1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Portions Copyright 2011 Martin Matuska 24 * Copyright (c) 2012, 2019 by Delphix. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/txg_impl.h> 29 #include <sys/dmu_impl.h> 30 #include <sys/spa_impl.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dsl_pool.h> 33 #include <sys/dsl_scan.h> 34 #include <sys/zil.h> 35 #include <sys/callb.h> 36 #include <sys/trace_zfs.h> 37 38 /* 39 * ZFS Transaction Groups 40 * ---------------------- 41 * 42 * ZFS transaction groups are, as the name implies, groups of transactions 43 * that act on persistent state. ZFS asserts consistency at the granularity of 44 * these transaction groups. Each successive transaction group (txg) is 45 * assigned a 64-bit consecutive identifier. There are three active 46 * transaction group states: open, quiescing, or syncing. At any given time, 47 * there may be an active txg associated with each state; each active txg may 48 * either be processing, or blocked waiting to enter the next state. There may 49 * be up to three active txgs, and there is always a txg in the open state 50 * (though it may be blocked waiting to enter the quiescing state). In broad 51 * strokes, transactions -- operations that change in-memory structures -- are 52 * accepted into the txg in the open state, and are completed while the txg is 53 * in the open or quiescing states. The accumulated changes are written to 54 * disk in the syncing state. 55 * 56 * Open 57 * 58 * When a new txg becomes active, it first enters the open state. New 59 * transactions -- updates to in-memory structures -- are assigned to the 60 * currently open txg. There is always a txg in the open state so that ZFS can 61 * accept new changes (though the txg may refuse new changes if it has hit 62 * some limit). ZFS advances the open txg to the next state for a variety of 63 * reasons such as it hitting a time or size threshold, or the execution of an 64 * administrative action that must be completed in the syncing state. 65 * 66 * Quiescing 67 * 68 * After a txg exits the open state, it enters the quiescing state. The 69 * quiescing state is intended to provide a buffer between accepting new 70 * transactions in the open state and writing them out to stable storage in 71 * the syncing state. While quiescing, transactions can continue their 72 * operation without delaying either of the other states. Typically, a txg is 73 * in the quiescing state very briefly since the operations are bounded by 74 * software latencies rather than, say, slower I/O latencies. After all 75 * transactions complete, the txg is ready to enter the next state. 76 * 77 * Syncing 78 * 79 * In the syncing state, the in-memory state built up during the open and (to 80 * a lesser degree) the quiescing states is written to stable storage. The 81 * process of writing out modified data can, in turn modify more data. For 82 * example when we write new blocks, we need to allocate space for them; those 83 * allocations modify metadata (space maps)... which themselves must be 84 * written to stable storage. During the sync state, ZFS iterates, writing out 85 * data until it converges and all in-memory changes have been written out. 86 * The first such pass is the largest as it encompasses all the modified user 87 * data (as opposed to filesystem metadata). Subsequent passes typically have 88 * far less data to write as they consist exclusively of filesystem metadata. 89 * 90 * To ensure convergence, after a certain number of passes ZFS begins 91 * overwriting locations on stable storage that had been allocated earlier in 92 * the syncing state (and subsequently freed). ZFS usually allocates new 93 * blocks to optimize for large, continuous, writes. For the syncing state to 94 * converge however it must complete a pass where no new blocks are allocated 95 * since each allocation requires a modification of persistent metadata. 