xref: /freebsd/sys/contrib/openzfs/module/zfs/spa.c (revision f9fd7337f63698f33239c58c07bf430198235a22)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2018, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31  * Copyright 2018 Joyent, Inc.
32  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33  * Copyright 2017 Joyent, Inc.
34  * Copyright (c) 2017, Intel Corporation.
35  */
36 
37 /*
38  * SPA: Storage Pool Allocator
39  *
40  * This file contains all the routines used when modifying on-disk SPA state.
41  * This includes opening, importing, destroying, exporting a pool, and syncing a
42  * pool.
43  */
44 
45 #include <sys/zfs_context.h>
46 #include <sys/fm/fs/zfs.h>
47 #include <sys/spa_impl.h>
48 #include <sys/zio.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/dmu.h>
51 #include <sys/dmu_tx.h>
52 #include <sys/zap.h>
53 #include <sys/zil.h>
54 #include <sys/ddt.h>
55 #include <sys/vdev_impl.h>
56 #include <sys/vdev_removal.h>
57 #include <sys/vdev_indirect_mapping.h>
58 #include <sys/vdev_indirect_births.h>
59 #include <sys/vdev_initialize.h>
60 #include <sys/vdev_rebuild.h>
61 #include <sys/vdev_trim.h>
62 #include <sys/vdev_disk.h>
63 #include <sys/metaslab.h>
64 #include <sys/metaslab_impl.h>
65 #include <sys/mmp.h>
66 #include <sys/uberblock_impl.h>
67 #include <sys/txg.h>
68 #include <sys/avl.h>
69 #include <sys/bpobj.h>
70 #include <sys/dmu_traverse.h>
71 #include <sys/dmu_objset.h>
72 #include <sys/unique.h>
73 #include <sys/dsl_pool.h>
74 #include <sys/dsl_dataset.h>
75 #include <sys/dsl_dir.h>
76 #include <sys/dsl_prop.h>
77 #include <sys/dsl_synctask.h>
78 #include <sys/fs/zfs.h>
79 #include <sys/arc.h>
80 #include <sys/callb.h>
81 #include <sys/systeminfo.h>
82 #include <sys/spa_boot.h>
83 #include <sys/zfs_ioctl.h>
84 #include <sys/dsl_scan.h>
85 #include <sys/zfeature.h>
86 #include <sys/dsl_destroy.h>
87 #include <sys/zvol.h>
88 
89 #ifdef	_KERNEL
90 #include <sys/fm/protocol.h>
91 #include <sys/fm/util.h>
92 #include <sys/callb.h>
93 #include <sys/zone.h>
94 #include <sys/vmsystm.h>
95 #endif	/* _KERNEL */
96 
97 #include "zfs_prop.h"
98 #include "zfs_comutil.h"
99 
100 /*
101  * The interval, in seconds, at which failed configuration cache file writes
102  * should be retried.
103  */
104 int zfs_ccw_retry_interval = 300;
105 
106 typedef enum zti_modes {
107 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
108 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
109 	ZTI_MODE_NULL,			/* don't create a taskq */
110 	ZTI_NMODES
111 } zti_modes_t;
112 
113 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
114 #define	ZTI_PCT(n)	{ ZTI_MODE_ONLINE_PERCENT, (n), 1 }
115 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
116 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
117 
118 #define	ZTI_N(n)	ZTI_P(n, 1)
119 #define	ZTI_ONE		ZTI_N(1)
120 
121 typedef struct zio_taskq_info {
122 	zti_modes_t zti_mode;
123 	uint_t zti_value;
124 	uint_t zti_count;
125 } zio_taskq_info_t;
126 
127 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
128 	"iss", "iss_h", "int", "int_h"
129 };
130 
131 /*
132  * This table defines the taskq settings for each ZFS I/O type. When
133  * initializing a pool, we use this table to create an appropriately sized
134  * taskq. Some operations are low volume and therefore have a small, static
135  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
136  * macros. Other operations process a large amount of data; the ZTI_BATCH
137  * macro causes us to create a taskq oriented for throughput. Some operations
138  * are so high frequency and short-lived that the taskq itself can become a
139  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
140  * additional degree of parallelism specified by the number of threads per-
141  * taskq and the number of taskqs; when dispatching an event in this case, the
142  * particular taskq is chosen at random.
143  *
144  * The different taskq priorities are to handle the different contexts (issue
145  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
146  * need to be handled with minimum delay.
147  */
148 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
149 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
150 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
151 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
152 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_P(12, 8),	ZTI_N(5) }, /* WRITE */
153 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
154 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
155 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
156 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
157 };
158 
159 static void spa_sync_version(void *arg, dmu_tx_t *tx);
160 static void spa_sync_props(void *arg, dmu_tx_t *tx);
161 static boolean_t spa_has_active_shared_spare(spa_t *spa);
162 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
163 static void spa_vdev_resilver_done(spa_t *spa);
164 
165 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
166 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
167 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
168 
169 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
170 
171 /*
172  * Report any spa_load_verify errors found, but do not fail spa_load.
173  * This is used by zdb to analyze non-idle pools.
174  */
175 boolean_t	spa_load_verify_dryrun = B_FALSE;
176 
177 /*
178  * This (illegal) pool name is used when temporarily importing a spa_t in order
179  * to get the vdev stats associated with the imported devices.
180  */
181 #define	TRYIMPORT_NAME	"$import"
182 
183 /*
184  * For debugging purposes: print out vdev tree during pool import.
185  */
186 int		spa_load_print_vdev_tree = B_FALSE;
187 
188 /*
189  * A non-zero value for zfs_max_missing_tvds means that we allow importing
190  * pools with missing top-level vdevs. This is strictly intended for advanced
191  * pool recovery cases since missing data is almost inevitable. Pools with
192  * missing devices can only be imported read-only for safety reasons, and their
193  * fail-mode will be automatically set to "continue".
194  *
195  * With 1 missing vdev we should be able to import the pool and mount all
196  * datasets. User data that was not modified after the missing device has been
197  * added should be recoverable. This means that snapshots created prior to the
198  * addition of that device should be completely intact.
199  *
200  * With 2 missing vdevs, some datasets may fail to mount since there are
201  * dataset statistics that are stored as regular metadata. Some data might be
202  * recoverable if those vdevs were added recently.
203  *
204  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
205  * may be missing entirely. Chances of data recovery are very low. Note that
206  * there are also risks of performing an inadvertent rewind as we might be
207  * missing all the vdevs with the latest uberblocks.
208  */
209 unsigned long	zfs_max_missing_tvds = 0;
210 
211 /*
212  * The parameters below are similar to zfs_max_missing_tvds but are only
213  * intended for a preliminary open of the pool with an untrusted config which
214  * might be incomplete or out-dated.
215  *
216  * We are more tolerant for pools opened from a cachefile since we could have
217  * an out-dated cachefile where a device removal was not registered.
218  * We could have set the limit arbitrarily high but in the case where devices
219  * are really missing we would want to return the proper error codes; we chose
220  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
221  * and we get a chance to retrieve the trusted config.
222  */
223 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
224 
225 /*
226  * In the case where config was assembled by scanning device paths (/dev/dsks
227  * by default) we are less tolerant since all the existing devices should have
228  * been detected and we want spa_load to return the right error codes.
229  */
230 uint64_t	zfs_max_missing_tvds_scan = 0;
231 
232 /*
233  * Debugging aid that pauses spa_sync() towards the end.
234  */
235 boolean_t	zfs_pause_spa_sync = B_FALSE;
236 
237 /*
238  * Variables to indicate the livelist condense zthr func should wait at certain
239  * points for the livelist to be removed - used to test condense/destroy races
240  */
241 int zfs_livelist_condense_zthr_pause = 0;
242 int zfs_livelist_condense_sync_pause = 0;
243 
244 /*
245  * Variables to track whether or not condense cancellation has been
246  * triggered in testing.
247  */
248 int zfs_livelist_condense_sync_cancel = 0;
249 int zfs_livelist_condense_zthr_cancel = 0;
250 
251 /*
252  * Variable to track whether or not extra ALLOC blkptrs were added to a
253  * livelist entry while it was being condensed (caused by the way we track
254  * remapped blkptrs in dbuf_remap_impl)
255  */
256 int zfs_livelist_condense_new_alloc = 0;
257 
258 /*
259  * ==========================================================================
260  * SPA properties routines
261  * ==========================================================================
262  */
263 
264 /*
265  * Add a (source=src, propname=propval) list to an nvlist.
266  */
267 static void
268 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
269     uint64_t intval, zprop_source_t src)
270 {
271 	const char *propname = zpool_prop_to_name(prop);
272 	nvlist_t *propval;
273 
274 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
275 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
276 
277 	if (strval != NULL)
278 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
279 	else
280 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
281 
282 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
283 	nvlist_free(propval);
284 }
285 
286 /*
287  * Get property values from the spa configuration.
288  */
289 static void
290 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
291 {
292 	vdev_t *rvd = spa->spa_root_vdev;
293 	dsl_pool_t *pool = spa->spa_dsl_pool;
294 	uint64_t size, alloc, cap, version;
295 	const zprop_source_t src = ZPROP_SRC_NONE;
296 	spa_config_dirent_t *dp;
297 	metaslab_class_t *mc = spa_normal_class(spa);
298 
299 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
300 
301 	if (rvd != NULL) {
302 		alloc = metaslab_class_get_alloc(mc);
303 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
304 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
305 
306 		size = metaslab_class_get_space(mc);
307 		size += metaslab_class_get_space(spa_special_class(spa));
308 		size += metaslab_class_get_space(spa_dedup_class(spa));
309 
310 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
311 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
312 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
313 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
314 		    size - alloc, src);
315 		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
316 		    spa->spa_checkpoint_info.sci_dspace, src);
317 
318 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
319 		    metaslab_class_fragmentation(mc), src);
320 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
321 		    metaslab_class_expandable_space(mc), src);
322 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
323 		    (spa_mode(spa) == SPA_MODE_READ), src);
324 
325 		cap = (size == 0) ? 0 : (alloc * 100 / size);
326 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
327 
328 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
329 		    ddt_get_pool_dedup_ratio(spa), src);
330 
331 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
332 		    rvd->vdev_state, src);
333 
334 		version = spa_version(spa);
335 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
336 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
337 			    version, ZPROP_SRC_DEFAULT);
338 		} else {
339 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
340 			    version, ZPROP_SRC_LOCAL);
341 		}
342 		spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
343 		    NULL, spa_load_guid(spa), src);
344 	}
345 
346 	if (pool != NULL) {
347 		/*
348 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
349 		 * when opening pools before this version freedir will be NULL.
350 		 */
351 		if (pool->dp_free_dir != NULL) {
352 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
353 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
354 			    src);
355 		} else {
356 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
357 			    NULL, 0, src);
358 		}
359 
360 		if (pool->dp_leak_dir != NULL) {
361 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
362 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
363 			    src);
364 		} else {
365 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
366 			    NULL, 0, src);
367 		}
368 	}
369 
370 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
371 
372 	if (spa->spa_comment != NULL) {
373 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
374 		    0, ZPROP_SRC_LOCAL);
375 	}
376 
377 	if (spa->spa_root != NULL)
378 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
379 		    0, ZPROP_SRC_LOCAL);
380 
381 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
382 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
383 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
384 	} else {
385 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
386 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
387 	}
388 
389 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
390 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
391 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
392 	} else {
393 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
394 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
395 	}
396 
397 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
398 		if (dp->scd_path == NULL) {
399 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
400 			    "none", 0, ZPROP_SRC_LOCAL);
401 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
402 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
403 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
404 		}
405 	}
406 }
407 
408 /*
409  * Get zpool property values.
410  */
411 int
412 spa_prop_get(spa_t *spa, nvlist_t **nvp)
413 {
414 	objset_t *mos = spa->spa_meta_objset;
415 	zap_cursor_t zc;
416 	zap_attribute_t za;
417 	dsl_pool_t *dp;
418 	int err;
419 
420 	err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
421 	if (err)
422 		return (err);
423 
424 	dp = spa_get_dsl(spa);
425 	dsl_pool_config_enter(dp, FTAG);
426 	mutex_enter(&spa->spa_props_lock);
427 
428 	/*
429 	 * Get properties from the spa config.
430 	 */
431 	spa_prop_get_config(spa, nvp);
432 
433 	/* If no pool property object, no more prop to get. */
434 	if (mos == NULL || spa->spa_pool_props_object == 0)
435 		goto out;
436 
437 	/*
438 	 * Get properties from the MOS pool property object.
439 	 */
440 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
441 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
442 	    zap_cursor_advance(&zc)) {
443 		uint64_t intval = 0;
444 		char *strval = NULL;
445 		zprop_source_t src = ZPROP_SRC_DEFAULT;
446 		zpool_prop_t prop;
447 
448 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
449 			continue;
450 
451 		switch (za.za_integer_length) {
452 		case 8:
453 			/* integer property */
454 			if (za.za_first_integer !=
455 			    zpool_prop_default_numeric(prop))
456 				src = ZPROP_SRC_LOCAL;
457 
458 			if (prop == ZPOOL_PROP_BOOTFS) {
459 				dsl_dataset_t *ds = NULL;
460 
461 				err = dsl_dataset_hold_obj(dp,
462 				    za.za_first_integer, FTAG, &ds);
463 				if (err != 0)
464 					break;
465 
466 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
467 				    KM_SLEEP);
468 				dsl_dataset_name(ds, strval);
469 				dsl_dataset_rele(ds, FTAG);
470 			} else {
471 				strval = NULL;
472 				intval = za.za_first_integer;
473 			}
474 
475 			spa_prop_add_list(*nvp, prop, strval, intval, src);
476 
477 			if (strval != NULL)
478 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
479 
480 			break;
481 
482 		case 1:
483 			/* string property */
484 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
485 			err = zap_lookup(mos, spa->spa_pool_props_object,
486 			    za.za_name, 1, za.za_num_integers, strval);
487 			if (err) {
488 				kmem_free(strval, za.za_num_integers);
489 				break;
490 			}
491 			spa_prop_add_list(*nvp, prop, strval, 0, src);
492 			kmem_free(strval, za.za_num_integers);
493 			break;
494 
495 		default:
496 			break;
497 		}
498 	}
499 	zap_cursor_fini(&zc);
500 out:
501 	mutex_exit(&spa->spa_props_lock);
502 	dsl_pool_config_exit(dp, FTAG);
503 	if (err && err != ENOENT) {
504 		nvlist_free(*nvp);
505 		*nvp = NULL;
506 		return (err);
507 	}
508 
509 	return (0);
510 }
511 
512 /*
513  * Validate the given pool properties nvlist and modify the list
514  * for the property values to be set.
515  */
516 static int
517 spa_prop_validate(spa_t *spa, nvlist_t *props)
518 {
519 	nvpair_t *elem;
520 	int error = 0, reset_bootfs = 0;
521 	uint64_t objnum = 0;
522 	boolean_t has_feature = B_FALSE;
523 
524 	elem = NULL;
525 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
526 		uint64_t intval;
527 		char *strval, *slash, *check, *fname;
528 		const char *propname = nvpair_name(elem);
529 		zpool_prop_t prop = zpool_name_to_prop(propname);
530 
531 		switch (prop) {
532 		case ZPOOL_PROP_INVAL:
533 			if (!zpool_prop_feature(propname)) {
534 				error = SET_ERROR(EINVAL);
535 				break;
536 			}
537 
538 			/*
539 			 * Sanitize the input.
540 			 */
541 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
542 				error = SET_ERROR(EINVAL);
543 				break;
544 			}
545 
546 			if (nvpair_value_uint64(elem, &intval) != 0) {
547 				error = SET_ERROR(EINVAL);
548 				break;
549 			}
550 
551 			if (intval != 0) {
552 				error = SET_ERROR(EINVAL);
553 				break;
554 			}
555 
556 			fname = strchr(propname, '@') + 1;
557 			if (zfeature_lookup_name(fname, NULL) != 0) {
558 				error = SET_ERROR(EINVAL);
559 				break;
560 			}
561 
562 			has_feature = B_TRUE;
563 			break;
564 
565 		case ZPOOL_PROP_VERSION:
566 			error = nvpair_value_uint64(elem, &intval);
567 			if (!error &&
568 			    (intval < spa_version(spa) ||
569 			    intval > SPA_VERSION_BEFORE_FEATURES ||
570 			    has_feature))
571 				error = SET_ERROR(EINVAL);
572 			break;
573 
574 		case ZPOOL_PROP_DELEGATION:
575 		case ZPOOL_PROP_AUTOREPLACE:
576 		case ZPOOL_PROP_LISTSNAPS:
577 		case ZPOOL_PROP_AUTOEXPAND:
578 		case ZPOOL_PROP_AUTOTRIM:
579 			error = nvpair_value_uint64(elem, &intval);
580 			if (!error && intval > 1)
581 				error = SET_ERROR(EINVAL);
582 			break;
583 
584 		case ZPOOL_PROP_MULTIHOST:
585 			error = nvpair_value_uint64(elem, &intval);
586 			if (!error && intval > 1)
587 				error = SET_ERROR(EINVAL);
588 
589 			if (!error) {
590 				uint32_t hostid = zone_get_hostid(NULL);
591 				if (hostid)
592 					spa->spa_hostid = hostid;
593 				else
594 					error = SET_ERROR(ENOTSUP);
595 			}
596 
597 			break;
598 
599 		case ZPOOL_PROP_BOOTFS:
600 			/*
601 			 * If the pool version is less than SPA_VERSION_BOOTFS,
602 			 * or the pool is still being created (version == 0),
603 			 * the bootfs property cannot be set.
604 			 */
605 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
606 				error = SET_ERROR(ENOTSUP);
607 				break;
608 			}
609 
610 			/*
611 			 * Make sure the vdev config is bootable
612 			 */
613 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
614 				error = SET_ERROR(ENOTSUP);
615 				break;
616 			}
617 
618 			reset_bootfs = 1;
619 
620 			error = nvpair_value_string(elem, &strval);
621 
622 			if (!error) {
623 				objset_t *os;
624 
625 				if (strval == NULL || strval[0] == '\0') {
626 					objnum = zpool_prop_default_numeric(
627 					    ZPOOL_PROP_BOOTFS);
628 					break;
629 				}
630 
631 				error = dmu_objset_hold(strval, FTAG, &os);
632 				if (error != 0)
633 					break;
634 
635 				/* Must be ZPL. */
636 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
637 					error = SET_ERROR(ENOTSUP);
638 				} else {
639 					objnum = dmu_objset_id(os);
640 				}
641 				dmu_objset_rele(os, FTAG);
642 			}
643 			break;
644 
645 		case ZPOOL_PROP_FAILUREMODE:
646 			error = nvpair_value_uint64(elem, &intval);
647 			if (!error && intval > ZIO_FAILURE_MODE_PANIC)
648 				error = SET_ERROR(EINVAL);
649 
650 			/*
651 			 * This is a special case which only occurs when
652 			 * the pool has completely failed. This allows
653 			 * the user to change the in-core failmode property
654 			 * without syncing it out to disk (I/Os might
655 			 * currently be blocked). We do this by returning
656 			 * EIO to the caller (spa_prop_set) to trick it
657 			 * into thinking we encountered a property validation
658 			 * error.
659 			 */
660 			if (!error && spa_suspended(spa)) {
661 				spa->spa_failmode = intval;
662 				error = SET_ERROR(EIO);
663 			}
664 			break;
665 
666 		case ZPOOL_PROP_CACHEFILE:
667 			if ((error = nvpair_value_string(elem, &strval)) != 0)
668 				break;
669 
670 			if (strval[0] == '\0')
671 				break;
672 
673 			if (strcmp(strval, "none") == 0)
674 				break;
675 
676 			if (strval[0] != '/') {
677 				error = SET_ERROR(EINVAL);
678 				break;
679 			}
680 
681 			slash = strrchr(strval, '/');
682 			ASSERT(slash != NULL);
683 
684 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
685 			    strcmp(slash, "/..") == 0)
686 				error = SET_ERROR(EINVAL);
687 			break;
688 
689 		case ZPOOL_PROP_COMMENT:
690 			if ((error = nvpair_value_string(elem, &strval)) != 0)
691 				break;
692 			for (check = strval; *check != '\0'; check++) {
693 				if (!isprint(*check)) {
694 					error = SET_ERROR(EINVAL);
695 					break;
696 				}
697 			}
698 			if (strlen(strval) > ZPROP_MAX_COMMENT)
699 				error = SET_ERROR(E2BIG);
700 			break;
701 
702 		default:
703 			break;
704 		}
705 
706 		if (error)
707 			break;
708 	}
709 
710 	(void) nvlist_remove_all(props,
711 	    zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
712 
713 	if (!error && reset_bootfs) {
714 		error = nvlist_remove(props,
715 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
716 
717 		if (!error) {
718 			error = nvlist_add_uint64(props,
719 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
720 		}
721 	}
722 
723 	return (error);
724 }
725 
726 void
727 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
728 {
729 	char *cachefile;
730 	spa_config_dirent_t *dp;
731 
732 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
733 	    &cachefile) != 0)
734 		return;
735 
736 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
737 	    KM_SLEEP);
738 
739 	if (cachefile[0] == '\0')
740 		dp->scd_path = spa_strdup(spa_config_path);
741 	else if (strcmp(cachefile, "none") == 0)
742 		dp->scd_path = NULL;
743 	else
744 		dp->scd_path = spa_strdup(cachefile);
745 
746 	list_insert_head(&spa->spa_config_list, dp);
747 	if (need_sync)
748 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
749 }
750 
751 int
752 spa_prop_set(spa_t *spa, nvlist_t *nvp)
753 {
754 	int error;
755 	nvpair_t *elem = NULL;
756 	boolean_t need_sync = B_FALSE;
757 
758 	if ((error = spa_prop_validate(spa, nvp)) != 0)
759 		return (error);
760 
761 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
762 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
763 
764 		if (prop == ZPOOL_PROP_CACHEFILE ||
765 		    prop == ZPOOL_PROP_ALTROOT ||
766 		    prop == ZPOOL_PROP_READONLY)
767 			continue;
768 
769 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
770 			uint64_t ver;
771 
772 			if (prop == ZPOOL_PROP_VERSION) {
773 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
774 			} else {
775 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
776 				ver = SPA_VERSION_FEATURES;
777 				need_sync = B_TRUE;
778 			}
779 
780 			/* Save time if the version is already set. */
781 			if (ver == spa_version(spa))
782 				continue;
783 
784 			/*
785 			 * In addition to the pool directory object, we might
786 			 * create the pool properties object, the features for
787 			 * read object, the features for write object, or the
788 			 * feature descriptions object.
789 			 */
790 			error = dsl_sync_task(spa->spa_name, NULL,
791 			    spa_sync_version, &ver,
792 			    6, ZFS_SPACE_CHECK_RESERVED);
793 			if (error)
794 				return (error);
795 			continue;
796 		}
797 
798 		need_sync = B_TRUE;
799 		break;
800 	}
801 
802 	if (need_sync) {
803 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
804 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
805 	}
806 
807 	return (0);
808 }
809 
810 /*
811  * If the bootfs property value is dsobj, clear it.
812  */
813 void
814 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
815 {
816 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
817 		VERIFY(zap_remove(spa->spa_meta_objset,
818 		    spa->spa_pool_props_object,
819 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
820 		spa->spa_bootfs = 0;
821 	}
822 }
823 
824 /*ARGSUSED*/
825 static int
826 spa_change_guid_check(void *arg, dmu_tx_t *tx)
827 {
828 	uint64_t *newguid __maybe_unused = arg;
829 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
830 	vdev_t *rvd = spa->spa_root_vdev;
831 	uint64_t vdev_state;
832 
833 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
834 		int error = (spa_has_checkpoint(spa)) ?
835 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
836 		return (SET_ERROR(error));
837 	}
838 
839 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
840 	vdev_state = rvd->vdev_state;
841 	spa_config_exit(spa, SCL_STATE, FTAG);
842 
843 	if (vdev_state != VDEV_STATE_HEALTHY)
844 		return (SET_ERROR(ENXIO));
845 
846 	ASSERT3U(spa_guid(spa), !=, *newguid);
847 
848 	return (0);
849 }
850 
851 static void
852 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
853 {
854 	uint64_t *newguid = arg;
855 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
856 	uint64_t oldguid;
857 	vdev_t *rvd = spa->spa_root_vdev;
858 
859 	oldguid = spa_guid(spa);
860 
861 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
862 	rvd->vdev_guid = *newguid;
863 	rvd->vdev_guid_sum += (*newguid - oldguid);
864 	vdev_config_dirty(rvd);
865 	spa_config_exit(spa, SCL_STATE, FTAG);
866 
867 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
868 	    (u_longlong_t)oldguid, (u_longlong_t)*newguid);
869 }
870 
871 /*
872  * Change the GUID for the pool.  This is done so that we can later
873  * re-import a pool built from a clone of our own vdevs.  We will modify
874  * the root vdev's guid, our own pool guid, and then mark all of our
875  * vdevs dirty.  Note that we must make sure that all our vdevs are
876  * online when we do this, or else any vdevs that weren't present
877  * would be orphaned from our pool.  We are also going to issue a
878  * sysevent to update any watchers.
879  */
880 int
881 spa_change_guid(spa_t *spa)
882 {
883 	int error;
884 	uint64_t guid;
885 
886 	mutex_enter(&spa->spa_vdev_top_lock);
887 	mutex_enter(&spa_namespace_lock);
888 	guid = spa_generate_guid(NULL);
889 
890 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
891 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
892 
893 	if (error == 0) {
894 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
895 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
896 	}
897 
898 	mutex_exit(&spa_namespace_lock);
899 	mutex_exit(&spa->spa_vdev_top_lock);
900 
901 	return (error);
902 }
903 
904 /*
905  * ==========================================================================
906  * SPA state manipulation (open/create/destroy/import/export)
907  * ==========================================================================
908  */
909 
910 static int
911 spa_error_entry_compare(const void *a, const void *b)
912 {
913 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
914 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
915 	int ret;
916 
917 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
918 	    sizeof (zbookmark_phys_t));
919 
920 	return (TREE_ISIGN(ret));
921 }
922 
923 /*
924  * Utility function which retrieves copies of the current logs and
925  * re-initializes them in the process.
926  */
927 void
928 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
929 {
930 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
931 
932 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
933 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
934 
935 	avl_create(&spa->spa_errlist_scrub,
936 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
937 	    offsetof(spa_error_entry_t, se_avl));
938 	avl_create(&spa->spa_errlist_last,
939 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
940 	    offsetof(spa_error_entry_t, se_avl));
941 }
942 
943 static void
944 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
945 {
946 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
947 	enum zti_modes mode = ztip->zti_mode;
948 	uint_t value = ztip->zti_value;
949 	uint_t count = ztip->zti_count;
950 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
951 	uint_t flags = 0;
952 	boolean_t batch = B_FALSE;
953 
954 	if (mode == ZTI_MODE_NULL) {
955 		tqs->stqs_count = 0;
956 		tqs->stqs_taskq = NULL;
957 		return;
958 	}
959 
960 	ASSERT3U(count, >, 0);
961 
962 	tqs->stqs_count = count;
963 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
964 
965 	switch (mode) {
966 	case ZTI_MODE_FIXED:
967 		ASSERT3U(value, >=, 1);
968 		value = MAX(value, 1);
969 		flags |= TASKQ_DYNAMIC;
970 		break;
971 
972 	case ZTI_MODE_BATCH:
973 		batch = B_TRUE;
974 		flags |= TASKQ_THREADS_CPU_PCT;
975 		value = MIN(zio_taskq_batch_pct, 100);
976 		break;
977 
978 	default:
979 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
980 		    "spa_activate()",
981 		    zio_type_name[t], zio_taskq_types[q], mode, value);
982 		break;
983 	}
984 
985 	for (uint_t i = 0; i < count; i++) {
986 		taskq_t *tq;
987 		char name[32];
988 
989 		(void) snprintf(name, sizeof (name), "%s_%s",
990 		    zio_type_name[t], zio_taskq_types[q]);
991 
992 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
993 			if (batch)
994 				flags |= TASKQ_DC_BATCH;
995 
996 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
997 			    spa->spa_proc, zio_taskq_basedc, flags);
998 		} else {
999 			pri_t pri = maxclsyspri;
1000 			/*
1001 			 * The write issue taskq can be extremely CPU
1002 			 * intensive.  Run it at slightly less important
1003 			 * priority than the other taskqs.
1004 			 *
1005 			 * Under Linux and FreeBSD this means incrementing
1006 			 * the priority value as opposed to platforms like
1007 			 * illumos where it should be decremented.
1008 			 *
1009 			 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1010 			 * are equal then a difference between them is
1011 			 * insignificant.
1012 			 */
1013 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1014 #if defined(__linux__)
1015 				pri++;
1016 #elif defined(__FreeBSD__)
1017 				pri += 4;
1018 #else
1019 #error "unknown OS"
1020 #endif
1021 			}
1022 			tq = taskq_create_proc(name, value, pri, 50,
1023 			    INT_MAX, spa->spa_proc, flags);
1024 		}
1025 
1026 		tqs->stqs_taskq[i] = tq;
1027 	}
1028 }
1029 
1030 static void
1031 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1032 {
1033 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1034 
1035 	if (tqs->stqs_taskq == NULL) {
1036 		ASSERT3U(tqs->stqs_count, ==, 0);
1037 		return;
1038 	}
1039 
1040 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1041 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1042 		taskq_destroy(tqs->stqs_taskq[i]);
1043 	}
1044 
1045 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1046 	tqs->stqs_taskq = NULL;
1047 }
1048 
1049 /*
1050  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1051  * Note that a type may have multiple discrete taskqs to avoid lock contention
1052  * on the taskq itself. In that case we choose which taskq at random by using
1053  * the low bits of gethrtime().
1054  */
1055 void
1056 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1057     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1058 {
1059 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1060 	taskq_t *tq;
1061 
1062 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1063 	ASSERT3U(tqs->stqs_count, !=, 0);
1064 
1065 	if (tqs->stqs_count == 1) {
1066 		tq = tqs->stqs_taskq[0];
1067 	} else {
1068 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1069 	}
1070 
1071 	taskq_dispatch_ent(tq, func, arg, flags, ent);
1072 }
1073 
1074 /*
1075  * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1076  */
1077 void
1078 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1079     task_func_t *func, void *arg, uint_t flags)
1080 {
1081 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1082 	taskq_t *tq;
1083 	taskqid_t id;
1084 
1085 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1086 	ASSERT3U(tqs->stqs_count, !=, 0);
1087 
1088 	if (tqs->stqs_count == 1) {
1089 		tq = tqs->stqs_taskq[0];
1090 	} else {
1091 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1092 	}
1093 
1094 	id = taskq_dispatch(tq, func, arg, flags);
1095 	if (id)
1096 		taskq_wait_id(tq, id);
1097 }
1098 
1099 static void
1100 spa_create_zio_taskqs(spa_t *spa)
1101 {
1102 	for (int t = 0; t < ZIO_TYPES; t++) {
1103 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1104 			spa_taskqs_init(spa, t, q);
1105 		}
1106 	}
1107 }
1108 
1109 /*
1110  * Disabled until spa_thread() can be adapted for Linux.
1111  */
1112 #undef HAVE_SPA_THREAD
1113 
1114 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1115 static void
1116 spa_thread(void *arg)
1117 {
1118 	psetid_t zio_taskq_psrset_bind = PS_NONE;
1119 	callb_cpr_t cprinfo;
1120 
1121 	spa_t *spa = arg;
1122 	user_t *pu = PTOU(curproc);
1123 
1124 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1125 	    spa->spa_name);
1126 
1127 	ASSERT(curproc != &p0);
1128 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1129 	    "zpool-%s", spa->spa_name);
1130 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1131 
1132 	/* bind this thread to the requested psrset */
1133 	if (zio_taskq_psrset_bind != PS_NONE) {
1134 		pool_lock();
1135 		mutex_enter(&cpu_lock);
1136 		mutex_enter(&pidlock);
1137 		mutex_enter(&curproc->p_lock);
1138 
1139 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1140 		    0, NULL, NULL) == 0)  {
1141 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1142 		} else {
1143 			cmn_err(CE_WARN,
1144 			    "Couldn't bind process for zfs pool \"%s\" to "
1145 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1146 		}
1147 
1148 		mutex_exit(&curproc->p_lock);
1149 		mutex_exit(&pidlock);
1150 		mutex_exit(&cpu_lock);
1151 		pool_unlock();
1152 	}
1153 
1154 	if (zio_taskq_sysdc) {
1155 		sysdc_thread_enter(curthread, 100, 0);
1156 	}
1157 
1158 	spa->spa_proc = curproc;
1159 	spa->spa_did = curthread->t_did;
1160 
1161 	spa_create_zio_taskqs(spa);
1162 
1163 	mutex_enter(&spa->spa_proc_lock);
1164 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1165 
1166 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1167 	cv_broadcast(&spa->spa_proc_cv);
1168 
1169 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1170 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1171 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1172 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1173 
1174 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1175 	spa->spa_proc_state = SPA_PROC_GONE;
1176 	spa->spa_proc = &p0;
1177 	cv_broadcast(&spa->spa_proc_cv);
1178 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1179 
1180 	mutex_enter(&curproc->p_lock);
1181 	lwp_exit();
1182 }
1183 #endif
1184 
1185 /*
1186  * Activate an uninitialized pool.
1187  */
1188 static void
1189 spa_activate(spa_t *spa, spa_mode_t mode)
1190 {
1191 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1192 
1193 	spa->spa_state = POOL_STATE_ACTIVE;
1194 	spa->spa_mode = mode;
1195 
1196 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1197 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1198 	spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops);
1199 	spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops);
1200 
1201 	/* Try to create a covering process */
1202 	mutex_enter(&spa->spa_proc_lock);
1203 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1204 	ASSERT(spa->spa_proc == &p0);
1205 	spa->spa_did = 0;
1206 
1207 #ifdef HAVE_SPA_THREAD
1208 	/* Only create a process if we're going to be around a while. */
1209 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1210 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1211 		    NULL, 0) == 0) {
1212 			spa->spa_proc_state = SPA_PROC_CREATED;
1213 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1214 				cv_wait(&spa->spa_proc_cv,
1215 				    &spa->spa_proc_lock);
1216 			}
1217 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1218 			ASSERT(spa->spa_proc != &p0);
1219 			ASSERT(spa->spa_did != 0);
1220 		} else {
1221 #ifdef _KERNEL
1222 			cmn_err(CE_WARN,
1223 			    "Couldn't create process for zfs pool \"%s\"\n",
1224 			    spa->spa_name);
1225 #endif
1226 		}
1227 	}
1228 #endif /* HAVE_SPA_THREAD */
1229 	mutex_exit(&spa->spa_proc_lock);
1230 
1231 	/* If we didn't create a process, we need to create our taskqs. */
1232 	if (spa->spa_proc == &p0) {
1233 		spa_create_zio_taskqs(spa);
1234 	}
1235 
1236 	for (size_t i = 0; i < TXG_SIZE; i++) {
1237 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1238 		    ZIO_FLAG_CANFAIL);
1239 	}
1240 
1241 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1242 	    offsetof(vdev_t, vdev_config_dirty_node));
1243 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1244 	    offsetof(objset_t, os_evicting_node));
1245 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1246 	    offsetof(vdev_t, vdev_state_dirty_node));
1247 
1248 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1249 	    offsetof(struct vdev, vdev_txg_node));
1250 
1251 	avl_create(&spa->spa_errlist_scrub,
1252 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1253 	    offsetof(spa_error_entry_t, se_avl));
1254 	avl_create(&spa->spa_errlist_last,
1255 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1256 	    offsetof(spa_error_entry_t, se_avl));
1257 
1258 	spa_keystore_init(&spa->spa_keystore);
1259 
1260 	/*
1261 	 * This taskq is used to perform zvol-minor-related tasks
1262 	 * asynchronously. This has several advantages, including easy
1263 	 * resolution of various deadlocks.
1264 	 *
1265 	 * The taskq must be single threaded to ensure tasks are always
1266 	 * processed in the order in which they were dispatched.
1267 	 *
1268 	 * A taskq per pool allows one to keep the pools independent.
1269 	 * This way if one pool is suspended, it will not impact another.
1270 	 *
1271 	 * The preferred location to dispatch a zvol minor task is a sync
1272 	 * task. In this context, there is easy access to the spa_t and minimal
1273 	 * error handling is required because the sync task must succeed.
1274 	 */
1275 	spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1276 	    1, INT_MAX, 0);
1277 
1278 	/*
1279 	 * Taskq dedicated to prefetcher threads: this is used to prevent the
1280 	 * pool traverse code from monopolizing the global (and limited)
1281 	 * system_taskq by inappropriately scheduling long running tasks on it.
1282 	 */
1283 	spa->spa_prefetch_taskq = taskq_create("z_prefetch", boot_ncpus,
1284 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1285 
1286 	/*
1287 	 * The taskq to upgrade datasets in this pool. Currently used by
1288 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1289 	 */
1290 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", boot_ncpus,
1291 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1292 }
1293 
1294 /*
1295  * Opposite of spa_activate().
1296  */
1297 static void
1298 spa_deactivate(spa_t *spa)
1299 {
1300 	ASSERT(spa->spa_sync_on == B_FALSE);
1301 	ASSERT(spa->spa_dsl_pool == NULL);
1302 	ASSERT(spa->spa_root_vdev == NULL);
1303 	ASSERT(spa->spa_async_zio_root == NULL);
1304 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1305 
1306 	spa_evicting_os_wait(spa);
1307 
1308 	if (spa->spa_zvol_taskq) {
1309 		taskq_destroy(spa->spa_zvol_taskq);
1310 		spa->spa_zvol_taskq = NULL;
1311 	}
1312 
1313 	if (spa->spa_prefetch_taskq) {
1314 		taskq_destroy(spa->spa_prefetch_taskq);
1315 		spa->spa_prefetch_taskq = NULL;
1316 	}
1317 
1318 	if (spa->spa_upgrade_taskq) {
1319 		taskq_destroy(spa->spa_upgrade_taskq);
1320 		spa->spa_upgrade_taskq = NULL;
1321 	}
1322 
1323 	txg_list_destroy(&spa->spa_vdev_txg_list);
1324 
1325 	list_destroy(&spa->spa_config_dirty_list);
1326 	list_destroy(&spa->spa_evicting_os_list);
1327 	list_destroy(&spa->spa_state_dirty_list);
1328 
1329 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1330 
1331 	for (int t = 0; t < ZIO_TYPES; t++) {
1332 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1333 			spa_taskqs_fini(spa, t, q);
1334 		}
1335 	}
1336 
1337 	for (size_t i = 0; i < TXG_SIZE; i++) {
1338 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1339 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1340 		spa->spa_txg_zio[i] = NULL;
1341 	}
1342 
1343 	metaslab_class_destroy(spa->spa_normal_class);
1344 	spa->spa_normal_class = NULL;
1345 
1346 	metaslab_class_destroy(spa->spa_log_class);
1347 	spa->spa_log_class = NULL;
1348 
1349 	metaslab_class_destroy(spa->spa_special_class);
1350 	spa->spa_special_class = NULL;
1351 
1352 	metaslab_class_destroy(spa->spa_dedup_class);
1353 	spa->spa_dedup_class = NULL;
1354 
1355 	/*
1356 	 * If this was part of an import or the open otherwise failed, we may
1357 	 * still have errors left in the queues.  Empty them just in case.
