1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 * Copyright 2016 Toomas Soome <tsoome@me.com> 30 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 31 * Copyright 2018 Joyent, Inc. 32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 33 * Copyright 2017 Joyent, Inc. 34 * Copyright (c) 2017, Intel Corporation. 35 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org> 36 * Copyright (c) 2023 Hewlett Packard Enterprise Development LP. 37 */ 38 39 /* 40 * SPA: Storage Pool Allocator 41 * 42 * This file contains all the routines used when modifying on-disk SPA state. 43 * This includes opening, importing, destroying, exporting a pool, and syncing a 44 * pool. 45 */ 46 47 #include <sys/zfs_context.h> 48 #include <sys/fm/fs/zfs.h> 49 #include <sys/spa_impl.h> 50 #include <sys/zio.h> 51 #include <sys/zio_checksum.h> 52 #include <sys/dmu.h> 53 #include <sys/dmu_tx.h> 54 #include <sys/zap.h> 55 #include <sys/zil.h> 56 #include <sys/brt.h> 57 #include <sys/ddt.h> 58 #include <sys/vdev_impl.h> 59 #include <sys/vdev_removal.h> 60 #include <sys/vdev_indirect_mapping.h> 61 #include <sys/vdev_indirect_births.h> 62 #include <sys/vdev_initialize.h> 63 #include <sys/vdev_rebuild.h> 64 #include <sys/vdev_trim.h> 65 #include <sys/vdev_disk.h> 66 #include <sys/vdev_raidz.h> 67 #include <sys/vdev_draid.h> 68 #include <sys/metaslab.h> 69 #include <sys/metaslab_impl.h> 70 #include <sys/mmp.h> 71 #include <sys/uberblock_impl.h> 72 #include <sys/txg.h> 73 #include <sys/avl.h> 74 #include <sys/bpobj.h> 75 #include <sys/dmu_traverse.h> 76 #include <sys/dmu_objset.h> 77 #include <sys/unique.h> 78 #include <sys/dsl_pool.h> 79 #include <sys/dsl_dataset.h> 80 #include <sys/dsl_dir.h> 81 #include <sys/dsl_prop.h> 82 #include <sys/dsl_synctask.h> 83 #include <sys/fs/zfs.h> 84 #include <sys/arc.h> 85 #include <sys/callb.h> 86 #include <sys/systeminfo.h> 87 #include <sys/zfs_ioctl.h> 88 #include <sys/dsl_scan.h> 89 #include <sys/zfeature.h> 90 #include <sys/dsl_destroy.h> 91 #include <sys/zvol.h> 92 93 #ifdef _KERNEL 94 #include <sys/fm/protocol.h> 95 #include <sys/fm/util.h> 96 #include <sys/callb.h> 97 #include <sys/zone.h> 98 #include <sys/vmsystm.h> 99 #endif /* _KERNEL */ 100 101 #include "zfs_prop.h" 102 #include "zfs_comutil.h" 103 #include <cityhash.h> 104 105 /* 106 * spa_thread() existed on Illumos as a parent thread for the various worker 107 * threads that actually run the pool, as a way to both reference the entire 108 * pool work as a single object, and to share properties like scheduling 109 * options. It has not yet been adapted to Linux or FreeBSD. This define is 110 * used to mark related parts of the code to make things easier for the reader, 111 * and to compile this code out. It can be removed when someone implements it, 112 * moves it to some Illumos-specific place, or removes it entirely. 113 */ 114 #undef HAVE_SPA_THREAD 115 116 /* 117 * The "System Duty Cycle" scheduling class is an Illumos feature to help 118 * prevent CPU-intensive kernel threads from affecting latency on interactive 119 * threads. It doesn't exist on Linux or FreeBSD, so the supporting code is 120 * gated behind a define. On Illumos SDC depends on spa_thread(), but 121 * spa_thread() also has other uses, so this is a separate define. 122 */ 123 #undef HAVE_SYSDC 124 125 /* 126 * The interval, in seconds, at which failed configuration cache file writes 127 * should be retried. 128 */ 129 int zfs_ccw_retry_interval = 300; 130 131 typedef enum zti_modes { 132 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 133 ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */ 134 ZTI_MODE_SYNC, /* sync thread assigned */ 135 ZTI_MODE_NULL, /* don't create a taskq */ 136 ZTI_NMODES 137 } zti_modes_t; 138 139 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 140 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 } 141 #define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 } 142 #define ZTI_SYNC { ZTI_MODE_SYNC, 0, 1 } 143 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 144 145 #define ZTI_N(n) ZTI_P(n, 1) 146 #define ZTI_ONE ZTI_N(1) 147 148 typedef struct zio_taskq_info { 149 zti_modes_t zti_mode; 150 uint_t zti_value; 151 uint_t zti_count; 152 } zio_taskq_info_t; 153 154 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 155 "iss", "iss_h", "int", "int_h" 156 }; 157 158 /* 159 * This table defines the taskq settings for each ZFS I/O type. When 160 * initializing a pool, we use this table to create an appropriately sized 161 * taskq. Some operations are low volume and therefore have a small, static 162 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 163 * macros. Other operations process a large amount of data; the ZTI_SCALE 164 * macro causes us to create a taskq oriented for throughput. Some operations 165 * are so high frequency and short-lived that the taskq itself can become a 166 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 167 * additional degree of parallelism specified by the number of threads per- 168 * taskq and the number of taskqs; when dispatching an event in this case, the 169 * particular taskq is chosen at random. ZTI_SCALE uses a number of taskqs 170 * that scales with the number of CPUs. 171 * 172 * The different taskq priorities are to handle the different contexts (issue 173 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 174 * need to be handled with minimum delay. 175 */ 176 static zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 177 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 178 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 179 { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */ 180 { ZTI_SYNC, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */ 181 { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 182 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 183 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 184 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */ 185 }; 186 187 static void spa_sync_version(void *arg, dmu_tx_t *tx); 188 static void spa_sync_props(void *arg, dmu_tx_t *tx); 189 static boolean_t spa_has_active_shared_spare(spa_t *spa); 190 static int spa_load_impl(spa_t *spa, spa_import_type_t type, 191 const char **ereport); 192 static void spa_vdev_resilver_done(spa_t *spa); 193 194 /* 195 * Percentage of all CPUs that can be used by the metaslab preload taskq. 196 */ 197 static uint_t metaslab_preload_pct = 50; 198 199 static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */ 200 static uint_t zio_taskq_batch_tpq; /* threads per taskq */ 201 202 #ifdef HAVE_SYSDC 203 static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 204 static const uint_t zio_taskq_basedc = 80; /* base duty cycle */ 205 #endif 206 207 #ifdef HAVE_SPA_THREAD 208 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */ 209 #endif 210 211 static uint_t zio_taskq_wr_iss_ncpus = 0; 212 213 /* 214 * Report any spa_load_verify errors found, but do not fail spa_load. 215 * This is used by zdb to analyze non-idle pools. 216 */ 217 boolean_t spa_load_verify_dryrun = B_FALSE; 218 219 /* 220 * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ). 221 * This is used by zdb for spacemaps verification. 222 */ 223 boolean_t spa_mode_readable_spacemaps = B_FALSE; 224 225 /* 226 * This (illegal) pool name is used when temporarily importing a spa_t in order 227 * to get the vdev stats associated with the imported devices. 228 */ 229 #define TRYIMPORT_NAME "$import" 230 231 /* 232 * For debugging purposes: print out vdev tree during pool import. 233 */ 234 static int spa_load_print_vdev_tree = B_FALSE; 235 236 /* 237 * A non-zero value for zfs_max_missing_tvds means that we allow importing 238 * pools with missing top-level vdevs. This is strictly intended for advanced 239 * pool recovery cases since missing data is almost inevitable. Pools with 240 * missing devices can only be imported read-only for safety reasons, and their 241 * fail-mode will be automatically set to "continue". 242 * 243 * With 1 missing vdev we should be able to import the pool and mount all 244 * datasets. User data that was not modified after the missing device has been 245 * added should be recoverable. This means that snapshots created prior to the 246 * addition of that device should be completely intact. 247 * 248 * With 2 missing vdevs, some datasets may fail to mount since there are 249 * dataset statistics that are stored as regular metadata. Some data might be 250 * recoverable if those vdevs were added recently. 251 * 252 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries 253 * may be missing entirely. Chances of data recovery are very low. Note that 254 * there are also risks of performing an inadvertent rewind as we might be 255 * missing all the vdevs with the latest uberblocks. 256 */ 257 uint64_t zfs_max_missing_tvds = 0; 258 259 /* 260 * The parameters below are similar to zfs_max_missing_tvds but are only 261 * intended for a preliminary open of the pool with an untrusted config which 262 * might be incomplete or out-dated. 263 * 264 * We are more tolerant for pools opened from a cachefile since we could have 265 * an out-dated cachefile where a device removal was not registered. 266 * We could have set the limit arbitrarily high but in the case where devices 267 * are really missing we would want to return the proper error codes; we chose 268 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available 269 * and we get a chance to retrieve the trusted config. 270 */ 271 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1; 272 273 /* 274 * In the case where config was assembled by scanning device paths (/dev/dsks 275 * by default) we are less tolerant since all the existing devices should have 276 * been detected and we want spa_load to return the right error codes. 277 */ 278 uint64_t zfs_max_missing_tvds_scan = 0; 279 280 /* 281 * Debugging aid that pauses spa_sync() towards the end. 282 */ 283 static const boolean_t zfs_pause_spa_sync = B_FALSE; 284 285 /* 286 * Variables to indicate the livelist condense zthr func should wait at certain 287 * points for the livelist to be removed - used to test condense/destroy races 288 */ 289 static int zfs_livelist_condense_zthr_pause = 0; 290 static int zfs_livelist_condense_sync_pause = 0; 291 292 /* 293 * Variables to track whether or not condense cancellation has been 294 * triggered in testing. 295 */ 296 static int zfs_livelist_condense_sync_cancel = 0; 297 static int zfs_livelist_condense_zthr_cancel = 0; 298 299 /* 300 * Variable to track whether or not extra ALLOC blkptrs were added to a 301 * livelist entry while it was being condensed (caused by the way we track 302 * remapped blkptrs in dbuf_remap_impl) 303 */ 304 static int zfs_livelist_condense_new_alloc = 0; 305 306 /* 307 * ========================================================================== 308 * SPA properties routines 309 * ========================================================================== 310 */ 311 312 /* 313 * Add a (source=src, propname=propval) list to an nvlist. 314 */ 315 static void 316 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval, 317 uint64_t intval, zprop_source_t src) 318 { 319 const char *propname = zpool_prop_to_name(prop); 320 nvlist_t *propval; 321 322 propval = fnvlist_alloc(); 323 fnvlist_add_uint64(propval, ZPROP_SOURCE, src); 324 325 if (strval != NULL) 326 fnvlist_add_string(propval, ZPROP_VALUE, strval); 327 else 328 fnvlist_add_uint64(propval, ZPROP_VALUE, intval); 329 330 fnvlist_add_nvlist(nvl, propname, propval); 331 nvlist_free(propval); 332 } 333 334 /* 335 * Add a user property (source=src, propname=propval) to an nvlist. 336 */ 337 static void 338 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval, 339 zprop_source_t src) 340 { 341 nvlist_t *propval; 342 343 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 344 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 345 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 346 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 347 nvlist_free(propval); 348 } 349 350 /* 351 * Get property values from the spa configuration. 352 */ 353 static void 354 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 355 { 356 vdev_t *rvd = spa->spa_root_vdev; 357 dsl_pool_t *pool = spa->spa_dsl_pool; 358 uint64_t size, alloc, cap, version; 359 const zprop_source_t src = ZPROP_SRC_NONE; 360 spa_config_dirent_t *dp; 361 metaslab_class_t *mc = spa_normal_class(spa); 362 363 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 364 365 if (rvd != NULL) { 366 alloc = metaslab_class_get_alloc(mc); 367 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 368 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 369 alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa)); 370 371 size = metaslab_class_get_space(mc); 372 size += metaslab_class_get_space(spa_special_class(spa)); 373 size += metaslab_class_get_space(spa_dedup_class(spa)); 374 size += metaslab_class_get_space(spa_embedded_log_class(spa)); 375 376 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 377 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 378 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 379 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 380 size - alloc, src); 381 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL, 382 spa->spa_checkpoint_info.sci_dspace, src); 383 384 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 385 metaslab_class_fragmentation(mc), src); 386 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 387 metaslab_class_expandable_space(mc), src); 388 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 389 (spa_mode(spa) == SPA_MODE_READ), src); 390 391 cap = (size == 0) ? 0 : (alloc * 100 / size); 392 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 393 394 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 395 ddt_get_pool_dedup_ratio(spa), src); 396 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONEUSED, NULL, 397 brt_get_used(spa), src); 398 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONESAVED, NULL, 399 brt_get_saved(spa), src); 400 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONERATIO, NULL, 401 brt_get_ratio(spa), src); 402 403 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 404 rvd->vdev_state, src); 405 406 version = spa_version(spa); 407 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) { 408 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, 409 version, ZPROP_SRC_DEFAULT); 410 } else { 411 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, 412 version, ZPROP_SRC_LOCAL); 413 } 414 spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID, 415 NULL, spa_load_guid(spa), src); 416 } 417 418 if (pool != NULL) { 419 /* 420 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 421 * when opening pools before this version freedir will be NULL. 422 */ 423 if (pool->dp_free_dir != NULL) { 424 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 425 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 426 src); 427 } else { 428 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 429 NULL, 0, src); 430 } 431 432 if (pool->dp_leak_dir != NULL) { 433 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 434 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 435 src); 436 } else { 437 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 438 NULL, 0, src); 439 } 440 } 441 442 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 443 444 if (spa->spa_comment != NULL) { 445 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 446 0, ZPROP_SRC_LOCAL); 447 } 448 449 if (spa->spa_compatibility != NULL) { 450 spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY, 451 spa->spa_compatibility, 0, ZPROP_SRC_LOCAL); 452 } 453 454 if (spa->spa_root != NULL) 455 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 456 0, ZPROP_SRC_LOCAL); 457 458 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 459 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 460 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 461 } else { 462 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 463 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 464 } 465 466 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) { 467 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, 468 DNODE_MAX_SIZE, ZPROP_SRC_NONE); 469 } else { 470 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, 471 DNODE_MIN_SIZE, ZPROP_SRC_NONE); 472 } 473 474 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 475 if (dp->scd_path == NULL) { 476 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 477 "none", 0, ZPROP_SRC_LOCAL); 478 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 479 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 480 dp->scd_path, 0, ZPROP_SRC_LOCAL); 481 } 482 } 483 } 484 485 /* 486 * Get zpool property values. 487 */ 488 int 489 spa_prop_get(spa_t *spa, nvlist_t **nvp) 490 { 491 objset_t *mos = spa->spa_meta_objset; 492 zap_cursor_t zc; 493 zap_attribute_t za; 494 dsl_pool_t *dp; 495 int err; 496 497 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP); 498 if (err) 499 return (err); 500 501 dp = spa_get_dsl(spa); 502 dsl_pool_config_enter(dp, FTAG); 503 mutex_enter(&spa->spa_props_lock); 504 505 /* 506 * Get properties from the spa config. 507 */ 508 spa_prop_get_config(spa, nvp); 509 510 /* If no pool property object, no more prop to get. */ 511 if (mos == NULL || spa->spa_pool_props_object == 0) 512 goto out; 513 514 /* 515 * Get properties from the MOS pool property object. 516 */ 517 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 518 (err = zap_cursor_retrieve(&zc, &za)) == 0; 519 zap_cursor_advance(&zc)) { 520 uint64_t intval = 0; 521 char *strval = NULL; 522 zprop_source_t src = ZPROP_SRC_DEFAULT; 523 zpool_prop_t prop; 524 525 if ((prop = zpool_name_to_prop(za.za_name)) == 526 ZPOOL_PROP_INVAL && !zfs_prop_user(za.za_name)) 527 continue; 528 529 switch (za.za_integer_length) { 530 case 8: 531 /* integer property */ 532 if (za.za_first_integer != 533 zpool_prop_default_numeric(prop)) 534 src = ZPROP_SRC_LOCAL; 535 536 if (prop == ZPOOL_PROP_BOOTFS) { 537 dsl_dataset_t *ds = NULL; 538 539 err = dsl_dataset_hold_obj(dp, 540 za.za_first_integer, FTAG, &ds); 541 if (err != 0) 542 break; 543 544 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, 545 KM_SLEEP); 546 dsl_dataset_name(ds, strval); 547 dsl_dataset_rele(ds, FTAG); 548 } else { 549 strval = NULL; 550 intval = za.za_first_integer; 551 } 552 553 spa_prop_add_list(*nvp, prop, strval, intval, src); 554 555 if (strval != NULL) 556 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); 557 558 break; 559 560 case 1: 561 /* string property */ 562 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 563 err = zap_lookup(mos, spa->spa_pool_props_object, 564 za.za_name, 1, za.za_num_integers, strval); 565 if (err) { 566 kmem_free(strval, za.za_num_integers); 567 break; 568 } 569 if (prop != ZPOOL_PROP_INVAL) { 570 spa_prop_add_list(*nvp, prop, strval, 0, src); 571 } else { 572 src = ZPROP_SRC_LOCAL; 573 spa_prop_add_user(*nvp, za.za_name, strval, 574 src); 575 } 576 kmem_free(strval, za.za_num_integers); 577 break; 578 579 default: 580 break; 581 } 582 } 583 zap_cursor_fini(&zc); 584 out: 585 mutex_exit(&spa->spa_props_lock); 586 dsl_pool_config_exit(dp, FTAG); 587 if (err && err != ENOENT) { 588 nvlist_free(*nvp); 589 *nvp = NULL; 590 return (err); 591 } 592 593 return (0); 594 } 595 596 /* 597 * Validate the given pool properties nvlist and modify the list 598 * for the property values to be set. 599 */ 600 static int 601 spa_prop_validate(spa_t *spa, nvlist_t *props) 602 { 603 nvpair_t *elem; 604 int error = 0, reset_bootfs = 0; 605 uint64_t objnum = 0; 606 boolean_t has_feature = B_FALSE; 607 608 elem = NULL; 609 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 610 uint64_t intval; 611 const char *strval, *slash, *check, *fname; 612 const char *propname = nvpair_name(elem); 613 zpool_prop_t prop = zpool_name_to_prop(propname); 614 615 switch (prop) { 616 case ZPOOL_PROP_INVAL: 617 /* 618 * Sanitize the input. 619 */ 620 if (zfs_prop_user(propname)) { 621 if (strlen(propname) >= ZAP_MAXNAMELEN) { 622 error = SET_ERROR(ENAMETOOLONG); 623 break; 624 } 625 626 if (strlen(fnvpair_value_string(elem)) >= 627 ZAP_MAXVALUELEN) { 628 error = SET_ERROR(E2BIG); 629 break; 630 } 631 } else if (zpool_prop_feature(propname)) { 632 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 633 error = SET_ERROR(EINVAL); 634 break; 635 } 636 637 if (nvpair_value_uint64(elem, &intval) != 0) { 638 error = SET_ERROR(EINVAL); 639 break; 640 } 641 642 if (intval != 0) { 643 error = SET_ERROR(EINVAL); 644 break; 645 } 646 647 fname = strchr(propname, '@') + 1; 648 if (zfeature_lookup_name(fname, NULL) != 0) { 649 error = SET_ERROR(EINVAL); 650 break; 651 } 652 653 has_feature = B_TRUE; 654 } else { 655 error = SET_ERROR(EINVAL); 656 break; 657 } 658 break; 659 660 case ZPOOL_PROP_VERSION: 661 error = nvpair_value_uint64(elem, &intval); 662 if (!error && 663 (intval < spa_version(spa) || 664 intval > SPA_VERSION_BEFORE_FEATURES || 665 has_feature)) 666 error = SET_ERROR(EINVAL); 667 break; 668 669 case ZPOOL_PROP_DELEGATION: 670 case ZPOOL_PROP_AUTOREPLACE: 671 case ZPOOL_PROP_LISTSNAPS: 672 case ZPOOL_PROP_AUTOEXPAND: 673 case ZPOOL_PROP_AUTOTRIM: 674 error = nvpair_value_uint64(elem, &intval); 675 if (!error && intval > 1) 676 error = SET_ERROR(EINVAL); 677 break; 678 679 case ZPOOL_PROP_MULTIHOST: 680 error = nvpair_value_uint64(elem, &intval); 681 if (!error && intval > 1) 682 error = SET_ERROR(EINVAL); 683 684 if (!error) { 685 uint32_t hostid = zone_get_hostid(NULL); 686 if (hostid) 687 spa->spa_hostid = hostid; 688 else 689 error = SET_ERROR(ENOTSUP); 690 } 691 692 break; 693 694 case ZPOOL_PROP_BOOTFS: 695 /* 696 * If the pool version is less than SPA_VERSION_BOOTFS, 697 * or the pool is still being created (version == 0), 698 * the bootfs property cannot be set. 699 */ 700 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 701 error = SET_ERROR(ENOTSUP); 702 break; 703 } 704 705 /* 706 * Make sure the vdev config is bootable 707 */ 708 if (!vdev_is_bootable(spa->spa_root_vdev)) { 709 error = SET_ERROR(ENOTSUP); 710 break; 711 } 712 713 reset_bootfs = 1; 714 715 error = nvpair_value_string(elem, &strval); 716 717 if (!error) { 718 objset_t *os; 719 720 if (strval == NULL || strval[0] == '\0') { 721 objnum = zpool_prop_default_numeric( 722 ZPOOL_PROP_BOOTFS); 723 break; 724 } 725 726 error = dmu_objset_hold(strval, FTAG, &os); 727 if (error != 0) 728 break; 729 730 /* Must be ZPL. */ 731 if (dmu_objset_type(os) != DMU_OST_ZFS) { 732 error = SET_ERROR(ENOTSUP); 733 } else { 734 objnum = dmu_objset_id(os); 735 } 736 dmu_objset_rele(os, FTAG); 737 } 738 break; 739 740 case ZPOOL_PROP_FAILUREMODE: 741 error = nvpair_value_uint64(elem, &intval); 742 if (!error && intval > ZIO_FAILURE_MODE_PANIC) 743 error = SET_ERROR(EINVAL); 744 745 /* 746 * This is a special case which only occurs when 747 * the pool has completely failed. This allows 748 * the user to change the in-core failmode property 749 * without syncing it out to disk (I/Os might 750 * currently be blocked). We do this by returning 751 * EIO to the caller (spa_prop_set) to trick it 752 * into thinking we encountered a property validation 753 * error. 754 */ 755 if (!error && spa_suspended(spa)) { 756 spa->spa_failmode = intval; 757 error = SET_ERROR(EIO); 758 } 759 break; 760 761 case ZPOOL_PROP_CACHEFILE: 762 if ((error = nvpair_value_string(elem, &strval)) != 0) 763 break; 764 765 if (strval[0] == '\0') 766 break; 767 768 if (strcmp(strval, "none") == 0) 769 break; 770 771 if (strval[0] != '/') { 772 error = SET_ERROR(EINVAL); 773 break; 774 } 775 776 slash = strrchr(strval, '/'); 777 ASSERT(slash != NULL); 778 779 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 780 strcmp(slash, "/..") == 0) 781 error = SET_ERROR(EINVAL); 782 break; 783 784 case ZPOOL_PROP_COMMENT: 785 if ((error = nvpair_value_string(elem, &strval)) != 0) 786 break; 787 for (check = strval; *check != '\0'; check++) { 788 if (!isprint(*check)) { 789 error = SET_ERROR(EINVAL); 790 break; 791 } 792 } 793 if (strlen(strval) > ZPROP_MAX_COMMENT) 794 error = SET_ERROR(E2BIG); 795 break; 796 797 default: 798 break; 799 } 800 801 if (error) 802 break; 803 } 804 805 (void) nvlist_remove_all(props, 806 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO)); 807 808 if (!error && reset_bootfs) { 809 error = nvlist_remove(props, 810 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 811 812 if (!error) { 813 error = nvlist_add_uint64(props, 814 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 815 } 816 } 817 818 return (error); 819 } 820 821 void 822 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 823 { 824 const char *cachefile; 825 spa_config_dirent_t *dp; 826 827 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 828 &cachefile) != 0) 829 return; 830 831 dp = kmem_alloc(sizeof (spa_config_dirent_t), 832 KM_SLEEP); 833 834 if (cachefile[0] == '\0') 835 dp->scd_path = spa_strdup(spa_config_path); 836 else if (strcmp(cachefile, "none") == 0) 837 dp->scd_path = NULL; 838 else 839 dp->scd_path = spa_strdup(cachefile); 840 841 list_insert_head(&spa->spa_config_list, dp); 842 if (need_sync) 843 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 844 } 845 846 int 847 spa_prop_set(spa_t *spa, nvlist_t *nvp) 848 { 849 int error; 850 nvpair_t *elem = NULL; 851 boolean_t need_sync = B_FALSE; 852 853 if ((error = spa_prop_validate(spa, nvp)) != 0) 854 return (error); 855 856 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 857 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 858 859 if (prop == ZPOOL_PROP_CACHEFILE || 860 prop == ZPOOL_PROP_ALTROOT || 861 prop == ZPOOL_PROP_READONLY) 862 continue; 863 864 if (prop == ZPOOL_PROP_INVAL && 865 zfs_prop_user(nvpair_name(elem))) { 866 need_sync = B_TRUE; 867 break; 868 } 869 870 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) { 871 uint64_t ver = 0; 872 873 if (prop == ZPOOL_PROP_VERSION) { 874 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 875 } else { 876 ASSERT(zpool_prop_feature(nvpair_name(elem))); 877 ver = SPA_VERSION_FEATURES; 878 need_sync = B_TRUE; 879 } 880 881 /* Save time if the version is already set. */ 882 if (ver == spa_version(spa)) 883 continue; 884 885 /* 886 * In addition to the pool directory object, we might 887 * create the pool properties object, the features for 888 * read object, the features for write object, or the 889 * feature descriptions object. 890 */ 891 error = dsl_sync_task(spa->spa_name, NULL, 892 spa_sync_version, &ver, 893 6, ZFS_SPACE_CHECK_RESERVED); 894 if (error) 895 return (error); 896 continue; 897 } 898 899 need_sync = B_TRUE; 900 break; 901 } 902 903 if (need_sync) { 904 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 905 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 906 } 907 908 return (0); 909 } 910 911 /* 912 * If the bootfs property value is dsobj, clear it. 913 */ 914 void 915 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 916 { 917 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 918 VERIFY(zap_remove(spa->spa_meta_objset, 919 spa->spa_pool_props_object, 920 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 921 spa->spa_bootfs = 0; 922 } 923 } 924 925 static int 926 spa_change_guid_check(void *arg, dmu_tx_t *tx) 927 { 928 uint64_t *newguid __maybe_unused = arg; 929 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 930 vdev_t *rvd = spa->spa_root_vdev; 931 uint64_t vdev_state; 932 933 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 934 int error = (spa_has_checkpoint(spa)) ? 935 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 936 return (SET_ERROR(error)); 937 } 938 939 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 940 vdev_state = rvd->vdev_state; 941 spa_config_exit(spa, SCL_STATE, FTAG); 942 943 if (vdev_state != VDEV_STATE_HEALTHY) 944 return (SET_ERROR(ENXIO)); 945 946 ASSERT3U(spa_guid(spa), !=, *newguid); 947 948 return (0); 949 } 950 951 static void 952 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 953 { 954 uint64_t *newguid = arg; 955 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 956 uint64_t oldguid; 957 vdev_t *rvd = spa->spa_root_vdev; 958 959 oldguid = spa_guid(spa); 960 961 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 962 rvd->vdev_guid = *newguid; 963 rvd->vdev_guid_sum += (*newguid - oldguid); 964 vdev_config_dirty(rvd); 965 spa_config_exit(spa, SCL_STATE, FTAG); 966 967 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 968 (u_longlong_t)oldguid, (u_longlong_t)*newguid); 969 } 970 971 /* 972 * Change the GUID for the pool. This is done so that we can later 973 * re-import a pool built from a clone of our own vdevs. We will modify 974 * the root vdev's guid, our own pool guid, and then mark all of our 975 * vdevs dirty. Note that we must make sure that all our vdevs are 976 * online when we do this, or else any vdevs that weren't present 977 * would be orphaned from our pool. We are also going to issue a 978 * sysevent to update any watchers. 979 */ 980 int 981 spa_change_guid(spa_t *spa) 982 { 983 int error; 984 uint64_t guid; 985 986 mutex_enter(&spa->spa_vdev_top_lock); 987 mutex_enter(&spa_namespace_lock); 988 guid = spa_generate_guid(NULL); 989 990 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 991 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 992 993 if (error == 0) { 994 /* 995 * Clear the kobj flag from all the vdevs to allow 996 * vdev_cache_process_kobj_evt() to post events to all the 997 * vdevs since GUID is updated. 998 */ 999 vdev_clear_kobj_evt(spa->spa_root_vdev); 1000 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 1001 vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]); 1002 1003 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); 1004 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID); 1005 } 1006 1007 mutex_exit(&spa_namespace_lock); 1008 mutex_exit(&spa->spa_vdev_top_lock); 1009 1010 return (error); 1011 } 1012 1013 /* 1014 * ========================================================================== 1015 * SPA state manipulation (open/create/destroy/import/export) 1016 * ========================================================================== 1017 */ 1018 1019 static int 1020 spa_error_entry_compare(const void *a, const void *b) 1021 { 1022 const spa_error_entry_t *sa = (const spa_error_entry_t *)a; 1023 const spa_error_entry_t *sb = (const spa_error_entry_t *)b; 1024 int ret; 1025 1026 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark, 1027 sizeof (zbookmark_phys_t)); 1028 1029 return (TREE_ISIGN(ret)); 1030 } 1031 1032 /* 1033 * Utility function which retrieves copies of the current logs and 1034 * re-initializes them in the process. 1035 */ 1036 void 1037 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 1038 { 1039 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 1040 1041 memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t)); 1042 memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t)); 1043 1044 avl_create(&spa->spa_errlist_scrub, 1045 spa_error_entry_compare, sizeof (spa_error_entry_t), 1046 offsetof(spa_error_entry_t, se_avl)); 1047 avl_create(&spa->spa_errlist_last, 1048 spa_error_entry_compare, sizeof (spa_error_entry_t), 1049 offsetof(spa_error_entry_t, se_avl)); 1050 } 1051 1052 static void 1053 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 1054 { 1055 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 1056 enum zti_modes mode = ztip->zti_mode; 1057 uint_t value = ztip->zti_value; 1058 uint_t count = ztip->zti_count; 1059 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1060 uint_t cpus, flags = TASKQ_DYNAMIC; 1061 1062 switch (mode) { 1063 case ZTI_MODE_FIXED: 1064 ASSERT3U(value, >, 0); 1065 break; 1066 1067 case ZTI_MODE_SYNC: 1068 1069 /* 1070 * Create one wr_iss taskq for every 'zio_taskq_wr_iss_ncpus', 1071 * not to exceed the number of spa allocators. 1072 */ 1073 if (zio_taskq_wr_iss_ncpus == 0) { 1074 count = MAX(boot_ncpus / spa->spa_alloc_count, 1); 1075 } else { 1076 count = MAX(1, 1077 boot_ncpus / MAX(1, zio_taskq_wr_iss_ncpus)); 1078 } 1079 count = MAX(count, (zio_taskq_batch_pct + 99) / 100); 1080 count = MIN(count, spa->spa_alloc_count); 1081 1082 /* 1083 * zio_taskq_batch_pct is unbounded and may exceed 100%, but no 1084 * single taskq may have more threads than 100% of online cpus. 1085 */ 1086 value = (zio_taskq_batch_pct + count / 2) / count; 1087 value = MIN(value, 100); 1088 flags |= TASKQ_THREADS_CPU_PCT; 1089 break; 1090 1091 case ZTI_MODE_SCALE: 1092 flags |= TASKQ_THREADS_CPU_PCT; 1093 /* 1094 * We want more taskqs to reduce lock contention, but we want 1095 * less for better request ordering and CPU utilization. 1096 */ 1097 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100); 1098 if (zio_taskq_batch_tpq > 0) { 1099 count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) / 1100 zio_taskq_batch_tpq); 1101 } else { 1102 /* 1103 * Prefer 6 threads per taskq, but no more taskqs 1104 * than threads in them on large systems. For 80%: 1105 * 1106 * taskq taskq total 1107 * cpus taskqs percent threads threads 1108 * ------- ------- ------- ------- ------- 1109 * 1 1 80% 1 1 1110 * 2 1 80% 1 1 1111 * 4 1 80% 3 3 1112 * 8 2 40% 3 6 1113 * 16 3 27% 4 12 1114 * 32 5 16% 5 25 1115 * 64 7 11% 7 49 1116 * 128 10 8% 10 100 1117 * 256 14 6% 15 210 1118 */ 1119 count = 1 + cpus / 6; 1120 while (count * count > cpus) 1121 count--; 1122 } 1123 /* Limit each taskq within 100% to not trigger assertion. */ 1124 count = MAX(count, (zio_taskq_batch_pct + 99) / 100); 1125 value = (zio_taskq_batch_pct + count / 2) / count; 1126 break; 1127 1128 case ZTI_MODE_NULL: 1129 tqs->stqs_count = 0; 1130 tqs->stqs_taskq = NULL; 1131 return; 1132 1133 default: 1134 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 1135 "spa_taskqs_init()", 1136 zio_type_name[t], zio_taskq_types[q], mode, value); 1137 break; 1138 } 1139 1140 ASSERT3U(count, >, 0); 1141 tqs->stqs_count = count; 1142 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 1143 1144 for (uint_t i = 0; i < count; i++) { 1145 taskq_t *tq; 1146 char name[32]; 1147 1148 if (count > 1) 1149 (void) snprintf(name, sizeof (name), "%s_%s_%u", 1150 zio_type_name[t], zio_taskq_types[q], i); 1151 else 1152 (void) snprintf(name, sizeof (name), "%s_%s", 1153 zio_type_name[t], zio_taskq_types[q]); 1154 1155 #ifdef HAVE_SYSDC 1156 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 1157 (void) zio_taskq_basedc; 1158 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 1159 spa->spa_proc, zio_taskq_basedc, flags); 1160 } else { 1161 #endif 1162 pri_t pri = maxclsyspri; 1163 /* 1164 * The write issue taskq can be extremely CPU 1165 * intensive. Run it at slightly less important 1166 * priority than the other taskqs. 1167 * 1168 * Under Linux and FreeBSD this means incrementing 1169 * the priority value as opposed to platforms like 1170 * illumos where it should be decremented. 1171 * 1172 * On FreeBSD, if priorities divided by four (RQ_PPQ) 1173 * are equal then a difference between them is 1174 * insignificant. 1175 */ 1176 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) { 1177 #if defined(__linux__) 1178 pri++; 1179 #elif defined(__FreeBSD__) 1180 pri += 4; 1181 #else 1182 #error "unknown OS" 1183 #endif 1184 } 1185 tq = taskq_create_proc(name, value, pri, 50, 1186 INT_MAX, spa->spa_proc, flags); 1187 #ifdef HAVE_SYSDC 1188 } 1189 #endif 1190 1191 tqs->stqs_taskq[i] = tq; 1192 } 1193 } 1194 1195 static void 1196 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 1197 { 1198 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1199 1200 if (tqs->stqs_taskq == NULL) { 1201 ASSERT3U(tqs->stqs_count, ==, 0); 1202 return; 1203 } 1204 1205 for (uint_t i = 0; i < tqs->stqs_count; i++) { 1206 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 1207 taskq_destroy(tqs->stqs_taskq[i]); 1208 } 1209 1210 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 1211 tqs->stqs_taskq = NULL; 1212 } 1213 1214 #ifdef _KERNEL 1215 /* 1216 * The READ and WRITE rows of zio_taskqs are configurable at module load time 1217 * by setting zio_taskq_read or zio_taskq_write. 1218 * 1219 * Example (the defaults for READ and WRITE) 1220 * zio_taskq_read='fixed,1,8 null scale null' 1221 * zio_taskq_write='sync fixed,1,5 scale fixed,1,5' 1222 * 1223 * Each sets the entire row at a time. 1224 * 1225 * 'fixed' is parameterised: fixed,Q,T where Q is number of taskqs, T is number 1226 * of threads per taskq. 1227 * 1228 * 'null' can only be set on the high-priority queues (queue selection for 1229 * high-priority queues will fall back to the regular queue if the high-pri 1230 * is NULL. 1231 */ 1232 static const char *const modes[ZTI_NMODES] = { 1233 "fixed", "scale", "sync", "null" 1234 }; 1235 1236 /* Parse the incoming config string. Modifies cfg */ 1237 static int 1238 spa_taskq_param_set(zio_type_t t, char *cfg) 1239 { 1240 int err = 0; 1241 1242 zio_taskq_info_t row[ZIO_TASKQ_TYPES] = {{0}}; 1243 1244 char *next = cfg, *tok, *c; 1245 1246 /* 1247 * Parse out each element from the string and fill `row`. The entire 1248 * row has to be set at once, so any errors are flagged by just 1249 * breaking out of this loop early. 1250 */ 1251 uint_t q; 1252 for (q = 0; q < ZIO_TASKQ_TYPES; q++) { 1253 /* `next` is the start of the config */ 1254 if (next == NULL) 1255 break; 1256 1257 /* Eat up leading space */ 1258 while (isspace(*next)) 1259 next++; 1260 if (*next == '\0') 1261 break; 1262 1263 /* Mode ends at space or end of string */ 1264 tok = next; 1265 next = strchr(tok, ' '); 1266 if (next != NULL) *next++ = '\0'; 1267 1268 /* Parameters start after a comma */ 1269 c = strchr(tok, ','); 1270 if (c != NULL) *c++ = '\0'; 1271 1272 /* Match mode string */ 1273 uint_t mode; 1274 for (mode = 0; mode < ZTI_NMODES; mode++) 1275 if (strcmp(tok, modes[mode]) == 0) 1276 break; 1277 if (mode == ZTI_NMODES) 1278 break; 1279 1280 /* Invalid canary */ 1281 row[q].zti_mode = ZTI_NMODES; 1282 1283 /* Per-mode setup */ 1284 switch (mode) { 1285 1286 /* 1287 * FIXED is parameterised: number of queues, and number of 1288 * threads per queue. 1289 */ 1290 case ZTI_MODE_FIXED: { 1291 /* No parameters? */ 1292 if (c == NULL || *c == '\0') 1293 break; 1294 1295 /* Find next parameter */ 1296 tok = c; 1297 c = strchr(tok, ','); 1298 if (c == NULL) 1299 break; 1300 1301 /* Take digits and convert */ 1302 unsigned long long nq; 1303 if (!(isdigit(*tok))) 1304 break; 1305 err = ddi_strtoull(tok, &tok, 10, &nq); 1306 /* Must succeed and also end at the next param sep */ 1307 if (err != 0 || tok != c) 1308 break; 1309 1310 /* Move past the comma */ 1311 tok++; 1312 /* Need another number */ 1313 if (!(isdigit(*tok))) 1314 break; 1315 /* Remember start to make sure we moved */ 1316 c = tok; 1317 1318 /* Take digits */ 1319 unsigned long long ntpq; 1320 err = ddi_strtoull(tok, &tok, 10, &ntpq); 1321 /* Must succeed, and moved forward */ 1322 if (err != 0 || tok == c || *tok != '\0') 1323 break; 1324 1325 /* 1326 * sanity; zero queues/threads make no sense, and 1327 * 16K is almost certainly more than anyone will ever 1328 * need and avoids silly numbers like UINT32_MAX 1329 */ 1330 if (nq == 0 || nq >= 16384 || 1331 ntpq == 0 || ntpq >= 16384) 1332 break; 1333 1334 const zio_taskq_info_t zti = ZTI_P(ntpq, nq); 1335 row[q] = zti; 1336 break; 1337 } 1338 1339 case ZTI_MODE_SCALE: { 1340 const zio_taskq_info_t zti = ZTI_SCALE; 1341 row[q] = zti; 1342 break; 1343 } 1344 1345 case ZTI_MODE_SYNC: { 1346 const zio_taskq_info_t zti = ZTI_SYNC; 1347 row[q] = zti; 1348 break; 1349 } 1350 1351 case ZTI_MODE_NULL: { 1352 /* 1353 * Can only null the high-priority queues; the general- 1354 * purpose ones have to exist. 1355 */ 1356 if (q != ZIO_TASKQ_ISSUE_HIGH && 1357 q != ZIO_TASKQ_INTERRUPT_HIGH) 1358 break; 1359 1360 const zio_taskq_info_t zti = ZTI_NULL; 1361 row[q] = zti; 1362 break; 1363 } 1364 1365 default: 1366 break; 1367 } 1368 1369 /* Ensure we set a mode */ 1370 if (row[q].zti_mode == ZTI_NMODES) 1371 break; 1372 } 1373 1374 /* Didn't get a full row, fail */ 1375 if (q < ZIO_TASKQ_TYPES) 1376 return (SET_ERROR(EINVAL)); 1377 1378 /* Eat trailing space */ 1379 if (next != NULL) 1380 while (isspace(*next)) 1381 next++; 1382 1383 /* If there's anything left over then fail */ 1384 if (next != NULL && *next != '\0') 1385 return (SET_ERROR(EINVAL)); 1386 1387 /* Success! Copy it into the real config */ 1388 for (q = 0; q < ZIO_TASKQ_TYPES; q++) 1389 zio_taskqs[t][q] = row[q]; 1390 1391 return (0); 1392 } 1393 1394 static int 1395 spa_taskq_param_get(zio_type_t t, char *buf, boolean_t add_newline) 1396 { 1397 int pos = 0; 1398 1399 /* Build paramater string from live config */ 1400 const char *sep = ""; 1401 for (uint_t q = 0; q < ZIO_TASKQ_TYPES; q++) { 1402 const zio_taskq_info_t *zti = &zio_taskqs[t][q]; 1403 if (zti->zti_mode == ZTI_MODE_FIXED) 1404 pos += sprintf(&buf[pos], "%s%s,%u,%u", sep, 1405 modes[zti->zti_mode], zti->zti_count, 1406 zti->zti_value); 1407 else 1408 pos += sprintf(&buf[pos], "%s%s", sep, 1409 modes[zti->zti_mode]); 1410 sep = " "; 1411 } 1412 1413 if (add_newline) 1414 buf[pos++] = '\n'; 1415 buf[pos] = '\0'; 1416 1417 return (pos); 1418 } 1419 1420 #ifdef __linux__ 1421 static int 1422 spa_taskq_read_param_set(const char *val, zfs_kernel_param_t *kp) 1423 { 1424 char *cfg = kmem_strdup(val); 1425 int err = spa_taskq_param_set(ZIO_TYPE_READ, cfg); 1426 kmem_free(cfg, strlen(val)+1); 1427 return (-err); 1428 } 1429 static int 1430 spa_taskq_read_param_get(char *buf, zfs_kernel_param_t *kp) 1431 { 1432 return (spa_taskq_param_get(ZIO_TYPE_READ, buf, TRUE)); 1433 } 1434 1435 static int 1436 spa_taskq_write_param_set(const char *val, zfs_kernel_param_t *kp) 1437 { 1438 char *cfg = kmem_strdup(val); 1439 int err = spa_taskq_param_set(ZIO_TYPE_WRITE, cfg); 1440 kmem_free(cfg, strlen(val)+1); 1441 return (-err); 1442 } 1443 static int 1444 spa_taskq_write_param_get(char *buf, zfs_kernel_param_t *kp) 1445 { 1446 return (spa_taskq_param_get(ZIO_TYPE_WRITE, buf, TRUE)); 1447 } 1448 #else 1449 /* 1450 * On FreeBSD load-time parameters can be set up before malloc() is available, 1451 * so we have to do all the parsing work on the stack. 