xref: /freebsd/sys/contrib/openzfs/module/zfs/txg.c (revision c203bd70b5957f85616424b6fa374479372d06e3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Portions Copyright 2011 Martin Matuska
24  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/txg_impl.h>
29 #include <sys/dmu_impl.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dsl_pool.h>
33 #include <sys/dsl_scan.h>
34 #include <sys/zil.h>
35 #include <sys/callb.h>
36 #include <sys/trace_zfs.h>
37 
38 /*
39  * ZFS Transaction Groups
40  * ----------------------
41  *
42  * ZFS transaction groups are, as the name implies, groups of transactions
43  * that act on persistent state. ZFS asserts consistency at the granularity of
44  * these transaction groups. Each successive transaction group (txg) is
45  * assigned a 64-bit consecutive identifier. There are three active
46  * transaction group states: open, quiescing, or syncing. At any given time,
47  * there may be an active txg associated with each state; each active txg may
48  * either be processing, or blocked waiting to enter the next state. There may
49  * be up to three active txgs, and there is always a txg in the open state
50  * (though it may be blocked waiting to enter the quiescing state). In broad
51  * strokes, transactions -- operations that change in-memory structures -- are
52  * accepted into the txg in the open state, and are completed while the txg is
53  * in the open or quiescing states. The accumulated changes are written to
54  * disk in the syncing state.
55  *
56  * Open
57  *
58  * When a new txg becomes active, it first enters the open state. New
59  * transactions -- updates to in-memory structures -- are assigned to the
60  * currently open txg. There is always a txg in the open state so that ZFS can
61  * accept new changes (though the txg may refuse new changes if it has hit
62  * some limit). ZFS advances the open txg to the next state for a variety of
63  * reasons such as it hitting a time or size threshold, or the execution of an
64  * administrative action that must be completed in the syncing state.
65  *
66  * Quiescing
67  *
68  * After a txg exits the open state, it enters the quiescing state. The
69  * quiescing state is intended to provide a buffer between accepting new
70  * transactions in the open state and writing them out to stable storage in
71  * the syncing state. While quiescing, transactions can continue their
72  * operation without delaying either of the other states. Typically, a txg is
73  * in the quiescing state very briefly since the operations are bounded by
74  * software latencies rather than, say, slower I/O latencies. After all
75  * transactions complete, the txg is ready to enter the next state.
76  *
77  * Syncing
78  *
79  * In the syncing state, the in-memory state built up during the open and (to
80  * a lesser degree) the quiescing states is written to stable storage. The
81  * process of writing out modified data can, in turn modify more data. For
82  * example when we write new blocks, we need to allocate space for them; those
83  * allocations modify metadata (space maps)... which themselves must be
84  * written to stable storage. During the sync state, ZFS iterates, writing out
85  * data until it converges and all in-memory changes have been written out.
86  * The first such pass is the largest as it encompasses all the modified user
87  * data (as opposed to filesystem metadata). Subsequent passes typically have
88  * far less data to write as they consist exclusively of filesystem metadata.
89  *
90  * To ensure convergence, after a certain number of passes ZFS begins
91  * overwriting locations on stable storage that had been allocated earlier in
92  * the syncing state (and subsequently freed). ZFS usually allocates new
93  * blocks to optimize for large, continuous, writes. For the syncing state to
94  * converge however it must complete a pass where no new blocks are allocated
95  * since each allocation requires a modification of persistent metadata.
96  * Further, to hasten convergence, after a prescribed number of passes, ZFS
97  * also defers frees, and stops compressing.
98  *
99  * In addition to writing out user data, we must also execute synctasks during
100  * the syncing context. A synctask is the mechanism by which some
101  * administrative activities work such as creating and destroying snapshots or
102  * datasets. Note that when a synctask is initiated it enters the open txg,
103  * and ZFS then pushes that txg as quickly as possible to completion of the
104  * syncing state in order to reduce the latency of the administrative
105  * activity. To complete the syncing state, ZFS writes out a new uberblock,
106  * the root of the tree of blocks that comprise all state stored on the ZFS
107  * pool. Finally, if there is a quiesced txg waiting, we signal that it can
108  * now transition to the syncing state.
109  */
110 
111 static void txg_sync_thread(void *arg);
112 static void txg_quiesce_thread(void *arg);
113 
114 int zfs_txg_timeout = 5;	/* max seconds worth of delta per txg */
115 
116 /*
117  * Prepare the txg subsystem.
