1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2013 Saso Kiselkov. All rights reserved. 27 * Copyright (c) 2017 Datto Inc. 28 * Copyright (c) 2017, Intel Corporation. 29 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/zfs_chksum.h> 34 #include <sys/spa_impl.h> 35 #include <sys/zio.h> 36 #include <sys/zio_checksum.h> 37 #include <sys/zio_compress.h> 38 #include <sys/dmu.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/zap.h> 41 #include <sys/zil.h> 42 #include <sys/vdev_impl.h> 43 #include <sys/vdev_initialize.h> 44 #include <sys/vdev_trim.h> 45 #include <sys/vdev_file.h> 46 #include <sys/vdev_raidz.h> 47 #include <sys/metaslab.h> 48 #include <sys/uberblock_impl.h> 49 #include <sys/txg.h> 50 #include <sys/avl.h> 51 #include <sys/unique.h> 52 #include <sys/dsl_pool.h> 53 #include <sys/dsl_dir.h> 54 #include <sys/dsl_prop.h> 55 #include <sys/fm/util.h> 56 #include <sys/dsl_scan.h> 57 #include <sys/fs/zfs.h> 58 #include <sys/metaslab_impl.h> 59 #include <sys/arc.h> 60 #include <sys/brt.h> 61 #include <sys/ddt.h> 62 #include <sys/kstat.h> 63 #include "zfs_prop.h" 64 #include <sys/btree.h> 65 #include <sys/zfeature.h> 66 #include <sys/qat.h> 67 #include <sys/zstd/zstd.h> 68 69 /* 70 * SPA locking 71 * 72 * There are three basic locks for managing spa_t structures: 73 * 74 * spa_namespace_lock (global mutex) 75 * 76 * This lock must be acquired to do any of the following: 77 * 78 * - Lookup a spa_t by name 79 * - Add or remove a spa_t from the namespace 80 * - Increase spa_refcount from non-zero 81 * - Check if spa_refcount is zero 82 * - Rename a spa_t 83 * - add/remove/attach/detach devices 84 * - Held for the duration of create/destroy/import/export 85 * 86 * It does not need to handle recursion. A create or destroy may 87 * reference objects (files or zvols) in other pools, but by 88 * definition they must have an existing reference, and will never need 89 * to lookup a spa_t by name. 90 * 91 * spa_refcount (per-spa zfs_refcount_t protected by mutex) 92 * 93 * This reference count keep track of any active users of the spa_t. The 94 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 95 * the refcount is never really 'zero' - opening a pool implicitly keeps 96 * some references in the DMU. Internally we check against spa_minref, but 97 * present the image of a zero/non-zero value to consumers. 98 * 99 * spa_config_lock[] (per-spa array of rwlocks) 100 * 101 * This protects the spa_t from config changes, and must be held in 102 * the following circumstances: 103 * 104 * - RW_READER to perform I/O to the spa 105 * - RW_WRITER to change the vdev config 106 * 107 * The locking order is fairly straightforward: 108 * 109 * spa_namespace_lock -> spa_refcount 110 * 111 * The namespace lock must be acquired to increase the refcount from 0 112 * or to check if it is zero. 113 * 114 * spa_refcount -> spa_config_lock[] 115 * 116 * There must be at least one valid reference on the spa_t to acquire 117 * the config lock. 118 * 119 * spa_namespace_lock -> spa_config_lock[] 120 * 121 * The namespace lock must always be taken before the config lock. 122 * 123 * 124 * The spa_namespace_lock can be acquired directly and is globally visible. 125 * 126 * The namespace is manipulated using the following functions, all of which 127 * require the spa_namespace_lock to be held. 128 * 129 * spa_lookup() Lookup a spa_t by name. 130 * 131 * spa_add() Create a new spa_t in the namespace. 132 * 133 * spa_remove() Remove a spa_t from the namespace. This also 134 * frees up any memory associated with the spa_t. 135 * 136 * spa_next() Returns the next spa_t in the system, or the 137 * first if NULL is passed. 138 * 139 * spa_evict_all() Shutdown and remove all spa_t structures in 140 * the system. 141 * 142 * spa_guid_exists() Determine whether a pool/device guid exists. 143 * 144 * The spa_refcount is manipulated using the following functions: 145 * 146 * spa_open_ref() Adds a reference to the given spa_t. Must be 147 * called with spa_namespace_lock held if the 148 * refcount is currently zero. 149 * 150 * spa_close() Remove a reference from the spa_t. This will 151 * not free the spa_t or remove it from the 152 * namespace. No locking is required. 153 * 154 * spa_refcount_zero() Returns true if the refcount is currently 155 * zero. Must be called with spa_namespace_lock 156 * held. 157 * 158 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 159 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 160 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 161 * 162 * To read the configuration, it suffices to hold one of these locks as reader. 163 * To modify the configuration, you must hold all locks as writer. To modify 164 * vdev state without altering the vdev tree's topology (e.g. online/offline), 165 * you must hold SCL_STATE and SCL_ZIO as writer. 166 * 167 * We use these distinct config locks to avoid recursive lock entry. 168 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 169 * block allocations (SCL_ALLOC), which may require reading space maps 170 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 171 * 172 * The spa config locks cannot be normal rwlocks because we need the 173 * ability to hand off ownership. For example, SCL_ZIO is acquired 174 * by the issuing thread and later released by an interrupt thread. 175 * They do, however, obey the usual write-wanted semantics to prevent 176 * writer (i.e. system administrator) starvation. 177 * 178 * The lock acquisition rules are as follows: 179 * 180 * SCL_CONFIG 181 * Protects changes to the vdev tree topology, such as vdev 182 * add/remove/attach/detach. Protects the dirty config list 183 * (spa_config_dirty_list) and the set of spares and l2arc devices. 184 * 185 * SCL_STATE 186 * Protects changes to pool state and vdev state, such as vdev 187 * online/offline/fault/degrade/clear. Protects the dirty state list 188 * (spa_state_dirty_list) and global pool state (spa_state). 189 * 190 * SCL_ALLOC 191 * Protects changes to metaslab groups and classes. 192 * Held as reader by metaslab_alloc() and metaslab_claim(). 193 * 194 * SCL_ZIO 195 * Held by bp-level zios (those which have no io_vd upon entry) 196 * to prevent changes to the vdev tree. The bp-level zio implicitly 197 * protects all of its vdev child zios, which do not hold SCL_ZIO. 198 * 199 * SCL_FREE 200 * Protects changes to metaslab groups and classes. 201 * Held as reader by metaslab_free(). SCL_FREE is distinct from 202 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 203 * blocks in zio_done() while another i/o that holds either 204 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 205 * 206 * SCL_VDEV 207 * Held as reader to prevent changes to the vdev tree during trivial 208 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 209 * other locks, and lower than all of them, to ensure that it's safe 210 * to acquire regardless of caller context. 211 * 212 * In addition, the following rules apply: 213 * 214 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 215 * The lock ordering is SCL_CONFIG > spa_props_lock. 216 * 217 * (b) I/O operations on leaf vdevs. For any zio operation that takes 218 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 219 * or zio_write_phys() -- the caller must ensure that the config cannot 220 * cannot change in the interim, and that the vdev cannot be reopened. 221 * SCL_STATE as reader suffices for both. 222 * 223 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 224 * 225 * spa_vdev_enter() Acquire the namespace lock and the config lock 226 * for writing. 227 * 228 * spa_vdev_exit() Release the config lock, wait for all I/O 229 * to complete, sync the updated configs to the 230 * cache, and release the namespace lock. 231 * 232 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 233 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 234 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 235 */ 236 237 static avl_tree_t spa_namespace_avl; 238 kmutex_t spa_namespace_lock; 239 static kcondvar_t spa_namespace_cv; 240 static const int spa_max_replication_override = SPA_DVAS_PER_BP; 241 242 static kmutex_t spa_spare_lock; 243 static avl_tree_t spa_spare_avl; 244 static kmutex_t spa_l2cache_lock; 245 static avl_tree_t spa_l2cache_avl; 246 247 spa_mode_t spa_mode_global = SPA_MODE_UNINIT; 248 249 #ifdef ZFS_DEBUG 250 /* 251 * Everything except dprintf, set_error, spa, and indirect_remap is on 252 * by default in debug builds. 253 */ 254 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR | 255 ZFS_DEBUG_INDIRECT_REMAP); 256 #else 257 int zfs_flags = 0; 258 #endif 259 260 /* 261 * zfs_recover can be set to nonzero to attempt to recover from 262 * otherwise-fatal errors, typically caused by on-disk corruption. When 263 * set, calls to zfs_panic_recover() will turn into warning messages. 264 * This should only be used as a last resort, as it typically results 265 * in leaked space, or worse. 266 */ 267 int zfs_recover = B_FALSE; 268 269 /* 270 * If destroy encounters an EIO while reading metadata (e.g. indirect 271 * blocks), space referenced by the missing metadata can not be freed. 272 * Normally this causes the background destroy to become "stalled", as 273 * it is unable to make forward progress. While in this stalled state, 274 * all remaining space to free from the error-encountering filesystem is 275 * "temporarily leaked". Set this flag to cause it to ignore the EIO, 276 * permanently leak the space from indirect blocks that can not be read, 277 * and continue to free everything else that it can. 278 * 279 * The default, "stalling" behavior is useful if the storage partially 280 * fails (i.e. some but not all i/os fail), and then later recovers. In 281 * this case, we will be able to continue pool operations while it is 282 * partially failed, and when it recovers, we can continue to free the 283 * space, with no leaks. However, note that this case is actually 284 * fairly rare. 285 * 286 * Typically pools either (a) fail completely (but perhaps temporarily, 287 * e.g. a top-level vdev going offline), or (b) have localized, 288 * permanent errors (e.g. disk returns the wrong data due to bit flip or 289 * firmware bug). In case (a), this setting does not matter because the 290 * pool will be suspended and the sync thread will not be able to make 291 * forward progress regardless. In case (b), because the error is 292 * permanent, the best we can do is leak the minimum amount of space, 293 * which is what setting this flag will do. Therefore, it is reasonable 294 * for this flag to normally be set, but we chose the more conservative 295 * approach of not setting it, so that there is no possibility of 296 * leaking space in the "partial temporary" failure case. 297 */ 298 int zfs_free_leak_on_eio = B_FALSE; 299 300 /* 301 * Expiration time in milliseconds. This value has two meanings. First it is 302 * used to determine when the spa_deadman() logic should fire. By default the 303 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds. 304 * Secondly, the value determines if an I/O is considered "hung". Any I/O that 305 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting 306 * in one of three behaviors controlled by zfs_deadman_failmode. 