1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2013 Saso Kiselkov. All rights reserved. 27 * Copyright (c) 2017 Datto Inc. 28 * Copyright (c) 2017, Intel Corporation. 29 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/spa_impl.h> 34 #include <sys/zio.h> 35 #include <sys/zio_checksum.h> 36 #include <sys/zio_compress.h> 37 #include <sys/dmu.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/zap.h> 40 #include <sys/zil.h> 41 #include <sys/vdev_impl.h> 42 #include <sys/vdev_initialize.h> 43 #include <sys/vdev_trim.h> 44 #include <sys/vdev_file.h> 45 #include <sys/vdev_raidz.h> 46 #include <sys/metaslab.h> 47 #include <sys/uberblock_impl.h> 48 #include <sys/txg.h> 49 #include <sys/avl.h> 50 #include <sys/unique.h> 51 #include <sys/dsl_pool.h> 52 #include <sys/dsl_dir.h> 53 #include <sys/dsl_prop.h> 54 #include <sys/fm/util.h> 55 #include <sys/dsl_scan.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/metaslab_impl.h> 58 #include <sys/arc.h> 59 #include <sys/ddt.h> 60 #include <sys/kstat.h> 61 #include "zfs_prop.h" 62 #include <sys/btree.h> 63 #include <sys/zfeature.h> 64 #include <sys/qat.h> 65 #include <sys/zstd/zstd.h> 66 67 /* 68 * SPA locking 69 * 70 * There are three basic locks for managing spa_t structures: 71 * 72 * spa_namespace_lock (global mutex) 73 * 74 * This lock must be acquired to do any of the following: 75 * 76 * - Lookup a spa_t by name 77 * - Add or remove a spa_t from the namespace 78 * - Increase spa_refcount from non-zero 79 * - Check if spa_refcount is zero 80 * - Rename a spa_t 81 * - add/remove/attach/detach devices 82 * - Held for the duration of create/destroy/import/export 83 * 84 * It does not need to handle recursion. A create or destroy may 85 * reference objects (files or zvols) in other pools, but by 86 * definition they must have an existing reference, and will never need 87 * to lookup a spa_t by name. 88 * 89 * spa_refcount (per-spa zfs_refcount_t protected by mutex) 90 * 91 * This reference count keep track of any active users of the spa_t. The 92 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 93 * the refcount is never really 'zero' - opening a pool implicitly keeps 94 * some references in the DMU. Internally we check against spa_minref, but 95 * present the image of a zero/non-zero value to consumers. 96 * 97 * spa_config_lock[] (per-spa array of rwlocks) 98 * 99 * This protects the spa_t from config changes, and must be held in 100 * the following circumstances: 101 * 102 * - RW_READER to perform I/O to the spa 103 * - RW_WRITER to change the vdev config 104 * 105 * The locking order is fairly straightforward: 106 * 107 * spa_namespace_lock -> spa_refcount 108 * 109 * The namespace lock must be acquired to increase the refcount from 0 110 * or to check if it is zero. 111 * 112 * spa_refcount -> spa_config_lock[] 113 * 114 * There must be at least one valid reference on the spa_t to acquire 115 * the config lock. 116 * 117 * spa_namespace_lock -> spa_config_lock[] 118 * 119 * The namespace lock must always be taken before the config lock. 120 * 121 * 122 * The spa_namespace_lock can be acquired directly and is globally visible. 123 * 124 * The namespace is manipulated using the following functions, all of which 125 * require the spa_namespace_lock to be held. 126 * 127 * spa_lookup() Lookup a spa_t by name. 128 * 129 * spa_add() Create a new spa_t in the namespace. 130 * 131 * spa_remove() Remove a spa_t from the namespace. This also 132 * frees up any memory associated with the spa_t. 133 * 134 * spa_next() Returns the next spa_t in the system, or the 135 * first if NULL is passed. 136 * 137 * spa_evict_all() Shutdown and remove all spa_t structures in 138 * the system. 139 * 140 * spa_guid_exists() Determine whether a pool/device guid exists. 141 * 142 * The spa_refcount is manipulated using the following functions: 143 * 144 * spa_open_ref() Adds a reference to the given spa_t. Must be 145 * called with spa_namespace_lock held if the 146 * refcount is currently zero. 147 * 148 * spa_close() Remove a reference from the spa_t. This will 149 * not free the spa_t or remove it from the 150 * namespace. No locking is required. 151 * 152 * spa_refcount_zero() Returns true if the refcount is currently 153 * zero. Must be called with spa_namespace_lock 154 * held. 155 * 156 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 157 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 158 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 159 * 160 * To read the configuration, it suffices to hold one of these locks as reader. 161 * To modify the configuration, you must hold all locks as writer. To modify 162 * vdev state without altering the vdev tree's topology (e.g. online/offline), 163 * you must hold SCL_STATE and SCL_ZIO as writer. 164 * 165 * We use these distinct config locks to avoid recursive lock entry. 166 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 167 * block allocations (SCL_ALLOC), which may require reading space maps 168 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 169 * 170 * The spa config locks cannot be normal rwlocks because we need the 171 * ability to hand off ownership. For example, SCL_ZIO is acquired 172 * by the issuing thread and later released by an interrupt thread. 173 * They do, however, obey the usual write-wanted semantics to prevent 174 * writer (i.e. system administrator) starvation. 175 * 176 * The lock acquisition rules are as follows: 177 * 178 * SCL_CONFIG 179 * Protects changes to the vdev tree topology, such as vdev 180 * add/remove/attach/detach. Protects the dirty config list 181 * (spa_config_dirty_list) and the set of spares and l2arc devices. 182 * 183 * SCL_STATE 184 * Protects changes to pool state and vdev state, such as vdev 185 * online/offline/fault/degrade/clear. Protects the dirty state list 186 * (spa_state_dirty_list) and global pool state (spa_state). 187 * 188 * SCL_ALLOC 189 * Protects changes to metaslab groups and classes. 190 * Held as reader by metaslab_alloc() and metaslab_claim(). 191 * 192 * SCL_ZIO 193 * Held by bp-level zios (those which have no io_vd upon entry) 194 * to prevent changes to the vdev tree. The bp-level zio implicitly 195 * protects all of its vdev child zios, which do not hold SCL_ZIO. 196 * 197 * SCL_FREE 198 * Protects changes to metaslab groups and classes. 199 * Held as reader by metaslab_free(). SCL_FREE is distinct from 200 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 201 * blocks in zio_done() while another i/o that holds either 202 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 203 * 204 * SCL_VDEV 205 * Held as reader to prevent changes to the vdev tree during trivial 206 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 207 * other locks, and lower than all of them, to ensure that it's safe 208 * to acquire regardless of caller context. 209 * 210 * In addition, the following rules apply: 211 * 212 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 213 * The lock ordering is SCL_CONFIG > spa_props_lock. 214 * 215 * (b) I/O operations on leaf vdevs. For any zio operation that takes 216 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 217 * or zio_write_phys() -- the caller must ensure that the config cannot 218 * cannot change in the interim, and that the vdev cannot be reopened. 219 * SCL_STATE as reader suffices for both. 220 * 221 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 222 * 223 * spa_vdev_enter() Acquire the namespace lock and the config lock 224 * for writing. 225 * 226 * spa_vdev_exit() Release the config lock, wait for all I/O 227 * to complete, sync the updated configs to the 228 * cache, and release the namespace lock. 229 * 230 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 231 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 232 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 233 */ 234 235 static avl_tree_t spa_namespace_avl; 236 kmutex_t spa_namespace_lock; 237 static kcondvar_t spa_namespace_cv; 238 int spa_max_replication_override = SPA_DVAS_PER_BP; 239 240 static kmutex_t spa_spare_lock; 241 static avl_tree_t spa_spare_avl; 242 static kmutex_t spa_l2cache_lock; 243 static avl_tree_t spa_l2cache_avl; 244 245 kmem_cache_t *spa_buffer_pool; 246 spa_mode_t spa_mode_global = SPA_MODE_UNINIT; 247 248 #ifdef ZFS_DEBUG 249 /* 250 * Everything except dprintf, set_error, spa, and indirect_remap is on 251 * by default in debug builds. 252 */ 253 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR | 254 ZFS_DEBUG_INDIRECT_REMAP); 255 #else 256 int zfs_flags = 0; 257 #endif 258 259 /* 260 * zfs_recover can be set to nonzero to attempt to recover from 261 * otherwise-fatal errors, typically caused by on-disk corruption. When 262 * set, calls to zfs_panic_recover() will turn into warning messages. 263 * This should only be used as a last resort, as it typically results 264 * in leaked space, or worse. 265 */ 266 int zfs_recover = B_FALSE; 267 268 /* 269 * If destroy encounters an EIO while reading metadata (e.g. indirect 270 * blocks), space referenced by the missing metadata can not be freed. 271 * Normally this causes the background destroy to become "stalled", as 272 * it is unable to make forward progress. While in this stalled state, 273 * all remaining space to free from the error-encountering filesystem is 274 * "temporarily leaked". Set this flag to cause it to ignore the EIO, 275 * permanently leak the space from indirect blocks that can not be read, 276 * and continue to free everything else that it can. 277 * 278 * The default, "stalling" behavior is useful if the storage partially 279 * fails (i.e. some but not all i/os fail), and then later recovers. In 280 * this case, we will be able to continue pool operations while it is 281 * partially failed, and when it recovers, we can continue to free the 282 * space, with no leaks. However, note that this case is actually 283 * fairly rare. 284 * 285 * Typically pools either (a) fail completely (but perhaps temporarily, 286 * e.g. a top-level vdev going offline), or (b) have localized, 287 * permanent errors (e.g. disk returns the wrong data due to bit flip or 288 * firmware bug). In case (a), this setting does not matter because the 289 * pool will be suspended and the sync thread will not be able to make 290 * forward progress regardless. In case (b), because the error is 291 * permanent, the best we can do is leak the minimum amount of space, 292 * which is what setting this flag will do. Therefore, it is reasonable 293 * for this flag to normally be set, but we chose the more conservative 294 * approach of not setting it, so that there is no possibility of 295 * leaking space in the "partial temporary" failure case. 296 */ 297 int zfs_free_leak_on_eio = B_FALSE; 298 299 /* 300 * Expiration time in milliseconds. This value has two meanings. First it is 301 * used to determine when the spa_deadman() logic should fire. By default the 302 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds. 303 * Secondly, the value determines if an I/O is considered "hung". Any I/O that 304 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting 305 * in one of three behaviors controlled by zfs_deadman_failmode. 