1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2013 Saso Kiselkov. All rights reserved. 27 * Copyright (c) 2017 Datto Inc. 28 * Copyright (c) 2017, Intel Corporation. 29 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/zfs_chksum.h> 34 #include <sys/spa_impl.h> 35 #include <sys/zio.h> 36 #include <sys/zio_checksum.h> 37 #include <sys/zio_compress.h> 38 #include <sys/dmu.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/zap.h> 41 #include <sys/zil.h> 42 #include <sys/vdev_impl.h> 43 #include <sys/vdev_initialize.h> 44 #include <sys/vdev_trim.h> 45 #include <sys/vdev_file.h> 46 #include <sys/vdev_raidz.h> 47 #include <sys/metaslab.h> 48 #include <sys/uberblock_impl.h> 49 #include <sys/txg.h> 50 #include <sys/avl.h> 51 #include <sys/unique.h> 52 #include <sys/dsl_pool.h> 53 #include <sys/dsl_dir.h> 54 #include <sys/dsl_prop.h> 55 #include <sys/fm/util.h> 56 #include <sys/dsl_scan.h> 57 #include <sys/fs/zfs.h> 58 #include <sys/metaslab_impl.h> 59 #include <sys/arc.h> 60 #include <sys/ddt.h> 61 #include <sys/kstat.h> 62 #include "zfs_prop.h" 63 #include <sys/btree.h> 64 #include <sys/zfeature.h> 65 #include <sys/qat.h> 66 #include <sys/zstd/zstd.h> 67 68 /* 69 * SPA locking 70 * 71 * There are three basic locks for managing spa_t structures: 72 * 73 * spa_namespace_lock (global mutex) 74 * 75 * This lock must be acquired to do any of the following: 76 * 77 * - Lookup a spa_t by name 78 * - Add or remove a spa_t from the namespace 79 * - Increase spa_refcount from non-zero 80 * - Check if spa_refcount is zero 81 * - Rename a spa_t 82 * - add/remove/attach/detach devices 83 * - Held for the duration of create/destroy/import/export 84 * 85 * It does not need to handle recursion. A create or destroy may 86 * reference objects (files or zvols) in other pools, but by 87 * definition they must have an existing reference, and will never need 88 * to lookup a spa_t by name. 89 * 90 * spa_refcount (per-spa zfs_refcount_t protected by mutex) 91 * 92 * This reference count keep track of any active users of the spa_t. The 93 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 94 * the refcount is never really 'zero' - opening a pool implicitly keeps 95 * some references in the DMU. Internally we check against spa_minref, but 96 * present the image of a zero/non-zero value to consumers. 97 * 98 * spa_config_lock[] (per-spa array of rwlocks) 99 * 100 * This protects the spa_t from config changes, and must be held in 101 * the following circumstances: 102 * 103 * - RW_READER to perform I/O to the spa 104 * - RW_WRITER to change the vdev config 105 * 106 * The locking order is fairly straightforward: 107 * 108 * spa_namespace_lock -> spa_refcount 109 * 110 * The namespace lock must be acquired to increase the refcount from 0 111 * or to check if it is zero. 112 * 113 * spa_refcount -> spa_config_lock[] 114 * 115 * There must be at least one valid reference on the spa_t to acquire 116 * the config lock. 117 * 118 * spa_namespace_lock -> spa_config_lock[] 119 * 120 * The namespace lock must always be taken before the config lock. 121 * 122 * 123 * The spa_namespace_lock can be acquired directly and is globally visible. 124 * 125 * The namespace is manipulated using the following functions, all of which 126 * require the spa_namespace_lock to be held. 127 * 128 * spa_lookup() Lookup a spa_t by name. 129 * 130 * spa_add() Create a new spa_t in the namespace. 131 * 132 * spa_remove() Remove a spa_t from the namespace. This also 133 * frees up any memory associated with the spa_t. 134 * 135 * spa_next() Returns the next spa_t in the system, or the 136 * first if NULL is passed. 137 * 138 * spa_evict_all() Shutdown and remove all spa_t structures in 139 * the system. 140 * 141 * spa_guid_exists() Determine whether a pool/device guid exists. 142 * 143 * The spa_refcount is manipulated using the following functions: 144 * 145 * spa_open_ref() Adds a reference to the given spa_t. Must be 146 * called with spa_namespace_lock held if the 147 * refcount is currently zero. 148 * 149 * spa_close() Remove a reference from the spa_t. This will 150 * not free the spa_t or remove it from the 151 * namespace. No locking is required. 152 * 153 * spa_refcount_zero() Returns true if the refcount is currently 154 * zero. Must be called with spa_namespace_lock 155 * held. 156 * 157 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 158 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 159 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 160 * 161 * To read the configuration, it suffices to hold one of these locks as reader. 162 * To modify the configuration, you must hold all locks as writer. To modify 163 * vdev state without altering the vdev tree's topology (e.g. online/offline), 164 * you must hold SCL_STATE and SCL_ZIO as writer. 165 * 166 * We use these distinct config locks to avoid recursive lock entry. 167 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 168 * block allocations (SCL_ALLOC), which may require reading space maps 169 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 170 * 171 * The spa config locks cannot be normal rwlocks because we need the 172 * ability to hand off ownership. For example, SCL_ZIO is acquired 173 * by the issuing thread and later released by an interrupt thread. 174 * They do, however, obey the usual write-wanted semantics to prevent 175 * writer (i.e. system administrator) starvation. 176 * 177 * The lock acquisition rules are as follows: 178 * 179 * SCL_CONFIG 180 * Protects changes to the vdev tree topology, such as vdev 181 * add/remove/attach/detach. Protects the dirty config list 182 * (spa_config_dirty_list) and the set of spares and l2arc devices. 183 * 184 * SCL_STATE 185 * Protects changes to pool state and vdev state, such as vdev 186 * online/offline/fault/degrade/clear. Protects the dirty state list 187 * (spa_state_dirty_list) and global pool state (spa_state). 188 * 189 * SCL_ALLOC 190 * Protects changes to metaslab groups and classes. 191 * Held as reader by metaslab_alloc() and metaslab_claim(). 192 * 193 * SCL_ZIO 194 * Held by bp-level zios (those which have no io_vd upon entry) 195 * to prevent changes to the vdev tree. The bp-level zio implicitly 196 * protects all of its vdev child zios, which do not hold SCL_ZIO. 197 * 198 * SCL_FREE 199 * Protects changes to metaslab groups and classes. 200 * Held as reader by metaslab_free(). SCL_FREE is distinct from 201 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 202 * blocks in zio_done() while another i/o that holds either 203 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 204 * 205 * SCL_VDEV 206 * Held as reader to prevent changes to the vdev tree during trivial 207 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 208 * other locks, and lower than all of them, to ensure that it's safe 209 * to acquire regardless of caller context. 210 * 211 * In addition, the following rules apply: 212 * 213 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 214 * The lock ordering is SCL_CONFIG > spa_props_lock. 215 * 216 * (b) I/O operations on leaf vdevs. For any zio operation that takes 217 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 218 * or zio_write_phys() -- the caller must ensure that the config cannot 219 * cannot change in the interim, and that the vdev cannot be reopened. 220 * SCL_STATE as reader suffices for both. 221 * 222 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 223 * 224 * spa_vdev_enter() Acquire the namespace lock and the config lock 225 * for writing. 226 * 227 * spa_vdev_exit() Release the config lock, wait for all I/O 228 * to complete, sync the updated configs to the 229 * cache, and release the namespace lock. 230 * 231 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 232 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 233 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 234 */ 235 236 static avl_tree_t spa_namespace_avl; 237 kmutex_t spa_namespace_lock; 238 static kcondvar_t spa_namespace_cv; 239 static const int spa_max_replication_override = SPA_DVAS_PER_BP; 240 241 static kmutex_t spa_spare_lock; 242 static avl_tree_t spa_spare_avl; 243 static kmutex_t spa_l2cache_lock; 244 static avl_tree_t spa_l2cache_avl; 245 246 spa_mode_t spa_mode_global = SPA_MODE_UNINIT; 247 248 #ifdef ZFS_DEBUG 249 /* 250 * Everything except dprintf, set_error, spa, and indirect_remap is on 251 * by default in debug builds. 252 */ 253 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR | 254 ZFS_DEBUG_INDIRECT_REMAP); 255 #else 256 int zfs_flags = 0; 257 #endif 258 259 /* 260 * zfs_recover can be set to nonzero to attempt to recover from 261 * otherwise-fatal errors, typically caused by on-disk corruption. When 262 * set, calls to zfs_panic_recover() will turn into warning messages. 263 * This should only be used as a last resort, as it typically results 264 * in leaked space, or worse. 265 */ 266 int zfs_recover = B_FALSE; 267 268 /* 269 * If destroy encounters an EIO while reading metadata (e.g. indirect 270 * blocks), space referenced by the missing metadata can not be freed. 271 * Normally this causes the background destroy to become "stalled", as 272 * it is unable to make forward progress. While in this stalled state, 273 * all remaining space to free from the error-encountering filesystem is 274 * "temporarily leaked". Set this flag to cause it to ignore the EIO, 275 * permanently leak the space from indirect blocks that can not be read, 276 * and continue to free everything else that it can. 277 * 278 * The default, "stalling" behavior is useful if the storage partially 279 * fails (i.e. some but not all i/os fail), and then later recovers. In 280 * this case, we will be able to continue pool operations while it is 281 * partially failed, and when it recovers, we can continue to free the 282 * space, with no leaks. However, note that this case is actually 283 * fairly rare. 284 * 285 * Typically pools either (a) fail completely (but perhaps temporarily, 286 * e.g. a top-level vdev going offline), or (b) have localized, 287 * permanent errors (e.g. disk returns the wrong data due to bit flip or 288 * firmware bug). In case (a), this setting does not matter because the 289 * pool will be suspended and the sync thread will not be able to make 290 * forward progress regardless. In case (b), because the error is 291 * permanent, the best we can do is leak the minimum amount of space, 292 * which is what setting this flag will do. Therefore, it is reasonable 293 * for this flag to normally be set, but we chose the more conservative 294 * approach of not setting it, so that there is no possibility of 295 * leaking space in the "partial temporary" failure case. 296 */ 297 int zfs_free_leak_on_eio = B_FALSE; 298 299 /* 300 * Expiration time in milliseconds. This value has two meanings. First it is 301 * used to determine when the spa_deadman() logic should fire. By default the 302 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds. 303 * Secondly, the value determines if an I/O is considered "hung". Any I/O that 304 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting 305 * in one of three behaviors controlled by zfs_deadman_failmode. 