xref: /freebsd/sys/contrib/openzfs/module/zfs/spa_log_spacemap.c (revision 963f5dc7a30624e95d72fb7f87b8892651164e46)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2018, 2019 by Delphix. All rights reserved.
24  */
25 
26 #include <sys/dmu_objset.h>
27 #include <sys/metaslab.h>
28 #include <sys/metaslab_impl.h>
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/spa_log_spacemap.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zap.h>
34 
35 /*
36  * Log Space Maps
37  *
38  * Log space maps are an optimization in ZFS metadata allocations for pools
39  * whose workloads are primarily random-writes. Random-write workloads are also
40  * typically random-free, meaning that they are freeing from locations scattered
41  * throughout the pool. This means that each TXG we will have to append some
42  * FREE records to almost every metaslab. With log space maps, we hold their
43  * changes in memory and log them altogether in one pool-wide space map on-disk
44  * for persistence. As more blocks are accumulated in the log space maps and
45  * more unflushed changes are accounted in memory, we flush a selected group
46  * of metaslabs every TXG to relieve memory pressure and potential overheads
47  * when loading the pool. Flushing a metaslab to disk relieves memory as we
48  * flush any unflushed changes from memory to disk (i.e. the metaslab's space
49  * map) and saves import time by making old log space maps obsolete and
50  * eventually destroying them. [A log space map is said to be obsolete when all
51  * its entries have made it to their corresponding metaslab space maps].
52  *
53  * == On disk data structures used ==
54  *
55  * - The pool has a new feature flag and a new entry in the MOS. The feature
56  *   is activated when we create the first log space map and remains active
57  *   for the lifetime of the pool. The new entry in the MOS Directory [refer
58  *   to DMU_POOL_LOG_SPACEMAP_ZAP] is populated with a ZAP whose key-value
59  *   pairs are of the form <key: txg, value: log space map object for that txg>.
60  *   This entry is our on-disk reference of the log space maps that exist in
61  *   the pool for each TXG and it is used during import to load all the
62  *   metaslab unflushed changes in memory. To see how this structure is first
63  *   created and later populated refer to spa_generate_syncing_log_sm(). To see
64  *   how it is used during import time refer to spa_ld_log_sm_metadata().
65  *
66  * - Each vdev has a new entry in its vdev_top_zap (see field
67  *   VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS) which holds the msp_unflushed_txg of
68  *   each metaslab in this vdev. This field is the on-disk counterpart of the
69  *   in-memory field ms_unflushed_txg which tells us from which TXG and onwards
70  *   the metaslab haven't had its changes flushed. During import, we use this
71  *   to ignore any entries in the space map log that are for this metaslab but
72  *   from a TXG before msp_unflushed_txg. At that point, we also populate its
73  *   in-memory counterpart and from there both fields are updated every time
74  *   we flush that metaslab.
75  *
76  * - A space map is created every TXG and, during that TXG, it is used to log
77  *   all incoming changes (the log space map). When created, the log space map
78  *   is referenced in memory by spa_syncing_log_sm and its object ID is inserted
79  *   to the space map ZAP mentioned above. The log space map is closed at the
80  *   end of the TXG and will be destroyed when it becomes fully obsolete. We
81  *   know when a log space map has become obsolete by looking at the oldest
82  *   (and smallest) ms_unflushed_txg in the pool. If the value of that is bigger
83  *   than the log space map's TXG, then it means that there is no metaslab who
84  *   doesn't have the changes from that log and we can therefore destroy it.
85  *   [see spa_cleanup_old_sm_logs()].
86  *
87  * == Important in-memory structures ==
88  *
89  * - The per-spa field spa_metaslabs_by_flushed sorts all the metaslabs in
90  *   the pool by their ms_unflushed_txg field. It is primarily used for three
91  *   reasons. First of all, it is used during flushing where we try to flush
92  *   metaslabs in-order from the oldest-flushed to the most recently flushed
93  *   every TXG. Secondly, it helps us to lookup the ms_unflushed_txg of the
94  *   oldest flushed metaslab to distinguish which log space maps have become
95  *   obsolete and which ones are still relevant. Finally it tells us which
96  *   metaslabs have unflushed changes in a pool where this feature was just
97  *   enabled, as we don't immediately add all of the pool's metaslabs but we
98  *   add them over time as they go through metaslab_sync(). The reason that
99  *   we do that is to ease these pools into the behavior of the flushing
100  *   algorithm (described later on).
101  *
102  * - The per-spa field spa_sm_logs_by_txg can be thought as the in-memory
103  *   counterpart of the space map ZAP mentioned above. It's an AVL tree whose
104  *   nodes represent the log space maps in the pool. This in-memory
105  *   representation of log space maps in the pool sorts the log space maps by
106  *   the TXG that they were created (which is also the TXG of their unflushed
107  *   changes). It also contains the following extra information for each
108  *   space map:
109  *   [1] The number of metaslabs that were last flushed on that TXG. This is
110  *       important because if that counter is zero and this is the oldest
111  *       log then it means that it is also obsolete.
112  *   [2] The number of blocks of that space map. This field is used by the
113  *       block heuristic of our flushing algorithm (described later on).
114  *       It represents how many blocks of metadata changes ZFS had to write
115  *       to disk for that TXG.
116  *
117  * - The per-spa field spa_log_summary is a list of entries that summarizes
118  *   the metaslab and block counts of all the nodes of the spa_sm_logs_by_txg
119  *   AVL tree mentioned above. The reason this exists is that our flushing
120  *   algorithm (described later) tries to estimate how many metaslabs to flush
121  *   in each TXG by iterating over all the log space maps and looking at their
122  *   block counts. Summarizing that information means that don't have to
123  *   iterate through each space map, minimizing the runtime overhead of the
124  *   flushing algorithm which would be induced in syncing context. In terms of
125  *   implementation the log summary is used as a queue:
126  *   * we modify or pop entries from its head when we flush metaslabs
127  *   * we modify or append entries to its tail when we sync changes.
128  *
129  * - Each metaslab has two new range trees that hold its unflushed changes,
130  *   ms_unflushed_allocs and ms_unflushed_frees. These are always disjoint.
131  *
132  * == Flushing algorithm ==
133  *
134  * The decision of how many metaslabs to flush on a give TXG is guided by
135  * two heuristics:
136  *
137  * [1] The memory heuristic -
138  * We keep track of the memory used by the unflushed trees from all the
139  * metaslabs [see sus_memused of spa_unflushed_stats] and we ensure that it
140  * stays below a certain threshold which is determined by an arbitrary hard
141  * limit and an arbitrary percentage of the system's memory [see
142  * spa_log_exceeds_memlimit()]. When we see that the memory usage of the
143  * unflushed changes are passing that threshold, we flush metaslabs, which
144  * empties their unflushed range trees, reducing the memory used.
145  *
146  * [2] The block heuristic -
147  * We try to keep the total number of blocks in the log space maps in check
148  * so the log doesn't grow indefinitely and we don't induce a lot of overhead
149  * when loading the pool. At the same time we don't want to flush a lot of
150  * metaslabs too often as this would defeat the purpose of the log space map.
151  * As a result we set a limit in the amount of blocks that we think it's
152  * acceptable for the log space maps to have and try not to cross it.
