xref: /freebsd/sys/contrib/openzfs/module/zfs/spa_misc.c (revision 90b5fc95832da64a5f56295e687379732c33718f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2013 Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2017 Datto Inc.
28  * Copyright (c) 2017, Intel Corporation.
29  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
30  */
31 
32 #include <sys/zfs_context.h>
33 #include <sys/spa_impl.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/zio_compress.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/zap.h>
40 #include <sys/zil.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/vdev_initialize.h>
43 #include <sys/vdev_trim.h>
44 #include <sys/vdev_file.h>
45 #include <sys/vdev_raidz.h>
46 #include <sys/metaslab.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dir.h>
53 #include <sys/dsl_prop.h>
54 #include <sys/fm/util.h>
55 #include <sys/dsl_scan.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/metaslab_impl.h>
58 #include <sys/arc.h>
59 #include <sys/ddt.h>
60 #include <sys/kstat.h>
61 #include "zfs_prop.h"
62 #include <sys/btree.h>
63 #include <sys/zfeature.h>
64 #include <sys/qat.h>
65 #include <sys/zstd/zstd.h>
66 
67 /*
68  * SPA locking
69  *
70  * There are three basic locks for managing spa_t structures:
71  *
72  * spa_namespace_lock (global mutex)
73  *
74  *	This lock must be acquired to do any of the following:
75  *
76  *		- Lookup a spa_t by name
77  *		- Add or remove a spa_t from the namespace
78  *		- Increase spa_refcount from non-zero
79  *		- Check if spa_refcount is zero
80  *		- Rename a spa_t
81  *		- add/remove/attach/detach devices
82  *		- Held for the duration of create/destroy/import/export
83  *
84  *	It does not need to handle recursion.  A create or destroy may
85  *	reference objects (files or zvols) in other pools, but by
86  *	definition they must have an existing reference, and will never need
87  *	to lookup a spa_t by name.
88  *
89  * spa_refcount (per-spa zfs_refcount_t protected by mutex)
90  *
91  *	This reference count keep track of any active users of the spa_t.  The
92  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
93  *	the refcount is never really 'zero' - opening a pool implicitly keeps
94  *	some references in the DMU.  Internally we check against spa_minref, but
95  *	present the image of a zero/non-zero value to consumers.
96  *
97  * spa_config_lock[] (per-spa array of rwlocks)
98  *
99  *	This protects the spa_t from config changes, and must be held in
100  *	the following circumstances:
101  *
102  *		- RW_READER to perform I/O to the spa
103  *		- RW_WRITER to change the vdev config
104  *
105  * The locking order is fairly straightforward:
106  *
107  *		spa_namespace_lock	->	spa_refcount
108  *
109  *	The namespace lock must be acquired to increase the refcount from 0
110  *	or to check if it is zero.
111  *
112  *		spa_refcount		->	spa_config_lock[]
113  *
114  *	There must be at least one valid reference on the spa_t to acquire
115  *	the config lock.
116  *
117  *		spa_namespace_lock	->	spa_config_lock[]
118  *
119  *	The namespace lock must always be taken before the config lock.
120  *
121  *
122  * The spa_namespace_lock can be acquired directly and is globally visible.
123  *
124  * The namespace is manipulated using the following functions, all of which
125  * require the spa_namespace_lock to be held.
126  *
127  *	spa_lookup()		Lookup a spa_t by name.
128  *
129  *	spa_add()		Create a new spa_t in the namespace.
130  *
131  *	spa_remove()		Remove a spa_t from the namespace.  This also
132  *				frees up any memory associated with the spa_t.
133  *
134  *	spa_next()		Returns the next spa_t in the system, or the
135  *				first if NULL is passed.
136  *
137  *	spa_evict_all()		Shutdown and remove all spa_t structures in
138  *				the system.
139  *
140  *	spa_guid_exists()	Determine whether a pool/device guid exists.
141  *
142  * The spa_refcount is manipulated using the following functions:
143  *
144  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
145  *				called with spa_namespace_lock held if the
146  *				refcount is currently zero.
147  *
148  *	spa_close()		Remove a reference from the spa_t.  This will
149  *				not free the spa_t or remove it from the
150  *				namespace.  No locking is required.
151  *
152  *	spa_refcount_zero()	Returns true if the refcount is currently
153  *				zero.  Must be called with spa_namespace_lock
154  *				held.
155  *
156  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
157  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
158  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
159  *
160  * To read the configuration, it suffices to hold one of these locks as reader.
161  * To modify the configuration, you must hold all locks as writer.  To modify
162  * vdev state without altering the vdev tree's topology (e.g. online/offline),
163  * you must hold SCL_STATE and SCL_ZIO as writer.
164  *
165  * We use these distinct config locks to avoid recursive lock entry.
166  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
167  * block allocations (SCL_ALLOC), which may require reading space maps
168  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
169  *
170  * The spa config locks cannot be normal rwlocks because we need the
171  * ability to hand off ownership.  For example, SCL_ZIO is acquired
172  * by the issuing thread and later released by an interrupt thread.
173  * They do, however, obey the usual write-wanted semantics to prevent
174  * writer (i.e. system administrator) starvation.
175  *
176  * The lock acquisition rules are as follows:
177  *
178  * SCL_CONFIG
179  *	Protects changes to the vdev tree topology, such as vdev
180  *	add/remove/attach/detach.  Protects the dirty config list
181  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
182  *
183  * SCL_STATE
184  *	Protects changes to pool state and vdev state, such as vdev
185  *	online/offline/fault/degrade/clear.  Protects the dirty state list
186  *	(spa_state_dirty_list) and global pool state (spa_state).
187  *
188  * SCL_ALLOC
189  *	Protects changes to metaslab groups and classes.
190  *	Held as reader by metaslab_alloc() and metaslab_claim().
191  *
192  * SCL_ZIO
193  *	Held by bp-level zios (those which have no io_vd upon entry)
194  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
195  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
196  *
197  * SCL_FREE
198  *	Protects changes to metaslab groups and classes.
199  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
200  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
201  *	blocks in zio_done() while another i/o that holds either
202  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
203  *
204  * SCL_VDEV
205  *	Held as reader to prevent changes to the vdev tree during trivial
206  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
207  *	other locks, and lower than all of them, to ensure that it's safe
208  *	to acquire regardless of caller context.
209  *
210  * In addition, the following rules apply:
211  *
212  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
213  *	The lock ordering is SCL_CONFIG > spa_props_lock.
214  *
215  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
216  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
217  *	or zio_write_phys() -- the caller must ensure that the config cannot
218  *	cannot change in the interim, and that the vdev cannot be reopened.
219  *	SCL_STATE as reader suffices for both.
220  *
221  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
222  *
223  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
224  *				for writing.
225  *
226  *	spa_vdev_exit()		Release the config lock, wait for all I/O
227  *				to complete, sync the updated configs to the
228  *				cache, and release the namespace lock.
229  *
230  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
231  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
232  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
233  */
234 
235 static avl_tree_t spa_namespace_avl;
236 kmutex_t spa_namespace_lock;
237 static kcondvar_t spa_namespace_cv;
238 int spa_max_replication_override = SPA_DVAS_PER_BP;
239 
240 static kmutex_t spa_spare_lock;
241 static avl_tree_t spa_spare_avl;
242 static kmutex_t spa_l2cache_lock;
243 static avl_tree_t spa_l2cache_avl;
244 
245 kmem_cache_t *spa_buffer_pool;
246 spa_mode_t spa_mode_global = SPA_MODE_UNINIT;
247 
248 #ifdef ZFS_DEBUG
249 /*
250  * Everything except dprintf, set_error, spa, and indirect_remap is on
251  * by default in debug builds.
252  */
253 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
254     ZFS_DEBUG_INDIRECT_REMAP);
255 #else
256 int zfs_flags = 0;
257 #endif
258 
259 /*
260  * zfs_recover can be set to nonzero to attempt to recover from
261  * otherwise-fatal errors, typically caused by on-disk corruption.  When
262  * set, calls to zfs_panic_recover() will turn into warning messages.
263  * This should only be used as a last resort, as it typically results
264  * in leaked space, or worse.
265  */
266 int zfs_recover = B_FALSE;
267 
268 /*
269  * If destroy encounters an EIO while reading metadata (e.g. indirect
270  * blocks), space referenced by the missing metadata can not be freed.
271  * Normally this causes the background destroy to become "stalled", as
272  * it is unable to make forward progress.  While in this stalled state,
273  * all remaining space to free from the error-encountering filesystem is
274  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
275  * permanently leak the space from indirect blocks that can not be read,
276  * and continue to free everything else that it can.
277  *
278  * The default, "stalling" behavior is useful if the storage partially
279  * fails (i.e. some but not all i/os fail), and then later recovers.  In
280  * this case, we will be able to continue pool operations while it is
281  * partially failed, and when it recovers, we can continue to free the
282  * space, with no leaks.  However, note that this case is actually
283  * fairly rare.
284  *
285  * Typically pools either (a) fail completely (but perhaps temporarily,
286  * e.g. a top-level vdev going offline), or (b) have localized,
287  * permanent errors (e.g. disk returns the wrong data due to bit flip or
288  * firmware bug).  In case (a), this setting does not matter because the
289  * pool will be suspended and the sync thread will not be able to make
290  * forward progress regardless.  In case (b), because the error is
291  * permanent, the best we can do is leak the minimum amount of space,
292  * which is what setting this flag will do.  Therefore, it is reasonable
293  * for this flag to normally be set, but we chose the more conservative
294  * approach of not setting it, so that there is no possibility of
295  * leaking space in the "partial temporary" failure case.
296  */
297 int zfs_free_leak_on_eio = B_FALSE;
298 
299 /*
300  * Expiration time in milliseconds. This value has two meanings. First it is
301  * used to determine when the spa_deadman() logic should fire. By default the
302  * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
303  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
304  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
305  * in one of three behaviors controlled by zfs_deadman_failmode.
306  */
307 unsigned long zfs_deadman_synctime_ms = 600000UL;
308 
309 /*
310  * This value controls the maximum amount of time zio_wait() will block for an
311  * outstanding IO.  By default this is 300 seconds at which point the "hung"
312  * behavior will be applied as described for zfs_deadman_synctime_ms.
313  */
314 unsigned long zfs_deadman_ziotime_ms = 300000UL;
315 
316 /*
317  * Check time in milliseconds. This defines the frequency at which we check
318  * for hung I/O.
319  */
320 unsigned long zfs_deadman_checktime_ms = 60000UL;
321 
322 /*
323  * By default the deadman is enabled.
324  */
325 int zfs_deadman_enabled = 1;
326 
327 /*
328  * Controls the behavior of the deadman when it detects a "hung" I/O.
329  * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
330  *
331  * wait     - Wait for the "hung" I/O (default)
332  * continue - Attempt to recover from a "hung" I/O
333  * panic    - Panic the system
334  */
335 char *zfs_deadman_failmode = "wait";
336 
337 /*
338  * The worst case is single-sector max-parity RAID-Z blocks, in which
339  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
340  * times the size; so just assume that.  Add to this the fact that
341  * we can have up to 3 DVAs per bp, and one more factor of 2 because
342  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
343  * the worst case is:
344  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
345  */
346 int spa_asize_inflation = 24;
347 
348 /*
349  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
350  * the pool to be consumed.  This ensures that we don't run the pool
351  * completely out of space, due to unaccounted changes (e.g. to the MOS).