306 */ 307 unsigned long zfs_deadman_synctime_ms = 600000UL; /* 10 min. */ 308 309 /* 310 * This value controls the maximum amount of time zio_wait() will block for an 311 * outstanding IO. By default this is 300 seconds at which point the "hung" 312 * behavior will be applied as described for zfs_deadman_synctime_ms. 313 */ 314 unsigned long zfs_deadman_ziotime_ms = 300000UL; /* 5 min. */ 315 316 /* 317 * Check time in milliseconds. This defines the frequency at which we check 318 * for hung I/O. 319 */ 320 unsigned long zfs_deadman_checktime_ms = 60000UL; /* 1 min. */ 321 322 /* 323 * By default the deadman is enabled. 324 */ 325 int zfs_deadman_enabled = B_TRUE; 326 327 /* 328 * Controls the behavior of the deadman when it detects a "hung" I/O. 329 * Valid values are zfs_deadman_failmode=<wait|continue|panic>. 330 * 331 * wait - Wait for the "hung" I/O (default) 332 * continue - Attempt to recover from a "hung" I/O 333 * panic - Panic the system 334 */ 335 const char *zfs_deadman_failmode = "wait"; 336 337 /* 338 * The worst case is single-sector max-parity RAID-Z blocks, in which 339 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 340 * times the size; so just assume that. Add to this the fact that 341 * we can have up to 3 DVAs per bp, and one more factor of 2 because 342 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, 343 * the worst case is: 344 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 345 */ 346 int spa_asize_inflation = 24; 347 348 /* 349 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in 350 * the pool to be consumed (bounded by spa_max_slop). This ensures that we 351 * don't run the pool completely out of space, due to unaccounted changes (e.g. 352 * to the MOS). It also limits the worst-case time to allocate space. If we 353 * have less than this amount of free space, most ZPL operations (e.g. write, 354 * create) will return ENOSPC. The ZIL metaslabs (spa_embedded_log_class) are 355 * also part of this 3.2% of space which can't be consumed by normal writes; 356 * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded 357 * log space. 358 * 359 * Certain operations (e.g. file removal, most administrative actions) can 360 * use half the slop space. They will only return ENOSPC if less than half 361 * the slop space is free. Typically, once the pool has less than the slop 362 * space free, the user will use these operations to free up space in the pool. 363 * These are the operations that call dsl_pool_adjustedsize() with the netfree 364 * argument set to TRUE. 365 * 366 * Operations that are almost guaranteed to free up space in the absence of 367 * a pool checkpoint can use up to three quarters of the slop space 368 * (e.g zfs destroy). 369 * 370 * A very restricted set of operations are always permitted, regardless of 371 * the amount of free space. These are the operations that call 372 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net 373 * increase in the amount of space used, it is possible to run the pool 374 * completely out of space, causing it to be permanently read-only. 375 * 376 * Note that on very small pools, the slop space will be larger than 377 * 3.2%, in an effort to have it be at least spa_min_slop (128MB), 378 * but we never allow it to be more than half the pool size. 379 * 380 * Further, on very large pools, the slop space will be smaller than 381 * 3.2%, to avoid reserving much more space than we actually need; bounded 382 * by spa_max_slop (128GB). 383 * 384 * See also the comments in zfs_space_check_t. 385 */ 386 int spa_slop_shift = 5; 387 static const uint64_t spa_min_slop = 128ULL * 1024 * 1024; 388 static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024; 389 static const int spa_allocators = 4; 390 391 392 void 393 spa_load_failed(spa_t *spa, const char *fmt, ...) 394 { 395 va_list adx; 396 char buf[256]; 397 398 va_start(adx, fmt); 399 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 400 va_end(adx); 401 402 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name, 403 spa->spa_trust_config ? "trusted" : "untrusted", buf); 404 } 405 406 void 407 spa_load_note(spa_t *spa, const char *fmt, ...) 408 { 409 va_list adx; 410 char buf[256]; 411 412 va_start(adx, fmt); 413 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 414 va_end(adx); 415 416 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name, 417 spa->spa_trust_config ? "trusted" : "untrusted", buf); 418 } 419 420 /* 421 * By default dedup and user data indirects land in the special class 422 */ 423 static int zfs_ddt_data_is_special = B_TRUE; 424 static int zfs_user_indirect_is_special = B_TRUE; 425 426 /* 427 * The percentage of special class final space reserved for metadata only. 428 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only 429 * let metadata into the class. 430 */ 431 static int zfs_special_class_metadata_reserve_pct = 25; 432 433 /* 434 * ========================================================================== 435 * SPA config locking 436 * ========================================================================== 437 */ 438 static void 439 spa_config_lock_init(spa_t *spa) 440 { 441 for (int i = 0; i < SCL_LOCKS; i++) { 442 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 443 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 444 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 445 scl->scl_writer = NULL; 446 scl->scl_write_wanted = 0; 447 scl->scl_count = 0; 448 } 449 } 450 451 static void 452 spa_config_lock_destroy(spa_t *spa) 453 { 454 for (int i = 0; i < SCL_LOCKS; i++) { 455 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 456 mutex_destroy(&scl->scl_lock); 457 cv_destroy(&scl->scl_cv); 458 ASSERT(scl->scl_writer == NULL); 459 ASSERT(scl->scl_write_wanted == 0); 460 ASSERT(scl->scl_count == 0); 461 } 462 } 463 464 int 465 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 466 { 467 for (int i = 0; i < SCL_LOCKS; i++) { 468 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 469 if (!(locks & (1 << i))) 470 continue; 471 mutex_enter(&scl->scl_lock); 472 if (rw == RW_READER) { 473 if (scl->scl_writer || scl->scl_write_wanted) { 474 mutex_exit(&scl->scl_lock); 475 spa_config_exit(spa, locks & ((1 << i) - 1), 476 tag); 477 return (0); 478 } 479 } else { 480 ASSERT(scl->scl_writer != curthread); 481 if (scl->scl_count != 0) { 482 mutex_exit(&scl->scl_lock); 483 spa_config_exit(spa, locks & ((1 << i) - 1), 484 tag); 485 return (0); 486 } 487 scl->scl_writer = curthread; 488 } 489 scl->scl_count++; 490 mutex_exit(&scl->scl_lock); 491 } 492 return (1); 493 } 494 495 void 496 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw) 497 { 498 (void) tag; 499 int wlocks_held = 0; 500 501 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 502 503 for (int i = 0; i < SCL_LOCKS; i++) { 504 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 505 if (scl->scl_writer == curthread) 506 wlocks_held |= (1 << i); 507 if (!(locks & (1 << i))) 508 continue; 509 mutex_enter(&scl->scl_lock); 510 if (rw == RW_READER) { 511 while (scl->scl_writer || scl->scl_write_wanted) { 512 cv_wait(&scl->scl_cv, &scl->scl_lock); 513 } 514 } else { 515 ASSERT(scl->scl_writer != curthread); 516 while (scl->scl_count != 0) { 517 scl->scl_write_wanted++; 518 cv_wait(&scl->scl_cv, &scl->scl_lock); 519 scl->scl_write_wanted--; 520 } 521 scl->scl_writer = curthread; 522 } 523 scl->scl_count++; 524 mutex_exit(&scl->scl_lock); 525 } 526 ASSERT3U(wlocks_held, <=, locks); 527 } 528 529 void 530 spa_config_exit(spa_t *spa, int locks, const void *tag) 531 { 532 (void) tag; 533 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 534 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 535 if (!(locks & (1 << i))) 536 continue; 537 mutex_enter(&scl->scl_lock); 538 ASSERT(scl->scl_count > 0); 539 if (--scl->scl_count == 0) { 540 ASSERT(scl->scl_writer == NULL || 541 scl->scl_writer == curthread); 542 scl->scl_writer = NULL; /* OK in either case */ 543 cv_broadcast(&scl->scl_cv); 544 } 545 mutex_exit(&scl->scl_lock); 546 } 547 } 548 549 int 550 spa_config_held(spa_t *spa, int locks, krw_t rw) 551 { 552 int locks_held = 0; 553 554 for (int i = 0; i < SCL_LOCKS; i++) { 555 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 556 if (!(locks & (1 << i))) 557 continue; 558 if ((rw == RW_READER && scl->scl_count != 0) || 559 (rw == RW_WRITER && scl->scl_writer == curthread)) 560 locks_held |= 1 << i; 561 } 562 563 return (locks_held); 564 } 565 566 /* 567 * ========================================================================== 568 * SPA namespace functions 569 * ========================================================================== 570 */ 571 572 /* 573 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 574 * Returns NULL if no matching spa_t is found. 575 */ 576 spa_t * 577 spa_lookup(const char *name) 578 { 579 static spa_t search; /* spa_t is large; don't allocate on stack */ 580 spa_t *spa; 581 avl_index_t where; 582 char *cp; 583 584 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 585 586 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 587 588 /* 589 * If it's a full dataset name, figure out the pool name and 590 * just use that. 591 */ 592 cp = strpbrk(search.spa_name, "/@#"); 593 if (cp != NULL) 594 *cp = '\0'; 595 596 spa = avl_find(&spa_namespace_avl, &search, &where); 597 598 return (spa); 599 } 600 601 /* 602 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 603 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 604 * looking for potentially hung I/Os. 605 */ 606 void 607 spa_deadman(void *arg) 608 { 609 spa_t *spa = arg; 610 611 /* Disable the deadman if the pool is suspended. */ 612 if (spa_suspended(spa)) 613 return; 614 615 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 616 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 617 (u_longlong_t)++spa->spa_deadman_calls); 618 if (zfs_deadman_enabled) 619 vdev_deadman(spa->spa_root_vdev, FTAG); 620 621 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, 622 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + 623 MSEC_TO_TICK(zfs_deadman_checktime_ms)); 624 } 625 626 static int 627 spa_log_sm_sort_by_txg(const void *va, const void *vb) 628 { 629 const spa_log_sm_t *a = va; 630 const spa_log_sm_t *b = vb; 631 632 return (TREE_CMP(a->sls_txg, b->sls_txg)); 633 } 634 635 /* 636 * Create an uninitialized spa_t with the given name. Requires 637 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 638 * exist by calling spa_lookup() first. 