1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2013 Saso Kiselkov. All rights reserved. 27 * Copyright (c) 2017 Datto Inc. 28 * Copyright (c) 2017, Intel Corporation. 29 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 30 * Copyright (c) 2023, Klara Inc. 31 */ 32 33 #include <sys/zfs_context.h> 34 #include <sys/zfs_chksum.h> 35 #include <sys/spa_impl.h> 36 #include <sys/zio.h> 37 #include <sys/zio_checksum.h> 38 #include <sys/zio_compress.h> 39 #include <sys/dmu.h> 40 #include <sys/dmu_tx.h> 41 #include <sys/zap.h> 42 #include <sys/zil.h> 43 #include <sys/vdev_impl.h> 44 #include <sys/vdev_initialize.h> 45 #include <sys/vdev_trim.h> 46 #include <sys/vdev_file.h> 47 #include <sys/vdev_raidz.h> 48 #include <sys/metaslab.h> 49 #include <sys/uberblock_impl.h> 50 #include <sys/txg.h> 51 #include <sys/avl.h> 52 #include <sys/unique.h> 53 #include <sys/dsl_pool.h> 54 #include <sys/dsl_dir.h> 55 #include <sys/dsl_prop.h> 56 #include <sys/fm/util.h> 57 #include <sys/dsl_scan.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/metaslab_impl.h> 60 #include <sys/arc.h> 61 #include <sys/brt.h> 62 #include <sys/ddt.h> 63 #include <sys/kstat.h> 64 #include "zfs_prop.h" 65 #include <sys/btree.h> 66 #include <sys/zfeature.h> 67 #include <sys/qat.h> 68 #include <sys/zstd/zstd.h> 69 70 /* 71 * SPA locking 72 * 73 * There are three basic locks for managing spa_t structures: 74 * 75 * spa_namespace_lock (global mutex) 76 * 77 * This lock must be acquired to do any of the following: 78 * 79 * - Lookup a spa_t by name 80 * - Add or remove a spa_t from the namespace 81 * - Increase spa_refcount from non-zero 82 * - Check if spa_refcount is zero 83 * - Rename a spa_t 84 * - add/remove/attach/detach devices 85 * - Held for the duration of create/destroy/import/export 86 * 87 * It does not need to handle recursion. A create or destroy may 88 * reference objects (files or zvols) in other pools, but by 89 * definition they must have an existing reference, and will never need 90 * to lookup a spa_t by name. 91 * 92 * spa_refcount (per-spa zfs_refcount_t protected by mutex) 93 * 94 * This reference count keep track of any active users of the spa_t. The 95 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 96 * the refcount is never really 'zero' - opening a pool implicitly keeps 97 * some references in the DMU. Internally we check against spa_minref, but 98 * present the image of a zero/non-zero value to consumers. 99 * 100 * spa_config_lock[] (per-spa array of rwlocks) 101 * 102 * This protects the spa_t from config changes, and must be held in 103 * the following circumstances: 104 * 105 * - RW_READER to perform I/O to the spa 106 * - RW_WRITER to change the vdev config 107 * 108 * The locking order is fairly straightforward: 109 * 110 * spa_namespace_lock -> spa_refcount 111 * 112 * The namespace lock must be acquired to increase the refcount from 0 113 * or to check if it is zero. 114 * 115 * spa_refcount -> spa_config_lock[] 116 * 117 * There must be at least one valid reference on the spa_t to acquire 118 * the config lock. 119 * 120 * spa_namespace_lock -> spa_config_lock[] 121 * 122 * The namespace lock must always be taken before the config lock. 123 * 124 * 125 * The spa_namespace_lock can be acquired directly and is globally visible. 126 * 127 * The namespace is manipulated using the following functions, all of which 128 * require the spa_namespace_lock to be held. 129 * 130 * spa_lookup() Lookup a spa_t by name. 131 * 132 * spa_add() Create a new spa_t in the namespace. 133 * 134 * spa_remove() Remove a spa_t from the namespace. This also 135 * frees up any memory associated with the spa_t. 136 * 137 * spa_next() Returns the next spa_t in the system, or the 138 * first if NULL is passed. 139 * 140 * spa_evict_all() Shutdown and remove all spa_t structures in 141 * the system. 142 * 143 * spa_guid_exists() Determine whether a pool/device guid exists. 144 * 145 * The spa_refcount is manipulated using the following functions: 146 * 147 * spa_open_ref() Adds a reference to the given spa_t. Must be 148 * called with spa_namespace_lock held if the 149 * refcount is currently zero. 150 * 151 * spa_close() Remove a reference from the spa_t. This will 152 * not free the spa_t or remove it from the 153 * namespace. No locking is required. 154 * 155 * spa_refcount_zero() Returns true if the refcount is currently 156 * zero. Must be called with spa_namespace_lock 157 * held. 158 * 159 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 160 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 161 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 162 * 163 * To read the configuration, it suffices to hold one of these locks as reader. 164 * To modify the configuration, you must hold all locks as writer. To modify 165 * vdev state without altering the vdev tree's topology (e.g. online/offline), 166 * you must hold SCL_STATE and SCL_ZIO as writer. 167 * 168 * We use these distinct config locks to avoid recursive lock entry. 169 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 170 * block allocations (SCL_ALLOC), which may require reading space maps 171 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 172 * 173 * The spa config locks cannot be normal rwlocks because we need the 174 * ability to hand off ownership. For example, SCL_ZIO is acquired 175 * by the issuing thread and later released by an interrupt thread. 176 * They do, however, obey the usual write-wanted semantics to prevent 177 * writer (i.e. system administrator) starvation. 178 * 179 * The lock acquisition rules are as follows: 180 * 181 * SCL_CONFIG 182 * Protects changes to the vdev tree topology, such as vdev 183 * add/remove/attach/detach. Protects the dirty config list 184 * (spa_config_dirty_list) and the set of spares and l2arc devices. 185 * 186 * SCL_STATE 187 * Protects changes to pool state and vdev state, such as vdev 188 * online/offline/fault/degrade/clear. Protects the dirty state list 189 * (spa_state_dirty_list) and global pool state (spa_state). 190 * 191 * SCL_ALLOC 192 * Protects changes to metaslab groups and classes. 193 * Held as reader by metaslab_alloc() and metaslab_claim(). 194 * 195 * SCL_ZIO 196 * Held by bp-level zios (those which have no io_vd upon entry) 197 * to prevent changes to the vdev tree. The bp-level zio implicitly 198 * protects all of its vdev child zios, which do not hold SCL_ZIO. 199 * 200 * SCL_FREE 201 * Protects changes to metaslab groups and classes. 202 * Held as reader by metaslab_free(). SCL_FREE is distinct from 203 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 204 * blocks in zio_done() while another i/o that holds either 205 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 206 * 207 * SCL_VDEV 208 * Held as reader to prevent changes to the vdev tree during trivial 209 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 210 * other locks, and lower than all of them, to ensure that it's safe 211 * to acquire regardless of caller context. 212 * 213 * In addition, the following rules apply: 214 * 215 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 216 * The lock ordering is SCL_CONFIG > spa_props_lock. 217 * 218 * (b) I/O operations on leaf vdevs. For any zio operation that takes 219 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 220 * or zio_write_phys() -- the caller must ensure that the config cannot 221 * cannot change in the interim, and that the vdev cannot be reopened. 222 * SCL_STATE as reader suffices for both. 223 * 224 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 225 * 226 * spa_vdev_enter() Acquire the namespace lock and the config lock 227 * for writing. 228 * 229 * spa_vdev_exit() Release the config lock, wait for all I/O 230 * to complete, sync the updated configs to the 231 * cache, and release the namespace lock. 232 * 233 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 234 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 235 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 236 */ 237 238 static avl_tree_t spa_namespace_avl; 239 kmutex_t spa_namespace_lock; 240 static kcondvar_t spa_namespace_cv; 241 static const int spa_max_replication_override = SPA_DVAS_PER_BP; 242 243 static kmutex_t spa_spare_lock; 244 static avl_tree_t spa_spare_avl; 245 static kmutex_t spa_l2cache_lock; 246 static avl_tree_t spa_l2cache_avl; 247 248 spa_mode_t spa_mode_global = SPA_MODE_UNINIT; 249 250 #ifdef ZFS_DEBUG 251 /* 252 * Everything except dprintf, set_error, spa, and indirect_remap is on 253 * by default in debug builds. 254 */ 255 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR | 256 ZFS_DEBUG_INDIRECT_REMAP); 257 #else 258 int zfs_flags = 0; 259 #endif 260 261 /* 262 * zfs_recover can be set to nonzero to attempt to recover from 263 * otherwise-fatal errors, typically caused by on-disk corruption. When 264 * set, calls to zfs_panic_recover() will turn into warning messages. 265 * This should only be used as a last resort, as it typically results 266 * in leaked space, or worse. 267 */ 268 int zfs_recover = B_FALSE; 269 270 /* 271 * If destroy encounters an EIO while reading metadata (e.g. indirect 272 * blocks), space referenced by the missing metadata can not be freed. 273 * Normally this causes the background destroy to become "stalled", as 274 * it is unable to make forward progress. While in this stalled state, 275 * all remaining space to free from the error-encountering filesystem is 276 * "temporarily leaked". Set this flag to cause it to ignore the EIO, 277 * permanently leak the space from indirect blocks that can not be read, 278 * and continue to free everything else that it can. 279 * 280 * The default, "stalling" behavior is useful if the storage partially 281 * fails (i.e. some but not all i/os fail), and then later recovers. In 282 * this case, we will be able to continue pool operations while it is 283 * partially failed, and when it recovers, we can continue to free the 284 * space, with no leaks. However, note that this case is actually 285 * fairly rare. 286 * 287 * Typically pools either (a) fail completely (but perhaps temporarily, 288 * e.g. a top-level vdev going offline), or (b) have localized, 289 * permanent errors (e.g. disk returns the wrong data due to bit flip or 290 * firmware bug). In case (a), this setting does not matter because the 291 * pool will be suspended and the sync thread will not be able to make 292 * forward progress regardless. In case (b), because the error is 293 * permanent, the best we can do is leak the minimum amount of space, 294 * which is what setting this flag will do. Therefore, it is reasonable 295 * for this flag to normally be set, but we chose the more conservative 296 * approach of not setting it, so that there is no possibility of 297 * leaking space in the "partial temporary" failure case. 298 */ 299 int zfs_free_leak_on_eio = B_FALSE; 300 301 /* 302 * Expiration time in milliseconds. This value has two meanings. First it is 303 * used to determine when the spa_deadman() logic should fire. By default the 304 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds. 305 * Secondly, the value determines if an I/O is considered "hung". Any I/O that 306 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting 307 * in one of three behaviors controlled by zfs_deadman_failmode. 