1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Portions Copyright 2011 Martin Matuska 24 * Copyright (c) 2012, 2019 by Delphix. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/txg_impl.h> 29 #include <sys/dmu_impl.h> 30 #include <sys/spa_impl.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dsl_pool.h> 33 #include <sys/dsl_scan.h> 34 #include <sys/zil.h> 35 #include <sys/callb.h> 36 #include <sys/trace_zfs.h> 37 38 /* 39 * ZFS Transaction Groups 40 * ---------------------- 41 * 42 * ZFS transaction groups are, as the name implies, groups of transactions 43 * that act on persistent state. ZFS asserts consistency at the granularity of 44 * these transaction groups. Each successive transaction group (txg) is 45 * assigned a 64-bit consecutive identifier. There are three active 46 * transaction group states: open, quiescing, or syncing. At any given time, 47 * there may be an active txg associated with each state; each active txg may 48 * either be processing, or blocked waiting to enter the next state. There may 49 * be up to three active txgs, and there is always a txg in the open state 50 * (though it may be blocked waiting to enter the quiescing state). In broad 51 * strokes, transactions -- operations that change in-memory structures -- are 52 * accepted into the txg in the open state, and are completed while the txg is 53 * in the open or quiescing states. The accumulated changes are written to 54 * disk in the syncing state. 55 * 56 * Open 57 * 58 * When a new txg becomes active, it first enters the open state. New 59 * transactions -- updates to in-memory structures -- are assigned to the 60 * currently open txg. There is always a txg in the open state so that ZFS can 61 * accept new changes (though the txg may refuse new changes if it has hit 62 * some limit). ZFS advances the open txg to the next state for a variety of 63 * reasons such as it hitting a time or size threshold, or the execution of an 64 * administrative action that must be completed in the syncing state. 65 * 66 * Quiescing 67 * 68 * After a txg exits the open state, it enters the quiescing state. The 69 * quiescing state is intended to provide a buffer between accepting new 70 * transactions in the open state and writing them out to stable storage in 71 * the syncing state. While quiescing, transactions can continue their 72 * operation without delaying either of the other states. Typically, a txg is 73 * in the quiescing state very briefly since the operations are bounded by 74 * software latencies rather than, say, slower I/O latencies. After all 75 * transactions complete, the txg is ready to enter the next state. 76 * 77 * Syncing 78 * 79 * In the syncing state, the in-memory state built up during the open and (to 80 * a lesser degree) the quiescing states is written to stable storage. The 81 * process of writing out modified data can, in turn modify more data. For 82 * example when we write new blocks, we need to allocate space for them; those 83 * allocations modify metadata (space maps)... which themselves must be 84 * written to stable storage. During the sync state, ZFS iterates, writing out 85 * data until it converges and all in-memory changes have been written out. 86 * The first such pass is the largest as it encompasses all the modified user 87 * data (as opposed to filesystem metadata). Subsequent passes typically have 88 * far less data to write as they consist exclusively of filesystem metadata. 89 * 90 * To ensure convergence, after a certain number of passes ZFS begins 91 * overwriting locations on stable storage that had been allocated earlier in 92 * the syncing state (and subsequently freed). ZFS usually allocates new 93 * blocks to optimize for large, continuous, writes. For the syncing state to 94 * converge however it must complete a pass where no new blocks are allocated 95 * since each allocation requires a modification of persistent metadata. 