1358 	 */
1359 	spa_errlog_drain(spa);
1360 	avl_destroy(&spa->spa_errlist_scrub);
1361 	avl_destroy(&spa->spa_errlist_last);
1362 
1363 	spa_keystore_fini(&spa->spa_keystore);
1364 
1365 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1366 
1367 	mutex_enter(&spa->spa_proc_lock);
1368 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1369 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1370 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1371 		cv_broadcast(&spa->spa_proc_cv);
1372 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1373 			ASSERT(spa->spa_proc != &p0);
1374 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1375 		}
1376 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1377 		spa->spa_proc_state = SPA_PROC_NONE;
1378 	}
1379 	ASSERT(spa->spa_proc == &p0);
1380 	mutex_exit(&spa->spa_proc_lock);
1381 
1382 	/*
1383 	 * We want to make sure spa_thread() has actually exited the ZFS
1384 	 * module, so that the module can't be unloaded out from underneath
1385 	 * it.
1386 	 */
1387 	if (spa->spa_did != 0) {
1388 		thread_join(spa->spa_did);
1389 		spa->spa_did = 0;
1390 	}
1391 }
1392 
1393 /*
1394  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1395  * will create all the necessary vdevs in the appropriate layout, with each vdev
1396  * in the CLOSED state.  This will prep the pool before open/creation/import.
1397  * All vdev validation is done by the vdev_alloc() routine.
1398  */
1399 int
1400 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1401     uint_t id, int atype)
1402 {
1403 	nvlist_t **child;
1404 	uint_t children;
1405 	int error;
1406 
1407 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1408 		return (error);
1409 
1410 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1411 		return (0);
1412 
1413 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1414 	    &child, &children);
1415 
1416 	if (error == ENOENT)
1417 		return (0);
1418 
1419 	if (error) {
1420 		vdev_free(*vdp);
1421 		*vdp = NULL;
1422 		return (SET_ERROR(EINVAL));
1423 	}
1424 
1425 	for (int c = 0; c < children; c++) {
1426 		vdev_t *vd;
1427 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1428 		    atype)) != 0) {
1429 			vdev_free(*vdp);
1430 			*vdp = NULL;
1431 			return (error);
1432 		}
1433 	}
1434 
1435 	ASSERT(*vdp != NULL);
1436 
1437 	return (0);
1438 }
1439 
1440 static boolean_t
1441 spa_should_flush_logs_on_unload(spa_t *spa)
1442 {
1443 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1444 		return (B_FALSE);
1445 
1446 	if (!spa_writeable(spa))
1447 		return (B_FALSE);
1448 
1449 	if (!spa->spa_sync_on)
1450 		return (B_FALSE);
1451 
1452 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1453 		return (B_FALSE);
1454 
1455 	if (zfs_keep_log_spacemaps_at_export)
1456 		return (B_FALSE);
1457 
1458 	return (B_TRUE);
1459 }
1460 
1461 /*
1462  * Opens a transaction that will set the flag that will instruct
1463  * spa_sync to attempt to flush all the metaslabs for that txg.
1464  */
1465 static void
1466 spa_unload_log_sm_flush_all(spa_t *spa)
1467 {
1468 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1469 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1470 
1471 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1472 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1473 
1474 	dmu_tx_commit(tx);
1475 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1476 }
1477 
1478 static void
1479 spa_unload_log_sm_metadata(spa_t *spa)
1480 {
1481 	void *cookie = NULL;
1482 	spa_log_sm_t *sls;
1483 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1484 	    &cookie)) != NULL) {
1485 		VERIFY0(sls->sls_mscount);
1486 		kmem_free(sls, sizeof (spa_log_sm_t));
1487 	}
1488 
1489 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1490 	    e != NULL; e = list_head(&spa->spa_log_summary)) {
1491 		VERIFY0(e->lse_mscount);
1492 		list_remove(&spa->spa_log_summary, e);
1493 		kmem_free(e, sizeof (log_summary_entry_t));
1494 	}
1495 
1496 	spa->spa_unflushed_stats.sus_nblocks = 0;
1497 	spa->spa_unflushed_stats.sus_memused = 0;
1498 	spa->spa_unflushed_stats.sus_blocklimit = 0;
1499 }
1500 
1501 static void
1502 spa_destroy_aux_threads(spa_t *spa)
1503 {
1504 	if (spa->spa_condense_zthr != NULL) {
1505 		zthr_destroy(spa->spa_condense_zthr);
1506 		spa->spa_condense_zthr = NULL;
1507 	}
1508 	if (spa->spa_checkpoint_discard_zthr != NULL) {
1509 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1510 		spa->spa_checkpoint_discard_zthr = NULL;
1511 	}
1512 	if (spa->spa_livelist_delete_zthr != NULL) {
1513 		zthr_destroy(spa->spa_livelist_delete_zthr);
1514 		spa->spa_livelist_delete_zthr = NULL;
1515 	}
1516 	if (spa->spa_livelist_condense_zthr != NULL) {
1517 		zthr_destroy(spa->spa_livelist_condense_zthr);
1518 		spa->spa_livelist_condense_zthr = NULL;
1519 	}
1520 }
1521 
1522 /*
1523  * Opposite of spa_load().
1524  */
1525 static void
1526 spa_unload(spa_t *spa)
1527 {
1528 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1529 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1530 
1531 	spa_import_progress_remove(spa_guid(spa));
1532 	spa_load_note(spa, "UNLOADING");
1533 
1534 	spa_wake_waiters(spa);
1535 
1536 	/*
1537 	 * If the log space map feature is enabled and the pool is getting
1538 	 * exported (but not destroyed), we want to spend some time flushing
1539 	 * as many metaslabs as we can in an attempt to destroy log space
1540 	 * maps and save import time.
1541 	 */
1542 	if (spa_should_flush_logs_on_unload(spa))
1543 		spa_unload_log_sm_flush_all(spa);
1544 
1545 	/*
1546 	 * Stop async tasks.
1547 	 */
1548 	spa_async_suspend(spa);
1549 
1550 	if (spa->spa_root_vdev) {
1551 		vdev_t *root_vdev = spa->spa_root_vdev;
1552 		vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE);
1553 		vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1554 		vdev_autotrim_stop_all(spa);
1555 		vdev_rebuild_stop_all(spa);
1556 	}
1557 
1558 	/*
1559 	 * Stop syncing.
1560 	 */
1561 	if (spa->spa_sync_on) {
1562 		txg_sync_stop(spa->spa_dsl_pool);
1563 		spa->spa_sync_on = B_FALSE;
1564 	}
1565 
1566 	/*
1567 	 * This ensures that there is no async metaslab prefetching
1568 	 * while we attempt to unload the spa.
1569 	 */
1570 	if (spa->spa_root_vdev != NULL) {
1571 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1572 			vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1573 			if (vc->vdev_mg != NULL)
1574 				taskq_wait(vc->vdev_mg->mg_taskq);
1575 		}
1576 	}
1577 
1578 	if (spa->spa_mmp.mmp_thread)
1579 		mmp_thread_stop(spa);
1580 
1581 	/*
1582 	 * Wait for any outstanding async I/O to complete.
1583 	 */
1584 	if (spa->spa_async_zio_root != NULL) {
1585 		for (int i = 0; i < max_ncpus; i++)
1586 			(void) zio_wait(spa->spa_async_zio_root[i]);
1587 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1588 		spa->spa_async_zio_root = NULL;
1589 	}
1590 
1591 	if (spa->spa_vdev_removal != NULL) {
1592 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1593 		spa->spa_vdev_removal = NULL;
1594 	}
1595 
1596 	spa_destroy_aux_threads(spa);
1597 
1598 	spa_condense_fini(spa);
1599 
1600 	bpobj_close(&spa->spa_deferred_bpobj);
1601 
1602 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1603 
1604 	/*
1605 	 * Close all vdevs.
1606 	 */
1607 	if (spa->spa_root_vdev)
1608 		vdev_free(spa->spa_root_vdev);
1609 	ASSERT(spa->spa_root_vdev == NULL);
1610 
1611 	/*
1612 	 * Close the dsl pool.
1613 	 */
1614 	if (spa->spa_dsl_pool) {
1615 		dsl_pool_close(spa->spa_dsl_pool);
1616 		spa->spa_dsl_pool = NULL;
1617 		spa->spa_meta_objset = NULL;
1618 	}
1619 
1620 	ddt_unload(spa);
1621 	spa_unload_log_sm_metadata(spa);
1622 
1623 	/*
1624 	 * Drop and purge level 2 cache
1625 	 */
1626 	spa_l2cache_drop(spa);
1627 
1628 	for (int i = 0; i < spa->spa_spares.sav_count; i++)
1629 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1630 	if (spa->spa_spares.sav_vdevs) {
1631 		kmem_free(spa->spa_spares.sav_vdevs,
1632 		    spa->spa_spares.sav_count * sizeof (void *));
1633 		spa->spa_spares.sav_vdevs = NULL;
1634 	}
1635 	if (spa->spa_spares.sav_config) {
1636 		nvlist_free(spa->spa_spares.sav_config);
1637 		spa->spa_spares.sav_config = NULL;
1638 	}
1639 	spa->spa_spares.sav_count = 0;
1640 
1641 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1642 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1643 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1644 	}
1645 	if (spa->spa_l2cache.sav_vdevs) {
1646 		kmem_free(spa->spa_l2cache.sav_vdevs,
1647 		    spa->spa_l2cache.sav_count * sizeof (void *));
1648 		spa->spa_l2cache.sav_vdevs = NULL;
1649 	}
1650 	if (spa->spa_l2cache.sav_config) {
1651 		nvlist_free(spa->spa_l2cache.sav_config);
1652 		spa->spa_l2cache.sav_config = NULL;
1653 	}
1654 	spa->spa_l2cache.sav_count = 0;
1655 
1656 	spa->spa_async_suspended = 0;
1657 
1658 	spa->spa_indirect_vdevs_loaded = B_FALSE;
1659 
1660 	if (spa->spa_comment != NULL) {
1661 		spa_strfree(spa->spa_comment);
1662 		spa->spa_comment = NULL;
1663 	}
1664 
1665 	spa_config_exit(spa, SCL_ALL, spa);
1666 }
1667 
1668 /*
1669  * Load (or re-load) the current list of vdevs describing the active spares for
1670  * this pool.  When this is called, we have some form of basic information in
1671  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1672  * then re-generate a more complete list including status information.
1673  */
1674 void
1675 spa_load_spares(spa_t *spa)
1676 {
1677 	nvlist_t **spares;
1678 	uint_t nspares;
1679 	int i;
1680 	vdev_t *vd, *tvd;
1681 
1682 #ifndef _KERNEL
1683 	/*
1684 	 * zdb opens both the current state of the pool and the
1685 	 * checkpointed state (if present), with a different spa_t.
1686 	 *
1687 	 * As spare vdevs are shared among open pools, we skip loading
1688 	 * them when we load the checkpointed state of the pool.
1689 	 */
1690 	if (!spa_writeable(spa))
1691 		return;
1692 #endif
1693 
1694 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1695 
1696 	/*
1697 	 * First, close and free any existing spare vdevs.
1698 	 */
1699 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1700 		vd = spa->spa_spares.sav_vdevs[i];
1701 
1702 		/* Undo the call to spa_activate() below */
1703 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1704 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1705 			spa_spare_remove(tvd);
1706 		vdev_close(vd);
1707 		vdev_free(vd);
1708 	}
1709 
1710 	if (spa->spa_spares.sav_vdevs)
1711 		kmem_free(spa->spa_spares.sav_vdevs,
1712 		    spa->spa_spares.sav_count * sizeof (void *));
1713 
1714 	if (spa->spa_spares.sav_config == NULL)
1715 		nspares = 0;
1716 	else
1717 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1718 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1719 
1720 	spa->spa_spares.sav_count = (int)nspares;
1721 	spa->spa_spares.sav_vdevs = NULL;
1722 
1723 	if (nspares == 0)
1724 		return;
1725 
1726 	/*
1727 	 * Construct the array of vdevs, opening them to get status in the
1728 	 * process.   For each spare, there is potentially two different vdev_t
1729 	 * structures associated with it: one in the list of spares (used only
1730 	 * for basic validation purposes) and one in the active vdev
1731 	 * configuration (if it's spared in).  During this phase we open and
1732 	 * validate each vdev on the spare list.  If the vdev also exists in the
1733 	 * active configuration, then we also mark this vdev as an active spare.
1734 	 */
1735 	spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1736 	    KM_SLEEP);
1737 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1738 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1739 		    VDEV_ALLOC_SPARE) == 0);
1740 		ASSERT(vd != NULL);
1741 
1742 		spa->spa_spares.sav_vdevs[i] = vd;
1743 
1744 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1745 		    B_FALSE)) != NULL) {
1746 			if (!tvd->vdev_isspare)
1747 				spa_spare_add(tvd);
1748 
1749 			/*
1750 			 * We only mark the spare active if we were successfully
1751 			 * able to load the vdev.  Otherwise, importing a pool
1752 			 * with a bad active spare would result in strange
1753 			 * behavior, because multiple pool would think the spare
1754 			 * is actively in use.
1755 			 *
1756 			 * There is a vulnerability here to an equally bizarre
1757 			 * circumstance, where a dead active spare is later
1758 			 * brought back to life (onlined or otherwise).  Given
1759 			 * the rarity of this scenario, and the extra complexity
1760 			 * it adds, we ignore the possibility.
1761 			 */
1762 			if (!vdev_is_dead(tvd))
1763 				spa_spare_activate(tvd);
1764 		}
1765 
1766 		vd->vdev_top = vd;
1767 		vd->vdev_aux = &spa->spa_spares;
1768 
1769 		if (vdev_open(vd) != 0)
1770 			continue;
1771 
1772 		if (vdev_validate_aux(vd) == 0)
1773 			spa_spare_add(vd);
1774 	}
1775 
1776 	/*
1777 	 * Recompute the stashed list of spares, with status information
1778 	 * this time.
1779 	 */
1780 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1781 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1782 
1783 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1784 	    KM_SLEEP);
1785 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1786 		spares[i] = vdev_config_generate(spa,
1787 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1788 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1789 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1790 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1791 		nvlist_free(spares[i]);
1792 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1793 }
1794 
1795 /*
1796  * Load (or re-load) the current list of vdevs describing the active l2cache for
1797  * this pool.  When this is called, we have some form of basic information in
1798  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1799  * then re-generate a more complete list including status information.
1800  * Devices which are already active have their details maintained, and are
1801  * not re-opened.
1802  */
1803 void
1804 spa_load_l2cache(spa_t *spa)
1805 {
1806 	nvlist_t **l2cache = NULL;
1807 	uint_t nl2cache;
1808 	int i, j, oldnvdevs;
1809 	uint64_t guid;
1810 	vdev_t *vd, **oldvdevs, **newvdevs;
1811 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1812 
1813 #ifndef _KERNEL
1814 	/*
1815 	 * zdb opens both the current state of the pool and the
1816 	 * checkpointed state (if present), with a different spa_t.
1817 	 *
1818 	 * As L2 caches are part of the ARC which is shared among open
1819 	 * pools, we skip loading them when we load the checkpointed
1820 	 * state of the pool.
1821 	 */
1822 	if (!spa_writeable(spa))
1823 		return;
1824 #endif
1825 
1826 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1827 
1828 	oldvdevs = sav->sav_vdevs;
1829 	oldnvdevs = sav->sav_count;
1830 	sav->sav_vdevs = NULL;
1831 	sav->sav_count = 0;
1832 
1833 	if (sav->sav_config == NULL) {
1834 		nl2cache = 0;
1835 		newvdevs = NULL;
1836 		goto out;
1837 	}
1838 
1839 	VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1840 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1841 	newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1842 
1843 	/*
1844 	 * Process new nvlist of vdevs.
1845 	 */
1846 	for (i = 0; i < nl2cache; i++) {
1847 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1848 		    &guid) == 0);
1849 
1850 		newvdevs[i] = NULL;
1851 		for (j = 0; j < oldnvdevs; j++) {
1852 			vd = oldvdevs[j];
1853 			if (vd != NULL && guid == vd->vdev_guid) {
1854 				/*
1855 				 * Retain previous vdev for add/remove ops.
1856 				 */
1857 				newvdevs[i] = vd;
1858 				oldvdevs[j] = NULL;
1859 				break;
1860 			}
1861 		}
1862 
1863 		if (newvdevs[i] == NULL) {
1864 			/*
1865 			 * Create new vdev
1866 			 */
1867 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1868 			    VDEV_ALLOC_L2CACHE) == 0);
1869 			ASSERT(vd != NULL);
1870 			newvdevs[i] = vd;
1871 
1872 			/*
1873 			 * Commit this vdev as an l2cache device,
1874 			 * even if it fails to open.
1875 			 */
1876 			spa_l2cache_add(vd);
1877 
1878 			vd->vdev_top = vd;
1879 			vd->vdev_aux = sav;
1880 
1881 			spa_l2cache_activate(vd);
1882 
1883 			if (vdev_open(vd) != 0)
1884 				continue;
1885 
1886 			(void) vdev_validate_aux(vd);
1887 
1888 			if (!vdev_is_dead(vd))
1889 				l2arc_add_vdev(spa, vd);
1890 
1891 			/*
1892 			 * Upon cache device addition to a pool or pool
1893 			 * creation with a cache device or if the header
1894 			 * of the device is invalid we issue an async
1895 			 * TRIM command for the whole device which will
1896 			 * execute if l2arc_trim_ahead > 0.
1897 			 */
1898 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
1899 		}
1900 	}
1901 
1902 	sav->sav_vdevs = newvdevs;
1903 	sav->sav_count = (int)nl2cache;
1904 
1905 	/*
1906 	 * Recompute the stashed list of l2cache devices, with status
1907 	 * information this time.
1908 	 */
1909 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1910 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1911 
1912 	if (sav->sav_count > 0)
1913 		l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
1914 		    KM_SLEEP);
1915 	for (i = 0; i < sav->sav_count; i++)
1916 		l2cache[i] = vdev_config_generate(spa,
1917 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1918 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1919 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1920 
1921 out:
1922 	/*
1923 	 * Purge vdevs that were dropped
1924 	 */
1925 	for (i = 0; i < oldnvdevs; i++) {
1926 		uint64_t pool;
1927 
1928 		vd = oldvdevs[i];
1929 		if (vd != NULL) {
1930 			ASSERT(vd->vdev_isl2cache);
1931 
1932 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1933 			    pool != 0ULL && l2arc_vdev_present(vd))
1934 				l2arc_remove_vdev(vd);
1935 			vdev_clear_stats(vd);
1936 			vdev_free(vd);
1937 		}
1938 	}
1939 
1940 	if (oldvdevs)
1941 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1942 
1943 	for (i = 0; i < sav->sav_count; i++)
1944 		nvlist_free(l2cache[i]);
1945 	if (sav->sav_count)
1946 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1947 }
1948 
1949 static int
1950 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1951 {
1952 	dmu_buf_t *db;
1953 	char *packed = NULL;
1954 	size_t nvsize = 0;
1955 	int error;
1956 	*value = NULL;
1957 
1958 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1959 	if (error)
1960 		return (error);
1961 
1962 	nvsize = *(uint64_t *)db->db_data;
1963 	dmu_buf_rele(db, FTAG);
1964 
1965 	packed = vmem_alloc(nvsize, KM_SLEEP);
1966 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1967 	    DMU_READ_PREFETCH);
1968 	if (error == 0)
1969 		error = nvlist_unpack(packed, nvsize, value, 0);
1970 	vmem_free(packed, nvsize);
1971 
1972 	return (error);
1973 }
1974 
1975 /*
1976  * Concrete top-level vdevs that are not missing and are not logs. At every
1977  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1978  */
1979 static uint64_t
1980 spa_healthy_core_tvds(spa_t *spa)
1981 {
1982 	vdev_t *rvd = spa->spa_root_vdev;
1983 	uint64_t tvds = 0;
1984 
1985 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1986 		vdev_t *vd = rvd->vdev_child[i];
1987 		if (vd->vdev_islog)
1988 			continue;
1989 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1990 			tvds++;
1991 	}
1992 
1993 	return (tvds);
1994 }
1995 
1996 /*
1997  * Checks to see if the given vdev could not be opened, in which case we post a
1998  * sysevent to notify the autoreplace code that the device has been removed.
1999  */
2000 static void
2001 spa_check_removed(vdev_t *vd)
2002 {
2003 	for (uint64_t c = 0; c < vd->vdev_children; c++)
2004 		spa_check_removed(vd->vdev_child[c]);
2005 
2006 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2007 	    vdev_is_concrete(vd)) {
2008 		zfs_post_autoreplace(vd->vdev_spa, vd);
2009 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2010 	}
2011 }
2012 
2013 static int
2014 spa_check_for_missing_logs(spa_t *spa)
2015 {
2016 	vdev_t *rvd = spa->spa_root_vdev;
2017 
2018 	/*
2019 	 * If we're doing a normal import, then build up any additional
2020 	 * diagnostic information about missing log devices.
2021 	 * We'll pass this up to the user for further processing.
2022 	 */
2023 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2024 		nvlist_t **child, *nv;
2025 		uint64_t idx = 0;
2026 
2027 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2028 		    KM_SLEEP);
2029 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2030 
2031 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2032 			vdev_t *tvd = rvd->vdev_child[c];
2033 
2034 			/*
2035 			 * We consider a device as missing only if it failed
2036 			 * to open (i.e. offline or faulted is not considered
2037 			 * as missing).
2038 			 */
2039 			if (tvd->vdev_islog &&
2040 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2041 				child[idx++] = vdev_config_generate(spa, tvd,
2042 				    B_FALSE, VDEV_CONFIG_MISSING);
2043 			}
2044 		}
2045 
2046 		if (idx > 0) {
2047 			fnvlist_add_nvlist_array(nv,
2048 			    ZPOOL_CONFIG_CHILDREN, child, idx);
2049 			fnvlist_add_nvlist(spa->spa_load_info,
2050 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
2051 
2052 			for (uint64_t i = 0; i < idx; i++)
2053 				nvlist_free(child[i]);
2054 		}
2055 		nvlist_free(nv);
2056 		kmem_free(child, rvd->vdev_children * sizeof (char **));
2057 
2058 		if (idx > 0) {
2059 			spa_load_failed(spa, "some log devices are missing");
2060 			vdev_dbgmsg_print_tree(rvd, 2);
2061 			return (SET_ERROR(ENXIO));
2062 		}
2063 	} else {
2064 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2065 			vdev_t *tvd = rvd->vdev_child[c];
2066 
2067 			if (tvd->vdev_islog &&
2068 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2069 				spa_set_log_state(spa, SPA_LOG_CLEAR);
2070 				spa_load_note(spa, "some log devices are "
2071 				    "missing, ZIL is dropped.");
2072 				vdev_dbgmsg_print_tree(rvd, 2);
2073 				break;
2074 			}
2075 		}
2076 	}
2077 
2078 	return (0);
2079 }
2080 
2081 /*
2082  * Check for missing log devices
2083  */
2084 static boolean_t
2085 spa_check_logs(spa_t *spa)
2086 {
2087 	boolean_t rv = B_FALSE;
2088 	dsl_pool_t *dp = spa_get_dsl(spa);
2089 
2090 	switch (spa->spa_log_state) {
2091 	default:
2092 		break;
2093 	case SPA_LOG_MISSING:
2094 		/* need to recheck in case slog has been restored */
2095 	case SPA_LOG_UNKNOWN:
2096 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2097 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2098 		if (rv)
2099 			spa_set_log_state(spa, SPA_LOG_MISSING);
2100 		break;
2101 	}
2102 	return (rv);
2103 }
2104 
2105 static boolean_t
2106 spa_passivate_log(spa_t *spa)
2107 {
2108 	vdev_t *rvd = spa->spa_root_vdev;
2109 	boolean_t slog_found = B_FALSE;
2110 
2111 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2112 
2113 	if (!spa_has_slogs(spa))
2114 		return (B_FALSE);
2115 
2116 	for (int c = 0; c < rvd->vdev_children; c++) {
2117 		vdev_t *tvd = rvd->vdev_child[c];
2118 		metaslab_group_t *mg = tvd->vdev_mg;
2119 
2120 		if (tvd->vdev_islog) {
2121 			metaslab_group_passivate(mg);
2122 			slog_found = B_TRUE;
2123 		}
2124 	}
2125 
2126 	return (slog_found);
2127 }
2128 
2129 static void
2130 spa_activate_log(spa_t *spa)
2131 {
2132 	vdev_t *rvd = spa->spa_root_vdev;
2133 
2134 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2135 
2136 	for (int c = 0; c < rvd->vdev_children; c++) {
2137 		vdev_t *tvd = rvd->vdev_child[c];
2138 		metaslab_group_t *mg = tvd->vdev_mg;
2139 
2140 		if (tvd->vdev_islog)
2141 			metaslab_group_activate(mg);
2142 	}
2143 }
2144 
2145 int
2146 spa_reset_logs(spa_t *spa)
2147 {
2148 	int error;
2149 
2150 	error = dmu_objset_find(spa_name(spa), zil_reset,
2151 	    NULL, DS_FIND_CHILDREN);
2152 	if (error == 0) {
2153 		/*
2154 		 * We successfully offlined the log device, sync out the
2155 		 * current txg so that the "stubby" block can be removed
2156 		 * by zil_sync().
2157 		 */
2158 		txg_wait_synced(spa->spa_dsl_pool, 0);
2159 	}
2160 	return (error);
2161 }
2162 
2163 static void
2164 spa_aux_check_removed(spa_aux_vdev_t *sav)
2165 {
2166 	for (int i = 0; i < sav->sav_count; i++)
2167 		spa_check_removed(sav->sav_vdevs[i]);
2168 }
2169 
2170 void
2171 spa_claim_notify(zio_t *zio)
2172 {
2173 	spa_t *spa = zio->io_spa;
2174 
2175 	if (zio->io_error)
2176 		return;
2177 
2178 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2179 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2180 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2181 	mutex_exit(&spa->spa_props_lock);
2182 }
2183 
2184 typedef struct spa_load_error {
2185 	uint64_t	sle_meta_count;
2186 	uint64_t	sle_data_count;
2187 } spa_load_error_t;
2188 
2189 static void
2190 spa_load_verify_done(zio_t *zio)
2191 {
2192 	blkptr_t *bp = zio->io_bp;
2193 	spa_load_error_t *sle = zio->io_private;
2194 	dmu_object_type_t type = BP_GET_TYPE(bp);
2195 	int error = zio->io_error;
2196 	spa_t *spa = zio->io_spa;
2197 
2198 	abd_free(zio->io_abd);
2199 	if (error) {
2200 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2201 		    type != DMU_OT_INTENT_LOG)
2202 			atomic_inc_64(&sle->sle_meta_count);
2203 		else
2204 			atomic_inc_64(&sle->sle_data_count);
2205 	}
2206 
2207 	mutex_enter(&spa->spa_scrub_lock);
2208 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2209 	cv_broadcast(&spa->spa_scrub_io_cv);
2210 	mutex_exit(&spa->spa_scrub_lock);
2211 }
2212 
2213 /*
2214  * Maximum number of inflight bytes is the log2 fraction of the arc size.
2215  * By default, we set it to 1/16th of the arc.
2216  */
2217 int spa_load_verify_shift = 4;
2218 int spa_load_verify_metadata = B_TRUE;
2219 int spa_load_verify_data = B_TRUE;
2220 
2221 /*ARGSUSED*/
2222 static int
2223 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2224     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2225 {
2226 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2227 	    BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2228 		return (0);
2229 	/*
2230 	 * Note: normally this routine will not be called if
2231 	 * spa_load_verify_metadata is not set.  However, it may be useful
2232 	 * to manually set the flag after the traversal has begun.
2233 	 */
2234 	if (!spa_load_verify_metadata)
2235 		return (0);
2236 	if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2237 		return (0);
2238 
2239 	uint64_t maxinflight_bytes =
2240 	    arc_target_bytes() >> spa_load_verify_shift;
2241 	zio_t *rio = arg;
2242 	size_t size = BP_GET_PSIZE(bp);
2243 
2244 	mutex_enter(&spa->spa_scrub_lock);
2245 	while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2246 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2247 	spa->spa_load_verify_bytes += size;
2248 	mutex_exit(&spa->spa_scrub_lock);
2249 
2250 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2251 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2252 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2253 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2254 	return (0);
2255 }
2256 
2257 /* ARGSUSED */
2258 static int
2259 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2260 {
2261 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2262 		return (SET_ERROR(ENAMETOOLONG));
2263 
2264 	return (0);
2265 }
2266 
2267 static int
2268 spa_load_verify(spa_t *spa)
2269 {
2270 	zio_t *rio;
2271 	spa_load_error_t sle = { 0 };
2272 	zpool_load_policy_t policy;
2273 	boolean_t verify_ok = B_FALSE;
2274 	int error = 0;
2275 
2276 	zpool_get_load_policy(spa->spa_config, &policy);
2277 
2278 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2279 		return (0);
2280 
2281 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2282 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2283 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2284 	    DS_FIND_CHILDREN);
2285 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2286 	if (error != 0)
2287 		return (error);
2288 
2289 	rio = zio_root(spa, NULL, &sle,
2290 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2291 
2292 	if (spa_load_verify_metadata) {
2293 		if (spa->spa_extreme_rewind) {
2294 			spa_load_note(spa, "performing a complete scan of the "
2295 			    "pool since extreme rewind is on. This may take "
2296 			    "a very long time.\n  (spa_load_verify_data=%u, "
2297 			    "spa_load_verify_metadata=%u)",
2298 			    spa_load_verify_data, spa_load_verify_metadata);
2299 		}
2300 
2301 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2302 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2303 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2304 	}
2305 
2306 	(void) zio_wait(rio);
2307 	ASSERT0(spa->spa_load_verify_bytes);
2308 
2309 	spa->spa_load_meta_errors = sle.sle_meta_count;
2310 	spa->spa_load_data_errors = sle.sle_data_count;
2311 
2312 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2313 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2314 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2315 		    (u_longlong_t)sle.sle_data_count);
2316 	}
2317 
2318 	if (spa_load_verify_dryrun ||
2319 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2320 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2321 		int64_t loss = 0;
2322 
2323 		verify_ok = B_TRUE;
2324 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2325 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2326 
2327 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2328 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2329 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2330 		VERIFY(nvlist_add_int64(spa->spa_load_info,
2331 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2332 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2333 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2334 	} else {
2335 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2336 	}
2337 
2338 	if (spa_load_verify_dryrun)
2339 		return (0);
2340 
2341 	if (error) {
2342 		if (error != ENXIO && error != EIO)
2343 			error = SET_ERROR(EIO);
2344 		return (error);
2345 	}
2346 
2347 	return (verify_ok ? 0 : EIO);
2348 }
2349 
2350 /*
2351  * Find a value in the pool props object.
2352  */
2353 static void
2354 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2355 {
2356 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2357 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2358 }
2359 
2360 /*
2361  * Find a value in the pool directory object.
2362  */
2363 static int
2364 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2365 {
2366 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2367 	    name, sizeof (uint64_t), 1, val);
2368 
2369 	if (error != 0 && (error != ENOENT || log_enoent)) {
2370 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2371 		    "[error=%d]", name, error);
2372 	}
2373 
2374 	return (error);
2375 }
2376 
2377 static int
2378 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2379 {
2380 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2381 	return (SET_ERROR(err));
2382 }
2383 
2384 boolean_t
2385 spa_livelist_delete_check(spa_t *spa)
2386 {
2387 	return (spa->spa_livelists_to_delete != 0);
2388 }
2389 
2390 /* ARGSUSED */
2391 static boolean_t
2392 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2393 {
2394 	spa_t *spa = arg;
2395 	return (spa_livelist_delete_check(spa));
2396 }
2397 
2398 static int
2399 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2400 {
2401 	spa_t *spa = arg;
2402 	zio_free(spa, tx->tx_txg, bp);
2403 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2404 	    -bp_get_dsize_sync(spa, bp),
2405 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2406 	return (0);
2407 }
2408 
2409 static int
2410 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2411 {
2412 	int err;
2413 	zap_cursor_t zc;
2414 	zap_attribute_t za;
2415 	zap_cursor_init(&zc, os, zap_obj);
2416 	err = zap_cursor_retrieve(&zc, &za);
2417 	zap_cursor_fini(&zc);
2418 	if (err == 0)
2419 		*llp = za.za_first_integer;
2420 	return (err);
2421 }
2422 
2423 /*
2424  * Components of livelist deletion that must be performed in syncing
2425  * context: freeing block pointers and updating the pool-wide data
2426  * structures to indicate how much work is left to do
2427  */
2428 typedef struct sublist_delete_arg {
2429 	spa_t *spa;
2430 	dsl_deadlist_t *ll;
2431 	uint64_t key;
2432 	bplist_t *to_free;
2433 } sublist_delete_arg_t;
2434 
2435 static void
2436 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2437 {
2438 	sublist_delete_arg_t *sda = arg;
2439 	spa_t *spa = sda->spa;
2440 	dsl_deadlist_t *ll = sda->ll;
2441 	uint64_t key = sda->key;
2442 	bplist_t *to_free = sda->to_free;
2443 
2444 	bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2445 	dsl_deadlist_remove_entry(ll, key, tx);
2446 }
2447 
2448 typedef struct livelist_delete_arg {
2449 	spa_t *spa;
2450 	uint64_t ll_obj;
2451 	uint64_t zap_obj;
2452 } livelist_delete_arg_t;
2453 
2454 static void
2455 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2456 {
2457 	livelist_delete_arg_t *lda = arg;
2458 	spa_t *spa = lda->spa;
2459 	uint64_t ll_obj = lda->ll_obj;
2460 	uint64_t zap_obj = lda->zap_obj;
2461 	objset_t *mos = spa->spa_meta_objset;
2462 	uint64_t count;
2463 
2464 	/* free the livelist and decrement the feature count */
2465 	VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2466 	dsl_deadlist_free(mos, ll_obj, tx);
2467 	spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2468 	VERIFY0(zap_count(mos, zap_obj, &count));
2469 	if (count == 0) {
2470 		/* no more livelists to delete */
2471 		VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2472 		    DMU_POOL_DELETED_CLONES, tx));
2473 		VERIFY0(zap_destroy(mos, zap_obj, tx));
2474 		spa->spa_livelists_to_delete = 0;
2475 		spa_notify_waiters(spa);
2476 	}
2477 }
2478 
2479 /*
2480  * Load in the value for the livelist to be removed and open it. Then,
2481  * load its first sublist and determine which block pointers should actually
2482  * be freed. Then, call a synctask which performs the actual frees and updates
2483  * the pool-wide livelist data.
2484  */
2485 /* ARGSUSED */
2486 static void
2487 spa_livelist_delete_cb(void *arg, zthr_t *z)
2488 {
2489 	spa_t *spa = arg;
2490 	uint64_t ll_obj = 0, count;
2491 	objset_t *mos = spa->spa_meta_objset;
2492 	uint64_t zap_obj = spa->spa_livelists_to_delete;
2493 	/*
2494 	 * Determine the next livelist to delete. This function should only
2495 	 * be called if there is at least one deleted clone.
2496 	 */
2497 	VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2498 	VERIFY0(zap_count(mos, ll_obj, &count));
2499 	if (count > 0) {
2500 		dsl_deadlist_t *ll;
2501 		dsl_deadlist_entry_t *dle;
2502 		bplist_t to_free;
2503 		ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
2504 		dsl_deadlist_open(ll, mos, ll_obj);
2505 		dle = dsl_deadlist_first(ll);
2506 		ASSERT3P(dle, !=, NULL);
2507 		bplist_create(&to_free);
2508 		int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
2509 		    z, NULL);
2510 		if (err == 0) {
2511 			sublist_delete_arg_t sync_arg = {
2512 			    .spa = spa,
2513 			    .ll = ll,
2514 			    .key = dle->dle_mintxg,
2515 			    .to_free = &to_free
2516 			};
2517 			zfs_dbgmsg("deleting sublist (id %llu) from"
2518 			    " livelist %llu, %d remaining",
2519 			    dle->dle_bpobj.bpo_object, ll_obj, count - 1);
2520 			VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2521 			    sublist_delete_sync, &sync_arg, 0,
2522 			    ZFS_SPACE_CHECK_DESTROY));
2523 		} else {
2524 			VERIFY3U(err, ==, EINTR);
2525 		}
2526 		bplist_clear(&to_free);
2527 		bplist_destroy(&to_free);
2528 		dsl_deadlist_close(ll);
2529 		kmem_free(ll, sizeof (dsl_deadlist_t));
2530 	} else {
2531 		livelist_delete_arg_t sync_arg = {
2532 		    .spa = spa,
2533 		    .ll_obj = ll_obj,
2534 		    .zap_obj = zap_obj
2535 		};
2536 		zfs_dbgmsg("deletion of livelist %llu completed", ll_obj);
2537 		VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
2538 		    &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
2539 	}
2540 }
2541 
2542 static void
2543 spa_start_livelist_destroy_thread(spa_t *spa)
2544 {
2545 	ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
2546 	spa->spa_livelist_delete_zthr =
2547 	    zthr_create("z_livelist_destroy",
2548 	    spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa);
2549 }
2550 
2551 typedef struct livelist_new_arg {
2552 	bplist_t *allocs;
2553 	bplist_t *frees;
2554 } livelist_new_arg_t;
2555 
2556 static int
2557 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
2558     dmu_tx_t *tx)
2559 {
2560 	ASSERT(tx == NULL);
2561 	livelist_new_arg_t *lna = arg;
2562 	if (bp_freed) {
2563 		bplist_append(lna->frees, bp);
2564 	} else {
2565 		bplist_append(lna->allocs, bp);
2566 		zfs_livelist_condense_new_alloc++;
2567 	}
2568 	return (0);
2569 }
2570 
2571 typedef struct livelist_condense_arg {
2572 	spa_t *spa;
2573 	bplist_t to_keep;
2574 	uint64_t first_size;
2575 	uint64_t next_size;
2576 } livelist_condense_arg_t;
2577 
2578 static void
2579 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
2580 {
2581 	livelist_condense_arg_t *lca = arg;
2582 	spa_t *spa = lca->spa;
2583 	bplist_t new_frees;
2584 	dsl_dataset_t *ds = spa->spa_to_condense.ds;
2585 
2586 	/* Have we been cancelled? */
2587 	if (spa->spa_to_condense.cancelled) {
2588 		zfs_livelist_condense_sync_cancel++;
2589 		goto out;
2590 	}
2591 
2592 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2593 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2594 	dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
2595 
2596 	/*
2597 	 * It's possible that the livelist was changed while the zthr was
2598 	 * running. Therefore, we need to check for new blkptrs in the two
2599 	 * entries being condensed and continue to track them in the livelist.
