xref: /freebsd/sys/contrib/openzfs/module/zfs/spa_misc.c (revision a2f733abcff64628b7771a47089628b7327a88bd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2013 Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2017 Datto Inc.
28  * Copyright (c) 2017, Intel Corporation.
29  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
30  * Copyright (c) 2023, Klara Inc.
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/zfs_chksum.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zio.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/zio_compress.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/vdev_initialize.h>
45 #include <sys/vdev_trim.h>
46 #include <sys/vdev_file.h>
47 #include <sys/vdev_raidz.h>
48 #include <sys/metaslab.h>
49 #include <sys/uberblock_impl.h>
50 #include <sys/txg.h>
51 #include <sys/avl.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dir.h>
55 #include <sys/dsl_prop.h>
56 #include <sys/fm/util.h>
57 #include <sys/dsl_scan.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/metaslab_impl.h>
60 #include <sys/arc.h>
61 #include <sys/brt.h>
62 #include <sys/ddt.h>
63 #include <sys/kstat.h>
64 #include "zfs_prop.h"
65 #include <sys/btree.h>
66 #include <sys/zfeature.h>
67 #include <sys/qat.h>
68 #include <sys/zstd/zstd.h>
69 
70 /*
71  * SPA locking
72  *
73  * There are three basic locks for managing spa_t structures:
74  *
75  * spa_namespace_lock (global mutex)
76  *
77  *	This lock must be acquired to do any of the following:
78  *
79  *		- Lookup a spa_t by name
80  *		- Add or remove a spa_t from the namespace
81  *		- Increase spa_refcount from non-zero
82  *		- Check if spa_refcount is zero
83  *		- Rename a spa_t
84  *		- add/remove/attach/detach devices
85  *		- Held for the duration of create/destroy/import/export
86  *
87  *	It does not need to handle recursion.  A create or destroy may
88  *	reference objects (files or zvols) in other pools, but by
89  *	definition they must have an existing reference, and will never need
90  *	to lookup a spa_t by name.
91  *
92  * spa_refcount (per-spa zfs_refcount_t protected by mutex)
93  *
94  *	This reference count keep track of any active users of the spa_t.  The
95  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
96  *	the refcount is never really 'zero' - opening a pool implicitly keeps
97  *	some references in the DMU.  Internally we check against spa_minref, but
98  *	present the image of a zero/non-zero value to consumers.
99  *
100  * spa_config_lock[] (per-spa array of rwlocks)
101  *
102  *	This protects the spa_t from config changes, and must be held in
103  *	the following circumstances:
104  *
105  *		- RW_READER to perform I/O to the spa
106  *		- RW_WRITER to change the vdev config
107  *
108  * The locking order is fairly straightforward:
109  *
110  *		spa_namespace_lock	->	spa_refcount
111  *
112  *	The namespace lock must be acquired to increase the refcount from 0
113  *	or to check if it is zero.
114  *
115  *		spa_refcount		->	spa_config_lock[]
116  *
117  *	There must be at least one valid reference on the spa_t to acquire
118  *	the config lock.
119  *
120  *		spa_namespace_lock	->	spa_config_lock[]
121  *
122  *	The namespace lock must always be taken before the config lock.
123  *
124  *
125  * The spa_namespace_lock can be acquired directly and is globally visible.
126  *
127  * The namespace is manipulated using the following functions, all of which
128  * require the spa_namespace_lock to be held.
129  *
130  *	spa_lookup()		Lookup a spa_t by name.
131  *
132  *	spa_add()		Create a new spa_t in the namespace.
133  *
134  *	spa_remove()		Remove a spa_t from the namespace.  This also
135  *				frees up any memory associated with the spa_t.
136  *
137  *	spa_next()		Returns the next spa_t in the system, or the
138  *				first if NULL is passed.
139  *
140  *	spa_evict_all()		Shutdown and remove all spa_t structures in
141  *				the system.
142  *
143  *	spa_guid_exists()	Determine whether a pool/device guid exists.
144  *
145  * The spa_refcount is manipulated using the following functions:
146  *
147  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
148  *				called with spa_namespace_lock held if the
149  *				refcount is currently zero.
150  *
151  *	spa_close()		Remove a reference from the spa_t.  This will
152  *				not free the spa_t or remove it from the
153  *				namespace.  No locking is required.
154  *
155  *	spa_refcount_zero()	Returns true if the refcount is currently
156  *				zero.  Must be called with spa_namespace_lock
157  *				held.
158  *
159  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
160  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
161  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
162  *
163  * To read the configuration, it suffices to hold one of these locks as reader.
164  * To modify the configuration, you must hold all locks as writer.  To modify
165  * vdev state without altering the vdev tree's topology (e.g. online/offline),
166  * you must hold SCL_STATE and SCL_ZIO as writer.
167  *
168  * We use these distinct config locks to avoid recursive lock entry.
169  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
170  * block allocations (SCL_ALLOC), which may require reading space maps
171  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
172  *
173  * The spa config locks cannot be normal rwlocks because we need the
174  * ability to hand off ownership.  For example, SCL_ZIO is acquired
175  * by the issuing thread and later released by an interrupt thread.
176  * They do, however, obey the usual write-wanted semantics to prevent
177  * writer (i.e. system administrator) starvation.
178  *
179  * The lock acquisition rules are as follows:
180  *
181  * SCL_CONFIG
182  *	Protects changes to the vdev tree topology, such as vdev
183  *	add/remove/attach/detach.  Protects the dirty config list
184  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
185  *
186  * SCL_STATE
187  *	Protects changes to pool state and vdev state, such as vdev
188  *	online/offline/fault/degrade/clear.  Protects the dirty state list
189  *	(spa_state_dirty_list) and global pool state (spa_state).
190  *
191  * SCL_ALLOC
192  *	Protects changes to metaslab groups and classes.
193  *	Held as reader by metaslab_alloc() and metaslab_claim().
194  *
195  * SCL_ZIO
196  *	Held by bp-level zios (those which have no io_vd upon entry)
197  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
198  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
199  *
200  * SCL_FREE
201  *	Protects changes to metaslab groups and classes.
202  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
203  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
204  *	blocks in zio_done() while another i/o that holds either
205  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
206  *
207  * SCL_VDEV
208  *	Held as reader to prevent changes to the vdev tree during trivial
209  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
210  *	other locks, and lower than all of them, to ensure that it's safe
211  *	to acquire regardless of caller context.
212  *
213  * In addition, the following rules apply:
214  *
215  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
216  *	The lock ordering is SCL_CONFIG > spa_props_lock.
217  *
218  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
219  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
220  *	or zio_write_phys() -- the caller must ensure that the config cannot
221  *	cannot change in the interim, and that the vdev cannot be reopened.
222  *	SCL_STATE as reader suffices for both.
223  *
224  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
225  *
226  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
227  *				for writing.
228  *
229  *	spa_vdev_exit()		Release the config lock, wait for all I/O
230  *				to complete, sync the updated configs to the
231  *				cache, and release the namespace lock.
232  *
233  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
234  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
235  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
236  */
237 
238 static avl_tree_t spa_namespace_avl;
239 kmutex_t spa_namespace_lock;
240 static kcondvar_t spa_namespace_cv;
241 static const int spa_max_replication_override = SPA_DVAS_PER_BP;
242 
243 static kmutex_t spa_spare_lock;
244 static avl_tree_t spa_spare_avl;
245 static kmutex_t spa_l2cache_lock;
246 static avl_tree_t spa_l2cache_avl;
247 
248 spa_mode_t spa_mode_global = SPA_MODE_UNINIT;
249 
250 #ifdef ZFS_DEBUG
251 /*
252  * Everything except dprintf, set_error, spa, and indirect_remap is on
253  * by default in debug builds.
254  */
255 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
256     ZFS_DEBUG_INDIRECT_REMAP);
257 #else
258 int zfs_flags = 0;
259 #endif
260 
261 /*
262  * zfs_recover can be set to nonzero to attempt to recover from
263  * otherwise-fatal errors, typically caused by on-disk corruption.  When
264  * set, calls to zfs_panic_recover() will turn into warning messages.
265  * This should only be used as a last resort, as it typically results
266  * in leaked space, or worse.
267  */
268 int zfs_recover = B_FALSE;
269 
270 /*
271  * If destroy encounters an EIO while reading metadata (e.g. indirect
272  * blocks), space referenced by the missing metadata can not be freed.
273  * Normally this causes the background destroy to become "stalled", as
274  * it is unable to make forward progress.  While in this stalled state,
275  * all remaining space to free from the error-encountering filesystem is
276  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
277  * permanently leak the space from indirect blocks that can not be read,
278  * and continue to free everything else that it can.
279  *
280  * The default, "stalling" behavior is useful if the storage partially
281  * fails (i.e. some but not all i/os fail), and then later recovers.  In
282  * this case, we will be able to continue pool operations while it is
283  * partially failed, and when it recovers, we can continue to free the
284  * space, with no leaks.  However, note that this case is actually
285  * fairly rare.
286  *
287  * Typically pools either (a) fail completely (but perhaps temporarily,
288  * e.g. a top-level vdev going offline), or (b) have localized,
289  * permanent errors (e.g. disk returns the wrong data due to bit flip or
290  * firmware bug).  In case (a), this setting does not matter because the
291  * pool will be suspended and the sync thread will not be able to make
292  * forward progress regardless.  In case (b), because the error is
293  * permanent, the best we can do is leak the minimum amount of space,
294  * which is what setting this flag will do.  Therefore, it is reasonable
295  * for this flag to normally be set, but we chose the more conservative
296  * approach of not setting it, so that there is no possibility of
297  * leaking space in the "partial temporary" failure case.
298  */
299 int zfs_free_leak_on_eio = B_FALSE;
300 
301 /*
302  * Expiration time in milliseconds. This value has two meanings. First it is
303  * used to determine when the spa_deadman() logic should fire. By default the
304  * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
305  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
306  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
307  * in one of three behaviors controlled by zfs_deadman_failmode.
308  */
309 uint64_t zfs_deadman_synctime_ms = 600000UL;  /* 10 min. */
310 
311 /*
312  * This value controls the maximum amount of time zio_wait() will block for an
313  * outstanding IO.  By default this is 300 seconds at which point the "hung"
314  * behavior will be applied as described for zfs_deadman_synctime_ms.
315  */
316 uint64_t zfs_deadman_ziotime_ms = 300000UL;  /* 5 min. */
317 
318 /*
319  * Check time in milliseconds. This defines the frequency at which we check
320  * for hung I/O.
321  */
322 uint64_t zfs_deadman_checktime_ms = 60000UL;  /* 1 min. */
323 
324 /*
325  * By default the deadman is enabled.
326  */
327 int zfs_deadman_enabled = B_TRUE;
328 
329 /*
330  * Controls the behavior of the deadman when it detects a "hung" I/O.
331  * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
332  *
333  * wait     - Wait for the "hung" I/O (default)
334  * continue - Attempt to recover from a "hung" I/O
335  * panic    - Panic the system
336  */
337 const char *zfs_deadman_failmode = "wait";
338 
339 /*
340  * The worst case is single-sector max-parity RAID-Z blocks, in which
341  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
342  * times the size; so just assume that.  Add to this the fact that
343  * we can have up to 3 DVAs per bp, and one more factor of 2 because
344  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
345  * the worst case is:
346  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
347  */
348 uint_t spa_asize_inflation = 24;
349 
350 /*
351  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
352  * the pool to be consumed (bounded by spa_max_slop).  This ensures that we
353  * don't run the pool completely out of space, due to unaccounted changes (e.g.
354  * to the MOS).  It also limits the worst-case time to allocate space.  If we
355  * have less than this amount of free space, most ZPL operations (e.g.  write,
356  * create) will return ENOSPC.  The ZIL metaslabs (spa_embedded_log_class) are
357  * also part of this 3.2% of space which can't be consumed by normal writes;
358  * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded
359  * log space.
360  *
361  * Certain operations (e.g. file removal, most administrative actions) can
362  * use half the slop space.  They will only return ENOSPC if less than half
363  * the slop space is free.  Typically, once the pool has less than the slop
364  * space free, the user will use these operations to free up space in the pool.
