1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2024 by Delphix. All rights reserved. 25 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 * Copyright (c) 2017 Datto Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 31 * Copyright (c) 2023, 2024, Klara Inc. 32 */ 33 34 #include <sys/zfs_context.h> 35 #include <sys/zfs_chksum.h> 36 #include <sys/spa_impl.h> 37 #include <sys/zio.h> 38 #include <sys/zio_checksum.h> 39 #include <sys/zio_compress.h> 40 #include <sys/dmu.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/zap.h> 43 #include <sys/zil.h> 44 #include <sys/vdev_impl.h> 45 #include <sys/vdev_initialize.h> 46 #include <sys/vdev_trim.h> 47 #include <sys/vdev_file.h> 48 #include <sys/vdev_raidz.h> 49 #include <sys/metaslab.h> 50 #include <sys/uberblock_impl.h> 51 #include <sys/txg.h> 52 #include <sys/avl.h> 53 #include <sys/unique.h> 54 #include <sys/dsl_pool.h> 55 #include <sys/dsl_dir.h> 56 #include <sys/dsl_prop.h> 57 #include <sys/fm/util.h> 58 #include <sys/dsl_scan.h> 59 #include <sys/fs/zfs.h> 60 #include <sys/metaslab_impl.h> 61 #include <sys/arc.h> 62 #include <sys/brt.h> 63 #include <sys/ddt.h> 64 #include <sys/kstat.h> 65 #include "zfs_prop.h" 66 #include <sys/btree.h> 67 #include <sys/zfeature.h> 68 #include <sys/qat.h> 69 #include <sys/zstd/zstd.h> 70 71 /* 72 * SPA locking 73 * 74 * There are three basic locks for managing spa_t structures: 75 * 76 * spa_namespace_lock (global mutex) 77 * 78 * This lock must be acquired to do any of the following: 79 * 80 * - Lookup a spa_t by name 81 * - Add or remove a spa_t from the namespace 82 * - Increase spa_refcount from non-zero 83 * - Check if spa_refcount is zero 84 * - Rename a spa_t 85 * - add/remove/attach/detach devices 86 * - Held for the duration of create/destroy 87 * - Held at the start and end of import and export 88 * 89 * It does not need to handle recursion. A create or destroy may 90 * reference objects (files or zvols) in other pools, but by 91 * definition they must have an existing reference, and will never need 92 * to lookup a spa_t by name. 93 * 94 * spa_refcount (per-spa zfs_refcount_t protected by mutex) 95 * 96 * This reference count keep track of any active users of the spa_t. The 97 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 98 * the refcount is never really 'zero' - opening a pool implicitly keeps 99 * some references in the DMU. Internally we check against spa_minref, but 100 * present the image of a zero/non-zero value to consumers. 101 * 102 * spa_config_lock[] (per-spa array of rwlocks) 103 * 104 * This protects the spa_t from config changes, and must be held in 105 * the following circumstances: 106 * 107 * - RW_READER to perform I/O to the spa 108 * - RW_WRITER to change the vdev config 109 * 110 * The locking order is fairly straightforward: 111 * 112 * spa_namespace_lock -> spa_refcount 113 * 114 * The namespace lock must be acquired to increase the refcount from 0 115 * or to check if it is zero. 116 * 117 * spa_refcount -> spa_config_lock[] 118 * 119 * There must be at least one valid reference on the spa_t to acquire 120 * the config lock. 121 * 122 * spa_namespace_lock -> spa_config_lock[] 123 * 124 * The namespace lock must always be taken before the config lock. 125 * 126 * 127 * The spa_namespace_lock can be acquired directly and is globally visible. 128 * 129 * The namespace is manipulated using the following functions, all of which 130 * require the spa_namespace_lock to be held. 131 * 132 * spa_lookup() Lookup a spa_t by name. 133 * 134 * spa_add() Create a new spa_t in the namespace. 135 * 136 * spa_remove() Remove a spa_t from the namespace. This also 137 * frees up any memory associated with the spa_t. 138 * 139 * spa_next() Returns the next spa_t in the system, or the 140 * first if NULL is passed. 141 * 142 * spa_evict_all() Shutdown and remove all spa_t structures in 143 * the system. 144 * 145 * spa_guid_exists() Determine whether a pool/device guid exists. 146 * 147 * The spa_refcount is manipulated using the following functions: 148 * 149 * spa_open_ref() Adds a reference to the given spa_t. Must be 150 * called with spa_namespace_lock held if the 151 * refcount is currently zero. 152 * 153 * spa_close() Remove a reference from the spa_t. This will 154 * not free the spa_t or remove it from the 155 * namespace. No locking is required. 156 * 157 * spa_refcount_zero() Returns true if the refcount is currently 158 * zero. Must be called with spa_namespace_lock 159 * held. 160 * 161 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 162 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 163 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 164 * 165 * To read the configuration, it suffices to hold one of these locks as reader. 166 * To modify the configuration, you must hold all locks as writer. To modify 167 * vdev state without altering the vdev tree's topology (e.g. online/offline), 168 * you must hold SCL_STATE and SCL_ZIO as writer. 169 * 170 * We use these distinct config locks to avoid recursive lock entry. 171 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 172 * block allocations (SCL_ALLOC), which may require reading space maps 173 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 174 * 175 * The spa config locks cannot be normal rwlocks because we need the 176 * ability to hand off ownership. For example, SCL_ZIO is acquired 177 * by the issuing thread and later released by an interrupt thread. 178 * They do, however, obey the usual write-wanted semantics to prevent 179 * writer (i.e. system administrator) starvation. 180 * 181 * The lock acquisition rules are as follows: 182 * 183 * SCL_CONFIG 184 * Protects changes to the vdev tree topology, such as vdev 185 * add/remove/attach/detach. Protects the dirty config list 186 * (spa_config_dirty_list) and the set of spares and l2arc devices. 187 * 188 * SCL_STATE 189 * Protects changes to pool state and vdev state, such as vdev 190 * online/offline/fault/degrade/clear. Protects the dirty state list 191 * (spa_state_dirty_list) and global pool state (spa_state). 192 * 193 * SCL_ALLOC 194 * Protects changes to metaslab groups and classes. 195 * Held as reader by metaslab_alloc() and metaslab_claim(). 196 * 197 * SCL_ZIO 198 * Held by bp-level zios (those which have no io_vd upon entry) 199 * to prevent changes to the vdev tree. The bp-level zio implicitly 200 * protects all of its vdev child zios, which do not hold SCL_ZIO. 201 * 202 * SCL_FREE 203 * Protects changes to metaslab groups and classes. 204 * Held as reader by metaslab_free(). SCL_FREE is distinct from 205 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 206 * blocks in zio_done() while another i/o that holds either 207 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 208 * 209 * SCL_VDEV 210 * Held as reader to prevent changes to the vdev tree during trivial 211 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 212 * other locks, and lower than all of them, to ensure that it's safe 213 * to acquire regardless of caller context. 214 * 215 * In addition, the following rules apply: 216 * 217 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 218 * The lock ordering is SCL_CONFIG > spa_props_lock. 219 * 220 * (b) I/O operations on leaf vdevs. For any zio operation that takes 221 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 222 * or zio_write_phys() -- the caller must ensure that the config cannot 223 * cannot change in the interim, and that the vdev cannot be reopened. 224 * SCL_STATE as reader suffices for both. 225 * 226 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 227 * 228 * spa_vdev_enter() Acquire the namespace lock and the config lock 229 * for writing. 230 * 231 * spa_vdev_exit() Release the config lock, wait for all I/O 232 * to complete, sync the updated configs to the 233 * cache, and release the namespace lock. 234 * 235 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 236 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 237 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 238 */ 239 240 avl_tree_t spa_namespace_avl; 241 kmutex_t spa_namespace_lock; 242 kcondvar_t spa_namespace_cv; 243 static const int spa_max_replication_override = SPA_DVAS_PER_BP; 244 245 static kmutex_t spa_spare_lock; 246 static avl_tree_t spa_spare_avl; 247 static kmutex_t spa_l2cache_lock; 248 static avl_tree_t spa_l2cache_avl; 249 250 spa_mode_t spa_mode_global = SPA_MODE_UNINIT; 251 252 #ifdef ZFS_DEBUG 253 /* 254 * Everything except dprintf, set_error, spa, and indirect_remap is on 255 * by default in debug builds. 256 */ 257 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR | 258 ZFS_DEBUG_INDIRECT_REMAP); 259 #else 260 int zfs_flags = 0; 261 #endif 262 263 /* 264 * zfs_recover can be set to nonzero to attempt to recover from 265 * otherwise-fatal errors, typically caused by on-disk corruption. When 266 * set, calls to zfs_panic_recover() will turn into warning messages. 267 * This should only be used as a last resort, as it typically results 268 * in leaked space, or worse. 269 */ 270 int zfs_recover = B_FALSE; 271 272 /* 273 * If destroy encounters an EIO while reading metadata (e.g. indirect 274 * blocks), space referenced by the missing metadata can not be freed. 275 * Normally this causes the background destroy to become "stalled", as 276 * it is unable to make forward progress. While in this stalled state, 277 * all remaining space to free from the error-encountering filesystem is 278 * "temporarily leaked". Set this flag to cause it to ignore the EIO, 279 * permanently leak the space from indirect blocks that can not be read, 280 * and continue to free everything else that it can. 281 * 282 * The default, "stalling" behavior is useful if the storage partially 283 * fails (i.e. some but not all i/os fail), and then later recovers. In 284 * this case, we will be able to continue pool operations while it is 285 * partially failed, and when it recovers, we can continue to free the 286 * space, with no leaks. However, note that this case is actually 287 * fairly rare. 288 * 289 * Typically pools either (a) fail completely (but perhaps temporarily, 290 * e.g. a top-level vdev going offline), or (b) have localized, 291 * permanent errors (e.g. disk returns the wrong data due to bit flip or 292 * firmware bug). In case (a), this setting does not matter because the 293 * pool will be suspended and the sync thread will not be able to make 294 * forward progress regardless. In case (b), because the error is 295 * permanent, the best we can do is leak the minimum amount of space, 296 * which is what setting this flag will do. Therefore, it is reasonable 297 * for this flag to normally be set, but we chose the more conservative 298 * approach of not setting it, so that there is no possibility of 299 * leaking space in the "partial temporary" failure case. 300 */ 301 int zfs_free_leak_on_eio = B_FALSE; 302 303 /* 304 * Expiration time in milliseconds. This value has two meanings. First it is 305 * used to determine when the spa_deadman() logic should fire. By default the 306 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds. 307 * Secondly, the value determines if an I/O is considered "hung". Any I/O that 308 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting 309 * in one of three behaviors controlled by zfs_deadman_failmode. 310 */ 311 uint64_t zfs_deadman_synctime_ms = 600000UL; /* 10 min. */ 312 313 /* 314 * This value controls the maximum amount of time zio_wait() will block for an 315 * outstanding IO. By default this is 300 seconds at which point the "hung" 316 * behavior will be applied as described for zfs_deadman_synctime_ms. 317 */ 318 uint64_t zfs_deadman_ziotime_ms = 300000UL; /* 5 min. */ 319 320 /* 321 * Check time in milliseconds. This defines the frequency at which we check 322 * for hung I/O. 323 */ 324 uint64_t zfs_deadman_checktime_ms = 60000UL; /* 1 min. */ 325 326 /* 327 * By default the deadman is enabled. 