1452 */ 1453 #define SPA_TASKQ_PARAM_MAX (128) 1454 1455 static int 1456 spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS) 1457 { 1458 char buf[SPA_TASKQ_PARAM_MAX]; 1459 int err; 1460 1461 (void) spa_taskq_param_get(ZIO_TYPE_READ, buf, FALSE); 1462 err = sysctl_handle_string(oidp, buf, sizeof (buf), req); 1463 if (err || req->newptr == NULL) 1464 return (err); 1465 return (spa_taskq_param_set(ZIO_TYPE_READ, buf)); 1466 } 1467 1468 static int 1469 spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS) 1470 { 1471 char buf[SPA_TASKQ_PARAM_MAX]; 1472 int err; 1473 1474 (void) spa_taskq_param_get(ZIO_TYPE_WRITE, buf, FALSE); 1475 err = sysctl_handle_string(oidp, buf, sizeof (buf), req); 1476 if (err || req->newptr == NULL) 1477 return (err); 1478 return (spa_taskq_param_set(ZIO_TYPE_WRITE, buf)); 1479 } 1480 #endif 1481 #endif /* _KERNEL */ 1482 1483 /* 1484 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 1485 * Note that a type may have multiple discrete taskqs to avoid lock contention 1486 * on the taskq itself. 1487 */ 1488 static taskq_t * 1489 spa_taskq_dispatch_select(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 1490 zio_t *zio) 1491 { 1492 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1493 taskq_t *tq; 1494 1495 ASSERT3P(tqs->stqs_taskq, !=, NULL); 1496 ASSERT3U(tqs->stqs_count, !=, 0); 1497 1498 if ((t == ZIO_TYPE_WRITE) && (q == ZIO_TASKQ_ISSUE) && 1499 (zio != NULL) && (zio->io_wr_iss_tq != NULL)) { 1500 /* dispatch to assigned write issue taskq */ 1501 tq = zio->io_wr_iss_tq; 1502 return (tq); 1503 } 1504 1505 if (tqs->stqs_count == 1) { 1506 tq = tqs->stqs_taskq[0]; 1507 } else { 1508 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count]; 1509 } 1510 return (tq); 1511 } 1512 1513 void 1514 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 1515 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent, 1516 zio_t *zio) 1517 { 1518 taskq_t *tq = spa_taskq_dispatch_select(spa, t, q, zio); 1519 taskq_dispatch_ent(tq, func, arg, flags, ent); 1520 } 1521 1522 /* 1523 * Same as spa_taskq_dispatch_ent() but block on the task until completion. 1524 */ 1525 void 1526 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 1527 task_func_t *func, void *arg, uint_t flags) 1528 { 1529 taskq_t *tq = spa_taskq_dispatch_select(spa, t, q, NULL); 1530 taskqid_t id = taskq_dispatch(tq, func, arg, flags); 1531 if (id) 1532 taskq_wait_id(tq, id); 1533 } 1534 1535 static void 1536 spa_create_zio_taskqs(spa_t *spa) 1537 { 1538 for (int t = 0; t < ZIO_TYPES; t++) { 1539 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1540 spa_taskqs_init(spa, t, q); 1541 } 1542 } 1543 } 1544 1545 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD) 1546 static void 1547 spa_thread(void *arg) 1548 { 1549 psetid_t zio_taskq_psrset_bind = PS_NONE; 1550 callb_cpr_t cprinfo; 1551 1552 spa_t *spa = arg; 1553 user_t *pu = PTOU(curproc); 1554 1555 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 1556 spa->spa_name); 1557 1558 ASSERT(curproc != &p0); 1559 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 1560 "zpool-%s", spa->spa_name); 1561 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 1562 1563 /* bind this thread to the requested psrset */ 1564 if (zio_taskq_psrset_bind != PS_NONE) { 1565 pool_lock(); 1566 mutex_enter(&cpu_lock); 1567 mutex_enter(&pidlock); 1568 mutex_enter(&curproc->p_lock); 1569 1570 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 1571 0, NULL, NULL) == 0) { 1572 curthread->t_bind_pset = zio_taskq_psrset_bind; 1573 } else { 1574 cmn_err(CE_WARN, 1575 "Couldn't bind process for zfs pool \"%s\" to " 1576 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1577 } 1578 1579 mutex_exit(&curproc->p_lock); 1580 mutex_exit(&pidlock); 1581 mutex_exit(&cpu_lock); 1582 pool_unlock(); 1583 } 1584 1585 #ifdef HAVE_SYSDC 1586 if (zio_taskq_sysdc) { 1587 sysdc_thread_enter(curthread, 100, 0); 1588 } 1589 #endif 1590 1591 spa->spa_proc = curproc; 1592 spa->spa_did = curthread->t_did; 1593 1594 spa_create_zio_taskqs(spa); 1595 1596 mutex_enter(&spa->spa_proc_lock); 1597 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1598 1599 spa->spa_proc_state = SPA_PROC_ACTIVE; 1600 cv_broadcast(&spa->spa_proc_cv); 1601 1602 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1603 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1604 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1605 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1606 1607 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1608 spa->spa_proc_state = SPA_PROC_GONE; 1609 spa->spa_proc = &p0; 1610 cv_broadcast(&spa->spa_proc_cv); 1611 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1612 1613 mutex_enter(&curproc->p_lock); 1614 lwp_exit(); 1615 } 1616 #endif 1617 1618 extern metaslab_ops_t *metaslab_allocator(spa_t *spa); 1619 1620 /* 1621 * Activate an uninitialized pool. 1622 */ 1623 static void 1624 spa_activate(spa_t *spa, spa_mode_t mode) 1625 { 1626 metaslab_ops_t *msp = metaslab_allocator(spa); 1627 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1628 1629 spa->spa_state = POOL_STATE_ACTIVE; 1630 spa->spa_mode = mode; 1631 spa->spa_read_spacemaps = spa_mode_readable_spacemaps; 1632 1633 spa->spa_normal_class = metaslab_class_create(spa, msp); 1634 spa->spa_log_class = metaslab_class_create(spa, msp); 1635 spa->spa_embedded_log_class = metaslab_class_create(spa, msp); 1636 spa->spa_special_class = metaslab_class_create(spa, msp); 1637 spa->spa_dedup_class = metaslab_class_create(spa, msp); 1638 1639 /* Try to create a covering process */ 1640 mutex_enter(&spa->spa_proc_lock); 1641 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1642 ASSERT(spa->spa_proc == &p0); 1643 spa->spa_did = 0; 1644 1645 #ifdef HAVE_SPA_THREAD 1646 /* Only create a process if we're going to be around a while. */ 1647 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1648 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1649 NULL, 0) == 0) { 1650 spa->spa_proc_state = SPA_PROC_CREATED; 1651 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1652 cv_wait(&spa->spa_proc_cv, 1653 &spa->spa_proc_lock); 1654 } 1655 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1656 ASSERT(spa->spa_proc != &p0); 1657 ASSERT(spa->spa_did != 0); 1658 } else { 1659 #ifdef _KERNEL 1660 cmn_err(CE_WARN, 1661 "Couldn't create process for zfs pool \"%s\"\n", 1662 spa->spa_name); 1663 #endif 1664 } 1665 } 1666 #endif /* HAVE_SPA_THREAD */ 1667 mutex_exit(&spa->spa_proc_lock); 1668 1669 /* If we didn't create a process, we need to create our taskqs. */ 1670 if (spa->spa_proc == &p0) { 1671 spa_create_zio_taskqs(spa); 1672 } 1673 1674 for (size_t i = 0; i < TXG_SIZE; i++) { 1675 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 1676 ZIO_FLAG_CANFAIL); 1677 } 1678 1679 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1680 offsetof(vdev_t, vdev_config_dirty_node)); 1681 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1682 offsetof(objset_t, os_evicting_node)); 1683 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1684 offsetof(vdev_t, vdev_state_dirty_node)); 1685 1686 txg_list_create(&spa->spa_vdev_txg_list, spa, 1687 offsetof(struct vdev, vdev_txg_node)); 1688 1689 avl_create(&spa->spa_errlist_scrub, 1690 spa_error_entry_compare, sizeof (spa_error_entry_t), 1691 offsetof(spa_error_entry_t, se_avl)); 1692 avl_create(&spa->spa_errlist_last, 1693 spa_error_entry_compare, sizeof (spa_error_entry_t), 1694 offsetof(spa_error_entry_t, se_avl)); 1695 avl_create(&spa->spa_errlist_healed, 1696 spa_error_entry_compare, sizeof (spa_error_entry_t), 1697 offsetof(spa_error_entry_t, se_avl)); 1698 1699 spa_activate_os(spa); 1700 1701 spa_keystore_init(&spa->spa_keystore); 1702 1703 /* 1704 * This taskq is used to perform zvol-minor-related tasks 1705 * asynchronously. This has several advantages, including easy 1706 * resolution of various deadlocks. 1707 * 1708 * The taskq must be single threaded to ensure tasks are always 1709 * processed in the order in which they were dispatched. 1710 * 1711 * A taskq per pool allows one to keep the pools independent. 1712 * This way if one pool is suspended, it will not impact another. 1713 * 1714 * The preferred location to dispatch a zvol minor task is a sync 1715 * task. In this context, there is easy access to the spa_t and minimal 1716 * error handling is required because the sync task must succeed. 1717 */ 1718 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri, 1719 1, INT_MAX, 0); 1720 1721 /* 1722 * The taskq to preload metaslabs. 1723 */ 1724 spa->spa_metaslab_taskq = taskq_create("z_metaslab", 1725 metaslab_preload_pct, maxclsyspri, 1, INT_MAX, 1726 TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); 1727 1728 /* 1729 * Taskq dedicated to prefetcher threads: this is used to prevent the 1730 * pool traverse code from monopolizing the global (and limited) 1731 * system_taskq by inappropriately scheduling long running tasks on it. 1732 */ 1733 spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100, 1734 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); 1735 1736 /* 1737 * The taskq to upgrade datasets in this pool. Currently used by 1738 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA. 1739 */ 1740 spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100, 1741 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); 1742 } 1743 1744 /* 1745 * Opposite of spa_activate(). 1746 */ 1747 static void 1748 spa_deactivate(spa_t *spa) 1749 { 1750 ASSERT(spa->spa_sync_on == B_FALSE); 1751 ASSERT(spa->spa_dsl_pool == NULL); 1752 ASSERT(spa->spa_root_vdev == NULL); 1753 ASSERT(spa->spa_async_zio_root == NULL); 1754 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1755 1756 spa_evicting_os_wait(spa); 1757 1758 if (spa->spa_zvol_taskq) { 1759 taskq_destroy(spa->spa_zvol_taskq); 1760 spa->spa_zvol_taskq = NULL; 1761 } 1762 1763 if (spa->spa_metaslab_taskq) { 1764 taskq_destroy(spa->spa_metaslab_taskq); 1765 spa->spa_metaslab_taskq = NULL; 1766 } 1767 1768 if (spa->spa_prefetch_taskq) { 1769 taskq_destroy(spa->spa_prefetch_taskq); 1770 spa->spa_prefetch_taskq = NULL; 1771 } 1772 1773 if (spa->spa_upgrade_taskq) { 1774 taskq_destroy(spa->spa_upgrade_taskq); 1775 spa->spa_upgrade_taskq = NULL; 1776 } 1777 1778 txg_list_destroy(&spa->spa_vdev_txg_list); 1779 1780 list_destroy(&spa->spa_config_dirty_list); 1781 list_destroy(&spa->spa_evicting_os_list); 1782 list_destroy(&spa->spa_state_dirty_list); 1783 1784 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 1785 1786 for (int t = 0; t < ZIO_TYPES; t++) { 1787 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1788 spa_taskqs_fini(spa, t, q); 1789 } 1790 } 1791 1792 for (size_t i = 0; i < TXG_SIZE; i++) { 1793 ASSERT3P(spa->spa_txg_zio[i], !=, NULL); 1794 VERIFY0(zio_wait(spa->spa_txg_zio[i])); 1795 spa->spa_txg_zio[i] = NULL; 1796 } 1797 1798 metaslab_class_destroy(spa->spa_normal_class); 1799 spa->spa_normal_class = NULL; 1800 1801 metaslab_class_destroy(spa->spa_log_class); 1802 spa->spa_log_class = NULL; 1803 1804 metaslab_class_destroy(spa->spa_embedded_log_class); 1805 spa->spa_embedded_log_class = NULL; 1806 1807 metaslab_class_destroy(spa->spa_special_class); 1808 spa->spa_special_class = NULL; 1809 1810 metaslab_class_destroy(spa->spa_dedup_class); 1811 spa->spa_dedup_class = NULL; 1812 1813 /* 1814 * If this was part of an import or the open otherwise failed, we may 1815 * still have errors left in the queues. Empty them just in case. 1816 */ 1817 spa_errlog_drain(spa); 1818 avl_destroy(&spa->spa_errlist_scrub); 1819 avl_destroy(&spa->spa_errlist_last); 1820 avl_destroy(&spa->spa_errlist_healed); 1821 1822 spa_keystore_fini(&spa->spa_keystore); 1823 1824 spa->spa_state = POOL_STATE_UNINITIALIZED; 1825 1826 mutex_enter(&spa->spa_proc_lock); 1827 if (spa->spa_proc_state != SPA_PROC_NONE) { 1828 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1829 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1830 cv_broadcast(&spa->spa_proc_cv); 1831 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1832 ASSERT(spa->spa_proc != &p0); 1833 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1834 } 1835 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1836 spa->spa_proc_state = SPA_PROC_NONE; 1837 } 1838 ASSERT(spa->spa_proc == &p0); 1839 mutex_exit(&spa->spa_proc_lock); 1840 1841 /* 1842 * We want to make sure spa_thread() has actually exited the ZFS 1843 * module, so that the module can't be unloaded out from underneath 1844 * it. 1845 */ 1846 if (spa->spa_did != 0) { 1847 thread_join(spa->spa_did); 1848 spa->spa_did = 0; 1849 } 1850 1851 spa_deactivate_os(spa); 1852 1853 } 1854 1855 /* 1856 * Verify a pool configuration, and construct the vdev tree appropriately. This 1857 * will create all the necessary vdevs in the appropriate layout, with each vdev 1858 * in the CLOSED state. This will prep the pool before open/creation/import. 1859 * All vdev validation is done by the vdev_alloc() routine. 1860 */ 1861 int 1862 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1863 uint_t id, int atype) 1864 { 1865 nvlist_t **child; 1866 uint_t children; 1867 int error; 1868 1869 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1870 return (error); 1871 1872 if ((*vdp)->vdev_ops->vdev_op_leaf) 1873 return (0); 1874 1875 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1876 &child, &children); 1877 1878 if (error == ENOENT) 1879 return (0); 1880 1881 if (error) { 1882 vdev_free(*vdp); 1883 *vdp = NULL; 1884 return (SET_ERROR(EINVAL)); 1885 } 1886 1887 for (int c = 0; c < children; c++) { 1888 vdev_t *vd; 1889 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1890 atype)) != 0) { 1891 vdev_free(*vdp); 1892 *vdp = NULL; 1893 return (error); 1894 } 1895 } 1896 1897 ASSERT(*vdp != NULL); 1898 1899 return (0); 1900 } 1901 1902 static boolean_t 1903 spa_should_flush_logs_on_unload(spa_t *spa) 1904 { 1905 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1906 return (B_FALSE); 1907 1908 if (!spa_writeable(spa)) 1909 return (B_FALSE); 1910 1911 if (!spa->spa_sync_on) 1912 return (B_FALSE); 1913 1914 if (spa_state(spa) != POOL_STATE_EXPORTED) 1915 return (B_FALSE); 1916 1917 if (zfs_keep_log_spacemaps_at_export) 1918 return (B_FALSE); 1919 1920 return (B_TRUE); 1921 } 1922 1923 /* 1924 * Opens a transaction that will set the flag that will instruct 1925 * spa_sync to attempt to flush all the metaslabs for that txg. 1926 */ 1927 static void 1928 spa_unload_log_sm_flush_all(spa_t *spa) 1929 { 1930 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 1931 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 1932 1933 ASSERT3U(spa->spa_log_flushall_txg, ==, 0); 1934 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx); 1935 1936 dmu_tx_commit(tx); 1937 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg); 1938 } 1939 1940 static void 1941 spa_unload_log_sm_metadata(spa_t *spa) 1942 { 1943 void *cookie = NULL; 1944 spa_log_sm_t *sls; 1945 log_summary_entry_t *e; 1946 1947 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg, 1948 &cookie)) != NULL) { 1949 VERIFY0(sls->sls_mscount); 1950 kmem_free(sls, sizeof (spa_log_sm_t)); 1951 } 1952 1953 while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) { 1954 VERIFY0(e->lse_mscount); 1955 kmem_free(e, sizeof (log_summary_entry_t)); 1956 } 1957 1958 spa->spa_unflushed_stats.sus_nblocks = 0; 1959 spa->spa_unflushed_stats.sus_memused = 0; 1960 spa->spa_unflushed_stats.sus_blocklimit = 0; 1961 } 1962 1963 static void 1964 spa_destroy_aux_threads(spa_t *spa) 1965 { 1966 if (spa->spa_condense_zthr != NULL) { 1967 zthr_destroy(spa->spa_condense_zthr); 1968 spa->spa_condense_zthr = NULL; 1969 } 1970 if (spa->spa_checkpoint_discard_zthr != NULL) { 1971 zthr_destroy(spa->spa_checkpoint_discard_zthr); 1972 spa->spa_checkpoint_discard_zthr = NULL; 1973 } 1974 if (spa->spa_livelist_delete_zthr != NULL) { 1975 zthr_destroy(spa->spa_livelist_delete_zthr); 1976 spa->spa_livelist_delete_zthr = NULL; 1977 } 1978 if (spa->spa_livelist_condense_zthr != NULL) { 1979 zthr_destroy(spa->spa_livelist_condense_zthr); 1980 spa->spa_livelist_condense_zthr = NULL; 1981 } 1982 if (spa->spa_raidz_expand_zthr != NULL) { 1983 zthr_destroy(spa->spa_raidz_expand_zthr); 1984 spa->spa_raidz_expand_zthr = NULL; 1985 } 1986 } 1987 1988 /* 1989 * Opposite of spa_load(). 1990 */ 1991 static void 1992 spa_unload(spa_t *spa) 1993 { 1994 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1995 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED); 1996 1997 spa_import_progress_remove(spa_guid(spa)); 1998 spa_load_note(spa, "UNLOADING"); 1999 2000 spa_wake_waiters(spa); 2001 2002 /* 2003 * If we have set the spa_final_txg, we have already performed the 2004 * tasks below in spa_export_common(). We should not redo it here since 2005 * we delay the final TXGs beyond what spa_final_txg is set at. 2006 */ 2007 if (spa->spa_final_txg == UINT64_MAX) { 2008 /* 2009 * If the log space map feature is enabled and the pool is 2010 * getting exported (but not destroyed), we want to spend some 2011 * time flushing as many metaslabs as we can in an attempt to 2012 * destroy log space maps and save import time. 2013 */ 2014 if (spa_should_flush_logs_on_unload(spa)) 2015 spa_unload_log_sm_flush_all(spa); 2016 2017 /* 2018 * Stop async tasks. 2019 */ 2020 spa_async_suspend(spa); 2021 2022 if (spa->spa_root_vdev) { 2023 vdev_t *root_vdev = spa->spa_root_vdev; 2024 vdev_initialize_stop_all(root_vdev, 2025 VDEV_INITIALIZE_ACTIVE); 2026 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE); 2027 vdev_autotrim_stop_all(spa); 2028 vdev_rebuild_stop_all(spa); 2029 } 2030 } 2031 2032 /* 2033 * Stop syncing. 2034 */ 2035 if (spa->spa_sync_on) { 2036 txg_sync_stop(spa->spa_dsl_pool); 2037 spa->spa_sync_on = B_FALSE; 2038 } 2039 2040 /* 2041 * This ensures that there is no async metaslab prefetching 2042 * while we attempt to unload the spa. 2043 */ 2044 taskq_wait(spa->spa_metaslab_taskq); 2045 2046 if (spa->spa_mmp.mmp_thread) 2047 mmp_thread_stop(spa); 2048 2049 /* 2050 * Wait for any outstanding async I/O to complete. 2051 */ 2052 if (spa->spa_async_zio_root != NULL) { 2053 for (int i = 0; i < max_ncpus; i++) 2054 (void) zio_wait(spa->spa_async_zio_root[i]); 2055 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 2056 spa->spa_async_zio_root = NULL; 2057 } 2058 2059 if (spa->spa_vdev_removal != NULL) { 2060 spa_vdev_removal_destroy(spa->spa_vdev_removal); 2061 spa->spa_vdev_removal = NULL; 2062 } 2063 2064 spa_destroy_aux_threads(spa); 2065 2066 spa_condense_fini(spa); 2067 2068 bpobj_close(&spa->spa_deferred_bpobj); 2069 2070 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 2071 2072 /* 2073 * Close all vdevs. 2074 */ 2075 if (spa->spa_root_vdev) 2076 vdev_free(spa->spa_root_vdev); 2077 ASSERT(spa->spa_root_vdev == NULL); 2078 2079 /* 2080 * Close the dsl pool. 2081 */ 2082 if (spa->spa_dsl_pool) { 2083 dsl_pool_close(spa->spa_dsl_pool); 2084 spa->spa_dsl_pool = NULL; 2085 spa->spa_meta_objset = NULL; 2086 } 2087 2088 ddt_unload(spa); 2089 brt_unload(spa); 2090 spa_unload_log_sm_metadata(spa); 2091 2092 /* 2093 * Drop and purge level 2 cache 2094 */ 2095 spa_l2cache_drop(spa); 2096 2097 if (spa->spa_spares.sav_vdevs) { 2098 for (int i = 0; i < spa->spa_spares.sav_count; i++) 2099 vdev_free(spa->spa_spares.sav_vdevs[i]); 2100 kmem_free(spa->spa_spares.sav_vdevs, 2101 spa->spa_spares.sav_count * sizeof (void *)); 2102 spa->spa_spares.sav_vdevs = NULL; 2103 } 2104 if (spa->spa_spares.sav_config) { 2105 nvlist_free(spa->spa_spares.sav_config); 2106 spa->spa_spares.sav_config = NULL; 2107 } 2108 spa->spa_spares.sav_count = 0; 2109 2110 if (spa->spa_l2cache.sav_vdevs) { 2111 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 2112 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 2113 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 2114 } 2115 kmem_free(spa->spa_l2cache.sav_vdevs, 2116 spa->spa_l2cache.sav_count * sizeof (void *)); 2117 spa->spa_l2cache.sav_vdevs = NULL; 2118 } 2119 if (spa->spa_l2cache.sav_config) { 2120 nvlist_free(spa->spa_l2cache.sav_config); 2121 spa->spa_l2cache.sav_config = NULL; 2122 } 2123 spa->spa_l2cache.sav_count = 0; 2124 2125 spa->spa_async_suspended = 0; 2126 2127 spa->spa_indirect_vdevs_loaded = B_FALSE; 2128 2129 if (spa->spa_comment != NULL) { 2130 spa_strfree(spa->spa_comment); 2131 spa->spa_comment = NULL; 2132 } 2133 if (spa->spa_compatibility != NULL) { 2134 spa_strfree(spa->spa_compatibility); 2135 spa->spa_compatibility = NULL; 2136 } 2137 2138 spa->spa_raidz_expand = NULL; 2139 2140 spa_config_exit(spa, SCL_ALL, spa); 2141 } 2142 2143 /* 2144 * Load (or re-load) the current list of vdevs describing the active spares for 2145 * this pool. When this is called, we have some form of basic information in 2146 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 2147 * then re-generate a more complete list including status information. 2148 */ 2149 void 2150 spa_load_spares(spa_t *spa) 2151 { 2152 nvlist_t **spares; 2153 uint_t nspares; 2154 int i; 2155 vdev_t *vd, *tvd; 2156 2157 #ifndef _KERNEL 2158 /* 2159 * zdb opens both the current state of the pool and the 2160 * checkpointed state (if present), with a different spa_t. 2161 * 2162 * As spare vdevs are shared among open pools, we skip loading 2163 * them when we load the checkpointed state of the pool. 2164 */ 2165 if (!spa_writeable(spa)) 2166 return; 2167 #endif 2168 2169 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2170 2171 /* 2172 * First, close and free any existing spare vdevs. 2173 */ 2174 if (spa->spa_spares.sav_vdevs) { 2175 for (i = 0; i < spa->spa_spares.sav_count; i++) { 2176 vd = spa->spa_spares.sav_vdevs[i]; 2177 2178 /* Undo the call to spa_activate() below */ 2179 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 2180 B_FALSE)) != NULL && tvd->vdev_isspare) 2181 spa_spare_remove(tvd); 2182 vdev_close(vd); 2183 vdev_free(vd); 2184 } 2185 2186 kmem_free(spa->spa_spares.sav_vdevs, 2187 spa->spa_spares.sav_count * sizeof (void *)); 2188 } 2189 2190 if (spa->spa_spares.sav_config == NULL) 2191 nspares = 0; 2192 else 2193 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2194 ZPOOL_CONFIG_SPARES, &spares, &nspares)); 2195 2196 spa->spa_spares.sav_count = (int)nspares; 2197 spa->spa_spares.sav_vdevs = NULL; 2198 2199 if (nspares == 0) 2200 return; 2201 2202 /* 2203 * Construct the array of vdevs, opening them to get status in the 2204 * process. For each spare, there is potentially two different vdev_t 2205 * structures associated with it: one in the list of spares (used only 2206 * for basic validation purposes) and one in the active vdev 2207 * configuration (if it's spared in). During this phase we open and 2208 * validate each vdev on the spare list. If the vdev also exists in the 2209 * active configuration, then we also mark this vdev as an active spare. 2210 */ 2211 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *), 2212 KM_SLEEP); 2213 for (i = 0; i < spa->spa_spares.sav_count; i++) { 2214 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 2215 VDEV_ALLOC_SPARE) == 0); 2216 ASSERT(vd != NULL); 2217 2218 spa->spa_spares.sav_vdevs[i] = vd; 2219 2220 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 2221 B_FALSE)) != NULL) { 2222 if (!tvd->vdev_isspare) 2223 spa_spare_add(tvd); 2224 2225 /* 2226 * We only mark the spare active if we were successfully 2227 * able to load the vdev. Otherwise, importing a pool 2228 * with a bad active spare would result in strange 2229 * behavior, because multiple pool would think the spare 2230 * is actively in use. 2231 * 2232 * There is a vulnerability here to an equally bizarre 2233 * circumstance, where a dead active spare is later 2234 * brought back to life (onlined or otherwise). Given 2235 * the rarity of this scenario, and the extra complexity 2236 * it adds, we ignore the possibility. 2237 */ 2238 if (!vdev_is_dead(tvd)) 2239 spa_spare_activate(tvd); 2240 } 2241 2242 vd->vdev_top = vd; 2243 vd->vdev_aux = &spa->spa_spares; 2244 2245 if (vdev_open(vd) != 0) 2246 continue; 2247 2248 if (vdev_validate_aux(vd) == 0) 2249 spa_spare_add(vd); 2250 } 2251 2252 /* 2253 * Recompute the stashed list of spares, with status information 2254 * this time. 2255 */ 2256 fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES); 2257 2258 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 2259 KM_SLEEP); 2260 for (i = 0; i < spa->spa_spares.sav_count; i++) 2261 spares[i] = vdev_config_generate(spa, 2262 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 2263 fnvlist_add_nvlist_array(spa->spa_spares.sav_config, 2264 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, 2265 spa->spa_spares.sav_count); 2266 for (i = 0; i < spa->spa_spares.sav_count; i++) 2267 nvlist_free(spares[i]); 2268 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 2269 } 2270 2271 /* 2272 * Load (or re-load) the current list of vdevs describing the active l2cache for 2273 * this pool. When this is called, we have some form of basic information in 2274 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 2275 * then re-generate a more complete list including status information. 2276 * Devices which are already active have their details maintained, and are 2277 * not re-opened. 2278 */ 2279 void 2280 spa_load_l2cache(spa_t *spa) 2281 { 2282 nvlist_t **l2cache = NULL; 2283 uint_t nl2cache; 2284 int i, j, oldnvdevs; 2285 uint64_t guid; 2286 vdev_t *vd, **oldvdevs, **newvdevs; 2287 spa_aux_vdev_t *sav = &spa->spa_l2cache; 2288 2289 #ifndef _KERNEL 2290 /* 2291 * zdb opens both the current state of the pool and the 2292 * checkpointed state (if present), with a different spa_t. 2293 * 2294 * As L2 caches are part of the ARC which is shared among open 2295 * pools, we skip loading them when we load the checkpointed 2296 * state of the pool. 2297 */ 2298 if (!spa_writeable(spa)) 2299 return; 2300 #endif 2301 2302 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2303 2304 oldvdevs = sav->sav_vdevs; 2305 oldnvdevs = sav->sav_count; 2306 sav->sav_vdevs = NULL; 2307 sav->sav_count = 0; 2308 2309 if (sav->sav_config == NULL) { 2310 nl2cache = 0; 2311 newvdevs = NULL; 2312 goto out; 2313 } 2314 2315 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, 2316 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache)); 2317 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 2318 2319 /* 2320 * Process new nvlist of vdevs. 2321 */ 2322 for (i = 0; i < nl2cache; i++) { 2323 guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID); 2324 2325 newvdevs[i] = NULL; 2326 for (j = 0; j < oldnvdevs; j++) { 2327 vd = oldvdevs[j]; 2328 if (vd != NULL && guid == vd->vdev_guid) { 2329 /* 2330 * Retain previous vdev for add/remove ops. 2331 */ 2332 newvdevs[i] = vd; 2333 oldvdevs[j] = NULL; 2334 break; 2335 } 2336 } 2337 2338 if (newvdevs[i] == NULL) { 2339 /* 2340 * Create new vdev 2341 */ 2342 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 2343 VDEV_ALLOC_L2CACHE) == 0); 2344 ASSERT(vd != NULL); 2345 newvdevs[i] = vd; 2346 2347 /* 2348 * Commit this vdev as an l2cache device, 2349 * even if it fails to open. 2350 */ 2351 spa_l2cache_add(vd); 2352 2353 vd->vdev_top = vd; 2354 vd->vdev_aux = sav; 2355 2356 spa_l2cache_activate(vd); 2357 2358 if (vdev_open(vd) != 0) 2359 continue; 2360 2361 (void) vdev_validate_aux(vd); 2362 2363 if (!vdev_is_dead(vd)) 2364 l2arc_add_vdev(spa, vd); 2365 2366 /* 2367 * Upon cache device addition to a pool or pool 2368 * creation with a cache device or if the header 2369 * of the device is invalid we issue an async 2370 * TRIM command for the whole device which will 2371 * execute if l2arc_trim_ahead > 0. 2372 */ 2373 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 2374 } 2375 } 2376 2377 sav->sav_vdevs = newvdevs; 2378 sav->sav_count = (int)nl2cache; 2379 2380 /* 2381 * Recompute the stashed list of l2cache devices, with status 2382 * information this time. 2383 */ 2384 fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE); 2385 2386 if (sav->sav_count > 0) 2387 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), 2388 KM_SLEEP); 2389 for (i = 0; i < sav->sav_count; i++) 2390 l2cache[i] = vdev_config_generate(spa, 2391 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 2392 fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 2393 (const nvlist_t * const *)l2cache, sav->sav_count); 2394 2395 out: 2396 /* 2397 * Purge vdevs that were dropped 2398 */ 2399 if (oldvdevs) { 2400 for (i = 0; i < oldnvdevs; i++) { 2401 uint64_t pool; 2402 2403 vd = oldvdevs[i]; 2404 if (vd != NULL) { 2405 ASSERT(vd->vdev_isl2cache); 2406 2407 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 2408 pool != 0ULL && l2arc_vdev_present(vd)) 2409 l2arc_remove_vdev(vd); 2410 vdev_clear_stats(vd); 2411 vdev_free(vd); 2412 } 2413 } 2414 2415 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 2416 } 2417 2418 for (i = 0; i < sav->sav_count; i++) 2419 nvlist_free(l2cache[i]); 2420 if (sav->sav_count) 2421 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 2422 } 2423 2424 static int 2425 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 2426 { 2427 dmu_buf_t *db; 2428 char *packed = NULL; 2429 size_t nvsize = 0; 2430 int error; 2431 *value = NULL; 2432 2433 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 2434 if (error) 2435 return (error); 2436 2437 nvsize = *(uint64_t *)db->db_data; 2438 dmu_buf_rele(db, FTAG); 2439 2440 packed = vmem_alloc(nvsize, KM_SLEEP); 2441 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 2442 DMU_READ_PREFETCH); 2443 if (error == 0) 2444 error = nvlist_unpack(packed, nvsize, value, 0); 2445 vmem_free(packed, nvsize); 2446 2447 return (error); 2448 } 2449 2450 /* 2451 * Concrete top-level vdevs that are not missing and are not logs. At every 2452 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds. 2453 */ 2454 static uint64_t 2455 spa_healthy_core_tvds(spa_t *spa) 2456 { 2457 vdev_t *rvd = spa->spa_root_vdev; 2458 uint64_t tvds = 0; 2459 2460 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 2461 vdev_t *vd = rvd->vdev_child[i]; 2462 if (vd->vdev_islog) 2463 continue; 2464 if (vdev_is_concrete(vd) && !vdev_is_dead(vd)) 2465 tvds++; 2466 } 2467 2468 return (tvds); 2469 } 2470 2471 /* 2472 * Checks to see if the given vdev could not be opened, in which case we post a 2473 * sysevent to notify the autoreplace code that the device has been removed. 2474 */ 2475 static void 2476 spa_check_removed(vdev_t *vd) 2477 { 2478 for (uint64_t c = 0; c < vd->vdev_children; c++) 2479 spa_check_removed(vd->vdev_child[c]); 2480 2481 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 2482 vdev_is_concrete(vd)) { 2483 zfs_post_autoreplace(vd->vdev_spa, vd); 2484 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK); 2485 } 2486 } 2487 2488 static int 2489 spa_check_for_missing_logs(spa_t *spa) 2490 { 2491 vdev_t *rvd = spa->spa_root_vdev; 2492 2493 /* 2494 * If we're doing a normal import, then build up any additional 2495 * diagnostic information about missing log devices. 2496 * We'll pass this up to the user for further processing. 2497 */ 2498 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 2499 nvlist_t **child, *nv; 2500 uint64_t idx = 0; 2501 2502 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *), 2503 KM_SLEEP); 2504 nv = fnvlist_alloc(); 2505 2506 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2507 vdev_t *tvd = rvd->vdev_child[c]; 2508 2509 /* 2510 * We consider a device as missing only if it failed 2511 * to open (i.e. offline or faulted is not considered 2512 * as missing). 2513 */ 2514 if (tvd->vdev_islog && 2515 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 2516 child[idx++] = vdev_config_generate(spa, tvd, 2517 B_FALSE, VDEV_CONFIG_MISSING); 2518 } 2519 } 2520 2521 if (idx > 0) { 2522 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 2523 (const nvlist_t * const *)child, idx); 2524 fnvlist_add_nvlist(spa->spa_load_info, 2525 ZPOOL_CONFIG_MISSING_DEVICES, nv); 2526 2527 for (uint64_t i = 0; i < idx; i++) 2528 nvlist_free(child[i]); 2529 } 2530 nvlist_free(nv); 2531 kmem_free(child, rvd->vdev_children * sizeof (char **)); 2532 2533 if (idx > 0) { 2534 spa_load_failed(spa, "some log devices are missing"); 2535 vdev_dbgmsg_print_tree(rvd, 2); 2536 return (SET_ERROR(ENXIO)); 2537 } 2538 } else { 2539 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2540 vdev_t *tvd = rvd->vdev_child[c]; 2541 2542 if (tvd->vdev_islog && 2543 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 2544 spa_set_log_state(spa, SPA_LOG_CLEAR); 2545 spa_load_note(spa, "some log devices are " 2546 "missing, ZIL is dropped."); 2547 vdev_dbgmsg_print_tree(rvd, 2); 2548 break; 2549 } 2550 } 2551 } 2552 2553 return (0); 2554 } 2555 2556 /* 2557 * Check for missing log devices 2558 */ 2559 static boolean_t 2560 spa_check_logs(spa_t *spa) 2561 { 2562 boolean_t rv = B_FALSE; 2563 dsl_pool_t *dp = spa_get_dsl(spa); 2564 2565 switch (spa->spa_log_state) { 2566 default: 2567 break; 2568 case SPA_LOG_MISSING: 2569 /* need to recheck in case slog has been restored */ 2570 case SPA_LOG_UNKNOWN: 2571 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2572 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 2573 if (rv) 2574 spa_set_log_state(spa, SPA_LOG_MISSING); 2575 break; 2576 } 2577 return (rv); 2578 } 2579 2580 /* 2581 * Passivate any log vdevs (note, does not apply to embedded log metaslabs). 2582 */ 2583 static boolean_t 2584 spa_passivate_log(spa_t *spa) 2585 { 2586 vdev_t *rvd = spa->spa_root_vdev; 2587 boolean_t slog_found = B_FALSE; 2588 2589 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 2590 2591 for (int c = 0; c < rvd->vdev_children; c++) { 2592 vdev_t *tvd = rvd->vdev_child[c]; 2593 2594 if (tvd->vdev_islog) { 2595 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 2596 metaslab_group_passivate(tvd->vdev_mg); 2597 slog_found = B_TRUE; 2598 } 2599 } 2600 2601 return (slog_found); 2602 } 2603 2604 /* 2605 * Activate any log vdevs (note, does not apply to embedded log metaslabs). 2606 */ 2607 static void 2608 spa_activate_log(spa_t *spa) 2609 { 2610 vdev_t *rvd = spa->spa_root_vdev; 2611 2612 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 2613 2614 for (int c = 0; c < rvd->vdev_children; c++) { 2615 vdev_t *tvd = rvd->vdev_child[c]; 2616 2617 if (tvd->vdev_islog) { 2618 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 2619 metaslab_group_activate(tvd->vdev_mg); 2620 } 2621 } 2622 } 2623 2624 int 2625 spa_reset_logs(spa_t *spa) 2626 { 2627 int error; 2628 2629 error = dmu_objset_find(spa_name(spa), zil_reset, 2630 NULL, DS_FIND_CHILDREN); 2631 if (error == 0) { 2632 /* 2633 * We successfully offlined the log device, sync out the 2634 * current txg so that the "stubby" block can be removed 2635 * by zil_sync(). 2636 */ 2637 txg_wait_synced(spa->spa_dsl_pool, 0); 2638 } 2639 return (error); 2640 } 2641 2642 static void 2643 spa_aux_check_removed(spa_aux_vdev_t *sav) 2644 { 2645 for (int i = 0; i < sav->sav_count; i++) 2646 spa_check_removed(sav->sav_vdevs[i]); 2647 } 2648 2649 void 2650 spa_claim_notify(zio_t *zio) 2651 { 2652 spa_t *spa = zio->io_spa; 2653 2654 if (zio->io_error) 2655 return; 2656 2657 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 2658 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 2659 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 2660 mutex_exit(&spa->spa_props_lock); 2661 } 2662 2663 typedef struct spa_load_error { 2664 boolean_t sle_verify_data; 2665 uint64_t sle_meta_count; 2666 uint64_t sle_data_count; 2667 } spa_load_error_t; 2668 2669 static void 2670 spa_load_verify_done(zio_t *zio) 2671 { 2672 blkptr_t *bp = zio->io_bp; 2673 spa_load_error_t *sle = zio->io_private; 2674 dmu_object_type_t type = BP_GET_TYPE(bp); 2675 int error = zio->io_error; 2676 spa_t *spa = zio->io_spa; 2677 2678 abd_free(zio->io_abd); 2679 if (error) { 2680 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 2681 type != DMU_OT_INTENT_LOG) 2682 atomic_inc_64(&sle->sle_meta_count); 2683 else 2684 atomic_inc_64(&sle->sle_data_count); 2685 } 2686 2687 mutex_enter(&spa->spa_scrub_lock); 2688 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 2689 cv_broadcast(&spa->spa_scrub_io_cv); 2690 mutex_exit(&spa->spa_scrub_lock); 2691 } 2692 2693 /* 2694 * Maximum number of inflight bytes is the log2 fraction of the arc size. 2695 * By default, we set it to 1/16th of the arc. 2696 */ 2697 static uint_t spa_load_verify_shift = 4; 2698 static int spa_load_verify_metadata = B_TRUE; 2699 static int spa_load_verify_data = B_TRUE; 2700 2701 static int 2702 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 2703 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 2704 { 2705 zio_t *rio = arg; 2706 spa_load_error_t *sle = rio->io_private; 2707 2708 (void) zilog, (void) dnp; 2709 2710 /* 2711 * Note: normally this routine will not be called if 2712 * spa_load_verify_metadata is not set. However, it may be useful 2713 * to manually set the flag after the traversal has begun. 2714 */ 2715 if (!spa_load_verify_metadata) 2716 return (0); 2717 2718 /* 2719 * Sanity check the block pointer in order to detect obvious damage 2720 * before using the contents in subsequent checks or in zio_read(). 2721 * When damaged consider it to be a metadata error since we cannot 2722 * trust the BP_GET_TYPE and BP_GET_LEVEL values. 2723 */ 2724 if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) { 2725 atomic_inc_64(&sle->sle_meta_count); 2726 return (0); 2727 } 2728 2729 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 2730 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 2731 return (0); 2732 2733 if (!BP_IS_METADATA(bp) && 2734 (!spa_load_verify_data || !sle->sle_verify_data)) 2735 return (0); 2736 2737 uint64_t maxinflight_bytes = 2738 arc_target_bytes() >> spa_load_verify_shift; 2739 size_t size = BP_GET_PSIZE(bp); 2740 2741 mutex_enter(&spa->spa_scrub_lock); 2742 while (spa->spa_load_verify_bytes >= maxinflight_bytes) 2743 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2744 spa->spa_load_verify_bytes += size; 2745 mutex_exit(&spa->spa_scrub_lock); 2746 2747 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size, 2748 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 2749 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 2750 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 2751 return (0); 2752 } 2753 2754 static int 2755 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 2756 { 2757 (void) dp, (void) arg; 2758 2759 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) 2760 return (SET_ERROR(ENAMETOOLONG)); 2761 2762 return (0); 2763 } 2764 2765 static int 2766 spa_load_verify(spa_t *spa) 2767 { 2768 zio_t *rio; 2769 spa_load_error_t sle = { 0 }; 2770 zpool_load_policy_t policy; 2771 boolean_t verify_ok = B_FALSE; 2772 int error = 0; 2773 2774 zpool_get_load_policy(spa->spa_config, &policy); 2775 2776 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND || 2777 policy.zlp_maxmeta == UINT64_MAX) 2778 return (0); 2779 2780 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 2781 error = dmu_objset_find_dp(spa->spa_dsl_pool, 2782 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, 2783 DS_FIND_CHILDREN); 2784 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 2785 if (error != 0) 2786 return (error); 2787 2788 /* 2789 * Verify data only if we are rewinding or error limit was set. 2790 * Otherwise nothing except dbgmsg care about it to waste time. 2791 */ 2792 sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) || 2793 (policy.zlp_maxdata < UINT64_MAX); 2794 2795 rio = zio_root(spa, NULL, &sle, 2796 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 2797 2798 if (spa_load_verify_metadata) { 2799 if (spa->spa_extreme_rewind) { 2800 spa_load_note(spa, "performing a complete scan of the " 2801 "pool since extreme rewind is on. This may take " 2802 "a very long time.