96 * Further, to hasten convergence, after a prescribed number of passes, ZFS 97 * also defers frees, and stops compressing. 98 * 99 * In addition to writing out user data, we must also execute synctasks during 100 * the syncing context. A synctask is the mechanism by which some 101 * administrative activities work such as creating and destroying snapshots or 102 * datasets. Note that when a synctask is initiated it enters the open txg, 103 * and ZFS then pushes that txg as quickly as possible to completion of the 104 * syncing state in order to reduce the latency of the administrative 105 * activity. To complete the syncing state, ZFS writes out a new uberblock, 106 * the root of the tree of blocks that comprise all state stored on the ZFS 107 * pool. Finally, if there is a quiesced txg waiting, we signal that it can 108 * now transition to the syncing state. 109 */ 110 111 static void txg_sync_thread(void *arg); 112 static void txg_quiesce_thread(void *arg); 113 114 int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */ 115 116 /* 117 * Prepare the txg subsystem. 118 */ 119 void 120 txg_init(dsl_pool_t *dp, uint64_t txg) 121 { 122 tx_state_t *tx = &dp->dp_tx; 123 int c; 124 bzero(tx, sizeof (tx_state_t)); 125 126 tx->tx_cpu = vmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP); 127 128 for (c = 0; c < max_ncpus; c++) { 129 int i; 130 131 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL); 132 mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_NOLOCKDEP, 133 NULL); 134 for (i = 0; i < TXG_SIZE; i++) { 135 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT, 136 NULL); 137 list_create(&tx->tx_cpu[c].tc_callbacks[i], 138 sizeof (dmu_tx_callback_t), 139 offsetof(dmu_tx_callback_t, dcb_node)); 140 } 141 } 142 143 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL); 144 145 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL); 146 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL); 147 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL); 148 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL); 149 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL); 150 151 tx->tx_open_txg = txg; 152 } 153 154 /* 155 * Close down the txg subsystem. 156 */ 157 void 158 txg_fini(dsl_pool_t *dp) 159 { 160 tx_state_t *tx = &dp->dp_tx; 161 int c; 162 163 ASSERT0(tx->tx_threads); 164 165 mutex_destroy(&tx->tx_sync_lock); 166 167 cv_destroy(&tx->tx_sync_more_cv); 168 cv_destroy(&tx->tx_sync_done_cv); 169 cv_destroy(&tx->tx_quiesce_more_cv); 170 cv_destroy(&tx->tx_quiesce_done_cv); 171 cv_destroy(&tx->tx_exit_cv); 172 173 for (c = 0; c < max_ncpus; c++) { 174 int i; 175 176 mutex_destroy(&tx->tx_cpu[c].tc_open_lock); 177 mutex_destroy(&tx->tx_cpu[c].tc_lock); 178 for (i = 0; i < TXG_SIZE; i++) { 179 cv_destroy(&tx->tx_cpu[c].tc_cv[i]); 180 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]); 181 } 182 } 183 184 if (tx->tx_commit_cb_taskq != NULL) 185 taskq_destroy(tx->tx_commit_cb_taskq); 186 187 vmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t)); 188 189 bzero(tx, sizeof (tx_state_t)); 190 } 191 192 /* 193 * Start syncing transaction groups. 194 */ 195 void 196 txg_sync_start(dsl_pool_t *dp) 197 { 198 tx_state_t *tx = &dp->dp_tx; 199 200 mutex_enter(&tx->tx_sync_lock); 201 202 dprintf("pool %p\n", dp); 203 204 ASSERT0(tx->tx_threads); 205 206 tx->tx_threads = 2; 207 208 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread, 209 dp, 0, &p0, TS_RUN, defclsyspri); 210 211 /* 212 * The sync thread can need a larger-than-default stack size on 213 * 32-bit x86. This is due in part to nested pools and 214 * scrub_visitbp() recursion. 