328 */ 329 int zfs_deadman_enabled = B_TRUE; 330 331 /* 332 * Controls the behavior of the deadman when it detects a "hung" I/O. 333 * Valid values are zfs_deadman_failmode=<wait|continue|panic>. 334 * 335 * wait - Wait for the "hung" I/O (default) 336 * continue - Attempt to recover from a "hung" I/O 337 * panic - Panic the system 338 */ 339 const char *zfs_deadman_failmode = "wait"; 340 341 /* 342 * The worst case is single-sector max-parity RAID-Z blocks, in which 343 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 344 * times the size; so just assume that. Add to this the fact that 345 * we can have up to 3 DVAs per bp, and one more factor of 2 because 346 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, 347 * the worst case is: 348 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 349 */ 350 uint_t spa_asize_inflation = 24; 351 352 /* 353 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in 354 * the pool to be consumed (bounded by spa_max_slop). This ensures that we 355 * don't run the pool completely out of space, due to unaccounted changes (e.g. 356 * to the MOS). It also limits the worst-case time to allocate space. If we 357 * have less than this amount of free space, most ZPL operations (e.g. write, 358 * create) will return ENOSPC. The ZIL metaslabs (spa_embedded_log_class) are 359 * also part of this 3.2% of space which can't be consumed by normal writes; 360 * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded 361 * log space. 362 * 363 * Certain operations (e.g. file removal, most administrative actions) can 364 * use half the slop space. They will only return ENOSPC if less than half 365 * the slop space is free. Typically, once the pool has less than the slop 366 * space free, the user will use these operations to free up space in the pool. 367 * These are the operations that call dsl_pool_adjustedsize() with the netfree 368 * argument set to TRUE. 369 * 370 * Operations that are almost guaranteed to free up space in the absence of 371 * a pool checkpoint can use up to three quarters of the slop space 372 * (e.g zfs destroy). 373 * 374 * A very restricted set of operations are always permitted, regardless of 375 * the amount of free space. These are the operations that call 376 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net 377 * increase in the amount of space used, it is possible to run the pool 378 * completely out of space, causing it to be permanently read-only. 379 * 380 * Note that on very small pools, the slop space will be larger than 381 * 3.2%, in an effort to have it be at least spa_min_slop (128MB), 382 * but we never allow it to be more than half the pool size. 383 * 384 * Further, on very large pools, the slop space will be smaller than 385 * 3.2%, to avoid reserving much more space than we actually need; bounded 386 * by spa_max_slop (128GB). 387 * 388 * See also the comments in zfs_space_check_t. 389 */ 390 uint_t spa_slop_shift = 5; 391 static const uint64_t spa_min_slop = 128ULL * 1024 * 1024; 392 static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024; 393 394 /* 395 * Number of allocators to use, per spa instance 396 */ 397 static int spa_num_allocators = 4; 398 static int spa_cpus_per_allocator = 4; 399 400 /* 401 * Spa active allocator. 402 * Valid values are zfs_active_allocator=<dynamic|cursor|new-dynamic>. 403 */ 404 const char *zfs_active_allocator = "dynamic"; 405 406 void 407 spa_load_failed(spa_t *spa, const char *fmt, ...) 408 { 409 va_list adx; 410 char buf[256]; 411 412 va_start(adx, fmt); 413 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 414 va_end(adx); 415 416 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name, 417 spa->spa_trust_config ? "trusted" : "untrusted", buf); 418 } 419 420 void 421 spa_load_note(spa_t *spa, const char *fmt, ...) 422 { 423 va_list adx; 424 char buf[256]; 425 426 va_start(adx, fmt); 427 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 428 va_end(adx); 429 430 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name, 431 spa->spa_trust_config ? "trusted" : "untrusted", buf); 432 433 spa_import_progress_set_notes_nolog(spa, "%s", buf); 434 } 435 436 /* 437 * By default dedup and user data indirects land in the special class 438 */ 439 static int zfs_ddt_data_is_special = B_TRUE; 440 static int zfs_user_indirect_is_special = B_TRUE; 441 442 /* 443 * The percentage of special class final space reserved for metadata only. 444 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only 445 * let metadata into the class. 446 */ 447 static uint_t zfs_special_class_metadata_reserve_pct = 25; 448 449 /* 450 * ========================================================================== 451 * SPA config locking 452 * ========================================================================== 453 */ 454 static void 455 spa_config_lock_init(spa_t *spa) 456 { 457 for (int i = 0; i < SCL_LOCKS; i++) { 458 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 459 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 460 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 461 scl->scl_writer = NULL; 462 scl->scl_write_wanted = 0; 463 scl->scl_count = 0; 464 } 465 } 466 467 static void 468 spa_config_lock_destroy(spa_t *spa) 469 { 470 for (int i = 0; i < SCL_LOCKS; i++) { 471 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 472 mutex_destroy(&scl->scl_lock); 473 cv_destroy(&scl->scl_cv); 474 ASSERT(scl->scl_writer == NULL); 475 ASSERT(scl->scl_write_wanted == 0); 476 ASSERT(scl->scl_count == 0); 477 } 478 } 479 480 int 481 spa_config_tryenter(spa_t *spa, int locks, const void *tag, krw_t rw) 482 { 483 for (int i = 0; i < SCL_LOCKS; i++) { 484 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 485 if (!(locks & (1 << i))) 486 continue; 487 mutex_enter(&scl->scl_lock); 488 if (rw == RW_READER) { 489 if (scl->scl_writer || scl->scl_write_wanted) { 490 mutex_exit(&scl->scl_lock); 491 spa_config_exit(spa, locks & ((1 << i) - 1), 492 tag); 493 return (0); 494 } 495 } else { 496 ASSERT(scl->scl_writer != curthread); 497 if (scl->scl_count != 0) { 498 mutex_exit(&scl->scl_lock); 499 spa_config_exit(spa, locks & ((1 << i) - 1), 500 tag); 501 return (0); 502 } 503 scl->scl_writer = curthread; 504 } 505 scl->scl_count++; 506 mutex_exit(&scl->scl_lock); 507 } 508 return (1); 509 } 510 511 static void 512 spa_config_enter_impl(spa_t *spa, int locks, const void *tag, krw_t rw, 513 int mmp_flag) 514 { 515 (void) tag; 516 int wlocks_held = 0; 517 518 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 519 520 for (int i = 0; i < SCL_LOCKS; i++) { 521 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 522 if (scl->scl_writer == curthread) 523 wlocks_held |= (1 << i); 524 if (!(locks & (1 << i))) 525 continue; 526 mutex_enter(&scl->scl_lock); 527 if (rw == RW_READER) { 528 while (scl->scl_writer || 529 (!mmp_flag && scl->scl_write_wanted)) { 530 cv_wait(&scl->scl_cv, &scl->scl_lock); 531 } 532 } else { 533 ASSERT(scl->scl_writer != curthread); 534 while (scl->scl_count != 0) { 535 scl->scl_write_wanted++; 536 cv_wait(&scl->scl_cv, &scl->scl_lock); 537 scl->scl_write_wanted--; 538 } 539 scl->scl_writer = curthread; 540 } 541 scl->scl_count++; 542 mutex_exit(&scl->scl_lock); 543 } 544 ASSERT3U(wlocks_held, <=, locks); 545 } 546 547 void 548 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw) 549 { 550 spa_config_enter_impl(spa, locks, tag, rw, 0); 551 } 552 553 /* 554 * The spa_config_enter_mmp() allows the mmp thread to cut in front of 555 * outstanding write lock requests. This is needed since the mmp updates are 556 * time sensitive and failure to service them promptly will result in a 557 * suspended pool. This pool suspension has been seen in practice when there is 558 * a single disk in a pool that is responding slowly and presumably about to 559 * fail. 560 */ 561 562 void 563 spa_config_enter_mmp(spa_t *spa, int locks, const void *tag, krw_t rw) 564 { 565 spa_config_enter_impl(spa, locks, tag, rw, 1); 566 } 567 568 void 569 spa_config_exit(spa_t *spa, int locks, const void *tag) 570 { 571 (void) tag; 572 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 573 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 574 if (!(locks & (1 << i))) 575 continue; 576 mutex_enter(&scl->scl_lock); 577 ASSERT(scl->scl_count > 0); 578 if (--scl->scl_count == 0) { 579 ASSERT(scl->scl_writer == NULL || 580 scl->scl_writer == curthread); 581 scl->scl_writer = NULL; /* OK in either case */ 582 cv_broadcast(&scl->scl_cv); 583 } 584 mutex_exit(&scl->scl_lock); 585 } 586 } 587 588 int 589 spa_config_held(spa_t *spa, int locks, krw_t rw) 590 { 591 int locks_held = 0; 592 593 for (int i = 0; i < SCL_LOCKS; i++) { 594 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 595 if (!(locks & (1 << i))) 596 continue; 597 if ((rw == RW_READER && scl->scl_count != 0) || 598 (rw == RW_WRITER && scl->scl_writer == curthread)) 599 locks_held |= 1 << i; 600 } 601 602 return (locks_held); 603 } 604 605 /* 606 * ========================================================================== 607 * SPA namespace functions 608 * ========================================================================== 609 */ 610 611 /* 612 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 613 * Returns NULL if no matching spa_t is found. 614 */ 615 spa_t * 616 spa_lookup(const char *name) 617 { 618 static spa_t search; /* spa_t is large; don't allocate on stack */ 619 spa_t *spa; 620 avl_index_t where; 621 char *cp; 622 623 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 624 625 retry: 626 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 627 628 /* 629 * If it's a full dataset name, figure out the pool name and 630 * just use that. 631 */ 632 cp = strpbrk(search.spa_name, "/@#"); 633 if (cp != NULL) 634 *cp = '\0'; 635 636 spa = avl_find(&spa_namespace_avl, &search, &where); 637 if (spa == NULL) 638 return (NULL); 639 640 /* 641 * Avoid racing with import/export, which don't hold the namespace 642 * lock for their entire duration. 643 */ 644 if ((spa->spa_load_thread != NULL && 645 spa->spa_load_thread != curthread) || 646 (spa->spa_export_thread != NULL && 647 spa->spa_export_thread != curthread)) { 648 cv_wait(&spa_namespace_cv, &spa_namespace_lock); 649 goto retry; 650 } 651 652 return (spa); 653 } 654 655 /* 656 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 657 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 658 * looking for potentially hung I/Os. 659 */ 660 void 661 spa_deadman(void *arg) 662 { 663 spa_t *spa = arg; 664 665 /* Disable the deadman if the pool is suspended. */ 666 if (spa_suspended(spa)) 667 return; 668 669 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 670 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 671 (u_longlong_t)++spa->spa_deadman_calls); 672 if (zfs_deadman_enabled) 673 vdev_deadman(spa->spa_root_vdev, FTAG); 674 675 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, 676 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + 677 MSEC_TO_TICK(zfs_deadman_checktime_ms)); 678 } 679 680 static int 681 spa_log_sm_sort_by_txg(const void *va, const void *vb) 682 { 683 const spa_log_sm_t *a = va; 684 const spa_log_sm_t *b = vb; 685 686 return (TREE_CMP(a->sls_txg, b->sls_txg)); 687 } 688 689 /* 690 * Create an uninitialized spa_t with the given name. Requires 691 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 692 * exist by calling spa_lookup() first. 