308 */ 309 uint64_t zfs_deadman_synctime_ms = 600000UL; /* 10 min. */ 310 311 /* 312 * This value controls the maximum amount of time zio_wait() will block for an 313 * outstanding IO. By default this is 300 seconds at which point the "hung" 314 * behavior will be applied as described for zfs_deadman_synctime_ms. 315 */ 316 uint64_t zfs_deadman_ziotime_ms = 300000UL; /* 5 min. */ 317 318 /* 319 * Check time in milliseconds. This defines the frequency at which we check 320 * for hung I/O. 321 */ 322 uint64_t zfs_deadman_checktime_ms = 60000UL; /* 1 min. */ 323 324 /* 325 * By default the deadman is enabled. 326 */ 327 int zfs_deadman_enabled = B_TRUE; 328 329 /* 330 * Controls the behavior of the deadman when it detects a "hung" I/O. 331 * Valid values are zfs_deadman_failmode=<wait|continue|panic>. 332 * 333 * wait - Wait for the "hung" I/O (default) 334 * continue - Attempt to recover from a "hung" I/O 335 * panic - Panic the system 336 */ 337 const char *zfs_deadman_failmode = "wait"; 338 339 /* 340 * The worst case is single-sector max-parity RAID-Z blocks, in which 341 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 342 * times the size; so just assume that. Add to this the fact that 343 * we can have up to 3 DVAs per bp, and one more factor of 2 because 344 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, 345 * the worst case is: 346 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 347 */ 348 uint_t spa_asize_inflation = 24; 349 350 /* 351 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in 352 * the pool to be consumed (bounded by spa_max_slop). This ensures that we 353 * don't run the pool completely out of space, due to unaccounted changes (e.g. 354 * to the MOS). It also limits the worst-case time to allocate space. If we 355 * have less than this amount of free space, most ZPL operations (e.g. write, 356 * create) will return ENOSPC. The ZIL metaslabs (spa_embedded_log_class) are 357 * also part of this 3.2% of space which can't be consumed by normal writes; 358 * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded 359 * log space. 360 * 361 * Certain operations (e.g. file removal, most administrative actions) can 362 * use half the slop space. They will only return ENOSPC if less than half 363 * the slop space is free. Typically, once the pool has less than the slop 364 * space free, the user will use these operations to free up space in the pool. 365 * These are the operations that call dsl_pool_adjustedsize() with the netfree 366 * argument set to TRUE. 367 * 368 * Operations that are almost guaranteed to free up space in the absence of 369 * a pool checkpoint can use up to three quarters of the slop space 370 * (e.g zfs destroy). 371 * 372 * A very restricted set of operations are always permitted, regardless of 373 * the amount of free space. These are the operations that call 374 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net 375 * increase in the amount of space used, it is possible to run the pool 376 * completely out of space, causing it to be permanently read-only. 377 * 378 * Note that on very small pools, the slop space will be larger than 379 * 3.2%, in an effort to have it be at least spa_min_slop (128MB), 380 * but we never allow it to be more than half the pool size. 381 * 382 * Further, on very large pools, the slop space will be smaller than 383 * 3.2%, to avoid reserving much more space than we actually need; bounded 384 * by spa_max_slop (128GB). 385 * 386 * See also the comments in zfs_space_check_t. 387 */ 388 uint_t spa_slop_shift = 5; 389 static const uint64_t spa_min_slop = 128ULL * 1024 * 1024; 390 static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024; 391 392 /* 393 * Number of allocators to use, per spa instance 394 */ 395 static int spa_num_allocators = 4; 396 397 /* 398 * Spa active allocator. 399 * Valid values are zfs_active_allocator=<dynamic|cursor|new-dynamic>. 400 */ 401 const char *zfs_active_allocator = "dynamic"; 402 403 void 404 spa_load_failed(spa_t *spa, const char *fmt, ...) 405 { 406 va_list adx; 407 char buf[256]; 408 409 va_start(adx, fmt); 410 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 411 va_end(adx); 412 413 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name, 414 spa->spa_trust_config ? "trusted" : "untrusted", buf); 415 } 416 417 void 418 spa_load_note(spa_t *spa, const char *fmt, ...) 419 { 420 va_list adx; 421 char buf[256]; 422 423 va_start(adx, fmt); 424 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 425 va_end(adx); 426 427 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name, 428 spa->spa_trust_config ? "trusted" : "untrusted", buf); 429 430 spa_import_progress_set_notes_nolog(spa, "%s", buf); 431 } 432 433 /* 434 * By default dedup and user data indirects land in the special class 435 */ 436 static int zfs_ddt_data_is_special = B_TRUE; 437 static int zfs_user_indirect_is_special = B_TRUE; 438 439 /* 440 * The percentage of special class final space reserved for metadata only. 441 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only 442 * let metadata into the class. 443 */ 444 static uint_t zfs_special_class_metadata_reserve_pct = 25; 445 446 /* 447 * ========================================================================== 448 * SPA config locking 449 * ========================================================================== 450 */ 451 static void 452 spa_config_lock_init(spa_t *spa) 453 { 454 for (int i = 0; i < SCL_LOCKS; i++) { 455 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 456 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 457 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 458 scl->scl_writer = NULL; 459 scl->scl_write_wanted = 0; 460 scl->scl_count = 0; 461 } 462 } 463 464 static void 465 spa_config_lock_destroy(spa_t *spa) 466 { 467 for (int i = 0; i < SCL_LOCKS; i++) { 468 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 469 mutex_destroy(&scl->scl_lock); 470 cv_destroy(&scl->scl_cv); 471 ASSERT(scl->scl_writer == NULL); 472 ASSERT(scl->scl_write_wanted == 0); 473 ASSERT(scl->scl_count == 0); 474 } 475 } 476 477 int 478 spa_config_tryenter(spa_t *spa, int locks, const void *tag, krw_t rw) 479 { 480 for (int i = 0; i < SCL_LOCKS; i++) { 481 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 482 if (!(locks & (1 << i))) 483 continue; 484 mutex_enter(&scl->scl_lock); 485 if (rw == RW_READER) { 486 if (scl->scl_writer || scl->scl_write_wanted) { 487 mutex_exit(&scl->scl_lock); 488 spa_config_exit(spa, locks & ((1 << i) - 1), 489 tag); 490 return (0); 491 } 492 } else { 493 ASSERT(scl->scl_writer != curthread); 494 if (scl->scl_count != 0) { 495 mutex_exit(&scl->scl_lock); 496 spa_config_exit(spa, locks & ((1 << i) - 1), 497 tag); 498 return (0); 499 } 500 scl->scl_writer = curthread; 501 } 502 scl->scl_count++; 503 mutex_exit(&scl->scl_lock); 504 } 505 return (1); 506 } 507 508 static void 509 spa_config_enter_impl(spa_t *spa, int locks, const void *tag, krw_t rw, 510 int mmp_flag) 511 { 512 (void) tag; 513 int wlocks_held = 0; 514 515 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 516 517 for (int i = 0; i < SCL_LOCKS; i++) { 518 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 519 if (scl->scl_writer == curthread) 520 wlocks_held |= (1 << i); 521 if (!(locks & (1 << i))) 522 continue; 523 mutex_enter(&scl->scl_lock); 524 if (rw == RW_READER) { 525 while (scl->scl_writer || 526 (!mmp_flag && scl->scl_write_wanted)) { 527 cv_wait(&scl->scl_cv, &scl->scl_lock); 528 } 529 } else { 530 ASSERT(scl->scl_writer != curthread); 531 while (scl->scl_count != 0) { 532 scl->scl_write_wanted++; 533 cv_wait(&scl->scl_cv, &scl->scl_lock); 534 scl->scl_write_wanted--; 535 } 536 scl->scl_writer = curthread; 537 } 538 scl->scl_count++; 539 mutex_exit(&scl->scl_lock); 540 } 541 ASSERT3U(wlocks_held, <=, locks); 542 } 543 544 void 545 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw) 546 { 547 spa_config_enter_impl(spa, locks, tag, rw, 0); 548 } 549 550 /* 551 * The spa_config_enter_mmp() allows the mmp thread to cut in front of 552 * outstanding write lock requests. This is needed since the mmp updates are 553 * time sensitive and failure to service them promptly will result in a 554 * suspended pool. This pool suspension has been seen in practice when there is 555 * a single disk in a pool that is responding slowly and presumably about to 556 * fail. 557 */ 558 559 void 560 spa_config_enter_mmp(spa_t *spa, int locks, const void *tag, krw_t rw) 561 { 562 spa_config_enter_impl(spa, locks, tag, rw, 1); 563 } 564 565 void 566 spa_config_exit(spa_t *spa, int locks, const void *tag) 567 { 568 (void) tag; 569 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 570 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 571 if (!(locks & (1 << i))) 572 continue; 573 mutex_enter(&scl->scl_lock); 574 ASSERT(scl->scl_count > 0); 575 if (--scl->scl_count == 0) { 576 ASSERT(scl->scl_writer == NULL || 577 scl->scl_writer == curthread); 578 scl->scl_writer = NULL; /* OK in either case */ 579 cv_broadcast(&scl->scl_cv); 580 } 581 mutex_exit(&scl->scl_lock); 582 } 583 } 584 585 int 586 spa_config_held(spa_t *spa, int locks, krw_t rw) 587 { 588 int locks_held = 0; 589 590 for (int i = 0; i < SCL_LOCKS; i++) { 591 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 592 if (!(locks & (1 << i))) 593 continue; 594 if ((rw == RW_READER && scl->scl_count != 0) || 595 (rw == RW_WRITER && scl->scl_writer == curthread)) 596 locks_held |= 1 << i; 597 } 598 599 return (locks_held); 600 } 601 602 /* 603 * ========================================================================== 604 * SPA namespace functions 605 * ========================================================================== 606 */ 607 608 /* 609 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 610 * Returns NULL if no matching spa_t is found. 611 */ 612 spa_t * 613 spa_lookup(const char *name) 614 { 615 static spa_t search; /* spa_t is large; don't allocate on stack */ 616 spa_t *spa; 617 avl_index_t where; 618 char *cp; 619 620 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 621 622 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 623 624 /* 625 * If it's a full dataset name, figure out the pool name and 626 * just use that. 627 */ 628 cp = strpbrk(search.spa_name, "/@#"); 629 if (cp != NULL) 630 *cp = '\0'; 631 632 spa = avl_find(&spa_namespace_avl, &search, &where); 633 634 return (spa); 635 } 636 637 /* 638 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 639 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 640 * looking for potentially hung I/Os. 641 */ 642 void 643 spa_deadman(void *arg) 644 { 645 spa_t *spa = arg; 646 647 /* Disable the deadman if the pool is suspended. */ 648 if (spa_suspended(spa)) 649 return; 650 651 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 652 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 653 (u_longlong_t)++spa->spa_deadman_calls); 654 if (zfs_deadman_enabled) 655 vdev_deadman(spa->spa_root_vdev, FTAG); 656 657 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, 658 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + 659 MSEC_TO_TICK(zfs_deadman_checktime_ms)); 660 } 661 662 static int 663 spa_log_sm_sort_by_txg(const void *va, const void *vb) 664 { 665 const spa_log_sm_t *a = va; 666 const spa_log_sm_t *b = vb; 667 668 return (TREE_CMP(a->sls_txg, b->sls_txg)); 669 } 670 671 /* 672 * Create an uninitialized spa_t with the given name. Requires 673 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 674 * exist by calling spa_lookup() first. 