352  * It also limits the worst-case time to allocate space.  If we have
353  * less than this amount of free space, most ZPL operations (e.g. write,
354  * create) will return ENOSPC.
355  *
356  * Certain operations (e.g. file removal, most administrative actions) can
357  * use half the slop space.  They will only return ENOSPC if less than half
358  * the slop space is free.  Typically, once the pool has less than the slop
359  * space free, the user will use these operations to free up space in the pool.
360  * These are the operations that call dsl_pool_adjustedsize() with the netfree
361  * argument set to TRUE.
362  *
363  * Operations that are almost guaranteed to free up space in the absence of
364  * a pool checkpoint can use up to three quarters of the slop space
365  * (e.g zfs destroy).
366  *
367  * A very restricted set of operations are always permitted, regardless of
368  * the amount of free space.  These are the operations that call
369  * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
370  * increase in the amount of space used, it is possible to run the pool
371  * completely out of space, causing it to be permanently read-only.
372  *
373  * Note that on very small pools, the slop space will be larger than
374  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
375  * but we never allow it to be more than half the pool size.
376  *
377  * See also the comments in zfs_space_check_t.
378  */
379 int spa_slop_shift = 5;
380 uint64_t spa_min_slop = 128 * 1024 * 1024;
381 int spa_allocators = 4;
382 
383 
384 /*PRINTFLIKE2*/
385 void
386 spa_load_failed(spa_t *spa, const char *fmt, ...)
387 {
388 	va_list adx;
389 	char buf[256];
390 
391 	va_start(adx, fmt);
392 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
393 	va_end(adx);
394 
395 	zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
396 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
397 }
398 
399 /*PRINTFLIKE2*/
400 void
401 spa_load_note(spa_t *spa, const char *fmt, ...)
402 {
403 	va_list adx;
404 	char buf[256];
405 
406 	va_start(adx, fmt);
407 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
408 	va_end(adx);
409 
410 	zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
411 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
412 }
413 
414 /*
415  * By default dedup and user data indirects land in the special class
416  */
417 int zfs_ddt_data_is_special = B_TRUE;
418 int zfs_user_indirect_is_special = B_TRUE;
419 
420 /*
421  * The percentage of special class final space reserved for metadata only.
422  * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
423  * let metadata into the class.
424  */
425 int zfs_special_class_metadata_reserve_pct = 25;
426 
427 /*
428  * ==========================================================================
429  * SPA config locking
430  * ==========================================================================
431  */
432 static void
433 spa_config_lock_init(spa_t *spa)
434 {
435 	for (int i = 0; i < SCL_LOCKS; i++) {
436 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
437 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
438 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
439 		zfs_refcount_create_untracked(&scl->scl_count);
440 		scl->scl_writer = NULL;
441 		scl->scl_write_wanted = 0;
442 	}
443 }
444 
445 static void
446 spa_config_lock_destroy(spa_t *spa)
447 {
448 	for (int i = 0; i < SCL_LOCKS; i++) {
449 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
450 		mutex_destroy(&scl->scl_lock);
451 		cv_destroy(&scl->scl_cv);
452 		zfs_refcount_destroy(&scl->scl_count);
453 		ASSERT(scl->scl_writer == NULL);
454 		ASSERT(scl->scl_write_wanted == 0);
455 	}
456 }
457 
458 int
459 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
460 {
461 	for (int i = 0; i < SCL_LOCKS; i++) {
462 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
463 		if (!(locks & (1 << i)))
464 			continue;
465 		mutex_enter(&scl->scl_lock);
466 		if (rw == RW_READER) {
467 			if (scl->scl_writer || scl->scl_write_wanted) {
468 				mutex_exit(&scl->scl_lock);
469 				spa_config_exit(spa, locks & ((1 << i) - 1),
470 				    tag);
471 				return (0);
472 			}
473 		} else {
474 			ASSERT(scl->scl_writer != curthread);
475 			if (!zfs_refcount_is_zero(&scl->scl_count)) {
476 				mutex_exit(&scl->scl_lock);
477 				spa_config_exit(spa, locks & ((1 << i) - 1),
478 				    tag);
479 				return (0);
480 			}
481 			scl->scl_writer = curthread;
482 		}
483 		(void) zfs_refcount_add(&scl->scl_count, tag);
484 		mutex_exit(&scl->scl_lock);
485 	}
486 	return (1);
487 }
488 
489 void
490 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw)
491 {
492 	int wlocks_held = 0;
493 
494 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
495 
496 	for (int i = 0; i < SCL_LOCKS; i++) {
497 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
498 		if (scl->scl_writer == curthread)
499 			wlocks_held |= (1 << i);
500 		if (!(locks & (1 << i)))
501 			continue;
502 		mutex_enter(&scl->scl_lock);
503 		if (rw == RW_READER) {
504 			while (scl->scl_writer || scl->scl_write_wanted) {
505 				cv_wait(&scl->scl_cv, &scl->scl_lock);
506 			}
507 		} else {
508 			ASSERT(scl->scl_writer != curthread);
509 			while (!zfs_refcount_is_zero(&scl->scl_count)) {
510 				scl->scl_write_wanted++;
511 				cv_wait(&scl->scl_cv, &scl->scl_lock);
512 				scl->scl_write_wanted--;
513 			}
514 			scl->scl_writer = curthread;
515 		}
516 		(void) zfs_refcount_add(&scl->scl_count, tag);
517 		mutex_exit(&scl->scl_lock);
518 	}
519 	ASSERT3U(wlocks_held, <=, locks);
520 }
521 
522 void
523 spa_config_exit(spa_t *spa, int locks, const void *tag)
524 {
525 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
526 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
527 		if (!(locks & (1 << i)))
528 			continue;
529 		mutex_enter(&scl->scl_lock);
530 		ASSERT(!zfs_refcount_is_zero(&scl->scl_count));
531 		if (zfs_refcount_remove(&scl->scl_count, tag) == 0) {
532 			ASSERT(scl->scl_writer == NULL ||
533 			    scl->scl_writer == curthread);
534 			scl->scl_writer = NULL;	/* OK in either case */
535 			cv_broadcast(&scl->scl_cv);
536 		}
537 		mutex_exit(&scl->scl_lock);
538 	}
539 }
540 
541 int
542 spa_config_held(spa_t *spa, int locks, krw_t rw)
543 {
544 	int locks_held = 0;
545 
546 	for (int i = 0; i < SCL_LOCKS; i++) {
547 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
548 		if (!(locks & (1 << i)))
549 			continue;
550 		if ((rw == RW_READER &&
551 		    !zfs_refcount_is_zero(&scl->scl_count)) ||
552 		    (rw == RW_WRITER && scl->scl_writer == curthread))
553 			locks_held |= 1 << i;
554 	}
555 
556 	return (locks_held);
557 }
558 
559 /*
560  * ==========================================================================
561  * SPA namespace functions
562  * ==========================================================================
563  */
564 
565 /*
566  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
567  * Returns NULL if no matching spa_t is found.
568  */
569 spa_t *
570 spa_lookup(const char *name)
571 {
572 	static spa_t search;	/* spa_t is large; don't allocate on stack */
573 	spa_t *spa;
574 	avl_index_t where;
575 	char *cp;
576 
577 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
578 
579 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
580 
581 	/*
582 	 * If it's a full dataset name, figure out the pool name and
583 	 * just use that.
584 	 */
585 	cp = strpbrk(search.spa_name, "/@#");
586 	if (cp != NULL)
587 		*cp = '\0';
588 
589 	spa = avl_find(&spa_namespace_avl, &search, &where);
590 
591 	return (spa);
592 }
593 
594 /*
595  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
596  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
597  * looking for potentially hung I/Os.
598  */
599 void
600 spa_deadman(void *arg)
601 {
602 	spa_t *spa = arg;
603 
604 	/* Disable the deadman if the pool is suspended. */
605 	if (spa_suspended(spa))
606 		return;
607 
608 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
609 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
610 	    ++spa->spa_deadman_calls);
611 	if (zfs_deadman_enabled)
612 		vdev_deadman(spa->spa_root_vdev, FTAG);
613 
614 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
615 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
616 	    MSEC_TO_TICK(zfs_deadman_checktime_ms));
617 }
618 
619 static int
620 spa_log_sm_sort_by_txg(const void *va, const void *vb)
621 {
622 	const spa_log_sm_t *a = va;
623 	const spa_log_sm_t *b = vb;
624 
625 	return (TREE_CMP(a->sls_txg, b->sls_txg));
626 }
627 
628 /*
629  * Create an uninitialized spa_t with the given name.  Requires
630  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
631  * exist by calling spa_lookup() first.
632  */
633 spa_t *
634 spa_add(const char *name, nvlist_t *config, const char *altroot)
635 {
636 	spa_t *spa;
637 	spa_config_dirent_t *dp;
638 
639 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
640 
641 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
642 
643 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
644 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
645 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
646 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
647 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
648 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
649 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
650 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
651 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
652 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
653 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
654 	mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
655 	mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
656 	mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL);
657 
658 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
659 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
660 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
661 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
662 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
663 	cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL);
664 	cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL);
665 
666 	for (int t = 0; t < TXG_SIZE; t++)
667 		bplist_create(&spa->spa_free_bplist[t]);
668 
669 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
670 	spa->spa_state = POOL_STATE_UNINITIALIZED;
671 	spa->spa_freeze_txg = UINT64_MAX;
672 	spa->spa_final_txg = UINT64_MAX;
673 	spa->spa_load_max_txg = UINT64_MAX;
674 	spa->spa_proc = &p0;
675 	spa->spa_proc_state = SPA_PROC_NONE;
676 	spa->spa_trust_config = B_TRUE;
677 	spa->spa_hostid = zone_get_hostid(NULL);
678 
679 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
680 	spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
681 	spa_set_deadman_failmode(spa, zfs_deadman_failmode);
682 
683 	zfs_refcount_create(&spa->spa_refcount);
684 	spa_config_lock_init(spa);
685 	spa_stats_init(spa);
686 
687 	avl_add(&spa_namespace_avl, spa);
688 
689 	/*
690 	 * Set the alternate root, if there is one.
691 	 */
692 	if (altroot)
693 		spa->spa_root = spa_strdup(altroot);
694 
695 	spa->spa_alloc_count = spa_allocators;
696 	spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count *
697 	    sizeof (kmutex_t), KM_SLEEP);
698 	spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count *
699 	    sizeof (avl_tree_t), KM_SLEEP);
700 	for (int i = 0; i < spa->spa_alloc_count; i++) {
701 		mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL);
702 		avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare,
703 		    sizeof (zio_t), offsetof(zio_t, io_alloc_node));
704 	}
705 	avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
706 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
707 	avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
708 	    sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
709 	list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
710 	    offsetof(log_summary_entry_t, lse_node));
711 
712 	/*
713 	 * Every pool starts with the default cachefile
714 	 */
715 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
716 	    offsetof(spa_config_dirent_t, scd_link));
717 
718 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
719 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
720 	list_insert_head(&spa->spa_config_list, dp);
721 
722 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
723 	    KM_SLEEP) == 0);
724 
725 	if (config != NULL) {
726 		nvlist_t *features;
727 
728 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
729 		    &features) == 0) {
730 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
731 			    0) == 0);
732 		}
733 
734 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
735 	}
736 
737 	if (spa->spa_label_features == NULL) {
738 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
739 		    KM_SLEEP) == 0);
740 	}
741 
742 	spa->spa_min_ashift = INT_MAX;
743 	spa->spa_max_ashift = 0;
744 	spa->spa_min_alloc = INT_MAX;
745 
746 	/* Reset cached value */
747 	spa->spa_dedup_dspace = ~0ULL;
748 
749 	/*
750 	 * As a pool is being created, treat all features as disabled by
751 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
752 	 * refcount cache.