2600 	 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
2601 	 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
2602 	 * we need to sort them into two different bplists.
2603 	 */
2604 	uint64_t first_obj = first->dle_bpobj.bpo_object;
2605 	uint64_t next_obj = next->dle_bpobj.bpo_object;
2606 	uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2607 	uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2608 
2609 	bplist_create(&new_frees);
2610 	livelist_new_arg_t new_bps = {
2611 	    .allocs = &lca->to_keep,
2612 	    .frees = &new_frees,
2613 	};
2614 
2615 	if (cur_first_size > lca->first_size) {
2616 		VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
2617 		    livelist_track_new_cb, &new_bps, lca->first_size));
2618 	}
2619 	if (cur_next_size > lca->next_size) {
2620 		VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
2621 		    livelist_track_new_cb, &new_bps, lca->next_size));
2622 	}
2623 
2624 	dsl_deadlist_clear_entry(first, ll, tx);
2625 	ASSERT(bpobj_is_empty(&first->dle_bpobj));
2626 	dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
2627 
2628 	bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
2629 	bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
2630 	bplist_destroy(&new_frees);
2631 
2632 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
2633 	dsl_dataset_name(ds, dsname);
2634 	zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
2635 	    "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
2636 	    "(%llu blkptrs)", tx->tx_txg, dsname, ds->ds_object, first_obj,
2637 	    cur_first_size, next_obj, cur_next_size,
2638 	    first->dle_bpobj.bpo_object,
2639 	    first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
2640 out:
2641 	dmu_buf_rele(ds->ds_dbuf, spa);
2642 	spa->spa_to_condense.ds = NULL;
2643 	bplist_clear(&lca->to_keep);
2644 	bplist_destroy(&lca->to_keep);
2645 	kmem_free(lca, sizeof (livelist_condense_arg_t));
2646 	spa->spa_to_condense.syncing = B_FALSE;
2647 }
2648 
2649 static void
2650 spa_livelist_condense_cb(void *arg, zthr_t *t)
2651 {
2652 	while (zfs_livelist_condense_zthr_pause &&
2653 	    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2654 		delay(1);
2655 
2656 	spa_t *spa = arg;
2657 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2658 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2659 	uint64_t first_size, next_size;
2660 
2661 	livelist_condense_arg_t *lca =
2662 	    kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
2663 	bplist_create(&lca->to_keep);
2664 
2665 	/*
2666 	 * Process the livelists (matching FREEs and ALLOCs) in open context
2667 	 * so we have minimal work in syncing context to condense.
2668 	 *
2669 	 * We save bpobj sizes (first_size and next_size) to use later in
2670 	 * syncing context to determine if entries were added to these sublists
2671 	 * while in open context. This is possible because the clone is still
2672 	 * active and open for normal writes and we want to make sure the new,
2673 	 * unprocessed blockpointers are inserted into the livelist normally.
2674 	 *
2675 	 * Note that dsl_process_sub_livelist() both stores the size number of
2676 	 * blockpointers and iterates over them while the bpobj's lock held, so
2677 	 * the sizes returned to us are consistent which what was actually
2678 	 * processed.
2679 	 */
2680 	int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
2681 	    &first_size);
2682 	if (err == 0)
2683 		err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
2684 		    t, &next_size);
2685 
2686 	if (err == 0) {
2687 		while (zfs_livelist_condense_sync_pause &&
2688 		    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2689 			delay(1);
2690 
2691 		dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2692 		dmu_tx_mark_netfree(tx);
2693 		dmu_tx_hold_space(tx, 1);
2694 		err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
2695 		if (err == 0) {
2696 			/*
2697 			 * Prevent the condense zthr restarting before
2698 			 * the synctask completes.
2699 			 */
2700 			spa->spa_to_condense.syncing = B_TRUE;
2701 			lca->spa = spa;
2702 			lca->first_size = first_size;
2703 			lca->next_size = next_size;
2704 			dsl_sync_task_nowait(spa_get_dsl(spa),
2705 			    spa_livelist_condense_sync, lca, tx);
2706 			dmu_tx_commit(tx);
2707 			return;
2708 		}
2709 	}
2710 	/*
2711 	 * Condensing can not continue: either it was externally stopped or
2712 	 * we were unable to assign to a tx because the pool has run out of
2713 	 * space. In the second case, we'll just end up trying to condense
2714 	 * again in a later txg.
2715 	 */
2716 	ASSERT(err != 0);
2717 	bplist_clear(&lca->to_keep);
2718 	bplist_destroy(&lca->to_keep);
2719 	kmem_free(lca, sizeof (livelist_condense_arg_t));
2720 	dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
2721 	spa->spa_to_condense.ds = NULL;
2722 	if (err == EINTR)
2723 		zfs_livelist_condense_zthr_cancel++;
2724 }
2725 
2726 /* ARGSUSED */
2727 /*
2728  * Check that there is something to condense but that a condense is not
2729  * already in progress and that condensing has not been cancelled.
2730  */
2731 static boolean_t
2732 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
2733 {
2734 	spa_t *spa = arg;
2735 	if ((spa->spa_to_condense.ds != NULL) &&
2736 	    (spa->spa_to_condense.syncing == B_FALSE) &&
2737 	    (spa->spa_to_condense.cancelled == B_FALSE)) {
2738 		return (B_TRUE);
2739 	}
2740 	return (B_FALSE);
2741 }
2742 
2743 static void
2744 spa_start_livelist_condensing_thread(spa_t *spa)
2745 {
2746 	spa->spa_to_condense.ds = NULL;
2747 	spa->spa_to_condense.first = NULL;
2748 	spa->spa_to_condense.next = NULL;
2749 	spa->spa_to_condense.syncing = B_FALSE;
2750 	spa->spa_to_condense.cancelled = B_FALSE;
2751 
2752 	ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
2753 	spa->spa_livelist_condense_zthr =
2754 	    zthr_create("z_livelist_condense",
2755 	    spa_livelist_condense_cb_check,
2756 	    spa_livelist_condense_cb, spa);
2757 }
2758 
2759 static void
2760 spa_spawn_aux_threads(spa_t *spa)
2761 {
2762 	ASSERT(spa_writeable(spa));
2763 
2764 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2765 
2766 	spa_start_indirect_condensing_thread(spa);
2767 	spa_start_livelist_destroy_thread(spa);
2768 	spa_start_livelist_condensing_thread(spa);
2769 
2770 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2771 	spa->spa_checkpoint_discard_zthr =
2772 	    zthr_create("z_checkpoint_discard",
2773 	    spa_checkpoint_discard_thread_check,
2774 	    spa_checkpoint_discard_thread, spa);
2775 }
2776 
2777 /*
2778  * Fix up config after a partly-completed split.  This is done with the
2779  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2780  * pool have that entry in their config, but only the splitting one contains
2781  * a list of all the guids of the vdevs that are being split off.
2782  *
2783  * This function determines what to do with that list: either rejoin
2784  * all the disks to the pool, or complete the splitting process.  To attempt
2785  * the rejoin, each disk that is offlined is marked online again, and
2786  * we do a reopen() call.  If the vdev label for every disk that was
2787  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2788  * then we call vdev_split() on each disk, and complete the split.
2789  *
2790  * Otherwise we leave the config alone, with all the vdevs in place in
2791  * the original pool.
2792  */
2793 static void
2794 spa_try_repair(spa_t *spa, nvlist_t *config)
2795 {
2796 	uint_t extracted;
2797 	uint64_t *glist;
2798 	uint_t i, gcount;
2799 	nvlist_t *nvl;
2800 	vdev_t **vd;
2801 	boolean_t attempt_reopen;
2802 
2803 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2804 		return;
2805 
2806 	/* check that the config is complete */
2807 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2808 	    &glist, &gcount) != 0)
2809 		return;
2810 
2811 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2812 
2813 	/* attempt to online all the vdevs & validate */
2814 	attempt_reopen = B_TRUE;
2815 	for (i = 0; i < gcount; i++) {
2816 		if (glist[i] == 0)	/* vdev is hole */
2817 			continue;
2818 
2819 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2820 		if (vd[i] == NULL) {
2821 			/*
2822 			 * Don't bother attempting to reopen the disks;
2823 			 * just do the split.
2824 			 */
2825 			attempt_reopen = B_FALSE;
2826 		} else {
2827 			/* attempt to re-online it */
2828 			vd[i]->vdev_offline = B_FALSE;
2829 		}
2830 	}
2831 
2832 	if (attempt_reopen) {
2833 		vdev_reopen(spa->spa_root_vdev);
2834 
2835 		/* check each device to see what state it's in */
2836 		for (extracted = 0, i = 0; i < gcount; i++) {
2837 			if (vd[i] != NULL &&
2838 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2839 				break;
2840 			++extracted;
2841 		}
2842 	}
2843 
2844 	/*
2845 	 * If every disk has been moved to the new pool, or if we never
2846 	 * even attempted to look at them, then we split them off for
2847 	 * good.
2848 	 */
2849 	if (!attempt_reopen || gcount == extracted) {
2850 		for (i = 0; i < gcount; i++)
2851 			if (vd[i] != NULL)
2852 				vdev_split(vd[i]);
2853 		vdev_reopen(spa->spa_root_vdev);
2854 	}
2855 
2856 	kmem_free(vd, gcount * sizeof (vdev_t *));
2857 }
2858 
2859 static int
2860 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2861 {
2862 	char *ereport = FM_EREPORT_ZFS_POOL;
2863 	int error;
2864 
2865 	spa->spa_load_state = state;
2866 	(void) spa_import_progress_set_state(spa_guid(spa),
2867 	    spa_load_state(spa));
2868 
2869 	gethrestime(&spa->spa_loaded_ts);
2870 	error = spa_load_impl(spa, type, &ereport);
2871 
2872 	/*
2873 	 * Don't count references from objsets that are already closed
2874 	 * and are making their way through the eviction process.
2875 	 */
2876 	spa_evicting_os_wait(spa);
2877 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2878 	if (error) {
2879 		if (error != EEXIST) {
2880 			spa->spa_loaded_ts.tv_sec = 0;
2881 			spa->spa_loaded_ts.tv_nsec = 0;
2882 		}
2883 		if (error != EBADF) {
2884 			(void) zfs_ereport_post(ereport, spa,
2885 			    NULL, NULL, NULL, 0);
2886 		}
2887 	}
2888 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2889 	spa->spa_ena = 0;
2890 
2891 	(void) spa_import_progress_set_state(spa_guid(spa),
2892 	    spa_load_state(spa));
2893 
2894 	return (error);
2895 }
2896 
2897 #ifdef ZFS_DEBUG
2898 /*
2899  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2900  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2901  * spa's per-vdev ZAP list.
2902  */
2903 static uint64_t
2904 vdev_count_verify_zaps(vdev_t *vd)
2905 {
2906 	spa_t *spa = vd->vdev_spa;
2907 	uint64_t total = 0;
2908 
2909 	if (vd->vdev_top_zap != 0) {
2910 		total++;
2911 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2912 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2913 	}
2914 	if (vd->vdev_leaf_zap != 0) {
2915 		total++;
2916 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2917 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2918 	}
2919 
2920 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2921 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2922 	}
2923 
2924 	return (total);
2925 }
2926 #endif
2927 
2928 /*
2929  * Determine whether the activity check is required.
2930  */
2931 static boolean_t
2932 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
2933     nvlist_t *config)
2934 {
2935 	uint64_t state = 0;
2936 	uint64_t hostid = 0;
2937 	uint64_t tryconfig_txg = 0;
2938 	uint64_t tryconfig_timestamp = 0;
2939 	uint16_t tryconfig_mmp_seq = 0;
2940 	nvlist_t *nvinfo;
2941 
2942 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2943 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
2944 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
2945 		    &tryconfig_txg);
2946 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2947 		    &tryconfig_timestamp);
2948 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
2949 		    &tryconfig_mmp_seq);
2950 	}
2951 
2952 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
2953 
2954 	/*
2955 	 * Disable the MMP activity check - This is used by zdb which
2956 	 * is intended to be used on potentially active pools.
2957 	 */
2958 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
2959 		return (B_FALSE);
2960 
2961 	/*
2962 	 * Skip the activity check when the MMP feature is disabled.
2963 	 */
2964 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
2965 		return (B_FALSE);
2966 
2967 	/*
2968 	 * If the tryconfig_ values are nonzero, they are the results of an
2969 	 * earlier tryimport.  If they all match the uberblock we just found,
2970 	 * then the pool has not changed and we return false so we do not test
2971 	 * a second time.
2972 	 */
2973 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
2974 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
2975 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
2976 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
2977 		return (B_FALSE);
2978 
2979 	/*
2980 	 * Allow the activity check to be skipped when importing the pool
2981 	 * on the same host which last imported it.  Since the hostid from
2982 	 * configuration may be stale use the one read from the label.
2983 	 */
2984 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
2985 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
2986 
2987 	if (hostid == spa_get_hostid(spa))
2988 		return (B_FALSE);
2989 
2990 	/*
2991 	 * Skip the activity test when the pool was cleanly exported.
2992 	 */
2993 	if (state != POOL_STATE_ACTIVE)
2994 		return (B_FALSE);
2995 
2996 	return (B_TRUE);
2997 }
2998 
2999 /*
3000  * Nanoseconds the activity check must watch for changes on-disk.
3001  */
3002 static uint64_t
3003 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3004 {
3005 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3006 	uint64_t multihost_interval = MSEC2NSEC(
3007 	    MMP_INTERVAL_OK(zfs_multihost_interval));
3008 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
3009 	    multihost_interval);
3010 
3011 	/*
3012 	 * Local tunables determine a minimum duration except for the case
3013 	 * where we know when the remote host will suspend the pool if MMP
3014 	 * writes do not land.
3015 	 *
3016 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
3017 	 * these cases and times.
3018 	 */
3019 
3020 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3021 
3022 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3023 	    MMP_FAIL_INT(ub) > 0) {
3024 
3025 		/* MMP on remote host will suspend pool after failed writes */
3026 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3027 		    MMP_IMPORT_SAFETY_FACTOR / 100;
3028 
3029 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3030 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3031 		    "import_intervals=%u", import_delay, MMP_FAIL_INT(ub),
3032 		    MMP_INTERVAL(ub), import_intervals);
3033 
3034 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3035 	    MMP_FAIL_INT(ub) == 0) {
3036 
3037 		/* MMP on remote host will never suspend pool */
3038 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3039 		    ub->ub_mmp_delay) * import_intervals);
3040 
3041 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3042 		    "mmp_interval=%llu ub_mmp_delay=%llu "
3043 		    "import_intervals=%u", import_delay, MMP_INTERVAL(ub),
3044 		    ub->ub_mmp_delay, import_intervals);
3045 
3046 	} else if (MMP_VALID(ub)) {
3047 		/*
3048 		 * zfs-0.7 compatibility case
3049 		 */
3050 
3051 		import_delay = MAX(import_delay, (multihost_interval +
3052 		    ub->ub_mmp_delay) * import_intervals);
3053 
3054 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3055 		    "import_intervals=%u leaves=%u", import_delay,
3056 		    ub->ub_mmp_delay, import_intervals,
3057 		    vdev_count_leaves(spa));
3058 	} else {
3059 		/* Using local tunings is the only reasonable option */
3060 		zfs_dbgmsg("pool last imported on non-MMP aware "
3061 		    "host using import_delay=%llu multihost_interval=%llu "
3062 		    "import_intervals=%u", import_delay, multihost_interval,
3063 		    import_intervals);
3064 	}
3065 
3066 	return (import_delay);
3067 }
3068 
3069 /*
3070  * Perform the import activity check.  If the user canceled the import or
3071  * we detected activity then fail.
3072  */
3073 static int
3074 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3075 {
3076 	uint64_t txg = ub->ub_txg;
3077 	uint64_t timestamp = ub->ub_timestamp;
3078 	uint64_t mmp_config = ub->ub_mmp_config;
3079 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3080 	uint64_t import_delay;
3081 	hrtime_t import_expire;
3082 	nvlist_t *mmp_label = NULL;
3083 	vdev_t *rvd = spa->spa_root_vdev;
3084 	kcondvar_t cv;
3085 	kmutex_t mtx;
3086 	int error = 0;
3087 
3088 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
3089 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3090 	mutex_enter(&mtx);
3091 
3092 	/*
3093 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3094 	 * during the earlier tryimport.  If the txg recorded there is 0 then
3095 	 * the pool is known to be active on another host.
3096 	 *
3097 	 * Otherwise, the pool might be in use on another host.  Check for
3098 	 * changes in the uberblocks on disk if necessary.
3099 	 */
3100 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3101 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3102 		    ZPOOL_CONFIG_LOAD_INFO);
3103 
3104 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3105 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3106 			vdev_uberblock_load(rvd, ub, &mmp_label);
3107 			error = SET_ERROR(EREMOTEIO);
3108 			goto out;
3109 		}
3110 	}
3111 
3112 	import_delay = spa_activity_check_duration(spa, ub);
3113 
3114 	/* Add a small random factor in case of simultaneous imports (0-25%) */
3115 	import_delay += import_delay * spa_get_random(250) / 1000;
3116 
3117 	import_expire = gethrtime() + import_delay;
3118 
3119 	while (gethrtime() < import_expire) {
3120 		(void) spa_import_progress_set_mmp_check(spa_guid(spa),
3121 		    NSEC2SEC(import_expire - gethrtime()));
3122 
3123 		vdev_uberblock_load(rvd, ub, &mmp_label);
3124 
3125 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3126 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3127 			zfs_dbgmsg("multihost activity detected "
3128 			    "txg %llu ub_txg  %llu "
3129 			    "timestamp %llu ub_timestamp  %llu "
3130 			    "mmp_config %#llx ub_mmp_config %#llx",
3131 			    txg, ub->ub_txg, timestamp, ub->ub_timestamp,
3132 			    mmp_config, ub->ub_mmp_config);
3133 
3134 			error = SET_ERROR(EREMOTEIO);
3135 			break;
3136 		}
3137 
3138 		if (mmp_label) {
3139 			nvlist_free(mmp_label);
3140 			mmp_label = NULL;
3141 		}
3142 
3143 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3144 		if (error != -1) {
3145 			error = SET_ERROR(EINTR);
3146 			break;
3147 		}
3148 		error = 0;
3149 	}
3150 
3151 out:
3152 	mutex_exit(&mtx);
3153 	mutex_destroy(&mtx);
3154 	cv_destroy(&cv);
3155 
3156 	/*
3157 	 * If the pool is determined to be active store the status in the
3158 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
3159 	 * available from configuration read from disk store them as well.
3160 	 * This allows 'zpool import' to generate a more useful message.
3161 	 *
3162 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
3163 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3164 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
3165 	 */
3166 	if (error == EREMOTEIO) {
3167 		char *hostname = "<unknown>";
3168 		uint64_t hostid = 0;
3169 
3170 		if (mmp_label) {
3171 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3172 				hostname = fnvlist_lookup_string(mmp_label,
3173 				    ZPOOL_CONFIG_HOSTNAME);
3174 				fnvlist_add_string(spa->spa_load_info,
3175 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3176 			}
3177 
3178 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3179 				hostid = fnvlist_lookup_uint64(mmp_label,
3180 				    ZPOOL_CONFIG_HOSTID);
3181 				fnvlist_add_uint64(spa->spa_load_info,
3182 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
3183 			}
3184 		}
3185 
3186 		fnvlist_add_uint64(spa->spa_load_info,
3187 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3188 		fnvlist_add_uint64(spa->spa_load_info,
3189 		    ZPOOL_CONFIG_MMP_TXG, 0);
3190 
3191 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3192 	}
3193 
3194 	if (mmp_label)
3195 		nvlist_free(mmp_label);
3196 
3197 	return (error);
3198 }
3199 
3200 static int
3201 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3202 {
3203 	uint64_t hostid;
3204 	char *hostname;
3205 	uint64_t myhostid = 0;
3206 
3207 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3208 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3209 		hostname = fnvlist_lookup_string(mos_config,
3210 		    ZPOOL_CONFIG_HOSTNAME);
3211 
3212 		myhostid = zone_get_hostid(NULL);
3213 
3214 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3215 			cmn_err(CE_WARN, "pool '%s' could not be "
3216 			    "loaded as it was last accessed by "
3217 			    "another system (host: %s hostid: 0x%llx). "
3218 			    "See: https://openzfs.github.io/openzfs-docs/msg/"
3219 			    "ZFS-8000-EY",
3220 			    spa_name(spa), hostname, (u_longlong_t)hostid);
3221 			spa_load_failed(spa, "hostid verification failed: pool "
3222 			    "last accessed by host: %s (hostid: 0x%llx)",
3223 			    hostname, (u_longlong_t)hostid);
3224 			return (SET_ERROR(EBADF));
3225 		}
3226 	}
3227 
3228 	return (0);
3229 }
3230 
3231 static int
3232 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3233 {
3234 	int error = 0;
3235 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3236 	int parse;
3237 	vdev_t *rvd;
3238 	uint64_t pool_guid;
3239 	char *comment;
3240 
3241 	/*
3242 	 * Versioning wasn't explicitly added to the label until later, so if
3243 	 * it's not present treat it as the initial version.
3244 	 */
3245 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3246 	    &spa->spa_ubsync.ub_version) != 0)
3247 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3248 
3249 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3250 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3251 		    ZPOOL_CONFIG_POOL_GUID);
3252 		return (SET_ERROR(EINVAL));
3253 	}
3254 
3255 	/*
3256 	 * If we are doing an import, ensure that the pool is not already
3257 	 * imported by checking if its pool guid already exists in the
3258 	 * spa namespace.
3259 	 *
3260 	 * The only case that we allow an already imported pool to be
3261 	 * imported again, is when the pool is checkpointed and we want to
3262 	 * look at its checkpointed state from userland tools like zdb.
3263 	 */
3264 #ifdef _KERNEL
3265 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3266 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3267 	    spa_guid_exists(pool_guid, 0)) {
3268 #else
3269 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3270 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3271 	    spa_guid_exists(pool_guid, 0) &&
3272 	    !spa_importing_readonly_checkpoint(spa)) {
3273 #endif
3274 		spa_load_failed(spa, "a pool with guid %llu is already open",
3275 		    (u_longlong_t)pool_guid);
3276 		return (SET_ERROR(EEXIST));
3277 	}
3278 
3279 	spa->spa_config_guid = pool_guid;
3280 
3281 	nvlist_free(spa->spa_load_info);
3282 	spa->spa_load_info = fnvlist_alloc();
3283 
3284 	ASSERT(spa->spa_comment == NULL);
3285 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3286 		spa->spa_comment = spa_strdup(comment);
3287 
3288 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3289 	    &spa->spa_config_txg);
3290 
3291 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3292 		spa->spa_config_splitting = fnvlist_dup(nvl);
3293 
3294 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3295 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3296 		    ZPOOL_CONFIG_VDEV_TREE);
3297 		return (SET_ERROR(EINVAL));
3298 	}
3299 
3300 	/*
3301 	 * Create "The Godfather" zio to hold all async IOs
3302 	 */
3303 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3304 	    KM_SLEEP);
3305 	for (int i = 0; i < max_ncpus; i++) {
3306 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3307 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3308 		    ZIO_FLAG_GODFATHER);
3309 	}
3310 
3311 	/*
3312 	 * Parse the configuration into a vdev tree.  We explicitly set the
3313 	 * value that will be returned by spa_version() since parsing the
3314 	 * configuration requires knowing the version number.
3315 	 */
3316 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3317 	parse = (type == SPA_IMPORT_EXISTING ?
3318 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3319 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3320 	spa_config_exit(spa, SCL_ALL, FTAG);
3321 
3322 	if (error != 0) {
3323 		spa_load_failed(spa, "unable to parse config [error=%d]",
3324 		    error);
3325 		return (error);
3326 	}
3327 
3328 	ASSERT(spa->spa_root_vdev == rvd);
3329 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3330 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3331 
3332 	if (type != SPA_IMPORT_ASSEMBLE) {
3333 		ASSERT(spa_guid(spa) == pool_guid);
3334 	}
3335 
3336 	return (0);
3337 }
3338 
3339 /*
3340  * Recursively open all vdevs in the vdev tree. This function is called twice:
3341  * first with the untrusted config, then with the trusted config.
3342  */
3343 static int
3344 spa_ld_open_vdevs(spa_t *spa)
3345 {
3346 	int error = 0;
3347 
3348 	/*
3349 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3350 	 * missing/unopenable for the root vdev to be still considered openable.
3351 	 */
3352 	if (spa->spa_trust_config) {
3353 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3354 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3355 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3356 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3357 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3358 	} else {
3359 		spa->spa_missing_tvds_allowed = 0;
3360 	}
3361 
3362 	spa->spa_missing_tvds_allowed =
3363 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3364 
3365 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3366 	error = vdev_open(spa->spa_root_vdev);
3367 	spa_config_exit(spa, SCL_ALL, FTAG);
3368 
3369 	if (spa->spa_missing_tvds != 0) {
3370 		spa_load_note(spa, "vdev tree has %lld missing top-level "
3371 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3372 		if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3373 			/*
3374 			 * Although theoretically we could allow users to open
3375 			 * incomplete pools in RW mode, we'd need to add a lot
3376 			 * of extra logic (e.g. adjust pool space to account
3377 			 * for missing vdevs).
3378 			 * This limitation also prevents users from accidentally
3379 			 * opening the pool in RW mode during data recovery and
3380 			 * damaging it further.
3381 			 */
3382 			spa_load_note(spa, "pools with missing top-level "
3383 			    "vdevs can only be opened in read-only mode.");
3384 			error = SET_ERROR(ENXIO);
3385 		} else {
3386 			spa_load_note(spa, "current settings allow for maximum "
3387 			    "%lld missing top-level vdevs at this stage.",
3388 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
3389 		}
3390 	}
3391 	if (error != 0) {
3392 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3393 		    error);
3394 	}
3395 	if (spa->spa_missing_tvds != 0 || error != 0)
3396 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3397 
3398 	return (error);
3399 }
3400 
3401 /*
3402  * We need to validate the vdev labels against the configuration that
3403  * we have in hand. This function is called twice: first with an untrusted
3404  * config, then with a trusted config. The validation is more strict when the
3405  * config is trusted.
3406  */
3407 static int
3408 spa_ld_validate_vdevs(spa_t *spa)
3409 {
3410 	int error = 0;
3411 	vdev_t *rvd = spa->spa_root_vdev;
3412 
3413 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3414 	error = vdev_validate(rvd);
3415 	spa_config_exit(spa, SCL_ALL, FTAG);
3416 
3417 	if (error != 0) {
3418 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3419 		return (error);
3420 	}
3421 
3422 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3423 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
3424 		    "some vdevs");
3425 		vdev_dbgmsg_print_tree(rvd, 2);
3426 		return (SET_ERROR(ENXIO));
3427 	}
3428 
3429 	return (0);
3430 }
3431 
3432 static void
3433 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3434 {
3435 	spa->spa_state = POOL_STATE_ACTIVE;
3436 	spa->spa_ubsync = spa->spa_uberblock;
3437 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3438 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3439 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3440 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3441 	spa->spa_claim_max_txg = spa->spa_first_txg;
3442 	spa->spa_prev_software_version = ub->ub_software_version;
3443 }
3444 
3445 static int
3446 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3447 {
3448 	vdev_t *rvd = spa->spa_root_vdev;
3449 	nvlist_t *label;
3450 	uberblock_t *ub = &spa->spa_uberblock;
3451 	boolean_t activity_check = B_FALSE;
3452 
3453 	/*
3454 	 * If we are opening the checkpointed state of the pool by
3455 	 * rewinding to it, at this point we will have written the
3456 	 * checkpointed uberblock to the vdev labels, so searching
3457 	 * the labels will find the right uberblock.  However, if
3458 	 * we are opening the checkpointed state read-only, we have
3459 	 * not modified the labels. Therefore, we must ignore the
3460 	 * labels and continue using the spa_uberblock that was set
3461 	 * by spa_ld_checkpoint_rewind.
3462 	 *
3463 	 * Note that it would be fine to ignore the labels when
3464 	 * rewinding (opening writeable) as well. However, if we
3465 	 * crash just after writing the labels, we will end up
3466 	 * searching the labels. Doing so in the common case means
3467 	 * that this code path gets exercised normally, rather than
3468 	 * just in the edge case.
3469 	 */
3470 	if (ub->ub_checkpoint_txg != 0 &&
3471 	    spa_importing_readonly_checkpoint(spa)) {
3472 		spa_ld_select_uberblock_done(spa, ub);
3473 		return (0);
3474 	}
3475 
3476 	/*
3477 	 * Find the best uberblock.
3478 	 */
3479 	vdev_uberblock_load(rvd, ub, &label);
3480 
3481 	/*
3482 	 * If we weren't able to find a single valid uberblock, return failure.
3483 	 */
3484 	if (ub->ub_txg == 0) {
3485 		nvlist_free(label);
3486 		spa_load_failed(spa, "no valid uberblock found");
3487 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3488 	}
3489 
3490 	if (spa->spa_load_max_txg != UINT64_MAX) {
3491 		(void) spa_import_progress_set_max_txg(spa_guid(spa),
3492 		    (u_longlong_t)spa->spa_load_max_txg);
3493 	}
3494 	spa_load_note(spa, "using uberblock with txg=%llu",
3495 	    (u_longlong_t)ub->ub_txg);
3496 
3497 
3498 	/*
3499 	 * For pools which have the multihost property on determine if the
3500 	 * pool is truly inactive and can be safely imported.  Prevent
3501 	 * hosts which don't have a hostid set from importing the pool.
3502 	 */
3503 	activity_check = spa_activity_check_required(spa, ub, label,
3504 	    spa->spa_config);
3505 	if (activity_check) {
3506 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3507 		    spa_get_hostid(spa) == 0) {
3508 			nvlist_free(label);
3509 			fnvlist_add_uint64(spa->spa_load_info,
3510 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3511 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3512 		}
3513 
3514 		int error = spa_activity_check(spa, ub, spa->spa_config);
3515 		if (error) {
3516 			nvlist_free(label);
3517 			return (error);
3518 		}
3519 
3520 		fnvlist_add_uint64(spa->spa_load_info,
3521 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3522 		fnvlist_add_uint64(spa->spa_load_info,
3523 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3524 		fnvlist_add_uint16(spa->spa_load_info,
3525 		    ZPOOL_CONFIG_MMP_SEQ,
3526 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3527 	}
3528 
3529 	/*
3530 	 * If the pool has an unsupported version we can't open it.
3531 	 */
3532 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3533 		nvlist_free(label);
3534 		spa_load_failed(spa, "version %llu is not supported",
3535 		    (u_longlong_t)ub->ub_version);
3536 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3537 	}
3538 
3539 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3540 		nvlist_t *features;
3541 
3542 		/*
3543 		 * If we weren't able to find what's necessary for reading the
3544 		 * MOS in the label, return failure.
3545 		 */
3546 		if (label == NULL) {
3547 			spa_load_failed(spa, "label config unavailable");
3548 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3549 			    ENXIO));
3550 		}
3551 
3552 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3553 		    &features) != 0) {
3554 			nvlist_free(label);
3555 			spa_load_failed(spa, "invalid label: '%s' missing",
3556 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
3557 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3558 			    ENXIO));
3559 		}
3560 
3561 		/*
3562 		 * Update our in-core representation with the definitive values
3563 		 * from the label.
3564 		 */
3565 		nvlist_free(spa->spa_label_features);
3566 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
3567 	}
3568 
3569 	nvlist_free(label);
3570 
3571 	/*
3572 	 * Look through entries in the label nvlist's features_for_read. If
3573 	 * there is a feature listed there which we don't understand then we
3574 	 * cannot open a pool.
3575 	 */
3576 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3577 		nvlist_t *unsup_feat;
3578 
3579 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
3580 		    0);
3581 
3582 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3583 		    NULL); nvp != NULL;
3584 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3585 			if (!zfeature_is_supported(nvpair_name(nvp))) {
3586 				VERIFY(nvlist_add_string(unsup_feat,
3587 				    nvpair_name(nvp), "") == 0);
3588 			}
3589 		}
3590 
3591 		if (!nvlist_empty(unsup_feat)) {
3592 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
3593 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
3594 			nvlist_free(unsup_feat);
3595 			spa_load_failed(spa, "some features are unsupported");
3596 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3597 			    ENOTSUP));
3598 		}
3599 
3600 		nvlist_free(unsup_feat);
3601 	}
3602 
3603 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3604 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3605 		spa_try_repair(spa, spa->spa_config);
3606 		spa_config_exit(spa, SCL_ALL, FTAG);
3607 		nvlist_free(spa->spa_config_splitting);
3608 		spa->spa_config_splitting = NULL;
3609 	}
3610 
3611 	/*
3612 	 * Initialize internal SPA structures.
3613 	 */
3614 	spa_ld_select_uberblock_done(spa, ub);
3615 
3616 	return (0);
3617 }
3618 
3619 static int
3620 spa_ld_open_rootbp(spa_t *spa)
3621 {
3622 	int error = 0;
3623 	vdev_t *rvd = spa->spa_root_vdev;
3624 
3625 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3626 	if (error != 0) {
3627 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3628 		    "[error=%d]", error);
3629 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3630 	}
3631 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3632 
3633 	return (0);
3634 }
3635 
3636 static int
3637 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3638     boolean_t reloading)
3639 {
3640 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3641 	nvlist_t *nv, *mos_config, *policy;
3642 	int error = 0, copy_error;
3643 	uint64_t healthy_tvds, healthy_tvds_mos;
3644 	uint64_t mos_config_txg;
3645 
3646 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3647 	    != 0)
3648 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3649 
3650 	/*
3651 	 * If we're assembling a pool from a split, the config provided is
3652 	 * already trusted so there is nothing to do.
3653 	 */
3654 	if (type == SPA_IMPORT_ASSEMBLE)
3655 		return (0);
3656 
3657 	healthy_tvds = spa_healthy_core_tvds(spa);
3658 
3659 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3660 	    != 0) {
3661 		spa_load_failed(spa, "unable to retrieve MOS config");
3662 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3663 	}
3664 
3665 	/*
3666 	 * If we are doing an open, pool owner wasn't verified yet, thus do
3667 	 * the verification here.
3668 	 */
3669 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
3670 		error = spa_verify_host(spa, mos_config);
3671 		if (error != 0) {
3672 			nvlist_free(mos_config);
3673 			return (error);
3674 		}
3675 	}
3676 
3677 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3678 
3679 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3680 
3681 	/*
3682 	 * Build a new vdev tree from the trusted config
3683 	 */
3684 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
3685 
3686 	/*
3687 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3688 	 * obtained by scanning /dev/dsk, then it will have the right vdev
3689 	 * paths. We update the trusted MOS config with this information.
3690 	 * We first try to copy the paths with vdev_copy_path_strict, which
3691 	 * succeeds only when both configs have exactly the same vdev tree.
3692 	 * If that fails, we fall back to a more flexible method that has a
3693 	 * best effort policy.
3694 	 */
3695 	copy_error = vdev_copy_path_strict(rvd, mrvd);
3696 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3697 		spa_load_note(spa, "provided vdev tree:");
3698 		vdev_dbgmsg_print_tree(rvd, 2);
3699 		spa_load_note(spa, "MOS vdev tree:");
3700 		vdev_dbgmsg_print_tree(mrvd, 2);
3701 	}
3702 	if (copy_error != 0) {
3703 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3704 		    "back to vdev_copy_path_relaxed");
3705 		vdev_copy_path_relaxed(rvd, mrvd);
3706 	}
3707 
3708 	vdev_close(rvd);
3709 	vdev_free(rvd);
3710 	spa->spa_root_vdev = mrvd;
3711 	rvd = mrvd;
3712 	spa_config_exit(spa, SCL_ALL, FTAG);
3713 
3714 	/*
3715 	 * We will use spa_config if we decide to reload the spa or if spa_load
3716 	 * fails and we rewind. We must thus regenerate the config using the
3717 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3718 	 * pass settings on how to load the pool and is not stored in the MOS.
3719 	 * We copy it over to our new, trusted config.
3720 	 */
3721 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
3722 	    ZPOOL_CONFIG_POOL_TXG);
3723 	nvlist_free(mos_config);
3724 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3725 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3726 	    &policy) == 0)
3727 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3728 	spa_config_set(spa, mos_config);
3729 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3730 
3731 	/*
3732 	 * Now that we got the config from the MOS, we should be more strict
3733 	 * in checking blkptrs and can make assumptions about the consistency
3734 	 * of the vdev tree. spa_trust_config must be set to true before opening
3735 	 * vdevs in order for them to be writeable.