639 */ 640 spa_t * 641 spa_add(const char *name, nvlist_t *config, const char *altroot) 642 { 643 spa_t *spa; 644 spa_config_dirent_t *dp; 645 646 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 647 648 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 649 650 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 651 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 652 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 653 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); 654 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 655 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 656 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 657 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); 658 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 659 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 660 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 661 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL); 662 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL); 663 mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL); 664 665 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 666 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); 667 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 668 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 669 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 670 cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL); 671 cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL); 672 673 for (int t = 0; t < TXG_SIZE; t++) 674 bplist_create(&spa->spa_free_bplist[t]); 675 676 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 677 spa->spa_state = POOL_STATE_UNINITIALIZED; 678 spa->spa_freeze_txg = UINT64_MAX; 679 spa->spa_final_txg = UINT64_MAX; 680 spa->spa_load_max_txg = UINT64_MAX; 681 spa->spa_proc = &p0; 682 spa->spa_proc_state = SPA_PROC_NONE; 683 spa->spa_trust_config = B_TRUE; 684 spa->spa_hostid = zone_get_hostid(NULL); 685 686 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); 687 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms); 688 spa_set_deadman_failmode(spa, zfs_deadman_failmode); 689 690 zfs_refcount_create(&spa->spa_refcount); 691 spa_config_lock_init(spa); 692 spa_stats_init(spa); 693 694 avl_add(&spa_namespace_avl, spa); 695 696 /* 697 * Set the alternate root, if there is one. 698 */ 699 if (altroot) 700 spa->spa_root = spa_strdup(altroot); 701 702 spa->spa_alloc_count = spa_allocators; 703 spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count * 704 sizeof (spa_alloc_t), KM_SLEEP); 705 for (int i = 0; i < spa->spa_alloc_count; i++) { 706 mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT, 707 NULL); 708 avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare, 709 sizeof (zio_t), offsetof(zio_t, io_alloc_node)); 710 } 711 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed, 712 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node)); 713 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg, 714 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node)); 715 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t), 716 offsetof(log_summary_entry_t, lse_node)); 717 718 /* 719 * Every pool starts with the default cachefile 720 */ 721 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 722 offsetof(spa_config_dirent_t, scd_link)); 723 724 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 725 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 726 list_insert_head(&spa->spa_config_list, dp); 727 728 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 729 KM_SLEEP) == 0); 730 731 if (config != NULL) { 732 nvlist_t *features; 733 734 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 735 &features) == 0) { 736 VERIFY(nvlist_dup(features, &spa->spa_label_features, 737 0) == 0); 738 } 739 740 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 741 } 742 743 if (spa->spa_label_features == NULL) { 744 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 745 KM_SLEEP) == 0); 746 } 747 748 spa->spa_min_ashift = INT_MAX; 749 spa->spa_max_ashift = 0; 750 spa->spa_min_alloc = INT_MAX; 751 752 /* Reset cached value */ 753 spa->spa_dedup_dspace = ~0ULL; 754 755 /* 756 * As a pool is being created, treat all features as disabled by 757 * setting SPA_FEATURE_DISABLED for all entries in the feature 758 * refcount cache. 759 */ 760 for (int i = 0; i < SPA_FEATURES; i++) { 761 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; 762 } 763 764 list_create(&spa->spa_leaf_list, sizeof (vdev_t), 765 offsetof(vdev_t, vdev_leaf_node)); 766 767 return (spa); 768 } 769 770 /* 771 * Removes a spa_t from the namespace, freeing up any memory used. Requires 772 * spa_namespace_lock. This is called only after the spa_t has been closed and 773 * deactivated. 774 */ 775 void 776 spa_remove(spa_t *spa) 777 { 778 spa_config_dirent_t *dp; 779 780 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 781 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED); 782 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0); 783 ASSERT0(spa->spa_waiters); 784 785 nvlist_free(spa->spa_config_splitting); 786 787 avl_remove(&spa_namespace_avl, spa); 788 cv_broadcast(&spa_namespace_cv); 789 790 if (spa->spa_root) 791 spa_strfree(spa->spa_root); 792 793 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 794 list_remove(&spa->spa_config_list, dp); 795 if (dp->scd_path != NULL) 796 spa_strfree(dp->scd_path); 797 kmem_free(dp, sizeof (spa_config_dirent_t)); 798 } 799 800 for (int i = 0; i < spa->spa_alloc_count; i++) { 801 avl_destroy(&spa->spa_allocs[i].spaa_tree); 802 mutex_destroy(&spa->spa_allocs[i].spaa_lock); 803 } 804 kmem_free(spa->spa_allocs, spa->spa_alloc_count * 805 sizeof (spa_alloc_t)); 806 807 avl_destroy(&spa->spa_metaslabs_by_flushed); 808 avl_destroy(&spa->spa_sm_logs_by_txg); 809 list_destroy(&spa->spa_log_summary); 810 list_destroy(&spa->spa_config_list); 811 list_destroy(&spa->spa_leaf_list); 812 813 nvlist_free(spa->spa_label_features); 814 nvlist_free(spa->spa_load_info); 815 nvlist_free(spa->spa_feat_stats); 816 spa_config_set(spa, NULL); 817 818 zfs_refcount_destroy(&spa->spa_refcount); 819 820 spa_stats_destroy(spa); 821 spa_config_lock_destroy(spa); 822 823 for (int t = 0; t < TXG_SIZE; t++) 824 bplist_destroy(&spa->spa_free_bplist[t]); 825 826 zio_checksum_templates_free(spa); 827 828 cv_destroy(&spa->spa_async_cv); 829 cv_destroy(&spa->spa_evicting_os_cv); 830 cv_destroy(&spa->spa_proc_cv); 831 cv_destroy(&spa->spa_scrub_io_cv); 832 cv_destroy(&spa->spa_suspend_cv); 833 cv_destroy(&spa->spa_activities_cv); 834 cv_destroy(&spa->spa_waiters_cv); 835 836 mutex_destroy(&spa->spa_flushed_ms_lock); 837 mutex_destroy(&spa->spa_async_lock); 838 mutex_destroy(&spa->spa_errlist_lock); 839 mutex_destroy(&spa->spa_errlog_lock); 840 mutex_destroy(&spa->spa_evicting_os_lock); 841 mutex_destroy(&spa->spa_history_lock); 842 mutex_destroy(&spa->spa_proc_lock); 843 mutex_destroy(&spa->spa_props_lock); 844 mutex_destroy(&spa->spa_cksum_tmpls_lock); 845 mutex_destroy(&spa->spa_scrub_lock); 846 mutex_destroy(&spa->spa_suspend_lock); 847 mutex_destroy(&spa->spa_vdev_top_lock); 848 mutex_destroy(&spa->spa_feat_stats_lock); 849 mutex_destroy(&spa->spa_activities_lock); 850 851 kmem_free(spa, sizeof (spa_t)); 852 } 853 854 /* 855 * Given a pool, return the next pool in the namespace, or NULL if there is 856 * none. If 'prev' is NULL, return the first pool. 857 */ 858 spa_t * 859 spa_next(spa_t *prev) 860 { 861 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 862 863 if (prev) 864 return (AVL_NEXT(&spa_namespace_avl, prev)); 865 else 866 return (avl_first(&spa_namespace_avl)); 867 } 868 869 /* 870 * ========================================================================== 871 * SPA refcount functions 872 * ========================================================================== 873 */ 874 875 /* 876 * Add a reference to the given spa_t. Must have at least one reference, or 877 * have the namespace lock held. 878 */ 879 void 880 spa_open_ref(spa_t *spa, void *tag) 881 { 882 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref || 883 MUTEX_HELD(&spa_namespace_lock)); 884 (void) zfs_refcount_add(&spa->spa_refcount, tag); 885 } 886 887 /* 888 * Remove a reference to the given spa_t. Must have at least one reference, or 889 * have the namespace lock held. 890 */ 891 void 892 spa_close(spa_t *spa, void *tag) 893 { 894 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref || 895 MUTEX_HELD(&spa_namespace_lock)); 896 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 897 } 898 899 /* 900 * Remove a reference to the given spa_t held by a dsl dir that is 901 * being asynchronously released. Async releases occur from a taskq 902 * performing eviction of dsl datasets and dirs. The namespace lock 903 * isn't held and the hold by the object being evicted may contribute to 904 * spa_minref (e.g. dataset or directory released during pool export), 905 * so the asserts in spa_close() do not apply. 906 */ 907 void 908 spa_async_close(spa_t *spa, void *tag) 909 { 910 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 911 } 912 913 /* 914 * Check to see if the spa refcount is zero. Must be called with 915 * spa_namespace_lock held. We really compare against spa_minref, which is the 916 * number of references acquired when opening a pool 917 */ 918 boolean_t 919 spa_refcount_zero(spa_t *spa) 920 { 921 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 922 923 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref); 924 } 925 926 /* 927 * ========================================================================== 928 * SPA spare and l2cache tracking 929 * ========================================================================== 930 */ 931 932 /* 933 * Hot spares and cache devices are tracked using the same code below, 934 * for 'auxiliary' devices. 