153  * [see sus_blocklimit from spa_unflushed_stats].
154  *
155  * In order to stay below the block limit every TXG we have to estimate how
156  * many metaslabs we need to flush based on the current rate of incoming blocks
157  * and our history of log space map blocks. The main idea here is to answer
158  * the question of how many metaslabs do we need to flush in order to get rid
159  * at least an X amount of log space map blocks. We can answer this question
160  * by iterating backwards from the oldest log space map to the newest one
161  * and looking at their metaslab and block counts. At this point the log summary
162  * mentioned above comes handy as it reduces the amount of things that we have
163  * to iterate (even though it may reduce the preciseness of our estimates due
164  * to its aggregation of data). So with that in mind, we project the incoming
165  * rate of the current TXG into the future and attempt to approximate how many
166  * metaslabs would we need to flush from now in order to avoid exceeding our
167  * block limit in different points in the future (granted that we would keep
168  * flushing the same number of metaslabs for every TXG). Then we take the
169  * maximum number from all these estimates to be on the safe side. For the
170  * exact implementation details of algorithm refer to
171  * spa_estimate_metaslabs_to_flush.
172  */
173 
174 /*
175  * This is used as the block size for the space maps used for the
176  * log space map feature. These space maps benefit from a bigger
177  * block size as we expect to be writing a lot of data to them at
178  * once.
179  */
180 unsigned long zfs_log_sm_blksz = 1ULL << 17;
181 
182 /*
183  * Percentage of the overall system's memory that ZFS allows to be
184  * used for unflushed changes (e.g. the sum of size of all the nodes
185  * in the unflushed trees).
186  *
187  * Note that this value is calculated over 1000000 for finer granularity
188  * (thus the _ppm suffix; reads as "parts per million"). As an example,
189  * the default of 1000 allows 0.1% of memory to be used.
190  */
191 unsigned long zfs_unflushed_max_mem_ppm = 1000;
192 
193 /*
194  * Specific hard-limit in memory that ZFS allows to be used for
195  * unflushed changes.
196  */
197 unsigned long zfs_unflushed_max_mem_amt = 1ULL << 30;
198 
199 /*
200  * The following tunable determines the number of blocks that can be used for
201  * the log space maps. It is expressed as a percentage of the total number of
202  * metaslabs in the pool (i.e. the default of 400 means that the number of log
203  * blocks is capped at 4 times the number of metaslabs).
204  *
205  * This value exists to tune our flushing algorithm, with higher values
206  * flushing metaslabs less often (doing less I/Os) per TXG versus lower values
207  * flushing metaslabs more aggressively with the upside of saving overheads
208  * when loading the pool. Another factor in this tradeoff is that flushing
209  * less often can potentially lead to better utilization of the metaslab space
210  * map's block size as we accumulate more changes per flush.
211  *
212  * Given that this tunable indirectly controls the flush rate (metaslabs
213  * flushed per txg) and that's why making it a percentage in terms of the
214  * number of metaslabs in the pool makes sense here.
215  *
216  * As a rule of thumb we default this tunable to 400% based on the following:
217  *
218  * 1] Assuming a constant flush rate and a constant incoming rate of log blocks
219  *    it is reasonable to expect that the amount of obsolete entries changes
220  *    linearly from txg to txg (e.g. the oldest log should have the most
221  *    obsolete entries, and the most recent one the least). With this we could
222  *    say that, at any given time, about half of the entries in the whole space
223  *    map log are obsolete. Thus for every two entries for a metaslab in the
224  *    log space map, only one of them is valid and actually makes it to the
225  *    metaslab's space map.
226  *    [factor of 2]
227  * 2] Each entry in the log space map is guaranteed to be two words while
228  *    entries in metaslab space maps are generally single-word.
229  *    [an extra factor of 2 - 400% overall]
230  * 3] Even if [1] and [2] are slightly less than 2 each, we haven't taken into
231  *    account any consolidation of segments from the log space map to the
232  *    unflushed range trees nor their history (e.g. a segment being allocated,
233  *    then freed, then allocated again means 3 log space map entries but 0
234  *    metaslab space map entries). Depending on the workload, we've seen ~1.8
235  *    non-obsolete log space map entries per metaslab entry, for a total of
236  *    ~600%. Since most of these estimates though are workload dependent, we
237  *    default on 400% to be conservative.
238  *
239  *    Thus we could say that even in the worst
240  *    case of [1] and [2], the factor should end up being 4.
241  *
242  * That said, regardless of the number of metaslabs in the pool we need to
243  * provide upper and lower bounds for the log block limit.
244  * [see zfs_unflushed_log_block_{min,max}]
245  */
246 unsigned long zfs_unflushed_log_block_pct = 400;
247 
248 /*
249  * If the number of metaslabs is small and our incoming rate is high, we could
250  * get into a situation that we are flushing all our metaslabs every TXG. Thus
251  * we always allow at least this many log blocks.
252  */
253 unsigned long zfs_unflushed_log_block_min = 1000;
254 
255 /*
256  * If the log becomes too big, the import time of the pool can take a hit in
257  * terms of performance. Thus we have a hard limit in the size of the log in
258  * terms of blocks.
259  */
260 unsigned long zfs_unflushed_log_block_max = (1ULL << 18);
261 
262 /*
263  * Max # of rows allowed for the log_summary. The tradeoff here is accuracy and
264  * stability of the flushing algorithm (longer summary) vs its runtime overhead
265  * (smaller summary is faster to traverse).
266  */
267 unsigned long zfs_max_logsm_summary_length = 10;
268 
269 /*
270  * Tunable that sets the lower bound on the metaslabs to flush every TXG.
271  *
272  * Setting this to 0 has no effect since if the pool is idle we won't even be
273  * creating log space maps and therefore we won't be flushing. On the other
274  * hand if the pool has any incoming workload our block heuristic will start
275  * flushing metaslabs anyway.
276  *
277  * The point of this tunable is to be used in extreme cases where we really
278  * want to flush more metaslabs than our adaptable heuristic plans to flush.
279  */
280 unsigned long zfs_min_metaslabs_to_flush = 1;
281 
282 /*
283  * Tunable that specifies how far in the past do we want to look when trying to
284  * estimate the incoming log blocks for the current TXG.
285  *
286  * Setting this too high may not only increase runtime but also minimize the
287  * effect of the incoming rates from the most recent TXGs as we take the
288  * average over all the blocks that we walk
289  * [see spa_estimate_incoming_log_blocks].
290  */
291 unsigned long zfs_max_log_walking = 5;
292 
293 /*
294  * This tunable exists solely for testing purposes. It ensures that the log
295  * spacemaps are not flushed and destroyed during export in order for the
296  * relevant log spacemap import code paths to be tested (effectively simulating
297  * a crash).
298  */
299 int zfs_keep_log_spacemaps_at_export = 0;
300 
301 static uint64_t
302 spa_estimate_incoming_log_blocks(spa_t *spa)
303 {
304 	ASSERT3U(spa_sync_pass(spa), ==, 1);
305 	uint64_t steps = 0, sum = 0;
306 	for (spa_log_sm_t *sls = avl_last(&spa->spa_sm_logs_by_txg);
307 	    sls != NULL && steps < zfs_max_log_walking;
308 	    sls = AVL_PREV(&spa->spa_sm_logs_by_txg, sls)) {
309 		if (sls->sls_txg == spa_syncing_txg(spa)) {
310 			/*
311 			 * skip the log created in this TXG as this would
312 			 * make our estimations inaccurate.
