xref: /freebsd/sys/contrib/openzfs/module/zfs/spa_misc.c (revision 56e3123fc864b6d08ee5b3752538d2f9be52027b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2013 Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2017 Datto Inc.
28  * Copyright (c) 2017, Intel Corporation.
29  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
30  */
31 
32 #include <sys/zfs_context.h>
33 #include <sys/zfs_chksum.h>
34 #include <sys/spa_impl.h>
35 #include <sys/zio.h>
36 #include <sys/zio_checksum.h>
37 #include <sys/zio_compress.h>
38 #include <sys/dmu.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/zap.h>
41 #include <sys/zil.h>
42 #include <sys/vdev_impl.h>
43 #include <sys/vdev_initialize.h>
44 #include <sys/vdev_trim.h>
45 #include <sys/vdev_file.h>
46 #include <sys/vdev_raidz.h>
47 #include <sys/metaslab.h>
48 #include <sys/uberblock_impl.h>
49 #include <sys/txg.h>
50 #include <sys/avl.h>
51 #include <sys/unique.h>
52 #include <sys/dsl_pool.h>
53 #include <sys/dsl_dir.h>
54 #include <sys/dsl_prop.h>
55 #include <sys/fm/util.h>
56 #include <sys/dsl_scan.h>
57 #include <sys/fs/zfs.h>
58 #include <sys/metaslab_impl.h>
59 #include <sys/arc.h>
60 #include <sys/brt.h>
61 #include <sys/ddt.h>
62 #include <sys/kstat.h>
63 #include "zfs_prop.h"
64 #include <sys/btree.h>
65 #include <sys/zfeature.h>
66 #include <sys/qat.h>
67 #include <sys/zstd/zstd.h>
68 
69 /*
70  * SPA locking
71  *
72  * There are three basic locks for managing spa_t structures:
73  *
74  * spa_namespace_lock (global mutex)
75  *
76  *	This lock must be acquired to do any of the following:
77  *
78  *		- Lookup a spa_t by name
79  *		- Add or remove a spa_t from the namespace
80  *		- Increase spa_refcount from non-zero
81  *		- Check if spa_refcount is zero
82  *		- Rename a spa_t
83  *		- add/remove/attach/detach devices
84  *		- Held for the duration of create/destroy/import/export
85  *
86  *	It does not need to handle recursion.  A create or destroy may
87  *	reference objects (files or zvols) in other pools, but by
88  *	definition they must have an existing reference, and will never need
89  *	to lookup a spa_t by name.
90  *
91  * spa_refcount (per-spa zfs_refcount_t protected by mutex)
92  *
93  *	This reference count keep track of any active users of the spa_t.  The
94  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
95  *	the refcount is never really 'zero' - opening a pool implicitly keeps
96  *	some references in the DMU.  Internally we check against spa_minref, but
97  *	present the image of a zero/non-zero value to consumers.
98  *
99  * spa_config_lock[] (per-spa array of rwlocks)
100  *
101  *	This protects the spa_t from config changes, and must be held in
102  *	the following circumstances:
103  *
104  *		- RW_READER to perform I/O to the spa
105  *		- RW_WRITER to change the vdev config
106  *
107  * The locking order is fairly straightforward:
108  *
109  *		spa_namespace_lock	->	spa_refcount
110  *
111  *	The namespace lock must be acquired to increase the refcount from 0
112  *	or to check if it is zero.
113  *
114  *		spa_refcount		->	spa_config_lock[]
115  *
116  *	There must be at least one valid reference on the spa_t to acquire
117  *	the config lock.
118  *
119  *		spa_namespace_lock	->	spa_config_lock[]
120  *
121  *	The namespace lock must always be taken before the config lock.
122  *
123  *
124  * The spa_namespace_lock can be acquired directly and is globally visible.
125  *
126  * The namespace is manipulated using the following functions, all of which
127  * require the spa_namespace_lock to be held.
128  *
129  *	spa_lookup()		Lookup a spa_t by name.
130  *
131  *	spa_add()		Create a new spa_t in the namespace.
132  *
133  *	spa_remove()		Remove a spa_t from the namespace.  This also
134  *				frees up any memory associated with the spa_t.
135  *
136  *	spa_next()		Returns the next spa_t in the system, or the
137  *				first if NULL is passed.
138  *
139  *	spa_evict_all()		Shutdown and remove all spa_t structures in
140  *				the system.
141  *
142  *	spa_guid_exists()	Determine whether a pool/device guid exists.
143  *
144  * The spa_refcount is manipulated using the following functions:
145  *
146  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
147  *				called with spa_namespace_lock held if the
148  *				refcount is currently zero.
149  *
150  *	spa_close()		Remove a reference from the spa_t.  This will
151  *				not free the spa_t or remove it from the
152  *				namespace.  No locking is required.
153  *
154  *	spa_refcount_zero()	Returns true if the refcount is currently
155  *				zero.  Must be called with spa_namespace_lock
156  *				held.
157  *
158  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
159  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
160  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
161  *
162  * To read the configuration, it suffices to hold one of these locks as reader.
163  * To modify the configuration, you must hold all locks as writer.  To modify
164  * vdev state without altering the vdev tree's topology (e.g. online/offline),
165  * you must hold SCL_STATE and SCL_ZIO as writer.
166  *
167  * We use these distinct config locks to avoid recursive lock entry.
168  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
169  * block allocations (SCL_ALLOC), which may require reading space maps
170  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
171  *
172  * The spa config locks cannot be normal rwlocks because we need the
173  * ability to hand off ownership.  For example, SCL_ZIO is acquired
174  * by the issuing thread and later released by an interrupt thread.
175  * They do, however, obey the usual write-wanted semantics to prevent
176  * writer (i.e. system administrator) starvation.
177  *
178  * The lock acquisition rules are as follows:
179  *
180  * SCL_CONFIG
181  *	Protects changes to the vdev tree topology, such as vdev
182  *	add/remove/attach/detach.  Protects the dirty config list
183  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
184  *
185  * SCL_STATE
186  *	Protects changes to pool state and vdev state, such as vdev
187  *	online/offline/fault/degrade/clear.  Protects the dirty state list
188  *	(spa_state_dirty_list) and global pool state (spa_state).
189  *
190  * SCL_ALLOC
191  *	Protects changes to metaslab groups and classes.
192  *	Held as reader by metaslab_alloc() and metaslab_claim().
193  *
194  * SCL_ZIO
195  *	Held by bp-level zios (those which have no io_vd upon entry)
196  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
197  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
198  *
199  * SCL_FREE
200  *	Protects changes to metaslab groups and classes.
201  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
202  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
203  *	blocks in zio_done() while another i/o that holds either
204  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
205  *
206  * SCL_VDEV
207  *	Held as reader to prevent changes to the vdev tree during trivial
208  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
209  *	other locks, and lower than all of them, to ensure that it's safe
210  *	to acquire regardless of caller context.
211  *
212  * In addition, the following rules apply:
213  *
214  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
215  *	The lock ordering is SCL_CONFIG > spa_props_lock.
216  *
217  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
218  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
219  *	or zio_write_phys() -- the caller must ensure that the config cannot
220  *	cannot change in the interim, and that the vdev cannot be reopened.
221  *	SCL_STATE as reader suffices for both.
222  *
223  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
224  *
225  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
226  *				for writing.
227  *
228  *	spa_vdev_exit()		Release the config lock, wait for all I/O
229  *				to complete, sync the updated configs to the
230  *				cache, and release the namespace lock.
231  *
232  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
233  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
234  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
235  */
236 
237 static avl_tree_t spa_namespace_avl;
238 kmutex_t spa_namespace_lock;
239 static kcondvar_t spa_namespace_cv;
240 static const int spa_max_replication_override = SPA_DVAS_PER_BP;
241 
242 static kmutex_t spa_spare_lock;
243 static avl_tree_t spa_spare_avl;
244 static kmutex_t spa_l2cache_lock;
245 static avl_tree_t spa_l2cache_avl;
246 
247 spa_mode_t spa_mode_global = SPA_MODE_UNINIT;
248 
249 #ifdef ZFS_DEBUG
250 /*
251  * Everything except dprintf, set_error, spa, and indirect_remap is on
252  * by default in debug builds.
253  */
254 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
255     ZFS_DEBUG_INDIRECT_REMAP);
256 #else
257 int zfs_flags = 0;
258 #endif
259 
260 /*
261  * zfs_recover can be set to nonzero to attempt to recover from
262  * otherwise-fatal errors, typically caused by on-disk corruption.  When
263  * set, calls to zfs_panic_recover() will turn into warning messages.
264  * This should only be used as a last resort, as it typically results
265  * in leaked space, or worse.
266  */
267 int zfs_recover = B_FALSE;
268 
269 /*
270  * If destroy encounters an EIO while reading metadata (e.g. indirect
271  * blocks), space referenced by the missing metadata can not be freed.
272  * Normally this causes the background destroy to become "stalled", as
273  * it is unable to make forward progress.  While in this stalled state,
274  * all remaining space to free from the error-encountering filesystem is
275  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
276  * permanently leak the space from indirect blocks that can not be read,
277  * and continue to free everything else that it can.
278  *
279  * The default, "stalling" behavior is useful if the storage partially
280  * fails (i.e. some but not all i/os fail), and then later recovers.  In
281  * this case, we will be able to continue pool operations while it is
282  * partially failed, and when it recovers, we can continue to free the
283  * space, with no leaks.  However, note that this case is actually
284  * fairly rare.
285  *
286  * Typically pools either (a) fail completely (but perhaps temporarily,
287  * e.g. a top-level vdev going offline), or (b) have localized,
288  * permanent errors (e.g. disk returns the wrong data due to bit flip or
289  * firmware bug).  In case (a), this setting does not matter because the
290  * pool will be suspended and the sync thread will not be able to make
291  * forward progress regardless.  In case (b), because the error is
292  * permanent, the best we can do is leak the minimum amount of space,
293  * which is what setting this flag will do.  Therefore, it is reasonable
294  * for this flag to normally be set, but we chose the more conservative
295  * approach of not setting it, so that there is no possibility of
296  * leaking space in the "partial temporary" failure case.
297  */
298 int zfs_free_leak_on_eio = B_FALSE;
299 
300 /*
301  * Expiration time in milliseconds. This value has two meanings. First it is
302  * used to determine when the spa_deadman() logic should fire. By default the
303  * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
304  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
305  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
306  * in one of three behaviors controlled by zfs_deadman_failmode.
307  */
308 uint64_t zfs_deadman_synctime_ms = 600000UL;  /* 10 min. */
309 
310 /*
311  * This value controls the maximum amount of time zio_wait() will block for an
312  * outstanding IO.  By default this is 300 seconds at which point the "hung"
313  * behavior will be applied as described for zfs_deadman_synctime_ms.
314  */
315 uint64_t zfs_deadman_ziotime_ms = 300000UL;  /* 5 min. */
316 
317 /*
318  * Check time in milliseconds. This defines the frequency at which we check
319  * for hung I/O.
320  */
321 uint64_t zfs_deadman_checktime_ms = 60000UL;  /* 1 min. */
322 
323 /*
324  * By default the deadman is enabled.
325  */
326 int zfs_deadman_enabled = B_TRUE;
327 
328 /*
329  * Controls the behavior of the deadman when it detects a "hung" I/O.
330  * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
331  *
332  * wait     - Wait for the "hung" I/O (default)
333  * continue - Attempt to recover from a "hung" I/O
334  * panic    - Panic the system
335  */
336 const char *zfs_deadman_failmode = "wait";
337 
338 /*
339  * The worst case is single-sector max-parity RAID-Z blocks, in which
340  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
341  * times the size; so just assume that.  Add to this the fact that
342  * we can have up to 3 DVAs per bp, and one more factor of 2 because
343  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
344  * the worst case is:
345  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
346  */
347 uint_t spa_asize_inflation = 24;
348 
349 /*
350  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
351  * the pool to be consumed (bounded by spa_max_slop).  This ensures that we
352  * don't run the pool completely out of space, due to unaccounted changes (e.g.
