			if (msp != NULL)
1555 				metaslab_fini(msp);
1556 		}
1557 		vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1558 		vd->vdev_ms = NULL;
1559 		vd->vdev_ms_count = 0;
1560 
1561 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1562 			ASSERT0(mg->mg_histogram[i]);
1563 			if (vd->vdev_log_mg != NULL)
1564 				ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1565 		}
1566 	}
1567 	ASSERT0(vd->vdev_ms_count);
1568 	ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
1569 }
1570 
1571 typedef struct vdev_probe_stats {
1572 	boolean_t	vps_readable;
1573 	boolean_t	vps_writeable;
1574 	int		vps_flags;
1575 } vdev_probe_stats_t;
1576 
1577 static void
1578 vdev_probe_done(zio_t *zio)
1579 {
1580 	spa_t *spa = zio->io_spa;
1581 	vdev_t *vd = zio->io_vd;
1582 	vdev_probe_stats_t *vps = zio->io_private;
1583 
1584 	ASSERT(vd->vdev_probe_zio != NULL);
1585 
1586 	if (zio->io_type == ZIO_TYPE_READ) {
1587 		if (zio->io_error == 0)
1588 			vps->vps_readable = 1;
1589 		if (zio->io_error == 0 && spa_writeable(spa)) {
1590 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1591 			    zio->io_offset, zio->io_size, zio->io_abd,
1592 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1593 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1594 		} else {
1595 			abd_free(zio->io_abd);
1596 		}
1597 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1598 		if (zio->io_error == 0)
1599 			vps->vps_writeable = 1;
1600 		abd_free(zio->io_abd);
1601 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1602 		zio_t *pio;
1603 		zio_link_t *zl;
1604 
1605 		vd->vdev_cant_read |= !vps->vps_readable;
1606 		vd->vdev_cant_write |= !vps->vps_writeable;
1607 
1608 		if (vdev_readable(vd) &&
1609 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1610 			zio->io_error = 0;
1611 		} else {
1612 			ASSERT(zio->io_error != 0);
1613 			vdev_dbgmsg(vd, "failed probe");
1614 			(void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1615 			    spa, vd, NULL, NULL, 0);
1616 			zio->io_error = SET_ERROR(ENXIO);
1617 		}
1618 
1619 		mutex_enter(&vd->vdev_probe_lock);
1620 		ASSERT(vd->vdev_probe_zio == zio);
1621 		vd->vdev_probe_zio = NULL;
1622 		mutex_exit(&vd->vdev_probe_lock);
1623 
1624 		zl = NULL;
1625 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1626 			if (!vdev_accessible(vd, pio))
1627 				pio->io_error = SET_ERROR(ENXIO);
1628 
1629 		kmem_free(vps, sizeof (*vps));
1630 	}
1631 }
1632 
1633 /*
1634  * Determine whether this device is accessible.
1635  *
1636  * Read and write to several known locations: the pad regions of each
1637  * vdev label but the first, which we leave alone in case it contains
1638  * a VTOC.
1639  */
1640 zio_t *
1641 vdev_probe(vdev_t *vd, zio_t *zio)
1642 {
1643 	spa_t *spa = vd->vdev_spa;
1644 	vdev_probe_stats_t *vps = NULL;
1645 	zio_t *pio;
1646 
1647 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1648 
1649 	/*
1650 	 * Don't probe the probe.
1651 	 */
1652 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1653 		return (NULL);
1654 
1655 	/*
1656 	 * To prevent 'probe storms' when a device fails, we create
1657 	 * just one probe i/o at a time.  All zios that want to probe
1658 	 * this vdev will become parents of the probe io.
1659 	 */
1660 	mutex_enter(&vd->vdev_probe_lock);
1661 
1662 	if ((pio = vd->vdev_probe_zio) == NULL) {
1663 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1664 
1665 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1666 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1667 		    ZIO_FLAG_TRYHARD;
1668 
1669 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1670 			/*
1671 			 * vdev_cant_read and vdev_cant_write can only
1672 			 * transition from TRUE to FALSE when we have the
1673 			 * SCL_ZIO lock as writer; otherwise they can only
1674 			 * transition from FALSE to TRUE.  This ensures that
1675 			 * any zio looking at these values can assume that
1676 			 * failures persist for the life of the I/O.  That's
1677 			 * important because when a device has intermittent
1678 			 * connectivity problems, we want to ensure that
1679 			 * they're ascribed to the device (ENXIO) and not
1680 			 * the zio (EIO).
1681 			 *
1682 			 * Since we hold SCL_ZIO as writer here, clear both
1683 			 * values so the probe can reevaluate from first
1684 			 * principles.
1685 			 */
1686 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1687 			vd->vdev_cant_read = B_FALSE;
1688 			vd->vdev_cant_write = B_FALSE;
1689 		}
1690 
1691 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1692 		    vdev_probe_done, vps,
1693 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1694 
1695 		/*
1696 		 * We can't change the vdev state in this context, so we
1697 		 * kick off an async task to do it on our behalf.
1698 		 */
1699 		if (zio != NULL) {
1700 			vd->vdev_probe_wanted = B_TRUE;
1701 			spa_async_request(spa, SPA_ASYNC_PROBE);
1702 		}
1703 	}
1704 
1705 	if (zio != NULL)
1706 		zio_add_child(zio, pio);
1707 
1708 	mutex_exit(&vd->vdev_probe_lock);
1709 
1710 	if (vps == NULL) {
1711 		ASSERT(zio != NULL);
1712 		return (NULL);
1713 	}
1714 
1715 	for (int l = 1; l < VDEV_LABELS; l++) {
1716 		zio_nowait(zio_read_phys(pio, vd,
1717 		    vdev_label_offset(vd->vdev_psize, l,
1718 		    offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1719 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1720 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1721 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1722 	}
1723 
1724 	if (zio == NULL)
1725 		return (pio);
1726 
1727 	zio_nowait(pio);
1728 	return (NULL);
1729 }
1730 
1731 static void
1732 vdev_load_child(void *arg)
1733 {
1734 	vdev_t *vd = arg;
1735 
1736 	vd->vdev_load_error = vdev_load(vd);
1737 }
1738 
1739 static void
1740 vdev_open_child(void *arg)
1741 {
1742 	vdev_t *vd = arg;
1743 
1744 	vd->vdev_open_thread = curthread;
1745 	vd->vdev_open_error = vdev_open(vd);
1746 	vd->vdev_open_thread = NULL;
1747 }
1748 
1749 static boolean_t
1750 vdev_uses_zvols(vdev_t *vd)
1751 {
1752 #ifdef _KERNEL
1753 	if (zvol_is_zvol(vd->vdev_path))
1754 		return (B_TRUE);
1755 #endif
1756 
1757 	for (int c = 0; c < vd->vdev_children; c++)
1758 		if (vdev_uses_zvols(vd->vdev_child[c]))
1759 			return (B_TRUE);
1760 
1761 	return (B_FALSE);
1762 }
1763 
1764 /*
1765  * Returns B_TRUE if the passed child should be opened.
1766  */
1767 static boolean_t
1768 vdev_default_open_children_func(vdev_t *vd)
1769 {
1770 	return (B_TRUE);
1771 }
1772 
1773 /*
1774  * Open the requested child vdevs.  If any of the leaf vdevs are using
1775  * a ZFS volume then do the opens in a single thread.  This avoids a
1776  * deadlock when the current thread is holding the spa_namespace_lock.
1777  */
1778 static void
1779 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1780 {
1781 	int children = vd->vdev_children;
1782 
1783 	taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1784 	    children, children, TASKQ_PREPOPULATE);
1785 	vd->vdev_nonrot = B_TRUE;
1786 
1787 	for (int c = 0; c < children; c++) {
1788 		vdev_t *cvd = vd->vdev_child[c];
1789 
1790 		if (open_func(cvd) == B_FALSE)
1791 			continue;
1792 
1793 		if (tq == NULL || vdev_uses_zvols(vd)) {
1794 			cvd->vdev_open_error = vdev_open(cvd);
1795 		} else {
1796 			VERIFY(taskq_dispatch(tq, vdev_open_child,
1797 			    cvd, TQ_SLEEP) != TASKQID_INVALID);
1798 		}
1799 
1800 		vd->vdev_nonrot &= cvd->vdev_nonrot;
1801 	}
1802 
1803 	if (tq != NULL) {
1804 		taskq_wait(tq);
1805 		taskq_destroy(tq);
1806 	}
1807 }
1808 
1809 /*
1810  * Open all child vdevs.
1811  */
1812 void
1813 vdev_open_children(vdev_t *vd)
1814 {
1815 	vdev_open_children_impl(vd, vdev_default_open_children_func);
1816 }
1817 
1818 /*
1819  * Conditionally open a subset of child vdevs.
1820  */
1821 void
1822 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
1823 {
1824 	vdev_open_children_impl(vd, open_func);
1825 }
1826 
1827 /*
1828  * Compute the raidz-deflation ratio.  Note, we hard-code
1829  * in 128k (1 << 17) because it is the "typical" blocksize.
1830  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1831  * otherwise it would inconsistently account for existing bp's.
1832  */
1833 static void
1834 vdev_set_deflate_ratio(vdev_t *vd)
1835 {
1836 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1837 		vd->vdev_deflate_ratio = (1 << 17) /
1838 		    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1839 	}
1840 }
1841 
1842 /*
1843  * Maximize performance by inflating the configured ashift for top level
1844  * vdevs to be as close to the physical ashift as possible while maintaining
1845  * administrator defined limits and ensuring it doesn't go below the
1846  * logical ashift.
1847  */
1848 static void
1849 vdev_ashift_optimize(vdev_t *vd)
1850 {
1851 	ASSERT(vd == vd->vdev_top);
1852 
1853 	if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1854 		vd->vdev_ashift = MIN(
1855 		    MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
1856 		    MAX(zfs_vdev_min_auto_ashift,
1857 		    vd->vdev_physical_ashift));
1858 	} else {
1859 		/*
1860 		 * If the logical and physical ashifts are the same, then
1861 		 * we ensure that the top-level vdev's ashift is not smaller
1862 		 * than our minimum ashift value. For the unusual case
1863 		 * where logical ashift > physical ashift, we can't cap
1864 		 * the calculated ashift based on max ashift as that
1865 		 * would cause failures.
1866 		 * We still check if we need to increase it to match
1867 		 * the min ashift.
1868 		 */
1869 		vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
1870 		    vd->vdev_ashift);
1871 	}
1872 }
1873 
1874 /*
1875  * Prepare a virtual device for access.
1876  */
1877 int
1878 vdev_open(vdev_t *vd)
1879 {
1880 	spa_t *spa = vd->vdev_spa;
1881 	int error;
1882 	uint64_t osize = 0;
1883 	uint64_t max_osize = 0;
1884 	uint64_t asize, max_asize, psize;
1885 	uint64_t logical_ashift = 0;
1886 	uint64_t physical_ashift = 0;
1887 
1888 	ASSERT(vd->vdev_open_thread == curthread ||
1889 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1890 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1891 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1892 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1893 
1894 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1895 	vd->vdev_cant_read = B_FALSE;
1896 	vd->vdev_cant_write = B_FALSE;
1897 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1898 
1899 	/*
1900 	 * If this vdev is not removed, check its fault status.  If it's
1901 	 * faulted, bail out of the open.
1902 	 */
1903 	if (!vd->vdev_removed && vd->vdev_faulted) {
1904 		ASSERT(vd->vdev_children == 0);
1905 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1906 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1907 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1908 		    vd->vdev_label_aux);
1909 		return (SET_ERROR(ENXIO));
1910 	} else if (vd->vdev_offline) {
1911 		ASSERT(vd->vdev_children == 0);
1912 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1913 		return (SET_ERROR(ENXIO));
1914 	}
1915 
1916 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1917 	    &logical_ashift, &physical_ashift);
1918 	/*
1919 	 * Physical volume size should never be larger than its max size, unless
1920 	 * the disk has shrunk while we were reading it or the device is buggy
1921 	 * or damaged: either way it's not safe for use, bail out of the open.
1922 	 */
1923 	if (osize > max_osize) {
1924 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1925 		    VDEV_AUX_OPEN_FAILED);
1926 		return (SET_ERROR(ENXIO));
1927 	}
1928 
1929 	/*
1930 	 * Reset the vdev_reopening flag so that we actually close
1931 	 * the vdev on error.
1932 	 */
1933 	vd->vdev_reopening = B_FALSE;
1934 	if (zio_injection_enabled && error == 0)
1935 		error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
1936 
1937 	if (error) {
1938 		if (vd->vdev_removed &&
1939 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1940 			vd->vdev_removed = B_FALSE;
1941 
1942 		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1943 			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1944 			    vd->vdev_stat.vs_aux);
1945 		} else {
1946 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1947 			    vd->vdev_stat.vs_aux);
1948 		}
1949 		return (error);
1950 	}
1951 
1952 	vd->vdev_removed = B_FALSE;
1953 
1954 	/*
1955 	 * Recheck the faulted flag now that we have confirmed that
1956 	 * the vdev is accessible.  If we're faulted, bail.
1957 	 */
1958 	if (vd->vdev_faulted) {
1959 		ASSERT(vd->vdev_children == 0);
1960 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1961 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1962 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1963 		    vd->vdev_label_aux);
1964 		return (SET_ERROR(ENXIO));
1965 	}
1966 
1967 	if (vd->vdev_degraded) {
1968 		ASSERT(vd->vdev_children == 0);
1969 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1970 		    VDEV_AUX_ERR_EXCEEDED);
1971 	} else {
1972 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1973 	}
1974 
1975 	/*
1976 	 * For hole or missing vdevs we just return success.
1977 	 */
1978 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1979 		return (0);
1980 
1981 	for (int c = 0; c < vd->vdev_children; c++) {
1982 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1983 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1984 			    VDEV_AUX_NONE);
1985 			break;
1986 		}
1987 	}
1988 
1989 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1990 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1991 
1992 	if (vd->vdev_children == 0) {
1993 		if (osize < SPA_MINDEVSIZE) {
1994 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1995 			    VDEV_AUX_TOO_SMALL);
1996 			return (SET_ERROR(EOVERFLOW));
1997 		}
1998 		psize = osize;
1999 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
2000 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
2001 		    VDEV_LABEL_END_SIZE);
2002 	} else {
2003 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2004 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2005 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2006 			    VDEV_AUX_TOO_SMALL);
2007 			return (SET_ERROR(EOVERFLOW));
2008 		}
2009 		psize = 0;
2010 		asize = osize;
2011 		max_asize = max_osize;
2012 	}
2013 
2014 	/*
2015 	 * If the vdev was expanded, record this so that we can re-create the
2016 	 * uberblock rings in labels {2,3}, during the next sync.
2017 	 */
2018 	if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2019 		vd->vdev_copy_uberblocks = B_TRUE;
2020 
2021 	vd->vdev_psize = psize;
2022 
2023 	/*
2024 	 * Make sure the allocatable size hasn't shrunk too much.
2025 	 */
2026 	if (asize < vd->vdev_min_asize) {
2027 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2028 		    VDEV_AUX_BAD_LABEL);
2029 		return (SET_ERROR(EINVAL));
2030 	}
2031 
2032 	/*
2033 	 * We can always set the logical/physical ashift members since
2034 	 * their values are only used to calculate the vdev_ashift when
2035 	 * the device is first added to the config. These values should
2036 	 * not be used for anything else since they may change whenever
2037 	 * the device is reopened and we don't store them in the label.
2038 	 */
2039 	vd->vdev_physical_ashift =
2040 	    MAX(physical_ashift, vd->vdev_physical_ashift);
2041 	vd->vdev_logical_ashift = MAX(logical_ashift,
2042 	    vd->vdev_logical_ashift);
2043 
2044 	if (vd->vdev_asize == 0) {
2045 		/*
2046 		 * This is the first-ever open, so use the computed values.
2047 		 * For compatibility, a different ashift can be requested.