365  * These are the operations that call dsl_pool_adjustedsize() with the netfree
366  * argument set to TRUE.
367  *
368  * Operations that are almost guaranteed to free up space in the absence of
369  * a pool checkpoint can use up to three quarters of the slop space
370  * (e.g zfs destroy).
371  *
372  * A very restricted set of operations are always permitted, regardless of
373  * the amount of free space.  These are the operations that call
374  * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
375  * increase in the amount of space used, it is possible to run the pool
376  * completely out of space, causing it to be permanently read-only.
377  *
378  * Note that on very small pools, the slop space will be larger than
379  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
380  * but we never allow it to be more than half the pool size.
381  *
382  * Further, on very large pools, the slop space will be smaller than
383  * 3.2%, to avoid reserving much more space than we actually need; bounded
384  * by spa_max_slop (128GB).
385  *
386  * See also the comments in zfs_space_check_t.
387  */
388 uint_t spa_slop_shift = 5;
389 static const uint64_t spa_min_slop = 128ULL * 1024 * 1024;
390 static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024;
391 
392 /*
393  * Number of allocators to use, per spa instance
394  */
395 static int spa_num_allocators = 4;
396 
397 /*
398  * Spa active allocator.
399  * Valid values are zfs_active_allocator=<dynamic|cursor|new-dynamic>.
400  */
401 const char *zfs_active_allocator = "dynamic";
402 
403 void
404 spa_load_failed(spa_t *spa, const char *fmt, ...)
405 {
406 	va_list adx;
407 	char buf[256];
408 
409 	va_start(adx, fmt);
410 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
411 	va_end(adx);
412 
413 	zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
414 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
415 }
416 
417 void
418 spa_load_note(spa_t *spa, const char *fmt, ...)
419 {
420 	va_list adx;
421 	char buf[256];
422 
423 	va_start(adx, fmt);
424 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
425 	va_end(adx);
426 
427 	zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
428 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
429 }
430 
431 /*
432  * By default dedup and user data indirects land in the special class
433  */
434 static int zfs_ddt_data_is_special = B_TRUE;
435 static int zfs_user_indirect_is_special = B_TRUE;
436 
437 /*
438  * The percentage of special class final space reserved for metadata only.
439  * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
440  * let metadata into the class.
441  */
442 static uint_t zfs_special_class_metadata_reserve_pct = 25;
443 
444 /*
445  * ==========================================================================
446  * SPA config locking
447  * ==========================================================================
448  */
449 static void
450 spa_config_lock_init(spa_t *spa)
451 {
452 	for (int i = 0; i < SCL_LOCKS; i++) {
453 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
454 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
455 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
456 		scl->scl_writer = NULL;
457 		scl->scl_write_wanted = 0;
458 		scl->scl_count = 0;
459 	}
460 }
461 
462 static void
463 spa_config_lock_destroy(spa_t *spa)
464 {
465 	for (int i = 0; i < SCL_LOCKS; i++) {
466 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
467 		mutex_destroy(&scl->scl_lock);
468 		cv_destroy(&scl->scl_cv);
469 		ASSERT(scl->scl_writer == NULL);
470 		ASSERT(scl->scl_write_wanted == 0);
471 		ASSERT(scl->scl_count == 0);
472 	}
473 }
474 
475 int
476 spa_config_tryenter(spa_t *spa, int locks, const void *tag, krw_t rw)
477 {
478 	for (int i = 0; i < SCL_LOCKS; i++) {
479 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
480 		if (!(locks & (1 << i)))
481 			continue;
482 		mutex_enter(&scl->scl_lock);
483 		if (rw == RW_READER) {
484 			if (scl->scl_writer || scl->scl_write_wanted) {
485 				mutex_exit(&scl->scl_lock);
486 				spa_config_exit(spa, locks & ((1 << i) - 1),
487 				    tag);
488 				return (0);
489 			}
490 		} else {
491 			ASSERT(scl->scl_writer != curthread);
492 			if (scl->scl_count != 0) {
493 				mutex_exit(&scl->scl_lock);
494 				spa_config_exit(spa, locks & ((1 << i) - 1),
495 				    tag);
496 				return (0);
497 			}
498 			scl->scl_writer = curthread;
499 		}
500 		scl->scl_count++;
501 		mutex_exit(&scl->scl_lock);
502 	}
503 	return (1);
504 }
505 
506 static void
507 spa_config_enter_impl(spa_t *spa, int locks, const void *tag, krw_t rw,
508     int mmp_flag)
509 {
510 	(void) tag;
511 	int wlocks_held = 0;
512 
513 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
514 
515 	for (int i = 0; i < SCL_LOCKS; i++) {
516 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
517 		if (scl->scl_writer == curthread)
518 			wlocks_held |= (1 << i);
519 		if (!(locks & (1 << i)))
520 			continue;
521 		mutex_enter(&scl->scl_lock);
522 		if (rw == RW_READER) {
523 			while (scl->scl_writer ||
524 			    (!mmp_flag && scl->scl_write_wanted)) {
525 				cv_wait(&scl->scl_cv, &scl->scl_lock);
526 			}
527 		} else {
528 			ASSERT(scl->scl_writer != curthread);
529 			while (scl->scl_count != 0) {
530 				scl->scl_write_wanted++;
531 				cv_wait(&scl->scl_cv, &scl->scl_lock);
532 				scl->scl_write_wanted--;
533 			}
534 			scl->scl_writer = curthread;
535 		}
536 		scl->scl_count++;
537 		mutex_exit(&scl->scl_lock);
538 	}
539 	ASSERT3U(wlocks_held, <=, locks);
540 }
541 
542 void
543 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw)
544 {
545 	spa_config_enter_impl(spa, locks, tag, rw, 0);
546 }
547 
548 /*
549  * The spa_config_enter_mmp() allows the mmp thread to cut in front of
550  * outstanding write lock requests. This is needed since the mmp updates are
551  * time sensitive and failure to service them promptly will result in a
552  * suspended pool. This pool suspension has been seen in practice when there is
553  * a single disk in a pool that is responding slowly and presumably about to
554  * fail.
555  */
556 
557 void
558 spa_config_enter_mmp(spa_t *spa, int locks, const void *tag, krw_t rw)
559 {
560 	spa_config_enter_impl(spa, locks, tag, rw, 1);
561 }
562 
563 void
564 spa_config_exit(spa_t *spa, int locks, const void *tag)
565 {
566 	(void) tag;
567 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
568 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
569 		if (!(locks & (1 << i)))
570 			continue;
571 		mutex_enter(&scl->scl_lock);
572 		ASSERT(scl->scl_count > 0);
573 		if (--scl->scl_count == 0) {
574 			ASSERT(scl->scl_writer == NULL ||
575 			    scl->scl_writer == curthread);
576 			scl->scl_writer = NULL;	/* OK in either case */
577 			cv_broadcast(&scl->scl_cv);
578 		}
579 		mutex_exit(&scl->scl_lock);
580 	}
581 }
582 
583 int
584 spa_config_held(spa_t *spa, int locks, krw_t rw)
585 {
586 	int locks_held = 0;
587 
588 	for (int i = 0; i < SCL_LOCKS; i++) {
589 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
590 		if (!(locks & (1 << i)))
591 			continue;
592 		if ((rw == RW_READER && scl->scl_count != 0) ||
593 		    (rw == RW_WRITER && scl->scl_writer == curthread))
594 			locks_held |= 1 << i;
595 	}
596 
597 	return (locks_held);
598 }
599 
600 /*
601  * ==========================================================================
602  * SPA namespace functions
603  * ==========================================================================
604  */
605 
606 /*
607  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
608  * Returns NULL if no matching spa_t is found.
609  */
610 spa_t *
611 spa_lookup(const char *name)
612 {
613 	static spa_t search;	/* spa_t is large; don't allocate on stack */
614 	spa_t *spa;
615 	avl_index_t where;
616 	char *cp;
617 
618 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
619 
620 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
621 
622 	/*
623 	 * If it's a full dataset name, figure out the pool name and
624 	 * just use that.
625 	 */
626 	cp = strpbrk(search.spa_name, "/@#");
627 	if (cp != NULL)
628 		*cp = '\0';
629 
630 	spa = avl_find(&spa_namespace_avl, &search, &where);
631 
632 	return (spa);
633 }
634 
635 /*
636  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
637  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
638  * looking for potentially hung I/Os.
639  */
640 void
641 spa_deadman(void *arg)
642 {
643 	spa_t *spa = arg;
644 
645 	/* Disable the deadman if the pool is suspended. */
646 	if (spa_suspended(spa))
647 		return;
648 
649 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
650 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
651 	    (u_longlong_t)++spa->spa_deadman_calls);
652 	if (zfs_deadman_enabled)
653 		vdev_deadman(spa->spa_root_vdev, FTAG);
654 
655 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
656 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
657 	    MSEC_TO_TICK(zfs_deadman_checktime_ms));
658 }
659 
660 static int
661 spa_log_sm_sort_by_txg(const void *va, const void *vb)
662 {
663 	const spa_log_sm_t *a = va;
664 	const spa_log_sm_t *b = vb;
665 
666 	return (TREE_CMP(a->sls_txg, b->sls_txg));
667 }
668 
669 /*
670  * Create an uninitialized spa_t with the given name.  Requires
671  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
672  * exist by calling spa_lookup() first.
673  */
674 spa_t *
675 spa_add(const char *name, nvlist_t *config, const char *altroot)
676 {
677 	spa_t *spa;
678 	spa_config_dirent_t *dp;
679 
680 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
681 
682 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
683 
684 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
685 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
686 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
687 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
688 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
689 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
690 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
691 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
692 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
693 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
694 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
695 	mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
696 	mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
697 	mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL);
698 
699 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
700 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
701 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
702 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
703 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
704 	cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL);
705 	cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL);
706 
707 	for (int t = 0; t < TXG_SIZE; t++)
708 		bplist_create(&spa->spa_free_bplist[t]);
709 
710 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
711 	spa->spa_state = POOL_STATE_UNINITIALIZED;
712 	spa->spa_freeze_txg = UINT64_MAX;
713 	spa->spa_final_txg = UINT64_MAX;
714 	spa->spa_load_max_txg = UINT64_MAX;
715 	spa->spa_proc = &p0;
716 	spa->spa_proc_state = SPA_PROC_NONE;
717 	spa->spa_trust_config = B_TRUE;
718 	spa->spa_hostid = zone_get_hostid(NULL);
719 
720 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
721 	spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
722 	spa_set_deadman_failmode(spa, zfs_deadman_failmode);
723 	spa_set_allocator(spa, zfs_active_allocator);
724 
725 	zfs_refcount_create(&spa->spa_refcount);
726 	spa_config_lock_init(spa);
727 	spa_stats_init(spa);
728 
729 	avl_add(&spa_namespace_avl, spa);
730 
731 	/*
732 	 * Set the alternate root, if there is one.
733 	 */
734 	if (altroot)
735 		spa->spa_root = spa_strdup(altroot);
736 
737 	/* Do not allow more allocators than CPUs. */
738 	spa->spa_alloc_count = MIN(MAX(spa_num_allocators, 1), boot_ncpus);
739 
740 	spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count *
741 	    sizeof (spa_alloc_t), KM_SLEEP);
742 	for (int i = 0; i < spa->spa_alloc_count; i++) {
743 		mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT,
744 		    NULL);
745 		avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare,
746 		    sizeof (zio_t), offsetof(zio_t, io_queue_node.a));
747 	}
748 
749 	avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
750 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
751 	avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
752 	    sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
753 	list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
754 	    offsetof(log_summary_entry_t, lse_node));
755 
756 	/*
757 	 * Every pool starts with the default cachefile
758 	 */
759 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
760 	    offsetof(spa_config_dirent_t, scd_link));
761 
762 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
763 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
764 	list_insert_head(&spa->spa_config_list, dp);
765 
766 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
767 	    KM_SLEEP) == 0);
768 
769 	if (config != NULL) {
770 		nvlist_t *features;
771 
772 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
773 		    &features) == 0) {
774 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
775 			    0) == 0);
776 		}
777 
778 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
779 	}
780 
781 	if (spa->spa_label_features == NULL) {
782 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
783 		    KM_SLEEP) == 0);
784 	}
785 
786 	spa->spa_min_ashift = INT_MAX;
787 	spa->spa_max_ashift = 0;
788 	spa->spa_min_alloc = INT_MAX;
789 	spa->spa_gcd_alloc = INT_MAX;
790 
791 	/* Reset cached value */
792 	spa->spa_dedup_dspace = ~0ULL;
793 
794 	/*
795 	 * As a pool is being created, treat all features as disabled by
796 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
797 	 * refcount cache.