353  * to the MOS).  It also limits the worst-case time to allocate space.  If we
354  * have less than this amount of free space, most ZPL operations (e.g.  write,
355  * create) will return ENOSPC.  The ZIL metaslabs (spa_embedded_log_class) are
356  * also part of this 3.2% of space which can't be consumed by normal writes;
357  * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded
358  * log space.
359  *
360  * Certain operations (e.g. file removal, most administrative actions) can
361  * use half the slop space.  They will only return ENOSPC if less than half
362  * the slop space is free.  Typically, once the pool has less than the slop
363  * space free, the user will use these operations to free up space in the pool.
364  * These are the operations that call dsl_pool_adjustedsize() with the netfree
365  * argument set to TRUE.
366  *
367  * Operations that are almost guaranteed to free up space in the absence of
368  * a pool checkpoint can use up to three quarters of the slop space
369  * (e.g zfs destroy).
370  *
371  * A very restricted set of operations are always permitted, regardless of
372  * the amount of free space.  These are the operations that call
373  * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
374  * increase in the amount of space used, it is possible to run the pool
375  * completely out of space, causing it to be permanently read-only.
376  *
377  * Note that on very small pools, the slop space will be larger than
378  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
379  * but we never allow it to be more than half the pool size.
380  *
381  * Further, on very large pools, the slop space will be smaller than
382  * 3.2%, to avoid reserving much more space than we actually need; bounded
383  * by spa_max_slop (128GB).
384  *
385  * See also the comments in zfs_space_check_t.
386  */
387 uint_t spa_slop_shift = 5;
388 static const uint64_t spa_min_slop = 128ULL * 1024 * 1024;
389 static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024;
390 static const int spa_allocators = 4;
391 
392 /*
393  * Spa active allocator.
394  * Valid values are zfs_active_allocator=<dynamic|cursor|new-dynamic>.
395  */
396 const char *zfs_active_allocator = "dynamic";
397 
398 void
399 spa_load_failed(spa_t *spa, const char *fmt, ...)
400 {
401 	va_list adx;
402 	char buf[256];
403 
404 	va_start(adx, fmt);
405 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
406 	va_end(adx);
407 
408 	zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
409 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
410 }
411 
412 void
413 spa_load_note(spa_t *spa, const char *fmt, ...)
414 {
415 	va_list adx;
416 	char buf[256];
417 
418 	va_start(adx, fmt);
419 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
420 	va_end(adx);
421 
422 	zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
423 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
424 }
425 
426 /*
427  * By default dedup and user data indirects land in the special class
428  */
429 static int zfs_ddt_data_is_special = B_TRUE;
430 static int zfs_user_indirect_is_special = B_TRUE;
431 
432 /*
433  * The percentage of special class final space reserved for metadata only.
434  * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
435  * let metadata into the class.
436  */
437 static uint_t zfs_special_class_metadata_reserve_pct = 25;
438 
439 /*
440  * ==========================================================================
441  * SPA config locking
442  * ==========================================================================
443  */
444 static void
445 spa_config_lock_init(spa_t *spa)
446 {
447 	for (int i = 0; i < SCL_LOCKS; i++) {
448 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
449 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
450 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
451 		scl->scl_writer = NULL;
452 		scl->scl_write_wanted = 0;
453 		scl->scl_count = 0;
454 	}
455 }
456 
457 static void
458 spa_config_lock_destroy(spa_t *spa)
459 {
460 	for (int i = 0; i < SCL_LOCKS; i++) {
461 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
462 		mutex_destroy(&scl->scl_lock);
463 		cv_destroy(&scl->scl_cv);
464 		ASSERT(scl->scl_writer == NULL);
465 		ASSERT(scl->scl_write_wanted == 0);
466 		ASSERT(scl->scl_count == 0);
467 	}
468 }
469 
470 int
471 spa_config_tryenter(spa_t *spa, int locks, const void *tag, krw_t rw)
472 {
473 	for (int i = 0; i < SCL_LOCKS; i++) {
474 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
475 		if (!(locks & (1 << i)))
476 			continue;
477 		mutex_enter(&scl->scl_lock);
478 		if (rw == RW_READER) {
479 			if (scl->scl_writer || scl->scl_write_wanted) {
480 				mutex_exit(&scl->scl_lock);
481 				spa_config_exit(spa, locks & ((1 << i) - 1),
482 				    tag);
483 				return (0);
484 			}
485 		} else {
486 			ASSERT(scl->scl_writer != curthread);
487 			if (scl->scl_count != 0) {
488 				mutex_exit(&scl->scl_lock);
489 				spa_config_exit(spa, locks & ((1 << i) - 1),
490 				    tag);
491 				return (0);
492 			}
493 			scl->scl_writer = curthread;
494 		}
495 		scl->scl_count++;
496 		mutex_exit(&scl->scl_lock);
497 	}
498 	return (1);
499 }
500 
501 static void
502 spa_config_enter_impl(spa_t *spa, int locks, const void *tag, krw_t rw,
503     int mmp_flag)
504 {
505 	(void) tag;
506 	int wlocks_held = 0;
507 
508 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
509 
510 	for (int i = 0; i < SCL_LOCKS; i++) {
511 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
512 		if (scl->scl_writer == curthread)
513 			wlocks_held |= (1 << i);
514 		if (!(locks & (1 << i)))
515 			continue;
516 		mutex_enter(&scl->scl_lock);
517 		if (rw == RW_READER) {
518 			while (scl->scl_writer ||
519 			    (!mmp_flag && scl->scl_write_wanted)) {
520 				cv_wait(&scl->scl_cv, &scl->scl_lock);
521 			}
522 		} else {
523 			ASSERT(scl->scl_writer != curthread);
524 			while (scl->scl_count != 0) {
525 				scl->scl_write_wanted++;
526 				cv_wait(&scl->scl_cv, &scl->scl_lock);
527 				scl->scl_write_wanted--;
528 			}
529 			scl->scl_writer = curthread;
530 		}
531 		scl->scl_count++;
532 		mutex_exit(&scl->scl_lock);
533 	}
534 	ASSERT3U(wlocks_held, <=, locks);
535 }
536 
537 void
538 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw)
539 {
540 	spa_config_enter_impl(spa, locks, tag, rw, 0);
541 }
542 
543 /*
544  * The spa_config_enter_mmp() allows the mmp thread to cut in front of
545  * outstanding write lock requests. This is needed since the mmp updates are
546  * time sensitive and failure to service them promptly will result in a
547  * suspended pool. This pool suspension has been seen in practice when there is
548  * a single disk in a pool that is responding slowly and presumably about to
549  * fail.
550  */
551 
552 void
553 spa_config_enter_mmp(spa_t *spa, int locks, const void *tag, krw_t rw)
554 {
555 	spa_config_enter_impl(spa, locks, tag, rw, 1);
556 }
557 
558 void
559 spa_config_exit(spa_t *spa, int locks, const void *tag)
560 {
561 	(void) tag;
562 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
563 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
564 		if (!(locks & (1 << i)))
565 			continue;
566 		mutex_enter(&scl->scl_lock);
567 		ASSERT(scl->scl_count > 0);
568 		if (--scl->scl_count == 0) {
569 			ASSERT(scl->scl_writer == NULL ||
570 			    scl->scl_writer == curthread);
571 			scl->scl_writer = NULL;	/* OK in either case */
572 			cv_broadcast(&scl->scl_cv);
573 		}
574 		mutex_exit(&scl->scl_lock);
575 	}
576 }
577 
578 int
579 spa_config_held(spa_t *spa, int locks, krw_t rw)
580 {
581 	int locks_held = 0;
582 
583 	for (int i = 0; i < SCL_LOCKS; i++) {
584 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
585 		if (!(locks & (1 << i)))
586 			continue;
587 		if ((rw == RW_READER && scl->scl_count != 0) ||
588 		    (rw == RW_WRITER && scl->scl_writer == curthread))
589 			locks_held |= 1 << i;
590 	}
591 
592 	return (locks_held);
593 }
594 
595 /*
596  * ==========================================================================
597  * SPA namespace functions
598  * ==========================================================================
599  */
600 
601 /*
602  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
603  * Returns NULL if no matching spa_t is found.
604  */
605 spa_t *
606 spa_lookup(const char *name)
607 {
608 	static spa_t search;	/* spa_t is large; don't allocate on stack */
609 	spa_t *spa;
610 	avl_index_t where;
611 	char *cp;
612 
613 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
614 
615 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
616 
617 	/*
618 	 * If it's a full dataset name, figure out the pool name and
619 	 * just use that.
620 	 */
621 	cp = strpbrk(search.spa_name, "/@#");
622 	if (cp != NULL)
623 		*cp = '\0';
624 
625 	spa = avl_find(&spa_namespace_avl, &search, &where);
626 
627 	return (spa);
628 }
629 
630 /*
631  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
632  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
633  * looking for potentially hung I/Os.
634  */
635 void
636 spa_deadman(void *arg)
637 {
638 	spa_t *spa = arg;
639 
640 	/* Disable the deadman if the pool is suspended. */
641 	if (spa_suspended(spa))
642 		return;
643 
644 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
645 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
646 	    (u_longlong_t)++spa->spa_deadman_calls);
647 	if (zfs_deadman_enabled)
648 		vdev_deadman(spa->spa_root_vdev, FTAG);
649 
650 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
651 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
652 	    MSEC_TO_TICK(zfs_deadman_checktime_ms));
653 }
654 
655 static int
656 spa_log_sm_sort_by_txg(const void *va, const void *vb)
657 {
658 	const spa_log_sm_t *a = va;
659 	const spa_log_sm_t *b = vb;
660 
661 	return (TREE_CMP(a->sls_txg, b->sls_txg));
662 }
663 
664 /*
665  * Create an uninitialized spa_t with the given name.  Requires
666  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
667  * exist by calling spa_lookup() first.
668  */
669 spa_t *
670 spa_add(const char *name, nvlist_t *config, const char *altroot)
671 {
672 	spa_t *spa;
673 	spa_config_dirent_t *dp;
674 
675 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
676 
677 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
678 
679 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
680 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
681 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
682 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
683 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
684 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
685 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
686 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
687 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
688 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
689 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
690 	mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
691 	mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
692 	mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL);
693 
694 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
695 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
696 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
697 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
698 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
699 	cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL);
700 	cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL);
701 
702 	for (int t = 0; t < TXG_SIZE; t++)
703 		bplist_create(&spa->spa_free_bplist[t]);
704 
705 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
706 	spa->spa_state = POOL_STATE_UNINITIALIZED;
707 	spa->spa_freeze_txg = UINT64_MAX;
708 	spa->spa_final_txg = UINT64_MAX;
709 	spa->spa_load_max_txg = UINT64_MAX;
710 	spa->spa_proc = &p0;
711 	spa->spa_proc_state = SPA_PROC_NONE;
712 	spa->spa_trust_config = B_TRUE;
713 	spa->spa_hostid = zone_get_hostid(NULL);
714 
715 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
716 	spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
717 	spa_set_deadman_failmode(spa, zfs_deadman_failmode);
718 	spa_set_allocator(spa, zfs_active_allocator);
719 
720 	zfs_refcount_create(&spa->spa_refcount);
721 	spa_config_lock_init(spa);
722 	spa_stats_init(spa);
723 
724 	avl_add(&spa_namespace_avl, spa);
725 
726 	/*
727 	 * Set the alternate root, if there is one.
