1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2013 Saso Kiselkov. All rights reserved. 27 * Copyright (c) 2017 Datto Inc. 28 * Copyright (c) 2017, Intel Corporation. 29 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/spa_impl.h> 34 #include <sys/zio.h> 35 #include <sys/zio_checksum.h> 36 #include <sys/zio_compress.h> 37 #include <sys/dmu.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/zap.h> 40 #include <sys/zil.h> 41 #include <sys/vdev_impl.h> 42 #include <sys/vdev_initialize.h> 43 #include <sys/vdev_trim.h> 44 #include <sys/vdev_file.h> 45 #include <sys/vdev_raidz.h> 46 #include <sys/metaslab.h> 47 #include <sys/uberblock_impl.h> 48 #include <sys/txg.h> 49 #include <sys/avl.h> 50 #include <sys/unique.h> 51 #include <sys/dsl_pool.h> 52 #include <sys/dsl_dir.h> 53 #include <sys/dsl_prop.h> 54 #include <sys/fm/util.h> 55 #include <sys/dsl_scan.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/metaslab_impl.h> 58 #include <sys/arc.h> 59 #include <sys/ddt.h> 60 #include <sys/kstat.h> 61 #include "zfs_prop.h" 62 #include <sys/btree.h> 63 #include <sys/zfeature.h> 64 #include <sys/qat.h> 65 #include <sys/zstd/zstd.h> 66 67 /* 68 * SPA locking 69 * 70 * There are three basic locks for managing spa_t structures: 71 * 72 * spa_namespace_lock (global mutex) 73 * 74 * This lock must be acquired to do any of the following: 75 * 76 * - Lookup a spa_t by name 77 * - Add or remove a spa_t from the namespace 78 * - Increase spa_refcount from non-zero 79 * - Check if spa_refcount is zero 80 * - Rename a spa_t 81 * - add/remove/attach/detach devices 82 * - Held for the duration of create/destroy/import/export 83 * 84 * It does not need to handle recursion. A create or destroy may 85 * reference objects (files or zvols) in other pools, but by 86 * definition they must have an existing reference, and will never need 87 * to lookup a spa_t by name. 88 * 89 * spa_refcount (per-spa zfs_refcount_t protected by mutex) 90 * 91 * This reference count keep track of any active users of the spa_t. The 92 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 93 * the refcount is never really 'zero' - opening a pool implicitly keeps 94 * some references in the DMU. Internally we check against spa_minref, but 95 * present the image of a zero/non-zero value to consumers. 96 * 97 * spa_config_lock[] (per-spa array of rwlocks) 98 * 99 * This protects the spa_t from config changes, and must be held in 100 * the following circumstances: 101 * 102 * - RW_READER to perform I/O to the spa 103 * - RW_WRITER to change the vdev config 104 * 105 * The locking order is fairly straightforward: 106 * 107 * spa_namespace_lock -> spa_refcount 108 * 109 * The namespace lock must be acquired to increase the refcount from 0 110 * or to check if it is zero. 111 * 112 * spa_refcount -> spa_config_lock[] 113 * 114 * There must be at least one valid reference on the spa_t to acquire 115 * the config lock. 116 * 117 * spa_namespace_lock -> spa_config_lock[] 118 * 119 * The namespace lock must always be taken before the config lock. 120 * 121 * 122 * The spa_namespace_lock can be acquired directly and is globally visible. 123 * 124 * The namespace is manipulated using the following functions, all of which 125 * require the spa_namespace_lock to be held. 126 * 127 * spa_lookup() Lookup a spa_t by name. 128 * 129 * spa_add() Create a new spa_t in the namespace. 130 * 131 * spa_remove() Remove a spa_t from the namespace. This also 132 * frees up any memory associated with the spa_t. 133 * 134 * spa_next() Returns the next spa_t in the system, or the 135 * first if NULL is passed. 136 * 137 * spa_evict_all() Shutdown and remove all spa_t structures in 138 * the system. 139 * 140 * spa_guid_exists() Determine whether a pool/device guid exists. 141 * 142 * The spa_refcount is manipulated using the following functions: 143 * 144 * spa_open_ref() Adds a reference to the given spa_t. Must be 145 * called with spa_namespace_lock held if the 146 * refcount is currently zero. 147 * 148 * spa_close() Remove a reference from the spa_t. This will 149 * not free the spa_t or remove it from the 150 * namespace. No locking is required. 151 * 152 * spa_refcount_zero() Returns true if the refcount is currently 153 * zero. Must be called with spa_namespace_lock 154 * held. 155 * 156 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 157 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 158 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 159 * 160 * To read the configuration, it suffices to hold one of these locks as reader. 161 * To modify the configuration, you must hold all locks as writer. To modify 162 * vdev state without altering the vdev tree's topology (e.g. online/offline), 163 * you must hold SCL_STATE and SCL_ZIO as writer. 164 * 165 * We use these distinct config locks to avoid recursive lock entry. 166 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 167 * block allocations (SCL_ALLOC), which may require reading space maps 168 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 169 * 170 * The spa config locks cannot be normal rwlocks because we need the 171 * ability to hand off ownership. For example, SCL_ZIO is acquired 172 * by the issuing thread and later released by an interrupt thread. 173 * They do, however, obey the usual write-wanted semantics to prevent 174 * writer (i.e. system administrator) starvation. 175 * 176 * The lock acquisition rules are as follows: 177 * 178 * SCL_CONFIG 179 * Protects changes to the vdev tree topology, such as vdev 180 * add/remove/attach/detach. Protects the dirty config list 181 * (spa_config_dirty_list) and the set of spares and l2arc devices. 182 * 183 * SCL_STATE 184 * Protects changes to pool state and vdev state, such as vdev 185 * online/offline/fault/degrade/clear. Protects the dirty state list 186 * (spa_state_dirty_list) and global pool state (spa_state). 187 * 188 * SCL_ALLOC 189 * Protects changes to metaslab groups and classes. 190 * Held as reader by metaslab_alloc() and metaslab_claim(). 191 * 192 * SCL_ZIO 193 * Held by bp-level zios (those which have no io_vd upon entry) 194 * to prevent changes to the vdev tree. The bp-level zio implicitly 195 * protects all of its vdev child zios, which do not hold SCL_ZIO. 196 * 197 * SCL_FREE 198 * Protects changes to metaslab groups and classes. 199 * Held as reader by metaslab_free(). SCL_FREE is distinct from 200 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 201 * blocks in zio_done() while another i/o that holds either 202 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 203 * 204 * SCL_VDEV 205 * Held as reader to prevent changes to the vdev tree during trivial 206 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 207 * other locks, and lower than all of them, to ensure that it's safe 208 * to acquire regardless of caller context. 209 * 210 * In addition, the following rules apply: 211 * 212 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 213 * The lock ordering is SCL_CONFIG > spa_props_lock. 214 * 215 * (b) I/O operations on leaf vdevs. For any zio operation that takes 216 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 217 * or zio_write_phys() -- the caller must ensure that the config cannot 218 * cannot change in the interim, and that the vdev cannot be reopened. 219 * SCL_STATE as reader suffices for both. 220 * 221 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 222 * 223 * spa_vdev_enter() Acquire the namespace lock and the config lock 224 * for writing. 225 * 226 * spa_vdev_exit() Release the config lock, wait for all I/O 227 * to complete, sync the updated configs to the 228 * cache, and release the namespace lock. 229 * 230 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 231 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 232 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 233 */ 234 235 static avl_tree_t spa_namespace_avl; 236 kmutex_t spa_namespace_lock; 237 static kcondvar_t spa_namespace_cv; 238 int spa_max_replication_override = SPA_DVAS_PER_BP; 239 240 static kmutex_t spa_spare_lock; 241 static avl_tree_t spa_spare_avl; 242 static kmutex_t spa_l2cache_lock; 243 static avl_tree_t spa_l2cache_avl; 244 245 kmem_cache_t *spa_buffer_pool; 246 spa_mode_t spa_mode_global = SPA_MODE_UNINIT; 247 248 #ifdef ZFS_DEBUG 249 /* 250 * Everything except dprintf, set_error, spa, and indirect_remap is on 251 * by default in debug builds. 252 */ 253 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR | 254 ZFS_DEBUG_INDIRECT_REMAP); 255 #else 256 int zfs_flags = 0; 257 #endif 258 259 /* 260 * zfs_recover can be set to nonzero to attempt to recover from 261 * otherwise-fatal errors, typically caused by on-disk corruption. When 262 * set, calls to zfs_panic_recover() will turn into warning messages. 263 * This should only be used as a last resort, as it typically results 264 * in leaked space, or worse. 265 */ 266 int zfs_recover = B_FALSE; 267 268 /* 269 * If destroy encounters an EIO while reading metadata (e.g. indirect 270 * blocks), space referenced by the missing metadata can not be freed. 271 * Normally this causes the background destroy to become "stalled", as 272 * it is unable to make forward progress. While in this stalled state, 273 * all remaining space to free from the error-encountering filesystem is 274 * "temporarily leaked". Set this flag to cause it to ignore the EIO, 275 * permanently leak the space from indirect blocks that can not be read, 276 * and continue to free everything else that it can. 277 * 278 * The default, "stalling" behavior is useful if the storage partially 279 * fails (i.e. some but not all i/os fail), and then later recovers. In 280 * this case, we will be able to continue pool operations while it is 281 * partially failed, and when it recovers, we can continue to free the 282 * space, with no leaks. However, note that this case is actually 283 * fairly rare. 284 * 285 * Typically pools either (a) fail completely (but perhaps temporarily, 286 * e.g. a top-level vdev going offline), or (b) have localized, 287 * permanent errors (e.g. disk returns the wrong data due to bit flip or 288 * firmware bug). In case (a), this setting does not matter because the 289 * pool will be suspended and the sync thread will not be able to make 290 * forward progress regardless. In case (b), because the error is 291 * permanent, the best we can do is leak the minimum amount of space, 292 * which is what setting this flag will do. Therefore, it is reasonable 293 * for this flag to normally be set, but we chose the more conservative 294 * approach of not setting it, so that there is no possibility of 295 * leaking space in the "partial temporary" failure case. 296 */ 297 int zfs_free_leak_on_eio = B_FALSE; 298 299 /* 300 * Expiration time in milliseconds. This value has two meanings. First it is 301 * used to determine when the spa_deadman() logic should fire. By default the 302 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds. 303 * Secondly, the value determines if an I/O is considered "hung". Any I/O that 304 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting 305 * in one of three behaviors controlled by zfs_deadman_failmode. 