798 	 */
799 	for (int i = 0; i < SPA_FEATURES; i++) {
800 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
801 	}
802 
803 	list_create(&spa->spa_leaf_list, sizeof (vdev_t),
804 	    offsetof(vdev_t, vdev_leaf_node));
805 
806 	return (spa);
807 }
808 
809 /*
810  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
811  * spa_namespace_lock.  This is called only after the spa_t has been closed and
812  * deactivated.
813  */
814 void
815 spa_remove(spa_t *spa)
816 {
817 	spa_config_dirent_t *dp;
818 
819 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
820 	ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
821 	ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
822 	ASSERT0(spa->spa_waiters);
823 
824 	nvlist_free(spa->spa_config_splitting);
825 
826 	avl_remove(&spa_namespace_avl, spa);
827 	cv_broadcast(&spa_namespace_cv);
828 
829 	if (spa->spa_root)
830 		spa_strfree(spa->spa_root);
831 
832 	while ((dp = list_remove_head(&spa->spa_config_list)) != NULL) {
833 		if (dp->scd_path != NULL)
834 			spa_strfree(dp->scd_path);
835 		kmem_free(dp, sizeof (spa_config_dirent_t));
836 	}
837 
838 	for (int i = 0; i < spa->spa_alloc_count; i++) {
839 		avl_destroy(&spa->spa_allocs[i].spaa_tree);
840 		mutex_destroy(&spa->spa_allocs[i].spaa_lock);
841 	}
842 	kmem_free(spa->spa_allocs, spa->spa_alloc_count *
843 	    sizeof (spa_alloc_t));
844 
845 	avl_destroy(&spa->spa_metaslabs_by_flushed);
846 	avl_destroy(&spa->spa_sm_logs_by_txg);
847 	list_destroy(&spa->spa_log_summary);
848 	list_destroy(&spa->spa_config_list);
849 	list_destroy(&spa->spa_leaf_list);
850 
851 	nvlist_free(spa->spa_label_features);
852 	nvlist_free(spa->spa_load_info);
853 	nvlist_free(spa->spa_feat_stats);
854 	spa_config_set(spa, NULL);
855 
856 	zfs_refcount_destroy(&spa->spa_refcount);
857 
858 	spa_stats_destroy(spa);
859 	spa_config_lock_destroy(spa);
860 
861 	for (int t = 0; t < TXG_SIZE; t++)
862 		bplist_destroy(&spa->spa_free_bplist[t]);
863 
864 	zio_checksum_templates_free(spa);
865 
866 	cv_destroy(&spa->spa_async_cv);
867 	cv_destroy(&spa->spa_evicting_os_cv);
868 	cv_destroy(&spa->spa_proc_cv);
869 	cv_destroy(&spa->spa_scrub_io_cv);
870 	cv_destroy(&spa->spa_suspend_cv);
871 	cv_destroy(&spa->spa_activities_cv);
872 	cv_destroy(&spa->spa_waiters_cv);
873 
874 	mutex_destroy(&spa->spa_flushed_ms_lock);
875 	mutex_destroy(&spa->spa_async_lock);
876 	mutex_destroy(&spa->spa_errlist_lock);
877 	mutex_destroy(&spa->spa_errlog_lock);
878 	mutex_destroy(&spa->spa_evicting_os_lock);
879 	mutex_destroy(&spa->spa_history_lock);
880 	mutex_destroy(&spa->spa_proc_lock);
881 	mutex_destroy(&spa->spa_props_lock);
882 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
883 	mutex_destroy(&spa->spa_scrub_lock);
884 	mutex_destroy(&spa->spa_suspend_lock);
885 	mutex_destroy(&spa->spa_vdev_top_lock);
886 	mutex_destroy(&spa->spa_feat_stats_lock);
887 	mutex_destroy(&spa->spa_activities_lock);
888 
889 	kmem_free(spa, sizeof (spa_t));
890 }
891 
892 /*
893  * Given a pool, return the next pool in the namespace, or NULL if there is
894  * none.  If 'prev' is NULL, return the first pool.
895  */
896 spa_t *
897 spa_next(spa_t *prev)
898 {
899 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
900 
901 	if (prev)
902 		return (AVL_NEXT(&spa_namespace_avl, prev));
903 	else
904 		return (avl_first(&spa_namespace_avl));
905 }
906 
907 /*
908  * ==========================================================================
909  * SPA refcount functions
910  * ==========================================================================
911  */
912 
913 /*
914  * Add a reference to the given spa_t.  Must have at least one reference, or
915  * have the namespace lock held.
916  */
917 void
918 spa_open_ref(spa_t *spa, const void *tag)
919 {
920 	ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
921 	    MUTEX_HELD(&spa_namespace_lock));
922 	(void) zfs_refcount_add(&spa->spa_refcount, tag);
923 }
924 
925 /*
926  * Remove a reference to the given spa_t.  Must have at least one reference, or
927  * have the namespace lock held.
928  */
929 void
930 spa_close(spa_t *spa, const void *tag)
931 {
932 	ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
933 	    MUTEX_HELD(&spa_namespace_lock));
934 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
935 }
936 
937 /*
938  * Remove a reference to the given spa_t held by a dsl dir that is
939  * being asynchronously released.  Async releases occur from a taskq
940  * performing eviction of dsl datasets and dirs.  The namespace lock
941  * isn't held and the hold by the object being evicted may contribute to
942  * spa_minref (e.g. dataset or directory released during pool export),
943  * so the asserts in spa_close() do not apply.
944  */
945 void
946 spa_async_close(spa_t *spa, const void *tag)
947 {
948 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
949 }
950 
951 /*
952  * Check to see if the spa refcount is zero.  Must be called with
953  * spa_namespace_lock held.  We really compare against spa_minref, which is the
954  * number of references acquired when opening a pool
955  */
956 boolean_t
957 spa_refcount_zero(spa_t *spa)
958 {
959 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
960 
961 	return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
962 }
963 
964 /*
965  * ==========================================================================
966  * SPA spare and l2cache tracking
967  * ==========================================================================
968  */
969 
970 /*
971  * Hot spares and cache devices are tracked using the same code below,
972  * for 'auxiliary' devices.
973  */
974 
975 typedef struct spa_aux {
976 	uint64_t	aux_guid;
977 	uint64_t	aux_pool;
978 	avl_node_t	aux_avl;
979 	int		aux_count;
980 } spa_aux_t;
981 
982 static inline int
983 spa_aux_compare(const void *a, const void *b)
984 {
985 	const spa_aux_t *sa = (const spa_aux_t *)a;
986 	const spa_aux_t *sb = (const spa_aux_t *)b;
987 
988 	return (TREE_CMP(sa->aux_guid, sb->aux_guid));
989 }
990 
991 static void
992 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
993 {
994 	avl_index_t where;
995 	spa_aux_t search;
996 	spa_aux_t *aux;
997 
998 	search.aux_guid = vd->vdev_guid;
999 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
1000 		aux->aux_count++;
1001 	} else {
1002 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
1003 		aux->aux_guid = vd->vdev_guid;
1004 		aux->aux_count = 1;
1005 		avl_insert(avl, aux, where);
1006 	}
1007 }
1008 
1009 static void
1010 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
1011 {
1012 	spa_aux_t search;
1013 	spa_aux_t *aux;
1014 	avl_index_t where;
1015 
1016 	search.aux_guid = vd->vdev_guid;
1017 	aux = avl_find(avl, &search, &where);
1018 
1019 	ASSERT(aux != NULL);
1020 
1021 	if (--aux->aux_count == 0) {
1022 		avl_remove(avl, aux);
1023 		kmem_free(aux, sizeof (spa_aux_t));
1024 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
1025 		aux->aux_pool = 0ULL;
1026 	}
1027 }
1028 
1029 static boolean_t
1030 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
1031 {
1032 	spa_aux_t search, *found;
1033 
1034 	search.aux_guid = guid;
1035 	found = avl_find(avl, &search, NULL);
1036 
1037 	if (pool) {
1038 		if (found)
1039 			*pool = found->aux_pool;
1040 		else
1041 			*pool = 0ULL;
1042 	}
1043 
1044 	if (refcnt) {
1045 		if (found)
1046 			*refcnt = found->aux_count;
1047 		else
1048 			*refcnt = 0;
1049 	}
1050 
1051 	return (found != NULL);
1052 }
1053 
1054 static void
1055 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1056 {
1057 	spa_aux_t search, *found;
1058 	avl_index_t where;
1059 
1060 	search.aux_guid = vd->vdev_guid;
1061 	found = avl_find(avl, &search, &where);
1062 	ASSERT(found != NULL);
1063 	ASSERT(found->aux_pool == 0ULL);
1064 
1065 	found->aux_pool = spa_guid(vd->vdev_spa);
1066 }
1067 
1068 /*
1069  * Spares are tracked globally due to the following constraints:
1070  *
1071  *	- A spare may be part of multiple pools.
1072  *	- A spare may be added to a pool even if it's actively in use within
1073  *	  another pool.
1074  *	- A spare in use in any pool can only be the source of a replacement if
1075  *	  the target is a spare in the same pool.
1076  *
1077  * We keep track of all spares on the system through the use of a reference
1078  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1079  * spare, then we bump the reference count in the AVL tree.  In addition, we set
1080  * the 'vdev_isspare' member to indicate that the device is a spare (active or
1081  * inactive).  When a spare is made active (used to replace a device in the
1082  * pool), we also keep track of which pool its been made a part of.
1083  *
1084  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1085  * called under the spa_namespace lock as part of vdev reconfiguration.  The
1086  * separate spare lock exists for the status query path, which does not need to
1087  * be completely consistent with respect to other vdev configuration changes.
1088  */
1089 
1090 static int
1091 spa_spare_compare(const void *a, const void *b)
1092 {
1093 	return (spa_aux_compare(a, b));
1094 }
1095 
1096 void
1097 spa_spare_add(vdev_t *vd)
1098 {
1099 	mutex_enter(&spa_spare_lock);
1100 	ASSERT(!vd->vdev_isspare);
1101 	spa_aux_add(vd, &spa_spare_avl);
1102 	vd->vdev_isspare = B_TRUE;
1103 	mutex_exit(&spa_spare_lock);
1104 }
1105 
1106 void
1107 spa_spare_remove(vdev_t *vd)
1108 {
1109 	mutex_enter(&spa_spare_lock);
1110 	ASSERT(vd->vdev_isspare);
1111 	spa_aux_remove(vd, &spa_spare_avl);
1112 	vd->vdev_isspare = B_FALSE;
1113 	mutex_exit(&spa_spare_lock);
1114 }
1115 
1116 boolean_t
1117 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1118 {
1119 	boolean_t found;
1120 
1121 	mutex_enter(&spa_spare_lock);
1122 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1123 	mutex_exit(&spa_spare_lock);
1124 
1125 	return (found);
1126 }
1127 
1128 void
1129 spa_spare_activate(vdev_t *vd)
1130 {
1131 	mutex_enter(&spa_spare_lock);
1132 	ASSERT(vd->vdev_isspare);
1133 	spa_aux_activate(vd, &spa_spare_avl);
1134 	mutex_exit(&spa_spare_lock);
1135 }
1136 
1137 /*
1138  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1139  * Cache devices currently only support one pool per cache device, and so
1140  * for these devices the aux reference count is currently unused beyond 1.