728 	 */
729 	if (altroot)
730 		spa->spa_root = spa_strdup(altroot);
731 
732 	spa->spa_alloc_count = spa_allocators;
733 	spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count *
734 	    sizeof (spa_alloc_t), KM_SLEEP);
735 	for (int i = 0; i < spa->spa_alloc_count; i++) {
736 		mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT,
737 		    NULL);
738 		avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare,
739 		    sizeof (zio_t), offsetof(zio_t, io_queue_node.a));
740 	}
741 	avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
742 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
743 	avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
744 	    sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
745 	list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
746 	    offsetof(log_summary_entry_t, lse_node));
747 
748 	/*
749 	 * Every pool starts with the default cachefile
750 	 */
751 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
752 	    offsetof(spa_config_dirent_t, scd_link));
753 
754 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
755 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
756 	list_insert_head(&spa->spa_config_list, dp);
757 
758 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
759 	    KM_SLEEP) == 0);
760 
761 	if (config != NULL) {
762 		nvlist_t *features;
763 
764 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
765 		    &features) == 0) {
766 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
767 			    0) == 0);
768 		}
769 
770 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
771 	}
772 
773 	if (spa->spa_label_features == NULL) {
774 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
775 		    KM_SLEEP) == 0);
776 	}
777 
778 	spa->spa_min_ashift = INT_MAX;
779 	spa->spa_max_ashift = 0;
780 	spa->spa_min_alloc = INT_MAX;
781 	spa->spa_gcd_alloc = INT_MAX;
782 
783 	/* Reset cached value */
784 	spa->spa_dedup_dspace = ~0ULL;
785 
786 	/*
787 	 * As a pool is being created, treat all features as disabled by
788 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
789 	 * refcount cache.
790 	 */
791 	for (int i = 0; i < SPA_FEATURES; i++) {
792 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
793 	}
794 
795 	list_create(&spa->spa_leaf_list, sizeof (vdev_t),
796 	    offsetof(vdev_t, vdev_leaf_node));
797 
798 	return (spa);
799 }
800 
801 /*
802  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
803  * spa_namespace_lock.  This is called only after the spa_t has been closed and
804  * deactivated.
805  */
806 void
807 spa_remove(spa_t *spa)
808 {
809 	spa_config_dirent_t *dp;
810 
811 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
812 	ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
813 	ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
814 	ASSERT0(spa->spa_waiters);
815 
816 	nvlist_free(spa->spa_config_splitting);
817 
818 	avl_remove(&spa_namespace_avl, spa);
819 	cv_broadcast(&spa_namespace_cv);
820 
821 	if (spa->spa_root)
822 		spa_strfree(spa->spa_root);
823 
824 	while ((dp = list_remove_head(&spa->spa_config_list)) != NULL) {
825 		if (dp->scd_path != NULL)
826 			spa_strfree(dp->scd_path);
827 		kmem_free(dp, sizeof (spa_config_dirent_t));
828 	}
829 
830 	for (int i = 0; i < spa->spa_alloc_count; i++) {
831 		avl_destroy(&spa->spa_allocs[i].spaa_tree);
832 		mutex_destroy(&spa->spa_allocs[i].spaa_lock);
833 	}
834 	kmem_free(spa->spa_allocs, spa->spa_alloc_count *
835 	    sizeof (spa_alloc_t));
836 
837 	avl_destroy(&spa->spa_metaslabs_by_flushed);
838 	avl_destroy(&spa->spa_sm_logs_by_txg);
839 	list_destroy(&spa->spa_log_summary);
840 	list_destroy(&spa->spa_config_list);
841 	list_destroy(&spa->spa_leaf_list);
842 
843 	nvlist_free(spa->spa_label_features);
844 	nvlist_free(spa->spa_load_info);
845 	nvlist_free(spa->spa_feat_stats);
846 	spa_config_set(spa, NULL);
847 
848 	zfs_refcount_destroy(&spa->spa_refcount);
849 
850 	spa_stats_destroy(spa);
851 	spa_config_lock_destroy(spa);
852 
853 	for (int t = 0; t < TXG_SIZE; t++)
854 		bplist_destroy(&spa->spa_free_bplist[t]);
855 
856 	zio_checksum_templates_free(spa);
857 
858 	cv_destroy(&spa->spa_async_cv);
859 	cv_destroy(&spa->spa_evicting_os_cv);
860 	cv_destroy(&spa->spa_proc_cv);
861 	cv_destroy(&spa->spa_scrub_io_cv);
862 	cv_destroy(&spa->spa_suspend_cv);
863 	cv_destroy(&spa->spa_activities_cv);
864 	cv_destroy(&spa->spa_waiters_cv);
865 
866 	mutex_destroy(&spa->spa_flushed_ms_lock);
867 	mutex_destroy(&spa->spa_async_lock);
868 	mutex_destroy(&spa->spa_errlist_lock);
869 	mutex_destroy(&spa->spa_errlog_lock);
870 	mutex_destroy(&spa->spa_evicting_os_lock);
871 	mutex_destroy(&spa->spa_history_lock);
872 	mutex_destroy(&spa->spa_proc_lock);
873 	mutex_destroy(&spa->spa_props_lock);
874 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
875 	mutex_destroy(&spa->spa_scrub_lock);
876 	mutex_destroy(&spa->spa_suspend_lock);
877 	mutex_destroy(&spa->spa_vdev_top_lock);
878 	mutex_destroy(&spa->spa_feat_stats_lock);
879 	mutex_destroy(&spa->spa_activities_lock);
880 
881 	kmem_free(spa, sizeof (spa_t));
882 }
883 
884 /*
885  * Given a pool, return the next pool in the namespace, or NULL if there is
886  * none.  If 'prev' is NULL, return the first pool.
887  */
888 spa_t *
889 spa_next(spa_t *prev)
890 {
891 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
892 
893 	if (prev)
894 		return (AVL_NEXT(&spa_namespace_avl, prev));
895 	else
896 		return (avl_first(&spa_namespace_avl));
897 }
898 
899 /*
900  * ==========================================================================
901  * SPA refcount functions
902  * ==========================================================================
903  */
904 
905 /*
906  * Add a reference to the given spa_t.  Must have at least one reference, or
907  * have the namespace lock held.
908  */
909 void
910 spa_open_ref(spa_t *spa, const void *tag)
911 {
912 	ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
913 	    MUTEX_HELD(&spa_namespace_lock));
914 	(void) zfs_refcount_add(&spa->spa_refcount, tag);
915 }
916 
917 /*
918  * Remove a reference to the given spa_t.  Must have at least one reference, or
919  * have the namespace lock held.
920  */
921 void
922 spa_close(spa_t *spa, const void *tag)
923 {
924 	ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
925 	    MUTEX_HELD(&spa_namespace_lock));
926 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
927 }
928 
929 /*
930  * Remove a reference to the given spa_t held by a dsl dir that is
931  * being asynchronously released.  Async releases occur from a taskq
932  * performing eviction of dsl datasets and dirs.  The namespace lock
933  * isn't held and the hold by the object being evicted may contribute to
934  * spa_minref (e.g. dataset or directory released during pool export),
935  * so the asserts in spa_close() do not apply.
936  */
937 void
938 spa_async_close(spa_t *spa, const void *tag)
939 {
940 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
941 }
942 
943 /*
944  * Check to see if the spa refcount is zero.  Must be called with
945  * spa_namespace_lock held.  We really compare against spa_minref, which is the
946  * number of references acquired when opening a pool
947  */
948 boolean_t
949 spa_refcount_zero(spa_t *spa)
950 {
951 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
952 
953 	return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
954 }
955 
956 /*
957  * ==========================================================================
958  * SPA spare and l2cache tracking
959  * ==========================================================================
960  */
961 
962 /*
963  * Hot spares and cache devices are tracked using the same code below,
964  * for 'auxiliary' devices.
965  */
966 
967 typedef struct spa_aux {
968 	uint64_t	aux_guid;
969 	uint64_t	aux_pool;
970 	avl_node_t	aux_avl;
971 	int		aux_count;
972 } spa_aux_t;
973 
974 static inline int
975 spa_aux_compare(const void *a, const void *b)
976 {
977 	const spa_aux_t *sa = (const spa_aux_t *)a;
978 	const spa_aux_t *sb = (const spa_aux_t *)b;
979 
980 	return (TREE_CMP(sa->aux_guid, sb->aux_guid));
981 }
982 
983 static void
984 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
985 {
986 	avl_index_t where;
987 	spa_aux_t search;
988 	spa_aux_t *aux;
989 
990 	search.aux_guid = vd->vdev_guid;
991 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
992 		aux->aux_count++;
993 	} else {
994 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
995 		aux->aux_guid = vd->vdev_guid;
996 		aux->aux_count = 1;
997 		avl_insert(avl, aux, where);
998 	}
999 }
1000 
1001 static void
1002 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
1003 {
1004 	spa_aux_t search;
1005 	spa_aux_t *aux;
1006 	avl_index_t where;
1007 
1008 	search.aux_guid = vd->vdev_guid;
1009 	aux = avl_find(avl, &search, &where);
1010 
1011 	ASSERT(aux != NULL);
1012 
1013 	if (--aux->aux_count == 0) {
1014 		avl_remove(avl, aux);
1015 		kmem_free(aux, sizeof (spa_aux_t));
1016 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
1017 		aux->aux_pool = 0ULL;
1018 	}
1019 }
1020 
1021 static boolean_t
1022 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
1023 {
1024 	spa_aux_t search, *found;
1025 
1026 	search.aux_guid = guid;
1027 	found = avl_find(avl, &search, NULL);
1028 
1029 	if (pool) {
1030 		if (found)
1031 			*pool = found->aux_pool;
1032 		else
1033 			*pool = 0ULL;
1034 	}
1035 
1036 	if (refcnt) {
1037 		if (found)
1038 			*refcnt = found->aux_count;
1039 		else
1040 			*refcnt = 0;
1041 	}
1042 
1043 	return (found != NULL);
1044 }
1045 
1046 static void
1047 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1048 {
1049 	spa_aux_t search, *found;
1050 	avl_index_t where;
1051 
1052 	search.aux_guid = vd->vdev_guid;
1053 	found = avl_find(avl, &search, &where);
1054 	ASSERT(found != NULL);
1055 	ASSERT(found->aux_pool == 0ULL);
1056 
1057 	found->aux_pool = spa_guid(vd->vdev_spa);
1058 }
1059 
1060 /*
1061  * Spares are tracked globally due to the following constraints:
1062  *
1063  *	- A spare may be part of multiple pools.
1064  *	- A spare may be added to a pool even if it's actively in use within
1065  *	  another pool.
1066  *	- A spare in use in any pool can only be the source of a replacement if
1067  *	  the target is a spare in the same pool.
1068  *
1069  * We keep track of all spares on the system through the use of a reference
1070  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1071  * spare, then we bump the reference count in the AVL tree.  In addition, we set
1072  * the 'vdev_isspare' member to indicate that the device is a spare (active or
1073  * inactive).  When a spare is made active (used to replace a device in the
1074  * pool), we also keep track of which pool its been made a part of.
1075  *
1076  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1077  * called under the spa_namespace lock as part of vdev reconfiguration.  The
1078  * separate spare lock exists for the status query path, which does not need to
1079  * be completely consistent with respect to other vdev configuration changes.
1080  */
1081 
1082 static int
1083 spa_spare_compare(const void *a, const void *b)
1084 {
1085 	return (spa_aux_compare(a, b));
1086 }
1087 
1088 void
1089 spa_spare_add(vdev_t *vd)
1090 {
1091 	mutex_enter(&spa_spare_lock);
1092 	ASSERT(!vd->vdev_isspare);
1093 	spa_aux_add(vd, &spa_spare_avl);
1094 	vd->vdev_isspare = B_TRUE;
1095 	mutex_exit(&spa_spare_lock);
1096 }
1097 
1098 void
1099 spa_spare_remove(vdev_t *vd)
1100 {
1101 	mutex_enter(&spa_spare_lock);
1102 	ASSERT(vd->vdev_isspare);
1103 	spa_aux_remove(vd, &spa_spare_avl);
1104 	vd->vdev_isspare = B_FALSE;
1105 	mutex_exit(&spa_spare_lock);
1106 }
1107 
1108 boolean_t
1109 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1110 {
1111 	boolean_t found;
1112 
1113 	mutex_enter(&spa_spare_lock);
1114 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1115 	mutex_exit(&spa_spare_lock);
1116 
1117 	return (found);
1118 }
1119 
1120 void
1121 spa_spare_activate(vdev_t *vd)
1122 {
1123 	mutex_enter(&spa_spare_lock);
1124 	ASSERT(vd->vdev_isspare);
1125 	spa_aux_activate(vd, &spa_spare_avl);
1126 	mutex_exit(&spa_spare_lock);
1127 }
1128 
1129 /*
1130  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1131  * Cache devices currently only support one pool per cache device, and so
1132  * for these devices the aux reference count is currently unused beyond 1.
