1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2024 by Delphix. All rights reserved. 25 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 * Copyright (c) 2017 Datto Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 31 * Copyright (c) 2023, 2024, Klara Inc. 32 */ 33 34 #include <sys/zfs_context.h> 35 #include <sys/zfs_chksum.h> 36 #include <sys/spa_impl.h> 37 #include <sys/zio.h> 38 #include <sys/zio_checksum.h> 39 #include <sys/zio_compress.h> 40 #include <sys/dmu.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/zap.h> 43 #include <sys/zil.h> 44 #include <sys/vdev_impl.h> 45 #include <sys/vdev_initialize.h> 46 #include <sys/vdev_trim.h> 47 #include <sys/vdev_file.h> 48 #include <sys/vdev_raidz.h> 49 #include <sys/metaslab.h> 50 #include <sys/uberblock_impl.h> 51 #include <sys/txg.h> 52 #include <sys/avl.h> 53 #include <sys/unique.h> 54 #include <sys/dsl_pool.h> 55 #include <sys/dsl_dir.h> 56 #include <sys/dsl_prop.h> 57 #include <sys/fm/util.h> 58 #include <sys/dsl_scan.h> 59 #include <sys/fs/zfs.h> 60 #include <sys/metaslab_impl.h> 61 #include <sys/arc.h> 62 #include <sys/brt.h> 63 #include <sys/ddt.h> 64 #include <sys/kstat.h> 65 #include "zfs_prop.h" 66 #include <sys/btree.h> 67 #include <sys/zfeature.h> 68 #include <sys/qat.h> 69 #include <sys/zstd/zstd.h> 70 71 /* 72 * SPA locking 73 * 74 * There are three basic locks for managing spa_t structures: 75 * 76 * spa_namespace_lock (global mutex) 77 * 78 * This lock must be acquired to do any of the following: 79 * 80 * - Lookup a spa_t by name 81 * - Add or remove a spa_t from the namespace 82 * - Increase spa_refcount from non-zero 83 * - Check if spa_refcount is zero 84 * - Rename a spa_t 85 * - add/remove/attach/detach devices 86 * - Held for the duration of create/destroy 87 * - Held at the start and end of import and export 88 * 89 * It does not need to handle recursion. A create or destroy may 90 * reference objects (files or zvols) in other pools, but by 91 * definition they must have an existing reference, and will never need 92 * to lookup a spa_t by name. 93 * 94 * spa_refcount (per-spa zfs_refcount_t protected by mutex) 95 * 96 * This reference count keep track of any active users of the spa_t. The 97 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 98 * the refcount is never really 'zero' - opening a pool implicitly keeps 99 * some references in the DMU. Internally we check against spa_minref, but 100 * present the image of a zero/non-zero value to consumers. 101 * 102 * spa_config_lock[] (per-spa array of rwlocks) 103 * 104 * This protects the spa_t from config changes, and must be held in 105 * the following circumstances: 106 * 107 * - RW_READER to perform I/O to the spa 108 * - RW_WRITER to change the vdev config 109 * 110 * The locking order is fairly straightforward: 111 * 112 * spa_namespace_lock -> spa_refcount 113 * 114 * The namespace lock must be acquired to increase the refcount from 0 115 * or to check if it is zero. 116 * 117 * spa_refcount -> spa_config_lock[] 118 * 119 * There must be at least one valid reference on the spa_t to acquire 120 * the config lock. 121 * 122 * spa_namespace_lock -> spa_config_lock[] 123 * 124 * The namespace lock must always be taken before the config lock. 125 * 126 * 127 * The spa_namespace_lock can be acquired directly and is globally visible. 128 * 129 * The namespace is manipulated using the following functions, all of which 130 * require the spa_namespace_lock to be held. 131 * 132 * spa_lookup() Lookup a spa_t by name. 133 * 134 * spa_add() Create a new spa_t in the namespace. 135 * 136 * spa_remove() Remove a spa_t from the namespace. This also 137 * frees up any memory associated with the spa_t. 138 * 139 * spa_next() Returns the next spa_t in the system, or the 140 * first if NULL is passed. 141 * 142 * spa_evict_all() Shutdown and remove all spa_t structures in 143 * the system. 144 * 145 * spa_guid_exists() Determine whether a pool/device guid exists. 146 * 147 * The spa_refcount is manipulated using the following functions: 148 * 149 * spa_open_ref() Adds a reference to the given spa_t. Must be 150 * called with spa_namespace_lock held if the 151 * refcount is currently zero. 152 * 153 * spa_close() Remove a reference from the spa_t. This will 154 * not free the spa_t or remove it from the 155 * namespace. No locking is required. 156 * 157 * spa_refcount_zero() Returns true if the refcount is currently 158 * zero. Must be called with spa_namespace_lock 159 * held. 160 * 161 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 162 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 163 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 164 * 165 * To read the configuration, it suffices to hold one of these locks as reader. 166 * To modify the configuration, you must hold all locks as writer. To modify 167 * vdev state without altering the vdev tree's topology (e.g. online/offline), 168 * you must hold SCL_STATE and SCL_ZIO as writer. 169 * 170 * We use these distinct config locks to avoid recursive lock entry. 171 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 172 * block allocations (SCL_ALLOC), which may require reading space maps 173 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 174 * 175 * The spa config locks cannot be normal rwlocks because we need the 176 * ability to hand off ownership. For example, SCL_ZIO is acquired 177 * by the issuing thread and later released by an interrupt thread. 178 * They do, however, obey the usual write-wanted semantics to prevent 179 * writer (i.e. system administrator) starvation. 180 * 181 * The lock acquisition rules are as follows: 182 * 183 * SCL_CONFIG 184 * Protects changes to the vdev tree topology, such as vdev 185 * add/remove/attach/detach. Protects the dirty config list 186 * (spa_config_dirty_list) and the set of spares and l2arc devices. 187 * 188 * SCL_STATE 189 * Protects changes to pool state and vdev state, such as vdev 190 * online/offline/fault/degrade/clear. Protects the dirty state list 191 * (spa_state_dirty_list) and global pool state (spa_state). 192 * 193 * SCL_ALLOC 194 * Protects changes to metaslab groups and classes. 195 * Held as reader by metaslab_alloc() and metaslab_claim(). 196 * 197 * SCL_ZIO 198 * Held by bp-level zios (those which have no io_vd upon entry) 199 * to prevent changes to the vdev tree. The bp-level zio implicitly 200 * protects all of its vdev child zios, which do not hold SCL_ZIO. 201 * 202 * SCL_FREE 203 * Protects changes to metaslab groups and classes. 204 * Held as reader by metaslab_free(). SCL_FREE is distinct from 205 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 206 * blocks in zio_done() while another i/o that holds either 207 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 208 * 209 * SCL_VDEV 210 * Held as reader to prevent changes to the vdev tree during trivial 211 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 212 * other locks, and lower than all of them, to ensure that it's safe 213 * to acquire regardless of caller context. 214 * 215 * In addition, the following rules apply: 216 * 217 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 218 * The lock ordering is SCL_CONFIG > spa_props_lock. 219 * 220 * (b) I/O operations on leaf vdevs. For any zio operation that takes 221 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 222 * or zio_write_phys() -- the caller must ensure that the config cannot 223 * cannot change in the interim, and that the vdev cannot be reopened. 224 * SCL_STATE as reader suffices for both. 225 * 226 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 227 * 228 * spa_vdev_enter() Acquire the namespace lock and the config lock 229 * for writing. 230 * 231 * spa_vdev_exit() Release the config lock, wait for all I/O 232 * to complete, sync the updated configs to the 233 * cache, and release the namespace lock. 234 * 235 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 236 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 237 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 238 */ 239 240 avl_tree_t spa_namespace_avl; 241 kmutex_t spa_namespace_lock; 242 kcondvar_t spa_namespace_cv; 243 static const int spa_max_replication_override = SPA_DVAS_PER_BP; 244 245 static kmutex_t spa_spare_lock; 246 static avl_tree_t spa_spare_avl; 247 static kmutex_t spa_l2cache_lock; 248 static avl_tree_t spa_l2cache_avl; 249 250 spa_mode_t spa_mode_global = SPA_MODE_UNINIT; 251 252 #ifdef ZFS_DEBUG 253 /* 254 * Everything except dprintf, set_error, indirect_remap, and raidz_reconstruct 255 * is on by default in debug builds. 256 */ 257 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR | 258 ZFS_DEBUG_INDIRECT_REMAP | ZFS_DEBUG_RAIDZ_RECONSTRUCT); 259 #else 260 int zfs_flags = 0; 261 #endif 262 263 /* 264 * zfs_recover can be set to nonzero to attempt to recover from 265 * otherwise-fatal errors, typically caused by on-disk corruption. When 266 * set, calls to zfs_panic_recover() will turn into warning messages. 267 * This should only be used as a last resort, as it typically results 268 * in leaked space, or worse. 269 */ 270 int zfs_recover = B_FALSE; 271 272 /* 273 * If destroy encounters an EIO while reading metadata (e.g. indirect 274 * blocks), space referenced by the missing metadata can not be freed. 275 * Normally this causes the background destroy to become "stalled", as 276 * it is unable to make forward progress. While in this stalled state, 277 * all remaining space to free from the error-encountering filesystem is 278 * "temporarily leaked". Set this flag to cause it to ignore the EIO, 279 * permanently leak the space from indirect blocks that can not be read, 280 * and continue to free everything else that it can. 281 * 282 * The default, "stalling" behavior is useful if the storage partially 283 * fails (i.e. some but not all i/os fail), and then later recovers. In 284 * this case, we will be able to continue pool operations while it is 285 * partially failed, and when it recovers, we can continue to free the 286 * space, with no leaks. However, note that this case is actually 287 * fairly rare. 288 * 289 * Typically pools either (a) fail completely (but perhaps temporarily, 290 * e.g. a top-level vdev going offline), or (b) have localized, 291 * permanent errors (e.g. disk returns the wrong data due to bit flip or 292 * firmware bug). In case (a), this setting does not matter because the 293 * pool will be suspended and the sync thread will not be able to make 294 * forward progress regardless. In case (b), because the error is 295 * permanent, the best we can do is leak the minimum amount of space, 296 * which is what setting this flag will do. Therefore, it is reasonable 297 * for this flag to normally be set, but we chose the more conservative 298 * approach of not setting it, so that there is no possibility of 299 * leaking space in the "partial temporary" failure case. 300 */ 301 int zfs_free_leak_on_eio = B_FALSE; 302 303 /* 304 * Expiration time in milliseconds. This value has two meanings. First it is 305 * used to determine when the spa_deadman() logic should fire. By default the 306 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds. 307 * Secondly, the value determines if an I/O is considered "hung". Any I/O that 308 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting 309 * in one of three behaviors controlled by zfs_deadman_failmode. 310 */ 311 uint64_t zfs_deadman_synctime_ms = 600000UL; /* 10 min. */ 312 313 /* 314 * This value controls the maximum amount of time zio_wait() will block for an 315 * outstanding IO. By default this is 300 seconds at which point the "hung" 316 * behavior will be applied as described for zfs_deadman_synctime_ms. 317 */ 318 uint64_t zfs_deadman_ziotime_ms = 300000UL; /* 5 min. */ 319 320 /* 321 * Check time in milliseconds. This defines the frequency at which we check 322 * for hung I/O. 323 */ 324 uint64_t zfs_deadman_checktime_ms = 60000UL; /* 1 min. */ 325 326 /* 327 * By default the deadman is enabled. 