xref: /freebsd/sys/contrib/openzfs/module/zfs/space_map.c (revision e25152834cdf3b353892835a4f3b157e066a8ed4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dnode.h>
34 #include <sys/dsl_pool.h>
35 #include <sys/zio.h>
36 #include <sys/space_map.h>
37 #include <sys/zfeature.h>
38 
39 /*
40  * Note on space map block size:
41  *
42  * The data for a given space map can be kept on blocks of any size.
43  * Larger blocks entail fewer I/O operations, but they also cause the
44  * DMU to keep more data in-core, and also to waste more I/O bandwidth
45  * when only a few blocks have changed since the last transaction group.
46  */
47 
48 /*
49  * Enabled whenever we want to stress test the use of double-word
50  * space map entries.
51  */
52 boolean_t zfs_force_some_double_word_sm_entries = B_FALSE;
53 
54 /*
55  * Override the default indirect block size of 128K, instead use 16K for
56  * spacemaps (2^14 bytes).  This dramatically reduces write inflation since
57  * appending to a spacemap typically has to write one data block (4KB) and one
58  * or two indirect blocks (16K-32K, rather than 128K).
59  */
60 int space_map_ibs = 14;
61 
62 boolean_t
63 sm_entry_is_debug(uint64_t e)
64 {
65 	return (SM_PREFIX_DECODE(e) == SM_DEBUG_PREFIX);
66 }
67 
68 boolean_t
69 sm_entry_is_single_word(uint64_t e)
70 {
71 	uint8_t prefix = SM_PREFIX_DECODE(e);
72 	return (prefix != SM_DEBUG_PREFIX && prefix != SM2_PREFIX);
73 }
74 
75 boolean_t
76 sm_entry_is_double_word(uint64_t e)
77 {
78 	return (SM_PREFIX_DECODE(e) == SM2_PREFIX);
79 }
80 
81 /*
82  * Iterate through the space map, invoking the callback on each (non-debug)
83  * space map entry. Stop after reading 'end' bytes of the space map.
84  */
85 int
86 space_map_iterate(space_map_t *sm, uint64_t end, sm_cb_t callback, void *arg)
87 {
88 	uint64_t blksz = sm->sm_blksz;
89 
90 	ASSERT3U(blksz, !=, 0);
91 	ASSERT3U(end, <=, space_map_length(sm));
92 	ASSERT0(P2PHASE(end, sizeof (uint64_t)));
93 
94 	dmu_prefetch(sm->sm_os, space_map_object(sm), 0, 0, end,
95 	    ZIO_PRIORITY_SYNC_READ);
96 
97 	int error = 0;
98 	uint64_t txg = 0, sync_pass = 0;
99 	for (uint64_t block_base = 0; block_base < end && error == 0;
100 	    block_base += blksz) {
101 		dmu_buf_t *db;
102 		error = dmu_buf_hold(sm->sm_os, space_map_object(sm),
103 		    block_base, FTAG, &db, DMU_READ_PREFETCH);
104 		if (error != 0)
105 			return (error);
106 
107 		uint64_t *block_start = db->db_data;
108 		uint64_t block_length = MIN(end - block_base, blksz);
109 		uint64_t *block_end = block_start +
110 		    (block_length / sizeof (uint64_t));
111 
112 		VERIFY0(P2PHASE(block_length, sizeof (uint64_t)));
113 		VERIFY3U(block_length, !=, 0);
114 		ASSERT3U(blksz, ==, db->db_size);
115 
116 		for (uint64_t *block_cursor = block_start;
117 		    block_cursor < block_end && error == 0; block_cursor++) {
118 			uint64_t e = *block_cursor;
119 
120 			if (sm_entry_is_debug(e)) {
121 				/*
122 				 * Debug entries are only needed to record the
123 				 * current TXG and sync pass if available.
124 				 *
125 				 * Note though that sometimes there can be
126 				 * debug entries that are used as padding
127 				 * at the end of space map blocks in-order
128 				 * to not split a double-word entry in the
129 				 * middle between two blocks. These entries
130 				 * have their TXG field set to 0 and we
131 				 * skip them without recording the TXG.