\n (spa_load_verify_data=%u, " 2803 "spa_load_verify_metadata=%u)", 2804 spa_load_verify_data, spa_load_verify_metadata); 2805 } 2806 2807 error = traverse_pool(spa, spa->spa_verify_min_txg, 2808 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 2809 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio); 2810 } 2811 2812 (void) zio_wait(rio); 2813 ASSERT0(spa->spa_load_verify_bytes); 2814 2815 spa->spa_load_meta_errors = sle.sle_meta_count; 2816 spa->spa_load_data_errors = sle.sle_data_count; 2817 2818 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) { 2819 spa_load_note(spa, "spa_load_verify found %llu metadata errors " 2820 "and %llu data errors", (u_longlong_t)sle.sle_meta_count, 2821 (u_longlong_t)sle.sle_data_count); 2822 } 2823 2824 if (spa_load_verify_dryrun || 2825 (!error && sle.sle_meta_count <= policy.zlp_maxmeta && 2826 sle.sle_data_count <= policy.zlp_maxdata)) { 2827 int64_t loss = 0; 2828 2829 verify_ok = B_TRUE; 2830 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 2831 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 2832 2833 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 2834 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME, 2835 spa->spa_load_txg_ts); 2836 fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME, 2837 loss); 2838 fnvlist_add_uint64(spa->spa_load_info, 2839 ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count); 2840 fnvlist_add_uint64(spa->spa_load_info, 2841 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count); 2842 } else { 2843 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 2844 } 2845 2846 if (spa_load_verify_dryrun) 2847 return (0); 2848 2849 if (error) { 2850 if (error != ENXIO && error != EIO) 2851 error = SET_ERROR(EIO); 2852 return (error); 2853 } 2854 2855 return (verify_ok ? 0 : EIO); 2856 } 2857 2858 /* 2859 * Find a value in the pool props object. 2860 */ 2861 static void 2862 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 2863 { 2864 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 2865 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 2866 } 2867 2868 /* 2869 * Find a value in the pool directory object. 2870 */ 2871 static int 2872 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent) 2873 { 2874 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2875 name, sizeof (uint64_t), 1, val); 2876 2877 if (error != 0 && (error != ENOENT || log_enoent)) { 2878 spa_load_failed(spa, "couldn't get '%s' value in MOS directory " 2879 "[error=%d]", name, error); 2880 } 2881 2882 return (error); 2883 } 2884 2885 static int 2886 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 2887 { 2888 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 2889 return (SET_ERROR(err)); 2890 } 2891 2892 boolean_t 2893 spa_livelist_delete_check(spa_t *spa) 2894 { 2895 return (spa->spa_livelists_to_delete != 0); 2896 } 2897 2898 static boolean_t 2899 spa_livelist_delete_cb_check(void *arg, zthr_t *z) 2900 { 2901 (void) z; 2902 spa_t *spa = arg; 2903 return (spa_livelist_delete_check(spa)); 2904 } 2905 2906 static int 2907 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2908 { 2909 spa_t *spa = arg; 2910 zio_free(spa, tx->tx_txg, bp); 2911 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 2912 -bp_get_dsize_sync(spa, bp), 2913 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 2914 return (0); 2915 } 2916 2917 static int 2918 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp) 2919 { 2920 int err; 2921 zap_cursor_t zc; 2922 zap_attribute_t za; 2923 zap_cursor_init(&zc, os, zap_obj); 2924 err = zap_cursor_retrieve(&zc, &za); 2925 zap_cursor_fini(&zc); 2926 if (err == 0) 2927 *llp = za.za_first_integer; 2928 return (err); 2929 } 2930 2931 /* 2932 * Components of livelist deletion that must be performed in syncing 2933 * context: freeing block pointers and updating the pool-wide data 2934 * structures to indicate how much work is left to do 2935 */ 2936 typedef struct sublist_delete_arg { 2937 spa_t *spa; 2938 dsl_deadlist_t *ll; 2939 uint64_t key; 2940 bplist_t *to_free; 2941 } sublist_delete_arg_t; 2942 2943 static void 2944 sublist_delete_sync(void *arg, dmu_tx_t *tx) 2945 { 2946 sublist_delete_arg_t *sda = arg; 2947 spa_t *spa = sda->spa; 2948 dsl_deadlist_t *ll = sda->ll; 2949 uint64_t key = sda->key; 2950 bplist_t *to_free = sda->to_free; 2951 2952 bplist_iterate(to_free, delete_blkptr_cb, spa, tx); 2953 dsl_deadlist_remove_entry(ll, key, tx); 2954 } 2955 2956 typedef struct livelist_delete_arg { 2957 spa_t *spa; 2958 uint64_t ll_obj; 2959 uint64_t zap_obj; 2960 } livelist_delete_arg_t; 2961 2962 static void 2963 livelist_delete_sync(void *arg, dmu_tx_t *tx) 2964 { 2965 livelist_delete_arg_t *lda = arg; 2966 spa_t *spa = lda->spa; 2967 uint64_t ll_obj = lda->ll_obj; 2968 uint64_t zap_obj = lda->zap_obj; 2969 objset_t *mos = spa->spa_meta_objset; 2970 uint64_t count; 2971 2972 /* free the livelist and decrement the feature count */ 2973 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx)); 2974 dsl_deadlist_free(mos, ll_obj, tx); 2975 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx); 2976 VERIFY0(zap_count(mos, zap_obj, &count)); 2977 if (count == 0) { 2978 /* no more livelists to delete */ 2979 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT, 2980 DMU_POOL_DELETED_CLONES, tx)); 2981 VERIFY0(zap_destroy(mos, zap_obj, tx)); 2982 spa->spa_livelists_to_delete = 0; 2983 spa_notify_waiters(spa); 2984 } 2985 } 2986 2987 /* 2988 * Load in the value for the livelist to be removed and open it. Then, 2989 * load its first sublist and determine which block pointers should actually 2990 * be freed. Then, call a synctask which performs the actual frees and updates 2991 * the pool-wide livelist data. 2992 */ 2993 static void 2994 spa_livelist_delete_cb(void *arg, zthr_t *z) 2995 { 2996 spa_t *spa = arg; 2997 uint64_t ll_obj = 0, count; 2998 objset_t *mos = spa->spa_meta_objset; 2999 uint64_t zap_obj = spa->spa_livelists_to_delete; 3000 /* 3001 * Determine the next livelist to delete. This function should only 3002 * be called if there is at least one deleted clone. 3003 */ 3004 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj)); 3005 VERIFY0(zap_count(mos, ll_obj, &count)); 3006 if (count > 0) { 3007 dsl_deadlist_t *ll; 3008 dsl_deadlist_entry_t *dle; 3009 bplist_t to_free; 3010 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP); 3011 dsl_deadlist_open(ll, mos, ll_obj); 3012 dle = dsl_deadlist_first(ll); 3013 ASSERT3P(dle, !=, NULL); 3014 bplist_create(&to_free); 3015 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free, 3016 z, NULL); 3017 if (err == 0) { 3018 sublist_delete_arg_t sync_arg = { 3019 .spa = spa, 3020 .ll = ll, 3021 .key = dle->dle_mintxg, 3022 .to_free = &to_free 3023 }; 3024 zfs_dbgmsg("deleting sublist (id %llu) from" 3025 " livelist %llu, %lld remaining", 3026 (u_longlong_t)dle->dle_bpobj.bpo_object, 3027 (u_longlong_t)ll_obj, (longlong_t)count - 1); 3028 VERIFY0(dsl_sync_task(spa_name(spa), NULL, 3029 sublist_delete_sync, &sync_arg, 0, 3030 ZFS_SPACE_CHECK_DESTROY)); 3031 } else { 3032 VERIFY3U(err, ==, EINTR); 3033 } 3034 bplist_clear(&to_free); 3035 bplist_destroy(&to_free); 3036 dsl_deadlist_close(ll); 3037 kmem_free(ll, sizeof (dsl_deadlist_t)); 3038 } else { 3039 livelist_delete_arg_t sync_arg = { 3040 .spa = spa, 3041 .ll_obj = ll_obj, 3042 .zap_obj = zap_obj 3043 }; 3044 zfs_dbgmsg("deletion of livelist %llu completed", 3045 (u_longlong_t)ll_obj); 3046 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync, 3047 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY)); 3048 } 3049 } 3050 3051 static void 3052 spa_start_livelist_destroy_thread(spa_t *spa) 3053 { 3054 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL); 3055 spa->spa_livelist_delete_zthr = 3056 zthr_create("z_livelist_destroy", 3057 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa, 3058 minclsyspri); 3059 } 3060 3061 typedef struct livelist_new_arg { 3062 bplist_t *allocs; 3063 bplist_t *frees; 3064 } livelist_new_arg_t; 3065 3066 static int 3067 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3068 dmu_tx_t *tx) 3069 { 3070 ASSERT(tx == NULL); 3071 livelist_new_arg_t *lna = arg; 3072 if (bp_freed) { 3073 bplist_append(lna->frees, bp); 3074 } else { 3075 bplist_append(lna->allocs, bp); 3076 zfs_livelist_condense_new_alloc++; 3077 } 3078 return (0); 3079 } 3080 3081 typedef struct livelist_condense_arg { 3082 spa_t *spa; 3083 bplist_t to_keep; 3084 uint64_t first_size; 3085 uint64_t next_size; 3086 } livelist_condense_arg_t; 3087 3088 static void 3089 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx) 3090 { 3091 livelist_condense_arg_t *lca = arg; 3092 spa_t *spa = lca->spa; 3093 bplist_t new_frees; 3094 dsl_dataset_t *ds = spa->spa_to_condense.ds; 3095 3096 /* Have we been cancelled? */ 3097 if (spa->spa_to_condense.cancelled) { 3098 zfs_livelist_condense_sync_cancel++; 3099 goto out; 3100 } 3101 3102 dsl_deadlist_entry_t *first = spa->spa_to_condense.first; 3103 dsl_deadlist_entry_t *next = spa->spa_to_condense.next; 3104 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist; 3105 3106 /* 3107 * It's possible that the livelist was changed while the zthr was 3108 * running. Therefore, we need to check for new blkptrs in the two 3109 * entries being condensed and continue to track them in the livelist. 3110 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl), 3111 * it's possible that the newly added blkptrs are FREEs or ALLOCs so 3112 * we need to sort them into two different bplists. 3113 */ 3114 uint64_t first_obj = first->dle_bpobj.bpo_object; 3115 uint64_t next_obj = next->dle_bpobj.bpo_object; 3116 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs; 3117 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs; 3118 3119 bplist_create(&new_frees); 3120 livelist_new_arg_t new_bps = { 3121 .allocs = &lca->to_keep, 3122 .frees = &new_frees, 3123 }; 3124 3125 if (cur_first_size > lca->first_size) { 3126 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj, 3127 livelist_track_new_cb, &new_bps, lca->first_size)); 3128 } 3129 if (cur_next_size > lca->next_size) { 3130 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj, 3131 livelist_track_new_cb, &new_bps, lca->next_size)); 3132 } 3133 3134 dsl_deadlist_clear_entry(first, ll, tx); 3135 ASSERT(bpobj_is_empty(&first->dle_bpobj)); 3136 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx); 3137 3138 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx); 3139 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx); 3140 bplist_destroy(&new_frees); 3141 3142 char dsname[ZFS_MAX_DATASET_NAME_LEN]; 3143 dsl_dataset_name(ds, dsname); 3144 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu " 3145 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu " 3146 "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname, 3147 (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj, 3148 (u_longlong_t)cur_first_size, (u_longlong_t)next_obj, 3149 (u_longlong_t)cur_next_size, 3150 (u_longlong_t)first->dle_bpobj.bpo_object, 3151 (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs); 3152 out: 3153 dmu_buf_rele(ds->ds_dbuf, spa); 3154 spa->spa_to_condense.ds = NULL; 3155 bplist_clear(&lca->to_keep); 3156 bplist_destroy(&lca->to_keep); 3157 kmem_free(lca, sizeof (livelist_condense_arg_t)); 3158 spa->spa_to_condense.syncing = B_FALSE; 3159 } 3160 3161 static void 3162 spa_livelist_condense_cb(void *arg, zthr_t *t) 3163 { 3164 while (zfs_livelist_condense_zthr_pause && 3165 !(zthr_has_waiters(t) || zthr_iscancelled(t))) 3166 delay(1); 3167 3168 spa_t *spa = arg; 3169 dsl_deadlist_entry_t *first = spa->spa_to_condense.first; 3170 dsl_deadlist_entry_t *next = spa->spa_to_condense.next; 3171 uint64_t first_size, next_size; 3172 3173 livelist_condense_arg_t *lca = 3174 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP); 3175 bplist_create(&lca->to_keep); 3176 3177 /* 3178 * Process the livelists (matching FREEs and ALLOCs) in open context 3179 * so we have minimal work in syncing context to condense. 3180 * 3181 * We save bpobj sizes (first_size and next_size) to use later in 3182 * syncing context to determine if entries were added to these sublists 3183 * while in open context. This is possible because the clone is still 3184 * active and open for normal writes and we want to make sure the new, 3185 * unprocessed blockpointers are inserted into the livelist normally. 3186 * 3187 * Note that dsl_process_sub_livelist() both stores the size number of 3188 * blockpointers and iterates over them while the bpobj's lock held, so 3189 * the sizes returned to us are consistent which what was actually 3190 * processed. 3191 */ 3192 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t, 3193 &first_size); 3194 if (err == 0) 3195 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep, 3196 t, &next_size); 3197 3198 if (err == 0) { 3199 while (zfs_livelist_condense_sync_pause && 3200 !(zthr_has_waiters(t) || zthr_iscancelled(t))) 3201 delay(1); 3202 3203 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 3204 dmu_tx_mark_netfree(tx); 3205 dmu_tx_hold_space(tx, 1); 3206 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE); 3207 if (err == 0) { 3208 /* 3209 * Prevent the condense zthr restarting before 3210 * the synctask completes. 3211 */ 3212 spa->spa_to_condense.syncing = B_TRUE; 3213 lca->spa = spa; 3214 lca->first_size = first_size; 3215 lca->next_size = next_size; 3216 dsl_sync_task_nowait(spa_get_dsl(spa), 3217 spa_livelist_condense_sync, lca, tx); 3218 dmu_tx_commit(tx); 3219 return; 3220 } 3221 } 3222 /* 3223 * Condensing can not continue: either it was externally stopped or 3224 * we were unable to assign to a tx because the pool has run out of 3225 * space. In the second case, we'll just end up trying to condense 3226 * again in a later txg. 3227 */ 3228 ASSERT(err != 0); 3229 bplist_clear(&lca->to_keep); 3230 bplist_destroy(&lca->to_keep); 3231 kmem_free(lca, sizeof (livelist_condense_arg_t)); 3232 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa); 3233 spa->spa_to_condense.ds = NULL; 3234 if (err == EINTR) 3235 zfs_livelist_condense_zthr_cancel++; 3236 } 3237 3238 /* 3239 * Check that there is something to condense but that a condense is not 3240 * already in progress and that condensing has not been cancelled. 3241 */ 3242 static boolean_t 3243 spa_livelist_condense_cb_check(void *arg, zthr_t *z) 3244 { 3245 (void) z; 3246 spa_t *spa = arg; 3247 if ((spa->spa_to_condense.ds != NULL) && 3248 (spa->spa_to_condense.syncing == B_FALSE) && 3249 (spa->spa_to_condense.cancelled == B_FALSE)) { 3250 return (B_TRUE); 3251 } 3252 return (B_FALSE); 3253 } 3254 3255 static void 3256 spa_start_livelist_condensing_thread(spa_t *spa) 3257 { 3258 spa->spa_to_condense.ds = NULL; 3259 spa->spa_to_condense.first = NULL; 3260 spa->spa_to_condense.next = NULL; 3261 spa->spa_to_condense.syncing = B_FALSE; 3262 spa->spa_to_condense.cancelled = B_FALSE; 3263 3264 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL); 3265 spa->spa_livelist_condense_zthr = 3266 zthr_create("z_livelist_condense", 3267 spa_livelist_condense_cb_check, 3268 spa_livelist_condense_cb, spa, minclsyspri); 3269 } 3270 3271 static void 3272 spa_spawn_aux_threads(spa_t *spa) 3273 { 3274 ASSERT(spa_writeable(spa)); 3275 3276 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3277 3278 spa_start_raidz_expansion_thread(spa); 3279 spa_start_indirect_condensing_thread(spa); 3280 spa_start_livelist_destroy_thread(spa); 3281 spa_start_livelist_condensing_thread(spa); 3282 3283 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL); 3284 spa->spa_checkpoint_discard_zthr = 3285 zthr_create("z_checkpoint_discard", 3286 spa_checkpoint_discard_thread_check, 3287 spa_checkpoint_discard_thread, spa, minclsyspri); 3288 } 3289 3290 /* 3291 * Fix up config after a partly-completed split. This is done with the 3292 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 3293 * pool have that entry in their config, but only the splitting one contains 3294 * a list of all the guids of the vdevs that are being split off. 3295 * 3296 * This function determines what to do with that list: either rejoin 3297 * all the disks to the pool, or complete the splitting process. To attempt 3298 * the rejoin, each disk that is offlined is marked online again, and 3299 * we do a reopen() call. If the vdev label for every disk that was 3300 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 3301 * then we call vdev_split() on each disk, and complete the split. 3302 * 3303 * Otherwise we leave the config alone, with all the vdevs in place in 3304 * the original pool. 3305 */ 3306 static void 3307 spa_try_repair(spa_t *spa, nvlist_t *config) 3308 { 3309 uint_t extracted; 3310 uint64_t *glist; 3311 uint_t i, gcount; 3312 nvlist_t *nvl; 3313 vdev_t **vd; 3314 boolean_t attempt_reopen; 3315 3316 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 3317 return; 3318 3319 /* check that the config is complete */ 3320 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 3321 &glist, &gcount) != 0) 3322 return; 3323 3324 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 3325 3326 /* attempt to online all the vdevs & validate */ 3327 attempt_reopen = B_TRUE; 3328 for (i = 0; i < gcount; i++) { 3329 if (glist[i] == 0) /* vdev is hole */ 3330 continue; 3331 3332 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 3333 if (vd[i] == NULL) { 3334 /* 3335 * Don't bother attempting to reopen the disks; 3336 * just do the split. 3337 */ 3338 attempt_reopen = B_FALSE; 3339 } else { 3340 /* attempt to re-online it */ 3341 vd[i]->vdev_offline = B_FALSE; 3342 } 3343 } 3344 3345 if (attempt_reopen) { 3346 vdev_reopen(spa->spa_root_vdev); 3347 3348 /* check each device to see what state it's in */ 3349 for (extracted = 0, i = 0; i < gcount; i++) { 3350 if (vd[i] != NULL && 3351 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 3352 break; 3353 ++extracted; 3354 } 3355 } 3356 3357 /* 3358 * If every disk has been moved to the new pool, or if we never 3359 * even attempted to look at them, then we split them off for 3360 * good. 3361 */ 3362 if (!attempt_reopen || gcount == extracted) { 3363 for (i = 0; i < gcount; i++) 3364 if (vd[i] != NULL) 3365 vdev_split(vd[i]); 3366 vdev_reopen(spa->spa_root_vdev); 3367 } 3368 3369 kmem_free(vd, gcount * sizeof (vdev_t *)); 3370 } 3371 3372 static int 3373 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type) 3374 { 3375 const char *ereport = FM_EREPORT_ZFS_POOL; 3376 int error; 3377 3378 spa->spa_load_state = state; 3379 (void) spa_import_progress_set_state(spa_guid(spa), 3380 spa_load_state(spa)); 3381 spa_import_progress_set_notes(spa, "spa_load()"); 3382 3383 gethrestime(&spa->spa_loaded_ts); 3384 error = spa_load_impl(spa, type, &ereport); 3385 3386 /* 3387 * Don't count references from objsets that are already closed 3388 * and are making their way through the eviction process. 3389 */ 3390 spa_evicting_os_wait(spa); 3391 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 3392 if (error) { 3393 if (error != EEXIST) { 3394 spa->spa_loaded_ts.tv_sec = 0; 3395 spa->spa_loaded_ts.tv_nsec = 0; 3396 } 3397 if (error != EBADF) { 3398 (void) zfs_ereport_post(ereport, spa, 3399 NULL, NULL, NULL, 0); 3400 } 3401 } 3402 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 3403 spa->spa_ena = 0; 3404 3405 (void) spa_import_progress_set_state(spa_guid(spa), 3406 spa_load_state(spa)); 3407 3408 return (error); 3409 } 3410 3411 #ifdef ZFS_DEBUG 3412 /* 3413 * Count the number of per-vdev ZAPs associated with all of the vdevs in the 3414 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the 3415 * spa's per-vdev ZAP list. 3416 */ 3417 static uint64_t 3418 vdev_count_verify_zaps(vdev_t *vd) 3419 { 3420 spa_t *spa = vd->vdev_spa; 3421 uint64_t total = 0; 3422 3423 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) && 3424 vd->vdev_root_zap != 0) { 3425 total++; 3426 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 3427 spa->spa_all_vdev_zaps, vd->vdev_root_zap)); 3428 } 3429 if (vd->vdev_top_zap != 0) { 3430 total++; 3431 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 3432 spa->spa_all_vdev_zaps, vd->vdev_top_zap)); 3433 } 3434 if (vd->vdev_leaf_zap != 0) { 3435 total++; 3436 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 3437 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); 3438 } 3439 3440 for (uint64_t i = 0; i < vd->vdev_children; i++) { 3441 total += vdev_count_verify_zaps(vd->vdev_child[i]); 3442 } 3443 3444 return (total); 3445 } 3446 #else 3447 #define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0) 3448 #endif 3449 3450 /* 3451 * Determine whether the activity check is required. 3452 */ 3453 static boolean_t 3454 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label, 3455 nvlist_t *config) 3456 { 3457 uint64_t state = 0; 3458 uint64_t hostid = 0; 3459 uint64_t tryconfig_txg = 0; 3460 uint64_t tryconfig_timestamp = 0; 3461 uint16_t tryconfig_mmp_seq = 0; 3462 nvlist_t *nvinfo; 3463 3464 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 3465 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO); 3466 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG, 3467 &tryconfig_txg); 3468 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 3469 &tryconfig_timestamp); 3470 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ, 3471 &tryconfig_mmp_seq); 3472 } 3473 3474 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state); 3475 3476 /* 3477 * Disable the MMP activity check - This is used by zdb which 3478 * is intended to be used on potentially active pools. 3479 */ 3480 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) 3481 return (B_FALSE); 3482 3483 /* 3484 * Skip the activity check when the MMP feature is disabled. 3485 */ 3486 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0) 3487 return (B_FALSE); 3488 3489 /* 3490 * If the tryconfig_ values are nonzero, they are the results of an 3491 * earlier tryimport. If they all match the uberblock we just found, 3492 * then the pool has not changed and we return false so we do not test 3493 * a second time. 3494 */ 3495 if (tryconfig_txg && tryconfig_txg == ub->ub_txg && 3496 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp && 3497 tryconfig_mmp_seq && tryconfig_mmp_seq == 3498 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) 3499 return (B_FALSE); 3500 3501 /* 3502 * Allow the activity check to be skipped when importing the pool 3503 * on the same host which last imported it. Since the hostid from 3504 * configuration may be stale use the one read from the label. 3505 */ 3506 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID)) 3507 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID); 3508 3509 if (hostid == spa_get_hostid(spa)) 3510 return (B_FALSE); 3511 3512 /* 3513 * Skip the activity test when the pool was cleanly exported. 3514 */ 3515 if (state != POOL_STATE_ACTIVE) 3516 return (B_FALSE); 3517 3518 return (B_TRUE); 3519 } 3520 3521 /* 3522 * Nanoseconds the activity check must watch for changes on-disk. 3523 */ 3524 static uint64_t 3525 spa_activity_check_duration(spa_t *spa, uberblock_t *ub) 3526 { 3527 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1); 3528 uint64_t multihost_interval = MSEC2NSEC( 3529 MMP_INTERVAL_OK(zfs_multihost_interval)); 3530 uint64_t import_delay = MAX(NANOSEC, import_intervals * 3531 multihost_interval); 3532 3533 /* 3534 * Local tunables determine a minimum duration except for the case 3535 * where we know when the remote host will suspend the pool if MMP 3536 * writes do not land. 3537 * 3538 * See Big Theory comment at the top of mmp.c for the reasoning behind 3539 * these cases and times. 3540 */ 3541 3542 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100); 3543 3544 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && 3545 MMP_FAIL_INT(ub) > 0) { 3546 3547 /* MMP on remote host will suspend pool after failed writes */ 3548 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) * 3549 MMP_IMPORT_SAFETY_FACTOR / 100; 3550 3551 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp " 3552 "mmp_fails=%llu ub_mmp mmp_interval=%llu " 3553 "import_intervals=%llu", (u_longlong_t)import_delay, 3554 (u_longlong_t)MMP_FAIL_INT(ub), 3555 (u_longlong_t)MMP_INTERVAL(ub), 3556 (u_longlong_t)import_intervals); 3557 3558 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && 3559 MMP_FAIL_INT(ub) == 0) { 3560 3561 /* MMP on remote host will never suspend pool */ 3562 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) + 3563 ub->ub_mmp_delay) * import_intervals); 3564 3565 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp " 3566 "mmp_interval=%llu ub_mmp_delay=%llu " 3567 "import_intervals=%llu", (u_longlong_t)import_delay, 3568 (u_longlong_t)MMP_INTERVAL(ub), 3569 (u_longlong_t)ub->ub_mmp_delay, 3570 (u_longlong_t)import_intervals); 3571 3572 } else if (MMP_VALID(ub)) { 3573 /* 3574 * zfs-0.7 compatibility case 3575 */ 3576 3577 import_delay = MAX(import_delay, (multihost_interval + 3578 ub->ub_mmp_delay) * import_intervals); 3579 3580 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu " 3581 "import_intervals=%llu leaves=%u", 3582 (u_longlong_t)import_delay, 3583 (u_longlong_t)ub->ub_mmp_delay, 3584 (u_longlong_t)import_intervals, 3585 vdev_count_leaves(spa)); 3586 } else { 3587 /* Using local tunings is the only reasonable option */ 3588 zfs_dbgmsg("pool last imported on non-MMP aware " 3589 "host using import_delay=%llu multihost_interval=%llu " 3590 "import_intervals=%llu", (u_longlong_t)import_delay, 3591 (u_longlong_t)multihost_interval, 3592 (u_longlong_t)import_intervals); 3593 } 3594 3595 return (import_delay); 3596 } 3597 3598 /* 3599 * Perform the import activity check. If the user canceled the import or 3600 * we detected activity then fail. 3601 */ 3602 static int 3603 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config) 3604 { 3605 uint64_t txg = ub->ub_txg; 3606 uint64_t timestamp = ub->ub_timestamp; 3607 uint64_t mmp_config = ub->ub_mmp_config; 3608 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0; 3609 uint64_t import_delay; 3610 hrtime_t import_expire, now; 3611 nvlist_t *mmp_label = NULL; 3612 vdev_t *rvd = spa->spa_root_vdev; 3613 kcondvar_t cv; 3614 kmutex_t mtx; 3615 int error = 0; 3616 3617 cv_init(&cv, NULL, CV_DEFAULT, NULL); 3618 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL); 3619 mutex_enter(&mtx); 3620 3621 /* 3622 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed 3623 * during the earlier tryimport. If the txg recorded there is 0 then 3624 * the pool is known to be active on another host. 3625 * 3626 * Otherwise, the pool might be in use on another host. Check for 3627 * changes in the uberblocks on disk if necessary. 3628 */ 3629 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 3630 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config, 3631 ZPOOL_CONFIG_LOAD_INFO); 3632 3633 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) && 3634 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) { 3635 vdev_uberblock_load(rvd, ub, &mmp_label); 3636 error = SET_ERROR(EREMOTEIO); 3637 goto out; 3638 } 3639 } 3640 3641 import_delay = spa_activity_check_duration(spa, ub); 3642 3643 /* Add a small random factor in case of simultaneous imports (0-25%) */ 3644 import_delay += import_delay * random_in_range(250) / 1000; 3645 3646 import_expire = gethrtime() + import_delay; 3647 3648 spa_import_progress_set_notes(spa, "Checking MMP activity, waiting " 3649 "%llu ms", (u_longlong_t)NSEC2MSEC(import_delay)); 3650 3651 int interations = 0; 3652 while ((now = gethrtime()) < import_expire) { 3653 if (interations++ % 30 == 0) { 3654 spa_import_progress_set_notes(spa, "Checking MMP " 3655 "activity, %llu ms remaining", 3656 (u_longlong_t)NSEC2MSEC(import_expire - now)); 3657 } 3658 3659 (void) spa_import_progress_set_mmp_check(spa_guid(spa), 3660 NSEC2SEC(import_expire - gethrtime())); 3661 3662 vdev_uberblock_load(rvd, ub, &mmp_label); 3663 3664 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp || 3665 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) { 3666 zfs_dbgmsg("multihost activity detected " 3667 "txg %llu ub_txg %llu " 3668 "timestamp %llu ub_timestamp %llu " 3669 "mmp_config %#llx ub_mmp_config %#llx", 3670 (u_longlong_t)txg, (u_longlong_t)ub->ub_txg, 3671 (u_longlong_t)timestamp, 3672 (u_longlong_t)ub->ub_timestamp, 3673 (u_longlong_t)mmp_config, 3674 (u_longlong_t)ub->ub_mmp_config); 3675 3676 error = SET_ERROR(EREMOTEIO); 3677 break; 3678 } 3679 3680 if (mmp_label) { 3681 nvlist_free(mmp_label); 3682 mmp_label = NULL; 3683 } 3684 3685 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz); 3686 if (error != -1) { 3687 error = SET_ERROR(EINTR); 3688 break; 3689 } 3690 error = 0; 3691 } 3692 3693 out: 3694 mutex_exit(&mtx); 3695 mutex_destroy(&mtx); 3696 cv_destroy(&cv); 3697 3698 /* 3699 * If the pool is determined to be active store the status in the 3700 * spa->spa_load_info nvlist. If the remote hostname or hostid are 3701 * available from configuration read from disk store them as well. 3702 * This allows 'zpool import' to generate a more useful message. 3703 * 3704 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory) 3705 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool 3706 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool 3707 */ 3708 if (error == EREMOTEIO) { 3709 const char *hostname = "<unknown>"; 3710 uint64_t hostid = 0; 3711 3712 if (mmp_label) { 3713 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) { 3714 hostname = fnvlist_lookup_string(mmp_label, 3715 ZPOOL_CONFIG_HOSTNAME); 3716 fnvlist_add_string(spa->spa_load_info, 3717 ZPOOL_CONFIG_MMP_HOSTNAME, hostname); 3718 } 3719 3720 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) { 3721 hostid = fnvlist_lookup_uint64(mmp_label, 3722 ZPOOL_CONFIG_HOSTID); 3723 fnvlist_add_uint64(spa->spa_load_info, 3724 ZPOOL_CONFIG_MMP_HOSTID, hostid); 3725 } 3726 } 3727 3728 fnvlist_add_uint64(spa->spa_load_info, 3729 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE); 3730 fnvlist_add_uint64(spa->spa_load_info, 3731 ZPOOL_CONFIG_MMP_TXG, 0); 3732 3733 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO); 3734 } 3735 3736 if (mmp_label) 3737 nvlist_free(mmp_label); 3738 3739 return (error); 3740 } 3741 3742 static int 3743 spa_verify_host(spa_t *spa, nvlist_t *mos_config) 3744 { 3745 uint64_t hostid; 3746 const char *hostname; 3747 uint64_t myhostid = 0; 3748 3749 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config, 3750 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 3751 hostname = fnvlist_lookup_string(mos_config, 3752 ZPOOL_CONFIG_HOSTNAME); 3753 3754 myhostid = zone_get_hostid(NULL); 3755 3756 if (hostid != 0 && myhostid != 0 && hostid != myhostid) { 3757 cmn_err(CE_WARN, "pool '%s' could not be " 3758 "loaded as it was last accessed by " 3759 "another system (host: %s hostid: 0x%llx). " 3760 "See: https://openzfs.github.io/openzfs-docs/msg/" 3761 "ZFS-8000-EY", 3762 spa_name(spa), hostname, (u_longlong_t)hostid); 3763 spa_load_failed(spa, "hostid verification failed: pool " 3764 "last accessed by host: %s (hostid: 0x%llx)", 3765 hostname, (u_longlong_t)hostid); 3766 return (SET_ERROR(EBADF)); 3767 } 3768 } 3769 3770 return (0); 3771 } 3772 3773 static int 3774 spa_ld_parse_config(spa_t *spa, spa_import_type_t type) 3775 { 3776 int error = 0; 3777 nvlist_t *nvtree, *nvl, *config = spa->spa_config; 3778 int parse; 3779 vdev_t *rvd; 3780 uint64_t pool_guid; 3781 const char *comment; 3782 const char *compatibility; 3783 3784 /* 3785 * Versioning wasn't explicitly added to the label until later, so if 3786 * it's not present treat it as the initial version. 3787 */ 3788 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 3789 &spa->spa_ubsync.ub_version) != 0) 3790 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 3791 3792 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 3793 spa_load_failed(spa, "invalid config provided: '%s' missing", 3794 ZPOOL_CONFIG_POOL_GUID); 3795 return (SET_ERROR(EINVAL)); 3796 } 3797 3798 /* 3799 * If we are doing an import, ensure that the pool is not already 3800 * imported by checking if its pool guid already exists in the 3801 * spa namespace. 3802 * 3803 * The only case that we allow an already imported pool to be 3804 * imported again, is when the pool is checkpointed and we want to 3805 * look at its checkpointed state from userland tools like zdb. 3806 */ 3807 #ifdef _KERNEL 3808 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 3809 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 3810 spa_guid_exists(pool_guid, 0)) { 3811 #else 3812 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 3813 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 3814 spa_guid_exists(pool_guid, 0) && 3815 !spa_importing_readonly_checkpoint(spa)) { 3816 #endif 3817 spa_load_failed(spa, "a pool with guid %llu is already open", 3818 (u_longlong_t)pool_guid); 3819 return (SET_ERROR(EEXIST)); 3820 } 3821 3822 spa->spa_config_guid = pool_guid; 3823 3824 nvlist_free(spa->spa_load_info); 3825 spa->spa_load_info = fnvlist_alloc(); 3826 3827 ASSERT(spa->spa_comment == NULL); 3828 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 3829 spa->spa_comment = spa_strdup(comment); 3830 3831 ASSERT(spa->spa_compatibility == NULL); 3832 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY, 3833 &compatibility) == 0) 3834 spa->spa_compatibility = spa_strdup(compatibility); 3835 3836 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 3837 &spa->spa_config_txg); 3838 3839 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0) 3840 spa->spa_config_splitting = fnvlist_dup(nvl); 3841 3842 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) { 3843 spa_load_failed(spa, "invalid config provided: '%s' missing", 3844 ZPOOL_CONFIG_VDEV_TREE); 3845 return (SET_ERROR(EINVAL)); 3846 } 3847 3848 /* 3849 * Create "The Godfather" zio to hold all async IOs 3850 */ 3851 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3852 KM_SLEEP); 3853 for (int i = 0; i < max_ncpus; i++) { 3854 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3855 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3856 ZIO_FLAG_GODFATHER); 3857 } 3858 3859 /* 3860 * Parse the configuration into a vdev tree. We explicitly set the 3861 * value that will be returned by spa_version() since parsing the 3862 * configuration requires knowing the version number. 3863 */ 3864 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3865 parse = (type == SPA_IMPORT_EXISTING ? 3866 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 3867 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse); 3868 spa_config_exit(spa, SCL_ALL, FTAG); 3869 3870 if (error != 0) { 3871 spa_load_failed(spa, "unable to parse config [error=%d]", 3872 error); 3873 return (error); 3874 } 3875 3876 ASSERT(spa->spa_root_vdev == rvd); 3877 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 3878 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 3879 3880 if (type != SPA_IMPORT_ASSEMBLE) { 3881 ASSERT(spa_guid(spa) == pool_guid); 3882 } 3883 3884 return (0); 3885 } 3886 3887 /* 3888 * Recursively open all vdevs in the vdev tree. This function is called twice: 3889 * first with the untrusted config, then with the trusted config. 3890 */ 3891 static int 3892 spa_ld_open_vdevs(spa_t *spa) 3893 { 3894 int error = 0; 3895 3896 /* 3897 * spa_missing_tvds_allowed defines how many top-level vdevs can be 3898 * missing/unopenable for the root vdev to be still considered openable. 3899 */ 3900 if (spa->spa_trust_config) { 3901 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds; 3902 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) { 3903 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile; 3904 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) { 3905 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan; 3906 } else { 3907 spa->spa_missing_tvds_allowed = 0; 3908 } 3909 3910 spa->spa_missing_tvds_allowed = 3911 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed); 3912 3913 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3914 error = vdev_open(spa->spa_root_vdev); 3915 spa_config_exit(spa, SCL_ALL, FTAG); 3916 3917 if (spa->spa_missing_tvds != 0) { 3918 spa_load_note(spa, "vdev tree has %lld missing top-level " 3919 "vdevs.", (u_longlong_t)spa->spa_missing_tvds); 3920 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) { 3921 /* 3922 * Although theoretically we could allow users to open 3923 * incomplete pools in RW mode, we'd need to add a lot 3924 * of extra logic (e.g. adjust pool space to account 3925 * for missing vdevs). 3926 * This limitation also prevents users from accidentally 3927 * opening the pool in RW mode during data recovery and 3928 * damaging it further. 3929 */ 3930 spa_load_note(spa, "pools with missing top-level " 3931 "vdevs can only be opened in read-only mode."); 3932 error = SET_ERROR(ENXIO); 3933 } else { 3934 spa_load_note(spa, "current settings allow for maximum " 3935 "%lld missing top-level vdevs at this stage.", 3936 (u_longlong_t)spa->spa_missing_tvds_allowed); 3937 } 3938 } 3939 if (error != 0) { 3940 spa_load_failed(spa, "unable to open vdev tree [error=%d]", 3941 error); 3942 } 3943 if (spa->spa_missing_tvds != 0 || error != 0) 3944 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2); 3945 3946 return (error); 3947 } 3948 3949 /* 3950 * We need to validate the vdev labels against the configuration that 3951 * we have in hand. This function is called twice: first with an untrusted 3952 * config, then with a trusted config. The validation is more strict when the 3953 * config is trusted. 3954 */ 3955 static int 3956 spa_ld_validate_vdevs(spa_t *spa) 3957 { 3958 int error = 0; 3959 vdev_t *rvd = spa->spa_root_vdev; 3960 3961 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3962 error = vdev_validate(rvd); 3963 spa_config_exit(spa, SCL_ALL, FTAG); 3964 3965 if (error != 0) { 3966 spa_load_failed(spa, "vdev_validate failed [error=%d]", error); 3967 return (error); 3968 } 3969 3970 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 3971 spa_load_failed(spa, "cannot open vdev tree after invalidating " 3972 "some vdevs"); 3973 vdev_dbgmsg_print_tree(rvd, 2); 3974 return (SET_ERROR(ENXIO)); 3975 } 3976 3977 return (0); 3978 } 3979 3980 static void 3981 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub) 3982 { 3983 spa->spa_state = POOL_STATE_ACTIVE; 3984 spa->spa_ubsync = spa->spa_uberblock; 3985 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 3986 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 3987 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 3988 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 3989 spa->spa_claim_max_txg = spa->spa_first_txg; 3990 spa->spa_prev_software_version = ub->ub_software_version; 3991 } 3992 3993 static int 3994 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type) 3995 { 3996 vdev_t *rvd = spa->spa_root_vdev; 3997 nvlist_t *label; 3998 uberblock_t *ub = &spa->spa_uberblock; 3999 boolean_t activity_check = B_FALSE; 4000 4001 /* 4002 * If we are opening the checkpointed state of the pool by 4003 * rewinding to it, at this point we will have written the 4004 * checkpointed uberblock to the vdev labels, so searching 4005 * the labels will find the right uberblock. However, if 4006 * we are opening the checkpointed state read-only, we have 4007 * not modified the labels. Therefore, we must ignore the 4008 * labels and continue using the spa_uberblock that was set 4009 * by spa_ld_checkpoint_rewind. 4010 * 4011 * Note that it would be fine to ignore the labels when 4012 * rewinding (opening writeable) as well. However, if we 4013 * crash just after writing the labels, we will end up 4014 * searching the labels. Doing so in the common case means 4015 * that this code path gets exercised normally, rather than 4016 * just in the edge case. 4017 */ 4018 if (ub->ub_checkpoint_txg != 0 && 4019 spa_importing_readonly_checkpoint(spa)) { 4020 spa_ld_select_uberblock_done(spa, ub); 4021 return (0); 4022 } 4023 4024 /* 4025 * Find the best uberblock. 4026 */ 4027 vdev_uberblock_load(rvd, ub, &label); 4028 4029 /* 4030 * If we weren't able to find a single valid uberblock, return failure. 4031 */ 4032 if (ub->ub_txg == 0) { 4033 nvlist_free(label); 4034 spa_load_failed(spa, "no valid uberblock found"); 4035 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 4036 } 4037 4038 if (spa->spa_load_max_txg != UINT64_MAX) { 4039 (void) spa_import_progress_set_max_txg(spa_guid(spa), 4040 (u_longlong_t)spa->spa_load_max_txg); 4041 } 4042 spa_load_note(spa, "using uberblock with txg=%llu", 4043 (u_longlong_t)ub->ub_txg); 4044 if (ub->ub_raidz_reflow_info != 0) { 4045 spa_load_note(spa, "uberblock raidz_reflow_info: " 4046 "state=%u offset=%llu", 4047 (int)RRSS_GET_STATE(ub), 4048 (u_longlong_t)RRSS_GET_OFFSET(ub)); 4049 } 4050 4051 4052 /* 4053 * For pools which have the multihost property on determine if the 4054 * pool is truly inactive and can be safely imported. Prevent 4055 * hosts which don't have a hostid set from importing the pool. 4056 */ 4057 activity_check = spa_activity_check_required(spa, ub, label, 4058 spa->spa_config); 4059 if (activity_check) { 4060 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay && 4061 spa_get_hostid(spa) == 0) { 4062 nvlist_free(label); 4063 fnvlist_add_uint64(spa->spa_load_info, 4064 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 4065 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 4066 } 4067 4068 int error = spa_activity_check(spa, ub, spa->spa_config); 4069 if (error) { 4070 nvlist_free(label); 4071 return (error); 4072 } 4073 4074 fnvlist_add_uint64(spa->spa_load_info, 4075 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE); 4076 fnvlist_add_uint64(spa->spa_load_info, 4077 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg); 4078 fnvlist_add_uint16(spa->spa_load_info, 4079 ZPOOL_CONFIG_MMP_SEQ, 4080 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)); 4081 } 4082 4083 /* 4084 * If the pool has an unsupported version we can't open it. 4085 */ 4086 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 4087 nvlist_free(label); 4088 spa_load_failed(spa, "version %llu is not supported", 4089 (u_longlong_t)ub->ub_version); 4090 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 4091 } 4092 4093 if (ub->ub_version >= SPA_VERSION_FEATURES) { 4094 nvlist_t *features; 4095 4096 /* 4097 * If we weren't able to find what's necessary for reading the 4098 * MOS in the label, return failure. 