xref: /freebsd/sys/contrib/openzfs/module/zfs/spa_misc.c (revision 608da65de9552d5678c1000776ed69da04a45983)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2013 Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2017 Datto Inc.
28  * Copyright (c) 2017, Intel Corporation.
29  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
30  * Copyright (c) 2023, Klara Inc.
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/zfs_chksum.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zio.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/zio_compress.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/vdev_initialize.h>
45 #include <sys/vdev_trim.h>
46 #include <sys/vdev_file.h>
47 #include <sys/vdev_raidz.h>
48 #include <sys/metaslab.h>
49 #include <sys/uberblock_impl.h>
50 #include <sys/txg.h>
51 #include <sys/avl.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dir.h>
55 #include <sys/dsl_prop.h>
56 #include <sys/fm/util.h>
57 #include <sys/dsl_scan.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/metaslab_impl.h>
60 #include <sys/arc.h>
61 #include <sys/brt.h>
62 #include <sys/ddt.h>
63 #include <sys/kstat.h>
64 #include "zfs_prop.h"
65 #include <sys/btree.h>
66 #include <sys/zfeature.h>
67 #include <sys/qat.h>
68 #include <sys/zstd/zstd.h>
69 
70 /*
71  * SPA locking
72  *
73  * There are three basic locks for managing spa_t structures:
74  *
75  * spa_namespace_lock (global mutex)
76  *
77  *	This lock must be acquired to do any of the following:
78  *
79  *		- Lookup a spa_t by name
80  *		- Add or remove a spa_t from the namespace
81  *		- Increase spa_refcount from non-zero
82  *		- Check if spa_refcount is zero
83  *		- Rename a spa_t
84  *		- add/remove/attach/detach devices
85  *		- Held for the duration of create/destroy/import/export
86  *
87  *	It does not need to handle recursion.  A create or destroy may
88  *	reference objects (files or zvols) in other pools, but by
89  *	definition they must have an existing reference, and will never need
90  *	to lookup a spa_t by name.
91  *
92  * spa_refcount (per-spa zfs_refcount_t protected by mutex)
93  *
94  *	This reference count keep track of any active users of the spa_t.  The
95  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
96  *	the refcount is never really 'zero' - opening a pool implicitly keeps
97  *	some references in the DMU.  Internally we check against spa_minref, but
98  *	present the image of a zero/non-zero value to consumers.
99  *
100  * spa_config_lock[] (per-spa array of rwlocks)
101  *
102  *	This protects the spa_t from config changes, and must be held in
103  *	the following circumstances:
104  *
105  *		- RW_READER to perform I/O to the spa
106  *		- RW_WRITER to change the vdev config
107  *
108  * The locking order is fairly straightforward:
109  *
110  *		spa_namespace_lock	->	spa_refcount
111  *
112  *	The namespace lock must be acquired to increase the refcount from 0
113  *	or to check if it is zero.
114  *
115  *		spa_refcount		->	spa_config_lock[]
116  *
117  *	There must be at least one valid reference on the spa_t to acquire
118  *	the config lock.
119  *
120  *		spa_namespace_lock	->	spa_config_lock[]
121  *
122  *	The namespace lock must always be taken before the config lock.
123  *
124  *
125  * The spa_namespace_lock can be acquired directly and is globally visible.
126  *
127  * The namespace is manipulated using the following functions, all of which
128  * require the spa_namespace_lock to be held.
129  *
130  *	spa_lookup()		Lookup a spa_t by name.
131  *
132  *	spa_add()		Create a new spa_t in the namespace.
133  *
134  *	spa_remove()		Remove a spa_t from the namespace.  This also
135  *				frees up any memory associated with the spa_t.
136  *
137  *	spa_next()		Returns the next spa_t in the system, or the
138  *				first if NULL is passed.
139  *
140  *	spa_evict_all()		Shutdown and remove all spa_t structures in
141  *				the system.
142  *
143  *	spa_guid_exists()	Determine whether a pool/device guid exists.
144  *
145  * The spa_refcount is manipulated using the following functions:
146  *
147  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
148  *				called with spa_namespace_lock held if the
149  *				refcount is currently zero.
150  *
151  *	spa_close()		Remove a reference from the spa_t.  This will
152  *				not free the spa_t or remove it from the
153  *				namespace.  No locking is required.
154  *
155  *	spa_refcount_zero()	Returns true if the refcount is currently
156  *				zero.  Must be called with spa_namespace_lock
157  *				held.
158  *
159  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
160  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
161  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
162  *
163  * To read the configuration, it suffices to hold one of these locks as reader.
164  * To modify the configuration, you must hold all locks as writer.  To modify
165  * vdev state without altering the vdev tree's topology (e.g. online/offline),
166  * you must hold SCL_STATE and SCL_ZIO as writer.
167  *
168  * We use these distinct config locks to avoid recursive lock entry.
169  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
170  * block allocations (SCL_ALLOC), which may require reading space maps
171  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
172  *
173  * The spa config locks cannot be normal rwlocks because we need the
174  * ability to hand off ownership.  For example, SCL_ZIO is acquired
175  * by the issuing thread and later released by an interrupt thread.
176  * They do, however, obey the usual write-wanted semantics to prevent
177  * writer (i.e. system administrator) starvation.
178  *
179  * The lock acquisition rules are as follows:
180  *
181  * SCL_CONFIG
182  *	Protects changes to the vdev tree topology, such as vdev
183  *	add/remove/attach/detach.  Protects the dirty config list
184  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
185  *
186  * SCL_STATE
187  *	Protects changes to pool state and vdev state, such as vdev
188  *	online/offline/fault/degrade/clear.  Protects the dirty state list
189  *	(spa_state_dirty_list) and global pool state (spa_state).
190  *
191  * SCL_ALLOC
192  *	Protects changes to metaslab groups and classes.
193  *	Held as reader by metaslab_alloc() and metaslab_claim().
194  *
195  * SCL_ZIO
196  *	Held by bp-level zios (those which have no io_vd upon entry)
197  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
198  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
199  *
200  * SCL_FREE
201  *	Protects changes to metaslab groups and classes.
202  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
203  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
204  *	blocks in zio_done() while another i/o that holds either
205  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
206  *
207  * SCL_VDEV
208  *	Held as reader to prevent changes to the vdev tree during trivial
209  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
210  *	other locks, and lower than all of them, to ensure that it's safe
211  *	to acquire regardless of caller context.
212  *
213  * In addition, the following rules apply:
214  *
215  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
216  *	The lock ordering is SCL_CONFIG > spa_props_lock.
217  *
218  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
219  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
220  *	or zio_write_phys() -- the caller must ensure that the config cannot
221  *	cannot change in the interim, and that the vdev cannot be reopened.
222  *	SCL_STATE as reader suffices for both.
223  *
224  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
225  *
226  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
227  *				for writing.
228  *
229  *	spa_vdev_exit()		Release the config lock, wait for all I/O
230  *				to complete, sync the updated configs to the
231  *				cache, and release the namespace lock.
232  *
233  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
234  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
235  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
236  */
237 
238 static avl_tree_t spa_namespace_avl;
239 kmutex_t spa_namespace_lock;
240 static kcondvar_t spa_namespace_cv;
241 static const int spa_max_replication_override = SPA_DVAS_PER_BP;
242 
243 static kmutex_t spa_spare_lock;
244 static avl_tree_t spa_spare_avl;
245 static kmutex_t spa_l2cache_lock;
246 static avl_tree_t spa_l2cache_avl;
247 
248 spa_mode_t spa_mode_global = SPA_MODE_UNINIT;
249 
250 #ifdef ZFS_DEBUG
251 /*
252  * Everything except dprintf, set_error, spa, and indirect_remap is on
253  * by default in debug builds.
254  */
255 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
256     ZFS_DEBUG_INDIRECT_REMAP);
257 #else
258 int zfs_flags = 0;
259 #endif
260 
261 /*
262  * zfs_recover can be set to nonzero to attempt to recover from
263  * otherwise-fatal errors, typically caused by on-disk corruption.  When
264  * set, calls to zfs_panic_recover() will turn into warning messages.
265  * This should only be used as a last resort, as it typically results
266  * in leaked space, or worse.
267  */
268 int zfs_recover = B_FALSE;
269 
270 /*
271  * If destroy encounters an EIO while reading metadata (e.g. indirect
272  * blocks), space referenced by the missing metadata can not be freed.
273  * Normally this causes the background destroy to become "stalled", as
274  * it is unable to make forward progress.  While in this stalled state,
275  * all remaining space to free from the error-encountering filesystem is
276  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
277  * permanently leak the space from indirect blocks that can not be read,
278  * and continue to free everything else that it can.
279  *
280  * The default, "stalling" behavior is useful if the storage partially
281  * fails (i.e. some but not all i/os fail), and then later recovers.  In
282  * this case, we will be able to continue pool operations while it is
283  * partially failed, and when it recovers, we can continue to free the
284  * space, with no leaks.  However, note that this case is actually
285  * fairly rare.
286  *
287  * Typically pools either (a) fail completely (but perhaps temporarily,
288  * e.g. a top-level vdev going offline), or (b) have localized,
289  * permanent errors (e.g. disk returns the wrong data due to bit flip or
290  * firmware bug).  In case (a), this setting does not matter because the
291  * pool will be suspended and the sync thread will not be able to make
292  * forward progress regardless.  In case (b), because the error is
293  * permanent, the best we can do is leak the minimum amount of space,
294  * which is what setting this flag will do.  Therefore, it is reasonable
295  * for this flag to normally be set, but we chose the more conservative
296  * approach of not setting it, so that there is no possibility of
297  * leaking space in the "partial temporary" failure case.
298  */
299 int zfs_free_leak_on_eio = B_FALSE;
300 
301 /*
302  * Expiration time in milliseconds. This value has two meanings. First it is
303  * used to determine when the spa_deadman() logic should fire. By default the
304  * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
305  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
306  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
307  * in one of three behaviors controlled by zfs_deadman_failmode.
308  */
309 uint64_t zfs_deadman_synctime_ms = 600000UL;  /* 10 min. */
310 
311 /*
312  * This value controls the maximum amount of time zio_wait() will block for an
313  * outstanding IO.  By default this is 300 seconds at which point the "hung"
314  * behavior will be applied as described for zfs_deadman_synctime_ms.
315  */
316 uint64_t zfs_deadman_ziotime_ms = 300000UL;  /* 5 min. */
317 
318 /*
319  * Check time in milliseconds. This defines the frequency at which we check
320  * for hung I/O.
321  */
322 uint64_t zfs_deadman_checktime_ms = 60000UL;  /* 1 min. */
323 
324 /*
325  * By default the deadman is enabled.
326  */
327 int zfs_deadman_enabled = B_TRUE;
328 
329 /*
330  * Controls the behavior of the deadman when it detects a "hung" I/O.
331  * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
332  *
333  * wait     - Wait for the "hung" I/O (default)
334  * continue - Attempt to recover from a "hung" I/O
335  * panic    - Panic the system
336  */
337 const char *zfs_deadman_failmode = "wait";
338 
339 /*
340  * The worst case is single-sector max-parity RAID-Z blocks, in which
341  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
342  * times the size; so just assume that.  Add to this the fact that
343  * we can have up to 3 DVAs per bp, and one more factor of 2 because
344  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
345  * the worst case is:
346  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
347  */
348 uint_t spa_asize_inflation = 24;
349 
350 /*
351  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
352  * the pool to be consumed (bounded by spa_max_slop).  This ensures that we
353  * don't run the pool completely out of space, due to unaccounted changes (e.g.
354  * to the MOS).  It also limits the worst-case time to allocate space.  If we
355  * have less than this amount of free space, most ZPL operations (e.g.  write,
356  * create) will return ENOSPC.  The ZIL metaslabs (spa_embedded_log_class) are
357  * also part of this 3.2% of space which can't be consumed by normal writes;
358  * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded
359  * log space.