2048 		 */
2049 		vd->vdev_asize = asize;
2050 		vd->vdev_max_asize = max_asize;
2051 
2052 		/*
2053 		 * If the vdev_ashift was not overridden at creation time,
2054 		 * then set it the logical ashift and optimize the ashift.
2055 		 */
2056 		if (vd->vdev_ashift == 0) {
2057 			vd->vdev_ashift = vd->vdev_logical_ashift;
2058 
2059 			if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2060 				vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2061 				    VDEV_AUX_ASHIFT_TOO_BIG);
2062 				return (SET_ERROR(EDOM));
2063 			}
2064 
2065 			if (vd->vdev_top == vd) {
2066 				vdev_ashift_optimize(vd);
2067 			}
2068 		}
2069 		if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2070 		    vd->vdev_ashift > ASHIFT_MAX)) {
2071 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2072 			    VDEV_AUX_BAD_ASHIFT);
2073 			return (SET_ERROR(EDOM));
2074 		}
2075 	} else {
2076 		/*
2077 		 * Make sure the alignment required hasn't increased.
2078 		 */
2079 		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2080 		    vd->vdev_ops->vdev_op_leaf) {
2081 			(void) zfs_ereport_post(
2082 			    FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2083 			    spa, vd, NULL, NULL, 0);
2084 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2085 			    VDEV_AUX_BAD_LABEL);
2086 			return (SET_ERROR(EDOM));
2087 		}
2088 		vd->vdev_max_asize = max_asize;
2089 	}
2090 
2091 	/*
2092 	 * If all children are healthy we update asize if either:
2093 	 * The asize has increased, due to a device expansion caused by dynamic
2094 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
2095 	 * making the additional space available.
2096 	 *
2097 	 * The asize has decreased, due to a device shrink usually caused by a
2098 	 * vdev replace with a smaller device. This ensures that calculations
2099 	 * based of max_asize and asize e.g. esize are always valid. It's safe
2100 	 * to do this as we've already validated that asize is greater than
2101 	 * vdev_min_asize.
2102 	 */
2103 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2104 	    ((asize > vd->vdev_asize &&
2105 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
2106 	    (asize < vd->vdev_asize)))
2107 		vd->vdev_asize = asize;
2108 
2109 	vdev_set_min_asize(vd);
2110 
2111 	/*
2112 	 * Ensure we can issue some IO before declaring the
2113 	 * vdev open for business.
2114 	 */
2115 	if (vd->vdev_ops->vdev_op_leaf &&
2116 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2117 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2118 		    VDEV_AUX_ERR_EXCEEDED);
2119 		return (error);
2120 	}
2121 
2122 	/*
2123 	 * Track the minimum allocation size.
2124 	 */
2125 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2126 	    vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2127 		uint64_t min_alloc = vdev_get_min_alloc(vd);
2128 		if (min_alloc < spa->spa_min_alloc)
2129 			spa->spa_min_alloc = min_alloc;
2130 	}
2131 
2132 	/*
2133 	 * If this is a leaf vdev, assess whether a resilver is needed.
2134 	 * But don't do this if we are doing a reopen for a scrub, since
2135 	 * this would just restart the scrub we are already doing.
2136 	 */
2137 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2138 		dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2139 
2140 	return (0);
2141 }
2142 
2143 static void
2144 vdev_validate_child(void *arg)
2145 {
2146 	vdev_t *vd = arg;
2147 
2148 	vd->vdev_validate_thread = curthread;
2149 	vd->vdev_validate_error = vdev_validate(vd);
2150 	vd->vdev_validate_thread = NULL;
2151 }
2152 
2153 /*
2154  * Called once the vdevs are all opened, this routine validates the label
2155  * contents. This needs to be done before vdev_load() so that we don't
2156  * inadvertently do repair I/Os to the wrong device.
2157  *
2158  * This function will only return failure if one of the vdevs indicates that it
2159  * has since been destroyed or exported.  This is only possible if
2160  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
2161  * will be updated but the function will return 0.
2162  */
2163 int
2164 vdev_validate(vdev_t *vd)
2165 {
2166 	spa_t *spa = vd->vdev_spa;
2167 	taskq_t *tq = NULL;
2168 	nvlist_t *label;
2169 	uint64_t guid = 0, aux_guid = 0, top_guid;
2170 	uint64_t state;
2171 	nvlist_t *nvl;
2172 	uint64_t txg;
2173 	int children = vd->vdev_children;
2174 
2175 	if (vdev_validate_skip)
2176 		return (0);
2177 
2178 	if (children > 0) {
2179 		tq = taskq_create("vdev_validate", children, minclsyspri,
2180 		    children, children, TASKQ_PREPOPULATE);
2181 	}
2182 
2183 	for (uint64_t c = 0; c < children; c++) {
2184 		vdev_t *cvd = vd->vdev_child[c];
2185 
2186 		if (tq == NULL || vdev_uses_zvols(cvd)) {
2187 			vdev_validate_child(cvd);
2188 		} else {
2189 			VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2190 			    TQ_SLEEP) != TASKQID_INVALID);
2191 		}
2192 	}
2193 	if (tq != NULL) {
2194 		taskq_wait(tq);
2195 		taskq_destroy(tq);
2196 	}
2197 	for (int c = 0; c < children; c++) {
2198 		int error = vd->vdev_child[c]->vdev_validate_error;
2199 
2200 		if (error != 0)
2201 			return (SET_ERROR(EBADF));
2202 	}
2203 
2204 
2205 	/*
2206 	 * If the device has already failed, or was marked offline, don't do
2207 	 * any further validation.  Otherwise, label I/O will fail and we will
2208 	 * overwrite the previous state.
2209 	 */
2210 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2211 		return (0);
2212 
2213 	/*
2214 	 * If we are performing an extreme rewind, we allow for a label that
2215 	 * was modified at a point after the current txg.
2216 	 * If config lock is not held do not check for the txg. spa_sync could
2217 	 * be updating the vdev's label before updating spa_last_synced_txg.
2218 	 */
2219 	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2220 	    spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2221 		txg = UINT64_MAX;
2222 	else
2223 		txg = spa_last_synced_txg(spa);
2224 
2225 	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2226 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2227 		    VDEV_AUX_BAD_LABEL);
2228 		vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2229 		    "txg %llu", (u_longlong_t)txg);
2230 		return (0);
2231 	}
2232 
2233 	/*
2234 	 * Determine if this vdev has been split off into another
2235 	 * pool.  If so, then refuse to open it.
2236 	 */
2237 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2238 	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2239 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2240 		    VDEV_AUX_SPLIT_POOL);
2241 		nvlist_free(label);
2242 		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2243 		return (0);
2244 	}
2245 
2246 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2247 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2248 		    VDEV_AUX_CORRUPT_DATA);
2249 		nvlist_free(label);
2250 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2251 		    ZPOOL_CONFIG_POOL_GUID);
2252 		return (0);
2253 	}
2254 
2255 	/*
2256 	 * If config is not trusted then ignore the spa guid check. This is
2257 	 * necessary because if the machine crashed during a re-guid the new
2258 	 * guid might have been written to all of the vdev labels, but not the
2259 	 * cached config. The check will be performed again once we have the
2260 	 * trusted config from the MOS.
2261 	 */
2262 	if (spa->spa_trust_config && guid != spa_guid(spa)) {
2263 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2264 		    VDEV_AUX_CORRUPT_DATA);
2265 		nvlist_free(label);
2266 		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2267 		    "match config (%llu != %llu)", (u_longlong_t)guid,
2268 		    (u_longlong_t)spa_guid(spa));
2269 		return (0);
2270 	}
2271 
2272 	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2273 	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2274 	    &aux_guid) != 0)
2275 		aux_guid = 0;
2276 
2277 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2278 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2279 		    VDEV_AUX_CORRUPT_DATA);
2280 		nvlist_free(label);
2281 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2282 		    ZPOOL_CONFIG_GUID);
2283 		return (0);
2284 	}
2285 
2286 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2287 	    != 0) {
2288 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2289 		    VDEV_AUX_CORRUPT_DATA);
2290 		nvlist_free(label);
2291 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2292 		    ZPOOL_CONFIG_TOP_GUID);
2293 		return (0);
2294 	}
2295 
2296 	/*
2297 	 * If this vdev just became a top-level vdev because its sibling was
2298 	 * detached, it will have adopted the parent's vdev guid -- but the
2299 	 * label may or may not be on disk yet. Fortunately, either version
2300 	 * of the label will have the same top guid, so if we're a top-level
2301 	 * vdev, we can safely compare to that instead.
2302 	 * However, if the config comes from a cachefile that failed to update
2303 	 * after the detach, a top-level vdev will appear as a non top-level
2304 	 * vdev in the config. Also relax the constraints if we perform an
2305 	 * extreme rewind.
2306 	 *
2307 	 * If we split this vdev off instead, then we also check the
2308 	 * original pool's guid. We don't want to consider the vdev
2309 	 * corrupt if it is partway through a split operation.
2310 	 */
2311 	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2312 		boolean_t mismatch = B_FALSE;
2313 		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2314 			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2315 				mismatch = B_TRUE;
2316 		} else {
2317 			if (vd->vdev_guid != top_guid &&
2318 			    vd->vdev_top->vdev_guid != guid)
2319 				mismatch = B_TRUE;
2320 		}
2321 
2322 		if (mismatch) {
2323 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2324 			    VDEV_AUX_CORRUPT_DATA);
2325 			nvlist_free(label);
2326 			vdev_dbgmsg(vd, "vdev_validate: config guid "
2327 			    "doesn't match label guid");
2328 			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2329 			    (u_longlong_t)vd->vdev_guid,
2330 			    (u_longlong_t)vd->vdev_top->vdev_guid);
2331 			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2332 			    "aux_guid %llu", (u_longlong_t)guid,
2333 			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2334 			return (0);
2335 		}
2336 	}
2337 
2338 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2339 	    &state) != 0) {
2340 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2341 		    VDEV_AUX_CORRUPT_DATA);
2342 		nvlist_free(label);
2343 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2344 		    ZPOOL_CONFIG_POOL_STATE);
2345 		return (0);
2346 	}
2347 
2348 	nvlist_free(label);
2349 
2350 	/*
2351 	 * If this is a verbatim import, no need to check the
2352 	 * state of the pool.
2353 	 */
2354 	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2355 	    spa_load_state(spa) == SPA_LOAD_OPEN &&
2356 	    state != POOL_STATE_ACTIVE) {
2357 		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2358 		    "for spa %s", (u_longlong_t)state, spa->spa_name);
2359 		return (SET_ERROR(EBADF));
2360 	}
2361 
2362 	/*
2363 	 * If we were able to open and validate a vdev that was
2364 	 * previously marked permanently unavailable, clear that state
2365 	 * now.
2366 	 */
2367 	if (vd->vdev_not_present)
2368 		vd->vdev_not_present = 0;
2369 
2370 	return (0);
2371 }
2372 
2373 static void
2374 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2375 {
2376 	char *old, *new;
2377 	if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
2378 		if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
2379 			zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2380 			    "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2381 			    dvd->vdev_path, svd->vdev_path);
2382 			spa_strfree(dvd->vdev_path);
2383 			dvd->vdev_path = spa_strdup(svd->vdev_path);
2384 		}
2385 	} else if (svd->vdev_path != NULL) {
2386 		dvd->vdev_path = spa_strdup(svd->vdev_path);
2387 		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2388 		    (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
2389 	}
2390 
2391 	/*
2392 	 * Our enclosure sysfs path may have changed between imports
2393 	 */
2394 	old = dvd->vdev_enc_sysfs_path;
2395 	new = svd->vdev_enc_sysfs_path;
2396 	if ((old != NULL && new == NULL) ||
2397 	    (old == NULL && new != NULL) ||
2398 	    ((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
2399 		zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2400 		    "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2401 		    old, new);
2402 
2403 		if (dvd->vdev_enc_sysfs_path)
2404 			spa_strfree(dvd->vdev_enc_sysfs_path);
2405 
2406 		if (svd->vdev_enc_sysfs_path) {
2407 			dvd->vdev_enc_sysfs_path = spa_strdup(
2408 			    svd->vdev_enc_sysfs_path);
2409 		} else {
2410 			dvd->vdev_enc_sysfs_path = NULL;
2411 		}
2412 	}
2413 }
2414 
2415 /*
2416  * Recursively copy vdev paths from one vdev to another. Source and destination
2417  * vdev trees must have same geometry otherwise return error. Intended to copy
2418  * paths from userland config into MOS config.
2419  */
2420 int
2421 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2422 {
2423 	if ((svd->vdev_ops == &vdev_missing_ops) ||
2424 	    (svd->vdev_ishole && dvd->vdev_ishole) ||
2425 	    (dvd->vdev_ops == &vdev_indirect_ops))
2426 		return (0);
2427 
2428 	if (svd->vdev_ops != dvd->vdev_ops) {
2429 		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2430 		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2431 		return (SET_ERROR(EINVAL));
2432 	}
2433 
2434 	if (svd->vdev_guid != dvd->vdev_guid) {
2435 		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2436 		    "%llu)", (u_longlong_t)svd->vdev_guid,
2437 		    (u_longlong_t)dvd->vdev_guid);
2438 		return (SET_ERROR(EINVAL));
2439 	}
2440 
2441 	if (svd->vdev_children != dvd->vdev_children) {
2442 		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2443 		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
2444 		    (u_longlong_t)dvd->vdev_children);
2445 		return (SET_ERROR(EINVAL));
2446 	}
2447 
2448 	for (uint64_t i = 0; i < svd->vdev_children; i++) {
2449 		int error = vdev_copy_path_strict(svd->vdev_child[i],
2450 		    dvd->vdev_child[i]);
2451 		if (error != 0)
2452 			return (error);
2453 	}
2454 
2455 	if (svd->vdev_ops->vdev_op_leaf)
2456 		vdev_copy_path_impl(svd, dvd);
2457 
2458 	return (0);
2459 }
2460 
2461 static void
2462 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2463 {
2464 	ASSERT(stvd->vdev_top == stvd);
2465 	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2466 
2467 	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2468 		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2469 	}
2470 
2471 	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2472 		return;
2473 
2474 	/*
2475 	 * The idea here is that while a vdev can shift positions within
2476 	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2477 	 * step outside of it.
2478 	 */
2479 	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2480 
2481 	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2482 		return;
2483 
2484 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2485 
2486 	vdev_copy_path_impl(vd, dvd);
2487 }
2488 
2489 /*
2490  * Recursively copy vdev paths from one root vdev to another. Source and
2491  * destination vdev trees may differ in geometry. For each destination leaf
2492  * vdev, search a vdev with the same guid and top vdev id in the source.
2493  * Intended to copy paths from userland config into MOS config.
2494  */
2495 void
2496 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2497 {
2498 	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2499 	ASSERT(srvd->vdev_ops == &vdev_root_ops);
2500 	ASSERT(drvd->vdev_ops == &vdev_root_ops);
2501 
2502 	for (uint64_t i = 0; i < children; i++) {
2503 		vdev_copy_path_search(srvd->vdev_child[i],
2504 		    drvd->vdev_child[i]);
2505 	}
2506 }
2507 
2508 /*
2509  * Close a virtual device.
2510  */
2511 void
2512 vdev_close(vdev_t *vd)
2513 {
2514 	vdev_t *pvd = vd->vdev_parent;
2515 	spa_t *spa __maybe_unused = vd->vdev_spa;
2516 
2517 	ASSERT(vd != NULL);
2518 	ASSERT(vd->vdev_open_thread == curthread ||
2519 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2520 
2521 	/*
2522 	 * If our parent is reopening, then we are as well, unless we are
2523 	 * going offline.
2524 	 */
2525 	if (pvd != NULL && pvd->vdev_reopening)
2526 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2527 
2528 	vd->vdev_ops->vdev_op_close(vd);
2529 
2530 	vdev_cache_purge(vd);
2531 
2532 	/*
2533 	 * We record the previous state before we close it, so that if we are
2534 	 * doing a reopen(), we don't generate FMA ereports if we notice that
2535 	 * it's still faulted.