4099 */ 4100 if (label == NULL) { 4101 spa_load_failed(spa, "label config unavailable"); 4102 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 4103 ENXIO)); 4104 } 4105 4106 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ, 4107 &features) != 0) { 4108 nvlist_free(label); 4109 spa_load_failed(spa, "invalid label: '%s' missing", 4110 ZPOOL_CONFIG_FEATURES_FOR_READ); 4111 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 4112 ENXIO)); 4113 } 4114 4115 /* 4116 * Update our in-core representation with the definitive values 4117 * from the label. 4118 */ 4119 nvlist_free(spa->spa_label_features); 4120 spa->spa_label_features = fnvlist_dup(features); 4121 } 4122 4123 nvlist_free(label); 4124 4125 /* 4126 * Look through entries in the label nvlist's features_for_read. If 4127 * there is a feature listed there which we don't understand then we 4128 * cannot open a pool. 4129 */ 4130 if (ub->ub_version >= SPA_VERSION_FEATURES) { 4131 nvlist_t *unsup_feat; 4132 4133 unsup_feat = fnvlist_alloc(); 4134 4135 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 4136 NULL); nvp != NULL; 4137 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 4138 if (!zfeature_is_supported(nvpair_name(nvp))) { 4139 fnvlist_add_string(unsup_feat, 4140 nvpair_name(nvp), ""); 4141 } 4142 } 4143 4144 if (!nvlist_empty(unsup_feat)) { 4145 fnvlist_add_nvlist(spa->spa_load_info, 4146 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 4147 nvlist_free(unsup_feat); 4148 spa_load_failed(spa, "some features are unsupported"); 4149 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 4150 ENOTSUP)); 4151 } 4152 4153 nvlist_free(unsup_feat); 4154 } 4155 4156 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 4157 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4158 spa_try_repair(spa, spa->spa_config); 4159 spa_config_exit(spa, SCL_ALL, FTAG); 4160 nvlist_free(spa->spa_config_splitting); 4161 spa->spa_config_splitting = NULL; 4162 } 4163 4164 /* 4165 * Initialize internal SPA structures. 4166 */ 4167 spa_ld_select_uberblock_done(spa, ub); 4168 4169 return (0); 4170 } 4171 4172 static int 4173 spa_ld_open_rootbp(spa_t *spa) 4174 { 4175 int error = 0; 4176 vdev_t *rvd = spa->spa_root_vdev; 4177 4178 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 4179 if (error != 0) { 4180 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init " 4181 "[error=%d]", error); 4182 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4183 } 4184 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 4185 4186 return (0); 4187 } 4188 4189 static int 4190 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type, 4191 boolean_t reloading) 4192 { 4193 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 4194 nvlist_t *nv, *mos_config, *policy; 4195 int error = 0, copy_error; 4196 uint64_t healthy_tvds, healthy_tvds_mos; 4197 uint64_t mos_config_txg; 4198 4199 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE) 4200 != 0) 4201 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4202 4203 /* 4204 * If we're assembling a pool from a split, the config provided is 4205 * already trusted so there is nothing to do. 4206 */ 4207 if (type == SPA_IMPORT_ASSEMBLE) 4208 return (0); 4209 4210 healthy_tvds = spa_healthy_core_tvds(spa); 4211 4212 if (load_nvlist(spa, spa->spa_config_object, &mos_config) 4213 != 0) { 4214 spa_load_failed(spa, "unable to retrieve MOS config"); 4215 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4216 } 4217 4218 /* 4219 * If we are doing an open, pool owner wasn't verified yet, thus do 4220 * the verification here. 4221 */ 4222 if (spa->spa_load_state == SPA_LOAD_OPEN) { 4223 error = spa_verify_host(spa, mos_config); 4224 if (error != 0) { 4225 nvlist_free(mos_config); 4226 return (error); 4227 } 4228 } 4229 4230 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE); 4231 4232 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4233 4234 /* 4235 * Build a new vdev tree from the trusted config 4236 */ 4237 error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD); 4238 if (error != 0) { 4239 nvlist_free(mos_config); 4240 spa_config_exit(spa, SCL_ALL, FTAG); 4241 spa_load_failed(spa, "spa_config_parse failed [error=%d]", 4242 error); 4243 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4244 } 4245 4246 /* 4247 * Vdev paths in the MOS may be obsolete. If the untrusted config was 4248 * obtained by scanning /dev/dsk, then it will have the right vdev 4249 * paths. We update the trusted MOS config with this information. 4250 * We first try to copy the paths with vdev_copy_path_strict, which 4251 * succeeds only when both configs have exactly the same vdev tree. 4252 * If that fails, we fall back to a more flexible method that has a 4253 * best effort policy. 4254 */ 4255 copy_error = vdev_copy_path_strict(rvd, mrvd); 4256 if (copy_error != 0 || spa_load_print_vdev_tree) { 4257 spa_load_note(spa, "provided vdev tree:"); 4258 vdev_dbgmsg_print_tree(rvd, 2); 4259 spa_load_note(spa, "MOS vdev tree:"); 4260 vdev_dbgmsg_print_tree(mrvd, 2); 4261 } 4262 if (copy_error != 0) { 4263 spa_load_note(spa, "vdev_copy_path_strict failed, falling " 4264 "back to vdev_copy_path_relaxed"); 4265 vdev_copy_path_relaxed(rvd, mrvd); 4266 } 4267 4268 vdev_close(rvd); 4269 vdev_free(rvd); 4270 spa->spa_root_vdev = mrvd; 4271 rvd = mrvd; 4272 spa_config_exit(spa, SCL_ALL, FTAG); 4273 4274 /* 4275 * If 'zpool import' used a cached config, then the on-disk hostid and 4276 * hostname may be different to the cached config in ways that should 4277 * prevent import. Userspace can't discover this without a scan, but 4278 * we know, so we add these values to LOAD_INFO so the caller can know 4279 * the difference. 4280 * 4281 * Note that we have to do this before the config is regenerated, 4282 * because the new config will have the hostid and hostname for this 4283 * host, in readiness for import. 4284 */ 4285 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID)) 4286 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID, 4287 fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID)); 4288 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME)) 4289 fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME, 4290 fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME)); 4291 4292 /* 4293 * We will use spa_config if we decide to reload the spa or if spa_load 4294 * fails and we rewind. We must thus regenerate the config using the 4295 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to 4296 * pass settings on how to load the pool and is not stored in the MOS. 4297 * We copy it over to our new, trusted config. 4298 */ 4299 mos_config_txg = fnvlist_lookup_uint64(mos_config, 4300 ZPOOL_CONFIG_POOL_TXG); 4301 nvlist_free(mos_config); 4302 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE); 4303 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY, 4304 &policy) == 0) 4305 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy); 4306 spa_config_set(spa, mos_config); 4307 spa->spa_config_source = SPA_CONFIG_SRC_MOS; 4308 4309 /* 4310 * Now that we got the config from the MOS, we should be more strict 4311 * in checking blkptrs and can make assumptions about the consistency 4312 * of the vdev tree. spa_trust_config must be set to true before opening 4313 * vdevs in order for them to be writeable. 4314 */ 4315 spa->spa_trust_config = B_TRUE; 4316 4317 /* 4318 * Open and validate the new vdev tree 4319 */ 4320 error = spa_ld_open_vdevs(spa); 4321 if (error != 0) 4322 return (error); 4323 4324 error = spa_ld_validate_vdevs(spa); 4325 if (error != 0) 4326 return (error); 4327 4328 if (copy_error != 0 || spa_load_print_vdev_tree) { 4329 spa_load_note(spa, "final vdev tree:"); 4330 vdev_dbgmsg_print_tree(rvd, 2); 4331 } 4332 4333 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT && 4334 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) { 4335 /* 4336 * Sanity check to make sure that we are indeed loading the 4337 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds 4338 * in the config provided and they happened to be the only ones 4339 * to have the latest uberblock, we could involuntarily perform 4340 * an extreme rewind. 4341 */ 4342 healthy_tvds_mos = spa_healthy_core_tvds(spa); 4343 if (healthy_tvds_mos - healthy_tvds >= 4344 SPA_SYNC_MIN_VDEVS) { 4345 spa_load_note(spa, "config provided misses too many " 4346 "top-level vdevs compared to MOS (%lld vs %lld). ", 4347 (u_longlong_t)healthy_tvds, 4348 (u_longlong_t)healthy_tvds_mos); 4349 spa_load_note(spa, "vdev tree:"); 4350 vdev_dbgmsg_print_tree(rvd, 2); 4351 if (reloading) { 4352 spa_load_failed(spa, "config was already " 4353 "provided from MOS. Aborting."); 4354 return (spa_vdev_err(rvd, 4355 VDEV_AUX_CORRUPT_DATA, EIO)); 4356 } 4357 spa_load_note(spa, "spa must be reloaded using MOS " 4358 "config"); 4359 return (SET_ERROR(EAGAIN)); 4360 } 4361 } 4362 4363 error = spa_check_for_missing_logs(spa); 4364 if (error != 0) 4365 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 4366 4367 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) { 4368 spa_load_failed(spa, "uberblock guid sum doesn't match MOS " 4369 "guid sum (%llu != %llu)", 4370 (u_longlong_t)spa->spa_uberblock.ub_guid_sum, 4371 (u_longlong_t)rvd->vdev_guid_sum); 4372 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 4373 ENXIO)); 4374 } 4375 4376 return (0); 4377 } 4378 4379 static int 4380 spa_ld_open_indirect_vdev_metadata(spa_t *spa) 4381 { 4382 int error = 0; 4383 vdev_t *rvd = spa->spa_root_vdev; 4384 4385 /* 4386 * Everything that we read before spa_remove_init() must be stored 4387 * on concreted vdevs. Therefore we do this as early as possible. 4388 */ 4389 error = spa_remove_init(spa); 4390 if (error != 0) { 4391 spa_load_failed(spa, "spa_remove_init failed [error=%d]", 4392 error); 4393 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4394 } 4395 4396 /* 4397 * Retrieve information needed to condense indirect vdev mappings. 4398 */ 4399 error = spa_condense_init(spa); 4400 if (error != 0) { 4401 spa_load_failed(spa, "spa_condense_init failed [error=%d]", 4402 error); 4403 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4404 } 4405 4406 return (0); 4407 } 4408 4409 static int 4410 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep) 4411 { 4412 int error = 0; 4413 vdev_t *rvd = spa->spa_root_vdev; 4414 4415 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 4416 boolean_t missing_feat_read = B_FALSE; 4417 nvlist_t *unsup_feat, *enabled_feat; 4418 4419 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 4420 &spa->spa_feat_for_read_obj, B_TRUE) != 0) { 4421 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4422 } 4423 4424 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 4425 &spa->spa_feat_for_write_obj, B_TRUE) != 0) { 4426 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4427 } 4428 4429 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 4430 &spa->spa_feat_desc_obj, B_TRUE) != 0) { 4431 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4432 } 4433 4434 enabled_feat = fnvlist_alloc(); 4435 unsup_feat = fnvlist_alloc(); 4436 4437 if (!spa_features_check(spa, B_FALSE, 4438 unsup_feat, enabled_feat)) 4439 missing_feat_read = B_TRUE; 4440 4441 if (spa_writeable(spa) || 4442 spa->spa_load_state == SPA_LOAD_TRYIMPORT) { 4443 if (!spa_features_check(spa, B_TRUE, 4444 unsup_feat, enabled_feat)) { 4445 *missing_feat_writep = B_TRUE; 4446 } 4447 } 4448 4449 fnvlist_add_nvlist(spa->spa_load_info, 4450 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 4451 4452 if (!nvlist_empty(unsup_feat)) { 4453 fnvlist_add_nvlist(spa->spa_load_info, 4454 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 4455 } 4456 4457 fnvlist_free(enabled_feat); 4458 fnvlist_free(unsup_feat); 4459 4460 if (!missing_feat_read) { 4461 fnvlist_add_boolean(spa->spa_load_info, 4462 ZPOOL_CONFIG_CAN_RDONLY); 4463 } 4464 4465 /* 4466 * If the state is SPA_LOAD_TRYIMPORT, our objective is 4467 * twofold: to determine whether the pool is available for 4468 * import in read-write mode and (if it is not) whether the 4469 * pool is available for import in read-only mode. If the pool 4470 * is available for import in read-write mode, it is displayed 4471 * as available in userland; if it is not available for import 4472 * in read-only mode, it is displayed as unavailable in 4473 * userland. If the pool is available for import in read-only 4474 * mode but not read-write mode, it is displayed as unavailable 4475 * in userland with a special note that the pool is actually 4476 * available for open in read-only mode. 4477 * 4478 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 4479 * missing a feature for write, we must first determine whether 4480 * the pool can be opened read-only before returning to 4481 * userland in order to know whether to display the 4482 * abovementioned note. 4483 */ 4484 if (missing_feat_read || (*missing_feat_writep && 4485 spa_writeable(spa))) { 4486 spa_load_failed(spa, "pool uses unsupported features"); 4487 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 4488 ENOTSUP)); 4489 } 4490 4491 /* 4492 * Load refcounts for ZFS features from disk into an in-memory 4493 * cache during SPA initialization. 4494 */ 4495 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 4496 uint64_t refcount; 4497 4498 error = feature_get_refcount_from_disk(spa, 4499 &spa_feature_table[i], &refcount); 4500 if (error == 0) { 4501 spa->spa_feat_refcount_cache[i] = refcount; 4502 } else if (error == ENOTSUP) { 4503 spa->spa_feat_refcount_cache[i] = 4504 SPA_FEATURE_DISABLED; 4505 } else { 4506 spa_load_failed(spa, "error getting refcount " 4507 "for feature %s [error=%d]", 4508 spa_feature_table[i].fi_guid, error); 4509 return (spa_vdev_err(rvd, 4510 VDEV_AUX_CORRUPT_DATA, EIO)); 4511 } 4512 } 4513 } 4514 4515 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 4516 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 4517 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0) 4518 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4519 } 4520 4521 /* 4522 * Encryption was added before bookmark_v2, even though bookmark_v2 4523 * is now a dependency. If this pool has encryption enabled without 4524 * bookmark_v2, trigger an errata message. 4525 */ 4526 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) && 4527 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) { 4528 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION; 4529 } 4530 4531 return (0); 4532 } 4533 4534 static int 4535 spa_ld_load_special_directories(spa_t *spa) 4536 { 4537 int error = 0; 4538 vdev_t *rvd = spa->spa_root_vdev; 4539 4540 spa->spa_is_initializing = B_TRUE; 4541 error = dsl_pool_open(spa->spa_dsl_pool); 4542 spa->spa_is_initializing = B_FALSE; 4543 if (error != 0) { 4544 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error); 4545 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4546 } 4547 4548 return (0); 4549 } 4550 4551 static int 4552 spa_ld_get_props(spa_t *spa) 4553 { 4554 int error = 0; 4555 uint64_t obj; 4556 vdev_t *rvd = spa->spa_root_vdev; 4557 4558 /* Grab the checksum salt from the MOS. */ 4559 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 4560 DMU_POOL_CHECKSUM_SALT, 1, 4561 sizeof (spa->spa_cksum_salt.zcs_bytes), 4562 spa->spa_cksum_salt.zcs_bytes); 4563 if (error == ENOENT) { 4564 /* Generate a new salt for subsequent use */ 4565 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 4566 sizeof (spa->spa_cksum_salt.zcs_bytes)); 4567 } else if (error != 0) { 4568 spa_load_failed(spa, "unable to retrieve checksum salt from " 4569 "MOS [error=%d]", error); 4570 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4571 } 4572 4573 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0) 4574 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4575 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 4576 if (error != 0) { 4577 spa_load_failed(spa, "error opening deferred-frees bpobj " 4578 "[error=%d]", error); 4579 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4580 } 4581 4582 /* 4583 * Load the bit that tells us to use the new accounting function 4584 * (raid-z deflation). If we have an older pool, this will not 4585 * be present. 4586 */ 4587 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE); 4588 if (error != 0 && error != ENOENT) 4589 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4590 4591 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 4592 &spa->spa_creation_version, B_FALSE); 4593 if (error != 0 && error != ENOENT) 4594 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4595 4596 /* 4597 * Load the persistent error log. If we have an older pool, this will 4598 * not be present. 4599 */ 4600 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last, 4601 B_FALSE); 4602 if (error != 0 && error != ENOENT) 4603 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4604 4605 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 4606 &spa->spa_errlog_scrub, B_FALSE); 4607 if (error != 0 && error != ENOENT) 4608 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4609 4610 /* 4611 * Load the livelist deletion field. If a livelist is queued for 4612 * deletion, indicate that in the spa 4613 */ 4614 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES, 4615 &spa->spa_livelists_to_delete, B_FALSE); 4616 if (error != 0 && error != ENOENT) 4617 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4618 4619 /* 4620 * Load the history object. If we have an older pool, this 4621 * will not be present. 4622 */ 4623 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE); 4624 if (error != 0 && error != ENOENT) 4625 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4626 4627 /* 4628 * Load the per-vdev ZAP map. If we have an older pool, this will not 4629 * be present; in this case, defer its creation to a later time to 4630 * avoid dirtying the MOS this early / out of sync context. See 4631 * spa_sync_config_object. 4632 */ 4633 4634 /* The sentinel is only available in the MOS config. */ 4635 nvlist_t *mos_config; 4636 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { 4637 spa_load_failed(spa, "unable to retrieve MOS config"); 4638 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4639 } 4640 4641 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, 4642 &spa->spa_all_vdev_zaps, B_FALSE); 4643 4644 if (error == ENOENT) { 4645 VERIFY(!nvlist_exists(mos_config, 4646 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 4647 spa->spa_avz_action = AVZ_ACTION_INITIALIZE; 4648 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 4649 } else if (error != 0) { 4650 nvlist_free(mos_config); 4651 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4652 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { 4653 /* 4654 * An older version of ZFS overwrote the sentinel value, so 4655 * we have orphaned per-vdev ZAPs in the MOS. Defer their 4656 * destruction to later; see spa_sync_config_object. 4657 */ 4658 spa->spa_avz_action = AVZ_ACTION_DESTROY; 4659 /* 4660 * We're assuming that no vdevs have had their ZAPs created 4661 * before this. Better be sure of it. 4662 */ 4663 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 4664 } 4665 nvlist_free(mos_config); 4666 4667 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 4668 4669 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object, 4670 B_FALSE); 4671 if (error && error != ENOENT) 4672 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4673 4674 if (error == 0) { 4675 uint64_t autoreplace = 0; 4676 4677 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 4678 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 4679 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 4680 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 4681 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 4682 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost); 4683 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim); 4684 spa->spa_autoreplace = (autoreplace != 0); 4685 } 4686 4687 /* 4688 * If we are importing a pool with missing top-level vdevs, 4689 * we enforce that the pool doesn't panic or get suspended on 4690 * error since the likelihood of missing data is extremely high. 4691 */ 4692 if (spa->spa_missing_tvds > 0 && 4693 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE && 4694 spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4695 spa_load_note(spa, "forcing failmode to 'continue' " 4696 "as some top level vdevs are missing"); 4697 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE; 4698 } 4699 4700 return (0); 4701 } 4702 4703 static int 4704 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type) 4705 { 4706 int error = 0; 4707 vdev_t *rvd = spa->spa_root_vdev; 4708 4709 /* 4710 * If we're assembling the pool from the split-off vdevs of 4711 * an existing pool, we don't want to attach the spares & cache 4712 * devices. 4713 */ 4714 4715 /* 4716 * Load any hot spares for this pool. 4717 */ 4718 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object, 4719 B_FALSE); 4720 if (error != 0 && error != ENOENT) 4721 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4722 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 4723 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 4724 if (load_nvlist(spa, spa->spa_spares.sav_object, 4725 &spa->spa_spares.sav_config) != 0) { 4726 spa_load_failed(spa, "error loading spares nvlist"); 4727 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4728 } 4729 4730 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4731 spa_load_spares(spa); 4732 spa_config_exit(spa, SCL_ALL, FTAG); 4733 } else if (error == 0) { 4734 spa->spa_spares.sav_sync = B_TRUE; 4735 } 4736 4737 /* 4738 * Load any level 2 ARC devices for this pool. 4739 */ 4740 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 4741 &spa->spa_l2cache.sav_object, B_FALSE); 4742 if (error != 0 && error != ENOENT) 4743 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4744 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 4745 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 4746 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 4747 &spa->spa_l2cache.sav_config) != 0) { 4748 spa_load_failed(spa, "error loading l2cache nvlist"); 4749 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4750 } 4751 4752 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4753 spa_load_l2cache(spa); 4754 spa_config_exit(spa, SCL_ALL, FTAG); 4755 } else if (error == 0) { 4756 spa->spa_l2cache.sav_sync = B_TRUE; 4757 } 4758 4759 return (0); 4760 } 4761 4762 static int 4763 spa_ld_load_vdev_metadata(spa_t *spa) 4764 { 4765 int error = 0; 4766 vdev_t *rvd = spa->spa_root_vdev; 4767 4768 /* 4769 * If the 'multihost' property is set, then never allow a pool to 4770 * be imported when the system hostid is zero. The exception to 4771 * this rule is zdb which is always allowed to access pools. 4772 */ 4773 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 && 4774 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) { 4775 fnvlist_add_uint64(spa->spa_load_info, 4776 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 4777 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 4778 } 4779 4780 /* 4781 * If the 'autoreplace' property is set, then post a resource notifying 4782 * the ZFS DE that it should not issue any faults for unopenable 4783 * devices. We also iterate over the vdevs, and post a sysevent for any 4784 * unopenable vdevs so that the normal autoreplace handler can take 4785 * over. 4786 */ 4787 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4788 spa_check_removed(spa->spa_root_vdev); 4789 /* 4790 * For the import case, this is done in spa_import(), because 4791 * at this point we're using the spare definitions from 4792 * the MOS config, not necessarily from the userland config. 4793 */ 4794 if (spa->spa_load_state != SPA_LOAD_IMPORT) { 4795 spa_aux_check_removed(&spa->spa_spares); 4796 spa_aux_check_removed(&spa->spa_l2cache); 4797 } 4798 } 4799 4800 /* 4801 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc. 4802 */ 4803 error = vdev_load(rvd); 4804 if (error != 0) { 4805 spa_load_failed(spa, "vdev_load failed [error=%d]", error); 4806 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4807 } 4808 4809 error = spa_ld_log_spacemaps(spa); 4810 if (error != 0) { 4811 spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]", 4812 error); 4813 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4814 } 4815 4816 /* 4817 * Propagate the leaf DTLs we just loaded all the way up the vdev tree. 4818 */ 4819 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4820 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE); 4821 spa_config_exit(spa, SCL_ALL, FTAG); 4822 4823 return (0); 4824 } 4825 4826 static int 4827 spa_ld_load_dedup_tables(spa_t *spa) 4828 { 4829 int error = 0; 4830 vdev_t *rvd = spa->spa_root_vdev; 4831 4832 error = ddt_load(spa); 4833 if (error != 0) { 4834 spa_load_failed(spa, "ddt_load failed [error=%d]", error); 4835 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4836 } 4837 4838 return (0); 4839 } 4840 4841 static int 4842 spa_ld_load_brt(spa_t *spa) 4843 { 4844 int error = 0; 4845 vdev_t *rvd = spa->spa_root_vdev; 4846 4847 error = brt_load(spa); 4848 if (error != 0) { 4849 spa_load_failed(spa, "brt_load failed [error=%d]", error); 4850 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4851 } 4852 4853 return (0); 4854 } 4855 4856 static int 4857 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport) 4858 { 4859 vdev_t *rvd = spa->spa_root_vdev; 4860 4861 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) { 4862 boolean_t missing = spa_check_logs(spa); 4863 if (missing) { 4864 if (spa->spa_missing_tvds != 0) { 4865 spa_load_note(spa, "spa_check_logs failed " 4866 "so dropping the logs"); 4867 } else { 4868 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 4869 spa_load_failed(spa, "spa_check_logs failed"); 4870 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, 4871 ENXIO)); 4872 } 4873 } 4874 } 4875 4876 return (0); 4877 } 4878 4879 static int 4880 spa_ld_verify_pool_data(spa_t *spa) 4881 { 4882 int error = 0; 4883 vdev_t *rvd = spa->spa_root_vdev; 4884 4885 /* 4886 * We've successfully opened the pool, verify that we're ready 4887 * to start pushing transactions. 4888 */ 4889 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4890 error = spa_load_verify(spa); 4891 if (error != 0) { 4892 spa_load_failed(spa, "spa_load_verify failed " 4893 "[error=%d]", error); 4894 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 4895 error)); 4896 } 4897 } 4898 4899 return (0); 4900 } 4901 4902 static void 4903 spa_ld_claim_log_blocks(spa_t *spa) 4904 { 4905 dmu_tx_t *tx; 4906 dsl_pool_t *dp = spa_get_dsl(spa); 4907 4908 /* 4909 * Claim log blocks that haven't been committed yet. 4910 * This must all happen in a single txg. 4911 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 4912 * invoked from zil_claim_log_block()'s i/o done callback. 4913 * Price of rollback is that we abandon the log. 4914 */ 4915 spa->spa_claiming = B_TRUE; 4916 4917 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 4918 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 4919 zil_claim, tx, DS_FIND_CHILDREN); 4920 dmu_tx_commit(tx); 4921 4922 spa->spa_claiming = B_FALSE; 4923 4924 spa_set_log_state(spa, SPA_LOG_GOOD); 4925 } 4926 4927 static void 4928 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg, 4929 boolean_t update_config_cache) 4930 { 4931 vdev_t *rvd = spa->spa_root_vdev; 4932 int need_update = B_FALSE; 4933 4934 /* 4935 * If the config cache is stale, or we have uninitialized 4936 * metaslabs (see spa_vdev_add()), then update the config. 4937 * 4938 * If this is a verbatim import, trust the current 4939 * in-core spa_config and update the disk labels. 4940 */ 4941 if (update_config_cache || config_cache_txg != spa->spa_config_txg || 4942 spa->spa_load_state == SPA_LOAD_IMPORT || 4943 spa->spa_load_state == SPA_LOAD_RECOVER || 4944 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 4945 need_update = B_TRUE; 4946 4947 for (int c = 0; c < rvd->vdev_children; c++) 4948 if (rvd->vdev_child[c]->vdev_ms_array == 0) 4949 need_update = B_TRUE; 4950 4951 /* 4952 * Update the config cache asynchronously in case we're the 4953 * root pool, in which case the config cache isn't writable yet. 4954 */ 4955 if (need_update) 4956 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 4957 } 4958 4959 static void 4960 spa_ld_prepare_for_reload(spa_t *spa) 4961 { 4962 spa_mode_t mode = spa->spa_mode; 4963 int async_suspended = spa->spa_async_suspended; 4964 4965 spa_unload(spa); 4966 spa_deactivate(spa); 4967 spa_activate(spa, mode); 4968 4969 /* 4970 * We save the value of spa_async_suspended as it gets reset to 0 by 4971 * spa_unload(). We want to restore it back to the original value before 4972 * returning as we might be calling spa_async_resume() later. 4973 */ 4974 spa->spa_async_suspended = async_suspended; 4975 } 4976 4977 static int 4978 spa_ld_read_checkpoint_txg(spa_t *spa) 4979 { 4980 uberblock_t checkpoint; 4981 int error = 0; 4982 4983 ASSERT0(spa->spa_checkpoint_txg); 4984 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4985 4986 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 4987 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 4988 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 4989 4990 if (error == ENOENT) 4991 return (0); 4992 4993 if (error != 0) 4994 return (error); 4995 4996 ASSERT3U(checkpoint.ub_txg, !=, 0); 4997 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0); 4998 ASSERT3U(checkpoint.ub_timestamp, !=, 0); 4999 spa->spa_checkpoint_txg = checkpoint.ub_txg; 5000 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp; 5001 5002 return (0); 5003 } 5004 5005 static int 5006 spa_ld_mos_init(spa_t *spa, spa_import_type_t type) 5007 { 5008 int error = 0; 5009 5010 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5011 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 5012 5013 /* 5014 * Never trust the config that is provided unless we are assembling 5015 * a pool following a split. 5016 * This means don't trust blkptrs and the vdev tree in general. This 5017 * also effectively puts the spa in read-only mode since 5018 * spa_writeable() checks for spa_trust_config to be true. 5019 * We will later load a trusted config from the MOS. 5020 */ 5021 if (type != SPA_IMPORT_ASSEMBLE) 5022 spa->spa_trust_config = B_FALSE; 5023 5024 /* 5025 * Parse the config provided to create a vdev tree. 5026 */ 5027 error = spa_ld_parse_config(spa, type); 5028 if (error != 0) 5029 return (error); 5030 5031 spa_import_progress_add(spa); 5032 5033 /* 5034 * Now that we have the vdev tree, try to open each vdev. This involves 5035 * opening the underlying physical device, retrieving its geometry and 5036 * probing the vdev with a dummy I/O. The state of each vdev will be set 5037 * based on the success of those operations. After this we'll be ready 5038 * to read from the vdevs. 5039 */ 5040 error = spa_ld_open_vdevs(spa); 5041 if (error != 0) 5042 return (error); 5043 5044 /* 5045 * Read the label of each vdev and make sure that the GUIDs stored 5046 * there match the GUIDs in the config provided. 5047 * If we're assembling a new pool that's been split off from an 5048 * existing pool, the labels haven't yet been updated so we skip 5049 * validation for now. 5050 */ 5051 if (type != SPA_IMPORT_ASSEMBLE) { 5052 error = spa_ld_validate_vdevs(spa); 5053 if (error != 0) 5054 return (error); 5055 } 5056 5057 /* 5058 * Read all vdev labels to find the best uberblock (i.e. latest, 5059 * unless spa_load_max_txg is set) and store it in spa_uberblock. We 5060 * get the list of features required to read blkptrs in the MOS from 5061 * the vdev label with the best uberblock and verify that our version 5062 * of zfs supports them all. 5063 */ 5064 error = spa_ld_select_uberblock(spa, type); 5065 if (error != 0) 5066 return (error); 5067 5068 /* 5069 * Pass that uberblock to the dsl_pool layer which will open the root 5070 * blkptr. This blkptr points to the latest version of the MOS and will 5071 * allow us to read its contents. 5072 */ 5073 error = spa_ld_open_rootbp(spa); 5074 if (error != 0) 5075 return (error); 5076 5077 return (0); 5078 } 5079 5080 static int 5081 spa_ld_checkpoint_rewind(spa_t *spa) 5082 { 5083 uberblock_t checkpoint; 5084 int error = 0; 5085 5086 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5087 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 5088 5089 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 5090 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 5091 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 5092 5093 if (error != 0) { 5094 spa_load_failed(spa, "unable to retrieve checkpointed " 5095 "uberblock from the MOS config [error=%d]", error); 5096 5097 if (error == ENOENT) 5098 error = ZFS_ERR_NO_CHECKPOINT; 5099 5100 return (error); 5101 } 5102 5103 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg); 5104 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg); 5105 5106 /* 5107 * We need to update the txg and timestamp of the checkpointed 5108 * uberblock to be higher than the latest one. This ensures that 5109 * the checkpointed uberblock is selected if we were to close and 5110 * reopen the pool right after we've written it in the vdev labels. 5111 * (also see block comment in vdev_uberblock_compare) 5112 */ 5113 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1; 5114 checkpoint.ub_timestamp = gethrestime_sec(); 5115 5116 /* 5117 * Set current uberblock to be the checkpointed uberblock. 5118 */ 5119 spa->spa_uberblock = checkpoint; 5120 5121 /* 5122 * If we are doing a normal rewind, then the pool is open for 5123 * writing and we sync the "updated" checkpointed uberblock to 5124 * disk. Once this is done, we've basically rewound the whole 5125 * pool and there is no way back. 5126 * 5127 * There are cases when we don't want to attempt and sync the 5128 * checkpointed uberblock to disk because we are opening a 5129 * pool as read-only. Specifically, verifying the checkpointed 5130 * state with zdb, and importing the checkpointed state to get 5131 * a "preview" of its content. 5132 */ 5133 if (spa_writeable(spa)) { 5134 vdev_t *rvd = spa->spa_root_vdev; 5135 5136 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5137 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 5138 int svdcount = 0; 5139 int children = rvd->vdev_children; 5140 int c0 = random_in_range(children); 5141 5142 for (int c = 0; c < children; c++) { 5143 vdev_t *vd = rvd->vdev_child[(c0 + c) % children]; 5144 5145 /* Stop when revisiting the first vdev */ 5146 if (c > 0 && svd[0] == vd) 5147 break; 5148 5149 if (vd->vdev_ms_array == 0 || vd->vdev_islog || 5150 !vdev_is_concrete(vd)) 5151 continue; 5152 5153 svd[svdcount++] = vd; 5154 if (svdcount == SPA_SYNC_MIN_VDEVS) 5155 break; 5156 } 5157 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg); 5158 if (error == 0) 5159 spa->spa_last_synced_guid = rvd->vdev_guid; 5160 spa_config_exit(spa, SCL_ALL, FTAG); 5161 5162 if (error != 0) { 5163 spa_load_failed(spa, "failed to write checkpointed " 5164 "uberblock to the vdev labels [error=%d]", error); 5165 return (error); 5166 } 5167 } 5168 5169 return (0); 5170 } 5171 5172 static int 5173 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type, 5174 boolean_t *update_config_cache) 5175 { 5176 int error; 5177 5178 /* 5179 * Parse the config for pool, open and validate vdevs, 5180 * select an uberblock, and use that uberblock to open 5181 * the MOS. 5182 */ 5183 error = spa_ld_mos_init(spa, type); 5184 if (error != 0) 5185 return (error); 5186 5187 /* 5188 * Retrieve the trusted config stored in the MOS and use it to create 5189 * a new, exact version of the vdev tree, then reopen all vdevs. 5190 */ 5191 error = spa_ld_trusted_config(spa, type, B_FALSE); 5192 if (error == EAGAIN) { 5193 if (update_config_cache != NULL) 5194 *update_config_cache = B_TRUE; 5195 5196 /* 5197 * Redo the loading process with the trusted config if it is 5198 * too different from the untrusted config. 5199 */ 5200 spa_ld_prepare_for_reload(spa); 5201 spa_load_note(spa, "RELOADING"); 5202 error = spa_ld_mos_init(spa, type); 5203 if (error != 0) 5204 return (error); 5205 5206 error = spa_ld_trusted_config(spa, type, B_TRUE); 5207 if (error != 0) 5208 return (error); 5209 5210 } else if (error != 0) { 5211 return (error); 5212 } 5213 5214 return (0); 5215 } 5216 5217 /* 5218 * Load an existing storage pool, using the config provided. This config 5219 * describes which vdevs are part of the pool and is later validated against 5220 * partial configs present in each vdev's label and an entire copy of the 5221 * config stored in the MOS. 5222 */ 5223 static int 5224 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport) 5225 { 5226 int error = 0; 5227 boolean_t missing_feat_write = B_FALSE; 5228 boolean_t checkpoint_rewind = 5229 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 5230 boolean_t update_config_cache = B_FALSE; 5231 5232 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5233 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 5234 5235 spa_load_note(spa, "LOADING"); 5236 5237 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache); 5238 if (error != 0) 5239 return (error); 5240 5241 /* 5242 * If we are rewinding to the checkpoint then we need to repeat 5243 * everything we've done so far in this function but this time 5244 * selecting the checkpointed uberblock and using that to open 5245 * the MOS. 5246 */ 5247 if (checkpoint_rewind) { 5248 /* 5249 * If we are rewinding to the checkpoint update config cache 5250 * anyway. 5251 */ 5252 update_config_cache = B_TRUE; 5253 5254 /* 5255 * Extract the checkpointed uberblock from the current MOS 5256 * and use this as the pool's uberblock from now on. If the 5257 * pool is imported as writeable we also write the checkpoint 5258 * uberblock to the labels, making the rewind permanent. 5259 */ 5260 error = spa_ld_checkpoint_rewind(spa); 5261 if (error != 0) 5262 return (error); 5263 5264 /* 5265 * Redo the loading process again with the 5266 * checkpointed uberblock. 5267 */ 5268 spa_ld_prepare_for_reload(spa); 5269 spa_load_note(spa, "LOADING checkpointed uberblock"); 5270 error = spa_ld_mos_with_trusted_config(spa, type, NULL); 5271 if (error != 0) 5272 return (error); 5273 } 5274 5275 /* 5276 * Retrieve the checkpoint txg if the pool has a checkpoint. 5277 */ 5278 spa_import_progress_set_notes(spa, "Loading checkpoint txg"); 5279 error = spa_ld_read_checkpoint_txg(spa); 5280 if (error != 0) 5281 return (error); 5282 5283 /* 5284 * Retrieve the mapping of indirect vdevs. Those vdevs were removed 5285 * from the pool and their contents were re-mapped to other vdevs. Note 5286 * that everything that we read before this step must have been 5287 * rewritten on concrete vdevs after the last device removal was 5288 * initiated. Otherwise we could be reading from indirect vdevs before 5289 * we have loaded their mappings. 5290 */ 5291 spa_import_progress_set_notes(spa, "Loading indirect vdev metadata"); 5292 error = spa_ld_open_indirect_vdev_metadata(spa); 5293 if (error != 0) 5294 return (error); 5295 5296 /* 5297 * Retrieve the full list of active features from the MOS and check if 5298 * they are all supported. 5299 */ 5300 spa_import_progress_set_notes(spa, "Checking feature flags"); 5301 error = spa_ld_check_features(spa, &missing_feat_write); 5302 if (error != 0) 5303 return (error); 5304 5305 /* 5306 * Load several special directories from the MOS needed by the dsl_pool 5307 * layer. 5308 */ 5309 spa_import_progress_set_notes(spa, "Loading special MOS directories"); 5310 error = spa_ld_load_special_directories(spa); 5311 if (error != 0) 5312 return (error); 5313 5314 /* 5315 * Retrieve pool properties from the MOS. 5316 */ 5317 spa_import_progress_set_notes(spa, "Loading properties"); 5318 error = spa_ld_get_props(spa); 5319 if (error != 0) 5320 return (error); 5321 5322 /* 5323 * Retrieve the list of auxiliary devices - cache devices and spares - 5324 * and open them. 5325 */ 5326 spa_import_progress_set_notes(spa, "Loading AUX vdevs"); 5327 error = spa_ld_open_aux_vdevs(spa, type); 5328 if (error != 0) 5329 return (error); 5330 5331 /* 5332 * Load the metadata for all vdevs. Also check if unopenable devices 5333 * should be autoreplaced. 5334 */ 5335 spa_import_progress_set_notes(spa, "Loading vdev metadata"); 5336 error = spa_ld_load_vdev_metadata(spa); 5337 if (error != 0) 5338 return (error); 5339 5340 spa_import_progress_set_notes(spa, "Loading dedup tables"); 5341 error = spa_ld_load_dedup_tables(spa); 5342 if (error != 0) 5343 return (error); 5344 5345 spa_import_progress_set_notes(spa, "Loading BRT"); 5346 error = spa_ld_load_brt(spa); 5347 if (error != 0) 5348 return (error); 5349 5350 /* 5351 * Verify the logs now to make sure we don't have any unexpected errors 5352 * when we claim log blocks later. 