1133  */
1134 
1135 static int
1136 spa_l2cache_compare(const void *a, const void *b)
1137 {
1138 	return (spa_aux_compare(a, b));
1139 }
1140 
1141 void
1142 spa_l2cache_add(vdev_t *vd)
1143 {
1144 	mutex_enter(&spa_l2cache_lock);
1145 	ASSERT(!vd->vdev_isl2cache);
1146 	spa_aux_add(vd, &spa_l2cache_avl);
1147 	vd->vdev_isl2cache = B_TRUE;
1148 	mutex_exit(&spa_l2cache_lock);
1149 }
1150 
1151 void
1152 spa_l2cache_remove(vdev_t *vd)
1153 {
1154 	mutex_enter(&spa_l2cache_lock);
1155 	ASSERT(vd->vdev_isl2cache);
1156 	spa_aux_remove(vd, &spa_l2cache_avl);
1157 	vd->vdev_isl2cache = B_FALSE;
1158 	mutex_exit(&spa_l2cache_lock);
1159 }
1160 
1161 boolean_t
1162 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1163 {
1164 	boolean_t found;
1165 
1166 	mutex_enter(&spa_l2cache_lock);
1167 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1168 	mutex_exit(&spa_l2cache_lock);
1169 
1170 	return (found);
1171 }
1172 
1173 void
1174 spa_l2cache_activate(vdev_t *vd)
1175 {
1176 	mutex_enter(&spa_l2cache_lock);
1177 	ASSERT(vd->vdev_isl2cache);
1178 	spa_aux_activate(vd, &spa_l2cache_avl);
1179 	mutex_exit(&spa_l2cache_lock);
1180 }
1181 
1182 /*
1183  * ==========================================================================
1184  * SPA vdev locking
1185  * ==========================================================================
1186  */
1187 
1188 /*
1189  * Lock the given spa_t for the purpose of adding or removing a vdev.
1190  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1191  * It returns the next transaction group for the spa_t.
1192  */
1193 uint64_t
1194 spa_vdev_enter(spa_t *spa)
1195 {
1196 	mutex_enter(&spa->spa_vdev_top_lock);
1197 	mutex_enter(&spa_namespace_lock);
1198 
1199 	vdev_autotrim_stop_all(spa);
1200 
1201 	return (spa_vdev_config_enter(spa));
1202 }
1203 
1204 /*
1205  * The same as spa_vdev_enter() above but additionally takes the guid of
1206  * the vdev being detached.  When there is a rebuild in process it will be
1207  * suspended while the vdev tree is modified then resumed by spa_vdev_exit().
1208  * The rebuild is canceled if only a single child remains after the detach.
1209  */
1210 uint64_t
1211 spa_vdev_detach_enter(spa_t *spa, uint64_t guid)
1212 {
1213 	mutex_enter(&spa->spa_vdev_top_lock);
1214 	mutex_enter(&spa_namespace_lock);
1215 
1216 	vdev_autotrim_stop_all(spa);
1217 
1218 	if (guid != 0) {
1219 		vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1220 		if (vd) {
1221 			vdev_rebuild_stop_wait(vd->vdev_top);
1222 		}
1223 	}
1224 
1225 	return (spa_vdev_config_enter(spa));
1226 }
1227 
1228 /*
1229  * Internal implementation for spa_vdev_enter().  Used when a vdev
1230  * operation requires multiple syncs (i.e. removing a device) while
1231  * keeping the spa_namespace_lock held.
1232  */
1233 uint64_t
1234 spa_vdev_config_enter(spa_t *spa)
1235 {
1236 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1237 
1238 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1239 
1240 	return (spa_last_synced_txg(spa) + 1);
1241 }
1242 
1243 /*
1244  * Used in combination with spa_vdev_config_enter() to allow the syncing
1245  * of multiple transactions without releasing the spa_namespace_lock.
1246  */
1247 void
1248 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error,
1249     const char *tag)
1250 {
1251 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1252 
1253 	int config_changed = B_FALSE;
1254 
1255 	ASSERT(txg > spa_last_synced_txg(spa));
1256 
1257 	spa->spa_pending_vdev = NULL;
1258 
1259 	/*
1260 	 * Reassess the DTLs.
1261 	 */
1262 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE);
1263 
1264 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1265 		config_changed = B_TRUE;
1266 		spa->spa_config_generation++;
1267 	}
1268 
1269 	/*
1270 	 * Verify the metaslab classes.
1271 	 */
1272 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1273 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1274 	ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0);
1275 	ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
1276 	ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
1277 
1278 	spa_config_exit(spa, SCL_ALL, spa);
1279 
1280 	/*
1281 	 * Panic the system if the specified tag requires it.  This
1282 	 * is useful for ensuring that configurations are updated
1283 	 * transactionally.
1284 	 */
1285 	if (zio_injection_enabled)
1286 		zio_handle_panic_injection(spa, tag, 0);
1287 
1288 	/*
1289 	 * Note: this txg_wait_synced() is important because it ensures
1290 	 * that there won't be more than one config change per txg.
1291 	 * This allows us to use the txg as the generation number.
1292 	 */
1293 	if (error == 0)
1294 		txg_wait_synced(spa->spa_dsl_pool, txg);
1295 
1296 	if (vd != NULL) {
1297 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1298 		if (vd->vdev_ops->vdev_op_leaf) {
1299 			mutex_enter(&vd->vdev_initialize_lock);
1300 			vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1301 			    NULL);
1302 			mutex_exit(&vd->vdev_initialize_lock);
1303 
1304 			mutex_enter(&vd->vdev_trim_lock);
1305 			vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1306 			mutex_exit(&vd->vdev_trim_lock);
1307 		}
1308 
1309 		/*
1310 		 * The vdev may be both a leaf and top-level device.
1311 		 */
1312 		vdev_autotrim_stop_wait(vd);
1313 
1314 		spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
1315 		vdev_free(vd);
1316 		spa_config_exit(spa, SCL_STATE_ALL, spa);
1317 	}
1318 
1319 	/*
1320 	 * If the config changed, update the config cache.
1321 	 */
1322 	if (config_changed)
1323 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1324 }
1325 
1326 /*
1327  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1328  * locking of spa_vdev_enter(), we also want make sure the transactions have
1329  * synced to disk, and then update the global configuration cache with the new
1330  * information.
1331  */
1332 int
1333 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1334 {
1335 	vdev_autotrim_restart(spa);
1336 	vdev_rebuild_restart(spa);
1337 
1338 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1339 	mutex_exit(&spa_namespace_lock);
1340 	mutex_exit(&spa->spa_vdev_top_lock);
1341 
1342 	return (error);
1343 }
1344 
1345 /*
1346  * Lock the given spa_t for the purpose of changing vdev state.
1347  */
1348 void
1349 spa_vdev_state_enter(spa_t *spa, int oplocks)
1350 {
1351 	int locks = SCL_STATE_ALL | oplocks;
1352 
1353 	/*
1354 	 * Root pools may need to read of the underlying devfs filesystem
1355 	 * when opening up a vdev.  Unfortunately if we're holding the
1356 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1357 	 * the read from the root filesystem.  Instead we "prefetch"
1358 	 * the associated vnodes that we need prior to opening the
1359 	 * underlying devices and cache them so that we can prevent
1360 	 * any I/O when we are doing the actual open.
1361 	 */
1362 	if (spa_is_root(spa)) {
1363 		int low = locks & ~(SCL_ZIO - 1);
1364 		int high = locks & ~low;
1365 
1366 		spa_config_enter(spa, high, spa, RW_WRITER);
1367 		vdev_hold(spa->spa_root_vdev);
1368 		spa_config_enter(spa, low, spa, RW_WRITER);
1369 	} else {
1370 		spa_config_enter(spa, locks, spa, RW_WRITER);
1371 	}
1372 	spa->spa_vdev_locks = locks;
1373 }
1374 
1375 int
1376 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1377 {
1378 	boolean_t config_changed = B_FALSE;
1379 	vdev_t *vdev_top;
1380 
1381 	if (vd == NULL || vd == spa->spa_root_vdev) {
1382 		vdev_top = spa->spa_root_vdev;
1383 	} else {
1384 		vdev_top = vd->vdev_top;
1385 	}
1386 
1387 	if (vd != NULL || error == 0)
1388 		vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE);
1389 
1390 	if (vd != NULL) {
1391 		if (vd != spa->spa_root_vdev)
1392 			vdev_state_dirty(vdev_top);
1393 
1394 		config_changed = B_TRUE;
1395 		spa->spa_config_generation++;
1396 	}
1397 
1398 	if (spa_is_root(spa))
1399 		vdev_rele(spa->spa_root_vdev);
1400 
1401 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1402 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1403 
1404 	/*
1405 	 * If anything changed, wait for it to sync.  This ensures that,
1406 	 * from the system administrator's perspective, zpool(8) commands
1407 	 * are synchronous.  This is important for things like zpool offline:
1408 	 * when the command completes, you expect no further I/O from ZFS.
1409 	 */
1410 	if (vd != NULL)
1411 		txg_wait_synced(spa->spa_dsl_pool, 0);
1412 
1413 	/*
1414 	 * If the config changed, update the config cache.
1415 	 */
1416 	if (config_changed) {
1417 		mutex_enter(&spa_namespace_lock);
1418 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
1419 		mutex_exit(&spa_namespace_lock);
1420 	}
1421 
1422 	return (error);
1423 }
1424 
1425 /*
1426  * ==========================================================================
1427  * Miscellaneous functions
1428  * ==========================================================================
1429  */
1430 
1431 void
1432 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1433 {
1434 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1435 		fnvlist_add_boolean(spa->spa_label_features, feature);
1436 		/*
1437 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1438 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1439 		 * Thankfully, in this case we don't need to dirty the config
1440 		 * because it will be written out anyway when we finish
1441 		 * creating the pool.
1442 		 */
1443 		if (tx->tx_txg != TXG_INITIAL)
1444 			vdev_config_dirty(spa->spa_root_vdev);
1445 	}
1446 }
1447 
1448 void
1449 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1450 {
1451 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1452 		vdev_config_dirty(spa->spa_root_vdev);
1453 }
1454 
1455 /*
1456  * Return the spa_t associated with given pool_guid, if it exists.  If
1457  * device_guid is non-zero, determine whether the pool exists *and* contains
1458  * a device with the specified device_guid.
1459  */
1460 spa_t *
1461 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1462 {
1463 	spa_t *spa;
1464 	avl_tree_t *t = &spa_namespace_avl;
1465 
1466 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1467 
1468 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1469 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1470 			continue;
1471 		if (spa->spa_root_vdev == NULL)
1472 			continue;
1473 		if (spa_guid(spa) == pool_guid) {
1474 			if (device_guid == 0)
1475 				break;
1476 
1477 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1478 			    device_guid) != NULL)
1479 				break;
1480 
1481 			/*
1482 			 * Check any devices we may be in the process of adding.
1483 			 */
1484 			if (spa->spa_pending_vdev) {
1485 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1486 				    device_guid) != NULL)
1487 					break;
1488 			}
1489 		}
1490 	}
1491 
1492 	return (spa);
1493 }
1494 
1495 /*
1496  * Determine whether a pool with the given pool_guid exists.
