1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2017 Joyent, Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 * Copyright (c) 2019, Datto Inc. All rights reserved. 31 * Copyright (c) 2021, Klara Inc. 32 * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP. 33 */ 34 35 #include <sys/zfs_context.h> 36 #include <sys/fm/fs/zfs.h> 37 #include <sys/spa.h> 38 #include <sys/spa_impl.h> 39 #include <sys/bpobj.h> 40 #include <sys/dmu.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_dir.h> 43 #include <sys/vdev_impl.h> 44 #include <sys/vdev_rebuild.h> 45 #include <sys/vdev_draid.h> 46 #include <sys/uberblock_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/space_map.h> 50 #include <sys/space_reftree.h> 51 #include <sys/zio.h> 52 #include <sys/zap.h> 53 #include <sys/fs/zfs.h> 54 #include <sys/arc.h> 55 #include <sys/zil.h> 56 #include <sys/dsl_scan.h> 57 #include <sys/vdev_raidz.h> 58 #include <sys/abd.h> 59 #include <sys/vdev_initialize.h> 60 #include <sys/vdev_trim.h> 61 #include <sys/vdev_raidz.h> 62 #include <sys/zvol.h> 63 #include <sys/zfs_ratelimit.h> 64 #include "zfs_prop.h" 65 66 /* 67 * One metaslab from each (normal-class) vdev is used by the ZIL. These are 68 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are 69 * part of the spa_embedded_log_class. The metaslab with the most free space 70 * in each vdev is selected for this purpose when the pool is opened (or a 71 * vdev is added). See vdev_metaslab_init(). 72 * 73 * Log blocks can be allocated from the following locations. Each one is tried 74 * in order until the allocation succeeds: 75 * 1. dedicated log vdevs, aka "slog" (spa_log_class) 76 * 2. embedded slog metaslabs (spa_embedded_log_class) 77 * 3. other metaslabs in normal vdevs (spa_normal_class) 78 * 79 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer 80 * than this number of metaslabs in the vdev. This ensures that we don't set 81 * aside an unreasonable amount of space for the ZIL. If set to less than 82 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced 83 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab. 84 */ 85 static uint_t zfs_embedded_slog_min_ms = 64; 86 87 /* default target for number of metaslabs per top-level vdev */ 88 static uint_t zfs_vdev_default_ms_count = 200; 89 90 /* minimum number of metaslabs per top-level vdev */ 91 static uint_t zfs_vdev_min_ms_count = 16; 92 93 /* practical upper limit of total metaslabs per top-level vdev */ 94 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17; 95 96 /* lower limit for metaslab size (512M) */ 97 static uint_t zfs_vdev_default_ms_shift = 29; 98 99 /* upper limit for metaslab size (16G) */ 100 static uint_t zfs_vdev_max_ms_shift = 34; 101 102 int vdev_validate_skip = B_FALSE; 103 104 /* 105 * Since the DTL space map of a vdev is not expected to have a lot of 106 * entries, we default its block size to 4K. 107 */ 108 int zfs_vdev_dtl_sm_blksz = (1 << 12); 109 110 /* 111 * Rate limit slow IO (delay) events to this many per second. 112 */ 113 static unsigned int zfs_slow_io_events_per_second = 20; 114 115 /* 116 * Rate limit checksum events after this many checksum errors per second. 117 */ 118 static unsigned int zfs_checksum_events_per_second = 20; 119 120 /* 121 * Ignore errors during scrub/resilver. Allows to work around resilver 122 * upon import when there are pool errors. 123 */ 124 static int zfs_scan_ignore_errors = 0; 125 126 /* 127 * vdev-wide space maps that have lots of entries written to them at 128 * the end of each transaction can benefit from a higher I/O bandwidth 129 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 130 */ 131 int zfs_vdev_standard_sm_blksz = (1 << 17); 132 133 /* 134 * Tunable parameter for debugging or performance analysis. Setting this 135 * will cause pool corruption on power loss if a volatile out-of-order 136 * write cache is enabled. 137 */ 138 int zfs_nocacheflush = 0; 139 140 /* 141 * Maximum and minimum ashift values that can be automatically set based on 142 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX 143 * is higher than the maximum value, it is intentionally limited here to not 144 * excessively impact pool space efficiency. Higher ashift values may still 145 * be forced by vdev logical ashift or by user via ashift property, but won't 146 * be set automatically as a performance optimization. 147 */ 148 uint_t zfs_vdev_max_auto_ashift = 14; 149 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN; 150 151 void 152 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 153 { 154 va_list adx; 155 char buf[256]; 156 157 va_start(adx, fmt); 158 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 159 va_end(adx); 160 161 if (vd->vdev_path != NULL) { 162 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 163 vd->vdev_path, buf); 164 } else { 165 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 166 vd->vdev_ops->vdev_op_type, 167 (u_longlong_t)vd->vdev_id, 168 (u_longlong_t)vd->vdev_guid, buf); 169 } 170 } 171 172 void 173 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 174 { 175 char state[20]; 176 177 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 178 zfs_dbgmsg("%*svdev %llu: %s", indent, "", 179 (u_longlong_t)vd->vdev_id, 180 vd->vdev_ops->vdev_op_type); 181 return; 182 } 183 184 switch (vd->vdev_state) { 185 case VDEV_STATE_UNKNOWN: 186 (void) snprintf(state, sizeof (state), "unknown"); 187 break; 188 case VDEV_STATE_CLOSED: 189 (void) snprintf(state, sizeof (state), "closed"); 190 break; 191 case VDEV_STATE_OFFLINE: 192 (void) snprintf(state, sizeof (state), "offline"); 193 break; 194 case VDEV_STATE_REMOVED: 195 (void) snprintf(state, sizeof (state), "removed"); 196 break; 197 case VDEV_STATE_CANT_OPEN: 198 (void) snprintf(state, sizeof (state), "can't open"); 199 break; 200 case VDEV_STATE_FAULTED: 201 (void) snprintf(state, sizeof (state), "faulted"); 202 break; 203 case VDEV_STATE_DEGRADED: 204 (void) snprintf(state, sizeof (state), "degraded"); 205 break; 206 case VDEV_STATE_HEALTHY: 207 (void) snprintf(state, sizeof (state), "healthy"); 208 break; 209 default: 210 (void) snprintf(state, sizeof (state), "<state %u>", 211 (uint_t)vd->vdev_state); 212 } 213 214 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 215 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 216 vd->vdev_islog ? " (log)" : "", 217 (u_longlong_t)vd->vdev_guid, 218 vd->vdev_path ? vd->vdev_path : "N/A", state); 219 220 for (uint64_t i = 0; i < vd->vdev_children; i++) 221 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 222 } 223 224 /* 225 * Virtual device management. 226 */ 227 228 static vdev_ops_t *const vdev_ops_table[] = { 229 &vdev_root_ops, 230 &vdev_raidz_ops, 231 &vdev_draid_ops, 232 &vdev_draid_spare_ops, 233 &vdev_mirror_ops, 234 &vdev_replacing_ops, 235 &vdev_spare_ops, 236 &vdev_disk_ops, 237 &vdev_file_ops, 238 &vdev_missing_ops, 239 &vdev_hole_ops, 240 &vdev_indirect_ops, 241 NULL 242 }; 243 244 /* 245 * Given a vdev type, return the appropriate ops vector. 246 */ 247 static vdev_ops_t * 248 vdev_getops(const char *type) 249 { 250 vdev_ops_t *ops, *const *opspp; 251 252 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 253 if (strcmp(ops->vdev_op_type, type) == 0) 254 break; 255 256 return (ops); 257 } 258 259 /* 260 * Given a vdev and a metaslab class, find which metaslab group we're 261 * interested in. All vdevs may belong to two different metaslab classes. 262 * Dedicated slog devices use only the primary metaslab group, rather than a 263 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL. 264 */ 265 metaslab_group_t * 266 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc) 267 { 268 if (mc == spa_embedded_log_class(vd->vdev_spa) && 269 vd->vdev_log_mg != NULL) 270 return (vd->vdev_log_mg); 271 else 272 return (vd->vdev_mg); 273 } 274 275 void 276 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 277 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 278 { 279 (void) vd, (void) remain_rs; 280 281 physical_rs->rs_start = logical_rs->rs_start; 282 physical_rs->rs_end = logical_rs->rs_end; 283 } 284 285 /* 286 * Derive the enumerated allocation bias from string input. 287 * String origin is either the per-vdev zap or zpool(8). 288 */ 289 static vdev_alloc_bias_t 290 vdev_derive_alloc_bias(const char *bias) 291 { 292 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 293 294 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) 295 alloc_bias = VDEV_BIAS_LOG; 296 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) 297 alloc_bias = VDEV_BIAS_SPECIAL; 298 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) 299 alloc_bias = VDEV_BIAS_DEDUP; 300 301 return (alloc_bias); 302 } 303 304 /* 305 * Default asize function: return the MAX of psize with the asize of 306 * all children. This is what's used by anything other than RAID-Z. 307 */ 308 uint64_t 309 vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg) 310 { 311 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 312 uint64_t csize; 313 314 for (int c = 0; c < vd->vdev_children; c++) { 315 csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg); 316 asize = MAX(asize, csize); 317 } 318 319 return (asize); 320 } 321 322 uint64_t 323 vdev_default_min_asize(vdev_t *vd) 324 { 325 return (vd->vdev_min_asize); 326 } 327 328 /* 329 * Get the minimum allocatable size. We define the allocatable size as 330 * the vdev's asize rounded to the nearest metaslab. This allows us to 331 * replace or attach devices which don't have the same physical size but 332 * can still satisfy the same number of allocations. 333 */ 334 uint64_t 335 vdev_get_min_asize(vdev_t *vd) 336 { 337 vdev_t *pvd = vd->vdev_parent; 338 339 /* 340 * If our parent is NULL (inactive spare or cache) or is the root, 341 * just return our own asize. 342 */ 343 if (pvd == NULL) 344 return (vd->vdev_asize); 345 346 /* 347 * The top-level vdev just returns the allocatable size rounded 348 * to the nearest metaslab. 349 */ 350 if (vd == vd->vdev_top) 351 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 352 353 return (pvd->vdev_ops->vdev_op_min_asize(pvd)); 354 } 355 356 void 357 vdev_set_min_asize(vdev_t *vd) 358 { 359 vd->vdev_min_asize = vdev_get_min_asize(vd); 360 361 for (int c = 0; c < vd->vdev_children; c++) 362 vdev_set_min_asize(vd->vdev_child[c]); 363 } 364 365 /* 366 * Get the minimal allocation size for the top-level vdev. 367 */ 368 uint64_t 369 vdev_get_min_alloc(vdev_t *vd) 370 { 371 uint64_t min_alloc = 1ULL << vd->vdev_ashift; 372 373 if (vd->vdev_ops->vdev_op_min_alloc != NULL) 374 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd); 375 376 return (min_alloc); 377 } 378 379 /* 380 * Get the parity level for a top-level vdev. 381 */ 382 uint64_t 383 vdev_get_nparity(vdev_t *vd) 384 { 385 uint64_t nparity = 0; 386 387 if (vd->vdev_ops->vdev_op_nparity != NULL) 388 nparity = vd->vdev_ops->vdev_op_nparity(vd); 389 390 return (nparity); 391 } 392 393 static int 394 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value) 395 { 396 spa_t *spa = vd->vdev_spa; 397 objset_t *mos = spa->spa_meta_objset; 398 uint64_t objid; 399 int err; 400 401 if (vd->vdev_root_zap != 0) { 402 objid = vd->vdev_root_zap; 403 } else if (vd->vdev_top_zap != 0) { 404 objid = vd->vdev_top_zap; 405 } else if (vd->vdev_leaf_zap != 0) { 406 objid = vd->vdev_leaf_zap; 407 } else { 408 return (EINVAL); 409 } 410 411 err = zap_lookup(mos, objid, vdev_prop_to_name(prop), 412 sizeof (uint64_t), 1, value); 413 414 if (err == ENOENT) 415 *value = vdev_prop_default_numeric(prop); 416 417 return (err); 418 } 419 420 /* 421 * Get the number of data disks for a top-level vdev. 422 */ 423 uint64_t 424 vdev_get_ndisks(vdev_t *vd) 425 { 426 uint64_t ndisks = 1; 427 428 if (vd->vdev_ops->vdev_op_ndisks != NULL) 429 ndisks = vd->vdev_ops->vdev_op_ndisks(vd); 430 431 return (ndisks); 432 } 433 434 vdev_t * 435 vdev_lookup_top(spa_t *spa, uint64_t vdev) 436 { 437 vdev_t *rvd = spa->spa_root_vdev; 438 439 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 440 441 if (vdev < rvd->vdev_children) { 442 ASSERT(rvd->vdev_child[vdev] != NULL); 443 return (rvd->vdev_child[vdev]); 444 } 445 446 return (NULL); 447 } 448 449 vdev_t * 450 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 451 { 452 vdev_t *mvd; 453 454 if (vd->vdev_guid == guid) 455 return (vd); 456 457 for (int c = 0; c < vd->vdev_children; c++) 458 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 459 NULL) 460 return (mvd); 461 462 return (NULL); 463 } 464 465 static int 466 vdev_count_leaves_impl(vdev_t *vd) 467 { 468 int n = 0; 469 470 if (vd->vdev_ops->vdev_op_leaf) 471 return (1); 472 473 for (int c = 0; c < vd->vdev_children; c++) 474 n += vdev_count_leaves_impl(vd->vdev_child[c]); 475 476 return (n); 477 } 478 479 int 480 vdev_count_leaves(spa_t *spa) 481 { 482 int rc; 483 484 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 485 rc = vdev_count_leaves_impl(spa->spa_root_vdev); 486 spa_config_exit(spa, SCL_VDEV, FTAG); 487 488 return (rc); 489 } 490 491 void 492 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 493 { 494 size_t oldsize, newsize; 495 uint64_t id = cvd->vdev_id; 496 vdev_t **newchild; 497 498 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 499 ASSERT(cvd->vdev_parent == NULL); 500 501 cvd->vdev_parent = pvd; 502 503 if (pvd == NULL) 504 return; 505 506 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 507 508 oldsize = pvd->vdev_children * sizeof (vdev_t *); 509 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 510 newsize = pvd->vdev_children * sizeof (vdev_t *); 511 512 newchild = kmem_alloc(newsize, KM_SLEEP); 513 if (pvd->vdev_child != NULL) { 514 memcpy(newchild, pvd->vdev_child, oldsize); 515 kmem_free(pvd->vdev_child, oldsize); 516 } 517 518 pvd->vdev_child = newchild; 519 pvd->vdev_child[id] = cvd; 520 521 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 522 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 523 524 /* 525 * Walk up all ancestors to update guid sum. 526 */ 527 for (; pvd != NULL; pvd = pvd->vdev_parent) 528 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 529 530 if (cvd->vdev_ops->vdev_op_leaf) { 531 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); 532 cvd->vdev_spa->spa_leaf_list_gen++; 533 } 534 } 535 536 void 537 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 538 { 539 int c; 540 uint_t id = cvd->vdev_id; 541 542 ASSERT(cvd->vdev_parent == pvd); 543 544 if (pvd == NULL) 545 return; 546 547 ASSERT(id < pvd->vdev_children); 548 ASSERT(pvd->vdev_child[id] == cvd); 549 550 pvd->vdev_child[id] = NULL; 551 cvd->vdev_parent = NULL; 552 553 for (c = 0; c < pvd->vdev_children; c++) 554 if (pvd->vdev_child[c]) 555 break; 556 557 if (c == pvd->vdev_children) { 558 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 559 pvd->vdev_child = NULL; 560 pvd->vdev_children = 0; 561 } 562 563 if (cvd->vdev_ops->vdev_op_leaf) { 564 spa_t *spa = cvd->vdev_spa; 565 list_remove(&spa->spa_leaf_list, cvd); 566 spa->spa_leaf_list_gen++; 567 } 568 569 /* 570 * Walk up all ancestors to update guid sum. 571 */ 572 for (; pvd != NULL; pvd = pvd->vdev_parent) 573 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 574 } 575 576 /* 577 * Remove any holes in the child array. 578 */ 579 void 580 vdev_compact_children(vdev_t *pvd) 581 { 582 vdev_t **newchild, *cvd; 583 int oldc = pvd->vdev_children; 584 int newc; 585 586 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 587 588 if (oldc == 0) 589 return; 590 591 for (int c = newc = 0; c < oldc; c++) 592 if (pvd->vdev_child[c]) 593 newc++; 594 595 if (newc > 0) { 596 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP); 597 598 for (int c = newc = 0; c < oldc; c++) { 599 if ((cvd = pvd->vdev_child[c]) != NULL) { 600 newchild[newc] = cvd; 601 cvd->vdev_id = newc++; 602 } 603 } 604 } else { 605 newchild = NULL; 606 } 607 608 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 609 pvd->vdev_child = newchild; 610 pvd->vdev_children = newc; 611 } 612 613 /* 614 * Allocate and minimally initialize a vdev_t. 615 */ 616 vdev_t * 617 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 618 { 619 vdev_t *vd; 620 vdev_indirect_config_t *vic; 621 622 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 623 vic = &vd->vdev_indirect_config; 624 625 if (spa->spa_root_vdev == NULL) { 626 ASSERT(ops == &vdev_root_ops); 627 spa->spa_root_vdev = vd; 628 spa->spa_load_guid = spa_generate_guid(NULL); 629 } 630 631 if (guid == 0 && ops != &vdev_hole_ops) { 632 if (spa->spa_root_vdev == vd) { 633 /* 634 * The root vdev's guid will also be the pool guid, 635 * which must be unique among all pools. 636 */ 637 guid = spa_generate_guid(NULL); 638 } else { 639 /* 640 * Any other vdev's guid must be unique within the pool. 641 */ 642 guid = spa_generate_guid(spa); 643 } 644 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 645 } 646 647 vd->vdev_spa = spa; 648 vd->vdev_id = id; 649 vd->vdev_guid = guid; 650 vd->vdev_guid_sum = guid; 651 vd->vdev_ops = ops; 652 vd->vdev_state = VDEV_STATE_CLOSED; 653 vd->vdev_ishole = (ops == &vdev_hole_ops); 654 vic->vic_prev_indirect_vdev = UINT64_MAX; 655 656 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 657 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 658 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL, 659 0, 0); 660 661 /* 662 * Initialize rate limit structs for events. We rate limit ZIO delay 663 * and checksum events so that we don't overwhelm ZED with thousands 664 * of events when a disk is acting up. 665 */ 666 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second, 667 1); 668 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_slow_io_events_per_second, 669 1); 670 zfs_ratelimit_init(&vd->vdev_checksum_rl, 671 &zfs_checksum_events_per_second, 1); 672 673 /* 674 * Default Thresholds for tuning ZED 675 */ 676 vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N); 677 vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T); 678 vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N); 679 vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T); 680 681 list_link_init(&vd->vdev_config_dirty_node); 682 list_link_init(&vd->vdev_state_dirty_node); 683 list_link_init(&vd->vdev_initialize_node); 684 list_link_init(&vd->vdev_leaf_node); 685 list_link_init(&vd->vdev_trim_node); 686 687 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL); 688 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 689 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 690 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); 691 692 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 693 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 694 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 695 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 696 697 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL); 698 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL); 699 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL); 700 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL); 701 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL); 702 cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL); 703 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL); 704 705 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL); 706 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL); 707 708 for (int t = 0; t < DTL_TYPES; t++) { 709 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 710 0); 711 } 712 713 txg_list_create(&vd->vdev_ms_list, spa, 714 offsetof(struct metaslab, ms_txg_node)); 715 txg_list_create(&vd->vdev_dtl_list, spa, 716 offsetof(struct vdev, vdev_dtl_node)); 717 vd->vdev_stat.vs_timestamp = gethrtime(); 718 vdev_queue_init(vd); 719 720 return (vd); 721 } 722 723 /* 724 * Allocate a new vdev. The 'alloctype' is used to control whether we are 725 * creating a new vdev or loading an existing one - the behavior is slightly 726 * different for each case. 727 */ 728 int 729 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 730 int alloctype) 731 { 732 vdev_ops_t *ops; 733 const char *type; 734 uint64_t guid = 0, islog; 735 vdev_t *vd; 736 vdev_indirect_config_t *vic; 737 const char *tmp = NULL; 738 int rc; 739 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 740 boolean_t top_level = (parent && !parent->vdev_parent); 741 742 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 743 744 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 745 return (SET_ERROR(EINVAL)); 746 747 if ((ops = vdev_getops(type)) == NULL) 748 return (SET_ERROR(EINVAL)); 749 750 /* 751 * If this is a load, get the vdev guid from the nvlist. 752 * Otherwise, vdev_alloc_common() will generate one for us. 753 */ 754 if (alloctype == VDEV_ALLOC_LOAD) { 755 uint64_t label_id; 756 757 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 758 label_id != id) 759 return (SET_ERROR(EINVAL)); 760 761 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 762 return (SET_ERROR(EINVAL)); 763 } else if (alloctype == VDEV_ALLOC_SPARE) { 764 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 765 return (SET_ERROR(EINVAL)); 766 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 767 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 768 return (SET_ERROR(EINVAL)); 769 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 770 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 771 return (SET_ERROR(EINVAL)); 772 } 773 774 /* 775 * The first allocated vdev must be of type 'root'. 776 */ 777 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 778 return (SET_ERROR(EINVAL)); 779 780 /* 781 * Determine whether we're a log vdev. 782 */ 783 islog = 0; 784 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 785 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 786 return (SET_ERROR(ENOTSUP)); 787 788 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 789 return (SET_ERROR(ENOTSUP)); 790 791 if (top_level && alloctype == VDEV_ALLOC_ADD) { 792 const char *bias; 793 794 /* 795 * If creating a top-level vdev, check for allocation 796 * classes input. 797 */ 798 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 799 &bias) == 0) { 800 alloc_bias = vdev_derive_alloc_bias(bias); 801 802 /* spa_vdev_add() expects feature to be enabled */ 803 if (spa->spa_load_state != SPA_LOAD_CREATE && 804 !spa_feature_is_enabled(spa, 805 SPA_FEATURE_ALLOCATION_CLASSES)) { 806 return (SET_ERROR(ENOTSUP)); 807 } 808 } 809 810 /* spa_vdev_add() expects feature to be enabled */ 811 if (ops == &vdev_draid_ops && 812 spa->spa_load_state != SPA_LOAD_CREATE && 813 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) { 814 return (SET_ERROR(ENOTSUP)); 815 } 816 } 817 818 /* 819 * Initialize the vdev specific data. This is done before calling 820 * vdev_alloc_common() since it may fail and this simplifies the 821 * error reporting and cleanup code paths. 822 */ 823 void *tsd = NULL; 824 if (ops->vdev_op_init != NULL) { 825 rc = ops->vdev_op_init(spa, nv, &tsd); 826 if (rc != 0) { 827 return (rc); 828 } 829 } 830 831 vd = vdev_alloc_common(spa, id, guid, ops); 832 vd->vdev_tsd = tsd; 833 vd->vdev_islog = islog; 834 835 if (top_level && alloc_bias != VDEV_BIAS_NONE) 836 vd->vdev_alloc_bias = alloc_bias; 837 838 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0) 839 vd->vdev_path = spa_strdup(tmp); 840 841 /* 842 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a 843 * fault on a vdev and want it to persist across imports (like with 844 * zpool offline -f). 845 */ 846 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp); 847 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) { 848 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 849 vd->vdev_faulted = 1; 850 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 851 } 852 853 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0) 854 vd->vdev_devid = spa_strdup(tmp); 855 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0) 856 vd->vdev_physpath = spa_strdup(tmp); 857 858 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 859 &tmp) == 0) 860 vd->vdev_enc_sysfs_path = spa_strdup(tmp); 861 862 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0) 863 vd->vdev_fru = spa_strdup(tmp); 864 865 /* 866 * Set the whole_disk property. If it's not specified, leave the value 867 * as -1. 868 */ 869 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 870 &vd->vdev_wholedisk) != 0) 871 vd->vdev_wholedisk = -1ULL; 872 873 vic = &vd->vdev_indirect_config; 874 875 ASSERT0(vic->vic_mapping_object); 876 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 877 &vic->vic_mapping_object); 878 ASSERT0(vic->vic_births_object); 879 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 880 &vic->vic_births_object); 881 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 882 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 883 &vic->vic_prev_indirect_vdev); 884 885 /* 886 * Look for the 'not present' flag. This will only be set if the device 887 * was not present at the time of import. 