xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev.c (revision 0577e39bec76b23aa099b68d5d1c832cc3823c38)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  * Copyright 2017 Joyent, Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  * Copyright (c) 2019, Datto Inc. All rights reserved.
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa.h>
36 #include <sys/spa_impl.h>
37 #include <sys/bpobj.h>
38 #include <sys/dmu.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/vdev_rebuild.h>
43 #include <sys/vdev_draid.h>
44 #include <sys/uberblock_impl.h>
45 #include <sys/metaslab.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/space_map.h>
48 #include <sys/space_reftree.h>
49 #include <sys/zio.h>
50 #include <sys/zap.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/arc.h>
53 #include <sys/zil.h>
54 #include <sys/dsl_scan.h>
55 #include <sys/vdev_raidz.h>
56 #include <sys/abd.h>
57 #include <sys/vdev_initialize.h>
58 #include <sys/vdev_trim.h>
59 #include <sys/zvol.h>
60 #include <sys/zfs_ratelimit.h>
61 
62 /*
63  * One metaslab from each (normal-class) vdev is used by the ZIL.  These are
64  * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
65  * part of the spa_embedded_log_class.  The metaslab with the most free space
66  * in each vdev is selected for this purpose when the pool is opened (or a
67  * vdev is added).  See vdev_metaslab_init().
68  *
69  * Log blocks can be allocated from the following locations.  Each one is tried
70  * in order until the allocation succeeds:
71  * 1. dedicated log vdevs, aka "slog" (spa_log_class)
72  * 2. embedded slog metaslabs (spa_embedded_log_class)
73  * 3. other metaslabs in normal vdevs (spa_normal_class)
74  *
75  * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
76  * than this number of metaslabs in the vdev.  This ensures that we don't set
77  * aside an unreasonable amount of space for the ZIL.  If set to less than
78  * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
79  * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
80  */
81 int zfs_embedded_slog_min_ms = 64;
82 
83 /* default target for number of metaslabs per top-level vdev */
84 int zfs_vdev_default_ms_count = 200;
85 
86 /* minimum number of metaslabs per top-level vdev */
87 int zfs_vdev_min_ms_count = 16;
88 
89 /* practical upper limit of total metaslabs per top-level vdev */
90 int zfs_vdev_ms_count_limit = 1ULL << 17;
91 
92 /* lower limit for metaslab size (512M) */
93 int zfs_vdev_default_ms_shift = 29;
94 
95 /* upper limit for metaslab size (16G) */
96 int zfs_vdev_max_ms_shift = 34;
97 
98 int vdev_validate_skip = B_FALSE;
99 
100 /*
101  * Since the DTL space map of a vdev is not expected to have a lot of
102  * entries, we default its block size to 4K.
103  */
104 int zfs_vdev_dtl_sm_blksz = (1 << 12);
105 
106 /*
107  * Rate limit slow IO (delay) events to this many per second.
108  */
109 unsigned int zfs_slow_io_events_per_second = 20;
110 
111 /*
112  * Rate limit checksum events after this many checksum errors per second.
113  */
114 unsigned int zfs_checksum_events_per_second = 20;
115 
116 /*
117  * Ignore errors during scrub/resilver.  Allows to work around resilver
118  * upon import when there are pool errors.
119  */
120 int zfs_scan_ignore_errors = 0;
121 
122 /*
123  * vdev-wide space maps that have lots of entries written to them at
124  * the end of each transaction can benefit from a higher I/O bandwidth
125  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
126  */
127 int zfs_vdev_standard_sm_blksz = (1 << 17);
128 
129 /*
130  * Tunable parameter for debugging or performance analysis. Setting this
131  * will cause pool corruption on power loss if a volatile out-of-order
132  * write cache is enabled.
133  */
134 int zfs_nocacheflush = 0;
135 
136 uint64_t zfs_vdev_max_auto_ashift = ASHIFT_MAX;
137 uint64_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
138 
139 /*PRINTFLIKE2*/
140 void
141 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
142 {
143 	va_list adx;
144 	char buf[256];
145 
146 	va_start(adx, fmt);
147 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
148 	va_end(adx);
149 
150 	if (vd->vdev_path != NULL) {
151 		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
152 		    vd->vdev_path, buf);
153 	} else {
154 		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
155 		    vd->vdev_ops->vdev_op_type,
156 		    (u_longlong_t)vd->vdev_id,
157 		    (u_longlong_t)vd->vdev_guid, buf);
158 	}
159 }
160 
161 void
162 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
163 {
164 	char state[20];
165 
166 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
167 		zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
168 		    vd->vdev_ops->vdev_op_type);
169 		return;
170 	}
171 
172 	switch (vd->vdev_state) {
173 	case VDEV_STATE_UNKNOWN:
174 		(void) snprintf(state, sizeof (state), "unknown");
175 		break;
176 	case VDEV_STATE_CLOSED:
177 		(void) snprintf(state, sizeof (state), "closed");
178 		break;
179 	case VDEV_STATE_OFFLINE:
180 		(void) snprintf(state, sizeof (state), "offline");
181 		break;
182 	case VDEV_STATE_REMOVED:
183 		(void) snprintf(state, sizeof (state), "removed");
184 		break;
185 	case VDEV_STATE_CANT_OPEN:
186 		(void) snprintf(state, sizeof (state), "can't open");
187 		break;
188 	case VDEV_STATE_FAULTED:
189 		(void) snprintf(state, sizeof (state), "faulted");
190 		break;
191 	case VDEV_STATE_DEGRADED:
192 		(void) snprintf(state, sizeof (state), "degraded");
193 		break;
194 	case VDEV_STATE_HEALTHY:
195 		(void) snprintf(state, sizeof (state), "healthy");
196 		break;
197 	default:
198 		(void) snprintf(state, sizeof (state), "<state %u>",
199 		    (uint_t)vd->vdev_state);
200 	}
201 
202 	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
203 	    "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
204 	    vd->vdev_islog ? " (log)" : "",
205 	    (u_longlong_t)vd->vdev_guid,
206 	    vd->vdev_path ? vd->vdev_path : "N/A", state);
207 
208 	for (uint64_t i = 0; i < vd->vdev_children; i++)
209 		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
210 }
211 
212 /*
213  * Virtual device management.
214  */
215 
216 static vdev_ops_t *vdev_ops_table[] = {
217 	&vdev_root_ops,
218 	&vdev_raidz_ops,
219 	&vdev_draid_ops,
220 	&vdev_draid_spare_ops,
221 	&vdev_mirror_ops,
222 	&vdev_replacing_ops,
223 	&vdev_spare_ops,
224 	&vdev_disk_ops,
225 	&vdev_file_ops,
226 	&vdev_missing_ops,
227 	&vdev_hole_ops,
228 	&vdev_indirect_ops,
229 	NULL
230 };
231 
232 /*
233  * Given a vdev type, return the appropriate ops vector.
234  */
235 static vdev_ops_t *
236 vdev_getops(const char *type)
237 {
238 	vdev_ops_t *ops, **opspp;
239 
240 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
241 		if (strcmp(ops->vdev_op_type, type) == 0)
242 			break;
243 
244 	return (ops);
245 }
246 
247 /*
248  * Given a vdev and a metaslab class, find which metaslab group we're
249  * interested in. All vdevs may belong to two different metaslab classes.
250  * Dedicated slog devices use only the primary metaslab group, rather than a
251  * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
252  */
253 metaslab_group_t *
254 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
255 {
256 	if (mc == spa_embedded_log_class(vd->vdev_spa) &&
257 	    vd->vdev_log_mg != NULL)
258 		return (vd->vdev_log_mg);
259 	else
260 		return (vd->vdev_mg);
261 }
262 
263 /* ARGSUSED */
264 void
265 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
266     range_seg64_t *physical_rs, range_seg64_t *remain_rs)
267 {
268 	physical_rs->rs_start = logical_rs->rs_start;
269 	physical_rs->rs_end = logical_rs->rs_end;
270 }
271 
272 /*
273  * Derive the enumerated allocation bias from string input.
274  * String origin is either the per-vdev zap or zpool(8).
275  */
276 static vdev_alloc_bias_t
277 vdev_derive_alloc_bias(const char *bias)
278 {
279 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
280 
281 	if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
282 		alloc_bias = VDEV_BIAS_LOG;
283 	else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
284 		alloc_bias = VDEV_BIAS_SPECIAL;
285 	else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
286 		alloc_bias = VDEV_BIAS_DEDUP;
287 
288 	return (alloc_bias);
289 }
290 
291 /*
292  * Default asize function: return the MAX of psize with the asize of
293  * all children.  This is what's used by anything other than RAID-Z.
294  */
295 uint64_t
296 vdev_default_asize(vdev_t *vd, uint64_t psize)
297 {
298 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
299 	uint64_t csize;
300 
301 	for (int c = 0; c < vd->vdev_children; c++) {
302 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
303 		asize = MAX(asize, csize);
304 	}
305 
306 	return (asize);
307 }
308 
309 uint64_t
310 vdev_default_min_asize(vdev_t *vd)
311 {
312 	return (vd->vdev_min_asize);
313 }
314 
315 /*
316  * Get the minimum allocatable size. We define the allocatable size as
317  * the vdev's asize rounded to the nearest metaslab. This allows us to
318  * replace or attach devices which don't have the same physical size but
319  * can still satisfy the same number of allocations.
320  */
321 uint64_t
322 vdev_get_min_asize(vdev_t *vd)
323 {
324 	vdev_t *pvd = vd->vdev_parent;
325 
326 	/*
327 	 * If our parent is NULL (inactive spare or cache) or is the root,
328 	 * just return our own asize.
329 	 */
330 	if (pvd == NULL)
331 		return (vd->vdev_asize);
332 
333 	/*
334 	 * The top-level vdev just returns the allocatable size rounded
335 	 * to the nearest metaslab.
336 	 */
337 	if (vd == vd->vdev_top)
338 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
339 
340 	return (pvd->vdev_ops->vdev_op_min_asize(pvd));
341 }
342 
343 void
344 vdev_set_min_asize(vdev_t *vd)
345 {
346 	vd->vdev_min_asize = vdev_get_min_asize(vd);
347 
348 	for (int c = 0; c < vd->vdev_children; c++)
349 		vdev_set_min_asize(vd->vdev_child[c]);
350 }
351 
352 /*
353  * Get the minimal allocation size for the top-level vdev.
354  */
355 uint64_t
356 vdev_get_min_alloc(vdev_t *vd)
357 {
358 	uint64_t min_alloc = 1ULL << vd->vdev_ashift;
359 
360 	if (vd->vdev_ops->vdev_op_min_alloc != NULL)
361 		min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
362 
363 	return (min_alloc);
364 }
365 
366 /*
367  * Get the parity level for a top-level vdev.
368  */
369 uint64_t
370 vdev_get_nparity(vdev_t *vd)
371 {
372 	uint64_t nparity = 0;
373 
374 	if (vd->vdev_ops->vdev_op_nparity != NULL)
375 		nparity = vd->vdev_ops->vdev_op_nparity(vd);
376 
377 	return (nparity);
378 }
379 
380 /*
381  * Get the number of data disks for a top-level vdev.
382  */
383 uint64_t
384 vdev_get_ndisks(vdev_t *vd)
385 {
386 	uint64_t ndisks = 1;
387 
388 	if (vd->vdev_ops->vdev_op_ndisks != NULL)
389 		ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
390 
391 	return (ndisks);
392 }
393 
394 vdev_t *
395 vdev_lookup_top(spa_t *spa, uint64_t vdev)
396 {
397 	vdev_t *rvd = spa->spa_root_vdev;
398 
399 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
400 
401 	if (vdev < rvd->vdev_children) {
402 		ASSERT(rvd->vdev_child[vdev] != NULL);
403 		return (rvd->vdev_child[vdev]);
404 	}
405 
406 	return (NULL);
407 }
408 
409 vdev_t *
410 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
411 {
412 	vdev_t *mvd;
413 
414 	if (vd->vdev_guid == guid)
415 		return (vd);
416 
417 	for (int c = 0; c < vd->vdev_children; c++)
418 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
419 		    NULL)
420 			return (mvd);
421 
422 	return (NULL);
423 }
424 
425 static int
426 vdev_count_leaves_impl(vdev_t *vd)
427 {
428 	int n = 0;
429 
430 	if (vd->vdev_ops->vdev_op_leaf)
431 		return (1);
432 
433 	for (int c = 0; c < vd->vdev_children; c++)
434 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
435 
436 	return (n);
437 }
438 
439 int
440 vdev_count_leaves(spa_t *spa)
441 {
442 	int rc;
443 
444 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
445 	rc = vdev_count_leaves_impl(spa->spa_root_vdev);
446 	spa_config_exit(spa, SCL_VDEV, FTAG);
447 
448 	return (rc);
449 }
450 
451 void
452 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
453 {
454 	size_t oldsize, newsize;
455 	uint64_t id = cvd->vdev_id;
456 	vdev_t **newchild;
457 
458 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
459 	ASSERT(cvd->vdev_parent == NULL);
460 
461 	cvd->vdev_parent = pvd;
462 
463 	if (pvd == NULL)
464 		return;
465 
466 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
467 
468 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
469 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
470 	newsize = pvd->vdev_children * sizeof (vdev_t *);
471 
472 	newchild = kmem_alloc(newsize, KM_SLEEP);
473 	if (pvd->vdev_child != NULL) {
474 		bcopy(pvd->vdev_child, newchild, oldsize);
475 		kmem_free(pvd->vdev_child, oldsize);
476 	}
477 
478 	pvd->vdev_child = newchild;
479 	pvd->vdev_child[id] = cvd;
480 
481 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
482 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
483 
484 	/*
485 	 * Walk up all ancestors to update guid sum.
486 	 */
487 	for (; pvd != NULL; pvd = pvd->vdev_parent)
488 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
489 
490 	if (cvd->vdev_ops->vdev_op_leaf) {
491 		list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
492 		cvd->vdev_spa->spa_leaf_list_gen++;
493 	}
494 }
495 
496 void
497 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
498 {
499 	int c;
500 	uint_t id = cvd->vdev_id;
501 
502 	ASSERT(cvd->vdev_parent == pvd);
503 
504 	if (pvd == NULL)
505 		return;
506 
507 	ASSERT(id < pvd->vdev_children);
508 	ASSERT(pvd->vdev_child[id] == cvd);
509 
510 	pvd->vdev_child[id] = NULL;
511 	cvd->vdev_parent = NULL;
512 
513 	for (c = 0; c < pvd->vdev_children; c++)
514 		if (pvd->vdev_child[c])
515 			break;
516 
517 	if (c == pvd->vdev_children) {
518 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
519 		pvd->vdev_child = NULL;
520 		pvd->vdev_children = 0;
521 	}
522 
523 	if (cvd->vdev_ops->vdev_op_leaf) {
524 		spa_t *spa = cvd->vdev_spa;
525 		list_remove(&spa->spa_leaf_list, cvd);
526 		spa->spa_leaf_list_gen++;
527 	}
528 
529 	/*
530 	 * Walk up all ancestors to update guid sum.
531 	 */
532 	for (; pvd != NULL; pvd = pvd->vdev_parent)
533 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
534 }
535 
536 /*
537  * Remove any holes in the child array.
538  */
539 void
540 vdev_compact_children(vdev_t *pvd)
541 {
542 	vdev_t **newchild, *cvd;
543 	int oldc = pvd->vdev_children;
544 	int newc;
545 
546 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
547 
548 	if (oldc == 0)
549 		return;
550 
551 	for (int c = newc = 0; c < oldc; c++)
552 		if (pvd->vdev_child[c])
553 			newc++;
554 
555 	if (newc > 0) {
556 		newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
557 
558 		for (int c = newc = 0; c < oldc; c++) {
559 			if ((cvd = pvd->vdev_child[c]) != NULL) {
560 				newchild[newc] = cvd;
561 				cvd->vdev_id = newc++;
562 			}
563 		}
564 	} else {
565 		newchild = NULL;
566 	}
567 
568 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
569 	pvd->vdev_child = newchild;
570 	pvd->vdev_children = newc;
571 }
572 
573 /*
574  * Allocate and minimally initialize a vdev_t.
575  */
576 vdev_t *
577 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
578 {
579 	vdev_t *vd;
580 	vdev_indirect_config_t *vic;
581 
582 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
583 	vic = &vd->vdev_indirect_config;
584 
585 	if (spa->spa_root_vdev == NULL) {
586 		ASSERT(ops == &vdev_root_ops);
587 		spa->spa_root_vdev = vd;
588 		spa->spa_load_guid = spa_generate_guid(NULL);
589 	}
590 
591 	if (guid == 0 && ops != &vdev_hole_ops) {
592 		if (spa->spa_root_vdev == vd) {
593 			/*
594 			 * The root vdev's guid will also be the pool guid,
595 			 * which must be unique among all pools.
596 			 */
597 			guid = spa_generate_guid(NULL);
598 		} else {
599 			/*
600 			 * Any other vdev's guid must be unique within the pool.
601 			 */
602 			guid = spa_generate_guid(spa);
603 		}
604 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
605 	}
606 
607 	vd->vdev_spa = spa;
608 	vd->vdev_id = id;
609 	vd->vdev_guid = guid;
610 	vd->vdev_guid_sum = guid;
611 	vd->vdev_ops = ops;
612 	vd->vdev_state = VDEV_STATE_CLOSED;
613 	vd->vdev_ishole = (ops == &vdev_hole_ops);
614 	vic->vic_prev_indirect_vdev = UINT64_MAX;
615 
616 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
617 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
618 	vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
619 	    0, 0);
620 
621 	/*
622 	 * Initialize rate limit structs for events.  We rate limit ZIO delay
623 	 * and checksum events so that we don't overwhelm ZED with thousands
624 	 * of events when a disk is acting up.
625 	 */
626 	zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
627 	    1);
628 	zfs_ratelimit_init(&vd->vdev_checksum_rl,
629 	    &zfs_checksum_events_per_second, 1);
630 
631 	list_link_init(&vd->vdev_config_dirty_node);
632 	list_link_init(&vd->vdev_state_dirty_node);
633 	list_link_init(&vd->vdev_initialize_node);
634 	list_link_init(&vd->vdev_leaf_node);
635 	list_link_init(&vd->vdev_trim_node);
636 
637 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
638 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
639 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
640 	mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
641 
642 	mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
643 	mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
644 	cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
645 	cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
646 
647 	mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
648 	mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
649 	mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
650 	cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
651 	cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
652 	cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
653 
654 	mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
655 	cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
656 
657 	for (int t = 0; t < DTL_TYPES; t++) {
658 		vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
659 		    0);
660 	}
661 
662 	txg_list_create(&vd->vdev_ms_list, spa,
663 	    offsetof(struct metaslab, ms_txg_node));
664 	txg_list_create(&vd->vdev_dtl_list, spa,
665 	    offsetof(struct vdev, vdev_dtl_node));
666 	vd->vdev_stat.vs_timestamp = gethrtime();
667 	vdev_queue_init(vd);
668 	vdev_cache_init(vd);
669 
670 	return (vd);
671 }
672 
673 /*
674  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
675  * creating a new vdev or loading an existing one - the behavior is slightly
676  * different for each case.
677  */
678 int
679 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
680     int alloctype)
681 {
682 	vdev_ops_t *ops;
683 	char *type;
684 	uint64_t guid = 0, islog;
685 	vdev_t *vd;
686 	vdev_indirect_config_t *vic;
687 	char *tmp = NULL;
688 	int rc;
689 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
690 	boolean_t top_level = (parent && !parent->vdev_parent);
691 
692 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
693 
694 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
695 		return (SET_ERROR(EINVAL));
696 
697 	if ((ops = vdev_getops(type)) == NULL)
698 		return (SET_ERROR(EINVAL));
699 
700 	/*
701 	 * If this is a load, get the vdev guid from the nvlist.
702 	 * Otherwise, vdev_alloc_common() will generate one for us.
703 	 */
704 	if (alloctype == VDEV_ALLOC_LOAD) {
705 		uint64_t label_id;
706 
707 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
708 		    label_id != id)
709 			return (SET_ERROR(EINVAL));
710 
711 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
712 			return (SET_ERROR(EINVAL));
713 	} else if (alloctype == VDEV_ALLOC_SPARE) {
714 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
715 			return (SET_ERROR(EINVAL));
716 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
717 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
718 			return (SET_ERROR(EINVAL));
719 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
720 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
721 			return (SET_ERROR(EINVAL));
722 	}
723 
724 	/*
725 	 * The first allocated vdev must be of type 'root'.
726 	 */
727 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
728 		return (SET_ERROR(EINVAL));
729 
730 	/*
731 	 * Determine whether we're a log vdev.
732 	 */
733 	islog = 0;
734 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
735 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
736 		return (SET_ERROR(ENOTSUP));
737 
738 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
739 		return (SET_ERROR(ENOTSUP));
740 
741 	if (top_level && alloctype == VDEV_ALLOC_ADD) {
742 		char *bias;
743 
744 		/*
745 		 * If creating a top-level vdev, check for allocation
746 		 * classes input.
747 		 */
748 		if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
749 		    &bias) == 0) {
750 			alloc_bias = vdev_derive_alloc_bias(bias);
751 
752 			/* spa_vdev_add() expects feature to be enabled */
753 			if (spa->spa_load_state != SPA_LOAD_CREATE &&
754 			    !spa_feature_is_enabled(spa,
755 			    SPA_FEATURE_ALLOCATION_CLASSES)) {
756 				return (SET_ERROR(ENOTSUP));
757 			}
758 		}
759 
760 		/* spa_vdev_add() expects feature to be enabled */
761 		if (ops == &vdev_draid_ops &&
762 		    spa->spa_load_state != SPA_LOAD_CREATE &&
763 		    !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
764 			return (SET_ERROR(ENOTSUP));
765 		}
766 	}
767 
768 	/*
769 	 * Initialize the vdev specific data.  This is done before calling
770 	 * vdev_alloc_common() since it may fail and this simplifies the
771 	 * error reporting and cleanup code paths.
