xref: /freebsd/sys/contrib/openzfs/module/zfs/txg.c (revision 9e5787d2284e187abb5b654d924394a65772e004)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Portions Copyright 2011 Martin Matuska
24  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/txg_impl.h>
29 #include <sys/dmu_impl.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dsl_pool.h>
33 #include <sys/dsl_scan.h>
34 #include <sys/zil.h>
35 #include <sys/callb.h>
36 #include <sys/trace_zfs.h>
37 
38 /*
39  * ZFS Transaction Groups
40  * ----------------------
41  *
42  * ZFS transaction groups are, as the name implies, groups of transactions
43  * that act on persistent state. ZFS asserts consistency at the granularity of
44  * these transaction groups. Each successive transaction group (txg) is
45  * assigned a 64-bit consecutive identifier. There are three active
46  * transaction group states: open, quiescing, or syncing. At any given time,
47  * there may be an active txg associated with each state; each active txg may
48  * either be processing, or blocked waiting to enter the next state. There may
49  * be up to three active txgs, and there is always a txg in the open state
50  * (though it may be blocked waiting to enter the quiescing state). In broad
51  * strokes, transactions -- operations that change in-memory structures -- are
52  * accepted into the txg in the open state, and are completed while the txg is
53  * in the open or quiescing states. The accumulated changes are written to
54  * disk in the syncing state.
55  *
56  * Open
57  *
58  * When a new txg becomes active, it first enters the open state. New
59  * transactions -- updates to in-memory structures -- are assigned to the
60  * currently open txg. There is always a txg in the open state so that ZFS can
61  * accept new changes (though the txg may refuse new changes if it has hit
62  * some limit). ZFS advances the open txg to the next state for a variety of
63  * reasons such as it hitting a time or size threshold, or the execution of an
64  * administrative action that must be completed in the syncing state.
65  *
66  * Quiescing
67  *
68  * After a txg exits the open state, it enters the quiescing state. The
69  * quiescing state is intended to provide a buffer between accepting new
70  * transactions in the open state and writing them out to stable storage in
71  * the syncing state. While quiescing, transactions can continue their
72  * operation without delaying either of the other states. Typically, a txg is
73  * in the quiescing state very briefly since the operations are bounded by
74  * software latencies rather than, say, slower I/O latencies. After all
75  * transactions complete, the txg is ready to enter the next state.
76  *
77  * Syncing
78  *
79  * In the syncing state, the in-memory state built up during the open and (to
80  * a lesser degree) the quiescing states is written to stable storage. The
81  * process of writing out modified data can, in turn modify more data. For
82  * example when we write new blocks, we need to allocate space for them; those
83  * allocations modify metadata (space maps)... which themselves must be
84  * written to stable storage. During the sync state, ZFS iterates, writing out
85  * data until it converges and all in-memory changes have been written out.
86  * The first such pass is the largest as it encompasses all the modified user
87  * data (as opposed to filesystem metadata). Subsequent passes typically have
88  * far less data to write as they consist exclusively of filesystem metadata.
89  *
90  * To ensure convergence, after a certain number of passes ZFS begins
91  * overwriting locations on stable storage that had been allocated earlier in
92  * the syncing state (and subsequently freed). ZFS usually allocates new
93  * blocks to optimize for large, continuous, writes. For the syncing state to
94  * converge however it must complete a pass where no new blocks are allocated
95  * since each allocation requires a modification of persistent metadata.
96  * Further, to hasten convergence, after a prescribed number of passes, ZFS
97  * also defers frees, and stops compressing.
98  *
99  * In addition to writing out user data, we must also execute synctasks during
100  * the syncing context. A synctask is the mechanism by which some
101  * administrative activities work such as creating and destroying snapshots or
102  * datasets. Note that when a synctask is initiated it enters the open txg,
103  * and ZFS then pushes that txg as quickly as possible to completion of the
104  * syncing state in order to reduce the latency of the administrative
105  * activity. To complete the syncing state, ZFS writes out a new uberblock,
106  * the root of the tree of blocks that comprise all state stored on the ZFS
107  * pool. Finally, if there is a quiesced txg waiting, we signal that it can
108  * now transition to the syncing state.
109  */
110 
111 static void txg_sync_thread(void *arg);
112 static void txg_quiesce_thread(void *arg);
113 
114 int zfs_txg_timeout = 5;	/* max seconds worth of delta per txg */
115 
116 /*
117  * Prepare the txg subsystem.