96 * Further, to hasten convergence, after a prescribed number of passes, ZFS 97 * also defers frees, and stops compressing. 98 * 99 * In addition to writing out user data, we must also execute synctasks during 100 * the syncing context. A synctask is the mechanism by which some 101 * administrative activities work such as creating and destroying snapshots or 102 * datasets. Note that when a synctask is initiated it enters the open txg, 103 * and ZFS then pushes that txg as quickly as possible to completion of the 104 * syncing state in order to reduce the latency of the administrative 105 * activity. To complete the syncing state, ZFS writes out a new uberblock, 106 * the root of the tree of blocks that comprise all state stored on the ZFS 107 * pool. Finally, if there is a quiesced txg waiting, we signal that it can 108 * now transition to the syncing state. 109 */ 110 111 static void txg_sync_thread(void *arg); 112 static void txg_quiesce_thread(void *arg); 113 114 int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */ 115 116 /* 117 * Prepare the txg subsystem. 118 */ 119 void 120 txg_init(dsl_pool_t *dp, uint64_t txg) 121 { 122 tx_state_t *tx = &dp->dp_tx; 123 int c; 124 bzero(tx, sizeof (tx_state_t)); 125 126 tx->tx_cpu = vmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP); 127 128 for (c = 0; c < max_ncpus; c++) { 129 int i; 130 131 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL); 132 mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_NOLOCKDEP, 133 NULL); 134 for (i = 0; i < TXG_SIZE; i++) { 135 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT, 136 NULL); 137 list_create(&tx->tx_cpu[c].tc_callbacks[i], 138 sizeof (dmu_tx_callback_t), 139 offsetof(dmu_tx_callback_t, dcb_node)); 140 } 141 } 142 143 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL); 144 145 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL); 146 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL); 147 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL); 148 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL); 149 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL); 150 151 tx->tx_open_txg = txg; 152 } 153 154 /* 155 * Close down the txg subsystem. 156 */ 157 void 158 txg_fini(dsl_pool_t *dp) 159 { 160 tx_state_t *tx = &dp->dp_tx; 161 int c; 162 163 ASSERT0(tx->tx_threads); 164 165 mutex_destroy(&tx->tx_sync_lock); 166 167 cv_destroy(&tx->tx_sync_more_cv); 168 cv_destroy(&tx->tx_sync_done_cv); 169 cv_destroy(&tx->tx_quiesce_more_cv); 170 cv_destroy(&tx->tx_quiesce_done_cv); 171 cv_destroy(&tx->tx_exit_cv); 172 173 for (c = 0; c < max_ncpus; c++) { 174 int i; 175 176 mutex_destroy(&tx->tx_cpu[c].tc_open_lock); 177 mutex_destroy(&tx->tx_cpu[c].tc_lock); 178 for (i = 0; i < TXG_SIZE; i++) { 179 cv_destroy(&tx->tx_cpu[c].tc_cv[i]); 180 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]); 181 } 182 } 183 184 if (tx->tx_commit_cb_taskq != NULL) 185 taskq_destroy(tx->tx_commit_cb_taskq); 186 187 vmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t)); 188 189 bzero(tx, sizeof (tx_state_t)); 190 } 191 192 /* 193 * Start syncing transaction groups. 194 */ 195 void 196 txg_sync_start(dsl_pool_t *dp) 197 { 198 tx_state_t *tx = &dp->dp_tx; 199 200 mutex_enter(&tx->tx_sync_lock); 201 202 dprintf("pool %p\n", dp); 203 204 ASSERT0(tx->tx_threads); 205 206 tx->tx_threads = 2; 207 208 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread, 209 dp, 0, &p0, TS_RUN, defclsyspri); 210 211 /* 212 * The sync thread can need a larger-than-default stack size on 213 * 32-bit x86. This is due in part to nested pools and 214 * scrub_visitbp() recursion. 