xref: /freebsd/sys/contrib/openzfs/module/zfs/spa_misc.c (revision 994297b01b98816bea1abf45ae4bac1bc69ee7a0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2013 Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2017 Datto Inc.
28  * Copyright (c) 2017, Intel Corporation.
29  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
30  */
31 
32 #include <sys/zfs_context.h>
33 #include <sys/spa_impl.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/zio_compress.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/zap.h>
40 #include <sys/zil.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/vdev_initialize.h>
43 #include <sys/vdev_trim.h>
44 #include <sys/vdev_file.h>
45 #include <sys/vdev_raidz.h>
46 #include <sys/metaslab.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dir.h>
53 #include <sys/dsl_prop.h>
54 #include <sys/fm/util.h>
55 #include <sys/dsl_scan.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/metaslab_impl.h>
58 #include <sys/arc.h>
59 #include <sys/ddt.h>
60 #include <sys/kstat.h>
61 #include "zfs_prop.h"
62 #include <sys/btree.h>
63 #include <sys/zfeature.h>
64 #include <sys/qat.h>
65 #include <sys/zstd/zstd.h>
66 
67 /*
68  * SPA locking
69  *
70  * There are three basic locks for managing spa_t structures:
71  *
72  * spa_namespace_lock (global mutex)
73  *
74  *	This lock must be acquired to do any of the following:
75  *
76  *		- Lookup a spa_t by name
77  *		- Add or remove a spa_t from the namespace
78  *		- Increase spa_refcount from non-zero
79  *		- Check if spa_refcount is zero
80  *		- Rename a spa_t
81  *		- add/remove/attach/detach devices
82  *		- Held for the duration of create/destroy/import/export
83  *
84  *	It does not need to handle recursion.  A create or destroy may
85  *	reference objects (files or zvols) in other pools, but by
86  *	definition they must have an existing reference, and will never need
87  *	to lookup a spa_t by name.
88  *
89  * spa_refcount (per-spa zfs_refcount_t protected by mutex)
90  *
91  *	This reference count keep track of any active users of the spa_t.  The
92  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
93  *	the refcount is never really 'zero' - opening a pool implicitly keeps
94  *	some references in the DMU.  Internally we check against spa_minref, but
95  *	present the image of a zero/non-zero value to consumers.
96  *
97  * spa_config_lock[] (per-spa array of rwlocks)
98  *
99  *	This protects the spa_t from config changes, and must be held in
100  *	the following circumstances:
101  *
102  *		- RW_READER to perform I/O to the spa
103  *		- RW_WRITER to change the vdev config
104  *
105  * The locking order is fairly straightforward:
106  *
107  *		spa_namespace_lock	->	spa_refcount
108  *
109  *	The namespace lock must be acquired to increase the refcount from 0
110  *	or to check if it is zero.
111  *
112  *		spa_refcount		->	spa_config_lock[]
113  *
114  *	There must be at least one valid reference on the spa_t to acquire
115  *	the config lock.
116  *
117  *		spa_namespace_lock	->	spa_config_lock[]
118  *
119  *	The namespace lock must always be taken before the config lock.
120  *
121  *
122  * The spa_namespace_lock can be acquired directly and is globally visible.
123  *
124  * The namespace is manipulated using the following functions, all of which
125  * require the spa_namespace_lock to be held.
126  *
127  *	spa_lookup()		Lookup a spa_t by name.
128  *
129  *	spa_add()		Create a new spa_t in the namespace.
130  *
131  *	spa_remove()		Remove a spa_t from the namespace.  This also
132  *				frees up any memory associated with the spa_t.
133  *
134  *	spa_next()		Returns the next spa_t in the system, or the
135  *				first if NULL is passed.
136  *
137  *	spa_evict_all()		Shutdown and remove all spa_t structures in
138  *				the system.
139  *
140  *	spa_guid_exists()	Determine whether a pool/device guid exists.
141  *
142  * The spa_refcount is manipulated using the following functions:
143  *
144  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
145  *				called with spa_namespace_lock held if the
146  *				refcount is currently zero.
147  *
148  *	spa_close()		Remove a reference from the spa_t.  This will
149  *				not free the spa_t or remove it from the
150  *				namespace.  No locking is required.
151  *
152  *	spa_refcount_zero()	Returns true if the refcount is currently
153  *				zero.  Must be called with spa_namespace_lock
154  *				held.
155  *
156  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
157  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
158  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
159  *
160  * To read the configuration, it suffices to hold one of these locks as reader.
161  * To modify the configuration, you must hold all locks as writer.  To modify
162  * vdev state without altering the vdev tree's topology (e.g. online/offline),
163  * you must hold SCL_STATE and SCL_ZIO as writer.
164  *
165  * We use these distinct config locks to avoid recursive lock entry.
166  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
167  * block allocations (SCL_ALLOC), which may require reading space maps
168  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
169  *
170  * The spa config locks cannot be normal rwlocks because we need the
171  * ability to hand off ownership.  For example, SCL_ZIO is acquired
172  * by the issuing thread and later released by an interrupt thread.
173  * They do, however, obey the usual write-wanted semantics to prevent
174  * writer (i.e. system administrator) starvation.
175  *
176  * The lock acquisition rules are as follows:
177  *
178  * SCL_CONFIG
179  *	Protects changes to the vdev tree topology, such as vdev
180  *	add/remove/attach/detach.  Protects the dirty config list
181  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
182  *
183  * SCL_STATE
184  *	Protects changes to pool state and vdev state, such as vdev
185  *	online/offline/fault/degrade/clear.  Protects the dirty state list
186  *	(spa_state_dirty_list) and global pool state (spa_state).
187  *
188  * SCL_ALLOC
189  *	Protects changes to metaslab groups and classes.
190  *	Held as reader by metaslab_alloc() and metaslab_claim().
191  *
192  * SCL_ZIO
193  *	Held by bp-level zios (those which have no io_vd upon entry)
194  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
195  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
196  *
197  * SCL_FREE
198  *	Protects changes to metaslab groups and classes.
199  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
200  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
201  *	blocks in zio_done() while another i/o that holds either
202  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
203  *
204  * SCL_VDEV
205  *	Held as reader to prevent changes to the vdev tree during trivial
206  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
207  *	other locks, and lower than all of them, to ensure that it's safe
208  *	to acquire regardless of caller context.
209  *
210  * In addition, the following rules apply:
211  *
212  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
213  *	The lock ordering is SCL_CONFIG > spa_props_lock.
214  *
215  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
216  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
217  *	or zio_write_phys() -- the caller must ensure that the config cannot
218  *	cannot change in the interim, and that the vdev cannot be reopened.
219  *	SCL_STATE as reader suffices for both.
220  *
221  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
222  *
223  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
224  *				for writing.
225  *
226  *	spa_vdev_exit()		Release the config lock, wait for all I/O
227  *				to complete, sync the updated configs to the
228  *				cache, and release the namespace lock.
229  *
230  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
231  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
232  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
233  */
234 
235 static avl_tree_t spa_namespace_avl;
236 kmutex_t spa_namespace_lock;
237 static kcondvar_t spa_namespace_cv;
238 static const int spa_max_replication_override = SPA_DVAS_PER_BP;
239 
240 static kmutex_t spa_spare_lock;
241 static avl_tree_t spa_spare_avl;
242 static kmutex_t spa_l2cache_lock;
243 static avl_tree_t spa_l2cache_avl;
244 
245 spa_mode_t spa_mode_global = SPA_MODE_UNINIT;
246 
247 #ifdef ZFS_DEBUG
248 /*
249  * Everything except dprintf, set_error, spa, and indirect_remap is on
250  * by default in debug builds.
251  */
252 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
253     ZFS_DEBUG_INDIRECT_REMAP);
254 #else
255 int zfs_flags = 0;
256 #endif
257 
258 /*
259  * zfs_recover can be set to nonzero to attempt to recover from
260  * otherwise-fatal errors, typically caused by on-disk corruption.  When
261  * set, calls to zfs_panic_recover() will turn into warning messages.
262  * This should only be used as a last resort, as it typically results
263  * in leaked space, or worse.
264  */
265 int zfs_recover = B_FALSE;
266 
267 /*
268  * If destroy encounters an EIO while reading metadata (e.g. indirect
269  * blocks), space referenced by the missing metadata can not be freed.
270  * Normally this causes the background destroy to become "stalled", as
271  * it is unable to make forward progress.  While in this stalled state,
272  * all remaining space to free from the error-encountering filesystem is
273  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
274  * permanently leak the space from indirect blocks that can not be read,
275  * and continue to free everything else that it can.
276  *
277  * The default, "stalling" behavior is useful if the storage partially
278  * fails (i.e. some but not all i/os fail), and then later recovers.  In
279  * this case, we will be able to continue pool operations while it is
280  * partially failed, and when it recovers, we can continue to free the
281  * space, with no leaks.  However, note that this case is actually
282  * fairly rare.
283  *
284  * Typically pools either (a) fail completely (but perhaps temporarily,
285  * e.g. a top-level vdev going offline), or (b) have localized,
286  * permanent errors (e.g. disk returns the wrong data due to bit flip or
287  * firmware bug).  In case (a), this setting does not matter because the
288  * pool will be suspended and the sync thread will not be able to make
289  * forward progress regardless.  In case (b), because the error is
290  * permanent, the best we can do is leak the minimum amount of space,
291  * which is what setting this flag will do.  Therefore, it is reasonable
292  * for this flag to normally be set, but we chose the more conservative
293  * approach of not setting it, so that there is no possibility of
294  * leaking space in the "partial temporary" failure case.
295  */
296 int zfs_free_leak_on_eio = B_FALSE;
297 
298 /*
299  * Expiration time in milliseconds. This value has two meanings. First it is
300  * used to determine when the spa_deadman() logic should fire. By default the
301  * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
302  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
303  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
304  * in one of three behaviors controlled by zfs_deadman_failmode.
305  */
306 unsigned long zfs_deadman_synctime_ms = 600000UL;  /* 10 min. */
307 
308 /*
309  * This value controls the maximum amount of time zio_wait() will block for an
310  * outstanding IO.  By default this is 300 seconds at which point the "hung"
311  * behavior will be applied as described for zfs_deadman_synctime_ms.
312  */
313 unsigned long zfs_deadman_ziotime_ms = 300000UL;  /* 5 min. */
314 
315 /*
316  * Check time in milliseconds. This defines the frequency at which we check
317  * for hung I/O.
318  */
319 unsigned long zfs_deadman_checktime_ms = 60000UL;  /* 1 min. */
320 
321 /*
322  * By default the deadman is enabled.
323  */
324 int zfs_deadman_enabled = B_TRUE;
325 
326 /*
327  * Controls the behavior of the deadman when it detects a "hung" I/O.
328  * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
329  *
330  * wait     - Wait for the "hung" I/O (default)
331  * continue - Attempt to recover from a "hung" I/O
332  * panic    - Panic the system
333  */
334 const char *zfs_deadman_failmode = "wait";
335 
336 /*
337  * The worst case is single-sector max-parity RAID-Z blocks, in which
338  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
339  * times the size; so just assume that.  Add to this the fact that
340  * we can have up to 3 DVAs per bp, and one more factor of 2 because
341  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
342  * the worst case is:
343  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
344  */
345 int spa_asize_inflation = 24;
346 
347 /*
348  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
349  * the pool to be consumed (bounded by spa_max_slop).  This ensures that we
350  * don't run the pool completely out of space, due to unaccounted changes (e.g.
