1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013, 2014, Delphix. All rights reserved. 24 * Copyright (c) 2019 Datto Inc. 25 * Copyright (c) 2021, 2022, George Amanakis. All rights reserved. 26 */ 27 28 /* 29 * Routines to manage the on-disk persistent error log. 30 * 31 * Each pool stores a log of all logical data errors seen during normal 32 * operation. This is actually the union of two distinct logs: the last log, 33 * and the current log. All errors seen are logged to the current log. When a 34 * scrub completes, the current log becomes the last log, the last log is thrown 35 * out, and the current log is reinitialized. This way, if an error is somehow 36 * corrected, a new scrub will show that it no longer exists, and will be 37 * deleted from the log when the scrub completes. 38 * 39 * The log is stored using a ZAP object whose key is a string form of the 40 * zbookmark_phys tuple (objset, object, level, blkid), and whose contents is an 41 * optional 'objset:object' human-readable string describing the data. When an 42 * error is first logged, this string will be empty, indicating that no name is 43 * known. This prevents us from having to issue a potentially large amount of 44 * I/O to discover the object name during an error path. Instead, we do the 45 * calculation when the data is requested, storing the result so future queries 46 * will be faster. 47 * 48 * If the head_errlog feature is enabled, a different on-disk format is used. 49 * The error log of each head dataset is stored separately in the zap object 50 * and keyed by the head id. This enables listing every dataset affected in 51 * userland. In order to be able to track whether an error block has been 52 * modified or added to snapshots since it was marked as an error, a new tuple 53 * is introduced: zbookmark_err_phys_t. It allows the storage of the birth 54 * transaction group of an error block on-disk. The birth transaction group is 55 * used by check_filesystem() to assess whether this block was freed, 56 * re-written or added to a snapshot since its marking as an error. 57 * 58 * This log is then shipped into an nvlist where the key is the dataset name and 59 * the value is the object name. Userland is then responsible for uniquifying 60 * this list and displaying it to the user. 61 */ 62 63 #include <sys/dmu_tx.h> 64 #include <sys/spa.h> 65 #include <sys/spa_impl.h> 66 #include <sys/zap.h> 67 #include <sys/zio.h> 68 #include <sys/dsl_dir.h> 69 #include <sys/dmu_objset.h> 70 #include <sys/dbuf.h> 71 #include <sys/zfs_znode.h> 72 73 #define NAME_MAX_LEN 64 74 75 /* 76 * spa_upgrade_errlog_limit : A zfs module parameter that controls the number 77 * of on-disk error log entries that will be converted to the new 78 * format when enabling head_errlog. Defaults to 0 which converts 79 * all log entries. 80 */ 81 static uint_t spa_upgrade_errlog_limit = 0; 82 83 /* 84 * Convert a bookmark to a string. 85 */ 86 static void 87 bookmark_to_name(zbookmark_phys_t *zb, char *buf, size_t len) 88 { 89 (void) snprintf(buf, len, "%llx:%llx:%llx:%llx", 90 (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, 91 (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid); 92 } 93 94 /* 95 * Convert an err_phys to a string. 96 */ 97 static void 98 errphys_to_name(zbookmark_err_phys_t *zep, char *buf, size_t len) 99 { 100 (void) snprintf(buf, len, "%llx:%llx:%llx:%llx", 101 (u_longlong_t)zep->zb_object, (u_longlong_t)zep->zb_level, 102 (u_longlong_t)zep->zb_blkid, (u_longlong_t)zep->zb_birth); 103 } 104 105 /* 106 * Convert a string to a err_phys. 107 */ 108 static void 109 name_to_errphys(char *buf, zbookmark_err_phys_t *zep) 110 { 111 zep->zb_object = zfs_strtonum(buf, &buf); 112 ASSERT(*buf == ':'); 113 zep->zb_level = (int)zfs_strtonum(buf + 1, &buf); 114 ASSERT(*buf == ':'); 115 zep->zb_blkid = zfs_strtonum(buf + 1, &buf); 116 ASSERT(*buf == ':'); 117 zep->zb_birth = zfs_strtonum(buf + 1, &buf); 118 ASSERT(*buf == '\0'); 119 } 120 121 /* 122 * Convert a string to a bookmark. 123 */ 124 static void 125 name_to_bookmark(char *buf, zbookmark_phys_t *zb) 126 { 127 zb->zb_objset = zfs_strtonum(buf, &buf); 128 ASSERT(*buf == ':'); 129 zb->zb_object = zfs_strtonum(buf + 1, &buf); 130 ASSERT(*buf == ':'); 131 zb->zb_level = (int)zfs_strtonum(buf + 1, &buf); 132 ASSERT(*buf == ':'); 133 zb->zb_blkid = zfs_strtonum(buf + 1, &buf); 134 ASSERT(*buf == '\0'); 135 } 136 137 #ifdef _KERNEL 138 static void 139 zep_to_zb(uint64_t dataset, zbookmark_err_phys_t *zep, zbookmark_phys_t *zb) 140 { 141 zb->zb_objset = dataset; 142 zb->zb_object = zep->zb_object; 143 zb->zb_level = zep->zb_level; 144 zb->zb_blkid = zep->zb_blkid; 145 } 146 #endif 147 148 static void 149 name_to_object(char *buf, uint64_t *obj) 150 { 151 *obj = zfs_strtonum(buf, &buf); 152 ASSERT(*buf == '\0'); 153 } 154 155 static int 156 get_head_and_birth_txg(spa_t *spa, zbookmark_err_phys_t *zep, uint64_t ds_obj, 