3736 	 */
3737 	spa->spa_trust_config = B_TRUE;
3738 
3739 	/*
3740 	 * Open and validate the new vdev tree
3741 	 */
3742 	error = spa_ld_open_vdevs(spa);
3743 	if (error != 0)
3744 		return (error);
3745 
3746 	error = spa_ld_validate_vdevs(spa);
3747 	if (error != 0)
3748 		return (error);
3749 
3750 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3751 		spa_load_note(spa, "final vdev tree:");
3752 		vdev_dbgmsg_print_tree(rvd, 2);
3753 	}
3754 
3755 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3756 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3757 		/*
3758 		 * Sanity check to make sure that we are indeed loading the
3759 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3760 		 * in the config provided and they happened to be the only ones
3761 		 * to have the latest uberblock, we could involuntarily perform
3762 		 * an extreme rewind.
3763 		 */
3764 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
3765 		if (healthy_tvds_mos - healthy_tvds >=
3766 		    SPA_SYNC_MIN_VDEVS) {
3767 			spa_load_note(spa, "config provided misses too many "
3768 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
3769 			    (u_longlong_t)healthy_tvds,
3770 			    (u_longlong_t)healthy_tvds_mos);
3771 			spa_load_note(spa, "vdev tree:");
3772 			vdev_dbgmsg_print_tree(rvd, 2);
3773 			if (reloading) {
3774 				spa_load_failed(spa, "config was already "
3775 				    "provided from MOS. Aborting.");
3776 				return (spa_vdev_err(rvd,
3777 				    VDEV_AUX_CORRUPT_DATA, EIO));
3778 			}
3779 			spa_load_note(spa, "spa must be reloaded using MOS "
3780 			    "config");
3781 			return (SET_ERROR(EAGAIN));
3782 		}
3783 	}
3784 
3785 	error = spa_check_for_missing_logs(spa);
3786 	if (error != 0)
3787 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3788 
3789 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3790 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3791 		    "guid sum (%llu != %llu)",
3792 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3793 		    (u_longlong_t)rvd->vdev_guid_sum);
3794 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3795 		    ENXIO));
3796 	}
3797 
3798 	return (0);
3799 }
3800 
3801 static int
3802 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3803 {
3804 	int error = 0;
3805 	vdev_t *rvd = spa->spa_root_vdev;
3806 
3807 	/*
3808 	 * Everything that we read before spa_remove_init() must be stored
3809 	 * on concreted vdevs.  Therefore we do this as early as possible.
3810 	 */
3811 	error = spa_remove_init(spa);
3812 	if (error != 0) {
3813 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3814 		    error);
3815 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3816 	}
3817 
3818 	/*
3819 	 * Retrieve information needed to condense indirect vdev mappings.
3820 	 */
3821 	error = spa_condense_init(spa);
3822 	if (error != 0) {
3823 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3824 		    error);
3825 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3826 	}
3827 
3828 	return (0);
3829 }
3830 
3831 static int
3832 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3833 {
3834 	int error = 0;
3835 	vdev_t *rvd = spa->spa_root_vdev;
3836 
3837 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3838 		boolean_t missing_feat_read = B_FALSE;
3839 		nvlist_t *unsup_feat, *enabled_feat;
3840 
3841 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3842 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3843 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3844 		}
3845 
3846 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3847 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3848 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3849 		}
3850 
3851 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3852 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3853 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3854 		}
3855 
3856 		enabled_feat = fnvlist_alloc();
3857 		unsup_feat = fnvlist_alloc();
3858 
3859 		if (!spa_features_check(spa, B_FALSE,
3860 		    unsup_feat, enabled_feat))
3861 			missing_feat_read = B_TRUE;
3862 
3863 		if (spa_writeable(spa) ||
3864 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3865 			if (!spa_features_check(spa, B_TRUE,
3866 			    unsup_feat, enabled_feat)) {
3867 				*missing_feat_writep = B_TRUE;
3868 			}
3869 		}
3870 
3871 		fnvlist_add_nvlist(spa->spa_load_info,
3872 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3873 
3874 		if (!nvlist_empty(unsup_feat)) {
3875 			fnvlist_add_nvlist(spa->spa_load_info,
3876 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3877 		}
3878 
3879 		fnvlist_free(enabled_feat);
3880 		fnvlist_free(unsup_feat);
3881 
3882 		if (!missing_feat_read) {
3883 			fnvlist_add_boolean(spa->spa_load_info,
3884 			    ZPOOL_CONFIG_CAN_RDONLY);
3885 		}
3886 
3887 		/*
3888 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3889 		 * twofold: to determine whether the pool is available for
3890 		 * import in read-write mode and (if it is not) whether the
3891 		 * pool is available for import in read-only mode. If the pool
3892 		 * is available for import in read-write mode, it is displayed
3893 		 * as available in userland; if it is not available for import
3894 		 * in read-only mode, it is displayed as unavailable in
3895 		 * userland. If the pool is available for import in read-only
3896 		 * mode but not read-write mode, it is displayed as unavailable
3897 		 * in userland with a special note that the pool is actually
3898 		 * available for open in read-only mode.
3899 		 *
3900 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3901 		 * missing a feature for write, we must first determine whether
3902 		 * the pool can be opened read-only before returning to
3903 		 * userland in order to know whether to display the
3904 		 * abovementioned note.
3905 		 */
3906 		if (missing_feat_read || (*missing_feat_writep &&
3907 		    spa_writeable(spa))) {
3908 			spa_load_failed(spa, "pool uses unsupported features");
3909 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3910 			    ENOTSUP));
3911 		}
3912 
3913 		/*
3914 		 * Load refcounts for ZFS features from disk into an in-memory
3915 		 * cache during SPA initialization.
3916 		 */
3917 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
3918 			uint64_t refcount;
3919 
3920 			error = feature_get_refcount_from_disk(spa,
3921 			    &spa_feature_table[i], &refcount);
3922 			if (error == 0) {
3923 				spa->spa_feat_refcount_cache[i] = refcount;
3924 			} else if (error == ENOTSUP) {
3925 				spa->spa_feat_refcount_cache[i] =
3926 				    SPA_FEATURE_DISABLED;
3927 			} else {
3928 				spa_load_failed(spa, "error getting refcount "
3929 				    "for feature %s [error=%d]",
3930 				    spa_feature_table[i].fi_guid, error);
3931 				return (spa_vdev_err(rvd,
3932 				    VDEV_AUX_CORRUPT_DATA, EIO));
3933 			}
3934 		}
3935 	}
3936 
3937 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3938 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3939 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3940 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3941 	}
3942 
3943 	/*
3944 	 * Encryption was added before bookmark_v2, even though bookmark_v2
3945 	 * is now a dependency. If this pool has encryption enabled without
3946 	 * bookmark_v2, trigger an errata message.
3947 	 */
3948 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
3949 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
3950 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
3951 	}
3952 
3953 	return (0);
3954 }
3955 
3956 static int
3957 spa_ld_load_special_directories(spa_t *spa)
3958 {
3959 	int error = 0;
3960 	vdev_t *rvd = spa->spa_root_vdev;
3961 
3962 	spa->spa_is_initializing = B_TRUE;
3963 	error = dsl_pool_open(spa->spa_dsl_pool);
3964 	spa->spa_is_initializing = B_FALSE;
3965 	if (error != 0) {
3966 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3967 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3968 	}
3969 
3970 	return (0);
3971 }
3972 
3973 static int
3974 spa_ld_get_props(spa_t *spa)
3975 {
3976 	int error = 0;
3977 	uint64_t obj;
3978 	vdev_t *rvd = spa->spa_root_vdev;
3979 
3980 	/* Grab the checksum salt from the MOS. */
3981 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3982 	    DMU_POOL_CHECKSUM_SALT, 1,
3983 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
3984 	    spa->spa_cksum_salt.zcs_bytes);
3985 	if (error == ENOENT) {
3986 		/* Generate a new salt for subsequent use */
3987 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3988 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
3989 	} else if (error != 0) {
3990 		spa_load_failed(spa, "unable to retrieve checksum salt from "
3991 		    "MOS [error=%d]", error);
3992 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3993 	}
3994 
3995 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
3996 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3997 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
3998 	if (error != 0) {
3999 		spa_load_failed(spa, "error opening deferred-frees bpobj "
4000 		    "[error=%d]", error);
4001 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4002 	}
4003 
4004 	/*
4005 	 * Load the bit that tells us to use the new accounting function
4006 	 * (raid-z deflation).  If we have an older pool, this will not
4007 	 * be present.
4008 	 */
4009 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4010 	if (error != 0 && error != ENOENT)
4011 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4012 
4013 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4014 	    &spa->spa_creation_version, B_FALSE);
4015 	if (error != 0 && error != ENOENT)
4016 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4017 
4018 	/*
4019 	 * Load the persistent error log.  If we have an older pool, this will
4020 	 * not be present.
4021 	 */
4022 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4023 	    B_FALSE);
4024 	if (error != 0 && error != ENOENT)
4025 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4026 
4027 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4028 	    &spa->spa_errlog_scrub, B_FALSE);
4029 	if (error != 0 && error != ENOENT)
4030 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4031 
4032 	/*
4033 	 * Load the livelist deletion field. If a livelist is queued for
4034 	 * deletion, indicate that in the spa
4035 	 */
4036 	error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4037 	    &spa->spa_livelists_to_delete, B_FALSE);
4038 	if (error != 0 && error != ENOENT)
4039 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4040 
4041 	/*
4042 	 * Load the history object.  If we have an older pool, this
4043 	 * will not be present.
4044 	 */
4045 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4046 	if (error != 0 && error != ENOENT)
4047 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4048 
4049 	/*
4050 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
4051 	 * be present; in this case, defer its creation to a later time to
4052 	 * avoid dirtying the MOS this early / out of sync context. See
4053 	 * spa_sync_config_object.
4054 	 */
4055 
4056 	/* The sentinel is only available in the MOS config. */
4057 	nvlist_t *mos_config;
4058 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4059 		spa_load_failed(spa, "unable to retrieve MOS config");
4060 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4061 	}
4062 
4063 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4064 	    &spa->spa_all_vdev_zaps, B_FALSE);
4065 
4066 	if (error == ENOENT) {
4067 		VERIFY(!nvlist_exists(mos_config,
4068 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4069 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4070 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4071 	} else if (error != 0) {
4072 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4073 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4074 		/*
4075 		 * An older version of ZFS overwrote the sentinel value, so
4076 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4077 		 * destruction to later; see spa_sync_config_object.
4078 		 */
4079 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
4080 		/*
4081 		 * We're assuming that no vdevs have had their ZAPs created
4082 		 * before this. Better be sure of it.
4083 		 */
4084 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4085 	}
4086 	nvlist_free(mos_config);
4087 
4088 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4089 
4090 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4091 	    B_FALSE);
4092 	if (error && error != ENOENT)
4093 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4094 
4095 	if (error == 0) {
4096 		uint64_t autoreplace;
4097 
4098 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4099 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4100 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4101 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4102 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4103 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4104 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4105 		spa->spa_autoreplace = (autoreplace != 0);
4106 	}
4107 
4108 	/*
4109 	 * If we are importing a pool with missing top-level vdevs,
4110 	 * we enforce that the pool doesn't panic or get suspended on
4111 	 * error since the likelihood of missing data is extremely high.
4112 	 */
4113 	if (spa->spa_missing_tvds > 0 &&
4114 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4115 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4116 		spa_load_note(spa, "forcing failmode to 'continue' "
4117 		    "as some top level vdevs are missing");
4118 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4119 	}
4120 
4121 	return (0);
4122 }
4123 
4124 static int
4125 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4126 {
4127 	int error = 0;
4128 	vdev_t *rvd = spa->spa_root_vdev;
4129 
4130 	/*
4131 	 * If we're assembling the pool from the split-off vdevs of
4132 	 * an existing pool, we don't want to attach the spares & cache
4133 	 * devices.
4134 	 */
4135 
4136 	/*
4137 	 * Load any hot spares for this pool.
4138 	 */
4139 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4140 	    B_FALSE);
4141 	if (error != 0 && error != ENOENT)
4142 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4143 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4144 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4145 		if (load_nvlist(spa, spa->spa_spares.sav_object,
4146 		    &spa->spa_spares.sav_config) != 0) {
4147 			spa_load_failed(spa, "error loading spares nvlist");
4148 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4149 		}
4150 
4151 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4152 		spa_load_spares(spa);
4153 		spa_config_exit(spa, SCL_ALL, FTAG);
4154 	} else if (error == 0) {
4155 		spa->spa_spares.sav_sync = B_TRUE;
4156 	}
4157 
4158 	/*
4159 	 * Load any level 2 ARC devices for this pool.
4160 	 */
4161 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4162 	    &spa->spa_l2cache.sav_object, B_FALSE);
4163 	if (error != 0 && error != ENOENT)
4164 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4165 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4166 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4167 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4168 		    &spa->spa_l2cache.sav_config) != 0) {
4169 			spa_load_failed(spa, "error loading l2cache nvlist");
4170 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4171 		}
4172 
4173 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4174 		spa_load_l2cache(spa);
4175 		spa_config_exit(spa, SCL_ALL, FTAG);
4176 	} else if (error == 0) {
4177 		spa->spa_l2cache.sav_sync = B_TRUE;
4178 	}
4179 
4180 	return (0);
4181 }
4182 
4183 static int
4184 spa_ld_load_vdev_metadata(spa_t *spa)
4185 {
4186 	int error = 0;
4187 	vdev_t *rvd = spa->spa_root_vdev;
4188 
4189 	/*
4190 	 * If the 'multihost' property is set, then never allow a pool to
4191 	 * be imported when the system hostid is zero.  The exception to
4192 	 * this rule is zdb which is always allowed to access pools.
4193 	 */
4194 	if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4195 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4196 		fnvlist_add_uint64(spa->spa_load_info,
4197 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4198 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4199 	}
4200 
4201 	/*
4202 	 * If the 'autoreplace' property is set, then post a resource notifying
4203 	 * the ZFS DE that it should not issue any faults for unopenable
4204 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
4205 	 * unopenable vdevs so that the normal autoreplace handler can take
4206 	 * over.
4207 	 */
4208 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4209 		spa_check_removed(spa->spa_root_vdev);
4210 		/*
4211 		 * For the import case, this is done in spa_import(), because
4212 		 * at this point we're using the spare definitions from
4213 		 * the MOS config, not necessarily from the userland config.
4214 		 */
4215 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4216 			spa_aux_check_removed(&spa->spa_spares);
4217 			spa_aux_check_removed(&spa->spa_l2cache);
4218 		}
4219 	}
4220 
4221 	/*
4222 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4223 	 */
4224 	error = vdev_load(rvd);
4225 	if (error != 0) {
4226 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4227 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4228 	}
4229 
4230 	error = spa_ld_log_spacemaps(spa);
4231 	if (error != 0) {
4232 		spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]",
4233 		    error);
4234 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4235 	}
4236 
4237 	/*
4238 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4239 	 */
4240 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4241 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4242 	spa_config_exit(spa, SCL_ALL, FTAG);
4243 
4244 	return (0);
4245 }
4246 
4247 static int
4248 spa_ld_load_dedup_tables(spa_t *spa)
4249 {
4250 	int error = 0;
4251 	vdev_t *rvd = spa->spa_root_vdev;
4252 
4253 	error = ddt_load(spa);
4254 	if (error != 0) {
4255 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4256 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4257 	}
4258 
4259 	return (0);
4260 }
4261 
4262 static int
4263 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
4264 {
4265 	vdev_t *rvd = spa->spa_root_vdev;
4266 
4267 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4268 		boolean_t missing = spa_check_logs(spa);
4269 		if (missing) {
4270 			if (spa->spa_missing_tvds != 0) {
4271 				spa_load_note(spa, "spa_check_logs failed "
4272 				    "so dropping the logs");
4273 			} else {
4274 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4275 				spa_load_failed(spa, "spa_check_logs failed");
4276 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4277 				    ENXIO));
4278 			}
4279 		}
4280 	}
4281 
4282 	return (0);
4283 }
4284 
4285 static int
4286 spa_ld_verify_pool_data(spa_t *spa)
4287 {
4288 	int error = 0;
4289 	vdev_t *rvd = spa->spa_root_vdev;
4290 
4291 	/*
4292 	 * We've successfully opened the pool, verify that we're ready
4293 	 * to start pushing transactions.
4294 	 */
4295 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4296 		error = spa_load_verify(spa);
4297 		if (error != 0) {
4298 			spa_load_failed(spa, "spa_load_verify failed "
4299 			    "[error=%d]", error);
4300 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4301 			    error));
4302 		}
4303 	}
4304 
4305 	return (0);
4306 }
4307 
4308 static void
4309 spa_ld_claim_log_blocks(spa_t *spa)
4310 {
4311 	dmu_tx_t *tx;
4312 	dsl_pool_t *dp = spa_get_dsl(spa);
4313 
4314 	/*
4315 	 * Claim log blocks that haven't been committed yet.
4316 	 * This must all happen in a single txg.
4317 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4318 	 * invoked from zil_claim_log_block()'s i/o done callback.
4319 	 * Price of rollback is that we abandon the log.
4320 	 */
4321 	spa->spa_claiming = B_TRUE;
4322 
4323 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4324 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4325 	    zil_claim, tx, DS_FIND_CHILDREN);
4326 	dmu_tx_commit(tx);
4327 
4328 	spa->spa_claiming = B_FALSE;
4329 
4330 	spa_set_log_state(spa, SPA_LOG_GOOD);
4331 }
4332 
4333 static void
4334 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4335     boolean_t update_config_cache)
4336 {
4337 	vdev_t *rvd = spa->spa_root_vdev;
4338 	int need_update = B_FALSE;
4339 
4340 	/*
4341 	 * If the config cache is stale, or we have uninitialized
4342 	 * metaslabs (see spa_vdev_add()), then update the config.
4343 	 *
4344 	 * If this is a verbatim import, trust the current
4345 	 * in-core spa_config and update the disk labels.
4346 	 */
4347 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4348 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
4349 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
4350 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4351 		need_update = B_TRUE;
4352 
4353 	for (int c = 0; c < rvd->vdev_children; c++)
4354 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
4355 			need_update = B_TRUE;
4356 
4357 	/*
4358 	 * Update the config cache asynchronously in case we're the
4359 	 * root pool, in which case the config cache isn't writable yet.
4360 	 */
4361 	if (need_update)
4362 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4363 }
4364 
4365 static void
4366 spa_ld_prepare_for_reload(spa_t *spa)
4367 {
4368 	spa_mode_t mode = spa->spa_mode;
4369 	int async_suspended = spa->spa_async_suspended;
4370 
4371 	spa_unload(spa);
4372 	spa_deactivate(spa);
4373 	spa_activate(spa, mode);
4374 
4375 	/*
4376 	 * We save the value of spa_async_suspended as it gets reset to 0 by
4377 	 * spa_unload(). We want to restore it back to the original value before
4378 	 * returning as we might be calling spa_async_resume() later.
4379 	 */
4380 	spa->spa_async_suspended = async_suspended;
4381 }
4382 
4383 static int
4384 spa_ld_read_checkpoint_txg(spa_t *spa)
4385 {
4386 	uberblock_t checkpoint;
4387 	int error = 0;
4388 
4389 	ASSERT0(spa->spa_checkpoint_txg);
4390 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4391 
4392 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4393 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4394 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4395 
4396 	if (error == ENOENT)
4397 		return (0);
4398 
4399 	if (error != 0)
4400 		return (error);
4401 
4402 	ASSERT3U(checkpoint.ub_txg, !=, 0);
4403 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4404 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4405 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
4406 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
4407 
4408 	return (0);
4409 }
4410 
4411 static int
4412 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
4413 {
4414 	int error = 0;
4415 
4416 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4417 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4418 
4419 	/*
4420 	 * Never trust the config that is provided unless we are assembling
4421 	 * a pool following a split.
4422 	 * This means don't trust blkptrs and the vdev tree in general. This
4423 	 * also effectively puts the spa in read-only mode since
4424 	 * spa_writeable() checks for spa_trust_config to be true.
4425 	 * We will later load a trusted config from the MOS.
4426 	 */
4427 	if (type != SPA_IMPORT_ASSEMBLE)
4428 		spa->spa_trust_config = B_FALSE;
4429 
4430 	/*
4431 	 * Parse the config provided to create a vdev tree.
4432 	 */
4433 	error = spa_ld_parse_config(spa, type);
4434 	if (error != 0)
4435 		return (error);
4436 
4437 	spa_import_progress_add(spa);
4438 
4439 	/*
4440 	 * Now that we have the vdev tree, try to open each vdev. This involves
4441 	 * opening the underlying physical device, retrieving its geometry and
4442 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
4443 	 * based on the success of those operations. After this we'll be ready
4444 	 * to read from the vdevs.
4445 	 */
4446 	error = spa_ld_open_vdevs(spa);
4447 	if (error != 0)
4448 		return (error);
4449 
4450 	/*
4451 	 * Read the label of each vdev and make sure that the GUIDs stored
4452 	 * there match the GUIDs in the config provided.
4453 	 * If we're assembling a new pool that's been split off from an
4454 	 * existing pool, the labels haven't yet been updated so we skip
4455 	 * validation for now.
4456 	 */
4457 	if (type != SPA_IMPORT_ASSEMBLE) {
4458 		error = spa_ld_validate_vdevs(spa);
4459 		if (error != 0)
4460 			return (error);
4461 	}
4462 
4463 	/*
4464 	 * Read all vdev labels to find the best uberblock (i.e. latest,
4465 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
4466 	 * get the list of features required to read blkptrs in the MOS from
4467 	 * the vdev label with the best uberblock and verify that our version
4468 	 * of zfs supports them all.
4469 	 */
4470 	error = spa_ld_select_uberblock(spa, type);
4471 	if (error != 0)
4472 		return (error);
4473 
4474 	/*
4475 	 * Pass that uberblock to the dsl_pool layer which will open the root
4476 	 * blkptr. This blkptr points to the latest version of the MOS and will
4477 	 * allow us to read its contents.
4478 	 */
4479 	error = spa_ld_open_rootbp(spa);
4480 	if (error != 0)
4481 		return (error);
4482 
4483 	return (0);
4484 }
4485 
4486 static int
4487 spa_ld_checkpoint_rewind(spa_t *spa)
4488 {
4489 	uberblock_t checkpoint;
4490 	int error = 0;
4491 
4492 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4493 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4494 
4495 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4496 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4497 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4498 
4499 	if (error != 0) {
4500 		spa_load_failed(spa, "unable to retrieve checkpointed "
4501 		    "uberblock from the MOS config [error=%d]", error);
4502 
4503 		if (error == ENOENT)
4504 			error = ZFS_ERR_NO_CHECKPOINT;
4505 
4506 		return (error);
4507 	}
4508 
4509 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4510 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4511 
4512 	/*
4513 	 * We need to update the txg and timestamp of the checkpointed
4514 	 * uberblock to be higher than the latest one. This ensures that
4515 	 * the checkpointed uberblock is selected if we were to close and
4516 	 * reopen the pool right after we've written it in the vdev labels.
4517 	 * (also see block comment in vdev_uberblock_compare)
4518 	 */
4519 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4520 	checkpoint.ub_timestamp = gethrestime_sec();
4521 
4522 	/*
4523 	 * Set current uberblock to be the checkpointed uberblock.
4524 	 */
4525 	spa->spa_uberblock = checkpoint;
4526 
4527 	/*
4528 	 * If we are doing a normal rewind, then the pool is open for
4529 	 * writing and we sync the "updated" checkpointed uberblock to
4530 	 * disk. Once this is done, we've basically rewound the whole
4531 	 * pool and there is no way back.
4532 	 *
4533 	 * There are cases when we don't want to attempt and sync the
4534 	 * checkpointed uberblock to disk because we are opening a
4535 	 * pool as read-only. Specifically, verifying the checkpointed
4536 	 * state with zdb, and importing the checkpointed state to get
4537 	 * a "preview" of its content.
4538 	 */
4539 	if (spa_writeable(spa)) {
4540 		vdev_t *rvd = spa->spa_root_vdev;
4541 
4542 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4543 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4544 		int svdcount = 0;
4545 		int children = rvd->vdev_children;
4546 		int c0 = spa_get_random(children);
4547 
4548 		for (int c = 0; c < children; c++) {
4549 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4550 
4551 			/* Stop when revisiting the first vdev */
4552 			if (c > 0 && svd[0] == vd)
4553 				break;
4554 
4555 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4556 			    !vdev_is_concrete(vd))
4557 				continue;
4558 
4559 			svd[svdcount++] = vd;
4560 			if (svdcount == SPA_SYNC_MIN_VDEVS)
4561 				break;
4562 		}
4563 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4564 		if (error == 0)
4565 			spa->spa_last_synced_guid = rvd->vdev_guid;
4566 		spa_config_exit(spa, SCL_ALL, FTAG);
4567 
4568 		if (error != 0) {
4569 			spa_load_failed(spa, "failed to write checkpointed "
4570 			    "uberblock to the vdev labels [error=%d]", error);
4571 			return (error);
4572 		}
4573 	}
4574 
4575 	return (0);
4576 }
4577 
4578 static int
4579 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4580     boolean_t *update_config_cache)
4581 {
4582 	int error;
4583 
4584 	/*
4585 	 * Parse the config for pool, open and validate vdevs,
4586 	 * select an uberblock, and use that uberblock to open
4587 	 * the MOS.
4588 	 */
4589 	error = spa_ld_mos_init(spa, type);
4590 	if (error != 0)
4591 		return (error);
4592 
4593 	/*
4594 	 * Retrieve the trusted config stored in the MOS and use it to create
4595 	 * a new, exact version of the vdev tree, then reopen all vdevs.
4596 	 */
4597 	error = spa_ld_trusted_config(spa, type, B_FALSE);
4598 	if (error == EAGAIN) {
4599 		if (update_config_cache != NULL)
4600 			*update_config_cache = B_TRUE;
4601 
4602 		/*
4603 		 * Redo the loading process with the trusted config if it is
4604 		 * too different from the untrusted config.
4605 		 */
4606 		spa_ld_prepare_for_reload(spa);
4607 		spa_load_note(spa, "RELOADING");
4608 		error = spa_ld_mos_init(spa, type);
4609 		if (error != 0)
4610 			return (error);
4611 
4612 		error = spa_ld_trusted_config(spa, type, B_TRUE);
4613 		if (error != 0)
4614 			return (error);
4615 
4616 	} else if (error != 0) {
4617 		return (error);
4618 	}
4619 
4620 	return (0);
4621 }
4622 
4623 /*
4624  * Load an existing storage pool, using the config provided. This config
4625  * describes which vdevs are part of the pool and is later validated against
4626  * partial configs present in each vdev's label and an entire copy of the
4627  * config stored in the MOS.
4628  */
4629 static int
4630 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
4631 {
4632 	int error = 0;
4633 	boolean_t missing_feat_write = B_FALSE;
4634 	boolean_t checkpoint_rewind =
4635 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4636 	boolean_t update_config_cache = B_FALSE;
4637 
4638 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4639 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4640 
4641 	spa_load_note(spa, "LOADING");
4642 
4643 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4644 	if (error != 0)
4645 		return (error);
4646 
4647 	/*
4648 	 * If we are rewinding to the checkpoint then we need to repeat
4649 	 * everything we've done so far in this function but this time
4650 	 * selecting the checkpointed uberblock and using that to open
4651 	 * the MOS.
4652 	 */
4653 	if (checkpoint_rewind) {
4654 		/*
4655 		 * If we are rewinding to the checkpoint update config cache
4656 		 * anyway.
4657 		 */
4658 		update_config_cache = B_TRUE;
4659 
4660 		/*
4661 		 * Extract the checkpointed uberblock from the current MOS
4662 		 * and use this as the pool's uberblock from now on. If the
4663 		 * pool is imported as writeable we also write the checkpoint
4664 		 * uberblock to the labels, making the rewind permanent.
4665 		 */
4666 		error = spa_ld_checkpoint_rewind(spa);
4667 		if (error != 0)
4668 			return (error);
4669 
4670 		/*
4671 		 * Redo the loading process again with the
4672 		 * checkpointed uberblock.
4673 		 */
4674 		spa_ld_prepare_for_reload(spa);
4675 		spa_load_note(spa, "LOADING checkpointed uberblock");
4676 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4677 		if (error != 0)
4678 			return (error);
4679 	}
4680 
4681 	/*
4682 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
4683 	 */
4684 	error = spa_ld_read_checkpoint_txg(spa);
4685 	if (error != 0)
4686 		return (error);
4687 
4688 	/*
4689 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4690 	 * from the pool and their contents were re-mapped to other vdevs. Note
4691 	 * that everything that we read before this step must have been
4692 	 * rewritten on concrete vdevs after the last device removal was
4693 	 * initiated. Otherwise we could be reading from indirect vdevs before
4694 	 * we have loaded their mappings.
4695 	 */
4696 	error = spa_ld_open_indirect_vdev_metadata(spa);
4697 	if (error != 0)
4698 		return (error);
4699 
4700 	/*
4701 	 * Retrieve the full list of active features from the MOS and check if
4702 	 * they are all supported.
4703 	 */
4704 	error = spa_ld_check_features(spa, &missing_feat_write);
4705 	if (error != 0)
4706 		return (error);
4707 
4708 	/*
4709 	 * Load several special directories from the MOS needed by the dsl_pool
4710 	 * layer.
4711 	 */
4712 	error = spa_ld_load_special_directories(spa);
4713 	if (error != 0)
4714 		return (error);
4715 
4716 	/*
4717 	 * Retrieve pool properties from the MOS.
4718 	 */
4719 	error = spa_ld_get_props(spa);
4720 	if (error != 0)
4721 		return (error);
4722 
4723 	/*
4724 	 * Retrieve the list of auxiliary devices - cache devices and spares -
4725 	 * and open them.
4726 	 */
4727 	error = spa_ld_open_aux_vdevs(spa, type);
4728 	if (error != 0)
4729 		return (error);
4730 
4731 	/*
4732 	 * Load the metadata for all vdevs. Also check if unopenable devices
4733 	 * should be autoreplaced.
4734 	 */
4735 	error = spa_ld_load_vdev_metadata(spa);
4736 	if (error != 0)
4737 		return (error);
4738 
4739 	error = spa_ld_load_dedup_tables(spa);
4740 	if (error != 0)
4741 		return (error);
4742 
4743 	/*
4744 	 * Verify the logs now to make sure we don't have any unexpected errors
4745 	 * when we claim log blocks later.
4746 	 */
4747 	error = spa_ld_verify_logs(spa, type, ereport);
4748 	if (error != 0)
4749 		return (error);
4750 
4751 	if (missing_feat_write) {
4752 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4753 
4754 		/*
4755 		 * At this point, we know that we can open the pool in
4756 		 * read-only mode but not read-write mode. We now have enough
4757 		 * information and can return to userland.
4758 		 */
4759 		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4760 		    ENOTSUP));
4761 	}
4762 
4763 	/*
4764 	 * Traverse the last txgs to make sure the pool was left off in a safe
4765 	 * state. When performing an extreme rewind, we verify the whole pool,
4766 	 * which can take a very long time.
4767 	 */
4768 	error = spa_ld_verify_pool_data(spa);
4769 	if (error != 0)
4770 		return (error);
4771 
4772 	/*
4773 	 * Calculate the deflated space for the pool. This must be done before
4774 	 * we write anything to the pool because we'd need to update the space
4775 	 * accounting using the deflated sizes.
4776 	 */
4777 	spa_update_dspace(spa);
4778 
4779 	/*
4780 	 * We have now retrieved all the information we needed to open the
4781 	 * pool. If we are importing the pool in read-write mode, a few
4782 	 * additional steps must be performed to finish the import.
4783 	 */
4784 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4785 	    spa->spa_load_max_txg == UINT64_MAX)) {
4786 		uint64_t config_cache_txg = spa->spa_config_txg;
4787 
4788 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4789 
4790 		/*
4791 		 * In case of a checkpoint rewind, log the original txg
4792 		 * of the checkpointed uberblock.
4793 		 */
4794 		if (checkpoint_rewind) {
4795 			spa_history_log_internal(spa, "checkpoint rewind",
4796 			    NULL, "rewound state to txg=%llu",
4797 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4798 		}
4799 
4800 		/*
4801 		 * Traverse the ZIL and claim all blocks.
4802 		 */
4803 		spa_ld_claim_log_blocks(spa);
4804 
4805 		/*
4806 		 * Kick-off the syncing thread.
4807 		 */
4808 		spa->spa_sync_on = B_TRUE;
4809 		txg_sync_start(spa->spa_dsl_pool);
4810 		mmp_thread_start(spa);
4811 
4812 		/*
4813 		 * Wait for all claims to sync.  We sync up to the highest
4814 		 * claimed log block birth time so that claimed log blocks
4815 		 * don't appear to be from the future.  spa_claim_max_txg
4816 		 * will have been set for us by ZIL traversal operations
4817 		 * performed above.
4818 		 */
4819 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4820 
4821 		/*
4822 		 * Check if we need to request an update of the config. On the
4823 		 * next sync, we would update the config stored in vdev labels
4824 		 * and the cachefile (by default /etc/zfs/zpool.cache).
4825 		 */
4826 		spa_ld_check_for_config_update(spa, config_cache_txg,
4827 		    update_config_cache);
4828 
4829 		/*
4830 		 * Check if a rebuild was in progress and if so resume it.
4831 		 * Then check all DTLs to see if anything needs resilvering.
4832 		 * The resilver will be deferred if a rebuild was started.
4833 		 */
4834 		if (vdev_rebuild_active(spa->spa_root_vdev)) {
4835 			vdev_rebuild_restart(spa);
4836 		} else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4837 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4838 			spa_async_request(spa, SPA_ASYNC_RESILVER);
4839 		}
4840 
4841 		/*
4842 		 * Log the fact that we booted up (so that we can detect if
4843 		 * we rebooted in the middle of an operation).
4844 		 */
4845 		spa_history_log_version(spa, "open", NULL);
4846 
4847 		spa_restart_removal(spa);
4848 		spa_spawn_aux_threads(spa);
4849 
4850 		/*
4851 		 * Delete any inconsistent datasets.
4852 		 *
4853 		 * Note:
4854 		 * Since we may be issuing deletes for clones here,
4855 		 * we make sure to do so after we've spawned all the
4856 		 * auxiliary threads above (from which the livelist
4857 		 * deletion zthr is part of).
4858 		 */
4859 		(void) dmu_objset_find(spa_name(spa),
4860 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
4861 
4862 		/*
4863 		 * Clean up any stale temporary dataset userrefs.
4864 		 */
4865 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
4866 
4867 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4868 		vdev_initialize_restart(spa->spa_root_vdev);
4869 		vdev_trim_restart(spa->spa_root_vdev);
4870 		vdev_autotrim_restart(spa);
4871 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4872 	}
4873 
4874 	spa_import_progress_remove(spa_guid(spa));
4875 	spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
4876 
4877 	spa_load_note(spa, "LOADED");
4878 
4879 	return (0);
4880 }
4881 
4882 static int
4883 spa_load_retry(spa_t *spa, spa_load_state_t state)
4884 {
4885 	spa_mode_t mode = spa->spa_mode;
4886 
4887 	spa_unload(spa);
4888 	spa_deactivate(spa);
4889 
4890 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
4891 
4892 	spa_activate(spa, mode);
4893 	spa_async_suspend(spa);
4894 
4895 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
4896 	    (u_longlong_t)spa->spa_load_max_txg);
4897 
4898 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
4899 }
4900 
4901 /*
4902  * If spa_load() fails this function will try loading prior txg's. If
4903  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
4904  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
4905  * function will not rewind the pool and will return the same error as
4906  * spa_load().
4907  */
4908 static int
4909 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
4910     int rewind_flags)
4911 {
4912 	nvlist_t *loadinfo = NULL;
4913 	nvlist_t *config = NULL;
4914 	int load_error, rewind_error;
4915 	uint64_t safe_rewind_txg;
4916 	uint64_t min_txg;
4917 
4918 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
4919 		spa->spa_load_max_txg = spa->spa_load_txg;
4920 		spa_set_log_state(spa, SPA_LOG_CLEAR);
4921 	} else {
4922 		spa->spa_load_max_txg = max_request;
4923 		if (max_request != UINT64_MAX)
4924 			spa->spa_extreme_rewind = B_TRUE;
4925 	}
4926 
4927 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
4928 	if (load_error == 0)
4929 		return (0);
4930 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
4931 		/*
4932 		 * When attempting checkpoint-rewind on a pool with no
4933 		 * checkpoint, we should not attempt to load uberblocks
4934 		 * from previous txgs when spa_load fails.
4935 		 */
4936 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4937 		spa_import_progress_remove(spa_guid(spa));
4938 		return (load_error);
4939 	}
4940 
4941 	if (spa->spa_root_vdev != NULL)
4942 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4943 
4944 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
4945 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
4946 
4947 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
4948 		nvlist_free(config);
4949 		spa_import_progress_remove(spa_guid(spa));
4950 		return (load_error);
4951 	}
4952 
4953 	if (state == SPA_LOAD_RECOVER) {
4954 		/* Price of rolling back is discarding txgs, including log */
4955 		spa_set_log_state(spa, SPA_LOG_CLEAR);
4956 	} else {
4957 		/*
4958 		 * If we aren't rolling back save the load info from our first
4959 		 * import attempt so that we can restore it after attempting
4960 		 * to rewind.
4961 		 */
4962 		loadinfo = spa->spa_load_info;
4963 		spa->spa_load_info = fnvlist_alloc();
4964 	}
4965 
4966 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
4967 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
4968 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
4969 	    TXG_INITIAL : safe_rewind_txg;
4970 
4971 	/*
4972 	 * Continue as long as we're finding errors, we're still within
4973 	 * the acceptable rewind range, and we're still finding uberblocks
4974 	 */
4975 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
4976 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
4977 		if (spa->spa_load_max_txg < safe_rewind_txg)
4978 			spa->spa_extreme_rewind = B_TRUE;
4979 		rewind_error = spa_load_retry(spa, state);
4980 	}
4981 
4982 	spa->spa_extreme_rewind = B_FALSE;
4983 	spa->spa_load_max_txg = UINT64_MAX;
4984 
4985 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
4986 		spa_config_set(spa, config);
4987 	else
4988 		nvlist_free(config);
4989 
4990 	if (state == SPA_LOAD_RECOVER) {
4991 		ASSERT3P(loadinfo, ==, NULL);
4992 		spa_import_progress_remove(spa_guid(spa));
4993 		return (rewind_error);
4994 	} else {
4995 		/* Store the rewind info as part of the initial load info */
4996 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
4997 		    spa->spa_load_info);
4998 
4999 		/* Restore the initial load info */
5000 		fnvlist_free(spa->spa_load_info);
5001 		spa->spa_load_info = loadinfo;
5002 
5003 		spa_import_progress_remove(spa_guid(spa));
5004 		return (load_error);
5005 	}
5006 }
5007 
5008 /*
5009  * Pool Open/Import
5010  *
5011  * The import case is identical to an open except that the configuration is sent
5012  * down from userland, instead of grabbed from the configuration cache.  For the
5013  * case of an open, the pool configuration will exist in the
5014  * POOL_STATE_UNINITIALIZED state.