888 */ 889 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 890 &vd->vdev_not_present); 891 892 /* 893 * Get the alignment requirement. Ignore pool ashift for vdev 894 * attach case. 895 */ 896 if (alloctype != VDEV_ALLOC_ATTACH) { 897 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, 898 &vd->vdev_ashift); 899 } else { 900 vd->vdev_attaching = B_TRUE; 901 } 902 903 /* 904 * Retrieve the vdev creation time. 905 */ 906 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 907 &vd->vdev_crtxg); 908 909 if (vd->vdev_ops == &vdev_root_ops && 910 (alloctype == VDEV_ALLOC_LOAD || 911 alloctype == VDEV_ALLOC_SPLIT || 912 alloctype == VDEV_ALLOC_ROOTPOOL)) { 913 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP, 914 &vd->vdev_root_zap); 915 } 916 917 /* 918 * If we're a top-level vdev, try to load the allocation parameters. 919 */ 920 if (top_level && 921 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 922 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 923 &vd->vdev_ms_array); 924 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 925 &vd->vdev_ms_shift); 926 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 927 &vd->vdev_asize); 928 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING, 929 &vd->vdev_noalloc); 930 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 931 &vd->vdev_removing); 932 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 933 &vd->vdev_top_zap); 934 vd->vdev_rz_expanding = nvlist_exists(nv, 935 ZPOOL_CONFIG_RAIDZ_EXPANDING); 936 } else { 937 ASSERT0(vd->vdev_top_zap); 938 } 939 940 if (top_level && alloctype != VDEV_ALLOC_ATTACH) { 941 ASSERT(alloctype == VDEV_ALLOC_LOAD || 942 alloctype == VDEV_ALLOC_ADD || 943 alloctype == VDEV_ALLOC_SPLIT || 944 alloctype == VDEV_ALLOC_ROOTPOOL); 945 /* Note: metaslab_group_create() is now deferred */ 946 } 947 948 if (vd->vdev_ops->vdev_op_leaf && 949 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 950 (void) nvlist_lookup_uint64(nv, 951 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 952 } else { 953 ASSERT0(vd->vdev_leaf_zap); 954 } 955 956 /* 957 * If we're a leaf vdev, try to load the DTL object and other state. 958 */ 959 960 if (vd->vdev_ops->vdev_op_leaf && 961 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 962 alloctype == VDEV_ALLOC_ROOTPOOL)) { 963 if (alloctype == VDEV_ALLOC_LOAD) { 964 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 965 &vd->vdev_dtl_object); 966 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 967 &vd->vdev_unspare); 968 } 969 970 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 971 uint64_t spare = 0; 972 973 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 974 &spare) == 0 && spare) 975 spa_spare_add(vd); 976 } 977 978 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 979 &vd->vdev_offline); 980 981 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 982 &vd->vdev_resilver_txg); 983 984 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 985 &vd->vdev_rebuild_txg); 986 987 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) 988 vdev_defer_resilver(vd); 989 990 /* 991 * In general, when importing a pool we want to ignore the 992 * persistent fault state, as the diagnosis made on another 993 * system may not be valid in the current context. The only 994 * exception is if we forced a vdev to a persistently faulted 995 * state with 'zpool offline -f'. The persistent fault will 996 * remain across imports until cleared. 997 * 998 * Local vdevs will remain in the faulted state. 999 */ 1000 if (spa_load_state(spa) == SPA_LOAD_OPEN || 1001 spa_load_state(spa) == SPA_LOAD_IMPORT) { 1002 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 1003 &vd->vdev_faulted); 1004 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 1005 &vd->vdev_degraded); 1006 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 1007 &vd->vdev_removed); 1008 1009 if (vd->vdev_faulted || vd->vdev_degraded) { 1010 const char *aux; 1011 1012 vd->vdev_label_aux = 1013 VDEV_AUX_ERR_EXCEEDED; 1014 if (nvlist_lookup_string(nv, 1015 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 1016 strcmp(aux, "external") == 0) 1017 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 1018 else 1019 vd->vdev_faulted = 0ULL; 1020 } 1021 } 1022 } 1023 1024 /* 1025 * Add ourselves to the parent's list of children. 1026 */ 1027 vdev_add_child(parent, vd); 1028 1029 *vdp = vd; 1030 1031 return (0); 1032 } 1033 1034 void 1035 vdev_free(vdev_t *vd) 1036 { 1037 spa_t *spa = vd->vdev_spa; 1038 1039 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 1040 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1041 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 1042 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); 1043 1044 /* 1045 * Scan queues are normally destroyed at the end of a scan. If the 1046 * queue exists here, that implies the vdev is being removed while 1047 * the scan is still running. 1048 */ 1049 if (vd->vdev_scan_io_queue != NULL) { 1050 mutex_enter(&vd->vdev_scan_io_queue_lock); 1051 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); 1052 vd->vdev_scan_io_queue = NULL; 1053 mutex_exit(&vd->vdev_scan_io_queue_lock); 1054 } 1055 1056 /* 1057 * vdev_free() implies closing the vdev first. This is simpler than 1058 * trying to ensure complicated semantics for all callers. 1059 */ 1060 vdev_close(vd); 1061 1062 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 1063 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 1064 1065 /* 1066 * Free all children. 1067 */ 1068 for (int c = 0; c < vd->vdev_children; c++) 1069 vdev_free(vd->vdev_child[c]); 1070 1071 ASSERT(vd->vdev_child == NULL); 1072 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 1073 1074 if (vd->vdev_ops->vdev_op_fini != NULL) 1075 vd->vdev_ops->vdev_op_fini(vd); 1076 1077 /* 1078 * Discard allocation state. 1079 */ 1080 if (vd->vdev_mg != NULL) { 1081 vdev_metaslab_fini(vd); 1082 metaslab_group_destroy(vd->vdev_mg); 1083 vd->vdev_mg = NULL; 1084 } 1085 if (vd->vdev_log_mg != NULL) { 1086 ASSERT0(vd->vdev_ms_count); 1087 metaslab_group_destroy(vd->vdev_log_mg); 1088 vd->vdev_log_mg = NULL; 1089 } 1090 1091 ASSERT0(vd->vdev_stat.vs_space); 1092 ASSERT0(vd->vdev_stat.vs_dspace); 1093 ASSERT0(vd->vdev_stat.vs_alloc); 1094 1095 /* 1096 * Remove this vdev from its parent's child list. 1097 */ 1098 vdev_remove_child(vd->vdev_parent, vd); 1099 1100 ASSERT(vd->vdev_parent == NULL); 1101 ASSERT(!list_link_active(&vd->vdev_leaf_node)); 1102 1103 /* 1104 * Clean up vdev structure. 1105 */ 1106 vdev_queue_fini(vd); 1107 1108 if (vd->vdev_path) 1109 spa_strfree(vd->vdev_path); 1110 if (vd->vdev_devid) 1111 spa_strfree(vd->vdev_devid); 1112 if (vd->vdev_physpath) 1113 spa_strfree(vd->vdev_physpath); 1114 1115 if (vd->vdev_enc_sysfs_path) 1116 spa_strfree(vd->vdev_enc_sysfs_path); 1117 1118 if (vd->vdev_fru) 1119 spa_strfree(vd->vdev_fru); 1120 1121 if (vd->vdev_isspare) 1122 spa_spare_remove(vd); 1123 if (vd->vdev_isl2cache) 1124 spa_l2cache_remove(vd); 1125 1126 txg_list_destroy(&vd->vdev_ms_list); 1127 txg_list_destroy(&vd->vdev_dtl_list); 1128 1129 mutex_enter(&vd->vdev_dtl_lock); 1130 space_map_close(vd->vdev_dtl_sm); 1131 for (int t = 0; t < DTL_TYPES; t++) { 1132 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 1133 range_tree_destroy(vd->vdev_dtl[t]); 1134 } 1135 mutex_exit(&vd->vdev_dtl_lock); 1136 1137 EQUIV(vd->vdev_indirect_births != NULL, 1138 vd->vdev_indirect_mapping != NULL); 1139 if (vd->vdev_indirect_births != NULL) { 1140 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1141 vdev_indirect_births_close(vd->vdev_indirect_births); 1142 } 1143 1144 if (vd->vdev_obsolete_sm != NULL) { 1145 ASSERT(vd->vdev_removing || 1146 vd->vdev_ops == &vdev_indirect_ops); 1147 space_map_close(vd->vdev_obsolete_sm); 1148 vd->vdev_obsolete_sm = NULL; 1149 } 1150 range_tree_destroy(vd->vdev_obsolete_segments); 1151 rw_destroy(&vd->vdev_indirect_rwlock); 1152 mutex_destroy(&vd->vdev_obsolete_lock); 1153 1154 mutex_destroy(&vd->vdev_dtl_lock); 1155 mutex_destroy(&vd->vdev_stat_lock); 1156 mutex_destroy(&vd->vdev_probe_lock); 1157 mutex_destroy(&vd->vdev_scan_io_queue_lock); 1158 1159 mutex_destroy(&vd->vdev_initialize_lock); 1160 mutex_destroy(&vd->vdev_initialize_io_lock); 1161 cv_destroy(&vd->vdev_initialize_io_cv); 1162 cv_destroy(&vd->vdev_initialize_cv); 1163 1164 mutex_destroy(&vd->vdev_trim_lock); 1165 mutex_destroy(&vd->vdev_autotrim_lock); 1166 mutex_destroy(&vd->vdev_trim_io_lock); 1167 cv_destroy(&vd->vdev_trim_cv); 1168 cv_destroy(&vd->vdev_autotrim_cv); 1169 cv_destroy(&vd->vdev_autotrim_kick_cv); 1170 cv_destroy(&vd->vdev_trim_io_cv); 1171 1172 mutex_destroy(&vd->vdev_rebuild_lock); 1173 cv_destroy(&vd->vdev_rebuild_cv); 1174 1175 zfs_ratelimit_fini(&vd->vdev_delay_rl); 1176 zfs_ratelimit_fini(&vd->vdev_deadman_rl); 1177 zfs_ratelimit_fini(&vd->vdev_checksum_rl); 1178 1179 if (vd == spa->spa_root_vdev) 1180 spa->spa_root_vdev = NULL; 1181 1182 kmem_free(vd, sizeof (vdev_t)); 1183 } 1184 1185 /* 1186 * Transfer top-level vdev state from svd to tvd. 1187 */ 1188 static void 1189 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 1190 { 1191 spa_t *spa = svd->vdev_spa; 1192 metaslab_t *msp; 1193 vdev_t *vd; 1194 int t; 1195 1196 ASSERT(tvd == tvd->vdev_top); 1197 1198 tvd->vdev_ms_array = svd->vdev_ms_array; 1199 tvd->vdev_ms_shift = svd->vdev_ms_shift; 1200 tvd->vdev_ms_count = svd->vdev_ms_count; 1201 tvd->vdev_top_zap = svd->vdev_top_zap; 1202 1203 svd->vdev_ms_array = 0; 1204 svd->vdev_ms_shift = 0; 1205 svd->vdev_ms_count = 0; 1206 svd->vdev_top_zap = 0; 1207 1208 if (tvd->vdev_mg) 1209 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 1210 if (tvd->vdev_log_mg) 1211 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg); 1212 tvd->vdev_mg = svd->vdev_mg; 1213 tvd->vdev_log_mg = svd->vdev_log_mg; 1214 tvd->vdev_ms = svd->vdev_ms; 1215 1216 svd->vdev_mg = NULL; 1217 svd->vdev_log_mg = NULL; 1218 svd->vdev_ms = NULL; 1219 1220 if (tvd->vdev_mg != NULL) 1221 tvd->vdev_mg->mg_vd = tvd; 1222 if (tvd->vdev_log_mg != NULL) 1223 tvd->vdev_log_mg->mg_vd = tvd; 1224 1225 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 1226 svd->vdev_checkpoint_sm = NULL; 1227 1228 tvd->vdev_alloc_bias = svd->vdev_alloc_bias; 1229 svd->vdev_alloc_bias = VDEV_BIAS_NONE; 1230 1231 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 1232 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 1233 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 1234 1235 svd->vdev_stat.vs_alloc = 0; 1236 svd->vdev_stat.vs_space = 0; 1237 svd->vdev_stat.vs_dspace = 0; 1238 1239 /* 1240 * State which may be set on a top-level vdev that's in the 1241 * process of being removed. 1242 */ 1243 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 1244 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 1245 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 1246 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); 1247 ASSERT3P(tvd->vdev_indirect_births, ==, NULL); 1248 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); 1249 ASSERT0(tvd->vdev_noalloc); 1250 ASSERT0(tvd->vdev_removing); 1251 ASSERT0(tvd->vdev_rebuilding); 1252 tvd->vdev_noalloc = svd->vdev_noalloc; 1253 tvd->vdev_removing = svd->vdev_removing; 1254 tvd->vdev_rebuilding = svd->vdev_rebuilding; 1255 tvd->vdev_rebuild_config = svd->vdev_rebuild_config; 1256 tvd->vdev_indirect_config = svd->vdev_indirect_config; 1257 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 1258 tvd->vdev_indirect_births = svd->vdev_indirect_births; 1259 range_tree_swap(&svd->vdev_obsolete_segments, 1260 &tvd->vdev_obsolete_segments); 1261 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 1262 svd->vdev_indirect_config.vic_mapping_object = 0; 1263 svd->vdev_indirect_config.vic_births_object = 0; 1264 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 1265 svd->vdev_indirect_mapping = NULL; 1266 svd->vdev_indirect_births = NULL; 1267 svd->vdev_obsolete_sm = NULL; 1268 svd->vdev_noalloc = 0; 1269 svd->vdev_removing = 0; 1270 svd->vdev_rebuilding = 0; 1271 1272 for (t = 0; t < TXG_SIZE; t++) { 1273 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 1274 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 1275 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 1276 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 1277 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 1278 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 1279 } 1280 1281 if (list_link_active(&svd->vdev_config_dirty_node)) { 1282 vdev_config_clean(svd); 1283 vdev_config_dirty(tvd); 1284 } 1285 1286 if (list_link_active(&svd->vdev_state_dirty_node)) { 1287 vdev_state_clean(svd); 1288 vdev_state_dirty(tvd); 1289 } 1290 1291 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 1292 svd->vdev_deflate_ratio = 0; 1293 1294 tvd->vdev_islog = svd->vdev_islog; 1295 svd->vdev_islog = 0; 1296 1297 dsl_scan_io_queue_vdev_xfer(svd, tvd); 1298 } 1299 1300 static void 1301 vdev_top_update(vdev_t *tvd, vdev_t *vd) 1302 { 1303 if (vd == NULL) 1304 return; 1305 1306 vd->vdev_top = tvd; 1307 1308 for (int c = 0; c < vd->vdev_children; c++) 1309 vdev_top_update(tvd, vd->vdev_child[c]); 1310 } 1311 1312 /* 1313 * Add a mirror/replacing vdev above an existing vdev. There is no need to 1314 * call .vdev_op_init() since mirror/replacing vdevs do not have private state. 1315 */ 1316 vdev_t * 1317 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 1318 { 1319 spa_t *spa = cvd->vdev_spa; 1320 vdev_t *pvd = cvd->vdev_parent; 1321 vdev_t *mvd; 1322 1323 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1324 1325 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 1326 1327 mvd->vdev_asize = cvd->vdev_asize; 1328 mvd->vdev_min_asize = cvd->vdev_min_asize; 1329 mvd->vdev_max_asize = cvd->vdev_max_asize; 1330 mvd->vdev_psize = cvd->vdev_psize; 1331 mvd->vdev_ashift = cvd->vdev_ashift; 1332 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift; 1333 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift; 1334 mvd->vdev_state = cvd->vdev_state; 1335 mvd->vdev_crtxg = cvd->vdev_crtxg; 1336 1337 vdev_remove_child(pvd, cvd); 1338 vdev_add_child(pvd, mvd); 1339 cvd->vdev_id = mvd->vdev_children; 1340 vdev_add_child(mvd, cvd); 1341 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1342 1343 if (mvd == mvd->vdev_top) 1344 vdev_top_transfer(cvd, mvd); 1345 1346 return (mvd); 1347 } 1348 1349 /* 1350 * Remove a 1-way mirror/replacing vdev from the tree. 1351 */ 1352 void 1353 vdev_remove_parent(vdev_t *cvd) 1354 { 1355 vdev_t *mvd = cvd->vdev_parent; 1356 vdev_t *pvd = mvd->vdev_parent; 1357 1358 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1359 1360 ASSERT(mvd->vdev_children == 1); 1361 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1362 mvd->vdev_ops == &vdev_replacing_ops || 1363 mvd->vdev_ops == &vdev_spare_ops); 1364 cvd->vdev_ashift = mvd->vdev_ashift; 1365 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift; 1366 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift; 1367 vdev_remove_child(mvd, cvd); 1368 vdev_remove_child(pvd, mvd); 1369 1370 /* 1371 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1372 * Otherwise, we could have detached an offline device, and when we 1373 * go to import the pool we'll think we have two top-level vdevs, 1374 * instead of a different version of the same top-level vdev. 1375 */ 1376 if (mvd->vdev_top == mvd) { 1377 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1378 cvd->vdev_orig_guid = cvd->vdev_guid; 1379 cvd->vdev_guid += guid_delta; 1380 cvd->vdev_guid_sum += guid_delta; 1381 1382 /* 1383 * If pool not set for autoexpand, we need to also preserve 1384 * mvd's asize to prevent automatic expansion of cvd. 1385 * Otherwise if we are adjusting the mirror by attaching and 1386 * detaching children of non-uniform sizes, the mirror could 1387 * autoexpand, unexpectedly requiring larger devices to 1388 * re-establish the mirror. 1389 */ 1390 if (!cvd->vdev_spa->spa_autoexpand) 1391 cvd->vdev_asize = mvd->vdev_asize; 1392 } 1393 cvd->vdev_id = mvd->vdev_id; 1394 vdev_add_child(pvd, cvd); 1395 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1396 1397 if (cvd == cvd->vdev_top) 1398 vdev_top_transfer(mvd, cvd); 1399 1400 ASSERT(mvd->vdev_children == 0); 1401 vdev_free(mvd); 1402 } 1403 1404 /* 1405 * Choose GCD for spa_gcd_alloc. 1406 */ 1407 static uint64_t 1408 vdev_gcd(uint64_t a, uint64_t b) 1409 { 1410 while (b != 0) { 1411 uint64_t t = b; 1412 b = a % b; 1413 a = t; 1414 } 1415 return (a); 1416 } 1417 1418 /* 1419 * Set spa_min_alloc and spa_gcd_alloc. 1420 */ 1421 static void 1422 vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc) 1423 { 1424 if (min_alloc < spa->spa_min_alloc) 1425 spa->spa_min_alloc = min_alloc; 1426 if (spa->spa_gcd_alloc == INT_MAX) { 1427 spa->spa_gcd_alloc = min_alloc; 1428 } else { 1429 spa->spa_gcd_alloc = vdev_gcd(min_alloc, 1430 spa->spa_gcd_alloc); 1431 } 1432 } 1433 1434 void 1435 vdev_metaslab_group_create(vdev_t *vd) 1436 { 1437 spa_t *spa = vd->vdev_spa; 1438 1439 /* 1440 * metaslab_group_create was delayed until allocation bias was available 1441 */ 1442 if (vd->vdev_mg == NULL) { 1443 metaslab_class_t *mc; 1444 1445 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) 1446 vd->vdev_alloc_bias = VDEV_BIAS_LOG; 1447 1448 ASSERT3U(vd->vdev_islog, ==, 1449 (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); 1450 1451 switch (vd->vdev_alloc_bias) { 1452 case VDEV_BIAS_LOG: 1453 mc = spa_log_class(spa); 1454 break; 1455 case VDEV_BIAS_SPECIAL: 1456 mc = spa_special_class(spa); 1457 break; 1458 case VDEV_BIAS_DEDUP: 1459 mc = spa_dedup_class(spa); 1460 break; 1461 default: 1462 mc = spa_normal_class(spa); 1463 } 1464 1465 vd->vdev_mg = metaslab_group_create(mc, vd, 1466 spa->spa_alloc_count); 1467 1468 if (!vd->vdev_islog) { 1469 vd->vdev_log_mg = metaslab_group_create( 1470 spa_embedded_log_class(spa), vd, 1); 1471 } 1472 1473 /* 1474 * The spa ashift min/max only apply for the normal metaslab 1475 * class. Class destination is late binding so ashift boundary 1476 * setting had to wait until now. 1477 */ 1478 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1479 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { 1480 if (vd->vdev_ashift > spa->spa_max_ashift) 1481 spa->spa_max_ashift = vd->vdev_ashift; 1482 if (vd->vdev_ashift < spa->spa_min_ashift) 1483 spa->spa_min_ashift = vd->vdev_ashift; 1484 1485 uint64_t min_alloc = vdev_get_min_alloc(vd); 1486 vdev_spa_set_alloc(spa, min_alloc); 1487 } 1488 } 1489 } 1490 1491 int 1492 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1493 { 1494 spa_t *spa = vd->vdev_spa; 1495 uint64_t oldc = vd->vdev_ms_count; 1496 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1497 metaslab_t **mspp; 1498 int error; 1499 boolean_t expanding = (oldc != 0); 1500 1501 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1502 1503 /* 1504 * This vdev is not being allocated from yet or is a hole. 1505 */ 1506 if (vd->vdev_ms_shift == 0) 1507 return (0); 1508 1509 ASSERT(!vd->vdev_ishole); 1510 1511 ASSERT(oldc <= newc); 1512 1513 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1514 1515 if (expanding) { 1516 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp)); 1517 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1518 } 1519 1520 vd->vdev_ms = mspp; 1521 vd->vdev_ms_count = newc; 1522 1523 for (uint64_t m = oldc; m < newc; m++) { 1524 uint64_t object = 0; 1525 /* 1526 * vdev_ms_array may be 0 if we are creating the "fake" 1527 * metaslabs for an indirect vdev for zdb's leak detection. 1528 * See zdb_leak_init(). 1529 */ 1530 if (txg == 0 && vd->vdev_ms_array != 0) { 1531 error = dmu_read(spa->spa_meta_objset, 1532 vd->vdev_ms_array, 1533 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1534 DMU_READ_PREFETCH); 1535 if (error != 0) { 1536 vdev_dbgmsg(vd, "unable to read the metaslab " 1537 "array [error=%d]", error); 1538 return (error); 1539 } 1540 } 1541 1542 error = metaslab_init(vd->vdev_mg, m, object, txg, 1543 &(vd->vdev_ms[m])); 1544 if (error != 0) { 1545 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1546 error); 1547 return (error); 1548 } 1549 } 1550 1551 /* 1552 * Find the emptiest metaslab on the vdev and mark it for use for 1553 * embedded slog by moving it from the regular to the log metaslab 1554 * group. 1555 */ 1556 if (vd->vdev_mg->mg_class == spa_normal_class(spa) && 1557 vd->vdev_ms_count > zfs_embedded_slog_min_ms && 1558 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) { 1559 uint64_t slog_msid = 0; 1560 uint64_t smallest = UINT64_MAX; 1561 1562 /* 1563 * Note, we only search the new metaslabs, because the old 1564 * (pre-existing) ones may be active (e.g. have non-empty 1565 * range_tree's), and we don't move them to the new 1566 * metaslab_t. 1567 */ 1568 for (uint64_t m = oldc; m < newc; m++) { 1569 uint64_t alloc = 1570 space_map_allocated(vd->vdev_ms[m]->ms_sm); 1571 if (alloc < smallest) { 1572 slog_msid = m; 1573 smallest = alloc; 1574 } 1575 } 1576 metaslab_t *slog_ms = vd->vdev_ms[slog_msid]; 1577 /* 1578 * The metaslab was marked as dirty at the end of 1579 * metaslab_init(). Remove it from the dirty list so that we 1580 * can uninitialize and reinitialize it to the new class. 1581 */ 1582 if (txg != 0) { 1583 (void) txg_list_remove_this(&vd->vdev_ms_list, 1584 slog_ms, txg); 1585 } 1586 uint64_t sm_obj = space_map_object(slog_ms->ms_sm); 1587 metaslab_fini(slog_ms); 1588 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg, 1589 &vd->vdev_ms[slog_msid])); 1590 } 1591 1592 if (txg == 0) 1593 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1594 1595 /* 1596 * If the vdev is marked as non-allocating then don't 1597 * activate the metaslabs since we want to ensure that 1598 * no allocations are performed on this device. 1599 */ 1600 if (vd->vdev_noalloc) { 1601 /* track non-allocating vdev space */ 1602 spa->spa_nonallocating_dspace += spa_deflate(spa) ? 1603 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 1604 } else if (!expanding) { 1605 metaslab_group_activate(vd->vdev_mg); 1606 if (vd->vdev_log_mg != NULL) 1607 metaslab_group_activate(vd->vdev_log_mg); 1608 } 1609 1610 if (txg == 0) 1611 spa_config_exit(spa, SCL_ALLOC, FTAG); 1612 1613 return (0); 1614 } 1615 1616 void 1617 vdev_metaslab_fini(vdev_t *vd) 1618 { 1619 if (vd->vdev_checkpoint_sm != NULL) { 1620 ASSERT(spa_feature_is_active(vd->vdev_spa, 1621 SPA_FEATURE_POOL_CHECKPOINT)); 1622 space_map_close(vd->vdev_checkpoint_sm); 1623 /* 1624 * Even though we close the space map, we need to set its 1625 * pointer to NULL. The reason is that vdev_metaslab_fini() 1626 * may be called multiple times for certain operations 1627 * (i.e. when destroying a pool) so we need to ensure that 1628 * this clause never executes twice. This logic is similar 1629 * to the one used for the vdev_ms clause below. 1630 */ 1631 vd->vdev_checkpoint_sm = NULL; 1632 } 1633 1634 if (vd->vdev_ms != NULL) { 1635 metaslab_group_t *mg = vd->vdev_mg; 1636 1637 metaslab_group_passivate(mg); 1638 if (vd->vdev_log_mg != NULL) { 1639 ASSERT(!vd->vdev_islog); 1640 metaslab_group_passivate(vd->vdev_log_mg); 1641 } 1642 1643 uint64_t count = vd->vdev_ms_count; 1644 for (uint64_t m = 0; m < count; m++) { 1645 metaslab_t *msp = vd->vdev_ms[m]; 1646 if (msp != NULL) 1647 metaslab_fini(msp); 1648 } 1649 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1650 vd->vdev_ms = NULL; 1651 vd->vdev_ms_count = 0; 1652 1653 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 1654 ASSERT0(mg->mg_histogram[i]); 1655 if (vd->vdev_log_mg != NULL) 1656 ASSERT0(vd->vdev_log_mg->mg_histogram[i]); 1657 } 1658 } 1659 ASSERT0(vd->vdev_ms_count); 1660 } 1661 1662 typedef struct vdev_probe_stats { 1663 boolean_t vps_readable; 1664 boolean_t vps_writeable; 1665 int vps_flags; 1666 } vdev_probe_stats_t; 1667 1668 static void 1669 vdev_probe_done(zio_t *zio) 1670 { 1671 spa_t *spa = zio->io_spa; 1672 vdev_t *vd = zio->io_vd; 1673 vdev_probe_stats_t *vps = zio->io_private; 1674 1675 ASSERT(vd->vdev_probe_zio != NULL); 1676 1677 if (zio->io_type == ZIO_TYPE_READ) { 1678 if (zio->io_error == 0) 1679 vps->vps_readable = 1; 1680 if (zio->io_error == 0 && spa_writeable(spa)) { 1681 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1682 zio->io_offset, zio->io_size, zio->io_abd, 1683 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1684 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1685 } else { 1686 abd_free(zio->io_abd); 1687 } 1688 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1689 if (zio->io_error == 0) 1690 vps->vps_writeable = 1; 1691 abd_free(zio->io_abd); 1692 } else if (zio->io_type == ZIO_TYPE_NULL) { 1693 zio_t *pio; 1694 zio_link_t *zl; 1695 1696 vd->vdev_cant_read |= !vps->vps_readable; 1697 vd->vdev_cant_write |= !vps->vps_writeable; 1698 vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u", 1699 vd->vdev_cant_read, vd->vdev_cant_write); 1700 1701 if (vdev_readable(vd) && 1702 (vdev_writeable(vd) || !spa_writeable(spa))) { 1703 zio->io_error = 0; 1704 } else { 1705 ASSERT(zio->io_error != 0); 1706 vdev_dbgmsg(vd, "failed probe"); 1707 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1708 spa, vd, NULL, NULL, 0); 1709 zio->io_error = SET_ERROR(ENXIO); 1710 } 1711 1712 mutex_enter(&vd->vdev_probe_lock); 1713 ASSERT(vd->vdev_probe_zio == zio); 1714 vd->vdev_probe_zio = NULL; 1715 mutex_exit(&vd->vdev_probe_lock); 1716 1717 zl = NULL; 1718 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1719 if (!vdev_accessible(vd, pio)) 1720 pio->io_error = SET_ERROR(ENXIO); 1721 1722 kmem_free(vps, sizeof (*vps)); 1723 } 1724 } 1725 1726 /* 1727 * Determine whether this device is accessible. 