307 */ 308 uint64_t zfs_deadman_synctime_ms = 600000UL; /* 10 min. */ 309 310 /* 311 * This value controls the maximum amount of time zio_wait() will block for an 312 * outstanding IO. By default this is 300 seconds at which point the "hung" 313 * behavior will be applied as described for zfs_deadman_synctime_ms. 314 */ 315 uint64_t zfs_deadman_ziotime_ms = 300000UL; /* 5 min. */ 316 317 /* 318 * Check time in milliseconds. This defines the frequency at which we check 319 * for hung I/O. 320 */ 321 uint64_t zfs_deadman_checktime_ms = 60000UL; /* 1 min. */ 322 323 /* 324 * By default the deadman is enabled. 325 */ 326 int zfs_deadman_enabled = B_TRUE; 327 328 /* 329 * Controls the behavior of the deadman when it detects a "hung" I/O. 330 * Valid values are zfs_deadman_failmode=<wait|continue|panic>. 331 * 332 * wait - Wait for the "hung" I/O (default) 333 * continue - Attempt to recover from a "hung" I/O 334 * panic - Panic the system 335 */ 336 const char *zfs_deadman_failmode = "wait"; 337 338 /* 339 * The worst case is single-sector max-parity RAID-Z blocks, in which 340 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 341 * times the size; so just assume that. Add to this the fact that 342 * we can have up to 3 DVAs per bp, and one more factor of 2 because 343 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, 344 * the worst case is: 345 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 346 */ 347 uint_t spa_asize_inflation = 24; 348 349 /* 350 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in 351 * the pool to be consumed (bounded by spa_max_slop). This ensures that we 352 * don't run the pool completely out of space, due to unaccounted changes (e.g. 353 * to the MOS). It also limits the worst-case time to allocate space. If we 354 * have less than this amount of free space, most ZPL operations (e.g. write, 355 * create) will return ENOSPC. The ZIL metaslabs (spa_embedded_log_class) are 356 * also part of this 3.2% of space which can't be consumed by normal writes; 357 * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded 358 * log space. 359 * 360 * Certain operations (e.g. file removal, most administrative actions) can 361 * use half the slop space. They will only return ENOSPC if less than half 362 * the slop space is free. Typically, once the pool has less than the slop 363 * space free, the user will use these operations to free up space in the pool. 364 * These are the operations that call dsl_pool_adjustedsize() with the netfree 365 * argument set to TRUE. 366 * 367 * Operations that are almost guaranteed to free up space in the absence of 368 * a pool checkpoint can use up to three quarters of the slop space 369 * (e.g zfs destroy). 370 * 371 * A very restricted set of operations are always permitted, regardless of 372 * the amount of free space. These are the operations that call 373 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net 374 * increase in the amount of space used, it is possible to run the pool 375 * completely out of space, causing it to be permanently read-only. 376 * 377 * Note that on very small pools, the slop space will be larger than 378 * 3.2%, in an effort to have it be at least spa_min_slop (128MB), 379 * but we never allow it to be more than half the pool size. 380 * 381 * Further, on very large pools, the slop space will be smaller than 382 * 3.2%, to avoid reserving much more space than we actually need; bounded 383 * by spa_max_slop (128GB). 384 * 385 * See also the comments in zfs_space_check_t. 386 */ 387 uint_t spa_slop_shift = 5; 388 static const uint64_t spa_min_slop = 128ULL * 1024 * 1024; 389 static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024; 390 static const int spa_allocators = 4; 391 392 393 void 394 spa_load_failed(spa_t *spa, const char *fmt, ...) 395 { 396 va_list adx; 397 char buf[256]; 398 399 va_start(adx, fmt); 400 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 401 va_end(adx); 402 403 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name, 404 spa->spa_trust_config ? "trusted" : "untrusted", buf); 405 } 406 407 void 408 spa_load_note(spa_t *spa, const char *fmt, ...) 409 { 410 va_list adx; 411 char buf[256]; 412 413 va_start(adx, fmt); 414 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 415 va_end(adx); 416 417 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name, 418 spa->spa_trust_config ? "trusted" : "untrusted", buf); 419 } 420 421 /* 422 * By default dedup and user data indirects land in the special class 423 */ 424 static int zfs_ddt_data_is_special = B_TRUE; 425 static int zfs_user_indirect_is_special = B_TRUE; 426 427 /* 428 * The percentage of special class final space reserved for metadata only. 429 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only 430 * let metadata into the class. 431 */ 432 static uint_t zfs_special_class_metadata_reserve_pct = 25; 433 434 /* 435 * ========================================================================== 436 * SPA config locking 437 * ========================================================================== 438 */ 439 static void 440 spa_config_lock_init(spa_t *spa) 441 { 442 for (int i = 0; i < SCL_LOCKS; i++) { 443 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 444 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 445 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 446 scl->scl_writer = NULL; 447 scl->scl_write_wanted = 0; 448 scl->scl_count = 0; 449 } 450 } 451 452 static void 453 spa_config_lock_destroy(spa_t *spa) 454 { 455 for (int i = 0; i < SCL_LOCKS; i++) { 456 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 457 mutex_destroy(&scl->scl_lock); 458 cv_destroy(&scl->scl_cv); 459 ASSERT(scl->scl_writer == NULL); 460 ASSERT(scl->scl_write_wanted == 0); 461 ASSERT(scl->scl_count == 0); 462 } 463 } 464 465 int 466 spa_config_tryenter(spa_t *spa, int locks, const void *tag, krw_t rw) 467 { 468 for (int i = 0; i < SCL_LOCKS; i++) { 469 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 470 if (!(locks & (1 << i))) 471 continue; 472 mutex_enter(&scl->scl_lock); 473 if (rw == RW_READER) { 474 if (scl->scl_writer || scl->scl_write_wanted) { 475 mutex_exit(&scl->scl_lock); 476 spa_config_exit(spa, locks & ((1 << i) - 1), 477 tag); 478 return (0); 479 } 480 } else { 481 ASSERT(scl->scl_writer != curthread); 482 if (scl->scl_count != 0) { 483 mutex_exit(&scl->scl_lock); 484 spa_config_exit(spa, locks & ((1 << i) - 1), 485 tag); 486 return (0); 487 } 488 scl->scl_writer = curthread; 489 } 490 scl->scl_count++; 491 mutex_exit(&scl->scl_lock); 492 } 493 return (1); 494 } 495 496 static void 497 spa_config_enter_impl(spa_t *spa, int locks, const void *tag, krw_t rw, 498 int mmp_flag) 499 { 500 (void) tag; 501 int wlocks_held = 0; 502 503 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 504 505 for (int i = 0; i < SCL_LOCKS; i++) { 506 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 507 if (scl->scl_writer == curthread) 508 wlocks_held |= (1 << i); 509 if (!(locks & (1 << i))) 510 continue; 511 mutex_enter(&scl->scl_lock); 512 if (rw == RW_READER) { 513 while (scl->scl_writer || 514 (!mmp_flag && scl->scl_write_wanted)) { 515 cv_wait(&scl->scl_cv, &scl->scl_lock); 516 } 517 } else { 518 ASSERT(scl->scl_writer != curthread); 519 while (scl->scl_count != 0) { 520 scl->scl_write_wanted++; 521 cv_wait(&scl->scl_cv, &scl->scl_lock); 522 scl->scl_write_wanted--; 523 } 524 scl->scl_writer = curthread; 525 } 526 scl->scl_count++; 527 mutex_exit(&scl->scl_lock); 528 } 529 ASSERT3U(wlocks_held, <=, locks); 530 } 531 532 void 533 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw) 534 { 535 spa_config_enter_impl(spa, locks, tag, rw, 0); 536 } 537 538 /* 539 * The spa_config_enter_mmp() allows the mmp thread to cut in front of 540 * outstanding write lock requests. This is needed since the mmp updates are 541 * time sensitive and failure to service them promptly will result in a 542 * suspended pool. This pool suspension has been seen in practice when there is 543 * a single disk in a pool that is responding slowly and presumably about to 544 * fail. 545 */ 546 547 void 548 spa_config_enter_mmp(spa_t *spa, int locks, const void *tag, krw_t rw) 549 { 550 spa_config_enter_impl(spa, locks, tag, rw, 1); 551 } 552 553 void 554 spa_config_exit(spa_t *spa, int locks, const void *tag) 555 { 556 (void) tag; 557 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 558 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 559 if (!(locks & (1 << i))) 560 continue; 561 mutex_enter(&scl->scl_lock); 562 ASSERT(scl->scl_count > 0); 563 if (--scl->scl_count == 0) { 564 ASSERT(scl->scl_writer == NULL || 565 scl->scl_writer == curthread); 566 scl->scl_writer = NULL; /* OK in either case */ 567 cv_broadcast(&scl->scl_cv); 568 } 569 mutex_exit(&scl->scl_lock); 570 } 571 } 572 573 int 574 spa_config_held(spa_t *spa, int locks, krw_t rw) 575 { 576 int locks_held = 0; 577 578 for (int i = 0; i < SCL_LOCKS; i++) { 579 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 580 if (!(locks & (1 << i))) 581 continue; 582 if ((rw == RW_READER && scl->scl_count != 0) || 583 (rw == RW_WRITER && scl->scl_writer == curthread)) 584 locks_held |= 1 << i; 585 } 586 587 return (locks_held); 588 } 589 590 /* 591 * ========================================================================== 592 * SPA namespace functions 593 * ========================================================================== 594 */ 595 596 /* 597 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 598 * Returns NULL if no matching spa_t is found. 599 */ 600 spa_t * 601 spa_lookup(const char *name) 602 { 603 static spa_t search; /* spa_t is large; don't allocate on stack */ 604 spa_t *spa; 605 avl_index_t where; 606 char *cp; 607 608 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 609 610 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 611 612 /* 613 * If it's a full dataset name, figure out the pool name and 614 * just use that. 615 */ 616 cp = strpbrk(search.spa_name, "/@#"); 617 if (cp != NULL) 618 *cp = '\0'; 619 620 spa = avl_find(&spa_namespace_avl, &search, &where); 621 622 return (spa); 623 } 624 625 /* 626 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 627 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 628 * looking for potentially hung I/Os. 629 */ 630 void 631 spa_deadman(void *arg) 632 { 633 spa_t *spa = arg; 634 635 /* Disable the deadman if the pool is suspended. */ 636 if (spa_suspended(spa)) 637 return; 638 639 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 640 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 641 (u_longlong_t)++spa->spa_deadman_calls); 642 if (zfs_deadman_enabled) 643 vdev_deadman(spa->spa_root_vdev, FTAG); 644 645 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, 646 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + 647 MSEC_TO_TICK(zfs_deadman_checktime_ms)); 648 } 649 650 static int 651 spa_log_sm_sort_by_txg(const void *va, const void *vb) 652 { 653 const spa_log_sm_t *a = va; 654 const spa_log_sm_t *b = vb; 655 656 return (TREE_CMP(a->sls_txg, b->sls_txg)); 657 } 658 659 /* 660 * Create an uninitialized spa_t with the given name. Requires 661 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 662 * exist by calling spa_lookup() first. 