360  *
361  * Certain operations (e.g. file removal, most administrative actions) can
362  * use half the slop space.  They will only return ENOSPC if less than half
363  * the slop space is free.  Typically, once the pool has less than the slop
364  * space free, the user will use these operations to free up space in the pool.
365  * These are the operations that call dsl_pool_adjustedsize() with the netfree
366  * argument set to TRUE.
367  *
368  * Operations that are almost guaranteed to free up space in the absence of
369  * a pool checkpoint can use up to three quarters of the slop space
370  * (e.g zfs destroy).
371  *
372  * A very restricted set of operations are always permitted, regardless of
373  * the amount of free space.  These are the operations that call
374  * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
375  * increase in the amount of space used, it is possible to run the pool
376  * completely out of space, causing it to be permanently read-only.
377  *
378  * Note that on very small pools, the slop space will be larger than
379  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
380  * but we never allow it to be more than half the pool size.
381  *
382  * Further, on very large pools, the slop space will be smaller than
383  * 3.2%, to avoid reserving much more space than we actually need; bounded
384  * by spa_max_slop (128GB).
385  *
386  * See also the comments in zfs_space_check_t.
387  */
388 uint_t spa_slop_shift = 5;
389 static const uint64_t spa_min_slop = 128ULL * 1024 * 1024;
390 static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024;
391 static const int spa_allocators = 4;
392 
393 /*
394  * Spa active allocator.
395  * Valid values are zfs_active_allocator=<dynamic|cursor|new-dynamic>.
396  */
397 const char *zfs_active_allocator = "dynamic";
398 
399 void
400 spa_load_failed(spa_t *spa, const char *fmt, ...)
401 {
402 	va_list adx;
403 	char buf[256];
404 
405 	va_start(adx, fmt);
406 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
407 	va_end(adx);
408 
409 	zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
410 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
411 }
412 
413 void
414 spa_load_note(spa_t *spa, const char *fmt, ...)
415 {
416 	va_list adx;
417 	char buf[256];
418 
419 	va_start(adx, fmt);
420 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
421 	va_end(adx);
422 
423 	zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
424 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
425 }
426 
427 /*
428  * By default dedup and user data indirects land in the special class
429  */
430 static int zfs_ddt_data_is_special = B_TRUE;
431 static int zfs_user_indirect_is_special = B_TRUE;
432 
433 /*
434  * The percentage of special class final space reserved for metadata only.
435  * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
436  * let metadata into the class.
437  */
438 static uint_t zfs_special_class_metadata_reserve_pct = 25;
439 
440 /*
441  * ==========================================================================
442  * SPA config locking
443  * ==========================================================================
444  */
445 static void
446 spa_config_lock_init(spa_t *spa)
447 {
448 	for (int i = 0; i < SCL_LOCKS; i++) {
449 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
450 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
451 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
452 		scl->scl_writer = NULL;
453 		scl->scl_write_wanted = 0;
454 		scl->scl_count = 0;
455 	}
456 }
457 
458 static void
459 spa_config_lock_destroy(spa_t *spa)
460 {
461 	for (int i = 0; i < SCL_LOCKS; i++) {
462 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
463 		mutex_destroy(&scl->scl_lock);
464 		cv_destroy(&scl->scl_cv);
465 		ASSERT(scl->scl_writer == NULL);
466 		ASSERT(scl->scl_write_wanted == 0);
467 		ASSERT(scl->scl_count == 0);
468 	}
469 }
470 
471 int
472 spa_config_tryenter(spa_t *spa, int locks, const void *tag, krw_t rw)
473 {
474 	for (int i = 0; i < SCL_LOCKS; i++) {
475 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
476 		if (!(locks & (1 << i)))
477 			continue;
478 		mutex_enter(&scl->scl_lock);
479 		if (rw == RW_READER) {
480 			if (scl->scl_writer || scl->scl_write_wanted) {
481 				mutex_exit(&scl->scl_lock);
482 				spa_config_exit(spa, locks & ((1 << i) - 1),
483 				    tag);
484 				return (0);
485 			}
486 		} else {
487 			ASSERT(scl->scl_writer != curthread);
488 			if (scl->scl_count != 0) {
489 				mutex_exit(&scl->scl_lock);
490 				spa_config_exit(spa, locks & ((1 << i) - 1),
491 				    tag);
492 				return (0);
493 			}
494 			scl->scl_writer = curthread;
495 		}
496 		scl->scl_count++;
497 		mutex_exit(&scl->scl_lock);
498 	}
499 	return (1);
500 }
501 
502 static void
503 spa_config_enter_impl(spa_t *spa, int locks, const void *tag, krw_t rw,
504     int mmp_flag)
505 {
506 	(void) tag;
507 	int wlocks_held = 0;
508 
509 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
510 
511 	for (int i = 0; i < SCL_LOCKS; i++) {
512 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
513 		if (scl->scl_writer == curthread)
514 			wlocks_held |= (1 << i);
515 		if (!(locks & (1 << i)))
516 			continue;
517 		mutex_enter(&scl->scl_lock);
518 		if (rw == RW_READER) {
519 			while (scl->scl_writer ||
520 			    (!mmp_flag && scl->scl_write_wanted)) {
521 				cv_wait(&scl->scl_cv, &scl->scl_lock);
522 			}
523 		} else {
524 			ASSERT(scl->scl_writer != curthread);
525 			while (scl->scl_count != 0) {
526 				scl->scl_write_wanted++;
527 				cv_wait(&scl->scl_cv, &scl->scl_lock);
528 				scl->scl_write_wanted--;
529 			}
530 			scl->scl_writer = curthread;
531 		}
532 		scl->scl_count++;
533 		mutex_exit(&scl->scl_lock);
534 	}
535 	ASSERT3U(wlocks_held, <=, locks);
536 }
537 
538 void
539 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw)
540 {
541 	spa_config_enter_impl(spa, locks, tag, rw, 0);
542 }
543 
544 /*
545  * The spa_config_enter_mmp() allows the mmp thread to cut in front of
546  * outstanding write lock requests. This is needed since the mmp updates are
547  * time sensitive and failure to service them promptly will result in a
548  * suspended pool. This pool suspension has been seen in practice when there is
549  * a single disk in a pool that is responding slowly and presumably about to
550  * fail.
551  */
552 
553 void
554 spa_config_enter_mmp(spa_t *spa, int locks, const void *tag, krw_t rw)
555 {
556 	spa_config_enter_impl(spa, locks, tag, rw, 1);
557 }
558 
559 void
560 spa_config_exit(spa_t *spa, int locks, const void *tag)
561 {
562 	(void) tag;
563 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
564 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
565 		if (!(locks & (1 << i)))
566 			continue;
567 		mutex_enter(&scl->scl_lock);
568 		ASSERT(scl->scl_count > 0);
569 		if (--scl->scl_count == 0) {
570 			ASSERT(scl->scl_writer == NULL ||
571 			    scl->scl_writer == curthread);
572 			scl->scl_writer = NULL;	/* OK in either case */
573 			cv_broadcast(&scl->scl_cv);
574 		}
575 		mutex_exit(&scl->scl_lock);
576 	}
577 }
578 
579 int
580 spa_config_held(spa_t *spa, int locks, krw_t rw)
581 {
582 	int locks_held = 0;
583 
584 	for (int i = 0; i < SCL_LOCKS; i++) {
585 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
586 		if (!(locks & (1 << i)))
587 			continue;
588 		if ((rw == RW_READER && scl->scl_count != 0) ||
589 		    (rw == RW_WRITER && scl->scl_writer == curthread))
590 			locks_held |= 1 << i;
591 	}
592 
593 	return (locks_held);
594 }
595 
596 /*
597  * ==========================================================================
598  * SPA namespace functions
599  * ==========================================================================
600  */
601 
602 /*
603  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
604  * Returns NULL if no matching spa_t is found.
605  */
606 spa_t *
607 spa_lookup(const char *name)
608 {
609 	static spa_t search;	/* spa_t is large; don't allocate on stack */
610 	spa_t *spa;
611 	avl_index_t where;
612 	char *cp;
613 
614 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
615 
616 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
617 
618 	/*
619 	 * If it's a full dataset name, figure out the pool name and
620 	 * just use that.
621 	 */
622 	cp = strpbrk(search.spa_name, "/@#");
623 	if (cp != NULL)
624 		*cp = '\0';
625 
626 	spa = avl_find(&spa_namespace_avl, &search, &where);
627 
628 	return (spa);
629 }
630 
631 /*
632  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
633  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
634  * looking for potentially hung I/Os.
635  */
636 void
637 spa_deadman(void *arg)
638 {
639 	spa_t *spa = arg;
640 
641 	/* Disable the deadman if the pool is suspended. */
642 	if (spa_suspended(spa))
643 		return;
644 
645 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
646 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
647 	    (u_longlong_t)++spa->spa_deadman_calls);
648 	if (zfs_deadman_enabled)
649 		vdev_deadman(spa->spa_root_vdev, FTAG);
650 
651 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
652 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
653 	    MSEC_TO_TICK(zfs_deadman_checktime_ms));
654 }
655 
656 static int
657 spa_log_sm_sort_by_txg(const void *va, const void *vb)
658 {
659 	const spa_log_sm_t *a = va;
660 	const spa_log_sm_t *b = vb;
661 
662 	return (TREE_CMP(a->sls_txg, b->sls_txg));
663 }
664 
665 /*
666  * Create an uninitialized spa_t with the given name.  Requires
667  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
668  * exist by calling spa_lookup() first.
669  */
670 spa_t *
671 spa_add(const char *name, nvlist_t *config, const char *altroot)
672 {
673 	spa_t *spa;
674 	spa_config_dirent_t *dp;
675 
676 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
677 
678 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
679 
680 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
681 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
682 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
683 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
684 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
685 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
686 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
687 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
688 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
689 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
690 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
691 	mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
692 	mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
693 	mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL);
694 
695 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
696 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
697 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
698 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
699 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
700 	cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL);
701 	cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL);
702 
703 	for (int t = 0; t < TXG_SIZE; t++)
704 		bplist_create(&spa->spa_free_bplist[t]);
705 
706 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
707 	spa->spa_state = POOL_STATE_UNINITIALIZED;
708 	spa->spa_freeze_txg = UINT64_MAX;
709 	spa->spa_final_txg = UINT64_MAX;
710 	spa->spa_load_max_txg = UINT64_MAX;
711 	spa->spa_proc = &p0;
712 	spa->spa_proc_state = SPA_PROC_NONE;
713 	spa->spa_trust_config = B_TRUE;
714 	spa->spa_hostid = zone_get_hostid(NULL);
715 
716 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
717 	spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
718 	spa_set_deadman_failmode(spa, zfs_deadman_failmode);
719 	spa_set_allocator(spa, zfs_active_allocator);
720 
721 	zfs_refcount_create(&spa->spa_refcount);
722 	spa_config_lock_init(spa);
723 	spa_stats_init(spa);
724 
725 	avl_add(&spa_namespace_avl, spa);
726 
727 	/*
728 	 * Set the alternate root, if there is one.
729 	 */
730 	if (altroot)
731 		spa->spa_root = spa_strdup(altroot);
732 
733 	spa->spa_alloc_count = spa_allocators;
734 	spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count *
735 	    sizeof (spa_alloc_t), KM_SLEEP);
736 	for (int i = 0; i < spa->spa_alloc_count; i++) {
737 		mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT,
738 		    NULL);
739 		avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare,
740 		    sizeof (zio_t), offsetof(zio_t, io_queue_node.a));
741 	}
742 	avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
743 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
744 	avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
745 	    sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
746 	list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
747 	    offsetof(log_summary_entry_t, lse_node));
748 
749 	/*
750 	 * Every pool starts with the default cachefile
751 	 */
752 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
753 	    offsetof(spa_config_dirent_t, scd_link));
754 
755 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
756 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
757 	list_insert_head(&spa->spa_config_list, dp);
758 
759 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
760 	    KM_SLEEP) == 0);
761 
762 	if (config != NULL) {
763 		nvlist_t *features;
764 
765 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
766 		    &features) == 0) {
767 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
768 			    0) == 0);
769 		}
770 
771 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
772 	}
773 
774 	if (spa->spa_label_features == NULL) {
775 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
776 		    KM_SLEEP) == 0);
777 	}
778 
779 	spa->spa_min_ashift = INT_MAX;
780 	spa->spa_max_ashift = 0;
781 	spa->spa_min_alloc = INT_MAX;
782 	spa->spa_gcd_alloc = INT_MAX;
783 
784 	/* Reset cached value */
785 	spa->spa_dedup_dspace = ~0ULL;
786 
787 	/*
788 	 * As a pool is being created, treat all features as disabled by
789 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
790 	 * refcount cache.
