1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2013 Saso Kiselkov. All rights reserved. 27 * Copyright (c) 2017 Datto Inc. 28 * Copyright (c) 2017, Intel Corporation. 29 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/spa_impl.h> 34 #include <sys/zio.h> 35 #include <sys/zio_checksum.h> 36 #include <sys/zio_compress.h> 37 #include <sys/dmu.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/zap.h> 40 #include <sys/zil.h> 41 #include <sys/vdev_impl.h> 42 #include <sys/vdev_initialize.h> 43 #include <sys/vdev_trim.h> 44 #include <sys/vdev_file.h> 45 #include <sys/vdev_raidz.h> 46 #include <sys/metaslab.h> 47 #include <sys/uberblock_impl.h> 48 #include <sys/txg.h> 49 #include <sys/avl.h> 50 #include <sys/unique.h> 51 #include <sys/dsl_pool.h> 52 #include <sys/dsl_dir.h> 53 #include <sys/dsl_prop.h> 54 #include <sys/fm/util.h> 55 #include <sys/dsl_scan.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/metaslab_impl.h> 58 #include <sys/arc.h> 59 #include <sys/ddt.h> 60 #include <sys/kstat.h> 61 #include "zfs_prop.h" 62 #include <sys/btree.h> 63 #include <sys/zfeature.h> 64 #include <sys/qat.h> 65 #include <sys/zstd/zstd.h> 66 67 /* 68 * SPA locking 69 * 70 * There are three basic locks for managing spa_t structures: 71 * 72 * spa_namespace_lock (global mutex) 73 * 74 * This lock must be acquired to do any of the following: 75 * 76 * - Lookup a spa_t by name 77 * - Add or remove a spa_t from the namespace 78 * - Increase spa_refcount from non-zero 79 * - Check if spa_refcount is zero 80 * - Rename a spa_t 81 * - add/remove/attach/detach devices 82 * - Held for the duration of create/destroy/import/export 83 * 84 * It does not need to handle recursion. A create or destroy may 85 * reference objects (files or zvols) in other pools, but by 86 * definition they must have an existing reference, and will never need 87 * to lookup a spa_t by name. 88 * 89 * spa_refcount (per-spa zfs_refcount_t protected by mutex) 90 * 91 * This reference count keep track of any active users of the spa_t. The 92 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 93 * the refcount is never really 'zero' - opening a pool implicitly keeps 94 * some references in the DMU. Internally we check against spa_minref, but 95 * present the image of a zero/non-zero value to consumers. 96 * 97 * spa_config_lock[] (per-spa array of rwlocks) 98 * 99 * This protects the spa_t from config changes, and must be held in 100 * the following circumstances: 101 * 102 * - RW_READER to perform I/O to the spa 103 * - RW_WRITER to change the vdev config 104 * 105 * The locking order is fairly straightforward: 106 * 107 * spa_namespace_lock -> spa_refcount 108 * 109 * The namespace lock must be acquired to increase the refcount from 0 110 * or to check if it is zero. 111 * 112 * spa_refcount -> spa_config_lock[] 113 * 114 * There must be at least one valid reference on the spa_t to acquire 115 * the config lock. 116 * 117 * spa_namespace_lock -> spa_config_lock[] 118 * 119 * The namespace lock must always be taken before the config lock. 120 * 121 * 122 * The spa_namespace_lock can be acquired directly and is globally visible. 123 * 124 * The namespace is manipulated using the following functions, all of which 125 * require the spa_namespace_lock to be held. 126 * 127 * spa_lookup() Lookup a spa_t by name. 128 * 129 * spa_add() Create a new spa_t in the namespace. 130 * 131 * spa_remove() Remove a spa_t from the namespace. This also 132 * frees up any memory associated with the spa_t. 133 * 134 * spa_next() Returns the next spa_t in the system, or the 135 * first if NULL is passed. 136 * 137 * spa_evict_all() Shutdown and remove all spa_t structures in 138 * the system. 139 * 140 * spa_guid_exists() Determine whether a pool/device guid exists. 141 * 142 * The spa_refcount is manipulated using the following functions: 143 * 144 * spa_open_ref() Adds a reference to the given spa_t. Must be 145 * called with spa_namespace_lock held if the 146 * refcount is currently zero. 147 * 148 * spa_close() Remove a reference from the spa_t. This will 149 * not free the spa_t or remove it from the 150 * namespace. No locking is required. 151 * 152 * spa_refcount_zero() Returns true if the refcount is currently 153 * zero. Must be called with spa_namespace_lock 154 * held. 155 * 156 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 157 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 158 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 159 * 160 * To read the configuration, it suffices to hold one of these locks as reader. 161 * To modify the configuration, you must hold all locks as writer. To modify 162 * vdev state without altering the vdev tree's topology (e.g. online/offline), 163 * you must hold SCL_STATE and SCL_ZIO as writer. 164 * 165 * We use these distinct config locks to avoid recursive lock entry. 166 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 167 * block allocations (SCL_ALLOC), which may require reading space maps 168 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 169 * 170 * The spa config locks cannot be normal rwlocks because we need the 171 * ability to hand off ownership. For example, SCL_ZIO is acquired 172 * by the issuing thread and later released by an interrupt thread. 173 * They do, however, obey the usual write-wanted semantics to prevent 174 * writer (i.e. system administrator) starvation. 175 * 176 * The lock acquisition rules are as follows: 177 * 178 * SCL_CONFIG 179 * Protects changes to the vdev tree topology, such as vdev 180 * add/remove/attach/detach. Protects the dirty config list 181 * (spa_config_dirty_list) and the set of spares and l2arc devices. 182 * 183 * SCL_STATE 184 * Protects changes to pool state and vdev state, such as vdev 185 * online/offline/fault/degrade/clear. Protects the dirty state list 186 * (spa_state_dirty_list) and global pool state (spa_state). 187 * 188 * SCL_ALLOC 189 * Protects changes to metaslab groups and classes. 190 * Held as reader by metaslab_alloc() and metaslab_claim(). 191 * 192 * SCL_ZIO 193 * Held by bp-level zios (those which have no io_vd upon entry) 194 * to prevent changes to the vdev tree. The bp-level zio implicitly 195 * protects all of its vdev child zios, which do not hold SCL_ZIO. 196 * 197 * SCL_FREE 198 * Protects changes to metaslab groups and classes. 199 * Held as reader by metaslab_free(). SCL_FREE is distinct from 200 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 201 * blocks in zio_done() while another i/o that holds either 202 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 203 * 204 * SCL_VDEV 205 * Held as reader to prevent changes to the vdev tree during trivial 206 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 207 * other locks, and lower than all of them, to ensure that it's safe 208 * to acquire regardless of caller context. 209 * 210 * In addition, the following rules apply: 211 * 212 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 213 * The lock ordering is SCL_CONFIG > spa_props_lock. 214 * 215 * (b) I/O operations on leaf vdevs. For any zio operation that takes 216 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 217 * or zio_write_phys() -- the caller must ensure that the config cannot 218 * cannot change in the interim, and that the vdev cannot be reopened. 219 * SCL_STATE as reader suffices for both. 220 * 221 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 222 * 223 * spa_vdev_enter() Acquire the namespace lock and the config lock 224 * for writing. 225 * 226 * spa_vdev_exit() Release the config lock, wait for all I/O 227 * to complete, sync the updated configs to the 228 * cache, and release the namespace lock. 229 * 230 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 231 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 232 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 233 */ 234 235 static avl_tree_t spa_namespace_avl; 236 kmutex_t spa_namespace_lock; 237 static kcondvar_t spa_namespace_cv; 238 int spa_max_replication_override = SPA_DVAS_PER_BP; 239 240 static kmutex_t spa_spare_lock; 241 static avl_tree_t spa_spare_avl; 242 static kmutex_t spa_l2cache_lock; 243 static avl_tree_t spa_l2cache_avl; 244 245 kmem_cache_t *spa_buffer_pool; 246 spa_mode_t spa_mode_global = SPA_MODE_UNINIT; 247 248 #ifdef ZFS_DEBUG 249 /* 250 * Everything except dprintf, set_error, spa, and indirect_remap is on 251 * by default in debug builds. 252 */ 253 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR | 254 ZFS_DEBUG_INDIRECT_REMAP); 255 #else 256 int zfs_flags = 0; 257 #endif 258 259 /* 260 * zfs_recover can be set to nonzero to attempt to recover from 261 * otherwise-fatal errors, typically caused by on-disk corruption. When 262 * set, calls to zfs_panic_recover() will turn into warning messages. 263 * This should only be used as a last resort, as it typically results 264 * in leaked space, or worse. 265 */ 266 int zfs_recover = B_FALSE; 267 268 /* 269 * If destroy encounters an EIO while reading metadata (e.g. indirect 270 * blocks), space referenced by the missing metadata can not be freed. 271 * Normally this causes the background destroy to become "stalled", as 272 * it is unable to make forward progress. While in this stalled state, 273 * all remaining space to free from the error-encountering filesystem is 274 * "temporarily leaked". Set this flag to cause it to ignore the EIO, 275 * permanently leak the space from indirect blocks that can not be read, 276 * and continue to free everything else that it can. 277 * 278 * The default, "stalling" behavior is useful if the storage partially 279 * fails (i.e. some but not all i/os fail), and then later recovers. In 280 * this case, we will be able to continue pool operations while it is 281 * partially failed, and when it recovers, we can continue to free the 282 * space, with no leaks. However, note that this case is actually 283 * fairly rare. 284 * 285 * Typically pools either (a) fail completely (but perhaps temporarily, 286 * e.g. a top-level vdev going offline), or (b) have localized, 287 * permanent errors (e.g. disk returns the wrong data due to bit flip or 288 * firmware bug). In case (a), this setting does not matter because the 289 * pool will be suspended and the sync thread will not be able to make 290 * forward progress regardless. In case (b), because the error is 291 * permanent, the best we can do is leak the minimum amount of space, 292 * which is what setting this flag will do. Therefore, it is reasonable 293 * for this flag to normally be set, but we chose the more conservative 294 * approach of not setting it, so that there is no possibility of 295 * leaking space in the "partial temporary" failure case. 296 */ 297 int zfs_free_leak_on_eio = B_FALSE; 298 299 /* 300 * Expiration time in milliseconds. This value has two meanings. First it is 301 * used to determine when the spa_deadman() logic should fire. By default the 302 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds. 303 * Secondly, the value determines if an I/O is considered "hung". Any I/O that 304 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting 305 * in one of three behaviors controlled by zfs_deadman_failmode. 