328 */ 329 int zfs_deadman_enabled = B_TRUE; 330 331 /* 332 * Controls the behavior of the deadman when it detects a "hung" I/O. 333 * Valid values are zfs_deadman_failmode=<wait|continue|panic>. 334 * 335 * wait - Wait for the "hung" I/O (default) 336 * continue - Attempt to recover from a "hung" I/O 337 * panic - Panic the system 338 */ 339 const char *zfs_deadman_failmode = "wait"; 340 341 /* 342 * The worst case is single-sector max-parity RAID-Z blocks, in which 343 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 344 * times the size; so just assume that. Add to this the fact that 345 * we can have up to 3 DVAs per bp, and one more factor of 2 because 346 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, 347 * the worst case is: 348 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 349 */ 350 uint_t spa_asize_inflation = 24; 351 352 /* 353 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in 354 * the pool to be consumed (bounded by spa_max_slop). This ensures that we 355 * don't run the pool completely out of space, due to unaccounted changes (e.g. 356 * to the MOS). It also limits the worst-case time to allocate space. If we 357 * have less than this amount of free space, most ZPL operations (e.g. write, 358 * create) will return ENOSPC. The ZIL metaslabs (spa_embedded_log_class) are 359 * also part of this 3.2% of space which can't be consumed by normal writes; 360 * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded 361 * log space. 362 * 363 * Certain operations (e.g. file removal, most administrative actions) can 364 * use half the slop space. They will only return ENOSPC if less than half 365 * the slop space is free. Typically, once the pool has less than the slop 366 * space free, the user will use these operations to free up space in the pool. 367 * These are the operations that call dsl_pool_adjustedsize() with the netfree 368 * argument set to TRUE. 369 * 370 * Operations that are almost guaranteed to free up space in the absence of 371 * a pool checkpoint can use up to three quarters of the slop space 372 * (e.g zfs destroy). 373 * 374 * A very restricted set of operations are always permitted, regardless of 375 * the amount of free space. These are the operations that call 376 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net 377 * increase in the amount of space used, it is possible to run the pool 378 * completely out of space, causing it to be permanently read-only. 379 * 380 * Note that on very small pools, the slop space will be larger than 381 * 3.2%, in an effort to have it be at least spa_min_slop (128MB), 382 * but we never allow it to be more than half the pool size. 383 * 384 * Further, on very large pools, the slop space will be smaller than 385 * 3.2%, to avoid reserving much more space than we actually need; bounded 386 * by spa_max_slop (128GB). 387 * 388 * See also the comments in zfs_space_check_t. 389 */ 390 uint_t spa_slop_shift = 5; 391 static const uint64_t spa_min_slop = 128ULL * 1024 * 1024; 392 static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024; 393 394 /* 395 * Number of allocators to use, per spa instance 396 */ 397 static int spa_num_allocators = 4; 398 static int spa_cpus_per_allocator = 4; 399 400 /* 401 * Spa active allocator. 402 * Valid values are zfs_active_allocator=<dynamic|cursor|new-dynamic>. 403 */ 404 const char *zfs_active_allocator = "dynamic"; 405 406 void 407 spa_load_failed(spa_t *spa, const char *fmt, ...) 408 { 409 va_list adx; 410 char buf[256]; 411 412 va_start(adx, fmt); 413 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 414 va_end(adx); 415 416 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name, 417 spa->spa_trust_config ? "trusted" : "untrusted", buf); 418 } 419 420 void 421 spa_load_note(spa_t *spa, const char *fmt, ...) 422 { 423 va_list adx; 424 char buf[256]; 425 426 va_start(adx, fmt); 427 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 428 va_end(adx); 429 430 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name, 431 spa->spa_trust_config ? "trusted" : "untrusted", buf); 432 433 spa_import_progress_set_notes_nolog(spa, "%s", buf); 434 } 435 436 /* 437 * By default dedup and user data indirects land in the special class 438 */ 439 static int zfs_ddt_data_is_special = B_TRUE; 440 static int zfs_user_indirect_is_special = B_TRUE; 441 442 /* 443 * The percentage of special class final space reserved for metadata only. 444 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only 445 * let metadata into the class. 446 */ 447 static uint_t zfs_special_class_metadata_reserve_pct = 25; 448 449 /* 450 * ========================================================================== 451 * SPA config locking 452 * ========================================================================== 453 */ 454 static void 455 spa_config_lock_init(spa_t *spa) 456 { 457 for (int i = 0; i < SCL_LOCKS; i++) { 458 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 459 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 460 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 461 scl->scl_writer = NULL; 462 scl->scl_write_wanted = 0; 463 scl->scl_count = 0; 464 } 465 } 466 467 static void 468 spa_config_lock_destroy(spa_t *spa) 469 { 470 for (int i = 0; i < SCL_LOCKS; i++) { 471 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 472 mutex_destroy(&scl->scl_lock); 473 cv_destroy(&scl->scl_cv); 474 ASSERT0P(scl->scl_writer); 475 ASSERT0(scl->scl_write_wanted); 476 ASSERT0(scl->scl_count); 477 } 478 } 479 480 int 481 spa_config_tryenter(spa_t *spa, int locks, const void *tag, krw_t rw) 482 { 483 for (int i = 0; i < SCL_LOCKS; i++) { 484 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 485 if (!(locks & (1 << i))) 486 continue; 487 mutex_enter(&scl->scl_lock); 488 if (rw == RW_READER) { 489 if (scl->scl_writer || scl->scl_write_wanted) { 490 mutex_exit(&scl->scl_lock); 491 spa_config_exit(spa, locks & ((1 << i) - 1), 492 tag); 493 return (0); 494 } 495 } else { 496 ASSERT(scl->scl_writer != curthread); 497 if (scl->scl_count != 0) { 498 mutex_exit(&scl->scl_lock); 499 spa_config_exit(spa, locks & ((1 << i) - 1), 500 tag); 501 return (0); 502 } 503 scl->scl_writer = curthread; 504 } 505 scl->scl_count++; 506 mutex_exit(&scl->scl_lock); 507 } 508 return (1); 509 } 510 511 static void 512 spa_config_enter_impl(spa_t *spa, int locks, const void *tag, krw_t rw, 513 int mmp_flag) 514 { 515 (void) tag; 516 int wlocks_held = 0; 517 518 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 519 520 for (int i = 0; i < SCL_LOCKS; i++) { 521 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 522 if (scl->scl_writer == curthread) 523 wlocks_held |= (1 << i); 524 if (!(locks & (1 << i))) 525 continue; 526 mutex_enter(&scl->scl_lock); 527 if (rw == RW_READER) { 528 while (scl->scl_writer || 529 (!mmp_flag && scl->scl_write_wanted)) { 530 cv_wait(&scl->scl_cv, &scl->scl_lock); 531 } 532 } else { 533 ASSERT(scl->scl_writer != curthread); 534 while (scl->scl_count != 0) { 535 scl->scl_write_wanted++; 536 cv_wait(&scl->scl_cv, &scl->scl_lock); 537 scl->scl_write_wanted--; 538 } 539 scl->scl_writer = curthread; 540 } 541 scl->scl_count++; 542 mutex_exit(&scl->scl_lock); 543 } 544 ASSERT3U(wlocks_held, <=, locks); 545 } 546 547 void 548 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw) 549 { 550 spa_config_enter_impl(spa, locks, tag, rw, 0); 551 } 552 553 /* 554 * The spa_config_enter_mmp() allows the mmp thread to cut in front of 555 * outstanding write lock requests. This is needed since the mmp updates are 556 * time sensitive and failure to service them promptly will result in a 557 * suspended pool. This pool suspension has been seen in practice when there is 558 * a single disk in a pool that is responding slowly and presumably about to 559 * fail. 560 */ 561 562 void 563 spa_config_enter_mmp(spa_t *spa, int locks, const void *tag, krw_t rw) 564 { 565 spa_config_enter_impl(spa, locks, tag, rw, 1); 566 } 567 568 void 569 spa_config_exit(spa_t *spa, int locks, const void *tag) 570 { 571 (void) tag; 572 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 573 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 574 if (!(locks & (1 << i))) 575 continue; 576 mutex_enter(&scl->scl_lock); 577 ASSERT(scl->scl_count > 0); 578 if (--scl->scl_count == 0) { 579 ASSERT(scl->scl_writer == NULL || 580 scl->scl_writer == curthread); 581 scl->scl_writer = NULL; /* OK in either case */ 582 cv_broadcast(&scl->scl_cv); 583 } 584 mutex_exit(&scl->scl_lock); 585 } 586 } 587 588 int 589 spa_config_held(spa_t *spa, int locks, krw_t rw) 590 { 591 int locks_held = 0; 592 593 for (int i = 0; i < SCL_LOCKS; i++) { 594 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 595 if (!(locks & (1 << i))) 596 continue; 597 if ((rw == RW_READER && scl->scl_count != 0) || 598 (rw == RW_WRITER && scl->scl_writer == curthread)) 599 locks_held |= 1 << i; 600 } 601 602 return (locks_held); 603 } 604 605 /* 606 * ========================================================================== 607 * SPA namespace functions 608 * ========================================================================== 609 */ 610 611 /* 612 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 613 * Returns NULL if no matching spa_t is found. 614 */ 615 spa_t * 616 spa_lookup(const char *name) 617 { 618 static spa_t search; /* spa_t is large; don't allocate on stack */ 619 spa_t *spa; 620 avl_index_t where; 621 char *cp; 622 623 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 624 625 retry: 626 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 627 628 /* 629 * If it's a full dataset name, figure out the pool name and 630 * just use that. 631 */ 632 cp = strpbrk(search.spa_name, "/@#"); 633 if (cp != NULL) 634 *cp = '\0'; 635 636 spa = avl_find(&spa_namespace_avl, &search, &where); 637 if (spa == NULL) 638 return (NULL); 639 640 /* 641 * Avoid racing with import/export, which don't hold the namespace 642 * lock for their entire duration. 643 */ 644 if ((spa->spa_load_thread != NULL && 645 spa->spa_load_thread != curthread) || 646 (spa->spa_export_thread != NULL && 647 spa->spa_export_thread != curthread)) { 648 cv_wait(&spa_namespace_cv, &spa_namespace_lock); 649 goto retry; 650 } 651 652 return (spa); 653 } 654 655 /* 656 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 657 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 658 * looking for potentially hung I/Os. 659 */ 660 void 661 spa_deadman(void *arg) 662 { 663 spa_t *spa = arg; 664 665 /* Disable the deadman if the pool is suspended. */ 666 if (spa_suspended(spa)) 667 return; 668 669 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 670 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 671 (u_longlong_t)++spa->spa_deadman_calls); 672 if (zfs_deadman_enabled) 673 vdev_deadman(spa->spa_root_vdev, FTAG); 674 675 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, 676 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + 677 MSEC_TO_TICK(zfs_deadman_checktime_ms)); 678 } 679 680 static int 681 spa_log_sm_sort_by_txg(const void *va, const void *vb) 682 { 683 const spa_log_sm_t *a = va; 684 const spa_log_sm_t *b = vb; 685 686 return (TREE_CMP(a->sls_txg, b->sls_txg)); 687 } 688 689 /* 690 * Create an uninitialized spa_t with the given name. Requires 691 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 692 * exist by calling spa_lookup() first. 