1497  */
1498 boolean_t
1499 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1500 {
1501 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1502 }
1503 
1504 char *
1505 spa_strdup(const char *s)
1506 {
1507 	size_t len;
1508 	char *new;
1509 
1510 	len = strlen(s);
1511 	new = kmem_alloc(len + 1, KM_SLEEP);
1512 	memcpy(new, s, len + 1);
1513 
1514 	return (new);
1515 }
1516 
1517 void
1518 spa_strfree(char *s)
1519 {
1520 	kmem_free(s, strlen(s) + 1);
1521 }
1522 
1523 uint64_t
1524 spa_generate_guid(spa_t *spa)
1525 {
1526 	uint64_t guid;
1527 
1528 	if (spa != NULL) {
1529 		do {
1530 			(void) random_get_pseudo_bytes((void *)&guid,
1531 			    sizeof (guid));
1532 		} while (guid == 0 || spa_guid_exists(spa_guid(spa), guid));
1533 	} else {
1534 		do {
1535 			(void) random_get_pseudo_bytes((void *)&guid,
1536 			    sizeof (guid));
1537 		} while (guid == 0 || spa_guid_exists(guid, 0));
1538 	}
1539 
1540 	return (guid);
1541 }
1542 
1543 void
1544 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1545 {
1546 	char type[256];
1547 	const char *checksum = NULL;
1548 	const char *compress = NULL;
1549 
1550 	if (bp != NULL) {
1551 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1552 			dmu_object_byteswap_t bswap =
1553 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1554 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1555 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1556 			    "metadata" : "data",
1557 			    dmu_ot_byteswap[bswap].ob_name);
1558 		} else {
1559 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1560 			    sizeof (type));
1561 		}
1562 		if (!BP_IS_EMBEDDED(bp)) {
1563 			checksum =
1564 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1565 		}
1566 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1567 	}
1568 
1569 	SNPRINTF_BLKPTR(kmem_scnprintf, ' ', buf, buflen, bp, type, checksum,
1570 	    compress);
1571 }
1572 
1573 void
1574 spa_freeze(spa_t *spa)
1575 {
1576 	uint64_t freeze_txg = 0;
1577 
1578 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1579 	if (spa->spa_freeze_txg == UINT64_MAX) {
1580 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1581 		spa->spa_freeze_txg = freeze_txg;
1582 	}
1583 	spa_config_exit(spa, SCL_ALL, FTAG);
1584 	if (freeze_txg != 0)
1585 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1586 }
1587 
1588 void
1589 zfs_panic_recover(const char *fmt, ...)
1590 {
1591 	va_list adx;
1592 
1593 	va_start(adx, fmt);
1594 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1595 	va_end(adx);
1596 }
1597 
1598 /*
1599  * This is a stripped-down version of strtoull, suitable only for converting
1600  * lowercase hexadecimal numbers that don't overflow.
1601  */
1602 uint64_t
1603 zfs_strtonum(const char *str, char **nptr)
1604 {
1605 	uint64_t val = 0;
1606 	char c;
1607 	int digit;
1608 
1609 	while ((c = *str) != '\0') {
1610 		if (c >= '0' && c <= '9')
1611 			digit = c - '0';
1612 		else if (c >= 'a' && c <= 'f')
1613 			digit = 10 + c - 'a';
1614 		else
1615 			break;
1616 
1617 		val *= 16;
1618 		val += digit;
1619 
1620 		str++;
1621 	}
1622 
1623 	if (nptr)
1624 		*nptr = (char *)str;
1625 
1626 	return (val);
1627 }
1628 
1629 void
1630 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1631 {
1632 	/*
1633 	 * We bump the feature refcount for each special vdev added to the pool
1634 	 */
1635 	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1636 	spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1637 }
1638 
1639 /*
1640  * ==========================================================================
1641  * Accessor functions
1642  * ==========================================================================
1643  */
1644 
1645 boolean_t
1646 spa_shutting_down(spa_t *spa)
1647 {
1648 	return (spa->spa_async_suspended);
1649 }
1650 
1651 dsl_pool_t *
1652 spa_get_dsl(spa_t *spa)
1653 {
1654 	return (spa->spa_dsl_pool);
1655 }
1656 
1657 boolean_t
1658 spa_is_initializing(spa_t *spa)
1659 {
1660 	return (spa->spa_is_initializing);
1661 }
1662 
1663 boolean_t
1664 spa_indirect_vdevs_loaded(spa_t *spa)
1665 {
1666 	return (spa->spa_indirect_vdevs_loaded);
1667 }
1668 
1669 blkptr_t *
1670 spa_get_rootblkptr(spa_t *spa)
1671 {
1672 	return (&spa->spa_ubsync.ub_rootbp);
1673 }
1674 
1675 void
1676 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1677 {
1678 	spa->spa_uberblock.ub_rootbp = *bp;
1679 }
1680 
1681 void
1682 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1683 {
1684 	if (spa->spa_root == NULL)
1685 		buf[0] = '\0';
1686 	else
1687 		(void) strlcpy(buf, spa->spa_root, buflen);
1688 }
1689 
1690 uint32_t
1691 spa_sync_pass(spa_t *spa)
1692 {
1693 	return (spa->spa_sync_pass);
1694 }
1695 
1696 char *
1697 spa_name(spa_t *spa)
1698 {
1699 	return (spa->spa_name);
1700 }
1701 
1702 uint64_t
1703 spa_guid(spa_t *spa)
1704 {
1705 	dsl_pool_t *dp = spa_get_dsl(spa);
1706 	uint64_t guid;
1707 
1708 	/*
1709 	 * If we fail to parse the config during spa_load(), we can go through
1710 	 * the error path (which posts an ereport) and end up here with no root
1711 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1712 	 * this case.
1713 	 */
1714 	if (spa->spa_root_vdev == NULL)
1715 		return (spa->spa_config_guid);
1716 
1717 	guid = spa->spa_last_synced_guid != 0 ?
1718 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1719 
1720 	/*
1721 	 * Return the most recently synced out guid unless we're
1722 	 * in syncing context.
1723 	 */
1724 	if (dp && dsl_pool_sync_context(dp))
1725 		return (spa->spa_root_vdev->vdev_guid);
1726 	else
1727 		return (guid);
1728 }
1729 
1730 uint64_t
1731 spa_load_guid(spa_t *spa)
1732 {
1733 	/*
1734 	 * This is a GUID that exists solely as a reference for the
1735 	 * purposes of the arc.  It is generated at load time, and
1736 	 * is never written to persistent storage.
1737 	 */
1738 	return (spa->spa_load_guid);
1739 }
1740 
1741 uint64_t
1742 spa_last_synced_txg(spa_t *spa)
1743 {
1744 	return (spa->spa_ubsync.ub_txg);
1745 }
1746 
1747 uint64_t
1748 spa_first_txg(spa_t *spa)
1749 {
1750 	return (spa->spa_first_txg);
1751 }
1752 
1753 uint64_t
1754 spa_syncing_txg(spa_t *spa)
1755 {
1756 	return (spa->spa_syncing_txg);
1757 }
1758 
1759 /*
1760  * Return the last txg where data can be dirtied. The final txgs
1761  * will be used to just clear out any deferred frees that remain.
1762  */
1763 uint64_t
1764 spa_final_dirty_txg(spa_t *spa)
1765 {
1766 	return (spa->spa_final_txg - TXG_DEFER_SIZE);
1767 }
1768 
1769 pool_state_t
1770 spa_state(spa_t *spa)
1771 {
1772 	return (spa->spa_state);
1773 }
1774 
1775 spa_load_state_t
1776 spa_load_state(spa_t *spa)
1777 {
1778 	return (spa->spa_load_state);
1779 }
1780 
1781 uint64_t
1782 spa_freeze_txg(spa_t *spa)
1783 {
1784 	return (spa->spa_freeze_txg);
1785 }
1786 
1787 /*
1788  * Return the inflated asize for a logical write in bytes. This is used by the
1789  * DMU to calculate the space a logical write will require on disk.
1790  * If lsize is smaller than the largest physical block size allocatable on this
1791  * pool we use its value instead, since the write will end up using the whole
1792  * block anyway.
1793  */
1794 uint64_t
1795 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1796 {
1797 	if (lsize == 0)
1798 		return (0);	/* No inflation needed */
1799 	return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
1800 }
1801 
1802 /*
1803  * Return the amount of slop space in bytes.  It is typically 1/32 of the pool
1804  * (3.2%), minus the embedded log space.  On very small pools, it may be
1805  * slightly larger than this.  On very large pools, it will be capped to
1806  * the value of spa_max_slop.  The embedded log space is not included in
1807  * spa_dspace.  By subtracting it, the usable space (per "zfs list") is a
1808  * constant 97% of the total space, regardless of metaslab size (assuming the
1809  * default spa_slop_shift=5 and a non-tiny pool).
1810  *
1811  * See the comment above spa_slop_shift for more details.
1812  */
1813 uint64_t
1814 spa_get_slop_space(spa_t *spa)
1815 {
1816 	uint64_t space = 0;
1817 	uint64_t slop = 0;
1818 
1819 	/*
1820 	 * Make sure spa_dedup_dspace has been set.
1821 	 */
1822 	if (spa->spa_dedup_dspace == ~0ULL)
1823 		spa_update_dspace(spa);
1824 
1825 	/*
1826 	 * spa_get_dspace() includes the space only logically "used" by
1827 	 * deduplicated data, so since it's not useful to reserve more
1828 	 * space with more deduplicated data, we subtract that out here.
1829 	 */
1830 	space = spa_get_dspace(spa) - spa->spa_dedup_dspace;
1831 	slop = MIN(space >> spa_slop_shift, spa_max_slop);
1832 
1833 	/*
1834 	 * Subtract the embedded log space, but no more than half the (3.2%)
1835 	 * unusable space.  Note, the "no more than half" is only relevant if
1836 	 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by
1837 	 * default.
1838 	 */
1839 	uint64_t embedded_log =
1840 	    metaslab_class_get_dspace(spa_embedded_log_class(spa));
1841 	slop -= MIN(embedded_log, slop >> 1);
1842 
1843 	/*
1844 	 * Slop space should be at least spa_min_slop, but no more than half
1845 	 * the entire pool.
1846 	 */
1847 	slop = MAX(slop, MIN(space >> 1, spa_min_slop));
1848 	return (slop);
1849 }
1850 
1851 uint64_t
1852 spa_get_dspace(spa_t *spa)
1853 {
1854 	return (spa->spa_dspace);
1855 }
1856 
1857 uint64_t
1858 spa_get_checkpoint_space(spa_t *spa)
1859 {
1860 	return (spa->spa_checkpoint_info.sci_dspace);
1861 }
1862 
1863 void
1864 spa_update_dspace(spa_t *spa)
1865 {
1866 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1867 	    ddt_get_dedup_dspace(spa) + brt_get_dspace(spa);
1868 	if (spa->spa_nonallocating_dspace > 0) {
1869 		/*
1870 		 * Subtract the space provided by all non-allocating vdevs that
1871 		 * contribute to dspace.  If a file is overwritten, its old
1872 		 * blocks are freed and new blocks are allocated.  If there are
1873 		 * no snapshots of the file, the available space should remain
1874 		 * the same.  The old blocks could be freed from the
1875 		 * non-allocating vdev, but the new blocks must be allocated on
1876 		 * other (allocating) vdevs.  By reserving the entire size of
1877 		 * the non-allocating vdevs (including allocated space), we
1878 		 * ensure that there will be enough space on the allocating
1879 		 * vdevs for this file overwrite to succeed.
1880 		 *
1881 		 * Note that the DMU/DSL doesn't actually know or care
1882 		 * how much space is allocated (it does its own tracking
1883 		 * of how much space has been logically used).  So it
1884 		 * doesn't matter that the data we are moving may be
1885 		 * allocated twice (on the old device and the new device).
1886 		 */
1887 		ASSERT3U(spa->spa_dspace, >=, spa->spa_nonallocating_dspace);
1888 		spa->spa_dspace -= spa->spa_nonallocating_dspace;
1889 	}
1890 }
1891 
1892 /*
1893  * Return the failure mode that has been set to this pool. The default
1894  * behavior will be to block all I/Os when a complete failure occurs.