157 uint64_t *head_dataset_id) 158 { 159 dsl_pool_t *dp = spa->spa_dsl_pool; 160 dsl_dataset_t *ds; 161 objset_t *os; 162 163 int error = dsl_dataset_hold_obj(dp, ds_obj, FTAG, &ds); 164 if (error != 0) { 165 return (error); 166 } 167 ASSERT(head_dataset_id); 168 *head_dataset_id = dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj; 169 170 error = dmu_objset_from_ds(ds, &os); 171 if (error != 0) { 172 dsl_dataset_rele(ds, FTAG); 173 return (error); 174 } 175 176 /* 177 * If the key is not loaded dbuf_dnode_findbp() will error out with 178 * EACCES. However in that case dnode_hold() will eventually call 179 * dbuf_read()->zio_wait() which may call spa_log_error(). This will 180 * lead to a deadlock due to us holding the mutex spa_errlist_lock. 181 * Avoid this by checking here if the keys are loaded, if not return. 182 * If the keys are not loaded the head_errlog feature is meaningless 183 * as we cannot figure out the birth txg of the block pointer. 184 */ 185 if (dsl_dataset_get_keystatus(ds->ds_dir) == 186 ZFS_KEYSTATUS_UNAVAILABLE) { 187 zep->zb_birth = 0; 188 dsl_dataset_rele(ds, FTAG); 189 return (0); 190 } 191 192 dnode_t *dn; 193 blkptr_t bp; 194 195 error = dnode_hold(os, zep->zb_object, FTAG, &dn); 196 if (error != 0) { 197 dsl_dataset_rele(ds, FTAG); 198 return (error); 199 } 200 201 rw_enter(&dn->dn_struct_rwlock, RW_READER); 202 error = dbuf_dnode_findbp(dn, zep->zb_level, zep->zb_blkid, &bp, NULL, 203 NULL); 204 if (error == 0 && BP_IS_HOLE(&bp)) 205 error = SET_ERROR(ENOENT); 206 207 /* 208 * If the key is loaded but the encrypted filesystem is unmounted when 209 * a scrub is run, then dbuf_dnode_findbp() will still error out with 210 * EACCES (possibly due to the key mapping being removed upon 211 * unmounting). In that case the head_errlog feature is also 212 * meaningless as we cannot figure out the birth txg of the block 213 * pointer. 214 */ 215 if (error == EACCES) 216 error = 0; 217 else if (!error) 218 zep->zb_birth = bp.blk_birth; 219 220 rw_exit(&dn->dn_struct_rwlock); 221 dnode_rele(dn, FTAG); 222 dsl_dataset_rele(ds, FTAG); 223 return (error); 224 } 225 226 /* 227 * Log an uncorrectable error to the persistent error log. We add it to the 228 * spa's list of pending errors. The changes are actually synced out to disk 229 * during spa_errlog_sync(). 230 */ 231 void 232 spa_log_error(spa_t *spa, const zbookmark_phys_t *zb) 233 { 234 spa_error_entry_t search; 235 spa_error_entry_t *new; 236 avl_tree_t *tree; 237 avl_index_t where; 238 239 /* 240 * If we are trying to import a pool, ignore any errors, as we won't be 241 * writing to the pool any time soon. 242 */ 243 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT) 244 return; 245 246 mutex_enter(&spa->spa_errlist_lock); 247 248 /* 249 * If we have had a request to rotate the log, log it to the next list 250 * instead of the current one. 251 */ 252 if (spa->spa_scrub_active || spa->spa_scrub_finished) 253 tree = &spa->spa_errlist_scrub; 254 else 255 tree = &spa->spa_errlist_last; 256 257 search.se_bookmark = *zb; 258 if (avl_find(tree, &search, &where) != NULL) { 259 mutex_exit(&spa->spa_errlist_lock); 260 return; 261 } 262 263 new = kmem_zalloc(sizeof (spa_error_entry_t), KM_SLEEP); 264 new->se_bookmark = *zb; 265 avl_insert(tree, new, where); 266 267 mutex_exit(&spa->spa_errlist_lock); 268 } 269 270 #ifdef _KERNEL 271 static int 272 find_birth_txg(dsl_dataset_t *ds, zbookmark_err_phys_t *zep, 273 uint64_t *birth_txg) 274 { 275 objset_t *os; 276 int error = dmu_objset_from_ds(ds, &os); 277 if (error != 0) 278 return (error); 279 280 dnode_t *dn; 281 blkptr_t bp; 282 283 error = dnode_hold(os, zep->zb_object, FTAG, &dn); 284 if (error != 0) 285 return (error); 286 287 rw_enter(&dn->dn_struct_rwlock, RW_READER); 288 error = dbuf_dnode_findbp(dn, zep->zb_level, zep->zb_blkid, &bp, NULL, 289 NULL); 290 if (error == 0 && BP_IS_HOLE(&bp)) 291 error = SET_ERROR(ENOENT); 292 293 *birth_txg = bp.blk_birth; 294 rw_exit(&dn->dn_struct_rwlock); 295 dnode_rele(dn, FTAG); 296 return (error); 297 } 298 299 /* 300 * Copy the bookmark to the end of the user-space buffer which starts at 301 * uaddr and has *count unused entries, and decrement *count by 1. 302 */ 303 static int 304 copyout_entry(const zbookmark_phys_t *zb, void *uaddr, uint64_t *count) 305 { 306 if (*count == 0) 307 return (SET_ERROR(ENOMEM)); 308 309 *count -= 1; 310 if (copyout(zb, (char *)uaddr + (*count) * sizeof (zbookmark_phys_t), 311 sizeof (zbookmark_phys_t)) != 0) 312 return (SET_ERROR(EFAULT)); 313 return (0); 314 } 315 316 /* 317 * Each time the error block is referenced by a snapshot or clone, add a 318 * zbookmark_phys_t entry to the userspace array at uaddr. The array is 319 * filled from the back and the in-out parameter *count is modified to be the 320 * number of unused entries at the beginning of the array. 