118  */
119 void
120 txg_init(dsl_pool_t *dp, uint64_t txg)
121 {
122 	tx_state_t *tx = &dp->dp_tx;
123 	int c;
124 	bzero(tx, sizeof (tx_state_t));
125 
126 	tx->tx_cpu = vmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
127 
128 	for (c = 0; c < max_ncpus; c++) {
129 		int i;
130 
131 		mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
132 		mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_NOLOCKDEP,
133 		    NULL);
134 		for (i = 0; i < TXG_SIZE; i++) {
135 			cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
136 			    NULL);
137 			list_create(&tx->tx_cpu[c].tc_callbacks[i],
138 			    sizeof (dmu_tx_callback_t),
139 			    offsetof(dmu_tx_callback_t, dcb_node));
140 		}
141 	}
142 
143 	mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
144 
145 	cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
146 	cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
147 	cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
148 	cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
149 	cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
150 
151 	tx->tx_open_txg = txg;
152 }
153 
154 /*
155  * Close down the txg subsystem.
156  */
157 void
158 txg_fini(dsl_pool_t *dp)
159 {
160 	tx_state_t *tx = &dp->dp_tx;
161 	int c;
162 
163 	ASSERT0(tx->tx_threads);
164 
165 	mutex_destroy(&tx->tx_sync_lock);
166 
167 	cv_destroy(&tx->tx_sync_more_cv);
168 	cv_destroy(&tx->tx_sync_done_cv);
169 	cv_destroy(&tx->tx_quiesce_more_cv);
170 	cv_destroy(&tx->tx_quiesce_done_cv);
171 	cv_destroy(&tx->tx_exit_cv);
172 
173 	for (c = 0; c < max_ncpus; c++) {
174 		int i;
175 
176 		mutex_destroy(&tx->tx_cpu[c].tc_open_lock);
177 		mutex_destroy(&tx->tx_cpu[c].tc_lock);
178 		for (i = 0; i < TXG_SIZE; i++) {
179 			cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
180 			list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
181 		}
182 	}
183 
184 	if (tx->tx_commit_cb_taskq != NULL)
185 		taskq_destroy(tx->tx_commit_cb_taskq);
186 
187 	vmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
188 
189 	bzero(tx, sizeof (tx_state_t));
190 }
191 
192 /*
193  * Start syncing transaction groups.
194  */
195 void
196 txg_sync_start(dsl_pool_t *dp)
197 {
198 	tx_state_t *tx = &dp->dp_tx;
199 
200 	mutex_enter(&tx->tx_sync_lock);
201 
202 	dprintf("pool %p\n", dp);
203 
204 	ASSERT0(tx->tx_threads);
205 
206 	tx->tx_threads = 2;
207 
208 	tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
209 	    dp, 0, &p0, TS_RUN, defclsyspri);
210 
211 	/*
212 	 * The sync thread can need a larger-than-default stack size on
213 	 * 32-bit x86.  This is due in part to nested pools and
214 	 * scrub_visitbp() recursion.
215 	 */
216 	tx->tx_sync_thread = thread_create(NULL, 0, txg_sync_thread,
217 	    dp, 0, &p0, TS_RUN, defclsyspri);
218 
219 	mutex_exit(&tx->tx_sync_lock);
220 }
221 
222 static void
223 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
224 {
225 	CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
226 	mutex_enter(&tx->tx_sync_lock);
227 }
228 
229 static void
230 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
231 {
232 	ASSERT(*tpp != NULL);
233 	*tpp = NULL;
234 	tx->tx_threads--;
235 	cv_broadcast(&tx->tx_exit_cv);
236 	CALLB_CPR_EXIT(cpr);		/* drops &tx->tx_sync_lock */
237 	thread_exit();
238 }
239 
240 static void
241 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time)
242 {
243 	CALLB_CPR_SAFE_BEGIN(cpr);
244 
245 	/*
246 	 * cv_wait_sig() is used instead of cv_wait() in order to prevent
247 	 * this process from incorrectly contributing to the system load
248 	 * average when idle.
249 	 */
250 	if (time) {
251 		(void) cv_timedwait_sig(cv, &tx->tx_sync_lock,
252 		    ddi_get_lbolt() + time);
253 	} else {
254 		cv_wait_sig(cv, &tx->tx_sync_lock);
255 	}
256 
257 	CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
258 }
259 
260 /*
261  * Stop syncing transaction groups.
262  */
263 void
264 txg_sync_stop(dsl_pool_t *dp)
265 {
266 	tx_state_t *tx = &dp->dp_tx;
267 
268 	dprintf("pool %p\n", dp);
269 	/*
270 	 * Finish off any work in progress.