132 				 * [see comment in space_map_write_seg()]
133 				 */
134 				uint64_t e_txg = SM_DEBUG_TXG_DECODE(e);
135 				if (e_txg != 0) {
136 					txg = e_txg;
137 					sync_pass = SM_DEBUG_SYNCPASS_DECODE(e);
138 				} else {
139 					ASSERT0(SM_DEBUG_SYNCPASS_DECODE(e));
140 				}
141 				continue;
142 			}
143 
144 			uint64_t raw_offset, raw_run, vdev_id;
145 			maptype_t type;
146 			if (sm_entry_is_single_word(e)) {
147 				type = SM_TYPE_DECODE(e);
148 				vdev_id = SM_NO_VDEVID;
149 				raw_offset = SM_OFFSET_DECODE(e);
150 				raw_run = SM_RUN_DECODE(e);
151 			} else {
152 				/* it is a two-word entry */
153 				ASSERT(sm_entry_is_double_word(e));
154 				raw_run = SM2_RUN_DECODE(e);
155 				vdev_id = SM2_VDEV_DECODE(e);
156 
157 				/* move on to the second word */
158 				block_cursor++;
159 				e = *block_cursor;
160 				VERIFY3P(block_cursor, <=, block_end);
161 
162 				type = SM2_TYPE_DECODE(e);
163 				raw_offset = SM2_OFFSET_DECODE(e);
164 			}
165 
166 			uint64_t entry_offset = (raw_offset << sm->sm_shift) +
167 			    sm->sm_start;
168 			uint64_t entry_run = raw_run << sm->sm_shift;
169 
170 			VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift));
171 			VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift));
172 			ASSERT3U(entry_offset, >=, sm->sm_start);
173 			ASSERT3U(entry_offset, <, sm->sm_start + sm->sm_size);
174 			ASSERT3U(entry_run, <=, sm->sm_size);
175 			ASSERT3U(entry_offset + entry_run, <=,
176 			    sm->sm_start + sm->sm_size);
177 
178 			space_map_entry_t sme = {
179 			    .sme_type = type,
180 			    .sme_vdev = vdev_id,
181 			    .sme_offset = entry_offset,
182 			    .sme_run = entry_run,
183 			    .sme_txg = txg,
184 			    .sme_sync_pass = sync_pass
185 			};
186 			error = callback(&sme, arg);
187 		}
188 		dmu_buf_rele(db, FTAG);
189 	}
190 	return (error);
191 }
192 
193 /*
194  * Reads the entries from the last block of the space map into
195  * buf in reverse order. Populates nwords with number of words
196  * in the last block.
197  *
198  * Refer to block comment within space_map_incremental_destroy()
199  * to understand why this function is needed.
200  */
201 static int
202 space_map_reversed_last_block_entries(space_map_t *sm, uint64_t *buf,
203     uint64_t bufsz, uint64_t *nwords)
204 {
205 	int error = 0;
206 	dmu_buf_t *db;
207 
208 	/*
209 	 * Find the offset of the last word in the space map and use
210 	 * that to read the last block of the space map with
211 	 * dmu_buf_hold().
212 	 */
213 	uint64_t last_word_offset =
214 	    sm->sm_phys->smp_length - sizeof (uint64_t);
215 	error = dmu_buf_hold(sm->sm_os, space_map_object(sm), last_word_offset,
216 	    FTAG, &db, DMU_READ_NO_PREFETCH);
217 	if (error != 0)
218 		return (error);
219 
220 	ASSERT3U(sm->sm_object, ==, db->db_object);
221 	ASSERT3U(sm->sm_blksz, ==, db->db_size);
222 	ASSERT3U(bufsz, >=, db->db_size);
223 	ASSERT(nwords != NULL);
224 
225 	uint64_t *words = db->db_data;
226 	*nwords =
227 	    (sm->sm_phys->smp_length - db->db_offset) / sizeof (uint64_t);
228 
229 	ASSERT3U(*nwords, <=, bufsz / sizeof (uint64_t));
230 
231 	uint64_t n = *nwords;
232 	uint64_t j = n - 1;
233 	for (uint64_t i = 0; i < n; i++) {
234 		uint64_t entry = words[i];
235 		if (sm_entry_is_double_word(entry)) {
236 			/*
237 			 * Since we are populating the buffer backwards
238 			 * we have to be extra careful and add the two
239 			 * words of the double-word entry in the right
240 			 * order.
241 			 */
242 			ASSERT3U(j, >, 0);
243 			buf[j - 1] = entry;
244 
245 			i++;
246 			ASSERT3U(i, <, n);
247 			entry = words[i];
248 			buf[j] = entry;
249 			j -= 2;
250 		} else {
251 			ASSERT(sm_entry_is_debug(entry) ||
252 			    sm_entry_is_single_word(entry));
253 			buf[j] = entry;
254 			j--;
255 		}
256 	}
257 
258 	/*
259 	 * Assert that we wrote backwards all the
260 	 * way to the beginning of the buffer.
261 	 */
262 	ASSERT3S(j, ==, -1);
263 
264 	dmu_buf_rele(db, FTAG);
265 	return (error);
266 }
267 
268 /*
269  * Note: This function performs destructive actions - specifically
270  * it deletes entries from the end of the space map. Thus, callers
271  * should ensure that they are holding the appropriate locks for
272  * the space map that they provide.
273  */
274 int
275 space_map_incremental_destroy(space_map_t *sm, sm_cb_t callback, void *arg,
276     dmu_tx_t *tx)
277 {
278 	uint64_t bufsz = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
279 	uint64_t *buf = zio_buf_alloc(bufsz);
280 
281 	dmu_buf_will_dirty(sm->sm_dbuf, tx);
282 
283 	/*
284 	 * Ideally we would want to iterate from the beginning of the
285 	 * space map to the end in incremental steps. The issue with this
286 	 * approach is that we don't have any field on-disk that points
287 	 * us where to start between each step. We could try zeroing out
288 	 * entries that we've destroyed, but this doesn't work either as
289 	 * an entry that is 0 is a valid one (ALLOC for range [0x0:0x200]).
290 	 *
291 	 * As a result, we destroy its entries incrementally starting from
292 	 * the end after applying the callback to each of them.
293 	 *
294 	 * The problem with this approach is that we cannot literally
295 	 * iterate through the words in the space map backwards as we
296 	 * can't distinguish two-word space map entries from their second
297 	 * word. Thus we do the following:
298 	 *
299 	 * 1] We get all the entries from the last block of the space map
300 	 *    and put them into a buffer in reverse order. This way the
301 	 *    last entry comes first in the buffer, the second to last is
302 	 *    second, etc.