2536 	 */
2537 	vd->vdev_prevstate = vd->vdev_state;
2538 
2539 	if (vd->vdev_offline)
2540 		vd->vdev_state = VDEV_STATE_OFFLINE;
2541 	else
2542 		vd->vdev_state = VDEV_STATE_CLOSED;
2543 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2544 }
2545 
2546 void
2547 vdev_hold(vdev_t *vd)
2548 {
2549 	spa_t *spa = vd->vdev_spa;
2550 
2551 	ASSERT(spa_is_root(spa));
2552 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2553 		return;
2554 
2555 	for (int c = 0; c < vd->vdev_children; c++)
2556 		vdev_hold(vd->vdev_child[c]);
2557 
2558 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
2559 		vd->vdev_ops->vdev_op_hold(vd);
2560 }
2561 
2562 void
2563 vdev_rele(vdev_t *vd)
2564 {
2565 	ASSERT(spa_is_root(vd->vdev_spa));
2566 	for (int c = 0; c < vd->vdev_children; c++)
2567 		vdev_rele(vd->vdev_child[c]);
2568 
2569 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
2570 		vd->vdev_ops->vdev_op_rele(vd);
2571 }
2572 
2573 /*
2574  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2575  * reopen leaf vdevs which had previously been opened as they might deadlock
2576  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2577  * If the leaf has never been opened then open it, as usual.
2578  */
2579 void
2580 vdev_reopen(vdev_t *vd)
2581 {
2582 	spa_t *spa = vd->vdev_spa;
2583 
2584 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2585 
2586 	/* set the reopening flag unless we're taking the vdev offline */
2587 	vd->vdev_reopening = !vd->vdev_offline;
2588 	vdev_close(vd);
2589 	(void) vdev_open(vd);
2590 
2591 	/*
2592 	 * Call vdev_validate() here to make sure we have the same device.
2593 	 * Otherwise, a device with an invalid label could be successfully
2594 	 * opened in response to vdev_reopen().
2595 	 */
2596 	if (vd->vdev_aux) {
2597 		(void) vdev_validate_aux(vd);
2598 		if (vdev_readable(vd) && vdev_writeable(vd) &&
2599 		    vd->vdev_aux == &spa->spa_l2cache) {
2600 			/*
2601 			 * In case the vdev is present we should evict all ARC
2602 			 * buffers and pointers to log blocks and reclaim their
2603 			 * space before restoring its contents to L2ARC.
2604 			 */
2605 			if (l2arc_vdev_present(vd)) {
2606 				l2arc_rebuild_vdev(vd, B_TRUE);
2607 			} else {
2608 				l2arc_add_vdev(spa, vd);
2609 			}
2610 			spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2611 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2612 		}
2613 	} else {
2614 		(void) vdev_validate(vd);
2615 	}
2616 
2617 	/*
2618 	 * Reassess parent vdev's health.
2619 	 */
2620 	vdev_propagate_state(vd);
2621 }
2622 
2623 int
2624 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2625 {
2626 	int error;
2627 
2628 	/*
2629 	 * Normally, partial opens (e.g. of a mirror) are allowed.
2630 	 * For a create, however, we want to fail the request if
2631 	 * there are any components we can't open.
2632 	 */
2633 	error = vdev_open(vd);
2634 
2635 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2636 		vdev_close(vd);
2637 		return (error ? error : SET_ERROR(ENXIO));
2638 	}
2639 
2640 	/*
2641 	 * Recursively load DTLs and initialize all labels.
2642 	 */
2643 	if ((error = vdev_dtl_load(vd)) != 0 ||
2644 	    (error = vdev_label_init(vd, txg, isreplacing ?
2645 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2646 		vdev_close(vd);
2647 		return (error);
2648 	}
2649 
2650 	return (0);
2651 }
2652 
2653 void
2654 vdev_metaslab_set_size(vdev_t *vd)
2655 {
2656 	uint64_t asize = vd->vdev_asize;
2657 	uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2658 	uint64_t ms_shift;
2659 
2660 	/*
2661 	 * There are two dimensions to the metaslab sizing calculation:
2662 	 * the size of the metaslab and the count of metaslabs per vdev.
2663 	 *
2664 	 * The default values used below are a good balance between memory
2665 	 * usage (larger metaslab size means more memory needed for loaded
2666 	 * metaslabs; more metaslabs means more memory needed for the
2667 	 * metaslab_t structs), metaslab load time (larger metaslabs take
2668 	 * longer to load), and metaslab sync time (more metaslabs means
2669 	 * more time spent syncing all of them).
2670 	 *
2671 	 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2672 	 * The range of the dimensions are as follows:
2673 	 *
2674 	 *	2^29 <= ms_size  <= 2^34
2675 	 *	  16 <= ms_count <= 131,072
2676 	 *
2677 	 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2678 	 * at least 512MB (2^29) to minimize fragmentation effects when
2679 	 * testing with smaller devices.  However, the count constraint
2680 	 * of at least 16 metaslabs will override this minimum size goal.
2681 	 *
2682 	 * On the upper end of vdev sizes, we aim for a maximum metaslab
2683 	 * size of 16GB.  However, we will cap the total count to 2^17
2684 	 * metaslabs to keep our memory footprint in check and let the
2685 	 * metaslab size grow from there if that limit is hit.
2686 	 *
2687 	 * The net effect of applying above constrains is summarized below.
2688 	 *
2689 	 *   vdev size       metaslab count
2690 	 *  --------------|-----------------
2691 	 *      < 8GB        ~16
2692 	 *  8GB   - 100GB   one per 512MB
2693 	 *  100GB - 3TB     ~200
2694 	 *  3TB   - 2PB     one per 16GB
2695 	 *      > 2PB       ~131,072
2696 	 *  --------------------------------
2697 	 *
2698 	 *  Finally, note that all of the above calculate the initial
2699 	 *  number of metaslabs. Expanding a top-level vdev will result
2700 	 *  in additional metaslabs being allocated making it possible
2701 	 *  to exceed the zfs_vdev_ms_count_limit.
2702 	 */
2703 
2704 	if (ms_count < zfs_vdev_min_ms_count)
2705 		ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2706 	else if (ms_count > zfs_vdev_default_ms_count)
2707 		ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2708 	else
2709 		ms_shift = zfs_vdev_default_ms_shift;
2710 
2711 	if (ms_shift < SPA_MAXBLOCKSHIFT) {
2712 		ms_shift = SPA_MAXBLOCKSHIFT;
2713 	} else if (ms_shift > zfs_vdev_max_ms_shift) {
2714 		ms_shift = zfs_vdev_max_ms_shift;
2715 		/* cap the total count to constrain memory footprint */
2716 		if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2717 			ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2718 	}
2719 
2720 	vd->vdev_ms_shift = ms_shift;
2721 	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2722 }
2723 
2724 void
2725 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2726 {
2727 	ASSERT(vd == vd->vdev_top);
2728 	/* indirect vdevs don't have metaslabs or dtls */
2729 	ASSERT(vdev_is_concrete(vd) || flags == 0);
2730 	ASSERT(ISP2(flags));
2731 	ASSERT(spa_writeable(vd->vdev_spa));
2732 
2733 	if (flags & VDD_METASLAB)
2734 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2735 
2736 	if (flags & VDD_DTL)
2737 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2738 
2739 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2740 }
2741 
2742 void
2743 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2744 {
2745 	for (int c = 0; c < vd->vdev_children; c++)
2746 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2747 
2748 	if (vd->vdev_ops->vdev_op_leaf)
2749 		vdev_dirty(vd->vdev_top, flags, vd, txg);
2750 }
2751 
2752 /*
2753  * DTLs.
2754  *
2755  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2756  * the vdev has less than perfect replication.  There are four kinds of DTL:
2757  *
2758  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2759  *
2760  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2761  *
2762  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2763  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2764  *	txgs that was scrubbed.
2765  *
2766  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2767  *	persistent errors or just some device being offline.
2768  *	Unlike the other three, the DTL_OUTAGE map is not generally
2769  *	maintained; it's only computed when needed, typically to
2770  *	determine whether a device can be detached.
2771  *
2772  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2773  * either has the data or it doesn't.
2774  *
2775  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2776  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2777  * if any child is less than fully replicated, then so is its parent.
2778  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2779  * comprising only those txgs which appear in 'maxfaults' or more children;
2780  * those are the txgs we don't have enough replication to read.  For example,
2781  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2782  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2783  * two child DTL_MISSING maps.
2784  *
2785  * It should be clear from the above that to compute the DTLs and outage maps
2786  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2787  * Therefore, that is all we keep on disk.  When loading the pool, or after
2788  * a configuration change, we generate all other DTLs from first principles.
2789  */
2790 void
2791 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2792 {
2793 	range_tree_t *rt = vd->vdev_dtl[t];
2794 
2795 	ASSERT(t < DTL_TYPES);
2796 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2797 	ASSERT(spa_writeable(vd->vdev_spa));
2798 
2799 	mutex_enter(&vd->vdev_dtl_lock);
2800 	if (!range_tree_contains(rt, txg, size))
2801 		range_tree_add(rt, txg, size);
2802 	mutex_exit(&vd->vdev_dtl_lock);
2803 }
2804 
2805 boolean_t
2806 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2807 {
2808 	range_tree_t *rt = vd->vdev_dtl[t];
2809 	boolean_t dirty = B_FALSE;
2810 
2811 	ASSERT(t < DTL_TYPES);
2812 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2813 
2814 	/*
2815 	 * While we are loading the pool, the DTLs have not been loaded yet.
2816 	 * This isn't a problem but it can result in devices being tried
2817 	 * which are known to not have the data.  In which case, the import
2818 	 * is relying on the checksum to ensure that we get the right data.
2819 	 * Note that while importing we are only reading the MOS, which is
2820 	 * always checksummed.
2821 	 */
2822 	mutex_enter(&vd->vdev_dtl_lock);
2823 	if (!range_tree_is_empty(rt))
2824 		dirty = range_tree_contains(rt, txg, size);
2825 	mutex_exit(&vd->vdev_dtl_lock);
2826 
2827 	return (dirty);
2828 }
2829 
2830 boolean_t
2831 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2832 {
2833 	range_tree_t *rt = vd->vdev_dtl[t];
2834 	boolean_t empty;
2835 
2836 	mutex_enter(&vd->vdev_dtl_lock);
2837 	empty = range_tree_is_empty(rt);
2838 	mutex_exit(&vd->vdev_dtl_lock);
2839 
2840 	return (empty);
2841 }
2842 
2843 /*
2844  * Check if the txg falls within the range which must be
2845  * resilvered.  DVAs outside this range can always be skipped.
2846  */
2847 boolean_t
2848 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2849     uint64_t phys_birth)
2850 {
2851 	/* Set by sequential resilver. */
2852 	if (phys_birth == TXG_UNKNOWN)
2853 		return (B_TRUE);
2854 
2855 	return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
2856 }
2857 
2858 /*
2859  * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
2860  */
2861 boolean_t
2862 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2863     uint64_t phys_birth)
2864 {
2865 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2866 
2867 	if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2868 	    vd->vdev_ops->vdev_op_leaf)
2869 		return (B_TRUE);
2870 
2871 	return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
2872 	    phys_birth));
2873 }
2874 
2875 /*
2876  * Returns the lowest txg in the DTL range.
2877  */
2878 static uint64_t
2879 vdev_dtl_min(vdev_t *vd)
2880 {
2881 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2882 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2883 	ASSERT0(vd->vdev_children);
2884 
2885 	return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
2886 }
2887 
2888 /*
2889  * Returns the highest txg in the DTL.
2890  */
2891 static uint64_t
2892 vdev_dtl_max(vdev_t *vd)
2893 {
2894 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2895 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2896 	ASSERT0(vd->vdev_children);
2897 
2898 	return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
2899 }
2900 
2901 /*
2902  * Determine if a resilvering vdev should remove any DTL entries from
2903  * its range. If the vdev was resilvering for the entire duration of the
2904  * scan then it should excise that range from its DTLs. Otherwise, this
2905  * vdev is considered partially resilvered and should leave its DTL
2906  * entries intact. The comment in vdev_dtl_reassess() describes how we
2907  * excise the DTLs.
2908  */
2909 static boolean_t
2910 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
2911 {
2912 	ASSERT0(vd->vdev_children);
2913 
2914 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
2915 		return (B_FALSE);
2916 
2917 	if (vd->vdev_resilver_deferred)
2918 		return (B_FALSE);
2919 
2920 	if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2921 		return (B_TRUE);
2922 
2923 	if (rebuild_done) {
2924 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
2925 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
2926 
2927 		/* Rebuild not initiated by attach */
2928 		if (vd->vdev_rebuild_txg == 0)
2929 			return (B_TRUE);
2930 
2931 		/*
2932 		 * When a rebuild completes without error then all missing data
2933 		 * up to the rebuild max txg has been reconstructed and the DTL
2934 		 * is eligible for excision.
2935 		 */
2936 		if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
2937 		    vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
2938 			ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
2939 			ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
2940 			ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
2941 			return (B_TRUE);
2942 		}
2943 	} else {
2944 		dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
2945 		dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
2946 
2947 		/* Resilver not initiated by attach */
2948 		if (vd->vdev_resilver_txg == 0)
2949 			return (B_TRUE);
2950 
2951 		/*
2952 		 * When a resilver is initiated the scan will assign the
2953 		 * scn_max_txg value to the highest txg value that exists
2954 		 * in all DTLs. If this device's max DTL is not part of this
2955 		 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
2956 		 * then it is not eligible for excision.
2957 		 */
2958 		if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2959 			ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
2960 			ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
2961 			ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
2962 			return (B_TRUE);
2963 		}
2964 	}
2965 
2966 	return (B_FALSE);
2967 }
2968 
2969 /*
2970  * Reassess DTLs after a config change or scrub completion. If txg == 0 no
2971  * write operations will be issued to the pool.
2972  */
2973 void
2974 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
2975     boolean_t scrub_done, boolean_t rebuild_done)
2976 {
2977 	spa_t *spa = vd->vdev_spa;
2978 	avl_tree_t reftree;
2979 	int minref;
2980 
2981 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2982 
2983 	for (int c = 0; c < vd->vdev_children; c++)
2984 		vdev_dtl_reassess(vd->vdev_child[c], txg,
2985 		    scrub_txg, scrub_done, rebuild_done);
2986 
2987 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2988 		return;
2989 
2990 	if (vd->vdev_ops->vdev_op_leaf) {
2991 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2992 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
2993 		boolean_t check_excise = B_FALSE;
2994 		boolean_t wasempty = B_TRUE;
2995 
2996 		mutex_enter(&vd->vdev_dtl_lock);
2997 
2998 		/*
2999 		 * If requested, pretend the scan or rebuild completed cleanly.
3000 		 */
3001 		if (zfs_scan_ignore_errors) {
3002 			if (scn != NULL)
3003 				scn->scn_phys.scn_errors = 0;
3004 			if (vr != NULL)
3005 				vr->vr_rebuild_phys.vrp_errors = 0;
3006 		}
3007 
3008 		if (scrub_txg != 0 &&
3009 		    !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3010 			wasempty = B_FALSE;
3011 			zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3012 			    "dtl:%llu/%llu errors:%llu",
3013 			    (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
3014 			    (u_longlong_t)scrub_txg, spa->spa_scrub_started,
3015 			    (u_longlong_t)vdev_dtl_min(vd),
3016 			    (u_longlong_t)vdev_dtl_max(vd),
3017 			    (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
3018 		}
3019 
3020 		/*
3021 		 * If we've completed a scrub/resilver or a rebuild cleanly
3022 		 * then determine if this vdev should remove any DTLs. We
3023 		 * only want to excise regions on vdevs that were available
3024 		 * during the entire duration of this scan.
3025 		 */
3026 		if (rebuild_done &&
3027 		    vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3028 			check_excise = B_TRUE;
3029 		} else {
3030 			if (spa->spa_scrub_started ||
3031 			    (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3032 				check_excise = B_TRUE;
3033 			}
3034 		}
3035 
3036 		if (scrub_txg && check_excise &&
3037 		    vdev_dtl_should_excise(vd, rebuild_done)) {
3038 			/*
3039 			 * We completed a scrub, resilver or rebuild up to
3040 			 * scrub_txg.  If we did it without rebooting, then
3041 			 * the scrub dtl will be valid, so excise the old
3042 			 * region and fold in the scrub dtl.  Otherwise,
3043 			 * leave the dtl as-is if there was an error.