215 */ 216 tx->tx_sync_thread = thread_create(NULL, 0, txg_sync_thread, 217 dp, 0, &p0, TS_RUN, defclsyspri); 218 219 mutex_exit(&tx->tx_sync_lock); 220 } 221 222 static void 223 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr) 224 { 225 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG); 226 mutex_enter(&tx->tx_sync_lock); 227 } 228 229 static void 230 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp) 231 { 232 ASSERT(*tpp != NULL); 233 *tpp = NULL; 234 tx->tx_threads--; 235 cv_broadcast(&tx->tx_exit_cv); 236 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */ 237 thread_exit(); 238 } 239 240 static void 241 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time) 242 { 243 CALLB_CPR_SAFE_BEGIN(cpr); 244 245 if (time) { 246 (void) cv_timedwait_idle(cv, &tx->tx_sync_lock, 247 ddi_get_lbolt() + time); 248 } else { 249 cv_wait_idle(cv, &tx->tx_sync_lock); 250 } 251 252 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock); 253 } 254 255 /* 256 * Stop syncing transaction groups. 257 */ 258 void 259 txg_sync_stop(dsl_pool_t *dp) 260 { 261 tx_state_t *tx = &dp->dp_tx; 262 263 dprintf("pool %p\n", dp); 264 /* 265 * Finish off any work in progress. 266 */ 267 ASSERT3U(tx->tx_threads, ==, 2); 268 269 /* 270 * We need to ensure that we've vacated the deferred metaslab trees. 271 */ 272 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE); 273 274 /* 275 * Wake all sync threads and wait for them to die. 276 */ 277 mutex_enter(&tx->tx_sync_lock); 278 279 ASSERT3U(tx->tx_threads, ==, 2); 280 281 tx->tx_exiting = 1; 282 283 cv_broadcast(&tx->tx_quiesce_more_cv); 284 cv_broadcast(&tx->tx_quiesce_done_cv); 285 cv_broadcast(&tx->tx_sync_more_cv); 286 287 while (tx->tx_threads != 0) 288 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock); 289 290 tx->tx_exiting = 0; 291 292 mutex_exit(&tx->tx_sync_lock); 293 } 294 295 /* 296 * Get a handle on the currently open txg and keep it open. 297 * 298 * The txg is guaranteed to stay open until txg_rele_to_quiesce() is called for 299 * the handle. Once txg_rele_to_quiesce() has been called, the txg stays 300 * in quiescing state until txg_rele_to_sync() is called for the handle. 301 * 302 * It is guaranteed that subsequent calls return monotonically increasing 303 * txgs for the same dsl_pool_t. Of course this is not strong monotonicity, 304 * because the same txg can be returned multiple times in a row. This 305 * guarantee holds both for subsequent calls from one thread and for multiple 306 * threads. For example, it is impossible to observe the following sequence 307 * of events: 308 * 309 * Thread 1 Thread 2 310 * 311 * 1 <- txg_hold_open(P, ...) 312 * 2 <- txg_hold_open(P, ...) 313 * 1 <- txg_hold_open(P, ...) 314 * 315 */ 316 uint64_t 317 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th) 318 { 319 tx_state_t *tx = &dp->dp_tx; 320 tx_cpu_t *tc; 321 uint64_t txg; 322 323 /* 324 * It appears the processor id is simply used as a "random" 325 * number to index into the array, and there isn't any other 326 * significance to the chosen tx_cpu. Because.. Why not use 327 * the current cpu to index into the array? 328 */ 329 tc = &tx->tx_cpu[CPU_SEQID_UNSTABLE]; 330 331 mutex_enter(&tc->tc_open_lock); 332 txg = tx->tx_open_txg; 333 334 mutex_enter(&tc->tc_lock); 335 tc->tc_count[txg & TXG_MASK]++; 336 mutex_exit(&tc->tc_lock); 337 338 th->th_cpu = tc; 339 th->th_txg = txg; 340 341 return (txg); 342 } 343 344 void 345 txg_rele_to_quiesce(txg_handle_t *th) 346 { 347 tx_cpu_t *tc = th->th_cpu; 348 349 ASSERT(!MUTEX_HELD(&tc->tc_lock)); 350 mutex_exit(&tc->tc_open_lock); 351 } 352 353 void 354 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks) 355 { 356 tx_cpu_t *tc = th->th_cpu; 357 int g = th->th_txg & TXG_MASK; 358 359 mutex_enter(&tc->tc_lock); 360 list_move_tail(&tc->tc_callbacks[g], tx_callbacks); 361 mutex_exit(&tc->tc_lock); 362 } 363 364 void 365 txg_rele_to_sync(txg_handle_t *th) 366 { 367 tx_cpu_t *tc = th->th_cpu; 368 int g = th->th_txg & TXG_MASK; 369 370 mutex_enter(&tc->tc_lock); 371 ASSERT(tc->tc_count[g] != 0); 372 if (--tc->tc_count[g] == 0) 373 cv_broadcast(&tc->tc_cv[g]); 374 mutex_exit(&tc->tc_lock); 375 376 th->th_cpu = NULL; /* defensive */ 377 } 378 379 /* 380 * Blocks until all transactions in the group are committed. 