753 	 */
754 	for (int i = 0; i < SPA_FEATURES; i++) {
755 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
756 	}
757 
758 	list_create(&spa->spa_leaf_list, sizeof (vdev_t),
759 	    offsetof(vdev_t, vdev_leaf_node));
760 
761 	return (spa);
762 }
763 
764 /*
765  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
766  * spa_namespace_lock.  This is called only after the spa_t has been closed and
767  * deactivated.
768  */
769 void
770 spa_remove(spa_t *spa)
771 {
772 	spa_config_dirent_t *dp;
773 
774 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
775 	ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
776 	ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
777 	ASSERT0(spa->spa_waiters);
778 
779 	nvlist_free(spa->spa_config_splitting);
780 
781 	avl_remove(&spa_namespace_avl, spa);
782 	cv_broadcast(&spa_namespace_cv);
783 
784 	if (spa->spa_root)
785 		spa_strfree(spa->spa_root);
786 
787 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
788 		list_remove(&spa->spa_config_list, dp);
789 		if (dp->scd_path != NULL)
790 			spa_strfree(dp->scd_path);
791 		kmem_free(dp, sizeof (spa_config_dirent_t));
792 	}
793 
794 	for (int i = 0; i < spa->spa_alloc_count; i++) {
795 		avl_destroy(&spa->spa_alloc_trees[i]);
796 		mutex_destroy(&spa->spa_alloc_locks[i]);
797 	}
798 	kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count *
799 	    sizeof (kmutex_t));
800 	kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count *
801 	    sizeof (avl_tree_t));
802 
803 	avl_destroy(&spa->spa_metaslabs_by_flushed);
804 	avl_destroy(&spa->spa_sm_logs_by_txg);
805 	list_destroy(&spa->spa_log_summary);
806 	list_destroy(&spa->spa_config_list);
807 	list_destroy(&spa->spa_leaf_list);
808 
809 	nvlist_free(spa->spa_label_features);
810 	nvlist_free(spa->spa_load_info);
811 	nvlist_free(spa->spa_feat_stats);
812 	spa_config_set(spa, NULL);
813 
814 	zfs_refcount_destroy(&spa->spa_refcount);
815 
816 	spa_stats_destroy(spa);
817 	spa_config_lock_destroy(spa);
818 
819 	for (int t = 0; t < TXG_SIZE; t++)
820 		bplist_destroy(&spa->spa_free_bplist[t]);
821 
822 	zio_checksum_templates_free(spa);
823 
824 	cv_destroy(&spa->spa_async_cv);
825 	cv_destroy(&spa->spa_evicting_os_cv);
826 	cv_destroy(&spa->spa_proc_cv);
827 	cv_destroy(&spa->spa_scrub_io_cv);
828 	cv_destroy(&spa->spa_suspend_cv);
829 	cv_destroy(&spa->spa_activities_cv);
830 	cv_destroy(&spa->spa_waiters_cv);
831 
832 	mutex_destroy(&spa->spa_flushed_ms_lock);
833 	mutex_destroy(&spa->spa_async_lock);
834 	mutex_destroy(&spa->spa_errlist_lock);
835 	mutex_destroy(&spa->spa_errlog_lock);
836 	mutex_destroy(&spa->spa_evicting_os_lock);
837 	mutex_destroy(&spa->spa_history_lock);
838 	mutex_destroy(&spa->spa_proc_lock);
839 	mutex_destroy(&spa->spa_props_lock);
840 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
841 	mutex_destroy(&spa->spa_scrub_lock);
842 	mutex_destroy(&spa->spa_suspend_lock);
843 	mutex_destroy(&spa->spa_vdev_top_lock);
844 	mutex_destroy(&spa->spa_feat_stats_lock);
845 	mutex_destroy(&spa->spa_activities_lock);
846 
847 	kmem_free(spa, sizeof (spa_t));
848 }
849 
850 /*
851  * Given a pool, return the next pool in the namespace, or NULL if there is
852  * none.  If 'prev' is NULL, return the first pool.
853  */
854 spa_t *
855 spa_next(spa_t *prev)
856 {
857 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
858 
859 	if (prev)
860 		return (AVL_NEXT(&spa_namespace_avl, prev));
861 	else
862 		return (avl_first(&spa_namespace_avl));
863 }
864 
865 /*
866  * ==========================================================================
867  * SPA refcount functions
868  * ==========================================================================
869  */
870 
871 /*
872  * Add a reference to the given spa_t.  Must have at least one reference, or
873  * have the namespace lock held.
874  */
875 void
876 spa_open_ref(spa_t *spa, void *tag)
877 {
878 	ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
879 	    MUTEX_HELD(&spa_namespace_lock));
880 	(void) zfs_refcount_add(&spa->spa_refcount, tag);
881 }
882 
883 /*
884  * Remove a reference to the given spa_t.  Must have at least one reference, or
885  * have the namespace lock held.
886  */
887 void
888 spa_close(spa_t *spa, void *tag)
889 {
890 	ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
891 	    MUTEX_HELD(&spa_namespace_lock));
892 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
893 }
894 
895 /*
896  * Remove a reference to the given spa_t held by a dsl dir that is
897  * being asynchronously released.  Async releases occur from a taskq
898  * performing eviction of dsl datasets and dirs.  The namespace lock
899  * isn't held and the hold by the object being evicted may contribute to
900  * spa_minref (e.g. dataset or directory released during pool export),
901  * so the asserts in spa_close() do not apply.
902  */
903 void
904 spa_async_close(spa_t *spa, void *tag)
905 {
906 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
907 }
908 
909 /*
910  * Check to see if the spa refcount is zero.  Must be called with
911  * spa_namespace_lock held.  We really compare against spa_minref, which is the
912  * number of references acquired when opening a pool
913  */
914 boolean_t
915 spa_refcount_zero(spa_t *spa)
916 {
917 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
918 
919 	return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
920 }
921 
922 /*
923  * ==========================================================================
924  * SPA spare and l2cache tracking
925  * ==========================================================================
926  */
927 
928 /*
929  * Hot spares and cache devices are tracked using the same code below,
930  * for 'auxiliary' devices.
931  */
932 
933 typedef struct spa_aux {
934 	uint64_t	aux_guid;
935 	uint64_t	aux_pool;
936 	avl_node_t	aux_avl;
937 	int		aux_count;
938 } spa_aux_t;
939 
940 static inline int
941 spa_aux_compare(const void *a, const void *b)
942 {
943 	const spa_aux_t *sa = (const spa_aux_t *)a;
944 	const spa_aux_t *sb = (const spa_aux_t *)b;
945 
946 	return (TREE_CMP(sa->aux_guid, sb->aux_guid));
947 }
948 
949 static void
950 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
951 {
952 	avl_index_t where;
953 	spa_aux_t search;
954 	spa_aux_t *aux;
955 
956 	search.aux_guid = vd->vdev_guid;
957 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
958 		aux->aux_count++;
959 	} else {
960 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
961 		aux->aux_guid = vd->vdev_guid;
962 		aux->aux_count = 1;
963 		avl_insert(avl, aux, where);
964 	}
965 }
966 
967 static void
968 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
969 {
970 	spa_aux_t search;
971 	spa_aux_t *aux;
972 	avl_index_t where;
973 
974 	search.aux_guid = vd->vdev_guid;
975 	aux = avl_find(avl, &search, &where);
976 
977 	ASSERT(aux != NULL);
978 
979 	if (--aux->aux_count == 0) {
980 		avl_remove(avl, aux);
981 		kmem_free(aux, sizeof (spa_aux_t));
982 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
983 		aux->aux_pool = 0ULL;
984 	}
985 }
986 
987 static boolean_t
988 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
989 {
990 	spa_aux_t search, *found;
991 
992 	search.aux_guid = guid;
993 	found = avl_find(avl, &search, NULL);
994 
995 	if (pool) {
996 		if (found)
997 			*pool = found->aux_pool;
998 		else
999 			*pool = 0ULL;
1000 	}
1001 
1002 	if (refcnt) {
1003 		if (found)
1004 			*refcnt = found->aux_count;
1005 		else
1006 			*refcnt = 0;
1007 	}
1008 
1009 	return (found != NULL);
1010 }
1011 
1012 static void
1013 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1014 {
1015 	spa_aux_t search, *found;
1016 	avl_index_t where;
1017 
1018 	search.aux_guid = vd->vdev_guid;
1019 	found = avl_find(avl, &search, &where);
1020 	ASSERT(found != NULL);
1021 	ASSERT(found->aux_pool == 0ULL);
1022 
1023 	found->aux_pool = spa_guid(vd->vdev_spa);
1024 }
1025 
1026 /*
1027  * Spares are tracked globally due to the following constraints:
1028  *
1029  * 	- A spare may be part of multiple pools.
1030  * 	- A spare may be added to a pool even if it's actively in use within
1031  *	  another pool.
1032  * 	- A spare in use in any pool can only be the source of a replacement if
1033  *	  the target is a spare in the same pool.
1034  *
1035  * We keep track of all spares on the system through the use of a reference
1036  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1037  * spare, then we bump the reference count in the AVL tree.  In addition, we set
1038  * the 'vdev_isspare' member to indicate that the device is a spare (active or
1039  * inactive).  When a spare is made active (used to replace a device in the
1040  * pool), we also keep track of which pool its been made a part of.
1041  *
1042  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1043  * called under the spa_namespace lock as part of vdev reconfiguration.  The
1044  * separate spare lock exists for the status query path, which does not need to
1045  * be completely consistent with respect to other vdev configuration changes.
1046  */
1047 
1048 static int
1049 spa_spare_compare(const void *a, const void *b)
1050 {
1051 	return (spa_aux_compare(a, b));
1052 }
1053 
1054 void
1055 spa_spare_add(vdev_t *vd)
1056 {
1057 	mutex_enter(&spa_spare_lock);
1058 	ASSERT(!vd->vdev_isspare);
1059 	spa_aux_add(vd, &spa_spare_avl);
1060 	vd->vdev_isspare = B_TRUE;
1061 	mutex_exit(&spa_spare_lock);
1062 }
1063 
1064 void
1065 spa_spare_remove(vdev_t *vd)
1066 {
1067 	mutex_enter(&spa_spare_lock);
1068 	ASSERT(vd->vdev_isspare);
1069 	spa_aux_remove(vd, &spa_spare_avl);
1070 	vd->vdev_isspare = B_FALSE;
1071 	mutex_exit(&spa_spare_lock);
1072 }
1073 
1074 boolean_t
1075 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1076 {
1077 	boolean_t found;
1078 
1079 	mutex_enter(&spa_spare_lock);
1080 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1081 	mutex_exit(&spa_spare_lock);
1082 
1083 	return (found);
1084 }
1085 
1086 void
1087 spa_spare_activate(vdev_t *vd)
1088 {
1089 	mutex_enter(&spa_spare_lock);
1090 	ASSERT(vd->vdev_isspare);
1091 	spa_aux_activate(vd, &spa_spare_avl);
1092 	mutex_exit(&spa_spare_lock);
1093 }
1094 
1095 /*
1096  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1097  * Cache devices currently only support one pool per cache device, and so
1098  * for these devices the aux reference count is currently unused beyond 1.
