xref: /freebsd/sys/contrib/openzfs/module/zfs/spa.c (revision f5ce3f4ef562ea9fc4d8f9c13c268f48a5bacba7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
25  * Copyright (c) 2018, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31  * Copyright 2018 Joyent, Inc.
32  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33  * Copyright 2017 Joyent, Inc.
34  * Copyright (c) 2017, Intel Corporation.
35  * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36  * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
37  * Copyright (c) 2023, 2024, Klara Inc.
38  */
39 
40 /*
41  * SPA: Storage Pool Allocator
42  *
43  * This file contains all the routines used when modifying on-disk SPA state.
44  * This includes opening, importing, destroying, exporting a pool, and syncing a
45  * pool.
46  */
47 
48 #include <sys/zfs_context.h>
49 #include <sys/fm/fs/zfs.h>
50 #include <sys/spa_impl.h>
51 #include <sys/zio.h>
52 #include <sys/zio_checksum.h>
53 #include <sys/dmu.h>
54 #include <sys/dmu_tx.h>
55 #include <sys/zap.h>
56 #include <sys/zil.h>
57 #include <sys/brt.h>
58 #include <sys/ddt.h>
59 #include <sys/vdev_impl.h>
60 #include <sys/vdev_removal.h>
61 #include <sys/vdev_indirect_mapping.h>
62 #include <sys/vdev_indirect_births.h>
63 #include <sys/vdev_initialize.h>
64 #include <sys/vdev_rebuild.h>
65 #include <sys/vdev_trim.h>
66 #include <sys/vdev_disk.h>
67 #include <sys/vdev_raidz.h>
68 #include <sys/vdev_draid.h>
69 #include <sys/metaslab.h>
70 #include <sys/metaslab_impl.h>
71 #include <sys/mmp.h>
72 #include <sys/uberblock_impl.h>
73 #include <sys/txg.h>
74 #include <sys/avl.h>
75 #include <sys/bpobj.h>
76 #include <sys/dmu_traverse.h>
77 #include <sys/dmu_objset.h>
78 #include <sys/unique.h>
79 #include <sys/dsl_pool.h>
80 #include <sys/dsl_dataset.h>
81 #include <sys/dsl_dir.h>
82 #include <sys/dsl_prop.h>
83 #include <sys/dsl_synctask.h>
84 #include <sys/fs/zfs.h>
85 #include <sys/arc.h>
86 #include <sys/callb.h>
87 #include <sys/systeminfo.h>
88 #include <sys/zfs_ioctl.h>
89 #include <sys/dsl_scan.h>
90 #include <sys/zfeature.h>
91 #include <sys/dsl_destroy.h>
92 #include <sys/zvol.h>
93 
94 #ifdef	_KERNEL
95 #include <sys/fm/protocol.h>
96 #include <sys/fm/util.h>
97 #include <sys/callb.h>
98 #include <sys/zone.h>
99 #include <sys/vmsystm.h>
100 #endif	/* _KERNEL */
101 
102 #include "zfs_prop.h"
103 #include "zfs_comutil.h"
104 #include <cityhash.h>
105 
106 /*
107  * spa_thread() existed on Illumos as a parent thread for the various worker
108  * threads that actually run the pool, as a way to both reference the entire
109  * pool work as a single object, and to share properties like scheduling
110  * options. It has not yet been adapted to Linux or FreeBSD. This define is
111  * used to mark related parts of the code to make things easier for the reader,
112  * and to compile this code out. It can be removed when someone implements it,
113  * moves it to some Illumos-specific place, or removes it entirely.
114  */
115 #undef HAVE_SPA_THREAD
116 
117 /*
118  * The "System Duty Cycle" scheduling class is an Illumos feature to help
119  * prevent CPU-intensive kernel threads from affecting latency on interactive
120  * threads. It doesn't exist on Linux or FreeBSD, so the supporting code is
121  * gated behind a define. On Illumos SDC depends on spa_thread(), but
122  * spa_thread() also has other uses, so this is a separate define.
123  */
124 #undef HAVE_SYSDC
125 
126 /*
127  * The interval, in seconds, at which failed configuration cache file writes
128  * should be retried.
129  */
130 int zfs_ccw_retry_interval = 300;
131 
132 typedef enum zti_modes {
133 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
134 	ZTI_MODE_SCALE,			/* Taskqs scale with CPUs. */
135 	ZTI_MODE_SYNC,			/* sync thread assigned */
136 	ZTI_MODE_NULL,			/* don't create a taskq */
137 	ZTI_NMODES
138 } zti_modes_t;
139 
140 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
141 #define	ZTI_PCT(n)	{ ZTI_MODE_ONLINE_PERCENT, (n), 1 }
142 #define	ZTI_SCALE	{ ZTI_MODE_SCALE, 0, 1 }
143 #define	ZTI_SYNC	{ ZTI_MODE_SYNC, 0, 1 }
144 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
145 
146 #define	ZTI_N(n)	ZTI_P(n, 1)
147 #define	ZTI_ONE		ZTI_N(1)
148 
149 typedef struct zio_taskq_info {
150 	zti_modes_t zti_mode;
151 	uint_t zti_value;
152 	uint_t zti_count;
153 } zio_taskq_info_t;
154 
155 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
156 	"iss", "iss_h", "int", "int_h"
157 };
158 
159 /*
160  * This table defines the taskq settings for each ZFS I/O type. When
161  * initializing a pool, we use this table to create an appropriately sized
162  * taskq. Some operations are low volume and therefore have a small, static
163  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
164  * macros. Other operations process a large amount of data; the ZTI_SCALE
165  * macro causes us to create a taskq oriented for throughput. Some operations
166  * are so high frequency and short-lived that the taskq itself can become a
167  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
168  * additional degree of parallelism specified by the number of threads per-
169  * taskq and the number of taskqs; when dispatching an event in this case, the
170  * particular taskq is chosen at random. ZTI_SCALE uses a number of taskqs
171  * that scales with the number of CPUs.
172  *
173  * The different taskq priorities are to handle the different contexts (issue
174  * and interrupt) and then to reserve threads for high priority I/Os that
175  * need to be handled with minimum delay.  Illumos taskq has unfair TQ_FRONT
176  * implementation, so separate high priority threads are used there.
177  */
178 static zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
179 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
180 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
181 	{ ZTI_N(8),	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* READ */
182 #ifdef illumos
183 	{ ZTI_SYNC,	ZTI_N(5),	ZTI_SCALE,	ZTI_N(5) }, /* WRITE */
184 #else
185 	{ ZTI_SYNC,	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* WRITE */
186 #endif
187 	{ ZTI_SCALE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
188 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
189 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FLUSH */
190 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
191 };
192 
193 static void spa_sync_version(void *arg, dmu_tx_t *tx);
194 static void spa_sync_props(void *arg, dmu_tx_t *tx);
195 static boolean_t spa_has_active_shared_spare(spa_t *spa);
196 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
197     const char **ereport);
198 static void spa_vdev_resilver_done(spa_t *spa);
199 
200 /*
201  * Percentage of all CPUs that can be used by the metaslab preload taskq.
202  */
203 static uint_t metaslab_preload_pct = 50;
204 
205 static uint_t	zio_taskq_batch_pct = 80;	  /* 1 thread per cpu in pset */
206 static uint_t	zio_taskq_batch_tpq;		  /* threads per taskq */
207 
208 #ifdef HAVE_SYSDC
209 static const boolean_t	zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
210 static const uint_t	zio_taskq_basedc = 80;	  /* base duty cycle */
211 #endif
212 
213 #ifdef HAVE_SPA_THREAD
214 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
215 #endif
216 
217 static uint_t	zio_taskq_write_tpq = 16;
218 
219 /*
220  * Report any spa_load_verify errors found, but do not fail spa_load.
221  * This is used by zdb to analyze non-idle pools.
222  */
223 boolean_t	spa_load_verify_dryrun = B_FALSE;
224 
225 /*
226  * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
227  * This is used by zdb for spacemaps verification.
228  */
229 boolean_t	spa_mode_readable_spacemaps = B_FALSE;
230 
231 /*
232  * This (illegal) pool name is used when temporarily importing a spa_t in order
233  * to get the vdev stats associated with the imported devices.
234  */
235 #define	TRYIMPORT_NAME	"$import"
236 
237 /*
238  * For debugging purposes: print out vdev tree during pool import.
239  */
240 static int		spa_load_print_vdev_tree = B_FALSE;
241 
242 /*
243  * A non-zero value for zfs_max_missing_tvds means that we allow importing
244  * pools with missing top-level vdevs. This is strictly intended for advanced
245  * pool recovery cases since missing data is almost inevitable. Pools with
246  * missing devices can only be imported read-only for safety reasons, and their
247  * fail-mode will be automatically set to "continue".
248  *
249  * With 1 missing vdev we should be able to import the pool and mount all
250  * datasets. User data that was not modified after the missing device has been
251  * added should be recoverable. This means that snapshots created prior to the
252  * addition of that device should be completely intact.
253  *
254  * With 2 missing vdevs, some datasets may fail to mount since there are
255  * dataset statistics that are stored as regular metadata. Some data might be
256  * recoverable if those vdevs were added recently.
257  *
258  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
259  * may be missing entirely. Chances of data recovery are very low. Note that
260  * there are also risks of performing an inadvertent rewind as we might be
261  * missing all the vdevs with the latest uberblocks.
262  */
263 uint64_t	zfs_max_missing_tvds = 0;
264 
265 /*
266  * The parameters below are similar to zfs_max_missing_tvds but are only
267  * intended for a preliminary open of the pool with an untrusted config which
268  * might be incomplete or out-dated.
269  *
270  * We are more tolerant for pools opened from a cachefile since we could have
271  * an out-dated cachefile where a device removal was not registered.
272  * We could have set the limit arbitrarily high but in the case where devices
273  * are really missing we would want to return the proper error codes; we chose
274  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
275  * and we get a chance to retrieve the trusted config.
276  */
277 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
278 
279 /*
280  * In the case where config was assembled by scanning device paths (/dev/dsks
281  * by default) we are less tolerant since all the existing devices should have
282  * been detected and we want spa_load to return the right error codes.
283  */
284 uint64_t	zfs_max_missing_tvds_scan = 0;
285 
286 /*
287  * Debugging aid that pauses spa_sync() towards the end.
288  */
289 static const boolean_t	zfs_pause_spa_sync = B_FALSE;
290 
291 /*
292  * Variables to indicate the livelist condense zthr func should wait at certain
293  * points for the livelist to be removed - used to test condense/destroy races
294  */
295 static int zfs_livelist_condense_zthr_pause = 0;
296 static int zfs_livelist_condense_sync_pause = 0;
297 
298 /*
299  * Variables to track whether or not condense cancellation has been
300  * triggered in testing.
301  */
302 static int zfs_livelist_condense_sync_cancel = 0;
303 static int zfs_livelist_condense_zthr_cancel = 0;
304 
305 /*
306  * Variable to track whether or not extra ALLOC blkptrs were added to a
307  * livelist entry while it was being condensed (caused by the way we track
308  * remapped blkptrs in dbuf_remap_impl)
309  */
310 static int zfs_livelist_condense_new_alloc = 0;
311 
312 /*
313  * ==========================================================================
314  * SPA properties routines
315  * ==========================================================================
316  */
317 
318 /*
319  * Add a (source=src, propname=propval) list to an nvlist.
320  */
321 static void
322 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
323     uint64_t intval, zprop_source_t src)
324 {
325 	const char *propname = zpool_prop_to_name(prop);
326 	nvlist_t *propval;
327 
328 	propval = fnvlist_alloc();
329 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
330 
331 	if (strval != NULL)
332 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
333 	else
334 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
335 
336 	fnvlist_add_nvlist(nvl, propname, propval);
337 	nvlist_free(propval);
338 }
339 
340 static int
341 spa_prop_add(spa_t *spa, const char *propname, nvlist_t *outnvl)
342 {
343 	zpool_prop_t prop = zpool_name_to_prop(propname);
344 	zprop_source_t src = ZPROP_SRC_NONE;
345 	uint64_t intval;
346 	int err;
347 
348 	/*
349 	 * NB: Not all properties lookups via this API require
350 	 * the spa props lock, so they must explicitly grab it here.
351 	 */
352 	switch (prop) {
353 	case ZPOOL_PROP_DEDUPCACHED:
354 		err = ddt_get_pool_dedup_cached(spa, &intval);
355 		if (err != 0)
356 			return (SET_ERROR(err));
357 		break;
358 	default:
359 		return (SET_ERROR(EINVAL));
360 	}
361 
362 	spa_prop_add_list(outnvl, prop, NULL, intval, src);
363 
364 	return (0);
365 }
366 
367 int
368 spa_prop_get_nvlist(spa_t *spa, char **props, unsigned int n_props,
369     nvlist_t **outnvl)
370 {
371 	int err = 0;
372 
373 	if (props == NULL)
374 		return (0);
375 
376 	if (*outnvl == NULL) {
377 		err = nvlist_alloc(outnvl, NV_UNIQUE_NAME, KM_SLEEP);
378 		if (err)
379 			return (err);
380 	}
381 
382 	for (unsigned int i = 0; i < n_props && err == 0; i++) {
383 		err = spa_prop_add(spa, props[i], *outnvl);
384 	}
385 
386 	return (err);
387 }
388 
389 /*
390  * Add a user property (source=src, propname=propval) to an nvlist.
391  */
392 static void
393 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
394     zprop_source_t src)
395 {
396 	nvlist_t *propval;
397 
398 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
399 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
400 	VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
401 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
402 	nvlist_free(propval);
403 }
404 
405 /*
406  * Get property values from the spa configuration.
407  */
408 static void
409 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
410 {
411 	vdev_t *rvd = spa->spa_root_vdev;
412 	dsl_pool_t *pool = spa->spa_dsl_pool;
413 	uint64_t size, alloc, cap, version;
414 	const zprop_source_t src = ZPROP_SRC_NONE;
415 	spa_config_dirent_t *dp;
416 	metaslab_class_t *mc = spa_normal_class(spa);
417 
418 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
419 
420 	if (rvd != NULL) {
421 		alloc = metaslab_class_get_alloc(mc);
422 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
423 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
424 		alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
425 
426 		size = metaslab_class_get_space(mc);
427 		size += metaslab_class_get_space(spa_special_class(spa));
428 		size += metaslab_class_get_space(spa_dedup_class(spa));
429 		size += metaslab_class_get_space(spa_embedded_log_class(spa));
430 
431 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
432 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
433 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
434 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
435 		    size - alloc, src);
436 		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
437 		    spa->spa_checkpoint_info.sci_dspace, src);
438 
439 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
440 		    metaslab_class_fragmentation(mc), src);
441 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
442 		    metaslab_class_expandable_space(mc), src);
443 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
444 		    (spa_mode(spa) == SPA_MODE_READ), src);
445 
446 		cap = (size == 0) ? 0 : (alloc * 100 / size);
447 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
448 
449 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
450 		    ddt_get_pool_dedup_ratio(spa), src);
451 		spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONEUSED, NULL,
452 		    brt_get_used(spa), src);
453 		spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONESAVED, NULL,
454 		    brt_get_saved(spa), src);
455 		spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONERATIO, NULL,
456 		    brt_get_ratio(spa), src);
457 
458 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUP_TABLE_SIZE, NULL,
459 		    ddt_get_ddt_dsize(spa), src);
460 
461 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
462 		    rvd->vdev_state, src);
463 
464 		version = spa_version(spa);
465 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
466 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
467 			    version, ZPROP_SRC_DEFAULT);
468 		} else {
469 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
470 			    version, ZPROP_SRC_LOCAL);
471 		}
472 		spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
473 		    NULL, spa_load_guid(spa), src);
474 	}
475 
476 	if (pool != NULL) {
477 		/*
478 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
479 		 * when opening pools before this version freedir will be NULL.
480 		 */
481 		if (pool->dp_free_dir != NULL) {
482 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
483 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
484 			    src);
485 		} else {
486 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
487 			    NULL, 0, src);
488 		}
489 
490 		if (pool->dp_leak_dir != NULL) {
491 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
492 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
493 			    src);
494 		} else {
495 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
496 			    NULL, 0, src);
497 		}
498 	}
499 
500 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
501 
502 	if (spa->spa_comment != NULL) {
503 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
504 		    0, ZPROP_SRC_LOCAL);
505 	}
506 
507 	if (spa->spa_compatibility != NULL) {
508 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
509 		    spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
510 	}
511 
512 	if (spa->spa_root != NULL)
513 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
514 		    0, ZPROP_SRC_LOCAL);
515 
516 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
517 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
518 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
519 	} else {
520 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
521 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
522 	}
523 
524 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
525 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
526 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
527 	} else {
528 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
529 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
530 	}
531 
532 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
533 		if (dp->scd_path == NULL) {
534 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
535 			    "none", 0, ZPROP_SRC_LOCAL);
536 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
537 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
538 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
539 		}
540 	}
541 }
542 
543 /*
544  * Get zpool property values.
545  */
546 int
547 spa_prop_get(spa_t *spa, nvlist_t **nvp)
548 {
549 	objset_t *mos = spa->spa_meta_objset;
550 	zap_cursor_t zc;
551 	zap_attribute_t za;
552 	dsl_pool_t *dp;
553 	int err;
554 
555 	if (*nvp == NULL) {
556 		err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
557 		if (err)
558 			return (err);
559 	}
560 
561 	dp = spa_get_dsl(spa);
562 	dsl_pool_config_enter(dp, FTAG);
563 	mutex_enter(&spa->spa_props_lock);
564 
565 	/*
566 	 * Get properties from the spa config.
567 	 */
568 	spa_prop_get_config(spa, nvp);
569 
570 	/* If no pool property object, no more prop to get. */
571 	if (mos == NULL || spa->spa_pool_props_object == 0)
572 		goto out;
573 
574 	/*
575 	 * Get properties from the MOS pool property object.
576 	 */
577 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
578 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
579 	    zap_cursor_advance(&zc)) {
580 		uint64_t intval = 0;
581 		char *strval = NULL;
582 		zprop_source_t src = ZPROP_SRC_DEFAULT;
583 		zpool_prop_t prop;
584 
585 		if ((prop = zpool_name_to_prop(za.za_name)) ==
586 		    ZPOOL_PROP_INVAL && !zfs_prop_user(za.za_name))
587 			continue;
588 
589 		switch (za.za_integer_length) {
590 		case 8:
591 			/* integer property */
592 			if (za.za_first_integer !=
593 			    zpool_prop_default_numeric(prop))
594 				src = ZPROP_SRC_LOCAL;
595 
596 			if (prop == ZPOOL_PROP_BOOTFS) {
597 				dsl_dataset_t *ds = NULL;
598 
599 				err = dsl_dataset_hold_obj(dp,
600 				    za.za_first_integer, FTAG, &ds);
601 				if (err != 0)
602 					break;
603 
604 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
605 				    KM_SLEEP);
606 				dsl_dataset_name(ds, strval);
607 				dsl_dataset_rele(ds, FTAG);
608 			} else {
609 				strval = NULL;
610 				intval = za.za_first_integer;
611 			}
612 
613 			spa_prop_add_list(*nvp, prop, strval, intval, src);
614 
615 			if (strval != NULL)
616 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
617 
618 			break;
619 
620 		case 1:
621 			/* string property */
622 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
623 			err = zap_lookup(mos, spa->spa_pool_props_object,
624 			    za.za_name, 1, za.za_num_integers, strval);
625 			if (err) {
626 				kmem_free(strval, za.za_num_integers);
627 				break;
628 			}
629 			if (prop != ZPOOL_PROP_INVAL) {
630 				spa_prop_add_list(*nvp, prop, strval, 0, src);
631 			} else {
632 				src = ZPROP_SRC_LOCAL;
633 				spa_prop_add_user(*nvp, za.za_name, strval,
634 				    src);
635 			}
636 			kmem_free(strval, za.za_num_integers);
637 			break;
638 
639 		default:
640 			break;
641 		}
642 	}
643 	zap_cursor_fini(&zc);
644 out:
645 	mutex_exit(&spa->spa_props_lock);
646 	dsl_pool_config_exit(dp, FTAG);
647 	if (err && err != ENOENT) {
648 		nvlist_free(*nvp);
649 		*nvp = NULL;
650 		return (err);
651 	}
652 
653 	return (0);
654 }
655 
656 /*
657  * Validate the given pool properties nvlist and modify the list
658  * for the property values to be set.
659  */
660 static int
661 spa_prop_validate(spa_t *spa, nvlist_t *props)
662 {
663 	nvpair_t *elem;
664 	int error = 0, reset_bootfs = 0;
665 	uint64_t objnum = 0;
666 	boolean_t has_feature = B_FALSE;
667 
668 	elem = NULL;
669 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
670 		uint64_t intval;
671 		const char *strval, *slash, *check, *fname;
672 		const char *propname = nvpair_name(elem);
673 		zpool_prop_t prop = zpool_name_to_prop(propname);
674 
675 		switch (prop) {
676 		case ZPOOL_PROP_INVAL:
677 			/*
678 			 * Sanitize the input.
679 			 */
680 			if (zfs_prop_user(propname)) {
681 				if (strlen(propname) >= ZAP_MAXNAMELEN) {
682 					error = SET_ERROR(ENAMETOOLONG);
683 					break;
684 				}
685 
686 				if (strlen(fnvpair_value_string(elem)) >=
687 				    ZAP_MAXVALUELEN) {
688 					error = SET_ERROR(E2BIG);
689 					break;
690 				}
691 			} else if (zpool_prop_feature(propname)) {
692 				if (nvpair_type(elem) != DATA_TYPE_UINT64) {
693 					error = SET_ERROR(EINVAL);
694 					break;
695 				}
696 
697 				if (nvpair_value_uint64(elem, &intval) != 0) {
698 					error = SET_ERROR(EINVAL);
699 					break;
700 				}
701 
702 				if (intval != 0) {
703 					error = SET_ERROR(EINVAL);
704 					break;
705 				}
706 
707 				fname = strchr(propname, '@') + 1;
708 				if (zfeature_lookup_name(fname, NULL) != 0) {
709 					error = SET_ERROR(EINVAL);
710 					break;
711 				}
712 
713 				has_feature = B_TRUE;
714 			} else {
715 				error = SET_ERROR(EINVAL);
716 				break;
717 			}
718 			break;
719 
720 		case ZPOOL_PROP_VERSION:
721 			error = nvpair_value_uint64(elem, &intval);
722 			if (!error &&
723 			    (intval < spa_version(spa) ||
724 			    intval > SPA_VERSION_BEFORE_FEATURES ||
725 			    has_feature))
726 				error = SET_ERROR(EINVAL);
727 			break;
728 
729 		case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
730 			error = nvpair_value_uint64(elem, &intval);
731 			break;
732 
733 		case ZPOOL_PROP_DELEGATION:
734 		case ZPOOL_PROP_AUTOREPLACE:
735 		case ZPOOL_PROP_LISTSNAPS:
736 		case ZPOOL_PROP_AUTOEXPAND:
737 		case ZPOOL_PROP_AUTOTRIM:
738 			error = nvpair_value_uint64(elem, &intval);
739 			if (!error && intval > 1)
740 				error = SET_ERROR(EINVAL);
741 			break;
742 
743 		case ZPOOL_PROP_MULTIHOST:
744 			error = nvpair_value_uint64(elem, &intval);
745 			if (!error && intval > 1)
746 				error = SET_ERROR(EINVAL);
747 
748 			if (!error) {
749 				uint32_t hostid = zone_get_hostid(NULL);
750 				if (hostid)
751 					spa->spa_hostid = hostid;
752 				else
753 					error = SET_ERROR(ENOTSUP);
754 			}
755 
756 			break;
757 
758 		case ZPOOL_PROP_BOOTFS:
759 			/*
760 			 * If the pool version is less than SPA_VERSION_BOOTFS,
761 			 * or the pool is still being created (version == 0),
762 			 * the bootfs property cannot be set.
763 			 */
764 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
765 				error = SET_ERROR(ENOTSUP);
766 				break;
767 			}
768 
769 			/*
770 			 * Make sure the vdev config is bootable
771 			 */
772 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
773 				error = SET_ERROR(ENOTSUP);
774 				break;
775 			}
776 
777 			reset_bootfs = 1;
778 
779 			error = nvpair_value_string(elem, &strval);
780 
781 			if (!error) {
782 				objset_t *os;
783 
784 				if (strval == NULL || strval[0] == '\0') {
785 					objnum = zpool_prop_default_numeric(
786 					    ZPOOL_PROP_BOOTFS);
787 					break;
788 				}
789 
790 				error = dmu_objset_hold(strval, FTAG, &os);
791 				if (error != 0)
792 					break;
793 
794 				/* Must be ZPL. */
795 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
796 					error = SET_ERROR(ENOTSUP);
797 				} else {
798 					objnum = dmu_objset_id(os);
799 				}
800 				dmu_objset_rele(os, FTAG);
801 			}
802 			break;
803 
804 		case ZPOOL_PROP_FAILUREMODE:
805 			error = nvpair_value_uint64(elem, &intval);
806 			if (!error && intval > ZIO_FAILURE_MODE_PANIC)
807 				error = SET_ERROR(EINVAL);
808 
809 			/*
810 			 * This is a special case which only occurs when
811 			 * the pool has completely failed. This allows
812 			 * the user to change the in-core failmode property
813 			 * without syncing it out to disk (I/Os might
814 			 * currently be blocked). We do this by returning
815 			 * EIO to the caller (spa_prop_set) to trick it
816 			 * into thinking we encountered a property validation
817 			 * error.
818 			 */
819 			if (!error && spa_suspended(spa)) {
820 				spa->spa_failmode = intval;
821 				error = SET_ERROR(EIO);
822 			}
823 			break;
824 
825 		case ZPOOL_PROP_CACHEFILE:
826 			if ((error = nvpair_value_string(elem, &strval)) != 0)
827 				break;
828 
829 			if (strval[0] == '\0')
830 				break;
831 
832 			if (strcmp(strval, "none") == 0)
833 				break;
834 
835 			if (strval[0] != '/') {
836 				error = SET_ERROR(EINVAL);
837 				break;
838 			}
839 
840 			slash = strrchr(strval, '/');
841 			ASSERT(slash != NULL);
842 
843 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
844 			    strcmp(slash, "/..") == 0)
845 				error = SET_ERROR(EINVAL);
846 			break;
847 
848 		case ZPOOL_PROP_COMMENT:
849 			if ((error = nvpair_value_string(elem, &strval)) != 0)
850 				break;
851 			for (check = strval; *check != '\0'; check++) {
852 				if (!isprint(*check)) {
853 					error = SET_ERROR(EINVAL);
854 					break;
855 				}
856 			}
857 			if (strlen(strval) > ZPROP_MAX_COMMENT)
858 				error = SET_ERROR(E2BIG);
859 			break;
860 
861 		default:
862 			break;
863 		}
864 
865 		if (error)
866 			break;
867 	}
868 
869 	(void) nvlist_remove_all(props,
870 	    zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
871 
872 	if (!error && reset_bootfs) {
873 		error = nvlist_remove(props,
874 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
875 
876 		if (!error) {
877 			error = nvlist_add_uint64(props,
878 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
879 		}
880 	}
881 
882 	return (error);
883 }
884 
885 void
886 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
887 {
888 	const char *cachefile;
889 	spa_config_dirent_t *dp;
890 
891 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
892 	    &cachefile) != 0)
893 		return;
894 
895 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
896 	    KM_SLEEP);
897 
898 	if (cachefile[0] == '\0')
899 		dp->scd_path = spa_strdup(spa_config_path);
900 	else if (strcmp(cachefile, "none") == 0)
901 		dp->scd_path = NULL;
902 	else
903 		dp->scd_path = spa_strdup(cachefile);
904 
905 	list_insert_head(&spa->spa_config_list, dp);
906 	if (need_sync)
907 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
908 }
909 
910 int
911 spa_prop_set(spa_t *spa, nvlist_t *nvp)
912 {
913 	int error;
914 	nvpair_t *elem = NULL;
915 	boolean_t need_sync = B_FALSE;
916 
917 	if ((error = spa_prop_validate(spa, nvp)) != 0)
918 		return (error);
919 
920 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
921 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
922 
923 		if (prop == ZPOOL_PROP_CACHEFILE ||
924 		    prop == ZPOOL_PROP_ALTROOT ||
925 		    prop == ZPOOL_PROP_READONLY)
926 			continue;
927 
928 		if (prop == ZPOOL_PROP_INVAL &&
929 		    zfs_prop_user(nvpair_name(elem))) {
930 			need_sync = B_TRUE;
931 			break;
932 		}
933 
934 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
935 			uint64_t ver = 0;
936 
937 			if (prop == ZPOOL_PROP_VERSION) {
938 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
939 			} else {
940 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
941 				ver = SPA_VERSION_FEATURES;
942 				need_sync = B_TRUE;
943 			}
944 
945 			/* Save time if the version is already set. */
946 			if (ver == spa_version(spa))
947 				continue;
948 
949 			/*
950 			 * In addition to the pool directory object, we might
951 			 * create the pool properties object, the features for
952 			 * read object, the features for write object, or the
953 			 * feature descriptions object.
954 			 */
955 			error = dsl_sync_task(spa->spa_name, NULL,
956 			    spa_sync_version, &ver,
957 			    6, ZFS_SPACE_CHECK_RESERVED);
958 			if (error)
959 				return (error);
960 			continue;
961 		}
962 
963 		need_sync = B_TRUE;
964 		break;
965 	}
966 
967 	if (need_sync) {
968 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
969 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
970 	}
971 
972 	return (0);
973 }
974 
975 /*
976  * If the bootfs property value is dsobj, clear it.
977  */
978 void
979 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
980 {
981 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
982 		VERIFY(zap_remove(spa->spa_meta_objset,
983 		    spa->spa_pool_props_object,
984 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
985 		spa->spa_bootfs = 0;
986 	}
987 }
988 
989 static int
990 spa_change_guid_check(void *arg, dmu_tx_t *tx)
991 {
992 	uint64_t *newguid __maybe_unused = arg;
993 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
994 	vdev_t *rvd = spa->spa_root_vdev;
995 	uint64_t vdev_state;
996 
997 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
998 		int error = (spa_has_checkpoint(spa)) ?
999 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
1000 		return (SET_ERROR(error));
1001 	}
1002 
1003 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
1004 	vdev_state = rvd->vdev_state;
1005 	spa_config_exit(spa, SCL_STATE, FTAG);
1006 
1007 	if (vdev_state != VDEV_STATE_HEALTHY)
1008 		return (SET_ERROR(ENXIO));
1009 
1010 	ASSERT3U(spa_guid(spa), !=, *newguid);
1011 
1012 	return (0);
1013 }
1014 
1015 static void
1016 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
1017 {
1018 	uint64_t *newguid = arg;
1019 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1020 	uint64_t oldguid;
1021 	vdev_t *rvd = spa->spa_root_vdev;
1022 
1023 	oldguid = spa_guid(spa);
1024 
1025 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
1026 	rvd->vdev_guid = *newguid;
1027 	rvd->vdev_guid_sum += (*newguid - oldguid);
1028 	vdev_config_dirty(rvd);
1029 	spa_config_exit(spa, SCL_STATE, FTAG);
1030 
1031 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
1032 	    (u_longlong_t)oldguid, (u_longlong_t)*newguid);
1033 }
1034 
1035 /*
1036  * Change the GUID for the pool.  This is done so that we can later
1037  * re-import a pool built from a clone of our own vdevs.  We will modify
1038  * the root vdev's guid, our own pool guid, and then mark all of our
1039  * vdevs dirty.  Note that we must make sure that all our vdevs are
1040  * online when we do this, or else any vdevs that weren't present
1041  * would be orphaned from our pool.  We are also going to issue a
1042  * sysevent to update any watchers.
1043  */
1044 int
1045 spa_change_guid(spa_t *spa)
1046 {
1047 	int error;
1048 	uint64_t guid;
1049 
1050 	mutex_enter(&spa->spa_vdev_top_lock);
1051 	mutex_enter(&spa_namespace_lock);
1052 	guid = spa_generate_guid(NULL);
1053 
1054 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
1055 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
1056 
1057 	if (error == 0) {
1058 		/*
1059 		 * Clear the kobj flag from all the vdevs to allow
1060 		 * vdev_cache_process_kobj_evt() to post events to all the
1061 		 * vdevs since GUID is updated.
1062 		 */
1063 		vdev_clear_kobj_evt(spa->spa_root_vdev);
1064 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
1065 			vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
1066 
1067 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1068 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
1069 	}
1070 
1071 	mutex_exit(&spa_namespace_lock);
1072 	mutex_exit(&spa->spa_vdev_top_lock);
1073 
1074 	return (error);
1075 }
1076 
1077 /*
1078  * ==========================================================================
1079  * SPA state manipulation (open/create/destroy/import/export)
1080  * ==========================================================================
1081  */
1082 
1083 static int
1084 spa_error_entry_compare(const void *a, const void *b)
1085 {
1086 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
1087 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
1088 	int ret;
1089 
1090 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
1091 	    sizeof (zbookmark_phys_t));
1092 
1093 	return (TREE_ISIGN(ret));
1094 }
1095 
1096 /*
1097  * Utility function which retrieves copies of the current logs and
1098  * re-initializes them in the process.
1099  */
1100 void
1101 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
1102 {
1103 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
1104 
1105 	memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
1106 	memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
1107 
1108 	avl_create(&spa->spa_errlist_scrub,
1109 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1110 	    offsetof(spa_error_entry_t, se_avl));
1111 	avl_create(&spa->spa_errlist_last,
1112 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1113 	    offsetof(spa_error_entry_t, se_avl));
1114 }
1115 
1116 static void
1117 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1118 {
1119 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
1120 	enum zti_modes mode = ztip->zti_mode;
1121 	uint_t value = ztip->zti_value;
1122 	uint_t count = ztip->zti_count;
1123 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1124 	uint_t cpus, flags = TASKQ_DYNAMIC;
1125 
1126 	switch (mode) {
1127 	case ZTI_MODE_FIXED:
1128 		ASSERT3U(value, >, 0);
1129 		break;
1130 
1131 	case ZTI_MODE_SYNC:
1132 
1133 		/*
1134 		 * Create one wr_iss taskq for every 'zio_taskq_write_tpq' CPUs,
1135 		 * not to exceed the number of spa allocators, and align to it.
1136 		 */
1137 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1138 		count = MAX(1, cpus / MAX(1, zio_taskq_write_tpq));
1139 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1140 		count = MIN(count, spa->spa_alloc_count);
1141 		while (spa->spa_alloc_count % count != 0 &&
1142 		    spa->spa_alloc_count < count * 2)
1143 			count--;
1144 
1145 		/*
1146 		 * zio_taskq_batch_pct is unbounded and may exceed 100%, but no
1147 		 * single taskq may have more threads than 100% of online cpus.
1148 		 */
1149 		value = (zio_taskq_batch_pct + count / 2) / count;
1150 		value = MIN(value, 100);
1151 		flags |= TASKQ_THREADS_CPU_PCT;
1152 		break;
1153 
1154 	case ZTI_MODE_SCALE:
1155 		flags |= TASKQ_THREADS_CPU_PCT;
1156 		/*
1157 		 * We want more taskqs to reduce lock contention, but we want
1158 		 * less for better request ordering and CPU utilization.
1159 		 */
1160 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1161 		if (zio_taskq_batch_tpq > 0) {
1162 			count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1163 			    zio_taskq_batch_tpq);
1164 		} else {
1165 			/*
1166 			 * Prefer 6 threads per taskq, but no more taskqs
1167 			 * than threads in them on large systems. For 80%:
1168 			 *
1169 			 *                 taskq   taskq   total
1170 			 * cpus    taskqs  percent threads threads
1171 			 * ------- ------- ------- ------- -------
1172 			 * 1       1       80%     1       1
1173 			 * 2       1       80%     1       1
1174 			 * 4       1       80%     3       3
1175 			 * 8       2       40%     3       6
1176 			 * 16      3       27%     4       12
1177 			 * 32      5       16%     5       25
1178 			 * 64      7       11%     7       49
1179 			 * 128     10      8%      10      100
1180 			 * 256     14      6%      15      210
1181 			 */
1182 			count = 1 + cpus / 6;
1183 			while (count * count > cpus)
1184 				count--;
1185 		}
1186 		/* Limit each taskq within 100% to not trigger assertion. */
1187 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1188 		value = (zio_taskq_batch_pct + count / 2) / count;
1189 		break;
1190 
1191 	case ZTI_MODE_NULL:
1192 		tqs->stqs_count = 0;
1193 		tqs->stqs_taskq = NULL;
1194 		return;
1195 
1196 	default:
1197 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1198 		    "spa_taskqs_init()",
1199 		    zio_type_name[t], zio_taskq_types[q], mode, value);
1200 		break;
1201 	}
1202 
1203 	ASSERT3U(count, >, 0);
1204 	tqs->stqs_count = count;
1205 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1206 
1207 	for (uint_t i = 0; i < count; i++) {
1208 		taskq_t *tq;
1209 		char name[32];
1210 
1211 		if (count > 1)
1212 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
1213 			    zio_type_name[t], zio_taskq_types[q], i);
1214 		else
1215 			(void) snprintf(name, sizeof (name), "%s_%s",
1216 			    zio_type_name[t], zio_taskq_types[q]);
1217 
1218 #ifdef HAVE_SYSDC
1219 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1220 			(void) zio_taskq_basedc;
1221 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1222 			    spa->spa_proc, zio_taskq_basedc, flags);
1223 		} else {
1224 #endif
1225 			pri_t pri = maxclsyspri;
1226 			/*
1227 			 * The write issue taskq can be extremely CPU
1228 			 * intensive.  Run it at slightly less important
1229 			 * priority than the other taskqs.
1230 			 *
1231 			 * Under Linux and FreeBSD this means incrementing
1232 			 * the priority value as opposed to platforms like
1233 			 * illumos where it should be decremented.
1234 			 *
1235 			 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1236 			 * are equal then a difference between them is
1237 			 * insignificant.
1238 			 */
1239 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1240 #if defined(__linux__)
1241 				pri++;
1242 #elif defined(__FreeBSD__)
1243 				pri += 4;
1244 #else
1245 #error "unknown OS"
1246 #endif
1247 			}
1248 			tq = taskq_create_proc(name, value, pri, 50,
1249 			    INT_MAX, spa->spa_proc, flags);
1250 #ifdef HAVE_SYSDC
1251 		}
1252 #endif
1253 
1254 		tqs->stqs_taskq[i] = tq;
1255 	}
1256 }
1257 
1258 static void
1259 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1260 {
1261 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1262 
1263 	if (tqs->stqs_taskq == NULL) {
1264 		ASSERT3U(tqs->stqs_count, ==, 0);
1265 		return;
1266 	}
1267 
1268 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1269 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1270 		taskq_destroy(tqs->stqs_taskq[i]);
1271 	}
1272 
1273 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1274 	tqs->stqs_taskq = NULL;
1275 }
1276 
1277 #ifdef _KERNEL
1278 /*
1279  * The READ and WRITE rows of zio_taskqs are configurable at module load time
1280  * by setting zio_taskq_read or zio_taskq_write.
1281  *
1282  * Example (the defaults for READ and WRITE)
1283  *   zio_taskq_read='fixed,1,8 null scale null'
1284  *   zio_taskq_write='sync null scale null'
1285  *
1286  * Each sets the entire row at a time.
1287  *
1288  * 'fixed' is parameterised: fixed,Q,T where Q is number of taskqs, T is number
1289  * of threads per taskq.
1290  *
1291  * 'null' can only be set on the high-priority queues (queue selection for
1292  * high-priority queues will fall back to the regular queue if the high-pri
1293  * is NULL.
1294  */
1295 static const char *const modes[ZTI_NMODES] = {
1296 	"fixed", "scale", "sync", "null"
1297 };
1298 
1299 /* Parse the incoming config string. Modifies cfg */
1300 static int
1301 spa_taskq_param_set(zio_type_t t, char *cfg)
1302 {
1303 	int err = 0;
1304 
1305 	zio_taskq_info_t row[ZIO_TASKQ_TYPES] = {{0}};
1306 
1307 	char *next = cfg, *tok, *c;
1308 
1309 	/*
1310 	 * Parse out each element from the string and fill `row`. The entire
1311 	 * row has to be set at once, so any errors are flagged by just
1312 	 * breaking out of this loop early.
1313 	 */
1314 	uint_t q;
1315 	for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1316 		/* `next` is the start of the config */
1317 		if (next == NULL)
1318 			break;
1319 
1320 		/* Eat up leading space */
1321 		while (isspace(*next))
1322 			next++;
1323 		if (*next == '\0')
1324 			break;
1325 
1326 		/* Mode ends at space or end of string */
1327 		tok = next;
1328 		next = strchr(tok, ' ');
1329 		if (next != NULL) *next++ = '\0';
1330 
1331 		/* Parameters start after a comma */
1332 		c = strchr(tok, ',');
1333 		if (c != NULL) *c++ = '\0';
1334 
1335 		/* Match mode string */
1336 		uint_t mode;
1337 		for (mode = 0; mode < ZTI_NMODES; mode++)
1338 			if (strcmp(tok, modes[mode]) == 0)
1339 				break;
1340 		if (mode == ZTI_NMODES)
1341 			break;
1342 
1343 		/* Invalid canary */
1344 		row[q].zti_mode = ZTI_NMODES;
1345 
1346 		/* Per-mode setup */
1347 		switch (mode) {
1348 
1349 		/*
1350 		 * FIXED is parameterised: number of queues, and number of
1351 		 * threads per queue.
1352 		 */
1353 		case ZTI_MODE_FIXED: {
1354 			/* No parameters? */
1355 			if (c == NULL || *c == '\0')
1356 				break;
1357 
1358 			/* Find next parameter */
1359 			tok = c;
1360 			c = strchr(tok, ',');
1361 			if (c == NULL)
1362 				break;
1363 
1364 			/* Take digits and convert */
1365 			unsigned long long nq;
1366 			if (!(isdigit(*tok)))
1367 				break;
1368 			err = ddi_strtoull(tok, &tok, 10, &nq);
1369 			/* Must succeed and also end at the next param sep */
1370 			if (err != 0 || tok != c)
1371 				break;
1372 
1373 			/* Move past the comma */
1374 			tok++;
1375 			/* Need another number */
1376 			if (!(isdigit(*tok)))
1377 				break;
1378 			/* Remember start to make sure we moved */
1379 			c = tok;
1380 
1381 			/* Take digits */
1382 			unsigned long long ntpq;
1383 			err = ddi_strtoull(tok, &tok, 10, &ntpq);
1384 			/* Must succeed, and moved forward */
1385 			if (err != 0 || tok == c || *tok != '\0')
1386 				break;
1387 
1388 			/*
1389 			 * sanity; zero queues/threads make no sense, and
1390 			 * 16K is almost certainly more than anyone will ever
1391 			 * need and avoids silly numbers like UINT32_MAX
1392 			 */
1393 			if (nq == 0 || nq >= 16384 ||
1394 			    ntpq == 0 || ntpq >= 16384)
1395 				break;
1396 
1397 			const zio_taskq_info_t zti = ZTI_P(ntpq, nq);
1398 			row[q] = zti;
1399 			break;
1400 		}
1401 
1402 		case ZTI_MODE_SCALE: {
1403 			const zio_taskq_info_t zti = ZTI_SCALE;
1404 			row[q] = zti;
1405 			break;
1406 		}
1407 
1408 		case ZTI_MODE_SYNC: {
1409 			const zio_taskq_info_t zti = ZTI_SYNC;
1410 			row[q] = zti;
1411 			break;
1412 		}
1413 
1414 		case ZTI_MODE_NULL: {
1415 			/*
1416 			 * Can only null the high-priority queues; the general-
1417 			 * purpose ones have to exist.
