xref: /freebsd/sys/contrib/openzfs/module/zfs/spa_misc.c (revision 7fdf597e96a02165cfe22ff357b857d5fa15ed8a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2013 Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2017 Datto Inc.
28  * Copyright (c) 2017, Intel Corporation.
29  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
30  * Copyright (c) 2023, 2024, Klara Inc.
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/zfs_chksum.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zio.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/zio_compress.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/vdev_initialize.h>
45 #include <sys/vdev_trim.h>
46 #include <sys/vdev_file.h>
47 #include <sys/vdev_raidz.h>
48 #include <sys/metaslab.h>
49 #include <sys/uberblock_impl.h>
50 #include <sys/txg.h>
51 #include <sys/avl.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dir.h>
55 #include <sys/dsl_prop.h>
56 #include <sys/fm/util.h>
57 #include <sys/dsl_scan.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/metaslab_impl.h>
60 #include <sys/arc.h>
61 #include <sys/brt.h>
62 #include <sys/ddt.h>
63 #include <sys/kstat.h>
64 #include "zfs_prop.h"
65 #include <sys/btree.h>
66 #include <sys/zfeature.h>
67 #include <sys/qat.h>
68 #include <sys/zstd/zstd.h>
69 
70 /*
71  * SPA locking
72  *
73  * There are three basic locks for managing spa_t structures:
74  *
75  * spa_namespace_lock (global mutex)
76  *
77  *	This lock must be acquired to do any of the following:
78  *
79  *		- Lookup a spa_t by name
80  *		- Add or remove a spa_t from the namespace
81  *		- Increase spa_refcount from non-zero
82  *		- Check if spa_refcount is zero
83  *		- Rename a spa_t
84  *		- add/remove/attach/detach devices
85  *		- Held for the duration of create/destroy
86  *		- Held at the start and end of import and export
87  *
88  *	It does not need to handle recursion.  A create or destroy may
89  *	reference objects (files or zvols) in other pools, but by
90  *	definition they must have an existing reference, and will never need
91  *	to lookup a spa_t by name.
92  *
93  * spa_refcount (per-spa zfs_refcount_t protected by mutex)
94  *
95  *	This reference count keep track of any active users of the spa_t.  The
96  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
97  *	the refcount is never really 'zero' - opening a pool implicitly keeps
98  *	some references in the DMU.  Internally we check against spa_minref, but
99  *	present the image of a zero/non-zero value to consumers.
100  *
101  * spa_config_lock[] (per-spa array of rwlocks)
102  *
103  *	This protects the spa_t from config changes, and must be held in
104  *	the following circumstances:
105  *
106  *		- RW_READER to perform I/O to the spa
107  *		- RW_WRITER to change the vdev config
108  *
109  * The locking order is fairly straightforward:
110  *
111  *		spa_namespace_lock	->	spa_refcount
112  *
113  *	The namespace lock must be acquired to increase the refcount from 0
114  *	or to check if it is zero.
115  *
116  *		spa_refcount		->	spa_config_lock[]
117  *
118  *	There must be at least one valid reference on the spa_t to acquire
119  *	the config lock.
120  *
121  *		spa_namespace_lock	->	spa_config_lock[]
122  *
123  *	The namespace lock must always be taken before the config lock.
124  *
125  *
126  * The spa_namespace_lock can be acquired directly and is globally visible.
127  *
128  * The namespace is manipulated using the following functions, all of which
129  * require the spa_namespace_lock to be held.
130  *
131  *	spa_lookup()		Lookup a spa_t by name.
132  *
133  *	spa_add()		Create a new spa_t in the namespace.
134  *
135  *	spa_remove()		Remove a spa_t from the namespace.  This also
136  *				frees up any memory associated with the spa_t.
137  *
138  *	spa_next()		Returns the next spa_t in the system, or the
139  *				first if NULL is passed.
140  *
141  *	spa_evict_all()		Shutdown and remove all spa_t structures in
142  *				the system.
143  *
144  *	spa_guid_exists()	Determine whether a pool/device guid exists.
145  *
146  * The spa_refcount is manipulated using the following functions:
147  *
148  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
149  *				called with spa_namespace_lock held if the
150  *				refcount is currently zero.
151  *
152  *	spa_close()		Remove a reference from the spa_t.  This will
153  *				not free the spa_t or remove it from the
154  *				namespace.  No locking is required.
155  *
156  *	spa_refcount_zero()	Returns true if the refcount is currently
157  *				zero.  Must be called with spa_namespace_lock
158  *				held.
159  *
160  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
161  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
162  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
163  *
164  * To read the configuration, it suffices to hold one of these locks as reader.
165  * To modify the configuration, you must hold all locks as writer.  To modify
166  * vdev state without altering the vdev tree's topology (e.g. online/offline),
167  * you must hold SCL_STATE and SCL_ZIO as writer.
168  *
169  * We use these distinct config locks to avoid recursive lock entry.
170  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
171  * block allocations (SCL_ALLOC), which may require reading space maps
172  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
173  *
174  * The spa config locks cannot be normal rwlocks because we need the
175  * ability to hand off ownership.  For example, SCL_ZIO is acquired
176  * by the issuing thread and later released by an interrupt thread.
177  * They do, however, obey the usual write-wanted semantics to prevent
178  * writer (i.e. system administrator) starvation.
179  *
180  * The lock acquisition rules are as follows:
181  *
182  * SCL_CONFIG
183  *	Protects changes to the vdev tree topology, such as vdev
184  *	add/remove/attach/detach.  Protects the dirty config list
185  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
186  *
187  * SCL_STATE
188  *	Protects changes to pool state and vdev state, such as vdev
189  *	online/offline/fault/degrade/clear.  Protects the dirty state list
190  *	(spa_state_dirty_list) and global pool state (spa_state).
191  *
192  * SCL_ALLOC
193  *	Protects changes to metaslab groups and classes.
194  *	Held as reader by metaslab_alloc() and metaslab_claim().
195  *
196  * SCL_ZIO
197  *	Held by bp-level zios (those which have no io_vd upon entry)
198  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
199  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
200  *
201  * SCL_FREE
202  *	Protects changes to metaslab groups and classes.
203  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
204  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
205  *	blocks in zio_done() while another i/o that holds either
206  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
207  *
208  * SCL_VDEV
209  *	Held as reader to prevent changes to the vdev tree during trivial
210  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
211  *	other locks, and lower than all of them, to ensure that it's safe
212  *	to acquire regardless of caller context.
213  *
214  * In addition, the following rules apply:
215  *
216  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
217  *	The lock ordering is SCL_CONFIG > spa_props_lock.
218  *
219  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
220  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
221  *	or zio_write_phys() -- the caller must ensure that the config cannot
222  *	cannot change in the interim, and that the vdev cannot be reopened.
223  *	SCL_STATE as reader suffices for both.
224  *
225  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
226  *
227  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
228  *				for writing.
229  *
230  *	spa_vdev_exit()		Release the config lock, wait for all I/O
231  *				to complete, sync the updated configs to the
232  *				cache, and release the namespace lock.
233  *
234  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
235  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
236  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
237  */
238 
239 avl_tree_t spa_namespace_avl;
240 kmutex_t spa_namespace_lock;
241 kcondvar_t spa_namespace_cv;
242 static const int spa_max_replication_override = SPA_DVAS_PER_BP;
243 
244 static kmutex_t spa_spare_lock;
245 static avl_tree_t spa_spare_avl;
246 static kmutex_t spa_l2cache_lock;
247 static avl_tree_t spa_l2cache_avl;
248 
249 spa_mode_t spa_mode_global = SPA_MODE_UNINIT;
250 
251 #ifdef ZFS_DEBUG
252 /*
253  * Everything except dprintf, set_error, spa, and indirect_remap is on
254  * by default in debug builds.
255  */
256 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
257     ZFS_DEBUG_INDIRECT_REMAP);
258 #else
259 int zfs_flags = 0;
260 #endif
261 
262 /*
263  * zfs_recover can be set to nonzero to attempt to recover from
264  * otherwise-fatal errors, typically caused by on-disk corruption.  When
265  * set, calls to zfs_panic_recover() will turn into warning messages.
266  * This should only be used as a last resort, as it typically results
267  * in leaked space, or worse.
268  */
269 int zfs_recover = B_FALSE;
270 
271 /*
272  * If destroy encounters an EIO while reading metadata (e.g. indirect
273  * blocks), space referenced by the missing metadata can not be freed.
274  * Normally this causes the background destroy to become "stalled", as
275  * it is unable to make forward progress.  While in this stalled state,
276  * all remaining space to free from the error-encountering filesystem is
277  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
278  * permanently leak the space from indirect blocks that can not be read,
279  * and continue to free everything else that it can.
280  *
281  * The default, "stalling" behavior is useful if the storage partially
282  * fails (i.e. some but not all i/os fail), and then later recovers.  In
283  * this case, we will be able to continue pool operations while it is
284  * partially failed, and when it recovers, we can continue to free the
285  * space, with no leaks.  However, note that this case is actually
286  * fairly rare.
287  *
288  * Typically pools either (a) fail completely (but perhaps temporarily,
289  * e.g. a top-level vdev going offline), or (b) have localized,
290  * permanent errors (e.g. disk returns the wrong data due to bit flip or
291  * firmware bug).  In case (a), this setting does not matter because the
292  * pool will be suspended and the sync thread will not be able to make
293  * forward progress regardless.  In case (b), because the error is
294  * permanent, the best we can do is leak the minimum amount of space,
295  * which is what setting this flag will do.  Therefore, it is reasonable
296  * for this flag to normally be set, but we chose the more conservative
297  * approach of not setting it, so that there is no possibility of
298  * leaking space in the "partial temporary" failure case.
299  */
300 int zfs_free_leak_on_eio = B_FALSE;
301 
302 /*
303  * Expiration time in milliseconds. This value has two meanings. First it is
304  * used to determine when the spa_deadman() logic should fire. By default the
305  * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
306  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
307  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
308  * in one of three behaviors controlled by zfs_deadman_failmode.
309  */
310 uint64_t zfs_deadman_synctime_ms = 600000UL;  /* 10 min. */
311 
312 /*
313  * This value controls the maximum amount of time zio_wait() will block for an
314  * outstanding IO.  By default this is 300 seconds at which point the "hung"
315  * behavior will be applied as described for zfs_deadman_synctime_ms.
316  */
317 uint64_t zfs_deadman_ziotime_ms = 300000UL;  /* 5 min. */
318 
319 /*
320  * Check time in milliseconds. This defines the frequency at which we check
321  * for hung I/O.
322  */
323 uint64_t zfs_deadman_checktime_ms = 60000UL;  /* 1 min. */
324 
325 /*
326  * By default the deadman is enabled.
327  */
328 int zfs_deadman_enabled = B_TRUE;
329 
330 /*
331  * Controls the behavior of the deadman when it detects a "hung" I/O.
332  * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
333  *
334  * wait     - Wait for the "hung" I/O (default)
335  * continue - Attempt to recover from a "hung" I/O
336  * panic    - Panic the system
337  */
338 const char *zfs_deadman_failmode = "wait";
339 
340 /*
341  * The worst case is single-sector max-parity RAID-Z blocks, in which
342  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
343  * times the size; so just assume that.  Add to this the fact that
344  * we can have up to 3 DVAs per bp, and one more factor of 2 because
345  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
346  * the worst case is:
347  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
348  */
349 uint_t spa_asize_inflation = 24;
350 
351 /*
352  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
353  * the pool to be consumed (bounded by spa_max_slop).  This ensures that we
354  * don't run the pool completely out of space, due to unaccounted changes (e.g.
355  * to the MOS).  It also limits the worst-case time to allocate space.  If we
356  * have less than this amount of free space, most ZPL operations (e.g.  write,
357  * create) will return ENOSPC.  The ZIL metaslabs (spa_embedded_log_class) are
358  * also part of this 3.2% of space which can't be consumed by normal writes;
359  * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded
360  * log space.
361  *
362  * Certain operations (e.g. file removal, most administrative actions) can
363  * use half the slop space.  They will only return ENOSPC if less than half
364  * the slop space is free.  Typically, once the pool has less than the slop
365  * space free, the user will use these operations to free up space in the pool.
366  * These are the operations that call dsl_pool_adjustedsize() with the netfree
367  * argument set to TRUE.
368  *
369  * Operations that are almost guaranteed to free up space in the absence of
370  * a pool checkpoint can use up to three quarters of the slop space
371  * (e.g zfs destroy).
372  *
373  * A very restricted set of operations are always permitted, regardless of
374  * the amount of free space.  These are the operations that call
375  * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
376  * increase in the amount of space used, it is possible to run the pool
377  * completely out of space, causing it to be permanently read-only.
378  *
379  * Note that on very small pools, the slop space will be larger than
380  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
381  * but we never allow it to be more than half the pool size.