5353 */ 5354 spa_import_progress_set_notes(spa, "Verifying Log Devices"); 5355 error = spa_ld_verify_logs(spa, type, ereport); 5356 if (error != 0) 5357 return (error); 5358 5359 if (missing_feat_write) { 5360 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT); 5361 5362 /* 5363 * At this point, we know that we can open the pool in 5364 * read-only mode but not read-write mode. We now have enough 5365 * information and can return to userland. 5366 */ 5367 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT, 5368 ENOTSUP)); 5369 } 5370 5371 /* 5372 * Traverse the last txgs to make sure the pool was left off in a safe 5373 * state. When performing an extreme rewind, we verify the whole pool, 5374 * which can take a very long time. 5375 */ 5376 spa_import_progress_set_notes(spa, "Verifying pool data"); 5377 error = spa_ld_verify_pool_data(spa); 5378 if (error != 0) 5379 return (error); 5380 5381 /* 5382 * Calculate the deflated space for the pool. This must be done before 5383 * we write anything to the pool because we'd need to update the space 5384 * accounting using the deflated sizes. 5385 */ 5386 spa_import_progress_set_notes(spa, "Calculating deflated space"); 5387 spa_update_dspace(spa); 5388 5389 /* 5390 * We have now retrieved all the information we needed to open the 5391 * pool. If we are importing the pool in read-write mode, a few 5392 * additional steps must be performed to finish the import. 5393 */ 5394 spa_import_progress_set_notes(spa, "Starting import"); 5395 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER || 5396 spa->spa_load_max_txg == UINT64_MAX)) { 5397 uint64_t config_cache_txg = spa->spa_config_txg; 5398 5399 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT); 5400 5401 /* 5402 * Before we do any zio_write's, complete the raidz expansion 5403 * scratch space copying, if necessary. 5404 */ 5405 if (RRSS_GET_STATE(&spa->spa_uberblock) == RRSS_SCRATCH_VALID) 5406 vdev_raidz_reflow_copy_scratch(spa); 5407 5408 /* 5409 * In case of a checkpoint rewind, log the original txg 5410 * of the checkpointed uberblock. 5411 */ 5412 if (checkpoint_rewind) { 5413 spa_history_log_internal(spa, "checkpoint rewind", 5414 NULL, "rewound state to txg=%llu", 5415 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg); 5416 } 5417 5418 spa_import_progress_set_notes(spa, "Claiming ZIL blocks"); 5419 /* 5420 * Traverse the ZIL and claim all blocks. 5421 */ 5422 spa_ld_claim_log_blocks(spa); 5423 5424 /* 5425 * Kick-off the syncing thread. 5426 */ 5427 spa->spa_sync_on = B_TRUE; 5428 txg_sync_start(spa->spa_dsl_pool); 5429 mmp_thread_start(spa); 5430 5431 /* 5432 * Wait for all claims to sync. We sync up to the highest 5433 * claimed log block birth time so that claimed log blocks 5434 * don't appear to be from the future. spa_claim_max_txg 5435 * will have been set for us by ZIL traversal operations 5436 * performed above. 5437 */ 5438 spa_import_progress_set_notes(spa, "Syncing ZIL claims"); 5439 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 5440 5441 /* 5442 * Check if we need to request an update of the config. On the 5443 * next sync, we would update the config stored in vdev labels 5444 * and the cachefile (by default /etc/zfs/zpool.cache). 5445 */ 5446 spa_import_progress_set_notes(spa, "Updating configs"); 5447 spa_ld_check_for_config_update(spa, config_cache_txg, 5448 update_config_cache); 5449 5450 /* 5451 * Check if a rebuild was in progress and if so resume it. 5452 * Then check all DTLs to see if anything needs resilvering. 5453 * The resilver will be deferred if a rebuild was started. 5454 */ 5455 spa_import_progress_set_notes(spa, "Starting resilvers"); 5456 if (vdev_rebuild_active(spa->spa_root_vdev)) { 5457 vdev_rebuild_restart(spa); 5458 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 5459 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5460 spa_async_request(spa, SPA_ASYNC_RESILVER); 5461 } 5462 5463 /* 5464 * Log the fact that we booted up (so that we can detect if 5465 * we rebooted in the middle of an operation). 5466 */ 5467 spa_history_log_version(spa, "open", NULL); 5468 5469 spa_import_progress_set_notes(spa, 5470 "Restarting device removals"); 5471 spa_restart_removal(spa); 5472 spa_spawn_aux_threads(spa); 5473 5474 /* 5475 * Delete any inconsistent datasets. 5476 * 5477 * Note: 5478 * Since we may be issuing deletes for clones here, 5479 * we make sure to do so after we've spawned all the 5480 * auxiliary threads above (from which the livelist 5481 * deletion zthr is part of). 5482 */ 5483 spa_import_progress_set_notes(spa, 5484 "Cleaning up inconsistent objsets"); 5485 (void) dmu_objset_find(spa_name(spa), 5486 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 5487 5488 /* 5489 * Clean up any stale temporary dataset userrefs. 5490 */ 5491 spa_import_progress_set_notes(spa, 5492 "Cleaning up temporary userrefs"); 5493 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 5494 5495 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5496 spa_import_progress_set_notes(spa, "Restarting initialize"); 5497 vdev_initialize_restart(spa->spa_root_vdev); 5498 spa_import_progress_set_notes(spa, "Restarting TRIM"); 5499 vdev_trim_restart(spa->spa_root_vdev); 5500 vdev_autotrim_restart(spa); 5501 spa_config_exit(spa, SCL_CONFIG, FTAG); 5502 spa_import_progress_set_notes(spa, "Finished importing"); 5503 } 5504 5505 spa_import_progress_remove(spa_guid(spa)); 5506 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 5507 5508 spa_load_note(spa, "LOADED"); 5509 5510 return (0); 5511 } 5512 5513 static int 5514 spa_load_retry(spa_t *spa, spa_load_state_t state) 5515 { 5516 spa_mode_t mode = spa->spa_mode; 5517 5518 spa_unload(spa); 5519 spa_deactivate(spa); 5520 5521 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 5522 5523 spa_activate(spa, mode); 5524 spa_async_suspend(spa); 5525 5526 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu", 5527 (u_longlong_t)spa->spa_load_max_txg); 5528 5529 return (spa_load(spa, state, SPA_IMPORT_EXISTING)); 5530 } 5531 5532 /* 5533 * If spa_load() fails this function will try loading prior txg's. If 5534 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 5535 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 5536 * function will not rewind the pool and will return the same error as 5537 * spa_load(). 5538 */ 5539 static int 5540 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request, 5541 int rewind_flags) 5542 { 5543 nvlist_t *loadinfo = NULL; 5544 nvlist_t *config = NULL; 5545 int load_error, rewind_error; 5546 uint64_t safe_rewind_txg; 5547 uint64_t min_txg; 5548 5549 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 5550 spa->spa_load_max_txg = spa->spa_load_txg; 5551 spa_set_log_state(spa, SPA_LOG_CLEAR); 5552 } else { 5553 spa->spa_load_max_txg = max_request; 5554 if (max_request != UINT64_MAX) 5555 spa->spa_extreme_rewind = B_TRUE; 5556 } 5557 5558 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING); 5559 if (load_error == 0) 5560 return (0); 5561 if (load_error == ZFS_ERR_NO_CHECKPOINT) { 5562 /* 5563 * When attempting checkpoint-rewind on a pool with no 5564 * checkpoint, we should not attempt to load uberblocks 5565 * from previous txgs when spa_load fails. 5566 */ 5567 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 5568 spa_import_progress_remove(spa_guid(spa)); 5569 return (load_error); 5570 } 5571 5572 if (spa->spa_root_vdev != NULL) 5573 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 5574 5575 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 5576 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 5577 5578 if (rewind_flags & ZPOOL_NEVER_REWIND) { 5579 nvlist_free(config); 5580 spa_import_progress_remove(spa_guid(spa)); 5581 return (load_error); 5582 } 5583 5584 if (state == SPA_LOAD_RECOVER) { 5585 /* Price of rolling back is discarding txgs, including log */ 5586 spa_set_log_state(spa, SPA_LOG_CLEAR); 5587 } else { 5588 /* 5589 * If we aren't rolling back save the load info from our first 5590 * import attempt so that we can restore it after attempting 5591 * to rewind. 5592 */ 5593 loadinfo = spa->spa_load_info; 5594 spa->spa_load_info = fnvlist_alloc(); 5595 } 5596 5597 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 5598 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 5599 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 5600 TXG_INITIAL : safe_rewind_txg; 5601 5602 /* 5603 * Continue as long as we're finding errors, we're still within 5604 * the acceptable rewind range, and we're still finding uberblocks 5605 */ 5606 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 5607 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 5608 if (spa->spa_load_max_txg < safe_rewind_txg) 5609 spa->spa_extreme_rewind = B_TRUE; 5610 rewind_error = spa_load_retry(spa, state); 5611 } 5612 5613 spa->spa_extreme_rewind = B_FALSE; 5614 spa->spa_load_max_txg = UINT64_MAX; 5615 5616 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 5617 spa_config_set(spa, config); 5618 else 5619 nvlist_free(config); 5620 5621 if (state == SPA_LOAD_RECOVER) { 5622 ASSERT3P(loadinfo, ==, NULL); 5623 spa_import_progress_remove(spa_guid(spa)); 5624 return (rewind_error); 5625 } else { 5626 /* Store the rewind info as part of the initial load info */ 5627 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 5628 spa->spa_load_info); 5629 5630 /* Restore the initial load info */ 5631 fnvlist_free(spa->spa_load_info); 5632 spa->spa_load_info = loadinfo; 5633 5634 spa_import_progress_remove(spa_guid(spa)); 5635 return (load_error); 5636 } 5637 } 5638 5639 /* 5640 * Pool Open/Import 5641 * 5642 * The import case is identical to an open except that the configuration is sent 5643 * down from userland, instead of grabbed from the configuration cache. For the 5644 * case of an open, the pool configuration will exist in the 5645 * POOL_STATE_UNINITIALIZED state. 5646 * 5647 * The stats information (gen/count/ustats) is used to gather vdev statistics at 5648 * the same time open the pool, without having to keep around the spa_t in some 5649 * ambiguous state. 5650 */ 5651 static int 5652 spa_open_common(const char *pool, spa_t **spapp, const void *tag, 5653 nvlist_t *nvpolicy, nvlist_t **config) 5654 { 5655 spa_t *spa; 5656 spa_load_state_t state = SPA_LOAD_OPEN; 5657 int error; 5658 int locked = B_FALSE; 5659 int firstopen = B_FALSE; 5660 5661 *spapp = NULL; 5662 5663 /* 5664 * As disgusting as this is, we need to support recursive calls to this 5665 * function because dsl_dir_open() is called during spa_load(), and ends 5666 * up calling spa_open() again. The real fix is to figure out how to 5667 * avoid dsl_dir_open() calling this in the first place. 5668 */ 5669 if (MUTEX_NOT_HELD(&spa_namespace_lock)) { 5670 mutex_enter(&spa_namespace_lock); 5671 locked = B_TRUE; 5672 } 5673 5674 if ((spa = spa_lookup(pool)) == NULL) { 5675 if (locked) 5676 mutex_exit(&spa_namespace_lock); 5677 return (SET_ERROR(ENOENT)); 5678 } 5679 5680 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 5681 zpool_load_policy_t policy; 5682 5683 firstopen = B_TRUE; 5684 5685 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config, 5686 &policy); 5687 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 5688 state = SPA_LOAD_RECOVER; 5689 5690 spa_activate(spa, spa_mode_global); 5691 5692 if (state != SPA_LOAD_RECOVER) 5693 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 5694 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 5695 5696 zfs_dbgmsg("spa_open_common: opening %s", pool); 5697 error = spa_load_best(spa, state, policy.zlp_txg, 5698 policy.zlp_rewind); 5699 5700 if (error == EBADF) { 5701 /* 5702 * If vdev_validate() returns failure (indicated by 5703 * EBADF), it indicates that one of the vdevs indicates 5704 * that the pool has been exported or destroyed. If 5705 * this is the case, the config cache is out of sync and 5706 * we should remove the pool from the namespace. 5707 */ 5708 spa_unload(spa); 5709 spa_deactivate(spa); 5710 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE); 5711 spa_remove(spa); 5712 if (locked) 5713 mutex_exit(&spa_namespace_lock); 5714 return (SET_ERROR(ENOENT)); 5715 } 5716 5717 if (error) { 5718 /* 5719 * We can't open the pool, but we still have useful 5720 * information: the state of each vdev after the 5721 * attempted vdev_open(). Return this to the user. 5722 */ 5723 if (config != NULL && spa->spa_config) { 5724 *config = fnvlist_dup(spa->spa_config); 5725 fnvlist_add_nvlist(*config, 5726 ZPOOL_CONFIG_LOAD_INFO, 5727 spa->spa_load_info); 5728 } 5729 spa_unload(spa); 5730 spa_deactivate(spa); 5731 spa->spa_last_open_failed = error; 5732 if (locked) 5733 mutex_exit(&spa_namespace_lock); 5734 *spapp = NULL; 5735 return (error); 5736 } 5737 } 5738 5739 spa_open_ref(spa, tag); 5740 5741 if (config != NULL) 5742 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 5743 5744 /* 5745 * If we've recovered the pool, pass back any information we 5746 * gathered while doing the load. 5747 */ 5748 if (state == SPA_LOAD_RECOVER && config != NULL) { 5749 fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 5750 spa->spa_load_info); 5751 } 5752 5753 if (locked) { 5754 spa->spa_last_open_failed = 0; 5755 spa->spa_last_ubsync_txg = 0; 5756 spa->spa_load_txg = 0; 5757 mutex_exit(&spa_namespace_lock); 5758 } 5759 5760 if (firstopen) 5761 zvol_create_minors_recursive(spa_name(spa)); 5762 5763 *spapp = spa; 5764 5765 return (0); 5766 } 5767 5768 int 5769 spa_open_rewind(const char *name, spa_t **spapp, const void *tag, 5770 nvlist_t *policy, nvlist_t **config) 5771 { 5772 return (spa_open_common(name, spapp, tag, policy, config)); 5773 } 5774 5775 int 5776 spa_open(const char *name, spa_t **spapp, const void *tag) 5777 { 5778 return (spa_open_common(name, spapp, tag, NULL, NULL)); 5779 } 5780 5781 /* 5782 * Lookup the given spa_t, incrementing the inject count in the process, 5783 * preventing it from being exported or destroyed. 5784 */ 5785 spa_t * 5786 spa_inject_addref(char *name) 5787 { 5788 spa_t *spa; 5789 5790 mutex_enter(&spa_namespace_lock); 5791 if ((spa = spa_lookup(name)) == NULL) { 5792 mutex_exit(&spa_namespace_lock); 5793 return (NULL); 5794 } 5795 spa->spa_inject_ref++; 5796 mutex_exit(&spa_namespace_lock); 5797 5798 return (spa); 5799 } 5800 5801 void 5802 spa_inject_delref(spa_t *spa) 5803 { 5804 mutex_enter(&spa_namespace_lock); 5805 spa->spa_inject_ref--; 5806 mutex_exit(&spa_namespace_lock); 5807 } 5808 5809 /* 5810 * Add spares device information to the nvlist. 5811 */ 5812 static void 5813 spa_add_spares(spa_t *spa, nvlist_t *config) 5814 { 5815 nvlist_t **spares; 5816 uint_t i, nspares; 5817 nvlist_t *nvroot; 5818 uint64_t guid; 5819 vdev_stat_t *vs; 5820 uint_t vsc; 5821 uint64_t pool; 5822 5823 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 5824 5825 if (spa->spa_spares.sav_count == 0) 5826 return; 5827 5828 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); 5829 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5830 ZPOOL_CONFIG_SPARES, &spares, &nspares)); 5831 if (nspares != 0) { 5832 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5833 (const nvlist_t * const *)spares, nspares); 5834 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5835 &spares, &nspares)); 5836 5837 /* 5838 * Go through and find any spares which have since been 5839 * repurposed as an active spare. If this is the case, update 5840 * their status appropriately. 5841 */ 5842 for (i = 0; i < nspares; i++) { 5843 guid = fnvlist_lookup_uint64(spares[i], 5844 ZPOOL_CONFIG_GUID); 5845 VERIFY0(nvlist_lookup_uint64_array(spares[i], 5846 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)); 5847 if (spa_spare_exists(guid, &pool, NULL) && 5848 pool != 0ULL) { 5849 vs->vs_state = VDEV_STATE_CANT_OPEN; 5850 vs->vs_aux = VDEV_AUX_SPARED; 5851 } else { 5852 vs->vs_state = 5853 spa->spa_spares.sav_vdevs[i]->vdev_state; 5854 } 5855 } 5856 } 5857 } 5858 5859 /* 5860 * Add l2cache device information to the nvlist, including vdev stats. 5861 */ 5862 static void 5863 spa_add_l2cache(spa_t *spa, nvlist_t *config) 5864 { 5865 nvlist_t **l2cache; 5866 uint_t i, j, nl2cache; 5867 nvlist_t *nvroot; 5868 uint64_t guid; 5869 vdev_t *vd; 5870 vdev_stat_t *vs; 5871 uint_t vsc; 5872 5873 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 5874 5875 if (spa->spa_l2cache.sav_count == 0) 5876 return; 5877 5878 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); 5879 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5880 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache)); 5881 if (nl2cache != 0) { 5882 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 5883 (const nvlist_t * const *)l2cache, nl2cache); 5884 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 5885 &l2cache, &nl2cache)); 5886 5887 /* 5888 * Update level 2 cache device stats. 5889 */ 5890 5891 for (i = 0; i < nl2cache; i++) { 5892 guid = fnvlist_lookup_uint64(l2cache[i], 5893 ZPOOL_CONFIG_GUID); 5894 5895 vd = NULL; 5896 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 5897 if (guid == 5898 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 5899 vd = spa->spa_l2cache.sav_vdevs[j]; 5900 break; 5901 } 5902 } 5903 ASSERT(vd != NULL); 5904 5905 VERIFY0(nvlist_lookup_uint64_array(l2cache[i], 5906 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)); 5907 vdev_get_stats(vd, vs); 5908 vdev_config_generate_stats(vd, l2cache[i]); 5909 5910 } 5911 } 5912 } 5913 5914 static void 5915 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features) 5916 { 5917 zap_cursor_t zc; 5918 zap_attribute_t za; 5919 5920 if (spa->spa_feat_for_read_obj != 0) { 5921 for (zap_cursor_init(&zc, spa->spa_meta_objset, 5922 spa->spa_feat_for_read_obj); 5923 zap_cursor_retrieve(&zc, &za) == 0; 5924 zap_cursor_advance(&zc)) { 5925 ASSERT(za.za_integer_length == sizeof (uint64_t) && 5926 za.za_num_integers == 1); 5927 VERIFY0(nvlist_add_uint64(features, za.za_name, 5928 za.za_first_integer)); 5929 } 5930 zap_cursor_fini(&zc); 5931 } 5932 5933 if (spa->spa_feat_for_write_obj != 0) { 5934 for (zap_cursor_init(&zc, spa->spa_meta_objset, 5935 spa->spa_feat_for_write_obj); 5936 zap_cursor_retrieve(&zc, &za) == 0; 5937 zap_cursor_advance(&zc)) { 5938 ASSERT(za.za_integer_length == sizeof (uint64_t) && 5939 za.za_num_integers == 1); 5940 VERIFY0(nvlist_add_uint64(features, za.za_name, 5941 za.za_first_integer)); 5942 } 5943 zap_cursor_fini(&zc); 5944 } 5945 } 5946 5947 static void 5948 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features) 5949 { 5950 int i; 5951 5952 for (i = 0; i < SPA_FEATURES; i++) { 5953 zfeature_info_t feature = spa_feature_table[i]; 5954 uint64_t refcount; 5955 5956 if (feature_get_refcount(spa, &feature, &refcount) != 0) 5957 continue; 5958 5959 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount)); 5960 } 5961 } 5962 5963 /* 5964 * Store a list of pool features and their reference counts in the 5965 * config. 5966 * 5967 * The first time this is called on a spa, allocate a new nvlist, fetch 5968 * the pool features and reference counts from disk, then save the list 5969 * in the spa. In subsequent calls on the same spa use the saved nvlist 5970 * and refresh its values from the cached reference counts. This 5971 * ensures we don't block here on I/O on a suspended pool so 'zpool 5972 * clear' can resume the pool. 5973 */ 5974 static void 5975 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 5976 { 5977 nvlist_t *features; 5978 5979 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 5980 5981 mutex_enter(&spa->spa_feat_stats_lock); 5982 features = spa->spa_feat_stats; 5983 5984 if (features != NULL) { 5985 spa_feature_stats_from_cache(spa, features); 5986 } else { 5987 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP)); 5988 spa->spa_feat_stats = features; 5989 spa_feature_stats_from_disk(spa, features); 5990 } 5991 5992 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 5993 features)); 5994 5995 mutex_exit(&spa->spa_feat_stats_lock); 5996 } 5997 5998 int 5999 spa_get_stats(const char *name, nvlist_t **config, 6000 char *altroot, size_t buflen) 6001 { 6002 int error; 6003 spa_t *spa; 6004 6005 *config = NULL; 6006 error = spa_open_common(name, &spa, FTAG, NULL, config); 6007 6008 if (spa != NULL) { 6009 /* 6010 * This still leaves a window of inconsistency where the spares 6011 * or l2cache devices could change and the config would be 6012 * self-inconsistent. 6013 */ 6014 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6015 6016 if (*config != NULL) { 6017 uint64_t loadtimes[2]; 6018 6019 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 6020 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 6021 fnvlist_add_uint64_array(*config, 6022 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2); 6023 6024 fnvlist_add_uint64(*config, 6025 ZPOOL_CONFIG_ERRCOUNT, 6026 spa_approx_errlog_size(spa)); 6027 6028 if (spa_suspended(spa)) { 6029 fnvlist_add_uint64(*config, 6030 ZPOOL_CONFIG_SUSPENDED, 6031 spa->spa_failmode); 6032 fnvlist_add_uint64(*config, 6033 ZPOOL_CONFIG_SUSPENDED_REASON, 6034 spa->spa_suspended); 6035 } 6036 6037 spa_add_spares(spa, *config); 6038 spa_add_l2cache(spa, *config); 6039 spa_add_feature_stats(spa, *config); 6040 } 6041 } 6042 6043 /* 6044 * We want to get the alternate root even for faulted pools, so we cheat 6045 * and call spa_lookup() directly. 6046 */ 6047 if (altroot) { 6048 if (spa == NULL) { 6049 mutex_enter(&spa_namespace_lock); 6050 spa = spa_lookup(name); 6051 if (spa) 6052 spa_altroot(spa, altroot, buflen); 6053 else 6054 altroot[0] = '\0'; 6055 spa = NULL; 6056 mutex_exit(&spa_namespace_lock); 6057 } else { 6058 spa_altroot(spa, altroot, buflen); 6059 } 6060 } 6061 6062 if (spa != NULL) { 6063 spa_config_exit(spa, SCL_CONFIG, FTAG); 6064 spa_close(spa, FTAG); 6065 } 6066 6067 return (error); 6068 } 6069 6070 /* 6071 * Validate that the auxiliary device array is well formed. We must have an 6072 * array of nvlists, each which describes a valid leaf vdev. If this is an 6073 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 6074 * specified, as long as they are well-formed. 6075 */ 6076 static int 6077 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 6078 spa_aux_vdev_t *sav, const char *config, uint64_t version, 6079 vdev_labeltype_t label) 6080 { 6081 nvlist_t **dev; 6082 uint_t i, ndev; 6083 vdev_t *vd; 6084 int error; 6085 6086 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 6087 6088 /* 6089 * It's acceptable to have no devs specified. 6090 */ 6091 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 6092 return (0); 6093 6094 if (ndev == 0) 6095 return (SET_ERROR(EINVAL)); 6096 6097 /* 6098 * Make sure the pool is formatted with a version that supports this 6099 * device type. 6100 */ 6101 if (spa_version(spa) < version) 6102 return (SET_ERROR(ENOTSUP)); 6103 6104 /* 6105 * Set the pending device list so we correctly handle device in-use 6106 * checking. 6107 */ 6108 sav->sav_pending = dev; 6109 sav->sav_npending = ndev; 6110 6111 for (i = 0; i < ndev; i++) { 6112 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 6113 mode)) != 0) 6114 goto out; 6115 6116 if (!vd->vdev_ops->vdev_op_leaf) { 6117 vdev_free(vd); 6118 error = SET_ERROR(EINVAL); 6119 goto out; 6120 } 6121 6122 vd->vdev_top = vd; 6123 6124 if ((error = vdev_open(vd)) == 0 && 6125 (error = vdev_label_init(vd, crtxg, label)) == 0) { 6126 fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 6127 vd->vdev_guid); 6128 } 6129 6130 vdev_free(vd); 6131 6132 if (error && 6133 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 6134 goto out; 6135 else 6136 error = 0; 6137 } 6138 6139 out: 6140 sav->sav_pending = NULL; 6141 sav->sav_npending = 0; 6142 return (error); 6143 } 6144 6145 static int 6146 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 6147 { 6148 int error; 6149 6150 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 6151 6152 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 6153 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 6154 VDEV_LABEL_SPARE)) != 0) { 6155 return (error); 6156 } 6157 6158 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 6159 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 6160 VDEV_LABEL_L2CACHE)); 6161 } 6162 6163 static void 6164 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 6165 const char *config) 6166 { 6167 int i; 6168 6169 if (sav->sav_config != NULL) { 6170 nvlist_t **olddevs; 6171 uint_t oldndevs; 6172 nvlist_t **newdevs; 6173 6174 /* 6175 * Generate new dev list by concatenating with the 6176 * current dev list. 6177 */ 6178 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config, 6179 &olddevs, &oldndevs)); 6180 6181 newdevs = kmem_alloc(sizeof (void *) * 6182 (ndevs + oldndevs), KM_SLEEP); 6183 for (i = 0; i < oldndevs; i++) 6184 newdevs[i] = fnvlist_dup(olddevs[i]); 6185 for (i = 0; i < ndevs; i++) 6186 newdevs[i + oldndevs] = fnvlist_dup(devs[i]); 6187 6188 fnvlist_remove(sav->sav_config, config); 6189 6190 fnvlist_add_nvlist_array(sav->sav_config, config, 6191 (const nvlist_t * const *)newdevs, ndevs + oldndevs); 6192 for (i = 0; i < oldndevs + ndevs; i++) 6193 nvlist_free(newdevs[i]); 6194 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 6195 } else { 6196 /* 6197 * Generate a new dev list. 6198 */ 6199 sav->sav_config = fnvlist_alloc(); 6200 fnvlist_add_nvlist_array(sav->sav_config, config, 6201 (const nvlist_t * const *)devs, ndevs); 6202 } 6203 } 6204 6205 /* 6206 * Stop and drop level 2 ARC devices 6207 */ 6208 void 6209 spa_l2cache_drop(spa_t *spa) 6210 { 6211 vdev_t *vd; 6212 int i; 6213 spa_aux_vdev_t *sav = &spa->spa_l2cache; 6214 6215 for (i = 0; i < sav->sav_count; i++) { 6216 uint64_t pool; 6217 6218 vd = sav->sav_vdevs[i]; 6219 ASSERT(vd != NULL); 6220 6221 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 6222 pool != 0ULL && l2arc_vdev_present(vd)) 6223 l2arc_remove_vdev(vd); 6224 } 6225 } 6226 6227 /* 6228 * Verify encryption parameters for spa creation. If we are encrypting, we must 6229 * have the encryption feature flag enabled. 6230 */ 6231 static int 6232 spa_create_check_encryption_params(dsl_crypto_params_t *dcp, 6233 boolean_t has_encryption) 6234 { 6235 if (dcp->cp_crypt != ZIO_CRYPT_OFF && 6236 dcp->cp_crypt != ZIO_CRYPT_INHERIT && 6237 !has_encryption) 6238 return (SET_ERROR(ENOTSUP)); 6239 6240 return (dmu_objset_create_crypt_check(NULL, dcp, NULL)); 6241 } 6242 6243 /* 6244 * Pool Creation 6245 */ 6246 int 6247 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 6248 nvlist_t *zplprops, dsl_crypto_params_t *dcp) 6249 { 6250 spa_t *spa; 6251 const char *altroot = NULL; 6252 vdev_t *rvd; 6253 dsl_pool_t *dp; 6254 dmu_tx_t *tx; 6255 int error = 0; 6256 uint64_t txg = TXG_INITIAL; 6257 nvlist_t **spares, **l2cache; 6258 uint_t nspares, nl2cache; 6259 uint64_t version, obj, ndraid = 0; 6260 boolean_t has_features; 6261 boolean_t has_encryption; 6262 boolean_t has_allocclass; 6263 spa_feature_t feat; 6264 const char *feat_name; 6265 const char *poolname; 6266 nvlist_t *nvl; 6267 6268 if (props == NULL || 6269 nvlist_lookup_string(props, "tname", &poolname) != 0) 6270 poolname = (char *)pool; 6271 6272 /* 6273 * If this pool already exists, return failure. 6274 */ 6275 mutex_enter(&spa_namespace_lock); 6276 if (spa_lookup(poolname) != NULL) { 6277 mutex_exit(&spa_namespace_lock); 6278 return (SET_ERROR(EEXIST)); 6279 } 6280 6281 /* 6282 * Allocate a new spa_t structure. 6283 */ 6284 nvl = fnvlist_alloc(); 6285 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool); 6286 (void) nvlist_lookup_string(props, 6287 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 6288 spa = spa_add(poolname, nvl, altroot); 6289 fnvlist_free(nvl); 6290 spa_activate(spa, spa_mode_global); 6291 6292 if (props && (error = spa_prop_validate(spa, props))) { 6293 spa_deactivate(spa); 6294 spa_remove(spa); 6295 mutex_exit(&spa_namespace_lock); 6296 return (error); 6297 } 6298 6299 /* 6300 * Temporary pool names should never be written to disk. 6301 */ 6302 if (poolname != pool) 6303 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME; 6304 6305 has_features = B_FALSE; 6306 has_encryption = B_FALSE; 6307 has_allocclass = B_FALSE; 6308 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 6309 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 6310 if (zpool_prop_feature(nvpair_name(elem))) { 6311 has_features = B_TRUE; 6312 6313 feat_name = strchr(nvpair_name(elem), '@') + 1; 6314 VERIFY0(zfeature_lookup_name(feat_name, &feat)); 6315 if (feat == SPA_FEATURE_ENCRYPTION) 6316 has_encryption = B_TRUE; 6317 if (feat == SPA_FEATURE_ALLOCATION_CLASSES) 6318 has_allocclass = B_TRUE; 6319 } 6320 } 6321 6322 /* verify encryption params, if they were provided */ 6323 if (dcp != NULL) { 6324 error = spa_create_check_encryption_params(dcp, has_encryption); 6325 if (error != 0) { 6326 spa_deactivate(spa); 6327 spa_remove(spa); 6328 mutex_exit(&spa_namespace_lock); 6329 return (error); 6330 } 6331 } 6332 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) { 6333 spa_deactivate(spa); 6334 spa_remove(spa); 6335 mutex_exit(&spa_namespace_lock); 6336 return (ENOTSUP); 6337 } 6338 6339 if (has_features || nvlist_lookup_uint64(props, 6340 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 6341 version = SPA_VERSION; 6342 } 6343 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 6344 6345 spa->spa_first_txg = txg; 6346 spa->spa_uberblock.ub_txg = txg - 1; 6347 spa->spa_uberblock.ub_version = version; 6348 spa->spa_ubsync = spa->spa_uberblock; 6349 spa->spa_load_state = SPA_LOAD_CREATE; 6350 spa->spa_removing_phys.sr_state = DSS_NONE; 6351 spa->spa_removing_phys.sr_removing_vdev = -1; 6352 spa->spa_removing_phys.sr_prev_indirect_vdev = -1; 6353 spa->spa_indirect_vdevs_loaded = B_TRUE; 6354 6355 /* 6356 * Create "The Godfather" zio to hold all async IOs 6357 */ 6358 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 6359 KM_SLEEP); 6360 for (int i = 0; i < max_ncpus; i++) { 6361 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 6362 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 6363 ZIO_FLAG_GODFATHER); 6364 } 6365 6366 /* 6367 * Create the root vdev. 6368 */ 6369 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6370 6371 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 6372 6373 ASSERT(error != 0 || rvd != NULL); 6374 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 6375 6376 if (error == 0 && !zfs_allocatable_devs(nvroot)) 6377 error = SET_ERROR(EINVAL); 6378 6379 if (error == 0 && 6380 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 6381 (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 && 6382 (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) { 6383 /* 6384 * instantiate the metaslab groups (this will dirty the vdevs) 6385 * we can no longer error exit past this point 6386 */ 6387 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) { 6388 vdev_t *vd = rvd->vdev_child[c]; 6389 6390 vdev_metaslab_set_size(vd); 6391 vdev_expand(vd, txg); 6392 } 6393 } 6394 6395 spa_config_exit(spa, SCL_ALL, FTAG); 6396 6397 if (error != 0) { 6398 spa_unload(spa); 6399 spa_deactivate(spa); 6400 spa_remove(spa); 6401 mutex_exit(&spa_namespace_lock); 6402 return (error); 6403 } 6404 6405 /* 6406 * Get the list of spares, if specified. 6407 */ 6408 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 6409 &spares, &nspares) == 0) { 6410 spa->spa_spares.sav_config = fnvlist_alloc(); 6411 fnvlist_add_nvlist_array(spa->spa_spares.sav_config, 6412 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, 6413 nspares); 6414 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6415 spa_load_spares(spa); 6416 spa_config_exit(spa, SCL_ALL, FTAG); 6417 spa->spa_spares.sav_sync = B_TRUE; 6418 } 6419 6420 /* 6421 * Get the list of level 2 cache devices, if specified. 6422 */ 6423 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 6424 &l2cache, &nl2cache) == 0) { 6425 VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config, 6426 NV_UNIQUE_NAME, KM_SLEEP)); 6427 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 6428 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache, 6429 nl2cache); 6430 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6431 spa_load_l2cache(spa); 6432 spa_config_exit(spa, SCL_ALL, FTAG); 6433 spa->spa_l2cache.sav_sync = B_TRUE; 6434 } 6435 6436 spa->spa_is_initializing = B_TRUE; 6437 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg); 6438 spa->spa_is_initializing = B_FALSE; 6439 6440 /* 6441 * Create DDTs (dedup tables). 6442 */ 6443 ddt_create(spa); 6444 /* 6445 * Create BRT table and BRT table object. 6446 */ 6447 brt_create(spa); 6448 6449 spa_update_dspace(spa); 6450 6451 tx = dmu_tx_create_assigned(dp, txg); 6452 6453 /* 6454 * Create the pool's history object. 6455 */ 6456 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history) 6457 spa_history_create_obj(spa, tx); 6458 6459 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE); 6460 spa_history_log_version(spa, "create", tx); 6461 6462 /* 6463 * Create the pool config object. 6464 */ 6465 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 6466 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 6467 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 6468 6469 if (zap_add(spa->spa_meta_objset, 6470 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 6471 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 6472 cmn_err(CE_PANIC, "failed to add pool config"); 6473 } 6474 6475 if (zap_add(spa->spa_meta_objset, 6476 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 6477 sizeof (uint64_t), 1, &version, tx) != 0) { 6478 cmn_err(CE_PANIC, "failed to add pool version"); 6479 } 6480 6481 /* Newly created pools with the right version are always deflated. */ 6482 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 6483 spa->spa_deflate = TRUE; 6484 if (zap_add(spa->spa_meta_objset, 6485 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6486 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 6487 cmn_err(CE_PANIC, "failed to add deflate"); 6488 } 6489 } 6490 6491 /* 6492 * Create the deferred-free bpobj. Turn off compression 6493 * because sync-to-convergence takes longer if the blocksize 6494 * keeps changing. 6495 */ 6496 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 6497 dmu_object_set_compress(spa->spa_meta_objset, obj, 6498 ZIO_COMPRESS_OFF, tx); 6499 if (zap_add(spa->spa_meta_objset, 6500 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 6501 sizeof (uint64_t), 1, &obj, tx) != 0) { 6502 cmn_err(CE_PANIC, "failed to add bpobj"); 6503 } 6504 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 6505 spa->spa_meta_objset, obj)); 6506 6507 /* 6508 * Generate some random noise for salted checksums to operate on. 6509 */ 6510 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 6511 sizeof (spa->spa_cksum_salt.zcs_bytes)); 6512 6513 /* 6514 * Set pool properties. 6515 */ 6516 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 6517 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 6518 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 6519 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 6520 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST); 6521 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM); 6522 6523 if (props != NULL) { 6524 spa_configfile_set(spa, props, B_FALSE); 6525 spa_sync_props(props, tx); 6526 } 6527 6528 for (int i = 0; i < ndraid; i++) 6529 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx); 6530 6531 dmu_tx_commit(tx); 6532 6533 spa->spa_sync_on = B_TRUE; 6534 txg_sync_start(dp); 6535 mmp_thread_start(spa); 6536 txg_wait_synced(dp, txg); 6537 6538 spa_spawn_aux_threads(spa); 6539 6540 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); 6541 6542 /* 6543 * Don't count references from objsets that are already closed 6544 * and are making their way through the eviction process. 6545 */ 6546 spa_evicting_os_wait(spa); 6547 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 6548 spa->spa_load_state = SPA_LOAD_NONE; 6549 6550 spa_import_os(spa); 6551 6552 mutex_exit(&spa_namespace_lock); 6553 6554 return (0); 6555 } 6556 6557 /* 6558 * Import a non-root pool into the system. 6559 */ 6560 int 6561 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 6562 { 6563 spa_t *spa; 6564 const char *altroot = NULL; 6565 spa_load_state_t state = SPA_LOAD_IMPORT; 6566 zpool_load_policy_t policy; 6567 spa_mode_t mode = spa_mode_global; 6568 uint64_t readonly = B_FALSE; 6569 int error; 6570 nvlist_t *nvroot; 6571 nvlist_t **spares, **l2cache; 6572 uint_t nspares, nl2cache; 6573 6574 /* 6575 * If a pool with this name exists, return failure. 6576 */ 6577 mutex_enter(&spa_namespace_lock); 6578 if (spa_lookup(pool) != NULL) { 6579 mutex_exit(&spa_namespace_lock); 6580 return (SET_ERROR(EEXIST)); 6581 } 6582 6583 /* 6584 * Create and initialize the spa structure. 6585 */ 6586 (void) nvlist_lookup_string(props, 6587 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 6588 (void) nvlist_lookup_uint64(props, 6589 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 6590 if (readonly) 6591 mode = SPA_MODE_READ; 6592 spa = spa_add(pool, config, altroot); 6593 spa->spa_import_flags = flags; 6594 6595 /* 6596 * Verbatim import - Take a pool and insert it into the namespace 6597 * as if it had been loaded at boot. 6598 */ 6599 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 6600 if (props != NULL) 6601 spa_configfile_set(spa, props, B_FALSE); 6602 6603 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE); 6604 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 6605 zfs_dbgmsg("spa_import: verbatim import of %s", pool); 6606 mutex_exit(&spa_namespace_lock); 6607 return (0); 6608 } 6609 6610 spa_activate(spa, mode); 6611 6612 /* 6613 * Don't start async tasks until we know everything is healthy. 6614 */ 6615 spa_async_suspend(spa); 6616 6617 zpool_get_load_policy(config, &policy); 6618 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 6619 state = SPA_LOAD_RECOVER; 6620 6621 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT; 6622 6623 if (state != SPA_LOAD_RECOVER) { 6624 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 6625 zfs_dbgmsg("spa_import: importing %s", pool); 6626 } else { 6627 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld " 6628 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg); 6629 } 6630 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind); 6631 6632 /* 6633 * Propagate anything learned while loading the pool and pass it 6634 * back to caller (i.e. rewind info, missing devices, etc). 6635 */ 6636 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info); 6637 6638 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6639 /* 6640 * Toss any existing sparelist, as it doesn't have any validity 6641 * anymore, and conflicts with spa_has_spare(). 6642 */ 6643 if (spa->spa_spares.sav_config) { 6644 nvlist_free(spa->spa_spares.sav_config); 6645 spa->spa_spares.sav_config = NULL; 6646 spa_load_spares(spa); 6647 } 6648 if (spa->spa_l2cache.sav_config) { 6649 nvlist_free(spa->spa_l2cache.sav_config); 6650 spa->spa_l2cache.sav_config = NULL; 6651 spa_load_l2cache(spa); 6652 } 6653 6654 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); 6655 spa_config_exit(spa, SCL_ALL, FTAG); 6656 6657 if (props != NULL) 6658 spa_configfile_set(spa, props, B_FALSE); 6659 6660 if (error != 0 || (props && spa_writeable(spa) && 6661 (error = spa_prop_set(spa, props)))) { 6662 spa_unload(spa); 6663 spa_deactivate(spa); 6664 spa_remove(spa); 6665 mutex_exit(&spa_namespace_lock); 6666 return (error); 6667 } 6668 6669 spa_async_resume(spa); 6670 6671 /* 6672 * Override any spares and level 2 cache devices as specified by 6673 * the user, as these may have correct device names/devids, etc. 6674 */ 6675 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 6676 &spares, &nspares) == 0) { 6677 if (spa->spa_spares.sav_config) 6678 fnvlist_remove(spa->spa_spares.sav_config, 6679 ZPOOL_CONFIG_SPARES); 6680 else 6681 spa->spa_spares.sav_config = fnvlist_alloc(); 6682 fnvlist_add_nvlist_array(spa->spa_spares.sav_config, 6683 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, 6684 nspares); 6685 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6686 spa_load_spares(spa); 6687 spa_config_exit(spa, SCL_ALL, FTAG); 6688 spa->spa_spares.sav_sync = B_TRUE; 6689 } 6690 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 6691 &l2cache, &nl2cache) == 0) { 6692 if (spa->spa_l2cache.sav_config) 6693 fnvlist_remove(spa->spa_l2cache.sav_config, 6694 ZPOOL_CONFIG_L2CACHE); 6695 else 6696 spa->spa_l2cache.sav_config = fnvlist_alloc(); 6697 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 6698 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache, 6699 nl2cache); 6700 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6701 spa_load_l2cache(spa); 6702 spa_config_exit(spa, SCL_ALL, FTAG); 6703 spa->spa_l2cache.sav_sync = B_TRUE; 6704 } 6705 6706 /* 6707 * Check for any removed devices. 6708 */ 6709 if (spa->spa_autoreplace) { 6710 spa_aux_check_removed(&spa->spa_spares); 6711 spa_aux_check_removed(&spa->spa_l2cache); 6712 } 6713 6714 if (spa_writeable(spa)) { 6715 /* 6716 * Update the config cache to include the newly-imported pool. 6717 */ 6718 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 6719 } 6720 6721 /* 6722 * It's possible that the pool was expanded while it was exported. 