791 	 */
792 	for (int i = 0; i < SPA_FEATURES; i++) {
793 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
794 	}
795 
796 	list_create(&spa->spa_leaf_list, sizeof (vdev_t),
797 	    offsetof(vdev_t, vdev_leaf_node));
798 
799 	return (spa);
800 }
801 
802 /*
803  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
804  * spa_namespace_lock.  This is called only after the spa_t has been closed and
805  * deactivated.
806  */
807 void
808 spa_remove(spa_t *spa)
809 {
810 	spa_config_dirent_t *dp;
811 
812 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
813 	ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
814 	ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
815 	ASSERT0(spa->spa_waiters);
816 
817 	nvlist_free(spa->spa_config_splitting);
818 
819 	avl_remove(&spa_namespace_avl, spa);
820 	cv_broadcast(&spa_namespace_cv);
821 
822 	if (spa->spa_root)
823 		spa_strfree(spa->spa_root);
824 
825 	while ((dp = list_remove_head(&spa->spa_config_list)) != NULL) {
826 		if (dp->scd_path != NULL)
827 			spa_strfree(dp->scd_path);
828 		kmem_free(dp, sizeof (spa_config_dirent_t));
829 	}
830 
831 	for (int i = 0; i < spa->spa_alloc_count; i++) {
832 		avl_destroy(&spa->spa_allocs[i].spaa_tree);
833 		mutex_destroy(&spa->spa_allocs[i].spaa_lock);
834 	}
835 	kmem_free(spa->spa_allocs, spa->spa_alloc_count *
836 	    sizeof (spa_alloc_t));
837 
838 	avl_destroy(&spa->spa_metaslabs_by_flushed);
839 	avl_destroy(&spa->spa_sm_logs_by_txg);
840 	list_destroy(&spa->spa_log_summary);
841 	list_destroy(&spa->spa_config_list);
842 	list_destroy(&spa->spa_leaf_list);
843 
844 	nvlist_free(spa->spa_label_features);
845 	nvlist_free(spa->spa_load_info);
846 	nvlist_free(spa->spa_feat_stats);
847 	spa_config_set(spa, NULL);
848 
849 	zfs_refcount_destroy(&spa->spa_refcount);
850 
851 	spa_stats_destroy(spa);
852 	spa_config_lock_destroy(spa);
853 
854 	for (int t = 0; t < TXG_SIZE; t++)
855 		bplist_destroy(&spa->spa_free_bplist[t]);
856 
857 	zio_checksum_templates_free(spa);
858 
859 	cv_destroy(&spa->spa_async_cv);
860 	cv_destroy(&spa->spa_evicting_os_cv);
861 	cv_destroy(&spa->spa_proc_cv);
862 	cv_destroy(&spa->spa_scrub_io_cv);
863 	cv_destroy(&spa->spa_suspend_cv);
864 	cv_destroy(&spa->spa_activities_cv);
865 	cv_destroy(&spa->spa_waiters_cv);
866 
867 	mutex_destroy(&spa->spa_flushed_ms_lock);
868 	mutex_destroy(&spa->spa_async_lock);
869 	mutex_destroy(&spa->spa_errlist_lock);
870 	mutex_destroy(&spa->spa_errlog_lock);
871 	mutex_destroy(&spa->spa_evicting_os_lock);
872 	mutex_destroy(&spa->spa_history_lock);
873 	mutex_destroy(&spa->spa_proc_lock);
874 	mutex_destroy(&spa->spa_props_lock);
875 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
876 	mutex_destroy(&spa->spa_scrub_lock);
877 	mutex_destroy(&spa->spa_suspend_lock);
878 	mutex_destroy(&spa->spa_vdev_top_lock);
879 	mutex_destroy(&spa->spa_feat_stats_lock);
880 	mutex_destroy(&spa->spa_activities_lock);
881 
882 	kmem_free(spa, sizeof (spa_t));
883 }
884 
885 /*
886  * Given a pool, return the next pool in the namespace, or NULL if there is
887  * none.  If 'prev' is NULL, return the first pool.
888  */
889 spa_t *
890 spa_next(spa_t *prev)
891 {
892 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
893 
894 	if (prev)
895 		return (AVL_NEXT(&spa_namespace_avl, prev));
896 	else
897 		return (avl_first(&spa_namespace_avl));
898 }
899 
900 /*
901  * ==========================================================================
902  * SPA refcount functions
903  * ==========================================================================
904  */
905 
906 /*
907  * Add a reference to the given spa_t.  Must have at least one reference, or
908  * have the namespace lock held.
909  */
910 void
911 spa_open_ref(spa_t *spa, const void *tag)
912 {
913 	ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
914 	    MUTEX_HELD(&spa_namespace_lock));
915 	(void) zfs_refcount_add(&spa->spa_refcount, tag);
916 }
917 
918 /*
919  * Remove a reference to the given spa_t.  Must have at least one reference, or
920  * have the namespace lock held.
921  */
922 void
923 spa_close(spa_t *spa, const void *tag)
924 {
925 	ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
926 	    MUTEX_HELD(&spa_namespace_lock));
927 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
928 }
929 
930 /*
931  * Remove a reference to the given spa_t held by a dsl dir that is
932  * being asynchronously released.  Async releases occur from a taskq
933  * performing eviction of dsl datasets and dirs.  The namespace lock
934  * isn't held and the hold by the object being evicted may contribute to
935  * spa_minref (e.g. dataset or directory released during pool export),
936  * so the asserts in spa_close() do not apply.
937  */
938 void
939 spa_async_close(spa_t *spa, const void *tag)
940 {
941 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
942 }
943 
944 /*
945  * Check to see if the spa refcount is zero.  Must be called with
946  * spa_namespace_lock held.  We really compare against spa_minref, which is the
947  * number of references acquired when opening a pool
948  */
949 boolean_t
950 spa_refcount_zero(spa_t *spa)
951 {
952 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
953 
954 	return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
955 }
956 
957 /*
958  * ==========================================================================
959  * SPA spare and l2cache tracking
960  * ==========================================================================
961  */
962 
963 /*
964  * Hot spares and cache devices are tracked using the same code below,
965  * for 'auxiliary' devices.
966  */
967 
968 typedef struct spa_aux {
969 	uint64_t	aux_guid;
970 	uint64_t	aux_pool;
971 	avl_node_t	aux_avl;
972 	int		aux_count;
973 } spa_aux_t;
974 
975 static inline int
976 spa_aux_compare(const void *a, const void *b)
977 {
978 	const spa_aux_t *sa = (const spa_aux_t *)a;
979 	const spa_aux_t *sb = (const spa_aux_t *)b;
980 
981 	return (TREE_CMP(sa->aux_guid, sb->aux_guid));
982 }
983 
984 static void
985 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
986 {
987 	avl_index_t where;
988 	spa_aux_t search;
989 	spa_aux_t *aux;
990 
991 	search.aux_guid = vd->vdev_guid;
992 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
993 		aux->aux_count++;
994 	} else {
995 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
996 		aux->aux_guid = vd->vdev_guid;
997 		aux->aux_count = 1;
998 		avl_insert(avl, aux, where);
999 	}
1000 }
1001 
1002 static void
1003 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
1004 {
1005 	spa_aux_t search;
1006 	spa_aux_t *aux;
1007 	avl_index_t where;
1008 
1009 	search.aux_guid = vd->vdev_guid;
1010 	aux = avl_find(avl, &search, &where);
1011 
1012 	ASSERT(aux != NULL);
1013 
1014 	if (--aux->aux_count == 0) {
1015 		avl_remove(avl, aux);
1016 		kmem_free(aux, sizeof (spa_aux_t));
1017 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
1018 		aux->aux_pool = 0ULL;
1019 	}
1020 }
1021 
1022 static boolean_t
1023 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
1024 {
1025 	spa_aux_t search, *found;
1026 
1027 	search.aux_guid = guid;
1028 	found = avl_find(avl, &search, NULL);
1029 
1030 	if (pool) {
1031 		if (found)
1032 			*pool = found->aux_pool;
1033 		else
1034 			*pool = 0ULL;
1035 	}
1036 
1037 	if (refcnt) {
1038 		if (found)
1039 			*refcnt = found->aux_count;
1040 		else
1041 			*refcnt = 0;
1042 	}
1043 
1044 	return (found != NULL);
1045 }
1046 
1047 static void
1048 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1049 {
1050 	spa_aux_t search, *found;
1051 	avl_index_t where;
1052 
1053 	search.aux_guid = vd->vdev_guid;
1054 	found = avl_find(avl, &search, &where);
1055 	ASSERT(found != NULL);
1056 	ASSERT(found->aux_pool == 0ULL);
1057 
1058 	found->aux_pool = spa_guid(vd->vdev_spa);
1059 }
1060 
1061 /*
1062  * Spares are tracked globally due to the following constraints:
1063  *
1064  *	- A spare may be part of multiple pools.
1065  *	- A spare may be added to a pool even if it's actively in use within
1066  *	  another pool.
1067  *	- A spare in use in any pool can only be the source of a replacement if
1068  *	  the target is a spare in the same pool.
1069  *
1070  * We keep track of all spares on the system through the use of a reference
1071  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1072  * spare, then we bump the reference count in the AVL tree.  In addition, we set
1073  * the 'vdev_isspare' member to indicate that the device is a spare (active or
1074  * inactive).  When a spare is made active (used to replace a device in the
1075  * pool), we also keep track of which pool its been made a part of.
1076  *
1077  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1078  * called under the spa_namespace lock as part of vdev reconfiguration.  The
1079  * separate spare lock exists for the status query path, which does not need to
1080  * be completely consistent with respect to other vdev configuration changes.
1081  */
1082 
1083 static int
1084 spa_spare_compare(const void *a, const void *b)
1085 {
1086 	return (spa_aux_compare(a, b));
1087 }
1088 
1089 void
1090 spa_spare_add(vdev_t *vd)
1091 {
1092 	mutex_enter(&spa_spare_lock);
1093 	ASSERT(!vd->vdev_isspare);
1094 	spa_aux_add(vd, &spa_spare_avl);
1095 	vd->vdev_isspare = B_TRUE;
1096 	mutex_exit(&spa_spare_lock);
1097 }
1098 
1099 void
1100 spa_spare_remove(vdev_t *vd)
1101 {
1102 	mutex_enter(&spa_spare_lock);
1103 	ASSERT(vd->vdev_isspare);
1104 	spa_aux_remove(vd, &spa_spare_avl);
1105 	vd->vdev_isspare = B_FALSE;
1106 	mutex_exit(&spa_spare_lock);
1107 }
1108 
1109 boolean_t
1110 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1111 {
1112 	boolean_t found;
1113 
1114 	mutex_enter(&spa_spare_lock);
1115 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1116 	mutex_exit(&spa_spare_lock);
1117 
1118 	return (found);
1119 }
1120 
1121 void
1122 spa_spare_activate(vdev_t *vd)
1123 {
1124 	mutex_enter(&spa_spare_lock);
1125 	ASSERT(vd->vdev_isspare);
1126 	spa_aux_activate(vd, &spa_spare_avl);
1127 	mutex_exit(&spa_spare_lock);
1128 }
1129 
1130 /*
1131  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1132  * Cache devices currently only support one pool per cache device, and so
1133  * for these devices the aux reference count is currently unused beyond 1.
