1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2013 Saso Kiselkov. All rights reserved. 27 * Copyright (c) 2017 Datto Inc. 28 * Copyright (c) 2017, Intel Corporation. 29 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 30 * Copyright (c) 2023, Klara Inc. 31 */ 32 33 #include <sys/zfs_context.h> 34 #include <sys/zfs_chksum.h> 35 #include <sys/spa_impl.h> 36 #include <sys/zio.h> 37 #include <sys/zio_checksum.h> 38 #include <sys/zio_compress.h> 39 #include <sys/dmu.h> 40 #include <sys/dmu_tx.h> 41 #include <sys/zap.h> 42 #include <sys/zil.h> 43 #include <sys/vdev_impl.h> 44 #include <sys/vdev_initialize.h> 45 #include <sys/vdev_trim.h> 46 #include <sys/vdev_file.h> 47 #include <sys/vdev_raidz.h> 48 #include <sys/metaslab.h> 49 #include <sys/uberblock_impl.h> 50 #include <sys/txg.h> 51 #include <sys/avl.h> 52 #include <sys/unique.h> 53 #include <sys/dsl_pool.h> 54 #include <sys/dsl_dir.h> 55 #include <sys/dsl_prop.h> 56 #include <sys/fm/util.h> 57 #include <sys/dsl_scan.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/metaslab_impl.h> 60 #include <sys/arc.h> 61 #include <sys/brt.h> 62 #include <sys/ddt.h> 63 #include <sys/kstat.h> 64 #include "zfs_prop.h" 65 #include <sys/btree.h> 66 #include <sys/zfeature.h> 67 #include <sys/qat.h> 68 #include <sys/zstd/zstd.h> 69 70 /* 71 * SPA locking 72 * 73 * There are three basic locks for managing spa_t structures: 74 * 75 * spa_namespace_lock (global mutex) 76 * 77 * This lock must be acquired to do any of the following: 78 * 79 * - Lookup a spa_t by name 80 * - Add or remove a spa_t from the namespace 81 * - Increase spa_refcount from non-zero 82 * - Check if spa_refcount is zero 83 * - Rename a spa_t 84 * - add/remove/attach/detach devices 85 * - Held for the duration of create/destroy/import/export 86 * 87 * It does not need to handle recursion. A create or destroy may 88 * reference objects (files or zvols) in other pools, but by 89 * definition they must have an existing reference, and will never need 90 * to lookup a spa_t by name. 91 * 92 * spa_refcount (per-spa zfs_refcount_t protected by mutex) 93 * 94 * This reference count keep track of any active users of the spa_t. The 95 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 96 * the refcount is never really 'zero' - opening a pool implicitly keeps 97 * some references in the DMU. Internally we check against spa_minref, but 98 * present the image of a zero/non-zero value to consumers. 99 * 100 * spa_config_lock[] (per-spa array of rwlocks) 101 * 102 * This protects the spa_t from config changes, and must be held in 103 * the following circumstances: 104 * 105 * - RW_READER to perform I/O to the spa 106 * - RW_WRITER to change the vdev config 107 * 108 * The locking order is fairly straightforward: 109 * 110 * spa_namespace_lock -> spa_refcount 111 * 112 * The namespace lock must be acquired to increase the refcount from 0 113 * or to check if it is zero. 114 * 115 * spa_refcount -> spa_config_lock[] 116 * 117 * There must be at least one valid reference on the spa_t to acquire 118 * the config lock. 119 * 120 * spa_namespace_lock -> spa_config_lock[] 121 * 122 * The namespace lock must always be taken before the config lock. 123 * 124 * 125 * The spa_namespace_lock can be acquired directly and is globally visible. 126 * 127 * The namespace is manipulated using the following functions, all of which 128 * require the spa_namespace_lock to be held. 129 * 130 * spa_lookup() Lookup a spa_t by name. 131 * 132 * spa_add() Create a new spa_t in the namespace. 133 * 134 * spa_remove() Remove a spa_t from the namespace. This also 135 * frees up any memory associated with the spa_t. 136 * 137 * spa_next() Returns the next spa_t in the system, or the 138 * first if NULL is passed. 139 * 140 * spa_evict_all() Shutdown and remove all spa_t structures in 141 * the system. 142 * 143 * spa_guid_exists() Determine whether a pool/device guid exists. 144 * 145 * The spa_refcount is manipulated using the following functions: 146 * 147 * spa_open_ref() Adds a reference to the given spa_t. Must be 148 * called with spa_namespace_lock held if the 149 * refcount is currently zero. 150 * 151 * spa_close() Remove a reference from the spa_t. This will 152 * not free the spa_t or remove it from the 153 * namespace. No locking is required. 154 * 155 * spa_refcount_zero() Returns true if the refcount is currently 156 * zero. Must be called with spa_namespace_lock 157 * held. 158 * 159 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 160 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 161 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 162 * 163 * To read the configuration, it suffices to hold one of these locks as reader. 164 * To modify the configuration, you must hold all locks as writer. To modify 165 * vdev state without altering the vdev tree's topology (e.g. online/offline), 166 * you must hold SCL_STATE and SCL_ZIO as writer. 167 * 168 * We use these distinct config locks to avoid recursive lock entry. 169 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 170 * block allocations (SCL_ALLOC), which may require reading space maps 171 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 172 * 173 * The spa config locks cannot be normal rwlocks because we need the 174 * ability to hand off ownership. For example, SCL_ZIO is acquired 175 * by the issuing thread and later released by an interrupt thread. 176 * They do, however, obey the usual write-wanted semantics to prevent 177 * writer (i.e. system administrator) starvation. 178 * 179 * The lock acquisition rules are as follows: 180 * 181 * SCL_CONFIG 182 * Protects changes to the vdev tree topology, such as vdev 183 * add/remove/attach/detach. Protects the dirty config list 184 * (spa_config_dirty_list) and the set of spares and l2arc devices. 185 * 186 * SCL_STATE 187 * Protects changes to pool state and vdev state, such as vdev 188 * online/offline/fault/degrade/clear. Protects the dirty state list 189 * (spa_state_dirty_list) and global pool state (spa_state). 190 * 191 * SCL_ALLOC 192 * Protects changes to metaslab groups and classes. 193 * Held as reader by metaslab_alloc() and metaslab_claim(). 194 * 195 * SCL_ZIO 196 * Held by bp-level zios (those which have no io_vd upon entry) 197 * to prevent changes to the vdev tree. The bp-level zio implicitly 198 * protects all of its vdev child zios, which do not hold SCL_ZIO. 199 * 200 * SCL_FREE 201 * Protects changes to metaslab groups and classes. 202 * Held as reader by metaslab_free(). SCL_FREE is distinct from 203 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 204 * blocks in zio_done() while another i/o that holds either 205 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 206 * 207 * SCL_VDEV 208 * Held as reader to prevent changes to the vdev tree during trivial 209 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 210 * other locks, and lower than all of them, to ensure that it's safe 211 * to acquire regardless of caller context. 212 * 213 * In addition, the following rules apply: 214 * 215 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 216 * The lock ordering is SCL_CONFIG > spa_props_lock. 217 * 218 * (b) I/O operations on leaf vdevs. For any zio operation that takes 219 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 220 * or zio_write_phys() -- the caller must ensure that the config cannot 221 * cannot change in the interim, and that the vdev cannot be reopened. 222 * SCL_STATE as reader suffices for both. 223 * 224 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 225 * 226 * spa_vdev_enter() Acquire the namespace lock and the config lock 227 * for writing. 228 * 229 * spa_vdev_exit() Release the config lock, wait for all I/O 230 * to complete, sync the updated configs to the 231 * cache, and release the namespace lock. 232 * 233 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 234 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 235 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 236 */ 237 238 static avl_tree_t spa_namespace_avl; 239 kmutex_t spa_namespace_lock; 240 static kcondvar_t spa_namespace_cv; 241 static const int spa_max_replication_override = SPA_DVAS_PER_BP; 242 243 static kmutex_t spa_spare_lock; 244 static avl_tree_t spa_spare_avl; 245 static kmutex_t spa_l2cache_lock; 246 static avl_tree_t spa_l2cache_avl; 247 248 spa_mode_t spa_mode_global = SPA_MODE_UNINIT; 249 250 #ifdef ZFS_DEBUG 251 /* 252 * Everything except dprintf, set_error, spa, and indirect_remap is on 253 * by default in debug builds. 254 */ 255 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR | 256 ZFS_DEBUG_INDIRECT_REMAP); 257 #else 258 int zfs_flags = 0; 259 #endif 260 261 /* 262 * zfs_recover can be set to nonzero to attempt to recover from 263 * otherwise-fatal errors, typically caused by on-disk corruption. When 264 * set, calls to zfs_panic_recover() will turn into warning messages. 265 * This should only be used as a last resort, as it typically results 266 * in leaked space, or worse. 267 */ 268 int zfs_recover = B_FALSE; 269 270 /* 271 * If destroy encounters an EIO while reading metadata (e.g. indirect 272 * blocks), space referenced by the missing metadata can not be freed. 273 * Normally this causes the background destroy to become "stalled", as 274 * it is unable to make forward progress. While in this stalled state, 275 * all remaining space to free from the error-encountering filesystem is 276 * "temporarily leaked". Set this flag to cause it to ignore the EIO, 277 * permanently leak the space from indirect blocks that can not be read, 278 * and continue to free everything else that it can. 279 * 280 * The default, "stalling" behavior is useful if the storage partially 281 * fails (i.e. some but not all i/os fail), and then later recovers. In 282 * this case, we will be able to continue pool operations while it is 283 * partially failed, and when it recovers, we can continue to free the 284 * space, with no leaks. However, note that this case is actually 285 * fairly rare. 286 * 287 * Typically pools either (a) fail completely (but perhaps temporarily, 288 * e.g. a top-level vdev going offline), or (b) have localized, 289 * permanent errors (e.g. disk returns the wrong data due to bit flip or 290 * firmware bug). In case (a), this setting does not matter because the 291 * pool will be suspended and the sync thread will not be able to make 292 * forward progress regardless. In case (b), because the error is 293 * permanent, the best we can do is leak the minimum amount of space, 294 * which is what setting this flag will do. Therefore, it is reasonable 295 * for this flag to normally be set, but we chose the more conservative 296 * approach of not setting it, so that there is no possibility of 297 * leaking space in the "partial temporary" failure case. 298 */ 299 int zfs_free_leak_on_eio = B_FALSE; 300 301 /* 302 * Expiration time in milliseconds. This value has two meanings. First it is 303 * used to determine when the spa_deadman() logic should fire. By default the 304 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds. 305 * Secondly, the value determines if an I/O is considered "hung". Any I/O that 306 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting 307 * in one of three behaviors controlled by zfs_deadman_failmode. 