1418 			 */
1419 			if (q != ZIO_TASKQ_ISSUE_HIGH &&
1420 			    q != ZIO_TASKQ_INTERRUPT_HIGH)
1421 				break;
1422 
1423 			const zio_taskq_info_t zti = ZTI_NULL;
1424 			row[q] = zti;
1425 			break;
1426 		}
1427 
1428 		default:
1429 			break;
1430 		}
1431 
1432 		/* Ensure we set a mode */
1433 		if (row[q].zti_mode == ZTI_NMODES)
1434 			break;
1435 	}
1436 
1437 	/* Didn't get a full row, fail */
1438 	if (q < ZIO_TASKQ_TYPES)
1439 		return (SET_ERROR(EINVAL));
1440 
1441 	/* Eat trailing space */
1442 	if (next != NULL)
1443 		while (isspace(*next))
1444 			next++;
1445 
1446 	/* If there's anything left over then fail */
1447 	if (next != NULL && *next != '\0')
1448 		return (SET_ERROR(EINVAL));
1449 
1450 	/* Success! Copy it into the real config */
1451 	for (q = 0; q < ZIO_TASKQ_TYPES; q++)
1452 		zio_taskqs[t][q] = row[q];
1453 
1454 	return (0);
1455 }
1456 
1457 static int
1458 spa_taskq_param_get(zio_type_t t, char *buf, boolean_t add_newline)
1459 {
1460 	int pos = 0;
1461 
1462 	/* Build paramater string from live config */
1463 	const char *sep = "";
1464 	for (uint_t q = 0; q < ZIO_TASKQ_TYPES; q++) {
1465 		const zio_taskq_info_t *zti = &zio_taskqs[t][q];
1466 		if (zti->zti_mode == ZTI_MODE_FIXED)
1467 			pos += sprintf(&buf[pos], "%s%s,%u,%u", sep,
1468 			    modes[zti->zti_mode], zti->zti_count,
1469 			    zti->zti_value);
1470 		else
1471 			pos += sprintf(&buf[pos], "%s%s", sep,
1472 			    modes[zti->zti_mode]);
1473 		sep = " ";
1474 	}
1475 
1476 	if (add_newline)
1477 		buf[pos++] = '\n';
1478 	buf[pos] = '\0';
1479 
1480 	return (pos);
1481 }
1482 
1483 #ifdef __linux__
1484 static int
1485 spa_taskq_read_param_set(const char *val, zfs_kernel_param_t *kp)
1486 {
1487 	char *cfg = kmem_strdup(val);
1488 	int err = spa_taskq_param_set(ZIO_TYPE_READ, cfg);
1489 	kmem_free(cfg, strlen(val)+1);
1490 	return (-err);
1491 }
1492 static int
1493 spa_taskq_read_param_get(char *buf, zfs_kernel_param_t *kp)
1494 {
1495 	return (spa_taskq_param_get(ZIO_TYPE_READ, buf, TRUE));
1496 }
1497 
1498 static int
1499 spa_taskq_write_param_set(const char *val, zfs_kernel_param_t *kp)
1500 {
1501 	char *cfg = kmem_strdup(val);
1502 	int err = spa_taskq_param_set(ZIO_TYPE_WRITE, cfg);
1503 	kmem_free(cfg, strlen(val)+1);
1504 	return (-err);
1505 }
1506 static int
1507 spa_taskq_write_param_get(char *buf, zfs_kernel_param_t *kp)
1508 {
1509 	return (spa_taskq_param_get(ZIO_TYPE_WRITE, buf, TRUE));
1510 }
1511 #else
1512 /*
1513  * On FreeBSD load-time parameters can be set up before malloc() is available,
1514  * so we have to do all the parsing work on the stack.
1515  */
1516 #define	SPA_TASKQ_PARAM_MAX	(128)
1517 
1518 static int
1519 spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)
1520 {
1521 	char buf[SPA_TASKQ_PARAM_MAX];
1522 	int err;
1523 
1524 	(void) spa_taskq_param_get(ZIO_TYPE_READ, buf, FALSE);
1525 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1526 	if (err || req->newptr == NULL)
1527 		return (err);
1528 	return (spa_taskq_param_set(ZIO_TYPE_READ, buf));
1529 }
1530 
1531 static int
1532 spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)
1533 {
1534 	char buf[SPA_TASKQ_PARAM_MAX];
1535 	int err;
1536 
1537 	(void) spa_taskq_param_get(ZIO_TYPE_WRITE, buf, FALSE);
1538 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1539 	if (err || req->newptr == NULL)
1540 		return (err);
1541 	return (spa_taskq_param_set(ZIO_TYPE_WRITE, buf));
1542 }
1543 #endif
1544 #endif /* _KERNEL */
1545 
1546 /*
1547  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1548  * Note that a type may have multiple discrete taskqs to avoid lock contention
1549  * on the taskq itself.
1550  */
1551 void
1552 spa_taskq_dispatch(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1553     task_func_t *func, zio_t *zio, boolean_t cutinline)
1554 {
1555 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1556 	taskq_t *tq;
1557 
1558 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1559 	ASSERT3U(tqs->stqs_count, !=, 0);
1560 
1561 	/*
1562 	 * NB: We are assuming that the zio can only be dispatched
1563 	 * to a single taskq at a time.  It would be a grievous error
1564 	 * to dispatch the zio to another taskq at the same time.
1565 	 */
1566 	ASSERT(zio);
1567 	ASSERT(taskq_empty_ent(&zio->io_tqent));
1568 
1569 	if (tqs->stqs_count == 1) {
1570 		tq = tqs->stqs_taskq[0];
1571 	} else if ((t == ZIO_TYPE_WRITE) && (q == ZIO_TASKQ_ISSUE) &&
1572 	    ZIO_HAS_ALLOCATOR(zio)) {
1573 		tq = tqs->stqs_taskq[zio->io_allocator % tqs->stqs_count];
1574 	} else {
1575 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1576 	}
1577 
1578 	taskq_dispatch_ent(tq, func, zio, cutinline ? TQ_FRONT : 0,
1579 	    &zio->io_tqent);
1580 }
1581 
1582 static void
1583 spa_create_zio_taskqs(spa_t *spa)
1584 {
1585 	for (int t = 0; t < ZIO_TYPES; t++) {
1586 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1587 			spa_taskqs_init(spa, t, q);
1588 		}
1589 	}
1590 }
1591 
1592 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1593 static void
1594 spa_thread(void *arg)
1595 {
1596 	psetid_t zio_taskq_psrset_bind = PS_NONE;
1597 	callb_cpr_t cprinfo;
1598 
1599 	spa_t *spa = arg;
1600 	user_t *pu = PTOU(curproc);
1601 
1602 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1603 	    spa->spa_name);
1604 
1605 	ASSERT(curproc != &p0);
1606 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1607 	    "zpool-%s", spa->spa_name);
1608 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1609 
1610 	/* bind this thread to the requested psrset */
1611 	if (zio_taskq_psrset_bind != PS_NONE) {
1612 		pool_lock();
1613 		mutex_enter(&cpu_lock);
1614 		mutex_enter(&pidlock);
1615 		mutex_enter(&curproc->p_lock);
1616 
1617 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1618 		    0, NULL, NULL) == 0)  {
1619 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1620 		} else {
1621 			cmn_err(CE_WARN,
1622 			    "Couldn't bind process for zfs pool \"%s\" to "
1623 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1624 		}
1625 
1626 		mutex_exit(&curproc->p_lock);
1627 		mutex_exit(&pidlock);
1628 		mutex_exit(&cpu_lock);
1629 		pool_unlock();
1630 	}
1631 
1632 #ifdef HAVE_SYSDC
1633 	if (zio_taskq_sysdc) {
1634 		sysdc_thread_enter(curthread, 100, 0);
1635 	}
1636 #endif
1637 
1638 	spa->spa_proc = curproc;
1639 	spa->spa_did = curthread->t_did;
1640 
1641 	spa_create_zio_taskqs(spa);
1642 
1643 	mutex_enter(&spa->spa_proc_lock);
1644 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1645 
1646 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1647 	cv_broadcast(&spa->spa_proc_cv);
1648 
1649 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1650 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1651 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1652 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1653 
1654 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1655 	spa->spa_proc_state = SPA_PROC_GONE;
1656 	spa->spa_proc = &p0;
1657 	cv_broadcast(&spa->spa_proc_cv);
1658 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1659 
1660 	mutex_enter(&curproc->p_lock);
1661 	lwp_exit();
1662 }
1663 #endif
1664 
1665 extern metaslab_ops_t *metaslab_allocator(spa_t *spa);
1666 
1667 /*
1668  * Activate an uninitialized pool.
1669  */
1670 static void
1671 spa_activate(spa_t *spa, spa_mode_t mode)
1672 {
1673 	metaslab_ops_t *msp = metaslab_allocator(spa);
1674 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1675 
1676 	spa->spa_state = POOL_STATE_ACTIVE;
1677 	spa->spa_mode = mode;
1678 	spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1679 
1680 	spa->spa_normal_class = metaslab_class_create(spa, msp);
1681 	spa->spa_log_class = metaslab_class_create(spa, msp);
1682 	spa->spa_embedded_log_class = metaslab_class_create(spa, msp);
1683 	spa->spa_special_class = metaslab_class_create(spa, msp);
1684 	spa->spa_dedup_class = metaslab_class_create(spa, msp);
1685 
1686 	/* Try to create a covering process */
1687 	mutex_enter(&spa->spa_proc_lock);
1688 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1689 	ASSERT(spa->spa_proc == &p0);
1690 	spa->spa_did = 0;
1691 
1692 #ifdef HAVE_SPA_THREAD
1693 	/* Only create a process if we're going to be around a while. */
1694 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1695 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1696 		    NULL, 0) == 0) {
1697 			spa->spa_proc_state = SPA_PROC_CREATED;
1698 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1699 				cv_wait(&spa->spa_proc_cv,
1700 				    &spa->spa_proc_lock);
1701 			}
1702 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1703 			ASSERT(spa->spa_proc != &p0);
1704 			ASSERT(spa->spa_did != 0);
1705 		} else {
1706 #ifdef _KERNEL
1707 			cmn_err(CE_WARN,
1708 			    "Couldn't create process for zfs pool \"%s\"\n",
1709 			    spa->spa_name);
1710 #endif
1711 		}
1712 	}
1713 #endif /* HAVE_SPA_THREAD */
1714 	mutex_exit(&spa->spa_proc_lock);
1715 
1716 	/* If we didn't create a process, we need to create our taskqs. */
1717 	if (spa->spa_proc == &p0) {
1718 		spa_create_zio_taskqs(spa);
1719 	}
1720 
1721 	for (size_t i = 0; i < TXG_SIZE; i++) {
1722 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1723 		    ZIO_FLAG_CANFAIL);
1724 	}
1725 
1726 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1727 	    offsetof(vdev_t, vdev_config_dirty_node));
1728 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1729 	    offsetof(objset_t, os_evicting_node));
1730 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1731 	    offsetof(vdev_t, vdev_state_dirty_node));
1732 
1733 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1734 	    offsetof(struct vdev, vdev_txg_node));
1735 
1736 	avl_create(&spa->spa_errlist_scrub,
1737 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1738 	    offsetof(spa_error_entry_t, se_avl));
1739 	avl_create(&spa->spa_errlist_last,
1740 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1741 	    offsetof(spa_error_entry_t, se_avl));
1742 	avl_create(&spa->spa_errlist_healed,
1743 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1744 	    offsetof(spa_error_entry_t, se_avl));
1745 
1746 	spa_activate_os(spa);
1747 
1748 	spa_keystore_init(&spa->spa_keystore);
1749 
1750 	/*
1751 	 * This taskq is used to perform zvol-minor-related tasks
1752 	 * asynchronously. This has several advantages, including easy
1753 	 * resolution of various deadlocks.
1754 	 *
1755 	 * The taskq must be single threaded to ensure tasks are always
1756 	 * processed in the order in which they were dispatched.
1757 	 *
1758 	 * A taskq per pool allows one to keep the pools independent.
1759 	 * This way if one pool is suspended, it will not impact another.
1760 	 *
1761 	 * The preferred location to dispatch a zvol minor task is a sync
1762 	 * task. In this context, there is easy access to the spa_t and minimal
1763 	 * error handling is required because the sync task must succeed.
1764 	 */
1765 	spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1766 	    1, INT_MAX, 0);
1767 
1768 	/*
1769 	 * The taskq to preload metaslabs.
1770 	 */
1771 	spa->spa_metaslab_taskq = taskq_create("z_metaslab",
1772 	    metaslab_preload_pct, maxclsyspri, 1, INT_MAX,
1773 	    TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1774 
1775 	/*
1776 	 * Taskq dedicated to prefetcher threads: this is used to prevent the
1777 	 * pool traverse code from monopolizing the global (and limited)
1778 	 * system_taskq by inappropriately scheduling long running tasks on it.
1779 	 */
1780 	spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1781 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1782 
1783 	/*
1784 	 * The taskq to upgrade datasets in this pool. Currently used by
1785 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1786 	 */
1787 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1788 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1789 }
1790 
1791 /*
1792  * Opposite of spa_activate().
1793  */
1794 static void
1795 spa_deactivate(spa_t *spa)
1796 {
1797 	ASSERT(spa->spa_sync_on == B_FALSE);
1798 	ASSERT(spa->spa_dsl_pool == NULL);
1799 	ASSERT(spa->spa_root_vdev == NULL);
1800 	ASSERT(spa->spa_async_zio_root == NULL);
1801 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1802 
1803 	spa_evicting_os_wait(spa);
1804 
1805 	if (spa->spa_zvol_taskq) {
1806 		taskq_destroy(spa->spa_zvol_taskq);
1807 		spa->spa_zvol_taskq = NULL;
1808 	}
1809 
1810 	if (spa->spa_metaslab_taskq) {
1811 		taskq_destroy(spa->spa_metaslab_taskq);
1812 		spa->spa_metaslab_taskq = NULL;
1813 	}
1814 
1815 	if (spa->spa_prefetch_taskq) {
1816 		taskq_destroy(spa->spa_prefetch_taskq);
1817 		spa->spa_prefetch_taskq = NULL;
1818 	}
1819 
1820 	if (spa->spa_upgrade_taskq) {
1821 		taskq_destroy(spa->spa_upgrade_taskq);
1822 		spa->spa_upgrade_taskq = NULL;
1823 	}
1824 
1825 	txg_list_destroy(&spa->spa_vdev_txg_list);
1826 
1827 	list_destroy(&spa->spa_config_dirty_list);
1828 	list_destroy(&spa->spa_evicting_os_list);
1829 	list_destroy(&spa->spa_state_dirty_list);
1830 
1831 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1832 
1833 	for (int t = 0; t < ZIO_TYPES; t++) {
1834 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1835 			spa_taskqs_fini(spa, t, q);
1836 		}
1837 	}
1838 
1839 	for (size_t i = 0; i < TXG_SIZE; i++) {
1840 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1841 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1842 		spa->spa_txg_zio[i] = NULL;
1843 	}
1844 
1845 	metaslab_class_destroy(spa->spa_normal_class);
1846 	spa->spa_normal_class = NULL;
1847 
1848 	metaslab_class_destroy(spa->spa_log_class);
1849 	spa->spa_log_class = NULL;
1850 
1851 	metaslab_class_destroy(spa->spa_embedded_log_class);
1852 	spa->spa_embedded_log_class = NULL;
1853 
1854 	metaslab_class_destroy(spa->spa_special_class);
1855 	spa->spa_special_class = NULL;
1856 
1857 	metaslab_class_destroy(spa->spa_dedup_class);
1858 	spa->spa_dedup_class = NULL;
1859 
1860 	/*
1861 	 * If this was part of an import or the open otherwise failed, we may
1862 	 * still have errors left in the queues.  Empty them just in case.
1863 	 */
1864 	spa_errlog_drain(spa);
1865 	avl_destroy(&spa->spa_errlist_scrub);
1866 	avl_destroy(&spa->spa_errlist_last);
1867 	avl_destroy(&spa->spa_errlist_healed);
1868 
1869 	spa_keystore_fini(&spa->spa_keystore);
1870 
1871 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1872 
1873 	mutex_enter(&spa->spa_proc_lock);
1874 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1875 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1876 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1877 		cv_broadcast(&spa->spa_proc_cv);
1878 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1879 			ASSERT(spa->spa_proc != &p0);
1880 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1881 		}
1882 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1883 		spa->spa_proc_state = SPA_PROC_NONE;
1884 	}
1885 	ASSERT(spa->spa_proc == &p0);
1886 	mutex_exit(&spa->spa_proc_lock);
1887 
1888 	/*
1889 	 * We want to make sure spa_thread() has actually exited the ZFS
1890 	 * module, so that the module can't be unloaded out from underneath
1891 	 * it.
1892 	 */
1893 	if (spa->spa_did != 0) {
1894 		thread_join(spa->spa_did);
1895 		spa->spa_did = 0;
1896 	}
1897 
1898 	spa_deactivate_os(spa);
1899 
1900 }
1901 
1902 /*
1903  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1904  * will create all the necessary vdevs in the appropriate layout, with each vdev
1905  * in the CLOSED state.  This will prep the pool before open/creation/import.
1906  * All vdev validation is done by the vdev_alloc() routine.
1907  */
1908 int
1909 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1910     uint_t id, int atype)
1911 {
1912 	nvlist_t **child;
1913 	uint_t children;
1914 	int error;
1915 
1916 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1917 		return (error);
1918 
1919 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1920 		return (0);
1921 
1922 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1923 	    &child, &children);
1924 
1925 	if (error == ENOENT)
1926 		return (0);
1927 
1928 	if (error) {
1929 		vdev_free(*vdp);
1930 		*vdp = NULL;
1931 		return (SET_ERROR(EINVAL));
1932 	}
1933 
1934 	for (int c = 0; c < children; c++) {
1935 		vdev_t *vd;
1936 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1937 		    atype)) != 0) {
1938 			vdev_free(*vdp);
1939 			*vdp = NULL;
1940 			return (error);
1941 		}
1942 	}
1943 
1944 	ASSERT(*vdp != NULL);
1945 
1946 	return (0);
1947 }
1948 
1949 static boolean_t
1950 spa_should_flush_logs_on_unload(spa_t *spa)
1951 {
1952 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1953 		return (B_FALSE);
1954 
1955 	if (!spa_writeable(spa))
1956 		return (B_FALSE);
1957 
1958 	if (!spa->spa_sync_on)
1959 		return (B_FALSE);
1960 
1961 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1962 		return (B_FALSE);
1963 
1964 	if (zfs_keep_log_spacemaps_at_export)
1965 		return (B_FALSE);
1966 
1967 	return (B_TRUE);
1968 }
1969 
1970 /*
1971  * Opens a transaction that will set the flag that will instruct
1972  * spa_sync to attempt to flush all the metaslabs for that txg.
1973  */
1974 static void
1975 spa_unload_log_sm_flush_all(spa_t *spa)
1976 {
1977 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1978 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1979 
1980 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1981 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1982 
1983 	dmu_tx_commit(tx);
1984 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1985 }
1986 
1987 static void
1988 spa_unload_log_sm_metadata(spa_t *spa)
1989 {
1990 	void *cookie = NULL;
1991 	spa_log_sm_t *sls;
1992 	log_summary_entry_t *e;
1993 
1994 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1995 	    &cookie)) != NULL) {
1996 		VERIFY0(sls->sls_mscount);
1997 		kmem_free(sls, sizeof (spa_log_sm_t));
1998 	}
1999 
2000 	while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) {
2001 		VERIFY0(e->lse_mscount);
2002 		kmem_free(e, sizeof (log_summary_entry_t));
2003 	}
2004 
2005 	spa->spa_unflushed_stats.sus_nblocks = 0;
2006 	spa->spa_unflushed_stats.sus_memused = 0;
2007 	spa->spa_unflushed_stats.sus_blocklimit = 0;
2008 }
2009 
2010 static void
2011 spa_destroy_aux_threads(spa_t *spa)
2012 {
2013 	if (spa->spa_condense_zthr != NULL) {
2014 		zthr_destroy(spa->spa_condense_zthr);
2015 		spa->spa_condense_zthr = NULL;
2016 	}
2017 	if (spa->spa_checkpoint_discard_zthr != NULL) {
2018 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
2019 		spa->spa_checkpoint_discard_zthr = NULL;
2020 	}
2021 	if (spa->spa_livelist_delete_zthr != NULL) {
2022 		zthr_destroy(spa->spa_livelist_delete_zthr);
2023 		spa->spa_livelist_delete_zthr = NULL;
2024 	}
2025 	if (spa->spa_livelist_condense_zthr != NULL) {
2026 		zthr_destroy(spa->spa_livelist_condense_zthr);
2027 		spa->spa_livelist_condense_zthr = NULL;
2028 	}
2029 	if (spa->spa_raidz_expand_zthr != NULL) {
2030 		zthr_destroy(spa->spa_raidz_expand_zthr);
2031 		spa->spa_raidz_expand_zthr = NULL;
2032 	}
2033 }
2034 
2035 /*
2036  * Opposite of spa_load().
2037  */
2038 static void
2039 spa_unload(spa_t *spa)
2040 {
2041 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
2042 	    spa->spa_export_thread == curthread);
2043 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
2044 
2045 	spa_import_progress_remove(spa_guid(spa));
2046 	spa_load_note(spa, "UNLOADING");
2047 
2048 	spa_wake_waiters(spa);
2049 
2050 	/*
2051 	 * If we have set the spa_final_txg, we have already performed the
2052 	 * tasks below in spa_export_common(). We should not redo it here since
2053 	 * we delay the final TXGs beyond what spa_final_txg is set at.
2054 	 */
2055 	if (spa->spa_final_txg == UINT64_MAX) {
2056 		/*
2057 		 * If the log space map feature is enabled and the pool is
2058 		 * getting exported (but not destroyed), we want to spend some
2059 		 * time flushing as many metaslabs as we can in an attempt to
2060 		 * destroy log space maps and save import time.
2061 		 */
2062 		if (spa_should_flush_logs_on_unload(spa))
2063 			spa_unload_log_sm_flush_all(spa);
2064 
2065 		/*
2066 		 * Stop async tasks.
2067 		 */
2068 		spa_async_suspend(spa);
2069 
2070 		if (spa->spa_root_vdev) {
2071 			vdev_t *root_vdev = spa->spa_root_vdev;
2072 			vdev_initialize_stop_all(root_vdev,
2073 			    VDEV_INITIALIZE_ACTIVE);
2074 			vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
2075 			vdev_autotrim_stop_all(spa);
2076 			vdev_rebuild_stop_all(spa);
2077 		}
2078 	}
2079 
2080 	/*
2081 	 * Stop syncing.
2082 	 */
2083 	if (spa->spa_sync_on) {
2084 		txg_sync_stop(spa->spa_dsl_pool);
2085 		spa->spa_sync_on = B_FALSE;
2086 	}
2087 
2088 	/*
2089 	 * This ensures that there is no async metaslab prefetching
2090 	 * while we attempt to unload the spa.
2091 	 */
2092 	taskq_wait(spa->spa_metaslab_taskq);
2093 
2094 	if (spa->spa_mmp.mmp_thread)
2095 		mmp_thread_stop(spa);
2096 
2097 	/*
2098 	 * Wait for any outstanding async I/O to complete.
2099 	 */
2100 	if (spa->spa_async_zio_root != NULL) {
2101 		for (int i = 0; i < max_ncpus; i++)
2102 			(void) zio_wait(spa->spa_async_zio_root[i]);
2103 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
2104 		spa->spa_async_zio_root = NULL;
2105 	}
2106 
2107 	if (spa->spa_vdev_removal != NULL) {
2108 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
2109 		spa->spa_vdev_removal = NULL;
2110 	}
2111 
2112 	spa_destroy_aux_threads(spa);
2113 
2114 	spa_condense_fini(spa);
2115 
2116 	bpobj_close(&spa->spa_deferred_bpobj);
2117 
2118 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
2119 
2120 	/*
2121 	 * Close all vdevs.
2122 	 */
2123 	if (spa->spa_root_vdev)
2124 		vdev_free(spa->spa_root_vdev);
2125 	ASSERT(spa->spa_root_vdev == NULL);
2126 
2127 	/*
2128 	 * Close the dsl pool.
2129 	 */
2130 	if (spa->spa_dsl_pool) {
2131 		dsl_pool_close(spa->spa_dsl_pool);
2132 		spa->spa_dsl_pool = NULL;
2133 		spa->spa_meta_objset = NULL;
2134 	}
2135 
2136 	ddt_unload(spa);
2137 	brt_unload(spa);
2138 	spa_unload_log_sm_metadata(spa);
2139 
2140 	/*
2141 	 * Drop and purge level 2 cache
2142 	 */
2143 	spa_l2cache_drop(spa);
2144 
2145 	if (spa->spa_spares.sav_vdevs) {
2146 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
2147 			vdev_free(spa->spa_spares.sav_vdevs[i]);
2148 		kmem_free(spa->spa_spares.sav_vdevs,
2149 		    spa->spa_spares.sav_count * sizeof (void *));
2150 		spa->spa_spares.sav_vdevs = NULL;
2151 	}
2152 	if (spa->spa_spares.sav_config) {
2153 		nvlist_free(spa->spa_spares.sav_config);
2154 		spa->spa_spares.sav_config = NULL;
2155 	}
2156 	spa->spa_spares.sav_count = 0;
2157 
2158 	if (spa->spa_l2cache.sav_vdevs) {
2159 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
2160 			vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
2161 			vdev_free(spa->spa_l2cache.sav_vdevs[i]);
2162 		}
2163 		kmem_free(spa->spa_l2cache.sav_vdevs,
2164 		    spa->spa_l2cache.sav_count * sizeof (void *));
2165 		spa->spa_l2cache.sav_vdevs = NULL;
2166 	}
2167 	if (spa->spa_l2cache.sav_config) {
2168 		nvlist_free(spa->spa_l2cache.sav_config);
2169 		spa->spa_l2cache.sav_config = NULL;
2170 	}
2171 	spa->spa_l2cache.sav_count = 0;
2172 
2173 	spa->spa_async_suspended = 0;
2174 
2175 	spa->spa_indirect_vdevs_loaded = B_FALSE;
2176 
2177 	if (spa->spa_comment != NULL) {
2178 		spa_strfree(spa->spa_comment);
2179 		spa->spa_comment = NULL;
2180 	}
2181 	if (spa->spa_compatibility != NULL) {
2182 		spa_strfree(spa->spa_compatibility);
2183 		spa->spa_compatibility = NULL;
2184 	}
2185 
2186 	spa->spa_raidz_expand = NULL;
2187 
2188 	spa_config_exit(spa, SCL_ALL, spa);
2189 }
2190 
2191 /*
2192  * Load (or re-load) the current list of vdevs describing the active spares for
2193  * this pool.  When this is called, we have some form of basic information in
2194  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
2195  * then re-generate a more complete list including status information.
2196  */
2197 void
2198 spa_load_spares(spa_t *spa)
2199 {
2200 	nvlist_t **spares;
2201 	uint_t nspares;
2202 	int i;
2203 	vdev_t *vd, *tvd;
2204 
2205 #ifndef _KERNEL
2206 	/*
2207 	 * zdb opens both the current state of the pool and the
2208 	 * checkpointed state (if present), with a different spa_t.
2209 	 *
2210 	 * As spare vdevs are shared among open pools, we skip loading
2211 	 * them when we load the checkpointed state of the pool.
2212 	 */
2213 	if (!spa_writeable(spa))
2214 		return;
2215 #endif
2216 
2217 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2218 
2219 	/*
2220 	 * First, close and free any existing spare vdevs.
2221 	 */
2222 	if (spa->spa_spares.sav_vdevs) {
2223 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
2224 			vd = spa->spa_spares.sav_vdevs[i];
2225 
2226 			/* Undo the call to spa_activate() below */
2227 			if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2228 			    B_FALSE)) != NULL && tvd->vdev_isspare)
2229 				spa_spare_remove(tvd);
2230 			vdev_close(vd);
2231 			vdev_free(vd);
2232 		}
2233 
2234 		kmem_free(spa->spa_spares.sav_vdevs,
2235 		    spa->spa_spares.sav_count * sizeof (void *));
2236 	}
2237 
2238 	if (spa->spa_spares.sav_config == NULL)
2239 		nspares = 0;
2240 	else
2241 		VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2242 		    ZPOOL_CONFIG_SPARES, &spares, &nspares));
2243 
2244 	spa->spa_spares.sav_count = (int)nspares;
2245 	spa->spa_spares.sav_vdevs = NULL;
2246 
2247 	if (nspares == 0)
2248 		return;
2249 
2250 	/*
2251 	 * Construct the array of vdevs, opening them to get status in the
2252 	 * process.   For each spare, there is potentially two different vdev_t
2253 	 * structures associated with it: one in the list of spares (used only
2254 	 * for basic validation purposes) and one in the active vdev
2255 	 * configuration (if it's spared in).  During this phase we open and
2256 	 * validate each vdev on the spare list.  If the vdev also exists in the
2257 	 * active configuration, then we also mark this vdev as an active spare.
2258 	 */
2259 	spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
2260 	    KM_SLEEP);
2261 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
2262 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
2263 		    VDEV_ALLOC_SPARE) == 0);
2264 		ASSERT(vd != NULL);
2265 
2266 		spa->spa_spares.sav_vdevs[i] = vd;
2267 
2268 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2269 		    B_FALSE)) != NULL) {
2270 			if (!tvd->vdev_isspare)
2271 				spa_spare_add(tvd);
2272 
2273 			/*
2274 			 * We only mark the spare active if we were successfully
2275 			 * able to load the vdev.  Otherwise, importing a pool
2276 			 * with a bad active spare would result in strange
2277 			 * behavior, because multiple pool would think the spare
2278 			 * is actively in use.
2279 			 *
2280 			 * There is a vulnerability here to an equally bizarre
2281 			 * circumstance, where a dead active spare is later
2282 			 * brought back to life (onlined or otherwise).  Given
2283 			 * the rarity of this scenario, and the extra complexity
2284 			 * it adds, we ignore the possibility.
2285 			 */
2286 			if (!vdev_is_dead(tvd))
2287 				spa_spare_activate(tvd);
2288 		}
2289 
2290 		vd->vdev_top = vd;
2291 		vd->vdev_aux = &spa->spa_spares;
2292 
2293 		if (vdev_open(vd) != 0)
2294 			continue;
2295 
2296 		if (vdev_validate_aux(vd) == 0)
2297 			spa_spare_add(vd);
2298 	}
2299 
2300 	/*
2301 	 * Recompute the stashed list of spares, with status information
2302 	 * this time.
2303 	 */
2304 	fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
2305 
2306 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
2307 	    KM_SLEEP);
2308 	for (i = 0; i < spa->spa_spares.sav_count; i++)
2309 		spares[i] = vdev_config_generate(spa,
2310 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
2311 	fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
2312 	    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
2313 	    spa->spa_spares.sav_count);
2314 	for (i = 0; i < spa->spa_spares.sav_count; i++)
2315 		nvlist_free(spares[i]);
2316 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
2317 }
2318 
2319 /*
2320  * Load (or re-load) the current list of vdevs describing the active l2cache for
2321  * this pool.  When this is called, we have some form of basic information in
2322  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
2323  * then re-generate a more complete list including status information.
2324  * Devices which are already active have their details maintained, and are
2325  * not re-opened.
2326  */
2327 void
2328 spa_load_l2cache(spa_t *spa)
2329 {
2330 	nvlist_t **l2cache = NULL;
2331 	uint_t nl2cache;
2332 	int i, j, oldnvdevs;
2333 	uint64_t guid;
2334 	vdev_t *vd, **oldvdevs, **newvdevs;
2335 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2336 
2337 #ifndef _KERNEL
2338 	/*
2339 	 * zdb opens both the current state of the pool and the
2340 	 * checkpointed state (if present), with a different spa_t.
2341 	 *
2342 	 * As L2 caches are part of the ARC which is shared among open
2343 	 * pools, we skip loading them when we load the checkpointed
2344 	 * state of the pool.
2345 	 */
2346 	if (!spa_writeable(spa))
2347 		return;
2348 #endif
2349 
2350 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2351 
2352 	oldvdevs = sav->sav_vdevs;
2353 	oldnvdevs = sav->sav_count;
2354 	sav->sav_vdevs = NULL;
2355 	sav->sav_count = 0;
2356 
2357 	if (sav->sav_config == NULL) {
2358 		nl2cache = 0;
2359 		newvdevs = NULL;
2360 		goto out;
2361 	}
2362 
2363 	VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
2364 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
2365 	newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
2366 
2367 	/*
2368 	 * Process new nvlist of vdevs.
2369 	 */
2370 	for (i = 0; i < nl2cache; i++) {
2371 		guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
2372 
2373 		newvdevs[i] = NULL;
2374 		for (j = 0; j < oldnvdevs; j++) {
2375 			vd = oldvdevs[j];
2376 			if (vd != NULL && guid == vd->vdev_guid) {
2377 				/*
2378 				 * Retain previous vdev for add/remove ops.
2379 				 */
2380 				newvdevs[i] = vd;
2381 				oldvdevs[j] = NULL;
2382 				break;
2383 			}
2384 		}
2385 
2386 		if (newvdevs[i] == NULL) {
2387 			/*
2388 			 * Create new vdev
2389 			 */
2390 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
2391 			    VDEV_ALLOC_L2CACHE) == 0);
2392 			ASSERT(vd != NULL);
2393 			newvdevs[i] = vd;
2394 
2395 			/*
2396 			 * Commit this vdev as an l2cache device,
2397 			 * even if it fails to open.
2398 			 */
2399 			spa_l2cache_add(vd);
2400 
2401 			vd->vdev_top = vd;
2402 			vd->vdev_aux = sav;
2403 
2404 			spa_l2cache_activate(vd);
2405 
2406 			if (vdev_open(vd) != 0)
2407 				continue;
2408 
2409 			(void) vdev_validate_aux(vd);
2410 
2411 			if (!vdev_is_dead(vd))
2412 				l2arc_add_vdev(spa, vd);
2413 
2414 			/*
2415 			 * Upon cache device addition to a pool or pool
2416 			 * creation with a cache device or if the header
2417 			 * of the device is invalid we issue an async
2418 			 * TRIM command for the whole device which will
2419 			 * execute if l2arc_trim_ahead > 0.
2420 			 */
2421 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2422 		}
2423 	}
2424 
2425 	sav->sav_vdevs = newvdevs;
2426 	sav->sav_count = (int)nl2cache;
2427 
2428 	/*
2429 	 * Recompute the stashed list of l2cache devices, with status
2430 	 * information this time.
2431 	 */
2432 	fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2433 
2434 	if (sav->sav_count > 0)
2435 		l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2436 		    KM_SLEEP);
2437 	for (i = 0; i < sav->sav_count; i++)
2438 		l2cache[i] = vdev_config_generate(spa,
2439 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2440 	fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2441 	    (const nvlist_t * const *)l2cache, sav->sav_count);
2442 
2443 out:
2444 	/*
2445 	 * Purge vdevs that were dropped
2446 	 */
2447 	if (oldvdevs) {
2448 		for (i = 0; i < oldnvdevs; i++) {
2449 			uint64_t pool;
2450 
2451 			vd = oldvdevs[i];
2452 			if (vd != NULL) {
2453 				ASSERT(vd->vdev_isl2cache);
2454 
2455 				if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2456 				    pool != 0ULL && l2arc_vdev_present(vd))
2457 					l2arc_remove_vdev(vd);
2458 				vdev_clear_stats(vd);
2459 				vdev_free(vd);
2460 			}
2461 		}
2462 
2463 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2464 	}
2465 
2466 	for (i = 0; i < sav->sav_count; i++)
2467 		nvlist_free(l2cache[i]);
2468 	if (sav->sav_count)
2469 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
2470 }
2471 
2472 static int
2473 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2474 {
2475 	dmu_buf_t *db;
2476 	char *packed = NULL;
2477 	size_t nvsize = 0;
2478 	int error;
2479 	*value = NULL;
2480 
2481 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2482 	if (error)
2483 		return (error);
2484 
2485 	nvsize = *(uint64_t *)db->db_data;
2486 	dmu_buf_rele(db, FTAG);
2487 
2488 	packed = vmem_alloc(nvsize, KM_SLEEP);
2489 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2490 	    DMU_READ_PREFETCH);
2491 	if (error == 0)
2492 		error = nvlist_unpack(packed, nvsize, value, 0);
2493 	vmem_free(packed, nvsize);
2494 
2495 	return (error);
2496 }
2497 
2498 /*
2499  * Concrete top-level vdevs that are not missing and are not logs. At every
2500  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2501  */
2502 static uint64_t
2503 spa_healthy_core_tvds(spa_t *spa)
2504 {
2505 	vdev_t *rvd = spa->spa_root_vdev;
2506 	uint64_t tvds = 0;
2507 
2508 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2509 		vdev_t *vd = rvd->vdev_child[i];
2510 		if (vd->vdev_islog)
2511 			continue;
2512 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2513 			tvds++;
2514 	}
2515 
2516 	return (tvds);
2517 }
2518 
2519 /*
2520  * Checks to see if the given vdev could not be opened, in which case we post a
2521  * sysevent to notify the autoreplace code that the device has been removed.
2522  */
2523 static void
2524 spa_check_removed(vdev_t *vd)
2525 {
2526 	for (uint64_t c = 0; c < vd->vdev_children; c++)
2527 		spa_check_removed(vd->vdev_child[c]);
2528 
2529 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2530 	    vdev_is_concrete(vd)) {
2531 		zfs_post_autoreplace(vd->vdev_spa, vd);
2532 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2533 	}
2534 }
2535 
2536 static int
2537 spa_check_for_missing_logs(spa_t *spa)
2538 {
2539 	vdev_t *rvd = spa->spa_root_vdev;
2540 
2541 	/*
2542 	 * If we're doing a normal import, then build up any additional
2543 	 * diagnostic information about missing log devices.
2544 	 * We'll pass this up to the user for further processing.
2545 	 */
2546 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2547 		nvlist_t **child, *nv;
2548 		uint64_t idx = 0;
2549 
2550 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2551 		    KM_SLEEP);
2552 		nv = fnvlist_alloc();
2553 
2554 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2555 			vdev_t *tvd = rvd->vdev_child[c];
2556 
2557 			/*
2558 			 * We consider a device as missing only if it failed
2559 			 * to open (i.e. offline or faulted is not considered
2560 			 * as missing).
2561 			 */
2562 			if (tvd->vdev_islog &&
2563 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2564 				child[idx++] = vdev_config_generate(spa, tvd,
2565 				    B_FALSE, VDEV_CONFIG_MISSING);
2566 			}
2567 		}
2568 
2569 		if (idx > 0) {
2570 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2571 			    (const nvlist_t * const *)child, idx);
2572 			fnvlist_add_nvlist(spa->spa_load_info,
2573 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
2574 
2575 			for (uint64_t i = 0; i < idx; i++)
2576 				nvlist_free(child[i]);
2577 		}
2578 		nvlist_free(nv);
2579 		kmem_free(child, rvd->vdev_children * sizeof (char **));
2580 
2581 		if (idx > 0) {
2582 			spa_load_failed(spa, "some log devices are missing");
2583 			vdev_dbgmsg_print_tree(rvd, 2);
2584 			return (SET_ERROR(ENXIO));
2585 		}
2586 	} else {
2587 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2588 			vdev_t *tvd = rvd->vdev_child[c];
2589 
2590 			if (tvd->vdev_islog &&
2591 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2592 				spa_set_log_state(spa, SPA_LOG_CLEAR);
2593 				spa_load_note(spa, "some log devices are "
2594 				    "missing, ZIL is dropped.");
2595 				vdev_dbgmsg_print_tree(rvd, 2);
2596 				break;
2597 			}
2598 		}
2599 	}
2600 
2601 	return (0);
2602 }
2603 
2604 /*
2605  * Check for missing log devices
2606  */
2607 static boolean_t
2608 spa_check_logs(spa_t *spa)
2609 {
2610 	boolean_t rv = B_FALSE;
2611 	dsl_pool_t *dp = spa_get_dsl(spa);
2612 
2613 	switch (spa->spa_log_state) {
2614 	default:
2615 		break;
2616 	case SPA_LOG_MISSING:
2617 		/* need to recheck in case slog has been restored */
2618 	case SPA_LOG_UNKNOWN:
2619 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2620 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2621 		if (rv)
2622 			spa_set_log_state(spa, SPA_LOG_MISSING);
2623 		break;
2624 	}
2625 	return (rv);
2626 }
2627 
2628 /*
2629  * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2630  */
2631 static boolean_t
2632 spa_passivate_log(spa_t *spa)
2633 {
2634 	vdev_t *rvd = spa->spa_root_vdev;
2635 	boolean_t slog_found = B_FALSE;
2636 
2637 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2638 
2639 	for (int c = 0; c < rvd->vdev_children; c++) {
2640 		vdev_t *tvd = rvd->vdev_child[c];
2641 
2642 		if (tvd->vdev_islog) {
2643 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2644 			metaslab_group_passivate(tvd->vdev_mg);
2645 			slog_found = B_TRUE;
2646 		}
2647 	}
2648 
2649 	return (slog_found);
2650 }
2651 
2652 /*
2653  * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2654  */
2655 static void
2656 spa_activate_log(spa_t *spa)
2657 {
2658 	vdev_t *rvd = spa->spa_root_vdev;
2659 
2660 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2661 
2662 	for (int c = 0; c < rvd->vdev_children; c++) {
2663 		vdev_t *tvd = rvd->vdev_child[c];
2664 
2665 		if (tvd->vdev_islog) {
2666 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2667 			metaslab_group_activate(tvd->vdev_mg);
2668 		}
2669 	}
2670 }
2671 
2672 int
2673 spa_reset_logs(spa_t *spa)
2674 {
2675 	int error;
2676 
2677 	error = dmu_objset_find(spa_name(spa), zil_reset,
2678 	    NULL, DS_FIND_CHILDREN);
2679 	if (error == 0) {
2680 		/*
2681 		 * We successfully offlined the log device, sync out the
2682 		 * current txg so that the "stubby" block can be removed
2683 		 * by zil_sync().
2684 		 */
2685 		txg_wait_synced(spa->spa_dsl_pool, 0);
2686 	}
2687 	return (error);
2688 }
2689 
2690 static void
2691 spa_aux_check_removed(spa_aux_vdev_t *sav)
2692 {
2693 	for (int i = 0; i < sav->sav_count; i++)
2694 		spa_check_removed(sav->sav_vdevs[i]);
2695 }
2696 
2697 void
2698 spa_claim_notify(zio_t *zio)
2699 {
2700 	spa_t *spa = zio->io_spa;
2701 
2702 	if (zio->io_error)
2703 		return;
2704 
2705 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2706 	if (spa->spa_claim_max_txg < BP_GET_LOGICAL_BIRTH(zio->io_bp))
2707 		spa->spa_claim_max_txg = BP_GET_LOGICAL_BIRTH(zio->io_bp);
2708 	mutex_exit(&spa->spa_props_lock);
2709 }
2710 
2711 typedef struct spa_load_error {
2712 	boolean_t	sle_verify_data;
2713 	uint64_t	sle_meta_count;
2714 	uint64_t	sle_data_count;
2715 } spa_load_error_t;
2716 
2717 static void
2718 spa_load_verify_done(zio_t *zio)
2719 {
2720 	blkptr_t *bp = zio->io_bp;
2721 	spa_load_error_t *sle = zio->io_private;
2722 	dmu_object_type_t type = BP_GET_TYPE(bp);
2723 	int error = zio->io_error;
2724 	spa_t *spa = zio->io_spa;
2725 
2726 	abd_free(zio->io_abd);
2727 	if (error) {
2728 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2729 		    type != DMU_OT_INTENT_LOG)
2730 			atomic_inc_64(&sle->sle_meta_count);
2731 		else
2732 			atomic_inc_64(&sle->sle_data_count);
2733 	}
2734 
2735 	mutex_enter(&spa->spa_scrub_lock);
2736 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2737 	cv_broadcast(&spa->spa_scrub_io_cv);
2738 	mutex_exit(&spa->spa_scrub_lock);
2739 }
2740 
2741 /*
2742  * Maximum number of inflight bytes is the log2 fraction of the arc size.
2743  * By default, we set it to 1/16th of the arc.
2744  */
2745 static uint_t spa_load_verify_shift = 4;
2746 static int spa_load_verify_metadata = B_TRUE;
2747 static int spa_load_verify_data = B_TRUE;
2748 
2749 static int
2750 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2751     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2752 {
2753 	zio_t *rio = arg;
2754 	spa_load_error_t *sle = rio->io_private;
2755 
2756 	(void) zilog, (void) dnp;
2757 
2758 	/*
2759 	 * Note: normally this routine will not be called if
2760 	 * spa_load_verify_metadata is not set.  However, it may be useful
2761 	 * to manually set the flag after the traversal has begun.
2762 	 */
2763 	if (!spa_load_verify_metadata)
2764 		return (0);
2765 
2766 	/*
2767 	 * Sanity check the block pointer in order to detect obvious damage
2768 	 * before using the contents in subsequent checks or in zio_read().