271 	 */
272 	ASSERT3U(tx->tx_threads, ==, 2);
273 
274 	/*
275 	 * We need to ensure that we've vacated the deferred metaslab trees.
276 	 */
277 	txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);
278 
279 	/*
280 	 * Wake all sync threads and wait for them to die.
281 	 */
282 	mutex_enter(&tx->tx_sync_lock);
283 
284 	ASSERT3U(tx->tx_threads, ==, 2);
285 
286 	tx->tx_exiting = 1;
287 
288 	cv_broadcast(&tx->tx_quiesce_more_cv);
289 	cv_broadcast(&tx->tx_quiesce_done_cv);
290 	cv_broadcast(&tx->tx_sync_more_cv);
291 
292 	while (tx->tx_threads != 0)
293 		cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
294 
295 	tx->tx_exiting = 0;
296 
297 	mutex_exit(&tx->tx_sync_lock);
298 }
299 
300 uint64_t
301 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
302 {
303 	tx_state_t *tx = &dp->dp_tx;
304 	tx_cpu_t *tc;
305 	uint64_t txg;
306 
307 	/*
308 	 * It appears the processor id is simply used as a "random"
309 	 * number to index into the array, and there isn't any other
310 	 * significance to the chosen tx_cpu. Because.. Why not use
311 	 * the current cpu to index into the array?
312 	 */
313 	kpreempt_disable();
314 	tc = &tx->tx_cpu[CPU_SEQID];
315 	kpreempt_enable();
316 
317 	mutex_enter(&tc->tc_open_lock);
318 	txg = tx->tx_open_txg;
319 
320 	mutex_enter(&tc->tc_lock);
321 	tc->tc_count[txg & TXG_MASK]++;
322 	mutex_exit(&tc->tc_lock);
323 
324 	th->th_cpu = tc;
325 	th->th_txg = txg;
326 
327 	return (txg);
328 }
329 
330 void
331 txg_rele_to_quiesce(txg_handle_t *th)
332 {
333 	tx_cpu_t *tc = th->th_cpu;
334 
335 	ASSERT(!MUTEX_HELD(&tc->tc_lock));
336 	mutex_exit(&tc->tc_open_lock);
337 }
338 
339 void
340 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
341 {
342 	tx_cpu_t *tc = th->th_cpu;
343 	int g = th->th_txg & TXG_MASK;
344 
345 	mutex_enter(&tc->tc_lock);
346 	list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
347 	mutex_exit(&tc->tc_lock);
348 }
349 
350 void
351 txg_rele_to_sync(txg_handle_t *th)
352 {
353 	tx_cpu_t *tc = th->th_cpu;
354 	int g = th->th_txg & TXG_MASK;
355 
356 	mutex_enter(&tc->tc_lock);
357 	ASSERT(tc->tc_count[g] != 0);
358 	if (--tc->tc_count[g] == 0)
359 		cv_broadcast(&tc->tc_cv[g]);
360 	mutex_exit(&tc->tc_lock);
361 
362 	th->th_cpu = NULL;	/* defensive */
363 }
364 
365 /*
366  * Blocks until all transactions in the group are committed.
367  *
368  * On return, the transaction group has reached a stable state in which it can
369  * then be passed off to the syncing context.
370  */
371 static void
372 txg_quiesce(dsl_pool_t *dp, uint64_t txg)
373 {
374 	tx_state_t *tx = &dp->dp_tx;
375 	uint64_t tx_open_time;
376 	int g = txg & TXG_MASK;
377 	int c;
378 
379 	/*
380 	 * Grab all tc_open_locks so nobody else can get into this txg.
381 	 */
382 	for (c = 0; c < max_ncpus; c++)
383 		mutex_enter(&tx->tx_cpu[c].tc_open_lock);
384 
385 	ASSERT(txg == tx->tx_open_txg);
386 	tx->tx_open_txg++;
387 	tx->tx_open_time = tx_open_time = gethrtime();
388 
389 	DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg);
390 	DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg);
391 
392 	/*
393 	 * Now that we've incremented tx_open_txg, we can let threads
394 	 * enter the next transaction group.
395 	 */
396 	for (c = 0; c < max_ncpus; c++)
397 		mutex_exit(&tx->tx_cpu[c].tc_open_lock);
398 
399 	spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_OPEN, tx_open_time);
400 	spa_txg_history_add(dp->dp_spa, txg + 1, tx_open_time);
401 
402 	/*
403 	 * Quiesce the transaction group by waiting for everyone to txg_exit().