772 	 */
773 	void *tsd = NULL;
774 	if (ops->vdev_op_init != NULL) {
775 		rc = ops->vdev_op_init(spa, nv, &tsd);
776 		if (rc != 0) {
777 			return (rc);
778 		}
779 	}
780 
781 	vd = vdev_alloc_common(spa, id, guid, ops);
782 	vd->vdev_tsd = tsd;
783 	vd->vdev_islog = islog;
784 
785 	if (top_level && alloc_bias != VDEV_BIAS_NONE)
786 		vd->vdev_alloc_bias = alloc_bias;
787 
788 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
789 		vd->vdev_path = spa_strdup(vd->vdev_path);
790 
791 	/*
792 	 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
793 	 * fault on a vdev and want it to persist across imports (like with
794 	 * zpool offline -f).
795 	 */
796 	rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
797 	if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
798 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
799 		vd->vdev_faulted = 1;
800 		vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
801 	}
802 
803 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
804 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
805 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
806 	    &vd->vdev_physpath) == 0)
807 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
808 
809 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
810 	    &vd->vdev_enc_sysfs_path) == 0)
811 		vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
812 
813 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
814 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
815 
816 	/*
817 	 * Set the whole_disk property.  If it's not specified, leave the value
818 	 * as -1.
819 	 */
820 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
821 	    &vd->vdev_wholedisk) != 0)
822 		vd->vdev_wholedisk = -1ULL;
823 
824 	vic = &vd->vdev_indirect_config;
825 
826 	ASSERT0(vic->vic_mapping_object);
827 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
828 	    &vic->vic_mapping_object);
829 	ASSERT0(vic->vic_births_object);
830 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
831 	    &vic->vic_births_object);
832 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
833 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
834 	    &vic->vic_prev_indirect_vdev);
835 
836 	/*
837 	 * Look for the 'not present' flag.  This will only be set if the device
838 	 * was not present at the time of import.
839 	 */
840 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
841 	    &vd->vdev_not_present);
842 
843 	/*
844 	 * Get the alignment requirement.
845 	 */
846 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
847 
848 	/*
849 	 * Retrieve the vdev creation time.
850 	 */
851 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
852 	    &vd->vdev_crtxg);
853 
854 	/*
855 	 * If we're a top-level vdev, try to load the allocation parameters.
856 	 */
857 	if (top_level &&
858 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
859 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
860 		    &vd->vdev_ms_array);
861 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
862 		    &vd->vdev_ms_shift);
863 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
864 		    &vd->vdev_asize);
865 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
866 		    &vd->vdev_removing);
867 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
868 		    &vd->vdev_top_zap);
869 	} else {
870 		ASSERT0(vd->vdev_top_zap);
871 	}
872 
873 	if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
874 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
875 		    alloctype == VDEV_ALLOC_ADD ||
876 		    alloctype == VDEV_ALLOC_SPLIT ||
877 		    alloctype == VDEV_ALLOC_ROOTPOOL);
878 		/* Note: metaslab_group_create() is now deferred */
879 	}
880 
881 	if (vd->vdev_ops->vdev_op_leaf &&
882 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
883 		(void) nvlist_lookup_uint64(nv,
884 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
885 	} else {
886 		ASSERT0(vd->vdev_leaf_zap);
887 	}
888 
889 	/*
890 	 * If we're a leaf vdev, try to load the DTL object and other state.
891 	 */
892 
893 	if (vd->vdev_ops->vdev_op_leaf &&
894 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
895 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
896 		if (alloctype == VDEV_ALLOC_LOAD) {
897 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
898 			    &vd->vdev_dtl_object);
899 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
900 			    &vd->vdev_unspare);
901 		}
902 
903 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
904 			uint64_t spare = 0;
905 
906 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
907 			    &spare) == 0 && spare)
908 				spa_spare_add(vd);
909 		}
910 
911 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
912 		    &vd->vdev_offline);
913 
914 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
915 		    &vd->vdev_resilver_txg);
916 
917 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
918 		    &vd->vdev_rebuild_txg);
919 
920 		if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
921 			vdev_defer_resilver(vd);
922 
923 		/*
924 		 * In general, when importing a pool we want to ignore the
925 		 * persistent fault state, as the diagnosis made on another
926 		 * system may not be valid in the current context.  The only
927 		 * exception is if we forced a vdev to a persistently faulted
928 		 * state with 'zpool offline -f'.  The persistent fault will
929 		 * remain across imports until cleared.
930 		 *
931 		 * Local vdevs will remain in the faulted state.
932 		 */
933 		if (spa_load_state(spa) == SPA_LOAD_OPEN ||
934 		    spa_load_state(spa) == SPA_LOAD_IMPORT) {
935 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
936 			    &vd->vdev_faulted);
937 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
938 			    &vd->vdev_degraded);
939 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
940 			    &vd->vdev_removed);
941 
942 			if (vd->vdev_faulted || vd->vdev_degraded) {
943 				char *aux;
944 
945 				vd->vdev_label_aux =
946 				    VDEV_AUX_ERR_EXCEEDED;
947 				if (nvlist_lookup_string(nv,
948 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
949 				    strcmp(aux, "external") == 0)
950 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
951 				else
952 					vd->vdev_faulted = 0ULL;
953 			}
954 		}
955 	}
956 
957 	/*
958 	 * Add ourselves to the parent's list of children.
959 	 */
960 	vdev_add_child(parent, vd);
961 
962 	*vdp = vd;
963 
964 	return (0);
965 }
966 
967 void
968 vdev_free(vdev_t *vd)
969 {
970 	spa_t *spa = vd->vdev_spa;
971 
972 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
973 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
974 	ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
975 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
976 
977 	/*
978 	 * Scan queues are normally destroyed at the end of a scan. If the
979 	 * queue exists here, that implies the vdev is being removed while
980 	 * the scan is still running.
981 	 */
982 	if (vd->vdev_scan_io_queue != NULL) {
983 		mutex_enter(&vd->vdev_scan_io_queue_lock);
984 		dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
985 		vd->vdev_scan_io_queue = NULL;
986 		mutex_exit(&vd->vdev_scan_io_queue_lock);
987 	}
988 
989 	/*
990 	 * vdev_free() implies closing the vdev first.  This is simpler than
991 	 * trying to ensure complicated semantics for all callers.
992 	 */
993 	vdev_close(vd);
994 
995 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
996 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
997 
998 	/*
999 	 * Free all children.
1000 	 */
1001 	for (int c = 0; c < vd->vdev_children; c++)
1002 		vdev_free(vd->vdev_child[c]);
1003 
1004 	ASSERT(vd->vdev_child == NULL);
1005 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1006 
1007 	if (vd->vdev_ops->vdev_op_fini != NULL)
1008 		vd->vdev_ops->vdev_op_fini(vd);
1009 
1010 	/*
1011 	 * Discard allocation state.
1012 	 */
1013 	if (vd->vdev_mg != NULL) {
1014 		vdev_metaslab_fini(vd);
1015 		metaslab_group_destroy(vd->vdev_mg);
1016 		vd->vdev_mg = NULL;
1017 	}
1018 	if (vd->vdev_log_mg != NULL) {
1019 		ASSERT0(vd->vdev_ms_count);
1020 		metaslab_group_destroy(vd->vdev_log_mg);
1021 		vd->vdev_log_mg = NULL;
1022 	}
1023 
1024 	ASSERT0(vd->vdev_stat.vs_space);
1025 	ASSERT0(vd->vdev_stat.vs_dspace);
1026 	ASSERT0(vd->vdev_stat.vs_alloc);
1027 
1028 	/*
1029 	 * Remove this vdev from its parent's child list.
1030 	 */
1031 	vdev_remove_child(vd->vdev_parent, vd);
1032 
1033 	ASSERT(vd->vdev_parent == NULL);
1034 	ASSERT(!list_link_active(&vd->vdev_leaf_node));
1035 
1036 	/*
1037 	 * Clean up vdev structure.
1038 	 */
1039 	vdev_queue_fini(vd);
1040 	vdev_cache_fini(vd);
1041 
1042 	if (vd->vdev_path)
1043 		spa_strfree(vd->vdev_path);
1044 	if (vd->vdev_devid)
1045 		spa_strfree(vd->vdev_devid);
1046 	if (vd->vdev_physpath)
1047 		spa_strfree(vd->vdev_physpath);
1048 
1049 	if (vd->vdev_enc_sysfs_path)
1050 		spa_strfree(vd->vdev_enc_sysfs_path);
1051 
1052 	if (vd->vdev_fru)
1053 		spa_strfree(vd->vdev_fru);
1054 
1055 	if (vd->vdev_isspare)
1056 		spa_spare_remove(vd);
1057 	if (vd->vdev_isl2cache)
1058 		spa_l2cache_remove(vd);
1059 
1060 	txg_list_destroy(&vd->vdev_ms_list);
1061 	txg_list_destroy(&vd->vdev_dtl_list);
1062 
1063 	mutex_enter(&vd->vdev_dtl_lock);
1064 	space_map_close(vd->vdev_dtl_sm);
1065 	for (int t = 0; t < DTL_TYPES; t++) {
1066 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1067 		range_tree_destroy(vd->vdev_dtl[t]);
1068 	}
1069 	mutex_exit(&vd->vdev_dtl_lock);
1070 
1071 	EQUIV(vd->vdev_indirect_births != NULL,
1072 	    vd->vdev_indirect_mapping != NULL);
1073 	if (vd->vdev_indirect_births != NULL) {
1074 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1075 		vdev_indirect_births_close(vd->vdev_indirect_births);
1076 	}
1077 
1078 	if (vd->vdev_obsolete_sm != NULL) {
1079 		ASSERT(vd->vdev_removing ||
1080 		    vd->vdev_ops == &vdev_indirect_ops);
1081 		space_map_close(vd->vdev_obsolete_sm);
1082 		vd->vdev_obsolete_sm = NULL;
1083 	}
1084 	range_tree_destroy(vd->vdev_obsolete_segments);
1085 	rw_destroy(&vd->vdev_indirect_rwlock);
1086 	mutex_destroy(&vd->vdev_obsolete_lock);
1087 
1088 	mutex_destroy(&vd->vdev_dtl_lock);
1089 	mutex_destroy(&vd->vdev_stat_lock);
1090 	mutex_destroy(&vd->vdev_probe_lock);
1091 	mutex_destroy(&vd->vdev_scan_io_queue_lock);
1092 
1093 	mutex_destroy(&vd->vdev_initialize_lock);
1094 	mutex_destroy(&vd->vdev_initialize_io_lock);
1095 	cv_destroy(&vd->vdev_initialize_io_cv);
1096 	cv_destroy(&vd->vdev_initialize_cv);
1097 
1098 	mutex_destroy(&vd->vdev_trim_lock);
1099 	mutex_destroy(&vd->vdev_autotrim_lock);
1100 	mutex_destroy(&vd->vdev_trim_io_lock);
1101 	cv_destroy(&vd->vdev_trim_cv);
1102 	cv_destroy(&vd->vdev_autotrim_cv);
1103 	cv_destroy(&vd->vdev_trim_io_cv);
1104 
1105 	mutex_destroy(&vd->vdev_rebuild_lock);
1106 	cv_destroy(&vd->vdev_rebuild_cv);
1107 
1108 	zfs_ratelimit_fini(&vd->vdev_delay_rl);
1109 	zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1110 
1111 	if (vd == spa->spa_root_vdev)
1112 		spa->spa_root_vdev = NULL;
1113 
1114 	kmem_free(vd, sizeof (vdev_t));
1115 }
1116 
1117 /*
1118  * Transfer top-level vdev state from svd to tvd.
1119  */
1120 static void
1121 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1122 {
1123 	spa_t *spa = svd->vdev_spa;
1124 	metaslab_t *msp;
1125 	vdev_t *vd;
1126 	int t;
1127 
1128 	ASSERT(tvd == tvd->vdev_top);
1129 
1130 	tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
1131 	tvd->vdev_ms_array = svd->vdev_ms_array;
1132 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
1133 	tvd->vdev_ms_count = svd->vdev_ms_count;
1134 	tvd->vdev_top_zap = svd->vdev_top_zap;
1135 
1136 	svd->vdev_ms_array = 0;
1137 	svd->vdev_ms_shift = 0;
1138 	svd->vdev_ms_count = 0;
1139 	svd->vdev_top_zap = 0;
1140 
1141 	if (tvd->vdev_mg)
1142 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1143 	if (tvd->vdev_log_mg)
1144 		ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1145 	tvd->vdev_mg = svd->vdev_mg;
1146 	tvd->vdev_log_mg = svd->vdev_log_mg;
1147 	tvd->vdev_ms = svd->vdev_ms;
1148 
1149 	svd->vdev_mg = NULL;
1150 	svd->vdev_log_mg = NULL;
1151 	svd->vdev_ms = NULL;
1152 
1153 	if (tvd->vdev_mg != NULL)
1154 		tvd->vdev_mg->mg_vd = tvd;
1155 	if (tvd->vdev_log_mg != NULL)
1156 		tvd->vdev_log_mg->mg_vd = tvd;
1157 
1158 	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1159 	svd->vdev_checkpoint_sm = NULL;
1160 
1161 	tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1162 	svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1163 
1164 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1165 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1166 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1167 
1168 	svd->vdev_stat.vs_alloc = 0;
1169 	svd->vdev_stat.vs_space = 0;
1170 	svd->vdev_stat.vs_dspace = 0;
1171 
1172 	/*
1173 	 * State which may be set on a top-level vdev that's in the
1174 	 * process of being removed.
1175 	 */
1176 	ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1177 	ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1178 	ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1179 	ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1180 	ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1181 	ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1182 	ASSERT0(tvd->vdev_removing);
1183 	ASSERT0(tvd->vdev_rebuilding);
1184 	tvd->vdev_removing = svd->vdev_removing;
1185 	tvd->vdev_rebuilding = svd->vdev_rebuilding;
1186 	tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1187 	tvd->vdev_indirect_config = svd->vdev_indirect_config;
1188 	tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1189 	tvd->vdev_indirect_births = svd->vdev_indirect_births;
1190 	range_tree_swap(&svd->vdev_obsolete_segments,
1191 	    &tvd->vdev_obsolete_segments);
1192 	tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1193 	svd->vdev_indirect_config.vic_mapping_object = 0;
1194 	svd->vdev_indirect_config.vic_births_object = 0;
1195 	svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1196 	svd->vdev_indirect_mapping = NULL;
1197 	svd->vdev_indirect_births = NULL;
1198 	svd->vdev_obsolete_sm = NULL;
1199 	svd->vdev_removing = 0;
1200 	svd->vdev_rebuilding = 0;
1201 
1202 	for (t = 0; t < TXG_SIZE; t++) {
1203 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1204 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1205 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1206 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1207 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1208 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1209 	}
1210 
1211 	if (list_link_active(&svd->vdev_config_dirty_node)) {
1212 		vdev_config_clean(svd);
1213 		vdev_config_dirty(tvd);
1214 	}
1215 
1216 	if (list_link_active(&svd->vdev_state_dirty_node)) {
1217 		vdev_state_clean(svd);
1218 		vdev_state_dirty(tvd);
1219 	}
1220 
1221 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1222 	svd->vdev_deflate_ratio = 0;
1223 
1224 	tvd->vdev_islog = svd->vdev_islog;
1225 	svd->vdev_islog = 0;
1226 
1227 	dsl_scan_io_queue_vdev_xfer(svd, tvd);
1228 }
1229 
1230 static void
1231 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1232 {
1233 	if (vd == NULL)
1234 		return;
1235 
1236 	vd->vdev_top = tvd;
1237 
1238 	for (int c = 0; c < vd->vdev_children; c++)
1239 		vdev_top_update(tvd, vd->vdev_child[c]);
1240 }
1241 
1242 /*
1243  * Add a mirror/replacing vdev above an existing vdev.  There is no need to
1244  * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1245  */
1246 vdev_t *
1247 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1248 {
1249 	spa_t *spa = cvd->vdev_spa;
1250 	vdev_t *pvd = cvd->vdev_parent;
1251 	vdev_t *mvd;
1252 
1253 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1254 
1255 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1256 
1257 	mvd->vdev_asize = cvd->vdev_asize;
1258 	mvd->vdev_min_asize = cvd->vdev_min_asize;
1259 	mvd->vdev_max_asize = cvd->vdev_max_asize;
1260 	mvd->vdev_psize = cvd->vdev_psize;
1261 	mvd->vdev_ashift = cvd->vdev_ashift;
1262 	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1263 	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1264 	mvd->vdev_state = cvd->vdev_state;
1265 	mvd->vdev_crtxg = cvd->vdev_crtxg;
1266 
1267 	vdev_remove_child(pvd, cvd);
1268 	vdev_add_child(pvd, mvd);
1269 	cvd->vdev_id = mvd->vdev_children;
1270 	vdev_add_child(mvd, cvd);
1271 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1272 
1273 	if (mvd == mvd->vdev_top)
1274 		vdev_top_transfer(cvd, mvd);
1275 
1276 	return (mvd);
1277 }
1278 
1279 /*
1280  * Remove a 1-way mirror/replacing vdev from the tree.
1281  */
1282 void
1283 vdev_remove_parent(vdev_t *cvd)
1284 {
1285 	vdev_t *mvd = cvd->vdev_parent;
1286 	vdev_t *pvd = mvd->vdev_parent;
1287 
1288 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1289 
1290 	ASSERT(mvd->vdev_children == 1);
1291 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1292 	    mvd->vdev_ops == &vdev_replacing_ops ||
1293 	    mvd->vdev_ops == &vdev_spare_ops);
1294 	cvd->vdev_ashift = mvd->vdev_ashift;
1295 	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1296 	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1297 	vdev_remove_child(mvd, cvd);
1298 	vdev_remove_child(pvd, mvd);
1299 
1300 	/*
1301 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1302 	 * Otherwise, we could have detached an offline device, and when we
1303 	 * go to import the pool we'll think we have two top-level vdevs,
1304 	 * instead of a different version of the same top-level vdev.
1305 	 */
1306 	if (mvd->vdev_top == mvd) {
1307 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1308 		cvd->vdev_orig_guid = cvd->vdev_guid;
1309 		cvd->vdev_guid += guid_delta;
1310 		cvd->vdev_guid_sum += guid_delta;
1311 
1312 		/*
1313 		 * If pool not set for autoexpand, we need to also preserve
1314 		 * mvd's asize to prevent automatic expansion of cvd.
1315 		 * Otherwise if we are adjusting the mirror by attaching and
1316 		 * detaching children of non-uniform sizes, the mirror could
1317 		 * autoexpand, unexpectedly requiring larger devices to
1318 		 * re-establish the mirror.
1319 		 */
1320 		if (!cvd->vdev_spa->spa_autoexpand)
1321 			cvd->vdev_asize = mvd->vdev_asize;
1322 	}
1323 	cvd->vdev_id = mvd->vdev_id;
1324 	vdev_add_child(pvd, cvd);
1325 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1326 
1327 	if (cvd == cvd->vdev_top)
1328 		vdev_top_transfer(mvd, cvd);
1329 
1330 	ASSERT(mvd->vdev_children == 0);
1331 	vdev_free(mvd);
1332 }
1333 
1334 void
1335 vdev_metaslab_group_create(vdev_t *vd)
1336 {
1337 	spa_t *spa = vd->vdev_spa;
1338 
1339 	/*
1340 	 * metaslab_group_create was delayed until allocation bias was available
1341 	 */
1342 	if (vd->vdev_mg == NULL) {
1343 		metaslab_class_t *mc;
1344 
1345 		if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1346 			vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1347 
1348 		ASSERT3U(vd->vdev_islog, ==,
1349 		    (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1350 
1351 		switch (vd->vdev_alloc_bias) {
1352 		case VDEV_BIAS_LOG:
1353 			mc = spa_log_class(spa);
1354 			break;
1355 		case VDEV_BIAS_SPECIAL:
1356 			mc = spa_special_class(spa);
1357 			break;
1358 		case VDEV_BIAS_DEDUP:
1359 			mc = spa_dedup_class(spa);
1360 			break;
1361 		default:
1362 			mc = spa_normal_class(spa);
1363 		}
1364 
1365 		vd->vdev_mg = metaslab_group_create(mc, vd,
1366 		    spa->spa_alloc_count);
1367 
1368 		if (!vd->vdev_islog) {
1369 			vd->vdev_log_mg = metaslab_group_create(
1370 			    spa_embedded_log_class(spa), vd, 1);
1371 		}
1372 
1373 		/*
1374 		 * The spa ashift min/max only apply for the normal metaslab
1375 		 * class. Class destination is late binding so ashift boundry
1376 		 * setting had to wait until now.
1377 		 */
1378 		if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1379 		    mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1380 			if (vd->vdev_ashift > spa->spa_max_ashift)
1381 				spa->spa_max_ashift = vd->vdev_ashift;
1382 			if (vd->vdev_ashift < spa->spa_min_ashift)
1383 				spa->spa_min_ashift = vd->vdev_ashift;
1384 
1385 			uint64_t min_alloc = vdev_get_min_alloc(vd);
1386 			if (min_alloc < spa->spa_min_alloc)
1387 				spa->spa_min_alloc = min_alloc;
1388 		}
1389 	}
1390 }
1391 
1392 int
1393 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1394 {
1395 	spa_t *spa = vd->vdev_spa;
1396 	uint64_t oldc = vd->vdev_ms_count;
1397 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1398 	metaslab_t **mspp;
1399 	int error;
1400 	boolean_t expanding = (oldc != 0);
1401 
1402 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1403 
1404 	/*
1405 	 * This vdev is not being allocated from yet or is a hole.