118  */
119 void
120 txg_init(dsl_pool_t *dp, uint64_t txg)
121 {
122 	tx_state_t *tx = &dp->dp_tx;
123 	int c;
124 	bzero(tx, sizeof (tx_state_t));
125 
126 	tx->tx_cpu = vmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
127 
128 	for (c = 0; c < max_ncpus; c++) {
129 		int i;
130 
131 		mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
132 		mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_NOLOCKDEP,
133 		    NULL);
134 		for (i = 0; i < TXG_SIZE; i++) {
135 			cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
136 			    NULL);
137 			list_create(&tx->tx_cpu[c].tc_callbacks[i],
138 			    sizeof (dmu_tx_callback_t),
139 			    offsetof(dmu_tx_callback_t, dcb_node));
140 		}
141 	}
142 
143 	mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
144 
145 	cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
146 	cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
147 	cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
148 	cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
149 	cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
150 
151 	tx->tx_open_txg = txg;
152 }
153 
154 /*
155  * Close down the txg subsystem.
156  */
157 void
158 txg_fini(dsl_pool_t *dp)
159 {
160 	tx_state_t *tx = &dp->dp_tx;
161 	int c;
162 
163 	ASSERT0(tx->tx_threads);
164 
165 	mutex_destroy(&tx->tx_sync_lock);
166 
167 	cv_destroy(&tx->tx_sync_more_cv);
168 	cv_destroy(&tx->tx_sync_done_cv);
169 	cv_destroy(&tx->tx_quiesce_more_cv);
170 	cv_destroy(&tx->tx_quiesce_done_cv);
171 	cv_destroy(&tx->tx_exit_cv);
172 
173 	for (c = 0; c < max_ncpus; c++) {
174 		int i;
175 
176 		mutex_destroy(&tx->tx_cpu[c].tc_open_lock);
177 		mutex_destroy(&tx->tx_cpu[c].tc_lock);
178 		for (i = 0; i < TXG_SIZE; i++) {
179 			cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
180 			list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
181 		}
182 	}
183 
184 	if (tx->tx_commit_cb_taskq != NULL)
185 		taskq_destroy(tx->tx_commit_cb_taskq);
186 
187 	vmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
188 
189 	bzero(tx, sizeof (tx_state_t));
190 }
191 
192 /*
193  * Start syncing transaction groups.
194  */
195 void
196 txg_sync_start(dsl_pool_t *dp)
197 {
198 	tx_state_t *tx = &dp->dp_tx;
199 
200 	mutex_enter(&tx->tx_sync_lock);
201 
202 	dprintf("pool %p\n", dp);
203 
204 	ASSERT0(tx->tx_threads);
205 
206 	tx->tx_threads = 2;
207 
208 	tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
209 	    dp, 0, &p0, TS_RUN, defclsyspri);
210 
211 	/*
212 	 * The sync thread can need a larger-than-default stack size on
213 	 * 32-bit x86.  This is due in part to nested pools and
214 	 * scrub_visitbp() recursion.
215 	 */
216 	tx->tx_sync_thread = thread_create(NULL, 0, txg_sync_thread,
217 	    dp, 0, &p0, TS_RUN, defclsyspri);
218 
219 	mutex_exit(&tx->tx_sync_lock);
220 }
221 
222 static void
223 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
224 {
225 	CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
226 	mutex_enter(&tx->tx_sync_lock);
227 }
228 
229 static void
230 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
231 {
232 	ASSERT(*tpp != NULL);
233 	*tpp = NULL;
234 	tx->tx_threads--;
235 	cv_broadcast(&tx->tx_exit_cv);
236 	CALLB_CPR_EXIT(cpr);		/* drops &tx->tx_sync_lock */
237 	thread_exit();
238 }
239 
240 static void
241 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time)
242 {
243 	CALLB_CPR_SAFE_BEGIN(cpr);
244 
245 	if (time) {
246 		(void) cv_timedwait_idle(cv, &tx->tx_sync_lock,
247 		    ddi_get_lbolt() + time);
248 	} else {
249 		cv_wait_idle(cv, &tx->tx_sync_lock);
250 	}
251 
252 	CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
253 }
254 
255 /*
256  * Stop syncing transaction groups.
257  */
258 void
259 txg_sync_stop(dsl_pool_t *dp)
260 {
261 	tx_state_t *tx = &dp->dp_tx;
262 
263 	dprintf("pool %p\n", dp);
264 	/*
265 	 * Finish off any work in progress.
266 	 */
267 	ASSERT3U(tx->tx_threads, ==, 2);
268 
269 	/*
270 	 * We need to ensure that we've vacated the deferred metaslab trees.
271 	 */
272 	txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);
273 
274 	/*
275 	 * Wake all sync threads and wait for them to die.