306 */ 307 unsigned long zfs_deadman_synctime_ms = 600000UL; 308 309 /* 310 * This value controls the maximum amount of time zio_wait() will block for an 311 * outstanding IO. By default this is 300 seconds at which point the "hung" 312 * behavior will be applied as described for zfs_deadman_synctime_ms. 313 */ 314 unsigned long zfs_deadman_ziotime_ms = 300000UL; 315 316 /* 317 * Check time in milliseconds. This defines the frequency at which we check 318 * for hung I/O. 319 */ 320 unsigned long zfs_deadman_checktime_ms = 60000UL; 321 322 /* 323 * By default the deadman is enabled. 324 */ 325 int zfs_deadman_enabled = 1; 326 327 /* 328 * Controls the behavior of the deadman when it detects a "hung" I/O. 329 * Valid values are zfs_deadman_failmode=<wait|continue|panic>. 330 * 331 * wait - Wait for the "hung" I/O (default) 332 * continue - Attempt to recover from a "hung" I/O 333 * panic - Panic the system 334 */ 335 char *zfs_deadman_failmode = "wait"; 336 337 /* 338 * The worst case is single-sector max-parity RAID-Z blocks, in which 339 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 340 * times the size; so just assume that. Add to this the fact that 341 * we can have up to 3 DVAs per bp, and one more factor of 2 because 342 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, 343 * the worst case is: 344 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 345 */ 346 int spa_asize_inflation = 24; 347 348 /* 349 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in 350 * the pool to be consumed. This ensures that we don't run the pool 351 * completely out of space, due to unaccounted changes (e.g. to the MOS). 352 * It also limits the worst-case time to allocate space. If we have 353 * less than this amount of free space, most ZPL operations (e.g. write, 354 * create) will return ENOSPC. 355 * 356 * Certain operations (e.g. file removal, most administrative actions) can 357 * use half the slop space. They will only return ENOSPC if less than half 358 * the slop space is free. Typically, once the pool has less than the slop 359 * space free, the user will use these operations to free up space in the pool. 360 * These are the operations that call dsl_pool_adjustedsize() with the netfree 361 * argument set to TRUE. 362 * 363 * Operations that are almost guaranteed to free up space in the absence of 364 * a pool checkpoint can use up to three quarters of the slop space 365 * (e.g zfs destroy). 366 * 367 * A very restricted set of operations are always permitted, regardless of 368 * the amount of free space. These are the operations that call 369 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net 370 * increase in the amount of space used, it is possible to run the pool 371 * completely out of space, causing it to be permanently read-only. 372 * 373 * Note that on very small pools, the slop space will be larger than 374 * 3.2%, in an effort to have it be at least spa_min_slop (128MB), 375 * but we never allow it to be more than half the pool size. 376 * 377 * See also the comments in zfs_space_check_t. 378 */ 379 int spa_slop_shift = 5; 380 uint64_t spa_min_slop = 128 * 1024 * 1024; 381 int spa_allocators = 4; 382 383 384 /*PRINTFLIKE2*/ 385 void 386 spa_load_failed(spa_t *spa, const char *fmt, ...) 387 { 388 va_list adx; 389 char buf[256]; 390 391 va_start(adx, fmt); 392 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 393 va_end(adx); 394 395 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name, 396 spa->spa_trust_config ? "trusted" : "untrusted", buf); 397 } 398 399 /*PRINTFLIKE2*/ 400 void 401 spa_load_note(spa_t *spa, const char *fmt, ...) 402 { 403 va_list adx; 404 char buf[256]; 405 406 va_start(adx, fmt); 407 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 408 va_end(adx); 409 410 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name, 411 spa->spa_trust_config ? "trusted" : "untrusted", buf); 412 } 413 414 /* 415 * By default dedup and user data indirects land in the special class 416 */ 417 int zfs_ddt_data_is_special = B_TRUE; 418 int zfs_user_indirect_is_special = B_TRUE; 419 420 /* 421 * The percentage of special class final space reserved for metadata only. 422 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only 423 * let metadata into the class. 424 */ 425 int zfs_special_class_metadata_reserve_pct = 25; 426 427 /* 428 * ========================================================================== 429 * SPA config locking 430 * ========================================================================== 431 */ 432 static void 433 spa_config_lock_init(spa_t *spa) 434 { 435 for (int i = 0; i < SCL_LOCKS; i++) { 436 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 437 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 438 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 439 zfs_refcount_create_untracked(&scl->scl_count); 440 scl->scl_writer = NULL; 441 scl->scl_write_wanted = 0; 442 } 443 } 444 445 static void 446 spa_config_lock_destroy(spa_t *spa) 447 { 448 for (int i = 0; i < SCL_LOCKS; i++) { 449 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 450 mutex_destroy(&scl->scl_lock); 451 cv_destroy(&scl->scl_cv); 452 zfs_refcount_destroy(&scl->scl_count); 453 ASSERT(scl->scl_writer == NULL); 454 ASSERT(scl->scl_write_wanted == 0); 455 } 456 } 457 458 int 459 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 460 { 461 for (int i = 0; i < SCL_LOCKS; i++) { 462 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 463 if (!(locks & (1 << i))) 464 continue; 465 mutex_enter(&scl->scl_lock); 466 if (rw == RW_READER) { 467 if (scl->scl_writer || scl->scl_write_wanted) { 468 mutex_exit(&scl->scl_lock); 469 spa_config_exit(spa, locks & ((1 << i) - 1), 470 tag); 471 return (0); 472 } 473 } else { 474 ASSERT(scl->scl_writer != curthread); 475 if (!zfs_refcount_is_zero(&scl->scl_count)) { 476 mutex_exit(&scl->scl_lock); 477 spa_config_exit(spa, locks & ((1 << i) - 1), 478 tag); 479 return (0); 480 } 481 scl->scl_writer = curthread; 482 } 483 (void) zfs_refcount_add(&scl->scl_count, tag); 484 mutex_exit(&scl->scl_lock); 485 } 486 return (1); 487 } 488 489 void 490 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw) 491 { 492 int wlocks_held = 0; 493 494 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 495 496 for (int i = 0; i < SCL_LOCKS; i++) { 497 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 498 if (scl->scl_writer == curthread) 499 wlocks_held |= (1 << i); 500 if (!(locks & (1 << i))) 501 continue; 502 mutex_enter(&scl->scl_lock); 503 if (rw == RW_READER) { 504 while (scl->scl_writer || scl->scl_write_wanted) { 505 cv_wait(&scl->scl_cv, &scl->scl_lock); 506 } 507 } else { 508 ASSERT(scl->scl_writer != curthread); 509 while (!zfs_refcount_is_zero(&scl->scl_count)) { 510 scl->scl_write_wanted++; 511 cv_wait(&scl->scl_cv, &scl->scl_lock); 512 scl->scl_write_wanted--; 513 } 514 scl->scl_writer = curthread; 515 } 516 (void) zfs_refcount_add(&scl->scl_count, tag); 517 mutex_exit(&scl->scl_lock); 518 } 519 ASSERT3U(wlocks_held, <=, locks); 520 } 521 522 void 523 spa_config_exit(spa_t *spa, int locks, const void *tag) 524 { 525 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 526 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 527 if (!(locks & (1 << i))) 528 continue; 529 mutex_enter(&scl->scl_lock); 530 ASSERT(!zfs_refcount_is_zero(&scl->scl_count)); 531 if (zfs_refcount_remove(&scl->scl_count, tag) == 0) { 532 ASSERT(scl->scl_writer == NULL || 533 scl->scl_writer == curthread); 534 scl->scl_writer = NULL; /* OK in either case */ 535 cv_broadcast(&scl->scl_cv); 536 } 537 mutex_exit(&scl->scl_lock); 538 } 539 } 540 541 int 542 spa_config_held(spa_t *spa, int locks, krw_t rw) 543 { 544 int locks_held = 0; 545 546 for (int i = 0; i < SCL_LOCKS; i++) { 547 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 548 if (!(locks & (1 << i))) 549 continue; 550 if ((rw == RW_READER && 551 !zfs_refcount_is_zero(&scl->scl_count)) || 552 (rw == RW_WRITER && scl->scl_writer == curthread)) 553 locks_held |= 1 << i; 554 } 555 556 return (locks_held); 557 } 558 559 /* 560 * ========================================================================== 561 * SPA namespace functions 562 * ========================================================================== 563 */ 564 565 /* 566 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 567 * Returns NULL if no matching spa_t is found. 568 */ 569 spa_t * 570 spa_lookup(const char *name) 571 { 572 static spa_t search; /* spa_t is large; don't allocate on stack */ 573 spa_t *spa; 574 avl_index_t where; 575 char *cp; 576 577 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 578 579 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 580 581 /* 582 * If it's a full dataset name, figure out the pool name and 583 * just use that. 584 */ 585 cp = strpbrk(search.spa_name, "/@#"); 586 if (cp != NULL) 587 *cp = '\0'; 588 589 spa = avl_find(&spa_namespace_avl, &search, &where); 590 591 return (spa); 592 } 593 594 /* 595 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 596 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 597 * looking for potentially hung I/Os. 598 */ 599 void 600 spa_deadman(void *arg) 601 { 602 spa_t *spa = arg; 603 604 /* Disable the deadman if the pool is suspended. */ 605 if (spa_suspended(spa)) 606 return; 607 608 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 609 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 610 ++spa->spa_deadman_calls); 611 if (zfs_deadman_enabled) 612 vdev_deadman(spa->spa_root_vdev, FTAG); 613 614 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, 615 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + 616 MSEC_TO_TICK(zfs_deadman_checktime_ms)); 617 } 618 619 static int 620 spa_log_sm_sort_by_txg(const void *va, const void *vb) 621 { 622 const spa_log_sm_t *a = va; 623 const spa_log_sm_t *b = vb; 624 625 return (TREE_CMP(a->sls_txg, b->sls_txg)); 626 } 627 628 /* 629 * Create an uninitialized spa_t with the given name. Requires 630 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 631 * exist by calling spa_lookup() first. 