382  *
383  * Further, on very large pools, the slop space will be smaller than
384  * 3.2%, to avoid reserving much more space than we actually need; bounded
385  * by spa_max_slop (128GB).
386  *
387  * See also the comments in zfs_space_check_t.
388  */
389 uint_t spa_slop_shift = 5;
390 static const uint64_t spa_min_slop = 128ULL * 1024 * 1024;
391 static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024;
392 
393 /*
394  * Number of allocators to use, per spa instance
395  */
396 static int spa_num_allocators = 4;
397 static int spa_cpus_per_allocator = 4;
398 
399 /*
400  * Spa active allocator.
401  * Valid values are zfs_active_allocator=<dynamic|cursor|new-dynamic>.
402  */
403 const char *zfs_active_allocator = "dynamic";
404 
405 void
406 spa_load_failed(spa_t *spa, const char *fmt, ...)
407 {
408 	va_list adx;
409 	char buf[256];
410 
411 	va_start(adx, fmt);
412 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
413 	va_end(adx);
414 
415 	zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
416 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
417 }
418 
419 void
420 spa_load_note(spa_t *spa, const char *fmt, ...)
421 {
422 	va_list adx;
423 	char buf[256];
424 
425 	va_start(adx, fmt);
426 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
427 	va_end(adx);
428 
429 	zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
430 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
431 
432 	spa_import_progress_set_notes_nolog(spa, "%s", buf);
433 }
434 
435 /*
436  * By default dedup and user data indirects land in the special class
437  */
438 static int zfs_ddt_data_is_special = B_TRUE;
439 static int zfs_user_indirect_is_special = B_TRUE;
440 
441 /*
442  * The percentage of special class final space reserved for metadata only.
443  * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
444  * let metadata into the class.
445  */
446 static uint_t zfs_special_class_metadata_reserve_pct = 25;
447 
448 /*
449  * ==========================================================================
450  * SPA config locking
451  * ==========================================================================
452  */
453 static void
454 spa_config_lock_init(spa_t *spa)
455 {
456 	for (int i = 0; i < SCL_LOCKS; i++) {
457 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
458 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
459 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
460 		scl->scl_writer = NULL;
461 		scl->scl_write_wanted = 0;
462 		scl->scl_count = 0;
463 	}
464 }
465 
466 static void
467 spa_config_lock_destroy(spa_t *spa)
468 {
469 	for (int i = 0; i < SCL_LOCKS; i++) {
470 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
471 		mutex_destroy(&scl->scl_lock);
472 		cv_destroy(&scl->scl_cv);
473 		ASSERT(scl->scl_writer == NULL);
474 		ASSERT(scl->scl_write_wanted == 0);
475 		ASSERT(scl->scl_count == 0);
476 	}
477 }
478 
479 int
480 spa_config_tryenter(spa_t *spa, int locks, const void *tag, krw_t rw)
481 {
482 	for (int i = 0; i < SCL_LOCKS; i++) {
483 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
484 		if (!(locks & (1 << i)))
485 			continue;
486 		mutex_enter(&scl->scl_lock);
487 		if (rw == RW_READER) {
488 			if (scl->scl_writer || scl->scl_write_wanted) {
489 				mutex_exit(&scl->scl_lock);
490 				spa_config_exit(spa, locks & ((1 << i) - 1),
491 				    tag);
492 				return (0);
493 			}
494 		} else {
495 			ASSERT(scl->scl_writer != curthread);
496 			if (scl->scl_count != 0) {
497 				mutex_exit(&scl->scl_lock);
498 				spa_config_exit(spa, locks & ((1 << i) - 1),
499 				    tag);
500 				return (0);
501 			}
502 			scl->scl_writer = curthread;
503 		}
504 		scl->scl_count++;
505 		mutex_exit(&scl->scl_lock);
506 	}
507 	return (1);
508 }
509 
510 static void
511 spa_config_enter_impl(spa_t *spa, int locks, const void *tag, krw_t rw,
512     int mmp_flag)
513 {
514 	(void) tag;
515 	int wlocks_held = 0;
516 
517 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
518 
519 	for (int i = 0; i < SCL_LOCKS; i++) {
520 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
521 		if (scl->scl_writer == curthread)
522 			wlocks_held |= (1 << i);
523 		if (!(locks & (1 << i)))
524 			continue;
525 		mutex_enter(&scl->scl_lock);
526 		if (rw == RW_READER) {
527 			while (scl->scl_writer ||
528 			    (!mmp_flag && scl->scl_write_wanted)) {
529 				cv_wait(&scl->scl_cv, &scl->scl_lock);
530 			}
531 		} else {
532 			ASSERT(scl->scl_writer != curthread);
533 			while (scl->scl_count != 0) {
534 				scl->scl_write_wanted++;
535 				cv_wait(&scl->scl_cv, &scl->scl_lock);
536 				scl->scl_write_wanted--;
537 			}
538 			scl->scl_writer = curthread;
539 		}
540 		scl->scl_count++;
541 		mutex_exit(&scl->scl_lock);
542 	}
543 	ASSERT3U(wlocks_held, <=, locks);
544 }
545 
546 void
547 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw)
548 {
549 	spa_config_enter_impl(spa, locks, tag, rw, 0);
550 }
551 
552 /*
553  * The spa_config_enter_mmp() allows the mmp thread to cut in front of
554  * outstanding write lock requests. This is needed since the mmp updates are
555  * time sensitive and failure to service them promptly will result in a
556  * suspended pool. This pool suspension has been seen in practice when there is
557  * a single disk in a pool that is responding slowly and presumably about to
558  * fail.
559  */
560 
561 void
562 spa_config_enter_mmp(spa_t *spa, int locks, const void *tag, krw_t rw)
563 {
564 	spa_config_enter_impl(spa, locks, tag, rw, 1);
565 }
566 
567 void
568 spa_config_exit(spa_t *spa, int locks, const void *tag)
569 {
570 	(void) tag;
571 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
572 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
573 		if (!(locks & (1 << i)))
574 			continue;
575 		mutex_enter(&scl->scl_lock);
576 		ASSERT(scl->scl_count > 0);
577 		if (--scl->scl_count == 0) {
578 			ASSERT(scl->scl_writer == NULL ||
579 			    scl->scl_writer == curthread);
580 			scl->scl_writer = NULL;	/* OK in either case */
581 			cv_broadcast(&scl->scl_cv);
582 		}
583 		mutex_exit(&scl->scl_lock);
584 	}
585 }
586 
587 int
588 spa_config_held(spa_t *spa, int locks, krw_t rw)
589 {
590 	int locks_held = 0;
591 
592 	for (int i = 0; i < SCL_LOCKS; i++) {
593 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
594 		if (!(locks & (1 << i)))
595 			continue;
596 		if ((rw == RW_READER && scl->scl_count != 0) ||
597 		    (rw == RW_WRITER && scl->scl_writer == curthread))
598 			locks_held |= 1 << i;
599 	}
600 
601 	return (locks_held);
602 }
603 
604 /*
605  * ==========================================================================
606  * SPA namespace functions
607  * ==========================================================================
608  */
609 
610 /*
611  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
612  * Returns NULL if no matching spa_t is found.
613  */
614 spa_t *
615 spa_lookup(const char *name)
616 {
617 	static spa_t search;	/* spa_t is large; don't allocate on stack */
618 	spa_t *spa;
619 	avl_index_t where;
620 	char *cp;
621 
622 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
623 
624 retry:
625 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
626 
627 	/*
628 	 * If it's a full dataset name, figure out the pool name and
629 	 * just use that.
630 	 */
631 	cp = strpbrk(search.spa_name, "/@#");
632 	if (cp != NULL)
633 		*cp = '\0';
634 
635 	spa = avl_find(&spa_namespace_avl, &search, &where);
636 	if (spa == NULL)
637 		return (NULL);
638 
639 	/*
640 	 * Avoid racing with import/export, which don't hold the namespace
641 	 * lock for their entire duration.
642 	 */
643 	if ((spa->spa_load_thread != NULL &&
644 	    spa->spa_load_thread != curthread) ||
645 	    (spa->spa_export_thread != NULL &&
646 	    spa->spa_export_thread != curthread)) {
647 		cv_wait(&spa_namespace_cv, &spa_namespace_lock);
648 		goto retry;
649 	}
650 
651 	return (spa);
652 }
653 
654 /*
655  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
656  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
657  * looking for potentially hung I/Os.
658  */
659 void
660 spa_deadman(void *arg)
661 {
662 	spa_t *spa = arg;
663 
664 	/* Disable the deadman if the pool is suspended. */
665 	if (spa_suspended(spa))
666 		return;
667 
668 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
669 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
670 	    (u_longlong_t)++spa->spa_deadman_calls);
671 	if (zfs_deadman_enabled)
672 		vdev_deadman(spa->spa_root_vdev, FTAG);
673 
674 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
675 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
676 	    MSEC_TO_TICK(zfs_deadman_checktime_ms));
677 }
678 
679 static int
680 spa_log_sm_sort_by_txg(const void *va, const void *vb)
681 {
682 	const spa_log_sm_t *a = va;
683 	const spa_log_sm_t *b = vb;
684 
685 	return (TREE_CMP(a->sls_txg, b->sls_txg));
686 }
687 
688 /*
689  * Create an uninitialized spa_t with the given name.  Requires
690  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
691  * exist by calling spa_lookup() first.
692  */
693 spa_t *
694 spa_add(const char *name, nvlist_t *config, const char *altroot)
695 {
696 	spa_t *spa;
697 	spa_config_dirent_t *dp;
698 
699 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
700 
701 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
702 
703 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
704 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
705 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
706 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
707 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
708 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
709 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
710 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
711 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
712 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
713 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
714 	mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
715 	mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
716 	mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL);
717 
718 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
719 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
720 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
721 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
722 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
723 	cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL);
724 	cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL);
725 
726 	for (int t = 0; t < TXG_SIZE; t++)
727 		bplist_create(&spa->spa_free_bplist[t]);
728 
729 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
730 	spa->spa_state = POOL_STATE_UNINITIALIZED;
731 	spa->spa_freeze_txg = UINT64_MAX;
732 	spa->spa_final_txg = UINT64_MAX;
733 	spa->spa_load_max_txg = UINT64_MAX;
734 	spa->spa_proc = &p0;
735 	spa->spa_proc_state = SPA_PROC_NONE;
736 	spa->spa_trust_config = B_TRUE;
737 	spa->spa_hostid = zone_get_hostid(NULL);
738 
739 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
740 	spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
741 	spa_set_deadman_failmode(spa, zfs_deadman_failmode);
742 	spa_set_allocator(spa, zfs_active_allocator);
743 
744 	zfs_refcount_create(&spa->spa_refcount);
745 	spa_config_lock_init(spa);
746 	spa_stats_init(spa);
747 
748 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
749 	avl_add(&spa_namespace_avl, spa);
750 
751 	/*
752 	 * Set the alternate root, if there is one.
753 	 */
754 	if (altroot)
755 		spa->spa_root = spa_strdup(altroot);
756 
757 	/* Do not allow more allocators than fraction of CPUs. */
758 	spa->spa_alloc_count = MAX(MIN(spa_num_allocators,
759 	    boot_ncpus / MAX(spa_cpus_per_allocator, 1)), 1);
760 
761 	spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count *
762 	    sizeof (spa_alloc_t), KM_SLEEP);
763 	for (int i = 0; i < spa->spa_alloc_count; i++) {
764 		mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT,
765 		    NULL);
766 		avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare,
767 		    sizeof (zio_t), offsetof(zio_t, io_queue_node.a));
768 	}
769 	if (spa->spa_alloc_count > 1) {
770 		spa->spa_allocs_use = kmem_zalloc(offsetof(spa_allocs_use_t,
771 		    sau_inuse[spa->spa_alloc_count]), KM_SLEEP);
772 		mutex_init(&spa->spa_allocs_use->sau_lock, NULL, MUTEX_DEFAULT,
773 		    NULL);
774 	}
775 
776 	avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
777 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
778 	avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
779 	    sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
780 	list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
781 	    offsetof(log_summary_entry_t, lse_node));
782 
783 	/*
784 	 * Every pool starts with the default cachefile
785 	 */
786 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
787 	    offsetof(spa_config_dirent_t, scd_link));
788 
789 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
790 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
791 	list_insert_head(&spa->spa_config_list, dp);
792 
793 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
794 	    KM_SLEEP) == 0);
795 
796 	if (config != NULL) {
797 		nvlist_t *features;
798 
799 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
800 		    &features) == 0) {
801 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
802 			    0) == 0);
803 		}
804 
805 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
806 	}
807 
808 	if (spa->spa_label_features == NULL) {
809 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
810 		    KM_SLEEP) == 0);
811 	}
812 
813 	spa->spa_min_ashift = INT_MAX;
814 	spa->spa_max_ashift = 0;
815 	spa->spa_min_alloc = INT_MAX;
816 	spa->spa_gcd_alloc = INT_MAX;
817 
818 	/* Reset cached value */
819 	spa->spa_dedup_dspace = ~0ULL;
820 
821 	/*
822 	 * As a pool is being created, treat all features as disabled by
823 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
824 	 * refcount cache.
