1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Portions Copyright 2011 Martin Matuska 24 * Copyright (c) 2012, 2019 by Delphix. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/txg_impl.h> 29 #include <sys/dmu_impl.h> 30 #include <sys/spa_impl.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dsl_pool.h> 33 #include <sys/dsl_scan.h> 34 #include <sys/zil.h> 35 #include <sys/callb.h> 36 #include <sys/trace_zfs.h> 37 38 /* 39 * ZFS Transaction Groups 40 * ---------------------- 41 * 42 * ZFS transaction groups are, as the name implies, groups of transactions 43 * that act on persistent state. ZFS asserts consistency at the granularity of 44 * these transaction groups. Each successive transaction group (txg) is 45 * assigned a 64-bit consecutive identifier. There are three active 46 * transaction group states: open, quiescing, or syncing. At any given time, 47 * there may be an active txg associated with each state; each active txg may 48 * either be processing, or blocked waiting to enter the next state. There may 49 * be up to three active txgs, and there is always a txg in the open state 50 * (though it may be blocked waiting to enter the quiescing state). In broad 51 * strokes, transactions -- operations that change in-memory structures -- are 52 * accepted into the txg in the open state, and are completed while the txg is 53 * in the open or quiescing states. The accumulated changes are written to 54 * disk in the syncing state. 55 * 56 * Open 57 * 58 * When a new txg becomes active, it first enters the open state. New 59 * transactions -- updates to in-memory structures -- are assigned to the 60 * currently open txg. There is always a txg in the open state so that ZFS can 61 * accept new changes (though the txg may refuse new changes if it has hit 62 * some limit). ZFS advances the open txg to the next state for a variety of 63 * reasons such as it hitting a time or size threshold, or the execution of an 64 * administrative action that must be completed in the syncing state. 65 * 66 * Quiescing 67 * 68 * After a txg exits the open state, it enters the quiescing state. The 69 * quiescing state is intended to provide a buffer between accepting new 70 * transactions in the open state and writing them out to stable storage in 71 * the syncing state. While quiescing, transactions can continue their 72 * operation without delaying either of the other states. Typically, a txg is 73 * in the quiescing state very briefly since the operations are bounded by 74 * software latencies rather than, say, slower I/O latencies. After all 75 * transactions complete, the txg is ready to enter the next state. 76 * 77 * Syncing 78 * 79 * In the syncing state, the in-memory state built up during the open and (to 80 * a lesser degree) the quiescing states is written to stable storage. The 81 * process of writing out modified data can, in turn modify more data. For 82 * example when we write new blocks, we need to allocate space for them; those 83 * allocations modify metadata (space maps)... which themselves must be 84 * written to stable storage. During the sync state, ZFS iterates, writing out 85 * data until it converges and all in-memory changes have been written out. 86 * The first such pass is the largest as it encompasses all the modified user 87 * data (as opposed to filesystem metadata). Subsequent passes typically have 88 * far less data to write as they consist exclusively of filesystem metadata. 89 * 90 * To ensure convergence, after a certain number of passes ZFS begins 91 * overwriting locations on stable storage that had been allocated earlier in 92 * the syncing state (and subsequently freed). ZFS usually allocates new 93 * blocks to optimize for large, continuous, writes. For the syncing state to 94 * converge however it must complete a pass where no new blocks are allocated 95 * since each allocation requires a modification of persistent metadata. 