306 */ 307 unsigned long zfs_deadman_synctime_ms = 600000UL; 308 309 /* 310 * This value controls the maximum amount of time zio_wait() will block for an 311 * outstanding IO. By default this is 300 seconds at which point the "hung" 312 * behavior will be applied as described for zfs_deadman_synctime_ms. 313 */ 314 unsigned long zfs_deadman_ziotime_ms = 300000UL; 315 316 /* 317 * Check time in milliseconds. This defines the frequency at which we check 318 * for hung I/O. 319 */ 320 unsigned long zfs_deadman_checktime_ms = 60000UL; 321 322 /* 323 * By default the deadman is enabled. 324 */ 325 int zfs_deadman_enabled = 1; 326 327 /* 328 * Controls the behavior of the deadman when it detects a "hung" I/O. 329 * Valid values are zfs_deadman_failmode=<wait|continue|panic>. 330 * 331 * wait - Wait for the "hung" I/O (default) 332 * continue - Attempt to recover from a "hung" I/O 333 * panic - Panic the system 334 */ 335 char *zfs_deadman_failmode = "wait"; 336 337 /* 338 * The worst case is single-sector max-parity RAID-Z blocks, in which 339 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 340 * times the size; so just assume that. Add to this the fact that 341 * we can have up to 3 DVAs per bp, and one more factor of 2 because 342 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, 343 * the worst case is: 344 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 345 */ 346 int spa_asize_inflation = 24; 347 348 /* 349 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in 350 * the pool to be consumed (bounded by spa_max_slop). This ensures that we 351 * don't run the pool completely out of space, due to unaccounted changes (e.g. 352 * to the MOS). It also limits the worst-case time to allocate space. If we 353 * have less than this amount of free space, most ZPL operations (e.g. write, 354 * create) will return ENOSPC. The ZIL metaslabs (spa_embedded_log_class) are 355 * also part of this 3.2% of space which can't be consumed by normal writes; 356 * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded 357 * log space. 358 * 359 * Certain operations (e.g. file removal, most administrative actions) can 360 * use half the slop space. They will only return ENOSPC if less than half 361 * the slop space is free. Typically, once the pool has less than the slop 362 * space free, the user will use these operations to free up space in the pool. 363 * These are the operations that call dsl_pool_adjustedsize() with the netfree 364 * argument set to TRUE. 365 * 366 * Operations that are almost guaranteed to free up space in the absence of 367 * a pool checkpoint can use up to three quarters of the slop space 368 * (e.g zfs destroy). 369 * 370 * A very restricted set of operations are always permitted, regardless of 371 * the amount of free space. These are the operations that call 372 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net 373 * increase in the amount of space used, it is possible to run the pool 374 * completely out of space, causing it to be permanently read-only. 375 * 376 * Note that on very small pools, the slop space will be larger than 377 * 3.2%, in an effort to have it be at least spa_min_slop (128MB), 378 * but we never allow it to be more than half the pool size. 379 * 380 * Further, on very large pools, the slop space will be smaller than 381 * 3.2%, to avoid reserving much more space than we actually need; bounded 382 * by spa_max_slop (128GB). 383 * 384 * See also the comments in zfs_space_check_t. 385 */ 386 int spa_slop_shift = 5; 387 uint64_t spa_min_slop = 128ULL * 1024 * 1024; 388 uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024; 389 int spa_allocators = 4; 390 391 392 void 393 spa_load_failed(spa_t *spa, const char *fmt, ...) 394 { 395 va_list adx; 396 char buf[256]; 397 398 va_start(adx, fmt); 399 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 400 va_end(adx); 401 402 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name, 403 spa->spa_trust_config ? "trusted" : "untrusted", buf); 404 } 405 406 void 407 spa_load_note(spa_t *spa, const char *fmt, ...) 408 { 409 va_list adx; 410 char buf[256]; 411 412 va_start(adx, fmt); 413 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 414 va_end(adx); 415 416 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name, 417 spa->spa_trust_config ? "trusted" : "untrusted", buf); 418 } 419 420 /* 421 * By default dedup and user data indirects land in the special class 422 */ 423 int zfs_ddt_data_is_special = B_TRUE; 424 int zfs_user_indirect_is_special = B_TRUE; 425 426 /* 427 * The percentage of special class final space reserved for metadata only. 428 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only 429 * let metadata into the class. 430 */ 431 int zfs_special_class_metadata_reserve_pct = 25; 432 433 /* 434 * ========================================================================== 435 * SPA config locking 436 * ========================================================================== 437 */ 438 static void 439 spa_config_lock_init(spa_t *spa) 440 { 441 for (int i = 0; i < SCL_LOCKS; i++) { 442 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 443 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 444 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 445 scl->scl_writer = NULL; 446 scl->scl_write_wanted = 0; 447 scl->scl_count = 0; 448 } 449 } 450 451 static void 452 spa_config_lock_destroy(spa_t *spa) 453 { 454 for (int i = 0; i < SCL_LOCKS; i++) { 455 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 456 mutex_destroy(&scl->scl_lock); 457 cv_destroy(&scl->scl_cv); 458 ASSERT(scl->scl_writer == NULL); 459 ASSERT(scl->scl_write_wanted == 0); 460 ASSERT(scl->scl_count == 0); 461 } 462 } 463 464 int 465 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 466 { 467 for (int i = 0; i < SCL_LOCKS; i++) { 468 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 469 if (!(locks & (1 << i))) 470 continue; 471 mutex_enter(&scl->scl_lock); 472 if (rw == RW_READER) { 473 if (scl->scl_writer || scl->scl_write_wanted) { 474 mutex_exit(&scl->scl_lock); 475 spa_config_exit(spa, locks & ((1 << i) - 1), 476 tag); 477 return (0); 478 } 479 } else { 480 ASSERT(scl->scl_writer != curthread); 481 if (scl->scl_count != 0) { 482 mutex_exit(&scl->scl_lock); 483 spa_config_exit(spa, locks & ((1 << i) - 1), 484 tag); 485 return (0); 486 } 487 scl->scl_writer = curthread; 488 } 489 scl->scl_count++; 490 mutex_exit(&scl->scl_lock); 491 } 492 return (1); 493 } 494 495 void 496 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw) 497 { 498 int wlocks_held = 0; 499 500 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 501 502 for (int i = 0; i < SCL_LOCKS; i++) { 503 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 504 if (scl->scl_writer == curthread) 505 wlocks_held |= (1 << i); 506 if (!(locks & (1 << i))) 507 continue; 508 mutex_enter(&scl->scl_lock); 509 if (rw == RW_READER) { 510 while (scl->scl_writer || scl->scl_write_wanted) { 511 cv_wait(&scl->scl_cv, &scl->scl_lock); 512 } 513 } else { 514 ASSERT(scl->scl_writer != curthread); 515 while (scl->scl_count != 0) { 516 scl->scl_write_wanted++; 517 cv_wait(&scl->scl_cv, &scl->scl_lock); 518 scl->scl_write_wanted--; 519 } 520 scl->scl_writer = curthread; 521 } 522 scl->scl_count++; 523 mutex_exit(&scl->scl_lock); 524 } 525 ASSERT3U(wlocks_held, <=, locks); 526 } 527 528 void 529 spa_config_exit(spa_t *spa, int locks, const void *tag) 530 { 531 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 532 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 533 if (!(locks & (1 << i))) 534 continue; 535 mutex_enter(&scl->scl_lock); 536 ASSERT(scl->scl_count > 0); 537 if (--scl->scl_count == 0) { 538 ASSERT(scl->scl_writer == NULL || 539 scl->scl_writer == curthread); 540 scl->scl_writer = NULL; /* OK in either case */ 541 cv_broadcast(&scl->scl_cv); 542 } 543 mutex_exit(&scl->scl_lock); 544 } 545 } 546 547 int 548 spa_config_held(spa_t *spa, int locks, krw_t rw) 549 { 550 int locks_held = 0; 551 552 for (int i = 0; i < SCL_LOCKS; i++) { 553 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 554 if (!(locks & (1 << i))) 555 continue; 556 if ((rw == RW_READER && scl->scl_count != 0) || 557 (rw == RW_WRITER && scl->scl_writer == curthread)) 558 locks_held |= 1 << i; 559 } 560 561 return (locks_held); 562 } 563 564 /* 565 * ========================================================================== 566 * SPA namespace functions 567 * ========================================================================== 568 */ 569 570 /* 571 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 572 * Returns NULL if no matching spa_t is found. 573 */ 574 spa_t * 575 spa_lookup(const char *name) 576 { 577 static spa_t search; /* spa_t is large; don't allocate on stack */ 578 spa_t *spa; 579 avl_index_t where; 580 char *cp; 581 582 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 583 584 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 585 586 /* 587 * If it's a full dataset name, figure out the pool name and 588 * just use that. 589 */ 590 cp = strpbrk(search.spa_name, "/@#"); 591 if (cp != NULL) 592 *cp = '\0'; 593 594 spa = avl_find(&spa_namespace_avl, &search, &where); 595 596 return (spa); 597 } 598 599 /* 600 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 601 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 602 * looking for potentially hung I/Os. 603 */ 604 void 605 spa_deadman(void *arg) 606 { 607 spa_t *spa = arg; 608 609 /* Disable the deadman if the pool is suspended. */ 610 if (spa_suspended(spa)) 611 return; 612 613 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 614 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 615 (u_longlong_t)++spa->spa_deadman_calls); 616 if (zfs_deadman_enabled) 617 vdev_deadman(spa->spa_root_vdev, FTAG); 618 619 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, 620 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + 621 MSEC_TO_TICK(zfs_deadman_checktime_ms)); 622 } 623 624 static int 625 spa_log_sm_sort_by_txg(const void *va, const void *vb) 626 { 627 const spa_log_sm_t *a = va; 628 const spa_log_sm_t *b = vb; 629 630 return (TREE_CMP(a->sls_txg, b->sls_txg)); 631 } 632 633 /* 634 * Create an uninitialized spa_t with the given name. Requires 635 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 636 * exist by calling spa_lookup() first. 