276 	 */
277 	mutex_enter(&tx->tx_sync_lock);
278 
279 	ASSERT3U(tx->tx_threads, ==, 2);
280 
281 	tx->tx_exiting = 1;
282 
283 	cv_broadcast(&tx->tx_quiesce_more_cv);
284 	cv_broadcast(&tx->tx_quiesce_done_cv);
285 	cv_broadcast(&tx->tx_sync_more_cv);
286 
287 	while (tx->tx_threads != 0)
288 		cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
289 
290 	tx->tx_exiting = 0;
291 
292 	mutex_exit(&tx->tx_sync_lock);
293 }
294 
295 uint64_t
296 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
297 {
298 	tx_state_t *tx = &dp->dp_tx;
299 	tx_cpu_t *tc;
300 	uint64_t txg;
301 
302 	/*
303 	 * It appears the processor id is simply used as a "random"
304 	 * number to index into the array, and there isn't any other
305 	 * significance to the chosen tx_cpu. Because.. Why not use
306 	 * the current cpu to index into the array?
307 	 */
308 	tc = &tx->tx_cpu[CPU_SEQID_UNSTABLE];
309 
310 	mutex_enter(&tc->tc_open_lock);
311 	txg = tx->tx_open_txg;
312 
313 	mutex_enter(&tc->tc_lock);
314 	tc->tc_count[txg & TXG_MASK]++;
315 	mutex_exit(&tc->tc_lock);
316 
317 	th->th_cpu = tc;
318 	th->th_txg = txg;
319 
320 	return (txg);
321 }
322 
323 void
324 txg_rele_to_quiesce(txg_handle_t *th)
325 {
326 	tx_cpu_t *tc = th->th_cpu;
327 
328 	ASSERT(!MUTEX_HELD(&tc->tc_lock));
329 	mutex_exit(&tc->tc_open_lock);
330 }
331 
332 void
333 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
334 {
335 	tx_cpu_t *tc = th->th_cpu;
336 	int g = th->th_txg & TXG_MASK;
337 
338 	mutex_enter(&tc->tc_lock);
339 	list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
340 	mutex_exit(&tc->tc_lock);
341 }
342 
343 void
344 txg_rele_to_sync(txg_handle_t *th)
345 {
346 	tx_cpu_t *tc = th->th_cpu;
347 	int g = th->th_txg & TXG_MASK;
348 
349 	mutex_enter(&tc->tc_lock);
350 	ASSERT(tc->tc_count[g] != 0);
351 	if (--tc->tc_count[g] == 0)
352 		cv_broadcast(&tc->tc_cv[g]);
353 	mutex_exit(&tc->tc_lock);
354 
355 	th->th_cpu = NULL;	/* defensive */
356 }
357 
358 /*
359  * Blocks until all transactions in the group are committed.
360  *
361  * On return, the transaction group has reached a stable state in which it can
362  * then be passed off to the syncing context.
363  */
364 static void
365 txg_quiesce(dsl_pool_t *dp, uint64_t txg)
366 {
367 	tx_state_t *tx = &dp->dp_tx;
368 	uint64_t tx_open_time;
369 	int g = txg & TXG_MASK;
370 	int c;
371 
372 	/*
373 	 * Grab all tc_open_locks so nobody else can get into this txg.
374 	 */
375 	for (c = 0; c < max_ncpus; c++)
376 		mutex_enter(&tx->tx_cpu[c].tc_open_lock);
377 
378 	ASSERT(txg == tx->tx_open_txg);
379 	tx->tx_open_txg++;
380 	tx->tx_open_time = tx_open_time = gethrtime();
381 
382 	DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg);
383 	DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg);
384 
385 	/*
386 	 * Now that we've incremented tx_open_txg, we can let threads
387 	 * enter the next transaction group.
388 	 */
389 	for (c = 0; c < max_ncpus; c++)
390 		mutex_exit(&tx->tx_cpu[c].tc_open_lock);
391 
392 	spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_OPEN, tx_open_time);
393 	spa_txg_history_add(dp->dp_spa, txg + 1, tx_open_time);
394 
395 	/*
396 	 * Quiesce the transaction group by waiting for everyone to txg_exit().