693 */ 694 spa_t * 695 spa_add(const char *name, nvlist_t *config, const char *altroot) 696 { 697 spa_t *spa; 698 spa_config_dirent_t *dp; 699 700 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 701 702 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 703 704 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 705 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 706 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 707 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); 708 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 709 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 710 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 711 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); 712 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 713 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 714 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 715 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL); 716 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL); 717 mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL); 718 mutex_init(&spa->spa_txg_log_time_lock, NULL, MUTEX_DEFAULT, NULL); 719 720 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 721 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); 722 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 723 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 724 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 725 cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL); 726 cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL); 727 728 for (int t = 0; t < TXG_SIZE; t++) 729 bplist_create(&spa->spa_free_bplist[t]); 730 731 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 732 spa->spa_state = POOL_STATE_UNINITIALIZED; 733 spa->spa_freeze_txg = UINT64_MAX; 734 spa->spa_final_txg = UINT64_MAX; 735 spa->spa_load_max_txg = UINT64_MAX; 736 spa->spa_proc = &p0; 737 spa->spa_proc_state = SPA_PROC_NONE; 738 spa->spa_trust_config = B_TRUE; 739 spa->spa_hostid = zone_get_hostid(NULL); 740 741 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); 742 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms); 743 spa_set_deadman_failmode(spa, zfs_deadman_failmode); 744 spa_set_allocator(spa, zfs_active_allocator); 745 746 zfs_refcount_create(&spa->spa_refcount); 747 spa_config_lock_init(spa); 748 spa_stats_init(spa); 749 750 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 751 avl_add(&spa_namespace_avl, spa); 752 753 /* 754 * Set the alternate root, if there is one. 755 */ 756 if (altroot) 757 spa->spa_root = spa_strdup(altroot); 758 759 /* Do not allow more allocators than fraction of CPUs. */ 760 spa->spa_alloc_count = MAX(MIN(spa_num_allocators, 761 boot_ncpus / MAX(spa_cpus_per_allocator, 1)), 1); 762 763 if (spa->spa_alloc_count > 1) { 764 spa->spa_allocs_use = kmem_zalloc(offsetof(spa_allocs_use_t, 765 sau_inuse[spa->spa_alloc_count]), KM_SLEEP); 766 mutex_init(&spa->spa_allocs_use->sau_lock, NULL, MUTEX_DEFAULT, 767 NULL); 768 } 769 770 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed, 771 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node)); 772 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg, 773 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node)); 774 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t), 775 offsetof(log_summary_entry_t, lse_node)); 776 777 /* 778 * Every pool starts with the default cachefile 779 */ 780 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 781 offsetof(spa_config_dirent_t, scd_link)); 782 783 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 784 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 785 list_insert_head(&spa->spa_config_list, dp); 786 787 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 788 KM_SLEEP) == 0); 789 790 if (config != NULL) { 791 nvlist_t *features; 792 793 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 794 &features) == 0) { 795 VERIFY(nvlist_dup(features, &spa->spa_label_features, 796 0) == 0); 797 } 798 799 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 800 } 801 802 if (spa->spa_label_features == NULL) { 803 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 804 KM_SLEEP) == 0); 805 } 806 807 spa->spa_min_ashift = INT_MAX; 808 spa->spa_max_ashift = 0; 809 spa->spa_min_alloc = INT_MAX; 810 spa->spa_gcd_alloc = INT_MAX; 811 812 /* Reset cached value */ 813 spa->spa_dedup_dspace = ~0ULL; 814 815 /* 816 * As a pool is being created, treat all features as disabled by 817 * setting SPA_FEATURE_DISABLED for all entries in the feature 818 * refcount cache. 819 */ 820 for (int i = 0; i < SPA_FEATURES; i++) { 821 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; 822 } 823 824 list_create(&spa->spa_leaf_list, sizeof (vdev_t), 825 offsetof(vdev_t, vdev_leaf_node)); 826 827 return (spa); 828 } 829 830 /* 831 * Removes a spa_t from the namespace, freeing up any memory used. Requires 832 * spa_namespace_lock. This is called only after the spa_t has been closed and 833 * deactivated. 834 */ 835 void 836 spa_remove(spa_t *spa) 837 { 838 spa_config_dirent_t *dp; 839 840 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 841 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED); 842 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0); 843 ASSERT0(spa->spa_waiters); 844 845 nvlist_free(spa->spa_config_splitting); 846 847 avl_remove(&spa_namespace_avl, spa); 848 849 if (spa->spa_root) 850 spa_strfree(spa->spa_root); 851 852 while ((dp = list_remove_head(&spa->spa_config_list)) != NULL) { 853 if (dp->scd_path != NULL) 854 spa_strfree(dp->scd_path); 855 kmem_free(dp, sizeof (spa_config_dirent_t)); 856 } 857 858 if (spa->spa_alloc_count > 1) { 859 mutex_destroy(&spa->spa_allocs_use->sau_lock); 860 kmem_free(spa->spa_allocs_use, offsetof(spa_allocs_use_t, 861 sau_inuse[spa->spa_alloc_count])); 862 } 863 864 avl_destroy(&spa->spa_metaslabs_by_flushed); 865 avl_destroy(&spa->spa_sm_logs_by_txg); 866 list_destroy(&spa->spa_log_summary); 867 list_destroy(&spa->spa_config_list); 868 list_destroy(&spa->spa_leaf_list); 869 870 nvlist_free(spa->spa_label_features); 871 nvlist_free(spa->spa_load_info); 872 nvlist_free(spa->spa_feat_stats); 873 spa_config_set(spa, NULL); 874 875 zfs_refcount_destroy(&spa->spa_refcount); 876 877 spa_stats_destroy(spa); 878 spa_config_lock_destroy(spa); 879 880 for (int t = 0; t < TXG_SIZE; t++) 881 bplist_destroy(&spa->spa_free_bplist[t]); 882 883 zio_checksum_templates_free(spa); 884 885 cv_destroy(&spa->spa_async_cv); 886 cv_destroy(&spa->spa_evicting_os_cv); 887 cv_destroy(&spa->spa_proc_cv); 888 cv_destroy(&spa->spa_scrub_io_cv); 889 cv_destroy(&spa->spa_suspend_cv); 890 cv_destroy(&spa->spa_activities_cv); 891 cv_destroy(&spa->spa_waiters_cv); 892 893 mutex_destroy(&spa->spa_flushed_ms_lock); 894 mutex_destroy(&spa->spa_async_lock); 895 mutex_destroy(&spa->spa_errlist_lock); 896 mutex_destroy(&spa->spa_errlog_lock); 897 mutex_destroy(&spa->spa_evicting_os_lock); 898 mutex_destroy(&spa->spa_history_lock); 899 mutex_destroy(&spa->spa_proc_lock); 900 mutex_destroy(&spa->spa_props_lock); 901 mutex_destroy(&spa->spa_cksum_tmpls_lock); 902 mutex_destroy(&spa->spa_scrub_lock); 903 mutex_destroy(&spa->spa_suspend_lock); 904 mutex_destroy(&spa->spa_vdev_top_lock); 905 mutex_destroy(&spa->spa_feat_stats_lock); 906 mutex_destroy(&spa->spa_activities_lock); 907 mutex_destroy(&spa->spa_txg_log_time_lock); 908 909 kmem_free(spa, sizeof (spa_t)); 910 } 911 912 /* 913 * Given a pool, return the next pool in the namespace, or NULL if there is 914 * none. If 'prev' is NULL, return the first pool. 915 */ 916 spa_t * 917 spa_next(spa_t *prev) 918 { 919 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 920 921 if (prev) 922 return (AVL_NEXT(&spa_namespace_avl, prev)); 923 else 924 return (avl_first(&spa_namespace_avl)); 925 } 926 927 /* 928 * ========================================================================== 929 * SPA refcount functions 930 * ========================================================================== 931 */ 932 933 /* 934 * Add a reference to the given spa_t. Must have at least one reference, or 935 * have the namespace lock held. 936 */ 937 void 938 spa_open_ref(spa_t *spa, const void *tag) 939 { 940 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref || 941 MUTEX_HELD(&spa_namespace_lock) || 942 spa->spa_load_thread == curthread); 943 (void) zfs_refcount_add(&spa->spa_refcount, tag); 944 } 945 946 /* 947 * Remove a reference to the given spa_t. Must have at least one reference, or 948 * have the namespace lock held or be part of a pool import/export. 949 */ 950 void 951 spa_close(spa_t *spa, const void *tag) 952 { 953 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref || 954 MUTEX_HELD(&spa_namespace_lock) || 955 spa->spa_load_thread == curthread || 956 spa->spa_export_thread == curthread); 957 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 958 } 959 960 /* 961 * Remove a reference to the given spa_t held by a dsl dir that is 962 * being asynchronously released. Async releases occur from a taskq 963 * performing eviction of dsl datasets and dirs. The namespace lock 964 * isn't held and the hold by the object being evicted may contribute to 965 * spa_minref (e.g. dataset or directory released during pool export), 966 * so the asserts in spa_close() do not apply. 967 */ 968 void 969 spa_async_close(spa_t *spa, const void *tag) 970 { 971 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 972 } 973 974 /* 975 * Check to see if the spa refcount is zero. Must be called with 976 * spa_namespace_lock held or be the spa export thread. We really 977 * compare against spa_minref, which is the number of references 978 * acquired when opening a pool 979 */ 980 boolean_t 981 spa_refcount_zero(spa_t *spa) 982 { 983 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 984 spa->spa_export_thread == curthread); 985 986 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref); 987 } 988 989 /* 990 * ========================================================================== 991 * SPA spare and l2cache tracking 992 * ========================================================================== 993 */ 994 995 /* 996 * Hot spares and cache devices are tracked using the same code below, 997 * for 'auxiliary' devices. 998 */ 999 1000 typedef struct spa_aux { 1001 uint64_t aux_guid; 1002 uint64_t aux_pool; 1003 avl_node_t aux_avl; 1004 int aux_count; 1005 } spa_aux_t; 1006 1007 static inline int 1008 spa_aux_compare(const void *a, const void *b) 1009 { 1010 const spa_aux_t *sa = (const spa_aux_t *)a; 1011 const spa_aux_t *sb = (const spa_aux_t *)b; 1012 1013 return (TREE_CMP(sa->aux_guid, sb->aux_guid)); 1014 } 1015 1016 static void 1017 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 1018 { 1019 avl_index_t where; 1020 spa_aux_t search; 1021 spa_aux_t *aux; 1022 1023 search.aux_guid = vd->vdev_guid; 1024 if ((aux = avl_find(avl, &search, &where)) != NULL) { 1025 aux->aux_count++; 1026 } else { 1027 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 1028 aux->aux_guid = vd->vdev_guid; 1029 aux->aux_count = 1; 1030 avl_insert(avl, aux, where); 1031 } 1032 } 1033 1034 static void 1035 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 1036 { 1037 spa_aux_t search; 1038 spa_aux_t *aux; 1039 avl_index_t where; 1040 1041 search.aux_guid = vd->vdev_guid; 1042 aux = avl_find(avl, &search, &where); 1043 1044 ASSERT(aux != NULL); 1045 1046 if (--aux->aux_count == 0) { 1047 avl_remove(avl, aux); 1048 kmem_free(aux, sizeof (spa_aux_t)); 1049 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 1050 aux->aux_pool = 0ULL; 1051 } 1052 } 1053 1054 static boolean_t 1055 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 1056 { 1057 spa_aux_t search, *found; 1058 1059 search.aux_guid = guid; 1060 found = avl_find(avl, &search, NULL); 1061 1062 if (pool) { 1063 if (found) 1064 *pool = found->aux_pool; 1065 else 1066 *pool = 0ULL; 1067 } 1068 1069 if (refcnt) { 1070 if (found) 1071 *refcnt = found->aux_count; 1072 else 1073 *refcnt = 0; 1074 } 1075 1076 return (found != NULL); 1077 } 1078 1079 static void 1080 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 1081 { 1082 spa_aux_t search, *found; 1083 avl_index_t where; 1084 1085 search.aux_guid = vd->vdev_guid; 1086 found = avl_find(avl, &search, &where); 1087 ASSERT(found != NULL); 1088 ASSERT(found->aux_pool == 0ULL); 1089 1090 found->aux_pool = spa_guid(vd->vdev_spa); 1091 } 1092 1093 /* 1094 * Spares are tracked globally due to the following constraints: 1095 * 1096 * - A spare may be part of multiple pools. 