308 */ 309 uint64_t zfs_deadman_synctime_ms = 600000UL; /* 10 min. */ 310 311 /* 312 * This value controls the maximum amount of time zio_wait() will block for an 313 * outstanding IO. By default this is 300 seconds at which point the "hung" 314 * behavior will be applied as described for zfs_deadman_synctime_ms. 315 */ 316 uint64_t zfs_deadman_ziotime_ms = 300000UL; /* 5 min. */ 317 318 /* 319 * Check time in milliseconds. This defines the frequency at which we check 320 * for hung I/O. 321 */ 322 uint64_t zfs_deadman_checktime_ms = 60000UL; /* 1 min. */ 323 324 /* 325 * By default the deadman is enabled. 326 */ 327 int zfs_deadman_enabled = B_TRUE; 328 329 /* 330 * Controls the behavior of the deadman when it detects a "hung" I/O. 331 * Valid values are zfs_deadman_failmode=<wait|continue|panic>. 332 * 333 * wait - Wait for the "hung" I/O (default) 334 * continue - Attempt to recover from a "hung" I/O 335 * panic - Panic the system 336 */ 337 const char *zfs_deadman_failmode = "wait"; 338 339 /* 340 * The worst case is single-sector max-parity RAID-Z blocks, in which 341 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 342 * times the size; so just assume that. Add to this the fact that 343 * we can have up to 3 DVAs per bp, and one more factor of 2 because 344 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, 345 * the worst case is: 346 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 347 */ 348 uint_t spa_asize_inflation = 24; 349 350 /* 351 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in 352 * the pool to be consumed (bounded by spa_max_slop). This ensures that we 353 * don't run the pool completely out of space, due to unaccounted changes (e.g. 354 * to the MOS). It also limits the worst-case time to allocate space. If we 355 * have less than this amount of free space, most ZPL operations (e.g. write, 356 * create) will return ENOSPC. The ZIL metaslabs (spa_embedded_log_class) are 357 * also part of this 3.2% of space which can't be consumed by normal writes; 358 * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded 359 * log space. 360 * 361 * Certain operations (e.g. file removal, most administrative actions) can 362 * use half the slop space. They will only return ENOSPC if less than half 363 * the slop space is free. Typically, once the pool has less than the slop 364 * space free, the user will use these operations to free up space in the pool. 365 * These are the operations that call dsl_pool_adjustedsize() with the netfree 366 * argument set to TRUE. 367 * 368 * Operations that are almost guaranteed to free up space in the absence of 369 * a pool checkpoint can use up to three quarters of the slop space 370 * (e.g zfs destroy). 371 * 372 * A very restricted set of operations are always permitted, regardless of 373 * the amount of free space. These are the operations that call 374 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net 375 * increase in the amount of space used, it is possible to run the pool 376 * completely out of space, causing it to be permanently read-only. 377 * 378 * Note that on very small pools, the slop space will be larger than 379 * 3.2%, in an effort to have it be at least spa_min_slop (128MB), 380 * but we never allow it to be more than half the pool size. 381 * 382 * Further, on very large pools, the slop space will be smaller than 383 * 3.2%, to avoid reserving much more space than we actually need; bounded 384 * by spa_max_slop (128GB). 385 * 386 * See also the comments in zfs_space_check_t. 387 */ 388 uint_t spa_slop_shift = 5; 389 static const uint64_t spa_min_slop = 128ULL * 1024 * 1024; 390 static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024; 391 392 /* 393 * Number of allocators to use, per spa instance 394 */ 395 static int spa_num_allocators = 4; 396 397 /* 398 * Spa active allocator. 399 * Valid values are zfs_active_allocator=<dynamic|cursor|new-dynamic>. 400 */ 401 const char *zfs_active_allocator = "dynamic"; 402 403 void 404 spa_load_failed(spa_t *spa, const char *fmt, ...) 405 { 406 va_list adx; 407 char buf[256]; 408 409 va_start(adx, fmt); 410 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 411 va_end(adx); 412 413 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name, 414 spa->spa_trust_config ? "trusted" : "untrusted", buf); 415 } 416 417 void 418 spa_load_note(spa_t *spa, const char *fmt, ...) 419 { 420 va_list adx; 421 char buf[256]; 422 423 va_start(adx, fmt); 424 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 425 va_end(adx); 426 427 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name, 428 spa->spa_trust_config ? "trusted" : "untrusted", buf); 429 } 430 431 /* 432 * By default dedup and user data indirects land in the special class 433 */ 434 static int zfs_ddt_data_is_special = B_TRUE; 435 static int zfs_user_indirect_is_special = B_TRUE; 436 437 /* 438 * The percentage of special class final space reserved for metadata only. 439 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only 440 * let metadata into the class. 441 */ 442 static uint_t zfs_special_class_metadata_reserve_pct = 25; 443 444 /* 445 * ========================================================================== 446 * SPA config locking 447 * ========================================================================== 448 */ 449 static void 450 spa_config_lock_init(spa_t *spa) 451 { 452 for (int i = 0; i < SCL_LOCKS; i++) { 453 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 454 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 455 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 456 scl->scl_writer = NULL; 457 scl->scl_write_wanted = 0; 458 scl->scl_count = 0; 459 } 460 } 461 462 static void 463 spa_config_lock_destroy(spa_t *spa) 464 { 465 for (int i = 0; i < SCL_LOCKS; i++) { 466 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 467 mutex_destroy(&scl->scl_lock); 468 cv_destroy(&scl->scl_cv); 469 ASSERT(scl->scl_writer == NULL); 470 ASSERT(scl->scl_write_wanted == 0); 471 ASSERT(scl->scl_count == 0); 472 } 473 } 474 475 int 476 spa_config_tryenter(spa_t *spa, int locks, const void *tag, krw_t rw) 477 { 478 for (int i = 0; i < SCL_LOCKS; i++) { 479 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 480 if (!(locks & (1 << i))) 481 continue; 482 mutex_enter(&scl->scl_lock); 483 if (rw == RW_READER) { 484 if (scl->scl_writer || scl->scl_write_wanted) { 485 mutex_exit(&scl->scl_lock); 486 spa_config_exit(spa, locks & ((1 << i) - 1), 487 tag); 488 return (0); 489 } 490 } else { 491 ASSERT(scl->scl_writer != curthread); 492 if (scl->scl_count != 0) { 493 mutex_exit(&scl->scl_lock); 494 spa_config_exit(spa, locks & ((1 << i) - 1), 495 tag); 496 return (0); 497 } 498 scl->scl_writer = curthread; 499 } 500 scl->scl_count++; 501 mutex_exit(&scl->scl_lock); 502 } 503 return (1); 504 } 505 506 static void 507 spa_config_enter_impl(spa_t *spa, int locks, const void *tag, krw_t rw, 508 int mmp_flag) 509 { 510 (void) tag; 511 int wlocks_held = 0; 512 513 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 514 515 for (int i = 0; i < SCL_LOCKS; i++) { 516 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 517 if (scl->scl_writer == curthread) 518 wlocks_held |= (1 << i); 519 if (!(locks & (1 << i))) 520 continue; 521 mutex_enter(&scl->scl_lock); 522 if (rw == RW_READER) { 523 while (scl->scl_writer || 524 (!mmp_flag && scl->scl_write_wanted)) { 525 cv_wait(&scl->scl_cv, &scl->scl_lock); 526 } 527 } else { 528 ASSERT(scl->scl_writer != curthread); 529 while (scl->scl_count != 0) { 530 scl->scl_write_wanted++; 531 cv_wait(&scl->scl_cv, &scl->scl_lock); 532 scl->scl_write_wanted--; 533 } 534 scl->scl_writer = curthread; 535 } 536 scl->scl_count++; 537 mutex_exit(&scl->scl_lock); 538 } 539 ASSERT3U(wlocks_held, <=, locks); 540 } 541 542 void 543 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw) 544 { 545 spa_config_enter_impl(spa, locks, tag, rw, 0); 546 } 547 548 /* 549 * The spa_config_enter_mmp() allows the mmp thread to cut in front of 550 * outstanding write lock requests. This is needed since the mmp updates are 551 * time sensitive and failure to service them promptly will result in a 552 * suspended pool. This pool suspension has been seen in practice when there is 553 * a single disk in a pool that is responding slowly and presumably about to 554 * fail. 555 */ 556 557 void 558 spa_config_enter_mmp(spa_t *spa, int locks, const void *tag, krw_t rw) 559 { 560 spa_config_enter_impl(spa, locks, tag, rw, 1); 561 } 562 563 void 564 spa_config_exit(spa_t *spa, int locks, const void *tag) 565 { 566 (void) tag; 567 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 568 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 569 if (!(locks & (1 << i))) 570 continue; 571 mutex_enter(&scl->scl_lock); 572 ASSERT(scl->scl_count > 0); 573 if (--scl->scl_count == 0) { 574 ASSERT(scl->scl_writer == NULL || 575 scl->scl_writer == curthread); 576 scl->scl_writer = NULL; /* OK in either case */ 577 cv_broadcast(&scl->scl_cv); 578 } 579 mutex_exit(&scl->scl_lock); 580 } 581 } 582 583 int 584 spa_config_held(spa_t *spa, int locks, krw_t rw) 585 { 586 int locks_held = 0; 587 588 for (int i = 0; i < SCL_LOCKS; i++) { 589 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 590 if (!(locks & (1 << i))) 591 continue; 592 if ((rw == RW_READER && scl->scl_count != 0) || 593 (rw == RW_WRITER && scl->scl_writer == curthread)) 594 locks_held |= 1 << i; 595 } 596 597 return (locks_held); 598 } 599 600 /* 601 * ========================================================================== 602 * SPA namespace functions 603 * ========================================================================== 604 */ 605 606 /* 607 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 608 * Returns NULL if no matching spa_t is found. 609 */ 610 spa_t * 611 spa_lookup(const char *name) 612 { 613 static spa_t search; /* spa_t is large; don't allocate on stack */ 614 spa_t *spa; 615 avl_index_t where; 616 char *cp; 617 618 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 619 620 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 621 622 /* 623 * If it's a full dataset name, figure out the pool name and 624 * just use that. 625 */ 626 cp = strpbrk(search.spa_name, "/@#"); 627 if (cp != NULL) 628 *cp = '\0'; 629 630 spa = avl_find(&spa_namespace_avl, &search, &where); 631 632 return (spa); 633 } 634 635 /* 636 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 637 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 638 * looking for potentially hung I/Os. 639 */ 640 void 641 spa_deadman(void *arg) 642 { 643 spa_t *spa = arg; 644 645 /* Disable the deadman if the pool is suspended. */ 646 if (spa_suspended(spa)) 647 return; 648 649 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 650 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 651 (u_longlong_t)++spa->spa_deadman_calls); 652 if (zfs_deadman_enabled) 653 vdev_deadman(spa->spa_root_vdev, FTAG); 654 655 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, 656 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + 657 MSEC_TO_TICK(zfs_deadman_checktime_ms)); 658 } 659 660 static int 661 spa_log_sm_sort_by_txg(const void *va, const void *vb) 662 { 663 const spa_log_sm_t *a = va; 664 const spa_log_sm_t *b = vb; 665 666 return (TREE_CMP(a->sls_txg, b->sls_txg)); 667 } 668 669 /* 670 * Create an uninitialized spa_t with the given name. Requires 671 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 672 * exist by calling spa_lookup() first. 