351  * to the MOS).  It also limits the worst-case time to allocate space.  If we
352  * have less than this amount of free space, most ZPL operations (e.g.  write,
353  * create) will return ENOSPC.  The ZIL metaslabs (spa_embedded_log_class) are
354  * also part of this 3.2% of space which can't be consumed by normal writes;
355  * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded
356  * log space.
357  *
358  * Certain operations (e.g. file removal, most administrative actions) can
359  * use half the slop space.  They will only return ENOSPC if less than half
360  * the slop space is free.  Typically, once the pool has less than the slop
361  * space free, the user will use these operations to free up space in the pool.
362  * These are the operations that call dsl_pool_adjustedsize() with the netfree
363  * argument set to TRUE.
364  *
365  * Operations that are almost guaranteed to free up space in the absence of
366  * a pool checkpoint can use up to three quarters of the slop space
367  * (e.g zfs destroy).
368  *
369  * A very restricted set of operations are always permitted, regardless of
370  * the amount of free space.  These are the operations that call
371  * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
372  * increase in the amount of space used, it is possible to run the pool
373  * completely out of space, causing it to be permanently read-only.
374  *
375  * Note that on very small pools, the slop space will be larger than
376  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
377  * but we never allow it to be more than half the pool size.
378  *
379  * Further, on very large pools, the slop space will be smaller than
380  * 3.2%, to avoid reserving much more space than we actually need; bounded
381  * by spa_max_slop (128GB).
382  *
383  * See also the comments in zfs_space_check_t.
384  */
385 int spa_slop_shift = 5;
386 static const uint64_t spa_min_slop = 128ULL * 1024 * 1024;
387 static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024;
388 static const int spa_allocators = 4;
389 
390 
391 void
392 spa_load_failed(spa_t *spa, const char *fmt, ...)
393 {
394 	va_list adx;
395 	char buf[256];
396 
397 	va_start(adx, fmt);
398 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
399 	va_end(adx);
400 
401 	zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
402 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
403 }
404 
405 void
406 spa_load_note(spa_t *spa, const char *fmt, ...)
407 {
408 	va_list adx;
409 	char buf[256];
410 
411 	va_start(adx, fmt);
412 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
413 	va_end(adx);
414 
415 	zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
416 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
417 }
418 
419 /*
420  * By default dedup and user data indirects land in the special class
421  */
422 static int zfs_ddt_data_is_special = B_TRUE;
423 static int zfs_user_indirect_is_special = B_TRUE;
424 
425 /*
426  * The percentage of special class final space reserved for metadata only.
427  * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
428  * let metadata into the class.
429  */
430 static int zfs_special_class_metadata_reserve_pct = 25;
431 
432 /*
433  * ==========================================================================
434  * SPA config locking
435  * ==========================================================================
436  */
437 static void
438 spa_config_lock_init(spa_t *spa)
439 {
440 	for (int i = 0; i < SCL_LOCKS; i++) {
441 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
442 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
443 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
444 		scl->scl_writer = NULL;
445 		scl->scl_write_wanted = 0;
446 		scl->scl_count = 0;
447 	}
448 }
449 
450 static void
451 spa_config_lock_destroy(spa_t *spa)
452 {
453 	for (int i = 0; i < SCL_LOCKS; i++) {
454 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
455 		mutex_destroy(&scl->scl_lock);
456 		cv_destroy(&scl->scl_cv);
457 		ASSERT(scl->scl_writer == NULL);
458 		ASSERT(scl->scl_write_wanted == 0);
459 		ASSERT(scl->scl_count == 0);
460 	}
461 }
462 
463 int
464 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
465 {
466 	for (int i = 0; i < SCL_LOCKS; i++) {
467 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
468 		if (!(locks & (1 << i)))
469 			continue;
470 		mutex_enter(&scl->scl_lock);
471 		if (rw == RW_READER) {
472 			if (scl->scl_writer || scl->scl_write_wanted) {
473 				mutex_exit(&scl->scl_lock);
474 				spa_config_exit(spa, locks & ((1 << i) - 1),
475 				    tag);
476 				return (0);
477 			}
478 		} else {
479 			ASSERT(scl->scl_writer != curthread);
480 			if (scl->scl_count != 0) {
481 				mutex_exit(&scl->scl_lock);
482 				spa_config_exit(spa, locks & ((1 << i) - 1),
483 				    tag);
484 				return (0);
485 			}
486 			scl->scl_writer = curthread;
487 		}
488 		scl->scl_count++;
489 		mutex_exit(&scl->scl_lock);
490 	}
491 	return (1);
492 }
493 
494 void
495 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw)
496 {
497 	(void) tag;
498 	int wlocks_held = 0;
499 
500 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
501 
502 	for (int i = 0; i < SCL_LOCKS; i++) {
503 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
504 		if (scl->scl_writer == curthread)
505 			wlocks_held |= (1 << i);
506 		if (!(locks & (1 << i)))
507 			continue;
508 		mutex_enter(&scl->scl_lock);
509 		if (rw == RW_READER) {
510 			while (scl->scl_writer || scl->scl_write_wanted) {
511 				cv_wait(&scl->scl_cv, &scl->scl_lock);
512 			}
513 		} else {
514 			ASSERT(scl->scl_writer != curthread);
515 			while (scl->scl_count != 0) {
516 				scl->scl_write_wanted++;
517 				cv_wait(&scl->scl_cv, &scl->scl_lock);
518 				scl->scl_write_wanted--;
519 			}
520 			scl->scl_writer = curthread;
521 		}
522 		scl->scl_count++;
523 		mutex_exit(&scl->scl_lock);
524 	}
525 	ASSERT3U(wlocks_held, <=, locks);
526 }
527 
528 void
529 spa_config_exit(spa_t *spa, int locks, const void *tag)
530 {
531 	(void) tag;
532 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
533 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
534 		if (!(locks & (1 << i)))
535 			continue;
536 		mutex_enter(&scl->scl_lock);
537 		ASSERT(scl->scl_count > 0);
538 		if (--scl->scl_count == 0) {
539 			ASSERT(scl->scl_writer == NULL ||
540 			    scl->scl_writer == curthread);
541 			scl->scl_writer = NULL;	/* OK in either case */
542 			cv_broadcast(&scl->scl_cv);
543 		}
544 		mutex_exit(&scl->scl_lock);
545 	}
546 }
547 
548 int
549 spa_config_held(spa_t *spa, int locks, krw_t rw)
550 {
551 	int locks_held = 0;
552 
553 	for (int i = 0; i < SCL_LOCKS; i++) {
554 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
555 		if (!(locks & (1 << i)))
556 			continue;
557 		if ((rw == RW_READER && scl->scl_count != 0) ||
558 		    (rw == RW_WRITER && scl->scl_writer == curthread))
559 			locks_held |= 1 << i;
560 	}
561 
562 	return (locks_held);
563 }
564 
565 /*
566  * ==========================================================================
567  * SPA namespace functions
568  * ==========================================================================
569  */
570 
571 /*
572  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
573  * Returns NULL if no matching spa_t is found.
574  */
575 spa_t *
576 spa_lookup(const char *name)
577 {
578 	static spa_t search;	/* spa_t is large; don't allocate on stack */
579 	spa_t *spa;
580 	avl_index_t where;
581 	char *cp;
582 
583 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
584 
585 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
586 
587 	/*
588 	 * If it's a full dataset name, figure out the pool name and
589 	 * just use that.
590 	 */
591 	cp = strpbrk(search.spa_name, "/@#");
592 	if (cp != NULL)
593 		*cp = '\0';
594 
595 	spa = avl_find(&spa_namespace_avl, &search, &where);
596 
597 	return (spa);
598 }
599 
600 /*
601  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
602  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
603  * looking for potentially hung I/Os.
604  */
605 void
606 spa_deadman(void *arg)
607 {
608 	spa_t *spa = arg;
609 
610 	/* Disable the deadman if the pool is suspended. */
611 	if (spa_suspended(spa))
612 		return;
613 
614 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
615 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
616 	    (u_longlong_t)++spa->spa_deadman_calls);
617 	if (zfs_deadman_enabled)
618 		vdev_deadman(spa->spa_root_vdev, FTAG);
619 
620 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
621 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
622 	    MSEC_TO_TICK(zfs_deadman_checktime_ms));
623 }
624 
625 static int
626 spa_log_sm_sort_by_txg(const void *va, const void *vb)
627 {
628 	const spa_log_sm_t *a = va;
629 	const spa_log_sm_t *b = vb;
630 
631 	return (TREE_CMP(a->sls_txg, b->sls_txg));
632 }
633 
634 /*
635  * Create an uninitialized spa_t with the given name.  Requires
636  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
637  * exist by calling spa_lookup() first.
638  */
639 spa_t *
640 spa_add(const char *name, nvlist_t *config, const char *altroot)
641 {
642 	spa_t *spa;
643 	spa_config_dirent_t *dp;
644 
645 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
646 
647 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
648 
649 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
650 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
651 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
652 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
653 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
654 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
655 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
656 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
657 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
658 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
659 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
660 	mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
661 	mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
662 	mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL);
663 
664 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
665 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
666 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
667 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
668 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
669 	cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL);
670 	cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL);
671 
672 	for (int t = 0; t < TXG_SIZE; t++)
673 		bplist_create(&spa->spa_free_bplist[t]);
674 
675 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
676 	spa->spa_state = POOL_STATE_UNINITIALIZED;
677 	spa->spa_freeze_txg = UINT64_MAX;
678 	spa->spa_final_txg = UINT64_MAX;
679 	spa->spa_load_max_txg = UINT64_MAX;
680 	spa->spa_proc = &p0;
681 	spa->spa_proc_state = SPA_PROC_NONE;
682 	spa->spa_trust_config = B_TRUE;
683 	spa->spa_hostid = zone_get_hostid(NULL);
684 
685 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
686 	spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
687 	spa_set_deadman_failmode(spa, zfs_deadman_failmode);
688 
689 	zfs_refcount_create(&spa->spa_refcount);
690 	spa_config_lock_init(spa);
691 	spa_stats_init(spa);
692 
693 	avl_add(&spa_namespace_avl, spa);
694 
695 	/*
696 	 * Set the alternate root, if there is one.
697 	 */
698 	if (altroot)
699 		spa->spa_root = spa_strdup(altroot);
700 
701 	spa->spa_alloc_count = spa_allocators;
702 	spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count *
703 	    sizeof (spa_alloc_t), KM_SLEEP);
704 	for (int i = 0; i < spa->spa_alloc_count; i++) {
705 		mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT,
706 		    NULL);
707 		avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare,
708 		    sizeof (zio_t), offsetof(zio_t, io_alloc_node));
709 	}
710 	avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
711 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
712 	avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
713 	    sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
714 	list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
715 	    offsetof(log_summary_entry_t, lse_node));
716 
717 	/*
718 	 * Every pool starts with the default cachefile
719 	 */
720 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
721 	    offsetof(spa_config_dirent_t, scd_link));
722 
723 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
724 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
725 	list_insert_head(&spa->spa_config_list, dp);
726 
727 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
728 	    KM_SLEEP) == 0);
729 
730 	if (config != NULL) {
731 		nvlist_t *features;
732 
733 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
734 		    &features) == 0) {
735 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
736 			    0) == 0);
737 		}
738 
739 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
740 	}
741 
742 	if (spa->spa_label_features == NULL) {
743 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
744 		    KM_SLEEP) == 0);
745 	}
746 
747 	spa->spa_min_ashift = INT_MAX;
748 	spa->spa_max_ashift = 0;
749 	spa->spa_min_alloc = INT_MAX;
750 
751 	/* Reset cached value */
752 	spa->spa_dedup_dspace = ~0ULL;
753 
754 	/*
755 	 * As a pool is being created, treat all features as disabled by
756 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
757 	 * refcount cache.