96 * Further, to hasten convergence, after a prescribed number of passes, ZFS 97 * also defers frees, and stops compressing. 98 * 99 * In addition to writing out user data, we must also execute synctasks during 100 * the syncing context. A synctask is the mechanism by which some 101 * administrative activities work such as creating and destroying snapshots or 102 * datasets. Note that when a synctask is initiated it enters the open txg, 103 * and ZFS then pushes that txg as quickly as possible to completion of the 104 * syncing state in order to reduce the latency of the administrative 105 * activity. To complete the syncing state, ZFS writes out a new uberblock, 106 * the root of the tree of blocks that comprise all state stored on the ZFS 107 * pool. Finally, if there is a quiesced txg waiting, we signal that it can 108 * now transition to the syncing state. 109 */ 110 111 static void txg_sync_thread(void *arg); 112 static void txg_quiesce_thread(void *arg); 113 114 int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */ 115 116 /* 117 * Prepare the txg subsystem. 118 */ 119 void 120 txg_init(dsl_pool_t *dp, uint64_t txg) 121 { 122 tx_state_t *tx = &dp->dp_tx; 123 int c; 124 bzero(tx, sizeof (tx_state_t)); 125 126 tx->tx_cpu = vmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP); 127 128 for (c = 0; c < max_ncpus; c++) { 129 int i; 130 131 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL); 132 mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_NOLOCKDEP, 133 NULL); 134 for (i = 0; i < TXG_SIZE; i++) { 135 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT, 136 NULL); 137 list_create(&tx->tx_cpu[c].tc_callbacks[i], 138 sizeof (dmu_tx_callback_t), 139 offsetof(dmu_tx_callback_t, dcb_node)); 140 } 141 } 142 143 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL); 144 145 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL); 146 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL); 147 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL); 148 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL); 149 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL); 150 151 tx->tx_open_txg = txg; 152 } 153 154 /* 155 * Close down the txg subsystem. 156 */ 157 void 158 txg_fini(dsl_pool_t *dp) 159 { 160 tx_state_t *tx = &dp->dp_tx; 161 int c; 162 163 ASSERT0(tx->tx_threads); 164 165 mutex_destroy(&tx->tx_sync_lock); 166 167 cv_destroy(&tx->tx_sync_more_cv); 168 cv_destroy(&tx->tx_sync_done_cv); 169 cv_destroy(&tx->tx_quiesce_more_cv); 170 cv_destroy(&tx->tx_quiesce_done_cv); 171 cv_destroy(&tx->tx_exit_cv); 172 173 for (c = 0; c < max_ncpus; c++) { 174 int i; 175 176 mutex_destroy(&tx->tx_cpu[c].tc_open_lock); 177 mutex_destroy(&tx->tx_cpu[c].tc_lock); 178 for (i = 0; i < TXG_SIZE; i++) { 179 cv_destroy(&tx->tx_cpu[c].tc_cv[i]); 180 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]); 181 } 182 } 183 184 if (tx->tx_commit_cb_taskq != NULL) 185 taskq_destroy(tx->tx_commit_cb_taskq); 186 187 vmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t)); 188 189 bzero(tx, sizeof (tx_state_t)); 190 } 191 192 /* 193 * Start syncing transaction groups. 194 */ 195 void 196 txg_sync_start(dsl_pool_t *dp) 197 { 198 tx_state_t *tx = &dp->dp_tx; 199 200 mutex_enter(&tx->tx_sync_lock); 201 202 dprintf("pool %p\n", dp); 203 204 ASSERT0(tx->tx_threads); 205 206 tx->tx_threads = 2; 207 208 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread, 209 dp, 0, &p0, TS_RUN, defclsyspri); 210 211 /* 212 * The sync thread can need a larger-than-default stack size on 213 * 32-bit x86. This is due in part to nested pools and 214 * scrub_visitbp() recursion. 