632 */ 633 spa_t * 634 spa_add(const char *name, nvlist_t *config, const char *altroot) 635 { 636 spa_t *spa; 637 spa_config_dirent_t *dp; 638 639 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 640 641 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 642 643 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 644 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 645 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 646 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); 647 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 648 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 649 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 650 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); 651 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 652 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 653 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 654 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL); 655 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL); 656 mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL); 657 658 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 659 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); 660 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 661 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 662 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 663 cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL); 664 cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL); 665 666 for (int t = 0; t < TXG_SIZE; t++) 667 bplist_create(&spa->spa_free_bplist[t]); 668 669 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 670 spa->spa_state = POOL_STATE_UNINITIALIZED; 671 spa->spa_freeze_txg = UINT64_MAX; 672 spa->spa_final_txg = UINT64_MAX; 673 spa->spa_load_max_txg = UINT64_MAX; 674 spa->spa_proc = &p0; 675 spa->spa_proc_state = SPA_PROC_NONE; 676 spa->spa_trust_config = B_TRUE; 677 spa->spa_hostid = zone_get_hostid(NULL); 678 679 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); 680 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms); 681 spa_set_deadman_failmode(spa, zfs_deadman_failmode); 682 683 zfs_refcount_create(&spa->spa_refcount); 684 spa_config_lock_init(spa); 685 spa_stats_init(spa); 686 687 avl_add(&spa_namespace_avl, spa); 688 689 /* 690 * Set the alternate root, if there is one. 691 */ 692 if (altroot) 693 spa->spa_root = spa_strdup(altroot); 694 695 spa->spa_alloc_count = spa_allocators; 696 spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count * 697 sizeof (kmutex_t), KM_SLEEP); 698 spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count * 699 sizeof (avl_tree_t), KM_SLEEP); 700 for (int i = 0; i < spa->spa_alloc_count; i++) { 701 mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL); 702 avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare, 703 sizeof (zio_t), offsetof(zio_t, io_alloc_node)); 704 } 705 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed, 706 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node)); 707 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg, 708 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node)); 709 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t), 710 offsetof(log_summary_entry_t, lse_node)); 711 712 /* 713 * Every pool starts with the default cachefile 714 */ 715 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 716 offsetof(spa_config_dirent_t, scd_link)); 717 718 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 719 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 720 list_insert_head(&spa->spa_config_list, dp); 721 722 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 723 KM_SLEEP) == 0); 724 725 if (config != NULL) { 726 nvlist_t *features; 727 728 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 729 &features) == 0) { 730 VERIFY(nvlist_dup(features, &spa->spa_label_features, 731 0) == 0); 732 } 733 734 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 735 } 736 737 if (spa->spa_label_features == NULL) { 738 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 739 KM_SLEEP) == 0); 740 } 741 742 spa->spa_min_ashift = INT_MAX; 743 spa->spa_max_ashift = 0; 744 spa->spa_min_alloc = INT_MAX; 745 746 /* Reset cached value */ 747 spa->spa_dedup_dspace = ~0ULL; 748 749 /* 750 * As a pool is being created, treat all features as disabled by 751 * setting SPA_FEATURE_DISABLED for all entries in the feature 752 * refcount cache. 753 */ 754 for (int i = 0; i < SPA_FEATURES; i++) { 755 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; 756 } 757 758 list_create(&spa->spa_leaf_list, sizeof (vdev_t), 759 offsetof(vdev_t, vdev_leaf_node)); 760 761 return (spa); 762 } 763 764 /* 765 * Removes a spa_t from the namespace, freeing up any memory used. Requires 766 * spa_namespace_lock. This is called only after the spa_t has been closed and 767 * deactivated. 768 */ 769 void 770 spa_remove(spa_t *spa) 771 { 772 spa_config_dirent_t *dp; 773 774 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 775 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED); 776 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0); 777 ASSERT0(spa->spa_waiters); 778 779 nvlist_free(spa->spa_config_splitting); 780 781 avl_remove(&spa_namespace_avl, spa); 782 cv_broadcast(&spa_namespace_cv); 783 784 if (spa->spa_root) 785 spa_strfree(spa->spa_root); 786 787 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 788 list_remove(&spa->spa_config_list, dp); 789 if (dp->scd_path != NULL) 790 spa_strfree(dp->scd_path); 791 kmem_free(dp, sizeof (spa_config_dirent_t)); 792 } 793 794 for (int i = 0; i < spa->spa_alloc_count; i++) { 795 avl_destroy(&spa->spa_alloc_trees[i]); 796 mutex_destroy(&spa->spa_alloc_locks[i]); 797 } 798 kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count * 799 sizeof (kmutex_t)); 800 kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count * 801 sizeof (avl_tree_t)); 802 803 avl_destroy(&spa->spa_metaslabs_by_flushed); 804 avl_destroy(&spa->spa_sm_logs_by_txg); 805 list_destroy(&spa->spa_log_summary); 806 list_destroy(&spa->spa_config_list); 807 list_destroy(&spa->spa_leaf_list); 808 809 nvlist_free(spa->spa_label_features); 810 nvlist_free(spa->spa_load_info); 811 nvlist_free(spa->spa_feat_stats); 812 spa_config_set(spa, NULL); 813 814 zfs_refcount_destroy(&spa->spa_refcount); 815 816 spa_stats_destroy(spa); 817 spa_config_lock_destroy(spa); 818 819 for (int t = 0; t < TXG_SIZE; t++) 820 bplist_destroy(&spa->spa_free_bplist[t]); 821 822 zio_checksum_templates_free(spa); 823 824 cv_destroy(&spa->spa_async_cv); 825 cv_destroy(&spa->spa_evicting_os_cv); 826 cv_destroy(&spa->spa_proc_cv); 827 cv_destroy(&spa->spa_scrub_io_cv); 828 cv_destroy(&spa->spa_suspend_cv); 829 cv_destroy(&spa->spa_activities_cv); 830 cv_destroy(&spa->spa_waiters_cv); 831 832 mutex_destroy(&spa->spa_flushed_ms_lock); 833 mutex_destroy(&spa->spa_async_lock); 834 mutex_destroy(&spa->spa_errlist_lock); 835 mutex_destroy(&spa->spa_errlog_lock); 836 mutex_destroy(&spa->spa_evicting_os_lock); 837 mutex_destroy(&spa->spa_history_lock); 838 mutex_destroy(&spa->spa_proc_lock); 839 mutex_destroy(&spa->spa_props_lock); 840 mutex_destroy(&spa->spa_cksum_tmpls_lock); 841 mutex_destroy(&spa->spa_scrub_lock); 842 mutex_destroy(&spa->spa_suspend_lock); 843 mutex_destroy(&spa->spa_vdev_top_lock); 844 mutex_destroy(&spa->spa_feat_stats_lock); 845 mutex_destroy(&spa->spa_activities_lock); 846 847 kmem_free(spa, sizeof (spa_t)); 848 } 849 850 /* 851 * Given a pool, return the next pool in the namespace, or NULL if there is 852 * none. If 'prev' is NULL, return the first pool. 853 */ 854 spa_t * 855 spa_next(spa_t *prev) 856 { 857 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 858 859 if (prev) 860 return (AVL_NEXT(&spa_namespace_avl, prev)); 861 else 862 return (avl_first(&spa_namespace_avl)); 863 } 864 865 /* 866 * ========================================================================== 867 * SPA refcount functions 868 * ========================================================================== 869 */ 870 871 /* 872 * Add a reference to the given spa_t. Must have at least one reference, or 873 * have the namespace lock held. 874 */ 875 void 876 spa_open_ref(spa_t *spa, void *tag) 877 { 878 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref || 879 MUTEX_HELD(&spa_namespace_lock)); 880 (void) zfs_refcount_add(&spa->spa_refcount, tag); 881 } 882 883 /* 884 * Remove a reference to the given spa_t. Must have at least one reference, or 885 * have the namespace lock held. 886 */ 887 void 888 spa_close(spa_t *spa, void *tag) 889 { 890 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref || 891 MUTEX_HELD(&spa_namespace_lock)); 892 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 893 } 894 895 /* 896 * Remove a reference to the given spa_t held by a dsl dir that is 897 * being asynchronously released. Async releases occur from a taskq 898 * performing eviction of dsl datasets and dirs. The namespace lock 899 * isn't held and the hold by the object being evicted may contribute to 900 * spa_minref (e.g. dataset or directory released during pool export), 901 * so the asserts in spa_close() do not apply. 902 */ 903 void 904 spa_async_close(spa_t *spa, void *tag) 905 { 906 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 907 } 908 909 /* 910 * Check to see if the spa refcount is zero. Must be called with 911 * spa_namespace_lock held. We really compare against spa_minref, which is the 912 * number of references acquired when opening a pool 913 */ 914 boolean_t 915 spa_refcount_zero(spa_t *spa) 916 { 917 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 918 919 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref); 920 } 921 922 /* 923 * ========================================================================== 924 * SPA spare and l2cache tracking 925 * ========================================================================== 926 */ 927 928 /* 929 * Hot spares and cache devices are tracked using the same code below, 930 * for 'auxiliary' devices. 