404 	 */
405 	for (c = 0; c < max_ncpus; c++) {
406 		tx_cpu_t *tc = &tx->tx_cpu[c];
407 		mutex_enter(&tc->tc_lock);
408 		while (tc->tc_count[g] != 0)
409 			cv_wait(&tc->tc_cv[g], &tc->tc_lock);
410 		mutex_exit(&tc->tc_lock);
411 	}
412 
413 	spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_QUIESCED, gethrtime());
414 }
415 
416 static void
417 txg_do_callbacks(list_t *cb_list)
418 {
419 	dmu_tx_do_callbacks(cb_list, 0);
420 
421 	list_destroy(cb_list);
422 
423 	kmem_free(cb_list, sizeof (list_t));
424 }
425 
426 /*
427  * Dispatch the commit callbacks registered on this txg to worker threads.
428  *
429  * If no callbacks are registered for a given TXG, nothing happens.
430  * This function creates a taskq for the associated pool, if needed.
431  */
432 static void
433 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
434 {
435 	int c;
436 	tx_state_t *tx = &dp->dp_tx;
437 	list_t *cb_list;
438 
439 	for (c = 0; c < max_ncpus; c++) {
440 		tx_cpu_t *tc = &tx->tx_cpu[c];
441 		/*
442 		 * No need to lock tx_cpu_t at this point, since this can
443 		 * only be called once a txg has been synced.
444 		 */
445 
446 		int g = txg & TXG_MASK;
447 
448 		if (list_is_empty(&tc->tc_callbacks[g]))
449 			continue;
450 
451 		if (tx->tx_commit_cb_taskq == NULL) {
452 			/*
453 			 * Commit callback taskq hasn't been created yet.
454 			 */
455 			tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
456 			    boot_ncpus, defclsyspri, boot_ncpus, boot_ncpus * 2,
457 			    TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
458 		}
459 
460 		cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
461 		list_create(cb_list, sizeof (dmu_tx_callback_t),
462 		    offsetof(dmu_tx_callback_t, dcb_node));
463 
464 		list_move_tail(cb_list, &tc->tc_callbacks[g]);
465 
466 		(void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *)
467 		    txg_do_callbacks, cb_list, TQ_SLEEP);
468 	}
469 }
470 
471 /*
472  * Wait for pending commit callbacks of already-synced transactions to finish
473  * processing.
474  * Calling this function from within a commit callback will deadlock.
475  */
476 void
477 txg_wait_callbacks(dsl_pool_t *dp)
478 {
479 	tx_state_t *tx = &dp->dp_tx;
480 
481 	if (tx->tx_commit_cb_taskq != NULL)
482 		taskq_wait_outstanding(tx->tx_commit_cb_taskq, 0);
483 }
484 
485 static boolean_t
486 txg_is_syncing(dsl_pool_t *dp)
487 {
488 	tx_state_t *tx = &dp->dp_tx;
489 	ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
490 	return (tx->tx_syncing_txg != 0);
491 }
492 
493 static boolean_t
494 txg_is_quiescing(dsl_pool_t *dp)
495 {
496 	tx_state_t *tx = &dp->dp_tx;
497 	ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
498 	return (tx->tx_quiescing_txg != 0);
499 }
500 
501 static boolean_t
502 txg_has_quiesced_to_sync(dsl_pool_t *dp)
503 {
504 	tx_state_t *tx = &dp->dp_tx;
505 	ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
506 	return (tx->tx_quiesced_txg != 0);
507 }
508 
509 static void
510 txg_sync_thread(void *arg)
511 {
512 	dsl_pool_t *dp = arg;
513 	spa_t *spa = dp->dp_spa;
514 	tx_state_t *tx = &dp->dp_tx;
515 	callb_cpr_t cpr;
516 	clock_t start, delta;
517 
518 	(void) spl_fstrans_mark();
519 	txg_thread_enter(tx, &cpr);
520 
521 	start = delta = 0;
522 	for (;;) {
523 		clock_t timeout = zfs_txg_timeout * hz;
524 		clock_t timer;
525 		uint64_t txg;
526 		uint64_t dirty_min_bytes =
527 		    zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100;
528 
529 		/*
530 		 * We sync when we're scanning, there's someone waiting
531 		 * on us, or the quiesce thread has handed off a txg to
532 		 * us, or we have reached our timeout.
533 		 */
534 		timer = (delta >= timeout ? 0 : timeout - delta);
535 		while (!dsl_scan_active(dp->dp_scan) &&
536 		    !tx->tx_exiting && timer > 0 &&
537 		    tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
538 		    !txg_has_quiesced_to_sync(dp) &&
539 		    dp->dp_dirty_total < dirty_min_bytes) {
540 			dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
541 			    tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
542 			txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
543 			delta = ddi_get_lbolt() - start;
544 			timer = (delta > timeout ? 0 : timeout - delta);
545 		}
546 
547 		/*
548 		 * Wait until the quiesce thread hands off a txg to us,
549 		 * prompting it to do so if necessary.