5015  *
5016  * The stats information (gen/count/ustats) is used to gather vdev statistics at
5017  * the same time open the pool, without having to keep around the spa_t in some
5018  * ambiguous state.
5019  */
5020 static int
5021 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
5022     nvlist_t **config)
5023 {
5024 	spa_t *spa;
5025 	spa_load_state_t state = SPA_LOAD_OPEN;
5026 	int error;
5027 	int locked = B_FALSE;
5028 	int firstopen = B_FALSE;
5029 
5030 	*spapp = NULL;
5031 
5032 	/*
5033 	 * As disgusting as this is, we need to support recursive calls to this
5034 	 * function because dsl_dir_open() is called during spa_load(), and ends
5035 	 * up calling spa_open() again.  The real fix is to figure out how to
5036 	 * avoid dsl_dir_open() calling this in the first place.
5037 	 */
5038 	if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5039 		mutex_enter(&spa_namespace_lock);
5040 		locked = B_TRUE;
5041 	}
5042 
5043 	if ((spa = spa_lookup(pool)) == NULL) {
5044 		if (locked)
5045 			mutex_exit(&spa_namespace_lock);
5046 		return (SET_ERROR(ENOENT));
5047 	}
5048 
5049 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5050 		zpool_load_policy_t policy;
5051 
5052 		firstopen = B_TRUE;
5053 
5054 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5055 		    &policy);
5056 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5057 			state = SPA_LOAD_RECOVER;
5058 
5059 		spa_activate(spa, spa_mode_global);
5060 
5061 		if (state != SPA_LOAD_RECOVER)
5062 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5063 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5064 
5065 		zfs_dbgmsg("spa_open_common: opening %s", pool);
5066 		error = spa_load_best(spa, state, policy.zlp_txg,
5067 		    policy.zlp_rewind);
5068 
5069 		if (error == EBADF) {
5070 			/*
5071 			 * If vdev_validate() returns failure (indicated by
5072 			 * EBADF), it indicates that one of the vdevs indicates
5073 			 * that the pool has been exported or destroyed.  If
5074 			 * this is the case, the config cache is out of sync and
5075 			 * we should remove the pool from the namespace.
5076 			 */
5077 			spa_unload(spa);
5078 			spa_deactivate(spa);
5079 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
5080 			spa_remove(spa);
5081 			if (locked)
5082 				mutex_exit(&spa_namespace_lock);
5083 			return (SET_ERROR(ENOENT));
5084 		}
5085 
5086 		if (error) {
5087 			/*
5088 			 * We can't open the pool, but we still have useful
5089 			 * information: the state of each vdev after the
5090 			 * attempted vdev_open().  Return this to the user.
5091 			 */
5092 			if (config != NULL && spa->spa_config) {
5093 				VERIFY(nvlist_dup(spa->spa_config, config,
5094 				    KM_SLEEP) == 0);
5095 				VERIFY(nvlist_add_nvlist(*config,
5096 				    ZPOOL_CONFIG_LOAD_INFO,
5097 				    spa->spa_load_info) == 0);
5098 			}
5099 			spa_unload(spa);
5100 			spa_deactivate(spa);
5101 			spa->spa_last_open_failed = error;
5102 			if (locked)
5103 				mutex_exit(&spa_namespace_lock);
5104 			*spapp = NULL;
5105 			return (error);
5106 		}
5107 	}
5108 
5109 	spa_open_ref(spa, tag);
5110 
5111 	if (config != NULL)
5112 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5113 
5114 	/*
5115 	 * If we've recovered the pool, pass back any information we
5116 	 * gathered while doing the load.
5117 	 */
5118 	if (state == SPA_LOAD_RECOVER) {
5119 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5120 		    spa->spa_load_info) == 0);
5121 	}
5122 
5123 	if (locked) {
5124 		spa->spa_last_open_failed = 0;
5125 		spa->spa_last_ubsync_txg = 0;
5126 		spa->spa_load_txg = 0;
5127 		mutex_exit(&spa_namespace_lock);
5128 	}
5129 
5130 	if (firstopen)
5131 		zvol_create_minors_recursive(spa_name(spa));
5132 
5133 	*spapp = spa;
5134 
5135 	return (0);
5136 }
5137 
5138 int
5139 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
5140     nvlist_t **config)
5141 {
5142 	return (spa_open_common(name, spapp, tag, policy, config));
5143 }
5144 
5145 int
5146 spa_open(const char *name, spa_t **spapp, void *tag)
5147 {
5148 	return (spa_open_common(name, spapp, tag, NULL, NULL));
5149 }
5150 
5151 /*
5152  * Lookup the given spa_t, incrementing the inject count in the process,
5153  * preventing it from being exported or destroyed.
5154  */
5155 spa_t *
5156 spa_inject_addref(char *name)
5157 {
5158 	spa_t *spa;
5159 
5160 	mutex_enter(&spa_namespace_lock);
5161 	if ((spa = spa_lookup(name)) == NULL) {
5162 		mutex_exit(&spa_namespace_lock);
5163 		return (NULL);
5164 	}
5165 	spa->spa_inject_ref++;
5166 	mutex_exit(&spa_namespace_lock);
5167 
5168 	return (spa);
5169 }
5170 
5171 void
5172 spa_inject_delref(spa_t *spa)
5173 {
5174 	mutex_enter(&spa_namespace_lock);
5175 	spa->spa_inject_ref--;
5176 	mutex_exit(&spa_namespace_lock);
5177 }
5178 
5179 /*
5180  * Add spares device information to the nvlist.
5181  */
5182 static void
5183 spa_add_spares(spa_t *spa, nvlist_t *config)
5184 {
5185 	nvlist_t **spares;
5186 	uint_t i, nspares;
5187 	nvlist_t *nvroot;
5188 	uint64_t guid;
5189 	vdev_stat_t *vs;
5190 	uint_t vsc;
5191 	uint64_t pool;
5192 
5193 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5194 
5195 	if (spa->spa_spares.sav_count == 0)
5196 		return;
5197 
5198 	VERIFY(nvlist_lookup_nvlist(config,
5199 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
5200 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5201 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
5202 	if (nspares != 0) {
5203 		VERIFY(nvlist_add_nvlist_array(nvroot,
5204 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5205 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
5206 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
5207 
5208 		/*
5209 		 * Go through and find any spares which have since been
5210 		 * repurposed as an active spare.  If this is the case, update
5211 		 * their status appropriately.
5212 		 */
5213 		for (i = 0; i < nspares; i++) {
5214 			VERIFY(nvlist_lookup_uint64(spares[i],
5215 			    ZPOOL_CONFIG_GUID, &guid) == 0);
5216 			if (spa_spare_exists(guid, &pool, NULL) &&
5217 			    pool != 0ULL) {
5218 				VERIFY(nvlist_lookup_uint64_array(
5219 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
5220 				    (uint64_t **)&vs, &vsc) == 0);
5221 				vs->vs_state = VDEV_STATE_CANT_OPEN;
5222 				vs->vs_aux = VDEV_AUX_SPARED;
5223 			}
5224 		}
5225 	}
5226 }
5227 
5228 /*
5229  * Add l2cache device information to the nvlist, including vdev stats.
5230  */
5231 static void
5232 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5233 {
5234 	nvlist_t **l2cache;
5235 	uint_t i, j, nl2cache;
5236 	nvlist_t *nvroot;
5237 	uint64_t guid;
5238 	vdev_t *vd;
5239 	vdev_stat_t *vs;
5240 	uint_t vsc;
5241 
5242 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5243 
5244 	if (spa->spa_l2cache.sav_count == 0)
5245 		return;
5246 
5247 	VERIFY(nvlist_lookup_nvlist(config,
5248 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
5249 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5250 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
5251 	if (nl2cache != 0) {
5252 		VERIFY(nvlist_add_nvlist_array(nvroot,
5253 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5254 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
5255 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
5256 
5257 		/*
5258 		 * Update level 2 cache device stats.
5259 		 */
5260 
5261 		for (i = 0; i < nl2cache; i++) {
5262 			VERIFY(nvlist_lookup_uint64(l2cache[i],
5263 			    ZPOOL_CONFIG_GUID, &guid) == 0);
5264 
5265 			vd = NULL;
5266 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5267 				if (guid ==
5268 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5269 					vd = spa->spa_l2cache.sav_vdevs[j];
5270 					break;
5271 				}
5272 			}
5273 			ASSERT(vd != NULL);
5274 
5275 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
5276 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
5277 			    == 0);
5278 			vdev_get_stats(vd, vs);
5279 			vdev_config_generate_stats(vd, l2cache[i]);
5280 
5281 		}
5282 	}
5283 }
5284 
5285 static void
5286 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5287 {
5288 	zap_cursor_t zc;
5289 	zap_attribute_t za;
5290 
5291 	if (spa->spa_feat_for_read_obj != 0) {
5292 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5293 		    spa->spa_feat_for_read_obj);
5294 		    zap_cursor_retrieve(&zc, &za) == 0;
5295 		    zap_cursor_advance(&zc)) {
5296 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5297 			    za.za_num_integers == 1);
5298 			VERIFY0(nvlist_add_uint64(features, za.za_name,
5299 			    za.za_first_integer));
5300 		}
5301 		zap_cursor_fini(&zc);
5302 	}
5303 
5304 	if (spa->spa_feat_for_write_obj != 0) {
5305 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5306 		    spa->spa_feat_for_write_obj);
5307 		    zap_cursor_retrieve(&zc, &za) == 0;
5308 		    zap_cursor_advance(&zc)) {
5309 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5310 			    za.za_num_integers == 1);
5311 			VERIFY0(nvlist_add_uint64(features, za.za_name,
5312 			    za.za_first_integer));
5313 		}
5314 		zap_cursor_fini(&zc);
5315 	}
5316 }
5317 
5318 static void
5319 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5320 {
5321 	int i;
5322 
5323 	for (i = 0; i < SPA_FEATURES; i++) {
5324 		zfeature_info_t feature = spa_feature_table[i];
5325 		uint64_t refcount;
5326 
5327 		if (feature_get_refcount(spa, &feature, &refcount) != 0)
5328 			continue;
5329 
5330 		VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5331 	}
5332 }
5333 
5334 /*
5335  * Store a list of pool features and their reference counts in the
5336  * config.
5337  *
5338  * The first time this is called on a spa, allocate a new nvlist, fetch
5339  * the pool features and reference counts from disk, then save the list
5340  * in the spa. In subsequent calls on the same spa use the saved nvlist
5341  * and refresh its values from the cached reference counts.  This
5342  * ensures we don't block here on I/O on a suspended pool so 'zpool
5343  * clear' can resume the pool.
5344  */
5345 static void
5346 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5347 {
5348 	nvlist_t *features;
5349 
5350 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5351 
5352 	mutex_enter(&spa->spa_feat_stats_lock);
5353 	features = spa->spa_feat_stats;
5354 
5355 	if (features != NULL) {
5356 		spa_feature_stats_from_cache(spa, features);
5357 	} else {
5358 		VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
5359 		spa->spa_feat_stats = features;
5360 		spa_feature_stats_from_disk(spa, features);
5361 	}
5362 
5363 	VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
5364 	    features));
5365 
5366 	mutex_exit(&spa->spa_feat_stats_lock);
5367 }
5368 
5369 int
5370 spa_get_stats(const char *name, nvlist_t **config,
5371     char *altroot, size_t buflen)
5372 {
5373 	int error;
5374 	spa_t *spa;
5375 
5376 	*config = NULL;
5377 	error = spa_open_common(name, &spa, FTAG, NULL, config);
5378 
5379 	if (spa != NULL) {
5380 		/*
5381 		 * This still leaves a window of inconsistency where the spares
5382 		 * or l2cache devices could change and the config would be
5383 		 * self-inconsistent.
5384 		 */
5385 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5386 
5387 		if (*config != NULL) {
5388 			uint64_t loadtimes[2];
5389 
5390 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
5391 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
5392 			VERIFY(nvlist_add_uint64_array(*config,
5393 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
5394 
5395 			VERIFY(nvlist_add_uint64(*config,
5396 			    ZPOOL_CONFIG_ERRCOUNT,
5397 			    spa_get_errlog_size(spa)) == 0);
5398 
5399 			if (spa_suspended(spa)) {
5400 				VERIFY(nvlist_add_uint64(*config,
5401 				    ZPOOL_CONFIG_SUSPENDED,
5402 				    spa->spa_failmode) == 0);
5403 				VERIFY(nvlist_add_uint64(*config,
5404 				    ZPOOL_CONFIG_SUSPENDED_REASON,
5405 				    spa->spa_suspended) == 0);
5406 			}
5407 
5408 			spa_add_spares(spa, *config);
5409 			spa_add_l2cache(spa, *config);
5410 			spa_add_feature_stats(spa, *config);
5411 		}
5412 	}
5413 
5414 	/*
5415 	 * We want to get the alternate root even for faulted pools, so we cheat
5416 	 * and call spa_lookup() directly.
5417 	 */
5418 	if (altroot) {
5419 		if (spa == NULL) {
5420 			mutex_enter(&spa_namespace_lock);
5421 			spa = spa_lookup(name);
5422 			if (spa)
5423 				spa_altroot(spa, altroot, buflen);
5424 			else
5425 				altroot[0] = '\0';
5426 			spa = NULL;
5427 			mutex_exit(&spa_namespace_lock);
5428 		} else {
5429 			spa_altroot(spa, altroot, buflen);
5430 		}
5431 	}
5432 
5433 	if (spa != NULL) {
5434 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5435 		spa_close(spa, FTAG);
5436 	}
5437 
5438 	return (error);
5439 }
5440 
5441 /*
5442  * Validate that the auxiliary device array is well formed.  We must have an
5443  * array of nvlists, each which describes a valid leaf vdev.  If this is an
5444  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
5445  * specified, as long as they are well-formed.
5446  */
5447 static int
5448 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
5449     spa_aux_vdev_t *sav, const char *config, uint64_t version,
5450     vdev_labeltype_t label)
5451 {
5452 	nvlist_t **dev;
5453 	uint_t i, ndev;
5454 	vdev_t *vd;
5455 	int error;
5456 
5457 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5458 
5459 	/*
5460 	 * It's acceptable to have no devs specified.
5461 	 */
5462 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
5463 		return (0);
5464 
5465 	if (ndev == 0)
5466 		return (SET_ERROR(EINVAL));
5467 
5468 	/*
5469 	 * Make sure the pool is formatted with a version that supports this
5470 	 * device type.
5471 	 */
5472 	if (spa_version(spa) < version)
5473 		return (SET_ERROR(ENOTSUP));
5474 
5475 	/*
5476 	 * Set the pending device list so we correctly handle device in-use
5477 	 * checking.
5478 	 */
5479 	sav->sav_pending = dev;
5480 	sav->sav_npending = ndev;
5481 
5482 	for (i = 0; i < ndev; i++) {
5483 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
5484 		    mode)) != 0)
5485 			goto out;
5486 
5487 		if (!vd->vdev_ops->vdev_op_leaf) {
5488 			vdev_free(vd);
5489 			error = SET_ERROR(EINVAL);
5490 			goto out;
5491 		}
5492 
5493 		vd->vdev_top = vd;
5494 
5495 		if ((error = vdev_open(vd)) == 0 &&
5496 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
5497 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
5498 			    vd->vdev_guid) == 0);
5499 		}
5500 
5501 		vdev_free(vd);
5502 
5503 		if (error &&
5504 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
5505 			goto out;
5506 		else
5507 			error = 0;
5508 	}
5509 
5510 out:
5511 	sav->sav_pending = NULL;
5512 	sav->sav_npending = 0;
5513 	return (error);
5514 }
5515 
5516 static int
5517 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
5518 {
5519 	int error;
5520 
5521 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5522 
5523 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5524 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
5525 	    VDEV_LABEL_SPARE)) != 0) {
5526 		return (error);
5527 	}
5528 
5529 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5530 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
5531 	    VDEV_LABEL_L2CACHE));
5532 }
5533 
5534 static void
5535 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
5536     const char *config)
5537 {
5538 	int i;
5539 
5540 	if (sav->sav_config != NULL) {
5541 		nvlist_t **olddevs;
5542 		uint_t oldndevs;
5543 		nvlist_t **newdevs;
5544 
5545 		/*
5546 		 * Generate new dev list by concatenating with the
5547 		 * current dev list.
5548 		 */
5549 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
5550 		    &olddevs, &oldndevs) == 0);
5551 
5552 		newdevs = kmem_alloc(sizeof (void *) *
5553 		    (ndevs + oldndevs), KM_SLEEP);
5554 		for (i = 0; i < oldndevs; i++)
5555 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
5556 			    KM_SLEEP) == 0);
5557 		for (i = 0; i < ndevs; i++)
5558 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
5559 			    KM_SLEEP) == 0);
5560 
5561 		VERIFY(nvlist_remove(sav->sav_config, config,
5562 		    DATA_TYPE_NVLIST_ARRAY) == 0);
5563 
5564 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
5565 		    config, newdevs, ndevs + oldndevs) == 0);
5566 		for (i = 0; i < oldndevs + ndevs; i++)
5567 			nvlist_free(newdevs[i]);
5568 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5569 	} else {
5570 		/*
5571 		 * Generate a new dev list.
5572 		 */
5573 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
5574 		    KM_SLEEP) == 0);
5575 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
5576 		    devs, ndevs) == 0);
5577 	}
5578 }
5579 
5580 /*
5581  * Stop and drop level 2 ARC devices
5582  */
5583 void
5584 spa_l2cache_drop(spa_t *spa)
5585 {
5586 	vdev_t *vd;
5587 	int i;
5588 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
5589 
5590 	for (i = 0; i < sav->sav_count; i++) {
5591 		uint64_t pool;
5592 
5593 		vd = sav->sav_vdevs[i];
5594 		ASSERT(vd != NULL);
5595 
5596 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5597 		    pool != 0ULL && l2arc_vdev_present(vd))
5598 			l2arc_remove_vdev(vd);
5599 	}
5600 }
5601 
5602 /*
5603  * Verify encryption parameters for spa creation. If we are encrypting, we must
5604  * have the encryption feature flag enabled.
5605  */
5606 static int
5607 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5608     boolean_t has_encryption)
5609 {
5610 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5611 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5612 	    !has_encryption)
5613 		return (SET_ERROR(ENOTSUP));
5614 
5615 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5616 }
5617 
5618 /*
5619  * Pool Creation
5620  */
5621 int
5622 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5623     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5624 {
5625 	spa_t *spa;
5626 	char *altroot = NULL;
5627 	vdev_t *rvd;
5628 	dsl_pool_t *dp;
5629 	dmu_tx_t *tx;
5630 	int error = 0;
5631 	uint64_t txg = TXG_INITIAL;
5632 	nvlist_t **spares, **l2cache;
5633 	uint_t nspares, nl2cache;
5634 	uint64_t version, obj;
5635 	boolean_t has_features;
5636 	boolean_t has_encryption;
5637 	boolean_t has_allocclass;
5638 	spa_feature_t feat;
5639 	char *feat_name;
5640 	char *poolname;
5641 	nvlist_t *nvl;
5642 
5643 	if (props == NULL ||
5644 	    nvlist_lookup_string(props, "tname", &poolname) != 0)
5645 		poolname = (char *)pool;
5646 
5647 	/*
5648 	 * If this pool already exists, return failure.
5649 	 */
5650 	mutex_enter(&spa_namespace_lock);
5651 	if (spa_lookup(poolname) != NULL) {
5652 		mutex_exit(&spa_namespace_lock);
5653 		return (SET_ERROR(EEXIST));
5654 	}
5655 
5656 	/*
5657 	 * Allocate a new spa_t structure.
5658 	 */
5659 	nvl = fnvlist_alloc();
5660 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5661 	(void) nvlist_lookup_string(props,
5662 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5663 	spa = spa_add(poolname, nvl, altroot);
5664 	fnvlist_free(nvl);
5665 	spa_activate(spa, spa_mode_global);
5666 
5667 	if (props && (error = spa_prop_validate(spa, props))) {
5668 		spa_deactivate(spa);
5669 		spa_remove(spa);
5670 		mutex_exit(&spa_namespace_lock);
5671 		return (error);
5672 	}
5673 
5674 	/*
5675 	 * Temporary pool names should never be written to disk.
5676 	 */
5677 	if (poolname != pool)
5678 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5679 
5680 	has_features = B_FALSE;
5681 	has_encryption = B_FALSE;
5682 	has_allocclass = B_FALSE;
5683 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5684 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5685 		if (zpool_prop_feature(nvpair_name(elem))) {
5686 			has_features = B_TRUE;
5687 
5688 			feat_name = strchr(nvpair_name(elem), '@') + 1;
5689 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
5690 			if (feat == SPA_FEATURE_ENCRYPTION)
5691 				has_encryption = B_TRUE;
5692 			if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
5693 				has_allocclass = B_TRUE;
5694 		}
5695 	}
5696 
5697 	/* verify encryption params, if they were provided */
5698 	if (dcp != NULL) {
5699 		error = spa_create_check_encryption_params(dcp, has_encryption);
5700 		if (error != 0) {
5701 			spa_deactivate(spa);
5702 			spa_remove(spa);
5703 			mutex_exit(&spa_namespace_lock);
5704 			return (error);
5705 		}
5706 	}
5707 	if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
5708 		spa_deactivate(spa);
5709 		spa_remove(spa);
5710 		mutex_exit(&spa_namespace_lock);
5711 		return (ENOTSUP);
5712 	}
5713 
5714 	if (has_features || nvlist_lookup_uint64(props,
5715 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5716 		version = SPA_VERSION;
5717 	}
5718 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5719 
5720 	spa->spa_first_txg = txg;
5721 	spa->spa_uberblock.ub_txg = txg - 1;
5722 	spa->spa_uberblock.ub_version = version;
5723 	spa->spa_ubsync = spa->spa_uberblock;
5724 	spa->spa_load_state = SPA_LOAD_CREATE;
5725 	spa->spa_removing_phys.sr_state = DSS_NONE;
5726 	spa->spa_removing_phys.sr_removing_vdev = -1;
5727 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5728 	spa->spa_indirect_vdevs_loaded = B_TRUE;
5729 
5730 	/*
5731 	 * Create "The Godfather" zio to hold all async IOs
5732 	 */
5733 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5734 	    KM_SLEEP);
5735 	for (int i = 0; i < max_ncpus; i++) {
5736 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5737 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5738 		    ZIO_FLAG_GODFATHER);
5739 	}
5740 
5741 	/*
5742 	 * Create the root vdev.
5743 	 */
5744 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5745 
5746 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5747 
5748 	ASSERT(error != 0 || rvd != NULL);
5749 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5750 
5751 	if (error == 0 && !zfs_allocatable_devs(nvroot))
5752 		error = SET_ERROR(EINVAL);
5753 
5754 	if (error == 0 &&
5755 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5756 	    (error = spa_validate_aux(spa, nvroot, txg,
5757 	    VDEV_ALLOC_ADD)) == 0) {
5758 		/*
5759 		 * instantiate the metaslab groups (this will dirty the vdevs)
5760 		 * we can no longer error exit past this point
5761 		 */
5762 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5763 			vdev_t *vd = rvd->vdev_child[c];
5764 
5765 			vdev_metaslab_set_size(vd);
5766 			vdev_expand(vd, txg);
5767 		}
5768 	}
5769 
5770 	spa_config_exit(spa, SCL_ALL, FTAG);
5771 
5772 	if (error != 0) {
5773 		spa_unload(spa);
5774 		spa_deactivate(spa);
5775 		spa_remove(spa);
5776 		mutex_exit(&spa_namespace_lock);
5777 		return (error);
5778 	}
5779 
5780 	/*
5781 	 * Get the list of spares, if specified.
5782 	 */
5783 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5784 	    &spares, &nspares) == 0) {
5785 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
5786 		    KM_SLEEP) == 0);
5787 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5788 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5789 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5790 		spa_load_spares(spa);
5791 		spa_config_exit(spa, SCL_ALL, FTAG);
5792 		spa->spa_spares.sav_sync = B_TRUE;
5793 	}
5794 
5795 	/*
5796 	 * Get the list of level 2 cache devices, if specified.
5797 	 */
5798 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5799 	    &l2cache, &nl2cache) == 0) {
5800 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5801 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5802 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5803 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5804 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5805 		spa_load_l2cache(spa);
5806 		spa_config_exit(spa, SCL_ALL, FTAG);
5807 		spa->spa_l2cache.sav_sync = B_TRUE;
5808 	}
5809 
5810 	spa->spa_is_initializing = B_TRUE;
5811 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5812 	spa->spa_is_initializing = B_FALSE;
5813 
5814 	/*
5815 	 * Create DDTs (dedup tables).
5816 	 */
5817 	ddt_create(spa);
5818 
5819 	spa_update_dspace(spa);
5820 
5821 	tx = dmu_tx_create_assigned(dp, txg);
5822 
5823 	/*
5824 	 * Create the pool's history object.
5825 	 */
5826 	if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
5827 		spa_history_create_obj(spa, tx);
5828 
5829 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5830 	spa_history_log_version(spa, "create", tx);
5831 
5832 	/*
5833 	 * Create the pool config object.
5834 	 */
5835 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5836 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5837 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5838 
5839 	if (zap_add(spa->spa_meta_objset,
5840 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5841 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5842 		cmn_err(CE_PANIC, "failed to add pool config");
5843 	}
5844 
5845 	if (zap_add(spa->spa_meta_objset,
5846 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5847 	    sizeof (uint64_t), 1, &version, tx) != 0) {
5848 		cmn_err(CE_PANIC, "failed to add pool version");
5849 	}
5850 
5851 	/* Newly created pools with the right version are always deflated. */
5852 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5853 		spa->spa_deflate = TRUE;
5854 		if (zap_add(spa->spa_meta_objset,
5855 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5856 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
5857 			cmn_err(CE_PANIC, "failed to add deflate");
5858 		}
5859 	}
5860 
5861 	/*
5862 	 * Create the deferred-free bpobj.  Turn off compression
5863 	 * because sync-to-convergence takes longer if the blocksize
5864 	 * keeps changing.
5865 	 */
5866 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
5867 	dmu_object_set_compress(spa->spa_meta_objset, obj,
5868 	    ZIO_COMPRESS_OFF, tx);
5869 	if (zap_add(spa->spa_meta_objset,
5870 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
5871 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
5872 		cmn_err(CE_PANIC, "failed to add bpobj");
5873 	}
5874 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
5875 	    spa->spa_meta_objset, obj));
5876 
5877 	/*
5878 	 * Generate some random noise for salted checksums to operate on.
5879 	 */
5880 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
5881 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
5882 
5883 	/*
5884 	 * Set pool properties.
5885 	 */
5886 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
5887 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
5888 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
5889 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
5890 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
5891 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
5892 
5893 	if (props != NULL) {
5894 		spa_configfile_set(spa, props, B_FALSE);
5895 		spa_sync_props(props, tx);
5896 	}
5897 
5898 	dmu_tx_commit(tx);
5899 
5900 	spa->spa_sync_on = B_TRUE;
5901 	txg_sync_start(dp);
5902 	mmp_thread_start(spa);
5903 	txg_wait_synced(dp, txg);
5904 
5905 	spa_spawn_aux_threads(spa);
5906 
5907 	spa_write_cachefile(spa, B_FALSE, B_TRUE);
5908 
5909 	/*
5910 	 * Don't count references from objsets that are already closed
5911 	 * and are making their way through the eviction process.
5912 	 */
5913 	spa_evicting_os_wait(spa);
5914 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
5915 	spa->spa_load_state = SPA_LOAD_NONE;
5916 
5917 	mutex_exit(&spa_namespace_lock);
5918 
5919 	return (0);
5920 }
5921 
5922 /*
5923  * Import a non-root pool into the system.
5924  */
5925 int
5926 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
5927 {
5928 	spa_t *spa;
5929 	char *altroot = NULL;
5930 	spa_load_state_t state = SPA_LOAD_IMPORT;
5931 	zpool_load_policy_t policy;
5932 	spa_mode_t mode = spa_mode_global;
5933 	uint64_t readonly = B_FALSE;
5934 	int error;
5935 	nvlist_t *nvroot;
5936 	nvlist_t **spares, **l2cache;
5937 	uint_t nspares, nl2cache;
5938 
5939 	/*
5940 	 * If a pool with this name exists, return failure.
5941 	 */
5942 	mutex_enter(&spa_namespace_lock);
5943 	if (spa_lookup(pool) != NULL) {
5944 		mutex_exit(&spa_namespace_lock);
5945 		return (SET_ERROR(EEXIST));
5946 	}
5947 
5948 	/*
5949 	 * Create and initialize the spa structure.
5950 	 */
5951 	(void) nvlist_lookup_string(props,
5952 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5953 	(void) nvlist_lookup_uint64(props,
5954 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
5955 	if (readonly)
5956 		mode = SPA_MODE_READ;
5957 	spa = spa_add(pool, config, altroot);
5958 	spa->spa_import_flags = flags;
5959 
5960 	/*
5961 	 * Verbatim import - Take a pool and insert it into the namespace
5962 	 * as if it had been loaded at boot.
5963 	 */
5964 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
5965 		if (props != NULL)
5966 			spa_configfile_set(spa, props, B_FALSE);
5967 
5968 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
5969 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5970 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5971 		mutex_exit(&spa_namespace_lock);
5972 		return (0);
5973 	}
5974 
5975 	spa_activate(spa, mode);
5976 
5977 	/*
5978 	 * Don't start async tasks until we know everything is healthy.
5979 	 */
5980 	spa_async_suspend(spa);
5981 
5982 	zpool_get_load_policy(config, &policy);
5983 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5984 		state = SPA_LOAD_RECOVER;
5985 
5986 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
5987 
5988 	if (state != SPA_LOAD_RECOVER) {
5989 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5990 		zfs_dbgmsg("spa_import: importing %s", pool);
5991 	} else {
5992 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
5993 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
5994 	}
5995 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
5996 
5997 	/*
5998 	 * Propagate anything learned while loading the pool and pass it
5999 	 * back to caller (i.e. rewind info, missing devices, etc).
6000 	 */
6001 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6002 	    spa->spa_load_info) == 0);
6003 
6004 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6005 	/*
6006 	 * Toss any existing sparelist, as it doesn't have any validity
6007 	 * anymore, and conflicts with spa_has_spare().
6008 	 */
6009 	if (spa->spa_spares.sav_config) {
6010 		nvlist_free(spa->spa_spares.sav_config);
6011 		spa->spa_spares.sav_config = NULL;
6012 		spa_load_spares(spa);
6013 	}
6014 	if (spa->spa_l2cache.sav_config) {
6015 		nvlist_free(spa->spa_l2cache.sav_config);
6016 		spa->spa_l2cache.sav_config = NULL;
6017 		spa_load_l2cache(spa);
6018 	}
6019 
6020 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
6021 	    &nvroot) == 0);
6022 	spa_config_exit(spa, SCL_ALL, FTAG);
6023 
6024 	if (props != NULL)
6025 		spa_configfile_set(spa, props, B_FALSE);
6026 
6027 	if (error != 0 || (props && spa_writeable(spa) &&
6028 	    (error = spa_prop_set(spa, props)))) {
6029 		spa_unload(spa);
6030 		spa_deactivate(spa);
6031 		spa_remove(spa);
6032 		mutex_exit(&spa_namespace_lock);
6033 		return (error);
6034 	}
6035 
6036 	spa_async_resume(spa);
6037 
6038 	/*
6039 	 * Override any spares and level 2 cache devices as specified by
6040 	 * the user, as these may have correct device names/devids, etc.
6041 	 */
6042 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6043 	    &spares, &nspares) == 0) {
6044 		if (spa->spa_spares.sav_config)
6045 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
6046 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
6047 		else
6048 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
6049 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
6050 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
6051 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
6052 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6053 		spa_load_spares(spa);
6054 		spa_config_exit(spa, SCL_ALL, FTAG);
6055 		spa->spa_spares.sav_sync = B_TRUE;
6056 	}
6057 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6058 	    &l2cache, &nl2cache) == 0) {
6059 		if (spa->spa_l2cache.sav_config)
6060 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
6061 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
6062 		else
6063 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
6064 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
6065 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6066 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
6067 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6068 		spa_load_l2cache(spa);
6069 		spa_config_exit(spa, SCL_ALL, FTAG);
6070 		spa->spa_l2cache.sav_sync = B_TRUE;
6071 	}
6072 
6073 	/*
6074 	 * Check for any removed devices.
6075 	 */
6076 	if (spa->spa_autoreplace) {
6077 		spa_aux_check_removed(&spa->spa_spares);
6078 		spa_aux_check_removed(&spa->spa_l2cache);
6079 	}
6080 
6081 	if (spa_writeable(spa)) {
6082 		/*
6083 		 * Update the config cache to include the newly-imported pool.
6084 		 */
6085 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6086 	}
6087 
6088 	/*
6089 	 * It's possible that the pool was expanded while it was exported.
6090 	 * We kick off an async task to handle this for us.
6091 	 */
6092 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6093 
6094 	spa_history_log_version(spa, "import", NULL);
6095 
6096 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6097 
6098 	mutex_exit(&spa_namespace_lock);
6099 
6100 	zvol_create_minors_recursive(pool);
6101 
6102 	return (0);
6103 }
6104 
6105 nvlist_t *
6106 spa_tryimport(nvlist_t *tryconfig)
6107 {
6108 	nvlist_t *config = NULL;
6109 	char *poolname, *cachefile;
6110 	spa_t *spa;
6111 	uint64_t state;
6112 	int error;
6113 	zpool_load_policy_t policy;
6114 
6115 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6116 		return (NULL);
6117 
6118 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6119 		return (NULL);
6120 
6121 	/*
6122 	 * Create and initialize the spa structure.
6123 	 */
6124 	mutex_enter(&spa_namespace_lock);
6125 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6126 	spa_activate(spa, SPA_MODE_READ);
6127 
6128 	/*
6129 	 * Rewind pool if a max txg was provided.
6130 	 */
6131 	zpool_get_load_policy(spa->spa_config, &policy);
6132 	if (policy.zlp_txg != UINT64_MAX) {
6133 		spa->spa_load_max_txg = policy.zlp_txg;
6134 		spa->spa_extreme_rewind = B_TRUE;
6135 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6136 		    poolname, (longlong_t)policy.zlp_txg);
6137 	} else {
6138 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6139 	}
6140 
6141 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6142 	    == 0) {
6143 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6144 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6145 	} else {
6146 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6147 	}
6148 
6149 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6150 
6151 	/*
6152 	 * If 'tryconfig' was at least parsable, return the current config.
6153 	 */
6154 	if (spa->spa_root_vdev != NULL) {
6155 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6156 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
6157 		    poolname) == 0);
6158 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
6159 		    state) == 0);
6160 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6161 		    spa->spa_uberblock.ub_timestamp) == 0);
6162 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6163 		    spa->spa_load_info) == 0);
6164 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6165 		    spa->spa_errata) == 0);
6166 
6167 		/*
6168 		 * If the bootfs property exists on this pool then we
6169 		 * copy it out so that external consumers can tell which
6170 		 * pools are bootable.
6171 		 */
6172 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
6173 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6174 
6175 			/*
6176 			 * We have to play games with the name since the
6177 			 * pool was opened as TRYIMPORT_NAME.
6178 			 */
6179 			if (dsl_dsobj_to_dsname(spa_name(spa),
6180 			    spa->spa_bootfs, tmpname) == 0) {
6181 				char *cp;
6182 				char *dsname;
6183 
6184 				dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6185 
6186 				cp = strchr(tmpname, '/');
6187 				if (cp == NULL) {
6188 					(void) strlcpy(dsname, tmpname,
6189 					    MAXPATHLEN);
6190 				} else {
6191 					(void) snprintf(dsname, MAXPATHLEN,
6192 					    "%s/%s", poolname, ++cp);
6193 				}
6194 				VERIFY(nvlist_add_string(config,
6195 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
6196 				kmem_free(dsname, MAXPATHLEN);
6197 			}
6198 			kmem_free(tmpname, MAXPATHLEN);
6199 		}
6200 
6201 		/*
6202 		 * Add the list of hot spares and level 2 cache devices.
6203 		 */
6204 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6205 		spa_add_spares(spa, config);
6206 		spa_add_l2cache(spa, config);
6207 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6208 	}
6209 
6210 	spa_unload(spa);
6211 	spa_deactivate(spa);
6212 	spa_remove(spa);
6213 	mutex_exit(&spa_namespace_lock);
6214 
6215 	return (config);
6216 }
6217 
6218 /*
6219  * Pool export/destroy
6220  *
6221  * The act of destroying or exporting a pool is very simple.  We make sure there
6222  * is no more pending I/O and any references to the pool are gone.  Then, we
6223  * update the pool state and sync all the labels to disk, removing the
6224  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6225  * we don't sync the labels or remove the configuration cache.
6226  */
6227 static int
6228 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6229     boolean_t force, boolean_t hardforce)
6230 {
6231 	spa_t *spa;
6232 
6233 	if (oldconfig)
6234 		*oldconfig = NULL;
6235 
6236 	if (!(spa_mode_global & SPA_MODE_WRITE))
6237 		return (SET_ERROR(EROFS));
6238 
6239 	mutex_enter(&spa_namespace_lock);
6240 	if ((spa = spa_lookup(pool)) == NULL) {
6241 		mutex_exit(&spa_namespace_lock);
6242 		return (SET_ERROR(ENOENT));
6243 	}
6244 
6245 	if (spa->spa_is_exporting) {
6246 		/* the pool is being exported by another thread */
6247 		mutex_exit(&spa_namespace_lock);
6248 		return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6249 	}
6250 	spa->spa_is_exporting = B_TRUE;
6251 
6252 	/*
6253 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6254 	 * reacquire the namespace lock, and see if we can export.
