1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2013 Saso Kiselkov. All rights reserved. 27 * Copyright (c) 2017 Datto Inc. 28 * Copyright (c) 2017, Intel Corporation. 29 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/spa_impl.h> 34 #include <sys/zio.h> 35 #include <sys/zio_checksum.h> 36 #include <sys/zio_compress.h> 37 #include <sys/dmu.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/zap.h> 40 #include <sys/zil.h> 41 #include <sys/vdev_impl.h> 42 #include <sys/vdev_initialize.h> 43 #include <sys/vdev_trim.h> 44 #include <sys/vdev_file.h> 45 #include <sys/vdev_raidz.h> 46 #include <sys/metaslab.h> 47 #include <sys/uberblock_impl.h> 48 #include <sys/txg.h> 49 #include <sys/avl.h> 50 #include <sys/unique.h> 51 #include <sys/dsl_pool.h> 52 #include <sys/dsl_dir.h> 53 #include <sys/dsl_prop.h> 54 #include <sys/fm/util.h> 55 #include <sys/dsl_scan.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/metaslab_impl.h> 58 #include <sys/arc.h> 59 #include <sys/ddt.h> 60 #include <sys/kstat.h> 61 #include "zfs_prop.h" 62 #include <sys/btree.h> 63 #include <sys/zfeature.h> 64 #include <sys/qat.h> 65 #include <sys/zstd/zstd.h> 66 67 /* 68 * SPA locking 69 * 70 * There are three basic locks for managing spa_t structures: 71 * 72 * spa_namespace_lock (global mutex) 73 * 74 * This lock must be acquired to do any of the following: 75 * 76 * - Lookup a spa_t by name 77 * - Add or remove a spa_t from the namespace 78 * - Increase spa_refcount from non-zero 79 * - Check if spa_refcount is zero 80 * - Rename a spa_t 81 * - add/remove/attach/detach devices 82 * - Held for the duration of create/destroy/import/export 83 * 84 * It does not need to handle recursion. A create or destroy may 85 * reference objects (files or zvols) in other pools, but by 86 * definition they must have an existing reference, and will never need 87 * to lookup a spa_t by name. 88 * 89 * spa_refcount (per-spa zfs_refcount_t protected by mutex) 90 * 91 * This reference count keep track of any active users of the spa_t. The 92 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 93 * the refcount is never really 'zero' - opening a pool implicitly keeps 94 * some references in the DMU. Internally we check against spa_minref, but 95 * present the image of a zero/non-zero value to consumers. 96 * 97 * spa_config_lock[] (per-spa array of rwlocks) 98 * 99 * This protects the spa_t from config changes, and must be held in 100 * the following circumstances: 101 * 102 * - RW_READER to perform I/O to the spa 103 * - RW_WRITER to change the vdev config 104 * 105 * The locking order is fairly straightforward: 106 * 107 * spa_namespace_lock -> spa_refcount 108 * 109 * The namespace lock must be acquired to increase the refcount from 0 110 * or to check if it is zero. 111 * 112 * spa_refcount -> spa_config_lock[] 113 * 114 * There must be at least one valid reference on the spa_t to acquire 115 * the config lock. 116 * 117 * spa_namespace_lock -> spa_config_lock[] 118 * 119 * The namespace lock must always be taken before the config lock. 120 * 121 * 122 * The spa_namespace_lock can be acquired directly and is globally visible. 123 * 124 * The namespace is manipulated using the following functions, all of which 125 * require the spa_namespace_lock to be held. 126 * 127 * spa_lookup() Lookup a spa_t by name. 128 * 129 * spa_add() Create a new spa_t in the namespace. 130 * 131 * spa_remove() Remove a spa_t from the namespace. This also 132 * frees up any memory associated with the spa_t. 133 * 134 * spa_next() Returns the next spa_t in the system, or the 135 * first if NULL is passed. 136 * 137 * spa_evict_all() Shutdown and remove all spa_t structures in 138 * the system. 139 * 140 * spa_guid_exists() Determine whether a pool/device guid exists. 141 * 142 * The spa_refcount is manipulated using the following functions: 143 * 144 * spa_open_ref() Adds a reference to the given spa_t. Must be 145 * called with spa_namespace_lock held if the 146 * refcount is currently zero. 147 * 148 * spa_close() Remove a reference from the spa_t. This will 149 * not free the spa_t or remove it from the 150 * namespace. No locking is required. 151 * 152 * spa_refcount_zero() Returns true if the refcount is currently 153 * zero. Must be called with spa_namespace_lock 154 * held. 155 * 156 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 157 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 158 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 159 * 160 * To read the configuration, it suffices to hold one of these locks as reader. 161 * To modify the configuration, you must hold all locks as writer. To modify 162 * vdev state without altering the vdev tree's topology (e.g. online/offline), 163 * you must hold SCL_STATE and SCL_ZIO as writer. 164 * 165 * We use these distinct config locks to avoid recursive lock entry. 166 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 167 * block allocations (SCL_ALLOC), which may require reading space maps 168 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 169 * 170 * The spa config locks cannot be normal rwlocks because we need the 171 * ability to hand off ownership. For example, SCL_ZIO is acquired 172 * by the issuing thread and later released by an interrupt thread. 173 * They do, however, obey the usual write-wanted semantics to prevent 174 * writer (i.e. system administrator) starvation. 175 * 176 * The lock acquisition rules are as follows: 177 * 178 * SCL_CONFIG 179 * Protects changes to the vdev tree topology, such as vdev 180 * add/remove/attach/detach. Protects the dirty config list 181 * (spa_config_dirty_list) and the set of spares and l2arc devices. 182 * 183 * SCL_STATE 184 * Protects changes to pool state and vdev state, such as vdev 185 * online/offline/fault/degrade/clear. Protects the dirty state list 186 * (spa_state_dirty_list) and global pool state (spa_state). 187 * 188 * SCL_ALLOC 189 * Protects changes to metaslab groups and classes. 190 * Held as reader by metaslab_alloc() and metaslab_claim(). 191 * 192 * SCL_ZIO 193 * Held by bp-level zios (those which have no io_vd upon entry) 194 * to prevent changes to the vdev tree. The bp-level zio implicitly 195 * protects all of its vdev child zios, which do not hold SCL_ZIO. 196 * 197 * SCL_FREE 198 * Protects changes to metaslab groups and classes. 199 * Held as reader by metaslab_free(). SCL_FREE is distinct from 200 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 201 * blocks in zio_done() while another i/o that holds either 202 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 203 * 204 * SCL_VDEV 205 * Held as reader to prevent changes to the vdev tree during trivial 206 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 207 * other locks, and lower than all of them, to ensure that it's safe 208 * to acquire regardless of caller context. 209 * 210 * In addition, the following rules apply: 211 * 212 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 213 * The lock ordering is SCL_CONFIG > spa_props_lock. 214 * 215 * (b) I/O operations on leaf vdevs. For any zio operation that takes 216 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 217 * or zio_write_phys() -- the caller must ensure that the config cannot 218 * cannot change in the interim, and that the vdev cannot be reopened. 219 * SCL_STATE as reader suffices for both. 220 * 221 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 222 * 223 * spa_vdev_enter() Acquire the namespace lock and the config lock 224 * for writing. 225 * 226 * spa_vdev_exit() Release the config lock, wait for all I/O 227 * to complete, sync the updated configs to the 228 * cache, and release the namespace lock. 229 * 230 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 231 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 232 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 233 */ 234 235 static avl_tree_t spa_namespace_avl; 236 kmutex_t spa_namespace_lock; 237 static kcondvar_t spa_namespace_cv; 238 static const int spa_max_replication_override = SPA_DVAS_PER_BP; 239 240 static kmutex_t spa_spare_lock; 241 static avl_tree_t spa_spare_avl; 242 static kmutex_t spa_l2cache_lock; 243 static avl_tree_t spa_l2cache_avl; 244 245 spa_mode_t spa_mode_global = SPA_MODE_UNINIT; 246 247 #ifdef ZFS_DEBUG 248 /* 249 * Everything except dprintf, set_error, spa, and indirect_remap is on 250 * by default in debug builds. 251 */ 252 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR | 253 ZFS_DEBUG_INDIRECT_REMAP); 254 #else 255 int zfs_flags = 0; 256 #endif 257 258 /* 259 * zfs_recover can be set to nonzero to attempt to recover from 260 * otherwise-fatal errors, typically caused by on-disk corruption. When 261 * set, calls to zfs_panic_recover() will turn into warning messages. 262 * This should only be used as a last resort, as it typically results 263 * in leaked space, or worse. 264 */ 265 int zfs_recover = B_FALSE; 266 267 /* 268 * If destroy encounters an EIO while reading metadata (e.g. indirect 269 * blocks), space referenced by the missing metadata can not be freed. 270 * Normally this causes the background destroy to become "stalled", as 271 * it is unable to make forward progress. While in this stalled state, 272 * all remaining space to free from the error-encountering filesystem is 273 * "temporarily leaked". Set this flag to cause it to ignore the EIO, 274 * permanently leak the space from indirect blocks that can not be read, 275 * and continue to free everything else that it can. 276 * 277 * The default, "stalling" behavior is useful if the storage partially 278 * fails (i.e. some but not all i/os fail), and then later recovers. In 279 * this case, we will be able to continue pool operations while it is 280 * partially failed, and when it recovers, we can continue to free the 281 * space, with no leaks. However, note that this case is actually 282 * fairly rare. 283 * 284 * Typically pools either (a) fail completely (but perhaps temporarily, 285 * e.g. a top-level vdev going offline), or (b) have localized, 286 * permanent errors (e.g. disk returns the wrong data due to bit flip or 287 * firmware bug). In case (a), this setting does not matter because the 288 * pool will be suspended and the sync thread will not be able to make 289 * forward progress regardless. In case (b), because the error is 290 * permanent, the best we can do is leak the minimum amount of space, 291 * which is what setting this flag will do. Therefore, it is reasonable 292 * for this flag to normally be set, but we chose the more conservative 293 * approach of not setting it, so that there is no possibility of 294 * leaking space in the "partial temporary" failure case. 295 */ 296 int zfs_free_leak_on_eio = B_FALSE; 297 298 /* 299 * Expiration time in milliseconds. This value has two meanings. First it is 300 * used to determine when the spa_deadman() logic should fire. By default the 301 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds. 302 * Secondly, the value determines if an I/O is considered "hung". Any I/O that 303 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting 304 * in one of three behaviors controlled by zfs_deadman_failmode. 