673 */ 674 spa_t * 675 spa_add(const char *name, nvlist_t *config, const char *altroot) 676 { 677 spa_t *spa; 678 spa_config_dirent_t *dp; 679 680 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 681 682 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 683 684 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 685 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 686 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 687 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); 688 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 689 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 690 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 691 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); 692 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 693 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 694 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 695 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL); 696 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL); 697 mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL); 698 699 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 700 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); 701 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 702 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 703 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 704 cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL); 705 cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL); 706 707 for (int t = 0; t < TXG_SIZE; t++) 708 bplist_create(&spa->spa_free_bplist[t]); 709 710 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 711 spa->spa_state = POOL_STATE_UNINITIALIZED; 712 spa->spa_freeze_txg = UINT64_MAX; 713 spa->spa_final_txg = UINT64_MAX; 714 spa->spa_load_max_txg = UINT64_MAX; 715 spa->spa_proc = &p0; 716 spa->spa_proc_state = SPA_PROC_NONE; 717 spa->spa_trust_config = B_TRUE; 718 spa->spa_hostid = zone_get_hostid(NULL); 719 720 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); 721 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms); 722 spa_set_deadman_failmode(spa, zfs_deadman_failmode); 723 spa_set_allocator(spa, zfs_active_allocator); 724 725 zfs_refcount_create(&spa->spa_refcount); 726 spa_config_lock_init(spa); 727 spa_stats_init(spa); 728 729 avl_add(&spa_namespace_avl, spa); 730 731 /* 732 * Set the alternate root, if there is one. 733 */ 734 if (altroot) 735 spa->spa_root = spa_strdup(altroot); 736 737 /* Do not allow more allocators than CPUs. */ 738 spa->spa_alloc_count = MIN(MAX(spa_num_allocators, 1), boot_ncpus); 739 740 spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count * 741 sizeof (spa_alloc_t), KM_SLEEP); 742 for (int i = 0; i < spa->spa_alloc_count; i++) { 743 mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT, 744 NULL); 745 avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare, 746 sizeof (zio_t), offsetof(zio_t, io_queue_node.a)); 747 } 748 749 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed, 750 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node)); 751 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg, 752 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node)); 753 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t), 754 offsetof(log_summary_entry_t, lse_node)); 755 756 /* 757 * Every pool starts with the default cachefile 758 */ 759 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 760 offsetof(spa_config_dirent_t, scd_link)); 761 762 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 763 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 764 list_insert_head(&spa->spa_config_list, dp); 765 766 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 767 KM_SLEEP) == 0); 768 769 if (config != NULL) { 770 nvlist_t *features; 771 772 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 773 &features) == 0) { 774 VERIFY(nvlist_dup(features, &spa->spa_label_features, 775 0) == 0); 776 } 777 778 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 779 } 780 781 if (spa->spa_label_features == NULL) { 782 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 783 KM_SLEEP) == 0); 784 } 785 786 spa->spa_min_ashift = INT_MAX; 787 spa->spa_max_ashift = 0; 788 spa->spa_min_alloc = INT_MAX; 789 spa->spa_gcd_alloc = INT_MAX; 790 791 /* Reset cached value */ 792 spa->spa_dedup_dspace = ~0ULL; 793 794 /* 795 * As a pool is being created, treat all features as disabled by 796 * setting SPA_FEATURE_DISABLED for all entries in the feature 797 * refcount cache. 798 */ 799 for (int i = 0; i < SPA_FEATURES; i++) { 800 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; 801 } 802 803 list_create(&spa->spa_leaf_list, sizeof (vdev_t), 804 offsetof(vdev_t, vdev_leaf_node)); 805 806 return (spa); 807 } 808 809 /* 810 * Removes a spa_t from the namespace, freeing up any memory used. Requires 811 * spa_namespace_lock. This is called only after the spa_t has been closed and 812 * deactivated. 813 */ 814 void 815 spa_remove(spa_t *spa) 816 { 817 spa_config_dirent_t *dp; 818 819 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 820 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED); 821 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0); 822 ASSERT0(spa->spa_waiters); 823 824 nvlist_free(spa->spa_config_splitting); 825 826 avl_remove(&spa_namespace_avl, spa); 827 cv_broadcast(&spa_namespace_cv); 828 829 if (spa->spa_root) 830 spa_strfree(spa->spa_root); 831 832 while ((dp = list_remove_head(&spa->spa_config_list)) != NULL) { 833 if (dp->scd_path != NULL) 834 spa_strfree(dp->scd_path); 835 kmem_free(dp, sizeof (spa_config_dirent_t)); 836 } 837 838 for (int i = 0; i < spa->spa_alloc_count; i++) { 839 avl_destroy(&spa->spa_allocs[i].spaa_tree); 840 mutex_destroy(&spa->spa_allocs[i].spaa_lock); 841 } 842 kmem_free(spa->spa_allocs, spa->spa_alloc_count * 843 sizeof (spa_alloc_t)); 844 845 avl_destroy(&spa->spa_metaslabs_by_flushed); 846 avl_destroy(&spa->spa_sm_logs_by_txg); 847 list_destroy(&spa->spa_log_summary); 848 list_destroy(&spa->spa_config_list); 849 list_destroy(&spa->spa_leaf_list); 850 851 nvlist_free(spa->spa_label_features); 852 nvlist_free(spa->spa_load_info); 853 nvlist_free(spa->spa_feat_stats); 854 spa_config_set(spa, NULL); 855 856 zfs_refcount_destroy(&spa->spa_refcount); 857 858 spa_stats_destroy(spa); 859 spa_config_lock_destroy(spa); 860 861 for (int t = 0; t < TXG_SIZE; t++) 862 bplist_destroy(&spa->spa_free_bplist[t]); 863 864 zio_checksum_templates_free(spa); 865 866 cv_destroy(&spa->spa_async_cv); 867 cv_destroy(&spa->spa_evicting_os_cv); 868 cv_destroy(&spa->spa_proc_cv); 869 cv_destroy(&spa->spa_scrub_io_cv); 870 cv_destroy(&spa->spa_suspend_cv); 871 cv_destroy(&spa->spa_activities_cv); 872 cv_destroy(&spa->spa_waiters_cv); 873 874 mutex_destroy(&spa->spa_flushed_ms_lock); 875 mutex_destroy(&spa->spa_async_lock); 876 mutex_destroy(&spa->spa_errlist_lock); 877 mutex_destroy(&spa->spa_errlog_lock); 878 mutex_destroy(&spa->spa_evicting_os_lock); 879 mutex_destroy(&spa->spa_history_lock); 880 mutex_destroy(&spa->spa_proc_lock); 881 mutex_destroy(&spa->spa_props_lock); 882 mutex_destroy(&spa->spa_cksum_tmpls_lock); 883 mutex_destroy(&spa->spa_scrub_lock); 884 mutex_destroy(&spa->spa_suspend_lock); 885 mutex_destroy(&spa->spa_vdev_top_lock); 886 mutex_destroy(&spa->spa_feat_stats_lock); 887 mutex_destroy(&spa->spa_activities_lock); 888 889 kmem_free(spa, sizeof (spa_t)); 890 } 891 892 /* 893 * Given a pool, return the next pool in the namespace, or NULL if there is 894 * none. If 'prev' is NULL, return the first pool. 895 */ 896 spa_t * 897 spa_next(spa_t *prev) 898 { 899 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 900 901 if (prev) 902 return (AVL_NEXT(&spa_namespace_avl, prev)); 903 else 904 return (avl_first(&spa_namespace_avl)); 905 } 906 907 /* 908 * ========================================================================== 909 * SPA refcount functions 910 * ========================================================================== 911 */ 912 913 /* 914 * Add a reference to the given spa_t. Must have at least one reference, or 915 * have the namespace lock held. 916 */ 917 void 918 spa_open_ref(spa_t *spa, const void *tag) 919 { 920 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref || 921 MUTEX_HELD(&spa_namespace_lock)); 922 (void) zfs_refcount_add(&spa->spa_refcount, tag); 923 } 924 925 /* 926 * Remove a reference to the given spa_t. Must have at least one reference, or 927 * have the namespace lock held. 928 */ 929 void 930 spa_close(spa_t *spa, const void *tag) 931 { 932 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref || 933 MUTEX_HELD(&spa_namespace_lock)); 934 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 935 } 936 937 /* 938 * Remove a reference to the given spa_t held by a dsl dir that is 939 * being asynchronously released. Async releases occur from a taskq 940 * performing eviction of dsl datasets and dirs. The namespace lock 941 * isn't held and the hold by the object being evicted may contribute to 942 * spa_minref (e.g. dataset or directory released during pool export), 943 * so the asserts in spa_close() do not apply. 944 */ 945 void 946 spa_async_close(spa_t *spa, const void *tag) 947 { 948 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 949 } 950 951 /* 952 * Check to see if the spa refcount is zero. Must be called with 953 * spa_namespace_lock held. We really compare against spa_minref, which is the 954 * number of references acquired when opening a pool 955 */ 956 boolean_t 957 spa_refcount_zero(spa_t *spa) 958 { 959 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 960 961 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref); 962 } 963 964 /* 965 * ========================================================================== 966 * SPA spare and l2cache tracking 967 * ========================================================================== 968 */ 969 970 /* 971 * Hot spares and cache devices are tracked using the same code below, 972 * for 'auxiliary' devices. 