381 * 382 * On return, the transaction group has reached a stable state in which it can 383 * then be passed off to the syncing context. 384 */ 385 static void 386 txg_quiesce(dsl_pool_t *dp, uint64_t txg) 387 { 388 tx_state_t *tx = &dp->dp_tx; 389 uint64_t tx_open_time; 390 int g = txg & TXG_MASK; 391 int c; 392 393 /* 394 * Grab all tc_open_locks so nobody else can get into this txg. 395 */ 396 for (c = 0; c < max_ncpus; c++) 397 mutex_enter(&tx->tx_cpu[c].tc_open_lock); 398 399 ASSERT(txg == tx->tx_open_txg); 400 tx->tx_open_txg++; 401 tx->tx_open_time = tx_open_time = gethrtime(); 402 403 DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg); 404 DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg); 405 406 /* 407 * Now that we've incremented tx_open_txg, we can let threads 408 * enter the next transaction group. 409 */ 410 for (c = 0; c < max_ncpus; c++) 411 mutex_exit(&tx->tx_cpu[c].tc_open_lock); 412 413 spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_OPEN, tx_open_time); 414 spa_txg_history_add(dp->dp_spa, txg + 1, tx_open_time); 415 416 /* 417 * Quiesce the transaction group by waiting for everyone to 418 * call txg_rele_to_sync() for their open transaction handles. 419 */ 420 for (c = 0; c < max_ncpus; c++) { 421 tx_cpu_t *tc = &tx->tx_cpu[c]; 422 mutex_enter(&tc->tc_lock); 423 while (tc->tc_count[g] != 0) 424 cv_wait(&tc->tc_cv[g], &tc->tc_lock); 425 mutex_exit(&tc->tc_lock); 426 } 427 428 spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_QUIESCED, gethrtime()); 429 } 430 431 static void 432 txg_do_callbacks(list_t *cb_list) 433 { 434 dmu_tx_do_callbacks(cb_list, 0); 435 436 list_destroy(cb_list); 437 438 kmem_free(cb_list, sizeof (list_t)); 439 } 440 441 /* 442 * Dispatch the commit callbacks registered on this txg to worker threads. 443 * 444 * If no callbacks are registered for a given TXG, nothing happens. 445 * This function creates a taskq for the associated pool, if needed. 446 */ 447 static void 448 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg) 449 { 450 int c; 451 tx_state_t *tx = &dp->dp_tx; 452 list_t *cb_list; 453 454 for (c = 0; c < max_ncpus; c++) { 455 tx_cpu_t *tc = &tx->tx_cpu[c]; 456 /* 457 * No need to lock tx_cpu_t at this point, since this can 458 * only be called once a txg has been synced. 459 */ 460 461 int g = txg & TXG_MASK; 462 463 if (list_is_empty(&tc->tc_callbacks[g])) 464 continue; 465 466 if (tx->tx_commit_cb_taskq == NULL) { 467 /* 468 * Commit callback taskq hasn't been created yet. 469 */ 470 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb", 471 100, defclsyspri, boot_ncpus, boot_ncpus * 2, 472 TASKQ_PREPOPULATE | TASKQ_DYNAMIC | 473 TASKQ_THREADS_CPU_PCT); 474 } 475 476 cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 477 list_create(cb_list, sizeof (dmu_tx_callback_t), 478 offsetof(dmu_tx_callback_t, dcb_node)); 479 480 list_move_tail(cb_list, &tc->tc_callbacks[g]); 481 482 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *) 483 txg_do_callbacks, cb_list, TQ_SLEEP); 484 } 485 } 486 487 /* 488 * Wait for pending commit callbacks of already-synced transactions to finish 489 * processing. 490 * Calling this function from within a commit callback will deadlock. 