397 	 */
398 	for (c = 0; c < max_ncpus; c++) {
399 		tx_cpu_t *tc = &tx->tx_cpu[c];
400 		mutex_enter(&tc->tc_lock);
401 		while (tc->tc_count[g] != 0)
402 			cv_wait(&tc->tc_cv[g], &tc->tc_lock);
403 		mutex_exit(&tc->tc_lock);
404 	}
405 
406 	spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_QUIESCED, gethrtime());
407 }
408 
409 static void
410 txg_do_callbacks(list_t *cb_list)
411 {
412 	dmu_tx_do_callbacks(cb_list, 0);
413 
414 	list_destroy(cb_list);
415 
416 	kmem_free(cb_list, sizeof (list_t));
417 }
418 
419 /*
420  * Dispatch the commit callbacks registered on this txg to worker threads.
421  *
422  * If no callbacks are registered for a given TXG, nothing happens.
423  * This function creates a taskq for the associated pool, if needed.
424  */
425 static void
426 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
427 {
428 	int c;
429 	tx_state_t *tx = &dp->dp_tx;
430 	list_t *cb_list;
431 
432 	for (c = 0; c < max_ncpus; c++) {
433 		tx_cpu_t *tc = &tx->tx_cpu[c];
434 		/*
435 		 * No need to lock tx_cpu_t at this point, since this can
436 		 * only be called once a txg has been synced.
437 		 */
438 
439 		int g = txg & TXG_MASK;
440 
441 		if (list_is_empty(&tc->tc_callbacks[g]))
442 			continue;
443 
444 		if (tx->tx_commit_cb_taskq == NULL) {
445 			/*
446 			 * Commit callback taskq hasn't been created yet.
447 			 */
448 			tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
449 			    100, defclsyspri, boot_ncpus, boot_ncpus * 2,
450 			    TASKQ_PREPOPULATE | TASKQ_DYNAMIC |
451 			    TASKQ_THREADS_CPU_PCT);
452 		}
453 
454 		cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
455 		list_create(cb_list, sizeof (dmu_tx_callback_t),
456 		    offsetof(dmu_tx_callback_t, dcb_node));
457 
458 		list_move_tail(cb_list, &tc->tc_callbacks[g]);
459 
460 		(void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *)
461 		    txg_do_callbacks, cb_list, TQ_SLEEP);
462 	}
463 }
464 
465 /*
466  * Wait for pending commit callbacks of already-synced transactions to finish
467  * processing.
468  * Calling this function from within a commit callback will deadlock.
469  */
470 void
471 txg_wait_callbacks(dsl_pool_t *dp)
472 {
473 	tx_state_t *tx = &dp->dp_tx;
474 
475 	if (tx->tx_commit_cb_taskq != NULL)
476 		taskq_wait_outstanding(tx->tx_commit_cb_taskq, 0);
477 }
478 
479 static boolean_t
480 txg_is_syncing(dsl_pool_t *dp)
481 {
482 	tx_state_t *tx = &dp->dp_tx;
483 	ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
484 	return (tx->tx_syncing_txg != 0);
485 }
486 
487 static boolean_t
488 txg_is_quiescing(dsl_pool_t *dp)
489 {
490 	tx_state_t *tx = &dp->dp_tx;
491 	ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
492 	return (tx->tx_quiescing_txg != 0);
493 }
494 
495 static boolean_t
496 txg_has_quiesced_to_sync(dsl_pool_t *dp)
497 {
498 	tx_state_t *tx = &dp->dp_tx;
499 	ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
500 	return (tx->tx_quiesced_txg != 0);
501 }
502 
503 static void
504 txg_sync_thread(void *arg)
505 {
506 	dsl_pool_t *dp = arg;
507 	spa_t *spa = dp->dp_spa;
508 	tx_state_t *tx = &dp->dp_tx;
509 	callb_cpr_t cpr;
510 	clock_t start, delta;
511 
512 	(void) spl_fstrans_mark();
513 	txg_thread_enter(tx, &cpr);
514 
515 	start = delta = 0;
516 	for (;;) {
517 		clock_t timeout = zfs_txg_timeout * hz;
518 		clock_t timer;
519 		uint64_t txg;
520 		uint64_t dirty_min_bytes =
521 		    zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100;
522 
523 		/*
524 		 * We sync when we're scanning, there's someone waiting
525 		 * on us, or the quiesce thread has handed off a txg to
526 		 * us, or we have reached our timeout.
527 		 */
528 		timer = (delta >= timeout ? 0 : timeout - delta);
529 		while (!dsl_scan_active(dp->dp_scan) &&
530 		    !tx->tx_exiting && timer > 0 &&
531 		    tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
532 		    !txg_has_quiesced_to_sync(dp) &&
533 		    dp->dp_dirty_total < dirty_min_bytes) {
534 			dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
535 			    tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
536 			txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
537 			delta = ddi_get_lbolt() - start;
538 			timer = (delta > timeout ? 0 : timeout - delta);
539 		}
540 
541 		/*
542 		 * Wait until the quiesce thread hands off a txg to us,
543 		 * prompting it to do so if necessary.