313 			 */
314 			continue;
315 		}
316 		sum += sls->sls_nblocks;
317 		steps++;
318 	}
319 	return ((steps > 0) ? DIV_ROUND_UP(sum, steps) : 0);
320 }
321 
322 uint64_t
323 spa_log_sm_blocklimit(spa_t *spa)
324 {
325 	return (spa->spa_unflushed_stats.sus_blocklimit);
326 }
327 
328 void
329 spa_log_sm_set_blocklimit(spa_t *spa)
330 {
331 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
332 		ASSERT0(spa_log_sm_blocklimit(spa));
333 		return;
334 	}
335 
336 	uint64_t calculated_limit =
337 	    (spa_total_metaslabs(spa) * zfs_unflushed_log_block_pct) / 100;
338 	spa->spa_unflushed_stats.sus_blocklimit = MIN(MAX(calculated_limit,
339 	    zfs_unflushed_log_block_min), zfs_unflushed_log_block_max);
340 }
341 
342 uint64_t
343 spa_log_sm_nblocks(spa_t *spa)
344 {
345 	return (spa->spa_unflushed_stats.sus_nblocks);
346 }
347 
348 /*
349  * Ensure that the in-memory log space map structures and the summary
350  * have the same block and metaslab counts.
351  */
352 static void
353 spa_log_summary_verify_counts(spa_t *spa)
354 {
355 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
356 
357 	if ((zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) == 0)
358 		return;
359 
360 	uint64_t ms_in_avl = avl_numnodes(&spa->spa_metaslabs_by_flushed);
361 
362 	uint64_t ms_in_summary = 0, blk_in_summary = 0;
363 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
364 	    e; e = list_next(&spa->spa_log_summary, e)) {
365 		ms_in_summary += e->lse_mscount;
366 		blk_in_summary += e->lse_blkcount;
367 	}
368 
369 	uint64_t ms_in_logs = 0, blk_in_logs = 0;
370 	for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
371 	    sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
372 		ms_in_logs += sls->sls_mscount;
373 		blk_in_logs += sls->sls_nblocks;
374 	}
375 
376 	VERIFY3U(ms_in_logs, ==, ms_in_summary);
377 	VERIFY3U(ms_in_logs, ==, ms_in_avl);
378 	VERIFY3U(blk_in_logs, ==, blk_in_summary);
379 	VERIFY3U(blk_in_logs, ==, spa_log_sm_nblocks(spa));
380 }
381 
382 static boolean_t
383 summary_entry_is_full(spa_t *spa, log_summary_entry_t *e)
384 {
385 	uint64_t blocks_per_row = MAX(1,
386 	    DIV_ROUND_UP(spa_log_sm_blocklimit(spa),
387 	    zfs_max_logsm_summary_length));
388 	return (blocks_per_row <= e->lse_blkcount);
389 }
390 
391 /*
392  * Update the log summary information to reflect the fact that a metaslab
393  * was flushed or destroyed (e.g due to device removal or pool export/destroy).
394  *
395  * We typically flush the oldest flushed metaslab so the first (and oldest)
396  * entry of the summary is updated. However if that metaslab is getting loaded
397  * we may flush the second oldest one which may be part of an entry later in
398  * the summary. Moreover, if we call into this function from metaslab_fini()
399  * the metaslabs probably won't be ordered by ms_unflushed_txg. Thus we ask
400  * for a txg as an argument so we can locate the appropriate summary entry for
401  * the metaslab.
402  */
403 void
404 spa_log_summary_decrement_mscount(spa_t *spa, uint64_t txg)
405 {
406 	/*
407 	 * We don't track summary data for read-only pools and this function
408 	 * can be called from metaslab_fini(). In that case return immediately.
409 	 */
410 	if (!spa_writeable(spa))
411 		return;
412 
413 	log_summary_entry_t *target = NULL;
414 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
415 	    e != NULL; e = list_next(&spa->spa_log_summary, e)) {
416 		if (e->lse_start > txg)
417 			break;
418 		target = e;
419 	}
420 
421 	if (target == NULL || target->lse_mscount == 0) {
422 		/*
423 		 * We didn't find a summary entry for this metaslab. We must be
424 		 * at the teardown of a spa_load() attempt that got an error
425 		 * while reading the log space maps.
426 		 */
427 		VERIFY3S(spa_load_state(spa), ==, SPA_LOAD_ERROR);
428 		return;
429 	}
430 
431 	target->lse_mscount--;
432 }
433 
434 /*
435  * Update the log summary information to reflect the fact that we destroyed
436  * old log space maps. Since we can only destroy the oldest log space maps,
437  * we decrement the block count of the oldest summary entry and potentially
438  * destroy it when that count hits 0.
439  *
440  * This function is called after a metaslab is flushed and typically that
441  * metaslab is the oldest flushed, which means that this function will
442  * typically decrement the block count of the first entry of the summary and
443  * potentially free it if the block count gets to zero (its metaslab count
444  * should be zero too at that point).
445  *
446  * There are certain scenarios though that don't work exactly like that so we
447  * need to account for them:
448  *
449  * Scenario [1]: It is possible that after we flushed the oldest flushed
450  * metaslab and we destroyed the oldest log space map, more recent logs had 0
451  * metaslabs pointing to them so we got rid of them too. This can happen due
452  * to metaslabs being destroyed through device removal, or because the oldest
453  * flushed metaslab was loading but we kept flushing more recently flushed
454  * metaslabs due to the memory pressure of unflushed changes. Because of that,
455  * we always iterate from the beginning of the summary and if blocks_gone is
456  * bigger than the block_count of the current entry we free that entry (we
457  * expect its metaslab count to be zero), we decrement blocks_gone and on to
458  * the next entry repeating this procedure until blocks_gone gets decremented
459  * to 0. Doing this also works for the typical case mentioned above.
460  *
461  * Scenario [2]: The oldest flushed metaslab isn't necessarily accounted by
462  * the first (and oldest) entry in the summary. If the first few entries of
463  * the summary were only accounting metaslabs from a device that was just
464  * removed, then the current oldest flushed metaslab could be accounted by an
465  * entry somewhere in the middle of the summary. Moreover flushing that
466  * metaslab will destroy all the log space maps older than its ms_unflushed_txg
467  * because they became obsolete after the removal. Thus, iterating as we did
468  * for scenario [1] works out for this case too.
469  *
470  * Scenario [3]: At times we decide to flush all the metaslabs in the pool
471  * in one TXG (either because we are exporting the pool or because our flushing
472  * heuristics decided to do so). When that happens all the log space maps get
473  * destroyed except the one created for the current TXG which doesn't have
474  * any log blocks yet. As log space maps get destroyed with every metaslab that
475  * we flush, entries in the summary are also destroyed. This brings a weird
476  * corner-case when we flush the last metaslab and the log space map of the
477  * current TXG is in the same summary entry with other log space maps that
478  * are older. When that happens we are eventually left with this one last
479  * summary entry whose blocks are gone (blocks_gone equals the entry's block
480  * count) but its metaslab count is non-zero (because it accounts all the
481  * metaslabs in the pool as they all got flushed). Under this scenario we can't
482  * free this last summary entry as it's referencing all the metaslabs in the
483  * pool and its block count will get incremented at the end of this sync (when
484  * we close the syncing log space map). Thus we just decrement its current
485  * block count and leave it alone. In the case that the pool gets exported,
486  * its metaslab count will be decremented over time as we call metaslab_fini()
487  * for all the metaslabs in the pool and the entry will be freed at
488  * spa_unload_log_sm_metadata().