303 	 * 2] We iterate through the entries in the buffer and we apply
304 	 *    the callback to each one. As we move from entry to entry we
305 	 *    we decrease the size of the space map, deleting effectively
306 	 *    each entry.
307 	 * 3] If there are no more entries in the space map or the callback
308 	 *    returns a value other than 0, we stop iterating over the
309 	 *    space map. If there are entries remaining and the callback
310 	 *    returned 0, we go back to step [1].
311 	 */
312 	int error = 0;
313 	while (space_map_length(sm) > 0 && error == 0) {
314 		uint64_t nwords = 0;
315 		error = space_map_reversed_last_block_entries(sm, buf, bufsz,
316 		    &nwords);
317 		if (error != 0)
318 			break;
319 
320 		ASSERT3U(nwords, <=, bufsz / sizeof (uint64_t));
321 
322 		for (uint64_t i = 0; i < nwords; i++) {
323 			uint64_t e = buf[i];
324 
325 			if (sm_entry_is_debug(e)) {
326 				sm->sm_phys->smp_length -= sizeof (uint64_t);
327 				continue;
328 			}
329 
330 			int words = 1;
331 			uint64_t raw_offset, raw_run, vdev_id;
332 			maptype_t type;
333 			if (sm_entry_is_single_word(e)) {
334 				type = SM_TYPE_DECODE(e);
335 				vdev_id = SM_NO_VDEVID;
336 				raw_offset = SM_OFFSET_DECODE(e);
337 				raw_run = SM_RUN_DECODE(e);
338 			} else {
339 				ASSERT(sm_entry_is_double_word(e));
340 				words = 2;
341 
342 				raw_run = SM2_RUN_DECODE(e);
343 				vdev_id = SM2_VDEV_DECODE(e);
344 
345 				/* move to the second word */
346 				i++;
347 				e = buf[i];
348 
349 				ASSERT3P(i, <=, nwords);
350 
351 				type = SM2_TYPE_DECODE(e);
352 				raw_offset = SM2_OFFSET_DECODE(e);
353 			}
354 
355 			uint64_t entry_offset =
356 			    (raw_offset << sm->sm_shift) + sm->sm_start;
357 			uint64_t entry_run = raw_run << sm->sm_shift;
358 
359 			VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift));
360 			VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift));
361 			VERIFY3U(entry_offset, >=, sm->sm_start);
362 			VERIFY3U(entry_offset, <, sm->sm_start + sm->sm_size);
363 			VERIFY3U(entry_run, <=, sm->sm_size);
364 			VERIFY3U(entry_offset + entry_run, <=,
365 			    sm->sm_start + sm->sm_size);
366 
367 			space_map_entry_t sme = {
368 			    .sme_type = type,
369 			    .sme_vdev = vdev_id,
370 			    .sme_offset = entry_offset,
371 			    .sme_run = entry_run
372 			};
373 			error = callback(&sme, arg);
374 			if (error != 0)
375 				break;
376 
377 			if (type == SM_ALLOC)
378 				sm->sm_phys->smp_alloc -= entry_run;
379 			else
380 				sm->sm_phys->smp_alloc += entry_run;
381 			sm->sm_phys->smp_length -= words * sizeof (uint64_t);
382 		}
383 	}
384 
385 	if (space_map_length(sm) == 0) {
386 		ASSERT0(error);
387 		ASSERT0(space_map_allocated(sm));
388 	}
389 
390 	zio_buf_free(buf, bufsz);
391 	return (error);
392 }
393 
394 typedef struct space_map_load_arg {
395 	space_map_t	*smla_sm;
396 	range_tree_t	*smla_rt;
397 	maptype_t	smla_type;
398 } space_map_load_arg_t;
399 
400 static int
401 space_map_load_callback(space_map_entry_t *sme, void *arg)
402 {
403 	space_map_load_arg_t *smla = arg;
404 	if (sme->sme_type == smla->smla_type) {
405 		VERIFY3U(range_tree_space(smla->smla_rt) + sme->sme_run, <=,
406 		    smla->smla_sm->sm_size);
407 		range_tree_add(smla->smla_rt, sme->sme_offset, sme->sme_run);
408 	} else {
409 		range_tree_remove(smla->smla_rt, sme->sme_offset, sme->sme_run);
410 	}
411 
412 	return (0);
413 }
414 
415 /*
416  * Load the spacemap into the rangetree, like space_map_load. But only
417  * read the first 'length' bytes of the spacemap.
418  */
419 int
420 space_map_load_length(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
421     uint64_t length)
422 {
423 	space_map_load_arg_t smla;
424 
425 	VERIFY0(range_tree_space(rt));
426 
427 	if (maptype == SM_FREE)
428 		range_tree_add(rt, sm->sm_start, sm->sm_size);
429 
430 	smla.smla_rt = rt;
431 	smla.smla_sm = sm;
432 	smla.smla_type = maptype;
433 	int err = space_map_iterate(sm, length,
434 	    space_map_load_callback, &smla);
435 
436 	if (err != 0)
437 		range_tree_vacate(rt, NULL, NULL);
438 
439 	return (err);
440 }
441 
442 /*
443  * Load the space map disk into the specified range tree. Segments of maptype
444  * are added to the range tree, other segment types are removed.