973 */ 974 975 typedef struct spa_aux { 976 uint64_t aux_guid; 977 uint64_t aux_pool; 978 avl_node_t aux_avl; 979 int aux_count; 980 } spa_aux_t; 981 982 static inline int 983 spa_aux_compare(const void *a, const void *b) 984 { 985 const spa_aux_t *sa = (const spa_aux_t *)a; 986 const spa_aux_t *sb = (const spa_aux_t *)b; 987 988 return (TREE_CMP(sa->aux_guid, sb->aux_guid)); 989 } 990 991 static void 992 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 993 { 994 avl_index_t where; 995 spa_aux_t search; 996 spa_aux_t *aux; 997 998 search.aux_guid = vd->vdev_guid; 999 if ((aux = avl_find(avl, &search, &where)) != NULL) { 1000 aux->aux_count++; 1001 } else { 1002 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 1003 aux->aux_guid = vd->vdev_guid; 1004 aux->aux_count = 1; 1005 avl_insert(avl, aux, where); 1006 } 1007 } 1008 1009 static void 1010 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 1011 { 1012 spa_aux_t search; 1013 spa_aux_t *aux; 1014 avl_index_t where; 1015 1016 search.aux_guid = vd->vdev_guid; 1017 aux = avl_find(avl, &search, &where); 1018 1019 ASSERT(aux != NULL); 1020 1021 if (--aux->aux_count == 0) { 1022 avl_remove(avl, aux); 1023 kmem_free(aux, sizeof (spa_aux_t)); 1024 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 1025 aux->aux_pool = 0ULL; 1026 } 1027 } 1028 1029 static boolean_t 1030 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 1031 { 1032 spa_aux_t search, *found; 1033 1034 search.aux_guid = guid; 1035 found = avl_find(avl, &search, NULL); 1036 1037 if (pool) { 1038 if (found) 1039 *pool = found->aux_pool; 1040 else 1041 *pool = 0ULL; 1042 } 1043 1044 if (refcnt) { 1045 if (found) 1046 *refcnt = found->aux_count; 1047 else 1048 *refcnt = 0; 1049 } 1050 1051 return (found != NULL); 1052 } 1053 1054 static void 1055 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 1056 { 1057 spa_aux_t search, *found; 1058 avl_index_t where; 1059 1060 search.aux_guid = vd->vdev_guid; 1061 found = avl_find(avl, &search, &where); 1062 ASSERT(found != NULL); 1063 ASSERT(found->aux_pool == 0ULL); 1064 1065 found->aux_pool = spa_guid(vd->vdev_spa); 1066 } 1067 1068 /* 1069 * Spares are tracked globally due to the following constraints: 1070 * 1071 * - A spare may be part of multiple pools. 1072 * - A spare may be added to a pool even if it's actively in use within 1073 * another pool. 1074 * - A spare in use in any pool can only be the source of a replacement if 1075 * the target is a spare in the same pool. 1076 * 1077 * We keep track of all spares on the system through the use of a reference 1078 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 1079 * spare, then we bump the reference count in the AVL tree. In addition, we set 1080 * the 'vdev_isspare' member to indicate that the device is a spare (active or 1081 * inactive). When a spare is made active (used to replace a device in the 1082 * pool), we also keep track of which pool its been made a part of. 1083 * 1084 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 1085 * called under the spa_namespace lock as part of vdev reconfiguration. The 1086 * separate spare lock exists for the status query path, which does not need to 1087 * be completely consistent with respect to other vdev configuration changes. 1088 */ 1089 1090 static int 1091 spa_spare_compare(const void *a, const void *b) 1092 { 1093 return (spa_aux_compare(a, b)); 1094 } 1095 1096 void 1097 spa_spare_add(vdev_t *vd) 1098 { 1099 mutex_enter(&spa_spare_lock); 1100 ASSERT(!vd->vdev_isspare); 1101 spa_aux_add(vd, &spa_spare_avl); 1102 vd->vdev_isspare = B_TRUE; 1103 mutex_exit(&spa_spare_lock); 1104 } 1105 1106 void 1107 spa_spare_remove(vdev_t *vd) 1108 { 1109 mutex_enter(&spa_spare_lock); 1110 ASSERT(vd->vdev_isspare); 1111 spa_aux_remove(vd, &spa_spare_avl); 1112 vd->vdev_isspare = B_FALSE; 1113 mutex_exit(&spa_spare_lock); 1114 } 1115 1116 boolean_t 1117 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 1118 { 1119 boolean_t found; 1120 1121 mutex_enter(&spa_spare_lock); 1122 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 1123 mutex_exit(&spa_spare_lock); 1124 1125 return (found); 1126 } 1127 1128 void 1129 spa_spare_activate(vdev_t *vd) 1130 { 1131 mutex_enter(&spa_spare_lock); 1132 ASSERT(vd->vdev_isspare); 1133 spa_aux_activate(vd, &spa_spare_avl); 1134 mutex_exit(&spa_spare_lock); 1135 } 1136 1137 /* 1138 * Level 2 ARC devices are tracked globally for the same reasons as spares. 1139 * Cache devices currently only support one pool per cache device, and so 1140 * for these devices the aux reference count is currently unused beyond 1. 1141 */ 1142 1143 static int 1144 spa_l2cache_compare(const void *a, const void *b) 1145 { 1146 return (spa_aux_compare(a, b)); 1147 } 1148 1149 void 1150 spa_l2cache_add(vdev_t *vd) 1151 { 1152 mutex_enter(&spa_l2cache_lock); 1153 ASSERT(!vd->vdev_isl2cache); 1154 spa_aux_add(vd, &spa_l2cache_avl); 1155 vd->vdev_isl2cache = B_TRUE; 1156 mutex_exit(&spa_l2cache_lock); 1157 } 1158 1159 void 1160 spa_l2cache_remove(vdev_t *vd) 1161 { 1162 mutex_enter(&spa_l2cache_lock); 1163 ASSERT(vd->vdev_isl2cache); 1164 spa_aux_remove(vd, &spa_l2cache_avl); 1165 vd->vdev_isl2cache = B_FALSE; 1166 mutex_exit(&spa_l2cache_lock); 1167 } 1168 1169 boolean_t 1170 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 1171 { 1172 boolean_t found; 1173 1174 mutex_enter(&spa_l2cache_lock); 1175 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 1176 mutex_exit(&spa_l2cache_lock); 1177 1178 return (found); 1179 } 1180 1181 void 1182 spa_l2cache_activate(vdev_t *vd) 1183 { 1184 mutex_enter(&spa_l2cache_lock); 1185 ASSERT(vd->vdev_isl2cache); 1186 spa_aux_activate(vd, &spa_l2cache_avl); 1187 mutex_exit(&spa_l2cache_lock); 1188 } 1189 1190 /* 1191 * ========================================================================== 1192 * SPA vdev locking 1193 * ========================================================================== 1194 */ 1195 1196 /* 1197 * Lock the given spa_t for the purpose of adding or removing a vdev. 1198 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 1199 * It returns the next transaction group for the spa_t. 1200 */ 1201 uint64_t 1202 spa_vdev_enter(spa_t *spa) 1203 { 1204 mutex_enter(&spa->spa_vdev_top_lock); 1205 mutex_enter(&spa_namespace_lock); 1206 1207 vdev_autotrim_stop_all(spa); 1208 1209 return (spa_vdev_config_enter(spa)); 1210 } 1211 1212 /* 1213 * The same as spa_vdev_enter() above but additionally takes the guid of 1214 * the vdev being detached. When there is a rebuild in process it will be 1215 * suspended while the vdev tree is modified then resumed by spa_vdev_exit(). 1216 * The rebuild is canceled if only a single child remains after the detach. 1217 */ 1218 uint64_t 1219 spa_vdev_detach_enter(spa_t *spa, uint64_t guid) 1220 { 1221 mutex_enter(&spa->spa_vdev_top_lock); 1222 mutex_enter(&spa_namespace_lock); 1223 1224 vdev_autotrim_stop_all(spa); 1225 1226 if (guid != 0) { 1227 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 1228 if (vd) { 1229 vdev_rebuild_stop_wait(vd->vdev_top); 1230 } 1231 } 1232 1233 return (spa_vdev_config_enter(spa)); 1234 } 1235 1236 /* 1237 * Internal implementation for spa_vdev_enter(). Used when a vdev 1238 * operation requires multiple syncs (i.e. removing a device) while 1239 * keeping the spa_namespace_lock held. 1240 */ 1241 uint64_t 1242 spa_vdev_config_enter(spa_t *spa) 1243 { 1244 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1245 1246 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1247 1248 return (spa_last_synced_txg(spa) + 1); 1249 } 1250 1251 /* 1252 * Used in combination with spa_vdev_config_enter() to allow the syncing 1253 * of multiple transactions without releasing the spa_namespace_lock. 1254 */ 1255 void 1256 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, 1257 const char *tag) 1258 { 1259 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1260 1261 int config_changed = B_FALSE; 1262 1263 ASSERT(txg > spa_last_synced_txg(spa)); 1264 1265 spa->spa_pending_vdev = NULL; 1266 1267 /* 1268 * Reassess the DTLs. 1269 */ 1270 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE); 1271 1272 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 1273 config_changed = B_TRUE; 1274 spa->spa_config_generation++; 1275 } 1276 1277 /* 1278 * Verify the metaslab classes. 1279 */ 1280 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 1281 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 1282 ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0); 1283 ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0); 1284 ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0); 1285 1286 spa_config_exit(spa, SCL_ALL, spa); 1287 1288 /* 1289 * Panic the system if the specified tag requires it. This 1290 * is useful for ensuring that configurations are updated 1291 * transactionally. 1292 */ 1293 if (zio_injection_enabled) 1294 zio_handle_panic_injection(spa, tag, 0); 1295 1296 /* 1297 * Note: this txg_wait_synced() is important because it ensures 1298 * that there won't be more than one config change per txg. 1299 * This allows us to use the txg as the generation number. 1300 */ 1301 if (error == 0) 1302 txg_wait_synced(spa->spa_dsl_pool, txg); 1303 1304 if (vd != NULL) { 1305 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); 1306 if (vd->vdev_ops->vdev_op_leaf) { 1307 mutex_enter(&vd->vdev_initialize_lock); 1308 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, 1309 NULL); 1310 mutex_exit(&vd->vdev_initialize_lock); 1311 1312 mutex_enter(&vd->vdev_trim_lock); 1313 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL); 1314 mutex_exit(&vd->vdev_trim_lock); 1315 } 1316 1317 /* 1318 * The vdev may be both a leaf and top-level device. 1319 */ 1320 vdev_autotrim_stop_wait(vd); 1321 1322 spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER); 1323 vdev_free(vd); 1324 spa_config_exit(spa, SCL_STATE_ALL, spa); 1325 } 1326 1327 /* 1328 * If the config changed, update the config cache. 1329 */ 1330 if (config_changed) 1331 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); 1332 } 1333 1334 /* 1335 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1336 * locking of spa_vdev_enter(), we also want make sure the transactions have 1337 * synced to disk, and then update the global configuration cache with the new 1338 * information. 1339 */ 1340 int 1341 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1342 { 1343 vdev_autotrim_restart(spa); 1344 vdev_rebuild_restart(spa); 1345 1346 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1347 mutex_exit(&spa_namespace_lock); 1348 mutex_exit(&spa->spa_vdev_top_lock); 1349 1350 return (error); 1351 } 1352 1353 /* 1354 * Lock the given spa_t for the purpose of changing vdev state. 1355 */ 1356 void 1357 spa_vdev_state_enter(spa_t *spa, int oplocks) 1358 { 1359 int locks = SCL_STATE_ALL | oplocks; 1360 1361 /* 1362 * Root pools may need to read of the underlying devfs filesystem 1363 * when opening up a vdev. Unfortunately if we're holding the 1364 * SCL_ZIO lock it will result in a deadlock when we try to issue 1365 * the read from the root filesystem. Instead we "prefetch" 1366 * the associated vnodes that we need prior to opening the 1367 * underlying devices and cache them so that we can prevent 1368 * any I/O when we are doing the actual open. 1369 */ 1370 if (spa_is_root(spa)) { 1371 int low = locks & ~(SCL_ZIO - 1); 1372 int high = locks & ~low; 1373 1374 spa_config_enter(spa, high, spa, RW_WRITER); 1375 vdev_hold(spa->spa_root_vdev); 1376 spa_config_enter(spa, low, spa, RW_WRITER); 1377 } else { 1378 spa_config_enter(spa, locks, spa, RW_WRITER); 1379 } 1380 spa->spa_vdev_locks = locks; 1381 } 1382 1383 int 1384 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1385 { 1386 boolean_t config_changed = B_FALSE; 1387 vdev_t *vdev_top; 1388 1389 if (vd == NULL || vd == spa->spa_root_vdev) { 1390 vdev_top = spa->spa_root_vdev; 1391 } else { 1392 vdev_top = vd->vdev_top; 1393 } 1394 1395 if (vd != NULL || error == 0) 1396 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE); 1397 1398 if (vd != NULL) { 1399 if (vd != spa->spa_root_vdev) 1400 vdev_state_dirty(vdev_top); 1401 1402 config_changed = B_TRUE; 1403 spa->spa_config_generation++; 1404 } 1405 1406 if (spa_is_root(spa)) 1407 vdev_rele(spa->spa_root_vdev); 1408 1409 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1410 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1411 1412 /* 1413 * If anything changed, wait for it to sync. This ensures that, 1414 * from the system administrator's perspective, zpool(8) commands 1415 * are synchronous. This is important for things like zpool offline: 1416 * when the command completes, you expect no further I/O from ZFS. 1417 */ 1418 if (vd != NULL) 1419 txg_wait_synced(spa->spa_dsl_pool, 0); 1420 1421 /* 1422 * If the config changed, update the config cache. 