544 		 */
545 		while (!tx->tx_exiting && !txg_has_quiesced_to_sync(dp)) {
546 			if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
547 				tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
548 			cv_broadcast(&tx->tx_quiesce_more_cv);
549 			txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
550 		}
551 
552 		if (tx->tx_exiting)
553 			txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
554 
555 		/*
556 		 * Consume the quiesced txg which has been handed off to
557 		 * us.  This may cause the quiescing thread to now be
558 		 * able to quiesce another txg, so we must signal it.
559 		 */
560 		ASSERT(tx->tx_quiesced_txg != 0);
561 		txg = tx->tx_quiesced_txg;
562 		tx->tx_quiesced_txg = 0;
563 		tx->tx_syncing_txg = txg;
564 		DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg);
565 		cv_broadcast(&tx->tx_quiesce_more_cv);
566 
567 		dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
568 		    txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
569 		mutex_exit(&tx->tx_sync_lock);
570 
571 		txg_stat_t *ts = spa_txg_history_init_io(spa, txg, dp);
572 		start = ddi_get_lbolt();
573 		spa_sync(spa, txg);
574 		delta = ddi_get_lbolt() - start;
575 		spa_txg_history_fini_io(spa, ts);
576 
577 		mutex_enter(&tx->tx_sync_lock);
578 		tx->tx_synced_txg = txg;
579 		tx->tx_syncing_txg = 0;
580 		DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg);
581 		cv_broadcast(&tx->tx_sync_done_cv);
582 
583 		/*
584 		 * Dispatch commit callbacks to worker threads.
585 		 */
586 		txg_dispatch_callbacks(dp, txg);
587 	}
588 }
589 
590 static void
591 txg_quiesce_thread(void *arg)
592 {
593 	dsl_pool_t *dp = arg;
594 	tx_state_t *tx = &dp->dp_tx;
595 	callb_cpr_t cpr;
596 
597 	txg_thread_enter(tx, &cpr);
598 
599 	for (;;) {
600 		uint64_t txg;
601 
602 		/*
603 		 * We quiesce when there's someone waiting on us.
604 		 * However, we can only have one txg in "quiescing" or
605 		 * "quiesced, waiting to sync" state.  So we wait until
606 		 * the "quiesced, waiting to sync" txg has been consumed
607 		 * by the sync thread.
608 		 */
609 		while (!tx->tx_exiting &&
610 		    (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
611 		    txg_has_quiesced_to_sync(dp)))
612 			txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
613 
614 		if (tx->tx_exiting)
615 			txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
616 
617 		txg = tx->tx_open_txg;
618 		dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
619 		    txg, tx->tx_quiesce_txg_waiting,
620 		    tx->tx_sync_txg_waiting);
621 		tx->tx_quiescing_txg = txg;
622 
623 		mutex_exit(&tx->tx_sync_lock);
624 		txg_quiesce(dp, txg);
625 		mutex_enter(&tx->tx_sync_lock);
626 
627 		/*
628 		 * Hand this txg off to the sync thread.
629 		 */
630 		dprintf("quiesce done, handing off txg %llu\n", txg);
631 		tx->tx_quiescing_txg = 0;
632 		tx->tx_quiesced_txg = txg;
633 		DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg);
634 		cv_broadcast(&tx->tx_sync_more_cv);
635 		cv_broadcast(&tx->tx_quiesce_done_cv);
636 	}
637 }
638 
639 /*
640  * Delay this thread by delay nanoseconds if we are still in the open
641  * transaction group and there is already a waiting txg quiescing or quiesced.
642  * Abort the delay if this txg stalls or enters the quiescing state.