1097 * - A spare may be added to a pool even if it's actively in use within 1098 * another pool. 1099 * - A spare in use in any pool can only be the source of a replacement if 1100 * the target is a spare in the same pool. 1101 * 1102 * We keep track of all spares on the system through the use of a reference 1103 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 1104 * spare, then we bump the reference count in the AVL tree. In addition, we set 1105 * the 'vdev_isspare' member to indicate that the device is a spare (active or 1106 * inactive). When a spare is made active (used to replace a device in the 1107 * pool), we also keep track of which pool its been made a part of. 1108 * 1109 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 1110 * called under the spa_namespace lock as part of vdev reconfiguration. The 1111 * separate spare lock exists for the status query path, which does not need to 1112 * be completely consistent with respect to other vdev configuration changes. 1113 */ 1114 1115 static int 1116 spa_spare_compare(const void *a, const void *b) 1117 { 1118 return (spa_aux_compare(a, b)); 1119 } 1120 1121 void 1122 spa_spare_add(vdev_t *vd) 1123 { 1124 mutex_enter(&spa_spare_lock); 1125 ASSERT(!vd->vdev_isspare); 1126 spa_aux_add(vd, &spa_spare_avl); 1127 vd->vdev_isspare = B_TRUE; 1128 mutex_exit(&spa_spare_lock); 1129 } 1130 1131 void 1132 spa_spare_remove(vdev_t *vd) 1133 { 1134 mutex_enter(&spa_spare_lock); 1135 ASSERT(vd->vdev_isspare); 1136 spa_aux_remove(vd, &spa_spare_avl); 1137 vd->vdev_isspare = B_FALSE; 1138 mutex_exit(&spa_spare_lock); 1139 } 1140 1141 boolean_t 1142 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 1143 { 1144 boolean_t found; 1145 1146 mutex_enter(&spa_spare_lock); 1147 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 1148 mutex_exit(&spa_spare_lock); 1149 1150 return (found); 1151 } 1152 1153 void 1154 spa_spare_activate(vdev_t *vd) 1155 { 1156 mutex_enter(&spa_spare_lock); 1157 ASSERT(vd->vdev_isspare); 1158 spa_aux_activate(vd, &spa_spare_avl); 1159 mutex_exit(&spa_spare_lock); 1160 } 1161 1162 /* 1163 * Level 2 ARC devices are tracked globally for the same reasons as spares. 1164 * Cache devices currently only support one pool per cache device, and so 1165 * for these devices the aux reference count is currently unused beyond 1. 1166 */ 1167 1168 static int 1169 spa_l2cache_compare(const void *a, const void *b) 1170 { 1171 return (spa_aux_compare(a, b)); 1172 } 1173 1174 void 1175 spa_l2cache_add(vdev_t *vd) 1176 { 1177 mutex_enter(&spa_l2cache_lock); 1178 ASSERT(!vd->vdev_isl2cache); 1179 spa_aux_add(vd, &spa_l2cache_avl); 1180 vd->vdev_isl2cache = B_TRUE; 1181 mutex_exit(&spa_l2cache_lock); 1182 } 1183 1184 void 1185 spa_l2cache_remove(vdev_t *vd) 1186 { 1187 mutex_enter(&spa_l2cache_lock); 1188 ASSERT(vd->vdev_isl2cache); 1189 spa_aux_remove(vd, &spa_l2cache_avl); 1190 vd->vdev_isl2cache = B_FALSE; 1191 mutex_exit(&spa_l2cache_lock); 1192 } 1193 1194 boolean_t 1195 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 1196 { 1197 boolean_t found; 1198 1199 mutex_enter(&spa_l2cache_lock); 1200 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 1201 mutex_exit(&spa_l2cache_lock); 1202 1203 return (found); 1204 } 1205 1206 void 1207 spa_l2cache_activate(vdev_t *vd) 1208 { 1209 mutex_enter(&spa_l2cache_lock); 1210 ASSERT(vd->vdev_isl2cache); 1211 spa_aux_activate(vd, &spa_l2cache_avl); 1212 mutex_exit(&spa_l2cache_lock); 1213 } 1214 1215 /* 1216 * ========================================================================== 1217 * SPA vdev locking 1218 * ========================================================================== 1219 */ 1220 1221 /* 1222 * Lock the given spa_t for the purpose of adding or removing a vdev. 1223 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 1224 * It returns the next transaction group for the spa_t. 1225 */ 1226 uint64_t 1227 spa_vdev_enter(spa_t *spa) 1228 { 1229 mutex_enter(&spa->spa_vdev_top_lock); 1230 mutex_enter(&spa_namespace_lock); 1231 1232 ASSERT0(spa->spa_export_thread); 1233 1234 vdev_autotrim_stop_all(spa); 1235 1236 return (spa_vdev_config_enter(spa)); 1237 } 1238 1239 /* 1240 * The same as spa_vdev_enter() above but additionally takes the guid of 1241 * the vdev being detached. When there is a rebuild in process it will be 1242 * suspended while the vdev tree is modified then resumed by spa_vdev_exit(). 1243 * The rebuild is canceled if only a single child remains after the detach. 1244 */ 1245 uint64_t 1246 spa_vdev_detach_enter(spa_t *spa, uint64_t guid) 1247 { 1248 mutex_enter(&spa->spa_vdev_top_lock); 1249 mutex_enter(&spa_namespace_lock); 1250 1251 ASSERT0(spa->spa_export_thread); 1252 1253 vdev_autotrim_stop_all(spa); 1254 1255 if (guid != 0) { 1256 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 1257 if (vd) { 1258 vdev_rebuild_stop_wait(vd->vdev_top); 1259 } 1260 } 1261 1262 return (spa_vdev_config_enter(spa)); 1263 } 1264 1265 /* 1266 * Internal implementation for spa_vdev_enter(). Used when a vdev 1267 * operation requires multiple syncs (i.e. removing a device) while 1268 * keeping the spa_namespace_lock held. 1269 */ 1270 uint64_t 1271 spa_vdev_config_enter(spa_t *spa) 1272 { 1273 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1274 1275 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1276 1277 return (spa_last_synced_txg(spa) + 1); 1278 } 1279 1280 /* 1281 * Used in combination with spa_vdev_config_enter() to allow the syncing 1282 * of multiple transactions without releasing the spa_namespace_lock. 1283 */ 1284 void 1285 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, 1286 const char *tag) 1287 { 1288 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1289 1290 int config_changed = B_FALSE; 1291 1292 ASSERT(txg > spa_last_synced_txg(spa)); 1293 1294 spa->spa_pending_vdev = NULL; 1295 1296 /* 1297 * Reassess the DTLs. 1298 */ 1299 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE); 1300 1301 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 1302 config_changed = B_TRUE; 1303 spa->spa_config_generation++; 1304 } 1305 1306 /* 1307 * Verify the metaslab classes. 1308 */ 1309 metaslab_class_validate(spa_normal_class(spa)); 1310 metaslab_class_validate(spa_log_class(spa)); 1311 metaslab_class_validate(spa_embedded_log_class(spa)); 1312 metaslab_class_validate(spa_special_class(spa)); 1313 metaslab_class_validate(spa_special_embedded_log_class(spa)); 1314 metaslab_class_validate(spa_dedup_class(spa)); 1315 1316 spa_config_exit(spa, SCL_ALL, spa); 1317 1318 /* 1319 * Panic the system if the specified tag requires it. This 1320 * is useful for ensuring that configurations are updated 1321 * transactionally. 1322 */ 1323 if (zio_injection_enabled) 1324 zio_handle_panic_injection(spa, tag, 0); 1325 1326 /* 1327 * Note: this txg_wait_synced() is important because it ensures 1328 * that there won't be more than one config change per txg. 1329 * This allows us to use the txg as the generation number. 1330 */ 1331 if (error == 0) 1332 txg_wait_synced(spa->spa_dsl_pool, txg); 1333 1334 if (vd != NULL) { 1335 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); 1336 if (vd->vdev_ops->vdev_op_leaf) { 1337 mutex_enter(&vd->vdev_initialize_lock); 1338 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, 1339 NULL); 1340 mutex_exit(&vd->vdev_initialize_lock); 1341 1342 mutex_enter(&vd->vdev_trim_lock); 1343 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL); 1344 mutex_exit(&vd->vdev_trim_lock); 1345 } 1346 1347 /* 1348 * The vdev may be both a leaf and top-level device. 1349 */ 1350 vdev_autotrim_stop_wait(vd); 1351 1352 spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER); 1353 vdev_free(vd); 1354 spa_config_exit(spa, SCL_STATE_ALL, spa); 1355 } 1356 1357 /* 1358 * If the config changed, update the config cache. 1359 */ 1360 if (config_changed) 1361 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); 1362 } 1363 1364 /* 1365 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1366 * locking of spa_vdev_enter(), we also want make sure the transactions have 1367 * synced to disk, and then update the global configuration cache with the new 1368 * information. 1369 */ 1370 int 1371 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1372 { 1373 vdev_autotrim_restart(spa); 1374 vdev_rebuild_restart(spa); 1375 1376 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1377 mutex_exit(&spa_namespace_lock); 1378 mutex_exit(&spa->spa_vdev_top_lock); 1379 1380 return (error); 1381 } 1382 1383 /* 1384 * Lock the given spa_t for the purpose of changing vdev state. 1385 */ 1386 void 1387 spa_vdev_state_enter(spa_t *spa, int oplocks) 1388 { 1389 int locks = SCL_STATE_ALL | oplocks; 1390 1391 /* 1392 * Root pools may need to read of the underlying devfs filesystem 1393 * when opening up a vdev. Unfortunately if we're holding the 1394 * SCL_ZIO lock it will result in a deadlock when we try to issue 1395 * the read from the root filesystem. Instead we "prefetch" 1396 * the associated vnodes that we need prior to opening the 1397 * underlying devices and cache them so that we can prevent 1398 * any I/O when we are doing the actual open. 1399 */ 1400 if (spa_is_root(spa)) { 1401 int low = locks & ~(SCL_ZIO - 1); 1402 int high = locks & ~low; 1403 1404 spa_config_enter(spa, high, spa, RW_WRITER); 1405 vdev_hold(spa->spa_root_vdev); 1406 spa_config_enter(spa, low, spa, RW_WRITER); 1407 } else { 1408 spa_config_enter(spa, locks, spa, RW_WRITER); 1409 } 1410 spa->spa_vdev_locks = locks; 1411 } 1412 1413 int 1414 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1415 { 1416 boolean_t config_changed = B_FALSE; 1417 vdev_t *vdev_top; 1418 1419 if (vd == NULL || vd == spa->spa_root_vdev) { 1420 vdev_top = spa->spa_root_vdev; 1421 } else { 1422 vdev_top = vd->vdev_top; 1423 } 1424 1425 if (vd != NULL || error == 0) 1426 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE); 1427 1428 if (vd != NULL) { 1429 if (vd != spa->spa_root_vdev) 1430 vdev_state_dirty(vdev_top); 1431 1432 config_changed = B_TRUE; 1433 spa->spa_config_generation++; 1434 } 1435 1436 if (spa_is_root(spa)) 1437 vdev_rele(spa->spa_root_vdev); 1438 1439 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1440 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1441 1442 /* 1443 * If anything changed, wait for it to sync. This ensures that, 1444 * from the system administrator's perspective, zpool(8) commands 1445 * are synchronous. This is important for things like zpool offline: 1446 * when the command completes, you expect no further I/O from ZFS. 1447 */ 1448 if (vd != NULL) 1449 txg_wait_synced(spa->spa_dsl_pool, 0); 1450 1451 /* 1452 * If the config changed, update the config cache. 