6723 * We kick off an async task to handle this for us. 6724 */ 6725 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 6726 6727 spa_history_log_version(spa, "import", NULL); 6728 6729 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 6730 6731 mutex_exit(&spa_namespace_lock); 6732 6733 zvol_create_minors_recursive(pool); 6734 6735 spa_import_os(spa); 6736 6737 return (0); 6738 } 6739 6740 nvlist_t * 6741 spa_tryimport(nvlist_t *tryconfig) 6742 { 6743 nvlist_t *config = NULL; 6744 const char *poolname, *cachefile; 6745 spa_t *spa; 6746 uint64_t state; 6747 int error; 6748 zpool_load_policy_t policy; 6749 6750 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 6751 return (NULL); 6752 6753 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 6754 return (NULL); 6755 6756 /* 6757 * Create and initialize the spa structure. 6758 */ 6759 mutex_enter(&spa_namespace_lock); 6760 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 6761 spa_activate(spa, SPA_MODE_READ); 6762 6763 /* 6764 * Rewind pool if a max txg was provided. 6765 */ 6766 zpool_get_load_policy(spa->spa_config, &policy); 6767 if (policy.zlp_txg != UINT64_MAX) { 6768 spa->spa_load_max_txg = policy.zlp_txg; 6769 spa->spa_extreme_rewind = B_TRUE; 6770 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld", 6771 poolname, (longlong_t)policy.zlp_txg); 6772 } else { 6773 zfs_dbgmsg("spa_tryimport: importing %s", poolname); 6774 } 6775 6776 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile) 6777 == 0) { 6778 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile); 6779 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 6780 } else { 6781 spa->spa_config_source = SPA_CONFIG_SRC_SCAN; 6782 } 6783 6784 /* 6785 * spa_import() relies on a pool config fetched by spa_try_import() 6786 * for spare/cache devices. Import flags are not passed to 6787 * spa_tryimport(), which makes it return early due to a missing log 6788 * device and missing retrieving the cache device and spare eventually. 6789 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch 6790 * the correct configuration regardless of the missing log device. 6791 */ 6792 spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG; 6793 6794 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING); 6795 6796 /* 6797 * If 'tryconfig' was at least parsable, return the current config. 6798 */ 6799 if (spa->spa_root_vdev != NULL) { 6800 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 6801 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname); 6802 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state); 6803 fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 6804 spa->spa_uberblock.ub_timestamp); 6805 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 6806 spa->spa_load_info); 6807 fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA, 6808 spa->spa_errata); 6809 6810 /* 6811 * If the bootfs property exists on this pool then we 6812 * copy it out so that external consumers can tell which 6813 * pools are bootable. 6814 */ 6815 if ((!error || error == EEXIST) && spa->spa_bootfs) { 6816 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6817 6818 /* 6819 * We have to play games with the name since the 6820 * pool was opened as TRYIMPORT_NAME. 6821 */ 6822 if (dsl_dsobj_to_dsname(spa_name(spa), 6823 spa->spa_bootfs, tmpname) == 0) { 6824 char *cp; 6825 char *dsname; 6826 6827 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6828 6829 cp = strchr(tmpname, '/'); 6830 if (cp == NULL) { 6831 (void) strlcpy(dsname, tmpname, 6832 MAXPATHLEN); 6833 } else { 6834 (void) snprintf(dsname, MAXPATHLEN, 6835 "%s/%s", poolname, ++cp); 6836 } 6837 fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS, 6838 dsname); 6839 kmem_free(dsname, MAXPATHLEN); 6840 } 6841 kmem_free(tmpname, MAXPATHLEN); 6842 } 6843 6844 /* 6845 * Add the list of hot spares and level 2 cache devices. 6846 */ 6847 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6848 spa_add_spares(spa, config); 6849 spa_add_l2cache(spa, config); 6850 spa_config_exit(spa, SCL_CONFIG, FTAG); 6851 } 6852 6853 spa_unload(spa); 6854 spa_deactivate(spa); 6855 spa_remove(spa); 6856 mutex_exit(&spa_namespace_lock); 6857 6858 return (config); 6859 } 6860 6861 /* 6862 * Pool export/destroy 6863 * 6864 * The act of destroying or exporting a pool is very simple. We make sure there 6865 * is no more pending I/O and any references to the pool are gone. Then, we 6866 * update the pool state and sync all the labels to disk, removing the 6867 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 6868 * we don't sync the labels or remove the configuration cache. 6869 */ 6870 static int 6871 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig, 6872 boolean_t force, boolean_t hardforce) 6873 { 6874 int error; 6875 spa_t *spa; 6876 6877 if (oldconfig) 6878 *oldconfig = NULL; 6879 6880 if (!(spa_mode_global & SPA_MODE_WRITE)) 6881 return (SET_ERROR(EROFS)); 6882 6883 mutex_enter(&spa_namespace_lock); 6884 if ((spa = spa_lookup(pool)) == NULL) { 6885 mutex_exit(&spa_namespace_lock); 6886 return (SET_ERROR(ENOENT)); 6887 } 6888 6889 if (spa->spa_is_exporting) { 6890 /* the pool is being exported by another thread */ 6891 mutex_exit(&spa_namespace_lock); 6892 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS)); 6893 } 6894 spa->spa_is_exporting = B_TRUE; 6895 6896 /* 6897 * Put a hold on the pool, drop the namespace lock, stop async tasks, 6898 * reacquire the namespace lock, and see if we can export. 6899 */ 6900 spa_open_ref(spa, FTAG); 6901 mutex_exit(&spa_namespace_lock); 6902 spa_async_suspend(spa); 6903 if (spa->spa_zvol_taskq) { 6904 zvol_remove_minors(spa, spa_name(spa), B_TRUE); 6905 taskq_wait(spa->spa_zvol_taskq); 6906 } 6907 mutex_enter(&spa_namespace_lock); 6908 spa_close(spa, FTAG); 6909 6910 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 6911 goto export_spa; 6912 /* 6913 * The pool will be in core if it's openable, in which case we can 6914 * modify its state. Objsets may be open only because they're dirty, 6915 * so we have to force it to sync before checking spa_refcnt. 6916 */ 6917 if (spa->spa_sync_on) { 6918 txg_wait_synced(spa->spa_dsl_pool, 0); 6919 spa_evicting_os_wait(spa); 6920 } 6921 6922 /* 6923 * A pool cannot be exported or destroyed if there are active 6924 * references. If we are resetting a pool, allow references by 6925 * fault injection handlers. 6926 */ 6927 if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) { 6928 error = SET_ERROR(EBUSY); 6929 goto fail; 6930 } 6931 6932 if (spa->spa_sync_on) { 6933 vdev_t *rvd = spa->spa_root_vdev; 6934 /* 6935 * A pool cannot be exported if it has an active shared spare. 6936 * This is to prevent other pools stealing the active spare 6937 * from an exported pool. At user's own will, such pool can 6938 * be forcedly exported. 6939 */ 6940 if (!force && new_state == POOL_STATE_EXPORTED && 6941 spa_has_active_shared_spare(spa)) { 6942 error = SET_ERROR(EXDEV); 6943 goto fail; 6944 } 6945 6946 /* 6947 * We're about to export or destroy this pool. Make sure 6948 * we stop all initialization and trim activity here before 6949 * we set the spa_final_txg. This will ensure that all 6950 * dirty data resulting from the initialization is 6951 * committed to disk before we unload the pool. 6952 */ 6953 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE); 6954 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE); 6955 vdev_autotrim_stop_all(spa); 6956 vdev_rebuild_stop_all(spa); 6957 6958 /* 6959 * We want this to be reflected on every label, 6960 * so mark them all dirty. spa_unload() will do the 6961 * final sync that pushes these changes out. 6962 */ 6963 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 6964 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6965 spa->spa_state = new_state; 6966 vdev_config_dirty(rvd); 6967 spa_config_exit(spa, SCL_ALL, FTAG); 6968 } 6969 6970 /* 6971 * If the log space map feature is enabled and the pool is 6972 * getting exported (but not destroyed), we want to spend some 6973 * time flushing as many metaslabs as we can in an attempt to 6974 * destroy log space maps and save import time. This has to be 6975 * done before we set the spa_final_txg, otherwise 6976 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs. 6977 * spa_should_flush_logs_on_unload() should be called after 6978 * spa_state has been set to the new_state. 6979 */ 6980 if (spa_should_flush_logs_on_unload(spa)) 6981 spa_unload_log_sm_flush_all(spa); 6982 6983 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 6984 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6985 spa->spa_final_txg = spa_last_synced_txg(spa) + 6986 TXG_DEFER_SIZE + 1; 6987 spa_config_exit(spa, SCL_ALL, FTAG); 6988 } 6989 } 6990 6991 export_spa: 6992 spa_export_os(spa); 6993 6994 if (new_state == POOL_STATE_DESTROYED) 6995 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY); 6996 else if (new_state == POOL_STATE_EXPORTED) 6997 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT); 6998 6999 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 7000 spa_unload(spa); 7001 spa_deactivate(spa); 7002 } 7003 7004 if (oldconfig && spa->spa_config) 7005 *oldconfig = fnvlist_dup(spa->spa_config); 7006 7007 if (new_state != POOL_STATE_UNINITIALIZED) { 7008 if (!hardforce) 7009 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE); 7010 spa_remove(spa); 7011 } else { 7012 /* 7013 * If spa_remove() is not called for this spa_t and 7014 * there is any possibility that it can be reused, 7015 * we make sure to reset the exporting flag. 7016 */ 7017 spa->spa_is_exporting = B_FALSE; 7018 } 7019 7020 mutex_exit(&spa_namespace_lock); 7021 return (0); 7022 7023 fail: 7024 spa->spa_is_exporting = B_FALSE; 7025 spa_async_resume(spa); 7026 mutex_exit(&spa_namespace_lock); 7027 return (error); 7028 } 7029 7030 /* 7031 * Destroy a storage pool. 7032 */ 7033 int 7034 spa_destroy(const char *pool) 7035 { 7036 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 7037 B_FALSE, B_FALSE)); 7038 } 7039 7040 /* 7041 * Export a storage pool. 7042 */ 7043 int 7044 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force, 7045 boolean_t hardforce) 7046 { 7047 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 7048 force, hardforce)); 7049 } 7050 7051 /* 7052 * Similar to spa_export(), this unloads the spa_t without actually removing it 7053 * from the namespace in any way. 7054 */ 7055 int 7056 spa_reset(const char *pool) 7057 { 7058 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 7059 B_FALSE, B_FALSE)); 7060 } 7061 7062 /* 7063 * ========================================================================== 7064 * Device manipulation 7065 * ========================================================================== 7066 */ 7067 7068 /* 7069 * This is called as a synctask to increment the draid feature flag 7070 */ 7071 static void 7072 spa_draid_feature_incr(void *arg, dmu_tx_t *tx) 7073 { 7074 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 7075 int draid = (int)(uintptr_t)arg; 7076 7077 for (int c = 0; c < draid; c++) 7078 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx); 7079 } 7080 7081 /* 7082 * Add a device to a storage pool. 7083 */ 7084 int 7085 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 7086 { 7087 uint64_t txg, ndraid = 0; 7088 int error; 7089 vdev_t *rvd = spa->spa_root_vdev; 7090 vdev_t *vd, *tvd; 7091 nvlist_t **spares, **l2cache; 7092 uint_t nspares, nl2cache; 7093 7094 ASSERT(spa_writeable(spa)); 7095 7096 txg = spa_vdev_enter(spa); 7097 7098 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 7099 VDEV_ALLOC_ADD)) != 0) 7100 return (spa_vdev_exit(spa, NULL, txg, error)); 7101 7102 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 7103 7104 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 7105 &nspares) != 0) 7106 nspares = 0; 7107 7108 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 7109 &nl2cache) != 0) 7110 nl2cache = 0; 7111 7112 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 7113 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 7114 7115 if (vd->vdev_children != 0 && 7116 (error = vdev_create(vd, txg, B_FALSE)) != 0) { 7117 return (spa_vdev_exit(spa, vd, txg, error)); 7118 } 7119 7120 /* 7121 * The virtual dRAID spares must be added after vdev tree is created 7122 * and the vdev guids are generated. The guid of their associated 7123 * dRAID is stored in the config and used when opening the spare. 7124 */ 7125 if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid, 7126 rvd->vdev_children)) == 0) { 7127 if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot, 7128 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0) 7129 nspares = 0; 7130 } else { 7131 return (spa_vdev_exit(spa, vd, txg, error)); 7132 } 7133 7134 /* 7135 * We must validate the spares and l2cache devices after checking the 7136 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 7137 */ 7138 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 7139 return (spa_vdev_exit(spa, vd, txg, error)); 7140 7141 /* 7142 * If we are in the middle of a device removal, we can only add 7143 * devices which match the existing devices in the pool. 7144 * If we are in the middle of a removal, or have some indirect 7145 * vdevs, we can not add raidz or dRAID top levels. 7146 */ 7147 if (spa->spa_vdev_removal != NULL || 7148 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { 7149 for (int c = 0; c < vd->vdev_children; c++) { 7150 tvd = vd->vdev_child[c]; 7151 if (spa->spa_vdev_removal != NULL && 7152 tvd->vdev_ashift != spa->spa_max_ashift) { 7153 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 7154 } 7155 /* Fail if top level vdev is raidz or a dRAID */ 7156 if (vdev_get_nparity(tvd) != 0) 7157 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 7158 7159 /* 7160 * Need the top level mirror to be 7161 * a mirror of leaf vdevs only 7162 */ 7163 if (tvd->vdev_ops == &vdev_mirror_ops) { 7164 for (uint64_t cid = 0; 7165 cid < tvd->vdev_children; cid++) { 7166 vdev_t *cvd = tvd->vdev_child[cid]; 7167 if (!cvd->vdev_ops->vdev_op_leaf) { 7168 return (spa_vdev_exit(spa, vd, 7169 txg, EINVAL)); 7170 } 7171 } 7172 } 7173 } 7174 } 7175 7176 for (int c = 0; c < vd->vdev_children; c++) { 7177 tvd = vd->vdev_child[c]; 7178 vdev_remove_child(vd, tvd); 7179 tvd->vdev_id = rvd->vdev_children; 7180 vdev_add_child(rvd, tvd); 7181 vdev_config_dirty(tvd); 7182 } 7183 7184 if (nspares != 0) { 7185 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 7186 ZPOOL_CONFIG_SPARES); 7187 spa_load_spares(spa); 7188 spa->spa_spares.sav_sync = B_TRUE; 7189 } 7190 7191 if (nl2cache != 0) { 7192 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 7193 ZPOOL_CONFIG_L2CACHE); 7194 spa_load_l2cache(spa); 7195 spa->spa_l2cache.sav_sync = B_TRUE; 7196 } 7197 7198 /* 7199 * We can't increment a feature while holding spa_vdev so we 7200 * have to do it in a synctask. 7201 */ 7202 if (ndraid != 0) { 7203 dmu_tx_t *tx; 7204 7205 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 7206 dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr, 7207 (void *)(uintptr_t)ndraid, tx); 7208 dmu_tx_commit(tx); 7209 } 7210 7211 /* 7212 * We have to be careful when adding new vdevs to an existing pool. 7213 * If other threads start allocating from these vdevs before we 7214 * sync the config cache, and we lose power, then upon reboot we may 7215 * fail to open the pool because there are DVAs that the config cache 7216 * can't translate. Therefore, we first add the vdevs without 7217 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 7218 * and then let spa_config_update() initialize the new metaslabs. 7219 * 7220 * spa_load() checks for added-but-not-initialized vdevs, so that 7221 * if we lose power at any point in this sequence, the remaining 7222 * steps will be completed the next time we load the pool. 7223 */ 7224 (void) spa_vdev_exit(spa, vd, txg, 0); 7225 7226 mutex_enter(&spa_namespace_lock); 7227 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 7228 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD); 7229 mutex_exit(&spa_namespace_lock); 7230 7231 return (0); 7232 } 7233 7234 /* 7235 * Attach a device to a vdev specified by its guid. The vdev type can be 7236 * a mirror, a raidz, or a leaf device that is also a top-level (e.g. a 7237 * single device). When the vdev is a single device, a mirror vdev will be 7238 * automatically inserted. 7239 * 7240 * If 'replacing' is specified, the new device is intended to replace the 7241 * existing device; in this case the two devices are made into their own 7242 * mirror using the 'replacing' vdev, which is functionally identical to 7243 * the mirror vdev (it actually reuses all the same ops) but has a few 7244 * extra rules: you can't attach to it after it's been created, and upon 7245 * completion of resilvering, the first disk (the one being replaced) 7246 * is automatically detached. 7247 * 7248 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild) 7249 * should be performed instead of traditional healing reconstruction. From 7250 * an administrators perspective these are both resilver operations. 7251 */ 7252 int 7253 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing, 7254 int rebuild) 7255 { 7256 uint64_t txg, dtl_max_txg; 7257 vdev_t *rvd = spa->spa_root_vdev; 7258 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 7259 vdev_ops_t *pvops; 7260 char *oldvdpath, *newvdpath; 7261 int newvd_isspare = B_FALSE; 7262 int error; 7263 7264 ASSERT(spa_writeable(spa)); 7265 7266 txg = spa_vdev_enter(spa); 7267 7268 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 7269 7270 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7271 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 7272 error = (spa_has_checkpoint(spa)) ? 7273 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 7274 return (spa_vdev_exit(spa, NULL, txg, error)); 7275 } 7276 7277 if (rebuild) { 7278 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) 7279 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7280 7281 if (dsl_scan_resilvering(spa_get_dsl(spa)) || 7282 dsl_scan_resilver_scheduled(spa_get_dsl(spa))) { 7283 return (spa_vdev_exit(spa, NULL, txg, 7284 ZFS_ERR_RESILVER_IN_PROGRESS)); 7285 } 7286 } else { 7287 if (vdev_rebuild_active(rvd)) 7288 return (spa_vdev_exit(spa, NULL, txg, 7289 ZFS_ERR_REBUILD_IN_PROGRESS)); 7290 } 7291 7292 if (spa->spa_vdev_removal != NULL) { 7293 return (spa_vdev_exit(spa, NULL, txg, 7294 ZFS_ERR_DEVRM_IN_PROGRESS)); 7295 } 7296 7297 if (oldvd == NULL) 7298 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 7299 7300 boolean_t raidz = oldvd->vdev_ops == &vdev_raidz_ops; 7301 7302 if (raidz) { 7303 if (!spa_feature_is_enabled(spa, SPA_FEATURE_RAIDZ_EXPANSION)) 7304 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7305 7306 /* 7307 * Can't expand a raidz while prior expand is in progress. 7308 */ 7309 if (spa->spa_raidz_expand != NULL) { 7310 return (spa_vdev_exit(spa, NULL, txg, 7311 ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS)); 7312 } 7313 } else if (!oldvd->vdev_ops->vdev_op_leaf) { 7314 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7315 } 7316 7317 if (raidz) 7318 pvd = oldvd; 7319 else 7320 pvd = oldvd->vdev_parent; 7321 7322 if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 7323 VDEV_ALLOC_ATTACH) != 0) 7324 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 7325 7326 if (newrootvd->vdev_children != 1) 7327 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 7328 7329 newvd = newrootvd->vdev_child[0]; 7330 7331 if (!newvd->vdev_ops->vdev_op_leaf) 7332 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 7333 7334 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 7335 return (spa_vdev_exit(spa, newrootvd, txg, error)); 7336 7337 /* 7338 * log, dedup and special vdevs should not be replaced by spares. 7339 */ 7340 if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE || 7341 oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) { 7342 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7343 } 7344 7345 /* 7346 * A dRAID spare can only replace a child of its parent dRAID vdev. 7347 */ 7348 if (newvd->vdev_ops == &vdev_draid_spare_ops && 7349 oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) { 7350 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7351 } 7352 7353 if (rebuild) { 7354 /* 7355 * For rebuilds, the top vdev must support reconstruction 7356 * using only space maps. This means the only allowable 7357 * vdevs types are the root vdev, a mirror, or dRAID. 7358 */ 7359 tvd = pvd; 7360 if (pvd->vdev_top != NULL) 7361 tvd = pvd->vdev_top; 7362 7363 if (tvd->vdev_ops != &vdev_mirror_ops && 7364 tvd->vdev_ops != &vdev_root_ops && 7365 tvd->vdev_ops != &vdev_draid_ops) { 7366 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7367 } 7368 } 7369 7370 if (!replacing) { 7371 /* 7372 * For attach, the only allowable parent is a mirror or 7373 * the root vdev. A raidz vdev can be attached to, but 7374 * you cannot attach to a raidz child. 7375 */ 7376 if (pvd->vdev_ops != &vdev_mirror_ops && 7377 pvd->vdev_ops != &vdev_root_ops && 7378 !raidz) 7379 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7380 7381 pvops = &vdev_mirror_ops; 7382 } else { 7383 /* 7384 * Active hot spares can only be replaced by inactive hot 7385 * spares. 7386 */ 7387 if (pvd->vdev_ops == &vdev_spare_ops && 7388 oldvd->vdev_isspare && 7389 !spa_has_spare(spa, newvd->vdev_guid)) 7390 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7391 7392 /* 7393 * If the source is a hot spare, and the parent isn't already a 7394 * spare, then we want to create a new hot spare. Otherwise, we 7395 * want to create a replacing vdev. The user is not allowed to 7396 * attach to a spared vdev child unless the 'isspare' state is 7397 * the same (spare replaces spare, non-spare replaces 7398 * non-spare). 7399 */ 7400 if (pvd->vdev_ops == &vdev_replacing_ops && 7401 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 7402 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7403 } else if (pvd->vdev_ops == &vdev_spare_ops && 7404 newvd->vdev_isspare != oldvd->vdev_isspare) { 7405 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7406 } 7407 7408 if (newvd->vdev_isspare) 7409 pvops = &vdev_spare_ops; 7410 else 7411 pvops = &vdev_replacing_ops; 7412 } 7413 7414 /* 7415 * Make sure the new device is big enough. 7416 */ 7417 vdev_t *min_vdev = raidz ? oldvd->vdev_child[0] : oldvd; 7418 if (newvd->vdev_asize < vdev_get_min_asize(min_vdev)) 7419 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 7420 7421 /* 7422 * The new device cannot have a higher alignment requirement 7423 * than the top-level vdev. 7424 */ 7425 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 7426 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7427 7428 /* 7429 * RAIDZ-expansion-specific checks. 7430 */ 7431 if (raidz) { 7432 if (vdev_raidz_attach_check(newvd) != 0) 7433 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7434 7435 /* 7436 * Fail early if a child is not healthy or being replaced 7437 */ 7438 for (int i = 0; i < oldvd->vdev_children; i++) { 7439 if (vdev_is_dead(oldvd->vdev_child[i]) || 7440 !oldvd->vdev_child[i]->vdev_ops->vdev_op_leaf) { 7441 return (spa_vdev_exit(spa, newrootvd, txg, 7442 ENXIO)); 7443 } 7444 /* Also fail if reserved boot area is in-use */ 7445 if (vdev_check_boot_reserve(spa, oldvd->vdev_child[i]) 7446 != 0) { 7447 return (spa_vdev_exit(spa, newrootvd, txg, 7448 EADDRINUSE)); 7449 } 7450 } 7451 } 7452 7453 if (raidz) { 7454 /* 7455 * Note: oldvdpath is freed by spa_strfree(), but 7456 * kmem_asprintf() is freed by kmem_strfree(), so we have to 7457 * move it to a spa_strdup-ed string. 7458 */ 7459 char *tmp = kmem_asprintf("raidz%u-%u", 7460 (uint_t)vdev_get_nparity(oldvd), (uint_t)oldvd->vdev_id); 7461 oldvdpath = spa_strdup(tmp); 7462 kmem_strfree(tmp); 7463 } else { 7464 oldvdpath = spa_strdup(oldvd->vdev_path); 7465 } 7466 newvdpath = spa_strdup(newvd->vdev_path); 7467 7468 /* 7469 * If this is an in-place replacement, update oldvd's path and devid 7470 * to make it distinguishable from newvd, and unopenable from now on. 7471 */ 7472 if (strcmp(oldvdpath, newvdpath) == 0) { 7473 spa_strfree(oldvd->vdev_path); 7474 oldvd->vdev_path = kmem_alloc(strlen(newvdpath) + 5, 7475 KM_SLEEP); 7476 (void) sprintf(oldvd->vdev_path, "%s/old", 7477 newvdpath); 7478 if (oldvd->vdev_devid != NULL) { 7479 spa_strfree(oldvd->vdev_devid); 7480 oldvd->vdev_devid = NULL; 7481 } 7482 spa_strfree(oldvdpath); 7483 oldvdpath = spa_strdup(oldvd->vdev_path); 7484 } 7485 7486 /* 7487 * If the parent is not a mirror, or if we're replacing, insert the new 7488 * mirror/replacing/spare vdev above oldvd. 7489 */ 7490 if (!raidz && pvd->vdev_ops != pvops) { 7491 pvd = vdev_add_parent(oldvd, pvops); 7492 ASSERT(pvd->vdev_ops == pvops); 7493 ASSERT(oldvd->vdev_parent == pvd); 7494 } 7495 7496 ASSERT(pvd->vdev_top->vdev_parent == rvd); 7497 7498 /* 7499 * Extract the new device from its root and add it to pvd. 7500 */ 7501 vdev_remove_child(newrootvd, newvd); 7502 newvd->vdev_id = pvd->vdev_children; 7503 newvd->vdev_crtxg = oldvd->vdev_crtxg; 7504 vdev_add_child(pvd, newvd); 7505 7506 /* 7507 * Reevaluate the parent vdev state. 7508 */ 7509 vdev_propagate_state(pvd); 7510 7511 tvd = newvd->vdev_top; 7512 ASSERT(pvd->vdev_top == tvd); 7513 ASSERT(tvd->vdev_parent == rvd); 7514 7515 vdev_config_dirty(tvd); 7516 7517 /* 7518 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 7519 * for any dmu_sync-ed blocks. It will propagate upward when 7520 * spa_vdev_exit() calls vdev_dtl_reassess(). 7521 */ 7522 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 7523 7524 if (raidz) { 7525 /* 7526 * Wait for the youngest allocations and frees to sync, 7527 * and then wait for the deferral of those frees to finish. 7528 */ 7529 spa_vdev_config_exit(spa, NULL, 7530 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 7531 7532 vdev_initialize_stop_all(tvd, VDEV_INITIALIZE_ACTIVE); 7533 vdev_trim_stop_all(tvd, VDEV_TRIM_ACTIVE); 7534 vdev_autotrim_stop_wait(tvd); 7535 7536 dtl_max_txg = spa_vdev_config_enter(spa); 7537 7538 tvd->vdev_rz_expanding = B_TRUE; 7539 7540 vdev_dirty_leaves(tvd, VDD_DTL, dtl_max_txg); 7541 vdev_config_dirty(tvd); 7542 7543 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, 7544 dtl_max_txg); 7545 dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_raidz_attach_sync, 7546 newvd, tx); 7547 dmu_tx_commit(tx); 7548 } else { 7549 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 7550 dtl_max_txg - TXG_INITIAL); 7551 7552 if (newvd->vdev_isspare) { 7553 spa_spare_activate(newvd); 7554 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE); 7555 } 7556 7557 newvd_isspare = newvd->vdev_isspare; 7558 7559 /* 7560 * Mark newvd's DTL dirty in this txg. 7561 */ 7562 vdev_dirty(tvd, VDD_DTL, newvd, txg); 7563 7564 /* 7565 * Schedule the resilver or rebuild to restart in the future. 7566 * We do this to ensure that dmu_sync-ed blocks have been 7567 * stitched into the respective datasets. 7568 */ 7569 if (rebuild) { 7570 newvd->vdev_rebuild_txg = txg; 7571 7572 vdev_rebuild(tvd); 7573 } else { 7574 newvd->vdev_resilver_txg = txg; 7575 7576 if (dsl_scan_resilvering(spa_get_dsl(spa)) && 7577 spa_feature_is_enabled(spa, 7578 SPA_FEATURE_RESILVER_DEFER)) { 7579 vdev_defer_resilver(newvd); 7580 } else { 7581 dsl_scan_restart_resilver(spa->spa_dsl_pool, 7582 dtl_max_txg); 7583 } 7584 } 7585 } 7586 7587 if (spa->spa_bootfs) 7588 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH); 7589 7590 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH); 7591 7592 /* 7593 * Commit the config 7594 */ 7595 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 7596 7597 spa_history_log_internal(spa, "vdev attach", NULL, 7598 "%s vdev=%s %s vdev=%s", 7599 replacing && newvd_isspare ? "spare in" : 7600 replacing ? "replace" : "attach", newvdpath, 7601 replacing ? "for" : "to", oldvdpath); 7602 7603 spa_strfree(oldvdpath); 7604 spa_strfree(newvdpath); 7605 7606 return (0); 7607 } 7608 7609 /* 7610 * Detach a device from a mirror or replacing vdev. 7611 * 7612 * If 'replace_done' is specified, only detach if the parent 7613 * is a replacing or a spare vdev. 7614 */ 7615 int 7616 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 7617 { 7618 uint64_t txg; 7619 int error; 7620 vdev_t *rvd __maybe_unused = spa->spa_root_vdev; 7621 vdev_t *vd, *pvd, *cvd, *tvd; 7622 boolean_t unspare = B_FALSE; 7623 uint64_t unspare_guid = 0; 7624 char *vdpath; 7625 7626 ASSERT(spa_writeable(spa)); 7627 7628 txg = spa_vdev_detach_enter(spa, guid); 7629 7630 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 7631 7632 /* 7633 * Besides being called directly from the userland through the 7634 * ioctl interface, spa_vdev_detach() can be potentially called 7635 * at the end of spa_vdev_resilver_done(). 7636 * 7637 * In the regular case, when we have a checkpoint this shouldn't 7638 * happen as we never empty the DTLs of a vdev during the scrub 7639 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done() 7640 * should never get here when we have a checkpoint. 7641 * 7642 * That said, even in a case when we checkpoint the pool exactly 7643 * as spa_vdev_resilver_done() calls this function everything 7644 * should be fine as the resilver will return right away. 7645 */ 7646 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7647 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 7648 error = (spa_has_checkpoint(spa)) ? 7649 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 7650 return (spa_vdev_exit(spa, NULL, txg, error)); 7651 } 7652 7653 if (vd == NULL) 7654 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 7655 7656 if (!vd->vdev_ops->vdev_op_leaf) 7657 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7658 7659 pvd = vd->vdev_parent; 7660 7661 /* 7662 * If the parent/child relationship is not as expected, don't do it. 7663 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 7664 * vdev that's replacing B with C. The user's intent in replacing 7665 * is to go from M(A,B) to M(A,C). If the user decides to cancel 7666 * the replace by detaching C, the expected behavior is to end up 7667 * M(A,B). But suppose that right after deciding to detach C, 7668 * the replacement of B completes. We would have M(A,C), and then 7669 * ask to detach C, which would leave us with just A -- not what 7670 * the user wanted. To prevent this, we make sure that the 7671 * parent/child relationship hasn't changed -- in this example, 7672 * that C's parent is still the replacing vdev R. 7673 */ 7674 if (pvd->vdev_guid != pguid && pguid != 0) 7675 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 7676 7677 /* 7678 * Only 'replacing' or 'spare' vdevs can be replaced. 7679 */ 7680 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 7681 pvd->vdev_ops != &vdev_spare_ops) 7682 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7683 7684 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 7685 spa_version(spa) >= SPA_VERSION_SPARES); 7686 7687 /* 7688 * Only mirror, replacing, and spare vdevs support detach. 7689 */ 7690 if (pvd->vdev_ops != &vdev_replacing_ops && 7691 pvd->vdev_ops != &vdev_mirror_ops && 7692 pvd->vdev_ops != &vdev_spare_ops) 7693 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7694 7695 /* 7696 * If this device has the only valid copy of some data, 7697 * we cannot safely detach it. 7698 */ 7699 if (vdev_dtl_required(vd)) 7700 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 7701 7702 ASSERT(pvd->vdev_children >= 2); 7703 7704 /* 7705 * If we are detaching the second disk from a replacing vdev, then 7706 * check to see if we changed the original vdev's path to have "/old" 7707 * at the end in spa_vdev_attach(). If so, undo that change now. 7708 */ 7709 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 7710 vd->vdev_path != NULL) { 7711 size_t len = strlen(vd->vdev_path); 7712 7713 for (int c = 0; c < pvd->vdev_children; c++) { 7714 cvd = pvd->vdev_child[c]; 7715 7716 if (cvd == vd || cvd->vdev_path == NULL) 7717 continue; 7718 7719 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 7720 strcmp(cvd->vdev_path + len, "/old") == 0) { 7721 spa_strfree(cvd->vdev_path); 7722 cvd->vdev_path = spa_strdup(vd->vdev_path); 7723 break; 7724 } 7725 } 7726 } 7727 7728 /* 7729 * If we are detaching the original disk from a normal spare, then it 7730 * implies that the spare should become a real disk, and be removed 7731 * from the active spare list for the pool. dRAID spares on the 7732 * other hand are coupled to the pool and thus should never be removed 7733 * from the spares list. 7734 */ 7735 if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) { 7736 vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1]; 7737 7738 if (last_cvd->vdev_isspare && 7739 last_cvd->vdev_ops != &vdev_draid_spare_ops) { 7740 unspare = B_TRUE; 7741 } 7742 } 7743 7744 /* 7745 * Erase the disk labels so the disk can be used for other things. 7746 * This must be done after all other error cases are handled, 7747 * but before we disembowel vd (so we can still do I/O to it). 7748 * But if we can't do it, don't treat the error as fatal -- 7749 * it may be that the unwritability of the disk is the reason 7750 * it's being detached! 7751 */ 7752 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 7753 7754 /* 7755 * Remove vd from its parent and compact the parent's children. 7756 */ 7757 vdev_remove_child(pvd, vd); 7758 vdev_compact_children(pvd); 7759 7760 /* 7761 * Remember one of the remaining children so we can get tvd below. 7762 */ 7763 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 7764 7765 /* 7766 * If we need to remove the remaining child from the list of hot spares, 7767 * do it now, marking the vdev as no longer a spare in the process. 7768 * We must do this before vdev_remove_parent(), because that can 7769 * change the GUID if it creates a new toplevel GUID. For a similar 7770 * reason, we must remove the spare now, in the same txg as the detach; 7771 * otherwise someone could attach a new sibling, change the GUID, and 7772 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 7773 */ 7774 if (unspare) { 7775 ASSERT(cvd->vdev_isspare); 7776 spa_spare_remove(cvd); 7777 unspare_guid = cvd->vdev_guid; 7778 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 7779 cvd->vdev_unspare = B_TRUE; 7780 } 7781 7782 /* 7783 * If the parent mirror/replacing vdev only has one child, 7784 * the parent is no longer needed. Remove it from the tree. 7785 */ 7786 if (pvd->vdev_children == 1) { 7787 if (pvd->vdev_ops == &vdev_spare_ops) 7788 cvd->vdev_unspare = B_FALSE; 7789 vdev_remove_parent(cvd); 7790 } 7791 7792 /* 7793 * We don't set tvd until now because the parent we just removed 7794 * may have been the previous top-level vdev. 7795 */ 7796 tvd = cvd->vdev_top; 7797 ASSERT(tvd->vdev_parent == rvd); 7798 7799 /* 7800 * Reevaluate the parent vdev state. 7801 */ 7802 vdev_propagate_state(cvd); 7803 7804 /* 7805 * If the 'autoexpand' property is set on the pool then automatically 7806 * try to expand the size of the pool. For example if the device we 7807 * just detached was smaller than the others, it may be possible to 7808 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 7809 * first so that we can obtain the updated sizes of the leaf vdevs. 7810 */ 7811 if (spa->spa_autoexpand) { 7812 vdev_reopen(tvd); 7813 vdev_expand(tvd, txg); 7814 } 7815 7816 vdev_config_dirty(tvd); 7817 7818 /* 7819 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 7820 * vd->vdev_detached is set and free vd's DTL object in syncing context. 7821 * But first make sure we're not on any *other* txg's DTL list, to 7822 * prevent vd from being accessed after it's freed. 7823 */ 7824 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none"); 7825 for (int t = 0; t < TXG_SIZE; t++) 7826 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 7827 vd->vdev_detached = B_TRUE; 7828 vdev_dirty(tvd, VDD_DTL, vd, txg); 7829 7830 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE); 7831 spa_notify_waiters(spa); 7832 7833 /* hang on to the spa before we release the lock */ 7834 spa_open_ref(spa, FTAG); 7835 7836 error = spa_vdev_exit(spa, vd, txg, 0); 7837 7838 spa_history_log_internal(spa, "detach", NULL, 7839 "vdev=%s", vdpath); 7840 spa_strfree(vdpath); 7841 7842 /* 7843 * If this was the removal of the original device in a hot spare vdev, 7844 * then we want to go through and remove the device from the hot spare 7845 * list of every other pool. 7846 */ 7847 if (unspare) { 7848 spa_t *altspa = NULL; 7849 7850 mutex_enter(&spa_namespace_lock); 7851 while ((altspa = spa_next(altspa)) != NULL) { 7852 if (altspa->spa_state != POOL_STATE_ACTIVE || 7853 altspa == spa) 7854 continue; 7855 7856 spa_open_ref(altspa, FTAG); 7857 mutex_exit(&spa_namespace_lock); 7858 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 7859 mutex_enter(&spa_namespace_lock); 7860 spa_close(altspa, FTAG); 7861 } 7862 mutex_exit(&spa_namespace_lock); 7863 7864 /* search the rest of the vdevs for spares to remove */ 7865 spa_vdev_resilver_done(spa); 7866 } 7867 7868 /* all done with the spa; OK to release */ 7869 mutex_enter(&spa_namespace_lock); 7870 spa_close(spa, FTAG); 7871 mutex_exit(&spa_namespace_lock); 7872 7873 return (error); 7874 } 7875 7876 static int 7877 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, 7878 list_t *vd_list) 7879 { 7880 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7881 7882 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 7883 7884 /* Look up vdev and ensure it's a leaf. */ 7885 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 7886 if (vd == NULL || vd->vdev_detached) { 7887 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7888 return (SET_ERROR(ENODEV)); 7889 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 7890 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7891 return (SET_ERROR(EINVAL)); 7892 } else if (!vdev_writeable(vd)) { 7893 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7894 return (SET_ERROR(EROFS)); 7895 } 7896 mutex_enter(&vd->vdev_initialize_lock); 7897 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7898 7899 /* 7900 * When we activate an initialize action we check to see 7901 * if the vdev_initialize_thread is NULL. We do this instead 7902 * of using the vdev_initialize_state since there might be 7903 * a previous initialization process which has completed but 7904 * the thread is not exited. 7905 */ 7906 if (cmd_type == POOL_INITIALIZE_START && 7907 (vd->vdev_initialize_thread != NULL || 7908 vd->vdev_top->vdev_removing || vd->vdev_top->vdev_rz_expanding)) { 7909 mutex_exit(&vd->vdev_initialize_lock); 7910 return (SET_ERROR(EBUSY)); 7911 } else if (cmd_type == POOL_INITIALIZE_CANCEL && 7912 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE && 7913 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) { 7914 mutex_exit(&vd->vdev_initialize_lock); 7915 return (SET_ERROR(ESRCH)); 7916 } else if (cmd_type == POOL_INITIALIZE_SUSPEND && 7917 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) { 7918 mutex_exit(&vd->vdev_initialize_lock); 7919 return (SET_ERROR(ESRCH)); 7920 } else if (cmd_type == POOL_INITIALIZE_UNINIT && 7921 vd->vdev_initialize_thread != NULL) { 7922 mutex_exit(&vd->vdev_initialize_lock); 7923 return (SET_ERROR(EBUSY)); 7924 } 7925 7926 switch (cmd_type) { 7927 case POOL_INITIALIZE_START: 7928 vdev_initialize(vd); 7929 break; 7930 case POOL_INITIALIZE_CANCEL: 7931 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list); 7932 break; 7933 case POOL_INITIALIZE_SUSPEND: 7934 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list); 7935 break; 7936 case POOL_INITIALIZE_UNINIT: 7937 vdev_uninitialize(vd); 7938 break; 7939 default: 7940 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 7941 } 7942 mutex_exit(&vd->vdev_initialize_lock); 7943 7944 return (0); 7945 } 7946 7947 int 7948 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, 7949 nvlist_t *vdev_errlist) 7950 { 7951 int total_errors = 0; 7952 list_t vd_list; 7953 7954 list_create(&vd_list, sizeof (vdev_t), 7955 offsetof(vdev_t, vdev_initialize_node)); 7956 7957 /* 7958 * We hold the namespace lock through the whole function 7959 * to prevent any changes to the pool while we're starting or 7960 * stopping initialization. The config and state locks are held so that 7961 * we can properly assess the vdev state before we commit to 7962 * the initializing operation. 