305 */ 306 unsigned long zfs_deadman_synctime_ms = 600000UL; /* 10 min. */ 307 308 /* 309 * This value controls the maximum amount of time zio_wait() will block for an 310 * outstanding IO. By default this is 300 seconds at which point the "hung" 311 * behavior will be applied as described for zfs_deadman_synctime_ms. 312 */ 313 unsigned long zfs_deadman_ziotime_ms = 300000UL; /* 5 min. */ 314 315 /* 316 * Check time in milliseconds. This defines the frequency at which we check 317 * for hung I/O. 318 */ 319 unsigned long zfs_deadman_checktime_ms = 60000UL; /* 1 min. */ 320 321 /* 322 * By default the deadman is enabled. 323 */ 324 int zfs_deadman_enabled = B_TRUE; 325 326 /* 327 * Controls the behavior of the deadman when it detects a "hung" I/O. 328 * Valid values are zfs_deadman_failmode=<wait|continue|panic>. 329 * 330 * wait - Wait for the "hung" I/O (default) 331 * continue - Attempt to recover from a "hung" I/O 332 * panic - Panic the system 333 */ 334 const char *zfs_deadman_failmode = "wait"; 335 336 /* 337 * The worst case is single-sector max-parity RAID-Z blocks, in which 338 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 339 * times the size; so just assume that. Add to this the fact that 340 * we can have up to 3 DVAs per bp, and one more factor of 2 because 341 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, 342 * the worst case is: 343 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 344 */ 345 int spa_asize_inflation = 24; 346 347 /* 348 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in 349 * the pool to be consumed (bounded by spa_max_slop). This ensures that we 350 * don't run the pool completely out of space, due to unaccounted changes (e.g. 351 * to the MOS). It also limits the worst-case time to allocate space. If we 352 * have less than this amount of free space, most ZPL operations (e.g. write, 353 * create) will return ENOSPC. The ZIL metaslabs (spa_embedded_log_class) are 354 * also part of this 3.2% of space which can't be consumed by normal writes; 355 * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded 356 * log space. 357 * 358 * Certain operations (e.g. file removal, most administrative actions) can 359 * use half the slop space. They will only return ENOSPC if less than half 360 * the slop space is free. Typically, once the pool has less than the slop 361 * space free, the user will use these operations to free up space in the pool. 362 * These are the operations that call dsl_pool_adjustedsize() with the netfree 363 * argument set to TRUE. 364 * 365 * Operations that are almost guaranteed to free up space in the absence of 366 * a pool checkpoint can use up to three quarters of the slop space 367 * (e.g zfs destroy). 368 * 369 * A very restricted set of operations are always permitted, regardless of 370 * the amount of free space. These are the operations that call 371 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net 372 * increase in the amount of space used, it is possible to run the pool 373 * completely out of space, causing it to be permanently read-only. 374 * 375 * Note that on very small pools, the slop space will be larger than 376 * 3.2%, in an effort to have it be at least spa_min_slop (128MB), 377 * but we never allow it to be more than half the pool size. 378 * 379 * Further, on very large pools, the slop space will be smaller than 380 * 3.2%, to avoid reserving much more space than we actually need; bounded 381 * by spa_max_slop (128GB). 382 * 383 * See also the comments in zfs_space_check_t. 384 */ 385 int spa_slop_shift = 5; 386 static const uint64_t spa_min_slop = 128ULL * 1024 * 1024; 387 static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024; 388 static const int spa_allocators = 4; 389 390 391 void 392 spa_load_failed(spa_t *spa, const char *fmt, ...) 393 { 394 va_list adx; 395 char buf[256]; 396 397 va_start(adx, fmt); 398 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 399 va_end(adx); 400 401 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name, 402 spa->spa_trust_config ? "trusted" : "untrusted", buf); 403 } 404 405 void 406 spa_load_note(spa_t *spa, const char *fmt, ...) 407 { 408 va_list adx; 409 char buf[256]; 410 411 va_start(adx, fmt); 412 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 413 va_end(adx); 414 415 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name, 416 spa->spa_trust_config ? "trusted" : "untrusted", buf); 417 } 418 419 /* 420 * By default dedup and user data indirects land in the special class 421 */ 422 static int zfs_ddt_data_is_special = B_TRUE; 423 static int zfs_user_indirect_is_special = B_TRUE; 424 425 /* 426 * The percentage of special class final space reserved for metadata only. 427 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only 428 * let metadata into the class. 429 */ 430 static int zfs_special_class_metadata_reserve_pct = 25; 431 432 /* 433 * ========================================================================== 434 * SPA config locking 435 * ========================================================================== 436 */ 437 static void 438 spa_config_lock_init(spa_t *spa) 439 { 440 for (int i = 0; i < SCL_LOCKS; i++) { 441 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 442 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 443 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 444 scl->scl_writer = NULL; 445 scl->scl_write_wanted = 0; 446 scl->scl_count = 0; 447 } 448 } 449 450 static void 451 spa_config_lock_destroy(spa_t *spa) 452 { 453 for (int i = 0; i < SCL_LOCKS; i++) { 454 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 455 mutex_destroy(&scl->scl_lock); 456 cv_destroy(&scl->scl_cv); 457 ASSERT(scl->scl_writer == NULL); 458 ASSERT(scl->scl_write_wanted == 0); 459 ASSERT(scl->scl_count == 0); 460 } 461 } 462 463 int 464 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 465 { 466 for (int i = 0; i < SCL_LOCKS; i++) { 467 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 468 if (!(locks & (1 << i))) 469 continue; 470 mutex_enter(&scl->scl_lock); 471 if (rw == RW_READER) { 472 if (scl->scl_writer || scl->scl_write_wanted) { 473 mutex_exit(&scl->scl_lock); 474 spa_config_exit(spa, locks & ((1 << i) - 1), 475 tag); 476 return (0); 477 } 478 } else { 479 ASSERT(scl->scl_writer != curthread); 480 if (scl->scl_count != 0) { 481 mutex_exit(&scl->scl_lock); 482 spa_config_exit(spa, locks & ((1 << i) - 1), 483 tag); 484 return (0); 485 } 486 scl->scl_writer = curthread; 487 } 488 scl->scl_count++; 489 mutex_exit(&scl->scl_lock); 490 } 491 return (1); 492 } 493 494 void 495 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw) 496 { 497 (void) tag; 498 int wlocks_held = 0; 499 500 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 501 502 for (int i = 0; i < SCL_LOCKS; i++) { 503 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 504 if (scl->scl_writer == curthread) 505 wlocks_held |= (1 << i); 506 if (!(locks & (1 << i))) 507 continue; 508 mutex_enter(&scl->scl_lock); 509 if (rw == RW_READER) { 510 while (scl->scl_writer || scl->scl_write_wanted) { 511 cv_wait(&scl->scl_cv, &scl->scl_lock); 512 } 513 } else { 514 ASSERT(scl->scl_writer != curthread); 515 while (scl->scl_count != 0) { 516 scl->scl_write_wanted++; 517 cv_wait(&scl->scl_cv, &scl->scl_lock); 518 scl->scl_write_wanted--; 519 } 520 scl->scl_writer = curthread; 521 } 522 scl->scl_count++; 523 mutex_exit(&scl->scl_lock); 524 } 525 ASSERT3U(wlocks_held, <=, locks); 526 } 527 528 void 529 spa_config_exit(spa_t *spa, int locks, const void *tag) 530 { 531 (void) tag; 532 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 533 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 534 if (!(locks & (1 << i))) 535 continue; 536 mutex_enter(&scl->scl_lock); 537 ASSERT(scl->scl_count > 0); 538 if (--scl->scl_count == 0) { 539 ASSERT(scl->scl_writer == NULL || 540 scl->scl_writer == curthread); 541 scl->scl_writer = NULL; /* OK in either case */ 542 cv_broadcast(&scl->scl_cv); 543 } 544 mutex_exit(&scl->scl_lock); 545 } 546 } 547 548 int 549 spa_config_held(spa_t *spa, int locks, krw_t rw) 550 { 551 int locks_held = 0; 552 553 for (int i = 0; i < SCL_LOCKS; i++) { 554 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 555 if (!(locks & (1 << i))) 556 continue; 557 if ((rw == RW_READER && scl->scl_count != 0) || 558 (rw == RW_WRITER && scl->scl_writer == curthread)) 559 locks_held |= 1 << i; 560 } 561 562 return (locks_held); 563 } 564 565 /* 566 * ========================================================================== 567 * SPA namespace functions 568 * ========================================================================== 569 */ 570 571 /* 572 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 573 * Returns NULL if no matching spa_t is found. 574 */ 575 spa_t * 576 spa_lookup(const char *name) 577 { 578 static spa_t search; /* spa_t is large; don't allocate on stack */ 579 spa_t *spa; 580 avl_index_t where; 581 char *cp; 582 583 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 584 585 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 586 587 /* 588 * If it's a full dataset name, figure out the pool name and 589 * just use that. 590 */ 591 cp = strpbrk(search.spa_name, "/@#"); 592 if (cp != NULL) 593 *cp = '\0'; 594 595 spa = avl_find(&spa_namespace_avl, &search, &where); 596 597 return (spa); 598 } 599 600 /* 601 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 602 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 603 * looking for potentially hung I/Os. 604 */ 605 void 606 spa_deadman(void *arg) 607 { 608 spa_t *spa = arg; 609 610 /* Disable the deadman if the pool is suspended. */ 611 if (spa_suspended(spa)) 612 return; 613 614 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 615 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 616 (u_longlong_t)++spa->spa_deadman_calls); 617 if (zfs_deadman_enabled) 618 vdev_deadman(spa->spa_root_vdev, FTAG); 619 620 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, 621 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + 622 MSEC_TO_TICK(zfs_deadman_checktime_ms)); 623 } 624 625 static int 626 spa_log_sm_sort_by_txg(const void *va, const void *vb) 627 { 628 const spa_log_sm_t *a = va; 629 const spa_log_sm_t *b = vb; 630 631 return (TREE_CMP(a->sls_txg, b->sls_txg)); 632 } 633 634 /* 635 * Create an uninitialized spa_t with the given name. Requires 636 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 637 * exist by calling spa_lookup() first. 