1728 * 1729 * Read and write to several known locations: the pad regions of each 1730 * vdev label but the first, which we leave alone in case it contains 1731 * a VTOC. 1732 */ 1733 zio_t * 1734 vdev_probe(vdev_t *vd, zio_t *zio) 1735 { 1736 spa_t *spa = vd->vdev_spa; 1737 vdev_probe_stats_t *vps = NULL; 1738 zio_t *pio; 1739 1740 ASSERT(vd->vdev_ops->vdev_op_leaf); 1741 1742 /* 1743 * Don't probe the probe. 1744 */ 1745 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1746 return (NULL); 1747 1748 /* 1749 * To prevent 'probe storms' when a device fails, we create 1750 * just one probe i/o at a time. All zios that want to probe 1751 * this vdev will become parents of the probe io. 1752 */ 1753 mutex_enter(&vd->vdev_probe_lock); 1754 1755 if ((pio = vd->vdev_probe_zio) == NULL) { 1756 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1757 1758 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1759 ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD; 1760 1761 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1762 /* 1763 * vdev_cant_read and vdev_cant_write can only 1764 * transition from TRUE to FALSE when we have the 1765 * SCL_ZIO lock as writer; otherwise they can only 1766 * transition from FALSE to TRUE. This ensures that 1767 * any zio looking at these values can assume that 1768 * failures persist for the life of the I/O. That's 1769 * important because when a device has intermittent 1770 * connectivity problems, we want to ensure that 1771 * they're ascribed to the device (ENXIO) and not 1772 * the zio (EIO). 1773 * 1774 * Since we hold SCL_ZIO as writer here, clear both 1775 * values so the probe can reevaluate from first 1776 * principles. 1777 */ 1778 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1779 vd->vdev_cant_read = B_FALSE; 1780 vd->vdev_cant_write = B_FALSE; 1781 } 1782 1783 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1784 vdev_probe_done, vps, 1785 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1786 1787 /* 1788 * We can't change the vdev state in this context, so we 1789 * kick off an async task to do it on our behalf. 1790 */ 1791 if (zio != NULL) { 1792 vd->vdev_probe_wanted = B_TRUE; 1793 spa_async_request(spa, SPA_ASYNC_PROBE); 1794 } 1795 } 1796 1797 if (zio != NULL) 1798 zio_add_child(zio, pio); 1799 1800 mutex_exit(&vd->vdev_probe_lock); 1801 1802 if (vps == NULL) { 1803 ASSERT(zio != NULL); 1804 return (NULL); 1805 } 1806 1807 for (int l = 1; l < VDEV_LABELS; l++) { 1808 zio_nowait(zio_read_phys(pio, vd, 1809 vdev_label_offset(vd->vdev_psize, l, 1810 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE, 1811 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1812 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1813 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1814 } 1815 1816 if (zio == NULL) 1817 return (pio); 1818 1819 zio_nowait(pio); 1820 return (NULL); 1821 } 1822 1823 static void 1824 vdev_load_child(void *arg) 1825 { 1826 vdev_t *vd = arg; 1827 1828 vd->vdev_load_error = vdev_load(vd); 1829 } 1830 1831 static void 1832 vdev_open_child(void *arg) 1833 { 1834 vdev_t *vd = arg; 1835 1836 vd->vdev_open_thread = curthread; 1837 vd->vdev_open_error = vdev_open(vd); 1838 vd->vdev_open_thread = NULL; 1839 } 1840 1841 static boolean_t 1842 vdev_uses_zvols(vdev_t *vd) 1843 { 1844 #ifdef _KERNEL 1845 if (zvol_is_zvol(vd->vdev_path)) 1846 return (B_TRUE); 1847 #endif 1848 1849 for (int c = 0; c < vd->vdev_children; c++) 1850 if (vdev_uses_zvols(vd->vdev_child[c])) 1851 return (B_TRUE); 1852 1853 return (B_FALSE); 1854 } 1855 1856 /* 1857 * Returns B_TRUE if the passed child should be opened. 1858 */ 1859 static boolean_t 1860 vdev_default_open_children_func(vdev_t *vd) 1861 { 1862 (void) vd; 1863 return (B_TRUE); 1864 } 1865 1866 /* 1867 * Open the requested child vdevs. If any of the leaf vdevs are using 1868 * a ZFS volume then do the opens in a single thread. This avoids a 1869 * deadlock when the current thread is holding the spa_namespace_lock. 1870 */ 1871 static void 1872 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func) 1873 { 1874 int children = vd->vdev_children; 1875 1876 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri, 1877 children, children, TASKQ_PREPOPULATE); 1878 vd->vdev_nonrot = B_TRUE; 1879 1880 for (int c = 0; c < children; c++) { 1881 vdev_t *cvd = vd->vdev_child[c]; 1882 1883 if (open_func(cvd) == B_FALSE) 1884 continue; 1885 1886 if (tq == NULL || vdev_uses_zvols(vd)) { 1887 cvd->vdev_open_error = vdev_open(cvd); 1888 } else { 1889 VERIFY(taskq_dispatch(tq, vdev_open_child, 1890 cvd, TQ_SLEEP) != TASKQID_INVALID); 1891 } 1892 1893 vd->vdev_nonrot &= cvd->vdev_nonrot; 1894 } 1895 1896 if (tq != NULL) { 1897 taskq_wait(tq); 1898 taskq_destroy(tq); 1899 } 1900 } 1901 1902 /* 1903 * Open all child vdevs. 1904 */ 1905 void 1906 vdev_open_children(vdev_t *vd) 1907 { 1908 vdev_open_children_impl(vd, vdev_default_open_children_func); 1909 } 1910 1911 /* 1912 * Conditionally open a subset of child vdevs. 1913 */ 1914 void 1915 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func) 1916 { 1917 vdev_open_children_impl(vd, open_func); 1918 } 1919 1920 /* 1921 * Compute the raidz-deflation ratio. Note, we hard-code 128k (1 << 17) 1922 * because it is the "typical" blocksize. Even though SPA_MAXBLOCKSIZE 1923 * changed, this algorithm can not change, otherwise it would inconsistently 1924 * account for existing bp's. We also hard-code txg 0 for the same reason 1925 * since expanded RAIDZ vdevs can use a different asize for different birth 1926 * txg's. 1927 */ 1928 static void 1929 vdev_set_deflate_ratio(vdev_t *vd) 1930 { 1931 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 1932 vd->vdev_deflate_ratio = (1 << 17) / 1933 (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >> 1934 SPA_MINBLOCKSHIFT); 1935 } 1936 } 1937 1938 /* 1939 * Choose the best of two ashifts, preferring one between logical ashift 1940 * (absolute minimum) and administrator defined maximum, otherwise take 1941 * the biggest of the two. 1942 */ 1943 uint64_t 1944 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b) 1945 { 1946 if (a > logical && a <= zfs_vdev_max_auto_ashift) { 1947 if (b <= logical || b > zfs_vdev_max_auto_ashift) 1948 return (a); 1949 else 1950 return (MAX(a, b)); 1951 } else if (b <= logical || b > zfs_vdev_max_auto_ashift) 1952 return (MAX(a, b)); 1953 return (b); 1954 } 1955 1956 /* 1957 * Maximize performance by inflating the configured ashift for top level 1958 * vdevs to be as close to the physical ashift as possible while maintaining 1959 * administrator defined limits and ensuring it doesn't go below the 1960 * logical ashift. 1961 */ 1962 static void 1963 vdev_ashift_optimize(vdev_t *vd) 1964 { 1965 ASSERT(vd == vd->vdev_top); 1966 1967 if (vd->vdev_ashift < vd->vdev_physical_ashift && 1968 vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) { 1969 vd->vdev_ashift = MIN( 1970 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift), 1971 MAX(zfs_vdev_min_auto_ashift, 1972 vd->vdev_physical_ashift)); 1973 } else { 1974 /* 1975 * If the logical and physical ashifts are the same, then 1976 * we ensure that the top-level vdev's ashift is not smaller 1977 * than our minimum ashift value. For the unusual case 1978 * where logical ashift > physical ashift, we can't cap 1979 * the calculated ashift based on max ashift as that 1980 * would cause failures. 1981 * We still check if we need to increase it to match 1982 * the min ashift. 1983 */ 1984 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift, 1985 vd->vdev_ashift); 1986 } 1987 } 1988 1989 /* 1990 * Prepare a virtual device for access. 1991 */ 1992 int 1993 vdev_open(vdev_t *vd) 1994 { 1995 spa_t *spa = vd->vdev_spa; 1996 int error; 1997 uint64_t osize = 0; 1998 uint64_t max_osize = 0; 1999 uint64_t asize, max_asize, psize; 2000 uint64_t logical_ashift = 0; 2001 uint64_t physical_ashift = 0; 2002 2003 ASSERT(vd->vdev_open_thread == curthread || 2004 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2005 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 2006 vd->vdev_state == VDEV_STATE_CANT_OPEN || 2007 vd->vdev_state == VDEV_STATE_OFFLINE); 2008 2009 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2010 vd->vdev_cant_read = B_FALSE; 2011 vd->vdev_cant_write = B_FALSE; 2012 vd->vdev_min_asize = vdev_get_min_asize(vd); 2013 2014 /* 2015 * If this vdev is not removed, check its fault status. If it's 2016 * faulted, bail out of the open. 2017 */ 2018 if (!vd->vdev_removed && vd->vdev_faulted) { 2019 ASSERT(vd->vdev_children == 0); 2020 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 2021 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 2022 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2023 vd->vdev_label_aux); 2024 return (SET_ERROR(ENXIO)); 2025 } else if (vd->vdev_offline) { 2026 ASSERT(vd->vdev_children == 0); 2027 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 2028 return (SET_ERROR(ENXIO)); 2029 } 2030 2031 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, 2032 &logical_ashift, &physical_ashift); 2033 2034 /* Keep the device in removed state if unplugged */ 2035 if (error == ENOENT && vd->vdev_removed) { 2036 vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED, 2037 VDEV_AUX_NONE); 2038 return (error); 2039 } 2040 2041 /* 2042 * Physical volume size should never be larger than its max size, unless 2043 * the disk has shrunk while we were reading it or the device is buggy 2044 * or damaged: either way it's not safe for use, bail out of the open. 2045 */ 2046 if (osize > max_osize) { 2047 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2048 VDEV_AUX_OPEN_FAILED); 2049 return (SET_ERROR(ENXIO)); 2050 } 2051 2052 /* 2053 * Reset the vdev_reopening flag so that we actually close 2054 * the vdev on error. 2055 */ 2056 vd->vdev_reopening = B_FALSE; 2057 if (zio_injection_enabled && error == 0) 2058 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO)); 2059 2060 if (error) { 2061 if (vd->vdev_removed && 2062 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 2063 vd->vdev_removed = B_FALSE; 2064 2065 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 2066 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 2067 vd->vdev_stat.vs_aux); 2068 } else { 2069 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2070 vd->vdev_stat.vs_aux); 2071 } 2072 return (error); 2073 } 2074 2075 vd->vdev_removed = B_FALSE; 2076 2077 /* 2078 * Recheck the faulted flag now that we have confirmed that 2079 * the vdev is accessible. If we're faulted, bail. 2080 */ 2081 if (vd->vdev_faulted) { 2082 ASSERT(vd->vdev_children == 0); 2083 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 2084 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 2085 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2086 vd->vdev_label_aux); 2087 return (SET_ERROR(ENXIO)); 2088 } 2089 2090 if (vd->vdev_degraded) { 2091 ASSERT(vd->vdev_children == 0); 2092 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2093 VDEV_AUX_ERR_EXCEEDED); 2094 } else { 2095 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 2096 } 2097 2098 /* 2099 * For hole or missing vdevs we just return success. 2100 */ 2101 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 2102 return (0); 2103 2104 for (int c = 0; c < vd->vdev_children; c++) { 2105 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 2106 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2107 VDEV_AUX_NONE); 2108 break; 2109 } 2110 } 2111 2112 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 2113 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 2114 2115 if (vd->vdev_children == 0) { 2116 if (osize < SPA_MINDEVSIZE) { 2117 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2118 VDEV_AUX_TOO_SMALL); 2119 return (SET_ERROR(EOVERFLOW)); 2120 } 2121 psize = osize; 2122 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 2123 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 2124 VDEV_LABEL_END_SIZE); 2125 } else { 2126 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 2127 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 2128 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2129 VDEV_AUX_TOO_SMALL); 2130 return (SET_ERROR(EOVERFLOW)); 2131 } 2132 psize = 0; 2133 asize = osize; 2134 max_asize = max_osize; 2135 } 2136 2137 /* 2138 * If the vdev was expanded, record this so that we can re-create the 2139 * uberblock rings in labels {2,3}, during the next sync. 2140 */ 2141 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0)) 2142 vd->vdev_copy_uberblocks = B_TRUE; 2143 2144 vd->vdev_psize = psize; 2145 2146 /* 2147 * Make sure the allocatable size hasn't shrunk too much. 2148 */ 2149 if (asize < vd->vdev_min_asize) { 2150 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2151 VDEV_AUX_BAD_LABEL); 2152 return (SET_ERROR(EINVAL)); 2153 } 2154 2155 /* 2156 * We can always set the logical/physical ashift members since 2157 * their values are only used to calculate the vdev_ashift when 2158 * the device is first added to the config. These values should 2159 * not be used for anything else since they may change whenever 2160 * the device is reopened and we don't store them in the label. 2161 */ 2162 vd->vdev_physical_ashift = 2163 MAX(physical_ashift, vd->vdev_physical_ashift); 2164 vd->vdev_logical_ashift = MAX(logical_ashift, 2165 vd->vdev_logical_ashift); 2166 2167 if (vd->vdev_asize == 0) { 2168 /* 2169 * This is the first-ever open, so use the computed values. 2170 * For compatibility, a different ashift can be requested. 2171 */ 2172 vd->vdev_asize = asize; 2173 vd->vdev_max_asize = max_asize; 2174 2175 /* 2176 * If the vdev_ashift was not overridden at creation time, 2177 * then set it the logical ashift and optimize the ashift. 2178 */ 2179 if (vd->vdev_ashift == 0) { 2180 vd->vdev_ashift = vd->vdev_logical_ashift; 2181 2182 if (vd->vdev_logical_ashift > ASHIFT_MAX) { 2183 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2184 VDEV_AUX_ASHIFT_TOO_BIG); 2185 return (SET_ERROR(EDOM)); 2186 } 2187 2188 if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE) 2189 vdev_ashift_optimize(vd); 2190 vd->vdev_attaching = B_FALSE; 2191 } 2192 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN || 2193 vd->vdev_ashift > ASHIFT_MAX)) { 2194 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2195 VDEV_AUX_BAD_ASHIFT); 2196 return (SET_ERROR(EDOM)); 2197 } 2198 } else { 2199 /* 2200 * Make sure the alignment required hasn't increased. 2201 */ 2202 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift && 2203 vd->vdev_ops->vdev_op_leaf) { 2204 (void) zfs_ereport_post( 2205 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT, 2206 spa, vd, NULL, NULL, 0); 2207 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2208 VDEV_AUX_BAD_LABEL); 2209 return (SET_ERROR(EDOM)); 2210 } 2211 vd->vdev_max_asize = max_asize; 2212 } 2213 2214 /* 2215 * If all children are healthy we update asize if either: 2216 * The asize has increased, due to a device expansion caused by dynamic 2217 * LUN growth or vdev replacement, and automatic expansion is enabled; 2218 * making the additional space available. 2219 * 2220 * The asize has decreased, due to a device shrink usually caused by a 2221 * vdev replace with a smaller device. This ensures that calculations 2222 * based of max_asize and asize e.g. esize are always valid. It's safe 2223 * to do this as we've already validated that asize is greater than 2224 * vdev_min_asize. 2225 */ 2226 if (vd->vdev_state == VDEV_STATE_HEALTHY && 2227 ((asize > vd->vdev_asize && 2228 (vd->vdev_expanding || spa->spa_autoexpand)) || 2229 (asize < vd->vdev_asize))) 2230 vd->vdev_asize = asize; 2231 2232 vdev_set_min_asize(vd); 2233 2234 /* 2235 * Ensure we can issue some IO before declaring the 2236 * vdev open for business. 2237 */ 2238 if (vd->vdev_ops->vdev_op_leaf && 2239 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 2240 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2241 VDEV_AUX_ERR_EXCEEDED); 2242 return (error); 2243 } 2244 2245 /* 2246 * Track the minimum allocation size. 2247 */ 2248 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 2249 vd->vdev_islog == 0 && vd->vdev_aux == NULL) { 2250 uint64_t min_alloc = vdev_get_min_alloc(vd); 2251 vdev_spa_set_alloc(spa, min_alloc); 2252 } 2253 2254 /* 2255 * If this is a leaf vdev, assess whether a resilver is needed. 2256 * But don't do this if we are doing a reopen for a scrub, since 2257 * this would just restart the scrub we are already doing. 2258 */ 2259 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen) 2260 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd); 2261 2262 return (0); 2263 } 2264 2265 static void 2266 vdev_validate_child(void *arg) 2267 { 2268 vdev_t *vd = arg; 2269 2270 vd->vdev_validate_thread = curthread; 2271 vd->vdev_validate_error = vdev_validate(vd); 2272 vd->vdev_validate_thread = NULL; 2273 } 2274 2275 /* 2276 * Called once the vdevs are all opened, this routine validates the label 2277 * contents. This needs to be done before vdev_load() so that we don't 2278 * inadvertently do repair I/Os to the wrong device. 2279 * 2280 * This function will only return failure if one of the vdevs indicates that it 2281 * has since been destroyed or exported. This is only possible if 2282 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 2283 * will be updated but the function will return 0. 2284 */ 2285 int 2286 vdev_validate(vdev_t *vd) 2287 { 2288 spa_t *spa = vd->vdev_spa; 2289 taskq_t *tq = NULL; 2290 nvlist_t *label; 2291 uint64_t guid = 0, aux_guid = 0, top_guid; 2292 uint64_t state; 2293 nvlist_t *nvl; 2294 uint64_t txg; 2295 int children = vd->vdev_children; 2296 2297 if (vdev_validate_skip) 2298 return (0); 2299 2300 if (children > 0) { 2301 tq = taskq_create("vdev_validate", children, minclsyspri, 2302 children, children, TASKQ_PREPOPULATE); 2303 } 2304 2305 for (uint64_t c = 0; c < children; c++) { 2306 vdev_t *cvd = vd->vdev_child[c]; 2307 2308 if (tq == NULL || vdev_uses_zvols(cvd)) { 2309 vdev_validate_child(cvd); 2310 } else { 2311 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd, 2312 TQ_SLEEP) != TASKQID_INVALID); 2313 } 2314 } 2315 if (tq != NULL) { 2316 taskq_wait(tq); 2317 taskq_destroy(tq); 2318 } 2319 for (int c = 0; c < children; c++) { 2320 int error = vd->vdev_child[c]->vdev_validate_error; 2321 2322 if (error != 0) 2323 return (SET_ERROR(EBADF)); 2324 } 2325 2326 2327 /* 2328 * If the device has already failed, or was marked offline, don't do 2329 * any further validation. Otherwise, label I/O will fail and we will 2330 * overwrite the previous state. 2331 */ 2332 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 2333 return (0); 2334 2335 /* 2336 * If we are performing an extreme rewind, we allow for a label that 2337 * was modified at a point after the current txg. 2338 * If config lock is not held do not check for the txg. spa_sync could 2339 * be updating the vdev's label before updating spa_last_synced_txg. 2340 */ 2341 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 2342 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 2343 txg = UINT64_MAX; 2344 else 2345 txg = spa_last_synced_txg(spa); 2346 2347 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 2348 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2349 VDEV_AUX_BAD_LABEL); 2350 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 2351 "txg %llu", (u_longlong_t)txg); 2352 return (0); 2353 } 2354 2355 /* 2356 * Determine if this vdev has been split off into another 2357 * pool. If so, then refuse to open it. 2358 */ 2359 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 2360 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 2361 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2362 VDEV_AUX_SPLIT_POOL); 2363 nvlist_free(label); 2364 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 2365 return (0); 2366 } 2367 2368 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 2369 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2370 VDEV_AUX_CORRUPT_DATA); 2371 nvlist_free(label); 2372 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2373 ZPOOL_CONFIG_POOL_GUID); 2374 return (0); 2375 } 2376 2377 /* 2378 * If config is not trusted then ignore the spa guid check. This is 2379 * necessary because if the machine crashed during a re-guid the new 2380 * guid might have been written to all of the vdev labels, but not the 2381 * cached config. The check will be performed again once we have the 2382 * trusted config from the MOS. 2383 */ 2384 if (spa->spa_trust_config && guid != spa_guid(spa)) { 2385 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2386 VDEV_AUX_CORRUPT_DATA); 2387 nvlist_free(label); 2388 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 2389 "match config (%llu != %llu)", (u_longlong_t)guid, 2390 (u_longlong_t)spa_guid(spa)); 2391 return (0); 2392 } 2393 2394 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 2395 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 2396 &aux_guid) != 0) 2397 aux_guid = 0; 2398 2399 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 2400 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2401 VDEV_AUX_CORRUPT_DATA); 2402 nvlist_free(label); 2403 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2404 ZPOOL_CONFIG_GUID); 2405 return (0); 2406 } 2407 2408 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 2409 != 0) { 2410 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2411 VDEV_AUX_CORRUPT_DATA); 2412 nvlist_free(label); 2413 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2414 ZPOOL_CONFIG_TOP_GUID); 2415 return (0); 2416 } 2417 2418 /* 2419 * If this vdev just became a top-level vdev because its sibling was 2420 * detached, it will have adopted the parent's vdev guid -- but the 2421 * label may or may not be on disk yet. Fortunately, either version 2422 * of the label will have the same top guid, so if we're a top-level 2423 * vdev, we can safely compare to that instead. 2424 * However, if the config comes from a cachefile that failed to update 2425 * after the detach, a top-level vdev will appear as a non top-level 2426 * vdev in the config. Also relax the constraints if we perform an 2427 * extreme rewind. 2428 * 2429 * If we split this vdev off instead, then we also check the 2430 * original pool's guid. We don't want to consider the vdev 2431 * corrupt if it is partway through a split operation. 