643  */
644 void
645 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution)
646 {
647 	tx_state_t *tx = &dp->dp_tx;
648 	hrtime_t start = gethrtime();
649 
650 	/* don't delay if this txg could transition to quiescing immediately */
651 	if (tx->tx_open_txg > txg ||
652 	    tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
653 		return;
654 
655 	mutex_enter(&tx->tx_sync_lock);
656 	if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
657 		mutex_exit(&tx->tx_sync_lock);
658 		return;
659 	}
660 
661 	while (gethrtime() - start < delay &&
662 	    tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) {
663 		(void) cv_timedwait_hires(&tx->tx_quiesce_more_cv,
664 		    &tx->tx_sync_lock, delay, resolution, 0);
665 	}
666 
667 	DMU_TX_STAT_BUMP(dmu_tx_delay);
668 
669 	mutex_exit(&tx->tx_sync_lock);
670 }
671 
672 static boolean_t
673 txg_wait_synced_impl(dsl_pool_t *dp, uint64_t txg, boolean_t wait_sig)
674 {
675 	tx_state_t *tx = &dp->dp_tx;
676 
677 	ASSERT(!dsl_pool_config_held(dp));
678 
679 	mutex_enter(&tx->tx_sync_lock);
680 	ASSERT3U(tx->tx_threads, ==, 2);
681 	if (txg == 0)
682 		txg = tx->tx_open_txg + TXG_DEFER_SIZE;
683 	if (tx->tx_sync_txg_waiting < txg)
684 		tx->tx_sync_txg_waiting = txg;
685 	dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
686 	    txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
687 	while (tx->tx_synced_txg < txg) {
688 		dprintf("broadcasting sync more "
689 		    "tx_synced=%llu waiting=%llu dp=%px\n",
690 		    tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
691 		cv_broadcast(&tx->tx_sync_more_cv);
692 		if (wait_sig) {
693 			/*
694 			 * Condition wait here but stop if the thread receives a
695 			 * signal. The caller may call txg_wait_synced*() again
696 			 * to resume waiting for this txg.
697 			 */
698 			if (cv_wait_io_sig(&tx->tx_sync_done_cv,
699 			    &tx->tx_sync_lock) == 0) {
700 				mutex_exit(&tx->tx_sync_lock);
701 				return (B_TRUE);
702 			}
703 		} else {
704 			cv_wait_io(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
705 		}
706 	}
707 	mutex_exit(&tx->tx_sync_lock);
708 	return (B_FALSE);
709 }
710 
711 void
712 txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
713 {
714 	VERIFY0(txg_wait_synced_impl(dp, txg, B_FALSE));
715 }
716 
717 /*
718  * Similar to a txg_wait_synced but it can be interrupted from a signal.
719  * Returns B_TRUE if the thread was signaled while waiting.
720  */
721 boolean_t
722 txg_wait_synced_sig(dsl_pool_t *dp, uint64_t txg)
723 {
724 	return (txg_wait_synced_impl(dp, txg, B_TRUE));
725 }
726 
727 /*
728  * Wait for the specified open transaction group.  Set should_quiesce
729  * when the current open txg should be quiesced immediately.
730  */
731 void
732 txg_wait_open(dsl_pool_t *dp, uint64_t txg, boolean_t should_quiesce)
733 {
734 	tx_state_t *tx = &dp->dp_tx;
735 
736 	ASSERT(!dsl_pool_config_held(dp));
737 
738 	mutex_enter(&tx->tx_sync_lock);
739 	ASSERT3U(tx->tx_threads, ==, 2);
740 	if (txg == 0)
741 		txg = tx->tx_open_txg + 1;
742 	if (tx->tx_quiesce_txg_waiting < txg && should_quiesce)
743 		tx->tx_quiesce_txg_waiting = txg;
744 	dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
745 	    txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
746 	while (tx->tx_open_txg < txg) {
747 		cv_broadcast(&tx->tx_quiesce_more_cv);
748 		/*
749 		 * Callers setting should_quiesce will use cv_wait_io() and
750 		 * be accounted for as iowait time.  Otherwise, the caller is
751 		 * understood to be idle and cv_wait_sig() is used to prevent
752 		 * incorrectly inflating the system load average.
753 		 */
754 		if (should_quiesce == B_TRUE) {
755 			cv_wait_io(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
756 		} else {
757 			cv_wait_idle(&tx->tx_quiesce_done_cv,
758 			    &tx->tx_sync_lock);
759 		}
760 	}
761 	mutex_exit(&tx->tx_sync_lock);
762 }
763 
764 /*
765  * If there isn't a txg syncing or in the pipeline, push another txg through
766  * the pipeline by quiescing the open txg.