3044 			 *
3045 			 * There's little trick here: to excise the beginning
3046 			 * of the DTL_MISSING map, we put it into a reference
3047 			 * tree and then add a segment with refcnt -1 that
3048 			 * covers the range [0, scrub_txg).  This means
3049 			 * that each txg in that range has refcnt -1 or 0.
3050 			 * We then add DTL_SCRUB with a refcnt of 2, so that
3051 			 * entries in the range [0, scrub_txg) will have a
3052 			 * positive refcnt -- either 1 or 2.  We then convert
3053 			 * the reference tree into the new DTL_MISSING map.
3054 			 */
3055 			space_reftree_create(&reftree);
3056 			space_reftree_add_map(&reftree,
3057 			    vd->vdev_dtl[DTL_MISSING], 1);
3058 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3059 			space_reftree_add_map(&reftree,
3060 			    vd->vdev_dtl[DTL_SCRUB], 2);
3061 			space_reftree_generate_map(&reftree,
3062 			    vd->vdev_dtl[DTL_MISSING], 1);
3063 			space_reftree_destroy(&reftree);
3064 
3065 			if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3066 				zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3067 				    (u_longlong_t)vdev_dtl_min(vd),
3068 				    (u_longlong_t)vdev_dtl_max(vd));
3069 			} else if (!wasempty) {
3070 				zfs_dbgmsg("DTL_MISSING is now empty");
3071 			}
3072 		}
3073 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3074 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3075 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3076 		if (scrub_done)
3077 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
3078 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3079 		if (!vdev_readable(vd))
3080 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3081 		else
3082 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3083 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3084 
3085 		/*
3086 		 * If the vdev was resilvering or rebuilding and no longer
3087 		 * has any DTLs then reset the appropriate flag and dirty
3088 		 * the top level so that we persist the change.
3089 		 */
3090 		if (txg != 0 &&
3091 		    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3092 		    range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3093 			if (vd->vdev_rebuild_txg != 0) {
3094 				vd->vdev_rebuild_txg = 0;
3095 				vdev_config_dirty(vd->vdev_top);
3096 			} else if (vd->vdev_resilver_txg != 0) {
3097 				vd->vdev_resilver_txg = 0;
3098 				vdev_config_dirty(vd->vdev_top);
3099 			}
3100 		}
3101 
3102 		mutex_exit(&vd->vdev_dtl_lock);
3103 
3104 		if (txg != 0)
3105 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3106 		return;
3107 	}
3108 
3109 	mutex_enter(&vd->vdev_dtl_lock);
3110 	for (int t = 0; t < DTL_TYPES; t++) {
3111 		/* account for child's outage in parent's missing map */
3112 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3113 		if (t == DTL_SCRUB)
3114 			continue;			/* leaf vdevs only */
3115 		if (t == DTL_PARTIAL)
3116 			minref = 1;			/* i.e. non-zero */
3117 		else if (vdev_get_nparity(vd) != 0)
3118 			minref = vdev_get_nparity(vd) + 1; /* RAID-Z, dRAID */
3119 		else
3120 			minref = vd->vdev_children;	/* any kind of mirror */
3121 		space_reftree_create(&reftree);
3122 		for (int c = 0; c < vd->vdev_children; c++) {
3123 			vdev_t *cvd = vd->vdev_child[c];
3124 			mutex_enter(&cvd->vdev_dtl_lock);
3125 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
3126 			mutex_exit(&cvd->vdev_dtl_lock);
3127 		}
3128 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
3129 		space_reftree_destroy(&reftree);
3130 	}
3131 	mutex_exit(&vd->vdev_dtl_lock);
3132 }
3133 
3134 int
3135 vdev_dtl_load(vdev_t *vd)
3136 {
3137 	spa_t *spa = vd->vdev_spa;
3138 	objset_t *mos = spa->spa_meta_objset;
3139 	range_tree_t *rt;
3140 	int error = 0;
3141 
3142 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3143 		ASSERT(vdev_is_concrete(vd));
3144 
3145 		/*
3146 		 * If the dtl cannot be sync'd there is no need to open it.
3147 		 */
3148 		if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps)
3149 			return (0);
3150 
3151 		error = space_map_open(&vd->vdev_dtl_sm, mos,
3152 		    vd->vdev_dtl_object, 0, -1ULL, 0);
3153 		if (error)
3154 			return (error);
3155 		ASSERT(vd->vdev_dtl_sm != NULL);
3156 
3157 		rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3158 		error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3159 		if (error == 0) {
3160 			mutex_enter(&vd->vdev_dtl_lock);
3161 			range_tree_walk(rt, range_tree_add,
3162 			    vd->vdev_dtl[DTL_MISSING]);
3163 			mutex_exit(&vd->vdev_dtl_lock);
3164 		}
3165 
3166 		range_tree_vacate(rt, NULL, NULL);
3167 		range_tree_destroy(rt);
3168 
3169 		return (error);
3170 	}
3171 
3172 	for (int c = 0; c < vd->vdev_children; c++) {
3173 		error = vdev_dtl_load(vd->vdev_child[c]);
3174 		if (error != 0)
3175 			break;
3176 	}
3177 
3178 	return (error);
3179 }
3180 
3181 static void
3182 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3183 {
3184 	spa_t *spa = vd->vdev_spa;
3185 	objset_t *mos = spa->spa_meta_objset;
3186 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3187 	const char *string;
3188 
3189 	ASSERT(alloc_bias != VDEV_BIAS_NONE);
3190 
3191 	string =
3192 	    (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3193 	    (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3194 	    (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3195 
3196 	ASSERT(string != NULL);
3197 	VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3198 	    1, strlen(string) + 1, string, tx));
3199 
3200 	if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3201 		spa_activate_allocation_classes(spa, tx);
3202 	}
3203 }
3204 
3205 void
3206 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3207 {
3208 	spa_t *spa = vd->vdev_spa;
3209 
3210 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3211 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3212 	    zapobj, tx));
3213 }
3214 
3215 uint64_t
3216 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3217 {
3218 	spa_t *spa = vd->vdev_spa;
3219 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3220 	    DMU_OT_NONE, 0, tx);
3221 
3222 	ASSERT(zap != 0);
3223 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3224 	    zap, tx));
3225 
3226 	return (zap);
3227 }
3228 
3229 void
3230 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3231 {
3232 	if (vd->vdev_ops != &vdev_hole_ops &&
3233 	    vd->vdev_ops != &vdev_missing_ops &&
3234 	    vd->vdev_ops != &vdev_root_ops &&
3235 	    !vd->vdev_top->vdev_removing) {
3236 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3237 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3238 		}
3239 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3240 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3241 			if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3242 				vdev_zap_allocation_data(vd, tx);
3243 		}
3244 	}
3245 
3246 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3247 		vdev_construct_zaps(vd->vdev_child[i], tx);
3248 	}
3249 }
3250 
3251 static void
3252 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3253 {
3254 	spa_t *spa = vd->vdev_spa;
3255 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3256 	objset_t *mos = spa->spa_meta_objset;
3257 	range_tree_t *rtsync;
3258 	dmu_tx_t *tx;
3259 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
3260 
3261 	ASSERT(vdev_is_concrete(vd));
3262 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3263 
3264 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3265 
3266 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3267 		mutex_enter(&vd->vdev_dtl_lock);
3268 		space_map_free(vd->vdev_dtl_sm, tx);
3269 		space_map_close(vd->vdev_dtl_sm);
3270 		vd->vdev_dtl_sm = NULL;
3271 		mutex_exit(&vd->vdev_dtl_lock);
3272 
3273 		/*
3274 		 * We only destroy the leaf ZAP for detached leaves or for
3275 		 * removed log devices. Removed data devices handle leaf ZAP
3276 		 * cleanup later, once cancellation is no longer possible.
3277 		 */
3278 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3279 		    vd->vdev_top->vdev_islog)) {
3280 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3281 			vd->vdev_leaf_zap = 0;
3282 		}
3283 
3284 		dmu_tx_commit(tx);
3285 		return;
3286 	}
3287 
3288 	if (vd->vdev_dtl_sm == NULL) {
3289 		uint64_t new_object;
3290 
3291 		new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3292 		VERIFY3U(new_object, !=, 0);
3293 
3294 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3295 		    0, -1ULL, 0));
3296 		ASSERT(vd->vdev_dtl_sm != NULL);
3297 	}
3298 
3299 	rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3300 
3301 	mutex_enter(&vd->vdev_dtl_lock);
3302 	range_tree_walk(rt, range_tree_add, rtsync);
3303 	mutex_exit(&vd->vdev_dtl_lock);
3304 
3305 	space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3306 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3307 	range_tree_vacate(rtsync, NULL, NULL);
3308 
3309 	range_tree_destroy(rtsync);
3310 
3311 	/*
3312 	 * If the object for the space map has changed then dirty
3313 	 * the top level so that we update the config.
3314 	 */
3315 	if (object != space_map_object(vd->vdev_dtl_sm)) {
3316 		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3317 		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
3318 		    (u_longlong_t)object,
3319 		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3320 		vdev_config_dirty(vd->vdev_top);
3321 	}
3322 
3323 	dmu_tx_commit(tx);
3324 }
3325 
3326 /*
3327  * Determine whether the specified vdev can be offlined/detached/removed
3328  * without losing data.
3329  */
3330 boolean_t
3331 vdev_dtl_required(vdev_t *vd)
3332 {
3333 	spa_t *spa = vd->vdev_spa;
3334 	vdev_t *tvd = vd->vdev_top;
3335 	uint8_t cant_read = vd->vdev_cant_read;
3336 	boolean_t required;
3337 
3338 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3339 
3340 	if (vd == spa->spa_root_vdev || vd == tvd)
3341 		return (B_TRUE);
3342 
3343 	/*
3344 	 * Temporarily mark the device as unreadable, and then determine
3345 	 * whether this results in any DTL outages in the top-level vdev.
3346 	 * If not, we can safely offline/detach/remove the device.
3347 	 */
3348 	vd->vdev_cant_read = B_TRUE;
3349 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3350 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3351 	vd->vdev_cant_read = cant_read;
3352 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3353 
3354 	if (!required && zio_injection_enabled) {
3355 		required = !!zio_handle_device_injection(vd, NULL,
3356 		    SET_ERROR(ECHILD));
3357 	}
3358 
3359 	return (required);
3360 }
3361 
3362 /*
3363  * Determine if resilver is needed, and if so the txg range.
3364  */
3365 boolean_t
3366 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3367 {
3368 	boolean_t needed = B_FALSE;
3369 	uint64_t thismin = UINT64_MAX;
3370 	uint64_t thismax = 0;
3371 
3372 	if (vd->vdev_children == 0) {
3373 		mutex_enter(&vd->vdev_dtl_lock);
3374 		if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3375 		    vdev_writeable(vd)) {
3376 
3377 			thismin = vdev_dtl_min(vd);
3378 			thismax = vdev_dtl_max(vd);
3379 			needed = B_TRUE;
3380 		}
3381 		mutex_exit(&vd->vdev_dtl_lock);
3382 	} else {
3383 		for (int c = 0; c < vd->vdev_children; c++) {
3384 			vdev_t *cvd = vd->vdev_child[c];
3385 			uint64_t cmin, cmax;
3386 
3387 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3388 				thismin = MIN(thismin, cmin);
3389 				thismax = MAX(thismax, cmax);
3390 				needed = B_TRUE;
3391 			}
3392 		}
3393 	}
3394 
3395 	if (needed && minp) {
3396 		*minp = thismin;
3397 		*maxp = thismax;
3398 	}
3399 	return (needed);
3400 }
3401 
3402 /*
3403  * Gets the checkpoint space map object from the vdev's ZAP.  On success sm_obj
3404  * will contain either the checkpoint spacemap object or zero if none exists.
3405  * All other errors are returned to the caller.
3406  */
3407 int
3408 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3409 {
3410 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3411 
3412 	if (vd->vdev_top_zap == 0) {
3413 		*sm_obj = 0;
3414 		return (0);
3415 	}
3416 
3417 	int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3418 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3419 	if (error == ENOENT) {
3420 		*sm_obj = 0;
3421 		error = 0;
3422 	}
3423 
3424 	return (error);
3425 }
3426 
3427 int
3428 vdev_load(vdev_t *vd)
3429 {
3430 	int children = vd->vdev_children;
3431 	int error = 0;
3432 	taskq_t *tq = NULL;
3433 
3434 	/*
3435 	 * It's only worthwhile to use the taskq for the root vdev, because the
3436 	 * slow part is metaslab_init, and that only happens for top-level
3437 	 * vdevs.
3438 	 */
3439 	if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3440 		tq = taskq_create("vdev_load", children, minclsyspri,
3441 		    children, children, TASKQ_PREPOPULATE);
3442 	}
3443 
3444 	/*
3445 	 * Recursively load all children.
3446 	 */
3447 	for (int c = 0; c < vd->vdev_children; c++) {
3448 		vdev_t *cvd = vd->vdev_child[c];
3449 
3450 		if (tq == NULL || vdev_uses_zvols(cvd)) {
3451 			cvd->vdev_load_error = vdev_load(cvd);
3452 		} else {
3453 			VERIFY(taskq_dispatch(tq, vdev_load_child,
3454 			    cvd, TQ_SLEEP) != TASKQID_INVALID);
3455 		}
3456 	}
3457 
3458 	if (tq != NULL) {
3459 		taskq_wait(tq);
3460 		taskq_destroy(tq);
3461 	}
3462 
3463 	for (int c = 0; c < vd->vdev_children; c++) {
3464 		int error = vd->vdev_child[c]->vdev_load_error;
3465 
3466 		if (error != 0)
3467 			return (error);
3468 	}
3469 
3470 	vdev_set_deflate_ratio(vd);
3471 
3472 	/*
3473 	 * On spa_load path, grab the allocation bias from our zap
3474 	 */
3475 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3476 		spa_t *spa = vd->vdev_spa;
3477 		char bias_str[64];
3478 
3479 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3480 		    VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3481 		    bias_str);
3482 		if (error == 0) {
3483 			ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3484 			vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3485 		} else if (error != ENOENT) {
3486 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3487 			    VDEV_AUX_CORRUPT_DATA);
3488 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3489 			    "failed [error=%d]",
3490 			    (u_longlong_t)vd->vdev_top_zap, error);
3491 			return (error);
3492 		}
3493 	}
3494 
3495 	/*
3496 	 * Load any rebuild state from the top-level vdev zap.
3497 	 */
3498 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3499 		error = vdev_rebuild_load(vd);
3500 		if (error && error != ENOTSUP) {
3501 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3502 			    VDEV_AUX_CORRUPT_DATA);
3503 			vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3504 			    "failed [error=%d]", error);
3505 			return (error);
3506 		}
3507 	}
3508 
3509 	/*
3510 	 * If this is a top-level vdev, initialize its metaslabs.
3511 	 */
3512 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3513 		vdev_metaslab_group_create(vd);
3514 
3515 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3516 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3517 			    VDEV_AUX_CORRUPT_DATA);
3518 			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3519 			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3520 			    (u_longlong_t)vd->vdev_asize);
3521 			return (SET_ERROR(ENXIO));
3522 		}
3523 
3524 		error = vdev_metaslab_init(vd, 0);
3525 		if (error != 0) {
3526 			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3527 			    "[error=%d]", error);
3528 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3529 			    VDEV_AUX_CORRUPT_DATA);
3530 			return (error);
3531 		}
3532 
3533 		uint64_t checkpoint_sm_obj;
3534 		error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3535 		if (error == 0 && checkpoint_sm_obj != 0) {
3536 			objset_t *mos = spa_meta_objset(vd->vdev_spa);
3537 			ASSERT(vd->vdev_asize != 0);
3538 			ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3539 
3540 			error = space_map_open(&vd->vdev_checkpoint_sm,
3541 			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3542 			    vd->vdev_ashift);
3543 			if (error != 0) {
3544 				vdev_dbgmsg(vd, "vdev_load: space_map_open "
3545 				    "failed for checkpoint spacemap (obj %llu) "
3546 				    "[error=%d]",
3547 				    (u_longlong_t)checkpoint_sm_obj, error);
3548 				return (error);
3549 			}
3550 			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3551 
3552 			/*
3553 			 * Since the checkpoint_sm contains free entries
3554 			 * exclusively we can use space_map_allocated() to
3555 			 * indicate the cumulative checkpointed space that
3556 			 * has been freed.