1134  */
1135 
1136 static int
1137 spa_l2cache_compare(const void *a, const void *b)
1138 {
1139 	return (spa_aux_compare(a, b));
1140 }
1141 
1142 void
1143 spa_l2cache_add(vdev_t *vd)
1144 {
1145 	mutex_enter(&spa_l2cache_lock);
1146 	ASSERT(!vd->vdev_isl2cache);
1147 	spa_aux_add(vd, &spa_l2cache_avl);
1148 	vd->vdev_isl2cache = B_TRUE;
1149 	mutex_exit(&spa_l2cache_lock);
1150 }
1151 
1152 void
1153 spa_l2cache_remove(vdev_t *vd)
1154 {
1155 	mutex_enter(&spa_l2cache_lock);
1156 	ASSERT(vd->vdev_isl2cache);
1157 	spa_aux_remove(vd, &spa_l2cache_avl);
1158 	vd->vdev_isl2cache = B_FALSE;
1159 	mutex_exit(&spa_l2cache_lock);
1160 }
1161 
1162 boolean_t
1163 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1164 {
1165 	boolean_t found;
1166 
1167 	mutex_enter(&spa_l2cache_lock);
1168 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1169 	mutex_exit(&spa_l2cache_lock);
1170 
1171 	return (found);
1172 }
1173 
1174 void
1175 spa_l2cache_activate(vdev_t *vd)
1176 {
1177 	mutex_enter(&spa_l2cache_lock);
1178 	ASSERT(vd->vdev_isl2cache);
1179 	spa_aux_activate(vd, &spa_l2cache_avl);
1180 	mutex_exit(&spa_l2cache_lock);
1181 }
1182 
1183 /*
1184  * ==========================================================================
1185  * SPA vdev locking
1186  * ==========================================================================
1187  */
1188 
1189 /*
1190  * Lock the given spa_t for the purpose of adding or removing a vdev.
1191  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1192  * It returns the next transaction group for the spa_t.
1193  */
1194 uint64_t
1195 spa_vdev_enter(spa_t *spa)
1196 {
1197 	mutex_enter(&spa->spa_vdev_top_lock);
1198 	mutex_enter(&spa_namespace_lock);
1199 
1200 	vdev_autotrim_stop_all(spa);
1201 
1202 	return (spa_vdev_config_enter(spa));
1203 }
1204 
1205 /*
1206  * The same as spa_vdev_enter() above but additionally takes the guid of
1207  * the vdev being detached.  When there is a rebuild in process it will be
1208  * suspended while the vdev tree is modified then resumed by spa_vdev_exit().
1209  * The rebuild is canceled if only a single child remains after the detach.
1210  */
1211 uint64_t
1212 spa_vdev_detach_enter(spa_t *spa, uint64_t guid)
1213 {
1214 	mutex_enter(&spa->spa_vdev_top_lock);
1215 	mutex_enter(&spa_namespace_lock);
1216 
1217 	vdev_autotrim_stop_all(spa);
1218 
1219 	if (guid != 0) {
1220 		vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1221 		if (vd) {
1222 			vdev_rebuild_stop_wait(vd->vdev_top);
1223 		}
1224 	}
1225 
1226 	return (spa_vdev_config_enter(spa));
1227 }
1228 
1229 /*
1230  * Internal implementation for spa_vdev_enter().  Used when a vdev
1231  * operation requires multiple syncs (i.e. removing a device) while
1232  * keeping the spa_namespace_lock held.
1233  */
1234 uint64_t
1235 spa_vdev_config_enter(spa_t *spa)
1236 {
1237 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1238 
1239 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1240 
1241 	return (spa_last_synced_txg(spa) + 1);
1242 }
1243 
1244 /*
1245  * Used in combination with spa_vdev_config_enter() to allow the syncing
1246  * of multiple transactions without releasing the spa_namespace_lock.
1247  */
1248 void
1249 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error,
1250     const char *tag)
1251 {
1252 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1253 
1254 	int config_changed = B_FALSE;
1255 
1256 	ASSERT(txg > spa_last_synced_txg(spa));
1257 
1258 	spa->spa_pending_vdev = NULL;
1259 
1260 	/*
1261 	 * Reassess the DTLs.
1262 	 */
1263 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE);
1264 
1265 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1266 		config_changed = B_TRUE;
1267 		spa->spa_config_generation++;
1268 	}
1269 
1270 	/*
1271 	 * Verify the metaslab classes.
1272 	 */
1273 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1274 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1275 	ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0);
1276 	ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
1277 	ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
1278 
1279 	spa_config_exit(spa, SCL_ALL, spa);
1280 
1281 	/*
1282 	 * Panic the system if the specified tag requires it.  This
1283 	 * is useful for ensuring that configurations are updated
1284 	 * transactionally.
1285 	 */
1286 	if (zio_injection_enabled)
1287 		zio_handle_panic_injection(spa, tag, 0);
1288 
1289 	/*
1290 	 * Note: this txg_wait_synced() is important because it ensures
1291 	 * that there won't be more than one config change per txg.
1292 	 * This allows us to use the txg as the generation number.
1293 	 */
1294 	if (error == 0)
1295 		txg_wait_synced(spa->spa_dsl_pool, txg);
1296 
1297 	if (vd != NULL) {
1298 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1299 		if (vd->vdev_ops->vdev_op_leaf) {
1300 			mutex_enter(&vd->vdev_initialize_lock);
1301 			vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1302 			    NULL);
1303 			mutex_exit(&vd->vdev_initialize_lock);
1304 
1305 			mutex_enter(&vd->vdev_trim_lock);
1306 			vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1307 			mutex_exit(&vd->vdev_trim_lock);
1308 		}
1309 
1310 		/*
1311 		 * The vdev may be both a leaf and top-level device.
1312 		 */
1313 		vdev_autotrim_stop_wait(vd);
1314 
1315 		spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
1316 		vdev_free(vd);
1317 		spa_config_exit(spa, SCL_STATE_ALL, spa);
1318 	}
1319 
1320 	/*
1321 	 * If the config changed, update the config cache.
1322 	 */
1323 	if (config_changed)
1324 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1325 }
1326 
1327 /*
1328  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1329  * locking of spa_vdev_enter(), we also want make sure the transactions have
1330  * synced to disk, and then update the global configuration cache with the new
1331  * information.
1332  */
1333 int
1334 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1335 {
1336 	vdev_autotrim_restart(spa);
1337 	vdev_rebuild_restart(spa);
1338 
1339 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1340 	mutex_exit(&spa_namespace_lock);
1341 	mutex_exit(&spa->spa_vdev_top_lock);
1342 
1343 	return (error);
1344 }
1345 
1346 /*
1347  * Lock the given spa_t for the purpose of changing vdev state.
1348  */
1349 void
1350 spa_vdev_state_enter(spa_t *spa, int oplocks)
1351 {
1352 	int locks = SCL_STATE_ALL | oplocks;
1353 
1354 	/*
1355 	 * Root pools may need to read of the underlying devfs filesystem
1356 	 * when opening up a vdev.  Unfortunately if we're holding the
1357 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1358 	 * the read from the root filesystem.  Instead we "prefetch"
1359 	 * the associated vnodes that we need prior to opening the
1360 	 * underlying devices and cache them so that we can prevent
1361 	 * any I/O when we are doing the actual open.
1362 	 */
1363 	if (spa_is_root(spa)) {
1364 		int low = locks & ~(SCL_ZIO - 1);
1365 		int high = locks & ~low;
1366 
1367 		spa_config_enter(spa, high, spa, RW_WRITER);
1368 		vdev_hold(spa->spa_root_vdev);
1369 		spa_config_enter(spa, low, spa, RW_WRITER);
1370 	} else {
1371 		spa_config_enter(spa, locks, spa, RW_WRITER);
1372 	}
1373 	spa->spa_vdev_locks = locks;
1374 }
1375 
1376 int
1377 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1378 {
1379 	boolean_t config_changed = B_FALSE;
1380 	vdev_t *vdev_top;
1381 
1382 	if (vd == NULL || vd == spa->spa_root_vdev) {
1383 		vdev_top = spa->spa_root_vdev;
1384 	} else {
1385 		vdev_top = vd->vdev_top;
1386 	}
1387 
1388 	if (vd != NULL || error == 0)
1389 		vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE);
1390 
1391 	if (vd != NULL) {
1392 		if (vd != spa->spa_root_vdev)
1393 			vdev_state_dirty(vdev_top);
1394 
1395 		config_changed = B_TRUE;
1396 		spa->spa_config_generation++;
1397 	}
1398 
1399 	if (spa_is_root(spa))
1400 		vdev_rele(spa->spa_root_vdev);
1401 
1402 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1403 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1404 
1405 	/*
1406 	 * If anything changed, wait for it to sync.  This ensures that,
1407 	 * from the system administrator's perspective, zpool(8) commands
1408 	 * are synchronous.  This is important for things like zpool offline:
1409 	 * when the command completes, you expect no further I/O from ZFS.
1410 	 */
1411 	if (vd != NULL)
1412 		txg_wait_synced(spa->spa_dsl_pool, 0);
1413 
1414 	/*
1415 	 * If the config changed, update the config cache.
1416 	 */
1417 	if (config_changed) {
1418 		mutex_enter(&spa_namespace_lock);
1419 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
1420 		mutex_exit(&spa_namespace_lock);
1421 	}
1422 
1423 	return (error);
1424 }
1425 
1426 /*
1427  * ==========================================================================
1428  * Miscellaneous functions
1429  * ==========================================================================
1430  */
1431 
1432 void
1433 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1434 {
1435 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1436 		fnvlist_add_boolean(spa->spa_label_features, feature);
1437 		/*
1438 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1439 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1440 		 * Thankfully, in this case we don't need to dirty the config
1441 		 * because it will be written out anyway when we finish
1442 		 * creating the pool.
1443 		 */
1444 		if (tx->tx_txg != TXG_INITIAL)
1445 			vdev_config_dirty(spa->spa_root_vdev);
1446 	}
1447 }
1448 
1449 void
1450 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1451 {
1452 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1453 		vdev_config_dirty(spa->spa_root_vdev);
1454 }
1455 
1456 /*
1457  * Return the spa_t associated with given pool_guid, if it exists.  If
1458  * device_guid is non-zero, determine whether the pool exists *and* contains
1459  * a device with the specified device_guid.
1460  */
1461 spa_t *
1462 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1463 {
1464 	spa_t *spa;
1465 	avl_tree_t *t = &spa_namespace_avl;
1466 
1467 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1468 
1469 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1470 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1471 			continue;
1472 		if (spa->spa_root_vdev == NULL)
1473 			continue;
1474 		if (spa_guid(spa) == pool_guid) {
1475 			if (device_guid == 0)
1476 				break;
1477 
1478 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1479 			    device_guid) != NULL)
1480 				break;
1481 
1482 			/*
1483 			 * Check any devices we may be in the process of adding.
1484 			 */
1485 			if (spa->spa_pending_vdev) {
1486 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1487 				    device_guid) != NULL)
1488 					break;
1489 			}
1490 		}
1491 	}
1492 
1493 	return (spa);
1494 }
1495 
1496 /*
1497  * Determine whether a pool with the given pool_guid exists.