931 */ 932 933 typedef struct spa_aux { 934 uint64_t aux_guid; 935 uint64_t aux_pool; 936 avl_node_t aux_avl; 937 int aux_count; 938 } spa_aux_t; 939 940 static inline int 941 spa_aux_compare(const void *a, const void *b) 942 { 943 const spa_aux_t *sa = (const spa_aux_t *)a; 944 const spa_aux_t *sb = (const spa_aux_t *)b; 945 946 return (TREE_CMP(sa->aux_guid, sb->aux_guid)); 947 } 948 949 static void 950 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 951 { 952 avl_index_t where; 953 spa_aux_t search; 954 spa_aux_t *aux; 955 956 search.aux_guid = vd->vdev_guid; 957 if ((aux = avl_find(avl, &search, &where)) != NULL) { 958 aux->aux_count++; 959 } else { 960 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 961 aux->aux_guid = vd->vdev_guid; 962 aux->aux_count = 1; 963 avl_insert(avl, aux, where); 964 } 965 } 966 967 static void 968 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 969 { 970 spa_aux_t search; 971 spa_aux_t *aux; 972 avl_index_t where; 973 974 search.aux_guid = vd->vdev_guid; 975 aux = avl_find(avl, &search, &where); 976 977 ASSERT(aux != NULL); 978 979 if (--aux->aux_count == 0) { 980 avl_remove(avl, aux); 981 kmem_free(aux, sizeof (spa_aux_t)); 982 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 983 aux->aux_pool = 0ULL; 984 } 985 } 986 987 static boolean_t 988 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 989 { 990 spa_aux_t search, *found; 991 992 search.aux_guid = guid; 993 found = avl_find(avl, &search, NULL); 994 995 if (pool) { 996 if (found) 997 *pool = found->aux_pool; 998 else 999 *pool = 0ULL; 1000 } 1001 1002 if (refcnt) { 1003 if (found) 1004 *refcnt = found->aux_count; 1005 else 1006 *refcnt = 0; 1007 } 1008 1009 return (found != NULL); 1010 } 1011 1012 static void 1013 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 1014 { 1015 spa_aux_t search, *found; 1016 avl_index_t where; 1017 1018 search.aux_guid = vd->vdev_guid; 1019 found = avl_find(avl, &search, &where); 1020 ASSERT(found != NULL); 1021 ASSERT(found->aux_pool == 0ULL); 1022 1023 found->aux_pool = spa_guid(vd->vdev_spa); 1024 } 1025 1026 /* 1027 * Spares are tracked globally due to the following constraints: 1028 * 1029 * - A spare may be part of multiple pools. 1030 * - A spare may be added to a pool even if it's actively in use within 1031 * another pool. 1032 * - A spare in use in any pool can only be the source of a replacement if 1033 * the target is a spare in the same pool. 1034 * 1035 * We keep track of all spares on the system through the use of a reference 1036 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 1037 * spare, then we bump the reference count in the AVL tree. In addition, we set 1038 * the 'vdev_isspare' member to indicate that the device is a spare (active or 1039 * inactive). When a spare is made active (used to replace a device in the 1040 * pool), we also keep track of which pool its been made a part of. 1041 * 1042 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 1043 * called under the spa_namespace lock as part of vdev reconfiguration. The 1044 * separate spare lock exists for the status query path, which does not need to 1045 * be completely consistent with respect to other vdev configuration changes. 1046 */ 1047 1048 static int 1049 spa_spare_compare(const void *a, const void *b) 1050 { 1051 return (spa_aux_compare(a, b)); 1052 } 1053 1054 void 1055 spa_spare_add(vdev_t *vd) 1056 { 1057 mutex_enter(&spa_spare_lock); 1058 ASSERT(!vd->vdev_isspare); 1059 spa_aux_add(vd, &spa_spare_avl); 1060 vd->vdev_isspare = B_TRUE; 1061 mutex_exit(&spa_spare_lock); 1062 } 1063 1064 void 1065 spa_spare_remove(vdev_t *vd) 1066 { 1067 mutex_enter(&spa_spare_lock); 1068 ASSERT(vd->vdev_isspare); 1069 spa_aux_remove(vd, &spa_spare_avl); 1070 vd->vdev_isspare = B_FALSE; 1071 mutex_exit(&spa_spare_lock); 1072 } 1073 1074 boolean_t 1075 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 1076 { 1077 boolean_t found; 1078 1079 mutex_enter(&spa_spare_lock); 1080 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 1081 mutex_exit(&spa_spare_lock); 1082 1083 return (found); 1084 } 1085 1086 void 1087 spa_spare_activate(vdev_t *vd) 1088 { 1089 mutex_enter(&spa_spare_lock); 1090 ASSERT(vd->vdev_isspare); 1091 spa_aux_activate(vd, &spa_spare_avl); 1092 mutex_exit(&spa_spare_lock); 1093 } 1094 1095 /* 1096 * Level 2 ARC devices are tracked globally for the same reasons as spares. 1097 * Cache devices currently only support one pool per cache device, and so 1098 * for these devices the aux reference count is currently unused beyond 1. 1099 */ 1100 1101 static int 1102 spa_l2cache_compare(const void *a, const void *b) 1103 { 1104 return (spa_aux_compare(a, b)); 1105 } 1106 1107 void 1108 spa_l2cache_add(vdev_t *vd) 1109 { 1110 mutex_enter(&spa_l2cache_lock); 1111 ASSERT(!vd->vdev_isl2cache); 1112 spa_aux_add(vd, &spa_l2cache_avl); 1113 vd->vdev_isl2cache = B_TRUE; 1114 mutex_exit(&spa_l2cache_lock); 1115 } 1116 1117 void 1118 spa_l2cache_remove(vdev_t *vd) 1119 { 1120 mutex_enter(&spa_l2cache_lock); 1121 ASSERT(vd->vdev_isl2cache); 1122 spa_aux_remove(vd, &spa_l2cache_avl); 1123 vd->vdev_isl2cache = B_FALSE; 1124 mutex_exit(&spa_l2cache_lock); 1125 } 1126 1127 boolean_t 1128 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 1129 { 1130 boolean_t found; 1131 1132 mutex_enter(&spa_l2cache_lock); 1133 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 1134 mutex_exit(&spa_l2cache_lock); 1135 1136 return (found); 1137 } 1138 1139 void 1140 spa_l2cache_activate(vdev_t *vd) 1141 { 1142 mutex_enter(&spa_l2cache_lock); 1143 ASSERT(vd->vdev_isl2cache); 1144 spa_aux_activate(vd, &spa_l2cache_avl); 1145 mutex_exit(&spa_l2cache_lock); 1146 } 1147 1148 /* 1149 * ========================================================================== 1150 * SPA vdev locking 1151 * ========================================================================== 1152 */ 1153 1154 /* 1155 * Lock the given spa_t for the purpose of adding or removing a vdev. 1156 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 1157 * It returns the next transaction group for the spa_t. 1158 */ 1159 uint64_t 1160 spa_vdev_enter(spa_t *spa) 1161 { 1162 mutex_enter(&spa->spa_vdev_top_lock); 1163 mutex_enter(&spa_namespace_lock); 1164 1165 vdev_autotrim_stop_all(spa); 1166 1167 return (spa_vdev_config_enter(spa)); 1168 } 1169 1170 /* 1171 * The same as spa_vdev_enter() above but additionally takes the guid of 1172 * the vdev being detached. When there is a rebuild in process it will be 1173 * suspended while the vdev tree is modified then resumed by spa_vdev_exit(). 1174 * The rebuild is canceled if only a single child remains after the detach. 1175 */ 1176 uint64_t 1177 spa_vdev_detach_enter(spa_t *spa, uint64_t guid) 1178 { 1179 mutex_enter(&spa->spa_vdev_top_lock); 1180 mutex_enter(&spa_namespace_lock); 1181 1182 vdev_autotrim_stop_all(spa); 1183 1184 if (guid != 0) { 1185 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 1186 if (vd) { 1187 vdev_rebuild_stop_wait(vd->vdev_top); 1188 } 1189 } 1190 1191 return (spa_vdev_config_enter(spa)); 1192 } 1193 1194 /* 1195 * Internal implementation for spa_vdev_enter(). Used when a vdev 1196 * operation requires multiple syncs (i.e. removing a device) while 1197 * keeping the spa_namespace_lock held. 1198 */ 1199 uint64_t 1200 spa_vdev_config_enter(spa_t *spa) 1201 { 1202 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1203 1204 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1205 1206 return (spa_last_synced_txg(spa) + 1); 1207 } 1208 1209 /* 1210 * Used in combination with spa_vdev_config_enter() to allow the syncing 1211 * of multiple transactions without releasing the spa_namespace_lock. 1212 */ 1213 void 1214 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 1215 { 1216 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1217 1218 int config_changed = B_FALSE; 1219 1220 ASSERT(txg > spa_last_synced_txg(spa)); 1221 1222 spa->spa_pending_vdev = NULL; 1223 1224 /* 1225 * Reassess the DTLs. 1226 */ 1227 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE); 1228 1229 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 1230 config_changed = B_TRUE; 1231 spa->spa_config_generation++; 1232 } 1233 1234 /* 1235 * Verify the metaslab classes. 1236 */ 1237 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 1238 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 1239 ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0); 1240 ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0); 1241 1242 spa_config_exit(spa, SCL_ALL, spa); 1243 1244 /* 1245 * Panic the system if the specified tag requires it. This 1246 * is useful for ensuring that configurations are updated 1247 * transactionally. 1248 */ 1249 if (zio_injection_enabled) 1250 zio_handle_panic_injection(spa, tag, 0); 1251 1252 /* 1253 * Note: this txg_wait_synced() is important because it ensures 1254 * that there won't be more than one config change per txg. 1255 * This allows us to use the txg as the generation number. 1256 */ 1257 if (error == 0) 1258 txg_wait_synced(spa->spa_dsl_pool, txg); 1259 1260 if (vd != NULL) { 1261 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); 1262 if (vd->vdev_ops->vdev_op_leaf) { 1263 mutex_enter(&vd->vdev_initialize_lock); 1264 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, 1265 NULL); 1266 mutex_exit(&vd->vdev_initialize_lock); 1267 1268 mutex_enter(&vd->vdev_trim_lock); 1269 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL); 1270 mutex_exit(&vd->vdev_trim_lock); 1271 } 1272 1273 /* 1274 * The vdev may be both a leaf and top-level device. 1275 */ 1276 vdev_autotrim_stop_wait(vd); 1277 1278 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1279 vdev_free(vd); 1280 spa_config_exit(spa, SCL_ALL, spa); 1281 } 1282 1283 /* 1284 * If the config changed, update the config cache. 1285 */ 1286 if (config_changed) 1287 spa_write_cachefile(spa, B_FALSE, B_TRUE); 1288 } 1289 1290 /* 1291 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1292 * locking of spa_vdev_enter(), we also want make sure the transactions have 1293 * synced to disk, and then update the global configuration cache with the new 1294 * information. 1295 */ 1296 int 1297 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1298 { 1299 vdev_autotrim_restart(spa); 1300 vdev_rebuild_restart(spa); 1301 1302 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1303 mutex_exit(&spa_namespace_lock); 1304 mutex_exit(&spa->spa_vdev_top_lock); 1305 1306 return (error); 1307 } 1308 1309 /* 1310 * Lock the given spa_t for the purpose of changing vdev state. 