935 */ 936 937 typedef struct spa_aux { 938 uint64_t aux_guid; 939 uint64_t aux_pool; 940 avl_node_t aux_avl; 941 int aux_count; 942 } spa_aux_t; 943 944 static inline int 945 spa_aux_compare(const void *a, const void *b) 946 { 947 const spa_aux_t *sa = (const spa_aux_t *)a; 948 const spa_aux_t *sb = (const spa_aux_t *)b; 949 950 return (TREE_CMP(sa->aux_guid, sb->aux_guid)); 951 } 952 953 static void 954 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 955 { 956 avl_index_t where; 957 spa_aux_t search; 958 spa_aux_t *aux; 959 960 search.aux_guid = vd->vdev_guid; 961 if ((aux = avl_find(avl, &search, &where)) != NULL) { 962 aux->aux_count++; 963 } else { 964 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 965 aux->aux_guid = vd->vdev_guid; 966 aux->aux_count = 1; 967 avl_insert(avl, aux, where); 968 } 969 } 970 971 static void 972 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 973 { 974 spa_aux_t search; 975 spa_aux_t *aux; 976 avl_index_t where; 977 978 search.aux_guid = vd->vdev_guid; 979 aux = avl_find(avl, &search, &where); 980 981 ASSERT(aux != NULL); 982 983 if (--aux->aux_count == 0) { 984 avl_remove(avl, aux); 985 kmem_free(aux, sizeof (spa_aux_t)); 986 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 987 aux->aux_pool = 0ULL; 988 } 989 } 990 991 static boolean_t 992 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 993 { 994 spa_aux_t search, *found; 995 996 search.aux_guid = guid; 997 found = avl_find(avl, &search, NULL); 998 999 if (pool) { 1000 if (found) 1001 *pool = found->aux_pool; 1002 else 1003 *pool = 0ULL; 1004 } 1005 1006 if (refcnt) { 1007 if (found) 1008 *refcnt = found->aux_count; 1009 else 1010 *refcnt = 0; 1011 } 1012 1013 return (found != NULL); 1014 } 1015 1016 static void 1017 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 1018 { 1019 spa_aux_t search, *found; 1020 avl_index_t where; 1021 1022 search.aux_guid = vd->vdev_guid; 1023 found = avl_find(avl, &search, &where); 1024 ASSERT(found != NULL); 1025 ASSERT(found->aux_pool == 0ULL); 1026 1027 found->aux_pool = spa_guid(vd->vdev_spa); 1028 } 1029 1030 /* 1031 * Spares are tracked globally due to the following constraints: 1032 * 1033 * - A spare may be part of multiple pools. 1034 * - A spare may be added to a pool even if it's actively in use within 1035 * another pool. 1036 * - A spare in use in any pool can only be the source of a replacement if 1037 * the target is a spare in the same pool. 1038 * 1039 * We keep track of all spares on the system through the use of a reference 1040 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 1041 * spare, then we bump the reference count in the AVL tree. In addition, we set 1042 * the 'vdev_isspare' member to indicate that the device is a spare (active or 1043 * inactive). When a spare is made active (used to replace a device in the 1044 * pool), we also keep track of which pool its been made a part of. 1045 * 1046 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 1047 * called under the spa_namespace lock as part of vdev reconfiguration. The 1048 * separate spare lock exists for the status query path, which does not need to 1049 * be completely consistent with respect to other vdev configuration changes. 1050 */ 1051 1052 static int 1053 spa_spare_compare(const void *a, const void *b) 1054 { 1055 return (spa_aux_compare(a, b)); 1056 } 1057 1058 void 1059 spa_spare_add(vdev_t *vd) 1060 { 1061 mutex_enter(&spa_spare_lock); 1062 ASSERT(!vd->vdev_isspare); 1063 spa_aux_add(vd, &spa_spare_avl); 1064 vd->vdev_isspare = B_TRUE; 1065 mutex_exit(&spa_spare_lock); 1066 } 1067 1068 void 1069 spa_spare_remove(vdev_t *vd) 1070 { 1071 mutex_enter(&spa_spare_lock); 1072 ASSERT(vd->vdev_isspare); 1073 spa_aux_remove(vd, &spa_spare_avl); 1074 vd->vdev_isspare = B_FALSE; 1075 mutex_exit(&spa_spare_lock); 1076 } 1077 1078 boolean_t 1079 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 1080 { 1081 boolean_t found; 1082 1083 mutex_enter(&spa_spare_lock); 1084 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 1085 mutex_exit(&spa_spare_lock); 1086 1087 return (found); 1088 } 1089 1090 void 1091 spa_spare_activate(vdev_t *vd) 1092 { 1093 mutex_enter(&spa_spare_lock); 1094 ASSERT(vd->vdev_isspare); 1095 spa_aux_activate(vd, &spa_spare_avl); 1096 mutex_exit(&spa_spare_lock); 1097 } 1098 1099 /* 1100 * Level 2 ARC devices are tracked globally for the same reasons as spares. 1101 * Cache devices currently only support one pool per cache device, and so 1102 * for these devices the aux reference count is currently unused beyond 1. 1103 */ 1104 1105 static int 1106 spa_l2cache_compare(const void *a, const void *b) 1107 { 1108 return (spa_aux_compare(a, b)); 1109 } 1110 1111 void 1112 spa_l2cache_add(vdev_t *vd) 1113 { 1114 mutex_enter(&spa_l2cache_lock); 1115 ASSERT(!vd->vdev_isl2cache); 1116 spa_aux_add(vd, &spa_l2cache_avl); 1117 vd->vdev_isl2cache = B_TRUE; 1118 mutex_exit(&spa_l2cache_lock); 1119 } 1120 1121 void 1122 spa_l2cache_remove(vdev_t *vd) 1123 { 1124 mutex_enter(&spa_l2cache_lock); 1125 ASSERT(vd->vdev_isl2cache); 1126 spa_aux_remove(vd, &spa_l2cache_avl); 1127 vd->vdev_isl2cache = B_FALSE; 1128 mutex_exit(&spa_l2cache_lock); 1129 } 1130 1131 boolean_t 1132 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 1133 { 1134 boolean_t found; 1135 1136 mutex_enter(&spa_l2cache_lock); 1137 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 1138 mutex_exit(&spa_l2cache_lock); 1139 1140 return (found); 1141 } 1142 1143 void 1144 spa_l2cache_activate(vdev_t *vd) 1145 { 1146 mutex_enter(&spa_l2cache_lock); 1147 ASSERT(vd->vdev_isl2cache); 1148 spa_aux_activate(vd, &spa_l2cache_avl); 1149 mutex_exit(&spa_l2cache_lock); 1150 } 1151 1152 /* 1153 * ========================================================================== 1154 * SPA vdev locking 1155 * ========================================================================== 1156 */ 1157 1158 /* 1159 * Lock the given spa_t for the purpose of adding or removing a vdev. 1160 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 1161 * It returns the next transaction group for the spa_t. 1162 */ 1163 uint64_t 1164 spa_vdev_enter(spa_t *spa) 1165 { 1166 mutex_enter(&spa->spa_vdev_top_lock); 1167 mutex_enter(&spa_namespace_lock); 1168 1169 vdev_autotrim_stop_all(spa); 1170 1171 return (spa_vdev_config_enter(spa)); 1172 } 1173 1174 /* 1175 * The same as spa_vdev_enter() above but additionally takes the guid of 1176 * the vdev being detached. When there is a rebuild in process it will be 1177 * suspended while the vdev tree is modified then resumed by spa_vdev_exit(). 1178 * The rebuild is canceled if only a single child remains after the detach. 1179 */ 1180 uint64_t 1181 spa_vdev_detach_enter(spa_t *spa, uint64_t guid) 1182 { 1183 mutex_enter(&spa->spa_vdev_top_lock); 1184 mutex_enter(&spa_namespace_lock); 1185 1186 vdev_autotrim_stop_all(spa); 1187 1188 if (guid != 0) { 1189 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 1190 if (vd) { 1191 vdev_rebuild_stop_wait(vd->vdev_top); 1192 } 1193 } 1194 1195 return (spa_vdev_config_enter(spa)); 1196 } 1197 1198 /* 1199 * Internal implementation for spa_vdev_enter(). Used when a vdev 1200 * operation requires multiple syncs (i.e. removing a device) while 1201 * keeping the spa_namespace_lock held. 1202 */ 1203 uint64_t 1204 spa_vdev_config_enter(spa_t *spa) 1205 { 1206 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1207 1208 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1209 1210 return (spa_last_synced_txg(spa) + 1); 1211 } 1212 1213 /* 1214 * Used in combination with spa_vdev_config_enter() to allow the syncing 1215 * of multiple transactions without releasing the spa_namespace_lock. 1216 */ 1217 void 1218 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 1219 { 1220 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1221 1222 int config_changed = B_FALSE; 1223 1224 ASSERT(txg > spa_last_synced_txg(spa)); 1225 1226 spa->spa_pending_vdev = NULL; 1227 1228 /* 1229 * Reassess the DTLs. 1230 */ 1231 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE); 1232 1233 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 1234 config_changed = B_TRUE; 1235 spa->spa_config_generation++; 1236 } 1237 1238 /* 1239 * Verify the metaslab classes. 1240 */ 1241 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 1242 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 1243 ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0); 1244 ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0); 1245 ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0); 1246 1247 spa_config_exit(spa, SCL_ALL, spa); 1248 1249 /* 1250 * Panic the system if the specified tag requires it. This 1251 * is useful for ensuring that configurations are updated 1252 * transactionally. 1253 */ 1254 if (zio_injection_enabled) 1255 zio_handle_panic_injection(spa, tag, 0); 1256 1257 /* 1258 * Note: this txg_wait_synced() is important because it ensures 1259 * that there won't be more than one config change per txg. 1260 * This allows us to use the txg as the generation number. 1261 */ 1262 if (error == 0) 1263 txg_wait_synced(spa->spa_dsl_pool, txg); 1264 1265 if (vd != NULL) { 1266 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); 1267 if (vd->vdev_ops->vdev_op_leaf) { 1268 mutex_enter(&vd->vdev_initialize_lock); 1269 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, 1270 NULL); 1271 mutex_exit(&vd->vdev_initialize_lock); 1272 1273 mutex_enter(&vd->vdev_trim_lock); 1274 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL); 1275 mutex_exit(&vd->vdev_trim_lock); 1276 } 1277 1278 /* 1279 * The vdev may be both a leaf and top-level device. 1280 */ 1281 vdev_autotrim_stop_wait(vd); 1282 1283 spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER); 1284 vdev_free(vd); 1285 spa_config_exit(spa, SCL_STATE_ALL, spa); 1286 } 1287 1288 /* 1289 * If the config changed, update the config cache. 1290 */ 1291 if (config_changed) 1292 spa_write_cachefile(spa, B_FALSE, B_TRUE); 1293 } 1294 1295 /* 1296 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1297 * locking of spa_vdev_enter(), we also want make sure the transactions have 1298 * synced to disk, and then update the global configuration cache with the new 1299 * information. 1300 */ 1301 int 1302 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1303 { 1304 vdev_autotrim_restart(spa); 1305 vdev_rebuild_restart(spa); 1306 1307 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1308 mutex_exit(&spa_namespace_lock); 1309 mutex_exit(&spa->spa_vdev_top_lock); 1310 1311 return (error); 1312 } 1313 1314 /* 1315 * Lock the given spa_t for the purpose of changing vdev state. 1316 */ 1317 void 1318 spa_vdev_state_enter(spa_t *spa, int oplocks) 1319 { 1320 int locks = SCL_STATE_ALL | oplocks; 1321 1322 /* 1323 * Root pools may need to read of the underlying devfs filesystem 1324 * when opening up a vdev. Unfortunately if we're holding the 1325 * SCL_ZIO lock it will result in a deadlock when we try to issue 1326 * the read from the root filesystem. Instead we "prefetch" 1327 * the associated vnodes that we need prior to opening the 1328 * underlying devices and cache them so that we can prevent 1329 * any I/O when we are doing the actual open. 1330 */ 1331 if (spa_is_root(spa)) { 1332 int low = locks & ~(SCL_ZIO - 1); 1333 int high = locks & ~low; 1334 1335 spa_config_enter(spa, high, spa, RW_WRITER); 1336 vdev_hold(spa->spa_root_vdev); 1337 spa_config_enter(spa, low, spa, RW_WRITER); 1338 } else { 1339 spa_config_enter(spa, locks, spa, RW_WRITER); 1340 } 1341 spa->spa_vdev_locks = locks; 1342 } 1343 1344 int 1345 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1346 { 1347 boolean_t config_changed = B_FALSE; 1348 vdev_t *vdev_top; 1349 1350 if (vd == NULL || vd == spa->spa_root_vdev) { 1351 vdev_top = spa->spa_root_vdev; 1352 } else { 1353 vdev_top = vd->vdev_top; 1354 } 1355 1356 if (vd != NULL || error == 0) 1357 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE); 1358 1359 if (vd != NULL) { 1360 if (vd != spa->spa_root_vdev) 1361 vdev_state_dirty(vdev_top); 1362 1363 config_changed = B_TRUE; 1364 spa->spa_config_generation++; 1365 } 1366 1367 if (spa_is_root(spa)) 1368 vdev_rele(spa->spa_root_vdev); 1369 1370 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1371 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1372 1373 /* 1374 * If anything changed, wait for it to sync. This ensures that, 1375 * from the system administrator's perspective, zpool(8) commands 1376 * are synchronous. This is important for things like zpool offline: 1377 * when the command completes, you expect no further I/O from ZFS. 1378 */ 1379 if (vd != NULL) 1380 txg_wait_synced(spa->spa_dsl_pool, 0); 1381 1382 /* 1383 * If the config changed, update the config cache. 