638 */ 639 spa_t * 640 spa_add(const char *name, nvlist_t *config, const char *altroot) 641 { 642 spa_t *spa; 643 spa_config_dirent_t *dp; 644 645 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 646 647 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 648 649 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 650 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 651 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 652 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); 653 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 654 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 655 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 656 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); 657 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 658 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 659 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 660 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL); 661 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL); 662 mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL); 663 664 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 665 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); 666 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 667 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 668 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 669 cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL); 670 cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL); 671 672 for (int t = 0; t < TXG_SIZE; t++) 673 bplist_create(&spa->spa_free_bplist[t]); 674 675 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 676 spa->spa_state = POOL_STATE_UNINITIALIZED; 677 spa->spa_freeze_txg = UINT64_MAX; 678 spa->spa_final_txg = UINT64_MAX; 679 spa->spa_load_max_txg = UINT64_MAX; 680 spa->spa_proc = &p0; 681 spa->spa_proc_state = SPA_PROC_NONE; 682 spa->spa_trust_config = B_TRUE; 683 spa->spa_hostid = zone_get_hostid(NULL); 684 685 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); 686 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms); 687 spa_set_deadman_failmode(spa, zfs_deadman_failmode); 688 689 zfs_refcount_create(&spa->spa_refcount); 690 spa_config_lock_init(spa); 691 spa_stats_init(spa); 692 693 avl_add(&spa_namespace_avl, spa); 694 695 /* 696 * Set the alternate root, if there is one. 697 */ 698 if (altroot) 699 spa->spa_root = spa_strdup(altroot); 700 701 spa->spa_alloc_count = spa_allocators; 702 spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count * 703 sizeof (spa_alloc_t), KM_SLEEP); 704 for (int i = 0; i < spa->spa_alloc_count; i++) { 705 mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT, 706 NULL); 707 avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare, 708 sizeof (zio_t), offsetof(zio_t, io_alloc_node)); 709 } 710 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed, 711 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node)); 712 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg, 713 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node)); 714 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t), 715 offsetof(log_summary_entry_t, lse_node)); 716 717 /* 718 * Every pool starts with the default cachefile 719 */ 720 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 721 offsetof(spa_config_dirent_t, scd_link)); 722 723 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 724 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 725 list_insert_head(&spa->spa_config_list, dp); 726 727 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 728 KM_SLEEP) == 0); 729 730 if (config != NULL) { 731 nvlist_t *features; 732 733 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 734 &features) == 0) { 735 VERIFY(nvlist_dup(features, &spa->spa_label_features, 736 0) == 0); 737 } 738 739 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 740 } 741 742 if (spa->spa_label_features == NULL) { 743 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 744 KM_SLEEP) == 0); 745 } 746 747 spa->spa_min_ashift = INT_MAX; 748 spa->spa_max_ashift = 0; 749 spa->spa_min_alloc = INT_MAX; 750 751 /* Reset cached value */ 752 spa->spa_dedup_dspace = ~0ULL; 753 754 /* 755 * As a pool is being created, treat all features as disabled by 756 * setting SPA_FEATURE_DISABLED for all entries in the feature 757 * refcount cache. 758 */ 759 for (int i = 0; i < SPA_FEATURES; i++) { 760 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; 761 } 762 763 list_create(&spa->spa_leaf_list, sizeof (vdev_t), 764 offsetof(vdev_t, vdev_leaf_node)); 765 766 return (spa); 767 } 768 769 /* 770 * Removes a spa_t from the namespace, freeing up any memory used. Requires 771 * spa_namespace_lock. This is called only after the spa_t has been closed and 772 * deactivated. 773 */ 774 void 775 spa_remove(spa_t *spa) 776 { 777 spa_config_dirent_t *dp; 778 779 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 780 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED); 781 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0); 782 ASSERT0(spa->spa_waiters); 783 784 nvlist_free(spa->spa_config_splitting); 785 786 avl_remove(&spa_namespace_avl, spa); 787 cv_broadcast(&spa_namespace_cv); 788 789 if (spa->spa_root) 790 spa_strfree(spa->spa_root); 791 792 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 793 list_remove(&spa->spa_config_list, dp); 794 if (dp->scd_path != NULL) 795 spa_strfree(dp->scd_path); 796 kmem_free(dp, sizeof (spa_config_dirent_t)); 797 } 798 799 for (int i = 0; i < spa->spa_alloc_count; i++) { 800 avl_destroy(&spa->spa_allocs[i].spaa_tree); 801 mutex_destroy(&spa->spa_allocs[i].spaa_lock); 802 } 803 kmem_free(spa->spa_allocs, spa->spa_alloc_count * 804 sizeof (spa_alloc_t)); 805 806 avl_destroy(&spa->spa_metaslabs_by_flushed); 807 avl_destroy(&spa->spa_sm_logs_by_txg); 808 list_destroy(&spa->spa_log_summary); 809 list_destroy(&spa->spa_config_list); 810 list_destroy(&spa->spa_leaf_list); 811 812 nvlist_free(spa->spa_label_features); 813 nvlist_free(spa->spa_load_info); 814 nvlist_free(spa->spa_feat_stats); 815 spa_config_set(spa, NULL); 816 817 zfs_refcount_destroy(&spa->spa_refcount); 818 819 spa_stats_destroy(spa); 820 spa_config_lock_destroy(spa); 821 822 for (int t = 0; t < TXG_SIZE; t++) 823 bplist_destroy(&spa->spa_free_bplist[t]); 824 825 zio_checksum_templates_free(spa); 826 827 cv_destroy(&spa->spa_async_cv); 828 cv_destroy(&spa->spa_evicting_os_cv); 829 cv_destroy(&spa->spa_proc_cv); 830 cv_destroy(&spa->spa_scrub_io_cv); 831 cv_destroy(&spa->spa_suspend_cv); 832 cv_destroy(&spa->spa_activities_cv); 833 cv_destroy(&spa->spa_waiters_cv); 834 835 mutex_destroy(&spa->spa_flushed_ms_lock); 836 mutex_destroy(&spa->spa_async_lock); 837 mutex_destroy(&spa->spa_errlist_lock); 838 mutex_destroy(&spa->spa_errlog_lock); 839 mutex_destroy(&spa->spa_evicting_os_lock); 840 mutex_destroy(&spa->spa_history_lock); 841 mutex_destroy(&spa->spa_proc_lock); 842 mutex_destroy(&spa->spa_props_lock); 843 mutex_destroy(&spa->spa_cksum_tmpls_lock); 844 mutex_destroy(&spa->spa_scrub_lock); 845 mutex_destroy(&spa->spa_suspend_lock); 846 mutex_destroy(&spa->spa_vdev_top_lock); 847 mutex_destroy(&spa->spa_feat_stats_lock); 848 mutex_destroy(&spa->spa_activities_lock); 849 850 kmem_free(spa, sizeof (spa_t)); 851 } 852 853 /* 854 * Given a pool, return the next pool in the namespace, or NULL if there is 855 * none. If 'prev' is NULL, return the first pool. 856 */ 857 spa_t * 858 spa_next(spa_t *prev) 859 { 860 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 861 862 if (prev) 863 return (AVL_NEXT(&spa_namespace_avl, prev)); 864 else 865 return (avl_first(&spa_namespace_avl)); 866 } 867 868 /* 869 * ========================================================================== 870 * SPA refcount functions 871 * ========================================================================== 872 */ 873 874 /* 875 * Add a reference to the given spa_t. Must have at least one reference, or 876 * have the namespace lock held. 877 */ 878 void 879 spa_open_ref(spa_t *spa, void *tag) 880 { 881 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref || 882 MUTEX_HELD(&spa_namespace_lock)); 883 (void) zfs_refcount_add(&spa->spa_refcount, tag); 884 } 885 886 /* 887 * Remove a reference to the given spa_t. Must have at least one reference, or 888 * have the namespace lock held. 889 */ 890 void 891 spa_close(spa_t *spa, void *tag) 892 { 893 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref || 894 MUTEX_HELD(&spa_namespace_lock)); 895 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 896 } 897 898 /* 899 * Remove a reference to the given spa_t held by a dsl dir that is 900 * being asynchronously released. Async releases occur from a taskq 901 * performing eviction of dsl datasets and dirs. The namespace lock 902 * isn't held and the hold by the object being evicted may contribute to 903 * spa_minref (e.g. dataset or directory released during pool export), 904 * so the asserts in spa_close() do not apply. 905 */ 906 void 907 spa_async_close(spa_t *spa, void *tag) 908 { 909 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 910 } 911 912 /* 913 * Check to see if the spa refcount is zero. Must be called with 914 * spa_namespace_lock held. We really compare against spa_minref, which is the 915 * number of references acquired when opening a pool 916 */ 917 boolean_t 918 spa_refcount_zero(spa_t *spa) 919 { 920 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 921 922 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref); 923 } 924 925 /* 926 * ========================================================================== 927 * SPA spare and l2cache tracking 928 * ========================================================================== 929 */ 930 931 /* 932 * Hot spares and cache devices are tracked using the same code below, 933 * for 'auxiliary' devices. 