491 */ 492 void 493 txg_wait_callbacks(dsl_pool_t *dp) 494 { 495 tx_state_t *tx = &dp->dp_tx; 496 497 if (tx->tx_commit_cb_taskq != NULL) 498 taskq_wait_outstanding(tx->tx_commit_cb_taskq, 0); 499 } 500 501 static boolean_t 502 txg_is_syncing(dsl_pool_t *dp) 503 { 504 tx_state_t *tx = &dp->dp_tx; 505 ASSERT(MUTEX_HELD(&tx->tx_sync_lock)); 506 return (tx->tx_syncing_txg != 0); 507 } 508 509 static boolean_t 510 txg_is_quiescing(dsl_pool_t *dp) 511 { 512 tx_state_t *tx = &dp->dp_tx; 513 ASSERT(MUTEX_HELD(&tx->tx_sync_lock)); 514 return (tx->tx_quiescing_txg != 0); 515 } 516 517 static boolean_t 518 txg_has_quiesced_to_sync(dsl_pool_t *dp) 519 { 520 tx_state_t *tx = &dp->dp_tx; 521 ASSERT(MUTEX_HELD(&tx->tx_sync_lock)); 522 return (tx->tx_quiesced_txg != 0); 523 } 524 525 static void 526 txg_sync_thread(void *arg) 527 { 528 dsl_pool_t *dp = arg; 529 spa_t *spa = dp->dp_spa; 530 tx_state_t *tx = &dp->dp_tx; 531 callb_cpr_t cpr; 532 clock_t start, delta; 533 534 (void) spl_fstrans_mark(); 535 txg_thread_enter(tx, &cpr); 536 537 start = delta = 0; 538 for (;;) { 539 clock_t timeout = zfs_txg_timeout * hz; 540 clock_t timer; 541 uint64_t txg; 542 uint64_t dirty_min_bytes = 543 zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100; 544 545 /* 546 * We sync when we're scanning, there's someone waiting 547 * on us, or the quiesce thread has handed off a txg to 548 * us, or we have reached our timeout. 549 */ 550 timer = (delta >= timeout ? 0 : timeout - delta); 551 while (!dsl_scan_active(dp->dp_scan) && 552 !tx->tx_exiting && timer > 0 && 553 tx->tx_synced_txg >= tx->tx_sync_txg_waiting && 554 !txg_has_quiesced_to_sync(dp) && 555 dp->dp_dirty_total < dirty_min_bytes) { 556 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n", 557 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); 558 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer); 559 delta = ddi_get_lbolt() - start; 560 timer = (delta > timeout ? 0 : timeout - delta); 561 } 562 563 /* 564 * Wait until the quiesce thread hands off a txg to us, 565 * prompting it to do so if necessary. 566 */ 567 while (!tx->tx_exiting && !txg_has_quiesced_to_sync(dp)) { 568 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1) 569 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1; 570 cv_broadcast(&tx->tx_quiesce_more_cv); 571 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0); 572 } 573 574 if (tx->tx_exiting) 575 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread); 576 577 /* 578 * Consume the quiesced txg which has been handed off to 579 * us. This may cause the quiescing thread to now be 580 * able to quiesce another txg, so we must signal it. 581 */ 582 ASSERT(tx->tx_quiesced_txg != 0); 583 txg = tx->tx_quiesced_txg; 584 tx->tx_quiesced_txg = 0; 585 tx->tx_syncing_txg = txg; 586 DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg); 587 cv_broadcast(&tx->tx_quiesce_more_cv); 588 589 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 590 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 591 mutex_exit(&tx->tx_sync_lock); 592 593 txg_stat_t *ts = spa_txg_history_init_io(spa, txg, dp); 594 start = ddi_get_lbolt(); 595 spa_sync(spa, txg); 596 delta = ddi_get_lbolt() - start; 597 spa_txg_history_fini_io(spa, ts); 598 599 mutex_enter(&tx->tx_sync_lock); 600 tx->tx_synced_txg = txg; 601 tx->tx_syncing_txg = 0; 602 DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg); 603 cv_broadcast(&tx->tx_sync_done_cv); 604 605 /* 606 * Dispatch commit callbacks to worker threads. 607 */ 608 txg_dispatch_callbacks(dp, txg); 609 } 610 } 611 612 static void 613 txg_quiesce_thread(void *arg) 614 { 615 dsl_pool_t *dp = arg; 616 tx_state_t *tx = &dp->dp_tx; 617 callb_cpr_t cpr; 618 619 txg_thread_enter(tx, &cpr); 620 621 for (;;) { 622 uint64_t txg; 623 624 /* 625 * We quiesce when there's someone waiting on us. 626 * However, we can only have one txg in "quiescing" or 627 * "quiesced, waiting to sync" state. So we wait until 628 * the "quiesced, waiting to sync" txg has been consumed 629 * by the sync thread. 630 */ 631 while (!tx->tx_exiting && 632 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting || 633 txg_has_quiesced_to_sync(dp))) 634 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0); 635 636 if (tx->tx_exiting) 637 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread); 638 639 txg = tx->tx_open_txg; 640 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 641 txg, tx->tx_quiesce_txg_waiting, 642 tx->tx_sync_txg_waiting); 643 tx->tx_quiescing_txg = txg; 644 645 mutex_exit(&tx->tx_sync_lock); 646 txg_quiesce(dp, txg); 647 mutex_enter(&tx->tx_sync_lock); 648 649 /* 650 * Hand this txg off to the sync thread. 