1453 */ 1454 if (config_changed) { 1455 mutex_enter(&spa_namespace_lock); 1456 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE); 1457 mutex_exit(&spa_namespace_lock); 1458 } 1459 1460 return (error); 1461 } 1462 1463 /* 1464 * ========================================================================== 1465 * Miscellaneous functions 1466 * ========================================================================== 1467 */ 1468 1469 void 1470 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) 1471 { 1472 if (!nvlist_exists(spa->spa_label_features, feature)) { 1473 fnvlist_add_boolean(spa->spa_label_features, feature); 1474 /* 1475 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't 1476 * dirty the vdev config because lock SCL_CONFIG is not held. 1477 * Thankfully, in this case we don't need to dirty the config 1478 * because it will be written out anyway when we finish 1479 * creating the pool. 1480 */ 1481 if (tx->tx_txg != TXG_INITIAL) 1482 vdev_config_dirty(spa->spa_root_vdev); 1483 } 1484 } 1485 1486 void 1487 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1488 { 1489 if (nvlist_remove_all(spa->spa_label_features, feature) == 0) 1490 vdev_config_dirty(spa->spa_root_vdev); 1491 } 1492 1493 /* 1494 * Return the spa_t associated with given pool_guid, if it exists. If 1495 * device_guid is non-zero, determine whether the pool exists *and* contains 1496 * a device with the specified device_guid. 1497 */ 1498 spa_t * 1499 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1500 { 1501 spa_t *spa; 1502 avl_tree_t *t = &spa_namespace_avl; 1503 1504 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1505 1506 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1507 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1508 continue; 1509 if (spa->spa_root_vdev == NULL) 1510 continue; 1511 if (spa_guid(spa) == pool_guid) { 1512 if (device_guid == 0) 1513 break; 1514 1515 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1516 device_guid) != NULL) 1517 break; 1518 1519 /* 1520 * Check any devices we may be in the process of adding. 1521 */ 1522 if (spa->spa_pending_vdev) { 1523 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1524 device_guid) != NULL) 1525 break; 1526 } 1527 } 1528 } 1529 1530 return (spa); 1531 } 1532 1533 /* 1534 * Determine whether a pool with the given pool_guid exists. 1535 */ 1536 boolean_t 1537 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1538 { 1539 return (spa_by_guid(pool_guid, device_guid) != NULL); 1540 } 1541 1542 char * 1543 spa_strdup(const char *s) 1544 { 1545 size_t len; 1546 char *new; 1547 1548 len = strlen(s); 1549 new = kmem_alloc(len + 1, KM_SLEEP); 1550 memcpy(new, s, len + 1); 1551 1552 return (new); 1553 } 1554 1555 void 1556 spa_strfree(char *s) 1557 { 1558 kmem_free(s, strlen(s) + 1); 1559 } 1560 1561 uint64_t 1562 spa_generate_guid(spa_t *spa) 1563 { 1564 uint64_t guid; 1565 1566 if (spa != NULL) { 1567 do { 1568 (void) random_get_pseudo_bytes((void *)&guid, 1569 sizeof (guid)); 1570 } while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)); 1571 } else { 1572 do { 1573 (void) random_get_pseudo_bytes((void *)&guid, 1574 sizeof (guid)); 1575 } while (guid == 0 || spa_guid_exists(guid, 0)); 1576 } 1577 1578 return (guid); 1579 } 1580 1581 static boolean_t 1582 spa_load_guid_exists(uint64_t guid) 1583 { 1584 avl_tree_t *t = &spa_namespace_avl; 1585 1586 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1587 1588 for (spa_t *spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1589 if (spa_load_guid(spa) == guid) 1590 return (B_TRUE); 1591 } 1592 1593 return (arc_async_flush_guid_inuse(guid)); 1594 } 1595 1596 uint64_t 1597 spa_generate_load_guid(void) 1598 { 1599 uint64_t guid; 1600 1601 do { 1602 (void) random_get_pseudo_bytes((void *)&guid, 1603 sizeof (guid)); 1604 } while (guid == 0 || spa_load_guid_exists(guid)); 1605 1606 return (guid); 1607 } 1608 1609 void 1610 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) 1611 { 1612 char type[256]; 1613 const char *checksum = NULL; 1614 const char *compress = NULL; 1615 1616 if (bp != NULL) { 1617 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1618 dmu_object_byteswap_t bswap = 1619 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1620 (void) snprintf(type, sizeof (type), "bswap %s %s", 1621 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1622 "metadata" : "data", 1623 dmu_ot_byteswap[bswap].ob_name); 1624 } else { 1625 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1626 sizeof (type)); 1627 } 1628 if (!BP_IS_EMBEDDED(bp)) { 1629 checksum = 1630 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1631 } 1632 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1633 } 1634 1635 SNPRINTF_BLKPTR(kmem_scnprintf, ' ', buf, buflen, bp, type, checksum, 1636 compress); 1637 } 1638 1639 void 1640 spa_freeze(spa_t *spa) 1641 { 1642 uint64_t freeze_txg = 0; 1643 1644 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1645 if (spa->spa_freeze_txg == UINT64_MAX) { 1646 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1647 spa->spa_freeze_txg = freeze_txg; 1648 } 1649 spa_config_exit(spa, SCL_ALL, FTAG); 1650 if (freeze_txg != 0) 1651 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1652 } 1653 1654 void 1655 zfs_panic_recover(const char *fmt, ...) 1656 { 1657 va_list adx; 1658 1659 va_start(adx, fmt); 1660 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1661 va_end(adx); 1662 } 1663 1664 /* 1665 * This is a stripped-down version of strtoull, suitable only for converting 1666 * lowercase hexadecimal numbers that don't overflow. 1667 */ 1668 uint64_t 1669 zfs_strtonum(const char *str, char **nptr) 1670 { 1671 uint64_t val = 0; 1672 char c; 1673 int digit; 1674 1675 while ((c = *str) != '\0') { 1676 if (c >= '0' && c <= '9') 1677 digit = c - '0'; 1678 else if (c >= 'a' && c <= 'f') 1679 digit = 10 + c - 'a'; 1680 else 1681 break; 1682 1683 val *= 16; 1684 val += digit; 1685 1686 str++; 1687 } 1688 1689 if (nptr) 1690 *nptr = (char *)str; 1691 1692 return (val); 1693 } 1694 1695 void 1696 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx) 1697 { 1698 /* 1699 * We bump the feature refcount for each special vdev added to the pool 1700 */ 1701 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)); 1702 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx); 1703 } 1704 1705 /* 1706 * ========================================================================== 1707 * Accessor functions 1708 * ========================================================================== 1709 */ 1710 1711 boolean_t 1712 spa_shutting_down(spa_t *spa) 1713 { 1714 return (spa->spa_async_suspended); 1715 } 1716 1717 dsl_pool_t * 1718 spa_get_dsl(spa_t *spa) 1719 { 1720 return (spa->spa_dsl_pool); 1721 } 1722 1723 boolean_t 1724 spa_is_initializing(spa_t *spa) 1725 { 1726 return (spa->spa_is_initializing); 1727 } 1728 1729 boolean_t 1730 spa_indirect_vdevs_loaded(spa_t *spa) 1731 { 1732 return (spa->spa_indirect_vdevs_loaded); 1733 } 1734 1735 blkptr_t * 1736 spa_get_rootblkptr(spa_t *spa) 1737 { 1738 return (&spa->spa_ubsync.ub_rootbp); 1739 } 1740 1741 void 1742 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1743 { 1744 spa->spa_uberblock.ub_rootbp = *bp; 1745 } 1746 1747 void 1748 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1749 { 1750 if (spa->spa_root == NULL) 1751 buf[0] = '\0'; 1752 else 1753 (void) strlcpy(buf, spa->spa_root, buflen); 1754 } 1755 1756 uint32_t 1757 spa_sync_pass(spa_t *spa) 1758 { 1759 return (spa->spa_sync_pass); 1760 } 1761 1762 char * 1763 spa_name(spa_t *spa) 1764 { 1765 return (spa->spa_name); 1766 } 1767 1768 uint64_t 1769 spa_guid(spa_t *spa) 1770 { 1771 dsl_pool_t *dp = spa_get_dsl(spa); 1772 uint64_t guid; 1773 1774 /* 1775 * If we fail to parse the config during spa_load(), we can go through 1776 * the error path (which posts an ereport) and end up here with no root 1777 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1778 * this case. 1779 */ 1780 if (spa->spa_root_vdev == NULL) 1781 return (spa->spa_config_guid); 1782 1783 guid = spa->spa_last_synced_guid != 0 ? 1784 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1785 1786 /* 1787 * Return the most recently synced out guid unless we're 1788 * in syncing context. 1789 */ 1790 if (dp && dsl_pool_sync_context(dp)) 1791 return (spa->spa_root_vdev->vdev_guid); 1792 else 1793 return (guid); 1794 } 1795 1796 uint64_t 1797 spa_load_guid(spa_t *spa) 1798 { 1799 /* 1800 * This is a GUID that exists solely as a reference for the 1801 * purposes of the arc. It is generated at load time, and 1802 * is never written to persistent storage. 1803 */ 1804 return (spa->spa_load_guid); 1805 } 1806 1807 uint64_t 1808 spa_last_synced_txg(spa_t *spa) 1809 { 1810 return (spa->spa_ubsync.ub_txg); 1811 } 1812 1813 uint64_t 1814 spa_first_txg(spa_t *spa) 1815 { 1816 return (spa->spa_first_txg); 1817 } 1818 1819 uint64_t 1820 spa_syncing_txg(spa_t *spa) 1821 { 1822 return (spa->spa_syncing_txg); 1823 } 1824 1825 /* 1826 * Return the last txg where data can be dirtied. The final txgs 1827 * will be used to just clear out any deferred frees that remain. 1828 */ 1829 uint64_t 1830 spa_final_dirty_txg(spa_t *spa) 1831 { 1832 return (spa->spa_final_txg - TXG_DEFER_SIZE); 1833 } 1834 1835 pool_state_t 1836 spa_state(spa_t *spa) 1837 { 1838 return (spa->spa_state); 1839 } 1840 1841 spa_load_state_t 1842 spa_load_state(spa_t *spa) 1843 { 1844 return (spa->spa_load_state); 1845 } 1846 1847 uint64_t 1848 spa_freeze_txg(spa_t *spa) 1849 { 1850 return (spa->spa_freeze_txg); 1851 } 1852 1853 /* 1854 * Return the inflated asize for a logical write in bytes. This is used by the 1855 * DMU to calculate the space a logical write will require on disk. 1856 * If lsize is smaller than the largest physical block size allocatable on this 1857 * pool we use its value instead, since the write will end up using the whole 1858 * block anyway. 1859 */ 1860 uint64_t 1861 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize) 1862 { 1863 if (lsize == 0) 1864 return (0); /* No inflation needed */ 1865 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation); 1866 } 1867 1868 /* 1869 * Return the amount of slop space in bytes. It is typically 1/32 of the pool 1870 * (3.2%), minus the embedded log space. On very small pools, it may be 1871 * slightly larger than this. On very large pools, it will be capped to 1872 * the value of spa_max_slop. The embedded log space is not included in 1873 * spa_dspace. By subtracting it, the usable space (per "zfs list") is a 1874 * constant 97% of the total space, regardless of metaslab size (assuming the 1875 * default spa_slop_shift=5 and a non-tiny pool). 1876 * 1877 * See the comment above spa_slop_shift for more details. 1878 */ 1879 uint64_t 1880 spa_get_slop_space(spa_t *spa) 1881 { 1882 uint64_t space = 0; 1883 uint64_t slop = 0; 1884 1885 /* 1886 * Make sure spa_dedup_dspace has been set. 1887 */ 1888 if (spa->spa_dedup_dspace == ~0ULL) 1889 spa_update_dspace(spa); 1890 1891 space = spa->spa_rdspace; 1892 slop = MIN(space >> spa_slop_shift, spa_max_slop); 1893 1894 /* 1895 * Subtract the embedded log space, but no more than half the (3.2%) 1896 * unusable space. Note, the "no more than half" is only relevant if 1897 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by 1898 * default. 1899 */ 1900 uint64_t embedded_log = 1901 metaslab_class_get_dspace(spa_embedded_log_class(spa)); 1902 embedded_log += metaslab_class_get_dspace( 1903 spa_special_embedded_log_class(spa)); 1904 slop -= MIN(embedded_log, slop >> 1); 1905 1906 /* 1907 * Slop space should be at least spa_min_slop, but no more than half 1908 * the entire pool. 1909 */ 1910 slop = MAX(slop, MIN(space >> 1, spa_min_slop)); 1911 return (slop); 1912 } 1913 1914 uint64_t 1915 spa_get_dspace(spa_t *spa) 1916 { 1917 return (spa->spa_dspace); 1918 } 1919 1920 uint64_t 1921 spa_get_checkpoint_space(spa_t *spa) 1922 { 1923 return (spa->spa_checkpoint_info.sci_dspace); 1924 } 1925 1926 void 1927 spa_update_dspace(spa_t *spa) 1928 { 1929 spa->spa_rdspace = metaslab_class_get_dspace(spa_normal_class(spa)); 1930 if (spa->spa_nonallocating_dspace > 0) { 1931 /* 1932 * Subtract the space provided by all non-allocating vdevs that 1933 * contribute to dspace. If a file is overwritten, its old 1934 * blocks are freed and new blocks are allocated. If there are 1935 * no snapshots of the file, the available space should remain 1936 * the same. The old blocks could be freed from the 1937 * non-allocating vdev, but the new blocks must be allocated on 1938 * other (allocating) vdevs. By reserving the entire size of 1939 * the non-allocating vdevs (including allocated space), we 1940 * ensure that there will be enough space on the allocating 1941 * vdevs for this file overwrite to succeed. 