1099  */
1100 
1101 static int
1102 spa_l2cache_compare(const void *a, const void *b)
1103 {
1104 	return (spa_aux_compare(a, b));
1105 }
1106 
1107 void
1108 spa_l2cache_add(vdev_t *vd)
1109 {
1110 	mutex_enter(&spa_l2cache_lock);
1111 	ASSERT(!vd->vdev_isl2cache);
1112 	spa_aux_add(vd, &spa_l2cache_avl);
1113 	vd->vdev_isl2cache = B_TRUE;
1114 	mutex_exit(&spa_l2cache_lock);
1115 }
1116 
1117 void
1118 spa_l2cache_remove(vdev_t *vd)
1119 {
1120 	mutex_enter(&spa_l2cache_lock);
1121 	ASSERT(vd->vdev_isl2cache);
1122 	spa_aux_remove(vd, &spa_l2cache_avl);
1123 	vd->vdev_isl2cache = B_FALSE;
1124 	mutex_exit(&spa_l2cache_lock);
1125 }
1126 
1127 boolean_t
1128 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1129 {
1130 	boolean_t found;
1131 
1132 	mutex_enter(&spa_l2cache_lock);
1133 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1134 	mutex_exit(&spa_l2cache_lock);
1135 
1136 	return (found);
1137 }
1138 
1139 void
1140 spa_l2cache_activate(vdev_t *vd)
1141 {
1142 	mutex_enter(&spa_l2cache_lock);
1143 	ASSERT(vd->vdev_isl2cache);
1144 	spa_aux_activate(vd, &spa_l2cache_avl);
1145 	mutex_exit(&spa_l2cache_lock);
1146 }
1147 
1148 /*
1149  * ==========================================================================
1150  * SPA vdev locking
1151  * ==========================================================================
1152  */
1153 
1154 /*
1155  * Lock the given spa_t for the purpose of adding or removing a vdev.
1156  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1157  * It returns the next transaction group for the spa_t.
1158  */
1159 uint64_t
1160 spa_vdev_enter(spa_t *spa)
1161 {
1162 	mutex_enter(&spa->spa_vdev_top_lock);
1163 	mutex_enter(&spa_namespace_lock);
1164 
1165 	vdev_autotrim_stop_all(spa);
1166 
1167 	return (spa_vdev_config_enter(spa));
1168 }
1169 
1170 /*
1171  * The same as spa_vdev_enter() above but additionally takes the guid of
1172  * the vdev being detached.  When there is a rebuild in process it will be
1173  * suspended while the vdev tree is modified then resumed by spa_vdev_exit().
1174  * The rebuild is canceled if only a single child remains after the detach.
1175  */
1176 uint64_t
1177 spa_vdev_detach_enter(spa_t *spa, uint64_t guid)
1178 {
1179 	mutex_enter(&spa->spa_vdev_top_lock);
1180 	mutex_enter(&spa_namespace_lock);
1181 
1182 	vdev_autotrim_stop_all(spa);
1183 
1184 	if (guid != 0) {
1185 		vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1186 		if (vd) {
1187 			vdev_rebuild_stop_wait(vd->vdev_top);
1188 		}
1189 	}
1190 
1191 	return (spa_vdev_config_enter(spa));
1192 }
1193 
1194 /*
1195  * Internal implementation for spa_vdev_enter().  Used when a vdev
1196  * operation requires multiple syncs (i.e. removing a device) while
1197  * keeping the spa_namespace_lock held.
1198  */
1199 uint64_t
1200 spa_vdev_config_enter(spa_t *spa)
1201 {
1202 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1203 
1204 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1205 
1206 	return (spa_last_synced_txg(spa) + 1);
1207 }
1208 
1209 /*
1210  * Used in combination with spa_vdev_config_enter() to allow the syncing
1211  * of multiple transactions without releasing the spa_namespace_lock.
1212  */
1213 void
1214 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1215 {
1216 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1217 
1218 	int config_changed = B_FALSE;
1219 
1220 	ASSERT(txg > spa_last_synced_txg(spa));
1221 
1222 	spa->spa_pending_vdev = NULL;
1223 
1224 	/*
1225 	 * Reassess the DTLs.
1226 	 */
1227 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE);
1228 
1229 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1230 		config_changed = B_TRUE;
1231 		spa->spa_config_generation++;
1232 	}
1233 
1234 	/*
1235 	 * Verify the metaslab classes.
1236 	 */
1237 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1238 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1239 	ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
1240 	ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
1241 
1242 	spa_config_exit(spa, SCL_ALL, spa);
1243 
1244 	/*
1245 	 * Panic the system if the specified tag requires it.  This
1246 	 * is useful for ensuring that configurations are updated
1247 	 * transactionally.
1248 	 */
1249 	if (zio_injection_enabled)
1250 		zio_handle_panic_injection(spa, tag, 0);
1251 
1252 	/*
1253 	 * Note: this txg_wait_synced() is important because it ensures
1254 	 * that there won't be more than one config change per txg.
1255 	 * This allows us to use the txg as the generation number.
1256 	 */
1257 	if (error == 0)
1258 		txg_wait_synced(spa->spa_dsl_pool, txg);
1259 
1260 	if (vd != NULL) {
1261 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1262 		if (vd->vdev_ops->vdev_op_leaf) {
1263 			mutex_enter(&vd->vdev_initialize_lock);
1264 			vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1265 			    NULL);
1266 			mutex_exit(&vd->vdev_initialize_lock);
1267 
1268 			mutex_enter(&vd->vdev_trim_lock);
1269 			vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1270 			mutex_exit(&vd->vdev_trim_lock);
1271 		}
1272 
1273 		/*
1274 		 * The vdev may be both a leaf and top-level device.
1275 		 */
1276 		vdev_autotrim_stop_wait(vd);
1277 
1278 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1279 		vdev_free(vd);
1280 		spa_config_exit(spa, SCL_ALL, spa);
1281 	}
1282 
1283 	/*
1284 	 * If the config changed, update the config cache.
1285 	 */
1286 	if (config_changed)
1287 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1288 }
1289 
1290 /*
1291  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1292  * locking of spa_vdev_enter(), we also want make sure the transactions have
1293  * synced to disk, and then update the global configuration cache with the new
1294  * information.
1295  */
1296 int
1297 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1298 {
1299 	vdev_autotrim_restart(spa);
1300 	vdev_rebuild_restart(spa);
1301 
1302 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1303 	mutex_exit(&spa_namespace_lock);
1304 	mutex_exit(&spa->spa_vdev_top_lock);
1305 
1306 	return (error);
1307 }
1308 
1309 /*
1310  * Lock the given spa_t for the purpose of changing vdev state.
1311  */
1312 void
1313 spa_vdev_state_enter(spa_t *spa, int oplocks)
1314 {
1315 	int locks = SCL_STATE_ALL | oplocks;
1316 
1317 	/*
1318 	 * Root pools may need to read of the underlying devfs filesystem
1319 	 * when opening up a vdev.  Unfortunately if we're holding the
1320 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1321 	 * the read from the root filesystem.  Instead we "prefetch"
1322 	 * the associated vnodes that we need prior to opening the
1323 	 * underlying devices and cache them so that we can prevent
1324 	 * any I/O when we are doing the actual open.
1325 	 */
1326 	if (spa_is_root(spa)) {
1327 		int low = locks & ~(SCL_ZIO - 1);
1328 		int high = locks & ~low;
1329 
1330 		spa_config_enter(spa, high, spa, RW_WRITER);
1331 		vdev_hold(spa->spa_root_vdev);
1332 		spa_config_enter(spa, low, spa, RW_WRITER);
1333 	} else {
1334 		spa_config_enter(spa, locks, spa, RW_WRITER);
1335 	}
1336 	spa->spa_vdev_locks = locks;
1337 }
1338 
1339 int
1340 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1341 {
1342 	boolean_t config_changed = B_FALSE;
1343 	vdev_t *vdev_top;
1344 
1345 	if (vd == NULL || vd == spa->spa_root_vdev) {
1346 		vdev_top = spa->spa_root_vdev;
1347 	} else {
1348 		vdev_top = vd->vdev_top;
1349 	}
1350 
1351 	if (vd != NULL || error == 0)
1352 		vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE);
1353 
1354 	if (vd != NULL) {
1355 		if (vd != spa->spa_root_vdev)
1356 			vdev_state_dirty(vdev_top);
1357 
1358 		config_changed = B_TRUE;
1359 		spa->spa_config_generation++;
1360 	}
1361 
1362 	if (spa_is_root(spa))
1363 		vdev_rele(spa->spa_root_vdev);
1364 
1365 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1366 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1367 
1368 	/*
1369 	 * If anything changed, wait for it to sync.  This ensures that,
1370 	 * from the system administrator's perspective, zpool(8) commands
1371 	 * are synchronous.  This is important for things like zpool offline:
1372 	 * when the command completes, you expect no further I/O from ZFS.
1373 	 */
1374 	if (vd != NULL)
1375 		txg_wait_synced(spa->spa_dsl_pool, 0);
1376 
1377 	/*
1378 	 * If the config changed, update the config cache.
1379 	 */
1380 	if (config_changed) {
1381 		mutex_enter(&spa_namespace_lock);
1382 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1383 		mutex_exit(&spa_namespace_lock);
1384 	}
1385 
1386 	return (error);
1387 }
1388 
1389 /*
1390  * ==========================================================================
1391  * Miscellaneous functions
1392  * ==========================================================================
1393  */
1394 
1395 void
1396 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1397 {
1398 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1399 		fnvlist_add_boolean(spa->spa_label_features, feature);
1400 		/*
1401 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1402 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1403 		 * Thankfully, in this case we don't need to dirty the config
1404 		 * because it will be written out anyway when we finish
1405 		 * creating the pool.
1406 		 */
1407 		if (tx->tx_txg != TXG_INITIAL)
1408 			vdev_config_dirty(spa->spa_root_vdev);
1409 	}
1410 }
1411 
1412 void
1413 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1414 {
1415 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1416 		vdev_config_dirty(spa->spa_root_vdev);
1417 }
1418 
1419 /*
1420  * Return the spa_t associated with given pool_guid, if it exists.  If
1421  * device_guid is non-zero, determine whether the pool exists *and* contains
1422  * a device with the specified device_guid.
1423  */
1424 spa_t *
1425 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1426 {
1427 	spa_t *spa;
1428 	avl_tree_t *t = &spa_namespace_avl;
1429 
1430 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1431 
1432 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1433 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1434 			continue;
1435 		if (spa->spa_root_vdev == NULL)
1436 			continue;
1437 		if (spa_guid(spa) == pool_guid) {
1438 			if (device_guid == 0)
1439 				break;
1440 
1441 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1442 			    device_guid) != NULL)
1443 				break;
1444 
1445 			/*
1446 			 * Check any devices we may be in the process of adding.
1447 			 */
1448 			if (spa->spa_pending_vdev) {
1449 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1450 				    device_guid) != NULL)
1451 					break;
1452 			}
1453 		}
1454 	}
1455 
1456 	return (spa);
1457 }
1458 
1459 /*
1460  * Determine whether a pool with the given pool_guid exists.