2432 */ 2433 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 2434 boolean_t mismatch = B_FALSE; 2435 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 2436 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 2437 mismatch = B_TRUE; 2438 } else { 2439 if (vd->vdev_guid != top_guid && 2440 vd->vdev_top->vdev_guid != guid) 2441 mismatch = B_TRUE; 2442 } 2443 2444 if (mismatch) { 2445 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2446 VDEV_AUX_CORRUPT_DATA); 2447 nvlist_free(label); 2448 vdev_dbgmsg(vd, "vdev_validate: config guid " 2449 "doesn't match label guid"); 2450 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 2451 (u_longlong_t)vd->vdev_guid, 2452 (u_longlong_t)vd->vdev_top->vdev_guid); 2453 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 2454 "aux_guid %llu", (u_longlong_t)guid, 2455 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 2456 return (0); 2457 } 2458 } 2459 2460 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 2461 &state) != 0) { 2462 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2463 VDEV_AUX_CORRUPT_DATA); 2464 nvlist_free(label); 2465 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2466 ZPOOL_CONFIG_POOL_STATE); 2467 return (0); 2468 } 2469 2470 nvlist_free(label); 2471 2472 /* 2473 * If this is a verbatim import, no need to check the 2474 * state of the pool. 2475 */ 2476 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 2477 spa_load_state(spa) == SPA_LOAD_OPEN && 2478 state != POOL_STATE_ACTIVE) { 2479 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 2480 "for spa %s", (u_longlong_t)state, spa->spa_name); 2481 return (SET_ERROR(EBADF)); 2482 } 2483 2484 /* 2485 * If we were able to open and validate a vdev that was 2486 * previously marked permanently unavailable, clear that state 2487 * now. 2488 */ 2489 if (vd->vdev_not_present) 2490 vd->vdev_not_present = 0; 2491 2492 return (0); 2493 } 2494 2495 static void 2496 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 2497 { 2498 char *old, *new; 2499 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) { 2500 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) { 2501 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed " 2502 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2503 dvd->vdev_path, svd->vdev_path); 2504 spa_strfree(dvd->vdev_path); 2505 dvd->vdev_path = spa_strdup(svd->vdev_path); 2506 } 2507 } else if (svd->vdev_path != NULL) { 2508 dvd->vdev_path = spa_strdup(svd->vdev_path); 2509 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 2510 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path); 2511 } 2512 2513 /* 2514 * Our enclosure sysfs path may have changed between imports 2515 */ 2516 old = dvd->vdev_enc_sysfs_path; 2517 new = svd->vdev_enc_sysfs_path; 2518 if ((old != NULL && new == NULL) || 2519 (old == NULL && new != NULL) || 2520 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) { 2521 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path " 2522 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2523 old, new); 2524 2525 if (dvd->vdev_enc_sysfs_path) 2526 spa_strfree(dvd->vdev_enc_sysfs_path); 2527 2528 if (svd->vdev_enc_sysfs_path) { 2529 dvd->vdev_enc_sysfs_path = spa_strdup( 2530 svd->vdev_enc_sysfs_path); 2531 } else { 2532 dvd->vdev_enc_sysfs_path = NULL; 2533 } 2534 } 2535 } 2536 2537 /* 2538 * Recursively copy vdev paths from one vdev to another. Source and destination 2539 * vdev trees must have same geometry otherwise return error. Intended to copy 2540 * paths from userland config into MOS config. 2541 */ 2542 int 2543 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 2544 { 2545 if ((svd->vdev_ops == &vdev_missing_ops) || 2546 (svd->vdev_ishole && dvd->vdev_ishole) || 2547 (dvd->vdev_ops == &vdev_indirect_ops)) 2548 return (0); 2549 2550 if (svd->vdev_ops != dvd->vdev_ops) { 2551 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 2552 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 2553 return (SET_ERROR(EINVAL)); 2554 } 2555 2556 if (svd->vdev_guid != dvd->vdev_guid) { 2557 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 2558 "%llu)", (u_longlong_t)svd->vdev_guid, 2559 (u_longlong_t)dvd->vdev_guid); 2560 return (SET_ERROR(EINVAL)); 2561 } 2562 2563 if (svd->vdev_children != dvd->vdev_children) { 2564 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 2565 "%llu != %llu", (u_longlong_t)svd->vdev_children, 2566 (u_longlong_t)dvd->vdev_children); 2567 return (SET_ERROR(EINVAL)); 2568 } 2569 2570 for (uint64_t i = 0; i < svd->vdev_children; i++) { 2571 int error = vdev_copy_path_strict(svd->vdev_child[i], 2572 dvd->vdev_child[i]); 2573 if (error != 0) 2574 return (error); 2575 } 2576 2577 if (svd->vdev_ops->vdev_op_leaf) 2578 vdev_copy_path_impl(svd, dvd); 2579 2580 return (0); 2581 } 2582 2583 static void 2584 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 2585 { 2586 ASSERT(stvd->vdev_top == stvd); 2587 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 2588 2589 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 2590 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 2591 } 2592 2593 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 2594 return; 2595 2596 /* 2597 * The idea here is that while a vdev can shift positions within 2598 * a top vdev (when replacing, attaching mirror, etc.) it cannot 2599 * step outside of it. 2600 */ 2601 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 2602 2603 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 2604 return; 2605 2606 ASSERT(vd->vdev_ops->vdev_op_leaf); 2607 2608 vdev_copy_path_impl(vd, dvd); 2609 } 2610 2611 /* 2612 * Recursively copy vdev paths from one root vdev to another. Source and 2613 * destination vdev trees may differ in geometry. For each destination leaf 2614 * vdev, search a vdev with the same guid and top vdev id in the source. 2615 * Intended to copy paths from userland config into MOS config. 2616 */ 2617 void 2618 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 2619 { 2620 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 2621 ASSERT(srvd->vdev_ops == &vdev_root_ops); 2622 ASSERT(drvd->vdev_ops == &vdev_root_ops); 2623 2624 for (uint64_t i = 0; i < children; i++) { 2625 vdev_copy_path_search(srvd->vdev_child[i], 2626 drvd->vdev_child[i]); 2627 } 2628 } 2629 2630 /* 2631 * Close a virtual device. 2632 */ 2633 void 2634 vdev_close(vdev_t *vd) 2635 { 2636 vdev_t *pvd = vd->vdev_parent; 2637 spa_t *spa __maybe_unused = vd->vdev_spa; 2638 2639 ASSERT(vd != NULL); 2640 ASSERT(vd->vdev_open_thread == curthread || 2641 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2642 2643 /* 2644 * If our parent is reopening, then we are as well, unless we are 2645 * going offline. 2646 */ 2647 if (pvd != NULL && pvd->vdev_reopening) 2648 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 2649 2650 vd->vdev_ops->vdev_op_close(vd); 2651 2652 /* 2653 * We record the previous state before we close it, so that if we are 2654 * doing a reopen(), we don't generate FMA ereports if we notice that 2655 * it's still faulted. 2656 */ 2657 vd->vdev_prevstate = vd->vdev_state; 2658 2659 if (vd->vdev_offline) 2660 vd->vdev_state = VDEV_STATE_OFFLINE; 2661 else 2662 vd->vdev_state = VDEV_STATE_CLOSED; 2663 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2664 } 2665 2666 void 2667 vdev_hold(vdev_t *vd) 2668 { 2669 spa_t *spa = vd->vdev_spa; 2670 2671 ASSERT(spa_is_root(spa)); 2672 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 2673 return; 2674 2675 for (int c = 0; c < vd->vdev_children; c++) 2676 vdev_hold(vd->vdev_child[c]); 2677 2678 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL) 2679 vd->vdev_ops->vdev_op_hold(vd); 2680 } 2681 2682 void 2683 vdev_rele(vdev_t *vd) 2684 { 2685 ASSERT(spa_is_root(vd->vdev_spa)); 2686 for (int c = 0; c < vd->vdev_children; c++) 2687 vdev_rele(vd->vdev_child[c]); 2688 2689 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL) 2690 vd->vdev_ops->vdev_op_rele(vd); 2691 } 2692 2693 /* 2694 * Reopen all interior vdevs and any unopened leaves. We don't actually 2695 * reopen leaf vdevs which had previously been opened as they might deadlock 2696 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 2697 * If the leaf has never been opened then open it, as usual. 2698 */ 2699 void 2700 vdev_reopen(vdev_t *vd) 2701 { 2702 spa_t *spa = vd->vdev_spa; 2703 2704 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2705 2706 /* set the reopening flag unless we're taking the vdev offline */ 2707 vd->vdev_reopening = !vd->vdev_offline; 2708 vdev_close(vd); 2709 (void) vdev_open(vd); 2710 2711 /* 2712 * Call vdev_validate() here to make sure we have the same device. 2713 * Otherwise, a device with an invalid label could be successfully 2714 * opened in response to vdev_reopen(). 2715 */ 2716 if (vd->vdev_aux) { 2717 (void) vdev_validate_aux(vd); 2718 if (vdev_readable(vd) && vdev_writeable(vd) && 2719 vd->vdev_aux == &spa->spa_l2cache) { 2720 /* 2721 * In case the vdev is present we should evict all ARC 2722 * buffers and pointers to log blocks and reclaim their 2723 * space before restoring its contents to L2ARC. 2724 */ 2725 if (l2arc_vdev_present(vd)) { 2726 l2arc_rebuild_vdev(vd, B_TRUE); 2727 } else { 2728 l2arc_add_vdev(spa, vd); 2729 } 2730 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2731 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 2732 } 2733 } else { 2734 (void) vdev_validate(vd); 2735 } 2736 2737 /* 2738 * Recheck if resilver is still needed and cancel any 2739 * scheduled resilver if resilver is unneeded. 2740 */ 2741 if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) && 2742 spa->spa_async_tasks & SPA_ASYNC_RESILVER) { 2743 mutex_enter(&spa->spa_async_lock); 2744 spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER; 2745 mutex_exit(&spa->spa_async_lock); 2746 } 2747 2748 /* 2749 * Reassess parent vdev's health. 2750 */ 2751 vdev_propagate_state(vd); 2752 } 2753 2754 int 2755 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2756 { 2757 int error; 2758 2759 /* 2760 * Normally, partial opens (e.g. of a mirror) are allowed. 2761 * For a create, however, we want to fail the request if 2762 * there are any components we can't open. 2763 */ 2764 error = vdev_open(vd); 2765 2766 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2767 vdev_close(vd); 2768 return (error ? error : SET_ERROR(ENXIO)); 2769 } 2770 2771 /* 2772 * Recursively load DTLs and initialize all labels. 2773 */ 2774 if ((error = vdev_dtl_load(vd)) != 0 || 2775 (error = vdev_label_init(vd, txg, isreplacing ? 2776 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2777 vdev_close(vd); 2778 return (error); 2779 } 2780 2781 return (0); 2782 } 2783 2784 void 2785 vdev_metaslab_set_size(vdev_t *vd) 2786 { 2787 uint64_t asize = vd->vdev_asize; 2788 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2789 uint64_t ms_shift; 2790 2791 /* 2792 * There are two dimensions to the metaslab sizing calculation: 2793 * the size of the metaslab and the count of metaslabs per vdev. 2794 * 2795 * The default values used below are a good balance between memory 2796 * usage (larger metaslab size means more memory needed for loaded 2797 * metaslabs; more metaslabs means more memory needed for the 2798 * metaslab_t structs), metaslab load time (larger metaslabs take 2799 * longer to load), and metaslab sync time (more metaslabs means 2800 * more time spent syncing all of them). 2801 * 2802 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2803 * The range of the dimensions are as follows: 2804 * 2805 * 2^29 <= ms_size <= 2^34 2806 * 16 <= ms_count <= 131,072 2807 * 2808 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2809 * at least 512MB (2^29) to minimize fragmentation effects when 2810 * testing with smaller devices. However, the count constraint 2811 * of at least 16 metaslabs will override this minimum size goal. 2812 * 2813 * On the upper end of vdev sizes, we aim for a maximum metaslab 2814 * size of 16GB. However, we will cap the total count to 2^17 2815 * metaslabs to keep our memory footprint in check and let the 2816 * metaslab size grow from there if that limit is hit. 2817 * 2818 * The net effect of applying above constrains is summarized below. 2819 * 2820 * vdev size metaslab count 2821 * --------------|----------------- 2822 * < 8GB ~16 2823 * 8GB - 100GB one per 512MB 2824 * 100GB - 3TB ~200 2825 * 3TB - 2PB one per 16GB 2826 * > 2PB ~131,072 2827 * -------------------------------- 2828 * 2829 * Finally, note that all of the above calculate the initial 2830 * number of metaslabs. Expanding a top-level vdev will result 2831 * in additional metaslabs being allocated making it possible 2832 * to exceed the zfs_vdev_ms_count_limit. 2833 */ 2834 2835 if (ms_count < zfs_vdev_min_ms_count) 2836 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 2837 else if (ms_count > zfs_vdev_default_ms_count) 2838 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 2839 else 2840 ms_shift = zfs_vdev_default_ms_shift; 2841 2842 if (ms_shift < SPA_MAXBLOCKSHIFT) { 2843 ms_shift = SPA_MAXBLOCKSHIFT; 2844 } else if (ms_shift > zfs_vdev_max_ms_shift) { 2845 ms_shift = zfs_vdev_max_ms_shift; 2846 /* cap the total count to constrain memory footprint */ 2847 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 2848 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 2849 } 2850 2851 vd->vdev_ms_shift = ms_shift; 2852 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 2853 } 2854 2855 void 2856 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 2857 { 2858 ASSERT(vd == vd->vdev_top); 2859 /* indirect vdevs don't have metaslabs or dtls */ 2860 ASSERT(vdev_is_concrete(vd) || flags == 0); 2861 ASSERT(ISP2(flags)); 2862 ASSERT(spa_writeable(vd->vdev_spa)); 2863 2864 if (flags & VDD_METASLAB) 2865 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 2866 2867 if (flags & VDD_DTL) 2868 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 2869 2870 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 2871 } 2872 2873 void 2874 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 2875 { 2876 for (int c = 0; c < vd->vdev_children; c++) 2877 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 2878 2879 if (vd->vdev_ops->vdev_op_leaf) 2880 vdev_dirty(vd->vdev_top, flags, vd, txg); 2881 } 2882 2883 /* 2884 * DTLs. 2885 * 2886 * A vdev's DTL (dirty time log) is the set of transaction groups for which 2887 * the vdev has less than perfect replication. There are four kinds of DTL: 2888 * 2889 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 2890 * 2891 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 2892 * 2893 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 2894 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 2895 * txgs that was scrubbed. 2896 * 2897 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 2898 * persistent errors or just some device being offline. 2899 * Unlike the other three, the DTL_OUTAGE map is not generally 2900 * maintained; it's only computed when needed, typically to 2901 * determine whether a device can be detached. 2902 * 2903 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 2904 * either has the data or it doesn't. 2905 * 2906 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 2907 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 2908 * if any child is less than fully replicated, then so is its parent. 2909 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 2910 * comprising only those txgs which appear in 'maxfaults' or more children; 2911 * those are the txgs we don't have enough replication to read. For example, 2912 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 2913 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 2914 * two child DTL_MISSING maps. 2915 * 2916 * It should be clear from the above that to compute the DTLs and outage maps 2917 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 2918 * Therefore, that is all we keep on disk. When loading the pool, or after 2919 * a configuration change, we generate all other DTLs from first principles. 2920 */ 2921 void 2922 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2923 { 2924 range_tree_t *rt = vd->vdev_dtl[t]; 2925 2926 ASSERT(t < DTL_TYPES); 2927 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2928 ASSERT(spa_writeable(vd->vdev_spa)); 2929 2930 mutex_enter(&vd->vdev_dtl_lock); 2931 if (!range_tree_contains(rt, txg, size)) 2932 range_tree_add(rt, txg, size); 2933 mutex_exit(&vd->vdev_dtl_lock); 2934 } 2935 2936 boolean_t 2937 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2938 { 2939 range_tree_t *rt = vd->vdev_dtl[t]; 2940 boolean_t dirty = B_FALSE; 2941 2942 ASSERT(t < DTL_TYPES); 2943 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2944 2945 /* 2946 * While we are loading the pool, the DTLs have not been loaded yet. 2947 * This isn't a problem but it can result in devices being tried 2948 * which are known to not have the data. In which case, the import 2949 * is relying on the checksum to ensure that we get the right data. 2950 * Note that while importing we are only reading the MOS, which is 2951 * always checksummed. 2952 */ 2953 mutex_enter(&vd->vdev_dtl_lock); 2954 if (!range_tree_is_empty(rt)) 2955 dirty = range_tree_contains(rt, txg, size); 2956 mutex_exit(&vd->vdev_dtl_lock); 2957 2958 return (dirty); 2959 } 2960 2961 boolean_t 2962 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 2963 { 2964 range_tree_t *rt = vd->vdev_dtl[t]; 2965 boolean_t empty; 2966 2967 mutex_enter(&vd->vdev_dtl_lock); 2968 empty = range_tree_is_empty(rt); 2969 mutex_exit(&vd->vdev_dtl_lock); 2970 2971 return (empty); 2972 } 2973 2974 /* 2975 * Check if the txg falls within the range which must be 2976 * resilvered. DVAs outside this range can always be skipped. 2977 */ 2978 boolean_t 2979 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 2980 uint64_t phys_birth) 2981 { 2982 (void) dva, (void) psize; 2983 2984 /* Set by sequential resilver. */ 2985 if (phys_birth == TXG_UNKNOWN) 2986 return (B_TRUE); 2987 2988 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)); 2989 } 2990 2991 /* 2992 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered. 2993 */ 2994 boolean_t 2995 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 2996 uint64_t phys_birth) 2997 { 2998 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2999 3000 if (vd->vdev_ops->vdev_op_need_resilver == NULL || 3001 vd->vdev_ops->vdev_op_leaf) 3002 return (B_TRUE); 3003 3004 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize, 3005 phys_birth)); 3006 } 3007 3008 /* 3009 * Returns the lowest txg in the DTL range. 3010 */ 3011 static uint64_t 3012 vdev_dtl_min(vdev_t *vd) 3013 { 3014 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 3015 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 3016 ASSERT0(vd->vdev_children); 3017 3018 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1); 3019 } 3020 3021 /* 3022 * Returns the highest txg in the DTL. 3023 */ 3024 static uint64_t 3025 vdev_dtl_max(vdev_t *vd) 3026 { 3027 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 3028 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 3029 ASSERT0(vd->vdev_children); 3030 3031 return (range_tree_max(vd->vdev_dtl[DTL_MISSING])); 3032 } 3033 3034 /* 3035 * Determine if a resilvering vdev should remove any DTL entries from 3036 * its range. If the vdev was resilvering for the entire duration of the 3037 * scan then it should excise that range from its DTLs. Otherwise, this 3038 * vdev is considered partially resilvered and should leave its DTL 3039 * entries intact. The comment in vdev_dtl_reassess() describes how we 3040 * excise the DTLs. 3041 */ 3042 static boolean_t 3043 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done) 3044 { 3045 ASSERT0(vd->vdev_children); 3046 3047 if (vd->vdev_state < VDEV_STATE_DEGRADED) 3048 return (B_FALSE); 3049 3050 if (vd->vdev_resilver_deferred) 3051 return (B_FALSE); 3052 3053 if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 3054 return (B_TRUE); 3055 3056 if (rebuild_done) { 3057 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3058 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 3059 3060 /* Rebuild not initiated by attach */ 3061 if (vd->vdev_rebuild_txg == 0) 3062 return (B_TRUE); 3063 3064 /* 3065 * When a rebuild completes without error then all missing data 3066 * up to the rebuild max txg has been reconstructed and the DTL 3067 * is eligible for excision. 3068 */ 3069 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE && 3070 vdev_dtl_max(vd) <= vrp->vrp_max_txg) { 3071 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd)); 3072 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg); 3073 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg); 3074 return (B_TRUE); 3075 } 3076 } else { 3077 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 3078 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys; 3079 3080 /* Resilver not initiated by attach */ 3081 if (vd->vdev_resilver_txg == 0) 3082 return (B_TRUE); 3083 3084 /* 3085 * When a resilver is initiated the scan will assign the 3086 * scn_max_txg value to the highest txg value that exists 3087 * in all DTLs. If this device's max DTL is not part of this 3088 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg] 3089 * then it is not eligible for excision. 3090 */ 3091 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 3092 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd)); 3093 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg); 3094 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg); 3095 return (B_TRUE); 3096 } 3097 } 3098 3099 return (B_FALSE); 3100 } 3101 3102 /* 3103 * Reassess DTLs after a config change or scrub completion. If txg == 0 no 3104 * write operations will be issued to the pool. 3105 */ 3106 void 3107 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, 3108 boolean_t scrub_done, boolean_t rebuild_done) 3109 { 3110 spa_t *spa = vd->vdev_spa; 3111 avl_tree_t reftree; 3112 int minref; 3113 3114 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 3115 3116 for (int c = 0; c < vd->vdev_children; c++) 3117 vdev_dtl_reassess(vd->vdev_child[c], txg, 3118 scrub_txg, scrub_done, rebuild_done); 3119 3120 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 3121 return; 3122 3123 if (vd->vdev_ops->vdev_op_leaf) { 3124 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 3125 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3126 boolean_t check_excise = B_FALSE; 3127 boolean_t wasempty = B_TRUE; 3128 3129 mutex_enter(&vd->vdev_dtl_lock); 3130 3131 /* 3132 * If requested, pretend the scan or rebuild completed cleanly. 3133 */ 3134 if (zfs_scan_ignore_errors) { 3135 if (scn != NULL) 3136 scn->scn_phys.scn_errors = 0; 3137 if (vr != NULL) 3138 vr->vr_rebuild_phys.vrp_errors = 0; 3139 } 3140 3141 if (scrub_txg != 0 && 3142 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3143 wasempty = B_FALSE; 3144 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d " 3145 "dtl:%llu/%llu errors:%llu", 3146 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg, 3147 (u_longlong_t)scrub_txg, spa->spa_scrub_started, 3148 (u_longlong_t)vdev_dtl_min(vd), 3149 (u_longlong_t)vdev_dtl_max(vd), 3150 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0)); 3151 } 3152 3153 /* 3154 * If we've completed a scrub/resilver or a rebuild cleanly 3155 * then determine if this vdev should remove any DTLs. We 3156 * only want to excise regions on vdevs that were available 3157 * during the entire duration of this scan. 3158 */ 3159 if (rebuild_done && 3160 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) { 3161 check_excise = B_TRUE; 3162 } else { 3163 if (spa->spa_scrub_started || 3164 (scn != NULL && scn->scn_phys.scn_errors == 0)) { 3165 check_excise = B_TRUE; 3166 } 3167 } 3168 3169 if (scrub_txg && check_excise && 3170 vdev_dtl_should_excise(vd, rebuild_done)) { 3171 /* 3172 * We completed a scrub, resilver or rebuild up to 3173 * scrub_txg. If we did it without rebooting, then 3174 * the scrub dtl will be valid, so excise the old 3175 * region and fold in the scrub dtl. Otherwise, 3176 * leave the dtl as-is if there was an error. 3177 * 3178 * There's little trick here: to excise the beginning 3179 * of the DTL_MISSING map, we put it into a reference 3180 * tree and then add a segment with refcnt -1 that 3181 * covers the range [0, scrub_txg). This means 3182 * that each txg in that range has refcnt -1 or 0. 3183 * We then add DTL_SCRUB with a refcnt of 2, so that 3184 * entries in the range [0, scrub_txg) will have a 3185 * positive refcnt -- either 1 or 2. We then convert 3186 * the reference tree into the new DTL_MISSING map. 3187 */ 3188 space_reftree_create(&reftree); 3189 space_reftree_add_map(&reftree, 3190 vd->vdev_dtl[DTL_MISSING], 1); 3191 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 3192 space_reftree_add_map(&reftree, 3193 vd->vdev_dtl[DTL_SCRUB], 2); 3194 space_reftree_generate_map(&reftree, 3195 vd->vdev_dtl[DTL_MISSING], 1); 3196 space_reftree_destroy(&reftree); 3197 3198 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3199 zfs_dbgmsg("update DTL_MISSING:%llu/%llu", 3200 (u_longlong_t)vdev_dtl_min(vd), 3201 (u_longlong_t)vdev_dtl_max(vd)); 3202 } else if (!wasempty) { 3203 zfs_dbgmsg("DTL_MISSING is now empty"); 3204 } 3205 } 3206 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 3207 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3208 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 3209 if (scrub_done) 3210 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 3211 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 3212 if (!vdev_readable(vd)) 3213 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 3214 else 3215 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3216 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 3217 3218 /* 3219 * If the vdev was resilvering or rebuilding and no longer 3220 * has any DTLs then reset the appropriate flag and dirty 3221 * the top level so that we persist the change. 