321 */ 322 static int 323 check_filesystem(spa_t *spa, uint64_t head_ds, zbookmark_err_phys_t *zep, 324 void *uaddr, uint64_t *count) 325 { 326 dsl_dataset_t *ds; 327 dsl_pool_t *dp = spa->spa_dsl_pool; 328 329 int error = dsl_dataset_hold_obj(dp, head_ds, FTAG, &ds); 330 if (error != 0) 331 return (error); 332 333 uint64_t latest_txg; 334 uint64_t txg_to_consider = spa->spa_syncing_txg; 335 boolean_t check_snapshot = B_TRUE; 336 error = find_birth_txg(ds, zep, &latest_txg); 337 338 /* 339 * If we cannot figure out the current birth txg of the block pointer 340 * error out. If the filesystem is encrypted and the key is not loaded 341 * or the encrypted filesystem is not mounted the error will be EACCES. 342 * In that case do not return an error. 343 */ 344 if (error == EACCES) { 345 dsl_dataset_rele(ds, FTAG); 346 return (0); 347 } 348 if (error) { 349 dsl_dataset_rele(ds, FTAG); 350 return (error); 351 } 352 if (zep->zb_birth == latest_txg) { 353 /* Block neither free nor rewritten. */ 354 zbookmark_phys_t zb; 355 zep_to_zb(head_ds, zep, &zb); 356 error = copyout_entry(&zb, uaddr, count); 357 if (error != 0) { 358 dsl_dataset_rele(ds, FTAG); 359 return (error); 360 } 361 check_snapshot = B_FALSE; 362 } else { 363 ASSERT3U(zep->zb_birth, <, latest_txg); 364 txg_to_consider = latest_txg; 365 } 366 367 /* How many snapshots reference this block. */ 368 uint64_t snap_count; 369 error = zap_count(spa->spa_meta_objset, 370 dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count); 371 if (error != 0) { 372 dsl_dataset_rele(ds, FTAG); 373 return (error); 374 } 375 376 if (snap_count == 0) { 377 /* File system has no snapshot. */ 378 dsl_dataset_rele(ds, FTAG); 379 return (0); 380 } 381 382 uint64_t *snap_obj_array = kmem_alloc(snap_count * sizeof (uint64_t), 383 KM_SLEEP); 384 385 int aff_snap_count = 0; 386 uint64_t snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 387 uint64_t snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg; 388 389 /* Check only snapshots created from this file system. */ 390 while (snap_obj != 0 && zep->zb_birth < snap_obj_txg && 391 snap_obj_txg <= txg_to_consider) { 392 393 dsl_dataset_rele(ds, FTAG); 394 error = dsl_dataset_hold_obj(dp, snap_obj, FTAG, &ds); 395 if (error != 0) 396 goto out; 397 398 if (dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj != head_ds) 399 break; 400 401 boolean_t affected = B_TRUE; 402 if (check_snapshot) { 403 uint64_t blk_txg; 404 error = find_birth_txg(ds, zep, &blk_txg); 405 affected = (error == 0 && zep->zb_birth == blk_txg); 406 } 407 408 if (affected) { 409 snap_obj_array[aff_snap_count] = snap_obj; 410 aff_snap_count++; 411 412 zbookmark_phys_t zb; 413 zep_to_zb(snap_obj, zep, &zb); 414 error = copyout_entry(&zb, uaddr, count); 415 if (error != 0) { 416 dsl_dataset_rele(ds, FTAG); 417 goto out; 418 } 419 420 /* 421 * Only clones whose origins were affected could also 422 * have affected snapshots. 423 */ 424 zap_cursor_t zc; 425 zap_attribute_t za; 426 for (zap_cursor_init(&zc, spa->spa_meta_objset, 427 dsl_dataset_phys(ds)->ds_next_clones_obj); 428 zap_cursor_retrieve(&zc, &za) == 0; 429 zap_cursor_advance(&zc)) { 430 error = check_filesystem(spa, 431 za.za_first_integer, zep, uaddr, count); 432 433 if (error != 0) { 434 zap_cursor_fini(&zc); 435 goto out; 436 } 437 } 438 zap_cursor_fini(&zc); 439 } 440 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg; 441 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 442 } 443 dsl_dataset_rele(ds, FTAG); 444 445 out: 446 kmem_free(snap_obj_array, sizeof (*snap_obj_array)); 447 return (error); 448 } 449 450 static int 451 find_top_affected_fs(spa_t *spa, uint64_t head_ds, zbookmark_err_phys_t *zep, 452 uint64_t *top_affected_fs) 453 { 454 uint64_t oldest_dsobj; 455 int error = dsl_dataset_oldest_snapshot(spa, head_ds, zep->zb_birth, 456 &oldest_dsobj); 457 if (error != 0) 458 return (error); 459 460 dsl_dataset_t *ds; 461 error = dsl_dataset_hold_obj(spa->spa_dsl_pool, oldest_dsobj, 462 FTAG, &ds); 463 if (error != 0) 464 return (error); 465 466 *top_affected_fs = 467 dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj; 468 dsl_dataset_rele(ds, FTAG); 469 return (0); 470 } 471 472 static int 473 process_error_block(spa_t *spa, uint64_t head_ds, zbookmark_err_phys_t *zep, 474 void *uaddr, uint64_t *count) 475 { 476 /* 477 * If the zb_birth is 0 it means we failed to retrieve the birth txg 478 * of the block pointer. This happens when an encrypted filesystem is 479 * not mounted or when the key is not loaded. Do not proceed to 480 * check_filesystem(), instead do the accounting here. 481 */ 482 if (zep->zb_birth == 0) { 483 zbookmark_phys_t zb; 484 zep_to_zb(head_ds, zep, &zb); 485 int error = copyout_entry(&zb, uaddr, count); 486 if (error != 0) { 487 return (error); 488 } 489 return (0); 490 } 491 492 uint64_t top_affected_fs; 493 int error = find_top_affected_fs(spa, head_ds, zep, &top_affected_fs); 494 if (error == 0) { 495 error = check_filesystem(spa, top_affected_fs, zep, 496 uaddr, count); 497 } 498 499 return (error); 500 } 501 #endif 502 503 /* 504 * If a healed bookmark matches an entry in the error log we stash it in a tree 505 * so that we can later remove the related log entries in sync context. 