3557 			 */
3558 			vd->vdev_stat.vs_checkpoint_space =
3559 			    -space_map_allocated(vd->vdev_checkpoint_sm);
3560 			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3561 			    vd->vdev_stat.vs_checkpoint_space;
3562 		} else if (error != 0) {
3563 			vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3564 			    "checkpoint space map object from vdev ZAP "
3565 			    "[error=%d]", error);
3566 			return (error);
3567 		}
3568 	}
3569 
3570 	/*
3571 	 * If this is a leaf vdev, load its DTL.
3572 	 */
3573 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3574 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3575 		    VDEV_AUX_CORRUPT_DATA);
3576 		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3577 		    "[error=%d]", error);
3578 		return (error);
3579 	}
3580 
3581 	uint64_t obsolete_sm_object;
3582 	error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3583 	if (error == 0 && obsolete_sm_object != 0) {
3584 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
3585 		ASSERT(vd->vdev_asize != 0);
3586 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3587 
3588 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3589 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3590 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3591 			    VDEV_AUX_CORRUPT_DATA);
3592 			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3593 			    "obsolete spacemap (obj %llu) [error=%d]",
3594 			    (u_longlong_t)obsolete_sm_object, error);
3595 			return (error);
3596 		}
3597 	} else if (error != 0) {
3598 		vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3599 		    "space map object from vdev ZAP [error=%d]", error);
3600 		return (error);
3601 	}
3602 
3603 	return (0);
3604 }
3605 
3606 /*
3607  * The special vdev case is used for hot spares and l2cache devices.  Its
3608  * sole purpose it to set the vdev state for the associated vdev.  To do this,
3609  * we make sure that we can open the underlying device, then try to read the
3610  * label, and make sure that the label is sane and that it hasn't been
3611  * repurposed to another pool.
3612  */
3613 int
3614 vdev_validate_aux(vdev_t *vd)
3615 {
3616 	nvlist_t *label;
3617 	uint64_t guid, version;
3618 	uint64_t state;
3619 
3620 	if (!vdev_readable(vd))
3621 		return (0);
3622 
3623 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3624 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3625 		    VDEV_AUX_CORRUPT_DATA);
3626 		return (-1);
3627 	}
3628 
3629 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3630 	    !SPA_VERSION_IS_SUPPORTED(version) ||
3631 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3632 	    guid != vd->vdev_guid ||
3633 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3634 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3635 		    VDEV_AUX_CORRUPT_DATA);
3636 		nvlist_free(label);
3637 		return (-1);
3638 	}
3639 
3640 	/*
3641 	 * We don't actually check the pool state here.  If it's in fact in
3642 	 * use by another pool, we update this fact on the fly when requested.
3643 	 */
3644 	nvlist_free(label);
3645 	return (0);
3646 }
3647 
3648 static void
3649 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3650 {
3651 	objset_t *mos = spa_meta_objset(vd->vdev_spa);
3652 
3653 	if (vd->vdev_top_zap == 0)
3654 		return;
3655 
3656 	uint64_t object = 0;
3657 	int err = zap_lookup(mos, vd->vdev_top_zap,
3658 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3659 	if (err == ENOENT)
3660 		return;
3661 	VERIFY0(err);
3662 
3663 	VERIFY0(dmu_object_free(mos, object, tx));
3664 	VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3665 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3666 }
3667 
3668 /*
3669  * Free the objects used to store this vdev's spacemaps, and the array
3670  * that points to them.
3671  */
3672 void
3673 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3674 {
3675 	if (vd->vdev_ms_array == 0)
3676 		return;
3677 
3678 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
3679 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3680 	size_t array_bytes = array_count * sizeof (uint64_t);
3681 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3682 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3683 	    array_bytes, smobj_array, 0));
3684 
3685 	for (uint64_t i = 0; i < array_count; i++) {
3686 		uint64_t smobj = smobj_array[i];
3687 		if (smobj == 0)
3688 			continue;
3689 
3690 		space_map_free_obj(mos, smobj, tx);
3691 	}
3692 
3693 	kmem_free(smobj_array, array_bytes);
3694 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3695 	vdev_destroy_ms_flush_data(vd, tx);
3696 	vd->vdev_ms_array = 0;
3697 }
3698 
3699 static void
3700 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3701 {
3702 	spa_t *spa = vd->vdev_spa;
3703 
3704 	ASSERT(vd->vdev_islog);
3705 	ASSERT(vd == vd->vdev_top);
3706 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
3707 
3708 	dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3709 
3710 	vdev_destroy_spacemaps(vd, tx);
3711 	if (vd->vdev_top_zap != 0) {
3712 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3713 		vd->vdev_top_zap = 0;
3714 	}
3715 
3716 	dmu_tx_commit(tx);
3717 }
3718 
3719 void
3720 vdev_sync_done(vdev_t *vd, uint64_t txg)
3721 {
3722 	metaslab_t *msp;
3723 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3724 
3725 	ASSERT(vdev_is_concrete(vd));
3726 
3727 	while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3728 	    != NULL)
3729 		metaslab_sync_done(msp, txg);
3730 
3731 	if (reassess) {
3732 		metaslab_sync_reassess(vd->vdev_mg);
3733 		if (vd->vdev_log_mg != NULL)
3734 			metaslab_sync_reassess(vd->vdev_log_mg);
3735 	}
3736 }
3737 
3738 void
3739 vdev_sync(vdev_t *vd, uint64_t txg)
3740 {
3741 	spa_t *spa = vd->vdev_spa;
3742 	vdev_t *lvd;
3743 	metaslab_t *msp;
3744 
3745 	ASSERT3U(txg, ==, spa->spa_syncing_txg);
3746 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3747 	if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3748 		ASSERT(vd->vdev_removing ||
3749 		    vd->vdev_ops == &vdev_indirect_ops);
3750 
3751 		vdev_indirect_sync_obsolete(vd, tx);
3752 
3753 		/*
3754 		 * If the vdev is indirect, it can't have dirty
3755 		 * metaslabs or DTLs.
3756 		 */
3757 		if (vd->vdev_ops == &vdev_indirect_ops) {
3758 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3759 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3760 			dmu_tx_commit(tx);
3761 			return;
3762 		}
3763 	}
3764 
3765 	ASSERT(vdev_is_concrete(vd));
3766 
3767 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3768 	    !vd->vdev_removing) {
3769 		ASSERT(vd == vd->vdev_top);
3770 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3771 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3772 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3773 		ASSERT(vd->vdev_ms_array != 0);
3774 		vdev_config_dirty(vd);
3775 	}
3776 
3777 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3778 		metaslab_sync(msp, txg);
3779 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3780 	}
3781 
3782 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3783 		vdev_dtl_sync(lvd, txg);
3784 
3785 	/*
3786 	 * If this is an empty log device being removed, destroy the
3787 	 * metadata associated with it.
3788 	 */
3789 	if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3790 		vdev_remove_empty_log(vd, txg);
3791 
3792 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3793 	dmu_tx_commit(tx);
3794 }
3795 
3796 uint64_t
3797 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3798 {
3799 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
3800 }
3801 
3802 /*
3803  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
3804  * not be opened, and no I/O is attempted.
3805  */
3806 int
3807 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3808 {
3809 	vdev_t *vd, *tvd;
3810 
3811 	spa_vdev_state_enter(spa, SCL_NONE);
3812 
3813 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3814 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3815 
3816 	if (!vd->vdev_ops->vdev_op_leaf)
3817 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3818 
3819 	tvd = vd->vdev_top;
3820 
3821 	/*
3822 	 * If user did a 'zpool offline -f' then make the fault persist across
3823 	 * reboots.
3824 	 */
3825 	if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
3826 		/*
3827 		 * There are two kinds of forced faults: temporary and
3828 		 * persistent.  Temporary faults go away at pool import, while
3829 		 * persistent faults stay set.  Both types of faults can be
3830 		 * cleared with a zpool clear.
3831 		 *
3832 		 * We tell if a vdev is persistently faulted by looking at the
3833 		 * ZPOOL_CONFIG_AUX_STATE nvpair.  If it's set to "external" at
3834 		 * import then it's a persistent fault.  Otherwise, it's
3835 		 * temporary.  We get ZPOOL_CONFIG_AUX_STATE set to "external"
3836 		 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL.  This
3837 		 * tells vdev_config_generate() (which gets run later) to set
3838 		 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
3839 		 */
3840 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
3841 		vd->vdev_tmpoffline = B_FALSE;
3842 		aux = VDEV_AUX_EXTERNAL;
3843 	} else {
3844 		vd->vdev_tmpoffline = B_TRUE;
3845 	}
3846 
3847 	/*
3848 	 * We don't directly use the aux state here, but if we do a
3849 	 * vdev_reopen(), we need this value to be present to remember why we
3850 	 * were faulted.
3851 	 */
3852 	vd->vdev_label_aux = aux;
3853 
3854 	/*
3855 	 * Faulted state takes precedence over degraded.
3856 	 */
3857 	vd->vdev_delayed_close = B_FALSE;
3858 	vd->vdev_faulted = 1ULL;
3859 	vd->vdev_degraded = 0ULL;
3860 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3861 
3862 	/*
3863 	 * If this device has the only valid copy of the data, then
3864 	 * back off and simply mark the vdev as degraded instead.
3865 	 */
3866 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3867 		vd->vdev_degraded = 1ULL;
3868 		vd->vdev_faulted = 0ULL;
3869 
3870 		/*
3871 		 * If we reopen the device and it's not dead, only then do we
3872 		 * mark it degraded.
3873 		 */
3874 		vdev_reopen(tvd);
3875 
3876 		if (vdev_readable(vd))
3877 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3878 	}
3879 
3880 	return (spa_vdev_state_exit(spa, vd, 0));
3881 }
3882 
3883 /*
3884  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
3885  * user that something is wrong.  The vdev continues to operate as normal as far
3886  * as I/O is concerned.
3887  */
3888 int
3889 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3890 {
3891 	vdev_t *vd;
3892 
3893 	spa_vdev_state_enter(spa, SCL_NONE);
3894 
3895 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3896 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3897 
3898 	if (!vd->vdev_ops->vdev_op_leaf)
3899 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3900 
3901 	/*
3902 	 * If the vdev is already faulted, then don't do anything.
3903 	 */
3904 	if (vd->vdev_faulted || vd->vdev_degraded)
3905 		return (spa_vdev_state_exit(spa, NULL, 0));
3906 
3907 	vd->vdev_degraded = 1ULL;
3908 	if (!vdev_is_dead(vd))
3909 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3910 		    aux);
3911 
3912 	return (spa_vdev_state_exit(spa, vd, 0));
3913 }
3914 
3915 /*
3916  * Online the given vdev.
3917  *
3918  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
3919  * spare device should be detached when the device finishes resilvering.
3920  * Second, the online should be treated like a 'test' online case, so no FMA
3921  * events are generated if the device fails to open.
3922  */
3923 int
3924 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3925 {
3926 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3927 	boolean_t wasoffline;
3928 	vdev_state_t oldstate;
3929 
3930 	spa_vdev_state_enter(spa, SCL_NONE);
3931 
3932 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3933 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3934 
3935 	if (!vd->vdev_ops->vdev_op_leaf)
3936 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3937 
3938 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3939 	oldstate = vd->vdev_state;
3940 
3941 	tvd = vd->vdev_top;
3942 	vd->vdev_offline = B_FALSE;
3943 	vd->vdev_tmpoffline = B_FALSE;
3944 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3945 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3946 
3947 	/* XXX - L2ARC 1.0 does not support expansion */
3948 	if (!vd->vdev_aux) {
3949 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3950 			pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
3951 			    spa->spa_autoexpand);
3952 		vd->vdev_expansion_time = gethrestime_sec();
3953 	}
3954 
3955 	vdev_reopen(tvd);
3956 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3957 
3958 	if (!vd->vdev_aux) {
3959 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3960 			pvd->vdev_expanding = B_FALSE;
3961 	}
3962 
3963 	if (newstate)
3964 		*newstate = vd->vdev_state;
3965 	if ((flags & ZFS_ONLINE_UNSPARE) &&
3966 	    !vdev_is_dead(vd) && vd->vdev_parent &&
3967 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3968 	    vd->vdev_parent->vdev_child[0] == vd)
3969 		vd->vdev_unspare = B_TRUE;
3970 
3971 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3972 
3973 		/* XXX - L2ARC 1.0 does not support expansion */
3974 		if (vd->vdev_aux)
3975 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3976 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3977 	}
3978 
3979 	/* Restart initializing if necessary */
3980 	mutex_enter(&vd->vdev_initialize_lock);
3981 	if (vdev_writeable(vd) &&
3982 	    vd->vdev_initialize_thread == NULL &&
3983 	    vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3984 		(void) vdev_initialize(vd);
3985 	}
3986 	mutex_exit(&vd->vdev_initialize_lock);
3987 
3988 	/*
3989 	 * Restart trimming if necessary. We do not restart trimming for cache
3990 	 * devices here. This is triggered by l2arc_rebuild_vdev()
3991 	 * asynchronously for the whole device or in l2arc_evict() as it evicts
3992 	 * space for upcoming writes.
3993 	 */
3994 	mutex_enter(&vd->vdev_trim_lock);
3995 	if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
3996 	    vd->vdev_trim_thread == NULL &&
3997 	    vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
3998 		(void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
3999 		    vd->vdev_trim_secure);
4000 	}
4001 	mutex_exit(&vd->vdev_trim_lock);
4002 
4003 	if (wasoffline ||
4004 	    (oldstate < VDEV_STATE_DEGRADED &&
4005 	    vd->vdev_state >= VDEV_STATE_DEGRADED))
4006 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
4007 
4008 	return (spa_vdev_state_exit(spa, vd, 0));
4009 }
4010 
4011 static int
4012 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
4013 {
4014 	vdev_t *vd, *tvd;
4015 	int error = 0;
4016 	uint64_t generation;
4017 	metaslab_group_t *mg;
4018 
4019 top:
4020 	spa_vdev_state_enter(spa, SCL_ALLOC);
4021 
4022 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4023 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4024 
4025 	if (!vd->vdev_ops->vdev_op_leaf)
4026 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4027 
4028 	if (vd->vdev_ops == &vdev_draid_spare_ops)
4029 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4030 
4031 	tvd = vd->vdev_top;
4032 	mg = tvd->vdev_mg;
4033 	generation = spa->spa_config_generation + 1;
4034 
4035 	/*
4036 	 * If the device isn't already offline, try to offline it.
4037 	 */
4038 	if (!vd->vdev_offline) {
4039 		/*
4040 		 * If this device has the only valid copy of some data,
4041 		 * don't allow it to be offlined. Log devices are always
4042 		 * expendable.
4043 		 */
4044 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4045 		    vdev_dtl_required(vd))
4046 			return (spa_vdev_state_exit(spa, NULL,
4047 			    SET_ERROR(EBUSY)));
4048 
4049 		/*
4050 		 * If the top-level is a slog and it has had allocations
4051 		 * then proceed.  We check that the vdev's metaslab group
4052 		 * is not NULL since it's possible that we may have just
4053 		 * added this vdev but not yet initialized its metaslabs.
4054 		 */
4055 		if (tvd->vdev_islog && mg != NULL) {
4056 			/*
4057 			 * Prevent any future allocations.