663 */ 664 spa_t * 665 spa_add(const char *name, nvlist_t *config, const char *altroot) 666 { 667 spa_t *spa; 668 spa_config_dirent_t *dp; 669 670 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 671 672 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 673 674 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 675 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 676 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 677 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); 678 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 679 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 680 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 681 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); 682 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 683 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 684 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 685 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL); 686 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL); 687 mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL); 688 689 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 690 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); 691 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 692 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 693 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 694 cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL); 695 cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL); 696 697 for (int t = 0; t < TXG_SIZE; t++) 698 bplist_create(&spa->spa_free_bplist[t]); 699 700 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 701 spa->spa_state = POOL_STATE_UNINITIALIZED; 702 spa->spa_freeze_txg = UINT64_MAX; 703 spa->spa_final_txg = UINT64_MAX; 704 spa->spa_load_max_txg = UINT64_MAX; 705 spa->spa_proc = &p0; 706 spa->spa_proc_state = SPA_PROC_NONE; 707 spa->spa_trust_config = B_TRUE; 708 spa->spa_hostid = zone_get_hostid(NULL); 709 710 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); 711 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms); 712 spa_set_deadman_failmode(spa, zfs_deadman_failmode); 713 714 zfs_refcount_create(&spa->spa_refcount); 715 spa_config_lock_init(spa); 716 spa_stats_init(spa); 717 718 avl_add(&spa_namespace_avl, spa); 719 720 /* 721 * Set the alternate root, if there is one. 722 */ 723 if (altroot) 724 spa->spa_root = spa_strdup(altroot); 725 726 spa->spa_alloc_count = spa_allocators; 727 spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count * 728 sizeof (spa_alloc_t), KM_SLEEP); 729 for (int i = 0; i < spa->spa_alloc_count; i++) { 730 mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT, 731 NULL); 732 avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare, 733 sizeof (zio_t), offsetof(zio_t, io_alloc_node)); 734 } 735 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed, 736 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node)); 737 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg, 738 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node)); 739 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t), 740 offsetof(log_summary_entry_t, lse_node)); 741 742 /* 743 * Every pool starts with the default cachefile 744 */ 745 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 746 offsetof(spa_config_dirent_t, scd_link)); 747 748 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 749 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 750 list_insert_head(&spa->spa_config_list, dp); 751 752 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 753 KM_SLEEP) == 0); 754 755 if (config != NULL) { 756 nvlist_t *features; 757 758 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 759 &features) == 0) { 760 VERIFY(nvlist_dup(features, &spa->spa_label_features, 761 0) == 0); 762 } 763 764 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 765 } 766 767 if (spa->spa_label_features == NULL) { 768 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 769 KM_SLEEP) == 0); 770 } 771 772 spa->spa_min_ashift = INT_MAX; 773 spa->spa_max_ashift = 0; 774 spa->spa_min_alloc = INT_MAX; 775 776 /* Reset cached value */ 777 spa->spa_dedup_dspace = ~0ULL; 778 779 /* 780 * As a pool is being created, treat all features as disabled by 781 * setting SPA_FEATURE_DISABLED for all entries in the feature 782 * refcount cache. 783 */ 784 for (int i = 0; i < SPA_FEATURES; i++) { 785 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; 786 } 787 788 list_create(&spa->spa_leaf_list, sizeof (vdev_t), 789 offsetof(vdev_t, vdev_leaf_node)); 790 791 return (spa); 792 } 793 794 /* 795 * Removes a spa_t from the namespace, freeing up any memory used. Requires 796 * spa_namespace_lock. This is called only after the spa_t has been closed and 797 * deactivated. 798 */ 799 void 800 spa_remove(spa_t *spa) 801 { 802 spa_config_dirent_t *dp; 803 804 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 805 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED); 806 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0); 807 ASSERT0(spa->spa_waiters); 808 809 nvlist_free(spa->spa_config_splitting); 810 811 avl_remove(&spa_namespace_avl, spa); 812 cv_broadcast(&spa_namespace_cv); 813 814 if (spa->spa_root) 815 spa_strfree(spa->spa_root); 816 817 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 818 list_remove(&spa->spa_config_list, dp); 819 if (dp->scd_path != NULL) 820 spa_strfree(dp->scd_path); 821 kmem_free(dp, sizeof (spa_config_dirent_t)); 822 } 823 824 for (int i = 0; i < spa->spa_alloc_count; i++) { 825 avl_destroy(&spa->spa_allocs[i].spaa_tree); 826 mutex_destroy(&spa->spa_allocs[i].spaa_lock); 827 } 828 kmem_free(spa->spa_allocs, spa->spa_alloc_count * 829 sizeof (spa_alloc_t)); 830 831 avl_destroy(&spa->spa_metaslabs_by_flushed); 832 avl_destroy(&spa->spa_sm_logs_by_txg); 833 list_destroy(&spa->spa_log_summary); 834 list_destroy(&spa->spa_config_list); 835 list_destroy(&spa->spa_leaf_list); 836 837 nvlist_free(spa->spa_label_features); 838 nvlist_free(spa->spa_load_info); 839 nvlist_free(spa->spa_feat_stats); 840 spa_config_set(spa, NULL); 841 842 zfs_refcount_destroy(&spa->spa_refcount); 843 844 spa_stats_destroy(spa); 845 spa_config_lock_destroy(spa); 846 847 for (int t = 0; t < TXG_SIZE; t++) 848 bplist_destroy(&spa->spa_free_bplist[t]); 849 850 zio_checksum_templates_free(spa); 851 852 cv_destroy(&spa->spa_async_cv); 853 cv_destroy(&spa->spa_evicting_os_cv); 854 cv_destroy(&spa->spa_proc_cv); 855 cv_destroy(&spa->spa_scrub_io_cv); 856 cv_destroy(&spa->spa_suspend_cv); 857 cv_destroy(&spa->spa_activities_cv); 858 cv_destroy(&spa->spa_waiters_cv); 859 860 mutex_destroy(&spa->spa_flushed_ms_lock); 861 mutex_destroy(&spa->spa_async_lock); 862 mutex_destroy(&spa->spa_errlist_lock); 863 mutex_destroy(&spa->spa_errlog_lock); 864 mutex_destroy(&spa->spa_evicting_os_lock); 865 mutex_destroy(&spa->spa_history_lock); 866 mutex_destroy(&spa->spa_proc_lock); 867 mutex_destroy(&spa->spa_props_lock); 868 mutex_destroy(&spa->spa_cksum_tmpls_lock); 869 mutex_destroy(&spa->spa_scrub_lock); 870 mutex_destroy(&spa->spa_suspend_lock); 871 mutex_destroy(&spa->spa_vdev_top_lock); 872 mutex_destroy(&spa->spa_feat_stats_lock); 873 mutex_destroy(&spa->spa_activities_lock); 874 875 kmem_free(spa, sizeof (spa_t)); 876 } 877 878 /* 879 * Given a pool, return the next pool in the namespace, or NULL if there is 880 * none. If 'prev' is NULL, return the first pool. 881 */ 882 spa_t * 883 spa_next(spa_t *prev) 884 { 885 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 886 887 if (prev) 888 return (AVL_NEXT(&spa_namespace_avl, prev)); 889 else 890 return (avl_first(&spa_namespace_avl)); 891 } 892 893 /* 894 * ========================================================================== 895 * SPA refcount functions 896 * ========================================================================== 897 */ 898 899 /* 900 * Add a reference to the given spa_t. Must have at least one reference, or 901 * have the namespace lock held. 902 */ 903 void 904 spa_open_ref(spa_t *spa, const void *tag) 905 { 906 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref || 907 MUTEX_HELD(&spa_namespace_lock)); 908 (void) zfs_refcount_add(&spa->spa_refcount, tag); 909 } 910 911 /* 912 * Remove a reference to the given spa_t. Must have at least one reference, or 913 * have the namespace lock held. 914 */ 915 void 916 spa_close(spa_t *spa, const void *tag) 917 { 918 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref || 919 MUTEX_HELD(&spa_namespace_lock)); 920 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 921 } 922 923 /* 924 * Remove a reference to the given spa_t held by a dsl dir that is 925 * being asynchronously released. Async releases occur from a taskq 926 * performing eviction of dsl datasets and dirs. The namespace lock 927 * isn't held and the hold by the object being evicted may contribute to 928 * spa_minref (e.g. dataset or directory released during pool export), 929 * so the asserts in spa_close() do not apply. 930 */ 931 void 932 spa_async_close(spa_t *spa, const void *tag) 933 { 934 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 935 } 936 937 /* 938 * Check to see if the spa refcount is zero. Must be called with 939 * spa_namespace_lock held. We really compare against spa_minref, which is the 940 * number of references acquired when opening a pool 941 */ 942 boolean_t 943 spa_refcount_zero(spa_t *spa) 944 { 945 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 946 947 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref); 948 } 949 950 /* 951 * ========================================================================== 952 * SPA spare and l2cache tracking 953 * ========================================================================== 954 */ 955 956 /* 957 * Hot spares and cache devices are tracked using the same code below, 958 * for 'auxiliary' devices. 