1141  */
1142 
1143 static int
1144 spa_l2cache_compare(const void *a, const void *b)
1145 {
1146 	return (spa_aux_compare(a, b));
1147 }
1148 
1149 void
1150 spa_l2cache_add(vdev_t *vd)
1151 {
1152 	mutex_enter(&spa_l2cache_lock);
1153 	ASSERT(!vd->vdev_isl2cache);
1154 	spa_aux_add(vd, &spa_l2cache_avl);
1155 	vd->vdev_isl2cache = B_TRUE;
1156 	mutex_exit(&spa_l2cache_lock);
1157 }
1158 
1159 void
1160 spa_l2cache_remove(vdev_t *vd)
1161 {
1162 	mutex_enter(&spa_l2cache_lock);
1163 	ASSERT(vd->vdev_isl2cache);
1164 	spa_aux_remove(vd, &spa_l2cache_avl);
1165 	vd->vdev_isl2cache = B_FALSE;
1166 	mutex_exit(&spa_l2cache_lock);
1167 }
1168 
1169 boolean_t
1170 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1171 {
1172 	boolean_t found;
1173 
1174 	mutex_enter(&spa_l2cache_lock);
1175 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1176 	mutex_exit(&spa_l2cache_lock);
1177 
1178 	return (found);
1179 }
1180 
1181 void
1182 spa_l2cache_activate(vdev_t *vd)
1183 {
1184 	mutex_enter(&spa_l2cache_lock);
1185 	ASSERT(vd->vdev_isl2cache);
1186 	spa_aux_activate(vd, &spa_l2cache_avl);
1187 	mutex_exit(&spa_l2cache_lock);
1188 }
1189 
1190 /*
1191  * ==========================================================================
1192  * SPA vdev locking
1193  * ==========================================================================
1194  */
1195 
1196 /*
1197  * Lock the given spa_t for the purpose of adding or removing a vdev.
1198  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1199  * It returns the next transaction group for the spa_t.
1200  */
1201 uint64_t
1202 spa_vdev_enter(spa_t *spa)
1203 {
1204 	mutex_enter(&spa->spa_vdev_top_lock);
1205 	mutex_enter(&spa_namespace_lock);
1206 
1207 	vdev_autotrim_stop_all(spa);
1208 
1209 	return (spa_vdev_config_enter(spa));
1210 }
1211 
1212 /*
1213  * The same as spa_vdev_enter() above but additionally takes the guid of
1214  * the vdev being detached.  When there is a rebuild in process it will be
1215  * suspended while the vdev tree is modified then resumed by spa_vdev_exit().
1216  * The rebuild is canceled if only a single child remains after the detach.
1217  */
1218 uint64_t
1219 spa_vdev_detach_enter(spa_t *spa, uint64_t guid)
1220 {
1221 	mutex_enter(&spa->spa_vdev_top_lock);
1222 	mutex_enter(&spa_namespace_lock);
1223 
1224 	vdev_autotrim_stop_all(spa);
1225 
1226 	if (guid != 0) {
1227 		vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1228 		if (vd) {
1229 			vdev_rebuild_stop_wait(vd->vdev_top);
1230 		}
1231 	}
1232 
1233 	return (spa_vdev_config_enter(spa));
1234 }
1235 
1236 /*
1237  * Internal implementation for spa_vdev_enter().  Used when a vdev
1238  * operation requires multiple syncs (i.e. removing a device) while
1239  * keeping the spa_namespace_lock held.
1240  */
1241 uint64_t
1242 spa_vdev_config_enter(spa_t *spa)
1243 {
1244 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1245 
1246 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1247 
1248 	return (spa_last_synced_txg(spa) + 1);
1249 }
1250 
1251 /*
1252  * Used in combination with spa_vdev_config_enter() to allow the syncing
1253  * of multiple transactions without releasing the spa_namespace_lock.
1254  */
1255 void
1256 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error,
1257     const char *tag)
1258 {
1259 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1260 
1261 	int config_changed = B_FALSE;
1262 
1263 	ASSERT(txg > spa_last_synced_txg(spa));
1264 
1265 	spa->spa_pending_vdev = NULL;
1266 
1267 	/*
1268 	 * Reassess the DTLs.
1269 	 */
1270 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE);
1271 
1272 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1273 		config_changed = B_TRUE;
1274 		spa->spa_config_generation++;
1275 	}
1276 
1277 	/*
1278 	 * Verify the metaslab classes.
1279 	 */
1280 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1281 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1282 	ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0);
1283 	ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
1284 	ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
1285 
1286 	spa_config_exit(spa, SCL_ALL, spa);
1287 
1288 	/*
1289 	 * Panic the system if the specified tag requires it.  This
1290 	 * is useful for ensuring that configurations are updated
1291 	 * transactionally.
1292 	 */
1293 	if (zio_injection_enabled)
1294 		zio_handle_panic_injection(spa, tag, 0);
1295 
1296 	/*
1297 	 * Note: this txg_wait_synced() is important because it ensures
1298 	 * that there won't be more than one config change per txg.
1299 	 * This allows us to use the txg as the generation number.
1300 	 */
1301 	if (error == 0)
1302 		txg_wait_synced(spa->spa_dsl_pool, txg);
1303 
1304 	if (vd != NULL) {
1305 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1306 		if (vd->vdev_ops->vdev_op_leaf) {
1307 			mutex_enter(&vd->vdev_initialize_lock);
1308 			vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1309 			    NULL);
1310 			mutex_exit(&vd->vdev_initialize_lock);
1311 
1312 			mutex_enter(&vd->vdev_trim_lock);
1313 			vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1314 			mutex_exit(&vd->vdev_trim_lock);
1315 		}
1316 
1317 		/*
1318 		 * The vdev may be both a leaf and top-level device.
1319 		 */
1320 		vdev_autotrim_stop_wait(vd);
1321 
1322 		spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
1323 		vdev_free(vd);
1324 		spa_config_exit(spa, SCL_STATE_ALL, spa);
1325 	}
1326 
1327 	/*
1328 	 * If the config changed, update the config cache.
1329 	 */
1330 	if (config_changed)
1331 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1332 }
1333 
1334 /*
1335  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1336  * locking of spa_vdev_enter(), we also want make sure the transactions have
1337  * synced to disk, and then update the global configuration cache with the new
1338  * information.
1339  */
1340 int
1341 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1342 {
1343 	vdev_autotrim_restart(spa);
1344 	vdev_rebuild_restart(spa);
1345 
1346 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1347 	mutex_exit(&spa_namespace_lock);
1348 	mutex_exit(&spa->spa_vdev_top_lock);
1349 
1350 	return (error);
1351 }
1352 
1353 /*
1354  * Lock the given spa_t for the purpose of changing vdev state.
1355  */
1356 void
1357 spa_vdev_state_enter(spa_t *spa, int oplocks)
1358 {
1359 	int locks = SCL_STATE_ALL | oplocks;
1360 
1361 	/*
1362 	 * Root pools may need to read of the underlying devfs filesystem
1363 	 * when opening up a vdev.  Unfortunately if we're holding the
1364 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1365 	 * the read from the root filesystem.  Instead we "prefetch"
1366 	 * the associated vnodes that we need prior to opening the
1367 	 * underlying devices and cache them so that we can prevent
1368 	 * any I/O when we are doing the actual open.
1369 	 */
1370 	if (spa_is_root(spa)) {
1371 		int low = locks & ~(SCL_ZIO - 1);
1372 		int high = locks & ~low;
1373 
1374 		spa_config_enter(spa, high, spa, RW_WRITER);
1375 		vdev_hold(spa->spa_root_vdev);
1376 		spa_config_enter(spa, low, spa, RW_WRITER);
1377 	} else {
1378 		spa_config_enter(spa, locks, spa, RW_WRITER);
1379 	}
1380 	spa->spa_vdev_locks = locks;
1381 }
1382 
1383 int
1384 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1385 {
1386 	boolean_t config_changed = B_FALSE;
1387 	vdev_t *vdev_top;
1388 
1389 	if (vd == NULL || vd == spa->spa_root_vdev) {
1390 		vdev_top = spa->spa_root_vdev;
1391 	} else {
1392 		vdev_top = vd->vdev_top;
1393 	}
1394 
1395 	if (vd != NULL || error == 0)
1396 		vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE);
1397 
1398 	if (vd != NULL) {
1399 		if (vd != spa->spa_root_vdev)
1400 			vdev_state_dirty(vdev_top);
1401 
1402 		config_changed = B_TRUE;
1403 		spa->spa_config_generation++;
1404 	}
1405 
1406 	if (spa_is_root(spa))
1407 		vdev_rele(spa->spa_root_vdev);
1408 
1409 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1410 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1411 
1412 	/*
1413 	 * If anything changed, wait for it to sync.  This ensures that,
1414 	 * from the system administrator's perspective, zpool(8) commands
1415 	 * are synchronous.  This is important for things like zpool offline:
1416 	 * when the command completes, you expect no further I/O from ZFS.
1417 	 */
1418 	if (vd != NULL)
1419 		txg_wait_synced(spa->spa_dsl_pool, 0);
1420 
1421 	/*
1422 	 * If the config changed, update the config cache.
1423 	 */
1424 	if (config_changed) {
1425 		mutex_enter(&spa_namespace_lock);
1426 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
1427 		mutex_exit(&spa_namespace_lock);
1428 	}
1429 
1430 	return (error);
1431 }
1432 
1433 /*
1434  * ==========================================================================
1435  * Miscellaneous functions
1436  * ==========================================================================
1437  */
1438 
1439 void
1440 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1441 {
1442 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1443 		fnvlist_add_boolean(spa->spa_label_features, feature);
1444 		/*
1445 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1446 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1447 		 * Thankfully, in this case we don't need to dirty the config
1448 		 * because it will be written out anyway when we finish
1449 		 * creating the pool.
1450 		 */
1451 		if (tx->tx_txg != TXG_INITIAL)
1452 			vdev_config_dirty(spa->spa_root_vdev);
1453 	}
1454 }
1455 
1456 void
1457 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1458 {
1459 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1460 		vdev_config_dirty(spa->spa_root_vdev);
1461 }
1462 
1463 /*
1464  * Return the spa_t associated with given pool_guid, if it exists.  If
1465  * device_guid is non-zero, determine whether the pool exists *and* contains
1466  * a device with the specified device_guid.
1467  */
1468 spa_t *
1469 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1470 {
1471 	spa_t *spa;
1472 	avl_tree_t *t = &spa_namespace_avl;
1473 
1474 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1475 
1476 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1477 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1478 			continue;
1479 		if (spa->spa_root_vdev == NULL)
1480 			continue;
1481 		if (spa_guid(spa) == pool_guid) {
1482 			if (device_guid == 0)
1483 				break;
1484 
1485 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1486 			    device_guid) != NULL)
1487 				break;
1488 
1489 			/*
1490 			 * Check any devices we may be in the process of adding.
1491 			 */
1492 			if (spa->spa_pending_vdev) {
1493 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1494 				    device_guid) != NULL)
1495 					break;
1496 			}
1497 		}
1498 	}
1499 
1500 	return (spa);
1501 }
1502 
1503 /*
1504  * Determine whether a pool with the given pool_guid exists.