1384 */ 1385 if (config_changed) { 1386 mutex_enter(&spa_namespace_lock); 1387 spa_write_cachefile(spa, B_FALSE, B_TRUE); 1388 mutex_exit(&spa_namespace_lock); 1389 } 1390 1391 return (error); 1392 } 1393 1394 /* 1395 * ========================================================================== 1396 * Miscellaneous functions 1397 * ========================================================================== 1398 */ 1399 1400 void 1401 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) 1402 { 1403 if (!nvlist_exists(spa->spa_label_features, feature)) { 1404 fnvlist_add_boolean(spa->spa_label_features, feature); 1405 /* 1406 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't 1407 * dirty the vdev config because lock SCL_CONFIG is not held. 1408 * Thankfully, in this case we don't need to dirty the config 1409 * because it will be written out anyway when we finish 1410 * creating the pool. 1411 */ 1412 if (tx->tx_txg != TXG_INITIAL) 1413 vdev_config_dirty(spa->spa_root_vdev); 1414 } 1415 } 1416 1417 void 1418 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1419 { 1420 if (nvlist_remove_all(spa->spa_label_features, feature) == 0) 1421 vdev_config_dirty(spa->spa_root_vdev); 1422 } 1423 1424 /* 1425 * Return the spa_t associated with given pool_guid, if it exists. If 1426 * device_guid is non-zero, determine whether the pool exists *and* contains 1427 * a device with the specified device_guid. 1428 */ 1429 spa_t * 1430 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1431 { 1432 spa_t *spa; 1433 avl_tree_t *t = &spa_namespace_avl; 1434 1435 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1436 1437 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1438 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1439 continue; 1440 if (spa->spa_root_vdev == NULL) 1441 continue; 1442 if (spa_guid(spa) == pool_guid) { 1443 if (device_guid == 0) 1444 break; 1445 1446 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1447 device_guid) != NULL) 1448 break; 1449 1450 /* 1451 * Check any devices we may be in the process of adding. 1452 */ 1453 if (spa->spa_pending_vdev) { 1454 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1455 device_guid) != NULL) 1456 break; 1457 } 1458 } 1459 } 1460 1461 return (spa); 1462 } 1463 1464 /* 1465 * Determine whether a pool with the given pool_guid exists. 1466 */ 1467 boolean_t 1468 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1469 { 1470 return (spa_by_guid(pool_guid, device_guid) != NULL); 1471 } 1472 1473 char * 1474 spa_strdup(const char *s) 1475 { 1476 size_t len; 1477 char *new; 1478 1479 len = strlen(s); 1480 new = kmem_alloc(len + 1, KM_SLEEP); 1481 memcpy(new, s, len + 1); 1482 1483 return (new); 1484 } 1485 1486 void 1487 spa_strfree(char *s) 1488 { 1489 kmem_free(s, strlen(s) + 1); 1490 } 1491 1492 uint64_t 1493 spa_generate_guid(spa_t *spa) 1494 { 1495 uint64_t guid; 1496 1497 if (spa != NULL) { 1498 do { 1499 (void) random_get_pseudo_bytes((void *)&guid, 1500 sizeof (guid)); 1501 } while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)); 1502 } else { 1503 do { 1504 (void) random_get_pseudo_bytes((void *)&guid, 1505 sizeof (guid)); 1506 } while (guid == 0 || spa_guid_exists(guid, 0)); 1507 } 1508 1509 return (guid); 1510 } 1511 1512 void 1513 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) 1514 { 1515 char type[256]; 1516 char *checksum = NULL; 1517 char *compress = NULL; 1518 1519 if (bp != NULL) { 1520 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1521 dmu_object_byteswap_t bswap = 1522 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1523 (void) snprintf(type, sizeof (type), "bswap %s %s", 1524 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1525 "metadata" : "data", 1526 dmu_ot_byteswap[bswap].ob_name); 1527 } else { 1528 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1529 sizeof (type)); 1530 } 1531 if (!BP_IS_EMBEDDED(bp)) { 1532 checksum = 1533 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1534 } 1535 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1536 } 1537 1538 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum, 1539 compress); 1540 } 1541 1542 void 1543 spa_freeze(spa_t *spa) 1544 { 1545 uint64_t freeze_txg = 0; 1546 1547 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1548 if (spa->spa_freeze_txg == UINT64_MAX) { 1549 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1550 spa->spa_freeze_txg = freeze_txg; 1551 } 1552 spa_config_exit(spa, SCL_ALL, FTAG); 1553 if (freeze_txg != 0) 1554 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1555 } 1556 1557 void 1558 zfs_panic_recover(const char *fmt, ...) 1559 { 1560 va_list adx; 1561 1562 va_start(adx, fmt); 1563 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1564 va_end(adx); 1565 } 1566 1567 /* 1568 * This is a stripped-down version of strtoull, suitable only for converting 1569 * lowercase hexadecimal numbers that don't overflow. 1570 */ 1571 uint64_t 1572 zfs_strtonum(const char *str, char **nptr) 1573 { 1574 uint64_t val = 0; 1575 char c; 1576 int digit; 1577 1578 while ((c = *str) != '\0') { 1579 if (c >= '0' && c <= '9') 1580 digit = c - '0'; 1581 else if (c >= 'a' && c <= 'f') 1582 digit = 10 + c - 'a'; 1583 else 1584 break; 1585 1586 val *= 16; 1587 val += digit; 1588 1589 str++; 1590 } 1591 1592 if (nptr) 1593 *nptr = (char *)str; 1594 1595 return (val); 1596 } 1597 1598 void 1599 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx) 1600 { 1601 /* 1602 * We bump the feature refcount for each special vdev added to the pool 1603 */ 1604 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)); 1605 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx); 1606 } 1607 1608 /* 1609 * ========================================================================== 1610 * Accessor functions 1611 * ========================================================================== 1612 */ 1613 1614 boolean_t 1615 spa_shutting_down(spa_t *spa) 1616 { 1617 return (spa->spa_async_suspended); 1618 } 1619 1620 dsl_pool_t * 1621 spa_get_dsl(spa_t *spa) 1622 { 1623 return (spa->spa_dsl_pool); 1624 } 1625 1626 boolean_t 1627 spa_is_initializing(spa_t *spa) 1628 { 1629 return (spa->spa_is_initializing); 1630 } 1631 1632 boolean_t 1633 spa_indirect_vdevs_loaded(spa_t *spa) 1634 { 1635 return (spa->spa_indirect_vdevs_loaded); 1636 } 1637 1638 blkptr_t * 1639 spa_get_rootblkptr(spa_t *spa) 1640 { 1641 return (&spa->spa_ubsync.ub_rootbp); 1642 } 1643 1644 void 1645 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1646 { 1647 spa->spa_uberblock.ub_rootbp = *bp; 1648 } 1649 1650 void 1651 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1652 { 1653 if (spa->spa_root == NULL) 1654 buf[0] = '\0'; 1655 else 1656 (void) strncpy(buf, spa->spa_root, buflen); 1657 } 1658 1659 int 1660 spa_sync_pass(spa_t *spa) 1661 { 1662 return (spa->spa_sync_pass); 1663 } 1664 1665 char * 1666 spa_name(spa_t *spa) 1667 { 1668 return (spa->spa_name); 1669 } 1670 1671 uint64_t 1672 spa_guid(spa_t *spa) 1673 { 1674 dsl_pool_t *dp = spa_get_dsl(spa); 1675 uint64_t guid; 1676 1677 /* 1678 * If we fail to parse the config during spa_load(), we can go through 1679 * the error path (which posts an ereport) and end up here with no root 1680 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1681 * this case. 1682 */ 1683 if (spa->spa_root_vdev == NULL) 1684 return (spa->spa_config_guid); 1685 1686 guid = spa->spa_last_synced_guid != 0 ? 1687 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1688 1689 /* 1690 * Return the most recently synced out guid unless we're 1691 * in syncing context. 1692 */ 1693 if (dp && dsl_pool_sync_context(dp)) 1694 return (spa->spa_root_vdev->vdev_guid); 1695 else 1696 return (guid); 1697 } 1698 1699 uint64_t 1700 spa_load_guid(spa_t *spa) 1701 { 1702 /* 1703 * This is a GUID that exists solely as a reference for the 1704 * purposes of the arc. It is generated at load time, and 1705 * is never written to persistent storage. 1706 */ 1707 return (spa->spa_load_guid); 1708 } 1709 1710 uint64_t 1711 spa_last_synced_txg(spa_t *spa) 1712 { 1713 return (spa->spa_ubsync.ub_txg); 1714 } 1715 1716 uint64_t 1717 spa_first_txg(spa_t *spa) 1718 { 1719 return (spa->spa_first_txg); 1720 } 1721 1722 uint64_t 1723 spa_syncing_txg(spa_t *spa) 1724 { 1725 return (spa->spa_syncing_txg); 1726 } 1727 1728 /* 1729 * Return the last txg where data can be dirtied. The final txgs 1730 * will be used to just clear out any deferred frees that remain. 1731 */ 1732 uint64_t 1733 spa_final_dirty_txg(spa_t *spa) 1734 { 1735 return (spa->spa_final_txg - TXG_DEFER_SIZE); 1736 } 1737 1738 pool_state_t 1739 spa_state(spa_t *spa) 1740 { 1741 return (spa->spa_state); 1742 } 1743 1744 spa_load_state_t 1745 spa_load_state(spa_t *spa) 1746 { 1747 return (spa->spa_load_state); 1748 } 1749 1750 uint64_t 1751 spa_freeze_txg(spa_t *spa) 1752 { 1753 return (spa->spa_freeze_txg); 1754 } 1755 1756 /* 1757 * Return the inflated asize for a logical write in bytes. This is used by the 1758 * DMU to calculate the space a logical write will require on disk. 1759 * If lsize is smaller than the largest physical block size allocatable on this 1760 * pool we use its value instead, since the write will end up using the whole 1761 * block anyway. 1762 */ 1763 uint64_t 1764 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize) 1765 { 1766 if (lsize == 0) 1767 return (0); /* No inflation needed */ 1768 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation); 1769 } 1770 1771 /* 1772 * Return the amount of slop space in bytes. It is typically 1/32 of the pool 1773 * (3.2%), minus the embedded log space. On very small pools, it may be 1774 * slightly larger than this. On very large pools, it will be capped to 1775 * the value of spa_max_slop. The embedded log space is not included in 1776 * spa_dspace. By subtracting it, the usable space (per "zfs list") is a 1777 * constant 97% of the total space, regardless of metaslab size (assuming the 1778 * default spa_slop_shift=5 and a non-tiny pool). 1779 * 1780 * See the comment above spa_slop_shift for more details. 