959 */ 960 961 typedef struct spa_aux { 962 uint64_t aux_guid; 963 uint64_t aux_pool; 964 avl_node_t aux_avl; 965 int aux_count; 966 } spa_aux_t; 967 968 static inline int 969 spa_aux_compare(const void *a, const void *b) 970 { 971 const spa_aux_t *sa = (const spa_aux_t *)a; 972 const spa_aux_t *sb = (const spa_aux_t *)b; 973 974 return (TREE_CMP(sa->aux_guid, sb->aux_guid)); 975 } 976 977 static void 978 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 979 { 980 avl_index_t where; 981 spa_aux_t search; 982 spa_aux_t *aux; 983 984 search.aux_guid = vd->vdev_guid; 985 if ((aux = avl_find(avl, &search, &where)) != NULL) { 986 aux->aux_count++; 987 } else { 988 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 989 aux->aux_guid = vd->vdev_guid; 990 aux->aux_count = 1; 991 avl_insert(avl, aux, where); 992 } 993 } 994 995 static void 996 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 997 { 998 spa_aux_t search; 999 spa_aux_t *aux; 1000 avl_index_t where; 1001 1002 search.aux_guid = vd->vdev_guid; 1003 aux = avl_find(avl, &search, &where); 1004 1005 ASSERT(aux != NULL); 1006 1007 if (--aux->aux_count == 0) { 1008 avl_remove(avl, aux); 1009 kmem_free(aux, sizeof (spa_aux_t)); 1010 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 1011 aux->aux_pool = 0ULL; 1012 } 1013 } 1014 1015 static boolean_t 1016 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 1017 { 1018 spa_aux_t search, *found; 1019 1020 search.aux_guid = guid; 1021 found = avl_find(avl, &search, NULL); 1022 1023 if (pool) { 1024 if (found) 1025 *pool = found->aux_pool; 1026 else 1027 *pool = 0ULL; 1028 } 1029 1030 if (refcnt) { 1031 if (found) 1032 *refcnt = found->aux_count; 1033 else 1034 *refcnt = 0; 1035 } 1036 1037 return (found != NULL); 1038 } 1039 1040 static void 1041 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 1042 { 1043 spa_aux_t search, *found; 1044 avl_index_t where; 1045 1046 search.aux_guid = vd->vdev_guid; 1047 found = avl_find(avl, &search, &where); 1048 ASSERT(found != NULL); 1049 ASSERT(found->aux_pool == 0ULL); 1050 1051 found->aux_pool = spa_guid(vd->vdev_spa); 1052 } 1053 1054 /* 1055 * Spares are tracked globally due to the following constraints: 1056 * 1057 * - A spare may be part of multiple pools. 1058 * - A spare may be added to a pool even if it's actively in use within 1059 * another pool. 1060 * - A spare in use in any pool can only be the source of a replacement if 1061 * the target is a spare in the same pool. 1062 * 1063 * We keep track of all spares on the system through the use of a reference 1064 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 1065 * spare, then we bump the reference count in the AVL tree. In addition, we set 1066 * the 'vdev_isspare' member to indicate that the device is a spare (active or 1067 * inactive). When a spare is made active (used to replace a device in the 1068 * pool), we also keep track of which pool its been made a part of. 1069 * 1070 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 1071 * called under the spa_namespace lock as part of vdev reconfiguration. The 1072 * separate spare lock exists for the status query path, which does not need to 1073 * be completely consistent with respect to other vdev configuration changes. 1074 */ 1075 1076 static int 1077 spa_spare_compare(const void *a, const void *b) 1078 { 1079 return (spa_aux_compare(a, b)); 1080 } 1081 1082 void 1083 spa_spare_add(vdev_t *vd) 1084 { 1085 mutex_enter(&spa_spare_lock); 1086 ASSERT(!vd->vdev_isspare); 1087 spa_aux_add(vd, &spa_spare_avl); 1088 vd->vdev_isspare = B_TRUE; 1089 mutex_exit(&spa_spare_lock); 1090 } 1091 1092 void 1093 spa_spare_remove(vdev_t *vd) 1094 { 1095 mutex_enter(&spa_spare_lock); 1096 ASSERT(vd->vdev_isspare); 1097 spa_aux_remove(vd, &spa_spare_avl); 1098 vd->vdev_isspare = B_FALSE; 1099 mutex_exit(&spa_spare_lock); 1100 } 1101 1102 boolean_t 1103 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 1104 { 1105 boolean_t found; 1106 1107 mutex_enter(&spa_spare_lock); 1108 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 1109 mutex_exit(&spa_spare_lock); 1110 1111 return (found); 1112 } 1113 1114 void 1115 spa_spare_activate(vdev_t *vd) 1116 { 1117 mutex_enter(&spa_spare_lock); 1118 ASSERT(vd->vdev_isspare); 1119 spa_aux_activate(vd, &spa_spare_avl); 1120 mutex_exit(&spa_spare_lock); 1121 } 1122 1123 /* 1124 * Level 2 ARC devices are tracked globally for the same reasons as spares. 1125 * Cache devices currently only support one pool per cache device, and so 1126 * for these devices the aux reference count is currently unused beyond 1. 1127 */ 1128 1129 static int 1130 spa_l2cache_compare(const void *a, const void *b) 1131 { 1132 return (spa_aux_compare(a, b)); 1133 } 1134 1135 void 1136 spa_l2cache_add(vdev_t *vd) 1137 { 1138 mutex_enter(&spa_l2cache_lock); 1139 ASSERT(!vd->vdev_isl2cache); 1140 spa_aux_add(vd, &spa_l2cache_avl); 1141 vd->vdev_isl2cache = B_TRUE; 1142 mutex_exit(&spa_l2cache_lock); 1143 } 1144 1145 void 1146 spa_l2cache_remove(vdev_t *vd) 1147 { 1148 mutex_enter(&spa_l2cache_lock); 1149 ASSERT(vd->vdev_isl2cache); 1150 spa_aux_remove(vd, &spa_l2cache_avl); 1151 vd->vdev_isl2cache = B_FALSE; 1152 mutex_exit(&spa_l2cache_lock); 1153 } 1154 1155 boolean_t 1156 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 1157 { 1158 boolean_t found; 1159 1160 mutex_enter(&spa_l2cache_lock); 1161 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 1162 mutex_exit(&spa_l2cache_lock); 1163 1164 return (found); 1165 } 1166 1167 void 1168 spa_l2cache_activate(vdev_t *vd) 1169 { 1170 mutex_enter(&spa_l2cache_lock); 1171 ASSERT(vd->vdev_isl2cache); 1172 spa_aux_activate(vd, &spa_l2cache_avl); 1173 mutex_exit(&spa_l2cache_lock); 1174 } 1175 1176 /* 1177 * ========================================================================== 1178 * SPA vdev locking 1179 * ========================================================================== 1180 */ 1181 1182 /* 1183 * Lock the given spa_t for the purpose of adding or removing a vdev. 1184 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 1185 * It returns the next transaction group for the spa_t. 1186 */ 1187 uint64_t 1188 spa_vdev_enter(spa_t *spa) 1189 { 1190 mutex_enter(&spa->spa_vdev_top_lock); 1191 mutex_enter(&spa_namespace_lock); 1192 1193 vdev_autotrim_stop_all(spa); 1194 1195 return (spa_vdev_config_enter(spa)); 1196 } 1197 1198 /* 1199 * The same as spa_vdev_enter() above but additionally takes the guid of 1200 * the vdev being detached. When there is a rebuild in process it will be 1201 * suspended while the vdev tree is modified then resumed by spa_vdev_exit(). 1202 * The rebuild is canceled if only a single child remains after the detach. 1203 */ 1204 uint64_t 1205 spa_vdev_detach_enter(spa_t *spa, uint64_t guid) 1206 { 1207 mutex_enter(&spa->spa_vdev_top_lock); 1208 mutex_enter(&spa_namespace_lock); 1209 1210 vdev_autotrim_stop_all(spa); 1211 1212 if (guid != 0) { 1213 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 1214 if (vd) { 1215 vdev_rebuild_stop_wait(vd->vdev_top); 1216 } 1217 } 1218 1219 return (spa_vdev_config_enter(spa)); 1220 } 1221 1222 /* 1223 * Internal implementation for spa_vdev_enter(). Used when a vdev 1224 * operation requires multiple syncs (i.e. removing a device) while 1225 * keeping the spa_namespace_lock held. 1226 */ 1227 uint64_t 1228 spa_vdev_config_enter(spa_t *spa) 1229 { 1230 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1231 1232 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1233 1234 return (spa_last_synced_txg(spa) + 1); 1235 } 1236 1237 /* 1238 * Used in combination with spa_vdev_config_enter() to allow the syncing 1239 * of multiple transactions without releasing the spa_namespace_lock. 1240 */ 1241 void 1242 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, 1243 const char *tag) 1244 { 1245 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1246 1247 int config_changed = B_FALSE; 1248 1249 ASSERT(txg > spa_last_synced_txg(spa)); 1250 1251 spa->spa_pending_vdev = NULL; 1252 1253 /* 1254 * Reassess the DTLs. 1255 */ 1256 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE); 1257 1258 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 1259 config_changed = B_TRUE; 1260 spa->spa_config_generation++; 1261 } 1262 1263 /* 1264 * Verify the metaslab classes. 1265 */ 1266 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 1267 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 1268 ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0); 1269 ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0); 1270 ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0); 1271 1272 spa_config_exit(spa, SCL_ALL, spa); 1273 1274 /* 1275 * Panic the system if the specified tag requires it. This 1276 * is useful for ensuring that configurations are updated 1277 * transactionally. 1278 */ 1279 if (zio_injection_enabled) 1280 zio_handle_panic_injection(spa, tag, 0); 1281 1282 /* 1283 * Note: this txg_wait_synced() is important because it ensures 1284 * that there won't be more than one config change per txg. 1285 * This allows us to use the txg as the generation number. 1286 */ 1287 if (error == 0) 1288 txg_wait_synced(spa->spa_dsl_pool, txg); 1289 1290 if (vd != NULL) { 1291 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); 1292 if (vd->vdev_ops->vdev_op_leaf) { 1293 mutex_enter(&vd->vdev_initialize_lock); 1294 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, 1295 NULL); 1296 mutex_exit(&vd->vdev_initialize_lock); 1297 1298 mutex_enter(&vd->vdev_trim_lock); 1299 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL); 1300 mutex_exit(&vd->vdev_trim_lock); 1301 } 1302 1303 /* 1304 * The vdev may be both a leaf and top-level device. 1305 */ 1306 vdev_autotrim_stop_wait(vd); 1307 1308 spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER); 1309 vdev_free(vd); 1310 spa_config_exit(spa, SCL_STATE_ALL, spa); 1311 } 1312 1313 /* 1314 * If the config changed, update the config cache. 1315 */ 1316 if (config_changed) 1317 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); 1318 } 1319 1320 /* 1321 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1322 * locking of spa_vdev_enter(), we also want make sure the transactions have 1323 * synced to disk, and then update the global configuration cache with the new 1324 * information. 1325 */ 1326 int 1327 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1328 { 1329 vdev_autotrim_restart(spa); 1330 vdev_rebuild_restart(spa); 1331 1332 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1333 mutex_exit(&spa_namespace_lock); 1334 mutex_exit(&spa->spa_vdev_top_lock); 1335 1336 return (error); 1337 } 1338 1339 /* 1340 * Lock the given spa_t for the purpose of changing vdev state. 1341 */ 1342 void 1343 spa_vdev_state_enter(spa_t *spa, int oplocks) 1344 { 1345 int locks = SCL_STATE_ALL | oplocks; 1346 1347 /* 1348 * Root pools may need to read of the underlying devfs filesystem 1349 * when opening up a vdev. Unfortunately if we're holding the 1350 * SCL_ZIO lock it will result in a deadlock when we try to issue 1351 * the read from the root filesystem. Instead we "prefetch" 1352 * the associated vnodes that we need prior to opening the 1353 * underlying devices and cache them so that we can prevent 1354 * any I/O when we are doing the actual open. 1355 */ 1356 if (spa_is_root(spa)) { 1357 int low = locks & ~(SCL_ZIO - 1); 1358 int high = locks & ~low; 1359 1360 spa_config_enter(spa, high, spa, RW_WRITER); 1361 vdev_hold(spa->spa_root_vdev); 1362 spa_config_enter(spa, low, spa, RW_WRITER); 1363 } else { 1364 spa_config_enter(spa, locks, spa, RW_WRITER); 1365 } 1366 spa->spa_vdev_locks = locks; 1367 } 1368 1369 int 1370 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1371 { 1372 boolean_t config_changed = B_FALSE; 1373 vdev_t *vdev_top; 1374 1375 if (vd == NULL || vd == spa->spa_root_vdev) { 1376 vdev_top = spa->spa_root_vdev; 1377 } else { 1378 vdev_top = vd->vdev_top; 1379 } 1380 1381 if (vd != NULL || error == 0) 1382 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE); 1383 1384 if (vd != NULL) { 1385 if (vd != spa->spa_root_vdev) 1386 vdev_state_dirty(vdev_top); 1387 1388 config_changed = B_TRUE; 1389 spa->spa_config_generation++; 1390 } 1391 1392 if (spa_is_root(spa)) 1393 vdev_rele(spa->spa_root_vdev); 1394 1395 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1396 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1397 1398 /* 1399 * If anything changed, wait for it to sync. This ensures that, 1400 * from the system administrator's perspective, zpool(8) commands 1401 * are synchronous. This is important for things like zpool offline: 1402 * when the command completes, you expect no further I/O from ZFS. 1403 */ 1404 if (vd != NULL) 1405 txg_wait_synced(spa->spa_dsl_pool, 0); 1406 1407 /* 1408 * If the config changed, update the config cache. 