1895  */
1896 uint64_t
1897 spa_get_failmode(spa_t *spa)
1898 {
1899 	return (spa->spa_failmode);
1900 }
1901 
1902 boolean_t
1903 spa_suspended(spa_t *spa)
1904 {
1905 	return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1906 }
1907 
1908 uint64_t
1909 spa_version(spa_t *spa)
1910 {
1911 	return (spa->spa_ubsync.ub_version);
1912 }
1913 
1914 boolean_t
1915 spa_deflate(spa_t *spa)
1916 {
1917 	return (spa->spa_deflate);
1918 }
1919 
1920 metaslab_class_t *
1921 spa_normal_class(spa_t *spa)
1922 {
1923 	return (spa->spa_normal_class);
1924 }
1925 
1926 metaslab_class_t *
1927 spa_log_class(spa_t *spa)
1928 {
1929 	return (spa->spa_log_class);
1930 }
1931 
1932 metaslab_class_t *
1933 spa_embedded_log_class(spa_t *spa)
1934 {
1935 	return (spa->spa_embedded_log_class);
1936 }
1937 
1938 metaslab_class_t *
1939 spa_special_class(spa_t *spa)
1940 {
1941 	return (spa->spa_special_class);
1942 }
1943 
1944 metaslab_class_t *
1945 spa_dedup_class(spa_t *spa)
1946 {
1947 	return (spa->spa_dedup_class);
1948 }
1949 
1950 /*
1951  * Locate an appropriate allocation class
1952  */
1953 metaslab_class_t *
1954 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
1955     uint_t level, uint_t special_smallblk)
1956 {
1957 	/*
1958 	 * ZIL allocations determine their class in zio_alloc_zil().
1959 	 */
1960 	ASSERT(objtype != DMU_OT_INTENT_LOG);
1961 
1962 	boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
1963 
1964 	if (DMU_OT_IS_DDT(objtype)) {
1965 		if (spa->spa_dedup_class->mc_groups != 0)
1966 			return (spa_dedup_class(spa));
1967 		else if (has_special_class && zfs_ddt_data_is_special)
1968 			return (spa_special_class(spa));
1969 		else
1970 			return (spa_normal_class(spa));
1971 	}
1972 
1973 	/* Indirect blocks for user data can land in special if allowed */
1974 	if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
1975 		if (has_special_class && zfs_user_indirect_is_special)
1976 			return (spa_special_class(spa));
1977 		else
1978 			return (spa_normal_class(spa));
1979 	}
1980 
1981 	if (DMU_OT_IS_METADATA(objtype) || level > 0) {
1982 		if (has_special_class)
1983 			return (spa_special_class(spa));
1984 		else
1985 			return (spa_normal_class(spa));
1986 	}
1987 
1988 	/*
1989 	 * Allow small file blocks in special class in some cases (like
1990 	 * for the dRAID vdev feature). But always leave a reserve of
1991 	 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
1992 	 */
1993 	if (DMU_OT_IS_FILE(objtype) &&
1994 	    has_special_class && size <= special_smallblk) {
1995 		metaslab_class_t *special = spa_special_class(spa);
1996 		uint64_t alloc = metaslab_class_get_alloc(special);
1997 		uint64_t space = metaslab_class_get_space(special);
1998 		uint64_t limit =
1999 		    (space * (100 - zfs_special_class_metadata_reserve_pct))
2000 		    / 100;
2001 
2002 		if (alloc < limit)
2003 			return (special);
2004 	}
2005 
2006 	return (spa_normal_class(spa));
2007 }
2008 
2009 void
2010 spa_evicting_os_register(spa_t *spa, objset_t *os)
2011 {
2012 	mutex_enter(&spa->spa_evicting_os_lock);
2013 	list_insert_head(&spa->spa_evicting_os_list, os);
2014 	mutex_exit(&spa->spa_evicting_os_lock);
2015 }
2016 
2017 void
2018 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
2019 {
2020 	mutex_enter(&spa->spa_evicting_os_lock);
2021 	list_remove(&spa->spa_evicting_os_list, os);
2022 	cv_broadcast(&spa->spa_evicting_os_cv);
2023 	mutex_exit(&spa->spa_evicting_os_lock);
2024 }
2025 
2026 void
2027 spa_evicting_os_wait(spa_t *spa)
2028 {
2029 	mutex_enter(&spa->spa_evicting_os_lock);
2030 	while (!list_is_empty(&spa->spa_evicting_os_list))
2031 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
2032 	mutex_exit(&spa->spa_evicting_os_lock);
2033 
2034 	dmu_buf_user_evict_wait();
2035 }
2036 
2037 int
2038 spa_max_replication(spa_t *spa)
2039 {
2040 	/*
2041 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
2042 	 * handle BPs with more than one DVA allocated.  Set our max
2043 	 * replication level accordingly.
2044 	 */
2045 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
2046 		return (1);
2047 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
2048 }
2049 
2050 int
2051 spa_prev_software_version(spa_t *spa)
2052 {
2053 	return (spa->spa_prev_software_version);
2054 }
2055 
2056 uint64_t
2057 spa_deadman_synctime(spa_t *spa)
2058 {
2059 	return (spa->spa_deadman_synctime);
2060 }
2061 
2062 spa_autotrim_t
2063 spa_get_autotrim(spa_t *spa)
2064 {
2065 	return (spa->spa_autotrim);
2066 }
2067 
2068 uint64_t
2069 spa_deadman_ziotime(spa_t *spa)
2070 {
2071 	return (spa->spa_deadman_ziotime);
2072 }
2073 
2074 uint64_t
2075 spa_get_deadman_failmode(spa_t *spa)
2076 {
2077 	return (spa->spa_deadman_failmode);
2078 }
2079 
2080 void
2081 spa_set_deadman_failmode(spa_t *spa, const char *failmode)
2082 {
2083 	if (strcmp(failmode, "wait") == 0)
2084 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2085 	else if (strcmp(failmode, "continue") == 0)
2086 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
2087 	else if (strcmp(failmode, "panic") == 0)
2088 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
2089 	else
2090 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2091 }
2092 
2093 void
2094 spa_set_deadman_ziotime(hrtime_t ns)
2095 {
2096 	spa_t *spa = NULL;
2097 
2098 	if (spa_mode_global != SPA_MODE_UNINIT) {
2099 		mutex_enter(&spa_namespace_lock);
2100 		while ((spa = spa_next(spa)) != NULL)
2101 			spa->spa_deadman_ziotime = ns;
2102 		mutex_exit(&spa_namespace_lock);
2103 	}
2104 }
2105 
2106 void
2107 spa_set_deadman_synctime(hrtime_t ns)
2108 {
2109 	spa_t *spa = NULL;
2110 
2111 	if (spa_mode_global != SPA_MODE_UNINIT) {
2112 		mutex_enter(&spa_namespace_lock);
2113 		while ((spa = spa_next(spa)) != NULL)
2114 			spa->spa_deadman_synctime = ns;
2115 		mutex_exit(&spa_namespace_lock);
2116 	}
2117 }
2118 
2119 uint64_t
2120 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
2121 {
2122 	uint64_t asize = DVA_GET_ASIZE(dva);
2123 	uint64_t dsize = asize;
2124 
2125 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2126 
2127 	if (asize != 0 && spa->spa_deflate) {
2128 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2129 		if (vd != NULL)
2130 			dsize = (asize >> SPA_MINBLOCKSHIFT) *
2131 			    vd->vdev_deflate_ratio;
2132 	}
2133 
2134 	return (dsize);
2135 }
2136 
2137 uint64_t
2138 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
2139 {
2140 	uint64_t dsize = 0;
2141 
2142 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2143 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2144 
2145 	return (dsize);
2146 }
2147 
2148 uint64_t
2149 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
2150 {
2151 	uint64_t dsize = 0;
2152 
2153 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2154 
2155 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2156 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2157 
2158 	spa_config_exit(spa, SCL_VDEV, FTAG);
2159 
2160 	return (dsize);
2161 }
2162 
2163 uint64_t
2164 spa_dirty_data(spa_t *spa)
2165 {
2166 	return (spa->spa_dsl_pool->dp_dirty_total);
2167 }
2168 
2169 /*
2170  * ==========================================================================
2171  * SPA Import Progress Routines
2172  * ==========================================================================
2173  */
2174 
2175 typedef struct spa_import_progress {
2176 	uint64_t		pool_guid;	/* unique id for updates */
2177 	char			*pool_name;
2178 	spa_load_state_t	spa_load_state;
2179 	uint64_t		mmp_sec_remaining;	/* MMP activity check */
2180 	uint64_t		spa_load_max_txg;	/* rewind txg */
2181 	procfs_list_node_t	smh_node;
2182 } spa_import_progress_t;
2183 
2184 spa_history_list_t *spa_import_progress_list = NULL;
2185 
2186 static int
2187 spa_import_progress_show_header(struct seq_file *f)
2188 {
2189 	seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid",
2190 	    "load_state", "multihost_secs", "max_txg",
2191 	    "pool_name");
2192 	return (0);
2193 }
2194 
2195 static int
2196 spa_import_progress_show(struct seq_file *f, void *data)
2197 {
2198 	spa_import_progress_t *sip = (spa_import_progress_t *)data;
2199 
2200 	seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n",
2201 	    (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state,
2202 	    (u_longlong_t)sip->mmp_sec_remaining,
2203 	    (u_longlong_t)sip->spa_load_max_txg,
2204 	    (sip->pool_name ? sip->pool_name : "-"));
2205 
2206 	return (0);
2207 }
2208 
2209 /* Remove oldest elements from list until there are no more than 'size' left */
2210 static void
2211 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size)
2212 {
2213 	spa_import_progress_t *sip;
2214 	while (shl->size > size) {
2215 		sip = list_remove_head(&shl->procfs_list.pl_list);
2216 		if (sip->pool_name)
2217 			spa_strfree(sip->pool_name);
2218 		kmem_free(sip, sizeof (spa_import_progress_t));
2219 		shl->size--;
2220 	}
2221 
2222 	IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list));
2223 }
2224 
2225 static void
2226 spa_import_progress_init(void)
2227 {
2228 	spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t),
2229 	    KM_SLEEP);
2230 
2231 	spa_import_progress_list->size = 0;
2232 
2233 	spa_import_progress_list->procfs_list.pl_private =
2234 	    spa_import_progress_list;
2235 
2236 	procfs_list_install("zfs",
2237 	    NULL,
2238 	    "import_progress",
2239 	    0644,
2240 	    &spa_import_progress_list->procfs_list,
2241 	    spa_import_progress_show,
2242 	    spa_import_progress_show_header,
2243 	    NULL,
2244 	    offsetof(spa_import_progress_t, smh_node));
2245 }
2246 
2247 static void
2248 spa_import_progress_destroy(void)
2249 {
2250 	spa_history_list_t *shl = spa_import_progress_list;
2251 	procfs_list_uninstall(&shl->procfs_list);
2252 	spa_import_progress_truncate(shl, 0);
2253 	procfs_list_destroy(&shl->procfs_list);
2254 	kmem_free(shl, sizeof (spa_history_list_t));
2255 }
2256 
2257 int
2258 spa_import_progress_set_state(uint64_t pool_guid,
2259     spa_load_state_t load_state)
2260 {
2261 	spa_history_list_t *shl = spa_import_progress_list;
2262 	spa_import_progress_t *sip;
2263 	int error = ENOENT;
2264 
2265 	if (shl->size == 0)
2266 		return (0);
2267 
2268 	mutex_enter(&shl->procfs_list.pl_lock);
2269 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2270 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2271 		if (sip->pool_guid == pool_guid) {
2272 			sip->spa_load_state = load_state;
2273 			error = 0;
2274 			break;
2275 		}
2276 	}
2277 	mutex_exit(&shl->procfs_list.pl_lock);
2278 
2279 	return (error);
2280 }
2281 
2282 int
2283 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg)
2284 {
2285 	spa_history_list_t *shl = spa_import_progress_list;
2286 	spa_import_progress_t *sip;
2287 	int error = ENOENT;
2288 
2289 	if (shl->size == 0)
2290 		return (0);
2291 
2292 	mutex_enter(&shl->procfs_list.pl_lock);
2293 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2294 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2295 		if (sip->pool_guid == pool_guid) {
2296 			sip->spa_load_max_txg = load_max_txg;
2297 			error = 0;
2298 			break;
2299 		}
2300 	}
2301 	mutex_exit(&shl->procfs_list.pl_lock);
2302 
2303 	return (error);
2304 }
2305 
2306 int
2307 spa_import_progress_set_mmp_check(uint64_t pool_guid,
2308     uint64_t mmp_sec_remaining)
2309 {
2310 	spa_history_list_t *shl = spa_import_progress_list;
2311 	spa_import_progress_t *sip;
2312 	int error = ENOENT;
2313 
2314 	if (shl->size == 0)
2315 		return (0);
2316 
2317 	mutex_enter(&shl->procfs_list.pl_lock);
2318 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2319 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2320 		if (sip->pool_guid == pool_guid) {
2321 			sip->mmp_sec_remaining = mmp_sec_remaining;
2322 			error = 0;
2323 			break;
2324 		}
2325 	}
2326 	mutex_exit(&shl->procfs_list.pl_lock);
2327 
2328 	return (error);
2329 }
2330 
2331 /*
2332  * A new import is in progress, add an entry.