1505  */
1506 boolean_t
1507 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1508 {
1509 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1510 }
1511 
1512 char *
1513 spa_strdup(const char *s)
1514 {
1515 	size_t len;
1516 	char *new;
1517 
1518 	len = strlen(s);
1519 	new = kmem_alloc(len + 1, KM_SLEEP);
1520 	memcpy(new, s, len + 1);
1521 
1522 	return (new);
1523 }
1524 
1525 void
1526 spa_strfree(char *s)
1527 {
1528 	kmem_free(s, strlen(s) + 1);
1529 }
1530 
1531 uint64_t
1532 spa_generate_guid(spa_t *spa)
1533 {
1534 	uint64_t guid;
1535 
1536 	if (spa != NULL) {
1537 		do {
1538 			(void) random_get_pseudo_bytes((void *)&guid,
1539 			    sizeof (guid));
1540 		} while (guid == 0 || spa_guid_exists(spa_guid(spa), guid));
1541 	} else {
1542 		do {
1543 			(void) random_get_pseudo_bytes((void *)&guid,
1544 			    sizeof (guid));
1545 		} while (guid == 0 || spa_guid_exists(guid, 0));
1546 	}
1547 
1548 	return (guid);
1549 }
1550 
1551 void
1552 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1553 {
1554 	char type[256];
1555 	const char *checksum = NULL;
1556 	const char *compress = NULL;
1557 
1558 	if (bp != NULL) {
1559 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1560 			dmu_object_byteswap_t bswap =
1561 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1562 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1563 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1564 			    "metadata" : "data",
1565 			    dmu_ot_byteswap[bswap].ob_name);
1566 		} else {
1567 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1568 			    sizeof (type));
1569 		}
1570 		if (!BP_IS_EMBEDDED(bp)) {
1571 			checksum =
1572 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1573 		}
1574 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1575 	}
1576 
1577 	SNPRINTF_BLKPTR(kmem_scnprintf, ' ', buf, buflen, bp, type, checksum,
1578 	    compress);
1579 }
1580 
1581 void
1582 spa_freeze(spa_t *spa)
1583 {
1584 	uint64_t freeze_txg = 0;
1585 
1586 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1587 	if (spa->spa_freeze_txg == UINT64_MAX) {
1588 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1589 		spa->spa_freeze_txg = freeze_txg;
1590 	}
1591 	spa_config_exit(spa, SCL_ALL, FTAG);
1592 	if (freeze_txg != 0)
1593 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1594 }
1595 
1596 void
1597 zfs_panic_recover(const char *fmt, ...)
1598 {
1599 	va_list adx;
1600 
1601 	va_start(adx, fmt);
1602 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1603 	va_end(adx);
1604 }
1605 
1606 /*
1607  * This is a stripped-down version of strtoull, suitable only for converting
1608  * lowercase hexadecimal numbers that don't overflow.
1609  */
1610 uint64_t
1611 zfs_strtonum(const char *str, char **nptr)
1612 {
1613 	uint64_t val = 0;
1614 	char c;
1615 	int digit;
1616 
1617 	while ((c = *str) != '\0') {
1618 		if (c >= '0' && c <= '9')
1619 			digit = c - '0';
1620 		else if (c >= 'a' && c <= 'f')
1621 			digit = 10 + c - 'a';
1622 		else
1623 			break;
1624 
1625 		val *= 16;
1626 		val += digit;
1627 
1628 		str++;
1629 	}
1630 
1631 	if (nptr)
1632 		*nptr = (char *)str;
1633 
1634 	return (val);
1635 }
1636 
1637 void
1638 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1639 {
1640 	/*
1641 	 * We bump the feature refcount for each special vdev added to the pool
1642 	 */
1643 	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1644 	spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1645 }
1646 
1647 /*
1648  * ==========================================================================
1649  * Accessor functions
1650  * ==========================================================================
1651  */
1652 
1653 boolean_t
1654 spa_shutting_down(spa_t *spa)
1655 {
1656 	return (spa->spa_async_suspended);
1657 }
1658 
1659 dsl_pool_t *
1660 spa_get_dsl(spa_t *spa)
1661 {
1662 	return (spa->spa_dsl_pool);
1663 }
1664 
1665 boolean_t
1666 spa_is_initializing(spa_t *spa)
1667 {
1668 	return (spa->spa_is_initializing);
1669 }
1670 
1671 boolean_t
1672 spa_indirect_vdevs_loaded(spa_t *spa)
1673 {
1674 	return (spa->spa_indirect_vdevs_loaded);
1675 }
1676 
1677 blkptr_t *
1678 spa_get_rootblkptr(spa_t *spa)
1679 {
1680 	return (&spa->spa_ubsync.ub_rootbp);
1681 }
1682 
1683 void
1684 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1685 {
1686 	spa->spa_uberblock.ub_rootbp = *bp;
1687 }
1688 
1689 void
1690 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1691 {
1692 	if (spa->spa_root == NULL)
1693 		buf[0] = '\0';
1694 	else
1695 		(void) strlcpy(buf, spa->spa_root, buflen);
1696 }
1697 
1698 uint32_t
1699 spa_sync_pass(spa_t *spa)
1700 {
1701 	return (spa->spa_sync_pass);
1702 }
1703 
1704 char *
1705 spa_name(spa_t *spa)
1706 {
1707 	return (spa->spa_name);
1708 }
1709 
1710 uint64_t
1711 spa_guid(spa_t *spa)
1712 {
1713 	dsl_pool_t *dp = spa_get_dsl(spa);
1714 	uint64_t guid;
1715 
1716 	/*
1717 	 * If we fail to parse the config during spa_load(), we can go through
1718 	 * the error path (which posts an ereport) and end up here with no root
1719 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1720 	 * this case.
1721 	 */
1722 	if (spa->spa_root_vdev == NULL)
1723 		return (spa->spa_config_guid);
1724 
1725 	guid = spa->spa_last_synced_guid != 0 ?
1726 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1727 
1728 	/*
1729 	 * Return the most recently synced out guid unless we're
1730 	 * in syncing context.
1731 	 */
1732 	if (dp && dsl_pool_sync_context(dp))
1733 		return (spa->spa_root_vdev->vdev_guid);
1734 	else
1735 		return (guid);
1736 }
1737 
1738 uint64_t
1739 spa_load_guid(spa_t *spa)
1740 {
1741 	/*
1742 	 * This is a GUID that exists solely as a reference for the
1743 	 * purposes of the arc.  It is generated at load time, and
1744 	 * is never written to persistent storage.
1745 	 */
1746 	return (spa->spa_load_guid);
1747 }
1748 
1749 uint64_t
1750 spa_last_synced_txg(spa_t *spa)
1751 {
1752 	return (spa->spa_ubsync.ub_txg);
1753 }
1754 
1755 uint64_t
1756 spa_first_txg(spa_t *spa)
1757 {
1758 	return (spa->spa_first_txg);
1759 }
1760 
1761 uint64_t
1762 spa_syncing_txg(spa_t *spa)
1763 {
1764 	return (spa->spa_syncing_txg);
1765 }
1766 
1767 /*
1768  * Return the last txg where data can be dirtied. The final txgs
1769  * will be used to just clear out any deferred frees that remain.
1770  */
1771 uint64_t
1772 spa_final_dirty_txg(spa_t *spa)
1773 {
1774 	return (spa->spa_final_txg - TXG_DEFER_SIZE);
1775 }
1776 
1777 pool_state_t
1778 spa_state(spa_t *spa)
1779 {
1780 	return (spa->spa_state);
1781 }
1782 
1783 spa_load_state_t
1784 spa_load_state(spa_t *spa)
1785 {
1786 	return (spa->spa_load_state);
1787 }
1788 
1789 uint64_t
1790 spa_freeze_txg(spa_t *spa)
1791 {
1792 	return (spa->spa_freeze_txg);
1793 }
1794 
1795 /*
1796  * Return the inflated asize for a logical write in bytes. This is used by the
1797  * DMU to calculate the space a logical write will require on disk.
1798  * If lsize is smaller than the largest physical block size allocatable on this
1799  * pool we use its value instead, since the write will end up using the whole
1800  * block anyway.
1801  */
1802 uint64_t
1803 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1804 {
1805 	if (lsize == 0)
1806 		return (0);	/* No inflation needed */
1807 	return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
1808 }
1809 
1810 /*
1811  * Return the amount of slop space in bytes.  It is typically 1/32 of the pool
1812  * (3.2%), minus the embedded log space.  On very small pools, it may be
1813  * slightly larger than this.  On very large pools, it will be capped to
1814  * the value of spa_max_slop.  The embedded log space is not included in
1815  * spa_dspace.  By subtracting it, the usable space (per "zfs list") is a
1816  * constant 97% of the total space, regardless of metaslab size (assuming the
1817  * default spa_slop_shift=5 and a non-tiny pool).
1818  *
1819  * See the comment above spa_slop_shift for more details.
1820  */
1821 uint64_t
1822 spa_get_slop_space(spa_t *spa)
1823 {
1824 	uint64_t space = 0;
1825 	uint64_t slop = 0;
1826 
1827 	/*
1828 	 * Make sure spa_dedup_dspace has been set.
1829 	 */
1830 	if (spa->spa_dedup_dspace == ~0ULL)
1831 		spa_update_dspace(spa);
1832 
1833 	/*
1834 	 * spa_get_dspace() includes the space only logically "used" by
1835 	 * deduplicated data, so since it's not useful to reserve more
1836 	 * space with more deduplicated data, we subtract that out here.
1837 	 */
1838 	space = spa_get_dspace(spa) - spa->spa_dedup_dspace;
1839 	slop = MIN(space >> spa_slop_shift, spa_max_slop);
1840 
1841 	/*
1842 	 * Subtract the embedded log space, but no more than half the (3.2%)
1843 	 * unusable space.  Note, the "no more than half" is only relevant if
1844 	 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by
1845 	 * default.
1846 	 */
1847 	uint64_t embedded_log =
1848 	    metaslab_class_get_dspace(spa_embedded_log_class(spa));
1849 	slop -= MIN(embedded_log, slop >> 1);
1850 
1851 	/*
1852 	 * Slop space should be at least spa_min_slop, but no more than half
1853 	 * the entire pool.
1854 	 */
1855 	slop = MAX(slop, MIN(space >> 1, spa_min_slop));
1856 	return (slop);
1857 }
1858 
1859 uint64_t
1860 spa_get_dspace(spa_t *spa)
1861 {
1862 	return (spa->spa_dspace);
1863 }
1864 
1865 uint64_t
1866 spa_get_checkpoint_space(spa_t *spa)
1867 {
1868 	return (spa->spa_checkpoint_info.sci_dspace);
1869 }
1870 
1871 void
1872 spa_update_dspace(spa_t *spa)
1873 {
1874 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1875 	    ddt_get_dedup_dspace(spa) + brt_get_dspace(spa);
1876 	if (spa->spa_nonallocating_dspace > 0) {
1877 		/*
1878 		 * Subtract the space provided by all non-allocating vdevs that
1879 		 * contribute to dspace.  If a file is overwritten, its old
1880 		 * blocks are freed and new blocks are allocated.  If there are
1881 		 * no snapshots of the file, the available space should remain
1882 		 * the same.  The old blocks could be freed from the
1883 		 * non-allocating vdev, but the new blocks must be allocated on
1884 		 * other (allocating) vdevs.  By reserving the entire size of
1885 		 * the non-allocating vdevs (including allocated space), we
1886 		 * ensure that there will be enough space on the allocating
1887 		 * vdevs for this file overwrite to succeed.
1888 		 *
1889 		 * Note that the DMU/DSL doesn't actually know or care
1890 		 * how much space is allocated (it does its own tracking
1891 		 * of how much space has been logically used).  So it
1892 		 * doesn't matter that the data we are moving may be
1893 		 * allocated twice (on the old device and the new device).
1894 		 */
1895 		ASSERT3U(spa->spa_dspace, >=, spa->spa_nonallocating_dspace);
1896 		spa->spa_dspace -= spa->spa_nonallocating_dspace;
1897 	}
1898 }
1899 
1900 /*
1901  * Return the failure mode that has been set to this pool. The default
1902  * behavior will be to block all I/Os when a complete failure occurs.