2769 	 * When damaged consider it to be a metadata error since we cannot
2770 	 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2771 	 */
2772 	if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2773 		atomic_inc_64(&sle->sle_meta_count);
2774 		return (0);
2775 	}
2776 
2777 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2778 	    BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2779 		return (0);
2780 
2781 	if (!BP_IS_METADATA(bp) &&
2782 	    (!spa_load_verify_data || !sle->sle_verify_data))
2783 		return (0);
2784 
2785 	uint64_t maxinflight_bytes =
2786 	    arc_target_bytes() >> spa_load_verify_shift;
2787 	size_t size = BP_GET_PSIZE(bp);
2788 
2789 	mutex_enter(&spa->spa_scrub_lock);
2790 	while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2791 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2792 	spa->spa_load_verify_bytes += size;
2793 	mutex_exit(&spa->spa_scrub_lock);
2794 
2795 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2796 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2797 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2798 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2799 	return (0);
2800 }
2801 
2802 static int
2803 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2804 {
2805 	(void) dp, (void) arg;
2806 
2807 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2808 		return (SET_ERROR(ENAMETOOLONG));
2809 
2810 	return (0);
2811 }
2812 
2813 static int
2814 spa_load_verify(spa_t *spa)
2815 {
2816 	zio_t *rio;
2817 	spa_load_error_t sle = { 0 };
2818 	zpool_load_policy_t policy;
2819 	boolean_t verify_ok = B_FALSE;
2820 	int error = 0;
2821 
2822 	zpool_get_load_policy(spa->spa_config, &policy);
2823 
2824 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2825 	    policy.zlp_maxmeta == UINT64_MAX)
2826 		return (0);
2827 
2828 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2829 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2830 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2831 	    DS_FIND_CHILDREN);
2832 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2833 	if (error != 0)
2834 		return (error);
2835 
2836 	/*
2837 	 * Verify data only if we are rewinding or error limit was set.
2838 	 * Otherwise nothing except dbgmsg care about it to waste time.
2839 	 */
2840 	sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2841 	    (policy.zlp_maxdata < UINT64_MAX);
2842 
2843 	rio = zio_root(spa, NULL, &sle,
2844 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2845 
2846 	if (spa_load_verify_metadata) {
2847 		if (spa->spa_extreme_rewind) {
2848 			spa_load_note(spa, "performing a complete scan of the "
2849 			    "pool since extreme rewind is on. This may take "
2850 			    "a very long time.\n  (spa_load_verify_data=%u, "
2851 			    "spa_load_verify_metadata=%u)",
2852 			    spa_load_verify_data, spa_load_verify_metadata);
2853 		}
2854 
2855 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2856 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2857 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2858 	}
2859 
2860 	(void) zio_wait(rio);
2861 	ASSERT0(spa->spa_load_verify_bytes);
2862 
2863 	spa->spa_load_meta_errors = sle.sle_meta_count;
2864 	spa->spa_load_data_errors = sle.sle_data_count;
2865 
2866 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2867 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2868 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2869 		    (u_longlong_t)sle.sle_data_count);
2870 	}
2871 
2872 	if (spa_load_verify_dryrun ||
2873 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2874 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2875 		int64_t loss = 0;
2876 
2877 		verify_ok = B_TRUE;
2878 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2879 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2880 
2881 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2882 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2883 		    spa->spa_load_txg_ts);
2884 		fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2885 		    loss);
2886 		fnvlist_add_uint64(spa->spa_load_info,
2887 		    ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2888 		fnvlist_add_uint64(spa->spa_load_info,
2889 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2890 	} else {
2891 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2892 	}
2893 
2894 	if (spa_load_verify_dryrun)
2895 		return (0);
2896 
2897 	if (error) {
2898 		if (error != ENXIO && error != EIO)
2899 			error = SET_ERROR(EIO);
2900 		return (error);
2901 	}
2902 
2903 	return (verify_ok ? 0 : EIO);
2904 }
2905 
2906 /*
2907  * Find a value in the pool props object.
2908  */
2909 static void
2910 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2911 {
2912 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2913 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2914 }
2915 
2916 /*
2917  * Find a value in the pool directory object.
2918  */
2919 static int
2920 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2921 {
2922 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2923 	    name, sizeof (uint64_t), 1, val);
2924 
2925 	if (error != 0 && (error != ENOENT || log_enoent)) {
2926 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2927 		    "[error=%d]", name, error);
2928 	}
2929 
2930 	return (error);
2931 }
2932 
2933 static int
2934 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2935 {
2936 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2937 	return (SET_ERROR(err));
2938 }
2939 
2940 boolean_t
2941 spa_livelist_delete_check(spa_t *spa)
2942 {
2943 	return (spa->spa_livelists_to_delete != 0);
2944 }
2945 
2946 static boolean_t
2947 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2948 {
2949 	(void) z;
2950 	spa_t *spa = arg;
2951 	return (spa_livelist_delete_check(spa));
2952 }
2953 
2954 static int
2955 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2956 {
2957 	spa_t *spa = arg;
2958 	zio_free(spa, tx->tx_txg, bp);
2959 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2960 	    -bp_get_dsize_sync(spa, bp),
2961 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2962 	return (0);
2963 }
2964 
2965 static int
2966 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2967 {
2968 	int err;
2969 	zap_cursor_t zc;
2970 	zap_attribute_t za;
2971 	zap_cursor_init(&zc, os, zap_obj);
2972 	err = zap_cursor_retrieve(&zc, &za);
2973 	zap_cursor_fini(&zc);
2974 	if (err == 0)
2975 		*llp = za.za_first_integer;
2976 	return (err);
2977 }
2978 
2979 /*
2980  * Components of livelist deletion that must be performed in syncing
2981  * context: freeing block pointers and updating the pool-wide data
2982  * structures to indicate how much work is left to do
2983  */
2984 typedef struct sublist_delete_arg {
2985 	spa_t *spa;
2986 	dsl_deadlist_t *ll;
2987 	uint64_t key;
2988 	bplist_t *to_free;
2989 } sublist_delete_arg_t;
2990 
2991 static void
2992 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2993 {
2994 	sublist_delete_arg_t *sda = arg;
2995 	spa_t *spa = sda->spa;
2996 	dsl_deadlist_t *ll = sda->ll;
2997 	uint64_t key = sda->key;
2998 	bplist_t *to_free = sda->to_free;
2999 
3000 	bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
3001 	dsl_deadlist_remove_entry(ll, key, tx);
3002 }
3003 
3004 typedef struct livelist_delete_arg {
3005 	spa_t *spa;
3006 	uint64_t ll_obj;
3007 	uint64_t zap_obj;
3008 } livelist_delete_arg_t;
3009 
3010 static void
3011 livelist_delete_sync(void *arg, dmu_tx_t *tx)
3012 {
3013 	livelist_delete_arg_t *lda = arg;
3014 	spa_t *spa = lda->spa;
3015 	uint64_t ll_obj = lda->ll_obj;
3016 	uint64_t zap_obj = lda->zap_obj;
3017 	objset_t *mos = spa->spa_meta_objset;
3018 	uint64_t count;
3019 
3020 	/* free the livelist and decrement the feature count */
3021 	VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
3022 	dsl_deadlist_free(mos, ll_obj, tx);
3023 	spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
3024 	VERIFY0(zap_count(mos, zap_obj, &count));
3025 	if (count == 0) {
3026 		/* no more livelists to delete */
3027 		VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
3028 		    DMU_POOL_DELETED_CLONES, tx));
3029 		VERIFY0(zap_destroy(mos, zap_obj, tx));
3030 		spa->spa_livelists_to_delete = 0;
3031 		spa_notify_waiters(spa);
3032 	}
3033 }
3034 
3035 /*
3036  * Load in the value for the livelist to be removed and open it. Then,
3037  * load its first sublist and determine which block pointers should actually
3038  * be freed. Then, call a synctask which performs the actual frees and updates
3039  * the pool-wide livelist data.
3040  */
3041 static void
3042 spa_livelist_delete_cb(void *arg, zthr_t *z)
3043 {
3044 	spa_t *spa = arg;
3045 	uint64_t ll_obj = 0, count;
3046 	objset_t *mos = spa->spa_meta_objset;
3047 	uint64_t zap_obj = spa->spa_livelists_to_delete;
3048 	/*
3049 	 * Determine the next livelist to delete. This function should only
3050 	 * be called if there is at least one deleted clone.
3051 	 */
3052 	VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
3053 	VERIFY0(zap_count(mos, ll_obj, &count));
3054 	if (count > 0) {
3055 		dsl_deadlist_t *ll;
3056 		dsl_deadlist_entry_t *dle;
3057 		bplist_t to_free;
3058 		ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
3059 		dsl_deadlist_open(ll, mos, ll_obj);
3060 		dle = dsl_deadlist_first(ll);
3061 		ASSERT3P(dle, !=, NULL);
3062 		bplist_create(&to_free);
3063 		int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
3064 		    z, NULL);
3065 		if (err == 0) {
3066 			sublist_delete_arg_t sync_arg = {
3067 			    .spa = spa,
3068 			    .ll = ll,
3069 			    .key = dle->dle_mintxg,
3070 			    .to_free = &to_free
3071 			};
3072 			zfs_dbgmsg("deleting sublist (id %llu) from"
3073 			    " livelist %llu, %lld remaining",
3074 			    (u_longlong_t)dle->dle_bpobj.bpo_object,
3075 			    (u_longlong_t)ll_obj, (longlong_t)count - 1);
3076 			VERIFY0(dsl_sync_task(spa_name(spa), NULL,
3077 			    sublist_delete_sync, &sync_arg, 0,
3078 			    ZFS_SPACE_CHECK_DESTROY));
3079 		} else {
3080 			VERIFY3U(err, ==, EINTR);
3081 		}
3082 		bplist_clear(&to_free);
3083 		bplist_destroy(&to_free);
3084 		dsl_deadlist_close(ll);
3085 		kmem_free(ll, sizeof (dsl_deadlist_t));
3086 	} else {
3087 		livelist_delete_arg_t sync_arg = {
3088 		    .spa = spa,
3089 		    .ll_obj = ll_obj,
3090 		    .zap_obj = zap_obj
3091 		};
3092 		zfs_dbgmsg("deletion of livelist %llu completed",
3093 		    (u_longlong_t)ll_obj);
3094 		VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
3095 		    &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
3096 	}
3097 }
3098 
3099 static void
3100 spa_start_livelist_destroy_thread(spa_t *spa)
3101 {
3102 	ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
3103 	spa->spa_livelist_delete_zthr =
3104 	    zthr_create("z_livelist_destroy",
3105 	    spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
3106 	    minclsyspri);
3107 }
3108 
3109 typedef struct livelist_new_arg {
3110 	bplist_t *allocs;
3111 	bplist_t *frees;
3112 } livelist_new_arg_t;
3113 
3114 static int
3115 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3116     dmu_tx_t *tx)
3117 {
3118 	ASSERT(tx == NULL);
3119 	livelist_new_arg_t *lna = arg;
3120 	if (bp_freed) {
3121 		bplist_append(lna->frees, bp);
3122 	} else {
3123 		bplist_append(lna->allocs, bp);
3124 		zfs_livelist_condense_new_alloc++;
3125 	}
3126 	return (0);
3127 }
3128 
3129 typedef struct livelist_condense_arg {
3130 	spa_t *spa;
3131 	bplist_t to_keep;
3132 	uint64_t first_size;
3133 	uint64_t next_size;
3134 } livelist_condense_arg_t;
3135 
3136 static void
3137 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
3138 {
3139 	livelist_condense_arg_t *lca = arg;
3140 	spa_t *spa = lca->spa;
3141 	bplist_t new_frees;
3142 	dsl_dataset_t *ds = spa->spa_to_condense.ds;
3143 
3144 	/* Have we been cancelled? */
3145 	if (spa->spa_to_condense.cancelled) {
3146 		zfs_livelist_condense_sync_cancel++;
3147 		goto out;
3148 	}
3149 
3150 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3151 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3152 	dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
3153 
3154 	/*
3155 	 * It's possible that the livelist was changed while the zthr was
3156 	 * running. Therefore, we need to check for new blkptrs in the two
3157 	 * entries being condensed and continue to track them in the livelist.
3158 	 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
3159 	 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
3160 	 * we need to sort them into two different bplists.
3161 	 */
3162 	uint64_t first_obj = first->dle_bpobj.bpo_object;
3163 	uint64_t next_obj = next->dle_bpobj.bpo_object;
3164 	uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3165 	uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3166 
3167 	bplist_create(&new_frees);
3168 	livelist_new_arg_t new_bps = {
3169 	    .allocs = &lca->to_keep,
3170 	    .frees = &new_frees,
3171 	};
3172 
3173 	if (cur_first_size > lca->first_size) {
3174 		VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
3175 		    livelist_track_new_cb, &new_bps, lca->first_size));
3176 	}
3177 	if (cur_next_size > lca->next_size) {
3178 		VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
3179 		    livelist_track_new_cb, &new_bps, lca->next_size));
3180 	}
3181 
3182 	dsl_deadlist_clear_entry(first, ll, tx);
3183 	ASSERT(bpobj_is_empty(&first->dle_bpobj));
3184 	dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
3185 
3186 	bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
3187 	bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
3188 	bplist_destroy(&new_frees);
3189 
3190 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
3191 	dsl_dataset_name(ds, dsname);
3192 	zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
3193 	    "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
3194 	    "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
3195 	    (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
3196 	    (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
3197 	    (u_longlong_t)cur_next_size,
3198 	    (u_longlong_t)first->dle_bpobj.bpo_object,
3199 	    (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
3200 out:
3201 	dmu_buf_rele(ds->ds_dbuf, spa);
3202 	spa->spa_to_condense.ds = NULL;
3203 	bplist_clear(&lca->to_keep);
3204 	bplist_destroy(&lca->to_keep);
3205 	kmem_free(lca, sizeof (livelist_condense_arg_t));
3206 	spa->spa_to_condense.syncing = B_FALSE;
3207 }
3208 
3209 static void
3210 spa_livelist_condense_cb(void *arg, zthr_t *t)
3211 {
3212 	while (zfs_livelist_condense_zthr_pause &&
3213 	    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3214 		delay(1);
3215 
3216 	spa_t *spa = arg;
3217 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3218 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3219 	uint64_t first_size, next_size;
3220 
3221 	livelist_condense_arg_t *lca =
3222 	    kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
3223 	bplist_create(&lca->to_keep);
3224 
3225 	/*
3226 	 * Process the livelists (matching FREEs and ALLOCs) in open context
3227 	 * so we have minimal work in syncing context to condense.
3228 	 *
3229 	 * We save bpobj sizes (first_size and next_size) to use later in
3230 	 * syncing context to determine if entries were added to these sublists
3231 	 * while in open context. This is possible because the clone is still
3232 	 * active and open for normal writes and we want to make sure the new,
3233 	 * unprocessed blockpointers are inserted into the livelist normally.
3234 	 *
3235 	 * Note that dsl_process_sub_livelist() both stores the size number of
3236 	 * blockpointers and iterates over them while the bpobj's lock held, so
3237 	 * the sizes returned to us are consistent which what was actually
3238 	 * processed.
3239 	 */
3240 	int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
3241 	    &first_size);
3242 	if (err == 0)
3243 		err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
3244 		    t, &next_size);
3245 
3246 	if (err == 0) {
3247 		while (zfs_livelist_condense_sync_pause &&
3248 		    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3249 			delay(1);
3250 
3251 		dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
3252 		dmu_tx_mark_netfree(tx);
3253 		dmu_tx_hold_space(tx, 1);
3254 		err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
3255 		if (err == 0) {
3256 			/*
3257 			 * Prevent the condense zthr restarting before
3258 			 * the synctask completes.
3259 			 */
3260 			spa->spa_to_condense.syncing = B_TRUE;
3261 			lca->spa = spa;
3262 			lca->first_size = first_size;
3263 			lca->next_size = next_size;
3264 			dsl_sync_task_nowait(spa_get_dsl(spa),
3265 			    spa_livelist_condense_sync, lca, tx);
3266 			dmu_tx_commit(tx);
3267 			return;
3268 		}
3269 	}
3270 	/*
3271 	 * Condensing can not continue: either it was externally stopped or
3272 	 * we were unable to assign to a tx because the pool has run out of
3273 	 * space. In the second case, we'll just end up trying to condense
3274 	 * again in a later txg.
3275 	 */
3276 	ASSERT(err != 0);
3277 	bplist_clear(&lca->to_keep);
3278 	bplist_destroy(&lca->to_keep);
3279 	kmem_free(lca, sizeof (livelist_condense_arg_t));
3280 	dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
3281 	spa->spa_to_condense.ds = NULL;
3282 	if (err == EINTR)
3283 		zfs_livelist_condense_zthr_cancel++;
3284 }
3285 
3286 /*
3287  * Check that there is something to condense but that a condense is not
3288  * already in progress and that condensing has not been cancelled.
3289  */
3290 static boolean_t
3291 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
3292 {
3293 	(void) z;
3294 	spa_t *spa = arg;
3295 	if ((spa->spa_to_condense.ds != NULL) &&
3296 	    (spa->spa_to_condense.syncing == B_FALSE) &&
3297 	    (spa->spa_to_condense.cancelled == B_FALSE)) {
3298 		return (B_TRUE);
3299 	}
3300 	return (B_FALSE);
3301 }
3302 
3303 static void
3304 spa_start_livelist_condensing_thread(spa_t *spa)
3305 {
3306 	spa->spa_to_condense.ds = NULL;
3307 	spa->spa_to_condense.first = NULL;
3308 	spa->spa_to_condense.next = NULL;
3309 	spa->spa_to_condense.syncing = B_FALSE;
3310 	spa->spa_to_condense.cancelled = B_FALSE;
3311 
3312 	ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
3313 	spa->spa_livelist_condense_zthr =
3314 	    zthr_create("z_livelist_condense",
3315 	    spa_livelist_condense_cb_check,
3316 	    spa_livelist_condense_cb, spa, minclsyspri);
3317 }
3318 
3319 static void
3320 spa_spawn_aux_threads(spa_t *spa)
3321 {
3322 	ASSERT(spa_writeable(spa));
3323 
3324 	spa_start_raidz_expansion_thread(spa);
3325 	spa_start_indirect_condensing_thread(spa);
3326 	spa_start_livelist_destroy_thread(spa);
3327 	spa_start_livelist_condensing_thread(spa);
3328 
3329 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
3330 	spa->spa_checkpoint_discard_zthr =
3331 	    zthr_create("z_checkpoint_discard",
3332 	    spa_checkpoint_discard_thread_check,
3333 	    spa_checkpoint_discard_thread, spa, minclsyspri);
3334 }
3335 
3336 /*
3337  * Fix up config after a partly-completed split.  This is done with the
3338  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
3339  * pool have that entry in their config, but only the splitting one contains
3340  * a list of all the guids of the vdevs that are being split off.
3341  *
3342  * This function determines what to do with that list: either rejoin
3343  * all the disks to the pool, or complete the splitting process.  To attempt
3344  * the rejoin, each disk that is offlined is marked online again, and
3345  * we do a reopen() call.  If the vdev label for every disk that was
3346  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
3347  * then we call vdev_split() on each disk, and complete the split.
3348  *
3349  * Otherwise we leave the config alone, with all the vdevs in place in
3350  * the original pool.
3351  */
3352 static void
3353 spa_try_repair(spa_t *spa, nvlist_t *config)
3354 {
3355 	uint_t extracted;
3356 	uint64_t *glist;
3357 	uint_t i, gcount;
3358 	nvlist_t *nvl;
3359 	vdev_t **vd;
3360 	boolean_t attempt_reopen;
3361 
3362 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
3363 		return;
3364 
3365 	/* check that the config is complete */
3366 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
3367 	    &glist, &gcount) != 0)
3368 		return;
3369 
3370 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
3371 
3372 	/* attempt to online all the vdevs & validate */
3373 	attempt_reopen = B_TRUE;
3374 	for (i = 0; i < gcount; i++) {
3375 		if (glist[i] == 0)	/* vdev is hole */
3376 			continue;
3377 
3378 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
3379 		if (vd[i] == NULL) {
3380 			/*
3381 			 * Don't bother attempting to reopen the disks;
3382 			 * just do the split.
3383 			 */
3384 			attempt_reopen = B_FALSE;
3385 		} else {
3386 			/* attempt to re-online it */
3387 			vd[i]->vdev_offline = B_FALSE;
3388 		}
3389 	}
3390 
3391 	if (attempt_reopen) {
3392 		vdev_reopen(spa->spa_root_vdev);
3393 
3394 		/* check each device to see what state it's in */
3395 		for (extracted = 0, i = 0; i < gcount; i++) {
3396 			if (vd[i] != NULL &&
3397 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
3398 				break;
3399 			++extracted;
3400 		}
3401 	}
3402 
3403 	/*
3404 	 * If every disk has been moved to the new pool, or if we never
3405 	 * even attempted to look at them, then we split them off for
3406 	 * good.
3407 	 */
3408 	if (!attempt_reopen || gcount == extracted) {
3409 		for (i = 0; i < gcount; i++)
3410 			if (vd[i] != NULL)
3411 				vdev_split(vd[i]);
3412 		vdev_reopen(spa->spa_root_vdev);
3413 	}
3414 
3415 	kmem_free(vd, gcount * sizeof (vdev_t *));
3416 }
3417 
3418 static int
3419 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
3420 {
3421 	const char *ereport = FM_EREPORT_ZFS_POOL;
3422 	int error;
3423 
3424 	spa->spa_load_state = state;
3425 	(void) spa_import_progress_set_state(spa_guid(spa),
3426 	    spa_load_state(spa));
3427 	spa_import_progress_set_notes(spa, "spa_load()");
3428 
3429 	gethrestime(&spa->spa_loaded_ts);
3430 	error = spa_load_impl(spa, type, &ereport);
3431 
3432 	/*
3433 	 * Don't count references from objsets that are already closed
3434 	 * and are making their way through the eviction process.
3435 	 */
3436 	spa_evicting_os_wait(spa);
3437 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3438 	if (error) {
3439 		if (error != EEXIST) {
3440 			spa->spa_loaded_ts.tv_sec = 0;
3441 			spa->spa_loaded_ts.tv_nsec = 0;
3442 		}
3443 		if (error != EBADF) {
3444 			(void) zfs_ereport_post(ereport, spa,
3445 			    NULL, NULL, NULL, 0);
3446 		}
3447 	}
3448 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3449 	spa->spa_ena = 0;
3450 
3451 	(void) spa_import_progress_set_state(spa_guid(spa),
3452 	    spa_load_state(spa));
3453 
3454 	return (error);
3455 }
3456 
3457 #ifdef ZFS_DEBUG
3458 /*
3459  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3460  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3461  * spa's per-vdev ZAP list.
3462  */
3463 static uint64_t
3464 vdev_count_verify_zaps(vdev_t *vd)
3465 {
3466 	spa_t *spa = vd->vdev_spa;
3467 	uint64_t total = 0;
3468 
3469 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
3470 	    vd->vdev_root_zap != 0) {
3471 		total++;
3472 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3473 		    spa->spa_all_vdev_zaps, vd->vdev_root_zap));
3474 	}
3475 	if (vd->vdev_top_zap != 0) {
3476 		total++;
3477 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3478 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3479 	}
3480 	if (vd->vdev_leaf_zap != 0) {
3481 		total++;
3482 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3483 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3484 	}
3485 
3486 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3487 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
3488 	}
3489 
3490 	return (total);
3491 }
3492 #else
3493 #define	vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3494 #endif
3495 
3496 /*
3497  * Determine whether the activity check is required.
3498  */
3499 static boolean_t
3500 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3501     nvlist_t *config)
3502 {
3503 	uint64_t state = 0;
3504 	uint64_t hostid = 0;
3505 	uint64_t tryconfig_txg = 0;
3506 	uint64_t tryconfig_timestamp = 0;
3507 	uint16_t tryconfig_mmp_seq = 0;
3508 	nvlist_t *nvinfo;
3509 
3510 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3511 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3512 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3513 		    &tryconfig_txg);
3514 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3515 		    &tryconfig_timestamp);
3516 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3517 		    &tryconfig_mmp_seq);
3518 	}
3519 
3520 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3521 
3522 	/*
3523 	 * Disable the MMP activity check - This is used by zdb which
3524 	 * is intended to be used on potentially active pools.
3525 	 */
3526 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3527 		return (B_FALSE);
3528 
3529 	/*
3530 	 * Skip the activity check when the MMP feature is disabled.
3531 	 */
3532 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3533 		return (B_FALSE);
3534 
3535 	/*
3536 	 * If the tryconfig_ values are nonzero, they are the results of an
3537 	 * earlier tryimport.  If they all match the uberblock we just found,
3538 	 * then the pool has not changed and we return false so we do not test
3539 	 * a second time.
3540 	 */
3541 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3542 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3543 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
3544 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3545 		return (B_FALSE);
3546 
3547 	/*
3548 	 * Allow the activity check to be skipped when importing the pool
3549 	 * on the same host which last imported it.  Since the hostid from
3550 	 * configuration may be stale use the one read from the label.
3551 	 */
3552 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3553 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3554 
3555 	if (hostid == spa_get_hostid(spa))
3556 		return (B_FALSE);
3557 
3558 	/*
3559 	 * Skip the activity test when the pool was cleanly exported.
3560 	 */
3561 	if (state != POOL_STATE_ACTIVE)
3562 		return (B_FALSE);
3563 
3564 	return (B_TRUE);
3565 }
3566 
3567 /*
3568  * Nanoseconds the activity check must watch for changes on-disk.
3569  */
3570 static uint64_t
3571 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3572 {
3573 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3574 	uint64_t multihost_interval = MSEC2NSEC(
3575 	    MMP_INTERVAL_OK(zfs_multihost_interval));
3576 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
3577 	    multihost_interval);
3578 
3579 	/*
3580 	 * Local tunables determine a minimum duration except for the case
3581 	 * where we know when the remote host will suspend the pool if MMP
3582 	 * writes do not land.
3583 	 *
3584 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
3585 	 * these cases and times.
3586 	 */
3587 
3588 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3589 
3590 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3591 	    MMP_FAIL_INT(ub) > 0) {
3592 
3593 		/* MMP on remote host will suspend pool after failed writes */
3594 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3595 		    MMP_IMPORT_SAFETY_FACTOR / 100;
3596 
3597 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3598 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3599 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3600 		    (u_longlong_t)MMP_FAIL_INT(ub),
3601 		    (u_longlong_t)MMP_INTERVAL(ub),
3602 		    (u_longlong_t)import_intervals);
3603 
3604 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3605 	    MMP_FAIL_INT(ub) == 0) {
3606 
3607 		/* MMP on remote host will never suspend pool */
3608 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3609 		    ub->ub_mmp_delay) * import_intervals);
3610 
3611 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3612 		    "mmp_interval=%llu ub_mmp_delay=%llu "
3613 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3614 		    (u_longlong_t)MMP_INTERVAL(ub),
3615 		    (u_longlong_t)ub->ub_mmp_delay,
3616 		    (u_longlong_t)import_intervals);
3617 
3618 	} else if (MMP_VALID(ub)) {
3619 		/*
3620 		 * zfs-0.7 compatibility case
3621 		 */
3622 
3623 		import_delay = MAX(import_delay, (multihost_interval +
3624 		    ub->ub_mmp_delay) * import_intervals);
3625 
3626 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3627 		    "import_intervals=%llu leaves=%u",
3628 		    (u_longlong_t)import_delay,
3629 		    (u_longlong_t)ub->ub_mmp_delay,
3630 		    (u_longlong_t)import_intervals,
3631 		    vdev_count_leaves(spa));
3632 	} else {
3633 		/* Using local tunings is the only reasonable option */
3634 		zfs_dbgmsg("pool last imported on non-MMP aware "
3635 		    "host using import_delay=%llu multihost_interval=%llu "
3636 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3637 		    (u_longlong_t)multihost_interval,
3638 		    (u_longlong_t)import_intervals);
3639 	}
3640 
3641 	return (import_delay);
3642 }
3643 
3644 /*
3645  * Remote host activity check.
3646  *
3647  * error results:
3648  *          0 - no activity detected
3649  *  EREMOTEIO - remote activity detected
3650  *      EINTR - user canceled the operation
3651  */
3652 static int
3653 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config,
3654     boolean_t importing)
3655 {
3656 	uint64_t txg = ub->ub_txg;
3657 	uint64_t timestamp = ub->ub_timestamp;
3658 	uint64_t mmp_config = ub->ub_mmp_config;
3659 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3660 	uint64_t import_delay;
3661 	hrtime_t import_expire, now;
3662 	nvlist_t *mmp_label = NULL;
3663 	vdev_t *rvd = spa->spa_root_vdev;
3664 	kcondvar_t cv;
3665 	kmutex_t mtx;
3666 	int error = 0;
3667 
3668 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
3669 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3670 	mutex_enter(&mtx);
3671 
3672 	/*
3673 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3674 	 * during the earlier tryimport.  If the txg recorded there is 0 then
3675 	 * the pool is known to be active on another host.
3676 	 *
3677 	 * Otherwise, the pool might be in use on another host.  Check for
3678 	 * changes in the uberblocks on disk if necessary.
3679 	 */
3680 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3681 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3682 		    ZPOOL_CONFIG_LOAD_INFO);
3683 
3684 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3685 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3686 			vdev_uberblock_load(rvd, ub, &mmp_label);
3687 			error = SET_ERROR(EREMOTEIO);
3688 			goto out;
3689 		}
3690 	}
3691 
3692 	import_delay = spa_activity_check_duration(spa, ub);
3693 
3694 	/* Add a small random factor in case of simultaneous imports (0-25%) */
3695 	import_delay += import_delay * random_in_range(250) / 1000;
3696 
3697 	import_expire = gethrtime() + import_delay;
3698 
3699 	if (importing) {
3700 		spa_import_progress_set_notes(spa, "Checking MMP activity, "
3701 		    "waiting %llu ms", (u_longlong_t)NSEC2MSEC(import_delay));
3702 	}
3703 
3704 	int iterations = 0;
3705 	while ((now = gethrtime()) < import_expire) {
3706 		if (importing && iterations++ % 30 == 0) {
3707 			spa_import_progress_set_notes(spa, "Checking MMP "
3708 			    "activity, %llu ms remaining",
3709 			    (u_longlong_t)NSEC2MSEC(import_expire - now));
3710 		}
3711 
3712 		if (importing) {
3713 			(void) spa_import_progress_set_mmp_check(spa_guid(spa),
3714 			    NSEC2SEC(import_expire - gethrtime()));
3715 		}
3716 
3717 		vdev_uberblock_load(rvd, ub, &mmp_label);
3718 
3719 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3720 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3721 			zfs_dbgmsg("multihost activity detected "
3722 			    "txg %llu ub_txg  %llu "
3723 			    "timestamp %llu ub_timestamp  %llu "
3724 			    "mmp_config %#llx ub_mmp_config %#llx",
3725 			    (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3726 			    (u_longlong_t)timestamp,
3727 			    (u_longlong_t)ub->ub_timestamp,
3728 			    (u_longlong_t)mmp_config,
3729 			    (u_longlong_t)ub->ub_mmp_config);
3730 
3731 			error = SET_ERROR(EREMOTEIO);
3732 			break;
3733 		}
3734 
3735 		if (mmp_label) {
3736 			nvlist_free(mmp_label);
3737 			mmp_label = NULL;
3738 		}
3739 
3740 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3741 		if (error != -1) {
3742 			error = SET_ERROR(EINTR);
3743 			break;
3744 		}
3745 		error = 0;
3746 	}
3747 
3748 out:
3749 	mutex_exit(&mtx);
3750 	mutex_destroy(&mtx);
3751 	cv_destroy(&cv);
3752 
3753 	/*
3754 	 * If the pool is determined to be active store the status in the
3755 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
3756 	 * available from configuration read from disk store them as well.
3757 	 * This allows 'zpool import' to generate a more useful message.
3758 	 *
3759 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
3760 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3761 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
3762 	 */
3763 	if (error == EREMOTEIO) {
3764 		const char *hostname = "<unknown>";
3765 		uint64_t hostid = 0;
3766 
3767 		if (mmp_label) {
3768 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3769 				hostname = fnvlist_lookup_string(mmp_label,
3770 				    ZPOOL_CONFIG_HOSTNAME);
3771 				fnvlist_add_string(spa->spa_load_info,
3772 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3773 			}
3774 
3775 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3776 				hostid = fnvlist_lookup_uint64(mmp_label,
3777 				    ZPOOL_CONFIG_HOSTID);
3778 				fnvlist_add_uint64(spa->spa_load_info,
3779 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
3780 			}
3781 		}
3782 
3783 		fnvlist_add_uint64(spa->spa_load_info,
3784 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3785 		fnvlist_add_uint64(spa->spa_load_info,
3786 		    ZPOOL_CONFIG_MMP_TXG, 0);
3787 
3788 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3789 	}
3790 
3791 	if (mmp_label)
3792 		nvlist_free(mmp_label);
3793 
3794 	return (error);
3795 }
3796 
3797 /*
3798  * Called from zfs_ioc_clear for a pool that was suspended
3799  * after failing mmp write checks.
3800  */
3801 boolean_t
3802 spa_mmp_remote_host_activity(spa_t *spa)
3803 {
3804 	ASSERT(spa_multihost(spa) && spa_suspended(spa));
3805 
3806 	nvlist_t *best_label;
3807 	uberblock_t best_ub;
3808 
3809 	/*
3810 	 * Locate the best uberblock on disk
3811 	 */
3812 	vdev_uberblock_load(spa->spa_root_vdev, &best_ub, &best_label);
3813 	if (best_label) {
3814 		/*
3815 		 * confirm that the best hostid matches our hostid
3816 		 */
3817 		if (nvlist_exists(best_label, ZPOOL_CONFIG_HOSTID) &&
3818 		    spa_get_hostid(spa) !=
3819 		    fnvlist_lookup_uint64(best_label, ZPOOL_CONFIG_HOSTID)) {
3820 			nvlist_free(best_label);
3821 			return (B_TRUE);
3822 		}
3823 		nvlist_free(best_label);
3824 	} else {
3825 		return (B_TRUE);
3826 	}
3827 
3828 	if (!MMP_VALID(&best_ub) ||
3829 	    !MMP_FAIL_INT_VALID(&best_ub) ||
3830 	    MMP_FAIL_INT(&best_ub) == 0) {
3831 		return (B_TRUE);
3832 	}
3833 
3834 	if (best_ub.ub_txg != spa->spa_uberblock.ub_txg ||
3835 	    best_ub.ub_timestamp != spa->spa_uberblock.ub_timestamp) {
3836 		zfs_dbgmsg("txg mismatch detected during pool clear "
3837 		    "txg %llu ub_txg %llu timestamp %llu ub_timestamp %llu",
3838 		    (u_longlong_t)spa->spa_uberblock.ub_txg,
3839 		    (u_longlong_t)best_ub.ub_txg,
3840 		    (u_longlong_t)spa->spa_uberblock.ub_timestamp,
3841 		    (u_longlong_t)best_ub.ub_timestamp);
3842 		return (B_TRUE);
3843 	}
3844 
3845 	/*
3846 	 * Perform an activity check looking for any remote writer
3847 	 */
3848 	return (spa_activity_check(spa, &spa->spa_uberblock, spa->spa_config,
3849 	    B_FALSE) != 0);
3850 }
3851 
3852 static int
3853 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3854 {
3855 	uint64_t hostid;
3856 	const char *hostname;
3857 	uint64_t myhostid = 0;
3858 
3859 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3860 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3861 		hostname = fnvlist_lookup_string(mos_config,
3862 		    ZPOOL_CONFIG_HOSTNAME);
3863 
3864 		myhostid = zone_get_hostid(NULL);
3865 
3866 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3867 			cmn_err(CE_WARN, "pool '%s' could not be "
3868 			    "loaded as it was last accessed by "
3869 			    "another system (host: %s hostid: 0x%llx). "
3870 			    "See: https://openzfs.github.io/openzfs-docs/msg/"
3871 			    "ZFS-8000-EY",
3872 			    spa_name(spa), hostname, (u_longlong_t)hostid);
3873 			spa_load_failed(spa, "hostid verification failed: pool "
3874 			    "last accessed by host: %s (hostid: 0x%llx)",
3875 			    hostname, (u_longlong_t)hostid);
3876 			return (SET_ERROR(EBADF));
3877 		}
3878 	}
3879 
3880 	return (0);
3881 }
3882 
3883 static int
3884 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3885 {
3886 	int error = 0;
3887 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3888 	int parse;
3889 	vdev_t *rvd;
3890 	uint64_t pool_guid;
3891 	const char *comment;
3892 	const char *compatibility;
3893 
3894 	/*
3895 	 * Versioning wasn't explicitly added to the label until later, so if
3896 	 * it's not present treat it as the initial version.
3897 	 */
3898 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3899 	    &spa->spa_ubsync.ub_version) != 0)
3900 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3901 
3902 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3903 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3904 		    ZPOOL_CONFIG_POOL_GUID);
3905 		return (SET_ERROR(EINVAL));
3906 	}
3907 
3908 	/*
3909 	 * If we are doing an import, ensure that the pool is not already
3910 	 * imported by checking if its pool guid already exists in the
3911 	 * spa namespace.
3912 	 *
3913 	 * The only case that we allow an already imported pool to be
3914 	 * imported again, is when the pool is checkpointed and we want to
3915 	 * look at its checkpointed state from userland tools like zdb.
3916 	 */
3917 #ifdef _KERNEL
3918 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3919 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3920 	    spa_guid_exists(pool_guid, 0)) {
3921 #else
3922 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3923 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3924 	    spa_guid_exists(pool_guid, 0) &&
3925 	    !spa_importing_readonly_checkpoint(spa)) {
3926 #endif
3927 		spa_load_failed(spa, "a pool with guid %llu is already open",
3928 		    (u_longlong_t)pool_guid);
3929 		return (SET_ERROR(EEXIST));
3930 	}
3931 
3932 	spa->spa_config_guid = pool_guid;
3933 
3934 	nvlist_free(spa->spa_load_info);
3935 	spa->spa_load_info = fnvlist_alloc();
3936 
3937 	ASSERT(spa->spa_comment == NULL);
3938 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3939 		spa->spa_comment = spa_strdup(comment);
3940 
3941 	ASSERT(spa->spa_compatibility == NULL);
3942 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3943 	    &compatibility) == 0)
3944 		spa->spa_compatibility = spa_strdup(compatibility);
3945 
3946 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3947 	    &spa->spa_config_txg);
3948 
3949 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3950 		spa->spa_config_splitting = fnvlist_dup(nvl);
3951 
3952 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3953 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3954 		    ZPOOL_CONFIG_VDEV_TREE);
3955 		return (SET_ERROR(EINVAL));
3956 	}
3957 
3958 	/*
3959 	 * Create "The Godfather" zio to hold all async IOs
3960 	 */
3961 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3962 	    KM_SLEEP);
3963 	for (int i = 0; i < max_ncpus; i++) {
3964 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3965 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3966 		    ZIO_FLAG_GODFATHER);
3967 	}
3968 
3969 	/*
3970 	 * Parse the configuration into a vdev tree.  We explicitly set the
3971 	 * value that will be returned by spa_version() since parsing the
3972 	 * configuration requires knowing the version number.
3973 	 */
3974 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3975 	parse = (type == SPA_IMPORT_EXISTING ?
3976 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3977 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3978 	spa_config_exit(spa, SCL_ALL, FTAG);
3979 
3980 	if (error != 0) {
3981 		spa_load_failed(spa, "unable to parse config [error=%d]",
3982 		    error);
3983 		return (error);
3984 	}
3985 
3986 	ASSERT(spa->spa_root_vdev == rvd);
3987 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3988 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3989 
3990 	if (type != SPA_IMPORT_ASSEMBLE) {
3991 		ASSERT(spa_guid(spa) == pool_guid);
3992 	}
3993 
3994 	return (0);
3995 }
3996 
3997 /*
3998  * Recursively open all vdevs in the vdev tree. This function is called twice:
3999  * first with the untrusted config, then with the trusted config.
4000  */
4001 static int
4002 spa_ld_open_vdevs(spa_t *spa)
4003 {
4004 	int error = 0;
4005 
4006 	/*
4007 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
4008 	 * missing/unopenable for the root vdev to be still considered openable.
4009 	 */
4010 	if (spa->spa_trust_config) {
4011 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
4012 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
4013 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
4014 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
4015 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
4016 	} else {
4017 		spa->spa_missing_tvds_allowed = 0;
4018 	}
4019 
4020 	spa->spa_missing_tvds_allowed =
4021 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
4022 
4023 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4024 	error = vdev_open(spa->spa_root_vdev);
4025 	spa_config_exit(spa, SCL_ALL, FTAG);
4026 
4027 	if (spa->spa_missing_tvds != 0) {
4028 		spa_load_note(spa, "vdev tree has %lld missing top-level "
4029 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
4030 		if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
4031 			/*
4032 			 * Although theoretically we could allow users to open
4033 			 * incomplete pools in RW mode, we'd need to add a lot
4034 			 * of extra logic (e.g. adjust pool space to account
4035 			 * for missing vdevs).
4036 			 * This limitation also prevents users from accidentally
4037 			 * opening the pool in RW mode during data recovery and
4038 			 * damaging it further.
4039 			 */
4040 			spa_load_note(spa, "pools with missing top-level "
4041 			    "vdevs can only be opened in read-only mode.");
4042 			error = SET_ERROR(ENXIO);
4043 		} else {
4044 			spa_load_note(spa, "current settings allow for maximum "
4045 			    "%lld missing top-level vdevs at this stage.",
4046 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
4047 		}
4048 	}
4049 	if (error != 0) {
4050 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
4051 		    error);
4052 	}
4053 	if (spa->spa_missing_tvds != 0 || error != 0)
4054 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
4055 
4056 	return (error);
4057 }
4058 
4059 /*
4060  * We need to validate the vdev labels against the configuration that
4061  * we have in hand. This function is called twice: first with an untrusted
4062  * config, then with a trusted config. The validation is more strict when the
4063  * config is trusted.
4064  */
4065 static int
4066 spa_ld_validate_vdevs(spa_t *spa)
4067 {
4068 	int error = 0;
4069 	vdev_t *rvd = spa->spa_root_vdev;
4070 
4071 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4072 	error = vdev_validate(rvd);
4073 	spa_config_exit(spa, SCL_ALL, FTAG);
4074 
4075 	if (error != 0) {
4076 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
4077 		return (error);
4078 	}
4079 
4080 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
4081 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
4082 		    "some vdevs");
4083 		vdev_dbgmsg_print_tree(rvd, 2);
4084 		return (SET_ERROR(ENXIO));
4085 	}
4086 
4087 	return (0);
4088 }
4089 
4090 static void
4091 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
4092 {
4093 	spa->spa_state = POOL_STATE_ACTIVE;
4094 	spa->spa_ubsync = spa->spa_uberblock;
4095 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
4096 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
4097 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
4098 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
4099 	spa->spa_claim_max_txg = spa->spa_first_txg;
4100 	spa->spa_prev_software_version = ub->ub_software_version;
4101 }
4102 
4103 static int
4104 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
4105 {
4106 	vdev_t *rvd = spa->spa_root_vdev;
4107 	nvlist_t *label;
4108 	uberblock_t *ub = &spa->spa_uberblock;
4109 	boolean_t activity_check = B_FALSE;
4110 
4111 	/*
4112 	 * If we are opening the checkpointed state of the pool by
4113 	 * rewinding to it, at this point we will have written the
4114 	 * checkpointed uberblock to the vdev labels, so searching
4115 	 * the labels will find the right uberblock.  However, if
4116 	 * we are opening the checkpointed state read-only, we have
4117 	 * not modified the labels. Therefore, we must ignore the
4118 	 * labels and continue using the spa_uberblock that was set
4119 	 * by spa_ld_checkpoint_rewind.
4120 	 *
4121 	 * Note that it would be fine to ignore the labels when
4122 	 * rewinding (opening writeable) as well. However, if we
4123 	 * crash just after writing the labels, we will end up
4124 	 * searching the labels. Doing so in the common case means
4125 	 * that this code path gets exercised normally, rather than
4126 	 * just in the edge case.
4127 	 */
4128 	if (ub->ub_checkpoint_txg != 0 &&
4129 	    spa_importing_readonly_checkpoint(spa)) {
4130 		spa_ld_select_uberblock_done(spa, ub);
4131 		return (0);
4132 	}
4133 
4134 	/*
4135 	 * Find the best uberblock.
4136 	 */
4137 	vdev_uberblock_load(rvd, ub, &label);
4138 
4139 	/*
4140 	 * If we weren't able to find a single valid uberblock, return failure.
4141 	 */
4142 	if (ub->ub_txg == 0) {
4143 		nvlist_free(label);
4144 		spa_load_failed(spa, "no valid uberblock found");
4145 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
4146 	}
4147 
4148 	if (spa->spa_load_max_txg != UINT64_MAX) {
4149 		(void) spa_import_progress_set_max_txg(spa_guid(spa),
4150 		    (u_longlong_t)spa->spa_load_max_txg);
4151 	}
4152 	spa_load_note(spa, "using uberblock with txg=%llu",
4153 	    (u_longlong_t)ub->ub_txg);
4154 	if (ub->ub_raidz_reflow_info != 0) {
4155 		spa_load_note(spa, "uberblock raidz_reflow_info: "
4156 		    "state=%u offset=%llu",
4157 		    (int)RRSS_GET_STATE(ub),
4158 		    (u_longlong_t)RRSS_GET_OFFSET(ub));
4159 	}
4160 
4161 
4162 	/*
4163 	 * For pools which have the multihost property on determine if the
4164 	 * pool is truly inactive and can be safely imported.  Prevent
4165 	 * hosts which don't have a hostid set from importing the pool.
