xref: /freebsd/sys/contrib/openzfs/module/zfs/spa_log_spacemap.c (revision f0d4c2afd65f821b8983152848f4005239ff975a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2018, 2019 by Delphix. All rights reserved.
24  */
25 
26 #include <sys/dmu_objset.h>
27 #include <sys/metaslab.h>
28 #include <sys/metaslab_impl.h>
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/spa_log_spacemap.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zap.h>
34 
35 /*
36  * Log Space Maps
37  *
38  * Log space maps are an optimization in ZFS metadata allocations for pools
39  * whose workloads are primarily random-writes. Random-write workloads are also
40  * typically random-free, meaning that they are freeing from locations scattered
41  * throughout the pool. This means that each TXG we will have to append some
42  * FREE records to almost every metaslab. With log space maps, we hold their
43  * changes in memory and log them altogether in one pool-wide space map on-disk
44  * for persistence. As more blocks are accumulated in the log space maps and
45  * more unflushed changes are accounted in memory, we flush a selected group
46  * of metaslabs every TXG to relieve memory pressure and potential overheads
47  * when loading the pool. Flushing a metaslab to disk relieves memory as we
48  * flush any unflushed changes from memory to disk (i.e. the metaslab's space
49  * map) and saves import time by making old log space maps obsolete and
50  * eventually destroying them. [A log space map is said to be obsolete when all
51  * its entries have made it to their corresponding metaslab space maps].
52  *
53  * == On disk data structures used ==
54  *
55  * - The pool has a new feature flag and a new entry in the MOS. The feature
56  *   is activated when we create the first log space map and remains active
57  *   for the lifetime of the pool. The new entry in the MOS Directory [refer
58  *   to DMU_POOL_LOG_SPACEMAP_ZAP] is populated with a ZAP whose key-value
59  *   pairs are of the form <key: txg, value: log space map object for that txg>.
60  *   This entry is our on-disk reference of the log space maps that exist in
61  *   the pool for each TXG and it is used during import to load all the
62  *   metaslab unflushed changes in memory. To see how this structure is first
63  *   created and later populated refer to spa_generate_syncing_log_sm(). To see
64  *   how it is used during import time refer to spa_ld_log_sm_metadata().
65  *
66  * - Each vdev has a new entry in its vdev_top_zap (see field
67  *   VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS) which holds the msp_unflushed_txg of
68  *   each metaslab in this vdev. This field is the on-disk counterpart of the
69  *   in-memory field ms_unflushed_txg which tells us from which TXG and onwards
70  *   the metaslab haven't had its changes flushed. During import, we use this
71  *   to ignore any entries in the space map log that are for this metaslab but
72  *   from a TXG before msp_unflushed_txg. At that point, we also populate its
73  *   in-memory counterpart and from there both fields are updated every time
74  *   we flush that metaslab.
75  *
76  * - A space map is created every TXG and, during that TXG, it is used to log
77  *   all incoming changes (the log space map). When created, the log space map
78  *   is referenced in memory by spa_syncing_log_sm and its object ID is inserted
79  *   to the space map ZAP mentioned above. The log space map is closed at the
80  *   end of the TXG and will be destroyed when it becomes fully obsolete. We
81  *   know when a log space map has become obsolete by looking at the oldest
82  *   (and smallest) ms_unflushed_txg in the pool. If the value of that is bigger
83  *   than the log space map's TXG, then it means that there is no metaslab who
84  *   doesn't have the changes from that log and we can therefore destroy it.
85  *   [see spa_cleanup_old_sm_logs()].
86  *
87  * == Important in-memory structures ==
88  *
89  * - The per-spa field spa_metaslabs_by_flushed sorts all the metaslabs in
90  *   the pool by their ms_unflushed_txg field. It is primarily used for three
91  *   reasons. First of all, it is used during flushing where we try to flush
92  *   metaslabs in-order from the oldest-flushed to the most recently flushed
93  *   every TXG. Secondly, it helps us to lookup the ms_unflushed_txg of the
94  *   oldest flushed metaslab to distinguish which log space maps have become
95  *   obsolete and which ones are still relevant. Finally it tells us which
96  *   metaslabs have unflushed changes in a pool where this feature was just
97  *   enabled, as we don't immediately add all of the pool's metaslabs but we
98  *   add them over time as they go through metaslab_sync(). The reason that
99  *   we do that is to ease these pools into the behavior of the flushing
100  *   algorithm (described later on).
101  *
102  * - The per-spa field spa_sm_logs_by_txg can be thought as the in-memory
103  *   counterpart of the space map ZAP mentioned above. It's an AVL tree whose
104  *   nodes represent the log space maps in the pool. This in-memory
105  *   representation of log space maps in the pool sorts the log space maps by
106  *   the TXG that they were created (which is also the TXG of their unflushed
107  *   changes). It also contains the following extra information for each
108  *   space map:
109  *   [1] The number of metaslabs that were last flushed on that TXG. This is
110  *       important because if that counter is zero and this is the oldest
111  *       log then it means that it is also obsolete.
112  *   [2] The number of blocks of that space map. This field is used by the
113  *       block heuristic of our flushing algorithm (described later on).
114  *       It represents how many blocks of metadata changes ZFS had to write
115  *       to disk for that TXG.
116  *
117  * - The per-spa field spa_log_summary is a list of entries that summarizes
118  *   the metaslab and block counts of all the nodes of the spa_sm_logs_by_txg
119  *   AVL tree mentioned above. The reason this exists is that our flushing
120  *   algorithm (described later) tries to estimate how many metaslabs to flush
121  *   in each TXG by iterating over all the log space maps and looking at their
122  *   block counts. Summarizing that information means that don't have to
123  *   iterate through each space map, minimizing the runtime overhead of the
124  *   flushing algorithm which would be induced in syncing context. In terms of
125  *   implementation the log summary is used as a queue:
126  *   * we modify or pop entries from its head when we flush metaslabs
127  *   * we modify or append entries to its tail when we sync changes.
128  *
129  * - Each metaslab has two new range trees that hold its unflushed changes,
130  *   ms_unflushed_allocs and ms_unflushed_frees. These are always disjoint.
131  *
132  * == Flushing algorithm ==
133  *
134  * The decision of how many metaslabs to flush on a give TXG is guided by
135  * two heuristics:
136  *
137  * [1] The memory heuristic -
138  * We keep track of the memory used by the unflushed trees from all the
139  * metaslabs [see sus_memused of spa_unflushed_stats] and we ensure that it
140  * stays below a certain threshold which is determined by an arbitrary hard
141  * limit and an arbitrary percentage of the system's memory [see
142  * spa_log_exceeds_memlimit()]. When we see that the memory usage of the
143  * unflushed changes are passing that threshold, we flush metaslabs, which
144  * empties their unflushed range trees, reducing the memory used.
145  *
146  * [2] The block heuristic -
147  * We try to keep the total number of blocks in the log space maps in check
148  * so the log doesn't grow indefinitely and we don't induce a lot of overhead
149  * when loading the pool. At the same time we don't want to flush a lot of
150  * metaslabs too often as this would defeat the purpose of the log space map.
151  * As a result we set a limit in the amount of blocks that we think it's
152  * acceptable for the log space maps to have and try not to cross it.
153  * [see sus_blocklimit from spa_unflushed_stats].