1498  */
1499 boolean_t
1500 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1501 {
1502 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1503 }
1504 
1505 char *
1506 spa_strdup(const char *s)
1507 {
1508 	size_t len;
1509 	char *new;
1510 
1511 	len = strlen(s);
1512 	new = kmem_alloc(len + 1, KM_SLEEP);
1513 	memcpy(new, s, len + 1);
1514 
1515 	return (new);
1516 }
1517 
1518 void
1519 spa_strfree(char *s)
1520 {
1521 	kmem_free(s, strlen(s) + 1);
1522 }
1523 
1524 uint64_t
1525 spa_generate_guid(spa_t *spa)
1526 {
1527 	uint64_t guid;
1528 
1529 	if (spa != NULL) {
1530 		do {
1531 			(void) random_get_pseudo_bytes((void *)&guid,
1532 			    sizeof (guid));
1533 		} while (guid == 0 || spa_guid_exists(spa_guid(spa), guid));
1534 	} else {
1535 		do {
1536 			(void) random_get_pseudo_bytes((void *)&guid,
1537 			    sizeof (guid));
1538 		} while (guid == 0 || spa_guid_exists(guid, 0));
1539 	}
1540 
1541 	return (guid);
1542 }
1543 
1544 void
1545 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1546 {
1547 	char type[256];
1548 	const char *checksum = NULL;
1549 	const char *compress = NULL;
1550 
1551 	if (bp != NULL) {
1552 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1553 			dmu_object_byteswap_t bswap =
1554 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1555 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1556 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1557 			    "metadata" : "data",
1558 			    dmu_ot_byteswap[bswap].ob_name);
1559 		} else {
1560 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1561 			    sizeof (type));
1562 		}
1563 		if (!BP_IS_EMBEDDED(bp)) {
1564 			checksum =
1565 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1566 		}
1567 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1568 	}
1569 
1570 	SNPRINTF_BLKPTR(kmem_scnprintf, ' ', buf, buflen, bp, type, checksum,
1571 	    compress);
1572 }
1573 
1574 void
1575 spa_freeze(spa_t *spa)
1576 {
1577 	uint64_t freeze_txg = 0;
1578 
1579 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1580 	if (spa->spa_freeze_txg == UINT64_MAX) {
1581 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1582 		spa->spa_freeze_txg = freeze_txg;
1583 	}
1584 	spa_config_exit(spa, SCL_ALL, FTAG);
1585 	if (freeze_txg != 0)
1586 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1587 }
1588 
1589 void
1590 zfs_panic_recover(const char *fmt, ...)
1591 {
1592 	va_list adx;
1593 
1594 	va_start(adx, fmt);
1595 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1596 	va_end(adx);
1597 }
1598 
1599 /*
1600  * This is a stripped-down version of strtoull, suitable only for converting
1601  * lowercase hexadecimal numbers that don't overflow.
1602  */
1603 uint64_t
1604 zfs_strtonum(const char *str, char **nptr)
1605 {
1606 	uint64_t val = 0;
1607 	char c;
1608 	int digit;
1609 
1610 	while ((c = *str) != '\0') {
1611 		if (c >= '0' && c <= '9')
1612 			digit = c - '0';
1613 		else if (c >= 'a' && c <= 'f')
1614 			digit = 10 + c - 'a';
1615 		else
1616 			break;
1617 
1618 		val *= 16;
1619 		val += digit;
1620 
1621 		str++;
1622 	}
1623 
1624 	if (nptr)
1625 		*nptr = (char *)str;
1626 
1627 	return (val);
1628 }
1629 
1630 void
1631 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1632 {
1633 	/*
1634 	 * We bump the feature refcount for each special vdev added to the pool
1635 	 */
1636 	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1637 	spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1638 }
1639 
1640 /*
1641  * ==========================================================================
1642  * Accessor functions
1643  * ==========================================================================
1644  */
1645 
1646 boolean_t
1647 spa_shutting_down(spa_t *spa)
1648 {
1649 	return (spa->spa_async_suspended);
1650 }
1651 
1652 dsl_pool_t *
1653 spa_get_dsl(spa_t *spa)
1654 {
1655 	return (spa->spa_dsl_pool);
1656 }
1657 
1658 boolean_t
1659 spa_is_initializing(spa_t *spa)
1660 {
1661 	return (spa->spa_is_initializing);
1662 }
1663 
1664 boolean_t
1665 spa_indirect_vdevs_loaded(spa_t *spa)
1666 {
1667 	return (spa->spa_indirect_vdevs_loaded);
1668 }
1669 
1670 blkptr_t *
1671 spa_get_rootblkptr(spa_t *spa)
1672 {
1673 	return (&spa->spa_ubsync.ub_rootbp);
1674 }
1675 
1676 void
1677 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1678 {
1679 	spa->spa_uberblock.ub_rootbp = *bp;
1680 }
1681 
1682 void
1683 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1684 {
1685 	if (spa->spa_root == NULL)
1686 		buf[0] = '\0';
1687 	else
1688 		(void) strlcpy(buf, spa->spa_root, buflen);
1689 }
1690 
1691 uint32_t
1692 spa_sync_pass(spa_t *spa)
1693 {
1694 	return (spa->spa_sync_pass);
1695 }
1696 
1697 char *
1698 spa_name(spa_t *spa)
1699 {
1700 	return (spa->spa_name);
1701 }
1702 
1703 uint64_t
1704 spa_guid(spa_t *spa)
1705 {
1706 	dsl_pool_t *dp = spa_get_dsl(spa);
1707 	uint64_t guid;
1708 
1709 	/*
1710 	 * If we fail to parse the config during spa_load(), we can go through
1711 	 * the error path (which posts an ereport) and end up here with no root
1712 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1713 	 * this case.
1714 	 */
1715 	if (spa->spa_root_vdev == NULL)
1716 		return (spa->spa_config_guid);
1717 
1718 	guid = spa->spa_last_synced_guid != 0 ?
1719 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1720 
1721 	/*
1722 	 * Return the most recently synced out guid unless we're
1723 	 * in syncing context.
1724 	 */
1725 	if (dp && dsl_pool_sync_context(dp))
1726 		return (spa->spa_root_vdev->vdev_guid);
1727 	else
1728 		return (guid);
1729 }
1730 
1731 uint64_t
1732 spa_load_guid(spa_t *spa)
1733 {
1734 	/*
1735 	 * This is a GUID that exists solely as a reference for the
1736 	 * purposes of the arc.  It is generated at load time, and
1737 	 * is never written to persistent storage.
1738 	 */
1739 	return (spa->spa_load_guid);
1740 }
1741 
1742 uint64_t
1743 spa_last_synced_txg(spa_t *spa)
1744 {
1745 	return (spa->spa_ubsync.ub_txg);
1746 }
1747 
1748 uint64_t
1749 spa_first_txg(spa_t *spa)
1750 {
1751 	return (spa->spa_first_txg);
1752 }
1753 
1754 uint64_t
1755 spa_syncing_txg(spa_t *spa)
1756 {
1757 	return (spa->spa_syncing_txg);
1758 }
1759 
1760 /*
1761  * Return the last txg where data can be dirtied. The final txgs
1762  * will be used to just clear out any deferred frees that remain.
1763  */
1764 uint64_t
1765 spa_final_dirty_txg(spa_t *spa)
1766 {
1767 	return (spa->spa_final_txg - TXG_DEFER_SIZE);
1768 }
1769 
1770 pool_state_t
1771 spa_state(spa_t *spa)
1772 {
1773 	return (spa->spa_state);
1774 }
1775 
1776 spa_load_state_t
1777 spa_load_state(spa_t *spa)
1778 {
1779 	return (spa->spa_load_state);
1780 }
1781 
1782 uint64_t
1783 spa_freeze_txg(spa_t *spa)
1784 {
1785 	return (spa->spa_freeze_txg);
1786 }
1787 
1788 /*
1789  * Return the inflated asize for a logical write in bytes. This is used by the
1790  * DMU to calculate the space a logical write will require on disk.
1791  * If lsize is smaller than the largest physical block size allocatable on this
1792  * pool we use its value instead, since the write will end up using the whole
1793  * block anyway.
1794  */
1795 uint64_t
1796 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1797 {
1798 	if (lsize == 0)
1799 		return (0);	/* No inflation needed */
1800 	return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
1801 }
1802 
1803 /*
1804  * Return the amount of slop space in bytes.  It is typically 1/32 of the pool
1805  * (3.2%), minus the embedded log space.  On very small pools, it may be
1806  * slightly larger than this.  On very large pools, it will be capped to
1807  * the value of spa_max_slop.  The embedded log space is not included in
1808  * spa_dspace.  By subtracting it, the usable space (per "zfs list") is a
1809  * constant 97% of the total space, regardless of metaslab size (assuming the
1810  * default spa_slop_shift=5 and a non-tiny pool).
1811  *
1812  * See the comment above spa_slop_shift for more details.
1813  */
1814 uint64_t
1815 spa_get_slop_space(spa_t *spa)
1816 {
1817 	uint64_t space = 0;
1818 	uint64_t slop = 0;
1819 
1820 	/*
1821 	 * Make sure spa_dedup_dspace has been set.
1822 	 */
1823 	if (spa->spa_dedup_dspace == ~0ULL)
1824 		spa_update_dspace(spa);
1825 
1826 	/*
1827 	 * spa_get_dspace() includes the space only logically "used" by
1828 	 * deduplicated data, so since it's not useful to reserve more
1829 	 * space with more deduplicated data, we subtract that out here.
1830 	 */
1831 	space = spa_get_dspace(spa) - spa->spa_dedup_dspace;
1832 	slop = MIN(space >> spa_slop_shift, spa_max_slop);
1833 
1834 	/*
1835 	 * Subtract the embedded log space, but no more than half the (3.2%)
1836 	 * unusable space.  Note, the "no more than half" is only relevant if
1837 	 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by
1838 	 * default.
1839 	 */
1840 	uint64_t embedded_log =
1841 	    metaslab_class_get_dspace(spa_embedded_log_class(spa));
1842 	slop -= MIN(embedded_log, slop >> 1);
1843 
1844 	/*
1845 	 * Slop space should be at least spa_min_slop, but no more than half
1846 	 * the entire pool.
1847 	 */
1848 	slop = MAX(slop, MIN(space >> 1, spa_min_slop));
1849 	return (slop);
1850 }
1851 
1852 uint64_t
1853 spa_get_dspace(spa_t *spa)
1854 {
1855 	return (spa->spa_dspace);
1856 }
1857 
1858 uint64_t
1859 spa_get_checkpoint_space(spa_t *spa)
1860 {
1861 	return (spa->spa_checkpoint_info.sci_dspace);
1862 }
1863 
1864 void
1865 spa_update_dspace(spa_t *spa)
1866 {
1867 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1868 	    ddt_get_dedup_dspace(spa) + brt_get_dspace(spa);
1869 	if (spa->spa_nonallocating_dspace > 0) {
1870 		/*
1871 		 * Subtract the space provided by all non-allocating vdevs that
1872 		 * contribute to dspace.  If a file is overwritten, its old
1873 		 * blocks are freed and new blocks are allocated.  If there are
1874 		 * no snapshots of the file, the available space should remain
1875 		 * the same.  The old blocks could be freed from the
1876 		 * non-allocating vdev, but the new blocks must be allocated on
1877 		 * other (allocating) vdevs.  By reserving the entire size of
1878 		 * the non-allocating vdevs (including allocated space), we
1879 		 * ensure that there will be enough space on the allocating
1880 		 * vdevs for this file overwrite to succeed.
1881 		 *
1882 		 * Note that the DMU/DSL doesn't actually know or care
1883 		 * how much space is allocated (it does its own tracking
1884 		 * of how much space has been logically used).  So it
1885 		 * doesn't matter that the data we are moving may be
1886 		 * allocated twice (on the old device and the new device).
1887 		 */
1888 		ASSERT3U(spa->spa_dspace, >=, spa->spa_nonallocating_dspace);
1889 		spa->spa_dspace -= spa->spa_nonallocating_dspace;
1890 	}
1891 }
1892 
1893 /*
1894  * Return the failure mode that has been set to this pool. The default
1895  * behavior will be to block all I/Os when a complete failure occurs.