4166 	 */
4167 	activity_check = spa_activity_check_required(spa, ub, label,
4168 	    spa->spa_config);
4169 	if (activity_check) {
4170 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
4171 		    spa_get_hostid(spa) == 0) {
4172 			nvlist_free(label);
4173 			fnvlist_add_uint64(spa->spa_load_info,
4174 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4175 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4176 		}
4177 
4178 		int error =
4179 		    spa_activity_check(spa, ub, spa->spa_config, B_TRUE);
4180 		if (error) {
4181 			nvlist_free(label);
4182 			return (error);
4183 		}
4184 
4185 		fnvlist_add_uint64(spa->spa_load_info,
4186 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
4187 		fnvlist_add_uint64(spa->spa_load_info,
4188 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
4189 		fnvlist_add_uint16(spa->spa_load_info,
4190 		    ZPOOL_CONFIG_MMP_SEQ,
4191 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
4192 	}
4193 
4194 	/*
4195 	 * If the pool has an unsupported version we can't open it.
4196 	 */
4197 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
4198 		nvlist_free(label);
4199 		spa_load_failed(spa, "version %llu is not supported",
4200 		    (u_longlong_t)ub->ub_version);
4201 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
4202 	}
4203 
4204 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
4205 		nvlist_t *features;
4206 
4207 		/*
4208 		 * If we weren't able to find what's necessary for reading the
4209 		 * MOS in the label, return failure.
4210 		 */
4211 		if (label == NULL) {
4212 			spa_load_failed(spa, "label config unavailable");
4213 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4214 			    ENXIO));
4215 		}
4216 
4217 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
4218 		    &features) != 0) {
4219 			nvlist_free(label);
4220 			spa_load_failed(spa, "invalid label: '%s' missing",
4221 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
4222 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4223 			    ENXIO));
4224 		}
4225 
4226 		/*
4227 		 * Update our in-core representation with the definitive values
4228 		 * from the label.
4229 		 */
4230 		nvlist_free(spa->spa_label_features);
4231 		spa->spa_label_features = fnvlist_dup(features);
4232 	}
4233 
4234 	nvlist_free(label);
4235 
4236 	/*
4237 	 * Look through entries in the label nvlist's features_for_read. If
4238 	 * there is a feature listed there which we don't understand then we
4239 	 * cannot open a pool.
4240 	 */
4241 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
4242 		nvlist_t *unsup_feat;
4243 
4244 		unsup_feat = fnvlist_alloc();
4245 
4246 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
4247 		    NULL); nvp != NULL;
4248 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
4249 			if (!zfeature_is_supported(nvpair_name(nvp))) {
4250 				fnvlist_add_string(unsup_feat,
4251 				    nvpair_name(nvp), "");
4252 			}
4253 		}
4254 
4255 		if (!nvlist_empty(unsup_feat)) {
4256 			fnvlist_add_nvlist(spa->spa_load_info,
4257 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4258 			nvlist_free(unsup_feat);
4259 			spa_load_failed(spa, "some features are unsupported");
4260 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4261 			    ENOTSUP));
4262 		}
4263 
4264 		nvlist_free(unsup_feat);
4265 	}
4266 
4267 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
4268 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4269 		spa_try_repair(spa, spa->spa_config);
4270 		spa_config_exit(spa, SCL_ALL, FTAG);
4271 		nvlist_free(spa->spa_config_splitting);
4272 		spa->spa_config_splitting = NULL;
4273 	}
4274 
4275 	/*
4276 	 * Initialize internal SPA structures.
4277 	 */
4278 	spa_ld_select_uberblock_done(spa, ub);
4279 
4280 	return (0);
4281 }
4282 
4283 static int
4284 spa_ld_open_rootbp(spa_t *spa)
4285 {
4286 	int error = 0;
4287 	vdev_t *rvd = spa->spa_root_vdev;
4288 
4289 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
4290 	if (error != 0) {
4291 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
4292 		    "[error=%d]", error);
4293 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4294 	}
4295 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
4296 
4297 	return (0);
4298 }
4299 
4300 static int
4301 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
4302     boolean_t reloading)
4303 {
4304 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
4305 	nvlist_t *nv, *mos_config, *policy;
4306 	int error = 0, copy_error;
4307 	uint64_t healthy_tvds, healthy_tvds_mos;
4308 	uint64_t mos_config_txg;
4309 
4310 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
4311 	    != 0)
4312 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4313 
4314 	/*
4315 	 * If we're assembling a pool from a split, the config provided is
4316 	 * already trusted so there is nothing to do.
4317 	 */
4318 	if (type == SPA_IMPORT_ASSEMBLE)
4319 		return (0);
4320 
4321 	healthy_tvds = spa_healthy_core_tvds(spa);
4322 
4323 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
4324 	    != 0) {
4325 		spa_load_failed(spa, "unable to retrieve MOS config");
4326 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4327 	}
4328 
4329 	/*
4330 	 * If we are doing an open, pool owner wasn't verified yet, thus do
4331 	 * the verification here.
4332 	 */
4333 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
4334 		error = spa_verify_host(spa, mos_config);
4335 		if (error != 0) {
4336 			nvlist_free(mos_config);
4337 			return (error);
4338 		}
4339 	}
4340 
4341 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
4342 
4343 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4344 
4345 	/*
4346 	 * Build a new vdev tree from the trusted config
4347 	 */
4348 	error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
4349 	if (error != 0) {
4350 		nvlist_free(mos_config);
4351 		spa_config_exit(spa, SCL_ALL, FTAG);
4352 		spa_load_failed(spa, "spa_config_parse failed [error=%d]",
4353 		    error);
4354 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4355 	}
4356 
4357 	/*
4358 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
4359 	 * obtained by scanning /dev/dsk, then it will have the right vdev
4360 	 * paths. We update the trusted MOS config with this information.
4361 	 * We first try to copy the paths with vdev_copy_path_strict, which
4362 	 * succeeds only when both configs have exactly the same vdev tree.
4363 	 * If that fails, we fall back to a more flexible method that has a
4364 	 * best effort policy.
4365 	 */
4366 	copy_error = vdev_copy_path_strict(rvd, mrvd);
4367 	if (copy_error != 0 || spa_load_print_vdev_tree) {
4368 		spa_load_note(spa, "provided vdev tree:");
4369 		vdev_dbgmsg_print_tree(rvd, 2);
4370 		spa_load_note(spa, "MOS vdev tree:");
4371 		vdev_dbgmsg_print_tree(mrvd, 2);
4372 	}
4373 	if (copy_error != 0) {
4374 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
4375 		    "back to vdev_copy_path_relaxed");
4376 		vdev_copy_path_relaxed(rvd, mrvd);
4377 	}
4378 
4379 	vdev_close(rvd);
4380 	vdev_free(rvd);
4381 	spa->spa_root_vdev = mrvd;
4382 	rvd = mrvd;
4383 	spa_config_exit(spa, SCL_ALL, FTAG);
4384 
4385 	/*
4386 	 * If 'zpool import' used a cached config, then the on-disk hostid and
4387 	 * hostname may be different to the cached config in ways that should
4388 	 * prevent import.  Userspace can't discover this without a scan, but
4389 	 * we know, so we add these values to LOAD_INFO so the caller can know
4390 	 * the difference.
4391 	 *
4392 	 * Note that we have to do this before the config is regenerated,
4393 	 * because the new config will have the hostid and hostname for this
4394 	 * host, in readiness for import.
4395 	 */
4396 	if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID))
4397 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID,
4398 		    fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID));
4399 	if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME))
4400 		fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME,
4401 		    fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME));
4402 
4403 	/*
4404 	 * We will use spa_config if we decide to reload the spa or if spa_load
4405 	 * fails and we rewind. We must thus regenerate the config using the
4406 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
4407 	 * pass settings on how to load the pool and is not stored in the MOS.
4408 	 * We copy it over to our new, trusted config.
4409 	 */
4410 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
4411 	    ZPOOL_CONFIG_POOL_TXG);
4412 	nvlist_free(mos_config);
4413 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
4414 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
4415 	    &policy) == 0)
4416 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
4417 	spa_config_set(spa, mos_config);
4418 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
4419 
4420 	/*
4421 	 * Now that we got the config from the MOS, we should be more strict
4422 	 * in checking blkptrs and can make assumptions about the consistency
4423 	 * of the vdev tree. spa_trust_config must be set to true before opening
4424 	 * vdevs in order for them to be writeable.
4425 	 */
4426 	spa->spa_trust_config = B_TRUE;
4427 
4428 	/*
4429 	 * Open and validate the new vdev tree
4430 	 */
4431 	error = spa_ld_open_vdevs(spa);
4432 	if (error != 0)
4433 		return (error);
4434 
4435 	error = spa_ld_validate_vdevs(spa);
4436 	if (error != 0)
4437 		return (error);
4438 
4439 	if (copy_error != 0 || spa_load_print_vdev_tree) {
4440 		spa_load_note(spa, "final vdev tree:");
4441 		vdev_dbgmsg_print_tree(rvd, 2);
4442 	}
4443 
4444 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
4445 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
4446 		/*
4447 		 * Sanity check to make sure that we are indeed loading the
4448 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
4449 		 * in the config provided and they happened to be the only ones
4450 		 * to have the latest uberblock, we could involuntarily perform
4451 		 * an extreme rewind.
4452 		 */
4453 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
4454 		if (healthy_tvds_mos - healthy_tvds >=
4455 		    SPA_SYNC_MIN_VDEVS) {
4456 			spa_load_note(spa, "config provided misses too many "
4457 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
4458 			    (u_longlong_t)healthy_tvds,
4459 			    (u_longlong_t)healthy_tvds_mos);
4460 			spa_load_note(spa, "vdev tree:");
4461 			vdev_dbgmsg_print_tree(rvd, 2);
4462 			if (reloading) {
4463 				spa_load_failed(spa, "config was already "
4464 				    "provided from MOS. Aborting.");
4465 				return (spa_vdev_err(rvd,
4466 				    VDEV_AUX_CORRUPT_DATA, EIO));
4467 			}
4468 			spa_load_note(spa, "spa must be reloaded using MOS "
4469 			    "config");
4470 			return (SET_ERROR(EAGAIN));
4471 		}
4472 	}
4473 
4474 	error = spa_check_for_missing_logs(spa);
4475 	if (error != 0)
4476 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
4477 
4478 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
4479 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
4480 		    "guid sum (%llu != %llu)",
4481 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
4482 		    (u_longlong_t)rvd->vdev_guid_sum);
4483 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
4484 		    ENXIO));
4485 	}
4486 
4487 	return (0);
4488 }
4489 
4490 static int
4491 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
4492 {
4493 	int error = 0;
4494 	vdev_t *rvd = spa->spa_root_vdev;
4495 
4496 	/*
4497 	 * Everything that we read before spa_remove_init() must be stored
4498 	 * on concreted vdevs.  Therefore we do this as early as possible.
4499 	 */
4500 	error = spa_remove_init(spa);
4501 	if (error != 0) {
4502 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
4503 		    error);
4504 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4505 	}
4506 
4507 	/*
4508 	 * Retrieve information needed to condense indirect vdev mappings.
4509 	 */
4510 	error = spa_condense_init(spa);
4511 	if (error != 0) {
4512 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
4513 		    error);
4514 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4515 	}
4516 
4517 	return (0);
4518 }
4519 
4520 static int
4521 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
4522 {
4523 	int error = 0;
4524 	vdev_t *rvd = spa->spa_root_vdev;
4525 
4526 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4527 		boolean_t missing_feat_read = B_FALSE;
4528 		nvlist_t *unsup_feat, *enabled_feat;
4529 
4530 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4531 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4532 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4533 		}
4534 
4535 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4536 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4537 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4538 		}
4539 
4540 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4541 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4542 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4543 		}
4544 
4545 		enabled_feat = fnvlist_alloc();
4546 		unsup_feat = fnvlist_alloc();
4547 
4548 		if (!spa_features_check(spa, B_FALSE,
4549 		    unsup_feat, enabled_feat))
4550 			missing_feat_read = B_TRUE;
4551 
4552 		if (spa_writeable(spa) ||
4553 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4554 			if (!spa_features_check(spa, B_TRUE,
4555 			    unsup_feat, enabled_feat)) {
4556 				*missing_feat_writep = B_TRUE;
4557 			}
4558 		}
4559 
4560 		fnvlist_add_nvlist(spa->spa_load_info,
4561 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4562 
4563 		if (!nvlist_empty(unsup_feat)) {
4564 			fnvlist_add_nvlist(spa->spa_load_info,
4565 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4566 		}
4567 
4568 		fnvlist_free(enabled_feat);
4569 		fnvlist_free(unsup_feat);
4570 
4571 		if (!missing_feat_read) {
4572 			fnvlist_add_boolean(spa->spa_load_info,
4573 			    ZPOOL_CONFIG_CAN_RDONLY);
4574 		}
4575 
4576 		/*
4577 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4578 		 * twofold: to determine whether the pool is available for
4579 		 * import in read-write mode and (if it is not) whether the
4580 		 * pool is available for import in read-only mode. If the pool
4581 		 * is available for import in read-write mode, it is displayed
4582 		 * as available in userland; if it is not available for import
4583 		 * in read-only mode, it is displayed as unavailable in
4584 		 * userland. If the pool is available for import in read-only
4585 		 * mode but not read-write mode, it is displayed as unavailable
4586 		 * in userland with a special note that the pool is actually
4587 		 * available for open in read-only mode.
4588 		 *
4589 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4590 		 * missing a feature for write, we must first determine whether
4591 		 * the pool can be opened read-only before returning to
4592 		 * userland in order to know whether to display the
4593 		 * abovementioned note.
4594 		 */
4595 		if (missing_feat_read || (*missing_feat_writep &&
4596 		    spa_writeable(spa))) {
4597 			spa_load_failed(spa, "pool uses unsupported features");
4598 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4599 			    ENOTSUP));
4600 		}
4601 
4602 		/*
4603 		 * Load refcounts for ZFS features from disk into an in-memory
4604 		 * cache during SPA initialization.
4605 		 */
4606 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4607 			uint64_t refcount;
4608 
4609 			error = feature_get_refcount_from_disk(spa,
4610 			    &spa_feature_table[i], &refcount);
4611 			if (error == 0) {
4612 				spa->spa_feat_refcount_cache[i] = refcount;
4613 			} else if (error == ENOTSUP) {
4614 				spa->spa_feat_refcount_cache[i] =
4615 				    SPA_FEATURE_DISABLED;
4616 			} else {
4617 				spa_load_failed(spa, "error getting refcount "
4618 				    "for feature %s [error=%d]",
4619 				    spa_feature_table[i].fi_guid, error);
4620 				return (spa_vdev_err(rvd,
4621 				    VDEV_AUX_CORRUPT_DATA, EIO));
4622 			}
4623 		}
4624 	}
4625 
4626 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4627 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4628 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4629 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4630 	}
4631 
4632 	/*
4633 	 * Encryption was added before bookmark_v2, even though bookmark_v2
4634 	 * is now a dependency. If this pool has encryption enabled without
4635 	 * bookmark_v2, trigger an errata message.
4636 	 */
4637 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4638 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4639 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4640 	}
4641 
4642 	return (0);
4643 }
4644 
4645 static int
4646 spa_ld_load_special_directories(spa_t *spa)
4647 {
4648 	int error = 0;
4649 	vdev_t *rvd = spa->spa_root_vdev;
4650 
4651 	spa->spa_is_initializing = B_TRUE;
4652 	error = dsl_pool_open(spa->spa_dsl_pool);
4653 	spa->spa_is_initializing = B_FALSE;
4654 	if (error != 0) {
4655 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4656 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4657 	}
4658 
4659 	return (0);
4660 }
4661 
4662 static int
4663 spa_ld_get_props(spa_t *spa)
4664 {
4665 	int error = 0;
4666 	uint64_t obj;
4667 	vdev_t *rvd = spa->spa_root_vdev;
4668 
4669 	/* Grab the checksum salt from the MOS. */
4670 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4671 	    DMU_POOL_CHECKSUM_SALT, 1,
4672 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
4673 	    spa->spa_cksum_salt.zcs_bytes);
4674 	if (error == ENOENT) {
4675 		/* Generate a new salt for subsequent use */
4676 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4677 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
4678 	} else if (error != 0) {
4679 		spa_load_failed(spa, "unable to retrieve checksum salt from "
4680 		    "MOS [error=%d]", error);
4681 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4682 	}
4683 
4684 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4685 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4686 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4687 	if (error != 0) {
4688 		spa_load_failed(spa, "error opening deferred-frees bpobj "
4689 		    "[error=%d]", error);
4690 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4691 	}
4692 
4693 	/*
4694 	 * Load the bit that tells us to use the new accounting function
4695 	 * (raid-z deflation).  If we have an older pool, this will not
4696 	 * be present.
4697 	 */
4698 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4699 	if (error != 0 && error != ENOENT)
4700 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4701 
4702 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4703 	    &spa->spa_creation_version, B_FALSE);
4704 	if (error != 0 && error != ENOENT)
4705 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4706 
4707 	/*
4708 	 * Load the persistent error log.  If we have an older pool, this will
4709 	 * not be present.
4710 	 */
4711 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4712 	    B_FALSE);
4713 	if (error != 0 && error != ENOENT)
4714 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4715 
4716 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4717 	    &spa->spa_errlog_scrub, B_FALSE);
4718 	if (error != 0 && error != ENOENT)
4719 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4720 
4721 	/*
4722 	 * Load the livelist deletion field. If a livelist is queued for
4723 	 * deletion, indicate that in the spa
4724 	 */
4725 	error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4726 	    &spa->spa_livelists_to_delete, B_FALSE);
4727 	if (error != 0 && error != ENOENT)
4728 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4729 
4730 	/*
4731 	 * Load the history object.  If we have an older pool, this
4732 	 * will not be present.
4733 	 */
4734 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4735 	if (error != 0 && error != ENOENT)
4736 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4737 
4738 	/*
4739 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
4740 	 * be present; in this case, defer its creation to a later time to
4741 	 * avoid dirtying the MOS this early / out of sync context. See
4742 	 * spa_sync_config_object.
4743 	 */
4744 
4745 	/* The sentinel is only available in the MOS config. */
4746 	nvlist_t *mos_config;
4747 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4748 		spa_load_failed(spa, "unable to retrieve MOS config");
4749 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4750 	}
4751 
4752 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4753 	    &spa->spa_all_vdev_zaps, B_FALSE);
4754 
4755 	if (error == ENOENT) {
4756 		VERIFY(!nvlist_exists(mos_config,
4757 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4758 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4759 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4760 	} else if (error != 0) {
4761 		nvlist_free(mos_config);
4762 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4763 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4764 		/*
4765 		 * An older version of ZFS overwrote the sentinel value, so
4766 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4767 		 * destruction to later; see spa_sync_config_object.
4768 		 */
4769 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
4770 		/*
4771 		 * We're assuming that no vdevs have had their ZAPs created
4772 		 * before this. Better be sure of it.
4773 		 */
4774 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4775 	}
4776 	nvlist_free(mos_config);
4777 
4778 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4779 
4780 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4781 	    B_FALSE);
4782 	if (error && error != ENOENT)
4783 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4784 
4785 	if (error == 0) {
4786 		uint64_t autoreplace = 0;
4787 
4788 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4789 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4790 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4791 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4792 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4793 		spa_prop_find(spa, ZPOOL_PROP_DEDUP_TABLE_QUOTA,
4794 		    &spa->spa_dedup_table_quota);
4795 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4796 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4797 		spa->spa_autoreplace = (autoreplace != 0);
4798 	}
4799 
4800 	/*
4801 	 * If we are importing a pool with missing top-level vdevs,
4802 	 * we enforce that the pool doesn't panic or get suspended on
4803 	 * error since the likelihood of missing data is extremely high.
4804 	 */
4805 	if (spa->spa_missing_tvds > 0 &&
4806 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4807 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4808 		spa_load_note(spa, "forcing failmode to 'continue' "
4809 		    "as some top level vdevs are missing");
4810 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4811 	}
4812 
4813 	return (0);
4814 }
4815 
4816 static int
4817 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4818 {
4819 	int error = 0;
4820 	vdev_t *rvd = spa->spa_root_vdev;
4821 
4822 	/*
4823 	 * If we're assembling the pool from the split-off vdevs of
4824 	 * an existing pool, we don't want to attach the spares & cache
4825 	 * devices.
4826 	 */
4827 
4828 	/*
4829 	 * Load any hot spares for this pool.
4830 	 */
4831 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4832 	    B_FALSE);
4833 	if (error != 0 && error != ENOENT)
4834 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4835 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4836 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4837 		if (load_nvlist(spa, spa->spa_spares.sav_object,
4838 		    &spa->spa_spares.sav_config) != 0) {
4839 			spa_load_failed(spa, "error loading spares nvlist");
4840 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4841 		}
4842 
4843 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4844 		spa_load_spares(spa);
4845 		spa_config_exit(spa, SCL_ALL, FTAG);
4846 	} else if (error == 0) {
4847 		spa->spa_spares.sav_sync = B_TRUE;
4848 	}
4849 
4850 	/*
4851 	 * Load any level 2 ARC devices for this pool.
4852 	 */
4853 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4854 	    &spa->spa_l2cache.sav_object, B_FALSE);
4855 	if (error != 0 && error != ENOENT)
4856 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4857 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4858 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4859 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4860 		    &spa->spa_l2cache.sav_config) != 0) {
4861 			spa_load_failed(spa, "error loading l2cache nvlist");
4862 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4863 		}
4864 
4865 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4866 		spa_load_l2cache(spa);
4867 		spa_config_exit(spa, SCL_ALL, FTAG);
4868 	} else if (error == 0) {
4869 		spa->spa_l2cache.sav_sync = B_TRUE;
4870 	}
4871 
4872 	return (0);
4873 }
4874 
4875 static int
4876 spa_ld_load_vdev_metadata(spa_t *spa)
4877 {
4878 	int error = 0;
4879 	vdev_t *rvd = spa->spa_root_vdev;
4880 
4881 	/*
4882 	 * If the 'multihost' property is set, then never allow a pool to
4883 	 * be imported when the system hostid is zero.  The exception to
4884 	 * this rule is zdb which is always allowed to access pools.
4885 	 */
4886 	if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4887 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4888 		fnvlist_add_uint64(spa->spa_load_info,
4889 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4890 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4891 	}
4892 
4893 	/*
4894 	 * If the 'autoreplace' property is set, then post a resource notifying
4895 	 * the ZFS DE that it should not issue any faults for unopenable
4896 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
4897 	 * unopenable vdevs so that the normal autoreplace handler can take
4898 	 * over.
4899 	 */
4900 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4901 		spa_check_removed(spa->spa_root_vdev);
4902 		/*
4903 		 * For the import case, this is done in spa_import(), because
4904 		 * at this point we're using the spare definitions from
4905 		 * the MOS config, not necessarily from the userland config.
4906 		 */
4907 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4908 			spa_aux_check_removed(&spa->spa_spares);
4909 			spa_aux_check_removed(&spa->spa_l2cache);
4910 		}
4911 	}
4912 
4913 	/*
4914 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4915 	 */
4916 	error = vdev_load(rvd);
4917 	if (error != 0) {
4918 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4919 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4920 	}
4921 
4922 	error = spa_ld_log_spacemaps(spa);
4923 	if (error != 0) {
4924 		spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4925 		    error);
4926 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4927 	}
4928 
4929 	/*
4930 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4931 	 */
4932 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4933 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4934 	spa_config_exit(spa, SCL_ALL, FTAG);
4935 
4936 	return (0);
4937 }
4938 
4939 static int
4940 spa_ld_load_dedup_tables(spa_t *spa)
4941 {
4942 	int error = 0;
4943 	vdev_t *rvd = spa->spa_root_vdev;
4944 
4945 	error = ddt_load(spa);
4946 	if (error != 0) {
4947 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4948 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4949 	}
4950 
4951 	return (0);
4952 }
4953 
4954 static int
4955 spa_ld_load_brt(spa_t *spa)
4956 {
4957 	int error = 0;
4958 	vdev_t *rvd = spa->spa_root_vdev;
4959 
4960 	error = brt_load(spa);
4961 	if (error != 0) {
4962 		spa_load_failed(spa, "brt_load failed [error=%d]", error);
4963 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4964 	}
4965 
4966 	return (0);
4967 }
4968 
4969 static int
4970 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4971 {
4972 	vdev_t *rvd = spa->spa_root_vdev;
4973 
4974 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4975 		boolean_t missing = spa_check_logs(spa);
4976 		if (missing) {
4977 			if (spa->spa_missing_tvds != 0) {
4978 				spa_load_note(spa, "spa_check_logs failed "
4979 				    "so dropping the logs");
4980 			} else {
4981 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4982 				spa_load_failed(spa, "spa_check_logs failed");
4983 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4984 				    ENXIO));
4985 			}
4986 		}
4987 	}
4988 
4989 	return (0);
4990 }
4991 
4992 static int
4993 spa_ld_verify_pool_data(spa_t *spa)
4994 {
4995 	int error = 0;
4996 	vdev_t *rvd = spa->spa_root_vdev;
4997 
4998 	/*
4999 	 * We've successfully opened the pool, verify that we're ready
5000 	 * to start pushing transactions.
5001 	 */
5002 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
5003 		error = spa_load_verify(spa);
5004 		if (error != 0) {
5005 			spa_load_failed(spa, "spa_load_verify failed "
5006 			    "[error=%d]", error);
5007 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
5008 			    error));
5009 		}
5010 	}
5011 
5012 	return (0);
5013 }
5014 
5015 static void
5016 spa_ld_claim_log_blocks(spa_t *spa)
5017 {
5018 	dmu_tx_t *tx;
5019 	dsl_pool_t *dp = spa_get_dsl(spa);
5020 
5021 	/*
5022 	 * Claim log blocks that haven't been committed yet.
5023 	 * This must all happen in a single txg.
5024 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
5025 	 * invoked from zil_claim_log_block()'s i/o done callback.
5026 	 * Price of rollback is that we abandon the log.
5027 	 */
5028 	spa->spa_claiming = B_TRUE;
5029 
5030 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
5031 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
5032 	    zil_claim, tx, DS_FIND_CHILDREN);
5033 	dmu_tx_commit(tx);
5034 
5035 	spa->spa_claiming = B_FALSE;
5036 
5037 	spa_set_log_state(spa, SPA_LOG_GOOD);
5038 }
5039 
5040 static void
5041 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
5042     boolean_t update_config_cache)
5043 {
5044 	vdev_t *rvd = spa->spa_root_vdev;
5045 	int need_update = B_FALSE;
5046 
5047 	/*
5048 	 * If the config cache is stale, or we have uninitialized
5049 	 * metaslabs (see spa_vdev_add()), then update the config.
5050 	 *
5051 	 * If this is a verbatim import, trust the current
5052 	 * in-core spa_config and update the disk labels.
5053 	 */
5054 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
5055 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
5056 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
5057 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
5058 		need_update = B_TRUE;
5059 
5060 	for (int c = 0; c < rvd->vdev_children; c++)
5061 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
5062 			need_update = B_TRUE;
5063 
5064 	/*
5065 	 * Update the config cache asynchronously in case we're the
5066 	 * root pool, in which case the config cache isn't writable yet.
5067 	 */
5068 	if (need_update)
5069 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
5070 }
5071 
5072 static void
5073 spa_ld_prepare_for_reload(spa_t *spa)
5074 {
5075 	spa_mode_t mode = spa->spa_mode;
5076 	int async_suspended = spa->spa_async_suspended;
5077 
5078 	spa_unload(spa);
5079 	spa_deactivate(spa);
5080 	spa_activate(spa, mode);
5081 
5082 	/*
5083 	 * We save the value of spa_async_suspended as it gets reset to 0 by
5084 	 * spa_unload(). We want to restore it back to the original value before
5085 	 * returning as we might be calling spa_async_resume() later.
5086 	 */
5087 	spa->spa_async_suspended = async_suspended;
5088 }
5089 
5090 static int
5091 spa_ld_read_checkpoint_txg(spa_t *spa)
5092 {
5093 	uberblock_t checkpoint;
5094 	int error = 0;
5095 
5096 	ASSERT0(spa->spa_checkpoint_txg);
5097 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
5098 	    spa->spa_load_thread == curthread);
5099 
5100 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5101 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5102 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5103 
5104 	if (error == ENOENT)
5105 		return (0);
5106 
5107 	if (error != 0)
5108 		return (error);
5109 
5110 	ASSERT3U(checkpoint.ub_txg, !=, 0);
5111 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
5112 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
5113 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
5114 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
5115 
5116 	return (0);
5117 }
5118 
5119 static int
5120 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
5121 {
5122 	int error = 0;
5123 
5124 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5125 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5126 
5127 	/*
5128 	 * Never trust the config that is provided unless we are assembling
5129 	 * a pool following a split.
5130 	 * This means don't trust blkptrs and the vdev tree in general. This
5131 	 * also effectively puts the spa in read-only mode since
5132 	 * spa_writeable() checks for spa_trust_config to be true.
5133 	 * We will later load a trusted config from the MOS.
5134 	 */
5135 	if (type != SPA_IMPORT_ASSEMBLE)
5136 		spa->spa_trust_config = B_FALSE;
5137 
5138 	/*
5139 	 * Parse the config provided to create a vdev tree.
5140 	 */
5141 	error = spa_ld_parse_config(spa, type);
5142 	if (error != 0)
5143 		return (error);
5144 
5145 	spa_import_progress_add(spa);
5146 
5147 	/*
5148 	 * Now that we have the vdev tree, try to open each vdev. This involves
5149 	 * opening the underlying physical device, retrieving its geometry and
5150 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
5151 	 * based on the success of those operations. After this we'll be ready
5152 	 * to read from the vdevs.
5153 	 */
5154 	error = spa_ld_open_vdevs(spa);
5155 	if (error != 0)
5156 		return (error);
5157 
5158 	/*
5159 	 * Read the label of each vdev and make sure that the GUIDs stored
5160 	 * there match the GUIDs in the config provided.
5161 	 * If we're assembling a new pool that's been split off from an
5162 	 * existing pool, the labels haven't yet been updated so we skip
5163 	 * validation for now.
5164 	 */
5165 	if (type != SPA_IMPORT_ASSEMBLE) {
5166 		error = spa_ld_validate_vdevs(spa);
5167 		if (error != 0)
5168 			return (error);
5169 	}
5170 
5171 	/*
5172 	 * Read all vdev labels to find the best uberblock (i.e. latest,
5173 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
5174 	 * get the list of features required to read blkptrs in the MOS from
5175 	 * the vdev label with the best uberblock and verify that our version
5176 	 * of zfs supports them all.
5177 	 */
5178 	error = spa_ld_select_uberblock(spa, type);
5179 	if (error != 0)
5180 		return (error);
5181 
5182 	/*
5183 	 * Pass that uberblock to the dsl_pool layer which will open the root
5184 	 * blkptr. This blkptr points to the latest version of the MOS and will
5185 	 * allow us to read its contents.
5186 	 */
5187 	error = spa_ld_open_rootbp(spa);
5188 	if (error != 0)
5189 		return (error);
5190 
5191 	return (0);
5192 }
5193 
5194 static int
5195 spa_ld_checkpoint_rewind(spa_t *spa)
5196 {
5197 	uberblock_t checkpoint;
5198 	int error = 0;
5199 
5200 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5201 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5202 
5203 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5204 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5205 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5206 
5207 	if (error != 0) {
5208 		spa_load_failed(spa, "unable to retrieve checkpointed "
5209 		    "uberblock from the MOS config [error=%d]", error);
5210 
5211 		if (error == ENOENT)
5212 			error = ZFS_ERR_NO_CHECKPOINT;
5213 
5214 		return (error);
5215 	}
5216 
5217 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
5218 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
5219 
5220 	/*
5221 	 * We need to update the txg and timestamp of the checkpointed
5222 	 * uberblock to be higher than the latest one. This ensures that
5223 	 * the checkpointed uberblock is selected if we were to close and
5224 	 * reopen the pool right after we've written it in the vdev labels.
5225 	 * (also see block comment in vdev_uberblock_compare)
5226 	 */
5227 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
5228 	checkpoint.ub_timestamp = gethrestime_sec();
5229 
5230 	/*
5231 	 * Set current uberblock to be the checkpointed uberblock.
5232 	 */
5233 	spa->spa_uberblock = checkpoint;
5234 
5235 	/*
5236 	 * If we are doing a normal rewind, then the pool is open for
5237 	 * writing and we sync the "updated" checkpointed uberblock to
5238 	 * disk. Once this is done, we've basically rewound the whole
5239 	 * pool and there is no way back.
5240 	 *
5241 	 * There are cases when we don't want to attempt and sync the
5242 	 * checkpointed uberblock to disk because we are opening a
5243 	 * pool as read-only. Specifically, verifying the checkpointed
5244 	 * state with zdb, and importing the checkpointed state to get
5245 	 * a "preview" of its content.
5246 	 */
5247 	if (spa_writeable(spa)) {
5248 		vdev_t *rvd = spa->spa_root_vdev;
5249 
5250 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5251 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
5252 		int svdcount = 0;
5253 		int children = rvd->vdev_children;
5254 		int c0 = random_in_range(children);
5255 
5256 		for (int c = 0; c < children; c++) {
5257 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
5258 
5259 			/* Stop when revisiting the first vdev */
5260 			if (c > 0 && svd[0] == vd)
5261 				break;
5262 
5263 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
5264 			    !vdev_is_concrete(vd))
5265 				continue;
5266 
5267 			svd[svdcount++] = vd;
5268 			if (svdcount == SPA_SYNC_MIN_VDEVS)
5269 				break;
5270 		}
5271 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
5272 		if (error == 0)
5273 			spa->spa_last_synced_guid = rvd->vdev_guid;
5274 		spa_config_exit(spa, SCL_ALL, FTAG);
5275 
5276 		if (error != 0) {
5277 			spa_load_failed(spa, "failed to write checkpointed "
5278 			    "uberblock to the vdev labels [error=%d]", error);
5279 			return (error);
5280 		}
5281 	}
5282 
5283 	return (0);
5284 }
5285 
5286 static int
5287 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
5288     boolean_t *update_config_cache)
5289 {
5290 	int error;
5291 
5292 	/*
5293 	 * Parse the config for pool, open and validate vdevs,
5294 	 * select an uberblock, and use that uberblock to open
5295 	 * the MOS.
5296 	 */
5297 	error = spa_ld_mos_init(spa, type);
5298 	if (error != 0)
5299 		return (error);
5300 
5301 	/*
5302 	 * Retrieve the trusted config stored in the MOS and use it to create
5303 	 * a new, exact version of the vdev tree, then reopen all vdevs.
5304 	 */
5305 	error = spa_ld_trusted_config(spa, type, B_FALSE);
5306 	if (error == EAGAIN) {
5307 		if (update_config_cache != NULL)
5308 			*update_config_cache = B_TRUE;
5309 
5310 		/*
5311 		 * Redo the loading process with the trusted config if it is
5312 		 * too different from the untrusted config.
5313 		 */
5314 		spa_ld_prepare_for_reload(spa);
5315 		spa_load_note(spa, "RELOADING");
5316 		error = spa_ld_mos_init(spa, type);
5317 		if (error != 0)
5318 			return (error);
5319 
5320 		error = spa_ld_trusted_config(spa, type, B_TRUE);
5321 		if (error != 0)
5322 			return (error);
5323 
5324 	} else if (error != 0) {
5325 		return (error);
5326 	}
5327 
5328 	return (0);
5329 }
5330 
5331 /*
5332  * Load an existing storage pool, using the config provided. This config
5333  * describes which vdevs are part of the pool and is later validated against
5334  * partial configs present in each vdev's label and an entire copy of the
5335  * config stored in the MOS.
5336  */
5337 static int
5338 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
5339 {
5340 	int error = 0;
5341 	boolean_t missing_feat_write = B_FALSE;
5342 	boolean_t checkpoint_rewind =
5343 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5344 	boolean_t update_config_cache = B_FALSE;
5345 	hrtime_t load_start = gethrtime();
5346 
5347 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5348 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5349 
5350 	spa_load_note(spa, "LOADING");
5351 
5352 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
5353 	if (error != 0)
5354 		return (error);
5355 
5356 	/*
5357 	 * If we are rewinding to the checkpoint then we need to repeat
5358 	 * everything we've done so far in this function but this time
5359 	 * selecting the checkpointed uberblock and using that to open
5360 	 * the MOS.
5361 	 */
5362 	if (checkpoint_rewind) {
5363 		/*
5364 		 * If we are rewinding to the checkpoint update config cache
5365 		 * anyway.
5366 		 */
5367 		update_config_cache = B_TRUE;
5368 
5369 		/*
5370 		 * Extract the checkpointed uberblock from the current MOS
5371 		 * and use this as the pool's uberblock from now on. If the
5372 		 * pool is imported as writeable we also write the checkpoint
5373 		 * uberblock to the labels, making the rewind permanent.
5374 		 */
5375 		error = spa_ld_checkpoint_rewind(spa);
5376 		if (error != 0)
5377 			return (error);
5378 
5379 		/*
5380 		 * Redo the loading process again with the
5381 		 * checkpointed uberblock.
5382 		 */
5383 		spa_ld_prepare_for_reload(spa);
5384 		spa_load_note(spa, "LOADING checkpointed uberblock");
5385 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
5386 		if (error != 0)
5387 			return (error);
5388 	}
5389 
5390 	/*
5391 	 * Drop the namespace lock for the rest of the function.
5392 	 */
5393 	spa->spa_load_thread = curthread;
5394 	mutex_exit(&spa_namespace_lock);
5395 
5396 	/*
5397 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
5398 	 */
5399 	spa_import_progress_set_notes(spa, "Loading checkpoint txg");
5400 	error = spa_ld_read_checkpoint_txg(spa);
5401 	if (error != 0)
5402 		goto fail;
5403 
5404 	/*
5405 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
5406 	 * from the pool and their contents were re-mapped to other vdevs. Note
5407 	 * that everything that we read before this step must have been
5408 	 * rewritten on concrete vdevs after the last device removal was
5409 	 * initiated. Otherwise we could be reading from indirect vdevs before
5410 	 * we have loaded their mappings.
5411 	 */
5412 	spa_import_progress_set_notes(spa, "Loading indirect vdev metadata");
5413 	error = spa_ld_open_indirect_vdev_metadata(spa);
5414 	if (error != 0)
5415 		goto fail;
5416 
5417 	/*
5418 	 * Retrieve the full list of active features from the MOS and check if
5419 	 * they are all supported.
5420 	 */
5421 	spa_import_progress_set_notes(spa, "Checking feature flags");
5422 	error = spa_ld_check_features(spa, &missing_feat_write);
5423 	if (error != 0)
5424 		goto fail;
5425 
5426 	/*
5427 	 * Load several special directories from the MOS needed by the dsl_pool
5428 	 * layer.
5429 	 */
5430 	spa_import_progress_set_notes(spa, "Loading special MOS directories");
5431 	error = spa_ld_load_special_directories(spa);
5432 	if (error != 0)
5433 		goto fail;
5434 
5435 	/*
5436 	 * Retrieve pool properties from the MOS.
5437 	 */
5438 	spa_import_progress_set_notes(spa, "Loading properties");
5439 	error = spa_ld_get_props(spa);
5440 	if (error != 0)
5441 		goto fail;
5442 
5443 	/*
5444 	 * Retrieve the list of auxiliary devices - cache devices and spares -
5445 	 * and open them.
5446 	 */
5447 	spa_import_progress_set_notes(spa, "Loading AUX vdevs");
5448 	error = spa_ld_open_aux_vdevs(spa, type);
5449 	if (error != 0)
5450 		goto fail;
5451 
5452 	/*
5453 	 * Load the metadata for all vdevs. Also check if unopenable devices
5454 	 * should be autoreplaced.
5455 	 */
5456 	spa_import_progress_set_notes(spa, "Loading vdev metadata");
5457 	error = spa_ld_load_vdev_metadata(spa);
5458 	if (error != 0)
5459 		goto fail;
5460 
5461 	spa_import_progress_set_notes(spa, "Loading dedup tables");
5462 	error = spa_ld_load_dedup_tables(spa);
5463 	if (error != 0)
5464 		goto fail;
5465 
5466 	spa_import_progress_set_notes(spa, "Loading BRT");
5467 	error = spa_ld_load_brt(spa);
5468 	if (error != 0)
5469 		goto fail;
5470 
5471 	/*
5472 	 * Verify the logs now to make sure we don't have any unexpected errors
5473 	 * when we claim log blocks later.
5474 	 */
5475 	spa_import_progress_set_notes(spa, "Verifying Log Devices");
5476 	error = spa_ld_verify_logs(spa, type, ereport);
5477 	if (error != 0)
5478 		goto fail;
5479 
5480 	if (missing_feat_write) {
5481 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
5482 
5483 		/*
5484 		 * At this point, we know that we can open the pool in
5485 		 * read-only mode but not read-write mode. We now have enough
5486 		 * information and can return to userland.
5487 		 */
5488 		error = spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
5489 		    ENOTSUP);
5490 		goto fail;
5491 	}
5492 
5493 	/*
5494 	 * Traverse the last txgs to make sure the pool was left off in a safe
5495 	 * state. When performing an extreme rewind, we verify the whole pool,
5496 	 * which can take a very long time.
5497 	 */
5498 	spa_import_progress_set_notes(spa, "Verifying pool data");
5499 	error = spa_ld_verify_pool_data(spa);
5500 	if (error != 0)
5501 		goto fail;
5502 
5503 	/*
5504 	 * Calculate the deflated space for the pool. This must be done before
5505 	 * we write anything to the pool because we'd need to update the space
5506 	 * accounting using the deflated sizes.
5507 	 */
5508 	spa_import_progress_set_notes(spa, "Calculating deflated space");
5509 	spa_update_dspace(spa);
5510 
5511 	/*
5512 	 * We have now retrieved all the information we needed to open the
5513 	 * pool. If we are importing the pool in read-write mode, a few
5514 	 * additional steps must be performed to finish the import.
5515 	 */
5516 	spa_import_progress_set_notes(spa, "Starting import");
5517 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
5518 	    spa->spa_load_max_txg == UINT64_MAX)) {
5519 		uint64_t config_cache_txg = spa->spa_config_txg;
5520 
5521 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
5522 
5523 		/*
5524 		 * Before we do any zio_write's, complete the raidz expansion
5525 		 * scratch space copying, if necessary.
5526 		 */
5527 		if (RRSS_GET_STATE(&spa->spa_uberblock) == RRSS_SCRATCH_VALID)
5528 			vdev_raidz_reflow_copy_scratch(spa);
5529 
5530 		/*
5531 		 * In case of a checkpoint rewind, log the original txg
5532 		 * of the checkpointed uberblock.
5533 		 */
5534 		if (checkpoint_rewind) {
5535 			spa_history_log_internal(spa, "checkpoint rewind",
5536 			    NULL, "rewound state to txg=%llu",
5537 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
5538 		}
5539 
5540 		spa_import_progress_set_notes(spa, "Claiming ZIL blocks");
5541 		/*
5542 		 * Traverse the ZIL and claim all blocks.
5543 		 */
5544 		spa_ld_claim_log_blocks(spa);
5545 
5546 		/*
5547 		 * Kick-off the syncing thread.
5548 		 */
5549 		spa->spa_sync_on = B_TRUE;
5550 		txg_sync_start(spa->spa_dsl_pool);
5551 		mmp_thread_start(spa);
5552 
5553 		/*
5554 		 * Wait for all claims to sync.  We sync up to the highest
5555 		 * claimed log block birth time so that claimed log blocks
5556 		 * don't appear to be from the future.  spa_claim_max_txg
5557 		 * will have been set for us by ZIL traversal operations
5558 		 * performed above.
5559 		 */
5560 		spa_import_progress_set_notes(spa, "Syncing ZIL claims");
5561 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5562 
5563 		/*
5564 		 * Check if we need to request an update of the config. On the
5565 		 * next sync, we would update the config stored in vdev labels
5566 		 * and the cachefile (by default /etc/zfs/zpool.cache).
5567 		 */
5568 		spa_import_progress_set_notes(spa, "Updating configs");
5569 		spa_ld_check_for_config_update(spa, config_cache_txg,
5570 		    update_config_cache);
5571 
5572 		/*
5573 		 * Check if a rebuild was in progress and if so resume it.
5574 		 * Then check all DTLs to see if anything needs resilvering.
5575 		 * The resilver will be deferred if a rebuild was started.
5576 		 */
5577 		spa_import_progress_set_notes(spa, "Starting resilvers");
5578 		if (vdev_rebuild_active(spa->spa_root_vdev)) {
5579 			vdev_rebuild_restart(spa);
5580 		} else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5581 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5582 			spa_async_request(spa, SPA_ASYNC_RESILVER);
5583 		}
5584 
5585 		/*
5586 		 * Log the fact that we booted up (so that we can detect if
5587 		 * we rebooted in the middle of an operation).