154  *
155  * In order to stay below the block limit every TXG we have to estimate how
156  * many metaslabs we need to flush based on the current rate of incoming blocks
157  * and our history of log space map blocks. The main idea here is to answer
158  * the question of how many metaslabs do we need to flush in order to get rid
159  * at least an X amount of log space map blocks. We can answer this question
160  * by iterating backwards from the oldest log space map to the newest one
161  * and looking at their metaslab and block counts. At this point the log summary
162  * mentioned above comes handy as it reduces the amount of things that we have
163  * to iterate (even though it may reduce the preciseness of our estimates due
164  * to its aggregation of data). So with that in mind, we project the incoming
165  * rate of the current TXG into the future and attempt to approximate how many
166  * metaslabs would we need to flush from now in order to avoid exceeding our
167  * block limit in different points in the future (granted that we would keep
168  * flushing the same number of metaslabs for every TXG). Then we take the
169  * maximum number from all these estimates to be on the safe side. For the
170  * exact implementation details of algorithm refer to
171  * spa_estimate_metaslabs_to_flush.
172  */
173 
174 /*
175  * This is used as the block size for the space maps used for the
176  * log space map feature. These space maps benefit from a bigger
177  * block size as we expect to be writing a lot of data to them at
178  * once.
179  */
180 static const unsigned long zfs_log_sm_blksz = 1ULL << 17;
181 
182 /*
183  * Percentage of the overall system's memory that ZFS allows to be
184  * used for unflushed changes (e.g. the sum of size of all the nodes
185  * in the unflushed trees).
186  *
187  * Note that this value is calculated over 1000000 for finer granularity
188  * (thus the _ppm suffix; reads as "parts per million"). As an example,
189  * the default of 1000 allows 0.1% of memory to be used.
190  */
191 static unsigned long zfs_unflushed_max_mem_ppm = 1000;
192 
193 /*
194  * Specific hard-limit in memory that ZFS allows to be used for
195  * unflushed changes.
196  */
197 static unsigned long zfs_unflushed_max_mem_amt = 1ULL << 30;
198 
199 /*
200  * The following tunable determines the number of blocks that can be used for
201  * the log space maps. It is expressed as a percentage of the total number of
202  * metaslabs in the pool (i.e. the default of 400 means that the number of log
203  * blocks is capped at 4 times the number of metaslabs).
204  *
205  * This value exists to tune our flushing algorithm, with higher values
206  * flushing metaslabs less often (doing less I/Os) per TXG versus lower values
207  * flushing metaslabs more aggressively with the upside of saving overheads
208  * when loading the pool. Another factor in this tradeoff is that flushing
209  * less often can potentially lead to better utilization of the metaslab space
210  * map's block size as we accumulate more changes per flush.
211  *
212  * Given that this tunable indirectly controls the flush rate (metaslabs
213  * flushed per txg) and that's why making it a percentage in terms of the
214  * number of metaslabs in the pool makes sense here.
215  *
216  * As a rule of thumb we default this tunable to 400% based on the following:
217  *
218  * 1] Assuming a constant flush rate and a constant incoming rate of log blocks
219  *    it is reasonable to expect that the amount of obsolete entries changes
220  *    linearly from txg to txg (e.g. the oldest log should have the most
221  *    obsolete entries, and the most recent one the least). With this we could
222  *    say that, at any given time, about half of the entries in the whole space
223  *    map log are obsolete. Thus for every two entries for a metaslab in the
224  *    log space map, only one of them is valid and actually makes it to the
225  *    metaslab's space map.
226  *    [factor of 2]
227  * 2] Each entry in the log space map is guaranteed to be two words while
228  *    entries in metaslab space maps are generally single-word.
229  *    [an extra factor of 2 - 400% overall]
230  * 3] Even if [1] and [2] are slightly less than 2 each, we haven't taken into
231  *    account any consolidation of segments from the log space map to the
232  *    unflushed range trees nor their history (e.g. a segment being allocated,
233  *    then freed, then allocated again means 3 log space map entries but 0
234  *    metaslab space map entries). Depending on the workload, we've seen ~1.8
235  *    non-obsolete log space map entries per metaslab entry, for a total of
236  *    ~600%. Since most of these estimates though are workload dependent, we
237  *    default on 400% to be conservative.
238  *
239  *    Thus we could say that even in the worst
240  *    case of [1] and [2], the factor should end up being 4.
241  *
242  * That said, regardless of the number of metaslabs in the pool we need to
243  * provide upper and lower bounds for the log block limit.
244  * [see zfs_unflushed_log_block_{min,max}]
245  */
246 static unsigned long zfs_unflushed_log_block_pct = 400;
247 
248 /*
249  * If the number of metaslabs is small and our incoming rate is high, we could
250  * get into a situation that we are flushing all our metaslabs every TXG. Thus
251  * we always allow at least this many log blocks.
252  */
253 static unsigned long zfs_unflushed_log_block_min = 1000;
254 
255 /*
256  * If the log becomes too big, the import time of the pool can take a hit in
257  * terms of performance. Thus we have a hard limit in the size of the log in
258  * terms of blocks.
259  */
260 static unsigned long zfs_unflushed_log_block_max = (1ULL << 17);
261 
262 /*
263  * Also we have a hard limit in the size of the log in terms of dirty TXGs.
264  */
265 static unsigned long zfs_unflushed_log_txg_max = 1000;
266 
267 /*
268  * Max # of rows allowed for the log_summary. The tradeoff here is accuracy and
269  * stability of the flushing algorithm (longer summary) vs its runtime overhead
270  * (smaller summary is faster to traverse).
271  */
272 static unsigned long zfs_max_logsm_summary_length = 10;
273 
274 /*
275  * Tunable that sets the lower bound on the metaslabs to flush every TXG.
276  *
277  * Setting this to 0 has no effect since if the pool is idle we won't even be
278  * creating log space maps and therefore we won't be flushing. On the other
279  * hand if the pool has any incoming workload our block heuristic will start
280  * flushing metaslabs anyway.
281  *
282  * The point of this tunable is to be used in extreme cases where we really
283  * want to flush more metaslabs than our adaptable heuristic plans to flush.
284  */
285 static unsigned long zfs_min_metaslabs_to_flush = 1;
286 
287 /*
288  * Tunable that specifies how far in the past do we want to look when trying to
289  * estimate the incoming log blocks for the current TXG.
290  *
291  * Setting this too high may not only increase runtime but also minimize the
292  * effect of the incoming rates from the most recent TXGs as we take the
293  * average over all the blocks that we walk
294  * [see spa_estimate_incoming_log_blocks].
295  */
296 static unsigned long zfs_max_log_walking = 5;
297 
298 /*
299  * This tunable exists solely for testing purposes. It ensures that the log
300  * spacemaps are not flushed and destroyed during export in order for the
301  * relevant log spacemap import code paths to be tested (effectively simulating
302  * a crash).
303  */
304 int zfs_keep_log_spacemaps_at_export = 0;
305 
306 static uint64_t
307 spa_estimate_incoming_log_blocks(spa_t *spa)
308 {
309 	ASSERT3U(spa_sync_pass(spa), ==, 1);
310 	uint64_t steps = 0, sum = 0;
311 	for (spa_log_sm_t *sls = avl_last(&spa->spa_sm_logs_by_txg);
312 	    sls != NULL && steps < zfs_max_log_walking;
313 	    sls = AVL_PREV(&spa->spa_sm_logs_by_txg, sls)) {
314 		if (sls->sls_txg == spa_syncing_txg(spa)) {
315 			/*
316 			 * skip the log created in this TXG as this would
317 			 * make our estimations inaccurate.