7963 */ 7964 mutex_enter(&spa_namespace_lock); 7965 7966 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 7967 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { 7968 uint64_t vdev_guid = fnvpair_value_uint64(pair); 7969 7970 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type, 7971 &vd_list); 7972 if (error != 0) { 7973 char guid_as_str[MAXNAMELEN]; 7974 7975 (void) snprintf(guid_as_str, sizeof (guid_as_str), 7976 "%llu", (unsigned long long)vdev_guid); 7977 fnvlist_add_int64(vdev_errlist, guid_as_str, error); 7978 total_errors++; 7979 } 7980 } 7981 7982 /* Wait for all initialize threads to stop. */ 7983 vdev_initialize_stop_wait(spa, &vd_list); 7984 7985 /* Sync out the initializing state */ 7986 txg_wait_synced(spa->spa_dsl_pool, 0); 7987 mutex_exit(&spa_namespace_lock); 7988 7989 list_destroy(&vd_list); 7990 7991 return (total_errors); 7992 } 7993 7994 static int 7995 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, 7996 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list) 7997 { 7998 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7999 8000 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 8001 8002 /* Look up vdev and ensure it's a leaf. */ 8003 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 8004 if (vd == NULL || vd->vdev_detached) { 8005 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8006 return (SET_ERROR(ENODEV)); 8007 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 8008 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8009 return (SET_ERROR(EINVAL)); 8010 } else if (!vdev_writeable(vd)) { 8011 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8012 return (SET_ERROR(EROFS)); 8013 } else if (!vd->vdev_has_trim) { 8014 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8015 return (SET_ERROR(EOPNOTSUPP)); 8016 } else if (secure && !vd->vdev_has_securetrim) { 8017 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8018 return (SET_ERROR(EOPNOTSUPP)); 8019 } 8020 mutex_enter(&vd->vdev_trim_lock); 8021 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8022 8023 /* 8024 * When we activate a TRIM action we check to see if the 8025 * vdev_trim_thread is NULL. We do this instead of using the 8026 * vdev_trim_state since there might be a previous TRIM process 8027 * which has completed but the thread is not exited. 8028 */ 8029 if (cmd_type == POOL_TRIM_START && 8030 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing || 8031 vd->vdev_top->vdev_rz_expanding)) { 8032 mutex_exit(&vd->vdev_trim_lock); 8033 return (SET_ERROR(EBUSY)); 8034 } else if (cmd_type == POOL_TRIM_CANCEL && 8035 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE && 8036 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) { 8037 mutex_exit(&vd->vdev_trim_lock); 8038 return (SET_ERROR(ESRCH)); 8039 } else if (cmd_type == POOL_TRIM_SUSPEND && 8040 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) { 8041 mutex_exit(&vd->vdev_trim_lock); 8042 return (SET_ERROR(ESRCH)); 8043 } 8044 8045 switch (cmd_type) { 8046 case POOL_TRIM_START: 8047 vdev_trim(vd, rate, partial, secure); 8048 break; 8049 case POOL_TRIM_CANCEL: 8050 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list); 8051 break; 8052 case POOL_TRIM_SUSPEND: 8053 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list); 8054 break; 8055 default: 8056 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 8057 } 8058 mutex_exit(&vd->vdev_trim_lock); 8059 8060 return (0); 8061 } 8062 8063 /* 8064 * Initiates a manual TRIM for the requested vdevs. This kicks off individual 8065 * TRIM threads for each child vdev. These threads pass over all of the free 8066 * space in the vdev's metaslabs and issues TRIM commands for that space. 8067 */ 8068 int 8069 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate, 8070 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist) 8071 { 8072 int total_errors = 0; 8073 list_t vd_list; 8074 8075 list_create(&vd_list, sizeof (vdev_t), 8076 offsetof(vdev_t, vdev_trim_node)); 8077 8078 /* 8079 * We hold the namespace lock through the whole function 8080 * to prevent any changes to the pool while we're starting or 8081 * stopping TRIM. The config and state locks are held so that 8082 * we can properly assess the vdev state before we commit to 8083 * the TRIM operation. 8084 */ 8085 mutex_enter(&spa_namespace_lock); 8086 8087 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 8088 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { 8089 uint64_t vdev_guid = fnvpair_value_uint64(pair); 8090 8091 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type, 8092 rate, partial, secure, &vd_list); 8093 if (error != 0) { 8094 char guid_as_str[MAXNAMELEN]; 8095 8096 (void) snprintf(guid_as_str, sizeof (guid_as_str), 8097 "%llu", (unsigned long long)vdev_guid); 8098 fnvlist_add_int64(vdev_errlist, guid_as_str, error); 8099 total_errors++; 8100 } 8101 } 8102 8103 /* Wait for all TRIM threads to stop. */ 8104 vdev_trim_stop_wait(spa, &vd_list); 8105 8106 /* Sync out the TRIM state */ 8107 txg_wait_synced(spa->spa_dsl_pool, 0); 8108 mutex_exit(&spa_namespace_lock); 8109 8110 list_destroy(&vd_list); 8111 8112 return (total_errors); 8113 } 8114 8115 /* 8116 * Split a set of devices from their mirrors, and create a new pool from them. 8117 */ 8118 int 8119 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config, 8120 nvlist_t *props, boolean_t exp) 8121 { 8122 int error = 0; 8123 uint64_t txg, *glist; 8124 spa_t *newspa; 8125 uint_t c, children, lastlog; 8126 nvlist_t **child, *nvl, *tmp; 8127 dmu_tx_t *tx; 8128 const char *altroot = NULL; 8129 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 8130 boolean_t activate_slog; 8131 8132 ASSERT(spa_writeable(spa)); 8133 8134 txg = spa_vdev_enter(spa); 8135 8136 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 8137 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 8138 error = (spa_has_checkpoint(spa)) ? 8139 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 8140 return (spa_vdev_exit(spa, NULL, txg, error)); 8141 } 8142 8143 /* clear the log and flush everything up to now */ 8144 activate_slog = spa_passivate_log(spa); 8145 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 8146 error = spa_reset_logs(spa); 8147 txg = spa_vdev_config_enter(spa); 8148 8149 if (activate_slog) 8150 spa_activate_log(spa); 8151 8152 if (error != 0) 8153 return (spa_vdev_exit(spa, NULL, txg, error)); 8154 8155 /* check new spa name before going any further */ 8156 if (spa_lookup(newname) != NULL) 8157 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 8158 8159 /* 8160 * scan through all the children to ensure they're all mirrors 8161 */ 8162 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 8163 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 8164 &children) != 0) 8165 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 8166 8167 /* first, check to ensure we've got the right child count */ 8168 rvd = spa->spa_root_vdev; 8169 lastlog = 0; 8170 for (c = 0; c < rvd->vdev_children; c++) { 8171 vdev_t *vd = rvd->vdev_child[c]; 8172 8173 /* don't count the holes & logs as children */ 8174 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops && 8175 !vdev_is_concrete(vd))) { 8176 if (lastlog == 0) 8177 lastlog = c; 8178 continue; 8179 } 8180 8181 lastlog = 0; 8182 } 8183 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 8184 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 8185 8186 /* next, ensure no spare or cache devices are part of the split */ 8187 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 8188 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 8189 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 8190 8191 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 8192 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 8193 8194 /* then, loop over each vdev and validate it */ 8195 for (c = 0; c < children; c++) { 8196 uint64_t is_hole = 0; 8197 8198 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 8199 &is_hole); 8200 8201 if (is_hole != 0) { 8202 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 8203 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 8204 continue; 8205 } else { 8206 error = SET_ERROR(EINVAL); 8207 break; 8208 } 8209 } 8210 8211 /* deal with indirect vdevs */ 8212 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops == 8213 &vdev_indirect_ops) 8214 continue; 8215 8216 /* which disk is going to be split? */ 8217 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 8218 &glist[c]) != 0) { 8219 error = SET_ERROR(EINVAL); 8220 break; 8221 } 8222 8223 /* look it up in the spa */ 8224 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 8225 if (vml[c] == NULL) { 8226 error = SET_ERROR(ENODEV); 8227 break; 8228 } 8229 8230 /* make sure there's nothing stopping the split */ 8231 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 8232 vml[c]->vdev_islog || 8233 !vdev_is_concrete(vml[c]) || 8234 vml[c]->vdev_isspare || 8235 vml[c]->vdev_isl2cache || 8236 !vdev_writeable(vml[c]) || 8237 vml[c]->vdev_children != 0 || 8238 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 8239 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 8240 error = SET_ERROR(EINVAL); 8241 break; 8242 } 8243 8244 if (vdev_dtl_required(vml[c]) || 8245 vdev_resilver_needed(vml[c], NULL, NULL)) { 8246 error = SET_ERROR(EBUSY); 8247 break; 8248 } 8249 8250 /* we need certain info from the top level */ 8251 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 8252 vml[c]->vdev_top->vdev_ms_array); 8253 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 8254 vml[c]->vdev_top->vdev_ms_shift); 8255 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 8256 vml[c]->vdev_top->vdev_asize); 8257 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 8258 vml[c]->vdev_top->vdev_ashift); 8259 8260 /* transfer per-vdev ZAPs */ 8261 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); 8262 VERIFY0(nvlist_add_uint64(child[c], 8263 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); 8264 8265 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); 8266 VERIFY0(nvlist_add_uint64(child[c], 8267 ZPOOL_CONFIG_VDEV_TOP_ZAP, 8268 vml[c]->vdev_parent->vdev_top_zap)); 8269 } 8270 8271 if (error != 0) { 8272 kmem_free(vml, children * sizeof (vdev_t *)); 8273 kmem_free(glist, children * sizeof (uint64_t)); 8274 return (spa_vdev_exit(spa, NULL, txg, error)); 8275 } 8276 8277 /* stop writers from using the disks */ 8278 for (c = 0; c < children; c++) { 8279 if (vml[c] != NULL) 8280 vml[c]->vdev_offline = B_TRUE; 8281 } 8282 vdev_reopen(spa->spa_root_vdev); 8283 8284 /* 8285 * Temporarily record the splitting vdevs in the spa config. This 8286 * will disappear once the config is regenerated. 8287 */ 8288 nvl = fnvlist_alloc(); 8289 fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children); 8290 kmem_free(glist, children * sizeof (uint64_t)); 8291 8292 mutex_enter(&spa->spa_props_lock); 8293 fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl); 8294 mutex_exit(&spa->spa_props_lock); 8295 spa->spa_config_splitting = nvl; 8296 vdev_config_dirty(spa->spa_root_vdev); 8297 8298 /* configure and create the new pool */ 8299 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname); 8300 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 8301 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE); 8302 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa)); 8303 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg); 8304 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 8305 spa_generate_guid(NULL)); 8306 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 8307 (void) nvlist_lookup_string(props, 8308 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 8309 8310 /* add the new pool to the namespace */ 8311 newspa = spa_add(newname, config, altroot); 8312 newspa->spa_avz_action = AVZ_ACTION_REBUILD; 8313 newspa->spa_config_txg = spa->spa_config_txg; 8314 spa_set_log_state(newspa, SPA_LOG_CLEAR); 8315 8316 /* release the spa config lock, retaining the namespace lock */ 8317 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 8318 8319 if (zio_injection_enabled) 8320 zio_handle_panic_injection(spa, FTAG, 1); 8321 8322 spa_activate(newspa, spa_mode_global); 8323 spa_async_suspend(newspa); 8324 8325 /* 8326 * Temporarily stop the initializing and TRIM activity. We set the 8327 * state to ACTIVE so that we know to resume initializing or TRIM 8328 * once the split has completed. 8329 */ 8330 list_t vd_initialize_list; 8331 list_create(&vd_initialize_list, sizeof (vdev_t), 8332 offsetof(vdev_t, vdev_initialize_node)); 8333 8334 list_t vd_trim_list; 8335 list_create(&vd_trim_list, sizeof (vdev_t), 8336 offsetof(vdev_t, vdev_trim_node)); 8337 8338 for (c = 0; c < children; c++) { 8339 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { 8340 mutex_enter(&vml[c]->vdev_initialize_lock); 8341 vdev_initialize_stop(vml[c], 8342 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list); 8343 mutex_exit(&vml[c]->vdev_initialize_lock); 8344 8345 mutex_enter(&vml[c]->vdev_trim_lock); 8346 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list); 8347 mutex_exit(&vml[c]->vdev_trim_lock); 8348 } 8349 } 8350 8351 vdev_initialize_stop_wait(spa, &vd_initialize_list); 8352 vdev_trim_stop_wait(spa, &vd_trim_list); 8353 8354 list_destroy(&vd_initialize_list); 8355 list_destroy(&vd_trim_list); 8356 8357 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT; 8358 newspa->spa_is_splitting = B_TRUE; 8359 8360 /* create the new pool from the disks of the original pool */ 8361 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE); 8362 if (error) 8363 goto out; 8364 8365 /* if that worked, generate a real config for the new pool */ 8366 if (newspa->spa_root_vdev != NULL) { 8367 newspa->spa_config_splitting = fnvlist_alloc(); 8368 fnvlist_add_uint64(newspa->spa_config_splitting, 8369 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)); 8370 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 8371 B_TRUE)); 8372 } 8373 8374 /* set the props */ 8375 if (props != NULL) { 8376 spa_configfile_set(newspa, props, B_FALSE); 8377 error = spa_prop_set(newspa, props); 8378 if (error) 8379 goto out; 8380 } 8381 8382 /* flush everything */ 8383 txg = spa_vdev_config_enter(newspa); 8384 vdev_config_dirty(newspa->spa_root_vdev); 8385 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 8386 8387 if (zio_injection_enabled) 8388 zio_handle_panic_injection(spa, FTAG, 2); 8389 8390 spa_async_resume(newspa); 8391 8392 /* finally, update the original pool's config */ 8393 txg = spa_vdev_config_enter(spa); 8394 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 8395 error = dmu_tx_assign(tx, TXG_WAIT); 8396 if (error != 0) 8397 dmu_tx_abort(tx); 8398 for (c = 0; c < children; c++) { 8399 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { 8400 vdev_t *tvd = vml[c]->vdev_top; 8401 8402 /* 8403 * Need to be sure the detachable VDEV is not 8404 * on any *other* txg's DTL list to prevent it 8405 * from being accessed after it's freed. 8406 */ 8407 for (int t = 0; t < TXG_SIZE; t++) { 8408 (void) txg_list_remove_this( 8409 &tvd->vdev_dtl_list, vml[c], t); 8410 } 8411 8412 vdev_split(vml[c]); 8413 if (error == 0) 8414 spa_history_log_internal(spa, "detach", tx, 8415 "vdev=%s", vml[c]->vdev_path); 8416 8417 vdev_free(vml[c]); 8418 } 8419 } 8420 spa->spa_avz_action = AVZ_ACTION_REBUILD; 8421 vdev_config_dirty(spa->spa_root_vdev); 8422 spa->spa_config_splitting = NULL; 8423 nvlist_free(nvl); 8424 if (error == 0) 8425 dmu_tx_commit(tx); 8426 (void) spa_vdev_exit(spa, NULL, txg, 0); 8427 8428 if (zio_injection_enabled) 8429 zio_handle_panic_injection(spa, FTAG, 3); 8430 8431 /* split is complete; log a history record */ 8432 spa_history_log_internal(newspa, "split", NULL, 8433 "from pool %s", spa_name(spa)); 8434 8435 newspa->spa_is_splitting = B_FALSE; 8436 kmem_free(vml, children * sizeof (vdev_t *)); 8437 8438 /* if we're not going to mount the filesystems in userland, export */ 8439 if (exp) 8440 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 8441 B_FALSE, B_FALSE); 8442 8443 return (error); 8444 8445 out: 8446 spa_unload(newspa); 8447 spa_deactivate(newspa); 8448 spa_remove(newspa); 8449 8450 txg = spa_vdev_config_enter(spa); 8451 8452 /* re-online all offlined disks */ 8453 for (c = 0; c < children; c++) { 8454 if (vml[c] != NULL) 8455 vml[c]->vdev_offline = B_FALSE; 8456 } 8457 8458 /* restart initializing or trimming disks as necessary */ 8459 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART); 8460 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART); 8461 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART); 8462 8463 vdev_reopen(spa->spa_root_vdev); 8464 8465 nvlist_free(spa->spa_config_splitting); 8466 spa->spa_config_splitting = NULL; 8467 (void) spa_vdev_exit(spa, NULL, txg, error); 8468 8469 kmem_free(vml, children * sizeof (vdev_t *)); 8470 return (error); 8471 } 8472 8473 /* 8474 * Find any device that's done replacing, or a vdev marked 'unspare' that's 8475 * currently spared, so we can detach it. 8476 */ 8477 static vdev_t * 8478 spa_vdev_resilver_done_hunt(vdev_t *vd) 8479 { 8480 vdev_t *newvd, *oldvd; 8481 8482 for (int c = 0; c < vd->vdev_children; c++) { 8483 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 8484 if (oldvd != NULL) 8485 return (oldvd); 8486 } 8487 8488 /* 8489 * Check for a completed replacement. We always consider the first 8490 * vdev in the list to be the oldest vdev, and the last one to be 8491 * the newest (see spa_vdev_attach() for how that works). In 8492 * the case where the newest vdev is faulted, we will not automatically 8493 * remove it after a resilver completes. This is OK as it will require 8494 * user intervention to determine which disk the admin wishes to keep. 8495 */ 8496 if (vd->vdev_ops == &vdev_replacing_ops) { 8497 ASSERT(vd->vdev_children > 1); 8498 8499 newvd = vd->vdev_child[vd->vdev_children - 1]; 8500 oldvd = vd->vdev_child[0]; 8501 8502 if (vdev_dtl_empty(newvd, DTL_MISSING) && 8503 vdev_dtl_empty(newvd, DTL_OUTAGE) && 8504 !vdev_dtl_required(oldvd)) 8505 return (oldvd); 8506 } 8507 8508 /* 8509 * Check for a completed resilver with the 'unspare' flag set. 8510 * Also potentially update faulted state. 8511 */ 8512 if (vd->vdev_ops == &vdev_spare_ops) { 8513 vdev_t *first = vd->vdev_child[0]; 8514 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 8515 8516 if (last->vdev_unspare) { 8517 oldvd = first; 8518 newvd = last; 8519 } else if (first->vdev_unspare) { 8520 oldvd = last; 8521 newvd = first; 8522 } else { 8523 oldvd = NULL; 8524 } 8525 8526 if (oldvd != NULL && 8527 vdev_dtl_empty(newvd, DTL_MISSING) && 8528 vdev_dtl_empty(newvd, DTL_OUTAGE) && 8529 !vdev_dtl_required(oldvd)) 8530 return (oldvd); 8531 8532 vdev_propagate_state(vd); 8533 8534 /* 8535 * If there are more than two spares attached to a disk, 8536 * and those spares are not required, then we want to 8537 * attempt to free them up now so that they can be used 8538 * by other pools. Once we're back down to a single 8539 * disk+spare, we stop removing them. 8540 */ 8541 if (vd->vdev_children > 2) { 8542 newvd = vd->vdev_child[1]; 8543 8544 if (newvd->vdev_isspare && last->vdev_isspare && 8545 vdev_dtl_empty(last, DTL_MISSING) && 8546 vdev_dtl_empty(last, DTL_OUTAGE) && 8547 !vdev_dtl_required(newvd)) 8548 return (newvd); 8549 } 8550 } 8551 8552 return (NULL); 8553 } 8554 8555 static void 8556 spa_vdev_resilver_done(spa_t *spa) 8557 { 8558 vdev_t *vd, *pvd, *ppvd; 8559 uint64_t guid, sguid, pguid, ppguid; 8560 8561 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 8562 8563 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 8564 pvd = vd->vdev_parent; 8565 ppvd = pvd->vdev_parent; 8566 guid = vd->vdev_guid; 8567 pguid = pvd->vdev_guid; 8568 ppguid = ppvd->vdev_guid; 8569 sguid = 0; 8570 /* 8571 * If we have just finished replacing a hot spared device, then 8572 * we need to detach the parent's first child (the original hot 8573 * spare) as well. 8574 */ 8575 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 8576 ppvd->vdev_children == 2) { 8577 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 8578 sguid = ppvd->vdev_child[1]->vdev_guid; 8579 } 8580 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 8581 8582 spa_config_exit(spa, SCL_ALL, FTAG); 8583 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 8584 return; 8585 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 8586 return; 8587 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 8588 } 8589 8590 spa_config_exit(spa, SCL_ALL, FTAG); 8591 8592 /* 8593 * If a detach was not performed above replace waiters will not have 8594 * been notified. In which case we must do so now. 8595 */ 8596 spa_notify_waiters(spa); 8597 } 8598 8599 /* 8600 * Update the stored path or FRU for this vdev. 8601 */ 8602 static int 8603 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 8604 boolean_t ispath) 8605 { 8606 vdev_t *vd; 8607 boolean_t sync = B_FALSE; 8608 8609 ASSERT(spa_writeable(spa)); 8610 8611 spa_vdev_state_enter(spa, SCL_ALL); 8612 8613 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 8614 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 8615 8616 if (!vd->vdev_ops->vdev_op_leaf) 8617 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 8618 8619 if (ispath) { 8620 if (strcmp(value, vd->vdev_path) != 0) { 8621 spa_strfree(vd->vdev_path); 8622 vd->vdev_path = spa_strdup(value); 8623 sync = B_TRUE; 8624 } 8625 } else { 8626 if (vd->vdev_fru == NULL) { 8627 vd->vdev_fru = spa_strdup(value); 8628 sync = B_TRUE; 8629 } else if (strcmp(value, vd->vdev_fru) != 0) { 8630 spa_strfree(vd->vdev_fru); 8631 vd->vdev_fru = spa_strdup(value); 8632 sync = B_TRUE; 8633 } 8634 } 8635 8636 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 8637 } 8638 8639 int 8640 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 8641 { 8642 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 8643 } 8644 8645 int 8646 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 8647 { 8648 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 8649 } 8650 8651 /* 8652 * ========================================================================== 8653 * SPA Scanning 8654 * ========================================================================== 8655 */ 8656 int 8657 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd) 8658 { 8659 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 8660 8661 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 8662 return (SET_ERROR(EBUSY)); 8663 8664 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd)); 8665 } 8666 8667 int 8668 spa_scan_stop(spa_t *spa) 8669 { 8670 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 8671 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 8672 return (SET_ERROR(EBUSY)); 8673 8674 return (dsl_scan_cancel(spa->spa_dsl_pool)); 8675 } 8676 8677 int 8678 spa_scan(spa_t *spa, pool_scan_func_t func) 8679 { 8680 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 8681 8682 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 8683 return (SET_ERROR(ENOTSUP)); 8684 8685 if (func == POOL_SCAN_RESILVER && 8686 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) 8687 return (SET_ERROR(ENOTSUP)); 8688 8689 /* 8690 * If a resilver was requested, but there is no DTL on a 8691 * writeable leaf device, we have nothing to do. 8692 */ 8693 if (func == POOL_SCAN_RESILVER && 8694 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 8695 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 8696 return (0); 8697 } 8698 8699 if (func == POOL_SCAN_ERRORSCRUB && 8700 !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) 8701 return (SET_ERROR(ENOTSUP)); 8702 8703 return (dsl_scan(spa->spa_dsl_pool, func)); 8704 } 8705 8706 /* 8707 * ========================================================================== 8708 * SPA async task processing 8709 * ========================================================================== 8710 */ 8711 8712 static void 8713 spa_async_remove(spa_t *spa, vdev_t *vd) 8714 { 8715 if (vd->vdev_remove_wanted) { 8716 vd->vdev_remove_wanted = B_FALSE; 8717 vd->vdev_delayed_close = B_FALSE; 8718 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 8719 8720 /* 8721 * We want to clear the stats, but we don't want to do a full 8722 * vdev_clear() as that will cause us to throw away 8723 * degraded/faulted state as well as attempt to reopen the 8724 * device, all of which is a waste. 8725 */ 8726 vd->vdev_stat.vs_read_errors = 0; 8727 vd->vdev_stat.vs_write_errors = 0; 8728 vd->vdev_stat.vs_checksum_errors = 0; 8729 8730 vdev_state_dirty(vd->vdev_top); 8731 8732 /* Tell userspace that the vdev is gone. */ 8733 zfs_post_remove(spa, vd); 8734 } 8735 8736 for (int c = 0; c < vd->vdev_children; c++) 8737 spa_async_remove(spa, vd->vdev_child[c]); 8738 } 8739 8740 static void 8741 spa_async_probe(spa_t *spa, vdev_t *vd) 8742 { 8743 if (vd->vdev_probe_wanted) { 8744 vd->vdev_probe_wanted = B_FALSE; 8745 vdev_reopen(vd); /* vdev_open() does the actual probe */ 8746 } 8747 8748 for (int c = 0; c < vd->vdev_children; c++) 8749 spa_async_probe(spa, vd->vdev_child[c]); 8750 } 8751 8752 static void 8753 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 8754 { 8755 if (!spa->spa_autoexpand) 8756 return; 8757 8758 for (int c = 0; c < vd->vdev_children; c++) { 8759 vdev_t *cvd = vd->vdev_child[c]; 8760 spa_async_autoexpand(spa, cvd); 8761 } 8762 8763 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 8764 return; 8765 8766 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND); 8767 } 8768 8769 static __attribute__((noreturn)) void 8770 spa_async_thread(void *arg) 8771 { 8772 spa_t *spa = (spa_t *)arg; 8773 dsl_pool_t *dp = spa->spa_dsl_pool; 8774 int tasks; 8775 8776 ASSERT(spa->spa_sync_on); 8777 8778 mutex_enter(&spa->spa_async_lock); 8779 tasks = spa->spa_async_tasks; 8780 spa->spa_async_tasks = 0; 8781 mutex_exit(&spa->spa_async_lock); 8782 8783 /* 8784 * See if the config needs to be updated. 8785 */ 8786 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 8787 uint64_t old_space, new_space; 8788 8789 mutex_enter(&spa_namespace_lock); 8790 old_space = metaslab_class_get_space(spa_normal_class(spa)); 8791 old_space += metaslab_class_get_space(spa_special_class(spa)); 8792 old_space += metaslab_class_get_space(spa_dedup_class(spa)); 8793 old_space += metaslab_class_get_space( 8794 spa_embedded_log_class(spa)); 8795 8796 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 8797 8798 new_space = metaslab_class_get_space(spa_normal_class(spa)); 8799 new_space += metaslab_class_get_space(spa_special_class(spa)); 8800 new_space += metaslab_class_get_space(spa_dedup_class(spa)); 8801 new_space += metaslab_class_get_space( 8802 spa_embedded_log_class(spa)); 8803 mutex_exit(&spa_namespace_lock); 8804 8805 /* 8806 * If the pool grew as a result of the config update, 8807 * then log an internal history event. 8808 */ 8809 if (new_space != old_space) { 8810 spa_history_log_internal(spa, "vdev online", NULL, 8811 "pool '%s' size: %llu(+%llu)", 8812 spa_name(spa), (u_longlong_t)new_space, 8813 (u_longlong_t)(new_space - old_space)); 8814 } 8815 } 8816 8817 /* 8818 * See if any devices need to be marked REMOVED. 8819 */ 8820 if (tasks & SPA_ASYNC_REMOVE) { 8821 spa_vdev_state_enter(spa, SCL_NONE); 8822 spa_async_remove(spa, spa->spa_root_vdev); 8823 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 8824 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 8825 for (int i = 0; i < spa->spa_spares.sav_count; i++) 8826 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 8827 (void) spa_vdev_state_exit(spa, NULL, 0); 8828 } 8829 8830 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 8831 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8832 spa_async_autoexpand(spa, spa->spa_root_vdev); 8833 spa_config_exit(spa, SCL_CONFIG, FTAG); 8834 } 8835 8836 /* 8837 * See if any devices need to be probed. 8838 */ 8839 if (tasks & SPA_ASYNC_PROBE) { 8840 spa_vdev_state_enter(spa, SCL_NONE); 8841 spa_async_probe(spa, spa->spa_root_vdev); 8842 (void) spa_vdev_state_exit(spa, NULL, 0); 8843 } 8844 8845 /* 8846 * If any devices are done replacing, detach them. 8847 */ 8848 if (tasks & SPA_ASYNC_RESILVER_DONE || 8849 tasks & SPA_ASYNC_REBUILD_DONE || 8850 tasks & SPA_ASYNC_DETACH_SPARE) { 8851 spa_vdev_resilver_done(spa); 8852 } 8853 8854 /* 8855 * Kick off a resilver. 8856 */ 8857 if (tasks & SPA_ASYNC_RESILVER && 8858 !vdev_rebuild_active(spa->spa_root_vdev) && 8859 (!dsl_scan_resilvering(dp) || 8860 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))) 8861 dsl_scan_restart_resilver(dp, 0); 8862 8863 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) { 8864 mutex_enter(&spa_namespace_lock); 8865 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8866 vdev_initialize_restart(spa->spa_root_vdev); 8867 spa_config_exit(spa, SCL_CONFIG, FTAG); 8868 mutex_exit(&spa_namespace_lock); 8869 } 8870 8871 if (tasks & SPA_ASYNC_TRIM_RESTART) { 8872 mutex_enter(&spa_namespace_lock); 8873 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8874 vdev_trim_restart(spa->spa_root_vdev); 8875 spa_config_exit(spa, SCL_CONFIG, FTAG); 8876 mutex_exit(&spa_namespace_lock); 8877 } 8878 8879 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) { 8880 mutex_enter(&spa_namespace_lock); 8881 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8882 vdev_autotrim_restart(spa); 8883 spa_config_exit(spa, SCL_CONFIG, FTAG); 8884 mutex_exit(&spa_namespace_lock); 8885 } 8886 8887 /* 8888 * Kick off L2 cache whole device TRIM. 8889 */ 8890 if (tasks & SPA_ASYNC_L2CACHE_TRIM) { 8891 mutex_enter(&spa_namespace_lock); 8892 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8893 vdev_trim_l2arc(spa); 8894 spa_config_exit(spa, SCL_CONFIG, FTAG); 8895 mutex_exit(&spa_namespace_lock); 8896 } 8897 8898 /* 8899 * Kick off L2 cache rebuilding. 8900 */ 8901 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) { 8902 mutex_enter(&spa_namespace_lock); 8903 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER); 8904 l2arc_spa_rebuild_start(spa); 8905 spa_config_exit(spa, SCL_L2ARC, FTAG); 8906 mutex_exit(&spa_namespace_lock); 8907 } 8908 8909 /* 8910 * Let the world know that we're done. 8911 */ 8912 mutex_enter(&spa->spa_async_lock); 8913 spa->spa_async_thread = NULL; 8914 cv_broadcast(&spa->spa_async_cv); 8915 mutex_exit(&spa->spa_async_lock); 8916 thread_exit(); 8917 } 8918 8919 void 8920 spa_async_suspend(spa_t *spa) 8921 { 8922 mutex_enter(&spa->spa_async_lock); 8923 spa->spa_async_suspended++; 8924 while (spa->spa_async_thread != NULL) 8925 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 8926 mutex_exit(&spa->spa_async_lock); 8927 8928 spa_vdev_remove_suspend(spa); 8929 8930 zthr_t *condense_thread = spa->spa_condense_zthr; 8931 if (condense_thread != NULL) 8932 zthr_cancel(condense_thread); 8933 8934 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr; 8935 if (raidz_expand_thread != NULL) 8936 zthr_cancel(raidz_expand_thread); 8937 8938 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 8939 if (discard_thread != NULL) 8940 zthr_cancel(discard_thread); 8941 8942 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; 8943 if (ll_delete_thread != NULL) 8944 zthr_cancel(ll_delete_thread); 8945 8946 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 8947 if (ll_condense_thread != NULL) 8948 zthr_cancel(ll_condense_thread); 8949 } 8950 8951 void 8952 spa_async_resume(spa_t *spa) 8953 { 8954 mutex_enter(&spa->spa_async_lock); 8955 ASSERT(spa->spa_async_suspended != 0); 8956 spa->spa_async_suspended--; 8957 mutex_exit(&spa->spa_async_lock); 8958 spa_restart_removal(spa); 8959 8960 zthr_t *condense_thread = spa->spa_condense_zthr; 8961 if (condense_thread != NULL) 8962 zthr_resume(condense_thread); 8963 8964 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr; 8965 if (raidz_expand_thread != NULL) 8966 zthr_resume(raidz_expand_thread); 8967 8968 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 8969 if (discard_thread != NULL) 8970 zthr_resume(discard_thread); 8971 8972 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; 8973 if (ll_delete_thread != NULL) 8974 zthr_resume(ll_delete_thread); 8975 8976 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 8977 if (ll_condense_thread != NULL) 8978 zthr_resume(ll_condense_thread); 8979 } 8980 8981 static boolean_t 8982 spa_async_tasks_pending(spa_t *spa) 8983 { 8984 uint_t non_config_tasks; 8985 uint_t config_task; 8986 boolean_t config_task_suspended; 8987 8988 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 8989 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 8990 if (spa->spa_ccw_fail_time == 0) { 8991 config_task_suspended = B_FALSE; 8992 } else { 8993 config_task_suspended = 8994 (gethrtime() - spa->spa_ccw_fail_time) < 8995 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC); 8996 } 8997 8998 return (non_config_tasks || (config_task && !config_task_suspended)); 8999 } 9000 9001 static void 9002 spa_async_dispatch(spa_t *spa) 9003 { 9004 mutex_enter(&spa->spa_async_lock); 9005 if (spa_async_tasks_pending(spa) && 9006 !spa->spa_async_suspended && 9007 spa->spa_async_thread == NULL) 9008 spa->spa_async_thread = thread_create(NULL, 0, 9009 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 9010 mutex_exit(&spa->spa_async_lock); 9011 } 9012 9013 void 9014 spa_async_request(spa_t *spa, int task) 9015 { 9016 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 9017 mutex_enter(&spa->spa_async_lock); 9018 spa->spa_async_tasks |= task; 9019 mutex_exit(&spa->spa_async_lock); 9020 } 9021 9022 int 9023 spa_async_tasks(spa_t *spa) 9024 { 9025 return (spa->spa_async_tasks); 9026 } 9027 9028 /* 9029 * ========================================================================== 9030 * SPA syncing routines 9031 * ========================================================================== 9032 */ 9033 9034 9035 static int 9036 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 9037 dmu_tx_t *tx) 9038 { 9039 bpobj_t *bpo = arg; 9040 bpobj_enqueue(bpo, bp, bp_freed, tx); 9041 return (0); 9042 } 9043 9044 int 9045 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 9046 { 9047 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx)); 9048 } 9049 9050 int 9051 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 9052 { 9053 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx)); 9054 } 9055 9056 static int 9057 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 9058 { 9059 zio_t *pio = arg; 9060 9061 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp, 9062 pio->io_flags)); 9063 return (0); 9064 } 9065 9066 static int 9067 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 9068 dmu_tx_t *tx) 9069 { 9070 ASSERT(!bp_freed); 9071 return (spa_free_sync_cb(arg, bp, tx)); 9072 } 9073 9074 /* 9075 * Note: this simple function is not inlined to make it easier to dtrace the 9076 * amount of time spent syncing frees. 9077 */ 9078 static void 9079 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 9080 { 9081 zio_t *zio = zio_root(spa, NULL, NULL, 0); 9082 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 9083 VERIFY(zio_wait(zio) == 0); 9084 } 9085 9086 /* 9087 * Note: this simple function is not inlined to make it easier to dtrace the 9088 * amount of time spent syncing deferred frees. 9089 */ 9090 static void 9091 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 9092 { 9093 if (spa_sync_pass(spa) != 1) 9094 return; 9095 9096 /* 9097 * Note: 9098 * If the log space map feature is active, we stop deferring 9099 * frees to the next TXG and therefore running this function 9100 * would be considered a no-op as spa_deferred_bpobj should 9101 * not have any entries. 9102 * 9103 * That said we run this function anyway (instead of returning 9104 * immediately) for the edge-case scenario where we just 9105 * activated the log space map feature in this TXG but we have 9106 * deferred frees from the previous TXG. 9107 */ 9108 zio_t *zio = zio_root(spa, NULL, NULL, 0); 9109 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 9110 bpobj_spa_free_sync_cb, zio, tx), ==, 0); 9111 VERIFY0(zio_wait(zio)); 9112 } 9113 9114 static void 9115 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 9116 { 9117 char *packed = NULL; 9118 size_t bufsize; 9119 size_t nvsize = 0; 9120 dmu_buf_t *db; 9121 9122 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 9123 9124 /* 9125 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 9126 * information. This avoids the dmu_buf_will_dirty() path and 9127 * saves us a pre-read to get data we don't actually care about. 9128 */ 9129 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 9130 packed = vmem_alloc(bufsize, KM_SLEEP); 9131 9132 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 9133 KM_SLEEP) == 0); 9134 memset(packed + nvsize, 0, bufsize - nvsize); 9135 9136 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 9137 9138 vmem_free(packed, bufsize); 9139 9140 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 9141 dmu_buf_will_dirty(db, tx); 9142 *(uint64_t *)db->db_data = nvsize; 9143 dmu_buf_rele(db, FTAG); 9144 } 9145 9146 static void 9147 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 9148 const char *config, const char *entry) 9149 { 9150 nvlist_t *nvroot; 9151 nvlist_t **list; 9152 int i; 9153 9154 if (!sav->sav_sync) 9155 return; 9156 9157 /* 9158 * Update the MOS nvlist describing the list of available devices. 9159 * spa_validate_aux() will have already made sure this nvlist is 9160 * valid and the vdevs are labeled appropriately. 9161 */ 9162 if (sav->sav_object == 0) { 9163 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 9164 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 9165 sizeof (uint64_t), tx); 9166 VERIFY(zap_update(spa->spa_meta_objset, 9167 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 9168 &sav->sav_object, tx) == 0); 9169 } 9170 9171 nvroot = fnvlist_alloc(); 9172 if (sav->sav_count == 0) { 9173 fnvlist_add_nvlist_array(nvroot, config, 9174 (const nvlist_t * const *)NULL, 0); 9175 } else { 9176 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP); 9177 for (i = 0; i < sav->sav_count; i++) 9178 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 9179 B_FALSE, VDEV_CONFIG_L2CACHE); 9180 fnvlist_add_nvlist_array(nvroot, config, 9181 (const nvlist_t * const *)list, sav->sav_count); 9182 for (i = 0; i < sav->sav_count; i++) 9183 nvlist_free(list[i]); 9184 kmem_free(list, sav->sav_count * sizeof (void *)); 9185 } 9186 9187 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 9188 nvlist_free(nvroot); 9189 9190 sav->sav_sync = B_FALSE; 9191 } 9192 9193 /* 9194 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. 9195 * The all-vdev ZAP must be empty. 9196 */ 9197 static void 9198 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) 9199 { 9200 spa_t *spa = vd->vdev_spa; 9201 9202 if (vd->vdev_root_zap != 0 && 9203 spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) { 9204 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 9205 vd->vdev_root_zap, tx)); 9206 } 9207 if (vd->vdev_top_zap != 0) { 9208 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 9209 vd->vdev_top_zap, tx)); 9210 } 9211 if (vd->vdev_leaf_zap != 0) { 9212 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 9213 vd->vdev_leaf_zap, tx)); 9214 } 9215 for (uint64_t i = 0; i < vd->vdev_children; i++) { 9216 spa_avz_build(vd->vdev_child[i], avz, tx); 9217 } 9218 } 9219 9220 static void 9221 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 9222 { 9223 nvlist_t *config; 9224 9225 /* 9226 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, 9227 * its config may not be dirty but we still need to build per-vdev ZAPs. 9228 * Similarly, if the pool is being assembled (e.g. after a split), we 9229 * need to rebuild the AVZ although the config may not be dirty. 9230 */ 9231 if (list_is_empty(&spa->spa_config_dirty_list) && 9232 spa->spa_avz_action == AVZ_ACTION_NONE) 9233 return; 9234 9235 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 9236 9237 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || 9238 spa->spa_avz_action == AVZ_ACTION_INITIALIZE || 9239 spa->spa_all_vdev_zaps != 0); 9240 9241 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { 9242 /* Make and build the new AVZ */ 9243 uint64_t new_avz = zap_create(spa->spa_meta_objset, 9244 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); 9245 spa_avz_build(spa->spa_root_vdev, new_avz, tx); 9246 9247 /* Diff old AVZ with new one */ 9248 zap_cursor_t zc; 9249 zap_attribute_t za; 9250 9251 for (zap_cursor_init(&zc, spa->spa_meta_objset, 9252 spa->spa_all_vdev_zaps); 9253 zap_cursor_retrieve(&zc, &za) == 0; 9254 zap_cursor_advance(&zc)) { 9255 uint64_t vdzap = za.za_first_integer; 9256 if (zap_lookup_int(spa->spa_meta_objset, new_avz, 9257 vdzap) == ENOENT) { 9258 /* 9259 * ZAP is listed in old AVZ but not in new one; 9260 * destroy it 9261 */ 9262 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, 9263 tx)); 9264 } 9265 } 9266 9267 zap_cursor_fini(&zc); 9268 9269 /* Destroy the old AVZ */ 9270 VERIFY0(zap_destroy(spa->spa_meta_objset, 9271 spa->spa_all_vdev_zaps, tx)); 9272 9273 /* Replace the old AVZ in the dir obj with the new one */ 9274 VERIFY0(zap_update(spa->spa_meta_objset, 9275 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, 9276 sizeof (new_avz), 1, &new_avz, tx)); 9277 9278 spa->spa_all_vdev_zaps = new_avz; 9279 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { 9280 zap_cursor_t zc; 9281 zap_attribute_t za; 9282 9283 /* Walk through the AVZ and destroy all listed ZAPs */ 9284 for (zap_cursor_init(&zc, spa->spa_meta_objset, 9285 spa->spa_all_vdev_zaps); 9286 zap_cursor_retrieve(&zc, &za) == 0; 9287 zap_cursor_advance(&zc)) { 9288 uint64_t zap = za.za_first_integer; 9289 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); 9290 } 9291 9292 zap_cursor_fini(&zc); 9293 9294 /* Destroy and unlink the AVZ itself */ 9295 VERIFY0(zap_destroy(spa->spa_meta_objset, 9296 spa->spa_all_vdev_zaps, tx)); 9297 VERIFY0(zap_remove(spa->spa_meta_objset, 9298 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); 9299 spa->spa_all_vdev_zaps = 0; 9300 } 9301 9302 if (spa->spa_all_vdev_zaps == 0) { 9303 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, 9304 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, 9305 DMU_POOL_VDEV_ZAP_MAP, tx); 9306 } 9307 spa->spa_avz_action = AVZ_ACTION_NONE; 9308 9309 /* Create ZAPs for vdevs that don't have them. */ 9310 vdev_construct_zaps(spa->spa_root_vdev, tx); 9311 9312 config = spa_config_generate(spa, spa->spa_root_vdev, 9313 dmu_tx_get_txg(tx), B_FALSE); 9314 9315 /* 9316 * If we're upgrading the spa version then make sure that 9317 * the config object gets updated with the correct version. 