758 	 */
759 	for (int i = 0; i < SPA_FEATURES; i++) {
760 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
761 	}
762 
763 	list_create(&spa->spa_leaf_list, sizeof (vdev_t),
764 	    offsetof(vdev_t, vdev_leaf_node));
765 
766 	return (spa);
767 }
768 
769 /*
770  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
771  * spa_namespace_lock.  This is called only after the spa_t has been closed and
772  * deactivated.
773  */
774 void
775 spa_remove(spa_t *spa)
776 {
777 	spa_config_dirent_t *dp;
778 
779 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
780 	ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
781 	ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
782 	ASSERT0(spa->spa_waiters);
783 
784 	nvlist_free(spa->spa_config_splitting);
785 
786 	avl_remove(&spa_namespace_avl, spa);
787 	cv_broadcast(&spa_namespace_cv);
788 
789 	if (spa->spa_root)
790 		spa_strfree(spa->spa_root);
791 
792 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
793 		list_remove(&spa->spa_config_list, dp);
794 		if (dp->scd_path != NULL)
795 			spa_strfree(dp->scd_path);
796 		kmem_free(dp, sizeof (spa_config_dirent_t));
797 	}
798 
799 	for (int i = 0; i < spa->spa_alloc_count; i++) {
800 		avl_destroy(&spa->spa_allocs[i].spaa_tree);
801 		mutex_destroy(&spa->spa_allocs[i].spaa_lock);
802 	}
803 	kmem_free(spa->spa_allocs, spa->spa_alloc_count *
804 	    sizeof (spa_alloc_t));
805 
806 	avl_destroy(&spa->spa_metaslabs_by_flushed);
807 	avl_destroy(&spa->spa_sm_logs_by_txg);
808 	list_destroy(&spa->spa_log_summary);
809 	list_destroy(&spa->spa_config_list);
810 	list_destroy(&spa->spa_leaf_list);
811 
812 	nvlist_free(spa->spa_label_features);
813 	nvlist_free(spa->spa_load_info);
814 	nvlist_free(spa->spa_feat_stats);
815 	spa_config_set(spa, NULL);
816 
817 	zfs_refcount_destroy(&spa->spa_refcount);
818 
819 	spa_stats_destroy(spa);
820 	spa_config_lock_destroy(spa);
821 
822 	for (int t = 0; t < TXG_SIZE; t++)
823 		bplist_destroy(&spa->spa_free_bplist[t]);
824 
825 	zio_checksum_templates_free(spa);
826 
827 	cv_destroy(&spa->spa_async_cv);
828 	cv_destroy(&spa->spa_evicting_os_cv);
829 	cv_destroy(&spa->spa_proc_cv);
830 	cv_destroy(&spa->spa_scrub_io_cv);
831 	cv_destroy(&spa->spa_suspend_cv);
832 	cv_destroy(&spa->spa_activities_cv);
833 	cv_destroy(&spa->spa_waiters_cv);
834 
835 	mutex_destroy(&spa->spa_flushed_ms_lock);
836 	mutex_destroy(&spa->spa_async_lock);
837 	mutex_destroy(&spa->spa_errlist_lock);
838 	mutex_destroy(&spa->spa_errlog_lock);
839 	mutex_destroy(&spa->spa_evicting_os_lock);
840 	mutex_destroy(&spa->spa_history_lock);
841 	mutex_destroy(&spa->spa_proc_lock);
842 	mutex_destroy(&spa->spa_props_lock);
843 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
844 	mutex_destroy(&spa->spa_scrub_lock);
845 	mutex_destroy(&spa->spa_suspend_lock);
846 	mutex_destroy(&spa->spa_vdev_top_lock);
847 	mutex_destroy(&spa->spa_feat_stats_lock);
848 	mutex_destroy(&spa->spa_activities_lock);
849 
850 	kmem_free(spa, sizeof (spa_t));
851 }
852 
853 /*
854  * Given a pool, return the next pool in the namespace, or NULL if there is
855  * none.  If 'prev' is NULL, return the first pool.
856  */
857 spa_t *
858 spa_next(spa_t *prev)
859 {
860 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
861 
862 	if (prev)
863 		return (AVL_NEXT(&spa_namespace_avl, prev));
864 	else
865 		return (avl_first(&spa_namespace_avl));
866 }
867 
868 /*
869  * ==========================================================================
870  * SPA refcount functions
871  * ==========================================================================
872  */
873 
874 /*
875  * Add a reference to the given spa_t.  Must have at least one reference, or
876  * have the namespace lock held.
877  */
878 void
879 spa_open_ref(spa_t *spa, void *tag)
880 {
881 	ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
882 	    MUTEX_HELD(&spa_namespace_lock));
883 	(void) zfs_refcount_add(&spa->spa_refcount, tag);
884 }
885 
886 /*
887  * Remove a reference to the given spa_t.  Must have at least one reference, or
888  * have the namespace lock held.
889  */
890 void
891 spa_close(spa_t *spa, void *tag)
892 {
893 	ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
894 	    MUTEX_HELD(&spa_namespace_lock));
895 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
896 }
897 
898 /*
899  * Remove a reference to the given spa_t held by a dsl dir that is
900  * being asynchronously released.  Async releases occur from a taskq
901  * performing eviction of dsl datasets and dirs.  The namespace lock
902  * isn't held and the hold by the object being evicted may contribute to
903  * spa_minref (e.g. dataset or directory released during pool export),
904  * so the asserts in spa_close() do not apply.
905  */
906 void
907 spa_async_close(spa_t *spa, void *tag)
908 {
909 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
910 }
911 
912 /*
913  * Check to see if the spa refcount is zero.  Must be called with
914  * spa_namespace_lock held.  We really compare against spa_minref, which is the
915  * number of references acquired when opening a pool
916  */
917 boolean_t
918 spa_refcount_zero(spa_t *spa)
919 {
920 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
921 
922 	return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
923 }
924 
925 /*
926  * ==========================================================================
927  * SPA spare and l2cache tracking
928  * ==========================================================================
929  */
930 
931 /*
932  * Hot spares and cache devices are tracked using the same code below,
933  * for 'auxiliary' devices.
934  */
935 
936 typedef struct spa_aux {
937 	uint64_t	aux_guid;
938 	uint64_t	aux_pool;
939 	avl_node_t	aux_avl;
940 	int		aux_count;
941 } spa_aux_t;
942 
943 static inline int
944 spa_aux_compare(const void *a, const void *b)
945 {
946 	const spa_aux_t *sa = (const spa_aux_t *)a;
947 	const spa_aux_t *sb = (const spa_aux_t *)b;
948 
949 	return (TREE_CMP(sa->aux_guid, sb->aux_guid));
950 }
951 
952 static void
953 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
954 {
955 	avl_index_t where;
956 	spa_aux_t search;
957 	spa_aux_t *aux;
958 
959 	search.aux_guid = vd->vdev_guid;
960 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
961 		aux->aux_count++;
962 	} else {
963 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
964 		aux->aux_guid = vd->vdev_guid;
965 		aux->aux_count = 1;
966 		avl_insert(avl, aux, where);
967 	}
968 }
969 
970 static void
971 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
972 {
973 	spa_aux_t search;
974 	spa_aux_t *aux;
975 	avl_index_t where;
976 
977 	search.aux_guid = vd->vdev_guid;
978 	aux = avl_find(avl, &search, &where);
979 
980 	ASSERT(aux != NULL);
981 
982 	if (--aux->aux_count == 0) {
983 		avl_remove(avl, aux);
984 		kmem_free(aux, sizeof (spa_aux_t));
985 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
986 		aux->aux_pool = 0ULL;
987 	}
988 }
989 
990 static boolean_t
991 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
992 {
993 	spa_aux_t search, *found;
994 
995 	search.aux_guid = guid;
996 	found = avl_find(avl, &search, NULL);
997 
998 	if (pool) {
999 		if (found)
1000 			*pool = found->aux_pool;
1001 		else
1002 			*pool = 0ULL;
1003 	}
1004 
1005 	if (refcnt) {
1006 		if (found)
1007 			*refcnt = found->aux_count;
1008 		else
1009 			*refcnt = 0;
1010 	}
1011 
1012 	return (found != NULL);
1013 }
1014 
1015 static void
1016 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1017 {
1018 	spa_aux_t search, *found;
1019 	avl_index_t where;
1020 
1021 	search.aux_guid = vd->vdev_guid;
1022 	found = avl_find(avl, &search, &where);
1023 	ASSERT(found != NULL);
1024 	ASSERT(found->aux_pool == 0ULL);
1025 
1026 	found->aux_pool = spa_guid(vd->vdev_spa);
1027 }
1028 
1029 /*
1030  * Spares are tracked globally due to the following constraints:
1031  *
1032  *	- A spare may be part of multiple pools.
1033  *	- A spare may be added to a pool even if it's actively in use within
1034  *	  another pool.
1035  *	- A spare in use in any pool can only be the source of a replacement if
1036  *	  the target is a spare in the same pool.
1037  *
1038  * We keep track of all spares on the system through the use of a reference
1039  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1040  * spare, then we bump the reference count in the AVL tree.  In addition, we set
1041  * the 'vdev_isspare' member to indicate that the device is a spare (active or
1042  * inactive).  When a spare is made active (used to replace a device in the
1043  * pool), we also keep track of which pool its been made a part of.
1044  *
1045  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1046  * called under the spa_namespace lock as part of vdev reconfiguration.  The
1047  * separate spare lock exists for the status query path, which does not need to
1048  * be completely consistent with respect to other vdev configuration changes.
1049  */
1050 
1051 static int
1052 spa_spare_compare(const void *a, const void *b)
1053 {
1054 	return (spa_aux_compare(a, b));
1055 }
1056 
1057 void
1058 spa_spare_add(vdev_t *vd)
1059 {
1060 	mutex_enter(&spa_spare_lock);
1061 	ASSERT(!vd->vdev_isspare);
1062 	spa_aux_add(vd, &spa_spare_avl);
1063 	vd->vdev_isspare = B_TRUE;
1064 	mutex_exit(&spa_spare_lock);
1065 }
1066 
1067 void
1068 spa_spare_remove(vdev_t *vd)
1069 {
1070 	mutex_enter(&spa_spare_lock);
1071 	ASSERT(vd->vdev_isspare);
1072 	spa_aux_remove(vd, &spa_spare_avl);
1073 	vd->vdev_isspare = B_FALSE;
1074 	mutex_exit(&spa_spare_lock);
1075 }
1076 
1077 boolean_t
1078 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1079 {
1080 	boolean_t found;
1081 
1082 	mutex_enter(&spa_spare_lock);
1083 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1084 	mutex_exit(&spa_spare_lock);
1085 
1086 	return (found);
1087 }
1088 
1089 void
1090 spa_spare_activate(vdev_t *vd)
1091 {
1092 	mutex_enter(&spa_spare_lock);
1093 	ASSERT(vd->vdev_isspare);
1094 	spa_aux_activate(vd, &spa_spare_avl);
1095 	mutex_exit(&spa_spare_lock);
1096 }
1097 
1098 /*
1099  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1100  * Cache devices currently only support one pool per cache device, and so
1101  * for these devices the aux reference count is currently unused beyond 1.