506 */ 507 static void 508 spa_add_healed_error(spa_t *spa, uint64_t obj, zbookmark_phys_t *healed_zb) 509 { 510 char name[NAME_MAX_LEN]; 511 512 if (obj == 0) 513 return; 514 515 bookmark_to_name(healed_zb, name, sizeof (name)); 516 mutex_enter(&spa->spa_errlog_lock); 517 if (zap_contains(spa->spa_meta_objset, obj, name) == 0) { 518 /* 519 * Found an error matching healed zb, add zb to our 520 * tree of healed errors 521 */ 522 avl_tree_t *tree = &spa->spa_errlist_healed; 523 spa_error_entry_t search; 524 spa_error_entry_t *new; 525 avl_index_t where; 526 search.se_bookmark = *healed_zb; 527 mutex_enter(&spa->spa_errlist_lock); 528 if (avl_find(tree, &search, &where) != NULL) { 529 mutex_exit(&spa->spa_errlist_lock); 530 mutex_exit(&spa->spa_errlog_lock); 531 return; 532 } 533 new = kmem_zalloc(sizeof (spa_error_entry_t), KM_SLEEP); 534 new->se_bookmark = *healed_zb; 535 avl_insert(tree, new, where); 536 mutex_exit(&spa->spa_errlist_lock); 537 } 538 mutex_exit(&spa->spa_errlog_lock); 539 } 540 541 /* 542 * If this error exists in the given tree remove it. 543 */ 544 static void 545 remove_error_from_list(spa_t *spa, avl_tree_t *t, const zbookmark_phys_t *zb) 546 { 547 spa_error_entry_t search, *found; 548 avl_index_t where; 549 550 mutex_enter(&spa->spa_errlist_lock); 551 search.se_bookmark = *zb; 552 if ((found = avl_find(t, &search, &where)) != NULL) { 553 avl_remove(t, found); 554 kmem_free(found, sizeof (spa_error_entry_t)); 555 } 556 mutex_exit(&spa->spa_errlist_lock); 557 } 558 559 560 /* 561 * Removes all of the recv healed errors from both on-disk error logs 562 */ 563 static void 564 spa_remove_healed_errors(spa_t *spa, avl_tree_t *s, avl_tree_t *l, dmu_tx_t *tx) 565 { 566 char name[NAME_MAX_LEN]; 567 spa_error_entry_t *se; 568 void *cookie = NULL; 569 570 ASSERT(MUTEX_HELD(&spa->spa_errlog_lock)); 571 572 while ((se = avl_destroy_nodes(&spa->spa_errlist_healed, 573 &cookie)) != NULL) { 574 remove_error_from_list(spa, s, &se->se_bookmark); 575 remove_error_from_list(spa, l, &se->se_bookmark); 576 bookmark_to_name(&se->se_bookmark, name, sizeof (name)); 577 kmem_free(se, sizeof (spa_error_entry_t)); 578 (void) zap_remove(spa->spa_meta_objset, 579 spa->spa_errlog_last, name, tx); 580 (void) zap_remove(spa->spa_meta_objset, 581 spa->spa_errlog_scrub, name, tx); 582 } 583 } 584 585 /* 586 * Stash away healed bookmarks to remove them from the on-disk error logs 587 * later in spa_remove_healed_errors(). 588 */ 589 void 590 spa_remove_error(spa_t *spa, zbookmark_phys_t *zb) 591 { 592 char name[NAME_MAX_LEN]; 593 594 bookmark_to_name(zb, name, sizeof (name)); 595 596 spa_add_healed_error(spa, spa->spa_errlog_last, zb); 597 spa_add_healed_error(spa, spa->spa_errlog_scrub, zb); 598 } 599 600 static uint64_t 601 approx_errlog_size_impl(spa_t *spa, uint64_t spa_err_obj) 602 { 603 if (spa_err_obj == 0) 604 return (0); 605 uint64_t total = 0; 606 607 zap_cursor_t zc; 608 zap_attribute_t za; 609 for (zap_cursor_init(&zc, spa->spa_meta_objset, spa_err_obj); 610 zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { 611 uint64_t count; 612 if (zap_count(spa->spa_meta_objset, za.za_first_integer, 613 &count) == 0) 614 total += count; 615 } 616 zap_cursor_fini(&zc); 617 return (total); 618 } 619 620 /* 621 * Return the approximate number of errors currently in the error log. This 622 * will be nonzero if there are some errors, but otherwise it may be more 623 * or less than the number of entries returned by spa_get_errlog(). 624 */ 625 uint64_t 626 spa_approx_errlog_size(spa_t *spa) 627 { 628 uint64_t total = 0; 629 630 if (!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) { 631 mutex_enter(&spa->spa_errlog_lock); 632 uint64_t count; 633 if (spa->spa_errlog_scrub != 0 && 634 zap_count(spa->spa_meta_objset, spa->spa_errlog_scrub, 635 &count) == 0) 636 total += count; 637 638 if (spa->spa_errlog_last != 0 && !spa->spa_scrub_finished && 639 zap_count(spa->spa_meta_objset, spa->spa_errlog_last, 640 &count) == 0) 641 total += count; 642 mutex_exit(&spa->spa_errlog_lock); 643 644 } else { 645 mutex_enter(&spa->spa_errlog_lock); 646 total += approx_errlog_size_impl(spa, spa->spa_errlog_last); 647 total += approx_errlog_size_impl(spa, spa->spa_errlog_scrub); 648 mutex_exit(&spa->spa_errlog_lock); 649 } 650 mutex_enter(&spa->spa_errlist_lock); 651 total += avl_numnodes(&spa->spa_errlist_last); 652 total += avl_numnodes(&spa->spa_errlist_scrub); 653 mutex_exit(&spa->spa_errlist_lock); 654 return (total); 655 } 656 657 /* 658 * This function sweeps through an on-disk error log and stores all bookmarks 659 * as error bookmarks in a new ZAP object. At the end we discard the old one, 660 * and spa_update_errlog() will set the spa's on-disk error log to new ZAP 661 * object. 