675 */ 676 spa_t * 677 spa_add(const char *name, nvlist_t *config, const char *altroot) 678 { 679 spa_t *spa; 680 spa_config_dirent_t *dp; 681 682 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 683 684 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 685 686 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 687 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 688 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 689 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); 690 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 691 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 692 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 693 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); 694 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 695 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 696 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 697 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL); 698 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL); 699 mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL); 700 701 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 702 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); 703 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 704 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 705 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 706 cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL); 707 cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL); 708 709 for (int t = 0; t < TXG_SIZE; t++) 710 bplist_create(&spa->spa_free_bplist[t]); 711 712 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 713 spa->spa_state = POOL_STATE_UNINITIALIZED; 714 spa->spa_freeze_txg = UINT64_MAX; 715 spa->spa_final_txg = UINT64_MAX; 716 spa->spa_load_max_txg = UINT64_MAX; 717 spa->spa_proc = &p0; 718 spa->spa_proc_state = SPA_PROC_NONE; 719 spa->spa_trust_config = B_TRUE; 720 spa->spa_hostid = zone_get_hostid(NULL); 721 722 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); 723 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms); 724 spa_set_deadman_failmode(spa, zfs_deadman_failmode); 725 spa_set_allocator(spa, zfs_active_allocator); 726 727 zfs_refcount_create(&spa->spa_refcount); 728 spa_config_lock_init(spa); 729 spa_stats_init(spa); 730 731 avl_add(&spa_namespace_avl, spa); 732 733 /* 734 * Set the alternate root, if there is one. 735 */ 736 if (altroot) 737 spa->spa_root = spa_strdup(altroot); 738 739 /* Do not allow more allocators than CPUs. */ 740 spa->spa_alloc_count = MIN(MAX(spa_num_allocators, 1), boot_ncpus); 741 742 spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count * 743 sizeof (spa_alloc_t), KM_SLEEP); 744 for (int i = 0; i < spa->spa_alloc_count; i++) { 745 mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT, 746 NULL); 747 avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare, 748 sizeof (zio_t), offsetof(zio_t, io_queue_node.a)); 749 } 750 751 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed, 752 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node)); 753 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg, 754 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node)); 755 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t), 756 offsetof(log_summary_entry_t, lse_node)); 757 758 /* 759 * Every pool starts with the default cachefile 760 */ 761 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 762 offsetof(spa_config_dirent_t, scd_link)); 763 764 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 765 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 766 list_insert_head(&spa->spa_config_list, dp); 767 768 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 769 KM_SLEEP) == 0); 770 771 if (config != NULL) { 772 nvlist_t *features; 773 774 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 775 &features) == 0) { 776 VERIFY(nvlist_dup(features, &spa->spa_label_features, 777 0) == 0); 778 } 779 780 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 781 } 782 783 if (spa->spa_label_features == NULL) { 784 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 785 KM_SLEEP) == 0); 786 } 787 788 spa->spa_min_ashift = INT_MAX; 789 spa->spa_max_ashift = 0; 790 spa->spa_min_alloc = INT_MAX; 791 spa->spa_gcd_alloc = INT_MAX; 792 793 /* Reset cached value */ 794 spa->spa_dedup_dspace = ~0ULL; 795 796 /* 797 * As a pool is being created, treat all features as disabled by 798 * setting SPA_FEATURE_DISABLED for all entries in the feature 799 * refcount cache. 800 */ 801 for (int i = 0; i < SPA_FEATURES; i++) { 802 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; 803 } 804 805 list_create(&spa->spa_leaf_list, sizeof (vdev_t), 806 offsetof(vdev_t, vdev_leaf_node)); 807 808 return (spa); 809 } 810 811 /* 812 * Removes a spa_t from the namespace, freeing up any memory used. Requires 813 * spa_namespace_lock. This is called only after the spa_t has been closed and 814 * deactivated. 815 */ 816 void 817 spa_remove(spa_t *spa) 818 { 819 spa_config_dirent_t *dp; 820 821 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 822 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED); 823 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0); 824 ASSERT0(spa->spa_waiters); 825 826 nvlist_free(spa->spa_config_splitting); 827 828 avl_remove(&spa_namespace_avl, spa); 829 cv_broadcast(&spa_namespace_cv); 830 831 if (spa->spa_root) 832 spa_strfree(spa->spa_root); 833 834 while ((dp = list_remove_head(&spa->spa_config_list)) != NULL) { 835 if (dp->scd_path != NULL) 836 spa_strfree(dp->scd_path); 837 kmem_free(dp, sizeof (spa_config_dirent_t)); 838 } 839 840 for (int i = 0; i < spa->spa_alloc_count; i++) { 841 avl_destroy(&spa->spa_allocs[i].spaa_tree); 842 mutex_destroy(&spa->spa_allocs[i].spaa_lock); 843 } 844 kmem_free(spa->spa_allocs, spa->spa_alloc_count * 845 sizeof (spa_alloc_t)); 846 847 avl_destroy(&spa->spa_metaslabs_by_flushed); 848 avl_destroy(&spa->spa_sm_logs_by_txg); 849 list_destroy(&spa->spa_log_summary); 850 list_destroy(&spa->spa_config_list); 851 list_destroy(&spa->spa_leaf_list); 852 853 nvlist_free(spa->spa_label_features); 854 nvlist_free(spa->spa_load_info); 855 nvlist_free(spa->spa_feat_stats); 856 spa_config_set(spa, NULL); 857 858 zfs_refcount_destroy(&spa->spa_refcount); 859 860 spa_stats_destroy(spa); 861 spa_config_lock_destroy(spa); 862 863 for (int t = 0; t < TXG_SIZE; t++) 864 bplist_destroy(&spa->spa_free_bplist[t]); 865 866 zio_checksum_templates_free(spa); 867 868 cv_destroy(&spa->spa_async_cv); 869 cv_destroy(&spa->spa_evicting_os_cv); 870 cv_destroy(&spa->spa_proc_cv); 871 cv_destroy(&spa->spa_scrub_io_cv); 872 cv_destroy(&spa->spa_suspend_cv); 873 cv_destroy(&spa->spa_activities_cv); 874 cv_destroy(&spa->spa_waiters_cv); 875 876 mutex_destroy(&spa->spa_flushed_ms_lock); 877 mutex_destroy(&spa->spa_async_lock); 878 mutex_destroy(&spa->spa_errlist_lock); 879 mutex_destroy(&spa->spa_errlog_lock); 880 mutex_destroy(&spa->spa_evicting_os_lock); 881 mutex_destroy(&spa->spa_history_lock); 882 mutex_destroy(&spa->spa_proc_lock); 883 mutex_destroy(&spa->spa_props_lock); 884 mutex_destroy(&spa->spa_cksum_tmpls_lock); 885 mutex_destroy(&spa->spa_scrub_lock); 886 mutex_destroy(&spa->spa_suspend_lock); 887 mutex_destroy(&spa->spa_vdev_top_lock); 888 mutex_destroy(&spa->spa_feat_stats_lock); 889 mutex_destroy(&spa->spa_activities_lock); 890 891 kmem_free(spa, sizeof (spa_t)); 892 } 893 894 /* 895 * Given a pool, return the next pool in the namespace, or NULL if there is 896 * none. If 'prev' is NULL, return the first pool. 897 */ 898 spa_t * 899 spa_next(spa_t *prev) 900 { 901 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 902 903 if (prev) 904 return (AVL_NEXT(&spa_namespace_avl, prev)); 905 else 906 return (avl_first(&spa_namespace_avl)); 907 } 908 909 /* 910 * ========================================================================== 911 * SPA refcount functions 912 * ========================================================================== 913 */ 914 915 /* 916 * Add a reference to the given spa_t. Must have at least one reference, or 917 * have the namespace lock held. 918 */ 919 void 920 spa_open_ref(spa_t *spa, const void *tag) 921 { 922 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref || 923 MUTEX_HELD(&spa_namespace_lock)); 924 (void) zfs_refcount_add(&spa->spa_refcount, tag); 925 } 926 927 /* 928 * Remove a reference to the given spa_t. Must have at least one reference, or 929 * have the namespace lock held. 930 */ 931 void 932 spa_close(spa_t *spa, const void *tag) 933 { 934 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref || 935 MUTEX_HELD(&spa_namespace_lock)); 936 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 937 } 938 939 /* 940 * Remove a reference to the given spa_t held by a dsl dir that is 941 * being asynchronously released. Async releases occur from a taskq 942 * performing eviction of dsl datasets and dirs. The namespace lock 943 * isn't held and the hold by the object being evicted may contribute to 944 * spa_minref (e.g. dataset or directory released during pool export), 945 * so the asserts in spa_close() do not apply. 946 */ 947 void 948 spa_async_close(spa_t *spa, const void *tag) 949 { 950 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 951 } 952 953 /* 954 * Check to see if the spa refcount is zero. Must be called with 955 * spa_namespace_lock held. We really compare against spa_minref, which is the 956 * number of references acquired when opening a pool 957 */ 958 boolean_t 959 spa_refcount_zero(spa_t *spa) 960 { 961 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 962 963 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref); 964 } 965 966 /* 967 * ========================================================================== 968 * SPA spare and l2cache tracking 969 * ========================================================================== 970 */ 971 972 /* 973 * Hot spares and cache devices are tracked using the same code below, 974 * for 'auxiliary' devices. 975 */ 976 977 typedef struct spa_aux { 978 uint64_t aux_guid; 979 uint64_t aux_pool; 980 avl_node_t aux_avl; 981 int aux_count; 982 } spa_aux_t; 983 984 static inline int 985 spa_aux_compare(const void *a, const void *b) 986 { 987 const spa_aux_t *sa = (const spa_aux_t *)a; 988 const spa_aux_t *sb = (const spa_aux_t *)b; 989 990 return (TREE_CMP(sa->aux_guid, sb->aux_guid)); 991 } 992 993 static void 994 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 995 { 996 avl_index_t where; 997 spa_aux_t search; 998 spa_aux_t *aux; 999 1000 search.aux_guid = vd->vdev_guid; 1001 if ((aux = avl_find(avl, &search, &where)) != NULL) { 1002 aux->aux_count++; 1003 } else { 1004 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 1005 aux->aux_guid = vd->vdev_guid; 1006 aux->aux_count = 1; 1007 avl_insert(avl, aux, where); 1008 } 1009 } 1010 1011 static void 1012 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 1013 { 1014 spa_aux_t search; 1015 spa_aux_t *aux; 1016 avl_index_t where; 1017 1018 search.aux_guid = vd->vdev_guid; 1019 aux = avl_find(avl, &search, &where); 1020 1021 ASSERT(aux != NULL); 1022 1023 if (--aux->aux_count == 0) { 1024 avl_remove(avl, aux); 1025 kmem_free(aux, sizeof (spa_aux_t)); 1026 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 1027 aux->aux_pool = 0ULL; 1028 } 1029 } 1030 1031 static boolean_t 1032 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 1033 { 1034 spa_aux_t search, *found; 1035 1036 search.aux_guid = guid; 1037 found = avl_find(avl, &search, NULL); 1038 1039 if (pool) { 1040 if (found) 1041 *pool = found->aux_pool; 1042 else 1043 *pool = 0ULL; 1044 } 1045 1046 if (refcnt) { 1047 if (found) 1048 *refcnt = found->aux_count; 1049 else 1050 *refcnt = 0; 1051 } 1052 1053 return (found != NULL); 1054 } 1055 1056 static void 1057 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 1058 { 1059 spa_aux_t search, *found; 1060 avl_index_t where; 1061 1062 search.aux_guid = vd->vdev_guid; 1063 found = avl_find(avl, &search, &where); 1064 ASSERT(found != NULL); 1065 ASSERT(found->aux_pool == 0ULL); 1066 1067 found->aux_pool = spa_guid(vd->vdev_spa); 1068 } 1069 1070 /* 1071 * Spares are tracked globally due to the following constraints: 1072 * 1073 * - A spare may be part of multiple pools. 