1942 * 1943 * Note that the DMU/DSL doesn't actually know or care 1944 * how much space is allocated (it does its own tracking 1945 * of how much space has been logically used). So it 1946 * doesn't matter that the data we are moving may be 1947 * allocated twice (on the old device and the new device). 1948 */ 1949 ASSERT3U(spa->spa_rdspace, >=, spa->spa_nonallocating_dspace); 1950 spa->spa_rdspace -= spa->spa_nonallocating_dspace; 1951 } 1952 spa->spa_dspace = spa->spa_rdspace + ddt_get_dedup_dspace(spa) + 1953 brt_get_dspace(spa); 1954 } 1955 1956 /* 1957 * Return the failure mode that has been set to this pool. The default 1958 * behavior will be to block all I/Os when a complete failure occurs. 1959 */ 1960 uint64_t 1961 spa_get_failmode(spa_t *spa) 1962 { 1963 return (spa->spa_failmode); 1964 } 1965 1966 boolean_t 1967 spa_suspended(spa_t *spa) 1968 { 1969 return (spa->spa_suspended != ZIO_SUSPEND_NONE); 1970 } 1971 1972 uint64_t 1973 spa_version(spa_t *spa) 1974 { 1975 return (spa->spa_ubsync.ub_version); 1976 } 1977 1978 boolean_t 1979 spa_deflate(spa_t *spa) 1980 { 1981 return (spa->spa_deflate); 1982 } 1983 1984 metaslab_class_t * 1985 spa_normal_class(spa_t *spa) 1986 { 1987 return (spa->spa_normal_class); 1988 } 1989 1990 metaslab_class_t * 1991 spa_log_class(spa_t *spa) 1992 { 1993 return (spa->spa_log_class); 1994 } 1995 1996 metaslab_class_t * 1997 spa_embedded_log_class(spa_t *spa) 1998 { 1999 return (spa->spa_embedded_log_class); 2000 } 2001 2002 metaslab_class_t * 2003 spa_special_class(spa_t *spa) 2004 { 2005 return (spa->spa_special_class); 2006 } 2007 2008 metaslab_class_t * 2009 spa_special_embedded_log_class(spa_t *spa) 2010 { 2011 return (spa->spa_special_embedded_log_class); 2012 } 2013 2014 metaslab_class_t * 2015 spa_dedup_class(spa_t *spa) 2016 { 2017 return (spa->spa_dedup_class); 2018 } 2019 2020 boolean_t 2021 spa_special_has_ddt(spa_t *spa) 2022 { 2023 return (zfs_ddt_data_is_special && spa_has_special(spa)); 2024 } 2025 2026 /* 2027 * Locate an appropriate allocation class 2028 */ 2029 metaslab_class_t * 2030 spa_preferred_class(spa_t *spa, const zio_t *zio) 2031 { 2032 metaslab_class_t *mc = zio->io_metaslab_class; 2033 boolean_t tried_dedup = (mc == spa_dedup_class(spa)); 2034 boolean_t tried_special = (mc == spa_special_class(spa)); 2035 const zio_prop_t *zp = &zio->io_prop; 2036 2037 /* 2038 * Override object type for the purposes of selecting a storage class. 2039 * Primarily for DMU_OTN_ types where we can't explicitly control their 2040 * storage class; instead, choose a static type most closely matches 2041 * what we want. 2042 */ 2043 dmu_object_type_t objtype = 2044 zp->zp_storage_type == DMU_OT_NONE ? 2045 zp->zp_type : zp->zp_storage_type; 2046 2047 /* 2048 * ZIL allocations determine their class in zio_alloc_zil(). 2049 */ 2050 ASSERT(objtype != DMU_OT_INTENT_LOG); 2051 2052 if (DMU_OT_IS_DDT(objtype)) { 2053 if (spa_has_dedup(spa) && !tried_dedup && !tried_special) 2054 return (spa_dedup_class(spa)); 2055 else if (spa_special_has_ddt(spa) && !tried_special) 2056 return (spa_special_class(spa)); 2057 else 2058 return (spa_normal_class(spa)); 2059 } 2060 2061 /* Indirect blocks for user data can land in special if allowed */ 2062 if (zp->zp_level > 0 && 2063 (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) { 2064 if (zfs_user_indirect_is_special && spa_has_special(spa) && 2065 !tried_special) 2066 return (spa_special_class(spa)); 2067 else 2068 return (spa_normal_class(spa)); 2069 } 2070 2071 if (DMU_OT_IS_METADATA(objtype) || zp->zp_level > 0) { 2072 if (spa_has_special(spa) && !tried_special) 2073 return (spa_special_class(spa)); 2074 else 2075 return (spa_normal_class(spa)); 2076 } 2077 2078 /* 2079 * Allow small file or zvol blocks in special class if opted in by 2080 * the special_smallblk property. However, always leave a reserve of 2081 * zfs_special_class_metadata_reserve_pct exclusively for metadata. 2082 */ 2083 if ((DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL) && 2084 spa_has_special(spa) && !tried_special && 2085 zio->io_size <= zp->zp_zpl_smallblk) { 2086 metaslab_class_t *special = spa_special_class(spa); 2087 uint64_t alloc = metaslab_class_get_alloc(special); 2088 uint64_t space = metaslab_class_get_space(special); 2089 uint64_t limit = 2090 (space * (100 - zfs_special_class_metadata_reserve_pct)) 2091 / 100; 2092 2093 if (alloc < limit) 2094 return (special); 2095 } 2096 2097 return (spa_normal_class(spa)); 2098 } 2099 2100 void 2101 spa_evicting_os_register(spa_t *spa, objset_t *os) 2102 { 2103 mutex_enter(&spa->spa_evicting_os_lock); 2104 list_insert_head(&spa->spa_evicting_os_list, os); 2105 mutex_exit(&spa->spa_evicting_os_lock); 2106 } 2107 2108 void 2109 spa_evicting_os_deregister(spa_t *spa, objset_t *os) 2110 { 2111 mutex_enter(&spa->spa_evicting_os_lock); 2112 list_remove(&spa->spa_evicting_os_list, os); 2113 cv_broadcast(&spa->spa_evicting_os_cv); 2114 mutex_exit(&spa->spa_evicting_os_lock); 2115 } 2116 2117 void 2118 spa_evicting_os_wait(spa_t *spa) 2119 { 2120 mutex_enter(&spa->spa_evicting_os_lock); 2121 while (!list_is_empty(&spa->spa_evicting_os_list)) 2122 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); 2123 mutex_exit(&spa->spa_evicting_os_lock); 2124 2125 dmu_buf_user_evict_wait(); 2126 } 2127 2128 int 2129 spa_max_replication(spa_t *spa) 2130 { 2131 /* 2132 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 2133 * handle BPs with more than one DVA allocated. Set our max 2134 * replication level accordingly. 2135 */ 2136 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 2137 return (1); 2138 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 2139 } 2140 2141 int 2142 spa_prev_software_version(spa_t *spa) 2143 { 2144 return (spa->spa_prev_software_version); 2145 } 2146 2147 uint64_t 2148 spa_deadman_synctime(spa_t *spa) 2149 { 2150 return (spa->spa_deadman_synctime); 2151 } 2152 2153 spa_autotrim_t 2154 spa_get_autotrim(spa_t *spa) 2155 { 2156 return (spa->spa_autotrim); 2157 } 2158 2159 uint64_t 2160 spa_deadman_ziotime(spa_t *spa) 2161 { 2162 return (spa->spa_deadman_ziotime); 2163 } 2164 2165 uint64_t 2166 spa_get_deadman_failmode(spa_t *spa) 2167 { 2168 return (spa->spa_deadman_failmode); 2169 } 2170 2171 void 2172 spa_set_deadman_failmode(spa_t *spa, const char *failmode) 2173 { 2174 if (strcmp(failmode, "wait") == 0) 2175 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2176 else if (strcmp(failmode, "continue") == 0) 2177 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE; 2178 else if (strcmp(failmode, "panic") == 0) 2179 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC; 2180 else 2181 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2182 } 2183 2184 void 2185 spa_set_deadman_ziotime(hrtime_t ns) 2186 { 2187 spa_t *spa = NULL; 2188 2189 if (spa_mode_global != SPA_MODE_UNINIT) { 2190 mutex_enter(&spa_namespace_lock); 2191 while ((spa = spa_next(spa)) != NULL) 2192 spa->spa_deadman_ziotime = ns; 2193 mutex_exit(&spa_namespace_lock); 2194 } 2195 } 2196 2197 void 2198 spa_set_deadman_synctime(hrtime_t ns) 2199 { 2200 spa_t *spa = NULL; 2201 2202 if (spa_mode_global != SPA_MODE_UNINIT) { 2203 mutex_enter(&spa_namespace_lock); 2204 while ((spa = spa_next(spa)) != NULL) 2205 spa->spa_deadman_synctime = ns; 2206 mutex_exit(&spa_namespace_lock); 2207 } 2208 } 2209 2210 uint64_t 2211 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 2212 { 2213 uint64_t asize = DVA_GET_ASIZE(dva); 2214 uint64_t dsize = asize; 2215 2216 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2217 2218 if (asize != 0 && spa->spa_deflate) { 2219 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 2220 if (vd != NULL) 2221 dsize = (asize >> SPA_MINBLOCKSHIFT) * 2222 vd->vdev_deflate_ratio; 2223 } 2224 2225 return (dsize); 2226 } 2227 2228 uint64_t 2229 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 2230 { 2231 uint64_t dsize = 0; 2232 2233 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2234 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2235 2236 return (dsize); 2237 } 2238 2239 uint64_t 2240 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 2241 { 2242 uint64_t dsize = 0; 2243 2244 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2245 2246 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2247 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2248 2249 spa_config_exit(spa, SCL_VDEV, FTAG); 2250 2251 return (dsize); 2252 } 2253 2254 uint64_t 2255 spa_dirty_data(spa_t *spa) 2256 { 2257 return (spa->spa_dsl_pool->dp_dirty_total); 2258 } 2259 2260 /* 2261 * ========================================================================== 2262 * SPA Import Progress Routines 2263 * ========================================================================== 2264 */ 2265 2266 typedef struct spa_import_progress { 2267 uint64_t pool_guid; /* unique id for updates */ 2268 char *pool_name; 2269 spa_load_state_t spa_load_state; 2270 char *spa_load_notes; 2271 uint64_t mmp_sec_remaining; /* MMP activity check */ 2272 uint64_t spa_load_max_txg; /* rewind txg */ 2273 procfs_list_node_t smh_node; 2274 } spa_import_progress_t; 2275 2276 spa_history_list_t *spa_import_progress_list = NULL; 2277 2278 static int 2279 spa_import_progress_show_header(struct seq_file *f) 2280 { 2281 seq_printf(f, "%-20s %-14s %-14s %-12s %-16s %s\n", "pool_guid", 2282 "load_state", "multihost_secs", "max_txg", 2283 "pool_name", "notes"); 2284 return (0); 2285 } 2286 2287 static int 2288 spa_import_progress_show(struct seq_file *f, void *data) 2289 { 2290 spa_import_progress_t *sip = (spa_import_progress_t *)data; 2291 2292 seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %-16s %s\n", 2293 (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state, 2294 (u_longlong_t)sip->mmp_sec_remaining, 2295 (u_longlong_t)sip->spa_load_max_txg, 2296 (sip->pool_name ? sip->pool_name : "-"), 2297 (sip->spa_load_notes ? sip->spa_load_notes : "-")); 2298 2299 return (0); 2300 } 2301 2302 /* Remove oldest elements from list until there are no more than 'size' left */ 2303 static void 2304 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size) 2305 { 2306 spa_import_progress_t *sip; 2307 while (shl->size > size) { 2308 sip = list_remove_head(&shl->procfs_list.pl_list); 2309 if (sip->pool_name) 2310 spa_strfree(sip->pool_name); 2311 if (sip->spa_load_notes) 2312 kmem_strfree(sip->spa_load_notes); 2313 kmem_free(sip, sizeof (spa_import_progress_t)); 2314 shl->size--; 2315 } 2316 2317 IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list)); 2318 } 2319 2320 static void 2321 spa_import_progress_init(void) 2322 { 2323 spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t), 2324 KM_SLEEP); 2325 2326 spa_import_progress_list->size = 0; 2327 2328 spa_import_progress_list->procfs_list.pl_private = 2329 spa_import_progress_list; 2330 2331 procfs_list_install("zfs", 2332 NULL, 2333 "import_progress", 2334 0644, 2335 &spa_import_progress_list->procfs_list, 2336 spa_import_progress_show, 2337 spa_import_progress_show_header, 2338 NULL, 2339 offsetof(spa_import_progress_t, smh_node)); 2340 } 2341 2342 static void 2343 