2333  */
2334 void
2335 spa_import_progress_add(spa_t *spa)
2336 {
2337 	spa_history_list_t *shl = spa_import_progress_list;
2338 	spa_import_progress_t *sip;
2339 	const char *poolname = NULL;
2340 
2341 	sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP);
2342 	sip->pool_guid = spa_guid(spa);
2343 
2344 	(void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
2345 	    &poolname);
2346 	if (poolname == NULL)
2347 		poolname = spa_name(spa);
2348 	sip->pool_name = spa_strdup(poolname);
2349 	sip->spa_load_state = spa_load_state(spa);
2350 
2351 	mutex_enter(&shl->procfs_list.pl_lock);
2352 	procfs_list_add(&shl->procfs_list, sip);
2353 	shl->size++;
2354 	mutex_exit(&shl->procfs_list.pl_lock);
2355 }
2356 
2357 void
2358 spa_import_progress_remove(uint64_t pool_guid)
2359 {
2360 	spa_history_list_t *shl = spa_import_progress_list;
2361 	spa_import_progress_t *sip;
2362 
2363 	mutex_enter(&shl->procfs_list.pl_lock);
2364 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2365 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2366 		if (sip->pool_guid == pool_guid) {
2367 			if (sip->pool_name)
2368 				spa_strfree(sip->pool_name);
2369 			list_remove(&shl->procfs_list.pl_list, sip);
2370 			shl->size--;
2371 			kmem_free(sip, sizeof (spa_import_progress_t));
2372 			break;
2373 		}
2374 	}
2375 	mutex_exit(&shl->procfs_list.pl_lock);
2376 }
2377 
2378 /*
2379  * ==========================================================================
2380  * Initialization and Termination
2381  * ==========================================================================
2382  */
2383 
2384 static int
2385 spa_name_compare(const void *a1, const void *a2)
2386 {
2387 	const spa_t *s1 = a1;
2388 	const spa_t *s2 = a2;
2389 	int s;
2390 
2391 	s = strcmp(s1->spa_name, s2->spa_name);
2392 
2393 	return (TREE_ISIGN(s));
2394 }
2395 
2396 void
2397 spa_boot_init(void)
2398 {
2399 	spa_config_load();
2400 }
2401 
2402 void
2403 spa_init(spa_mode_t mode)
2404 {
2405 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2406 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2407 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2408 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2409 
2410 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2411 	    offsetof(spa_t, spa_avl));
2412 
2413 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2414 	    offsetof(spa_aux_t, aux_avl));
2415 
2416 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2417 	    offsetof(spa_aux_t, aux_avl));
2418 
2419 	spa_mode_global = mode;
2420 
2421 #ifndef _KERNEL
2422 	if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) {
2423 		struct sigaction sa;
2424 
2425 		sa.sa_flags = SA_SIGINFO;
2426 		sigemptyset(&sa.sa_mask);
2427 		sa.sa_sigaction = arc_buf_sigsegv;
2428 
2429 		if (sigaction(SIGSEGV, &sa, NULL) == -1) {
2430 			perror("could not enable watchpoints: "
2431 			    "sigaction(SIGSEGV, ...) = ");
2432 		} else {
2433 			arc_watch = B_TRUE;
2434 		}
2435 	}
2436 #endif
2437 
2438 	fm_init();
2439 	zfs_refcount_init();
2440 	unique_init();
2441 	zfs_btree_init();
2442 	metaslab_stat_init();
2443 	brt_init();
2444 	ddt_init();
2445 	zio_init();
2446 	dmu_init();
2447 	zil_init();
2448 	vdev_mirror_stat_init();
2449 	vdev_raidz_math_init();
2450 	vdev_file_init();
2451 	zfs_prop_init();
2452 	chksum_init();
2453 	zpool_prop_init();
2454 	zpool_feature_init();
2455 	spa_config_load();
2456 	vdev_prop_init();
2457 	l2arc_start();
2458 	scan_init();
2459 	qat_init();
2460 	spa_import_progress_init();
2461 }
2462 
2463 void
2464 spa_fini(void)
2465 {
2466 	l2arc_stop();
2467 
2468 	spa_evict_all();
2469 
2470 	vdev_file_fini();
2471 	vdev_mirror_stat_fini();
2472 	vdev_raidz_math_fini();
2473 	chksum_fini();
2474 	zil_fini();
2475 	dmu_fini();
2476 	zio_fini();
2477 	ddt_fini();
2478 	brt_fini();
2479 	metaslab_stat_fini();
2480 	zfs_btree_fini();
2481 	unique_fini();
2482 	zfs_refcount_fini();
2483 	fm_fini();
2484 	scan_fini();
2485 	qat_fini();
2486 	spa_import_progress_destroy();
2487 
2488 	avl_destroy(&spa_namespace_avl);
2489 	avl_destroy(&spa_spare_avl);
2490 	avl_destroy(&spa_l2cache_avl);
2491 
2492 	cv_destroy(&spa_namespace_cv);
2493 	mutex_destroy(&spa_namespace_lock);
2494 	mutex_destroy(&spa_spare_lock);
2495 	mutex_destroy(&spa_l2cache_lock);
2496 }
2497 
2498 /*
2499  * Return whether this pool has a dedicated slog device. No locking needed.
2500  * It's not a problem if the wrong answer is returned as it's only for
2501  * performance and not correctness.
2502  */
2503 boolean_t
2504 spa_has_slogs(spa_t *spa)
2505 {
2506 	return (spa->spa_log_class->mc_groups != 0);
2507 }
2508 
2509 spa_log_state_t
2510 spa_get_log_state(spa_t *spa)
2511 {
2512 	return (spa->spa_log_state);
2513 }
2514 
2515 void
2516 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2517 {
2518 	spa->spa_log_state = state;
2519 }
2520 
2521 boolean_t
2522 spa_is_root(spa_t *spa)
2523 {
2524 	return (spa->spa_is_root);
2525 }
2526 
2527 boolean_t
2528 spa_writeable(spa_t *spa)
2529 {
2530 	return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config);
2531 }
2532 
2533 /*
2534  * Returns true if there is a pending sync task in any of the current
2535  * syncing txg, the current quiescing txg, or the current open txg.
2536  */
2537 boolean_t
2538 spa_has_pending_synctask(spa_t *spa)
2539 {
2540 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2541 	    !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2542 }
2543 
2544 spa_mode_t
2545 spa_mode(spa_t *spa)
2546 {
2547 	return (spa->spa_mode);
2548 }
2549 
2550 uint64_t
2551 spa_bootfs(spa_t *spa)
2552 {
2553 	return (spa->spa_bootfs);
2554 }
2555 
2556 uint64_t
2557 spa_delegation(spa_t *spa)
2558 {
2559 	return (spa->spa_delegation);
2560 }
2561 
2562 objset_t *
2563 spa_meta_objset(spa_t *spa)
2564 {
2565 	return (spa->spa_meta_objset);
2566 }
2567 
2568 enum zio_checksum
2569 spa_dedup_checksum(spa_t *spa)
2570 {
2571 	return (spa->spa_dedup_checksum);
2572 }
2573 
2574 /*
2575  * Reset pool scan stat per scan pass (or reboot).
2576  */
2577 void
2578 spa_scan_stat_init(spa_t *spa)
2579 {
2580 	/* data not stored on disk */
2581 	spa->spa_scan_pass_start = gethrestime_sec();
2582 	if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2583 		spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2584 	else
2585 		spa->spa_scan_pass_scrub_pause = 0;
2586 
2587 	if (dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan))
2588 		spa->spa_scan_pass_errorscrub_pause = spa->spa_scan_pass_start;
2589 	else
2590 		spa->spa_scan_pass_errorscrub_pause = 0;
2591 
2592 	spa->spa_scan_pass_scrub_spent_paused = 0;
2593 	spa->spa_scan_pass_exam = 0;
2594 	spa->spa_scan_pass_issued = 0;
2595 
2596 	// error scrub stats
2597 	spa->spa_scan_pass_errorscrub_spent_paused = 0;
2598 }
2599 
2600 /*
2601  * Get scan stats for zpool status reports
2602  */
2603 int
2604 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2605 {
2606 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2607 
2608 	if (scn == NULL || (scn->scn_phys.scn_func == POOL_SCAN_NONE &&
2609 	    scn->errorscrub_phys.dep_func == POOL_SCAN_NONE))
2610 		return (SET_ERROR(ENOENT));
2611 
2612 	memset(ps, 0, sizeof (pool_scan_stat_t));
2613 
2614 	/* data stored on disk */
2615 	ps->pss_func = scn->scn_phys.scn_func;
2616 	ps->pss_state = scn->scn_phys.scn_state;
2617 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2618 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2619 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2620 	ps->pss_examined = scn->scn_phys.scn_examined;
2621 	ps->pss_skipped = scn->scn_phys.scn_skipped;
2622 	ps->pss_processed = scn->scn_phys.scn_processed;
2623 	ps->pss_errors = scn->scn_phys.scn_errors;
2624 
2625 	/* data not stored on disk */
2626 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2627 	ps->pss_pass_start = spa->spa_scan_pass_start;
2628 	ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2629 	ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2630 	ps->pss_pass_issued = spa->spa_scan_pass_issued;
2631 	ps->pss_issued =
2632 	    scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2633 
2634 	/* error scrub data stored on disk */
2635 	ps->pss_error_scrub_func = scn->errorscrub_phys.dep_func;
2636 	ps->pss_error_scrub_state = scn->errorscrub_phys.dep_state;
2637 	ps->pss_error_scrub_start = scn->errorscrub_phys.dep_start_time;
2638 	ps->pss_error_scrub_end = scn->errorscrub_phys.dep_end_time;
2639 	ps->pss_error_scrub_examined = scn->errorscrub_phys.dep_examined;
2640 	ps->pss_error_scrub_to_be_examined =
2641 	    scn->errorscrub_phys.dep_to_examine;
2642 
2643 	/* error scrub data not stored on disk */
2644 	ps->pss_pass_error_scrub_pause = spa->spa_scan_pass_errorscrub_pause;
2645 
2646 	return (0);
2647 }
2648 
2649 int
2650 spa_maxblocksize(spa_t *spa)
2651 {
2652 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2653 		return (SPA_MAXBLOCKSIZE);
2654 	else
2655 		return (SPA_OLD_MAXBLOCKSIZE);
2656 }
2657 
2658 
2659 /*
2660  * Returns the txg that the last device removal completed. No indirect mappings
2661  * have been added since this txg.
2662  */
2663 uint64_t
2664 spa_get_last_removal_txg(spa_t *spa)
2665 {
2666 	uint64_t vdevid;
2667 	uint64_t ret = -1ULL;
2668 
2669 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2670 	/*
2671 	 * sr_prev_indirect_vdev is only modified while holding all the
2672 	 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2673 	 * examining it.
2674 	 */
2675 	vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2676 
2677 	while (vdevid != -1ULL) {
2678 		vdev_t *vd = vdev_lookup_top(spa, vdevid);
2679 		vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2680 
2681 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2682 
2683 		/*
2684 		 * If the removal did not remap any data, we don't care.