306 */ 307 unsigned long zfs_deadman_synctime_ms = 600000UL; 308 309 /* 310 * This value controls the maximum amount of time zio_wait() will block for an 311 * outstanding IO. By default this is 300 seconds at which point the "hung" 312 * behavior will be applied as described for zfs_deadman_synctime_ms. 313 */ 314 unsigned long zfs_deadman_ziotime_ms = 300000UL; 315 316 /* 317 * Check time in milliseconds. This defines the frequency at which we check 318 * for hung I/O. 319 */ 320 unsigned long zfs_deadman_checktime_ms = 60000UL; 321 322 /* 323 * By default the deadman is enabled. 324 */ 325 int zfs_deadman_enabled = 1; 326 327 /* 328 * Controls the behavior of the deadman when it detects a "hung" I/O. 329 * Valid values are zfs_deadman_failmode=<wait|continue|panic>. 330 * 331 * wait - Wait for the "hung" I/O (default) 332 * continue - Attempt to recover from a "hung" I/O 333 * panic - Panic the system 334 */ 335 char *zfs_deadman_failmode = "wait"; 336 337 /* 338 * The worst case is single-sector max-parity RAID-Z blocks, in which 339 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 340 * times the size; so just assume that. Add to this the fact that 341 * we can have up to 3 DVAs per bp, and one more factor of 2 because 342 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, 343 * the worst case is: 344 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 345 */ 346 int spa_asize_inflation = 24; 347 348 /* 349 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in 350 * the pool to be consumed (bounded by spa_max_slop). This ensures that we 351 * don't run the pool completely out of space, due to unaccounted changes (e.g. 352 * to the MOS). It also limits the worst-case time to allocate space. If we 353 * have less than this amount of free space, most ZPL operations (e.g. write, 354 * create) will return ENOSPC. The ZIL metaslabs (spa_embedded_log_class) are 355 * also part of this 3.2% of space which can't be consumed by normal writes; 356 * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded 357 * log space. 358 * 359 * Certain operations (e.g. file removal, most administrative actions) can 360 * use half the slop space. They will only return ENOSPC if less than half 361 * the slop space is free. Typically, once the pool has less than the slop 362 * space free, the user will use these operations to free up space in the pool. 363 * These are the operations that call dsl_pool_adjustedsize() with the netfree 364 * argument set to TRUE. 365 * 366 * Operations that are almost guaranteed to free up space in the absence of 367 * a pool checkpoint can use up to three quarters of the slop space 368 * (e.g zfs destroy). 369 * 370 * A very restricted set of operations are always permitted, regardless of 371 * the amount of free space. These are the operations that call 372 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net 373 * increase in the amount of space used, it is possible to run the pool 374 * completely out of space, causing it to be permanently read-only. 375 * 376 * Note that on very small pools, the slop space will be larger than 377 * 3.2%, in an effort to have it be at least spa_min_slop (128MB), 378 * but we never allow it to be more than half the pool size. 379 * 380 * Further, on very large pools, the slop space will be smaller than 381 * 3.2%, to avoid reserving much more space than we actually need; bounded 382 * by spa_max_slop (128GB). 383 * 384 * See also the comments in zfs_space_check_t. 385 */ 386 int spa_slop_shift = 5; 387 uint64_t spa_min_slop = 128ULL * 1024 * 1024; 388 uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024; 389 int spa_allocators = 4; 390 391 392 /*PRINTFLIKE2*/ 393 void 394 spa_load_failed(spa_t *spa, const char *fmt, ...) 395 { 396 va_list adx; 397 char buf[256]; 398 399 va_start(adx, fmt); 400 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 401 va_end(adx); 402 403 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name, 404 spa->spa_trust_config ? "trusted" : "untrusted", buf); 405 } 406 407 /*PRINTFLIKE2*/ 408 void 409 spa_load_note(spa_t *spa, const char *fmt, ...) 410 { 411 va_list adx; 412 char buf[256]; 413 414 va_start(adx, fmt); 415 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 416 va_end(adx); 417 418 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name, 419 spa->spa_trust_config ? "trusted" : "untrusted", buf); 420 } 421 422 /* 423 * By default dedup and user data indirects land in the special class 424 */ 425 int zfs_ddt_data_is_special = B_TRUE; 426 int zfs_user_indirect_is_special = B_TRUE; 427 428 /* 429 * The percentage of special class final space reserved for metadata only. 430 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only 431 * let metadata into the class. 432 */ 433 int zfs_special_class_metadata_reserve_pct = 25; 434 435 /* 436 * ========================================================================== 437 * SPA config locking 438 * ========================================================================== 439 */ 440 static void 441 spa_config_lock_init(spa_t *spa) 442 { 443 for (int i = 0; i < SCL_LOCKS; i++) { 444 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 445 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 446 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 447 scl->scl_writer = NULL; 448 scl->scl_write_wanted = 0; 449 scl->scl_count = 0; 450 } 451 } 452 453 static void 454 spa_config_lock_destroy(spa_t *spa) 455 { 456 for (int i = 0; i < SCL_LOCKS; i++) { 457 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 458 mutex_destroy(&scl->scl_lock); 459 cv_destroy(&scl->scl_cv); 460 ASSERT(scl->scl_writer == NULL); 461 ASSERT(scl->scl_write_wanted == 0); 462 ASSERT(scl->scl_count == 0); 463 } 464 } 465 466 int 467 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 468 { 469 for (int i = 0; i < SCL_LOCKS; i++) { 470 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 471 if (!(locks & (1 << i))) 472 continue; 473 mutex_enter(&scl->scl_lock); 474 if (rw == RW_READER) { 475 if (scl->scl_writer || scl->scl_write_wanted) { 476 mutex_exit(&scl->scl_lock); 477 spa_config_exit(spa, locks & ((1 << i) - 1), 478 tag); 479 return (0); 480 } 481 } else { 482 ASSERT(scl->scl_writer != curthread); 483 if (scl->scl_count != 0) { 484 mutex_exit(&scl->scl_lock); 485 spa_config_exit(spa, locks & ((1 << i) - 1), 486 tag); 487 return (0); 488 } 489 scl->scl_writer = curthread; 490 } 491 scl->scl_count++; 492 mutex_exit(&scl->scl_lock); 493 } 494 return (1); 495 } 496 497 void 498 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw) 499 { 500 int wlocks_held = 0; 501 502 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 503 504 for (int i = 0; i < SCL_LOCKS; i++) { 505 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 506 if (scl->scl_writer == curthread) 507 wlocks_held |= (1 << i); 508 if (!(locks & (1 << i))) 509 continue; 510 mutex_enter(&scl->scl_lock); 511 if (rw == RW_READER) { 512 while (scl->scl_writer || scl->scl_write_wanted) { 513 cv_wait(&scl->scl_cv, &scl->scl_lock); 514 } 515 } else { 516 ASSERT(scl->scl_writer != curthread); 517 while (scl->scl_count != 0) { 518 scl->scl_write_wanted++; 519 cv_wait(&scl->scl_cv, &scl->scl_lock); 520 scl->scl_write_wanted--; 521 } 522 scl->scl_writer = curthread; 523 } 524 scl->scl_count++; 525 mutex_exit(&scl->scl_lock); 526 } 527 ASSERT3U(wlocks_held, <=, locks); 528 } 529 530 void 531 spa_config_exit(spa_t *spa, int locks, const void *tag) 532 { 533 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 534 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 535 if (!(locks & (1 << i))) 536 continue; 537 mutex_enter(&scl->scl_lock); 538 ASSERT(scl->scl_count > 0); 539 if (--scl->scl_count == 0) { 540 ASSERT(scl->scl_writer == NULL || 541 scl->scl_writer == curthread); 542 scl->scl_writer = NULL; /* OK in either case */ 543 cv_broadcast(&scl->scl_cv); 544 } 545 mutex_exit(&scl->scl_lock); 546 } 547 } 548 549 int 550 spa_config_held(spa_t *spa, int locks, krw_t rw) 551 { 552 int locks_held = 0; 553 554 for (int i = 0; i < SCL_LOCKS; i++) { 555 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 556 if (!(locks & (1 << i))) 557 continue; 558 if ((rw == RW_READER && scl->scl_count != 0) || 559 (rw == RW_WRITER && scl->scl_writer == curthread)) 560 locks_held |= 1 << i; 561 } 562 563 return (locks_held); 564 } 565 566 /* 567 * ========================================================================== 568 * SPA namespace functions 569 * ========================================================================== 570 */ 571 572 /* 573 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 574 * Returns NULL if no matching spa_t is found. 575 */ 576 spa_t * 577 spa_lookup(const char *name) 578 { 579 static spa_t search; /* spa_t is large; don't allocate on stack */ 580 spa_t *spa; 581 avl_index_t where; 582 char *cp; 583 584 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 585 586 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 587 588 /* 589 * If it's a full dataset name, figure out the pool name and 590 * just use that. 591 */ 592 cp = strpbrk(search.spa_name, "/@#"); 593 if (cp != NULL) 594 *cp = '\0'; 595 596 spa = avl_find(&spa_namespace_avl, &search, &where); 597 598 return (spa); 599 } 600 601 /* 602 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 603 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 604 * looking for potentially hung I/Os. 605 */ 606 void 607 spa_deadman(void *arg) 608 { 609 spa_t *spa = arg; 610 611 /* Disable the deadman if the pool is suspended. */ 612 if (spa_suspended(spa)) 613 return; 614 615 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 616 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 617 (u_longlong_t)++spa->spa_deadman_calls); 618 if (zfs_deadman_enabled) 619 vdev_deadman(spa->spa_root_vdev, FTAG); 620 621 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, 622 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + 623 MSEC_TO_TICK(zfs_deadman_checktime_ms)); 624 } 625 626 static int 627 spa_log_sm_sort_by_txg(const void *va, const void *vb) 628 { 629 const spa_log_sm_t *a = va; 630 const spa_log_sm_t *b = vb; 631 632 return (TREE_CMP(a->sls_txg, b->sls_txg)); 633 } 634 635 /* 636 * Create an uninitialized spa_t with the given name. Requires 637 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 638 * exist by calling spa_lookup() first. 