662 */ 663 static void 664 sync_upgrade_errlog(spa_t *spa, uint64_t spa_err_obj, uint64_t *newobj, 665 dmu_tx_t *tx) 666 { 667 zap_cursor_t zc; 668 zap_attribute_t za; 669 zbookmark_phys_t zb; 670 uint64_t count; 671 672 *newobj = zap_create(spa->spa_meta_objset, DMU_OT_ERROR_LOG, 673 DMU_OT_NONE, 0, tx); 674 675 /* 676 * If we cannnot perform the upgrade we should clear the old on-disk 677 * error logs. 678 */ 679 if (zap_count(spa->spa_meta_objset, spa_err_obj, &count) != 0) { 680 VERIFY0(dmu_object_free(spa->spa_meta_objset, spa_err_obj, tx)); 681 return; 682 } 683 684 for (zap_cursor_init(&zc, spa->spa_meta_objset, spa_err_obj); 685 zap_cursor_retrieve(&zc, &za) == 0; 686 zap_cursor_advance(&zc)) { 687 if (spa_upgrade_errlog_limit != 0 && 688 zc.zc_cd == spa_upgrade_errlog_limit) 689 break; 690 691 name_to_bookmark(za.za_name, &zb); 692 693 zbookmark_err_phys_t zep; 694 zep.zb_object = zb.zb_object; 695 zep.zb_level = zb.zb_level; 696 zep.zb_blkid = zb.zb_blkid; 697 zep.zb_birth = 0; 698 699 /* 700 * We cannot use get_head_and_birth_txg() because it will 701 * acquire the pool config lock, which we already have. In case 702 * of an error we simply continue. 703 */ 704 uint64_t head_dataset_obj; 705 dsl_pool_t *dp = spa->spa_dsl_pool; 706 dsl_dataset_t *ds; 707 objset_t *os; 708 709 int error = dsl_dataset_hold_obj(dp, zb.zb_objset, FTAG, &ds); 710 if (error != 0) 711 continue; 712 713 head_dataset_obj = 714 dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj; 715 716 /* 717 * The objset and the dnode are required for getting the block 718 * pointer, which is used to determine if BP_IS_HOLE(). If 719 * getting the objset or the dnode fails, do not create a 720 * zap entry (presuming we know the dataset) as this may create 721 * spurious errors that we cannot ever resolve. If an error is 722 * truly persistent, it should re-appear after a scan. 723 */ 724 if (dmu_objset_from_ds(ds, &os) != 0) { 725 dsl_dataset_rele(ds, FTAG); 726 continue; 727 } 728 729 dnode_t *dn; 730 blkptr_t bp; 731 732 if (dnode_hold(os, zep.zb_object, FTAG, &dn) != 0) { 733 dsl_dataset_rele(ds, FTAG); 734 continue; 735 } 736 737 rw_enter(&dn->dn_struct_rwlock, RW_READER); 738 error = dbuf_dnode_findbp(dn, zep.zb_level, zep.zb_blkid, &bp, 739 NULL, NULL); 740 if (error == EACCES) 741 error = 0; 742 else if (!error) 743 zep.zb_birth = bp.blk_birth; 744 745 rw_exit(&dn->dn_struct_rwlock); 746 dnode_rele(dn, FTAG); 747 dsl_dataset_rele(ds, FTAG); 748 749 if (error != 0 || BP_IS_HOLE(&bp)) 750 continue; 751 752 uint64_t err_obj; 753 error = zap_lookup_int_key(spa->spa_meta_objset, *newobj, 754 head_dataset_obj, &err_obj); 755 756 if (error == ENOENT) { 757 err_obj = zap_create(spa->spa_meta_objset, 758 DMU_OT_ERROR_LOG, DMU_OT_NONE, 0, tx); 759 760 (void) zap_update_int_key(spa->spa_meta_objset, 761 *newobj, head_dataset_obj, err_obj, tx); 762 } 763 764 char buf[64]; 765 errphys_to_name(&zep, buf, sizeof (buf)); 766 767 const char *name = ""; 768 (void) zap_update(spa->spa_meta_objset, err_obj, 769 buf, 1, strlen(name) + 1, name, tx); 770 } 771 zap_cursor_fini(&zc); 772 773 VERIFY0(dmu_object_free(spa->spa_meta_objset, spa_err_obj, tx)); 774 } 775 776 void 777 spa_upgrade_errlog(spa_t *spa, dmu_tx_t *tx) 778 { 779 uint64_t newobj = 0; 780 781 mutex_enter(&spa->spa_errlog_lock); 782 if (spa->spa_errlog_last != 0) { 783 sync_upgrade_errlog(spa, spa->spa_errlog_last, &newobj, tx); 784 spa->spa_errlog_last = newobj; 785 } 786 787 if (spa->spa_errlog_scrub != 0) { 788 sync_upgrade_errlog(spa, spa->spa_errlog_scrub, &newobj, tx); 789 spa->spa_errlog_scrub = newobj; 790 } 791 mutex_exit(&spa->spa_errlog_lock); 792 } 793 794 #ifdef _KERNEL 795 /* 796 * If an error block is shared by two datasets it will be counted twice. 797 */ 798 static int 799 process_error_log(spa_t *spa, uint64_t obj, void *uaddr, uint64_t *count) 800 { 801 zap_cursor_t zc; 802 zap_attribute_t za; 803 804 if (obj == 0) 805 return (0); 806 807 if (!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) { 808 for (zap_cursor_init(&zc, spa->spa_meta_objset, obj); 809 zap_cursor_retrieve(&zc, &za) == 0; 810 zap_cursor_advance(&zc)) { 811 if (*count == 0) { 812 zap_cursor_fini(&zc); 813 return (SET_ERROR(ENOMEM)); 814 } 815 816 zbookmark_phys_t zb; 817 name_to_bookmark(za.za_name, &zb); 818 819 int error = copyout_entry(&zb, uaddr, count); 820 if (error != 0) { 821 zap_cursor_fini(&zc); 822 return (error); 823 } 824 } 825 zap_cursor_fini(&zc); 826 return (0); 827 } 828 829 for (zap_cursor_init(&zc, spa->spa_meta_objset, obj); 830 zap_cursor_retrieve(&zc, &za) == 0; 831 zap_cursor_advance(&zc)) { 832 833 zap_cursor_t head_ds_cursor; 834 zap_attribute_t head_ds_attr; 835 836 uint64_t head_ds_err_obj = za.za_first_integer; 837 uint64_t head_ds; 838 name_to_object(za.za_name, &head_ds); 839 for (zap_cursor_init(&head_ds_cursor, spa->spa_meta_objset, 840 head_ds_err_obj); zap_cursor_retrieve(&head_ds_cursor, 841 &head_ds_attr) == 0; zap_cursor_advance(&head_ds_cursor)) { 842 843 zbookmark_err_phys_t head_ds_block; 844 name_to_errphys(head_ds_attr.za_name, &head_ds_block); 845 int error = process_error_block(spa, head_ds, 846 &head_ds_block, uaddr, count); 847 848 if (error != 0) { 849 zap_cursor_fini(&head_ds_cursor); 850 zap_cursor_fini(&zc); 851 return (error); 852 } 853 } 854 zap_cursor_fini(&head_ds_cursor); 855 } 856 zap_cursor_fini(&zc); 857 return (0); 858 } 859 860 static int 861 process_error_list(spa_t *spa, avl_tree_t *list, void *uaddr, uint64_t *count) 862 { 863 spa_error_entry_t *se; 864 865 if (!