318 			 */
319 			continue;
320 		}
321 		sum += sls->sls_nblocks;
322 		steps++;
323 	}
324 	return ((steps > 0) ? DIV_ROUND_UP(sum, steps) : 0);
325 }
326 
327 uint64_t
328 spa_log_sm_blocklimit(spa_t *spa)
329 {
330 	return (spa->spa_unflushed_stats.sus_blocklimit);
331 }
332 
333 void
334 spa_log_sm_set_blocklimit(spa_t *spa)
335 {
336 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
337 		ASSERT0(spa_log_sm_blocklimit(spa));
338 		return;
339 	}
340 
341 	uint64_t msdcount = 0;
342 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
343 	    e; e = list_next(&spa->spa_log_summary, e))
344 		msdcount += e->lse_msdcount;
345 
346 	uint64_t limit = msdcount * zfs_unflushed_log_block_pct / 100;
347 	spa->spa_unflushed_stats.sus_blocklimit = MIN(MAX(limit,
348 	    zfs_unflushed_log_block_min), zfs_unflushed_log_block_max);
349 }
350 
351 uint64_t
352 spa_log_sm_nblocks(spa_t *spa)
353 {
354 	return (spa->spa_unflushed_stats.sus_nblocks);
355 }
356 
357 /*
358  * Ensure that the in-memory log space map structures and the summary
359  * have the same block and metaslab counts.
360  */
361 static void
362 spa_log_summary_verify_counts(spa_t *spa)
363 {
364 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
365 
366 	if ((zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) == 0)
367 		return;
368 
369 	uint64_t ms_in_avl = avl_numnodes(&spa->spa_metaslabs_by_flushed);
370 
371 	uint64_t ms_in_summary = 0, blk_in_summary = 0;
372 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
373 	    e; e = list_next(&spa->spa_log_summary, e)) {
374 		ms_in_summary += e->lse_mscount;
375 		blk_in_summary += e->lse_blkcount;
376 	}
377 
378 	uint64_t ms_in_logs = 0, blk_in_logs = 0;
379 	for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
380 	    sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
381 		ms_in_logs += sls->sls_mscount;
382 		blk_in_logs += sls->sls_nblocks;
383 	}
384 
385 	VERIFY3U(ms_in_logs, ==, ms_in_summary);
386 	VERIFY3U(ms_in_logs, ==, ms_in_avl);
387 	VERIFY3U(blk_in_logs, ==, blk_in_summary);
388 	VERIFY3U(blk_in_logs, ==, spa_log_sm_nblocks(spa));
389 }
390 
391 static boolean_t
392 summary_entry_is_full(spa_t *spa, log_summary_entry_t *e, uint64_t txg)
393 {
394 	if (e->lse_end == txg)
395 		return (0);
396 	if (e->lse_txgcount >= DIV_ROUND_UP(zfs_unflushed_log_txg_max,
397 	    zfs_max_logsm_summary_length))
398 		return (1);
399 	uint64_t blocks_per_row = MAX(1,
400 	    DIV_ROUND_UP(spa_log_sm_blocklimit(spa),
401 	    zfs_max_logsm_summary_length));
402 	return (blocks_per_row <= e->lse_blkcount);
403 }
404 
405 /*
406  * Update the log summary information to reflect the fact that a metaslab
407  * was flushed or destroyed (e.g due to device removal or pool export/destroy).
408  *
409  * We typically flush the oldest flushed metaslab so the first (and oldest)
410  * entry of the summary is updated. However if that metaslab is getting loaded
411  * we may flush the second oldest one which may be part of an entry later in
412  * the summary. Moreover, if we call into this function from metaslab_fini()
413  * the metaslabs probably won't be ordered by ms_unflushed_txg. Thus we ask
414  * for a txg as an argument so we can locate the appropriate summary entry for
415  * the metaslab.
416  */
417 void
418 spa_log_summary_decrement_mscount(spa_t *spa, uint64_t txg, boolean_t dirty)
419 {
420 	/*
421 	 * We don't track summary data for read-only pools and this function
422 	 * can be called from metaslab_fini(). In that case return immediately.
423 	 */
424 	if (!spa_writeable(spa))
425 		return;
426 
427 	log_summary_entry_t *target = NULL;
428 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
429 	    e != NULL; e = list_next(&spa->spa_log_summary, e)) {
430 		if (e->lse_start > txg)
431 			break;
432 		target = e;
433 	}
434 
435 	if (target == NULL || target->lse_mscount == 0) {
436 		/*
437 		 * We didn't find a summary entry for this metaslab. We must be
438 		 * at the teardown of a spa_load() attempt that got an error
439 		 * while reading the log space maps.
440 		 */
441 		VERIFY3S(spa_load_state(spa), ==, SPA_LOAD_ERROR);
442 		return;
443 	}
444 
445 	target->lse_mscount--;
446 	if (dirty)
447 		target->lse_msdcount--;
448 }
449 
450 /*
451  * Update the log summary information to reflect the fact that we destroyed
452  * old log space maps. Since we can only destroy the oldest log space maps,
453  * we decrement the block count of the oldest summary entry and potentially
454  * destroy it when that count hits 0.
455  *
456  * This function is called after a metaslab is flushed and typically that
457  * metaslab is the oldest flushed, which means that this function will
458  * typically decrement the block count of the first entry of the summary and
459  * potentially free it if the block count gets to zero (its metaslab count
460  * should be zero too at that point).
461  *
462  * There are certain scenarios though that don't work exactly like that so we
463  * need to account for them:
464  *
465  * Scenario [1]: It is possible that after we flushed the oldest flushed
466  * metaslab and we destroyed the oldest log space map, more recent logs had 0
467  * metaslabs pointing to them so we got rid of them too. This can happen due
468  * to metaslabs being destroyed through device removal, or because the oldest
469  * flushed metaslab was loading but we kept flushing more recently flushed
470  * metaslabs due to the memory pressure of unflushed changes. Because of that,
471  * we always iterate from the beginning of the summary and if blocks_gone is
472  * bigger than the block_count of the current entry we free that entry (we
473  * expect its metaslab count to be zero), we decrement blocks_gone and on to
474  * the next entry repeating this procedure until blocks_gone gets decremented
475  * to 0. Doing this also works for the typical case mentioned above.
476  *
477  * Scenario [2]: The oldest flushed metaslab isn't necessarily accounted by
478  * the first (and oldest) entry in the summary. If the first few entries of
479  * the summary were only accounting metaslabs from a device that was just
480  * removed, then the current oldest flushed metaslab could be accounted by an
481  * entry somewhere in the middle of the summary. Moreover flushing that
482  * metaslab will destroy all the log space maps older than its ms_unflushed_txg
483  * because they became obsolete after the removal. Thus, iterating as we did
484  * for scenario [1] works out for this case too.
485  *
486  * Scenario [3]: At times we decide to flush all the metaslabs in the pool
487  * in one TXG (either because we are exporting the pool or because our flushing
488  * heuristics decided to do so). When that happens all the log space maps get
489  * destroyed except the one created for the current TXG which doesn't have
490  * any log blocks yet. As log space maps get destroyed with every metaslab that
491  * we flush, entries in the summary are also destroyed. This brings a weird
492  * corner-case when we flush the last metaslab and the log space map of the
493  * current TXG is in the same summary entry with other log space maps that
494  * are older. When that happens we are eventually left with this one last
495  * summary entry whose blocks are gone (blocks_gone equals the entry's block
496  * count) but its metaslab count is non-zero (because it accounts all the
497  * metaslabs in the pool as they all got flushed). Under this scenario we can't
498  * free this last summary entry as it's referencing all the metaslabs in the
499  * pool and its block count will get incremented at the end of this sync (when
500  * we close the syncing log space map). Thus we just decrement its current
501  * block count and leave it alone. In the case that the pool gets exported,
502  * its metaslab count will be decremented over time as we call metaslab_fini()
503  * for all the metaslabs in the pool and the entry will be freed at
504  * spa_unload_log_sm_metadata().