1102  */
1103 
1104 static int
1105 spa_l2cache_compare(const void *a, const void *b)
1106 {
1107 	return (spa_aux_compare(a, b));
1108 }
1109 
1110 void
1111 spa_l2cache_add(vdev_t *vd)
1112 {
1113 	mutex_enter(&spa_l2cache_lock);
1114 	ASSERT(!vd->vdev_isl2cache);
1115 	spa_aux_add(vd, &spa_l2cache_avl);
1116 	vd->vdev_isl2cache = B_TRUE;
1117 	mutex_exit(&spa_l2cache_lock);
1118 }
1119 
1120 void
1121 spa_l2cache_remove(vdev_t *vd)
1122 {
1123 	mutex_enter(&spa_l2cache_lock);
1124 	ASSERT(vd->vdev_isl2cache);
1125 	spa_aux_remove(vd, &spa_l2cache_avl);
1126 	vd->vdev_isl2cache = B_FALSE;
1127 	mutex_exit(&spa_l2cache_lock);
1128 }
1129 
1130 boolean_t
1131 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1132 {
1133 	boolean_t found;
1134 
1135 	mutex_enter(&spa_l2cache_lock);
1136 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1137 	mutex_exit(&spa_l2cache_lock);
1138 
1139 	return (found);
1140 }
1141 
1142 void
1143 spa_l2cache_activate(vdev_t *vd)
1144 {
1145 	mutex_enter(&spa_l2cache_lock);
1146 	ASSERT(vd->vdev_isl2cache);
1147 	spa_aux_activate(vd, &spa_l2cache_avl);
1148 	mutex_exit(&spa_l2cache_lock);
1149 }
1150 
1151 /*
1152  * ==========================================================================
1153  * SPA vdev locking
1154  * ==========================================================================
1155  */
1156 
1157 /*
1158  * Lock the given spa_t for the purpose of adding or removing a vdev.
1159  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1160  * It returns the next transaction group for the spa_t.
1161  */
1162 uint64_t
1163 spa_vdev_enter(spa_t *spa)
1164 {
1165 	mutex_enter(&spa->spa_vdev_top_lock);
1166 	mutex_enter(&spa_namespace_lock);
1167 
1168 	vdev_autotrim_stop_all(spa);
1169 
1170 	return (spa_vdev_config_enter(spa));
1171 }
1172 
1173 /*
1174  * The same as spa_vdev_enter() above but additionally takes the guid of
1175  * the vdev being detached.  When there is a rebuild in process it will be
1176  * suspended while the vdev tree is modified then resumed by spa_vdev_exit().
1177  * The rebuild is canceled if only a single child remains after the detach.
1178  */
1179 uint64_t
1180 spa_vdev_detach_enter(spa_t *spa, uint64_t guid)
1181 {
1182 	mutex_enter(&spa->spa_vdev_top_lock);
1183 	mutex_enter(&spa_namespace_lock);
1184 
1185 	vdev_autotrim_stop_all(spa);
1186 
1187 	if (guid != 0) {
1188 		vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1189 		if (vd) {
1190 			vdev_rebuild_stop_wait(vd->vdev_top);
1191 		}
1192 	}
1193 
1194 	return (spa_vdev_config_enter(spa));
1195 }
1196 
1197 /*
1198  * Internal implementation for spa_vdev_enter().  Used when a vdev
1199  * operation requires multiple syncs (i.e. removing a device) while
1200  * keeping the spa_namespace_lock held.
1201  */
1202 uint64_t
1203 spa_vdev_config_enter(spa_t *spa)
1204 {
1205 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1206 
1207 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1208 
1209 	return (spa_last_synced_txg(spa) + 1);
1210 }
1211 
1212 /*
1213  * Used in combination with spa_vdev_config_enter() to allow the syncing
1214  * of multiple transactions without releasing the spa_namespace_lock.
1215  */
1216 void
1217 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1218 {
1219 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1220 
1221 	int config_changed = B_FALSE;
1222 
1223 	ASSERT(txg > spa_last_synced_txg(spa));
1224 
1225 	spa->spa_pending_vdev = NULL;
1226 
1227 	/*
1228 	 * Reassess the DTLs.
1229 	 */
1230 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE);
1231 
1232 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1233 		config_changed = B_TRUE;
1234 		spa->spa_config_generation++;
1235 	}
1236 
1237 	/*
1238 	 * Verify the metaslab classes.
1239 	 */
1240 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1241 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1242 	ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0);
1243 	ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
1244 	ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
1245 
1246 	spa_config_exit(spa, SCL_ALL, spa);
1247 
1248 	/*
1249 	 * Panic the system if the specified tag requires it.  This
1250 	 * is useful for ensuring that configurations are updated
1251 	 * transactionally.
1252 	 */
1253 	if (zio_injection_enabled)
1254 		zio_handle_panic_injection(spa, tag, 0);
1255 
1256 	/*
1257 	 * Note: this txg_wait_synced() is important because it ensures
1258 	 * that there won't be more than one config change per txg.
1259 	 * This allows us to use the txg as the generation number.
1260 	 */
1261 	if (error == 0)
1262 		txg_wait_synced(spa->spa_dsl_pool, txg);
1263 
1264 	if (vd != NULL) {
1265 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1266 		if (vd->vdev_ops->vdev_op_leaf) {
1267 			mutex_enter(&vd->vdev_initialize_lock);
1268 			vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1269 			    NULL);
1270 			mutex_exit(&vd->vdev_initialize_lock);
1271 
1272 			mutex_enter(&vd->vdev_trim_lock);
1273 			vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1274 			mutex_exit(&vd->vdev_trim_lock);
1275 		}
1276 
1277 		/*
1278 		 * The vdev may be both a leaf and top-level device.
1279 		 */
1280 		vdev_autotrim_stop_wait(vd);
1281 
1282 		spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
1283 		vdev_free(vd);
1284 		spa_config_exit(spa, SCL_STATE_ALL, spa);
1285 	}
1286 
1287 	/*
1288 	 * If the config changed, update the config cache.
1289 	 */
1290 	if (config_changed)
1291 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1292 }
1293 
1294 /*
1295  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1296  * locking of spa_vdev_enter(), we also want make sure the transactions have
1297  * synced to disk, and then update the global configuration cache with the new
1298  * information.
1299  */
1300 int
1301 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1302 {
1303 	vdev_autotrim_restart(spa);
1304 	vdev_rebuild_restart(spa);
1305 
1306 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1307 	mutex_exit(&spa_namespace_lock);
1308 	mutex_exit(&spa->spa_vdev_top_lock);
1309 
1310 	return (error);
1311 }
1312 
1313 /*
1314  * Lock the given spa_t for the purpose of changing vdev state.
1315  */
1316 void
1317 spa_vdev_state_enter(spa_t *spa, int oplocks)
1318 {
1319 	int locks = SCL_STATE_ALL | oplocks;
1320 
1321 	/*
1322 	 * Root pools may need to read of the underlying devfs filesystem
1323 	 * when opening up a vdev.  Unfortunately if we're holding the
1324 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1325 	 * the read from the root filesystem.  Instead we "prefetch"
1326 	 * the associated vnodes that we need prior to opening the
1327 	 * underlying devices and cache them so that we can prevent
1328 	 * any I/O when we are doing the actual open.
1329 	 */
1330 	if (spa_is_root(spa)) {
1331 		int low = locks & ~(SCL_ZIO - 1);
1332 		int high = locks & ~low;
1333 
1334 		spa_config_enter(spa, high, spa, RW_WRITER);
1335 		vdev_hold(spa->spa_root_vdev);
1336 		spa_config_enter(spa, low, spa, RW_WRITER);
1337 	} else {
1338 		spa_config_enter(spa, locks, spa, RW_WRITER);
1339 	}
1340 	spa->spa_vdev_locks = locks;
1341 }
1342 
1343 int
1344 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1345 {
1346 	boolean_t config_changed = B_FALSE;
1347 	vdev_t *vdev_top;
1348 
1349 	if (vd == NULL || vd == spa->spa_root_vdev) {
1350 		vdev_top = spa->spa_root_vdev;
1351 	} else {
1352 		vdev_top = vd->vdev_top;
1353 	}
1354 
1355 	if (vd != NULL || error == 0)
1356 		vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE);
1357 
1358 	if (vd != NULL) {
1359 		if (vd != spa->spa_root_vdev)
1360 			vdev_state_dirty(vdev_top);
1361 
1362 		config_changed = B_TRUE;
1363 		spa->spa_config_generation++;
1364 	}
1365 
1366 	if (spa_is_root(spa))
1367 		vdev_rele(spa->spa_root_vdev);
1368 
1369 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1370 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1371 
1372 	/*
1373 	 * If anything changed, wait for it to sync.  This ensures that,
1374 	 * from the system administrator's perspective, zpool(8) commands
1375 	 * are synchronous.  This is important for things like zpool offline:
1376 	 * when the command completes, you expect no further I/O from ZFS.
1377 	 */
1378 	if (vd != NULL)
1379 		txg_wait_synced(spa->spa_dsl_pool, 0);
1380 
1381 	/*
1382 	 * If the config changed, update the config cache.
1383 	 */
1384 	if (config_changed) {
1385 		mutex_enter(&spa_namespace_lock);
1386 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1387 		mutex_exit(&spa_namespace_lock);
1388 	}
1389 
1390 	return (error);
1391 }
1392 
1393 /*
1394  * ==========================================================================
1395  * Miscellaneous functions
1396  * ==========================================================================
1397  */
1398 
1399 void
1400 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1401 {
1402 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1403 		fnvlist_add_boolean(spa->spa_label_features, feature);
1404 		/*
1405 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1406 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1407 		 * Thankfully, in this case we don't need to dirty the config
1408 		 * because it will be written out anyway when we finish
1409 		 * creating the pool.
1410 		 */
1411 		if (tx->tx_txg != TXG_INITIAL)
1412 			vdev_config_dirty(spa->spa_root_vdev);
1413 	}
1414 }
1415 
1416 void
1417 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1418 {
1419 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1420 		vdev_config_dirty(spa->spa_root_vdev);
1421 }
1422 
1423 /*
1424  * Return the spa_t associated with given pool_guid, if it exists.  If
1425  * device_guid is non-zero, determine whether the pool exists *and* contains
1426  * a device with the specified device_guid.
1427  */
1428 spa_t *
1429 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1430 {
1431 	spa_t *spa;
1432 	avl_tree_t *t = &spa_namespace_avl;
1433 
1434 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1435 
1436 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1437 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1438 			continue;
1439 		if (spa->spa_root_vdev == NULL)
1440 			continue;
1441 		if (spa_guid(spa) == pool_guid) {
1442 			if (device_guid == 0)
1443 				break;
1444 
1445 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1446 			    device_guid) != NULL)
1447 				break;
1448 
1449 			/*
1450 			 * Check any devices we may be in the process of adding.
1451 			 */
1452 			if (spa->spa_pending_vdev) {
1453 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1454 				    device_guid) != NULL)
1455 					break;
1456 			}
1457 		}
1458 	}
1459 
1460 	return (spa);
1461 }
1462 
1463 /*
1464  * Determine whether a pool with the given pool_guid exists.