489  */
490 void
491 spa_log_summary_decrement_blkcount(spa_t *spa, uint64_t blocks_gone)
492 {
493 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
494 	    e != NULL; e = list_head(&spa->spa_log_summary)) {
495 		if (e->lse_blkcount > blocks_gone) {
496 			/*
497 			 * Assert that we stopped at an entry that is not
498 			 * obsolete.
499 			 */
500 			ASSERT(e->lse_mscount != 0);
501 
502 			e->lse_blkcount -= blocks_gone;
503 			blocks_gone = 0;
504 			break;
505 		} else if (e->lse_mscount == 0) {
506 			/* remove obsolete entry */
507 			blocks_gone -= e->lse_blkcount;
508 			list_remove(&spa->spa_log_summary, e);
509 			kmem_free(e, sizeof (log_summary_entry_t));
510 		} else {
511 			/* Verify that this is scenario [3] mentioned above. */
512 			VERIFY3U(blocks_gone, ==, e->lse_blkcount);
513 
514 			/*
515 			 * Assert that this is scenario [3] further by ensuring
516 			 * that this is the only entry in the summary.
517 			 */
518 			VERIFY3P(e, ==, list_tail(&spa->spa_log_summary));
519 			ASSERT3P(e, ==, list_head(&spa->spa_log_summary));
520 
521 			blocks_gone = e->lse_blkcount = 0;
522 			break;
523 		}
524 	}
525 
526 	/*
527 	 * Ensure that there is no way we are trying to remove more blocks
528 	 * than the # of blocks in the summary.
529 	 */
530 	ASSERT0(blocks_gone);
531 }
532 
533 void
534 spa_log_sm_decrement_mscount(spa_t *spa, uint64_t txg)
535 {
536 	spa_log_sm_t target = { .sls_txg = txg };
537 	spa_log_sm_t *sls = avl_find(&spa->spa_sm_logs_by_txg,
538 	    &target, NULL);
539 
540 	if (sls == NULL) {
541 		/*
542 		 * We must be at the teardown of a spa_load() attempt that
543 		 * got an error while reading the log space maps.
544 		 */
545 		VERIFY3S(spa_load_state(spa), ==, SPA_LOAD_ERROR);
546 		return;
547 	}
548 
549 	ASSERT(sls->sls_mscount > 0);
550 	sls->sls_mscount--;
551 }
552 
553 void
554 spa_log_sm_increment_current_mscount(spa_t *spa)
555 {
556 	spa_log_sm_t *last_sls = avl_last(&spa->spa_sm_logs_by_txg);
557 	ASSERT3U(last_sls->sls_txg, ==, spa_syncing_txg(spa));
558 	last_sls->sls_mscount++;
559 }
560 
561 static void
562 summary_add_data(spa_t *spa, uint64_t txg, uint64_t metaslabs_flushed,
563     uint64_t nblocks)
564 {
565 	log_summary_entry_t *e = list_tail(&spa->spa_log_summary);
566 
567 	if (e == NULL || summary_entry_is_full(spa, e)) {
568 		e = kmem_zalloc(sizeof (log_summary_entry_t), KM_SLEEP);
569 		e->lse_start = txg;
570 		list_insert_tail(&spa->spa_log_summary, e);
571 	}
572 
573 	ASSERT3U(e->lse_start, <=, txg);
574 	e->lse_mscount += metaslabs_flushed;
575 	e->lse_blkcount += nblocks;
576 }
577 
578 static void
579 spa_log_summary_add_incoming_blocks(spa_t *spa, uint64_t nblocks)
580 {
581 	summary_add_data(spa, spa_syncing_txg(spa), 0, nblocks);
582 }
583 
584 void
585 spa_log_summary_add_flushed_metaslab(spa_t *spa)
586 {
587 	summary_add_data(spa, spa_syncing_txg(spa), 1, 0);
588 }
589 
590 /*
591  * This function attempts to estimate how many metaslabs should
592  * we flush to satisfy our block heuristic for the log spacemap
593  * for the upcoming TXGs.
594  *
595  * Specifically, it first tries to estimate the number of incoming
596  * blocks in this TXG. Then by projecting that incoming rate to
597  * future TXGs and using the log summary, it figures out how many
598  * flushes we would need to do for future TXGs individually to
599  * stay below our block limit and returns the maximum number of
600  * flushes from those estimates.
601  */
602 static uint64_t
603 spa_estimate_metaslabs_to_flush(spa_t *spa)
604 {
605 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
606 	ASSERT3U(spa_sync_pass(spa), ==, 1);
607 	ASSERT(spa_log_sm_blocklimit(spa) != 0);
608 
609 	/*
610 	 * This variable contains the incoming rate that will be projected
611 	 * and used for our flushing estimates in the future.
612 	 */
613 	uint64_t incoming = spa_estimate_incoming_log_blocks(spa);
614 
615 	/*
616 	 * At any point in time this variable tells us how many
617 	 * TXGs in the future we are so we can make our estimations.
618 	 */
619 	uint64_t txgs_in_future = 1;
620 
621 	/*
622 	 * This variable tells us how much room do we have until we hit
623 	 * our limit. When it goes negative, it means that we've exceeded
624 	 * our limit and we need to flush.
625 	 *
626 	 * Note that since we start at the first TXG in the future (i.e.
627 	 * txgs_in_future starts from 1) we already decrement this
628 	 * variable by the incoming rate.
629 	 */
630 	int64_t available_blocks =
631 	    spa_log_sm_blocklimit(spa) - spa_log_sm_nblocks(spa) - incoming;
632 
633 	/*
634 	 * This variable tells us the total number of flushes needed to
635 	 * keep the log size within the limit when we reach txgs_in_future.
636 	 */
637 	uint64_t total_flushes = 0;
638 
639 	/* Holds the current maximum of our estimates so far. */
640 	uint64_t max_flushes_pertxg =
641 	    MIN(avl_numnodes(&spa->spa_metaslabs_by_flushed),
642 	    zfs_min_metaslabs_to_flush);
643 
644 	/*
645 	 * For our estimations we only look as far in the future
646 	 * as the summary allows us.
647 	 */
648 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
649 	    e; e = list_next(&spa->spa_log_summary, e)) {
650 
651 		/*
652 		 * If there is still room before we exceed our limit
653 		 * then keep skipping TXGs accumulating more blocks
654 		 * based on the incoming rate until we exceed it.
655 		 */
656 		if (available_blocks >= 0) {
657 			uint64_t skip_txgs = (available_blocks / incoming) + 1;
658 			available_blocks -= (skip_txgs * incoming);
659 			txgs_in_future += skip_txgs;
660 			ASSERT3S(available_blocks, >=, -incoming);
661 		}
662 
663 		/*
664 		 * At this point we're far enough into the future where
665 		 * the limit was just exceeded and we flush metaslabs
666 		 * based on the current entry in the summary, updating
667 		 * our available_blocks.