505  */
506 void
507 spa_log_summary_decrement_blkcount(spa_t *spa, uint64_t blocks_gone)
508 {
509 	log_summary_entry_t *e = list_head(&spa->spa_log_summary);
510 	if (e->lse_txgcount > 0)
511 		e->lse_txgcount--;
512 	for (; e != NULL; e = list_head(&spa->spa_log_summary)) {
513 		if (e->lse_blkcount > blocks_gone) {
514 			e->lse_blkcount -= blocks_gone;
515 			blocks_gone = 0;
516 			break;
517 		} else if (e->lse_mscount == 0) {
518 			/* remove obsolete entry */
519 			blocks_gone -= e->lse_blkcount;
520 			list_remove(&spa->spa_log_summary, e);
521 			kmem_free(e, sizeof (log_summary_entry_t));
522 		} else {
523 			/* Verify that this is scenario [3] mentioned above. */
524 			VERIFY3U(blocks_gone, ==, e->lse_blkcount);
525 
526 			/*
527 			 * Assert that this is scenario [3] further by ensuring
528 			 * that this is the only entry in the summary.
529 			 */
530 			VERIFY3P(e, ==, list_tail(&spa->spa_log_summary));
531 			ASSERT3P(e, ==, list_head(&spa->spa_log_summary));
532 
533 			blocks_gone = e->lse_blkcount = 0;
534 			break;
535 		}
536 	}
537 
538 	/*
539 	 * Ensure that there is no way we are trying to remove more blocks
540 	 * than the # of blocks in the summary.
541 	 */
542 	ASSERT0(blocks_gone);
543 }
544 
545 void
546 spa_log_sm_decrement_mscount(spa_t *spa, uint64_t txg)
547 {
548 	spa_log_sm_t target = { .sls_txg = txg };
549 	spa_log_sm_t *sls = avl_find(&spa->spa_sm_logs_by_txg,
550 	    &target, NULL);
551 
552 	if (sls == NULL) {
553 		/*
554 		 * We must be at the teardown of a spa_load() attempt that
555 		 * got an error while reading the log space maps.
556 		 */
557 		VERIFY3S(spa_load_state(spa), ==, SPA_LOAD_ERROR);
558 		return;
559 	}
560 
561 	ASSERT(sls->sls_mscount > 0);
562 	sls->sls_mscount--;
563 }
564 
565 void
566 spa_log_sm_increment_current_mscount(spa_t *spa)
567 {
568 	spa_log_sm_t *last_sls = avl_last(&spa->spa_sm_logs_by_txg);
569 	ASSERT3U(last_sls->sls_txg, ==, spa_syncing_txg(spa));
570 	last_sls->sls_mscount++;
571 }
572 
573 static void
574 summary_add_data(spa_t *spa, uint64_t txg, uint64_t metaslabs_flushed,
575     uint64_t metaslabs_dirty, uint64_t nblocks)
576 {
577 	log_summary_entry_t *e = list_tail(&spa->spa_log_summary);
578 
579 	if (e == NULL || summary_entry_is_full(spa, e, txg)) {
580 		e = kmem_zalloc(sizeof (log_summary_entry_t), KM_SLEEP);
581 		e->lse_start = e->lse_end = txg;
582 		e->lse_txgcount = 1;
583 		list_insert_tail(&spa->spa_log_summary, e);
584 	}
585 
586 	ASSERT3U(e->lse_start, <=, txg);
587 	if (e->lse_end < txg) {
588 		e->lse_end = txg;
589 		e->lse_txgcount++;
590 	}
591 	e->lse_mscount += metaslabs_flushed;
592 	e->lse_msdcount += metaslabs_dirty;
593 	e->lse_blkcount += nblocks;
594 }
595 
596 static void
597 spa_log_summary_add_incoming_blocks(spa_t *spa, uint64_t nblocks)
598 {
599 	summary_add_data(spa, spa_syncing_txg(spa), 0, 0, nblocks);
600 }
601 
602 void
603 spa_log_summary_add_flushed_metaslab(spa_t *spa, boolean_t dirty)
604 {
605 	summary_add_data(spa, spa_syncing_txg(spa), 1, dirty ? 1 : 0, 0);
606 }
607 
608 void
609 spa_log_summary_dirty_flushed_metaslab(spa_t *spa, uint64_t txg)
610 {
611 	log_summary_entry_t *target = NULL;
612 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
613 	    e != NULL; e = list_next(&spa->spa_log_summary, e)) {
614 		if (e->lse_start > txg)
615 			break;
616 		target = e;
617 	}
618 	ASSERT3P(target, !=, NULL);
619 	ASSERT3U(target->lse_mscount, !=, 0);
620 	target->lse_msdcount++;
621 }
622 
623 /*
624  * This function attempts to estimate how many metaslabs should
625  * we flush to satisfy our block heuristic for the log spacemap
626  * for the upcoming TXGs.
627  *
628  * Specifically, it first tries to estimate the number of incoming
629  * blocks in this TXG. Then by projecting that incoming rate to
630  * future TXGs and using the log summary, it figures out how many
631  * flushes we would need to do for future TXGs individually to
632  * stay below our block limit and returns the maximum number of
633  * flushes from those estimates.
634  */
635 static uint64_t
636 spa_estimate_metaslabs_to_flush(spa_t *spa)
637 {
638 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
639 	ASSERT3U(spa_sync_pass(spa), ==, 1);
640 	ASSERT(spa_log_sm_blocklimit(spa) != 0);
641 
642 	/*
643 	 * This variable contains the incoming rate that will be projected
644 	 * and used for our flushing estimates in the future.
645 	 */
646 	uint64_t incoming = spa_estimate_incoming_log_blocks(spa);
647 
648 	/*
649 	 * At any point in time this variable tells us how many
650 	 * TXGs in the future we are so we can make our estimations.
651 	 */
652 	uint64_t txgs_in_future = 1;
653 
654 	/*
655 	 * This variable tells us how much room do we have until we hit
656 	 * our limit. When it goes negative, it means that we've exceeded
657 	 * our limit and we need to flush.
658 	 *
659 	 * Note that since we start at the first TXG in the future (i.e.
660 	 * txgs_in_future starts from 1) we already decrement this
661 	 * variable by the incoming rate.
662 	 */
663 	int64_t available_blocks =
664 	    spa_log_sm_blocklimit(spa) - spa_log_sm_nblocks(spa) - incoming;
665 
666 	int64_t available_txgs = zfs_unflushed_log_txg_max;
667 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
668 	    e; e = list_next(&spa->spa_log_summary, e))
669 		available_txgs -= e->lse_txgcount;
670 
671 	/*
672 	 * This variable tells us the total number of flushes needed to
673 	 * keep the log size within the limit when we reach txgs_in_future.
674 	 */
675 	uint64_t total_flushes = 0;
676 
677 	/* Holds the current maximum of our estimates so far. */
678 	uint64_t max_flushes_pertxg = zfs_min_metaslabs_to_flush;
679 
680 	/*
681 	 * For our estimations we only look as far in the future
682 	 * as the summary allows us.
683 	 */
684 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
685 	    e; e = list_next(&spa->spa_log_summary, e)) {
686 
687 		/*
688 		 * If there is still room before we exceed our limit
689 		 * then keep skipping TXGs accumulating more blocks
690 		 * based on the incoming rate until we exceed it.
691 		 */
692 		if (available_blocks >= 0 && available_txgs >= 0) {
693 			uint64_t skip_txgs = MIN(available_txgs + 1,
694 			    (available_blocks / incoming) + 1);
695 			available_blocks -= (skip_txgs * incoming);
696 			available_txgs -= skip_txgs;
697 			txgs_in_future += skip_txgs;
698 			ASSERT3S(available_blocks, >=, -incoming);
699 			ASSERT3S(available_txgs, >=, -1);
700 		}
701 
702 		/*
703 		 * At this point we're far enough into the future where
704 		 * the limit was just exceeded and we flush metaslabs
705 		 * based on the current entry in the summary, updating
706 		 * our available_blocks.