1423 */ 1424 if (config_changed) { 1425 mutex_enter(&spa_namespace_lock); 1426 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE); 1427 mutex_exit(&spa_namespace_lock); 1428 } 1429 1430 return (error); 1431 } 1432 1433 /* 1434 * ========================================================================== 1435 * Miscellaneous functions 1436 * ========================================================================== 1437 */ 1438 1439 void 1440 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) 1441 { 1442 if (!nvlist_exists(spa->spa_label_features, feature)) { 1443 fnvlist_add_boolean(spa->spa_label_features, feature); 1444 /* 1445 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't 1446 * dirty the vdev config because lock SCL_CONFIG is not held. 1447 * Thankfully, in this case we don't need to dirty the config 1448 * because it will be written out anyway when we finish 1449 * creating the pool. 1450 */ 1451 if (tx->tx_txg != TXG_INITIAL) 1452 vdev_config_dirty(spa->spa_root_vdev); 1453 } 1454 } 1455 1456 void 1457 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1458 { 1459 if (nvlist_remove_all(spa->spa_label_features, feature) == 0) 1460 vdev_config_dirty(spa->spa_root_vdev); 1461 } 1462 1463 /* 1464 * Return the spa_t associated with given pool_guid, if it exists. If 1465 * device_guid is non-zero, determine whether the pool exists *and* contains 1466 * a device with the specified device_guid. 1467 */ 1468 spa_t * 1469 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1470 { 1471 spa_t *spa; 1472 avl_tree_t *t = &spa_namespace_avl; 1473 1474 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1475 1476 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1477 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1478 continue; 1479 if (spa->spa_root_vdev == NULL) 1480 continue; 1481 if (spa_guid(spa) == pool_guid) { 1482 if (device_guid == 0) 1483 break; 1484 1485 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1486 device_guid) != NULL) 1487 break; 1488 1489 /* 1490 * Check any devices we may be in the process of adding. 1491 */ 1492 if (spa->spa_pending_vdev) { 1493 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1494 device_guid) != NULL) 1495 break; 1496 } 1497 } 1498 } 1499 1500 return (spa); 1501 } 1502 1503 /* 1504 * Determine whether a pool with the given pool_guid exists. 1505 */ 1506 boolean_t 1507 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1508 { 1509 return (spa_by_guid(pool_guid, device_guid) != NULL); 1510 } 1511 1512 char * 1513 spa_strdup(const char *s) 1514 { 1515 size_t len; 1516 char *new; 1517 1518 len = strlen(s); 1519 new = kmem_alloc(len + 1, KM_SLEEP); 1520 memcpy(new, s, len + 1); 1521 1522 return (new); 1523 } 1524 1525 void 1526 spa_strfree(char *s) 1527 { 1528 kmem_free(s, strlen(s) + 1); 1529 } 1530 1531 uint64_t 1532 spa_generate_guid(spa_t *spa) 1533 { 1534 uint64_t guid; 1535 1536 if (spa != NULL) { 1537 do { 1538 (void) random_get_pseudo_bytes((void *)&guid, 1539 sizeof (guid)); 1540 } while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)); 1541 } else { 1542 do { 1543 (void) random_get_pseudo_bytes((void *)&guid, 1544 sizeof (guid)); 1545 } while (guid == 0 || spa_guid_exists(guid, 0)); 1546 } 1547 1548 return (guid); 1549 } 1550 1551 void 1552 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) 1553 { 1554 char type[256]; 1555 const char *checksum = NULL; 1556 const char *compress = NULL; 1557 1558 if (bp != NULL) { 1559 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1560 dmu_object_byteswap_t bswap = 1561 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1562 (void) snprintf(type, sizeof (type), "bswap %s %s", 1563 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1564 "metadata" : "data", 1565 dmu_ot_byteswap[bswap].ob_name); 1566 } else { 1567 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1568 sizeof (type)); 1569 } 1570 if (!BP_IS_EMBEDDED(bp)) { 1571 checksum = 1572 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1573 } 1574 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1575 } 1576 1577 SNPRINTF_BLKPTR(kmem_scnprintf, ' ', buf, buflen, bp, type, checksum, 1578 compress); 1579 } 1580 1581 void 1582 spa_freeze(spa_t *spa) 1583 { 1584 uint64_t freeze_txg = 0; 1585 1586 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1587 if (spa->spa_freeze_txg == UINT64_MAX) { 1588 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1589 spa->spa_freeze_txg = freeze_txg; 1590 } 1591 spa_config_exit(spa, SCL_ALL, FTAG); 1592 if (freeze_txg != 0) 1593 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1594 } 1595 1596 void 1597 zfs_panic_recover(const char *fmt, ...) 1598 { 1599 va_list adx; 1600 1601 va_start(adx, fmt); 1602 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1603 va_end(adx); 1604 } 1605 1606 /* 1607 * This is a stripped-down version of strtoull, suitable only for converting 1608 * lowercase hexadecimal numbers that don't overflow. 1609 */ 1610 uint64_t 1611 zfs_strtonum(const char *str, char **nptr) 1612 { 1613 uint64_t val = 0; 1614 char c; 1615 int digit; 1616 1617 while ((c = *str) != '\0') { 1618 if (c >= '0' && c <= '9') 1619 digit = c - '0'; 1620 else if (c >= 'a' && c <= 'f') 1621 digit = 10 + c - 'a'; 1622 else 1623 break; 1624 1625 val *= 16; 1626 val += digit; 1627 1628 str++; 1629 } 1630 1631 if (nptr) 1632 *nptr = (char *)str; 1633 1634 return (val); 1635 } 1636 1637 void 1638 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx) 1639 { 1640 /* 1641 * We bump the feature refcount for each special vdev added to the pool 1642 */ 1643 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)); 1644 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx); 1645 } 1646 1647 /* 1648 * ========================================================================== 1649 * Accessor functions 1650 * ========================================================================== 1651 */ 1652 1653 boolean_t 1654 spa_shutting_down(spa_t *spa) 1655 { 1656 return (spa->spa_async_suspended); 1657 } 1658 1659 dsl_pool_t * 1660 spa_get_dsl(spa_t *spa) 1661 { 1662 return (spa->spa_dsl_pool); 1663 } 1664 1665 boolean_t 1666 spa_is_initializing(spa_t *spa) 1667 { 1668 return (spa->spa_is_initializing); 1669 } 1670 1671 boolean_t 1672 spa_indirect_vdevs_loaded(spa_t *spa) 1673 { 1674 return (spa->spa_indirect_vdevs_loaded); 1675 } 1676 1677 blkptr_t * 1678 spa_get_rootblkptr(spa_t *spa) 1679 { 1680 return (&spa->spa_ubsync.ub_rootbp); 1681 } 1682 1683 void 1684 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1685 { 1686 spa->spa_uberblock.ub_rootbp = *bp; 1687 } 1688 1689 void 1690 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1691 { 1692 if (spa->spa_root == NULL) 1693 buf[0] = '\0'; 1694 else 1695 (void) strlcpy(buf, spa->spa_root, buflen); 1696 } 1697 1698 uint32_t 1699 spa_sync_pass(spa_t *spa) 1700 { 1701 return (spa->spa_sync_pass); 1702 } 1703 1704 char * 1705 spa_name(spa_t *spa) 1706 { 1707 return (spa->spa_name); 1708 } 1709 1710 uint64_t 1711 spa_guid(spa_t *spa) 1712 { 1713 dsl_pool_t *dp = spa_get_dsl(spa); 1714 uint64_t guid; 1715 1716 /* 1717 * If we fail to parse the config during spa_load(), we can go through 1718 * the error path (which posts an ereport) and end up here with no root 1719 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1720 * this case. 1721 */ 1722 if (spa->spa_root_vdev == NULL) 1723 return (spa->spa_config_guid); 1724 1725 guid = spa->spa_last_synced_guid != 0 ? 1726 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1727 1728 /* 1729 * Return the most recently synced out guid unless we're 1730 * in syncing context. 1731 */ 1732 if (dp && dsl_pool_sync_context(dp)) 1733 return (spa->spa_root_vdev->vdev_guid); 1734 else 1735 return (guid); 1736 } 1737 1738 uint64_t 1739 spa_load_guid(spa_t *spa) 1740 { 1741 /* 1742 * This is a GUID that exists solely as a reference for the 1743 * purposes of the arc. It is generated at load time, and 1744 * is never written to persistent storage. 1745 */ 1746 return (spa->spa_load_guid); 1747 } 1748 1749 uint64_t 1750 spa_last_synced_txg(spa_t *spa) 1751 { 1752 return (spa->spa_ubsync.ub_txg); 1753 } 1754 1755 uint64_t 1756 spa_first_txg(spa_t *spa) 1757 { 1758 return (spa->spa_first_txg); 1759 } 1760 1761 uint64_t 1762 spa_syncing_txg(spa_t *spa) 1763 { 1764 return (spa->spa_syncing_txg); 1765 } 1766 1767 /* 1768 * Return the last txg where data can be dirtied. The final txgs 1769 * will be used to just clear out any deferred frees that remain. 1770 */ 1771 uint64_t 1772 spa_final_dirty_txg(spa_t *spa) 1773 { 1774 return (spa->spa_final_txg - TXG_DEFER_SIZE); 1775 } 1776 1777 pool_state_t 1778 spa_state(spa_t *spa) 1779 { 1780 return (spa->spa_state); 1781 } 1782 1783 spa_load_state_t 1784 spa_load_state(spa_t *spa) 1785 { 1786 return (spa->spa_load_state); 1787 } 1788 1789 uint64_t 1790 spa_freeze_txg(spa_t *spa) 1791 { 1792 return (spa->spa_freeze_txg); 1793 } 1794 1795 /* 1796 * Return the inflated asize for a logical write in bytes. This is used by the 1797 * DMU to calculate the space a logical write will require on disk. 1798 * If lsize is smaller than the largest physical block size allocatable on this 1799 * pool we use its value instead, since the write will end up using the whole 1800 * block anyway. 1801 */ 1802 uint64_t 1803 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize) 1804 { 1805 if (lsize == 0) 1806 return (0); /* No inflation needed */ 1807 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation); 1808 } 1809 1810 /* 1811 * Return the amount of slop space in bytes. It is typically 1/32 of the pool 1812 * (3.2%), minus the embedded log space. On very small pools, it may be 1813 * slightly larger than this. On very large pools, it will be capped to 1814 * the value of spa_max_slop. The embedded log space is not included in 1815 * spa_dspace. By subtracting it, the usable space (per "zfs list") is a 1816 * constant 97% of the total space, regardless of metaslab size (assuming the 1817 * default spa_slop_shift=5 and a non-tiny pool). 1818 * 1819 * See the comment above spa_slop_shift for more details. 