1074 * - A spare may be added to a pool even if it's actively in use within 1075 * another pool. 1076 * - A spare in use in any pool can only be the source of a replacement if 1077 * the target is a spare in the same pool. 1078 * 1079 * We keep track of all spares on the system through the use of a reference 1080 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 1081 * spare, then we bump the reference count in the AVL tree. In addition, we set 1082 * the 'vdev_isspare' member to indicate that the device is a spare (active or 1083 * inactive). When a spare is made active (used to replace a device in the 1084 * pool), we also keep track of which pool its been made a part of. 1085 * 1086 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 1087 * called under the spa_namespace lock as part of vdev reconfiguration. The 1088 * separate spare lock exists for the status query path, which does not need to 1089 * be completely consistent with respect to other vdev configuration changes. 1090 */ 1091 1092 static int 1093 spa_spare_compare(const void *a, const void *b) 1094 { 1095 return (spa_aux_compare(a, b)); 1096 } 1097 1098 void 1099 spa_spare_add(vdev_t *vd) 1100 { 1101 mutex_enter(&spa_spare_lock); 1102 ASSERT(!vd->vdev_isspare); 1103 spa_aux_add(vd, &spa_spare_avl); 1104 vd->vdev_isspare = B_TRUE; 1105 mutex_exit(&spa_spare_lock); 1106 } 1107 1108 void 1109 spa_spare_remove(vdev_t *vd) 1110 { 1111 mutex_enter(&spa_spare_lock); 1112 ASSERT(vd->vdev_isspare); 1113 spa_aux_remove(vd, &spa_spare_avl); 1114 vd->vdev_isspare = B_FALSE; 1115 mutex_exit(&spa_spare_lock); 1116 } 1117 1118 boolean_t 1119 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 1120 { 1121 boolean_t found; 1122 1123 mutex_enter(&spa_spare_lock); 1124 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 1125 mutex_exit(&spa_spare_lock); 1126 1127 return (found); 1128 } 1129 1130 void 1131 spa_spare_activate(vdev_t *vd) 1132 { 1133 mutex_enter(&spa_spare_lock); 1134 ASSERT(vd->vdev_isspare); 1135 spa_aux_activate(vd, &spa_spare_avl); 1136 mutex_exit(&spa_spare_lock); 1137 } 1138 1139 /* 1140 * Level 2 ARC devices are tracked globally for the same reasons as spares. 1141 * Cache devices currently only support one pool per cache device, and so 1142 * for these devices the aux reference count is currently unused beyond 1. 1143 */ 1144 1145 static int 1146 spa_l2cache_compare(const void *a, const void *b) 1147 { 1148 return (spa_aux_compare(a, b)); 1149 } 1150 1151 void 1152 spa_l2cache_add(vdev_t *vd) 1153 { 1154 mutex_enter(&spa_l2cache_lock); 1155 ASSERT(!vd->vdev_isl2cache); 1156 spa_aux_add(vd, &spa_l2cache_avl); 1157 vd->vdev_isl2cache = B_TRUE; 1158 mutex_exit(&spa_l2cache_lock); 1159 } 1160 1161 void 1162 spa_l2cache_remove(vdev_t *vd) 1163 { 1164 mutex_enter(&spa_l2cache_lock); 1165 ASSERT(vd->vdev_isl2cache); 1166 spa_aux_remove(vd, &spa_l2cache_avl); 1167 vd->vdev_isl2cache = B_FALSE; 1168 mutex_exit(&spa_l2cache_lock); 1169 } 1170 1171 boolean_t 1172 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 1173 { 1174 boolean_t found; 1175 1176 mutex_enter(&spa_l2cache_lock); 1177 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 1178 mutex_exit(&spa_l2cache_lock); 1179 1180 return (found); 1181 } 1182 1183 void 1184 spa_l2cache_activate(vdev_t *vd) 1185 { 1186 mutex_enter(&spa_l2cache_lock); 1187 ASSERT(vd->vdev_isl2cache); 1188 spa_aux_activate(vd, &spa_l2cache_avl); 1189 mutex_exit(&spa_l2cache_lock); 1190 } 1191 1192 /* 1193 * ========================================================================== 1194 * SPA vdev locking 1195 * ========================================================================== 1196 */ 1197 1198 /* 1199 * Lock the given spa_t for the purpose of adding or removing a vdev. 1200 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 1201 * It returns the next transaction group for the spa_t. 1202 */ 1203 uint64_t 1204 spa_vdev_enter(spa_t *spa) 1205 { 1206 mutex_enter(&spa->spa_vdev_top_lock); 1207 mutex_enter(&spa_namespace_lock); 1208 1209 vdev_autotrim_stop_all(spa); 1210 1211 return (spa_vdev_config_enter(spa)); 1212 } 1213 1214 /* 1215 * The same as spa_vdev_enter() above but additionally takes the guid of 1216 * the vdev being detached. When there is a rebuild in process it will be 1217 * suspended while the vdev tree is modified then resumed by spa_vdev_exit(). 1218 * The rebuild is canceled if only a single child remains after the detach. 1219 */ 1220 uint64_t 1221 spa_vdev_detach_enter(spa_t *spa, uint64_t guid) 1222 { 1223 mutex_enter(&spa->spa_vdev_top_lock); 1224 mutex_enter(&spa_namespace_lock); 1225 1226 vdev_autotrim_stop_all(spa); 1227 1228 if (guid != 0) { 1229 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 1230 if (vd) { 1231 vdev_rebuild_stop_wait(vd->vdev_top); 1232 } 1233 } 1234 1235 return (spa_vdev_config_enter(spa)); 1236 } 1237 1238 /* 1239 * Internal implementation for spa_vdev_enter(). Used when a vdev 1240 * operation requires multiple syncs (i.e. removing a device) while 1241 * keeping the spa_namespace_lock held. 1242 */ 1243 uint64_t 1244 spa_vdev_config_enter(spa_t *spa) 1245 { 1246 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1247 1248 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1249 1250 return (spa_last_synced_txg(spa) + 1); 1251 } 1252 1253 /* 1254 * Used in combination with spa_vdev_config_enter() to allow the syncing 1255 * of multiple transactions without releasing the spa_namespace_lock. 1256 */ 1257 void 1258 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, 1259 const char *tag) 1260 { 1261 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1262 1263 int config_changed = B_FALSE; 1264 1265 ASSERT(txg > spa_last_synced_txg(spa)); 1266 1267 spa->spa_pending_vdev = NULL; 1268 1269 /* 1270 * Reassess the DTLs. 1271 */ 1272 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE); 1273 1274 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 1275 config_changed = B_TRUE; 1276 spa->spa_config_generation++; 1277 } 1278 1279 /* 1280 * Verify the metaslab classes. 1281 */ 1282 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 1283 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 1284 ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0); 1285 ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0); 1286 ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0); 1287 1288 spa_config_exit(spa, SCL_ALL, spa); 1289 1290 /* 1291 * Panic the system if the specified tag requires it. This 1292 * is useful for ensuring that configurations are updated 1293 * transactionally. 1294 */ 1295 if (zio_injection_enabled) 1296 zio_handle_panic_injection(spa, tag, 0); 1297 1298 /* 1299 * Note: this txg_wait_synced() is important because it ensures 1300 * that there won't be more than one config change per txg. 1301 * This allows us to use the txg as the generation number. 1302 */ 1303 if (error == 0) 1304 txg_wait_synced(spa->spa_dsl_pool, txg); 1305 1306 if (vd != NULL) { 1307 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); 1308 if (vd->vdev_ops->vdev_op_leaf) { 1309 mutex_enter(&vd->vdev_initialize_lock); 1310 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, 1311 NULL); 1312 mutex_exit(&vd->vdev_initialize_lock); 1313 1314 mutex_enter(&vd->vdev_trim_lock); 1315 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL); 1316 mutex_exit(&vd->vdev_trim_lock); 1317 } 1318 1319 /* 1320 * The vdev may be both a leaf and top-level device. 1321 */ 1322 vdev_autotrim_stop_wait(vd); 1323 1324 spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER); 1325 vdev_free(vd); 1326 spa_config_exit(spa, SCL_STATE_ALL, spa); 1327 } 1328 1329 /* 1330 * If the config changed, update the config cache. 1331 */ 1332 if (config_changed) 1333 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); 1334 } 1335 1336 /* 1337 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1338 * locking of spa_vdev_enter(), we also want make sure the transactions have 1339 * synced to disk, and then update the global configuration cache with the new 1340 * information. 1341 */ 1342 int 1343 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1344 { 1345 vdev_autotrim_restart(spa); 1346 vdev_rebuild_restart(spa); 1347 1348 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1349 mutex_exit(&spa_namespace_lock); 1350 mutex_exit(&spa->spa_vdev_top_lock); 1351 1352 return (error); 1353 } 1354 1355 /* 1356 * Lock the given spa_t for the purpose of changing vdev state. 1357 */ 1358 void 1359 spa_vdev_state_enter(spa_t *spa, int oplocks) 1360 { 1361 int locks = SCL_STATE_ALL | oplocks; 1362 1363 /* 1364 * Root pools may need to read of the underlying devfs filesystem 1365 * when opening up a vdev. Unfortunately if we're holding the 1366 * SCL_ZIO lock it will result in a deadlock when we try to issue 1367 * the read from the root filesystem. Instead we "prefetch" 1368 * the associated vnodes that we need prior to opening the 1369 * underlying devices and cache them so that we can prevent 1370 * any I/O when we are doing the actual open. 1371 */ 1372 if (spa_is_root(spa)) { 1373 int low = locks & ~(SCL_ZIO - 1); 1374 int high = locks & ~low; 1375 1376 spa_config_enter(spa, high, spa, RW_WRITER); 1377 vdev_hold(spa->spa_root_vdev); 1378 spa_config_enter(spa, low, spa, RW_WRITER); 1379 } else { 1380 spa_config_enter(spa, locks, spa, RW_WRITER); 1381 } 1382 spa->spa_vdev_locks = locks; 1383 } 1384 1385 int 1386 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1387 { 1388 boolean_t config_changed = B_FALSE; 1389 vdev_t *vdev_top; 1390 1391 if (vd == NULL || vd == spa->spa_root_vdev) { 1392 vdev_top = spa->spa_root_vdev; 1393 } else { 1394 vdev_top = vd->vdev_top; 1395 } 1396 1397 if (vd != NULL || error == 0) 1398 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE); 1399 1400 if (vd != NULL) { 1401 if (vd != spa->spa_root_vdev) 1402 vdev_state_dirty(vdev_top); 1403 1404 config_changed = B_TRUE; 1405 spa->spa_config_generation++; 1406 } 1407 1408 if (spa_is_root(spa)) 1409 vdev_rele(spa->spa_root_vdev); 1410 1411 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1412 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1413 1414 /* 1415 * If anything changed, wait for it to sync. This ensures that, 1416 * from the system administrator's perspective, zpool(8) commands 1417 * are synchronous. This is important for things like zpool offline: 1418 * when the command completes, you expect no further I/O from ZFS. 1419 */ 1420 if (vd != NULL) 1421 txg_wait_synced(spa->spa_dsl_pool, 0); 1422 1423 /* 1424 * If the config changed, update the config cache. 