215 */ 216 tx->tx_sync_thread = thread_create(NULL, 0, txg_sync_thread, 217 dp, 0, &p0, TS_RUN, defclsyspri); 218 219 mutex_exit(&tx->tx_sync_lock); 220 } 221 222 static void 223 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr) 224 { 225 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG); 226 mutex_enter(&tx->tx_sync_lock); 227 } 228 229 static void 230 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp) 231 { 232 ASSERT(*tpp != NULL); 233 *tpp = NULL; 234 tx->tx_threads--; 235 cv_broadcast(&tx->tx_exit_cv); 236 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */ 237 thread_exit(); 238 } 239 240 static void 241 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time) 242 { 243 CALLB_CPR_SAFE_BEGIN(cpr); 244 245 if (time) { 246 (void) cv_timedwait_idle(cv, &tx->tx_sync_lock, 247 ddi_get_lbolt() + time); 248 } else { 249 cv_wait_idle(cv, &tx->tx_sync_lock); 250 } 251 252 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock); 253 } 254 255 /* 256 * Stop syncing transaction groups. 257 */ 258 void 259 txg_sync_stop(dsl_pool_t *dp) 260 { 261 tx_state_t *tx = &dp->dp_tx; 262 263 dprintf("pool %p\n", dp); 264 /* 265 * Finish off any work in progress. 266 */ 267 ASSERT3U(tx->tx_threads, ==, 2); 268 269 /* 270 * We need to ensure that we've vacated the deferred metaslab trees. 271 */ 272 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE); 273 274 /* 275 * Wake all sync threads and wait for them to die. 276 */ 277 mutex_enter(&tx->tx_sync_lock); 278 279 ASSERT3U(tx->tx_threads, ==, 2); 280 281 tx->tx_exiting = 1; 282 283 cv_broadcast(&tx->tx_quiesce_more_cv); 284 cv_broadcast(&tx->tx_quiesce_done_cv); 285 cv_broadcast(&tx->tx_sync_more_cv); 286 287 while (tx->tx_threads != 0) 288 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock); 289 290 tx->tx_exiting = 0; 291 292 mutex_exit(&tx->tx_sync_lock); 293 } 294 295 uint64_t 296 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th) 297 { 298 tx_state_t *tx = &dp->dp_tx; 299 tx_cpu_t *tc; 300 uint64_t txg; 301 302 /* 303 * It appears the processor id is simply used as a "random" 304 * number to index into the array, and there isn't any other 305 * significance to the chosen tx_cpu. Because.. Why not use 306 * the current cpu to index into the array? 307 */ 308 tc = &tx->tx_cpu[CPU_SEQID_UNSTABLE]; 309 310 mutex_enter(&tc->tc_open_lock); 311 txg = tx->tx_open_txg; 312 313 mutex_enter(&tc->tc_lock); 314 tc->tc_count[txg & TXG_MASK]++; 315 mutex_exit(&tc->tc_lock); 316 317 th->th_cpu = tc; 318 th->th_txg = txg; 319 320 return (txg); 321 } 322 323 void 324 txg_rele_to_quiesce(txg_handle_t *th) 325 { 326 tx_cpu_t *tc = th->th_cpu; 327 328 ASSERT(!MUTEX_HELD(&tc->tc_lock)); 329 mutex_exit(&tc->tc_open_lock); 330 } 331 332 void 333 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks) 334 { 335 tx_cpu_t *tc = th->th_cpu; 336 int g = th->th_txg & TXG_MASK; 337 338 mutex_enter(&tc->tc_lock); 339 list_move_tail(&tc->tc_callbacks[g], tx_callbacks); 340 mutex_exit(&tc->tc_lock); 341 } 342 343 void 344 txg_rele_to_sync(txg_handle_t *th) 345 { 346 tx_cpu_t *tc = th->th_cpu; 347 int g = th->th_txg & TXG_MASK; 348 349 mutex_enter(&tc->tc_lock); 350 ASSERT(tc->tc_count[g] != 0); 351 if (--tc->tc_count[g] == 0) 352 cv_broadcast(&tc->tc_cv[g]); 353 mutex_exit(&tc->tc_lock); 354 355 th->th_cpu = NULL; /* defensive */ 356 } 357 358 /* 359 * Blocks until all transactions in the group are committed. 360 * 361 * On return, the transaction group has reached a stable state in which it can 362 * then be passed off to the syncing context. 