767  */
768 void
769 txg_kick(dsl_pool_t *dp)
770 {
771 	tx_state_t *tx = &dp->dp_tx;
772 
773 	ASSERT(!dsl_pool_config_held(dp));
774 
775 	mutex_enter(&tx->tx_sync_lock);
776 	if (!txg_is_syncing(dp) &&
777 	    !txg_is_quiescing(dp) &&
778 	    tx->tx_quiesce_txg_waiting <= tx->tx_open_txg &&
779 	    tx->tx_sync_txg_waiting <= tx->tx_synced_txg &&
780 	    tx->tx_quiesced_txg <= tx->tx_synced_txg) {
781 		tx->tx_quiesce_txg_waiting = tx->tx_open_txg + 1;
782 		cv_broadcast(&tx->tx_quiesce_more_cv);
783 	}
784 	mutex_exit(&tx->tx_sync_lock);
785 }
786 
787 boolean_t
788 txg_stalled(dsl_pool_t *dp)
789 {
790 	tx_state_t *tx = &dp->dp_tx;
791 	return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
792 }
793 
794 boolean_t
795 txg_sync_waiting(dsl_pool_t *dp)
796 {
797 	tx_state_t *tx = &dp->dp_tx;
798 
799 	return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
800 	    tx->tx_quiesced_txg != 0);
801 }
802 
803 /*
804  * Verify that this txg is active (open, quiescing, syncing).  Non-active
805  * txg's should not be manipulated.
806  */
807 #ifdef ZFS_DEBUG
808 void
809 txg_verify(spa_t *spa, uint64_t txg)
810 {
811 	dsl_pool_t *dp __maybe_unused = spa_get_dsl(spa);
812 	if (txg <= TXG_INITIAL || txg == ZILTEST_TXG)
813 		return;
814 	ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg);
815 	ASSERT3U(txg, >=, dp->dp_tx.tx_synced_txg);
816 	ASSERT3U(txg, >=, dp->dp_tx.tx_open_txg - TXG_CONCURRENT_STATES);
817 }
818 #endif
819 
820 /*
821  * Per-txg object lists.
822  */
823 void
824 txg_list_create(txg_list_t *tl, spa_t *spa, size_t offset)
825 {
826 	int t;
827 
828 	mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
829 
830 	tl->tl_offset = offset;
831 	tl->tl_spa = spa;
832 
833 	for (t = 0; t < TXG_SIZE; t++)
834 		tl->tl_head[t] = NULL;
835 }
836 
837 static boolean_t
838 txg_list_empty_impl(txg_list_t *tl, uint64_t txg)
839 {
840 	ASSERT(MUTEX_HELD(&tl->tl_lock));
841 	TXG_VERIFY(tl->tl_spa, txg);
842 	return (tl->tl_head[txg & TXG_MASK] == NULL);
843 }
844 
845 boolean_t
846 txg_list_empty(txg_list_t *tl, uint64_t txg)
847 {
848 	mutex_enter(&tl->tl_lock);
849 	boolean_t ret = txg_list_empty_impl(tl, txg);
850 	mutex_exit(&tl->tl_lock);
851 
852 	return (ret);
853 }
854 
855 void
856 txg_list_destroy(txg_list_t *tl)
857 {
858 	int t;
859 
860 	mutex_enter(&tl->tl_lock);
861 	for (t = 0; t < TXG_SIZE; t++)
862 		ASSERT(txg_list_empty_impl(tl, t));
863 	mutex_exit(&tl->tl_lock);
864 
865 	mutex_destroy(&tl->tl_lock);
866 }
867 
868 /*
869  * Returns true if all txg lists are empty.
870  *
871  * Warning: this is inherently racy (an item could be added immediately
872  * after this function returns).
873  */
874 boolean_t
875 txg_all_lists_empty(txg_list_t *tl)
876 {
877 	mutex_enter(&tl->tl_lock);
878 	for (int i = 0; i < TXG_SIZE; i++) {
879 		if (!txg_list_empty_impl(tl, i)) {
880 			mutex_exit(&tl->tl_lock);
881 			return (B_FALSE);
882 		}
883 	}
884 	mutex_exit(&tl->tl_lock);
885 	return (B_TRUE);
886 }
887 
888 /*
889  * Add an entry to the list (unless it's already on the list).
890  * Returns B_TRUE if it was actually added.
891  */
892 boolean_t
893 txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
894 {
895 	int t = txg & TXG_MASK;
896 	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
897 	boolean_t add;
898 
899 	TXG_VERIFY(tl->tl_spa, txg);
900 	mutex_enter(&tl->tl_lock);
901 	add = (tn->tn_member[t] == 0);
902 	if (add) {
903 		tn->tn_member[t] = 1;
904 		tn->tn_next[t] = tl->tl_head[t];
905 		tl->tl_head[t] = tn;
906 	}
907 	mutex_exit(&tl->tl_lock);
908 
909 	return (add);
910 }
911 
912 /*
913  * Add an entry to the end of the list, unless it's already on the list.
914  * (walks list to find end)
915  * Returns B_TRUE if it was actually added.