1311 */ 1312 void 1313 spa_vdev_state_enter(spa_t *spa, int oplocks) 1314 { 1315 int locks = SCL_STATE_ALL | oplocks; 1316 1317 /* 1318 * Root pools may need to read of the underlying devfs filesystem 1319 * when opening up a vdev. Unfortunately if we're holding the 1320 * SCL_ZIO lock it will result in a deadlock when we try to issue 1321 * the read from the root filesystem. Instead we "prefetch" 1322 * the associated vnodes that we need prior to opening the 1323 * underlying devices and cache them so that we can prevent 1324 * any I/O when we are doing the actual open. 1325 */ 1326 if (spa_is_root(spa)) { 1327 int low = locks & ~(SCL_ZIO - 1); 1328 int high = locks & ~low; 1329 1330 spa_config_enter(spa, high, spa, RW_WRITER); 1331 vdev_hold(spa->spa_root_vdev); 1332 spa_config_enter(spa, low, spa, RW_WRITER); 1333 } else { 1334 spa_config_enter(spa, locks, spa, RW_WRITER); 1335 } 1336 spa->spa_vdev_locks = locks; 1337 } 1338 1339 int 1340 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1341 { 1342 boolean_t config_changed = B_FALSE; 1343 vdev_t *vdev_top; 1344 1345 if (vd == NULL || vd == spa->spa_root_vdev) { 1346 vdev_top = spa->spa_root_vdev; 1347 } else { 1348 vdev_top = vd->vdev_top; 1349 } 1350 1351 if (vd != NULL || error == 0) 1352 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE); 1353 1354 if (vd != NULL) { 1355 if (vd != spa->spa_root_vdev) 1356 vdev_state_dirty(vdev_top); 1357 1358 config_changed = B_TRUE; 1359 spa->spa_config_generation++; 1360 } 1361 1362 if (spa_is_root(spa)) 1363 vdev_rele(spa->spa_root_vdev); 1364 1365 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1366 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1367 1368 /* 1369 * If anything changed, wait for it to sync. This ensures that, 1370 * from the system administrator's perspective, zpool(8) commands 1371 * are synchronous. This is important for things like zpool offline: 1372 * when the command completes, you expect no further I/O from ZFS. 1373 */ 1374 if (vd != NULL) 1375 txg_wait_synced(spa->spa_dsl_pool, 0); 1376 1377 /* 1378 * If the config changed, update the config cache. 1379 */ 1380 if (config_changed) { 1381 mutex_enter(&spa_namespace_lock); 1382 spa_write_cachefile(spa, B_FALSE, B_TRUE); 1383 mutex_exit(&spa_namespace_lock); 1384 } 1385 1386 return (error); 1387 } 1388 1389 /* 1390 * ========================================================================== 1391 * Miscellaneous functions 1392 * ========================================================================== 1393 */ 1394 1395 void 1396 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) 1397 { 1398 if (!nvlist_exists(spa->spa_label_features, feature)) { 1399 fnvlist_add_boolean(spa->spa_label_features, feature); 1400 /* 1401 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't 1402 * dirty the vdev config because lock SCL_CONFIG is not held. 1403 * Thankfully, in this case we don't need to dirty the config 1404 * because it will be written out anyway when we finish 1405 * creating the pool. 1406 */ 1407 if (tx->tx_txg != TXG_INITIAL) 1408 vdev_config_dirty(spa->spa_root_vdev); 1409 } 1410 } 1411 1412 void 1413 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1414 { 1415 if (nvlist_remove_all(spa->spa_label_features, feature) == 0) 1416 vdev_config_dirty(spa->spa_root_vdev); 1417 } 1418 1419 /* 1420 * Return the spa_t associated with given pool_guid, if it exists. If 1421 * device_guid is non-zero, determine whether the pool exists *and* contains 1422 * a device with the specified device_guid. 1423 */ 1424 spa_t * 1425 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1426 { 1427 spa_t *spa; 1428 avl_tree_t *t = &spa_namespace_avl; 1429 1430 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1431 1432 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1433 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1434 continue; 1435 if (spa->spa_root_vdev == NULL) 1436 continue; 1437 if (spa_guid(spa) == pool_guid) { 1438 if (device_guid == 0) 1439 break; 1440 1441 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1442 device_guid) != NULL) 1443 break; 1444 1445 /* 1446 * Check any devices we may be in the process of adding. 1447 */ 1448 if (spa->spa_pending_vdev) { 1449 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1450 device_guid) != NULL) 1451 break; 1452 } 1453 } 1454 } 1455 1456 return (spa); 1457 } 1458 1459 /* 1460 * Determine whether a pool with the given pool_guid exists. 1461 */ 1462 boolean_t 1463 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1464 { 1465 return (spa_by_guid(pool_guid, device_guid) != NULL); 1466 } 1467 1468 char * 1469 spa_strdup(const char *s) 1470 { 1471 size_t len; 1472 char *new; 1473 1474 len = strlen(s); 1475 new = kmem_alloc(len + 1, KM_SLEEP); 1476 bcopy(s, new, len); 1477 new[len] = '\0'; 1478 1479 return (new); 1480 } 1481 1482 void 1483 spa_strfree(char *s) 1484 { 1485 kmem_free(s, strlen(s) + 1); 1486 } 1487 1488 uint64_t 1489 spa_get_random(uint64_t range) 1490 { 1491 uint64_t r; 1492 1493 ASSERT(range != 0); 1494 1495 if (range == 1) 1496 return (0); 1497 1498 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 1499 1500 return (r % range); 1501 } 1502 1503 uint64_t 1504 spa_generate_guid(spa_t *spa) 1505 { 1506 uint64_t guid = spa_get_random(-1ULL); 1507 1508 if (spa != NULL) { 1509 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) 1510 guid = spa_get_random(-1ULL); 1511 } else { 1512 while (guid == 0 || spa_guid_exists(guid, 0)) 1513 guid = spa_get_random(-1ULL); 1514 } 1515 1516 return (guid); 1517 } 1518 1519 void 1520 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) 1521 { 1522 char type[256]; 1523 char *checksum = NULL; 1524 char *compress = NULL; 1525 1526 if (bp != NULL) { 1527 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1528 dmu_object_byteswap_t bswap = 1529 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1530 (void) snprintf(type, sizeof (type), "bswap %s %s", 1531 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1532 "metadata" : "data", 1533 dmu_ot_byteswap[bswap].ob_name); 1534 } else { 1535 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1536 sizeof (type)); 1537 } 1538 if (!BP_IS_EMBEDDED(bp)) { 1539 checksum = 1540 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1541 } 1542 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1543 } 1544 1545 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum, 1546 compress); 1547 } 1548 1549 void 1550 spa_freeze(spa_t *spa) 1551 { 1552 uint64_t freeze_txg = 0; 1553 1554 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1555 if (spa->spa_freeze_txg == UINT64_MAX) { 1556 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1557 spa->spa_freeze_txg = freeze_txg; 1558 } 1559 spa_config_exit(spa, SCL_ALL, FTAG); 1560 if (freeze_txg != 0) 1561 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1562 } 1563 1564 void 1565 zfs_panic_recover(const char *fmt, ...) 1566 { 1567 va_list adx; 1568 1569 va_start(adx, fmt); 1570 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1571 va_end(adx); 1572 } 1573 1574 /* 1575 * This is a stripped-down version of strtoull, suitable only for converting 1576 * lowercase hexadecimal numbers that don't overflow. 1577 */ 1578 uint64_t 1579 zfs_strtonum(const char *str, char **nptr) 1580 { 1581 uint64_t val = 0; 1582 char c; 1583 int digit; 1584 1585 while ((c = *str) != '\0') { 1586 if (c >= '0' && c <= '9') 1587 digit = c - '0'; 1588 else if (c >= 'a' && c <= 'f') 1589 digit = 10 + c - 'a'; 1590 else 1591 break; 1592 1593 val *= 16; 1594 val += digit; 1595 1596 str++; 1597 } 1598 1599 if (nptr) 1600 *nptr = (char *)str; 1601 1602 return (val); 1603 } 1604 1605 void 1606 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx) 1607 { 1608 /* 1609 * We bump the feature refcount for each special vdev added to the pool 1610 */ 1611 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)); 1612 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx); 1613 } 1614 1615 /* 1616 * ========================================================================== 1617 * Accessor functions 1618 * ========================================================================== 1619 */ 1620 1621 boolean_t 1622 spa_shutting_down(spa_t *spa) 1623 { 1624 return (spa->spa_async_suspended); 1625 } 1626 1627 dsl_pool_t * 1628 spa_get_dsl(spa_t *spa) 1629 { 1630 return (spa->spa_dsl_pool); 1631 } 1632 1633 boolean_t 1634 spa_is_initializing(spa_t *spa) 1635 { 1636 return (spa->spa_is_initializing); 1637 } 1638 1639 boolean_t 1640 spa_indirect_vdevs_loaded(spa_t *spa) 1641 { 1642 return (spa->spa_indirect_vdevs_loaded); 1643 } 1644 1645 blkptr_t * 1646 spa_get_rootblkptr(spa_t *spa) 1647 { 1648 return (&spa->spa_ubsync.ub_rootbp); 1649 } 1650 1651 void 1652 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1653 { 1654 spa->spa_uberblock.ub_rootbp = *bp; 1655 } 1656 1657 void 1658 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1659 { 1660 if (spa->spa_root == NULL) 1661 buf[0] = '\0'; 1662 else 1663 (void) strncpy(buf, spa->spa_root, buflen); 1664 } 1665 1666 int 1667 spa_sync_pass(spa_t *spa) 1668 { 1669 return (spa->spa_sync_pass); 1670 } 1671 1672 char * 1673 spa_name(spa_t *spa) 1674 { 1675 return (spa->spa_name); 1676 } 1677 1678 uint64_t 1679 spa_guid(spa_t *spa) 1680 { 1681 dsl_pool_t *dp = spa_get_dsl(spa); 1682 uint64_t guid; 1683 1684 /* 1685 * If we fail to parse the config during spa_load(), we can go through 1686 * the error path (which posts an ereport) and end up here with no root 1687 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1688 * this case. 1689 */ 1690 if (spa->spa_root_vdev == NULL) 1691 return (spa->spa_config_guid); 1692 1693 guid = spa->spa_last_synced_guid != 0 ? 1694 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1695 1696 /* 1697 * Return the most recently synced out guid unless we're 1698 * in syncing context. 1699 */ 1700 if (dp && dsl_pool_sync_context(dp)) 1701 return (spa->spa_root_vdev->vdev_guid); 1702 else 1703 return (guid); 1704 } 1705 1706 uint64_t 1707 spa_load_guid(spa_t *spa) 1708 { 1709 /* 1710 * This is a GUID that exists solely as a reference for the 1711 * purposes of the arc. It is generated at load time, and 1712 * is never written to persistent storage. 1713 */ 1714 return (spa->spa_load_guid); 1715 } 1716 1717 uint64_t 1718 spa_last_synced_txg(spa_t *spa) 1719 { 1720 return (spa->spa_ubsync.ub_txg); 1721 } 1722 1723 uint64_t 1724 spa_first_txg(spa_t *spa) 1725 { 1726 return (spa->spa_first_txg); 1727 } 1728 1729 uint64_t 1730 spa_syncing_txg(spa_t *spa) 1731 { 1732 return (spa->spa_syncing_txg); 1733 } 1734 1735 /* 1736 * Return the last txg where data can be dirtied. The final txgs 1737 * will be used to just clear out any deferred frees that remain. 1738 */ 1739 uint64_t 1740 spa_final_dirty_txg(spa_t *spa) 1741 { 1742 return (spa->spa_final_txg - TXG_DEFER_SIZE); 1743 } 1744 1745 pool_state_t 1746 spa_state(spa_t *spa) 1747 { 1748 return (spa->spa_state); 1749 } 1750 1751 spa_load_state_t 1752 spa_load_state(spa_t *spa) 1753 { 1754 return (spa->spa_load_state); 1755 } 1756 1757 uint64_t 1758 spa_freeze_txg(spa_t *spa) 1759 { 1760 return (spa->spa_freeze_txg); 1761 } 1762 1763 /* 1764 * Return the inflated asize for a logical write in bytes. This is used by the 1765 * DMU to calculate the space a logical write will require on disk. 1766 * If lsize is smaller than the largest physical block size allocatable on this 1767 * pool we use its value instead, since the write will end up using the whole 1768 * block anyway. 