363 */ 364 static void 365 txg_quiesce(dsl_pool_t *dp, uint64_t txg) 366 { 367 tx_state_t *tx = &dp->dp_tx; 368 uint64_t tx_open_time; 369 int g = txg & TXG_MASK; 370 int c; 371 372 /* 373 * Grab all tc_open_locks so nobody else can get into this txg. 374 */ 375 for (c = 0; c < max_ncpus; c++) 376 mutex_enter(&tx->tx_cpu[c].tc_open_lock); 377 378 ASSERT(txg == tx->tx_open_txg); 379 tx->tx_open_txg++; 380 tx->tx_open_time = tx_open_time = gethrtime(); 381 382 DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg); 383 DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg); 384 385 /* 386 * Now that we've incremented tx_open_txg, we can let threads 387 * enter the next transaction group. 388 */ 389 for (c = 0; c < max_ncpus; c++) 390 mutex_exit(&tx->tx_cpu[c].tc_open_lock); 391 392 spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_OPEN, tx_open_time); 393 spa_txg_history_add(dp->dp_spa, txg + 1, tx_open_time); 394 395 /* 396 * Quiesce the transaction group by waiting for everyone to txg_exit(). 397 */ 398 for (c = 0; c < max_ncpus; c++) { 399 tx_cpu_t *tc = &tx->tx_cpu[c]; 400 mutex_enter(&tc->tc_lock); 401 while (tc->tc_count[g] != 0) 402 cv_wait(&tc->tc_cv[g], &tc->tc_lock); 403 mutex_exit(&tc->tc_lock); 404 } 405 406 spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_QUIESCED, gethrtime()); 407 } 408 409 static void 410 txg_do_callbacks(list_t *cb_list) 411 { 412 dmu_tx_do_callbacks(cb_list, 0); 413 414 list_destroy(cb_list); 415 416 kmem_free(cb_list, sizeof (list_t)); 417 } 418 419 /* 420 * Dispatch the commit callbacks registered on this txg to worker threads. 421 * 422 * If no callbacks are registered for a given TXG, nothing happens. 423 * This function creates a taskq for the associated pool, if needed. 424 */ 425 static void 426 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg) 427 { 428 int c; 429 tx_state_t *tx = &dp->dp_tx; 430 list_t *cb_list; 431 432 for (c = 0; c < max_ncpus; c++) { 433 tx_cpu_t *tc = &tx->tx_cpu[c]; 434 /* 435 * No need to lock tx_cpu_t at this point, since this can 436 * only be called once a txg has been synced. 437 */ 438 439 int g = txg & TXG_MASK; 440 441 if (list_is_empty(&tc->tc_callbacks[g])) 442 continue; 443 444 if (tx->tx_commit_cb_taskq == NULL) { 445 /* 446 * Commit callback taskq hasn't been created yet. 447 */ 448 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb", 449 100, defclsyspri, boot_ncpus, boot_ncpus * 2, 450 TASKQ_PREPOPULATE | TASKQ_DYNAMIC | 451 TASKQ_THREADS_CPU_PCT); 452 } 453 454 cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 455 list_create(cb_list, sizeof (dmu_tx_callback_t), 456 offsetof(dmu_tx_callback_t, dcb_node)); 457 458 list_move_tail(cb_list, &tc->tc_callbacks[g]); 459 460 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *) 461 txg_do_callbacks, cb_list, TQ_SLEEP); 462 } 463 } 464 465 /* 466 * Wait for pending commit callbacks of already-synced transactions to finish 467 * processing. 468 * Calling this function from within a commit callback will deadlock. 469 */ 470 void 471 txg_wait_callbacks(dsl_pool_t *dp) 472 { 473 tx_state_t *tx = &dp->dp_tx; 474 475 if (tx->tx_commit_cb_taskq != NULL) 476 taskq_wait_outstanding(tx->tx_commit_cb_taskq, 0); 477 } 478 479 static boolean_t 480 txg_is_syncing(dsl_pool_t *dp) 481 { 482 tx_state_t *tx = &dp->dp_tx; 483 ASSERT(MUTEX_HELD(&tx->tx_sync_lock)); 484 return (tx->tx_syncing_txg != 0); 485 } 486 487 static boolean_t 488 txg_is_quiescing(dsl_pool_t *dp) 489 { 490 tx_state_t *tx = &dp->dp_tx; 491 ASSERT(MUTEX_HELD(&tx->tx_sync_lock)); 492 return (tx->tx_quiescing_txg != 0); 493 } 494 495 static boolean_t 496 txg_has_quiesced_to_sync(dsl_pool_t *dp) 497 { 498 tx_state_t *tx = &dp->dp_tx; 499 ASSERT(MUTEX_HELD(&tx->tx_sync_lock)); 500 return (tx->tx_quiesced_txg != 0); 501 } 502 503 static void 504 txg_sync_thread(void *arg) 505 { 506 dsl_pool_t *dp = arg; 507 spa_t *spa = dp->dp_spa; 508 tx_state_t *tx = &dp->dp_tx; 509 callb_cpr_t cpr; 510 clock_t start, delta; 511 512 (void) spl_fstrans_mark(); 513 txg_thread_enter(tx, &cpr); 514 515 start = delta = 0; 516 for (;;) { 517 clock_t timeout = zfs_txg_timeout * hz; 518 clock_t timer; 519 uint64_t txg; 520 uint64_t dirty_min_bytes = 521 zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100; 522 523 /* 524 * We sync when we're scanning, there's someone waiting 525 * on us, or the quiesce thread has handed off a txg to 526 * us, or we have reached our timeout. 