215 */ 216 tx->tx_sync_thread = thread_create(NULL, 0, txg_sync_thread, 217 dp, 0, &p0, TS_RUN, defclsyspri); 218 219 mutex_exit(&tx->tx_sync_lock); 220 } 221 222 static void 223 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr) 224 { 225 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG); 226 mutex_enter(&tx->tx_sync_lock); 227 } 228 229 static void 230 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp) 231 { 232 ASSERT(*tpp != NULL); 233 *tpp = NULL; 234 tx->tx_threads--; 235 cv_broadcast(&tx->tx_exit_cv); 236 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */ 237 thread_exit(); 238 } 239 240 static void 241 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time) 242 { 243 CALLB_CPR_SAFE_BEGIN(cpr); 244 245 if (time) { 246 (void) cv_timedwait_idle(cv, &tx->tx_sync_lock, 247 ddi_get_lbolt() + time); 248 } else { 249 cv_wait_idle(cv, &tx->tx_sync_lock); 250 } 251 252 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock); 253 } 254 255 /* 256 * Stop syncing transaction groups. 257 */ 258 void 259 txg_sync_stop(dsl_pool_t *dp) 260 { 261 tx_state_t *tx = &dp->dp_tx; 262 263 dprintf("pool %p\n", dp); 264 /* 265 * Finish off any work in progress. 266 */ 267 ASSERT3U(tx->tx_threads, ==, 2); 268 269 /* 270 * We need to ensure that we've vacated the deferred metaslab trees. 271 */ 272 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE); 273 274 /* 275 * Wake all sync threads and wait for them to die. 276 */ 277 mutex_enter(&tx->tx_sync_lock); 278 279 ASSERT3U(tx->tx_threads, ==, 2); 280 281 tx->tx_exiting = 1; 282 283 cv_broadcast(&tx->tx_quiesce_more_cv); 284 cv_broadcast(&tx->tx_quiesce_done_cv); 285 cv_broadcast(&tx->tx_sync_more_cv); 286 287 while (tx->tx_threads != 0) 288 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock); 289 290 tx->tx_exiting = 0; 291 292 mutex_exit(&tx->tx_sync_lock); 293 } 294 295 uint64_t 296 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th) 297 { 298 tx_state_t *tx = &dp->dp_tx; 299 tx_cpu_t *tc; 300 uint64_t txg; 301 302 /* 303 * It appears the processor id is simply used as a "random" 304 * number to index into the array, and there isn't any other 305 * significance to the chosen tx_cpu. Because.. Why not use 306 * the current cpu to index into the array? 307 */ 308 kpreempt_disable(); 309 tc = &tx->tx_cpu[CPU_SEQID]; 310 kpreempt_enable(); 311 312 mutex_enter(&tc->tc_open_lock); 313 txg = tx->tx_open_txg; 314 315 mutex_enter(&tc->tc_lock); 316 tc->tc_count[txg & TXG_MASK]++; 317 mutex_exit(&tc->tc_lock); 318 319 th->th_cpu = tc; 320 th->th_txg = txg; 321 322 return (txg); 323 } 324 325 void 326 txg_rele_to_quiesce(txg_handle_t *th) 327 { 328 tx_cpu_t *tc = th->th_cpu; 329 330 ASSERT(!MUTEX_HELD(&tc->tc_lock)); 331 mutex_exit(&tc->tc_open_lock); 332 } 333 334 void 335 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks) 336 { 337 tx_cpu_t *tc = th->th_cpu; 338 int g = th->th_txg & TXG_MASK; 339 340 mutex_enter(&tc->tc_lock); 341 list_move_tail(&tc->tc_callbacks[g], tx_callbacks); 342 mutex_exit(&tc->tc_lock); 343 } 344 345 void 346 txg_rele_to_sync(txg_handle_t *th) 347 { 348 tx_cpu_t *tc = th->th_cpu; 349 int g = th->th_txg & TXG_MASK; 350 351 mutex_enter(&tc->tc_lock); 352 ASSERT(tc->tc_count[g] != 0); 353 if (--tc->tc_count[g] == 0) 354 cv_broadcast(&tc->tc_cv[g]); 355 mutex_exit(&tc->tc_lock); 356 357 th->th_cpu = NULL; /* defensive */ 358 } 359 360 /* 361 * Blocks until all transactions in the group are committed. 362 * 363 * On return, the transaction group has reached a stable state in which it can 364 * then be passed off to the syncing context. 