1425 */ 1426 if (config_changed) { 1427 mutex_enter(&spa_namespace_lock); 1428 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE); 1429 mutex_exit(&spa_namespace_lock); 1430 } 1431 1432 return (error); 1433 } 1434 1435 /* 1436 * ========================================================================== 1437 * Miscellaneous functions 1438 * ========================================================================== 1439 */ 1440 1441 void 1442 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) 1443 { 1444 if (!nvlist_exists(spa->spa_label_features, feature)) { 1445 fnvlist_add_boolean(spa->spa_label_features, feature); 1446 /* 1447 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't 1448 * dirty the vdev config because lock SCL_CONFIG is not held. 1449 * Thankfully, in this case we don't need to dirty the config 1450 * because it will be written out anyway when we finish 1451 * creating the pool. 1452 */ 1453 if (tx->tx_txg != TXG_INITIAL) 1454 vdev_config_dirty(spa->spa_root_vdev); 1455 } 1456 } 1457 1458 void 1459 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1460 { 1461 if (nvlist_remove_all(spa->spa_label_features, feature) == 0) 1462 vdev_config_dirty(spa->spa_root_vdev); 1463 } 1464 1465 /* 1466 * Return the spa_t associated with given pool_guid, if it exists. If 1467 * device_guid is non-zero, determine whether the pool exists *and* contains 1468 * a device with the specified device_guid. 1469 */ 1470 spa_t * 1471 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1472 { 1473 spa_t *spa; 1474 avl_tree_t *t = &spa_namespace_avl; 1475 1476 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1477 1478 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1479 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1480 continue; 1481 if (spa->spa_root_vdev == NULL) 1482 continue; 1483 if (spa_guid(spa) == pool_guid) { 1484 if (device_guid == 0) 1485 break; 1486 1487 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1488 device_guid) != NULL) 1489 break; 1490 1491 /* 1492 * Check any devices we may be in the process of adding. 1493 */ 1494 if (spa->spa_pending_vdev) { 1495 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1496 device_guid) != NULL) 1497 break; 1498 } 1499 } 1500 } 1501 1502 return (spa); 1503 } 1504 1505 /* 1506 * Determine whether a pool with the given pool_guid exists. 1507 */ 1508 boolean_t 1509 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1510 { 1511 return (spa_by_guid(pool_guid, device_guid) != NULL); 1512 } 1513 1514 char * 1515 spa_strdup(const char *s) 1516 { 1517 size_t len; 1518 char *new; 1519 1520 len = strlen(s); 1521 new = kmem_alloc(len + 1, KM_SLEEP); 1522 memcpy(new, s, len + 1); 1523 1524 return (new); 1525 } 1526 1527 void 1528 spa_strfree(char *s) 1529 { 1530 kmem_free(s, strlen(s) + 1); 1531 } 1532 1533 uint64_t 1534 spa_generate_guid(spa_t *spa) 1535 { 1536 uint64_t guid; 1537 1538 if (spa != NULL) { 1539 do { 1540 (void) random_get_pseudo_bytes((void *)&guid, 1541 sizeof (guid)); 1542 } while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)); 1543 } else { 1544 do { 1545 (void) random_get_pseudo_bytes((void *)&guid, 1546 sizeof (guid)); 1547 } while (guid == 0 || spa_guid_exists(guid, 0)); 1548 } 1549 1550 return (guid); 1551 } 1552 1553 void 1554 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) 1555 { 1556 char type[256]; 1557 const char *checksum = NULL; 1558 const char *compress = NULL; 1559 1560 if (bp != NULL) { 1561 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1562 dmu_object_byteswap_t bswap = 1563 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1564 (void) snprintf(type, sizeof (type), "bswap %s %s", 1565 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1566 "metadata" : "data", 1567 dmu_ot_byteswap[bswap].ob_name); 1568 } else { 1569 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1570 sizeof (type)); 1571 } 1572 if (!BP_IS_EMBEDDED(bp)) { 1573 checksum = 1574 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1575 } 1576 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1577 } 1578 1579 SNPRINTF_BLKPTR(kmem_scnprintf, ' ', buf, buflen, bp, type, checksum, 1580 compress); 1581 } 1582 1583 void 1584 spa_freeze(spa_t *spa) 1585 { 1586 uint64_t freeze_txg = 0; 1587 1588 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1589 if (spa->spa_freeze_txg == UINT64_MAX) { 1590 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1591 spa->spa_freeze_txg = freeze_txg; 1592 } 1593 spa_config_exit(spa, SCL_ALL, FTAG); 1594 if (freeze_txg != 0) 1595 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1596 } 1597 1598 void 1599 zfs_panic_recover(const char *fmt, ...) 1600 { 1601 va_list adx; 1602 1603 va_start(adx, fmt); 1604 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1605 va_end(adx); 1606 } 1607 1608 /* 1609 * This is a stripped-down version of strtoull, suitable only for converting 1610 * lowercase hexadecimal numbers that don't overflow. 1611 */ 1612 uint64_t 1613 zfs_strtonum(const char *str, char **nptr) 1614 { 1615 uint64_t val = 0; 1616 char c; 1617 int digit; 1618 1619 while ((c = *str) != '\0') { 1620 if (c >= '0' && c <= '9') 1621 digit = c - '0'; 1622 else if (c >= 'a' && c <= 'f') 1623 digit = 10 + c - 'a'; 1624 else 1625 break; 1626 1627 val *= 16; 1628 val += digit; 1629 1630 str++; 1631 } 1632 1633 if (nptr) 1634 *nptr = (char *)str; 1635 1636 return (val); 1637 } 1638 1639 void 1640 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx) 1641 { 1642 /* 1643 * We bump the feature refcount for each special vdev added to the pool 1644 */ 1645 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)); 1646 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx); 1647 } 1648 1649 /* 1650 * ========================================================================== 1651 * Accessor functions 1652 * ========================================================================== 1653 */ 1654 1655 boolean_t 1656 spa_shutting_down(spa_t *spa) 1657 { 1658 return (spa->spa_async_suspended); 1659 } 1660 1661 dsl_pool_t * 1662 spa_get_dsl(spa_t *spa) 1663 { 1664 return (spa->spa_dsl_pool); 1665 } 1666 1667 boolean_t 1668 spa_is_initializing(spa_t *spa) 1669 { 1670 return (spa->spa_is_initializing); 1671 } 1672 1673 boolean_t 1674 spa_indirect_vdevs_loaded(spa_t *spa) 1675 { 1676 return (spa->spa_indirect_vdevs_loaded); 1677 } 1678 1679 blkptr_t * 1680 spa_get_rootblkptr(spa_t *spa) 1681 { 1682 return (&spa->spa_ubsync.ub_rootbp); 1683 } 1684 1685 void 1686 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1687 { 1688 spa->spa_uberblock.ub_rootbp = *bp; 1689 } 1690 1691 void 1692 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1693 { 1694 if (spa->spa_root == NULL) 1695 buf[0] = '\0'; 1696 else 1697 (void) strlcpy(buf, spa->spa_root, buflen); 1698 } 1699 1700 uint32_t 1701 spa_sync_pass(spa_t *spa) 1702 { 1703 return (spa->spa_sync_pass); 1704 } 1705 1706 char * 1707 spa_name(spa_t *spa) 1708 { 1709 return (spa->spa_name); 1710 } 1711 1712 uint64_t 1713 spa_guid(spa_t *spa) 1714 { 1715 dsl_pool_t *dp = spa_get_dsl(spa); 1716 uint64_t guid; 1717 1718 /* 1719 * If we fail to parse the config during spa_load(), we can go through 1720 * the error path (which posts an ereport) and end up here with no root 1721 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1722 * this case. 1723 */ 1724 if (spa->spa_root_vdev == NULL) 1725 return (spa->spa_config_guid); 1726 1727 guid = spa->spa_last_synced_guid != 0 ? 1728 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1729 1730 /* 1731 * Return the most recently synced out guid unless we're 1732 * in syncing context. 1733 */ 1734 if (dp && dsl_pool_sync_context(dp)) 1735 return (spa->spa_root_vdev->vdev_guid); 1736 else 1737 return (guid); 1738 } 1739 1740 uint64_t 1741 spa_load_guid(spa_t *spa) 1742 { 1743 /* 1744 * This is a GUID that exists solely as a reference for the 1745 * purposes of the arc. It is generated at load time, and 1746 * is never written to persistent storage. 1747 */ 1748 return (spa->spa_load_guid); 1749 } 1750 1751 uint64_t 1752 spa_last_synced_txg(spa_t *spa) 1753 { 1754 return (spa->spa_ubsync.ub_txg); 1755 } 1756 1757 uint64_t 1758 spa_first_txg(spa_t *spa) 1759 { 1760 return (spa->spa_first_txg); 1761 } 1762 1763 uint64_t 1764 spa_syncing_txg(spa_t *spa) 1765 { 1766 return (spa->spa_syncing_txg); 1767 } 1768 1769 /* 1770 * Return the last txg where data can be dirtied. The final txgs 1771 * will be used to just clear out any deferred frees that remain. 1772 */ 1773 uint64_t 1774 spa_final_dirty_txg(spa_t *spa) 1775 { 1776 return (spa->spa_final_txg - TXG_DEFER_SIZE); 1777 } 1778 1779 pool_state_t 1780 spa_state(spa_t *spa) 1781 { 1782 return (spa->spa_state); 1783 } 1784 1785 spa_load_state_t 1786 spa_load_state(spa_t *spa) 1787 { 1788 return (spa->spa_load_state); 1789 } 1790 1791 uint64_t 1792 spa_freeze_txg(spa_t *spa) 1793 { 1794 return (spa->spa_freeze_txg); 1795 } 1796 1797 /* 1798 * Return the inflated asize for a logical write in bytes. This is used by the 1799 * DMU to calculate the space a logical write will require on disk. 1800 * If lsize is smaller than the largest physical block size allocatable on this 1801 * pool we use its value instead, since the write will end up using the whole 1802 * block anyway. 1803 */ 1804 uint64_t 1805 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize) 1806 { 1807 if (lsize == 0) 1808 return (0); /* No inflation needed */ 1809 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation); 1810 } 1811 1812 /* 1813 * Return the amount of slop space in bytes. It is typically 1/32 of the pool 1814 * (3.2%), minus the embedded log space. On very small pools, it may be 1815 * slightly larger than this. On very large pools, it will be capped to 1816 * the value of spa_max_slop. The embedded log space is not included in 1817 * spa_dspace. By subtracting it, the usable space (per "zfs list") is a 1818 * constant 97% of the total space, regardless of metaslab size (assuming the 1819 * default spa_slop_shift=5 and a non-tiny pool). 1820 * 1821 * See the comment above spa_slop_shift for more details. 1822 */ 1823 uint64_t 1824 spa_get_slop_space(spa_t *spa) 1825 { 1826 uint64_t space = 0; 1827 uint64_t slop = 0; 1828 1829 /* 1830 * Make sure spa_dedup_dspace has been set. 1831 */ 1832 if (spa->spa_dedup_dspace == ~0ULL) 1833 spa_update_dspace(spa); 1834 1835 /* 1836 * spa_get_dspace() includes the space only logically "used" by 1837 * deduplicated data, so since it's not useful to reserve more 1838 * space with more deduplicated data, we subtract that out here. 1839 */ 1840 space = spa_get_dspace(spa) - spa->spa_dedup_dspace; 1841 slop = MIN(space >> spa_slop_shift, spa_max_slop); 1842 1843 /* 1844 * Subtract the embedded log space, but no more than half the (3.2%) 1845 * unusable space. Note, the "no more than half" is only relevant if 1846 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by 1847 * default. 