1461  */
1462 boolean_t
1463 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1464 {
1465 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1466 }
1467 
1468 char *
1469 spa_strdup(const char *s)
1470 {
1471 	size_t len;
1472 	char *new;
1473 
1474 	len = strlen(s);
1475 	new = kmem_alloc(len + 1, KM_SLEEP);
1476 	bcopy(s, new, len);
1477 	new[len] = '\0';
1478 
1479 	return (new);
1480 }
1481 
1482 void
1483 spa_strfree(char *s)
1484 {
1485 	kmem_free(s, strlen(s) + 1);
1486 }
1487 
1488 uint64_t
1489 spa_get_random(uint64_t range)
1490 {
1491 	uint64_t r;
1492 
1493 	ASSERT(range != 0);
1494 
1495 	if (range == 1)
1496 		return (0);
1497 
1498 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1499 
1500 	return (r % range);
1501 }
1502 
1503 uint64_t
1504 spa_generate_guid(spa_t *spa)
1505 {
1506 	uint64_t guid = spa_get_random(-1ULL);
1507 
1508 	if (spa != NULL) {
1509 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1510 			guid = spa_get_random(-1ULL);
1511 	} else {
1512 		while (guid == 0 || spa_guid_exists(guid, 0))
1513 			guid = spa_get_random(-1ULL);
1514 	}
1515 
1516 	return (guid);
1517 }
1518 
1519 void
1520 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1521 {
1522 	char type[256];
1523 	char *checksum = NULL;
1524 	char *compress = NULL;
1525 
1526 	if (bp != NULL) {
1527 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1528 			dmu_object_byteswap_t bswap =
1529 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1530 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1531 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1532 			    "metadata" : "data",
1533 			    dmu_ot_byteswap[bswap].ob_name);
1534 		} else {
1535 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1536 			    sizeof (type));
1537 		}
1538 		if (!BP_IS_EMBEDDED(bp)) {
1539 			checksum =
1540 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1541 		}
1542 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1543 	}
1544 
1545 	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1546 	    compress);
1547 }
1548 
1549 void
1550 spa_freeze(spa_t *spa)
1551 {
1552 	uint64_t freeze_txg = 0;
1553 
1554 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1555 	if (spa->spa_freeze_txg == UINT64_MAX) {
1556 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1557 		spa->spa_freeze_txg = freeze_txg;
1558 	}
1559 	spa_config_exit(spa, SCL_ALL, FTAG);
1560 	if (freeze_txg != 0)
1561 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1562 }
1563 
1564 void
1565 zfs_panic_recover(const char *fmt, ...)
1566 {
1567 	va_list adx;
1568 
1569 	va_start(adx, fmt);
1570 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1571 	va_end(adx);
1572 }
1573 
1574 /*
1575  * This is a stripped-down version of strtoull, suitable only for converting
1576  * lowercase hexadecimal numbers that don't overflow.
1577  */
1578 uint64_t
1579 zfs_strtonum(const char *str, char **nptr)
1580 {
1581 	uint64_t val = 0;
1582 	char c;
1583 	int digit;
1584 
1585 	while ((c = *str) != '\0') {
1586 		if (c >= '0' && c <= '9')
1587 			digit = c - '0';
1588 		else if (c >= 'a' && c <= 'f')
1589 			digit = 10 + c - 'a';
1590 		else
1591 			break;
1592 
1593 		val *= 16;
1594 		val += digit;
1595 
1596 		str++;
1597 	}
1598 
1599 	if (nptr)
1600 		*nptr = (char *)str;
1601 
1602 	return (val);
1603 }
1604 
1605 void
1606 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1607 {
1608 	/*
1609 	 * We bump the feature refcount for each special vdev added to the pool
1610 	 */
1611 	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1612 	spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1613 }
1614 
1615 /*
1616  * ==========================================================================
1617  * Accessor functions
1618  * ==========================================================================
1619  */
1620 
1621 boolean_t
1622 spa_shutting_down(spa_t *spa)
1623 {
1624 	return (spa->spa_async_suspended);
1625 }
1626 
1627 dsl_pool_t *
1628 spa_get_dsl(spa_t *spa)
1629 {
1630 	return (spa->spa_dsl_pool);
1631 }
1632 
1633 boolean_t
1634 spa_is_initializing(spa_t *spa)
1635 {
1636 	return (spa->spa_is_initializing);
1637 }
1638 
1639 boolean_t
1640 spa_indirect_vdevs_loaded(spa_t *spa)
1641 {
1642 	return (spa->spa_indirect_vdevs_loaded);
1643 }
1644 
1645 blkptr_t *
1646 spa_get_rootblkptr(spa_t *spa)
1647 {
1648 	return (&spa->spa_ubsync.ub_rootbp);
1649 }
1650 
1651 void
1652 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1653 {
1654 	spa->spa_uberblock.ub_rootbp = *bp;
1655 }
1656 
1657 void
1658 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1659 {
1660 	if (spa->spa_root == NULL)
1661 		buf[0] = '\0';
1662 	else
1663 		(void) strncpy(buf, spa->spa_root, buflen);
1664 }
1665 
1666 int
1667 spa_sync_pass(spa_t *spa)
1668 {
1669 	return (spa->spa_sync_pass);
1670 }
1671 
1672 char *
1673 spa_name(spa_t *spa)
1674 {
1675 	return (spa->spa_name);
1676 }
1677 
1678 uint64_t
1679 spa_guid(spa_t *spa)
1680 {
1681 	dsl_pool_t *dp = spa_get_dsl(spa);
1682 	uint64_t guid;
1683 
1684 	/*
1685 	 * If we fail to parse the config during spa_load(), we can go through
1686 	 * the error path (which posts an ereport) and end up here with no root
1687 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1688 	 * this case.
1689 	 */
1690 	if (spa->spa_root_vdev == NULL)
1691 		return (spa->spa_config_guid);
1692 
1693 	guid = spa->spa_last_synced_guid != 0 ?
1694 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1695 
1696 	/*
1697 	 * Return the most recently synced out guid unless we're
1698 	 * in syncing context.
1699 	 */
1700 	if (dp && dsl_pool_sync_context(dp))
1701 		return (spa->spa_root_vdev->vdev_guid);
1702 	else
1703 		return (guid);
1704 }
1705 
1706 uint64_t
1707 spa_load_guid(spa_t *spa)
1708 {
1709 	/*
1710 	 * This is a GUID that exists solely as a reference for the
1711 	 * purposes of the arc.  It is generated at load time, and
1712 	 * is never written to persistent storage.
1713 	 */
1714 	return (spa->spa_load_guid);
1715 }
1716 
1717 uint64_t
1718 spa_last_synced_txg(spa_t *spa)
1719 {
1720 	return (spa->spa_ubsync.ub_txg);
1721 }
1722 
1723 uint64_t
1724 spa_first_txg(spa_t *spa)
1725 {
1726 	return (spa->spa_first_txg);
1727 }
1728 
1729 uint64_t
1730 spa_syncing_txg(spa_t *spa)
1731 {
1732 	return (spa->spa_syncing_txg);
1733 }
1734 
1735 /*
1736  * Return the last txg where data can be dirtied. The final txgs
1737  * will be used to just clear out any deferred frees that remain.
1738  */
1739 uint64_t
1740 spa_final_dirty_txg(spa_t *spa)
1741 {
1742 	return (spa->spa_final_txg - TXG_DEFER_SIZE);
1743 }
1744 
1745 pool_state_t
1746 spa_state(spa_t *spa)
1747 {
1748 	return (spa->spa_state);
1749 }
1750 
1751 spa_load_state_t
1752 spa_load_state(spa_t *spa)
1753 {
1754 	return (spa->spa_load_state);
1755 }
1756 
1757 uint64_t
1758 spa_freeze_txg(spa_t *spa)
1759 {
1760 	return (spa->spa_freeze_txg);
1761 }
1762 
1763 /*
1764  * Return the inflated asize for a logical write in bytes. This is used by the
1765  * DMU to calculate the space a logical write will require on disk.
1766  * If lsize is smaller than the largest physical block size allocatable on this
1767  * pool we use its value instead, since the write will end up using the whole
1768  * block anyway.
1769  */
1770 uint64_t
1771 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1772 {
1773 	if (lsize == 0)
1774 		return (0);	/* No inflation needed */
1775 	return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
1776 }
1777 
1778 /*
1779  * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1780  * or at least 128MB, unless that would cause it to be more than half the
1781  * pool size.
1782  *
1783  * See the comment above spa_slop_shift for details.
1784  */
1785 uint64_t
1786 spa_get_slop_space(spa_t *spa)
1787 {
1788 	uint64_t space = spa_get_dspace(spa);
1789 	return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1790 }
1791 
1792 uint64_t
1793 spa_get_dspace(spa_t *spa)
1794 {
1795 	return (spa->spa_dspace);
1796 }
1797 
1798 uint64_t
1799 spa_get_checkpoint_space(spa_t *spa)
1800 {
1801 	return (spa->spa_checkpoint_info.sci_dspace);
1802 }
1803 
1804 void
1805 spa_update_dspace(spa_t *spa)
1806 {
1807 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1808 	    ddt_get_dedup_dspace(spa);
1809 	if (spa->spa_vdev_removal != NULL) {
1810 		/*
1811 		 * We can't allocate from the removing device, so subtract
1812 		 * its size if it was included in dspace (i.e. if this is a
1813 		 * normal-class vdev, not special/dedup).  This prevents the
1814 		 * DMU/DSL from filling up the (now smaller) pool while we
1815 		 * are in the middle of removing the device.
1816 		 *
1817 		 * Note that the DMU/DSL doesn't actually know or care
1818 		 * how much space is allocated (it does its own tracking
1819 		 * of how much space has been logically used).  So it
1820 		 * doesn't matter that the data we are moving may be
1821 		 * allocated twice (on the old device and the new
1822 		 * device).
1823 		 */
1824 		spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1825 		vdev_t *vd =
1826 		    vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1827 		if (vd->vdev_mg->mg_class == spa_normal_class(spa)) {
1828 			spa->spa_dspace -= spa_deflate(spa) ?
1829 			    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1830 		}
1831 		spa_config_exit(spa, SCL_VDEV, FTAG);
1832 	}
1833 }
1834 
1835 /*
1836  * Return the failure mode that has been set to this pool. The default
1837  * behavior will be to block all I/Os when a complete failure occurs.