spa_import_progress_destroy(void) 2344 { 2345 spa_history_list_t *shl = spa_import_progress_list; 2346 procfs_list_uninstall(&shl->procfs_list); 2347 spa_import_progress_truncate(shl, 0); 2348 procfs_list_destroy(&shl->procfs_list); 2349 kmem_free(shl, sizeof (spa_history_list_t)); 2350 } 2351 2352 int 2353 spa_import_progress_set_state(uint64_t pool_guid, 2354 spa_load_state_t load_state) 2355 { 2356 spa_history_list_t *shl = spa_import_progress_list; 2357 spa_import_progress_t *sip; 2358 int error = ENOENT; 2359 2360 if (shl->size == 0) 2361 return (0); 2362 2363 mutex_enter(&shl->procfs_list.pl_lock); 2364 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2365 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2366 if (sip->pool_guid == pool_guid) { 2367 sip->spa_load_state = load_state; 2368 if (sip->spa_load_notes != NULL) { 2369 kmem_strfree(sip->spa_load_notes); 2370 sip->spa_load_notes = NULL; 2371 } 2372 error = 0; 2373 break; 2374 } 2375 } 2376 mutex_exit(&shl->procfs_list.pl_lock); 2377 2378 return (error); 2379 } 2380 2381 static void 2382 spa_import_progress_set_notes_impl(spa_t *spa, boolean_t log_dbgmsg, 2383 const char *fmt, va_list adx) 2384 { 2385 spa_history_list_t *shl = spa_import_progress_list; 2386 spa_import_progress_t *sip; 2387 uint64_t pool_guid = spa_guid(spa); 2388 2389 if (shl->size == 0) 2390 return; 2391 2392 char *notes = kmem_vasprintf(fmt, adx); 2393 2394 mutex_enter(&shl->procfs_list.pl_lock); 2395 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2396 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2397 if (sip->pool_guid == pool_guid) { 2398 if (sip->spa_load_notes != NULL) { 2399 kmem_strfree(sip->spa_load_notes); 2400 sip->spa_load_notes = NULL; 2401 } 2402 sip->spa_load_notes = notes; 2403 if (log_dbgmsg) 2404 zfs_dbgmsg("'%s' %s", sip->pool_name, notes); 2405 notes = NULL; 2406 break; 2407 } 2408 } 2409 mutex_exit(&shl->procfs_list.pl_lock); 2410 if (notes != NULL) 2411 kmem_strfree(notes); 2412 } 2413 2414 void 2415 spa_import_progress_set_notes(spa_t *spa, const char *fmt, ...) 2416 { 2417 va_list adx; 2418 2419 va_start(adx, fmt); 2420 spa_import_progress_set_notes_impl(spa, B_TRUE, fmt, adx); 2421 va_end(adx); 2422 } 2423 2424 void 2425 spa_import_progress_set_notes_nolog(spa_t *spa, const char *fmt, ...) 2426 { 2427 va_list adx; 2428 2429 va_start(adx, fmt); 2430 spa_import_progress_set_notes_impl(spa, B_FALSE, fmt, adx); 2431 va_end(adx); 2432 } 2433 2434 int 2435 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg) 2436 { 2437 spa_history_list_t *shl = spa_import_progress_list; 2438 spa_import_progress_t *sip; 2439 int error = ENOENT; 2440 2441 if (shl->size == 0) 2442 return (0); 2443 2444 mutex_enter(&shl->procfs_list.pl_lock); 2445 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2446 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2447 if (sip->pool_guid == pool_guid) { 2448 sip->spa_load_max_txg = load_max_txg; 2449 error = 0; 2450 break; 2451 } 2452 } 2453 mutex_exit(&shl->procfs_list.pl_lock); 2454 2455 return (error); 2456 } 2457 2458 int 2459 spa_import_progress_set_mmp_check(uint64_t pool_guid, 2460 uint64_t mmp_sec_remaining) 2461 { 2462 spa_history_list_t *shl = spa_import_progress_list; 2463 spa_import_progress_t *sip; 2464 int error = ENOENT; 2465 2466 if (shl->size == 0) 2467 return (0); 2468 2469 mutex_enter(&shl->procfs_list.pl_lock); 2470 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2471 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2472 if (sip->pool_guid == pool_guid) { 2473 sip->mmp_sec_remaining = mmp_sec_remaining; 2474 error = 0; 2475 break; 2476 } 2477 } 2478 mutex_exit(&shl->procfs_list.pl_lock); 2479 2480 return (error); 2481 } 2482 2483 /* 2484 * A new import is in progress, add an entry. 2485 */ 2486 void 2487 spa_import_progress_add(spa_t *spa) 2488 { 2489 spa_history_list_t *shl = spa_import_progress_list; 2490 spa_import_progress_t *sip; 2491 const char *poolname = NULL; 2492 2493 sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP); 2494 sip->pool_guid = spa_guid(spa); 2495 2496 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME, 2497 &poolname); 2498 if (poolname == NULL) 2499 poolname = spa_name(spa); 2500 sip->pool_name = spa_strdup(poolname); 2501 sip->spa_load_state = spa_load_state(spa); 2502 sip->spa_load_notes = NULL; 2503 2504 mutex_enter(&shl->procfs_list.pl_lock); 2505 procfs_list_add(&shl->procfs_list, sip); 2506 shl->size++; 2507 mutex_exit(&shl->procfs_list.pl_lock); 2508 } 2509 2510 void 2511 spa_import_progress_remove(uint64_t pool_guid) 2512 { 2513 spa_history_list_t *shl = spa_import_progress_list; 2514 spa_import_progress_t *sip; 2515 2516 mutex_enter(&shl->procfs_list.pl_lock); 2517 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2518 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2519 if (sip->pool_guid == pool_guid) { 2520 if (sip->pool_name) 2521 spa_strfree(sip->pool_name); 2522 if (sip->spa_load_notes) 2523 spa_strfree(sip->spa_load_notes); 2524 list_remove(&shl->procfs_list.pl_list, sip); 2525 shl->size--; 2526 kmem_free(sip, sizeof (spa_import_progress_t)); 2527 break; 2528 } 2529 } 2530 mutex_exit(&shl->procfs_list.pl_lock); 2531 } 2532 2533 /* 2534 * ========================================================================== 2535 * Initialization and Termination 2536 * ========================================================================== 2537 */ 2538 2539 static int 2540 spa_name_compare(const void *a1, const void *a2) 2541 { 2542 const spa_t *s1 = a1; 2543 const spa_t *s2 = a2; 2544 int s; 2545 2546 s = strcmp(s1->spa_name, s2->spa_name); 2547 2548 return (TREE_ISIGN(s)); 2549 } 2550 2551 void 2552 spa_boot_init(void *unused) 2553 { 2554 (void) unused; 2555 spa_config_load(); 2556 } 2557 2558 void 2559 spa_init(spa_mode_t mode) 2560 { 2561 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 2562 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 2563 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 2564 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 2565 2566 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 2567 offsetof(spa_t, spa_avl)); 2568 2569 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 2570 offsetof(spa_aux_t, aux_avl)); 2571 2572 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 2573 offsetof(spa_aux_t, aux_avl)); 2574 2575 spa_mode_global = mode; 2576 2577 #ifndef _KERNEL 2578 if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) { 2579 struct sigaction sa; 2580 2581 sa.sa_flags = SA_SIGINFO; 2582 sigemptyset(&sa.sa_mask); 2583 sa.sa_sigaction = arc_buf_sigsegv; 2584 2585 if (sigaction(SIGSEGV, &sa, NULL) == -1) { 2586 perror("could not enable watchpoints: " 2587 "sigaction(SIGSEGV, ...) = "); 2588 } else { 2589 arc_watch = B_TRUE; 2590 } 2591 } 2592 #endif 2593 2594 fm_init(); 2595 zfs_refcount_init(); 2596 unique_init(); 2597 zfs_btree_init(); 2598 metaslab_stat_init(); 2599 brt_init(); 2600 ddt_init(); 2601 zio_init(); 2602 dmu_init(); 2603 zil_init(); 2604 vdev_mirror_stat_init(); 2605 vdev_raidz_math_init(); 2606 vdev_file_init(); 2607 zfs_prop_init(); 2608 chksum_init(); 2609 zpool_prop_init(); 2610 zpool_feature_init(); 2611 spa_config_load(); 2612 vdev_prop_init(); 2613 l2arc_start(); 2614 scan_init(); 2615 qat_init(); 2616 spa_import_progress_init(); 2617 zap_init(); 2618 } 2619 2620 void 2621 spa_fini(void) 2622 { 2623 l2arc_stop(); 2624 2625 spa_evict_all(); 2626 2627 vdev_file_fini(); 2628 vdev_mirror_stat_fini(); 2629 vdev_raidz_math_fini(); 2630 chksum_fini(); 2631 zil_fini(); 2632 dmu_fini(); 2633 zio_fini(); 2634 ddt_fini(); 2635 brt_fini(); 2636 metaslab_stat_fini(); 2637 zfs_btree_fini(); 2638 unique_fini(); 2639 zfs_refcount_fini(); 2640 fm_fini(); 2641 scan_fini(); 2642 qat_fini(); 2643 spa_import_progress_destroy(); 2644 zap_fini(); 2645 2646 avl_destroy(&spa_namespace_avl); 2647 avl_destroy(&spa_spare_avl); 2648 avl_destroy(&spa_l2cache_avl); 2649 2650 cv_destroy(&spa_namespace_cv); 2651 mutex_destroy(&spa_namespace_lock); 2652 mutex_destroy(&spa_spare_lock); 2653 mutex_destroy(&spa_l2cache_lock); 2654 } 2655 2656 boolean_t 2657 spa_has_dedup(spa_t *spa) 2658 { 2659 return (spa->spa_dedup_class->mc_groups != 0); 2660 } 2661 2662 /* 2663 * Return whether this pool has a dedicated slog device. No locking needed. 2664 * It's not a problem if the wrong answer is returned as it's only for 2665 * performance and not correctness. 2666 */ 2667 boolean_t 2668 spa_has_slogs(spa_t *spa) 2669 { 2670 return (spa->spa_log_class->mc_groups != 0); 2671 } 2672 2673 boolean_t 2674 spa_has_special(spa_t *spa) 2675 { 2676 return (spa->spa_special_class->mc_groups != 0); 2677 } 2678 2679 spa_log_state_t 2680 spa_get_log_state(spa_t *spa) 2681 { 2682 return (spa->spa_log_state); 2683 } 2684 2685 void 2686 spa_set_log_state(spa_t *spa, spa_log_state_t state) 2687 { 2688 spa->spa_log_state = state; 2689 } 2690 2691 boolean_t 2692 spa_is_root(spa_t *spa) 2693 { 2694 return (spa->spa_is_root); 2695 } 2696 2697 boolean_t 2698 spa_writeable(spa_t *spa) 2699 { 2700 return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config); 2701 } 2702 2703 /* 2704 * Returns true if there is a pending sync task in any of the current 2705 * syncing txg, the current quiescing txg, or the current open txg. 2706 */ 2707 boolean_t 2708 spa_has_pending_synctask(spa_t *spa) 2709 { 2710 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) || 2711 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks)); 2712 } 2713 2714 spa_mode_t 2715 spa_mode(spa_t *spa) 2716 { 2717 return (spa->spa_mode); 2718 } 2719 2720 uint64_t 2721 spa_get_last_scrubbed_txg(spa_t *spa) 2722 { 2723 return (spa->spa_scrubbed_last_txg); 2724 } 2725 2726 uint64_t 2727 spa_bootfs(spa_t *spa) 2728 { 2729 return (spa->spa_bootfs); 2730 } 2731 2732 uint64_t 2733 spa_delegation(spa_t *spa) 2734 { 2735 return (spa->spa_delegation); 2736 } 2737 2738 objset_t * 2739 spa_meta_objset(spa_t *spa) 2740 { 2741 return (spa->spa_meta_objset); 2742 } 2743 2744 enum zio_checksum 2745 spa_dedup_checksum(spa_t *spa) 2746 { 2747 return (spa->spa_dedup_checksum); 2748 } 2749 2750 /* 2751 * Reset pool scan stat per scan pass (or reboot). 