1409 */ 1410 if (config_changed) { 1411 mutex_enter(&spa_namespace_lock); 1412 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE); 1413 mutex_exit(&spa_namespace_lock); 1414 } 1415 1416 return (error); 1417 } 1418 1419 /* 1420 * ========================================================================== 1421 * Miscellaneous functions 1422 * ========================================================================== 1423 */ 1424 1425 void 1426 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) 1427 { 1428 if (!nvlist_exists(spa->spa_label_features, feature)) { 1429 fnvlist_add_boolean(spa->spa_label_features, feature); 1430 /* 1431 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't 1432 * dirty the vdev config because lock SCL_CONFIG is not held. 1433 * Thankfully, in this case we don't need to dirty the config 1434 * because it will be written out anyway when we finish 1435 * creating the pool. 1436 */ 1437 if (tx->tx_txg != TXG_INITIAL) 1438 vdev_config_dirty(spa->spa_root_vdev); 1439 } 1440 } 1441 1442 void 1443 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1444 { 1445 if (nvlist_remove_all(spa->spa_label_features, feature) == 0) 1446 vdev_config_dirty(spa->spa_root_vdev); 1447 } 1448 1449 /* 1450 * Return the spa_t associated with given pool_guid, if it exists. If 1451 * device_guid is non-zero, determine whether the pool exists *and* contains 1452 * a device with the specified device_guid. 1453 */ 1454 spa_t * 1455 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1456 { 1457 spa_t *spa; 1458 avl_tree_t *t = &spa_namespace_avl; 1459 1460 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1461 1462 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1463 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1464 continue; 1465 if (spa->spa_root_vdev == NULL) 1466 continue; 1467 if (spa_guid(spa) == pool_guid) { 1468 if (device_guid == 0) 1469 break; 1470 1471 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1472 device_guid) != NULL) 1473 break; 1474 1475 /* 1476 * Check any devices we may be in the process of adding. 1477 */ 1478 if (spa->spa_pending_vdev) { 1479 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1480 device_guid) != NULL) 1481 break; 1482 } 1483 } 1484 } 1485 1486 return (spa); 1487 } 1488 1489 /* 1490 * Determine whether a pool with the given pool_guid exists. 1491 */ 1492 boolean_t 1493 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1494 { 1495 return (spa_by_guid(pool_guid, device_guid) != NULL); 1496 } 1497 1498 char * 1499 spa_strdup(const char *s) 1500 { 1501 size_t len; 1502 char *new; 1503 1504 len = strlen(s); 1505 new = kmem_alloc(len + 1, KM_SLEEP); 1506 memcpy(new, s, len + 1); 1507 1508 return (new); 1509 } 1510 1511 void 1512 spa_strfree(char *s) 1513 { 1514 kmem_free(s, strlen(s) + 1); 1515 } 1516 1517 uint64_t 1518 spa_generate_guid(spa_t *spa) 1519 { 1520 uint64_t guid; 1521 1522 if (spa != NULL) { 1523 do { 1524 (void) random_get_pseudo_bytes((void *)&guid, 1525 sizeof (guid)); 1526 } while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)); 1527 } else { 1528 do { 1529 (void) random_get_pseudo_bytes((void *)&guid, 1530 sizeof (guid)); 1531 } while (guid == 0 || spa_guid_exists(guid, 0)); 1532 } 1533 1534 return (guid); 1535 } 1536 1537 void 1538 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) 1539 { 1540 char type[256]; 1541 const char *checksum = NULL; 1542 const char *compress = NULL; 1543 1544 if (bp != NULL) { 1545 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1546 dmu_object_byteswap_t bswap = 1547 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1548 (void) snprintf(type, sizeof (type), "bswap %s %s", 1549 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1550 "metadata" : "data", 1551 dmu_ot_byteswap[bswap].ob_name); 1552 } else { 1553 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1554 sizeof (type)); 1555 } 1556 if (!BP_IS_EMBEDDED(bp)) { 1557 checksum = 1558 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1559 } 1560 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1561 } 1562 1563 SNPRINTF_BLKPTR(kmem_scnprintf, ' ', buf, buflen, bp, type, checksum, 1564 compress); 1565 } 1566 1567 void 1568 spa_freeze(spa_t *spa) 1569 { 1570 uint64_t freeze_txg = 0; 1571 1572 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1573 if (spa->spa_freeze_txg == UINT64_MAX) { 1574 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1575 spa->spa_freeze_txg = freeze_txg; 1576 } 1577 spa_config_exit(spa, SCL_ALL, FTAG); 1578 if (freeze_txg != 0) 1579 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1580 } 1581 1582 void 1583 zfs_panic_recover(const char *fmt, ...) 1584 { 1585 va_list adx; 1586 1587 va_start(adx, fmt); 1588 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1589 va_end(adx); 1590 } 1591 1592 /* 1593 * This is a stripped-down version of strtoull, suitable only for converting 1594 * lowercase hexadecimal numbers that don't overflow. 1595 */ 1596 uint64_t 1597 zfs_strtonum(const char *str, char **nptr) 1598 { 1599 uint64_t val = 0; 1600 char c; 1601 int digit; 1602 1603 while ((c = *str) != '\0') { 1604 if (c >= '0' && c <= '9') 1605 digit = c - '0'; 1606 else if (c >= 'a' && c <= 'f') 1607 digit = 10 + c - 'a'; 1608 else 1609 break; 1610 1611 val *= 16; 1612 val += digit; 1613 1614 str++; 1615 } 1616 1617 if (nptr) 1618 *nptr = (char *)str; 1619 1620 return (val); 1621 } 1622 1623 void 1624 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx) 1625 { 1626 /* 1627 * We bump the feature refcount for each special vdev added to the pool 1628 */ 1629 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)); 1630 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx); 1631 } 1632 1633 /* 1634 * ========================================================================== 1635 * Accessor functions 1636 * ========================================================================== 1637 */ 1638 1639 boolean_t 1640 spa_shutting_down(spa_t *spa) 1641 { 1642 return (spa->spa_async_suspended); 1643 } 1644 1645 dsl_pool_t * 1646 spa_get_dsl(spa_t *spa) 1647 { 1648 return (spa->spa_dsl_pool); 1649 } 1650 1651 boolean_t 1652 spa_is_initializing(spa_t *spa) 1653 { 1654 return (spa->spa_is_initializing); 1655 } 1656 1657 boolean_t 1658 spa_indirect_vdevs_loaded(spa_t *spa) 1659 { 1660 return (spa->spa_indirect_vdevs_loaded); 1661 } 1662 1663 blkptr_t * 1664 spa_get_rootblkptr(spa_t *spa) 1665 { 1666 return (&spa->spa_ubsync.ub_rootbp); 1667 } 1668 1669 void 1670 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1671 { 1672 spa->spa_uberblock.ub_rootbp = *bp; 1673 } 1674 1675 void 1676 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1677 { 1678 if (spa->spa_root == NULL) 1679 buf[0] = '\0'; 1680 else 1681 (void) strlcpy(buf, spa->spa_root, buflen); 1682 } 1683 1684 uint32_t 1685 spa_sync_pass(spa_t *spa) 1686 { 1687 return (spa->spa_sync_pass); 1688 } 1689 1690 char * 1691 spa_name(spa_t *spa) 1692 { 1693 return (spa->spa_name); 1694 } 1695 1696 uint64_t 1697 spa_guid(spa_t *spa) 1698 { 1699 dsl_pool_t *dp = spa_get_dsl(spa); 1700 uint64_t guid; 1701 1702 /* 1703 * If we fail to parse the config during spa_load(), we can go through 1704 * the error path (which posts an ereport) and end up here with no root 1705 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1706 * this case. 1707 */ 1708 if (spa->spa_root_vdev == NULL) 1709 return (spa->spa_config_guid); 1710 1711 guid = spa->spa_last_synced_guid != 0 ? 1712 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1713 1714 /* 1715 * Return the most recently synced out guid unless we're 1716 * in syncing context. 1717 */ 1718 if (dp && dsl_pool_sync_context(dp)) 1719 return (spa->spa_root_vdev->vdev_guid); 1720 else 1721 return (guid); 1722 } 1723 1724 uint64_t 1725 spa_load_guid(spa_t *spa) 1726 { 1727 /* 1728 * This is a GUID that exists solely as a reference for the 1729 * purposes of the arc. It is generated at load time, and 1730 * is never written to persistent storage. 1731 */ 1732 return (spa->spa_load_guid); 1733 } 1734 1735 uint64_t 1736 spa_last_synced_txg(spa_t *spa) 1737 { 1738 return (spa->spa_ubsync.ub_txg); 1739 } 1740 1741 uint64_t 1742 spa_first_txg(spa_t *spa) 1743 { 1744 return (spa->spa_first_txg); 1745 } 1746 1747 uint64_t 1748 spa_syncing_txg(spa_t *spa) 1749 { 1750 return (spa->spa_syncing_txg); 1751 } 1752 1753 /* 1754 * Return the last txg where data can be dirtied. The final txgs 1755 * will be used to just clear out any deferred frees that remain. 1756 */ 1757 uint64_t 1758 spa_final_dirty_txg(spa_t *spa) 1759 { 1760 return (spa->spa_final_txg - TXG_DEFER_SIZE); 1761 } 1762 1763 pool_state_t 1764 spa_state(spa_t *spa) 1765 { 1766 return (spa->spa_state); 1767 } 1768 1769 spa_load_state_t 1770 spa_load_state(spa_t *spa) 1771 { 1772 return (spa->spa_load_state); 1773 } 1774 1775 uint64_t 1776 spa_freeze_txg(spa_t *spa) 1777 { 1778 return (spa->spa_freeze_txg); 1779 } 1780 1781 /* 1782 * Return the inflated asize for a logical write in bytes. This is used by the 1783 * DMU to calculate the space a logical write will require on disk. 1784 * If lsize is smaller than the largest physical block size allocatable on this 1785 * pool we use its value instead, since the write will end up using the whole 1786 * block anyway. 1787 */ 1788 uint64_t 1789 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize) 1790 { 1791 if (lsize == 0) 1792 return (0); /* No inflation needed */ 1793 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation); 1794 } 1795 1796 /* 1797 * Return the amount of slop space in bytes. It is typically 1/32 of the pool 1798 * (3.2%), minus the embedded log space. On very small pools, it may be 1799 * slightly larger than this. On very large pools, it will be capped to 1800 * the value of spa_max_slop. The embedded log space is not included in 1801 * spa_dspace. By subtracting it, the usable space (per "zfs list") is a 1802 * constant 97% of the total space, regardless of metaslab size (assuming the 1803 * default spa_slop_shift=5 and a non-tiny pool). 1804 * 1805 * See the comment above spa_slop_shift for more details. 