1769 */ 1770 uint64_t 1771 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize) 1772 { 1773 if (lsize == 0) 1774 return (0); /* No inflation needed */ 1775 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation); 1776 } 1777 1778 /* 1779 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%), 1780 * or at least 128MB, unless that would cause it to be more than half the 1781 * pool size. 1782 * 1783 * See the comment above spa_slop_shift for details. 1784 */ 1785 uint64_t 1786 spa_get_slop_space(spa_t *spa) 1787 { 1788 uint64_t space = spa_get_dspace(spa); 1789 return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop))); 1790 } 1791 1792 uint64_t 1793 spa_get_dspace(spa_t *spa) 1794 { 1795 return (spa->spa_dspace); 1796 } 1797 1798 uint64_t 1799 spa_get_checkpoint_space(spa_t *spa) 1800 { 1801 return (spa->spa_checkpoint_info.sci_dspace); 1802 } 1803 1804 void 1805 spa_update_dspace(spa_t *spa) 1806 { 1807 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1808 ddt_get_dedup_dspace(spa); 1809 if (spa->spa_vdev_removal != NULL) { 1810 /* 1811 * We can't allocate from the removing device, so subtract 1812 * its size if it was included in dspace (i.e. if this is a 1813 * normal-class vdev, not special/dedup). This prevents the 1814 * DMU/DSL from filling up the (now smaller) pool while we 1815 * are in the middle of removing the device. 1816 * 1817 * Note that the DMU/DSL doesn't actually know or care 1818 * how much space is allocated (it does its own tracking 1819 * of how much space has been logically used). So it 1820 * doesn't matter that the data we are moving may be 1821 * allocated twice (on the old device and the new 1822 * device). 1823 */ 1824 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1825 vdev_t *vd = 1826 vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id); 1827 if (vd->vdev_mg->mg_class == spa_normal_class(spa)) { 1828 spa->spa_dspace -= spa_deflate(spa) ? 1829 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 1830 } 1831 spa_config_exit(spa, SCL_VDEV, FTAG); 1832 } 1833 } 1834 1835 /* 1836 * Return the failure mode that has been set to this pool. The default 1837 * behavior will be to block all I/Os when a complete failure occurs. 1838 */ 1839 uint64_t 1840 spa_get_failmode(spa_t *spa) 1841 { 1842 return (spa->spa_failmode); 1843 } 1844 1845 boolean_t 1846 spa_suspended(spa_t *spa) 1847 { 1848 return (spa->spa_suspended != ZIO_SUSPEND_NONE); 1849 } 1850 1851 uint64_t 1852 spa_version(spa_t *spa) 1853 { 1854 return (spa->spa_ubsync.ub_version); 1855 } 1856 1857 boolean_t 1858 spa_deflate(spa_t *spa) 1859 { 1860 return (spa->spa_deflate); 1861 } 1862 1863 metaslab_class_t * 1864 spa_normal_class(spa_t *spa) 1865 { 1866 return (spa->spa_normal_class); 1867 } 1868 1869 metaslab_class_t * 1870 spa_log_class(spa_t *spa) 1871 { 1872 return (spa->spa_log_class); 1873 } 1874 1875 metaslab_class_t * 1876 spa_special_class(spa_t *spa) 1877 { 1878 return (spa->spa_special_class); 1879 } 1880 1881 metaslab_class_t * 1882 spa_dedup_class(spa_t *spa) 1883 { 1884 return (spa->spa_dedup_class); 1885 } 1886 1887 /* 1888 * Locate an appropriate allocation class 1889 */ 1890 metaslab_class_t * 1891 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype, 1892 uint_t level, uint_t special_smallblk) 1893 { 1894 if (DMU_OT_IS_ZIL(objtype)) { 1895 if (spa->spa_log_class->mc_groups != 0) 1896 return (spa_log_class(spa)); 1897 else 1898 return (spa_normal_class(spa)); 1899 } 1900 1901 boolean_t has_special_class = spa->spa_special_class->mc_groups != 0; 1902 1903 if (DMU_OT_IS_DDT(objtype)) { 1904 if (spa->spa_dedup_class->mc_groups != 0) 1905 return (spa_dedup_class(spa)); 1906 else if (has_special_class && zfs_ddt_data_is_special) 1907 return (spa_special_class(spa)); 1908 else 1909 return (spa_normal_class(spa)); 1910 } 1911 1912 /* Indirect blocks for user data can land in special if allowed */ 1913 if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) { 1914 if (has_special_class && zfs_user_indirect_is_special) 1915 return (spa_special_class(spa)); 1916 else 1917 return (spa_normal_class(spa)); 1918 } 1919 1920 if (DMU_OT_IS_METADATA(objtype) || level > 0) { 1921 if (has_special_class) 1922 return (spa_special_class(spa)); 1923 else 1924 return (spa_normal_class(spa)); 1925 } 1926 1927 /* 1928 * Allow small file blocks in special class in some cases (like 1929 * for the dRAID vdev feature). But always leave a reserve of 1930 * zfs_special_class_metadata_reserve_pct exclusively for metadata. 1931 */ 1932 if (DMU_OT_IS_FILE(objtype) && 1933 has_special_class && size <= special_smallblk) { 1934 metaslab_class_t *special = spa_special_class(spa); 1935 uint64_t alloc = metaslab_class_get_alloc(special); 1936 uint64_t space = metaslab_class_get_space(special); 1937 uint64_t limit = 1938 (space * (100 - zfs_special_class_metadata_reserve_pct)) 1939 / 100; 1940 1941 if (alloc < limit) 1942 return (special); 1943 } 1944 1945 return (spa_normal_class(spa)); 1946 } 1947 1948 void 1949 spa_evicting_os_register(spa_t *spa, objset_t *os) 1950 { 1951 mutex_enter(&spa->spa_evicting_os_lock); 1952 list_insert_head(&spa->spa_evicting_os_list, os); 1953 mutex_exit(&spa->spa_evicting_os_lock); 1954 } 1955 1956 void 1957 spa_evicting_os_deregister(spa_t *spa, objset_t *os) 1958 { 1959 mutex_enter(&spa->spa_evicting_os_lock); 1960 list_remove(&spa->spa_evicting_os_list, os); 1961 cv_broadcast(&spa->spa_evicting_os_cv); 1962 mutex_exit(&spa->spa_evicting_os_lock); 1963 } 1964 1965 void 1966 spa_evicting_os_wait(spa_t *spa) 1967 { 1968 mutex_enter(&spa->spa_evicting_os_lock); 1969 while (!list_is_empty(&spa->spa_evicting_os_list)) 1970 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); 1971 mutex_exit(&spa->spa_evicting_os_lock); 1972 1973 dmu_buf_user_evict_wait(); 1974 } 1975 1976 int 1977 spa_max_replication(spa_t *spa) 1978 { 1979 /* 1980 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1981 * handle BPs with more than one DVA allocated. Set our max 1982 * replication level accordingly. 1983 */ 1984 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1985 return (1); 1986 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1987 } 1988 1989 int 1990 spa_prev_software_version(spa_t *spa) 1991 { 1992 return (spa->spa_prev_software_version); 1993 } 1994 1995 uint64_t 1996 spa_deadman_synctime(spa_t *spa) 1997 { 1998 return (spa->spa_deadman_synctime); 1999 } 2000 2001 spa_autotrim_t 2002 spa_get_autotrim(spa_t *spa) 2003 { 2004 return (spa->spa_autotrim); 2005 } 2006 2007 uint64_t 2008 spa_deadman_ziotime(spa_t *spa) 2009 { 2010 return (spa->spa_deadman_ziotime); 2011 } 2012 2013 uint64_t 2014 spa_get_deadman_failmode(spa_t *spa) 2015 { 2016 return (spa->spa_deadman_failmode); 2017 } 2018 2019 void 2020 spa_set_deadman_failmode(spa_t *spa, const char *failmode) 2021 { 2022 if (strcmp(failmode, "wait") == 0) 2023 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2024 else if (strcmp(failmode, "continue") == 0) 2025 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE; 2026 else if (strcmp(failmode, "panic") == 0) 2027 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC; 2028 else 2029 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2030 } 2031 2032 void 2033 spa_set_deadman_ziotime(hrtime_t ns) 2034 { 2035 spa_t *spa = NULL; 2036 2037 if (spa_mode_global != SPA_MODE_UNINIT) { 2038 mutex_enter(&spa_namespace_lock); 2039 while ((spa = spa_next(spa)) != NULL) 2040 spa->spa_deadman_ziotime = ns; 2041 mutex_exit(&spa_namespace_lock); 2042 } 2043 } 2044 2045 void 2046 spa_set_deadman_synctime(hrtime_t ns) 2047 { 2048 spa_t *spa = NULL; 2049 2050 if (spa_mode_global != SPA_MODE_UNINIT) { 2051 mutex_enter(&spa_namespace_lock); 2052 while ((spa = spa_next(spa)) != NULL) 2053 spa->spa_deadman_synctime = ns; 2054 mutex_exit(&spa_namespace_lock); 2055 } 2056 } 2057 2058 uint64_t 2059 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 2060 { 2061 uint64_t asize = DVA_GET_ASIZE(dva); 2062 uint64_t dsize = asize; 2063 2064 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2065 2066 if (asize != 0 && spa->spa_deflate) { 2067 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 2068 if (vd != NULL) 2069 dsize = (asize >> SPA_MINBLOCKSHIFT) * 2070 vd->vdev_deflate_ratio; 2071 } 2072 2073 return (dsize); 2074 } 2075 2076 uint64_t 2077 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 2078 { 2079 uint64_t dsize = 0; 2080 2081 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2082 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2083 2084 return (dsize); 2085 } 2086 2087 uint64_t 2088 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 2089 { 2090 uint64_t dsize = 0; 2091 2092 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2093 2094 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2095 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2096 2097 spa_config_exit(spa, SCL_VDEV, FTAG); 2098 2099 return (dsize); 2100 } 2101 2102 uint64_t 2103 spa_dirty_data(spa_t *spa) 2104 { 2105 return (spa->spa_dsl_pool->dp_dirty_total); 2106 } 2107 2108 /* 2109 * ========================================================================== 2110 * SPA Import Progress Routines 2111 * ========================================================================== 2112 */ 2113 2114 typedef struct spa_import_progress { 2115 uint64_t pool_guid; /* unique id for updates */ 2116 char *pool_name; 2117 spa_load_state_t spa_load_state; 2118 uint64_t mmp_sec_remaining; /* MMP activity check */ 2119 uint64_t spa_load_max_txg; /* rewind txg */ 2120 procfs_list_node_t smh_node; 2121 } spa_import_progress_t; 2122 2123 spa_history_list_t *spa_import_progress_list = NULL; 2124 2125 static int 2126 spa_import_progress_show_header(struct seq_file *f) 2127 { 2128 seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid", 2129 "load_state", "multihost_secs", "max_txg", 2130 "pool_name"); 2131 return (0); 2132 } 2133 2134 static int 2135 spa_import_progress_show(struct seq_file *f, void *data) 2136 { 2137 spa_import_progress_t *sip = (spa_import_progress_t *)data; 2138 2139 seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n", 2140 (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state, 2141 (u_longlong_t)sip->mmp_sec_remaining, 2142 (u_longlong_t)sip->spa_load_max_txg, 2143 (sip->pool_name ? sip->pool_name : "-")); 2144 2145 return (0); 2146 } 2147 2148 /* Remove oldest elements from list until there are no more than 'size' left */ 2149 static void 2150 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size) 2151 { 2152 