1406 	 */
1407 	if (vd->vdev_ms_shift == 0)
1408 		return (0);
1409 
1410 	ASSERT(!vd->vdev_ishole);
1411 
1412 	ASSERT(oldc <= newc);
1413 
1414 	mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1415 
1416 	if (expanding) {
1417 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1418 		vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1419 	}
1420 
1421 	vd->vdev_ms = mspp;
1422 	vd->vdev_ms_count = newc;
1423 
1424 	for (uint64_t m = oldc; m < newc; m++) {
1425 		uint64_t object = 0;
1426 		/*
1427 		 * vdev_ms_array may be 0 if we are creating the "fake"
1428 		 * metaslabs for an indirect vdev for zdb's leak detection.
1429 		 * See zdb_leak_init().
1430 		 */
1431 		if (txg == 0 && vd->vdev_ms_array != 0) {
1432 			error = dmu_read(spa->spa_meta_objset,
1433 			    vd->vdev_ms_array,
1434 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1435 			    DMU_READ_PREFETCH);
1436 			if (error != 0) {
1437 				vdev_dbgmsg(vd, "unable to read the metaslab "
1438 				    "array [error=%d]", error);
1439 				return (error);
1440 			}
1441 		}
1442 
1443 		error = metaslab_init(vd->vdev_mg, m, object, txg,
1444 		    &(vd->vdev_ms[m]));
1445 		if (error != 0) {
1446 			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1447 			    error);
1448 			return (error);
1449 		}
1450 	}
1451 
1452 	/*
1453 	 * Find the emptiest metaslab on the vdev and mark it for use for
1454 	 * embedded slog by moving it from the regular to the log metaslab
1455 	 * group.
1456 	 */
1457 	if (vd->vdev_mg->mg_class == spa_normal_class(spa) &&
1458 	    vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1459 	    avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1460 		uint64_t slog_msid = 0;
1461 		uint64_t smallest = UINT64_MAX;
1462 
1463 		/*
1464 		 * Note, we only search the new metaslabs, because the old
1465 		 * (pre-existing) ones may be active (e.g. have non-empty
1466 		 * range_tree's), and we don't move them to the new
1467 		 * metaslab_t.
1468 		 */
1469 		for (uint64_t m = oldc; m < newc; m++) {
1470 			uint64_t alloc =
1471 			    space_map_allocated(vd->vdev_ms[m]->ms_sm);
1472 			if (alloc < smallest) {
1473 				slog_msid = m;
1474 				smallest = alloc;
1475 			}
1476 		}
1477 		metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1478 		/*
1479 		 * The metaslab was marked as dirty at the end of
1480 		 * metaslab_init(). Remove it from the dirty list so that we
1481 		 * can uninitialize and reinitialize it to the new class.
1482 		 */
1483 		if (txg != 0) {
1484 			(void) txg_list_remove_this(&vd->vdev_ms_list,
1485 			    slog_ms, txg);
1486 		}
1487 		uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1488 		metaslab_fini(slog_ms);
1489 		VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1490 		    &vd->vdev_ms[slog_msid]));
1491 	}
1492 
1493 	if (txg == 0)
1494 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1495 
1496 	/*
1497 	 * If the vdev is being removed we don't activate
1498 	 * the metaslabs since we want to ensure that no new
1499 	 * allocations are performed on this device.
1500 	 */
1501 	if (!expanding && !vd->vdev_removing) {
1502 		metaslab_group_activate(vd->vdev_mg);
1503 		if (vd->vdev_log_mg != NULL)
1504 			metaslab_group_activate(vd->vdev_log_mg);
1505 	}
1506 
1507 	if (txg == 0)
1508 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1509 
1510 	/*
1511 	 * Regardless whether this vdev was just added or it is being
1512 	 * expanded, the metaslab count has changed. Recalculate the
1513 	 * block limit.
1514 	 */
1515 	spa_log_sm_set_blocklimit(spa);
1516 
1517 	return (0);
1518 }
1519 
1520 void
1521 vdev_metaslab_fini(vdev_t *vd)
1522 {
1523 	if (vd->vdev_checkpoint_sm != NULL) {
1524 		ASSERT(spa_feature_is_active(vd->vdev_spa,
1525 		    SPA_FEATURE_POOL_CHECKPOINT));
1526 		space_map_close(vd->vdev_checkpoint_sm);
1527 		/*
1528 		 * Even though we close the space map, we need to set its
1529 		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1530 		 * may be called multiple times for certain operations
1531 		 * (i.e. when destroying a pool) so we need to ensure that
1532 		 * this clause never executes twice. This logic is similar
1533 		 * to the one used for the vdev_ms clause below.
1534 		 */
1535 		vd->vdev_checkpoint_sm = NULL;
1536 	}
1537 
1538 	if (vd->vdev_ms != NULL) {
1539 		metaslab_group_t *mg = vd->vdev_mg;
1540 
1541 		metaslab_group_passivate(mg);
1542 		if (vd->vdev_log_mg != NULL) {
1543 			ASSERT(!vd->vdev_islog);
1544 			metaslab_group_passivate(vd->vdev_log_mg);
1545 		}
1546 
1547 		uint64_t count = vd->vdev_ms_count;
1548 		for (uint64_t m = 0; m < count; m++) {
1549 			metaslab_t *msp = vd->vdev_ms[m];
1550 			if (msp != NULL)
1551 				metaslab_fini(msp);
1552 		}
1553 		vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1554 		vd->vdev_ms = NULL;
1555 		vd->vdev_ms_count = 0;
1556 
1557 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1558 			ASSERT0(mg->mg_histogram[i]);
1559 			if (vd->vdev_log_mg != NULL)
1560 				ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1561 		}
1562 	}
1563 	ASSERT0(vd->vdev_ms_count);
1564 	ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
1565 }
1566 
1567 typedef struct vdev_probe_stats {
1568 	boolean_t	vps_readable;
1569 	boolean_t	vps_writeable;
1570 	int		vps_flags;
1571 } vdev_probe_stats_t;
1572 
1573 static void
1574 vdev_probe_done(zio_t *zio)
1575 {
1576 	spa_t *spa = zio->io_spa;
1577 	vdev_t *vd = zio->io_vd;
1578 	vdev_probe_stats_t *vps = zio->io_private;
1579 
1580 	ASSERT(vd->vdev_probe_zio != NULL);
1581 
1582 	if (zio->io_type == ZIO_TYPE_READ) {
1583 		if (zio->io_error == 0)
1584 			vps->vps_readable = 1;
1585 		if (zio->io_error == 0 && spa_writeable(spa)) {
1586 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1587 			    zio->io_offset, zio->io_size, zio->io_abd,
1588 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1589 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1590 		} else {
1591 			abd_free(zio->io_abd);
1592 		}
1593 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1594 		if (zio->io_error == 0)
1595 			vps->vps_writeable = 1;
1596 		abd_free(zio->io_abd);
1597 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1598 		zio_t *pio;
1599 		zio_link_t *zl;
1600 
1601 		vd->vdev_cant_read |= !vps->vps_readable;
1602 		vd->vdev_cant_write |= !vps->vps_writeable;
1603 
1604 		if (vdev_readable(vd) &&
1605 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1606 			zio->io_error = 0;
1607 		} else {
1608 			ASSERT(zio->io_error != 0);
1609 			vdev_dbgmsg(vd, "failed probe");
1610 			(void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1611 			    spa, vd, NULL, NULL, 0);
1612 			zio->io_error = SET_ERROR(ENXIO);
1613 		}
1614 
1615 		mutex_enter(&vd->vdev_probe_lock);
1616 		ASSERT(vd->vdev_probe_zio == zio);
1617 		vd->vdev_probe_zio = NULL;
1618 		mutex_exit(&vd->vdev_probe_lock);
1619 
1620 		zl = NULL;
1621 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1622 			if (!vdev_accessible(vd, pio))
1623 				pio->io_error = SET_ERROR(ENXIO);
1624 
1625 		kmem_free(vps, sizeof (*vps));
1626 	}
1627 }
1628 
1629 /*
1630  * Determine whether this device is accessible.
1631  *
1632  * Read and write to several known locations: the pad regions of each
1633  * vdev label but the first, which we leave alone in case it contains
1634  * a VTOC.
1635  */
1636 zio_t *
1637 vdev_probe(vdev_t *vd, zio_t *zio)
1638 {
1639 	spa_t *spa = vd->vdev_spa;
1640 	vdev_probe_stats_t *vps = NULL;
1641 	zio_t *pio;
1642 
1643 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1644 
1645 	/*
1646 	 * Don't probe the probe.
1647 	 */
1648 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1649 		return (NULL);
1650 
1651 	/*
1652 	 * To prevent 'probe storms' when a device fails, we create
1653 	 * just one probe i/o at a time.  All zios that want to probe
1654 	 * this vdev will become parents of the probe io.
1655 	 */
1656 	mutex_enter(&vd->vdev_probe_lock);
1657 
1658 	if ((pio = vd->vdev_probe_zio) == NULL) {
1659 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1660 
1661 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1662 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1663 		    ZIO_FLAG_TRYHARD;
1664 
1665 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1666 			/*
1667 			 * vdev_cant_read and vdev_cant_write can only
1668 			 * transition from TRUE to FALSE when we have the
1669 			 * SCL_ZIO lock as writer; otherwise they can only
1670 			 * transition from FALSE to TRUE.  This ensures that
1671 			 * any zio looking at these values can assume that
1672 			 * failures persist for the life of the I/O.  That's
1673 			 * important because when a device has intermittent
1674 			 * connectivity problems, we want to ensure that
1675 			 * they're ascribed to the device (ENXIO) and not
1676 			 * the zio (EIO).
1677 			 *
1678 			 * Since we hold SCL_ZIO as writer here, clear both
1679 			 * values so the probe can reevaluate from first
1680 			 * principles.
1681 			 */
1682 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1683 			vd->vdev_cant_read = B_FALSE;
1684 			vd->vdev_cant_write = B_FALSE;
1685 		}
1686 
1687 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1688 		    vdev_probe_done, vps,
1689 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1690 
1691 		/*
1692 		 * We can't change the vdev state in this context, so we
1693 		 * kick off an async task to do it on our behalf.
1694 		 */
1695 		if (zio != NULL) {
1696 			vd->vdev_probe_wanted = B_TRUE;
1697 			spa_async_request(spa, SPA_ASYNC_PROBE);
1698 		}
1699 	}
1700 
1701 	if (zio != NULL)
1702 		zio_add_child(zio, pio);
1703 
1704 	mutex_exit(&vd->vdev_probe_lock);
1705 
1706 	if (vps == NULL) {
1707 		ASSERT(zio != NULL);
1708 		return (NULL);
1709 	}
1710 
1711 	for (int l = 1; l < VDEV_LABELS; l++) {
1712 		zio_nowait(zio_read_phys(pio, vd,
1713 		    vdev_label_offset(vd->vdev_psize, l,
1714 		    offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1715 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1716 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1717 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1718 	}
1719 
1720 	if (zio == NULL)
1721 		return (pio);
1722 
1723 	zio_nowait(pio);
1724 	return (NULL);
1725 }
1726 
1727 static void
1728 vdev_load_child(void *arg)
1729 {
1730 	vdev_t *vd = arg;
1731 
1732 	vd->vdev_load_error = vdev_load(vd);
1733 }
1734 
1735 static void
1736 vdev_open_child(void *arg)
1737 {
1738 	vdev_t *vd = arg;
1739 
1740 	vd->vdev_open_thread = curthread;
1741 	vd->vdev_open_error = vdev_open(vd);
1742 	vd->vdev_open_thread = NULL;
1743 }
1744 
1745 static boolean_t
1746 vdev_uses_zvols(vdev_t *vd)
1747 {
1748 #ifdef _KERNEL
1749 	if (zvol_is_zvol(vd->vdev_path))
1750 		return (B_TRUE);
1751 #endif
1752 
1753 	for (int c = 0; c < vd->vdev_children; c++)
1754 		if (vdev_uses_zvols(vd->vdev_child[c]))
1755 			return (B_TRUE);
1756 
1757 	return (B_FALSE);
1758 }
1759 
1760 /*
1761  * Returns B_TRUE if the passed child should be opened.
1762  */
1763 static boolean_t
1764 vdev_default_open_children_func(vdev_t *vd)
1765 {
1766 	return (B_TRUE);
1767 }
1768 
1769 /*
1770  * Open the requested child vdevs.  If any of the leaf vdevs are using
1771  * a ZFS volume then do the opens in a single thread.  This avoids a
1772  * deadlock when the current thread is holding the spa_namespace_lock.
1773  */
1774 static void
1775 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1776 {
1777 	int children = vd->vdev_children;
1778 
1779 	taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1780 	    children, children, TASKQ_PREPOPULATE);
1781 	vd->vdev_nonrot = B_TRUE;
1782 
1783 	for (int c = 0; c < children; c++) {
1784 		vdev_t *cvd = vd->vdev_child[c];
1785 
1786 		if (open_func(cvd) == B_FALSE)
1787 			continue;
1788 
1789 		if (tq == NULL || vdev_uses_zvols(vd)) {
1790 			cvd->vdev_open_error = vdev_open(cvd);
1791 		} else {
1792 			VERIFY(taskq_dispatch(tq, vdev_open_child,
1793 			    cvd, TQ_SLEEP) != TASKQID_INVALID);
1794 		}
1795 
1796 		vd->vdev_nonrot &= cvd->vdev_nonrot;
1797 	}
1798 
1799 	if (tq != NULL) {
1800 		taskq_wait(tq);
1801 		taskq_destroy(tq);
1802 	}
1803 }
1804 
1805 /*
1806  * Open all child vdevs.
1807  */
1808 void
1809 vdev_open_children(vdev_t *vd)
1810 {
1811 	vdev_open_children_impl(vd, vdev_default_open_children_func);
1812 }
1813 
1814 /*
1815  * Conditionally open a subset of child vdevs.
1816  */
1817 void
1818 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
1819 {
1820 	vdev_open_children_impl(vd, open_func);
1821 }
1822 
1823 /*
1824  * Compute the raidz-deflation ratio.  Note, we hard-code
1825  * in 128k (1 << 17) because it is the "typical" blocksize.
1826  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1827  * otherwise it would inconsistently account for existing bp's.
1828  */
1829 static void
1830 vdev_set_deflate_ratio(vdev_t *vd)
1831 {
1832 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1833 		vd->vdev_deflate_ratio = (1 << 17) /
1834 		    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1835 	}
1836 }
1837 
1838 /*
1839  * Maximize performance by inflating the configured ashift for top level
1840  * vdevs to be as close to the physical ashift as possible while maintaining
1841  * administrator defined limits and ensuring it doesn't go below the
1842  * logical ashift.
1843  */
1844 static void
1845 vdev_ashift_optimize(vdev_t *vd)
1846 {
1847 	ASSERT(vd == vd->vdev_top);
1848 
1849 	if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1850 		vd->vdev_ashift = MIN(
1851 		    MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
1852 		    MAX(zfs_vdev_min_auto_ashift,
1853 		    vd->vdev_physical_ashift));
1854 	} else {
1855 		/*
1856 		 * If the logical and physical ashifts are the same, then
1857 		 * we ensure that the top-level vdev's ashift is not smaller
1858 		 * than our minimum ashift value. For the unusual case
1859 		 * where logical ashift > physical ashift, we can't cap
1860 		 * the calculated ashift based on max ashift as that
1861 		 * would cause failures.
1862 		 * We still check if we need to increase it to match
1863 		 * the min ashift.
1864 		 */
1865 		vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
1866 		    vd->vdev_ashift);
1867 	}
1868 }
1869 
1870 /*
1871  * Prepare a virtual device for access.
1872  */
1873 int
1874 vdev_open(vdev_t *vd)
1875 {
1876 	spa_t *spa = vd->vdev_spa;
1877 	int error;
1878 	uint64_t osize = 0;
1879 	uint64_t max_osize = 0;
1880 	uint64_t asize, max_asize, psize;
1881 	uint64_t logical_ashift = 0;
1882 	uint64_t physical_ashift = 0;
1883 
1884 	ASSERT(vd->vdev_open_thread == curthread ||
1885 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1886 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1887 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1888 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1889 
1890 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1891 	vd->vdev_cant_read = B_FALSE;
1892 	vd->vdev_cant_write = B_FALSE;
1893 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1894 
1895 	/*
1896 	 * If this vdev is not removed, check its fault status.  If it's
1897 	 * faulted, bail out of the open.
1898 	 */
1899 	if (!vd->vdev_removed && vd->vdev_faulted) {
1900 		ASSERT(vd->vdev_children == 0);
1901 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1902 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1903 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1904 		    vd->vdev_label_aux);
1905 		return (SET_ERROR(ENXIO));
1906 	} else if (vd->vdev_offline) {
1907 		ASSERT(vd->vdev_children == 0);
1908 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1909 		return (SET_ERROR(ENXIO));
1910 	}
1911 
1912 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1913 	    &logical_ashift, &physical_ashift);
1914 	/*
1915 	 * Physical volume size should never be larger than its max size, unless
1916 	 * the disk has shrunk while we were reading it or the device is buggy
1917 	 * or damaged: either way it's not safe for use, bail out of the open.
1918 	 */
1919 	if (osize > max_osize) {
1920 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1921 		    VDEV_AUX_OPEN_FAILED);
1922 		return (SET_ERROR(ENXIO));
1923 	}
1924 
1925 	/*
1926 	 * Reset the vdev_reopening flag so that we actually close
1927 	 * the vdev on error.
1928 	 */
1929 	vd->vdev_reopening = B_FALSE;
1930 	if (zio_injection_enabled && error == 0)
1931 		error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
1932 
1933 	if (error) {
1934 		if (vd->vdev_removed &&
1935 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1936 			vd->vdev_removed = B_FALSE;
1937 
1938 		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1939 			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1940 			    vd->vdev_stat.vs_aux);
1941 		} else {
1942 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1943 			    vd->vdev_stat.vs_aux);
1944 		}
1945 		return (error);
1946 	}
1947 
1948 	vd->vdev_removed = B_FALSE;
1949 
1950 	/*
1951 	 * Recheck the faulted flag now that we have confirmed that
1952 	 * the vdev is accessible.  If we're faulted, bail.
1953 	 */
1954 	if (vd->vdev_faulted) {
1955 		ASSERT(vd->vdev_children == 0);
1956 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1957 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1958 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1959 		    vd->vdev_label_aux);
1960 		return (SET_ERROR(ENXIO));
1961 	}
1962 
1963 	if (vd->vdev_degraded) {
1964 		ASSERT(vd->vdev_children == 0);
1965 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1966 		    VDEV_AUX_ERR_EXCEEDED);
1967 	} else {
1968 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1969 	}
1970 
1971 	/*
1972 	 * For hole or missing vdevs we just return success.
1973 	 */
1974 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1975 		return (0);
1976 
1977 	for (int c = 0; c < vd->vdev_children; c++) {
1978 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1979 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1980 			    VDEV_AUX_NONE);
1981 			break;
1982 		}
1983 	}
1984 
1985 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1986 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1987 
1988 	if (vd->vdev_children == 0) {
1989 		if (osize < SPA_MINDEVSIZE) {
1990 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1991 			    VDEV_AUX_TOO_SMALL);
1992 			return (SET_ERROR(EOVERFLOW));
1993 		}
1994 		psize = osize;
1995 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1996 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1997 		    VDEV_LABEL_END_SIZE);
1998 	} else {
1999 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2000 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2001 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2002 			    VDEV_AUX_TOO_SMALL);
2003 			return (SET_ERROR(EOVERFLOW));
2004 		}
2005 		psize = 0;
2006 		asize = osize;
2007 		max_asize = max_osize;
2008 	}
2009 
2010 	/*
2011 	 * If the vdev was expanded, record this so that we can re-create the
2012 	 * uberblock rings in labels {2,3}, during the next sync.
2013 	 */
2014 	if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2015 		vd->vdev_copy_uberblocks = B_TRUE;
2016 
2017 	vd->vdev_psize = psize;
2018 
2019 	/*
2020 	 * Make sure the allocatable size hasn't shrunk too much.
2021 	 */
2022 	if (asize < vd->vdev_min_asize) {
2023 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2024 		    VDEV_AUX_BAD_LABEL);
2025 		return (SET_ERROR(EINVAL));
2026 	}
2027 
2028 	/*
2029 	 * We can always set the logical/physical ashift members since
2030 	 * their values are only used to calculate the vdev_ashift when
2031 	 * the device is first added to the config. These values should
2032 	 * not be used for anything else since they may change whenever
2033 	 * the device is reopened and we don't store them in the label.
2034 	 */
2035 	vd->vdev_physical_ashift =
2036 	    MAX(physical_ashift, vd->vdev_physical_ashift);
2037 	vd->vdev_logical_ashift = MAX(logical_ashift,
2038 	    vd->vdev_logical_ashift);
2039 
2040 	if (vd->vdev_asize == 0) {
2041 		/*
2042 		 * This is the first-ever open, so use the computed values.
2043 		 * For compatibility, a different ashift can be requested.
2044 		 */
2045 		vd->vdev_asize = asize;
2046 		vd->vdev_max_asize = max_asize;
2047 
2048 		/*
2049 		 * If the vdev_ashift was not overriden at creation time,
2050 		 * then set it the logical ashift and optimize the ashift.
2051 		 */
2052 		if (vd->vdev_ashift == 0) {
2053 			vd->vdev_ashift = vd->vdev_logical_ashift;
2054 
2055 			if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2056 				vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2057 				    VDEV_AUX_ASHIFT_TOO_BIG);
2058 				return (SET_ERROR(EDOM));
2059 			}
2060 
2061 			if (vd->vdev_top == vd) {
2062 				vdev_ashift_optimize(vd);
2063 			}
2064 		}
2065 		if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2066 		    vd->vdev_ashift > ASHIFT_MAX)) {
2067 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2068 			    VDEV_AUX_BAD_ASHIFT);
2069 			return (SET_ERROR(EDOM));
2070 		}
2071 	} else {
2072 		/*
2073 		 * Make sure the alignment required hasn't increased.