445  */
446 int
447 space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype)
448 {
449 	return (space_map_load_length(sm, rt, maptype, space_map_length(sm)));
450 }
451 
452 void
453 space_map_histogram_clear(space_map_t *sm)
454 {
455 	if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
456 		return;
457 
458 	bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram));
459 }
460 
461 boolean_t
462 space_map_histogram_verify(space_map_t *sm, range_tree_t *rt)
463 {
464 	/*
465 	 * Verify that the in-core range tree does not have any
466 	 * ranges smaller than our sm_shift size.
467 	 */
468 	for (int i = 0; i < sm->sm_shift; i++) {
469 		if (rt->rt_histogram[i] != 0)
470 			return (B_FALSE);
471 	}
472 	return (B_TRUE);
473 }
474 
475 void
476 space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx)
477 {
478 	int idx = 0;
479 
480 	ASSERT(dmu_tx_is_syncing(tx));
481 	VERIFY3U(space_map_object(sm), !=, 0);
482 
483 	if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
484 		return;
485 
486 	dmu_buf_will_dirty(sm->sm_dbuf, tx);
487 
488 	ASSERT(space_map_histogram_verify(sm, rt));
489 	/*
490 	 * Transfer the content of the range tree histogram to the space
491 	 * map histogram. The space map histogram contains 32 buckets ranging
492 	 * between 2^sm_shift to 2^(32+sm_shift-1). The range tree,
493 	 * however, can represent ranges from 2^0 to 2^63. Since the space
494 	 * map only cares about allocatable blocks (minimum of sm_shift) we
495 	 * can safely ignore all ranges in the range tree smaller than sm_shift.
496 	 */
497 	for (int i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
498 
499 		/*
500 		 * Since the largest histogram bucket in the space map is
501 		 * 2^(32+sm_shift-1), we need to normalize the values in
502 		 * the range tree for any bucket larger than that size. For
503 		 * example given an sm_shift of 9, ranges larger than 2^40
504 		 * would get normalized as if they were 1TB ranges. Assume
505 		 * the range tree had a count of 5 in the 2^44 (16TB) bucket,
506 		 * the calculation below would normalize this to 5 * 2^4 (16).
507 		 */
508 		ASSERT3U(i, >=, idx + sm->sm_shift);
509 		sm->sm_phys->smp_histogram[idx] +=
510 		    rt->rt_histogram[i] << (i - idx - sm->sm_shift);
511 
512 		/*
513 		 * Increment the space map's index as long as we haven't
514 		 * reached the maximum bucket size. Accumulate all ranges
515 		 * larger than the max bucket size into the last bucket.
516 		 */
517 		if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
518 			ASSERT3U(idx + sm->sm_shift, ==, i);
519 			idx++;
520 			ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
521 		}
522 	}
523 }
524 
525 static void
526 space_map_write_intro_debug(space_map_t *sm, maptype_t maptype, dmu_tx_t *tx)
527 {
528 	dmu_buf_will_dirty(sm->sm_dbuf, tx);
529 
530 	uint64_t dentry = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) |
531 	    SM_DEBUG_ACTION_ENCODE(maptype) |
532 	    SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(tx->tx_pool->dp_spa)) |
533 	    SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
534 
535 	dmu_write(sm->sm_os, space_map_object(sm), sm->sm_phys->smp_length,
536 	    sizeof (dentry), &dentry, tx);
537 
538 	sm->sm_phys->smp_length += sizeof (dentry);
539 }
540 
541 /*
542  * Writes one or more entries given a segment.
543  *
544  * Note: The function may release the dbuf from the pointer initially
545  * passed to it, and return a different dbuf. Also, the space map's
546  * dbuf must be dirty for the changes in sm_phys to take effect.
547  */
548 static void
549 space_map_write_seg(space_map_t *sm, uint64_t rstart, uint64_t rend,
550     maptype_t maptype, uint64_t vdev_id, uint8_t words, dmu_buf_t **dbp,
551     void *tag, dmu_tx_t *tx)
552 {
553 	ASSERT3U(words, !=, 0);
554 	ASSERT3U(words, <=, 2);
555 
556 	/* ensure the vdev_id can be represented by the space map */
557 	ASSERT3U(vdev_id, <=, SM_NO_VDEVID);
558 
559 	/*
560 	 * if this is a single word entry, ensure that no vdev was
561 	 * specified.
562 	 */
563 	IMPLY(words == 1, vdev_id == SM_NO_VDEVID);
564 
565 	dmu_buf_t *db = *dbp;
566 	ASSERT3U(db->db_size, ==, sm->sm_blksz);
567 
568 	uint64_t *block_base = db->db_data;
569 	uint64_t *block_end = block_base + (sm->sm_blksz / sizeof (uint64_t));
570 	uint64_t *block_cursor = block_base +
571 	    (sm->sm_phys->smp_length - db->db_offset) / sizeof (uint64_t);
572 
573 	ASSERT3P(block_cursor, <=, block_end);
574 
575 	uint64_t size = (rend - rstart) >> sm->sm_shift;
576 	uint64_t start = (rstart - sm->sm_start) >> sm->sm_shift;
577 	uint64_t run_max = (words == 2) ? SM2_RUN_MAX : SM_RUN_MAX;
578 
579 	ASSERT3U(rstart, >=, sm->sm_start);
580 	ASSERT3U(rstart, <, sm->sm_start + sm->sm_size);
581 	ASSERT3U(rend - rstart, <=, sm->sm_size);
582 	ASSERT3U(rend, <=, sm->sm_start + sm->sm_size);
583 
584 	while (size != 0) {
585 		ASSERT3P(block_cursor, <=, block_end);
586 
587 		/*
588 		 * If we are at the end of this block, flush it and start
589 		 * writing again from the beginning.