3222 */ 3223 if (txg != 0 && 3224 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3225 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) { 3226 if (vd->vdev_rebuild_txg != 0) { 3227 vd->vdev_rebuild_txg = 0; 3228 vdev_config_dirty(vd->vdev_top); 3229 } else if (vd->vdev_resilver_txg != 0) { 3230 vd->vdev_resilver_txg = 0; 3231 vdev_config_dirty(vd->vdev_top); 3232 } 3233 } 3234 3235 mutex_exit(&vd->vdev_dtl_lock); 3236 3237 if (txg != 0) 3238 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 3239 } else { 3240 mutex_enter(&vd->vdev_dtl_lock); 3241 for (int t = 0; t < DTL_TYPES; t++) { 3242 /* account for child's outage in parent's missing map */ 3243 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 3244 if (t == DTL_SCRUB) { 3245 /* leaf vdevs only */ 3246 continue; 3247 } 3248 if (t == DTL_PARTIAL) { 3249 /* i.e. non-zero */ 3250 minref = 1; 3251 } else if (vdev_get_nparity(vd) != 0) { 3252 /* RAIDZ, DRAID */ 3253 minref = vdev_get_nparity(vd) + 1; 3254 } else { 3255 /* any kind of mirror */ 3256 minref = vd->vdev_children; 3257 } 3258 space_reftree_create(&reftree); 3259 for (int c = 0; c < vd->vdev_children; c++) { 3260 vdev_t *cvd = vd->vdev_child[c]; 3261 mutex_enter(&cvd->vdev_dtl_lock); 3262 space_reftree_add_map(&reftree, 3263 cvd->vdev_dtl[s], 1); 3264 mutex_exit(&cvd->vdev_dtl_lock); 3265 } 3266 space_reftree_generate_map(&reftree, 3267 vd->vdev_dtl[t], minref); 3268 space_reftree_destroy(&reftree); 3269 } 3270 mutex_exit(&vd->vdev_dtl_lock); 3271 } 3272 3273 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) { 3274 raidz_dtl_reassessed(vd); 3275 } 3276 } 3277 3278 /* 3279 * Iterate over all the vdevs except spare, and post kobj events 3280 */ 3281 void 3282 vdev_post_kobj_evt(vdev_t *vd) 3283 { 3284 if (vd->vdev_ops->vdev_op_kobj_evt_post && 3285 vd->vdev_kobj_flag == B_FALSE) { 3286 vd->vdev_kobj_flag = B_TRUE; 3287 vd->vdev_ops->vdev_op_kobj_evt_post(vd); 3288 } 3289 3290 for (int c = 0; c < vd->vdev_children; c++) 3291 vdev_post_kobj_evt(vd->vdev_child[c]); 3292 } 3293 3294 /* 3295 * Iterate over all the vdevs except spare, and clear kobj events 3296 */ 3297 void 3298 vdev_clear_kobj_evt(vdev_t *vd) 3299 { 3300 vd->vdev_kobj_flag = B_FALSE; 3301 3302 for (int c = 0; c < vd->vdev_children; c++) 3303 vdev_clear_kobj_evt(vd->vdev_child[c]); 3304 } 3305 3306 int 3307 vdev_dtl_load(vdev_t *vd) 3308 { 3309 spa_t *spa = vd->vdev_spa; 3310 objset_t *mos = spa->spa_meta_objset; 3311 range_tree_t *rt; 3312 int error = 0; 3313 3314 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 3315 ASSERT(vdev_is_concrete(vd)); 3316 3317 /* 3318 * If the dtl cannot be sync'd there is no need to open it. 3319 */ 3320 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps) 3321 return (0); 3322 3323 error = space_map_open(&vd->vdev_dtl_sm, mos, 3324 vd->vdev_dtl_object, 0, -1ULL, 0); 3325 if (error) 3326 return (error); 3327 ASSERT(vd->vdev_dtl_sm != NULL); 3328 3329 rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3330 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC); 3331 if (error == 0) { 3332 mutex_enter(&vd->vdev_dtl_lock); 3333 range_tree_walk(rt, range_tree_add, 3334 vd->vdev_dtl[DTL_MISSING]); 3335 mutex_exit(&vd->vdev_dtl_lock); 3336 } 3337 3338 range_tree_vacate(rt, NULL, NULL); 3339 range_tree_destroy(rt); 3340 3341 return (error); 3342 } 3343 3344 for (int c = 0; c < vd->vdev_children; c++) { 3345 error = vdev_dtl_load(vd->vdev_child[c]); 3346 if (error != 0) 3347 break; 3348 } 3349 3350 return (error); 3351 } 3352 3353 static void 3354 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) 3355 { 3356 spa_t *spa = vd->vdev_spa; 3357 objset_t *mos = spa->spa_meta_objset; 3358 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 3359 const char *string; 3360 3361 ASSERT(alloc_bias != VDEV_BIAS_NONE); 3362 3363 string = 3364 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : 3365 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : 3366 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; 3367 3368 ASSERT(string != NULL); 3369 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 3370 1, strlen(string) + 1, string, tx)); 3371 3372 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { 3373 spa_activate_allocation_classes(spa, tx); 3374 } 3375 } 3376 3377 void 3378 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 3379 { 3380 spa_t *spa = vd->vdev_spa; 3381 3382 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 3383 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3384 zapobj, tx)); 3385 } 3386 3387 uint64_t 3388 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 3389 { 3390 spa_t *spa = vd->vdev_spa; 3391 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 3392 DMU_OT_NONE, 0, tx); 3393 3394 ASSERT(zap != 0); 3395 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3396 zap, tx)); 3397 3398 return (zap); 3399 } 3400 3401 void 3402 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 3403 { 3404 if (vd->vdev_ops != &vdev_hole_ops && 3405 vd->vdev_ops != &vdev_missing_ops && 3406 vd->vdev_ops != &vdev_root_ops && 3407 !vd->vdev_top->vdev_removing) { 3408 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 3409 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 3410 } 3411 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 3412 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 3413 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) 3414 vdev_zap_allocation_data(vd, tx); 3415 } 3416 } 3417 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 && 3418 spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) { 3419 if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) 3420 spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx); 3421 vd->vdev_root_zap = vdev_create_link_zap(vd, tx); 3422 } 3423 3424 for (uint64_t i = 0; i < vd->vdev_children; i++) { 3425 vdev_construct_zaps(vd->vdev_child[i], tx); 3426 } 3427 } 3428 3429 static void 3430 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 3431 { 3432 spa_t *spa = vd->vdev_spa; 3433 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 3434 objset_t *mos = spa->spa_meta_objset; 3435 range_tree_t *rtsync; 3436 dmu_tx_t *tx; 3437 uint64_t object = space_map_object(vd->vdev_dtl_sm); 3438 3439 ASSERT(vdev_is_concrete(vd)); 3440 ASSERT(vd->vdev_ops->vdev_op_leaf); 3441 3442 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3443 3444 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 3445 mutex_enter(&vd->vdev_dtl_lock); 3446 space_map_free(vd->vdev_dtl_sm, tx); 3447 space_map_close(vd->vdev_dtl_sm); 3448 vd->vdev_dtl_sm = NULL; 3449 mutex_exit(&vd->vdev_dtl_lock); 3450 3451 /* 3452 * We only destroy the leaf ZAP for detached leaves or for 3453 * removed log devices. Removed data devices handle leaf ZAP 3454 * cleanup later, once cancellation is no longer possible. 3455 */ 3456 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 3457 vd->vdev_top->vdev_islog)) { 3458 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 3459 vd->vdev_leaf_zap = 0; 3460 } 3461 3462 dmu_tx_commit(tx); 3463 return; 3464 } 3465 3466 if (vd->vdev_dtl_sm == NULL) { 3467 uint64_t new_object; 3468 3469 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx); 3470 VERIFY3U(new_object, !=, 0); 3471 3472 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 3473 0, -1ULL, 0)); 3474 ASSERT(vd->vdev_dtl_sm != NULL); 3475 } 3476 3477 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3478 3479 mutex_enter(&vd->vdev_dtl_lock); 3480 range_tree_walk(rt, range_tree_add, rtsync); 3481 mutex_exit(&vd->vdev_dtl_lock); 3482 3483 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx); 3484 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 3485 range_tree_vacate(rtsync, NULL, NULL); 3486 3487 range_tree_destroy(rtsync); 3488 3489 /* 3490 * If the object for the space map has changed then dirty 3491 * the top level so that we update the config. 3492 */ 3493 if (object != space_map_object(vd->vdev_dtl_sm)) { 3494 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 3495 "new object %llu", (u_longlong_t)txg, spa_name(spa), 3496 (u_longlong_t)object, 3497 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 3498 vdev_config_dirty(vd->vdev_top); 3499 } 3500 3501 dmu_tx_commit(tx); 3502 } 3503 3504 /* 3505 * Determine whether the specified vdev can be offlined/detached/removed 3506 * without losing data. 3507 */ 3508 boolean_t 3509 vdev_dtl_required(vdev_t *vd) 3510 { 3511 spa_t *spa = vd->vdev_spa; 3512 vdev_t *tvd = vd->vdev_top; 3513 uint8_t cant_read = vd->vdev_cant_read; 3514 boolean_t required; 3515 3516 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3517 3518 if (vd == spa->spa_root_vdev || vd == tvd) 3519 return (B_TRUE); 3520 3521 /* 3522 * Temporarily mark the device as unreadable, and then determine 3523 * whether this results in any DTL outages in the top-level vdev. 3524 * If not, we can safely offline/detach/remove the device. 3525 */ 3526 vd->vdev_cant_read = B_TRUE; 3527 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3528 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 3529 vd->vdev_cant_read = cant_read; 3530 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3531 3532 if (!required && zio_injection_enabled) { 3533 required = !!zio_handle_device_injection(vd, NULL, 3534 SET_ERROR(ECHILD)); 3535 } 3536 3537 return (required); 3538 } 3539 3540 /* 3541 * Determine if resilver is needed, and if so the txg range. 3542 */ 3543 boolean_t 3544 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 3545 { 3546 boolean_t needed = B_FALSE; 3547 uint64_t thismin = UINT64_MAX; 3548 uint64_t thismax = 0; 3549 3550 if (vd->vdev_children == 0) { 3551 mutex_enter(&vd->vdev_dtl_lock); 3552 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3553 vdev_writeable(vd)) { 3554 3555 thismin = vdev_dtl_min(vd); 3556 thismax = vdev_dtl_max(vd); 3557 needed = B_TRUE; 3558 } 3559 mutex_exit(&vd->vdev_dtl_lock); 3560 } else { 3561 for (int c = 0; c < vd->vdev_children; c++) { 3562 vdev_t *cvd = vd->vdev_child[c]; 3563 uint64_t cmin, cmax; 3564 3565 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 3566 thismin = MIN(thismin, cmin); 3567 thismax = MAX(thismax, cmax); 3568 needed = B_TRUE; 3569 } 3570 } 3571 } 3572 3573 if (needed && minp) { 3574 *minp = thismin; 3575 *maxp = thismax; 3576 } 3577 return (needed); 3578 } 3579 3580 /* 3581 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj 3582 * will contain either the checkpoint spacemap object or zero if none exists. 3583 * All other errors are returned to the caller. 3584 */ 3585 int 3586 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj) 3587 { 3588 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 3589 3590 if (vd->vdev_top_zap == 0) { 3591 *sm_obj = 0; 3592 return (0); 3593 } 3594 3595 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 3596 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj); 3597 if (error == ENOENT) { 3598 *sm_obj = 0; 3599 error = 0; 3600 } 3601 3602 return (error); 3603 } 3604 3605 int 3606 vdev_load(vdev_t *vd) 3607 { 3608 int children = vd->vdev_children; 3609 int error = 0; 3610 taskq_t *tq = NULL; 3611 3612 /* 3613 * It's only worthwhile to use the taskq for the root vdev, because the 3614 * slow part is metaslab_init, and that only happens for top-level 3615 * vdevs. 3616 */ 3617 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) { 3618 tq = taskq_create("vdev_load", children, minclsyspri, 3619 children, children, TASKQ_PREPOPULATE); 3620 } 3621 3622 /* 3623 * Recursively load all children. 3624 */ 3625 for (int c = 0; c < vd->vdev_children; c++) { 3626 vdev_t *cvd = vd->vdev_child[c]; 3627 3628 if (tq == NULL || vdev_uses_zvols(cvd)) { 3629 cvd->vdev_load_error = vdev_load(cvd); 3630 } else { 3631 VERIFY(taskq_dispatch(tq, vdev_load_child, 3632 cvd, TQ_SLEEP) != TASKQID_INVALID); 3633 } 3634 } 3635 3636 if (tq != NULL) { 3637 taskq_wait(tq); 3638 taskq_destroy(tq); 3639 } 3640 3641 for (int c = 0; c < vd->vdev_children; c++) { 3642 int error = vd->vdev_child[c]->vdev_load_error; 3643 3644 if (error != 0) 3645 return (error); 3646 } 3647 3648 vdev_set_deflate_ratio(vd); 3649 3650 if (vd->vdev_ops == &vdev_raidz_ops) { 3651 error = vdev_raidz_load(vd); 3652 if (error != 0) 3653 return (error); 3654 } 3655 3656 /* 3657 * On spa_load path, grab the allocation bias from our zap 3658 */ 3659 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3660 spa_t *spa = vd->vdev_spa; 3661 char bias_str[64]; 3662 3663 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3664 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), 3665 bias_str); 3666 if (error == 0) { 3667 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); 3668 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); 3669 } else if (error != ENOENT) { 3670 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3671 VDEV_AUX_CORRUPT_DATA); 3672 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) " 3673 "failed [error=%d]", 3674 (u_longlong_t)vd->vdev_top_zap, error); 3675 return (error); 3676 } 3677 } 3678 3679 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3680 spa_t *spa = vd->vdev_spa; 3681 uint64_t failfast; 3682 3683 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3684 vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast), 3685 1, &failfast); 3686 if (error == 0) { 3687 vd->vdev_failfast = failfast & 1; 3688 } else if (error == ENOENT) { 3689 vd->vdev_failfast = vdev_prop_default_numeric( 3690 VDEV_PROP_FAILFAST); 3691 } else { 3692 vdev_dbgmsg(vd, 3693 "vdev_load: zap_lookup(top_zap=%llu) " 3694 "failed [error=%d]", 3695 (u_longlong_t)vd->vdev_top_zap, error); 3696 } 3697 } 3698 3699 /* 3700 * Load any rebuild state from the top-level vdev zap. 3701 */ 3702 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3703 error = vdev_rebuild_load(vd); 3704 if (error && error != ENOTSUP) { 3705 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3706 VDEV_AUX_CORRUPT_DATA); 3707 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load " 3708 "failed [error=%d]", error); 3709 return (error); 3710 } 3711 } 3712 3713 if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) { 3714 uint64_t zapobj; 3715 3716 if (vd->vdev_top_zap != 0) 3717 zapobj = vd->vdev_top_zap; 3718 else 3719 zapobj = vd->vdev_leaf_zap; 3720 3721 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N, 3722 &vd->vdev_checksum_n); 3723 if (error && error != ENOENT) 3724 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3725 "failed [error=%d]", (u_longlong_t)zapobj, error); 3726 3727 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T, 3728 &vd->vdev_checksum_t); 3729 if (error && error != ENOENT) 3730 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3731 "failed [error=%d]", (u_longlong_t)zapobj, error); 3732 3733 error = vdev_prop_get_int(vd, VDEV_PROP_IO_N, 3734 &vd->vdev_io_n); 3735 if (error && error != ENOENT) 3736 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3737 "failed [error=%d]", (u_longlong_t)zapobj, error); 3738 3739 error = vdev_prop_get_int(vd, VDEV_PROP_IO_T, 3740 &vd->vdev_io_t); 3741 if (error && error != ENOENT) 3742 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3743 "failed [error=%d]", (u_longlong_t)zapobj, error); 3744 } 3745 3746 /* 3747 * If this is a top-level vdev, initialize its metaslabs. 3748 */ 3749 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 3750 vdev_metaslab_group_create(vd); 3751 3752 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 3753 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3754 VDEV_AUX_CORRUPT_DATA); 3755 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 3756 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 3757 (u_longlong_t)vd->vdev_asize); 3758 return (SET_ERROR(ENXIO)); 3759 } 3760 3761 error = vdev_metaslab_init(vd, 0); 3762 if (error != 0) { 3763 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 3764 "[error=%d]", error); 3765 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3766 VDEV_AUX_CORRUPT_DATA); 3767 return (error); 3768 } 3769 3770 uint64_t checkpoint_sm_obj; 3771 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj); 3772 if (error == 0 && checkpoint_sm_obj != 0) { 3773 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3774 ASSERT(vd->vdev_asize != 0); 3775 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); 3776 3777 error = space_map_open(&vd->vdev_checkpoint_sm, 3778 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 3779 vd->vdev_ashift); 3780 if (error != 0) { 3781 vdev_dbgmsg(vd, "vdev_load: space_map_open " 3782 "failed for checkpoint spacemap (obj %llu) " 3783 "[error=%d]", 3784 (u_longlong_t)checkpoint_sm_obj, error); 3785 return (error); 3786 } 3787 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 3788 3789 /* 3790 * Since the checkpoint_sm contains free entries 3791 * exclusively we can use space_map_allocated() to 3792 * indicate the cumulative checkpointed space that 3793 * has been freed. 3794 */ 3795 vd->vdev_stat.vs_checkpoint_space = 3796 -space_map_allocated(vd->vdev_checkpoint_sm); 3797 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 3798 vd->vdev_stat.vs_checkpoint_space; 3799 } else if (error != 0) { 3800 vdev_dbgmsg(vd, "vdev_load: failed to retrieve " 3801 "checkpoint space map object from vdev ZAP " 3802 "[error=%d]", error); 3803 return (error); 3804 } 3805 } 3806 3807 /* 3808 * If this is a leaf vdev, load its DTL. 3809 */ 3810 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 3811 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3812 VDEV_AUX_CORRUPT_DATA); 3813 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 3814 "[error=%d]", error); 3815 return (error); 3816 } 3817 3818 uint64_t obsolete_sm_object; 3819 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object); 3820 if (error == 0 && obsolete_sm_object != 0) { 3821 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3822 ASSERT(vd->vdev_asize != 0); 3823 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 3824 3825 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 3826 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 3827 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3828 VDEV_AUX_CORRUPT_DATA); 3829 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 3830 "obsolete spacemap (obj %llu) [error=%d]", 3831 (u_longlong_t)obsolete_sm_object, error); 3832 return (error); 3833 } 3834 } else if (error != 0) { 3835 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete " 3836 "space map object from vdev ZAP [error=%d]", error); 3837 return (error); 3838 } 3839 3840 return (0); 3841 } 3842 3843 /* 3844 * The special vdev case is used for hot spares and l2cache devices. Its 3845 * sole purpose it to set the vdev state for the associated vdev. To do this, 3846 * we make sure that we can open the underlying device, then try to read the 3847 * label, and make sure that the label is sane and that it hasn't been 3848 * repurposed to another pool. 3849 */ 3850 int 3851 vdev_validate_aux(vdev_t *vd) 3852 { 3853 nvlist_t *label; 3854 uint64_t guid, version; 3855 uint64_t state; 3856 3857 if (!vdev_readable(vd)) 3858 return (0); 3859 3860 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 3861 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3862 VDEV_AUX_CORRUPT_DATA); 3863 return (-1); 3864 } 3865 3866 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 3867 !SPA_VERSION_IS_SUPPORTED(version) || 3868 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 3869 guid != vd->vdev_guid || 3870 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 3871 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3872 VDEV_AUX_CORRUPT_DATA); 3873 nvlist_free(label); 3874 return (-1); 3875 } 3876 3877 /* 3878 * We don't actually check the pool state here. If it's in fact in 3879 * use by another pool, we update this fact on the fly when requested. 3880 */ 3881 nvlist_free(label); 3882 return (0); 3883 } 3884 3885 static void 3886 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx) 3887 { 3888 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3889 3890 if (vd->vdev_top_zap == 0) 3891 return; 3892 3893 uint64_t object = 0; 3894 int err = zap_lookup(mos, vd->vdev_top_zap, 3895 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object); 3896 if (err == ENOENT) 3897 return; 3898 VERIFY0(err); 3899 3900 VERIFY0(dmu_object_free(mos, object, tx)); 3901 VERIFY0(zap_remove(mos, vd->vdev_top_zap, 3902 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx)); 3903 } 3904 3905 /* 3906 * Free the objects used to store this vdev's spacemaps, and the array 3907 * that points to them. 3908 */ 3909 void 3910 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 3911 { 3912 if (vd->vdev_ms_array == 0) 3913 return; 3914 3915 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3916 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 3917 size_t array_bytes = array_count * sizeof (uint64_t); 3918 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 3919 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 3920 array_bytes, smobj_array, 0)); 3921 3922 for (uint64_t i = 0; i < array_count; i++) { 3923 uint64_t smobj = smobj_array[i]; 3924 if (smobj == 0) 3925 continue; 3926 3927 space_map_free_obj(mos, smobj, tx); 3928 } 3929 3930 kmem_free(smobj_array, array_bytes); 3931 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 3932 vdev_destroy_ms_flush_data(vd, tx); 3933 vd->vdev_ms_array = 0; 3934 } 3935 3936 static void 3937 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 3938 { 3939 spa_t *spa = vd->vdev_spa; 3940 3941 ASSERT(vd->vdev_islog); 3942 ASSERT(vd == vd->vdev_top); 3943 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 3944 3945 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3946 3947 vdev_destroy_spacemaps(vd, tx); 3948 if (vd->vdev_top_zap != 0) { 3949 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 3950 vd->vdev_top_zap = 0; 3951 } 3952 3953 dmu_tx_commit(tx); 3954 } 3955 3956 void 3957 vdev_sync_done(vdev_t *vd, uint64_t txg) 3958 { 3959 metaslab_t *msp; 3960 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 3961 3962 ASSERT(vdev_is_concrete(vd)); 3963 3964 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 3965 != NULL) 3966 metaslab_sync_done(msp, txg); 3967 3968 if (reassess) { 3969 metaslab_sync_reassess(vd->vdev_mg); 3970 if (vd->vdev_log_mg != NULL) 3971 metaslab_sync_reassess(vd->vdev_log_mg); 3972 } 3973 } 3974 3975 void 3976 vdev_sync(vdev_t *vd, uint64_t txg) 3977 { 3978 spa_t *spa = vd->vdev_spa; 3979 vdev_t *lvd; 3980 metaslab_t *msp; 3981 3982 ASSERT3U(txg, ==, spa->spa_syncing_txg); 3983 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3984 if (range_tree_space(vd->vdev_obsolete_segments) > 0) { 3985 ASSERT(vd->vdev_removing || 3986 vd->vdev_ops == &vdev_indirect_ops); 3987 3988 vdev_indirect_sync_obsolete(vd, tx); 3989 3990 /* 3991 * If the vdev is indirect, it can't have dirty 3992 * metaslabs or DTLs. 3993 */ 3994 if (vd->vdev_ops == &vdev_indirect_ops) { 3995 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 3996 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 3997 dmu_tx_commit(tx); 3998 return; 3999 } 4000 } 4001 4002 ASSERT(vdev_is_concrete(vd)); 4003 4004 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 4005 !vd->vdev_removing) { 4006 ASSERT(vd == vd->vdev_top); 4007 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 4008 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 4009 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 4010 ASSERT(vd->vdev_ms_array != 0); 4011 vdev_config_dirty(vd); 4012 } 4013 4014 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 4015 metaslab_sync(msp, txg); 4016 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 4017 } 4018 4019 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 4020 vdev_dtl_sync(lvd, txg); 4021 4022 /* 4023 * If this is an empty log device being removed, destroy the 4024 * metadata associated with it. 4025 */ 4026 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 4027 vdev_remove_empty_log(vd, txg); 4028 4029 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 4030 dmu_tx_commit(tx); 4031 } 4032 4033 /* 4034 * Return the amount of space that should be (or was) allocated for the given 4035 * psize (compressed block size) in the given TXG. Note that for expanded 4036 * RAIDZ vdevs, the size allocated for older BP's may be larger. See 4037 * vdev_raidz_asize(). 