668 		 */
669 		ASSERT3S(available_blocks, <, 0);
670 		available_blocks += e->lse_blkcount;
671 		total_flushes += e->lse_mscount;
672 
673 		/*
674 		 * Keep the running maximum of the total_flushes that
675 		 * we've done so far over the number of TXGs in the
676 		 * future that we are. The idea here is to estimate
677 		 * the average number of flushes that we should do
678 		 * every TXG so that when we are that many TXGs in the
679 		 * future we stay under the limit.
680 		 */
681 		max_flushes_pertxg = MAX(max_flushes_pertxg,
682 		    DIV_ROUND_UP(total_flushes, txgs_in_future));
683 		ASSERT3U(avl_numnodes(&spa->spa_metaslabs_by_flushed), >=,
684 		    max_flushes_pertxg);
685 	}
686 	return (max_flushes_pertxg);
687 }
688 
689 uint64_t
690 spa_log_sm_memused(spa_t *spa)
691 {
692 	return (spa->spa_unflushed_stats.sus_memused);
693 }
694 
695 static boolean_t
696 spa_log_exceeds_memlimit(spa_t *spa)
697 {
698 	if (spa_log_sm_memused(spa) > zfs_unflushed_max_mem_amt)
699 		return (B_TRUE);
700 
701 	uint64_t system_mem_allowed = ((physmem * PAGESIZE) *
702 	    zfs_unflushed_max_mem_ppm) / 1000000;
703 	if (spa_log_sm_memused(spa) > system_mem_allowed)
704 		return (B_TRUE);
705 
706 	return (B_FALSE);
707 }
708 
709 boolean_t
710 spa_flush_all_logs_requested(spa_t *spa)
711 {
712 	return (spa->spa_log_flushall_txg != 0);
713 }
714 
715 void
716 spa_flush_metaslabs(spa_t *spa, dmu_tx_t *tx)
717 {
718 	uint64_t txg = dmu_tx_get_txg(tx);
719 
720 	if (spa_sync_pass(spa) != 1)
721 		return;
722 
723 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
724 		return;
725 
726 	/*
727 	 * If we don't have any metaslabs with unflushed changes
728 	 * return immediately.
729 	 */
730 	if (avl_numnodes(&spa->spa_metaslabs_by_flushed) == 0)
731 		return;
732 
733 	/*
734 	 * During SPA export we leave a few empty TXGs to go by [see
735 	 * spa_final_dirty_txg() to understand why]. For this specific
736 	 * case, it is important to not flush any metaslabs as that
737 	 * would dirty this TXG.
738 	 *
739 	 * That said, during one of these dirty TXGs that is less or
740 	 * equal to spa_final_dirty(), spa_unload() will request that
741 	 * we try to flush all the metaslabs for that TXG before
742 	 * exporting the pool, thus we ensure that we didn't get a
743 	 * request of flushing everything before we attempt to return
744 	 * immediately.
745 	 */
746 	if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
747 	    !dmu_objset_is_dirty(spa_meta_objset(spa), txg) &&
748 	    !spa_flush_all_logs_requested(spa))
749 		return;
750 
751 	/*
752 	 * We need to generate a log space map before flushing because this
753 	 * will set up the in-memory data (i.e. node in spa_sm_logs_by_txg)
754 	 * for this TXG's flushed metaslab count (aka sls_mscount which is
755 	 * manipulated in many ways down the metaslab_flush() codepath).
756 	 *
757 	 * That is not to say that we may generate a log space map when we
758 	 * don't need it. If we are flushing metaslabs, that means that we
759 	 * were going to write changes to disk anyway, so even if we were
760 	 * not flushing, a log space map would have been created anyway in
761 	 * metaslab_sync().
762 	 */
763 	spa_generate_syncing_log_sm(spa, tx);
764 
765 	/*
766 	 * This variable tells us how many metaslabs we want to flush based
767 	 * on the block-heuristic of our flushing algorithm (see block comment
768 	 * of log space map feature). We also decrement this as we flush
769 	 * metaslabs and attempt to destroy old log space maps.
770 	 */
771 	uint64_t want_to_flush;
772 	if (spa_flush_all_logs_requested(spa)) {
773 		ASSERT3S(spa_state(spa), ==, POOL_STATE_EXPORTED);
774 		want_to_flush = avl_numnodes(&spa->spa_metaslabs_by_flushed);
775 	} else {
776 		want_to_flush = spa_estimate_metaslabs_to_flush(spa);
777 	}
778 
779 	ASSERT3U(avl_numnodes(&spa->spa_metaslabs_by_flushed), >=,
780 	    want_to_flush);
781 
782 	/* Used purely for verification purposes */
783 	uint64_t visited = 0;
784 
785 	/*
786 	 * Ideally we would only iterate through spa_metaslabs_by_flushed
787 	 * using only one variable (curr). We can't do that because
788 	 * metaslab_flush() mutates position of curr in the AVL when
789 	 * it flushes that metaslab by moving it to the end of the tree.
790 	 * Thus we always keep track of the original next node of the
791 	 * current node (curr) in another variable (next).
792 	 */
793 	metaslab_t *next = NULL;
794 	for (metaslab_t *curr = avl_first(&spa->spa_metaslabs_by_flushed);
795 	    curr != NULL; curr = next) {
796 		next = AVL_NEXT(&spa->spa_metaslabs_by_flushed, curr);
797 
798 		/*
799 		 * If this metaslab has been flushed this txg then we've done
800 		 * a full circle over the metaslabs.
801 		 */
802 		if (metaslab_unflushed_txg(curr) == txg)
803 			break;
804 
805 		/*
806 		 * If we are done flushing for the block heuristic and the
807 		 * unflushed changes don't exceed the memory limit just stop.
808 		 */
809 		if (want_to_flush == 0 && !spa_log_exceeds_memlimit(spa))
810 			break;
811 
812 		mutex_enter(&curr->ms_sync_lock);
813 		mutex_enter(&curr->ms_lock);
814 		boolean_t flushed = metaslab_flush(curr, tx);
815 		mutex_exit(&curr->ms_lock);
816 		mutex_exit(&curr->ms_sync_lock);
817 
818 		/*
819 		 * If we failed to flush a metaslab (because it was loading),
820 		 * then we are done with the block heuristic as it's not
821 		 * possible to destroy any log space maps once you've skipped
822 		 * a metaslab. In that case we just set our counter to 0 but
823 		 * we continue looping in case there is still memory pressure
824 		 * due to unflushed changes. Note that, flushing a metaslab
825 		 * that is not the oldest flushed in the pool, will never
826 		 * destroy any log space maps [see spa_cleanup_old_sm_logs()].
827 		 */
828 		if (!flushed) {
829 			want_to_flush = 0;
830 		} else if (want_to_flush > 0) {
831 			want_to_flush--;
832 		}
833 
834 		visited++;
835 	}
836 	ASSERT3U(avl_numnodes(&spa->spa_metaslabs_by_flushed), >=, visited);
837 }
838 
839 /*
840  * Close the log space map for this TXG and update the block counts
841  * for the log's in-memory structure and the summary.