550 		 */
551 		while (!tx->tx_exiting && !txg_has_quiesced_to_sync(dp)) {
552 			if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
553 				tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
554 			cv_broadcast(&tx->tx_quiesce_more_cv);
555 			txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
556 		}
557 
558 		if (tx->tx_exiting)
559 			txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
560 
561 		/*
562 		 * Consume the quiesced txg which has been handed off to
563 		 * us.  This may cause the quiescing thread to now be
564 		 * able to quiesce another txg, so we must signal it.
565 		 */
566 		ASSERT(tx->tx_quiesced_txg != 0);
567 		txg = tx->tx_quiesced_txg;
568 		tx->tx_quiesced_txg = 0;
569 		tx->tx_syncing_txg = txg;
570 		DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg);
571 		cv_broadcast(&tx->tx_quiesce_more_cv);
572 
573 		dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
574 		    txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
575 		mutex_exit(&tx->tx_sync_lock);
576 
577 		txg_stat_t *ts = spa_txg_history_init_io(spa, txg, dp);
578 		start = ddi_get_lbolt();
579 		spa_sync(spa, txg);
580 		delta = ddi_get_lbolt() - start;
581 		spa_txg_history_fini_io(spa, ts);
582 
583 		mutex_enter(&tx->tx_sync_lock);
584 		tx->tx_synced_txg = txg;
585 		tx->tx_syncing_txg = 0;
586 		DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg);
587 		cv_broadcast(&tx->tx_sync_done_cv);
588 
589 		/*
590 		 * Dispatch commit callbacks to worker threads.
591 		 */
592 		txg_dispatch_callbacks(dp, txg);
593 	}
594 }
595 
596 static void
597 txg_quiesce_thread(void *arg)
598 {
599 	dsl_pool_t *dp = arg;
600 	tx_state_t *tx = &dp->dp_tx;
601 	callb_cpr_t cpr;
602 
603 	txg_thread_enter(tx, &cpr);
604 
605 	for (;;) {
606 		uint64_t txg;
607 
608 		/*
609 		 * We quiesce when there's someone waiting on us.
610 		 * However, we can only have one txg in "quiescing" or
611 		 * "quiesced, waiting to sync" state.  So we wait until
612 		 * the "quiesced, waiting to sync" txg has been consumed
613 		 * by the sync thread.
614 		 */
615 		while (!tx->tx_exiting &&
616 		    (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
617 		    txg_has_quiesced_to_sync(dp)))
618 			txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
619 
620 		if (tx->tx_exiting)
621 			txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
622 
623 		txg = tx->tx_open_txg;
624 		dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
625 		    txg, tx->tx_quiesce_txg_waiting,
626 		    tx->tx_sync_txg_waiting);
627 		tx->tx_quiescing_txg = txg;
628 
629 		mutex_exit(&tx->tx_sync_lock);
630 		txg_quiesce(dp, txg);
631 		mutex_enter(&tx->tx_sync_lock);
632 
633 		/*
634 		 * Hand this txg off to the sync thread.
635 		 */
636 		dprintf("quiesce done, handing off txg %llu\n", txg);
637 		tx->tx_quiescing_txg = 0;
638 		tx->tx_quiesced_txg = txg;
639 		DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg);
640 		cv_broadcast(&tx->tx_sync_more_cv);
641 		cv_broadcast(&tx->tx_quiesce_done_cv);
642 	}
643 }
644 
645 /*
646  * Delay this thread by delay nanoseconds if we are still in the open
647  * transaction group and there is already a waiting txg quiescing or quiesced.
648  * Abort the delay if this txg stalls or enters the quiescing state.