365 */ 366 static void 367 txg_quiesce(dsl_pool_t *dp, uint64_t txg) 368 { 369 tx_state_t *tx = &dp->dp_tx; 370 uint64_t tx_open_time; 371 int g = txg & TXG_MASK; 372 int c; 373 374 /* 375 * Grab all tc_open_locks so nobody else can get into this txg. 376 */ 377 for (c = 0; c < max_ncpus; c++) 378 mutex_enter(&tx->tx_cpu[c].tc_open_lock); 379 380 ASSERT(txg == tx->tx_open_txg); 381 tx->tx_open_txg++; 382 tx->tx_open_time = tx_open_time = gethrtime(); 383 384 DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg); 385 DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg); 386 387 /* 388 * Now that we've incremented tx_open_txg, we can let threads 389 * enter the next transaction group. 390 */ 391 for (c = 0; c < max_ncpus; c++) 392 mutex_exit(&tx->tx_cpu[c].tc_open_lock); 393 394 spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_OPEN, tx_open_time); 395 spa_txg_history_add(dp->dp_spa, txg + 1, tx_open_time); 396 397 /* 398 * Quiesce the transaction group by waiting for everyone to txg_exit(). 399 */ 400 for (c = 0; c < max_ncpus; c++) { 401 tx_cpu_t *tc = &tx->tx_cpu[c]; 402 mutex_enter(&tc->tc_lock); 403 while (tc->tc_count[g] != 0) 404 cv_wait(&tc->tc_cv[g], &tc->tc_lock); 405 mutex_exit(&tc->tc_lock); 406 } 407 408 spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_QUIESCED, gethrtime()); 409 } 410 411 static void 412 txg_do_callbacks(list_t *cb_list) 413 { 414 dmu_tx_do_callbacks(cb_list, 0); 415 416 list_destroy(cb_list); 417 418 kmem_free(cb_list, sizeof (list_t)); 419 } 420 421 /* 422 * Dispatch the commit callbacks registered on this txg to worker threads. 423 * 424 * If no callbacks are registered for a given TXG, nothing happens. 425 * This function creates a taskq for the associated pool, if needed. 426 */ 427 static void 428 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg) 429 { 430 int c; 431 tx_state_t *tx = &dp->dp_tx; 432 list_t *cb_list; 433 434 for (c = 0; c < max_ncpus; c++) { 435 tx_cpu_t *tc = &tx->tx_cpu[c]; 436 /* 437 * No need to lock tx_cpu_t at this point, since this can 438 * only be called once a txg has been synced. 439 */ 440 441 int g = txg & TXG_MASK; 442 443 if (list_is_empty(&tc->tc_callbacks[g])) 444 continue; 445 446 if (tx->tx_commit_cb_taskq == NULL) { 447 /* 448 * Commit callback taskq hasn't been created yet. 449 */ 450 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb", 451 boot_ncpus, defclsyspri, boot_ncpus, boot_ncpus * 2, 452 TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 453 } 454 455 cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 456 list_create(cb_list, sizeof (dmu_tx_callback_t), 457 offsetof(dmu_tx_callback_t, dcb_node)); 458 459 list_move_tail(cb_list, &tc->tc_callbacks[g]); 460 461 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *) 462 txg_do_callbacks, cb_list, TQ_SLEEP); 463 } 464 } 465 466 /* 467 * Wait for pending commit callbacks of already-synced transactions to finish 468 * processing. 469 * Calling this function from within a commit callback will deadlock. 470 */ 471 void 472 txg_wait_callbacks(dsl_pool_t *dp) 473 { 474 tx_state_t *tx = &dp->dp_tx; 475 476 if (tx->tx_commit_cb_taskq != NULL) 477 taskq_wait_outstanding(tx->tx_commit_cb_taskq, 0); 478 } 479 480 static boolean_t 481 txg_is_syncing(dsl_pool_t *dp) 482 { 483 tx_state_t *tx = &dp->dp_tx; 484 ASSERT(MUTEX_HELD(&tx->tx_sync_lock)); 485 return (tx->tx_syncing_txg != 0); 486 } 487 488 static boolean_t 489 txg_is_quiescing(dsl_pool_t *dp) 490 { 491 tx_state_t *tx = &dp->dp_tx; 492 ASSERT(MUTEX_HELD(&tx->tx_sync_lock)); 493 return (tx->tx_quiescing_txg != 0); 494 } 495 496 static boolean_t 497 txg_has_quiesced_to_sync(dsl_pool_t *dp) 498 { 499 tx_state_t *tx = &dp->dp_tx; 500 ASSERT(MUTEX_HELD(&tx->tx_sync_lock)); 501 return (tx->tx_quiesced_txg != 0); 502 } 503 504 static void 505 txg_sync_thread(void *arg) 506 { 507 dsl_pool_t *dp = arg; 508 spa_t *spa = dp->dp_spa; 509 tx_state_t *tx = &dp->dp_tx; 510 callb_cpr_t cpr; 511 clock_t start, delta; 512 513 (void) spl_fstrans_mark(); 514 txg_thread_enter(tx, &cpr); 515 516 start = delta = 0; 517 for (;;) { 518 clock_t timeout = zfs_txg_timeout * hz; 519 clock_t timer; 520 uint64_t txg; 521 uint64_t dirty_min_bytes = 522 zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100; 523 524 /* 525 * We sync when we're scanning, there's someone waiting 526 * on us, or the quiesce thread has handed off a txg to 527 * us, or we have reached our timeout. 