916  */
917 boolean_t
918 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
919 {
920 	int t = txg & TXG_MASK;
921 	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
922 	boolean_t add;
923 
924 	TXG_VERIFY(tl->tl_spa, txg);
925 	mutex_enter(&tl->tl_lock);
926 	add = (tn->tn_member[t] == 0);
927 	if (add) {
928 		txg_node_t **tp;
929 
930 		for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
931 			continue;
932 
933 		tn->tn_member[t] = 1;
934 		tn->tn_next[t] = NULL;
935 		*tp = tn;
936 	}
937 	mutex_exit(&tl->tl_lock);
938 
939 	return (add);
940 }
941 
942 /*
943  * Remove the head of the list and return it.
944  */
945 void *
946 txg_list_remove(txg_list_t *tl, uint64_t txg)
947 {
948 	int t = txg & TXG_MASK;
949 	txg_node_t *tn;
950 	void *p = NULL;
951 
952 	TXG_VERIFY(tl->tl_spa, txg);
953 	mutex_enter(&tl->tl_lock);
954 	if ((tn = tl->tl_head[t]) != NULL) {
955 		ASSERT(tn->tn_member[t]);
956 		ASSERT(tn->tn_next[t] == NULL || tn->tn_next[t]->tn_member[t]);
957 		p = (char *)tn - tl->tl_offset;
958 		tl->tl_head[t] = tn->tn_next[t];
959 		tn->tn_next[t] = NULL;
960 		tn->tn_member[t] = 0;
961 	}
962 	mutex_exit(&tl->tl_lock);
963 
964 	return (p);
965 }
966 
967 /*
968  * Remove a specific item from the list and return it.
969  */
970 void *
971 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
972 {
973 	int t = txg & TXG_MASK;
974 	txg_node_t *tn, **tp;
975 
976 	TXG_VERIFY(tl->tl_spa, txg);
977 	mutex_enter(&tl->tl_lock);
978 
979 	for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
980 		if ((char *)tn - tl->tl_offset == p) {
981 			*tp = tn->tn_next[t];
982 			tn->tn_next[t] = NULL;
983 			tn->tn_member[t] = 0;
984 			mutex_exit(&tl->tl_lock);
985 			return (p);
986 		}
987 	}
988 
989 	mutex_exit(&tl->tl_lock);
990 
991 	return (NULL);
992 }
993 
994 boolean_t
995 txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
996 {
997 	int t = txg & TXG_MASK;
998 	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
999 
1000 	TXG_VERIFY(tl->tl_spa, txg);
1001 	return (tn->tn_member[t] != 0);
1002 }
1003 
1004 /*
1005  * Walk a txg list
1006  */
1007 void *
1008 txg_list_head(txg_list_t *tl, uint64_t txg)
1009 {
1010 	int t = txg & TXG_MASK;
1011 	txg_node_t *tn;
1012 
1013 	mutex_enter(&tl->tl_lock);
1014 	tn = tl->tl_head[t];
1015 	mutex_exit(&tl->tl_lock);
1016 
1017 	TXG_VERIFY(tl->tl_spa, txg);
1018 	return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
1019 }
1020 
1021 void *
1022 txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
1023 {
1024 	int t = txg & TXG_MASK;
1025 	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
1026 
1027 	TXG_VERIFY(tl->tl_spa, txg);
1028 
1029 	mutex_enter(&tl->tl_lock);
1030 	tn = tn->tn_next[t];
1031 	mutex_exit(&tl->tl_lock);
1032 
1033 	return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
1034 }
1035 
1036 EXPORT_SYMBOL(txg_init);
1037 EXPORT_SYMBOL(txg_fini);
1038 EXPORT_SYMBOL(txg_sync_start);
1039 EXPORT_SYMBOL(txg_sync_stop);
1040 EXPORT_SYMBOL(txg_hold_open);
1041 EXPORT_SYMBOL(txg_rele_to_quiesce);
1042 EXPORT_SYMBOL(txg_rele_to_sync);
1043 EXPORT_SYMBOL(txg_register_callbacks);
1044 EXPORT_SYMBOL(txg_delay);
1045 EXPORT_SYMBOL(txg_wait_synced);
1046 EXPORT_SYMBOL(txg_wait_open);
1047 EXPORT_SYMBOL(txg_wait_callbacks);
1048 EXPORT_SYMBOL(txg_stalled);
1049 EXPORT_SYMBOL(txg_sync_waiting);
1050 
1051 /* BEGIN CSTYLED */
1052 ZFS_MODULE_PARAM(zfs_txg, zfs_txg_, timeout, INT, ZMOD_RW,
1053 	"Max seconds worth of delta per txg");
1054 /* END CSTYLED */
1055