1465  */
1466 boolean_t
1467 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1468 {
1469 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1470 }
1471 
1472 char *
1473 spa_strdup(const char *s)
1474 {
1475 	size_t len;
1476 	char *new;
1477 
1478 	len = strlen(s);
1479 	new = kmem_alloc(len + 1, KM_SLEEP);
1480 	bcopy(s, new, len);
1481 	new[len] = '\0';
1482 
1483 	return (new);
1484 }
1485 
1486 void
1487 spa_strfree(char *s)
1488 {
1489 	kmem_free(s, strlen(s) + 1);
1490 }
1491 
1492 uint64_t
1493 spa_generate_guid(spa_t *spa)
1494 {
1495 	uint64_t guid;
1496 
1497 	if (spa != NULL) {
1498 		do {
1499 			(void) random_get_pseudo_bytes((void *)&guid,
1500 			    sizeof (guid));
1501 		} while (guid == 0 || spa_guid_exists(spa_guid(spa), guid));
1502 	} else {
1503 		do {
1504 			(void) random_get_pseudo_bytes((void *)&guid,
1505 			    sizeof (guid));
1506 		} while (guid == 0 || spa_guid_exists(guid, 0));
1507 	}
1508 
1509 	return (guid);
1510 }
1511 
1512 void
1513 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1514 {
1515 	char type[256];
1516 	char *checksum = NULL;
1517 	char *compress = NULL;
1518 
1519 	if (bp != NULL) {
1520 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1521 			dmu_object_byteswap_t bswap =
1522 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1523 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1524 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1525 			    "metadata" : "data",
1526 			    dmu_ot_byteswap[bswap].ob_name);
1527 		} else {
1528 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1529 			    sizeof (type));
1530 		}
1531 		if (!BP_IS_EMBEDDED(bp)) {
1532 			checksum =
1533 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1534 		}
1535 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1536 	}
1537 
1538 	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1539 	    compress);
1540 }
1541 
1542 void
1543 spa_freeze(spa_t *spa)
1544 {
1545 	uint64_t freeze_txg = 0;
1546 
1547 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1548 	if (spa->spa_freeze_txg == UINT64_MAX) {
1549 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1550 		spa->spa_freeze_txg = freeze_txg;
1551 	}
1552 	spa_config_exit(spa, SCL_ALL, FTAG);
1553 	if (freeze_txg != 0)
1554 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1555 }
1556 
1557 void
1558 zfs_panic_recover(const char *fmt, ...)
1559 {
1560 	va_list adx;
1561 
1562 	va_start(adx, fmt);
1563 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1564 	va_end(adx);
1565 }
1566 
1567 /*
1568  * This is a stripped-down version of strtoull, suitable only for converting
1569  * lowercase hexadecimal numbers that don't overflow.
1570  */
1571 uint64_t
1572 zfs_strtonum(const char *str, char **nptr)
1573 {
1574 	uint64_t val = 0;
1575 	char c;
1576 	int digit;
1577 
1578 	while ((c = *str) != '\0') {
1579 		if (c >= '0' && c <= '9')
1580 			digit = c - '0';
1581 		else if (c >= 'a' && c <= 'f')
1582 			digit = 10 + c - 'a';
1583 		else
1584 			break;
1585 
1586 		val *= 16;
1587 		val += digit;
1588 
1589 		str++;
1590 	}
1591 
1592 	if (nptr)
1593 		*nptr = (char *)str;
1594 
1595 	return (val);
1596 }
1597 
1598 void
1599 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1600 {
1601 	/*
1602 	 * We bump the feature refcount for each special vdev added to the pool
1603 	 */
1604 	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1605 	spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1606 }
1607 
1608 /*
1609  * ==========================================================================
1610  * Accessor functions
1611  * ==========================================================================
1612  */
1613 
1614 boolean_t
1615 spa_shutting_down(spa_t *spa)
1616 {
1617 	return (spa->spa_async_suspended);
1618 }
1619 
1620 dsl_pool_t *
1621 spa_get_dsl(spa_t *spa)
1622 {
1623 	return (spa->spa_dsl_pool);
1624 }
1625 
1626 boolean_t
1627 spa_is_initializing(spa_t *spa)
1628 {
1629 	return (spa->spa_is_initializing);
1630 }
1631 
1632 boolean_t
1633 spa_indirect_vdevs_loaded(spa_t *spa)
1634 {
1635 	return (spa->spa_indirect_vdevs_loaded);
1636 }
1637 
1638 blkptr_t *
1639 spa_get_rootblkptr(spa_t *spa)
1640 {
1641 	return (&spa->spa_ubsync.ub_rootbp);
1642 }
1643 
1644 void
1645 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1646 {
1647 	spa->spa_uberblock.ub_rootbp = *bp;
1648 }
1649 
1650 void
1651 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1652 {
1653 	if (spa->spa_root == NULL)
1654 		buf[0] = '\0';
1655 	else
1656 		(void) strncpy(buf, spa->spa_root, buflen);
1657 }
1658 
1659 int
1660 spa_sync_pass(spa_t *spa)
1661 {
1662 	return (spa->spa_sync_pass);
1663 }
1664 
1665 char *
1666 spa_name(spa_t *spa)
1667 {
1668 	return (spa->spa_name);
1669 }
1670 
1671 uint64_t
1672 spa_guid(spa_t *spa)
1673 {
1674 	dsl_pool_t *dp = spa_get_dsl(spa);
1675 	uint64_t guid;
1676 
1677 	/*
1678 	 * If we fail to parse the config during spa_load(), we can go through
1679 	 * the error path (which posts an ereport) and end up here with no root
1680 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1681 	 * this case.
1682 	 */
1683 	if (spa->spa_root_vdev == NULL)
1684 		return (spa->spa_config_guid);
1685 
1686 	guid = spa->spa_last_synced_guid != 0 ?
1687 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1688 
1689 	/*
1690 	 * Return the most recently synced out guid unless we're
1691 	 * in syncing context.
1692 	 */
1693 	if (dp && dsl_pool_sync_context(dp))
1694 		return (spa->spa_root_vdev->vdev_guid);
1695 	else
1696 		return (guid);
1697 }
1698 
1699 uint64_t
1700 spa_load_guid(spa_t *spa)
1701 {
1702 	/*
1703 	 * This is a GUID that exists solely as a reference for the
1704 	 * purposes of the arc.  It is generated at load time, and
1705 	 * is never written to persistent storage.
1706 	 */
1707 	return (spa->spa_load_guid);
1708 }
1709 
1710 uint64_t
1711 spa_last_synced_txg(spa_t *spa)
1712 {
1713 	return (spa->spa_ubsync.ub_txg);
1714 }
1715 
1716 uint64_t
1717 spa_first_txg(spa_t *spa)
1718 {
1719 	return (spa->spa_first_txg);
1720 }
1721 
1722 uint64_t
1723 spa_syncing_txg(spa_t *spa)
1724 {
1725 	return (spa->spa_syncing_txg);
1726 }
1727 
1728 /*
1729  * Return the last txg where data can be dirtied. The final txgs
1730  * will be used to just clear out any deferred frees that remain.
1731  */
1732 uint64_t
1733 spa_final_dirty_txg(spa_t *spa)
1734 {
1735 	return (spa->spa_final_txg - TXG_DEFER_SIZE);
1736 }
1737 
1738 pool_state_t
1739 spa_state(spa_t *spa)
1740 {
1741 	return (spa->spa_state);
1742 }
1743 
1744 spa_load_state_t
1745 spa_load_state(spa_t *spa)
1746 {
1747 	return (spa->spa_load_state);
1748 }
1749 
1750 uint64_t
1751 spa_freeze_txg(spa_t *spa)
1752 {
1753 	return (spa->spa_freeze_txg);
1754 }
1755 
1756 /*
1757  * Return the inflated asize for a logical write in bytes. This is used by the
1758  * DMU to calculate the space a logical write will require on disk.
1759  * If lsize is smaller than the largest physical block size allocatable on this
1760  * pool we use its value instead, since the write will end up using the whole
1761  * block anyway.
1762  */
1763 uint64_t
1764 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1765 {
1766 	if (lsize == 0)
1767 		return (0);	/* No inflation needed */
1768 	return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
1769 }
1770 
1771 /*
1772  * Return the amount of slop space in bytes.  It is typically 1/32 of the pool
1773  * (3.2%), minus the embedded log space.  On very small pools, it may be
1774  * slightly larger than this.  On very large pools, it will be capped to
1775  * the value of spa_max_slop.  The embedded log space is not included in
1776  * spa_dspace.  By subtracting it, the usable space (per "zfs list") is a
1777  * constant 97% of the total space, regardless of metaslab size (assuming the
1778  * default spa_slop_shift=5 and a non-tiny pool).
1779  *
1780  * See the comment above spa_slop_shift for more details.
1781  */
1782 uint64_t
1783 spa_get_slop_space(spa_t *spa)
1784 {
1785 	uint64_t space = 0;
1786 	uint64_t slop = 0;
1787 
1788 	/*
1789 	 * Make sure spa_dedup_dspace has been set.
1790 	 */
1791 	if (spa->spa_dedup_dspace == ~0ULL)
1792 		spa_update_dspace(spa);
1793 
1794 	/*
1795 	 * spa_get_dspace() includes the space only logically "used" by
1796 	 * deduplicated data, so since it's not useful to reserve more
1797 	 * space with more deduplicated data, we subtract that out here.
1798 	 */
1799 	space = spa_get_dspace(spa) - spa->spa_dedup_dspace;
1800 	slop = MIN(space >> spa_slop_shift, spa_max_slop);
1801 
1802 	/*
1803 	 * Subtract the embedded log space, but no more than half the (3.2%)
1804 	 * unusable space.  Note, the "no more than half" is only relevant if
1805 	 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by
1806 	 * default.
1807 	 */
1808 	uint64_t embedded_log =
1809 	    metaslab_class_get_dspace(spa_embedded_log_class(spa));
1810 	slop -= MIN(embedded_log, slop >> 1);
1811 
1812 	/*
1813 	 * Slop space should be at least spa_min_slop, but no more than half
1814 	 * the entire pool.
1815 	 */
1816 	slop = MAX(slop, MIN(space >> 1, spa_min_slop));
1817 	return (slop);
1818 }
1819 
1820 uint64_t
1821 spa_get_dspace(spa_t *spa)
1822 {
1823 	return (spa->spa_dspace);
1824 }
1825 
1826 uint64_t
1827 spa_get_checkpoint_space(spa_t *spa)
1828 {
1829 	return (spa->spa_checkpoint_info.sci_dspace);
1830 }
1831 
1832 void
1833 spa_update_dspace(spa_t *spa)
1834 {
1835 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1836 	    ddt_get_dedup_dspace(spa);
1837 	if (spa->spa_nonallocating_dspace > 0) {
1838 		/*
1839 		 * Subtract the space provided by all non-allocating vdevs that
1840 		 * contribute to dspace.  If a file is overwritten, its old
1841 		 * blocks are freed and new blocks are allocated.  If there are
1842 		 * no snapshots of the file, the available space should remain
1843 		 * the same.  The old blocks could be freed from the
1844 		 * non-allocating vdev, but the new blocks must be allocated on
1845 		 * other (allocating) vdevs.  By reserving the entire size of
1846 		 * the non-allocating vdevs (including allocated space), we
1847 		 * ensure that there will be enough space on the allocating
1848 		 * vdevs for this file overwrite to succeed.
1849 		 *
1850 		 * Note that the DMU/DSL doesn't actually know or care
1851 		 * how much space is allocated (it does its own tracking
1852 		 * of how much space has been logically used).  So it
1853 		 * doesn't matter that the data we are moving may be
1854 		 * allocated twice (on the old device and the new device).
1855 		 */
1856 		ASSERT3U(spa->spa_dspace, >=, spa->spa_nonallocating_dspace);
1857 		spa->spa_dspace -= spa->spa_nonallocating_dspace;
1858 	}
1859 }
1860 
1861 /*
1862  * Return the failure mode that has been set to this pool. The default
1863  * behavior will be to block all I/Os when a complete failure occurs.