590 		 */
591 		if (block_cursor == block_end) {
592 			dmu_buf_rele(db, tag);
593 
594 			uint64_t next_word_offset = sm->sm_phys->smp_length;
595 			VERIFY0(dmu_buf_hold(sm->sm_os,
596 			    space_map_object(sm), next_word_offset,
597 			    tag, &db, DMU_READ_PREFETCH));
598 			dmu_buf_will_dirty(db, tx);
599 
600 			/* update caller's dbuf */
601 			*dbp = db;
602 
603 			ASSERT3U(db->db_size, ==, sm->sm_blksz);
604 
605 			block_base = db->db_data;
606 			block_cursor = block_base;
607 			block_end = block_base +
608 			    (db->db_size / sizeof (uint64_t));
609 		}
610 
611 		/*
612 		 * If we are writing a two-word entry and we only have one
613 		 * word left on this block, just pad it with an empty debug
614 		 * entry and write the two-word entry in the next block.
615 		 */
616 		uint64_t *next_entry = block_cursor + 1;
617 		if (next_entry == block_end && words > 1) {
618 			ASSERT3U(words, ==, 2);
619 			*block_cursor = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) |
620 			    SM_DEBUG_ACTION_ENCODE(0) |
621 			    SM_DEBUG_SYNCPASS_ENCODE(0) |
622 			    SM_DEBUG_TXG_ENCODE(0);
623 			block_cursor++;
624 			sm->sm_phys->smp_length += sizeof (uint64_t);
625 			ASSERT3P(block_cursor, ==, block_end);
626 			continue;
627 		}
628 
629 		uint64_t run_len = MIN(size, run_max);
630 		switch (words) {
631 		case 1:
632 			*block_cursor = SM_OFFSET_ENCODE(start) |
633 			    SM_TYPE_ENCODE(maptype) |
634 			    SM_RUN_ENCODE(run_len);
635 			block_cursor++;
636 			break;
637 		case 2:
638 			/* write the first word of the entry */
639 			*block_cursor = SM_PREFIX_ENCODE(SM2_PREFIX) |
640 			    SM2_RUN_ENCODE(run_len) |
641 			    SM2_VDEV_ENCODE(vdev_id);
642 			block_cursor++;
643 
644 			/* move on to the second word of the entry */
645 			ASSERT3P(block_cursor, <, block_end);
646 			*block_cursor = SM2_TYPE_ENCODE(maptype) |
647 			    SM2_OFFSET_ENCODE(start);
648 			block_cursor++;
649 			break;
650 		default:
651 			panic("%d-word space map entries are not supported",
652 			    words);
653 			break;
654 		}
655 		sm->sm_phys->smp_length += words * sizeof (uint64_t);
656 
657 		start += run_len;
658 		size -= run_len;
659 	}
660 	ASSERT0(size);
661 
662 }
663 
664 /*
665  * Note: The space map's dbuf must be dirty for the changes in sm_phys to
666  * take effect.
667  */
668 static void
669 space_map_write_impl(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
670     uint64_t vdev_id, dmu_tx_t *tx)
671 {
672 	spa_t *spa = tx->tx_pool->dp_spa;
673 	dmu_buf_t *db;
674 
675 	space_map_write_intro_debug(sm, maptype, tx);
676 
677 #ifdef ZFS_DEBUG
678 	/*
679 	 * We do this right after we write the intro debug entry
680 	 * because the estimate does not take it into account.
681 	 */
682 	uint64_t initial_objsize = sm->sm_phys->smp_length;
683 	uint64_t estimated_growth =
684 	    space_map_estimate_optimal_size(sm, rt, SM_NO_VDEVID);
685 	uint64_t estimated_final_objsize = initial_objsize + estimated_growth;
686 #endif
687 
688 	/*
689 	 * Find the offset right after the last word in the space map
690 	 * and use that to get a hold of the last block, so we can
691 	 * start appending to it.
692 	 */
693 	uint64_t next_word_offset = sm->sm_phys->smp_length;
694 	VERIFY0(dmu_buf_hold(sm->sm_os, space_map_object(sm),
695 	    next_word_offset, FTAG, &db, DMU_READ_PREFETCH));
696 	ASSERT3U(db->db_size, ==, sm->sm_blksz);
697 
698 	dmu_buf_will_dirty(db, tx);
699 
700 	zfs_btree_t *t = &rt->rt_root;
701 	zfs_btree_index_t where;
702 	for (range_seg_t *rs = zfs_btree_first(t, &where); rs != NULL;
703 	    rs = zfs_btree_next(t, &where, &where)) {
704 		uint64_t offset = (rs_get_start(rs, rt) - sm->sm_start) >>
705 		    sm->sm_shift;
706 		uint64_t length = (rs_get_end(rs, rt) - rs_get_start(rs, rt)) >>
707 		    sm->sm_shift;
708 		uint8_t words = 1;
709 
710 		/*
711 		 * We only write two-word entries when both of the following
712 		 * are true:
713 		 *
714 		 * [1] The feature is enabled.