637 */ 638 spa_t * 639 spa_add(const char *name, nvlist_t *config, const char *altroot) 640 { 641 spa_t *spa; 642 spa_config_dirent_t *dp; 643 644 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 645 646 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 647 648 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 649 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 650 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 651 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); 652 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 653 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 654 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 655 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); 656 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 657 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 658 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 659 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL); 660 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL); 661 mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL); 662 663 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 664 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); 665 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 666 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 667 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 668 cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL); 669 cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL); 670 671 for (int t = 0; t < TXG_SIZE; t++) 672 bplist_create(&spa->spa_free_bplist[t]); 673 674 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 675 spa->spa_state = POOL_STATE_UNINITIALIZED; 676 spa->spa_freeze_txg = UINT64_MAX; 677 spa->spa_final_txg = UINT64_MAX; 678 spa->spa_load_max_txg = UINT64_MAX; 679 spa->spa_proc = &p0; 680 spa->spa_proc_state = SPA_PROC_NONE; 681 spa->spa_trust_config = B_TRUE; 682 spa->spa_hostid = zone_get_hostid(NULL); 683 684 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); 685 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms); 686 spa_set_deadman_failmode(spa, zfs_deadman_failmode); 687 688 zfs_refcount_create(&spa->spa_refcount); 689 spa_config_lock_init(spa); 690 spa_stats_init(spa); 691 692 avl_add(&spa_namespace_avl, spa); 693 694 /* 695 * Set the alternate root, if there is one. 696 */ 697 if (altroot) 698 spa->spa_root = spa_strdup(altroot); 699 700 spa->spa_alloc_count = spa_allocators; 701 spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count * 702 sizeof (spa_alloc_t), KM_SLEEP); 703 for (int i = 0; i < spa->spa_alloc_count; i++) { 704 mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT, 705 NULL); 706 avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare, 707 sizeof (zio_t), offsetof(zio_t, io_alloc_node)); 708 } 709 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed, 710 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node)); 711 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg, 712 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node)); 713 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t), 714 offsetof(log_summary_entry_t, lse_node)); 715 716 /* 717 * Every pool starts with the default cachefile 718 */ 719 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 720 offsetof(spa_config_dirent_t, scd_link)); 721 722 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 723 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 724 list_insert_head(&spa->spa_config_list, dp); 725 726 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 727 KM_SLEEP) == 0); 728 729 if (config != NULL) { 730 nvlist_t *features; 731 732 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 733 &features) == 0) { 734 VERIFY(nvlist_dup(features, &spa->spa_label_features, 735 0) == 0); 736 } 737 738 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 739 } 740 741 if (spa->spa_label_features == NULL) { 742 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 743 KM_SLEEP) == 0); 744 } 745 746 spa->spa_min_ashift = INT_MAX; 747 spa->spa_max_ashift = 0; 748 spa->spa_min_alloc = INT_MAX; 749 750 /* Reset cached value */ 751 spa->spa_dedup_dspace = ~0ULL; 752 753 /* 754 * As a pool is being created, treat all features as disabled by 755 * setting SPA_FEATURE_DISABLED for all entries in the feature 756 * refcount cache. 757 */ 758 for (int i = 0; i < SPA_FEATURES; i++) { 759 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; 760 } 761 762 list_create(&spa->spa_leaf_list, sizeof (vdev_t), 763 offsetof(vdev_t, vdev_leaf_node)); 764 765 return (spa); 766 } 767 768 /* 769 * Removes a spa_t from the namespace, freeing up any memory used. Requires 770 * spa_namespace_lock. This is called only after the spa_t has been closed and 771 * deactivated. 772 */ 773 void 774 spa_remove(spa_t *spa) 775 { 776 spa_config_dirent_t *dp; 777 778 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 779 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED); 780 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0); 781 ASSERT0(spa->spa_waiters); 782 783 nvlist_free(spa->spa_config_splitting); 784 785 avl_remove(&spa_namespace_avl, spa); 786 cv_broadcast(&spa_namespace_cv); 787 788 if (spa->spa_root) 789 spa_strfree(spa->spa_root); 790 791 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 792 list_remove(&spa->spa_config_list, dp); 793 if (dp->scd_path != NULL) 794 spa_strfree(dp->scd_path); 795 kmem_free(dp, sizeof (spa_config_dirent_t)); 796 } 797 798 for (int i = 0; i < spa->spa_alloc_count; i++) { 799 avl_destroy(&spa->spa_allocs[i].spaa_tree); 800 mutex_destroy(&spa->spa_allocs[i].spaa_lock); 801 } 802 kmem_free(spa->spa_allocs, spa->spa_alloc_count * 803 sizeof (spa_alloc_t)); 804 805 avl_destroy(&spa->spa_metaslabs_by_flushed); 806 avl_destroy(&spa->spa_sm_logs_by_txg); 807 list_destroy(&spa->spa_log_summary); 808 list_destroy(&spa->spa_config_list); 809 list_destroy(&spa->spa_leaf_list); 810 811 nvlist_free(spa->spa_label_features); 812 nvlist_free(spa->spa_load_info); 813 nvlist_free(spa->spa_feat_stats); 814 spa_config_set(spa, NULL); 815 816 zfs_refcount_destroy(&spa->spa_refcount); 817 818 spa_stats_destroy(spa); 819 spa_config_lock_destroy(spa); 820 821 for (int t = 0; t < TXG_SIZE; t++) 822 bplist_destroy(&spa->spa_free_bplist[t]); 823 824 zio_checksum_templates_free(spa); 825 826 cv_destroy(&spa->spa_async_cv); 827 cv_destroy(&spa->spa_evicting_os_cv); 828 cv_destroy(&spa->spa_proc_cv); 829 cv_destroy(&spa->spa_scrub_io_cv); 830 cv_destroy(&spa->spa_suspend_cv); 831 cv_destroy(&spa->spa_activities_cv); 832 cv_destroy(&spa->spa_waiters_cv); 833 834 mutex_destroy(&spa->spa_flushed_ms_lock); 835 mutex_destroy(&spa->spa_async_lock); 836 mutex_destroy(&spa->spa_errlist_lock); 837 mutex_destroy(&spa->spa_errlog_lock); 838 mutex_destroy(&spa->spa_evicting_os_lock); 839 mutex_destroy(&spa->spa_history_lock); 840 mutex_destroy(&spa->spa_proc_lock); 841 mutex_destroy(&spa->spa_props_lock); 842 mutex_destroy(&spa->spa_cksum_tmpls_lock); 843 mutex_destroy(&spa->spa_scrub_lock); 844 mutex_destroy(&spa->spa_suspend_lock); 845 mutex_destroy(&spa->spa_vdev_top_lock); 846 mutex_destroy(&spa->spa_feat_stats_lock); 847 mutex_destroy(&spa->spa_activities_lock); 848 849 kmem_free(spa, sizeof (spa_t)); 850 } 851 852 /* 853 * Given a pool, return the next pool in the namespace, or NULL if there is 854 * none. If 'prev' is NULL, return the first pool. 855 */ 856 spa_t * 857 spa_next(spa_t *prev) 858 { 859 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 860 861 if (prev) 862 return (AVL_NEXT(&spa_namespace_avl, prev)); 863 else 864 return (avl_first(&spa_namespace_avl)); 865 } 866 867 /* 868 * ========================================================================== 869 * SPA refcount functions 870 * ========================================================================== 871 */ 872 873 /* 874 * Add a reference to the given spa_t. Must have at least one reference, or 875 * have the namespace lock held. 876 */ 877 void 878 spa_open_ref(spa_t *spa, void *tag) 879 { 880 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref || 881 MUTEX_HELD(&spa_namespace_lock)); 882 (void) zfs_refcount_add(&spa->spa_refcount, tag); 883 } 884 885 /* 886 * Remove a reference to the given spa_t. Must have at least one reference, or 887 * have the namespace lock held. 888 */ 889 void 890 spa_close(spa_t *spa, void *tag) 891 { 892 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref || 893 MUTEX_HELD(&spa_namespace_lock)); 894 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 895 } 896 897 /* 898 * Remove a reference to the given spa_t held by a dsl dir that is 899 * being asynchronously released. Async releases occur from a taskq 900 * performing eviction of dsl datasets and dirs. The namespace lock 901 * isn't held and the hold by the object being evicted may contribute to 902 * spa_minref (e.g. dataset or directory released during pool export), 903 * so the asserts in spa_close() do not apply. 904 */ 905 void 906 spa_async_close(spa_t *spa, void *tag) 907 { 908 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 909 } 910 911 /* 912 * Check to see if the spa refcount is zero. Must be called with 913 * spa_namespace_lock held. We really compare against spa_minref, which is the 914 * number of references acquired when opening a pool 915 */ 916 boolean_t 917 spa_refcount_zero(spa_t *spa) 918 { 919 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 920 921 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref); 922 } 923 924 /* 925 * ========================================================================== 926 * SPA spare and l2cache tracking 927 * ========================================================================== 928 */ 929 930 /* 931 * Hot spares and cache devices are tracked using the same code below, 932 * for 'auxiliary' devices. 933 */ 934 935 typedef struct spa_aux { 936 uint64_t aux_guid; 937 uint64_t aux_pool; 938 avl_node_t aux_avl; 939 int aux_count; 940 } spa_aux_t; 941 942 static inline int 943 spa_aux_compare(const void *a, const void *b) 944 { 945 const spa_aux_t *sa = (const spa_aux_t *)a; 946 const spa_aux_t *sb = (const spa_aux_t *)b; 947 948 return (TREE_CMP(sa->aux_guid, sb->aux_guid)); 949 } 950 951 static void 952 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 953 { 954 avl_index_t where; 955 spa_aux_t search; 956 spa_aux_t *aux; 957 958 search.aux_guid = vd->vdev_guid; 959 if ((aux = avl_find(avl, &search, &where)) != NULL) { 960 aux->aux_count++; 961 } else { 962 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 963 aux->aux_guid = vd->vdev_guid; 964 aux->aux_count = 1; 965 avl_insert(avl, aux, where); 966 } 967 } 968 969 static void 970 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 971 { 972 spa_aux_t search; 973 spa_aux_t *aux; 974 avl_index_t where; 975 976 search.aux_guid = vd->vdev_guid; 977 aux = avl_find(avl, &search, &where); 978 979 ASSERT(aux != NULL); 980 981 if (--aux->aux_count == 0) { 982 avl_remove(avl, aux); 983 kmem_free(aux, sizeof (spa_aux_t)); 984 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 985 aux->aux_pool = 0ULL; 986 } 987 } 988 989 static boolean_t 990 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 991 { 992 spa_aux_t search, *found; 993 994 search.aux_guid = guid; 995 found = avl_find(avl, &search, NULL); 996 997 if (pool) { 998 if (found) 999 *pool = found->aux_pool; 1000 else 1001 *pool = 0ULL; 1002 } 1003 1004 if (refcnt) { 1005 if (found) 1006 *refcnt = found->aux_count; 1007 else 1008 *refcnt = 0; 1009 } 1010 1011 return (found != NULL); 1012 } 1013 1014 static void 1015 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 1016 { 1017 spa_aux_t search, *found; 1018 avl_index_t where; 1019 1020 search.aux_guid = vd->vdev_guid; 1021 found = avl_find(avl, &search, &where); 1022 ASSERT(found != NULL); 1023 ASSERT(found->aux_pool == 0ULL); 1024 1025 found->aux_pool = spa_guid(vd->vdev_spa); 1026 } 1027 1028 /* 1029 * Spares are tracked globally due to the following constraints: 1030 * 1031 * - A spare may be part of multiple pools. 