4038 */ 4039 uint64_t 4040 vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg) 4041 { 4042 return (vd->vdev_ops->vdev_op_asize(vd, psize, txg)); 4043 } 4044 4045 uint64_t 4046 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 4047 { 4048 return (vdev_psize_to_asize_txg(vd, psize, 0)); 4049 } 4050 4051 /* 4052 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 4053 * not be opened, and no I/O is attempted. 4054 */ 4055 int 4056 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 4057 { 4058 vdev_t *vd, *tvd; 4059 4060 spa_vdev_state_enter(spa, SCL_NONE); 4061 4062 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4063 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4064 4065 if (!vd->vdev_ops->vdev_op_leaf) 4066 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4067 4068 tvd = vd->vdev_top; 4069 4070 /* 4071 * If user did a 'zpool offline -f' then make the fault persist across 4072 * reboots. 4073 */ 4074 if (aux == VDEV_AUX_EXTERNAL_PERSIST) { 4075 /* 4076 * There are two kinds of forced faults: temporary and 4077 * persistent. Temporary faults go away at pool import, while 4078 * persistent faults stay set. Both types of faults can be 4079 * cleared with a zpool clear. 4080 * 4081 * We tell if a vdev is persistently faulted by looking at the 4082 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at 4083 * import then it's a persistent fault. Otherwise, it's 4084 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external" 4085 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This 4086 * tells vdev_config_generate() (which gets run later) to set 4087 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist. 4088 */ 4089 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 4090 vd->vdev_tmpoffline = B_FALSE; 4091 aux = VDEV_AUX_EXTERNAL; 4092 } else { 4093 vd->vdev_tmpoffline = B_TRUE; 4094 } 4095 4096 /* 4097 * We don't directly use the aux state here, but if we do a 4098 * vdev_reopen(), we need this value to be present to remember why we 4099 * were faulted. 4100 */ 4101 vd->vdev_label_aux = aux; 4102 4103 /* 4104 * Faulted state takes precedence over degraded. 4105 */ 4106 vd->vdev_delayed_close = B_FALSE; 4107 vd->vdev_faulted = 1ULL; 4108 vd->vdev_degraded = 0ULL; 4109 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 4110 4111 /* 4112 * If this device has the only valid copy of the data, then 4113 * back off and simply mark the vdev as degraded instead. 4114 */ 4115 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 4116 vd->vdev_degraded = 1ULL; 4117 vd->vdev_faulted = 0ULL; 4118 4119 /* 4120 * If we reopen the device and it's not dead, only then do we 4121 * mark it degraded. 4122 */ 4123 vdev_reopen(tvd); 4124 4125 if (vdev_readable(vd)) 4126 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 4127 } 4128 4129 return (spa_vdev_state_exit(spa, vd, 0)); 4130 } 4131 4132 /* 4133 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 4134 * user that something is wrong. The vdev continues to operate as normal as far 4135 * as I/O is concerned. 4136 */ 4137 int 4138 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 4139 { 4140 vdev_t *vd; 4141 4142 spa_vdev_state_enter(spa, SCL_NONE); 4143 4144 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4145 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4146 4147 if (!vd->vdev_ops->vdev_op_leaf) 4148 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4149 4150 /* 4151 * If the vdev is already faulted, then don't do anything. 4152 */ 4153 if (vd->vdev_faulted || vd->vdev_degraded) 4154 return (spa_vdev_state_exit(spa, NULL, 0)); 4155 4156 vd->vdev_degraded = 1ULL; 4157 if (!vdev_is_dead(vd)) 4158 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 4159 aux); 4160 4161 return (spa_vdev_state_exit(spa, vd, 0)); 4162 } 4163 4164 int 4165 vdev_remove_wanted(spa_t *spa, uint64_t guid) 4166 { 4167 vdev_t *vd; 4168 4169 spa_vdev_state_enter(spa, SCL_NONE); 4170 4171 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4172 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4173 4174 /* 4175 * If the vdev is already removed, or expanding which can trigger 4176 * repartition add/remove events, then don't do anything. 4177 */ 4178 if (vd->vdev_removed || vd->vdev_expanding) 4179 return (spa_vdev_state_exit(spa, NULL, 0)); 4180 4181 /* 4182 * Confirm the vdev has been removed, otherwise don't do anything. 4183 */ 4184 if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL))) 4185 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST))); 4186 4187 vd->vdev_remove_wanted = B_TRUE; 4188 spa_async_request(spa, SPA_ASYNC_REMOVE); 4189 4190 return (spa_vdev_state_exit(spa, vd, 0)); 4191 } 4192 4193 4194 /* 4195 * Online the given vdev. 4196 * 4197 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 4198 * spare device should be detached when the device finishes resilvering. 4199 * Second, the online should be treated like a 'test' online case, so no FMA 4200 * events are generated if the device fails to open. 4201 */ 4202 int 4203 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 4204 { 4205 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 4206 boolean_t wasoffline; 4207 vdev_state_t oldstate; 4208 4209 spa_vdev_state_enter(spa, SCL_NONE); 4210 4211 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4212 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4213 4214 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 4215 oldstate = vd->vdev_state; 4216 4217 tvd = vd->vdev_top; 4218 vd->vdev_offline = B_FALSE; 4219 vd->vdev_tmpoffline = B_FALSE; 4220 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 4221 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 4222 4223 /* XXX - L2ARC 1.0 does not support expansion */ 4224 if (!vd->vdev_aux) { 4225 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4226 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) || 4227 spa->spa_autoexpand); 4228 vd->vdev_expansion_time = gethrestime_sec(); 4229 } 4230 4231 vdev_reopen(tvd); 4232 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 4233 4234 if (!vd->vdev_aux) { 4235 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4236 pvd->vdev_expanding = B_FALSE; 4237 } 4238 4239 if (newstate) 4240 *newstate = vd->vdev_state; 4241 if ((flags & ZFS_ONLINE_UNSPARE) && 4242 !vdev_is_dead(vd) && vd->vdev_parent && 4243 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4244 vd->vdev_parent->vdev_child[0] == vd) 4245 vd->vdev_unspare = B_TRUE; 4246 4247 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 4248 4249 /* XXX - L2ARC 1.0 does not support expansion */ 4250 if (vd->vdev_aux) 4251 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 4252 spa->spa_ccw_fail_time = 0; 4253 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 4254 } 4255 4256 /* Restart initializing if necessary */ 4257 mutex_enter(&vd->vdev_initialize_lock); 4258 if (vdev_writeable(vd) && 4259 vd->vdev_initialize_thread == NULL && 4260 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 4261 (void) vdev_initialize(vd); 4262 } 4263 mutex_exit(&vd->vdev_initialize_lock); 4264 4265 /* 4266 * Restart trimming if necessary. We do not restart trimming for cache 4267 * devices here. This is triggered by l2arc_rebuild_vdev() 4268 * asynchronously for the whole device or in l2arc_evict() as it evicts 4269 * space for upcoming writes. 4270 */ 4271 mutex_enter(&vd->vdev_trim_lock); 4272 if (vdev_writeable(vd) && !vd->vdev_isl2cache && 4273 vd->vdev_trim_thread == NULL && 4274 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { 4275 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, 4276 vd->vdev_trim_secure); 4277 } 4278 mutex_exit(&vd->vdev_trim_lock); 4279 4280 if (wasoffline || 4281 (oldstate < VDEV_STATE_DEGRADED && 4282 vd->vdev_state >= VDEV_STATE_DEGRADED)) { 4283 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 4284 4285 /* 4286 * Asynchronously detach spare vdev if resilver or 4287 * rebuild is not required 4288 */ 4289 if (vd->vdev_unspare && 4290 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4291 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) && 4292 !vdev_rebuild_active(tvd)) 4293 spa_async_request(spa, SPA_ASYNC_DETACH_SPARE); 4294 } 4295 return (spa_vdev_state_exit(spa, vd, 0)); 4296 } 4297 4298 static int 4299 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 4300 { 4301 vdev_t *vd, *tvd; 4302 int error = 0; 4303 uint64_t generation; 4304 metaslab_group_t *mg; 4305 4306 top: 4307 spa_vdev_state_enter(spa, SCL_ALLOC); 4308 4309 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4310 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4311 4312 if (!vd->vdev_ops->vdev_op_leaf) 4313 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4314 4315 if (vd->vdev_ops == &vdev_draid_spare_ops) 4316 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4317 4318 tvd = vd->vdev_top; 4319 mg = tvd->vdev_mg; 4320 generation = spa->spa_config_generation + 1; 4321 4322 /* 4323 * If the device isn't already offline, try to offline it. 4324 */ 4325 if (!vd->vdev_offline) { 4326 /* 4327 * If this device has the only valid copy of some data, 4328 * don't allow it to be offlined. Log devices are always 4329 * expendable. 4330 */ 4331 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4332 vdev_dtl_required(vd)) 4333 return (spa_vdev_state_exit(spa, NULL, 4334 SET_ERROR(EBUSY))); 4335 4336 /* 4337 * If the top-level is a slog and it has had allocations 4338 * then proceed. We check that the vdev's metaslab group 4339 * is not NULL since it's possible that we may have just 4340 * added this vdev but not yet initialized its metaslabs. 4341 */ 4342 if (tvd->vdev_islog && mg != NULL) { 4343 /* 4344 * Prevent any future allocations. 4345 */ 4346 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 4347 metaslab_group_passivate(mg); 4348 (void) spa_vdev_state_exit(spa, vd, 0); 4349 4350 error = spa_reset_logs(spa); 4351 4352 /* 4353 * If the log device was successfully reset but has 4354 * checkpointed data, do not offline it. 4355 */ 4356 if (error == 0 && 4357 tvd->vdev_checkpoint_sm != NULL) { 4358 ASSERT3U(space_map_allocated( 4359 tvd->vdev_checkpoint_sm), !=, 0); 4360 error = ZFS_ERR_CHECKPOINT_EXISTS; 4361 } 4362 4363 spa_vdev_state_enter(spa, SCL_ALLOC); 4364 4365 /* 4366 * Check to see if the config has changed. 4367 */ 4368 if (error || generation != spa->spa_config_generation) { 4369 metaslab_group_activate(mg); 4370 if (error) 4371 return (spa_vdev_state_exit(spa, 4372 vd, error)); 4373 (void) spa_vdev_state_exit(spa, vd, 0); 4374 goto top; 4375 } 4376 ASSERT0(tvd->vdev_stat.vs_alloc); 4377 } 4378 4379 /* 4380 * Offline this device and reopen its top-level vdev. 4381 * If the top-level vdev is a log device then just offline 4382 * it. Otherwise, if this action results in the top-level 4383 * vdev becoming unusable, undo it and fail the request. 4384 */ 4385 vd->vdev_offline = B_TRUE; 4386 vdev_reopen(tvd); 4387 4388 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4389 vdev_is_dead(tvd)) { 4390 vd->vdev_offline = B_FALSE; 4391 vdev_reopen(tvd); 4392 return (spa_vdev_state_exit(spa, NULL, 4393 SET_ERROR(EBUSY))); 4394 } 4395 4396 /* 4397 * Add the device back into the metaslab rotor so that 4398 * once we online the device it's open for business. 4399 */ 4400 if (tvd->vdev_islog && mg != NULL) 4401 metaslab_group_activate(mg); 4402 } 4403 4404 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 4405 4406 return (spa_vdev_state_exit(spa, vd, 0)); 4407 } 4408 4409 int 4410 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 4411 { 4412 int error; 4413 4414 mutex_enter(&spa->spa_vdev_top_lock); 4415 error = vdev_offline_locked(spa, guid, flags); 4416 mutex_exit(&spa->spa_vdev_top_lock); 4417 4418 return (error); 4419 } 4420 4421 /* 4422 * Clear the error counts associated with this vdev. Unlike vdev_online() and 4423 * vdev_offline(), we assume the spa config is locked. We also clear all 4424 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 4425 */ 4426 void 4427 vdev_clear(spa_t *spa, vdev_t *vd) 4428 { 4429 vdev_t *rvd = spa->spa_root_vdev; 4430 4431 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 4432 4433 if (vd == NULL) 4434 vd = rvd; 4435 4436 vd->vdev_stat.vs_read_errors = 0; 4437 vd->vdev_stat.vs_write_errors = 0; 4438 vd->vdev_stat.vs_checksum_errors = 0; 4439 vd->vdev_stat.vs_slow_ios = 0; 4440 4441 for (int c = 0; c < vd->vdev_children; c++) 4442 vdev_clear(spa, vd->vdev_child[c]); 4443 4444 /* 4445 * It makes no sense to "clear" an indirect or removed vdev. 4446 */ 4447 if (!vdev_is_concrete(vd) || vd->vdev_removed) 4448 return; 4449 4450 /* 4451 * If we're in the FAULTED state or have experienced failed I/O, then 4452 * clear the persistent state and attempt to reopen the device. We 4453 * also mark the vdev config dirty, so that the new faulted state is 4454 * written out to disk. 4455 */ 4456 if (vd->vdev_faulted || vd->vdev_degraded || 4457 !vdev_readable(vd) || !vdev_writeable(vd)) { 4458 /* 4459 * When reopening in response to a clear event, it may be due to 4460 * a fmadm repair request. In this case, if the device is 4461 * still broken, we want to still post the ereport again. 4462 */ 4463 vd->vdev_forcefault = B_TRUE; 4464 4465 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 4466 vd->vdev_cant_read = B_FALSE; 4467 vd->vdev_cant_write = B_FALSE; 4468 vd->vdev_stat.vs_aux = 0; 4469 4470 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 4471 4472 vd->vdev_forcefault = B_FALSE; 4473 4474 if (vd != rvd && vdev_writeable(vd->vdev_top)) 4475 vdev_state_dirty(vd->vdev_top); 4476 4477 /* If a resilver isn't required, check if vdevs can be culled */ 4478 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) && 4479 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4480 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool)) 4481 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4482 4483 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 4484 } 4485 4486 /* 4487 * When clearing a FMA-diagnosed fault, we always want to 4488 * unspare the device, as we assume that the original spare was 4489 * done in response to the FMA fault. 4490 */ 4491 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 4492 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4493 vd->vdev_parent->vdev_child[0] == vd) 4494 vd->vdev_unspare = B_TRUE; 4495 4496 /* Clear recent error events cache (i.e. duplicate events tracking) */ 4497 zfs_ereport_clear(spa, vd); 4498 } 4499 4500 boolean_t 4501 vdev_is_dead(vdev_t *vd) 4502 { 4503 /* 4504 * Holes and missing devices are always considered "dead". 4505 * This simplifies the code since we don't have to check for 4506 * these types of devices in the various code paths. 4507 * Instead we rely on the fact that we skip over dead devices 4508 * before issuing I/O to them. 4509 */ 4510 return (vd->vdev_state < VDEV_STATE_DEGRADED || 4511 vd->vdev_ops == &vdev_hole_ops || 4512 vd->vdev_ops == &vdev_missing_ops); 4513 } 4514 4515 boolean_t 4516 vdev_readable(vdev_t *vd) 4517 { 4518 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 4519 } 4520 4521 boolean_t 4522 vdev_writeable(vdev_t *vd) 4523 { 4524 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 4525 vdev_is_concrete(vd)); 4526 } 4527 4528 boolean_t 4529 vdev_allocatable(vdev_t *vd) 4530 { 4531 uint64_t state = vd->vdev_state; 4532 4533 /* 4534 * We currently allow allocations from vdevs which may be in the 4535 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 4536 * fails to reopen then we'll catch it later when we're holding 4537 * the proper locks. Note that we have to get the vdev state 4538 * in a local variable because although it changes atomically, 4539 * we're asking two separate questions about it. 4540 */ 4541 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 4542 !vd->vdev_cant_write && vdev_is_concrete(vd) && 4543 vd->vdev_mg->mg_initialized); 4544 } 4545 4546 boolean_t 4547 vdev_accessible(vdev_t *vd, zio_t *zio) 4548 { 4549 ASSERT(zio->io_vd == vd); 4550 4551 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 4552 return (B_FALSE); 4553 4554 if (zio->io_type == ZIO_TYPE_READ) 4555 return (!vd->vdev_cant_read); 4556 4557 if (zio->io_type == ZIO_TYPE_WRITE) 4558 return (!vd->vdev_cant_write); 4559 4560 return (B_TRUE); 4561 } 4562 4563 static void 4564 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs) 4565 { 4566 /* 4567 * Exclude the dRAID spare when aggregating to avoid double counting 4568 * the ops and bytes. These IOs are counted by the physical leaves. 4569 */ 4570 if (cvd->vdev_ops == &vdev_draid_spare_ops) 4571 return; 4572 4573 for (int t = 0; t < VS_ZIO_TYPES; t++) { 4574 vs->vs_ops[t] += cvs->vs_ops[t]; 4575 vs->vs_bytes[t] += cvs->vs_bytes[t]; 4576 } 4577 4578 cvs->vs_scan_removing = cvd->vdev_removing; 4579 } 4580 4581 /* 4582 * Get extended stats 4583 */ 4584 static void 4585 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx) 4586 { 4587 (void) cvd; 4588 4589 int t, b; 4590 for (t = 0; t < ZIO_TYPES; t++) { 4591 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++) 4592 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b]; 4593 4594 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) { 4595 vsx->vsx_total_histo[t][b] += 4596 cvsx->vsx_total_histo[t][b]; 4597 } 4598 } 4599 4600 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4601 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) { 4602 vsx->vsx_queue_histo[t][b] += 4603 cvsx->vsx_queue_histo[t][b]; 4604 } 4605 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t]; 4606 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t]; 4607 4608 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++) 4609 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b]; 4610 4611 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++) 4612 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b]; 4613 } 4614 4615 } 4616 4617 boolean_t 4618 vdev_is_spacemap_addressable(vdev_t *vd) 4619 { 4620 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 4621 return (B_TRUE); 4622 4623 /* 4624 * If double-word space map entries are not enabled we assume 4625 * 47 bits of the space map entry are dedicated to the entry's 4626 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 4627 * to calculate the maximum address that can be described by a 4628 * space map entry for the given device. 4629 */ 4630 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 4631 4632 if (shift >= 63) /* detect potential overflow */ 4633 return (B_TRUE); 4634 4635 return (vd->vdev_asize < (1ULL << shift)); 4636 } 4637 4638 /* 4639 * Get statistics for the given vdev. 4640 */ 4641 static void 4642 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4643 { 4644 int t; 4645 /* 4646 * If we're getting stats on the root vdev, aggregate the I/O counts 4647 * over all top-level vdevs (i.e. the direct children of the root). 4648 */ 4649 if (!vd->vdev_ops->vdev_op_leaf) { 4650 if (vs) { 4651 memset(vs->vs_ops, 0, sizeof (vs->vs_ops)); 4652 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes)); 4653 } 4654 if (vsx) 4655 memset(vsx, 0, sizeof (*vsx)); 4656 4657 for (int c = 0; c < vd->vdev_children; c++) { 4658 vdev_t *cvd = vd->vdev_child[c]; 4659 vdev_stat_t *cvs = &cvd->vdev_stat; 4660 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex; 4661 4662 vdev_get_stats_ex_impl(cvd, cvs, cvsx); 4663 if (vs) 4664 vdev_get_child_stat(cvd, vs, cvs); 4665 if (vsx) 4666 vdev_get_child_stat_ex(cvd, vsx, cvsx); 4667 } 4668 } else { 4669 /* 4670 * We're a leaf. Just copy our ZIO active queue stats in. The 4671 * other leaf stats are updated in vdev_stat_update(). 4672 */ 4673 if (!vsx) 4674 return; 4675 4676 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex)); 4677 4678 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4679 vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t]; 4680 vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t); 4681 } 4682 } 4683 } 4684 4685 void 4686 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4687 { 4688 vdev_t *tvd = vd->vdev_top; 4689 mutex_enter(&vd->vdev_stat_lock); 4690 if (vs) { 4691 memcpy(vs, &vd->vdev_stat, sizeof (*vs)); 4692 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 4693 vs->vs_state = vd->vdev_state; 4694 vs->vs_rsize = vdev_get_min_asize(vd); 4695 4696 if (vd->vdev_ops->vdev_op_leaf) { 4697 vs->vs_pspace = vd->vdev_psize; 4698 vs->vs_rsize += VDEV_LABEL_START_SIZE + 4699 VDEV_LABEL_END_SIZE; 4700 /* 4701 * Report initializing progress. Since we don't 4702 * have the initializing locks held, this is only 4703 * an estimate (although a fairly accurate one). 4704 */ 4705 vs->vs_initialize_bytes_done = 4706 vd->vdev_initialize_bytes_done; 4707 vs->vs_initialize_bytes_est = 4708 vd->vdev_initialize_bytes_est; 4709 vs->vs_initialize_state = vd->vdev_initialize_state; 4710 vs->vs_initialize_action_time = 4711 vd->vdev_initialize_action_time; 4712 4713 /* 4714 * Report manual TRIM progress. Since we don't have 4715 * the manual TRIM locks held, this is only an 4716 * estimate (although fairly accurate one). 4717 */ 4718 vs->vs_trim_notsup = !vd->vdev_has_trim; 4719 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done; 4720 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est; 4721 vs->vs_trim_state = vd->vdev_trim_state; 4722 vs->vs_trim_action_time = vd->vdev_trim_action_time; 4723 4724 /* Set when there is a deferred resilver. */ 4725 vs->vs_resilver_deferred = vd->vdev_resilver_deferred; 4726 } 4727 4728 /* 4729 * Report expandable space on top-level, non-auxiliary devices 4730 * only. The expandable space is reported in terms of metaslab 4731 * sized units since that determines how much space the pool 4732 * can expand. 4733 */ 4734 if (vd->vdev_aux == NULL && tvd != NULL) { 4735 vs->vs_esize = P2ALIGN( 4736 vd->vdev_max_asize - vd->vdev_asize, 4737 1ULL << tvd->vdev_ms_shift); 4738 } 4739 4740 vs->vs_configured_ashift = vd->vdev_top != NULL 4741 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift; 4742 vs->vs_logical_ashift = vd->vdev_logical_ashift; 4743 if (vd->vdev_physical_ashift <= ASHIFT_MAX) 4744 vs->vs_physical_ashift = vd->vdev_physical_ashift; 4745 else 4746 vs->vs_physical_ashift = 0; 4747 4748 /* 4749 * Report fragmentation and rebuild progress for top-level, 4750 * non-auxiliary, concrete devices. 4751 */ 4752 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 4753 vdev_is_concrete(vd)) { 4754 /* 4755 * The vdev fragmentation rating doesn't take into 4756 * account the embedded slog metaslab (vdev_log_mg). 4757 * Since it's only one metaslab, it would have a tiny 4758 * impact on the overall fragmentation. 4759 */ 4760 vs->vs_fragmentation = (vd->vdev_mg != NULL) ? 4761 vd->vdev_mg->mg_fragmentation : 0; 4762 } 4763 vs->vs_noalloc = MAX(vd->vdev_noalloc, 4764 tvd ? tvd->vdev_noalloc : 0); 4765 } 4766 4767 vdev_get_stats_ex_impl(vd, vs, vsx); 4768 mutex_exit(&vd->vdev_stat_lock); 4769 } 4770 4771 void 4772 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 4773 { 4774 return (vdev_get_stats_ex(vd, vs, NULL)); 4775 } 4776 4777 void 4778 vdev_clear_stats(vdev_t *vd) 4779 { 4780 mutex_enter(&vd->vdev_stat_lock); 4781 vd->vdev_stat.vs_space = 0; 4782 vd->vdev_stat.vs_dspace = 0; 4783 vd->vdev_stat.vs_alloc = 0; 4784 mutex_exit(&vd->vdev_stat_lock); 4785 } 4786 4787 void 4788 vdev_scan_stat_init(vdev_t *vd) 4789 { 4790 vdev_stat_t *vs = &vd->vdev_stat; 4791 4792 for (int c = 0; c < vd->vdev_children; c++) 4793 vdev_scan_stat_init(vd->vdev_child[c]); 4794 4795 mutex_enter(&vd->vdev_stat_lock); 4796 vs->vs_scan_processed = 0; 4797 mutex_exit(&vd->vdev_stat_lock); 4798 } 4799 4800 void 4801 vdev_stat_update(zio_t *zio, uint64_t psize) 4802 { 4803 spa_t *spa = zio->io_spa; 4804 vdev_t *rvd = spa->spa_root_vdev; 4805 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 4806 vdev_t *pvd; 4807 uint64_t txg = zio->io_txg; 4808 /* Suppress ASAN false positive */ 4809 #ifdef __SANITIZE_ADDRESS__ 4810 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL; 4811 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL; 4812 #else 4813 vdev_stat_t *vs = &vd->vdev_stat; 4814 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex; 4815 #endif 4816 zio_type_t type = zio->io_type; 4817 int flags = zio->io_flags; 4818 4819 /* 4820 * If this i/o is a gang leader, it didn't do any actual work. 4821 */ 4822 if (zio->io_gang_tree) 4823 return; 4824 4825 if (zio->io_error == 0) { 4826 /* 4827 * If this is a root i/o, don't count it -- we've already 4828 * counted the top-level vdevs, and vdev_get_stats() will 4829 * aggregate them when asked. This reduces contention on 4830 * the root vdev_stat_lock and implicitly handles blocks 4831 * that compress away to holes, for which there is no i/o. 4832 * (Holes never create vdev children, so all the counters 4833 * remain zero, which is what we want.) 4834 * 4835 * Note: this only applies to successful i/o (io_error == 0) 4836 * because unlike i/o counts, errors are not additive. 