1903  */
1904 uint64_t
1905 spa_get_failmode(spa_t *spa)
1906 {
1907 	return (spa->spa_failmode);
1908 }
1909 
1910 boolean_t
1911 spa_suspended(spa_t *spa)
1912 {
1913 	return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1914 }
1915 
1916 uint64_t
1917 spa_version(spa_t *spa)
1918 {
1919 	return (spa->spa_ubsync.ub_version);
1920 }
1921 
1922 boolean_t
1923 spa_deflate(spa_t *spa)
1924 {
1925 	return (spa->spa_deflate);
1926 }
1927 
1928 metaslab_class_t *
1929 spa_normal_class(spa_t *spa)
1930 {
1931 	return (spa->spa_normal_class);
1932 }
1933 
1934 metaslab_class_t *
1935 spa_log_class(spa_t *spa)
1936 {
1937 	return (spa->spa_log_class);
1938 }
1939 
1940 metaslab_class_t *
1941 spa_embedded_log_class(spa_t *spa)
1942 {
1943 	return (spa->spa_embedded_log_class);
1944 }
1945 
1946 metaslab_class_t *
1947 spa_special_class(spa_t *spa)
1948 {
1949 	return (spa->spa_special_class);
1950 }
1951 
1952 metaslab_class_t *
1953 spa_dedup_class(spa_t *spa)
1954 {
1955 	return (spa->spa_dedup_class);
1956 }
1957 
1958 /*
1959  * Locate an appropriate allocation class
1960  */
1961 metaslab_class_t *
1962 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
1963     uint_t level, uint_t special_smallblk)
1964 {
1965 	/*
1966 	 * ZIL allocations determine their class in zio_alloc_zil().
1967 	 */
1968 	ASSERT(objtype != DMU_OT_INTENT_LOG);
1969 
1970 	boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
1971 
1972 	if (DMU_OT_IS_DDT(objtype)) {
1973 		if (spa->spa_dedup_class->mc_groups != 0)
1974 			return (spa_dedup_class(spa));
1975 		else if (has_special_class && zfs_ddt_data_is_special)
1976 			return (spa_special_class(spa));
1977 		else
1978 			return (spa_normal_class(spa));
1979 	}
1980 
1981 	/* Indirect blocks for user data can land in special if allowed */
1982 	if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
1983 		if (has_special_class && zfs_user_indirect_is_special)
1984 			return (spa_special_class(spa));
1985 		else
1986 			return (spa_normal_class(spa));
1987 	}
1988 
1989 	if (DMU_OT_IS_METADATA(objtype) || level > 0) {
1990 		if (has_special_class)
1991 			return (spa_special_class(spa));
1992 		else
1993 			return (spa_normal_class(spa));
1994 	}
1995 
1996 	/*
1997 	 * Allow small file blocks in special class in some cases (like
1998 	 * for the dRAID vdev feature). But always leave a reserve of
1999 	 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
2000 	 */
2001 	if (DMU_OT_IS_FILE(objtype) &&
2002 	    has_special_class && size <= special_smallblk) {
2003 		metaslab_class_t *special = spa_special_class(spa);
2004 		uint64_t alloc = metaslab_class_get_alloc(special);
2005 		uint64_t space = metaslab_class_get_space(special);
2006 		uint64_t limit =
2007 		    (space * (100 - zfs_special_class_metadata_reserve_pct))
2008 		    / 100;
2009 
2010 		if (alloc < limit)
2011 			return (special);
2012 	}
2013 
2014 	return (spa_normal_class(spa));
2015 }
2016 
2017 void
2018 spa_evicting_os_register(spa_t *spa, objset_t *os)
2019 {
2020 	mutex_enter(&spa->spa_evicting_os_lock);
2021 	list_insert_head(&spa->spa_evicting_os_list, os);
2022 	mutex_exit(&spa->spa_evicting_os_lock);
2023 }
2024 
2025 void
2026 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
2027 {
2028 	mutex_enter(&spa->spa_evicting_os_lock);
2029 	list_remove(&spa->spa_evicting_os_list, os);
2030 	cv_broadcast(&spa->spa_evicting_os_cv);
2031 	mutex_exit(&spa->spa_evicting_os_lock);
2032 }
2033 
2034 void
2035 spa_evicting_os_wait(spa_t *spa)
2036 {
2037 	mutex_enter(&spa->spa_evicting_os_lock);
2038 	while (!list_is_empty(&spa->spa_evicting_os_list))
2039 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
2040 	mutex_exit(&spa->spa_evicting_os_lock);
2041 
2042 	dmu_buf_user_evict_wait();
2043 }
2044 
2045 int
2046 spa_max_replication(spa_t *spa)
2047 {
2048 	/*
2049 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
2050 	 * handle BPs with more than one DVA allocated.  Set our max
2051 	 * replication level accordingly.
2052 	 */
2053 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
2054 		return (1);
2055 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
2056 }
2057 
2058 int
2059 spa_prev_software_version(spa_t *spa)
2060 {
2061 	return (spa->spa_prev_software_version);
2062 }
2063 
2064 uint64_t
2065 spa_deadman_synctime(spa_t *spa)
2066 {
2067 	return (spa->spa_deadman_synctime);
2068 }
2069 
2070 spa_autotrim_t
2071 spa_get_autotrim(spa_t *spa)
2072 {
2073 	return (spa->spa_autotrim);
2074 }
2075 
2076 uint64_t
2077 spa_deadman_ziotime(spa_t *spa)
2078 {
2079 	return (spa->spa_deadman_ziotime);
2080 }
2081 
2082 uint64_t
2083 spa_get_deadman_failmode(spa_t *spa)
2084 {
2085 	return (spa->spa_deadman_failmode);
2086 }
2087 
2088 void
2089 spa_set_deadman_failmode(spa_t *spa, const char *failmode)
2090 {
2091 	if (strcmp(failmode, "wait") == 0)
2092 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2093 	else if (strcmp(failmode, "continue") == 0)
2094 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
2095 	else if (strcmp(failmode, "panic") == 0)
2096 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
2097 	else
2098 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2099 }
2100 
2101 void
2102 spa_set_deadman_ziotime(hrtime_t ns)
2103 {
2104 	spa_t *spa = NULL;
2105 
2106 	if (spa_mode_global != SPA_MODE_UNINIT) {
2107 		mutex_enter(&spa_namespace_lock);
2108 		while ((spa = spa_next(spa)) != NULL)
2109 			spa->spa_deadman_ziotime = ns;
2110 		mutex_exit(&spa_namespace_lock);
2111 	}
2112 }
2113 
2114 void
2115 spa_set_deadman_synctime(hrtime_t ns)
2116 {
2117 	spa_t *spa = NULL;
2118 
2119 	if (spa_mode_global != SPA_MODE_UNINIT) {
2120 		mutex_enter(&spa_namespace_lock);
2121 		while ((spa = spa_next(spa)) != NULL)
2122 			spa->spa_deadman_synctime = ns;
2123 		mutex_exit(&spa_namespace_lock);
2124 	}
2125 }
2126 
2127 uint64_t
2128 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
2129 {
2130 	uint64_t asize = DVA_GET_ASIZE(dva);
2131 	uint64_t dsize = asize;
2132 
2133 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2134 
2135 	if (asize != 0 && spa->spa_deflate) {
2136 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2137 		if (vd != NULL)
2138 			dsize = (asize >> SPA_MINBLOCKSHIFT) *
2139 			    vd->vdev_deflate_ratio;
2140 	}
2141 
2142 	return (dsize);
2143 }
2144 
2145 uint64_t
2146 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
2147 {
2148 	uint64_t dsize = 0;
2149 
2150 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2151 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2152 
2153 	return (dsize);
2154 }
2155 
2156 uint64_t
2157 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
2158 {
2159 	uint64_t dsize = 0;
2160 
2161 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2162 
2163 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2164 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2165 
2166 	spa_config_exit(spa, SCL_VDEV, FTAG);
2167 
2168 	return (dsize);
2169 }
2170 
2171 uint64_t
2172 spa_dirty_data(spa_t *spa)
2173 {
2174 	return (spa->spa_dsl_pool->dp_dirty_total);
2175 }
2176 
2177 /*
2178  * ==========================================================================
2179  * SPA Import Progress Routines
2180  * ==========================================================================
2181  */
2182 
2183 typedef struct spa_import_progress {
2184 	uint64_t		pool_guid;	/* unique id for updates */
2185 	char			*pool_name;
2186 	spa_load_state_t	spa_load_state;
2187 	uint64_t		mmp_sec_remaining;	/* MMP activity check */
2188 	uint64_t		spa_load_max_txg;	/* rewind txg */
2189 	procfs_list_node_t	smh_node;
2190 } spa_import_progress_t;
2191 
2192 spa_history_list_t *spa_import_progress_list = NULL;
2193 
2194 static int
2195 spa_import_progress_show_header(struct seq_file *f)
2196 {
2197 	seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid",
2198 	    "load_state", "multihost_secs", "max_txg",
2199 	    "pool_name");
2200 	return (0);
2201 }
2202 
2203 static int
2204 spa_import_progress_show(struct seq_file *f, void *data)
2205 {
2206 	spa_import_progress_t *sip = (spa_import_progress_t *)data;
2207 
2208 	seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n",
2209 	    (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state,
2210 	    (u_longlong_t)sip->mmp_sec_remaining,
2211 	    (u_longlong_t)sip->spa_load_max_txg,
2212 	    (sip->pool_name ? sip->pool_name : "-"));
2213 
2214 	return (0);
2215 }
2216 
2217 /* Remove oldest elements from list until there are no more than 'size' left */
2218 static void
2219 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size)
2220 {
2221 	spa_import_progress_t *sip;
2222 	while (shl->size > size) {
2223 		sip = list_remove_head(&shl->procfs_list.pl_list);
2224 		if (sip->pool_name)
2225 			spa_strfree(sip->pool_name);
2226 		kmem_free(sip, sizeof (spa_import_progress_t));
2227 		shl->size--;
2228 	}
2229 
2230 	IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list));
2231 }
2232 
2233 static void
2234 spa_import_progress_init(void)
2235 {
2236 	spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t),
2237 	    KM_SLEEP);
2238 
2239 	spa_import_progress_list->size = 0;
2240 
2241 	spa_import_progress_list->procfs_list.pl_private =
2242 	    spa_import_progress_list;
2243 
2244 	procfs_list_install("zfs",
2245 	    NULL,
2246 	    "import_progress",
2247 	    0644,
2248 	    &spa_import_progress_list->procfs_list,
2249 	    spa_import_progress_show,
2250 	    spa_import_progress_show_header,
2251 	    NULL,
2252 	    offsetof(spa_import_progress_t, smh_node));
2253 }
2254 
2255 static void
2256 spa_import_progress_destroy(void)
2257 {
2258 	spa_history_list_t *shl = spa_import_progress_list;
2259 	procfs_list_uninstall(&shl->procfs_list);
2260 	spa_import_progress_truncate(shl, 0);
2261 	procfs_list_destroy(&shl->procfs_list);
2262 	kmem_free(shl, sizeof (spa_history_list_t));
2263 }
2264 
2265 int
2266 spa_import_progress_set_state(uint64_t pool_guid,
2267     spa_load_state_t load_state)
2268 {
2269 	spa_history_list_t *shl = spa_import_progress_list;
2270 	spa_import_progress_t *sip;
2271 	int error = ENOENT;
2272 
2273 	if (shl->size == 0)
2274 		return (0);
2275 
2276 	mutex_enter(&shl->procfs_list.pl_lock);
2277 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2278 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2279 		if (sip->pool_guid == pool_guid) {
2280 			sip->spa_load_state = load_state;
2281 			error = 0;
2282 			break;
2283 		}
2284 	}
2285 	mutex_exit(&shl->procfs_list.pl_lock);
2286 
2287 	return (error);
2288 }
2289 
2290 int
2291 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg)
2292 {
2293 	spa_history_list_t *shl = spa_import_progress_list;
2294 	spa_import_progress_t *sip;
2295 	int error = ENOENT;
2296 
2297 	if (shl->size == 0)
2298 		return (0);
2299 
2300 	mutex_enter(&shl->procfs_list.pl_lock);
2301 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2302 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2303 		if (sip->pool_guid == pool_guid) {
2304 			sip->spa_load_max_txg = load_max_txg;
2305 			error = 0;
2306 			break;
2307 		}
2308 	}
2309 	mutex_exit(&shl->procfs_list.pl_lock);
2310 
2311 	return (error);
2312 }
2313 
2314 int
2315 spa_import_progress_set_mmp_check(uint64_t pool_guid,
2316     uint64_t mmp_sec_remaining)
2317 {
2318 	spa_history_list_t *shl = spa_import_progress_list;
2319 	spa_import_progress_t *sip;
2320 	int error = ENOENT;
2321 
2322 	if (shl->size == 0)
2323 		return (0);
2324 
2325 	mutex_enter(&shl->procfs_list.pl_lock);
2326 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2327 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2328 		if (sip->pool_guid == pool_guid) {
2329 			sip->mmp_sec_remaining = mmp_sec_remaining;
2330 			error = 0;
2331 			break;
2332 		}
2333 	}
2334 	mutex_exit(&shl->procfs_list.pl_lock);
2335 
2336 	return (error);
2337 }
2338 
2339 /*
2340  * A new import is in progress, add an entry.