2074 		 */
2075 		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2076 		    vd->vdev_ops->vdev_op_leaf) {
2077 			(void) zfs_ereport_post(
2078 			    FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2079 			    spa, vd, NULL, NULL, 0);
2080 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2081 			    VDEV_AUX_BAD_LABEL);
2082 			return (SET_ERROR(EDOM));
2083 		}
2084 		vd->vdev_max_asize = max_asize;
2085 	}
2086 
2087 	/*
2088 	 * If all children are healthy we update asize if either:
2089 	 * The asize has increased, due to a device expansion caused by dynamic
2090 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
2091 	 * making the additional space available.
2092 	 *
2093 	 * The asize has decreased, due to a device shrink usually caused by a
2094 	 * vdev replace with a smaller device. This ensures that calculations
2095 	 * based of max_asize and asize e.g. esize are always valid. It's safe
2096 	 * to do this as we've already validated that asize is greater than
2097 	 * vdev_min_asize.
2098 	 */
2099 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2100 	    ((asize > vd->vdev_asize &&
2101 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
2102 	    (asize < vd->vdev_asize)))
2103 		vd->vdev_asize = asize;
2104 
2105 	vdev_set_min_asize(vd);
2106 
2107 	/*
2108 	 * Ensure we can issue some IO before declaring the
2109 	 * vdev open for business.
2110 	 */
2111 	if (vd->vdev_ops->vdev_op_leaf &&
2112 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2113 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2114 		    VDEV_AUX_ERR_EXCEEDED);
2115 		return (error);
2116 	}
2117 
2118 	/*
2119 	 * Track the the minimum allocation size.
2120 	 */
2121 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2122 	    vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2123 		uint64_t min_alloc = vdev_get_min_alloc(vd);
2124 		if (min_alloc < spa->spa_min_alloc)
2125 			spa->spa_min_alloc = min_alloc;
2126 	}
2127 
2128 	/*
2129 	 * If this is a leaf vdev, assess whether a resilver is needed.
2130 	 * But don't do this if we are doing a reopen for a scrub, since
2131 	 * this would just restart the scrub we are already doing.
2132 	 */
2133 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2134 		dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2135 
2136 	return (0);
2137 }
2138 
2139 static void
2140 vdev_validate_child(void *arg)
2141 {
2142 	vdev_t *vd = arg;
2143 
2144 	vd->vdev_validate_thread = curthread;
2145 	vd->vdev_validate_error = vdev_validate(vd);
2146 	vd->vdev_validate_thread = NULL;
2147 }
2148 
2149 /*
2150  * Called once the vdevs are all opened, this routine validates the label
2151  * contents. This needs to be done before vdev_load() so that we don't
2152  * inadvertently do repair I/Os to the wrong device.
2153  *
2154  * This function will only return failure if one of the vdevs indicates that it
2155  * has since been destroyed or exported.  This is only possible if
2156  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
2157  * will be updated but the function will return 0.
2158  */
2159 int
2160 vdev_validate(vdev_t *vd)
2161 {
2162 	spa_t *spa = vd->vdev_spa;
2163 	taskq_t *tq = NULL;
2164 	nvlist_t *label;
2165 	uint64_t guid = 0, aux_guid = 0, top_guid;
2166 	uint64_t state;
2167 	nvlist_t *nvl;
2168 	uint64_t txg;
2169 	int children = vd->vdev_children;
2170 
2171 	if (vdev_validate_skip)
2172 		return (0);
2173 
2174 	if (children > 0) {
2175 		tq = taskq_create("vdev_validate", children, minclsyspri,
2176 		    children, children, TASKQ_PREPOPULATE);
2177 	}
2178 
2179 	for (uint64_t c = 0; c < children; c++) {
2180 		vdev_t *cvd = vd->vdev_child[c];
2181 
2182 		if (tq == NULL || vdev_uses_zvols(cvd)) {
2183 			vdev_validate_child(cvd);
2184 		} else {
2185 			VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2186 			    TQ_SLEEP) != TASKQID_INVALID);
2187 		}
2188 	}
2189 	if (tq != NULL) {
2190 		taskq_wait(tq);
2191 		taskq_destroy(tq);
2192 	}
2193 	for (int c = 0; c < children; c++) {
2194 		int error = vd->vdev_child[c]->vdev_validate_error;
2195 
2196 		if (error != 0)
2197 			return (SET_ERROR(EBADF));
2198 	}
2199 
2200 
2201 	/*
2202 	 * If the device has already failed, or was marked offline, don't do
2203 	 * any further validation.  Otherwise, label I/O will fail and we will
2204 	 * overwrite the previous state.
2205 	 */
2206 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2207 		return (0);
2208 
2209 	/*
2210 	 * If we are performing an extreme rewind, we allow for a label that
2211 	 * was modified at a point after the current txg.
2212 	 * If config lock is not held do not check for the txg. spa_sync could
2213 	 * be updating the vdev's label before updating spa_last_synced_txg.
2214 	 */
2215 	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2216 	    spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2217 		txg = UINT64_MAX;
2218 	else
2219 		txg = spa_last_synced_txg(spa);
2220 
2221 	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2222 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2223 		    VDEV_AUX_BAD_LABEL);
2224 		vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2225 		    "txg %llu", (u_longlong_t)txg);
2226 		return (0);
2227 	}
2228 
2229 	/*
2230 	 * Determine if this vdev has been split off into another
2231 	 * pool.  If so, then refuse to open it.
2232 	 */
2233 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2234 	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2235 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2236 		    VDEV_AUX_SPLIT_POOL);
2237 		nvlist_free(label);
2238 		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2239 		return (0);
2240 	}
2241 
2242 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2243 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2244 		    VDEV_AUX_CORRUPT_DATA);
2245 		nvlist_free(label);
2246 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2247 		    ZPOOL_CONFIG_POOL_GUID);
2248 		return (0);
2249 	}
2250 
2251 	/*
2252 	 * If config is not trusted then ignore the spa guid check. This is
2253 	 * necessary because if the machine crashed during a re-guid the new
2254 	 * guid might have been written to all of the vdev labels, but not the
2255 	 * cached config. The check will be performed again once we have the
2256 	 * trusted config from the MOS.
2257 	 */
2258 	if (spa->spa_trust_config && guid != spa_guid(spa)) {
2259 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2260 		    VDEV_AUX_CORRUPT_DATA);
2261 		nvlist_free(label);
2262 		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2263 		    "match config (%llu != %llu)", (u_longlong_t)guid,
2264 		    (u_longlong_t)spa_guid(spa));
2265 		return (0);
2266 	}
2267 
2268 	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2269 	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2270 	    &aux_guid) != 0)
2271 		aux_guid = 0;
2272 
2273 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2274 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2275 		    VDEV_AUX_CORRUPT_DATA);
2276 		nvlist_free(label);
2277 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2278 		    ZPOOL_CONFIG_GUID);
2279 		return (0);
2280 	}
2281 
2282 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2283 	    != 0) {
2284 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2285 		    VDEV_AUX_CORRUPT_DATA);
2286 		nvlist_free(label);
2287 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2288 		    ZPOOL_CONFIG_TOP_GUID);
2289 		return (0);
2290 	}
2291 
2292 	/*
2293 	 * If this vdev just became a top-level vdev because its sibling was
2294 	 * detached, it will have adopted the parent's vdev guid -- but the
2295 	 * label may or may not be on disk yet. Fortunately, either version
2296 	 * of the label will have the same top guid, so if we're a top-level
2297 	 * vdev, we can safely compare to that instead.
2298 	 * However, if the config comes from a cachefile that failed to update
2299 	 * after the detach, a top-level vdev will appear as a non top-level
2300 	 * vdev in the config. Also relax the constraints if we perform an
2301 	 * extreme rewind.
2302 	 *
2303 	 * If we split this vdev off instead, then we also check the
2304 	 * original pool's guid. We don't want to consider the vdev
2305 	 * corrupt if it is partway through a split operation.
2306 	 */
2307 	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2308 		boolean_t mismatch = B_FALSE;
2309 		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2310 			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2311 				mismatch = B_TRUE;
2312 		} else {
2313 			if (vd->vdev_guid != top_guid &&
2314 			    vd->vdev_top->vdev_guid != guid)
2315 				mismatch = B_TRUE;
2316 		}
2317 
2318 		if (mismatch) {
2319 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2320 			    VDEV_AUX_CORRUPT_DATA);
2321 			nvlist_free(label);
2322 			vdev_dbgmsg(vd, "vdev_validate: config guid "
2323 			    "doesn't match label guid");
2324 			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2325 			    (u_longlong_t)vd->vdev_guid,
2326 			    (u_longlong_t)vd->vdev_top->vdev_guid);
2327 			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2328 			    "aux_guid %llu", (u_longlong_t)guid,
2329 			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2330 			return (0);
2331 		}
2332 	}
2333 
2334 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2335 	    &state) != 0) {
2336 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2337 		    VDEV_AUX_CORRUPT_DATA);
2338 		nvlist_free(label);
2339 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2340 		    ZPOOL_CONFIG_POOL_STATE);
2341 		return (0);
2342 	}
2343 
2344 	nvlist_free(label);
2345 
2346 	/*
2347 	 * If this is a verbatim import, no need to check the
2348 	 * state of the pool.
2349 	 */
2350 	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2351 	    spa_load_state(spa) == SPA_LOAD_OPEN &&
2352 	    state != POOL_STATE_ACTIVE) {
2353 		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2354 		    "for spa %s", (u_longlong_t)state, spa->spa_name);
2355 		return (SET_ERROR(EBADF));
2356 	}
2357 
2358 	/*
2359 	 * If we were able to open and validate a vdev that was
2360 	 * previously marked permanently unavailable, clear that state
2361 	 * now.
2362 	 */
2363 	if (vd->vdev_not_present)
2364 		vd->vdev_not_present = 0;
2365 
2366 	return (0);
2367 }
2368 
2369 static void
2370 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2371 {
2372 	if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
2373 		if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
2374 			zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2375 			    "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2376 			    dvd->vdev_path, svd->vdev_path);
2377 			spa_strfree(dvd->vdev_path);
2378 			dvd->vdev_path = spa_strdup(svd->vdev_path);
2379 		}
2380 	} else if (svd->vdev_path != NULL) {
2381 		dvd->vdev_path = spa_strdup(svd->vdev_path);
2382 		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2383 		    (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
2384 	}
2385 }
2386 
2387 /*
2388  * Recursively copy vdev paths from one vdev to another. Source and destination
2389  * vdev trees must have same geometry otherwise return error. Intended to copy
2390  * paths from userland config into MOS config.
2391  */
2392 int
2393 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2394 {
2395 	if ((svd->vdev_ops == &vdev_missing_ops) ||
2396 	    (svd->vdev_ishole && dvd->vdev_ishole) ||
2397 	    (dvd->vdev_ops == &vdev_indirect_ops))
2398 		return (0);
2399 
2400 	if (svd->vdev_ops != dvd->vdev_ops) {
2401 		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2402 		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2403 		return (SET_ERROR(EINVAL));
2404 	}
2405 
2406 	if (svd->vdev_guid != dvd->vdev_guid) {
2407 		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2408 		    "%llu)", (u_longlong_t)svd->vdev_guid,
2409 		    (u_longlong_t)dvd->vdev_guid);
2410 		return (SET_ERROR(EINVAL));
2411 	}
2412 
2413 	if (svd->vdev_children != dvd->vdev_children) {
2414 		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2415 		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
2416 		    (u_longlong_t)dvd->vdev_children);
2417 		return (SET_ERROR(EINVAL));
2418 	}
2419 
2420 	for (uint64_t i = 0; i < svd->vdev_children; i++) {
2421 		int error = vdev_copy_path_strict(svd->vdev_child[i],
2422 		    dvd->vdev_child[i]);
2423 		if (error != 0)
2424 			return (error);
2425 	}
2426 
2427 	if (svd->vdev_ops->vdev_op_leaf)
2428 		vdev_copy_path_impl(svd, dvd);
2429 
2430 	return (0);
2431 }
2432 
2433 static void
2434 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2435 {
2436 	ASSERT(stvd->vdev_top == stvd);
2437 	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2438 
2439 	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2440 		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2441 	}
2442 
2443 	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2444 		return;
2445 
2446 	/*
2447 	 * The idea here is that while a vdev can shift positions within
2448 	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2449 	 * step outside of it.
2450 	 */
2451 	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2452 
2453 	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2454 		return;
2455 
2456 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2457 
2458 	vdev_copy_path_impl(vd, dvd);
2459 }
2460 
2461 /*
2462  * Recursively copy vdev paths from one root vdev to another. Source and
2463  * destination vdev trees may differ in geometry. For each destination leaf
2464  * vdev, search a vdev with the same guid and top vdev id in the source.
2465  * Intended to copy paths from userland config into MOS config.
2466  */
2467 void
2468 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2469 {
2470 	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2471 	ASSERT(srvd->vdev_ops == &vdev_root_ops);
2472 	ASSERT(drvd->vdev_ops == &vdev_root_ops);
2473 
2474 	for (uint64_t i = 0; i < children; i++) {
2475 		vdev_copy_path_search(srvd->vdev_child[i],
2476 		    drvd->vdev_child[i]);
2477 	}
2478 }
2479 
2480 /*
2481  * Close a virtual device.
2482  */
2483 void
2484 vdev_close(vdev_t *vd)
2485 {
2486 	vdev_t *pvd = vd->vdev_parent;
2487 	spa_t *spa __maybe_unused = vd->vdev_spa;
2488 
2489 	ASSERT(vd != NULL);
2490 	ASSERT(vd->vdev_open_thread == curthread ||
2491 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2492 
2493 	/*
2494 	 * If our parent is reopening, then we are as well, unless we are
2495 	 * going offline.
2496 	 */
2497 	if (pvd != NULL && pvd->vdev_reopening)
2498 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2499 
2500 	vd->vdev_ops->vdev_op_close(vd);
2501 
2502 	vdev_cache_purge(vd);
2503 
2504 	/*
2505 	 * We record the previous state before we close it, so that if we are
2506 	 * doing a reopen(), we don't generate FMA ereports if we notice that
2507 	 * it's still faulted.
2508 	 */
2509 	vd->vdev_prevstate = vd->vdev_state;
2510 
2511 	if (vd->vdev_offline)
2512 		vd->vdev_state = VDEV_STATE_OFFLINE;
2513 	else
2514 		vd->vdev_state = VDEV_STATE_CLOSED;
2515 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2516 }
2517 
2518 void
2519 vdev_hold(vdev_t *vd)
2520 {
2521 	spa_t *spa = vd->vdev_spa;
2522 
2523 	ASSERT(spa_is_root(spa));
2524 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2525 		return;
2526 
2527 	for (int c = 0; c < vd->vdev_children; c++)
2528 		vdev_hold(vd->vdev_child[c]);
2529 
2530 	if (vd->vdev_ops->vdev_op_leaf)
2531 		vd->vdev_ops->vdev_op_hold(vd);
2532 }
2533 
2534 void
2535 vdev_rele(vdev_t *vd)
2536 {
2537 	ASSERT(spa_is_root(vd->vdev_spa));
2538 	for (int c = 0; c < vd->vdev_children; c++)
2539 		vdev_rele(vd->vdev_child[c]);
2540 
2541 	if (vd->vdev_ops->vdev_op_leaf)
2542 		vd->vdev_ops->vdev_op_rele(vd);
2543 }
2544 
2545 /*
2546  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2547  * reopen leaf vdevs which had previously been opened as they might deadlock
2548  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2549  * If the leaf has never been opened then open it, as usual.
2550  */
2551 void
2552 vdev_reopen(vdev_t *vd)
2553 {
2554 	spa_t *spa = vd->vdev_spa;
2555 
2556 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2557 
2558 	/* set the reopening flag unless we're taking the vdev offline */
2559 	vd->vdev_reopening = !vd->vdev_offline;
2560 	vdev_close(vd);
2561 	(void) vdev_open(vd);
2562 
2563 	/*
2564 	 * Call vdev_validate() here to make sure we have the same device.
2565 	 * Otherwise, a device with an invalid label could be successfully
2566 	 * opened in response to vdev_reopen().
2567 	 */
2568 	if (vd->vdev_aux) {
2569 		(void) vdev_validate_aux(vd);
2570 		if (vdev_readable(vd) && vdev_writeable(vd) &&
2571 		    vd->vdev_aux == &spa->spa_l2cache) {
2572 			/*
2573 			 * In case the vdev is present we should evict all ARC
2574 			 * buffers and pointers to log blocks and reclaim their
2575 			 * space before restoring its contents to L2ARC.
2576 			 */
2577 			if (l2arc_vdev_present(vd)) {
2578 				l2arc_rebuild_vdev(vd, B_TRUE);
2579 			} else {
2580 				l2arc_add_vdev(spa, vd);
2581 			}
2582 			spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2583 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2584 		}
2585 	} else {
2586 		(void) vdev_validate(vd);
2587 	}
2588 
2589 	/*
2590 	 * Reassess parent vdev's health.
2591 	 */
2592 	vdev_propagate_state(vd);
2593 }
2594 
2595 int
2596 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2597 {
2598 	int error;
2599 
2600 	/*
2601 	 * Normally, partial opens (e.g. of a mirror) are allowed.
2602 	 * For a create, however, we want to fail the request if
2603 	 * there are any components we can't open.
2604 	 */
2605 	error = vdev_open(vd);
2606 
2607 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2608 		vdev_close(vd);
2609 		return (error ? error : SET_ERROR(ENXIO));
2610 	}
2611 
2612 	/*
2613 	 * Recursively load DTLs and initialize all labels.
2614 	 */
2615 	if ((error = vdev_dtl_load(vd)) != 0 ||
2616 	    (error = vdev_label_init(vd, txg, isreplacing ?
2617 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2618 		vdev_close(vd);
2619 		return (error);
2620 	}
2621 
2622 	return (0);
2623 }
2624 
2625 void
2626 vdev_metaslab_set_size(vdev_t *vd)
2627 {
2628 	uint64_t asize = vd->vdev_asize;
2629 	uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2630 	uint64_t ms_shift;
2631 
2632 	/*
2633 	 * There are two dimensions to the metaslab sizing calculation:
2634 	 * the size of the metaslab and the count of metaslabs per vdev.
2635 	 *
2636 	 * The default values used below are a good balance between memory
2637 	 * usage (larger metaslab size means more memory needed for loaded
2638 	 * metaslabs; more metaslabs means more memory needed for the
2639 	 * metaslab_t structs), metaslab load time (larger metaslabs take
2640 	 * longer to load), and metaslab sync time (more metaslabs means
2641 	 * more time spent syncing all of them).
2642 	 *
2643 	 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2644 	 * The range of the dimensions are as follows:
2645 	 *
2646 	 *	2^29 <= ms_size  <= 2^34
2647 	 *	  16 <= ms_count <= 131,072
2648 	 *
2649 	 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2650 	 * at least 512MB (2^29) to minimize fragmentation effects when
2651 	 * testing with smaller devices.  However, the count constraint
2652 	 * of at least 16 metaslabs will override this minimum size goal.
2653 	 *
2654 	 * On the upper end of vdev sizes, we aim for a maximum metaslab
2655 	 * size of 16GB.  However, we will cap the total count to 2^17
2656 	 * metaslabs to keep our memory footprint in check and let the
2657 	 * metaslab size grow from there if that limit is hit.
2658 	 *
2659 	 * The net effect of applying above constrains is summarized below.
2660 	 *
2661 	 *   vdev size       metaslab count
2662 	 *  --------------|-----------------
2663 	 *      < 8GB        ~16
2664 	 *  8GB   - 100GB   one per 512MB
2665 	 *  100GB - 3TB     ~200
2666 	 *  3TB   - 2PB     one per 16GB
2667 	 *      > 2PB       ~131,072
2668 	 *  --------------------------------
2669 	 *
2670 	 *  Finally, note that all of the above calculate the initial
2671 	 *  number of metaslabs. Expanding a top-level vdev will result
2672 	 *  in additional metaslabs being allocated making it possible
2673 	 *  to exceed the zfs_vdev_ms_count_limit.
2674 	 */
2675 
2676 	if (ms_count < zfs_vdev_min_ms_count)
2677 		ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2678 	else if (ms_count > zfs_vdev_default_ms_count)
2679 		ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2680 	else
2681 		ms_shift = zfs_vdev_default_ms_shift;
2682 
2683 	if (ms_shift < SPA_MAXBLOCKSHIFT) {
2684 		ms_shift = SPA_MAXBLOCKSHIFT;
2685 	} else if (ms_shift > zfs_vdev_max_ms_shift) {
2686 		ms_shift = zfs_vdev_max_ms_shift;
2687 		/* cap the total count to constrain memory footprint */
2688 		if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2689 			ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2690 	}
2691 
2692 	vd->vdev_ms_shift = ms_shift;
2693 	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2694 }
2695 
2696 void
2697 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2698 {
2699 	ASSERT(vd == vd->vdev_top);
2700 	/* indirect vdevs don't have metaslabs or dtls */
2701 	ASSERT(vdev_is_concrete(vd) || flags == 0);
2702 	ASSERT(ISP2(flags));
2703 	ASSERT(spa_writeable(vd->vdev_spa));
2704 
2705 	if (flags & VDD_METASLAB)
2706 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2707 
2708 	if (flags & VDD_DTL)
2709 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2710 
2711 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2712 }
2713 
2714 void
2715 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2716 {
2717 	for (int c = 0; c < vd->vdev_children; c++)
2718 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2719 
2720 	if (vd->vdev_ops->vdev_op_leaf)
2721 		vdev_dirty(vd->vdev_top, flags, vd, txg);
2722 }
2723 
2724 /*
2725  * DTLs.
2726  *
2727  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2728  * the vdev has less than perfect replication.  There are four kinds of DTL:
2729  *
2730  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2731  *
2732  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2733  *
2734  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2735  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2736  *	txgs that was scrubbed.
2737  *
2738  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2739  *	persistent errors or just some device being offline.
2740  *	Unlike the other three, the DTL_OUTAGE map is not generally
2741  *	maintained; it's only computed when needed, typically to
2742  *	determine whether a device can be detached.
2743  *
2744  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2745  * either has the data or it doesn't.