6255 	 */
6256 	spa_open_ref(spa, FTAG);
6257 	mutex_exit(&spa_namespace_lock);
6258 	spa_async_suspend(spa);
6259 	if (spa->spa_zvol_taskq) {
6260 		zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6261 		taskq_wait(spa->spa_zvol_taskq);
6262 	}
6263 	mutex_enter(&spa_namespace_lock);
6264 	spa_close(spa, FTAG);
6265 
6266 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6267 		goto export_spa;
6268 	/*
6269 	 * The pool will be in core if it's openable, in which case we can
6270 	 * modify its state.  Objsets may be open only because they're dirty,
6271 	 * so we have to force it to sync before checking spa_refcnt.
6272 	 */
6273 	if (spa->spa_sync_on) {
6274 		txg_wait_synced(spa->spa_dsl_pool, 0);
6275 		spa_evicting_os_wait(spa);
6276 	}
6277 
6278 	/*
6279 	 * A pool cannot be exported or destroyed if there are active
6280 	 * references.  If we are resetting a pool, allow references by
6281 	 * fault injection handlers.
6282 	 */
6283 	if (!spa_refcount_zero(spa) ||
6284 	    (spa->spa_inject_ref != 0 &&
6285 	    new_state != POOL_STATE_UNINITIALIZED)) {
6286 		spa_async_resume(spa);
6287 		spa->spa_is_exporting = B_FALSE;
6288 		mutex_exit(&spa_namespace_lock);
6289 		return (SET_ERROR(EBUSY));
6290 	}
6291 
6292 	if (spa->spa_sync_on) {
6293 		/*
6294 		 * A pool cannot be exported if it has an active shared spare.
6295 		 * This is to prevent other pools stealing the active spare
6296 		 * from an exported pool. At user's own will, such pool can
6297 		 * be forcedly exported.
6298 		 */
6299 		if (!force && new_state == POOL_STATE_EXPORTED &&
6300 		    spa_has_active_shared_spare(spa)) {
6301 			spa_async_resume(spa);
6302 			spa->spa_is_exporting = B_FALSE;
6303 			mutex_exit(&spa_namespace_lock);
6304 			return (SET_ERROR(EXDEV));
6305 		}
6306 
6307 		/*
6308 		 * We're about to export or destroy this pool. Make sure
6309 		 * we stop all initialization and trim activity here before
6310 		 * we set the spa_final_txg. This will ensure that all
6311 		 * dirty data resulting from the initialization is
6312 		 * committed to disk before we unload the pool.
6313 		 */
6314 		if (spa->spa_root_vdev != NULL) {
6315 			vdev_t *rvd = spa->spa_root_vdev;
6316 			vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6317 			vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6318 			vdev_autotrim_stop_all(spa);
6319 			vdev_rebuild_stop_all(spa);
6320 		}
6321 
6322 		/*
6323 		 * We want this to be reflected on every label,
6324 		 * so mark them all dirty.  spa_unload() will do the
6325 		 * final sync that pushes these changes out.
6326 		 */
6327 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6328 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6329 			spa->spa_state = new_state;
6330 			spa->spa_final_txg = spa_last_synced_txg(spa) +
6331 			    TXG_DEFER_SIZE + 1;
6332 			vdev_config_dirty(spa->spa_root_vdev);
6333 			spa_config_exit(spa, SCL_ALL, FTAG);
6334 		}
6335 	}
6336 
6337 export_spa:
6338 	if (new_state == POOL_STATE_DESTROYED)
6339 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6340 	else if (new_state == POOL_STATE_EXPORTED)
6341 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
6342 
6343 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6344 		spa_unload(spa);
6345 		spa_deactivate(spa);
6346 	}
6347 
6348 	if (oldconfig && spa->spa_config)
6349 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
6350 
6351 	if (new_state != POOL_STATE_UNINITIALIZED) {
6352 		if (!hardforce)
6353 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
6354 		spa_remove(spa);
6355 	} else {
6356 		/*
6357 		 * If spa_remove() is not called for this spa_t and
6358 		 * there is any possibility that it can be reused,
6359 		 * we make sure to reset the exporting flag.
6360 		 */
6361 		spa->spa_is_exporting = B_FALSE;
6362 	}
6363 
6364 	mutex_exit(&spa_namespace_lock);
6365 	return (0);
6366 }
6367 
6368 /*
6369  * Destroy a storage pool.
6370  */
6371 int
6372 spa_destroy(const char *pool)
6373 {
6374 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6375 	    B_FALSE, B_FALSE));
6376 }
6377 
6378 /*
6379  * Export a storage pool.
6380  */
6381 int
6382 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
6383     boolean_t hardforce)
6384 {
6385 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6386 	    force, hardforce));
6387 }
6388 
6389 /*
6390  * Similar to spa_export(), this unloads the spa_t without actually removing it
6391  * from the namespace in any way.
6392  */
6393 int
6394 spa_reset(const char *pool)
6395 {
6396 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6397 	    B_FALSE, B_FALSE));
6398 }
6399 
6400 /*
6401  * ==========================================================================
6402  * Device manipulation
6403  * ==========================================================================
6404  */
6405 
6406 /*
6407  * Add a device to a storage pool.
6408  */
6409 int
6410 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6411 {
6412 	uint64_t txg;
6413 	int error;
6414 	vdev_t *rvd = spa->spa_root_vdev;
6415 	vdev_t *vd, *tvd;
6416 	nvlist_t **spares, **l2cache;
6417 	uint_t nspares, nl2cache;
6418 
6419 	ASSERT(spa_writeable(spa));
6420 
6421 	txg = spa_vdev_enter(spa);
6422 
6423 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6424 	    VDEV_ALLOC_ADD)) != 0)
6425 		return (spa_vdev_exit(spa, NULL, txg, error));
6426 
6427 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
6428 
6429 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6430 	    &nspares) != 0)
6431 		nspares = 0;
6432 
6433 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6434 	    &nl2cache) != 0)
6435 		nl2cache = 0;
6436 
6437 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6438 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
6439 
6440 	if (vd->vdev_children != 0 &&
6441 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
6442 		return (spa_vdev_exit(spa, vd, txg, error));
6443 
6444 	/*
6445 	 * We must validate the spares and l2cache devices after checking the
6446 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
6447 	 */
6448 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6449 		return (spa_vdev_exit(spa, vd, txg, error));
6450 
6451 	/*
6452 	 * If we are in the middle of a device removal, we can only add
6453 	 * devices which match the existing devices in the pool.
6454 	 * If we are in the middle of a removal, or have some indirect
6455 	 * vdevs, we can not add raidz toplevels.
6456 	 */
6457 	if (spa->spa_vdev_removal != NULL ||
6458 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6459 		for (int c = 0; c < vd->vdev_children; c++) {
6460 			tvd = vd->vdev_child[c];
6461 			if (spa->spa_vdev_removal != NULL &&
6462 			    tvd->vdev_ashift != spa->spa_max_ashift) {
6463 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6464 			}
6465 			/* Fail if top level vdev is raidz */
6466 			if (tvd->vdev_ops == &vdev_raidz_ops) {
6467 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6468 			}
6469 			/*
6470 			 * Need the top level mirror to be
6471 			 * a mirror of leaf vdevs only
6472 			 */
6473 			if (tvd->vdev_ops == &vdev_mirror_ops) {
6474 				for (uint64_t cid = 0;
6475 				    cid < tvd->vdev_children; cid++) {
6476 					vdev_t *cvd = tvd->vdev_child[cid];
6477 					if (!cvd->vdev_ops->vdev_op_leaf) {
6478 						return (spa_vdev_exit(spa, vd,
6479 						    txg, EINVAL));
6480 					}
6481 				}
6482 			}
6483 		}
6484 	}
6485 
6486 	for (int c = 0; c < vd->vdev_children; c++) {
6487 		tvd = vd->vdev_child[c];
6488 		vdev_remove_child(vd, tvd);
6489 		tvd->vdev_id = rvd->vdev_children;
6490 		vdev_add_child(rvd, tvd);
6491 		vdev_config_dirty(tvd);
6492 	}
6493 
6494 	if (nspares != 0) {
6495 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6496 		    ZPOOL_CONFIG_SPARES);
6497 		spa_load_spares(spa);
6498 		spa->spa_spares.sav_sync = B_TRUE;
6499 	}
6500 
6501 	if (nl2cache != 0) {
6502 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6503 		    ZPOOL_CONFIG_L2CACHE);
6504 		spa_load_l2cache(spa);
6505 		spa->spa_l2cache.sav_sync = B_TRUE;
6506 	}
6507 
6508 	/*
6509 	 * We have to be careful when adding new vdevs to an existing pool.
6510 	 * If other threads start allocating from these vdevs before we
6511 	 * sync the config cache, and we lose power, then upon reboot we may
6512 	 * fail to open the pool because there are DVAs that the config cache
6513 	 * can't translate.  Therefore, we first add the vdevs without
6514 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6515 	 * and then let spa_config_update() initialize the new metaslabs.
6516 	 *
6517 	 * spa_load() checks for added-but-not-initialized vdevs, so that
6518 	 * if we lose power at any point in this sequence, the remaining
6519 	 * steps will be completed the next time we load the pool.
6520 	 */
6521 	(void) spa_vdev_exit(spa, vd, txg, 0);
6522 
6523 	mutex_enter(&spa_namespace_lock);
6524 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6525 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6526 	mutex_exit(&spa_namespace_lock);
6527 
6528 	return (0);
6529 }
6530 
6531 /*
6532  * Attach a device to a mirror.  The arguments are the path to any device
6533  * in the mirror, and the nvroot for the new device.  If the path specifies
6534  * a device that is not mirrored, we automatically insert the mirror vdev.
6535  *
6536  * If 'replacing' is specified, the new device is intended to replace the
6537  * existing device; in this case the two devices are made into their own
6538  * mirror using the 'replacing' vdev, which is functionally identical to
6539  * the mirror vdev (it actually reuses all the same ops) but has a few
6540  * extra rules: you can't attach to it after it's been created, and upon
6541  * completion of resilvering, the first disk (the one being replaced)
6542  * is automatically detached.
6543  *
6544  * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
6545  * should be performed instead of traditional healing reconstruction.  From
6546  * an administrators perspective these are both resilver operations.
6547  */
6548 int
6549 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
6550     int rebuild)
6551 {
6552 	uint64_t txg, dtl_max_txg;
6553 	vdev_t *rvd = spa->spa_root_vdev;
6554 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6555 	vdev_ops_t *pvops;
6556 	char *oldvdpath, *newvdpath;
6557 	int newvd_isspare;
6558 	int error;
6559 
6560 	ASSERT(spa_writeable(spa));
6561 
6562 	txg = spa_vdev_enter(spa);
6563 
6564 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6565 
6566 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6567 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6568 		error = (spa_has_checkpoint(spa)) ?
6569 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6570 		return (spa_vdev_exit(spa, NULL, txg, error));
6571 	}
6572 
6573 	if (rebuild) {
6574 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
6575 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6576 
6577 		if (dsl_scan_resilvering(spa_get_dsl(spa)))
6578 			return (spa_vdev_exit(spa, NULL, txg,
6579 			    ZFS_ERR_RESILVER_IN_PROGRESS));
6580 	} else {
6581 		if (vdev_rebuild_active(rvd))
6582 			return (spa_vdev_exit(spa, NULL, txg,
6583 			    ZFS_ERR_REBUILD_IN_PROGRESS));
6584 	}
6585 
6586 	if (spa->spa_vdev_removal != NULL)
6587 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6588 
6589 	if (oldvd == NULL)
6590 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6591 
6592 	if (!oldvd->vdev_ops->vdev_op_leaf)
6593 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6594 
6595 	pvd = oldvd->vdev_parent;
6596 
6597 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6598 	    VDEV_ALLOC_ATTACH)) != 0)
6599 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6600 
6601 	if (newrootvd->vdev_children != 1)
6602 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6603 
6604 	newvd = newrootvd->vdev_child[0];
6605 
6606 	if (!newvd->vdev_ops->vdev_op_leaf)
6607 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6608 
6609 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6610 		return (spa_vdev_exit(spa, newrootvd, txg, error));
6611 
6612 	/*
6613 	 * Spares can't replace logs
6614 	 */
6615 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
6616 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6617 
6618 	if (rebuild) {
6619 		/*
6620 		 * For rebuilds, the parent vdev must support reconstruction
6621 		 * using only space maps.  This means the only allowable
6622 		 * parents are the root vdev or a mirror vdev.
6623 		 */
6624 		if (pvd->vdev_ops != &vdev_mirror_ops &&
6625 		    pvd->vdev_ops != &vdev_root_ops) {
6626 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6627 		}
6628 	}
6629 
6630 	if (!replacing) {
6631 		/*
6632 		 * For attach, the only allowable parent is a mirror or the root
6633 		 * vdev.
6634 		 */
6635 		if (pvd->vdev_ops != &vdev_mirror_ops &&
6636 		    pvd->vdev_ops != &vdev_root_ops)
6637 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6638 
6639 		pvops = &vdev_mirror_ops;
6640 	} else {
6641 		/*
6642 		 * Active hot spares can only be replaced by inactive hot
6643 		 * spares.
6644 		 */
6645 		if (pvd->vdev_ops == &vdev_spare_ops &&
6646 		    oldvd->vdev_isspare &&
6647 		    !spa_has_spare(spa, newvd->vdev_guid))
6648 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6649 
6650 		/*
6651 		 * If the source is a hot spare, and the parent isn't already a
6652 		 * spare, then we want to create a new hot spare.  Otherwise, we
6653 		 * want to create a replacing vdev.  The user is not allowed to
6654 		 * attach to a spared vdev child unless the 'isspare' state is
6655 		 * the same (spare replaces spare, non-spare replaces
6656 		 * non-spare).
6657 		 */
6658 		if (pvd->vdev_ops == &vdev_replacing_ops &&
6659 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6660 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6661 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
6662 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
6663 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6664 		}
6665 
6666 		if (newvd->vdev_isspare)
6667 			pvops = &vdev_spare_ops;
6668 		else
6669 			pvops = &vdev_replacing_ops;
6670 	}
6671 
6672 	/*
6673 	 * Make sure the new device is big enough.
6674 	 */
6675 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6676 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6677 
6678 	/*
6679 	 * The new device cannot have a higher alignment requirement
6680 	 * than the top-level vdev.
6681 	 */
6682 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6683 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6684 
6685 	/*
6686 	 * If this is an in-place replacement, update oldvd's path and devid
6687 	 * to make it distinguishable from newvd, and unopenable from now on.
6688 	 */
6689 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6690 		spa_strfree(oldvd->vdev_path);
6691 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6692 		    KM_SLEEP);
6693 		(void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5,
6694 		    "%s/%s", newvd->vdev_path, "old");
6695 		if (oldvd->vdev_devid != NULL) {
6696 			spa_strfree(oldvd->vdev_devid);
6697 			oldvd->vdev_devid = NULL;
6698 		}
6699 	}
6700 
6701 	/*
6702 	 * If the parent is not a mirror, or if we're replacing, insert the new
6703 	 * mirror/replacing/spare vdev above oldvd.
6704 	 */
6705 	if (pvd->vdev_ops != pvops)
6706 		pvd = vdev_add_parent(oldvd, pvops);
6707 
6708 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
6709 	ASSERT(pvd->vdev_ops == pvops);
6710 	ASSERT(oldvd->vdev_parent == pvd);
6711 
6712 	/*
6713 	 * Extract the new device from its root and add it to pvd.
6714 	 */
6715 	vdev_remove_child(newrootvd, newvd);
6716 	newvd->vdev_id = pvd->vdev_children;
6717 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
6718 	vdev_add_child(pvd, newvd);
6719 
6720 	/*
6721 	 * Reevaluate the parent vdev state.
6722 	 */
6723 	vdev_propagate_state(pvd);
6724 
6725 	tvd = newvd->vdev_top;
6726 	ASSERT(pvd->vdev_top == tvd);
6727 	ASSERT(tvd->vdev_parent == rvd);
6728 
6729 	vdev_config_dirty(tvd);
6730 
6731 	/*
6732 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6733 	 * for any dmu_sync-ed blocks.  It will propagate upward when
6734 	 * spa_vdev_exit() calls vdev_dtl_reassess().
6735 	 */
6736 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6737 
6738 	vdev_dtl_dirty(newvd, DTL_MISSING,
6739 	    TXG_INITIAL, dtl_max_txg - TXG_INITIAL);
6740 
6741 	if (newvd->vdev_isspare) {
6742 		spa_spare_activate(newvd);
6743 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6744 	}
6745 
6746 	oldvdpath = spa_strdup(oldvd->vdev_path);
6747 	newvdpath = spa_strdup(newvd->vdev_path);
6748 	newvd_isspare = newvd->vdev_isspare;
6749 
6750 	/*
6751 	 * Mark newvd's DTL dirty in this txg.
6752 	 */
6753 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
6754 
6755 	/*
6756 	 * Schedule the resilver or rebuild to restart in the future. We do
6757 	 * this to ensure that dmu_sync-ed blocks have been stitched into the
6758 	 * respective datasets.
6759 	 */
6760 	if (rebuild) {
6761 		newvd->vdev_rebuild_txg = txg;
6762 
6763 		vdev_rebuild(tvd);
6764 	} else {
6765 		newvd->vdev_resilver_txg = txg;
6766 
6767 		if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6768 		    spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
6769 			vdev_defer_resilver(newvd);
6770 		} else {
6771 			dsl_scan_restart_resilver(spa->spa_dsl_pool,
6772 			    dtl_max_txg);
6773 		}
6774 	}
6775 
6776 	if (spa->spa_bootfs)
6777 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6778 
6779 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6780 
6781 	/*
6782 	 * Commit the config
6783 	 */
6784 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6785 
6786 	spa_history_log_internal(spa, "vdev attach", NULL,
6787 	    "%s vdev=%s %s vdev=%s",
6788 	    replacing && newvd_isspare ? "spare in" :
6789 	    replacing ? "replace" : "attach", newvdpath,
6790 	    replacing ? "for" : "to", oldvdpath);
6791 
6792 	spa_strfree(oldvdpath);
6793 	spa_strfree(newvdpath);
6794 
6795 	return (0);
6796 }
6797 
6798 /*
6799  * Detach a device from a mirror or replacing vdev.
6800  *
6801  * If 'replace_done' is specified, only detach if the parent
6802  * is a replacing vdev.
6803  */
6804 int
6805 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
6806 {
6807 	uint64_t txg;
6808 	int error;
6809 	vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
6810 	vdev_t *vd, *pvd, *cvd, *tvd;
6811 	boolean_t unspare = B_FALSE;
6812 	uint64_t unspare_guid = 0;
6813 	char *vdpath;
6814 
6815 	ASSERT(spa_writeable(spa));
6816 
6817 	txg = spa_vdev_detach_enter(spa, guid);
6818 
6819 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6820 
6821 	/*
6822 	 * Besides being called directly from the userland through the
6823 	 * ioctl interface, spa_vdev_detach() can be potentially called
6824 	 * at the end of spa_vdev_resilver_done().
6825 	 *
6826 	 * In the regular case, when we have a checkpoint this shouldn't
6827 	 * happen as we never empty the DTLs of a vdev during the scrub
6828 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
6829 	 * should never get here when we have a checkpoint.
6830 	 *
6831 	 * That said, even in a case when we checkpoint the pool exactly
6832 	 * as spa_vdev_resilver_done() calls this function everything
6833 	 * should be fine as the resilver will return right away.
6834 	 */
6835 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6836 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6837 		error = (spa_has_checkpoint(spa)) ?
6838 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6839 		return (spa_vdev_exit(spa, NULL, txg, error));
6840 	}
6841 
6842 	if (vd == NULL)
6843 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6844 
6845 	if (!vd->vdev_ops->vdev_op_leaf)
6846 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6847 
6848 	pvd = vd->vdev_parent;
6849 
6850 	/*
6851 	 * If the parent/child relationship is not as expected, don't do it.
6852 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
6853 	 * vdev that's replacing B with C.  The user's intent in replacing
6854 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
6855 	 * the replace by detaching C, the expected behavior is to end up
6856 	 * M(A,B).  But suppose that right after deciding to detach C,
6857 	 * the replacement of B completes.  We would have M(A,C), and then
6858 	 * ask to detach C, which would leave us with just A -- not what
6859 	 * the user wanted.  To prevent this, we make sure that the
6860 	 * parent/child relationship hasn't changed -- in this example,
6861 	 * that C's parent is still the replacing vdev R.
6862 	 */
6863 	if (pvd->vdev_guid != pguid && pguid != 0)
6864 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6865 
6866 	/*
6867 	 * Only 'replacing' or 'spare' vdevs can be replaced.
6868 	 */
6869 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
6870 	    pvd->vdev_ops != &vdev_spare_ops)
6871 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6872 
6873 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
6874 	    spa_version(spa) >= SPA_VERSION_SPARES);
6875 
6876 	/*
6877 	 * Only mirror, replacing, and spare vdevs support detach.
6878 	 */
6879 	if (pvd->vdev_ops != &vdev_replacing_ops &&
6880 	    pvd->vdev_ops != &vdev_mirror_ops &&
6881 	    pvd->vdev_ops != &vdev_spare_ops)
6882 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6883 
6884 	/*
6885 	 * If this device has the only valid copy of some data,
6886 	 * we cannot safely detach it.
6887 	 */
6888 	if (vdev_dtl_required(vd))
6889 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6890 
6891 	ASSERT(pvd->vdev_children >= 2);
6892 
6893 	/*
6894 	 * If we are detaching the second disk from a replacing vdev, then
6895 	 * check to see if we changed the original vdev's path to have "/old"
6896 	 * at the end in spa_vdev_attach().  If so, undo that change now.
6897 	 */
6898 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
6899 	    vd->vdev_path != NULL) {
6900 		size_t len = strlen(vd->vdev_path);
6901 
6902 		for (int c = 0; c < pvd->vdev_children; c++) {
6903 			cvd = pvd->vdev_child[c];
6904 
6905 			if (cvd == vd || cvd->vdev_path == NULL)
6906 				continue;
6907 
6908 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
6909 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
6910 				spa_strfree(cvd->vdev_path);
6911 				cvd->vdev_path = spa_strdup(vd->vdev_path);
6912 				break;
6913 			}
6914 		}
6915 	}
6916 
6917 	/*
6918 	 * If we are detaching the original disk from a spare, then it implies
6919 	 * that the spare should become a real disk, and be removed from the
6920 	 * active spare list for the pool.
6921 	 */
6922 	if (pvd->vdev_ops == &vdev_spare_ops &&
6923 	    vd->vdev_id == 0 &&
6924 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
6925 		unspare = B_TRUE;
6926 
6927 	/*
6928 	 * Erase the disk labels so the disk can be used for other things.
6929 	 * This must be done after all other error cases are handled,
6930 	 * but before we disembowel vd (so we can still do I/O to it).
6931 	 * But if we can't do it, don't treat the error as fatal --
6932 	 * it may be that the unwritability of the disk is the reason
6933 	 * it's being detached!
6934 	 */
6935 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
6936 
6937 	/*
6938 	 * Remove vd from its parent and compact the parent's children.
6939 	 */
6940 	vdev_remove_child(pvd, vd);
6941 	vdev_compact_children(pvd);
6942 
6943 	/*
6944 	 * Remember one of the remaining children so we can get tvd below.
6945 	 */
6946 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
6947 
6948 	/*
6949 	 * If we need to remove the remaining child from the list of hot spares,
6950 	 * do it now, marking the vdev as no longer a spare in the process.
6951 	 * We must do this before vdev_remove_parent(), because that can
6952 	 * change the GUID if it creates a new toplevel GUID.  For a similar
6953 	 * reason, we must remove the spare now, in the same txg as the detach;
6954 	 * otherwise someone could attach a new sibling, change the GUID, and
6955 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
6956 	 */
6957 	if (unspare) {
6958 		ASSERT(cvd->vdev_isspare);
6959 		spa_spare_remove(cvd);
6960 		unspare_guid = cvd->vdev_guid;
6961 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
6962 		cvd->vdev_unspare = B_TRUE;
6963 	}
6964 
6965 	/*
6966 	 * If the parent mirror/replacing vdev only has one child,
6967 	 * the parent is no longer needed.  Remove it from the tree.
6968 	 */
6969 	if (pvd->vdev_children == 1) {
6970 		if (pvd->vdev_ops == &vdev_spare_ops)
6971 			cvd->vdev_unspare = B_FALSE;
6972 		vdev_remove_parent(cvd);
6973 	}
6974 
6975 	/*
6976 	 * We don't set tvd until now because the parent we just removed
6977 	 * may have been the previous top-level vdev.
6978 	 */
6979 	tvd = cvd->vdev_top;
6980 	ASSERT(tvd->vdev_parent == rvd);
6981 
6982 	/*
6983 	 * Reevaluate the parent vdev state.
6984 	 */
6985 	vdev_propagate_state(cvd);
6986 
6987 	/*
6988 	 * If the 'autoexpand' property is set on the pool then automatically
6989 	 * try to expand the size of the pool. For example if the device we
6990 	 * just detached was smaller than the others, it may be possible to
6991 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
6992 	 * first so that we can obtain the updated sizes of the leaf vdevs.
6993 	 */
6994 	if (spa->spa_autoexpand) {
6995 		vdev_reopen(tvd);
6996 		vdev_expand(tvd, txg);
6997 	}
6998 
6999 	vdev_config_dirty(tvd);
7000 
7001 	/*
7002 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
7003 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7004 	 * But first make sure we're not on any *other* txg's DTL list, to
7005 	 * prevent vd from being accessed after it's freed.
7006 	 */
7007 	vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7008 	for (int t = 0; t < TXG_SIZE; t++)
7009 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7010 	vd->vdev_detached = B_TRUE;
7011 	vdev_dirty(tvd, VDD_DTL, vd, txg);
7012 
7013 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7014 	spa_notify_waiters(spa);
7015 
7016 	/* hang on to the spa before we release the lock */
7017 	spa_open_ref(spa, FTAG);
7018 
7019 	error = spa_vdev_exit(spa, vd, txg, 0);
7020 
7021 	spa_history_log_internal(spa, "detach", NULL,
7022 	    "vdev=%s", vdpath);
7023 	spa_strfree(vdpath);
7024 
7025 	/*
7026 	 * If this was the removal of the original device in a hot spare vdev,
7027 	 * then we want to go through and remove the device from the hot spare
7028 	 * list of every other pool.
7029 	 */
7030 	if (unspare) {
7031 		spa_t *altspa = NULL;
7032 
7033 		mutex_enter(&spa_namespace_lock);
7034 		while ((altspa = spa_next(altspa)) != NULL) {
7035 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
7036 			    altspa == spa)
7037 				continue;
7038 
7039 			spa_open_ref(altspa, FTAG);
7040 			mutex_exit(&spa_namespace_lock);
7041 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7042 			mutex_enter(&spa_namespace_lock);
7043 			spa_close(altspa, FTAG);
7044 		}
7045 		mutex_exit(&spa_namespace_lock);
7046 
7047 		/* search the rest of the vdevs for spares to remove */
7048 		spa_vdev_resilver_done(spa);
7049 	}
7050 
7051 	/* all done with the spa; OK to release */
7052 	mutex_enter(&spa_namespace_lock);
7053 	spa_close(spa, FTAG);
7054 	mutex_exit(&spa_namespace_lock);
7055 
7056 	return (error);
7057 }
7058 
7059 static int
7060 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7061     list_t *vd_list)
7062 {
7063 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7064 
7065 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7066 
7067 	/* Look up vdev and ensure it's a leaf. */
7068 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7069 	if (vd == NULL || vd->vdev_detached) {
7070 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7071 		return (SET_ERROR(ENODEV));
7072 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7073 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7074 		return (SET_ERROR(EINVAL));
7075 	} else if (!vdev_writeable(vd)) {
7076 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7077 		return (SET_ERROR(EROFS));
7078 	}
7079 	mutex_enter(&vd->vdev_initialize_lock);
7080 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7081 
7082 	/*
7083 	 * When we activate an initialize action we check to see
7084 	 * if the vdev_initialize_thread is NULL. We do this instead
7085 	 * of using the vdev_initialize_state since there might be
7086 	 * a previous initialization process which has completed but
7087 	 * the thread is not exited.
7088 	 */
7089 	if (cmd_type == POOL_INITIALIZE_START &&
7090 	    (vd->vdev_initialize_thread != NULL ||
7091 	    vd->vdev_top->vdev_removing)) {
7092 		mutex_exit(&vd->vdev_initialize_lock);
7093 		return (SET_ERROR(EBUSY));
7094 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7095 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7096 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7097 		mutex_exit(&vd->vdev_initialize_lock);
7098 		return (SET_ERROR(ESRCH));
7099 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7100 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7101 		mutex_exit(&vd->vdev_initialize_lock);
7102 		return (SET_ERROR(ESRCH));
7103 	}
7104 
7105 	switch (cmd_type) {
7106 	case POOL_INITIALIZE_START:
7107 		vdev_initialize(vd);
7108 		break;
7109 	case POOL_INITIALIZE_CANCEL:
7110 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7111 		break;
7112 	case POOL_INITIALIZE_SUSPEND:
7113 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7114 		break;
7115 	default:
7116 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7117 	}
7118 	mutex_exit(&vd->vdev_initialize_lock);
7119 
7120 	return (0);
7121 }
7122 
7123 int
7124 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7125     nvlist_t *vdev_errlist)
7126 {
7127 	int total_errors = 0;
7128 	list_t vd_list;
7129 
7130 	list_create(&vd_list, sizeof (vdev_t),
7131 	    offsetof(vdev_t, vdev_initialize_node));
7132 
7133 	/*
7134 	 * We hold the namespace lock through the whole function
7135 	 * to prevent any changes to the pool while we're starting or
7136 	 * stopping initialization. The config and state locks are held so that
7137 	 * we can properly assess the vdev state before we commit to
7138 	 * the initializing operation.
7139 	 */
7140 	mutex_enter(&spa_namespace_lock);
7141 
7142 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7143 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7144 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
7145 
7146 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7147 		    &vd_list);
7148 		if (error != 0) {
7149 			char guid_as_str[MAXNAMELEN];
7150 
7151 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
7152 			    "%llu", (unsigned long long)vdev_guid);
7153 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7154 			total_errors++;
7155 		}
7156 	}
7157 
7158 	/* Wait for all initialize threads to stop. */
7159 	vdev_initialize_stop_wait(spa, &vd_list);
7160 
7161 	/* Sync out the initializing state */
7162 	txg_wait_synced(spa->spa_dsl_pool, 0);
7163 	mutex_exit(&spa_namespace_lock);
7164 
7165 	list_destroy(&vd_list);
7166 
7167 	return (total_errors);
7168 }
7169 
7170 static int
7171 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7172     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
7173 {
7174 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7175 
7176 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7177 
7178 	/* Look up vdev and ensure it's a leaf. */
7179 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7180 	if (vd == NULL || vd->vdev_detached) {
7181 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7182 		return (SET_ERROR(ENODEV));
7183 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7184 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7185 		return (SET_ERROR(EINVAL));
7186 	} else if (!vdev_writeable(vd)) {
7187 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7188 		return (SET_ERROR(EROFS));
7189 	} else if (!vd->vdev_has_trim) {
7190 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7191 		return (SET_ERROR(EOPNOTSUPP));
7192 	} else if (secure && !vd->vdev_has_securetrim) {
7193 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7194 		return (SET_ERROR(EOPNOTSUPP));
7195 	}
7196 	mutex_enter(&vd->vdev_trim_lock);
7197 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7198 
7199 	/*
7200 	 * When we activate a TRIM action we check to see if the
7201 	 * vdev_trim_thread is NULL. We do this instead of using the
7202 	 * vdev_trim_state since there might be a previous TRIM process
7203 	 * which has completed but the thread is not exited.
7204 	 */
7205 	if (cmd_type == POOL_TRIM_START &&
7206 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
7207 		mutex_exit(&vd->vdev_trim_lock);
7208 		return (SET_ERROR(EBUSY));
7209 	} else if (cmd_type == POOL_TRIM_CANCEL &&
7210 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
7211 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
7212 		mutex_exit(&vd->vdev_trim_lock);
7213 		return (SET_ERROR(ESRCH));
7214 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
7215 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
7216 		mutex_exit(&vd->vdev_trim_lock);
7217 		return (SET_ERROR(ESRCH));
7218 	}
7219 
7220 	switch (cmd_type) {
7221 	case POOL_TRIM_START:
7222 		vdev_trim(vd, rate, partial, secure);
7223 		break;
7224 	case POOL_TRIM_CANCEL:
7225 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
7226 		break;
7227 	case POOL_TRIM_SUSPEND:
7228 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
7229 		break;
7230 	default:
7231 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7232 	}
7233 	mutex_exit(&vd->vdev_trim_lock);
7234 
7235 	return (0);
7236 }
7237 
7238 /*
7239  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
7240  * TRIM threads for each child vdev.  These threads pass over all of the free
7241  * space in the vdev's metaslabs and issues TRIM commands for that space.
7242  */
7243 int
7244 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
7245     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
7246 {
7247 	int total_errors = 0;
7248 	list_t vd_list;
7249 
7250 	list_create(&vd_list, sizeof (vdev_t),
7251 	    offsetof(vdev_t, vdev_trim_node));
7252 
7253 	/*
7254 	 * We hold the namespace lock through the whole function
7255 	 * to prevent any changes to the pool while we're starting or
7256 	 * stopping TRIM. The config and state locks are held so that
7257 	 * we can properly assess the vdev state before we commit to
7258 	 * the TRIM operation.
7259 	 */
7260 	mutex_enter(&spa_namespace_lock);
7261 
7262 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7263 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7264 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
7265 
7266 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
7267 		    rate, partial, secure, &vd_list);
7268 		if (error != 0) {
7269 			char guid_as_str[MAXNAMELEN];
7270 
7271 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
7272 			    "%llu", (unsigned long long)vdev_guid);
7273 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7274 			total_errors++;
7275 		}
7276 	}
7277 
7278 	/* Wait for all TRIM threads to stop. */
7279 	vdev_trim_stop_wait(spa, &vd_list);
7280 
7281 	/* Sync out the TRIM state */
7282 	txg_wait_synced(spa->spa_dsl_pool, 0);
7283 	mutex_exit(&spa_namespace_lock);
7284 
7285 	list_destroy(&vd_list);
7286 
7287 	return (total_errors);
7288 }
7289 
7290 /*
7291  * Split a set of devices from their mirrors, and create a new pool from them.
7292  */
7293 int
7294 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
7295     nvlist_t *props, boolean_t exp)
7296 {
7297 	int error = 0;
7298 	uint64_t txg, *glist;
7299 	spa_t *newspa;
7300 	uint_t c, children, lastlog;
7301 	nvlist_t **child, *nvl, *tmp;
7302 	dmu_tx_t *tx;
7303 	char *altroot = NULL;
7304 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
7305 	boolean_t activate_slog;
7306 
7307 	ASSERT(spa_writeable(spa));
7308 
7309 	txg = spa_vdev_enter(spa);
7310 
7311 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7312 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7313 		error = (spa_has_checkpoint(spa)) ?
7314 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7315 		return (spa_vdev_exit(spa, NULL, txg, error));
7316 	}
7317 
7318 	/* clear the log and flush everything up to now */
7319 	activate_slog = spa_passivate_log(spa);
7320 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7321 	error = spa_reset_logs(spa);
7322 	txg = spa_vdev_config_enter(spa);
7323 
7324 	if (activate_slog)
7325 		spa_activate_log(spa);
7326 
7327 	if (error != 0)
7328 		return (spa_vdev_exit(spa, NULL, txg, error));
7329 
7330 	/* check new spa name before going any further */
7331 	if (spa_lookup(newname) != NULL)
7332 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
7333 
7334 	/*
7335 	 * scan through all the children to ensure they're all mirrors
7336 	 */
7337 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
7338 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
7339 	    &children) != 0)
7340 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7341 
7342 	/* first, check to ensure we've got the right child count */
7343 	rvd = spa->spa_root_vdev;
7344 	lastlog = 0;
7345 	for (c = 0; c < rvd->vdev_children; c++) {
7346 		vdev_t *vd = rvd->vdev_child[c];
7347 
7348 		/* don't count the holes & logs as children */
7349 		if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
7350 		    !vdev_is_concrete(vd))) {
7351 			if (lastlog == 0)
7352 				lastlog = c;
7353 			continue;
7354 		}
7355 
7356 		lastlog = 0;
7357 	}
7358 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7359 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7360 
7361 	/* next, ensure no spare or cache devices are part of the split */
7362 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7363 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7364 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7365 
7366 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7367 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7368 
7369 	/* then, loop over each vdev and validate it */
7370 	for (c = 0; c < children; c++) {
7371 		uint64_t is_hole = 0;
7372 
7373 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7374 		    &is_hole);
7375 
7376 		if (is_hole != 0) {
7377 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7378 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7379 				continue;
7380 			} else {
7381 				error = SET_ERROR(EINVAL);
7382 				break;
7383 			}
7384 		}
7385 
7386 		/* deal with indirect vdevs */
7387 		if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
7388 		    &vdev_indirect_ops)
7389 			continue;
7390 
7391 		/* which disk is going to be split? */
7392 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7393 		    &glist[c]) != 0) {
7394 			error = SET_ERROR(EINVAL);
7395 			break;
7396 		}
7397 
7398 		/* look it up in the spa */
7399 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7400 		if (vml[c] == NULL) {
7401 			error = SET_ERROR(ENODEV);
7402 			break;
7403 		}
7404 
7405 		/* make sure there's nothing stopping the split */
7406 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7407 		    vml[c]->vdev_islog ||
7408 		    !vdev_is_concrete(vml[c]) ||
7409 		    vml[c]->vdev_isspare ||
7410 		    vml[c]->vdev_isl2cache ||
7411 		    !vdev_writeable(vml[c]) ||
7412 		    vml[c]->vdev_children != 0 ||
7413 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7414 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7415 			error = SET_ERROR(EINVAL);
7416 			break;
7417 		}
7418 
7419 		if (vdev_dtl_required(vml[c]) ||
7420 		    vdev_resilver_needed(vml[c], NULL, NULL)) {
7421 			error = SET_ERROR(EBUSY);
7422 			break;
7423 		}
7424 
7425 		/* we need certain info from the top level */
7426 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7427 		    vml[c]->vdev_top->vdev_ms_array) == 0);
7428 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7429 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
7430 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7431 		    vml[c]->vdev_top->vdev_asize) == 0);
7432 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7433 		    vml[c]->vdev_top->vdev_ashift) == 0);
7434 
7435 		/* transfer per-vdev ZAPs */
7436 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7437 		VERIFY0(nvlist_add_uint64(child[c],
7438 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7439 
7440 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7441 		VERIFY0(nvlist_add_uint64(child[c],
7442 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
7443 		    vml[c]->vdev_parent->vdev_top_zap));
7444 	}
7445 
7446 	if (error != 0) {
7447 		kmem_free(vml, children * sizeof (vdev_t *));
7448 		kmem_free(glist, children * sizeof (uint64_t));
7449 		return (spa_vdev_exit(spa, NULL, txg, error));
7450 	}
7451 
7452 	/* stop writers from using the disks */
7453 	for (c = 0; c < children; c++) {
7454 		if (vml[c] != NULL)
7455 			vml[c]->vdev_offline = B_TRUE;
7456 	}
7457 	vdev_reopen(spa->spa_root_vdev);
7458 
7459 	/*
7460 	 * Temporarily record the splitting vdevs in the spa config.  This
7461 	 * will disappear once the config is regenerated.