4058 			 */
4059 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
4060 			metaslab_group_passivate(mg);
4061 			(void) spa_vdev_state_exit(spa, vd, 0);
4062 
4063 			error = spa_reset_logs(spa);
4064 
4065 			/*
4066 			 * If the log device was successfully reset but has
4067 			 * checkpointed data, do not offline it.
4068 			 */
4069 			if (error == 0 &&
4070 			    tvd->vdev_checkpoint_sm != NULL) {
4071 				ASSERT3U(space_map_allocated(
4072 				    tvd->vdev_checkpoint_sm), !=, 0);
4073 				error = ZFS_ERR_CHECKPOINT_EXISTS;
4074 			}
4075 
4076 			spa_vdev_state_enter(spa, SCL_ALLOC);
4077 
4078 			/*
4079 			 * Check to see if the config has changed.
4080 			 */
4081 			if (error || generation != spa->spa_config_generation) {
4082 				metaslab_group_activate(mg);
4083 				if (error)
4084 					return (spa_vdev_state_exit(spa,
4085 					    vd, error));
4086 				(void) spa_vdev_state_exit(spa, vd, 0);
4087 				goto top;
4088 			}
4089 			ASSERT0(tvd->vdev_stat.vs_alloc);
4090 		}
4091 
4092 		/*
4093 		 * Offline this device and reopen its top-level vdev.
4094 		 * If the top-level vdev is a log device then just offline
4095 		 * it. Otherwise, if this action results in the top-level
4096 		 * vdev becoming unusable, undo it and fail the request.
4097 		 */
4098 		vd->vdev_offline = B_TRUE;
4099 		vdev_reopen(tvd);
4100 
4101 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4102 		    vdev_is_dead(tvd)) {
4103 			vd->vdev_offline = B_FALSE;
4104 			vdev_reopen(tvd);
4105 			return (spa_vdev_state_exit(spa, NULL,
4106 			    SET_ERROR(EBUSY)));
4107 		}
4108 
4109 		/*
4110 		 * Add the device back into the metaslab rotor so that
4111 		 * once we online the device it's open for business.
4112 		 */
4113 		if (tvd->vdev_islog && mg != NULL)
4114 			metaslab_group_activate(mg);
4115 	}
4116 
4117 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4118 
4119 	return (spa_vdev_state_exit(spa, vd, 0));
4120 }
4121 
4122 int
4123 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4124 {
4125 	int error;
4126 
4127 	mutex_enter(&spa->spa_vdev_top_lock);
4128 	error = vdev_offline_locked(spa, guid, flags);
4129 	mutex_exit(&spa->spa_vdev_top_lock);
4130 
4131 	return (error);
4132 }
4133 
4134 /*
4135  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
4136  * vdev_offline(), we assume the spa config is locked.  We also clear all
4137  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
4138  */
4139 void
4140 vdev_clear(spa_t *spa, vdev_t *vd)
4141 {
4142 	vdev_t *rvd = spa->spa_root_vdev;
4143 
4144 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4145 
4146 	if (vd == NULL)
4147 		vd = rvd;
4148 
4149 	vd->vdev_stat.vs_read_errors = 0;
4150 	vd->vdev_stat.vs_write_errors = 0;
4151 	vd->vdev_stat.vs_checksum_errors = 0;
4152 	vd->vdev_stat.vs_slow_ios = 0;
4153 
4154 	for (int c = 0; c < vd->vdev_children; c++)
4155 		vdev_clear(spa, vd->vdev_child[c]);
4156 
4157 	/*
4158 	 * It makes no sense to "clear" an indirect vdev.
4159 	 */
4160 	if (!vdev_is_concrete(vd))
4161 		return;
4162 
4163 	/*
4164 	 * If we're in the FAULTED state or have experienced failed I/O, then
4165 	 * clear the persistent state and attempt to reopen the device.  We
4166 	 * also mark the vdev config dirty, so that the new faulted state is
4167 	 * written out to disk.
4168 	 */
4169 	if (vd->vdev_faulted || vd->vdev_degraded ||
4170 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
4171 		/*
4172 		 * When reopening in response to a clear event, it may be due to
4173 		 * a fmadm repair request.  In this case, if the device is
4174 		 * still broken, we want to still post the ereport again.
4175 		 */
4176 		vd->vdev_forcefault = B_TRUE;
4177 
4178 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4179 		vd->vdev_cant_read = B_FALSE;
4180 		vd->vdev_cant_write = B_FALSE;
4181 		vd->vdev_stat.vs_aux = 0;
4182 
4183 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4184 
4185 		vd->vdev_forcefault = B_FALSE;
4186 
4187 		if (vd != rvd && vdev_writeable(vd->vdev_top))
4188 			vdev_state_dirty(vd->vdev_top);
4189 
4190 		/* If a resilver isn't required, check if vdevs can be culled */
4191 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4192 		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4193 		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4194 			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4195 
4196 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4197 	}
4198 
4199 	/*
4200 	 * When clearing a FMA-diagnosed fault, we always want to
4201 	 * unspare the device, as we assume that the original spare was
4202 	 * done in response to the FMA fault.
4203 	 */
4204 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4205 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4206 	    vd->vdev_parent->vdev_child[0] == vd)
4207 		vd->vdev_unspare = B_TRUE;
4208 
4209 	/* Clear recent error events cache (i.e. duplicate events tracking) */
4210 	zfs_ereport_clear(spa, vd);
4211 }
4212 
4213 boolean_t
4214 vdev_is_dead(vdev_t *vd)
4215 {
4216 	/*
4217 	 * Holes and missing devices are always considered "dead".
4218 	 * This simplifies the code since we don't have to check for
4219 	 * these types of devices in the various code paths.
4220 	 * Instead we rely on the fact that we skip over dead devices
4221 	 * before issuing I/O to them.
4222 	 */
4223 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4224 	    vd->vdev_ops == &vdev_hole_ops ||
4225 	    vd->vdev_ops == &vdev_missing_ops);
4226 }
4227 
4228 boolean_t
4229 vdev_readable(vdev_t *vd)
4230 {
4231 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4232 }
4233 
4234 boolean_t
4235 vdev_writeable(vdev_t *vd)
4236 {
4237 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4238 	    vdev_is_concrete(vd));
4239 }
4240 
4241 boolean_t
4242 vdev_allocatable(vdev_t *vd)
4243 {
4244 	uint64_t state = vd->vdev_state;
4245 
4246 	/*
4247 	 * We currently allow allocations from vdevs which may be in the
4248 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4249 	 * fails to reopen then we'll catch it later when we're holding
4250 	 * the proper locks.  Note that we have to get the vdev state
4251 	 * in a local variable because although it changes atomically,
4252 	 * we're asking two separate questions about it.
4253 	 */
4254 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4255 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4256 	    vd->vdev_mg->mg_initialized);
4257 }
4258 
4259 boolean_t
4260 vdev_accessible(vdev_t *vd, zio_t *zio)
4261 {
4262 	ASSERT(zio->io_vd == vd);
4263 
4264 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4265 		return (B_FALSE);
4266 
4267 	if (zio->io_type == ZIO_TYPE_READ)
4268 		return (!vd->vdev_cant_read);
4269 
4270 	if (zio->io_type == ZIO_TYPE_WRITE)
4271 		return (!vd->vdev_cant_write);
4272 
4273 	return (B_TRUE);
4274 }
4275 
4276 static void
4277 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4278 {
4279 	/*
4280 	 * Exclude the dRAID spare when aggregating to avoid double counting
4281 	 * the ops and bytes.  These IOs are counted by the physical leaves.
4282 	 */
4283 	if (cvd->vdev_ops == &vdev_draid_spare_ops)
4284 		return;
4285 
4286 	for (int t = 0; t < VS_ZIO_TYPES; t++) {
4287 		vs->vs_ops[t] += cvs->vs_ops[t];
4288 		vs->vs_bytes[t] += cvs->vs_bytes[t];
4289 	}
4290 
4291 	cvs->vs_scan_removing = cvd->vdev_removing;
4292 }
4293 
4294 /*
4295  * Get extended stats
4296  */
4297 static void
4298 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4299 {
4300 	int t, b;
4301 	for (t = 0; t < ZIO_TYPES; t++) {
4302 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4303 			vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4304 
4305 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4306 			vsx->vsx_total_histo[t][b] +=
4307 			    cvsx->vsx_total_histo[t][b];
4308 		}
4309 	}
4310 
4311 	for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4312 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4313 			vsx->vsx_queue_histo[t][b] +=
4314 			    cvsx->vsx_queue_histo[t][b];
4315 		}
4316 		vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4317 		vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4318 
4319 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4320 			vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4321 
4322 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4323 			vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4324 	}
4325 
4326 }
4327 
4328 boolean_t
4329 vdev_is_spacemap_addressable(vdev_t *vd)
4330 {
4331 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4332 		return (B_TRUE);
4333 
4334 	/*
4335 	 * If double-word space map entries are not enabled we assume
4336 	 * 47 bits of the space map entry are dedicated to the entry's
4337 	 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4338 	 * to calculate the maximum address that can be described by a
4339 	 * space map entry for the given device.
4340 	 */
4341 	uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4342 
4343 	if (shift >= 63) /* detect potential overflow */
4344 		return (B_TRUE);
4345 
4346 	return (vd->vdev_asize < (1ULL << shift));
4347 }
4348 
4349 /*
4350  * Get statistics for the given vdev.
4351  */
4352 static void
4353 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4354 {
4355 	int t;
4356 	/*
4357 	 * If we're getting stats on the root vdev, aggregate the I/O counts
4358 	 * over all top-level vdevs (i.e. the direct children of the root).
4359 	 */
4360 	if (!vd->vdev_ops->vdev_op_leaf) {
4361 		if (vs) {
4362 			memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4363 			memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4364 		}
4365 		if (vsx)
4366 			memset(vsx, 0, sizeof (*vsx));
4367 
4368 		for (int c = 0; c < vd->vdev_children; c++) {
4369 			vdev_t *cvd = vd->vdev_child[c];
4370 			vdev_stat_t *cvs = &cvd->vdev_stat;
4371 			vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4372 
4373 			vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4374 			if (vs)
4375 				vdev_get_child_stat(cvd, vs, cvs);
4376 			if (vsx)
4377 				vdev_get_child_stat_ex(cvd, vsx, cvsx);
4378 		}
4379 	} else {
4380 		/*
4381 		 * We're a leaf.  Just copy our ZIO active queue stats in.  The
4382 		 * other leaf stats are updated in vdev_stat_update().
4383 		 */
4384 		if (!vsx)
4385 			return;
4386 
4387 		memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4388 
4389 		for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
4390 			vsx->vsx_active_queue[t] =
4391 			    vd->vdev_queue.vq_class[t].vqc_active;
4392 			vsx->vsx_pend_queue[t] = avl_numnodes(
4393 			    &vd->vdev_queue.vq_class[t].vqc_queued_tree);
4394 		}
4395 	}
4396 }
4397 
4398 void
4399 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4400 {
4401 	vdev_t *tvd = vd->vdev_top;
4402 	mutex_enter(&vd->vdev_stat_lock);
4403 	if (vs) {
4404 		bcopy(&vd->vdev_stat, vs, sizeof (*vs));
4405 		vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4406 		vs->vs_state = vd->vdev_state;
4407 		vs->vs_rsize = vdev_get_min_asize(vd);
4408 
4409 		if (vd->vdev_ops->vdev_op_leaf) {
4410 			vs->vs_rsize += VDEV_LABEL_START_SIZE +
4411 			    VDEV_LABEL_END_SIZE;
4412 			/*
4413 			 * Report initializing progress. Since we don't
4414 			 * have the initializing locks held, this is only
4415 			 * an estimate (although a fairly accurate one).
4416 			 */
4417 			vs->vs_initialize_bytes_done =
4418 			    vd->vdev_initialize_bytes_done;
4419 			vs->vs_initialize_bytes_est =
4420 			    vd->vdev_initialize_bytes_est;
4421 			vs->vs_initialize_state = vd->vdev_initialize_state;
4422 			vs->vs_initialize_action_time =
4423 			    vd->vdev_initialize_action_time;
4424 
4425 			/*
4426 			 * Report manual TRIM progress. Since we don't have
4427 			 * the manual TRIM locks held, this is only an
4428 			 * estimate (although fairly accurate one).
4429 			 */
4430 			vs->vs_trim_notsup = !vd->vdev_has_trim;
4431 			vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4432 			vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4433 			vs->vs_trim_state = vd->vdev_trim_state;
4434 			vs->vs_trim_action_time = vd->vdev_trim_action_time;
4435 
4436 			/* Set when there is a deferred resilver. */
4437 			vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4438 		}
4439 
4440 		/*
4441 		 * Report expandable space on top-level, non-auxiliary devices
4442 		 * only. The expandable space is reported in terms of metaslab
4443 		 * sized units since that determines how much space the pool
4444 		 * can expand.
4445 		 */
4446 		if (vd->vdev_aux == NULL && tvd != NULL) {
4447 			vs->vs_esize = P2ALIGN(
4448 			    vd->vdev_max_asize - vd->vdev_asize,
4449 			    1ULL << tvd->vdev_ms_shift);
4450 		}
4451 
4452 		vs->vs_configured_ashift = vd->vdev_top != NULL
4453 		    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4454 		vs->vs_logical_ashift = vd->vdev_logical_ashift;
4455 		vs->vs_physical_ashift = vd->vdev_physical_ashift;
4456 
4457 		/*
4458 		 * Report fragmentation and rebuild progress for top-level,
4459 		 * non-auxiliary, concrete devices.
4460 		 */
4461 		if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4462 		    vdev_is_concrete(vd)) {
4463 			/*
4464 			 * The vdev fragmentation rating doesn't take into
4465 			 * account the embedded slog metaslab (vdev_log_mg).
4466 			 * Since it's only one metaslab, it would have a tiny
4467 			 * impact on the overall fragmentation.
4468 			 */
4469 			vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4470 			    vd->vdev_mg->mg_fragmentation : 0;
4471 		}
4472 	}
4473 
4474 	vdev_get_stats_ex_impl(vd, vs, vsx);
4475 	mutex_exit(&vd->vdev_stat_lock);
4476 }
4477 
4478 void
4479 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4480 {
4481 	return (vdev_get_stats_ex(vd, vs, NULL));
4482 }
4483 
4484 void
4485 vdev_clear_stats(vdev_t *vd)
4486 {
4487 	mutex_enter(&vd->vdev_stat_lock);
4488 	vd->vdev_stat.vs_space = 0;
4489 	vd->vdev_stat.vs_dspace = 0;
4490 	vd->vdev_stat.vs_alloc = 0;
4491 	mutex_exit(&vd->vdev_stat_lock);
4492 }
4493 
4494 void
4495 vdev_scan_stat_init(vdev_t *vd)
4496 {
4497 	vdev_stat_t *vs = &vd->vdev_stat;
4498 
4499 	for (int c = 0; c < vd->vdev_children; c++)
4500 		vdev_scan_stat_init(vd->vdev_child[c]);
4501 
4502 	mutex_enter(&vd->vdev_stat_lock);
4503 	vs->vs_scan_processed = 0;
4504 	mutex_exit(&vd->vdev_stat_lock);
4505 }
4506 
4507 void
4508 vdev_stat_update(zio_t *zio, uint64_t psize)
4509 {
4510 	spa_t *spa = zio->io_spa;
4511 	vdev_t *rvd = spa->spa_root_vdev;
4512 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4513 	vdev_t *pvd;
4514 	uint64_t txg = zio->io_txg;
4515 	vdev_stat_t *vs = &vd->vdev_stat;
4516 	vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4517 	zio_type_t type = zio->io_type;
4518 	int flags = zio->io_flags;
4519 
4520 	/*
4521 	 * If this i/o is a gang leader, it didn't do any actual work.
4522 	 */
4523 	if (zio->io_gang_tree)
4524 		return;
4525 
4526 	if (zio->io_error == 0) {
4527 		/*
4528 		 * If this is a root i/o, don't count it -- we've already
4529 		 * counted the top-level vdevs, and vdev_get_stats() will
4530 		 * aggregate them when asked.  This reduces contention on
4531 		 * the root vdev_stat_lock and implicitly handles blocks
4532 		 * that compress away to holes, for which there is no i/o.