1838  */
1839 uint64_t
1840 spa_get_failmode(spa_t *spa)
1841 {
1842 	return (spa->spa_failmode);
1843 }
1844 
1845 boolean_t
1846 spa_suspended(spa_t *spa)
1847 {
1848 	return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1849 }
1850 
1851 uint64_t
1852 spa_version(spa_t *spa)
1853 {
1854 	return (spa->spa_ubsync.ub_version);
1855 }
1856 
1857 boolean_t
1858 spa_deflate(spa_t *spa)
1859 {
1860 	return (spa->spa_deflate);
1861 }
1862 
1863 metaslab_class_t *
1864 spa_normal_class(spa_t *spa)
1865 {
1866 	return (spa->spa_normal_class);
1867 }
1868 
1869 metaslab_class_t *
1870 spa_log_class(spa_t *spa)
1871 {
1872 	return (spa->spa_log_class);
1873 }
1874 
1875 metaslab_class_t *
1876 spa_special_class(spa_t *spa)
1877 {
1878 	return (spa->spa_special_class);
1879 }
1880 
1881 metaslab_class_t *
1882 spa_dedup_class(spa_t *spa)
1883 {
1884 	return (spa->spa_dedup_class);
1885 }
1886 
1887 /*
1888  * Locate an appropriate allocation class
1889  */
1890 metaslab_class_t *
1891 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
1892     uint_t level, uint_t special_smallblk)
1893 {
1894 	if (DMU_OT_IS_ZIL(objtype)) {
1895 		if (spa->spa_log_class->mc_groups != 0)
1896 			return (spa_log_class(spa));
1897 		else
1898 			return (spa_normal_class(spa));
1899 	}
1900 
1901 	boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
1902 
1903 	if (DMU_OT_IS_DDT(objtype)) {
1904 		if (spa->spa_dedup_class->mc_groups != 0)
1905 			return (spa_dedup_class(spa));
1906 		else if (has_special_class && zfs_ddt_data_is_special)
1907 			return (spa_special_class(spa));
1908 		else
1909 			return (spa_normal_class(spa));
1910 	}
1911 
1912 	/* Indirect blocks for user data can land in special if allowed */
1913 	if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
1914 		if (has_special_class && zfs_user_indirect_is_special)
1915 			return (spa_special_class(spa));
1916 		else
1917 			return (spa_normal_class(spa));
1918 	}
1919 
1920 	if (DMU_OT_IS_METADATA(objtype) || level > 0) {
1921 		if (has_special_class)
1922 			return (spa_special_class(spa));
1923 		else
1924 			return (spa_normal_class(spa));
1925 	}
1926 
1927 	/*
1928 	 * Allow small file blocks in special class in some cases (like
1929 	 * for the dRAID vdev feature). But always leave a reserve of
1930 	 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
1931 	 */
1932 	if (DMU_OT_IS_FILE(objtype) &&
1933 	    has_special_class && size <= special_smallblk) {
1934 		metaslab_class_t *special = spa_special_class(spa);
1935 		uint64_t alloc = metaslab_class_get_alloc(special);
1936 		uint64_t space = metaslab_class_get_space(special);
1937 		uint64_t limit =
1938 		    (space * (100 - zfs_special_class_metadata_reserve_pct))
1939 		    / 100;
1940 
1941 		if (alloc < limit)
1942 			return (special);
1943 	}
1944 
1945 	return (spa_normal_class(spa));
1946 }
1947 
1948 void
1949 spa_evicting_os_register(spa_t *spa, objset_t *os)
1950 {
1951 	mutex_enter(&spa->spa_evicting_os_lock);
1952 	list_insert_head(&spa->spa_evicting_os_list, os);
1953 	mutex_exit(&spa->spa_evicting_os_lock);
1954 }
1955 
1956 void
1957 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1958 {
1959 	mutex_enter(&spa->spa_evicting_os_lock);
1960 	list_remove(&spa->spa_evicting_os_list, os);
1961 	cv_broadcast(&spa->spa_evicting_os_cv);
1962 	mutex_exit(&spa->spa_evicting_os_lock);
1963 }
1964 
1965 void
1966 spa_evicting_os_wait(spa_t *spa)
1967 {
1968 	mutex_enter(&spa->spa_evicting_os_lock);
1969 	while (!list_is_empty(&spa->spa_evicting_os_list))
1970 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1971 	mutex_exit(&spa->spa_evicting_os_lock);
1972 
1973 	dmu_buf_user_evict_wait();
1974 }
1975 
1976 int
1977 spa_max_replication(spa_t *spa)
1978 {
1979 	/*
1980 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1981 	 * handle BPs with more than one DVA allocated.  Set our max
1982 	 * replication level accordingly.
1983 	 */
1984 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1985 		return (1);
1986 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1987 }
1988 
1989 int
1990 spa_prev_software_version(spa_t *spa)
1991 {
1992 	return (spa->spa_prev_software_version);
1993 }
1994 
1995 uint64_t
1996 spa_deadman_synctime(spa_t *spa)
1997 {
1998 	return (spa->spa_deadman_synctime);
1999 }
2000 
2001 spa_autotrim_t
2002 spa_get_autotrim(spa_t *spa)
2003 {
2004 	return (spa->spa_autotrim);
2005 }
2006 
2007 uint64_t
2008 spa_deadman_ziotime(spa_t *spa)
2009 {
2010 	return (spa->spa_deadman_ziotime);
2011 }
2012 
2013 uint64_t
2014 spa_get_deadman_failmode(spa_t *spa)
2015 {
2016 	return (spa->spa_deadman_failmode);
2017 }
2018 
2019 void
2020 spa_set_deadman_failmode(spa_t *spa, const char *failmode)
2021 {
2022 	if (strcmp(failmode, "wait") == 0)
2023 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2024 	else if (strcmp(failmode, "continue") == 0)
2025 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
2026 	else if (strcmp(failmode, "panic") == 0)
2027 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
2028 	else
2029 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2030 }
2031 
2032 void
2033 spa_set_deadman_ziotime(hrtime_t ns)
2034 {
2035 	spa_t *spa = NULL;
2036 
2037 	if (spa_mode_global != SPA_MODE_UNINIT) {
2038 		mutex_enter(&spa_namespace_lock);
2039 		while ((spa = spa_next(spa)) != NULL)
2040 			spa->spa_deadman_ziotime = ns;
2041 		mutex_exit(&spa_namespace_lock);
2042 	}
2043 }
2044 
2045 void
2046 spa_set_deadman_synctime(hrtime_t ns)
2047 {
2048 	spa_t *spa = NULL;
2049 
2050 	if (spa_mode_global != SPA_MODE_UNINIT) {
2051 		mutex_enter(&spa_namespace_lock);
2052 		while ((spa = spa_next(spa)) != NULL)
2053 			spa->spa_deadman_synctime = ns;
2054 		mutex_exit(&spa_namespace_lock);
2055 	}
2056 }
2057 
2058 uint64_t
2059 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
2060 {
2061 	uint64_t asize = DVA_GET_ASIZE(dva);
2062 	uint64_t dsize = asize;
2063 
2064 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2065 
2066 	if (asize != 0 && spa->spa_deflate) {
2067 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2068 		if (vd != NULL)
2069 			dsize = (asize >> SPA_MINBLOCKSHIFT) *
2070 			    vd->vdev_deflate_ratio;
2071 	}
2072 
2073 	return (dsize);
2074 }
2075 
2076 uint64_t
2077 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
2078 {
2079 	uint64_t dsize = 0;
2080 
2081 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2082 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2083 
2084 	return (dsize);
2085 }
2086 
2087 uint64_t
2088 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
2089 {
2090 	uint64_t dsize = 0;
2091 
2092 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2093 
2094 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2095 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2096 
2097 	spa_config_exit(spa, SCL_VDEV, FTAG);
2098 
2099 	return (dsize);
2100 }
2101 
2102 uint64_t
2103 spa_dirty_data(spa_t *spa)
2104 {
2105 	return (spa->spa_dsl_pool->dp_dirty_total);
2106 }
2107 
2108 /*
2109  * ==========================================================================
2110  * SPA Import Progress Routines
2111  * ==========================================================================
2112  */
2113 
2114 typedef struct spa_import_progress {
2115 	uint64_t		pool_guid;	/* unique id for updates */
2116 	char			*pool_name;
2117 	spa_load_state_t	spa_load_state;
2118 	uint64_t		mmp_sec_remaining;	/* MMP activity check */
2119 	uint64_t		spa_load_max_txg;	/* rewind txg */
2120 	procfs_list_node_t	smh_node;
2121 } spa_import_progress_t;
2122 
2123 spa_history_list_t *spa_import_progress_list = NULL;
2124 
2125 static int
2126 spa_import_progress_show_header(struct seq_file *f)
2127 {
2128 	seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid",
2129 	    "load_state", "multihost_secs", "max_txg",
2130 	    "pool_name");
2131 	return (0);
2132 }
2133 
2134 static int
2135 spa_import_progress_show(struct seq_file *f, void *data)
2136 {
2137 	spa_import_progress_t *sip = (spa_import_progress_t *)data;
2138 
2139 	seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n",
2140 	    (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state,
2141 	    (u_longlong_t)sip->mmp_sec_remaining,
2142 	    (u_longlong_t)sip->spa_load_max_txg,
2143 	    (sip->pool_name ? sip->pool_name : "-"));
2144 
2145 	return (0);
2146 }
2147 
2148 /* Remove oldest elements from list until there are no more than 'size' left */
2149 static void
2150 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size)
2151 {
2152 	spa_import_progress_t *sip;
2153 	while (shl->size > size) {
2154 		sip = list_remove_head(&shl->procfs_list.pl_list);
2155 		if (sip->pool_name)
2156 			spa_strfree(sip->pool_name);
2157 		kmem_free(sip, sizeof (spa_import_progress_t));
2158 		shl->size--;
2159 	}
2160 
2161 	IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list));
2162 }
2163 
2164 static void
2165 spa_import_progress_init(void)
2166 {
2167 	spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t),
2168 	    KM_SLEEP);
2169 
2170 	spa_import_progress_list->size = 0;
2171 
2172 	spa_import_progress_list->procfs_list.pl_private =
2173 	    spa_import_progress_list;
2174 
2175 	procfs_list_install("zfs",
2176 	    NULL,
2177 	    "import_progress",
2178 	    0644,
2179 	    &spa_import_progress_list->procfs_list,
2180 	    spa_import_progress_show,
2181 	    spa_import_progress_show_header,
2182 	    NULL,
2183 	    offsetof(spa_import_progress_t, smh_node));
2184 }
2185 
2186 static void
2187 spa_import_progress_destroy(void)
2188 {
2189 	spa_history_list_t *shl = spa_import_progress_list;
2190 	procfs_list_uninstall(&shl->procfs_list);
2191 	spa_import_progress_truncate(shl, 0);
2192 	procfs_list_destroy(&shl->procfs_list);
2193 	kmem_free(shl, sizeof (spa_history_list_t));
2194 }
2195 
2196 int
2197 spa_import_progress_set_state(uint64_t pool_guid,
2198     spa_load_state_t load_state)
2199 {
2200 	spa_history_list_t *shl = spa_import_progress_list;
2201 	spa_import_progress_t *sip;
2202 	int error = ENOENT;
2203 
2204 	if (shl->size == 0)
2205 		return (0);
2206 
2207 	mutex_enter(&shl->procfs_list.pl_lock);
2208 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2209 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2210 		if (sip->pool_guid == pool_guid) {
2211 			sip->spa_load_state = load_state;
2212 			error = 0;
2213 			break;
2214 		}
2215 	}
2216 	mutex_exit(&shl->procfs_list.pl_lock);
2217 
2218 	return (error);
2219 }
2220 
2221 int
2222 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg)
2223 {
2224 	spa_history_list_t *shl = spa_import_progress_list;
2225 	spa_import_progress_t *sip;
2226 	int error = ENOENT;
2227 
2228 	if (shl->size == 0)
2229 		return (0);
2230 
2231 	mutex_enter(&shl->procfs_list.pl_lock);
2232 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2233 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2234 		if (sip->pool_guid == pool_guid) {
2235 			sip->spa_load_max_txg = load_max_txg;
2236 			error = 0;
2237 			break;
2238 		}
2239 	}
2240 	mutex_exit(&shl->procfs_list.pl_lock);
2241 
2242 	return (error);
2243 }
2244 
2245 int
2246 spa_import_progress_set_mmp_check(uint64_t pool_guid,
2247     uint64_t mmp_sec_remaining)
2248 {
2249 	spa_history_list_t *shl = spa_import_progress_list;
2250 	spa_import_progress_t *sip;
2251 	int error = ENOENT;
2252 
2253 	if (shl->size == 0)
2254 		return (0);
2255 
2256 	mutex_enter(&shl->procfs_list.pl_lock);
2257 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2258 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2259 		if (sip->pool_guid == pool_guid) {
2260 			sip->mmp_sec_remaining = mmp_sec_remaining;
2261 			error = 0;
2262 			break;
2263 		}
2264 	}
2265 	mutex_exit(&shl->procfs_list.pl_lock);
2266 
2267 	return (error);
2268 }
2269 
2270 /*
2271  * A new import is in progress, add an entry.