4837 * When reading a ditto block, for example, failure of 4838 * one top-level vdev does not imply a root-level error. 4839 */ 4840 if (vd == rvd) 4841 return; 4842 4843 ASSERT(vd == zio->io_vd); 4844 4845 if (flags & ZIO_FLAG_IO_BYPASS) 4846 return; 4847 4848 mutex_enter(&vd->vdev_stat_lock); 4849 4850 if (flags & ZIO_FLAG_IO_REPAIR) { 4851 /* 4852 * Repair is the result of a resilver issued by the 4853 * scan thread (spa_sync). 4854 */ 4855 if (flags & ZIO_FLAG_SCAN_THREAD) { 4856 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 4857 dsl_scan_phys_t *scn_phys = &scn->scn_phys; 4858 uint64_t *processed = &scn_phys->scn_processed; 4859 4860 if (vd->vdev_ops->vdev_op_leaf) 4861 atomic_add_64(processed, psize); 4862 vs->vs_scan_processed += psize; 4863 } 4864 4865 /* 4866 * Repair is the result of a rebuild issued by the 4867 * rebuild thread (vdev_rebuild_thread). To avoid 4868 * double counting repaired bytes the virtual dRAID 4869 * spare vdev is excluded from the processed bytes. 4870 */ 4871 if (zio->io_priority == ZIO_PRIORITY_REBUILD) { 4872 vdev_t *tvd = vd->vdev_top; 4873 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config; 4874 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 4875 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt; 4876 4877 if (vd->vdev_ops->vdev_op_leaf && 4878 vd->vdev_ops != &vdev_draid_spare_ops) { 4879 atomic_add_64(rebuilt, psize); 4880 } 4881 vs->vs_rebuild_processed += psize; 4882 } 4883 4884 if (flags & ZIO_FLAG_SELF_HEAL) 4885 vs->vs_self_healed += psize; 4886 } 4887 4888 /* 4889 * The bytes/ops/histograms are recorded at the leaf level and 4890 * aggregated into the higher level vdevs in vdev_get_stats(). 4891 */ 4892 if (vd->vdev_ops->vdev_op_leaf && 4893 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) { 4894 zio_type_t vs_type = type; 4895 zio_priority_t priority = zio->io_priority; 4896 4897 /* 4898 * TRIM ops and bytes are reported to user space as 4899 * ZIO_TYPE_IOCTL. This is done to preserve the 4900 * vdev_stat_t structure layout for user space. 4901 */ 4902 if (type == ZIO_TYPE_TRIM) 4903 vs_type = ZIO_TYPE_IOCTL; 4904 4905 /* 4906 * Solely for the purposes of 'zpool iostat -lqrw' 4907 * reporting use the priority to categorize the IO. 4908 * Only the following are reported to user space: 4909 * 4910 * ZIO_PRIORITY_SYNC_READ, 4911 * ZIO_PRIORITY_SYNC_WRITE, 4912 * ZIO_PRIORITY_ASYNC_READ, 4913 * ZIO_PRIORITY_ASYNC_WRITE, 4914 * ZIO_PRIORITY_SCRUB, 4915 * ZIO_PRIORITY_TRIM, 4916 * ZIO_PRIORITY_REBUILD. 4917 */ 4918 if (priority == ZIO_PRIORITY_INITIALIZING) { 4919 ASSERT3U(type, ==, ZIO_TYPE_WRITE); 4920 priority = ZIO_PRIORITY_ASYNC_WRITE; 4921 } else if (priority == ZIO_PRIORITY_REMOVAL) { 4922 priority = ((type == ZIO_TYPE_WRITE) ? 4923 ZIO_PRIORITY_ASYNC_WRITE : 4924 ZIO_PRIORITY_ASYNC_READ); 4925 } 4926 4927 vs->vs_ops[vs_type]++; 4928 vs->vs_bytes[vs_type] += psize; 4929 4930 if (flags & ZIO_FLAG_DELEGATED) { 4931 vsx->vsx_agg_histo[priority] 4932 [RQ_HISTO(zio->io_size)]++; 4933 } else { 4934 vsx->vsx_ind_histo[priority] 4935 [RQ_HISTO(zio->io_size)]++; 4936 } 4937 4938 if (zio->io_delta && zio->io_delay) { 4939 vsx->vsx_queue_histo[priority] 4940 [L_HISTO(zio->io_delta - zio->io_delay)]++; 4941 vsx->vsx_disk_histo[type] 4942 [L_HISTO(zio->io_delay)]++; 4943 vsx->vsx_total_histo[type] 4944 [L_HISTO(zio->io_delta)]++; 4945 } 4946 } 4947 4948 mutex_exit(&vd->vdev_stat_lock); 4949 return; 4950 } 4951 4952 if (flags & ZIO_FLAG_SPECULATIVE) 4953 return; 4954 4955 /* 4956 * If this is an I/O error that is going to be retried, then ignore the 4957 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 4958 * hard errors, when in reality they can happen for any number of 4959 * innocuous reasons (bus resets, MPxIO link failure, etc). 4960 */ 4961 if (zio->io_error == EIO && 4962 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 4963 return; 4964 4965 /* 4966 * Intent logs writes won't propagate their error to the root 4967 * I/O so don't mark these types of failures as pool-level 4968 * errors. 4969 */ 4970 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 4971 return; 4972 4973 if (type == ZIO_TYPE_WRITE && txg != 0 && 4974 (!(flags & ZIO_FLAG_IO_REPAIR) || 4975 (flags & ZIO_FLAG_SCAN_THREAD) || 4976 spa->spa_claiming)) { 4977 /* 4978 * This is either a normal write (not a repair), or it's 4979 * a repair induced by the scrub thread, or it's a repair 4980 * made by zil_claim() during spa_load() in the first txg. 4981 * In the normal case, we commit the DTL change in the same 4982 * txg as the block was born. In the scrub-induced repair 4983 * case, we know that scrubs run in first-pass syncing context, 4984 * so we commit the DTL change in spa_syncing_txg(spa). 4985 * In the zil_claim() case, we commit in spa_first_txg(spa). 4986 * 4987 * We currently do not make DTL entries for failed spontaneous 4988 * self-healing writes triggered by normal (non-scrubbing) 4989 * reads, because we have no transactional context in which to 4990 * do so -- and it's not clear that it'd be desirable anyway. 4991 */ 4992 if (vd->vdev_ops->vdev_op_leaf) { 4993 uint64_t commit_txg = txg; 4994 if (flags & ZIO_FLAG_SCAN_THREAD) { 4995 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4996 ASSERT(spa_sync_pass(spa) == 1); 4997 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 4998 commit_txg = spa_syncing_txg(spa); 4999 } else if (spa->spa_claiming) { 5000 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 5001 commit_txg = spa_first_txg(spa); 5002 } 5003 ASSERT(commit_txg >= spa_syncing_txg(spa)); 5004 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 5005 return; 5006 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 5007 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 5008 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 5009 } 5010 if (vd != rvd) 5011 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 5012 } 5013 } 5014 5015 int64_t 5016 vdev_deflated_space(vdev_t *vd, int64_t space) 5017 { 5018 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); 5019 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 5020 5021 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); 5022 } 5023 5024 /* 5025 * Update the in-core space usage stats for this vdev, its metaslab class, 5026 * and the root vdev. 5027 */ 5028 void 5029 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 5030 int64_t space_delta) 5031 { 5032 (void) defer_delta; 5033 int64_t dspace_delta; 5034 spa_t *spa = vd->vdev_spa; 5035 vdev_t *rvd = spa->spa_root_vdev; 5036 5037 ASSERT(vd == vd->vdev_top); 5038 5039 /* 5040 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 5041 * factor. We must calculate this here and not at the root vdev 5042 * because the root vdev's psize-to-asize is simply the max of its 5043 * children's, thus not accurate enough for us. 5044 */ 5045 dspace_delta = vdev_deflated_space(vd, space_delta); 5046 5047 mutex_enter(&vd->vdev_stat_lock); 5048 /* ensure we won't underflow */ 5049 if (alloc_delta < 0) { 5050 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); 5051 } 5052 5053 vd->vdev_stat.vs_alloc += alloc_delta; 5054 vd->vdev_stat.vs_space += space_delta; 5055 vd->vdev_stat.vs_dspace += dspace_delta; 5056 mutex_exit(&vd->vdev_stat_lock); 5057 5058 /* every class but log contributes to root space stats */ 5059 if (vd->vdev_mg != NULL && !vd->vdev_islog) { 5060 ASSERT(!vd->vdev_isl2cache); 5061 mutex_enter(&rvd->vdev_stat_lock); 5062 rvd->vdev_stat.vs_alloc += alloc_delta; 5063 rvd->vdev_stat.vs_space += space_delta; 5064 rvd->vdev_stat.vs_dspace += dspace_delta; 5065 mutex_exit(&rvd->vdev_stat_lock); 5066 } 5067 /* Note: metaslab_class_space_update moved to metaslab_space_update */ 5068 } 5069 5070 /* 5071 * Mark a top-level vdev's config as dirty, placing it on the dirty list 5072 * so that it will be written out next time the vdev configuration is synced. 5073 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 5074 */ 5075 void 5076 vdev_config_dirty(vdev_t *vd) 5077 { 5078 spa_t *spa = vd->vdev_spa; 5079 vdev_t *rvd = spa->spa_root_vdev; 5080 int c; 5081 5082 ASSERT(spa_writeable(spa)); 5083 5084 /* 5085 * If this is an aux vdev (as with l2cache and spare devices), then we 5086 * update the vdev config manually and set the sync flag. 5087 */ 5088 if (vd->vdev_aux != NULL) { 5089 spa_aux_vdev_t *sav = vd->vdev_aux; 5090 nvlist_t **aux; 5091 uint_t naux; 5092 5093 for (c = 0; c < sav->sav_count; c++) { 5094 if (sav->sav_vdevs[c] == vd) 5095 break; 5096 } 5097 5098 if (c == sav->sav_count) { 5099 /* 5100 * We're being removed. There's nothing more to do. 5101 */ 5102 ASSERT(sav->sav_sync == B_TRUE); 5103 return; 5104 } 5105 5106 sav->sav_sync = B_TRUE; 5107 5108 if (nvlist_lookup_nvlist_array(sav->sav_config, 5109 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 5110 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 5111 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 5112 } 5113 5114 ASSERT(c < naux); 5115 5116 /* 5117 * Setting the nvlist in the middle if the array is a little 5118 * sketchy, but it will work. 5119 */ 5120 nvlist_free(aux[c]); 5121 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 5122 5123 return; 5124 } 5125 5126 /* 5127 * The dirty list is protected by the SCL_CONFIG lock. The caller 5128 * must either hold SCL_CONFIG as writer, or must be the sync thread 5129 * (which holds SCL_CONFIG as reader). There's only one sync thread, 5130 * so this is sufficient to ensure mutual exclusion. 5131 */ 5132 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5133 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5134 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5135 5136 if (vd == rvd) { 5137 for (c = 0; c < rvd->vdev_children; c++) 5138 vdev_config_dirty(rvd->vdev_child[c]); 5139 } else { 5140 ASSERT(vd == vd->vdev_top); 5141 5142 if (!list_link_active(&vd->vdev_config_dirty_node) && 5143 vdev_is_concrete(vd)) { 5144 list_insert_head(&spa->spa_config_dirty_list, vd); 5145 } 5146 } 5147 } 5148 5149 void 5150 vdev_config_clean(vdev_t *vd) 5151 { 5152 spa_t *spa = vd->vdev_spa; 5153 5154 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5155 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5156 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5157 5158 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 5159 list_remove(&spa->spa_config_dirty_list, vd); 5160 } 5161 5162 /* 5163 * Mark a top-level vdev's state as dirty, so that the next pass of 5164 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 5165 * the state changes from larger config changes because they require 5166 * much less locking, and are often needed for administrative actions. 5167 */ 5168 void 5169 vdev_state_dirty(vdev_t *vd) 5170 { 5171 spa_t *spa = vd->vdev_spa; 5172 5173 ASSERT(spa_writeable(spa)); 5174 ASSERT(vd == vd->vdev_top); 5175 5176 /* 5177 * The state list is protected by the SCL_STATE lock. The caller 5178 * must either hold SCL_STATE as writer, or must be the sync thread 5179 * (which holds SCL_STATE as reader). There's only one sync thread, 5180 * so this is sufficient to ensure mutual exclusion. 5181 */ 5182 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5183 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5184 spa_config_held(spa, SCL_STATE, RW_READER))); 5185 5186 if (!list_link_active(&vd->vdev_state_dirty_node) && 5187 vdev_is_concrete(vd)) 5188 list_insert_head(&spa->spa_state_dirty_list, vd); 5189 } 5190 5191 void 5192 vdev_state_clean(vdev_t *vd) 5193 { 5194 spa_t *spa = vd->vdev_spa; 5195 5196 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5197 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5198 spa_config_held(spa, SCL_STATE, RW_READER))); 5199 5200 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 5201 list_remove(&spa->spa_state_dirty_list, vd); 5202 } 5203 5204 /* 5205 * Propagate vdev state up from children to parent. 5206 */ 5207 void 5208 vdev_propagate_state(vdev_t *vd) 5209 { 5210 spa_t *spa = vd->vdev_spa; 5211 vdev_t *rvd = spa->spa_root_vdev; 5212 int degraded = 0, faulted = 0; 5213 int corrupted = 0; 5214 vdev_t *child; 5215 5216 if (vd->vdev_children > 0) { 5217 for (int c = 0; c < vd->vdev_children; c++) { 5218 child = vd->vdev_child[c]; 5219 5220 /* 5221 * Don't factor holes or indirect vdevs into the 5222 * decision. 5223 */ 5224 if (!vdev_is_concrete(child)) 5225 continue; 5226 5227 if (!vdev_readable(child) || 5228 (!vdev_writeable(child) && spa_writeable(spa))) { 5229 /* 5230 * Root special: if there is a top-level log 5231 * device, treat the root vdev as if it were 5232 * degraded. 5233 */ 5234 if (child->vdev_islog && vd == rvd) 5235 degraded++; 5236 else 5237 faulted++; 5238 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 5239 degraded++; 5240 } 5241 5242 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 5243 corrupted++; 5244 } 5245 5246 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 5247 5248 /* 5249 * Root special: if there is a top-level vdev that cannot be 5250 * opened due to corrupted metadata, then propagate the root 5251 * vdev's aux state as 'corrupt' rather than 'insufficient 5252 * replicas'. 5253 */ 5254 if (corrupted && vd == rvd && 5255 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 5256 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 5257 VDEV_AUX_CORRUPT_DATA); 5258 } 5259 5260 if (vd->vdev_parent) 5261 vdev_propagate_state(vd->vdev_parent); 5262 } 5263 5264 /* 5265 * Set a vdev's state. If this is during an open, we don't update the parent 5266 * state, because we're in the process of opening children depth-first. 5267 * Otherwise, we propagate the change to the parent. 5268 * 5269 * If this routine places a device in a faulted state, an appropriate ereport is 5270 * generated. 5271 */ 5272 void 5273 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 5274 { 5275 uint64_t save_state; 5276 spa_t *spa = vd->vdev_spa; 5277 5278 if (state == vd->vdev_state) { 5279 /* 5280 * Since vdev_offline() code path is already in an offline 5281 * state we can miss a statechange event to OFFLINE. Check 5282 * the previous state to catch this condition. 5283 */ 5284 if (vd->vdev_ops->vdev_op_leaf && 5285 (state == VDEV_STATE_OFFLINE) && 5286 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) { 5287 /* post an offline state change */ 5288 zfs_post_state_change(spa, vd, vd->vdev_prevstate); 5289 } 5290 vd->vdev_stat.vs_aux = aux; 5291 return; 5292 } 5293 5294 save_state = vd->vdev_state; 5295 5296 vd->vdev_state = state; 5297 vd->vdev_stat.vs_aux = aux; 5298 5299 /* 5300 * If we are setting the vdev state to anything but an open state, then 5301 * always close the underlying device unless the device has requested 5302 * a delayed close (i.e. we're about to remove or fault the device). 5303 * Otherwise, we keep accessible but invalid devices open forever. 5304 * We don't call vdev_close() itself, because that implies some extra 5305 * checks (offline, etc) that we don't want here. This is limited to 5306 * leaf devices, because otherwise closing the device will affect other 5307 * children. 5308 */ 5309 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 5310 vd->vdev_ops->vdev_op_leaf) 5311 vd->vdev_ops->vdev_op_close(vd); 5312 5313 if (vd->vdev_removed && 5314 state == VDEV_STATE_CANT_OPEN && 5315 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 5316 /* 5317 * If the previous state is set to VDEV_STATE_REMOVED, then this 5318 * device was previously marked removed and someone attempted to 5319 * reopen it. If this failed due to a nonexistent device, then 5320 * keep the device in the REMOVED state. We also let this be if 5321 * it is one of our special test online cases, which is only 5322 * attempting to online the device and shouldn't generate an FMA 5323 * fault. 5324 */ 5325 vd->vdev_state = VDEV_STATE_REMOVED; 5326 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 5327 } else if (state == VDEV_STATE_REMOVED) { 5328 vd->vdev_removed = B_TRUE; 5329 } else if (state == VDEV_STATE_CANT_OPEN) { 5330 /* 5331 * If we fail to open a vdev during an import or recovery, we 5332 * mark it as "not available", which signifies that it was 5333 * never there to begin with. Failure to open such a device 5334 * is not considered an error. 5335 */ 5336 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 5337 spa_load_state(spa) == SPA_LOAD_RECOVER) && 5338 vd->vdev_ops->vdev_op_leaf) 5339 vd->vdev_not_present = 1; 5340 5341 /* 5342 * Post the appropriate ereport. If the 'prevstate' field is 5343 * set to something other than VDEV_STATE_UNKNOWN, it indicates 5344 * that this is part of a vdev_reopen(). In this case, we don't 5345 * want to post the ereport if the device was already in the 5346 * CANT_OPEN state beforehand. 5347 * 5348 * If the 'checkremove' flag is set, then this is an attempt to 5349 * online the device in response to an insertion event. If we 5350 * hit this case, then we have detected an insertion event for a 5351 * faulted or offline device that wasn't in the removed state. 5352 * In this scenario, we don't post an ereport because we are 5353 * about to replace the device, or attempt an online with 5354 * vdev_forcefault, which will generate the fault for us. 5355 */ 5356 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 5357 !vd->vdev_not_present && !vd->vdev_checkremove && 5358 vd != spa->spa_root_vdev) { 5359 const char *class; 5360 5361 switch (aux) { 5362 case VDEV_AUX_OPEN_FAILED: 5363 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 5364 break; 5365 case VDEV_AUX_CORRUPT_DATA: 5366 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 5367 break; 5368 case VDEV_AUX_NO_REPLICAS: 5369 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 5370 break; 5371 case VDEV_AUX_BAD_GUID_SUM: 5372 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 5373 break; 5374 case VDEV_AUX_TOO_SMALL: 5375 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 5376 break; 5377 case VDEV_AUX_BAD_LABEL: 5378 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 5379 break; 5380 case VDEV_AUX_BAD_ASHIFT: 5381 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT; 5382 break; 5383 default: 5384 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 5385 } 5386 5387 (void) zfs_ereport_post(class, spa, vd, NULL, NULL, 5388 save_state); 5389 } 5390 5391 /* Erase any notion of persistent removed state */ 5392 vd->vdev_removed = B_FALSE; 5393 } else { 5394 vd->vdev_removed = B_FALSE; 5395 } 5396 5397 /* 5398 * Notify ZED of any significant state-change on a leaf vdev. 5399 * 5400 */ 5401 if (vd->vdev_ops->vdev_op_leaf) { 5402 /* preserve original state from a vdev_reopen() */ 5403 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) && 5404 (vd->vdev_prevstate != vd->vdev_state) && 5405 (save_state <= VDEV_STATE_CLOSED)) 5406 save_state = vd->vdev_prevstate; 5407 5408 /* filter out state change due to initial vdev_open */ 5409 if (save_state > VDEV_STATE_CLOSED) 5410 zfs_post_state_change(spa, vd, save_state); 5411 } 5412 5413 if (!isopen && vd->vdev_parent) 5414 vdev_propagate_state(vd->vdev_parent); 5415 } 5416 5417 boolean_t 5418 vdev_children_are_offline(vdev_t *vd) 5419 { 5420 ASSERT(!vd->vdev_ops->vdev_op_leaf); 5421 5422 for (uint64_t i = 0; i < vd->vdev_children; i++) { 5423 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 5424 return (B_FALSE); 5425 } 5426 5427 return (B_TRUE); 5428 } 5429 5430 /* 5431 * Check the vdev configuration to ensure that it's capable of supporting 5432 * a root pool. We do not support partial configuration. 5433 */ 5434 boolean_t 5435 vdev_is_bootable(vdev_t *vd) 5436 { 5437 if (!vd->vdev_ops->vdev_op_leaf) { 5438 const char *vdev_type = vd->vdev_ops->vdev_op_type; 5439 5440 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) 5441 return (B_FALSE); 5442 } 5443 5444 for (int c = 0; c < vd->vdev_children; c++) { 5445 if (!vdev_is_bootable(vd->vdev_child[c])) 5446 return (B_FALSE); 5447 } 5448 return (B_TRUE); 5449 } 5450 5451 boolean_t 5452 vdev_is_concrete(vdev_t *vd) 5453 { 5454 vdev_ops_t *ops = vd->vdev_ops; 5455 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 5456 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 5457 return (B_FALSE); 5458 } else { 5459 return (B_TRUE); 5460 } 5461 } 5462 5463 /* 5464 * Determine if a log device has valid content. If the vdev was 5465 * removed or faulted in the MOS config then we know that 5466 * the content on the log device has already been written to the pool. 5467 */ 5468 boolean_t 5469 vdev_log_state_valid(vdev_t *vd) 5470 { 5471 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 5472 !vd->vdev_removed) 5473 return (B_TRUE); 5474 5475 for (int c = 0; c < vd->vdev_children; c++) 5476 if (vdev_log_state_valid(vd->vdev_child[c])) 5477 return (B_TRUE); 5478 5479 return (B_FALSE); 5480 } 5481 5482 /* 5483 * Expand a vdev if possible. 5484 */ 5485 void 5486 vdev_expand(vdev_t *vd, uint64_t txg) 5487 { 5488 ASSERT(vd->vdev_top == vd); 5489 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5490 ASSERT(vdev_is_concrete(vd)); 5491 5492 vdev_set_deflate_ratio(vd); 5493 5494 if ((vd->vdev_spa->spa_raidz_expand == NULL || 5495 vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) && 5496 (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 5497 vdev_is_concrete(vd)) { 5498 vdev_metaslab_group_create(vd); 5499 VERIFY(vdev_metaslab_init(vd, txg) == 0); 5500 vdev_config_dirty(vd); 5501 } 5502 } 5503 5504 /* 5505 * Split a vdev. 5506 */ 5507 void 5508 vdev_split(vdev_t *vd) 5509 { 5510 vdev_t *cvd, *pvd = vd->vdev_parent; 5511 5512 VERIFY3U(pvd->vdev_children, >, 1); 5513 5514 vdev_remove_child(pvd, vd); 5515 vdev_compact_children(pvd); 5516 5517 ASSERT3P(pvd->vdev_child, !=, NULL); 5518 5519 cvd = pvd->vdev_child[0]; 5520 if (pvd->vdev_children == 1) { 5521 vdev_remove_parent(cvd); 5522 cvd->vdev_splitting = B_TRUE; 5523 } 5524 vdev_propagate_state(cvd); 5525 } 5526 5527 void 5528 vdev_deadman(vdev_t *vd, const char *tag) 5529 { 5530 for (int c = 0; c < vd->vdev_children; c++) { 5531 vdev_t *cvd = vd->vdev_child[c]; 5532 5533 vdev_deadman(cvd, tag); 5534 } 5535 5536 if (vd->vdev_ops->vdev_op_leaf) { 5537 vdev_queue_t *vq = &vd->vdev_queue; 5538 5539 mutex_enter(&vq->vq_lock); 5540 if (vq->vq_active > 0) { 5541 spa_t *spa = vd->vdev_spa; 5542 zio_t *fio; 5543 uint64_t delta; 5544 5545 zfs_dbgmsg("slow vdev: %s has %u active IOs", 5546 vd->vdev_path, vq->vq_active); 5547 5548 /* 5549 * Look at the head of all the pending queues, 5550 * if any I/O has been outstanding for longer than 5551 * the spa_deadman_synctime invoke the deadman logic. 5552 */ 5553 fio = list_head(&vq->vq_active_list); 5554 delta = gethrtime() - fio->io_timestamp; 5555 if (delta > spa_deadman_synctime(spa)) 5556 zio_deadman(fio, tag); 5557 } 5558 mutex_exit(&vq->vq_lock); 5559 } 5560 } 5561 5562 void 5563 vdev_defer_resilver(vdev_t *vd) 5564 { 5565 ASSERT(vd->vdev_ops->vdev_op_leaf); 5566 5567 vd->vdev_resilver_deferred = B_TRUE; 5568 vd->vdev_spa->spa_resilver_deferred = B_TRUE; 5569 } 5570 5571 /* 5572 * Clears the resilver deferred flag on all leaf devs under vd. Returns 5573 * B_TRUE if we have devices that need to be resilvered and are available to 5574 * accept resilver I/Os. 5575 */ 5576 boolean_t 5577 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx) 5578 { 5579 boolean_t resilver_needed = B_FALSE; 5580 spa_t *spa = vd->vdev_spa; 5581 5582 for (int c = 0; c < vd->vdev_children; c++) { 5583 vdev_t *cvd = vd->vdev_child[c]; 5584 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx); 5585 } 5586 5587 if (vd == spa->spa_root_vdev && 5588 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { 5589 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 5590 vdev_config_dirty(vd); 5591 spa->spa_resilver_deferred = B_FALSE; 5592 return (resilver_needed); 5593 } 5594 5595 if (!vdev_is_concrete(vd) || vd->vdev_aux || 5596 !vd->vdev_ops->vdev_op_leaf) 5597 return (resilver_needed); 5598 5599 vd->vdev_resilver_deferred = B_FALSE; 5600 5601 return (!vdev_is_dead(vd) && !vd->vdev_offline && 5602 vdev_resilver_needed(vd, NULL, NULL)); 5603 } 5604 5605 boolean_t 5606 vdev_xlate_is_empty(range_seg64_t *rs) 5607 { 5608 return (rs->rs_start == rs->rs_end); 5609 } 5610 5611 /* 5612 * Translate a logical range to the first contiguous physical range for the 5613 * specified vdev_t. This function is initially called with a leaf vdev and 5614 * will walk each parent vdev until it reaches a top-level vdev. Once the 5615 * top-level is reached the physical range is initialized and the recursive 5616 * function begins to unwind. As it unwinds it calls the parent's vdev 5617 * specific translation function to do the real conversion. 