5588 		 */
5589 		spa_history_log_version(spa, "open", NULL);
5590 
5591 		spa_import_progress_set_notes(spa,
5592 		    "Restarting device removals");
5593 		spa_restart_removal(spa);
5594 		spa_spawn_aux_threads(spa);
5595 
5596 		/*
5597 		 * Delete any inconsistent datasets.
5598 		 *
5599 		 * Note:
5600 		 * Since we may be issuing deletes for clones here,
5601 		 * we make sure to do so after we've spawned all the
5602 		 * auxiliary threads above (from which the livelist
5603 		 * deletion zthr is part of).
5604 		 */
5605 		spa_import_progress_set_notes(spa,
5606 		    "Cleaning up inconsistent objsets");
5607 		(void) dmu_objset_find(spa_name(spa),
5608 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5609 
5610 		/*
5611 		 * Clean up any stale temporary dataset userrefs.
5612 		 */
5613 		spa_import_progress_set_notes(spa,
5614 		    "Cleaning up temporary userrefs");
5615 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5616 
5617 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5618 		spa_import_progress_set_notes(spa, "Restarting initialize");
5619 		vdev_initialize_restart(spa->spa_root_vdev);
5620 		spa_import_progress_set_notes(spa, "Restarting TRIM");
5621 		vdev_trim_restart(spa->spa_root_vdev);
5622 		vdev_autotrim_restart(spa);
5623 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5624 		spa_import_progress_set_notes(spa, "Finished importing");
5625 	}
5626 	zio_handle_import_delay(spa, gethrtime() - load_start);
5627 
5628 	spa_import_progress_remove(spa_guid(spa));
5629 	spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5630 
5631 	spa_load_note(spa, "LOADED");
5632 fail:
5633 	mutex_enter(&spa_namespace_lock);
5634 	spa->spa_load_thread = NULL;
5635 	cv_broadcast(&spa_namespace_cv);
5636 
5637 	return (error);
5638 
5639 }
5640 
5641 static int
5642 spa_load_retry(spa_t *spa, spa_load_state_t state)
5643 {
5644 	spa_mode_t mode = spa->spa_mode;
5645 
5646 	spa_unload(spa);
5647 	spa_deactivate(spa);
5648 
5649 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5650 
5651 	spa_activate(spa, mode);
5652 	spa_async_suspend(spa);
5653 
5654 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5655 	    (u_longlong_t)spa->spa_load_max_txg);
5656 
5657 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5658 }
5659 
5660 /*
5661  * If spa_load() fails this function will try loading prior txg's. If
5662  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5663  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5664  * function will not rewind the pool and will return the same error as
5665  * spa_load().
5666  */
5667 static int
5668 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5669     int rewind_flags)
5670 {
5671 	nvlist_t *loadinfo = NULL;
5672 	nvlist_t *config = NULL;
5673 	int load_error, rewind_error;
5674 	uint64_t safe_rewind_txg;
5675 	uint64_t min_txg;
5676 
5677 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5678 		spa->spa_load_max_txg = spa->spa_load_txg;
5679 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5680 	} else {
5681 		spa->spa_load_max_txg = max_request;
5682 		if (max_request != UINT64_MAX)
5683 			spa->spa_extreme_rewind = B_TRUE;
5684 	}
5685 
5686 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5687 	if (load_error == 0)
5688 		return (0);
5689 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5690 		/*
5691 		 * When attempting checkpoint-rewind on a pool with no
5692 		 * checkpoint, we should not attempt to load uberblocks
5693 		 * from previous txgs when spa_load fails.
5694 		 */
5695 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5696 		spa_import_progress_remove(spa_guid(spa));
5697 		return (load_error);
5698 	}
5699 
5700 	if (spa->spa_root_vdev != NULL)
5701 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5702 
5703 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5704 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5705 
5706 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
5707 		nvlist_free(config);
5708 		spa_import_progress_remove(spa_guid(spa));
5709 		return (load_error);
5710 	}
5711 
5712 	if (state == SPA_LOAD_RECOVER) {
5713 		/* Price of rolling back is discarding txgs, including log */
5714 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5715 	} else {
5716 		/*
5717 		 * If we aren't rolling back save the load info from our first
5718 		 * import attempt so that we can restore it after attempting
5719 		 * to rewind.
5720 		 */
5721 		loadinfo = spa->spa_load_info;
5722 		spa->spa_load_info = fnvlist_alloc();
5723 	}
5724 
5725 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5726 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5727 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5728 	    TXG_INITIAL : safe_rewind_txg;
5729 
5730 	/*
5731 	 * Continue as long as we're finding errors, we're still within
5732 	 * the acceptable rewind range, and we're still finding uberblocks
5733 	 */
5734 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5735 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5736 		if (spa->spa_load_max_txg < safe_rewind_txg)
5737 			spa->spa_extreme_rewind = B_TRUE;
5738 		rewind_error = spa_load_retry(spa, state);
5739 	}
5740 
5741 	spa->spa_extreme_rewind = B_FALSE;
5742 	spa->spa_load_max_txg = UINT64_MAX;
5743 
5744 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5745 		spa_config_set(spa, config);
5746 	else
5747 		nvlist_free(config);
5748 
5749 	if (state == SPA_LOAD_RECOVER) {
5750 		ASSERT3P(loadinfo, ==, NULL);
5751 		spa_import_progress_remove(spa_guid(spa));
5752 		return (rewind_error);
5753 	} else {
5754 		/* Store the rewind info as part of the initial load info */
5755 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5756 		    spa->spa_load_info);
5757 
5758 		/* Restore the initial load info */
5759 		fnvlist_free(spa->spa_load_info);
5760 		spa->spa_load_info = loadinfo;
5761 
5762 		spa_import_progress_remove(spa_guid(spa));
5763 		return (load_error);
5764 	}
5765 }
5766 
5767 /*
5768  * Pool Open/Import
5769  *
5770  * The import case is identical to an open except that the configuration is sent
5771  * down from userland, instead of grabbed from the configuration cache.  For the
5772  * case of an open, the pool configuration will exist in the
5773  * POOL_STATE_UNINITIALIZED state.
5774  *
5775  * The stats information (gen/count/ustats) is used to gather vdev statistics at
5776  * the same time open the pool, without having to keep around the spa_t in some
5777  * ambiguous state.
5778  */
5779 static int
5780 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5781     nvlist_t *nvpolicy, nvlist_t **config)
5782 {
5783 	spa_t *spa;
5784 	spa_load_state_t state = SPA_LOAD_OPEN;
5785 	int error;
5786 	int locked = B_FALSE;
5787 	int firstopen = B_FALSE;
5788 
5789 	*spapp = NULL;
5790 
5791 	/*
5792 	 * As disgusting as this is, we need to support recursive calls to this
5793 	 * function because dsl_dir_open() is called during spa_load(), and ends
5794 	 * up calling spa_open() again.  The real fix is to figure out how to
5795 	 * avoid dsl_dir_open() calling this in the first place.
5796 	 */
5797 	if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5798 		mutex_enter(&spa_namespace_lock);
5799 		locked = B_TRUE;
5800 	}
5801 
5802 	if ((spa = spa_lookup(pool)) == NULL) {
5803 		if (locked)
5804 			mutex_exit(&spa_namespace_lock);
5805 		return (SET_ERROR(ENOENT));
5806 	}
5807 
5808 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5809 		zpool_load_policy_t policy;
5810 
5811 		firstopen = B_TRUE;
5812 
5813 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5814 		    &policy);
5815 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5816 			state = SPA_LOAD_RECOVER;
5817 
5818 		spa_activate(spa, spa_mode_global);
5819 
5820 		if (state != SPA_LOAD_RECOVER)
5821 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5822 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5823 
5824 		zfs_dbgmsg("spa_open_common: opening %s", pool);
5825 		error = spa_load_best(spa, state, policy.zlp_txg,
5826 		    policy.zlp_rewind);
5827 
5828 		if (error == EBADF) {
5829 			/*
5830 			 * If vdev_validate() returns failure (indicated by
5831 			 * EBADF), it indicates that one of the vdevs indicates
5832 			 * that the pool has been exported or destroyed.  If
5833 			 * this is the case, the config cache is out of sync and
5834 			 * we should remove the pool from the namespace.
5835 			 */
5836 			spa_unload(spa);
5837 			spa_deactivate(spa);
5838 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5839 			spa_remove(spa);
5840 			if (locked)
5841 				mutex_exit(&spa_namespace_lock);
5842 			return (SET_ERROR(ENOENT));
5843 		}
5844 
5845 		if (error) {
5846 			/*
5847 			 * We can't open the pool, but we still have useful
5848 			 * information: the state of each vdev after the
5849 			 * attempted vdev_open().  Return this to the user.
5850 			 */
5851 			if (config != NULL && spa->spa_config) {
5852 				*config = fnvlist_dup(spa->spa_config);
5853 				fnvlist_add_nvlist(*config,
5854 				    ZPOOL_CONFIG_LOAD_INFO,
5855 				    spa->spa_load_info);
5856 			}
5857 			spa_unload(spa);
5858 			spa_deactivate(spa);
5859 			spa->spa_last_open_failed = error;
5860 			if (locked)
5861 				mutex_exit(&spa_namespace_lock);
5862 			*spapp = NULL;
5863 			return (error);
5864 		}
5865 	}
5866 
5867 	spa_open_ref(spa, tag);
5868 
5869 	if (config != NULL)
5870 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5871 
5872 	/*
5873 	 * If we've recovered the pool, pass back any information we
5874 	 * gathered while doing the load.
5875 	 */
5876 	if (state == SPA_LOAD_RECOVER && config != NULL) {
5877 		fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5878 		    spa->spa_load_info);
5879 	}
5880 
5881 	if (locked) {
5882 		spa->spa_last_open_failed = 0;
5883 		spa->spa_last_ubsync_txg = 0;
5884 		spa->spa_load_txg = 0;
5885 		mutex_exit(&spa_namespace_lock);
5886 	}
5887 
5888 	if (firstopen)
5889 		zvol_create_minors_recursive(spa_name(spa));
5890 
5891 	*spapp = spa;
5892 
5893 	return (0);
5894 }
5895 
5896 int
5897 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5898     nvlist_t *policy, nvlist_t **config)
5899 {
5900 	return (spa_open_common(name, spapp, tag, policy, config));
5901 }
5902 
5903 int
5904 spa_open(const char *name, spa_t **spapp, const void *tag)
5905 {
5906 	return (spa_open_common(name, spapp, tag, NULL, NULL));
5907 }
5908 
5909 /*
5910  * Lookup the given spa_t, incrementing the inject count in the process,
5911  * preventing it from being exported or destroyed.
5912  */
5913 spa_t *
5914 spa_inject_addref(char *name)
5915 {
5916 	spa_t *spa;
5917 
5918 	mutex_enter(&spa_namespace_lock);
5919 	if ((spa = spa_lookup(name)) == NULL) {
5920 		mutex_exit(&spa_namespace_lock);
5921 		return (NULL);
5922 	}
5923 	spa->spa_inject_ref++;
5924 	mutex_exit(&spa_namespace_lock);
5925 
5926 	return (spa);
5927 }
5928 
5929 void
5930 spa_inject_delref(spa_t *spa)
5931 {
5932 	mutex_enter(&spa_namespace_lock);
5933 	spa->spa_inject_ref--;
5934 	mutex_exit(&spa_namespace_lock);
5935 }
5936 
5937 /*
5938  * Add spares device information to the nvlist.
5939  */
5940 static void
5941 spa_add_spares(spa_t *spa, nvlist_t *config)
5942 {
5943 	nvlist_t **spares;
5944 	uint_t i, nspares;
5945 	nvlist_t *nvroot;
5946 	uint64_t guid;
5947 	vdev_stat_t *vs;
5948 	uint_t vsc;
5949 	uint64_t pool;
5950 
5951 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5952 
5953 	if (spa->spa_spares.sav_count == 0)
5954 		return;
5955 
5956 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5957 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5958 	    ZPOOL_CONFIG_SPARES, &spares, &nspares));
5959 	if (nspares != 0) {
5960 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5961 		    (const nvlist_t * const *)spares, nspares);
5962 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5963 		    &spares, &nspares));
5964 
5965 		/*
5966 		 * Go through and find any spares which have since been
5967 		 * repurposed as an active spare.  If this is the case, update
5968 		 * their status appropriately.
5969 		 */
5970 		for (i = 0; i < nspares; i++) {
5971 			guid = fnvlist_lookup_uint64(spares[i],
5972 			    ZPOOL_CONFIG_GUID);
5973 			VERIFY0(nvlist_lookup_uint64_array(spares[i],
5974 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5975 			if (spa_spare_exists(guid, &pool, NULL) &&
5976 			    pool != 0ULL) {
5977 				vs->vs_state = VDEV_STATE_CANT_OPEN;
5978 				vs->vs_aux = VDEV_AUX_SPARED;
5979 			} else {
5980 				vs->vs_state =
5981 				    spa->spa_spares.sav_vdevs[i]->vdev_state;
5982 			}
5983 		}
5984 	}
5985 }
5986 
5987 /*
5988  * Add l2cache device information to the nvlist, including vdev stats.
5989  */
5990 static void
5991 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5992 {
5993 	nvlist_t **l2cache;
5994 	uint_t i, j, nl2cache;
5995 	nvlist_t *nvroot;
5996 	uint64_t guid;
5997 	vdev_t *vd;
5998 	vdev_stat_t *vs;
5999 	uint_t vsc;
6000 
6001 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6002 
6003 	if (spa->spa_l2cache.sav_count == 0)
6004 		return;
6005 
6006 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6007 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
6008 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
6009 	if (nl2cache != 0) {
6010 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6011 		    (const nvlist_t * const *)l2cache, nl2cache);
6012 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6013 		    &l2cache, &nl2cache));
6014 
6015 		/*
6016 		 * Update level 2 cache device stats.
6017 		 */
6018 
6019 		for (i = 0; i < nl2cache; i++) {
6020 			guid = fnvlist_lookup_uint64(l2cache[i],
6021 			    ZPOOL_CONFIG_GUID);
6022 
6023 			vd = NULL;
6024 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
6025 				if (guid ==
6026 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
6027 					vd = spa->spa_l2cache.sav_vdevs[j];
6028 					break;
6029 				}
6030 			}
6031 			ASSERT(vd != NULL);
6032 
6033 			VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
6034 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
6035 			vdev_get_stats(vd, vs);
6036 			vdev_config_generate_stats(vd, l2cache[i]);
6037 
6038 		}
6039 	}
6040 }
6041 
6042 static void
6043 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
6044 {
6045 	zap_cursor_t zc;
6046 	zap_attribute_t za;
6047 
6048 	if (spa->spa_feat_for_read_obj != 0) {
6049 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6050 		    spa->spa_feat_for_read_obj);
6051 		    zap_cursor_retrieve(&zc, &za) == 0;
6052 		    zap_cursor_advance(&zc)) {
6053 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
6054 			    za.za_num_integers == 1);
6055 			VERIFY0(nvlist_add_uint64(features, za.za_name,
6056 			    za.za_first_integer));
6057 		}
6058 		zap_cursor_fini(&zc);
6059 	}
6060 
6061 	if (spa->spa_feat_for_write_obj != 0) {
6062 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6063 		    spa->spa_feat_for_write_obj);
6064 		    zap_cursor_retrieve(&zc, &za) == 0;
6065 		    zap_cursor_advance(&zc)) {
6066 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
6067 			    za.za_num_integers == 1);
6068 			VERIFY0(nvlist_add_uint64(features, za.za_name,
6069 			    za.za_first_integer));
6070 		}
6071 		zap_cursor_fini(&zc);
6072 	}
6073 }
6074 
6075 static void
6076 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
6077 {
6078 	int i;
6079 
6080 	for (i = 0; i < SPA_FEATURES; i++) {
6081 		zfeature_info_t feature = spa_feature_table[i];
6082 		uint64_t refcount;
6083 
6084 		if (feature_get_refcount(spa, &feature, &refcount) != 0)
6085 			continue;
6086 
6087 		VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
6088 	}
6089 }
6090 
6091 /*
6092  * Store a list of pool features and their reference counts in the
6093  * config.
6094  *
6095  * The first time this is called on a spa, allocate a new nvlist, fetch
6096  * the pool features and reference counts from disk, then save the list
6097  * in the spa. In subsequent calls on the same spa use the saved nvlist
6098  * and refresh its values from the cached reference counts.  This
6099  * ensures we don't block here on I/O on a suspended pool so 'zpool
6100  * clear' can resume the pool.
6101  */
6102 static void
6103 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
6104 {
6105 	nvlist_t *features;
6106 
6107 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6108 
6109 	mutex_enter(&spa->spa_feat_stats_lock);
6110 	features = spa->spa_feat_stats;
6111 
6112 	if (features != NULL) {
6113 		spa_feature_stats_from_cache(spa, features);
6114 	} else {
6115 		VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
6116 		spa->spa_feat_stats = features;
6117 		spa_feature_stats_from_disk(spa, features);
6118 	}
6119 
6120 	VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
6121 	    features));
6122 
6123 	mutex_exit(&spa->spa_feat_stats_lock);
6124 }
6125 
6126 int
6127 spa_get_stats(const char *name, nvlist_t **config,
6128     char *altroot, size_t buflen)
6129 {
6130 	int error;
6131 	spa_t *spa;
6132 
6133 	*config = NULL;
6134 	error = spa_open_common(name, &spa, FTAG, NULL, config);
6135 
6136 	if (spa != NULL) {
6137 		/*
6138 		 * This still leaves a window of inconsistency where the spares
6139 		 * or l2cache devices could change and the config would be
6140 		 * self-inconsistent.
6141 		 */
6142 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6143 
6144 		if (*config != NULL) {
6145 			uint64_t loadtimes[2];
6146 
6147 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
6148 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
6149 			fnvlist_add_uint64_array(*config,
6150 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
6151 
6152 			fnvlist_add_uint64(*config,
6153 			    ZPOOL_CONFIG_ERRCOUNT,
6154 			    spa_approx_errlog_size(spa));
6155 
6156 			if (spa_suspended(spa)) {
6157 				fnvlist_add_uint64(*config,
6158 				    ZPOOL_CONFIG_SUSPENDED,
6159 				    spa->spa_failmode);
6160 				fnvlist_add_uint64(*config,
6161 				    ZPOOL_CONFIG_SUSPENDED_REASON,
6162 				    spa->spa_suspended);
6163 			}
6164 
6165 			spa_add_spares(spa, *config);
6166 			spa_add_l2cache(spa, *config);
6167 			spa_add_feature_stats(spa, *config);
6168 		}
6169 	}
6170 
6171 	/*
6172 	 * We want to get the alternate root even for faulted pools, so we cheat
6173 	 * and call spa_lookup() directly.
6174 	 */
6175 	if (altroot) {
6176 		if (spa == NULL) {
6177 			mutex_enter(&spa_namespace_lock);
6178 			spa = spa_lookup(name);
6179 			if (spa)
6180 				spa_altroot(spa, altroot, buflen);
6181 			else
6182 				altroot[0] = '\0';
6183 			spa = NULL;
6184 			mutex_exit(&spa_namespace_lock);
6185 		} else {
6186 			spa_altroot(spa, altroot, buflen);
6187 		}
6188 	}
6189 
6190 	if (spa != NULL) {
6191 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6192 		spa_close(spa, FTAG);
6193 	}
6194 
6195 	return (error);
6196 }
6197 
6198 /*
6199  * Validate that the auxiliary device array is well formed.  We must have an
6200  * array of nvlists, each which describes a valid leaf vdev.  If this is an
6201  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
6202  * specified, as long as they are well-formed.
6203  */
6204 static int
6205 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
6206     spa_aux_vdev_t *sav, const char *config, uint64_t version,
6207     vdev_labeltype_t label)
6208 {
6209 	nvlist_t **dev;
6210 	uint_t i, ndev;
6211 	vdev_t *vd;
6212 	int error;
6213 
6214 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6215 
6216 	/*
6217 	 * It's acceptable to have no devs specified.
6218 	 */
6219 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
6220 		return (0);
6221 
6222 	if (ndev == 0)
6223 		return (SET_ERROR(EINVAL));
6224 
6225 	/*
6226 	 * Make sure the pool is formatted with a version that supports this
6227 	 * device type.
6228 	 */
6229 	if (spa_version(spa) < version)
6230 		return (SET_ERROR(ENOTSUP));
6231 
6232 	/*
6233 	 * Set the pending device list so we correctly handle device in-use
6234 	 * checking.
6235 	 */
6236 	sav->sav_pending = dev;
6237 	sav->sav_npending = ndev;
6238 
6239 	for (i = 0; i < ndev; i++) {
6240 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
6241 		    mode)) != 0)
6242 			goto out;
6243 
6244 		if (!vd->vdev_ops->vdev_op_leaf) {
6245 			vdev_free(vd);
6246 			error = SET_ERROR(EINVAL);
6247 			goto out;
6248 		}
6249 
6250 		vd->vdev_top = vd;
6251 
6252 		if ((error = vdev_open(vd)) == 0 &&
6253 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
6254 			fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
6255 			    vd->vdev_guid);
6256 		}
6257 
6258 		vdev_free(vd);
6259 
6260 		if (error &&
6261 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
6262 			goto out;
6263 		else
6264 			error = 0;
6265 	}
6266 
6267 out:
6268 	sav->sav_pending = NULL;
6269 	sav->sav_npending = 0;
6270 	return (error);
6271 }
6272 
6273 static int
6274 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
6275 {
6276 	int error;
6277 
6278 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6279 
6280 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6281 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
6282 	    VDEV_LABEL_SPARE)) != 0) {
6283 		return (error);
6284 	}
6285 
6286 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6287 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
6288 	    VDEV_LABEL_L2CACHE));
6289 }
6290 
6291 static void
6292 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
6293     const char *config)
6294 {
6295 	int i;
6296 
6297 	if (sav->sav_config != NULL) {
6298 		nvlist_t **olddevs;
6299 		uint_t oldndevs;
6300 		nvlist_t **newdevs;
6301 
6302 		/*
6303 		 * Generate new dev list by concatenating with the
6304 		 * current dev list.
6305 		 */
6306 		VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
6307 		    &olddevs, &oldndevs));
6308 
6309 		newdevs = kmem_alloc(sizeof (void *) *
6310 		    (ndevs + oldndevs), KM_SLEEP);
6311 		for (i = 0; i < oldndevs; i++)
6312 			newdevs[i] = fnvlist_dup(olddevs[i]);
6313 		for (i = 0; i < ndevs; i++)
6314 			newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
6315 
6316 		fnvlist_remove(sav->sav_config, config);
6317 
6318 		fnvlist_add_nvlist_array(sav->sav_config, config,
6319 		    (const nvlist_t * const *)newdevs, ndevs + oldndevs);
6320 		for (i = 0; i < oldndevs + ndevs; i++)
6321 			nvlist_free(newdevs[i]);
6322 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
6323 	} else {
6324 		/*
6325 		 * Generate a new dev list.
6326 		 */
6327 		sav->sav_config = fnvlist_alloc();
6328 		fnvlist_add_nvlist_array(sav->sav_config, config,
6329 		    (const nvlist_t * const *)devs, ndevs);
6330 	}
6331 }
6332 
6333 /*
6334  * Stop and drop level 2 ARC devices
6335  */
6336 void
6337 spa_l2cache_drop(spa_t *spa)
6338 {
6339 	vdev_t *vd;
6340 	int i;
6341 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
6342 
6343 	for (i = 0; i < sav->sav_count; i++) {
6344 		uint64_t pool;
6345 
6346 		vd = sav->sav_vdevs[i];
6347 		ASSERT(vd != NULL);
6348 
6349 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
6350 		    pool != 0ULL && l2arc_vdev_present(vd))
6351 			l2arc_remove_vdev(vd);
6352 	}
6353 }
6354 
6355 /*
6356  * Verify encryption parameters for spa creation. If we are encrypting, we must
6357  * have the encryption feature flag enabled.
6358  */
6359 static int
6360 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
6361     boolean_t has_encryption)
6362 {
6363 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
6364 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
6365 	    !has_encryption)
6366 		return (SET_ERROR(ENOTSUP));
6367 
6368 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
6369 }
6370 
6371 /*
6372  * Pool Creation
6373  */
6374 int
6375 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
6376     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
6377 {
6378 	spa_t *spa;
6379 	const char *altroot = NULL;
6380 	vdev_t *rvd;
6381 	dsl_pool_t *dp;
6382 	dmu_tx_t *tx;
6383 	int error = 0;
6384 	uint64_t txg = TXG_INITIAL;
6385 	nvlist_t **spares, **l2cache;
6386 	uint_t nspares, nl2cache;
6387 	uint64_t version, obj, ndraid = 0;
6388 	boolean_t has_features;
6389 	boolean_t has_encryption;
6390 	boolean_t has_allocclass;
6391 	spa_feature_t feat;
6392 	const char *feat_name;
6393 	const char *poolname;
6394 	nvlist_t *nvl;
6395 
6396 	if (props == NULL ||
6397 	    nvlist_lookup_string(props,
6398 	    zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
6399 		poolname = (char *)pool;
6400 
6401 	/*
6402 	 * If this pool already exists, return failure.
6403 	 */
6404 	mutex_enter(&spa_namespace_lock);
6405 	if (spa_lookup(poolname) != NULL) {
6406 		mutex_exit(&spa_namespace_lock);
6407 		return (SET_ERROR(EEXIST));
6408 	}
6409 
6410 	/*
6411 	 * Allocate a new spa_t structure.
6412 	 */
6413 	nvl = fnvlist_alloc();
6414 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
6415 	(void) nvlist_lookup_string(props,
6416 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6417 	spa = spa_add(poolname, nvl, altroot);
6418 	fnvlist_free(nvl);
6419 	spa_activate(spa, spa_mode_global);
6420 
6421 	if (props && (error = spa_prop_validate(spa, props))) {
6422 		spa_deactivate(spa);
6423 		spa_remove(spa);
6424 		mutex_exit(&spa_namespace_lock);
6425 		return (error);
6426 	}
6427 
6428 	/*
6429 	 * Temporary pool names should never be written to disk.
6430 	 */
6431 	if (poolname != pool)
6432 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
6433 
6434 	has_features = B_FALSE;
6435 	has_encryption = B_FALSE;
6436 	has_allocclass = B_FALSE;
6437 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
6438 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
6439 		if (zpool_prop_feature(nvpair_name(elem))) {
6440 			has_features = B_TRUE;
6441 
6442 			feat_name = strchr(nvpair_name(elem), '@') + 1;
6443 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
6444 			if (feat == SPA_FEATURE_ENCRYPTION)
6445 				has_encryption = B_TRUE;
6446 			if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
6447 				has_allocclass = B_TRUE;
6448 		}
6449 	}
6450 
6451 	/* verify encryption params, if they were provided */
6452 	if (dcp != NULL) {
6453 		error = spa_create_check_encryption_params(dcp, has_encryption);
6454 		if (error != 0) {
6455 			spa_deactivate(spa);
6456 			spa_remove(spa);
6457 			mutex_exit(&spa_namespace_lock);
6458 			return (error);
6459 		}
6460 	}
6461 	if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
6462 		spa_deactivate(spa);
6463 		spa_remove(spa);
6464 		mutex_exit(&spa_namespace_lock);
6465 		return (ENOTSUP);
6466 	}
6467 
6468 	if (has_features || nvlist_lookup_uint64(props,
6469 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
6470 		version = SPA_VERSION;
6471 	}
6472 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6473 
6474 	spa->spa_first_txg = txg;
6475 	spa->spa_uberblock.ub_txg = txg - 1;
6476 	spa->spa_uberblock.ub_version = version;
6477 	spa->spa_ubsync = spa->spa_uberblock;
6478 	spa->spa_load_state = SPA_LOAD_CREATE;
6479 	spa->spa_removing_phys.sr_state = DSS_NONE;
6480 	spa->spa_removing_phys.sr_removing_vdev = -1;
6481 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
6482 	spa->spa_indirect_vdevs_loaded = B_TRUE;
6483 
6484 	/*
6485 	 * Create "The Godfather" zio to hold all async IOs
6486 	 */
6487 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
6488 	    KM_SLEEP);
6489 	for (int i = 0; i < max_ncpus; i++) {
6490 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
6491 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6492 		    ZIO_FLAG_GODFATHER);
6493 	}
6494 
6495 	/*
6496 	 * Create the root vdev.
6497 	 */
6498 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6499 
6500 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
6501 
6502 	ASSERT(error != 0 || rvd != NULL);
6503 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
6504 
6505 	if (error == 0 && !zfs_allocatable_devs(nvroot))
6506 		error = SET_ERROR(EINVAL);
6507 
6508 	if (error == 0 &&
6509 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
6510 	    (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
6511 	    (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
6512 		/*
6513 		 * instantiate the metaslab groups (this will dirty the vdevs)
6514 		 * we can no longer error exit past this point
6515 		 */
6516 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
6517 			vdev_t *vd = rvd->vdev_child[c];
6518 
6519 			vdev_metaslab_set_size(vd);
6520 			vdev_expand(vd, txg);
6521 		}
6522 	}
6523 
6524 	spa_config_exit(spa, SCL_ALL, FTAG);
6525 
6526 	if (error != 0) {
6527 		spa_unload(spa);
6528 		spa_deactivate(spa);
6529 		spa_remove(spa);
6530 		mutex_exit(&spa_namespace_lock);
6531 		return (error);
6532 	}
6533 
6534 	/*
6535 	 * Get the list of spares, if specified.
6536 	 */
6537 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6538 	    &spares, &nspares) == 0) {
6539 		spa->spa_spares.sav_config = fnvlist_alloc();
6540 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6541 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6542 		    nspares);
6543 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6544 		spa_load_spares(spa);
6545 		spa_config_exit(spa, SCL_ALL, FTAG);
6546 		spa->spa_spares.sav_sync = B_TRUE;
6547 	}
6548 
6549 	/*
6550 	 * Get the list of level 2 cache devices, if specified.
6551 	 */
6552 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6553 	    &l2cache, &nl2cache) == 0) {
6554 		VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
6555 		    NV_UNIQUE_NAME, KM_SLEEP));
6556 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6557 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6558 		    nl2cache);
6559 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6560 		spa_load_l2cache(spa);
6561 		spa_config_exit(spa, SCL_ALL, FTAG);
6562 		spa->spa_l2cache.sav_sync = B_TRUE;
6563 	}
6564 
6565 	spa->spa_is_initializing = B_TRUE;
6566 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
6567 	spa->spa_is_initializing = B_FALSE;
6568 
6569 	/*
6570 	 * Create DDTs (dedup tables).
6571 	 */
6572 	ddt_create(spa);
6573 	/*
6574 	 * Create BRT table and BRT table object.
6575 	 */
6576 	brt_create(spa);
6577 
6578 	spa_update_dspace(spa);
6579 
6580 	tx = dmu_tx_create_assigned(dp, txg);
6581 
6582 	/*
6583 	 * Create the pool's history object.
6584 	 */
6585 	if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6586 		spa_history_create_obj(spa, tx);
6587 
6588 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6589 	spa_history_log_version(spa, "create", tx);
6590 
6591 	/*
6592 	 * Create the pool config object.
6593 	 */
6594 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6595 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6596 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6597 
6598 	if (zap_add(spa->spa_meta_objset,
6599 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6600 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6601 		cmn_err(CE_PANIC, "failed to add pool config");
6602 	}
6603 
6604 	if (zap_add(spa->spa_meta_objset,
6605 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6606 	    sizeof (uint64_t), 1, &version, tx) != 0) {
6607 		cmn_err(CE_PANIC, "failed to add pool version");
6608 	}
6609 
6610 	/* Newly created pools with the right version are always deflated. */
6611 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6612 		spa->spa_deflate = TRUE;
6613 		if (zap_add(spa->spa_meta_objset,
6614 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6615 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6616 			cmn_err(CE_PANIC, "failed to add deflate");
6617 		}
6618 	}
6619 
6620 	/*
6621 	 * Create the deferred-free bpobj.  Turn off compression
6622 	 * because sync-to-convergence takes longer if the blocksize
6623 	 * keeps changing.
6624 	 */
6625 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6626 	dmu_object_set_compress(spa->spa_meta_objset, obj,
6627 	    ZIO_COMPRESS_OFF, tx);
6628 	if (zap_add(spa->spa_meta_objset,
6629 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6630 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
6631 		cmn_err(CE_PANIC, "failed to add bpobj");
6632 	}
6633 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6634 	    spa->spa_meta_objset, obj));
6635 
6636 	/*
6637 	 * Generate some random noise for salted checksums to operate on.
6638 	 */
6639 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6640 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
6641 
6642 	/*
6643 	 * Set pool properties.
6644 	 */
6645 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6646 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6647 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6648 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6649 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6650 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6651 	spa->spa_dedup_table_quota =
6652 	    zpool_prop_default_numeric(ZPOOL_PROP_DEDUP_TABLE_QUOTA);
6653 
6654 	if (props != NULL) {
6655 		spa_configfile_set(spa, props, B_FALSE);
6656 		spa_sync_props(props, tx);
6657 	}
6658 
6659 	for (int i = 0; i < ndraid; i++)
6660 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6661 
6662 	dmu_tx_commit(tx);
6663 
6664 	spa->spa_sync_on = B_TRUE;
6665 	txg_sync_start(dp);
6666 	mmp_thread_start(spa);
6667 	txg_wait_synced(dp, txg);
6668 
6669 	spa_spawn_aux_threads(spa);
6670 
6671 	spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6672 
6673 	/*
6674 	 * Don't count references from objsets that are already closed
6675 	 * and are making their way through the eviction process.
6676 	 */
6677 	spa_evicting_os_wait(spa);
6678 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6679 	spa->spa_load_state = SPA_LOAD_NONE;
6680 
6681 	spa_import_os(spa);
6682 
6683 	mutex_exit(&spa_namespace_lock);
6684 
6685 	return (0);
6686 }
6687 
6688 /*
6689  * Import a non-root pool into the system.
6690  */
6691 int
6692 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6693 {
6694 	spa_t *spa;
6695 	const char *altroot = NULL;
6696 	spa_load_state_t state = SPA_LOAD_IMPORT;
6697 	zpool_load_policy_t policy;
6698 	spa_mode_t mode = spa_mode_global;
6699 	uint64_t readonly = B_FALSE;
6700 	int error;
6701 	nvlist_t *nvroot;
6702 	nvlist_t **spares, **l2cache;
6703 	uint_t nspares, nl2cache;
6704 
6705 	/*
6706 	 * If a pool with this name exists, return failure.
6707 	 */
6708 	mutex_enter(&spa_namespace_lock);
6709 	if (spa_lookup(pool) != NULL) {
6710 		mutex_exit(&spa_namespace_lock);
6711 		return (SET_ERROR(EEXIST));
6712 	}
6713 
6714 	/*
6715 	 * Create and initialize the spa structure.
6716 	 */
6717 	(void) nvlist_lookup_string(props,
6718 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6719 	(void) nvlist_lookup_uint64(props,
6720 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6721 	if (readonly)
6722 		mode = SPA_MODE_READ;
6723 	spa = spa_add(pool, config, altroot);
6724 	spa->spa_import_flags = flags;
6725 
6726 	/*
6727 	 * Verbatim import - Take a pool and insert it into the namespace
6728 	 * as if it had been loaded at boot.
6729 	 */
6730 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6731 		if (props != NULL)
6732 			spa_configfile_set(spa, props, B_FALSE);
6733 
6734 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6735 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6736 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6737 		mutex_exit(&spa_namespace_lock);
6738 		return (0);
6739 	}
6740 
6741 	spa_activate(spa, mode);
6742 
6743 	/*
6744 	 * Don't start async tasks until we know everything is healthy.
6745 	 */
6746 	spa_async_suspend(spa);
6747 
6748 	zpool_get_load_policy(config, &policy);
6749 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6750 		state = SPA_LOAD_RECOVER;
6751 
6752 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6753 
6754 	if (state != SPA_LOAD_RECOVER) {
6755 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6756 		zfs_dbgmsg("spa_import: importing %s", pool);
6757 	} else {
6758 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6759 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6760 	}
6761 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6762 
6763 	/*
6764 	 * Propagate anything learned while loading the pool and pass it
6765 	 * back to caller (i.e. rewind info, missing devices, etc).
6766 	 */
6767 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6768 
6769 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6770 	/*
6771 	 * Toss any existing sparelist, as it doesn't have any validity
6772 	 * anymore, and conflicts with spa_has_spare().
6773 	 */
6774 	if (spa->spa_spares.sav_config) {
6775 		nvlist_free(spa->spa_spares.sav_config);
6776 		spa->spa_spares.sav_config = NULL;
6777 		spa_load_spares(spa);
6778 	}
6779 	if (spa->spa_l2cache.sav_config) {
6780 		nvlist_free(spa->spa_l2cache.sav_config);
6781 		spa->spa_l2cache.sav_config = NULL;
6782 		spa_load_l2cache(spa);
6783 	}
6784 
6785 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6786 	spa_config_exit(spa, SCL_ALL, FTAG);
6787 
6788 	if (props != NULL)
6789 		spa_configfile_set(spa, props, B_FALSE);
6790 
6791 	if (error != 0 || (props && spa_writeable(spa) &&
6792 	    (error = spa_prop_set(spa, props)))) {
6793 		spa_unload(spa);
6794 		spa_deactivate(spa);
6795 		spa_remove(spa);
6796 		mutex_exit(&spa_namespace_lock);
6797 		return (error);
6798 	}
6799 
6800 	spa_async_resume(spa);
6801 
6802 	/*
6803 	 * Override any spares and level 2 cache devices as specified by
6804 	 * the user, as these may have correct device names/devids, etc.
6805 	 */
6806 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6807 	    &spares, &nspares) == 0) {
6808 		if (spa->spa_spares.sav_config)
6809 			fnvlist_remove(spa->spa_spares.sav_config,
6810 			    ZPOOL_CONFIG_SPARES);
6811 		else
6812 			spa->spa_spares.sav_config = fnvlist_alloc();
6813 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6814 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6815 		    nspares);
6816 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6817 		spa_load_spares(spa);
6818 		spa_config_exit(spa, SCL_ALL, FTAG);
6819 		spa->spa_spares.sav_sync = B_TRUE;
6820 		spa->spa_spares.sav_label_sync = B_TRUE;
6821 	}
6822 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6823 	    &l2cache, &nl2cache) == 0) {
6824 		if (spa->spa_l2cache.sav_config)
6825 			fnvlist_remove(spa->spa_l2cache.sav_config,
6826 			    ZPOOL_CONFIG_L2CACHE);
6827 		else
6828 			spa->spa_l2cache.sav_config = fnvlist_alloc();
6829 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6830 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6831 		    nl2cache);
6832 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6833 		spa_load_l2cache(spa);
6834 		spa_config_exit(spa, SCL_ALL, FTAG);
6835 		spa->spa_l2cache.sav_sync = B_TRUE;
6836 		spa->spa_l2cache.sav_label_sync = B_TRUE;
6837 	}
6838 
6839 	/*
6840 	 * Check for any removed devices.
6841 	 */
6842 	if (spa->spa_autoreplace) {
6843 		spa_aux_check_removed(&spa->spa_spares);
6844 		spa_aux_check_removed(&spa->spa_l2cache);
6845 	}
6846 
6847 	if (spa_writeable(spa)) {
6848 		/*
6849 		 * Update the config cache to include the newly-imported pool.
6850 		 */
6851 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6852 	}
6853 
6854 	/*
6855 	 * It's possible that the pool was expanded while it was exported.
6856 	 * We kick off an async task to handle this for us.
6857 	 */
6858 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6859 
6860 	spa_history_log_version(spa, "import", NULL);
6861 
6862 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6863 
6864 	mutex_exit(&spa_namespace_lock);
6865 
6866 	zvol_create_minors_recursive(pool);
6867 
6868 	spa_import_os(spa);
6869 
6870 	return (0);
6871 }
6872 
6873 nvlist_t *
6874 spa_tryimport(nvlist_t *tryconfig)
6875 {
6876 	nvlist_t *config = NULL;
6877 	const char *poolname, *cachefile;
6878 	spa_t *spa;
6879 	uint64_t state;
6880 	int error;
6881 	zpool_load_policy_t policy;
6882 
6883 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6884 		return (NULL);
6885 
6886 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6887 		return (NULL);
6888 
6889 	/*
6890 	 * Create and initialize the spa structure.
6891 	 */
6892 	char *name = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6893 	(void) snprintf(name, MAXPATHLEN, "%s-%llx-%s",
6894 	    TRYIMPORT_NAME, (u_longlong_t)(uintptr_t)curthread, poolname);
6895 
6896 	mutex_enter(&spa_namespace_lock);
6897 	spa = spa_add(name, tryconfig, NULL);
6898 	spa_activate(spa, SPA_MODE_READ);
6899 	kmem_free(name, MAXPATHLEN);
6900 
6901 	/*
6902 	 * Rewind pool if a max txg was provided.
6903 	 */
6904 	zpool_get_load_policy(spa->spa_config, &policy);
6905 	if (policy.zlp_txg != UINT64_MAX) {
6906 		spa->spa_load_max_txg = policy.zlp_txg;
6907 		spa->spa_extreme_rewind = B_TRUE;
6908 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6909 		    poolname, (longlong_t)policy.zlp_txg);
6910 	} else {
6911 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6912 	}
6913 
6914 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6915 	    == 0) {
6916 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6917 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6918 	} else {
6919 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6920 	}
6921 
6922 	/*
6923 	 * spa_import() relies on a pool config fetched by spa_try_import()
6924 	 * for spare/cache devices. Import flags are not passed to
6925 	 * spa_tryimport(), which makes it return early due to a missing log
6926 	 * device and missing retrieving the cache device and spare eventually.
6927 	 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
6928 	 * the correct configuration regardless of the missing log device.
6929 	 */
6930 	spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
6931 
6932 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6933 
6934 	/*
6935 	 * If 'tryconfig' was at least parsable, return the current config.
6936 	 */
6937 	if (spa->spa_root_vdev != NULL) {
6938 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6939 		fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6940 		fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6941 		fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6942 		    spa->spa_uberblock.ub_timestamp);
6943 		fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6944 		    spa->spa_load_info);
6945 		fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6946 		    spa->spa_errata);
6947 
6948 		/*
6949 		 * If the bootfs property exists on this pool then we
6950 		 * copy it out so that external consumers can tell which
6951 		 * pools are bootable.
6952 		 */
6953 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
6954 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6955 
6956 			/*
6957 			 * We have to play games with the name since the
6958 			 * pool was opened as TRYIMPORT_NAME.
6959 			 */
6960 			if (dsl_dsobj_to_dsname(spa_name(spa),
6961 			    spa->spa_bootfs, tmpname) == 0) {
6962 				char *cp;
6963 				char *dsname;
6964 
6965 				dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6966 
6967 				cp = strchr(tmpname, '/');
6968 				if (cp == NULL) {
6969 					(void) strlcpy(dsname, tmpname,
6970 					    MAXPATHLEN);
6971 				} else {
6972 					(void) snprintf(dsname, MAXPATHLEN,
6973 					    "%s/%s", poolname, ++cp);
6974 				}
6975 				fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6976 				    dsname);
6977 				kmem_free(dsname, MAXPATHLEN);
6978 			}
6979 			kmem_free(tmpname, MAXPATHLEN);
6980 		}
6981 
6982 		/*
6983 		 * Add the list of hot spares and level 2 cache devices.
6984 		 */
6985 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6986 		spa_add_spares(spa, config);
6987 		spa_add_l2cache(spa, config);
6988 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6989 	}
6990 
6991 	spa_unload(spa);
6992 	spa_deactivate(spa);
6993 	spa_remove(spa);
6994 	mutex_exit(&spa_namespace_lock);
6995 
6996 	return (config);
6997 }
6998 
6999 /*
7000  * Pool export/destroy
7001  *
7002  * The act of destroying or exporting a pool is very simple.  We make sure there
7003  * is no more pending I/O and any references to the pool are gone.  Then, we
7004  * update the pool state and sync all the labels to disk, removing the
7005  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
7006  * we don't sync the labels or remove the configuration cache.
7007  */
7008 static int
7009 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
7010     boolean_t force, boolean_t hardforce)
7011 {
7012 	int error = 0;
7013 	spa_t *spa;
7014 	hrtime_t export_start = gethrtime();
7015 
7016 	if (oldconfig)
7017 		*oldconfig = NULL;
7018 
7019 	if (!(spa_mode_global & SPA_MODE_WRITE))
7020 		return (SET_ERROR(EROFS));
7021 
7022 	mutex_enter(&spa_namespace_lock);
7023 	if ((spa = spa_lookup(pool)) == NULL) {
7024 		mutex_exit(&spa_namespace_lock);
7025 		return (SET_ERROR(ENOENT));
7026 	}
7027 
7028 	if (spa->spa_is_exporting) {
7029 		/* the pool is being exported by another thread */
7030 		mutex_exit(&spa_namespace_lock);
7031 		return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
7032 	}
7033 	spa->spa_is_exporting = B_TRUE;
7034 
7035 	/*
7036 	 * Put a hold on the pool, drop the namespace lock, stop async tasks
7037 	 * and see if we can export.