1032 * - A spare may be added to a pool even if it's actively in use within 1033 * another pool. 1034 * - A spare in use in any pool can only be the source of a replacement if 1035 * the target is a spare in the same pool. 1036 * 1037 * We keep track of all spares on the system through the use of a reference 1038 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 1039 * spare, then we bump the reference count in the AVL tree. In addition, we set 1040 * the 'vdev_isspare' member to indicate that the device is a spare (active or 1041 * inactive). When a spare is made active (used to replace a device in the 1042 * pool), we also keep track of which pool its been made a part of. 1043 * 1044 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 1045 * called under the spa_namespace lock as part of vdev reconfiguration. The 1046 * separate spare lock exists for the status query path, which does not need to 1047 * be completely consistent with respect to other vdev configuration changes. 1048 */ 1049 1050 static int 1051 spa_spare_compare(const void *a, const void *b) 1052 { 1053 return (spa_aux_compare(a, b)); 1054 } 1055 1056 void 1057 spa_spare_add(vdev_t *vd) 1058 { 1059 mutex_enter(&spa_spare_lock); 1060 ASSERT(!vd->vdev_isspare); 1061 spa_aux_add(vd, &spa_spare_avl); 1062 vd->vdev_isspare = B_TRUE; 1063 mutex_exit(&spa_spare_lock); 1064 } 1065 1066 void 1067 spa_spare_remove(vdev_t *vd) 1068 { 1069 mutex_enter(&spa_spare_lock); 1070 ASSERT(vd->vdev_isspare); 1071 spa_aux_remove(vd, &spa_spare_avl); 1072 vd->vdev_isspare = B_FALSE; 1073 mutex_exit(&spa_spare_lock); 1074 } 1075 1076 boolean_t 1077 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 1078 { 1079 boolean_t found; 1080 1081 mutex_enter(&spa_spare_lock); 1082 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 1083 mutex_exit(&spa_spare_lock); 1084 1085 return (found); 1086 } 1087 1088 void 1089 spa_spare_activate(vdev_t *vd) 1090 { 1091 mutex_enter(&spa_spare_lock); 1092 ASSERT(vd->vdev_isspare); 1093 spa_aux_activate(vd, &spa_spare_avl); 1094 mutex_exit(&spa_spare_lock); 1095 } 1096 1097 /* 1098 * Level 2 ARC devices are tracked globally for the same reasons as spares. 1099 * Cache devices currently only support one pool per cache device, and so 1100 * for these devices the aux reference count is currently unused beyond 1. 1101 */ 1102 1103 static int 1104 spa_l2cache_compare(const void *a, const void *b) 1105 { 1106 return (spa_aux_compare(a, b)); 1107 } 1108 1109 void 1110 spa_l2cache_add(vdev_t *vd) 1111 { 1112 mutex_enter(&spa_l2cache_lock); 1113 ASSERT(!vd->vdev_isl2cache); 1114 spa_aux_add(vd, &spa_l2cache_avl); 1115 vd->vdev_isl2cache = B_TRUE; 1116 mutex_exit(&spa_l2cache_lock); 1117 } 1118 1119 void 1120 spa_l2cache_remove(vdev_t *vd) 1121 { 1122 mutex_enter(&spa_l2cache_lock); 1123 ASSERT(vd->vdev_isl2cache); 1124 spa_aux_remove(vd, &spa_l2cache_avl); 1125 vd->vdev_isl2cache = B_FALSE; 1126 mutex_exit(&spa_l2cache_lock); 1127 } 1128 1129 boolean_t 1130 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 1131 { 1132 boolean_t found; 1133 1134 mutex_enter(&spa_l2cache_lock); 1135 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 1136 mutex_exit(&spa_l2cache_lock); 1137 1138 return (found); 1139 } 1140 1141 void 1142 spa_l2cache_activate(vdev_t *vd) 1143 { 1144 mutex_enter(&spa_l2cache_lock); 1145 ASSERT(vd->vdev_isl2cache); 1146 spa_aux_activate(vd, &spa_l2cache_avl); 1147 mutex_exit(&spa_l2cache_lock); 1148 } 1149 1150 /* 1151 * ========================================================================== 1152 * SPA vdev locking 1153 * ========================================================================== 1154 */ 1155 1156 /* 1157 * Lock the given spa_t for the purpose of adding or removing a vdev. 1158 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 1159 * It returns the next transaction group for the spa_t. 1160 */ 1161 uint64_t 1162 spa_vdev_enter(spa_t *spa) 1163 { 1164 mutex_enter(&spa->spa_vdev_top_lock); 1165 mutex_enter(&spa_namespace_lock); 1166 1167 vdev_autotrim_stop_all(spa); 1168 1169 return (spa_vdev_config_enter(spa)); 1170 } 1171 1172 /* 1173 * The same as spa_vdev_enter() above but additionally takes the guid of 1174 * the vdev being detached. When there is a rebuild in process it will be 1175 * suspended while the vdev tree is modified then resumed by spa_vdev_exit(). 1176 * The rebuild is canceled if only a single child remains after the detach. 1177 */ 1178 uint64_t 1179 spa_vdev_detach_enter(spa_t *spa, uint64_t guid) 1180 { 1181 mutex_enter(&spa->spa_vdev_top_lock); 1182 mutex_enter(&spa_namespace_lock); 1183 1184 vdev_autotrim_stop_all(spa); 1185 1186 if (guid != 0) { 1187 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 1188 if (vd) { 1189 vdev_rebuild_stop_wait(vd->vdev_top); 1190 } 1191 } 1192 1193 return (spa_vdev_config_enter(spa)); 1194 } 1195 1196 /* 1197 * Internal implementation for spa_vdev_enter(). Used when a vdev 1198 * operation requires multiple syncs (i.e. removing a device) while 1199 * keeping the spa_namespace_lock held. 1200 */ 1201 uint64_t 1202 spa_vdev_config_enter(spa_t *spa) 1203 { 1204 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1205 1206 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1207 1208 return (spa_last_synced_txg(spa) + 1); 1209 } 1210 1211 /* 1212 * Used in combination with spa_vdev_config_enter() to allow the syncing 1213 * of multiple transactions without releasing the spa_namespace_lock. 1214 */ 1215 void 1216 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 1217 { 1218 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1219 1220 int config_changed = B_FALSE; 1221 1222 ASSERT(txg > spa_last_synced_txg(spa)); 1223 1224 spa->spa_pending_vdev = NULL; 1225 1226 /* 1227 * Reassess the DTLs. 1228 */ 1229 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE); 1230 1231 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 1232 config_changed = B_TRUE; 1233 spa->spa_config_generation++; 1234 } 1235 1236 /* 1237 * Verify the metaslab classes. 1238 */ 1239 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 1240 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 1241 ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0); 1242 ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0); 1243 ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0); 1244 1245 spa_config_exit(spa, SCL_ALL, spa); 1246 1247 /* 1248 * Panic the system if the specified tag requires it. This 1249 * is useful for ensuring that configurations are updated 1250 * transactionally. 1251 */ 1252 if (zio_injection_enabled) 1253 zio_handle_panic_injection(spa, tag, 0); 1254 1255 /* 1256 * Note: this txg_wait_synced() is important because it ensures 1257 * that there won't be more than one config change per txg. 1258 * This allows us to use the txg as the generation number. 1259 */ 1260 if (error == 0) 1261 txg_wait_synced(spa->spa_dsl_pool, txg); 1262 1263 if (vd != NULL) { 1264 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); 1265 if (vd->vdev_ops->vdev_op_leaf) { 1266 mutex_enter(&vd->vdev_initialize_lock); 1267 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, 1268 NULL); 1269 mutex_exit(&vd->vdev_initialize_lock); 1270 1271 mutex_enter(&vd->vdev_trim_lock); 1272 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL); 1273 mutex_exit(&vd->vdev_trim_lock); 1274 } 1275 1276 /* 1277 * The vdev may be both a leaf and top-level device. 1278 */ 1279 vdev_autotrim_stop_wait(vd); 1280 1281 spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER); 1282 vdev_free(vd); 1283 spa_config_exit(spa, SCL_STATE_ALL, spa); 1284 } 1285 1286 /* 1287 * If the config changed, update the config cache. 1288 */ 1289 if (config_changed) 1290 spa_write_cachefile(spa, B_FALSE, B_TRUE); 1291 } 1292 1293 /* 1294 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1295 * locking of spa_vdev_enter(), we also want make sure the transactions have 1296 * synced to disk, and then update the global configuration cache with the new 1297 * information. 1298 */ 1299 int 1300 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1301 { 1302 vdev_autotrim_restart(spa); 1303 vdev_rebuild_restart(spa); 1304 1305 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1306 mutex_exit(&spa_namespace_lock); 1307 mutex_exit(&spa->spa_vdev_top_lock); 1308 1309 return (error); 1310 } 1311 1312 /* 1313 * Lock the given spa_t for the purpose of changing vdev state. 1314 */ 1315 void 1316 spa_vdev_state_enter(spa_t *spa, int oplocks) 1317 { 1318 int locks = SCL_STATE_ALL | oplocks; 1319 1320 /* 1321 * Root pools may need to read of the underlying devfs filesystem 1322 * when opening up a vdev. Unfortunately if we're holding the 1323 * SCL_ZIO lock it will result in a deadlock when we try to issue 1324 * the read from the root filesystem. Instead we "prefetch" 1325 * the associated vnodes that we need prior to opening the 1326 * underlying devices and cache them so that we can prevent 1327 * any I/O when we are doing the actual open. 1328 */ 1329 if (spa_is_root(spa)) { 1330 int low = locks & ~(SCL_ZIO - 1); 1331 int high = locks & ~low; 1332 1333 spa_config_enter(spa, high, spa, RW_WRITER); 1334 vdev_hold(spa->spa_root_vdev); 1335 spa_config_enter(spa, low, spa, RW_WRITER); 1336 } else { 1337 spa_config_enter(spa, locks, spa, RW_WRITER); 1338 } 1339 spa->spa_vdev_locks = locks; 1340 } 1341 1342 int 1343 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1344 { 1345 boolean_t config_changed = B_FALSE; 1346 vdev_t *vdev_top; 1347 1348 if (vd == NULL || vd == spa->spa_root_vdev) { 1349 vdev_top = spa->spa_root_vdev; 1350 } else { 1351 vdev_top = vd->vdev_top; 1352 } 1353 1354 if (vd != NULL || error == 0) 1355 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE); 1356 1357 if (vd != NULL) { 1358 if (vd != spa->spa_root_vdev) 1359 vdev_state_dirty(vdev_top); 1360 1361 config_changed = B_TRUE; 1362 spa->spa_config_generation++; 1363 } 1364 1365 if (spa_is_root(spa)) 1366 vdev_rele(spa->spa_root_vdev); 1367 1368 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1369 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1370 1371 /* 1372 * If anything changed, wait for it to sync. This ensures that, 1373 * from the system administrator's perspective, zpool(8) commands 1374 * are synchronous. This is important for things like zpool offline: 1375 * when the command completes, you expect no further I/O from ZFS. 1376 */ 1377 if (vd != NULL) 1378 txg_wait_synced(spa->spa_dsl_pool, 0); 1379 1380 /* 1381 * If the config changed, update the config cache. 