707 		 */
708 		ASSERT(available_blocks < 0 || available_txgs < 0);
709 		available_blocks += e->lse_blkcount;
710 		available_txgs += e->lse_txgcount;
711 		total_flushes += e->lse_msdcount;
712 
713 		/*
714 		 * Keep the running maximum of the total_flushes that
715 		 * we've done so far over the number of TXGs in the
716 		 * future that we are. The idea here is to estimate
717 		 * the average number of flushes that we should do
718 		 * every TXG so that when we are that many TXGs in the
719 		 * future we stay under the limit.
720 		 */
721 		max_flushes_pertxg = MAX(max_flushes_pertxg,
722 		    DIV_ROUND_UP(total_flushes, txgs_in_future));
723 	}
724 	return (max_flushes_pertxg);
725 }
726 
727 uint64_t
728 spa_log_sm_memused(spa_t *spa)
729 {
730 	return (spa->spa_unflushed_stats.sus_memused);
731 }
732 
733 static boolean_t
734 spa_log_exceeds_memlimit(spa_t *spa)
735 {
736 	if (spa_log_sm_memused(spa) > zfs_unflushed_max_mem_amt)
737 		return (B_TRUE);
738 
739 	uint64_t system_mem_allowed = ((physmem * PAGESIZE) *
740 	    zfs_unflushed_max_mem_ppm) / 1000000;
741 	if (spa_log_sm_memused(spa) > system_mem_allowed)
742 		return (B_TRUE);
743 
744 	return (B_FALSE);
745 }
746 
747 boolean_t
748 spa_flush_all_logs_requested(spa_t *spa)
749 {
750 	return (spa->spa_log_flushall_txg != 0);
751 }
752 
753 void
754 spa_flush_metaslabs(spa_t *spa, dmu_tx_t *tx)
755 {
756 	uint64_t txg = dmu_tx_get_txg(tx);
757 
758 	if (spa_sync_pass(spa) != 1)
759 		return;
760 
761 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
762 		return;
763 
764 	/*
765 	 * If we don't have any metaslabs with unflushed changes
766 	 * return immediately.
767 	 */
768 	if (avl_numnodes(&spa->spa_metaslabs_by_flushed) == 0)
769 		return;
770 
771 	/*
772 	 * During SPA export we leave a few empty TXGs to go by [see
773 	 * spa_final_dirty_txg() to understand why]. For this specific
774 	 * case, it is important to not flush any metaslabs as that
775 	 * would dirty this TXG.
776 	 *
777 	 * That said, during one of these dirty TXGs that is less or
778 	 * equal to spa_final_dirty(), spa_unload() will request that
779 	 * we try to flush all the metaslabs for that TXG before
780 	 * exporting the pool, thus we ensure that we didn't get a
781 	 * request of flushing everything before we attempt to return
782 	 * immediately.
783 	 */
784 	if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
785 	    !dmu_objset_is_dirty(spa_meta_objset(spa), txg) &&
786 	    !spa_flush_all_logs_requested(spa))
787 		return;
788 
789 	/*
790 	 * We need to generate a log space map before flushing because this
791 	 * will set up the in-memory data (i.e. node in spa_sm_logs_by_txg)
792 	 * for this TXG's flushed metaslab count (aka sls_mscount which is
793 	 * manipulated in many ways down the metaslab_flush() codepath).
794 	 *
795 	 * That is not to say that we may generate a log space map when we
796 	 * don't need it. If we are flushing metaslabs, that means that we
797 	 * were going to write changes to disk anyway, so even if we were
798 	 * not flushing, a log space map would have been created anyway in
799 	 * metaslab_sync().
800 	 */
801 	spa_generate_syncing_log_sm(spa, tx);
802 
803 	/*
804 	 * This variable tells us how many metaslabs we want to flush based
805 	 * on the block-heuristic of our flushing algorithm (see block comment
806 	 * of log space map feature). We also decrement this as we flush
807 	 * metaslabs and attempt to destroy old log space maps.
808 	 */
809 	uint64_t want_to_flush;
810 	if (spa_flush_all_logs_requested(spa)) {
811 		ASSERT3S(spa_state(spa), ==, POOL_STATE_EXPORTED);
812 		want_to_flush = UINT64_MAX;
813 	} else {
814 		want_to_flush = spa_estimate_metaslabs_to_flush(spa);
815 	}
816 
817 	/* Used purely for verification purposes */
818 	uint64_t visited = 0;
819 
820 	/*
821 	 * Ideally we would only iterate through spa_metaslabs_by_flushed
822 	 * using only one variable (curr). We can't do that because
823 	 * metaslab_flush() mutates position of curr in the AVL when
824 	 * it flushes that metaslab by moving it to the end of the tree.
825 	 * Thus we always keep track of the original next node of the
826 	 * current node (curr) in another variable (next).
827 	 */
828 	metaslab_t *next = NULL;
829 	for (metaslab_t *curr = avl_first(&spa->spa_metaslabs_by_flushed);
830 	    curr != NULL; curr = next) {
831 		next = AVL_NEXT(&spa->spa_metaslabs_by_flushed, curr);
832 
833 		/*
834 		 * If this metaslab has been flushed this txg then we've done
835 		 * a full circle over the metaslabs.
836 		 */
837 		if (metaslab_unflushed_txg(curr) == txg)
838 			break;
839 
840 		/*
841 		 * If we are done flushing for the block heuristic and the
842 		 * unflushed changes don't exceed the memory limit just stop.
843 		 */
844 		if (want_to_flush == 0 && !spa_log_exceeds_memlimit(spa))
845 			break;
846 
847 		if (metaslab_unflushed_dirty(curr)) {
848 			mutex_enter(&curr->ms_sync_lock);
849 			mutex_enter(&curr->ms_lock);
850 			metaslab_flush(curr, tx);
851 			mutex_exit(&curr->ms_lock);
852 			mutex_exit(&curr->ms_sync_lock);
853 			if (want_to_flush > 0)
854 				want_to_flush--;
855 		} else
856 			metaslab_unflushed_bump(curr, tx, B_FALSE);
857 
858 		visited++;
859 	}
860 	ASSERT3U(avl_numnodes(&spa->spa_metaslabs_by_flushed), >=, visited);
861 
862 	spa_log_sm_set_blocklimit(spa);
863 }
864 
865 /*
866  * Close the log space map for this TXG and update the block counts
867  * for the log's in-memory structure and the summary.
868  */
869 void
870 spa_sync_close_syncing_log_sm(spa_t *spa)
871 {
872 	if (spa_syncing_log_sm(spa) == NULL)
873 		return;
874 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
875 
876 	spa_log_sm_t *sls = avl_last(&spa->spa_sm_logs_by_txg);
877 	ASSERT3U(sls->sls_txg, ==, spa_syncing_txg(spa));
878 
879 	sls->sls_nblocks = space_map_nblocks(spa_syncing_log_sm(spa));
880 	spa->spa_unflushed_stats.sus_nblocks += sls->sls_nblocks;
881 
882 	/*
883 	 * Note that we can't assert that sls_mscount is not 0,
884 	 * because there is the case where the first metaslab
885 	 * in spa_metaslabs_by_flushed is loading and we were
886 	 * not able to flush any metaslabs the current TXG.
887 	 */
888 	ASSERT(sls->sls_nblocks != 0);
889 
890 	spa_log_summary_add_incoming_blocks(spa, sls->sls_nblocks);
891 	spa_log_summary_verify_counts(spa);
892 
893 	space_map_close(spa->spa_syncing_log_sm);
894 	spa->spa_syncing_log_sm = NULL;
895 
896 	/*
897 	 * At this point we tried to flush as many metaslabs as we
898 	 * can as the pool is getting exported. Reset the "flush all"
899 	 * so the last few TXGs before closing the pool can be empty
900 	 * (e.g. not dirty).