527 */ 528 timer = (delta >= timeout ? 0 : timeout - delta); 529 while (!dsl_scan_active(dp->dp_scan) && 530 !tx->tx_exiting && timer > 0 && 531 tx->tx_synced_txg >= tx->tx_sync_txg_waiting && 532 !txg_has_quiesced_to_sync(dp) && 533 dp->dp_dirty_total < dirty_min_bytes) { 534 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n", 535 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); 536 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer); 537 delta = ddi_get_lbolt() - start; 538 timer = (delta > timeout ? 0 : timeout - delta); 539 } 540 541 /* 542 * Wait until the quiesce thread hands off a txg to us, 543 * prompting it to do so if necessary. 544 */ 545 while (!tx->tx_exiting && !txg_has_quiesced_to_sync(dp)) { 546 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1) 547 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1; 548 cv_broadcast(&tx->tx_quiesce_more_cv); 549 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0); 550 } 551 552 if (tx->tx_exiting) 553 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread); 554 555 /* 556 * Consume the quiesced txg which has been handed off to 557 * us. This may cause the quiescing thread to now be 558 * able to quiesce another txg, so we must signal it. 559 */ 560 ASSERT(tx->tx_quiesced_txg != 0); 561 txg = tx->tx_quiesced_txg; 562 tx->tx_quiesced_txg = 0; 563 tx->tx_syncing_txg = txg; 564 DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg); 565 cv_broadcast(&tx->tx_quiesce_more_cv); 566 567 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 568 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 569 mutex_exit(&tx->tx_sync_lock); 570 571 txg_stat_t *ts = spa_txg_history_init_io(spa, txg, dp); 572 start = ddi_get_lbolt(); 573 spa_sync(spa, txg); 574 delta = ddi_get_lbolt() - start; 575 spa_txg_history_fini_io(spa, ts); 576 577 mutex_enter(&tx->tx_sync_lock); 578 tx->tx_synced_txg = txg; 579 tx->tx_syncing_txg = 0; 580 DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg); 581 cv_broadcast(&tx->tx_sync_done_cv); 582 583 /* 584 * Dispatch commit callbacks to worker threads. 585 */ 586 txg_dispatch_callbacks(dp, txg); 587 } 588 } 589 590 static void 591 txg_quiesce_thread(void *arg) 592 { 593 dsl_pool_t *dp = arg; 594 tx_state_t *tx = &dp->dp_tx; 595 callb_cpr_t cpr; 596 597 txg_thread_enter(tx, &cpr); 598 599 for (;;) { 600 uint64_t txg; 601 602 /* 603 * We quiesce when there's someone waiting on us. 604 * However, we can only have one txg in "quiescing" or 605 * "quiesced, waiting to sync" state. So we wait until 606 * the "quiesced, waiting to sync" txg has been consumed 607 * by the sync thread. 608 */ 609 while (!tx->tx_exiting && 610 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting || 611 txg_has_quiesced_to_sync(dp))) 612 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0); 613 614 if (tx->tx_exiting) 615 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread); 616 617 txg = tx->tx_open_txg; 618 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 619 txg, tx->tx_quiesce_txg_waiting, 620 tx->tx_sync_txg_waiting); 621 tx->tx_quiescing_txg = txg; 622 623 mutex_exit(&tx->tx_sync_lock); 624 txg_quiesce(dp, txg); 625 mutex_enter(&tx->tx_sync_lock); 626 627 /* 628 * Hand this txg off to the sync thread. 