1382 */ 1383 if (config_changed) { 1384 mutex_enter(&spa_namespace_lock); 1385 spa_write_cachefile(spa, B_FALSE, B_TRUE); 1386 mutex_exit(&spa_namespace_lock); 1387 } 1388 1389 return (error); 1390 } 1391 1392 /* 1393 * ========================================================================== 1394 * Miscellaneous functions 1395 * ========================================================================== 1396 */ 1397 1398 void 1399 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) 1400 { 1401 if (!nvlist_exists(spa->spa_label_features, feature)) { 1402 fnvlist_add_boolean(spa->spa_label_features, feature); 1403 /* 1404 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't 1405 * dirty the vdev config because lock SCL_CONFIG is not held. 1406 * Thankfully, in this case we don't need to dirty the config 1407 * because it will be written out anyway when we finish 1408 * creating the pool. 1409 */ 1410 if (tx->tx_txg != TXG_INITIAL) 1411 vdev_config_dirty(spa->spa_root_vdev); 1412 } 1413 } 1414 1415 void 1416 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1417 { 1418 if (nvlist_remove_all(spa->spa_label_features, feature) == 0) 1419 vdev_config_dirty(spa->spa_root_vdev); 1420 } 1421 1422 /* 1423 * Return the spa_t associated with given pool_guid, if it exists. If 1424 * device_guid is non-zero, determine whether the pool exists *and* contains 1425 * a device with the specified device_guid. 1426 */ 1427 spa_t * 1428 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1429 { 1430 spa_t *spa; 1431 avl_tree_t *t = &spa_namespace_avl; 1432 1433 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1434 1435 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1436 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1437 continue; 1438 if (spa->spa_root_vdev == NULL) 1439 continue; 1440 if (spa_guid(spa) == pool_guid) { 1441 if (device_guid == 0) 1442 break; 1443 1444 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1445 device_guid) != NULL) 1446 break; 1447 1448 /* 1449 * Check any devices we may be in the process of adding. 1450 */ 1451 if (spa->spa_pending_vdev) { 1452 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1453 device_guid) != NULL) 1454 break; 1455 } 1456 } 1457 } 1458 1459 return (spa); 1460 } 1461 1462 /* 1463 * Determine whether a pool with the given pool_guid exists. 1464 */ 1465 boolean_t 1466 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1467 { 1468 return (spa_by_guid(pool_guid, device_guid) != NULL); 1469 } 1470 1471 char * 1472 spa_strdup(const char *s) 1473 { 1474 size_t len; 1475 char *new; 1476 1477 len = strlen(s); 1478 new = kmem_alloc(len + 1, KM_SLEEP); 1479 bcopy(s, new, len); 1480 new[len] = '\0'; 1481 1482 return (new); 1483 } 1484 1485 void 1486 spa_strfree(char *s) 1487 { 1488 kmem_free(s, strlen(s) + 1); 1489 } 1490 1491 uint64_t 1492 spa_generate_guid(spa_t *spa) 1493 { 1494 uint64_t guid; 1495 1496 if (spa != NULL) { 1497 do { 1498 (void) random_get_pseudo_bytes((void *)&guid, 1499 sizeof (guid)); 1500 } while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)); 1501 } else { 1502 do { 1503 (void) random_get_pseudo_bytes((void *)&guid, 1504 sizeof (guid)); 1505 } while (guid == 0 || spa_guid_exists(guid, 0)); 1506 } 1507 1508 return (guid); 1509 } 1510 1511 void 1512 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) 1513 { 1514 char type[256]; 1515 char *checksum = NULL; 1516 char *compress = NULL; 1517 1518 if (bp != NULL) { 1519 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1520 dmu_object_byteswap_t bswap = 1521 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1522 (void) snprintf(type, sizeof (type), "bswap %s %s", 1523 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1524 "metadata" : "data", 1525 dmu_ot_byteswap[bswap].ob_name); 1526 } else { 1527 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1528 sizeof (type)); 1529 } 1530 if (!BP_IS_EMBEDDED(bp)) { 1531 checksum = 1532 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1533 } 1534 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1535 } 1536 1537 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum, 1538 compress); 1539 } 1540 1541 void 1542 spa_freeze(spa_t *spa) 1543 { 1544 uint64_t freeze_txg = 0; 1545 1546 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1547 if (spa->spa_freeze_txg == UINT64_MAX) { 1548 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1549 spa->spa_freeze_txg = freeze_txg; 1550 } 1551 spa_config_exit(spa, SCL_ALL, FTAG); 1552 if (freeze_txg != 0) 1553 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1554 } 1555 1556 void 1557 zfs_panic_recover(const char *fmt, ...) 1558 { 1559 va_list adx; 1560 1561 va_start(adx, fmt); 1562 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1563 va_end(adx); 1564 } 1565 1566 /* 1567 * This is a stripped-down version of strtoull, suitable only for converting 1568 * lowercase hexadecimal numbers that don't overflow. 1569 */ 1570 uint64_t 1571 zfs_strtonum(const char *str, char **nptr) 1572 { 1573 uint64_t val = 0; 1574 char c; 1575 int digit; 1576 1577 while ((c = *str) != '\0') { 1578 if (c >= '0' && c <= '9') 1579 digit = c - '0'; 1580 else if (c >= 'a' && c <= 'f') 1581 digit = 10 + c - 'a'; 1582 else 1583 break; 1584 1585 val *= 16; 1586 val += digit; 1587 1588 str++; 1589 } 1590 1591 if (nptr) 1592 *nptr = (char *)str; 1593 1594 return (val); 1595 } 1596 1597 void 1598 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx) 1599 { 1600 /* 1601 * We bump the feature refcount for each special vdev added to the pool 1602 */ 1603 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)); 1604 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx); 1605 } 1606 1607 /* 1608 * ========================================================================== 1609 * Accessor functions 1610 * ========================================================================== 1611 */ 1612 1613 boolean_t 1614 spa_shutting_down(spa_t *spa) 1615 { 1616 return (spa->spa_async_suspended); 1617 } 1618 1619 dsl_pool_t * 1620 spa_get_dsl(spa_t *spa) 1621 { 1622 return (spa->spa_dsl_pool); 1623 } 1624 1625 boolean_t 1626 spa_is_initializing(spa_t *spa) 1627 { 1628 return (spa->spa_is_initializing); 1629 } 1630 1631 boolean_t 1632 spa_indirect_vdevs_loaded(spa_t *spa) 1633 { 1634 return (spa->spa_indirect_vdevs_loaded); 1635 } 1636 1637 blkptr_t * 1638 spa_get_rootblkptr(spa_t *spa) 1639 { 1640 return (&spa->spa_ubsync.ub_rootbp); 1641 } 1642 1643 void 1644 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1645 { 1646 spa->spa_uberblock.ub_rootbp = *bp; 1647 } 1648 1649 void 1650 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1651 { 1652 if (spa->spa_root == NULL) 1653 buf[0] = '\0'; 1654 else 1655 (void) strncpy(buf, spa->spa_root, buflen); 1656 } 1657 1658 int 1659 spa_sync_pass(spa_t *spa) 1660 { 1661 return (spa->spa_sync_pass); 1662 } 1663 1664 char * 1665 spa_name(spa_t *spa) 1666 { 1667 return (spa->spa_name); 1668 } 1669 1670 uint64_t 1671 spa_guid(spa_t *spa) 1672 { 1673 dsl_pool_t *dp = spa_get_dsl(spa); 1674 uint64_t guid; 1675 1676 /* 1677 * If we fail to parse the config during spa_load(), we can go through 1678 * the error path (which posts an ereport) and end up here with no root 1679 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1680 * this case. 1681 */ 1682 if (spa->spa_root_vdev == NULL) 1683 return (spa->spa_config_guid); 1684 1685 guid = spa->spa_last_synced_guid != 0 ? 1686 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1687 1688 /* 1689 * Return the most recently synced out guid unless we're 1690 * in syncing context. 1691 */ 1692 if (dp && dsl_pool_sync_context(dp)) 1693 return (spa->spa_root_vdev->vdev_guid); 1694 else 1695 return (guid); 1696 } 1697 1698 uint64_t 1699 spa_load_guid(spa_t *spa) 1700 { 1701 /* 1702 * This is a GUID that exists solely as a reference for the 1703 * purposes of the arc. It is generated at load time, and 1704 * is never written to persistent storage. 1705 */ 1706 return (spa->spa_load_guid); 1707 } 1708 1709 uint64_t 1710 spa_last_synced_txg(spa_t *spa) 1711 { 1712 return (spa->spa_ubsync.ub_txg); 1713 } 1714 1715 uint64_t 1716 spa_first_txg(spa_t *spa) 1717 { 1718 return (spa->spa_first_txg); 1719 } 1720 1721 uint64_t 1722 spa_syncing_txg(spa_t *spa) 1723 { 1724 return (spa->spa_syncing_txg); 1725 } 1726 1727 /* 1728 * Return the last txg where data can be dirtied. The final txgs 1729 * will be used to just clear out any deferred frees that remain. 1730 */ 1731 uint64_t 1732 spa_final_dirty_txg(spa_t *spa) 1733 { 1734 return (spa->spa_final_txg - TXG_DEFER_SIZE); 1735 } 1736 1737 pool_state_t 1738 spa_state(spa_t *spa) 1739 { 1740 return (spa->spa_state); 1741 } 1742 1743 spa_load_state_t 1744 spa_load_state(spa_t *spa) 1745 { 1746 return (spa->spa_load_state); 1747 } 1748 1749 uint64_t 1750 spa_freeze_txg(spa_t *spa) 1751 { 1752 return (spa->spa_freeze_txg); 1753 } 1754 1755 /* 1756 * Return the inflated asize for a logical write in bytes. This is used by the 1757 * DMU to calculate the space a logical write will require on disk. 1758 * If lsize is smaller than the largest physical block size allocatable on this 1759 * pool we use its value instead, since the write will end up using the whole 1760 * block anyway. 1761 */ 1762 uint64_t 1763 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize) 1764 { 1765 if (lsize == 0) 1766 return (0); /* No inflation needed */ 1767 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation); 1768 } 1769 1770 /* 1771 * Return the amount of slop space in bytes. It is typically 1/32 of the pool 1772 * (3.2%), minus the embedded log space. On very small pools, it may be 1773 * slightly larger than this. On very large pools, it will be capped to 1774 * the value of spa_max_slop. The embedded log space is not included in 1775 * spa_dspace. By subtracting it, the usable space (per "zfs list") is a 1776 * constant 97% of the total space, regardless of metaslab size (assuming the 1777 * default spa_slop_shift=5 and a non-tiny pool). 1778 * 1779 * See the comment above spa_slop_shift for more details. 