7462 	 */
7463 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7464 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
7465 	    glist, children) == 0);
7466 	kmem_free(glist, children * sizeof (uint64_t));
7467 
7468 	mutex_enter(&spa->spa_props_lock);
7469 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
7470 	    nvl) == 0);
7471 	mutex_exit(&spa->spa_props_lock);
7472 	spa->spa_config_splitting = nvl;
7473 	vdev_config_dirty(spa->spa_root_vdev);
7474 
7475 	/* configure and create the new pool */
7476 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
7477 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7478 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
7479 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7480 	    spa_version(spa)) == 0);
7481 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
7482 	    spa->spa_config_txg) == 0);
7483 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7484 	    spa_generate_guid(NULL)) == 0);
7485 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7486 	(void) nvlist_lookup_string(props,
7487 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7488 
7489 	/* add the new pool to the namespace */
7490 	newspa = spa_add(newname, config, altroot);
7491 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7492 	newspa->spa_config_txg = spa->spa_config_txg;
7493 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
7494 
7495 	/* release the spa config lock, retaining the namespace lock */
7496 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7497 
7498 	if (zio_injection_enabled)
7499 		zio_handle_panic_injection(spa, FTAG, 1);
7500 
7501 	spa_activate(newspa, spa_mode_global);
7502 	spa_async_suspend(newspa);
7503 
7504 	/*
7505 	 * Temporarily stop the initializing and TRIM activity.  We set the
7506 	 * state to ACTIVE so that we know to resume initializing or TRIM
7507 	 * once the split has completed.
7508 	 */
7509 	list_t vd_initialize_list;
7510 	list_create(&vd_initialize_list, sizeof (vdev_t),
7511 	    offsetof(vdev_t, vdev_initialize_node));
7512 
7513 	list_t vd_trim_list;
7514 	list_create(&vd_trim_list, sizeof (vdev_t),
7515 	    offsetof(vdev_t, vdev_trim_node));
7516 
7517 	for (c = 0; c < children; c++) {
7518 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7519 			mutex_enter(&vml[c]->vdev_initialize_lock);
7520 			vdev_initialize_stop(vml[c],
7521 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7522 			mutex_exit(&vml[c]->vdev_initialize_lock);
7523 
7524 			mutex_enter(&vml[c]->vdev_trim_lock);
7525 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7526 			mutex_exit(&vml[c]->vdev_trim_lock);
7527 		}
7528 	}
7529 
7530 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
7531 	vdev_trim_stop_wait(spa, &vd_trim_list);
7532 
7533 	list_destroy(&vd_initialize_list);
7534 	list_destroy(&vd_trim_list);
7535 
7536 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7537 	newspa->spa_is_splitting = B_TRUE;
7538 
7539 	/* create the new pool from the disks of the original pool */
7540 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7541 	if (error)
7542 		goto out;
7543 
7544 	/* if that worked, generate a real config for the new pool */
7545 	if (newspa->spa_root_vdev != NULL) {
7546 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
7547 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
7548 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
7549 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
7550 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7551 		    B_TRUE));
7552 	}
7553 
7554 	/* set the props */
7555 	if (props != NULL) {
7556 		spa_configfile_set(newspa, props, B_FALSE);
7557 		error = spa_prop_set(newspa, props);
7558 		if (error)
7559 			goto out;
7560 	}
7561 
7562 	/* flush everything */
7563 	txg = spa_vdev_config_enter(newspa);
7564 	vdev_config_dirty(newspa->spa_root_vdev);
7565 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7566 
7567 	if (zio_injection_enabled)
7568 		zio_handle_panic_injection(spa, FTAG, 2);
7569 
7570 	spa_async_resume(newspa);
7571 
7572 	/* finally, update the original pool's config */
7573 	txg = spa_vdev_config_enter(spa);
7574 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7575 	error = dmu_tx_assign(tx, TXG_WAIT);
7576 	if (error != 0)
7577 		dmu_tx_abort(tx);
7578 	for (c = 0; c < children; c++) {
7579 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7580 			vdev_t *tvd = vml[c]->vdev_top;
7581 
7582 			/*
7583 			 * Need to be sure the detachable VDEV is not
7584 			 * on any *other* txg's DTL list to prevent it
7585 			 * from being accessed after it's freed.
7586 			 */
7587 			for (int t = 0; t < TXG_SIZE; t++) {
7588 				(void) txg_list_remove_this(
7589 				    &tvd->vdev_dtl_list, vml[c], t);
7590 			}
7591 
7592 			vdev_split(vml[c]);
7593 			if (error == 0)
7594 				spa_history_log_internal(spa, "detach", tx,
7595 				    "vdev=%s", vml[c]->vdev_path);
7596 
7597 			vdev_free(vml[c]);
7598 		}
7599 	}
7600 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
7601 	vdev_config_dirty(spa->spa_root_vdev);
7602 	spa->spa_config_splitting = NULL;
7603 	nvlist_free(nvl);
7604 	if (error == 0)
7605 		dmu_tx_commit(tx);
7606 	(void) spa_vdev_exit(spa, NULL, txg, 0);
7607 
7608 	if (zio_injection_enabled)
7609 		zio_handle_panic_injection(spa, FTAG, 3);
7610 
7611 	/* split is complete; log a history record */
7612 	spa_history_log_internal(newspa, "split", NULL,
7613 	    "from pool %s", spa_name(spa));
7614 
7615 	newspa->spa_is_splitting = B_FALSE;
7616 	kmem_free(vml, children * sizeof (vdev_t *));
7617 
7618 	/* if we're not going to mount the filesystems in userland, export */
7619 	if (exp)
7620 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7621 		    B_FALSE, B_FALSE);
7622 
7623 	return (error);
7624 
7625 out:
7626 	spa_unload(newspa);
7627 	spa_deactivate(newspa);
7628 	spa_remove(newspa);
7629 
7630 	txg = spa_vdev_config_enter(spa);
7631 
7632 	/* re-online all offlined disks */
7633 	for (c = 0; c < children; c++) {
7634 		if (vml[c] != NULL)
7635 			vml[c]->vdev_offline = B_FALSE;
7636 	}
7637 
7638 	/* restart initializing or trimming disks as necessary */
7639 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7640 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7641 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7642 
7643 	vdev_reopen(spa->spa_root_vdev);
7644 
7645 	nvlist_free(spa->spa_config_splitting);
7646 	spa->spa_config_splitting = NULL;
7647 	(void) spa_vdev_exit(spa, NULL, txg, error);
7648 
7649 	kmem_free(vml, children * sizeof (vdev_t *));
7650 	return (error);
7651 }
7652 
7653 /*
7654  * Find any device that's done replacing, or a vdev marked 'unspare' that's
7655  * currently spared, so we can detach it.
7656  */
7657 static vdev_t *
7658 spa_vdev_resilver_done_hunt(vdev_t *vd)
7659 {
7660 	vdev_t *newvd, *oldvd;
7661 
7662 	for (int c = 0; c < vd->vdev_children; c++) {
7663 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7664 		if (oldvd != NULL)
7665 			return (oldvd);
7666 	}
7667 
7668 	/*
7669 	 * Check for a completed replacement.  We always consider the first
7670 	 * vdev in the list to be the oldest vdev, and the last one to be
7671 	 * the newest (see spa_vdev_attach() for how that works).  In
7672 	 * the case where the newest vdev is faulted, we will not automatically
7673 	 * remove it after a resilver completes.  This is OK as it will require
7674 	 * user intervention to determine which disk the admin wishes to keep.
7675 	 */
7676 	if (vd->vdev_ops == &vdev_replacing_ops) {
7677 		ASSERT(vd->vdev_children > 1);
7678 
7679 		newvd = vd->vdev_child[vd->vdev_children - 1];
7680 		oldvd = vd->vdev_child[0];
7681 
7682 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7683 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7684 		    !vdev_dtl_required(oldvd))
7685 			return (oldvd);
7686 	}
7687 
7688 	/*
7689 	 * Check for a completed resilver with the 'unspare' flag set.
7690 	 * Also potentially update faulted state.
7691 	 */
7692 	if (vd->vdev_ops == &vdev_spare_ops) {
7693 		vdev_t *first = vd->vdev_child[0];
7694 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7695 
7696 		if (last->vdev_unspare) {
7697 			oldvd = first;
7698 			newvd = last;
7699 		} else if (first->vdev_unspare) {
7700 			oldvd = last;
7701 			newvd = first;
7702 		} else {
7703 			oldvd = NULL;
7704 		}
7705 
7706 		if (oldvd != NULL &&
7707 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
7708 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7709 		    !vdev_dtl_required(oldvd))
7710 			return (oldvd);
7711 
7712 		vdev_propagate_state(vd);
7713 
7714 		/*
7715 		 * If there are more than two spares attached to a disk,
7716 		 * and those spares are not required, then we want to
7717 		 * attempt to free them up now so that they can be used
7718 		 * by other pools.  Once we're back down to a single
7719 		 * disk+spare, we stop removing them.
7720 		 */
7721 		if (vd->vdev_children > 2) {
7722 			newvd = vd->vdev_child[1];
7723 
7724 			if (newvd->vdev_isspare && last->vdev_isspare &&
7725 			    vdev_dtl_empty(last, DTL_MISSING) &&
7726 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
7727 			    !vdev_dtl_required(newvd))
7728 				return (newvd);
7729 		}
7730 	}
7731 
7732 	return (NULL);
7733 }
7734 
7735 static void
7736 spa_vdev_resilver_done(spa_t *spa)
7737 {
7738 	vdev_t *vd, *pvd, *ppvd;
7739 	uint64_t guid, sguid, pguid, ppguid;
7740 
7741 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7742 
7743 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
7744 		pvd = vd->vdev_parent;
7745 		ppvd = pvd->vdev_parent;
7746 		guid = vd->vdev_guid;
7747 		pguid = pvd->vdev_guid;
7748 		ppguid = ppvd->vdev_guid;
7749 		sguid = 0;
7750 		/*
7751 		 * If we have just finished replacing a hot spared device, then
7752 		 * we need to detach the parent's first child (the original hot
7753 		 * spare) as well.
7754 		 */
7755 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
7756 		    ppvd->vdev_children == 2) {
7757 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
7758 			sguid = ppvd->vdev_child[1]->vdev_guid;
7759 		}
7760 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
7761 
7762 		spa_config_exit(spa, SCL_ALL, FTAG);
7763 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
7764 			return;
7765 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
7766 			return;
7767 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7768 	}
7769 
7770 	spa_config_exit(spa, SCL_ALL, FTAG);
7771 
7772 	/*
7773 	 * If a detach was not performed above replace waiters will not have
7774 	 * been notified.  In which case we must do so now.
7775 	 */
7776 	spa_notify_waiters(spa);
7777 }
7778 
7779 /*
7780  * Update the stored path or FRU for this vdev.
7781  */
7782 static int
7783 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
7784     boolean_t ispath)
7785 {
7786 	vdev_t *vd;
7787 	boolean_t sync = B_FALSE;
7788 
7789 	ASSERT(spa_writeable(spa));
7790 
7791 	spa_vdev_state_enter(spa, SCL_ALL);
7792 
7793 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
7794 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
7795 
7796 	if (!vd->vdev_ops->vdev_op_leaf)
7797 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
7798 
7799 	if (ispath) {
7800 		if (strcmp(value, vd->vdev_path) != 0) {
7801 			spa_strfree(vd->vdev_path);
7802 			vd->vdev_path = spa_strdup(value);
7803 			sync = B_TRUE;
7804 		}
7805 	} else {
7806 		if (vd->vdev_fru == NULL) {
7807 			vd->vdev_fru = spa_strdup(value);
7808 			sync = B_TRUE;
7809 		} else if (strcmp(value, vd->vdev_fru) != 0) {
7810 			spa_strfree(vd->vdev_fru);
7811 			vd->vdev_fru = spa_strdup(value);
7812 			sync = B_TRUE;
7813 		}
7814 	}
7815 
7816 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
7817 }
7818 
7819 int
7820 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
7821 {
7822 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
7823 }
7824 
7825 int
7826 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
7827 {
7828 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
7829 }
7830 
7831 /*
7832  * ==========================================================================
7833  * SPA Scanning
7834  * ==========================================================================
7835  */
7836 int
7837 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
7838 {
7839 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7840 
7841 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7842 		return (SET_ERROR(EBUSY));
7843 
7844 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
7845 }
7846 
7847 int
7848 spa_scan_stop(spa_t *spa)
7849 {
7850 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7851 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7852 		return (SET_ERROR(EBUSY));
7853 	return (dsl_scan_cancel(spa->spa_dsl_pool));
7854 }
7855 
7856 int
7857 spa_scan(spa_t *spa, pool_scan_func_t func)
7858 {
7859 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7860 
7861 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
7862 		return (SET_ERROR(ENOTSUP));
7863 
7864 	if (func == POOL_SCAN_RESILVER &&
7865 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
7866 		return (SET_ERROR(ENOTSUP));
7867 
7868 	/*
7869 	 * If a resilver was requested, but there is no DTL on a
7870 	 * writeable leaf device, we have nothing to do.
7871 	 */
7872 	if (func == POOL_SCAN_RESILVER &&
7873 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
7874 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
7875 		return (0);
7876 	}
7877 
7878 	return (dsl_scan(spa->spa_dsl_pool, func));
7879 }
7880 
7881 /*
7882  * ==========================================================================
7883  * SPA async task processing
7884  * ==========================================================================
7885  */
7886 
7887 static void
7888 spa_async_remove(spa_t *spa, vdev_t *vd)
7889 {
7890 	if (vd->vdev_remove_wanted) {
7891 		vd->vdev_remove_wanted = B_FALSE;
7892 		vd->vdev_delayed_close = B_FALSE;
7893 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
7894 
7895 		/*
7896 		 * We want to clear the stats, but we don't want to do a full
7897 		 * vdev_clear() as that will cause us to throw away
7898 		 * degraded/faulted state as well as attempt to reopen the
7899 		 * device, all of which is a waste.
7900 		 */
7901 		vd->vdev_stat.vs_read_errors = 0;
7902 		vd->vdev_stat.vs_write_errors = 0;
7903 		vd->vdev_stat.vs_checksum_errors = 0;
7904 
7905 		vdev_state_dirty(vd->vdev_top);
7906 	}
7907 
7908 	for (int c = 0; c < vd->vdev_children; c++)
7909 		spa_async_remove(spa, vd->vdev_child[c]);
7910 }
7911 
7912 static void
7913 spa_async_probe(spa_t *spa, vdev_t *vd)
7914 {
7915 	if (vd->vdev_probe_wanted) {
7916 		vd->vdev_probe_wanted = B_FALSE;
7917 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
7918 	}
7919 
7920 	for (int c = 0; c < vd->vdev_children; c++)
7921 		spa_async_probe(spa, vd->vdev_child[c]);
7922 }
7923 
7924 static void
7925 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
7926 {
7927 	if (!spa->spa_autoexpand)
7928 		return;
7929 
7930 	for (int c = 0; c < vd->vdev_children; c++) {
7931 		vdev_t *cvd = vd->vdev_child[c];
7932 		spa_async_autoexpand(spa, cvd);
7933 	}
7934 
7935 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
7936 		return;
7937 
7938 	spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
7939 }
7940 
7941 static void
7942 spa_async_thread(void *arg)
7943 {
7944 	spa_t *spa = (spa_t *)arg;
7945 	dsl_pool_t *dp = spa->spa_dsl_pool;
7946 	int tasks;
7947 
7948 	ASSERT(spa->spa_sync_on);
7949 
7950 	mutex_enter(&spa->spa_async_lock);
7951 	tasks = spa->spa_async_tasks;
7952 	spa->spa_async_tasks = 0;
7953 	mutex_exit(&spa->spa_async_lock);
7954 
7955 	/*
7956 	 * See if the config needs to be updated.
7957 	 */
7958 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
7959 		uint64_t old_space, new_space;
7960 
7961 		mutex_enter(&spa_namespace_lock);
7962 		old_space = metaslab_class_get_space(spa_normal_class(spa));
7963 		old_space += metaslab_class_get_space(spa_special_class(spa));
7964 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
7965 
7966 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7967 
7968 		new_space = metaslab_class_get_space(spa_normal_class(spa));
7969 		new_space += metaslab_class_get_space(spa_special_class(spa));
7970 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
7971 		mutex_exit(&spa_namespace_lock);
7972 
7973 		/*
7974 		 * If the pool grew as a result of the config update,
7975 		 * then log an internal history event.
7976 		 */
7977 		if (new_space != old_space) {
7978 			spa_history_log_internal(spa, "vdev online", NULL,
7979 			    "pool '%s' size: %llu(+%llu)",
7980 			    spa_name(spa), (u_longlong_t)new_space,
7981 			    (u_longlong_t)(new_space - old_space));
7982 		}
7983 	}
7984 
7985 	/*
7986 	 * See if any devices need to be marked REMOVED.
7987 	 */
7988 	if (tasks & SPA_ASYNC_REMOVE) {
7989 		spa_vdev_state_enter(spa, SCL_NONE);
7990 		spa_async_remove(spa, spa->spa_root_vdev);
7991 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
7992 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
7993 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
7994 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
7995 		(void) spa_vdev_state_exit(spa, NULL, 0);
7996 	}
7997 
7998 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
7999 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8000 		spa_async_autoexpand(spa, spa->spa_root_vdev);
8001 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8002 	}
8003 
8004 	/*
8005 	 * See if any devices need to be probed.
8006 	 */
8007 	if (tasks & SPA_ASYNC_PROBE) {
8008 		spa_vdev_state_enter(spa, SCL_NONE);
8009 		spa_async_probe(spa, spa->spa_root_vdev);
8010 		(void) spa_vdev_state_exit(spa, NULL, 0);
8011 	}
8012 
8013 	/*
8014 	 * If any devices are done replacing, detach them.
8015 	 */
8016 	if (tasks & SPA_ASYNC_RESILVER_DONE)
8017 		spa_vdev_resilver_done(spa);
8018 
8019 	/*
8020 	 * If any devices are done replacing, detach them.  Then if no
8021 	 * top-level vdevs are rebuilding attempt to kick off a scrub.
8022 	 */
8023 	if (tasks & SPA_ASYNC_REBUILD_DONE) {
8024 		spa_vdev_resilver_done(spa);
8025 
8026 		if (!vdev_rebuild_active(spa->spa_root_vdev))
8027 			(void) dsl_scan(spa->spa_dsl_pool, POOL_SCAN_SCRUB);
8028 	}
8029 
8030 	/*
8031 	 * Kick off a resilver.
8032 	 */
8033 	if (tasks & SPA_ASYNC_RESILVER &&
8034 	    !vdev_rebuild_active(spa->spa_root_vdev) &&
8035 	    (!dsl_scan_resilvering(dp) ||
8036 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8037 		dsl_scan_restart_resilver(dp, 0);
8038 
8039 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8040 		mutex_enter(&spa_namespace_lock);
8041 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8042 		vdev_initialize_restart(spa->spa_root_vdev);
8043 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8044 		mutex_exit(&spa_namespace_lock);
8045 	}
8046 
8047 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
8048 		mutex_enter(&spa_namespace_lock);
8049 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8050 		vdev_trim_restart(spa->spa_root_vdev);
8051 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8052 		mutex_exit(&spa_namespace_lock);
8053 	}
8054 
8055 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8056 		mutex_enter(&spa_namespace_lock);
8057 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8058 		vdev_autotrim_restart(spa);
8059 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8060 		mutex_exit(&spa_namespace_lock);
8061 	}
8062 
8063 	/*
8064 	 * Kick off L2 cache whole device TRIM.
8065 	 */
8066 	if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8067 		mutex_enter(&spa_namespace_lock);
8068 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8069 		vdev_trim_l2arc(spa);
8070 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8071 		mutex_exit(&spa_namespace_lock);
8072 	}
8073 
8074 	/*
8075 	 * Kick off L2 cache rebuilding.
8076 	 */
8077 	if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8078 		mutex_enter(&spa_namespace_lock);
8079 		spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8080 		l2arc_spa_rebuild_start(spa);
8081 		spa_config_exit(spa, SCL_L2ARC, FTAG);
8082 		mutex_exit(&spa_namespace_lock);
8083 	}
8084 
8085 	/*
8086 	 * Let the world know that we're done.
8087 	 */
8088 	mutex_enter(&spa->spa_async_lock);
8089 	spa->spa_async_thread = NULL;
8090 	cv_broadcast(&spa->spa_async_cv);
8091 	mutex_exit(&spa->spa_async_lock);
8092 	thread_exit();
8093 }
8094 
8095 void
8096 spa_async_suspend(spa_t *spa)
8097 {
8098 	mutex_enter(&spa->spa_async_lock);
8099 	spa->spa_async_suspended++;
8100 	while (spa->spa_async_thread != NULL)
8101 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8102 	mutex_exit(&spa->spa_async_lock);
8103 
8104 	spa_vdev_remove_suspend(spa);
8105 
8106 	zthr_t *condense_thread = spa->spa_condense_zthr;
8107 	if (condense_thread != NULL)
8108 		zthr_cancel(condense_thread);
8109 
8110 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8111 	if (discard_thread != NULL)
8112 		zthr_cancel(discard_thread);
8113 
8114 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8115 	if (ll_delete_thread != NULL)
8116 		zthr_cancel(ll_delete_thread);
8117 
8118 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8119 	if (ll_condense_thread != NULL)
8120 		zthr_cancel(ll_condense_thread);
8121 }
8122 
8123 void
8124 spa_async_resume(spa_t *spa)
8125 {
8126 	mutex_enter(&spa->spa_async_lock);
8127 	ASSERT(spa->spa_async_suspended != 0);
8128 	spa->spa_async_suspended--;
8129 	mutex_exit(&spa->spa_async_lock);
8130 	spa_restart_removal(spa);
8131 
8132 	zthr_t *condense_thread = spa->spa_condense_zthr;
8133 	if (condense_thread != NULL)
8134 		zthr_resume(condense_thread);
8135 
8136 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8137 	if (discard_thread != NULL)
8138 		zthr_resume(discard_thread);
8139 
8140 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8141 	if (ll_delete_thread != NULL)
8142 		zthr_resume(ll_delete_thread);
8143 
8144 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8145 	if (ll_condense_thread != NULL)
8146 		zthr_resume(ll_condense_thread);
8147 }
8148 
8149 static boolean_t
8150 spa_async_tasks_pending(spa_t *spa)
8151 {
8152 	uint_t non_config_tasks;
8153 	uint_t config_task;
8154 	boolean_t config_task_suspended;
8155 
8156 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
8157 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
8158 	if (spa->spa_ccw_fail_time == 0) {
8159 		config_task_suspended = B_FALSE;
8160 	} else {
8161 		config_task_suspended =
8162 		    (gethrtime() - spa->spa_ccw_fail_time) <
8163 		    ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
8164 	}
8165 
8166 	return (non_config_tasks || (config_task && !config_task_suspended));
8167 }
8168 
8169 static void
8170 spa_async_dispatch(spa_t *spa)
8171 {
8172 	mutex_enter(&spa->spa_async_lock);
8173 	if (spa_async_tasks_pending(spa) &&
8174 	    !spa->spa_async_suspended &&
8175 	    spa->spa_async_thread == NULL)
8176 		spa->spa_async_thread = thread_create(NULL, 0,
8177 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
8178 	mutex_exit(&spa->spa_async_lock);
8179 }
8180 
8181 void
8182 spa_async_request(spa_t *spa, int task)
8183 {
8184 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
8185 	mutex_enter(&spa->spa_async_lock);
8186 	spa->spa_async_tasks |= task;
8187 	mutex_exit(&spa->spa_async_lock);
8188 }
8189 
8190 int
8191 spa_async_tasks(spa_t *spa)
8192 {
8193 	return (spa->spa_async_tasks);
8194 }
8195 
8196 /*
8197  * ==========================================================================
8198  * SPA syncing routines
8199  * ==========================================================================
8200  */
8201 
8202 
8203 static int
8204 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8205     dmu_tx_t *tx)
8206 {
8207 	bpobj_t *bpo = arg;
8208 	bpobj_enqueue(bpo, bp, bp_freed, tx);
8209 	return (0);
8210 }
8211 
8212 int
8213 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8214 {
8215 	return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
8216 }
8217 
8218 int
8219 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8220 {
8221 	return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
8222 }
8223 
8224 static int
8225 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8226 {
8227 	zio_t *pio = arg;
8228 
8229 	zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
8230 	    pio->io_flags));
8231 	return (0);
8232 }
8233 
8234 static int
8235 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8236     dmu_tx_t *tx)
8237 {
8238 	ASSERT(!bp_freed);
8239 	return (spa_free_sync_cb(arg, bp, tx));
8240 }
8241 
8242 /*
8243  * Note: this simple function is not inlined to make it easier to dtrace the
8244  * amount of time spent syncing frees.
8245  */
8246 static void
8247 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
8248 {
8249 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
8250 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
8251 	VERIFY(zio_wait(zio) == 0);
8252 }
8253 
8254 /*
8255  * Note: this simple function is not inlined to make it easier to dtrace the
8256  * amount of time spent syncing deferred frees.
8257  */
8258 static void
8259 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
8260 {
8261 	if (spa_sync_pass(spa) != 1)
8262 		return;
8263 
8264 	/*
8265 	 * Note:
8266 	 * If the log space map feature is active, we stop deferring
8267 	 * frees to the next TXG and therefore running this function
8268 	 * would be considered a no-op as spa_deferred_bpobj should
8269 	 * not have any entries.
8270 	 *
8271 	 * That said we run this function anyway (instead of returning
8272 	 * immediately) for the edge-case scenario where we just
8273 	 * activated the log space map feature in this TXG but we have
8274 	 * deferred frees from the previous TXG.
8275 	 */
8276 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
8277 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
8278 	    bpobj_spa_free_sync_cb, zio, tx), ==, 0);
8279 	VERIFY0(zio_wait(zio));
8280 }
8281 
8282 static void
8283 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
8284 {
8285 	char *packed = NULL;
8286 	size_t bufsize;
8287 	size_t nvsize = 0;
8288 	dmu_buf_t *db;
8289 
8290 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
8291 
8292 	/*
8293 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
8294 	 * information.  This avoids the dmu_buf_will_dirty() path and
8295 	 * saves us a pre-read to get data we don't actually care about.
8296 	 */
8297 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
8298 	packed = vmem_alloc(bufsize, KM_SLEEP);
8299 
8300 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
8301 	    KM_SLEEP) == 0);
8302 	bzero(packed + nvsize, bufsize - nvsize);
8303 
8304 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
8305 
8306 	vmem_free(packed, bufsize);
8307 
8308 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
8309 	dmu_buf_will_dirty(db, tx);
8310 	*(uint64_t *)db->db_data = nvsize;
8311 	dmu_buf_rele(db, FTAG);
8312 }
8313 
8314 static void
8315 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
8316     const char *config, const char *entry)
8317 {
8318 	nvlist_t *nvroot;
8319 	nvlist_t **list;
8320 	int i;
8321 
8322 	if (!sav->sav_sync)
8323 		return;
8324 
8325 	/*
8326 	 * Update the MOS nvlist describing the list of available devices.
8327 	 * spa_validate_aux() will have already made sure this nvlist is
8328 	 * valid and the vdevs are labeled appropriately.
8329 	 */
8330 	if (sav->sav_object == 0) {
8331 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
8332 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
8333 		    sizeof (uint64_t), tx);
8334 		VERIFY(zap_update(spa->spa_meta_objset,
8335 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
8336 		    &sav->sav_object, tx) == 0);
8337 	}
8338 
8339 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
8340 	if (sav->sav_count == 0) {
8341 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
8342 	} else {
8343 		list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
8344 		for (i = 0; i < sav->sav_count; i++)
8345 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
8346 			    B_FALSE, VDEV_CONFIG_L2CACHE);
8347 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
8348 		    sav->sav_count) == 0);
8349 		for (i = 0; i < sav->sav_count; i++)
8350 			nvlist_free(list[i]);
8351 		kmem_free(list, sav->sav_count * sizeof (void *));
8352 	}
8353 
8354 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
8355 	nvlist_free(nvroot);
8356 
8357 	sav->sav_sync = B_FALSE;
8358 }
8359 
8360 /*
8361  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
8362  * The all-vdev ZAP must be empty.
8363  */
8364 static void
8365 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
8366 {
8367 	spa_t *spa = vd->vdev_spa;
8368 
8369 	if (vd->vdev_top_zap != 0) {
8370 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8371 		    vd->vdev_top_zap, tx));
8372 	}
8373 	if (vd->vdev_leaf_zap != 0) {
8374 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8375 		    vd->vdev_leaf_zap, tx));
8376 	}
8377 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
8378 		spa_avz_build(vd->vdev_child[i], avz, tx);
8379 	}
8380 }
8381 
8382 static void
8383 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
8384 {
8385 	nvlist_t *config;
8386 
8387 	/*
8388 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
8389 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
8390 	 * Similarly, if the pool is being assembled (e.g. after a split), we
8391 	 * need to rebuild the AVZ although the config may not be dirty.
8392 	 */
8393 	if (list_is_empty(&spa->spa_config_dirty_list) &&
8394 	    spa->spa_avz_action == AVZ_ACTION_NONE)
8395 		return;
8396 
8397 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8398 
8399 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
8400 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
8401 	    spa->spa_all_vdev_zaps != 0);
8402 
8403 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
8404 		/* Make and build the new AVZ */
8405 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
8406 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
8407 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
8408 
8409 		/* Diff old AVZ with new one */
8410 		zap_cursor_t zc;
8411 		zap_attribute_t za;
8412 
8413 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8414 		    spa->spa_all_vdev_zaps);
8415 		    zap_cursor_retrieve(&zc, &za) == 0;
8416 		    zap_cursor_advance(&zc)) {
8417 			uint64_t vdzap = za.za_first_integer;
8418 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
8419 			    vdzap) == ENOENT) {
8420 				/*
8421 				 * ZAP is listed in old AVZ but not in new one;
8422 				 * destroy it
8423 				 */
8424 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
8425 				    tx));
8426 			}
8427 		}
8428 
8429 		zap_cursor_fini(&zc);
8430 
8431 		/* Destroy the old AVZ */
8432 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8433 		    spa->spa_all_vdev_zaps, tx));
8434 
8435 		/* Replace the old AVZ in the dir obj with the new one */
8436 		VERIFY0(zap_update(spa->spa_meta_objset,
8437 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8438 		    sizeof (new_avz), 1, &new_avz, tx));
8439 
8440 		spa->spa_all_vdev_zaps = new_avz;
8441 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8442 		zap_cursor_t zc;
8443 		zap_attribute_t za;
8444 
8445 		/* Walk through the AVZ and destroy all listed ZAPs */
8446 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8447 		    spa->spa_all_vdev_zaps);
8448 		    zap_cursor_retrieve(&zc, &za) == 0;
8449 		    zap_cursor_advance(&zc)) {
8450 			uint64_t zap = za.za_first_integer;
8451 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8452 		}
8453 
8454 		zap_cursor_fini(&zc);
8455 
8456 		/* Destroy and unlink the AVZ itself */
8457 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8458 		    spa->spa_all_vdev_zaps, tx));
8459 		VERIFY0(zap_remove(spa->spa_meta_objset,
8460 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8461 		spa->spa_all_vdev_zaps = 0;
8462 	}
8463 
8464 	if (spa->spa_all_vdev_zaps == 0) {
8465 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8466 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8467 		    DMU_POOL_VDEV_ZAP_MAP, tx);
8468 	}
8469 	spa->spa_avz_action = AVZ_ACTION_NONE;
8470 
8471 	/* Create ZAPs for vdevs that don't have them. */
8472 	vdev_construct_zaps(spa->spa_root_vdev, tx);
8473 
8474 	config = spa_config_generate(spa, spa->spa_root_vdev,
8475 	    dmu_tx_get_txg(tx), B_FALSE);
8476 
8477 	/*
8478 	 * If we're upgrading the spa version then make sure that
8479 	 * the config object gets updated with the correct version.
8480 	 */
8481 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8482 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8483 		    spa->spa_uberblock.ub_version);
8484 
8485 	spa_config_exit(spa, SCL_STATE, FTAG);
8486 
8487 	nvlist_free(spa->spa_config_syncing);
8488 	spa->spa_config_syncing = config;
8489 
8490 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8491 }
8492 
8493 static void
8494 spa_sync_version(void *arg, dmu_tx_t *tx)
8495 {
8496 	uint64_t *versionp = arg;
8497 	uint64_t version = *versionp;
8498 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8499 
8500 	/*
8501 	 * Setting the version is special cased when first creating the pool.
8502 	 */
8503 	ASSERT(tx->tx_txg != TXG_INITIAL);
8504 
8505 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8506 	ASSERT(version >= spa_version(spa));
8507 
8508 	spa->spa_uberblock.ub_version = version;
8509 	vdev_config_dirty(spa->spa_root_vdev);
8510 	spa_history_log_internal(spa, "set", tx, "version=%lld",
8511 	    (longlong_t)version);
8512 }
8513 
8514 /*
8515  * Set zpool properties.
8516  */
8517 static void
8518 spa_sync_props(void *arg, dmu_tx_t *tx)
8519 {
8520 	nvlist_t *nvp = arg;
8521 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8522 	objset_t *mos = spa->spa_meta_objset;
8523 	nvpair_t *elem = NULL;
8524 
8525 	mutex_enter(&spa->spa_props_lock);
8526 
8527 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
8528 		uint64_t intval;
8529 		char *strval, *fname;
8530 		zpool_prop_t prop;
8531 		const char *propname;
8532 		zprop_type_t proptype;
8533 		spa_feature_t fid;
8534 
8535 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
8536 		case ZPOOL_PROP_INVAL:
8537 			/*
8538 			 * We checked this earlier in spa_prop_validate().
8539 			 */
8540 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
8541 
8542 			fname = strchr(nvpair_name(elem), '@') + 1;
8543 			VERIFY0(zfeature_lookup_name(fname, &fid));
8544 
8545 			spa_feature_enable(spa, fid, tx);
8546 			spa_history_log_internal(spa, "set", tx,
8547 			    "%s=enabled", nvpair_name(elem));
8548 			break;
8549 
8550 		case ZPOOL_PROP_VERSION:
8551 			intval = fnvpair_value_uint64(elem);
8552 			/*
8553 			 * The version is synced separately before other
8554 			 * properties and should be correct by now.
8555 			 */
8556 			ASSERT3U(spa_version(spa), >=, intval);
8557 			break;
8558 
8559 		case ZPOOL_PROP_ALTROOT:
8560 			/*
8561 			 * 'altroot' is a non-persistent property. It should
8562 			 * have been set temporarily at creation or import time.
8563 			 */
8564 			ASSERT(spa->spa_root != NULL);
8565 			break;
8566 
8567 		case ZPOOL_PROP_READONLY:
8568 		case ZPOOL_PROP_CACHEFILE:
8569 			/*
8570 			 * 'readonly' and 'cachefile' are also non-persistent
8571 			 * properties.
8572 			 */
8573 			break;
8574 		case ZPOOL_PROP_COMMENT:
8575 			strval = fnvpair_value_string(elem);
8576 			if (spa->spa_comment != NULL)
8577 				spa_strfree(spa->spa_comment);
8578 			spa->spa_comment = spa_strdup(strval);
8579 			/*
8580 			 * We need to dirty the configuration on all the vdevs
8581 			 * so that their labels get updated.  It's unnecessary
8582 			 * to do this for pool creation since the vdev's
8583 			 * configuration has already been dirtied.
8584 			 */
8585 			if (tx->tx_txg != TXG_INITIAL)
8586 				vdev_config_dirty(spa->spa_root_vdev);
8587 			spa_history_log_internal(spa, "set", tx,
8588 			    "%s=%s", nvpair_name(elem), strval);
8589 			break;
8590 		default:
8591 			/*
8592 			 * Set pool property values in the poolprops mos object.