934 */ 935 936 typedef struct spa_aux { 937 uint64_t aux_guid; 938 uint64_t aux_pool; 939 avl_node_t aux_avl; 940 int aux_count; 941 } spa_aux_t; 942 943 static inline int 944 spa_aux_compare(const void *a, const void *b) 945 { 946 const spa_aux_t *sa = (const spa_aux_t *)a; 947 const spa_aux_t *sb = (const spa_aux_t *)b; 948 949 return (TREE_CMP(sa->aux_guid, sb->aux_guid)); 950 } 951 952 static void 953 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 954 { 955 avl_index_t where; 956 spa_aux_t search; 957 spa_aux_t *aux; 958 959 search.aux_guid = vd->vdev_guid; 960 if ((aux = avl_find(avl, &search, &where)) != NULL) { 961 aux->aux_count++; 962 } else { 963 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 964 aux->aux_guid = vd->vdev_guid; 965 aux->aux_count = 1; 966 avl_insert(avl, aux, where); 967 } 968 } 969 970 static void 971 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 972 { 973 spa_aux_t search; 974 spa_aux_t *aux; 975 avl_index_t where; 976 977 search.aux_guid = vd->vdev_guid; 978 aux = avl_find(avl, &search, &where); 979 980 ASSERT(aux != NULL); 981 982 if (--aux->aux_count == 0) { 983 avl_remove(avl, aux); 984 kmem_free(aux, sizeof (spa_aux_t)); 985 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 986 aux->aux_pool = 0ULL; 987 } 988 } 989 990 static boolean_t 991 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 992 { 993 spa_aux_t search, *found; 994 995 search.aux_guid = guid; 996 found = avl_find(avl, &search, NULL); 997 998 if (pool) { 999 if (found) 1000 *pool = found->aux_pool; 1001 else 1002 *pool = 0ULL; 1003 } 1004 1005 if (refcnt) { 1006 if (found) 1007 *refcnt = found->aux_count; 1008 else 1009 *refcnt = 0; 1010 } 1011 1012 return (found != NULL); 1013 } 1014 1015 static void 1016 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 1017 { 1018 spa_aux_t search, *found; 1019 avl_index_t where; 1020 1021 search.aux_guid = vd->vdev_guid; 1022 found = avl_find(avl, &search, &where); 1023 ASSERT(found != NULL); 1024 ASSERT(found->aux_pool == 0ULL); 1025 1026 found->aux_pool = spa_guid(vd->vdev_spa); 1027 } 1028 1029 /* 1030 * Spares are tracked globally due to the following constraints: 1031 * 1032 * - A spare may be part of multiple pools. 1033 * - A spare may be added to a pool even if it's actively in use within 1034 * another pool. 1035 * - A spare in use in any pool can only be the source of a replacement if 1036 * the target is a spare in the same pool. 1037 * 1038 * We keep track of all spares on the system through the use of a reference 1039 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 1040 * spare, then we bump the reference count in the AVL tree. In addition, we set 1041 * the 'vdev_isspare' member to indicate that the device is a spare (active or 1042 * inactive). When a spare is made active (used to replace a device in the 1043 * pool), we also keep track of which pool its been made a part of. 1044 * 1045 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 1046 * called under the spa_namespace lock as part of vdev reconfiguration. The 1047 * separate spare lock exists for the status query path, which does not need to 1048 * be completely consistent with respect to other vdev configuration changes. 1049 */ 1050 1051 static int 1052 spa_spare_compare(const void *a, const void *b) 1053 { 1054 return (spa_aux_compare(a, b)); 1055 } 1056 1057 void 1058 spa_spare_add(vdev_t *vd) 1059 { 1060 mutex_enter(&spa_spare_lock); 1061 ASSERT(!vd->vdev_isspare); 1062 spa_aux_add(vd, &spa_spare_avl); 1063 vd->vdev_isspare = B_TRUE; 1064 mutex_exit(&spa_spare_lock); 1065 } 1066 1067 void 1068 spa_spare_remove(vdev_t *vd) 1069 { 1070 mutex_enter(&spa_spare_lock); 1071 ASSERT(vd->vdev_isspare); 1072 spa_aux_remove(vd, &spa_spare_avl); 1073 vd->vdev_isspare = B_FALSE; 1074 mutex_exit(&spa_spare_lock); 1075 } 1076 1077 boolean_t 1078 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 1079 { 1080 boolean_t found; 1081 1082 mutex_enter(&spa_spare_lock); 1083 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 1084 mutex_exit(&spa_spare_lock); 1085 1086 return (found); 1087 } 1088 1089 void 1090 spa_spare_activate(vdev_t *vd) 1091 { 1092 mutex_enter(&spa_spare_lock); 1093 ASSERT(vd->vdev_isspare); 1094 spa_aux_activate(vd, &spa_spare_avl); 1095 mutex_exit(&spa_spare_lock); 1096 } 1097 1098 /* 1099 * Level 2 ARC devices are tracked globally for the same reasons as spares. 1100 * Cache devices currently only support one pool per cache device, and so 1101 * for these devices the aux reference count is currently unused beyond 1. 1102 */ 1103 1104 static int 1105 spa_l2cache_compare(const void *a, const void *b) 1106 { 1107 return (spa_aux_compare(a, b)); 1108 } 1109 1110 void 1111 spa_l2cache_add(vdev_t *vd) 1112 { 1113 mutex_enter(&spa_l2cache_lock); 1114 ASSERT(!vd->vdev_isl2cache); 1115 spa_aux_add(vd, &spa_l2cache_avl); 1116 vd->vdev_isl2cache = B_TRUE; 1117 mutex_exit(&spa_l2cache_lock); 1118 } 1119 1120 void 1121 spa_l2cache_remove(vdev_t *vd) 1122 { 1123 mutex_enter(&spa_l2cache_lock); 1124 ASSERT(vd->vdev_isl2cache); 1125 spa_aux_remove(vd, &spa_l2cache_avl); 1126 vd->vdev_isl2cache = B_FALSE; 1127 mutex_exit(&spa_l2cache_lock); 1128 } 1129 1130 boolean_t 1131 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 1132 { 1133 boolean_t found; 1134 1135 mutex_enter(&spa_l2cache_lock); 1136 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 1137 mutex_exit(&spa_l2cache_lock); 1138 1139 return (found); 1140 } 1141 1142 void 1143 spa_l2cache_activate(vdev_t *vd) 1144 { 1145 mutex_enter(&spa_l2cache_lock); 1146 ASSERT(vd->vdev_isl2cache); 1147 spa_aux_activate(vd, &spa_l2cache_avl); 1148 mutex_exit(&spa_l2cache_lock); 1149 } 1150 1151 /* 1152 * ========================================================================== 1153 * SPA vdev locking 1154 * ========================================================================== 1155 */ 1156 1157 /* 1158 * Lock the given spa_t for the purpose of adding or removing a vdev. 1159 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 1160 * It returns the next transaction group for the spa_t. 1161 */ 1162 uint64_t 1163 spa_vdev_enter(spa_t *spa) 1164 { 1165 mutex_enter(&spa->spa_vdev_top_lock); 1166 mutex_enter(&spa_namespace_lock); 1167 1168 vdev_autotrim_stop_all(spa); 1169 1170 return (spa_vdev_config_enter(spa)); 1171 } 1172 1173 /* 1174 * The same as spa_vdev_enter() above but additionally takes the guid of 1175 * the vdev being detached. When there is a rebuild in process it will be 1176 * suspended while the vdev tree is modified then resumed by spa_vdev_exit(). 1177 * The rebuild is canceled if only a single child remains after the detach. 1178 */ 1179 uint64_t 1180 spa_vdev_detach_enter(spa_t *spa, uint64_t guid) 1181 { 1182 mutex_enter(&spa->spa_vdev_top_lock); 1183 mutex_enter(&spa_namespace_lock); 1184 1185 vdev_autotrim_stop_all(spa); 1186 1187 if (guid != 0) { 1188 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 1189 if (vd) { 1190 vdev_rebuild_stop_wait(vd->vdev_top); 1191 } 1192 } 1193 1194 return (spa_vdev_config_enter(spa)); 1195 } 1196 1197 /* 1198 * Internal implementation for spa_vdev_enter(). Used when a vdev 1199 * operation requires multiple syncs (i.e. removing a device) while 1200 * keeping the spa_namespace_lock held. 1201 */ 1202 uint64_t 1203 spa_vdev_config_enter(spa_t *spa) 1204 { 1205 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1206 1207 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1208 1209 return (spa_last_synced_txg(spa) + 1); 1210 } 1211 1212 /* 1213 * Used in combination with spa_vdev_config_enter() to allow the syncing 1214 * of multiple transactions without releasing the spa_namespace_lock. 1215 */ 1216 void 1217 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 1218 { 1219 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1220 1221 int config_changed = B_FALSE; 1222 1223 ASSERT(txg > spa_last_synced_txg(spa)); 1224 1225 spa->spa_pending_vdev = NULL; 1226 1227 /* 1228 * Reassess the DTLs. 1229 */ 1230 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE); 1231 1232 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 1233 config_changed = B_TRUE; 1234 spa->spa_config_generation++; 1235 } 1236 1237 /* 1238 * Verify the metaslab classes. 1239 */ 1240 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 1241 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 1242 ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0); 1243 ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0); 1244 ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0); 1245 1246 spa_config_exit(spa, SCL_ALL, spa); 1247 1248 /* 1249 * Panic the system if the specified tag requires it. This 1250 * is useful for ensuring that configurations are updated 1251 * transactionally. 1252 */ 1253 if (zio_injection_enabled) 1254 zio_handle_panic_injection(spa, tag, 0); 1255 1256 /* 1257 * Note: this txg_wait_synced() is important because it ensures 1258 * that there won't be more than one config change per txg. 1259 * This allows us to use the txg as the generation number. 1260 */ 1261 if (error == 0) 1262 txg_wait_synced(spa->spa_dsl_pool, txg); 1263 1264 if (vd != NULL) { 1265 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); 1266 if (vd->vdev_ops->vdev_op_leaf) { 1267 mutex_enter(&vd->vdev_initialize_lock); 1268 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, 1269 NULL); 1270 mutex_exit(&vd->vdev_initialize_lock); 1271 1272 mutex_enter(&vd->vdev_trim_lock); 1273 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL); 1274 mutex_exit(&vd->vdev_trim_lock); 1275 } 1276 1277 /* 1278 * The vdev may be both a leaf and top-level device. 1279 */ 1280 vdev_autotrim_stop_wait(vd); 1281 1282 spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER); 1283 vdev_free(vd); 1284 spa_config_exit(spa, SCL_STATE_ALL, spa); 1285 } 1286 1287 /* 1288 * If the config changed, update the config cache. 1289 */ 1290 if (config_changed) 1291 spa_write_cachefile(spa, B_FALSE, B_TRUE); 1292 } 1293 1294 /* 1295 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1296 * locking of spa_vdev_enter(), we also want make sure the transactions have 1297 * synced to disk, and then update the global configuration cache with the new 1298 * information. 1299 */ 1300 int 1301 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1302 { 1303 vdev_autotrim_restart(spa); 1304 vdev_rebuild_restart(spa); 1305 1306 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1307 mutex_exit(&spa_namespace_lock); 1308 mutex_exit(&spa->spa_vdev_top_lock); 1309 1310 return (error); 1311 } 1312 1313 /* 1314 * Lock the given spa_t for the purpose of changing vdev state. 1315 */ 1316 void 1317 spa_vdev_state_enter(spa_t *spa, int oplocks) 1318 { 1319 int locks = SCL_STATE_ALL | oplocks; 1320 1321 /* 1322 * Root pools may need to read of the underlying devfs filesystem 1323 * when opening up a vdev. Unfortunately if we're holding the 1324 * SCL_ZIO lock it will result in a deadlock when we try to issue 1325 * the read from the root filesystem. Instead we "prefetch" 1326 * the associated vnodes that we need prior to opening the 1327 * underlying devices and cache them so that we can prevent 1328 * any I/O when we are doing the actual open. 1329 */ 1330 if (spa_is_root(spa)) { 1331 int low = locks & ~(SCL_ZIO - 1); 1332 int high = locks & ~low; 1333 1334 spa_config_enter(spa, high, spa, RW_WRITER); 1335 vdev_hold(spa->spa_root_vdev); 1336 spa_config_enter(spa, low, spa, RW_WRITER); 1337 } else { 1338 spa_config_enter(spa, locks, spa, RW_WRITER); 1339 } 1340 spa->spa_vdev_locks = locks; 1341 } 1342 1343 int 1344 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1345 { 1346 boolean_t config_changed = B_FALSE; 1347 vdev_t *vdev_top; 1348 1349 if (vd == NULL || vd == spa->spa_root_vdev) { 1350 vdev_top = spa->spa_root_vdev; 1351 } else { 1352 vdev_top = vd->vdev_top; 1353 } 1354 1355 if (vd != NULL || error == 0) 1356 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE); 1357 1358 if (vd != NULL) { 1359 if (vd != spa->spa_root_vdev) 1360 vdev_state_dirty(vdev_top); 1361 1362 config_changed = B_TRUE; 1363 spa->spa_config_generation++; 1364 } 1365 1366 if (spa_is_root(spa)) 1367 vdev_rele(spa->spa_root_vdev); 1368 1369 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1370 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1371 1372 /* 1373 * If anything changed, wait for it to sync. This ensures that, 1374 * from the system administrator's perspective, zpool(8) commands 1375 * are synchronous. This is important for things like zpool offline: 1376 * when the command completes, you expect no further I/O from ZFS. 1377 */ 1378 if (vd != NULL) 1379 txg_wait_synced(spa->spa_dsl_pool, 0); 1380 1381 /* 1382 * If the config changed, update the config cache. 