651 */ 652 dprintf("quiesce done, handing off txg %llu\n", txg); 653 tx->tx_quiescing_txg = 0; 654 tx->tx_quiesced_txg = txg; 655 DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg); 656 cv_broadcast(&tx->tx_sync_more_cv); 657 cv_broadcast(&tx->tx_quiesce_done_cv); 658 } 659 } 660 661 /* 662 * Delay this thread by delay nanoseconds if we are still in the open 663 * transaction group and there is already a waiting txg quiescing or quiesced. 664 * Abort the delay if this txg stalls or enters the quiescing state. 665 */ 666 void 667 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution) 668 { 669 tx_state_t *tx = &dp->dp_tx; 670 hrtime_t start = gethrtime(); 671 672 /* don't delay if this txg could transition to quiescing immediately */ 673 if (tx->tx_open_txg > txg || 674 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1) 675 return; 676 677 mutex_enter(&tx->tx_sync_lock); 678 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) { 679 mutex_exit(&tx->tx_sync_lock); 680 return; 681 } 682 683 while (gethrtime() - start < delay && 684 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) { 685 (void) cv_timedwait_hires(&tx->tx_quiesce_more_cv, 686 &tx->tx_sync_lock, delay, resolution, 0); 687 } 688 689 DMU_TX_STAT_BUMP(dmu_tx_delay); 690 691 mutex_exit(&tx->tx_sync_lock); 692 } 693 694 static boolean_t 695 txg_wait_synced_impl(dsl_pool_t *dp, uint64_t txg, boolean_t wait_sig) 696 { 697 tx_state_t *tx = &dp->dp_tx; 698 699 ASSERT(!dsl_pool_config_held(dp)); 700 701 mutex_enter(&tx->tx_sync_lock); 702 ASSERT3U(tx->tx_threads, ==, 2); 703 if (txg == 0) 704 txg = tx->tx_open_txg + TXG_DEFER_SIZE; 705 if (tx->tx_sync_txg_waiting < txg) 706 tx->tx_sync_txg_waiting = txg; 707 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 708 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 709 while (tx->tx_synced_txg < txg) { 710 dprintf("broadcasting sync more " 711 "tx_synced=%llu waiting=%llu dp=%px\n", 712 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); 713 cv_broadcast(&tx->tx_sync_more_cv); 714 if (wait_sig) { 715 /* 716 * Condition wait here but stop if the thread receives a 717 * signal. The caller may call txg_wait_synced*() again 718 * to resume waiting for this txg. 719 */ 720 if (cv_wait_io_sig(&tx->tx_sync_done_cv, 721 &tx->tx_sync_lock) == 0) { 722 mutex_exit(&tx->tx_sync_lock); 723 return (B_TRUE); 724 } 725 } else { 726 cv_wait_io(&tx->tx_sync_done_cv, &tx->tx_sync_lock); 727 } 728 } 729 mutex_exit(&tx->tx_sync_lock); 730 return (B_FALSE); 731 } 732 733 void 734 txg_wait_synced(dsl_pool_t *dp, uint64_t txg) 735 { 736 VERIFY0(txg_wait_synced_impl(dp, txg, B_FALSE)); 737 } 738 739 /* 740 * Similar to a txg_wait_synced but it can be interrupted from a signal. 741 * Returns B_TRUE if the thread was signaled while waiting. 742 */ 743 boolean_t 744 txg_wait_synced_sig(dsl_pool_t *dp, uint64_t txg) 745 { 746 return (txg_wait_synced_impl(dp, txg, B_TRUE)); 747 } 748 749 /* 750 * Wait for the specified open transaction group. Set should_quiesce 751 * when the current open txg should be quiesced immediately. 752 */ 753 void 754 txg_wait_open(dsl_pool_t *dp, uint64_t txg, boolean_t should_quiesce) 755 { 756 tx_state_t *tx = &dp->dp_tx; 757 758 ASSERT(!dsl_pool_config_held(dp)); 759 760 mutex_enter(&tx->tx_sync_lock); 761 ASSERT3U(tx->tx_threads, ==, 2); 762 if (txg == 0) 763 txg = tx->tx_open_txg + 1; 764 if (tx->tx_quiesce_txg_waiting < txg && should_quiesce) 765 tx->tx_quiesce_txg_waiting = txg; 766 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 767 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 768 while (tx->tx_open_txg < txg) { 769 cv_broadcast(&tx->tx_quiesce_more_cv); 770 /* 771 * Callers setting should_quiesce will use cv_wait_io() and 772 * be accounted for as iowait time. Otherwise, the caller is 773 * understood to be idle and cv_wait_sig() is used to prevent 774 * incorrectly inflating the system load average. 