901 	 */
902 	if (spa_flush_all_logs_requested(spa)) {
903 		ASSERT3S(spa_state(spa), ==, POOL_STATE_EXPORTED);
904 		spa->spa_log_flushall_txg = 0;
905 	}
906 }
907 
908 void
909 spa_cleanup_old_sm_logs(spa_t *spa, dmu_tx_t *tx)
910 {
911 	objset_t *mos = spa_meta_objset(spa);
912 
913 	uint64_t spacemap_zap;
914 	int error = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
915 	    DMU_POOL_LOG_SPACEMAP_ZAP, sizeof (spacemap_zap), 1, &spacemap_zap);
916 	if (error == ENOENT) {
917 		ASSERT(avl_is_empty(&spa->spa_sm_logs_by_txg));
918 		return;
919 	}
920 	VERIFY0(error);
921 
922 	metaslab_t *oldest = avl_first(&spa->spa_metaslabs_by_flushed);
923 	uint64_t oldest_flushed_txg = metaslab_unflushed_txg(oldest);
924 
925 	/* Free all log space maps older than the oldest_flushed_txg. */
926 	for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
927 	    sls && sls->sls_txg < oldest_flushed_txg;
928 	    sls = avl_first(&spa->spa_sm_logs_by_txg)) {
929 		ASSERT0(sls->sls_mscount);
930 		avl_remove(&spa->spa_sm_logs_by_txg, sls);
931 		space_map_free_obj(mos, sls->sls_sm_obj, tx);
932 		VERIFY0(zap_remove_int(mos, spacemap_zap, sls->sls_txg, tx));
933 		spa_log_summary_decrement_blkcount(spa, sls->sls_nblocks);
934 		spa->spa_unflushed_stats.sus_nblocks -= sls->sls_nblocks;
935 		kmem_free(sls, sizeof (spa_log_sm_t));
936 	}
937 }
938 
939 static spa_log_sm_t *
940 spa_log_sm_alloc(uint64_t sm_obj, uint64_t txg)
941 {
942 	spa_log_sm_t *sls = kmem_zalloc(sizeof (*sls), KM_SLEEP);
943 	sls->sls_sm_obj = sm_obj;
944 	sls->sls_txg = txg;
945 	return (sls);
946 }
947 
948 void
949 spa_generate_syncing_log_sm(spa_t *spa, dmu_tx_t *tx)
950 {
951 	uint64_t txg = dmu_tx_get_txg(tx);
952 	objset_t *mos = spa_meta_objset(spa);
953 
954 	if (spa_syncing_log_sm(spa) != NULL)
955 		return;
956 
957 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP))
958 		return;
959 
960 	uint64_t spacemap_zap;
961 	int error = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
962 	    DMU_POOL_LOG_SPACEMAP_ZAP, sizeof (spacemap_zap), 1, &spacemap_zap);
963 	if (error == ENOENT) {
964 		ASSERT(avl_is_empty(&spa->spa_sm_logs_by_txg));
965 
966 		error = 0;
967 		spacemap_zap = zap_create(mos,
968 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
969 		VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
970 		    DMU_POOL_LOG_SPACEMAP_ZAP, sizeof (spacemap_zap), 1,
971 		    &spacemap_zap, tx));
972 		spa_feature_incr(spa, SPA_FEATURE_LOG_SPACEMAP, tx);
973 	}
974 	VERIFY0(error);
975 
976 	uint64_t sm_obj;
977 	ASSERT3U(zap_lookup_int_key(mos, spacemap_zap, txg, &sm_obj),
978 	    ==, ENOENT);
979 	sm_obj = space_map_alloc(mos, zfs_log_sm_blksz, tx);
980 	VERIFY0(zap_add_int_key(mos, spacemap_zap, txg, sm_obj, tx));
981 	avl_add(&spa->spa_sm_logs_by_txg, spa_log_sm_alloc(sm_obj, txg));
982 
983 	/*
984 	 * We pass UINT64_MAX as the space map's representation size
985 	 * and SPA_MINBLOCKSHIFT as the shift, to make the space map
986 	 * accept any sorts of segments since there's no real advantage
987 	 * to being more restrictive (given that we're already going
988 	 * to be using 2-word entries).
989 	 */
990 	VERIFY0(space_map_open(&spa->spa_syncing_log_sm, mos, sm_obj,
991 	    0, UINT64_MAX, SPA_MINBLOCKSHIFT));
992 
993 	spa_log_sm_set_blocklimit(spa);
994 }
995 
996 /*
997  * Find all the log space maps stored in the space map ZAP and sort
998  * them by their TXG in spa_sm_logs_by_txg.
999  */
1000 static int
1001 spa_ld_log_sm_metadata(spa_t *spa)
1002 {
1003 	int error;
1004 	uint64_t spacemap_zap;
1005 
1006 	ASSERT(avl_is_empty(&spa->spa_sm_logs_by_txg));
1007 
1008 	error = zap_lookup(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
1009 	    DMU_POOL_LOG_SPACEMAP_ZAP, sizeof (spacemap_zap), 1, &spacemap_zap);
1010 	if (error == ENOENT) {
1011 		/* the space map ZAP doesn't exist yet */
1012 		return (0);
1013 	} else if (error != 0) {
1014 		spa_load_failed(spa, "spa_ld_log_sm_metadata(): failed at "
1015 		    "zap_lookup(DMU_POOL_DIRECTORY_OBJECT) [error %d]",
1016 		    error);
1017 		return (error);
1018 	}
1019 
1020 	zap_cursor_t zc;
1021 	zap_attribute_t za;
1022 	for (zap_cursor_init(&zc, spa_meta_objset(spa), spacemap_zap);
1023 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
1024 	    zap_cursor_advance(&zc)) {
1025 		uint64_t log_txg = zfs_strtonum(za.za_name, NULL);
1026 		spa_log_sm_t *sls =
1027 		    spa_log_sm_alloc(za.za_first_integer, log_txg);
1028 		avl_add(&spa->spa_sm_logs_by_txg, sls);
1029 	}
1030 	zap_cursor_fini(&zc);
1031 	if (error != ENOENT) {
1032 		spa_load_failed(spa, "spa_ld_log_sm_metadata(): failed at "
1033 		    "zap_cursor_retrieve(spacemap_zap) [error %d]",
1034 		    error);
1035 		return (error);
1036 	}
1037 
1038 	for (metaslab_t *m = avl_first(&spa->spa_metaslabs_by_flushed);
1039 	    m; m = AVL_NEXT(&spa->spa_metaslabs_by_flushed, m)) {
1040 		spa_log_sm_t target = { .sls_txg = metaslab_unflushed_txg(m) };
1041 		spa_log_sm_t *sls = avl_find(&spa->spa_sm_logs_by_txg,
1042 		    &target, NULL);
1043 
1044 		/*
1045 		 * At this point if sls is zero it means that a bug occurred
1046 		 * in ZFS the last time the pool was open or earlier in the
1047 		 * import code path. In general, we would have placed a
1048 		 * VERIFY() here or in this case just let the kernel panic
1049 		 * with NULL pointer dereference when incrementing sls_mscount,
1050 		 * but since this is the import code path we can be a bit more
1051 		 * lenient. Thus, for DEBUG bits we always cause a panic, while
1052 		 * in production we log the error and just fail the import.