528 */ 529 timer = (delta >= timeout ? 0 : timeout - delta); 530 while (!dsl_scan_active(dp->dp_scan) && 531 !tx->tx_exiting && timer > 0 && 532 tx->tx_synced_txg >= tx->tx_sync_txg_waiting && 533 !txg_has_quiesced_to_sync(dp) && 534 dp->dp_dirty_total < dirty_min_bytes) { 535 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n", 536 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); 537 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer); 538 delta = ddi_get_lbolt() - start; 539 timer = (delta > timeout ? 0 : timeout - delta); 540 } 541 542 /* 543 * Wait until the quiesce thread hands off a txg to us, 544 * prompting it to do so if necessary. 545 */ 546 while (!tx->tx_exiting && !txg_has_quiesced_to_sync(dp)) { 547 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1) 548 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1; 549 cv_broadcast(&tx->tx_quiesce_more_cv); 550 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0); 551 } 552 553 if (tx->tx_exiting) 554 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread); 555 556 /* 557 * Consume the quiesced txg which has been handed off to 558 * us. This may cause the quiescing thread to now be 559 * able to quiesce another txg, so we must signal it. 560 */ 561 ASSERT(tx->tx_quiesced_txg != 0); 562 txg = tx->tx_quiesced_txg; 563 tx->tx_quiesced_txg = 0; 564 tx->tx_syncing_txg = txg; 565 DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg); 566 cv_broadcast(&tx->tx_quiesce_more_cv); 567 568 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 569 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 570 mutex_exit(&tx->tx_sync_lock); 571 572 txg_stat_t *ts = spa_txg_history_init_io(spa, txg, dp); 573 start = ddi_get_lbolt(); 574 spa_sync(spa, txg); 575 delta = ddi_get_lbolt() - start; 576 spa_txg_history_fini_io(spa, ts); 577 578 mutex_enter(&tx->tx_sync_lock); 579 tx->tx_synced_txg = txg; 580 tx->tx_syncing_txg = 0; 581 DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg); 582 cv_broadcast(&tx->tx_sync_done_cv); 583 584 /* 585 * Dispatch commit callbacks to worker threads. 586 */ 587 txg_dispatch_callbacks(dp, txg); 588 } 589 } 590 591 static void 592 txg_quiesce_thread(void *arg) 593 { 594 dsl_pool_t *dp = arg; 595 tx_state_t *tx = &dp->dp_tx; 596 callb_cpr_t cpr; 597 598 txg_thread_enter(tx, &cpr); 599 600 for (;;) { 601 uint64_t txg; 602 603 /* 604 * We quiesce when there's someone waiting on us. 605 * However, we can only have one txg in "quiescing" or 606 * "quiesced, waiting to sync" state. So we wait until 607 * the "quiesced, waiting to sync" txg has been consumed 608 * by the sync thread. 609 */ 610 while (!tx->tx_exiting && 611 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting || 612 txg_has_quiesced_to_sync(dp))) 613 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0); 614 615 if (tx->tx_exiting) 616 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread); 617 618 txg = tx->tx_open_txg; 619 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 620 txg, tx->tx_quiesce_txg_waiting, 621 tx->tx_sync_txg_waiting); 622 tx->tx_quiescing_txg = txg; 623 624 mutex_exit(&tx->tx_sync_lock); 625 txg_quiesce(dp, txg); 626 mutex_enter(&tx->tx_sync_lock); 627 628 /* 629 * Hand this txg off to the sync thread. 