825 	 */
826 	for (int i = 0; i < SPA_FEATURES; i++) {
827 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
828 	}
829 
830 	list_create(&spa->spa_leaf_list, sizeof (vdev_t),
831 	    offsetof(vdev_t, vdev_leaf_node));
832 
833 	return (spa);
834 }
835 
836 /*
837  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
838  * spa_namespace_lock.  This is called only after the spa_t has been closed and
839  * deactivated.
840  */
841 void
842 spa_remove(spa_t *spa)
843 {
844 	spa_config_dirent_t *dp;
845 
846 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
847 	ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
848 	ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
849 	ASSERT0(spa->spa_waiters);
850 
851 	nvlist_free(spa->spa_config_splitting);
852 
853 	avl_remove(&spa_namespace_avl, spa);
854 
855 	if (spa->spa_root)
856 		spa_strfree(spa->spa_root);
857 
858 	while ((dp = list_remove_head(&spa->spa_config_list)) != NULL) {
859 		if (dp->scd_path != NULL)
860 			spa_strfree(dp->scd_path);
861 		kmem_free(dp, sizeof (spa_config_dirent_t));
862 	}
863 
864 	for (int i = 0; i < spa->spa_alloc_count; i++) {
865 		avl_destroy(&spa->spa_allocs[i].spaa_tree);
866 		mutex_destroy(&spa->spa_allocs[i].spaa_lock);
867 	}
868 	kmem_free(spa->spa_allocs, spa->spa_alloc_count *
869 	    sizeof (spa_alloc_t));
870 	if (spa->spa_alloc_count > 1) {
871 		mutex_destroy(&spa->spa_allocs_use->sau_lock);
872 		kmem_free(spa->spa_allocs_use, offsetof(spa_allocs_use_t,
873 		    sau_inuse[spa->spa_alloc_count]));
874 	}
875 
876 	avl_destroy(&spa->spa_metaslabs_by_flushed);
877 	avl_destroy(&spa->spa_sm_logs_by_txg);
878 	list_destroy(&spa->spa_log_summary);
879 	list_destroy(&spa->spa_config_list);
880 	list_destroy(&spa->spa_leaf_list);
881 
882 	nvlist_free(spa->spa_label_features);
883 	nvlist_free(spa->spa_load_info);
884 	nvlist_free(spa->spa_feat_stats);
885 	spa_config_set(spa, NULL);
886 
887 	zfs_refcount_destroy(&spa->spa_refcount);
888 
889 	spa_stats_destroy(spa);
890 	spa_config_lock_destroy(spa);
891 
892 	for (int t = 0; t < TXG_SIZE; t++)
893 		bplist_destroy(&spa->spa_free_bplist[t]);
894 
895 	zio_checksum_templates_free(spa);
896 
897 	cv_destroy(&spa->spa_async_cv);
898 	cv_destroy(&spa->spa_evicting_os_cv);
899 	cv_destroy(&spa->spa_proc_cv);
900 	cv_destroy(&spa->spa_scrub_io_cv);
901 	cv_destroy(&spa->spa_suspend_cv);
902 	cv_destroy(&spa->spa_activities_cv);
903 	cv_destroy(&spa->spa_waiters_cv);
904 
905 	mutex_destroy(&spa->spa_flushed_ms_lock);
906 	mutex_destroy(&spa->spa_async_lock);
907 	mutex_destroy(&spa->spa_errlist_lock);
908 	mutex_destroy(&spa->spa_errlog_lock);
909 	mutex_destroy(&spa->spa_evicting_os_lock);
910 	mutex_destroy(&spa->spa_history_lock);
911 	mutex_destroy(&spa->spa_proc_lock);
912 	mutex_destroy(&spa->spa_props_lock);
913 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
914 	mutex_destroy(&spa->spa_scrub_lock);
915 	mutex_destroy(&spa->spa_suspend_lock);
916 	mutex_destroy(&spa->spa_vdev_top_lock);
917 	mutex_destroy(&spa->spa_feat_stats_lock);
918 	mutex_destroy(&spa->spa_activities_lock);
919 
920 	kmem_free(spa, sizeof (spa_t));
921 }
922 
923 /*
924  * Given a pool, return the next pool in the namespace, or NULL if there is
925  * none.  If 'prev' is NULL, return the first pool.
926  */
927 spa_t *
928 spa_next(spa_t *prev)
929 {
930 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
931 
932 	if (prev)
933 		return (AVL_NEXT(&spa_namespace_avl, prev));
934 	else
935 		return (avl_first(&spa_namespace_avl));
936 }
937 
938 /*
939  * ==========================================================================
940  * SPA refcount functions
941  * ==========================================================================
942  */
943 
944 /*
945  * Add a reference to the given spa_t.  Must have at least one reference, or
946  * have the namespace lock held.
947  */
948 void
949 spa_open_ref(spa_t *spa, const void *tag)
950 {
951 	ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
952 	    MUTEX_HELD(&spa_namespace_lock) ||
953 	    spa->spa_load_thread == curthread);
954 	(void) zfs_refcount_add(&spa->spa_refcount, tag);
955 }
956 
957 /*
958  * Remove a reference to the given spa_t.  Must have at least one reference, or
959  * have the namespace lock held or be part of a pool import/export.
960  */
961 void
962 spa_close(spa_t *spa, const void *tag)
963 {
964 	ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
965 	    MUTEX_HELD(&spa_namespace_lock) ||
966 	    spa->spa_load_thread == curthread ||
967 	    spa->spa_export_thread == curthread);
968 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
969 }
970 
971 /*
972  * Remove a reference to the given spa_t held by a dsl dir that is
973  * being asynchronously released.  Async releases occur from a taskq
974  * performing eviction of dsl datasets and dirs.  The namespace lock
975  * isn't held and the hold by the object being evicted may contribute to
976  * spa_minref (e.g. dataset or directory released during pool export),
977  * so the asserts in spa_close() do not apply.
978  */
979 void
980 spa_async_close(spa_t *spa, const void *tag)
981 {
982 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
983 }
984 
985 /*
986  * Check to see if the spa refcount is zero.  Must be called with
987  * spa_namespace_lock held or be the spa export thread.  We really
988  * compare against spa_minref, which is the  number of references
989  * acquired when opening a pool
990  */
991 boolean_t
992 spa_refcount_zero(spa_t *spa)
993 {
994 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
995 	    spa->spa_export_thread == curthread);
996 
997 	return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
998 }
999 
1000 /*
1001  * ==========================================================================
1002  * SPA spare and l2cache tracking
1003  * ==========================================================================
1004  */
1005 
1006 /*
1007  * Hot spares and cache devices are tracked using the same code below,
1008  * for 'auxiliary' devices.
1009  */
1010 
1011 typedef struct spa_aux {
1012 	uint64_t	aux_guid;
1013 	uint64_t	aux_pool;
1014 	avl_node_t	aux_avl;
1015 	int		aux_count;
1016 } spa_aux_t;
1017 
1018 static inline int
1019 spa_aux_compare(const void *a, const void *b)
1020 {
1021 	const spa_aux_t *sa = (const spa_aux_t *)a;
1022 	const spa_aux_t *sb = (const spa_aux_t *)b;
1023 
1024 	return (TREE_CMP(sa->aux_guid, sb->aux_guid));
1025 }
1026 
1027 static void
1028 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
1029 {
1030 	avl_index_t where;
1031 	spa_aux_t search;
1032 	spa_aux_t *aux;
1033 
1034 	search.aux_guid = vd->vdev_guid;
1035 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
1036 		aux->aux_count++;
1037 	} else {
1038 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
1039 		aux->aux_guid = vd->vdev_guid;
1040 		aux->aux_count = 1;
1041 		avl_insert(avl, aux, where);
1042 	}
1043 }
1044 
1045 static void
1046 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
1047 {
1048 	spa_aux_t search;
1049 	spa_aux_t *aux;
1050 	avl_index_t where;
1051 
1052 	search.aux_guid = vd->vdev_guid;
1053 	aux = avl_find(avl, &search, &where);
1054 
1055 	ASSERT(aux != NULL);
1056 
1057 	if (--aux->aux_count == 0) {
1058 		avl_remove(avl, aux);
1059 		kmem_free(aux, sizeof (spa_aux_t));
1060 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
1061 		aux->aux_pool = 0ULL;
1062 	}
1063 }
1064 
1065 static boolean_t
1066 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
1067 {
1068 	spa_aux_t search, *found;
1069 
1070 	search.aux_guid = guid;
1071 	found = avl_find(avl, &search, NULL);
1072 
1073 	if (pool) {
1074 		if (found)
1075 			*pool = found->aux_pool;
1076 		else
1077 			*pool = 0ULL;
1078 	}
1079 
1080 	if (refcnt) {
1081 		if (found)
1082 			*refcnt = found->aux_count;
1083 		else
1084 			*refcnt = 0;
1085 	}
1086 
1087 	return (found != NULL);
1088 }
1089 
1090 static void
1091 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1092 {
1093 	spa_aux_t search, *found;
1094 	avl_index_t where;
1095 
1096 	search.aux_guid = vd->vdev_guid;
1097 	found = avl_find(avl, &search, &where);
1098 	ASSERT(found != NULL);
1099 	ASSERT(found->aux_pool == 0ULL);
1100 
1101 	found->aux_pool = spa_guid(vd->vdev_spa);
1102 }
1103 
1104 /*
1105  * Spares are tracked globally due to the following constraints:
1106  *
1107  *	- A spare may be part of multiple pools.
1108  *	- A spare may be added to a pool even if it's actively in use within
1109  *	  another pool.
1110  *	- A spare in use in any pool can only be the source of a replacement if
1111  *	  the target is a spare in the same pool.
1112  *
1113  * We keep track of all spares on the system through the use of a reference
1114  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1115  * spare, then we bump the reference count in the AVL tree.  In addition, we set
1116  * the 'vdev_isspare' member to indicate that the device is a spare (active or
1117  * inactive).  When a spare is made active (used to replace a device in the
1118  * pool), we also keep track of which pool its been made a part of.
1119  *
1120  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1121  * called under the spa_namespace lock as part of vdev reconfiguration.  The
1122  * separate spare lock exists for the status query path, which does not need to
1123  * be completely consistent with respect to other vdev configuration changes.
1124  */
1125 
1126 static int
1127 spa_spare_compare(const void *a, const void *b)
1128 {
1129 	return (spa_aux_compare(a, b));
1130 }
1131 
1132 void
1133 spa_spare_add(vdev_t *vd)
1134 {
1135 	mutex_enter(&spa_spare_lock);
1136 	ASSERT(!vd->vdev_isspare);
1137 	spa_aux_add(vd, &spa_spare_avl);
1138 	vd->vdev_isspare = B_TRUE;
1139 	mutex_exit(&spa_spare_lock);
1140 }
1141 
1142 void
1143 spa_spare_remove(vdev_t *vd)
1144 {
1145 	mutex_enter(&spa_spare_lock);
1146 	ASSERT(vd->vdev_isspare);
1147 	spa_aux_remove(vd, &spa_spare_avl);
1148 	vd->vdev_isspare = B_FALSE;
1149 	mutex_exit(&spa_spare_lock);
1150 }
1151 
1152 boolean_t
1153 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1154 {
1155 	boolean_t found;
1156 
1157 	mutex_enter(&spa_spare_lock);
1158 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1159 	mutex_exit(&spa_spare_lock);
1160 
1161 	return (found);
1162 }
1163 
1164 void
1165 spa_spare_activate(vdev_t *vd)
1166 {
1167 	mutex_enter(&spa_spare_lock);
1168 	ASSERT(vd->vdev_isspare);
1169 	spa_aux_activate(vd, &spa_spare_avl);
1170 	mutex_exit(&spa_spare_lock);
1171 }
1172 
1173 /*
1174  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1175  * Cache devices currently only support one pool per cache device, and so
1176  * for these devices the aux reference count is currently unused beyond 1.