629 */ 630 dprintf("quiesce done, handing off txg %llu\n", txg); 631 tx->tx_quiescing_txg = 0; 632 tx->tx_quiesced_txg = txg; 633 DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg); 634 cv_broadcast(&tx->tx_sync_more_cv); 635 cv_broadcast(&tx->tx_quiesce_done_cv); 636 } 637 } 638 639 /* 640 * Delay this thread by delay nanoseconds if we are still in the open 641 * transaction group and there is already a waiting txg quiescing or quiesced. 642 * Abort the delay if this txg stalls or enters the quiescing state. 643 */ 644 void 645 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution) 646 { 647 tx_state_t *tx = &dp->dp_tx; 648 hrtime_t start = gethrtime(); 649 650 /* don't delay if this txg could transition to quiescing immediately */ 651 if (tx->tx_open_txg > txg || 652 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1) 653 return; 654 655 mutex_enter(&tx->tx_sync_lock); 656 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) { 657 mutex_exit(&tx->tx_sync_lock); 658 return; 659 } 660 661 while (gethrtime() - start < delay && 662 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) { 663 (void) cv_timedwait_hires(&tx->tx_quiesce_more_cv, 664 &tx->tx_sync_lock, delay, resolution, 0); 665 } 666 667 DMU_TX_STAT_BUMP(dmu_tx_delay); 668 669 mutex_exit(&tx->tx_sync_lock); 670 } 671 672 static boolean_t 673 txg_wait_synced_impl(dsl_pool_t *dp, uint64_t txg, boolean_t wait_sig) 674 { 675 tx_state_t *tx = &dp->dp_tx; 676 677 ASSERT(!dsl_pool_config_held(dp)); 678 679 mutex_enter(&tx->tx_sync_lock); 680 ASSERT3U(tx->tx_threads, ==, 2); 681 if (txg == 0) 682 txg = tx->tx_open_txg + TXG_DEFER_SIZE; 683 if (tx->tx_sync_txg_waiting < txg) 684 tx->tx_sync_txg_waiting = txg; 685 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 686 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 687 while (tx->tx_synced_txg < txg) { 688 dprintf("broadcasting sync more " 689 "tx_synced=%llu waiting=%llu dp=%px\n", 690 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); 691 cv_broadcast(&tx->tx_sync_more_cv); 692 if (wait_sig) { 693 /* 694 * Condition wait here but stop if the thread receives a 695 * signal. The caller may call txg_wait_synced*() again 696 * to resume waiting for this txg. 697 */ 698 if (cv_wait_io_sig(&tx->tx_sync_done_cv, 699 &tx->tx_sync_lock) == 0) { 700 mutex_exit(&tx->tx_sync_lock); 701 return (B_TRUE); 702 } 703 } else { 704 cv_wait_io(&tx->tx_sync_done_cv, &tx->tx_sync_lock); 705 } 706 } 707 mutex_exit(&tx->tx_sync_lock); 708 return (B_FALSE); 709 } 710 711 void 712 txg_wait_synced(dsl_pool_t *dp, uint64_t txg) 713 { 714 VERIFY0(txg_wait_synced_impl(dp, txg, B_FALSE)); 715 } 716 717 /* 718 * Similar to a txg_wait_synced but it can be interrupted from a signal. 719 * Returns B_TRUE if the thread was signaled while waiting. 720 */ 721 boolean_t 722 txg_wait_synced_sig(dsl_pool_t *dp, uint64_t txg) 723 { 724 return (txg_wait_synced_impl(dp, txg, B_TRUE)); 725 } 726 727 /* 728 * Wait for the specified open transaction group. Set should_quiesce 729 * when the current open txg should be quiesced immediately. 730 */ 731 void 732 txg_wait_open(dsl_pool_t *dp, uint64_t txg, boolean_t should_quiesce) 733 { 734 tx_state_t *tx = &dp->dp_tx; 735 736 ASSERT(!dsl_pool_config_held(dp)); 737 738 mutex_enter(&tx->tx_sync_lock); 739 ASSERT3U(tx->tx_threads, ==, 2); 740 if (txg == 0) 741 txg = tx->tx_open_txg + 1; 742 if (tx->tx_quiesce_txg_waiting < txg && should_quiesce) 743 tx->tx_quiesce_txg_waiting = txg; 744 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 745 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 746 while (tx->tx_open_txg < txg) { 747 cv_broadcast(&tx->tx_quiesce_more_cv); 748 /* 749 * Callers setting should_quiesce will use cv_wait_io() and 750 * be accounted for as iowait time. Otherwise, the caller is 751 * understood to be idle and cv_wait_sig() is used to prevent 752 * incorrectly inflating the system load average. 