1848 */ 1849 uint64_t embedded_log = 1850 metaslab_class_get_dspace(spa_embedded_log_class(spa)); 1851 slop -= MIN(embedded_log, slop >> 1); 1852 1853 /* 1854 * Slop space should be at least spa_min_slop, but no more than half 1855 * the entire pool. 1856 */ 1857 slop = MAX(slop, MIN(space >> 1, spa_min_slop)); 1858 return (slop); 1859 } 1860 1861 uint64_t 1862 spa_get_dspace(spa_t *spa) 1863 { 1864 return (spa->spa_dspace); 1865 } 1866 1867 uint64_t 1868 spa_get_checkpoint_space(spa_t *spa) 1869 { 1870 return (spa->spa_checkpoint_info.sci_dspace); 1871 } 1872 1873 void 1874 spa_update_dspace(spa_t *spa) 1875 { 1876 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1877 ddt_get_dedup_dspace(spa) + brt_get_dspace(spa); 1878 if (spa->spa_nonallocating_dspace > 0) { 1879 /* 1880 * Subtract the space provided by all non-allocating vdevs that 1881 * contribute to dspace. If a file is overwritten, its old 1882 * blocks are freed and new blocks are allocated. If there are 1883 * no snapshots of the file, the available space should remain 1884 * the same. The old blocks could be freed from the 1885 * non-allocating vdev, but the new blocks must be allocated on 1886 * other (allocating) vdevs. By reserving the entire size of 1887 * the non-allocating vdevs (including allocated space), we 1888 * ensure that there will be enough space on the allocating 1889 * vdevs for this file overwrite to succeed. 1890 * 1891 * Note that the DMU/DSL doesn't actually know or care 1892 * how much space is allocated (it does its own tracking 1893 * of how much space has been logically used). So it 1894 * doesn't matter that the data we are moving may be 1895 * allocated twice (on the old device and the new device). 1896 */ 1897 ASSERT3U(spa->spa_dspace, >=, spa->spa_nonallocating_dspace); 1898 spa->spa_dspace -= spa->spa_nonallocating_dspace; 1899 } 1900 } 1901 1902 /* 1903 * Return the failure mode that has been set to this pool. The default 1904 * behavior will be to block all I/Os when a complete failure occurs. 1905 */ 1906 uint64_t 1907 spa_get_failmode(spa_t *spa) 1908 { 1909 return (spa->spa_failmode); 1910 } 1911 1912 boolean_t 1913 spa_suspended(spa_t *spa) 1914 { 1915 return (spa->spa_suspended != ZIO_SUSPEND_NONE); 1916 } 1917 1918 uint64_t 1919 spa_version(spa_t *spa) 1920 { 1921 return (spa->spa_ubsync.ub_version); 1922 } 1923 1924 boolean_t 1925 spa_deflate(spa_t *spa) 1926 { 1927 return (spa->spa_deflate); 1928 } 1929 1930 metaslab_class_t * 1931 spa_normal_class(spa_t *spa) 1932 { 1933 return (spa->spa_normal_class); 1934 } 1935 1936 metaslab_class_t * 1937 spa_log_class(spa_t *spa) 1938 { 1939 return (spa->spa_log_class); 1940 } 1941 1942 metaslab_class_t * 1943 spa_embedded_log_class(spa_t *spa) 1944 { 1945 return (spa->spa_embedded_log_class); 1946 } 1947 1948 metaslab_class_t * 1949 spa_special_class(spa_t *spa) 1950 { 1951 return (spa->spa_special_class); 1952 } 1953 1954 metaslab_class_t * 1955 spa_dedup_class(spa_t *spa) 1956 { 1957 return (spa->spa_dedup_class); 1958 } 1959 1960 /* 1961 * Locate an appropriate allocation class 1962 */ 1963 metaslab_class_t * 1964 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype, 1965 uint_t level, uint_t special_smallblk) 1966 { 1967 /* 1968 * ZIL allocations determine their class in zio_alloc_zil(). 1969 */ 1970 ASSERT(objtype != DMU_OT_INTENT_LOG); 1971 1972 boolean_t has_special_class = spa->spa_special_class->mc_groups != 0; 1973 1974 if (DMU_OT_IS_DDT(objtype)) { 1975 if (spa->spa_dedup_class->mc_groups != 0) 1976 return (spa_dedup_class(spa)); 1977 else if (has_special_class && zfs_ddt_data_is_special) 1978 return (spa_special_class(spa)); 1979 else 1980 return (spa_normal_class(spa)); 1981 } 1982 1983 /* Indirect blocks for user data can land in special if allowed */ 1984 if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) { 1985 if (has_special_class && zfs_user_indirect_is_special) 1986 return (spa_special_class(spa)); 1987 else 1988 return (spa_normal_class(spa)); 1989 } 1990 1991 if (DMU_OT_IS_METADATA(objtype) || level > 0) { 1992 if (has_special_class) 1993 return (spa_special_class(spa)); 1994 else 1995 return (spa_normal_class(spa)); 1996 } 1997 1998 /* 1999 * Allow small file blocks in special class in some cases (like 2000 * for the dRAID vdev feature). But always leave a reserve of 2001 * zfs_special_class_metadata_reserve_pct exclusively for metadata. 2002 */ 2003 if (DMU_OT_IS_FILE(objtype) && 2004 has_special_class && size <= special_smallblk) { 2005 metaslab_class_t *special = spa_special_class(spa); 2006 uint64_t alloc = metaslab_class_get_alloc(special); 2007 uint64_t space = metaslab_class_get_space(special); 2008 uint64_t limit = 2009 (space * (100 - zfs_special_class_metadata_reserve_pct)) 2010 / 100; 2011 2012 if (alloc < limit) 2013 return (special); 2014 } 2015 2016 return (spa_normal_class(spa)); 2017 } 2018 2019 void 2020 spa_evicting_os_register(spa_t *spa, objset_t *os) 2021 { 2022 mutex_enter(&spa->spa_evicting_os_lock); 2023 list_insert_head(&spa->spa_evicting_os_list, os); 2024 mutex_exit(&spa->spa_evicting_os_lock); 2025 } 2026 2027 void 2028 spa_evicting_os_deregister(spa_t *spa, objset_t *os) 2029 { 2030 mutex_enter(&spa->spa_evicting_os_lock); 2031 list_remove(&spa->spa_evicting_os_list, os); 2032 cv_broadcast(&spa->spa_evicting_os_cv); 2033 mutex_exit(&spa->spa_evicting_os_lock); 2034 } 2035 2036 void 2037 spa_evicting_os_wait(spa_t *spa) 2038 { 2039 mutex_enter(&spa->spa_evicting_os_lock); 2040 while (!list_is_empty(&spa->spa_evicting_os_list)) 2041 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); 2042 mutex_exit(&spa->spa_evicting_os_lock); 2043 2044 dmu_buf_user_evict_wait(); 2045 } 2046 2047 int 2048 spa_max_replication(spa_t *spa) 2049 { 2050 /* 2051 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 2052 * handle BPs with more than one DVA allocated. Set our max 2053 * replication level accordingly. 2054 */ 2055 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 2056 return (1); 2057 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 2058 } 2059 2060 int 2061 spa_prev_software_version(spa_t *spa) 2062 { 2063 return (spa->spa_prev_software_version); 2064 } 2065 2066 uint64_t 2067 spa_deadman_synctime(spa_t *spa) 2068 { 2069 return (spa->spa_deadman_synctime); 2070 } 2071 2072 spa_autotrim_t 2073 spa_get_autotrim(spa_t *spa) 2074 { 2075 return (spa->spa_autotrim); 2076 } 2077 2078 uint64_t 2079 spa_deadman_ziotime(spa_t *spa) 2080 { 2081 return (spa->spa_deadman_ziotime); 2082 } 2083 2084 uint64_t 2085 spa_get_deadman_failmode(spa_t *spa) 2086 { 2087 return (spa->spa_deadman_failmode); 2088 } 2089 2090 void 2091 spa_set_deadman_failmode(spa_t *spa, const char *failmode) 2092 { 2093 if (strcmp(failmode, "wait") == 0) 2094 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2095 else if (strcmp(failmode, "continue") == 0) 2096 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE; 2097 else if (strcmp(failmode, "panic") == 0) 2098 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC; 2099 else 2100 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2101 } 2102 2103 void 2104 spa_set_deadman_ziotime(hrtime_t ns) 2105 { 2106 spa_t *spa = NULL; 2107 2108 if (spa_mode_global != SPA_MODE_UNINIT) { 2109 mutex_enter(&spa_namespace_lock); 2110 while ((spa = spa_next(spa)) != NULL) 2111 spa->spa_deadman_ziotime = ns; 2112 mutex_exit(&spa_namespace_lock); 2113 } 2114 } 2115 2116 void 2117 spa_set_deadman_synctime(hrtime_t ns) 2118 { 2119 spa_t *spa = NULL; 2120 2121 if (spa_mode_global != SPA_MODE_UNINIT) { 2122 mutex_enter(&spa_namespace_lock); 2123 while ((spa = spa_next(spa)) != NULL) 2124 spa->spa_deadman_synctime = ns; 2125 mutex_exit(&spa_namespace_lock); 2126 } 2127 } 2128 2129 uint64_t 2130 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 2131 { 2132 uint64_t asize = DVA_GET_ASIZE(dva); 2133 uint64_t dsize = asize; 2134 2135 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2136 2137 if (asize != 0 && spa->spa_deflate) { 2138 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 2139 if (vd != NULL) 2140 dsize = (asize >> SPA_MINBLOCKSHIFT) * 2141 vd->vdev_deflate_ratio; 2142 } 2143 2144 return (dsize); 2145 } 2146 2147 uint64_t 2148 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 2149 { 2150 uint64_t dsize = 0; 2151 2152 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2153 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2154 2155 return (dsize); 2156 } 2157 2158 uint64_t 2159 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 2160 { 2161 uint64_t dsize = 0; 2162 2163 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2164 2165 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2166 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2167 2168 spa_config_exit(spa, SCL_VDEV, FTAG); 2169 2170 return (dsize); 2171 } 2172 2173 uint64_t 2174 spa_dirty_data(spa_t *spa) 2175 { 2176 return (spa->spa_dsl_pool->dp_dirty_total); 2177 } 2178 2179 /* 2180 * ========================================================================== 2181 * SPA Import Progress Routines 2182 * ========================================================================== 2183 */ 2184 2185 typedef struct spa_import_progress { 2186 uint64_t pool_guid; /* unique id for updates */ 2187 char *pool_name; 2188 spa_load_state_t spa_load_state; 2189 char *spa_load_notes; 2190 uint64_t mmp_sec_remaining; /* MMP activity check */ 2191 uint64_t spa_load_max_txg; /* rewind txg */ 2192 procfs_list_node_t smh_node; 2193 } spa_import_progress_t; 2194 2195 spa_history_list_t *spa_import_progress_list = NULL; 2196 2197 static int 2198 spa_import_progress_show_header(struct seq_file *f) 2199 { 2200 seq_printf(f, "%-20s %-14s %-14s %-12s %-16s %s\n", "pool_guid", 2201 "load_state", "multihost_secs", "max_txg", 2202 "pool_name", "notes"); 2203 return (0); 2204 } 2205 2206 static int 2207 spa_import_progress_show(struct seq_file *f, void *data) 2208 { 2209 spa_import_progress_t *sip = (spa_import_progress_t *)data; 2210 2211 seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %-16s %s\n", 2212 (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state, 2213 (u_longlong_t)sip->mmp_sec_remaining, 2214 (u_longlong_t)sip->spa_load_max_txg, 2215 (sip->pool_name ? sip->pool_name : "-"), 2216 (sip->spa_load_notes ? sip->spa_load_notes : "-")); 2217 2218 return (0); 2219 } 2220 2221 /* Remove oldest elements from list until there are no more than 'size' left */ 2222 static void 2223 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size) 2224 { 2225 spa_import_progress_t *sip; 2226 while (shl->size > size) { 2227 sip = list_remove_head(&shl->procfs_list.pl_list); 2228 if (sip->pool_name) 2229 spa_strfree(sip->pool_name); 2230 if (sip->spa_load_notes) 2231 kmem_strfree(sip->spa_load_notes); 2232 kmem_free(sip, sizeof (spa_import_progress_t)); 2233 shl->size--; 2234 } 2235 2236 IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list)); 2237 } 2238 2239 static void 2240 spa_import_progress_init(void) 2241 { 2242 spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t), 2243 KM_SLEEP); 2244 2245 spa_import_progress_list->size = 0; 2246 2247 spa_import_progress_list->procfs_list.pl_private = 2248 spa_import_progress_list; 2249 2250 procfs_list_install("zfs", 2251 NULL, 2252 "import_progress", 2253 0644, 2254 &spa_import_progress_list->procfs_list, 2255 spa_import_progress_show, 2256 spa_import_progress_show_header, 2257 NULL, 2258 offsetof(spa_import_progress_t, smh_node)); 2259 } 2260 2261 static void 2262 spa_import_progress_destroy(void) 2263 { 2264 spa_history_list_t *shl = spa_import_progress_list; 2265 procfs_list_uninstall(&shl->procfs_list); 2266 spa_import_progress_truncate(shl, 0); 2267 procfs_list_destroy(&shl->procfs_list); 