715 		 * [2] The offset or run is too big for a single-word entry,
716 		 *	or the vdev_id is set (meaning not equal to
717 		 *	SM_NO_VDEVID).
718 		 *
719 		 * Note that for purposes of testing we've added the case that
720 		 * we write two-word entries occasionally when the feature is
721 		 * enabled and zfs_force_some_double_word_sm_entries has been
722 		 * set.
723 		 */
724 		if (spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_V2) &&
725 		    (offset >= (1ULL << SM_OFFSET_BITS) ||
726 		    length > SM_RUN_MAX ||
727 		    vdev_id != SM_NO_VDEVID ||
728 		    (zfs_force_some_double_word_sm_entries &&
729 		    spa_get_random(100) == 0)))
730 			words = 2;
731 
732 		space_map_write_seg(sm, rs_get_start(rs, rt), rs_get_end(rs,
733 		    rt), maptype, vdev_id, words, &db, FTAG, tx);
734 	}
735 
736 	dmu_buf_rele(db, FTAG);
737 
738 #ifdef ZFS_DEBUG
739 	/*
740 	 * We expect our estimation to be based on the worst case
741 	 * scenario [see comment in space_map_estimate_optimal_size()].
742 	 * Therefore we expect the actual objsize to be equal or less
743 	 * than whatever we estimated it to be.
744 	 */
745 	ASSERT3U(estimated_final_objsize, >=, sm->sm_phys->smp_length);
746 #endif
747 }
748 
749 /*
750  * Note: This function manipulates the state of the given space map but
751  * does not hold any locks implicitly. Thus the caller is responsible
752  * for synchronizing writes to the space map.
753  */
754 void
755 space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
756     uint64_t vdev_id, dmu_tx_t *tx)
757 {
758 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(sm->sm_os)));
759 	VERIFY3U(space_map_object(sm), !=, 0);
760 
761 	dmu_buf_will_dirty(sm->sm_dbuf, tx);
762 
763 	/*
764 	 * This field is no longer necessary since the in-core space map
765 	 * now contains the object number but is maintained for backwards
766 	 * compatibility.
767 	 */
768 	sm->sm_phys->smp_object = sm->sm_object;
769 
770 	if (range_tree_is_empty(rt)) {
771 		VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object);
772 		return;
773 	}
774 
775 	if (maptype == SM_ALLOC)
776 		sm->sm_phys->smp_alloc += range_tree_space(rt);
777 	else
778 		sm->sm_phys->smp_alloc -= range_tree_space(rt);
779 
780 	uint64_t nodes = zfs_btree_numnodes(&rt->rt_root);
781 	uint64_t rt_space = range_tree_space(rt);
782 
783 	space_map_write_impl(sm, rt, maptype, vdev_id, tx);
784 
785 	/*
786 	 * Ensure that the space_map's accounting wasn't changed
787 	 * while we were in the middle of writing it out.
788 	 */
789 	VERIFY3U(nodes, ==, zfs_btree_numnodes(&rt->rt_root));
790 	VERIFY3U(range_tree_space(rt), ==, rt_space);
791 }
792 
793 static int
794 space_map_open_impl(space_map_t *sm)
795 {
796 	int error;
797 	u_longlong_t blocks;
798 
799 	error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf);
800 	if (error)
801 		return (error);
802 
803 	dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks);
804 	sm->sm_phys = sm->sm_dbuf->db_data;
805 	return (0);
806 }
807 
808 int
809 space_map_open(space_map_t **smp, objset_t *os, uint64_t object,
810     uint64_t start, uint64_t size, uint8_t shift)
811 {
812 	space_map_t *sm;
813 	int error;
814 
815 	ASSERT(*smp == NULL);
816 	ASSERT(os != NULL);
817 	ASSERT(object != 0);
818 
819 	sm = kmem_alloc(sizeof (space_map_t), KM_SLEEP);
820 
821 	sm->sm_start = start;
822 	sm->sm_size = size;
823 	sm->sm_shift = shift;
824 	sm->sm_os = os;
825 	sm->sm_object = object;
826 	sm->sm_blksz = 0;
827 	sm->sm_dbuf = NULL;
828 	sm->sm_phys = NULL;
829 
830 	error = space_map_open_impl(sm);
831 	if (error != 0) {
832 		space_map_close(sm);
833 		return (error);
834 	}
835 	*smp = sm;
836 
837 	return (0);
838 }
839 
840 void
841 space_map_close(space_map_t *sm)
842 {
843 	if (sm == NULL)
844 		return;
845 
846 	if (sm->sm_dbuf != NULL)
847 		dmu_buf_rele(sm->sm_dbuf, sm);
848 	sm->sm_dbuf = NULL;
849 	sm->sm_phys = NULL;
850 
851 	kmem_free(sm, sizeof (*sm));
852 }
853 
854 void
855 space_map_truncate(space_map_t *sm, int blocksize, dmu_tx_t *tx)
856 {
857 	objset_t *os = sm->sm_os;
858 	spa_t *spa = dmu_objset_spa(os);
859 	dmu_object_info_t doi;
860 
861 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
862 	ASSERT(dmu_tx_is_syncing(tx));
863 	VERIFY3U(dmu_tx_get_txg(tx), <=, spa_final_dirty_txg(spa));
864 
865 	dmu_object_info_from_db(sm->sm_dbuf, &doi);
866 
867 	/*
868 	 * If the space map has the wrong bonus size (because
869 	 * SPA_FEATURE_SPACEMAP_HISTOGRAM has recently been enabled), or
870 	 * the wrong block size (because space_map_blksz has changed),
871 	 * free and re-allocate its object with the updated sizes.