753 */ 754 if (should_quiesce == B_TRUE) { 755 cv_wait_io(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock); 756 } else { 757 cv_wait_idle(&tx->tx_quiesce_done_cv, 758 &tx->tx_sync_lock); 759 } 760 } 761 mutex_exit(&tx->tx_sync_lock); 762 } 763 764 /* 765 * If there isn't a txg syncing or in the pipeline, push another txg through 766 * the pipeline by quiescing the open txg. 767 */ 768 void 769 txg_kick(dsl_pool_t *dp) 770 { 771 tx_state_t *tx = &dp->dp_tx; 772 773 ASSERT(!dsl_pool_config_held(dp)); 774 775 mutex_enter(&tx->tx_sync_lock); 776 if (!txg_is_syncing(dp) && 777 !txg_is_quiescing(dp) && 778 tx->tx_quiesce_txg_waiting <= tx->tx_open_txg && 779 tx->tx_sync_txg_waiting <= tx->tx_synced_txg && 780 tx->tx_quiesced_txg <= tx->tx_synced_txg) { 781 tx->tx_quiesce_txg_waiting = tx->tx_open_txg + 1; 782 cv_broadcast(&tx->tx_quiesce_more_cv); 783 } 784 mutex_exit(&tx->tx_sync_lock); 785 } 786 787 boolean_t 788 txg_stalled(dsl_pool_t *dp) 789 { 790 tx_state_t *tx = &dp->dp_tx; 791 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg); 792 } 793 794 boolean_t 795 txg_sync_waiting(dsl_pool_t *dp) 796 { 797 tx_state_t *tx = &dp->dp_tx; 798 799 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting || 800 tx->tx_quiesced_txg != 0); 801 } 802 803 /* 804 * Verify that this txg is active (open, quiescing, syncing). Non-active 805 * txg's should not be manipulated. 806 */ 807 #ifdef ZFS_DEBUG 808 void 809 txg_verify(spa_t *spa, uint64_t txg) 810 { 811 dsl_pool_t *dp __maybe_unused = spa_get_dsl(spa); 812 if (txg <= TXG_INITIAL || txg == ZILTEST_TXG) 813 return; 814 ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg); 815 ASSERT3U(txg, >=, dp->dp_tx.tx_synced_txg); 816 ASSERT3U(txg, >=, dp->dp_tx.tx_open_txg - TXG_CONCURRENT_STATES); 817 } 818 #endif 819 820 /* 821 * Per-txg object lists. 822 */ 823 void 824 txg_list_create(txg_list_t *tl, spa_t *spa, size_t offset) 825 { 826 int t; 827 828 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL); 829 830 tl->tl_offset = offset; 831 tl->tl_spa = spa; 832 833 for (t = 0; t < TXG_SIZE; t++) 834 tl->tl_head[t] = NULL; 835 } 836 837 static boolean_t 838 txg_list_empty_impl(txg_list_t *tl, uint64_t txg) 839 { 840 ASSERT(MUTEX_HELD(&tl->tl_lock)); 841 TXG_VERIFY(tl->tl_spa, txg); 842 return (tl->tl_head[txg & TXG_MASK] == NULL); 843 } 844 845 boolean_t 846 txg_list_empty(txg_list_t *tl, uint64_t txg) 847 { 848 mutex_enter(&tl->tl_lock); 849 boolean_t ret = txg_list_empty_impl(tl, txg); 850 mutex_exit(&tl->tl_lock); 851 852 return (ret); 853 } 854 855 void 856 txg_list_destroy(txg_list_t *tl) 857 { 858 int t; 859 860 mutex_enter(&tl->tl_lock); 861 for (t = 0; t < TXG_SIZE; t++) 862 ASSERT(txg_list_empty_impl(tl, t)); 863 mutex_exit(&tl->tl_lock); 864 865 mutex_destroy(&tl->tl_lock); 866 } 867 868 /* 869 * Returns true if all txg lists are empty. 870 * 871 * Warning: this is inherently racy (an item could be added immediately 872 * after this function returns). 873 */ 874 boolean_t 875 txg_all_lists_empty(txg_list_t *tl) 876 { 877 mutex_enter(&tl->tl_lock); 878 for (int i = 0; i < TXG_SIZE; i++) { 879 if (!txg_list_empty_impl(tl, i)) { 880 mutex_exit(&tl->tl_lock); 881 return (B_FALSE); 882 } 883 } 884 mutex_exit(&tl->tl_lock); 885 return (B_TRUE); 886 } 887 888 /* 889 * Add an entry to the list (unless it's already on the list). 890 * Returns B_TRUE if it was actually added. 