775 */ 776 if (should_quiesce == B_TRUE) { 777 cv_wait_io(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock); 778 } else { 779 cv_wait_idle(&tx->tx_quiesce_done_cv, 780 &tx->tx_sync_lock); 781 } 782 } 783 mutex_exit(&tx->tx_sync_lock); 784 } 785 786 /* 787 * If there isn't a txg syncing or in the pipeline, push another txg through 788 * the pipeline by quiescing the open txg. 789 */ 790 void 791 txg_kick(dsl_pool_t *dp) 792 { 793 tx_state_t *tx = &dp->dp_tx; 794 795 ASSERT(!dsl_pool_config_held(dp)); 796 797 mutex_enter(&tx->tx_sync_lock); 798 if (!txg_is_syncing(dp) && 799 !txg_is_quiescing(dp) && 800 tx->tx_quiesce_txg_waiting <= tx->tx_open_txg && 801 tx->tx_sync_txg_waiting <= tx->tx_synced_txg && 802 tx->tx_quiesced_txg <= tx->tx_synced_txg) { 803 tx->tx_quiesce_txg_waiting = tx->tx_open_txg + 1; 804 cv_broadcast(&tx->tx_quiesce_more_cv); 805 } 806 mutex_exit(&tx->tx_sync_lock); 807 } 808 809 boolean_t 810 txg_stalled(dsl_pool_t *dp) 811 { 812 tx_state_t *tx = &dp->dp_tx; 813 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg); 814 } 815 816 boolean_t 817 txg_sync_waiting(dsl_pool_t *dp) 818 { 819 tx_state_t *tx = &dp->dp_tx; 820 821 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting || 822 tx->tx_quiesced_txg != 0); 823 } 824 825 /* 826 * Verify that this txg is active (open, quiescing, syncing). Non-active 827 * txg's should not be manipulated. 828 */ 829 #ifdef ZFS_DEBUG 830 void 831 txg_verify(spa_t *spa, uint64_t txg) 832 { 833 dsl_pool_t *dp __maybe_unused = spa_get_dsl(spa); 834 if (txg <= TXG_INITIAL || txg == ZILTEST_TXG) 835 return; 836 ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg); 837 ASSERT3U(txg, >=, dp->dp_tx.tx_synced_txg); 838 ASSERT3U(txg, >=, dp->dp_tx.tx_open_txg - TXG_CONCURRENT_STATES); 839 } 840 #endif 841 842 /* 843 * Per-txg object lists. 844 */ 845 void 846 txg_list_create(txg_list_t *tl, spa_t *spa, size_t offset) 847 { 848 int t; 849 850 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL); 851 852 tl->tl_offset = offset; 853 tl->tl_spa = spa; 854 855 for (t = 0; t < TXG_SIZE; t++) 856 tl->tl_head[t] = NULL; 857 } 858 859 static boolean_t 860 txg_list_empty_impl(txg_list_t *tl, uint64_t txg) 861 { 862 ASSERT(MUTEX_HELD(&tl->tl_lock)); 863 TXG_VERIFY(tl->tl_spa, txg); 864 return (tl->tl_head[txg & TXG_MASK] == NULL); 865 } 866 867 boolean_t 868 txg_list_empty(txg_list_t *tl, uint64_t txg) 869 { 870 mutex_enter(&tl->tl_lock); 871 boolean_t ret = txg_list_empty_impl(tl, txg); 872 mutex_exit(&tl->tl_lock); 873 874 return (ret); 875 } 876 877 void 878 txg_list_destroy(txg_list_t *tl) 879 { 880 int t; 881 882 mutex_enter(&tl->tl_lock); 883 for (t = 0; t < TXG_SIZE; t++) 884 ASSERT(txg_list_empty_impl(tl, t)); 885 mutex_exit(&tl->tl_lock); 886 887 mutex_destroy(&tl->tl_lock); 888 } 889 890 /* 891 * Returns true if all txg lists are empty. 892 * 893 * Warning: this is inherently racy (an item could be added immediately 894 * after this function returns). 895 */ 896 boolean_t 897 txg_all_lists_empty(txg_list_t *tl) 898 { 899 mutex_enter(&tl->tl_lock); 900 for (int i = 0; i < TXG_SIZE; i++) { 901 if (!txg_list_empty_impl(tl, i)) { 902 mutex_exit(&tl->tl_lock); 903 return (B_FALSE); 904 } 905 } 906 mutex_exit(&tl->tl_lock); 907 return (B_TRUE); 908 } 909 910 /* 911 * Add an entry to the list (unless it's already on the list). 912 * Returns B_TRUE if it was actually added. 