2268 kmem_free(shl, sizeof (spa_history_list_t)); 2269 } 2270 2271 int 2272 spa_import_progress_set_state(uint64_t pool_guid, 2273 spa_load_state_t load_state) 2274 { 2275 spa_history_list_t *shl = spa_import_progress_list; 2276 spa_import_progress_t *sip; 2277 int error = ENOENT; 2278 2279 if (shl->size == 0) 2280 return (0); 2281 2282 mutex_enter(&shl->procfs_list.pl_lock); 2283 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2284 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2285 if (sip->pool_guid == pool_guid) { 2286 sip->spa_load_state = load_state; 2287 if (sip->spa_load_notes != NULL) { 2288 kmem_strfree(sip->spa_load_notes); 2289 sip->spa_load_notes = NULL; 2290 } 2291 error = 0; 2292 break; 2293 } 2294 } 2295 mutex_exit(&shl->procfs_list.pl_lock); 2296 2297 return (error); 2298 } 2299 2300 static void 2301 spa_import_progress_set_notes_impl(spa_t *spa, boolean_t log_dbgmsg, 2302 const char *fmt, va_list adx) 2303 { 2304 spa_history_list_t *shl = spa_import_progress_list; 2305 spa_import_progress_t *sip; 2306 uint64_t pool_guid = spa_guid(spa); 2307 2308 if (shl->size == 0) 2309 return; 2310 2311 char *notes = kmem_vasprintf(fmt, adx); 2312 2313 mutex_enter(&shl->procfs_list.pl_lock); 2314 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2315 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2316 if (sip->pool_guid == pool_guid) { 2317 if (sip->spa_load_notes != NULL) { 2318 kmem_strfree(sip->spa_load_notes); 2319 sip->spa_load_notes = NULL; 2320 } 2321 sip->spa_load_notes = notes; 2322 if (log_dbgmsg) 2323 zfs_dbgmsg("'%s' %s", sip->pool_name, notes); 2324 notes = NULL; 2325 break; 2326 } 2327 } 2328 mutex_exit(&shl->procfs_list.pl_lock); 2329 if (notes != NULL) 2330 kmem_strfree(notes); 2331 } 2332 2333 void 2334 spa_import_progress_set_notes(spa_t *spa, const char *fmt, ...) 2335 { 2336 va_list adx; 2337 2338 va_start(adx, fmt); 2339 spa_import_progress_set_notes_impl(spa, B_TRUE, fmt, adx); 2340 va_end(adx); 2341 } 2342 2343 void 2344 spa_import_progress_set_notes_nolog(spa_t *spa, const char *fmt, ...) 2345 { 2346 va_list adx; 2347 2348 va_start(adx, fmt); 2349 spa_import_progress_set_notes_impl(spa, B_FALSE, fmt, adx); 2350 va_end(adx); 2351 } 2352 2353 int 2354 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg) 2355 { 2356 spa_history_list_t *shl = spa_import_progress_list; 2357 spa_import_progress_t *sip; 2358 int error = ENOENT; 2359 2360 if (shl->size == 0) 2361 return (0); 2362 2363 mutex_enter(&shl->procfs_list.pl_lock); 2364 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2365 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2366 if (sip->pool_guid == pool_guid) { 2367 sip->spa_load_max_txg = load_max_txg; 2368 error = 0; 2369 break; 2370 } 2371 } 2372 mutex_exit(&shl->procfs_list.pl_lock); 2373 2374 return (error); 2375 } 2376 2377 int 2378 spa_import_progress_set_mmp_check(uint64_t pool_guid, 2379 uint64_t mmp_sec_remaining) 2380 { 2381 spa_history_list_t *shl = spa_import_progress_list; 2382 spa_import_progress_t *sip; 2383 int error = ENOENT; 2384 2385 if (shl->size == 0) 2386 return (0); 2387 2388 mutex_enter(&shl->procfs_list.pl_lock); 2389 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2390 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2391 if (sip->pool_guid == pool_guid) { 2392 sip->mmp_sec_remaining = mmp_sec_remaining; 2393 error = 0; 2394 break; 2395 } 2396 } 2397 mutex_exit(&shl->procfs_list.pl_lock); 2398 2399 return (error); 2400 } 2401 2402 /* 2403 * A new import is in progress, add an entry. 2404 */ 2405 void 2406 spa_import_progress_add(spa_t *spa) 2407 { 2408 spa_history_list_t *shl = spa_import_progress_list; 2409 spa_import_progress_t *sip; 2410 const char *poolname = NULL; 2411 2412 sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP); 2413 sip->pool_guid = spa_guid(spa); 2414 2415 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME, 2416 &poolname); 2417 if (poolname == NULL) 2418 poolname = spa_name(spa); 2419 sip->pool_name = spa_strdup(poolname); 2420 sip->spa_load_state = spa_load_state(spa); 2421 sip->spa_load_notes = NULL; 2422 2423 mutex_enter(&shl->procfs_list.pl_lock); 2424 procfs_list_add(&shl->procfs_list, sip); 2425 shl->size++; 2426 mutex_exit(&shl->procfs_list.pl_lock); 2427 } 2428 2429 void 2430 spa_import_progress_remove(uint64_t pool_guid) 2431 { 2432 spa_history_list_t *shl = spa_import_progress_list; 2433 spa_import_progress_t *sip; 2434 2435 mutex_enter(&shl->procfs_list.pl_lock); 2436 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2437 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2438 if (sip->pool_guid == pool_guid) { 2439 if (sip->pool_name) 2440 spa_strfree(sip->pool_name); 2441 if (sip->spa_load_notes) 2442 spa_strfree(sip->spa_load_notes); 2443 list_remove(&shl->procfs_list.pl_list, sip); 2444 shl->size--; 2445 kmem_free(sip, sizeof (spa_import_progress_t)); 2446 break; 2447 } 2448 } 2449 mutex_exit(&shl->procfs_list.pl_lock); 2450 } 2451 2452 /* 2453 * ========================================================================== 2454 * Initialization and Termination 2455 * ========================================================================== 2456 */ 2457 2458 static int 2459 spa_name_compare(const void *a1, const void *a2) 2460 { 2461 const spa_t *s1 = a1; 2462 const spa_t *s2 = a2; 2463 int s; 2464 2465 s = strcmp(s1->spa_name, s2->spa_name); 2466 2467 return (TREE_ISIGN(s)); 2468 } 2469 2470 void 2471 spa_boot_init(void) 2472 { 2473 spa_config_load(); 2474 } 2475 2476 void 2477 spa_init(spa_mode_t mode) 2478 { 2479 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 2480 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 2481 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 2482 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 2483 2484 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 2485 offsetof(spa_t, spa_avl)); 2486 2487 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 2488 offsetof(spa_aux_t, aux_avl)); 2489 2490 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 2491 offsetof(spa_aux_t, aux_avl)); 2492 2493 spa_mode_global = mode; 2494 2495 #ifndef _KERNEL 2496 if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) { 2497 struct sigaction sa; 2498 2499 sa.sa_flags = SA_SIGINFO; 2500 sigemptyset(&sa.sa_mask); 2501 sa.sa_sigaction = arc_buf_sigsegv; 2502 2503 if (sigaction(SIGSEGV, &sa, NULL) == -1) { 2504 perror("could not enable watchpoints: " 2505 "sigaction(SIGSEGV, ...) = "); 2506 } else { 2507 arc_watch = B_TRUE; 2508 } 2509 } 2510 #endif 2511 2512 fm_init(); 2513 zfs_refcount_init(); 2514 unique_init(); 2515 zfs_btree_init(); 2516 metaslab_stat_init(); 2517 brt_init(); 2518 ddt_init(); 2519 zio_init(); 2520 dmu_init(); 2521 zil_init(); 2522 vdev_mirror_stat_init(); 2523 vdev_raidz_math_init(); 2524 vdev_file_init(); 2525 zfs_prop_init(); 2526 chksum_init(); 2527 zpool_prop_init(); 2528 zpool_feature_init(); 2529 spa_config_load(); 2530 vdev_prop_init(); 2531 l2arc_start(); 2532 scan_init(); 2533 qat_init(); 2534 spa_import_progress_init(); 2535 } 2536 2537 void 2538 spa_fini(void) 2539 { 2540 l2arc_stop(); 2541 2542 spa_evict_all(); 2543 2544 vdev_file_fini(); 2545 vdev_mirror_stat_fini(); 2546 vdev_raidz_math_fini(); 2547 chksum_fini(); 2548 zil_fini(); 2549 dmu_fini(); 2550 zio_fini(); 2551 ddt_fini(); 2552 brt_fini(); 2553 metaslab_stat_fini(); 2554 zfs_btree_fini(); 2555 unique_fini(); 2556 zfs_refcount_fini(); 2557 fm_fini(); 2558 scan_fini(); 2559 qat_fini(); 2560 spa_import_progress_destroy(); 2561 2562 avl_destroy(&spa_namespace_avl); 2563 avl_destroy(&spa_spare_avl); 2564 avl_destroy(&spa_l2cache_avl); 2565 2566 cv_destroy(&spa_namespace_cv); 2567 mutex_destroy(&spa_namespace_lock); 2568 mutex_destroy(&spa_spare_lock); 2569 mutex_destroy(&spa_l2cache_lock); 2570 } 2571 2572 /* 2573 * Return whether this pool has a dedicated slog device. No locking needed. 2574 * It's not a problem if the wrong answer is returned as it's only for 2575 * performance and not correctness. 2576 */ 2577 boolean_t 2578 spa_has_slogs(spa_t *spa) 2579 { 2580 return (spa->spa_log_class->mc_groups != 0); 2581 } 2582 2583 spa_log_state_t 2584 spa_get_log_state(spa_t *spa) 2585 { 2586 return (spa->spa_log_state); 2587 } 2588 2589 void 2590 spa_set_log_state(spa_t *spa, spa_log_state_t state) 2591 { 2592 spa->spa_log_state = state; 2593 } 2594 2595 boolean_t 2596 spa_is_root(spa_t *spa) 2597 { 2598 return (spa->spa_is_root); 2599 } 2600 2601 boolean_t 2602 spa_writeable(spa_t *spa) 2603 { 2604 return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config); 2605 } 2606 2607 /* 2608 * Returns true if there is a pending sync task in any of the current 2609 * syncing txg, the current quiescing txg, or the current open txg. 2610 */ 2611 boolean_t 2612 spa_has_pending_synctask(spa_t *spa) 2613 { 2614 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) || 2615 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks)); 2616 } 2617 2618 spa_mode_t 2619 spa_mode(spa_t *spa) 2620 { 2621 return (spa->spa_mode); 2622 } 2623 2624 uint64_t 2625 spa_bootfs(spa_t *spa) 2626 { 2627 return (spa->spa_bootfs); 2628 } 2629 2630 uint64_t 2631 spa_delegation(spa_t *spa) 2632 { 2633 return (spa->spa_delegation); 2634 } 2635 2636 objset_t * 2637 spa_meta_objset(spa_t *spa) 2638 { 2639 return (spa->spa_meta_objset); 2640 } 2641 2642 enum zio_checksum 2643 spa_dedup_checksum(spa_t *spa) 2644 { 2645 return (spa->spa_dedup_checksum); 2646 } 2647 2648 /* 2649 * Reset pool scan stat per scan pass (or reboot). 2650 */ 2651 void 2652 spa_scan_stat_init(spa_t *spa) 2653 { 2654 /* data not stored on disk */ 2655 spa->spa_scan_pass_start = gethrestime_sec(); 2656 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan)) 2657 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start; 2658 else 2659 spa->spa_scan_pass_scrub_pause = 0; 2660 2661 if (dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) 2662 spa->spa_scan_pass_errorscrub_pause = spa->spa_scan_pass_start; 2663 else 2664 spa->spa_scan_pass_errorscrub_pause = 0; 2665 2666 spa->spa_scan_pass_scrub_spent_paused = 0; 2667 spa->spa_scan_pass_exam = 0; 2668 spa->spa_scan_pass_issued = 0; 2669 2670 // error scrub stats 2671 spa->spa_scan_pass_errorscrub_spent_paused = 0; 2672 } 2673 2674 /* 2675 * Get scan stats for zpool status reports 2676 */ 2677 int 2678 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 2679 { 2680 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 2681 2682 if (scn == NULL || (scn->scn_phys.scn_func == POOL_SCAN_NONE && 2683 scn->errorscrub_phys.dep_func == POOL_SCAN_NONE)) 2684 return (SET_ERROR(ENOENT)); 2685 2686 memset(ps, 0, sizeof (pool_scan_stat_t)); 2687 2688 /* data stored on disk */ 2689 ps->pss_func = scn->scn_phys.scn_func; 2690 ps->pss_state = scn->scn_phys.scn_state; 2691 ps->pss_start_time = scn->scn_phys.scn_start_time; 2692 ps->pss_end_time = scn->scn_phys.scn_end_time; 2693 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 2694 ps->pss_examined = scn->scn_phys.scn_examined; 2695 ps->pss_skipped = scn->scn_phys.scn_skipped; 2696 ps->pss_processed = scn->scn_phys.scn_processed; 2697 ps->pss_errors = scn->scn_phys.scn_errors; 2698 2699 /* data not stored on disk */ 2700 ps->pss_pass_exam = spa->spa_scan_pass_exam; 2701 ps->pss_pass_start = spa->spa_scan_pass_start; 2702 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause; 2703 