639 */ 640 spa_t * 641 spa_add(const char *name, nvlist_t *config, const char *altroot) 642 { 643 spa_t *spa; 644 spa_config_dirent_t *dp; 645 646 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 647 648 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 649 650 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 651 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 652 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 653 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); 654 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 655 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 656 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 657 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); 658 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 659 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 660 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 661 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL); 662 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL); 663 mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL); 664 665 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 666 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); 667 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 668 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 669 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 670 cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL); 671 cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL); 672 673 for (int t = 0; t < TXG_SIZE; t++) 674 bplist_create(&spa->spa_free_bplist[t]); 675 676 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 677 spa->spa_state = POOL_STATE_UNINITIALIZED; 678 spa->spa_freeze_txg = UINT64_MAX; 679 spa->spa_final_txg = UINT64_MAX; 680 spa->spa_load_max_txg = UINT64_MAX; 681 spa->spa_proc = &p0; 682 spa->spa_proc_state = SPA_PROC_NONE; 683 spa->spa_trust_config = B_TRUE; 684 spa->spa_hostid = zone_get_hostid(NULL); 685 686 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); 687 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms); 688 spa_set_deadman_failmode(spa, zfs_deadman_failmode); 689 690 zfs_refcount_create(&spa->spa_refcount); 691 spa_config_lock_init(spa); 692 spa_stats_init(spa); 693 694 avl_add(&spa_namespace_avl, spa); 695 696 /* 697 * Set the alternate root, if there is one. 698 */ 699 if (altroot) 700 spa->spa_root = spa_strdup(altroot); 701 702 spa->spa_alloc_count = spa_allocators; 703 spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count * 704 sizeof (spa_alloc_t), KM_SLEEP); 705 for (int i = 0; i < spa->spa_alloc_count; i++) { 706 mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT, 707 NULL); 708 avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare, 709 sizeof (zio_t), offsetof(zio_t, io_alloc_node)); 710 } 711 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed, 712 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node)); 713 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg, 714 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node)); 715 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t), 716 offsetof(log_summary_entry_t, lse_node)); 717 718 /* 719 * Every pool starts with the default cachefile 720 */ 721 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 722 offsetof(spa_config_dirent_t, scd_link)); 723 724 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 725 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 726 list_insert_head(&spa->spa_config_list, dp); 727 728 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 729 KM_SLEEP) == 0); 730 731 if (config != NULL) { 732 nvlist_t *features; 733 734 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 735 &features) == 0) { 736 VERIFY(nvlist_dup(features, &spa->spa_label_features, 737 0) == 0); 738 } 739 740 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 741 } 742 743 if (spa->spa_label_features == NULL) { 744 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 745 KM_SLEEP) == 0); 746 } 747 748 spa->spa_min_ashift = INT_MAX; 749 spa->spa_max_ashift = 0; 750 spa->spa_min_alloc = INT_MAX; 751 752 /* Reset cached value */ 753 spa->spa_dedup_dspace = ~0ULL; 754 755 /* 756 * As a pool is being created, treat all features as disabled by 757 * setting SPA_FEATURE_DISABLED for all entries in the feature 758 * refcount cache. 759 */ 760 for (int i = 0; i < SPA_FEATURES; i++) { 761 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; 762 } 763 764 list_create(&spa->spa_leaf_list, sizeof (vdev_t), 765 offsetof(vdev_t, vdev_leaf_node)); 766 767 return (spa); 768 } 769 770 /* 771 * Removes a spa_t from the namespace, freeing up any memory used. Requires 772 * spa_namespace_lock. This is called only after the spa_t has been closed and 773 * deactivated. 774 */ 775 void 776 spa_remove(spa_t *spa) 777 { 778 spa_config_dirent_t *dp; 779 780 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 781 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED); 782 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0); 783 ASSERT0(spa->spa_waiters); 784 785 nvlist_free(spa->spa_config_splitting); 786 787 avl_remove(&spa_namespace_avl, spa); 788 cv_broadcast(&spa_namespace_cv); 789 790 if (spa->spa_root) 791 spa_strfree(spa->spa_root); 792 793 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 794 list_remove(&spa->spa_config_list, dp); 795 if (dp->scd_path != NULL) 796 spa_strfree(dp->scd_path); 797 kmem_free(dp, sizeof (spa_config_dirent_t)); 798 } 799 800 for (int i = 0; i < spa->spa_alloc_count; i++) { 801 avl_destroy(&spa->spa_allocs[i].spaa_tree); 802 mutex_destroy(&spa->spa_allocs[i].spaa_lock); 803 } 804 kmem_free(spa->spa_allocs, spa->spa_alloc_count * 805 sizeof (spa_alloc_t)); 806 807 avl_destroy(&spa->spa_metaslabs_by_flushed); 808 avl_destroy(&spa->spa_sm_logs_by_txg); 809 list_destroy(&spa->spa_log_summary); 810 list_destroy(&spa->spa_config_list); 811 list_destroy(&spa->spa_leaf_list); 812 813 nvlist_free(spa->spa_label_features); 814 nvlist_free(spa->spa_load_info); 815 nvlist_free(spa->spa_feat_stats); 816 spa_config_set(spa, NULL); 817 818 zfs_refcount_destroy(&spa->spa_refcount); 819 820 spa_stats_destroy(spa); 821 spa_config_lock_destroy(spa); 822 823 for (int t = 0; t < TXG_SIZE; t++) 824 bplist_destroy(&spa->spa_free_bplist[t]); 825 826 zio_checksum_templates_free(spa); 827 828 cv_destroy(&spa->spa_async_cv); 829 cv_destroy(&spa->spa_evicting_os_cv); 830 cv_destroy(&spa->spa_proc_cv); 831 cv_destroy(&spa->spa_scrub_io_cv); 832 cv_destroy(&spa->spa_suspend_cv); 833 cv_destroy(&spa->spa_activities_cv); 834 cv_destroy(&spa->spa_waiters_cv); 835 836 mutex_destroy(&spa->spa_flushed_ms_lock); 837 mutex_destroy(&spa->spa_async_lock); 838 mutex_destroy(&spa->spa_errlist_lock); 839 mutex_destroy(&spa->spa_errlog_lock); 840 mutex_destroy(&spa->spa_evicting_os_lock); 841 mutex_destroy(&spa->spa_history_lock); 842 mutex_destroy(&spa->spa_proc_lock); 843 mutex_destroy(&spa->spa_props_lock); 844 mutex_destroy(&spa->spa_cksum_tmpls_lock); 845 mutex_destroy(&spa->spa_scrub_lock); 846 mutex_destroy(&spa->spa_suspend_lock); 847 mutex_destroy(&spa->spa_vdev_top_lock); 848 mutex_destroy(&spa->spa_feat_stats_lock); 849 mutex_destroy(&spa->spa_activities_lock); 850 851 kmem_free(spa, sizeof (spa_t)); 852 } 853 854 /* 855 * Given a pool, return the next pool in the namespace, or NULL if there is 856 * none. If 'prev' is NULL, return the first pool. 857 */ 858 spa_t * 859 spa_next(spa_t *prev) 860 { 861 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 862 863 if (prev) 864 return (AVL_NEXT(&spa_namespace_avl, prev)); 865 else 866 return (avl_first(&spa_namespace_avl)); 867 } 868 869 /* 870 * ========================================================================== 871 * SPA refcount functions 872 * ========================================================================== 873 */ 874 875 /* 876 * Add a reference to the given spa_t. Must have at least one reference, or 877 * have the namespace lock held. 878 */ 879 void 880 spa_open_ref(spa_t *spa, void *tag) 881 { 882 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref || 883 MUTEX_HELD(&spa_namespace_lock)); 884 (void) zfs_refcount_add(&spa->spa_refcount, tag); 885 } 886 887 /* 888 * Remove a reference to the given spa_t. Must have at least one reference, or 889 * have the namespace lock held. 890 */ 891 void 892 spa_close(spa_t *spa, void *tag) 893 { 894 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref || 895 MUTEX_HELD(&spa_namespace_lock)); 896 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 897 } 898 899 /* 900 * Remove a reference to the given spa_t held by a dsl dir that is 901 * being asynchronously released. Async releases occur from a taskq 902 * performing eviction of dsl datasets and dirs. The namespace lock 903 * isn't held and the hold by the object being evicted may contribute to 904 * spa_minref (e.g. dataset or directory released during pool export), 905 * so the asserts in spa_close() do not apply. 906 */ 907 void 908 spa_async_close(spa_t *spa, void *tag) 909 { 910 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 911 } 912 913 /* 914 * Check to see if the spa refcount is zero. Must be called with 915 * spa_namespace_lock held. We really compare against spa_minref, which is the 916 * number of references acquired when opening a pool 917 */ 918 boolean_t 919 spa_refcount_zero(spa_t *spa) 920 { 921 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 922 923 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref); 924 } 925 926 /* 927 * ========================================================================== 928 * SPA spare and l2cache tracking 929 * ========================================================================== 930 */ 931 932 /* 933 * Hot spares and cache devices are tracked using the same code below, 934 * for 'auxiliary' devices. 