1780 */ 1781 uint64_t 1782 spa_get_slop_space(spa_t *spa) 1783 { 1784 uint64_t space = 0; 1785 uint64_t slop = 0; 1786 1787 /* 1788 * Make sure spa_dedup_dspace has been set. 1789 */ 1790 if (spa->spa_dedup_dspace == ~0ULL) 1791 spa_update_dspace(spa); 1792 1793 /* 1794 * spa_get_dspace() includes the space only logically "used" by 1795 * deduplicated data, so since it's not useful to reserve more 1796 * space with more deduplicated data, we subtract that out here. 1797 */ 1798 space = spa_get_dspace(spa) - spa->spa_dedup_dspace; 1799 slop = MIN(space >> spa_slop_shift, spa_max_slop); 1800 1801 /* 1802 * Subtract the embedded log space, but no more than half the (3.2%) 1803 * unusable space. Note, the "no more than half" is only relevant if 1804 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by 1805 * default. 1806 */ 1807 uint64_t embedded_log = 1808 metaslab_class_get_dspace(spa_embedded_log_class(spa)); 1809 slop -= MIN(embedded_log, slop >> 1); 1810 1811 /* 1812 * Slop space should be at least spa_min_slop, but no more than half 1813 * the entire pool. 1814 */ 1815 slop = MAX(slop, MIN(space >> 1, spa_min_slop)); 1816 return (slop); 1817 } 1818 1819 uint64_t 1820 spa_get_dspace(spa_t *spa) 1821 { 1822 return (spa->spa_dspace); 1823 } 1824 1825 uint64_t 1826 spa_get_checkpoint_space(spa_t *spa) 1827 { 1828 return (spa->spa_checkpoint_info.sci_dspace); 1829 } 1830 1831 void 1832 spa_update_dspace(spa_t *spa) 1833 { 1834 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1835 ddt_get_dedup_dspace(spa); 1836 if (spa->spa_vdev_removal != NULL) { 1837 /* 1838 * We can't allocate from the removing device, so subtract 1839 * its size if it was included in dspace (i.e. if this is a 1840 * normal-class vdev, not special/dedup). This prevents the 1841 * DMU/DSL from filling up the (now smaller) pool while we 1842 * are in the middle of removing the device. 1843 * 1844 * Note that the DMU/DSL doesn't actually know or care 1845 * how much space is allocated (it does its own tracking 1846 * of how much space has been logically used). So it 1847 * doesn't matter that the data we are moving may be 1848 * allocated twice (on the old device and the new 1849 * device). 1850 */ 1851 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1852 vdev_t *vd = 1853 vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id); 1854 /* 1855 * If the stars align, we can wind up here after 1856 * vdev_remove_complete() has cleared vd->vdev_mg but before 1857 * spa->spa_vdev_removal gets cleared, so we must check before 1858 * we dereference. 1859 */ 1860 if (vd->vdev_mg && 1861 vd->vdev_mg->mg_class == spa_normal_class(spa)) { 1862 spa->spa_dspace -= spa_deflate(spa) ? 1863 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 1864 } 1865 spa_config_exit(spa, SCL_VDEV, FTAG); 1866 } 1867 } 1868 1869 /* 1870 * Return the failure mode that has been set to this pool. The default 1871 * behavior will be to block all I/Os when a complete failure occurs. 1872 */ 1873 uint64_t 1874 spa_get_failmode(spa_t *spa) 1875 { 1876 return (spa->spa_failmode); 1877 } 1878 1879 boolean_t 1880 spa_suspended(spa_t *spa) 1881 { 1882 return (spa->spa_suspended != ZIO_SUSPEND_NONE); 1883 } 1884 1885 uint64_t 1886 spa_version(spa_t *spa) 1887 { 1888 return (spa->spa_ubsync.ub_version); 1889 } 1890 1891 boolean_t 1892 spa_deflate(spa_t *spa) 1893 { 1894 return (spa->spa_deflate); 1895 } 1896 1897 metaslab_class_t * 1898 spa_normal_class(spa_t *spa) 1899 { 1900 return (spa->spa_normal_class); 1901 } 1902 1903 metaslab_class_t * 1904 spa_log_class(spa_t *spa) 1905 { 1906 return (spa->spa_log_class); 1907 } 1908 1909 metaslab_class_t * 1910 spa_embedded_log_class(spa_t *spa) 1911 { 1912 return (spa->spa_embedded_log_class); 1913 } 1914 1915 metaslab_class_t * 1916 spa_special_class(spa_t *spa) 1917 { 1918 return (spa->spa_special_class); 1919 } 1920 1921 metaslab_class_t * 1922 spa_dedup_class(spa_t *spa) 1923 { 1924 return (spa->spa_dedup_class); 1925 } 1926 1927 /* 1928 * Locate an appropriate allocation class 1929 */ 1930 metaslab_class_t * 1931 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype, 1932 uint_t level, uint_t special_smallblk) 1933 { 1934 /* 1935 * ZIL allocations determine their class in zio_alloc_zil(). 1936 */ 1937 ASSERT(objtype != DMU_OT_INTENT_LOG); 1938 1939 boolean_t has_special_class = spa->spa_special_class->mc_groups != 0; 1940 1941 if (DMU_OT_IS_DDT(objtype)) { 1942 if (spa->spa_dedup_class->mc_groups != 0) 1943 return (spa_dedup_class(spa)); 1944 else if (has_special_class && zfs_ddt_data_is_special) 1945 return (spa_special_class(spa)); 1946 else 1947 return (spa_normal_class(spa)); 1948 } 1949 1950 /* Indirect blocks for user data can land in special if allowed */ 1951 if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) { 1952 if (has_special_class && zfs_user_indirect_is_special) 1953 return (spa_special_class(spa)); 1954 else 1955 return (spa_normal_class(spa)); 1956 } 1957 1958 if (DMU_OT_IS_METADATA(objtype) || level > 0) { 1959 if (has_special_class) 1960 return (spa_special_class(spa)); 1961 else 1962 return (spa_normal_class(spa)); 1963 } 1964 1965 /* 1966 * Allow small file blocks in special class in some cases (like 1967 * for the dRAID vdev feature). But always leave a reserve of 1968 * zfs_special_class_metadata_reserve_pct exclusively for metadata. 1969 */ 1970 if (DMU_OT_IS_FILE(objtype) && 1971 has_special_class && size <= special_smallblk) { 1972 metaslab_class_t *special = spa_special_class(spa); 1973 uint64_t alloc = metaslab_class_get_alloc(special); 1974 uint64_t space = metaslab_class_get_space(special); 1975 uint64_t limit = 1976 (space * (100 - zfs_special_class_metadata_reserve_pct)) 1977 / 100; 1978 1979 if (alloc < limit) 1980 return (special); 1981 } 1982 1983 return (spa_normal_class(spa)); 1984 } 1985 1986 void 1987 spa_evicting_os_register(spa_t *spa, objset_t *os) 1988 { 1989 mutex_enter(&spa->spa_evicting_os_lock); 1990 list_insert_head(&spa->spa_evicting_os_list, os); 1991 mutex_exit(&spa->spa_evicting_os_lock); 1992 } 1993 1994 void 1995 spa_evicting_os_deregister(spa_t *spa, objset_t *os) 1996 { 1997 mutex_enter(&spa->spa_evicting_os_lock); 1998 list_remove(&spa->spa_evicting_os_list, os); 1999 cv_broadcast(&spa->spa_evicting_os_cv); 2000 mutex_exit(&spa->spa_evicting_os_lock); 2001 } 2002 2003 void 2004 spa_evicting_os_wait(spa_t *spa) 2005 { 2006 mutex_enter(&spa->spa_evicting_os_lock); 2007 while (!list_is_empty(&spa->spa_evicting_os_list)) 2008 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); 2009 mutex_exit(&spa->spa_evicting_os_lock); 2010 2011 dmu_buf_user_evict_wait(); 2012 } 2013 2014 int 2015 spa_max_replication(spa_t *spa) 2016 { 2017 /* 2018 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 2019 * handle BPs with more than one DVA allocated. Set our max 2020 * replication level accordingly. 2021 */ 2022 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 2023 return (1); 2024 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 2025 } 2026 2027 int 2028 spa_prev_software_version(spa_t *spa) 2029 { 2030 return (spa->spa_prev_software_version); 2031 } 2032 2033 uint64_t 2034 spa_deadman_synctime(spa_t *spa) 2035 { 2036 return (spa->spa_deadman_synctime); 2037 } 2038 2039 spa_autotrim_t 2040 spa_get_autotrim(spa_t *spa) 2041 { 2042 return (spa->spa_autotrim); 2043 } 2044 2045 uint64_t 2046 spa_deadman_ziotime(spa_t *spa) 2047 { 2048 return (spa->spa_deadman_ziotime); 2049 } 2050 2051 uint64_t 2052 spa_get_deadman_failmode(spa_t *spa) 2053 { 2054 return (spa->spa_deadman_failmode); 2055 } 2056 2057 void 2058 spa_set_deadman_failmode(spa_t *spa, const char *failmode) 2059 { 2060 if (strcmp(failmode, "wait") == 0) 2061 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2062 else if (strcmp(failmode, "continue") == 0) 2063 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE; 2064 else if (strcmp(failmode, "panic") == 0) 2065 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC; 2066 else 2067 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2068 } 2069 2070 void 2071 spa_set_deadman_ziotime(hrtime_t ns) 2072 { 2073 spa_t *spa = NULL; 2074 2075 if (spa_mode_global != SPA_MODE_UNINIT) { 2076 mutex_enter(&spa_namespace_lock); 2077 while ((spa = spa_next(spa)) != NULL) 2078 spa->spa_deadman_ziotime = ns; 2079 mutex_exit(&spa_namespace_lock); 2080 } 2081 } 2082 2083 void 2084 spa_set_deadman_synctime(hrtime_t ns) 2085 { 2086 spa_t *spa = NULL; 2087 2088 if (spa_mode_global != SPA_MODE_UNINIT) { 2089 mutex_enter(&spa_namespace_lock); 2090 while ((spa = spa_next(spa)) != NULL) 2091 spa->spa_deadman_synctime = ns; 2092 mutex_exit(&spa_namespace_lock); 2093 } 2094 } 2095 2096 uint64_t 2097 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 2098 { 2099 uint64_t asize = DVA_GET_ASIZE(dva); 2100 uint64_t dsize = asize; 2101 2102 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2103 2104 if (asize != 0 && spa->spa_deflate) { 2105 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 2106 if (vd != NULL) 2107 dsize = (asize >> SPA_MINBLOCKSHIFT) * 2108 vd->vdev_deflate_ratio; 2109 } 2110 2111 return (dsize); 2112 } 2113 2114 uint64_t 2115 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 2116 { 2117 uint64_t dsize = 0; 2118 2119 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2120 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2121 2122 return (dsize); 2123 } 2124 2125 uint64_t 2126 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 2127 { 2128 uint64_t dsize = 0; 2129 2130 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2131 2132 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2133 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2134 2135 spa_config_exit(spa, SCL_VDEV, FTAG); 2136 2137 return (dsize); 2138 } 2139 2140 uint64_t 2141 spa_dirty_data(spa_t *spa) 2142 { 2143 return (spa->spa_dsl_pool->dp_dirty_total); 2144 } 2145 2146 /* 2147 * ========================================================================== 2148 * SPA Import Progress Routines 2149 * ========================================================================== 2150 */ 2151 2152 typedef struct spa_import_progress { 2153 uint64_t pool_guid; /* unique id for updates */ 2154 char *pool_name; 2155 spa_load_state_t spa_load_state; 2156 uint64_t mmp_sec_remaining; /* MMP activity check */ 2157 uint64_t spa_load_max_txg; /* rewind txg */ 2158 procfs_list_node_t smh_node; 2159 } spa_import_progress_t; 2160 2161 spa_history_list_t *spa_import_progress_list = NULL; 2162 2163 static int 2164 spa_import_progress_show_header(struct seq_file *f) 2165 { 2166 seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid", 2167 "load_state", "multihost_secs", "max_txg", 2168 "pool_name"); 2169 return (0); 2170 } 2171 2172 static int 2173 spa_import_progress_show(struct seq_file *f, void *data) 2174 { 2175 spa_import_progress_t *sip = (spa_import_progress_t *)data; 2176 2177 seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n", 