872 	 *
873 	 * Otherwise, just truncate the current object.
874 	 */
875 	if ((spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
876 	    doi.doi_bonus_size != sizeof (space_map_phys_t)) ||
877 	    doi.doi_data_block_size != blocksize ||
878 	    doi.doi_metadata_block_size != 1 << space_map_ibs) {
879 		zfs_dbgmsg("txg %llu, spa %s, sm %px, reallocating "
880 		    "object[%llu]: old bonus %u, old blocksz %u",
881 		    dmu_tx_get_txg(tx), spa_name(spa), sm, sm->sm_object,
882 		    doi.doi_bonus_size, doi.doi_data_block_size);
883 
884 		space_map_free(sm, tx);
885 		dmu_buf_rele(sm->sm_dbuf, sm);
886 
887 		sm->sm_object = space_map_alloc(sm->sm_os, blocksize, tx);
888 		VERIFY0(space_map_open_impl(sm));
889 	} else {
890 		VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx));
891 
892 		/*
893 		 * If the spacemap is reallocated, its histogram
894 		 * will be reset.  Do the same in the common case so that
895 		 * bugs related to the uncommon case do not go unnoticed.
896 		 */
897 		bzero(sm->sm_phys->smp_histogram,
898 		    sizeof (sm->sm_phys->smp_histogram));
899 	}
900 
901 	dmu_buf_will_dirty(sm->sm_dbuf, tx);
902 	sm->sm_phys->smp_length = 0;
903 	sm->sm_phys->smp_alloc = 0;
904 }
905 
906 uint64_t
907 space_map_alloc(objset_t *os, int blocksize, dmu_tx_t *tx)
908 {
909 	spa_t *spa = dmu_objset_spa(os);
910 	uint64_t object;
911 	int bonuslen;
912 
913 	if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
914 		spa_feature_incr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
915 		bonuslen = sizeof (space_map_phys_t);
916 		ASSERT3U(bonuslen, <=, dmu_bonus_max());
917 	} else {
918 		bonuslen = SPACE_MAP_SIZE_V0;
919 	}
920 
921 	object = dmu_object_alloc_ibs(os, DMU_OT_SPACE_MAP, blocksize,
922 	    space_map_ibs, DMU_OT_SPACE_MAP_HEADER, bonuslen, tx);
923 
924 	return (object);
925 }
926 
927 void
928 space_map_free_obj(objset_t *os, uint64_t smobj, dmu_tx_t *tx)
929 {
930 	spa_t *spa = dmu_objset_spa(os);
931 	if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
932 		dmu_object_info_t doi;
933 
934 		VERIFY0(dmu_object_info(os, smobj, &doi));
935 		if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) {
936 			spa_feature_decr(spa,
937 			    SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
938 		}
939 	}
940 
941 	VERIFY0(dmu_object_free(os, smobj, tx));
942 }
943 
944 void
945 space_map_free(space_map_t *sm, dmu_tx_t *tx)
946 {
947 	if (sm == NULL)
948 		return;
949 
950 	space_map_free_obj(sm->sm_os, space_map_object(sm), tx);
951 	sm->sm_object = 0;
952 }
953 
954 /*
955  * Given a range tree, it makes a worst-case estimate of how much
956  * space would the tree's segments take if they were written to
957  * the given space map.
958  */
959 uint64_t
960 space_map_estimate_optimal_size(space_map_t *sm, range_tree_t *rt,
961     uint64_t vdev_id)
962 {
963 	spa_t *spa = dmu_objset_spa(sm->sm_os);
964 	uint64_t shift = sm->sm_shift;
965 	uint64_t *histogram = rt->rt_histogram;
966 	uint64_t entries_for_seg = 0;
967 
968 	/*
969 	 * In order to get a quick estimate of the optimal size that this
970 	 * range tree would have on-disk as a space map, we iterate through
971 	 * its histogram buckets instead of iterating through its nodes.
972 	 *
973 	 * Note that this is a highest-bound/worst-case estimate for the
974 	 * following reasons:
975 	 *
976 	 * 1] We assume that we always add a debug padding for each block
977 	 *    we write and we also assume that we start at the last word
978 	 *    of a block attempting to write a two-word entry.
979 	 * 2] Rounding up errors due to the way segments are distributed
980 	 *    in the buckets of the range tree's histogram.
981 	 * 3] The activation of zfs_force_some_double_word_sm_entries
982 	 *    (tunable) when testing.