630 */ 631 dprintf("quiesce done, handing off txg %llu\n", txg); 632 tx->tx_quiescing_txg = 0; 633 tx->tx_quiesced_txg = txg; 634 DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg); 635 cv_broadcast(&tx->tx_sync_more_cv); 636 cv_broadcast(&tx->tx_quiesce_done_cv); 637 } 638 } 639 640 /* 641 * Delay this thread by delay nanoseconds if we are still in the open 642 * transaction group and there is already a waiting txg quiescing or quiesced. 643 * Abort the delay if this txg stalls or enters the quiescing state. 644 */ 645 void 646 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution) 647 { 648 tx_state_t *tx = &dp->dp_tx; 649 hrtime_t start = gethrtime(); 650 651 /* don't delay if this txg could transition to quiescing immediately */ 652 if (tx->tx_open_txg > txg || 653 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1) 654 return; 655 656 mutex_enter(&tx->tx_sync_lock); 657 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) { 658 mutex_exit(&tx->tx_sync_lock); 659 return; 660 } 661 662 while (gethrtime() - start < delay && 663 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) { 664 (void) cv_timedwait_hires(&tx->tx_quiesce_more_cv, 665 &tx->tx_sync_lock, delay, resolution, 0); 666 } 667 668 DMU_TX_STAT_BUMP(dmu_tx_delay); 669 670 mutex_exit(&tx->tx_sync_lock); 671 } 672 673 static boolean_t 674 txg_wait_synced_impl(dsl_pool_t *dp, uint64_t txg, boolean_t wait_sig) 675 { 676 tx_state_t *tx = &dp->dp_tx; 677 678 ASSERT(!dsl_pool_config_held(dp)); 679 680 mutex_enter(&tx->tx_sync_lock); 681 ASSERT3U(tx->tx_threads, ==, 2); 682 if (txg == 0) 683 txg = tx->tx_open_txg + TXG_DEFER_SIZE; 684 if (tx->tx_sync_txg_waiting < txg) 685 tx->tx_sync_txg_waiting = txg; 686 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 687 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 688 while (tx->tx_synced_txg < txg) { 689 dprintf("broadcasting sync more " 690 "tx_synced=%llu waiting=%llu dp=%px\n", 691 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); 692 cv_broadcast(&tx->tx_sync_more_cv); 693 if (wait_sig) { 694 /* 695 * Condition wait here but stop if the thread receives a 696 * signal. The caller may call txg_wait_synced*() again 697 * to resume waiting for this txg. 698 */ 699 if (cv_wait_io_sig(&tx->tx_sync_done_cv, 700 &tx->tx_sync_lock) == 0) { 701 mutex_exit(&tx->tx_sync_lock); 702 return (B_TRUE); 703 } 704 } else { 705 cv_wait_io(&tx->tx_sync_done_cv, &tx->tx_sync_lock); 706 } 707 } 708 mutex_exit(&tx->tx_sync_lock); 709 return (B_FALSE); 710 } 711 712 void 713 txg_wait_synced(dsl_pool_t *dp, uint64_t txg) 714 { 715 VERIFY0(txg_wait_synced_impl(dp, txg, B_FALSE)); 716 } 717 718 /* 719 * Similar to a txg_wait_synced but it can be interrupted from a signal. 720 * Returns B_TRUE if the thread was signaled while waiting. 721 */ 722 boolean_t 723 txg_wait_synced_sig(dsl_pool_t *dp, uint64_t txg) 724 { 725 return (txg_wait_synced_impl(dp, txg, B_TRUE)); 726 } 727 728 /* 729 * Wait for the specified open transaction group. Set should_quiesce 730 * when the current open txg should be quiesced immediately. 731 */ 732 void 733 txg_wait_open(dsl_pool_t *dp, uint64_t txg, boolean_t should_quiesce) 734 { 735 tx_state_t *tx = &dp->dp_tx; 736 737 ASSERT(!dsl_pool_config_held(dp)); 738 739 mutex_enter(&tx->tx_sync_lock); 740 ASSERT3U(tx->tx_threads, ==, 2); 741 if (txg == 0) 742 txg = tx->tx_open_txg + 1; 743 if (tx->tx_quiesce_txg_waiting < txg && should_quiesce) 744 tx->tx_quiesce_txg_waiting = txg; 745 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 746 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 747 while (tx->tx_open_txg < txg) { 748 cv_broadcast(&tx->tx_quiesce_more_cv); 749 /* 750 * Callers setting should_quiesce will use cv_wait_io() and 751 * be accounted for as iowait time. Otherwise, the caller is 752 * understood to be idle and cv_wait_sig() is used to prevent 753 * incorrectly inflating the system load average. 