2178 (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state, 2179 (u_longlong_t)sip->mmp_sec_remaining, 2180 (u_longlong_t)sip->spa_load_max_txg, 2181 (sip->pool_name ? sip->pool_name : "-")); 2182 2183 return (0); 2184 } 2185 2186 /* Remove oldest elements from list until there are no more than 'size' left */ 2187 static void 2188 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size) 2189 { 2190 spa_import_progress_t *sip; 2191 while (shl->size > size) { 2192 sip = list_remove_head(&shl->procfs_list.pl_list); 2193 if (sip->pool_name) 2194 spa_strfree(sip->pool_name); 2195 kmem_free(sip, sizeof (spa_import_progress_t)); 2196 shl->size--; 2197 } 2198 2199 IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list)); 2200 } 2201 2202 static void 2203 spa_import_progress_init(void) 2204 { 2205 spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t), 2206 KM_SLEEP); 2207 2208 spa_import_progress_list->size = 0; 2209 2210 spa_import_progress_list->procfs_list.pl_private = 2211 spa_import_progress_list; 2212 2213 procfs_list_install("zfs", 2214 NULL, 2215 "import_progress", 2216 0644, 2217 &spa_import_progress_list->procfs_list, 2218 spa_import_progress_show, 2219 spa_import_progress_show_header, 2220 NULL, 2221 offsetof(spa_import_progress_t, smh_node)); 2222 } 2223 2224 static void 2225 spa_import_progress_destroy(void) 2226 { 2227 spa_history_list_t *shl = spa_import_progress_list; 2228 procfs_list_uninstall(&shl->procfs_list); 2229 spa_import_progress_truncate(shl, 0); 2230 procfs_list_destroy(&shl->procfs_list); 2231 kmem_free(shl, sizeof (spa_history_list_t)); 2232 } 2233 2234 int 2235 spa_import_progress_set_state(uint64_t pool_guid, 2236 spa_load_state_t load_state) 2237 { 2238 spa_history_list_t *shl = spa_import_progress_list; 2239 spa_import_progress_t *sip; 2240 int error = ENOENT; 2241 2242 if (shl->size == 0) 2243 return (0); 2244 2245 mutex_enter(&shl->procfs_list.pl_lock); 2246 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2247 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2248 if (sip->pool_guid == pool_guid) { 2249 sip->spa_load_state = load_state; 2250 error = 0; 2251 break; 2252 } 2253 } 2254 mutex_exit(&shl->procfs_list.pl_lock); 2255 2256 return (error); 2257 } 2258 2259 int 2260 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg) 2261 { 2262 spa_history_list_t *shl = spa_import_progress_list; 2263 spa_import_progress_t *sip; 2264 int error = ENOENT; 2265 2266 if (shl->size == 0) 2267 return (0); 2268 2269 mutex_enter(&shl->procfs_list.pl_lock); 2270 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2271 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2272 if (sip->pool_guid == pool_guid) { 2273 sip->spa_load_max_txg = load_max_txg; 2274 error = 0; 2275 break; 2276 } 2277 } 2278 mutex_exit(&shl->procfs_list.pl_lock); 2279 2280 return (error); 2281 } 2282 2283 int 2284 spa_import_progress_set_mmp_check(uint64_t pool_guid, 2285 uint64_t mmp_sec_remaining) 2286 { 2287 spa_history_list_t *shl = spa_import_progress_list; 2288 spa_import_progress_t *sip; 2289 int error = ENOENT; 2290 2291 if (shl->size == 0) 2292 return (0); 2293 2294 mutex_enter(&shl->procfs_list.pl_lock); 2295 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2296 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2297 if (sip->pool_guid == pool_guid) { 2298 sip->mmp_sec_remaining = mmp_sec_remaining; 2299 error = 0; 2300 break; 2301 } 2302 } 2303 mutex_exit(&shl->procfs_list.pl_lock); 2304 2305 return (error); 2306 } 2307 2308 /* 2309 * A new import is in progress, add an entry. 2310 */ 2311 void 2312 spa_import_progress_add(spa_t *spa) 2313 { 2314 spa_history_list_t *shl = spa_import_progress_list; 2315 spa_import_progress_t *sip; 2316 char *poolname = NULL; 2317 2318 sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP); 2319 sip->pool_guid = spa_guid(spa); 2320 2321 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME, 2322 &poolname); 2323 if (poolname == NULL) 2324 poolname = spa_name(spa); 2325 sip->pool_name = spa_strdup(poolname); 2326 sip->spa_load_state = spa_load_state(spa); 2327 2328 mutex_enter(&shl->procfs_list.pl_lock); 2329 procfs_list_add(&shl->procfs_list, sip); 2330 shl->size++; 2331 mutex_exit(&shl->procfs_list.pl_lock); 2332 } 2333 2334 void 2335 spa_import_progress_remove(uint64_t pool_guid) 2336 { 2337 spa_history_list_t *shl = spa_import_progress_list; 2338 spa_import_progress_t *sip; 2339 2340 mutex_enter(&shl->procfs_list.pl_lock); 2341 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2342 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2343 if (sip->pool_guid == pool_guid) { 2344 if (sip->pool_name) 2345 spa_strfree(sip->pool_name); 2346 list_remove(&shl->procfs_list.pl_list, sip); 2347 shl->size--; 2348 kmem_free(sip, sizeof (spa_import_progress_t)); 2349 break; 2350 } 2351 } 2352 mutex_exit(&shl->procfs_list.pl_lock); 2353 } 2354 2355 /* 2356 * ========================================================================== 2357 * Initialization and Termination 2358 * ========================================================================== 2359 */ 2360 2361 static int 2362 spa_name_compare(const void *a1, const void *a2) 2363 { 2364 const spa_t *s1 = a1; 2365 const spa_t *s2 = a2; 2366 int s; 2367 2368 s = strcmp(s1->spa_name, s2->spa_name); 2369 2370 return (TREE_ISIGN(s)); 2371 } 2372 2373 void 2374 spa_boot_init(void) 2375 { 2376 spa_config_load(); 2377 } 2378 2379 void 2380 spa_init(spa_mode_t mode) 2381 { 2382 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 2383 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 2384 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 2385 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 2386 2387 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 2388 offsetof(spa_t, spa_avl)); 2389 2390 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 2391 offsetof(spa_aux_t, aux_avl)); 2392 2393 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 2394 offsetof(spa_aux_t, aux_avl)); 2395 2396 spa_mode_global = mode; 2397 2398 #ifndef _KERNEL 2399 if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) { 2400 struct sigaction sa; 2401 2402 sa.sa_flags = SA_SIGINFO; 2403 sigemptyset(&sa.sa_mask); 2404 sa.sa_sigaction = arc_buf_sigsegv; 2405 2406 if (sigaction(SIGSEGV, &sa, NULL) == -1) { 2407 perror("could not enable watchpoints: " 2408 "sigaction(SIGSEGV, ...) = "); 2409 } else { 2410 arc_watch = B_TRUE; 2411 } 2412 } 2413 #endif 2414 2415 fm_init(); 2416 zfs_refcount_init(); 2417 unique_init(); 2418 zfs_btree_init(); 2419 metaslab_stat_init(); 2420 ddt_init(); 2421 zio_init(); 2422 dmu_init(); 2423 zil_init(); 2424 vdev_cache_stat_init(); 2425 vdev_mirror_stat_init(); 2426 vdev_raidz_math_init(); 2427 vdev_file_init(); 2428 zfs_prop_init(); 2429 zpool_prop_init(); 2430 zpool_feature_init(); 2431 spa_config_load(); 2432 l2arc_start(); 2433 scan_init(); 2434 qat_init(); 2435 spa_import_progress_init(); 2436 } 2437 2438 void 2439 spa_fini(void) 2440 { 2441 l2arc_stop(); 2442 2443 spa_evict_all(); 2444 2445 vdev_file_fini(); 2446 vdev_cache_stat_fini(); 2447 vdev_mirror_stat_fini(); 2448 vdev_raidz_math_fini(); 2449 zil_fini(); 2450 dmu_fini(); 2451 zio_fini(); 2452 ddt_fini(); 2453 metaslab_stat_fini(); 2454 zfs_btree_fini(); 2455 unique_fini(); 2456 zfs_refcount_fini(); 2457 fm_fini(); 2458 scan_fini(); 2459 qat_fini(); 2460 spa_import_progress_destroy(); 2461 2462 avl_destroy(&spa_namespace_avl); 2463 avl_destroy(&spa_spare_avl); 2464 avl_destroy(&spa_l2cache_avl); 2465 2466 cv_destroy(&spa_namespace_cv); 2467 mutex_destroy(&spa_namespace_lock); 2468 mutex_destroy(&spa_spare_lock); 2469 mutex_destroy(&spa_l2cache_lock); 2470 } 2471 2472 /* 2473 * Return whether this pool has a dedicated slog device. No locking needed. 2474 * It's not a problem if the wrong answer is returned as it's only for 2475 * performance and not correctness. 2476 */ 2477 boolean_t 2478 spa_has_slogs(spa_t *spa) 2479 { 2480 return (spa->spa_log_class->mc_groups != 0); 2481 } 2482 2483 spa_log_state_t 2484 spa_get_log_state(spa_t *spa) 2485 { 2486 return (spa->spa_log_state); 2487 } 2488 2489 void 2490 spa_set_log_state(spa_t *spa, spa_log_state_t state) 2491 { 2492 spa->spa_log_state = state; 2493 } 2494 2495 boolean_t 2496 spa_is_root(spa_t *spa) 2497 { 2498 return (spa->spa_is_root); 2499 } 2500 2501 boolean_t 2502 spa_writeable(spa_t *spa) 2503 { 2504 return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config); 2505 } 2506 2507 /* 2508 * Returns true if there is a pending sync task in any of the current 2509 * syncing txg, the current quiescing txg, or the current open txg. 2510 */ 2511 boolean_t 2512 spa_has_pending_synctask(spa_t *spa) 2513 { 2514 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) || 2515 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks)); 2516 } 2517 2518 spa_mode_t 2519 spa_mode(spa_t *spa) 2520 { 2521 return (spa->spa_mode); 2522 } 2523 2524 uint64_t 2525 spa_bootfs(spa_t *spa) 2526 { 2527 return (spa->spa_bootfs); 2528 } 2529 2530 uint64_t 2531 spa_delegation(spa_t *spa) 2532 { 2533 return (spa->spa_delegation); 2534 } 2535 2536 objset_t * 2537 spa_meta_objset(spa_t *spa) 2538 { 2539 return (spa->spa_meta_objset); 2540 } 2541 2542 enum zio_checksum 2543 spa_dedup_checksum(spa_t *spa) 2544 { 2545 return (spa->spa_dedup_checksum); 2546 } 2547 2548 /* 2549 * Reset pool scan stat per scan pass (or reboot). 