649  */
650 void
651 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution)
652 {
653 	tx_state_t *tx = &dp->dp_tx;
654 	hrtime_t start = gethrtime();
655 
656 	/* don't delay if this txg could transition to quiescing immediately */
657 	if (tx->tx_open_txg > txg ||
658 	    tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
659 		return;
660 
661 	mutex_enter(&tx->tx_sync_lock);
662 	if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
663 		mutex_exit(&tx->tx_sync_lock);
664 		return;
665 	}
666 
667 	while (gethrtime() - start < delay &&
668 	    tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) {
669 		(void) cv_timedwait_hires(&tx->tx_quiesce_more_cv,
670 		    &tx->tx_sync_lock, delay, resolution, 0);
671 	}
672 
673 	DMU_TX_STAT_BUMP(dmu_tx_delay);
674 
675 	mutex_exit(&tx->tx_sync_lock);
676 }
677 
678 static boolean_t
679 txg_wait_synced_impl(dsl_pool_t *dp, uint64_t txg, boolean_t wait_sig)
680 {
681 	tx_state_t *tx = &dp->dp_tx;
682 
683 	ASSERT(!dsl_pool_config_held(dp));
684 
685 	mutex_enter(&tx->tx_sync_lock);
686 	ASSERT3U(tx->tx_threads, ==, 2);
687 	if (txg == 0)
688 		txg = tx->tx_open_txg + TXG_DEFER_SIZE;
689 	if (tx->tx_sync_txg_waiting < txg)
690 		tx->tx_sync_txg_waiting = txg;
691 	dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
692 	    txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
693 	while (tx->tx_synced_txg < txg) {
694 		dprintf("broadcasting sync more "
695 		    "tx_synced=%llu waiting=%llu dp=%px\n",
696 		    tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
697 		cv_broadcast(&tx->tx_sync_more_cv);
698 		if (wait_sig) {
699 			/*
700 			 * Condition wait here but stop if the thread receives a
701 			 * signal. The caller may call txg_wait_synced*() again
702 			 * to resume waiting for this txg.
703 			 */
704 			if (cv_wait_io_sig(&tx->tx_sync_done_cv,
705 			    &tx->tx_sync_lock) == 0) {
706 				mutex_exit(&tx->tx_sync_lock);
707 				return (B_TRUE);
708 			}
709 		} else {
710 			cv_wait_io(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
711 		}
712 	}
713 	mutex_exit(&tx->tx_sync_lock);
714 	return (B_FALSE);
715 }
716 
717 void
718 txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
719 {
720 	VERIFY0(txg_wait_synced_impl(dp, txg, B_FALSE));
721 }
722 
723 /*
724  * Similar to a txg_wait_synced but it can be interrupted from a signal.
725  * Returns B_TRUE if the thread was signaled while waiting.
726  */
727 boolean_t
728 txg_wait_synced_sig(dsl_pool_t *dp, uint64_t txg)
729 {
730 	return (txg_wait_synced_impl(dp, txg, B_TRUE));
731 }
732 
733 /*
734  * Wait for the specified open transaction group.  Set should_quiesce
735  * when the current open txg should be quiesced immediately.
736  */
737 void
738 txg_wait_open(dsl_pool_t *dp, uint64_t txg, boolean_t should_quiesce)
739 {
740 	tx_state_t *tx = &dp->dp_tx;
741 
742 	ASSERT(!dsl_pool_config_held(dp));
743 
744 	mutex_enter(&tx->tx_sync_lock);
745 	ASSERT3U(tx->tx_threads, ==, 2);
746 	if (txg == 0)
747 		txg = tx->tx_open_txg + 1;
748 	if (tx->tx_quiesce_txg_waiting < txg && should_quiesce)
749 		tx->tx_quiesce_txg_waiting = txg;
750 	dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
751 	    txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
752 	while (tx->tx_open_txg < txg) {
753 		cv_broadcast(&tx->tx_quiesce_more_cv);
754 		/*
755 		 * Callers setting should_quiesce will use cv_wait_io() and
756 		 * be accounted for as iowait time.  Otherwise, the caller is
757 		 * understood to be idle and cv_wait_sig() is used to prevent
758 		 * incorrectly inflating the system load average.
759 		 */
760 		if (should_quiesce == B_TRUE) {
761 			cv_wait_io(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
762 		} else {
763 			cv_wait_sig(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
764 		}
765 	}
766 	mutex_exit(&tx->tx_sync_lock);
767 }
768 
769 /*
770  * If there isn't a txg syncing or in the pipeline, push another txg through
771  * the pipeline by quiescing the open txg.