7038 	 */
7039 	spa_open_ref(spa, FTAG);
7040 	mutex_exit(&spa_namespace_lock);
7041 	spa_async_suspend(spa);
7042 	if (spa->spa_zvol_taskq) {
7043 		zvol_remove_minors(spa, spa_name(spa), B_TRUE);
7044 		taskq_wait(spa->spa_zvol_taskq);
7045 	}
7046 	mutex_enter(&spa_namespace_lock);
7047 	spa->spa_export_thread = curthread;
7048 	spa_close(spa, FTAG);
7049 
7050 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
7051 		mutex_exit(&spa_namespace_lock);
7052 		goto export_spa;
7053 	}
7054 
7055 	/*
7056 	 * The pool will be in core if it's openable, in which case we can
7057 	 * modify its state.  Objsets may be open only because they're dirty,
7058 	 * so we have to force it to sync before checking spa_refcnt.
7059 	 */
7060 	if (spa->spa_sync_on) {
7061 		txg_wait_synced(spa->spa_dsl_pool, 0);
7062 		spa_evicting_os_wait(spa);
7063 	}
7064 
7065 	/*
7066 	 * A pool cannot be exported or destroyed if there are active
7067 	 * references.  If we are resetting a pool, allow references by
7068 	 * fault injection handlers.
7069 	 */
7070 	if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
7071 		error = SET_ERROR(EBUSY);
7072 		goto fail;
7073 	}
7074 
7075 	mutex_exit(&spa_namespace_lock);
7076 	/*
7077 	 * At this point we no longer hold the spa_namespace_lock and
7078 	 * there were no references on the spa. Future spa_lookups will
7079 	 * notice the spa->spa_export_thread and wait until we signal
7080 	 * that we are finshed.
7081 	 */
7082 
7083 	if (spa->spa_sync_on) {
7084 		vdev_t *rvd = spa->spa_root_vdev;
7085 		/*
7086 		 * A pool cannot be exported if it has an active shared spare.
7087 		 * This is to prevent other pools stealing the active spare
7088 		 * from an exported pool. At user's own will, such pool can
7089 		 * be forcedly exported.
7090 		 */
7091 		if (!force && new_state == POOL_STATE_EXPORTED &&
7092 		    spa_has_active_shared_spare(spa)) {
7093 			error = SET_ERROR(EXDEV);
7094 			mutex_enter(&spa_namespace_lock);
7095 			goto fail;
7096 		}
7097 
7098 		/*
7099 		 * We're about to export or destroy this pool. Make sure
7100 		 * we stop all initialization and trim activity here before
7101 		 * we set the spa_final_txg. This will ensure that all
7102 		 * dirty data resulting from the initialization is
7103 		 * committed to disk before we unload the pool.
7104 		 */
7105 		vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
7106 		vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
7107 		vdev_autotrim_stop_all(spa);
7108 		vdev_rebuild_stop_all(spa);
7109 
7110 		/*
7111 		 * We want this to be reflected on every label,
7112 		 * so mark them all dirty.  spa_unload() will do the
7113 		 * final sync that pushes these changes out.
7114 		 */
7115 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7116 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7117 			spa->spa_state = new_state;
7118 			vdev_config_dirty(rvd);
7119 			spa_config_exit(spa, SCL_ALL, FTAG);
7120 		}
7121 
7122 		/*
7123 		 * If the log space map feature is enabled and the pool is
7124 		 * getting exported (but not destroyed), we want to spend some
7125 		 * time flushing as many metaslabs as we can in an attempt to
7126 		 * destroy log space maps and save import time. This has to be
7127 		 * done before we set the spa_final_txg, otherwise
7128 		 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
7129 		 * spa_should_flush_logs_on_unload() should be called after
7130 		 * spa_state has been set to the new_state.
7131 		 */
7132 		if (spa_should_flush_logs_on_unload(spa))
7133 			spa_unload_log_sm_flush_all(spa);
7134 
7135 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7136 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7137 			spa->spa_final_txg = spa_last_synced_txg(spa) +
7138 			    TXG_DEFER_SIZE + 1;
7139 			spa_config_exit(spa, SCL_ALL, FTAG);
7140 		}
7141 	}
7142 
7143 export_spa:
7144 	spa_export_os(spa);
7145 
7146 	if (new_state == POOL_STATE_DESTROYED)
7147 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
7148 	else if (new_state == POOL_STATE_EXPORTED)
7149 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
7150 
7151 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7152 		spa_unload(spa);
7153 		spa_deactivate(spa);
7154 	}
7155 
7156 	if (oldconfig && spa->spa_config)
7157 		*oldconfig = fnvlist_dup(spa->spa_config);
7158 
7159 	if (new_state == POOL_STATE_EXPORTED)
7160 		zio_handle_export_delay(spa, gethrtime() - export_start);
7161 
7162 	/*
7163 	 * Take the namespace lock for the actual spa_t removal
7164 	 */
7165 	mutex_enter(&spa_namespace_lock);
7166 	if (new_state != POOL_STATE_UNINITIALIZED) {
7167 		if (!hardforce)
7168 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
7169 		spa_remove(spa);
7170 	} else {
7171 		/*
7172 		 * If spa_remove() is not called for this spa_t and
7173 		 * there is any possibility that it can be reused,
7174 		 * we make sure to reset the exporting flag.
7175 		 */
7176 		spa->spa_is_exporting = B_FALSE;
7177 		spa->spa_export_thread = NULL;
7178 	}
7179 
7180 	/*
7181 	 * Wake up any waiters in spa_lookup()
7182 	 */
7183 	cv_broadcast(&spa_namespace_cv);
7184 	mutex_exit(&spa_namespace_lock);
7185 	return (0);
7186 
7187 fail:
7188 	spa->spa_is_exporting = B_FALSE;
7189 	spa->spa_export_thread = NULL;
7190 
7191 	spa_async_resume(spa);
7192 	/*
7193 	 * Wake up any waiters in spa_lookup()
7194 	 */
7195 	cv_broadcast(&spa_namespace_cv);
7196 	mutex_exit(&spa_namespace_lock);
7197 	return (error);
7198 }
7199 
7200 /*
7201  * Destroy a storage pool.
7202  */
7203 int
7204 spa_destroy(const char *pool)
7205 {
7206 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
7207 	    B_FALSE, B_FALSE));
7208 }
7209 
7210 /*
7211  * Export a storage pool.
7212  */
7213 int
7214 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
7215     boolean_t hardforce)
7216 {
7217 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
7218 	    force, hardforce));
7219 }
7220 
7221 /*
7222  * Similar to spa_export(), this unloads the spa_t without actually removing it
7223  * from the namespace in any way.
7224  */
7225 int
7226 spa_reset(const char *pool)
7227 {
7228 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
7229 	    B_FALSE, B_FALSE));
7230 }
7231 
7232 /*
7233  * ==========================================================================
7234  * Device manipulation
7235  * ==========================================================================
7236  */
7237 
7238 /*
7239  * This is called as a synctask to increment the draid feature flag
7240  */
7241 static void
7242 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
7243 {
7244 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7245 	int draid = (int)(uintptr_t)arg;
7246 
7247 	for (int c = 0; c < draid; c++)
7248 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
7249 }
7250 
7251 /*
7252  * Add a device to a storage pool.
7253  */
7254 int
7255 spa_vdev_add(spa_t *spa, nvlist_t *nvroot, boolean_t check_ashift)
7256 {
7257 	uint64_t txg, ndraid = 0;
7258 	int error;
7259 	vdev_t *rvd = spa->spa_root_vdev;
7260 	vdev_t *vd, *tvd;
7261 	nvlist_t **spares, **l2cache;
7262 	uint_t nspares, nl2cache;
7263 
7264 	ASSERT(spa_writeable(spa));
7265 
7266 	txg = spa_vdev_enter(spa);
7267 
7268 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
7269 	    VDEV_ALLOC_ADD)) != 0)
7270 		return (spa_vdev_exit(spa, NULL, txg, error));
7271 
7272 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
7273 
7274 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
7275 	    &nspares) != 0)
7276 		nspares = 0;
7277 
7278 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
7279 	    &nl2cache) != 0)
7280 		nl2cache = 0;
7281 
7282 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
7283 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
7284 
7285 	if (vd->vdev_children != 0 &&
7286 	    (error = vdev_create(vd, txg, B_FALSE)) != 0) {
7287 		return (spa_vdev_exit(spa, vd, txg, error));
7288 	}
7289 
7290 	/*
7291 	 * The virtual dRAID spares must be added after vdev tree is created
7292 	 * and the vdev guids are generated.  The guid of their associated
7293 	 * dRAID is stored in the config and used when opening the spare.
7294 	 */
7295 	if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
7296 	    rvd->vdev_children)) == 0) {
7297 		if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
7298 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
7299 			nspares = 0;
7300 	} else {
7301 		return (spa_vdev_exit(spa, vd, txg, error));
7302 	}
7303 
7304 	/*
7305 	 * We must validate the spares and l2cache devices after checking the
7306 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
7307 	 */
7308 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
7309 		return (spa_vdev_exit(spa, vd, txg, error));
7310 
7311 	/*
7312 	 * If we are in the middle of a device removal, we can only add
7313 	 * devices which match the existing devices in the pool.
7314 	 * If we are in the middle of a removal, or have some indirect
7315 	 * vdevs, we can not add raidz or dRAID top levels.
7316 	 */
7317 	if (spa->spa_vdev_removal != NULL ||
7318 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7319 		for (int c = 0; c < vd->vdev_children; c++) {
7320 			tvd = vd->vdev_child[c];
7321 			if (spa->spa_vdev_removal != NULL &&
7322 			    tvd->vdev_ashift != spa->spa_max_ashift) {
7323 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
7324 			}
7325 			/* Fail if top level vdev is raidz or a dRAID */
7326 			if (vdev_get_nparity(tvd) != 0)
7327 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
7328 
7329 			/*
7330 			 * Need the top level mirror to be
7331 			 * a mirror of leaf vdevs only
7332 			 */
7333 			if (tvd->vdev_ops == &vdev_mirror_ops) {
7334 				for (uint64_t cid = 0;
7335 				    cid < tvd->vdev_children; cid++) {
7336 					vdev_t *cvd = tvd->vdev_child[cid];
7337 					if (!cvd->vdev_ops->vdev_op_leaf) {
7338 						return (spa_vdev_exit(spa, vd,
7339 						    txg, EINVAL));
7340 					}
7341 				}
7342 			}
7343 		}
7344 	}
7345 
7346 	if (check_ashift && spa->spa_max_ashift == spa->spa_min_ashift) {
7347 		for (int c = 0; c < vd->vdev_children; c++) {
7348 			tvd = vd->vdev_child[c];
7349 			if (tvd->vdev_ashift != spa->spa_max_ashift) {
7350 				return (spa_vdev_exit(spa, vd, txg,
7351 				    ZFS_ERR_ASHIFT_MISMATCH));
7352 			}
7353 		}
7354 	}
7355 
7356 	for (int c = 0; c < vd->vdev_children; c++) {
7357 		tvd = vd->vdev_child[c];
7358 		vdev_remove_child(vd, tvd);
7359 		tvd->vdev_id = rvd->vdev_children;
7360 		vdev_add_child(rvd, tvd);
7361 		vdev_config_dirty(tvd);
7362 	}
7363 
7364 	if (nspares != 0) {
7365 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
7366 		    ZPOOL_CONFIG_SPARES);
7367 		spa_load_spares(spa);
7368 		spa->spa_spares.sav_sync = B_TRUE;
7369 	}
7370 
7371 	if (nl2cache != 0) {
7372 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
7373 		    ZPOOL_CONFIG_L2CACHE);
7374 		spa_load_l2cache(spa);
7375 		spa->spa_l2cache.sav_sync = B_TRUE;
7376 	}
7377 
7378 	/*
7379 	 * We can't increment a feature while holding spa_vdev so we
7380 	 * have to do it in a synctask.
7381 	 */
7382 	if (ndraid != 0) {
7383 		dmu_tx_t *tx;
7384 
7385 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
7386 		dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
7387 		    (void *)(uintptr_t)ndraid, tx);
7388 		dmu_tx_commit(tx);
7389 	}
7390 
7391 	/*
7392 	 * We have to be careful when adding new vdevs to an existing pool.
7393 	 * If other threads start allocating from these vdevs before we
7394 	 * sync the config cache, and we lose power, then upon reboot we may
7395 	 * fail to open the pool because there are DVAs that the config cache
7396 	 * can't translate.  Therefore, we first add the vdevs without
7397 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
7398 	 * and then let spa_config_update() initialize the new metaslabs.
7399 	 *
7400 	 * spa_load() checks for added-but-not-initialized vdevs, so that
7401 	 * if we lose power at any point in this sequence, the remaining
7402 	 * steps will be completed the next time we load the pool.
7403 	 */
7404 	(void) spa_vdev_exit(spa, vd, txg, 0);
7405 
7406 	mutex_enter(&spa_namespace_lock);
7407 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7408 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
7409 	mutex_exit(&spa_namespace_lock);
7410 
7411 	return (0);
7412 }
7413 
7414 /*
7415  * Attach a device to a vdev specified by its guid.  The vdev type can be
7416  * a mirror, a raidz, or a leaf device that is also a top-level (e.g. a
7417  * single device). When the vdev is a single device, a mirror vdev will be
7418  * automatically inserted.
7419  *
7420  * If 'replacing' is specified, the new device is intended to replace the
7421  * existing device; in this case the two devices are made into their own
7422  * mirror using the 'replacing' vdev, which is functionally identical to
7423  * the mirror vdev (it actually reuses all the same ops) but has a few
7424  * extra rules: you can't attach to it after it's been created, and upon
7425  * completion of resilvering, the first disk (the one being replaced)
7426  * is automatically detached.
7427  *
7428  * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
7429  * should be performed instead of traditional healing reconstruction.  From
7430  * an administrators perspective these are both resilver operations.
7431  */
7432 int
7433 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
7434     int rebuild)
7435 {
7436 	uint64_t txg, dtl_max_txg;
7437 	vdev_t *rvd = spa->spa_root_vdev;
7438 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
7439 	vdev_ops_t *pvops;
7440 	char *oldvdpath, *newvdpath;
7441 	int newvd_isspare = B_FALSE;
7442 	int error;
7443 
7444 	ASSERT(spa_writeable(spa));
7445 
7446 	txg = spa_vdev_enter(spa);
7447 
7448 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
7449 
7450 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7451 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7452 		error = (spa_has_checkpoint(spa)) ?
7453 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7454 		return (spa_vdev_exit(spa, NULL, txg, error));
7455 	}
7456 
7457 	if (rebuild) {
7458 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
7459 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7460 
7461 		if (dsl_scan_resilvering(spa_get_dsl(spa)) ||
7462 		    dsl_scan_resilver_scheduled(spa_get_dsl(spa))) {
7463 			return (spa_vdev_exit(spa, NULL, txg,
7464 			    ZFS_ERR_RESILVER_IN_PROGRESS));
7465 		}
7466 	} else {
7467 		if (vdev_rebuild_active(rvd))
7468 			return (spa_vdev_exit(spa, NULL, txg,
7469 			    ZFS_ERR_REBUILD_IN_PROGRESS));
7470 	}
7471 
7472 	if (spa->spa_vdev_removal != NULL) {
7473 		return (spa_vdev_exit(spa, NULL, txg,
7474 		    ZFS_ERR_DEVRM_IN_PROGRESS));
7475 	}
7476 
7477 	if (oldvd == NULL)
7478 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7479 
7480 	boolean_t raidz = oldvd->vdev_ops == &vdev_raidz_ops;
7481 
7482 	if (raidz) {
7483 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_RAIDZ_EXPANSION))
7484 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7485 
7486 		/*
7487 		 * Can't expand a raidz while prior expand is in progress.
7488 		 */
7489 		if (spa->spa_raidz_expand != NULL) {
7490 			return (spa_vdev_exit(spa, NULL, txg,
7491 			    ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS));
7492 		}
7493 	} else if (!oldvd->vdev_ops->vdev_op_leaf) {
7494 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7495 	}
7496 
7497 	if (raidz)
7498 		pvd = oldvd;
7499 	else
7500 		pvd = oldvd->vdev_parent;
7501 
7502 	if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
7503 	    VDEV_ALLOC_ATTACH) != 0)
7504 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7505 
7506 	if (newrootvd->vdev_children != 1)
7507 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7508 
7509 	newvd = newrootvd->vdev_child[0];
7510 
7511 	if (!newvd->vdev_ops->vdev_op_leaf)
7512 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7513 
7514 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
7515 		return (spa_vdev_exit(spa, newrootvd, txg, error));
7516 
7517 	/*
7518 	 * log, dedup and special vdevs should not be replaced by spares.
7519 	 */
7520 	if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
7521 	    oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
7522 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7523 	}
7524 
7525 	/*
7526 	 * A dRAID spare can only replace a child of its parent dRAID vdev.
7527 	 */
7528 	if (newvd->vdev_ops == &vdev_draid_spare_ops &&
7529 	    oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
7530 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7531 	}
7532 
7533 	if (rebuild) {
7534 		/*
7535 		 * For rebuilds, the top vdev must support reconstruction
7536 		 * using only space maps.  This means the only allowable
7537 		 * vdevs types are the root vdev, a mirror, or dRAID.
7538 		 */
7539 		tvd = pvd;
7540 		if (pvd->vdev_top != NULL)
7541 			tvd = pvd->vdev_top;
7542 
7543 		if (tvd->vdev_ops != &vdev_mirror_ops &&
7544 		    tvd->vdev_ops != &vdev_root_ops &&
7545 		    tvd->vdev_ops != &vdev_draid_ops) {
7546 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7547 		}
7548 	}
7549 
7550 	if (!replacing) {
7551 		/*
7552 		 * For attach, the only allowable parent is a mirror or
7553 		 * the root vdev. A raidz vdev can be attached to, but
7554 		 * you cannot attach to a raidz child.
7555 		 */
7556 		if (pvd->vdev_ops != &vdev_mirror_ops &&
7557 		    pvd->vdev_ops != &vdev_root_ops &&
7558 		    !raidz)
7559 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7560 
7561 		pvops = &vdev_mirror_ops;
7562 	} else {
7563 		/*
7564 		 * Active hot spares can only be replaced by inactive hot
7565 		 * spares.
7566 		 */
7567 		if (pvd->vdev_ops == &vdev_spare_ops &&
7568 		    oldvd->vdev_isspare &&
7569 		    !spa_has_spare(spa, newvd->vdev_guid))
7570 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7571 
7572 		/*
7573 		 * If the source is a hot spare, and the parent isn't already a
7574 		 * spare, then we want to create a new hot spare.  Otherwise, we
7575 		 * want to create a replacing vdev.  The user is not allowed to
7576 		 * attach to a spared vdev child unless the 'isspare' state is
7577 		 * the same (spare replaces spare, non-spare replaces
7578 		 * non-spare).
7579 		 */
7580 		if (pvd->vdev_ops == &vdev_replacing_ops &&
7581 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
7582 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7583 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
7584 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
7585 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7586 		}
7587 
7588 		if (newvd->vdev_isspare)
7589 			pvops = &vdev_spare_ops;
7590 		else
7591 			pvops = &vdev_replacing_ops;
7592 	}
7593 
7594 	/*
7595 	 * Make sure the new device is big enough.
7596 	 */
7597 	vdev_t *min_vdev = raidz ? oldvd->vdev_child[0] : oldvd;
7598 	if (newvd->vdev_asize < vdev_get_min_asize(min_vdev))
7599 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
7600 
7601 	/*
7602 	 * The new device cannot have a higher alignment requirement
7603 	 * than the top-level vdev.
7604 	 */
7605 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
7606 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7607 
7608 	/*
7609 	 * RAIDZ-expansion-specific checks.
7610 	 */
7611 	if (raidz) {
7612 		if (vdev_raidz_attach_check(newvd) != 0)
7613 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7614 
7615 		/*
7616 		 * Fail early if a child is not healthy or being replaced
7617 		 */
7618 		for (int i = 0; i < oldvd->vdev_children; i++) {
7619 			if (vdev_is_dead(oldvd->vdev_child[i]) ||
7620 			    !oldvd->vdev_child[i]->vdev_ops->vdev_op_leaf) {
7621 				return (spa_vdev_exit(spa, newrootvd, txg,
7622 				    ENXIO));
7623 			}
7624 			/* Also fail if reserved boot area is in-use */
7625 			if (vdev_check_boot_reserve(spa, oldvd->vdev_child[i])
7626 			    != 0) {
7627 				return (spa_vdev_exit(spa, newrootvd, txg,
7628 				    EADDRINUSE));
7629 			}
7630 		}
7631 	}
7632 
7633 	if (raidz) {
7634 		/*
7635 		 * Note: oldvdpath is freed by spa_strfree(),  but
7636 		 * kmem_asprintf() is freed by kmem_strfree(), so we have to
7637 		 * move it to a spa_strdup-ed string.
7638 		 */
7639 		char *tmp = kmem_asprintf("raidz%u-%u",
7640 		    (uint_t)vdev_get_nparity(oldvd), (uint_t)oldvd->vdev_id);
7641 		oldvdpath = spa_strdup(tmp);
7642 		kmem_strfree(tmp);
7643 	} else {
7644 		oldvdpath = spa_strdup(oldvd->vdev_path);
7645 	}
7646 	newvdpath = spa_strdup(newvd->vdev_path);
7647 
7648 	/*
7649 	 * If this is an in-place replacement, update oldvd's path and devid
7650 	 * to make it distinguishable from newvd, and unopenable from now on.
7651 	 */
7652 	if (strcmp(oldvdpath, newvdpath) == 0) {
7653 		spa_strfree(oldvd->vdev_path);
7654 		oldvd->vdev_path = kmem_alloc(strlen(newvdpath) + 5,
7655 		    KM_SLEEP);
7656 		(void) sprintf(oldvd->vdev_path, "%s/old",
7657 		    newvdpath);
7658 		if (oldvd->vdev_devid != NULL) {
7659 			spa_strfree(oldvd->vdev_devid);
7660 			oldvd->vdev_devid = NULL;
7661 		}
7662 		spa_strfree(oldvdpath);
7663 		oldvdpath = spa_strdup(oldvd->vdev_path);
7664 	}
7665 
7666 	/*
7667 	 * If the parent is not a mirror, or if we're replacing, insert the new
7668 	 * mirror/replacing/spare vdev above oldvd.
7669 	 */
7670 	if (!raidz && pvd->vdev_ops != pvops) {
7671 		pvd = vdev_add_parent(oldvd, pvops);
7672 		ASSERT(pvd->vdev_ops == pvops);
7673 		ASSERT(oldvd->vdev_parent == pvd);
7674 	}
7675 
7676 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
7677 
7678 	/*
7679 	 * Extract the new device from its root and add it to pvd.
7680 	 */
7681 	vdev_remove_child(newrootvd, newvd);
7682 	newvd->vdev_id = pvd->vdev_children;
7683 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
7684 	vdev_add_child(pvd, newvd);
7685 
7686 	/*
7687 	 * Reevaluate the parent vdev state.
7688 	 */
7689 	vdev_propagate_state(pvd);
7690 
7691 	tvd = newvd->vdev_top;
7692 	ASSERT(pvd->vdev_top == tvd);
7693 	ASSERT(tvd->vdev_parent == rvd);
7694 
7695 	vdev_config_dirty(tvd);
7696 
7697 	/*
7698 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
7699 	 * for any dmu_sync-ed blocks.  It will propagate upward when
7700 	 * spa_vdev_exit() calls vdev_dtl_reassess().
7701 	 */
7702 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
7703 
7704 	if (raidz) {
7705 		/*
7706 		 * Wait for the youngest allocations and frees to sync,
7707 		 * and then wait for the deferral of those frees to finish.
7708 		 */
7709 		spa_vdev_config_exit(spa, NULL,
7710 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
7711 
7712 		vdev_initialize_stop_all(tvd, VDEV_INITIALIZE_ACTIVE);
7713 		vdev_trim_stop_all(tvd, VDEV_TRIM_ACTIVE);
7714 		vdev_autotrim_stop_wait(tvd);
7715 
7716 		dtl_max_txg = spa_vdev_config_enter(spa);
7717 
7718 		tvd->vdev_rz_expanding = B_TRUE;
7719 
7720 		vdev_dirty_leaves(tvd, VDD_DTL, dtl_max_txg);
7721 		vdev_config_dirty(tvd);
7722 
7723 		dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool,
7724 		    dtl_max_txg);
7725 		dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_raidz_attach_sync,
7726 		    newvd, tx);
7727 		dmu_tx_commit(tx);
7728 	} else {
7729 		vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
7730 		    dtl_max_txg - TXG_INITIAL);
7731 
7732 		if (newvd->vdev_isspare) {
7733 			spa_spare_activate(newvd);
7734 			spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
7735 		}
7736 
7737 		newvd_isspare = newvd->vdev_isspare;
7738 
7739 		/*
7740 		 * Mark newvd's DTL dirty in this txg.
7741 		 */
7742 		vdev_dirty(tvd, VDD_DTL, newvd, txg);
7743 
7744 		/*
7745 		 * Schedule the resilver or rebuild to restart in the future.
7746 		 * We do this to ensure that dmu_sync-ed blocks have been
7747 		 * stitched into the respective datasets.
7748 		 */
7749 		if (rebuild) {
7750 			newvd->vdev_rebuild_txg = txg;
7751 
7752 			vdev_rebuild(tvd);
7753 		} else {
7754 			newvd->vdev_resilver_txg = txg;
7755 
7756 			if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
7757 			    spa_feature_is_enabled(spa,
7758 			    SPA_FEATURE_RESILVER_DEFER)) {
7759 				vdev_defer_resilver(newvd);
7760 			} else {
7761 				dsl_scan_restart_resilver(spa->spa_dsl_pool,
7762 				    dtl_max_txg);
7763 			}
7764 		}
7765 	}
7766 
7767 	if (spa->spa_bootfs)
7768 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7769 
7770 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7771 
7772 	/*
7773 	 * Commit the config
7774 	 */
7775 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7776 
7777 	spa_history_log_internal(spa, "vdev attach", NULL,
7778 	    "%s vdev=%s %s vdev=%s",
7779 	    replacing && newvd_isspare ? "spare in" :
7780 	    replacing ? "replace" : "attach", newvdpath,
7781 	    replacing ? "for" : "to", oldvdpath);
7782 
7783 	spa_strfree(oldvdpath);
7784 	spa_strfree(newvdpath);
7785 
7786 	return (0);
7787 }
7788 
7789 /*
7790  * Detach a device from a mirror or replacing vdev.
7791  *
7792  * If 'replace_done' is specified, only detach if the parent
7793  * is a replacing or a spare vdev.
7794  */
7795 int
7796 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7797 {
7798 	uint64_t txg;
7799 	int error;
7800 	vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7801 	vdev_t *vd, *pvd, *cvd, *tvd;
7802 	boolean_t unspare = B_FALSE;
7803 	uint64_t unspare_guid = 0;
7804 	char *vdpath;
7805 
7806 	ASSERT(spa_writeable(spa));
7807 
7808 	txg = spa_vdev_detach_enter(spa, guid);
7809 
7810 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7811 
7812 	/*
7813 	 * Besides being called directly from the userland through the
7814 	 * ioctl interface, spa_vdev_detach() can be potentially called
7815 	 * at the end of spa_vdev_resilver_done().
7816 	 *
7817 	 * In the regular case, when we have a checkpoint this shouldn't
7818 	 * happen as we never empty the DTLs of a vdev during the scrub
7819 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7820 	 * should never get here when we have a checkpoint.
7821 	 *
7822 	 * That said, even in a case when we checkpoint the pool exactly
7823 	 * as spa_vdev_resilver_done() calls this function everything
7824 	 * should be fine as the resilver will return right away.
7825 	 */
7826 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7827 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7828 		error = (spa_has_checkpoint(spa)) ?
7829 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7830 		return (spa_vdev_exit(spa, NULL, txg, error));
7831 	}
7832 
7833 	if (vd == NULL)
7834 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7835 
7836 	if (!vd->vdev_ops->vdev_op_leaf)
7837 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7838 
7839 	pvd = vd->vdev_parent;
7840 
7841 	/*
7842 	 * If the parent/child relationship is not as expected, don't do it.
7843 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7844 	 * vdev that's replacing B with C.  The user's intent in replacing
7845 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
7846 	 * the replace by detaching C, the expected behavior is to end up
7847 	 * M(A,B).  But suppose that right after deciding to detach C,
7848 	 * the replacement of B completes.  We would have M(A,C), and then
7849 	 * ask to detach C, which would leave us with just A -- not what
7850 	 * the user wanted.  To prevent this, we make sure that the
7851 	 * parent/child relationship hasn't changed -- in this example,
7852 	 * that C's parent is still the replacing vdev R.
7853 	 */
7854 	if (pvd->vdev_guid != pguid && pguid != 0)
7855 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7856 
7857 	/*
7858 	 * Only 'replacing' or 'spare' vdevs can be replaced.
7859 	 */
7860 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7861 	    pvd->vdev_ops != &vdev_spare_ops)
7862 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7863 
7864 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7865 	    spa_version(spa) >= SPA_VERSION_SPARES);
7866 
7867 	/*
7868 	 * Only mirror, replacing, and spare vdevs support detach.
7869 	 */
7870 	if (pvd->vdev_ops != &vdev_replacing_ops &&
7871 	    pvd->vdev_ops != &vdev_mirror_ops &&
7872 	    pvd->vdev_ops != &vdev_spare_ops)
7873 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7874 
7875 	/*
7876 	 * If this device has the only valid copy of some data,
7877 	 * we cannot safely detach it.
7878 	 */
7879 	if (vdev_dtl_required(vd))
7880 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7881 
7882 	ASSERT(pvd->vdev_children >= 2);
7883 
7884 	/*
7885 	 * If we are detaching the second disk from a replacing vdev, then
7886 	 * check to see if we changed the original vdev's path to have "/old"
7887 	 * at the end in spa_vdev_attach().  If so, undo that change now.
7888 	 */
7889 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7890 	    vd->vdev_path != NULL) {
7891 		size_t len = strlen(vd->vdev_path);
7892 
7893 		for (int c = 0; c < pvd->vdev_children; c++) {
7894 			cvd = pvd->vdev_child[c];
7895 
7896 			if (cvd == vd || cvd->vdev_path == NULL)
7897 				continue;
7898 
7899 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7900 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
7901 				spa_strfree(cvd->vdev_path);
7902 				cvd->vdev_path = spa_strdup(vd->vdev_path);
7903 				break;
7904 			}
7905 		}
7906 	}
7907 
7908 	/*
7909 	 * If we are detaching the original disk from a normal spare, then it
7910 	 * implies that the spare should become a real disk, and be removed
7911 	 * from the active spare list for the pool.  dRAID spares on the
7912 	 * other hand are coupled to the pool and thus should never be removed
7913 	 * from the spares list.
7914 	 */
7915 	if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7916 		vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7917 
7918 		if (last_cvd->vdev_isspare &&
7919 		    last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7920 			unspare = B_TRUE;
7921 		}
7922 	}
7923 
7924 	/*
7925 	 * Erase the disk labels so the disk can be used for other things.
7926 	 * This must be done after all other error cases are handled,
7927 	 * but before we disembowel vd (so we can still do I/O to it).
7928 	 * But if we can't do it, don't treat the error as fatal --
7929 	 * it may be that the unwritability of the disk is the reason
7930 	 * it's being detached!
7931 	 */
7932 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7933 
7934 	/*
7935 	 * Remove vd from its parent and compact the parent's children.
7936 	 */
7937 	vdev_remove_child(pvd, vd);
7938 	vdev_compact_children(pvd);
7939 
7940 	/*
7941 	 * Remember one of the remaining children so we can get tvd below.
7942 	 */
7943 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
7944 
7945 	/*
7946 	 * If we need to remove the remaining child from the list of hot spares,
7947 	 * do it now, marking the vdev as no longer a spare in the process.
7948 	 * We must do this before vdev_remove_parent(), because that can
7949 	 * change the GUID if it creates a new toplevel GUID.  For a similar
7950 	 * reason, we must remove the spare now, in the same txg as the detach;
7951 	 * otherwise someone could attach a new sibling, change the GUID, and
7952 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7953 	 */
7954 	if (unspare) {
7955 		ASSERT(cvd->vdev_isspare);
7956 		spa_spare_remove(cvd);
7957 		unspare_guid = cvd->vdev_guid;
7958 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7959 		cvd->vdev_unspare = B_TRUE;
7960 	}
7961 
7962 	/*
7963 	 * If the parent mirror/replacing vdev only has one child,
7964 	 * the parent is no longer needed.  Remove it from the tree.
7965 	 */
7966 	if (pvd->vdev_children == 1) {
7967 		if (pvd->vdev_ops == &vdev_spare_ops)
7968 			cvd->vdev_unspare = B_FALSE;
7969 		vdev_remove_parent(cvd);
7970 	}
7971 
7972 	/*
7973 	 * We don't set tvd until now because the parent we just removed
7974 	 * may have been the previous top-level vdev.
7975 	 */
7976 	tvd = cvd->vdev_top;
7977 	ASSERT(tvd->vdev_parent == rvd);
7978 
7979 	/*
7980 	 * Reevaluate the parent vdev state.
7981 	 */
7982 	vdev_propagate_state(cvd);
7983 
7984 	/*
7985 	 * If the 'autoexpand' property is set on the pool then automatically
7986 	 * try to expand the size of the pool. For example if the device we
7987 	 * just detached was smaller than the others, it may be possible to
7988 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7989 	 * first so that we can obtain the updated sizes of the leaf vdevs.
7990 	 */
7991 	if (spa->spa_autoexpand) {
7992 		vdev_reopen(tvd);
7993 		vdev_expand(tvd, txg);
7994 	}
7995 
7996 	vdev_config_dirty(tvd);
7997 
7998 	/*
7999 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
8000 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
8001 	 * But first make sure we're not on any *other* txg's DTL list, to
8002 	 * prevent vd from being accessed after it's freed.
8003 	 */
8004 	vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
8005 	for (int t = 0; t < TXG_SIZE; t++)
8006 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
8007 	vd->vdev_detached = B_TRUE;
8008 	vdev_dirty(tvd, VDD_DTL, vd, txg);
8009 
8010 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
8011 	spa_notify_waiters(spa);
8012 
8013 	/* hang on to the spa before we release the lock */
8014 	spa_open_ref(spa, FTAG);
8015 
8016 	error = spa_vdev_exit(spa, vd, txg, 0);
8017 
8018 	spa_history_log_internal(spa, "detach", NULL,
8019 	    "vdev=%s", vdpath);
8020 	spa_strfree(vdpath);
8021 
8022 	/*
8023 	 * If this was the removal of the original device in a hot spare vdev,
8024 	 * then we want to go through and remove the device from the hot spare
8025 	 * list of every other pool.
8026 	 */
8027 	if (unspare) {
8028 		spa_t *altspa = NULL;
8029 
8030 		mutex_enter(&spa_namespace_lock);
8031 		while ((altspa = spa_next(altspa)) != NULL) {
8032 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
8033 			    altspa == spa)
8034 				continue;
8035 
8036 			spa_open_ref(altspa, FTAG);
8037 			mutex_exit(&spa_namespace_lock);
8038 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
8039 			mutex_enter(&spa_namespace_lock);
8040 			spa_close(altspa, FTAG);
8041 		}
8042 		mutex_exit(&spa_namespace_lock);
8043 
8044 		/* search the rest of the vdevs for spares to remove */
8045 		spa_vdev_resilver_done(spa);
8046 	}
8047 
8048 	/* all done with the spa; OK to release */
8049 	mutex_enter(&spa_namespace_lock);
8050 	spa_close(spa, FTAG);
8051 	mutex_exit(&spa_namespace_lock);
8052 
8053 	return (error);
8054 }
8055 
8056 static int
8057 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8058     list_t *vd_list)
8059 {
8060 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8061 
8062 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8063 
8064 	/* Look up vdev and ensure it's a leaf. */
8065 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8066 	if (vd == NULL || vd->vdev_detached) {
8067 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8068 		return (SET_ERROR(ENODEV));
8069 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8070 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8071 		return (SET_ERROR(EINVAL));
8072 	} else if (!vdev_writeable(vd)) {
8073 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8074 		return (SET_ERROR(EROFS));
8075 	}
8076 	mutex_enter(&vd->vdev_initialize_lock);
8077 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8078 
8079 	/*
8080 	 * When we activate an initialize action we check to see
8081 	 * if the vdev_initialize_thread is NULL. We do this instead
8082 	 * of using the vdev_initialize_state since there might be
8083 	 * a previous initialization process which has completed but
8084 	 * the thread is not exited.
8085 	 */
8086 	if (cmd_type == POOL_INITIALIZE_START &&
8087 	    (vd->vdev_initialize_thread != NULL ||
8088 	    vd->vdev_top->vdev_removing || vd->vdev_top->vdev_rz_expanding)) {
8089 		mutex_exit(&vd->vdev_initialize_lock);
8090 		return (SET_ERROR(EBUSY));
8091 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
8092 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
8093 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
8094 		mutex_exit(&vd->vdev_initialize_lock);
8095 		return (SET_ERROR(ESRCH));
8096 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
8097 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
8098 		mutex_exit(&vd->vdev_initialize_lock);
8099 		return (SET_ERROR(ESRCH));
8100 	} else if (cmd_type == POOL_INITIALIZE_UNINIT &&
8101 	    vd->vdev_initialize_thread != NULL) {
8102 		mutex_exit(&vd->vdev_initialize_lock);
8103 		return (SET_ERROR(EBUSY));
8104 	}
8105 
8106 	switch (cmd_type) {
8107 	case POOL_INITIALIZE_START:
8108 		vdev_initialize(vd);
8109 		break;
8110 	case POOL_INITIALIZE_CANCEL:
8111 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
8112 		break;
8113 	case POOL_INITIALIZE_SUSPEND:
8114 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
8115 		break;
8116 	case POOL_INITIALIZE_UNINIT:
8117 		vdev_uninitialize(vd);
8118 		break;
8119 	default:
8120 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8121 	}
8122 	mutex_exit(&vd->vdev_initialize_lock);
8123 
8124 	return (0);
8125 }
8126 
8127 int
8128 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
8129     nvlist_t *vdev_errlist)
8130 {
8131 	int total_errors = 0;
8132 	list_t vd_list;
8133 
8134 	list_create(&vd_list, sizeof (vdev_t),
8135 	    offsetof(vdev_t, vdev_initialize_node));
8136 
8137 	/*
8138 	 * We hold the namespace lock through the whole function
8139 	 * to prevent any changes to the pool while we're starting or
8140 	 * stopping initialization. The config and state locks are held so that
8141 	 * we can properly assess the vdev state before we commit to
8142 	 * the initializing operation.
8143 	 */
8144 	mutex_enter(&spa_namespace_lock);
8145 
8146 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8147 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8148 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
8149 
8150 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
8151 		    &vd_list);
8152 		if (error != 0) {
8153 			char guid_as_str[MAXNAMELEN];
8154 
8155 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
8156 			    "%llu", (unsigned long long)vdev_guid);
8157 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8158 			total_errors++;
8159 		}
8160 	}
8161 
8162 	/* Wait for all initialize threads to stop. */
8163 	vdev_initialize_stop_wait(spa, &vd_list);
8164 
8165 	/* Sync out the initializing state */
8166 	txg_wait_synced(spa->spa_dsl_pool, 0);
8167 	mutex_exit(&spa_namespace_lock);
8168 
8169 	list_destroy(&vd_list);
8170 
8171 	return (total_errors);
8172 }
8173 
8174 static int
8175 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8176     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
8177 {
8178 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8179 
8180 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8181 
8182 	/* Look up vdev and ensure it's a leaf. */
8183 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8184 	if (vd == NULL || vd->vdev_detached) {
8185 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8186 		return (SET_ERROR(ENODEV));
8187 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8188 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8189 		return (SET_ERROR(EINVAL));
8190 	} else if (!vdev_writeable(vd)) {
8191 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8192 		return (SET_ERROR(EROFS));
8193 	} else if (!vd->vdev_has_trim) {
8194 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8195 		return (SET_ERROR(EOPNOTSUPP));
8196 	} else if (secure && !vd->vdev_has_securetrim) {
8197 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8198 		return (SET_ERROR(EOPNOTSUPP));
8199 	}
8200 	mutex_enter(&vd->vdev_trim_lock);
8201 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8202 
8203 	/*
8204 	 * When we activate a TRIM action we check to see if the
8205 	 * vdev_trim_thread is NULL. We do this instead of using the
8206 	 * vdev_trim_state since there might be a previous TRIM process
8207 	 * which has completed but the thread is not exited.
8208 	 */
8209 	if (cmd_type == POOL_TRIM_START &&
8210 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing ||
8211 	    vd->vdev_top->vdev_rz_expanding)) {
8212 		mutex_exit(&vd->vdev_trim_lock);
8213 		return (SET_ERROR(EBUSY));
8214 	} else if (cmd_type == POOL_TRIM_CANCEL &&
8215 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
8216 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
8217 		mutex_exit(&vd->vdev_trim_lock);
8218 		return (SET_ERROR(ESRCH));
8219 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
8220 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
8221 		mutex_exit(&vd->vdev_trim_lock);
8222 		return (SET_ERROR(ESRCH));
8223 	}
8224 
8225 	switch (cmd_type) {
8226 	case POOL_TRIM_START:
8227 		vdev_trim(vd, rate, partial, secure);
8228 		break;
8229 	case POOL_TRIM_CANCEL:
8230 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
8231 		break;
8232 	case POOL_TRIM_SUSPEND:
8233 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
8234 		break;
8235 	default:
8236 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8237 	}
8238 	mutex_exit(&vd->vdev_trim_lock);
8239 
8240 	return (0);
8241 }
8242 
8243 /*
8244  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
8245  * TRIM threads for each child vdev.  These threads pass over all of the free
8246  * space in the vdev's metaslabs and issues TRIM commands for that space.
8247  */
8248 int
8249 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
8250     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
8251 {
8252 	int total_errors = 0;
8253 	list_t vd_list;
8254 
8255 	list_create(&vd_list, sizeof (vdev_t),
8256 	    offsetof(vdev_t, vdev_trim_node));
8257 
8258 	/*
8259 	 * We hold the namespace lock through the whole function
8260 	 * to prevent any changes to the pool while we're starting or
8261 	 * stopping TRIM. The config and state locks are held so that
8262 	 * we can properly assess the vdev state before we commit to
8263 	 * the TRIM operation.
8264 	 */
8265 	mutex_enter(&spa_namespace_lock);
8266 
8267 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8268 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8269 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
8270 
8271 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
8272 		    rate, partial, secure, &vd_list);
8273 		if (error != 0) {
8274 			char guid_as_str[MAXNAMELEN];
8275 
8276 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
8277 			    "%llu", (unsigned long long)vdev_guid);
8278 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8279 			total_errors++;
8280 		}
8281 	}
8282 
8283 	/* Wait for all TRIM threads to stop. */
8284 	vdev_trim_stop_wait(spa, &vd_list);
8285 
8286 	/* Sync out the TRIM state */
8287 	txg_wait_synced(spa->spa_dsl_pool, 0);
8288 	mutex_exit(&spa_namespace_lock);
8289 
8290 	list_destroy(&vd_list);
8291 
8292 	return (total_errors);
8293 }
8294 
8295 /*
8296  * Split a set of devices from their mirrors, and create a new pool from them.
8297  */
8298 int
8299 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
8300     nvlist_t *props, boolean_t exp)
8301 {
8302 	int error = 0;
8303 	uint64_t txg, *glist;
8304 	spa_t *newspa;
8305 	uint_t c, children, lastlog;
8306 	nvlist_t **child, *nvl, *tmp;
8307 	dmu_tx_t *tx;
8308 	const char *altroot = NULL;
8309 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
8310 	boolean_t activate_slog;
8311 
8312 	ASSERT(spa_writeable(spa));
8313 
8314 	txg = spa_vdev_enter(spa);
8315 
8316 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8317 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
8318 		error = (spa_has_checkpoint(spa)) ?