935 */ 936 937 typedef struct spa_aux { 938 uint64_t aux_guid; 939 uint64_t aux_pool; 940 avl_node_t aux_avl; 941 int aux_count; 942 } spa_aux_t; 943 944 static inline int 945 spa_aux_compare(const void *a, const void *b) 946 { 947 const spa_aux_t *sa = (const spa_aux_t *)a; 948 const spa_aux_t *sb = (const spa_aux_t *)b; 949 950 return (TREE_CMP(sa->aux_guid, sb->aux_guid)); 951 } 952 953 static void 954 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 955 { 956 avl_index_t where; 957 spa_aux_t search; 958 spa_aux_t *aux; 959 960 search.aux_guid = vd->vdev_guid; 961 if ((aux = avl_find(avl, &search, &where)) != NULL) { 962 aux->aux_count++; 963 } else { 964 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 965 aux->aux_guid = vd->vdev_guid; 966 aux->aux_count = 1; 967 avl_insert(avl, aux, where); 968 } 969 } 970 971 static void 972 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 973 { 974 spa_aux_t search; 975 spa_aux_t *aux; 976 avl_index_t where; 977 978 search.aux_guid = vd->vdev_guid; 979 aux = avl_find(avl, &search, &where); 980 981 ASSERT(aux != NULL); 982 983 if (--aux->aux_count == 0) { 984 avl_remove(avl, aux); 985 kmem_free(aux, sizeof (spa_aux_t)); 986 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 987 aux->aux_pool = 0ULL; 988 } 989 } 990 991 static boolean_t 992 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 993 { 994 spa_aux_t search, *found; 995 996 search.aux_guid = guid; 997 found = avl_find(avl, &search, NULL); 998 999 if (pool) { 1000 if (found) 1001 *pool = found->aux_pool; 1002 else 1003 *pool = 0ULL; 1004 } 1005 1006 if (refcnt) { 1007 if (found) 1008 *refcnt = found->aux_count; 1009 else 1010 *refcnt = 0; 1011 } 1012 1013 return (found != NULL); 1014 } 1015 1016 static void 1017 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 1018 { 1019 spa_aux_t search, *found; 1020 avl_index_t where; 1021 1022 search.aux_guid = vd->vdev_guid; 1023 found = avl_find(avl, &search, &where); 1024 ASSERT(found != NULL); 1025 ASSERT(found->aux_pool == 0ULL); 1026 1027 found->aux_pool = spa_guid(vd->vdev_spa); 1028 } 1029 1030 /* 1031 * Spares are tracked globally due to the following constraints: 1032 * 1033 * - A spare may be part of multiple pools. 1034 * - A spare may be added to a pool even if it's actively in use within 1035 * another pool. 1036 * - A spare in use in any pool can only be the source of a replacement if 1037 * the target is a spare in the same pool. 1038 * 1039 * We keep track of all spares on the system through the use of a reference 1040 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 1041 * spare, then we bump the reference count in the AVL tree. In addition, we set 1042 * the 'vdev_isspare' member to indicate that the device is a spare (active or 1043 * inactive). When a spare is made active (used to replace a device in the 1044 * pool), we also keep track of which pool its been made a part of. 1045 * 1046 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 1047 * called under the spa_namespace lock as part of vdev reconfiguration. The 1048 * separate spare lock exists for the status query path, which does not need to 1049 * be completely consistent with respect to other vdev configuration changes. 1050 */ 1051 1052 static int 1053 spa_spare_compare(const void *a, const void *b) 1054 { 1055 return (spa_aux_compare(a, b)); 1056 } 1057 1058 void 1059 spa_spare_add(vdev_t *vd) 1060 { 1061 mutex_enter(&spa_spare_lock); 1062 ASSERT(!vd->vdev_isspare); 1063 spa_aux_add(vd, &spa_spare_avl); 1064 vd->vdev_isspare = B_TRUE; 1065 mutex_exit(&spa_spare_lock); 1066 } 1067 1068 void 1069 spa_spare_remove(vdev_t *vd) 1070 { 1071 mutex_enter(&spa_spare_lock); 1072 ASSERT(vd->vdev_isspare); 1073 spa_aux_remove(vd, &spa_spare_avl); 1074 vd->vdev_isspare = B_FALSE; 1075 mutex_exit(&spa_spare_lock); 1076 } 1077 1078 boolean_t 1079 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 1080 { 1081 boolean_t found; 1082 1083 mutex_enter(&spa_spare_lock); 1084 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 1085 mutex_exit(&spa_spare_lock); 1086 1087 return (found); 1088 } 1089 1090 void 1091 spa_spare_activate(vdev_t *vd) 1092 { 1093 mutex_enter(&spa_spare_lock); 1094 ASSERT(vd->vdev_isspare); 1095 spa_aux_activate(vd, &spa_spare_avl); 1096 mutex_exit(&spa_spare_lock); 1097 } 1098 1099 /* 1100 * Level 2 ARC devices are tracked globally for the same reasons as spares. 1101 * Cache devices currently only support one pool per cache device, and so 1102 * for these devices the aux reference count is currently unused beyond 1. 1103 */ 1104 1105 static int 1106 spa_l2cache_compare(const void *a, const void *b) 1107 { 1108 return (spa_aux_compare(a, b)); 1109 } 1110 1111 void 1112 spa_l2cache_add(vdev_t *vd) 1113 { 1114 mutex_enter(&spa_l2cache_lock); 1115 ASSERT(!vd->vdev_isl2cache); 1116 spa_aux_add(vd, &spa_l2cache_avl); 1117 vd->vdev_isl2cache = B_TRUE; 1118 mutex_exit(&spa_l2cache_lock); 1119 } 1120 1121 void 1122 spa_l2cache_remove(vdev_t *vd) 1123 { 1124 mutex_enter(&spa_l2cache_lock); 1125 ASSERT(vd->vdev_isl2cache); 1126 spa_aux_remove(vd, &spa_l2cache_avl); 1127 vd->vdev_isl2cache = B_FALSE; 1128 mutex_exit(&spa_l2cache_lock); 1129 } 1130 1131 boolean_t 1132 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 1133 { 1134 boolean_t found; 1135 1136 mutex_enter(&spa_l2cache_lock); 1137 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 1138 mutex_exit(&spa_l2cache_lock); 1139 1140 return (found); 1141 } 1142 1143 void 1144 spa_l2cache_activate(vdev_t *vd) 1145 { 1146 mutex_enter(&spa_l2cache_lock); 1147 ASSERT(vd->vdev_isl2cache); 1148 spa_aux_activate(vd, &spa_l2cache_avl); 1149 mutex_exit(&spa_l2cache_lock); 1150 } 1151 1152 /* 1153 * ========================================================================== 1154 * SPA vdev locking 1155 * ========================================================================== 1156 */ 1157 1158 /* 1159 * Lock the given spa_t for the purpose of adding or removing a vdev. 1160 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 1161 * It returns the next transaction group for the spa_t. 1162 */ 1163 uint64_t 1164 spa_vdev_enter(spa_t *spa) 1165 { 1166 mutex_enter(&spa->spa_vdev_top_lock); 1167 mutex_enter(&spa_namespace_lock); 1168 1169 vdev_autotrim_stop_all(spa); 1170 1171 return (spa_vdev_config_enter(spa)); 1172 } 1173 1174 /* 1175 * The same as spa_vdev_enter() above but additionally takes the guid of 1176 * the vdev being detached. When there is a rebuild in process it will be 1177 * suspended while the vdev tree is modified then resumed by spa_vdev_exit(). 1178 * The rebuild is canceled if only a single child remains after the detach. 1179 */ 1180 uint64_t 1181 spa_vdev_detach_enter(spa_t *spa, uint64_t guid) 1182 { 1183 mutex_enter(&spa->spa_vdev_top_lock); 1184 mutex_enter(&spa_namespace_lock); 1185 1186 vdev_autotrim_stop_all(spa); 1187 1188 if (guid != 0) { 1189 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 1190 if (vd) { 1191 vdev_rebuild_stop_wait(vd->vdev_top); 1192 } 1193 } 1194 1195 return (spa_vdev_config_enter(spa)); 1196 } 1197 1198 /* 1199 * Internal implementation for spa_vdev_enter(). Used when a vdev 1200 * operation requires multiple syncs (i.e. removing a device) while 1201 * keeping the spa_namespace_lock held. 1202 */ 1203 uint64_t 1204 spa_vdev_config_enter(spa_t *spa) 1205 { 1206 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1207 1208 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1209 1210 return (spa_last_synced_txg(spa) + 1); 1211 } 1212 1213 /* 1214 * Used in combination with spa_vdev_config_enter() to allow the syncing 1215 * of multiple transactions without releasing the spa_namespace_lock. 1216 */ 1217 void 1218 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 1219 { 1220 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1221 1222 int config_changed = B_FALSE; 1223 1224 ASSERT(txg > spa_last_synced_txg(spa)); 1225 1226 spa->spa_pending_vdev = NULL; 1227 1228 /* 1229 * Reassess the DTLs. 1230 */ 1231 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE); 1232 1233 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 1234 config_changed = B_TRUE; 1235 spa->spa_config_generation++; 1236 } 1237 1238 /* 1239 * Verify the metaslab classes. 1240 */ 1241 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 1242 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 1243 ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0); 1244 ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0); 1245 ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0); 1246 1247 spa_config_exit(spa, SCL_ALL, spa); 1248 1249 /* 1250 * Panic the system if the specified tag requires it. This 1251 * is useful for ensuring that configurations are updated 1252 * transactionally. 1253 */ 1254 if (zio_injection_enabled) 1255 zio_handle_panic_injection(spa, tag, 0); 1256 1257 /* 1258 * Note: this txg_wait_synced() is important because it ensures 1259 * that there won't be more than one config change per txg. 1260 * This allows us to use the txg as the generation number. 1261 */ 1262 if (error == 0) 1263 txg_wait_synced(spa->spa_dsl_pool, txg); 1264 1265 if (vd != NULL) { 1266 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); 1267 if (vd->vdev_ops->vdev_op_leaf) { 1268 mutex_enter(&vd->vdev_initialize_lock); 1269 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, 1270 NULL); 1271 mutex_exit(&vd->vdev_initialize_lock); 1272 1273 mutex_enter(&vd->vdev_trim_lock); 1274 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL); 1275 mutex_exit(&vd->vdev_trim_lock); 1276 } 1277 1278 /* 1279 * The vdev may be both a leaf and top-level device. 1280 */ 1281 vdev_autotrim_stop_wait(vd); 1282 1283 spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER); 1284 vdev_free(vd); 1285 spa_config_exit(spa, SCL_STATE_ALL, spa); 1286 } 1287 1288 /* 1289 * If the config changed, update the config cache. 1290 */ 1291 if (config_changed) 1292 spa_write_cachefile(spa, B_FALSE, B_TRUE); 1293 } 1294 1295 /* 1296 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1297 * locking of spa_vdev_enter(), we also want make sure the transactions have 1298 * synced to disk, and then update the global configuration cache with the new 1299 * information. 1300 */ 1301 int 1302 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1303 { 1304 vdev_autotrim_restart(spa); 1305 vdev_rebuild_restart(spa); 1306 1307 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1308 mutex_exit(&spa_namespace_lock); 1309 mutex_exit(&spa->spa_vdev_top_lock); 1310 1311 return (error); 1312 } 1313 1314 /* 1315 * Lock the given spa_t for the purpose of changing vdev state. 1316 */ 1317 void 1318 spa_vdev_state_enter(spa_t *spa, int oplocks) 1319 { 1320 int locks = SCL_STATE_ALL | oplocks; 1321 1322 /* 1323 * Root pools may need to read of the underlying devfs filesystem 1324 * when opening up a vdev. Unfortunately if we're holding the 1325 * SCL_ZIO lock it will result in a deadlock when we try to issue 1326 * the read from the root filesystem. Instead we "prefetch" 1327 * the associated vnodes that we need prior to opening the 1328 * underlying devices and cache them so that we can prevent 1329 * any I/O when we are doing the actual open. 1330 */ 1331 if (spa_is_root(spa)) { 1332 int low = locks & ~(SCL_ZIO - 1); 1333 int high = locks & ~low; 1334 1335 spa_config_enter(spa, high, spa, RW_WRITER); 1336 vdev_hold(spa->spa_root_vdev); 1337 spa_config_enter(spa, low, spa, RW_WRITER); 1338 } else { 1339 spa_config_enter(spa, locks, spa, RW_WRITER); 1340 } 1341 spa->spa_vdev_locks = locks; 1342 } 1343 1344 int 1345 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1346 { 1347 boolean_t config_changed = B_FALSE; 1348 vdev_t *vdev_top; 1349 1350 if (vd == NULL || vd == spa->spa_root_vdev) { 1351 vdev_top = spa->spa_root_vdev; 1352 } else { 1353 vdev_top = vd->vdev_top; 1354 } 1355 1356 if (vd != NULL || error == 0) 1357 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE); 1358 1359 if (vd != NULL) { 1360 if (vd != spa->spa_root_vdev) 1361 vdev_state_dirty(vdev_top); 1362 1363 config_changed = B_TRUE; 1364 spa->spa_config_generation++; 1365 } 1366 1367 if (spa_is_root(spa)) 1368 vdev_rele(spa->spa_root_vdev); 1369 1370 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1371 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1372 1373 /* 1374 * If anything changed, wait for it to sync. This ensures that, 1375 * from the system administrator's perspective, zpool(8) commands 1376 * are synchronous. This is important for things like zpool offline: 1377 * when the command completes, you expect no further I/O from ZFS. 1378 */ 1379 if (vd != NULL) 1380 txg_wait_synced(spa->spa_dsl_pool, 0); 1381 1382 /* 1383 * If the config changed, update the config cache. 