913 */ 914 boolean_t 915 txg_list_add(txg_list_t *tl, void *p, uint64_t txg) 916 { 917 int t = txg & TXG_MASK; 918 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 919 boolean_t add; 920 921 TXG_VERIFY(tl->tl_spa, txg); 922 mutex_enter(&tl->tl_lock); 923 add = (tn->tn_member[t] == 0); 924 if (add) { 925 tn->tn_member[t] = 1; 926 tn->tn_next[t] = tl->tl_head[t]; 927 tl->tl_head[t] = tn; 928 } 929 mutex_exit(&tl->tl_lock); 930 931 return (add); 932 } 933 934 /* 935 * Add an entry to the end of the list, unless it's already on the list. 936 * (walks list to find end) 937 * Returns B_TRUE if it was actually added. 938 */ 939 boolean_t 940 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg) 941 { 942 int t = txg & TXG_MASK; 943 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 944 boolean_t add; 945 946 TXG_VERIFY(tl->tl_spa, txg); 947 mutex_enter(&tl->tl_lock); 948 add = (tn->tn_member[t] == 0); 949 if (add) { 950 txg_node_t **tp; 951 952 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t]) 953 continue; 954 955 tn->tn_member[t] = 1; 956 tn->tn_next[t] = NULL; 957 *tp = tn; 958 } 959 mutex_exit(&tl->tl_lock); 960 961 return (add); 962 } 963 964 /* 965 * Remove the head of the list and return it. 966 */ 967 void * 968 txg_list_remove(txg_list_t *tl, uint64_t txg) 969 { 970 int t = txg & TXG_MASK; 971 txg_node_t *tn; 972 void *p = NULL; 973 974 TXG_VERIFY(tl->tl_spa, txg); 975 mutex_enter(&tl->tl_lock); 976 if ((tn = tl->tl_head[t]) != NULL) { 977 ASSERT(tn->tn_member[t]); 978 ASSERT(tn->tn_next[t] == NULL || tn->tn_next[t]->tn_member[t]); 979 p = (char *)tn - tl->tl_offset; 980 tl->tl_head[t] = tn->tn_next[t]; 981 tn->tn_next[t] = NULL; 982 tn->tn_member[t] = 0; 983 } 984 mutex_exit(&tl->tl_lock); 985 986 return (p); 987 } 988 989 /* 990 * Remove a specific item from the list and return it. 991 */ 992 void * 993 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg) 994 { 995 int t = txg & TXG_MASK; 996 txg_node_t *tn, **tp; 997 998 TXG_VERIFY(tl->tl_spa, txg); 999 mutex_enter(&tl->tl_lock); 1000 1001 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) { 1002 if ((char *)tn - tl->tl_offset == p) { 1003 *tp = tn->tn_next[t]; 1004 tn->tn_next[t] = NULL; 1005 tn->tn_member[t] = 0; 1006 mutex_exit(&tl->tl_lock); 1007 return (p); 1008 } 1009 } 1010 1011 mutex_exit(&tl->tl_lock); 1012 1013 return (NULL); 1014 } 1015 1016 boolean_t 1017 txg_list_member(txg_list_t *tl, void *p, uint64_t txg) 1018 { 1019 int t = txg & TXG_MASK; 1020 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 1021 1022 TXG_VERIFY(tl->tl_spa, txg); 1023 return (tn->tn_member[t] != 0); 1024 } 1025 1026 /* 1027 * Walk a txg list 1028 */ 1029 void * 1030 txg_list_head(txg_list_t *tl, uint64_t txg) 1031 { 1032 int t = txg & TXG_MASK; 1033 txg_node_t *tn; 1034 1035 mutex_enter(&tl->tl_lock); 1036 tn = tl->tl_head[t]; 1037 mutex_exit(&tl->tl_lock); 1038 1039 TXG_VERIFY(tl->tl_spa, txg); 1040 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); 1041 } 1042 1043 void * 1044 txg_list_next(txg_list_t *tl, void *p, uint64_t txg) 1045 { 1046 int t = txg & TXG_MASK; 1047 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 1048 1049 TXG_VERIFY(tl->tl_spa, txg); 1050 1051 mutex_enter(&tl->tl_lock); 1052 tn = tn->tn_next[t]; 1053 mutex_exit(&tl->tl_lock); 1054 1055 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); 1056 } 1057 1058 EXPORT_SYMBOL(txg_init); 1059 EXPORT_SYMBOL(txg_fini); 1060 EXPORT_SYMBOL(txg_sync_start); 1061 EXPORT_SYMBOL(txg_sync_stop); 1062 EXPORT_SYMBOL(txg_hold_open); 1063 EXPORT_SYMBOL(txg_rele_to_quiesce); 1064 EXPORT_SYMBOL(txg_rele_to_sync); 1065 EXPORT_SYMBOL(txg_register_callbacks); 1066 EXPORT_SYMBOL(txg_delay); 1067 EXPORT_SYMBOL(txg_wait_synced); 1068 EXPORT_SYMBOL(txg_wait_open); 1069 EXPORT_SYMBOL(txg_wait_callbacks); 1070 EXPORT_SYMBOL(txg_stalled); 1071 EXPORT_SYMBOL(txg_sync_waiting); 1072 1073 /* BEGIN CSTYLED */ 1074 ZFS_MODULE_PARAM(zfs_txg, zfs_txg_, timeout, INT, ZMOD_RW, 1075 "Max seconds worth of delta per txg"); 1076 /* END CSTYLED */ 1077