2341  */
2342 void
2343 spa_import_progress_add(spa_t *spa)
2344 {
2345 	spa_history_list_t *shl = spa_import_progress_list;
2346 	spa_import_progress_t *sip;
2347 	const char *poolname = NULL;
2348 
2349 	sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP);
2350 	sip->pool_guid = spa_guid(spa);
2351 
2352 	(void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
2353 	    &poolname);
2354 	if (poolname == NULL)
2355 		poolname = spa_name(spa);
2356 	sip->pool_name = spa_strdup(poolname);
2357 	sip->spa_load_state = spa_load_state(spa);
2358 
2359 	mutex_enter(&shl->procfs_list.pl_lock);
2360 	procfs_list_add(&shl->procfs_list, sip);
2361 	shl->size++;
2362 	mutex_exit(&shl->procfs_list.pl_lock);
2363 }
2364 
2365 void
2366 spa_import_progress_remove(uint64_t pool_guid)
2367 {
2368 	spa_history_list_t *shl = spa_import_progress_list;
2369 	spa_import_progress_t *sip;
2370 
2371 	mutex_enter(&shl->procfs_list.pl_lock);
2372 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2373 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2374 		if (sip->pool_guid == pool_guid) {
2375 			if (sip->pool_name)
2376 				spa_strfree(sip->pool_name);
2377 			list_remove(&shl->procfs_list.pl_list, sip);
2378 			shl->size--;
2379 			kmem_free(sip, sizeof (spa_import_progress_t));
2380 			break;
2381 		}
2382 	}
2383 	mutex_exit(&shl->procfs_list.pl_lock);
2384 }
2385 
2386 /*
2387  * ==========================================================================
2388  * Initialization and Termination
2389  * ==========================================================================
2390  */
2391 
2392 static int
2393 spa_name_compare(const void *a1, const void *a2)
2394 {
2395 	const spa_t *s1 = a1;
2396 	const spa_t *s2 = a2;
2397 	int s;
2398 
2399 	s = strcmp(s1->spa_name, s2->spa_name);
2400 
2401 	return (TREE_ISIGN(s));
2402 }
2403 
2404 void
2405 spa_boot_init(void)
2406 {
2407 	spa_config_load();
2408 }
2409 
2410 void
2411 spa_init(spa_mode_t mode)
2412 {
2413 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2414 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2415 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2416 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2417 
2418 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2419 	    offsetof(spa_t, spa_avl));
2420 
2421 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2422 	    offsetof(spa_aux_t, aux_avl));
2423 
2424 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2425 	    offsetof(spa_aux_t, aux_avl));
2426 
2427 	spa_mode_global = mode;
2428 
2429 #ifndef _KERNEL
2430 	if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) {
2431 		struct sigaction sa;
2432 
2433 		sa.sa_flags = SA_SIGINFO;
2434 		sigemptyset(&sa.sa_mask);
2435 		sa.sa_sigaction = arc_buf_sigsegv;
2436 
2437 		if (sigaction(SIGSEGV, &sa, NULL) == -1) {
2438 			perror("could not enable watchpoints: "
2439 			    "sigaction(SIGSEGV, ...) = ");
2440 		} else {
2441 			arc_watch = B_TRUE;
2442 		}
2443 	}
2444 #endif
2445 
2446 	fm_init();
2447 	zfs_refcount_init();
2448 	unique_init();
2449 	zfs_btree_init();
2450 	metaslab_stat_init();
2451 	brt_init();
2452 	ddt_init();
2453 	zio_init();
2454 	dmu_init();
2455 	zil_init();
2456 	vdev_mirror_stat_init();
2457 	vdev_raidz_math_init();
2458 	vdev_file_init();
2459 	zfs_prop_init();
2460 	chksum_init();
2461 	zpool_prop_init();
2462 	zpool_feature_init();
2463 	spa_config_load();
2464 	vdev_prop_init();
2465 	l2arc_start();
2466 	scan_init();
2467 	qat_init();
2468 	spa_import_progress_init();
2469 }
2470 
2471 void
2472 spa_fini(void)
2473 {
2474 	l2arc_stop();
2475 
2476 	spa_evict_all();
2477 
2478 	vdev_file_fini();
2479 	vdev_mirror_stat_fini();
2480 	vdev_raidz_math_fini();
2481 	chksum_fini();
2482 	zil_fini();
2483 	dmu_fini();
2484 	zio_fini();
2485 	ddt_fini();
2486 	brt_fini();
2487 	metaslab_stat_fini();
2488 	zfs_btree_fini();
2489 	unique_fini();
2490 	zfs_refcount_fini();
2491 	fm_fini();
2492 	scan_fini();
2493 	qat_fini();
2494 	spa_import_progress_destroy();
2495 
2496 	avl_destroy(&spa_namespace_avl);
2497 	avl_destroy(&spa_spare_avl);
2498 	avl_destroy(&spa_l2cache_avl);
2499 
2500 	cv_destroy(&spa_namespace_cv);
2501 	mutex_destroy(&spa_namespace_lock);
2502 	mutex_destroy(&spa_spare_lock);
2503 	mutex_destroy(&spa_l2cache_lock);
2504 }
2505 
2506 /*
2507  * Return whether this pool has a dedicated slog device. No locking needed.
2508  * It's not a problem if the wrong answer is returned as it's only for
2509  * performance and not correctness.
2510  */
2511 boolean_t
2512 spa_has_slogs(spa_t *spa)
2513 {
2514 	return (spa->spa_log_class->mc_groups != 0);
2515 }
2516 
2517 spa_log_state_t
2518 spa_get_log_state(spa_t *spa)
2519 {
2520 	return (spa->spa_log_state);
2521 }
2522 
2523 void
2524 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2525 {
2526 	spa->spa_log_state = state;
2527 }
2528 
2529 boolean_t
2530 spa_is_root(spa_t *spa)
2531 {
2532 	return (spa->spa_is_root);
2533 }
2534 
2535 boolean_t
2536 spa_writeable(spa_t *spa)
2537 {
2538 	return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config);
2539 }
2540 
2541 /*
2542  * Returns true if there is a pending sync task in any of the current
2543  * syncing txg, the current quiescing txg, or the current open txg.
2544  */
2545 boolean_t
2546 spa_has_pending_synctask(spa_t *spa)
2547 {
2548 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2549 	    !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2550 }
2551 
2552 spa_mode_t
2553 spa_mode(spa_t *spa)
2554 {
2555 	return (spa->spa_mode);
2556 }
2557 
2558 uint64_t
2559 spa_bootfs(spa_t *spa)
2560 {
2561 	return (spa->spa_bootfs);
2562 }
2563 
2564 uint64_t
2565 spa_delegation(spa_t *spa)
2566 {
2567 	return (spa->spa_delegation);
2568 }
2569 
2570 objset_t *
2571 spa_meta_objset(spa_t *spa)
2572 {
2573 	return (spa->spa_meta_objset);
2574 }
2575 
2576 enum zio_checksum
2577 spa_dedup_checksum(spa_t *spa)
2578 {
2579 	return (spa->spa_dedup_checksum);
2580 }
2581 
2582 /*
2583  * Reset pool scan stat per scan pass (or reboot).
2584  */
2585 void
2586 spa_scan_stat_init(spa_t *spa)
2587 {
2588 	/* data not stored on disk */
2589 	spa->spa_scan_pass_start = gethrestime_sec();
2590 	if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2591 		spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2592 	else
2593 		spa->spa_scan_pass_scrub_pause = 0;
2594 
2595 	if (dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan))
2596 		spa->spa_scan_pass_errorscrub_pause = spa->spa_scan_pass_start;
2597 	else
2598 		spa->spa_scan_pass_errorscrub_pause = 0;
2599 
2600 	spa->spa_scan_pass_scrub_spent_paused = 0;
2601 	spa->spa_scan_pass_exam = 0;
2602 	spa->spa_scan_pass_issued = 0;
2603 
2604 	// error scrub stats
2605 	spa->spa_scan_pass_errorscrub_spent_paused = 0;
2606 }
2607 
2608 /*
2609  * Get scan stats for zpool status reports
2610  */
2611 int
2612 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2613 {
2614 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2615 
2616 	if (scn == NULL || (scn->scn_phys.scn_func == POOL_SCAN_NONE &&
2617 	    scn->errorscrub_phys.dep_func == POOL_SCAN_NONE))
2618 		return (SET_ERROR(ENOENT));
2619 
2620 	memset(ps, 0, sizeof (pool_scan_stat_t));
2621 
2622 	/* data stored on disk */
2623 	ps->pss_func = scn->scn_phys.scn_func;
2624 	ps->pss_state = scn->scn_phys.scn_state;
2625 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2626 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2627 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2628 	ps->pss_examined = scn->scn_phys.scn_examined;
2629 	ps->pss_skipped = scn->scn_phys.scn_skipped;
2630 	ps->pss_processed = scn->scn_phys.scn_processed;
2631 	ps->pss_errors = scn->scn_phys.scn_errors;
2632 
2633 	/* data not stored on disk */
2634 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2635 	ps->pss_pass_start = spa->spa_scan_pass_start;
2636 	ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2637 	ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2638 	ps->pss_pass_issued = spa->spa_scan_pass_issued;
2639 	ps->pss_issued =
2640 	    scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2641 
2642 	/* error scrub data stored on disk */
2643 	ps->pss_error_scrub_func = scn->errorscrub_phys.dep_func;
2644 	ps->pss_error_scrub_state = scn->errorscrub_phys.dep_state;
2645 	ps->pss_error_scrub_start = scn->errorscrub_phys.dep_start_time;
2646 	ps->pss_error_scrub_end = scn->errorscrub_phys.dep_end_time;
2647 	ps->pss_error_scrub_examined = scn->errorscrub_phys.dep_examined;
2648 	ps->pss_error_scrub_to_be_examined =
2649 	    scn->errorscrub_phys.dep_to_examine;
2650 
2651 	/* error scrub data not stored on disk */
2652 	ps->pss_pass_error_scrub_pause = spa->spa_scan_pass_errorscrub_pause;
2653 
2654 	return (0);
2655 }
2656 
2657 int
2658 spa_maxblocksize(spa_t *spa)
2659 {
2660 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2661 		return (SPA_MAXBLOCKSIZE);
2662 	else
2663 		return (SPA_OLD_MAXBLOCKSIZE);
2664 }
2665 
2666 
2667 /*
2668  * Returns the txg that the last device removal completed. No indirect mappings
2669  * have been added since this txg.
2670  */
2671 uint64_t
2672 spa_get_last_removal_txg(spa_t *spa)
2673 {
2674 	uint64_t vdevid;
2675 	uint64_t ret = -1ULL;
2676 
2677 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2678 	/*
2679 	 * sr_prev_indirect_vdev is only modified while holding all the
2680 	 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2681 	 * examining it.
2682 	 */
2683 	vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2684 
2685 	while (vdevid != -1ULL) {
2686 		vdev_t *vd = vdev_lookup_top(spa, vdevid);
2687 		vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2688 
2689 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2690 
2691 		/*
2692 		 * If the removal did not remap any data, we don't care.