842  */
843 void
844 spa_sync_close_syncing_log_sm(spa_t *spa)
845 {
846 	if (spa_syncing_log_sm(spa) == NULL)
847 		return;
848 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
849 
850 	spa_log_sm_t *sls = avl_last(&spa->spa_sm_logs_by_txg);
851 	ASSERT3U(sls->sls_txg, ==, spa_syncing_txg(spa));
852 
853 	sls->sls_nblocks = space_map_nblocks(spa_syncing_log_sm(spa));
854 	spa->spa_unflushed_stats.sus_nblocks += sls->sls_nblocks;
855 
856 	/*
857 	 * Note that we can't assert that sls_mscount is not 0,
858 	 * because there is the case where the first metaslab
859 	 * in spa_metaslabs_by_flushed is loading and we were
860 	 * not able to flush any metaslabs the current TXG.
861 	 */
862 	ASSERT(sls->sls_nblocks != 0);
863 
864 	spa_log_summary_add_incoming_blocks(spa, sls->sls_nblocks);
865 	spa_log_summary_verify_counts(spa);
866 
867 	space_map_close(spa->spa_syncing_log_sm);
868 	spa->spa_syncing_log_sm = NULL;
869 
870 	/*
871 	 * At this point we tried to flush as many metaslabs as we
872 	 * can as the pool is getting exported. Reset the "flush all"
873 	 * so the last few TXGs before closing the pool can be empty
874 	 * (e.g. not dirty).
875 	 */
876 	if (spa_flush_all_logs_requested(spa)) {
877 		ASSERT3S(spa_state(spa), ==, POOL_STATE_EXPORTED);
878 		spa->spa_log_flushall_txg = 0;
879 	}
880 }
881 
882 void
883 spa_cleanup_old_sm_logs(spa_t *spa, dmu_tx_t *tx)
884 {
885 	objset_t *mos = spa_meta_objset(spa);
886 
887 	uint64_t spacemap_zap;
888 	int error = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
889 	    DMU_POOL_LOG_SPACEMAP_ZAP, sizeof (spacemap_zap), 1, &spacemap_zap);
890 	if (error == ENOENT) {
891 		ASSERT(avl_is_empty(&spa->spa_sm_logs_by_txg));
892 		return;
893 	}
894 	VERIFY0(error);
895 
896 	metaslab_t *oldest = avl_first(&spa->spa_metaslabs_by_flushed);
897 	uint64_t oldest_flushed_txg = metaslab_unflushed_txg(oldest);
898 
899 	/* Free all log space maps older than the oldest_flushed_txg. */
900 	for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
901 	    sls && sls->sls_txg < oldest_flushed_txg;
902 	    sls = avl_first(&spa->spa_sm_logs_by_txg)) {
903 		ASSERT0(sls->sls_mscount);
904 		avl_remove(&spa->spa_sm_logs_by_txg, sls);
905 		space_map_free_obj(mos, sls->sls_sm_obj, tx);
906 		VERIFY0(zap_remove_int(mos, spacemap_zap, sls->sls_txg, tx));
907 		spa->spa_unflushed_stats.sus_nblocks -= sls->sls_nblocks;
908 		kmem_free(sls, sizeof (spa_log_sm_t));
909 	}
910 }
911 
912 static spa_log_sm_t *
913 spa_log_sm_alloc(uint64_t sm_obj, uint64_t txg)
914 {
915 	spa_log_sm_t *sls = kmem_zalloc(sizeof (*sls), KM_SLEEP);
916 	sls->sls_sm_obj = sm_obj;
917 	sls->sls_txg = txg;
918 	return (sls);
919 }
920 
921 void
922 spa_generate_syncing_log_sm(spa_t *spa, dmu_tx_t *tx)
923 {
924 	uint64_t txg = dmu_tx_get_txg(tx);
925 	objset_t *mos = spa_meta_objset(spa);
926 
927 	if (spa_syncing_log_sm(spa) != NULL)
928 		return;
929 
930 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP))
931 		return;
932 
933 	uint64_t spacemap_zap;
934 	int error = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
935 	    DMU_POOL_LOG_SPACEMAP_ZAP, sizeof (spacemap_zap), 1, &spacemap_zap);
936 	if (error == ENOENT) {
937 		ASSERT(avl_is_empty(&spa->spa_sm_logs_by_txg));
938 
939 		error = 0;
940 		spacemap_zap = zap_create(mos,
941 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
942 		VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
943 		    DMU_POOL_LOG_SPACEMAP_ZAP, sizeof (spacemap_zap), 1,
944 		    &spacemap_zap, tx));
945 		spa_feature_incr(spa, SPA_FEATURE_LOG_SPACEMAP, tx);
946 	}
947 	VERIFY0(error);
948 
949 	uint64_t sm_obj;
950 	ASSERT3U(zap_lookup_int_key(mos, spacemap_zap, txg, &sm_obj),
951 	    ==, ENOENT);
952 	sm_obj = space_map_alloc(mos, zfs_log_sm_blksz, tx);
953 	VERIFY0(zap_add_int_key(mos, spacemap_zap, txg, sm_obj, tx));
954 	avl_add(&spa->spa_sm_logs_by_txg, spa_log_sm_alloc(sm_obj, txg));
955 
956 	/*
957 	 * We pass UINT64_MAX as the space map's representation size
958 	 * and SPA_MINBLOCKSHIFT as the shift, to make the space map
959 	 * accept any sorts of segments since there's no real advantage
960 	 * to being more restrictive (given that we're already going
961 	 * to be using 2-word entries).
962 	 */
963 	VERIFY0(space_map_open(&spa->spa_syncing_log_sm, mos, sm_obj,
964 	    0, UINT64_MAX, SPA_MINBLOCKSHIFT));
965 
966 	/*
967 	 * If the log space map feature was just enabled, the blocklimit
968 	 * has not yet been set.
969 	 */
970 	if (spa_log_sm_blocklimit(spa) == 0)
971 		spa_log_sm_set_blocklimit(spa);
972 }
973 
974 /*
975  * Find all the log space maps stored in the space map ZAP and sort
976  * them by their TXG in spa_sm_logs_by_txg.