693 */ 694 spa_t * 695 spa_add(const char *name, nvlist_t *config, const char *altroot) 696 { 697 spa_t *spa; 698 spa_config_dirent_t *dp; 699 700 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 701 702 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 703 704 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 705 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 706 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 707 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); 708 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 709 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 710 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 711 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); 712 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 713 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 714 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 715 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL); 716 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL); 717 mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL); 718 mutex_init(&spa->spa_txg_log_time_lock, NULL, MUTEX_DEFAULT, NULL); 719 720 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 721 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); 722 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 723 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 724 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 725 cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL); 726 cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL); 727 728 for (int t = 0; t < TXG_SIZE; t++) 729 bplist_create(&spa->spa_free_bplist[t]); 730 731 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 732 spa->spa_state = POOL_STATE_UNINITIALIZED; 733 spa->spa_freeze_txg = UINT64_MAX; 734 spa->spa_final_txg = UINT64_MAX; 735 spa->spa_load_max_txg = UINT64_MAX; 736 spa->spa_proc = &p0; 737 spa->spa_proc_state = SPA_PROC_NONE; 738 spa->spa_trust_config = B_TRUE; 739 spa->spa_hostid = zone_get_hostid(NULL); 740 741 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); 742 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms); 743 spa_set_deadman_failmode(spa, zfs_deadman_failmode); 744 spa_set_allocator(spa, zfs_active_allocator); 745 746 zfs_refcount_create(&spa->spa_refcount); 747 spa_config_lock_init(spa); 748 spa_stats_init(spa); 749 750 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 751 avl_add(&spa_namespace_avl, spa); 752 753 /* 754 * Set the alternate root, if there is one. 755 */ 756 if (altroot) 757 spa->spa_root = spa_strdup(altroot); 758 759 /* Do not allow more allocators than fraction of CPUs. */ 760 spa->spa_alloc_count = MAX(MIN(spa_num_allocators, 761 boot_ncpus / MAX(spa_cpus_per_allocator, 1)), 1); 762 763 if (spa->spa_alloc_count > 1) { 764 spa->spa_allocs_use = kmem_zalloc(offsetof(spa_allocs_use_t, 765 sau_inuse[spa->spa_alloc_count]), KM_SLEEP); 766 mutex_init(&spa->spa_allocs_use->sau_lock, NULL, MUTEX_DEFAULT, 767 NULL); 768 } 769 770 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed, 771 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node)); 772 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg, 773 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node)); 774 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t), 775 offsetof(log_summary_entry_t, lse_node)); 776 777 /* 778 * Every pool starts with the default cachefile 779 */ 780 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 781 offsetof(spa_config_dirent_t, scd_link)); 782 783 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 784 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 785 list_insert_head(&spa->spa_config_list, dp); 786 787 VERIFY0(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, KM_SLEEP)); 788 789 if (config != NULL) { 790 nvlist_t *features; 791 792 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 793 &features) == 0) { 794 VERIFY0(nvlist_dup(features, 795 &spa->spa_label_features, 0)); 796 } 797 798 VERIFY0(nvlist_dup(config, &spa->spa_config, 0)); 799 } 800 801 if (spa->spa_label_features == NULL) { 802 VERIFY0(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 803 KM_SLEEP)); 804 } 805 806 spa->spa_min_ashift = INT_MAX; 807 spa->spa_max_ashift = 0; 808 spa->spa_min_alloc = INT_MAX; 809 spa->spa_gcd_alloc = INT_MAX; 810 811 /* Reset cached value */ 812 spa->spa_dedup_dspace = ~0ULL; 813 814 /* 815 * As a pool is being created, treat all features as disabled by 816 * setting SPA_FEATURE_DISABLED for all entries in the feature 817 * refcount cache. 818 */ 819 for (int i = 0; i < SPA_FEATURES; i++) { 820 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; 821 } 822 823 list_create(&spa->spa_leaf_list, sizeof (vdev_t), 824 offsetof(vdev_t, vdev_leaf_node)); 825 826 return (spa); 827 } 828 829 /* 830 * Removes a spa_t from the namespace, freeing up any memory used. Requires 831 * spa_namespace_lock. This is called only after the spa_t has been closed and 832 * deactivated. 833 */ 834 void 835 spa_remove(spa_t *spa) 836 { 837 spa_config_dirent_t *dp; 838 839 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 840 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED); 841 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0); 842 ASSERT0(spa->spa_waiters); 843 844 nvlist_free(spa->spa_config_splitting); 845 846 avl_remove(&spa_namespace_avl, spa); 847 848 if (spa->spa_root) 849 spa_strfree(spa->spa_root); 850 851 while ((dp = list_remove_head(&spa->spa_config_list)) != NULL) { 852 if (dp->scd_path != NULL) 853 spa_strfree(dp->scd_path); 854 kmem_free(dp, sizeof (spa_config_dirent_t)); 855 } 856 857 if (spa->spa_alloc_count > 1) { 858 mutex_destroy(&spa->spa_allocs_use->sau_lock); 859 kmem_free(spa->spa_allocs_use, offsetof(spa_allocs_use_t, 860 sau_inuse[spa->spa_alloc_count])); 861 } 862 863 avl_destroy(&spa->spa_metaslabs_by_flushed); 864 avl_destroy(&spa->spa_sm_logs_by_txg); 865 list_destroy(&spa->spa_log_summary); 866 list_destroy(&spa->spa_config_list); 867 list_destroy(&spa->spa_leaf_list); 868 869 nvlist_free(spa->spa_label_features); 870 nvlist_free(spa->spa_load_info); 871 nvlist_free(spa->spa_feat_stats); 872 spa_config_set(spa, NULL); 873 874 zfs_refcount_destroy(&spa->spa_refcount); 875 876 spa_stats_destroy(spa); 877 spa_config_lock_destroy(spa); 878 879 for (int t = 0; t < TXG_SIZE; t++) 880 bplist_destroy(&spa->spa_free_bplist[t]); 881 882 zio_checksum_templates_free(spa); 883 884 cv_destroy(&spa->spa_async_cv); 885 cv_destroy(&spa->spa_evicting_os_cv); 886 cv_destroy(&spa->spa_proc_cv); 887 cv_destroy(&spa->spa_scrub_io_cv); 888 cv_destroy(&spa->spa_suspend_cv); 889 cv_destroy(&spa->spa_activities_cv); 890 cv_destroy(&spa->spa_waiters_cv); 891 892 mutex_destroy(&spa->spa_flushed_ms_lock); 893 mutex_destroy(&spa->spa_async_lock); 894 mutex_destroy(&spa->spa_errlist_lock); 895 mutex_destroy(&spa->spa_errlog_lock); 896 mutex_destroy(&spa->spa_evicting_os_lock); 897 mutex_destroy(&spa->spa_history_lock); 898 mutex_destroy(&spa->spa_proc_lock); 899 mutex_destroy(&spa->spa_props_lock); 900 mutex_destroy(&spa->spa_cksum_tmpls_lock); 901 mutex_destroy(&spa->spa_scrub_lock); 902 mutex_destroy(&spa->spa_suspend_lock); 903 mutex_destroy(&spa->spa_vdev_top_lock); 904 mutex_destroy(&spa->spa_feat_stats_lock); 905 mutex_destroy(&spa->spa_activities_lock); 906 mutex_destroy(&spa->spa_txg_log_time_lock); 907 908 kmem_free(spa, sizeof (spa_t)); 909 } 910 911 /* 912 * Given a pool, return the next pool in the namespace, or NULL if there is 913 * none. If 'prev' is NULL, return the first pool. 914 */ 915 spa_t * 916 spa_next(spa_t *prev) 917 { 918 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 919 920 if (prev) 921 return (AVL_NEXT(&spa_namespace_avl, prev)); 922 else 923 return (avl_first(&spa_namespace_avl)); 924 } 925 926 /* 927 * ========================================================================== 928 * SPA refcount functions 929 * ========================================================================== 930 */ 931 932 /* 933 * Add a reference to the given spa_t. Must have at least one reference, or 934 * have the namespace lock held. 935 */ 936 void 937 spa_open_ref(spa_t *spa, const void *tag) 938 { 939 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref || 940 MUTEX_HELD(&spa_namespace_lock) || 941 spa->spa_load_thread == curthread); 942 (void) zfs_refcount_add(&spa->spa_refcount, tag); 943 } 944 945 /* 946 * Remove a reference to the given spa_t. Must have at least one reference, or 947 * have the namespace lock held or be part of a pool import/export. 948 */ 949 void 950 spa_close(spa_t *spa, const void *tag) 951 { 952 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref || 953 MUTEX_HELD(&spa_namespace_lock) || 954 spa->spa_load_thread == curthread || 955 spa->spa_export_thread == curthread); 956 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 957 } 958 959 /* 960 * Remove a reference to the given spa_t held by a dsl dir that is 961 * being asynchronously released. Async releases occur from a taskq 962 * performing eviction of dsl datasets and dirs. The namespace lock 963 * isn't held and the hold by the object being evicted may contribute to 964 * spa_minref (e.g. dataset or directory released during pool export), 965 * so the asserts in spa_close() do not apply. 966 */ 967 void 968 spa_async_close(spa_t *spa, const void *tag) 969 { 970 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 971 } 972 973 /* 974 * Check to see if the spa refcount is zero. Must be called with 975 * spa_namespace_lock held or be the spa export thread. We really 976 * compare against spa_minref, which is the number of references 977 * acquired when opening a pool 978 */ 979 boolean_t 980 spa_refcount_zero(spa_t *spa) 981 { 982 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 983 spa->spa_export_thread == curthread); 984 985 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref); 986 } 987 988 /* 989 * ========================================================================== 990 * SPA spare and l2cache tracking 991 * ========================================================================== 992 */ 993 994 /* 995 * Hot spares and cache devices are tracked using the same code below, 996 * for 'auxiliary' devices. 997 */ 998 999 typedef struct spa_aux { 1000 uint64_t aux_guid; 1001 uint64_t aux_pool; 1002 avl_node_t aux_avl; 1003 int aux_count; 1004 } spa_aux_t; 1005 1006 static inline int 1007 spa_aux_compare(const void *a, const void *b) 1008 { 1009 const spa_aux_t *sa = (const spa_aux_t *)a; 1010 const spa_aux_t *sb = (const spa_aux_t *)b; 1011 1012 return (TREE_CMP(sa->aux_guid, sb->aux_guid)); 1013 } 1014 1015 static void 1016 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 1017 { 1018 avl_index_t where; 1019 spa_aux_t search; 1020 spa_aux_t *aux; 1021 1022 search.aux_guid = vd->vdev_guid; 1023 if ((aux = avl_find(avl, &search, &where)) != NULL) { 1024 aux->aux_count++; 1025 } else { 1026 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 1027 aux->aux_guid = vd->vdev_guid; 1028 aux->aux_count = 1; 1029 avl_insert(avl, aux, where); 1030 } 1031 } 1032 1033 static void 1034 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 1035 { 1036 spa_aux_t search; 1037 spa_aux_t *aux; 1038 avl_index_t where; 1039 1040 search.aux_guid = vd->vdev_guid; 1041 aux = avl_find(avl, &search, &where); 1042 1043 ASSERT(aux != NULL); 1044 1045 if (--aux->aux_count == 0) { 1046 avl_remove(avl, aux); 1047 kmem_free(aux, sizeof (spa_aux_t)); 1048 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 1049 aux->aux_pool = 0ULL; 1050 } 1051 } 1052 1053 static boolean_t 1054 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 1055 { 1056 spa_aux_t search, *found; 1057 1058 search.aux_guid = guid; 1059 found = avl_find(avl, &search, NULL); 1060 1061 if (pool) { 1062 if (found) 1063 *pool = found->aux_pool; 1064 else 1065 *pool = 0ULL; 1066 } 1067 1068 if (refcnt) { 1069 if (found) 1070 *refcnt = found->aux_count; 1071 else 1072 *refcnt = 0; 1073 } 1074 1075 return (found != NULL); 1076 } 1077 1078 static void 1079 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 1080 { 1081 spa_aux_t search, *found; 1082 avl_index_t where; 1083 1084 search.aux_guid = vd->vdev_guid; 1085 found = avl_find(avl, &search, &where); 1086 ASSERT(found != NULL); 1087 ASSERT(found->aux_pool == 0ULL); 1088 1089 found->aux_pool = spa_guid(vd->vdev_spa); 1090 } 1091 1092 /* 1093 * Spares are tracked globally due to the following constraints: 1094 * 1095 * - A spare may be part of multiple pools. 