754 */ 755 if (should_quiesce == B_TRUE) { 756 cv_wait_io(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock); 757 } else { 758 cv_wait_idle(&tx->tx_quiesce_done_cv, 759 &tx->tx_sync_lock); 760 } 761 } 762 mutex_exit(&tx->tx_sync_lock); 763 } 764 765 /* 766 * If there isn't a txg syncing or in the pipeline, push another txg through 767 * the pipeline by quiescing the open txg. 768 */ 769 void 770 txg_kick(dsl_pool_t *dp) 771 { 772 tx_state_t *tx = &dp->dp_tx; 773 774 ASSERT(!dsl_pool_config_held(dp)); 775 776 mutex_enter(&tx->tx_sync_lock); 777 if (!txg_is_syncing(dp) && 778 !txg_is_quiescing(dp) && 779 tx->tx_quiesce_txg_waiting <= tx->tx_open_txg && 780 tx->tx_sync_txg_waiting <= tx->tx_synced_txg && 781 tx->tx_quiesced_txg <= tx->tx_synced_txg) { 782 tx->tx_quiesce_txg_waiting = tx->tx_open_txg + 1; 783 cv_broadcast(&tx->tx_quiesce_more_cv); 784 } 785 mutex_exit(&tx->tx_sync_lock); 786 } 787 788 boolean_t 789 txg_stalled(dsl_pool_t *dp) 790 { 791 tx_state_t *tx = &dp->dp_tx; 792 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg); 793 } 794 795 boolean_t 796 txg_sync_waiting(dsl_pool_t *dp) 797 { 798 tx_state_t *tx = &dp->dp_tx; 799 800 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting || 801 tx->tx_quiesced_txg != 0); 802 } 803 804 /* 805 * Verify that this txg is active (open, quiescing, syncing). Non-active 806 * txg's should not be manipulated. 807 */ 808 #ifdef ZFS_DEBUG 809 void 810 txg_verify(spa_t *spa, uint64_t txg) 811 { 812 dsl_pool_t *dp __maybe_unused = spa_get_dsl(spa); 813 if (txg <= TXG_INITIAL || txg == ZILTEST_TXG) 814 return; 815 ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg); 816 ASSERT3U(txg, >=, dp->dp_tx.tx_synced_txg); 817 ASSERT3U(txg, >=, dp->dp_tx.tx_open_txg - TXG_CONCURRENT_STATES); 818 } 819 #endif 820 821 /* 822 * Per-txg object lists. 823 */ 824 void 825 txg_list_create(txg_list_t *tl, spa_t *spa, size_t offset) 826 { 827 int t; 828 829 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL); 830 831 tl->tl_offset = offset; 832 tl->tl_spa = spa; 833 834 for (t = 0; t < TXG_SIZE; t++) 835 tl->tl_head[t] = NULL; 836 } 837 838 static boolean_t 839 txg_list_empty_impl(txg_list_t *tl, uint64_t txg) 840 { 841 ASSERT(MUTEX_HELD(&tl->tl_lock)); 842 TXG_VERIFY(tl->tl_spa, txg); 843 return (tl->tl_head[txg & TXG_MASK] == NULL); 844 } 845 846 boolean_t 847 txg_list_empty(txg_list_t *tl, uint64_t txg) 848 { 849 mutex_enter(&tl->tl_lock); 850 boolean_t ret = txg_list_empty_impl(tl, txg); 851 mutex_exit(&tl->tl_lock); 852 853 return (ret); 854 } 855 856 void 857 txg_list_destroy(txg_list_t *tl) 858 { 859 int t; 860 861 mutex_enter(&tl->tl_lock); 862 for (t = 0; t < TXG_SIZE; t++) 863 ASSERT(txg_list_empty_impl(tl, t)); 864 mutex_exit(&tl->tl_lock); 865 866 mutex_destroy(&tl->tl_lock); 867 } 868 869 /* 870 * Returns true if all txg lists are empty. 871 * 872 * Warning: this is inherently racy (an item could be added immediately 873 * after this function returns). 874 */ 875 boolean_t 876 txg_all_lists_empty(txg_list_t *tl) 877 { 878 mutex_enter(&tl->tl_lock); 879 for (int i = 0; i < TXG_SIZE; i++) { 880 if (!txg_list_empty_impl(tl, i)) { 881 mutex_exit(&tl->tl_lock); 882 return (B_FALSE); 883 } 884 } 885 mutex_exit(&tl->tl_lock); 886 return (B_TRUE); 887 } 888 889 /* 890 * Add an entry to the list (unless it's already on the list). 891 * Returns B_TRUE if it was actually added. 