1384 */ 1385 if (config_changed) { 1386 mutex_enter(&spa_namespace_lock); 1387 spa_write_cachefile(spa, B_FALSE, B_TRUE); 1388 mutex_exit(&spa_namespace_lock); 1389 } 1390 1391 return (error); 1392 } 1393 1394 /* 1395 * ========================================================================== 1396 * Miscellaneous functions 1397 * ========================================================================== 1398 */ 1399 1400 void 1401 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) 1402 { 1403 if (!nvlist_exists(spa->spa_label_features, feature)) { 1404 fnvlist_add_boolean(spa->spa_label_features, feature); 1405 /* 1406 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't 1407 * dirty the vdev config because lock SCL_CONFIG is not held. 1408 * Thankfully, in this case we don't need to dirty the config 1409 * because it will be written out anyway when we finish 1410 * creating the pool. 1411 */ 1412 if (tx->tx_txg != TXG_INITIAL) 1413 vdev_config_dirty(spa->spa_root_vdev); 1414 } 1415 } 1416 1417 void 1418 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1419 { 1420 if (nvlist_remove_all(spa->spa_label_features, feature) == 0) 1421 vdev_config_dirty(spa->spa_root_vdev); 1422 } 1423 1424 /* 1425 * Return the spa_t associated with given pool_guid, if it exists. If 1426 * device_guid is non-zero, determine whether the pool exists *and* contains 1427 * a device with the specified device_guid. 1428 */ 1429 spa_t * 1430 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1431 { 1432 spa_t *spa; 1433 avl_tree_t *t = &spa_namespace_avl; 1434 1435 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1436 1437 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1438 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1439 continue; 1440 if (spa->spa_root_vdev == NULL) 1441 continue; 1442 if (spa_guid(spa) == pool_guid) { 1443 if (device_guid == 0) 1444 break; 1445 1446 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1447 device_guid) != NULL) 1448 break; 1449 1450 /* 1451 * Check any devices we may be in the process of adding. 1452 */ 1453 if (spa->spa_pending_vdev) { 1454 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1455 device_guid) != NULL) 1456 break; 1457 } 1458 } 1459 } 1460 1461 return (spa); 1462 } 1463 1464 /* 1465 * Determine whether a pool with the given pool_guid exists. 1466 */ 1467 boolean_t 1468 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1469 { 1470 return (spa_by_guid(pool_guid, device_guid) != NULL); 1471 } 1472 1473 char * 1474 spa_strdup(const char *s) 1475 { 1476 size_t len; 1477 char *new; 1478 1479 len = strlen(s); 1480 new = kmem_alloc(len + 1, KM_SLEEP); 1481 bcopy(s, new, len); 1482 new[len] = '\0'; 1483 1484 return (new); 1485 } 1486 1487 void 1488 spa_strfree(char *s) 1489 { 1490 kmem_free(s, strlen(s) + 1); 1491 } 1492 1493 uint64_t 1494 spa_generate_guid(spa_t *spa) 1495 { 1496 uint64_t guid; 1497 1498 if (spa != NULL) { 1499 do { 1500 (void) random_get_pseudo_bytes((void *)&guid, 1501 sizeof (guid)); 1502 } while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)); 1503 } else { 1504 do { 1505 (void) random_get_pseudo_bytes((void *)&guid, 1506 sizeof (guid)); 1507 } while (guid == 0 || spa_guid_exists(guid, 0)); 1508 } 1509 1510 return (guid); 1511 } 1512 1513 void 1514 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) 1515 { 1516 char type[256]; 1517 char *checksum = NULL; 1518 char *compress = NULL; 1519 1520 if (bp != NULL) { 1521 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1522 dmu_object_byteswap_t bswap = 1523 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1524 (void) snprintf(type, sizeof (type), "bswap %s %s", 1525 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1526 "metadata" : "data", 1527 dmu_ot_byteswap[bswap].ob_name); 1528 } else { 1529 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1530 sizeof (type)); 1531 } 1532 if (!BP_IS_EMBEDDED(bp)) { 1533 checksum = 1534 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1535 } 1536 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1537 } 1538 1539 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum, 1540 compress); 1541 } 1542 1543 void 1544 spa_freeze(spa_t *spa) 1545 { 1546 uint64_t freeze_txg = 0; 1547 1548 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1549 if (spa->spa_freeze_txg == UINT64_MAX) { 1550 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1551 spa->spa_freeze_txg = freeze_txg; 1552 } 1553 spa_config_exit(spa, SCL_ALL, FTAG); 1554 if (freeze_txg != 0) 1555 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1556 } 1557 1558 void 1559 zfs_panic_recover(const char *fmt, ...) 1560 { 1561 va_list adx; 1562 1563 va_start(adx, fmt); 1564 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1565 va_end(adx); 1566 } 1567 1568 /* 1569 * This is a stripped-down version of strtoull, suitable only for converting 1570 * lowercase hexadecimal numbers that don't overflow. 1571 */ 1572 uint64_t 1573 zfs_strtonum(const char *str, char **nptr) 1574 { 1575 uint64_t val = 0; 1576 char c; 1577 int digit; 1578 1579 while ((c = *str) != '\0') { 1580 if (c >= '0' && c <= '9') 1581 digit = c - '0'; 1582 else if (c >= 'a' && c <= 'f') 1583 digit = 10 + c - 'a'; 1584 else 1585 break; 1586 1587 val *= 16; 1588 val += digit; 1589 1590 str++; 1591 } 1592 1593 if (nptr) 1594 *nptr = (char *)str; 1595 1596 return (val); 1597 } 1598 1599 void 1600 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx) 1601 { 1602 /* 1603 * We bump the feature refcount for each special vdev added to the pool 1604 */ 1605 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)); 1606 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx); 1607 } 1608 1609 /* 1610 * ========================================================================== 1611 * Accessor functions 1612 * ========================================================================== 1613 */ 1614 1615 boolean_t 1616 spa_shutting_down(spa_t *spa) 1617 { 1618 return (spa->spa_async_suspended); 1619 } 1620 1621 dsl_pool_t * 1622 spa_get_dsl(spa_t *spa) 1623 { 1624 return (spa->spa_dsl_pool); 1625 } 1626 1627 boolean_t 1628 spa_is_initializing(spa_t *spa) 1629 { 1630 return (spa->spa_is_initializing); 1631 } 1632 1633 boolean_t 1634 spa_indirect_vdevs_loaded(spa_t *spa) 1635 { 1636 return (spa->spa_indirect_vdevs_loaded); 1637 } 1638 1639 blkptr_t * 1640 spa_get_rootblkptr(spa_t *spa) 1641 { 1642 return (&spa->spa_ubsync.ub_rootbp); 1643 } 1644 1645 void 1646 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1647 { 1648 spa->spa_uberblock.ub_rootbp = *bp; 1649 } 1650 1651 void 1652 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1653 { 1654 if (spa->spa_root == NULL) 1655 buf[0] = '\0'; 1656 else 1657 (void) strncpy(buf, spa->spa_root, buflen); 1658 } 1659 1660 int 1661 spa_sync_pass(spa_t *spa) 1662 { 1663 return (spa->spa_sync_pass); 1664 } 1665 1666 char * 1667 spa_name(spa_t *spa) 1668 { 1669 return (spa->spa_name); 1670 } 1671 1672 uint64_t 1673 spa_guid(spa_t *spa) 1674 { 1675 dsl_pool_t *dp = spa_get_dsl(spa); 1676 uint64_t guid; 1677 1678 /* 1679 * If we fail to parse the config during spa_load(), we can go through 1680 * the error path (which posts an ereport) and end up here with no root 1681 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1682 * this case. 1683 */ 1684 if (spa->spa_root_vdev == NULL) 1685 return (spa->spa_config_guid); 1686 1687 guid = spa->spa_last_synced_guid != 0 ? 1688 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1689 1690 /* 1691 * Return the most recently synced out guid unless we're 1692 * in syncing context. 1693 */ 1694 if (dp && dsl_pool_sync_context(dp)) 1695 return (spa->spa_root_vdev->vdev_guid); 1696 else 1697 return (guid); 1698 } 1699 1700 uint64_t 1701 spa_load_guid(spa_t *spa) 1702 { 1703 /* 1704 * This is a GUID that exists solely as a reference for the 1705 * purposes of the arc. It is generated at load time, and 1706 * is never written to persistent storage. 1707 */ 1708 return (spa->spa_load_guid); 1709 } 1710 1711 uint64_t 1712 spa_last_synced_txg(spa_t *spa) 1713 { 1714 return (spa->spa_ubsync.ub_txg); 1715 } 1716 1717 uint64_t 1718 spa_first_txg(spa_t *spa) 1719 { 1720 return (spa->spa_first_txg); 1721 } 1722 1723 uint64_t 1724 spa_syncing_txg(spa_t *spa) 1725 { 1726 return (spa->spa_syncing_txg); 1727 } 1728 1729 /* 1730 * Return the last txg where data can be dirtied. The final txgs 1731 * will be used to just clear out any deferred frees that remain. 1732 */ 1733 uint64_t 1734 spa_final_dirty_txg(spa_t *spa) 1735 { 1736 return (spa->spa_final_txg - TXG_DEFER_SIZE); 1737 } 1738 1739 pool_state_t 1740 spa_state(spa_t *spa) 1741 { 1742 return (spa->spa_state); 1743 } 1744 1745 spa_load_state_t 1746 spa_load_state(spa_t *spa) 1747 { 1748 return (spa->spa_load_state); 1749 } 1750 1751 uint64_t 1752 spa_freeze_txg(spa_t *spa) 1753 { 1754 return (spa->spa_freeze_txg); 1755 } 1756 1757 /* 1758 * Return the inflated asize for a logical write in bytes. This is used by the 1759 * DMU to calculate the space a logical write will require on disk. 1760 * If lsize is smaller than the largest physical block size allocatable on this 1761 * pool we use its value instead, since the write will end up using the whole 1762 * block anyway. 1763 */ 1764 uint64_t 1765 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize) 1766 { 1767 if (lsize == 0) 1768 return (0); /* No inflation needed */ 1769 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation); 1770 } 1771 1772 /* 1773 * Return the amount of slop space in bytes. It is typically 1/32 of the pool 1774 * (3.2%), minus the embedded log space. On very small pools, it may be 1775 * slightly larger than this. On very large pools, it will be capped to 1776 * the value of spa_max_slop. The embedded log space is not included in 1777 * spa_dspace. By subtracting it, the usable space (per "zfs list") is a 1778 * constant 97% of the total space, regardless of metaslab size (assuming the 1779 * default spa_slop_shift=5 and a non-tiny pool). 