1383 */ 1384 if (config_changed) { 1385 mutex_enter(&spa_namespace_lock); 1386 spa_write_cachefile(spa, B_FALSE, B_TRUE); 1387 mutex_exit(&spa_namespace_lock); 1388 } 1389 1390 return (error); 1391 } 1392 1393 /* 1394 * ========================================================================== 1395 * Miscellaneous functions 1396 * ========================================================================== 1397 */ 1398 1399 void 1400 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) 1401 { 1402 if (!nvlist_exists(spa->spa_label_features, feature)) { 1403 fnvlist_add_boolean(spa->spa_label_features, feature); 1404 /* 1405 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't 1406 * dirty the vdev config because lock SCL_CONFIG is not held. 1407 * Thankfully, in this case we don't need to dirty the config 1408 * because it will be written out anyway when we finish 1409 * creating the pool. 1410 */ 1411 if (tx->tx_txg != TXG_INITIAL) 1412 vdev_config_dirty(spa->spa_root_vdev); 1413 } 1414 } 1415 1416 void 1417 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1418 { 1419 if (nvlist_remove_all(spa->spa_label_features, feature) == 0) 1420 vdev_config_dirty(spa->spa_root_vdev); 1421 } 1422 1423 /* 1424 * Return the spa_t associated with given pool_guid, if it exists. If 1425 * device_guid is non-zero, determine whether the pool exists *and* contains 1426 * a device with the specified device_guid. 1427 */ 1428 spa_t * 1429 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1430 { 1431 spa_t *spa; 1432 avl_tree_t *t = &spa_namespace_avl; 1433 1434 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1435 1436 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1437 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1438 continue; 1439 if (spa->spa_root_vdev == NULL) 1440 continue; 1441 if (spa_guid(spa) == pool_guid) { 1442 if (device_guid == 0) 1443 break; 1444 1445 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1446 device_guid) != NULL) 1447 break; 1448 1449 /* 1450 * Check any devices we may be in the process of adding. 1451 */ 1452 if (spa->spa_pending_vdev) { 1453 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1454 device_guid) != NULL) 1455 break; 1456 } 1457 } 1458 } 1459 1460 return (spa); 1461 } 1462 1463 /* 1464 * Determine whether a pool with the given pool_guid exists. 1465 */ 1466 boolean_t 1467 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1468 { 1469 return (spa_by_guid(pool_guid, device_guid) != NULL); 1470 } 1471 1472 char * 1473 spa_strdup(const char *s) 1474 { 1475 size_t len; 1476 char *new; 1477 1478 len = strlen(s); 1479 new = kmem_alloc(len + 1, KM_SLEEP); 1480 bcopy(s, new, len); 1481 new[len] = '\0'; 1482 1483 return (new); 1484 } 1485 1486 void 1487 spa_strfree(char *s) 1488 { 1489 kmem_free(s, strlen(s) + 1); 1490 } 1491 1492 uint64_t 1493 spa_generate_guid(spa_t *spa) 1494 { 1495 uint64_t guid; 1496 1497 if (spa != NULL) { 1498 do { 1499 (void) random_get_pseudo_bytes((void *)&guid, 1500 sizeof (guid)); 1501 } while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)); 1502 } else { 1503 do { 1504 (void) random_get_pseudo_bytes((void *)&guid, 1505 sizeof (guid)); 1506 } while (guid == 0 || spa_guid_exists(guid, 0)); 1507 } 1508 1509 return (guid); 1510 } 1511 1512 void 1513 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) 1514 { 1515 char type[256]; 1516 char *checksum = NULL; 1517 char *compress = NULL; 1518 1519 if (bp != NULL) { 1520 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1521 dmu_object_byteswap_t bswap = 1522 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1523 (void) snprintf(type, sizeof (type), "bswap %s %s", 1524 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1525 "metadata" : "data", 1526 dmu_ot_byteswap[bswap].ob_name); 1527 } else { 1528 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1529 sizeof (type)); 1530 } 1531 if (!BP_IS_EMBEDDED(bp)) { 1532 checksum = 1533 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1534 } 1535 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1536 } 1537 1538 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum, 1539 compress); 1540 } 1541 1542 void 1543 spa_freeze(spa_t *spa) 1544 { 1545 uint64_t freeze_txg = 0; 1546 1547 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1548 if (spa->spa_freeze_txg == UINT64_MAX) { 1549 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1550 spa->spa_freeze_txg = freeze_txg; 1551 } 1552 spa_config_exit(spa, SCL_ALL, FTAG); 1553 if (freeze_txg != 0) 1554 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1555 } 1556 1557 void 1558 zfs_panic_recover(const char *fmt, ...) 1559 { 1560 va_list adx; 1561 1562 va_start(adx, fmt); 1563 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1564 va_end(adx); 1565 } 1566 1567 /* 1568 * This is a stripped-down version of strtoull, suitable only for converting 1569 * lowercase hexadecimal numbers that don't overflow. 1570 */ 1571 uint64_t 1572 zfs_strtonum(const char *str, char **nptr) 1573 { 1574 uint64_t val = 0; 1575 char c; 1576 int digit; 1577 1578 while ((c = *str) != '\0') { 1579 if (c >= '0' && c <= '9') 1580 digit = c - '0'; 1581 else if (c >= 'a' && c <= 'f') 1582 digit = 10 + c - 'a'; 1583 else 1584 break; 1585 1586 val *= 16; 1587 val += digit; 1588 1589 str++; 1590 } 1591 1592 if (nptr) 1593 *nptr = (char *)str; 1594 1595 return (val); 1596 } 1597 1598 void 1599 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx) 1600 { 1601 /* 1602 * We bump the feature refcount for each special vdev added to the pool 1603 */ 1604 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)); 1605 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx); 1606 } 1607 1608 /* 1609 * ========================================================================== 1610 * Accessor functions 1611 * ========================================================================== 1612 */ 1613 1614 boolean_t 1615 spa_shutting_down(spa_t *spa) 1616 { 1617 return (spa->spa_async_suspended); 1618 } 1619 1620 dsl_pool_t * 1621 spa_get_dsl(spa_t *spa) 1622 { 1623 return (spa->spa_dsl_pool); 1624 } 1625 1626 boolean_t 1627 spa_is_initializing(spa_t *spa) 1628 { 1629 return (spa->spa_is_initializing); 1630 } 1631 1632 boolean_t 1633 spa_indirect_vdevs_loaded(spa_t *spa) 1634 { 1635 return (spa->spa_indirect_vdevs_loaded); 1636 } 1637 1638 blkptr_t * 1639 spa_get_rootblkptr(spa_t *spa) 1640 { 1641 return (&spa->spa_ubsync.ub_rootbp); 1642 } 1643 1644 void 1645 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1646 { 1647 spa->spa_uberblock.ub_rootbp = *bp; 1648 } 1649 1650 void 1651 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1652 { 1653 if (spa->spa_root == NULL) 1654 buf[0] = '\0'; 1655 else 1656 (void) strncpy(buf, spa->spa_root, buflen); 1657 } 1658 1659 int 1660 spa_sync_pass(spa_t *spa) 1661 { 1662 return (spa->spa_sync_pass); 1663 } 1664 1665 char * 1666 spa_name(spa_t *spa) 1667 { 1668 return (spa->spa_name); 1669 } 1670 1671 uint64_t 1672 spa_guid(spa_t *spa) 1673 { 1674 dsl_pool_t *dp = spa_get_dsl(spa); 1675 uint64_t guid; 1676 1677 /* 1678 * If we fail to parse the config during spa_load(), we can go through 1679 * the error path (which posts an ereport) and end up here with no root 1680 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1681 * this case. 1682 */ 1683 if (spa->spa_root_vdev == NULL) 1684 return (spa->spa_config_guid); 1685 1686 guid = spa->spa_last_synced_guid != 0 ? 1687 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1688 1689 /* 1690 * Return the most recently synced out guid unless we're 1691 * in syncing context. 1692 */ 1693 if (dp && dsl_pool_sync_context(dp)) 1694 return (spa->spa_root_vdev->vdev_guid); 1695 else 1696 return (guid); 1697 } 1698 1699 uint64_t 1700 spa_load_guid(spa_t *spa) 1701 { 1702 /* 1703 * This is a GUID that exists solely as a reference for the 1704 * purposes of the arc. It is generated at load time, and 1705 * is never written to persistent storage. 1706 */ 1707 return (spa->spa_load_guid); 1708 } 1709 1710 uint64_t 1711 spa_last_synced_txg(spa_t *spa) 1712 { 1713 return (spa->spa_ubsync.ub_txg); 1714 } 1715 1716 uint64_t 1717 spa_first_txg(spa_t *spa) 1718 { 1719 return (spa->spa_first_txg); 1720 } 1721 1722 uint64_t 1723 spa_syncing_txg(spa_t *spa) 1724 { 1725 return (spa->spa_syncing_txg); 1726 } 1727 1728 /* 1729 * Return the last txg where data can be dirtied. The final txgs 1730 * will be used to just clear out any deferred frees that remain. 1731 */ 1732 uint64_t 1733 spa_final_dirty_txg(spa_t *spa) 1734 { 1735 return (spa->spa_final_txg - TXG_DEFER_SIZE); 1736 } 1737 1738 pool_state_t 1739 spa_state(spa_t *spa) 1740 { 1741 return (spa->spa_state); 1742 } 1743 1744 spa_load_state_t 1745 spa_load_state(spa_t *spa) 1746 { 1747 return (spa->spa_load_state); 1748 } 1749 1750 uint64_t 1751 spa_freeze_txg(spa_t *spa) 1752 { 1753 return (spa->spa_freeze_txg); 1754 } 1755 1756 /* 1757 * Return the inflated asize for a logical write in bytes. This is used by the 1758 * DMU to calculate the space a logical write will require on disk. 1759 * If lsize is smaller than the largest physical block size allocatable on this 1760 * pool we use its value instead, since the write will end up using the whole 1761 * block anyway. 1762 */ 1763 uint64_t 1764 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize) 1765 { 1766 if (lsize == 0) 1767 return (0); /* No inflation needed */ 1768 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation); 1769 } 1770 1771 /* 1772 * Return the amount of slop space in bytes. It is typically 1/32 of the pool 1773 * (3.2%), minus the embedded log space. On very small pools, it may be 1774 * slightly larger than this. On very large pools, it will be capped to 1775 * the value of spa_max_slop. The embedded log space is not included in 1776 * spa_dspace. By subtracting it, the usable space (per "zfs list") is a 1777 * constant 97% of the total space, regardless of metaslab size (assuming the 1778 * default spa_slop_shift=5 and a non-tiny pool). 