2550 */ 2551 void 2552 spa_scan_stat_init(spa_t *spa) 2553 { 2554 /* data not stored on disk */ 2555 spa->spa_scan_pass_start = gethrestime_sec(); 2556 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan)) 2557 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start; 2558 else 2559 spa->spa_scan_pass_scrub_pause = 0; 2560 spa->spa_scan_pass_scrub_spent_paused = 0; 2561 spa->spa_scan_pass_exam = 0; 2562 spa->spa_scan_pass_issued = 0; 2563 vdev_scan_stat_init(spa->spa_root_vdev); 2564 } 2565 2566 /* 2567 * Get scan stats for zpool status reports 2568 */ 2569 int 2570 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 2571 { 2572 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 2573 2574 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) 2575 return (SET_ERROR(ENOENT)); 2576 bzero(ps, sizeof (pool_scan_stat_t)); 2577 2578 /* data stored on disk */ 2579 ps->pss_func = scn->scn_phys.scn_func; 2580 ps->pss_state = scn->scn_phys.scn_state; 2581 ps->pss_start_time = scn->scn_phys.scn_start_time; 2582 ps->pss_end_time = scn->scn_phys.scn_end_time; 2583 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 2584 ps->pss_examined = scn->scn_phys.scn_examined; 2585 ps->pss_to_process = scn->scn_phys.scn_to_process; 2586 ps->pss_processed = scn->scn_phys.scn_processed; 2587 ps->pss_errors = scn->scn_phys.scn_errors; 2588 2589 /* data not stored on disk */ 2590 ps->pss_pass_exam = spa->spa_scan_pass_exam; 2591 ps->pss_pass_start = spa->spa_scan_pass_start; 2592 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause; 2593 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused; 2594 ps->pss_pass_issued = spa->spa_scan_pass_issued; 2595 ps->pss_issued = 2596 scn->scn_issued_before_pass + spa->spa_scan_pass_issued; 2597 2598 return (0); 2599 } 2600 2601 int 2602 spa_maxblocksize(spa_t *spa) 2603 { 2604 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 2605 return (SPA_MAXBLOCKSIZE); 2606 else 2607 return (SPA_OLD_MAXBLOCKSIZE); 2608 } 2609 2610 2611 /* 2612 * Returns the txg that the last device removal completed. No indirect mappings 2613 * have been added since this txg. 2614 */ 2615 uint64_t 2616 spa_get_last_removal_txg(spa_t *spa) 2617 { 2618 uint64_t vdevid; 2619 uint64_t ret = -1ULL; 2620 2621 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2622 /* 2623 * sr_prev_indirect_vdev is only modified while holding all the 2624 * config locks, so it is sufficient to hold SCL_VDEV as reader when 2625 * examining it. 2626 */ 2627 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev; 2628 2629 while (vdevid != -1ULL) { 2630 vdev_t *vd = vdev_lookup_top(spa, vdevid); 2631 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 2632 2633 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 2634 2635 /* 2636 * If the removal did not remap any data, we don't care. 2637 */ 2638 if (vdev_indirect_births_count(vib) != 0) { 2639 ret = vdev_indirect_births_last_entry_txg(vib); 2640 break; 2641 } 2642 2643 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev; 2644 } 2645 spa_config_exit(spa, SCL_VDEV, FTAG); 2646 2647 IMPLY(ret != -1ULL, 2648 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); 2649 2650 return (ret); 2651 } 2652 2653 int 2654 spa_maxdnodesize(spa_t *spa) 2655 { 2656 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 2657 return (DNODE_MAX_SIZE); 2658 else 2659 return (DNODE_MIN_SIZE); 2660 } 2661 2662 boolean_t 2663 spa_multihost(spa_t *spa) 2664 { 2665 return (spa->spa_multihost ? B_TRUE : B_FALSE); 2666 } 2667 2668 uint32_t 2669 spa_get_hostid(spa_t *spa) 2670 { 2671 return (spa->spa_hostid); 2672 } 2673 2674 boolean_t 2675 spa_trust_config(spa_t *spa) 2676 { 2677 return (spa->spa_trust_config); 2678 } 2679 2680 uint64_t 2681 spa_missing_tvds_allowed(spa_t *spa) 2682 { 2683 return (spa->spa_missing_tvds_allowed); 2684 } 2685 2686 space_map_t * 2687 spa_syncing_log_sm(spa_t *spa) 2688 { 2689 return (spa->spa_syncing_log_sm); 2690 } 2691 2692 void 2693 spa_set_missing_tvds(spa_t *spa, uint64_t missing) 2694 { 2695 spa->spa_missing_tvds = missing; 2696 } 2697 2698 /* 2699 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc). 2700 */ 2701 const char * 2702 spa_state_to_name(spa_t *spa) 2703 { 2704 ASSERT3P(spa, !=, NULL); 2705 2706 /* 2707 * it is possible for the spa to exist, without root vdev 2708 * as the spa transitions during import/export 2709 */ 2710 vdev_t *rvd = spa->spa_root_vdev; 2711 if (rvd == NULL) { 2712 return ("TRANSITIONING"); 2713 } 2714 vdev_state_t state = rvd->vdev_state; 2715 vdev_aux_t aux = rvd->vdev_stat.vs_aux; 2716 2717 if (spa_suspended(spa) && 2718 (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)) 2719 return ("SUSPENDED"); 2720 2721 switch (state) { 2722 case VDEV_STATE_CLOSED: 2723 case VDEV_STATE_OFFLINE: 2724 return ("OFFLINE"); 2725 case VDEV_STATE_REMOVED: 2726 return ("REMOVED"); 2727 case VDEV_STATE_CANT_OPEN: 2728 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG) 2729 return ("FAULTED"); 2730 else if (aux == VDEV_AUX_SPLIT_POOL) 2731 return ("SPLIT"); 2732 else 2733 return ("UNAVAIL"); 2734 case VDEV_STATE_FAULTED: 2735 return ("FAULTED"); 2736 case VDEV_STATE_DEGRADED: 2737 return ("DEGRADED"); 2738 case VDEV_STATE_HEALTHY: 2739 return ("ONLINE"); 2740 default: 2741 break; 2742 } 2743 2744 return ("UNKNOWN"); 2745 } 2746 2747 boolean_t 2748 spa_top_vdevs_spacemap_addressable(spa_t *spa) 2749 { 2750 vdev_t *rvd = spa->spa_root_vdev; 2751 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2752 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c])) 2753 return (B_FALSE); 2754 } 2755 return (B_TRUE); 2756 } 2757 2758 boolean_t 2759 spa_has_checkpoint(spa_t *spa) 2760 { 2761 return (spa->spa_checkpoint_txg != 0); 2762 } 2763 2764 boolean_t 2765 spa_importing_readonly_checkpoint(spa_t *spa) 2766 { 2767 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) && 2768 spa->spa_mode == SPA_MODE_READ); 2769 } 2770 2771 uint64_t 2772 spa_min_claim_txg(spa_t *spa) 2773 { 2774 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg; 2775 2776 if (checkpoint_txg != 0) 2777 return (checkpoint_txg + 1); 2778 2779 return (spa->spa_first_txg); 2780 } 2781 2782 /* 2783 * If there is a checkpoint, async destroys may consume more space from 2784 * the pool instead of freeing it. In an attempt to save the pool from 2785 * getting suspended when it is about to run out of space, we stop 2786 * processing async destroys. 2787 */ 2788 boolean_t 2789 spa_suspend_async_destroy(spa_t *spa) 2790 { 2791 dsl_pool_t *dp = spa_get_dsl(spa); 2792 2793 uint64_t unreserved = dsl_pool_unreserved_space(dp, 2794 ZFS_SPACE_CHECK_EXTRA_RESERVED); 2795 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes; 2796 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0; 2797 2798 if (spa_has_checkpoint(spa) && avail == 0) 2799 return (B_TRUE); 2800 2801 return (B_FALSE); 2802 } 2803 2804 #if defined(_KERNEL) 2805 2806 int 2807 param_set_deadman_failmode_common(const char *val) 2808 { 2809 spa_t *spa = NULL; 2810 char *p; 2811 2812 if (val == NULL) 2813 return (SET_ERROR(EINVAL)); 2814 2815 if ((p = strchr(val, '\n')) != NULL) 2816 *p = '\0'; 2817 2818 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 && 2819 strcmp(val, "panic")) 2820 return (SET_ERROR(EINVAL)); 2821 2822 if (spa_mode_global != SPA_MODE_UNINIT) { 2823 mutex_enter(&spa_namespace_lock); 2824 while ((spa = spa_next(spa)) != NULL) 2825 spa_set_deadman_failmode(spa, val); 2826 mutex_exit(&spa_namespace_lock); 2827 } 2828 2829 return (0); 2830 } 2831 #endif 2832 2833 /* Namespace manipulation */ 2834 EXPORT_SYMBOL(spa_lookup); 2835 EXPORT_SYMBOL(spa_add); 2836 EXPORT_SYMBOL(spa_remove); 2837 EXPORT_SYMBOL(spa_next); 2838 2839 /* Refcount functions */ 2840 EXPORT_SYMBOL(spa_open_ref); 2841 EXPORT_SYMBOL(spa_close); 2842 EXPORT_SYMBOL(spa_refcount_zero); 2843 2844 /* Pool configuration lock */ 2845 EXPORT_SYMBOL(spa_config_tryenter); 2846 EXPORT_SYMBOL(spa_config_enter); 2847 EXPORT_SYMBOL(spa_config_exit); 2848 EXPORT_SYMBOL(spa_config_held); 2849 2850 /* Pool vdev add/remove lock */ 2851 EXPORT_SYMBOL(spa_vdev_enter); 2852 EXPORT_SYMBOL(spa_vdev_exit); 2853 2854 /* Pool vdev state change lock */ 2855 EXPORT_SYMBOL(spa_vdev_state_enter); 2856 EXPORT_SYMBOL(spa_vdev_state_exit); 2857 2858 /* Accessor functions */ 2859 EXPORT_SYMBOL(spa_shutting_down); 2860 EXPORT_SYMBOL(spa_get_dsl); 2861 EXPORT_SYMBOL(spa_get_rootblkptr); 2862 EXPORT_SYMBOL(spa_set_rootblkptr); 2863 EXPORT_SYMBOL(spa_altroot); 2864 EXPORT_SYMBOL(spa_sync_pass); 2865 EXPORT_SYMBOL(spa_name); 2866 EXPORT_SYMBOL(spa_guid); 2867 EXPORT_SYMBOL(spa_last_synced_txg); 2868 EXPORT_SYMBOL(spa_first_txg); 2869 EXPORT_SYMBOL(spa_syncing_txg); 2870 EXPORT_SYMBOL(spa_version); 2871 EXPORT_SYMBOL(spa_state); 2872 EXPORT_SYMBOL(spa_load_state); 2873 EXPORT_SYMBOL(spa_freeze_txg); 2874 EXPORT_SYMBOL(spa_get_dspace); 2875 EXPORT_SYMBOL(spa_update_dspace); 2876 EXPORT_SYMBOL(spa_deflate); 2877 EXPORT_SYMBOL(spa_normal_class); 2878 EXPORT_SYMBOL(spa_log_class); 2879 EXPORT_SYMBOL(spa_special_class); 2880 EXPORT_SYMBOL(spa_preferred_class); 2881 EXPORT_SYMBOL(spa_max_replication); 2882 EXPORT_SYMBOL(spa_prev_software_version); 2883 EXPORT_SYMBOL(spa_get_failmode); 2884 EXPORT_SYMBOL(spa_suspended); 2885 EXPORT_SYMBOL(spa_bootfs); 2886 EXPORT_SYMBOL(spa_delegation); 2887 EXPORT_SYMBOL(spa_meta_objset); 2888 EXPORT_SYMBOL(spa_maxblocksize); 2889 EXPORT_SYMBOL(spa_maxdnodesize); 2890 2891 /* Miscellaneous support routines */ 2892 EXPORT_SYMBOL(spa_guid_exists); 2893 EXPORT_SYMBOL(spa_strdup); 2894 EXPORT_SYMBOL(spa_strfree); 2895 EXPORT_SYMBOL(spa_generate_guid); 2896 EXPORT_SYMBOL(snprintf_blkptr); 2897 EXPORT_SYMBOL(spa_freeze); 2898 EXPORT_SYMBOL(spa_upgrade); 2899 EXPORT_SYMBOL(spa_evict_all); 2900 EXPORT_SYMBOL(spa_lookup_by_guid); 2901 EXPORT_SYMBOL(spa_has_spare); 2902 EXPORT_SYMBOL(dva_get_dsize_sync); 2903 EXPORT_SYMBOL(bp_get_dsize_sync); 2904 EXPORT_SYMBOL(bp_get_dsize); 2905 EXPORT_SYMBOL(spa_has_slogs); 2906 EXPORT_SYMBOL(spa_is_root); 2907 EXPORT_SYMBOL(spa_writeable); 2908 EXPORT_SYMBOL(spa_mode); 2909 EXPORT_SYMBOL(spa_namespace_lock); 2910 EXPORT_SYMBOL(spa_trust_config); 2911 EXPORT_SYMBOL(spa_missing_tvds_allowed); 2912 EXPORT_SYMBOL(spa_set_missing_tvds); 2913 EXPORT_SYMBOL(spa_state_to_name); 2914 EXPORT_SYMBOL(spa_importing_readonly_checkpoint); 2915 EXPORT_SYMBOL(spa_min_claim_txg); 2916 EXPORT_SYMBOL(spa_suspend_async_destroy); 2917 EXPORT_SYMBOL(spa_has_checkpoint); 2918 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable); 2919 2920 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW, 2921 "Set additional debugging flags"); 2922 2923 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW, 2924 "Set to attempt to recover from fatal errors"); 2925 2926 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW, 2927 "Set to ignore IO errors during free and permanently leak the space"); 2928 2929 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, ULONG, ZMOD_RW, 2930 "Dead I/O check interval in milliseconds"); 2931 2932 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW, 2933 "Enable deadman timer"); 2934 2935 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, INT, ZMOD_RW, 2936 "SPA size estimate multiplication factor"); 2937 2938 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW, 2939 "Place DDT data into the special class"); 2940 2941 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW, 2942 "Place user data indirect blocks into the special class"); 2943 2944 /* BEGIN CSTYLED */ 2945 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode, 2946 param_set_deadman_failmode, param_get_charp, ZMOD_RW, 2947 "Failmode for deadman timer"); 2948 2949 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms, 2950 param_set_deadman_synctime, param_get_ulong, ZMOD_RW, 2951 "Pool sync expiration time in milliseconds"); 2952 2953 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms, 2954 param_set_deadman_ziotime, param_get_ulong, ZMOD_RW, 2955 "IO expiration time in milliseconds"); 2956 2957 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, INT, ZMOD_RW, 2958 "Small file blocks in special vdevs depends on this much " 2959 "free space available"); 2960 /* END CSTYLED */ 2961 2962 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift, 2963 param_get_int, ZMOD_RW, "Reserved free space in pool"); 2964