892 */ 893 boolean_t 894 txg_list_add(txg_list_t *tl, void *p, uint64_t txg) 895 { 896 int t = txg & TXG_MASK; 897 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 898 boolean_t add; 899 900 TXG_VERIFY(tl->tl_spa, txg); 901 mutex_enter(&tl->tl_lock); 902 add = (tn->tn_member[t] == 0); 903 if (add) { 904 tn->tn_member[t] = 1; 905 tn->tn_next[t] = tl->tl_head[t]; 906 tl->tl_head[t] = tn; 907 } 908 mutex_exit(&tl->tl_lock); 909 910 return (add); 911 } 912 913 /* 914 * Add an entry to the end of the list, unless it's already on the list. 915 * (walks list to find end) 916 * Returns B_TRUE if it was actually added. 917 */ 918 boolean_t 919 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg) 920 { 921 int t = txg & TXG_MASK; 922 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 923 boolean_t add; 924 925 TXG_VERIFY(tl->tl_spa, txg); 926 mutex_enter(&tl->tl_lock); 927 add = (tn->tn_member[t] == 0); 928 if (add) { 929 txg_node_t **tp; 930 931 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t]) 932 continue; 933 934 tn->tn_member[t] = 1; 935 tn->tn_next[t] = NULL; 936 *tp = tn; 937 } 938 mutex_exit(&tl->tl_lock); 939 940 return (add); 941 } 942 943 /* 944 * Remove the head of the list and return it. 945 */ 946 void * 947 txg_list_remove(txg_list_t *tl, uint64_t txg) 948 { 949 int t = txg & TXG_MASK; 950 txg_node_t *tn; 951 void *p = NULL; 952 953 TXG_VERIFY(tl->tl_spa, txg); 954 mutex_enter(&tl->tl_lock); 955 if ((tn = tl->tl_head[t]) != NULL) { 956 ASSERT(tn->tn_member[t]); 957 ASSERT(tn->tn_next[t] == NULL || tn->tn_next[t]->tn_member[t]); 958 p = (char *)tn - tl->tl_offset; 959 tl->tl_head[t] = tn->tn_next[t]; 960 tn->tn_next[t] = NULL; 961 tn->tn_member[t] = 0; 962 } 963 mutex_exit(&tl->tl_lock); 964 965 return (p); 966 } 967 968 /* 969 * Remove a specific item from the list and return it. 970 */ 971 void * 972 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg) 973 { 974 int t = txg & TXG_MASK; 975 txg_node_t *tn, **tp; 976 977 TXG_VERIFY(tl->tl_spa, txg); 978 mutex_enter(&tl->tl_lock); 979 980 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) { 981 if ((char *)tn - tl->tl_offset == p) { 982 *tp = tn->tn_next[t]; 983 tn->tn_next[t] = NULL; 984 tn->tn_member[t] = 0; 985 mutex_exit(&tl->tl_lock); 986 return (p); 987 } 988 } 989 990 mutex_exit(&tl->tl_lock); 991 992 return (NULL); 993 } 994 995 boolean_t 996 txg_list_member(txg_list_t *tl, void *p, uint64_t txg) 997 { 998 int t = txg & TXG_MASK; 999 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 1000 1001 TXG_VERIFY(tl->tl_spa, txg); 1002 return (tn->tn_member[t] != 0); 1003 } 1004 1005 /* 1006 * Walk a txg list 1007 */ 1008 void * 1009 txg_list_head(txg_list_t *tl, uint64_t txg) 1010 { 1011 int t = txg & TXG_MASK; 1012 txg_node_t *tn; 1013 1014 mutex_enter(&tl->tl_lock); 1015 tn = tl->tl_head[t]; 1016 mutex_exit(&tl->tl_lock); 1017 1018 TXG_VERIFY(tl->tl_spa, txg); 1019 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); 1020 } 1021 1022 void * 1023 txg_list_next(txg_list_t *tl, void *p, uint64_t txg) 1024 { 1025 int t = txg & TXG_MASK; 1026 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 1027 1028 TXG_VERIFY(tl->tl_spa, txg); 1029 1030 mutex_enter(&tl->tl_lock); 1031 tn = tn->tn_next[t]; 1032 mutex_exit(&tl->tl_lock); 1033 1034 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); 1035 } 1036 1037 EXPORT_SYMBOL(txg_init); 1038 EXPORT_SYMBOL(txg_fini); 1039 EXPORT_SYMBOL(txg_sync_start); 1040 EXPORT_SYMBOL(txg_sync_stop); 1041 EXPORT_SYMBOL(txg_hold_open); 1042 EXPORT_SYMBOL(txg_rele_to_quiesce); 1043 EXPORT_SYMBOL(txg_rele_to_sync); 1044 EXPORT_SYMBOL(txg_register_callbacks); 1045 EXPORT_SYMBOL(txg_delay); 1046 EXPORT_SYMBOL(txg_wait_synced); 1047 EXPORT_SYMBOL(txg_wait_open); 1048 EXPORT_SYMBOL(txg_wait_callbacks); 1049 EXPORT_SYMBOL(txg_stalled); 1050 EXPORT_SYMBOL(txg_sync_waiting); 1051 1052 /* BEGIN CSTYLED */ 1053 ZFS_MODULE_PARAM(zfs_txg, zfs_txg_, timeout, INT, ZMOD_RW, 1054 "Max seconds worth of delta per txg"); 1055 /* END CSTYLED */ 1056