1820 */ 1821 uint64_t 1822 spa_get_slop_space(spa_t *spa) 1823 { 1824 uint64_t space = 0; 1825 uint64_t slop = 0; 1826 1827 /* 1828 * Make sure spa_dedup_dspace has been set. 1829 */ 1830 if (spa->spa_dedup_dspace == ~0ULL) 1831 spa_update_dspace(spa); 1832 1833 /* 1834 * spa_get_dspace() includes the space only logically "used" by 1835 * deduplicated data, so since it's not useful to reserve more 1836 * space with more deduplicated data, we subtract that out here. 1837 */ 1838 space = spa_get_dspace(spa) - spa->spa_dedup_dspace; 1839 slop = MIN(space >> spa_slop_shift, spa_max_slop); 1840 1841 /* 1842 * Subtract the embedded log space, but no more than half the (3.2%) 1843 * unusable space. Note, the "no more than half" is only relevant if 1844 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by 1845 * default. 1846 */ 1847 uint64_t embedded_log = 1848 metaslab_class_get_dspace(spa_embedded_log_class(spa)); 1849 slop -= MIN(embedded_log, slop >> 1); 1850 1851 /* 1852 * Slop space should be at least spa_min_slop, but no more than half 1853 * the entire pool. 1854 */ 1855 slop = MAX(slop, MIN(space >> 1, spa_min_slop)); 1856 return (slop); 1857 } 1858 1859 uint64_t 1860 spa_get_dspace(spa_t *spa) 1861 { 1862 return (spa->spa_dspace); 1863 } 1864 1865 uint64_t 1866 spa_get_checkpoint_space(spa_t *spa) 1867 { 1868 return (spa->spa_checkpoint_info.sci_dspace); 1869 } 1870 1871 void 1872 spa_update_dspace(spa_t *spa) 1873 { 1874 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1875 ddt_get_dedup_dspace(spa) + brt_get_dspace(spa); 1876 if (spa->spa_nonallocating_dspace > 0) { 1877 /* 1878 * Subtract the space provided by all non-allocating vdevs that 1879 * contribute to dspace. If a file is overwritten, its old 1880 * blocks are freed and new blocks are allocated. If there are 1881 * no snapshots of the file, the available space should remain 1882 * the same. The old blocks could be freed from the 1883 * non-allocating vdev, but the new blocks must be allocated on 1884 * other (allocating) vdevs. By reserving the entire size of 1885 * the non-allocating vdevs (including allocated space), we 1886 * ensure that there will be enough space on the allocating 1887 * vdevs for this file overwrite to succeed. 1888 * 1889 * Note that the DMU/DSL doesn't actually know or care 1890 * how much space is allocated (it does its own tracking 1891 * of how much space has been logically used). So it 1892 * doesn't matter that the data we are moving may be 1893 * allocated twice (on the old device and the new device). 1894 */ 1895 ASSERT3U(spa->spa_dspace, >=, spa->spa_nonallocating_dspace); 1896 spa->spa_dspace -= spa->spa_nonallocating_dspace; 1897 } 1898 } 1899 1900 /* 1901 * Return the failure mode that has been set to this pool. The default 1902 * behavior will be to block all I/Os when a complete failure occurs. 1903 */ 1904 uint64_t 1905 spa_get_failmode(spa_t *spa) 1906 { 1907 return (spa->spa_failmode); 1908 } 1909 1910 boolean_t 1911 spa_suspended(spa_t *spa) 1912 { 1913 return (spa->spa_suspended != ZIO_SUSPEND_NONE); 1914 } 1915 1916 uint64_t 1917 spa_version(spa_t *spa) 1918 { 1919 return (spa->spa_ubsync.ub_version); 1920 } 1921 1922 boolean_t 1923 spa_deflate(spa_t *spa) 1924 { 1925 return (spa->spa_deflate); 1926 } 1927 1928 metaslab_class_t * 1929 spa_normal_class(spa_t *spa) 1930 { 1931 return (spa->spa_normal_class); 1932 } 1933 1934 metaslab_class_t * 1935 spa_log_class(spa_t *spa) 1936 { 1937 return (spa->spa_log_class); 1938 } 1939 1940 metaslab_class_t * 1941 spa_embedded_log_class(spa_t *spa) 1942 { 1943 return (spa->spa_embedded_log_class); 1944 } 1945 1946 metaslab_class_t * 1947 spa_special_class(spa_t *spa) 1948 { 1949 return (spa->spa_special_class); 1950 } 1951 1952 metaslab_class_t * 1953 spa_dedup_class(spa_t *spa) 1954 { 1955 return (spa->spa_dedup_class); 1956 } 1957 1958 /* 1959 * Locate an appropriate allocation class 1960 */ 1961 metaslab_class_t * 1962 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype, 1963 uint_t level, uint_t special_smallblk) 1964 { 1965 /* 1966 * ZIL allocations determine their class in zio_alloc_zil(). 1967 */ 1968 ASSERT(objtype != DMU_OT_INTENT_LOG); 1969 1970 boolean_t has_special_class = spa->spa_special_class->mc_groups != 0; 1971 1972 if (DMU_OT_IS_DDT(objtype)) { 1973 if (spa->spa_dedup_class->mc_groups != 0) 1974 return (spa_dedup_class(spa)); 1975 else if (has_special_class && zfs_ddt_data_is_special) 1976 return (spa_special_class(spa)); 1977 else 1978 return (spa_normal_class(spa)); 1979 } 1980 1981 /* Indirect blocks for user data can land in special if allowed */ 1982 if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) { 1983 if (has_special_class && zfs_user_indirect_is_special) 1984 return (spa_special_class(spa)); 1985 else 1986 return (spa_normal_class(spa)); 1987 } 1988 1989 if (DMU_OT_IS_METADATA(objtype) || level > 0) { 1990 if (has_special_class) 1991 return (spa_special_class(spa)); 1992 else 1993 return (spa_normal_class(spa)); 1994 } 1995 1996 /* 1997 * Allow small file blocks in special class in some cases (like 1998 * for the dRAID vdev feature). But always leave a reserve of 1999 * zfs_special_class_metadata_reserve_pct exclusively for metadata. 2000 */ 2001 if (DMU_OT_IS_FILE(objtype) && 2002 has_special_class && size <= special_smallblk) { 2003 metaslab_class_t *special = spa_special_class(spa); 2004 uint64_t alloc = metaslab_class_get_alloc(special); 2005 uint64_t space = metaslab_class_get_space(special); 2006 uint64_t limit = 2007 (space * (100 - zfs_special_class_metadata_reserve_pct)) 2008 / 100; 2009 2010 if (alloc < limit) 2011 return (special); 2012 } 2013 2014 return (spa_normal_class(spa)); 2015 } 2016 2017 void 2018 spa_evicting_os_register(spa_t *spa, objset_t *os) 2019 { 2020 mutex_enter(&spa->spa_evicting_os_lock); 2021 list_insert_head(&spa->spa_evicting_os_list, os); 2022 mutex_exit(&spa->spa_evicting_os_lock); 2023 } 2024 2025 void 2026 spa_evicting_os_deregister(spa_t *spa, objset_t *os) 2027 { 2028 mutex_enter(&spa->spa_evicting_os_lock); 2029 list_remove(&spa->spa_evicting_os_list, os); 2030 cv_broadcast(&spa->spa_evicting_os_cv); 2031 mutex_exit(&spa->spa_evicting_os_lock); 2032 } 2033 2034 void 2035 spa_evicting_os_wait(spa_t *spa) 2036 { 2037 mutex_enter(&spa->spa_evicting_os_lock); 2038 while (!list_is_empty(&spa->spa_evicting_os_list)) 2039 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); 2040 mutex_exit(&spa->spa_evicting_os_lock); 2041 2042 dmu_buf_user_evict_wait(); 2043 } 2044 2045 int 2046 spa_max_replication(spa_t *spa) 2047 { 2048 /* 2049 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 2050 * handle BPs with more than one DVA allocated. Set our max 2051 * replication level accordingly. 2052 */ 2053 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 2054 return (1); 2055 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 2056 } 2057 2058 int 2059 spa_prev_software_version(spa_t *spa) 2060 { 2061 return (spa->spa_prev_software_version); 2062 } 2063 2064 uint64_t 2065 spa_deadman_synctime(spa_t *spa) 2066 { 2067 return (spa->spa_deadman_synctime); 2068 } 2069 2070 spa_autotrim_t 2071 spa_get_autotrim(spa_t *spa) 2072 { 2073 return (spa->spa_autotrim); 2074 } 2075 2076 uint64_t 2077 spa_deadman_ziotime(spa_t *spa) 2078 { 2079 return (spa->spa_deadman_ziotime); 2080 } 2081 2082 uint64_t 2083 spa_get_deadman_failmode(spa_t *spa) 2084 { 2085 return (spa->spa_deadman_failmode); 2086 } 2087 2088 void 2089 spa_set_deadman_failmode(spa_t *spa, const char *failmode) 2090 { 2091 if (strcmp(failmode, "wait") == 0) 2092 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2093 else if (strcmp(failmode, "continue") == 0) 2094 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE; 2095 else if (strcmp(failmode, "panic") == 0) 2096 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC; 2097 else 2098 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2099 } 2100 2101 void 2102 spa_set_deadman_ziotime(hrtime_t ns) 2103 { 2104 spa_t *spa = NULL; 2105 2106 if (spa_mode_global != SPA_MODE_UNINIT) { 2107 mutex_enter(&spa_namespace_lock); 2108 while ((spa = spa_next(spa)) != NULL) 2109 spa->spa_deadman_ziotime = ns; 2110 mutex_exit(&spa_namespace_lock); 2111 } 2112 } 2113 2114 void 2115 spa_set_deadman_synctime(hrtime_t ns) 2116 { 2117 spa_t *spa = NULL; 2118 2119 if (spa_mode_global != SPA_MODE_UNINIT) { 2120 mutex_enter(&spa_namespace_lock); 2121 while ((spa = spa_next(spa)) != NULL) 2122 spa->spa_deadman_synctime = ns; 2123 mutex_exit(&spa_namespace_lock); 2124 } 2125 } 2126 2127 uint64_t 2128 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 2129 { 2130 uint64_t asize = DVA_GET_ASIZE(dva); 2131 uint64_t dsize = asize; 2132 2133 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2134 2135 if (asize != 0 && spa->spa_deflate) { 2136 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 2137 if (vd != NULL) 2138 dsize = (asize >> SPA_MINBLOCKSHIFT) * 2139 vd->vdev_deflate_ratio; 2140 } 2141 2142 return (dsize); 2143 } 2144 2145 uint64_t 2146 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 2147 { 2148 uint64_t dsize = 0; 2149 2150 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2151 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2152 2153 return (dsize); 2154 } 2155 2156 uint64_t 2157 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 2158 { 2159 uint64_t dsize = 0; 2160 2161 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2162 2163 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2164 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2165 2166 spa_config_exit(spa, SCL_VDEV, FTAG); 2167 2168 return (dsize); 2169 } 2170 2171 uint64_t 2172 spa_dirty_data(spa_t *spa) 2173 { 2174 return (spa->spa_dsl_pool->dp_dirty_total); 2175 } 2176 2177 /* 2178 * ========================================================================== 2179 * SPA Import Progress Routines 2180 * ========================================================================== 2181 */ 2182 2183 typedef struct spa_import_progress { 2184 uint64_t pool_guid; /* unique id for updates */ 2185 char *pool_name; 2186 spa_load_state_t spa_load_state; 2187 uint64_t mmp_sec_remaining; /* MMP activity check */ 2188 uint64_t spa_load_max_txg; /* rewind txg */ 2189 procfs_list_node_t smh_node; 2190 } spa_import_progress_t; 2191 2192 spa_history_list_t *spa_import_progress_list = NULL; 2193 2194 static int 2195 spa_import_progress_show_header(struct seq_file *f) 2196 { 2197 seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid", 2198 "load_state", "multihost_secs", "max_txg", 2199 "pool_name"); 2200 return (0); 2201 } 2202 2203 static int 2204 spa_import_progress_show(struct seq_file *f, void *data) 2205 { 2206 spa_import_progress_t *sip = (spa_import_progress_t *)data; 2207 2208 seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n", 2209 (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state, 2210 (u_longlong_t)sip->mmp_sec_remaining, 2211 (u_longlong_t)sip->spa_load_max_txg, 2212 (sip->pool_name ? sip->pool_name : "-")); 2213 2214 return (0); 2215 } 2216 2217 /* Remove oldest elements from list until there are no more than 'size' left */ 2218 static void 2219 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size) 