2693 		 */
2694 		if (vdev_indirect_births_count(vib) != 0) {
2695 			ret = vdev_indirect_births_last_entry_txg(vib);
2696 			break;
2697 		}
2698 
2699 		vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2700 	}
2701 	spa_config_exit(spa, SCL_VDEV, FTAG);
2702 
2703 	IMPLY(ret != -1ULL,
2704 	    spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2705 
2706 	return (ret);
2707 }
2708 
2709 int
2710 spa_maxdnodesize(spa_t *spa)
2711 {
2712 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2713 		return (DNODE_MAX_SIZE);
2714 	else
2715 		return (DNODE_MIN_SIZE);
2716 }
2717 
2718 boolean_t
2719 spa_multihost(spa_t *spa)
2720 {
2721 	return (spa->spa_multihost ? B_TRUE : B_FALSE);
2722 }
2723 
2724 uint32_t
2725 spa_get_hostid(spa_t *spa)
2726 {
2727 	return (spa->spa_hostid);
2728 }
2729 
2730 boolean_t
2731 spa_trust_config(spa_t *spa)
2732 {
2733 	return (spa->spa_trust_config);
2734 }
2735 
2736 uint64_t
2737 spa_missing_tvds_allowed(spa_t *spa)
2738 {
2739 	return (spa->spa_missing_tvds_allowed);
2740 }
2741 
2742 space_map_t *
2743 spa_syncing_log_sm(spa_t *spa)
2744 {
2745 	return (spa->spa_syncing_log_sm);
2746 }
2747 
2748 void
2749 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2750 {
2751 	spa->spa_missing_tvds = missing;
2752 }
2753 
2754 /*
2755  * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
2756  */
2757 const char *
2758 spa_state_to_name(spa_t *spa)
2759 {
2760 	ASSERT3P(spa, !=, NULL);
2761 
2762 	/*
2763 	 * it is possible for the spa to exist, without root vdev
2764 	 * as the spa transitions during import/export
2765 	 */
2766 	vdev_t *rvd = spa->spa_root_vdev;
2767 	if (rvd == NULL) {
2768 		return ("TRANSITIONING");
2769 	}
2770 	vdev_state_t state = rvd->vdev_state;
2771 	vdev_aux_t aux = rvd->vdev_stat.vs_aux;
2772 
2773 	if (spa_suspended(spa))
2774 		return ("SUSPENDED");
2775 
2776 	switch (state) {
2777 	case VDEV_STATE_CLOSED:
2778 	case VDEV_STATE_OFFLINE:
2779 		return ("OFFLINE");
2780 	case VDEV_STATE_REMOVED:
2781 		return ("REMOVED");
2782 	case VDEV_STATE_CANT_OPEN:
2783 		if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
2784 			return ("FAULTED");
2785 		else if (aux == VDEV_AUX_SPLIT_POOL)
2786 			return ("SPLIT");
2787 		else
2788 			return ("UNAVAIL");
2789 	case VDEV_STATE_FAULTED:
2790 		return ("FAULTED");
2791 	case VDEV_STATE_DEGRADED:
2792 		return ("DEGRADED");
2793 	case VDEV_STATE_HEALTHY:
2794 		return ("ONLINE");
2795 	default:
2796 		break;
2797 	}
2798 
2799 	return ("UNKNOWN");
2800 }
2801 
2802 boolean_t
2803 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2804 {
2805 	vdev_t *rvd = spa->spa_root_vdev;
2806 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2807 		if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2808 			return (B_FALSE);
2809 	}
2810 	return (B_TRUE);
2811 }
2812 
2813 boolean_t
2814 spa_has_checkpoint(spa_t *spa)
2815 {
2816 	return (spa->spa_checkpoint_txg != 0);
2817 }
2818 
2819 boolean_t
2820 spa_importing_readonly_checkpoint(spa_t *spa)
2821 {
2822 	return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2823 	    spa->spa_mode == SPA_MODE_READ);
2824 }
2825 
2826 uint64_t
2827 spa_min_claim_txg(spa_t *spa)
2828 {
2829 	uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2830 
2831 	if (checkpoint_txg != 0)
2832 		return (checkpoint_txg + 1);
2833 
2834 	return (spa->spa_first_txg);
2835 }
2836 
2837 /*
2838  * If there is a checkpoint, async destroys may consume more space from
2839  * the pool instead of freeing it. In an attempt to save the pool from
2840  * getting suspended when it is about to run out of space, we stop
2841  * processing async destroys.
2842  */
2843 boolean_t
2844 spa_suspend_async_destroy(spa_t *spa)
2845 {
2846 	dsl_pool_t *dp = spa_get_dsl(spa);
2847 
2848 	uint64_t unreserved = dsl_pool_unreserved_space(dp,
2849 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
2850 	uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2851 	uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2852 
2853 	if (spa_has_checkpoint(spa) && avail == 0)
2854 		return (B_TRUE);
2855 
2856 	return (B_FALSE);
2857 }
2858 
2859 #if defined(_KERNEL)
2860 
2861 int
2862 param_set_deadman_failmode_common(const char *val)
2863 {
2864 	spa_t *spa = NULL;
2865 	char *p;
2866 
2867 	if (val == NULL)
2868 		return (SET_ERROR(EINVAL));
2869 
2870 	if ((p = strchr(val, '\n')) != NULL)
2871 		*p = '\0';
2872 
2873 	if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
2874 	    strcmp(val, "panic"))
2875 		return (SET_ERROR(EINVAL));
2876 
2877 	if (spa_mode_global != SPA_MODE_UNINIT) {
2878 		mutex_enter(&spa_namespace_lock);
2879 		while ((spa = spa_next(spa)) != NULL)
2880 			spa_set_deadman_failmode(spa, val);
2881 		mutex_exit(&spa_namespace_lock);
2882 	}
2883 
2884 	return (0);
2885 }
2886 #endif
2887 
2888 /* Namespace manipulation */
2889 EXPORT_SYMBOL(spa_lookup);
2890 EXPORT_SYMBOL(spa_add);
2891 EXPORT_SYMBOL(spa_remove);
2892 EXPORT_SYMBOL(spa_next);
2893 
2894 /* Refcount functions */
2895 EXPORT_SYMBOL(spa_open_ref);
2896 EXPORT_SYMBOL(spa_close);
2897 EXPORT_SYMBOL(spa_refcount_zero);
2898 
2899 /* Pool configuration lock */
2900 EXPORT_SYMBOL(spa_config_tryenter);
2901 EXPORT_SYMBOL(spa_config_enter);
2902 EXPORT_SYMBOL(spa_config_exit);
2903 EXPORT_SYMBOL(spa_config_held);
2904 
2905 /* Pool vdev add/remove lock */
2906 EXPORT_SYMBOL(spa_vdev_enter);
2907 EXPORT_SYMBOL(spa_vdev_exit);
2908 
2909 /* Pool vdev state change lock */
2910 EXPORT_SYMBOL(spa_vdev_state_enter);
2911 EXPORT_SYMBOL(spa_vdev_state_exit);
2912 
2913 /* Accessor functions */
2914 EXPORT_SYMBOL(spa_shutting_down);
2915 EXPORT_SYMBOL(spa_get_dsl);
2916 EXPORT_SYMBOL(spa_get_rootblkptr);
2917 EXPORT_SYMBOL(spa_set_rootblkptr);
2918 EXPORT_SYMBOL(spa_altroot);
2919 EXPORT_SYMBOL(spa_sync_pass);
2920 EXPORT_SYMBOL(spa_name);
2921 EXPORT_SYMBOL(spa_guid);
2922 EXPORT_SYMBOL(spa_last_synced_txg);
2923 EXPORT_SYMBOL(spa_first_txg);
2924 EXPORT_SYMBOL(spa_syncing_txg);
2925 EXPORT_SYMBOL(spa_version);
2926 EXPORT_SYMBOL(spa_state);
2927 EXPORT_SYMBOL(spa_load_state);
2928 EXPORT_SYMBOL(spa_freeze_txg);
2929 EXPORT_SYMBOL(spa_get_dspace);
2930 EXPORT_SYMBOL(spa_update_dspace);
2931 EXPORT_SYMBOL(spa_deflate);
2932 EXPORT_SYMBOL(spa_normal_class);
2933 EXPORT_SYMBOL(spa_log_class);
2934 EXPORT_SYMBOL(spa_special_class);
2935 EXPORT_SYMBOL(spa_preferred_class);
2936 EXPORT_SYMBOL(spa_max_replication);
2937 EXPORT_SYMBOL(spa_prev_software_version);
2938 EXPORT_SYMBOL(spa_get_failmode);
2939 EXPORT_SYMBOL(spa_suspended);
2940 EXPORT_SYMBOL(spa_bootfs);
2941 EXPORT_SYMBOL(spa_delegation);
2942 EXPORT_SYMBOL(spa_meta_objset);
2943 EXPORT_SYMBOL(spa_maxblocksize);
2944 EXPORT_SYMBOL(spa_maxdnodesize);
2945 
2946 /* Miscellaneous support routines */
2947 EXPORT_SYMBOL(spa_guid_exists);
2948 EXPORT_SYMBOL(spa_strdup);
2949 EXPORT_SYMBOL(spa_strfree);
2950 EXPORT_SYMBOL(spa_generate_guid);
2951 EXPORT_SYMBOL(snprintf_blkptr);
2952 EXPORT_SYMBOL(spa_freeze);
2953 EXPORT_SYMBOL(spa_upgrade);
2954 EXPORT_SYMBOL(spa_evict_all);
2955 EXPORT_SYMBOL(spa_lookup_by_guid);
2956 EXPORT_SYMBOL(spa_has_spare);
2957 EXPORT_SYMBOL(dva_get_dsize_sync);
2958 EXPORT_SYMBOL(bp_get_dsize_sync);
2959 EXPORT_SYMBOL(bp_get_dsize);
2960 EXPORT_SYMBOL(spa_has_slogs);
2961 EXPORT_SYMBOL(spa_is_root);
2962 EXPORT_SYMBOL(spa_writeable);
2963 EXPORT_SYMBOL(spa_mode);
2964 EXPORT_SYMBOL(spa_namespace_lock);
2965 EXPORT_SYMBOL(spa_trust_config);
2966 EXPORT_SYMBOL(spa_missing_tvds_allowed);
2967 EXPORT_SYMBOL(spa_set_missing_tvds);
2968 EXPORT_SYMBOL(spa_state_to_name);
2969 EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
2970 EXPORT_SYMBOL(spa_min_claim_txg);
2971 EXPORT_SYMBOL(spa_suspend_async_destroy);
2972 EXPORT_SYMBOL(spa_has_checkpoint);
2973 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
2974 
2975 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW,
2976 	"Set additional debugging flags");
2977 
2978 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW,
2979 	"Set to attempt to recover from fatal errors");
2980 
2981 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW,
2982 	"Set to ignore IO errors during free and permanently leak the space");
2983 
2984 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, U64, ZMOD_RW,
2985 	"Dead I/O check interval in milliseconds");
2986 
2987 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW,
2988 	"Enable deadman timer");
2989 
2990 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, UINT, ZMOD_RW,
2991 	"SPA size estimate multiplication factor");
2992 
2993 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW,
2994 	"Place DDT data into the special class");
2995 
2996 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW,
2997 	"Place user data indirect blocks into the special class");
2998 
2999 /* BEGIN CSTYLED */
3000 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode,
3001 	param_set_deadman_failmode, param_get_charp, ZMOD_RW,
3002 	"Failmode for deadman timer");
3003 
3004 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms,
3005 	param_set_deadman_synctime, spl_param_get_u64, ZMOD_RW,
3006 	"Pool sync expiration time in milliseconds");
3007 
3008 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms,
3009 	param_set_deadman_ziotime, spl_param_get_u64, ZMOD_RW,
3010 	"IO expiration time in milliseconds");
3011 
3012 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, UINT, ZMOD_RW,
3013 	"Small file blocks in special vdevs depends on this much "
3014 	"free space available");
3015 /* END CSTYLED */
3016 
3017 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift,
3018 	param_get_uint, ZMOD_RW, "Reserved free space in pool");
3019 
3020 ZFS_MODULE_PARAM(zfs, spa_, num_allocators, INT, ZMOD_RW,
3021 	"Number of allocators per spa, capped by ncpus");
3022