772  */
773 void
774 txg_kick(dsl_pool_t *dp)
775 {
776 	tx_state_t *tx = &dp->dp_tx;
777 
778 	ASSERT(!dsl_pool_config_held(dp));
779 
780 	mutex_enter(&tx->tx_sync_lock);
781 	if (!txg_is_syncing(dp) &&
782 	    !txg_is_quiescing(dp) &&
783 	    tx->tx_quiesce_txg_waiting <= tx->tx_open_txg &&
784 	    tx->tx_sync_txg_waiting <= tx->tx_synced_txg &&
785 	    tx->tx_quiesced_txg <= tx->tx_synced_txg) {
786 		tx->tx_quiesce_txg_waiting = tx->tx_open_txg + 1;
787 		cv_broadcast(&tx->tx_quiesce_more_cv);
788 	}
789 	mutex_exit(&tx->tx_sync_lock);
790 }
791 
792 boolean_t
793 txg_stalled(dsl_pool_t *dp)
794 {
795 	tx_state_t *tx = &dp->dp_tx;
796 	return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
797 }
798 
799 boolean_t
800 txg_sync_waiting(dsl_pool_t *dp)
801 {
802 	tx_state_t *tx = &dp->dp_tx;
803 
804 	return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
805 	    tx->tx_quiesced_txg != 0);
806 }
807 
808 /*
809  * Verify that this txg is active (open, quiescing, syncing).  Non-active
810  * txg's should not be manipulated.
811  */
812 #ifdef ZFS_DEBUG
813 void
814 txg_verify(spa_t *spa, uint64_t txg)
815 {
816 	dsl_pool_t *dp __maybe_unused = spa_get_dsl(spa);
817 	if (txg <= TXG_INITIAL || txg == ZILTEST_TXG)
818 		return;
819 	ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg);
820 	ASSERT3U(txg, >=, dp->dp_tx.tx_synced_txg);
821 	ASSERT3U(txg, >=, dp->dp_tx.tx_open_txg - TXG_CONCURRENT_STATES);
822 }
823 #endif
824 
825 /*
826  * Per-txg object lists.
827  */
828 void
829 txg_list_create(txg_list_t *tl, spa_t *spa, size_t offset)
830 {
831 	int t;
832 
833 	mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
834 
835 	tl->tl_offset = offset;
836 	tl->tl_spa = spa;
837 
838 	for (t = 0; t < TXG_SIZE; t++)
839 		tl->tl_head[t] = NULL;
840 }
841 
842 static boolean_t
843 txg_list_empty_impl(txg_list_t *tl, uint64_t txg)
844 {
845 	ASSERT(MUTEX_HELD(&tl->tl_lock));
846 	TXG_VERIFY(tl->tl_spa, txg);
847 	return (tl->tl_head[txg & TXG_MASK] == NULL);
848 }
849 
850 boolean_t
851 txg_list_empty(txg_list_t *tl, uint64_t txg)
852 {
853 	mutex_enter(&tl->tl_lock);
854 	boolean_t ret = txg_list_empty_impl(tl, txg);
855 	mutex_exit(&tl->tl_lock);
856 
857 	return (ret);
858 }
859 
860 void
861 txg_list_destroy(txg_list_t *tl)
862 {
863 	int t;
864 
865 	mutex_enter(&tl->tl_lock);
866 	for (t = 0; t < TXG_SIZE; t++)
867 		ASSERT(txg_list_empty_impl(tl, t));
868 	mutex_exit(&tl->tl_lock);
869 
870 	mutex_destroy(&tl->tl_lock);
871 }
872 
873 /*
874  * Returns true if all txg lists are empty.
875  *
876  * Warning: this is inherently racy (an item could be added immediately
877  * after this function returns).
878  */
879 boolean_t
880 txg_all_lists_empty(txg_list_t *tl)
881 {
882 	mutex_enter(&tl->tl_lock);
883 	for (int i = 0; i < TXG_SIZE; i++) {
884 		if (!txg_list_empty_impl(tl, i)) {
885 			mutex_exit(&tl->tl_lock);
886 			return (B_FALSE);
887 		}
888 	}
889 	mutex_exit(&tl->tl_lock);
890 	return (B_TRUE);
891 }
892 
893 /*
894  * Add an entry to the list (unless it's already on the list).
895  * Returns B_TRUE if it was actually added.
896  */
897 boolean_t
898 txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
899 {
900 	int t = txg & TXG_MASK;
901 	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
902 	boolean_t add;
903 
904 	TXG_VERIFY(tl->tl_spa, txg);
905 	mutex_enter(&tl->tl_lock);
906 	add = (tn->tn_member[t] == 0);
907 	if (add) {
908 		tn->tn_member[t] = 1;
909 		tn->tn_next[t] = tl->tl_head[t];
910 		tl->tl_head[t] = tn;
911 	}
912 	mutex_exit(&tl->tl_lock);
913 
914 	return (add);
915 }
916 
917 /*
918  * Add an entry to the end of the list, unless it's already on the list.
919  * (walks list to find end)
920  * Returns B_TRUE if it was actually added.