1053 		 */
1054 		ASSERT(sls != NULL);
1055 		if (sls == NULL) {
1056 			spa_load_failed(spa, "spa_ld_log_sm_metadata(): bug "
1057 			    "encountered: could not find log spacemap for "
1058 			    "TXG %llu [error %d]",
1059 			    (u_longlong_t)metaslab_unflushed_txg(m), ENOENT);
1060 			return (ENOENT);
1061 		}
1062 		sls->sls_mscount++;
1063 	}
1064 
1065 	return (0);
1066 }
1067 
1068 typedef struct spa_ld_log_sm_arg {
1069 	spa_t *slls_spa;
1070 	uint64_t slls_txg;
1071 } spa_ld_log_sm_arg_t;
1072 
1073 static int
1074 spa_ld_log_sm_cb(space_map_entry_t *sme, void *arg)
1075 {
1076 	uint64_t offset = sme->sme_offset;
1077 	uint64_t size = sme->sme_run;
1078 	uint32_t vdev_id = sme->sme_vdev;
1079 
1080 	spa_ld_log_sm_arg_t *slls = arg;
1081 	spa_t *spa = slls->slls_spa;
1082 
1083 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
1084 
1085 	/*
1086 	 * If the vdev has been removed (i.e. it is indirect or a hole)
1087 	 * skip this entry. The contents of this vdev have already moved
1088 	 * elsewhere.
1089 	 */
1090 	if (!vdev_is_concrete(vd))
1091 		return (0);
1092 
1093 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
1094 	ASSERT(!ms->ms_loaded);
1095 
1096 	/*
1097 	 * If we have already flushed entries for this TXG to this
1098 	 * metaslab's space map, then ignore it. Note that we flush
1099 	 * before processing any allocations/frees for that TXG, so
1100 	 * the metaslab's space map only has entries from *before*
1101 	 * the unflushed TXG.
1102 	 */
1103 	if (slls->slls_txg < metaslab_unflushed_txg(ms))
1104 		return (0);
1105 
1106 	switch (sme->sme_type) {
1107 	case SM_ALLOC:
1108 		range_tree_remove_xor_add_segment(offset, offset + size,
1109 		    ms->ms_unflushed_frees, ms->ms_unflushed_allocs);
1110 		break;
1111 	case SM_FREE:
1112 		range_tree_remove_xor_add_segment(offset, offset + size,
1113 		    ms->ms_unflushed_allocs, ms->ms_unflushed_frees);
1114 		break;
1115 	default:
1116 		panic("invalid maptype_t");
1117 		break;
1118 	}
1119 	if (!metaslab_unflushed_dirty(ms)) {
1120 		metaslab_set_unflushed_dirty(ms, B_TRUE);
1121 		spa_log_summary_dirty_flushed_metaslab(spa,
1122 		    metaslab_unflushed_txg(ms));
1123 	}
1124 	return (0);
1125 }
1126 
1127 static int
1128 spa_ld_log_sm_data(spa_t *spa)
1129 {
1130 	spa_log_sm_t *sls, *psls;
1131 	int error = 0;
1132 
1133 	/*
1134 	 * If we are not going to do any writes there is no need
1135 	 * to read the log space maps.
1136 	 */
1137 	if (!spa_writeable(spa))
1138 		return (0);
1139 
1140 	ASSERT0(spa->spa_unflushed_stats.sus_nblocks);
1141 	ASSERT0(spa->spa_unflushed_stats.sus_memused);
1142 
1143 	hrtime_t read_logs_starttime = gethrtime();
1144 
1145 	/* Prefetch log spacemaps dnodes. */
1146 	for (sls = avl_first(&spa->spa_sm_logs_by_txg); sls;
1147 	    sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
1148 		dmu_prefetch(spa_meta_objset(spa), sls->sls_sm_obj,
1149 		    0, 0, 0, ZIO_PRIORITY_SYNC_READ);
1150 	}
1151 
1152 	uint_t pn = 0;
1153 	uint64_t ps = 0;
1154 	psls = sls = avl_first(&spa->spa_sm_logs_by_txg);
1155 	while (sls != NULL) {
1156 		/* Prefetch log spacemaps up to 16 TXGs or MBs ahead. */
1157 		if (psls != NULL && pn < 16 &&
1158 		    (pn < 2 || ps < 2 * dmu_prefetch_max)) {
1159 			error = space_map_open(&psls->sls_sm,
1160 			    spa_meta_objset(spa), psls->sls_sm_obj, 0,
1161 			    UINT64_MAX, SPA_MINBLOCKSHIFT);
1162 			if (error != 0) {
1163 				spa_load_failed(spa, "spa_ld_log_sm_data(): "
1164 				    "failed at space_map_open(obj=%llu) "
1165 				    "[error %d]",
1166 				    (u_longlong_t)sls->sls_sm_obj, error);
1167 				goto out;
1168 			}
1169 			dmu_prefetch(spa_meta_objset(spa), psls->sls_sm_obj,
1170 			    0, 0, space_map_length(psls->sls_sm),
1171 			    ZIO_PRIORITY_ASYNC_READ);
1172 			pn++;
1173 			ps += space_map_length(psls->sls_sm);
1174 			psls = AVL_NEXT(&spa->spa_sm_logs_by_txg, psls);
1175 			continue;
1176 		}
1177 
1178 		/* Load TXG log spacemap into ms_unflushed_allocs/frees. */
1179 		cond_resched();
1180 		ASSERT0(sls->sls_nblocks);
1181 		sls->sls_nblocks = space_map_nblocks(sls->sls_sm);
1182 		spa->spa_unflushed_stats.sus_nblocks += sls->sls_nblocks;
1183 		summary_add_data(spa, sls->sls_txg,
1184 		    sls->sls_mscount, 0, sls->sls_nblocks);
1185 
1186 		struct spa_ld_log_sm_arg vla = {
1187 			.slls_spa = spa,
1188 			.slls_txg = sls->sls_txg
1189 		};
1190 		error = space_map_iterate(sls->sls_sm,
1191 		    space_map_length(sls->sls_sm), spa_ld_log_sm_cb, &vla);
1192 		if (error != 0) {
1193 			spa_load_failed(spa, "spa_ld_log_sm_data(): failed "
1194 			    "at space_map_iterate(obj=%llu) [error %d]",
1195 			    (u_longlong_t)sls->sls_sm_obj, error);
1196 			goto out;
1197 		}
1198 
1199 		pn--;
1200 		ps -= space_map_length(sls->sls_sm);
1201 		space_map_close(sls->sls_sm);
1202 		sls->sls_sm = NULL;
1203 		sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls);
1204 
1205 		/* Update log block limits considering just loaded. */
1206 		spa_log_sm_set_blocklimit(spa);
1207 	}
1208 
1209 	hrtime_t read_logs_endtime = gethrtime();
1210 	spa_load_note(spa,
1211 	    "read %llu log space maps (%llu total blocks - blksz = %llu bytes) "
1212 	    "in %lld ms", (u_longlong_t)avl_numnodes(&spa->spa_sm_logs_by_txg),
1213 	    (u_longlong_t)spa_log_sm_nblocks(spa),
1214 	    (u_longlong_t)zfs_log_sm_blksz,
1215 	    (longlong_t)((read_logs_endtime - read_logs_starttime) / 1000000));
1216 
1217 out:
1218 	if (error != 0) {
1219 		for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
1220 		    sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
1221 			if (sls->sls_sm) {
1222 				space_map_close(sls->sls_sm);
1223 				sls->sls_sm = NULL;
1224 			}
1225 		}
1226 	} else {
1227 		ASSERT0(pn);
1228 		ASSERT0(ps);
1229 	}
1230 	/*
1231 	 * Now that the metaslabs contain their unflushed changes:
1232 	 * [1] recalculate their actual allocated space
1233 	 * [2] recalculate their weights
1234 	 * [3] sum up the memory usage of their unflushed range trees
1235 	 * [4] optionally load them, if debug_load is set
1236 	 *
1237 	 * Note that even in the case where we get here because of an
1238 	 * error (e.g. error != 0), we still want to update the fields
1239 	 * below in order to have a proper teardown in spa_unload().