1780 * 1781 * See the comment above spa_slop_shift for more details. 1782 */ 1783 uint64_t 1784 spa_get_slop_space(spa_t *spa) 1785 { 1786 uint64_t space = 0; 1787 uint64_t slop = 0; 1788 1789 /* 1790 * Make sure spa_dedup_dspace has been set. 1791 */ 1792 if (spa->spa_dedup_dspace == ~0ULL) 1793 spa_update_dspace(spa); 1794 1795 /* 1796 * spa_get_dspace() includes the space only logically "used" by 1797 * deduplicated data, so since it's not useful to reserve more 1798 * space with more deduplicated data, we subtract that out here. 1799 */ 1800 space = spa_get_dspace(spa) - spa->spa_dedup_dspace; 1801 slop = MIN(space >> spa_slop_shift, spa_max_slop); 1802 1803 /* 1804 * Subtract the embedded log space, but no more than half the (3.2%) 1805 * unusable space. Note, the "no more than half" is only relevant if 1806 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by 1807 * default. 1808 */ 1809 uint64_t embedded_log = 1810 metaslab_class_get_dspace(spa_embedded_log_class(spa)); 1811 slop -= MIN(embedded_log, slop >> 1); 1812 1813 /* 1814 * Slop space should be at least spa_min_slop, but no more than half 1815 * the entire pool. 1816 */ 1817 slop = MAX(slop, MIN(space >> 1, spa_min_slop)); 1818 return (slop); 1819 } 1820 1821 uint64_t 1822 spa_get_dspace(spa_t *spa) 1823 { 1824 return (spa->spa_dspace); 1825 } 1826 1827 uint64_t 1828 spa_get_checkpoint_space(spa_t *spa) 1829 { 1830 return (spa->spa_checkpoint_info.sci_dspace); 1831 } 1832 1833 void 1834 spa_update_dspace(spa_t *spa) 1835 { 1836 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1837 ddt_get_dedup_dspace(spa); 1838 if (spa->spa_vdev_removal != NULL) { 1839 /* 1840 * We can't allocate from the removing device, so subtract 1841 * its size if it was included in dspace (i.e. if this is a 1842 * normal-class vdev, not special/dedup). This prevents the 1843 * DMU/DSL from filling up the (now smaller) pool while we 1844 * are in the middle of removing the device. 1845 * 1846 * Note that the DMU/DSL doesn't actually know or care 1847 * how much space is allocated (it does its own tracking 1848 * of how much space has been logically used). So it 1849 * doesn't matter that the data we are moving may be 1850 * allocated twice (on the old device and the new 1851 * device). 1852 */ 1853 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1854 vdev_t *vd = 1855 vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id); 1856 if (vd->vdev_mg->mg_class == spa_normal_class(spa)) { 1857 spa->spa_dspace -= spa_deflate(spa) ? 1858 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 1859 } 1860 spa_config_exit(spa, SCL_VDEV, FTAG); 1861 } 1862 } 1863 1864 /* 1865 * Return the failure mode that has been set to this pool. The default 1866 * behavior will be to block all I/Os when a complete failure occurs. 1867 */ 1868 uint64_t 1869 spa_get_failmode(spa_t *spa) 1870 { 1871 return (spa->spa_failmode); 1872 } 1873 1874 boolean_t 1875 spa_suspended(spa_t *spa) 1876 { 1877 return (spa->spa_suspended != ZIO_SUSPEND_NONE); 1878 } 1879 1880 uint64_t 1881 spa_version(spa_t *spa) 1882 { 1883 return (spa->spa_ubsync.ub_version); 1884 } 1885 1886 boolean_t 1887 spa_deflate(spa_t *spa) 1888 { 1889 return (spa->spa_deflate); 1890 } 1891 1892 metaslab_class_t * 1893 spa_normal_class(spa_t *spa) 1894 { 1895 return (spa->spa_normal_class); 1896 } 1897 1898 metaslab_class_t * 1899 spa_log_class(spa_t *spa) 1900 { 1901 return (spa->spa_log_class); 1902 } 1903 1904 metaslab_class_t * 1905 spa_embedded_log_class(spa_t *spa) 1906 { 1907 return (spa->spa_embedded_log_class); 1908 } 1909 1910 metaslab_class_t * 1911 spa_special_class(spa_t *spa) 1912 { 1913 return (spa->spa_special_class); 1914 } 1915 1916 metaslab_class_t * 1917 spa_dedup_class(spa_t *spa) 1918 { 1919 return (spa->spa_dedup_class); 1920 } 1921 1922 /* 1923 * Locate an appropriate allocation class 1924 */ 1925 metaslab_class_t * 1926 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype, 1927 uint_t level, uint_t special_smallblk) 1928 { 1929 /* 1930 * ZIL allocations determine their class in zio_alloc_zil(). 1931 */ 1932 ASSERT(objtype != DMU_OT_INTENT_LOG); 1933 1934 boolean_t has_special_class = spa->spa_special_class->mc_groups != 0; 1935 1936 if (DMU_OT_IS_DDT(objtype)) { 1937 if (spa->spa_dedup_class->mc_groups != 0) 1938 return (spa_dedup_class(spa)); 1939 else if (has_special_class && zfs_ddt_data_is_special) 1940 return (spa_special_class(spa)); 1941 else 1942 return (spa_normal_class(spa)); 1943 } 1944 1945 /* Indirect blocks for user data can land in special if allowed */ 1946 if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) { 1947 if (has_special_class && zfs_user_indirect_is_special) 1948 return (spa_special_class(spa)); 1949 else 1950 return (spa_normal_class(spa)); 1951 } 1952 1953 if (DMU_OT_IS_METADATA(objtype) || level > 0) { 1954 if (has_special_class) 1955 return (spa_special_class(spa)); 1956 else 1957 return (spa_normal_class(spa)); 1958 } 1959 1960 /* 1961 * Allow small file blocks in special class in some cases (like 1962 * for the dRAID vdev feature). But always leave a reserve of 1963 * zfs_special_class_metadata_reserve_pct exclusively for metadata. 1964 */ 1965 if (DMU_OT_IS_FILE(objtype) && 1966 has_special_class && size <= special_smallblk) { 1967 metaslab_class_t *special = spa_special_class(spa); 1968 uint64_t alloc = metaslab_class_get_alloc(special); 1969 uint64_t space = metaslab_class_get_space(special); 1970 uint64_t limit = 1971 (space * (100 - zfs_special_class_metadata_reserve_pct)) 1972 / 100; 1973 1974 if (alloc < limit) 1975 return (special); 1976 } 1977 1978 return (spa_normal_class(spa)); 1979 } 1980 1981 void 1982 spa_evicting_os_register(spa_t *spa, objset_t *os) 1983 { 1984 mutex_enter(&spa->spa_evicting_os_lock); 1985 list_insert_head(&spa->spa_evicting_os_list, os); 1986 mutex_exit(&spa->spa_evicting_os_lock); 1987 } 1988 1989 void 1990 spa_evicting_os_deregister(spa_t *spa, objset_t *os) 1991 { 1992 mutex_enter(&spa->spa_evicting_os_lock); 1993 list_remove(&spa->spa_evicting_os_list, os); 1994 cv_broadcast(&spa->spa_evicting_os_cv); 1995 mutex_exit(&spa->spa_evicting_os_lock); 1996 } 1997 1998 void 1999 spa_evicting_os_wait(spa_t *spa) 2000 { 2001 mutex_enter(&spa->spa_evicting_os_lock); 2002 while (!list_is_empty(&spa->spa_evicting_os_list)) 2003 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); 2004 mutex_exit(&spa->spa_evicting_os_lock); 2005 2006 dmu_buf_user_evict_wait(); 2007 } 2008 2009 int 2010 spa_max_replication(spa_t *spa) 2011 { 2012 /* 2013 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 2014 * handle BPs with more than one DVA allocated. Set our max 2015 * replication level accordingly. 2016 */ 2017 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 2018 return (1); 2019 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 2020 } 2021 2022 int 2023 spa_prev_software_version(spa_t *spa) 2024 { 2025 return (spa->spa_prev_software_version); 2026 } 2027 2028 uint64_t 2029 spa_deadman_synctime(spa_t *spa) 2030 { 2031 return (spa->spa_deadman_synctime); 2032 } 2033 2034 spa_autotrim_t 2035 spa_get_autotrim(spa_t *spa) 2036 { 2037 return (spa->spa_autotrim); 2038 } 2039 2040 uint64_t 2041 spa_deadman_ziotime(spa_t *spa) 2042 { 2043 return (spa->spa_deadman_ziotime); 2044 } 2045 2046 uint64_t 2047 spa_get_deadman_failmode(spa_t *spa) 2048 { 2049 return (spa->spa_deadman_failmode); 2050 } 2051 2052 void 2053 spa_set_deadman_failmode(spa_t *spa, const char *failmode) 2054 { 2055 if (strcmp(failmode, "wait") == 0) 2056 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2057 else if (strcmp(failmode, "continue") == 0) 2058 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE; 2059 else if (strcmp(failmode, "panic") == 0) 2060 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC; 2061 else 2062 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2063 } 2064 2065 void 2066 spa_set_deadman_ziotime(hrtime_t ns) 2067 { 2068 spa_t *spa = NULL; 2069 2070 if (spa_mode_global != SPA_MODE_UNINIT) { 2071 mutex_enter(&spa_namespace_lock); 2072 while ((spa = spa_next(spa)) != NULL) 2073 spa->spa_deadman_ziotime = ns; 2074 mutex_exit(&spa_namespace_lock); 2075 } 2076 } 2077 2078 void 2079 spa_set_deadman_synctime(hrtime_t ns) 2080 { 2081 spa_t *spa = NULL; 2082 2083 if (spa_mode_global != SPA_MODE_UNINIT) { 2084 mutex_enter(&spa_namespace_lock); 2085 while ((spa = spa_next(spa)) != NULL) 2086 spa->spa_deadman_synctime = ns; 2087 mutex_exit(&spa_namespace_lock); 2088 } 2089 } 2090 2091 uint64_t 2092 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 2093 { 2094 uint64_t asize = DVA_GET_ASIZE(dva); 2095 uint64_t dsize = asize; 2096 2097 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2098 2099 if (asize != 0 && spa->spa_deflate) { 2100 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 2101 if (vd != NULL) 2102 dsize = (asize >> SPA_MINBLOCKSHIFT) * 2103 vd->vdev_deflate_ratio; 2104 } 2105 2106 return (dsize); 2107 } 2108 2109 uint64_t 2110 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 2111 { 2112 uint64_t dsize = 0; 2113 2114 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2115 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2116 2117 return (dsize); 2118 } 2119 2120 uint64_t 2121 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 2122 { 2123 uint64_t dsize = 0; 2124 2125 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2126 2127 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2128 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2129 2130 spa_config_exit(spa, SCL_VDEV, FTAG); 2131 2132 return (dsize); 2133 } 2134 2135 uint64_t 2136 spa_dirty_data(spa_t *spa) 2137 { 2138 return (spa->spa_dsl_pool->dp_dirty_total); 2139 } 2140 2141 /* 2142 * ========================================================================== 2143 * SPA Import Progress Routines 2144 * ========================================================================== 2145 */ 2146 2147 typedef struct spa_import_progress { 2148 uint64_t pool_guid; /* unique id for updates */ 2149 char *pool_name; 2150 spa_load_state_t spa_load_state; 2151 uint64_t mmp_sec_remaining; /* MMP activity check */ 2152 uint64_t spa_load_max_txg; /* rewind txg */ 2153 procfs_list_node_t smh_node; 2154 } spa_import_progress_t; 2155 2156 spa_history_list_t *spa_import_progress_list = NULL; 2157 2158 static int 2159 spa_import_progress_show_header(struct seq_file *f) 2160 { 2161 seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid", 2162 "load_state", "multihost_secs", "max_txg", 2163 "pool_name"); 2164 return (0); 2165 } 2166 2167 static int 2168 spa_import_progress_show(struct seq_file *f, void *data) 2169 { 2170 spa_import_progress_t *sip = (spa_import_progress_t *)data; 2171 2172 seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n", 2173 (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state, 