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused; 2704 ps->pss_pass_issued = spa->spa_scan_pass_issued; 2705 ps->pss_issued = 2706 scn->scn_issued_before_pass + spa->spa_scan_pass_issued; 2707 2708 /* error scrub data stored on disk */ 2709 ps->pss_error_scrub_func = scn->errorscrub_phys.dep_func; 2710 ps->pss_error_scrub_state = scn->errorscrub_phys.dep_state; 2711 ps->pss_error_scrub_start = scn->errorscrub_phys.dep_start_time; 2712 ps->pss_error_scrub_end = scn->errorscrub_phys.dep_end_time; 2713 ps->pss_error_scrub_examined = scn->errorscrub_phys.dep_examined; 2714 ps->pss_error_scrub_to_be_examined = 2715 scn->errorscrub_phys.dep_to_examine; 2716 2717 /* error scrub data not stored on disk */ 2718 ps->pss_pass_error_scrub_pause = spa->spa_scan_pass_errorscrub_pause; 2719 2720 return (0); 2721 } 2722 2723 int 2724 spa_maxblocksize(spa_t *spa) 2725 { 2726 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 2727 return (SPA_MAXBLOCKSIZE); 2728 else 2729 return (SPA_OLD_MAXBLOCKSIZE); 2730 } 2731 2732 2733 /* 2734 * Returns the txg that the last device removal completed. No indirect mappings 2735 * have been added since this txg. 2736 */ 2737 uint64_t 2738 spa_get_last_removal_txg(spa_t *spa) 2739 { 2740 uint64_t vdevid; 2741 uint64_t ret = -1ULL; 2742 2743 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2744 /* 2745 * sr_prev_indirect_vdev is only modified while holding all the 2746 * config locks, so it is sufficient to hold SCL_VDEV as reader when 2747 * examining it. 2748 */ 2749 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev; 2750 2751 while (vdevid != -1ULL) { 2752 vdev_t *vd = vdev_lookup_top(spa, vdevid); 2753 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 2754 2755 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 2756 2757 /* 2758 * If the removal did not remap any data, we don't care. 2759 */ 2760 if (vdev_indirect_births_count(vib) != 0) { 2761 ret = vdev_indirect_births_last_entry_txg(vib); 2762 break; 2763 } 2764 2765 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev; 2766 } 2767 spa_config_exit(spa, SCL_VDEV, FTAG); 2768 2769 IMPLY(ret != -1ULL, 2770 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); 2771 2772 return (ret); 2773 } 2774 2775 int 2776 spa_maxdnodesize(spa_t *spa) 2777 { 2778 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 2779 return (DNODE_MAX_SIZE); 2780 else 2781 return (DNODE_MIN_SIZE); 2782 } 2783 2784 boolean_t 2785 spa_multihost(spa_t *spa) 2786 { 2787 return (spa->spa_multihost ? B_TRUE : B_FALSE); 2788 } 2789 2790 uint32_t 2791 spa_get_hostid(spa_t *spa) 2792 { 2793 return (spa->spa_hostid); 2794 } 2795 2796 boolean_t 2797 spa_trust_config(spa_t *spa) 2798 { 2799 return (spa->spa_trust_config); 2800 } 2801 2802 uint64_t 2803 spa_missing_tvds_allowed(spa_t *spa) 2804 { 2805 return (spa->spa_missing_tvds_allowed); 2806 } 2807 2808 space_map_t * 2809 spa_syncing_log_sm(spa_t *spa) 2810 { 2811 return (spa->spa_syncing_log_sm); 2812 } 2813 2814 void 2815 spa_set_missing_tvds(spa_t *spa, uint64_t missing) 2816 { 2817 spa->spa_missing_tvds = missing; 2818 } 2819 2820 /* 2821 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc). 2822 */ 2823 const char * 2824 spa_state_to_name(spa_t *spa) 2825 { 2826 ASSERT3P(spa, !=, NULL); 2827 2828 /* 2829 * it is possible for the spa to exist, without root vdev 2830 * as the spa transitions during import/export 2831 */ 2832 vdev_t *rvd = spa->spa_root_vdev; 2833 if (rvd == NULL) { 2834 return ("TRANSITIONING"); 2835 } 2836 vdev_state_t state = rvd->vdev_state; 2837 vdev_aux_t aux = rvd->vdev_stat.vs_aux; 2838 2839 if (spa_suspended(spa)) 2840 return ("SUSPENDED"); 2841 2842 switch (state) { 2843 case VDEV_STATE_CLOSED: 2844 case VDEV_STATE_OFFLINE: 2845 return ("OFFLINE"); 2846 case VDEV_STATE_REMOVED: 2847 return ("REMOVED"); 2848 case VDEV_STATE_CANT_OPEN: 2849 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG) 2850 return ("FAULTED"); 2851 else if (aux == VDEV_AUX_SPLIT_POOL) 2852 return ("SPLIT"); 2853 else 2854 return ("UNAVAIL"); 2855 case VDEV_STATE_FAULTED: 2856 return ("FAULTED"); 2857 case VDEV_STATE_DEGRADED: 2858 return ("DEGRADED"); 2859 case VDEV_STATE_HEALTHY: 2860 return ("ONLINE"); 2861 default: 2862 break; 2863 } 2864 2865 return ("UNKNOWN"); 2866 } 2867 2868 boolean_t 2869 spa_top_vdevs_spacemap_addressable(spa_t *spa) 2870 { 2871 vdev_t *rvd = spa->spa_root_vdev; 2872 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2873 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c])) 2874 return (B_FALSE); 2875 } 2876 return (B_TRUE); 2877 } 2878 2879 boolean_t 2880 spa_has_checkpoint(spa_t *spa) 2881 { 2882 return (spa->spa_checkpoint_txg != 0); 2883 } 2884 2885 boolean_t 2886 spa_importing_readonly_checkpoint(spa_t *spa) 2887 { 2888 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) && 2889 spa->spa_mode == SPA_MODE_READ); 2890 } 2891 2892 uint64_t 2893 spa_min_claim_txg(spa_t *spa) 2894 { 2895 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg; 2896 2897 if (checkpoint_txg != 0) 2898 return (checkpoint_txg + 1); 2899 2900 return (spa->spa_first_txg); 2901 } 2902 2903 /* 2904 * If there is a checkpoint, async destroys may consume more space from 2905 * the pool instead of freeing it. In an attempt to save the pool from 2906 * getting suspended when it is about to run out of space, we stop 2907 * processing async destroys. 2908 */ 2909 boolean_t 2910 spa_suspend_async_destroy(spa_t *spa) 2911 { 2912 dsl_pool_t *dp = spa_get_dsl(spa); 2913 2914 uint64_t unreserved = dsl_pool_unreserved_space(dp, 2915 ZFS_SPACE_CHECK_EXTRA_RESERVED); 2916 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes; 2917 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0; 2918 2919 if (spa_has_checkpoint(spa) && avail == 0) 2920 return (B_TRUE); 2921 2922 return (B_FALSE); 2923 } 2924 2925 #if defined(_KERNEL) 2926 2927 int 2928 param_set_deadman_failmode_common(const char *val) 2929 { 2930 spa_t *spa = NULL; 2931 char *p; 2932 2933 if (val == NULL) 2934 return (SET_ERROR(EINVAL)); 2935 2936 if ((p = strchr(val, '\n')) != NULL) 2937 *p = '\0'; 2938 2939 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 && 2940 strcmp(val, "panic")) 2941 return (SET_ERROR(EINVAL)); 2942 2943 if (spa_mode_global != SPA_MODE_UNINIT) { 2944 mutex_enter(&spa_namespace_lock); 2945 while ((spa = spa_next(spa)) != NULL) 2946 spa_set_deadman_failmode(spa, val); 2947 mutex_exit(&spa_namespace_lock); 2948 } 2949 2950 return (0); 2951 } 2952 #endif 2953 2954 /* Namespace manipulation */ 2955 EXPORT_SYMBOL(spa_lookup); 2956 EXPORT_SYMBOL(spa_add); 2957 EXPORT_SYMBOL(spa_remove); 2958 EXPORT_SYMBOL(spa_next); 2959 2960 /* Refcount functions */ 2961 EXPORT_SYMBOL(spa_open_ref); 2962 EXPORT_SYMBOL(spa_close); 2963 EXPORT_SYMBOL(spa_refcount_zero); 2964 2965 /* Pool configuration lock */ 2966 EXPORT_SYMBOL(spa_config_tryenter); 2967 EXPORT_SYMBOL(spa_config_enter); 2968 EXPORT_SYMBOL(spa_config_exit); 2969 EXPORT_SYMBOL(spa_config_held); 2970 2971 /* Pool vdev add/remove lock */ 2972 EXPORT_SYMBOL(spa_vdev_enter); 2973 EXPORT_SYMBOL(spa_vdev_exit); 2974 2975 /* Pool vdev state change lock */ 2976 EXPORT_SYMBOL(spa_vdev_state_enter); 2977 EXPORT_SYMBOL(spa_vdev_state_exit); 2978 2979 /* Accessor functions */ 2980 EXPORT_SYMBOL(spa_shutting_down); 2981 EXPORT_SYMBOL(spa_get_dsl); 2982 EXPORT_SYMBOL(spa_get_rootblkptr); 2983 EXPORT_SYMBOL(spa_set_rootblkptr); 2984 EXPORT_SYMBOL(spa_altroot); 2985 EXPORT_SYMBOL(spa_sync_pass); 2986 EXPORT_SYMBOL(spa_name); 2987 EXPORT_SYMBOL(spa_guid); 2988 EXPORT_SYMBOL(spa_last_synced_txg); 2989 EXPORT_SYMBOL(spa_first_txg); 2990 EXPORT_SYMBOL(spa_syncing_txg); 2991 EXPORT_SYMBOL(spa_version); 2992 EXPORT_SYMBOL(spa_state); 2993 EXPORT_SYMBOL(spa_load_state); 2994 EXPORT_SYMBOL(spa_freeze_txg); 2995 EXPORT_SYMBOL(spa_get_dspace); 2996 EXPORT_SYMBOL(spa_update_dspace); 2997 EXPORT_SYMBOL(spa_deflate); 2998 EXPORT_SYMBOL(spa_normal_class); 2999 EXPORT_SYMBOL(spa_log_class); 3000 EXPORT_SYMBOL(spa_special_class); 3001 EXPORT_SYMBOL(spa_preferred_class); 3002 EXPORT_SYMBOL(spa_max_replication); 3003 EXPORT_SYMBOL(spa_prev_software_version); 3004 EXPORT_SYMBOL(spa_get_failmode); 3005 EXPORT_SYMBOL(spa_suspended); 3006 EXPORT_SYMBOL(spa_bootfs); 3007 EXPORT_SYMBOL(spa_delegation); 3008 EXPORT_SYMBOL(spa_meta_objset); 3009 EXPORT_SYMBOL(spa_maxblocksize); 3010 EXPORT_SYMBOL(spa_maxdnodesize); 3011 3012 /* Miscellaneous support routines */ 3013 EXPORT_SYMBOL(spa_guid_exists); 3014 EXPORT_SYMBOL(spa_strdup); 3015 EXPORT_SYMBOL(spa_strfree); 3016 EXPORT_SYMBOL(spa_generate_guid); 3017 EXPORT_SYMBOL(snprintf_blkptr); 3018 EXPORT_SYMBOL(spa_freeze); 3019 EXPORT_SYMBOL(spa_upgrade); 3020 EXPORT_SYMBOL(spa_evict_all); 3021 EXPORT_SYMBOL(spa_lookup_by_guid); 3022 EXPORT_SYMBOL(spa_has_spare); 3023 EXPORT_SYMBOL(dva_get_dsize_sync); 3024 EXPORT_SYMBOL(bp_get_dsize_sync); 3025 EXPORT_SYMBOL(bp_get_dsize); 3026 EXPORT_SYMBOL(spa_has_slogs); 3027 EXPORT_SYMBOL(spa_is_root); 3028 EXPORT_SYMBOL(spa_writeable); 3029 EXPORT_SYMBOL(spa_mode); 3030 EXPORT_SYMBOL(spa_namespace_lock); 3031 EXPORT_SYMBOL(spa_trust_config); 3032 EXPORT_SYMBOL(spa_missing_tvds_allowed); 3033 EXPORT_SYMBOL(spa_set_missing_tvds); 3034 EXPORT_SYMBOL(spa_state_to_name); 3035 EXPORT_SYMBOL(spa_importing_readonly_checkpoint); 3036 EXPORT_SYMBOL(spa_min_claim_txg); 3037 EXPORT_SYMBOL(spa_suspend_async_destroy); 3038 EXPORT_SYMBOL(spa_has_checkpoint); 3039 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable); 3040 3041 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW, 3042 "Set additional debugging flags"); 3043 3044 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW, 3045 "Set to attempt to recover from fatal errors"); 3046 3047 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW, 3048 "Set to ignore IO errors during free and permanently leak the space"); 3049 3050 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, U64, ZMOD_RW, 3051 "Dead I/O check interval in milliseconds"); 3052 3053 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW, 3054 "Enable deadman timer"); 3055 3056 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, UINT, ZMOD_RW, 3057 "SPA size estimate multiplication factor"); 3058 3059 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW, 3060 "Place DDT data into the special class"); 3061 3062 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW, 3063 "Place user data indirect blocks into the special class"); 3064 3065 /* BEGIN CSTYLED */ 3066 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode, 3067 param_set_deadman_failmode, param_get_charp, ZMOD_RW, 3068 "Failmode for deadman timer"); 3069 3070 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms, 3071 param_set_deadman_synctime, spl_param_get_u64, ZMOD_RW, 3072 "Pool sync expiration time in milliseconds"); 3073 3074 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms, 3075 param_set_deadman_ziotime, spl_param_get_u64, ZMOD_RW, 3076 "IO expiration time in milliseconds"); 3077 3078 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, UINT, ZMOD_RW, 3079 "Small file blocks in special vdevs depends on this much " 3080 "free space available"); 3081 /* END CSTYLED */ 3082 3083 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift, 3084 param_get_uint, ZMOD_RW, "Reserved free space in pool"); 3085 3086 ZFS_MODULE_PARAM(zfs, spa_, num_allocators, INT, ZMOD_RW, 3087 "Number of allocators per spa, capped by ncpus"); 3088