1896  */
1897 uint64_t
1898 spa_get_failmode(spa_t *spa)
1899 {
1900 	return (spa->spa_failmode);
1901 }
1902 
1903 boolean_t
1904 spa_suspended(spa_t *spa)
1905 {
1906 	return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1907 }
1908 
1909 uint64_t
1910 spa_version(spa_t *spa)
1911 {
1912 	return (spa->spa_ubsync.ub_version);
1913 }
1914 
1915 boolean_t
1916 spa_deflate(spa_t *spa)
1917 {
1918 	return (spa->spa_deflate);
1919 }
1920 
1921 metaslab_class_t *
1922 spa_normal_class(spa_t *spa)
1923 {
1924 	return (spa->spa_normal_class);
1925 }
1926 
1927 metaslab_class_t *
1928 spa_log_class(spa_t *spa)
1929 {
1930 	return (spa->spa_log_class);
1931 }
1932 
1933 metaslab_class_t *
1934 spa_embedded_log_class(spa_t *spa)
1935 {
1936 	return (spa->spa_embedded_log_class);
1937 }
1938 
1939 metaslab_class_t *
1940 spa_special_class(spa_t *spa)
1941 {
1942 	return (spa->spa_special_class);
1943 }
1944 
1945 metaslab_class_t *
1946 spa_dedup_class(spa_t *spa)
1947 {
1948 	return (spa->spa_dedup_class);
1949 }
1950 
1951 /*
1952  * Locate an appropriate allocation class
1953  */
1954 metaslab_class_t *
1955 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
1956     uint_t level, uint_t special_smallblk)
1957 {
1958 	/*
1959 	 * ZIL allocations determine their class in zio_alloc_zil().
1960 	 */
1961 	ASSERT(objtype != DMU_OT_INTENT_LOG);
1962 
1963 	boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
1964 
1965 	if (DMU_OT_IS_DDT(objtype)) {
1966 		if (spa->spa_dedup_class->mc_groups != 0)
1967 			return (spa_dedup_class(spa));
1968 		else if (has_special_class && zfs_ddt_data_is_special)
1969 			return (spa_special_class(spa));
1970 		else
1971 			return (spa_normal_class(spa));
1972 	}
1973 
1974 	/* Indirect blocks for user data can land in special if allowed */
1975 	if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
1976 		if (has_special_class && zfs_user_indirect_is_special)
1977 			return (spa_special_class(spa));
1978 		else
1979 			return (spa_normal_class(spa));
1980 	}
1981 
1982 	if (DMU_OT_IS_METADATA(objtype) || level > 0) {
1983 		if (has_special_class)
1984 			return (spa_special_class(spa));
1985 		else
1986 			return (spa_normal_class(spa));
1987 	}
1988 
1989 	/*
1990 	 * Allow small file blocks in special class in some cases (like
1991 	 * for the dRAID vdev feature). But always leave a reserve of
1992 	 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
1993 	 */
1994 	if (DMU_OT_IS_FILE(objtype) &&
1995 	    has_special_class && size <= special_smallblk) {
1996 		metaslab_class_t *special = spa_special_class(spa);
1997 		uint64_t alloc = metaslab_class_get_alloc(special);
1998 		uint64_t space = metaslab_class_get_space(special);
1999 		uint64_t limit =
2000 		    (space * (100 - zfs_special_class_metadata_reserve_pct))
2001 		    / 100;
2002 
2003 		if (alloc < limit)
2004 			return (special);
2005 	}
2006 
2007 	return (spa_normal_class(spa));
2008 }
2009 
2010 void
2011 spa_evicting_os_register(spa_t *spa, objset_t *os)
2012 {
2013 	mutex_enter(&spa->spa_evicting_os_lock);
2014 	list_insert_head(&spa->spa_evicting_os_list, os);
2015 	mutex_exit(&spa->spa_evicting_os_lock);
2016 }
2017 
2018 void
2019 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
2020 {
2021 	mutex_enter(&spa->spa_evicting_os_lock);
2022 	list_remove(&spa->spa_evicting_os_list, os);
2023 	cv_broadcast(&spa->spa_evicting_os_cv);
2024 	mutex_exit(&spa->spa_evicting_os_lock);
2025 }
2026 
2027 void
2028 spa_evicting_os_wait(spa_t *spa)
2029 {
2030 	mutex_enter(&spa->spa_evicting_os_lock);
2031 	while (!list_is_empty(&spa->spa_evicting_os_list))
2032 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
2033 	mutex_exit(&spa->spa_evicting_os_lock);
2034 
2035 	dmu_buf_user_evict_wait();
2036 }
2037 
2038 int
2039 spa_max_replication(spa_t *spa)
2040 {
2041 	/*
2042 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
2043 	 * handle BPs with more than one DVA allocated.  Set our max
2044 	 * replication level accordingly.
2045 	 */
2046 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
2047 		return (1);
2048 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
2049 }
2050 
2051 int
2052 spa_prev_software_version(spa_t *spa)
2053 {
2054 	return (spa->spa_prev_software_version);
2055 }
2056 
2057 uint64_t
2058 spa_deadman_synctime(spa_t *spa)
2059 {
2060 	return (spa->spa_deadman_synctime);
2061 }
2062 
2063 spa_autotrim_t
2064 spa_get_autotrim(spa_t *spa)
2065 {
2066 	return (spa->spa_autotrim);
2067 }
2068 
2069 uint64_t
2070 spa_deadman_ziotime(spa_t *spa)
2071 {
2072 	return (spa->spa_deadman_ziotime);
2073 }
2074 
2075 uint64_t
2076 spa_get_deadman_failmode(spa_t *spa)
2077 {
2078 	return (spa->spa_deadman_failmode);
2079 }
2080 
2081 void
2082 spa_set_deadman_failmode(spa_t *spa, const char *failmode)
2083 {
2084 	if (strcmp(failmode, "wait") == 0)
2085 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2086 	else if (strcmp(failmode, "continue") == 0)
2087 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
2088 	else if (strcmp(failmode, "panic") == 0)
2089 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
2090 	else
2091 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2092 }
2093 
2094 void
2095 spa_set_deadman_ziotime(hrtime_t ns)
2096 {
2097 	spa_t *spa = NULL;
2098 
2099 	if (spa_mode_global != SPA_MODE_UNINIT) {
2100 		mutex_enter(&spa_namespace_lock);
2101 		while ((spa = spa_next(spa)) != NULL)
2102 			spa->spa_deadman_ziotime = ns;
2103 		mutex_exit(&spa_namespace_lock);
2104 	}
2105 }
2106 
2107 void
2108 spa_set_deadman_synctime(hrtime_t ns)
2109 {
2110 	spa_t *spa = NULL;
2111 
2112 	if (spa_mode_global != SPA_MODE_UNINIT) {
2113 		mutex_enter(&spa_namespace_lock);
2114 		while ((spa = spa_next(spa)) != NULL)
2115 			spa->spa_deadman_synctime = ns;
2116 		mutex_exit(&spa_namespace_lock);
2117 	}
2118 }
2119 
2120 uint64_t
2121 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
2122 {
2123 	uint64_t asize = DVA_GET_ASIZE(dva);
2124 	uint64_t dsize = asize;
2125 
2126 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2127 
2128 	if (asize != 0 && spa->spa_deflate) {
2129 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2130 		if (vd != NULL)
2131 			dsize = (asize >> SPA_MINBLOCKSHIFT) *
2132 			    vd->vdev_deflate_ratio;
2133 	}
2134 
2135 	return (dsize);
2136 }
2137 
2138 uint64_t
2139 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
2140 {
2141 	uint64_t dsize = 0;
2142 
2143 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2144 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2145 
2146 	return (dsize);
2147 }
2148 
2149 uint64_t
2150 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
2151 {
2152 	uint64_t dsize = 0;
2153 
2154 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2155 
2156 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2157 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2158 
2159 	spa_config_exit(spa, SCL_VDEV, FTAG);
2160 
2161 	return (dsize);
2162 }
2163 
2164 uint64_t
2165 spa_dirty_data(spa_t *spa)
2166 {
2167 	return (spa->spa_dsl_pool->dp_dirty_total);
2168 }
2169 
2170 /*
2171  * ==========================================================================
2172  * SPA Import Progress Routines
2173  * ==========================================================================
2174  */
2175 
2176 typedef struct spa_import_progress {
2177 	uint64_t		pool_guid;	/* unique id for updates */
2178 	char			*pool_name;
2179 	spa_load_state_t	spa_load_state;
2180 	uint64_t		mmp_sec_remaining;	/* MMP activity check */
2181 	uint64_t		spa_load_max_txg;	/* rewind txg */
2182 	procfs_list_node_t	smh_node;
2183 } spa_import_progress_t;
2184 
2185 spa_history_list_t *spa_import_progress_list = NULL;
2186 
2187 static int
2188 spa_import_progress_show_header(struct seq_file *f)
2189 {
2190 	seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid",
2191 	    "load_state", "multihost_secs", "max_txg",
2192 	    "pool_name");
2193 	return (0);
2194 }
2195 
2196 static int
2197 spa_import_progress_show(struct seq_file *f, void *data)
2198 {
2199 	spa_import_progress_t *sip = (spa_import_progress_t *)data;
2200 
2201 	seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n",
2202 	    (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state,
2203 	    (u_longlong_t)sip->mmp_sec_remaining,
2204 	    (u_longlong_t)sip->spa_load_max_txg,
2205 	    (sip->pool_name ? sip->pool_name : "-"));
2206 
2207 	return (0);
2208 }
2209 
2210 /* Remove oldest elements from list until there are no more than 'size' left */
2211 static void
2212 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size)
2213 {
2214 	spa_import_progress_t *sip;
2215 	while (shl->size > size) {
2216 		sip = list_remove_head(&shl->procfs_list.pl_list);
2217 		if (sip->pool_name)
2218 			spa_strfree(sip->pool_name);
2219 		kmem_free(sip, sizeof (spa_import_progress_t));
2220 		shl->size--;
2221 	}
2222 
2223 	IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list));
2224 }
2225 
2226 static void
2227 spa_import_progress_init(void)
2228 {
2229 	spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t),
2230 	    KM_SLEEP);
2231 
2232 	spa_import_progress_list->size = 0;
2233 
2234 	spa_import_progress_list->procfs_list.pl_private =
2235 	    spa_import_progress_list;
2236 
2237 	procfs_list_install("zfs",
2238 	    NULL,
2239 	    "import_progress",
2240 	    0644,
2241 	    &spa_import_progress_list->procfs_list,
2242 	    spa_import_progress_show,
2243 	    spa_import_progress_show_header,
2244 	    NULL,
2245 	    offsetof(spa_import_progress_t, smh_node));
2246 }
2247 
2248 static void
2249 spa_import_progress_destroy(void)
2250 {
2251 	spa_history_list_t *shl = spa_import_progress_list;
2252 	procfs_list_uninstall(&shl->procfs_list);
2253 	spa_import_progress_truncate(shl, 0);
2254 	procfs_list_destroy(&shl->procfs_list);
2255 	kmem_free(shl, sizeof (spa_history_list_t));
2256 }
2257 
2258 int
2259 spa_import_progress_set_state(uint64_t pool_guid,
2260     spa_load_state_t load_state)
2261 {
2262 	spa_history_list_t *shl = spa_import_progress_list;
2263 	spa_import_progress_t *sip;
2264 	int error = ENOENT;
2265 
2266 	if (shl->size == 0)
2267 		return (0);
2268 
2269 	mutex_enter(&shl->procfs_list.pl_lock);
2270 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2271 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2272 		if (sip->pool_guid == pool_guid) {
2273 			sip->spa_load_state = load_state;
2274 			error = 0;
2275 			break;
2276 		}
2277 	}
2278 	mutex_exit(&shl->procfs_list.pl_lock);
2279 
2280 	return (error);
2281 }
2282 
2283 int
2284 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg)
2285 {
2286 	spa_history_list_t *shl = spa_import_progress_list;
2287 	spa_import_progress_t *sip;
2288 	int error = ENOENT;
2289 
2290 	if (shl->size == 0)
2291 		return (0);
2292 
2293 	mutex_enter(&shl->procfs_list.pl_lock);
2294 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2295 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2296 		if (sip->pool_guid == pool_guid) {
2297 			sip->spa_load_max_txg = load_max_txg;
2298 			error = 0;
2299 			break;
2300 		}
2301 	}
2302 	mutex_exit(&shl->procfs_list.pl_lock);
2303 
2304 	return (error);
2305 }
2306 
2307 int
2308 spa_import_progress_set_mmp_check(uint64_t pool_guid,
2309     uint64_t mmp_sec_remaining)
2310 {
2311 	spa_history_list_t *shl = spa_import_progress_list;
2312 	spa_import_progress_t *sip;
2313 	int error = ENOENT;
2314 
2315 	if (shl->size == 0)
2316 		return (0);
2317 
2318 	mutex_enter(&shl->procfs_list.pl_lock);
2319 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2320 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2321 		if (sip->pool_guid == pool_guid) {
2322 			sip->mmp_sec_remaining = mmp_sec_remaining;
2323 			error = 0;
2324 			break;
2325 		}
2326 	}
2327 	mutex_exit(&shl->procfs_list.pl_lock);
2328 
2329 	return (error);
2330 }
2331 
2332 /*
2333  * A new import is in progress, add an entry.