2746  *
2747  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2748  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2749  * if any child is less than fully replicated, then so is its parent.
2750  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2751  * comprising only those txgs which appear in 'maxfaults' or more children;
2752  * those are the txgs we don't have enough replication to read.  For example,
2753  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2754  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2755  * two child DTL_MISSING maps.
2756  *
2757  * It should be clear from the above that to compute the DTLs and outage maps
2758  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2759  * Therefore, that is all we keep on disk.  When loading the pool, or after
2760  * a configuration change, we generate all other DTLs from first principles.
2761  */
2762 void
2763 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2764 {
2765 	range_tree_t *rt = vd->vdev_dtl[t];
2766 
2767 	ASSERT(t < DTL_TYPES);
2768 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2769 	ASSERT(spa_writeable(vd->vdev_spa));
2770 
2771 	mutex_enter(&vd->vdev_dtl_lock);
2772 	if (!range_tree_contains(rt, txg, size))
2773 		range_tree_add(rt, txg, size);
2774 	mutex_exit(&vd->vdev_dtl_lock);
2775 }
2776 
2777 boolean_t
2778 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2779 {
2780 	range_tree_t *rt = vd->vdev_dtl[t];
2781 	boolean_t dirty = B_FALSE;
2782 
2783 	ASSERT(t < DTL_TYPES);
2784 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2785 
2786 	/*
2787 	 * While we are loading the pool, the DTLs have not been loaded yet.
2788 	 * This isn't a problem but it can result in devices being tried
2789 	 * which are known to not have the data.  In which case, the import
2790 	 * is relying on the checksum to ensure that we get the right data.
2791 	 * Note that while importing we are only reading the MOS, which is
2792 	 * always checksummed.
2793 	 */
2794 	mutex_enter(&vd->vdev_dtl_lock);
2795 	if (!range_tree_is_empty(rt))
2796 		dirty = range_tree_contains(rt, txg, size);
2797 	mutex_exit(&vd->vdev_dtl_lock);
2798 
2799 	return (dirty);
2800 }
2801 
2802 boolean_t
2803 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2804 {
2805 	range_tree_t *rt = vd->vdev_dtl[t];
2806 	boolean_t empty;
2807 
2808 	mutex_enter(&vd->vdev_dtl_lock);
2809 	empty = range_tree_is_empty(rt);
2810 	mutex_exit(&vd->vdev_dtl_lock);
2811 
2812 	return (empty);
2813 }
2814 
2815 /*
2816  * Check if the txg falls within the range which must be
2817  * resilvered.  DVAs outside this range can always be skipped.
2818  */
2819 boolean_t
2820 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2821     uint64_t phys_birth)
2822 {
2823 	/* Set by sequential resilver. */
2824 	if (phys_birth == TXG_UNKNOWN)
2825 		return (B_TRUE);
2826 
2827 	return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
2828 }
2829 
2830 /*
2831  * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
2832  */
2833 boolean_t
2834 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2835     uint64_t phys_birth)
2836 {
2837 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2838 
2839 	if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2840 	    vd->vdev_ops->vdev_op_leaf)
2841 		return (B_TRUE);
2842 
2843 	return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
2844 	    phys_birth));
2845 }
2846 
2847 /*
2848  * Returns the lowest txg in the DTL range.
2849  */
2850 static uint64_t
2851 vdev_dtl_min(vdev_t *vd)
2852 {
2853 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2854 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2855 	ASSERT0(vd->vdev_children);
2856 
2857 	return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
2858 }
2859 
2860 /*
2861  * Returns the highest txg in the DTL.
2862  */
2863 static uint64_t
2864 vdev_dtl_max(vdev_t *vd)
2865 {
2866 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2867 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2868 	ASSERT0(vd->vdev_children);
2869 
2870 	return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
2871 }
2872 
2873 /*
2874  * Determine if a resilvering vdev should remove any DTL entries from
2875  * its range. If the vdev was resilvering for the entire duration of the
2876  * scan then it should excise that range from its DTLs. Otherwise, this
2877  * vdev is considered partially resilvered and should leave its DTL
2878  * entries intact. The comment in vdev_dtl_reassess() describes how we
2879  * excise the DTLs.
2880  */
2881 static boolean_t
2882 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
2883 {
2884 	ASSERT0(vd->vdev_children);
2885 
2886 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
2887 		return (B_FALSE);
2888 
2889 	if (vd->vdev_resilver_deferred)
2890 		return (B_FALSE);
2891 
2892 	if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2893 		return (B_TRUE);
2894 
2895 	if (rebuild_done) {
2896 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
2897 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
2898 
2899 		/* Rebuild not initiated by attach */
2900 		if (vd->vdev_rebuild_txg == 0)
2901 			return (B_TRUE);
2902 
2903 		/*
2904 		 * When a rebuild completes without error then all missing data
2905 		 * up to the rebuild max txg has been reconstructed and the DTL
2906 		 * is eligible for excision.
2907 		 */
2908 		if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
2909 		    vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
2910 			ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
2911 			ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
2912 			ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
2913 			return (B_TRUE);
2914 		}
2915 	} else {
2916 		dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
2917 		dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
2918 
2919 		/* Resilver not initiated by attach */
2920 		if (vd->vdev_resilver_txg == 0)
2921 			return (B_TRUE);
2922 
2923 		/*
2924 		 * When a resilver is initiated the scan will assign the
2925 		 * scn_max_txg value to the highest txg value that exists
2926 		 * in all DTLs. If this device's max DTL is not part of this
2927 		 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
2928 		 * then it is not eligible for excision.
2929 		 */
2930 		if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2931 			ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
2932 			ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
2933 			ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
2934 			return (B_TRUE);
2935 		}
2936 	}
2937 
2938 	return (B_FALSE);
2939 }
2940 
2941 /*
2942  * Reassess DTLs after a config change or scrub completion. If txg == 0 no
2943  * write operations will be issued to the pool.
2944  */
2945 void
2946 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
2947     boolean_t scrub_done, boolean_t rebuild_done)
2948 {
2949 	spa_t *spa = vd->vdev_spa;
2950 	avl_tree_t reftree;
2951 	int minref;
2952 
2953 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2954 
2955 	for (int c = 0; c < vd->vdev_children; c++)
2956 		vdev_dtl_reassess(vd->vdev_child[c], txg,
2957 		    scrub_txg, scrub_done, rebuild_done);
2958 
2959 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2960 		return;
2961 
2962 	if (vd->vdev_ops->vdev_op_leaf) {
2963 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2964 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
2965 		boolean_t check_excise = B_FALSE;
2966 		boolean_t wasempty = B_TRUE;
2967 
2968 		mutex_enter(&vd->vdev_dtl_lock);
2969 
2970 		/*
2971 		 * If requested, pretend the scan or rebuild completed cleanly.
2972 		 */
2973 		if (zfs_scan_ignore_errors) {
2974 			if (scn != NULL)
2975 				scn->scn_phys.scn_errors = 0;
2976 			if (vr != NULL)
2977 				vr->vr_rebuild_phys.vrp_errors = 0;
2978 		}
2979 
2980 		if (scrub_txg != 0 &&
2981 		    !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
2982 			wasempty = B_FALSE;
2983 			zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
2984 			    "dtl:%llu/%llu errors:%llu",
2985 			    (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
2986 			    (u_longlong_t)scrub_txg, spa->spa_scrub_started,
2987 			    (u_longlong_t)vdev_dtl_min(vd),
2988 			    (u_longlong_t)vdev_dtl_max(vd),
2989 			    (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
2990 		}
2991 
2992 		/*
2993 		 * If we've completed a scrub/resilver or a rebuild cleanly
2994 		 * then determine if this vdev should remove any DTLs. We
2995 		 * only want to excise regions on vdevs that were available
2996 		 * during the entire duration of this scan.
2997 		 */
2998 		if (rebuild_done &&
2999 		    vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3000 			check_excise = B_TRUE;
3001 		} else {
3002 			if (spa->spa_scrub_started ||
3003 			    (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3004 				check_excise = B_TRUE;
3005 			}
3006 		}
3007 
3008 		if (scrub_txg && check_excise &&
3009 		    vdev_dtl_should_excise(vd, rebuild_done)) {
3010 			/*
3011 			 * We completed a scrub, resilver or rebuild up to
3012 			 * scrub_txg.  If we did it without rebooting, then
3013 			 * the scrub dtl will be valid, so excise the old
3014 			 * region and fold in the scrub dtl.  Otherwise,
3015 			 * leave the dtl as-is if there was an error.
3016 			 *
3017 			 * There's little trick here: to excise the beginning
3018 			 * of the DTL_MISSING map, we put it into a reference
3019 			 * tree and then add a segment with refcnt -1 that
3020 			 * covers the range [0, scrub_txg).  This means
3021 			 * that each txg in that range has refcnt -1 or 0.
3022 			 * We then add DTL_SCRUB with a refcnt of 2, so that
3023 			 * entries in the range [0, scrub_txg) will have a
3024 			 * positive refcnt -- either 1 or 2.  We then convert
3025 			 * the reference tree into the new DTL_MISSING map.
3026 			 */
3027 			space_reftree_create(&reftree);
3028 			space_reftree_add_map(&reftree,
3029 			    vd->vdev_dtl[DTL_MISSING], 1);
3030 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3031 			space_reftree_add_map(&reftree,
3032 			    vd->vdev_dtl[DTL_SCRUB], 2);
3033 			space_reftree_generate_map(&reftree,
3034 			    vd->vdev_dtl[DTL_MISSING], 1);
3035 			space_reftree_destroy(&reftree);
3036 
3037 			if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3038 				zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3039 				    (u_longlong_t)vdev_dtl_min(vd),
3040 				    (u_longlong_t)vdev_dtl_max(vd));
3041 			} else if (!wasempty) {
3042 				zfs_dbgmsg("DTL_MISSING is now empty");
3043 			}
3044 		}
3045 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3046 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3047 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3048 		if (scrub_done)
3049 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
3050 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3051 		if (!vdev_readable(vd))
3052 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3053 		else
3054 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3055 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3056 
3057 		/*
3058 		 * If the vdev was resilvering or rebuilding and no longer
3059 		 * has any DTLs then reset the appropriate flag and dirty
3060 		 * the top level so that we persist the change.
3061 		 */
3062 		if (txg != 0 &&
3063 		    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3064 		    range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3065 			if (vd->vdev_rebuild_txg != 0) {
3066 				vd->vdev_rebuild_txg = 0;
3067 				vdev_config_dirty(vd->vdev_top);
3068 			} else if (vd->vdev_resilver_txg != 0) {
3069 				vd->vdev_resilver_txg = 0;
3070 				vdev_config_dirty(vd->vdev_top);
3071 			}
3072 		}
3073 
3074 		mutex_exit(&vd->vdev_dtl_lock);
3075 
3076 		if (txg != 0)
3077 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3078 		return;
3079 	}
3080 
3081 	mutex_enter(&vd->vdev_dtl_lock);
3082 	for (int t = 0; t < DTL_TYPES; t++) {
3083 		/* account for child's outage in parent's missing map */
3084 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3085 		if (t == DTL_SCRUB)
3086 			continue;			/* leaf vdevs only */
3087 		if (t == DTL_PARTIAL)
3088 			minref = 1;			/* i.e. non-zero */
3089 		else if (vdev_get_nparity(vd) != 0)
3090 			minref = vdev_get_nparity(vd) + 1; /* RAID-Z, dRAID */
3091 		else
3092 			minref = vd->vdev_children;	/* any kind of mirror */
3093 		space_reftree_create(&reftree);
3094 		for (int c = 0; c < vd->vdev_children; c++) {
3095 			vdev_t *cvd = vd->vdev_child[c];
3096 			mutex_enter(&cvd->vdev_dtl_lock);
3097 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
3098 			mutex_exit(&cvd->vdev_dtl_lock);
3099 		}
3100 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
3101 		space_reftree_destroy(&reftree);
3102 	}
3103 	mutex_exit(&vd->vdev_dtl_lock);
3104 }
3105 
3106 int
3107 vdev_dtl_load(vdev_t *vd)
3108 {
3109 	spa_t *spa = vd->vdev_spa;
3110 	objset_t *mos = spa->spa_meta_objset;
3111 	range_tree_t *rt;
3112 	int error = 0;
3113 
3114 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3115 		ASSERT(vdev_is_concrete(vd));
3116 
3117 		error = space_map_open(&vd->vdev_dtl_sm, mos,
3118 		    vd->vdev_dtl_object, 0, -1ULL, 0);
3119 		if (error)
3120 			return (error);
3121 		ASSERT(vd->vdev_dtl_sm != NULL);
3122 
3123 		rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3124 		error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3125 		if (error == 0) {
3126 			mutex_enter(&vd->vdev_dtl_lock);
3127 			range_tree_walk(rt, range_tree_add,
3128 			    vd->vdev_dtl[DTL_MISSING]);
3129 			mutex_exit(&vd->vdev_dtl_lock);
3130 		}
3131 
3132 		range_tree_vacate(rt, NULL, NULL);
3133 		range_tree_destroy(rt);
3134 
3135 		return (error);
3136 	}
3137 
3138 	for (int c = 0; c < vd->vdev_children; c++) {
3139 		error = vdev_dtl_load(vd->vdev_child[c]);
3140 		if (error != 0)
3141 			break;
3142 	}
3143 
3144 	return (error);
3145 }
3146 
3147 static void
3148 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3149 {
3150 	spa_t *spa = vd->vdev_spa;
3151 	objset_t *mos = spa->spa_meta_objset;
3152 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3153 	const char *string;
3154 
3155 	ASSERT(alloc_bias != VDEV_BIAS_NONE);
3156 
3157 	string =
3158 	    (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3159 	    (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3160 	    (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3161 
3162 	ASSERT(string != NULL);
3163 	VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3164 	    1, strlen(string) + 1, string, tx));
3165 
3166 	if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3167 		spa_activate_allocation_classes(spa, tx);
3168 	}
3169 }
3170 
3171 void
3172 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3173 {
3174 	spa_t *spa = vd->vdev_spa;
3175 
3176 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3177 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3178 	    zapobj, tx));
3179 }
3180 
3181 uint64_t
3182 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3183 {
3184 	spa_t *spa = vd->vdev_spa;
3185 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3186 	    DMU_OT_NONE, 0, tx);
3187 
3188 	ASSERT(zap != 0);
3189 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3190 	    zap, tx));
3191 
3192 	return (zap);
3193 }
3194 
3195 void
3196 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3197 {
3198 	if (vd->vdev_ops != &vdev_hole_ops &&
3199 	    vd->vdev_ops != &vdev_missing_ops &&
3200 	    vd->vdev_ops != &vdev_root_ops &&
3201 	    !vd->vdev_top->vdev_removing) {
3202 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3203 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3204 		}
3205 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3206 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3207 			if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3208 				vdev_zap_allocation_data(vd, tx);
3209 		}
3210 	}
3211 
3212 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3213 		vdev_construct_zaps(vd->vdev_child[i], tx);
3214 	}
3215 }
3216 
3217 static void
3218 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3219 {
3220 	spa_t *spa = vd->vdev_spa;
3221 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3222 	objset_t *mos = spa->spa_meta_objset;
3223 	range_tree_t *rtsync;
3224 	dmu_tx_t *tx;
3225 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
3226 
3227 	ASSERT(vdev_is_concrete(vd));
3228 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3229 
3230 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3231 
3232 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3233 		mutex_enter(&vd->vdev_dtl_lock);
3234 		space_map_free(vd->vdev_dtl_sm, tx);
3235 		space_map_close(vd->vdev_dtl_sm);
3236 		vd->vdev_dtl_sm = NULL;
3237 		mutex_exit(&vd->vdev_dtl_lock);
3238 
3239 		/*
3240 		 * We only destroy the leaf ZAP for detached leaves or for
3241 		 * removed log devices. Removed data devices handle leaf ZAP
3242 		 * cleanup later, once cancellation is no longer possible.
3243 		 */
3244 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3245 		    vd->vdev_top->vdev_islog)) {
3246 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3247 			vd->vdev_leaf_zap = 0;
3248 		}
3249 
3250 		dmu_tx_commit(tx);
3251 		return;
3252 	}
3253 
3254 	if (vd->vdev_dtl_sm == NULL) {
3255 		uint64_t new_object;
3256 
3257 		new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3258 		VERIFY3U(new_object, !=, 0);
3259 
3260 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3261 		    0, -1ULL, 0));
3262 		ASSERT(vd->vdev_dtl_sm != NULL);
3263 	}
3264 
3265 	rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3266 
3267 	mutex_enter(&vd->vdev_dtl_lock);
3268 	range_tree_walk(rt, range_tree_add, rtsync);
3269 	mutex_exit(&vd->vdev_dtl_lock);
3270 
3271 	space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3272 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3273 	range_tree_vacate(rtsync, NULL, NULL);
3274 
3275 	range_tree_destroy(rtsync);
3276 
3277 	/*
3278 	 * If the object for the space map has changed then dirty
3279 	 * the top level so that we update the config.
3280 	 */
3281 	if (object != space_map_object(vd->vdev_dtl_sm)) {
3282 		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3283 		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
3284 		    (u_longlong_t)object,
3285 		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3286 		vdev_config_dirty(vd->vdev_top);
3287 	}
3288 
3289 	dmu_tx_commit(tx);
3290 }
3291 
3292 /*
3293  * Determine whether the specified vdev can be offlined/detached/removed
3294  * without losing data.
3295  */
3296 boolean_t
3297 vdev_dtl_required(vdev_t *vd)
3298 {
3299 	spa_t *spa = vd->vdev_spa;
3300 	vdev_t *tvd = vd->vdev_top;
3301 	uint8_t cant_read = vd->vdev_cant_read;
3302 	boolean_t required;
3303 
3304 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3305 
3306 	if (vd == spa->spa_root_vdev || vd == tvd)
3307 		return (B_TRUE);
3308 
3309 	/*
3310 	 * Temporarily mark the device as unreadable, and then determine
3311 	 * whether this results in any DTL outages in the top-level vdev.
3312 	 * If not, we can safely offline/detach/remove the device.
3313 	 */
3314 	vd->vdev_cant_read = B_TRUE;
3315 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3316 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3317 	vd->vdev_cant_read = cant_read;
3318 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3319 
3320 	if (!required && zio_injection_enabled) {
3321 		required = !!zio_handle_device_injection(vd, NULL,
3322 		    SET_ERROR(ECHILD));
3323 	}
3324 
3325 	return (required);
3326 }
3327 
3328 /*
3329  * Determine if resilver is needed, and if so the txg range.
3330  */
3331 boolean_t
3332 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3333 {
3334 	boolean_t needed = B_FALSE;
3335 	uint64_t thismin = UINT64_MAX;
3336 	uint64_t thismax = 0;
3337 
3338 	if (vd->vdev_children == 0) {
3339 		mutex_enter(&vd->vdev_dtl_lock);
3340 		if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3341 		    vdev_writeable(vd)) {
3342 
3343 			thismin = vdev_dtl_min(vd);
3344 			thismax = vdev_dtl_max(vd);
3345 			needed = B_TRUE;
3346 		}
3347 		mutex_exit(&vd->vdev_dtl_lock);
3348 	} else {
3349 		for (int c = 0; c < vd->vdev_children; c++) {
3350 			vdev_t *cvd = vd->vdev_child[c];
3351 			uint64_t cmin, cmax;
3352 
3353 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3354 				thismin = MIN(thismin, cmin);
3355 				thismax = MAX(thismax, cmax);
3356 				needed = B_TRUE;
3357 			}
3358 		}
3359 	}
3360 
3361 	if (needed && minp) {
3362 		*minp = thismin;
3363 		*maxp = thismax;
3364 	}
3365 	return (needed);
3366 }
3367 
3368 /*
3369  * Gets the checkpoint space map object from the vdev's ZAP.  On success sm_obj
3370  * will contain either the checkpoint spacemap object or zero if none exists.
3371  * All other errors are returned to the caller.
3372  */
3373 int
3374 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3375 {
3376 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3377 
3378 	if (vd->vdev_top_zap == 0) {
3379 		*sm_obj = 0;
3380 		return (0);
3381 	}
3382 
3383 	int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3384 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3385 	if (error == ENOENT) {
3386 		*sm_obj = 0;
3387 		error = 0;
3388 	}
3389 
3390 	return (error);
3391 }
3392 
3393 int
3394 vdev_load(vdev_t *vd)
3395 {
3396 	int children = vd->vdev_children;
3397 	int error = 0;
3398 	taskq_t *tq = NULL;
3399 
3400 	/*
3401 	 * It's only worthwhile to use the taskq for the root vdev, because the
3402 	 * slow part is metaslab_init, and that only happens for top-level
3403 	 * vdevs.
3404 	 */
3405 	if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3406 		tq = taskq_create("vdev_load", children, minclsyspri,
3407 		    children, children, TASKQ_PREPOPULATE);
3408 	}
3409 
3410 	/*
3411 	 * Recursively load all children.
3412 	 */
3413 	for (int c = 0; c < vd->vdev_children; c++) {
3414 		vdev_t *cvd = vd->vdev_child[c];
3415 
3416 		if (tq == NULL || vdev_uses_zvols(cvd)) {
3417 			cvd->vdev_load_error = vdev_load(cvd);
3418 		} else {
3419 			VERIFY(taskq_dispatch(tq, vdev_load_child,
3420 			    cvd, TQ_SLEEP) != TASKQID_INVALID);
3421 		}
3422 	}
3423 
3424 	if (tq != NULL) {
3425 		taskq_wait(tq);
3426 		taskq_destroy(tq);
3427 	}
3428 
3429 	for (int c = 0; c < vd->vdev_children; c++) {
3430 		int error = vd->vdev_child[c]->vdev_load_error;
3431 
3432 		if (error != 0)
3433 			return (error);
3434 	}
3435 
3436 	vdev_set_deflate_ratio(vd);
3437 
3438 	/*
3439 	 * On spa_load path, grab the allocation bias from our zap
3440 	 */
3441 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3442 		spa_t *spa = vd->vdev_spa;
3443 		char bias_str[64];
3444 
3445 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3446 		    VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3447 		    bias_str);
3448 		if (error == 0) {
3449 			ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3450 			vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3451 		} else if (error != ENOENT) {
3452 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3453 			    VDEV_AUX_CORRUPT_DATA);
3454 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3455 			    "failed [error=%d]", vd->vdev_top_zap, error);
3456 			return (error);
3457 		}
3458 	}
3459 
3460 	/*
3461 	 * Load any rebuild state from the top-level vdev zap.