1177  */
1178 
1179 static int
1180 spa_l2cache_compare(const void *a, const void *b)
1181 {
1182 	return (spa_aux_compare(a, b));
1183 }
1184 
1185 void
1186 spa_l2cache_add(vdev_t *vd)
1187 {
1188 	mutex_enter(&spa_l2cache_lock);
1189 	ASSERT(!vd->vdev_isl2cache);
1190 	spa_aux_add(vd, &spa_l2cache_avl);
1191 	vd->vdev_isl2cache = B_TRUE;
1192 	mutex_exit(&spa_l2cache_lock);
1193 }
1194 
1195 void
1196 spa_l2cache_remove(vdev_t *vd)
1197 {
1198 	mutex_enter(&spa_l2cache_lock);
1199 	ASSERT(vd->vdev_isl2cache);
1200 	spa_aux_remove(vd, &spa_l2cache_avl);
1201 	vd->vdev_isl2cache = B_FALSE;
1202 	mutex_exit(&spa_l2cache_lock);
1203 }
1204 
1205 boolean_t
1206 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1207 {
1208 	boolean_t found;
1209 
1210 	mutex_enter(&spa_l2cache_lock);
1211 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1212 	mutex_exit(&spa_l2cache_lock);
1213 
1214 	return (found);
1215 }
1216 
1217 void
1218 spa_l2cache_activate(vdev_t *vd)
1219 {
1220 	mutex_enter(&spa_l2cache_lock);
1221 	ASSERT(vd->vdev_isl2cache);
1222 	spa_aux_activate(vd, &spa_l2cache_avl);
1223 	mutex_exit(&spa_l2cache_lock);
1224 }
1225 
1226 /*
1227  * ==========================================================================
1228  * SPA vdev locking
1229  * ==========================================================================
1230  */
1231 
1232 /*
1233  * Lock the given spa_t for the purpose of adding or removing a vdev.
1234  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1235  * It returns the next transaction group for the spa_t.
1236  */
1237 uint64_t
1238 spa_vdev_enter(spa_t *spa)
1239 {
1240 	mutex_enter(&spa->spa_vdev_top_lock);
1241 	mutex_enter(&spa_namespace_lock);
1242 
1243 	ASSERT0(spa->spa_export_thread);
1244 
1245 	vdev_autotrim_stop_all(spa);
1246 
1247 	return (spa_vdev_config_enter(spa));
1248 }
1249 
1250 /*
1251  * The same as spa_vdev_enter() above but additionally takes the guid of
1252  * the vdev being detached.  When there is a rebuild in process it will be
1253  * suspended while the vdev tree is modified then resumed by spa_vdev_exit().
1254  * The rebuild is canceled if only a single child remains after the detach.
1255  */
1256 uint64_t
1257 spa_vdev_detach_enter(spa_t *spa, uint64_t guid)
1258 {
1259 	mutex_enter(&spa->spa_vdev_top_lock);
1260 	mutex_enter(&spa_namespace_lock);
1261 
1262 	ASSERT0(spa->spa_export_thread);
1263 
1264 	vdev_autotrim_stop_all(spa);
1265 
1266 	if (guid != 0) {
1267 		vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1268 		if (vd) {
1269 			vdev_rebuild_stop_wait(vd->vdev_top);
1270 		}
1271 	}
1272 
1273 	return (spa_vdev_config_enter(spa));
1274 }
1275 
1276 /*
1277  * Internal implementation for spa_vdev_enter().  Used when a vdev
1278  * operation requires multiple syncs (i.e. removing a device) while
1279  * keeping the spa_namespace_lock held.
1280  */
1281 uint64_t
1282 spa_vdev_config_enter(spa_t *spa)
1283 {
1284 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1285 
1286 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1287 
1288 	return (spa_last_synced_txg(spa) + 1);
1289 }
1290 
1291 /*
1292  * Used in combination with spa_vdev_config_enter() to allow the syncing
1293  * of multiple transactions without releasing the spa_namespace_lock.
1294  */
1295 void
1296 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error,
1297     const char *tag)
1298 {
1299 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1300 
1301 	int config_changed = B_FALSE;
1302 
1303 	ASSERT(txg > spa_last_synced_txg(spa));
1304 
1305 	spa->spa_pending_vdev = NULL;
1306 
1307 	/*
1308 	 * Reassess the DTLs.
1309 	 */
1310 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE);
1311 
1312 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1313 		config_changed = B_TRUE;
1314 		spa->spa_config_generation++;
1315 	}
1316 
1317 	/*
1318 	 * Verify the metaslab classes.
1319 	 */
1320 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1321 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1322 	ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0);
1323 	ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
1324 	ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
1325 
1326 	spa_config_exit(spa, SCL_ALL, spa);
1327 
1328 	/*
1329 	 * Panic the system if the specified tag requires it.  This
1330 	 * is useful for ensuring that configurations are updated
1331 	 * transactionally.
1332 	 */
1333 	if (zio_injection_enabled)
1334 		zio_handle_panic_injection(spa, tag, 0);
1335 
1336 	/*
1337 	 * Note: this txg_wait_synced() is important because it ensures
1338 	 * that there won't be more than one config change per txg.
1339 	 * This allows us to use the txg as the generation number.
1340 	 */
1341 	if (error == 0)
1342 		txg_wait_synced(spa->spa_dsl_pool, txg);
1343 
1344 	if (vd != NULL) {
1345 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1346 		if (vd->vdev_ops->vdev_op_leaf) {
1347 			mutex_enter(&vd->vdev_initialize_lock);
1348 			vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1349 			    NULL);
1350 			mutex_exit(&vd->vdev_initialize_lock);
1351 
1352 			mutex_enter(&vd->vdev_trim_lock);
1353 			vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1354 			mutex_exit(&vd->vdev_trim_lock);
1355 		}
1356 
1357 		/*
1358 		 * The vdev may be both a leaf and top-level device.
1359 		 */
1360 		vdev_autotrim_stop_wait(vd);
1361 
1362 		spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
1363 		vdev_free(vd);
1364 		spa_config_exit(spa, SCL_STATE_ALL, spa);
1365 	}
1366 
1367 	/*
1368 	 * If the config changed, update the config cache.
1369 	 */
1370 	if (config_changed)
1371 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1372 }
1373 
1374 /*
1375  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1376  * locking of spa_vdev_enter(), we also want make sure the transactions have
1377  * synced to disk, and then update the global configuration cache with the new
1378  * information.
1379  */
1380 int
1381 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1382 {
1383 	vdev_autotrim_restart(spa);
1384 	vdev_rebuild_restart(spa);
1385 
1386 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1387 	mutex_exit(&spa_namespace_lock);
1388 	mutex_exit(&spa->spa_vdev_top_lock);
1389 
1390 	return (error);
1391 }
1392 
1393 /*
1394  * Lock the given spa_t for the purpose of changing vdev state.
1395  */
1396 void
1397 spa_vdev_state_enter(spa_t *spa, int oplocks)
1398 {
1399 	int locks = SCL_STATE_ALL | oplocks;
1400 
1401 	/*
1402 	 * Root pools may need to read of the underlying devfs filesystem
1403 	 * when opening up a vdev.  Unfortunately if we're holding the
1404 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1405 	 * the read from the root filesystem.  Instead we "prefetch"
1406 	 * the associated vnodes that we need prior to opening the
1407 	 * underlying devices and cache them so that we can prevent
1408 	 * any I/O when we are doing the actual open.
1409 	 */
1410 	if (spa_is_root(spa)) {
1411 		int low = locks & ~(SCL_ZIO - 1);
1412 		int high = locks & ~low;
1413 
1414 		spa_config_enter(spa, high, spa, RW_WRITER);
1415 		vdev_hold(spa->spa_root_vdev);
1416 		spa_config_enter(spa, low, spa, RW_WRITER);
1417 	} else {
1418 		spa_config_enter(spa, locks, spa, RW_WRITER);
1419 	}
1420 	spa->spa_vdev_locks = locks;
1421 }
1422 
1423 int
1424 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1425 {
1426 	boolean_t config_changed = B_FALSE;
1427 	vdev_t *vdev_top;
1428 
1429 	if (vd == NULL || vd == spa->spa_root_vdev) {
1430 		vdev_top = spa->spa_root_vdev;
1431 	} else {
1432 		vdev_top = vd->vdev_top;
1433 	}
1434 
1435 	if (vd != NULL || error == 0)
1436 		vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE);
1437 
1438 	if (vd != NULL) {
1439 		if (vd != spa->spa_root_vdev)
1440 			vdev_state_dirty(vdev_top);
1441 
1442 		config_changed = B_TRUE;
1443 		spa->spa_config_generation++;
1444 	}
1445 
1446 	if (spa_is_root(spa))
1447 		vdev_rele(spa->spa_root_vdev);
1448 
1449 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1450 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1451 
1452 	/*
1453 	 * If anything changed, wait for it to sync.  This ensures that,
1454 	 * from the system administrator's perspective, zpool(8) commands
1455 	 * are synchronous.  This is important for things like zpool offline:
1456 	 * when the command completes, you expect no further I/O from ZFS.
1457 	 */
1458 	if (vd != NULL)
1459 		txg_wait_synced(spa->spa_dsl_pool, 0);
1460 
1461 	/*
1462 	 * If the config changed, update the config cache.
1463 	 */
1464 	if (config_changed) {
1465 		mutex_enter(&spa_namespace_lock);
1466 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
1467 		mutex_exit(&spa_namespace_lock);
1468 	}
1469 
1470 	return (error);
1471 }
1472 
1473 /*
1474  * ==========================================================================
1475  * Miscellaneous functions
1476  * ==========================================================================
1477  */
1478 
1479 void
1480 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1481 {
1482 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1483 		fnvlist_add_boolean(spa->spa_label_features, feature);
1484 		/*
1485 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1486 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1487 		 * Thankfully, in this case we don't need to dirty the config
1488 		 * because it will be written out anyway when we finish
1489 		 * creating the pool.
1490 		 */
1491 		if (tx->tx_txg != TXG_INITIAL)
1492 			vdev_config_dirty(spa->spa_root_vdev);
1493 	}
1494 }
1495 
1496 void
1497 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1498 {
1499 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1500 		vdev_config_dirty(spa->spa_root_vdev);
1501 }
1502 
1503 /*
1504  * Return the spa_t associated with given pool_guid, if it exists.  If
1505  * device_guid is non-zero, determine whether the pool exists *and* contains
1506  * a device with the specified device_guid.
1507  */
1508 spa_t *
1509 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1510 {
1511 	spa_t *spa;
1512 	avl_tree_t *t = &spa_namespace_avl;
1513 
1514 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1515 
1516 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1517 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1518 			continue;
1519 		if (spa->spa_root_vdev == NULL)
1520 			continue;
1521 		if (spa_guid(spa) == pool_guid) {
1522 			if (device_guid == 0)
1523 				break;
1524 
1525 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1526 			    device_guid) != NULL)
1527 				break;
1528 
1529 			/*
1530 			 * Check any devices we may be in the process of adding.
1531 			 */
1532 			if (spa->spa_pending_vdev) {
1533 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1534 				    device_guid) != NULL)
1535 					break;
1536 			}
1537 		}
1538 	}
1539 
1540 	return (spa);
1541 }
1542 
1543 /*
1544  * Determine whether a pool with the given pool_guid exists.
1545  */
1546 boolean_t
1547 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1548 {
1549 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1550 }
1551 
1552 char *
1553 spa_strdup(const char *s)
1554 {
1555 	size_t len;
1556 	char *new;
1557 
1558 	len = strlen(s);
1559 	new = kmem_alloc(len + 1, KM_SLEEP);
1560 	memcpy(new, s, len + 1);
1561 
1562 	return (new);
1563 }
1564 
1565 void
1566 spa_strfree(char *s)
1567 {
1568 	kmem_free(s, strlen(s) + 1);
1569 }
1570 
1571 uint64_t
1572 spa_generate_guid(spa_t *spa)
1573 {
1574 	uint64_t guid;
1575 
1576 	if (spa != NULL) {
1577 		do {
1578 			(void) random_get_pseudo_bytes((void *)&guid,
1579 			    sizeof (guid));
1580 		} while (guid == 0 || spa_guid_exists(spa_guid(spa), guid));
1581 	} else {
1582 		do {
1583 			(void) random_get_pseudo_bytes((void *)&guid,
1584 			    sizeof (guid));
1585 		} while (guid == 0 || spa_guid_exists(guid, 0));
1586 	}
1587 
1588 	return (guid);
1589 }
1590 
1591 static boolean_t
1592 spa_load_guid_exists(uint64_t guid)
1593 {
1594 	avl_tree_t *t = &spa_namespace_avl;
1595 
1596 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1597 
1598 	for (spa_t *spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1599 		if (spa_load_guid(spa) == guid)
1600 			return (B_TRUE);
1601 	}
1602 
1603 	return (arc_async_flush_guid_inuse(guid));
1604 }
1605 
1606 uint64_t
1607 spa_generate_load_guid(void)
1608 {
1609 	uint64_t guid;
1610 
1611 	do {
1612 		(void) random_get_pseudo_bytes((void *)&guid,
1613 		    sizeof (guid));
1614 	} while (guid == 0 || spa_load_guid_exists(guid));
1615 
1616 	return (guid);
1617 }
1618 
1619 void
1620 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1621 {
1622 	char type[256];
1623 	const char *checksum = NULL;
1624 	const char *compress = NULL;
1625 
1626 	if (bp != NULL) {
1627 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1628 			dmu_object_byteswap_t bswap =
1629 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1630 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1631 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1632 			    "metadata" : "data",
1633 			    dmu_ot_byteswap[bswap].ob_name);
1634 		} else {
1635 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1636 			    sizeof (type));
1637 		}
1638 		if (!BP_IS_EMBEDDED(bp)) {
1639 			checksum =
1640 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1641 		}
1642 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1643 	}
1644 
1645 	SNPRINTF_BLKPTR(kmem_scnprintf, ' ', buf, buflen, bp, type, checksum,
1646 	    compress);
1647 }
1648 
1649 void
1650 spa_freeze(spa_t *spa)
1651 {
1652 	uint64_t freeze_txg = 0;
1653 
1654 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1655 	if (spa->spa_freeze_txg == UINT64_MAX) {
1656 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1657 		spa->spa_freeze_txg = freeze_txg;
1658 	}
1659 	spa_config_exit(spa, SCL_ALL, FTAG);
1660 	if (freeze_txg != 0)
1661 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1662 }
1663 
1664 void
1665 zfs_panic_recover(const char *fmt, ...)