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) { 866 for (se = avl_first(list); se != NULL; 867 se = AVL_NEXT(list, se)) { 868 int error = 869 copyout_entry(&se->se_bookmark, uaddr, count); 870 if (error != 0) { 871 return (error); 872 } 873 } 874 return (0); 875 } 876 877 for (se = avl_first(list); se != NULL; se = AVL_NEXT(list, se)) { 878 zbookmark_err_phys_t zep; 879 zep.zb_object = se->se_bookmark.zb_object; 880 zep.zb_level = se->se_bookmark.zb_level; 881 zep.zb_blkid = se->se_bookmark.zb_blkid; 882 zep.zb_birth = 0; 883 884 uint64_t head_ds_obj; 885 int error = get_head_and_birth_txg(spa, &zep, 886 se->se_bookmark.zb_objset, &head_ds_obj); 887 888 if (!error) 889 error = process_error_block(spa, head_ds_obj, &zep, 890 uaddr, count); 891 if (error) 892 return (error); 893 } 894 return (0); 895 } 896 #endif 897 898 /* 899 * Copy all known errors to userland as an array of bookmarks. This is 900 * actually a union of the on-disk last log and current log, as well as any 901 * pending error requests. 902 * 903 * Because the act of reading the on-disk log could cause errors to be 904 * generated, we have two separate locks: one for the error log and one for the 905 * in-core error lists. We only need the error list lock to log and error, so 906 * we grab the error log lock while we read the on-disk logs, and only pick up 907 * the error list lock when we are finished. 908 */ 909 int 910 spa_get_errlog(spa_t *spa, void *uaddr, uint64_t *count) 911 { 912 int ret = 0; 913 914 #ifdef _KERNEL 915 /* 916 * The pool config lock is needed to hold a dataset_t via (among other 917 * places) process_error_list() -> get_head_and_birth_txg(), and lock 918 * ordering requires that we get it before the spa_errlog_lock. 919 */ 920 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 921 mutex_enter(&spa->spa_errlog_lock); 922 923 ret = process_error_log(spa, spa->spa_errlog_scrub, uaddr, count); 924 925 if (!ret && !spa->spa_scrub_finished) 926 ret = process_error_log(spa, spa->spa_errlog_last, uaddr, 927 count); 928 929 mutex_enter(&spa->spa_errlist_lock); 930 if (!ret) 931 ret = process_error_list(spa, &spa->spa_errlist_scrub, uaddr, 932 count); 933 if (!ret) 934 ret = process_error_list(spa, &spa->spa_errlist_last, uaddr, 935 count); 936 mutex_exit(&spa->spa_errlist_lock); 937 938 mutex_exit(&spa->spa_errlog_lock); 939 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 940 #else 941 (void) spa, (void) uaddr, (void) count; 942 #endif 943 944 return (ret); 945 } 946 947 /* 948 * Called when a scrub completes. This simply set a bit which tells which AVL 949 * tree to add new errors. spa_errlog_sync() is responsible for actually 950 * syncing the changes to the underlying objects. 951 */ 952 void 953 spa_errlog_rotate(spa_t *spa) 954 { 955 mutex_enter(&spa->spa_errlist_lock); 956 spa->spa_scrub_finished = B_TRUE; 957 mutex_exit(&spa->spa_errlist_lock); 958 } 959 960 /* 961 * Discard any pending errors from the spa_t. Called when unloading a faulted 962 * pool, as the errors encountered during the open cannot be synced to disk. 963 */ 964 void 965 spa_errlog_drain(spa_t *spa) 966 { 967 spa_error_entry_t *se; 968 void *cookie; 969 970 mutex_enter(&spa->spa_errlist_lock); 971 972 cookie = NULL; 973 while ((se = avl_destroy_nodes(&spa->spa_errlist_last, 974 &cookie)) != NULL) 975 kmem_free(se, sizeof (spa_error_entry_t)); 976 cookie = NULL; 977 while ((se = avl_destroy_nodes(&spa->spa_errlist_scrub, 978 &cookie)) != NULL) 979 kmem_free(se, sizeof (spa_error_entry_t)); 980 981 mutex_exit(&spa->spa_errlist_lock); 982 } 983 984 /* 985 * Process a list of errors into the current on-disk log. 986 */ 987 void 988 sync_error_list(spa_t *spa, avl_tree_t *t, uint64_t *obj, dmu_tx_t *tx) 989 { 990 spa_error_entry_t *se; 991 char buf[NAME_MAX_LEN]; 992 void *cookie; 993 994 if (avl_numnodes(t) == 0) 995 return; 996 997 /* create log if necessary */ 998 if (*obj == 0) 999 *obj = zap_create(spa->spa_meta_objset, DMU_OT_ERROR_LOG, 1000 DMU_OT_NONE, 0, tx); 1001 1002 /* add errors to the current log */ 1003 if (!