1864  */
1865 uint64_t
1866 spa_get_failmode(spa_t *spa)
1867 {
1868 	return (spa->spa_failmode);
1869 }
1870 
1871 boolean_t
1872 spa_suspended(spa_t *spa)
1873 {
1874 	return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1875 }
1876 
1877 uint64_t
1878 spa_version(spa_t *spa)
1879 {
1880 	return (spa->spa_ubsync.ub_version);
1881 }
1882 
1883 boolean_t
1884 spa_deflate(spa_t *spa)
1885 {
1886 	return (spa->spa_deflate);
1887 }
1888 
1889 metaslab_class_t *
1890 spa_normal_class(spa_t *spa)
1891 {
1892 	return (spa->spa_normal_class);
1893 }
1894 
1895 metaslab_class_t *
1896 spa_log_class(spa_t *spa)
1897 {
1898 	return (spa->spa_log_class);
1899 }
1900 
1901 metaslab_class_t *
1902 spa_embedded_log_class(spa_t *spa)
1903 {
1904 	return (spa->spa_embedded_log_class);
1905 }
1906 
1907 metaslab_class_t *
1908 spa_special_class(spa_t *spa)
1909 {
1910 	return (spa->spa_special_class);
1911 }
1912 
1913 metaslab_class_t *
1914 spa_dedup_class(spa_t *spa)
1915 {
1916 	return (spa->spa_dedup_class);
1917 }
1918 
1919 /*
1920  * Locate an appropriate allocation class
1921  */
1922 metaslab_class_t *
1923 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
1924     uint_t level, uint_t special_smallblk)
1925 {
1926 	/*
1927 	 * ZIL allocations determine their class in zio_alloc_zil().
1928 	 */
1929 	ASSERT(objtype != DMU_OT_INTENT_LOG);
1930 
1931 	boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
1932 
1933 	if (DMU_OT_IS_DDT(objtype)) {
1934 		if (spa->spa_dedup_class->mc_groups != 0)
1935 			return (spa_dedup_class(spa));
1936 		else if (has_special_class && zfs_ddt_data_is_special)
1937 			return (spa_special_class(spa));
1938 		else
1939 			return (spa_normal_class(spa));
1940 	}
1941 
1942 	/* Indirect blocks for user data can land in special if allowed */
1943 	if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
1944 		if (has_special_class && zfs_user_indirect_is_special)
1945 			return (spa_special_class(spa));
1946 		else
1947 			return (spa_normal_class(spa));
1948 	}
1949 
1950 	if (DMU_OT_IS_METADATA(objtype) || level > 0) {
1951 		if (has_special_class)
1952 			return (spa_special_class(spa));
1953 		else
1954 			return (spa_normal_class(spa));
1955 	}
1956 
1957 	/*
1958 	 * Allow small file blocks in special class in some cases (like
1959 	 * for the dRAID vdev feature). But always leave a reserve of
1960 	 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
1961 	 */
1962 	if (DMU_OT_IS_FILE(objtype) &&
1963 	    has_special_class && size <= special_smallblk) {
1964 		metaslab_class_t *special = spa_special_class(spa);
1965 		uint64_t alloc = metaslab_class_get_alloc(special);
1966 		uint64_t space = metaslab_class_get_space(special);
1967 		uint64_t limit =
1968 		    (space * (100 - zfs_special_class_metadata_reserve_pct))
1969 		    / 100;
1970 
1971 		if (alloc < limit)
1972 			return (special);
1973 	}
1974 
1975 	return (spa_normal_class(spa));
1976 }
1977 
1978 void
1979 spa_evicting_os_register(spa_t *spa, objset_t *os)
1980 {
1981 	mutex_enter(&spa->spa_evicting_os_lock);
1982 	list_insert_head(&spa->spa_evicting_os_list, os);
1983 	mutex_exit(&spa->spa_evicting_os_lock);
1984 }
1985 
1986 void
1987 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1988 {
1989 	mutex_enter(&spa->spa_evicting_os_lock);
1990 	list_remove(&spa->spa_evicting_os_list, os);
1991 	cv_broadcast(&spa->spa_evicting_os_cv);
1992 	mutex_exit(&spa->spa_evicting_os_lock);
1993 }
1994 
1995 void
1996 spa_evicting_os_wait(spa_t *spa)
1997 {
1998 	mutex_enter(&spa->spa_evicting_os_lock);
1999 	while (!list_is_empty(&spa->spa_evicting_os_list))
2000 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
2001 	mutex_exit(&spa->spa_evicting_os_lock);
2002 
2003 	dmu_buf_user_evict_wait();
2004 }
2005 
2006 int
2007 spa_max_replication(spa_t *spa)
2008 {
2009 	/*
2010 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
2011 	 * handle BPs with more than one DVA allocated.  Set our max
2012 	 * replication level accordingly.
2013 	 */
2014 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
2015 		return (1);
2016 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
2017 }
2018 
2019 int
2020 spa_prev_software_version(spa_t *spa)
2021 {
2022 	return (spa->spa_prev_software_version);
2023 }
2024 
2025 uint64_t
2026 spa_deadman_synctime(spa_t *spa)
2027 {
2028 	return (spa->spa_deadman_synctime);
2029 }
2030 
2031 spa_autotrim_t
2032 spa_get_autotrim(spa_t *spa)
2033 {
2034 	return (spa->spa_autotrim);
2035 }
2036 
2037 uint64_t
2038 spa_deadman_ziotime(spa_t *spa)
2039 {
2040 	return (spa->spa_deadman_ziotime);
2041 }
2042 
2043 uint64_t
2044 spa_get_deadman_failmode(spa_t *spa)
2045 {
2046 	return (spa->spa_deadman_failmode);
2047 }
2048 
2049 void
2050 spa_set_deadman_failmode(spa_t *spa, const char *failmode)
2051 {
2052 	if (strcmp(failmode, "wait") == 0)
2053 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2054 	else if (strcmp(failmode, "continue") == 0)
2055 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
2056 	else if (strcmp(failmode, "panic") == 0)
2057 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
2058 	else
2059 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2060 }
2061 
2062 void
2063 spa_set_deadman_ziotime(hrtime_t ns)
2064 {
2065 	spa_t *spa = NULL;
2066 
2067 	if (spa_mode_global != SPA_MODE_UNINIT) {
2068 		mutex_enter(&spa_namespace_lock);
2069 		while ((spa = spa_next(spa)) != NULL)
2070 			spa->spa_deadman_ziotime = ns;
2071 		mutex_exit(&spa_namespace_lock);
2072 	}
2073 }
2074 
2075 void
2076 spa_set_deadman_synctime(hrtime_t ns)
2077 {
2078 	spa_t *spa = NULL;
2079 
2080 	if (spa_mode_global != SPA_MODE_UNINIT) {
2081 		mutex_enter(&spa_namespace_lock);
2082 		while ((spa = spa_next(spa)) != NULL)
2083 			spa->spa_deadman_synctime = ns;
2084 		mutex_exit(&spa_namespace_lock);
2085 	}
2086 }
2087 
2088 uint64_t
2089 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
2090 {
2091 	uint64_t asize = DVA_GET_ASIZE(dva);
2092 	uint64_t dsize = asize;
2093 
2094 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2095 
2096 	if (asize != 0 && spa->spa_deflate) {
2097 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2098 		if (vd != NULL)
2099 			dsize = (asize >> SPA_MINBLOCKSHIFT) *
2100 			    vd->vdev_deflate_ratio;
2101 	}
2102 
2103 	return (dsize);
2104 }
2105 
2106 uint64_t
2107 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
2108 {
2109 	uint64_t dsize = 0;
2110 
2111 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2112 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2113 
2114 	return (dsize);
2115 }
2116 
2117 uint64_t
2118 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
2119 {
2120 	uint64_t dsize = 0;
2121 
2122 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2123 
2124 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2125 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2126 
2127 	spa_config_exit(spa, SCL_VDEV, FTAG);
2128 
2129 	return (dsize);
2130 }
2131 
2132 uint64_t
2133 spa_dirty_data(spa_t *spa)
2134 {
2135 	return (spa->spa_dsl_pool->dp_dirty_total);
2136 }
2137 
2138 /*
2139  * ==========================================================================
2140  * SPA Import Progress Routines
2141  * ==========================================================================
2142  */
2143 
2144 typedef struct spa_import_progress {
2145 	uint64_t		pool_guid;	/* unique id for updates */
2146 	char			*pool_name;
2147 	spa_load_state_t	spa_load_state;
2148 	uint64_t		mmp_sec_remaining;	/* MMP activity check */
2149 	uint64_t		spa_load_max_txg;	/* rewind txg */
2150 	procfs_list_node_t	smh_node;
2151 } spa_import_progress_t;
2152 
2153 spa_history_list_t *spa_import_progress_list = NULL;
2154 
2155 static int
2156 spa_import_progress_show_header(struct seq_file *f)
2157 {
2158 	seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid",
2159 	    "load_state", "multihost_secs", "max_txg",
2160 	    "pool_name");
2161 	return (0);
2162 }
2163 
2164 static int
2165 spa_import_progress_show(struct seq_file *f, void *data)
2166 {
2167 	spa_import_progress_t *sip = (spa_import_progress_t *)data;
2168 
2169 	seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n",
2170 	    (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state,
2171 	    (u_longlong_t)sip->mmp_sec_remaining,
2172 	    (u_longlong_t)sip->spa_load_max_txg,
2173 	    (sip->pool_name ? sip->pool_name : "-"));
2174 
2175 	return (0);
2176 }
2177 
2178 /* Remove oldest elements from list until there are no more than 'size' left */
2179 static void
2180 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size)
2181 {
2182 	spa_import_progress_t *sip;
2183 	while (shl->size > size) {
2184 		sip = list_remove_head(&shl->procfs_list.pl_list);
2185 		if (sip->pool_name)
2186 			spa_strfree(sip->pool_name);
2187 		kmem_free(sip, sizeof (spa_import_progress_t));
2188 		shl->size--;
2189 	}
2190 
2191 	IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list));
2192 }
2193 
2194 static void
2195 spa_import_progress_init(void)
2196 {
2197 	spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t),
2198 	    KM_SLEEP);
2199 
2200 	spa_import_progress_list->size = 0;
2201 
2202 	spa_import_progress_list->procfs_list.pl_private =
2203 	    spa_import_progress_list;
2204 
2205 	procfs_list_install("zfs",
2206 	    NULL,
2207 	    "import_progress",
2208 	    0644,
2209 	    &spa_import_progress_list->procfs_list,
2210 	    spa_import_progress_show,
2211 	    spa_import_progress_show_header,
2212 	    NULL,
2213 	    offsetof(spa_import_progress_t, smh_node));
2214 }
2215 
2216 static void
2217 spa_import_progress_destroy(void)
2218 {
2219 	spa_history_list_t *shl = spa_import_progress_list;
2220 	procfs_list_uninstall(&shl->procfs_list);
2221 	spa_import_progress_truncate(shl, 0);
2222 	procfs_list_destroy(&shl->procfs_list);
2223 	kmem_free(shl, sizeof (spa_history_list_t));
2224 }
2225 
2226 int
2227 spa_import_progress_set_state(uint64_t pool_guid,
2228     spa_load_state_t load_state)
2229 {
2230 	spa_history_list_t *shl = spa_import_progress_list;
2231 	spa_import_progress_t *sip;
2232 	int error = ENOENT;
2233 
2234 	if (shl->size == 0)
2235 		return (0);
2236 
2237 	mutex_enter(&shl->procfs_list.pl_lock);
2238 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2239 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2240 		if (sip->pool_guid == pool_guid) {
2241 			sip->spa_load_state = load_state;
2242 			error = 0;
2243 			break;
2244 		}
2245 	}
2246 	mutex_exit(&shl->procfs_list.pl_lock);
2247 
2248 	return (error);
2249 }
2250 
2251 int
2252 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg)
2253 {
2254 	spa_history_list_t *shl = spa_import_progress_list;
2255 	spa_import_progress_t *sip;
2256 	int error = ENOENT;
2257 
2258 	if (shl->size == 0)
2259 		return (0);
2260 
2261 	mutex_enter(&shl->procfs_list.pl_lock);
2262 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2263 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2264 		if (sip->pool_guid == pool_guid) {
2265 			sip->spa_load_max_txg = load_max_txg;
2266 			error = 0;
2267 			break;
2268 		}
2269 	}
2270 	mutex_exit(&shl->procfs_list.pl_lock);
2271 
2272 	return (error);
2273 }
2274 
2275 int
2276 spa_import_progress_set_mmp_check(uint64_t pool_guid,
2277     uint64_t mmp_sec_remaining)
2278 {
2279 	spa_history_list_t *shl = spa_import_progress_list;
2280 	spa_import_progress_t *sip;
2281 	int error = ENOENT;
2282 
2283 	if (shl->size == 0)
2284 		return (0);
2285 
2286 	mutex_enter(&shl->procfs_list.pl_lock);
2287 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2288 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2289 		if (sip->pool_guid == pool_guid) {
2290 			sip->mmp_sec_remaining = mmp_sec_remaining;
2291 			error = 0;
2292 			break;
2293 		}
2294 	}
2295 	mutex_exit(&shl->procfs_list.pl_lock);
2296 
2297 	return (error);
2298 }
2299 
2300 /*
2301  * A new import is in progress, add an entry.