1781 */ 1782 uint64_t 1783 spa_get_slop_space(spa_t *spa) 1784 { 1785 uint64_t space = 0; 1786 uint64_t slop = 0; 1787 1788 /* 1789 * Make sure spa_dedup_dspace has been set. 1790 */ 1791 if (spa->spa_dedup_dspace == ~0ULL) 1792 spa_update_dspace(spa); 1793 1794 /* 1795 * spa_get_dspace() includes the space only logically "used" by 1796 * deduplicated data, so since it's not useful to reserve more 1797 * space with more deduplicated data, we subtract that out here. 1798 */ 1799 space = spa_get_dspace(spa) - spa->spa_dedup_dspace; 1800 slop = MIN(space >> spa_slop_shift, spa_max_slop); 1801 1802 /* 1803 * Subtract the embedded log space, but no more than half the (3.2%) 1804 * unusable space. Note, the "no more than half" is only relevant if 1805 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by 1806 * default. 1807 */ 1808 uint64_t embedded_log = 1809 metaslab_class_get_dspace(spa_embedded_log_class(spa)); 1810 slop -= MIN(embedded_log, slop >> 1); 1811 1812 /* 1813 * Slop space should be at least spa_min_slop, but no more than half 1814 * the entire pool. 1815 */ 1816 slop = MAX(slop, MIN(space >> 1, spa_min_slop)); 1817 return (slop); 1818 } 1819 1820 uint64_t 1821 spa_get_dspace(spa_t *spa) 1822 { 1823 return (spa->spa_dspace); 1824 } 1825 1826 uint64_t 1827 spa_get_checkpoint_space(spa_t *spa) 1828 { 1829 return (spa->spa_checkpoint_info.sci_dspace); 1830 } 1831 1832 void 1833 spa_update_dspace(spa_t *spa) 1834 { 1835 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1836 ddt_get_dedup_dspace(spa); 1837 if (spa->spa_nonallocating_dspace > 0) { 1838 /* 1839 * Subtract the space provided by all non-allocating vdevs that 1840 * contribute to dspace. If a file is overwritten, its old 1841 * blocks are freed and new blocks are allocated. If there are 1842 * no snapshots of the file, the available space should remain 1843 * the same. The old blocks could be freed from the 1844 * non-allocating vdev, but the new blocks must be allocated on 1845 * other (allocating) vdevs. By reserving the entire size of 1846 * the non-allocating vdevs (including allocated space), we 1847 * ensure that there will be enough space on the allocating 1848 * vdevs for this file overwrite to succeed. 1849 * 1850 * Note that the DMU/DSL doesn't actually know or care 1851 * how much space is allocated (it does its own tracking 1852 * of how much space has been logically used). So it 1853 * doesn't matter that the data we are moving may be 1854 * allocated twice (on the old device and the new device). 1855 */ 1856 ASSERT3U(spa->spa_dspace, >=, spa->spa_nonallocating_dspace); 1857 spa->spa_dspace -= spa->spa_nonallocating_dspace; 1858 } 1859 } 1860 1861 /* 1862 * Return the failure mode that has been set to this pool. The default 1863 * behavior will be to block all I/Os when a complete failure occurs. 1864 */ 1865 uint64_t 1866 spa_get_failmode(spa_t *spa) 1867 { 1868 return (spa->spa_failmode); 1869 } 1870 1871 boolean_t 1872 spa_suspended(spa_t *spa) 1873 { 1874 return (spa->spa_suspended != ZIO_SUSPEND_NONE); 1875 } 1876 1877 uint64_t 1878 spa_version(spa_t *spa) 1879 { 1880 return (spa->spa_ubsync.ub_version); 1881 } 1882 1883 boolean_t 1884 spa_deflate(spa_t *spa) 1885 { 1886 return (spa->spa_deflate); 1887 } 1888 1889 metaslab_class_t * 1890 spa_normal_class(spa_t *spa) 1891 { 1892 return (spa->spa_normal_class); 1893 } 1894 1895 metaslab_class_t * 1896 spa_log_class(spa_t *spa) 1897 { 1898 return (spa->spa_log_class); 1899 } 1900 1901 metaslab_class_t * 1902 spa_embedded_log_class(spa_t *spa) 1903 { 1904 return (spa->spa_embedded_log_class); 1905 } 1906 1907 metaslab_class_t * 1908 spa_special_class(spa_t *spa) 1909 { 1910 return (spa->spa_special_class); 1911 } 1912 1913 metaslab_class_t * 1914 spa_dedup_class(spa_t *spa) 1915 { 1916 return (spa->spa_dedup_class); 1917 } 1918 1919 /* 1920 * Locate an appropriate allocation class 1921 */ 1922 metaslab_class_t * 1923 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype, 1924 uint_t level, uint_t special_smallblk) 1925 { 1926 /* 1927 * ZIL allocations determine their class in zio_alloc_zil(). 1928 */ 1929 ASSERT(objtype != DMU_OT_INTENT_LOG); 1930 1931 boolean_t has_special_class = spa->spa_special_class->mc_groups != 0; 1932 1933 if (DMU_OT_IS_DDT(objtype)) { 1934 if (spa->spa_dedup_class->mc_groups != 0) 1935 return (spa_dedup_class(spa)); 1936 else if (has_special_class && zfs_ddt_data_is_special) 1937 return (spa_special_class(spa)); 1938 else 1939 return (spa_normal_class(spa)); 1940 } 1941 1942 /* Indirect blocks for user data can land in special if allowed */ 1943 if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) { 1944 if (has_special_class && zfs_user_indirect_is_special) 1945 return (spa_special_class(spa)); 1946 else 1947 return (spa_normal_class(spa)); 1948 } 1949 1950 if (DMU_OT_IS_METADATA(objtype) || level > 0) { 1951 if (has_special_class) 1952 return (spa_special_class(spa)); 1953 else 1954 return (spa_normal_class(spa)); 1955 } 1956 1957 /* 1958 * Allow small file blocks in special class in some cases (like 1959 * for the dRAID vdev feature). But always leave a reserve of 1960 * zfs_special_class_metadata_reserve_pct exclusively for metadata. 1961 */ 1962 if (DMU_OT_IS_FILE(objtype) && 1963 has_special_class && size <= special_smallblk) { 1964 metaslab_class_t *special = spa_special_class(spa); 1965 uint64_t alloc = metaslab_class_get_alloc(special); 1966 uint64_t space = metaslab_class_get_space(special); 1967 uint64_t limit = 1968 (space * (100 - zfs_special_class_metadata_reserve_pct)) 1969 / 100; 1970 1971 if (alloc < limit) 1972 return (special); 1973 } 1974 1975 return (spa_normal_class(spa)); 1976 } 1977 1978 void 1979 spa_evicting_os_register(spa_t *spa, objset_t *os) 1980 { 1981 mutex_enter(&spa->spa_evicting_os_lock); 1982 list_insert_head(&spa->spa_evicting_os_list, os); 1983 mutex_exit(&spa->spa_evicting_os_lock); 1984 } 1985 1986 void 1987 spa_evicting_os_deregister(spa_t *spa, objset_t *os) 1988 { 1989 mutex_enter(&spa->spa_evicting_os_lock); 1990 list_remove(&spa->spa_evicting_os_list, os); 1991 cv_broadcast(&spa->spa_evicting_os_cv); 1992 mutex_exit(&spa->spa_evicting_os_lock); 1993 } 1994 1995 void 1996 spa_evicting_os_wait(spa_t *spa) 1997 { 1998 mutex_enter(&spa->spa_evicting_os_lock); 1999 while (!list_is_empty(&spa->spa_evicting_os_list)) 2000 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); 2001 mutex_exit(&spa->spa_evicting_os_lock); 2002 2003 dmu_buf_user_evict_wait(); 2004 } 2005 2006 int 2007 spa_max_replication(spa_t *spa) 2008 { 2009 /* 2010 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 2011 * handle BPs with more than one DVA allocated. Set our max 2012 * replication level accordingly. 2013 */ 2014 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 2015 return (1); 2016 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 2017 } 2018 2019 int 2020 spa_prev_software_version(spa_t *spa) 2021 { 2022 return (spa->spa_prev_software_version); 2023 } 2024 2025 uint64_t 2026 spa_deadman_synctime(spa_t *spa) 2027 { 2028 return (spa->spa_deadman_synctime); 2029 } 2030 2031 spa_autotrim_t 2032 spa_get_autotrim(spa_t *spa) 2033 { 2034 return (spa->spa_autotrim); 2035 } 2036 2037 uint64_t 2038 spa_deadman_ziotime(spa_t *spa) 2039 { 2040 return (spa->spa_deadman_ziotime); 2041 } 2042 2043 uint64_t 2044 spa_get_deadman_failmode(spa_t *spa) 2045 { 2046 return (spa->spa_deadman_failmode); 2047 } 2048 2049 void 2050 spa_set_deadman_failmode(spa_t *spa, const char *failmode) 2051 { 2052 if (strcmp(failmode, "wait") == 0) 2053 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2054 else if (strcmp(failmode, "continue") == 0) 2055 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE; 2056 else if (strcmp(failmode, "panic") == 0) 2057 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC; 2058 else 2059 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2060 } 2061 2062 void 2063 spa_set_deadman_ziotime(hrtime_t ns) 2064 { 2065 spa_t *spa = NULL; 2066 2067 if (spa_mode_global != SPA_MODE_UNINIT) { 2068 mutex_enter(&spa_namespace_lock); 2069 while ((spa = spa_next(spa)) != NULL) 2070 spa->spa_deadman_ziotime = ns; 2071 mutex_exit(&spa_namespace_lock); 2072 } 2073 } 2074 2075 void 2076 spa_set_deadman_synctime(hrtime_t ns) 2077 { 2078 spa_t *spa = NULL; 2079 2080 if (spa_mode_global != SPA_MODE_UNINIT) { 2081 mutex_enter(&spa_namespace_lock); 2082 while ((spa = spa_next(spa)) != NULL) 2083 spa->spa_deadman_synctime = ns; 2084 mutex_exit(&spa_namespace_lock); 2085 } 2086 } 2087 2088 uint64_t 2089 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 2090 { 2091 uint64_t asize = DVA_GET_ASIZE(dva); 2092 uint64_t dsize = asize; 2093 2094 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2095 2096 if (asize != 0 && spa->spa_deflate) { 2097 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 2098 if (vd != NULL) 2099 dsize = (asize >> SPA_MINBLOCKSHIFT) * 2100 vd->vdev_deflate_ratio; 2101 } 2102 2103 return (dsize); 2104 } 2105 2106 uint64_t 2107 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 2108 { 2109 uint64_t dsize = 0; 2110 2111 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2112 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2113 2114 return (dsize); 2115 } 2116 2117 uint64_t 2118 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 2119 { 2120 uint64_t dsize = 0; 2121 2122 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2123 2124 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2125 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2126 2127 spa_config_exit(spa, SCL_VDEV, FTAG); 2128 2129 return (dsize); 2130 } 2131 2132 uint64_t 2133 spa_dirty_data(spa_t *spa) 2134 { 2135 return (spa->spa_dsl_pool->dp_dirty_total); 2136 } 2137 2138 /* 2139 * ========================================================================== 2140 * SPA Import Progress Routines 2141 * ========================================================================== 2142 */ 2143 2144 typedef struct spa_import_progress { 2145 uint64_t pool_guid; /* unique id for updates */ 2146 char *pool_name; 2147 spa_load_state_t spa_load_state; 2148 uint64_t mmp_sec_remaining; /* MMP activity check */ 2149 uint64_t spa_load_max_txg; /* rewind txg */ 2150 procfs_list_node_t smh_node; 2151 } spa_import_progress_t; 2152 2153 spa_history_list_t *spa_import_progress_list = NULL; 2154 2155 static int 2156 spa_import_progress_show_header(struct seq_file *f) 2157 { 2158 seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid", 2159 "load_state", "multihost_secs", "max_txg", 2160 "pool_name"); 2161 return (0); 2162 } 2163 2164 static int 2165 spa_import_progress_show(struct seq_file *f, void *data) 2166 { 2167 spa_import_progress_t *sip = (spa_import_progress_t *)data; 2168 2169 seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n", 2170 (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state, 