1666 {
1667 	va_list adx;
1668 
1669 	va_start(adx, fmt);
1670 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1671 	va_end(adx);
1672 }
1673 
1674 /*
1675  * This is a stripped-down version of strtoull, suitable only for converting
1676  * lowercase hexadecimal numbers that don't overflow.
1677  */
1678 uint64_t
1679 zfs_strtonum(const char *str, char **nptr)
1680 {
1681 	uint64_t val = 0;
1682 	char c;
1683 	int digit;
1684 
1685 	while ((c = *str) != '\0') {
1686 		if (c >= '0' && c <= '9')
1687 			digit = c - '0';
1688 		else if (c >= 'a' && c <= 'f')
1689 			digit = 10 + c - 'a';
1690 		else
1691 			break;
1692 
1693 		val *= 16;
1694 		val += digit;
1695 
1696 		str++;
1697 	}
1698 
1699 	if (nptr)
1700 		*nptr = (char *)str;
1701 
1702 	return (val);
1703 }
1704 
1705 void
1706 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1707 {
1708 	/*
1709 	 * We bump the feature refcount for each special vdev added to the pool
1710 	 */
1711 	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1712 	spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1713 }
1714 
1715 /*
1716  * ==========================================================================
1717  * Accessor functions
1718  * ==========================================================================
1719  */
1720 
1721 boolean_t
1722 spa_shutting_down(spa_t *spa)
1723 {
1724 	return (spa->spa_async_suspended);
1725 }
1726 
1727 dsl_pool_t *
1728 spa_get_dsl(spa_t *spa)
1729 {
1730 	return (spa->spa_dsl_pool);
1731 }
1732 
1733 boolean_t
1734 spa_is_initializing(spa_t *spa)
1735 {
1736 	return (spa->spa_is_initializing);
1737 }
1738 
1739 boolean_t
1740 spa_indirect_vdevs_loaded(spa_t *spa)
1741 {
1742 	return (spa->spa_indirect_vdevs_loaded);
1743 }
1744 
1745 blkptr_t *
1746 spa_get_rootblkptr(spa_t *spa)
1747 {
1748 	return (&spa->spa_ubsync.ub_rootbp);
1749 }
1750 
1751 void
1752 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1753 {
1754 	spa->spa_uberblock.ub_rootbp = *bp;
1755 }
1756 
1757 void
1758 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1759 {
1760 	if (spa->spa_root == NULL)
1761 		buf[0] = '\0';
1762 	else
1763 		(void) strlcpy(buf, spa->spa_root, buflen);
1764 }
1765 
1766 uint32_t
1767 spa_sync_pass(spa_t *spa)
1768 {
1769 	return (spa->spa_sync_pass);
1770 }
1771 
1772 char *
1773 spa_name(spa_t *spa)
1774 {
1775 	return (spa->spa_name);
1776 }
1777 
1778 uint64_t
1779 spa_guid(spa_t *spa)
1780 {
1781 	dsl_pool_t *dp = spa_get_dsl(spa);
1782 	uint64_t guid;
1783 
1784 	/*
1785 	 * If we fail to parse the config during spa_load(), we can go through
1786 	 * the error path (which posts an ereport) and end up here with no root
1787 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1788 	 * this case.
1789 	 */
1790 	if (spa->spa_root_vdev == NULL)
1791 		return (spa->spa_config_guid);
1792 
1793 	guid = spa->spa_last_synced_guid != 0 ?
1794 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1795 
1796 	/*
1797 	 * Return the most recently synced out guid unless we're
1798 	 * in syncing context.
1799 	 */
1800 	if (dp && dsl_pool_sync_context(dp))
1801 		return (spa->spa_root_vdev->vdev_guid);
1802 	else
1803 		return (guid);
1804 }
1805 
1806 uint64_t
1807 spa_load_guid(spa_t *spa)
1808 {
1809 	/*
1810 	 * This is a GUID that exists solely as a reference for the
1811 	 * purposes of the arc.  It is generated at load time, and
1812 	 * is never written to persistent storage.
1813 	 */
1814 	return (spa->spa_load_guid);
1815 }
1816 
1817 uint64_t
1818 spa_last_synced_txg(spa_t *spa)
1819 {
1820 	return (spa->spa_ubsync.ub_txg);
1821 }
1822 
1823 uint64_t
1824 spa_first_txg(spa_t *spa)
1825 {
1826 	return (spa->spa_first_txg);
1827 }
1828 
1829 uint64_t
1830 spa_syncing_txg(spa_t *spa)
1831 {
1832 	return (spa->spa_syncing_txg);
1833 }
1834 
1835 /*
1836  * Return the last txg where data can be dirtied. The final txgs
1837  * will be used to just clear out any deferred frees that remain.
1838  */
1839 uint64_t
1840 spa_final_dirty_txg(spa_t *spa)
1841 {
1842 	return (spa->spa_final_txg - TXG_DEFER_SIZE);
1843 }
1844 
1845 pool_state_t
1846 spa_state(spa_t *spa)
1847 {
1848 	return (spa->spa_state);
1849 }
1850 
1851 spa_load_state_t
1852 spa_load_state(spa_t *spa)
1853 {
1854 	return (spa->spa_load_state);
1855 }
1856 
1857 uint64_t
1858 spa_freeze_txg(spa_t *spa)
1859 {
1860 	return (spa->spa_freeze_txg);
1861 }
1862 
1863 /*
1864  * Return the inflated asize for a logical write in bytes. This is used by the
1865  * DMU to calculate the space a logical write will require on disk.
1866  * If lsize is smaller than the largest physical block size allocatable on this
1867  * pool we use its value instead, since the write will end up using the whole
1868  * block anyway.
1869  */
1870 uint64_t
1871 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1872 {
1873 	if (lsize == 0)
1874 		return (0);	/* No inflation needed */
1875 	return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
1876 }
1877 
1878 /*
1879  * Return the amount of slop space in bytes.  It is typically 1/32 of the pool
1880  * (3.2%), minus the embedded log space.  On very small pools, it may be
1881  * slightly larger than this.  On very large pools, it will be capped to
1882  * the value of spa_max_slop.  The embedded log space is not included in
1883  * spa_dspace.  By subtracting it, the usable space (per "zfs list") is a
1884  * constant 97% of the total space, regardless of metaslab size (assuming the
1885  * default spa_slop_shift=5 and a non-tiny pool).
1886  *
1887  * See the comment above spa_slop_shift for more details.
1888  */
1889 uint64_t
1890 spa_get_slop_space(spa_t *spa)
1891 {
1892 	uint64_t space = 0;
1893 	uint64_t slop = 0;
1894 
1895 	/*
1896 	 * Make sure spa_dedup_dspace has been set.
1897 	 */
1898 	if (spa->spa_dedup_dspace == ~0ULL)
1899 		spa_update_dspace(spa);
1900 
1901 	space = spa->spa_rdspace;
1902 	slop = MIN(space >> spa_slop_shift, spa_max_slop);
1903 
1904 	/*
1905 	 * Subtract the embedded log space, but no more than half the (3.2%)
1906 	 * unusable space.  Note, the "no more than half" is only relevant if
1907 	 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by
1908 	 * default.
1909 	 */
1910 	uint64_t embedded_log =
1911 	    metaslab_class_get_dspace(spa_embedded_log_class(spa));
1912 	slop -= MIN(embedded_log, slop >> 1);
1913 
1914 	/*
1915 	 * Slop space should be at least spa_min_slop, but no more than half
1916 	 * the entire pool.
1917 	 */
1918 	slop = MAX(slop, MIN(space >> 1, spa_min_slop));
1919 	return (slop);
1920 }
1921 
1922 uint64_t
1923 spa_get_dspace(spa_t *spa)
1924 {
1925 	return (spa->spa_dspace);
1926 }
1927 
1928 uint64_t
1929 spa_get_checkpoint_space(spa_t *spa)
1930 {
1931 	return (spa->spa_checkpoint_info.sci_dspace);
1932 }
1933 
1934 void
1935 spa_update_dspace(spa_t *spa)
1936 {
1937 	spa->spa_rdspace = metaslab_class_get_dspace(spa_normal_class(spa));
1938 	if (spa->spa_nonallocating_dspace > 0) {
1939 		/*
1940 		 * Subtract the space provided by all non-allocating vdevs that
1941 		 * contribute to dspace.  If a file is overwritten, its old
1942 		 * blocks are freed and new blocks are allocated.  If there are
1943 		 * no snapshots of the file, the available space should remain
1944 		 * the same.  The old blocks could be freed from the
1945 		 * non-allocating vdev, but the new blocks must be allocated on
1946 		 * other (allocating) vdevs.  By reserving the entire size of
1947 		 * the non-allocating vdevs (including allocated space), we
1948 		 * ensure that there will be enough space on the allocating
1949 		 * vdevs for this file overwrite to succeed.
1950 		 *
1951 		 * Note that the DMU/DSL doesn't actually know or care
1952 		 * how much space is allocated (it does its own tracking
1953 		 * of how much space has been logically used).  So it
1954 		 * doesn't matter that the data we are moving may be
1955 		 * allocated twice (on the old device and the new device).
1956 		 */
1957 		ASSERT3U(spa->spa_rdspace, >=, spa->spa_nonallocating_dspace);
1958 		spa->spa_rdspace -= spa->spa_nonallocating_dspace;
1959 	}
1960 	spa->spa_dspace = spa->spa_rdspace + ddt_get_dedup_dspace(spa) +
1961 	    brt_get_dspace(spa);
1962 }
1963 
1964 /*
1965  * Return the failure mode that has been set to this pool. The default
1966  * behavior will be to block all I/Os when a complete failure occurs.
1967  */
1968 uint64_t
1969 spa_get_failmode(spa_t *spa)
1970 {
1971 	return (spa->spa_failmode);
1972 }
1973 
1974 boolean_t
1975 spa_suspended(spa_t *spa)
1976 {
1977 	return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1978 }
1979 
1980 uint64_t
1981 spa_version(spa_t *spa)
1982 {
1983 	return (spa->spa_ubsync.ub_version);
1984 }
1985 
1986 boolean_t
1987 spa_deflate(spa_t *spa)
1988 {
1989 	return (spa->spa_deflate);
1990 }
1991 
1992 metaslab_class_t *
1993 spa_normal_class(spa_t *spa)
1994 {
1995 	return (spa->spa_normal_class);
1996 }
1997 
1998 metaslab_class_t *
1999 spa_log_class(spa_t *spa)
2000 {
2001 	return (spa->spa_log_class);
2002 }
2003 
2004 metaslab_class_t *
2005 spa_embedded_log_class(spa_t *spa)
2006 {
2007 	return (spa->spa_embedded_log_class);
2008 }
2009 
2010 metaslab_class_t *
2011 spa_special_class(spa_t *spa)
2012 {
2013 	return (spa->spa_special_class);
2014 }
2015 
2016 metaslab_class_t *
2017 spa_dedup_class(spa_t *spa)
2018 {
2019 	return (spa->spa_dedup_class);
2020 }
2021 
2022 boolean_t
2023 spa_special_has_ddt(spa_t *spa)
2024 {
2025 	return (zfs_ddt_data_is_special &&
2026 	    spa->spa_special_class->mc_groups != 0);
2027 }
2028 
2029 /*
2030  * Locate an appropriate allocation class
2031  */
2032 metaslab_class_t *
2033 spa_preferred_class(spa_t *spa, const zio_t *zio)
2034 {
2035 	const zio_prop_t *zp = &zio->io_prop;
2036 
2037 	/*
2038 	 * Override object type for the purposes of selecting a storage class.