1806 */ 1807 uint64_t 1808 spa_get_slop_space(spa_t *spa) 1809 { 1810 uint64_t space = 0; 1811 uint64_t slop = 0; 1812 1813 /* 1814 * Make sure spa_dedup_dspace has been set. 1815 */ 1816 if (spa->spa_dedup_dspace == ~0ULL) 1817 spa_update_dspace(spa); 1818 1819 /* 1820 * spa_get_dspace() includes the space only logically "used" by 1821 * deduplicated data, so since it's not useful to reserve more 1822 * space with more deduplicated data, we subtract that out here. 1823 */ 1824 space = spa_get_dspace(spa) - spa->spa_dedup_dspace; 1825 slop = MIN(space >> spa_slop_shift, spa_max_slop); 1826 1827 /* 1828 * Subtract the embedded log space, but no more than half the (3.2%) 1829 * unusable space. Note, the "no more than half" is only relevant if 1830 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by 1831 * default. 1832 */ 1833 uint64_t embedded_log = 1834 metaslab_class_get_dspace(spa_embedded_log_class(spa)); 1835 slop -= MIN(embedded_log, slop >> 1); 1836 1837 /* 1838 * Slop space should be at least spa_min_slop, but no more than half 1839 * the entire pool. 1840 */ 1841 slop = MAX(slop, MIN(space >> 1, spa_min_slop)); 1842 return (slop); 1843 } 1844 1845 uint64_t 1846 spa_get_dspace(spa_t *spa) 1847 { 1848 return (spa->spa_dspace); 1849 } 1850 1851 uint64_t 1852 spa_get_checkpoint_space(spa_t *spa) 1853 { 1854 return (spa->spa_checkpoint_info.sci_dspace); 1855 } 1856 1857 void 1858 spa_update_dspace(spa_t *spa) 1859 { 1860 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1861 ddt_get_dedup_dspace(spa) + brt_get_dspace(spa); 1862 if (spa->spa_nonallocating_dspace > 0) { 1863 /* 1864 * Subtract the space provided by all non-allocating vdevs that 1865 * contribute to dspace. If a file is overwritten, its old 1866 * blocks are freed and new blocks are allocated. If there are 1867 * no snapshots of the file, the available space should remain 1868 * the same. The old blocks could be freed from the 1869 * non-allocating vdev, but the new blocks must be allocated on 1870 * other (allocating) vdevs. By reserving the entire size of 1871 * the non-allocating vdevs (including allocated space), we 1872 * ensure that there will be enough space on the allocating 1873 * vdevs for this file overwrite to succeed. 1874 * 1875 * Note that the DMU/DSL doesn't actually know or care 1876 * how much space is allocated (it does its own tracking 1877 * of how much space has been logically used). So it 1878 * doesn't matter that the data we are moving may be 1879 * allocated twice (on the old device and the new device). 1880 */ 1881 ASSERT3U(spa->spa_dspace, >=, spa->spa_nonallocating_dspace); 1882 spa->spa_dspace -= spa->spa_nonallocating_dspace; 1883 } 1884 } 1885 1886 /* 1887 * Return the failure mode that has been set to this pool. The default 1888 * behavior will be to block all I/Os when a complete failure occurs. 1889 */ 1890 uint64_t 1891 spa_get_failmode(spa_t *spa) 1892 { 1893 return (spa->spa_failmode); 1894 } 1895 1896 boolean_t 1897 spa_suspended(spa_t *spa) 1898 { 1899 return (spa->spa_suspended != ZIO_SUSPEND_NONE); 1900 } 1901 1902 uint64_t 1903 spa_version(spa_t *spa) 1904 { 1905 return (spa->spa_ubsync.ub_version); 1906 } 1907 1908 boolean_t 1909 spa_deflate(spa_t *spa) 1910 { 1911 return (spa->spa_deflate); 1912 } 1913 1914 metaslab_class_t * 1915 spa_normal_class(spa_t *spa) 1916 { 1917 return (spa->spa_normal_class); 1918 } 1919 1920 metaslab_class_t * 1921 spa_log_class(spa_t *spa) 1922 { 1923 return (spa->spa_log_class); 1924 } 1925 1926 metaslab_class_t * 1927 spa_embedded_log_class(spa_t *spa) 1928 { 1929 return (spa->spa_embedded_log_class); 1930 } 1931 1932 metaslab_class_t * 1933 spa_special_class(spa_t *spa) 1934 { 1935 return (spa->spa_special_class); 1936 } 1937 1938 metaslab_class_t * 1939 spa_dedup_class(spa_t *spa) 1940 { 1941 return (spa->spa_dedup_class); 1942 } 1943 1944 /* 1945 * Locate an appropriate allocation class 1946 */ 1947 metaslab_class_t * 1948 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype, 1949 uint_t level, uint_t special_smallblk) 1950 { 1951 /* 1952 * ZIL allocations determine their class in zio_alloc_zil(). 1953 */ 1954 ASSERT(objtype != DMU_OT_INTENT_LOG); 1955 1956 boolean_t has_special_class = spa->spa_special_class->mc_groups != 0; 1957 1958 if (DMU_OT_IS_DDT(objtype)) { 1959 if (spa->spa_dedup_class->mc_groups != 0) 1960 return (spa_dedup_class(spa)); 1961 else if (has_special_class && zfs_ddt_data_is_special) 1962 return (spa_special_class(spa)); 1963 else 1964 return (spa_normal_class(spa)); 1965 } 1966 1967 /* Indirect blocks for user data can land in special if allowed */ 1968 if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) { 1969 if (has_special_class && zfs_user_indirect_is_special) 1970 return (spa_special_class(spa)); 1971 else 1972 return (spa_normal_class(spa)); 1973 } 1974 1975 if (DMU_OT_IS_METADATA(objtype) || level > 0) { 1976 if (has_special_class) 1977 return (spa_special_class(spa)); 1978 else 1979 return (spa_normal_class(spa)); 1980 } 1981 1982 /* 1983 * Allow small file blocks in special class in some cases (like 1984 * for the dRAID vdev feature). But always leave a reserve of 1985 * zfs_special_class_metadata_reserve_pct exclusively for metadata. 1986 */ 1987 if (DMU_OT_IS_FILE(objtype) && 1988 has_special_class && size <= special_smallblk) { 1989 metaslab_class_t *special = spa_special_class(spa); 1990 uint64_t alloc = metaslab_class_get_alloc(special); 1991 uint64_t space = metaslab_class_get_space(special); 1992 uint64_t limit = 1993 (space * (100 - zfs_special_class_metadata_reserve_pct)) 1994 / 100; 1995 1996 if (alloc < limit) 1997 return (special); 1998 } 1999 2000 return (spa_normal_class(spa)); 2001 } 2002 2003 void 2004 spa_evicting_os_register(spa_t *spa, objset_t *os) 2005 { 2006 mutex_enter(&spa->spa_evicting_os_lock); 2007 list_insert_head(&spa->spa_evicting_os_list, os); 2008 mutex_exit(&spa->spa_evicting_os_lock); 2009 } 2010 2011 void 2012 spa_evicting_os_deregister(spa_t *spa, objset_t *os) 2013 { 2014 mutex_enter(&spa->spa_evicting_os_lock); 2015 list_remove(&spa->spa_evicting_os_list, os); 2016 cv_broadcast(&spa->spa_evicting_os_cv); 2017 mutex_exit(&spa->spa_evicting_os_lock); 2018 } 2019 2020 void 2021 spa_evicting_os_wait(spa_t *spa) 2022 { 2023 mutex_enter(&spa->spa_evicting_os_lock); 2024 while (!list_is_empty(&spa->spa_evicting_os_list)) 2025 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); 2026 mutex_exit(&spa->spa_evicting_os_lock); 2027 2028 dmu_buf_user_evict_wait(); 2029 } 2030 2031 int 2032 spa_max_replication(spa_t *spa) 2033 { 2034 /* 2035 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 2036 * handle BPs with more than one DVA allocated. Set our max 2037 * replication level accordingly. 2038 */ 2039 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 2040 return (1); 2041 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 2042 } 2043 2044 int 2045 spa_prev_software_version(spa_t *spa) 2046 { 2047 return (spa->spa_prev_software_version); 2048 } 2049 2050 uint64_t 2051 spa_deadman_synctime(spa_t *spa) 2052 { 2053 return (spa->spa_deadman_synctime); 2054 } 2055 2056 spa_autotrim_t 2057 spa_get_autotrim(spa_t *spa) 2058 { 2059 return (spa->spa_autotrim); 2060 } 2061 2062 uint64_t 2063 spa_deadman_ziotime(spa_t *spa) 2064 { 2065 return (spa->spa_deadman_ziotime); 2066 } 2067 2068 uint64_t 2069 spa_get_deadman_failmode(spa_t *spa) 2070 { 2071 return (spa->spa_deadman_failmode); 2072 } 2073 2074 void 2075 spa_set_deadman_failmode(spa_t *spa, const char *failmode) 2076 { 2077 if (strcmp(failmode, "wait") == 0) 2078 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2079 else if (strcmp(failmode, "continue") == 0) 2080 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE; 2081 else if (strcmp(failmode, "panic") == 0) 2082 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC; 2083 else 2084 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2085 } 2086 2087 void 2088 spa_set_deadman_ziotime(hrtime_t ns) 2089 { 2090 spa_t *spa = NULL; 2091 2092 if (spa_mode_global != SPA_MODE_UNINIT) { 2093 mutex_enter(&spa_namespace_lock); 2094 while ((spa = spa_next(spa)) != NULL) 2095 spa->spa_deadman_ziotime = ns; 2096 mutex_exit(&spa_namespace_lock); 2097 } 2098 } 2099 2100 void 2101 spa_set_deadman_synctime(hrtime_t ns) 2102 { 2103 spa_t *spa = NULL; 2104 2105 if (spa_mode_global != SPA_MODE_UNINIT) { 2106 mutex_enter(&spa_namespace_lock); 2107 while ((spa = spa_next(spa)) != NULL) 2108 spa->spa_deadman_synctime = ns; 2109 mutex_exit(&spa_namespace_lock); 2110 } 2111 } 2112 2113 uint64_t 2114 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 2115 { 2116 uint64_t asize = DVA_GET_ASIZE(dva); 2117 uint64_t dsize = asize; 2118 2119 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2120 2121 if (asize != 0 && spa->spa_deflate) { 2122 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 2123 if (vd != NULL) 2124 dsize = (asize >> SPA_MINBLOCKSHIFT) * 2125 vd->vdev_deflate_ratio; 2126 } 2127 2128 return (dsize); 2129 } 2130 2131 uint64_t 2132 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 2133 { 2134 uint64_t dsize = 0; 2135 2136 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2137 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2138 2139 return (dsize); 2140 } 2141 2142 uint64_t 2143 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 2144 { 2145 uint64_t dsize = 0; 2146 2147 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2148 2149 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2150 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2151 2152 spa_config_exit(spa, SCL_VDEV, FTAG); 2153 2154 return (dsize); 2155 } 2156 2157 uint64_t 2158 spa_dirty_data(spa_t *spa) 2159 { 2160 return (spa->spa_dsl_pool->dp_dirty_total); 2161 } 2162 2163 /* 2164 * ========================================================================== 2165 * SPA Import Progress Routines 2166 * ========================================================================== 2167 */ 2168 2169 typedef struct spa_import_progress { 2170 uint64_t pool_guid; /* unique id for updates */ 2171 char *pool_name; 2172 spa_load_state_t spa_load_state; 2173 uint64_t mmp_sec_remaining; /* MMP activity check */ 2174 uint64_t spa_load_max_txg; /* rewind txg */ 2175 procfs_list_node_t smh_node; 2176 } spa_import_progress_t; 2177 2178 spa_history_list_t *spa_import_progress_list = NULL; 2179 2180 static int 2181 spa_import_progress_show_header(struct seq_file *f) 2182 { 2183 seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid", 2184 "load_state", "multihost_secs", "max_txg", 2185 "pool_name"); 2186 return (0); 2187 } 2188 2189 static int 2190 spa_import_progress_show(struct seq_file *f, void *data) 2191 { 2192 spa_import_progress_t *sip = (spa_import_progress_t *)data; 2193 2194 seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n", 2195 (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state, 2196 (u_longlong_t)sip->mmp_sec_remaining, 2197 (u_longlong_t)sip->spa_load_max_txg, 2198 (sip->pool_name ? sip->pool_name : "-")); 2199 2200 return (0); 2201 } 2202 2203 /* Remove oldest elements from list until there are no more than 'size' left */ 2204 static void 2205 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size) 2206 { 2207 spa_import_progress_t *sip; 2208 while (shl->size > size) { 2209 sip = list_remove_head(&shl->procfs_list.pl_list); 