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) { 1004 for (se = avl_first(t); se != NULL; se = AVL_NEXT(t, se)) { 1005 bookmark_to_name(&se->se_bookmark, buf, sizeof (buf)); 1006 1007 const char *name = se->se_name ? se->se_name : ""; 1008 (void) zap_update(spa->spa_meta_objset, *obj, buf, 1, 1009 strlen(name) + 1, name, tx); 1010 } 1011 } else { 1012 for (se = avl_first(t); se != NULL; se = AVL_NEXT(t, se)) { 1013 zbookmark_err_phys_t zep; 1014 zep.zb_object = se->se_bookmark.zb_object; 1015 zep.zb_level = se->se_bookmark.zb_level; 1016 zep.zb_blkid = se->se_bookmark.zb_blkid; 1017 zep.zb_birth = 0; 1018 1019 /* 1020 * If we cannot find out the head dataset and birth txg 1021 * of the present error block, we simply continue. 1022 * Reinserting that error block to the error lists, 1023 * even if we are not syncing the final txg, results 1024 * in duplicate posting of errors. 1025 */ 1026 uint64_t head_dataset_obj; 1027 int error = get_head_and_birth_txg(spa, &zep, 1028 se->se_bookmark.zb_objset, &head_dataset_obj); 1029 if (error) 1030 continue; 1031 1032 uint64_t err_obj; 1033 error = zap_lookup_int_key(spa->spa_meta_objset, 1034 *obj, head_dataset_obj, &err_obj); 1035 1036 if (error == ENOENT) { 1037 err_obj = zap_create(spa->spa_meta_objset, 1038 DMU_OT_ERROR_LOG, DMU_OT_NONE, 0, tx); 1039 1040 (void) zap_update_int_key(spa->spa_meta_objset, 1041 *obj, head_dataset_obj, err_obj, tx); 1042 } 1043 errphys_to_name(&zep, buf, sizeof (buf)); 1044 1045 const char *name = se->se_name ? se->se_name : ""; 1046 (void) zap_update(spa->spa_meta_objset, 1047 err_obj, buf, 1, strlen(name) + 1, name, tx); 1048 } 1049 } 1050 /* purge the error list */ 1051 cookie = NULL; 1052 while ((se = avl_destroy_nodes(t, &cookie)) != NULL) 1053 kmem_free(se, sizeof (spa_error_entry_t)); 1054 } 1055 1056 static void 1057 delete_errlog(spa_t *spa, uint64_t spa_err_obj, dmu_tx_t *tx) 1058 { 1059 if (spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) { 1060 zap_cursor_t zc; 1061 zap_attribute_t za; 1062 for (zap_cursor_init(&zc, spa->spa_meta_objset, spa_err_obj); 1063 zap_cursor_retrieve(&zc, &za) == 0; 1064 zap_cursor_advance(&zc)) { 1065 VERIFY0(dmu_object_free(spa->spa_meta_objset, 1066 za.za_first_integer, tx)); 1067 } 1068 zap_cursor_fini(&zc); 1069 } 1070 VERIFY0(dmu_object_free(spa->spa_meta_objset, spa_err_obj, tx)); 1071 } 1072 1073 /* 1074 * Sync the error log out to disk. This is a little tricky because the act of 1075 * writing the error log requires the spa_errlist_lock. So, we need to lock the 1076 * error lists, take a copy of the lists, and then reinitialize them. Then, we 1077 * drop the error list lock and take the error log lock, at which point we 1078 * do the errlog processing. Then, if we encounter an I/O error during this 1079 * process, we can successfully add the error to the list. Note that this will 1080 * result in the perpetual recycling of errors, but it is an unlikely situation 1081 * and not a performance critical operation. 1082 */ 1083 void 1084 spa_errlog_sync(spa_t *spa, uint64_t txg) 1085 { 1086 dmu_tx_t *tx; 1087 avl_tree_t scrub, last; 1088 int scrub_finished; 1089 1090 mutex_enter(&spa->spa_errlist_lock); 1091 1092 /* 1093 * Bail out early under normal circumstances. 1094 */ 1095 if (avl_numnodes(&spa->spa_errlist_scrub) == 0 && 1096 avl_numnodes(&spa->spa_errlist_last) == 0 && 1097 avl_numnodes(&spa->spa_errlist_healed) == 0 && 1098 !spa->spa_scrub_finished) { 1099 mutex_exit(&spa->spa_errlist_lock); 1100 return; 1101 } 1102 1103 spa_get_errlists(spa, &last, &scrub); 1104 scrub_finished = spa->spa_scrub_finished; 1105 spa->spa_scrub_finished = B_FALSE; 1106 1107 mutex_exit(&spa->spa_errlist_lock); 1108 1109 /* 1110 * The pool config lock is needed to hold a dataset_t via 1111 * sync_error_list() -> get_head_and_birth_txg(), and lock ordering 1112 * requires that we get it before the spa_errlog_lock. 1113 */ 1114 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 1115 mutex_enter(&spa->spa_errlog_lock); 1116 1117 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1118 1119 /* 1120 * Remove healed errors from errors. 1121 */ 1122 spa_remove_healed_errors(spa, &last, &scrub, tx); 1123 1124 /* 1125 * Sync out the current list of errors. 1126 */ 1127 sync_error_list(spa, &last, &spa->spa_errlog_last, tx); 1128 1129 /* 1130 * Rotate the log if necessary. 1131 */ 1132 if (scrub_finished) { 1133 if (spa->spa_errlog_last != 0) 1134 delete_errlog(spa, spa->spa_errlog_last, tx); 1135 spa->spa_errlog_last = spa->spa_errlog_scrub; 1136 spa->spa_errlog_scrub = 0; 1137 1138 sync_error_list(spa, &scrub, &spa->spa_errlog_last, tx); 1139 } 1140 1141 /* 1142 * Sync out any pending scrub errors. 1143 */ 1144 sync_error_list(spa, &scrub, &spa->spa_errlog_scrub, tx); 1145 1146 /* 1147 * Update the MOS to reflect the new values. 