3462 	 */
3463 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3464 		error = vdev_rebuild_load(vd);
3465 		if (error && error != ENOTSUP) {
3466 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3467 			    VDEV_AUX_CORRUPT_DATA);
3468 			vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3469 			    "failed [error=%d]", error);
3470 			return (error);
3471 		}
3472 	}
3473 
3474 	/*
3475 	 * If this is a top-level vdev, initialize its metaslabs.
3476 	 */
3477 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3478 		vdev_metaslab_group_create(vd);
3479 
3480 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3481 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3482 			    VDEV_AUX_CORRUPT_DATA);
3483 			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3484 			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3485 			    (u_longlong_t)vd->vdev_asize);
3486 			return (SET_ERROR(ENXIO));
3487 		}
3488 
3489 		error = vdev_metaslab_init(vd, 0);
3490 		if (error != 0) {
3491 			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3492 			    "[error=%d]", error);
3493 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3494 			    VDEV_AUX_CORRUPT_DATA);
3495 			return (error);
3496 		}
3497 
3498 		uint64_t checkpoint_sm_obj;
3499 		error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3500 		if (error == 0 && checkpoint_sm_obj != 0) {
3501 			objset_t *mos = spa_meta_objset(vd->vdev_spa);
3502 			ASSERT(vd->vdev_asize != 0);
3503 			ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3504 
3505 			error = space_map_open(&vd->vdev_checkpoint_sm,
3506 			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3507 			    vd->vdev_ashift);
3508 			if (error != 0) {
3509 				vdev_dbgmsg(vd, "vdev_load: space_map_open "
3510 				    "failed for checkpoint spacemap (obj %llu) "
3511 				    "[error=%d]",
3512 				    (u_longlong_t)checkpoint_sm_obj, error);
3513 				return (error);
3514 			}
3515 			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3516 
3517 			/*
3518 			 * Since the checkpoint_sm contains free entries
3519 			 * exclusively we can use space_map_allocated() to
3520 			 * indicate the cumulative checkpointed space that
3521 			 * has been freed.
3522 			 */
3523 			vd->vdev_stat.vs_checkpoint_space =
3524 			    -space_map_allocated(vd->vdev_checkpoint_sm);
3525 			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3526 			    vd->vdev_stat.vs_checkpoint_space;
3527 		} else if (error != 0) {
3528 			vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3529 			    "checkpoint space map object from vdev ZAP "
3530 			    "[error=%d]", error);
3531 			return (error);
3532 		}
3533 	}
3534 
3535 	/*
3536 	 * If this is a leaf vdev, load its DTL.
3537 	 */
3538 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3539 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3540 		    VDEV_AUX_CORRUPT_DATA);
3541 		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3542 		    "[error=%d]", error);
3543 		return (error);
3544 	}
3545 
3546 	uint64_t obsolete_sm_object;
3547 	error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3548 	if (error == 0 && obsolete_sm_object != 0) {
3549 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
3550 		ASSERT(vd->vdev_asize != 0);
3551 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3552 
3553 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3554 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3555 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3556 			    VDEV_AUX_CORRUPT_DATA);
3557 			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3558 			    "obsolete spacemap (obj %llu) [error=%d]",
3559 			    (u_longlong_t)obsolete_sm_object, error);
3560 			return (error);
3561 		}
3562 	} else if (error != 0) {
3563 		vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3564 		    "space map object from vdev ZAP [error=%d]", error);
3565 		return (error);
3566 	}
3567 
3568 	return (0);
3569 }
3570 
3571 /*
3572  * The special vdev case is used for hot spares and l2cache devices.  Its
3573  * sole purpose it to set the vdev state for the associated vdev.  To do this,
3574  * we make sure that we can open the underlying device, then try to read the
3575  * label, and make sure that the label is sane and that it hasn't been
3576  * repurposed to another pool.
3577  */
3578 int
3579 vdev_validate_aux(vdev_t *vd)
3580 {
3581 	nvlist_t *label;
3582 	uint64_t guid, version;
3583 	uint64_t state;
3584 
3585 	if (!vdev_readable(vd))
3586 		return (0);
3587 
3588 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3589 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3590 		    VDEV_AUX_CORRUPT_DATA);
3591 		return (-1);
3592 	}
3593 
3594 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3595 	    !SPA_VERSION_IS_SUPPORTED(version) ||
3596 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3597 	    guid != vd->vdev_guid ||
3598 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3599 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3600 		    VDEV_AUX_CORRUPT_DATA);
3601 		nvlist_free(label);
3602 		return (-1);
3603 	}
3604 
3605 	/*
3606 	 * We don't actually check the pool state here.  If it's in fact in
3607 	 * use by another pool, we update this fact on the fly when requested.
3608 	 */
3609 	nvlist_free(label);
3610 	return (0);
3611 }
3612 
3613 static void
3614 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3615 {
3616 	objset_t *mos = spa_meta_objset(vd->vdev_spa);
3617 
3618 	if (vd->vdev_top_zap == 0)
3619 		return;
3620 
3621 	uint64_t object = 0;
3622 	int err = zap_lookup(mos, vd->vdev_top_zap,
3623 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3624 	if (err == ENOENT)
3625 		return;
3626 	VERIFY0(err);
3627 
3628 	VERIFY0(dmu_object_free(mos, object, tx));
3629 	VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3630 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3631 }
3632 
3633 /*
3634  * Free the objects used to store this vdev's spacemaps, and the array
3635  * that points to them.
3636  */
3637 void
3638 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3639 {
3640 	if (vd->vdev_ms_array == 0)
3641 		return;
3642 
3643 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
3644 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3645 	size_t array_bytes = array_count * sizeof (uint64_t);
3646 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3647 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3648 	    array_bytes, smobj_array, 0));
3649 
3650 	for (uint64_t i = 0; i < array_count; i++) {
3651 		uint64_t smobj = smobj_array[i];
3652 		if (smobj == 0)
3653 			continue;
3654 
3655 		space_map_free_obj(mos, smobj, tx);
3656 	}
3657 
3658 	kmem_free(smobj_array, array_bytes);
3659 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3660 	vdev_destroy_ms_flush_data(vd, tx);
3661 	vd->vdev_ms_array = 0;
3662 }
3663 
3664 static void
3665 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3666 {
3667 	spa_t *spa = vd->vdev_spa;
3668 
3669 	ASSERT(vd->vdev_islog);
3670 	ASSERT(vd == vd->vdev_top);
3671 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
3672 
3673 	dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3674 
3675 	vdev_destroy_spacemaps(vd, tx);
3676 	if (vd->vdev_top_zap != 0) {
3677 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3678 		vd->vdev_top_zap = 0;
3679 	}
3680 
3681 	dmu_tx_commit(tx);
3682 }
3683 
3684 void
3685 vdev_sync_done(vdev_t *vd, uint64_t txg)
3686 {
3687 	metaslab_t *msp;
3688 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3689 
3690 	ASSERT(vdev_is_concrete(vd));
3691 
3692 	while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3693 	    != NULL)
3694 		metaslab_sync_done(msp, txg);
3695 
3696 	if (reassess) {
3697 		metaslab_sync_reassess(vd->vdev_mg);
3698 		if (vd->vdev_log_mg != NULL)
3699 			metaslab_sync_reassess(vd->vdev_log_mg);
3700 	}
3701 }
3702 
3703 void
3704 vdev_sync(vdev_t *vd, uint64_t txg)
3705 {
3706 	spa_t *spa = vd->vdev_spa;
3707 	vdev_t *lvd;
3708 	metaslab_t *msp;
3709 
3710 	ASSERT3U(txg, ==, spa->spa_syncing_txg);
3711 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3712 	if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3713 		ASSERT(vd->vdev_removing ||
3714 		    vd->vdev_ops == &vdev_indirect_ops);
3715 
3716 		vdev_indirect_sync_obsolete(vd, tx);
3717 
3718 		/*
3719 		 * If the vdev is indirect, it can't have dirty
3720 		 * metaslabs or DTLs.
3721 		 */
3722 		if (vd->vdev_ops == &vdev_indirect_ops) {
3723 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3724 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3725 			dmu_tx_commit(tx);
3726 			return;
3727 		}
3728 	}
3729 
3730 	ASSERT(vdev_is_concrete(vd));
3731 
3732 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3733 	    !vd->vdev_removing) {
3734 		ASSERT(vd == vd->vdev_top);
3735 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3736 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3737 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3738 		ASSERT(vd->vdev_ms_array != 0);
3739 		vdev_config_dirty(vd);
3740 	}
3741 
3742 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3743 		metaslab_sync(msp, txg);
3744 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3745 	}
3746 
3747 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3748 		vdev_dtl_sync(lvd, txg);
3749 
3750 	/*
3751 	 * If this is an empty log device being removed, destroy the
3752 	 * metadata associated with it.
3753 	 */
3754 	if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3755 		vdev_remove_empty_log(vd, txg);
3756 
3757 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3758 	dmu_tx_commit(tx);
3759 }
3760 
3761 uint64_t
3762 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3763 {
3764 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
3765 }
3766 
3767 /*
3768  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
3769  * not be opened, and no I/O is attempted.
3770  */
3771 int
3772 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3773 {
3774 	vdev_t *vd, *tvd;
3775 
3776 	spa_vdev_state_enter(spa, SCL_NONE);
3777 
3778 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3779 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3780 
3781 	if (!vd->vdev_ops->vdev_op_leaf)
3782 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3783 
3784 	tvd = vd->vdev_top;
3785 
3786 	/*
3787 	 * If user did a 'zpool offline -f' then make the fault persist across
3788 	 * reboots.
3789 	 */
3790 	if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
3791 		/*
3792 		 * There are two kinds of forced faults: temporary and
3793 		 * persistent.  Temporary faults go away at pool import, while
3794 		 * persistent faults stay set.  Both types of faults can be
3795 		 * cleared with a zpool clear.
3796 		 *
3797 		 * We tell if a vdev is persistently faulted by looking at the
3798 		 * ZPOOL_CONFIG_AUX_STATE nvpair.  If it's set to "external" at
3799 		 * import then it's a persistent fault.  Otherwise, it's
3800 		 * temporary.  We get ZPOOL_CONFIG_AUX_STATE set to "external"
3801 		 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL.  This
3802 		 * tells vdev_config_generate() (which gets run later) to set
3803 		 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
3804 		 */
3805 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
3806 		vd->vdev_tmpoffline = B_FALSE;
3807 		aux = VDEV_AUX_EXTERNAL;
3808 	} else {
3809 		vd->vdev_tmpoffline = B_TRUE;
3810 	}
3811 
3812 	/*
3813 	 * We don't directly use the aux state here, but if we do a
3814 	 * vdev_reopen(), we need this value to be present to remember why we
3815 	 * were faulted.
3816 	 */
3817 	vd->vdev_label_aux = aux;
3818 
3819 	/*
3820 	 * Faulted state takes precedence over degraded.
3821 	 */
3822 	vd->vdev_delayed_close = B_FALSE;
3823 	vd->vdev_faulted = 1ULL;
3824 	vd->vdev_degraded = 0ULL;
3825 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3826 
3827 	/*
3828 	 * If this device has the only valid copy of the data, then
3829 	 * back off and simply mark the vdev as degraded instead.
3830 	 */
3831 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3832 		vd->vdev_degraded = 1ULL;
3833 		vd->vdev_faulted = 0ULL;
3834 
3835 		/*
3836 		 * If we reopen the device and it's not dead, only then do we
3837 		 * mark it degraded.
3838 		 */
3839 		vdev_reopen(tvd);
3840 
3841 		if (vdev_readable(vd))
3842 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3843 	}
3844 
3845 	return (spa_vdev_state_exit(spa, vd, 0));
3846 }
3847 
3848 /*
3849  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
3850  * user that something is wrong.  The vdev continues to operate as normal as far
3851  * as I/O is concerned.
3852  */
3853 int
3854 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3855 {
3856 	vdev_t *vd;
3857 
3858 	spa_vdev_state_enter(spa, SCL_NONE);
3859 
3860 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3861 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3862 
3863 	if (!vd->vdev_ops->vdev_op_leaf)
3864 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3865 
3866 	/*
3867 	 * If the vdev is already faulted, then don't do anything.
3868 	 */
3869 	if (vd->vdev_faulted || vd->vdev_degraded)
3870 		return (spa_vdev_state_exit(spa, NULL, 0));
3871 
3872 	vd->vdev_degraded = 1ULL;
3873 	if (!vdev_is_dead(vd))
3874 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3875 		    aux);
3876 
3877 	return (spa_vdev_state_exit(spa, vd, 0));
3878 }
3879 
3880 /*
3881  * Online the given vdev.
3882  *
3883  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
3884  * spare device should be detached when the device finishes resilvering.
3885  * Second, the online should be treated like a 'test' online case, so no FMA
3886  * events are generated if the device fails to open.
3887  */
3888 int
3889 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3890 {
3891 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3892 	boolean_t wasoffline;
3893 	vdev_state_t oldstate;
3894 
3895 	spa_vdev_state_enter(spa, SCL_NONE);
3896 
3897 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3898 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3899 
3900 	if (!vd->vdev_ops->vdev_op_leaf)
3901 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3902 
3903 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3904 	oldstate = vd->vdev_state;
3905 
3906 	tvd = vd->vdev_top;
3907 	vd->vdev_offline = B_FALSE;
3908 	vd->vdev_tmpoffline = B_FALSE;
3909 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3910 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3911 
3912 	/* XXX - L2ARC 1.0 does not support expansion */
3913 	if (!vd->vdev_aux) {
3914 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3915 			pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
3916 			    spa->spa_autoexpand);
3917 		vd->vdev_expansion_time = gethrestime_sec();
3918 	}
3919 
3920 	vdev_reopen(tvd);
3921 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3922 
3923 	if (!vd->vdev_aux) {
3924 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3925 			pvd->vdev_expanding = B_FALSE;
3926 	}
3927 
3928 	if (newstate)
3929 		*newstate = vd->vdev_state;
3930 	if ((flags & ZFS_ONLINE_UNSPARE) &&
3931 	    !vdev_is_dead(vd) && vd->vdev_parent &&
3932 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3933 	    vd->vdev_parent->vdev_child[0] == vd)
3934 		vd->vdev_unspare = B_TRUE;
3935 
3936 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3937 
3938 		/* XXX - L2ARC 1.0 does not support expansion */
3939 		if (vd->vdev_aux)
3940 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3941 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3942 	}
3943 
3944 	/* Restart initializing if necessary */
3945 	mutex_enter(&vd->vdev_initialize_lock);
3946 	if (vdev_writeable(vd) &&
3947 	    vd->vdev_initialize_thread == NULL &&
3948 	    vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3949 		(void) vdev_initialize(vd);
3950 	}
3951 	mutex_exit(&vd->vdev_initialize_lock);
3952 
3953 	/*
3954 	 * Restart trimming if necessary. We do not restart trimming for cache
3955 	 * devices here. This is triggered by l2arc_rebuild_vdev()
3956 	 * asynchronously for the whole device or in l2arc_evict() as it evicts
3957 	 * space for upcoming writes.
3958 	 */
3959 	mutex_enter(&vd->vdev_trim_lock);
3960 	if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
3961 	    vd->vdev_trim_thread == NULL &&
3962 	    vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
3963 		(void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
3964 		    vd->vdev_trim_secure);
3965 	}
3966 	mutex_exit(&vd->vdev_trim_lock);
3967 
3968 	if (wasoffline ||
3969 	    (oldstate < VDEV_STATE_DEGRADED &&
3970 	    vd->vdev_state >= VDEV_STATE_DEGRADED))
3971 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3972 
3973 	return (spa_vdev_state_exit(spa, vd, 0));
3974 }
3975 
3976 static int
3977 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3978 {
3979 	vdev_t *vd, *tvd;
3980 	int error = 0;
3981 	uint64_t generation;
3982 	metaslab_group_t *mg;
3983 
3984 top:
3985 	spa_vdev_state_enter(spa, SCL_ALLOC);
3986 
3987 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3988 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3989 
3990 	if (!vd->vdev_ops->vdev_op_leaf)
3991 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3992 
3993 	if (vd->vdev_ops == &vdev_draid_spare_ops)
3994 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3995 
3996 	tvd = vd->vdev_top;
3997 	mg = tvd->vdev_mg;
3998 	generation = spa->spa_config_generation + 1;
3999 
4000 	/*
4001 	 * If the device isn't already offline, try to offline it.
4002 	 */
4003 	if (!vd->vdev_offline) {
4004 		/*
4005 		 * If this device has the only valid copy of some data,
4006 		 * don't allow it to be offlined. Log devices are always
4007 		 * expendable.
4008 		 */
4009 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4010 		    vdev_dtl_required(vd))
4011 			return (spa_vdev_state_exit(spa, NULL,
4012 			    SET_ERROR(EBUSY)));
4013 
4014 		/*
4015 		 * If the top-level is a slog and it has had allocations
4016 		 * then proceed.  We check that the vdev's metaslab group
4017 		 * is not NULL since it's possible that we may have just
4018 		 * added this vdev but not yet initialized its metaslabs.
4019 		 */
4020 		if (tvd->vdev_islog && mg != NULL) {
4021 			/*
4022 			 * Prevent any future allocations.
4023 			 */
4024 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
4025 			metaslab_group_passivate(mg);
4026 			(void) spa_vdev_state_exit(spa, vd, 0);
4027 
4028 			error = spa_reset_logs(spa);
4029 
4030 			/*
4031 			 * If the log device was successfully reset but has
4032 			 * checkpointed data, do not offline it.
4033 			 */
4034 			if (error == 0 &&
4035 			    tvd->vdev_checkpoint_sm != NULL) {
4036 				ASSERT3U(space_map_allocated(
4037 				    tvd->vdev_checkpoint_sm), !=, 0);
4038 				error = ZFS_ERR_CHECKPOINT_EXISTS;
4039 			}
4040 
4041 			spa_vdev_state_enter(spa, SCL_ALLOC);
4042 
4043 			/*
4044 			 * Check to see if the config has changed.
4045 			 */
4046 			if (error || generation != spa->spa_config_generation) {
4047 				metaslab_group_activate(mg);
4048 				if (error)
4049 					return (spa_vdev_state_exit(spa,
4050 					    vd, error));
4051 				(void) spa_vdev_state_exit(spa, vd, 0);
4052 				goto top;
4053 			}
4054 			ASSERT0(tvd->vdev_stat.vs_alloc);
4055 		}
4056 
4057 		/*
4058 		 * Offline this device and reopen its top-level vdev.
4059 		 * If the top-level vdev is a log device then just offline
4060 		 * it. Otherwise, if this action results in the top-level
4061 		 * vdev becoming unusable, undo it and fail the request.
4062 		 */
4063 		vd->vdev_offline = B_TRUE;
4064 		vdev_reopen(tvd);
4065 
4066 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4067 		    vdev_is_dead(tvd)) {
4068 			vd->vdev_offline = B_FALSE;
4069 			vdev_reopen(tvd);
4070 			return (spa_vdev_state_exit(spa, NULL,
4071 			    SET_ERROR(EBUSY)));
4072 		}
4073 
4074 		/*
4075 		 * Add the device back into the metaslab rotor so that
4076 		 * once we online the device it's open for business.
4077 		 */
4078 		if (tvd->vdev_islog && mg != NULL)
4079 			metaslab_group_activate(mg);
4080 	}
4081 
4082 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4083 
4084 	return (spa_vdev_state_exit(spa, vd, 0));
4085 }
4086 
4087 int
4088 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4089 {
4090 	int error;
4091 
4092 	mutex_enter(&spa->spa_vdev_top_lock);
4093 	error = vdev_offline_locked(spa, guid, flags);
4094 	mutex_exit(&spa->spa_vdev_top_lock);
4095 
4096 	return (error);
4097 }
4098 
4099 /*
4100  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
4101  * vdev_offline(), we assume the spa config is locked.  We also clear all
4102  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
4103  */
4104 void
4105 vdev_clear(spa_t *spa, vdev_t *vd)
4106 {
4107 	vdev_t *rvd = spa->spa_root_vdev;
4108 
4109 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4110 
4111 	if (vd == NULL)
4112 		vd = rvd;
4113 
4114 	vd->vdev_stat.vs_read_errors = 0;
4115 	vd->vdev_stat.vs_write_errors = 0;
4116 	vd->vdev_stat.vs_checksum_errors = 0;
4117 	vd->vdev_stat.vs_slow_ios = 0;
4118 
4119 	for (int c = 0; c < vd->vdev_children; c++)
4120 		vdev_clear(spa, vd->vdev_child[c]);
4121 
4122 	/*
4123 	 * It makes no sense to "clear" an indirect vdev.
4124 	 */
4125 	if (!vdev_is_concrete(vd))
4126 		return;
4127 
4128 	/*
4129 	 * If we're in the FAULTED state or have experienced failed I/O, then
4130 	 * clear the persistent state and attempt to reopen the device.  We
4131 	 * also mark the vdev config dirty, so that the new faulted state is
4132 	 * written out to disk.
4133 	 */
4134 	if (vd->vdev_faulted || vd->vdev_degraded ||
4135 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
4136 		/*
4137 		 * When reopening in response to a clear event, it may be due to
4138 		 * a fmadm repair request.  In this case, if the device is
4139 		 * still broken, we want to still post the ereport again.