1240 	 */
1241 	for (metaslab_t *m = avl_first(&spa->spa_metaslabs_by_flushed);
1242 	    m != NULL; m = AVL_NEXT(&spa->spa_metaslabs_by_flushed, m)) {
1243 		mutex_enter(&m->ms_lock);
1244 		m->ms_allocated_space = space_map_allocated(m->ms_sm) +
1245 		    range_tree_space(m->ms_unflushed_allocs) -
1246 		    range_tree_space(m->ms_unflushed_frees);
1247 
1248 		vdev_t *vd = m->ms_group->mg_vd;
1249 		metaslab_space_update(vd, m->ms_group->mg_class,
1250 		    range_tree_space(m->ms_unflushed_allocs), 0, 0);
1251 		metaslab_space_update(vd, m->ms_group->mg_class,
1252 		    -range_tree_space(m->ms_unflushed_frees), 0, 0);
1253 
1254 		ASSERT0(m->ms_weight & METASLAB_ACTIVE_MASK);
1255 		metaslab_recalculate_weight_and_sort(m);
1256 
1257 		spa->spa_unflushed_stats.sus_memused +=
1258 		    metaslab_unflushed_changes_memused(m);
1259 
1260 		if (metaslab_debug_load && m->ms_sm != NULL) {
1261 			VERIFY0(metaslab_load(m));
1262 			metaslab_set_selected_txg(m, 0);
1263 		}
1264 		mutex_exit(&m->ms_lock);
1265 	}
1266 
1267 	return (error);
1268 }
1269 
1270 static int
1271 spa_ld_unflushed_txgs(vdev_t *vd)
1272 {
1273 	spa_t *spa = vd->vdev_spa;
1274 	objset_t *mos = spa_meta_objset(spa);
1275 
1276 	if (vd->vdev_top_zap == 0)
1277 		return (0);
1278 
1279 	uint64_t object = 0;
1280 	int error = zap_lookup(mos, vd->vdev_top_zap,
1281 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
1282 	    sizeof (uint64_t), 1, &object);
1283 	if (error == ENOENT)
1284 		return (0);
1285 	else if (error != 0) {
1286 		spa_load_failed(spa, "spa_ld_unflushed_txgs(): failed at "
1287 		    "zap_lookup(vdev_top_zap=%llu) [error %d]",
1288 		    (u_longlong_t)vd->vdev_top_zap, error);
1289 		return (error);
1290 	}
1291 
1292 	for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
1293 		metaslab_t *ms = vd->vdev_ms[m];
1294 		ASSERT(ms != NULL);
1295 
1296 		metaslab_unflushed_phys_t entry;
1297 		uint64_t entry_size = sizeof (entry);
1298 		uint64_t entry_offset = ms->ms_id * entry_size;
1299 
1300 		error = dmu_read(mos, object,
1301 		    entry_offset, entry_size, &entry, 0);
1302 		if (error != 0) {
1303 			spa_load_failed(spa, "spa_ld_unflushed_txgs(): "
1304 			    "failed at dmu_read(obj=%llu) [error %d]",
1305 			    (u_longlong_t)object, error);
1306 			return (error);
1307 		}
1308 
1309 		ms->ms_unflushed_txg = entry.msp_unflushed_txg;
1310 		ms->ms_unflushed_dirty = B_FALSE;
1311 		ASSERT(range_tree_is_empty(ms->ms_unflushed_allocs));
1312 		ASSERT(range_tree_is_empty(ms->ms_unflushed_frees));
1313 		if (ms->ms_unflushed_txg != 0) {
1314 			mutex_enter(&spa->spa_flushed_ms_lock);
1315 			avl_add(&spa->spa_metaslabs_by_flushed, ms);
1316 			mutex_exit(&spa->spa_flushed_ms_lock);
1317 		}
1318 	}
1319 	return (0);
1320 }
1321 
1322 /*
1323  * Read all the log space map entries into their respective
1324  * metaslab unflushed trees and keep them sorted by TXG in the
1325  * SPA's metadata. In addition, setup all the metadata for the
1326  * memory and the block heuristics.
1327  */
1328 int
1329 spa_ld_log_spacemaps(spa_t *spa)
1330 {
1331 	int error;
1332 
1333 	spa_log_sm_set_blocklimit(spa);
1334 
1335 	for (uint64_t c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1336 		vdev_t *vd = spa->spa_root_vdev->vdev_child[c];
1337 		error = spa_ld_unflushed_txgs(vd);
1338 		if (error != 0)
1339 			return (error);
1340 	}
1341 
1342 	error = spa_ld_log_sm_metadata(spa);
1343 	if (error != 0)
1344 		return (error);
1345 
1346 	/*
1347 	 * Note: we don't actually expect anything to change at this point
1348 	 * but we grab the config lock so we don't fail any assertions
1349 	 * when using vdev_lookup_top().
1350 	 */
1351 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1352 	error = spa_ld_log_sm_data(spa);
1353 	spa_config_exit(spa, SCL_CONFIG, FTAG);
1354 
1355 	return (error);
1356 }
1357 
1358 /* BEGIN CSTYLED */
1359 ZFS_MODULE_PARAM(zfs, zfs_, unflushed_max_mem_amt, ULONG, ZMOD_RW,
1360 	"Specific hard-limit in memory that ZFS allows to be used for "
1361 	"unflushed changes");
1362 
1363 ZFS_MODULE_PARAM(zfs, zfs_, unflushed_max_mem_ppm, ULONG, ZMOD_RW,
1364 	"Percentage of the overall system memory that ZFS allows to be "
1365 	"used for unflushed changes (value is calculated over 1000000 for "
1366 	"finer granularity)");
1367 
1368 ZFS_MODULE_PARAM(zfs, zfs_, unflushed_log_block_max, ULONG, ZMOD_RW,
1369 	"Hard limit (upper-bound) in the size of the space map log "
1370 	"in terms of blocks.");
1371 
1372 ZFS_MODULE_PARAM(zfs, zfs_, unflushed_log_block_min, ULONG, ZMOD_RW,
1373 	"Lower-bound limit for the maximum amount of blocks allowed in "
1374 	"log spacemap (see zfs_unflushed_log_block_max)");
1375 
1376 ZFS_MODULE_PARAM(zfs, zfs_, unflushed_log_txg_max, ULONG, ZMOD_RW,
1377     "Hard limit (upper-bound) in the size of the space map log "
1378     "in terms of dirty TXGs.");
1379 
1380 ZFS_MODULE_PARAM(zfs, zfs_, unflushed_log_block_pct, ULONG, ZMOD_RW,
1381 	"Tunable used to determine the number of blocks that can be used for "
1382 	"the spacemap log, expressed as a percentage of the total number of "
1383 	"metaslabs in the pool (e.g. 400 means the number of log blocks is "
1384 	"capped at 4 times the number of metaslabs)");
1385 
1386 ZFS_MODULE_PARAM(zfs, zfs_, max_log_walking, ULONG, ZMOD_RW,
1387 	"The number of past TXGs that the flushing algorithm of the log "
1388 	"spacemap feature uses to estimate incoming log blocks");
1389 
1390 ZFS_MODULE_PARAM(zfs, zfs_, keep_log_spacemaps_at_export, INT, ZMOD_RW,
1391 	"Prevent the log spacemaps from being flushed and destroyed "
1392 	"during pool export/destroy");
1393 /* END CSTYLED */
1394 
1395 ZFS_MODULE_PARAM(zfs, zfs_, max_logsm_summary_length, ULONG, ZMOD_RW,
1396 	"Maximum number of rows allowed in the summary of the spacemap log");
1397 
1398 ZFS_MODULE_PARAM(zfs, zfs_, min_metaslabs_to_flush, ULONG, ZMOD_RW,
1399 	"Minimum number of metaslabs to flush per dirty TXG");
1400