1148 */ 1149 (void) zap_update(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1150 DMU_POOL_ERRLOG_LAST, sizeof (uint64_t), 1, 1151 &spa->spa_errlog_last, tx); 1152 (void) zap_update(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1153 DMU_POOL_ERRLOG_SCRUB, sizeof (uint64_t), 1, 1154 &spa->spa_errlog_scrub, tx); 1155 1156 dmu_tx_commit(tx); 1157 1158 mutex_exit(&spa->spa_errlog_lock); 1159 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 1160 } 1161 1162 static void 1163 delete_dataset_errlog(spa_t *spa, uint64_t spa_err_obj, uint64_t ds, 1164 dmu_tx_t *tx) 1165 { 1166 if (spa_err_obj == 0) 1167 return; 1168 1169 zap_cursor_t zc; 1170 zap_attribute_t za; 1171 for (zap_cursor_init(&zc, spa->spa_meta_objset, spa_err_obj); 1172 zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { 1173 uint64_t head_ds; 1174 name_to_object(za.za_name, &head_ds); 1175 if (head_ds == ds) { 1176 (void) zap_remove(spa->spa_meta_objset, spa_err_obj, 1177 za.za_name, tx); 1178 VERIFY0(dmu_object_free(spa->spa_meta_objset, 1179 za.za_first_integer, tx)); 1180 break; 1181 } 1182 } 1183 zap_cursor_fini(&zc); 1184 } 1185 1186 void 1187 spa_delete_dataset_errlog(spa_t *spa, uint64_t ds, dmu_tx_t *tx) 1188 { 1189 mutex_enter(&spa->spa_errlog_lock); 1190 delete_dataset_errlog(spa, spa->spa_errlog_scrub, ds, tx); 1191 delete_dataset_errlog(spa, spa->spa_errlog_last, ds, tx); 1192 mutex_exit(&spa->spa_errlog_lock); 1193 } 1194 1195 static int 1196 find_txg_ancestor_snapshot(spa_t *spa, uint64_t new_head, uint64_t old_head, 1197 uint64_t *txg) 1198 { 1199 dsl_dataset_t *ds; 1200 dsl_pool_t *dp = spa->spa_dsl_pool; 1201 1202 int error = dsl_dataset_hold_obj(dp, old_head, FTAG, &ds); 1203 if (error != 0) 1204 return (error); 1205 1206 uint64_t prev_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 1207 uint64_t prev_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg; 1208 1209 while (prev_obj != 0) { 1210 dsl_dataset_rele(ds, FTAG); 1211 if ((error = dsl_dataset_hold_obj(dp, prev_obj, 1212 FTAG, &ds)) == 0 && 1213 dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj == new_head) 1214 break; 1215 1216 if (error != 0) 1217 return (error); 1218 1219 prev_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg; 1220 prev_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 1221 } 1222 dsl_dataset_rele(ds, FTAG); 1223 ASSERT(prev_obj != 0); 1224 *txg = prev_obj_txg; 1225 return (0); 1226 } 1227 1228 static void 1229 swap_errlog(spa_t *spa, uint64_t spa_err_obj, uint64_t new_head, uint64_t 1230 old_head, dmu_tx_t *tx) 1231 { 1232 if (spa_err_obj == 0) 1233 return; 1234 1235 uint64_t old_head_errlog; 1236 int error = zap_lookup_int_key(spa->spa_meta_objset, spa_err_obj, 1237 old_head, &old_head_errlog); 1238 1239 /* If no error log, then there is nothing to do. */ 1240 if (error != 0) 1241 return; 1242 1243 uint64_t txg; 1244 error = find_txg_ancestor_snapshot(spa, new_head, old_head, &txg); 1245 if (error != 0) 1246 return; 1247 1248 /* 1249 * Create an error log if the file system being promoted does not 1250 * already have one. 1251 */ 1252 uint64_t new_head_errlog; 1253 error = zap_lookup_int_key(spa->spa_meta_objset, spa_err_obj, new_head, 1254 &new_head_errlog); 1255 1256 if (error != 0) { 1257 new_head_errlog = zap_create(spa->spa_meta_objset, 1258 DMU_OT_ERROR_LOG, DMU_OT_NONE, 0, tx); 1259 1260 (void) zap_update_int_key(spa->spa_meta_objset, spa_err_obj, 1261 new_head, new_head_errlog, tx); 1262 } 1263 1264 zap_cursor_t zc; 1265 zap_attribute_t za; 1266 zbookmark_err_phys_t err_block; 1267 for (zap_cursor_init(&zc, spa->spa_meta_objset, old_head_errlog); 1268 zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { 1269 1270 const char *name = ""; 1271 name_to_errphys(za.za_name, &err_block); 1272 if (err_block.zb_birth < txg) { 1273 (void) zap_update(spa->spa_meta_objset, new_head_errlog, 1274 za.za_name, 1, strlen(name) + 1, name, tx); 1275 1276 (void) zap_remove(spa->spa_meta_objset, old_head_errlog, 1277 za.za_name, tx); 1278 } 1279 } 1280 zap_cursor_fini(&zc); 1281 } 1282 1283 void 1284 spa_swap_errlog(spa_t *spa, uint64_t new_head_ds, uint64_t old_head_ds, 1285 dmu_tx_t *tx) 1286 { 1287 mutex_enter(&spa->spa_errlog_lock); 1288 swap_errlog(spa, spa->spa_errlog_scrub, new_head_ds, old_head_ds, tx); 1289 swap_errlog(spa, spa->spa_errlog_last, new_head_ds, old_head_ds, tx); 1290 mutex_exit(&spa->spa_errlog_lock); 1291 } 1292 1293 #if defined(_KERNEL) 1294 /* error handling */ 1295 EXPORT_SYMBOL(spa_log_error); 1296 EXPORT_SYMBOL(spa_approx_errlog_size); 1297 EXPORT_SYMBOL(spa_get_errlog); 1298 EXPORT_SYMBOL(spa_errlog_rotate); 1299 EXPORT_SYMBOL(spa_errlog_drain); 1300 EXPORT_SYMBOL(spa_errlog_sync); 1301 EXPORT_SYMBOL(spa_get_errlists); 1302 EXPORT_SYMBOL(spa_delete_dataset_errlog); 1303 EXPORT_SYMBOL(spa_swap_errlog); 1304 EXPORT_SYMBOL(sync_error_list); 1305 EXPORT_SYMBOL(spa_upgrade_errlog); 1306 #endif 1307 1308 /* BEGIN CSTYLED */ 1309 ZFS_MODULE_PARAM(zfs_spa, spa_, upgrade_errlog_limit, UINT, ZMOD_RW, 1310 "Limit the number of errors which will be upgraded to the new " 1311 "on-disk error log when enabling head_errlog"); 1312 /* END CSTYLED */ 1313