1096 * - A spare may be added to a pool even if it's actively in use within 1097 * another pool. 1098 * - A spare in use in any pool can only be the source of a replacement if 1099 * the target is a spare in the same pool. 1100 * 1101 * We keep track of all spares on the system through the use of a reference 1102 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 1103 * spare, then we bump the reference count in the AVL tree. In addition, we set 1104 * the 'vdev_isspare' member to indicate that the device is a spare (active or 1105 * inactive). When a spare is made active (used to replace a device in the 1106 * pool), we also keep track of which pool its been made a part of. 1107 * 1108 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 1109 * called under the spa_namespace lock as part of vdev reconfiguration. The 1110 * separate spare lock exists for the status query path, which does not need to 1111 * be completely consistent with respect to other vdev configuration changes. 1112 */ 1113 1114 static int 1115 spa_spare_compare(const void *a, const void *b) 1116 { 1117 return (spa_aux_compare(a, b)); 1118 } 1119 1120 void 1121 spa_spare_add(vdev_t *vd) 1122 { 1123 mutex_enter(&spa_spare_lock); 1124 ASSERT(!vd->vdev_isspare); 1125 spa_aux_add(vd, &spa_spare_avl); 1126 vd->vdev_isspare = B_TRUE; 1127 mutex_exit(&spa_spare_lock); 1128 } 1129 1130 void 1131 spa_spare_remove(vdev_t *vd) 1132 { 1133 mutex_enter(&spa_spare_lock); 1134 ASSERT(vd->vdev_isspare); 1135 spa_aux_remove(vd, &spa_spare_avl); 1136 vd->vdev_isspare = B_FALSE; 1137 mutex_exit(&spa_spare_lock); 1138 } 1139 1140 boolean_t 1141 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 1142 { 1143 boolean_t found; 1144 1145 mutex_enter(&spa_spare_lock); 1146 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 1147 mutex_exit(&spa_spare_lock); 1148 1149 return (found); 1150 } 1151 1152 void 1153 spa_spare_activate(vdev_t *vd) 1154 { 1155 mutex_enter(&spa_spare_lock); 1156 ASSERT(vd->vdev_isspare); 1157 spa_aux_activate(vd, &spa_spare_avl); 1158 mutex_exit(&spa_spare_lock); 1159 } 1160 1161 /* 1162 * Level 2 ARC devices are tracked globally for the same reasons as spares. 1163 * Cache devices currently only support one pool per cache device, and so 1164 * for these devices the aux reference count is currently unused beyond 1. 1165 */ 1166 1167 static int 1168 spa_l2cache_compare(const void *a, const void *b) 1169 { 1170 return (spa_aux_compare(a, b)); 1171 } 1172 1173 void 1174 spa_l2cache_add(vdev_t *vd) 1175 { 1176 mutex_enter(&spa_l2cache_lock); 1177 ASSERT(!vd->vdev_isl2cache); 1178 spa_aux_add(vd, &spa_l2cache_avl); 1179 vd->vdev_isl2cache = B_TRUE; 1180 mutex_exit(&spa_l2cache_lock); 1181 } 1182 1183 void 1184 spa_l2cache_remove(vdev_t *vd) 1185 { 1186 mutex_enter(&spa_l2cache_lock); 1187 ASSERT(vd->vdev_isl2cache); 1188 spa_aux_remove(vd, &spa_l2cache_avl); 1189 vd->vdev_isl2cache = B_FALSE; 1190 mutex_exit(&spa_l2cache_lock); 1191 } 1192 1193 boolean_t 1194 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 1195 { 1196 boolean_t found; 1197 1198 mutex_enter(&spa_l2cache_lock); 1199 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 1200 mutex_exit(&spa_l2cache_lock); 1201 1202 return (found); 1203 } 1204 1205 void 1206 spa_l2cache_activate(vdev_t *vd) 1207 { 1208 mutex_enter(&spa_l2cache_lock); 1209 ASSERT(vd->vdev_isl2cache); 1210 spa_aux_activate(vd, &spa_l2cache_avl); 1211 mutex_exit(&spa_l2cache_lock); 1212 } 1213 1214 /* 1215 * ========================================================================== 1216 * SPA vdev locking 1217 * ========================================================================== 1218 */ 1219 1220 /* 1221 * Lock the given spa_t for the purpose of adding or removing a vdev. 1222 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 1223 * It returns the next transaction group for the spa_t. 1224 */ 1225 uint64_t 1226 spa_vdev_enter(spa_t *spa) 1227 { 1228 mutex_enter(&spa->spa_vdev_top_lock); 1229 mutex_enter(&spa_namespace_lock); 1230 1231 ASSERT0(spa->spa_export_thread); 1232 1233 vdev_autotrim_stop_all(spa); 1234 1235 return (spa_vdev_config_enter(spa)); 1236 } 1237 1238 /* 1239 * The same as spa_vdev_enter() above but additionally takes the guid of 1240 * the vdev being detached. When there is a rebuild in process it will be 1241 * suspended while the vdev tree is modified then resumed by spa_vdev_exit(). 1242 * The rebuild is canceled if only a single child remains after the detach. 1243 */ 1244 uint64_t 1245 spa_vdev_detach_enter(spa_t *spa, uint64_t guid) 1246 { 1247 mutex_enter(&spa->spa_vdev_top_lock); 1248 mutex_enter(&spa_namespace_lock); 1249 1250 ASSERT0(spa->spa_export_thread); 1251 1252 vdev_autotrim_stop_all(spa); 1253 1254 if (guid != 0) { 1255 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 1256 if (vd) { 1257 vdev_rebuild_stop_wait(vd->vdev_top); 1258 } 1259 } 1260 1261 return (spa_vdev_config_enter(spa)); 1262 } 1263 1264 /* 1265 * Internal implementation for spa_vdev_enter(). Used when a vdev 1266 * operation requires multiple syncs (i.e. removing a device) while 1267 * keeping the spa_namespace_lock held. 1268 */ 1269 uint64_t 1270 spa_vdev_config_enter(spa_t *spa) 1271 { 1272 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1273 1274 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1275 1276 return (spa_last_synced_txg(spa) + 1); 1277 } 1278 1279 /* 1280 * Used in combination with spa_vdev_config_enter() to allow the syncing 1281 * of multiple transactions without releasing the spa_namespace_lock. 1282 */ 1283 void 1284 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, 1285 const char *tag) 1286 { 1287 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1288 1289 int config_changed = B_FALSE; 1290 1291 ASSERT(txg > spa_last_synced_txg(spa)); 1292 1293 spa->spa_pending_vdev = NULL; 1294 1295 /* 1296 * Reassess the DTLs. 1297 */ 1298 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE); 1299 1300 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 1301 config_changed = B_TRUE; 1302 spa->spa_config_generation++; 1303 } 1304 1305 /* 1306 * Verify the metaslab classes. 1307 */ 1308 metaslab_class_validate(spa_normal_class(spa)); 1309 metaslab_class_validate(spa_log_class(spa)); 1310 metaslab_class_validate(spa_embedded_log_class(spa)); 1311 metaslab_class_validate(spa_special_class(spa)); 1312 metaslab_class_validate(spa_special_embedded_log_class(spa)); 1313 metaslab_class_validate(spa_dedup_class(spa)); 1314 1315 spa_config_exit(spa, SCL_ALL, spa); 1316 1317 /* 1318 * Panic the system if the specified tag requires it. This 1319 * is useful for ensuring that configurations are updated 1320 * transactionally. 1321 */ 1322 if (zio_injection_enabled) 1323 zio_handle_panic_injection(spa, tag, 0); 1324 1325 /* 1326 * Note: this txg_wait_synced() is important because it ensures 1327 * that there won't be more than one config change per txg. 1328 * This allows us to use the txg as the generation number. 1329 */ 1330 if (error == 0) 1331 txg_wait_synced(spa->spa_dsl_pool, txg); 1332 1333 if (vd != NULL) { 1334 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); 1335 if (vd->vdev_ops->vdev_op_leaf) { 1336 mutex_enter(&vd->vdev_initialize_lock); 1337 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, 1338 NULL); 1339 mutex_exit(&vd->vdev_initialize_lock); 1340 1341 mutex_enter(&vd->vdev_trim_lock); 1342 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL); 1343 mutex_exit(&vd->vdev_trim_lock); 1344 } 1345 1346 /* 1347 * The vdev may be both a leaf and top-level device. 1348 */ 1349 vdev_autotrim_stop_wait(vd); 1350 1351 spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER); 1352 vdev_free(vd); 1353 spa_config_exit(spa, SCL_STATE_ALL, spa); 1354 } 1355 1356 /* 1357 * If the config changed, update the config cache. 1358 */ 1359 if (config_changed) 1360 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); 1361 } 1362 1363 /* 1364 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1365 * locking of spa_vdev_enter(), we also want make sure the transactions have 1366 * synced to disk, and then update the global configuration cache with the new 1367 * information. 1368 */ 1369 int 1370 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1371 { 1372 vdev_autotrim_restart(spa); 1373 vdev_rebuild_restart(spa); 1374 1375 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1376 mutex_exit(&spa_namespace_lock); 1377 mutex_exit(&spa->spa_vdev_top_lock); 1378 1379 return (error); 1380 } 1381 1382 /* 1383 * Lock the given spa_t for the purpose of changing vdev state. 1384 */ 1385 void 1386 spa_vdev_state_enter(spa_t *spa, int oplocks) 1387 { 1388 int locks = SCL_STATE_ALL | oplocks; 1389 1390 /* 1391 * Root pools may need to read of the underlying devfs filesystem 1392 * when opening up a vdev. Unfortunately if we're holding the 1393 * SCL_ZIO lock it will result in a deadlock when we try to issue 1394 * the read from the root filesystem. Instead we "prefetch" 1395 * the associated vnodes that we need prior to opening the 1396 * underlying devices and cache them so that we can prevent 1397 * any I/O when we are doing the actual open. 1398 */ 1399 if (spa_is_root(spa)) { 1400 int low = locks & ~(SCL_ZIO - 1); 1401 int high = locks & ~low; 1402 1403 spa_config_enter(spa, high, spa, RW_WRITER); 1404 vdev_hold(spa->spa_root_vdev); 1405 spa_config_enter(spa, low, spa, RW_WRITER); 1406 } else { 1407 spa_config_enter(spa, locks, spa, RW_WRITER); 1408 } 1409 spa->spa_vdev_locks = locks; 1410 } 1411 1412 int 1413 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1414 { 1415 boolean_t config_changed = B_FALSE; 1416 vdev_t *vdev_top; 1417 1418 if (vd == NULL || vd == spa->spa_root_vdev) { 1419 vdev_top = spa->spa_root_vdev; 1420 } else { 1421 vdev_top = vd->vdev_top; 1422 } 1423 1424 if (vd != NULL || error == 0) 1425 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE); 1426 1427 if (vd != NULL) { 1428 if (vd != spa->spa_root_vdev) 1429 vdev_state_dirty(vdev_top); 1430 1431 config_changed = B_TRUE; 1432 spa->spa_config_generation++; 1433 } 1434 1435 if (spa_is_root(spa)) 1436 vdev_rele(spa->spa_root_vdev); 1437 1438 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1439 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1440 1441 /* 1442 * If anything changed, wait for it to sync. This ensures that, 1443 * from the system administrator's perspective, zpool(8) commands 1444 * are synchronous. This is important for things like zpool offline: 1445 * when the command completes, you expect no further I/O from ZFS. 1446 */ 1447 if (vd != NULL) 1448 txg_wait_synced(spa->spa_dsl_pool, 0); 1449 1450 /* 1451 * If the config changed, update the config cache. 