2272  */
2273 void
2274 spa_import_progress_add(spa_t *spa)
2275 {
2276 	spa_history_list_t *shl = spa_import_progress_list;
2277 	spa_import_progress_t *sip;
2278 	char *poolname = NULL;
2279 
2280 	sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP);
2281 	sip->pool_guid = spa_guid(spa);
2282 
2283 	(void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
2284 	    &poolname);
2285 	if (poolname == NULL)
2286 		poolname = spa_name(spa);
2287 	sip->pool_name = spa_strdup(poolname);
2288 	sip->spa_load_state = spa_load_state(spa);
2289 
2290 	mutex_enter(&shl->procfs_list.pl_lock);
2291 	procfs_list_add(&shl->procfs_list, sip);
2292 	shl->size++;
2293 	mutex_exit(&shl->procfs_list.pl_lock);
2294 }
2295 
2296 void
2297 spa_import_progress_remove(uint64_t pool_guid)
2298 {
2299 	spa_history_list_t *shl = spa_import_progress_list;
2300 	spa_import_progress_t *sip;
2301 
2302 	mutex_enter(&shl->procfs_list.pl_lock);
2303 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2304 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2305 		if (sip->pool_guid == pool_guid) {
2306 			if (sip->pool_name)
2307 				spa_strfree(sip->pool_name);
2308 			list_remove(&shl->procfs_list.pl_list, sip);
2309 			shl->size--;
2310 			kmem_free(sip, sizeof (spa_import_progress_t));
2311 			break;
2312 		}
2313 	}
2314 	mutex_exit(&shl->procfs_list.pl_lock);
2315 }
2316 
2317 /*
2318  * ==========================================================================
2319  * Initialization and Termination
2320  * ==========================================================================
2321  */
2322 
2323 static int
2324 spa_name_compare(const void *a1, const void *a2)
2325 {
2326 	const spa_t *s1 = a1;
2327 	const spa_t *s2 = a2;
2328 	int s;
2329 
2330 	s = strcmp(s1->spa_name, s2->spa_name);
2331 
2332 	return (TREE_ISIGN(s));
2333 }
2334 
2335 void
2336 spa_boot_init(void)
2337 {
2338 	spa_config_load();
2339 }
2340 
2341 void
2342 spa_init(spa_mode_t mode)
2343 {
2344 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2345 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2346 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2347 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2348 
2349 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2350 	    offsetof(spa_t, spa_avl));
2351 
2352 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2353 	    offsetof(spa_aux_t, aux_avl));
2354 
2355 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2356 	    offsetof(spa_aux_t, aux_avl));
2357 
2358 	spa_mode_global = mode;
2359 
2360 #ifndef _KERNEL
2361 	if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) {
2362 		struct sigaction sa;
2363 
2364 		sa.sa_flags = SA_SIGINFO;
2365 		sigemptyset(&sa.sa_mask);
2366 		sa.sa_sigaction = arc_buf_sigsegv;
2367 
2368 		if (sigaction(SIGSEGV, &sa, NULL) == -1) {
2369 			perror("could not enable watchpoints: "
2370 			    "sigaction(SIGSEGV, ...) = ");
2371 		} else {
2372 			arc_watch = B_TRUE;
2373 		}
2374 	}
2375 #endif
2376 
2377 	fm_init();
2378 	zfs_refcount_init();
2379 	unique_init();
2380 	zfs_btree_init();
2381 	metaslab_stat_init();
2382 	ddt_init();
2383 	zio_init();
2384 	dmu_init();
2385 	zil_init();
2386 	vdev_cache_stat_init();
2387 	vdev_mirror_stat_init();
2388 	vdev_raidz_math_init();
2389 	vdev_file_init();
2390 	zfs_prop_init();
2391 	zpool_prop_init();
2392 	zpool_feature_init();
2393 	spa_config_load();
2394 	l2arc_start();
2395 	scan_init();
2396 	qat_init();
2397 	spa_import_progress_init();
2398 }
2399 
2400 void
2401 spa_fini(void)
2402 {
2403 	l2arc_stop();
2404 
2405 	spa_evict_all();
2406 
2407 	vdev_file_fini();
2408 	vdev_cache_stat_fini();
2409 	vdev_mirror_stat_fini();
2410 	vdev_raidz_math_fini();
2411 	zil_fini();
2412 	dmu_fini();
2413 	zio_fini();
2414 	ddt_fini();
2415 	metaslab_stat_fini();
2416 	zfs_btree_fini();
2417 	unique_fini();
2418 	zfs_refcount_fini();
2419 	fm_fini();
2420 	scan_fini();
2421 	qat_fini();
2422 	spa_import_progress_destroy();
2423 
2424 	avl_destroy(&spa_namespace_avl);
2425 	avl_destroy(&spa_spare_avl);
2426 	avl_destroy(&spa_l2cache_avl);
2427 
2428 	cv_destroy(&spa_namespace_cv);
2429 	mutex_destroy(&spa_namespace_lock);
2430 	mutex_destroy(&spa_spare_lock);
2431 	mutex_destroy(&spa_l2cache_lock);
2432 }
2433 
2434 /*
2435  * Return whether this pool has slogs. No locking needed.
2436  * It's not a problem if the wrong answer is returned as it's only for
2437  * performance and not correctness
2438  */
2439 boolean_t
2440 spa_has_slogs(spa_t *spa)
2441 {
2442 	return (spa->spa_log_class->mc_groups != 0);
2443 }
2444 
2445 spa_log_state_t
2446 spa_get_log_state(spa_t *spa)
2447 {
2448 	return (spa->spa_log_state);
2449 }
2450 
2451 void
2452 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2453 {
2454 	spa->spa_log_state = state;
2455 }
2456 
2457 boolean_t
2458 spa_is_root(spa_t *spa)
2459 {
2460 	return (spa->spa_is_root);
2461 }
2462 
2463 boolean_t
2464 spa_writeable(spa_t *spa)
2465 {
2466 	return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config);
2467 }
2468 
2469 /*
2470  * Returns true if there is a pending sync task in any of the current
2471  * syncing txg, the current quiescing txg, or the current open txg.
2472  */
2473 boolean_t
2474 spa_has_pending_synctask(spa_t *spa)
2475 {
2476 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2477 	    !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2478 }
2479 
2480 spa_mode_t
2481 spa_mode(spa_t *spa)
2482 {
2483 	return (spa->spa_mode);
2484 }
2485 
2486 uint64_t
2487 spa_bootfs(spa_t *spa)
2488 {
2489 	return (spa->spa_bootfs);
2490 }
2491 
2492 uint64_t
2493 spa_delegation(spa_t *spa)
2494 {
2495 	return (spa->spa_delegation);
2496 }
2497 
2498 objset_t *
2499 spa_meta_objset(spa_t *spa)
2500 {
2501 	return (spa->spa_meta_objset);
2502 }
2503 
2504 enum zio_checksum
2505 spa_dedup_checksum(spa_t *spa)
2506 {
2507 	return (spa->spa_dedup_checksum);
2508 }
2509 
2510 /*
2511  * Reset pool scan stat per scan pass (or reboot).
2512  */
2513 void
2514 spa_scan_stat_init(spa_t *spa)
2515 {
2516 	/* data not stored on disk */
2517 	spa->spa_scan_pass_start = gethrestime_sec();
2518 	if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2519 		spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2520 	else
2521 		spa->spa_scan_pass_scrub_pause = 0;
2522 	spa->spa_scan_pass_scrub_spent_paused = 0;
2523 	spa->spa_scan_pass_exam = 0;
2524 	spa->spa_scan_pass_issued = 0;
2525 	vdev_scan_stat_init(spa->spa_root_vdev);
2526 }
2527 
2528 /*
2529  * Get scan stats for zpool status reports
2530  */
2531 int
2532 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2533 {
2534 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2535 
2536 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2537 		return (SET_ERROR(ENOENT));
2538 	bzero(ps, sizeof (pool_scan_stat_t));
2539 
2540 	/* data stored on disk */
2541 	ps->pss_func = scn->scn_phys.scn_func;
2542 	ps->pss_state = scn->scn_phys.scn_state;
2543 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2544 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2545 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2546 	ps->pss_examined = scn->scn_phys.scn_examined;
2547 	ps->pss_to_process = scn->scn_phys.scn_to_process;
2548 	ps->pss_processed = scn->scn_phys.scn_processed;
2549 	ps->pss_errors = scn->scn_phys.scn_errors;
2550 
2551 	/* data not stored on disk */
2552 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2553 	ps->pss_pass_start = spa->spa_scan_pass_start;
2554 	ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2555 	ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2556 	ps->pss_pass_issued = spa->spa_scan_pass_issued;
2557 	ps->pss_issued =
2558 	    scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2559 
2560 	return (0);
2561 }
2562 
2563 int
2564 spa_maxblocksize(spa_t *spa)
2565 {
2566 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2567 		return (SPA_MAXBLOCKSIZE);
2568 	else
2569 		return (SPA_OLD_MAXBLOCKSIZE);
2570 }
2571 
2572 
2573 /*
2574  * Returns the txg that the last device removal completed. No indirect mappings
2575  * have been added since this txg.
2576  */
2577 uint64_t
2578 spa_get_last_removal_txg(spa_t *spa)
2579 {
2580 	uint64_t vdevid;
2581 	uint64_t ret = -1ULL;
2582 
2583 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2584 	/*
2585 	 * sr_prev_indirect_vdev is only modified while holding all the
2586 	 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2587 	 * examining it.
2588 	 */
2589 	vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2590 
2591 	while (vdevid != -1ULL) {
2592 		vdev_t *vd = vdev_lookup_top(spa, vdevid);
2593 		vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2594 
2595 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2596 
2597 		/*
2598 		 * If the removal did not remap any data, we don't care.