spa_import_progress_t *sip; 2153 while (shl->size > size) { 2154 sip = list_remove_head(&shl->procfs_list.pl_list); 2155 if (sip->pool_name) 2156 spa_strfree(sip->pool_name); 2157 kmem_free(sip, sizeof (spa_import_progress_t)); 2158 shl->size--; 2159 } 2160 2161 IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list)); 2162 } 2163 2164 static void 2165 spa_import_progress_init(void) 2166 { 2167 spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t), 2168 KM_SLEEP); 2169 2170 spa_import_progress_list->size = 0; 2171 2172 spa_import_progress_list->procfs_list.pl_private = 2173 spa_import_progress_list; 2174 2175 procfs_list_install("zfs", 2176 NULL, 2177 "import_progress", 2178 0644, 2179 &spa_import_progress_list->procfs_list, 2180 spa_import_progress_show, 2181 spa_import_progress_show_header, 2182 NULL, 2183 offsetof(spa_import_progress_t, smh_node)); 2184 } 2185 2186 static void 2187 spa_import_progress_destroy(void) 2188 { 2189 spa_history_list_t *shl = spa_import_progress_list; 2190 procfs_list_uninstall(&shl->procfs_list); 2191 spa_import_progress_truncate(shl, 0); 2192 procfs_list_destroy(&shl->procfs_list); 2193 kmem_free(shl, sizeof (spa_history_list_t)); 2194 } 2195 2196 int 2197 spa_import_progress_set_state(uint64_t pool_guid, 2198 spa_load_state_t load_state) 2199 { 2200 spa_history_list_t *shl = spa_import_progress_list; 2201 spa_import_progress_t *sip; 2202 int error = ENOENT; 2203 2204 if (shl->size == 0) 2205 return (0); 2206 2207 mutex_enter(&shl->procfs_list.pl_lock); 2208 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2209 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2210 if (sip->pool_guid == pool_guid) { 2211 sip->spa_load_state = load_state; 2212 error = 0; 2213 break; 2214 } 2215 } 2216 mutex_exit(&shl->procfs_list.pl_lock); 2217 2218 return (error); 2219 } 2220 2221 int 2222 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg) 2223 { 2224 spa_history_list_t *shl = spa_import_progress_list; 2225 spa_import_progress_t *sip; 2226 int error = ENOENT; 2227 2228 if (shl->size == 0) 2229 return (0); 2230 2231 mutex_enter(&shl->procfs_list.pl_lock); 2232 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2233 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2234 if (sip->pool_guid == pool_guid) { 2235 sip->spa_load_max_txg = load_max_txg; 2236 error = 0; 2237 break; 2238 } 2239 } 2240 mutex_exit(&shl->procfs_list.pl_lock); 2241 2242 return (error); 2243 } 2244 2245 int 2246 spa_import_progress_set_mmp_check(uint64_t pool_guid, 2247 uint64_t mmp_sec_remaining) 2248 { 2249 spa_history_list_t *shl = spa_import_progress_list; 2250 spa_import_progress_t *sip; 2251 int error = ENOENT; 2252 2253 if (shl->size == 0) 2254 return (0); 2255 2256 mutex_enter(&shl->procfs_list.pl_lock); 2257 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2258 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2259 if (sip->pool_guid == pool_guid) { 2260 sip->mmp_sec_remaining = mmp_sec_remaining; 2261 error = 0; 2262 break; 2263 } 2264 } 2265 mutex_exit(&shl->procfs_list.pl_lock); 2266 2267 return (error); 2268 } 2269 2270 /* 2271 * A new import is in progress, add an entry. 2272 */ 2273 void 2274 spa_import_progress_add(spa_t *spa) 2275 { 2276 spa_history_list_t *shl = spa_import_progress_list; 2277 spa_import_progress_t *sip; 2278 char *poolname = NULL; 2279 2280 sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP); 2281 sip->pool_guid = spa_guid(spa); 2282 2283 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME, 2284 &poolname); 2285 if (poolname == NULL) 2286 poolname = spa_name(spa); 2287 sip->pool_name = spa_strdup(poolname); 2288 sip->spa_load_state = spa_load_state(spa); 2289 2290 mutex_enter(&shl->procfs_list.pl_lock); 2291 procfs_list_add(&shl->procfs_list, sip); 2292 shl->size++; 2293 mutex_exit(&shl->procfs_list.pl_lock); 2294 } 2295 2296 void 2297 spa_import_progress_remove(uint64_t pool_guid) 2298 { 2299 spa_history_list_t *shl = spa_import_progress_list; 2300 spa_import_progress_t *sip; 2301 2302 mutex_enter(&shl->procfs_list.pl_lock); 2303 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2304 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2305 if (sip->pool_guid == pool_guid) { 2306 if (sip->pool_name) 2307 spa_strfree(sip->pool_name); 2308 list_remove(&shl->procfs_list.pl_list, sip); 2309 shl->size--; 2310 kmem_free(sip, sizeof (spa_import_progress_t)); 2311 break; 2312 } 2313 } 2314 mutex_exit(&shl->procfs_list.pl_lock); 2315 } 2316 2317 /* 2318 * ========================================================================== 2319 * Initialization and Termination 2320 * ========================================================================== 2321 */ 2322 2323 static int 2324 spa_name_compare(const void *a1, const void *a2) 2325 { 2326 const spa_t *s1 = a1; 2327 const spa_t *s2 = a2; 2328 int s; 2329 2330 s = strcmp(s1->spa_name, s2->spa_name); 2331 2332 return (TREE_ISIGN(s)); 2333 } 2334 2335 void 2336 spa_boot_init(void) 2337 { 2338 spa_config_load(); 2339 } 2340 2341 void 2342 spa_init(spa_mode_t mode) 2343 { 2344 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 2345 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 2346 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 2347 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 2348 2349 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 2350 offsetof(spa_t, spa_avl)); 2351 2352 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 2353 offsetof(spa_aux_t, aux_avl)); 2354 2355 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 2356 offsetof(spa_aux_t, aux_avl)); 2357 2358 spa_mode_global = mode; 2359 2360 #ifndef _KERNEL 2361 if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) { 2362 struct sigaction sa; 2363 2364 sa.sa_flags = SA_SIGINFO; 2365 sigemptyset(&sa.sa_mask); 2366 sa.sa_sigaction = arc_buf_sigsegv; 2367 2368 if (sigaction(SIGSEGV, &sa, NULL) == -1) { 2369 perror("could not enable watchpoints: " 2370 "sigaction(SIGSEGV, ...) = "); 2371 } else { 2372 arc_watch = B_TRUE; 2373 } 2374 } 2375 #endif 2376 2377 fm_init(); 2378 zfs_refcount_init(); 2379 unique_init(); 2380 zfs_btree_init(); 2381 metaslab_stat_init(); 2382 ddt_init(); 2383 zio_init(); 2384 dmu_init(); 2385 zil_init(); 2386 vdev_cache_stat_init(); 2387 vdev_mirror_stat_init(); 2388 vdev_raidz_math_init(); 2389 vdev_file_init(); 2390 zfs_prop_init(); 2391 zpool_prop_init(); 2392 zpool_feature_init(); 2393 spa_config_load(); 2394 l2arc_start(); 2395 scan_init(); 2396 qat_init(); 2397 spa_import_progress_init(); 2398 } 2399 2400 void 2401 spa_fini(void) 2402 { 2403 l2arc_stop(); 2404 2405 spa_evict_all(); 2406 2407 vdev_file_fini(); 2408 vdev_cache_stat_fini(); 2409 vdev_mirror_stat_fini(); 2410 vdev_raidz_math_fini(); 2411 zil_fini(); 2412 dmu_fini(); 2413 zio_fini(); 2414 ddt_fini(); 2415 metaslab_stat_fini(); 2416 zfs_btree_fini(); 2417 unique_fini(); 2418 zfs_refcount_fini(); 2419 fm_fini(); 2420 scan_fini(); 2421 qat_fini(); 2422 spa_import_progress_destroy(); 2423 2424 avl_destroy(&spa_namespace_avl); 2425 avl_destroy(&spa_spare_avl); 2426 avl_destroy(&spa_l2cache_avl); 2427 2428 cv_destroy(&spa_namespace_cv); 2429 mutex_destroy(&spa_namespace_lock); 2430 mutex_destroy(&spa_spare_lock); 2431 mutex_destroy(&spa_l2cache_lock); 2432 } 2433 2434 /* 2435 * Return whether this pool has slogs. No locking needed. 2436 * It's not a problem if the wrong answer is returned as it's only for 2437 * performance and not correctness 2438 */ 2439 boolean_t 2440 spa_has_slogs(spa_t *spa) 2441 { 2442 return (spa->spa_log_class->mc_groups != 0); 2443 } 2444 2445 spa_log_state_t 2446 spa_get_log_state(spa_t *spa) 2447 { 2448 return (spa->spa_log_state); 2449 } 2450 2451 void 2452 spa_set_log_state(spa_t *spa, spa_log_state_t state) 2453 { 2454 spa->spa_log_state = state; 2455 } 2456 2457 boolean_t 2458 spa_is_root(spa_t *spa) 2459 { 2460 return (spa->spa_is_root); 2461 } 2462 2463 boolean_t 2464 spa_writeable(spa_t *spa) 2465 { 2466 return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config); 2467 } 2468 2469 /* 2470 * Returns true if there is a pending sync task in any of the current 2471 * syncing txg, the current quiescing txg, or the current open txg. 2472 */ 2473 boolean_t 2474 spa_has_pending_synctask(spa_t *spa) 2475 { 2476 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) || 2477 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks)); 2478 } 2479 2480 spa_mode_t 2481 spa_mode(spa_t *spa) 2482 { 2483 return (spa->spa_mode); 2484 } 2485 2486 uint64_t 2487 spa_bootfs(spa_t *spa) 2488 { 2489 return (spa->spa_bootfs); 2490 } 2491 2492 uint64_t 2493 spa_delegation(spa_t *spa) 2494 { 2495 return (spa->spa_delegation); 2496 } 2497 2498 objset_t * 2499 spa_meta_objset(spa_t *spa) 2500 { 2501 return (spa->spa_meta_objset); 2502 } 2503 2504 enum zio_checksum 2505 spa_dedup_checksum(spa_t *spa) 2506 { 2507 return (spa->spa_dedup_checksum); 2508 } 2509 2510 /* 2511 * Reset pool scan stat per scan pass (or reboot). 2512 */ 2513 void 2514 spa_scan_stat_init(spa_t *spa) 2515 { 2516 /* data not stored on disk */ 2517 spa->spa_scan_pass_start = gethrestime_sec(); 2518 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan)) 2519 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start; 2520 else 2521 spa->spa_scan_pass_scrub_pause = 0; 2522 spa->spa_scan_pass_scrub_spent_paused = 0; 2523 spa->spa_scan_pass_exam = 0; 2524 spa->spa_scan_pass_issued = 0; 2525 vdev_scan_stat_init(spa->spa_root_vdev); 2526 } 2527 2528 /* 2529 * Get scan stats for zpool status reports 2530 */ 2531 int 2532 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 2533 { 2534 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 2535 2536 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) 2537 return (SET_ERROR(ENOENT)); 2538 bzero(ps, sizeof (pool_scan_stat_t)); 2539 2540 /* data stored on disk */ 2541 ps->pss_func = scn->scn_phys.scn_func; 2542 ps->pss_state = scn->scn_phys.scn_state; 2543 ps->pss_start_time = scn->scn_phys.scn_start_time; 2544 ps->pss_end_time = scn->scn_phys.scn_end_time; 2545 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 2546 ps->pss_examined = scn->scn_phys.scn_examined; 2547 ps->pss_to_process = scn->scn_phys.scn_to_process; 2548 ps->pss_processed = scn->scn_phys.scn_processed; 2549 ps->pss_errors = scn->scn_phys.scn_errors; 2550 2551 /* data not stored on disk */ 2552 ps->pss_pass_exam = spa->spa_scan_pass_exam; 2553 ps->pss_pass_start = spa->spa_scan_pass_start; 2554 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause; 2555 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused; 2556 ps->pss_pass_issued = spa->spa_scan_pass_issued; 2557 ps->pss_issued = 2558 