1452 */ 1453 if (config_changed) { 1454 mutex_enter(&spa_namespace_lock); 1455 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE); 1456 mutex_exit(&spa_namespace_lock); 1457 } 1458 1459 return (error); 1460 } 1461 1462 /* 1463 * ========================================================================== 1464 * Miscellaneous functions 1465 * ========================================================================== 1466 */ 1467 1468 void 1469 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) 1470 { 1471 if (!nvlist_exists(spa->spa_label_features, feature)) { 1472 fnvlist_add_boolean(spa->spa_label_features, feature); 1473 /* 1474 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't 1475 * dirty the vdev config because lock SCL_CONFIG is not held. 1476 * Thankfully, in this case we don't need to dirty the config 1477 * because it will be written out anyway when we finish 1478 * creating the pool. 1479 */ 1480 if (tx->tx_txg != TXG_INITIAL) 1481 vdev_config_dirty(spa->spa_root_vdev); 1482 } 1483 } 1484 1485 void 1486 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1487 { 1488 if (nvlist_remove_all(spa->spa_label_features, feature) == 0) 1489 vdev_config_dirty(spa->spa_root_vdev); 1490 } 1491 1492 /* 1493 * Return the spa_t associated with given pool_guid, if it exists. If 1494 * device_guid is non-zero, determine whether the pool exists *and* contains 1495 * a device with the specified device_guid. 1496 */ 1497 spa_t * 1498 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1499 { 1500 spa_t *spa; 1501 avl_tree_t *t = &spa_namespace_avl; 1502 1503 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1504 1505 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1506 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1507 continue; 1508 if (spa->spa_root_vdev == NULL) 1509 continue; 1510 if (spa_guid(spa) == pool_guid) { 1511 if (device_guid == 0) 1512 break; 1513 1514 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1515 device_guid) != NULL) 1516 break; 1517 1518 /* 1519 * Check any devices we may be in the process of adding. 1520 */ 1521 if (spa->spa_pending_vdev) { 1522 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1523 device_guid) != NULL) 1524 break; 1525 } 1526 } 1527 } 1528 1529 return (spa); 1530 } 1531 1532 /* 1533 * Determine whether a pool with the given pool_guid exists. 1534 */ 1535 boolean_t 1536 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1537 { 1538 return (spa_by_guid(pool_guid, device_guid) != NULL); 1539 } 1540 1541 char * 1542 spa_strdup(const char *s) 1543 { 1544 size_t len; 1545 char *new; 1546 1547 len = strlen(s); 1548 new = kmem_alloc(len + 1, KM_SLEEP); 1549 memcpy(new, s, len + 1); 1550 1551 return (new); 1552 } 1553 1554 void 1555 spa_strfree(char *s) 1556 { 1557 kmem_free(s, strlen(s) + 1); 1558 } 1559 1560 uint64_t 1561 spa_generate_guid(spa_t *spa) 1562 { 1563 uint64_t guid; 1564 1565 if (spa != NULL) { 1566 do { 1567 (void) random_get_pseudo_bytes((void *)&guid, 1568 sizeof (guid)); 1569 } while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)); 1570 } else { 1571 do { 1572 (void) random_get_pseudo_bytes((void *)&guid, 1573 sizeof (guid)); 1574 } while (guid == 0 || spa_guid_exists(guid, 0)); 1575 } 1576 1577 return (guid); 1578 } 1579 1580 static boolean_t 1581 spa_load_guid_exists(uint64_t guid) 1582 { 1583 avl_tree_t *t = &spa_namespace_avl; 1584 1585 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1586 1587 for (spa_t *spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1588 if (spa_load_guid(spa) == guid) 1589 return (B_TRUE); 1590 } 1591 1592 return (arc_async_flush_guid_inuse(guid)); 1593 } 1594 1595 uint64_t 1596 spa_generate_load_guid(void) 1597 { 1598 uint64_t guid; 1599 1600 do { 1601 (void) random_get_pseudo_bytes((void *)&guid, 1602 sizeof (guid)); 1603 } while (guid == 0 || spa_load_guid_exists(guid)); 1604 1605 return (guid); 1606 } 1607 1608 void 1609 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) 1610 { 1611 char type[256]; 1612 const char *checksum = NULL; 1613 const char *compress = NULL; 1614 1615 if (bp != NULL) { 1616 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1617 dmu_object_byteswap_t bswap = 1618 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1619 (void) snprintf(type, sizeof (type), "bswap %s %s", 1620 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1621 "metadata" : "data", 1622 dmu_ot_byteswap[bswap].ob_name); 1623 } else { 1624 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1625 sizeof (type)); 1626 } 1627 if (!BP_IS_EMBEDDED(bp)) { 1628 checksum = 1629 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1630 } 1631 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1632 } 1633 1634 SNPRINTF_BLKPTR(kmem_scnprintf, ' ', buf, buflen, bp, type, checksum, 1635 compress); 1636 } 1637 1638 void 1639 spa_freeze(spa_t *spa) 1640 { 1641 uint64_t freeze_txg = 0; 1642 1643 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1644 if (spa->spa_freeze_txg == UINT64_MAX) { 1645 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1646 spa->spa_freeze_txg = freeze_txg; 1647 } 1648 spa_config_exit(spa, SCL_ALL, FTAG); 1649 if (freeze_txg != 0) 1650 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1651 } 1652 1653 void 1654 zfs_panic_recover(const char *fmt, ...) 1655 { 1656 va_list adx; 1657 1658 va_start(adx, fmt); 1659 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1660 va_end(adx); 1661 } 1662 1663 /* 1664 * This is a stripped-down version of strtoull, suitable only for converting 1665 * lowercase hexadecimal numbers that don't overflow. 1666 */ 1667 uint64_t 1668 zfs_strtonum(const char *str, char **nptr) 1669 { 1670 uint64_t val = 0; 1671 char c; 1672 int digit; 1673 1674 while ((c = *str) != '\0') { 1675 if (c >= '0' && c <= '9') 1676 digit = c - '0'; 1677 else if (c >= 'a' && c <= 'f') 1678 digit = 10 + c - 'a'; 1679 else 1680 break; 1681 1682 val *= 16; 1683 val += digit; 1684 1685 str++; 1686 } 1687 1688 if (nptr) 1689 *nptr = (char *)str; 1690 1691 return (val); 1692 } 1693 1694 void 1695 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx) 1696 { 1697 /* 1698 * We bump the feature refcount for each special vdev added to the pool 1699 */ 1700 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)); 1701 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx); 1702 } 1703 1704 /* 1705 * ========================================================================== 1706 * Accessor functions 1707 * ========================================================================== 1708 */ 1709 1710 boolean_t 1711 spa_shutting_down(spa_t *spa) 1712 { 1713 return (spa->spa_async_suspended); 1714 } 1715 1716 dsl_pool_t * 1717 spa_get_dsl(spa_t *spa) 1718 { 1719 return (spa->spa_dsl_pool); 1720 } 1721 1722 boolean_t 1723 spa_is_initializing(spa_t *spa) 1724 { 1725 return (spa->spa_is_initializing); 1726 } 1727 1728 boolean_t 1729 spa_indirect_vdevs_loaded(spa_t *spa) 1730 { 1731 return (spa->spa_indirect_vdevs_loaded); 1732 } 1733 1734 blkptr_t * 1735 spa_get_rootblkptr(spa_t *spa) 1736 { 1737 return (&spa->spa_ubsync.ub_rootbp); 1738 } 1739 1740 void 1741 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1742 { 1743 spa->spa_uberblock.ub_rootbp = *bp; 1744 } 1745 1746 void 1747 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1748 { 1749 if (spa->spa_root == NULL) 1750 buf[0] = '\0'; 1751 else 1752 (void) strlcpy(buf, spa->spa_root, buflen); 1753 } 1754 1755 uint32_t 1756 spa_sync_pass(spa_t *spa) 1757 { 1758 return (spa->spa_sync_pass); 1759 } 1760 1761 char * 1762 spa_name(spa_t *spa) 1763 { 1764 return (spa->spa_name); 1765 } 1766 1767 uint64_t 1768 spa_guid(spa_t *spa) 1769 { 1770 dsl_pool_t *dp = spa_get_dsl(spa); 1771 uint64_t guid; 1772 1773 /* 1774 * If we fail to parse the config during spa_load(), we can go through 1775 * the error path (which posts an ereport) and end up here with no root 1776 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1777 * this case. 1778 */ 1779 if (spa->spa_root_vdev == NULL) 1780 return (spa->spa_config_guid); 1781 1782 guid = spa->spa_last_synced_guid != 0 ? 1783 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1784 1785 /* 1786 * Return the most recently synced out guid unless we're 1787 * in syncing context. 1788 */ 1789 if (dp && dsl_pool_sync_context(dp)) 1790 return (spa->spa_root_vdev->vdev_guid); 1791 else 1792 return (guid); 1793 } 1794 1795 uint64_t 1796 spa_load_guid(spa_t *spa) 1797 { 1798 /* 1799 * This is a GUID that exists solely as a reference for the 1800 * purposes of the arc. It is generated at load time, and 1801 * is never written to persistent storage. 1802 */ 1803 return (spa->spa_load_guid); 1804 } 1805 1806 uint64_t 1807 spa_last_synced_txg(spa_t *spa) 1808 { 1809 return (spa->spa_ubsync.ub_txg); 1810 } 1811 1812 uint64_t 1813 spa_first_txg(spa_t *spa) 1814 { 1815 return (spa->spa_first_txg); 1816 } 1817 1818 uint64_t 1819 spa_syncing_txg(spa_t *spa) 1820 { 1821 return (spa->spa_syncing_txg); 1822 } 1823 1824 /* 1825 * Return the last txg where data can be dirtied. The final txgs 1826 * will be used to just clear out any deferred frees that remain. 1827 */ 1828 uint64_t 1829 spa_final_dirty_txg(spa_t *spa) 1830 { 1831 return (spa->spa_final_txg - TXG_DEFER_SIZE); 1832 } 1833 1834 pool_state_t 1835 spa_state(spa_t *spa) 1836 { 1837 return (spa->spa_state); 1838 } 1839 1840 spa_load_state_t 1841 spa_load_state(spa_t *spa) 1842 { 1843 return (spa->spa_load_state); 1844 } 1845 1846 uint64_t 1847 spa_freeze_txg(spa_t *spa) 1848 { 1849 return (spa->spa_freeze_txg); 1850 } 1851 1852 /* 1853 * Return the inflated asize for a logical write in bytes. This is used by the 1854 * DMU to calculate the space a logical write will require on disk. 1855 * If lsize is smaller than the largest physical block size allocatable on this 1856 * pool we use its value instead, since the write will end up using the whole 1857 * block anyway. 1858 */ 1859 uint64_t 1860 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize) 1861 { 1862 if (lsize == 0) 1863 return (0); /* No inflation needed */ 1864 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation); 1865 } 1866 1867 /* 1868 * Return the amount of slop space in bytes. It is typically 1/32 of the pool 1869 * (3.2%), minus the embedded log space. On very small pools, it may be 1870 * slightly larger than this. On very large pools, it will be capped to 1871 * the value of spa_max_slop. The embedded log space is not included in 1872 * spa_dspace. By subtracting it, the usable space (per "zfs list") is a 1873 * constant 97% of the total space, regardless of metaslab size (assuming the 1874 * default spa_slop_shift=5 and a non-tiny pool). 1875 * 1876 * See the comment above spa_slop_shift for more details. 1877 */ 1878 uint64_t 1879 spa_get_slop_space(spa_t *spa) 1880 { 1881 uint64_t space = 0; 1882 uint64_t slop = 0; 1883 1884 /* 1885 * Make sure spa_dedup_dspace has been set. 1886 */ 1887 if (spa->spa_dedup_dspace == ~0ULL) 1888 spa_update_dspace(spa); 1889 1890 space = spa->spa_rdspace; 1891 slop = MIN(space >> spa_slop_shift, spa_max_slop); 1892 1893 /* 1894 * Subtract the embedded log space, but no more than half the (3.2%) 1895 * unusable space. Note, the "no more than half" is only relevant if 1896 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by 1897 * default. 