2210 if (sip->pool_name) 2211 spa_strfree(sip->pool_name); 2212 kmem_free(sip, sizeof (spa_import_progress_t)); 2213 shl->size--; 2214 } 2215 2216 IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list)); 2217 } 2218 2219 static void 2220 spa_import_progress_init(void) 2221 { 2222 spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t), 2223 KM_SLEEP); 2224 2225 spa_import_progress_list->size = 0; 2226 2227 spa_import_progress_list->procfs_list.pl_private = 2228 spa_import_progress_list; 2229 2230 procfs_list_install("zfs", 2231 NULL, 2232 "import_progress", 2233 0644, 2234 &spa_import_progress_list->procfs_list, 2235 spa_import_progress_show, 2236 spa_import_progress_show_header, 2237 NULL, 2238 offsetof(spa_import_progress_t, smh_node)); 2239 } 2240 2241 static void 2242 spa_import_progress_destroy(void) 2243 { 2244 spa_history_list_t *shl = spa_import_progress_list; 2245 procfs_list_uninstall(&shl->procfs_list); 2246 spa_import_progress_truncate(shl, 0); 2247 procfs_list_destroy(&shl->procfs_list); 2248 kmem_free(shl, sizeof (spa_history_list_t)); 2249 } 2250 2251 int 2252 spa_import_progress_set_state(uint64_t pool_guid, 2253 spa_load_state_t load_state) 2254 { 2255 spa_history_list_t *shl = spa_import_progress_list; 2256 spa_import_progress_t *sip; 2257 int error = ENOENT; 2258 2259 if (shl->size == 0) 2260 return (0); 2261 2262 mutex_enter(&shl->procfs_list.pl_lock); 2263 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2264 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2265 if (sip->pool_guid == pool_guid) { 2266 sip->spa_load_state = load_state; 2267 error = 0; 2268 break; 2269 } 2270 } 2271 mutex_exit(&shl->procfs_list.pl_lock); 2272 2273 return (error); 2274 } 2275 2276 int 2277 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg) 2278 { 2279 spa_history_list_t *shl = spa_import_progress_list; 2280 spa_import_progress_t *sip; 2281 int error = ENOENT; 2282 2283 if (shl->size == 0) 2284 return (0); 2285 2286 mutex_enter(&shl->procfs_list.pl_lock); 2287 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2288 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2289 if (sip->pool_guid == pool_guid) { 2290 sip->spa_load_max_txg = load_max_txg; 2291 error = 0; 2292 break; 2293 } 2294 } 2295 mutex_exit(&shl->procfs_list.pl_lock); 2296 2297 return (error); 2298 } 2299 2300 int 2301 spa_import_progress_set_mmp_check(uint64_t pool_guid, 2302 uint64_t mmp_sec_remaining) 2303 { 2304 spa_history_list_t *shl = spa_import_progress_list; 2305 spa_import_progress_t *sip; 2306 int error = ENOENT; 2307 2308 if (shl->size == 0) 2309 return (0); 2310 2311 mutex_enter(&shl->procfs_list.pl_lock); 2312 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2313 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2314 if (sip->pool_guid == pool_guid) { 2315 sip->mmp_sec_remaining = mmp_sec_remaining; 2316 error = 0; 2317 break; 2318 } 2319 } 2320 mutex_exit(&shl->procfs_list.pl_lock); 2321 2322 return (error); 2323 } 2324 2325 /* 2326 * A new import is in progress, add an entry. 2327 */ 2328 void 2329 spa_import_progress_add(spa_t *spa) 2330 { 2331 spa_history_list_t *shl = spa_import_progress_list; 2332 spa_import_progress_t *sip; 2333 const char *poolname = NULL; 2334 2335 sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP); 2336 sip->pool_guid = spa_guid(spa); 2337 2338 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME, 2339 &poolname); 2340 if (poolname == NULL) 2341 poolname = spa_name(spa); 2342 sip->pool_name = spa_strdup(poolname); 2343 sip->spa_load_state = spa_load_state(spa); 2344 2345 mutex_enter(&shl->procfs_list.pl_lock); 2346 procfs_list_add(&shl->procfs_list, sip); 2347 shl->size++; 2348 mutex_exit(&shl->procfs_list.pl_lock); 2349 } 2350 2351 void 2352 spa_import_progress_remove(uint64_t pool_guid) 2353 { 2354 spa_history_list_t *shl = spa_import_progress_list; 2355 spa_import_progress_t *sip; 2356 2357 mutex_enter(&shl->procfs_list.pl_lock); 2358 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2359 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2360 if (sip->pool_guid == pool_guid) { 2361 if (sip->pool_name) 2362 spa_strfree(sip->pool_name); 2363 list_remove(&shl->procfs_list.pl_list, sip); 2364 shl->size--; 2365 kmem_free(sip, sizeof (spa_import_progress_t)); 2366 break; 2367 } 2368 } 2369 mutex_exit(&shl->procfs_list.pl_lock); 2370 } 2371 2372 /* 2373 * ========================================================================== 2374 * Initialization and Termination 2375 * ========================================================================== 2376 */ 2377 2378 static int 2379 spa_name_compare(const void *a1, const void *a2) 2380 { 2381 const spa_t *s1 = a1; 2382 const spa_t *s2 = a2; 2383 int s; 2384 2385 s = strcmp(s1->spa_name, s2->spa_name); 2386 2387 return (TREE_ISIGN(s)); 2388 } 2389 2390 void 2391 spa_boot_init(void) 2392 { 2393 spa_config_load(); 2394 } 2395 2396 void 2397 spa_init(spa_mode_t mode) 2398 { 2399 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 2400 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 2401 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 2402 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 2403 2404 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 2405 offsetof(spa_t, spa_avl)); 2406 2407 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 2408 offsetof(spa_aux_t, aux_avl)); 2409 2410 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 2411 offsetof(spa_aux_t, aux_avl)); 2412 2413 spa_mode_global = mode; 2414 2415 #ifndef _KERNEL 2416 if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) { 2417 struct sigaction sa; 2418 2419 sa.sa_flags = SA_SIGINFO; 2420 sigemptyset(&sa.sa_mask); 2421 sa.sa_sigaction = arc_buf_sigsegv; 2422 2423 if (sigaction(SIGSEGV, &sa, NULL) == -1) { 2424 perror("could not enable watchpoints: " 2425 "sigaction(SIGSEGV, ...) = "); 2426 } else { 2427 arc_watch = B_TRUE; 2428 } 2429 } 2430 #endif 2431 2432 fm_init(); 2433 zfs_refcount_init(); 2434 unique_init(); 2435 zfs_btree_init(); 2436 metaslab_stat_init(); 2437 brt_init(); 2438 ddt_init(); 2439 zio_init(); 2440 dmu_init(); 2441 zil_init(); 2442 vdev_cache_stat_init(); 2443 vdev_mirror_stat_init(); 2444 vdev_raidz_math_init(); 2445 vdev_file_init(); 2446 zfs_prop_init(); 2447 chksum_init(); 2448 zpool_prop_init(); 2449 zpool_feature_init(); 2450 spa_config_load(); 2451 vdev_prop_init(); 2452 l2arc_start(); 2453 scan_init(); 2454 qat_init(); 2455 spa_import_progress_init(); 2456 } 2457 2458 void 2459 spa_fini(void) 2460 { 2461 l2arc_stop(); 2462 2463 spa_evict_all(); 2464 2465 vdev_file_fini(); 2466 vdev_cache_stat_fini(); 2467 vdev_mirror_stat_fini(); 2468 vdev_raidz_math_fini(); 2469 chksum_fini(); 2470 zil_fini(); 2471 dmu_fini(); 2472 zio_fini(); 2473 ddt_fini(); 2474 brt_fini(); 2475 metaslab_stat_fini(); 2476 zfs_btree_fini(); 2477 unique_fini(); 2478 zfs_refcount_fini(); 2479 fm_fini(); 2480 scan_fini(); 2481 qat_fini(); 2482 spa_import_progress_destroy(); 2483 2484 avl_destroy(&spa_namespace_avl); 2485 avl_destroy(&spa_spare_avl); 2486 avl_destroy(&spa_l2cache_avl); 2487 2488 cv_destroy(&spa_namespace_cv); 2489 mutex_destroy(&spa_namespace_lock); 2490 mutex_destroy(&spa_spare_lock); 2491 mutex_destroy(&spa_l2cache_lock); 2492 } 2493 2494 /* 2495 * Return whether this pool has a dedicated slog device. No locking needed. 2496 * It's not a problem if the wrong answer is returned as it's only for 2497 * performance and not correctness. 2498 */ 2499 boolean_t 2500 spa_has_slogs(spa_t *spa) 2501 { 2502 return (spa->spa_log_class->mc_groups != 0); 2503 } 2504 2505 spa_log_state_t 2506 spa_get_log_state(spa_t *spa) 2507 { 2508 return (spa->spa_log_state); 2509 } 2510 2511 void 2512 spa_set_log_state(spa_t *spa, spa_log_state_t state) 2513 { 2514 spa->spa_log_state = state; 2515 } 2516 2517 boolean_t 2518 spa_is_root(spa_t *spa) 2519 { 2520 return (spa->spa_is_root); 2521 } 2522 2523 boolean_t 2524 spa_writeable(spa_t *spa) 2525 { 2526 return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config); 2527 } 2528 2529 /* 2530 * Returns true if there is a pending sync task in any of the current 2531 * syncing txg, the current quiescing txg, or the current open txg. 2532 */ 2533 boolean_t 2534 spa_has_pending_synctask(spa_t *spa) 2535 { 2536 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) || 2537 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks)); 2538 } 2539 2540 spa_mode_t 2541 spa_mode(spa_t *spa) 2542 { 2543 return (spa->spa_mode); 2544 } 2545 2546 uint64_t 2547 spa_bootfs(spa_t *spa) 2548 { 2549 return (spa->spa_bootfs); 2550 } 2551 2552 uint64_t 2553 spa_delegation(spa_t *spa) 2554 { 2555 return (spa->spa_delegation); 2556 } 2557 2558 objset_t * 2559 spa_meta_objset(spa_t *spa) 2560 { 2561 return (spa->spa_meta_objset); 2562 } 2563 2564 enum zio_checksum 2565 spa_dedup_checksum(spa_t *spa) 2566 { 2567 return (spa->spa_dedup_checksum); 2568 } 2569 2570 /* 2571 * Reset pool scan stat per scan pass (or reboot). 2572 */ 2573 void 2574 spa_scan_stat_init(spa_t *spa) 2575 { 2576 /* data not stored on disk */ 2577 spa->spa_scan_pass_start = gethrestime_sec(); 2578 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan)) 2579 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start; 2580 else 2581 spa->spa_scan_pass_scrub_pause = 0; 2582 2583 if (dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) 2584 spa->spa_scan_pass_errorscrub_pause = spa->spa_scan_pass_start; 2585 else 2586 spa->spa_scan_pass_errorscrub_pause = 0; 2587 2588 spa->spa_scan_pass_scrub_spent_paused = 0; 2589 spa->spa_scan_pass_exam = 0; 2590 spa->spa_scan_pass_issued = 0; 2591 2592 // error scrub stats 2593 spa->spa_scan_pass_errorscrub_spent_paused = 0; 2594 } 2595 2596 /* 2597 * Get scan stats for zpool status reports 2598 */ 2599 int 2600 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 2601 { 2602 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 2603 2604 if (scn == NULL || (scn->scn_phys.scn_func == POOL_SCAN_NONE && 2605 scn->errorscrub_phys.dep_func == POOL_SCAN_NONE)) 2606 return (SET_ERROR(ENOENT)); 2607 2608 memset(ps, 0, sizeof (pool_scan_stat_t)); 2609 2610 /* data stored on disk */ 2611 ps->pss_func = scn->scn_phys.scn_func; 2612 ps->pss_state = scn->scn_phys.scn_state; 2613 ps->pss_start_time = scn->scn_phys.scn_start_time; 2614 ps->pss_end_time = scn->scn_phys.scn_end_time; 2615 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 2616 ps->pss_examined = scn->scn_phys.scn_examined; 2617 ps->pss_to_process = scn->scn_phys.scn_to_process; 2618 ps->pss_processed = scn->scn_phys.scn_processed; 2619 ps->pss_errors = scn->scn_phys.scn_errors; 2620 2621 /* data not stored on disk */ 2622 ps->pss_pass_exam = spa->spa_scan_pass_exam; 2623 ps->pss_pass_start = spa->spa_scan_pass_start; 2624 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause; 2625 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused; 2626 ps->pss_pass_issued = spa->spa_scan_pass_issued; 2627 ps->pss_issued = 2628 scn->scn_issued_before_pass + spa->spa_scan_pass_issued; 2629 2630 /* error scrub data stored on disk */ 2631 