2599 		 */
2600 		if (vdev_indirect_births_count(vib) != 0) {
2601 			ret = vdev_indirect_births_last_entry_txg(vib);
2602 			break;
2603 		}
2604 
2605 		vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2606 	}
2607 	spa_config_exit(spa, SCL_VDEV, FTAG);
2608 
2609 	IMPLY(ret != -1ULL,
2610 	    spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2611 
2612 	return (ret);
2613 }
2614 
2615 int
2616 spa_maxdnodesize(spa_t *spa)
2617 {
2618 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2619 		return (DNODE_MAX_SIZE);
2620 	else
2621 		return (DNODE_MIN_SIZE);
2622 }
2623 
2624 boolean_t
2625 spa_multihost(spa_t *spa)
2626 {
2627 	return (spa->spa_multihost ? B_TRUE : B_FALSE);
2628 }
2629 
2630 uint32_t
2631 spa_get_hostid(spa_t *spa)
2632 {
2633 	return (spa->spa_hostid);
2634 }
2635 
2636 boolean_t
2637 spa_trust_config(spa_t *spa)
2638 {
2639 	return (spa->spa_trust_config);
2640 }
2641 
2642 uint64_t
2643 spa_missing_tvds_allowed(spa_t *spa)
2644 {
2645 	return (spa->spa_missing_tvds_allowed);
2646 }
2647 
2648 space_map_t *
2649 spa_syncing_log_sm(spa_t *spa)
2650 {
2651 	return (spa->spa_syncing_log_sm);
2652 }
2653 
2654 void
2655 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2656 {
2657 	spa->spa_missing_tvds = missing;
2658 }
2659 
2660 /*
2661  * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
2662  */
2663 const char *
2664 spa_state_to_name(spa_t *spa)
2665 {
2666 	ASSERT3P(spa, !=, NULL);
2667 
2668 	/*
2669 	 * it is possible for the spa to exist, without root vdev
2670 	 * as the spa transitions during import/export
2671 	 */
2672 	vdev_t *rvd = spa->spa_root_vdev;
2673 	if (rvd == NULL) {
2674 		return ("TRANSITIONING");
2675 	}
2676 	vdev_state_t state = rvd->vdev_state;
2677 	vdev_aux_t aux = rvd->vdev_stat.vs_aux;
2678 
2679 	if (spa_suspended(spa) &&
2680 	    (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE))
2681 		return ("SUSPENDED");
2682 
2683 	switch (state) {
2684 	case VDEV_STATE_CLOSED:
2685 	case VDEV_STATE_OFFLINE:
2686 		return ("OFFLINE");
2687 	case VDEV_STATE_REMOVED:
2688 		return ("REMOVED");
2689 	case VDEV_STATE_CANT_OPEN:
2690 		if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
2691 			return ("FAULTED");
2692 		else if (aux == VDEV_AUX_SPLIT_POOL)
2693 			return ("SPLIT");
2694 		else
2695 			return ("UNAVAIL");
2696 	case VDEV_STATE_FAULTED:
2697 		return ("FAULTED");
2698 	case VDEV_STATE_DEGRADED:
2699 		return ("DEGRADED");
2700 	case VDEV_STATE_HEALTHY:
2701 		return ("ONLINE");
2702 	default:
2703 		break;
2704 	}
2705 
2706 	return ("UNKNOWN");
2707 }
2708 
2709 boolean_t
2710 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2711 {
2712 	vdev_t *rvd = spa->spa_root_vdev;
2713 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2714 		if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2715 			return (B_FALSE);
2716 	}
2717 	return (B_TRUE);
2718 }
2719 
2720 boolean_t
2721 spa_has_checkpoint(spa_t *spa)
2722 {
2723 	return (spa->spa_checkpoint_txg != 0);
2724 }
2725 
2726 boolean_t
2727 spa_importing_readonly_checkpoint(spa_t *spa)
2728 {
2729 	return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2730 	    spa->spa_mode == SPA_MODE_READ);
2731 }
2732 
2733 uint64_t
2734 spa_min_claim_txg(spa_t *spa)
2735 {
2736 	uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2737 
2738 	if (checkpoint_txg != 0)
2739 		return (checkpoint_txg + 1);
2740 
2741 	return (spa->spa_first_txg);
2742 }
2743 
2744 /*
2745  * If there is a checkpoint, async destroys may consume more space from
2746  * the pool instead of freeing it. In an attempt to save the pool from
2747  * getting suspended when it is about to run out of space, we stop
2748  * processing async destroys.
2749  */
2750 boolean_t
2751 spa_suspend_async_destroy(spa_t *spa)
2752 {
2753 	dsl_pool_t *dp = spa_get_dsl(spa);
2754 
2755 	uint64_t unreserved = dsl_pool_unreserved_space(dp,
2756 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
2757 	uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2758 	uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2759 
2760 	if (spa_has_checkpoint(spa) && avail == 0)
2761 		return (B_TRUE);
2762 
2763 	return (B_FALSE);
2764 }
2765 
2766 #if defined(_KERNEL)
2767 
2768 int
2769 param_set_deadman_failmode_common(const char *val)
2770 {
2771 	spa_t *spa = NULL;
2772 	char *p;
2773 
2774 	if (val == NULL)
2775 		return (SET_ERROR(EINVAL));
2776 
2777 	if ((p = strchr(val, '\n')) != NULL)
2778 		*p = '\0';
2779 
2780 	if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
2781 	    strcmp(val, "panic"))
2782 		return (SET_ERROR(EINVAL));
2783 
2784 	if (spa_mode_global != SPA_MODE_UNINIT) {
2785 		mutex_enter(&spa_namespace_lock);
2786 		while ((spa = spa_next(spa)) != NULL)
2787 			spa_set_deadman_failmode(spa, val);
2788 		mutex_exit(&spa_namespace_lock);
2789 	}
2790 
2791 	return (0);
2792 }
2793 #endif
2794 
2795 /* Namespace manipulation */
2796 EXPORT_SYMBOL(spa_lookup);
2797 EXPORT_SYMBOL(spa_add);
2798 EXPORT_SYMBOL(spa_remove);
2799 EXPORT_SYMBOL(spa_next);
2800 
2801 /* Refcount functions */
2802 EXPORT_SYMBOL(spa_open_ref);
2803 EXPORT_SYMBOL(spa_close);
2804 EXPORT_SYMBOL(spa_refcount_zero);
2805 
2806 /* Pool configuration lock */
2807 EXPORT_SYMBOL(spa_config_tryenter);
2808 EXPORT_SYMBOL(spa_config_enter);
2809 EXPORT_SYMBOL(spa_config_exit);
2810 EXPORT_SYMBOL(spa_config_held);
2811 
2812 /* Pool vdev add/remove lock */
2813 EXPORT_SYMBOL(spa_vdev_enter);
2814 EXPORT_SYMBOL(spa_vdev_exit);
2815 
2816 /* Pool vdev state change lock */
2817 EXPORT_SYMBOL(spa_vdev_state_enter);
2818 EXPORT_SYMBOL(spa_vdev_state_exit);
2819 
2820 /* Accessor functions */
2821 EXPORT_SYMBOL(spa_shutting_down);
2822 EXPORT_SYMBOL(spa_get_dsl);
2823 EXPORT_SYMBOL(spa_get_rootblkptr);
2824 EXPORT_SYMBOL(spa_set_rootblkptr);
2825 EXPORT_SYMBOL(spa_altroot);
2826 EXPORT_SYMBOL(spa_sync_pass);
2827 EXPORT_SYMBOL(spa_name);
2828 EXPORT_SYMBOL(spa_guid);
2829 EXPORT_SYMBOL(spa_last_synced_txg);
2830 EXPORT_SYMBOL(spa_first_txg);
2831 EXPORT_SYMBOL(spa_syncing_txg);
2832 EXPORT_SYMBOL(spa_version);
2833 EXPORT_SYMBOL(spa_state);
2834 EXPORT_SYMBOL(spa_load_state);
2835 EXPORT_SYMBOL(spa_freeze_txg);
2836 EXPORT_SYMBOL(spa_get_dspace);
2837 EXPORT_SYMBOL(spa_update_dspace);
2838 EXPORT_SYMBOL(spa_deflate);
2839 EXPORT_SYMBOL(spa_normal_class);
2840 EXPORT_SYMBOL(spa_log_class);
2841 EXPORT_SYMBOL(spa_special_class);
2842 EXPORT_SYMBOL(spa_preferred_class);
2843 EXPORT_SYMBOL(spa_max_replication);
2844 EXPORT_SYMBOL(spa_prev_software_version);
2845 EXPORT_SYMBOL(spa_get_failmode);
2846 EXPORT_SYMBOL(spa_suspended);
2847 EXPORT_SYMBOL(spa_bootfs);
2848 EXPORT_SYMBOL(spa_delegation);
2849 EXPORT_SYMBOL(spa_meta_objset);
2850 EXPORT_SYMBOL(spa_maxblocksize);
2851 EXPORT_SYMBOL(spa_maxdnodesize);
2852 
2853 /* Miscellaneous support routines */
2854 EXPORT_SYMBOL(spa_guid_exists);
2855 EXPORT_SYMBOL(spa_strdup);
2856 EXPORT_SYMBOL(spa_strfree);
2857 EXPORT_SYMBOL(spa_get_random);
2858 EXPORT_SYMBOL(spa_generate_guid);
2859 EXPORT_SYMBOL(snprintf_blkptr);
2860 EXPORT_SYMBOL(spa_freeze);
2861 EXPORT_SYMBOL(spa_upgrade);
2862 EXPORT_SYMBOL(spa_evict_all);
2863 EXPORT_SYMBOL(spa_lookup_by_guid);
2864 EXPORT_SYMBOL(spa_has_spare);
2865 EXPORT_SYMBOL(dva_get_dsize_sync);
2866 EXPORT_SYMBOL(bp_get_dsize_sync);
2867 EXPORT_SYMBOL(bp_get_dsize);
2868 EXPORT_SYMBOL(spa_has_slogs);
2869 EXPORT_SYMBOL(spa_is_root);
2870 EXPORT_SYMBOL(spa_writeable);
2871 EXPORT_SYMBOL(spa_mode);
2872 EXPORT_SYMBOL(spa_namespace_lock);
2873 EXPORT_SYMBOL(spa_trust_config);
2874 EXPORT_SYMBOL(spa_missing_tvds_allowed);
2875 EXPORT_SYMBOL(spa_set_missing_tvds);
2876 EXPORT_SYMBOL(spa_state_to_name);
2877 EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
2878 EXPORT_SYMBOL(spa_min_claim_txg);
2879 EXPORT_SYMBOL(spa_suspend_async_destroy);
2880 EXPORT_SYMBOL(spa_has_checkpoint);
2881 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
2882 
2883 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW,
2884 	"Set additional debugging flags");
2885 
2886 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW,
2887 	"Set to attempt to recover from fatal errors");
2888 
2889 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW,
2890 	"Set to ignore IO errors during free and permanently leak the space");
2891 
2892 ZFS_MODULE_PARAM(zfs, zfs_, deadman_checktime_ms, ULONG, ZMOD_RW,
2893 	"Dead I/O check interval in milliseconds");
2894 
2895 ZFS_MODULE_PARAM(zfs, zfs_, deadman_enabled, INT, ZMOD_RW,
2896 	"Enable deadman timer");
2897 
2898 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, INT, ZMOD_RW,
2899 	"SPA size estimate multiplication factor");
2900 
2901 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW,
2902 	"Place DDT data into the special class");
2903 
2904 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW,
2905 	"Place user data indirect blocks into the special class");
2906 
2907 /* BEGIN CSTYLED */
2908 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode,
2909 	param_set_deadman_failmode, param_get_charp, ZMOD_RW,
2910 	"Failmode for deadman timer");
2911 
2912 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms,
2913 	param_set_deadman_synctime, param_get_ulong, ZMOD_RW,
2914 	"Pool sync expiration time in milliseconds");
2915 
2916 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms,
2917 	param_set_deadman_ziotime, param_get_ulong, ZMOD_RW,
2918 	"IO expiration time in milliseconds");
2919 
2920 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, INT, ZMOD_RW,
2921 	"Small file blocks in special vdevs depends on this much "
2922 	"free space available");
2923 /* END CSTYLED */
2924 
2925 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift,
2926 	param_get_int, ZMOD_RW, "Reserved free space in pool");
2927