2334  */
2335 void
2336 spa_import_progress_add(spa_t *spa)
2337 {
2338 	spa_history_list_t *shl = spa_import_progress_list;
2339 	spa_import_progress_t *sip;
2340 	const char *poolname = NULL;
2341 
2342 	sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP);
2343 	sip->pool_guid = spa_guid(spa);
2344 
2345 	(void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
2346 	    &poolname);
2347 	if (poolname == NULL)
2348 		poolname = spa_name(spa);
2349 	sip->pool_name = spa_strdup(poolname);
2350 	sip->spa_load_state = spa_load_state(spa);
2351 
2352 	mutex_enter(&shl->procfs_list.pl_lock);
2353 	procfs_list_add(&shl->procfs_list, sip);
2354 	shl->size++;
2355 	mutex_exit(&shl->procfs_list.pl_lock);
2356 }
2357 
2358 void
2359 spa_import_progress_remove(uint64_t pool_guid)
2360 {
2361 	spa_history_list_t *shl = spa_import_progress_list;
2362 	spa_import_progress_t *sip;
2363 
2364 	mutex_enter(&shl->procfs_list.pl_lock);
2365 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2366 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2367 		if (sip->pool_guid == pool_guid) {
2368 			if (sip->pool_name)
2369 				spa_strfree(sip->pool_name);
2370 			list_remove(&shl->procfs_list.pl_list, sip);
2371 			shl->size--;
2372 			kmem_free(sip, sizeof (spa_import_progress_t));
2373 			break;
2374 		}
2375 	}
2376 	mutex_exit(&shl->procfs_list.pl_lock);
2377 }
2378 
2379 /*
2380  * ==========================================================================
2381  * Initialization and Termination
2382  * ==========================================================================
2383  */
2384 
2385 static int
2386 spa_name_compare(const void *a1, const void *a2)
2387 {
2388 	const spa_t *s1 = a1;
2389 	const spa_t *s2 = a2;
2390 	int s;
2391 
2392 	s = strcmp(s1->spa_name, s2->spa_name);
2393 
2394 	return (TREE_ISIGN(s));
2395 }
2396 
2397 void
2398 spa_boot_init(void)
2399 {
2400 	spa_config_load();
2401 }
2402 
2403 void
2404 spa_init(spa_mode_t mode)
2405 {
2406 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2407 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2408 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2409 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2410 
2411 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2412 	    offsetof(spa_t, spa_avl));
2413 
2414 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2415 	    offsetof(spa_aux_t, aux_avl));
2416 
2417 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2418 	    offsetof(spa_aux_t, aux_avl));
2419 
2420 	spa_mode_global = mode;
2421 
2422 #ifndef _KERNEL
2423 	if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) {
2424 		struct sigaction sa;
2425 
2426 		sa.sa_flags = SA_SIGINFO;
2427 		sigemptyset(&sa.sa_mask);
2428 		sa.sa_sigaction = arc_buf_sigsegv;
2429 
2430 		if (sigaction(SIGSEGV, &sa, NULL) == -1) {
2431 			perror("could not enable watchpoints: "
2432 			    "sigaction(SIGSEGV, ...) = ");
2433 		} else {
2434 			arc_watch = B_TRUE;
2435 		}
2436 	}
2437 #endif
2438 
2439 	fm_init();
2440 	zfs_refcount_init();
2441 	unique_init();
2442 	zfs_btree_init();
2443 	metaslab_stat_init();
2444 	brt_init();
2445 	ddt_init();
2446 	zio_init();
2447 	dmu_init();
2448 	zil_init();
2449 	vdev_mirror_stat_init();
2450 	vdev_raidz_math_init();
2451 	vdev_file_init();
2452 	zfs_prop_init();
2453 	chksum_init();
2454 	zpool_prop_init();
2455 	zpool_feature_init();
2456 	spa_config_load();
2457 	vdev_prop_init();
2458 	l2arc_start();
2459 	scan_init();
2460 	qat_init();
2461 	spa_import_progress_init();
2462 }
2463 
2464 void
2465 spa_fini(void)
2466 {
2467 	l2arc_stop();
2468 
2469 	spa_evict_all();
2470 
2471 	vdev_file_fini();
2472 	vdev_mirror_stat_fini();
2473 	vdev_raidz_math_fini();
2474 	chksum_fini();
2475 	zil_fini();
2476 	dmu_fini();
2477 	zio_fini();
2478 	ddt_fini();
2479 	brt_fini();
2480 	metaslab_stat_fini();
2481 	zfs_btree_fini();
2482 	unique_fini();
2483 	zfs_refcount_fini();
2484 	fm_fini();
2485 	scan_fini();
2486 	qat_fini();
2487 	spa_import_progress_destroy();
2488 
2489 	avl_destroy(&spa_namespace_avl);
2490 	avl_destroy(&spa_spare_avl);
2491 	avl_destroy(&spa_l2cache_avl);
2492 
2493 	cv_destroy(&spa_namespace_cv);
2494 	mutex_destroy(&spa_namespace_lock);
2495 	mutex_destroy(&spa_spare_lock);
2496 	mutex_destroy(&spa_l2cache_lock);
2497 }
2498 
2499 /*
2500  * Return whether this pool has a dedicated slog device. No locking needed.
2501  * It's not a problem if the wrong answer is returned as it's only for
2502  * performance and not correctness.
2503  */
2504 boolean_t
2505 spa_has_slogs(spa_t *spa)
2506 {
2507 	return (spa->spa_log_class->mc_groups != 0);
2508 }
2509 
2510 spa_log_state_t
2511 spa_get_log_state(spa_t *spa)
2512 {
2513 	return (spa->spa_log_state);
2514 }
2515 
2516 void
2517 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2518 {
2519 	spa->spa_log_state = state;
2520 }
2521 
2522 boolean_t
2523 spa_is_root(spa_t *spa)
2524 {
2525 	return (spa->spa_is_root);
2526 }
2527 
2528 boolean_t
2529 spa_writeable(spa_t *spa)
2530 {
2531 	return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config);
2532 }
2533 
2534 /*
2535  * Returns true if there is a pending sync task in any of the current
2536  * syncing txg, the current quiescing txg, or the current open txg.
2537  */
2538 boolean_t
2539 spa_has_pending_synctask(spa_t *spa)
2540 {
2541 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2542 	    !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2543 }
2544 
2545 spa_mode_t
2546 spa_mode(spa_t *spa)
2547 {
2548 	return (spa->spa_mode);
2549 }
2550 
2551 uint64_t
2552 spa_bootfs(spa_t *spa)
2553 {
2554 	return (spa->spa_bootfs);
2555 }
2556 
2557 uint64_t
2558 spa_delegation(spa_t *spa)
2559 {
2560 	return (spa->spa_delegation);
2561 }
2562 
2563 objset_t *
2564 spa_meta_objset(spa_t *spa)
2565 {
2566 	return (spa->spa_meta_objset);
2567 }
2568 
2569 enum zio_checksum
2570 spa_dedup_checksum(spa_t *spa)
2571 {
2572 	return (spa->spa_dedup_checksum);
2573 }
2574 
2575 /*
2576  * Reset pool scan stat per scan pass (or reboot).
2577  */
2578 void
2579 spa_scan_stat_init(spa_t *spa)
2580 {
2581 	/* data not stored on disk */
2582 	spa->spa_scan_pass_start = gethrestime_sec();
2583 	if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2584 		spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2585 	else
2586 		spa->spa_scan_pass_scrub_pause = 0;
2587 
2588 	if (dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan))
2589 		spa->spa_scan_pass_errorscrub_pause = spa->spa_scan_pass_start;
2590 	else
2591 		spa->spa_scan_pass_errorscrub_pause = 0;
2592 
2593 	spa->spa_scan_pass_scrub_spent_paused = 0;
2594 	spa->spa_scan_pass_exam = 0;
2595 	spa->spa_scan_pass_issued = 0;
2596 
2597 	// error scrub stats
2598 	spa->spa_scan_pass_errorscrub_spent_paused = 0;
2599 }
2600 
2601 /*
2602  * Get scan stats for zpool status reports
2603  */
2604 int
2605 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2606 {
2607 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2608 
2609 	if (scn == NULL || (scn->scn_phys.scn_func == POOL_SCAN_NONE &&
2610 	    scn->errorscrub_phys.dep_func == POOL_SCAN_NONE))
2611 		return (SET_ERROR(ENOENT));
2612 
2613 	memset(ps, 0, sizeof (pool_scan_stat_t));
2614 
2615 	/* data stored on disk */
2616 	ps->pss_func = scn->scn_phys.scn_func;
2617 	ps->pss_state = scn->scn_phys.scn_state;
2618 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2619 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2620 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2621 	ps->pss_examined = scn->scn_phys.scn_examined;
2622 	ps->pss_skipped = scn->scn_phys.scn_skipped;
2623 	ps->pss_processed = scn->scn_phys.scn_processed;
2624 	ps->pss_errors = scn->scn_phys.scn_errors;
2625 
2626 	/* data not stored on disk */
2627 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2628 	ps->pss_pass_start = spa->spa_scan_pass_start;
2629 	ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2630 	ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2631 	ps->pss_pass_issued = spa->spa_scan_pass_issued;
2632 	ps->pss_issued =
2633 	    scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2634 
2635 	/* error scrub data stored on disk */
2636 	ps->pss_error_scrub_func = scn->errorscrub_phys.dep_func;
2637 	ps->pss_error_scrub_state = scn->errorscrub_phys.dep_state;
2638 	ps->pss_error_scrub_start = scn->errorscrub_phys.dep_start_time;
2639 	ps->pss_error_scrub_end = scn->errorscrub_phys.dep_end_time;
2640 	ps->pss_error_scrub_examined = scn->errorscrub_phys.dep_examined;
2641 	ps->pss_error_scrub_to_be_examined =
2642 	    scn->errorscrub_phys.dep_to_examine;
2643 
2644 	/* error scrub data not stored on disk */
2645 	ps->pss_pass_error_scrub_pause = spa->spa_scan_pass_errorscrub_pause;
2646 
2647 	return (0);
2648 }
2649 
2650 int
2651 spa_maxblocksize(spa_t *spa)
2652 {
2653 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2654 		return (SPA_MAXBLOCKSIZE);
2655 	else
2656 		return (SPA_OLD_MAXBLOCKSIZE);
2657 }
2658 
2659 
2660 /*
2661  * Returns the txg that the last device removal completed. No indirect mappings
2662  * have been added since this txg.
2663  */
2664 uint64_t
2665 spa_get_last_removal_txg(spa_t *spa)
2666 {
2667 	uint64_t vdevid;
2668 	uint64_t ret = -1ULL;
2669 
2670 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2671 	/*
2672 	 * sr_prev_indirect_vdev is only modified while holding all the
2673 	 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2674 	 * examining it.
2675 	 */
2676 	vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2677 
2678 	while (vdevid != -1ULL) {
2679 		vdev_t *vd = vdev_lookup_top(spa, vdevid);
2680 		vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2681 
2682 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2683 
2684 		/*
2685 		 * If the removal did not remap any data, we don't care.