2174 (u_longlong_t)sip->mmp_sec_remaining, 2175 (u_longlong_t)sip->spa_load_max_txg, 2176 (sip->pool_name ? sip->pool_name : "-")); 2177 2178 return (0); 2179 } 2180 2181 /* Remove oldest elements from list until there are no more than 'size' left */ 2182 static void 2183 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size) 2184 { 2185 spa_import_progress_t *sip; 2186 while (shl->size > size) { 2187 sip = list_remove_head(&shl->procfs_list.pl_list); 2188 if (sip->pool_name) 2189 spa_strfree(sip->pool_name); 2190 kmem_free(sip, sizeof (spa_import_progress_t)); 2191 shl->size--; 2192 } 2193 2194 IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list)); 2195 } 2196 2197 static void 2198 spa_import_progress_init(void) 2199 { 2200 spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t), 2201 KM_SLEEP); 2202 2203 spa_import_progress_list->size = 0; 2204 2205 spa_import_progress_list->procfs_list.pl_private = 2206 spa_import_progress_list; 2207 2208 procfs_list_install("zfs", 2209 NULL, 2210 "import_progress", 2211 0644, 2212 &spa_import_progress_list->procfs_list, 2213 spa_import_progress_show, 2214 spa_import_progress_show_header, 2215 NULL, 2216 offsetof(spa_import_progress_t, smh_node)); 2217 } 2218 2219 static void 2220 spa_import_progress_destroy(void) 2221 { 2222 spa_history_list_t *shl = spa_import_progress_list; 2223 procfs_list_uninstall(&shl->procfs_list); 2224 spa_import_progress_truncate(shl, 0); 2225 procfs_list_destroy(&shl->procfs_list); 2226 kmem_free(shl, sizeof (spa_history_list_t)); 2227 } 2228 2229 int 2230 spa_import_progress_set_state(uint64_t pool_guid, 2231 spa_load_state_t load_state) 2232 { 2233 spa_history_list_t *shl = spa_import_progress_list; 2234 spa_import_progress_t *sip; 2235 int error = ENOENT; 2236 2237 if (shl->size == 0) 2238 return (0); 2239 2240 mutex_enter(&shl->procfs_list.pl_lock); 2241 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2242 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2243 if (sip->pool_guid == pool_guid) { 2244 sip->spa_load_state = load_state; 2245 error = 0; 2246 break; 2247 } 2248 } 2249 mutex_exit(&shl->procfs_list.pl_lock); 2250 2251 return (error); 2252 } 2253 2254 int 2255 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg) 2256 { 2257 spa_history_list_t *shl = spa_import_progress_list; 2258 spa_import_progress_t *sip; 2259 int error = ENOENT; 2260 2261 if (shl->size == 0) 2262 return (0); 2263 2264 mutex_enter(&shl->procfs_list.pl_lock); 2265 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2266 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2267 if (sip->pool_guid == pool_guid) { 2268 sip->spa_load_max_txg = load_max_txg; 2269 error = 0; 2270 break; 2271 } 2272 } 2273 mutex_exit(&shl->procfs_list.pl_lock); 2274 2275 return (error); 2276 } 2277 2278 int 2279 spa_import_progress_set_mmp_check(uint64_t pool_guid, 2280 uint64_t mmp_sec_remaining) 2281 { 2282 spa_history_list_t *shl = spa_import_progress_list; 2283 spa_import_progress_t *sip; 2284 int error = ENOENT; 2285 2286 if (shl->size == 0) 2287 return (0); 2288 2289 mutex_enter(&shl->procfs_list.pl_lock); 2290 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2291 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2292 if (sip->pool_guid == pool_guid) { 2293 sip->mmp_sec_remaining = mmp_sec_remaining; 2294 error = 0; 2295 break; 2296 } 2297 } 2298 mutex_exit(&shl->procfs_list.pl_lock); 2299 2300 return (error); 2301 } 2302 2303 /* 2304 * A new import is in progress, add an entry. 2305 */ 2306 void 2307 spa_import_progress_add(spa_t *spa) 2308 { 2309 spa_history_list_t *shl = spa_import_progress_list; 2310 spa_import_progress_t *sip; 2311 char *poolname = NULL; 2312 2313 sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP); 2314 sip->pool_guid = spa_guid(spa); 2315 2316 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME, 2317 &poolname); 2318 if (poolname == NULL) 2319 poolname = spa_name(spa); 2320 sip->pool_name = spa_strdup(poolname); 2321 sip->spa_load_state = spa_load_state(spa); 2322 2323 mutex_enter(&shl->procfs_list.pl_lock); 2324 procfs_list_add(&shl->procfs_list, sip); 2325 shl->size++; 2326 mutex_exit(&shl->procfs_list.pl_lock); 2327 } 2328 2329 void 2330 spa_import_progress_remove(uint64_t pool_guid) 2331 { 2332 spa_history_list_t *shl = spa_import_progress_list; 2333 spa_import_progress_t *sip; 2334 2335 mutex_enter(&shl->procfs_list.pl_lock); 2336 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2337 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2338 if (sip->pool_guid == pool_guid) { 2339 if (sip->pool_name) 2340 spa_strfree(sip->pool_name); 2341 list_remove(&shl->procfs_list.pl_list, sip); 2342 shl->size--; 2343 kmem_free(sip, sizeof (spa_import_progress_t)); 2344 break; 2345 } 2346 } 2347 mutex_exit(&shl->procfs_list.pl_lock); 2348 } 2349 2350 /* 2351 * ========================================================================== 2352 * Initialization and Termination 2353 * ========================================================================== 2354 */ 2355 2356 static int 2357 spa_name_compare(const void *a1, const void *a2) 2358 { 2359 const spa_t *s1 = a1; 2360 const spa_t *s2 = a2; 2361 int s; 2362 2363 s = strcmp(s1->spa_name, s2->spa_name); 2364 2365 return (TREE_ISIGN(s)); 2366 } 2367 2368 void 2369 spa_boot_init(void) 2370 { 2371 spa_config_load(); 2372 } 2373 2374 void 2375 spa_init(spa_mode_t mode) 2376 { 2377 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 2378 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 2379 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 2380 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 2381 2382 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 2383 offsetof(spa_t, spa_avl)); 2384 2385 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 2386 offsetof(spa_aux_t, aux_avl)); 2387 2388 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 2389 offsetof(spa_aux_t, aux_avl)); 2390 2391 spa_mode_global = mode; 2392 2393 #ifndef _KERNEL 2394 if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) { 2395 struct sigaction sa; 2396 2397 sa.sa_flags = SA_SIGINFO; 2398 sigemptyset(&sa.sa_mask); 2399 sa.sa_sigaction = arc_buf_sigsegv; 2400 2401 if (sigaction(SIGSEGV, &sa, NULL) == -1) { 2402 perror("could not enable watchpoints: " 2403 "sigaction(SIGSEGV, ...) = "); 2404 } else { 2405 arc_watch = B_TRUE; 2406 } 2407 } 2408 #endif 2409 2410 fm_init(); 2411 zfs_refcount_init(); 2412 unique_init(); 2413 zfs_btree_init(); 2414 metaslab_stat_init(); 2415 ddt_init(); 2416 zio_init(); 2417 dmu_init(); 2418 zil_init(); 2419 vdev_cache_stat_init(); 2420 vdev_mirror_stat_init(); 2421 vdev_raidz_math_init(); 2422 vdev_file_init(); 2423 zfs_prop_init(); 2424 zpool_prop_init(); 2425 zpool_feature_init(); 2426 spa_config_load(); 2427 l2arc_start(); 2428 scan_init(); 2429 qat_init(); 2430 spa_import_progress_init(); 2431 } 2432 2433 void 2434 spa_fini(void) 2435 { 2436 l2arc_stop(); 2437 2438 spa_evict_all(); 2439 2440 vdev_file_fini(); 2441 vdev_cache_stat_fini(); 2442 vdev_mirror_stat_fini(); 2443 vdev_raidz_math_fini(); 2444 zil_fini(); 2445 dmu_fini(); 2446 zio_fini(); 2447 ddt_fini(); 2448 metaslab_stat_fini(); 2449 zfs_btree_fini(); 2450 unique_fini(); 2451 zfs_refcount_fini(); 2452 fm_fini(); 2453 scan_fini(); 2454 qat_fini(); 2455 spa_import_progress_destroy(); 2456 2457 avl_destroy(&spa_namespace_avl); 2458 avl_destroy(&spa_spare_avl); 2459 avl_destroy(&spa_l2cache_avl); 2460 2461 cv_destroy(&spa_namespace_cv); 2462 mutex_destroy(&spa_namespace_lock); 2463 mutex_destroy(&spa_spare_lock); 2464 mutex_destroy(&spa_l2cache_lock); 2465 } 2466 2467 /* 2468 * Return whether this pool has a dedicated slog device. No locking needed. 2469 * It's not a problem if the wrong answer is returned as it's only for 2470 * performance and not correctness. 2471 */ 2472 boolean_t 2473 spa_has_slogs(spa_t *spa) 2474 { 2475 return (spa->spa_log_class->mc_groups != 0); 2476 } 2477 2478 spa_log_state_t 2479 spa_get_log_state(spa_t *spa) 2480 { 2481 return (spa->spa_log_state); 2482 } 2483 2484 void 2485 spa_set_log_state(spa_t *spa, spa_log_state_t state) 2486 { 2487 spa->spa_log_state = state; 2488 } 2489 2490 boolean_t 2491 spa_is_root(spa_t *spa) 2492 { 2493 return (spa->spa_is_root); 2494 } 2495 2496 boolean_t 2497 spa_writeable(spa_t *spa) 2498 { 2499 return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config); 2500 } 2501 2502 /* 2503 * Returns true if there is a pending sync task in any of the current 2504 * syncing txg, the current quiescing txg, or the current open txg. 2505 */ 2506 boolean_t 2507 spa_has_pending_synctask(spa_t *spa) 2508 { 2509 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) || 2510 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks)); 2511 } 2512 2513 spa_mode_t 2514 spa_mode(spa_t *spa) 2515 { 2516 return (spa->spa_mode); 2517 } 2518 2519 uint64_t 2520 spa_bootfs(spa_t *spa) 2521 { 2522 return (spa->spa_bootfs); 2523 } 2524 2525 uint64_t 2526 spa_delegation(spa_t *spa) 2527 { 2528 return (spa->spa_delegation); 2529 } 2530 2531 objset_t * 2532 spa_meta_objset(spa_t *spa) 2533 { 2534 return (spa->spa_meta_objset); 2535 } 2536 2537 enum zio_checksum 2538 spa_dedup_checksum(spa_t *spa) 2539 { 2540 return (spa->spa_dedup_checksum); 2541 } 2542 2543 /* 2544 * Reset pool scan stat per scan pass (or reboot). 