2039 	 * Primarily for DMU_OTN_ types where we can't explicitly control their
2040 	 * storage class; instead, choose a static type most closely matches
2041 	 * what we want.
2042 	 */
2043 	dmu_object_type_t objtype =
2044 	    zp->zp_storage_type == DMU_OT_NONE ?
2045 	    zp->zp_type : zp->zp_storage_type;
2046 
2047 	/*
2048 	 * ZIL allocations determine their class in zio_alloc_zil().
2049 	 */
2050 	ASSERT(objtype != DMU_OT_INTENT_LOG);
2051 
2052 	boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
2053 
2054 	if (DMU_OT_IS_DDT(objtype)) {
2055 		if (spa->spa_dedup_class->mc_groups != 0)
2056 			return (spa_dedup_class(spa));
2057 		else if (has_special_class && zfs_ddt_data_is_special)
2058 			return (spa_special_class(spa));
2059 		else
2060 			return (spa_normal_class(spa));
2061 	}
2062 
2063 	/* Indirect blocks for user data can land in special if allowed */
2064 	if (zp->zp_level > 0 &&
2065 	    (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
2066 		if (has_special_class && zfs_user_indirect_is_special)
2067 			return (spa_special_class(spa));
2068 		else
2069 			return (spa_normal_class(spa));
2070 	}
2071 
2072 	if (DMU_OT_IS_METADATA(objtype) || zp->zp_level > 0) {
2073 		if (has_special_class)
2074 			return (spa_special_class(spa));
2075 		else
2076 			return (spa_normal_class(spa));
2077 	}
2078 
2079 	/*
2080 	 * Allow small file blocks in special class in some cases (like
2081 	 * for the dRAID vdev feature). But always leave a reserve of
2082 	 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
2083 	 */
2084 	if (DMU_OT_IS_FILE(objtype) &&
2085 	    has_special_class && zio->io_size <= zp->zp_zpl_smallblk) {
2086 		metaslab_class_t *special = spa_special_class(spa);
2087 		uint64_t alloc = metaslab_class_get_alloc(special);
2088 		uint64_t space = metaslab_class_get_space(special);
2089 		uint64_t limit =
2090 		    (space * (100 - zfs_special_class_metadata_reserve_pct))
2091 		    / 100;
2092 
2093 		if (alloc < limit)
2094 			return (special);
2095 	}
2096 
2097 	return (spa_normal_class(spa));
2098 }
2099 
2100 void
2101 spa_evicting_os_register(spa_t *spa, objset_t *os)
2102 {
2103 	mutex_enter(&spa->spa_evicting_os_lock);
2104 	list_insert_head(&spa->spa_evicting_os_list, os);
2105 	mutex_exit(&spa->spa_evicting_os_lock);
2106 }
2107 
2108 void
2109 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
2110 {
2111 	mutex_enter(&spa->spa_evicting_os_lock);
2112 	list_remove(&spa->spa_evicting_os_list, os);
2113 	cv_broadcast(&spa->spa_evicting_os_cv);
2114 	mutex_exit(&spa->spa_evicting_os_lock);
2115 }
2116 
2117 void
2118 spa_evicting_os_wait(spa_t *spa)
2119 {
2120 	mutex_enter(&spa->spa_evicting_os_lock);
2121 	while (!list_is_empty(&spa->spa_evicting_os_list))
2122 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
2123 	mutex_exit(&spa->spa_evicting_os_lock);
2124 
2125 	dmu_buf_user_evict_wait();
2126 }
2127 
2128 int
2129 spa_max_replication(spa_t *spa)
2130 {
2131 	/*
2132 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
2133 	 * handle BPs with more than one DVA allocated.  Set our max
2134 	 * replication level accordingly.
2135 	 */
2136 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
2137 		return (1);
2138 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
2139 }
2140 
2141 int
2142 spa_prev_software_version(spa_t *spa)
2143 {
2144 	return (spa->spa_prev_software_version);
2145 }
2146 
2147 uint64_t
2148 spa_deadman_synctime(spa_t *spa)
2149 {
2150 	return (spa->spa_deadman_synctime);
2151 }
2152 
2153 spa_autotrim_t
2154 spa_get_autotrim(spa_t *spa)
2155 {
2156 	return (spa->spa_autotrim);
2157 }
2158 
2159 uint64_t
2160 spa_deadman_ziotime(spa_t *spa)
2161 {
2162 	return (spa->spa_deadman_ziotime);
2163 }
2164 
2165 uint64_t
2166 spa_get_deadman_failmode(spa_t *spa)
2167 {
2168 	return (spa->spa_deadman_failmode);
2169 }
2170 
2171 void
2172 spa_set_deadman_failmode(spa_t *spa, const char *failmode)
2173 {
2174 	if (strcmp(failmode, "wait") == 0)
2175 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2176 	else if (strcmp(failmode, "continue") == 0)
2177 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
2178 	else if (strcmp(failmode, "panic") == 0)
2179 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
2180 	else
2181 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2182 }
2183 
2184 void
2185 spa_set_deadman_ziotime(hrtime_t ns)
2186 {
2187 	spa_t *spa = NULL;
2188 
2189 	if (spa_mode_global != SPA_MODE_UNINIT) {
2190 		mutex_enter(&spa_namespace_lock);
2191 		while ((spa = spa_next(spa)) != NULL)
2192 			spa->spa_deadman_ziotime = ns;
2193 		mutex_exit(&spa_namespace_lock);
2194 	}
2195 }
2196 
2197 void
2198 spa_set_deadman_synctime(hrtime_t ns)
2199 {
2200 	spa_t *spa = NULL;
2201 
2202 	if (spa_mode_global != SPA_MODE_UNINIT) {
2203 		mutex_enter(&spa_namespace_lock);
2204 		while ((spa = spa_next(spa)) != NULL)
2205 			spa->spa_deadman_synctime = ns;
2206 		mutex_exit(&spa_namespace_lock);
2207 	}
2208 }
2209 
2210 uint64_t
2211 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
2212 {
2213 	uint64_t asize = DVA_GET_ASIZE(dva);
2214 	uint64_t dsize = asize;
2215 
2216 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2217 
2218 	if (asize != 0 && spa->spa_deflate) {
2219 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2220 		if (vd != NULL)
2221 			dsize = (asize >> SPA_MINBLOCKSHIFT) *
2222 			    vd->vdev_deflate_ratio;
2223 	}
2224 
2225 	return (dsize);
2226 }
2227 
2228 uint64_t
2229 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
2230 {
2231 	uint64_t dsize = 0;
2232 
2233 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2234 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2235 
2236 	return (dsize);
2237 }
2238 
2239 uint64_t
2240 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
2241 {
2242 	uint64_t dsize = 0;
2243 
2244 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2245 
2246 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2247 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2248 
2249 	spa_config_exit(spa, SCL_VDEV, FTAG);
2250 
2251 	return (dsize);
2252 }
2253 
2254 uint64_t
2255 spa_dirty_data(spa_t *spa)
2256 {
2257 	return (spa->spa_dsl_pool->dp_dirty_total);
2258 }
2259 
2260 /*
2261  * ==========================================================================
2262  * SPA Import Progress Routines
2263  * ==========================================================================
2264  */
2265 
2266 typedef struct spa_import_progress {
2267 	uint64_t		pool_guid;	/* unique id for updates */
2268 	char			*pool_name;
2269 	spa_load_state_t	spa_load_state;
2270 	char			*spa_load_notes;
2271 	uint64_t		mmp_sec_remaining;	/* MMP activity check */
2272 	uint64_t		spa_load_max_txg;	/* rewind txg */
2273 	procfs_list_node_t	smh_node;
2274 } spa_import_progress_t;
2275 
2276 spa_history_list_t *spa_import_progress_list = NULL;
2277 
2278 static int
2279 spa_import_progress_show_header(struct seq_file *f)
2280 {
2281 	seq_printf(f, "%-20s %-14s %-14s %-12s %-16s %s\n", "pool_guid",
2282 	    "load_state", "multihost_secs", "max_txg",
2283 	    "pool_name", "notes");
2284 	return (0);
2285 }
2286 
2287 static int
2288 spa_import_progress_show(struct seq_file *f, void *data)
2289 {
2290 	spa_import_progress_t *sip = (spa_import_progress_t *)data;
2291 
2292 	seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %-16s %s\n",
2293 	    (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state,
2294 	    (u_longlong_t)sip->mmp_sec_remaining,
2295 	    (u_longlong_t)sip->spa_load_max_txg,
2296 	    (sip->pool_name ? sip->pool_name : "-"),
2297 	    (sip->spa_load_notes ? sip->spa_load_notes : "-"));
2298 
2299 	return (0);
2300 }
2301 
2302 /* Remove oldest elements from list until there are no more than 'size' left */
2303 static void
2304 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size)
2305 {
2306 	spa_import_progress_t *sip;
2307 	while (shl->size > size) {
2308 		sip = list_remove_head(&shl->procfs_list.pl_list);
2309 		if (sip->pool_name)
2310 			spa_strfree(sip->pool_name);
2311 		if (sip->spa_load_notes)
2312 			kmem_strfree(sip->spa_load_notes);
2313 		kmem_free(sip, sizeof (spa_import_progress_t));
2314 		shl->size--;
2315 	}
2316 
2317 	IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list));
2318 }
2319 
2320 static void
2321 spa_import_progress_init(void)
2322 {
2323 	spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t),
2324 	    KM_SLEEP);
2325 
2326 	spa_import_progress_list->size = 0;
2327 
2328 	spa_import_progress_list->procfs_list.pl_private =
2329 	    spa_import_progress_list;
2330 
2331 	procfs_list_install("zfs",
2332 	    NULL,
2333 	    "import_progress",
2334 	    0644,
2335 	    &spa_import_progress_list->procfs_list,
2336 	    spa_import_progress_show,
2337 	    spa_import_progress_show_header,
2338 	    NULL,
2339 	    offsetof(spa_import_progress_t, smh_node));
2340 }
2341 
2342 static void
2343 spa_import_progress_destroy(void)
2344 {
2345 	spa_history_list_t *shl = spa_import_progress_list;
2346 	procfs_list_uninstall(&shl->procfs_list);
2347 	spa_import_progress_truncate(shl, 0);
2348 	procfs_list_destroy(&shl->procfs_list);
2349 	kmem_free(shl, sizeof (spa_history_list_t));
2350 }
2351 
2352 int
2353 spa_import_progress_set_state(uint64_t pool_guid,
2354     spa_load_state_t load_state)
2355 {
2356 	spa_history_list_t *shl = spa_import_progress_list;
2357 	spa_import_progress_t *sip;
2358 	int error = ENOENT;
2359 
2360 	if (shl->size == 0)
2361 		return (0);
2362 
2363 	mutex_enter(&shl->procfs_list.pl_lock);
2364 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2365 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2366 		if (sip->pool_guid == pool_guid) {
2367 			sip->spa_load_state = load_state;
2368 			if (sip->spa_load_notes != NULL) {
2369 				kmem_strfree(sip->spa_load_notes);
2370 				sip->spa_load_notes = NULL;
2371 			}
2372 			error = 0;
2373 			break;
2374 		}
2375 	}
2376 	mutex_exit(&shl->procfs_list.pl_lock);
2377 
2378 	return (error);
2379 }
2380 
2381 static void
2382 spa_import_progress_set_notes_impl(spa_t *spa, boolean_t log_dbgmsg,
2383     const char *fmt, va_list adx)
2384 {
2385 	spa_history_list_t *shl = spa_import_progress_list;
2386 	spa_import_progress_t *sip;
2387 	uint64_t pool_guid = spa_guid(spa);
2388 
2389 	if (shl->size == 0)
2390 		return;
2391 
2392 	char *notes = kmem_vasprintf(fmt, adx);
2393 
2394 	mutex_enter(&shl->procfs_list.pl_lock);
2395 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2396 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2397 		if (sip->pool_guid == pool_guid) {
2398 			if (sip->spa_load_notes != NULL) {
2399 				kmem_strfree(sip->spa_load_notes);
2400 				sip->spa_load_notes = NULL;
2401 			}
2402 			sip->spa_load_notes = notes;
2403 			if (log_dbgmsg)
2404 				zfs_dbgmsg("'%s' %s", sip->pool_name, notes);
2405 			notes = NULL;
2406 			break;
2407 		}
2408 	}
2409 	mutex_exit(&shl->procfs_list.pl_lock);
2410 	if (notes != NULL)
2411 		kmem_strfree(notes);
2412 }
2413 
2414 void
2415 spa_import_progress_set_notes(spa_t *spa, const char *fmt, ...)
2416 {
2417 	va_list adx;
2418 
2419 	va_start(adx, fmt);
2420 	spa_import_progress_set_notes_impl(spa, B_TRUE, fmt, adx);
2421 	va_end(adx);
2422 }
2423 
2424 void
2425 spa_import_progress_set_notes_nolog(spa_t *spa, const char *fmt, ...)