977  */
978 static int
979 spa_ld_log_sm_metadata(spa_t *spa)
980 {
981 	int error;
982 	uint64_t spacemap_zap;
983 
984 	ASSERT(avl_is_empty(&spa->spa_sm_logs_by_txg));
985 
986 	error = zap_lookup(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
987 	    DMU_POOL_LOG_SPACEMAP_ZAP, sizeof (spacemap_zap), 1, &spacemap_zap);
988 	if (error == ENOENT) {
989 		/* the space map ZAP doesn't exist yet */
990 		return (0);
991 	} else if (error != 0) {
992 		spa_load_failed(spa, "spa_ld_log_sm_metadata(): failed at "
993 		    "zap_lookup(DMU_POOL_DIRECTORY_OBJECT) [error %d]",
994 		    error);
995 		return (error);
996 	}
997 
998 	zap_cursor_t zc;
999 	zap_attribute_t za;
1000 	for (zap_cursor_init(&zc, spa_meta_objset(spa), spacemap_zap);
1001 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
1002 	    zap_cursor_advance(&zc)) {
1003 		uint64_t log_txg = zfs_strtonum(za.za_name, NULL);
1004 		spa_log_sm_t *sls =
1005 		    spa_log_sm_alloc(za.za_first_integer, log_txg);
1006 		avl_add(&spa->spa_sm_logs_by_txg, sls);
1007 	}
1008 	zap_cursor_fini(&zc);
1009 	if (error != ENOENT) {
1010 		spa_load_failed(spa, "spa_ld_log_sm_metadata(): failed at "
1011 		    "zap_cursor_retrieve(spacemap_zap) [error %d]",
1012 		    error);
1013 		return (error);
1014 	}
1015 
1016 	for (metaslab_t *m = avl_first(&spa->spa_metaslabs_by_flushed);
1017 	    m; m = AVL_NEXT(&spa->spa_metaslabs_by_flushed, m)) {
1018 		spa_log_sm_t target = { .sls_txg = metaslab_unflushed_txg(m) };
1019 		spa_log_sm_t *sls = avl_find(&spa->spa_sm_logs_by_txg,
1020 		    &target, NULL);
1021 
1022 		/*
1023 		 * At this point if sls is zero it means that a bug occurred
1024 		 * in ZFS the last time the pool was open or earlier in the
1025 		 * import code path. In general, we would have placed a
1026 		 * VERIFY() here or in this case just let the kernel panic
1027 		 * with NULL pointer dereference when incrementing sls_mscount,
1028 		 * but since this is the import code path we can be a bit more
1029 		 * lenient. Thus, for DEBUG bits we always cause a panic, while
1030 		 * in production we log the error and just fail the import.
1031 		 */
1032 		ASSERT(sls != NULL);
1033 		if (sls == NULL) {
1034 			spa_load_failed(spa, "spa_ld_log_sm_metadata(): bug "
1035 			    "encountered: could not find log spacemap for "
1036 			    "TXG %llu [error %d]",
1037 			    (u_longlong_t)metaslab_unflushed_txg(m), ENOENT);
1038 			return (ENOENT);
1039 		}
1040 		sls->sls_mscount++;
1041 	}
1042 
1043 	return (0);
1044 }
1045 
1046 typedef struct spa_ld_log_sm_arg {
1047 	spa_t *slls_spa;
1048 	uint64_t slls_txg;
1049 } spa_ld_log_sm_arg_t;
1050 
1051 static int
1052 spa_ld_log_sm_cb(space_map_entry_t *sme, void *arg)
1053 {
1054 	uint64_t offset = sme->sme_offset;
1055 	uint64_t size = sme->sme_run;
1056 	uint32_t vdev_id = sme->sme_vdev;
1057 
1058 	spa_ld_log_sm_arg_t *slls = arg;
1059 	spa_t *spa = slls->slls_spa;
1060 
1061 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
1062 
1063 	/*
1064 	 * If the vdev has been removed (i.e. it is indirect or a hole)
1065 	 * skip this entry. The contents of this vdev have already moved
1066 	 * elsewhere.
1067 	 */
1068 	if (!vdev_is_concrete(vd))
1069 		return (0);
1070 
1071 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
1072 	ASSERT(!ms->ms_loaded);
1073 
1074 	/*
1075 	 * If we have already flushed entries for this TXG to this
1076 	 * metaslab's space map, then ignore it. Note that we flush
1077 	 * before processing any allocations/frees for that TXG, so
1078 	 * the metaslab's space map only has entries from *before*
1079 	 * the unflushed TXG.
1080 	 */
1081 	if (slls->slls_txg < metaslab_unflushed_txg(ms))
1082 		return (0);
1083 
1084 	switch (sme->sme_type) {
1085 	case SM_ALLOC:
1086 		range_tree_remove_xor_add_segment(offset, offset + size,
1087 		    ms->ms_unflushed_frees, ms->ms_unflushed_allocs);
1088 		break;
1089 	case SM_FREE:
1090 		range_tree_remove_xor_add_segment(offset, offset + size,
1091 		    ms->ms_unflushed_allocs, ms->ms_unflushed_frees);
1092 		break;
1093 	default:
1094 		panic("invalid maptype_t");
1095 		break;
1096 	}
1097 	return (0);
1098 }
1099 
1100 static int
1101 spa_ld_log_sm_data(spa_t *spa)
1102 {
1103 	int error = 0;
1104 
1105 	/*
1106 	 * If we are not going to do any writes there is no need
1107 	 * to read the log space maps.
1108 	 */
1109 	if (!spa_writeable(spa))
1110 		return (0);
1111 
1112 	ASSERT0(spa->spa_unflushed_stats.sus_nblocks);
1113 	ASSERT0(spa->spa_unflushed_stats.sus_memused);
1114 
1115 	hrtime_t read_logs_starttime = gethrtime();
1116 	/* this is a no-op when we don't have space map logs */
1117 	for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
1118 	    sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
1119 		space_map_t *sm = NULL;
1120 		error = space_map_open(&sm, spa_meta_objset(spa),
1121 		    sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT);
1122 		if (error != 0) {
1123 			spa_load_failed(spa, "spa_ld_log_sm_data(): failed at "
1124 			    "space_map_open(obj=%llu) [error %d]",
1125 			    (u_longlong_t)sls->sls_sm_obj, error);
1126 			goto out;
1127 		}
1128 
1129 		struct spa_ld_log_sm_arg vla = {
1130 			.slls_spa = spa,
1131 			.slls_txg = sls->sls_txg
1132 		};
1133 		error = space_map_iterate(sm, space_map_length(sm),
1134 		    spa_ld_log_sm_cb, &vla);
1135 		if (error != 0) {
1136 			space_map_close(sm);
1137 			spa_load_failed(spa, "spa_ld_log_sm_data(): failed "
1138 			    "at space_map_iterate(obj=%llu) [error %d]",
1139 			    (u_longlong_t)sls->sls_sm_obj, error);
1140 			goto out;
1141 		}
1142 
1143 		ASSERT0(sls->sls_nblocks);
1144 		sls->sls_nblocks = space_map_nblocks(sm);
1145 		spa->spa_unflushed_stats.sus_nblocks += sls->sls_nblocks;
1146 		summary_add_data(spa, sls->sls_txg,
1147 		    sls->sls_mscount, sls->sls_nblocks);
1148 
1149 		space_map_close(sm);
1150 	}
1151 	hrtime_t read_logs_endtime = gethrtime();
1152 	spa_load_note(spa,
1153 	    "read %llu log space maps (%llu total blocks - blksz = %llu bytes) "
1154 	    "in %lld ms", (u_longlong_t)avl_numnodes(&spa->spa_sm_logs_by_txg),
1155 	    (u_longlong_t)spa_log_sm_nblocks(spa),
1156 	    (u_longlong_t)zfs_log_sm_blksz,
1157 	    (longlong_t)((read_logs_endtime - read_logs_starttime) / 1000000));
1158 
1159 out:
1160 	/*
1161 	 * Now that the metaslabs contain their unflushed changes:
1162 	 * [1] recalculate their actual allocated space
1163 	 * [2] recalculate their weights
1164 	 * [3] sum up the memory usage of their unflushed range trees
1165 	 * [4] optionally load them, if debug_load is set
1166 	 *
1167 	 * Note that even in the case where we get here because of an
1168 	 * error (e.g. error != 0), we still want to update the fields
1169 	 * below in order to have a proper teardown in spa_unload().