2686 		 */
2687 		if (vdev_indirect_births_count(vib) != 0) {
2688 			ret = vdev_indirect_births_last_entry_txg(vib);
2689 			break;
2690 		}
2691 
2692 		vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2693 	}
2694 	spa_config_exit(spa, SCL_VDEV, FTAG);
2695 
2696 	IMPLY(ret != -1ULL,
2697 	    spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2698 
2699 	return (ret);
2700 }
2701 
2702 int
2703 spa_maxdnodesize(spa_t *spa)
2704 {
2705 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2706 		return (DNODE_MAX_SIZE);
2707 	else
2708 		return (DNODE_MIN_SIZE);
2709 }
2710 
2711 boolean_t
2712 spa_multihost(spa_t *spa)
2713 {
2714 	return (spa->spa_multihost ? B_TRUE : B_FALSE);
2715 }
2716 
2717 uint32_t
2718 spa_get_hostid(spa_t *spa)
2719 {
2720 	return (spa->spa_hostid);
2721 }
2722 
2723 boolean_t
2724 spa_trust_config(spa_t *spa)
2725 {
2726 	return (spa->spa_trust_config);
2727 }
2728 
2729 uint64_t
2730 spa_missing_tvds_allowed(spa_t *spa)
2731 {
2732 	return (spa->spa_missing_tvds_allowed);
2733 }
2734 
2735 space_map_t *
2736 spa_syncing_log_sm(spa_t *spa)
2737 {
2738 	return (spa->spa_syncing_log_sm);
2739 }
2740 
2741 void
2742 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2743 {
2744 	spa->spa_missing_tvds = missing;
2745 }
2746 
2747 /*
2748  * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
2749  */
2750 const char *
2751 spa_state_to_name(spa_t *spa)
2752 {
2753 	ASSERT3P(spa, !=, NULL);
2754 
2755 	/*
2756 	 * it is possible for the spa to exist, without root vdev
2757 	 * as the spa transitions during import/export
2758 	 */
2759 	vdev_t *rvd = spa->spa_root_vdev;
2760 	if (rvd == NULL) {
2761 		return ("TRANSITIONING");
2762 	}
2763 	vdev_state_t state = rvd->vdev_state;
2764 	vdev_aux_t aux = rvd->vdev_stat.vs_aux;
2765 
2766 	if (spa_suspended(spa))
2767 		return ("SUSPENDED");
2768 
2769 	switch (state) {
2770 	case VDEV_STATE_CLOSED:
2771 	case VDEV_STATE_OFFLINE:
2772 		return ("OFFLINE");
2773 	case VDEV_STATE_REMOVED:
2774 		return ("REMOVED");
2775 	case VDEV_STATE_CANT_OPEN:
2776 		if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
2777 			return ("FAULTED");
2778 		else if (aux == VDEV_AUX_SPLIT_POOL)
2779 			return ("SPLIT");
2780 		else
2781 			return ("UNAVAIL");
2782 	case VDEV_STATE_FAULTED:
2783 		return ("FAULTED");
2784 	case VDEV_STATE_DEGRADED:
2785 		return ("DEGRADED");
2786 	case VDEV_STATE_HEALTHY:
2787 		return ("ONLINE");
2788 	default:
2789 		break;
2790 	}
2791 
2792 	return ("UNKNOWN");
2793 }
2794 
2795 boolean_t
2796 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2797 {
2798 	vdev_t *rvd = spa->spa_root_vdev;
2799 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2800 		if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2801 			return (B_FALSE);
2802 	}
2803 	return (B_TRUE);
2804 }
2805 
2806 boolean_t
2807 spa_has_checkpoint(spa_t *spa)
2808 {
2809 	return (spa->spa_checkpoint_txg != 0);
2810 }
2811 
2812 boolean_t
2813 spa_importing_readonly_checkpoint(spa_t *spa)
2814 {
2815 	return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2816 	    spa->spa_mode == SPA_MODE_READ);
2817 }
2818 
2819 uint64_t
2820 spa_min_claim_txg(spa_t *spa)
2821 {
2822 	uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2823 
2824 	if (checkpoint_txg != 0)
2825 		return (checkpoint_txg + 1);
2826 
2827 	return (spa->spa_first_txg);
2828 }
2829 
2830 /*
2831  * If there is a checkpoint, async destroys may consume more space from
2832  * the pool instead of freeing it. In an attempt to save the pool from
2833  * getting suspended when it is about to run out of space, we stop
2834  * processing async destroys.
2835  */
2836 boolean_t
2837 spa_suspend_async_destroy(spa_t *spa)
2838 {
2839 	dsl_pool_t *dp = spa_get_dsl(spa);
2840 
2841 	uint64_t unreserved = dsl_pool_unreserved_space(dp,
2842 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
2843 	uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2844 	uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2845 
2846 	if (spa_has_checkpoint(spa) && avail == 0)
2847 		return (B_TRUE);
2848 
2849 	return (B_FALSE);
2850 }
2851 
2852 #if defined(_KERNEL)
2853 
2854 int
2855 param_set_deadman_failmode_common(const char *val)
2856 {
2857 	spa_t *spa = NULL;
2858 	char *p;
2859 
2860 	if (val == NULL)
2861 		return (SET_ERROR(EINVAL));
2862 
2863 	if ((p = strchr(val, '\n')) != NULL)
2864 		*p = '\0';
2865 
2866 	if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
2867 	    strcmp(val, "panic"))
2868 		return (SET_ERROR(EINVAL));
2869 
2870 	if (spa_mode_global != SPA_MODE_UNINIT) {
2871 		mutex_enter(&spa_namespace_lock);
2872 		while ((spa = spa_next(spa)) != NULL)
2873 			spa_set_deadman_failmode(spa, val);
2874 		mutex_exit(&spa_namespace_lock);
2875 	}
2876 
2877 	return (0);
2878 }
2879 #endif
2880 
2881 /* Namespace manipulation */
2882 EXPORT_SYMBOL(spa_lookup);
2883 EXPORT_SYMBOL(spa_add);
2884 EXPORT_SYMBOL(spa_remove);
2885 EXPORT_SYMBOL(spa_next);
2886 
2887 /* Refcount functions */
2888 EXPORT_SYMBOL(spa_open_ref);
2889 EXPORT_SYMBOL(spa_close);
2890 EXPORT_SYMBOL(spa_refcount_zero);
2891 
2892 /* Pool configuration lock */
2893 EXPORT_SYMBOL(spa_config_tryenter);
2894 EXPORT_SYMBOL(spa_config_enter);
2895 EXPORT_SYMBOL(spa_config_exit);
2896 EXPORT_SYMBOL(spa_config_held);
2897 
2898 /* Pool vdev add/remove lock */
2899 EXPORT_SYMBOL(spa_vdev_enter);
2900 EXPORT_SYMBOL(spa_vdev_exit);
2901 
2902 /* Pool vdev state change lock */
2903 EXPORT_SYMBOL(spa_vdev_state_enter);
2904 EXPORT_SYMBOL(spa_vdev_state_exit);
2905 
2906 /* Accessor functions */
2907 EXPORT_SYMBOL(spa_shutting_down);
2908 EXPORT_SYMBOL(spa_get_dsl);
2909 EXPORT_SYMBOL(spa_get_rootblkptr);
2910 EXPORT_SYMBOL(spa_set_rootblkptr);
2911 EXPORT_SYMBOL(spa_altroot);
2912 EXPORT_SYMBOL(spa_sync_pass);
2913 EXPORT_SYMBOL(spa_name);
2914 EXPORT_SYMBOL(spa_guid);
2915 EXPORT_SYMBOL(spa_last_synced_txg);
2916 EXPORT_SYMBOL(spa_first_txg);
2917 EXPORT_SYMBOL(spa_syncing_txg);
2918 EXPORT_SYMBOL(spa_version);
2919 EXPORT_SYMBOL(spa_state);
2920 EXPORT_SYMBOL(spa_load_state);
2921 EXPORT_SYMBOL(spa_freeze_txg);
2922 EXPORT_SYMBOL(spa_get_dspace);
2923 EXPORT_SYMBOL(spa_update_dspace);
2924 EXPORT_SYMBOL(spa_deflate);
2925 EXPORT_SYMBOL(spa_normal_class);
2926 EXPORT_SYMBOL(spa_log_class);
2927 EXPORT_SYMBOL(spa_special_class);
2928 EXPORT_SYMBOL(spa_preferred_class);
2929 EXPORT_SYMBOL(spa_max_replication);
2930 EXPORT_SYMBOL(spa_prev_software_version);
2931 EXPORT_SYMBOL(spa_get_failmode);
2932 EXPORT_SYMBOL(spa_suspended);
2933 EXPORT_SYMBOL(spa_bootfs);
2934 EXPORT_SYMBOL(spa_delegation);
2935 EXPORT_SYMBOL(spa_meta_objset);
2936 EXPORT_SYMBOL(spa_maxblocksize);
2937 EXPORT_SYMBOL(spa_maxdnodesize);
2938 
2939 /* Miscellaneous support routines */
2940 EXPORT_SYMBOL(spa_guid_exists);
2941 EXPORT_SYMBOL(spa_strdup);
2942 EXPORT_SYMBOL(spa_strfree);
2943 EXPORT_SYMBOL(spa_generate_guid);
2944 EXPORT_SYMBOL(snprintf_blkptr);
2945 EXPORT_SYMBOL(spa_freeze);
2946 EXPORT_SYMBOL(spa_upgrade);
2947 EXPORT_SYMBOL(spa_evict_all);
2948 EXPORT_SYMBOL(spa_lookup_by_guid);
2949 EXPORT_SYMBOL(spa_has_spare);
2950 EXPORT_SYMBOL(dva_get_dsize_sync);
2951 EXPORT_SYMBOL(bp_get_dsize_sync);
2952 EXPORT_SYMBOL(bp_get_dsize);
2953 EXPORT_SYMBOL(spa_has_slogs);
2954 EXPORT_SYMBOL(spa_is_root);
2955 EXPORT_SYMBOL(spa_writeable);
2956 EXPORT_SYMBOL(spa_mode);
2957 EXPORT_SYMBOL(spa_namespace_lock);
2958 EXPORT_SYMBOL(spa_trust_config);
2959 EXPORT_SYMBOL(spa_missing_tvds_allowed);
2960 EXPORT_SYMBOL(spa_set_missing_tvds);
2961 EXPORT_SYMBOL(spa_state_to_name);
2962 EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
2963 EXPORT_SYMBOL(spa_min_claim_txg);
2964 EXPORT_SYMBOL(spa_suspend_async_destroy);
2965 EXPORT_SYMBOL(spa_has_checkpoint);
2966 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
2967 
2968 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW,
2969 	"Set additional debugging flags");
2970 
2971 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW,
2972 	"Set to attempt to recover from fatal errors");
2973 
2974 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW,
2975 	"Set to ignore IO errors during free and permanently leak the space");
2976 
2977 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, U64, ZMOD_RW,
2978 	"Dead I/O check interval in milliseconds");
2979 
2980 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW,
2981 	"Enable deadman timer");
2982 
2983 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, UINT, ZMOD_RW,
2984 	"SPA size estimate multiplication factor");
2985 
2986 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW,
2987 	"Place DDT data into the special class");
2988 
2989 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW,
2990 	"Place user data indirect blocks into the special class");
2991 
2992 /* BEGIN CSTYLED */
2993 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode,
2994 	param_set_deadman_failmode, param_get_charp, ZMOD_RW,
2995 	"Failmode for deadman timer");
2996 
2997 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms,
2998 	param_set_deadman_synctime, spl_param_get_u64, ZMOD_RW,
2999 	"Pool sync expiration time in milliseconds");
3000 
3001 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms,
3002 	param_set_deadman_ziotime, spl_param_get_u64, ZMOD_RW,
3003 	"IO expiration time in milliseconds");
3004 
3005 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, UINT, ZMOD_RW,
3006 	"Small file blocks in special vdevs depends on this much "
3007 	"free space available");
3008 /* END CSTYLED */
3009 
3010 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift,
3011 	param_get_uint, ZMOD_RW, "Reserved free space in pool");
3012