2426 {
2427 	va_list adx;
2428 
2429 	va_start(adx, fmt);
2430 	spa_import_progress_set_notes_impl(spa, B_FALSE, fmt, adx);
2431 	va_end(adx);
2432 }
2433 
2434 int
2435 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg)
2436 {
2437 	spa_history_list_t *shl = spa_import_progress_list;
2438 	spa_import_progress_t *sip;
2439 	int error = ENOENT;
2440 
2441 	if (shl->size == 0)
2442 		return (0);
2443 
2444 	mutex_enter(&shl->procfs_list.pl_lock);
2445 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2446 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2447 		if (sip->pool_guid == pool_guid) {
2448 			sip->spa_load_max_txg = load_max_txg;
2449 			error = 0;
2450 			break;
2451 		}
2452 	}
2453 	mutex_exit(&shl->procfs_list.pl_lock);
2454 
2455 	return (error);
2456 }
2457 
2458 int
2459 spa_import_progress_set_mmp_check(uint64_t pool_guid,
2460     uint64_t mmp_sec_remaining)
2461 {
2462 	spa_history_list_t *shl = spa_import_progress_list;
2463 	spa_import_progress_t *sip;
2464 	int error = ENOENT;
2465 
2466 	if (shl->size == 0)
2467 		return (0);
2468 
2469 	mutex_enter(&shl->procfs_list.pl_lock);
2470 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2471 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2472 		if (sip->pool_guid == pool_guid) {
2473 			sip->mmp_sec_remaining = mmp_sec_remaining;
2474 			error = 0;
2475 			break;
2476 		}
2477 	}
2478 	mutex_exit(&shl->procfs_list.pl_lock);
2479 
2480 	return (error);
2481 }
2482 
2483 /*
2484  * A new import is in progress, add an entry.
2485  */
2486 void
2487 spa_import_progress_add(spa_t *spa)
2488 {
2489 	spa_history_list_t *shl = spa_import_progress_list;
2490 	spa_import_progress_t *sip;
2491 	const char *poolname = NULL;
2492 
2493 	sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP);
2494 	sip->pool_guid = spa_guid(spa);
2495 
2496 	(void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
2497 	    &poolname);
2498 	if (poolname == NULL)
2499 		poolname = spa_name(spa);
2500 	sip->pool_name = spa_strdup(poolname);
2501 	sip->spa_load_state = spa_load_state(spa);
2502 	sip->spa_load_notes = NULL;
2503 
2504 	mutex_enter(&shl->procfs_list.pl_lock);
2505 	procfs_list_add(&shl->procfs_list, sip);
2506 	shl->size++;
2507 	mutex_exit(&shl->procfs_list.pl_lock);
2508 }
2509 
2510 void
2511 spa_import_progress_remove(uint64_t pool_guid)
2512 {
2513 	spa_history_list_t *shl = spa_import_progress_list;
2514 	spa_import_progress_t *sip;
2515 
2516 	mutex_enter(&shl->procfs_list.pl_lock);
2517 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2518 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2519 		if (sip->pool_guid == pool_guid) {
2520 			if (sip->pool_name)
2521 				spa_strfree(sip->pool_name);
2522 			if (sip->spa_load_notes)
2523 				spa_strfree(sip->spa_load_notes);
2524 			list_remove(&shl->procfs_list.pl_list, sip);
2525 			shl->size--;
2526 			kmem_free(sip, sizeof (spa_import_progress_t));
2527 			break;
2528 		}
2529 	}
2530 	mutex_exit(&shl->procfs_list.pl_lock);
2531 }
2532 
2533 /*
2534  * ==========================================================================
2535  * Initialization and Termination
2536  * ==========================================================================
2537  */
2538 
2539 static int
2540 spa_name_compare(const void *a1, const void *a2)
2541 {
2542 	const spa_t *s1 = a1;
2543 	const spa_t *s2 = a2;
2544 	int s;
2545 
2546 	s = strcmp(s1->spa_name, s2->spa_name);
2547 
2548 	return (TREE_ISIGN(s));
2549 }
2550 
2551 void
2552 spa_boot_init(void)
2553 {
2554 	spa_config_load();
2555 }
2556 
2557 void
2558 spa_init(spa_mode_t mode)
2559 {
2560 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2561 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2562 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2563 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2564 
2565 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2566 	    offsetof(spa_t, spa_avl));
2567 
2568 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2569 	    offsetof(spa_aux_t, aux_avl));
2570 
2571 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2572 	    offsetof(spa_aux_t, aux_avl));
2573 
2574 	spa_mode_global = mode;
2575 
2576 #ifndef _KERNEL
2577 	if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) {
2578 		struct sigaction sa;
2579 
2580 		sa.sa_flags = SA_SIGINFO;
2581 		sigemptyset(&sa.sa_mask);
2582 		sa.sa_sigaction = arc_buf_sigsegv;
2583 
2584 		if (sigaction(SIGSEGV, &sa, NULL) == -1) {
2585 			perror("could not enable watchpoints: "
2586 			    "sigaction(SIGSEGV, ...) = ");
2587 		} else {
2588 			arc_watch = B_TRUE;
2589 		}
2590 	}
2591 #endif
2592 
2593 	fm_init();
2594 	zfs_refcount_init();
2595 	unique_init();
2596 	zfs_btree_init();
2597 	metaslab_stat_init();
2598 	brt_init();
2599 	ddt_init();
2600 	zio_init();
2601 	dmu_init();
2602 	zil_init();
2603 	vdev_mirror_stat_init();
2604 	vdev_raidz_math_init();
2605 	vdev_file_init();
2606 	zfs_prop_init();
2607 	chksum_init();
2608 	zpool_prop_init();
2609 	zpool_feature_init();
2610 	spa_config_load();
2611 	vdev_prop_init();
2612 	l2arc_start();
2613 	scan_init();
2614 	qat_init();
2615 	spa_import_progress_init();
2616 	zap_init();
2617 }
2618 
2619 void
2620 spa_fini(void)
2621 {
2622 	l2arc_stop();
2623 
2624 	spa_evict_all();
2625 
2626 	vdev_file_fini();
2627 	vdev_mirror_stat_fini();
2628 	vdev_raidz_math_fini();
2629 	chksum_fini();
2630 	zil_fini();
2631 	dmu_fini();
2632 	zio_fini();
2633 	ddt_fini();
2634 	brt_fini();
2635 	metaslab_stat_fini();
2636 	zfs_btree_fini();
2637 	unique_fini();
2638 	zfs_refcount_fini();
2639 	fm_fini();
2640 	scan_fini();
2641 	qat_fini();
2642 	spa_import_progress_destroy();
2643 	zap_fini();
2644 
2645 	avl_destroy(&spa_namespace_avl);
2646 	avl_destroy(&spa_spare_avl);
2647 	avl_destroy(&spa_l2cache_avl);
2648 
2649 	cv_destroy(&spa_namespace_cv);
2650 	mutex_destroy(&spa_namespace_lock);
2651 	mutex_destroy(&spa_spare_lock);
2652 	mutex_destroy(&spa_l2cache_lock);
2653 }
2654 
2655 /*
2656  * Return whether this pool has a dedicated slog device. No locking needed.
2657  * It's not a problem if the wrong answer is returned as it's only for
2658  * performance and not correctness.
2659  */
2660 boolean_t
2661 spa_has_slogs(spa_t *spa)
2662 {
2663 	return (spa->spa_log_class->mc_groups != 0);
2664 }
2665 
2666 spa_log_state_t
2667 spa_get_log_state(spa_t *spa)
2668 {
2669 	return (spa->spa_log_state);
2670 }
2671 
2672 void
2673 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2674 {
2675 	spa->spa_log_state = state;
2676 }
2677 
2678 boolean_t
2679 spa_is_root(spa_t *spa)
2680 {
2681 	return (spa->spa_is_root);
2682 }
2683 
2684 boolean_t
2685 spa_writeable(spa_t *spa)
2686 {
2687 	return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config);
2688 }
2689 
2690 /*
2691  * Returns true if there is a pending sync task in any of the current
2692  * syncing txg, the current quiescing txg, or the current open txg.
2693  */
2694 boolean_t
2695 spa_has_pending_synctask(spa_t *spa)
2696 {
2697 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2698 	    !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2699 }
2700 
2701 spa_mode_t
2702 spa_mode(spa_t *spa)
2703 {
2704 	return (spa->spa_mode);
2705 }
2706 
2707 uint64_t
2708 spa_get_last_scrubbed_txg(spa_t *spa)
2709 {
2710 	return (spa->spa_scrubbed_last_txg);
2711 }
2712 
2713 uint64_t
2714 spa_bootfs(spa_t *spa)
2715 {
2716 	return (spa->spa_bootfs);
2717 }
2718 
2719 uint64_t
2720 spa_delegation(spa_t *spa)
2721 {
2722 	return (spa->spa_delegation);
2723 }
2724 
2725 objset_t *
2726 spa_meta_objset(spa_t *spa)
2727 {
2728 	return (spa->spa_meta_objset);
2729 }
2730 
2731 enum zio_checksum
2732 spa_dedup_checksum(spa_t *spa)
2733 {
2734 	return (spa->spa_dedup_checksum);
2735 }
2736 
2737 /*
2738  * Reset pool scan stat per scan pass (or reboot).
2739  */
2740 void
2741 spa_scan_stat_init(spa_t *spa)
2742 {
2743 	/* data not stored on disk */
2744 	spa->spa_scan_pass_start = gethrestime_sec();
2745 	if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2746 		spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2747 	else
2748 		spa->spa_scan_pass_scrub_pause = 0;
2749 
2750 	if (dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan))
2751 		spa->spa_scan_pass_errorscrub_pause = spa->spa_scan_pass_start;
2752 	else
2753 		spa->spa_scan_pass_errorscrub_pause = 0;
2754 
2755 	spa->spa_scan_pass_scrub_spent_paused = 0;
2756 	spa->spa_scan_pass_exam = 0;
2757 	spa->spa_scan_pass_issued = 0;
2758 
2759 	// error scrub stats
2760 	spa->spa_scan_pass_errorscrub_spent_paused = 0;
2761 }
2762 
2763 /*
2764  * Get scan stats for zpool status reports
2765  */
2766 int
2767 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2768 {
2769 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2770 
2771 	if (scn == NULL || (scn->scn_phys.scn_func == POOL_SCAN_NONE &&
2772 	    scn->errorscrub_phys.dep_func == POOL_SCAN_NONE))
2773 		return (SET_ERROR(ENOENT));
2774 
2775 	memset(ps, 0, sizeof (pool_scan_stat_t));
2776 
2777 	/* data stored on disk */
2778 	ps->pss_func = scn->scn_phys.scn_func;
2779 	ps->pss_state = scn->scn_phys.scn_state;
2780 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2781 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2782 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2783 	ps->pss_examined = scn->scn_phys.scn_examined;
2784 	ps->pss_skipped = scn->scn_phys.scn_skipped;
2785 	ps->pss_processed = scn->scn_phys.scn_processed;
2786 	ps->pss_errors = scn->scn_phys.scn_errors;
2787 
2788 	/* data not stored on disk */
2789 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2790 	ps->pss_pass_start = spa->spa_scan_pass_start;
2791 	ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2792 	ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2793 	ps->pss_pass_issued = spa->spa_scan_pass_issued;
2794 	ps->pss_issued =
2795 	    scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2796 
2797 	/* error scrub data stored on disk */
2798 	ps->pss_error_scrub_func = scn->errorscrub_phys.dep_func;
2799 	ps->pss_error_scrub_state = scn->errorscrub_phys.dep_state;
2800 	ps->pss_error_scrub_start = scn->errorscrub_phys.dep_start_time;
2801 	ps->pss_error_scrub_end = scn->errorscrub_phys.dep_end_time;
2802 	ps->pss_error_scrub_examined = scn->errorscrub_phys.dep_examined;
2803 	ps->pss_error_scrub_to_be_examined =
2804 	    scn->errorscrub_phys.dep_to_examine;
2805 
2806 	/* error scrub data not stored on disk */
2807 	ps->pss_pass_error_scrub_pause = spa->spa_scan_pass_errorscrub_pause;
2808 
2809 	return (0);
2810 }
2811 
2812 int
2813 spa_maxblocksize(spa_t *spa)
2814 {
2815 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2816 		return (SPA_MAXBLOCKSIZE);
2817 	else
2818 		return (SPA_OLD_MAXBLOCKSIZE);
2819 }
2820 
2821 
2822 /*
2823  * Returns the txg that the last device removal completed. No indirect mappings
2824  * have been added since this txg.
2825  */
2826 uint64_t
2827 spa_get_last_removal_txg(spa_t *spa)
2828 {
2829 	uint64_t vdevid;
2830 	uint64_t ret = -1ULL;
2831 
2832 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2833 	/*
2834 	 * sr_prev_indirect_vdev is only modified while holding all the
2835 	 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2836 	 * examining it.