1779 * 1780 * See the comment above spa_slop_shift for more details. 1781 */ 1782 uint64_t 1783 spa_get_slop_space(spa_t *spa) 1784 { 1785 uint64_t space = 0; 1786 uint64_t slop = 0; 1787 1788 /* 1789 * Make sure spa_dedup_dspace has been set. 1790 */ 1791 if (spa->spa_dedup_dspace == ~0ULL) 1792 spa_update_dspace(spa); 1793 1794 /* 1795 * spa_get_dspace() includes the space only logically "used" by 1796 * deduplicated data, so since it's not useful to reserve more 1797 * space with more deduplicated data, we subtract that out here. 1798 */ 1799 space = spa_get_dspace(spa) - spa->spa_dedup_dspace; 1800 slop = MIN(space >> spa_slop_shift, spa_max_slop); 1801 1802 /* 1803 * Subtract the embedded log space, but no more than half the (3.2%) 1804 * unusable space. Note, the "no more than half" is only relevant if 1805 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by 1806 * default. 1807 */ 1808 uint64_t embedded_log = 1809 metaslab_class_get_dspace(spa_embedded_log_class(spa)); 1810 slop -= MIN(embedded_log, slop >> 1); 1811 1812 /* 1813 * Slop space should be at least spa_min_slop, but no more than half 1814 * the entire pool. 1815 */ 1816 slop = MAX(slop, MIN(space >> 1, spa_min_slop)); 1817 return (slop); 1818 } 1819 1820 uint64_t 1821 spa_get_dspace(spa_t *spa) 1822 { 1823 return (spa->spa_dspace); 1824 } 1825 1826 uint64_t 1827 spa_get_checkpoint_space(spa_t *spa) 1828 { 1829 return (spa->spa_checkpoint_info.sci_dspace); 1830 } 1831 1832 void 1833 spa_update_dspace(spa_t *spa) 1834 { 1835 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1836 ddt_get_dedup_dspace(spa); 1837 if (spa->spa_nonallocating_dspace > 0) { 1838 /* 1839 * Subtract the space provided by all non-allocating vdevs that 1840 * contribute to dspace. If a file is overwritten, its old 1841 * blocks are freed and new blocks are allocated. If there are 1842 * no snapshots of the file, the available space should remain 1843 * the same. The old blocks could be freed from the 1844 * non-allocating vdev, but the new blocks must be allocated on 1845 * other (allocating) vdevs. By reserving the entire size of 1846 * the non-allocating vdevs (including allocated space), we 1847 * ensure that there will be enough space on the allocating 1848 * vdevs for this file overwrite to succeed. 1849 * 1850 * Note that the DMU/DSL doesn't actually know or care 1851 * how much space is allocated (it does its own tracking 1852 * of how much space has been logically used). So it 1853 * doesn't matter that the data we are moving may be 1854 * allocated twice (on the old device and the new device). 1855 */ 1856 ASSERT3U(spa->spa_dspace, >=, spa->spa_nonallocating_dspace); 1857 spa->spa_dspace -= spa->spa_nonallocating_dspace; 1858 } 1859 } 1860 1861 /* 1862 * Return the failure mode that has been set to this pool. The default 1863 * behavior will be to block all I/Os when a complete failure occurs. 1864 */ 1865 uint64_t 1866 spa_get_failmode(spa_t *spa) 1867 { 1868 return (spa->spa_failmode); 1869 } 1870 1871 boolean_t 1872 spa_suspended(spa_t *spa) 1873 { 1874 return (spa->spa_suspended != ZIO_SUSPEND_NONE); 1875 } 1876 1877 uint64_t 1878 spa_version(spa_t *spa) 1879 { 1880 return (spa->spa_ubsync.ub_version); 1881 } 1882 1883 boolean_t 1884 spa_deflate(spa_t *spa) 1885 { 1886 return (spa->spa_deflate); 1887 } 1888 1889 metaslab_class_t * 1890 spa_normal_class(spa_t *spa) 1891 { 1892 return (spa->spa_normal_class); 1893 } 1894 1895 metaslab_class_t * 1896 spa_log_class(spa_t *spa) 1897 { 1898 return (spa->spa_log_class); 1899 } 1900 1901 metaslab_class_t * 1902 spa_embedded_log_class(spa_t *spa) 1903 { 1904 return (spa->spa_embedded_log_class); 1905 } 1906 1907 metaslab_class_t * 1908 spa_special_class(spa_t *spa) 1909 { 1910 return (spa->spa_special_class); 1911 } 1912 1913 metaslab_class_t * 1914 spa_dedup_class(spa_t *spa) 1915 { 1916 return (spa->spa_dedup_class); 1917 } 1918 1919 /* 1920 * Locate an appropriate allocation class 1921 */ 1922 metaslab_class_t * 1923 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype, 1924 uint_t level, uint_t special_smallblk) 1925 { 1926 /* 1927 * ZIL allocations determine their class in zio_alloc_zil(). 1928 */ 1929 ASSERT(objtype != DMU_OT_INTENT_LOG); 1930 1931 boolean_t has_special_class = spa->spa_special_class->mc_groups != 0; 1932 1933 if (DMU_OT_IS_DDT(objtype)) { 1934 if (spa->spa_dedup_class->mc_groups != 0) 1935 return (spa_dedup_class(spa)); 1936 else if (has_special_class && zfs_ddt_data_is_special) 1937 return (spa_special_class(spa)); 1938 else 1939 return (spa_normal_class(spa)); 1940 } 1941 1942 /* Indirect blocks for user data can land in special if allowed */ 1943 if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) { 1944 if (has_special_class && zfs_user_indirect_is_special) 1945 return (spa_special_class(spa)); 1946 else 1947 return (spa_normal_class(spa)); 1948 } 1949 1950 if (DMU_OT_IS_METADATA(objtype) || level > 0) { 1951 if (has_special_class) 1952 return (spa_special_class(spa)); 1953 else 1954 return (spa_normal_class(spa)); 1955 } 1956 1957 /* 1958 * Allow small file blocks in special class in some cases (like 1959 * for the dRAID vdev feature). But always leave a reserve of 1960 * zfs_special_class_metadata_reserve_pct exclusively for metadata. 1961 */ 1962 if (DMU_OT_IS_FILE(objtype) && 1963 has_special_class && size <= special_smallblk) { 1964 metaslab_class_t *special = spa_special_class(spa); 1965 uint64_t alloc = metaslab_class_get_alloc(special); 1966 uint64_t space = metaslab_class_get_space(special); 1967 uint64_t limit = 1968 (space * (100 - zfs_special_class_metadata_reserve_pct)) 1969 / 100; 1970 1971 if (alloc < limit) 1972 return (special); 1973 } 1974 1975 return (spa_normal_class(spa)); 1976 } 1977 1978 void 1979 spa_evicting_os_register(spa_t *spa, objset_t *os) 1980 { 1981 mutex_enter(&spa->spa_evicting_os_lock); 1982 list_insert_head(&spa->spa_evicting_os_list, os); 1983 mutex_exit(&spa->spa_evicting_os_lock); 1984 } 1985 1986 void 1987 spa_evicting_os_deregister(spa_t *spa, objset_t *os) 1988 { 1989 mutex_enter(&spa->spa_evicting_os_lock); 1990 list_remove(&spa->spa_evicting_os_list, os); 1991 cv_broadcast(&spa->spa_evicting_os_cv); 1992 mutex_exit(&spa->spa_evicting_os_lock); 1993 } 1994 1995 void 1996 spa_evicting_os_wait(spa_t *spa) 1997 { 1998 mutex_enter(&spa->spa_evicting_os_lock); 1999 while (!list_is_empty(&spa->spa_evicting_os_list)) 2000 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); 2001 mutex_exit(&spa->spa_evicting_os_lock); 2002 2003 dmu_buf_user_evict_wait(); 2004 } 2005 2006 int 2007 spa_max_replication(spa_t *spa) 2008 { 2009 /* 2010 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 2011 * handle BPs with more than one DVA allocated. Set our max 2012 * replication level accordingly. 2013 */ 2014 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 2015 return (1); 2016 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 2017 } 2018 2019 int 2020 spa_prev_software_version(spa_t *spa) 2021 { 2022 return (spa->spa_prev_software_version); 2023 } 2024 2025 uint64_t 2026 spa_deadman_synctime(spa_t *spa) 2027 { 2028 return (spa->spa_deadman_synctime); 2029 } 2030 2031 spa_autotrim_t 2032 spa_get_autotrim(spa_t *spa) 2033 { 2034 return (spa->spa_autotrim); 2035 } 2036 2037 uint64_t 2038 spa_deadman_ziotime(spa_t *spa) 2039 { 2040 return (spa->spa_deadman_ziotime); 2041 } 2042 2043 uint64_t 2044 spa_get_deadman_failmode(spa_t *spa) 2045 { 2046 return (spa->spa_deadman_failmode); 2047 } 2048 2049 void 2050 spa_set_deadman_failmode(spa_t *spa, const char *failmode) 2051 { 2052 if (strcmp(failmode, "wait") == 0) 2053 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2054 else if (strcmp(failmode, "continue") == 0) 2055 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE; 2056 else if (strcmp(failmode, "panic") == 0) 2057 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC; 2058 else 2059 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2060 } 2061 2062 void 2063 spa_set_deadman_ziotime(hrtime_t ns) 2064 { 2065 spa_t *spa = NULL; 2066 2067 if (spa_mode_global != SPA_MODE_UNINIT) { 2068 mutex_enter(&spa_namespace_lock); 2069 while ((spa = spa_next(spa)) != NULL) 2070 spa->spa_deadman_ziotime = ns; 2071 mutex_exit(&spa_namespace_lock); 2072 } 2073 } 2074 2075 void 2076 spa_set_deadman_synctime(hrtime_t ns) 2077 { 2078 spa_t *spa = NULL; 2079 2080 if (spa_mode_global != SPA_MODE_UNINIT) { 2081 mutex_enter(&spa_namespace_lock); 2082 while ((spa = spa_next(spa)) != NULL) 2083 spa->spa_deadman_synctime = ns; 2084 mutex_exit(&spa_namespace_lock); 2085 } 2086 } 2087 2088 uint64_t 2089 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 2090 { 2091 uint64_t asize = DVA_GET_ASIZE(dva); 2092 uint64_t dsize = asize; 2093 2094 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2095 2096 if (asize != 0 && spa->spa_deflate) { 2097 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 2098 if (vd != NULL) 2099 dsize = (asize >> SPA_MINBLOCKSHIFT) * 2100 vd->vdev_deflate_ratio; 2101 } 2102 2103 return (dsize); 2104 } 2105 2106 uint64_t 2107 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 2108 { 2109 uint64_t dsize = 0; 2110 2111 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2112 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2113 2114 return (dsize); 2115 } 2116 2117 uint64_t 2118 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 2119 { 2120 uint64_t dsize = 0; 2121 2122 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2123 2124 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2125 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2126 2127 spa_config_exit(spa, SCL_VDEV, FTAG); 2128 2129 return (dsize); 2130 } 2131 2132 uint64_t 2133 spa_dirty_data(spa_t *spa) 2134 { 2135 return (spa->spa_dsl_pool->dp_dirty_total); 2136 } 2137 2138 /* 2139 * ========================================================================== 2140 * SPA Import Progress Routines 2141 * ========================================================================== 2142 */ 2143 2144 typedef struct spa_import_progress { 2145 uint64_t pool_guid; /* unique id for updates */ 2146 char *pool_name; 2147 spa_load_state_t spa_load_state; 2148 uint64_t mmp_sec_remaining; /* MMP activity check */ 2149 uint64_t spa_load_max_txg; /* rewind txg */ 2150 procfs_list_node_t smh_node; 2151 } spa_import_progress_t; 2152 2153 spa_history_list_t *spa_import_progress_list = NULL; 2154 2155 static int 2156 spa_import_progress_show_header(struct seq_file *f) 2157 { 2158 seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid", 2159 "load_state", "multihost_secs", "max_txg", 2160 "pool_name"); 2161 return (0); 2162 } 2163 2164 static int 2165 spa_import_progress_show(struct seq_file *f, void *data) 2166 { 2167 spa_import_progress_t *sip = (spa_import_progress_t *)data; 2168 2169 seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n", 2170 (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state, 2171 (u_longlong_t)sip->mmp_sec_remaining, 2172 (u_longlong_t)sip->spa_load_max_txg, 2173 (sip->pool_name ? sip->pool_name : "-")); 2174 2175 return (0); 2176 } 2177 2178 /* Remove oldest elements from list until there are no more than 'size' left */ 2179 static void 2180 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size) 2181 { 2182 spa_import_progress_t *sip; 2183 while (shl->size > size) { 2184 sip = list_remove_head(&shl->procfs_list.pl_list); 2185 if (sip->pool_name) 2186 spa_strfree(sip->pool_name); 2187 kmem_free(sip, sizeof (spa_import_progress_t)); 2188 shl->size--; 2189 } 2190 2191 IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list)); 2192 } 2193 2194 static void 2195 spa_import_progress_init(void) 2196 { 2197 spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t), 2198 KM_SLEEP); 2199 2200 spa_import_progress_list->size = 0; 2201 2202 spa_import_progress_list->procfs_list.pl_private = 2203 spa_import_progress_list; 2204 2205 procfs_list_install("zfs", 2206 NULL, 2207 "import_progress", 2208 0644, 2209 &spa_import_progress_list->procfs_list, 2210 spa_import_progress_show, 2211 spa_import_progress_show_header, 2212 NULL, 2213 offsetof(spa_import_progress_t, smh_node)); 2214 } 2215 2216 static void 2217 spa_import_progress_destroy(void) 2218 { 2219 spa_history_list_t *shl = spa_import_progress_list; 2220 procfs_list_uninstall(&shl->procfs_list); 2221 spa_import_progress_truncate(shl, 0); 2222 procfs_list_destroy(&shl->procfs_list); 2223 kmem_free(shl, sizeof (spa_history_list_t)); 2224 } 2225 2226 int 2227 spa_import_progress_set_state(uint64_t pool_guid, 2228 spa_load_state_t load_state) 2229 { 2230 spa_history_list_t *shl = spa_import_progress_list; 2231 spa_import_progress_t *sip; 2232 int error = ENOENT; 2233 2234 if (shl->size == 0) 2235 return (0); 2236 2237 mutex_enter(&shl->procfs_list.pl_lock); 2238 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2239 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2240 if (sip->pool_guid == pool_guid) { 2241 sip->spa_load_state = load_state; 2242 error = 0; 2243 break; 2244 } 2245 } 2246 mutex_exit(&shl->procfs_list.pl_lock); 2247 2248 return (error); 2249 } 2250 2251 int 2252 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg) 2253 { 2254 spa_history_list_t *shl = spa_import_progress_list; 2255 spa_import_progress_t *sip; 2256 int error = ENOENT; 2257 2258 if (shl->size == 0) 2259 return (0); 2260 2261 mutex_enter(&shl->procfs_list.pl_lock); 2262 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2263 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2264 if (sip->pool_guid == pool_guid) { 2265 sip->spa_load_max_txg = load_max_txg; 2266 error = 0; 2267 break; 2268 } 2269 } 2270 mutex_exit(&shl->procfs_list.pl_lock); 2271 2272 return (error); 2273 } 2274 2275 int 2276 spa_import_progress_set_mmp_check(uint64_t pool_guid, 2277 uint64_t mmp_sec_remaining) 2278 { 2279 spa_history_list_t *shl = spa_import_progress_list; 2280 spa_import_progress_t *sip; 2281 int error = ENOENT; 2282 2283 if (shl->size == 0) 2284 return (0); 2285 2286 mutex_enter(&shl->procfs_list.pl_lock); 2287 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2288 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2289 if (sip->pool_guid == pool_guid) { 2290 sip->mmp_sec_remaining = mmp_sec_remaining; 2291 error = 0; 2292 break; 2293 } 2294 } 2295 mutex_exit(&shl->procfs_list.pl_lock); 2296 2297 return (error); 2298 } 2299 2300 /* 2301 * A new import is in progress, add an entry. 2302 */ 2303 void 2304 spa_import_progress_add(spa_t *spa) 2305 { 2306 spa_history_list_t *shl = spa_import_progress_list; 2307 spa_import_progress_t *sip; 2308 char *poolname = NULL; 2309 2310 sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP); 2311 sip->pool_guid = spa_guid(spa); 2312 2313 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME, 2314 &poolname); 2315 if (poolname == NULL) 2316 poolname = spa_name(spa); 2317 sip->pool_name = spa_strdup(poolname); 2318 sip->spa_load_state = spa_load_state(spa); 2319 2320 mutex_enter(&shl->procfs_list.pl_lock); 2321 procfs_list_add(&shl->procfs_list, sip); 2322 shl->size++; 2323 mutex_exit(&shl->procfs_list.pl_lock); 2324 } 2325 2326 void 2327 spa_import_progress_remove(uint64_t pool_guid) 2328 { 2329 spa_history_list_t *shl = spa_import_progress_list; 2330 spa_import_progress_t *sip; 2331 2332 mutex_enter(&shl->procfs_list.pl_lock); 2333 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2334 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2335 if (sip->pool_guid == pool_guid) { 2336 if (sip->pool_name) 2337 spa_strfree(sip->pool_name); 2338 list_remove(&shl->procfs_list.pl_list, sip); 2339 shl->size--; 2340 kmem_free(sip, sizeof (spa_import_progress_t)); 2341 break; 2342 } 2343 } 2344 mutex_exit(&shl->procfs_list.pl_lock); 2345 } 2346 2347 /* 2348 * ========================================================================== 2349 * Initialization and Termination 2350 * ========================================================================== 2351 */ 2352 2353 static int 2354 spa_name_compare(const void *a1, const void *a2) 2355 { 2356 const spa_t *s1 = a1; 2357 const spa_t *s2 = a2; 2358 int s; 2359 2360 s = strcmp(s1->spa_name, s2->spa_name); 2361 2362 return (TREE_ISIGN(s)); 2363 } 2364 2365 void 2366 spa_boot_init(void) 2367 { 2368 spa_config_load(); 2369 } 2370 2371 void 2372 spa_init(spa_mode_t mode) 2373 { 2374 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 2375 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 2376 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 2377 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 2378 2379 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 2380 offsetof(spa_t, spa_avl)); 2381 2382 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 2383 offsetof(spa_aux_t, aux_avl)); 2384 2385 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 2386 offsetof(spa_aux_t, aux_avl)); 2387 2388 spa_mode_global = mode; 2389 2390 #ifndef _KERNEL 2391 if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) { 2392 struct sigaction sa; 2393 2394 sa.sa_flags = SA_SIGINFO; 2395 sigemptyset(&sa.sa_mask); 2396 sa.sa_sigaction = arc_buf_sigsegv; 2397 2398 if (sigaction(SIGSEGV, &sa, NULL) == -1) { 2399 perror("could not enable watchpoints: " 2400 "sigaction(SIGSEGV, ...) = "); 2401 } else { 2402 arc_watch = B_TRUE; 2403 } 2404 } 2405 #endif 2406 2407 fm_init(); 2408 zfs_refcount_init(); 2409 unique_init(); 2410 zfs_btree_init(); 2411 metaslab_stat_init(); 2412 ddt_init(); 2413 zio_init(); 2414 dmu_init(); 2415 zil_init(); 2416 vdev_cache_stat_init(); 2417 vdev_mirror_stat_init(); 2418 vdev_raidz_math_init(); 2419 vdev_file_init(); 2420 zfs_prop_init(); 2421 zpool_prop_init(); 2422 zpool_feature_init(); 2423 spa_config_load(); 2424 vdev_prop_init(); 2425 l2arc_start(); 2426 scan_init(); 2427 qat_init(); 2428 spa_import_progress_init(); 2429 } 2430 2431 void 2432 spa_fini(void) 2433 { 2434 l2arc_stop(); 2435 2436 spa_evict_all(); 2437 2438 vdev_file_fini(); 2439 vdev_cache_stat_fini(); 2440 vdev_mirror_stat_fini(); 2441 vdev_raidz_math_fini(); 2442 zil_fini(); 2443 dmu_fini(); 2444 zio_fini(); 2445 ddt_fini(); 2446 metaslab_stat_fini(); 2447 zfs_btree_fini(); 2448 unique_fini(); 2449 zfs_refcount_fini(); 2450 fm_fini(); 2451 scan_fini(); 2452 qat_fini(); 2453 spa_import_progress_destroy(); 2454 2455 avl_destroy(&spa_namespace_avl); 2456 avl_destroy(&spa_spare_avl); 2457 avl_destroy(&spa_l2cache_avl); 2458 2459 cv_destroy(&spa_namespace_cv); 2460 mutex_destroy(&spa_namespace_lock); 2461 mutex_destroy(&spa_spare_lock); 2462 mutex_destroy(&spa_l2cache_lock); 2463 } 2464 2465 /* 2466 * Return whether this pool has a dedicated slog device. No locking needed. 2467 * It's not a problem if the wrong answer is returned as it's only for 2468 * performance and not correctness. 2469 */ 2470 boolean_t 2471 spa_has_slogs(spa_t *spa) 2472 { 2473 return (spa->spa_log_class->mc_groups != 0); 2474 } 2475 2476 spa_log_state_t 2477 spa_get_log_state(spa_t *spa) 2478 { 2479 return (spa->spa_log_state); 2480 } 2481 2482 void 2483 spa_set_log_state(spa_t *spa, spa_log_state_t state) 2484 { 2485 spa->spa_log_state = state; 2486 } 2487 2488 boolean_t 2489 spa_is_root(spa_t *spa) 2490 { 2491 return (spa->spa_is_root); 2492 } 2493 2494 boolean_t 2495 spa_writeable(spa_t *spa) 2496 { 2497 return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config); 2498 } 2499 2500 /* 2501 * Returns true if there is a pending sync task in any of the current 2502 * syncing txg, the current quiescing txg, or the current open txg. 2503 */ 2504 boolean_t 2505 spa_has_pending_synctask(spa_t *spa) 2506 { 2507 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) || 2508 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks)); 2509 } 2510 2511 spa_mode_t 2512 spa_mode(spa_t *spa) 2513 { 2514 return (spa->spa_mode); 2515 } 2516 2517 uint64_t 2518 spa_bootfs(spa_t *spa) 2519 { 2520 return (spa->spa_bootfs); 2521 } 2522 2523 uint64_t 2524 spa_delegation(spa_t *spa) 2525 { 2526 return (spa->spa_delegation); 2527 } 2528 2529 objset_t * 2530 spa_meta_objset(spa_t *spa) 2531 { 2532 return (spa->spa_meta_objset); 2533 } 2534 2535 enum zio_checksum 2536 spa_dedup_checksum(spa_t *spa) 2537 { 2538 return (spa->spa_dedup_checksum); 2539 } 2540 2541 /* 2542 * Reset pool scan stat per scan pass (or reboot). 