2302  */
2303 void
2304 spa_import_progress_add(spa_t *spa)
2305 {
2306 	spa_history_list_t *shl = spa_import_progress_list;
2307 	spa_import_progress_t *sip;
2308 	char *poolname = NULL;
2309 
2310 	sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP);
2311 	sip->pool_guid = spa_guid(spa);
2312 
2313 	(void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
2314 	    &poolname);
2315 	if (poolname == NULL)
2316 		poolname = spa_name(spa);
2317 	sip->pool_name = spa_strdup(poolname);
2318 	sip->spa_load_state = spa_load_state(spa);
2319 
2320 	mutex_enter(&shl->procfs_list.pl_lock);
2321 	procfs_list_add(&shl->procfs_list, sip);
2322 	shl->size++;
2323 	mutex_exit(&shl->procfs_list.pl_lock);
2324 }
2325 
2326 void
2327 spa_import_progress_remove(uint64_t pool_guid)
2328 {
2329 	spa_history_list_t *shl = spa_import_progress_list;
2330 	spa_import_progress_t *sip;
2331 
2332 	mutex_enter(&shl->procfs_list.pl_lock);
2333 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2334 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2335 		if (sip->pool_guid == pool_guid) {
2336 			if (sip->pool_name)
2337 				spa_strfree(sip->pool_name);
2338 			list_remove(&shl->procfs_list.pl_list, sip);
2339 			shl->size--;
2340 			kmem_free(sip, sizeof (spa_import_progress_t));
2341 			break;
2342 		}
2343 	}
2344 	mutex_exit(&shl->procfs_list.pl_lock);
2345 }
2346 
2347 /*
2348  * ==========================================================================
2349  * Initialization and Termination
2350  * ==========================================================================
2351  */
2352 
2353 static int
2354 spa_name_compare(const void *a1, const void *a2)
2355 {
2356 	const spa_t *s1 = a1;
2357 	const spa_t *s2 = a2;
2358 	int s;
2359 
2360 	s = strcmp(s1->spa_name, s2->spa_name);
2361 
2362 	return (TREE_ISIGN(s));
2363 }
2364 
2365 void
2366 spa_boot_init(void)
2367 {
2368 	spa_config_load();
2369 }
2370 
2371 void
2372 spa_init(spa_mode_t mode)
2373 {
2374 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2375 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2376 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2377 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2378 
2379 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2380 	    offsetof(spa_t, spa_avl));
2381 
2382 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2383 	    offsetof(spa_aux_t, aux_avl));
2384 
2385 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2386 	    offsetof(spa_aux_t, aux_avl));
2387 
2388 	spa_mode_global = mode;
2389 
2390 #ifndef _KERNEL
2391 	if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) {
2392 		struct sigaction sa;
2393 
2394 		sa.sa_flags = SA_SIGINFO;
2395 		sigemptyset(&sa.sa_mask);
2396 		sa.sa_sigaction = arc_buf_sigsegv;
2397 
2398 		if (sigaction(SIGSEGV, &sa, NULL) == -1) {
2399 			perror("could not enable watchpoints: "
2400 			    "sigaction(SIGSEGV, ...) = ");
2401 		} else {
2402 			arc_watch = B_TRUE;
2403 		}
2404 	}
2405 #endif
2406 
2407 	fm_init();
2408 	zfs_refcount_init();
2409 	unique_init();
2410 	zfs_btree_init();
2411 	metaslab_stat_init();
2412 	ddt_init();
2413 	zio_init();
2414 	dmu_init();
2415 	zil_init();
2416 	vdev_cache_stat_init();
2417 	vdev_mirror_stat_init();
2418 	vdev_raidz_math_init();
2419 	vdev_file_init();
2420 	zfs_prop_init();
2421 	zpool_prop_init();
2422 	zpool_feature_init();
2423 	spa_config_load();
2424 	vdev_prop_init();
2425 	l2arc_start();
2426 	scan_init();
2427 	qat_init();
2428 	spa_import_progress_init();
2429 }
2430 
2431 void
2432 spa_fini(void)
2433 {
2434 	l2arc_stop();
2435 
2436 	spa_evict_all();
2437 
2438 	vdev_file_fini();
2439 	vdev_cache_stat_fini();
2440 	vdev_mirror_stat_fini();
2441 	vdev_raidz_math_fini();
2442 	zil_fini();
2443 	dmu_fini();
2444 	zio_fini();
2445 	ddt_fini();
2446 	metaslab_stat_fini();
2447 	zfs_btree_fini();
2448 	unique_fini();
2449 	zfs_refcount_fini();
2450 	fm_fini();
2451 	scan_fini();
2452 	qat_fini();
2453 	spa_import_progress_destroy();
2454 
2455 	avl_destroy(&spa_namespace_avl);
2456 	avl_destroy(&spa_spare_avl);
2457 	avl_destroy(&spa_l2cache_avl);
2458 
2459 	cv_destroy(&spa_namespace_cv);
2460 	mutex_destroy(&spa_namespace_lock);
2461 	mutex_destroy(&spa_spare_lock);
2462 	mutex_destroy(&spa_l2cache_lock);
2463 }
2464 
2465 /*
2466  * Return whether this pool has a dedicated slog device. No locking needed.
2467  * It's not a problem if the wrong answer is returned as it's only for
2468  * performance and not correctness.
2469  */
2470 boolean_t
2471 spa_has_slogs(spa_t *spa)
2472 {
2473 	return (spa->spa_log_class->mc_groups != 0);
2474 }
2475 
2476 spa_log_state_t
2477 spa_get_log_state(spa_t *spa)
2478 {
2479 	return (spa->spa_log_state);
2480 }
2481 
2482 void
2483 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2484 {
2485 	spa->spa_log_state = state;
2486 }
2487 
2488 boolean_t
2489 spa_is_root(spa_t *spa)
2490 {
2491 	return (spa->spa_is_root);
2492 }
2493 
2494 boolean_t
2495 spa_writeable(spa_t *spa)
2496 {
2497 	return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config);
2498 }
2499 
2500 /*
2501  * Returns true if there is a pending sync task in any of the current
2502  * syncing txg, the current quiescing txg, or the current open txg.
2503  */
2504 boolean_t
2505 spa_has_pending_synctask(spa_t *spa)
2506 {
2507 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2508 	    !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2509 }
2510 
2511 spa_mode_t
2512 spa_mode(spa_t *spa)
2513 {
2514 	return (spa->spa_mode);
2515 }
2516 
2517 uint64_t
2518 spa_bootfs(spa_t *spa)
2519 {
2520 	return (spa->spa_bootfs);
2521 }
2522 
2523 uint64_t
2524 spa_delegation(spa_t *spa)
2525 {
2526 	return (spa->spa_delegation);
2527 }
2528 
2529 objset_t *
2530 spa_meta_objset(spa_t *spa)
2531 {
2532 	return (spa->spa_meta_objset);
2533 }
2534 
2535 enum zio_checksum
2536 spa_dedup_checksum(spa_t *spa)
2537 {
2538 	return (spa->spa_dedup_checksum);
2539 }
2540 
2541 /*
2542  * Reset pool scan stat per scan pass (or reboot).
2543  */
2544 void
2545 spa_scan_stat_init(spa_t *spa)
2546 {
2547 	/* data not stored on disk */
2548 	spa->spa_scan_pass_start = gethrestime_sec();
2549 	if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2550 		spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2551 	else
2552 		spa->spa_scan_pass_scrub_pause = 0;
2553 	spa->spa_scan_pass_scrub_spent_paused = 0;
2554 	spa->spa_scan_pass_exam = 0;
2555 	spa->spa_scan_pass_issued = 0;
2556 	vdev_scan_stat_init(spa->spa_root_vdev);
2557 }
2558 
2559 /*
2560  * Get scan stats for zpool status reports
2561  */
2562 int
2563 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2564 {
2565 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2566 
2567 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2568 		return (SET_ERROR(ENOENT));
2569 	bzero(ps, sizeof (pool_scan_stat_t));
2570 
2571 	/* data stored on disk */
2572 	ps->pss_func = scn->scn_phys.scn_func;
2573 	ps->pss_state = scn->scn_phys.scn_state;
2574 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2575 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2576 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2577 	ps->pss_examined = scn->scn_phys.scn_examined;
2578 	ps->pss_to_process = scn->scn_phys.scn_to_process;
2579 	ps->pss_processed = scn->scn_phys.scn_processed;
2580 	ps->pss_errors = scn->scn_phys.scn_errors;
2581 
2582 	/* data not stored on disk */
2583 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2584 	ps->pss_pass_start = spa->spa_scan_pass_start;
2585 	ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2586 	ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2587 	ps->pss_pass_issued = spa->spa_scan_pass_issued;
2588 	ps->pss_issued =
2589 	    scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2590 
2591 	return (0);
2592 }
2593 
2594 int
2595 spa_maxblocksize(spa_t *spa)
2596 {
2597 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2598 		return (SPA_MAXBLOCKSIZE);
2599 	else
2600 		return (SPA_OLD_MAXBLOCKSIZE);
2601 }
2602 
2603 
2604 /*
2605  * Returns the txg that the last device removal completed. No indirect mappings
2606  * have been added since this txg.
2607  */
2608 uint64_t
2609 spa_get_last_removal_txg(spa_t *spa)
2610 {
2611 	uint64_t vdevid;
2612 	uint64_t ret = -1ULL;
2613 
2614 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2615 	/*
2616 	 * sr_prev_indirect_vdev is only modified while holding all the
2617 	 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2618 	 * examining it.
2619 	 */
2620 	vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2621 
2622 	while (vdevid != -1ULL) {
2623 		vdev_t *vd = vdev_lookup_top(spa, vdevid);
2624 		vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2625 
2626 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2627 
2628 		/*
2629 		 * If the removal did not remap any data, we don't care.