1898 */ 1899 uint64_t embedded_log = 1900 metaslab_class_get_dspace(spa_embedded_log_class(spa)); 1901 embedded_log += metaslab_class_get_dspace( 1902 spa_special_embedded_log_class(spa)); 1903 slop -= MIN(embedded_log, slop >> 1); 1904 1905 /* 1906 * Slop space should be at least spa_min_slop, but no more than half 1907 * the entire pool. 1908 */ 1909 slop = MAX(slop, MIN(space >> 1, spa_min_slop)); 1910 return (slop); 1911 } 1912 1913 uint64_t 1914 spa_get_dspace(spa_t *spa) 1915 { 1916 return (spa->spa_dspace); 1917 } 1918 1919 uint64_t 1920 spa_get_checkpoint_space(spa_t *spa) 1921 { 1922 return (spa->spa_checkpoint_info.sci_dspace); 1923 } 1924 1925 void 1926 spa_update_dspace(spa_t *spa) 1927 { 1928 spa->spa_rdspace = metaslab_class_get_dspace(spa_normal_class(spa)); 1929 if (spa->spa_nonallocating_dspace > 0) { 1930 /* 1931 * Subtract the space provided by all non-allocating vdevs that 1932 * contribute to dspace. If a file is overwritten, its old 1933 * blocks are freed and new blocks are allocated. If there are 1934 * no snapshots of the file, the available space should remain 1935 * the same. The old blocks could be freed from the 1936 * non-allocating vdev, but the new blocks must be allocated on 1937 * other (allocating) vdevs. By reserving the entire size of 1938 * the non-allocating vdevs (including allocated space), we 1939 * ensure that there will be enough space on the allocating 1940 * vdevs for this file overwrite to succeed. 1941 * 1942 * Note that the DMU/DSL doesn't actually know or care 1943 * how much space is allocated (it does its own tracking 1944 * of how much space has been logically used). So it 1945 * doesn't matter that the data we are moving may be 1946 * allocated twice (on the old device and the new device). 1947 */ 1948 ASSERT3U(spa->spa_rdspace, >=, spa->spa_nonallocating_dspace); 1949 spa->spa_rdspace -= spa->spa_nonallocating_dspace; 1950 } 1951 spa->spa_dspace = spa->spa_rdspace + ddt_get_dedup_dspace(spa) + 1952 brt_get_dspace(spa); 1953 } 1954 1955 /* 1956 * Return the failure mode that has been set to this pool. The default 1957 * behavior will be to block all I/Os when a complete failure occurs. 1958 */ 1959 uint64_t 1960 spa_get_failmode(spa_t *spa) 1961 { 1962 return (spa->spa_failmode); 1963 } 1964 1965 boolean_t 1966 spa_suspended(spa_t *spa) 1967 { 1968 return (spa->spa_suspended != ZIO_SUSPEND_NONE); 1969 } 1970 1971 uint64_t 1972 spa_version(spa_t *spa) 1973 { 1974 return (spa->spa_ubsync.ub_version); 1975 } 1976 1977 boolean_t 1978 spa_deflate(spa_t *spa) 1979 { 1980 return (spa->spa_deflate); 1981 } 1982 1983 metaslab_class_t * 1984 spa_normal_class(spa_t *spa) 1985 { 1986 return (spa->spa_normal_class); 1987 } 1988 1989 metaslab_class_t * 1990 spa_log_class(spa_t *spa) 1991 { 1992 return (spa->spa_log_class); 1993 } 1994 1995 metaslab_class_t * 1996 spa_embedded_log_class(spa_t *spa) 1997 { 1998 return (spa->spa_embedded_log_class); 1999 } 2000 2001 metaslab_class_t * 2002 spa_special_class(spa_t *spa) 2003 { 2004 return (spa->spa_special_class); 2005 } 2006 2007 metaslab_class_t * 2008 spa_special_embedded_log_class(spa_t *spa) 2009 { 2010 return (spa->spa_special_embedded_log_class); 2011 } 2012 2013 metaslab_class_t * 2014 spa_dedup_class(spa_t *spa) 2015 { 2016 return (spa->spa_dedup_class); 2017 } 2018 2019 boolean_t 2020 spa_special_has_ddt(spa_t *spa) 2021 { 2022 return (zfs_ddt_data_is_special && spa_has_special(spa)); 2023 } 2024 2025 /* 2026 * Locate an appropriate allocation class 2027 */ 2028 metaslab_class_t * 2029 spa_preferred_class(spa_t *spa, const zio_t *zio) 2030 { 2031 metaslab_class_t *mc = zio->io_metaslab_class; 2032 boolean_t tried_dedup = (mc == spa_dedup_class(spa)); 2033 boolean_t tried_special = (mc == spa_special_class(spa)); 2034 const zio_prop_t *zp = &zio->io_prop; 2035 2036 /* 2037 * Override object type for the purposes of selecting a storage class. 2038 * Primarily for DMU_OTN_ types where we can't explicitly control their 2039 * storage class; instead, choose a static type most closely matches 2040 * what we want. 2041 */ 2042 dmu_object_type_t objtype = 2043 zp->zp_storage_type == DMU_OT_NONE ? 2044 zp->zp_type : zp->zp_storage_type; 2045 2046 /* 2047 * ZIL allocations determine their class in zio_alloc_zil(). 2048 */ 2049 ASSERT(objtype != DMU_OT_INTENT_LOG); 2050 2051 if (DMU_OT_IS_DDT(objtype)) { 2052 if (spa_has_dedup(spa) && !tried_dedup && !tried_special) 2053 return (spa_dedup_class(spa)); 2054 else if (spa_special_has_ddt(spa) && !tried_special) 2055 return (spa_special_class(spa)); 2056 else 2057 return (spa_normal_class(spa)); 2058 } 2059 2060 /* Indirect blocks for user data can land in special if allowed */ 2061 if (zp->zp_level > 0 && 2062 (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) { 2063 if (zfs_user_indirect_is_special && spa_has_special(spa) && 2064 !tried_special) 2065 return (spa_special_class(spa)); 2066 else 2067 return (spa_normal_class(spa)); 2068 } 2069 2070 if (DMU_OT_IS_METADATA(objtype) || zp->zp_level > 0) { 2071 if (spa_has_special(spa) && !tried_special) 2072 return (spa_special_class(spa)); 2073 else 2074 return (spa_normal_class(spa)); 2075 } 2076 2077 /* 2078 * Allow small file or zvol blocks in special class if opted in by 2079 * the special_smallblk property. However, always leave a reserve of 2080 * zfs_special_class_metadata_reserve_pct exclusively for metadata. 2081 */ 2082 if ((DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL) && 2083 spa_has_special(spa) && !tried_special && 2084 zio->io_size <= zp->zp_zpl_smallblk) { 2085 metaslab_class_t *special = spa_special_class(spa); 2086 uint64_t alloc = metaslab_class_get_alloc(special); 2087 uint64_t space = metaslab_class_get_space(special); 2088 uint64_t limit = 2089 (space * (100 - zfs_special_class_metadata_reserve_pct)) 2090 / 100; 2091 2092 if (alloc < limit) 2093 return (special); 2094 } 2095 2096 return (spa_normal_class(spa)); 2097 } 2098 2099 void 2100 spa_evicting_os_register(spa_t *spa, objset_t *os) 2101 { 2102 mutex_enter(&spa->spa_evicting_os_lock); 2103 list_insert_head(&spa->spa_evicting_os_list, os); 2104 mutex_exit(&spa->spa_evicting_os_lock); 2105 } 2106 2107 void 2108 spa_evicting_os_deregister(spa_t *spa, objset_t *os) 2109 { 2110 mutex_enter(&spa->spa_evicting_os_lock); 2111 list_remove(&spa->spa_evicting_os_list, os); 2112 cv_broadcast(&spa->spa_evicting_os_cv); 2113 mutex_exit(&spa->spa_evicting_os_lock); 2114 } 2115 2116 void 2117 spa_evicting_os_wait(spa_t *spa) 2118 { 2119 mutex_enter(&spa->spa_evicting_os_lock); 2120 while (!list_is_empty(&spa->spa_evicting_os_list)) 2121 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); 2122 mutex_exit(&spa->spa_evicting_os_lock); 2123 2124 dmu_buf_user_evict_wait(); 2125 } 2126 2127 int 2128 spa_max_replication(spa_t *spa) 2129 { 2130 /* 2131 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 2132 * handle BPs with more than one DVA allocated. Set our max 2133 * replication level accordingly. 2134 */ 2135 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 2136 return (1); 2137 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 2138 } 2139 2140 int 2141 spa_prev_software_version(spa_t *spa) 2142 { 2143 return (spa->spa_prev_software_version); 2144 } 2145 2146 uint64_t 2147 spa_deadman_synctime(spa_t *spa) 2148 { 2149 return (spa->spa_deadman_synctime); 2150 } 2151 2152 spa_autotrim_t 2153 spa_get_autotrim(spa_t *spa) 2154 { 2155 return (spa->spa_autotrim); 2156 } 2157 2158 uint64_t 2159 spa_deadman_ziotime(spa_t *spa) 2160 { 2161 return (spa->spa_deadman_ziotime); 2162 } 2163 2164 uint64_t 2165 spa_get_deadman_failmode(spa_t *spa) 2166 { 2167 return (spa->spa_deadman_failmode); 2168 } 2169 2170 void 2171 spa_set_deadman_failmode(spa_t *spa, const char *failmode) 2172 { 2173 if (strcmp(failmode, "wait") == 0) 2174 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2175 else if (strcmp(failmode, "continue") == 0) 2176 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE; 2177 else if (strcmp(failmode, "panic") == 0) 2178 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC; 2179 else 2180 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2181 } 2182 2183 void 2184 spa_set_deadman_ziotime(hrtime_t ns) 2185 { 2186 spa_t *spa = NULL; 2187 2188 if (spa_mode_global != SPA_MODE_UNINIT) { 2189 mutex_enter(&spa_namespace_lock); 2190 while ((spa = spa_next(spa)) != NULL) 2191 spa->spa_deadman_ziotime = ns; 2192 mutex_exit(&spa_namespace_lock); 2193 } 2194 } 2195 2196 void 2197 spa_set_deadman_synctime(hrtime_t ns) 2198 { 2199 spa_t *spa = NULL; 2200 2201 if (spa_mode_global != SPA_MODE_UNINIT) { 2202 mutex_enter(&spa_namespace_lock); 2203 while ((spa = spa_next(spa)) != NULL) 2204 spa->spa_deadman_synctime = ns; 2205 mutex_exit(&spa_namespace_lock); 2206 } 2207 } 2208 2209 uint64_t 2210 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 2211 { 2212 uint64_t asize = DVA_GET_ASIZE(dva); 2213 uint64_t dsize = asize; 2214 2215 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2216 2217 if (asize != 0 && spa->spa_deflate) { 2218 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 2219 if (vd != NULL) 2220 dsize = (asize >> SPA_MINBLOCKSHIFT) * 2221 vd->vdev_deflate_ratio; 2222 } 2223 2224 return (dsize); 2225 } 2226 2227 uint64_t 2228 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 2229 { 2230 uint64_t dsize = 0; 2231 2232 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2233 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2234 2235 return (dsize); 2236 } 2237 2238 uint64_t 2239 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 2240 { 2241 uint64_t dsize = 0; 2242 2243 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2244 2245 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2246 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2247 2248 spa_config_exit(spa, SCL_VDEV, FTAG); 2249 2250 return (dsize); 2251 } 2252 2253 uint64_t 2254 spa_dirty_data(spa_t *spa) 2255 { 2256 return (spa->spa_dsl_pool->dp_dirty_total); 2257 } 2258 2259 /* 2260 * ========================================================================== 2261 * SPA Import Progress Routines 2262 * ========================================================================== 2263 */ 2264 2265 typedef struct spa_import_progress { 2266 uint64_t pool_guid; /* unique id for updates */ 2267 char *pool_name; 2268 spa_load_state_t spa_load_state; 2269 char *spa_load_notes; 2270 uint64_t mmp_sec_remaining; /* MMP activity check */ 2271 uint64_t spa_load_max_txg; /* rewind txg */ 2272 procfs_list_node_t smh_node; 2273 } spa_import_progress_t; 2274 2275 spa_history_list_t *spa_import_progress_list = NULL; 2276 2277 static int 2278 spa_import_progress_show_header(struct seq_file *f) 2279 { 2280 seq_printf(f, "%-20s %-14s %-14s %-12s %-16s %s\n", "pool_guid", 2281 "load_state", "multihost_secs", "max_txg", 2282 "pool_name", "notes"); 2283 return (0); 2284 } 2285 2286 static int 2287 spa_import_progress_show(struct seq_file *f, void *data) 2288 { 2289 spa_import_progress_t *sip = (spa_import_progress_t *)data; 2290 2291 seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %-16s %s\n", 2292 (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state, 2293 (u_longlong_t)sip->mmp_sec_remaining, 2294 (u_longlong_t)sip->spa_load_max_txg, 2295 (sip->pool_name ? sip->pool_name : "-"), 2296 (sip->spa_load_notes ? sip->spa_load_notes : "-")); 2297 2298 return (0); 2299 } 2300 2301 /* Remove oldest elements from list until there are no more than 'size' left */ 2302 static void 2303 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size) 2304 { 2305 spa_import_progress_t *sip; 2306 while (shl->size > size) { 2307 sip = list_remove_head(&shl->procfs_list.pl_list); 2308 if (sip->pool_name) 2309 spa_strfree(sip->pool_name); 2310 if (sip->spa_load_notes) 2311 kmem_strfree(sip->spa_load_notes); 2312 kmem_free(sip, sizeof (spa_import_progress_t)); 2313 shl->size--; 2314 } 2315 2316 IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list)); 2317 } 2318 2319 static void 2320 spa_import_progress_init(void) 2321 { 2322 spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t), 2323 KM_SLEEP); 2324 2325 spa_import_progress_list->size = 0; 2326 2327 spa_import_progress_list->procfs_list.pl_private = 2328 spa_import_progress_list; 2329 2330 procfs_list_install("zfs", 2331 NULL, 2332 "import_progress", 2333 0644, 2334 &spa_import_progress_list->procfs_list, 2335 spa_import_progress_show, 2336 spa_import_progress_show_header, 