scn->scn_issued_before_pass + spa->spa_scan_pass_issued; 2559 2560 return (0); 2561 } 2562 2563 int 2564 spa_maxblocksize(spa_t *spa) 2565 { 2566 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 2567 return (SPA_MAXBLOCKSIZE); 2568 else 2569 return (SPA_OLD_MAXBLOCKSIZE); 2570 } 2571 2572 2573 /* 2574 * Returns the txg that the last device removal completed. No indirect mappings 2575 * have been added since this txg. 2576 */ 2577 uint64_t 2578 spa_get_last_removal_txg(spa_t *spa) 2579 { 2580 uint64_t vdevid; 2581 uint64_t ret = -1ULL; 2582 2583 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2584 /* 2585 * sr_prev_indirect_vdev is only modified while holding all the 2586 * config locks, so it is sufficient to hold SCL_VDEV as reader when 2587 * examining it. 2588 */ 2589 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev; 2590 2591 while (vdevid != -1ULL) { 2592 vdev_t *vd = vdev_lookup_top(spa, vdevid); 2593 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 2594 2595 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 2596 2597 /* 2598 * If the removal did not remap any data, we don't care. 2599 */ 2600 if (vdev_indirect_births_count(vib) != 0) { 2601 ret = vdev_indirect_births_last_entry_txg(vib); 2602 break; 2603 } 2604 2605 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev; 2606 } 2607 spa_config_exit(spa, SCL_VDEV, FTAG); 2608 2609 IMPLY(ret != -1ULL, 2610 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); 2611 2612 return (ret); 2613 } 2614 2615 int 2616 spa_maxdnodesize(spa_t *spa) 2617 { 2618 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 2619 return (DNODE_MAX_SIZE); 2620 else 2621 return (DNODE_MIN_SIZE); 2622 } 2623 2624 boolean_t 2625 spa_multihost(spa_t *spa) 2626 { 2627 return (spa->spa_multihost ? B_TRUE : B_FALSE); 2628 } 2629 2630 uint32_t 2631 spa_get_hostid(spa_t *spa) 2632 { 2633 return (spa->spa_hostid); 2634 } 2635 2636 boolean_t 2637 spa_trust_config(spa_t *spa) 2638 { 2639 return (spa->spa_trust_config); 2640 } 2641 2642 uint64_t 2643 spa_missing_tvds_allowed(spa_t *spa) 2644 { 2645 return (spa->spa_missing_tvds_allowed); 2646 } 2647 2648 space_map_t * 2649 spa_syncing_log_sm(spa_t *spa) 2650 { 2651 return (spa->spa_syncing_log_sm); 2652 } 2653 2654 void 2655 spa_set_missing_tvds(spa_t *spa, uint64_t missing) 2656 { 2657 spa->spa_missing_tvds = missing; 2658 } 2659 2660 /* 2661 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc). 2662 */ 2663 const char * 2664 spa_state_to_name(spa_t *spa) 2665 { 2666 ASSERT3P(spa, !=, NULL); 2667 2668 /* 2669 * it is possible for the spa to exist, without root vdev 2670 * as the spa transitions during import/export 2671 */ 2672 vdev_t *rvd = spa->spa_root_vdev; 2673 if (rvd == NULL) { 2674 return ("TRANSITIONING"); 2675 } 2676 vdev_state_t state = rvd->vdev_state; 2677 vdev_aux_t aux = rvd->vdev_stat.vs_aux; 2678 2679 if (spa_suspended(spa) && 2680 (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)) 2681 return ("SUSPENDED"); 2682 2683 switch (state) { 2684 case VDEV_STATE_CLOSED: 2685 case VDEV_STATE_OFFLINE: 2686 return ("OFFLINE"); 2687 case VDEV_STATE_REMOVED: 2688 return ("REMOVED"); 2689 case VDEV_STATE_CANT_OPEN: 2690 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG) 2691 return ("FAULTED"); 2692 else if (aux == VDEV_AUX_SPLIT_POOL) 2693 return ("SPLIT"); 2694 else 2695 return ("UNAVAIL"); 2696 case VDEV_STATE_FAULTED: 2697 return ("FAULTED"); 2698 case VDEV_STATE_DEGRADED: 2699 return ("DEGRADED"); 2700 case VDEV_STATE_HEALTHY: 2701 return ("ONLINE"); 2702 default: 2703 break; 2704 } 2705 2706 return ("UNKNOWN"); 2707 } 2708 2709 boolean_t 2710 spa_top_vdevs_spacemap_addressable(spa_t *spa) 2711 { 2712 vdev_t *rvd = spa->spa_root_vdev; 2713 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2714 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c])) 2715 return (B_FALSE); 2716 } 2717 return (B_TRUE); 2718 } 2719 2720 boolean_t 2721 spa_has_checkpoint(spa_t *spa) 2722 { 2723 return (spa->spa_checkpoint_txg != 0); 2724 } 2725 2726 boolean_t 2727 spa_importing_readonly_checkpoint(spa_t *spa) 2728 { 2729 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) && 2730 spa->spa_mode == SPA_MODE_READ); 2731 } 2732 2733 uint64_t 2734 spa_min_claim_txg(spa_t *spa) 2735 { 2736 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg; 2737 2738 if (checkpoint_txg != 0) 2739 return (checkpoint_txg + 1); 2740 2741 return (spa->spa_first_txg); 2742 } 2743 2744 /* 2745 * If there is a checkpoint, async destroys may consume more space from 2746 * the pool instead of freeing it. In an attempt to save the pool from 2747 * getting suspended when it is about to run out of space, we stop 2748 * processing async destroys. 2749 */ 2750 boolean_t 2751 spa_suspend_async_destroy(spa_t *spa) 2752 { 2753 dsl_pool_t *dp = spa_get_dsl(spa); 2754 2755 uint64_t unreserved = dsl_pool_unreserved_space(dp, 2756 ZFS_SPACE_CHECK_EXTRA_RESERVED); 2757 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes; 2758 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0; 2759 2760 if (spa_has_checkpoint(spa) && avail == 0) 2761 return (B_TRUE); 2762 2763 return (B_FALSE); 2764 } 2765 2766 #if defined(_KERNEL) 2767 2768 int 2769 param_set_deadman_failmode_common(const char *val) 2770 { 2771 spa_t *spa = NULL; 2772 char *p; 2773 2774 if (val == NULL) 2775 return (SET_ERROR(EINVAL)); 2776 2777 if ((p = strchr(val, '\n')) != NULL) 2778 *p = '\0'; 2779 2780 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 && 2781 strcmp(val, "panic")) 2782 return (SET_ERROR(EINVAL)); 2783 2784 if (spa_mode_global != SPA_MODE_UNINIT) { 2785 mutex_enter(&spa_namespace_lock); 2786 while ((spa = spa_next(spa)) != NULL) 2787 spa_set_deadman_failmode(spa, val); 2788 mutex_exit(&spa_namespace_lock); 2789 } 2790 2791 return (0); 2792 } 2793 #endif 2794 2795 /* Namespace manipulation */ 2796 EXPORT_SYMBOL(spa_lookup); 2797 EXPORT_SYMBOL(spa_add); 2798 EXPORT_SYMBOL(spa_remove); 2799 EXPORT_SYMBOL(spa_next); 2800 2801 /* Refcount functions */ 2802 EXPORT_SYMBOL(spa_open_ref); 2803 EXPORT_SYMBOL(spa_close); 2804 EXPORT_SYMBOL(spa_refcount_zero); 2805 2806 /* Pool configuration lock */ 2807 EXPORT_SYMBOL(spa_config_tryenter); 2808 EXPORT_SYMBOL(spa_config_enter); 2809 EXPORT_SYMBOL(spa_config_exit); 2810 EXPORT_SYMBOL(spa_config_held); 2811 2812 /* Pool vdev add/remove lock */ 2813 EXPORT_SYMBOL(spa_vdev_enter); 2814 EXPORT_SYMBOL(spa_vdev_exit); 2815 2816 /* Pool vdev state change lock */ 2817 EXPORT_SYMBOL(spa_vdev_state_enter); 2818 EXPORT_SYMBOL(spa_vdev_state_exit); 2819 2820 /* Accessor functions */ 2821 EXPORT_SYMBOL(spa_shutting_down); 2822 EXPORT_SYMBOL(spa_get_dsl); 2823 EXPORT_SYMBOL(spa_get_rootblkptr); 2824 EXPORT_SYMBOL(spa_set_rootblkptr); 2825 EXPORT_SYMBOL(spa_altroot); 2826 EXPORT_SYMBOL(spa_sync_pass); 2827 EXPORT_SYMBOL(spa_name); 2828 EXPORT_SYMBOL(spa_guid); 2829 EXPORT_SYMBOL(spa_last_synced_txg); 2830 EXPORT_SYMBOL(spa_first_txg); 2831 EXPORT_SYMBOL(spa_syncing_txg); 2832 EXPORT_SYMBOL(spa_version); 2833 EXPORT_SYMBOL(spa_state); 2834 EXPORT_SYMBOL(spa_load_state); 2835 EXPORT_SYMBOL(spa_freeze_txg); 2836 EXPORT_SYMBOL(spa_get_dspace); 2837 EXPORT_SYMBOL(spa_update_dspace); 2838 EXPORT_SYMBOL(spa_deflate); 2839 EXPORT_SYMBOL(spa_normal_class); 2840 EXPORT_SYMBOL(spa_log_class); 2841 EXPORT_SYMBOL(spa_special_class); 2842 EXPORT_SYMBOL(spa_preferred_class); 2843 EXPORT_SYMBOL(spa_max_replication); 2844 EXPORT_SYMBOL(spa_prev_software_version); 2845 EXPORT_SYMBOL(spa_get_failmode); 2846 EXPORT_SYMBOL(spa_suspended); 2847 EXPORT_SYMBOL(spa_bootfs); 2848 EXPORT_SYMBOL(spa_delegation); 2849 EXPORT_SYMBOL(spa_meta_objset); 2850 EXPORT_SYMBOL(spa_maxblocksize); 2851 EXPORT_SYMBOL(spa_maxdnodesize); 2852 2853 /* Miscellaneous support routines */ 2854 EXPORT_SYMBOL(spa_guid_exists); 2855 EXPORT_SYMBOL(spa_strdup); 2856 EXPORT_SYMBOL(spa_strfree); 2857 EXPORT_SYMBOL(spa_get_random); 2858 EXPORT_SYMBOL(spa_generate_guid); 2859 EXPORT_SYMBOL(snprintf_blkptr); 2860 EXPORT_SYMBOL(spa_freeze); 2861 EXPORT_SYMBOL(spa_upgrade); 2862 EXPORT_SYMBOL(spa_evict_all); 2863 EXPORT_SYMBOL(spa_lookup_by_guid); 2864 EXPORT_SYMBOL(spa_has_spare); 2865 EXPORT_SYMBOL(dva_get_dsize_sync); 2866 EXPORT_SYMBOL(bp_get_dsize_sync); 2867 EXPORT_SYMBOL(bp_get_dsize); 2868 EXPORT_SYMBOL(spa_has_slogs); 2869 EXPORT_SYMBOL(spa_is_root); 2870 EXPORT_SYMBOL(spa_writeable); 2871 EXPORT_SYMBOL(spa_mode); 2872 EXPORT_SYMBOL(spa_namespace_lock); 2873 EXPORT_SYMBOL(spa_trust_config); 2874 EXPORT_SYMBOL(spa_missing_tvds_allowed); 2875 EXPORT_SYMBOL(spa_set_missing_tvds); 2876 EXPORT_SYMBOL(spa_state_to_name); 2877 EXPORT_SYMBOL(spa_importing_readonly_checkpoint); 2878 EXPORT_SYMBOL(spa_min_claim_txg); 2879 EXPORT_SYMBOL(spa_suspend_async_destroy); 2880 EXPORT_SYMBOL(spa_has_checkpoint); 2881 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable); 2882 2883 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW, 2884 "Set additional debugging flags"); 2885 2886 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW, 2887 "Set to attempt to recover from fatal errors"); 2888 2889 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW, 2890 "Set to ignore IO errors during free and permanently leak the space"); 2891 2892 ZFS_MODULE_PARAM(zfs, zfs_, deadman_checktime_ms, ULONG, ZMOD_RW, 2893 "Dead I/O check interval in milliseconds"); 2894 2895 ZFS_MODULE_PARAM(zfs, zfs_, deadman_enabled, INT, ZMOD_RW, 2896 "Enable deadman timer"); 2897 2898 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, INT, ZMOD_RW, 2899 "SPA size estimate multiplication factor"); 2900 2901 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW, 2902 "Place DDT data into the special class"); 2903 2904 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW, 2905 "Place user data indirect blocks into the special class"); 2906 2907 /* BEGIN CSTYLED */ 2908 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode, 2909 param_set_deadman_failmode, param_get_charp, ZMOD_RW, 2910 "Failmode for deadman timer"); 2911 2912 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms, 2913 param_set_deadman_synctime, param_get_ulong, ZMOD_RW, 2914 "Pool sync expiration time in milliseconds"); 2915 2916 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms, 2917 param_set_deadman_ziotime, param_get_ulong, ZMOD_RW, 2918 "IO expiration time in milliseconds"); 2919 2920 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, INT, ZMOD_RW, 2921 "Small file blocks in special vdevs depends on this much " 2922 "free space available"); 2923 /* END CSTYLED */ 2924 2925 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift, 2926 param_get_int, ZMOD_RW, "Reserved free space in pool"); 2927