2837 	 */
2838 	vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2839 
2840 	while (vdevid != -1ULL) {
2841 		vdev_t *vd = vdev_lookup_top(spa, vdevid);
2842 		vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2843 
2844 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2845 
2846 		/*
2847 		 * If the removal did not remap any data, we don't care.
2848 		 */
2849 		if (vdev_indirect_births_count(vib) != 0) {
2850 			ret = vdev_indirect_births_last_entry_txg(vib);
2851 			break;
2852 		}
2853 
2854 		vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2855 	}
2856 	spa_config_exit(spa, SCL_VDEV, FTAG);
2857 
2858 	IMPLY(ret != -1ULL,
2859 	    spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2860 
2861 	return (ret);
2862 }
2863 
2864 int
2865 spa_maxdnodesize(spa_t *spa)
2866 {
2867 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2868 		return (DNODE_MAX_SIZE);
2869 	else
2870 		return (DNODE_MIN_SIZE);
2871 }
2872 
2873 boolean_t
2874 spa_multihost(spa_t *spa)
2875 {
2876 	return (spa->spa_multihost ? B_TRUE : B_FALSE);
2877 }
2878 
2879 uint32_t
2880 spa_get_hostid(spa_t *spa)
2881 {
2882 	return (spa->spa_hostid);
2883 }
2884 
2885 boolean_t
2886 spa_trust_config(spa_t *spa)
2887 {
2888 	return (spa->spa_trust_config);
2889 }
2890 
2891 uint64_t
2892 spa_missing_tvds_allowed(spa_t *spa)
2893 {
2894 	return (spa->spa_missing_tvds_allowed);
2895 }
2896 
2897 space_map_t *
2898 spa_syncing_log_sm(spa_t *spa)
2899 {
2900 	return (spa->spa_syncing_log_sm);
2901 }
2902 
2903 void
2904 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2905 {
2906 	spa->spa_missing_tvds = missing;
2907 }
2908 
2909 /*
2910  * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
2911  */
2912 const char *
2913 spa_state_to_name(spa_t *spa)
2914 {
2915 	ASSERT3P(spa, !=, NULL);
2916 
2917 	/*
2918 	 * it is possible for the spa to exist, without root vdev
2919 	 * as the spa transitions during import/export
2920 	 */
2921 	vdev_t *rvd = spa->spa_root_vdev;
2922 	if (rvd == NULL) {
2923 		return ("TRANSITIONING");
2924 	}
2925 	vdev_state_t state = rvd->vdev_state;
2926 	vdev_aux_t aux = rvd->vdev_stat.vs_aux;
2927 
2928 	if (spa_suspended(spa))
2929 		return ("SUSPENDED");
2930 
2931 	switch (state) {
2932 	case VDEV_STATE_CLOSED:
2933 	case VDEV_STATE_OFFLINE:
2934 		return ("OFFLINE");
2935 	case VDEV_STATE_REMOVED:
2936 		return ("REMOVED");
2937 	case VDEV_STATE_CANT_OPEN:
2938 		if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
2939 			return ("FAULTED");
2940 		else if (aux == VDEV_AUX_SPLIT_POOL)
2941 			return ("SPLIT");
2942 		else
2943 			return ("UNAVAIL");
2944 	case VDEV_STATE_FAULTED:
2945 		return ("FAULTED");
2946 	case VDEV_STATE_DEGRADED:
2947 		return ("DEGRADED");
2948 	case VDEV_STATE_HEALTHY:
2949 		return ("ONLINE");
2950 	default:
2951 		break;
2952 	}
2953 
2954 	return ("UNKNOWN");
2955 }
2956 
2957 boolean_t
2958 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2959 {
2960 	vdev_t *rvd = spa->spa_root_vdev;
2961 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2962 		if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2963 			return (B_FALSE);
2964 	}
2965 	return (B_TRUE);
2966 }
2967 
2968 boolean_t
2969 spa_has_checkpoint(spa_t *spa)
2970 {
2971 	return (spa->spa_checkpoint_txg != 0);
2972 }
2973 
2974 boolean_t
2975 spa_importing_readonly_checkpoint(spa_t *spa)
2976 {
2977 	return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2978 	    spa->spa_mode == SPA_MODE_READ);
2979 }
2980 
2981 uint64_t
2982 spa_min_claim_txg(spa_t *spa)
2983 {
2984 	uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2985 
2986 	if (checkpoint_txg != 0)
2987 		return (checkpoint_txg + 1);
2988 
2989 	return (spa->spa_first_txg);
2990 }
2991 
2992 /*
2993  * If there is a checkpoint, async destroys may consume more space from
2994  * the pool instead of freeing it. In an attempt to save the pool from
2995  * getting suspended when it is about to run out of space, we stop
2996  * processing async destroys.
2997  */
2998 boolean_t
2999 spa_suspend_async_destroy(spa_t *spa)
3000 {
3001 	dsl_pool_t *dp = spa_get_dsl(spa);
3002 
3003 	uint64_t unreserved = dsl_pool_unreserved_space(dp,
3004 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
3005 	uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
3006 	uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
3007 
3008 	if (spa_has_checkpoint(spa) && avail == 0)
3009 		return (B_TRUE);
3010 
3011 	return (B_FALSE);
3012 }
3013 
3014 #if defined(_KERNEL)
3015 
3016 int
3017 param_set_deadman_failmode_common(const char *val)
3018 {
3019 	spa_t *spa = NULL;
3020 	char *p;
3021 
3022 	if (val == NULL)
3023 		return (SET_ERROR(EINVAL));
3024 
3025 	if ((p = strchr(val, '\n')) != NULL)
3026 		*p = '\0';
3027 
3028 	if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
3029 	    strcmp(val, "panic"))
3030 		return (SET_ERROR(EINVAL));
3031 
3032 	if (spa_mode_global != SPA_MODE_UNINIT) {
3033 		mutex_enter(&spa_namespace_lock);
3034 		while ((spa = spa_next(spa)) != NULL)
3035 			spa_set_deadman_failmode(spa, val);
3036 		mutex_exit(&spa_namespace_lock);
3037 	}
3038 
3039 	return (0);
3040 }
3041 #endif
3042 
3043 /* Namespace manipulation */
3044 EXPORT_SYMBOL(spa_lookup);
3045 EXPORT_SYMBOL(spa_add);
3046 EXPORT_SYMBOL(spa_remove);
3047 EXPORT_SYMBOL(spa_next);
3048 
3049 /* Refcount functions */
3050 EXPORT_SYMBOL(spa_open_ref);
3051 EXPORT_SYMBOL(spa_close);
3052 EXPORT_SYMBOL(spa_refcount_zero);
3053 
3054 /* Pool configuration lock */
3055 EXPORT_SYMBOL(spa_config_tryenter);
3056 EXPORT_SYMBOL(spa_config_enter);
3057 EXPORT_SYMBOL(spa_config_exit);
3058 EXPORT_SYMBOL(spa_config_held);
3059 
3060 /* Pool vdev add/remove lock */
3061 EXPORT_SYMBOL(spa_vdev_enter);
3062 EXPORT_SYMBOL(spa_vdev_exit);
3063 
3064 /* Pool vdev state change lock */
3065 EXPORT_SYMBOL(spa_vdev_state_enter);
3066 EXPORT_SYMBOL(spa_vdev_state_exit);
3067 
3068 /* Accessor functions */
3069 EXPORT_SYMBOL(spa_shutting_down);
3070 EXPORT_SYMBOL(spa_get_dsl);
3071 EXPORT_SYMBOL(spa_get_rootblkptr);
3072 EXPORT_SYMBOL(spa_set_rootblkptr);
3073 EXPORT_SYMBOL(spa_altroot);
3074 EXPORT_SYMBOL(spa_sync_pass);
3075 EXPORT_SYMBOL(spa_name);
3076 EXPORT_SYMBOL(spa_guid);
3077 EXPORT_SYMBOL(spa_last_synced_txg);
3078 EXPORT_SYMBOL(spa_first_txg);
3079 EXPORT_SYMBOL(spa_syncing_txg);
3080 EXPORT_SYMBOL(spa_version);
3081 EXPORT_SYMBOL(spa_state);
3082 EXPORT_SYMBOL(spa_load_state);
3083 EXPORT_SYMBOL(spa_freeze_txg);
3084 EXPORT_SYMBOL(spa_get_dspace);
3085 EXPORT_SYMBOL(spa_update_dspace);
3086 EXPORT_SYMBOL(spa_deflate);
3087 EXPORT_SYMBOL(spa_normal_class);
3088 EXPORT_SYMBOL(spa_log_class);
3089 EXPORT_SYMBOL(spa_special_class);
3090 EXPORT_SYMBOL(spa_preferred_class);
3091 EXPORT_SYMBOL(spa_max_replication);
3092 EXPORT_SYMBOL(spa_prev_software_version);
3093 EXPORT_SYMBOL(spa_get_failmode);
3094 EXPORT_SYMBOL(spa_suspended);
3095 EXPORT_SYMBOL(spa_bootfs);
3096 EXPORT_SYMBOL(spa_delegation);
3097 EXPORT_SYMBOL(spa_meta_objset);
3098 EXPORT_SYMBOL(spa_maxblocksize);
3099 EXPORT_SYMBOL(spa_maxdnodesize);
3100 
3101 /* Miscellaneous support routines */
3102 EXPORT_SYMBOL(spa_guid_exists);
3103 EXPORT_SYMBOL(spa_strdup);
3104 EXPORT_SYMBOL(spa_strfree);
3105 EXPORT_SYMBOL(spa_generate_guid);
3106 EXPORT_SYMBOL(snprintf_blkptr);
3107 EXPORT_SYMBOL(spa_freeze);
3108 EXPORT_SYMBOL(spa_upgrade);
3109 EXPORT_SYMBOL(spa_evict_all);
3110 EXPORT_SYMBOL(spa_lookup_by_guid);
3111 EXPORT_SYMBOL(spa_has_spare);
3112 EXPORT_SYMBOL(dva_get_dsize_sync);
3113 EXPORT_SYMBOL(bp_get_dsize_sync);
3114 EXPORT_SYMBOL(bp_get_dsize);
3115 EXPORT_SYMBOL(spa_has_slogs);
3116 EXPORT_SYMBOL(spa_is_root);
3117 EXPORT_SYMBOL(spa_writeable);
3118 EXPORT_SYMBOL(spa_mode);
3119 EXPORT_SYMBOL(spa_namespace_lock);
3120 EXPORT_SYMBOL(spa_trust_config);
3121 EXPORT_SYMBOL(spa_missing_tvds_allowed);
3122 EXPORT_SYMBOL(spa_set_missing_tvds);
3123 EXPORT_SYMBOL(spa_state_to_name);
3124 EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
3125 EXPORT_SYMBOL(spa_min_claim_txg);
3126 EXPORT_SYMBOL(spa_suspend_async_destroy);
3127 EXPORT_SYMBOL(spa_has_checkpoint);
3128 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
3129 
3130 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW,
3131 	"Set additional debugging flags");
3132 
3133 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW,
3134 	"Set to attempt to recover from fatal errors");
3135 
3136 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW,
3137 	"Set to ignore IO errors during free and permanently leak the space");
3138 
3139 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, U64, ZMOD_RW,
3140 	"Dead I/O check interval in milliseconds");
3141 
3142 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW,
3143 	"Enable deadman timer");
3144 
3145 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, UINT, ZMOD_RW,
3146 	"SPA size estimate multiplication factor");
3147 
3148 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW,
3149 	"Place DDT data into the special class");
3150 
3151 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW,
3152 	"Place user data indirect blocks into the special class");
3153 
3154 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode,
3155 	param_set_deadman_failmode, param_get_charp, ZMOD_RW,
3156 	"Failmode for deadman timer");
3157 
3158 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms,
3159 	param_set_deadman_synctime, spl_param_get_u64, ZMOD_RW,
3160 	"Pool sync expiration time in milliseconds");
3161 
3162 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms,
3163 	param_set_deadman_ziotime, spl_param_get_u64, ZMOD_RW,
3164 	"IO expiration time in milliseconds");
3165 
3166 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, UINT, ZMOD_RW,
3167 	"Small file blocks in special vdevs depends on this much "
3168 	"free space available");
3169 
3170 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift,
3171 	param_get_uint, ZMOD_RW, "Reserved free space in pool");
3172 
3173 ZFS_MODULE_PARAM(zfs, spa_, num_allocators, INT, ZMOD_RW,
3174 	"Number of allocators per spa");
3175 
3176 ZFS_MODULE_PARAM(zfs, spa_, cpus_per_allocator, INT, ZMOD_RW,
3177 	"Minimum number of CPUs per allocators");
3178