2543 */ 2544 void 2545 spa_scan_stat_init(spa_t *spa) 2546 { 2547 /* data not stored on disk */ 2548 spa->spa_scan_pass_start = gethrestime_sec(); 2549 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan)) 2550 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start; 2551 else 2552 spa->spa_scan_pass_scrub_pause = 0; 2553 spa->spa_scan_pass_scrub_spent_paused = 0; 2554 spa->spa_scan_pass_exam = 0; 2555 spa->spa_scan_pass_issued = 0; 2556 vdev_scan_stat_init(spa->spa_root_vdev); 2557 } 2558 2559 /* 2560 * Get scan stats for zpool status reports 2561 */ 2562 int 2563 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 2564 { 2565 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 2566 2567 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) 2568 return (SET_ERROR(ENOENT)); 2569 bzero(ps, sizeof (pool_scan_stat_t)); 2570 2571 /* data stored on disk */ 2572 ps->pss_func = scn->scn_phys.scn_func; 2573 ps->pss_state = scn->scn_phys.scn_state; 2574 ps->pss_start_time = scn->scn_phys.scn_start_time; 2575 ps->pss_end_time = scn->scn_phys.scn_end_time; 2576 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 2577 ps->pss_examined = scn->scn_phys.scn_examined; 2578 ps->pss_to_process = scn->scn_phys.scn_to_process; 2579 ps->pss_processed = scn->scn_phys.scn_processed; 2580 ps->pss_errors = scn->scn_phys.scn_errors; 2581 2582 /* data not stored on disk */ 2583 ps->pss_pass_exam = spa->spa_scan_pass_exam; 2584 ps->pss_pass_start = spa->spa_scan_pass_start; 2585 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause; 2586 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused; 2587 ps->pss_pass_issued = spa->spa_scan_pass_issued; 2588 ps->pss_issued = 2589 scn->scn_issued_before_pass + spa->spa_scan_pass_issued; 2590 2591 return (0); 2592 } 2593 2594 int 2595 spa_maxblocksize(spa_t *spa) 2596 { 2597 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 2598 return (SPA_MAXBLOCKSIZE); 2599 else 2600 return (SPA_OLD_MAXBLOCKSIZE); 2601 } 2602 2603 2604 /* 2605 * Returns the txg that the last device removal completed. No indirect mappings 2606 * have been added since this txg. 2607 */ 2608 uint64_t 2609 spa_get_last_removal_txg(spa_t *spa) 2610 { 2611 uint64_t vdevid; 2612 uint64_t ret = -1ULL; 2613 2614 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2615 /* 2616 * sr_prev_indirect_vdev is only modified while holding all the 2617 * config locks, so it is sufficient to hold SCL_VDEV as reader when 2618 * examining it. 2619 */ 2620 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev; 2621 2622 while (vdevid != -1ULL) { 2623 vdev_t *vd = vdev_lookup_top(spa, vdevid); 2624 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 2625 2626 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 2627 2628 /* 2629 * If the removal did not remap any data, we don't care. 2630 */ 2631 if (vdev_indirect_births_count(vib) != 0) { 2632 ret = vdev_indirect_births_last_entry_txg(vib); 2633 break; 2634 } 2635 2636 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev; 2637 } 2638 spa_config_exit(spa, SCL_VDEV, FTAG); 2639 2640 IMPLY(ret != -1ULL, 2641 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); 2642 2643 return (ret); 2644 } 2645 2646 int 2647 spa_maxdnodesize(spa_t *spa) 2648 { 2649 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 2650 return (DNODE_MAX_SIZE); 2651 else 2652 return (DNODE_MIN_SIZE); 2653 } 2654 2655 boolean_t 2656 spa_multihost(spa_t *spa) 2657 { 2658 return (spa->spa_multihost ? B_TRUE : B_FALSE); 2659 } 2660 2661 uint32_t 2662 spa_get_hostid(spa_t *spa) 2663 { 2664 return (spa->spa_hostid); 2665 } 2666 2667 boolean_t 2668 spa_trust_config(spa_t *spa) 2669 { 2670 return (spa->spa_trust_config); 2671 } 2672 2673 uint64_t 2674 spa_missing_tvds_allowed(spa_t *spa) 2675 { 2676 return (spa->spa_missing_tvds_allowed); 2677 } 2678 2679 space_map_t * 2680 spa_syncing_log_sm(spa_t *spa) 2681 { 2682 return (spa->spa_syncing_log_sm); 2683 } 2684 2685 void 2686 spa_set_missing_tvds(spa_t *spa, uint64_t missing) 2687 { 2688 spa->spa_missing_tvds = missing; 2689 } 2690 2691 /* 2692 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc). 2693 */ 2694 const char * 2695 spa_state_to_name(spa_t *spa) 2696 { 2697 ASSERT3P(spa, !=, NULL); 2698 2699 /* 2700 * it is possible for the spa to exist, without root vdev 2701 * as the spa transitions during import/export 2702 */ 2703 vdev_t *rvd = spa->spa_root_vdev; 2704 if (rvd == NULL) { 2705 return ("TRANSITIONING"); 2706 } 2707 vdev_state_t state = rvd->vdev_state; 2708 vdev_aux_t aux = rvd->vdev_stat.vs_aux; 2709 2710 if (spa_suspended(spa) && 2711 (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)) 2712 return ("SUSPENDED"); 2713 2714 switch (state) { 2715 case VDEV_STATE_CLOSED: 2716 case VDEV_STATE_OFFLINE: 2717 return ("OFFLINE"); 2718 case VDEV_STATE_REMOVED: 2719 return ("REMOVED"); 2720 case VDEV_STATE_CANT_OPEN: 2721 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG) 2722 return ("FAULTED"); 2723 else if (aux == VDEV_AUX_SPLIT_POOL) 2724 return ("SPLIT"); 2725 else 2726 return ("UNAVAIL"); 2727 case VDEV_STATE_FAULTED: 2728 return ("FAULTED"); 2729 case VDEV_STATE_DEGRADED: 2730 return ("DEGRADED"); 2731 case VDEV_STATE_HEALTHY: 2732 return ("ONLINE"); 2733 default: 2734 break; 2735 } 2736 2737 return ("UNKNOWN"); 2738 } 2739 2740 boolean_t 2741 spa_top_vdevs_spacemap_addressable(spa_t *spa) 2742 { 2743 vdev_t *rvd = spa->spa_root_vdev; 2744 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2745 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c])) 2746 return (B_FALSE); 2747 } 2748 return (B_TRUE); 2749 } 2750 2751 boolean_t 2752 spa_has_checkpoint(spa_t *spa) 2753 { 2754 return (spa->spa_checkpoint_txg != 0); 2755 } 2756 2757 boolean_t 2758 spa_importing_readonly_checkpoint(spa_t *spa) 2759 { 2760 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) && 2761 spa->spa_mode == SPA_MODE_READ); 2762 } 2763 2764 uint64_t 2765 spa_min_claim_txg(spa_t *spa) 2766 { 2767 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg; 2768 2769 if (checkpoint_txg != 0) 2770 return (checkpoint_txg + 1); 2771 2772 return (spa->spa_first_txg); 2773 } 2774 2775 /* 2776 * If there is a checkpoint, async destroys may consume more space from 2777 * the pool instead of freeing it. In an attempt to save the pool from 2778 * getting suspended when it is about to run out of space, we stop 2779 * processing async destroys. 2780 */ 2781 boolean_t 2782 spa_suspend_async_destroy(spa_t *spa) 2783 { 2784 dsl_pool_t *dp = spa_get_dsl(spa); 2785 2786 uint64_t unreserved = dsl_pool_unreserved_space(dp, 2787 ZFS_SPACE_CHECK_EXTRA_RESERVED); 2788 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes; 2789 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0; 2790 2791 if (spa_has_checkpoint(spa) && avail == 0) 2792 return (B_TRUE); 2793 2794 return (B_FALSE); 2795 } 2796 2797 #if defined(_KERNEL) 2798 2799 int 2800 param_set_deadman_failmode_common(const char *val) 2801 { 2802 spa_t *spa = NULL; 2803 char *p; 2804 2805 if (val == NULL) 2806 return (SET_ERROR(EINVAL)); 2807 2808 if ((p = strchr(val, '\n')) != NULL) 2809 *p = '\0'; 2810 2811 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 && 2812 strcmp(val, "panic")) 2813 return (SET_ERROR(EINVAL)); 2814 2815 if (spa_mode_global != SPA_MODE_UNINIT) { 2816 mutex_enter(&spa_namespace_lock); 2817 while ((spa = spa_next(spa)) != NULL) 2818 spa_set_deadman_failmode(spa, val); 2819 mutex_exit(&spa_namespace_lock); 2820 } 2821 2822 return (0); 2823 } 2824 #endif 2825 2826 /* Namespace manipulation */ 2827 EXPORT_SYMBOL(spa_lookup); 2828 EXPORT_SYMBOL(spa_add); 2829 EXPORT_SYMBOL(spa_remove); 2830 EXPORT_SYMBOL(spa_next); 2831 2832 /* Refcount functions */ 2833 EXPORT_SYMBOL(spa_open_ref); 2834 EXPORT_SYMBOL(spa_close); 2835 EXPORT_SYMBOL(spa_refcount_zero); 2836 2837 /* Pool configuration lock */ 2838 EXPORT_SYMBOL(spa_config_tryenter); 2839 EXPORT_SYMBOL(spa_config_enter); 2840 EXPORT_SYMBOL(spa_config_exit); 2841 EXPORT_SYMBOL(spa_config_held); 2842 2843 /* Pool vdev add/remove lock */ 2844 EXPORT_SYMBOL(spa_vdev_enter); 2845 EXPORT_SYMBOL(spa_vdev_exit); 2846 2847 /* Pool vdev state change lock */ 2848 EXPORT_SYMBOL(spa_vdev_state_enter); 2849 EXPORT_SYMBOL(spa_vdev_state_exit); 2850 2851 /* Accessor functions */ 2852 EXPORT_SYMBOL(spa_shutting_down); 2853 EXPORT_SYMBOL(spa_get_dsl); 2854 EXPORT_SYMBOL(spa_get_rootblkptr); 2855 EXPORT_SYMBOL(spa_set_rootblkptr); 2856 EXPORT_SYMBOL(spa_altroot); 2857 EXPORT_SYMBOL(spa_sync_pass); 2858 EXPORT_SYMBOL(spa_name); 2859 EXPORT_SYMBOL(spa_guid); 2860 EXPORT_SYMBOL(spa_last_synced_txg); 2861 EXPORT_SYMBOL(spa_first_txg); 2862 EXPORT_SYMBOL(spa_syncing_txg); 2863 EXPORT_SYMBOL(spa_version); 2864 EXPORT_SYMBOL(spa_state); 2865 EXPORT_SYMBOL(spa_load_state); 2866 EXPORT_SYMBOL(spa_freeze_txg); 2867 EXPORT_SYMBOL(spa_get_dspace); 2868 EXPORT_SYMBOL(spa_update_dspace); 2869 EXPORT_SYMBOL(spa_deflate); 2870 EXPORT_SYMBOL(spa_normal_class); 2871 EXPORT_SYMBOL(spa_log_class); 2872 EXPORT_SYMBOL(spa_special_class); 2873 EXPORT_SYMBOL(spa_preferred_class); 2874 EXPORT_SYMBOL(spa_max_replication); 2875 EXPORT_SYMBOL(spa_prev_software_version); 2876 EXPORT_SYMBOL(spa_get_failmode); 2877 EXPORT_SYMBOL(spa_suspended); 2878 EXPORT_SYMBOL(spa_bootfs); 2879 EXPORT_SYMBOL(spa_delegation); 2880 EXPORT_SYMBOL(spa_meta_objset); 2881 EXPORT_SYMBOL(spa_maxblocksize); 2882 EXPORT_SYMBOL(spa_maxdnodesize); 2883 2884 /* Miscellaneous support routines */ 2885 EXPORT_SYMBOL(spa_guid_exists); 2886 EXPORT_SYMBOL(spa_strdup); 2887 EXPORT_SYMBOL(spa_strfree); 2888 EXPORT_SYMBOL(spa_generate_guid); 2889 EXPORT_SYMBOL(snprintf_blkptr); 2890 EXPORT_SYMBOL(spa_freeze); 2891 EXPORT_SYMBOL(spa_upgrade); 2892 EXPORT_SYMBOL(spa_evict_all); 2893 EXPORT_SYMBOL(spa_lookup_by_guid); 2894 EXPORT_SYMBOL(spa_has_spare); 2895 EXPORT_SYMBOL(dva_get_dsize_sync); 2896 EXPORT_SYMBOL(bp_get_dsize_sync); 2897 EXPORT_SYMBOL(bp_get_dsize); 2898 EXPORT_SYMBOL(spa_has_slogs); 2899 EXPORT_SYMBOL(spa_is_root); 2900 EXPORT_SYMBOL(spa_writeable); 2901 EXPORT_SYMBOL(spa_mode); 2902 EXPORT_SYMBOL(spa_namespace_lock); 2903 EXPORT_SYMBOL(spa_trust_config); 2904 EXPORT_SYMBOL(spa_missing_tvds_allowed); 2905 EXPORT_SYMBOL(spa_set_missing_tvds); 2906 EXPORT_SYMBOL(spa_state_to_name); 2907 EXPORT_SYMBOL(spa_importing_readonly_checkpoint); 2908 EXPORT_SYMBOL(spa_min_claim_txg); 2909 EXPORT_SYMBOL(spa_suspend_async_destroy); 2910 EXPORT_SYMBOL(spa_has_checkpoint); 2911 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable); 2912 2913 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW, 2914 "Set additional debugging flags"); 2915 2916 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW, 2917 "Set to attempt to recover from fatal errors"); 2918 2919 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW, 2920 "Set to ignore IO errors during free and permanently leak the space"); 2921 2922 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, ULONG, ZMOD_RW, 2923 "Dead I/O check interval in milliseconds"); 2924 2925 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW, 2926 "Enable deadman timer"); 2927 2928 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, INT, ZMOD_RW, 2929 "SPA size estimate multiplication factor"); 2930 2931 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW, 2932 "Place DDT data into the special class"); 2933 2934 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW, 2935 "Place user data indirect blocks into the special class"); 2936 2937 /* BEGIN CSTYLED */ 2938 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode, 2939 param_set_deadman_failmode, param_get_charp, ZMOD_RW, 2940 "Failmode for deadman timer"); 2941 2942 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms, 2943 param_set_deadman_synctime, param_get_ulong, ZMOD_RW, 2944 "Pool sync expiration time in milliseconds"); 2945 2946 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms, 2947 param_set_deadman_ziotime, param_get_ulong, ZMOD_RW, 2948 "IO expiration time in milliseconds"); 2949 2950 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, INT, ZMOD_RW, 2951 "Small file blocks in special vdevs depends on this much " 2952 "free space available"); 2953 /* END CSTYLED */ 2954 2955 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift, 2956 param_get_int, ZMOD_RW, "Reserved free space in pool"); 2957