2337 NULL, 2338 offsetof(spa_import_progress_t, smh_node)); 2339 } 2340 2341 static void 2342 spa_import_progress_destroy(void) 2343 { 2344 spa_history_list_t *shl = spa_import_progress_list; 2345 procfs_list_uninstall(&shl->procfs_list); 2346 spa_import_progress_truncate(shl, 0); 2347 procfs_list_destroy(&shl->procfs_list); 2348 kmem_free(shl, sizeof (spa_history_list_t)); 2349 } 2350 2351 int 2352 spa_import_progress_set_state(uint64_t pool_guid, 2353 spa_load_state_t load_state) 2354 { 2355 spa_history_list_t *shl = spa_import_progress_list; 2356 spa_import_progress_t *sip; 2357 int error = ENOENT; 2358 2359 if (shl->size == 0) 2360 return (0); 2361 2362 mutex_enter(&shl->procfs_list.pl_lock); 2363 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2364 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2365 if (sip->pool_guid == pool_guid) { 2366 sip->spa_load_state = load_state; 2367 if (sip->spa_load_notes != NULL) { 2368 kmem_strfree(sip->spa_load_notes); 2369 sip->spa_load_notes = NULL; 2370 } 2371 error = 0; 2372 break; 2373 } 2374 } 2375 mutex_exit(&shl->procfs_list.pl_lock); 2376 2377 return (error); 2378 } 2379 2380 static void 2381 spa_import_progress_set_notes_impl(spa_t *spa, boolean_t log_dbgmsg, 2382 const char *fmt, va_list adx) 2383 { 2384 spa_history_list_t *shl = spa_import_progress_list; 2385 spa_import_progress_t *sip; 2386 uint64_t pool_guid = spa_guid(spa); 2387 2388 if (shl->size == 0) 2389 return; 2390 2391 char *notes = kmem_vasprintf(fmt, adx); 2392 2393 mutex_enter(&shl->procfs_list.pl_lock); 2394 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2395 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2396 if (sip->pool_guid == pool_guid) { 2397 if (sip->spa_load_notes != NULL) { 2398 kmem_strfree(sip->spa_load_notes); 2399 sip->spa_load_notes = NULL; 2400 } 2401 sip->spa_load_notes = notes; 2402 if (log_dbgmsg) 2403 zfs_dbgmsg("'%s' %s", sip->pool_name, notes); 2404 notes = NULL; 2405 break; 2406 } 2407 } 2408 mutex_exit(&shl->procfs_list.pl_lock); 2409 if (notes != NULL) 2410 kmem_strfree(notes); 2411 } 2412 2413 void 2414 spa_import_progress_set_notes(spa_t *spa, const char *fmt, ...) 2415 { 2416 va_list adx; 2417 2418 va_start(adx, fmt); 2419 spa_import_progress_set_notes_impl(spa, B_TRUE, fmt, adx); 2420 va_end(adx); 2421 } 2422 2423 void 2424 spa_import_progress_set_notes_nolog(spa_t *spa, const char *fmt, ...) 2425 { 2426 va_list adx; 2427 2428 va_start(adx, fmt); 2429 spa_import_progress_set_notes_impl(spa, B_FALSE, fmt, adx); 2430 va_end(adx); 2431 } 2432 2433 int 2434 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg) 2435 { 2436 spa_history_list_t *shl = spa_import_progress_list; 2437 spa_import_progress_t *sip; 2438 int error = ENOENT; 2439 2440 if (shl->size == 0) 2441 return (0); 2442 2443 mutex_enter(&shl->procfs_list.pl_lock); 2444 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2445 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2446 if (sip->pool_guid == pool_guid) { 2447 sip->spa_load_max_txg = load_max_txg; 2448 error = 0; 2449 break; 2450 } 2451 } 2452 mutex_exit(&shl->procfs_list.pl_lock); 2453 2454 return (error); 2455 } 2456 2457 int 2458 spa_import_progress_set_mmp_check(uint64_t pool_guid, 2459 uint64_t mmp_sec_remaining) 2460 { 2461 spa_history_list_t *shl = spa_import_progress_list; 2462 spa_import_progress_t *sip; 2463 int error = ENOENT; 2464 2465 if (shl->size == 0) 2466 return (0); 2467 2468 mutex_enter(&shl->procfs_list.pl_lock); 2469 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2470 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2471 if (sip->pool_guid == pool_guid) { 2472 sip->mmp_sec_remaining = mmp_sec_remaining; 2473 error = 0; 2474 break; 2475 } 2476 } 2477 mutex_exit(&shl->procfs_list.pl_lock); 2478 2479 return (error); 2480 } 2481 2482 /* 2483 * A new import is in progress, add an entry. 2484 */ 2485 void 2486 spa_import_progress_add(spa_t *spa) 2487 { 2488 spa_history_list_t *shl = spa_import_progress_list; 2489 spa_import_progress_t *sip; 2490 const char *poolname = NULL; 2491 2492 sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP); 2493 sip->pool_guid = spa_guid(spa); 2494 2495 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME, 2496 &poolname); 2497 if (poolname == NULL) 2498 poolname = spa_name(spa); 2499 sip->pool_name = spa_strdup(poolname); 2500 sip->spa_load_state = spa_load_state(spa); 2501 sip->spa_load_notes = NULL; 2502 2503 mutex_enter(&shl->procfs_list.pl_lock); 2504 procfs_list_add(&shl->procfs_list, sip); 2505 shl->size++; 2506 mutex_exit(&shl->procfs_list.pl_lock); 2507 } 2508 2509 void 2510 spa_import_progress_remove(uint64_t pool_guid) 2511 { 2512 spa_history_list_t *shl = spa_import_progress_list; 2513 spa_import_progress_t *sip; 2514 2515 mutex_enter(&shl->procfs_list.pl_lock); 2516 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2517 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2518 if (sip->pool_guid == pool_guid) { 2519 if (sip->pool_name) 2520 spa_strfree(sip->pool_name); 2521 if (sip->spa_load_notes) 2522 spa_strfree(sip->spa_load_notes); 2523 list_remove(&shl->procfs_list.pl_list, sip); 2524 shl->size--; 2525 kmem_free(sip, sizeof (spa_import_progress_t)); 2526 break; 2527 } 2528 } 2529 mutex_exit(&shl->procfs_list.pl_lock); 2530 } 2531 2532 /* 2533 * ========================================================================== 2534 * Initialization and Termination 2535 * ========================================================================== 2536 */ 2537 2538 static int 2539 spa_name_compare(const void *a1, const void *a2) 2540 { 2541 const spa_t *s1 = a1; 2542 const spa_t *s2 = a2; 2543 int s; 2544 2545 s = strcmp(s1->spa_name, s2->spa_name); 2546 2547 return (TREE_ISIGN(s)); 2548 } 2549 2550 void 2551 spa_init(spa_mode_t mode) 2552 { 2553 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 2554 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 2555 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 2556 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 2557 2558 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 2559 offsetof(spa_t, spa_avl)); 2560 2561 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 2562 offsetof(spa_aux_t, aux_avl)); 2563 2564 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 2565 offsetof(spa_aux_t, aux_avl)); 2566 2567 spa_mode_global = mode; 2568 2569 #ifndef _KERNEL 2570 if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) { 2571 struct sigaction sa; 2572 2573 sa.sa_flags = SA_SIGINFO; 2574 sigemptyset(&sa.sa_mask); 2575 sa.sa_sigaction = arc_buf_sigsegv; 2576 2577 if (sigaction(SIGSEGV, &sa, NULL) == -1) { 2578 perror("could not enable watchpoints: " 2579 "sigaction(SIGSEGV, ...) = "); 2580 } else { 2581 arc_watch = B_TRUE; 2582 } 2583 } 2584 #endif 2585 2586 fm_init(); 2587 zfs_refcount_init(); 2588 unique_init(); 2589 zfs_btree_init(); 2590 metaslab_stat_init(); 2591 brt_init(); 2592 ddt_init(); 2593 zio_init(); 2594 dmu_init(); 2595 zil_init(); 2596 vdev_mirror_stat_init(); 2597 vdev_raidz_math_init(); 2598 vdev_file_init(); 2599 zfs_prop_init(); 2600 chksum_init(); 2601 zpool_prop_init(); 2602 zpool_feature_init(); 2603 vdev_prop_init(); 2604 l2arc_start(); 2605 scan_init(); 2606 qat_init(); 2607 spa_import_progress_init(); 2608 zap_init(); 2609 } 2610 2611 void 2612 spa_fini(void) 2613 { 2614 l2arc_stop(); 2615 2616 spa_evict_all(); 2617 2618 vdev_file_fini(); 2619 vdev_mirror_stat_fini(); 2620 vdev_raidz_math_fini(); 2621 chksum_fini(); 2622 zil_fini(); 2623 dmu_fini(); 2624 zio_fini(); 2625 ddt_fini(); 2626 brt_fini(); 2627 metaslab_stat_fini(); 2628 zfs_btree_fini(); 2629 unique_fini(); 2630 zfs_refcount_fini(); 2631 fm_fini(); 2632 scan_fini(); 2633 qat_fini(); 2634 spa_import_progress_destroy(); 2635 zap_fini(); 2636 2637 avl_destroy(&spa_namespace_avl); 2638 avl_destroy(&spa_spare_avl); 2639 avl_destroy(&spa_l2cache_avl); 2640 2641 cv_destroy(&spa_namespace_cv); 2642 mutex_destroy(&spa_namespace_lock); 2643 mutex_destroy(&spa_spare_lock); 2644 mutex_destroy(&spa_l2cache_lock); 2645 } 2646 2647 boolean_t 2648 spa_has_dedup(spa_t *spa) 2649 { 2650 return (spa->spa_dedup_class->mc_groups != 0); 2651 } 2652 2653 /* 2654 * Return whether this pool has a dedicated slog device. No locking needed. 2655 * It's not a problem if the wrong answer is returned as it's only for 2656 * performance and not correctness. 2657 */ 2658 boolean_t 2659 spa_has_slogs(spa_t *spa) 2660 { 2661 return (spa->spa_log_class->mc_groups != 0); 2662 } 2663 2664 boolean_t 2665 spa_has_special(spa_t *spa) 2666 { 2667 return (spa->spa_special_class->mc_groups != 0); 2668 } 2669 2670 spa_log_state_t 2671 spa_get_log_state(spa_t *spa) 2672 { 2673 return (spa->spa_log_state); 2674 } 2675 2676 void 2677 spa_set_log_state(spa_t *spa, spa_log_state_t state) 2678 { 2679 spa->spa_log_state = state; 2680 } 2681 2682 boolean_t 2683 spa_is_root(spa_t *spa) 2684 { 2685 return (spa->spa_is_root); 2686 } 2687 2688 boolean_t 2689 spa_writeable(spa_t *spa) 2690 { 2691 return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config); 2692 } 2693 2694 /* 2695 * Returns true if there is a pending sync task in any of the current 2696 * syncing txg, the current quiescing txg, or the current open txg. 2697 */ 2698 boolean_t 2699 spa_has_pending_synctask(spa_t *spa) 2700 { 2701 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) || 2702 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks)); 2703 } 2704 2705 spa_mode_t 2706 spa_mode(spa_t *spa) 2707 { 2708 return (spa->spa_mode); 2709 } 2710 2711 uint64_t 2712 spa_get_last_scrubbed_txg(spa_t *spa) 2713 { 2714 return (spa->spa_scrubbed_last_txg); 2715 } 2716 2717 uint64_t 2718 spa_bootfs(spa_t *spa) 2719 { 2720 return (spa->spa_bootfs); 2721 } 2722 2723 uint64_t 2724 spa_delegation(spa_t *spa) 2725 { 2726 return (spa->spa_delegation); 2727 } 2728 2729 objset_t * 2730 spa_meta_objset(spa_t *spa) 2731 { 2732 return (spa->spa_meta_objset); 2733 } 2734 2735 enum zio_checksum 2736 spa_dedup_checksum(spa_t *spa) 2737 { 2738 return (spa->spa_dedup_checksum); 2739 } 2740 2741 /* 2742 * Reset pool scan stat per scan pass (or reboot). 