2171 (u_longlong_t)sip->mmp_sec_remaining, 2172 (u_longlong_t)sip->spa_load_max_txg, 2173 (sip->pool_name ? sip->pool_name : "-")); 2174 2175 return (0); 2176 } 2177 2178 /* Remove oldest elements from list until there are no more than 'size' left */ 2179 static void 2180 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size) 2181 { 2182 spa_import_progress_t *sip; 2183 while (shl->size > size) { 2184 sip = list_remove_head(&shl->procfs_list.pl_list); 2185 if (sip->pool_name) 2186 spa_strfree(sip->pool_name); 2187 kmem_free(sip, sizeof (spa_import_progress_t)); 2188 shl->size--; 2189 } 2190 2191 IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list)); 2192 } 2193 2194 static void 2195 spa_import_progress_init(void) 2196 { 2197 spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t), 2198 KM_SLEEP); 2199 2200 spa_import_progress_list->size = 0; 2201 2202 spa_import_progress_list->procfs_list.pl_private = 2203 spa_import_progress_list; 2204 2205 procfs_list_install("zfs", 2206 NULL, 2207 "import_progress", 2208 0644, 2209 &spa_import_progress_list->procfs_list, 2210 spa_import_progress_show, 2211 spa_import_progress_show_header, 2212 NULL, 2213 offsetof(spa_import_progress_t, smh_node)); 2214 } 2215 2216 static void 2217 spa_import_progress_destroy(void) 2218 { 2219 spa_history_list_t *shl = spa_import_progress_list; 2220 procfs_list_uninstall(&shl->procfs_list); 2221 spa_import_progress_truncate(shl, 0); 2222 procfs_list_destroy(&shl->procfs_list); 2223 kmem_free(shl, sizeof (spa_history_list_t)); 2224 } 2225 2226 int 2227 spa_import_progress_set_state(uint64_t pool_guid, 2228 spa_load_state_t load_state) 2229 { 2230 spa_history_list_t *shl = spa_import_progress_list; 2231 spa_import_progress_t *sip; 2232 int error = ENOENT; 2233 2234 if (shl->size == 0) 2235 return (0); 2236 2237 mutex_enter(&shl->procfs_list.pl_lock); 2238 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2239 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2240 if (sip->pool_guid == pool_guid) { 2241 sip->spa_load_state = load_state; 2242 error = 0; 2243 break; 2244 } 2245 } 2246 mutex_exit(&shl->procfs_list.pl_lock); 2247 2248 return (error); 2249 } 2250 2251 int 2252 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg) 2253 { 2254 spa_history_list_t *shl = spa_import_progress_list; 2255 spa_import_progress_t *sip; 2256 int error = ENOENT; 2257 2258 if (shl->size == 0) 2259 return (0); 2260 2261 mutex_enter(&shl->procfs_list.pl_lock); 2262 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2263 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2264 if (sip->pool_guid == pool_guid) { 2265 sip->spa_load_max_txg = load_max_txg; 2266 error = 0; 2267 break; 2268 } 2269 } 2270 mutex_exit(&shl->procfs_list.pl_lock); 2271 2272 return (error); 2273 } 2274 2275 int 2276 spa_import_progress_set_mmp_check(uint64_t pool_guid, 2277 uint64_t mmp_sec_remaining) 2278 { 2279 spa_history_list_t *shl = spa_import_progress_list; 2280 spa_import_progress_t *sip; 2281 int error = ENOENT; 2282 2283 if (shl->size == 0) 2284 return (0); 2285 2286 mutex_enter(&shl->procfs_list.pl_lock); 2287 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2288 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2289 if (sip->pool_guid == pool_guid) { 2290 sip->mmp_sec_remaining = mmp_sec_remaining; 2291 error = 0; 2292 break; 2293 } 2294 } 2295 mutex_exit(&shl->procfs_list.pl_lock); 2296 2297 return (error); 2298 } 2299 2300 /* 2301 * A new import is in progress, add an entry. 2302 */ 2303 void 2304 spa_import_progress_add(spa_t *spa) 2305 { 2306 spa_history_list_t *shl = spa_import_progress_list; 2307 spa_import_progress_t *sip; 2308 char *poolname = NULL; 2309 2310 sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP); 2311 sip->pool_guid = spa_guid(spa); 2312 2313 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME, 2314 &poolname); 2315 if (poolname == NULL) 2316 poolname = spa_name(spa); 2317 sip->pool_name = spa_strdup(poolname); 2318 sip->spa_load_state = spa_load_state(spa); 2319 2320 mutex_enter(&shl->procfs_list.pl_lock); 2321 procfs_list_add(&shl->procfs_list, sip); 2322 shl->size++; 2323 mutex_exit(&shl->procfs_list.pl_lock); 2324 } 2325 2326 void 2327 spa_import_progress_remove(uint64_t pool_guid) 2328 { 2329 spa_history_list_t *shl = spa_import_progress_list; 2330 spa_import_progress_t *sip; 2331 2332 mutex_enter(&shl->procfs_list.pl_lock); 2333 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2334 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2335 if (sip->pool_guid == pool_guid) { 2336 if (sip->pool_name) 2337 spa_strfree(sip->pool_name); 2338 list_remove(&shl->procfs_list.pl_list, sip); 2339 shl->size--; 2340 kmem_free(sip, sizeof (spa_import_progress_t)); 2341 break; 2342 } 2343 } 2344 mutex_exit(&shl->procfs_list.pl_lock); 2345 } 2346 2347 /* 2348 * ========================================================================== 2349 * Initialization and Termination 2350 * ========================================================================== 2351 */ 2352 2353 static int 2354 spa_name_compare(const void *a1, const void *a2) 2355 { 2356 const spa_t *s1 = a1; 2357 const spa_t *s2 = a2; 2358 int s; 2359 2360 s = strcmp(s1->spa_name, s2->spa_name); 2361 2362 return (TREE_ISIGN(s)); 2363 } 2364 2365 void 2366 spa_boot_init(void) 2367 { 2368 spa_config_load(); 2369 } 2370 2371 void 2372 spa_init(spa_mode_t mode) 2373 { 2374 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 2375 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 2376 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 2377 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 2378 2379 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 2380 offsetof(spa_t, spa_avl)); 2381 2382 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 2383 offsetof(spa_aux_t, aux_avl)); 2384 2385 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 2386 offsetof(spa_aux_t, aux_avl)); 2387 2388 spa_mode_global = mode; 2389 2390 #ifndef _KERNEL 2391 if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) { 2392 struct sigaction sa; 2393 2394 sa.sa_flags = SA_SIGINFO; 2395 sigemptyset(&sa.sa_mask); 2396 sa.sa_sigaction = arc_buf_sigsegv; 2397 2398 if (sigaction(SIGSEGV, &sa, NULL) == -1) { 2399 perror("could not enable watchpoints: " 2400 "sigaction(SIGSEGV, ...) = "); 2401 } else { 2402 arc_watch = B_TRUE; 2403 } 2404 } 2405 #endif 2406 2407 fm_init(); 2408 zfs_refcount_init(); 2409 unique_init(); 2410 zfs_btree_init(); 2411 metaslab_stat_init(); 2412 ddt_init(); 2413 zio_init(); 2414 dmu_init(); 2415 zil_init(); 2416 vdev_cache_stat_init(); 2417 vdev_mirror_stat_init(); 2418 vdev_raidz_math_init(); 2419 vdev_file_init(); 2420 zfs_prop_init(); 2421 chksum_init(); 2422 zpool_prop_init(); 2423 zpool_feature_init(); 2424 spa_config_load(); 2425 vdev_prop_init(); 2426 l2arc_start(); 2427 scan_init(); 2428 qat_init(); 2429 spa_import_progress_init(); 2430 } 2431 2432 void 2433 spa_fini(void) 2434 { 2435 l2arc_stop(); 2436 2437 spa_evict_all(); 2438 2439 vdev_file_fini(); 2440 vdev_cache_stat_fini(); 2441 vdev_mirror_stat_fini(); 2442 vdev_raidz_math_fini(); 2443 chksum_fini(); 2444 zil_fini(); 2445 dmu_fini(); 2446 zio_fini(); 2447 ddt_fini(); 2448 metaslab_stat_fini(); 2449 zfs_btree_fini(); 2450 unique_fini(); 2451 zfs_refcount_fini(); 2452 fm_fini(); 2453 scan_fini(); 2454 qat_fini(); 2455 spa_import_progress_destroy(); 2456 2457 avl_destroy(&spa_namespace_avl); 2458 avl_destroy(&spa_spare_avl); 2459 avl_destroy(&spa_l2cache_avl); 2460 2461 cv_destroy(&spa_namespace_cv); 2462 mutex_destroy(&spa_namespace_lock); 2463 mutex_destroy(&spa_spare_lock); 2464 mutex_destroy(&spa_l2cache_lock); 2465 } 2466 2467 /* 2468 * Return whether this pool has a dedicated slog device. No locking needed. 2469 * It's not a problem if the wrong answer is returned as it's only for 2470 * performance and not correctness. 2471 */ 2472 boolean_t 2473 spa_has_slogs(spa_t *spa) 2474 { 2475 return (spa->spa_log_class->mc_groups != 0); 2476 } 2477 2478 spa_log_state_t 2479 spa_get_log_state(spa_t *spa) 2480 { 2481 return (spa->spa_log_state); 2482 } 2483 2484 void 2485 spa_set_log_state(spa_t *spa, spa_log_state_t state) 2486 { 2487 spa->spa_log_state = state; 2488 } 2489 2490 boolean_t 2491 spa_is_root(spa_t *spa) 2492 { 2493 return (spa->spa_is_root); 2494 } 2495 2496 boolean_t 2497 spa_writeable(spa_t *spa) 2498 { 2499 return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config); 2500 } 2501 2502 /* 2503 * Returns true if there is a pending sync task in any of the current 2504 * syncing txg, the current quiescing txg, or the current open txg. 2505 */ 2506 boolean_t 2507 spa_has_pending_synctask(spa_t *spa) 2508 { 2509 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) || 2510 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks)); 2511 } 2512 2513 spa_mode_t 2514 spa_mode(spa_t *spa) 2515 { 2516 return (spa->spa_mode); 2517 } 2518 2519 uint64_t 2520 spa_bootfs(spa_t *spa) 2521 { 2522 return (spa->spa_bootfs); 2523 } 2524 2525 uint64_t 2526 spa_delegation(spa_t *spa) 2527 { 2528 return (spa->spa_delegation); 2529 } 2530 2531 objset_t * 2532 spa_meta_objset(spa_t *spa) 2533 { 2534 return (spa->spa_meta_objset); 2535 } 2536 2537 enum zio_checksum 2538 spa_dedup_checksum(spa_t *spa) 2539 { 2540 return (spa->spa_dedup_checksum); 2541 } 2542 2543 /* 2544 * Reset pool scan stat per scan pass (or reboot). 