4140 		 */
4141 		vd->vdev_forcefault = B_TRUE;
4142 
4143 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4144 		vd->vdev_cant_read = B_FALSE;
4145 		vd->vdev_cant_write = B_FALSE;
4146 		vd->vdev_stat.vs_aux = 0;
4147 
4148 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4149 
4150 		vd->vdev_forcefault = B_FALSE;
4151 
4152 		if (vd != rvd && vdev_writeable(vd->vdev_top))
4153 			vdev_state_dirty(vd->vdev_top);
4154 
4155 		/* If a resilver isn't required, check if vdevs can be culled */
4156 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4157 		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4158 		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4159 			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4160 
4161 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4162 	}
4163 
4164 	/*
4165 	 * When clearing a FMA-diagnosed fault, we always want to
4166 	 * unspare the device, as we assume that the original spare was
4167 	 * done in response to the FMA fault.
4168 	 */
4169 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4170 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4171 	    vd->vdev_parent->vdev_child[0] == vd)
4172 		vd->vdev_unspare = B_TRUE;
4173 }
4174 
4175 boolean_t
4176 vdev_is_dead(vdev_t *vd)
4177 {
4178 	/*
4179 	 * Holes and missing devices are always considered "dead".
4180 	 * This simplifies the code since we don't have to check for
4181 	 * these types of devices in the various code paths.
4182 	 * Instead we rely on the fact that we skip over dead devices
4183 	 * before issuing I/O to them.
4184 	 */
4185 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4186 	    vd->vdev_ops == &vdev_hole_ops ||
4187 	    vd->vdev_ops == &vdev_missing_ops);
4188 }
4189 
4190 boolean_t
4191 vdev_readable(vdev_t *vd)
4192 {
4193 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4194 }
4195 
4196 boolean_t
4197 vdev_writeable(vdev_t *vd)
4198 {
4199 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4200 	    vdev_is_concrete(vd));
4201 }
4202 
4203 boolean_t
4204 vdev_allocatable(vdev_t *vd)
4205 {
4206 	uint64_t state = vd->vdev_state;
4207 
4208 	/*
4209 	 * We currently allow allocations from vdevs which may be in the
4210 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4211 	 * fails to reopen then we'll catch it later when we're holding
4212 	 * the proper locks.  Note that we have to get the vdev state
4213 	 * in a local variable because although it changes atomically,
4214 	 * we're asking two separate questions about it.
4215 	 */
4216 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4217 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4218 	    vd->vdev_mg->mg_initialized);
4219 }
4220 
4221 boolean_t
4222 vdev_accessible(vdev_t *vd, zio_t *zio)
4223 {
4224 	ASSERT(zio->io_vd == vd);
4225 
4226 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4227 		return (B_FALSE);
4228 
4229 	if (zio->io_type == ZIO_TYPE_READ)
4230 		return (!vd->vdev_cant_read);
4231 
4232 	if (zio->io_type == ZIO_TYPE_WRITE)
4233 		return (!vd->vdev_cant_write);
4234 
4235 	return (B_TRUE);
4236 }
4237 
4238 static void
4239 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4240 {
4241 	/*
4242 	 * Exclude the dRAID spare when aggregating to avoid double counting
4243 	 * the ops and bytes.  These IOs are counted by the physical leaves.
4244 	 */
4245 	if (cvd->vdev_ops == &vdev_draid_spare_ops)
4246 		return;
4247 
4248 	for (int t = 0; t < VS_ZIO_TYPES; t++) {
4249 		vs->vs_ops[t] += cvs->vs_ops[t];
4250 		vs->vs_bytes[t] += cvs->vs_bytes[t];
4251 	}
4252 
4253 	cvs->vs_scan_removing = cvd->vdev_removing;
4254 }
4255 
4256 /*
4257  * Get extended stats
4258  */
4259 static void
4260 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4261 {
4262 	int t, b;
4263 	for (t = 0; t < ZIO_TYPES; t++) {
4264 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4265 			vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4266 
4267 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4268 			vsx->vsx_total_histo[t][b] +=
4269 			    cvsx->vsx_total_histo[t][b];
4270 		}
4271 	}
4272 
4273 	for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4274 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4275 			vsx->vsx_queue_histo[t][b] +=
4276 			    cvsx->vsx_queue_histo[t][b];
4277 		}
4278 		vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4279 		vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4280 
4281 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4282 			vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4283 
4284 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4285 			vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4286 	}
4287 
4288 }
4289 
4290 boolean_t
4291 vdev_is_spacemap_addressable(vdev_t *vd)
4292 {
4293 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4294 		return (B_TRUE);
4295 
4296 	/*
4297 	 * If double-word space map entries are not enabled we assume
4298 	 * 47 bits of the space map entry are dedicated to the entry's
4299 	 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4300 	 * to calculate the maximum address that can be described by a
4301 	 * space map entry for the given device.
4302 	 */
4303 	uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4304 
4305 	if (shift >= 63) /* detect potential overflow */
4306 		return (B_TRUE);
4307 
4308 	return (vd->vdev_asize < (1ULL << shift));
4309 }
4310 
4311 /*
4312  * Get statistics for the given vdev.
4313  */
4314 static void
4315 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4316 {
4317 	int t;
4318 	/*
4319 	 * If we're getting stats on the root vdev, aggregate the I/O counts
4320 	 * over all top-level vdevs (i.e. the direct children of the root).
4321 	 */
4322 	if (!vd->vdev_ops->vdev_op_leaf) {
4323 		if (vs) {
4324 			memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4325 			memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4326 		}
4327 		if (vsx)
4328 			memset(vsx, 0, sizeof (*vsx));
4329 
4330 		for (int c = 0; c < vd->vdev_children; c++) {
4331 			vdev_t *cvd = vd->vdev_child[c];
4332 			vdev_stat_t *cvs = &cvd->vdev_stat;
4333 			vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4334 
4335 			vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4336 			if (vs)
4337 				vdev_get_child_stat(cvd, vs, cvs);
4338 			if (vsx)
4339 				vdev_get_child_stat_ex(cvd, vsx, cvsx);
4340 		}
4341 	} else {
4342 		/*
4343 		 * We're a leaf.  Just copy our ZIO active queue stats in.  The
4344 		 * other leaf stats are updated in vdev_stat_update().
4345 		 */
4346 		if (!vsx)
4347 			return;
4348 
4349 		memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4350 
4351 		for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
4352 			vsx->vsx_active_queue[t] =
4353 			    vd->vdev_queue.vq_class[t].vqc_active;
4354 			vsx->vsx_pend_queue[t] = avl_numnodes(
4355 			    &vd->vdev_queue.vq_class[t].vqc_queued_tree);
4356 		}
4357 	}
4358 }
4359 
4360 void
4361 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4362 {
4363 	vdev_t *tvd = vd->vdev_top;
4364 	mutex_enter(&vd->vdev_stat_lock);
4365 	if (vs) {
4366 		bcopy(&vd->vdev_stat, vs, sizeof (*vs));
4367 		vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4368 		vs->vs_state = vd->vdev_state;
4369 		vs->vs_rsize = vdev_get_min_asize(vd);
4370 
4371 		if (vd->vdev_ops->vdev_op_leaf) {
4372 			vs->vs_rsize += VDEV_LABEL_START_SIZE +
4373 			    VDEV_LABEL_END_SIZE;
4374 			/*
4375 			 * Report initializing progress. Since we don't
4376 			 * have the initializing locks held, this is only
4377 			 * an estimate (although a fairly accurate one).
4378 			 */
4379 			vs->vs_initialize_bytes_done =
4380 			    vd->vdev_initialize_bytes_done;
4381 			vs->vs_initialize_bytes_est =
4382 			    vd->vdev_initialize_bytes_est;
4383 			vs->vs_initialize_state = vd->vdev_initialize_state;
4384 			vs->vs_initialize_action_time =
4385 			    vd->vdev_initialize_action_time;
4386 
4387 			/*
4388 			 * Report manual TRIM progress. Since we don't have
4389 			 * the manual TRIM locks held, this is only an
4390 			 * estimate (although fairly accurate one).
4391 			 */
4392 			vs->vs_trim_notsup = !vd->vdev_has_trim;
4393 			vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4394 			vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4395 			vs->vs_trim_state = vd->vdev_trim_state;
4396 			vs->vs_trim_action_time = vd->vdev_trim_action_time;
4397 
4398 			/* Set when there is a deferred resilver. */
4399 			vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4400 		}
4401 
4402 		/*
4403 		 * Report expandable space on top-level, non-auxiliary devices
4404 		 * only. The expandable space is reported in terms of metaslab
4405 		 * sized units since that determines how much space the pool
4406 		 * can expand.
4407 		 */
4408 		if (vd->vdev_aux == NULL && tvd != NULL) {
4409 			vs->vs_esize = P2ALIGN(
4410 			    vd->vdev_max_asize - vd->vdev_asize,
4411 			    1ULL << tvd->vdev_ms_shift);
4412 		}
4413 
4414 		vs->vs_configured_ashift = vd->vdev_top != NULL
4415 		    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4416 		vs->vs_logical_ashift = vd->vdev_logical_ashift;
4417 		vs->vs_physical_ashift = vd->vdev_physical_ashift;
4418 
4419 		/*
4420 		 * Report fragmentation and rebuild progress for top-level,
4421 		 * non-auxiliary, concrete devices.
4422 		 */
4423 		if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4424 		    vdev_is_concrete(vd)) {
4425 			/*
4426 			 * The vdev fragmentation rating doesn't take into
4427 			 * account the embedded slog metaslab (vdev_log_mg).
4428 			 * Since it's only one metaslab, it would have a tiny
4429 			 * impact on the overall fragmentation.
4430 			 */
4431 			vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4432 			    vd->vdev_mg->mg_fragmentation : 0;
4433 		}
4434 	}
4435 
4436 	vdev_get_stats_ex_impl(vd, vs, vsx);
4437 	mutex_exit(&vd->vdev_stat_lock);
4438 }
4439 
4440 void
4441 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4442 {
4443 	return (vdev_get_stats_ex(vd, vs, NULL));
4444 }
4445 
4446 void
4447 vdev_clear_stats(vdev_t *vd)
4448 {
4449 	mutex_enter(&vd->vdev_stat_lock);
4450 	vd->vdev_stat.vs_space = 0;
4451 	vd->vdev_stat.vs_dspace = 0;
4452 	vd->vdev_stat.vs_alloc = 0;
4453 	mutex_exit(&vd->vdev_stat_lock);
4454 }
4455 
4456 void
4457 vdev_scan_stat_init(vdev_t *vd)
4458 {
4459 	vdev_stat_t *vs = &vd->vdev_stat;
4460 
4461 	for (int c = 0; c < vd->vdev_children; c++)
4462 		vdev_scan_stat_init(vd->vdev_child[c]);
4463 
4464 	mutex_enter(&vd->vdev_stat_lock);
4465 	vs->vs_scan_processed = 0;
4466 	mutex_exit(&vd->vdev_stat_lock);
4467 }
4468 
4469 void
4470 vdev_stat_update(zio_t *zio, uint64_t psize)
4471 {
4472 	spa_t *spa = zio->io_spa;
4473 	vdev_t *rvd = spa->spa_root_vdev;
4474 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4475 	vdev_t *pvd;
4476 	uint64_t txg = zio->io_txg;
4477 	vdev_stat_t *vs = &vd->vdev_stat;
4478 	vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4479 	zio_type_t type = zio->io_type;
4480 	int flags = zio->io_flags;
4481 
4482 	/*
4483 	 * If this i/o is a gang leader, it didn't do any actual work.
4484 	 */
4485 	if (zio->io_gang_tree)
4486 		return;
4487 
4488 	if (zio->io_error == 0) {
4489 		/*
4490 		 * If this is a root i/o, don't count it -- we've already
4491 		 * counted the top-level vdevs, and vdev_get_stats() will
4492 		 * aggregate them when asked.  This reduces contention on
4493 		 * the root vdev_stat_lock and implicitly handles blocks
4494 		 * that compress away to holes, for which there is no i/o.
4495 		 * (Holes never create vdev children, so all the counters
4496 		 * remain zero, which is what we want.)
4497 		 *
4498 		 * Note: this only applies to successful i/o (io_error == 0)
4499 		 * because unlike i/o counts, errors are not additive.
4500 		 * When reading a ditto block, for example, failure of
4501 		 * one top-level vdev does not imply a root-level error.
4502 		 */
4503 		if (vd == rvd)
4504 			return;
4505 
4506 		ASSERT(vd == zio->io_vd);
4507 
4508 		if (flags & ZIO_FLAG_IO_BYPASS)
4509 			return;
4510 
4511 		mutex_enter(&vd->vdev_stat_lock);
4512 
4513 		if (flags & ZIO_FLAG_IO_REPAIR) {
4514 			/*
4515 			 * Repair is the result of a resilver issued by the
4516 			 * scan thread (spa_sync).
4517 			 */
4518 			if (flags & ZIO_FLAG_SCAN_THREAD) {
4519 				dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4520 				dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4521 				uint64_t *processed = &scn_phys->scn_processed;
4522 
4523 				if (vd->vdev_ops->vdev_op_leaf)
4524 					atomic_add_64(processed, psize);
4525 				vs->vs_scan_processed += psize;
4526 			}
4527 
4528 			/*
4529 			 * Repair is the result of a rebuild issued by the
4530 			 * rebuild thread (vdev_rebuild_thread).  To avoid
4531 			 * double counting repaired bytes the virtual dRAID
4532 			 * spare vdev is excluded from the processed bytes.
4533 			 */
4534 			if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
4535 				vdev_t *tvd = vd->vdev_top;
4536 				vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
4537 				vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
4538 				uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
4539 
4540 				if (vd->vdev_ops->vdev_op_leaf &&
4541 				    vd->vdev_ops != &vdev_draid_spare_ops) {
4542 					atomic_add_64(rebuilt, psize);
4543 				}
4544 				vs->vs_rebuild_processed += psize;
4545 			}
4546 
4547 			if (flags & ZIO_FLAG_SELF_HEAL)
4548 				vs->vs_self_healed += psize;
4549 		}
4550 
4551 		/*
4552 		 * The bytes/ops/histograms are recorded at the leaf level and
4553 		 * aggregated into the higher level vdevs in vdev_get_stats().
4554 		 */
4555 		if (vd->vdev_ops->vdev_op_leaf &&
4556 		    (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4557 			zio_type_t vs_type = type;
4558 			zio_priority_t priority = zio->io_priority;
4559 
4560 			/*
4561 			 * TRIM ops and bytes are reported to user space as
4562 			 * ZIO_TYPE_IOCTL.  This is done to preserve the
4563 			 * vdev_stat_t structure layout for user space.
4564 			 */
4565 			if (type == ZIO_TYPE_TRIM)
4566 				vs_type = ZIO_TYPE_IOCTL;
4567 
4568 			/*
4569 			 * Solely for the purposes of 'zpool iostat -lqrw'
4570 			 * reporting use the priority to catagorize the IO.
4571 			 * Only the following are reported to user space:
4572 			 *
4573 			 *   ZIO_PRIORITY_SYNC_READ,
4574 			 *   ZIO_PRIORITY_SYNC_WRITE,
4575 			 *   ZIO_PRIORITY_ASYNC_READ,
4576 			 *   ZIO_PRIORITY_ASYNC_WRITE,
4577 			 *   ZIO_PRIORITY_SCRUB,
4578 			 *   ZIO_PRIORITY_TRIM.
4579 			 */
4580 			if (priority == ZIO_PRIORITY_REBUILD) {
4581 				priority = ((type == ZIO_TYPE_WRITE) ?
4582 				    ZIO_PRIORITY_ASYNC_WRITE :
4583 				    ZIO_PRIORITY_SCRUB);
4584 			} else if (priority == ZIO_PRIORITY_INITIALIZING) {
4585 				ASSERT3U(type, ==, ZIO_TYPE_WRITE);
4586 				priority = ZIO_PRIORITY_ASYNC_WRITE;
4587 			} else if (priority == ZIO_PRIORITY_REMOVAL) {
4588 				priority = ((type == ZIO_TYPE_WRITE) ?
4589 				    ZIO_PRIORITY_ASYNC_WRITE :
4590 				    ZIO_PRIORITY_ASYNC_READ);
4591 			}
4592 
4593 			vs->vs_ops[vs_type]++;
4594 			vs->vs_bytes[vs_type] += psize;
4595 
4596 			if (flags & ZIO_FLAG_DELEGATED) {
4597 				vsx->vsx_agg_histo[priority]
4598 				    [RQ_HISTO(zio->io_size)]++;
4599 			} else {
4600 				vsx->vsx_ind_histo[priority]
4601 				    [RQ_HISTO(zio->io_size)]++;
4602 			}
4603 
4604 			if (zio->io_delta && zio->io_delay) {
4605 				vsx->vsx_queue_histo[priority]
4606 				    [L_HISTO(zio->io_delta - zio->io_delay)]++;
4607 				vsx->vsx_disk_histo[type]
4608 				    [L_HISTO(zio->io_delay)]++;
4609 				vsx->vsx_total_histo[type]
4610 				    [L_HISTO(zio->io_delta)]++;
4611 			}
4612 		}
4613 
4614 		mutex_exit(&vd->vdev_stat_lock);
4615 		return;
4616 	}
4617 
4618 	if (flags & ZIO_FLAG_SPECULATIVE)
4619 		return;
4620 
4621 	/*
4622 	 * If this is an I/O error that is going to be retried, then ignore the
4623 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
4624 	 * hard errors, when in reality they can happen for any number of
4625 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
4626 	 */
4627 	if (zio->io_error == EIO &&
4628 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
4629 		return;
4630 
4631 	/*
4632 	 * Intent logs writes won't propagate their error to the root
4633 	 * I/O so don't mark these types of failures as pool-level
4634 	 * errors.
4635 	 */
4636 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
4637 		return;
4638 
4639 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
4640 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
4641 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
4642 	    spa->spa_claiming)) {
4643 		/*
4644 		 * This is either a normal write (not a repair), or it's
4645 		 * a repair induced by the scrub thread, or it's a repair
4646 		 * made by zil_claim() during spa_load() in the first txg.
4647 		 * In the normal case, we commit the DTL change in the same
4648 		 * txg as the block was born.  In the scrub-induced repair
4649 		 * case, we know that scrubs run in first-pass syncing context,
4650 		 * so we commit the DTL change in spa_syncing_txg(spa).
4651 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
4652 		 *
4653 		 * We currently do not make DTL entries for failed spontaneous
4654 		 * self-healing writes triggered by normal (non-scrubbing)
4655 		 * reads, because we have no transactional context in which to
4656 		 * do so -- and it's not clear that it'd be desirable anyway.
4657 		 */
4658 		if (vd->vdev_ops->vdev_op_leaf) {
4659 			uint64_t commit_txg = txg;
4660 			if (flags & ZIO_FLAG_SCAN_THREAD) {
4661 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4662 				ASSERT(spa_sync_pass(spa) == 1);
4663 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
4664 				commit_txg = spa_syncing_txg(spa);
4665 			} else if (spa->spa_claiming) {
4666 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4667 				commit_txg = spa_first_txg(spa);
4668 			}
4669 			ASSERT(commit_txg >= spa_syncing_txg(spa));
4670 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
4671 				return;
4672 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4673 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
4674 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
4675 		}
4676 		if (vd != rvd)
4677 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
4678 	}
4679 }
4680 
4681 int64_t
4682 vdev_deflated_space(vdev_t *vd, int64_t space)
4683 {
4684 	ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
4685 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
4686 
4687 	return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
4688 }
4689 
4690 /*
4691  * Update the in-core space usage stats for this vdev, its metaslab class,
4692  * and the root vdev.
4693  */
4694 void
4695 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
4696     int64_t space_delta)
4697 {
4698 	int64_t dspace_delta;
4699 	spa_t *spa = vd->vdev_spa;
4700 	vdev_t *rvd = spa->spa_root_vdev;
4701 
4702 	ASSERT(vd == vd->vdev_top);
4703 
4704 	/*
4705 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
4706 	 * factor.  We must calculate this here and not at the root vdev
4707 	 * because the root vdev's psize-to-asize is simply the max of its
4708 	 * children's, thus not accurate enough for us.
4709 	 */
4710 	dspace_delta = vdev_deflated_space(vd, space_delta);
4711 
4712 	mutex_enter(&vd->vdev_stat_lock);
4713 	/* ensure we won't underflow */
4714 	if (alloc_delta < 0) {
4715 		ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
4716 	}
4717 
4718 	vd->vdev_stat.vs_alloc += alloc_delta;
4719 	vd->vdev_stat.vs_space += space_delta;
4720 	vd->vdev_stat.vs_dspace += dspace_delta;
4721 	mutex_exit(&vd->vdev_stat_lock);
4722 
4723 	/* every class but log contributes to root space stats */
4724 	if (vd->vdev_mg != NULL && !vd->vdev_islog) {
4725 		ASSERT(!vd->vdev_isl2cache);
4726 		mutex_enter(&rvd->vdev_stat_lock);
4727 		rvd->vdev_stat.vs_alloc += alloc_delta;
4728 		rvd->vdev_stat.vs_space += space_delta;
4729 		rvd->vdev_stat.vs_dspace += dspace_delta;
4730 		mutex_exit(&rvd->vdev_stat_lock);
4731 	}
4732 	/* Note: metaslab_class_space_update moved to metaslab_space_update */
4733 }
4734 
4735 /*
4736  * Mark a top-level vdev's config as dirty, placing it on the dirty list
4737  * so that it will be written out next time the vdev configuration is synced.
4738  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
4739  */
4740 void
4741 vdev_config_dirty(vdev_t *vd)
4742 {
4743 	spa_t *spa = vd->vdev_spa;
4744 	vdev_t *rvd = spa->spa_root_vdev;
4745 	int c;
4746 
4747 	ASSERT(spa_writeable(spa));
4748 
4749 	/*
4750 	 * If this is an aux vdev (as with l2cache and spare devices), then we
4751 	 * update the vdev config manually and set the sync flag.