983 	 *
984 	 * = Math and Rounding Errors =
985 	 *
986 	 * rt_histogram[i] bucket of a range tree represents the number
987 	 * of entries in [2^i, (2^(i+1))-1] of that range_tree. Given
988 	 * that, we want to divide the buckets into groups: Buckets that
989 	 * can be represented using a single-word entry, ones that can
990 	 * be represented with a double-word entry, and ones that can
991 	 * only be represented with multiple two-word entries.
992 	 *
993 	 * [Note that if the new encoding feature is not enabled there
994 	 * are only two groups: single-word entry buckets and multiple
995 	 * single-word entry buckets. The information below assumes
996 	 * two-word entries enabled, but it can easily applied when
997 	 * the feature is not enabled]
998 	 *
999 	 * To find the highest bucket that can be represented with a
1000 	 * single-word entry we look at the maximum run that such entry
1001 	 * can have, which is 2^(SM_RUN_BITS + sm_shift) [remember that
1002 	 * the run of a space map entry is shifted by sm_shift, thus we
1003 	 * add it to the exponent]. This way, excluding the value of the
1004 	 * maximum run that can be represented by a single-word entry,
1005 	 * all runs that are smaller exist in buckets 0 to
1006 	 * SM_RUN_BITS + shift - 1.
1007 	 *
1008 	 * To find the highest bucket that can be represented with a
1009 	 * double-word entry, we follow the same approach. Finally, any
1010 	 * bucket higher than that are represented with multiple two-word
1011 	 * entries. To be more specific, if the highest bucket whose
1012 	 * segments can be represented with a single two-word entry is X,
1013 	 * then bucket X+1 will need 2 two-word entries for each of its
1014 	 * segments, X+2 will need 4, X+3 will need 8, ...etc.
1015 	 *
1016 	 * With all of the above we make our estimation based on bucket
1017 	 * groups. There is a rounding error though. As we mentioned in
1018 	 * the example with the one-word entry, the maximum run that can
1019 	 * be represented in a one-word entry 2^(SM_RUN_BITS + shift) is
1020 	 * not part of bucket SM_RUN_BITS + shift - 1. Thus, segments of
1021 	 * that length fall into the next bucket (and bucket group) where
1022 	 * we start counting two-word entries and this is one more reason
1023 	 * why the estimated size may end up being bigger than the actual
1024 	 * size written.
1025 	 */
1026 	uint64_t size = 0;
1027 	uint64_t idx = 0;
1028 
1029 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) ||
1030 	    (vdev_id == SM_NO_VDEVID && sm->sm_size < SM_OFFSET_MAX)) {
1031 
1032 		/*
1033 		 * If we are trying to force some double word entries just
1034 		 * assume the worst-case of every single word entry being
1035 		 * written as a double word entry.
1036 		 */
1037 		uint64_t entry_size =
1038 		    (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) &&
1039 		    zfs_force_some_double_word_sm_entries) ?
1040 		    (2 * sizeof (uint64_t)) : sizeof (uint64_t);
1041 
1042 		uint64_t single_entry_max_bucket = SM_RUN_BITS + shift - 1;
1043 		for (; idx <= single_entry_max_bucket; idx++)
1044 			size += histogram[idx] * entry_size;
1045 
1046 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2)) {
1047 			for (; idx < RANGE_TREE_HISTOGRAM_SIZE; idx++) {
1048 				ASSERT3U(idx, >=, single_entry_max_bucket);
1049 				entries_for_seg =
1050 				    1ULL << (idx - single_entry_max_bucket);
1051 				size += histogram[idx] *
1052 				    entries_for_seg * entry_size;
1053 			}
1054 			return (size);
1055 		}
1056 	}
1057 
1058 	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2));
1059 
1060 	uint64_t double_entry_max_bucket = SM2_RUN_BITS + shift - 1;
1061 	for (; idx <= double_entry_max_bucket; idx++)
1062 		size += histogram[idx] * 2 * sizeof (uint64_t);
1063 
1064 	for (; idx < RANGE_TREE_HISTOGRAM_SIZE; idx++) {
1065 		ASSERT3U(idx, >=, double_entry_max_bucket);
1066 		entries_for_seg = 1ULL << (idx - double_entry_max_bucket);
1067 		size += histogram[idx] *
1068 		    entries_for_seg * 2 * sizeof (uint64_t);
1069 	}
1070 
1071 	/*
1072 	 * Assume the worst case where we start with the padding at the end
1073 	 * of the current block and we add an extra padding entry at the end
1074 	 * of all subsequent blocks.
1075 	 */
1076 	size += ((size / sm->sm_blksz) + 1) * sizeof (uint64_t);
1077 
1078 	return (size);
1079 }
1080 
1081 uint64_t
1082 space_map_object(space_map_t *sm)
1083 {
1084 	return (sm != NULL ? sm->sm_object : 0);
1085 }
1086 
1087 int64_t
1088 space_map_allocated(space_map_t *sm)
1089 {
1090 	return (sm != NULL ? sm->sm_phys->smp_alloc : 0);
1091 }
1092 
1093 uint64_t
1094 space_map_length(space_map_t *sm)
1095 {
1096 	return (sm != NULL ? sm->sm_phys->smp_length : 0);
1097 }
1098 
1099 uint64_t
1100 space_map_nblocks(space_map_t *sm)
1101 {
1102 	if (sm == NULL)
1103 		return (0);
1104 	return (DIV_ROUND_UP(space_map_length(sm), sm->sm_blksz));
1105 }
1106