8319 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
8320 		return (spa_vdev_exit(spa, NULL, txg, error));
8321 	}
8322 
8323 	/* clear the log and flush everything up to now */
8324 	activate_slog = spa_passivate_log(spa);
8325 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8326 	error = spa_reset_logs(spa);
8327 	txg = spa_vdev_config_enter(spa);
8328 
8329 	if (activate_slog)
8330 		spa_activate_log(spa);
8331 
8332 	if (error != 0)
8333 		return (spa_vdev_exit(spa, NULL, txg, error));
8334 
8335 	/* check new spa name before going any further */
8336 	if (spa_lookup(newname) != NULL)
8337 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
8338 
8339 	/*
8340 	 * scan through all the children to ensure they're all mirrors
8341 	 */
8342 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
8343 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
8344 	    &children) != 0)
8345 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8346 
8347 	/* first, check to ensure we've got the right child count */
8348 	rvd = spa->spa_root_vdev;
8349 	lastlog = 0;
8350 	for (c = 0; c < rvd->vdev_children; c++) {
8351 		vdev_t *vd = rvd->vdev_child[c];
8352 
8353 		/* don't count the holes & logs as children */
8354 		if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
8355 		    !vdev_is_concrete(vd))) {
8356 			if (lastlog == 0)
8357 				lastlog = c;
8358 			continue;
8359 		}
8360 
8361 		lastlog = 0;
8362 	}
8363 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
8364 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8365 
8366 	/* next, ensure no spare or cache devices are part of the split */
8367 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
8368 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
8369 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8370 
8371 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
8372 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
8373 
8374 	/* then, loop over each vdev and validate it */
8375 	for (c = 0; c < children; c++) {
8376 		uint64_t is_hole = 0;
8377 
8378 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
8379 		    &is_hole);
8380 
8381 		if (is_hole != 0) {
8382 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
8383 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
8384 				continue;
8385 			} else {
8386 				error = SET_ERROR(EINVAL);
8387 				break;
8388 			}
8389 		}
8390 
8391 		/* deal with indirect vdevs */
8392 		if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
8393 		    &vdev_indirect_ops)
8394 			continue;
8395 
8396 		/* which disk is going to be split? */
8397 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
8398 		    &glist[c]) != 0) {
8399 			error = SET_ERROR(EINVAL);
8400 			break;
8401 		}
8402 
8403 		/* look it up in the spa */
8404 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
8405 		if (vml[c] == NULL) {
8406 			error = SET_ERROR(ENODEV);
8407 			break;
8408 		}
8409 
8410 		/* make sure there's nothing stopping the split */
8411 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
8412 		    vml[c]->vdev_islog ||
8413 		    !vdev_is_concrete(vml[c]) ||
8414 		    vml[c]->vdev_isspare ||
8415 		    vml[c]->vdev_isl2cache ||
8416 		    !vdev_writeable(vml[c]) ||
8417 		    vml[c]->vdev_children != 0 ||
8418 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
8419 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
8420 			error = SET_ERROR(EINVAL);
8421 			break;
8422 		}
8423 
8424 		if (vdev_dtl_required(vml[c]) ||
8425 		    vdev_resilver_needed(vml[c], NULL, NULL)) {
8426 			error = SET_ERROR(EBUSY);
8427 			break;
8428 		}
8429 
8430 		/* we need certain info from the top level */
8431 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
8432 		    vml[c]->vdev_top->vdev_ms_array);
8433 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
8434 		    vml[c]->vdev_top->vdev_ms_shift);
8435 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
8436 		    vml[c]->vdev_top->vdev_asize);
8437 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
8438 		    vml[c]->vdev_top->vdev_ashift);
8439 
8440 		/* transfer per-vdev ZAPs */
8441 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
8442 		VERIFY0(nvlist_add_uint64(child[c],
8443 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
8444 
8445 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
8446 		VERIFY0(nvlist_add_uint64(child[c],
8447 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
8448 		    vml[c]->vdev_parent->vdev_top_zap));
8449 	}
8450 
8451 	if (error != 0) {
8452 		kmem_free(vml, children * sizeof (vdev_t *));
8453 		kmem_free(glist, children * sizeof (uint64_t));
8454 		return (spa_vdev_exit(spa, NULL, txg, error));
8455 	}
8456 
8457 	/* stop writers from using the disks */
8458 	for (c = 0; c < children; c++) {
8459 		if (vml[c] != NULL)
8460 			vml[c]->vdev_offline = B_TRUE;
8461 	}
8462 	vdev_reopen(spa->spa_root_vdev);
8463 
8464 	/*
8465 	 * Temporarily record the splitting vdevs in the spa config.  This
8466 	 * will disappear once the config is regenerated.
8467 	 */
8468 	nvl = fnvlist_alloc();
8469 	fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
8470 	kmem_free(glist, children * sizeof (uint64_t));
8471 
8472 	mutex_enter(&spa->spa_props_lock);
8473 	fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
8474 	mutex_exit(&spa->spa_props_lock);
8475 	spa->spa_config_splitting = nvl;
8476 	vdev_config_dirty(spa->spa_root_vdev);
8477 
8478 	/* configure and create the new pool */
8479 	fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
8480 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
8481 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
8482 	fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
8483 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
8484 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
8485 	    spa_generate_guid(NULL));
8486 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
8487 	(void) nvlist_lookup_string(props,
8488 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
8489 
8490 	/* add the new pool to the namespace */
8491 	newspa = spa_add(newname, config, altroot);
8492 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
8493 	newspa->spa_config_txg = spa->spa_config_txg;
8494 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
8495 
8496 	/* release the spa config lock, retaining the namespace lock */
8497 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8498 
8499 	if (zio_injection_enabled)
8500 		zio_handle_panic_injection(spa, FTAG, 1);
8501 
8502 	spa_activate(newspa, spa_mode_global);
8503 	spa_async_suspend(newspa);
8504 
8505 	/*
8506 	 * Temporarily stop the initializing and TRIM activity.  We set the
8507 	 * state to ACTIVE so that we know to resume initializing or TRIM
8508 	 * once the split has completed.
8509 	 */
8510 	list_t vd_initialize_list;
8511 	list_create(&vd_initialize_list, sizeof (vdev_t),
8512 	    offsetof(vdev_t, vdev_initialize_node));
8513 
8514 	list_t vd_trim_list;
8515 	list_create(&vd_trim_list, sizeof (vdev_t),
8516 	    offsetof(vdev_t, vdev_trim_node));
8517 
8518 	for (c = 0; c < children; c++) {
8519 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8520 			mutex_enter(&vml[c]->vdev_initialize_lock);
8521 			vdev_initialize_stop(vml[c],
8522 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
8523 			mutex_exit(&vml[c]->vdev_initialize_lock);
8524 
8525 			mutex_enter(&vml[c]->vdev_trim_lock);
8526 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
8527 			mutex_exit(&vml[c]->vdev_trim_lock);
8528 		}
8529 	}
8530 
8531 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
8532 	vdev_trim_stop_wait(spa, &vd_trim_list);
8533 
8534 	list_destroy(&vd_initialize_list);
8535 	list_destroy(&vd_trim_list);
8536 
8537 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
8538 	newspa->spa_is_splitting = B_TRUE;
8539 
8540 	/* create the new pool from the disks of the original pool */
8541 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
8542 	if (error)
8543 		goto out;
8544 
8545 	/* if that worked, generate a real config for the new pool */
8546 	if (newspa->spa_root_vdev != NULL) {
8547 		newspa->spa_config_splitting = fnvlist_alloc();
8548 		fnvlist_add_uint64(newspa->spa_config_splitting,
8549 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
8550 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
8551 		    B_TRUE));
8552 	}
8553 
8554 	/* set the props */
8555 	if (props != NULL) {
8556 		spa_configfile_set(newspa, props, B_FALSE);
8557 		error = spa_prop_set(newspa, props);
8558 		if (error)
8559 			goto out;
8560 	}
8561 
8562 	/* flush everything */
8563 	txg = spa_vdev_config_enter(newspa);
8564 	vdev_config_dirty(newspa->spa_root_vdev);
8565 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
8566 
8567 	if (zio_injection_enabled)
8568 		zio_handle_panic_injection(spa, FTAG, 2);
8569 
8570 	spa_async_resume(newspa);
8571 
8572 	/* finally, update the original pool's config */
8573 	txg = spa_vdev_config_enter(spa);
8574 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
8575 	error = dmu_tx_assign(tx, TXG_WAIT);
8576 	if (error != 0)
8577 		dmu_tx_abort(tx);
8578 	for (c = 0; c < children; c++) {
8579 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8580 			vdev_t *tvd = vml[c]->vdev_top;
8581 
8582 			/*
8583 			 * Need to be sure the detachable VDEV is not
8584 			 * on any *other* txg's DTL list to prevent it
8585 			 * from being accessed after it's freed.
8586 			 */
8587 			for (int t = 0; t < TXG_SIZE; t++) {
8588 				(void) txg_list_remove_this(
8589 				    &tvd->vdev_dtl_list, vml[c], t);
8590 			}
8591 
8592 			vdev_split(vml[c]);
8593 			if (error == 0)
8594 				spa_history_log_internal(spa, "detach", tx,
8595 				    "vdev=%s", vml[c]->vdev_path);
8596 
8597 			vdev_free(vml[c]);
8598 		}
8599 	}
8600 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
8601 	vdev_config_dirty(spa->spa_root_vdev);
8602 	spa->spa_config_splitting = NULL;
8603 	nvlist_free(nvl);
8604 	if (error == 0)
8605 		dmu_tx_commit(tx);
8606 	(void) spa_vdev_exit(spa, NULL, txg, 0);
8607 
8608 	if (zio_injection_enabled)
8609 		zio_handle_panic_injection(spa, FTAG, 3);
8610 
8611 	/* split is complete; log a history record */
8612 	spa_history_log_internal(newspa, "split", NULL,
8613 	    "from pool %s", spa_name(spa));
8614 
8615 	newspa->spa_is_splitting = B_FALSE;
8616 	kmem_free(vml, children * sizeof (vdev_t *));
8617 
8618 	/* if we're not going to mount the filesystems in userland, export */
8619 	if (exp)
8620 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
8621 		    B_FALSE, B_FALSE);
8622 
8623 	return (error);
8624 
8625 out:
8626 	spa_unload(newspa);
8627 	spa_deactivate(newspa);
8628 	spa_remove(newspa);
8629 
8630 	txg = spa_vdev_config_enter(spa);
8631 
8632 	/* re-online all offlined disks */
8633 	for (c = 0; c < children; c++) {
8634 		if (vml[c] != NULL)
8635 			vml[c]->vdev_offline = B_FALSE;
8636 	}
8637 
8638 	/* restart initializing or trimming disks as necessary */
8639 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
8640 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
8641 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
8642 
8643 	vdev_reopen(spa->spa_root_vdev);
8644 
8645 	nvlist_free(spa->spa_config_splitting);
8646 	spa->spa_config_splitting = NULL;
8647 	(void) spa_vdev_exit(spa, NULL, txg, error);
8648 
8649 	kmem_free(vml, children * sizeof (vdev_t *));
8650 	return (error);
8651 }
8652 
8653 /*
8654  * Find any device that's done replacing, or a vdev marked 'unspare' that's
8655  * currently spared, so we can detach it.
8656  */
8657 static vdev_t *
8658 spa_vdev_resilver_done_hunt(vdev_t *vd)
8659 {
8660 	vdev_t *newvd, *oldvd;
8661 
8662 	for (int c = 0; c < vd->vdev_children; c++) {
8663 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
8664 		if (oldvd != NULL)
8665 			return (oldvd);
8666 	}
8667 
8668 	/*
8669 	 * Check for a completed replacement.  We always consider the first
8670 	 * vdev in the list to be the oldest vdev, and the last one to be
8671 	 * the newest (see spa_vdev_attach() for how that works).  In
8672 	 * the case where the newest vdev is faulted, we will not automatically
8673 	 * remove it after a resilver completes.  This is OK as it will require
8674 	 * user intervention to determine which disk the admin wishes to keep.
8675 	 */
8676 	if (vd->vdev_ops == &vdev_replacing_ops) {
8677 		ASSERT(vd->vdev_children > 1);
8678 
8679 		newvd = vd->vdev_child[vd->vdev_children - 1];
8680 		oldvd = vd->vdev_child[0];
8681 
8682 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
8683 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8684 		    !vdev_dtl_required(oldvd))
8685 			return (oldvd);
8686 	}
8687 
8688 	/*
8689 	 * Check for a completed resilver with the 'unspare' flag set.
8690 	 * Also potentially update faulted state.
8691 	 */
8692 	if (vd->vdev_ops == &vdev_spare_ops) {
8693 		vdev_t *first = vd->vdev_child[0];
8694 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
8695 
8696 		if (last->vdev_unspare) {
8697 			oldvd = first;
8698 			newvd = last;
8699 		} else if (first->vdev_unspare) {
8700 			oldvd = last;
8701 			newvd = first;
8702 		} else {
8703 			oldvd = NULL;
8704 		}
8705 
8706 		if (oldvd != NULL &&
8707 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
8708 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8709 		    !vdev_dtl_required(oldvd))
8710 			return (oldvd);
8711 
8712 		vdev_propagate_state(vd);
8713 
8714 		/*
8715 		 * If there are more than two spares attached to a disk,
8716 		 * and those spares are not required, then we want to
8717 		 * attempt to free them up now so that they can be used
8718 		 * by other pools.  Once we're back down to a single
8719 		 * disk+spare, we stop removing them.
8720 		 */
8721 		if (vd->vdev_children > 2) {
8722 			newvd = vd->vdev_child[1];
8723 
8724 			if (newvd->vdev_isspare && last->vdev_isspare &&
8725 			    vdev_dtl_empty(last, DTL_MISSING) &&
8726 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
8727 			    !vdev_dtl_required(newvd))
8728 				return (newvd);
8729 		}
8730 	}
8731 
8732 	return (NULL);
8733 }
8734 
8735 static void
8736 spa_vdev_resilver_done(spa_t *spa)
8737 {
8738 	vdev_t *vd, *pvd, *ppvd;
8739 	uint64_t guid, sguid, pguid, ppguid;
8740 
8741 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8742 
8743 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
8744 		pvd = vd->vdev_parent;
8745 		ppvd = pvd->vdev_parent;
8746 		guid = vd->vdev_guid;
8747 		pguid = pvd->vdev_guid;
8748 		ppguid = ppvd->vdev_guid;
8749 		sguid = 0;
8750 		/*
8751 		 * If we have just finished replacing a hot spared device, then
8752 		 * we need to detach the parent's first child (the original hot
8753 		 * spare) as well.
8754 		 */
8755 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
8756 		    ppvd->vdev_children == 2) {
8757 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
8758 			sguid = ppvd->vdev_child[1]->vdev_guid;
8759 		}
8760 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
8761 
8762 		spa_config_exit(spa, SCL_ALL, FTAG);
8763 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
8764 			return;
8765 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
8766 			return;
8767 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8768 	}
8769 
8770 	spa_config_exit(spa, SCL_ALL, FTAG);
8771 
8772 	/*
8773 	 * If a detach was not performed above replace waiters will not have
8774 	 * been notified.  In which case we must do so now.
8775 	 */
8776 	spa_notify_waiters(spa);
8777 }
8778 
8779 /*
8780  * Update the stored path or FRU for this vdev.
8781  */
8782 static int
8783 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8784     boolean_t ispath)
8785 {
8786 	vdev_t *vd;
8787 	boolean_t sync = B_FALSE;
8788 
8789 	ASSERT(spa_writeable(spa));
8790 
8791 	spa_vdev_state_enter(spa, SCL_ALL);
8792 
8793 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8794 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
8795 
8796 	if (!vd->vdev_ops->vdev_op_leaf)
8797 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8798 
8799 	if (ispath) {
8800 		if (strcmp(value, vd->vdev_path) != 0) {
8801 			spa_strfree(vd->vdev_path);
8802 			vd->vdev_path = spa_strdup(value);
8803 			sync = B_TRUE;
8804 		}
8805 	} else {
8806 		if (vd->vdev_fru == NULL) {
8807 			vd->vdev_fru = spa_strdup(value);
8808 			sync = B_TRUE;
8809 		} else if (strcmp(value, vd->vdev_fru) != 0) {
8810 			spa_strfree(vd->vdev_fru);
8811 			vd->vdev_fru = spa_strdup(value);
8812 			sync = B_TRUE;
8813 		}
8814 	}
8815 
8816 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8817 }
8818 
8819 int
8820 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8821 {
8822 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8823 }
8824 
8825 int
8826 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8827 {
8828 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8829 }
8830 
8831 /*
8832  * ==========================================================================
8833  * SPA Scanning
8834  * ==========================================================================
8835  */
8836 int
8837 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8838 {
8839 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8840 
8841 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8842 		return (SET_ERROR(EBUSY));
8843 
8844 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8845 }
8846 
8847 int
8848 spa_scan_stop(spa_t *spa)
8849 {
8850 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8851 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8852 		return (SET_ERROR(EBUSY));
8853 
8854 	return (dsl_scan_cancel(spa->spa_dsl_pool));
8855 }
8856 
8857 int
8858 spa_scan(spa_t *spa, pool_scan_func_t func)
8859 {
8860 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8861 
8862 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8863 		return (SET_ERROR(ENOTSUP));
8864 
8865 	if (func == POOL_SCAN_RESILVER &&
8866 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8867 		return (SET_ERROR(ENOTSUP));
8868 
8869 	/*
8870 	 * If a resilver was requested, but there is no DTL on a
8871 	 * writeable leaf device, we have nothing to do.
8872 	 */
8873 	if (func == POOL_SCAN_RESILVER &&
8874 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8875 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8876 		return (0);
8877 	}
8878 
8879 	if (func == POOL_SCAN_ERRORSCRUB &&
8880 	    !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG))
8881 		return (SET_ERROR(ENOTSUP));
8882 
8883 	return (dsl_scan(spa->spa_dsl_pool, func));
8884 }
8885 
8886 /*
8887  * ==========================================================================
8888  * SPA async task processing
8889  * ==========================================================================
8890  */
8891 
8892 static void
8893 spa_async_remove(spa_t *spa, vdev_t *vd)
8894 {
8895 	if (vd->vdev_remove_wanted) {
8896 		vd->vdev_remove_wanted = B_FALSE;
8897 		vd->vdev_delayed_close = B_FALSE;
8898 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8899 
8900 		/*
8901 		 * We want to clear the stats, but we don't want to do a full
8902 		 * vdev_clear() as that will cause us to throw away
8903 		 * degraded/faulted state as well as attempt to reopen the
8904 		 * device, all of which is a waste.
8905 		 */
8906 		vd->vdev_stat.vs_read_errors = 0;
8907 		vd->vdev_stat.vs_write_errors = 0;
8908 		vd->vdev_stat.vs_checksum_errors = 0;
8909 
8910 		vdev_state_dirty(vd->vdev_top);
8911 
8912 		/* Tell userspace that the vdev is gone. */
8913 		zfs_post_remove(spa, vd);
8914 	}
8915 
8916 	for (int c = 0; c < vd->vdev_children; c++)
8917 		spa_async_remove(spa, vd->vdev_child[c]);
8918 }
8919 
8920 static void
8921 spa_async_fault_vdev(spa_t *spa, vdev_t *vd)
8922 {
8923 	if (vd->vdev_fault_wanted) {
8924 		vd->vdev_fault_wanted = B_FALSE;
8925 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
8926 		    VDEV_AUX_ERR_EXCEEDED);
8927 	}
8928 
8929 	for (int c = 0; c < vd->vdev_children; c++)
8930 		spa_async_fault_vdev(spa, vd->vdev_child[c]);
8931 }
8932 
8933 static void
8934 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8935 {
8936 	if (!spa->spa_autoexpand)
8937 		return;
8938 
8939 	for (int c = 0; c < vd->vdev_children; c++) {
8940 		vdev_t *cvd = vd->vdev_child[c];
8941 		spa_async_autoexpand(spa, cvd);
8942 	}
8943 
8944 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8945 		return;
8946 
8947 	spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8948 }
8949 
8950 static __attribute__((noreturn)) void
8951 spa_async_thread(void *arg)
8952 {
8953 	spa_t *spa = (spa_t *)arg;
8954 	dsl_pool_t *dp = spa->spa_dsl_pool;
8955 	int tasks;
8956 
8957 	ASSERT(spa->spa_sync_on);
8958 
8959 	mutex_enter(&spa->spa_async_lock);
8960 	tasks = spa->spa_async_tasks;
8961 	spa->spa_async_tasks = 0;
8962 	mutex_exit(&spa->spa_async_lock);
8963 
8964 	/*
8965 	 * See if the config needs to be updated.
8966 	 */
8967 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8968 		uint64_t old_space, new_space;
8969 
8970 		mutex_enter(&spa_namespace_lock);
8971 		old_space = metaslab_class_get_space(spa_normal_class(spa));
8972 		old_space += metaslab_class_get_space(spa_special_class(spa));
8973 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
8974 		old_space += metaslab_class_get_space(
8975 		    spa_embedded_log_class(spa));
8976 
8977 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8978 
8979 		new_space = metaslab_class_get_space(spa_normal_class(spa));
8980 		new_space += metaslab_class_get_space(spa_special_class(spa));
8981 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
8982 		new_space += metaslab_class_get_space(
8983 		    spa_embedded_log_class(spa));
8984 		mutex_exit(&spa_namespace_lock);
8985 
8986 		/*
8987 		 * If the pool grew as a result of the config update,
8988 		 * then log an internal history event.
8989 		 */
8990 		if (new_space != old_space) {
8991 			spa_history_log_internal(spa, "vdev online", NULL,
8992 			    "pool '%s' size: %llu(+%llu)",
8993 			    spa_name(spa), (u_longlong_t)new_space,
8994 			    (u_longlong_t)(new_space - old_space));
8995 		}
8996 	}
8997 
8998 	/*
8999 	 * See if any devices need to be marked REMOVED.
9000 	 */
9001 	if (tasks & SPA_ASYNC_REMOVE) {
9002 		spa_vdev_state_enter(spa, SCL_NONE);
9003 		spa_async_remove(spa, spa->spa_root_vdev);
9004 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
9005 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
9006 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
9007 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
9008 		(void) spa_vdev_state_exit(spa, NULL, 0);
9009 	}
9010 
9011 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
9012 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9013 		spa_async_autoexpand(spa, spa->spa_root_vdev);
9014 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9015 	}
9016 
9017 	/*
9018 	 * See if any devices need to be marked faulted.
9019 	 */
9020 	if (tasks & SPA_ASYNC_FAULT_VDEV) {
9021 		spa_vdev_state_enter(spa, SCL_NONE);
9022 		spa_async_fault_vdev(spa, spa->spa_root_vdev);
9023 		(void) spa_vdev_state_exit(spa, NULL, 0);
9024 	}
9025 
9026 	/*
9027 	 * If any devices are done replacing, detach them.
9028 	 */
9029 	if (tasks & SPA_ASYNC_RESILVER_DONE ||
9030 	    tasks & SPA_ASYNC_REBUILD_DONE ||
9031 	    tasks & SPA_ASYNC_DETACH_SPARE) {
9032 		spa_vdev_resilver_done(spa);
9033 	}
9034 
9035 	/*
9036 	 * Kick off a resilver.
9037 	 */
9038 	if (tasks & SPA_ASYNC_RESILVER &&
9039 	    !vdev_rebuild_active(spa->spa_root_vdev) &&
9040 	    (!dsl_scan_resilvering(dp) ||
9041 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
9042 		dsl_scan_restart_resilver(dp, 0);
9043 
9044 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
9045 		mutex_enter(&spa_namespace_lock);
9046 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9047 		vdev_initialize_restart(spa->spa_root_vdev);
9048 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9049 		mutex_exit(&spa_namespace_lock);
9050 	}
9051 
9052 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
9053 		mutex_enter(&spa_namespace_lock);
9054 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9055 		vdev_trim_restart(spa->spa_root_vdev);
9056 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9057 		mutex_exit(&spa_namespace_lock);
9058 	}
9059 
9060 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
9061 		mutex_enter(&spa_namespace_lock);
9062 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9063 		vdev_autotrim_restart(spa);
9064 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9065 		mutex_exit(&spa_namespace_lock);
9066 	}
9067 
9068 	/*
9069 	 * Kick off L2 cache whole device TRIM.
9070 	 */
9071 	if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
9072 		mutex_enter(&spa_namespace_lock);
9073 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9074 		vdev_trim_l2arc(spa);
9075 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9076 		mutex_exit(&spa_namespace_lock);
9077 	}
9078 
9079 	/*
9080 	 * Kick off L2 cache rebuilding.
9081 	 */
9082 	if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
9083 		mutex_enter(&spa_namespace_lock);
9084 		spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
9085 		l2arc_spa_rebuild_start(spa);
9086 		spa_config_exit(spa, SCL_L2ARC, FTAG);
9087 		mutex_exit(&spa_namespace_lock);
9088 	}
9089 
9090 	/*
9091 	 * Let the world know that we're done.
9092 	 */
9093 	mutex_enter(&spa->spa_async_lock);
9094 	spa->spa_async_thread = NULL;
9095 	cv_broadcast(&spa->spa_async_cv);
9096 	mutex_exit(&spa->spa_async_lock);
9097 	thread_exit();
9098 }
9099 
9100 void
9101 spa_async_suspend(spa_t *spa)
9102 {
9103 	mutex_enter(&spa->spa_async_lock);
9104 	spa->spa_async_suspended++;
9105 	while (spa->spa_async_thread != NULL)
9106 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
9107 	mutex_exit(&spa->spa_async_lock);
9108 
9109 	spa_vdev_remove_suspend(spa);
9110 
9111 	zthr_t *condense_thread = spa->spa_condense_zthr;
9112 	if (condense_thread != NULL)
9113 		zthr_cancel(condense_thread);
9114 
9115 	zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9116 	if (raidz_expand_thread != NULL)
9117 		zthr_cancel(raidz_expand_thread);
9118 
9119 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9120 	if (discard_thread != NULL)
9121 		zthr_cancel(discard_thread);
9122 
9123 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9124 	if (ll_delete_thread != NULL)
9125 		zthr_cancel(ll_delete_thread);
9126 
9127 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9128 	if (ll_condense_thread != NULL)
9129 		zthr_cancel(ll_condense_thread);
9130 }
9131 
9132 void
9133 spa_async_resume(spa_t *spa)
9134 {
9135 	mutex_enter(&spa->spa_async_lock);
9136 	ASSERT(spa->spa_async_suspended != 0);
9137 	spa->spa_async_suspended--;
9138 	mutex_exit(&spa->spa_async_lock);
9139 	spa_restart_removal(spa);
9140 
9141 	zthr_t *condense_thread = spa->spa_condense_zthr;
9142 	if (condense_thread != NULL)
9143 		zthr_resume(condense_thread);
9144 
9145 	zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9146 	if (raidz_expand_thread != NULL)
9147 		zthr_resume(raidz_expand_thread);
9148 
9149 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9150 	if (discard_thread != NULL)
9151 		zthr_resume(discard_thread);
9152 
9153 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9154 	if (ll_delete_thread != NULL)
9155 		zthr_resume(ll_delete_thread);
9156 
9157 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9158 	if (ll_condense_thread != NULL)
9159 		zthr_resume(ll_condense_thread);
9160 }
9161 
9162 static boolean_t
9163 spa_async_tasks_pending(spa_t *spa)
9164 {
9165 	uint_t non_config_tasks;
9166 	uint_t config_task;
9167 	boolean_t config_task_suspended;
9168 
9169 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
9170 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
9171 	if (spa->spa_ccw_fail_time == 0) {
9172 		config_task_suspended = B_FALSE;
9173 	} else {
9174 		config_task_suspended =
9175 		    (gethrtime() - spa->spa_ccw_fail_time) <
9176 		    ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
9177 	}
9178 
9179 	return (non_config_tasks || (config_task && !config_task_suspended));
9180 }
9181 
9182 static void
9183 spa_async_dispatch(spa_t *spa)
9184 {
9185 	mutex_enter(&spa->spa_async_lock);
9186 	if (spa_async_tasks_pending(spa) &&
9187 	    !spa->spa_async_suspended &&
9188 	    spa->spa_async_thread == NULL)
9189 		spa->spa_async_thread = thread_create(NULL, 0,
9190 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
9191 	mutex_exit(&spa->spa_async_lock);
9192 }
9193 
9194 void
9195 spa_async_request(spa_t *spa, int task)
9196 {
9197 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
9198 	mutex_enter(&spa->spa_async_lock);
9199 	spa->spa_async_tasks |= task;
9200 	mutex_exit(&spa->spa_async_lock);
9201 }
9202 
9203 int
9204 spa_async_tasks(spa_t *spa)
9205 {
9206 	return (spa->spa_async_tasks);
9207 }
9208 
9209 /*
9210  * ==========================================================================
9211  * SPA syncing routines
9212  * ==========================================================================
9213  */
9214 
9215 
9216 static int
9217 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9218     dmu_tx_t *tx)
9219 {
9220 	bpobj_t *bpo = arg;
9221 	bpobj_enqueue(bpo, bp, bp_freed, tx);
9222 	return (0);
9223 }
9224 
9225 int
9226 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9227 {
9228 	return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
9229 }
9230 
9231 int
9232 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9233 {
9234 	return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
9235 }
9236 
9237 static int
9238 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9239 {
9240 	zio_t *pio = arg;
9241 
9242 	zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
9243 	    pio->io_flags));
9244 	return (0);
9245 }
9246 
9247 static int
9248 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9249     dmu_tx_t *tx)
9250 {
9251 	ASSERT(!bp_freed);
9252 	return (spa_free_sync_cb(arg, bp, tx));
9253 }
9254 
9255 /*
9256  * Note: this simple function is not inlined to make it easier to dtrace the
9257  * amount of time spent syncing frees.
9258  */
9259 static void
9260 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
9261 {
9262 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
9263 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
9264 	VERIFY(zio_wait(zio) == 0);
9265 }
9266 
9267 /*
9268  * Note: this simple function is not inlined to make it easier to dtrace the
9269  * amount of time spent syncing deferred frees.
9270  */
9271 static void
9272 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
9273 {
9274 	if (spa_sync_pass(spa) != 1)
9275 		return;
9276 
9277 	/*
9278 	 * Note:
9279 	 * If the log space map feature is active, we stop deferring
9280 	 * frees to the next TXG and therefore running this function
9281 	 * would be considered a no-op as spa_deferred_bpobj should
9282 	 * not have any entries.
9283 	 *
9284 	 * That said we run this function anyway (instead of returning
9285 	 * immediately) for the edge-case scenario where we just
9286 	 * activated the log space map feature in this TXG but we have
9287 	 * deferred frees from the previous TXG.
9288 	 */
9289 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
9290 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
9291 	    bpobj_spa_free_sync_cb, zio, tx), ==, 0);
9292 	VERIFY0(zio_wait(zio));
9293 }
9294 
9295 static void
9296 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
9297 {
9298 	char *packed = NULL;
9299 	size_t bufsize;
9300 	size_t nvsize = 0;
9301 	dmu_buf_t *db;
9302 
9303 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
9304 
9305 	/*
9306 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
9307 	 * information.  This avoids the dmu_buf_will_dirty() path and
9308 	 * saves us a pre-read to get data we don't actually care about.
9309 	 */
9310 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
9311 	packed = vmem_alloc(bufsize, KM_SLEEP);
9312 
9313 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
9314 	    KM_SLEEP) == 0);
9315 	memset(packed + nvsize, 0, bufsize - nvsize);
9316 
9317 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
9318 
9319 	vmem_free(packed, bufsize);
9320 
9321 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
9322 	dmu_buf_will_dirty(db, tx);
9323 	*(uint64_t *)db->db_data = nvsize;
9324 	dmu_buf_rele(db, FTAG);
9325 }
9326 
9327 static void
9328 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
9329     const char *config, const char *entry)
9330 {
9331 	nvlist_t *nvroot;
9332 	nvlist_t **list;
9333 	int i;
9334 
9335 	if (!sav->sav_sync)
9336 		return;
9337 
9338 	/*
9339 	 * Update the MOS nvlist describing the list of available devices.
9340 	 * spa_validate_aux() will have already made sure this nvlist is
9341 	 * valid and the vdevs are labeled appropriately.
9342 	 */
9343 	if (sav->sav_object == 0) {
9344 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
9345 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
9346 		    sizeof (uint64_t), tx);
9347 		VERIFY(zap_update(spa->spa_meta_objset,
9348 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
9349 		    &sav->sav_object, tx) == 0);
9350 	}
9351 
9352 	nvroot = fnvlist_alloc();
9353 	if (sav->sav_count == 0) {
9354 		fnvlist_add_nvlist_array(nvroot, config,
9355 		    (const nvlist_t * const *)NULL, 0);
9356 	} else {
9357 		list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
9358 		for (i = 0; i < sav->sav_count; i++)
9359 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
9360 			    B_FALSE, VDEV_CONFIG_L2CACHE);
9361 		fnvlist_add_nvlist_array(nvroot, config,
9362 		    (const nvlist_t * const *)list, sav->sav_count);
9363 		for (i = 0; i < sav->sav_count; i++)
9364 			nvlist_free(list[i]);
9365 		kmem_free(list, sav->sav_count * sizeof (void *));
9366 	}
9367 
9368 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
9369 	nvlist_free(nvroot);
9370 
9371 	sav->sav_sync = B_FALSE;
9372 }
9373 
9374 /*
9375  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
9376  * The all-vdev ZAP must be empty.
9377  */
9378 static void
9379 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
9380 {
9381 	spa_t *spa = vd->vdev_spa;
9382 
9383 	if (vd->vdev_root_zap != 0 &&
9384 	    spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
9385 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9386 		    vd->vdev_root_zap, tx));
9387 	}
9388 	if (vd->vdev_top_zap != 0) {
9389 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9390 		    vd->vdev_top_zap, tx));
9391 	}
9392 	if (vd->vdev_leaf_zap != 0) {
9393 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9394 		    vd->vdev_leaf_zap, tx));
9395 	}
9396 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
9397 		spa_avz_build(vd->vdev_child[i], avz, tx);
9398 	}
9399 }
9400 
9401 static void
9402 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
9403 {
9404 	nvlist_t *config;
9405 
9406 	/*
9407 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
9408 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
9409 	 * Similarly, if the pool is being assembled (e.g. after a split), we
9410 	 * need to rebuild the AVZ although the config may not be dirty.
9411 	 */
9412 	if (list_is_empty(&spa->spa_config_dirty_list) &&
9413 	    spa->spa_avz_action == AVZ_ACTION_NONE)
9414 		return;
9415 
9416 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9417 
9418 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
9419 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
9420 	    spa->spa_all_vdev_zaps != 0);
9421 
9422 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
9423 		/* Make and build the new AVZ */
9424 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
9425 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
9426 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
9427 
9428 		/* Diff old AVZ with new one */
9429 		zap_cursor_t zc;
9430 		zap_attribute_t za;
9431 
9432 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
9433 		    spa->spa_all_vdev_zaps);
9434 		    zap_cursor_retrieve(&zc, &za) == 0;
9435 		    zap_cursor_advance(&zc)) {
9436 			uint64_t vdzap = za.za_first_integer;
9437 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
9438 			    vdzap) == ENOENT) {
9439 				/*
9440 				 * ZAP is listed in old AVZ but not in new one;
9441 				 * destroy it
9442 				 */
9443 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
9444 				    tx));
9445 			}
9446 		}
9447 
9448 		zap_cursor_fini(&zc);
9449 
9450 		/* Destroy the old AVZ */
9451 		VERIFY0(zap_destroy(spa->spa_meta_objset,
9452 		    spa->spa_all_vdev_zaps, tx));
9453 
9454 		/* Replace the old AVZ in the dir obj with the new one */
9455 		VERIFY0(zap_update(spa->spa_meta_objset,
9456 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
9457 		    sizeof (new_avz), 1, &new_avz, tx));
9458 
9459 		spa->spa_all_vdev_zaps = new_avz;
9460 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
9461 		zap_cursor_t zc;
9462 		zap_attribute_t za;
9463 
9464 		/* Walk through the AVZ and destroy all listed ZAPs */
9465 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
9466 		    spa->spa_all_vdev_zaps);
9467 		    zap_cursor_retrieve(&zc, &za) == 0;
9468 		    zap_cursor_advance(&zc)) {
9469 			uint64_t zap = za.za_first_integer;
9470 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
9471 		}
9472 
9473 		zap_cursor_fini(&zc);
9474 
9475 		/* Destroy and unlink the AVZ itself */
9476 		VERIFY0(zap_destroy(spa->spa_meta_objset,
9477 		    spa->spa_all_vdev_zaps, tx));
9478 		VERIFY0(zap_remove(spa->spa_meta_objset,
9479 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
9480 		spa->spa_all_vdev_zaps = 0;
9481 	}
9482 
9483 	if (spa->spa_all_vdev_zaps == 0) {
9484 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
9485 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
9486 		    DMU_POOL_VDEV_ZAP_MAP, tx);
9487 	}
9488 	spa->spa_avz_action = AVZ_ACTION_NONE;
9489 
9490 	/* Create ZAPs for vdevs that don't have them. */
9491 	vdev_construct_zaps(spa->spa_root_vdev, tx);
9492 
9493 	config = spa_config_generate(spa, spa->spa_root_vdev,
9494 	    dmu_tx_get_txg(tx), B_FALSE);
9495 
9496 	/*
9497 	 * If we're upgrading the spa version then make sure that
9498 	 * the config object gets updated with the correct version.
9499 	 */
9500 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
9501 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
9502 		    spa->spa_uberblock.ub_version);
9503 
9504 	spa_config_exit(spa, SCL_STATE, FTAG);
9505 
9506 	nvlist_free(spa->spa_config_syncing);
9507 	spa->spa_config_syncing = config;
9508 
9509 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
9510 }
9511 
9512 static void
9513 spa_sync_version(void *arg, dmu_tx_t *tx)
9514 {
9515 	uint64_t *versionp = arg;
9516 	uint64_t version = *versionp;
9517 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9518 
9519 	/*
9520 	 * Setting the version is special cased when first creating the pool.
9521 	 */
9522 	ASSERT(tx->tx_txg != TXG_INITIAL);
9523 
9524 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
9525 	ASSERT(version >= spa_version(spa));
9526 
9527 	spa->spa_uberblock.ub_version = version;
9528 	vdev_config_dirty(spa->spa_root_vdev);
9529 	spa_history_log_internal(spa, "set", tx, "version=%lld",
9530 	    (longlong_t)version);
9531 }
9532 
9533 /*
9534  * Set zpool properties.
9535  */
9536 static void
9537 spa_sync_props(void *arg, dmu_tx_t *tx)
9538 {
9539 	nvlist_t *nvp = arg;
9540 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9541 	objset_t *mos = spa->spa_meta_objset;
9542 	nvpair_t *elem = NULL;
9543 
9544 	mutex_enter(&spa->spa_props_lock);
9545 
9546 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
9547 		uint64_t intval;
9548 		const char *strval, *fname;
9549 		zpool_prop_t prop;
9550 		const char *propname;
9551 		const char *elemname = nvpair_name(elem);
9552 		zprop_type_t proptype;
9553 		spa_feature_t fid;
9554 
9555 		switch (prop = zpool_name_to_prop(elemname)) {
9556 		case ZPOOL_PROP_VERSION:
9557 			intval = fnvpair_value_uint64(elem);
9558 			/*
9559 			 * The version is synced separately before other
9560 			 * properties and should be correct by now.
9561 			 */
9562 			ASSERT3U(spa_version(spa), >=, intval);
9563 			break;
9564 
9565 		case ZPOOL_PROP_ALTROOT:
9566 			/*
9567 			 * 'altroot' is a non-persistent property. It should
9568 			 * have been set temporarily at creation or import time.
9569 			 */
9570 			ASSERT(spa->spa_root != NULL);
9571 			break;
9572 
9573 		case ZPOOL_PROP_READONLY:
9574 		case ZPOOL_PROP_CACHEFILE:
9575 			/*
9576 			 * 'readonly' and 'cachefile' are also non-persistent
9577 			 * properties.
9578 			 */
9579 			break;
9580 		case ZPOOL_PROP_COMMENT:
9581 			strval = fnvpair_value_string(elem);
9582 			if (spa->spa_comment != NULL)
9583 				spa_strfree(spa->spa_comment);
9584 			spa->spa_comment = spa_strdup(strval);
9585 			/*
9586 			 * We need to dirty the configuration on all the vdevs
9587 			 * so that their labels get updated.  We also need to
9588 			 * update the cache file to keep it in sync with the
9589 			 * MOS version. It's unnecessary to do this for pool
9590 			 * creation since the vdev's configuration has already
9591 			 * been dirtied.
9592 			 */
9593 			if (tx->tx_txg != TXG_INITIAL) {
9594 				vdev_config_dirty(spa->spa_root_vdev);
9595 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9596 			}
9597 			spa_history_log_internal(spa, "set", tx,
9598 			    "%s=%s", elemname, strval);
9599 			break;
9600 		case ZPOOL_PROP_COMPATIBILITY:
9601 			strval = fnvpair_value_string(elem);
9602 			if (spa->spa_compatibility != NULL)
9603 				spa_strfree(spa->spa_compatibility);
9604 			spa->spa_compatibility = spa_strdup(strval);
9605 			/*
9606 			 * Dirty the configuration on vdevs as above.
9607 			 */
9608 			if (tx->tx_txg != TXG_INITIAL) {
9609 				vdev_config_dirty(spa->spa_root_vdev);
9610 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9611 			}
9612 
9613 			spa_history_log_internal(spa, "set", tx,
9614 			    "%s=%s", nvpair_name(elem), strval);
9615 			break;
9616 
9617 		case ZPOOL_PROP_INVAL:
9618 			if (zpool_prop_feature(elemname)) {
9619 				fname = strchr(elemname, '@') + 1;
9620 				VERIFY0(zfeature_lookup_name(fname, &fid));
9621 
9622 				spa_feature_enable(spa, fid, tx);
9623 				spa_history_log_internal(spa, "set", tx,
9624 				    "%s=enabled", elemname);
9625 				break;
9626 			} else if (!zfs_prop_user(elemname)) {
9627 				ASSERT(zpool_prop_feature(elemname));
9628 				break;
9629 			}
9630 			zfs_fallthrough;
9631 		default:
9632 			/*
9633 			 * Set pool property values in the poolprops mos object.
9634 			 */
9635 			if (spa->spa_pool_props_object == 0) {
9636 				spa->spa_pool_props_object =
9637 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
9638 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
9639 				    tx);
9640 			}
9641 
9642 			/* normalize the property name */
9643 			if (prop == ZPOOL_PROP_INVAL) {
9644 				propname = elemname;
9645 				proptype = PROP_TYPE_STRING;
9646 			} else {
9647 				propname = zpool_prop_to_name(prop);
9648 				proptype = zpool_prop_get_type(prop);
9649 			}
9650 
9651 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
9652 				ASSERT(proptype == PROP_TYPE_STRING);
9653 				strval = fnvpair_value_string(elem);
9654 				VERIFY0(zap_update(mos,
9655 				    spa->spa_pool_props_object, propname,
9656 				    1, strlen(strval) + 1, strval, tx));
9657 				spa_history_log_internal(spa, "set", tx,
9658 				    "%s=%s", elemname, strval);
9659 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
9660 				intval = fnvpair_value_uint64(elem);
9661 
9662 				if (proptype == PROP_TYPE_INDEX) {
9663 					const char *unused;
9664 					VERIFY0(zpool_prop_index_to_string(
9665 					    prop, intval, &unused));
9666 				}
9667 				VERIFY0(zap_update(mos,
9668 				    spa->spa_pool_props_object, propname,
9669 				    8, 1, &intval, tx));
9670 				spa_history_log_internal(spa, "set", tx,
9671 				    "%s=%lld", elemname,
9672 				    (longlong_t)intval);
9673 
9674 				switch (prop) {
9675 				case ZPOOL_PROP_DELEGATION:
9676 					spa->spa_delegation = intval;
9677 					break;
9678 				case ZPOOL_PROP_BOOTFS:
9679 					spa->spa_bootfs = intval;
9680 					break;
9681 				case ZPOOL_PROP_FAILUREMODE:
9682 					spa->spa_failmode = intval;
9683 					break;
9684 				case ZPOOL_PROP_AUTOTRIM:
9685 					spa->spa_autotrim = intval;
9686 					spa_async_request(spa,
9687 					    SPA_ASYNC_AUTOTRIM_RESTART);
9688 					break;
9689 				case ZPOOL_PROP_AUTOEXPAND:
9690 					spa->spa_autoexpand = intval;
9691 					if (tx->tx_txg != TXG_INITIAL)
9692 						spa_async_request(spa,
9693 						    SPA_ASYNC_AUTOEXPAND);
9694 					break;
9695 				case ZPOOL_PROP_MULTIHOST:
9696 					spa->spa_multihost = intval;
9697 					break;
9698 				case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
9699 					spa->spa_dedup_table_quota = intval;
9700 					break;
9701 				default:
9702 					break;
9703 				}
9704 			} else {
9705 				ASSERT(0); /* not allowed */
9706 			}
9707 		}
9708 
9709 	}
9710 
9711 	mutex_exit(&spa->spa_props_lock);
9712 }
9713 
9714 /*
9715  * Perform one-time upgrade on-disk changes.  spa_version() does not
9716  * reflect the new version this txg, so there must be no changes this
9717  * txg to anything that the upgrade code depends on after it executes.