921  */
922 boolean_t
923 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
924 {
925 	int t = txg & TXG_MASK;
926 	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
927 	boolean_t add;
928 
929 	TXG_VERIFY(tl->tl_spa, txg);
930 	mutex_enter(&tl->tl_lock);
931 	add = (tn->tn_member[t] == 0);
932 	if (add) {
933 		txg_node_t **tp;
934 
935 		for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
936 			continue;
937 
938 		tn->tn_member[t] = 1;
939 		tn->tn_next[t] = NULL;
940 		*tp = tn;
941 	}
942 	mutex_exit(&tl->tl_lock);
943 
944 	return (add);
945 }
946 
947 /*
948  * Remove the head of the list and return it.
949  */
950 void *
951 txg_list_remove(txg_list_t *tl, uint64_t txg)
952 {
953 	int t = txg & TXG_MASK;
954 	txg_node_t *tn;
955 	void *p = NULL;
956 
957 	TXG_VERIFY(tl->tl_spa, txg);
958 	mutex_enter(&tl->tl_lock);
959 	if ((tn = tl->tl_head[t]) != NULL) {
960 		ASSERT(tn->tn_member[t]);
961 		ASSERT(tn->tn_next[t] == NULL || tn->tn_next[t]->tn_member[t]);
962 		p = (char *)tn - tl->tl_offset;
963 		tl->tl_head[t] = tn->tn_next[t];
964 		tn->tn_next[t] = NULL;
965 		tn->tn_member[t] = 0;
966 	}
967 	mutex_exit(&tl->tl_lock);
968 
969 	return (p);
970 }
971 
972 /*
973  * Remove a specific item from the list and return it.
974  */
975 void *
976 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
977 {
978 	int t = txg & TXG_MASK;
979 	txg_node_t *tn, **tp;
980 
981 	TXG_VERIFY(tl->tl_spa, txg);
982 	mutex_enter(&tl->tl_lock);
983 
984 	for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
985 		if ((char *)tn - tl->tl_offset == p) {
986 			*tp = tn->tn_next[t];
987 			tn->tn_next[t] = NULL;
988 			tn->tn_member[t] = 0;
989 			mutex_exit(&tl->tl_lock);
990 			return (p);
991 		}
992 	}
993 
994 	mutex_exit(&tl->tl_lock);
995 
996 	return (NULL);
997 }
998 
999 boolean_t
1000 txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
1001 {
1002 	int t = txg & TXG_MASK;
1003 	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
1004 
1005 	TXG_VERIFY(tl->tl_spa, txg);
1006 	return (tn->tn_member[t] != 0);
1007 }
1008 
1009 /*
1010  * Walk a txg list
1011  */
1012 void *
1013 txg_list_head(txg_list_t *tl, uint64_t txg)
1014 {
1015 	int t = txg & TXG_MASK;
1016 	txg_node_t *tn;
1017 
1018 	mutex_enter(&tl->tl_lock);
1019 	tn = tl->tl_head[t];
1020 	mutex_exit(&tl->tl_lock);
1021 
1022 	TXG_VERIFY(tl->tl_spa, txg);
1023 	return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
1024 }
1025 
1026 void *
1027 txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
1028 {
1029 	int t = txg & TXG_MASK;
1030 	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
1031 
1032 	TXG_VERIFY(tl->tl_spa, txg);
1033 
1034 	mutex_enter(&tl->tl_lock);
1035 	tn = tn->tn_next[t];
1036 	mutex_exit(&tl->tl_lock);
1037 
1038 	return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
1039 }
1040 
1041 EXPORT_SYMBOL(txg_init);
1042 EXPORT_SYMBOL(txg_fini);
1043 EXPORT_SYMBOL(txg_sync_start);
1044 EXPORT_SYMBOL(txg_sync_stop);
1045 EXPORT_SYMBOL(txg_hold_open);
1046 EXPORT_SYMBOL(txg_rele_to_quiesce);
1047 EXPORT_SYMBOL(txg_rele_to_sync);
1048 EXPORT_SYMBOL(txg_register_callbacks);
1049 EXPORT_SYMBOL(txg_delay);
1050 EXPORT_SYMBOL(txg_wait_synced);
1051 EXPORT_SYMBOL(txg_wait_open);
1052 EXPORT_SYMBOL(txg_wait_callbacks);
1053 EXPORT_SYMBOL(txg_stalled);
1054 EXPORT_SYMBOL(txg_sync_waiting);
1055 
1056 /* BEGIN CSTYLED */
1057 ZFS_MODULE_PARAM(zfs_txg, zfs_txg_, timeout, INT, ZMOD_RW,
1058 	"Max seconds worth of delta per txg");
1059 /* END CSTYLED */
1060