1170 	 */
1171 	for (metaslab_t *m = avl_first(&spa->spa_metaslabs_by_flushed);
1172 	    m != NULL; m = AVL_NEXT(&spa->spa_metaslabs_by_flushed, m)) {
1173 		mutex_enter(&m->ms_lock);
1174 		m->ms_allocated_space = space_map_allocated(m->ms_sm) +
1175 		    range_tree_space(m->ms_unflushed_allocs) -
1176 		    range_tree_space(m->ms_unflushed_frees);
1177 
1178 		vdev_t *vd = m->ms_group->mg_vd;
1179 		metaslab_space_update(vd, m->ms_group->mg_class,
1180 		    range_tree_space(m->ms_unflushed_allocs), 0, 0);
1181 		metaslab_space_update(vd, m->ms_group->mg_class,
1182 		    -range_tree_space(m->ms_unflushed_frees), 0, 0);
1183 
1184 		ASSERT0(m->ms_weight & METASLAB_ACTIVE_MASK);
1185 		metaslab_recalculate_weight_and_sort(m);
1186 
1187 		spa->spa_unflushed_stats.sus_memused +=
1188 		    metaslab_unflushed_changes_memused(m);
1189 
1190 		if (metaslab_debug_load && m->ms_sm != NULL) {
1191 			VERIFY0(metaslab_load(m));
1192 			metaslab_set_selected_txg(m, 0);
1193 		}
1194 		mutex_exit(&m->ms_lock);
1195 	}
1196 
1197 	return (error);
1198 }
1199 
1200 static int
1201 spa_ld_unflushed_txgs(vdev_t *vd)
1202 {
1203 	spa_t *spa = vd->vdev_spa;
1204 	objset_t *mos = spa_meta_objset(spa);
1205 
1206 	if (vd->vdev_top_zap == 0)
1207 		return (0);
1208 
1209 	uint64_t object = 0;
1210 	int error = zap_lookup(mos, vd->vdev_top_zap,
1211 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
1212 	    sizeof (uint64_t), 1, &object);
1213 	if (error == ENOENT)
1214 		return (0);
1215 	else if (error != 0) {
1216 		spa_load_failed(spa, "spa_ld_unflushed_txgs(): failed at "
1217 		    "zap_lookup(vdev_top_zap=%llu) [error %d]",
1218 		    (u_longlong_t)vd->vdev_top_zap, error);
1219 		return (error);
1220 	}
1221 
1222 	for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
1223 		metaslab_t *ms = vd->vdev_ms[m];
1224 		ASSERT(ms != NULL);
1225 
1226 		metaslab_unflushed_phys_t entry;
1227 		uint64_t entry_size = sizeof (entry);
1228 		uint64_t entry_offset = ms->ms_id * entry_size;
1229 
1230 		error = dmu_read(mos, object,
1231 		    entry_offset, entry_size, &entry, 0);
1232 		if (error != 0) {
1233 			spa_load_failed(spa, "spa_ld_unflushed_txgs(): "
1234 			    "failed at dmu_read(obj=%llu) [error %d]",
1235 			    (u_longlong_t)object, error);
1236 			return (error);
1237 		}
1238 
1239 		ms->ms_unflushed_txg = entry.msp_unflushed_txg;
1240 		if (ms->ms_unflushed_txg != 0) {
1241 			mutex_enter(&spa->spa_flushed_ms_lock);
1242 			avl_add(&spa->spa_metaslabs_by_flushed, ms);
1243 			mutex_exit(&spa->spa_flushed_ms_lock);
1244 		}
1245 	}
1246 	return (0);
1247 }
1248 
1249 /*
1250  * Read all the log space map entries into their respective
1251  * metaslab unflushed trees and keep them sorted by TXG in the
1252  * SPA's metadata. In addition, setup all the metadata for the
1253  * memory and the block heuristics.
1254  */
1255 int
1256 spa_ld_log_spacemaps(spa_t *spa)
1257 {
1258 	int error;
1259 
1260 	spa_log_sm_set_blocklimit(spa);
1261 
1262 	for (uint64_t c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1263 		vdev_t *vd = spa->spa_root_vdev->vdev_child[c];
1264 		error = spa_ld_unflushed_txgs(vd);
1265 		if (error != 0)
1266 			return (error);
1267 	}
1268 
1269 	error = spa_ld_log_sm_metadata(spa);
1270 	if (error != 0)
1271 		return (error);
1272 
1273 	/*
1274 	 * Note: we don't actually expect anything to change at this point
1275 	 * but we grab the config lock so we don't fail any assertions
1276 	 * when using vdev_lookup_top().
1277 	 */
1278 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1279 	error = spa_ld_log_sm_data(spa);
1280 	spa_config_exit(spa, SCL_CONFIG, FTAG);
1281 
1282 	return (error);
1283 }
1284 
1285 /* BEGIN CSTYLED */
1286 ZFS_MODULE_PARAM(zfs, zfs_, unflushed_max_mem_amt, ULONG, ZMOD_RW,
1287     "Specific hard-limit in memory that ZFS allows to be used for "
1288     "unflushed changes");
1289 
1290 ZFS_MODULE_PARAM(zfs, zfs_, unflushed_max_mem_ppm, ULONG, ZMOD_RW,
1291     "Percentage of the overall system memory that ZFS allows to be "
1292     "used for unflushed changes (value is calculated over 1000000 for "
1293     "finer granularity)");
1294 
1295 ZFS_MODULE_PARAM(zfs, zfs_, unflushed_log_block_max, ULONG, ZMOD_RW,
1296     "Hard limit (upper-bound) in the size of the space map log "
1297     "in terms of blocks.");
1298 
1299 ZFS_MODULE_PARAM(zfs, zfs_, unflushed_log_block_min, ULONG, ZMOD_RW,
1300     "Lower-bound limit for the maximum amount of blocks allowed in "
1301     "log spacemap (see zfs_unflushed_log_block_max)");
1302 
1303 ZFS_MODULE_PARAM(zfs, zfs_, unflushed_log_block_pct, ULONG, ZMOD_RW,
1304     "Tunable used to determine the number of blocks that can be used for "
1305     "the spacemap log, expressed as a percentage of the total number of "
1306     "metaslabs in the pool (e.g. 400 means the number of log blocks is "
1307     "capped at 4 times the number of metaslabs)");
1308 
1309 ZFS_MODULE_PARAM(zfs, zfs_, max_log_walking, ULONG, ZMOD_RW,
1310     "The number of past TXGs that the flushing algorithm of the log "
1311     "spacemap feature uses to estimate incoming log blocks");
1312 
1313 ZFS_MODULE_PARAM(zfs, zfs_, max_logsm_summary_length, ULONG, ZMOD_RW,
1314     "Maximum number of rows allowed in the summary of the spacemap log");
1315 
1316 ZFS_MODULE_PARAM(zfs, zfs_, min_metaslabs_to_flush, ULONG, ZMOD_RW,
1317     "Minimum number of metaslabs to flush per dirty TXG");
1318 
1319 ZFS_MODULE_PARAM(zfs, zfs_, keep_log_spacemaps_at_export, INT, ZMOD_RW,
1320     "Prevent the log spacemaps from being flushed and destroyed "
1321     "during pool export/destroy");
1322 /* END CSTYLED */
1323