5618 */ 5619 void 5620 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 5621 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 5622 { 5623 /* 5624 * Walk up the vdev tree 5625 */ 5626 if (vd != vd->vdev_top) { 5627 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs, 5628 remain_rs); 5629 } else { 5630 /* 5631 * We've reached the top-level vdev, initialize the physical 5632 * range to the logical range and set an empty remaining 5633 * range then start to unwind. 5634 */ 5635 physical_rs->rs_start = logical_rs->rs_start; 5636 physical_rs->rs_end = logical_rs->rs_end; 5637 5638 remain_rs->rs_start = logical_rs->rs_start; 5639 remain_rs->rs_end = logical_rs->rs_start; 5640 5641 return; 5642 } 5643 5644 vdev_t *pvd = vd->vdev_parent; 5645 ASSERT3P(pvd, !=, NULL); 5646 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL); 5647 5648 /* 5649 * As this recursive function unwinds, translate the logical 5650 * range into its physical and any remaining components by calling 5651 * the vdev specific translate function. 5652 */ 5653 range_seg64_t intermediate = { 0 }; 5654 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs); 5655 5656 physical_rs->rs_start = intermediate.rs_start; 5657 physical_rs->rs_end = intermediate.rs_end; 5658 } 5659 5660 void 5661 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs, 5662 vdev_xlate_func_t *func, void *arg) 5663 { 5664 range_seg64_t iter_rs = *logical_rs; 5665 range_seg64_t physical_rs; 5666 range_seg64_t remain_rs; 5667 5668 while (!vdev_xlate_is_empty(&iter_rs)) { 5669 5670 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs); 5671 5672 /* 5673 * With raidz and dRAID, it's possible that the logical range 5674 * does not live on this leaf vdev. Only when there is a non- 5675 * zero physical size call the provided function. 5676 */ 5677 if (!vdev_xlate_is_empty(&physical_rs)) 5678 func(arg, &physical_rs); 5679 5680 iter_rs = remain_rs; 5681 } 5682 } 5683 5684 static char * 5685 vdev_name(vdev_t *vd, char *buf, int buflen) 5686 { 5687 if (vd->vdev_path == NULL) { 5688 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) { 5689 strlcpy(buf, vd->vdev_spa->spa_name, buflen); 5690 } else if (!vd->vdev_ops->vdev_op_leaf) { 5691 snprintf(buf, buflen, "%s-%llu", 5692 vd->vdev_ops->vdev_op_type, 5693 (u_longlong_t)vd->vdev_id); 5694 } 5695 } else { 5696 strlcpy(buf, vd->vdev_path, buflen); 5697 } 5698 return (buf); 5699 } 5700 5701 /* 5702 * Look at the vdev tree and determine whether any devices are currently being 5703 * replaced. 5704 */ 5705 boolean_t 5706 vdev_replace_in_progress(vdev_t *vdev) 5707 { 5708 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0); 5709 5710 if (vdev->vdev_ops == &vdev_replacing_ops) 5711 return (B_TRUE); 5712 5713 /* 5714 * A 'spare' vdev indicates that we have a replace in progress, unless 5715 * it has exactly two children, and the second, the hot spare, has 5716 * finished being resilvered. 5717 */ 5718 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 || 5719 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING))) 5720 return (B_TRUE); 5721 5722 for (int i = 0; i < vdev->vdev_children; i++) { 5723 if (vdev_replace_in_progress(vdev->vdev_child[i])) 5724 return (B_TRUE); 5725 } 5726 5727 return (B_FALSE); 5728 } 5729 5730 /* 5731 * Add a (source=src, propname=propval) list to an nvlist. 5732 */ 5733 static void 5734 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval, 5735 uint64_t intval, zprop_source_t src) 5736 { 5737 nvlist_t *propval; 5738 5739 propval = fnvlist_alloc(); 5740 fnvlist_add_uint64(propval, ZPROP_SOURCE, src); 5741 5742 if (strval != NULL) 5743 fnvlist_add_string(propval, ZPROP_VALUE, strval); 5744 else 5745 fnvlist_add_uint64(propval, ZPROP_VALUE, intval); 5746 5747 fnvlist_add_nvlist(nvl, propname, propval); 5748 nvlist_free(propval); 5749 } 5750 5751 static void 5752 vdev_props_set_sync(void *arg, dmu_tx_t *tx) 5753 { 5754 vdev_t *vd; 5755 nvlist_t *nvp = arg; 5756 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5757 objset_t *mos = spa->spa_meta_objset; 5758 nvpair_t *elem = NULL; 5759 uint64_t vdev_guid; 5760 uint64_t objid; 5761 nvlist_t *nvprops; 5762 5763 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV); 5764 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS); 5765 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE); 5766 5767 /* this vdev could get removed while waiting for this sync task */ 5768 if (vd == NULL) 5769 return; 5770 5771 /* 5772 * Set vdev property values in the vdev props mos object. 5773 */ 5774 if (vd->vdev_root_zap != 0) { 5775 objid = vd->vdev_root_zap; 5776 } else if (vd->vdev_top_zap != 0) { 5777 objid = vd->vdev_top_zap; 5778 } else if (vd->vdev_leaf_zap != 0) { 5779 objid = vd->vdev_leaf_zap; 5780 } else { 5781 panic("unexpected vdev type"); 5782 } 5783 5784 mutex_enter(&spa->spa_props_lock); 5785 5786 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5787 uint64_t intval; 5788 const char *strval; 5789 vdev_prop_t prop; 5790 const char *propname = nvpair_name(elem); 5791 zprop_type_t proptype; 5792 5793 switch (prop = vdev_name_to_prop(propname)) { 5794 case VDEV_PROP_USERPROP: 5795 if (vdev_prop_user(propname)) { 5796 strval = fnvpair_value_string(elem); 5797 if (strlen(strval) == 0) { 5798 /* remove the property if value == "" */ 5799 (void) zap_remove(mos, objid, propname, 5800 tx); 5801 } else { 5802 VERIFY0(zap_update(mos, objid, propname, 5803 1, strlen(strval) + 1, strval, tx)); 5804 } 5805 spa_history_log_internal(spa, "vdev set", tx, 5806 "vdev_guid=%llu: %s=%s", 5807 (u_longlong_t)vdev_guid, nvpair_name(elem), 5808 strval); 5809 } 5810 break; 5811 default: 5812 /* normalize the property name */ 5813 propname = vdev_prop_to_name(prop); 5814 proptype = vdev_prop_get_type(prop); 5815 5816 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5817 ASSERT(proptype == PROP_TYPE_STRING); 5818 strval = fnvpair_value_string(elem); 5819 VERIFY0(zap_update(mos, objid, propname, 5820 1, strlen(strval) + 1, strval, tx)); 5821 spa_history_log_internal(spa, "vdev set", tx, 5822 "vdev_guid=%llu: %s=%s", 5823 (u_longlong_t)vdev_guid, nvpair_name(elem), 5824 strval); 5825 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5826 intval = fnvpair_value_uint64(elem); 5827 5828 if (proptype == PROP_TYPE_INDEX) { 5829 const char *unused; 5830 VERIFY0(vdev_prop_index_to_string( 5831 prop, intval, &unused)); 5832 } 5833 VERIFY0(zap_update(mos, objid, propname, 5834 sizeof (uint64_t), 1, &intval, tx)); 5835 spa_history_log_internal(spa, "vdev set", tx, 5836 "vdev_guid=%llu: %s=%lld", 5837 (u_longlong_t)vdev_guid, 5838 nvpair_name(elem), (longlong_t)intval); 5839 } else { 5840 panic("invalid vdev property type %u", 5841 nvpair_type(elem)); 5842 } 5843 } 5844 5845 } 5846 5847 mutex_exit(&spa->spa_props_lock); 5848 } 5849 5850 int 5851 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 5852 { 5853 spa_t *spa = vd->vdev_spa; 5854 nvpair_t *elem = NULL; 5855 uint64_t vdev_guid; 5856 nvlist_t *nvprops; 5857 int error = 0; 5858 5859 ASSERT(vd != NULL); 5860 5861 /* Check that vdev has a zap we can use */ 5862 if (vd->vdev_root_zap == 0 && 5863 vd->vdev_top_zap == 0 && 5864 vd->vdev_leaf_zap == 0) 5865 return (SET_ERROR(EINVAL)); 5866 5867 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV, 5868 &vdev_guid) != 0) 5869 return (SET_ERROR(EINVAL)); 5870 5871 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS, 5872 &nvprops) != 0) 5873 return (SET_ERROR(EINVAL)); 5874 5875 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) 5876 return (SET_ERROR(EINVAL)); 5877 5878 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5879 const char *propname = nvpair_name(elem); 5880 vdev_prop_t prop = vdev_name_to_prop(propname); 5881 uint64_t intval = 0; 5882 const char *strval = NULL; 5883 5884 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) { 5885 error = EINVAL; 5886 goto end; 5887 } 5888 5889 if (vdev_prop_readonly(prop)) { 5890 error = EROFS; 5891 goto end; 5892 } 5893 5894 /* Special Processing */ 5895 switch (prop) { 5896 case VDEV_PROP_PATH: 5897 if (vd->vdev_path == NULL) { 5898 error = EROFS; 5899 break; 5900 } 5901 if (nvpair_value_string(elem, &strval) != 0) { 5902 error = EINVAL; 5903 break; 5904 } 5905 /* New path must start with /dev/ */ 5906 if (strncmp(strval, "/dev/", 5)) { 5907 error = EINVAL; 5908 break; 5909 } 5910 error = spa_vdev_setpath(spa, vdev_guid, strval); 5911 break; 5912 case VDEV_PROP_ALLOCATING: 5913 if (nvpair_value_uint64(elem, &intval) != 0) { 5914 error = EINVAL; 5915 break; 5916 } 5917 if (intval != vd->vdev_noalloc) 5918 break; 5919 if (intval == 0) 5920 error = spa_vdev_noalloc(spa, vdev_guid); 5921 else 5922 error = spa_vdev_alloc(spa, vdev_guid); 5923 break; 5924 case VDEV_PROP_FAILFAST: 5925 if (nvpair_value_uint64(elem, &intval) != 0) { 5926 error = EINVAL; 5927 break; 5928 } 5929 vd->vdev_failfast = intval & 1; 5930 break; 5931 case VDEV_PROP_CHECKSUM_N: 5932 if (nvpair_value_uint64(elem, &intval) != 0) { 5933 error = EINVAL; 5934 break; 5935 } 5936 vd->vdev_checksum_n = intval; 5937 break; 5938 case VDEV_PROP_CHECKSUM_T: 5939 if (nvpair_value_uint64(elem, &intval) != 0) { 5940 error = EINVAL; 5941 break; 5942 } 5943 vd->vdev_checksum_t = intval; 5944 break; 5945 case VDEV_PROP_IO_N: 5946 if (nvpair_value_uint64(elem, &intval) != 0) { 5947 error = EINVAL; 5948 break; 5949 } 5950 vd->vdev_io_n = intval; 5951 break; 5952 case VDEV_PROP_IO_T: 5953 if (nvpair_value_uint64(elem, &intval) != 0) { 5954 error = EINVAL; 5955 break; 5956 } 5957 vd->vdev_io_t = intval; 5958 break; 5959 default: 5960 /* Most processing is done in vdev_props_set_sync */ 5961 break; 5962 } 5963 end: 5964 if (error != 0) { 5965 intval = error; 5966 vdev_prop_add_list(outnvl, propname, strval, intval, 0); 5967 return (error); 5968 } 5969 } 5970 5971 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync, 5972 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 5973 } 5974 5975 int 5976 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 5977 { 5978 spa_t *spa = vd->vdev_spa; 5979 objset_t *mos = spa->spa_meta_objset; 5980 int err = 0; 5981 uint64_t objid; 5982 uint64_t vdev_guid; 5983 nvpair_t *elem = NULL; 5984 nvlist_t *nvprops = NULL; 5985 uint64_t intval = 0; 5986 char *strval = NULL; 5987 const char *propname = NULL; 5988 vdev_prop_t prop; 5989 5990 ASSERT(vd != NULL); 5991 ASSERT(mos != NULL); 5992 5993 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV, 5994 &vdev_guid) != 0) 5995 return (SET_ERROR(EINVAL)); 5996 5997 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops); 5998 5999 if (vd->vdev_root_zap != 0) { 6000 objid = vd->vdev_root_zap; 6001 } else if (vd->vdev_top_zap != 0) { 6002 objid = vd->vdev_top_zap; 6003 } else if (vd->vdev_leaf_zap != 0) { 6004 objid = vd->vdev_leaf_zap; 6005 } else { 6006 return (SET_ERROR(EINVAL)); 6007 } 6008 ASSERT(objid != 0); 6009 6010 mutex_enter(&spa->spa_props_lock); 6011 6012 if (nvprops != NULL) { 6013 char namebuf[64] = { 0 }; 6014 6015 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 6016 intval = 0; 6017 strval = NULL; 6018 propname = nvpair_name(elem); 6019 prop = vdev_name_to_prop(propname); 6020 zprop_source_t src = ZPROP_SRC_DEFAULT; 6021 uint64_t integer_size, num_integers; 6022 6023 switch (prop) { 6024 /* Special Read-only Properties */ 6025 case VDEV_PROP_NAME: 6026 strval = vdev_name(vd, namebuf, 6027 sizeof (namebuf)); 6028 if (strval == NULL) 6029 continue; 6030 vdev_prop_add_list(outnvl, propname, strval, 0, 6031 ZPROP_SRC_NONE); 6032 continue; 6033 case VDEV_PROP_CAPACITY: 6034 /* percent used */ 6035 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 : 6036 (vd->vdev_stat.vs_alloc * 100 / 6037 vd->vdev_stat.vs_dspace); 6038 vdev_prop_add_list(outnvl, propname, NULL, 6039 intval, ZPROP_SRC_NONE); 6040 continue; 6041 case VDEV_PROP_STATE: 6042 vdev_prop_add_list(outnvl, propname, NULL, 6043 vd->vdev_state, ZPROP_SRC_NONE); 6044 continue; 6045 case VDEV_PROP_GUID: 6046 vdev_prop_add_list(outnvl, propname, NULL, 6047 vd->vdev_guid, ZPROP_SRC_NONE); 6048 continue; 6049 case VDEV_PROP_ASIZE: 6050 vdev_prop_add_list(outnvl, propname, NULL, 6051 vd->vdev_asize, ZPROP_SRC_NONE); 6052 continue; 6053 case VDEV_PROP_PSIZE: 6054 vdev_prop_add_list(outnvl, propname, NULL, 6055 vd->vdev_psize, ZPROP_SRC_NONE); 6056 continue; 6057 case VDEV_PROP_ASHIFT: 6058 vdev_prop_add_list(outnvl, propname, NULL, 6059 vd->vdev_ashift, ZPROP_SRC_NONE); 6060 continue; 6061 case VDEV_PROP_SIZE: 6062 vdev_prop_add_list(outnvl, propname, NULL, 6063 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE); 6064 continue; 6065 case VDEV_PROP_FREE: 6066 vdev_prop_add_list(outnvl, propname, NULL, 6067 vd->vdev_stat.vs_dspace - 6068 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 6069 continue; 6070 case VDEV_PROP_ALLOCATED: 6071 vdev_prop_add_list(outnvl, propname, NULL, 6072 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 6073 continue; 6074 case VDEV_PROP_EXPANDSZ: 6075 vdev_prop_add_list(outnvl, propname, NULL, 6076 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE); 6077 continue; 6078 case VDEV_PROP_FRAGMENTATION: 6079 vdev_prop_add_list(outnvl, propname, NULL, 6080 vd->vdev_stat.vs_fragmentation, 6081 ZPROP_SRC_NONE); 6082 continue; 6083 case VDEV_PROP_PARITY: 6084 vdev_prop_add_list(outnvl, propname, NULL, 6085 vdev_get_nparity(vd), ZPROP_SRC_NONE); 6086 continue; 6087 case VDEV_PROP_PATH: 6088 if (vd->vdev_path == NULL) 6089 continue; 6090 vdev_prop_add_list(outnvl, propname, 6091 vd->vdev_path, 0, ZPROP_SRC_NONE); 6092 continue; 6093 case VDEV_PROP_DEVID: 6094 if (vd->vdev_devid == NULL) 6095 continue; 6096 vdev_prop_add_list(outnvl, propname, 6097 vd->vdev_devid, 0, ZPROP_SRC_NONE); 6098 continue; 6099 case VDEV_PROP_PHYS_PATH: 6100 if (vd->vdev_physpath == NULL) 6101 continue; 6102 vdev_prop_add_list(outnvl, propname, 6103 vd->vdev_physpath, 0, ZPROP_SRC_NONE); 6104 continue; 6105 case VDEV_PROP_ENC_PATH: 6106 if (vd->vdev_enc_sysfs_path == NULL) 6107 continue; 6108 vdev_prop_add_list(outnvl, propname, 6109 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE); 6110 continue; 6111 case VDEV_PROP_FRU: 6112 if (vd->vdev_fru == NULL) 6113 continue; 6114 vdev_prop_add_list(outnvl, propname, 6115 vd->vdev_fru, 0, ZPROP_SRC_NONE); 6116 continue; 6117 case VDEV_PROP_PARENT: 6118 if (vd->vdev_parent != NULL) { 6119 strval = vdev_name(vd->vdev_parent, 6120 namebuf, sizeof (namebuf)); 6121 vdev_prop_add_list(outnvl, propname, 6122 strval, 0, ZPROP_SRC_NONE); 6123 } 6124 continue; 6125 case VDEV_PROP_CHILDREN: 6126 if (vd->vdev_children > 0) 6127 strval = kmem_zalloc(ZAP_MAXVALUELEN, 6128 KM_SLEEP); 6129 for (uint64_t i = 0; i < vd->vdev_children; 6130 i++) { 6131 const char *vname; 6132 6133 vname = vdev_name(vd->vdev_child[i], 6134 namebuf, sizeof (namebuf)); 6135 if (vname == NULL) 6136 vname = "(unknown)"; 6137 if (strlen(strval) > 0) 6138 strlcat(strval, ",", 6139 ZAP_MAXVALUELEN); 6140 strlcat(strval, vname, ZAP_MAXVALUELEN); 6141 } 6142 if (strval != NULL) { 6143 vdev_prop_add_list(outnvl, propname, 6144 strval, 0, ZPROP_SRC_NONE); 6145 kmem_free(strval, ZAP_MAXVALUELEN); 6146 } 6147 continue; 6148 case VDEV_PROP_NUMCHILDREN: 6149 vdev_prop_add_list(outnvl, propname, NULL, 6150 vd->vdev_children, ZPROP_SRC_NONE); 6151 continue; 6152 case VDEV_PROP_READ_ERRORS: 6153 vdev_prop_add_list(outnvl, propname, NULL, 6154 vd->vdev_stat.vs_read_errors, 6155 ZPROP_SRC_NONE); 6156 continue; 6157 case VDEV_PROP_WRITE_ERRORS: 6158 vdev_prop_add_list(outnvl, propname, NULL, 6159 vd->vdev_stat.vs_write_errors, 6160 ZPROP_SRC_NONE); 6161 continue; 6162 case VDEV_PROP_CHECKSUM_ERRORS: 6163 vdev_prop_add_list(outnvl, propname, NULL, 6164 vd->vdev_stat.vs_checksum_errors, 6165 ZPROP_SRC_NONE); 6166 continue; 6167 case VDEV_PROP_INITIALIZE_ERRORS: 6168 vdev_prop_add_list(outnvl, propname, NULL, 6169 vd->vdev_stat.vs_initialize_errors, 6170 ZPROP_SRC_NONE); 6171 continue; 6172 case VDEV_PROP_OPS_NULL: 6173 vdev_prop_add_list(outnvl, propname, NULL, 6174 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL], 6175 ZPROP_SRC_NONE); 6176 continue; 6177 case VDEV_PROP_OPS_READ: 6178 vdev_prop_add_list(outnvl, propname, NULL, 6179 vd->vdev_stat.vs_ops[ZIO_TYPE_READ], 6180 ZPROP_SRC_NONE); 6181 continue; 6182 case VDEV_PROP_OPS_WRITE: 6183 vdev_prop_add_list(outnvl, propname, NULL, 6184 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE], 6185 ZPROP_SRC_NONE); 6186 continue; 6187 case VDEV_PROP_OPS_FREE: 6188 vdev_prop_add_list(outnvl, propname, NULL, 6189 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE], 6190 ZPROP_SRC_NONE); 6191 continue; 6192 case VDEV_PROP_OPS_CLAIM: 6193 vdev_prop_add_list(outnvl, propname, NULL, 6194 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM], 6195 ZPROP_SRC_NONE); 6196 continue; 6197 case VDEV_PROP_OPS_TRIM: 6198 /* 6199 * TRIM ops and bytes are reported to user 6200 * space as ZIO_TYPE_IOCTL. This is done to 6201 * preserve the vdev_stat_t structure layout 6202 * for user space. 6203 */ 6204 vdev_prop_add_list(outnvl, propname, NULL, 6205 vd->vdev_stat.vs_ops[ZIO_TYPE_IOCTL], 6206 ZPROP_SRC_NONE); 6207 continue; 6208 case VDEV_PROP_BYTES_NULL: 6209 vdev_prop_add_list(outnvl, propname, NULL, 6210 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL], 6211 ZPROP_SRC_NONE); 6212 continue; 6213 case VDEV_PROP_BYTES_READ: 6214 vdev_prop_add_list(outnvl, propname, NULL, 6215 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ], 6216 ZPROP_SRC_NONE); 6217 continue; 6218 case VDEV_PROP_BYTES_WRITE: 6219 vdev_prop_add_list(outnvl, propname, NULL, 6220 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE], 6221 ZPROP_SRC_NONE); 6222 continue; 6223 case VDEV_PROP_BYTES_FREE: 6224 vdev_prop_add_list(outnvl, propname, NULL, 6225 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE], 6226 ZPROP_SRC_NONE); 6227 continue; 6228 case VDEV_PROP_BYTES_CLAIM: 6229 vdev_prop_add_list(outnvl, propname, NULL, 6230 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM], 6231 ZPROP_SRC_NONE); 6232 continue; 6233 case VDEV_PROP_BYTES_TRIM: 6234 /* 6235 * TRIM ops and bytes are reported to user 6236 * space as ZIO_TYPE_IOCTL. This is done to 6237 * preserve the vdev_stat_t structure layout 6238 * for user space. 6239 */ 6240 vdev_prop_add_list(outnvl, propname, NULL, 6241 vd->vdev_stat.vs_bytes[ZIO_TYPE_IOCTL], 6242 ZPROP_SRC_NONE); 6243 continue; 6244 case VDEV_PROP_REMOVING: 6245 vdev_prop_add_list(outnvl, propname, NULL, 6246 vd->vdev_removing, ZPROP_SRC_NONE); 6247 continue; 6248 case VDEV_PROP_RAIDZ_EXPANDING: 6249 /* Only expose this for raidz */ 6250 if (vd->vdev_ops == &vdev_raidz_ops) { 6251 vdev_prop_add_list(outnvl, propname, 6252 NULL, vd->vdev_rz_expanding, 6253 ZPROP_SRC_NONE); 6254 } 6255 continue; 6256 /* Numeric Properites */ 6257 case VDEV_PROP_ALLOCATING: 6258 /* Leaf vdevs cannot have this property */ 6259 if (vd->vdev_mg == NULL && 6260 vd->vdev_top != NULL) { 6261 src = ZPROP_SRC_NONE; 6262 intval = ZPROP_BOOLEAN_NA; 6263 } else { 6264 err = vdev_prop_get_int(vd, prop, 6265 &intval); 6266 if (err && err != ENOENT) 6267 break; 6268 6269 if (intval == 6270 vdev_prop_default_numeric(prop)) 6271 src = ZPROP_SRC_DEFAULT; 6272 else 6273 src = ZPROP_SRC_LOCAL; 6274 } 6275 6276 vdev_prop_add_list(outnvl, propname, NULL, 6277 intval, src); 6278 break; 6279 case VDEV_PROP_FAILFAST: 6280 src = ZPROP_SRC_LOCAL; 6281 strval = NULL; 6282 6283 err = zap_lookup(mos, objid, nvpair_name(elem), 6284 sizeof (uint64_t), 1, &intval); 6285 if (err == ENOENT) { 6286 intval = vdev_prop_default_numeric( 6287 prop); 6288 err = 0; 6289 } else if (err) { 6290 break; 6291 } 6292 if (intval == vdev_prop_default_numeric(prop)) 6293 src = ZPROP_SRC_DEFAULT; 6294 6295 vdev_prop_add_list(outnvl, propname, strval, 6296 intval, src); 6297 break; 6298 case VDEV_PROP_CHECKSUM_N: 6299 case VDEV_PROP_CHECKSUM_T: 6300 case VDEV_PROP_IO_N: 6301 case VDEV_PROP_IO_T: 6302 err = vdev_prop_get_int(vd, prop, &intval); 6303 if (err && err != ENOENT) 6304 break; 6305 6306 if (intval == vdev_prop_default_numeric(prop)) 6307 src = ZPROP_SRC_DEFAULT; 6308 else 6309 src = ZPROP_SRC_LOCAL; 6310 6311 vdev_prop_add_list(outnvl, propname, NULL, 6312 intval, src); 6313 break; 6314 /* Text Properties */ 6315 case VDEV_PROP_COMMENT: 6316 /* Exists in the ZAP below */ 6317 /* FALLTHRU */ 6318 case VDEV_PROP_USERPROP: 6319 /* User Properites */ 6320 src = ZPROP_SRC_LOCAL; 6321 6322 err = zap_length(mos, objid, nvpair_name(elem), 6323 &integer_size, &num_integers); 6324 if (err) 6325 break; 6326 6327 switch (integer_size) { 6328 case 8: 6329 /* User properties cannot be integers */ 6330 err = EINVAL; 6331 break; 6332 case 1: 6333 /* string property */ 6334 strval = kmem_alloc(num_integers, 6335 KM_SLEEP); 6336 err = zap_lookup(mos, objid, 6337 nvpair_name(elem), 1, 6338 num_integers, strval); 6339 if (err) { 6340 kmem_free(strval, 6341 num_integers); 6342 break; 6343 } 6344 vdev_prop_add_list(outnvl, propname, 6345 strval, 0, src); 6346 kmem_free(strval, num_integers); 6347 break; 6348 } 6349 break; 6350 default: 6351 err = ENOENT; 6352 break; 6353 } 6354 if (err) 6355 break; 6356 } 6357 } else { 6358 /* 6359 * Get all properties from the MOS vdev property object. 6360 */ 6361 zap_cursor_t zc; 6362 zap_attribute_t za; 6363 for (zap_cursor_init(&zc, mos, objid); 6364 (err = zap_cursor_retrieve(&zc, &za)) == 0; 6365 zap_cursor_advance(&zc)) { 6366 intval = 0; 6367 strval = NULL; 6368 zprop_source_t src = ZPROP_SRC_DEFAULT; 6369 propname = za.za_name; 6370 6371 switch (za.za_integer_length) { 6372 case 8: 6373 /* We do not allow integer user properties */ 6374 /* This is likely an internal value */ 6375 break; 6376 case 1: 6377 /* string property */ 6378 strval = kmem_alloc(za.za_num_integers, 6379 KM_SLEEP); 6380 err = zap_lookup(mos, objid, za.za_name, 1, 6381 za.za_num_integers, strval); 6382 if (err) { 6383 kmem_free(strval, za.za_num_integers); 6384 break; 6385 } 6386 vdev_prop_add_list(outnvl, propname, strval, 0, 6387 src); 6388 kmem_free(strval, za.za_num_integers); 6389 break; 6390 6391 default: 6392 break; 6393 } 6394 } 6395 zap_cursor_fini(&zc); 6396 } 6397 6398 mutex_exit(&spa->spa_props_lock); 6399 if (err && err != ENOENT) { 6400 return (err); 6401 } 6402 6403 return (0); 6404 } 6405 6406 EXPORT_SYMBOL(vdev_fault); 6407 EXPORT_SYMBOL(vdev_degrade); 6408 EXPORT_SYMBOL(vdev_online); 6409 EXPORT_SYMBOL(vdev_offline); 6410 EXPORT_SYMBOL(vdev_clear); 6411 6412 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW, 6413 "Target number of metaslabs per top-level vdev"); 6414 6415 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW, 6416 "Default lower limit for metaslab size"); 6417 6418 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW, 6419 "Default upper limit for metaslab size"); 6420 6421 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW, 6422 "Minimum number of metaslabs per top-level vdev"); 6423 6424 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW, 6425 "Practical upper limit of total metaslabs per top-level vdev"); 6426 6427 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW, 6428 "Rate limit slow IO (delay) events to this many per second"); 6429 6430 /* BEGIN CSTYLED */ 6431 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW, 6432 "Rate limit checksum events to this many checksum errors per second " 6433 "(do not set below ZED threshold)."); 6434 /* END CSTYLED */ 6435 6436 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW, 6437 "Ignore errors during resilver/scrub"); 6438 6439 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW, 6440 "Bypass vdev_validate()"); 6441 6442 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW, 6443 "Disable cache flushes"); 6444 6445 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW, 6446 "Minimum number of metaslabs required to dedicate one for log blocks"); 6447 6448 /* BEGIN CSTYLED */ 6449 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift, 6450 param_set_min_auto_ashift, param_get_uint, ZMOD_RW, 6451 "Minimum ashift used when creating new top-level vdevs"); 6452 6453 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift, 6454 param_set_max_auto_ashift, param_get_uint, ZMOD_RW, 6455 "Maximum ashift used when optimizing for logical -> physical sector " 6456 "size on new top-level vdevs"); 6457 /* END CSTYLED */ 6458