2630 		 */
2631 		if (vdev_indirect_births_count(vib) != 0) {
2632 			ret = vdev_indirect_births_last_entry_txg(vib);
2633 			break;
2634 		}
2635 
2636 		vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2637 	}
2638 	spa_config_exit(spa, SCL_VDEV, FTAG);
2639 
2640 	IMPLY(ret != -1ULL,
2641 	    spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2642 
2643 	return (ret);
2644 }
2645 
2646 int
2647 spa_maxdnodesize(spa_t *spa)
2648 {
2649 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2650 		return (DNODE_MAX_SIZE);
2651 	else
2652 		return (DNODE_MIN_SIZE);
2653 }
2654 
2655 boolean_t
2656 spa_multihost(spa_t *spa)
2657 {
2658 	return (spa->spa_multihost ? B_TRUE : B_FALSE);
2659 }
2660 
2661 uint32_t
2662 spa_get_hostid(spa_t *spa)
2663 {
2664 	return (spa->spa_hostid);
2665 }
2666 
2667 boolean_t
2668 spa_trust_config(spa_t *spa)
2669 {
2670 	return (spa->spa_trust_config);
2671 }
2672 
2673 uint64_t
2674 spa_missing_tvds_allowed(spa_t *spa)
2675 {
2676 	return (spa->spa_missing_tvds_allowed);
2677 }
2678 
2679 space_map_t *
2680 spa_syncing_log_sm(spa_t *spa)
2681 {
2682 	return (spa->spa_syncing_log_sm);
2683 }
2684 
2685 void
2686 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2687 {
2688 	spa->spa_missing_tvds = missing;
2689 }
2690 
2691 /*
2692  * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
2693  */
2694 const char *
2695 spa_state_to_name(spa_t *spa)
2696 {
2697 	ASSERT3P(spa, !=, NULL);
2698 
2699 	/*
2700 	 * it is possible for the spa to exist, without root vdev
2701 	 * as the spa transitions during import/export
2702 	 */
2703 	vdev_t *rvd = spa->spa_root_vdev;
2704 	if (rvd == NULL) {
2705 		return ("TRANSITIONING");
2706 	}
2707 	vdev_state_t state = rvd->vdev_state;
2708 	vdev_aux_t aux = rvd->vdev_stat.vs_aux;
2709 
2710 	if (spa_suspended(spa) &&
2711 	    (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE))
2712 		return ("SUSPENDED");
2713 
2714 	switch (state) {
2715 	case VDEV_STATE_CLOSED:
2716 	case VDEV_STATE_OFFLINE:
2717 		return ("OFFLINE");
2718 	case VDEV_STATE_REMOVED:
2719 		return ("REMOVED");
2720 	case VDEV_STATE_CANT_OPEN:
2721 		if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
2722 			return ("FAULTED");
2723 		else if (aux == VDEV_AUX_SPLIT_POOL)
2724 			return ("SPLIT");
2725 		else
2726 			return ("UNAVAIL");
2727 	case VDEV_STATE_FAULTED:
2728 		return ("FAULTED");
2729 	case VDEV_STATE_DEGRADED:
2730 		return ("DEGRADED");
2731 	case VDEV_STATE_HEALTHY:
2732 		return ("ONLINE");
2733 	default:
2734 		break;
2735 	}
2736 
2737 	return ("UNKNOWN");
2738 }
2739 
2740 boolean_t
2741 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2742 {
2743 	vdev_t *rvd = spa->spa_root_vdev;
2744 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2745 		if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2746 			return (B_FALSE);
2747 	}
2748 	return (B_TRUE);
2749 }
2750 
2751 boolean_t
2752 spa_has_checkpoint(spa_t *spa)
2753 {
2754 	return (spa->spa_checkpoint_txg != 0);
2755 }
2756 
2757 boolean_t
2758 spa_importing_readonly_checkpoint(spa_t *spa)
2759 {
2760 	return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2761 	    spa->spa_mode == SPA_MODE_READ);
2762 }
2763 
2764 uint64_t
2765 spa_min_claim_txg(spa_t *spa)
2766 {
2767 	uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2768 
2769 	if (checkpoint_txg != 0)
2770 		return (checkpoint_txg + 1);
2771 
2772 	return (spa->spa_first_txg);
2773 }
2774 
2775 /*
2776  * If there is a checkpoint, async destroys may consume more space from
2777  * the pool instead of freeing it. In an attempt to save the pool from
2778  * getting suspended when it is about to run out of space, we stop
2779  * processing async destroys.
2780  */
2781 boolean_t
2782 spa_suspend_async_destroy(spa_t *spa)
2783 {
2784 	dsl_pool_t *dp = spa_get_dsl(spa);
2785 
2786 	uint64_t unreserved = dsl_pool_unreserved_space(dp,
2787 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
2788 	uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2789 	uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2790 
2791 	if (spa_has_checkpoint(spa) && avail == 0)
2792 		return (B_TRUE);
2793 
2794 	return (B_FALSE);
2795 }
2796 
2797 #if defined(_KERNEL)
2798 
2799 int
2800 param_set_deadman_failmode_common(const char *val)
2801 {
2802 	spa_t *spa = NULL;
2803 	char *p;
2804 
2805 	if (val == NULL)
2806 		return (SET_ERROR(EINVAL));
2807 
2808 	if ((p = strchr(val, '\n')) != NULL)
2809 		*p = '\0';
2810 
2811 	if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
2812 	    strcmp(val, "panic"))
2813 		return (SET_ERROR(EINVAL));
2814 
2815 	if (spa_mode_global != SPA_MODE_UNINIT) {
2816 		mutex_enter(&spa_namespace_lock);
2817 		while ((spa = spa_next(spa)) != NULL)
2818 			spa_set_deadman_failmode(spa, val);
2819 		mutex_exit(&spa_namespace_lock);
2820 	}
2821 
2822 	return (0);
2823 }
2824 #endif
2825 
2826 /* Namespace manipulation */
2827 EXPORT_SYMBOL(spa_lookup);
2828 EXPORT_SYMBOL(spa_add);
2829 EXPORT_SYMBOL(spa_remove);
2830 EXPORT_SYMBOL(spa_next);
2831 
2832 /* Refcount functions */
2833 EXPORT_SYMBOL(spa_open_ref);
2834 EXPORT_SYMBOL(spa_close);
2835 EXPORT_SYMBOL(spa_refcount_zero);
2836 
2837 /* Pool configuration lock */
2838 EXPORT_SYMBOL(spa_config_tryenter);
2839 EXPORT_SYMBOL(spa_config_enter);
2840 EXPORT_SYMBOL(spa_config_exit);
2841 EXPORT_SYMBOL(spa_config_held);
2842 
2843 /* Pool vdev add/remove lock */
2844 EXPORT_SYMBOL(spa_vdev_enter);
2845 EXPORT_SYMBOL(spa_vdev_exit);
2846 
2847 /* Pool vdev state change lock */
2848 EXPORT_SYMBOL(spa_vdev_state_enter);
2849 EXPORT_SYMBOL(spa_vdev_state_exit);
2850 
2851 /* Accessor functions */
2852 EXPORT_SYMBOL(spa_shutting_down);
2853 EXPORT_SYMBOL(spa_get_dsl);
2854 EXPORT_SYMBOL(spa_get_rootblkptr);
2855 EXPORT_SYMBOL(spa_set_rootblkptr);
2856 EXPORT_SYMBOL(spa_altroot);
2857 EXPORT_SYMBOL(spa_sync_pass);
2858 EXPORT_SYMBOL(spa_name);
2859 EXPORT_SYMBOL(spa_guid);
2860 EXPORT_SYMBOL(spa_last_synced_txg);
2861 EXPORT_SYMBOL(spa_first_txg);
2862 EXPORT_SYMBOL(spa_syncing_txg);
2863 EXPORT_SYMBOL(spa_version);
2864 EXPORT_SYMBOL(spa_state);
2865 EXPORT_SYMBOL(spa_load_state);
2866 EXPORT_SYMBOL(spa_freeze_txg);
2867 EXPORT_SYMBOL(spa_get_dspace);
2868 EXPORT_SYMBOL(spa_update_dspace);
2869 EXPORT_SYMBOL(spa_deflate);
2870 EXPORT_SYMBOL(spa_normal_class);
2871 EXPORT_SYMBOL(spa_log_class);
2872 EXPORT_SYMBOL(spa_special_class);
2873 EXPORT_SYMBOL(spa_preferred_class);
2874 EXPORT_SYMBOL(spa_max_replication);
2875 EXPORT_SYMBOL(spa_prev_software_version);
2876 EXPORT_SYMBOL(spa_get_failmode);
2877 EXPORT_SYMBOL(spa_suspended);
2878 EXPORT_SYMBOL(spa_bootfs);
2879 EXPORT_SYMBOL(spa_delegation);
2880 EXPORT_SYMBOL(spa_meta_objset);
2881 EXPORT_SYMBOL(spa_maxblocksize);
2882 EXPORT_SYMBOL(spa_maxdnodesize);
2883 
2884 /* Miscellaneous support routines */
2885 EXPORT_SYMBOL(spa_guid_exists);
2886 EXPORT_SYMBOL(spa_strdup);
2887 EXPORT_SYMBOL(spa_strfree);
2888 EXPORT_SYMBOL(spa_generate_guid);
2889 EXPORT_SYMBOL(snprintf_blkptr);
2890 EXPORT_SYMBOL(spa_freeze);
2891 EXPORT_SYMBOL(spa_upgrade);
2892 EXPORT_SYMBOL(spa_evict_all);
2893 EXPORT_SYMBOL(spa_lookup_by_guid);
2894 EXPORT_SYMBOL(spa_has_spare);
2895 EXPORT_SYMBOL(dva_get_dsize_sync);
2896 EXPORT_SYMBOL(bp_get_dsize_sync);
2897 EXPORT_SYMBOL(bp_get_dsize);
2898 EXPORT_SYMBOL(spa_has_slogs);
2899 EXPORT_SYMBOL(spa_is_root);
2900 EXPORT_SYMBOL(spa_writeable);
2901 EXPORT_SYMBOL(spa_mode);
2902 EXPORT_SYMBOL(spa_namespace_lock);
2903 EXPORT_SYMBOL(spa_trust_config);
2904 EXPORT_SYMBOL(spa_missing_tvds_allowed);
2905 EXPORT_SYMBOL(spa_set_missing_tvds);
2906 EXPORT_SYMBOL(spa_state_to_name);
2907 EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
2908 EXPORT_SYMBOL(spa_min_claim_txg);
2909 EXPORT_SYMBOL(spa_suspend_async_destroy);
2910 EXPORT_SYMBOL(spa_has_checkpoint);
2911 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
2912 
2913 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW,
2914 	"Set additional debugging flags");
2915 
2916 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW,
2917 	"Set to attempt to recover from fatal errors");
2918 
2919 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW,
2920 	"Set to ignore IO errors during free and permanently leak the space");
2921 
2922 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, ULONG, ZMOD_RW,
2923 	"Dead I/O check interval in milliseconds");
2924 
2925 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW,
2926 	"Enable deadman timer");
2927 
2928 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, INT, ZMOD_RW,
2929 	"SPA size estimate multiplication factor");
2930 
2931 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW,
2932 	"Place DDT data into the special class");
2933 
2934 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW,
2935 	"Place user data indirect blocks into the special class");
2936 
2937 /* BEGIN CSTYLED */
2938 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode,
2939 	param_set_deadman_failmode, param_get_charp, ZMOD_RW,
2940 	"Failmode for deadman timer");
2941 
2942 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms,
2943 	param_set_deadman_synctime, param_get_ulong, ZMOD_RW,
2944 	"Pool sync expiration time in milliseconds");
2945 
2946 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms,
2947 	param_set_deadman_ziotime, param_get_ulong, ZMOD_RW,
2948 	"IO expiration time in milliseconds");
2949 
2950 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, INT, ZMOD_RW,
2951 	"Small file blocks in special vdevs depends on this much "
2952 	"free space available");
2953 /* END CSTYLED */
2954 
2955 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift,
2956 	param_get_int, ZMOD_RW, "Reserved free space in pool");
2957