891 */ 892 boolean_t 893 txg_list_add(txg_list_t *tl, void *p, uint64_t txg) 894 { 895 int t = txg & TXG_MASK; 896 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 897 boolean_t add; 898 899 TXG_VERIFY(tl->tl_spa, txg); 900 mutex_enter(&tl->tl_lock); 901 add = (tn->tn_member[t] == 0); 902 if (add) { 903 tn->tn_member[t] = 1; 904 tn->tn_next[t] = tl->tl_head[t]; 905 tl->tl_head[t] = tn; 906 } 907 mutex_exit(&tl->tl_lock); 908 909 return (add); 910 } 911 912 /* 913 * Add an entry to the end of the list, unless it's already on the list. 914 * (walks list to find end) 915 * Returns B_TRUE if it was actually added. 916 */ 917 boolean_t 918 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg) 919 { 920 int t = txg & TXG_MASK; 921 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 922 boolean_t add; 923 924 TXG_VERIFY(tl->tl_spa, txg); 925 mutex_enter(&tl->tl_lock); 926 add = (tn->tn_member[t] == 0); 927 if (add) { 928 txg_node_t **tp; 929 930 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t]) 931 continue; 932 933 tn->tn_member[t] = 1; 934 tn->tn_next[t] = NULL; 935 *tp = tn; 936 } 937 mutex_exit(&tl->tl_lock); 938 939 return (add); 940 } 941 942 /* 943 * Remove the head of the list and return it. 944 */ 945 void * 946 txg_list_remove(txg_list_t *tl, uint64_t txg) 947 { 948 int t = txg & TXG_MASK; 949 txg_node_t *tn; 950 void *p = NULL; 951 952 TXG_VERIFY(tl->tl_spa, txg); 953 mutex_enter(&tl->tl_lock); 954 if ((tn = tl->tl_head[t]) != NULL) { 955 ASSERT(tn->tn_member[t]); 956 ASSERT(tn->tn_next[t] == NULL || tn->tn_next[t]->tn_member[t]); 957 p = (char *)tn - tl->tl_offset; 958 tl->tl_head[t] = tn->tn_next[t]; 959 tn->tn_next[t] = NULL; 960 tn->tn_member[t] = 0; 961 } 962 mutex_exit(&tl->tl_lock); 963 964 return (p); 965 } 966 967 /* 968 * Remove a specific item from the list and return it. 969 */ 970 void * 971 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg) 972 { 973 int t = txg & TXG_MASK; 974 txg_node_t *tn, **tp; 975 976 TXG_VERIFY(tl->tl_spa, txg); 977 mutex_enter(&tl->tl_lock); 978 979 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) { 980 if ((char *)tn - tl->tl_offset == p) { 981 *tp = tn->tn_next[t]; 982 tn->tn_next[t] = NULL; 983 tn->tn_member[t] = 0; 984 mutex_exit(&tl->tl_lock); 985 return (p); 986 } 987 } 988 989 mutex_exit(&tl->tl_lock); 990 991 return (NULL); 992 } 993 994 boolean_t 995 txg_list_member(txg_list_t *tl, void *p, uint64_t txg) 996 { 997 int t = txg & TXG_MASK; 998 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 999 1000 TXG_VERIFY(tl->tl_spa, txg); 1001 return (tn->tn_member[t] != 0); 1002 } 1003 1004 /* 1005 * Walk a txg list 1006 */ 1007 void * 1008 txg_list_head(txg_list_t *tl, uint64_t txg) 1009 { 1010 int t = txg & TXG_MASK; 1011 txg_node_t *tn; 1012 1013 mutex_enter(&tl->tl_lock); 1014 tn = tl->tl_head[t]; 1015 mutex_exit(&tl->tl_lock); 1016 1017 TXG_VERIFY(tl->tl_spa, txg); 1018 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); 1019 } 1020 1021 void * 1022 txg_list_next(txg_list_t *tl, void *p, uint64_t txg) 1023 { 1024 int t = txg & TXG_MASK; 1025 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 1026 1027 TXG_VERIFY(tl->tl_spa, txg); 1028 1029 mutex_enter(&tl->tl_lock); 1030 tn = tn->tn_next[t]; 1031 mutex_exit(&tl->tl_lock); 1032 1033 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); 1034 } 1035 1036 EXPORT_SYMBOL(txg_init); 1037 EXPORT_SYMBOL(txg_fini); 1038 EXPORT_SYMBOL(txg_sync_start); 1039 EXPORT_SYMBOL(txg_sync_stop); 1040 EXPORT_SYMBOL(txg_hold_open); 1041 EXPORT_SYMBOL(txg_rele_to_quiesce); 1042 EXPORT_SYMBOL(txg_rele_to_sync); 1043 EXPORT_SYMBOL(txg_register_callbacks); 1044 EXPORT_SYMBOL(txg_delay); 1045 EXPORT_SYMBOL(txg_wait_synced); 1046 EXPORT_SYMBOL(txg_wait_open); 1047 EXPORT_SYMBOL(txg_wait_callbacks); 1048 EXPORT_SYMBOL(txg_stalled); 1049 EXPORT_SYMBOL(txg_sync_waiting); 1050 1051 /* BEGIN CSTYLED */ 1052 ZFS_MODULE_PARAM(zfs_txg, zfs_txg_, timeout, INT, ZMOD_RW, 1053 "Max seconds worth of delta per txg"); 1054 /* END CSTYLED */ 1055