2685 		 */
2686 		if (vdev_indirect_births_count(vib) != 0) {
2687 			ret = vdev_indirect_births_last_entry_txg(vib);
2688 			break;
2689 		}
2690 
2691 		vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2692 	}
2693 	spa_config_exit(spa, SCL_VDEV, FTAG);
2694 
2695 	IMPLY(ret != -1ULL,
2696 	    spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2697 
2698 	return (ret);
2699 }
2700 
2701 int
2702 spa_maxdnodesize(spa_t *spa)
2703 {
2704 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2705 		return (DNODE_MAX_SIZE);
2706 	else
2707 		return (DNODE_MIN_SIZE);
2708 }
2709 
2710 boolean_t
2711 spa_multihost(spa_t *spa)
2712 {
2713 	return (spa->spa_multihost ? B_TRUE : B_FALSE);
2714 }
2715 
2716 uint32_t
2717 spa_get_hostid(spa_t *spa)
2718 {
2719 	return (spa->spa_hostid);
2720 }
2721 
2722 boolean_t
2723 spa_trust_config(spa_t *spa)
2724 {
2725 	return (spa->spa_trust_config);
2726 }
2727 
2728 uint64_t
2729 spa_missing_tvds_allowed(spa_t *spa)
2730 {
2731 	return (spa->spa_missing_tvds_allowed);
2732 }
2733 
2734 space_map_t *
2735 spa_syncing_log_sm(spa_t *spa)
2736 {
2737 	return (spa->spa_syncing_log_sm);
2738 }
2739 
2740 void
2741 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2742 {
2743 	spa->spa_missing_tvds = missing;
2744 }
2745 
2746 /*
2747  * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
2748  */
2749 const char *
2750 spa_state_to_name(spa_t *spa)
2751 {
2752 	ASSERT3P(spa, !=, NULL);
2753 
2754 	/*
2755 	 * it is possible for the spa to exist, without root vdev
2756 	 * as the spa transitions during import/export
2757 	 */
2758 	vdev_t *rvd = spa->spa_root_vdev;
2759 	if (rvd == NULL) {
2760 		return ("TRANSITIONING");
2761 	}
2762 	vdev_state_t state = rvd->vdev_state;
2763 	vdev_aux_t aux = rvd->vdev_stat.vs_aux;
2764 
2765 	if (spa_suspended(spa) &&
2766 	    (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE))
2767 		return ("SUSPENDED");
2768 
2769 	switch (state) {
2770 	case VDEV_STATE_CLOSED:
2771 	case VDEV_STATE_OFFLINE:
2772 		return ("OFFLINE");
2773 	case VDEV_STATE_REMOVED:
2774 		return ("REMOVED");
2775 	case VDEV_STATE_CANT_OPEN:
2776 		if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
2777 			return ("FAULTED");
2778 		else if (aux == VDEV_AUX_SPLIT_POOL)
2779 			return ("SPLIT");
2780 		else
2781 			return ("UNAVAIL");
2782 	case VDEV_STATE_FAULTED:
2783 		return ("FAULTED");
2784 	case VDEV_STATE_DEGRADED:
2785 		return ("DEGRADED");
2786 	case VDEV_STATE_HEALTHY:
2787 		return ("ONLINE");
2788 	default:
2789 		break;
2790 	}
2791 
2792 	return ("UNKNOWN");
2793 }
2794 
2795 boolean_t
2796 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2797 {
2798 	vdev_t *rvd = spa->spa_root_vdev;
2799 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2800 		if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2801 			return (B_FALSE);
2802 	}
2803 	return (B_TRUE);
2804 }
2805 
2806 boolean_t
2807 spa_has_checkpoint(spa_t *spa)
2808 {
2809 	return (spa->spa_checkpoint_txg != 0);
2810 }
2811 
2812 boolean_t
2813 spa_importing_readonly_checkpoint(spa_t *spa)
2814 {
2815 	return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2816 	    spa->spa_mode == SPA_MODE_READ);
2817 }
2818 
2819 uint64_t
2820 spa_min_claim_txg(spa_t *spa)
2821 {
2822 	uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2823 
2824 	if (checkpoint_txg != 0)
2825 		return (checkpoint_txg + 1);
2826 
2827 	return (spa->spa_first_txg);
2828 }
2829 
2830 /*
2831  * If there is a checkpoint, async destroys may consume more space from
2832  * the pool instead of freeing it. In an attempt to save the pool from
2833  * getting suspended when it is about to run out of space, we stop
2834  * processing async destroys.
2835  */
2836 boolean_t
2837 spa_suspend_async_destroy(spa_t *spa)
2838 {
2839 	dsl_pool_t *dp = spa_get_dsl(spa);
2840 
2841 	uint64_t unreserved = dsl_pool_unreserved_space(dp,
2842 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
2843 	uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2844 	uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2845 
2846 	if (spa_has_checkpoint(spa) && avail == 0)
2847 		return (B_TRUE);
2848 
2849 	return (B_FALSE);
2850 }
2851 
2852 #if defined(_KERNEL)
2853 
2854 int
2855 param_set_deadman_failmode_common(const char *val)
2856 {
2857 	spa_t *spa = NULL;
2858 	char *p;
2859 
2860 	if (val == NULL)
2861 		return (SET_ERROR(EINVAL));
2862 
2863 	if ((p = strchr(val, '\n')) != NULL)
2864 		*p = '\0';
2865 
2866 	if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
2867 	    strcmp(val, "panic"))
2868 		return (SET_ERROR(EINVAL));
2869 
2870 	if (spa_mode_global != SPA_MODE_UNINIT) {
2871 		mutex_enter(&spa_namespace_lock);
2872 		while ((spa = spa_next(spa)) != NULL)
2873 			spa_set_deadman_failmode(spa, val);
2874 		mutex_exit(&spa_namespace_lock);
2875 	}
2876 
2877 	return (0);
2878 }
2879 #endif
2880 
2881 /* Namespace manipulation */
2882 EXPORT_SYMBOL(spa_lookup);
2883 EXPORT_SYMBOL(spa_add);
2884 EXPORT_SYMBOL(spa_remove);
2885 EXPORT_SYMBOL(spa_next);
2886 
2887 /* Refcount functions */
2888 EXPORT_SYMBOL(spa_open_ref);
2889 EXPORT_SYMBOL(spa_close);
2890 EXPORT_SYMBOL(spa_refcount_zero);
2891 
2892 /* Pool configuration lock */
2893 EXPORT_SYMBOL(spa_config_tryenter);
2894 EXPORT_SYMBOL(spa_config_enter);
2895 EXPORT_SYMBOL(spa_config_exit);
2896 EXPORT_SYMBOL(spa_config_held);
2897 
2898 /* Pool vdev add/remove lock */
2899 EXPORT_SYMBOL(spa_vdev_enter);
2900 EXPORT_SYMBOL(spa_vdev_exit);
2901 
2902 /* Pool vdev state change lock */
2903 EXPORT_SYMBOL(spa_vdev_state_enter);
2904 EXPORT_SYMBOL(spa_vdev_state_exit);
2905 
2906 /* Accessor functions */
2907 EXPORT_SYMBOL(spa_shutting_down);
2908 EXPORT_SYMBOL(spa_get_dsl);
2909 EXPORT_SYMBOL(spa_get_rootblkptr);
2910 EXPORT_SYMBOL(spa_set_rootblkptr);
2911 EXPORT_SYMBOL(spa_altroot);
2912 EXPORT_SYMBOL(spa_sync_pass);
2913 EXPORT_SYMBOL(spa_name);
2914 EXPORT_SYMBOL(spa_guid);
2915 EXPORT_SYMBOL(spa_last_synced_txg);
2916 EXPORT_SYMBOL(spa_first_txg);
2917 EXPORT_SYMBOL(spa_syncing_txg);
2918 EXPORT_SYMBOL(spa_version);
2919 EXPORT_SYMBOL(spa_state);
2920 EXPORT_SYMBOL(spa_load_state);
2921 EXPORT_SYMBOL(spa_freeze_txg);
2922 EXPORT_SYMBOL(spa_get_dspace);
2923 EXPORT_SYMBOL(spa_update_dspace);
2924 EXPORT_SYMBOL(spa_deflate);
2925 EXPORT_SYMBOL(spa_normal_class);
2926 EXPORT_SYMBOL(spa_log_class);
2927 EXPORT_SYMBOL(spa_special_class);
2928 EXPORT_SYMBOL(spa_preferred_class);
2929 EXPORT_SYMBOL(spa_max_replication);
2930 EXPORT_SYMBOL(spa_prev_software_version);
2931 EXPORT_SYMBOL(spa_get_failmode);
2932 EXPORT_SYMBOL(spa_suspended);
2933 EXPORT_SYMBOL(spa_bootfs);
2934 EXPORT_SYMBOL(spa_delegation);
2935 EXPORT_SYMBOL(spa_meta_objset);
2936 EXPORT_SYMBOL(spa_maxblocksize);
2937 EXPORT_SYMBOL(spa_maxdnodesize);
2938 
2939 /* Miscellaneous support routines */
2940 EXPORT_SYMBOL(spa_guid_exists);
2941 EXPORT_SYMBOL(spa_strdup);
2942 EXPORT_SYMBOL(spa_strfree);
2943 EXPORT_SYMBOL(spa_generate_guid);
2944 EXPORT_SYMBOL(snprintf_blkptr);
2945 EXPORT_SYMBOL(spa_freeze);
2946 EXPORT_SYMBOL(spa_upgrade);
2947 EXPORT_SYMBOL(spa_evict_all);
2948 EXPORT_SYMBOL(spa_lookup_by_guid);
2949 EXPORT_SYMBOL(spa_has_spare);
2950 EXPORT_SYMBOL(dva_get_dsize_sync);
2951 EXPORT_SYMBOL(bp_get_dsize_sync);
2952 EXPORT_SYMBOL(bp_get_dsize);
2953 EXPORT_SYMBOL(spa_has_slogs);
2954 EXPORT_SYMBOL(spa_is_root);
2955 EXPORT_SYMBOL(spa_writeable);
2956 EXPORT_SYMBOL(spa_mode);
2957 EXPORT_SYMBOL(spa_namespace_lock);
2958 EXPORT_SYMBOL(spa_trust_config);
2959 EXPORT_SYMBOL(spa_missing_tvds_allowed);
2960 EXPORT_SYMBOL(spa_set_missing_tvds);
2961 EXPORT_SYMBOL(spa_state_to_name);
2962 EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
2963 EXPORT_SYMBOL(spa_min_claim_txg);
2964 EXPORT_SYMBOL(spa_suspend_async_destroy);
2965 EXPORT_SYMBOL(spa_has_checkpoint);
2966 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
2967 
2968 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW,
2969 	"Set additional debugging flags");
2970 
2971 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW,
2972 	"Set to attempt to recover from fatal errors");
2973 
2974 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW,
2975 	"Set to ignore IO errors during free and permanently leak the space");
2976 
2977 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, U64, ZMOD_RW,
2978 	"Dead I/O check interval in milliseconds");
2979 
2980 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW,
2981 	"Enable deadman timer");
2982 
2983 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, UINT, ZMOD_RW,
2984 	"SPA size estimate multiplication factor");
2985 
2986 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW,
2987 	"Place DDT data into the special class");
2988 
2989 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW,
2990 	"Place user data indirect blocks into the special class");
2991 
2992 /* BEGIN CSTYLED */
2993 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode,
2994 	param_set_deadman_failmode, param_get_charp, ZMOD_RW,
2995 	"Failmode for deadman timer");
2996 
2997 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms,
2998 	param_set_deadman_synctime, spl_param_get_u64, ZMOD_RW,
2999 	"Pool sync expiration time in milliseconds");
3000 
3001 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms,
3002 	param_set_deadman_ziotime, spl_param_get_u64, ZMOD_RW,
3003 	"IO expiration time in milliseconds");
3004 
3005 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, UINT, ZMOD_RW,
3006 	"Small file blocks in special vdevs depends on this much "
3007 	"free space available");
3008 /* END CSTYLED */
3009 
3010 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift,
3011 	param_get_uint, ZMOD_RW, "Reserved free space in pool");
3012