4752 	 */
4753 	if (vd->vdev_aux != NULL) {
4754 		spa_aux_vdev_t *sav = vd->vdev_aux;
4755 		nvlist_t **aux;
4756 		uint_t naux;
4757 
4758 		for (c = 0; c < sav->sav_count; c++) {
4759 			if (sav->sav_vdevs[c] == vd)
4760 				break;
4761 		}
4762 
4763 		if (c == sav->sav_count) {
4764 			/*
4765 			 * We're being removed.  There's nothing more to do.
4766 			 */
4767 			ASSERT(sav->sav_sync == B_TRUE);
4768 			return;
4769 		}
4770 
4771 		sav->sav_sync = B_TRUE;
4772 
4773 		if (nvlist_lookup_nvlist_array(sav->sav_config,
4774 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
4775 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
4776 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
4777 		}
4778 
4779 		ASSERT(c < naux);
4780 
4781 		/*
4782 		 * Setting the nvlist in the middle if the array is a little
4783 		 * sketchy, but it will work.
4784 		 */
4785 		nvlist_free(aux[c]);
4786 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
4787 
4788 		return;
4789 	}
4790 
4791 	/*
4792 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
4793 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
4794 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
4795 	 * so this is sufficient to ensure mutual exclusion.
4796 	 */
4797 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4798 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4799 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
4800 
4801 	if (vd == rvd) {
4802 		for (c = 0; c < rvd->vdev_children; c++)
4803 			vdev_config_dirty(rvd->vdev_child[c]);
4804 	} else {
4805 		ASSERT(vd == vd->vdev_top);
4806 
4807 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
4808 		    vdev_is_concrete(vd)) {
4809 			list_insert_head(&spa->spa_config_dirty_list, vd);
4810 		}
4811 	}
4812 }
4813 
4814 void
4815 vdev_config_clean(vdev_t *vd)
4816 {
4817 	spa_t *spa = vd->vdev_spa;
4818 
4819 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4820 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4821 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
4822 
4823 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
4824 	list_remove(&spa->spa_config_dirty_list, vd);
4825 }
4826 
4827 /*
4828  * Mark a top-level vdev's state as dirty, so that the next pass of
4829  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
4830  * the state changes from larger config changes because they require
4831  * much less locking, and are often needed for administrative actions.
4832  */
4833 void
4834 vdev_state_dirty(vdev_t *vd)
4835 {
4836 	spa_t *spa = vd->vdev_spa;
4837 
4838 	ASSERT(spa_writeable(spa));
4839 	ASSERT(vd == vd->vdev_top);
4840 
4841 	/*
4842 	 * The state list is protected by the SCL_STATE lock.  The caller
4843 	 * must either hold SCL_STATE as writer, or must be the sync thread
4844 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
4845 	 * so this is sufficient to ensure mutual exclusion.
4846 	 */
4847 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4848 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4849 	    spa_config_held(spa, SCL_STATE, RW_READER)));
4850 
4851 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
4852 	    vdev_is_concrete(vd))
4853 		list_insert_head(&spa->spa_state_dirty_list, vd);
4854 }
4855 
4856 void
4857 vdev_state_clean(vdev_t *vd)
4858 {
4859 	spa_t *spa = vd->vdev_spa;
4860 
4861 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4862 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4863 	    spa_config_held(spa, SCL_STATE, RW_READER)));
4864 
4865 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
4866 	list_remove(&spa->spa_state_dirty_list, vd);
4867 }
4868 
4869 /*
4870  * Propagate vdev state up from children to parent.
4871  */
4872 void
4873 vdev_propagate_state(vdev_t *vd)
4874 {
4875 	spa_t *spa = vd->vdev_spa;
4876 	vdev_t *rvd = spa->spa_root_vdev;
4877 	int degraded = 0, faulted = 0;
4878 	int corrupted = 0;
4879 	vdev_t *child;
4880 
4881 	if (vd->vdev_children > 0) {
4882 		for (int c = 0; c < vd->vdev_children; c++) {
4883 			child = vd->vdev_child[c];
4884 
4885 			/*
4886 			 * Don't factor holes or indirect vdevs into the
4887 			 * decision.
4888 			 */
4889 			if (!vdev_is_concrete(child))
4890 				continue;
4891 
4892 			if (!vdev_readable(child) ||
4893 			    (!vdev_writeable(child) && spa_writeable(spa))) {
4894 				/*
4895 				 * Root special: if there is a top-level log
4896 				 * device, treat the root vdev as if it were
4897 				 * degraded.
4898 				 */
4899 				if (child->vdev_islog && vd == rvd)
4900 					degraded++;
4901 				else
4902 					faulted++;
4903 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
4904 				degraded++;
4905 			}
4906 
4907 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4908 				corrupted++;
4909 		}
4910 
4911 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4912 
4913 		/*
4914 		 * Root special: if there is a top-level vdev that cannot be
4915 		 * opened due to corrupted metadata, then propagate the root
4916 		 * vdev's aux state as 'corrupt' rather than 'insufficient
4917 		 * replicas'.
4918 		 */
4919 		if (corrupted && vd == rvd &&
4920 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4921 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4922 			    VDEV_AUX_CORRUPT_DATA);
4923 	}
4924 
4925 	if (vd->vdev_parent)
4926 		vdev_propagate_state(vd->vdev_parent);
4927 }
4928 
4929 /*
4930  * Set a vdev's state.  If this is during an open, we don't update the parent
4931  * state, because we're in the process of opening children depth-first.
4932  * Otherwise, we propagate the change to the parent.
4933  *
4934  * If this routine places a device in a faulted state, an appropriate ereport is
4935  * generated.
4936  */
4937 void
4938 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4939 {
4940 	uint64_t save_state;
4941 	spa_t *spa = vd->vdev_spa;
4942 
4943 	if (state == vd->vdev_state) {
4944 		/*
4945 		 * Since vdev_offline() code path is already in an offline
4946 		 * state we can miss a statechange event to OFFLINE. Check
4947 		 * the previous state to catch this condition.
4948 		 */
4949 		if (vd->vdev_ops->vdev_op_leaf &&
4950 		    (state == VDEV_STATE_OFFLINE) &&
4951 		    (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
4952 			/* post an offline state change */
4953 			zfs_post_state_change(spa, vd, vd->vdev_prevstate);
4954 		}
4955 		vd->vdev_stat.vs_aux = aux;
4956 		return;
4957 	}
4958 
4959 	save_state = vd->vdev_state;
4960 
4961 	vd->vdev_state = state;
4962 	vd->vdev_stat.vs_aux = aux;
4963 
4964 	/*
4965 	 * If we are setting the vdev state to anything but an open state, then
4966 	 * always close the underlying device unless the device has requested
4967 	 * a delayed close (i.e. we're about to remove or fault the device).
4968 	 * Otherwise, we keep accessible but invalid devices open forever.
4969 	 * We don't call vdev_close() itself, because that implies some extra
4970 	 * checks (offline, etc) that we don't want here.  This is limited to
4971 	 * leaf devices, because otherwise closing the device will affect other
4972 	 * children.
4973 	 */
4974 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
4975 	    vd->vdev_ops->vdev_op_leaf)
4976 		vd->vdev_ops->vdev_op_close(vd);
4977 
4978 	if (vd->vdev_removed &&
4979 	    state == VDEV_STATE_CANT_OPEN &&
4980 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
4981 		/*
4982 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
4983 		 * device was previously marked removed and someone attempted to
4984 		 * reopen it.  If this failed due to a nonexistent device, then
4985 		 * keep the device in the REMOVED state.  We also let this be if
4986 		 * it is one of our special test online cases, which is only
4987 		 * attempting to online the device and shouldn't generate an FMA
4988 		 * fault.
4989 		 */
4990 		vd->vdev_state = VDEV_STATE_REMOVED;
4991 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
4992 	} else if (state == VDEV_STATE_REMOVED) {
4993 		vd->vdev_removed = B_TRUE;
4994 	} else if (state == VDEV_STATE_CANT_OPEN) {
4995 		/*
4996 		 * If we fail to open a vdev during an import or recovery, we
4997 		 * mark it as "not available", which signifies that it was
4998 		 * never there to begin with.  Failure to open such a device
4999 		 * is not considered an error.
5000 		 */
5001 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5002 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5003 		    vd->vdev_ops->vdev_op_leaf)
5004 			vd->vdev_not_present = 1;
5005 
5006 		/*
5007 		 * Post the appropriate ereport.  If the 'prevstate' field is
5008 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5009 		 * that this is part of a vdev_reopen().  In this case, we don't
5010 		 * want to post the ereport if the device was already in the
5011 		 * CANT_OPEN state beforehand.
5012 		 *
5013 		 * If the 'checkremove' flag is set, then this is an attempt to
5014 		 * online the device in response to an insertion event.  If we
5015 		 * hit this case, then we have detected an insertion event for a
5016 		 * faulted or offline device that wasn't in the removed state.
5017 		 * In this scenario, we don't post an ereport because we are
5018 		 * about to replace the device, or attempt an online with
5019 		 * vdev_forcefault, which will generate the fault for us.
5020 		 */
5021 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5022 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
5023 		    vd != spa->spa_root_vdev) {
5024 			const char *class;
5025 
5026 			switch (aux) {
5027 			case VDEV_AUX_OPEN_FAILED:
5028 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5029 				break;
5030 			case VDEV_AUX_CORRUPT_DATA:
5031 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5032 				break;
5033 			case VDEV_AUX_NO_REPLICAS:
5034 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5035 				break;
5036 			case VDEV_AUX_BAD_GUID_SUM:
5037 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5038 				break;
5039 			case VDEV_AUX_TOO_SMALL:
5040 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5041 				break;
5042 			case VDEV_AUX_BAD_LABEL:
5043 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5044 				break;
5045 			case VDEV_AUX_BAD_ASHIFT:
5046 				class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5047 				break;
5048 			default:
5049 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5050 			}
5051 
5052 			(void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5053 			    save_state);
5054 		}
5055 
5056 		/* Erase any notion of persistent removed state */
5057 		vd->vdev_removed = B_FALSE;
5058 	} else {
5059 		vd->vdev_removed = B_FALSE;
5060 	}
5061 
5062 	/*
5063 	 * Notify ZED of any significant state-change on a leaf vdev.
5064 	 *
5065 	 */
5066 	if (vd->vdev_ops->vdev_op_leaf) {
5067 		/* preserve original state from a vdev_reopen() */
5068 		if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5069 		    (vd->vdev_prevstate != vd->vdev_state) &&
5070 		    (save_state <= VDEV_STATE_CLOSED))
5071 			save_state = vd->vdev_prevstate;
5072 
5073 		/* filter out state change due to initial vdev_open */
5074 		if (save_state > VDEV_STATE_CLOSED)
5075 			zfs_post_state_change(spa, vd, save_state);
5076 	}
5077 
5078 	if (!isopen && vd->vdev_parent)
5079 		vdev_propagate_state(vd->vdev_parent);
5080 }
5081 
5082 boolean_t
5083 vdev_children_are_offline(vdev_t *vd)
5084 {
5085 	ASSERT(!vd->vdev_ops->vdev_op_leaf);
5086 
5087 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
5088 		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5089 			return (B_FALSE);
5090 	}
5091 
5092 	return (B_TRUE);
5093 }
5094 
5095 /*
5096  * Check the vdev configuration to ensure that it's capable of supporting
5097  * a root pool. We do not support partial configuration.
5098  */
5099 boolean_t
5100 vdev_is_bootable(vdev_t *vd)
5101 {
5102 	if (!vd->vdev_ops->vdev_op_leaf) {
5103 		const char *vdev_type = vd->vdev_ops->vdev_op_type;
5104 
5105 		if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
5106 		    strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
5107 			return (B_FALSE);
5108 		}
5109 	}
5110 
5111 	for (int c = 0; c < vd->vdev_children; c++) {
5112 		if (!vdev_is_bootable(vd->vdev_child[c]))
5113 			return (B_FALSE);
5114 	}
5115 	return (B_TRUE);
5116 }
5117 
5118 boolean_t
5119 vdev_is_concrete(vdev_t *vd)
5120 {
5121 	vdev_ops_t *ops = vd->vdev_ops;
5122 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5123 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5124 		return (B_FALSE);
5125 	} else {
5126 		return (B_TRUE);
5127 	}
5128 }
5129 
5130 /*
5131  * Determine if a log device has valid content.  If the vdev was
5132  * removed or faulted in the MOS config then we know that
5133  * the content on the log device has already been written to the pool.
5134  */
5135 boolean_t
5136 vdev_log_state_valid(vdev_t *vd)
5137 {
5138 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5139 	    !vd->vdev_removed)
5140 		return (B_TRUE);
5141 
5142 	for (int c = 0; c < vd->vdev_children; c++)
5143 		if (vdev_log_state_valid(vd->vdev_child[c]))
5144 			return (B_TRUE);
5145 
5146 	return (B_FALSE);
5147 }
5148 
5149 /*
5150  * Expand a vdev if possible.
5151  */
5152 void
5153 vdev_expand(vdev_t *vd, uint64_t txg)
5154 {
5155 	ASSERT(vd->vdev_top == vd);
5156 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5157 	ASSERT(vdev_is_concrete(vd));
5158 
5159 	vdev_set_deflate_ratio(vd);
5160 
5161 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5162 	    vdev_is_concrete(vd)) {
5163 		vdev_metaslab_group_create(vd);
5164 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
5165 		vdev_config_dirty(vd);
5166 	}
5167 }
5168 
5169 /*
5170  * Split a vdev.
5171  */
5172 void
5173 vdev_split(vdev_t *vd)
5174 {
5175 	vdev_t *cvd, *pvd = vd->vdev_parent;
5176 
5177 	vdev_remove_child(pvd, vd);
5178 	vdev_compact_children(pvd);
5179 
5180 	cvd = pvd->vdev_child[0];
5181 	if (pvd->vdev_children == 1) {
5182 		vdev_remove_parent(cvd);
5183 		cvd->vdev_splitting = B_TRUE;
5184 	}
5185 	vdev_propagate_state(cvd);
5186 }
5187 
5188 void
5189 vdev_deadman(vdev_t *vd, char *tag)
5190 {
5191 	for (int c = 0; c < vd->vdev_children; c++) {
5192 		vdev_t *cvd = vd->vdev_child[c];
5193 
5194 		vdev_deadman(cvd, tag);
5195 	}
5196 
5197 	if (vd->vdev_ops->vdev_op_leaf) {
5198 		vdev_queue_t *vq = &vd->vdev_queue;
5199 
5200 		mutex_enter(&vq->vq_lock);
5201 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
5202 			spa_t *spa = vd->vdev_spa;
5203 			zio_t *fio;
5204 			uint64_t delta;
5205 
5206 			zfs_dbgmsg("slow vdev: %s has %d active IOs",
5207 			    vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
5208 
5209 			/*
5210 			 * Look at the head of all the pending queues,
5211 			 * if any I/O has been outstanding for longer than
5212 			 * the spa_deadman_synctime invoke the deadman logic.
5213 			 */
5214 			fio = avl_first(&vq->vq_active_tree);
5215 			delta = gethrtime() - fio->io_timestamp;
5216 			if (delta > spa_deadman_synctime(spa))
5217 				zio_deadman(fio, tag);
5218 		}
5219 		mutex_exit(&vq->vq_lock);
5220 	}
5221 }
5222 
5223 void
5224 vdev_defer_resilver(vdev_t *vd)
5225 {
5226 	ASSERT(vd->vdev_ops->vdev_op_leaf);
5227 
5228 	vd->vdev_resilver_deferred = B_TRUE;
5229 	vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5230 }
5231 
5232 /*
5233  * Clears the resilver deferred flag on all leaf devs under vd. Returns
5234  * B_TRUE if we have devices that need to be resilvered and are available to
5235  * accept resilver I/Os.
5236  */
5237 boolean_t
5238 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5239 {
5240 	boolean_t resilver_needed = B_FALSE;
5241 	spa_t *spa = vd->vdev_spa;
5242 
5243 	for (int c = 0; c < vd->vdev_children; c++) {
5244 		vdev_t *cvd = vd->vdev_child[c];
5245 		resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5246 	}
5247 
5248 	if (vd == spa->spa_root_vdev &&
5249 	    spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5250 		spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5251 		vdev_config_dirty(vd);
5252 		spa->spa_resilver_deferred = B_FALSE;
5253 		return (resilver_needed);
5254 	}
5255 
5256 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5257 	    !vd->vdev_ops->vdev_op_leaf)
5258 		return (resilver_needed);
5259 
5260 	vd->vdev_resilver_deferred = B_FALSE;
5261 
5262 	return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5263 	    vdev_resilver_needed(vd, NULL, NULL));
5264 }
5265 
5266 boolean_t
5267 vdev_xlate_is_empty(range_seg64_t *rs)
5268 {
5269 	return (rs->rs_start == rs->rs_end);
5270 }
5271 
5272 /*
5273  * Translate a logical range to the first contiguous physical range for the
5274  * specified vdev_t.  This function is initially called with a leaf vdev and
5275  * will walk each parent vdev until it reaches a top-level vdev. Once the
5276  * top-level is reached the physical range is initialized and the recursive
5277  * function begins to unwind. As it unwinds it calls the parent's vdev
5278  * specific translation function to do the real conversion.
5279  */
5280 void
5281 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
5282     range_seg64_t *physical_rs, range_seg64_t *remain_rs)
5283 {
5284 	/*
5285 	 * Walk up the vdev tree
5286 	 */
5287 	if (vd != vd->vdev_top) {
5288 		vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5289 		    remain_rs);
5290 	} else {
5291 		/*
5292 		 * We've reached the top-level vdev, initialize the physical
5293 		 * range to the logical range and set an empty remaining
5294 		 * range then start to unwind.
5295 		 */
5296 		physical_rs->rs_start = logical_rs->rs_start;
5297 		physical_rs->rs_end = logical_rs->rs_end;
5298 
5299 		remain_rs->rs_start = logical_rs->rs_start;
5300 		remain_rs->rs_end = logical_rs->rs_start;
5301 
5302 		return;
5303 	}
5304 
5305 	vdev_t *pvd = vd->vdev_parent;
5306 	ASSERT3P(pvd, !=, NULL);
5307 	ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5308 
5309 	/*
5310 	 * As this recursive function unwinds, translate the logical
5311 	 * range into its physical and any remaining components by calling
5312 	 * the vdev specific translate function.
5313 	 */
5314 	range_seg64_t intermediate = { 0 };
5315 	pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5316 
5317 	physical_rs->rs_start = intermediate.rs_start;
5318 	physical_rs->rs_end = intermediate.rs_end;
5319 }
5320 
5321 void
5322 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs,
5323     vdev_xlate_func_t *func, void *arg)
5324 {
5325 	range_seg64_t iter_rs = *logical_rs;
5326 	range_seg64_t physical_rs;
5327 	range_seg64_t remain_rs;
5328 
5329 	while (!vdev_xlate_is_empty(&iter_rs)) {
5330 
5331 		vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5332 
5333 		/*
5334 		 * With raidz and dRAID, it's possible that the logical range
5335 		 * does not live on this leaf vdev. Only when there is a non-
5336 		 * zero physical size call the provided function.
5337 		 */
5338 		if (!vdev_xlate_is_empty(&physical_rs))
5339 			func(arg, &physical_rs);
5340 
5341 		iter_rs = remain_rs;
5342 	}
5343 }
5344 
5345 /*
5346  * Look at the vdev tree and determine whether any devices are currently being
5347  * replaced.
5348  */
5349 boolean_t
5350 vdev_replace_in_progress(vdev_t *vdev)
5351 {
5352 	ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5353 
5354 	if (vdev->vdev_ops == &vdev_replacing_ops)
5355 		return (B_TRUE);
5356 
5357 	/*
5358 	 * A 'spare' vdev indicates that we have a replace in progress, unless
5359 	 * it has exactly two children, and the second, the hot spare, has
5360 	 * finished being resilvered.
5361 	 */
5362 	if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5363 	    !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5364 		return (B_TRUE);
5365 
5366 	for (int i = 0; i < vdev->vdev_children; i++) {
5367 		if (vdev_replace_in_progress(vdev->vdev_child[i]))
5368 			return (B_TRUE);
5369 	}
5370 
5371 	return (B_FALSE);
5372 }
5373 
5374 EXPORT_SYMBOL(vdev_fault);
5375 EXPORT_SYMBOL(vdev_degrade);
5376 EXPORT_SYMBOL(vdev_online);
5377 EXPORT_SYMBOL(vdev_offline);
5378 EXPORT_SYMBOL(vdev_clear);
5379 
5380 /* BEGIN CSTYLED */
5381 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, INT, ZMOD_RW,
5382 	"Target number of metaslabs per top-level vdev");
5383 
5384 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, INT, ZMOD_RW,
5385 	"Default limit for metaslab size");
5386 
5387 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, INT, ZMOD_RW,
5388 	"Minimum number of metaslabs per top-level vdev");
5389 
5390 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, INT, ZMOD_RW,
5391 	"Practical upper limit of total metaslabs per top-level vdev");
5392 
5393 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
5394 	"Rate limit slow IO (delay) events to this many per second");
5395 
5396 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
5397 	"Rate limit checksum events to this many checksum errors per second "
5398 	"(do not set below zed threshold).");
5399 
5400 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
5401 	"Ignore errors during resilver/scrub");
5402 
5403 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
5404 	"Bypass vdev_validate()");
5405 
5406 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
5407 	"Disable cache flushes");
5408 
5409 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, INT, ZMOD_RW,
5410 	"Minimum number of metaslabs required to dedicate one for log blocks");
5411 
5412 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
5413 	param_set_min_auto_ashift, param_get_ulong, ZMOD_RW,
5414 	"Minimum ashift used when creating new top-level vdevs");
5415 
5416 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
5417 	param_set_max_auto_ashift, param_get_ulong, ZMOD_RW,
5418 	"Maximum ashift used when optimizing for logical -> physical sector "
5419 	"size on new top-level vdevs");
5420 /* END CSTYLED */
5421