2743 */ 2744 void 2745 spa_scan_stat_init(spa_t *spa) 2746 { 2747 /* data not stored on disk */ 2748 spa->spa_scan_pass_start = gethrestime_sec(); 2749 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan)) 2750 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start; 2751 else 2752 spa->spa_scan_pass_scrub_pause = 0; 2753 2754 if (dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) 2755 spa->spa_scan_pass_errorscrub_pause = spa->spa_scan_pass_start; 2756 else 2757 spa->spa_scan_pass_errorscrub_pause = 0; 2758 2759 spa->spa_scan_pass_scrub_spent_paused = 0; 2760 spa->spa_scan_pass_exam = 0; 2761 spa->spa_scan_pass_issued = 0; 2762 2763 // error scrub stats 2764 spa->spa_scan_pass_errorscrub_spent_paused = 0; 2765 } 2766 2767 /* 2768 * Get scan stats for zpool status reports 2769 */ 2770 int 2771 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 2772 { 2773 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 2774 2775 if (scn == NULL || (scn->scn_phys.scn_func == POOL_SCAN_NONE && 2776 scn->errorscrub_phys.dep_func == POOL_SCAN_NONE)) 2777 return (SET_ERROR(ENOENT)); 2778 2779 memset(ps, 0, sizeof (pool_scan_stat_t)); 2780 2781 /* data stored on disk */ 2782 ps->pss_func = scn->scn_phys.scn_func; 2783 ps->pss_state = scn->scn_phys.scn_state; 2784 ps->pss_start_time = scn->scn_phys.scn_start_time; 2785 ps->pss_end_time = scn->scn_phys.scn_end_time; 2786 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 2787 ps->pss_examined = scn->scn_phys.scn_examined; 2788 ps->pss_skipped = scn->scn_phys.scn_skipped; 2789 ps->pss_processed = scn->scn_phys.scn_processed; 2790 ps->pss_errors = scn->scn_phys.scn_errors; 2791 2792 /* data not stored on disk */ 2793 ps->pss_pass_exam = spa->spa_scan_pass_exam; 2794 ps->pss_pass_start = spa->spa_scan_pass_start; 2795 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause; 2796 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused; 2797 ps->pss_pass_issued = spa->spa_scan_pass_issued; 2798 ps->pss_issued = 2799 scn->scn_issued_before_pass + spa->spa_scan_pass_issued; 2800 2801 /* error scrub data stored on disk */ 2802 ps->pss_error_scrub_func = scn->errorscrub_phys.dep_func; 2803 ps->pss_error_scrub_state = scn->errorscrub_phys.dep_state; 2804 ps->pss_error_scrub_start = scn->errorscrub_phys.dep_start_time; 2805 ps->pss_error_scrub_end = scn->errorscrub_phys.dep_end_time; 2806 ps->pss_error_scrub_examined = scn->errorscrub_phys.dep_examined; 2807 ps->pss_error_scrub_to_be_examined = 2808 scn->errorscrub_phys.dep_to_examine; 2809 2810 /* error scrub data not stored on disk */ 2811 ps->pss_pass_error_scrub_pause = spa->spa_scan_pass_errorscrub_pause; 2812 2813 return (0); 2814 } 2815 2816 int 2817 spa_maxblocksize(spa_t *spa) 2818 { 2819 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 2820 return (SPA_MAXBLOCKSIZE); 2821 else 2822 return (SPA_OLD_MAXBLOCKSIZE); 2823 } 2824 2825 2826 /* 2827 * Returns the txg that the last device removal completed. No indirect mappings 2828 * have been added since this txg. 2829 */ 2830 uint64_t 2831 spa_get_last_removal_txg(spa_t *spa) 2832 { 2833 uint64_t vdevid; 2834 uint64_t ret = -1ULL; 2835 2836 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2837 /* 2838 * sr_prev_indirect_vdev is only modified while holding all the 2839 * config locks, so it is sufficient to hold SCL_VDEV as reader when 2840 * examining it. 2841 */ 2842 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev; 2843 2844 while (vdevid != -1ULL) { 2845 vdev_t *vd = vdev_lookup_top(spa, vdevid); 2846 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 2847 2848 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 2849 2850 /* 2851 * If the removal did not remap any data, we don't care. 2852 */ 2853 if (vdev_indirect_births_count(vib) != 0) { 2854 ret = vdev_indirect_births_last_entry_txg(vib); 2855 break; 2856 } 2857 2858 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev; 2859 } 2860 spa_config_exit(spa, SCL_VDEV, FTAG); 2861 2862 IMPLY(ret != -1ULL, 2863 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); 2864 2865 return (ret); 2866 } 2867 2868 int 2869 spa_maxdnodesize(spa_t *spa) 2870 { 2871 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 2872 return (DNODE_MAX_SIZE); 2873 else 2874 return (DNODE_MIN_SIZE); 2875 } 2876 2877 boolean_t 2878 spa_multihost(spa_t *spa) 2879 { 2880 return (spa->spa_multihost ? B_TRUE : B_FALSE); 2881 } 2882 2883 uint32_t 2884 spa_get_hostid(spa_t *spa) 2885 { 2886 return (spa->spa_hostid); 2887 } 2888 2889 boolean_t 2890 spa_trust_config(spa_t *spa) 2891 { 2892 return (spa->spa_trust_config); 2893 } 2894 2895 uint64_t 2896 spa_missing_tvds_allowed(spa_t *spa) 2897 { 2898 return (spa->spa_missing_tvds_allowed); 2899 } 2900 2901 space_map_t * 2902 spa_syncing_log_sm(spa_t *spa) 2903 { 2904 return (spa->spa_syncing_log_sm); 2905 } 2906 2907 void 2908 spa_set_missing_tvds(spa_t *spa, uint64_t missing) 2909 { 2910 spa->spa_missing_tvds = missing; 2911 } 2912 2913 /* 2914 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc). 2915 */ 2916 const char * 2917 spa_state_to_name(spa_t *spa) 2918 { 2919 ASSERT3P(spa, !=, NULL); 2920 2921 /* 2922 * it is possible for the spa to exist, without root vdev 2923 * as the spa transitions during import/export 2924 */ 2925 vdev_t *rvd = spa->spa_root_vdev; 2926 if (rvd == NULL) { 2927 return ("TRANSITIONING"); 2928 } 2929 vdev_state_t state = rvd->vdev_state; 2930 vdev_aux_t aux = rvd->vdev_stat.vs_aux; 2931 2932 if (spa_suspended(spa)) 2933 return ("SUSPENDED"); 2934 2935 switch (state) { 2936 case VDEV_STATE_CLOSED: 2937 case VDEV_STATE_OFFLINE: 2938 return ("OFFLINE"); 2939 case VDEV_STATE_REMOVED: 2940 return ("REMOVED"); 2941 case VDEV_STATE_CANT_OPEN: 2942 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG) 2943 return ("FAULTED"); 2944 else if (aux == VDEV_AUX_SPLIT_POOL) 2945 return ("SPLIT"); 2946 else 2947 return ("UNAVAIL"); 2948 case VDEV_STATE_FAULTED: 2949 return ("FAULTED"); 2950 case VDEV_STATE_DEGRADED: 2951 return ("DEGRADED"); 2952 case VDEV_STATE_HEALTHY: 2953 return ("ONLINE"); 2954 default: 2955 break; 2956 } 2957 2958 return ("UNKNOWN"); 2959 } 2960 2961 boolean_t 2962 spa_top_vdevs_spacemap_addressable(spa_t *spa) 2963 { 2964 vdev_t *rvd = spa->spa_root_vdev; 2965 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2966 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c])) 2967 return (B_FALSE); 2968 } 2969 return (B_TRUE); 2970 } 2971 2972 boolean_t 2973 spa_has_checkpoint(spa_t *spa) 2974 { 2975 return (spa->spa_checkpoint_txg != 0); 2976 } 2977 2978 boolean_t 2979 spa_importing_readonly_checkpoint(spa_t *spa) 2980 { 2981 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) && 2982 spa->spa_mode == SPA_MODE_READ); 2983 } 2984 2985 uint64_t 2986 spa_min_claim_txg(spa_t *spa) 2987 { 2988 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg; 2989 2990 if (checkpoint_txg != 0) 2991 return (checkpoint_txg + 1); 2992 2993 return (spa->spa_first_txg); 2994 } 2995 2996 /* 2997 * If there is a checkpoint, async destroys may consume more space from 2998 * the pool instead of freeing it. In an attempt to save the pool from 2999 * getting suspended when it is about to run out of space, we stop 3000 * processing async destroys. 3001 */ 3002 boolean_t 3003 spa_suspend_async_destroy(spa_t *spa) 3004 { 3005 dsl_pool_t *dp = spa_get_dsl(spa); 3006 3007 uint64_t unreserved = dsl_pool_unreserved_space(dp, 3008 ZFS_SPACE_CHECK_EXTRA_RESERVED); 3009 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes; 3010 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0; 3011 3012 if (spa_has_checkpoint(spa) && avail == 0) 3013 return (B_TRUE); 3014 3015 return (B_FALSE); 3016 } 3017 3018 #if defined(_KERNEL) 3019 3020 int 3021 param_set_deadman_failmode_common(const char *val) 3022 { 3023 spa_t *spa = NULL; 3024 char *p; 3025 3026 if (val == NULL) 3027 return (SET_ERROR(EINVAL)); 3028 3029 if ((p = strchr(val, '\n')) != NULL) 3030 *p = '\0'; 3031 3032 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 && 3033 strcmp(val, "panic")) 3034 return (SET_ERROR(EINVAL)); 3035 3036 if (spa_mode_global != SPA_MODE_UNINIT) { 3037 mutex_enter(&spa_namespace_lock); 3038 while ((spa = spa_next(spa)) != NULL) 3039 spa_set_deadman_failmode(spa, val); 3040 mutex_exit(&spa_namespace_lock); 3041 } 3042 3043 return (0); 3044 } 3045 #endif 3046 3047 /* Namespace manipulation */ 3048 EXPORT_SYMBOL(spa_lookup); 3049 EXPORT_SYMBOL(spa_add); 3050 EXPORT_SYMBOL(spa_remove); 3051 EXPORT_SYMBOL(spa_next); 3052 3053 /* Refcount functions */ 3054 EXPORT_SYMBOL(spa_open_ref); 3055 EXPORT_SYMBOL(spa_close); 3056 EXPORT_SYMBOL(spa_refcount_zero); 3057 3058 /* Pool configuration lock */ 3059 EXPORT_SYMBOL(spa_config_tryenter); 3060 EXPORT_SYMBOL(spa_config_enter); 3061 EXPORT_SYMBOL(spa_config_exit); 3062 EXPORT_SYMBOL(spa_config_held); 3063 3064 /* Pool vdev add/remove lock */ 3065 EXPORT_SYMBOL(spa_vdev_enter); 3066 EXPORT_SYMBOL(spa_vdev_exit); 3067 3068 /* Pool vdev state change lock */ 3069 EXPORT_SYMBOL(spa_vdev_state_enter); 3070 EXPORT_SYMBOL(spa_vdev_state_exit); 3071 3072 /* Accessor functions */ 3073 EXPORT_SYMBOL(spa_shutting_down); 3074 EXPORT_SYMBOL(spa_get_dsl); 3075 EXPORT_SYMBOL(spa_get_rootblkptr); 3076 EXPORT_SYMBOL(spa_set_rootblkptr); 3077 EXPORT_SYMBOL(spa_altroot); 3078 EXPORT_SYMBOL(spa_sync_pass); 3079 EXPORT_SYMBOL(spa_name); 3080 EXPORT_SYMBOL(spa_guid); 3081 EXPORT_SYMBOL(spa_last_synced_txg); 3082 EXPORT_SYMBOL(spa_first_txg); 3083 EXPORT_SYMBOL(spa_syncing_txg); 3084 EXPORT_SYMBOL(spa_version); 3085 EXPORT_SYMBOL(spa_state); 3086 EXPORT_SYMBOL(spa_load_state); 3087 EXPORT_SYMBOL(spa_freeze_txg); 3088 EXPORT_SYMBOL(spa_get_dspace); 3089 EXPORT_SYMBOL(spa_update_dspace); 3090 EXPORT_SYMBOL(spa_deflate); 3091 EXPORT_SYMBOL(spa_normal_class); 3092 EXPORT_SYMBOL(spa_log_class); 3093 EXPORT_SYMBOL(spa_special_class); 3094 EXPORT_SYMBOL(spa_preferred_class); 3095 EXPORT_SYMBOL(spa_max_replication); 3096 EXPORT_SYMBOL(spa_prev_software_version); 3097 EXPORT_SYMBOL(spa_get_failmode); 3098 EXPORT_SYMBOL(spa_suspended); 3099 EXPORT_SYMBOL(spa_bootfs); 3100 EXPORT_SYMBOL(spa_delegation); 3101 EXPORT_SYMBOL(spa_meta_objset); 3102 EXPORT_SYMBOL(spa_maxblocksize); 3103 EXPORT_SYMBOL(spa_maxdnodesize); 3104 3105 /* Miscellaneous support routines */ 3106 EXPORT_SYMBOL(spa_guid_exists); 3107 EXPORT_SYMBOL(spa_strdup); 3108 EXPORT_SYMBOL(spa_strfree); 3109 EXPORT_SYMBOL(spa_generate_guid); 3110 EXPORT_SYMBOL(snprintf_blkptr); 3111 EXPORT_SYMBOL(spa_freeze); 3112 EXPORT_SYMBOL(spa_upgrade); 3113 EXPORT_SYMBOL(spa_evict_all); 3114 EXPORT_SYMBOL(spa_lookup_by_guid); 3115 EXPORT_SYMBOL(spa_has_spare); 3116 EXPORT_SYMBOL(dva_get_dsize_sync); 3117 EXPORT_SYMBOL(bp_get_dsize_sync); 3118 EXPORT_SYMBOL(bp_get_dsize); 3119 EXPORT_SYMBOL(spa_has_slogs); 3120 EXPORT_SYMBOL(spa_is_root); 3121 EXPORT_SYMBOL(spa_writeable); 3122 EXPORT_SYMBOL(spa_mode); 3123 EXPORT_SYMBOL(spa_namespace_lock); 3124 EXPORT_SYMBOL(spa_trust_config); 3125 EXPORT_SYMBOL(spa_missing_tvds_allowed); 3126 EXPORT_SYMBOL(spa_set_missing_tvds); 3127 EXPORT_SYMBOL(spa_state_to_name); 3128 EXPORT_SYMBOL(spa_importing_readonly_checkpoint); 3129 EXPORT_SYMBOL(spa_min_claim_txg); 3130 EXPORT_SYMBOL(spa_suspend_async_destroy); 3131 EXPORT_SYMBOL(spa_has_checkpoint); 3132 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable); 3133 3134 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW, 3135 "Set additional debugging flags"); 3136 3137 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW, 3138 "Set to attempt to recover from fatal errors"); 3139 3140 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW, 3141 "Set to ignore IO errors during free and permanently leak the space"); 3142 3143 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, U64, ZMOD_RW, 3144 "Dead I/O check interval in milliseconds"); 3145 3146 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW, 3147 "Enable deadman timer"); 3148 3149 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, UINT, ZMOD_RW, 3150 "SPA size estimate multiplication factor"); 3151 3152 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW, 3153 "Place DDT data into the special class"); 3154 3155 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW, 3156 "Place user data indirect blocks into the special class"); 3157 3158 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode, 3159 param_set_deadman_failmode, param_get_charp, ZMOD_RW, 3160 "Failmode for deadman timer"); 3161 3162 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms, 3163 param_set_deadman_synctime, spl_param_get_u64, ZMOD_RW, 3164 "Pool sync expiration time in milliseconds"); 3165 3166 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms, 3167 param_set_deadman_ziotime, spl_param_get_u64, ZMOD_RW, 3168 "IO expiration time in milliseconds"); 3169 3170 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, UINT, ZMOD_RW, 3171 "Small file blocks in special vdevs depends on this much " 3172 "free space available"); 3173 3174 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift, 3175 param_get_uint, ZMOD_RW, "Reserved free space in pool"); 3176 3177 ZFS_MODULE_PARAM(zfs, spa_, num_allocators, INT, ZMOD_RW, 3178 "Number of allocators per spa"); 3179 3180 ZFS_MODULE_PARAM(zfs, spa_, cpus_per_allocator, INT, ZMOD_RW, 3181 "Minimum number of CPUs per allocators"); 3182