4533 		 * (Holes never create vdev children, so all the counters
4534 		 * remain zero, which is what we want.)
4535 		 *
4536 		 * Note: this only applies to successful i/o (io_error == 0)
4537 		 * because unlike i/o counts, errors are not additive.
4538 		 * When reading a ditto block, for example, failure of
4539 		 * one top-level vdev does not imply a root-level error.
4540 		 */
4541 		if (vd == rvd)
4542 			return;
4543 
4544 		ASSERT(vd == zio->io_vd);
4545 
4546 		if (flags & ZIO_FLAG_IO_BYPASS)
4547 			return;
4548 
4549 		mutex_enter(&vd->vdev_stat_lock);
4550 
4551 		if (flags & ZIO_FLAG_IO_REPAIR) {
4552 			/*
4553 			 * Repair is the result of a resilver issued by the
4554 			 * scan thread (spa_sync).
4555 			 */
4556 			if (flags & ZIO_FLAG_SCAN_THREAD) {
4557 				dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4558 				dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4559 				uint64_t *processed = &scn_phys->scn_processed;
4560 
4561 				if (vd->vdev_ops->vdev_op_leaf)
4562 					atomic_add_64(processed, psize);
4563 				vs->vs_scan_processed += psize;
4564 			}
4565 
4566 			/*
4567 			 * Repair is the result of a rebuild issued by the
4568 			 * rebuild thread (vdev_rebuild_thread).  To avoid
4569 			 * double counting repaired bytes the virtual dRAID
4570 			 * spare vdev is excluded from the processed bytes.
4571 			 */
4572 			if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
4573 				vdev_t *tvd = vd->vdev_top;
4574 				vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
4575 				vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
4576 				uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
4577 
4578 				if (vd->vdev_ops->vdev_op_leaf &&
4579 				    vd->vdev_ops != &vdev_draid_spare_ops) {
4580 					atomic_add_64(rebuilt, psize);
4581 				}
4582 				vs->vs_rebuild_processed += psize;
4583 			}
4584 
4585 			if (flags & ZIO_FLAG_SELF_HEAL)
4586 				vs->vs_self_healed += psize;
4587 		}
4588 
4589 		/*
4590 		 * The bytes/ops/histograms are recorded at the leaf level and
4591 		 * aggregated into the higher level vdevs in vdev_get_stats().
4592 		 */
4593 		if (vd->vdev_ops->vdev_op_leaf &&
4594 		    (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4595 			zio_type_t vs_type = type;
4596 			zio_priority_t priority = zio->io_priority;
4597 
4598 			/*
4599 			 * TRIM ops and bytes are reported to user space as
4600 			 * ZIO_TYPE_IOCTL.  This is done to preserve the
4601 			 * vdev_stat_t structure layout for user space.
4602 			 */
4603 			if (type == ZIO_TYPE_TRIM)
4604 				vs_type = ZIO_TYPE_IOCTL;
4605 
4606 			/*
4607 			 * Solely for the purposes of 'zpool iostat -lqrw'
4608 			 * reporting use the priority to categorize the IO.
4609 			 * Only the following are reported to user space:
4610 			 *
4611 			 *   ZIO_PRIORITY_SYNC_READ,
4612 			 *   ZIO_PRIORITY_SYNC_WRITE,
4613 			 *   ZIO_PRIORITY_ASYNC_READ,
4614 			 *   ZIO_PRIORITY_ASYNC_WRITE,
4615 			 *   ZIO_PRIORITY_SCRUB,
4616 			 *   ZIO_PRIORITY_TRIM,
4617 			 *   ZIO_PRIORITY_REBUILD.
4618 			 */
4619 			if (priority == ZIO_PRIORITY_INITIALIZING) {
4620 				ASSERT3U(type, ==, ZIO_TYPE_WRITE);
4621 				priority = ZIO_PRIORITY_ASYNC_WRITE;
4622 			} else if (priority == ZIO_PRIORITY_REMOVAL) {
4623 				priority = ((type == ZIO_TYPE_WRITE) ?
4624 				    ZIO_PRIORITY_ASYNC_WRITE :
4625 				    ZIO_PRIORITY_ASYNC_READ);
4626 			}
4627 
4628 			vs->vs_ops[vs_type]++;
4629 			vs->vs_bytes[vs_type] += psize;
4630 
4631 			if (flags & ZIO_FLAG_DELEGATED) {
4632 				vsx->vsx_agg_histo[priority]
4633 				    [RQ_HISTO(zio->io_size)]++;
4634 			} else {
4635 				vsx->vsx_ind_histo[priority]
4636 				    [RQ_HISTO(zio->io_size)]++;
4637 			}
4638 
4639 			if (zio->io_delta && zio->io_delay) {
4640 				vsx->vsx_queue_histo[priority]
4641 				    [L_HISTO(zio->io_delta - zio->io_delay)]++;
4642 				vsx->vsx_disk_histo[type]
4643 				    [L_HISTO(zio->io_delay)]++;
4644 				vsx->vsx_total_histo[type]
4645 				    [L_HISTO(zio->io_delta)]++;
4646 			}
4647 		}
4648 
4649 		mutex_exit(&vd->vdev_stat_lock);
4650 		return;
4651 	}
4652 
4653 	if (flags & ZIO_FLAG_SPECULATIVE)
4654 		return;
4655 
4656 	/*
4657 	 * If this is an I/O error that is going to be retried, then ignore the
4658 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
4659 	 * hard errors, when in reality they can happen for any number of
4660 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
4661 	 */
4662 	if (zio->io_error == EIO &&
4663 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
4664 		return;
4665 
4666 	/*
4667 	 * Intent logs writes won't propagate their error to the root
4668 	 * I/O so don't mark these types of failures as pool-level
4669 	 * errors.
4670 	 */
4671 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
4672 		return;
4673 
4674 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
4675 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
4676 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
4677 	    spa->spa_claiming)) {
4678 		/*
4679 		 * This is either a normal write (not a repair), or it's
4680 		 * a repair induced by the scrub thread, or it's a repair
4681 		 * made by zil_claim() during spa_load() in the first txg.
4682 		 * In the normal case, we commit the DTL change in the same
4683 		 * txg as the block was born.  In the scrub-induced repair
4684 		 * case, we know that scrubs run in first-pass syncing context,
4685 		 * so we commit the DTL change in spa_syncing_txg(spa).
4686 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
4687 		 *
4688 		 * We currently do not make DTL entries for failed spontaneous
4689 		 * self-healing writes triggered by normal (non-scrubbing)
4690 		 * reads, because we have no transactional context in which to
4691 		 * do so -- and it's not clear that it'd be desirable anyway.
4692 		 */
4693 		if (vd->vdev_ops->vdev_op_leaf) {
4694 			uint64_t commit_txg = txg;
4695 			if (flags & ZIO_FLAG_SCAN_THREAD) {
4696 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4697 				ASSERT(spa_sync_pass(spa) == 1);
4698 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
4699 				commit_txg = spa_syncing_txg(spa);
4700 			} else if (spa->spa_claiming) {
4701 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4702 				commit_txg = spa_first_txg(spa);
4703 			}
4704 			ASSERT(commit_txg >= spa_syncing_txg(spa));
4705 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
4706 				return;
4707 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4708 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
4709 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
4710 		}
4711 		if (vd != rvd)
4712 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
4713 	}
4714 }
4715 
4716 int64_t
4717 vdev_deflated_space(vdev_t *vd, int64_t space)
4718 {
4719 	ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
4720 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
4721 
4722 	return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
4723 }
4724 
4725 /*
4726  * Update the in-core space usage stats for this vdev, its metaslab class,
4727  * and the root vdev.
4728  */
4729 void
4730 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
4731     int64_t space_delta)
4732 {
4733 	int64_t dspace_delta;
4734 	spa_t *spa = vd->vdev_spa;
4735 	vdev_t *rvd = spa->spa_root_vdev;
4736 
4737 	ASSERT(vd == vd->vdev_top);
4738 
4739 	/*
4740 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
4741 	 * factor.  We must calculate this here and not at the root vdev
4742 	 * because the root vdev's psize-to-asize is simply the max of its
4743 	 * children's, thus not accurate enough for us.
4744 	 */
4745 	dspace_delta = vdev_deflated_space(vd, space_delta);
4746 
4747 	mutex_enter(&vd->vdev_stat_lock);
4748 	/* ensure we won't underflow */
4749 	if (alloc_delta < 0) {
4750 		ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
4751 	}
4752 
4753 	vd->vdev_stat.vs_alloc += alloc_delta;
4754 	vd->vdev_stat.vs_space += space_delta;
4755 	vd->vdev_stat.vs_dspace += dspace_delta;
4756 	mutex_exit(&vd->vdev_stat_lock);
4757 
4758 	/* every class but log contributes to root space stats */
4759 	if (vd->vdev_mg != NULL && !vd->vdev_islog) {
4760 		ASSERT(!vd->vdev_isl2cache);
4761 		mutex_enter(&rvd->vdev_stat_lock);
4762 		rvd->vdev_stat.vs_alloc += alloc_delta;
4763 		rvd->vdev_stat.vs_space += space_delta;
4764 		rvd->vdev_stat.vs_dspace += dspace_delta;
4765 		mutex_exit(&rvd->vdev_stat_lock);
4766 	}
4767 	/* Note: metaslab_class_space_update moved to metaslab_space_update */
4768 }
4769 
4770 /*
4771  * Mark a top-level vdev's config as dirty, placing it on the dirty list
4772  * so that it will be written out next time the vdev configuration is synced.
4773  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
4774  */
4775 void
4776 vdev_config_dirty(vdev_t *vd)
4777 {
4778 	spa_t *spa = vd->vdev_spa;
4779 	vdev_t *rvd = spa->spa_root_vdev;
4780 	int c;
4781 
4782 	ASSERT(spa_writeable(spa));
4783 
4784 	/*
4785 	 * If this is an aux vdev (as with l2cache and spare devices), then we
4786 	 * update the vdev config manually and set the sync flag.
4787 	 */
4788 	if (vd->vdev_aux != NULL) {
4789 		spa_aux_vdev_t *sav = vd->vdev_aux;
4790 		nvlist_t **aux;
4791 		uint_t naux;
4792 
4793 		for (c = 0; c < sav->sav_count; c++) {
4794 			if (sav->sav_vdevs[c] == vd)
4795 				break;
4796 		}
4797 
4798 		if (c == sav->sav_count) {
4799 			/*
4800 			 * We're being removed.  There's nothing more to do.
4801 			 */
4802 			ASSERT(sav->sav_sync == B_TRUE);
4803 			return;
4804 		}
4805 
4806 		sav->sav_sync = B_TRUE;
4807 
4808 		if (nvlist_lookup_nvlist_array(sav->sav_config,
4809 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
4810 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
4811 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
4812 		}
4813 
4814 		ASSERT(c < naux);
4815 
4816 		/*
4817 		 * Setting the nvlist in the middle if the array is a little
4818 		 * sketchy, but it will work.
4819 		 */
4820 		nvlist_free(aux[c]);
4821 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
4822 
4823 		return;
4824 	}
4825 
4826 	/*
4827 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
4828 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
4829 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
4830 	 * so this is sufficient to ensure mutual exclusion.
4831 	 */
4832 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4833 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4834 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
4835 
4836 	if (vd == rvd) {
4837 		for (c = 0; c < rvd->vdev_children; c++)
4838 			vdev_config_dirty(rvd->vdev_child[c]);
4839 	} else {
4840 		ASSERT(vd == vd->vdev_top);
4841 
4842 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
4843 		    vdev_is_concrete(vd)) {
4844 			list_insert_head(&spa->spa_config_dirty_list, vd);
4845 		}
4846 	}
4847 }
4848 
4849 void
4850 vdev_config_clean(vdev_t *vd)
4851 {
4852 	spa_t *spa = vd->vdev_spa;
4853 
4854 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4855 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4856 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
4857 
4858 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
4859 	list_remove(&spa->spa_config_dirty_list, vd);
4860 }
4861 
4862 /*
4863  * Mark a top-level vdev's state as dirty, so that the next pass of
4864  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
4865  * the state changes from larger config changes because they require
4866  * much less locking, and are often needed for administrative actions.
4867  */
4868 void
4869 vdev_state_dirty(vdev_t *vd)
4870 {
4871 	spa_t *spa = vd->vdev_spa;
4872 
4873 	ASSERT(spa_writeable(spa));
4874 	ASSERT(vd == vd->vdev_top);
4875 
4876 	/*
4877 	 * The state list is protected by the SCL_STATE lock.  The caller
4878 	 * must either hold SCL_STATE as writer, or must be the sync thread
4879 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
4880 	 * so this is sufficient to ensure mutual exclusion.
4881 	 */
4882 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4883 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4884 	    spa_config_held(spa, SCL_STATE, RW_READER)));
4885 
4886 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
4887 	    vdev_is_concrete(vd))
4888 		list_insert_head(&spa->spa_state_dirty_list, vd);
4889 }
4890 
4891 void
4892 vdev_state_clean(vdev_t *vd)
4893 {
4894 	spa_t *spa = vd->vdev_spa;
4895 
4896 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4897 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4898 	    spa_config_held(spa, SCL_STATE, RW_READER)));
4899 
4900 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
4901 	list_remove(&spa->spa_state_dirty_list, vd);
4902 }
4903 
4904 /*
4905  * Propagate vdev state up from children to parent.
4906  */
4907 void
4908 vdev_propagate_state(vdev_t *vd)
4909 {
4910 	spa_t *spa = vd->vdev_spa;
4911 	vdev_t *rvd = spa->spa_root_vdev;
4912 	int degraded = 0, faulted = 0;
4913 	int corrupted = 0;
4914 	vdev_t *child;
4915 
4916 	if (vd->vdev_children > 0) {
4917 		for (int c = 0; c < vd->vdev_children; c++) {
4918 			child = vd->vdev_child[c];
4919 
4920 			/*
4921 			 * Don't factor holes or indirect vdevs into the
4922 			 * decision.
4923 			 */
4924 			if (!vdev_is_concrete(child))
4925 				continue;
4926 
4927 			if (!vdev_readable(child) ||
4928 			    (!vdev_writeable(child) && spa_writeable(spa))) {
4929 				/*
4930 				 * Root special: if there is a top-level log
4931 				 * device, treat the root vdev as if it were
4932 				 * degraded.
4933 				 */
4934 				if (child->vdev_islog && vd == rvd)
4935 					degraded++;
4936 				else
4937 					faulted++;
4938 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
4939 				degraded++;
4940 			}
4941 
4942 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4943 				corrupted++;
4944 		}
4945 
4946 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4947 
4948 		/*
4949 		 * Root special: if there is a top-level vdev that cannot be
4950 		 * opened due to corrupted metadata, then propagate the root
4951 		 * vdev's aux state as 'corrupt' rather than 'insufficient
4952 		 * replicas'.
4953 		 */
4954 		if (corrupted && vd == rvd &&
4955 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4956 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4957 			    VDEV_AUX_CORRUPT_DATA);
4958 	}
4959 
4960 	if (vd->vdev_parent)
4961 		vdev_propagate_state(vd->vdev_parent);
4962 }
4963 
4964 /*
4965  * Set a vdev's state.  If this is during an open, we don't update the parent
4966  * state, because we're in the process of opening children depth-first.
4967  * Otherwise, we propagate the change to the parent.
4968  *
4969  * If this routine places a device in a faulted state, an appropriate ereport is
4970  * generated.
4971  */
4972 void
4973 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4974 {
4975 	uint64_t save_state;
4976 	spa_t *spa = vd->vdev_spa;
4977 
4978 	if (state == vd->vdev_state) {
4979 		/*
4980 		 * Since vdev_offline() code path is already in an offline
4981 		 * state we can miss a statechange event to OFFLINE. Check
4982 		 * the previous state to catch this condition.