2220 { 2221 spa_import_progress_t *sip; 2222 while (shl->size > size) { 2223 sip = list_remove_head(&shl->procfs_list.pl_list); 2224 if (sip->pool_name) 2225 spa_strfree(sip->pool_name); 2226 kmem_free(sip, sizeof (spa_import_progress_t)); 2227 shl->size--; 2228 } 2229 2230 IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list)); 2231 } 2232 2233 static void 2234 spa_import_progress_init(void) 2235 { 2236 spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t), 2237 KM_SLEEP); 2238 2239 spa_import_progress_list->size = 0; 2240 2241 spa_import_progress_list->procfs_list.pl_private = 2242 spa_import_progress_list; 2243 2244 procfs_list_install("zfs", 2245 NULL, 2246 "import_progress", 2247 0644, 2248 &spa_import_progress_list->procfs_list, 2249 spa_import_progress_show, 2250 spa_import_progress_show_header, 2251 NULL, 2252 offsetof(spa_import_progress_t, smh_node)); 2253 } 2254 2255 static void 2256 spa_import_progress_destroy(void) 2257 { 2258 spa_history_list_t *shl = spa_import_progress_list; 2259 procfs_list_uninstall(&shl->procfs_list); 2260 spa_import_progress_truncate(shl, 0); 2261 procfs_list_destroy(&shl->procfs_list); 2262 kmem_free(shl, sizeof (spa_history_list_t)); 2263 } 2264 2265 int 2266 spa_import_progress_set_state(uint64_t pool_guid, 2267 spa_load_state_t load_state) 2268 { 2269 spa_history_list_t *shl = spa_import_progress_list; 2270 spa_import_progress_t *sip; 2271 int error = ENOENT; 2272 2273 if (shl->size == 0) 2274 return (0); 2275 2276 mutex_enter(&shl->procfs_list.pl_lock); 2277 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2278 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2279 if (sip->pool_guid == pool_guid) { 2280 sip->spa_load_state = load_state; 2281 error = 0; 2282 break; 2283 } 2284 } 2285 mutex_exit(&shl->procfs_list.pl_lock); 2286 2287 return (error); 2288 } 2289 2290 int 2291 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg) 2292 { 2293 spa_history_list_t *shl = spa_import_progress_list; 2294 spa_import_progress_t *sip; 2295 int error = ENOENT; 2296 2297 if (shl->size == 0) 2298 return (0); 2299 2300 mutex_enter(&shl->procfs_list.pl_lock); 2301 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2302 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2303 if (sip->pool_guid == pool_guid) { 2304 sip->spa_load_max_txg = load_max_txg; 2305 error = 0; 2306 break; 2307 } 2308 } 2309 mutex_exit(&shl->procfs_list.pl_lock); 2310 2311 return (error); 2312 } 2313 2314 int 2315 spa_import_progress_set_mmp_check(uint64_t pool_guid, 2316 uint64_t mmp_sec_remaining) 2317 { 2318 spa_history_list_t *shl = spa_import_progress_list; 2319 spa_import_progress_t *sip; 2320 int error = ENOENT; 2321 2322 if (shl->size == 0) 2323 return (0); 2324 2325 mutex_enter(&shl->procfs_list.pl_lock); 2326 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2327 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2328 if (sip->pool_guid == pool_guid) { 2329 sip->mmp_sec_remaining = mmp_sec_remaining; 2330 error = 0; 2331 break; 2332 } 2333 } 2334 mutex_exit(&shl->procfs_list.pl_lock); 2335 2336 return (error); 2337 } 2338 2339 /* 2340 * A new import is in progress, add an entry. 2341 */ 2342 void 2343 spa_import_progress_add(spa_t *spa) 2344 { 2345 spa_history_list_t *shl = spa_import_progress_list; 2346 spa_import_progress_t *sip; 2347 const char *poolname = NULL; 2348 2349 sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP); 2350 sip->pool_guid = spa_guid(spa); 2351 2352 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME, 2353 &poolname); 2354 if (poolname == NULL) 2355 poolname = spa_name(spa); 2356 sip->pool_name = spa_strdup(poolname); 2357 sip->spa_load_state = spa_load_state(spa); 2358 2359 mutex_enter(&shl->procfs_list.pl_lock); 2360 procfs_list_add(&shl->procfs_list, sip); 2361 shl->size++; 2362 mutex_exit(&shl->procfs_list.pl_lock); 2363 } 2364 2365 void 2366 spa_import_progress_remove(uint64_t pool_guid) 2367 { 2368 spa_history_list_t *shl = spa_import_progress_list; 2369 spa_import_progress_t *sip; 2370 2371 mutex_enter(&shl->procfs_list.pl_lock); 2372 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2373 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2374 if (sip->pool_guid == pool_guid) { 2375 if (sip->pool_name) 2376 spa_strfree(sip->pool_name); 2377 list_remove(&shl->procfs_list.pl_list, sip); 2378 shl->size--; 2379 kmem_free(sip, sizeof (spa_import_progress_t)); 2380 break; 2381 } 2382 } 2383 mutex_exit(&shl->procfs_list.pl_lock); 2384 } 2385 2386 /* 2387 * ========================================================================== 2388 * Initialization and Termination 2389 * ========================================================================== 2390 */ 2391 2392 static int 2393 spa_name_compare(const void *a1, const void *a2) 2394 { 2395 const spa_t *s1 = a1; 2396 const spa_t *s2 = a2; 2397 int s; 2398 2399 s = strcmp(s1->spa_name, s2->spa_name); 2400 2401 return (TREE_ISIGN(s)); 2402 } 2403 2404 void 2405 spa_boot_init(void) 2406 { 2407 spa_config_load(); 2408 } 2409 2410 void 2411 spa_init(spa_mode_t mode) 2412 { 2413 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 2414 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 2415 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 2416 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 2417 2418 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 2419 offsetof(spa_t, spa_avl)); 2420 2421 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 2422 offsetof(spa_aux_t, aux_avl)); 2423 2424 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 2425 offsetof(spa_aux_t, aux_avl)); 2426 2427 spa_mode_global = mode; 2428 2429 #ifndef _KERNEL 2430 if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) { 2431 struct sigaction sa; 2432 2433 sa.sa_flags = SA_SIGINFO; 2434 sigemptyset(&sa.sa_mask); 2435 sa.sa_sigaction = arc_buf_sigsegv; 2436 2437 if (sigaction(SIGSEGV, &sa, NULL) == -1) { 2438 perror("could not enable watchpoints: " 2439 "sigaction(SIGSEGV, ...) = "); 2440 } else { 2441 arc_watch = B_TRUE; 2442 } 2443 } 2444 #endif 2445 2446 fm_init(); 2447 zfs_refcount_init(); 2448 unique_init(); 2449 zfs_btree_init(); 2450 metaslab_stat_init(); 2451 brt_init(); 2452 ddt_init(); 2453 zio_init(); 2454 dmu_init(); 2455 zil_init(); 2456 vdev_mirror_stat_init(); 2457 vdev_raidz_math_init(); 2458 vdev_file_init(); 2459 zfs_prop_init(); 2460 chksum_init(); 2461 zpool_prop_init(); 2462 zpool_feature_init(); 2463 spa_config_load(); 2464 vdev_prop_init(); 2465 l2arc_start(); 2466 scan_init(); 2467 qat_init(); 2468 spa_import_progress_init(); 2469 } 2470 2471 void 2472 spa_fini(void) 2473 { 2474 l2arc_stop(); 2475 2476 spa_evict_all(); 2477 2478 vdev_file_fini(); 2479 vdev_mirror_stat_fini(); 2480 vdev_raidz_math_fini(); 2481 chksum_fini(); 2482 zil_fini(); 2483 dmu_fini(); 2484 zio_fini(); 2485 ddt_fini(); 2486 brt_fini(); 2487 metaslab_stat_fini(); 2488 zfs_btree_fini(); 2489 unique_fini(); 2490 zfs_refcount_fini(); 2491 fm_fini(); 2492 scan_fini(); 2493 qat_fini(); 2494 spa_import_progress_destroy(); 2495 2496 avl_destroy(&spa_namespace_avl); 2497 avl_destroy(&spa_spare_avl); 2498 avl_destroy(&spa_l2cache_avl); 2499 2500 cv_destroy(&spa_namespace_cv); 2501 mutex_destroy(&spa_namespace_lock); 2502 mutex_destroy(&spa_spare_lock); 2503 mutex_destroy(&spa_l2cache_lock); 2504 } 2505 2506 /* 2507 * Return whether this pool has a dedicated slog device. No locking needed. 2508 * It's not a problem if the wrong answer is returned as it's only for 2509 * performance and not correctness. 2510 */ 2511 boolean_t 2512 spa_has_slogs(spa_t *spa) 2513 { 2514 return (spa->spa_log_class->mc_groups != 0); 2515 } 2516 2517 spa_log_state_t 2518 spa_get_log_state(spa_t *spa) 2519 { 2520 return (spa->spa_log_state); 2521 } 2522 2523 void 2524 spa_set_log_state(spa_t *spa, spa_log_state_t state) 2525 { 2526 spa->spa_log_state = state; 2527 } 2528 2529 boolean_t 2530 spa_is_root(spa_t *spa) 2531 { 2532 return (spa->spa_is_root); 2533 } 2534 2535 boolean_t 2536 spa_writeable(spa_t *spa) 2537 { 2538 return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config); 2539 } 2540 2541 /* 2542 * Returns true if there is a pending sync task in any of the current 2543 * syncing txg, the current quiescing txg, or the current open txg. 2544 */ 2545 boolean_t 2546 spa_has_pending_synctask(spa_t *spa) 2547 { 2548 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) || 2549 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks)); 2550 } 2551 2552 spa_mode_t 2553 spa_mode(spa_t *spa) 2554 { 2555 return (spa->spa_mode); 2556 } 2557 2558 uint64_t 2559 spa_bootfs(spa_t *spa) 2560 { 2561 return (spa->spa_bootfs); 2562 } 2563 2564 uint64_t 2565 spa_delegation(spa_t *spa) 2566 { 2567 return (spa->spa_delegation); 2568 } 2569 2570 objset_t * 2571 spa_meta_objset(spa_t *spa) 2572 { 2573 return (spa->spa_meta_objset); 2574 } 2575 2576 enum zio_checksum 2577 spa_dedup_checksum(spa_t *spa) 2578 { 2579 return (spa->spa_dedup_checksum); 2580 } 2581 2582 /* 2583 * Reset pool scan stat per scan pass (or reboot). 2584 */ 2585 void 2586 spa_scan_stat_init(spa_t *spa) 2587 { 2588 /* data not stored on disk */ 2589 spa->spa_scan_pass_start = gethrestime_sec(); 2590 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan)) 2591 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start; 2592 else 2593 spa->spa_scan_pass_scrub_pause = 0; 2594 2595 if (dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) 2596 spa->spa_scan_pass_errorscrub_pause = spa->spa_scan_pass_start; 2597 else 2598 spa->spa_scan_pass_errorscrub_pause = 0; 2599 2600 spa->spa_scan_pass_scrub_spent_paused = 0; 2601 spa->spa_scan_pass_exam = 0; 2602 spa->spa_scan_pass_issued = 0; 2603 2604 // error scrub stats 2605 spa->spa_scan_pass_errorscrub_spent_paused = 0; 2606 } 2607 2608 /* 2609 * Get scan stats for zpool status reports 2610 */ 2611 int 2612 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 2613 { 2614 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 2615 2616 if (scn == NULL || (scn->scn_phys.scn_func == POOL_SCAN_NONE && 2617 scn->errorscrub_phys.dep_func == POOL_SCAN_NONE)) 2618 return (SET_ERROR(ENOENT)); 2619 2620 memset(ps, 0, sizeof (pool_scan_stat_t)); 2621 2622 /* data stored on disk */ 2623 ps->pss_func = scn->scn_phys.scn_func; 2624 ps->pss_state = scn->scn_phys.scn_state; 2625 ps->pss_start_time = scn->scn_phys.scn_start_time; 2626 ps->pss_end_time = scn->scn_phys.scn_end_time; 2627 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 2628 ps->pss_examined = scn->scn_phys.scn_examined; 2629 ps->pss_skipped = scn->scn_phys.scn_skipped; 2630 ps->pss_processed = scn->scn_phys.scn_processed; 2631 ps->pss_errors = scn->scn_phys.scn_errors; 2632 2633 /* data not stored on disk */ 2634 ps->pss_pass_exam = spa->spa_scan_pass_exam; 2635 ps->pss_pass_start = spa->spa_scan_pass_start; 2636 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause; 2637 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused; 2638 ps->pss_pass_issued = spa->spa_scan_pass_issued; 2639 ps->pss_issued = 2640 scn->scn_issued_before_pass + spa->spa_scan_pass_issued; 2641 2642 /* error scrub data stored on disk */ 2643 