ps->pss_error_scrub_func = scn->errorscrub_phys.dep_func; 2632 ps->pss_error_scrub_state = scn->errorscrub_phys.dep_state; 2633 ps->pss_error_scrub_start = scn->errorscrub_phys.dep_start_time; 2634 ps->pss_error_scrub_end = scn->errorscrub_phys.dep_end_time; 2635 ps->pss_error_scrub_examined = scn->errorscrub_phys.dep_examined; 2636 ps->pss_error_scrub_to_be_examined = 2637 scn->errorscrub_phys.dep_to_examine; 2638 2639 /* error scrub data not stored on disk */ 2640 ps->pss_pass_error_scrub_pause = spa->spa_scan_pass_errorscrub_pause; 2641 2642 return (0); 2643 } 2644 2645 int 2646 spa_maxblocksize(spa_t *spa) 2647 { 2648 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 2649 return (SPA_MAXBLOCKSIZE); 2650 else 2651 return (SPA_OLD_MAXBLOCKSIZE); 2652 } 2653 2654 2655 /* 2656 * Returns the txg that the last device removal completed. No indirect mappings 2657 * have been added since this txg. 2658 */ 2659 uint64_t 2660 spa_get_last_removal_txg(spa_t *spa) 2661 { 2662 uint64_t vdevid; 2663 uint64_t ret = -1ULL; 2664 2665 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2666 /* 2667 * sr_prev_indirect_vdev is only modified while holding all the 2668 * config locks, so it is sufficient to hold SCL_VDEV as reader when 2669 * examining it. 2670 */ 2671 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev; 2672 2673 while (vdevid != -1ULL) { 2674 vdev_t *vd = vdev_lookup_top(spa, vdevid); 2675 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 2676 2677 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 2678 2679 /* 2680 * If the removal did not remap any data, we don't care. 2681 */ 2682 if (vdev_indirect_births_count(vib) != 0) { 2683 ret = vdev_indirect_births_last_entry_txg(vib); 2684 break; 2685 } 2686 2687 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev; 2688 } 2689 spa_config_exit(spa, SCL_VDEV, FTAG); 2690 2691 IMPLY(ret != -1ULL, 2692 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); 2693 2694 return (ret); 2695 } 2696 2697 int 2698 spa_maxdnodesize(spa_t *spa) 2699 { 2700 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 2701 return (DNODE_MAX_SIZE); 2702 else 2703 return (DNODE_MIN_SIZE); 2704 } 2705 2706 boolean_t 2707 spa_multihost(spa_t *spa) 2708 { 2709 return (spa->spa_multihost ? B_TRUE : B_FALSE); 2710 } 2711 2712 uint32_t 2713 spa_get_hostid(spa_t *spa) 2714 { 2715 return (spa->spa_hostid); 2716 } 2717 2718 boolean_t 2719 spa_trust_config(spa_t *spa) 2720 { 2721 return (spa->spa_trust_config); 2722 } 2723 2724 uint64_t 2725 spa_missing_tvds_allowed(spa_t *spa) 2726 { 2727 return (spa->spa_missing_tvds_allowed); 2728 } 2729 2730 space_map_t * 2731 spa_syncing_log_sm(spa_t *spa) 2732 { 2733 return (spa->spa_syncing_log_sm); 2734 } 2735 2736 void 2737 spa_set_missing_tvds(spa_t *spa, uint64_t missing) 2738 { 2739 spa->spa_missing_tvds = missing; 2740 } 2741 2742 /* 2743 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc). 2744 */ 2745 const char * 2746 spa_state_to_name(spa_t *spa) 2747 { 2748 ASSERT3P(spa, !=, NULL); 2749 2750 /* 2751 * it is possible for the spa to exist, without root vdev 2752 * as the spa transitions during import/export 2753 */ 2754 vdev_t *rvd = spa->spa_root_vdev; 2755 if (rvd == NULL) { 2756 return ("TRANSITIONING"); 2757 } 2758 vdev_state_t state = rvd->vdev_state; 2759 vdev_aux_t aux = rvd->vdev_stat.vs_aux; 2760 2761 if (spa_suspended(spa) && 2762 (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)) 2763 return ("SUSPENDED"); 2764 2765 switch (state) { 2766 case VDEV_STATE_CLOSED: 2767 case VDEV_STATE_OFFLINE: 2768 return ("OFFLINE"); 2769 case VDEV_STATE_REMOVED: 2770 return ("REMOVED"); 2771 case VDEV_STATE_CANT_OPEN: 2772 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG) 2773 return ("FAULTED"); 2774 else if (aux == VDEV_AUX_SPLIT_POOL) 2775 return ("SPLIT"); 2776 else 2777 return ("UNAVAIL"); 2778 case VDEV_STATE_FAULTED: 2779 return ("FAULTED"); 2780 case VDEV_STATE_DEGRADED: 2781 return ("DEGRADED"); 2782 case VDEV_STATE_HEALTHY: 2783 return ("ONLINE"); 2784 default: 2785 break; 2786 } 2787 2788 return ("UNKNOWN"); 2789 } 2790 2791 boolean_t 2792 spa_top_vdevs_spacemap_addressable(spa_t *spa) 2793 { 2794 vdev_t *rvd = spa->spa_root_vdev; 2795 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2796 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c])) 2797 return (B_FALSE); 2798 } 2799 return (B_TRUE); 2800 } 2801 2802 boolean_t 2803 spa_has_checkpoint(spa_t *spa) 2804 { 2805 return (spa->spa_checkpoint_txg != 0); 2806 } 2807 2808 boolean_t 2809 spa_importing_readonly_checkpoint(spa_t *spa) 2810 { 2811 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) && 2812 spa->spa_mode == SPA_MODE_READ); 2813 } 2814 2815 uint64_t 2816 spa_min_claim_txg(spa_t *spa) 2817 { 2818 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg; 2819 2820 if (checkpoint_txg != 0) 2821 return (checkpoint_txg + 1); 2822 2823 return (spa->spa_first_txg); 2824 } 2825 2826 /* 2827 * If there is a checkpoint, async destroys may consume more space from 2828 * the pool instead of freeing it. In an attempt to save the pool from 2829 * getting suspended when it is about to run out of space, we stop 2830 * processing async destroys. 2831 */ 2832 boolean_t 2833 spa_suspend_async_destroy(spa_t *spa) 2834 { 2835 dsl_pool_t *dp = spa_get_dsl(spa); 2836 2837 uint64_t unreserved = dsl_pool_unreserved_space(dp, 2838 ZFS_SPACE_CHECK_EXTRA_RESERVED); 2839 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes; 2840 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0; 2841 2842 if (spa_has_checkpoint(spa) && avail == 0) 2843 return (B_TRUE); 2844 2845 return (B_FALSE); 2846 } 2847 2848 #if defined(_KERNEL) 2849 2850 int 2851 param_set_deadman_failmode_common(const char *val) 2852 { 2853 spa_t *spa = NULL; 2854 char *p; 2855 2856 if (val == NULL) 2857 return (SET_ERROR(EINVAL)); 2858 2859 if ((p = strchr(val, '\n')) != NULL) 2860 *p = '\0'; 2861 2862 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 && 2863 strcmp(val, "panic")) 2864 return (SET_ERROR(EINVAL)); 2865 2866 if (spa_mode_global != SPA_MODE_UNINIT) { 2867 mutex_enter(&spa_namespace_lock); 2868 while ((spa = spa_next(spa)) != NULL) 2869 spa_set_deadman_failmode(spa, val); 2870 mutex_exit(&spa_namespace_lock); 2871 } 2872 2873 return (0); 2874 } 2875 #endif 2876 2877 /* Namespace manipulation */ 2878 EXPORT_SYMBOL(spa_lookup); 2879 EXPORT_SYMBOL(spa_add); 2880 EXPORT_SYMBOL(spa_remove); 2881 EXPORT_SYMBOL(spa_next); 2882 2883 /* Refcount functions */ 2884 EXPORT_SYMBOL(spa_open_ref); 2885 EXPORT_SYMBOL(spa_close); 2886 EXPORT_SYMBOL(spa_refcount_zero); 2887 2888 /* Pool configuration lock */ 2889 EXPORT_SYMBOL(spa_config_tryenter); 2890 EXPORT_SYMBOL(spa_config_enter); 2891 EXPORT_SYMBOL(spa_config_exit); 2892 EXPORT_SYMBOL(spa_config_held); 2893 2894 /* Pool vdev add/remove lock */ 2895 EXPORT_SYMBOL(spa_vdev_enter); 2896 EXPORT_SYMBOL(spa_vdev_exit); 2897 2898 /* Pool vdev state change lock */ 2899 EXPORT_SYMBOL(spa_vdev_state_enter); 2900 EXPORT_SYMBOL(spa_vdev_state_exit); 2901 2902 /* Accessor functions */ 2903 EXPORT_SYMBOL(spa_shutting_down); 2904 EXPORT_SYMBOL(spa_get_dsl); 2905 EXPORT_SYMBOL(spa_get_rootblkptr); 2906 EXPORT_SYMBOL(spa_set_rootblkptr); 2907 EXPORT_SYMBOL(spa_altroot); 2908 EXPORT_SYMBOL(spa_sync_pass); 2909 EXPORT_SYMBOL(spa_name); 2910 EXPORT_SYMBOL(spa_guid); 2911 EXPORT_SYMBOL(spa_last_synced_txg); 2912 EXPORT_SYMBOL(spa_first_txg); 2913 EXPORT_SYMBOL(spa_syncing_txg); 2914 EXPORT_SYMBOL(spa_version); 2915 EXPORT_SYMBOL(spa_state); 2916 EXPORT_SYMBOL(spa_load_state); 2917 EXPORT_SYMBOL(spa_freeze_txg); 2918 EXPORT_SYMBOL(spa_get_dspace); 2919 EXPORT_SYMBOL(spa_update_dspace); 2920 EXPORT_SYMBOL(spa_deflate); 2921 EXPORT_SYMBOL(spa_normal_class); 2922 EXPORT_SYMBOL(spa_log_class); 2923 EXPORT_SYMBOL(spa_special_class); 2924 EXPORT_SYMBOL(spa_preferred_class); 2925 EXPORT_SYMBOL(spa_max_replication); 2926 EXPORT_SYMBOL(spa_prev_software_version); 2927 EXPORT_SYMBOL(spa_get_failmode); 2928 EXPORT_SYMBOL(spa_suspended); 2929 EXPORT_SYMBOL(spa_bootfs); 2930 EXPORT_SYMBOL(spa_delegation); 2931 EXPORT_SYMBOL(spa_meta_objset); 2932 EXPORT_SYMBOL(spa_maxblocksize); 2933 EXPORT_SYMBOL(spa_maxdnodesize); 2934 2935 /* Miscellaneous support routines */ 2936 EXPORT_SYMBOL(spa_guid_exists); 2937 EXPORT_SYMBOL(spa_strdup); 2938 EXPORT_SYMBOL(spa_strfree); 2939 EXPORT_SYMBOL(spa_generate_guid); 2940 EXPORT_SYMBOL(snprintf_blkptr); 2941 EXPORT_SYMBOL(spa_freeze); 2942 EXPORT_SYMBOL(spa_upgrade); 2943 EXPORT_SYMBOL(spa_evict_all); 2944 EXPORT_SYMBOL(spa_lookup_by_guid); 2945 EXPORT_SYMBOL(spa_has_spare); 2946 EXPORT_SYMBOL(dva_get_dsize_sync); 2947 EXPORT_SYMBOL(bp_get_dsize_sync); 2948 EXPORT_SYMBOL(bp_get_dsize); 2949 EXPORT_SYMBOL(spa_has_slogs); 2950 EXPORT_SYMBOL(spa_is_root); 2951 EXPORT_SYMBOL(spa_writeable); 2952 EXPORT_SYMBOL(spa_mode); 2953 EXPORT_SYMBOL(spa_namespace_lock); 2954 EXPORT_SYMBOL(spa_trust_config); 2955 EXPORT_SYMBOL(spa_missing_tvds_allowed); 2956 EXPORT_SYMBOL(spa_set_missing_tvds); 2957 EXPORT_SYMBOL(spa_state_to_name); 2958 EXPORT_SYMBOL(spa_importing_readonly_checkpoint); 2959 EXPORT_SYMBOL(spa_min_claim_txg); 2960 EXPORT_SYMBOL(spa_suspend_async_destroy); 2961 EXPORT_SYMBOL(spa_has_checkpoint); 2962 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable); 2963 2964 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW, 2965 "Set additional debugging flags"); 2966 2967 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW, 2968 "Set to attempt to recover from fatal errors"); 2969 2970 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW, 2971 "Set to ignore IO errors during free and permanently leak the space"); 2972 2973 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, U64, ZMOD_RW, 2974 "Dead I/O check interval in milliseconds"); 2975 2976 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW, 2977 "Enable deadman timer"); 2978 2979 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, UINT, ZMOD_RW, 2980 "SPA size estimate multiplication factor"); 2981 2982 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW, 2983 "Place DDT data into the special class"); 2984 2985 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW, 2986 "Place user data indirect blocks into the special class"); 2987 2988 /* BEGIN CSTYLED */ 2989 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode, 2990 param_set_deadman_failmode, param_get_charp, ZMOD_RW, 2991 "Failmode for deadman timer"); 2992 2993 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms, 2994 param_set_deadman_synctime, spl_param_get_u64, ZMOD_RW, 2995 "Pool sync expiration time in milliseconds"); 2996 2997 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms, 2998 param_set_deadman_ziotime, spl_param_get_u64, ZMOD_RW, 2999 "IO expiration time in milliseconds"); 3000 3001 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, UINT, ZMOD_RW, 3002 "Small file blocks in special vdevs depends on this much " 3003 "free space available"); 3004 /* END CSTYLED */ 3005 3006 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift, 3007 param_get_uint, ZMOD_RW, "Reserved free space in pool"); 3008