4983 		 */
4984 		if (vd->vdev_ops->vdev_op_leaf &&
4985 		    (state == VDEV_STATE_OFFLINE) &&
4986 		    (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
4987 			/* post an offline state change */
4988 			zfs_post_state_change(spa, vd, vd->vdev_prevstate);
4989 		}
4990 		vd->vdev_stat.vs_aux = aux;
4991 		return;
4992 	}
4993 
4994 	save_state = vd->vdev_state;
4995 
4996 	vd->vdev_state = state;
4997 	vd->vdev_stat.vs_aux = aux;
4998 
4999 	/*
5000 	 * If we are setting the vdev state to anything but an open state, then
5001 	 * always close the underlying device unless the device has requested
5002 	 * a delayed close (i.e. we're about to remove or fault the device).
5003 	 * Otherwise, we keep accessible but invalid devices open forever.
5004 	 * We don't call vdev_close() itself, because that implies some extra
5005 	 * checks (offline, etc) that we don't want here.  This is limited to
5006 	 * leaf devices, because otherwise closing the device will affect other
5007 	 * children.
5008 	 */
5009 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
5010 	    vd->vdev_ops->vdev_op_leaf)
5011 		vd->vdev_ops->vdev_op_close(vd);
5012 
5013 	if (vd->vdev_removed &&
5014 	    state == VDEV_STATE_CANT_OPEN &&
5015 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
5016 		/*
5017 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
5018 		 * device was previously marked removed and someone attempted to
5019 		 * reopen it.  If this failed due to a nonexistent device, then
5020 		 * keep the device in the REMOVED state.  We also let this be if
5021 		 * it is one of our special test online cases, which is only
5022 		 * attempting to online the device and shouldn't generate an FMA
5023 		 * fault.
5024 		 */
5025 		vd->vdev_state = VDEV_STATE_REMOVED;
5026 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
5027 	} else if (state == VDEV_STATE_REMOVED) {
5028 		vd->vdev_removed = B_TRUE;
5029 	} else if (state == VDEV_STATE_CANT_OPEN) {
5030 		/*
5031 		 * If we fail to open a vdev during an import or recovery, we
5032 		 * mark it as "not available", which signifies that it was
5033 		 * never there to begin with.  Failure to open such a device
5034 		 * is not considered an error.
5035 		 */
5036 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5037 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5038 		    vd->vdev_ops->vdev_op_leaf)
5039 			vd->vdev_not_present = 1;
5040 
5041 		/*
5042 		 * Post the appropriate ereport.  If the 'prevstate' field is
5043 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5044 		 * that this is part of a vdev_reopen().  In this case, we don't
5045 		 * want to post the ereport if the device was already in the
5046 		 * CANT_OPEN state beforehand.
5047 		 *
5048 		 * If the 'checkremove' flag is set, then this is an attempt to
5049 		 * online the device in response to an insertion event.  If we
5050 		 * hit this case, then we have detected an insertion event for a
5051 		 * faulted or offline device that wasn't in the removed state.
5052 		 * In this scenario, we don't post an ereport because we are
5053 		 * about to replace the device, or attempt an online with
5054 		 * vdev_forcefault, which will generate the fault for us.
5055 		 */
5056 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5057 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
5058 		    vd != spa->spa_root_vdev) {
5059 			const char *class;
5060 
5061 			switch (aux) {
5062 			case VDEV_AUX_OPEN_FAILED:
5063 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5064 				break;
5065 			case VDEV_AUX_CORRUPT_DATA:
5066 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5067 				break;
5068 			case VDEV_AUX_NO_REPLICAS:
5069 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5070 				break;
5071 			case VDEV_AUX_BAD_GUID_SUM:
5072 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5073 				break;
5074 			case VDEV_AUX_TOO_SMALL:
5075 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5076 				break;
5077 			case VDEV_AUX_BAD_LABEL:
5078 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5079 				break;
5080 			case VDEV_AUX_BAD_ASHIFT:
5081 				class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5082 				break;
5083 			default:
5084 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5085 			}
5086 
5087 			(void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5088 			    save_state);
5089 		}
5090 
5091 		/* Erase any notion of persistent removed state */
5092 		vd->vdev_removed = B_FALSE;
5093 	} else {
5094 		vd->vdev_removed = B_FALSE;
5095 	}
5096 
5097 	/*
5098 	 * Notify ZED of any significant state-change on a leaf vdev.
5099 	 *
5100 	 */
5101 	if (vd->vdev_ops->vdev_op_leaf) {
5102 		/* preserve original state from a vdev_reopen() */
5103 		if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5104 		    (vd->vdev_prevstate != vd->vdev_state) &&
5105 		    (save_state <= VDEV_STATE_CLOSED))
5106 			save_state = vd->vdev_prevstate;
5107 
5108 		/* filter out state change due to initial vdev_open */
5109 		if (save_state > VDEV_STATE_CLOSED)
5110 			zfs_post_state_change(spa, vd, save_state);
5111 	}
5112 
5113 	if (!isopen && vd->vdev_parent)
5114 		vdev_propagate_state(vd->vdev_parent);
5115 }
5116 
5117 boolean_t
5118 vdev_children_are_offline(vdev_t *vd)
5119 {
5120 	ASSERT(!vd->vdev_ops->vdev_op_leaf);
5121 
5122 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
5123 		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5124 			return (B_FALSE);
5125 	}
5126 
5127 	return (B_TRUE);
5128 }
5129 
5130 /*
5131  * Check the vdev configuration to ensure that it's capable of supporting
5132  * a root pool. We do not support partial configuration.
5133  */
5134 boolean_t
5135 vdev_is_bootable(vdev_t *vd)
5136 {
5137 	if (!vd->vdev_ops->vdev_op_leaf) {
5138 		const char *vdev_type = vd->vdev_ops->vdev_op_type;
5139 
5140 		if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
5141 			return (B_FALSE);
5142 	}
5143 
5144 	for (int c = 0; c < vd->vdev_children; c++) {
5145 		if (!vdev_is_bootable(vd->vdev_child[c]))
5146 			return (B_FALSE);
5147 	}
5148 	return (B_TRUE);
5149 }
5150 
5151 boolean_t
5152 vdev_is_concrete(vdev_t *vd)
5153 {
5154 	vdev_ops_t *ops = vd->vdev_ops;
5155 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5156 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5157 		return (B_FALSE);
5158 	} else {
5159 		return (B_TRUE);
5160 	}
5161 }
5162 
5163 /*
5164  * Determine if a log device has valid content.  If the vdev was
5165  * removed or faulted in the MOS config then we know that
5166  * the content on the log device has already been written to the pool.
5167  */
5168 boolean_t
5169 vdev_log_state_valid(vdev_t *vd)
5170 {
5171 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5172 	    !vd->vdev_removed)
5173 		return (B_TRUE);
5174 
5175 	for (int c = 0; c < vd->vdev_children; c++)
5176 		if (vdev_log_state_valid(vd->vdev_child[c]))
5177 			return (B_TRUE);
5178 
5179 	return (B_FALSE);
5180 }
5181 
5182 /*
5183  * Expand a vdev if possible.
5184  */
5185 void
5186 vdev_expand(vdev_t *vd, uint64_t txg)
5187 {
5188 	ASSERT(vd->vdev_top == vd);
5189 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5190 	ASSERT(vdev_is_concrete(vd));
5191 
5192 	vdev_set_deflate_ratio(vd);
5193 
5194 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5195 	    vdev_is_concrete(vd)) {
5196 		vdev_metaslab_group_create(vd);
5197 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
5198 		vdev_config_dirty(vd);
5199 	}
5200 }
5201 
5202 /*
5203  * Split a vdev.
5204  */
5205 void
5206 vdev_split(vdev_t *vd)
5207 {
5208 	vdev_t *cvd, *pvd = vd->vdev_parent;
5209 
5210 	vdev_remove_child(pvd, vd);
5211 	vdev_compact_children(pvd);
5212 
5213 	cvd = pvd->vdev_child[0];
5214 	if (pvd->vdev_children == 1) {
5215 		vdev_remove_parent(cvd);
5216 		cvd->vdev_splitting = B_TRUE;
5217 	}
5218 	vdev_propagate_state(cvd);
5219 }
5220 
5221 void
5222 vdev_deadman(vdev_t *vd, char *tag)
5223 {
5224 	for (int c = 0; c < vd->vdev_children; c++) {
5225 		vdev_t *cvd = vd->vdev_child[c];
5226 
5227 		vdev_deadman(cvd, tag);
5228 	}
5229 
5230 	if (vd->vdev_ops->vdev_op_leaf) {
5231 		vdev_queue_t *vq = &vd->vdev_queue;
5232 
5233 		mutex_enter(&vq->vq_lock);
5234 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
5235 			spa_t *spa = vd->vdev_spa;
5236 			zio_t *fio;
5237 			uint64_t delta;
5238 
5239 			zfs_dbgmsg("slow vdev: %s has %lu active IOs",
5240 			    vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
5241 
5242 			/*
5243 			 * Look at the head of all the pending queues,
5244 			 * if any I/O has been outstanding for longer than
5245 			 * the spa_deadman_synctime invoke the deadman logic.
5246 			 */
5247 			fio = avl_first(&vq->vq_active_tree);
5248 			delta = gethrtime() - fio->io_timestamp;
5249 			if (delta > spa_deadman_synctime(spa))
5250 				zio_deadman(fio, tag);
5251 		}
5252 		mutex_exit(&vq->vq_lock);
5253 	}
5254 }
5255 
5256 void
5257 vdev_defer_resilver(vdev_t *vd)
5258 {
5259 	ASSERT(vd->vdev_ops->vdev_op_leaf);
5260 
5261 	vd->vdev_resilver_deferred = B_TRUE;
5262 	vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5263 }
5264 
5265 /*
5266  * Clears the resilver deferred flag on all leaf devs under vd. Returns
5267  * B_TRUE if we have devices that need to be resilvered and are available to
5268  * accept resilver I/Os.
5269  */
5270 boolean_t
5271 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5272 {
5273 	boolean_t resilver_needed = B_FALSE;
5274 	spa_t *spa = vd->vdev_spa;
5275 
5276 	for (int c = 0; c < vd->vdev_children; c++) {
5277 		vdev_t *cvd = vd->vdev_child[c];
5278 		resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5279 	}
5280 
5281 	if (vd == spa->spa_root_vdev &&
5282 	    spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5283 		spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5284 		vdev_config_dirty(vd);
5285 		spa->spa_resilver_deferred = B_FALSE;
5286 		return (resilver_needed);
5287 	}
5288 
5289 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5290 	    !vd->vdev_ops->vdev_op_leaf)
5291 		return (resilver_needed);
5292 
5293 	vd->vdev_resilver_deferred = B_FALSE;
5294 
5295 	return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5296 	    vdev_resilver_needed(vd, NULL, NULL));
5297 }
5298 
5299 boolean_t
5300 vdev_xlate_is_empty(range_seg64_t *rs)
5301 {
5302 	return (rs->rs_start == rs->rs_end);
5303 }
5304 
5305 /*
5306  * Translate a logical range to the first contiguous physical range for the
5307  * specified vdev_t.  This function is initially called with a leaf vdev and
5308  * will walk each parent vdev until it reaches a top-level vdev. Once the
5309  * top-level is reached the physical range is initialized and the recursive
5310  * function begins to unwind. As it unwinds it calls the parent's vdev
5311  * specific translation function to do the real conversion.
5312  */
5313 void
5314 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
5315     range_seg64_t *physical_rs, range_seg64_t *remain_rs)
5316 {
5317 	/*
5318 	 * Walk up the vdev tree
5319 	 */
5320 	if (vd != vd->vdev_top) {
5321 		vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5322 		    remain_rs);
5323 	} else {
5324 		/*
5325 		 * We've reached the top-level vdev, initialize the physical
5326 		 * range to the logical range and set an empty remaining
5327 		 * range then start to unwind.
5328 		 */
5329 		physical_rs->rs_start = logical_rs->rs_start;
5330 		physical_rs->rs_end = logical_rs->rs_end;
5331 
5332 		remain_rs->rs_start = logical_rs->rs_start;
5333 		remain_rs->rs_end = logical_rs->rs_start;
5334 
5335 		return;
5336 	}
5337 
5338 	vdev_t *pvd = vd->vdev_parent;
5339 	ASSERT3P(pvd, !=, NULL);
5340 	ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5341 
5342 	/*
5343 	 * As this recursive function unwinds, translate the logical
5344 	 * range into its physical and any remaining components by calling
5345 	 * the vdev specific translate function.
5346 	 */
5347 	range_seg64_t intermediate = { 0 };
5348 	pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5349 
5350 	physical_rs->rs_start = intermediate.rs_start;
5351 	physical_rs->rs_end = intermediate.rs_end;
5352 }
5353 
5354 void
5355 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs,
5356     vdev_xlate_func_t *func, void *arg)
5357 {
5358 	range_seg64_t iter_rs = *logical_rs;
5359 	range_seg64_t physical_rs;
5360 	range_seg64_t remain_rs;
5361 
5362 	while (!vdev_xlate_is_empty(&iter_rs)) {
5363 
5364 		vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5365 
5366 		/*
5367 		 * With raidz and dRAID, it's possible that the logical range
5368 		 * does not live on this leaf vdev. Only when there is a non-
5369 		 * zero physical size call the provided function.
5370 		 */
5371 		if (!vdev_xlate_is_empty(&physical_rs))
5372 			func(arg, &physical_rs);
5373 
5374 		iter_rs = remain_rs;
5375 	}
5376 }
5377 
5378 /*
5379  * Look at the vdev tree and determine whether any devices are currently being
5380  * replaced.
5381  */
5382 boolean_t
5383 vdev_replace_in_progress(vdev_t *vdev)
5384 {
5385 	ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5386 
5387 	if (vdev->vdev_ops == &vdev_replacing_ops)
5388 		return (B_TRUE);
5389 
5390 	/*
5391 	 * A 'spare' vdev indicates that we have a replace in progress, unless
5392 	 * it has exactly two children, and the second, the hot spare, has
5393 	 * finished being resilvered.
5394 	 */
5395 	if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5396 	    !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5397 		return (B_TRUE);
5398 
5399 	for (int i = 0; i < vdev->vdev_children; i++) {
5400 		if (vdev_replace_in_progress(vdev->vdev_child[i]))
5401 			return (B_TRUE);
5402 	}
5403 
5404 	return (B_FALSE);
5405 }
5406 
5407 EXPORT_SYMBOL(vdev_fault);
5408 EXPORT_SYMBOL(vdev_degrade);
5409 EXPORT_SYMBOL(vdev_online);
5410 EXPORT_SYMBOL(vdev_offline);
5411 EXPORT_SYMBOL(vdev_clear);
5412 
5413 /* BEGIN CSTYLED */
5414 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, INT, ZMOD_RW,
5415 	"Target number of metaslabs per top-level vdev");
5416 
5417 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, INT, ZMOD_RW,
5418 	"Default limit for metaslab size");
5419 
5420 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, INT, ZMOD_RW,
5421 	"Minimum number of metaslabs per top-level vdev");
5422 
5423 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, INT, ZMOD_RW,
5424 	"Practical upper limit of total metaslabs per top-level vdev");
5425 
5426 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
5427 	"Rate limit slow IO (delay) events to this many per second");
5428 
5429 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
5430 	"Rate limit checksum events to this many checksum errors per second "
5431 	"(do not set below zed threshold).");
5432 
5433 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
5434 	"Ignore errors during resilver/scrub");
5435 
5436 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
5437 	"Bypass vdev_validate()");
5438 
5439 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
5440 	"Disable cache flushes");
5441 
5442 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, INT, ZMOD_RW,
5443 	"Minimum number of metaslabs required to dedicate one for log blocks");
5444 
5445 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
5446 	param_set_min_auto_ashift, param_get_ulong, ZMOD_RW,
5447 	"Minimum ashift used when creating new top-level vdevs");
5448 
5449 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
5450 	param_set_max_auto_ashift, param_get_ulong, ZMOD_RW,
5451 	"Maximum ashift used when optimizing for logical -> physical sector "
5452 	"size on new top-level vdevs");
5453 /* END CSTYLED */
5454