ps->pss_error_scrub_func = scn->errorscrub_phys.dep_func; 2644 ps->pss_error_scrub_state = scn->errorscrub_phys.dep_state; 2645 ps->pss_error_scrub_start = scn->errorscrub_phys.dep_start_time; 2646 ps->pss_error_scrub_end = scn->errorscrub_phys.dep_end_time; 2647 ps->pss_error_scrub_examined = scn->errorscrub_phys.dep_examined; 2648 ps->pss_error_scrub_to_be_examined = 2649 scn->errorscrub_phys.dep_to_examine; 2650 2651 /* error scrub data not stored on disk */ 2652 ps->pss_pass_error_scrub_pause = spa->spa_scan_pass_errorscrub_pause; 2653 2654 return (0); 2655 } 2656 2657 int 2658 spa_maxblocksize(spa_t *spa) 2659 { 2660 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 2661 return (SPA_MAXBLOCKSIZE); 2662 else 2663 return (SPA_OLD_MAXBLOCKSIZE); 2664 } 2665 2666 2667 /* 2668 * Returns the txg that the last device removal completed. No indirect mappings 2669 * have been added since this txg. 2670 */ 2671 uint64_t 2672 spa_get_last_removal_txg(spa_t *spa) 2673 { 2674 uint64_t vdevid; 2675 uint64_t ret = -1ULL; 2676 2677 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2678 /* 2679 * sr_prev_indirect_vdev is only modified while holding all the 2680 * config locks, so it is sufficient to hold SCL_VDEV as reader when 2681 * examining it. 2682 */ 2683 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev; 2684 2685 while (vdevid != -1ULL) { 2686 vdev_t *vd = vdev_lookup_top(spa, vdevid); 2687 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 2688 2689 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 2690 2691 /* 2692 * If the removal did not remap any data, we don't care. 2693 */ 2694 if (vdev_indirect_births_count(vib) != 0) { 2695 ret = vdev_indirect_births_last_entry_txg(vib); 2696 break; 2697 } 2698 2699 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev; 2700 } 2701 spa_config_exit(spa, SCL_VDEV, FTAG); 2702 2703 IMPLY(ret != -1ULL, 2704 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); 2705 2706 return (ret); 2707 } 2708 2709 int 2710 spa_maxdnodesize(spa_t *spa) 2711 { 2712 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 2713 return (DNODE_MAX_SIZE); 2714 else 2715 return (DNODE_MIN_SIZE); 2716 } 2717 2718 boolean_t 2719 spa_multihost(spa_t *spa) 2720 { 2721 return (spa->spa_multihost ? B_TRUE : B_FALSE); 2722 } 2723 2724 uint32_t 2725 spa_get_hostid(spa_t *spa) 2726 { 2727 return (spa->spa_hostid); 2728 } 2729 2730 boolean_t 2731 spa_trust_config(spa_t *spa) 2732 { 2733 return (spa->spa_trust_config); 2734 } 2735 2736 uint64_t 2737 spa_missing_tvds_allowed(spa_t *spa) 2738 { 2739 return (spa->spa_missing_tvds_allowed); 2740 } 2741 2742 space_map_t * 2743 spa_syncing_log_sm(spa_t *spa) 2744 { 2745 return (spa->spa_syncing_log_sm); 2746 } 2747 2748 void 2749 spa_set_missing_tvds(spa_t *spa, uint64_t missing) 2750 { 2751 spa->spa_missing_tvds = missing; 2752 } 2753 2754 /* 2755 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc). 2756 */ 2757 const char * 2758 spa_state_to_name(spa_t *spa) 2759 { 2760 ASSERT3P(spa, !=, NULL); 2761 2762 /* 2763 * it is possible for the spa to exist, without root vdev 2764 * as the spa transitions during import/export 2765 */ 2766 vdev_t *rvd = spa->spa_root_vdev; 2767 if (rvd == NULL) { 2768 return ("TRANSITIONING"); 2769 } 2770 vdev_state_t state = rvd->vdev_state; 2771 vdev_aux_t aux = rvd->vdev_stat.vs_aux; 2772 2773 if (spa_suspended(spa)) 2774 return ("SUSPENDED"); 2775 2776 switch (state) { 2777 case VDEV_STATE_CLOSED: 2778 case VDEV_STATE_OFFLINE: 2779 return ("OFFLINE"); 2780 case VDEV_STATE_REMOVED: 2781 return ("REMOVED"); 2782 case VDEV_STATE_CANT_OPEN: 2783 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG) 2784 return ("FAULTED"); 2785 else if (aux == VDEV_AUX_SPLIT_POOL) 2786 return ("SPLIT"); 2787 else 2788 return ("UNAVAIL"); 2789 case VDEV_STATE_FAULTED: 2790 return ("FAULTED"); 2791 case VDEV_STATE_DEGRADED: 2792 return ("DEGRADED"); 2793 case VDEV_STATE_HEALTHY: 2794 return ("ONLINE"); 2795 default: 2796 break; 2797 } 2798 2799 return ("UNKNOWN"); 2800 } 2801 2802 boolean_t 2803 spa_top_vdevs_spacemap_addressable(spa_t *spa) 2804 { 2805 vdev_t *rvd = spa->spa_root_vdev; 2806 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2807 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c])) 2808 return (B_FALSE); 2809 } 2810 return (B_TRUE); 2811 } 2812 2813 boolean_t 2814 spa_has_checkpoint(spa_t *spa) 2815 { 2816 return (spa->spa_checkpoint_txg != 0); 2817 } 2818 2819 boolean_t 2820 spa_importing_readonly_checkpoint(spa_t *spa) 2821 { 2822 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) && 2823 spa->spa_mode == SPA_MODE_READ); 2824 } 2825 2826 uint64_t 2827 spa_min_claim_txg(spa_t *spa) 2828 { 2829 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg; 2830 2831 if (checkpoint_txg != 0) 2832 return (checkpoint_txg + 1); 2833 2834 return (spa->spa_first_txg); 2835 } 2836 2837 /* 2838 * If there is a checkpoint, async destroys may consume more space from 2839 * the pool instead of freeing it. In an attempt to save the pool from 2840 * getting suspended when it is about to run out of space, we stop 2841 * processing async destroys. 2842 */ 2843 boolean_t 2844 spa_suspend_async_destroy(spa_t *spa) 2845 { 2846 dsl_pool_t *dp = spa_get_dsl(spa); 2847 2848 uint64_t unreserved = dsl_pool_unreserved_space(dp, 2849 ZFS_SPACE_CHECK_EXTRA_RESERVED); 2850 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes; 2851 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0; 2852 2853 if (spa_has_checkpoint(spa) && avail == 0) 2854 return (B_TRUE); 2855 2856 return (B_FALSE); 2857 } 2858 2859 #if defined(_KERNEL) 2860 2861 int 2862 param_set_deadman_failmode_common(const char *val) 2863 { 2864 spa_t *spa = NULL; 2865 char *p; 2866 2867 if (val == NULL) 2868 return (SET_ERROR(EINVAL)); 2869 2870 if ((p = strchr(val, '\n')) != NULL) 2871 *p = '\0'; 2872 2873 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 && 2874 strcmp(val, "panic")) 2875 return (SET_ERROR(EINVAL)); 2876 2877 if (spa_mode_global != SPA_MODE_UNINIT) { 2878 mutex_enter(&spa_namespace_lock); 2879 while ((spa = spa_next(spa)) != NULL) 2880 spa_set_deadman_failmode(spa, val); 2881 mutex_exit(&spa_namespace_lock); 2882 } 2883 2884 return (0); 2885 } 2886 #endif 2887 2888 /* Namespace manipulation */ 2889 EXPORT_SYMBOL(spa_lookup); 2890 EXPORT_SYMBOL(spa_add); 2891 EXPORT_SYMBOL(spa_remove); 2892 EXPORT_SYMBOL(spa_next); 2893 2894 /* Refcount functions */ 2895 EXPORT_SYMBOL(spa_open_ref); 2896 EXPORT_SYMBOL(spa_close); 2897 EXPORT_SYMBOL(spa_refcount_zero); 2898 2899 /* Pool configuration lock */ 2900 EXPORT_SYMBOL(spa_config_tryenter); 2901 EXPORT_SYMBOL(spa_config_enter); 2902 EXPORT_SYMBOL(spa_config_exit); 2903 EXPORT_SYMBOL(spa_config_held); 2904 2905 /* Pool vdev add/remove lock */ 2906 EXPORT_SYMBOL(spa_vdev_enter); 2907 EXPORT_SYMBOL(spa_vdev_exit); 2908 2909 /* Pool vdev state change lock */ 2910 EXPORT_SYMBOL(spa_vdev_state_enter); 2911 EXPORT_SYMBOL(spa_vdev_state_exit); 2912 2913 /* Accessor functions */ 2914 EXPORT_SYMBOL(spa_shutting_down); 2915 EXPORT_SYMBOL(spa_get_dsl); 2916 EXPORT_SYMBOL(spa_get_rootblkptr); 2917 EXPORT_SYMBOL(spa_set_rootblkptr); 2918 EXPORT_SYMBOL(spa_altroot); 2919 EXPORT_SYMBOL(spa_sync_pass); 2920 EXPORT_SYMBOL(spa_name); 2921 EXPORT_SYMBOL(spa_guid); 2922 EXPORT_SYMBOL(spa_last_synced_txg); 2923 EXPORT_SYMBOL(spa_first_txg); 2924 EXPORT_SYMBOL(spa_syncing_txg); 2925 EXPORT_SYMBOL(spa_version); 2926 EXPORT_SYMBOL(spa_state); 2927 EXPORT_SYMBOL(spa_load_state); 2928 EXPORT_SYMBOL(spa_freeze_txg); 2929 EXPORT_SYMBOL(spa_get_dspace); 2930 EXPORT_SYMBOL(spa_update_dspace); 2931 EXPORT_SYMBOL(spa_deflate); 2932 EXPORT_SYMBOL(spa_normal_class); 2933 EXPORT_SYMBOL(spa_log_class); 2934 EXPORT_SYMBOL(spa_special_class); 2935 EXPORT_SYMBOL(spa_preferred_class); 2936 EXPORT_SYMBOL(spa_max_replication); 2937 EXPORT_SYMBOL(spa_prev_software_version); 2938 EXPORT_SYMBOL(spa_get_failmode); 2939 EXPORT_SYMBOL(spa_suspended); 2940 EXPORT_SYMBOL(spa_bootfs); 2941 EXPORT_SYMBOL(spa_delegation); 2942 EXPORT_SYMBOL(spa_meta_objset); 2943 EXPORT_SYMBOL(spa_maxblocksize); 2944 EXPORT_SYMBOL(spa_maxdnodesize); 2945 2946 /* Miscellaneous support routines */ 2947 EXPORT_SYMBOL(spa_guid_exists); 2948 EXPORT_SYMBOL(spa_strdup); 2949 EXPORT_SYMBOL(spa_strfree); 2950 EXPORT_SYMBOL(spa_generate_guid); 2951 EXPORT_SYMBOL(snprintf_blkptr); 2952 EXPORT_SYMBOL(spa_freeze); 2953 EXPORT_SYMBOL(spa_upgrade); 2954 EXPORT_SYMBOL(spa_evict_all); 2955 EXPORT_SYMBOL(spa_lookup_by_guid); 2956 EXPORT_SYMBOL(spa_has_spare); 2957 EXPORT_SYMBOL(dva_get_dsize_sync); 2958 EXPORT_SYMBOL(bp_get_dsize_sync); 2959 EXPORT_SYMBOL(bp_get_dsize); 2960 EXPORT_SYMBOL(spa_has_slogs); 2961 EXPORT_SYMBOL(spa_is_root); 2962 EXPORT_SYMBOL(spa_writeable); 2963 EXPORT_SYMBOL(spa_mode); 2964 EXPORT_SYMBOL(spa_namespace_lock); 2965 EXPORT_SYMBOL(spa_trust_config); 2966 EXPORT_SYMBOL(spa_missing_tvds_allowed); 2967 EXPORT_SYMBOL(spa_set_missing_tvds); 2968 EXPORT_SYMBOL(spa_state_to_name); 2969 EXPORT_SYMBOL(spa_importing_readonly_checkpoint); 2970 EXPORT_SYMBOL(spa_min_claim_txg); 2971 EXPORT_SYMBOL(spa_suspend_async_destroy); 2972 EXPORT_SYMBOL(spa_has_checkpoint); 2973 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable); 2974 2975 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW, 2976 "Set additional debugging flags"); 2977 2978 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW, 2979 "Set to attempt to recover from fatal errors"); 2980 2981 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW, 2982 "Set to ignore IO errors during free and permanently leak the space"); 2983 2984 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, U64, ZMOD_RW, 2985 "Dead I/O check interval in milliseconds"); 2986 2987 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW, 2988 "Enable deadman timer"); 2989 2990 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, UINT, ZMOD_RW, 2991 "SPA size estimate multiplication factor"); 2992 2993 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW, 2994 "Place DDT data into the special class"); 2995 2996 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW, 2997 "Place user data indirect blocks into the special class"); 2998 2999 /* BEGIN CSTYLED */ 3000 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode, 3001 param_set_deadman_failmode, param_get_charp, ZMOD_RW, 3002 "Failmode for deadman timer"); 3003 3004 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms, 3005 param_set_deadman_synctime, spl_param_get_u64, ZMOD_RW, 3006 "Pool sync expiration time in milliseconds"); 3007 3008 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms, 3009 param_set_deadman_ziotime, spl_param_get_u64, ZMOD_RW, 3010 "IO expiration time in milliseconds"); 3011 3012 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, UINT, ZMOD_RW, 3013 "Small file blocks in special vdevs depends on this much " 3014 "free space available"); 3015 /* END CSTYLED */ 3016 3017 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift, 3018 param_get_uint, ZMOD_RW, "Reserved free space in pool"); 3019 3020 ZFS_MODULE_PARAM(zfs, spa_, num_allocators, INT, ZMOD_RW, 3021 "Number of allocators per spa, capped by ncpus"); 3022