2545 */ 2546 void 2547 spa_scan_stat_init(spa_t *spa) 2548 { 2549 /* data not stored on disk */ 2550 spa->spa_scan_pass_start = gethrestime_sec(); 2551 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan)) 2552 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start; 2553 else 2554 spa->spa_scan_pass_scrub_pause = 0; 2555 spa->spa_scan_pass_scrub_spent_paused = 0; 2556 spa->spa_scan_pass_exam = 0; 2557 spa->spa_scan_pass_issued = 0; 2558 vdev_scan_stat_init(spa->spa_root_vdev); 2559 } 2560 2561 /* 2562 * Get scan stats for zpool status reports 2563 */ 2564 int 2565 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 2566 { 2567 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 2568 2569 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) 2570 return (SET_ERROR(ENOENT)); 2571 memset(ps, 0, sizeof (pool_scan_stat_t)); 2572 2573 /* data stored on disk */ 2574 ps->pss_func = scn->scn_phys.scn_func; 2575 ps->pss_state = scn->scn_phys.scn_state; 2576 ps->pss_start_time = scn->scn_phys.scn_start_time; 2577 ps->pss_end_time = scn->scn_phys.scn_end_time; 2578 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 2579 ps->pss_examined = scn->scn_phys.scn_examined; 2580 ps->pss_to_process = scn->scn_phys.scn_to_process; 2581 ps->pss_processed = scn->scn_phys.scn_processed; 2582 ps->pss_errors = scn->scn_phys.scn_errors; 2583 2584 /* data not stored on disk */ 2585 ps->pss_pass_exam = spa->spa_scan_pass_exam; 2586 ps->pss_pass_start = spa->spa_scan_pass_start; 2587 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause; 2588 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused; 2589 ps->pss_pass_issued = spa->spa_scan_pass_issued; 2590 ps->pss_issued = 2591 scn->scn_issued_before_pass + spa->spa_scan_pass_issued; 2592 2593 return (0); 2594 } 2595 2596 int 2597 spa_maxblocksize(spa_t *spa) 2598 { 2599 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 2600 return (SPA_MAXBLOCKSIZE); 2601 else 2602 return (SPA_OLD_MAXBLOCKSIZE); 2603 } 2604 2605 2606 /* 2607 * Returns the txg that the last device removal completed. No indirect mappings 2608 * have been added since this txg. 2609 */ 2610 uint64_t 2611 spa_get_last_removal_txg(spa_t *spa) 2612 { 2613 uint64_t vdevid; 2614 uint64_t ret = -1ULL; 2615 2616 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2617 /* 2618 * sr_prev_indirect_vdev is only modified while holding all the 2619 * config locks, so it is sufficient to hold SCL_VDEV as reader when 2620 * examining it. 2621 */ 2622 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev; 2623 2624 while (vdevid != -1ULL) { 2625 vdev_t *vd = vdev_lookup_top(spa, vdevid); 2626 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 2627 2628 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 2629 2630 /* 2631 * If the removal did not remap any data, we don't care. 2632 */ 2633 if (vdev_indirect_births_count(vib) != 0) { 2634 ret = vdev_indirect_births_last_entry_txg(vib); 2635 break; 2636 } 2637 2638 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev; 2639 } 2640 spa_config_exit(spa, SCL_VDEV, FTAG); 2641 2642 IMPLY(ret != -1ULL, 2643 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); 2644 2645 return (ret); 2646 } 2647 2648 int 2649 spa_maxdnodesize(spa_t *spa) 2650 { 2651 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 2652 return (DNODE_MAX_SIZE); 2653 else 2654 return (DNODE_MIN_SIZE); 2655 } 2656 2657 boolean_t 2658 spa_multihost(spa_t *spa) 2659 { 2660 return (spa->spa_multihost ? B_TRUE : B_FALSE); 2661 } 2662 2663 uint32_t 2664 spa_get_hostid(spa_t *spa) 2665 { 2666 return (spa->spa_hostid); 2667 } 2668 2669 boolean_t 2670 spa_trust_config(spa_t *spa) 2671 { 2672 return (spa->spa_trust_config); 2673 } 2674 2675 uint64_t 2676 spa_missing_tvds_allowed(spa_t *spa) 2677 { 2678 return (spa->spa_missing_tvds_allowed); 2679 } 2680 2681 space_map_t * 2682 spa_syncing_log_sm(spa_t *spa) 2683 { 2684 return (spa->spa_syncing_log_sm); 2685 } 2686 2687 void 2688 spa_set_missing_tvds(spa_t *spa, uint64_t missing) 2689 { 2690 spa->spa_missing_tvds = missing; 2691 } 2692 2693 /* 2694 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc). 2695 */ 2696 const char * 2697 spa_state_to_name(spa_t *spa) 2698 { 2699 ASSERT3P(spa, !=, NULL); 2700 2701 /* 2702 * it is possible for the spa to exist, without root vdev 2703 * as the spa transitions during import/export 2704 */ 2705 vdev_t *rvd = spa->spa_root_vdev; 2706 if (rvd == NULL) { 2707 return ("TRANSITIONING"); 2708 } 2709 vdev_state_t state = rvd->vdev_state; 2710 vdev_aux_t aux = rvd->vdev_stat.vs_aux; 2711 2712 if (spa_suspended(spa) && 2713 (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)) 2714 return ("SUSPENDED"); 2715 2716 switch (state) { 2717 case VDEV_STATE_CLOSED: 2718 case VDEV_STATE_OFFLINE: 2719 return ("OFFLINE"); 2720 case VDEV_STATE_REMOVED: 2721 return ("REMOVED"); 2722 case VDEV_STATE_CANT_OPEN: 2723 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG) 2724 return ("FAULTED"); 2725 else if (aux == VDEV_AUX_SPLIT_POOL) 2726 return ("SPLIT"); 2727 else 2728 return ("UNAVAIL"); 2729 case VDEV_STATE_FAULTED: 2730 return ("FAULTED"); 2731 case VDEV_STATE_DEGRADED: 2732 return ("DEGRADED"); 2733 case VDEV_STATE_HEALTHY: 2734 return ("ONLINE"); 2735 default: 2736 break; 2737 } 2738 2739 return ("UNKNOWN"); 2740 } 2741 2742 boolean_t 2743 spa_top_vdevs_spacemap_addressable(spa_t *spa) 2744 { 2745 vdev_t *rvd = spa->spa_root_vdev; 2746 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2747 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c])) 2748 return (B_FALSE); 2749 } 2750 return (B_TRUE); 2751 } 2752 2753 boolean_t 2754 spa_has_checkpoint(spa_t *spa) 2755 { 2756 return (spa->spa_checkpoint_txg != 0); 2757 } 2758 2759 boolean_t 2760 spa_importing_readonly_checkpoint(spa_t *spa) 2761 { 2762 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) && 2763 spa->spa_mode == SPA_MODE_READ); 2764 } 2765 2766 uint64_t 2767 spa_min_claim_txg(spa_t *spa) 2768 { 2769 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg; 2770 2771 if (checkpoint_txg != 0) 2772 return (checkpoint_txg + 1); 2773 2774 return (spa->spa_first_txg); 2775 } 2776 2777 /* 2778 * If there is a checkpoint, async destroys may consume more space from 2779 * the pool instead of freeing it. In an attempt to save the pool from 2780 * getting suspended when it is about to run out of space, we stop 2781 * processing async destroys. 2782 */ 2783 boolean_t 2784 spa_suspend_async_destroy(spa_t *spa) 2785 { 2786 dsl_pool_t *dp = spa_get_dsl(spa); 2787 2788 uint64_t unreserved = dsl_pool_unreserved_space(dp, 2789 ZFS_SPACE_CHECK_EXTRA_RESERVED); 2790 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes; 2791 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0; 2792 2793 if (spa_has_checkpoint(spa) && avail == 0) 2794 return (B_TRUE); 2795 2796 return (B_FALSE); 2797 } 2798 2799 #if defined(_KERNEL) 2800 2801 int 2802 param_set_deadman_failmode_common(const char *val) 2803 { 2804 spa_t *spa = NULL; 2805 char *p; 2806 2807 if (val == NULL) 2808 return (SET_ERROR(EINVAL)); 2809 2810 if ((p = strchr(val, '\n')) != NULL) 2811 *p = '\0'; 2812 2813 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 && 2814 strcmp(val, "panic")) 2815 return (SET_ERROR(EINVAL)); 2816 2817 if (spa_mode_global != SPA_MODE_UNINIT) { 2818 mutex_enter(&spa_namespace_lock); 2819 while ((spa = spa_next(spa)) != NULL) 2820 spa_set_deadman_failmode(spa, val); 2821 mutex_exit(&spa_namespace_lock); 2822 } 2823 2824 return (0); 2825 } 2826 #endif 2827 2828 /* Namespace manipulation */ 2829 EXPORT_SYMBOL(spa_lookup); 2830 EXPORT_SYMBOL(spa_add); 2831 EXPORT_SYMBOL(spa_remove); 2832 EXPORT_SYMBOL(spa_next); 2833 2834 /* Refcount functions */ 2835 EXPORT_SYMBOL(spa_open_ref); 2836 EXPORT_SYMBOL(spa_close); 2837 EXPORT_SYMBOL(spa_refcount_zero); 2838 2839 /* Pool configuration lock */ 2840 EXPORT_SYMBOL(spa_config_tryenter); 2841 EXPORT_SYMBOL(spa_config_enter); 2842 EXPORT_SYMBOL(spa_config_exit); 2843 EXPORT_SYMBOL(spa_config_held); 2844 2845 /* Pool vdev add/remove lock */ 2846 EXPORT_SYMBOL(spa_vdev_enter); 2847 EXPORT_SYMBOL(spa_vdev_exit); 2848 2849 /* Pool vdev state change lock */ 2850 EXPORT_SYMBOL(spa_vdev_state_enter); 2851 EXPORT_SYMBOL(spa_vdev_state_exit); 2852 2853 /* Accessor functions */ 2854 EXPORT_SYMBOL(spa_shutting_down); 2855 EXPORT_SYMBOL(spa_get_dsl); 2856 EXPORT_SYMBOL(spa_get_rootblkptr); 2857 EXPORT_SYMBOL(spa_set_rootblkptr); 2858 EXPORT_SYMBOL(spa_altroot); 2859 EXPORT_SYMBOL(spa_sync_pass); 2860 EXPORT_SYMBOL(spa_name); 2861 EXPORT_SYMBOL(spa_guid); 2862 EXPORT_SYMBOL(spa_last_synced_txg); 2863 EXPORT_SYMBOL(spa_first_txg); 2864 EXPORT_SYMBOL(spa_syncing_txg); 2865 EXPORT_SYMBOL(spa_version); 2866 EXPORT_SYMBOL(spa_state); 2867 EXPORT_SYMBOL(spa_load_state); 2868 EXPORT_SYMBOL(spa_freeze_txg); 2869 EXPORT_SYMBOL(spa_get_dspace); 2870 EXPORT_SYMBOL(spa_update_dspace); 2871 EXPORT_SYMBOL(spa_deflate); 2872 EXPORT_SYMBOL(spa_normal_class); 2873 EXPORT_SYMBOL(spa_log_class); 2874 EXPORT_SYMBOL(spa_special_class); 2875 EXPORT_SYMBOL(spa_preferred_class); 2876 EXPORT_SYMBOL(spa_max_replication); 2877 EXPORT_SYMBOL(spa_prev_software_version); 2878 EXPORT_SYMBOL(spa_get_failmode); 2879 EXPORT_SYMBOL(spa_suspended); 2880 EXPORT_SYMBOL(spa_bootfs); 2881 EXPORT_SYMBOL(spa_delegation); 2882 EXPORT_SYMBOL(spa_meta_objset); 2883 EXPORT_SYMBOL(spa_maxblocksize); 2884 EXPORT_SYMBOL(spa_maxdnodesize); 2885 2886 /* Miscellaneous support routines */ 2887 EXPORT_SYMBOL(spa_guid_exists); 2888 EXPORT_SYMBOL(spa_strdup); 2889 EXPORT_SYMBOL(spa_strfree); 2890 EXPORT_SYMBOL(spa_generate_guid); 2891 EXPORT_SYMBOL(snprintf_blkptr); 2892 EXPORT_SYMBOL(spa_freeze); 2893 EXPORT_SYMBOL(spa_upgrade); 2894 EXPORT_SYMBOL(spa_evict_all); 2895 EXPORT_SYMBOL(spa_lookup_by_guid); 2896 EXPORT_SYMBOL(spa_has_spare); 2897 EXPORT_SYMBOL(dva_get_dsize_sync); 2898 EXPORT_SYMBOL(bp_get_dsize_sync); 2899 EXPORT_SYMBOL(bp_get_dsize); 2900 EXPORT_SYMBOL(spa_has_slogs); 2901 EXPORT_SYMBOL(spa_is_root); 2902 EXPORT_SYMBOL(spa_writeable); 2903 EXPORT_SYMBOL(spa_mode); 2904 EXPORT_SYMBOL(spa_namespace_lock); 2905 EXPORT_SYMBOL(spa_trust_config); 2906 EXPORT_SYMBOL(spa_missing_tvds_allowed); 2907 EXPORT_SYMBOL(spa_set_missing_tvds); 2908 EXPORT_SYMBOL(spa_state_to_name); 2909 EXPORT_SYMBOL(spa_importing_readonly_checkpoint); 2910 EXPORT_SYMBOL(spa_min_claim_txg); 2911 EXPORT_SYMBOL(spa_suspend_async_destroy); 2912 EXPORT_SYMBOL(spa_has_checkpoint); 2913 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable); 2914 2915 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW, 2916 "Set additional debugging flags"); 2917 2918 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW, 2919 "Set to attempt to recover from fatal errors"); 2920 2921 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW, 2922 "Set to ignore IO errors during free and permanently leak the space"); 2923 2924 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, ULONG, ZMOD_RW, 2925 "Dead I/O check interval in milliseconds"); 2926 2927 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW, 2928 "Enable deadman timer"); 2929 2930 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, INT, ZMOD_RW, 2931 "SPA size estimate multiplication factor"); 2932 2933 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW, 2934 "Place DDT data into the special class"); 2935 2936 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW, 2937 "Place user data indirect blocks into the special class"); 2938 2939 /* BEGIN CSTYLED */ 2940 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode, 2941 param_set_deadman_failmode, param_get_charp, ZMOD_RW, 2942 "Failmode for deadman timer"); 2943 2944 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms, 2945 param_set_deadman_synctime, param_get_ulong, ZMOD_RW, 2946 "Pool sync expiration time in milliseconds"); 2947 2948 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms, 2949 param_set_deadman_ziotime, param_get_ulong, ZMOD_RW, 2950 "IO expiration time in milliseconds"); 2951 2952 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, INT, ZMOD_RW, 2953 "Small file blocks in special vdevs depends on this much " 2954 "free space available"); 2955 /* END CSTYLED */ 2956 2957 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift, 2958 param_get_int, ZMOD_RW, "Reserved free space in pool"); 2959