8593 			 */
8594 			if (spa->spa_pool_props_object == 0) {
8595 				spa->spa_pool_props_object =
8596 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
8597 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8598 				    tx);
8599 			}
8600 
8601 			/* normalize the property name */
8602 			propname = zpool_prop_to_name(prop);
8603 			proptype = zpool_prop_get_type(prop);
8604 
8605 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
8606 				ASSERT(proptype == PROP_TYPE_STRING);
8607 				strval = fnvpair_value_string(elem);
8608 				VERIFY0(zap_update(mos,
8609 				    spa->spa_pool_props_object, propname,
8610 				    1, strlen(strval) + 1, strval, tx));
8611 				spa_history_log_internal(spa, "set", tx,
8612 				    "%s=%s", nvpair_name(elem), strval);
8613 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8614 				intval = fnvpair_value_uint64(elem);
8615 
8616 				if (proptype == PROP_TYPE_INDEX) {
8617 					const char *unused;
8618 					VERIFY0(zpool_prop_index_to_string(
8619 					    prop, intval, &unused));
8620 				}
8621 				VERIFY0(zap_update(mos,
8622 				    spa->spa_pool_props_object, propname,
8623 				    8, 1, &intval, tx));
8624 				spa_history_log_internal(spa, "set", tx,
8625 				    "%s=%lld", nvpair_name(elem),
8626 				    (longlong_t)intval);
8627 			} else {
8628 				ASSERT(0); /* not allowed */
8629 			}
8630 
8631 			switch (prop) {
8632 			case ZPOOL_PROP_DELEGATION:
8633 				spa->spa_delegation = intval;
8634 				break;
8635 			case ZPOOL_PROP_BOOTFS:
8636 				spa->spa_bootfs = intval;
8637 				break;
8638 			case ZPOOL_PROP_FAILUREMODE:
8639 				spa->spa_failmode = intval;
8640 				break;
8641 			case ZPOOL_PROP_AUTOTRIM:
8642 				spa->spa_autotrim = intval;
8643 				spa_async_request(spa,
8644 				    SPA_ASYNC_AUTOTRIM_RESTART);
8645 				break;
8646 			case ZPOOL_PROP_AUTOEXPAND:
8647 				spa->spa_autoexpand = intval;
8648 				if (tx->tx_txg != TXG_INITIAL)
8649 					spa_async_request(spa,
8650 					    SPA_ASYNC_AUTOEXPAND);
8651 				break;
8652 			case ZPOOL_PROP_MULTIHOST:
8653 				spa->spa_multihost = intval;
8654 				break;
8655 			default:
8656 				break;
8657 			}
8658 		}
8659 
8660 	}
8661 
8662 	mutex_exit(&spa->spa_props_lock);
8663 }
8664 
8665 /*
8666  * Perform one-time upgrade on-disk changes.  spa_version() does not
8667  * reflect the new version this txg, so there must be no changes this
8668  * txg to anything that the upgrade code depends on after it executes.
8669  * Therefore this must be called after dsl_pool_sync() does the sync
8670  * tasks.
8671  */
8672 static void
8673 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8674 {
8675 	if (spa_sync_pass(spa) != 1)
8676 		return;
8677 
8678 	dsl_pool_t *dp = spa->spa_dsl_pool;
8679 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8680 
8681 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8682 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8683 		dsl_pool_create_origin(dp, tx);
8684 
8685 		/* Keeping the origin open increases spa_minref */
8686 		spa->spa_minref += 3;
8687 	}
8688 
8689 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8690 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8691 		dsl_pool_upgrade_clones(dp, tx);
8692 	}
8693 
8694 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8695 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8696 		dsl_pool_upgrade_dir_clones(dp, tx);
8697 
8698 		/* Keeping the freedir open increases spa_minref */
8699 		spa->spa_minref += 3;
8700 	}
8701 
8702 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8703 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8704 		spa_feature_create_zap_objects(spa, tx);
8705 	}
8706 
8707 	/*
8708 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8709 	 * when possibility to use lz4 compression for metadata was added
8710 	 * Old pools that have this feature enabled must be upgraded to have
8711 	 * this feature active
8712 	 */
8713 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8714 		boolean_t lz4_en = spa_feature_is_enabled(spa,
8715 		    SPA_FEATURE_LZ4_COMPRESS);
8716 		boolean_t lz4_ac = spa_feature_is_active(spa,
8717 		    SPA_FEATURE_LZ4_COMPRESS);
8718 
8719 		if (lz4_en && !lz4_ac)
8720 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
8721 	}
8722 
8723 	/*
8724 	 * If we haven't written the salt, do so now.  Note that the
8725 	 * feature may not be activated yet, but that's fine since
8726 	 * the presence of this ZAP entry is backwards compatible.
8727 	 */
8728 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8729 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
8730 		VERIFY0(zap_add(spa->spa_meta_objset,
8731 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
8732 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
8733 		    spa->spa_cksum_salt.zcs_bytes, tx));
8734 	}
8735 
8736 	rrw_exit(&dp->dp_config_rwlock, FTAG);
8737 }
8738 
8739 static void
8740 vdev_indirect_state_sync_verify(vdev_t *vd)
8741 {
8742 	vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
8743 	vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
8744 
8745 	if (vd->vdev_ops == &vdev_indirect_ops) {
8746 		ASSERT(vim != NULL);
8747 		ASSERT(vib != NULL);
8748 	}
8749 
8750 	uint64_t obsolete_sm_object = 0;
8751 	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
8752 	if (obsolete_sm_object != 0) {
8753 		ASSERT(vd->vdev_obsolete_sm != NULL);
8754 		ASSERT(vd->vdev_removing ||
8755 		    vd->vdev_ops == &vdev_indirect_ops);
8756 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
8757 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
8758 		ASSERT3U(obsolete_sm_object, ==,
8759 		    space_map_object(vd->vdev_obsolete_sm));
8760 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
8761 		    space_map_allocated(vd->vdev_obsolete_sm));
8762 	}
8763 	ASSERT(vd->vdev_obsolete_segments != NULL);
8764 
8765 	/*
8766 	 * Since frees / remaps to an indirect vdev can only
8767 	 * happen in syncing context, the obsolete segments
8768 	 * tree must be empty when we start syncing.
8769 	 */
8770 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
8771 }
8772 
8773 /*
8774  * Set the top-level vdev's max queue depth. Evaluate each top-level's
8775  * async write queue depth in case it changed. The max queue depth will
8776  * not change in the middle of syncing out this txg.
8777  */
8778 static void
8779 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
8780 {
8781 	ASSERT(spa_writeable(spa));
8782 
8783 	vdev_t *rvd = spa->spa_root_vdev;
8784 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
8785 	    zfs_vdev_queue_depth_pct / 100;
8786 	metaslab_class_t *normal = spa_normal_class(spa);
8787 	metaslab_class_t *special = spa_special_class(spa);
8788 	metaslab_class_t *dedup = spa_dedup_class(spa);
8789 
8790 	uint64_t slots_per_allocator = 0;
8791 	for (int c = 0; c < rvd->vdev_children; c++) {
8792 		vdev_t *tvd = rvd->vdev_child[c];
8793 
8794 		metaslab_group_t *mg = tvd->vdev_mg;
8795 		if (mg == NULL || !metaslab_group_initialized(mg))
8796 			continue;
8797 
8798 		metaslab_class_t *mc = mg->mg_class;
8799 		if (mc != normal && mc != special && mc != dedup)
8800 			continue;
8801 
8802 		/*
8803 		 * It is safe to do a lock-free check here because only async
8804 		 * allocations look at mg_max_alloc_queue_depth, and async
8805 		 * allocations all happen from spa_sync().
8806 		 */
8807 		for (int i = 0; i < mg->mg_allocators; i++) {
8808 			ASSERT0(zfs_refcount_count(
8809 			    &(mg->mg_allocator[i].mga_alloc_queue_depth)));
8810 		}
8811 		mg->mg_max_alloc_queue_depth = max_queue_depth;
8812 
8813 		for (int i = 0; i < mg->mg_allocators; i++) {
8814 			mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
8815 			    zfs_vdev_def_queue_depth;
8816 		}
8817 		slots_per_allocator += zfs_vdev_def_queue_depth;
8818 	}
8819 
8820 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8821 		ASSERT0(zfs_refcount_count(&normal->mc_alloc_slots[i]));
8822 		ASSERT0(zfs_refcount_count(&special->mc_alloc_slots[i]));
8823 		ASSERT0(zfs_refcount_count(&dedup->mc_alloc_slots[i]));
8824 		normal->mc_alloc_max_slots[i] = slots_per_allocator;
8825 		special->mc_alloc_max_slots[i] = slots_per_allocator;
8826 		dedup->mc_alloc_max_slots[i] = slots_per_allocator;
8827 	}
8828 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8829 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8830 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8831 }
8832 
8833 static void
8834 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
8835 {
8836 	ASSERT(spa_writeable(spa));
8837 
8838 	vdev_t *rvd = spa->spa_root_vdev;
8839 	for (int c = 0; c < rvd->vdev_children; c++) {
8840 		vdev_t *vd = rvd->vdev_child[c];
8841 		vdev_indirect_state_sync_verify(vd);
8842 
8843 		if (vdev_indirect_should_condense(vd)) {
8844 			spa_condense_indirect_start_sync(vd, tx);
8845 			break;
8846 		}
8847 	}
8848 }
8849 
8850 static void
8851 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
8852 {
8853 	objset_t *mos = spa->spa_meta_objset;
8854 	dsl_pool_t *dp = spa->spa_dsl_pool;
8855 	uint64_t txg = tx->tx_txg;
8856 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
8857 
8858 	do {
8859 		int pass = ++spa->spa_sync_pass;
8860 
8861 		spa_sync_config_object(spa, tx);
8862 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
8863 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
8864 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
8865 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
8866 		spa_errlog_sync(spa, txg);
8867 		dsl_pool_sync(dp, txg);
8868 
8869 		if (pass < zfs_sync_pass_deferred_free ||
8870 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
8871 			/*
8872 			 * If the log space map feature is active we don't
8873 			 * care about deferred frees and the deferred bpobj
8874 			 * as the log space map should effectively have the
8875 			 * same results (i.e. appending only to one object).
8876 			 */
8877 			spa_sync_frees(spa, free_bpl, tx);
8878 		} else {
8879 			/*
8880 			 * We can not defer frees in pass 1, because
8881 			 * we sync the deferred frees later in pass 1.
8882 			 */
8883 			ASSERT3U(pass, >, 1);
8884 			bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
8885 			    &spa->spa_deferred_bpobj, tx);
8886 		}
8887 
8888 		ddt_sync(spa, txg);
8889 		dsl_scan_sync(dp, tx);
8890 		svr_sync(spa, tx);
8891 		spa_sync_upgrades(spa, tx);
8892 
8893 		spa_flush_metaslabs(spa, tx);
8894 
8895 		vdev_t *vd = NULL;
8896 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
8897 		    != NULL)
8898 			vdev_sync(vd, txg);
8899 
8900 		/*
8901 		 * Note: We need to check if the MOS is dirty because we could
8902 		 * have marked the MOS dirty without updating the uberblock
8903 		 * (e.g. if we have sync tasks but no dirty user data). We need
8904 		 * to check the uberblock's rootbp because it is updated if we
8905 		 * have synced out dirty data (though in this case the MOS will
8906 		 * most likely also be dirty due to second order effects, we
8907 		 * don't want to rely on that here).
8908 		 */
8909 		if (pass == 1 &&
8910 		    spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
8911 		    !dmu_objset_is_dirty(mos, txg)) {
8912 			/*
8913 			 * Nothing changed on the first pass, therefore this
8914 			 * TXG is a no-op. Avoid syncing deferred frees, so
8915 			 * that we can keep this TXG as a no-op.
8916 			 */
8917 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8918 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8919 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
8920 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
8921 			break;
8922 		}
8923 
8924 		spa_sync_deferred_frees(spa, tx);
8925 	} while (dmu_objset_is_dirty(mos, txg));
8926 }
8927 
8928 /*
8929  * Rewrite the vdev configuration (which includes the uberblock) to
8930  * commit the transaction group.
8931  *
8932  * If there are no dirty vdevs, we sync the uberblock to a few random
8933  * top-level vdevs that are known to be visible in the config cache
8934  * (see spa_vdev_add() for a complete description). If there *are* dirty
8935  * vdevs, sync the uberblock to all vdevs.
8936  */
8937 static void
8938 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
8939 {
8940 	vdev_t *rvd = spa->spa_root_vdev;
8941 	uint64_t txg = tx->tx_txg;
8942 
8943 	for (;;) {
8944 		int error = 0;
8945 
8946 		/*
8947 		 * We hold SCL_STATE to prevent vdev open/close/etc.
8948 		 * while we're attempting to write the vdev labels.
8949 		 */
8950 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8951 
8952 		if (list_is_empty(&spa->spa_config_dirty_list)) {
8953 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
8954 			int svdcount = 0;
8955 			int children = rvd->vdev_children;
8956 			int c0 = spa_get_random(children);
8957 
8958 			for (int c = 0; c < children; c++) {
8959 				vdev_t *vd =
8960 				    rvd->vdev_child[(c0 + c) % children];
8961 
8962 				/* Stop when revisiting the first vdev */
8963 				if (c > 0 && svd[0] == vd)
8964 					break;
8965 
8966 				if (vd->vdev_ms_array == 0 ||
8967 				    vd->vdev_islog ||
8968 				    !vdev_is_concrete(vd))
8969 					continue;
8970 
8971 				svd[svdcount++] = vd;
8972 				if (svdcount == SPA_SYNC_MIN_VDEVS)
8973 					break;
8974 			}
8975 			error = vdev_config_sync(svd, svdcount, txg);
8976 		} else {
8977 			error = vdev_config_sync(rvd->vdev_child,
8978 			    rvd->vdev_children, txg);
8979 		}
8980 
8981 		if (error == 0)
8982 			spa->spa_last_synced_guid = rvd->vdev_guid;
8983 
8984 		spa_config_exit(spa, SCL_STATE, FTAG);
8985 
8986 		if (error == 0)
8987 			break;
8988 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
8989 		zio_resume_wait(spa);
8990 	}
8991 }
8992 
8993 /*
8994  * Sync the specified transaction group.  New blocks may be dirtied as
8995  * part of the process, so we iterate until it converges.
8996  */
8997 void
8998 spa_sync(spa_t *spa, uint64_t txg)
8999 {
9000 	vdev_t *vd = NULL;
9001 
9002 	VERIFY(spa_writeable(spa));
9003 
9004 	/*
9005 	 * Wait for i/os issued in open context that need to complete
9006 	 * before this txg syncs.
9007 	 */
9008 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
9009 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
9010 	    ZIO_FLAG_CANFAIL);
9011 
9012 	/*
9013 	 * Lock out configuration changes.
9014 	 */
9015 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9016 
9017 	spa->spa_syncing_txg = txg;
9018 	spa->spa_sync_pass = 0;
9019 
9020 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9021 		mutex_enter(&spa->spa_alloc_locks[i]);
9022 		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
9023 		mutex_exit(&spa->spa_alloc_locks[i]);
9024 	}
9025 
9026 	/*
9027 	 * If there are any pending vdev state changes, convert them
9028 	 * into config changes that go out with this transaction group.
9029 	 */
9030 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9031 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
9032 		/*
9033 		 * We need the write lock here because, for aux vdevs,
9034 		 * calling vdev_config_dirty() modifies sav_config.
9035 		 * This is ugly and will become unnecessary when we
9036 		 * eliminate the aux vdev wart by integrating all vdevs
9037 		 * into the root vdev tree.
9038 		 */
9039 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9040 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9041 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9042 			vdev_state_clean(vd);
9043 			vdev_config_dirty(vd);
9044 		}
9045 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9046 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9047 	}
9048 	spa_config_exit(spa, SCL_STATE, FTAG);
9049 
9050 	dsl_pool_t *dp = spa->spa_dsl_pool;
9051 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9052 
9053 	spa->spa_sync_starttime = gethrtime();
9054 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9055 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9056 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9057 	    NSEC_TO_TICK(spa->spa_deadman_synctime));
9058 
9059 	/*
9060 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
9061 	 * set spa_deflate if we have no raid-z vdevs.
9062 	 */
9063 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
9064 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
9065 		vdev_t *rvd = spa->spa_root_vdev;
9066 
9067 		int i;
9068 		for (i = 0; i < rvd->vdev_children; i++) {
9069 			vd = rvd->vdev_child[i];
9070 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
9071 				break;
9072 		}
9073 		if (i == rvd->vdev_children) {
9074 			spa->spa_deflate = TRUE;
9075 			VERIFY0(zap_add(spa->spa_meta_objset,
9076 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
9077 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
9078 		}
9079 	}
9080 
9081 	spa_sync_adjust_vdev_max_queue_depth(spa);
9082 
9083 	spa_sync_condense_indirect(spa, tx);
9084 
9085 	spa_sync_iterate_to_convergence(spa, tx);
9086 
9087 #ifdef ZFS_DEBUG
9088 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
9089 	/*
9090 	 * Make sure that the number of ZAPs for all the vdevs matches
9091 	 * the number of ZAPs in the per-vdev ZAP list. This only gets
9092 	 * called if the config is dirty; otherwise there may be
9093 	 * outstanding AVZ operations that weren't completed in
9094 	 * spa_sync_config_object.
9095 	 */
9096 		uint64_t all_vdev_zap_entry_count;
9097 		ASSERT0(zap_count(spa->spa_meta_objset,
9098 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
9099 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
9100 		    all_vdev_zap_entry_count);
9101 	}
9102 #endif
9103 
9104 	if (spa->spa_vdev_removal != NULL) {
9105 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
9106 	}
9107 
9108 	spa_sync_rewrite_vdev_config(spa, tx);
9109 	dmu_tx_commit(tx);
9110 
9111 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9112 	spa->spa_deadman_tqid = 0;
9113 
9114 	/*
9115 	 * Clear the dirty config list.
9116 	 */
9117 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
9118 		vdev_config_clean(vd);
9119 
9120 	/*
9121 	 * Now that the new config has synced transactionally,
9122 	 * let it become visible to the config cache.
9123 	 */
9124 	if (spa->spa_config_syncing != NULL) {
9125 		spa_config_set(spa, spa->spa_config_syncing);
9126 		spa->spa_config_txg = txg;
9127 		spa->spa_config_syncing = NULL;
9128 	}
9129 
9130 	dsl_pool_sync_done(dp, txg);
9131 
9132 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9133 		mutex_enter(&spa->spa_alloc_locks[i]);
9134 		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
9135 		mutex_exit(&spa->spa_alloc_locks[i]);
9136 	}
9137 
9138 	/*
9139 	 * Update usable space statistics.
9140 	 */
9141 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
9142 	    != NULL)
9143 		vdev_sync_done(vd, txg);
9144 
9145 	metaslab_class_evict_old(spa->spa_normal_class, txg);
9146 	metaslab_class_evict_old(spa->spa_log_class, txg);
9147 
9148 	spa_sync_close_syncing_log_sm(spa);
9149 
9150 	spa_update_dspace(spa);
9151 
9152 	/*
9153 	 * It had better be the case that we didn't dirty anything
9154 	 * since vdev_config_sync().
9155 	 */
9156 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9157 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9158 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
9159 
9160 	while (zfs_pause_spa_sync)
9161 		delay(1);
9162 
9163 	spa->spa_sync_pass = 0;
9164 
9165 	/*
9166 	 * Update the last synced uberblock here. We want to do this at
9167 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
9168 	 * will be guaranteed that all the processing associated with
9169 	 * that txg has been completed.
9170 	 */
9171 	spa->spa_ubsync = spa->spa_uberblock;
9172 	spa_config_exit(spa, SCL_CONFIG, FTAG);
9173 
9174 	spa_handle_ignored_writes(spa);
9175 
9176 	/*
9177 	 * If any async tasks have been requested, kick them off.
9178 	 */
9179 	spa_async_dispatch(spa);
9180 }
9181 
9182 /*
9183  * Sync all pools.  We don't want to hold the namespace lock across these
9184  * operations, so we take a reference on the spa_t and drop the lock during the
9185  * sync.
9186  */
9187 void
9188 spa_sync_allpools(void)
9189 {
9190 	spa_t *spa = NULL;
9191 	mutex_enter(&spa_namespace_lock);
9192 	while ((spa = spa_next(spa)) != NULL) {
9193 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
9194 		    !spa_writeable(spa) || spa_suspended(spa))
9195 			continue;
9196 		spa_open_ref(spa, FTAG);
9197 		mutex_exit(&spa_namespace_lock);
9198 		txg_wait_synced(spa_get_dsl(spa), 0);
9199 		mutex_enter(&spa_namespace_lock);
9200 		spa_close(spa, FTAG);
9201 	}
9202 	mutex_exit(&spa_namespace_lock);
9203 }
9204 
9205 /*
9206  * ==========================================================================
9207  * Miscellaneous routines
9208  * ==========================================================================
9209  */
9210 
9211 /*
9212  * Remove all pools in the system.
9213  */
9214 void
9215 spa_evict_all(void)
9216 {
9217 	spa_t *spa;
9218 
9219 	/*
9220 	 * Remove all cached state.  All pools should be closed now,
9221 	 * so every spa in the AVL tree should be unreferenced.
9222 	 */
9223 	mutex_enter(&spa_namespace_lock);
9224 	while ((spa = spa_next(NULL)) != NULL) {
9225 		/*
9226 		 * Stop async tasks.  The async thread may need to detach
9227 		 * a device that's been replaced, which requires grabbing
9228 		 * spa_namespace_lock, so we must drop it here.
9229 		 */
9230 		spa_open_ref(spa, FTAG);
9231 		mutex_exit(&spa_namespace_lock);
9232 		spa_async_suspend(spa);
9233 		mutex_enter(&spa_namespace_lock);
9234 		spa_close(spa, FTAG);
9235 
9236 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
9237 			spa_unload(spa);
9238 			spa_deactivate(spa);
9239 		}
9240 		spa_remove(spa);
9241 	}
9242 	mutex_exit(&spa_namespace_lock);
9243 }
9244 
9245 vdev_t *
9246 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
9247 {
9248 	vdev_t *vd;
9249 	int i;
9250 
9251 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
9252 		return (vd);
9253 
9254 	if (aux) {
9255 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
9256 			vd = spa->spa_l2cache.sav_vdevs[i];
9257 			if (vd->vdev_guid == guid)
9258 				return (vd);
9259 		}
9260 
9261 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
9262 			vd = spa->spa_spares.sav_vdevs[i];
9263 			if (vd->vdev_guid == guid)
9264 				return (vd);
9265 		}
9266 	}
9267 
9268 	return (NULL);
9269 }
9270 
9271 void
9272 spa_upgrade(spa_t *spa, uint64_t version)
9273 {
9274 	ASSERT(spa_writeable(spa));
9275 
9276 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9277 
9278 	/*
9279 	 * This should only be called for a non-faulted pool, and since a
9280 	 * future version would result in an unopenable pool, this shouldn't be
9281 	 * possible.
9282 	 */
9283 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
9284 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
9285 
9286 	spa->spa_uberblock.ub_version = version;
9287 	vdev_config_dirty(spa->spa_root_vdev);
9288 
9289 	spa_config_exit(spa, SCL_ALL, FTAG);
9290 
9291 	txg_wait_synced(spa_get_dsl(spa), 0);
9292 }
9293 
9294 boolean_t
9295 spa_has_spare(spa_t *spa, uint64_t guid)
9296 {
9297 	int i;
9298 	uint64_t spareguid;
9299 	spa_aux_vdev_t *sav = &spa->spa_spares;
9300 
9301 	for (i = 0; i < sav->sav_count; i++)
9302 		if (sav->sav_vdevs[i]->vdev_guid == guid)
9303 			return (B_TRUE);
9304 
9305 	for (i = 0; i < sav->sav_npending; i++) {
9306 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
9307 		    &spareguid) == 0 && spareguid == guid)
9308 			return (B_TRUE);
9309 	}
9310 
9311 	return (B_FALSE);
9312 }
9313 
9314 /*
9315  * Check if a pool has an active shared spare device.
9316  * Note: reference count of an active spare is 2, as a spare and as a replace
9317  */
9318 static boolean_t
9319 spa_has_active_shared_spare(spa_t *spa)
9320 {
9321 	int i, refcnt;
9322 	uint64_t pool;
9323 	spa_aux_vdev_t *sav = &spa->spa_spares;
9324 
9325 	for (i = 0; i < sav->sav_count; i++) {
9326 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
9327 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
9328 		    refcnt > 2)
9329 			return (B_TRUE);
9330 	}
9331 
9332 	return (B_FALSE);
9333 }
9334 
9335 uint64_t
9336 spa_total_metaslabs(spa_t *spa)
9337 {
9338 	vdev_t *rvd = spa->spa_root_vdev;
9339 
9340 	uint64_t m = 0;
9341 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
9342 		vdev_t *vd = rvd->vdev_child[c];
9343 		if (!vdev_is_concrete(vd))
9344 			continue;
9345 		m += vd->vdev_ms_count;
9346 	}
9347 	return (m);
9348 }
9349 
9350 /*
9351  * Notify any waiting threads that some activity has switched from being in-
9352  * progress to not-in-progress so that the thread can wake up and determine
9353  * whether it is finished waiting.
9354  */
9355 void
9356 spa_notify_waiters(spa_t *spa)
9357 {
9358 	/*
9359 	 * Acquiring spa_activities_lock here prevents the cv_broadcast from
9360 	 * happening between the waiting thread's check and cv_wait.
9361 	 */
9362 	mutex_enter(&spa->spa_activities_lock);
9363 	cv_broadcast(&spa->spa_activities_cv);
9364 	mutex_exit(&spa->spa_activities_lock);
9365 }
9366 
9367 /*
9368  * Notify any waiting threads that the pool is exporting, and then block until
9369  * they are finished using the spa_t.
9370  */
9371 void
9372 spa_wake_waiters(spa_t *spa)
9373 {
9374 	mutex_enter(&spa->spa_activities_lock);
9375 	spa->spa_waiters_cancel = B_TRUE;
9376 	cv_broadcast(&spa->spa_activities_cv);
9377 	while (spa->spa_waiters != 0)
9378 		cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
9379 	spa->spa_waiters_cancel = B_FALSE;
9380 	mutex_exit(&spa->spa_activities_lock);
9381 }
9382 
9383 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
9384 static boolean_t
9385 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
9386 {
9387 	spa_t *spa = vd->vdev_spa;
9388 
9389 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
9390 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9391 	ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
9392 	    activity == ZPOOL_WAIT_TRIM);
9393 
9394 	kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
9395 	    &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
9396 
9397 	mutex_exit(&spa->spa_activities_lock);
9398 	mutex_enter(lock);
9399 	mutex_enter(&spa->spa_activities_lock);
9400 
9401 	boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
9402 	    (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
9403 	    (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
9404 	mutex_exit(lock);
9405 
9406 	if (in_progress)
9407 		return (B_TRUE);
9408 
9409 	for (int i = 0; i < vd->vdev_children; i++) {
9410 		if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
9411 		    activity))
9412 			return (B_TRUE);
9413 	}
9414 
9415 	return (B_FALSE);
9416 }
9417 
9418 /*
9419  * If use_guid is true, this checks whether the vdev specified by guid is
9420  * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
9421  * is being initialized/trimmed. The caller must hold the config lock and
9422  * spa_activities_lock.
9423  */
9424 static int
9425 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
9426     zpool_wait_activity_t activity, boolean_t *in_progress)
9427 {
9428 	mutex_exit(&spa->spa_activities_lock);
9429 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9430 	mutex_enter(&spa->spa_activities_lock);
9431 
9432 	vdev_t *vd;
9433 	if (use_guid) {
9434 		vd = spa_lookup_by_guid(spa, guid, B_FALSE);
9435 		if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
9436 			spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9437 			return (EINVAL);
9438 		}
9439 	} else {
9440 		vd = spa->spa_root_vdev;
9441 	}
9442 
9443 	*in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
9444 
9445 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9446 	return (0);
9447 }
9448 
9449 /*
9450  * Locking for waiting threads
9451  * ---------------------------
9452  *
9453  * Waiting threads need a way to check whether a given activity is in progress,
9454  * and then, if it is, wait for it to complete. Each activity will have some
9455  * in-memory representation of the relevant on-disk state which can be used to
9456  * determine whether or not the activity is in progress. The in-memory state and
9457  * the locking used to protect it will be different for each activity, and may
9458  * not be suitable for use with a cvar (e.g., some state is protected by the
9459  * config lock). To allow waiting threads to wait without any races, another
9460  * lock, spa_activities_lock, is used.
9461  *
9462  * When the state is checked, both the activity-specific lock (if there is one)
9463  * and spa_activities_lock are held. In some cases, the activity-specific lock
9464  * is acquired explicitly (e.g. the config lock). In others, the locking is
9465  * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
9466  * thread releases the activity-specific lock and, if the activity is in
9467  * progress, then cv_waits using spa_activities_lock.
9468  *
9469  * The waiting thread is woken when another thread, one completing some
9470  * activity, updates the state of the activity and then calls
9471  * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
9472  * needs to hold its activity-specific lock when updating the state, and this
9473  * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
9474  *
9475  * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
9476  * and because it is held when the waiting thread checks the state of the
9477  * activity, it can never be the case that the completing thread both updates
9478  * the activity state and cv_broadcasts in between the waiting thread's check
9479  * and cv_wait. Thus, a waiting thread can never miss a wakeup.
9480  *
9481  * In order to prevent deadlock, when the waiting thread does its check, in some
9482  * cases it will temporarily drop spa_activities_lock in order to acquire the
9483  * activity-specific lock. The order in which spa_activities_lock and the
9484  * activity specific lock are acquired in the waiting thread is determined by
9485  * the order in which they are acquired in the completing thread; if the
9486  * completing thread calls spa_notify_waiters with the activity-specific lock
9487  * held, then the waiting thread must also acquire the activity-specific lock
9488  * first.
9489  */
9490 
9491 static int
9492 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
9493     boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
9494 {
9495 	int error = 0;
9496 
9497 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9498 
9499 	switch (activity) {
9500 	case ZPOOL_WAIT_CKPT_DISCARD:
9501 		*in_progress =
9502 		    (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
9503 		    zap_contains(spa_meta_objset(spa),
9504 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
9505 		    ENOENT);
9506 		break;
9507 	case ZPOOL_WAIT_FREE:
9508 		*in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
9509 		    !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
9510 		    spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
9511 		    spa_livelist_delete_check(spa));
9512 		break;
9513 	case ZPOOL_WAIT_INITIALIZE:
9514 	case ZPOOL_WAIT_TRIM:
9515 		error = spa_vdev_activity_in_progress(spa, use_tag, tag,
9516 		    activity, in_progress);
9517 		break;
9518 	case ZPOOL_WAIT_REPLACE:
9519 		mutex_exit(&spa->spa_activities_lock);
9520 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9521 		mutex_enter(&spa->spa_activities_lock);
9522 
9523 		*in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
9524 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9525 		break;
9526 	case ZPOOL_WAIT_REMOVE:
9527 		*in_progress = (spa->spa_removing_phys.sr_state ==
9528 		    DSS_SCANNING);
9529 		break;
9530 	case ZPOOL_WAIT_RESILVER:
9531 		if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev)))
9532 			break;
9533 		/* fall through */
9534 	case ZPOOL_WAIT_SCRUB:
9535 	{
9536 		boolean_t scanning, paused, is_scrub;
9537 		dsl_scan_t *scn =  spa->spa_dsl_pool->dp_scan;
9538 
9539 		is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
9540 		scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
9541 		paused = dsl_scan_is_paused_scrub(scn);
9542 		*in_progress = (scanning && !paused &&
9543 		    is_scrub == (activity == ZPOOL_WAIT_SCRUB));
9544 		break;
9545 	}
9546 	default:
9547 		panic("unrecognized value for activity %d", activity);
9548 	}
9549 
9550 	return (error);
9551 }
9552 
9553 static int
9554 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
9555     boolean_t use_tag, uint64_t tag, boolean_t *waited)
9556 {
9557 	/*
9558 	 * The tag is used to distinguish between instances of an activity.
9559 	 * 'initialize' and 'trim' are the only activities that we use this for.
9560 	 * The other activities can only have a single instance in progress in a
9561 	 * pool at one time, making the tag unnecessary.
9562 	 *
9563 	 * There can be multiple devices being replaced at once, but since they
9564 	 * all finish once resilvering finishes, we don't bother keeping track
9565 	 * of them individually, we just wait for them all to finish.
9566 	 */
9567 	if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
9568 	    activity != ZPOOL_WAIT_TRIM)
9569 		return (EINVAL);
9570 
9571 	if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
9572 		return (EINVAL);
9573 
9574 	spa_t *spa;
9575 	int error = spa_open(pool, &spa, FTAG);
9576 	if (error != 0)
9577 		return (error);
9578 
9579 	/*
9580 	 * Increment the spa's waiter count so that we can call spa_close and
9581 	 * still ensure that the spa_t doesn't get freed before this thread is
9582 	 * finished with it when the pool is exported. We want to call spa_close
9583 	 * before we start waiting because otherwise the additional ref would
9584 	 * prevent the pool from being exported or destroyed throughout the
9585 	 * potentially long wait.
9586 	 */
9587 	mutex_enter(&spa->spa_activities_lock);
9588 	spa->spa_waiters++;
9589 	spa_close(spa, FTAG);
9590 
9591 	*waited = B_FALSE;
9592 	for (;;) {
9593 		boolean_t in_progress;
9594 		error = spa_activity_in_progress(spa, activity, use_tag, tag,
9595 		    &in_progress);
9596 
9597 		if (error || !in_progress || spa->spa_waiters_cancel)
9598 			break;
9599 
9600 		*waited = B_TRUE;
9601 
9602 		if (cv_wait_sig(&spa->spa_activities_cv,
9603 		    &spa->spa_activities_lock) == 0) {
9604 			error = EINTR;
9605 			break;
9606 		}
9607 	}
9608 
9609 	spa->spa_waiters--;
9610 	cv_signal(&spa->spa_waiters_cv);
9611 	mutex_exit(&spa->spa_activities_lock);
9612 
9613 	return (error);
9614 }
9615 
9616 /*
9617  * Wait for a particular instance of the specified activity to complete, where
9618  * the instance is identified by 'tag'
9619  */
9620 int
9621 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
9622     boolean_t *waited)
9623 {
9624 	return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
9625 }
9626 
9627 /*
9628  * Wait for all instances of the specified activity complete
9629  */
9630 int
9631 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
9632 {
9633 
9634 	return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
9635 }
9636 
9637 sysevent_t *
9638 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9639 {
9640 	sysevent_t *ev = NULL;
9641 #ifdef _KERNEL
9642 	nvlist_t *resource;
9643 
9644 	resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
9645 	if (resource) {
9646 		ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
9647 		ev->resource = resource;
9648 	}
9649 #endif
9650 	return (ev);
9651 }
9652 
9653 void
9654 spa_event_post(sysevent_t *ev)
9655 {
9656 #ifdef _KERNEL
9657 	if (ev) {
9658 		zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
9659 		kmem_free(ev, sizeof (*ev));
9660 	}
9661 #endif
9662 }
9663 
9664 /*
9665  * Post a zevent corresponding to the given sysevent.   The 'name' must be one
9666  * of the event definitions in sys/sysevent/eventdefs.h.  The payload will be
9667  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
9668  * in the userland libzpool, as we don't want consumers to misinterpret ztest
9669  * or zdb as real changes.
9670  */
9671 void
9672 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9673 {
9674 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
9675 }
9676 
9677 /* state manipulation functions */
9678 EXPORT_SYMBOL(spa_open);
9679 EXPORT_SYMBOL(spa_open_rewind);
9680 EXPORT_SYMBOL(spa_get_stats);
9681 EXPORT_SYMBOL(spa_create);
9682 EXPORT_SYMBOL(spa_import);
9683 EXPORT_SYMBOL(spa_tryimport);
9684 EXPORT_SYMBOL(spa_destroy);
9685 EXPORT_SYMBOL(spa_export);
9686 EXPORT_SYMBOL(spa_reset);
9687 EXPORT_SYMBOL(spa_async_request);
9688 EXPORT_SYMBOL(spa_async_suspend);
9689 EXPORT_SYMBOL(spa_async_resume);
9690 EXPORT_SYMBOL(spa_inject_addref);
9691 EXPORT_SYMBOL(spa_inject_delref);
9692 EXPORT_SYMBOL(spa_scan_stat_init);
9693 EXPORT_SYMBOL(spa_scan_get_stats);
9694 
9695 /* device manipulation */
9696 EXPORT_SYMBOL(spa_vdev_add);
9697 EXPORT_SYMBOL(spa_vdev_attach);
9698 EXPORT_SYMBOL(spa_vdev_detach);
9699 EXPORT_SYMBOL(spa_vdev_setpath);
9700 EXPORT_SYMBOL(spa_vdev_setfru);
9701 EXPORT_SYMBOL(spa_vdev_split_mirror);
9702 
9703 /* spare statech is global across all pools) */
9704 EXPORT_SYMBOL(spa_spare_add);
9705 EXPORT_SYMBOL(spa_spare_remove);
9706 EXPORT_SYMBOL(spa_spare_exists);
9707 EXPORT_SYMBOL(spa_spare_activate);
9708 
9709 /* L2ARC statech is global across all pools) */
9710 EXPORT_SYMBOL(spa_l2cache_add);
9711 EXPORT_SYMBOL(spa_l2cache_remove);
9712 EXPORT_SYMBOL(spa_l2cache_exists);
9713 EXPORT_SYMBOL(spa_l2cache_activate);
9714 EXPORT_SYMBOL(spa_l2cache_drop);
9715 
9716 /* scanning */
9717 EXPORT_SYMBOL(spa_scan);
9718 EXPORT_SYMBOL(spa_scan_stop);
9719 
9720 /* spa syncing */
9721 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
9722 EXPORT_SYMBOL(spa_sync_allpools);
9723 
9724 /* properties */
9725 EXPORT_SYMBOL(spa_prop_set);
9726 EXPORT_SYMBOL(spa_prop_get);
9727 EXPORT_SYMBOL(spa_prop_clear_bootfs);
9728 
9729 /* asynchronous event notification */
9730 EXPORT_SYMBOL(spa_event_notify);
9731 
9732 /* BEGIN CSTYLED */
9733 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, INT, ZMOD_RW,
9734 	"log2(fraction of arc that can be used by inflight I/Os when "
9735 	"verifying pool during import");
9736 
9737 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
9738 	"Set to traverse metadata on pool import");
9739 
9740 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
9741 	"Set to traverse data on pool import");
9742 
9743 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
9744 	"Print vdev tree to zfs_dbgmsg during pool import");
9745 
9746 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
9747 	"Percentage of CPUs to run an IO worker thread");
9748 
9749 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, ULONG, ZMOD_RW,
9750 	"Allow importing pool with up to this number of missing top-level "
9751 	"vdevs (in read-only mode)");
9752 
9753 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT, ZMOD_RW,
9754 	"Set the livelist condense zthr to pause");
9755 
9756 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT, ZMOD_RW,
9757 	"Set the livelist condense synctask to pause");
9758 
9759 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel, INT, ZMOD_RW,
9760 	"Whether livelist condensing was canceled in the synctask");
9761 
9762 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel, INT, ZMOD_RW,
9763 	"Whether livelist condensing was canceled in the zthr function");
9764 
9765 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT, ZMOD_RW,
9766 	"Whether extra ALLOC blkptrs were added to a livelist entry while it "
9767 	"was being condensed");
9768 /* END CSTYLED */
9769