2752 */ 2753 void 2754 spa_scan_stat_init(spa_t *spa) 2755 { 2756 /* data not stored on disk */ 2757 spa->spa_scan_pass_start = gethrestime_sec(); 2758 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan)) 2759 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start; 2760 else 2761 spa->spa_scan_pass_scrub_pause = 0; 2762 2763 if (dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) 2764 spa->spa_scan_pass_errorscrub_pause = spa->spa_scan_pass_start; 2765 else 2766 spa->spa_scan_pass_errorscrub_pause = 0; 2767 2768 spa->spa_scan_pass_scrub_spent_paused = 0; 2769 spa->spa_scan_pass_exam = 0; 2770 spa->spa_scan_pass_issued = 0; 2771 2772 // error scrub stats 2773 spa->spa_scan_pass_errorscrub_spent_paused = 0; 2774 } 2775 2776 /* 2777 * Get scan stats for zpool status reports 2778 */ 2779 int 2780 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 2781 { 2782 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 2783 2784 if (scn == NULL || (scn->scn_phys.scn_func == POOL_SCAN_NONE && 2785 scn->errorscrub_phys.dep_func == POOL_SCAN_NONE)) 2786 return (SET_ERROR(ENOENT)); 2787 2788 memset(ps, 0, sizeof (pool_scan_stat_t)); 2789 2790 /* data stored on disk */ 2791 ps->pss_func = scn->scn_phys.scn_func; 2792 ps->pss_state = scn->scn_phys.scn_state; 2793 ps->pss_start_time = scn->scn_phys.scn_start_time; 2794 ps->pss_end_time = scn->scn_phys.scn_end_time; 2795 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 2796 ps->pss_examined = scn->scn_phys.scn_examined; 2797 ps->pss_skipped = scn->scn_phys.scn_skipped; 2798 ps->pss_processed = scn->scn_phys.scn_processed; 2799 ps->pss_errors = scn->scn_phys.scn_errors; 2800 2801 /* data not stored on disk */ 2802 ps->pss_pass_exam = spa->spa_scan_pass_exam; 2803 ps->pss_pass_start = spa->spa_scan_pass_start; 2804 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause; 2805 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused; 2806 ps->pss_pass_issued = spa->spa_scan_pass_issued; 2807 ps->pss_issued = 2808 scn->scn_issued_before_pass + spa->spa_scan_pass_issued; 2809 2810 /* error scrub data stored on disk */ 2811 ps->pss_error_scrub_func = scn->errorscrub_phys.dep_func; 2812 ps->pss_error_scrub_state = scn->errorscrub_phys.dep_state; 2813 ps->pss_error_scrub_start = scn->errorscrub_phys.dep_start_time; 2814 ps->pss_error_scrub_end = scn->errorscrub_phys.dep_end_time; 2815 ps->pss_error_scrub_examined = scn->errorscrub_phys.dep_examined; 2816 ps->pss_error_scrub_to_be_examined = 2817 scn->errorscrub_phys.dep_to_examine; 2818 2819 /* error scrub data not stored on disk */ 2820 ps->pss_pass_error_scrub_pause = spa->spa_scan_pass_errorscrub_pause; 2821 2822 return (0); 2823 } 2824 2825 int 2826 spa_maxblocksize(spa_t *spa) 2827 { 2828 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 2829 return (SPA_MAXBLOCKSIZE); 2830 else 2831 return (SPA_OLD_MAXBLOCKSIZE); 2832 } 2833 2834 2835 /* 2836 * Returns the txg that the last device removal completed. No indirect mappings 2837 * have been added since this txg. 2838 */ 2839 uint64_t 2840 spa_get_last_removal_txg(spa_t *spa) 2841 { 2842 uint64_t vdevid; 2843 uint64_t ret = -1ULL; 2844 2845 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2846 /* 2847 * sr_prev_indirect_vdev is only modified while holding all the 2848 * config locks, so it is sufficient to hold SCL_VDEV as reader when 2849 * examining it. 2850 */ 2851 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev; 2852 2853 while (vdevid != -1ULL) { 2854 vdev_t *vd = vdev_lookup_top(spa, vdevid); 2855 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 2856 2857 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 2858 2859 /* 2860 * If the removal did not remap any data, we don't care. 2861 */ 2862 if (vdev_indirect_births_count(vib) != 0) { 2863 ret = vdev_indirect_births_last_entry_txg(vib); 2864 break; 2865 } 2866 2867 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev; 2868 } 2869 spa_config_exit(spa, SCL_VDEV, FTAG); 2870 2871 IMPLY(ret != -1ULL, 2872 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); 2873 2874 return (ret); 2875 } 2876 2877 int 2878 spa_maxdnodesize(spa_t *spa) 2879 { 2880 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 2881 return (DNODE_MAX_SIZE); 2882 else 2883 return (DNODE_MIN_SIZE); 2884 } 2885 2886 boolean_t 2887 spa_multihost(spa_t *spa) 2888 { 2889 return (spa->spa_multihost ? B_TRUE : B_FALSE); 2890 } 2891 2892 uint32_t 2893 spa_get_hostid(spa_t *spa) 2894 { 2895 return (spa->spa_hostid); 2896 } 2897 2898 boolean_t 2899 spa_trust_config(spa_t *spa) 2900 { 2901 return (spa->spa_trust_config); 2902 } 2903 2904 uint64_t 2905 spa_missing_tvds_allowed(spa_t *spa) 2906 { 2907 return (spa->spa_missing_tvds_allowed); 2908 } 2909 2910 space_map_t * 2911 spa_syncing_log_sm(spa_t *spa) 2912 { 2913 return (spa->spa_syncing_log_sm); 2914 } 2915 2916 void 2917 spa_set_missing_tvds(spa_t *spa, uint64_t missing) 2918 { 2919 spa->spa_missing_tvds = missing; 2920 } 2921 2922 /* 2923 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc). 2924 */ 2925 const char * 2926 spa_state_to_name(spa_t *spa) 2927 { 2928 ASSERT3P(spa, !=, NULL); 2929 2930 /* 2931 * it is possible for the spa to exist, without root vdev 2932 * as the spa transitions during import/export 2933 */ 2934 vdev_t *rvd = spa->spa_root_vdev; 2935 if (rvd == NULL) { 2936 return ("TRANSITIONING"); 2937 } 2938 vdev_state_t state = rvd->vdev_state; 2939 vdev_aux_t aux = rvd->vdev_stat.vs_aux; 2940 2941 if (spa_suspended(spa)) 2942 return ("SUSPENDED"); 2943 2944 switch (state) { 2945 case VDEV_STATE_CLOSED: 2946 case VDEV_STATE_OFFLINE: 2947 return ("OFFLINE"); 2948 case VDEV_STATE_REMOVED: 2949 return ("REMOVED"); 2950 case VDEV_STATE_CANT_OPEN: 2951 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG) 2952 return ("FAULTED"); 2953 else if (aux == VDEV_AUX_SPLIT_POOL) 2954 return ("SPLIT"); 2955 else 2956 return ("UNAVAIL"); 2957 case VDEV_STATE_FAULTED: 2958 return ("FAULTED"); 2959 case VDEV_STATE_DEGRADED: 2960 return ("DEGRADED"); 2961 case VDEV_STATE_HEALTHY: 2962 return ("ONLINE"); 2963 default: 2964 break; 2965 } 2966 2967 return ("UNKNOWN"); 2968 } 2969 2970 boolean_t 2971 spa_top_vdevs_spacemap_addressable(spa_t *spa) 2972 { 2973 vdev_t *rvd = spa->spa_root_vdev; 2974 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2975 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c])) 2976 return (B_FALSE); 2977 } 2978 return (B_TRUE); 2979 } 2980 2981 boolean_t 2982 spa_has_checkpoint(spa_t *spa) 2983 { 2984 return (spa->spa_checkpoint_txg != 0); 2985 } 2986 2987 boolean_t 2988 spa_importing_readonly_checkpoint(spa_t *spa) 2989 { 2990 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) && 2991 spa->spa_mode == SPA_MODE_READ); 2992 } 2993 2994 uint64_t 2995 spa_min_claim_txg(spa_t *spa) 2996 { 2997 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg; 2998 2999 if (checkpoint_txg != 0) 3000 return (checkpoint_txg + 1); 3001 3002 return (spa->spa_first_txg); 3003 } 3004 3005 /* 3006 * If there is a checkpoint, async destroys may consume more space from 3007 * the pool instead of freeing it. In an attempt to save the pool from 3008 * getting suspended when it is about to run out of space, we stop 3009 * processing async destroys. 3010 */ 3011 boolean_t 3012 spa_suspend_async_destroy(spa_t *spa) 3013 { 3014 dsl_pool_t *dp = spa_get_dsl(spa); 3015 3016 uint64_t unreserved = dsl_pool_unreserved_space(dp, 3017 ZFS_SPACE_CHECK_EXTRA_RESERVED); 3018 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes; 3019 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0; 3020 3021 if (spa_has_checkpoint(spa) && avail == 0) 3022 return (B_TRUE); 3023 3024 return (B_FALSE); 3025 } 3026 3027 #if defined(_KERNEL) 3028 3029 int 3030 param_set_deadman_failmode_common(const char *val) 3031 { 3032 spa_t *spa = NULL; 3033 char *p; 3034 3035 if (val == NULL) 3036 return (SET_ERROR(EINVAL)); 3037 3038 if ((p = strchr(val, '\n')) != NULL) 3039 *p = '\0'; 3040 3041 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 && 3042 strcmp(val, "panic")) 3043 return (SET_ERROR(EINVAL)); 3044 3045 if (spa_mode_global != SPA_MODE_UNINIT) { 3046 mutex_enter(&spa_namespace_lock); 3047 while ((spa = spa_next(spa)) != NULL) 3048 spa_set_deadman_failmode(spa, val); 3049 mutex_exit(&spa_namespace_lock); 3050 } 3051 3052 return (0); 3053 } 3054 #endif 3055 3056 /* Namespace manipulation */ 3057 EXPORT_SYMBOL(spa_lookup); 3058 EXPORT_SYMBOL(spa_add); 3059 EXPORT_SYMBOL(spa_remove); 3060 EXPORT_SYMBOL(spa_next); 3061 3062 /* Refcount functions */ 3063 EXPORT_SYMBOL(spa_open_ref); 3064 EXPORT_SYMBOL(spa_close); 3065 EXPORT_SYMBOL(spa_refcount_zero); 3066 3067 /* Pool configuration lock */ 3068 EXPORT_SYMBOL(spa_config_tryenter); 3069 EXPORT_SYMBOL(spa_config_enter); 3070 EXPORT_SYMBOL(spa_config_exit); 3071 EXPORT_SYMBOL(spa_config_held); 3072 3073 /* Pool vdev add/remove lock */ 3074 EXPORT_SYMBOL(spa_vdev_enter); 3075 EXPORT_SYMBOL(spa_vdev_exit); 3076 3077 /* Pool vdev state change lock */ 3078 EXPORT_SYMBOL(spa_vdev_state_enter); 3079 EXPORT_SYMBOL(spa_vdev_state_exit); 3080 3081 /* Accessor functions */ 3082 EXPORT_SYMBOL(spa_shutting_down); 3083 EXPORT_SYMBOL(spa_get_dsl); 3084 EXPORT_SYMBOL(spa_get_rootblkptr); 3085 EXPORT_SYMBOL(spa_set_rootblkptr); 3086 EXPORT_SYMBOL(spa_altroot); 3087 EXPORT_SYMBOL(spa_sync_pass); 3088 EXPORT_SYMBOL(spa_name); 3089 EXPORT_SYMBOL(spa_guid); 3090 EXPORT_SYMBOL(spa_last_synced_txg); 3091 EXPORT_SYMBOL(spa_first_txg); 3092 EXPORT_SYMBOL(spa_syncing_txg); 3093 EXPORT_SYMBOL(spa_version); 3094 EXPORT_SYMBOL(spa_state); 3095 EXPORT_SYMBOL(spa_load_state); 3096 EXPORT_SYMBOL(spa_freeze_txg); 3097 EXPORT_SYMBOL(spa_get_dspace); 3098 EXPORT_SYMBOL(spa_update_dspace); 3099 EXPORT_SYMBOL(spa_deflate); 3100 EXPORT_SYMBOL(spa_normal_class); 3101 EXPORT_SYMBOL(spa_log_class); 3102 EXPORT_SYMBOL(spa_special_class); 3103 EXPORT_SYMBOL(spa_preferred_class); 3104 EXPORT_SYMBOL(spa_max_replication); 3105 EXPORT_SYMBOL(spa_prev_software_version); 3106 EXPORT_SYMBOL(spa_get_failmode); 3107 EXPORT_SYMBOL(spa_suspended); 3108 EXPORT_SYMBOL(spa_bootfs); 3109 EXPORT_SYMBOL(spa_delegation); 3110 EXPORT_SYMBOL(spa_meta_objset); 3111 EXPORT_SYMBOL(spa_maxblocksize); 3112 EXPORT_SYMBOL(spa_maxdnodesize); 3113 3114 /* Miscellaneous support routines */ 3115 EXPORT_SYMBOL(spa_guid_exists); 3116 EXPORT_SYMBOL(spa_strdup); 3117 EXPORT_SYMBOL(spa_strfree); 3118 EXPORT_SYMBOL(spa_generate_guid); 3119 EXPORT_SYMBOL(snprintf_blkptr); 3120 EXPORT_SYMBOL(spa_freeze); 3121 EXPORT_SYMBOL(spa_upgrade); 3122 EXPORT_SYMBOL(spa_evict_all); 3123 EXPORT_SYMBOL(spa_lookup_by_guid); 3124 EXPORT_SYMBOL(spa_has_spare); 3125 EXPORT_SYMBOL(dva_get_dsize_sync); 3126 EXPORT_SYMBOL(bp_get_dsize_sync); 3127 EXPORT_SYMBOL(bp_get_dsize); 3128 EXPORT_SYMBOL(spa_has_slogs); 3129 EXPORT_SYMBOL(spa_is_root); 3130 EXPORT_SYMBOL(spa_writeable); 3131 EXPORT_SYMBOL(spa_mode); 3132 EXPORT_SYMBOL(spa_namespace_lock); 3133 EXPORT_SYMBOL(spa_trust_config); 3134 EXPORT_SYMBOL(spa_missing_tvds_allowed); 3135 EXPORT_SYMBOL(spa_set_missing_tvds); 3136 EXPORT_SYMBOL(spa_state_to_name); 3137 EXPORT_SYMBOL(spa_importing_readonly_checkpoint); 3138 EXPORT_SYMBOL(spa_min_claim_txg); 3139 EXPORT_SYMBOL(spa_suspend_async_destroy); 3140 EXPORT_SYMBOL(spa_has_checkpoint); 3141 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable); 3142 3143 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW, 3144 "Set additional debugging flags"); 3145 3146 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW, 3147 "Set to attempt to recover from fatal errors"); 3148 3149 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW, 3150 "Set to ignore IO errors during free and permanently leak the space"); 3151 3152 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, U64, ZMOD_RW, 3153 "Dead I/O check interval in milliseconds"); 3154 3155 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW, 3156 "Enable deadman timer"); 3157 3158 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, UINT, ZMOD_RW, 3159 "SPA size estimate multiplication factor"); 3160 3161 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW, 3162 "Place DDT data into the special class"); 3163 3164 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW, 3165 "Place user data indirect blocks into the special class"); 3166 3167 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode, 3168 param_set_deadman_failmode, param_get_charp, ZMOD_RW, 3169 "Failmode for deadman timer"); 3170 3171 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms, 3172 param_set_deadman_synctime, spl_param_get_u64, ZMOD_RW, 3173 "Pool sync expiration time in milliseconds"); 3174 3175 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms, 3176 param_set_deadman_ziotime, spl_param_get_u64, ZMOD_RW, 3177 "IO expiration time in milliseconds"); 3178 3179 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, UINT, ZMOD_RW, 3180 "Small file blocks in special vdevs depends on this much " 3181 "free space available"); 3182 3183 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift, 3184 param_get_uint, ZMOD_RW, "Reserved free space in pool"); 3185 3186 ZFS_MODULE_PARAM(zfs, spa_, num_allocators, INT, ZMOD_RW, 3187 "Number of allocators per spa"); 3188 3189 ZFS_MODULE_PARAM(zfs, spa_, cpus_per_allocator, INT, ZMOD_RW, 3190 "Minimum number of CPUs per allocators"); 3191