2545 */ 2546 void 2547 spa_scan_stat_init(spa_t *spa) 2548 { 2549 /* data not stored on disk */ 2550 spa->spa_scan_pass_start = gethrestime_sec(); 2551 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan)) 2552 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start; 2553 else 2554 spa->spa_scan_pass_scrub_pause = 0; 2555 spa->spa_scan_pass_scrub_spent_paused = 0; 2556 spa->spa_scan_pass_exam = 0; 2557 spa->spa_scan_pass_issued = 0; 2558 vdev_scan_stat_init(spa->spa_root_vdev); 2559 } 2560 2561 /* 2562 * Get scan stats for zpool status reports 2563 */ 2564 int 2565 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 2566 { 2567 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 2568 2569 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) 2570 return (SET_ERROR(ENOENT)); 2571 bzero(ps, sizeof (pool_scan_stat_t)); 2572 2573 /* data stored on disk */ 2574 ps->pss_func = scn->scn_phys.scn_func; 2575 ps->pss_state = scn->scn_phys.scn_state; 2576 ps->pss_start_time = scn->scn_phys.scn_start_time; 2577 ps->pss_end_time = scn->scn_phys.scn_end_time; 2578 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 2579 ps->pss_examined = scn->scn_phys.scn_examined; 2580 ps->pss_to_process = scn->scn_phys.scn_to_process; 2581 ps->pss_processed = scn->scn_phys.scn_processed; 2582 ps->pss_errors = scn->scn_phys.scn_errors; 2583 2584 /* data not stored on disk */ 2585 ps->pss_pass_exam = spa->spa_scan_pass_exam; 2586 ps->pss_pass_start = spa->spa_scan_pass_start; 2587 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause; 2588 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused; 2589 ps->pss_pass_issued = spa->spa_scan_pass_issued; 2590 ps->pss_issued = 2591 scn->scn_issued_before_pass + spa->spa_scan_pass_issued; 2592 2593 return (0); 2594 } 2595 2596 int 2597 spa_maxblocksize(spa_t *spa) 2598 { 2599 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 2600 return (SPA_MAXBLOCKSIZE); 2601 else 2602 return (SPA_OLD_MAXBLOCKSIZE); 2603 } 2604 2605 2606 /* 2607 * Returns the txg that the last device removal completed. No indirect mappings 2608 * have been added since this txg. 2609 */ 2610 uint64_t 2611 spa_get_last_removal_txg(spa_t *spa) 2612 { 2613 uint64_t vdevid; 2614 uint64_t ret = -1ULL; 2615 2616 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2617 /* 2618 * sr_prev_indirect_vdev is only modified while holding all the 2619 * config locks, so it is sufficient to hold SCL_VDEV as reader when 2620 * examining it. 2621 */ 2622 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev; 2623 2624 while (vdevid != -1ULL) { 2625 vdev_t *vd = vdev_lookup_top(spa, vdevid); 2626 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 2627 2628 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 2629 2630 /* 2631 * If the removal did not remap any data, we don't care. 2632 */ 2633 if (vdev_indirect_births_count(vib) != 0) { 2634 ret = vdev_indirect_births_last_entry_txg(vib); 2635 break; 2636 } 2637 2638 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev; 2639 } 2640 spa_config_exit(spa, SCL_VDEV, FTAG); 2641 2642 IMPLY(ret != -1ULL, 2643 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); 2644 2645 return (ret); 2646 } 2647 2648 int 2649 spa_maxdnodesize(spa_t *spa) 2650 { 2651 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 2652 return (DNODE_MAX_SIZE); 2653 else 2654 return (DNODE_MIN_SIZE); 2655 } 2656 2657 boolean_t 2658 spa_multihost(spa_t *spa) 2659 { 2660 return (spa->spa_multihost ? B_TRUE : B_FALSE); 2661 } 2662 2663 uint32_t 2664 spa_get_hostid(spa_t *spa) 2665 { 2666 return (spa->spa_hostid); 2667 } 2668 2669 boolean_t 2670 spa_trust_config(spa_t *spa) 2671 { 2672 return (spa->spa_trust_config); 2673 } 2674 2675 uint64_t 2676 spa_missing_tvds_allowed(spa_t *spa) 2677 { 2678 return (spa->spa_missing_tvds_allowed); 2679 } 2680 2681 space_map_t * 2682 spa_syncing_log_sm(spa_t *spa) 2683 { 2684 return (spa->spa_syncing_log_sm); 2685 } 2686 2687 void 2688 spa_set_missing_tvds(spa_t *spa, uint64_t missing) 2689 { 2690 spa->spa_missing_tvds = missing; 2691 } 2692 2693 /* 2694 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc). 2695 */ 2696 const char * 2697 spa_state_to_name(spa_t *spa) 2698 { 2699 ASSERT3P(spa, !=, NULL); 2700 2701 /* 2702 * it is possible for the spa to exist, without root vdev 2703 * as the spa transitions during import/export 2704 */ 2705 vdev_t *rvd = spa->spa_root_vdev; 2706 if (rvd == NULL) { 2707 return ("TRANSITIONING"); 2708 } 2709 vdev_state_t state = rvd->vdev_state; 2710 vdev_aux_t aux = rvd->vdev_stat.vs_aux; 2711 2712 if (spa_suspended(spa) && 2713 (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)) 2714 return ("SUSPENDED"); 2715 2716 switch (state) { 2717 case VDEV_STATE_CLOSED: 2718 case VDEV_STATE_OFFLINE: 2719 return ("OFFLINE"); 2720 case VDEV_STATE_REMOVED: 2721 return ("REMOVED"); 2722 case VDEV_STATE_CANT_OPEN: 2723 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG) 2724 return ("FAULTED"); 2725 else if (aux == VDEV_AUX_SPLIT_POOL) 2726 return ("SPLIT"); 2727 else 2728 return ("UNAVAIL"); 2729 case VDEV_STATE_FAULTED: 2730 return ("FAULTED"); 2731 case VDEV_STATE_DEGRADED: 2732 return ("DEGRADED"); 2733 case VDEV_STATE_HEALTHY: 2734 return ("ONLINE"); 2735 default: 2736 break; 2737 } 2738 2739 return ("UNKNOWN"); 2740 } 2741 2742 boolean_t 2743 spa_top_vdevs_spacemap_addressable(spa_t *spa) 2744 { 2745 vdev_t *rvd = spa->spa_root_vdev; 2746 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2747 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c])) 2748 return (B_FALSE); 2749 } 2750 return (B_TRUE); 2751 } 2752 2753 boolean_t 2754 spa_has_checkpoint(spa_t *spa) 2755 { 2756 return (spa->spa_checkpoint_txg != 0); 2757 } 2758 2759 boolean_t 2760 spa_importing_readonly_checkpoint(spa_t *spa) 2761 { 2762 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) && 2763 spa->spa_mode == SPA_MODE_READ); 2764 } 2765 2766 uint64_t 2767 spa_min_claim_txg(spa_t *spa) 2768 { 2769 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg; 2770 2771 if (checkpoint_txg != 0) 2772 return (checkpoint_txg + 1); 2773 2774 return (spa->spa_first_txg); 2775 } 2776 2777 /* 2778 * If there is a checkpoint, async destroys may consume more space from 2779 * the pool instead of freeing it. In an attempt to save the pool from 2780 * getting suspended when it is about to run out of space, we stop 2781 * processing async destroys. 2782 */ 2783 boolean_t 2784 spa_suspend_async_destroy(spa_t *spa) 2785 { 2786 dsl_pool_t *dp = spa_get_dsl(spa); 2787 2788 uint64_t unreserved = dsl_pool_unreserved_space(dp, 2789 ZFS_SPACE_CHECK_EXTRA_RESERVED); 2790 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes; 2791 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0; 2792 2793 if (spa_has_checkpoint(spa) && avail == 0) 2794 return (B_TRUE); 2795 2796 return (B_FALSE); 2797 } 2798 2799 #if defined(_KERNEL) 2800 2801 int 2802 param_set_deadman_failmode_common(const char *val) 2803 { 2804 spa_t *spa = NULL; 2805 char *p; 2806 2807 if (val == NULL) 2808 return (SET_ERROR(EINVAL)); 2809 2810 if ((p = strchr(val, '\n')) != NULL) 2811 *p = '\0'; 2812 2813 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 && 2814 strcmp(val, "panic")) 2815 return (SET_ERROR(EINVAL)); 2816 2817 if (spa_mode_global != SPA_MODE_UNINIT) { 2818 mutex_enter(&spa_namespace_lock); 2819 while ((spa = spa_next(spa)) != NULL) 2820 spa_set_deadman_failmode(spa, val); 2821 mutex_exit(&spa_namespace_lock); 2822 } 2823 2824 return (0); 2825 } 2826 #endif 2827 2828 /* Namespace manipulation */ 2829 EXPORT_SYMBOL(spa_lookup); 2830 EXPORT_SYMBOL(spa_add); 2831 EXPORT_SYMBOL(spa_remove); 2832 EXPORT_SYMBOL(spa_next); 2833 2834 /* Refcount functions */ 2835 EXPORT_SYMBOL(spa_open_ref); 2836 EXPORT_SYMBOL(spa_close); 2837 EXPORT_SYMBOL(spa_refcount_zero); 2838 2839 /* Pool configuration lock */ 2840 EXPORT_SYMBOL(spa_config_tryenter); 2841 EXPORT_SYMBOL(spa_config_enter); 2842 EXPORT_SYMBOL(spa_config_exit); 2843 EXPORT_SYMBOL(spa_config_held); 2844 2845 /* Pool vdev add/remove lock */ 2846 EXPORT_SYMBOL(spa_vdev_enter); 2847 EXPORT_SYMBOL(spa_vdev_exit); 2848 2849 /* Pool vdev state change lock */ 2850 EXPORT_SYMBOL(spa_vdev_state_enter); 2851 EXPORT_SYMBOL(spa_vdev_state_exit); 2852 2853 /* Accessor functions */ 2854 EXPORT_SYMBOL(spa_shutting_down); 2855 EXPORT_SYMBOL(spa_get_dsl); 2856 EXPORT_SYMBOL(spa_get_rootblkptr); 2857 EXPORT_SYMBOL(spa_set_rootblkptr); 2858 EXPORT_SYMBOL(spa_altroot); 2859 EXPORT_SYMBOL(spa_sync_pass); 2860 EXPORT_SYMBOL(spa_name); 2861 EXPORT_SYMBOL(spa_guid); 2862 EXPORT_SYMBOL(spa_last_synced_txg); 2863 EXPORT_SYMBOL(spa_first_txg); 2864 EXPORT_SYMBOL(spa_syncing_txg); 2865 EXPORT_SYMBOL(spa_version); 2866 EXPORT_SYMBOL(spa_state); 2867 EXPORT_SYMBOL(spa_load_state); 2868 EXPORT_SYMBOL(spa_freeze_txg); 2869 EXPORT_SYMBOL(spa_get_dspace); 2870 EXPORT_SYMBOL(spa_update_dspace); 2871 EXPORT_SYMBOL(spa_deflate); 2872 EXPORT_SYMBOL(spa_normal_class); 2873 EXPORT_SYMBOL(spa_log_class); 2874 EXPORT_SYMBOL(spa_special_class); 2875 EXPORT_SYMBOL(spa_preferred_class); 2876 EXPORT_SYMBOL(spa_max_replication); 2877 EXPORT_SYMBOL(spa_prev_software_version); 2878 EXPORT_SYMBOL(spa_get_failmode); 2879 EXPORT_SYMBOL(spa_suspended); 2880 EXPORT_SYMBOL(spa_bootfs); 2881 EXPORT_SYMBOL(spa_delegation); 2882 EXPORT_SYMBOL(spa_meta_objset); 2883 EXPORT_SYMBOL(spa_maxblocksize); 2884 EXPORT_SYMBOL(spa_maxdnodesize); 2885 2886 /* Miscellaneous support routines */ 2887 EXPORT_SYMBOL(spa_guid_exists); 2888 EXPORT_SYMBOL(spa_strdup); 2889 EXPORT_SYMBOL(spa_strfree); 2890 EXPORT_SYMBOL(spa_generate_guid); 2891 EXPORT_SYMBOL(snprintf_blkptr); 2892 EXPORT_SYMBOL(spa_freeze); 2893 EXPORT_SYMBOL(spa_upgrade); 2894 EXPORT_SYMBOL(spa_evict_all); 2895 EXPORT_SYMBOL(spa_lookup_by_guid); 2896 EXPORT_SYMBOL(spa_has_spare); 2897 EXPORT_SYMBOL(dva_get_dsize_sync); 2898 EXPORT_SYMBOL(bp_get_dsize_sync); 2899 EXPORT_SYMBOL(bp_get_dsize); 2900 EXPORT_SYMBOL(spa_has_slogs); 2901 EXPORT_SYMBOL(spa_is_root); 2902 EXPORT_SYMBOL(spa_writeable); 2903 EXPORT_SYMBOL(spa_mode); 2904 EXPORT_SYMBOL(spa_namespace_lock); 2905 EXPORT_SYMBOL(spa_trust_config); 2906 EXPORT_SYMBOL(spa_missing_tvds_allowed); 2907 EXPORT_SYMBOL(spa_set_missing_tvds); 2908 EXPORT_SYMBOL(spa_state_to_name); 2909 EXPORT_SYMBOL(spa_importing_readonly_checkpoint); 2910 EXPORT_SYMBOL(spa_min_claim_txg); 2911 EXPORT_SYMBOL(spa_suspend_async_destroy); 2912 EXPORT_SYMBOL(spa_has_checkpoint); 2913 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable); 2914 2915 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW, 2916 "Set additional debugging flags"); 2917 2918 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW, 2919 "Set to attempt to recover from fatal errors"); 2920 2921 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW, 2922 "Set to ignore IO errors during free and permanently leak the space"); 2923 2924 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, ULONG, ZMOD_RW, 2925 "Dead I/O check interval in milliseconds"); 2926 2927 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW, 2928 "Enable deadman timer"); 2929 2930 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, INT, ZMOD_RW, 2931 "SPA size estimate multiplication factor"); 2932 2933 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW, 2934 "Place DDT data into the special class"); 2935 2936 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW, 2937 "Place user data indirect blocks into the special class"); 2938 2939 /* BEGIN CSTYLED */ 2940 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode, 2941 param_set_deadman_failmode, param_get_charp, ZMOD_RW, 2942 "Failmode for deadman timer"); 2943 2944 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms, 2945 param_set_deadman_synctime, param_get_ulong, ZMOD_RW, 2946 "Pool sync expiration time in milliseconds"); 2947 2948 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms, 2949 param_set_deadman_ziotime, param_get_ulong, ZMOD_RW, 2950 "IO expiration time in milliseconds"); 2951 2952 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, INT, ZMOD_RW, 2953 "Small file blocks in special vdevs depends on this much " 2954 "free space available"); 2955 /* END CSTYLED */ 2956 2957 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift, 2958 param_get_int, ZMOD_RW, "Reserved free space in pool"); 2959