9718  * Therefore this must be called after dsl_pool_sync() does the sync
9719  * tasks.
9720  */
9721 static void
9722 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
9723 {
9724 	if (spa_sync_pass(spa) != 1)
9725 		return;
9726 
9727 	dsl_pool_t *dp = spa->spa_dsl_pool;
9728 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
9729 
9730 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
9731 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
9732 		dsl_pool_create_origin(dp, tx);
9733 
9734 		/* Keeping the origin open increases spa_minref */
9735 		spa->spa_minref += 3;
9736 	}
9737 
9738 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
9739 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
9740 		dsl_pool_upgrade_clones(dp, tx);
9741 	}
9742 
9743 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
9744 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
9745 		dsl_pool_upgrade_dir_clones(dp, tx);
9746 
9747 		/* Keeping the freedir open increases spa_minref */
9748 		spa->spa_minref += 3;
9749 	}
9750 
9751 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
9752 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9753 		spa_feature_create_zap_objects(spa, tx);
9754 	}
9755 
9756 	/*
9757 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
9758 	 * when possibility to use lz4 compression for metadata was added
9759 	 * Old pools that have this feature enabled must be upgraded to have
9760 	 * this feature active
9761 	 */
9762 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9763 		boolean_t lz4_en = spa_feature_is_enabled(spa,
9764 		    SPA_FEATURE_LZ4_COMPRESS);
9765 		boolean_t lz4_ac = spa_feature_is_active(spa,
9766 		    SPA_FEATURE_LZ4_COMPRESS);
9767 
9768 		if (lz4_en && !lz4_ac)
9769 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
9770 	}
9771 
9772 	/*
9773 	 * If we haven't written the salt, do so now.  Note that the
9774 	 * feature may not be activated yet, but that's fine since
9775 	 * the presence of this ZAP entry is backwards compatible.
9776 	 */
9777 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
9778 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
9779 		VERIFY0(zap_add(spa->spa_meta_objset,
9780 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
9781 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
9782 		    spa->spa_cksum_salt.zcs_bytes, tx));
9783 	}
9784 
9785 	rrw_exit(&dp->dp_config_rwlock, FTAG);
9786 }
9787 
9788 static void
9789 vdev_indirect_state_sync_verify(vdev_t *vd)
9790 {
9791 	vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
9792 	vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
9793 
9794 	if (vd->vdev_ops == &vdev_indirect_ops) {
9795 		ASSERT(vim != NULL);
9796 		ASSERT(vib != NULL);
9797 	}
9798 
9799 	uint64_t obsolete_sm_object = 0;
9800 	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
9801 	if (obsolete_sm_object != 0) {
9802 		ASSERT(vd->vdev_obsolete_sm != NULL);
9803 		ASSERT(vd->vdev_removing ||
9804 		    vd->vdev_ops == &vdev_indirect_ops);
9805 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9806 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9807 		ASSERT3U(obsolete_sm_object, ==,
9808 		    space_map_object(vd->vdev_obsolete_sm));
9809 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9810 		    space_map_allocated(vd->vdev_obsolete_sm));
9811 	}
9812 	ASSERT(vd->vdev_obsolete_segments != NULL);
9813 
9814 	/*
9815 	 * Since frees / remaps to an indirect vdev can only
9816 	 * happen in syncing context, the obsolete segments
9817 	 * tree must be empty when we start syncing.
9818 	 */
9819 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
9820 }
9821 
9822 /*
9823  * Set the top-level vdev's max queue depth. Evaluate each top-level's
9824  * async write queue depth in case it changed. The max queue depth will
9825  * not change in the middle of syncing out this txg.
9826  */
9827 static void
9828 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9829 {
9830 	ASSERT(spa_writeable(spa));
9831 
9832 	vdev_t *rvd = spa->spa_root_vdev;
9833 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9834 	    zfs_vdev_queue_depth_pct / 100;
9835 	metaslab_class_t *normal = spa_normal_class(spa);
9836 	metaslab_class_t *special = spa_special_class(spa);
9837 	metaslab_class_t *dedup = spa_dedup_class(spa);
9838 
9839 	uint64_t slots_per_allocator = 0;
9840 	for (int c = 0; c < rvd->vdev_children; c++) {
9841 		vdev_t *tvd = rvd->vdev_child[c];
9842 
9843 		metaslab_group_t *mg = tvd->vdev_mg;
9844 		if (mg == NULL || !metaslab_group_initialized(mg))
9845 			continue;
9846 
9847 		metaslab_class_t *mc = mg->mg_class;
9848 		if (mc != normal && mc != special && mc != dedup)
9849 			continue;
9850 
9851 		/*
9852 		 * It is safe to do a lock-free check here because only async
9853 		 * allocations look at mg_max_alloc_queue_depth, and async
9854 		 * allocations all happen from spa_sync().
9855 		 */
9856 		for (int i = 0; i < mg->mg_allocators; i++) {
9857 			ASSERT0(zfs_refcount_count(
9858 			    &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9859 		}
9860 		mg->mg_max_alloc_queue_depth = max_queue_depth;
9861 
9862 		for (int i = 0; i < mg->mg_allocators; i++) {
9863 			mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9864 			    zfs_vdev_def_queue_depth;
9865 		}
9866 		slots_per_allocator += zfs_vdev_def_queue_depth;
9867 	}
9868 
9869 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9870 		ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9871 		    mca_alloc_slots));
9872 		ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9873 		    mca_alloc_slots));
9874 		ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9875 		    mca_alloc_slots));
9876 		normal->mc_allocator[i].mca_alloc_max_slots =
9877 		    slots_per_allocator;
9878 		special->mc_allocator[i].mca_alloc_max_slots =
9879 		    slots_per_allocator;
9880 		dedup->mc_allocator[i].mca_alloc_max_slots =
9881 		    slots_per_allocator;
9882 	}
9883 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9884 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9885 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9886 }
9887 
9888 static void
9889 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9890 {
9891 	ASSERT(spa_writeable(spa));
9892 
9893 	vdev_t *rvd = spa->spa_root_vdev;
9894 	for (int c = 0; c < rvd->vdev_children; c++) {
9895 		vdev_t *vd = rvd->vdev_child[c];
9896 		vdev_indirect_state_sync_verify(vd);
9897 
9898 		if (vdev_indirect_should_condense(vd)) {
9899 			spa_condense_indirect_start_sync(vd, tx);
9900 			break;
9901 		}
9902 	}
9903 }
9904 
9905 static void
9906 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9907 {
9908 	objset_t *mos = spa->spa_meta_objset;
9909 	dsl_pool_t *dp = spa->spa_dsl_pool;
9910 	uint64_t txg = tx->tx_txg;
9911 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9912 
9913 	do {
9914 		int pass = ++spa->spa_sync_pass;
9915 
9916 		spa_sync_config_object(spa, tx);
9917 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9918 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9919 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9920 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9921 		spa_errlog_sync(spa, txg);
9922 		dsl_pool_sync(dp, txg);
9923 
9924 		if (pass < zfs_sync_pass_deferred_free ||
9925 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9926 			/*
9927 			 * If the log space map feature is active we don't
9928 			 * care about deferred frees and the deferred bpobj
9929 			 * as the log space map should effectively have the
9930 			 * same results (i.e. appending only to one object).
9931 			 */
9932 			spa_sync_frees(spa, free_bpl, tx);
9933 		} else {
9934 			/*
9935 			 * We can not defer frees in pass 1, because
9936 			 * we sync the deferred frees later in pass 1.
9937 			 */
9938 			ASSERT3U(pass, >, 1);
9939 			bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9940 			    &spa->spa_deferred_bpobj, tx);
9941 		}
9942 
9943 		brt_sync(spa, txg);
9944 		ddt_sync(spa, txg);
9945 		dsl_scan_sync(dp, tx);
9946 		dsl_errorscrub_sync(dp, tx);
9947 		svr_sync(spa, tx);
9948 		spa_sync_upgrades(spa, tx);
9949 
9950 		spa_flush_metaslabs(spa, tx);
9951 
9952 		vdev_t *vd = NULL;
9953 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9954 		    != NULL)
9955 			vdev_sync(vd, txg);
9956 
9957 		if (pass == 1) {
9958 			/*
9959 			 * dsl_pool_sync() -> dp_sync_tasks may have dirtied
9960 			 * the config. If that happens, this txg should not
9961 			 * be a no-op. So we must sync the config to the MOS
9962 			 * before checking for no-op.
9963 			 *
9964 			 * Note that when the config is dirty, it will
9965 			 * be written to the MOS (i.e. the MOS will be
9966 			 * dirtied) every time we call spa_sync_config_object()
9967 			 * in this txg.  Therefore we can't call this after
9968 			 * dsl_pool_sync() every pass, because it would
9969 			 * prevent us from converging, since we'd dirty
9970 			 * the MOS every pass.
9971 			 *
9972 			 * Sync tasks can only be processed in pass 1, so
9973 			 * there's no need to do this in later passes.
9974 			 */
9975 			spa_sync_config_object(spa, tx);
9976 		}
9977 
9978 		/*
9979 		 * Note: We need to check if the MOS is dirty because we could
9980 		 * have marked the MOS dirty without updating the uberblock
9981 		 * (e.g. if we have sync tasks but no dirty user data). We need
9982 		 * to check the uberblock's rootbp because it is updated if we
9983 		 * have synced out dirty data (though in this case the MOS will
9984 		 * most likely also be dirty due to second order effects, we
9985 		 * don't want to rely on that here).
9986 		 */
9987 		if (pass == 1 &&
9988 		    BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp) < txg &&
9989 		    !dmu_objset_is_dirty(mos, txg)) {
9990 			/*
9991 			 * Nothing changed on the first pass, therefore this
9992 			 * TXG is a no-op. Avoid syncing deferred frees, so
9993 			 * that we can keep this TXG as a no-op.
9994 			 */
9995 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9996 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9997 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9998 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9999 			break;
10000 		}
10001 
10002 		spa_sync_deferred_frees(spa, tx);
10003 	} while (dmu_objset_is_dirty(mos, txg));
10004 }
10005 
10006 /*
10007  * Rewrite the vdev configuration (which includes the uberblock) to
10008  * commit the transaction group.
10009  *
10010  * If there are no dirty vdevs, we sync the uberblock to a few random
10011  * top-level vdevs that are known to be visible in the config cache
10012  * (see spa_vdev_add() for a complete description). If there *are* dirty
10013  * vdevs, sync the uberblock to all vdevs.
10014  */
10015 static void
10016 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
10017 {
10018 	vdev_t *rvd = spa->spa_root_vdev;
10019 	uint64_t txg = tx->tx_txg;
10020 
10021 	for (;;) {
10022 		int error = 0;
10023 
10024 		/*
10025 		 * We hold SCL_STATE to prevent vdev open/close/etc.
10026 		 * while we're attempting to write the vdev labels.
10027 		 */
10028 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10029 
10030 		if (list_is_empty(&spa->spa_config_dirty_list)) {
10031 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
10032 			int svdcount = 0;
10033 			int children = rvd->vdev_children;
10034 			int c0 = random_in_range(children);
10035 
10036 			for (int c = 0; c < children; c++) {
10037 				vdev_t *vd =
10038 				    rvd->vdev_child[(c0 + c) % children];
10039 
10040 				/* Stop when revisiting the first vdev */
10041 				if (c > 0 && svd[0] == vd)
10042 					break;
10043 
10044 				if (vd->vdev_ms_array == 0 ||
10045 				    vd->vdev_islog ||
10046 				    !vdev_is_concrete(vd))
10047 					continue;
10048 
10049 				svd[svdcount++] = vd;
10050 				if (svdcount == SPA_SYNC_MIN_VDEVS)
10051 					break;
10052 			}
10053 			error = vdev_config_sync(svd, svdcount, txg);
10054 		} else {
10055 			error = vdev_config_sync(rvd->vdev_child,
10056 			    rvd->vdev_children, txg);
10057 		}
10058 
10059 		if (error == 0)
10060 			spa->spa_last_synced_guid = rvd->vdev_guid;
10061 
10062 		spa_config_exit(spa, SCL_STATE, FTAG);
10063 
10064 		if (error == 0)
10065 			break;
10066 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
10067 		zio_resume_wait(spa);
10068 	}
10069 }
10070 
10071 /*
10072  * Sync the specified transaction group.  New blocks may be dirtied as
10073  * part of the process, so we iterate until it converges.
10074  */
10075 void
10076 spa_sync(spa_t *spa, uint64_t txg)
10077 {
10078 	vdev_t *vd = NULL;
10079 
10080 	VERIFY(spa_writeable(spa));
10081 
10082 	/*
10083 	 * Wait for i/os issued in open context that need to complete
10084 	 * before this txg syncs.
10085 	 */
10086 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
10087 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
10088 	    ZIO_FLAG_CANFAIL);
10089 
10090 	/*
10091 	 * Now that there can be no more cloning in this transaction group,
10092 	 * but we are still before issuing frees, we can process pending BRT
10093 	 * updates.
10094 	 */
10095 	brt_pending_apply(spa, txg);
10096 
10097 	/*
10098 	 * Lock out configuration changes.
10099 	 */
10100 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
10101 
10102 	spa->spa_syncing_txg = txg;
10103 	spa->spa_sync_pass = 0;
10104 
10105 	for (int i = 0; i < spa->spa_alloc_count; i++) {
10106 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
10107 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
10108 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
10109 	}
10110 
10111 	/*
10112 	 * If there are any pending vdev state changes, convert them
10113 	 * into config changes that go out with this transaction group.
10114 	 */
10115 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10116 	while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10117 		/* Avoid holding the write lock unless actually necessary */
10118 		if (vd->vdev_aux == NULL) {
10119 			vdev_state_clean(vd);
10120 			vdev_config_dirty(vd);
10121 			continue;
10122 		}
10123 		/*
10124 		 * We need the write lock here because, for aux vdevs,
10125 		 * calling vdev_config_dirty() modifies sav_config.
10126 		 * This is ugly and will become unnecessary when we
10127 		 * eliminate the aux vdev wart by integrating all vdevs
10128 		 * into the root vdev tree.
10129 		 */
10130 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10131 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
10132 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10133 			vdev_state_clean(vd);
10134 			vdev_config_dirty(vd);
10135 		}
10136 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10137 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10138 	}
10139 	spa_config_exit(spa, SCL_STATE, FTAG);
10140 
10141 	dsl_pool_t *dp = spa->spa_dsl_pool;
10142 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
10143 
10144 	spa->spa_sync_starttime = gethrtime();
10145 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10146 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
10147 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
10148 	    NSEC_TO_TICK(spa->spa_deadman_synctime));
10149 
10150 	/*
10151 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
10152 	 * set spa_deflate if we have no raid-z vdevs.
10153 	 */
10154 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
10155 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
10156 		vdev_t *rvd = spa->spa_root_vdev;
10157 
10158 		int i;
10159 		for (i = 0; i < rvd->vdev_children; i++) {
10160 			vd = rvd->vdev_child[i];
10161 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
10162 				break;
10163 		}
10164 		if (i == rvd->vdev_children) {
10165 			spa->spa_deflate = TRUE;
10166 			VERIFY0(zap_add(spa->spa_meta_objset,
10167 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
10168 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
10169 		}
10170 	}
10171 
10172 	spa_sync_adjust_vdev_max_queue_depth(spa);
10173 
10174 	spa_sync_condense_indirect(spa, tx);
10175 
10176 	spa_sync_iterate_to_convergence(spa, tx);
10177 
10178 #ifdef ZFS_DEBUG
10179 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
10180 	/*
10181 	 * Make sure that the number of ZAPs for all the vdevs matches
10182 	 * the number of ZAPs in the per-vdev ZAP list. This only gets
10183 	 * called if the config is dirty; otherwise there may be
10184 	 * outstanding AVZ operations that weren't completed in
10185 	 * spa_sync_config_object.
10186 	 */
10187 		uint64_t all_vdev_zap_entry_count;
10188 		ASSERT0(zap_count(spa->spa_meta_objset,
10189 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
10190 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
10191 		    all_vdev_zap_entry_count);
10192 	}
10193 #endif
10194 
10195 	if (spa->spa_vdev_removal != NULL) {
10196 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
10197 	}
10198 
10199 	spa_sync_rewrite_vdev_config(spa, tx);
10200 	dmu_tx_commit(tx);
10201 
10202 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10203 	spa->spa_deadman_tqid = 0;
10204 
10205 	/*
10206 	 * Clear the dirty config list.
10207 	 */
10208 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
10209 		vdev_config_clean(vd);
10210 
10211 	/*
10212 	 * Now that the new config has synced transactionally,
10213 	 * let it become visible to the config cache.
10214 	 */
10215 	if (spa->spa_config_syncing != NULL) {
10216 		spa_config_set(spa, spa->spa_config_syncing);
10217 		spa->spa_config_txg = txg;
10218 		spa->spa_config_syncing = NULL;
10219 	}
10220 
10221 	dsl_pool_sync_done(dp, txg);
10222 
10223 	for (int i = 0; i < spa->spa_alloc_count; i++) {
10224 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
10225 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
10226 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
10227 	}
10228 
10229 	/*
10230 	 * Update usable space statistics.
10231 	 */
10232 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
10233 	    != NULL)
10234 		vdev_sync_done(vd, txg);
10235 
10236 	metaslab_class_evict_old(spa->spa_normal_class, txg);
10237 	metaslab_class_evict_old(spa->spa_log_class, txg);
10238 	/* spa_embedded_log_class has only one metaslab per vdev. */
10239 	metaslab_class_evict_old(spa->spa_special_class, txg);
10240 	metaslab_class_evict_old(spa->spa_dedup_class, txg);
10241 
10242 	spa_sync_close_syncing_log_sm(spa);
10243 
10244 	spa_update_dspace(spa);
10245 
10246 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
10247 		vdev_autotrim_kick(spa);
10248 
10249 	/*
10250 	 * It had better be the case that we didn't dirty anything
10251 	 * since vdev_config_sync().
10252 	 */
10253 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10254 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10255 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
10256 
10257 	while (zfs_pause_spa_sync)
10258 		delay(1);
10259 
10260 	spa->spa_sync_pass = 0;
10261 
10262 	/*
10263 	 * Update the last synced uberblock here. We want to do this at
10264 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
10265 	 * will be guaranteed that all the processing associated with
10266 	 * that txg has been completed.
10267 	 */
10268 	spa->spa_ubsync = spa->spa_uberblock;
10269 	spa_config_exit(spa, SCL_CONFIG, FTAG);
10270 
10271 	spa_handle_ignored_writes(spa);
10272 
10273 	/*
10274 	 * If any async tasks have been requested, kick them off.
10275 	 */
10276 	spa_async_dispatch(spa);
10277 }
10278 
10279 /*
10280  * Sync all pools.  We don't want to hold the namespace lock across these
10281  * operations, so we take a reference on the spa_t and drop the lock during the
10282  * sync.
10283  */
10284 void
10285 spa_sync_allpools(void)
10286 {
10287 	spa_t *spa = NULL;
10288 	mutex_enter(&spa_namespace_lock);
10289 	while ((spa = spa_next(spa)) != NULL) {
10290 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
10291 		    !spa_writeable(spa) || spa_suspended(spa))
10292 			continue;
10293 		spa_open_ref(spa, FTAG);
10294 		mutex_exit(&spa_namespace_lock);
10295 		txg_wait_synced(spa_get_dsl(spa), 0);
10296 		mutex_enter(&spa_namespace_lock);
10297 		spa_close(spa, FTAG);
10298 	}
10299 	mutex_exit(&spa_namespace_lock);
10300 }
10301 
10302 taskq_t *
10303 spa_sync_tq_create(spa_t *spa, const char *name)
10304 {
10305 	kthread_t **kthreads;
10306 
10307 	ASSERT(spa->spa_sync_tq == NULL);
10308 	ASSERT3S(spa->spa_alloc_count, <=, boot_ncpus);
10309 
10310 	/*
10311 	 * - do not allow more allocators than cpus.
10312 	 * - there may be more cpus than allocators.
10313 	 * - do not allow more sync taskq threads than allocators or cpus.
10314 	 */
10315 	int nthreads = spa->spa_alloc_count;
10316 	spa->spa_syncthreads = kmem_zalloc(sizeof (spa_syncthread_info_t) *
10317 	    nthreads, KM_SLEEP);
10318 
10319 	spa->spa_sync_tq = taskq_create_synced(name, nthreads, minclsyspri,
10320 	    nthreads, INT_MAX, TASKQ_PREPOPULATE, &kthreads);
10321 	VERIFY(spa->spa_sync_tq != NULL);
10322 	VERIFY(kthreads != NULL);
10323 
10324 	spa_syncthread_info_t *ti = spa->spa_syncthreads;
10325 	for (int i = 0; i < nthreads; i++, ti++) {
10326 		ti->sti_thread = kthreads[i];
10327 		ti->sti_allocator = i;
10328 	}
10329 
10330 	kmem_free(kthreads, sizeof (*kthreads) * nthreads);
10331 	return (spa->spa_sync_tq);
10332 }
10333 
10334 void
10335 spa_sync_tq_destroy(spa_t *spa)
10336 {
10337 	ASSERT(spa->spa_sync_tq != NULL);
10338 
10339 	taskq_wait(spa->spa_sync_tq);
10340 	taskq_destroy(spa->spa_sync_tq);
10341 	kmem_free(spa->spa_syncthreads,
10342 	    sizeof (spa_syncthread_info_t) * spa->spa_alloc_count);
10343 	spa->spa_sync_tq = NULL;
10344 }
10345 
10346 uint_t
10347 spa_acq_allocator(spa_t *spa)
10348 {
10349 	int i;
10350 
10351 	if (spa->spa_alloc_count == 1)
10352 		return (0);
10353 
10354 	mutex_enter(&spa->spa_allocs_use->sau_lock);
10355 	uint_t r = spa->spa_allocs_use->sau_rotor;
10356 	do {
10357 		if (++r == spa->spa_alloc_count)
10358 			r = 0;
10359 	} while (spa->spa_allocs_use->sau_inuse[r]);
10360 	spa->spa_allocs_use->sau_inuse[r] = B_TRUE;
10361 	spa->spa_allocs_use->sau_rotor = r;
10362 	mutex_exit(&spa->spa_allocs_use->sau_lock);
10363 
10364 	spa_syncthread_info_t *ti = spa->spa_syncthreads;
10365 	for (i = 0; i < spa->spa_alloc_count; i++, ti++) {
10366 		if (ti->sti_thread == curthread) {
10367 			ti->sti_allocator = r;
10368 			break;
10369 		}
10370 	}
10371 	ASSERT3S(i, <, spa->spa_alloc_count);
10372 	return (r);
10373 }
10374 
10375 void
10376 spa_rel_allocator(spa_t *spa, uint_t allocator)
10377 {
10378 	if (spa->spa_alloc_count > 1)
10379 		spa->spa_allocs_use->sau_inuse[allocator] = B_FALSE;
10380 }
10381 
10382 void
10383 spa_select_allocator(zio_t *zio)
10384 {
10385 	zbookmark_phys_t *bm = &zio->io_bookmark;
10386 	spa_t *spa = zio->io_spa;
10387 
10388 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
10389 
10390 	/*
10391 	 * A gang block (for example) may have inherited its parent's
10392 	 * allocator, in which case there is nothing further to do here.
10393 	 */
10394 	if (ZIO_HAS_ALLOCATOR(zio))
10395 		return;
10396 
10397 	ASSERT(spa != NULL);
10398 	ASSERT(bm != NULL);
10399 
10400 	/*
10401 	 * First try to use an allocator assigned to the syncthread, and set
10402 	 * the corresponding write issue taskq for the allocator.
10403 	 * Note, we must have an open pool to do this.
10404 	 */
10405 	if (spa->spa_sync_tq != NULL) {
10406 		spa_syncthread_info_t *ti = spa->spa_syncthreads;
10407 		for (int i = 0; i < spa->spa_alloc_count; i++, ti++) {
10408 			if (ti->sti_thread == curthread) {
10409 				zio->io_allocator = ti->sti_allocator;
10410 				return;
10411 			}
10412 		}
10413 	}
10414 
10415 	/*
10416 	 * We want to try to use as many allocators as possible to help improve
10417 	 * performance, but we also want logically adjacent IOs to be physically
10418 	 * adjacent to improve sequential read performance. We chunk each object
10419 	 * into 2^20 block regions, and then hash based on the objset, object,
10420 	 * level, and region to accomplish both of these goals.
10421 	 */
10422 	uint64_t hv = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level,
10423 	    bm->zb_blkid >> 20);
10424 
10425 	zio->io_allocator = (uint_t)hv % spa->spa_alloc_count;
10426 }
10427 
10428 /*
10429  * ==========================================================================
10430  * Miscellaneous routines
10431  * ==========================================================================
10432  */
10433 
10434 /*
10435  * Remove all pools in the system.
10436  */
10437 void
10438 spa_evict_all(void)
10439 {
10440 	spa_t *spa;
10441 
10442 	/*
10443 	 * Remove all cached state.  All pools should be closed now,
10444 	 * so every spa in the AVL tree should be unreferenced.
10445 	 */
10446 	mutex_enter(&spa_namespace_lock);
10447 	while ((spa = spa_next(NULL)) != NULL) {
10448 		/*
10449 		 * Stop async tasks.  The async thread may need to detach
10450 		 * a device that's been replaced, which requires grabbing
10451 		 * spa_namespace_lock, so we must drop it here.
10452 		 */
10453 		spa_open_ref(spa, FTAG);
10454 		mutex_exit(&spa_namespace_lock);
10455 		spa_async_suspend(spa);
10456 		mutex_enter(&spa_namespace_lock);
10457 		spa_close(spa, FTAG);
10458 
10459 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
10460 			spa_unload(spa);
10461 			spa_deactivate(spa);
10462 		}
10463 		spa_remove(spa);
10464 	}
10465 	mutex_exit(&spa_namespace_lock);
10466 }
10467 
10468 vdev_t *
10469 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
10470 {
10471 	vdev_t *vd;
10472 	int i;
10473 
10474 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
10475 		return (vd);
10476 
10477 	if (aux) {
10478 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
10479 			vd = spa->spa_l2cache.sav_vdevs[i];
10480 			if (vd->vdev_guid == guid)
10481 				return (vd);
10482 		}
10483 
10484 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
10485 			vd = spa->spa_spares.sav_vdevs[i];
10486 			if (vd->vdev_guid == guid)
10487 				return (vd);
10488 		}
10489 	}
10490 
10491 	return (NULL);
10492 }
10493 
10494 void
10495 spa_upgrade(spa_t *spa, uint64_t version)
10496 {
10497 	ASSERT(spa_writeable(spa));
10498 
10499 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
10500 
10501 	/*
10502 	 * This should only be called for a non-faulted pool, and since a
10503 	 * future version would result in an unopenable pool, this shouldn't be
10504 	 * possible.
10505 	 */
10506 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
10507 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
10508 
10509 	spa->spa_uberblock.ub_version = version;
10510 	vdev_config_dirty(spa->spa_root_vdev);
10511 
10512 	spa_config_exit(spa, SCL_ALL, FTAG);
10513 
10514 	txg_wait_synced(spa_get_dsl(spa), 0);
10515 }
10516 
10517 static boolean_t
10518 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
10519 {
10520 	(void) spa;
10521 	int i;
10522 	uint64_t vdev_guid;
10523 
10524 	for (i = 0; i < sav->sav_count; i++)
10525 		if (sav->sav_vdevs[i]->vdev_guid == guid)
10526 			return (B_TRUE);
10527 
10528 	for (i = 0; i < sav->sav_npending; i++) {
10529 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
10530 		    &vdev_guid) == 0 && vdev_guid == guid)
10531 			return (B_TRUE);
10532 	}
10533 
10534 	return (B_FALSE);
10535 }
10536 
10537 boolean_t
10538 spa_has_l2cache(spa_t *spa, uint64_t guid)
10539 {
10540 	return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
10541 }
10542 
10543 boolean_t
10544 spa_has_spare(spa_t *spa, uint64_t guid)
10545 {
10546 	return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
10547 }
10548 
10549 /*
10550  * Check if a pool has an active shared spare device.
10551  * Note: reference count of an active spare is 2, as a spare and as a replace
10552  */
10553 static boolean_t
10554 spa_has_active_shared_spare(spa_t *spa)
10555 {
10556 	int i, refcnt;
10557 	uint64_t pool;
10558 	spa_aux_vdev_t *sav = &spa->spa_spares;
10559 
10560 	for (i = 0; i < sav->sav_count; i++) {
10561 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
10562 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
10563 		    refcnt > 2)
10564 			return (B_TRUE);
10565 	}
10566 
10567 	return (B_FALSE);
10568 }
10569 
10570 uint64_t
10571 spa_total_metaslabs(spa_t *spa)
10572 {
10573 	vdev_t *rvd = spa->spa_root_vdev;
10574 
10575 	uint64_t m = 0;
10576 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
10577 		vdev_t *vd = rvd->vdev_child[c];
10578 		if (!vdev_is_concrete(vd))
10579 			continue;
10580 		m += vd->vdev_ms_count;
10581 	}
10582 	return (m);
10583 }
10584 
10585 /*
10586  * Notify any waiting threads that some activity has switched from being in-
10587  * progress to not-in-progress so that the thread can wake up and determine
10588  * whether it is finished waiting.
10589  */
10590 void
10591 spa_notify_waiters(spa_t *spa)
10592 {
10593 	/*
10594 	 * Acquiring spa_activities_lock here prevents the cv_broadcast from
10595 	 * happening between the waiting thread's check and cv_wait.
10596 	 */
10597 	mutex_enter(&spa->spa_activities_lock);
10598 	cv_broadcast(&spa->spa_activities_cv);
10599 	mutex_exit(&spa->spa_activities_lock);
10600 }
10601 
10602 /*
10603  * Notify any waiting threads that the pool is exporting, and then block until
10604  * they are finished using the spa_t.
10605  */
10606 void
10607 spa_wake_waiters(spa_t *spa)
10608 {
10609 	mutex_enter(&spa->spa_activities_lock);
10610 	spa->spa_waiters_cancel = B_TRUE;
10611 	cv_broadcast(&spa->spa_activities_cv);
10612 	while (spa->spa_waiters != 0)
10613 		cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
10614 	spa->spa_waiters_cancel = B_FALSE;
10615 	mutex_exit(&spa->spa_activities_lock);
10616 }
10617 
10618 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
10619 static boolean_t
10620 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
10621 {
10622 	spa_t *spa = vd->vdev_spa;
10623 
10624 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
10625 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10626 	ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
10627 	    activity == ZPOOL_WAIT_TRIM);
10628 
10629 	kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
10630 	    &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
10631 
10632 	mutex_exit(&spa->spa_activities_lock);
10633 	mutex_enter(lock);
10634 	mutex_enter(&spa->spa_activities_lock);
10635 
10636 	boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
10637 	    (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
10638 	    (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
10639 	mutex_exit(lock);
10640 
10641 	if (in_progress)
10642 		return (B_TRUE);
10643 
10644 	for (int i = 0; i < vd->vdev_children; i++) {
10645 		if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
10646 		    activity))
10647 			return (B_TRUE);
10648 	}
10649 
10650 	return (B_FALSE);
10651 }
10652 
10653 /*
10654  * If use_guid is true, this checks whether the vdev specified by guid is
10655  * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
10656  * is being initialized/trimmed. The caller must hold the config lock and
10657  * spa_activities_lock.
10658  */
10659 static int
10660 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
10661     zpool_wait_activity_t activity, boolean_t *in_progress)
10662 {
10663 	mutex_exit(&spa->spa_activities_lock);
10664 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10665 	mutex_enter(&spa->spa_activities_lock);
10666 
10667 	vdev_t *vd;
10668 	if (use_guid) {
10669 		vd = spa_lookup_by_guid(spa, guid, B_FALSE);
10670 		if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
10671 			spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10672 			return (EINVAL);
10673 		}
10674 	} else {
10675 		vd = spa->spa_root_vdev;
10676 	}
10677 
10678 	*in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
10679 
10680 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10681 	return (0);
10682 }
10683 
10684 /*
10685  * Locking for waiting threads
10686  * ---------------------------
10687  *
10688  * Waiting threads need a way to check whether a given activity is in progress,
10689  * and then, if it is, wait for it to complete. Each activity will have some
10690  * in-memory representation of the relevant on-disk state which can be used to
10691  * determine whether or not the activity is in progress. The in-memory state and
10692  * the locking used to protect it will be different for each activity, and may
10693  * not be suitable for use with a cvar (e.g., some state is protected by the
10694  * config lock). To allow waiting threads to wait without any races, another
10695  * lock, spa_activities_lock, is used.
10696  *
10697  * When the state is checked, both the activity-specific lock (if there is one)
10698  * and spa_activities_lock are held. In some cases, the activity-specific lock
10699  * is acquired explicitly (e.g. the config lock). In others, the locking is
10700  * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
10701  * thread releases the activity-specific lock and, if the activity is in
10702  * progress, then cv_waits using spa_activities_lock.
10703  *
10704  * The waiting thread is woken when another thread, one completing some
10705  * activity, updates the state of the activity and then calls
10706  * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
10707  * needs to hold its activity-specific lock when updating the state, and this
10708  * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
10709  *
10710  * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
10711  * and because it is held when the waiting thread checks the state of the
10712  * activity, it can never be the case that the completing thread both updates
10713  * the activity state and cv_broadcasts in between the waiting thread's check
10714  * and cv_wait. Thus, a waiting thread can never miss a wakeup.
10715  *
10716  * In order to prevent deadlock, when the waiting thread does its check, in some
10717  * cases it will temporarily drop spa_activities_lock in order to acquire the
10718  * activity-specific lock. The order in which spa_activities_lock and the
10719  * activity specific lock are acquired in the waiting thread is determined by
10720  * the order in which they are acquired in the completing thread; if the
10721  * completing thread calls spa_notify_waiters with the activity-specific lock
10722  * held, then the waiting thread must also acquire the activity-specific lock
10723  * first.
10724  */
10725 
10726 static int
10727 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
10728     boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
10729 {
10730 	int error = 0;
10731 
10732 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10733 
10734 	switch (activity) {
10735 	case ZPOOL_WAIT_CKPT_DISCARD:
10736 		*in_progress =
10737 		    (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
10738 		    zap_contains(spa_meta_objset(spa),
10739 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
10740 		    ENOENT);
10741 		break;
10742 	case ZPOOL_WAIT_FREE:
10743 		*in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
10744 		    !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
10745 		    spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
10746 		    spa_livelist_delete_check(spa));
10747 		break;
10748 	case ZPOOL_WAIT_INITIALIZE:
10749 	case ZPOOL_WAIT_TRIM:
10750 		error = spa_vdev_activity_in_progress(spa, use_tag, tag,
10751 		    activity, in_progress);
10752 		break;
10753 	case ZPOOL_WAIT_REPLACE:
10754 		mutex_exit(&spa->spa_activities_lock);
10755 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10756 		mutex_enter(&spa->spa_activities_lock);
10757 
10758 		*in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
10759 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10760 		break;
10761 	case ZPOOL_WAIT_REMOVE:
10762 		*in_progress = (spa->spa_removing_phys.sr_state ==
10763 		    DSS_SCANNING);
10764 		break;
10765 	case ZPOOL_WAIT_RESILVER:
10766 		*in_progress = vdev_rebuild_active(spa->spa_root_vdev);
10767 		if (*in_progress)
10768 			break;
10769 		zfs_fallthrough;
10770 	case ZPOOL_WAIT_SCRUB:
10771 	{
10772 		boolean_t scanning, paused, is_scrub;
10773 		dsl_scan_t *scn =  spa->spa_dsl_pool->dp_scan;
10774 
10775 		is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
10776 		scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
10777 		paused = dsl_scan_is_paused_scrub(scn);
10778 		*in_progress = (scanning && !paused &&
10779 		    is_scrub == (activity == ZPOOL_WAIT_SCRUB));
10780 		break;
10781 	}
10782 	case ZPOOL_WAIT_RAIDZ_EXPAND:
10783 	{
10784 		vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
10785 		*in_progress = (vre != NULL && vre->vre_state == DSS_SCANNING);
10786 		break;
10787 	}
10788 	default:
10789 		panic("unrecognized value for activity %d", activity);
10790 	}
10791 
10792 	return (error);
10793 }
10794 
10795 static int
10796 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
10797     boolean_t use_tag, uint64_t tag, boolean_t *waited)
10798 {
10799 	/*
10800 	 * The tag is used to distinguish between instances of an activity.
10801 	 * 'initialize' and 'trim' are the only activities that we use this for.
10802 	 * The other activities can only have a single instance in progress in a
10803 	 * pool at one time, making the tag unnecessary.
10804 	 *
10805 	 * There can be multiple devices being replaced at once, but since they
10806 	 * all finish once resilvering finishes, we don't bother keeping track
10807 	 * of them individually, we just wait for them all to finish.
10808 	 */
10809 	if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
10810 	    activity != ZPOOL_WAIT_TRIM)
10811 		return (EINVAL);
10812 
10813 	if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
10814 		return (EINVAL);
10815 
10816 	spa_t *spa;
10817 	int error = spa_open(pool, &spa, FTAG);
10818 	if (error != 0)
10819 		return (error);
10820 
10821 	/*
10822 	 * Increment the spa's waiter count so that we can call spa_close and
10823 	 * still ensure that the spa_t doesn't get freed before this thread is
10824 	 * finished with it when the pool is exported. We want to call spa_close
10825 	 * before we start waiting because otherwise the additional ref would
10826 	 * prevent the pool from being exported or destroyed throughout the
10827 	 * potentially long wait.
10828 	 */
10829 	mutex_enter(&spa->spa_activities_lock);
10830 	spa->spa_waiters++;
10831 	spa_close(spa, FTAG);
10832 
10833 	*waited = B_FALSE;
10834 	for (;;) {
10835 		boolean_t in_progress;
10836 		error = spa_activity_in_progress(spa, activity, use_tag, tag,
10837 		    &in_progress);
10838 
10839 		if (error || !in_progress || spa->spa_waiters_cancel)
10840 			break;
10841 
10842 		*waited = B_TRUE;
10843 
10844 		if (cv_wait_sig(&spa->spa_activities_cv,
10845 		    &spa->spa_activities_lock) == 0) {
10846 			error = EINTR;
10847 			break;
10848 		}
10849 	}
10850 
10851 	spa->spa_waiters--;
10852 	cv_signal(&spa->spa_waiters_cv);
10853 	mutex_exit(&spa->spa_activities_lock);
10854 
10855 	return (error);
10856 }
10857 
10858 /*
10859  * Wait for a particular instance of the specified activity to complete, where
10860  * the instance is identified by 'tag'
10861  */
10862 int
10863 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
10864     boolean_t *waited)
10865 {
10866 	return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
10867 }
10868 
10869 /*
10870  * Wait for all instances of the specified activity complete
10871  */
10872 int
10873 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
10874 {
10875 
10876 	return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
10877 }
10878 
10879 sysevent_t *
10880 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10881 {
10882 	sysevent_t *ev = NULL;
10883 #ifdef _KERNEL
10884 	nvlist_t *resource;
10885 
10886 	resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
10887 	if (resource) {
10888 		ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
10889 		ev->resource = resource;
10890 	}
10891 #else
10892 	(void) spa, (void) vd, (void) hist_nvl, (void) name;
10893 #endif
10894 	return (ev);
10895 }
10896 
10897 void
10898 spa_event_post(sysevent_t *ev)
10899 {
10900 #ifdef _KERNEL
10901 	if (ev) {
10902 		zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
10903 		kmem_free(ev, sizeof (*ev));
10904 	}
10905 #else
10906 	(void) ev;
10907 #endif
10908 }
10909 
10910 /*
10911  * Post a zevent corresponding to the given sysevent.   The 'name' must be one
10912  * of the event definitions in sys/sysevent/eventdefs.h.  The payload will be
10913  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
10914  * in the userland libzpool, as we don't want consumers to misinterpret ztest
10915  * or zdb as real changes.
10916  */
10917 void
10918 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10919 {
10920 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
10921 }
10922 
10923 /* state manipulation functions */
10924 EXPORT_SYMBOL(spa_open);
10925 EXPORT_SYMBOL(spa_open_rewind);
10926 EXPORT_SYMBOL(spa_get_stats);
10927 EXPORT_SYMBOL(spa_create);
10928 EXPORT_SYMBOL(spa_import);
10929 EXPORT_SYMBOL(spa_tryimport);
10930 EXPORT_SYMBOL(spa_destroy);
10931 EXPORT_SYMBOL(spa_export);
10932 EXPORT_SYMBOL(spa_reset);
10933 EXPORT_SYMBOL(spa_async_request);
10934 EXPORT_SYMBOL(spa_async_suspend);
10935 EXPORT_SYMBOL(spa_async_resume);
10936 EXPORT_SYMBOL(spa_inject_addref);
10937 EXPORT_SYMBOL(spa_inject_delref);
10938 EXPORT_SYMBOL(spa_scan_stat_init);
10939 EXPORT_SYMBOL(spa_scan_get_stats);
10940 
10941 /* device manipulation */
10942 EXPORT_SYMBOL(spa_vdev_add);
10943 EXPORT_SYMBOL(spa_vdev_attach);
10944 EXPORT_SYMBOL(spa_vdev_detach);
10945 EXPORT_SYMBOL(spa_vdev_setpath);
10946 EXPORT_SYMBOL(spa_vdev_setfru);
10947 EXPORT_SYMBOL(spa_vdev_split_mirror);
10948 
10949 /* spare statech is global across all pools) */
10950 EXPORT_SYMBOL(spa_spare_add);
10951 EXPORT_SYMBOL(spa_spare_remove);
10952 EXPORT_SYMBOL(spa_spare_exists);
10953 EXPORT_SYMBOL(spa_spare_activate);
10954 
10955 /* L2ARC statech is global across all pools) */
10956 EXPORT_SYMBOL(spa_l2cache_add);
10957 EXPORT_SYMBOL(spa_l2cache_remove);
10958 EXPORT_SYMBOL(spa_l2cache_exists);
10959 EXPORT_SYMBOL(spa_l2cache_activate);
10960 EXPORT_SYMBOL(spa_l2cache_drop);
10961 
10962 /* scanning */
10963 EXPORT_SYMBOL(spa_scan);
10964 EXPORT_SYMBOL(spa_scan_stop);
10965 
10966 /* spa syncing */
10967 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
10968 EXPORT_SYMBOL(spa_sync_allpools);
10969 
10970 /* properties */
10971 EXPORT_SYMBOL(spa_prop_set);
10972 EXPORT_SYMBOL(spa_prop_get);
10973 EXPORT_SYMBOL(spa_prop_clear_bootfs);
10974 
10975 /* asynchronous event notification */
10976 EXPORT_SYMBOL(spa_event_notify);
10977 
10978 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW,
10979 	"Percentage of CPUs to run a metaslab preload taskq");
10980 
10981 /* BEGIN CSTYLED */
10982 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
10983 	"log2 fraction of arc that can be used by inflight I/Os when "
10984 	"verifying pool during import");
10985 /* END CSTYLED */
10986 
10987 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
10988 	"Set to traverse metadata on pool import");
10989 
10990 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
10991 	"Set to traverse data on pool import");
10992 
10993 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
10994 	"Print vdev tree to zfs_dbgmsg during pool import");
10995 
10996 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RW,
10997 	"Percentage of CPUs to run an IO worker thread");
10998 
10999 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RW,
11000 	"Number of threads per IO worker taskqueue");
11001 
11002 /* BEGIN CSTYLED */
11003 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
11004 	"Allow importing pool with up to this number of missing top-level "
11005 	"vdevs (in read-only mode)");
11006 /* END CSTYLED */
11007 
11008 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
11009 	ZMOD_RW, "Set the livelist condense zthr to pause");
11010 
11011 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
11012 	ZMOD_RW, "Set the livelist condense synctask to pause");
11013 
11014 /* BEGIN CSTYLED */
11015 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
11016 	INT, ZMOD_RW,
11017 	"Whether livelist condensing was canceled in the synctask");
11018 
11019 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
11020 	INT, ZMOD_RW,
11021 	"Whether livelist condensing was canceled in the zthr function");
11022 
11023 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
11024 	ZMOD_RW,
11025 	"Whether extra ALLOC blkptrs were added to a livelist entry while it "
11026 	"was being condensed");
11027 
11028 #ifdef _KERNEL
11029 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_read,
11030 	spa_taskq_read_param_set, spa_taskq_read_param_get, ZMOD_RW,
11031 	"Configure IO queues for read IO");
11032 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_write,
11033 	spa_taskq_write_param_set, spa_taskq_write_param_get, ZMOD_RW,
11034 	"Configure IO queues for write IO");
11035 #endif
11036 /* END CSTYLED */
11037 
11038 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_write_tpq, UINT, ZMOD_RW,
11039 	"Number of CPUs per write issue taskq");
11040