9318 */ 9319 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 9320 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 9321 spa->spa_uberblock.ub_version); 9322 9323 spa_config_exit(spa, SCL_STATE, FTAG); 9324 9325 nvlist_free(spa->spa_config_syncing); 9326 spa->spa_config_syncing = config; 9327 9328 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 9329 } 9330 9331 static void 9332 spa_sync_version(void *arg, dmu_tx_t *tx) 9333 { 9334 uint64_t *versionp = arg; 9335 uint64_t version = *versionp; 9336 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 9337 9338 /* 9339 * Setting the version is special cased when first creating the pool. 9340 */ 9341 ASSERT(tx->tx_txg != TXG_INITIAL); 9342 9343 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 9344 ASSERT(version >= spa_version(spa)); 9345 9346 spa->spa_uberblock.ub_version = version; 9347 vdev_config_dirty(spa->spa_root_vdev); 9348 spa_history_log_internal(spa, "set", tx, "version=%lld", 9349 (longlong_t)version); 9350 } 9351 9352 /* 9353 * Set zpool properties. 9354 */ 9355 static void 9356 spa_sync_props(void *arg, dmu_tx_t *tx) 9357 { 9358 nvlist_t *nvp = arg; 9359 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 9360 objset_t *mos = spa->spa_meta_objset; 9361 nvpair_t *elem = NULL; 9362 9363 mutex_enter(&spa->spa_props_lock); 9364 9365 while ((elem = nvlist_next_nvpair(nvp, elem))) { 9366 uint64_t intval; 9367 const char *strval, *fname; 9368 zpool_prop_t prop; 9369 const char *propname; 9370 const char *elemname = nvpair_name(elem); 9371 zprop_type_t proptype; 9372 spa_feature_t fid; 9373 9374 switch (prop = zpool_name_to_prop(elemname)) { 9375 case ZPOOL_PROP_VERSION: 9376 intval = fnvpair_value_uint64(elem); 9377 /* 9378 * The version is synced separately before other 9379 * properties and should be correct by now. 9380 */ 9381 ASSERT3U(spa_version(spa), >=, intval); 9382 break; 9383 9384 case ZPOOL_PROP_ALTROOT: 9385 /* 9386 * 'altroot' is a non-persistent property. It should 9387 * have been set temporarily at creation or import time. 9388 */ 9389 ASSERT(spa->spa_root != NULL); 9390 break; 9391 9392 case ZPOOL_PROP_READONLY: 9393 case ZPOOL_PROP_CACHEFILE: 9394 /* 9395 * 'readonly' and 'cachefile' are also non-persistent 9396 * properties. 9397 */ 9398 break; 9399 case ZPOOL_PROP_COMMENT: 9400 strval = fnvpair_value_string(elem); 9401 if (spa->spa_comment != NULL) 9402 spa_strfree(spa->spa_comment); 9403 spa->spa_comment = spa_strdup(strval); 9404 /* 9405 * We need to dirty the configuration on all the vdevs 9406 * so that their labels get updated. We also need to 9407 * update the cache file to keep it in sync with the 9408 * MOS version. It's unnecessary to do this for pool 9409 * creation since the vdev's configuration has already 9410 * been dirtied. 9411 */ 9412 if (tx->tx_txg != TXG_INITIAL) { 9413 vdev_config_dirty(spa->spa_root_vdev); 9414 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 9415 } 9416 spa_history_log_internal(spa, "set", tx, 9417 "%s=%s", elemname, strval); 9418 break; 9419 case ZPOOL_PROP_COMPATIBILITY: 9420 strval = fnvpair_value_string(elem); 9421 if (spa->spa_compatibility != NULL) 9422 spa_strfree(spa->spa_compatibility); 9423 spa->spa_compatibility = spa_strdup(strval); 9424 /* 9425 * Dirty the configuration on vdevs as above. 9426 */ 9427 if (tx->tx_txg != TXG_INITIAL) { 9428 vdev_config_dirty(spa->spa_root_vdev); 9429 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 9430 } 9431 9432 spa_history_log_internal(spa, "set", tx, 9433 "%s=%s", nvpair_name(elem), strval); 9434 break; 9435 9436 case ZPOOL_PROP_INVAL: 9437 if (zpool_prop_feature(elemname)) { 9438 fname = strchr(elemname, '@') + 1; 9439 VERIFY0(zfeature_lookup_name(fname, &fid)); 9440 9441 spa_feature_enable(spa, fid, tx); 9442 spa_history_log_internal(spa, "set", tx, 9443 "%s=enabled", elemname); 9444 break; 9445 } else if (!zfs_prop_user(elemname)) { 9446 ASSERT(zpool_prop_feature(elemname)); 9447 break; 9448 } 9449 zfs_fallthrough; 9450 default: 9451 /* 9452 * Set pool property values in the poolprops mos object. 9453 */ 9454 if (spa->spa_pool_props_object == 0) { 9455 spa->spa_pool_props_object = 9456 zap_create_link(mos, DMU_OT_POOL_PROPS, 9457 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 9458 tx); 9459 } 9460 9461 /* normalize the property name */ 9462 if (prop == ZPOOL_PROP_INVAL) { 9463 propname = elemname; 9464 proptype = PROP_TYPE_STRING; 9465 } else { 9466 propname = zpool_prop_to_name(prop); 9467 proptype = zpool_prop_get_type(prop); 9468 } 9469 9470 if (nvpair_type(elem) == DATA_TYPE_STRING) { 9471 ASSERT(proptype == PROP_TYPE_STRING); 9472 strval = fnvpair_value_string(elem); 9473 VERIFY0(zap_update(mos, 9474 spa->spa_pool_props_object, propname, 9475 1, strlen(strval) + 1, strval, tx)); 9476 spa_history_log_internal(spa, "set", tx, 9477 "%s=%s", elemname, strval); 9478 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 9479 intval = fnvpair_value_uint64(elem); 9480 9481 if (proptype == PROP_TYPE_INDEX) { 9482 const char *unused; 9483 VERIFY0(zpool_prop_index_to_string( 9484 prop, intval, &unused)); 9485 } 9486 VERIFY0(zap_update(mos, 9487 spa->spa_pool_props_object, propname, 9488 8, 1, &intval, tx)); 9489 spa_history_log_internal(spa, "set", tx, 9490 "%s=%lld", elemname, 9491 (longlong_t)intval); 9492 9493 switch (prop) { 9494 case ZPOOL_PROP_DELEGATION: 9495 spa->spa_delegation = intval; 9496 break; 9497 case ZPOOL_PROP_BOOTFS: 9498 spa->spa_bootfs = intval; 9499 break; 9500 case ZPOOL_PROP_FAILUREMODE: 9501 spa->spa_failmode = intval; 9502 break; 9503 case ZPOOL_PROP_AUTOTRIM: 9504 spa->spa_autotrim = intval; 9505 spa_async_request(spa, 9506 SPA_ASYNC_AUTOTRIM_RESTART); 9507 break; 9508 case ZPOOL_PROP_AUTOEXPAND: 9509 spa->spa_autoexpand = intval; 9510 if (tx->tx_txg != TXG_INITIAL) 9511 spa_async_request(spa, 9512 SPA_ASYNC_AUTOEXPAND); 9513 break; 9514 case ZPOOL_PROP_MULTIHOST: 9515 spa->spa_multihost = intval; 9516 break; 9517 default: 9518 break; 9519 } 9520 } else { 9521 ASSERT(0); /* not allowed */ 9522 } 9523 } 9524 9525 } 9526 9527 mutex_exit(&spa->spa_props_lock); 9528 } 9529 9530 /* 9531 * Perform one-time upgrade on-disk changes. spa_version() does not 9532 * reflect the new version this txg, so there must be no changes this 9533 * txg to anything that the upgrade code depends on after it executes. 9534 * Therefore this must be called after dsl_pool_sync() does the sync 9535 * tasks. 9536 */ 9537 static void 9538 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 9539 { 9540 if (spa_sync_pass(spa) != 1) 9541 return; 9542 9543 dsl_pool_t *dp = spa->spa_dsl_pool; 9544 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 9545 9546 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 9547 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 9548 dsl_pool_create_origin(dp, tx); 9549 9550 /* Keeping the origin open increases spa_minref */ 9551 spa->spa_minref += 3; 9552 } 9553 9554 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 9555 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 9556 dsl_pool_upgrade_clones(dp, tx); 9557 } 9558 9559 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 9560 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 9561 dsl_pool_upgrade_dir_clones(dp, tx); 9562 9563 /* Keeping the freedir open increases spa_minref */ 9564 spa->spa_minref += 3; 9565 } 9566 9567 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 9568 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 9569 spa_feature_create_zap_objects(spa, tx); 9570 } 9571 9572 /* 9573 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 9574 * when possibility to use lz4 compression for metadata was added 9575 * Old pools that have this feature enabled must be upgraded to have 9576 * this feature active 9577 */ 9578 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 9579 boolean_t lz4_en = spa_feature_is_enabled(spa, 9580 SPA_FEATURE_LZ4_COMPRESS); 9581 boolean_t lz4_ac = spa_feature_is_active(spa, 9582 SPA_FEATURE_LZ4_COMPRESS); 9583 9584 if (lz4_en && !lz4_ac) 9585 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 9586 } 9587 9588 /* 9589 * If we haven't written the salt, do so now. Note that the 9590 * feature may not be activated yet, but that's fine since 9591 * the presence of this ZAP entry is backwards compatible. 9592 */ 9593 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 9594 DMU_POOL_CHECKSUM_SALT) == ENOENT) { 9595 VERIFY0(zap_add(spa->spa_meta_objset, 9596 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, 9597 sizeof (spa->spa_cksum_salt.zcs_bytes), 9598 spa->spa_cksum_salt.zcs_bytes, tx)); 9599 } 9600 9601 rrw_exit(&dp->dp_config_rwlock, FTAG); 9602 } 9603 9604 static void 9605 vdev_indirect_state_sync_verify(vdev_t *vd) 9606 { 9607 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping; 9608 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births; 9609 9610 if (vd->vdev_ops == &vdev_indirect_ops) { 9611 ASSERT(vim != NULL); 9612 ASSERT(vib != NULL); 9613 } 9614 9615 uint64_t obsolete_sm_object = 0; 9616 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 9617 if (obsolete_sm_object != 0) { 9618 ASSERT(vd->vdev_obsolete_sm != NULL); 9619 ASSERT(vd->vdev_removing || 9620 vd->vdev_ops == &vdev_indirect_ops); 9621 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0); 9622 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0); 9623 ASSERT3U(obsolete_sm_object, ==, 9624 space_map_object(vd->vdev_obsolete_sm)); 9625 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=, 9626 space_map_allocated(vd->vdev_obsolete_sm)); 9627 } 9628 ASSERT(vd->vdev_obsolete_segments != NULL); 9629 9630 /* 9631 * Since frees / remaps to an indirect vdev can only 9632 * happen in syncing context, the obsolete segments 9633 * tree must be empty when we start syncing. 9634 */ 9635 ASSERT0(range_tree_space(vd->vdev_obsolete_segments)); 9636 } 9637 9638 /* 9639 * Set the top-level vdev's max queue depth. Evaluate each top-level's 9640 * async write queue depth in case it changed. The max queue depth will 9641 * not change in the middle of syncing out this txg. 9642 */ 9643 static void 9644 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa) 9645 { 9646 ASSERT(spa_writeable(spa)); 9647 9648 vdev_t *rvd = spa->spa_root_vdev; 9649 uint32_t max_queue_depth = zfs_vdev_async_write_max_active * 9650 zfs_vdev_queue_depth_pct / 100; 9651 metaslab_class_t *normal = spa_normal_class(spa); 9652 metaslab_class_t *special = spa_special_class(spa); 9653 metaslab_class_t *dedup = spa_dedup_class(spa); 9654 9655 uint64_t slots_per_allocator = 0; 9656 for (int c = 0; c < rvd->vdev_children; c++) { 9657 vdev_t *tvd = rvd->vdev_child[c]; 9658 9659 metaslab_group_t *mg = tvd->vdev_mg; 9660 if (mg == NULL || !metaslab_group_initialized(mg)) 9661 continue; 9662 9663 metaslab_class_t *mc = mg->mg_class; 9664 if (mc != normal && mc != special && mc != dedup) 9665 continue; 9666 9667 /* 9668 * It is safe to do a lock-free check here because only async 9669 * allocations look at mg_max_alloc_queue_depth, and async 9670 * allocations all happen from spa_sync(). 9671 */ 9672 for (int i = 0; i < mg->mg_allocators; i++) { 9673 ASSERT0(zfs_refcount_count( 9674 &(mg->mg_allocator[i].mga_alloc_queue_depth))); 9675 } 9676 mg->mg_max_alloc_queue_depth = max_queue_depth; 9677 9678 for (int i = 0; i < mg->mg_allocators; i++) { 9679 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth = 9680 zfs_vdev_def_queue_depth; 9681 } 9682 slots_per_allocator += zfs_vdev_def_queue_depth; 9683 } 9684 9685 for (int i = 0; i < spa->spa_alloc_count; i++) { 9686 ASSERT0(zfs_refcount_count(&normal->mc_allocator[i]. 9687 mca_alloc_slots)); 9688 ASSERT0(zfs_refcount_count(&special->mc_allocator[i]. 9689 mca_alloc_slots)); 9690 ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i]. 9691 mca_alloc_slots)); 9692 normal->mc_allocator[i].mca_alloc_max_slots = 9693 slots_per_allocator; 9694 special->mc_allocator[i].mca_alloc_max_slots = 9695 slots_per_allocator; 9696 dedup->mc_allocator[i].mca_alloc_max_slots = 9697 slots_per_allocator; 9698 } 9699 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 9700 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 9701 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 9702 } 9703 9704 static void 9705 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx) 9706 { 9707 ASSERT(spa_writeable(spa)); 9708 9709 vdev_t *rvd = spa->spa_root_vdev; 9710 for (int c = 0; c < rvd->vdev_children; c++) { 9711 vdev_t *vd = rvd->vdev_child[c]; 9712 vdev_indirect_state_sync_verify(vd); 9713 9714 if (vdev_indirect_should_condense(vd)) { 9715 spa_condense_indirect_start_sync(vd, tx); 9716 break; 9717 } 9718 } 9719 } 9720 9721 static void 9722 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx) 9723 { 9724 objset_t *mos = spa->spa_meta_objset; 9725 dsl_pool_t *dp = spa->spa_dsl_pool; 9726 uint64_t txg = tx->tx_txg; 9727 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 9728 9729 do { 9730 int pass = ++spa->spa_sync_pass; 9731 9732 spa_sync_config_object(spa, tx); 9733 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 9734 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 9735 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 9736 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 9737 spa_errlog_sync(spa, txg); 9738 dsl_pool_sync(dp, txg); 9739 9740 if (pass < zfs_sync_pass_deferred_free || 9741 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 9742 /* 9743 * If the log space map feature is active we don't 9744 * care about deferred frees and the deferred bpobj 9745 * as the log space map should effectively have the 9746 * same results (i.e. appending only to one object). 9747 */ 9748 spa_sync_frees(spa, free_bpl, tx); 9749 } else { 9750 /* 9751 * We can not defer frees in pass 1, because 9752 * we sync the deferred frees later in pass 1. 9753 */ 9754 ASSERT3U(pass, >, 1); 9755 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb, 9756 &spa->spa_deferred_bpobj, tx); 9757 } 9758 9759 brt_sync(spa, txg); 9760 ddt_sync(spa, txg); 9761 dsl_scan_sync(dp, tx); 9762 dsl_errorscrub_sync(dp, tx); 9763 svr_sync(spa, tx); 9764 spa_sync_upgrades(spa, tx); 9765 9766 spa_flush_metaslabs(spa, tx); 9767 9768 vdev_t *vd = NULL; 9769 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 9770 != NULL) 9771 vdev_sync(vd, txg); 9772 9773 if (pass == 1) { 9774 /* 9775 * dsl_pool_sync() -> dp_sync_tasks may have dirtied 9776 * the config. If that happens, this txg should not 9777 * be a no-op. So we must sync the config to the MOS 9778 * before checking for no-op. 9779 * 9780 * Note that when the config is dirty, it will 9781 * be written to the MOS (i.e. the MOS will be 9782 * dirtied) every time we call spa_sync_config_object() 9783 * in this txg. Therefore we can't call this after 9784 * dsl_pool_sync() every pass, because it would 9785 * prevent us from converging, since we'd dirty 9786 * the MOS every pass. 9787 * 9788 * Sync tasks can only be processed in pass 1, so 9789 * there's no need to do this in later passes. 9790 */ 9791 spa_sync_config_object(spa, tx); 9792 } 9793 9794 /* 9795 * Note: We need to check if the MOS is dirty because we could 9796 * have marked the MOS dirty without updating the uberblock 9797 * (e.g. if we have sync tasks but no dirty user data). We need 9798 * to check the uberblock's rootbp because it is updated if we 9799 * have synced out dirty data (though in this case the MOS will 9800 * most likely also be dirty due to second order effects, we 9801 * don't want to rely on that here). 9802 */ 9803 if (pass == 1 && 9804 spa->spa_uberblock.ub_rootbp.blk_birth < txg && 9805 !dmu_objset_is_dirty(mos, txg)) { 9806 /* 9807 * Nothing changed on the first pass, therefore this 9808 * TXG is a no-op. Avoid syncing deferred frees, so 9809 * that we can keep this TXG as a no-op. 9810 */ 9811 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 9812 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 9813 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 9814 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg)); 9815 break; 9816 } 9817 9818 spa_sync_deferred_frees(spa, tx); 9819 } while (dmu_objset_is_dirty(mos, txg)); 9820 } 9821 9822 /* 9823 * Rewrite the vdev configuration (which includes the uberblock) to 9824 * commit the transaction group. 9825 * 9826 * If there are no dirty vdevs, we sync the uberblock to a few random 9827 * top-level vdevs that are known to be visible in the config cache 9828 * (see spa_vdev_add() for a complete description). If there *are* dirty 9829 * vdevs, sync the uberblock to all vdevs. 9830 */ 9831 static void 9832 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx) 9833 { 9834 vdev_t *rvd = spa->spa_root_vdev; 9835 uint64_t txg = tx->tx_txg; 9836 9837 for (;;) { 9838 int error = 0; 9839 9840 /* 9841 * We hold SCL_STATE to prevent vdev open/close/etc. 9842 * while we're attempting to write the vdev labels. 9843 */ 9844 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 9845 9846 if (list_is_empty(&spa->spa_config_dirty_list)) { 9847 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 9848 int svdcount = 0; 9849 int children = rvd->vdev_children; 9850 int c0 = random_in_range(children); 9851 9852 for (int c = 0; c < children; c++) { 9853 vdev_t *vd = 9854 rvd->vdev_child[(c0 + c) % children]; 9855 9856 /* Stop when revisiting the first vdev */ 9857 if (c > 0 && svd[0] == vd) 9858 break; 9859 9860 if (vd->vdev_ms_array == 0 || 9861 vd->vdev_islog || 9862 !vdev_is_concrete(vd)) 9863 continue; 9864 9865 svd[svdcount++] = vd; 9866 if (svdcount == SPA_SYNC_MIN_VDEVS) 9867 break; 9868 } 9869 error = vdev_config_sync(svd, svdcount, txg); 9870 } else { 9871 error = vdev_config_sync(rvd->vdev_child, 9872 rvd->vdev_children, txg); 9873 } 9874 9875 if (error == 0) 9876 spa->spa_last_synced_guid = rvd->vdev_guid; 9877 9878 spa_config_exit(spa, SCL_STATE, FTAG); 9879 9880 if (error == 0) 9881 break; 9882 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR); 9883 zio_resume_wait(spa); 9884 } 9885 } 9886 9887 /* 9888 * Sync the specified transaction group. New blocks may be dirtied as 9889 * part of the process, so we iterate until it converges. 9890 */ 9891 void 9892 spa_sync(spa_t *spa, uint64_t txg) 9893 { 9894 vdev_t *vd = NULL; 9895 9896 VERIFY(spa_writeable(spa)); 9897 9898 /* 9899 * Wait for i/os issued in open context that need to complete 9900 * before this txg syncs. 9901 */ 9902 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]); 9903 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 9904 ZIO_FLAG_CANFAIL); 9905 9906 /* 9907 * Now that there can be no more cloning in this transaction group, 9908 * but we are still before issuing frees, we can process pending BRT 9909 * updates. 9910 */ 9911 brt_pending_apply(spa, txg); 9912 9913 /* 9914 * Lock out configuration changes. 9915 */ 9916 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 9917 9918 spa->spa_syncing_txg = txg; 9919 spa->spa_sync_pass = 0; 9920 9921 for (int i = 0; i < spa->spa_alloc_count; i++) { 9922 mutex_enter(&spa->spa_allocs[i].spaa_lock); 9923 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree)); 9924 mutex_exit(&spa->spa_allocs[i].spaa_lock); 9925 } 9926 9927 /* 9928 * If there are any pending vdev state changes, convert them 9929 * into config changes that go out with this transaction group. 9930 */ 9931 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 9932 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 9933 /* Avoid holding the write lock unless actually necessary */ 9934 if (vd->vdev_aux == NULL) { 9935 vdev_state_clean(vd); 9936 vdev_config_dirty(vd); 9937 continue; 9938 } 9939 /* 9940 * We need the write lock here because, for aux vdevs, 9941 * calling vdev_config_dirty() modifies sav_config. 9942 * This is ugly and will become unnecessary when we 9943 * eliminate the aux vdev wart by integrating all vdevs 9944 * into the root vdev tree. 9945 */ 9946 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9947 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 9948 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 9949 vdev_state_clean(vd); 9950 vdev_config_dirty(vd); 9951 } 9952 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9953 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 9954 } 9955 spa_config_exit(spa, SCL_STATE, FTAG); 9956 9957 dsl_pool_t *dp = spa->spa_dsl_pool; 9958 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 9959 9960 spa->spa_sync_starttime = gethrtime(); 9961 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 9962 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, 9963 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + 9964 NSEC_TO_TICK(spa->spa_deadman_synctime)); 9965 9966 /* 9967 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 9968 * set spa_deflate if we have no raid-z vdevs. 9969 */ 9970 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 9971 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 9972 vdev_t *rvd = spa->spa_root_vdev; 9973 9974 int i; 9975 for (i = 0; i < rvd->vdev_children; i++) { 9976 vd = rvd->vdev_child[i]; 9977 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 9978 break; 9979 } 9980 if (i == rvd->vdev_children) { 9981 spa->spa_deflate = TRUE; 9982 VERIFY0(zap_add(spa->spa_meta_objset, 9983 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 9984 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 9985 } 9986 } 9987 9988 spa_sync_adjust_vdev_max_queue_depth(spa); 9989 9990 spa_sync_condense_indirect(spa, tx); 9991 9992 spa_sync_iterate_to_convergence(spa, tx); 9993 9994 #ifdef ZFS_DEBUG 9995 if (!list_is_empty(&spa->spa_config_dirty_list)) { 9996 /* 9997 * Make sure that the number of ZAPs for all the vdevs matches 9998 * the number of ZAPs in the per-vdev ZAP list. This only gets 9999 * called if the config is dirty; otherwise there may be 10000 * outstanding AVZ operations that weren't completed in 10001 * spa_sync_config_object. 10002 */ 10003 uint64_t all_vdev_zap_entry_count; 10004 ASSERT0(zap_count(spa->spa_meta_objset, 10005 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); 10006 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, 10007 all_vdev_zap_entry_count); 10008 } 10009 #endif 10010 10011 if (spa->spa_vdev_removal != NULL) { 10012 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]); 10013 } 10014 10015 spa_sync_rewrite_vdev_config(spa, tx); 10016 dmu_tx_commit(tx); 10017 10018 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 10019 spa->spa_deadman_tqid = 0; 10020 10021 /* 10022 * Clear the dirty config list. 10023 */ 10024 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 10025 vdev_config_clean(vd); 10026 10027 /* 10028 * Now that the new config has synced transactionally, 10029 * let it become visible to the config cache. 10030 */ 10031 if (spa->spa_config_syncing != NULL) { 10032 spa_config_set(spa, spa->spa_config_syncing); 10033 spa->spa_config_txg = txg; 10034 spa->spa_config_syncing = NULL; 10035 } 10036 10037 dsl_pool_sync_done(dp, txg); 10038 10039 for (int i = 0; i < spa->spa_alloc_count; i++) { 10040 mutex_enter(&spa->spa_allocs[i].spaa_lock); 10041 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree)); 10042 mutex_exit(&spa->spa_allocs[i].spaa_lock); 10043 } 10044 10045 /* 10046 * Update usable space statistics. 10047 */ 10048 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 10049 != NULL) 10050 vdev_sync_done(vd, txg); 10051 10052 metaslab_class_evict_old(spa->spa_normal_class, txg); 10053 metaslab_class_evict_old(spa->spa_log_class, txg); 10054 10055 spa_sync_close_syncing_log_sm(spa); 10056 10057 spa_update_dspace(spa); 10058 10059 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) 10060 vdev_autotrim_kick(spa); 10061 10062 /* 10063 * It had better be the case that we didn't dirty anything 10064 * since vdev_config_sync(). 10065 */ 10066 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 10067 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 10068 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 10069 10070 while (zfs_pause_spa_sync) 10071 delay(1); 10072 10073 spa->spa_sync_pass = 0; 10074 10075 /* 10076 * Update the last synced uberblock here. We want to do this at 10077 * the end of spa_sync() so that consumers of spa_last_synced_txg() 10078 * will be guaranteed that all the processing associated with 10079 * that txg has been completed. 10080 */ 10081 spa->spa_ubsync = spa->spa_uberblock; 10082 spa_config_exit(spa, SCL_CONFIG, FTAG); 10083 10084 spa_handle_ignored_writes(spa); 10085 10086 /* 10087 * If any async tasks have been requested, kick them off. 10088 */ 10089 spa_async_dispatch(spa); 10090 } 10091 10092 /* 10093 * Sync all pools. We don't want to hold the namespace lock across these 10094 * operations, so we take a reference on the spa_t and drop the lock during the 10095 * sync. 10096 */ 10097 void 10098 spa_sync_allpools(void) 10099 { 10100 spa_t *spa = NULL; 10101 mutex_enter(&spa_namespace_lock); 10102 while ((spa = spa_next(spa)) != NULL) { 10103 if (spa_state(spa) != POOL_STATE_ACTIVE || 10104 !spa_writeable(spa) || spa_suspended(spa)) 10105 continue; 10106 spa_open_ref(spa, FTAG); 10107 mutex_exit(&spa_namespace_lock); 10108 txg_wait_synced(spa_get_dsl(spa), 0); 10109 mutex_enter(&spa_namespace_lock); 10110 spa_close(spa, FTAG); 10111 } 10112 mutex_exit(&spa_namespace_lock); 10113 } 10114 10115 taskq_t * 10116 spa_sync_tq_create(spa_t *spa, const char *name) 10117 { 10118 kthread_t **kthreads; 10119 10120 ASSERT(spa->spa_sync_tq == NULL); 10121 ASSERT3S(spa->spa_alloc_count, <=, boot_ncpus); 10122 10123 /* 10124 * - do not allow more allocators than cpus. 10125 * - there may be more cpus than allocators. 10126 * - do not allow more sync taskq threads than allocators or cpus. 10127 */ 10128 int nthreads = spa->spa_alloc_count; 10129 spa->spa_syncthreads = kmem_zalloc(sizeof (spa_syncthread_info_t) * 10130 nthreads, KM_SLEEP); 10131 10132 spa->spa_sync_tq = taskq_create_synced(name, nthreads, minclsyspri, 10133 nthreads, INT_MAX, TASKQ_PREPOPULATE, &kthreads); 10134 VERIFY(spa->spa_sync_tq != NULL); 10135 VERIFY(kthreads != NULL); 10136 10137 spa_taskqs_t *tqs = 10138 &spa->spa_zio_taskq[ZIO_TYPE_WRITE][ZIO_TASKQ_ISSUE]; 10139 10140 spa_syncthread_info_t *ti = spa->spa_syncthreads; 10141 for (int i = 0, w = 0; i < nthreads; i++, w++, ti++) { 10142 ti->sti_thread = kthreads[i]; 10143 if (w == tqs->stqs_count) { 10144 w = 0; 10145 } 10146 ti->sti_wr_iss_tq = tqs->stqs_taskq[w]; 10147 } 10148 10149 kmem_free(kthreads, sizeof (*kthreads) * nthreads); 10150 return (spa->spa_sync_tq); 10151 } 10152 10153 void 10154 spa_sync_tq_destroy(spa_t *spa) 10155 { 10156 ASSERT(spa->spa_sync_tq != NULL); 10157 10158 taskq_wait(spa->spa_sync_tq); 10159 taskq_destroy(spa->spa_sync_tq); 10160 kmem_free(spa->spa_syncthreads, 10161 sizeof (spa_syncthread_info_t) * spa->spa_alloc_count); 10162 spa->spa_sync_tq = NULL; 10163 } 10164 10165 void 10166 spa_select_allocator(zio_t *zio) 10167 { 10168 zbookmark_phys_t *bm = &zio->io_bookmark; 10169 spa_t *spa = zio->io_spa; 10170 10171 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 10172 10173 /* 10174 * A gang block (for example) may have inherited its parent's 10175 * allocator, in which case there is nothing further to do here. 10176 */ 10177 if (ZIO_HAS_ALLOCATOR(zio)) 10178 return; 10179 10180 ASSERT(spa != NULL); 10181 ASSERT(bm != NULL); 10182 10183 /* 10184 * First try to use an allocator assigned to the syncthread, and set 10185 * the corresponding write issue taskq for the allocator. 10186 * Note, we must have an open pool to do this. 10187 */ 10188 if (spa->spa_sync_tq != NULL) { 10189 spa_syncthread_info_t *ti = spa->spa_syncthreads; 10190 for (int i = 0; i < spa->spa_alloc_count; i++, ti++) { 10191 if (ti->sti_thread == curthread) { 10192 zio->io_allocator = i; 10193 zio->io_wr_iss_tq = ti->sti_wr_iss_tq; 10194 return; 10195 } 10196 } 10197 } 10198 10199 /* 10200 * We want to try to use as many allocators as possible to help improve 10201 * performance, but we also want logically adjacent IOs to be physically 10202 * adjacent to improve sequential read performance. We chunk each object 10203 * into 2^20 block regions, and then hash based on the objset, object, 10204 * level, and region to accomplish both of these goals. 10205 */ 10206 uint64_t hv = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level, 10207 bm->zb_blkid >> 20); 10208 10209 zio->io_allocator = (uint_t)hv % spa->spa_alloc_count; 10210 zio->io_wr_iss_tq = NULL; 10211 } 10212 10213 /* 10214 * ========================================================================== 10215 * Miscellaneous routines 10216 * ========================================================================== 10217 */ 10218 10219 /* 10220 * Remove all pools in the system. 10221 */ 10222 void 10223 spa_evict_all(void) 10224 { 10225 spa_t *spa; 10226 10227 /* 10228 * Remove all cached state. All pools should be closed now, 10229 * so every spa in the AVL tree should be unreferenced. 10230 */ 10231 mutex_enter(&spa_namespace_lock); 10232 while ((spa = spa_next(NULL)) != NULL) { 10233 /* 10234 * Stop async tasks. The async thread may need to detach 10235 * a device that's been replaced, which requires grabbing 10236 * spa_namespace_lock, so we must drop it here. 10237 */ 10238 spa_open_ref(spa, FTAG); 10239 mutex_exit(&spa_namespace_lock); 10240 spa_async_suspend(spa); 10241 mutex_enter(&spa_namespace_lock); 10242 spa_close(spa, FTAG); 10243 10244 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 10245 spa_unload(spa); 10246 spa_deactivate(spa); 10247 } 10248 spa_remove(spa); 10249 } 10250 mutex_exit(&spa_namespace_lock); 10251 } 10252 10253 vdev_t * 10254 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 10255 { 10256 vdev_t *vd; 10257 int i; 10258 10259 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 10260 return (vd); 10261 10262 if (aux) { 10263 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 10264 vd = spa->spa_l2cache.sav_vdevs[i]; 10265 if (vd->vdev_guid == guid) 10266 return (vd); 10267 } 10268 10269 for (i = 0; i < spa->spa_spares.sav_count; i++) { 10270 vd = spa->spa_spares.sav_vdevs[i]; 10271 if (vd->vdev_guid == guid) 10272 return (vd); 10273 } 10274 } 10275 10276 return (NULL); 10277 } 10278 10279 void 10280 spa_upgrade(spa_t *spa, uint64_t version) 10281 { 10282 ASSERT(spa_writeable(spa)); 10283 10284 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 10285 10286 /* 10287 * This should only be called for a non-faulted pool, and since a 10288 * future version would result in an unopenable pool, this shouldn't be 10289 * possible. 10290 */ 10291 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 10292 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 10293 10294 spa->spa_uberblock.ub_version = version; 10295 vdev_config_dirty(spa->spa_root_vdev); 10296 10297 spa_config_exit(spa, SCL_ALL, FTAG); 10298 10299 txg_wait_synced(spa_get_dsl(spa), 0); 10300 } 10301 10302 static boolean_t 10303 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav) 10304 { 10305 (void) spa; 10306 int i; 10307 uint64_t vdev_guid; 10308 10309 for (i = 0; i < sav->sav_count; i++) 10310 if (sav->sav_vdevs[i]->vdev_guid == guid) 10311 return (B_TRUE); 10312 10313 for (i = 0; i < sav->sav_npending; i++) { 10314 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 10315 &vdev_guid) == 0 && vdev_guid == guid) 10316 return (B_TRUE); 10317 } 10318 10319 return (B_FALSE); 10320 } 10321 10322 boolean_t 10323 spa_has_l2cache(spa_t *spa, uint64_t guid) 10324 { 10325 return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache)); 10326 } 10327 10328 boolean_t 10329 spa_has_spare(spa_t *spa, uint64_t guid) 10330 { 10331 return (spa_has_aux_vdev(spa, guid, &spa->spa_spares)); 10332 } 10333 10334 /* 10335 * Check if a pool has an active shared spare device. 10336 * Note: reference count of an active spare is 2, as a spare and as a replace 10337 */ 10338 static boolean_t 10339 spa_has_active_shared_spare(spa_t *spa) 10340 { 10341 int i, refcnt; 10342 uint64_t pool; 10343 spa_aux_vdev_t *sav = &spa->spa_spares; 10344 10345 for (i = 0; i < sav->sav_count; i++) { 10346 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 10347 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 10348 refcnt > 2) 10349 return (B_TRUE); 10350 } 10351 10352 return (B_FALSE); 10353 } 10354 10355 uint64_t 10356 spa_total_metaslabs(spa_t *spa) 10357 { 10358 vdev_t *rvd = spa->spa_root_vdev; 10359 10360 uint64_t m = 0; 10361 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 10362 vdev_t *vd = rvd->vdev_child[c]; 10363 if (!vdev_is_concrete(vd)) 10364 continue; 10365 m += vd->vdev_ms_count; 10366 } 10367 return (m); 10368 } 10369 10370 /* 10371 * Notify any waiting threads that some activity has switched from being in- 10372 * progress to not-in-progress so that the thread can wake up and determine 10373 * whether it is finished waiting. 10374 */ 10375 void 10376 spa_notify_waiters(spa_t *spa) 10377 { 10378 /* 10379 * Acquiring spa_activities_lock here prevents the cv_broadcast from 10380 * happening between the waiting thread's check and cv_wait. 10381 */ 10382 mutex_enter(&spa->spa_activities_lock); 10383 cv_broadcast(&spa->spa_activities_cv); 10384 mutex_exit(&spa->spa_activities_lock); 10385 } 10386 10387 /* 10388 * Notify any waiting threads that the pool is exporting, and then block until 10389 * they are finished using the spa_t. 10390 */ 10391 void 10392 spa_wake_waiters(spa_t *spa) 10393 { 10394 mutex_enter(&spa->spa_activities_lock); 10395 spa->spa_waiters_cancel = B_TRUE; 10396 cv_broadcast(&spa->spa_activities_cv); 10397 while (spa->spa_waiters != 0) 10398 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock); 10399 spa->spa_waiters_cancel = B_FALSE; 10400 mutex_exit(&spa->spa_activities_lock); 10401 } 10402 10403 /* Whether the vdev or any of its descendants are being initialized/trimmed. */ 10404 static boolean_t 10405 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity) 10406 { 10407 spa_t *spa = vd->vdev_spa; 10408 10409 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER)); 10410 ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); 10411 ASSERT(activity == ZPOOL_WAIT_INITIALIZE || 10412 activity == ZPOOL_WAIT_TRIM); 10413 10414 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ? 10415 &vd->vdev_initialize_lock : &vd->vdev_trim_lock; 10416 10417 mutex_exit(&spa->spa_activities_lock); 10418 mutex_enter(lock); 10419 mutex_enter(&spa->spa_activities_lock); 10420 10421 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ? 10422 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) : 10423 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE); 10424 mutex_exit(lock); 10425 10426 if (in_progress) 10427 return (B_TRUE); 10428 10429 for (int i = 0; i < vd->vdev_children; i++) { 10430 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i], 10431 activity)) 10432 return (B_TRUE); 10433 } 10434 10435 return (B_FALSE); 10436 } 10437 10438 /* 10439 * If use_guid is true, this checks whether the vdev specified by guid is 10440 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool 10441 * is being initialized/trimmed. The caller must hold the config lock and 10442 * spa_activities_lock. 10443 */ 10444 static int 10445 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid, 10446 zpool_wait_activity_t activity, boolean_t *in_progress) 10447 { 10448 mutex_exit(&spa->spa_activities_lock); 10449 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 10450 mutex_enter(&spa->spa_activities_lock); 10451 10452 vdev_t *vd; 10453 if (use_guid) { 10454 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 10455 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) { 10456 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 10457 return (EINVAL); 10458 } 10459 } else { 10460 vd = spa->spa_root_vdev; 10461 } 10462 10463 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity); 10464 10465 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 10466 return (0); 10467 } 10468 10469 /* 10470 * Locking for waiting threads 10471 * --------------------------- 10472 * 10473 * Waiting threads need a way to check whether a given activity is in progress, 10474 * and then, if it is, wait for it to complete. Each activity will have some 10475 * in-memory representation of the relevant on-disk state which can be used to 10476 * determine whether or not the activity is in progress. The in-memory state and 10477 * the locking used to protect it will be different for each activity, and may 10478 * not be suitable for use with a cvar (e.g., some state is protected by the 10479 * config lock). To allow waiting threads to wait without any races, another 10480 * lock, spa_activities_lock, is used. 10481 * 10482 * When the state is checked, both the activity-specific lock (if there is one) 10483 * and spa_activities_lock are held. In some cases, the activity-specific lock 10484 * is acquired explicitly (e.g. the config lock). In others, the locking is 10485 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting 10486 * thread releases the activity-specific lock and, if the activity is in 10487 * progress, then cv_waits using spa_activities_lock. 10488 * 10489 * The waiting thread is woken when another thread, one completing some 10490 * activity, updates the state of the activity and then calls 10491 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only 10492 * needs to hold its activity-specific lock when updating the state, and this 10493 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters. 10494 * 10495 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting, 10496 * and because it is held when the waiting thread checks the state of the 10497 * activity, it can never be the case that the completing thread both updates 10498 * the activity state and cv_broadcasts in between the waiting thread's check 10499 * and cv_wait. Thus, a waiting thread can never miss a wakeup. 10500 * 10501 * In order to prevent deadlock, when the waiting thread does its check, in some 10502 * cases it will temporarily drop spa_activities_lock in order to acquire the 10503 * activity-specific lock. The order in which spa_activities_lock and the 10504 * activity specific lock are acquired in the waiting thread is determined by 10505 * the order in which they are acquired in the completing thread; if the 10506 * completing thread calls spa_notify_waiters with the activity-specific lock 10507 * held, then the waiting thread must also acquire the activity-specific lock 10508 * first. 10509 */ 10510 10511 static int 10512 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity, 10513 boolean_t use_tag, uint64_t tag, boolean_t *in_progress) 10514 { 10515 int error = 0; 10516 10517 ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); 10518 10519 switch (activity) { 10520 case ZPOOL_WAIT_CKPT_DISCARD: 10521 *in_progress = 10522 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) && 10523 zap_contains(spa_meta_objset(spa), 10524 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) == 10525 ENOENT); 10526 break; 10527 case ZPOOL_WAIT_FREE: 10528 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS && 10529 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) || 10530 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) || 10531 spa_livelist_delete_check(spa)); 10532 break; 10533 case ZPOOL_WAIT_INITIALIZE: 10534 case ZPOOL_WAIT_TRIM: 10535 error = spa_vdev_activity_in_progress(spa, use_tag, tag, 10536 activity, in_progress); 10537 break; 10538 case ZPOOL_WAIT_REPLACE: 10539 mutex_exit(&spa->spa_activities_lock); 10540 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 10541 mutex_enter(&spa->spa_activities_lock); 10542 10543 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev); 10544 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 10545 break; 10546 case ZPOOL_WAIT_REMOVE: 10547 *in_progress = (spa->spa_removing_phys.sr_state == 10548 DSS_SCANNING); 10549 break; 10550 case ZPOOL_WAIT_RESILVER: 10551 *in_progress = vdev_rebuild_active(spa->spa_root_vdev); 10552 if (*in_progress) 10553 break; 10554 zfs_fallthrough; 10555 case ZPOOL_WAIT_SCRUB: 10556 { 10557 boolean_t scanning, paused, is_scrub; 10558 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 10559 10560 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB); 10561 scanning = (scn->scn_phys.scn_state == DSS_SCANNING); 10562 paused = dsl_scan_is_paused_scrub(scn); 10563 *in_progress = (scanning && !paused && 10564 is_scrub == (activity == ZPOOL_WAIT_SCRUB)); 10565 break; 10566 } 10567 case ZPOOL_WAIT_RAIDZ_EXPAND: 10568 { 10569 vdev_raidz_expand_t *vre = spa->spa_raidz_expand; 10570 *in_progress = (vre != NULL && vre->vre_state == DSS_SCANNING); 10571 break; 10572 } 10573 default: 10574 panic("unrecognized value for activity %d", activity); 10575 } 10576 10577 return (error); 10578 } 10579 10580 static int 10581 spa_wait_common(const char *pool, zpool_wait_activity_t activity, 10582 boolean_t use_tag, uint64_t tag, boolean_t *waited) 10583 { 10584 /* 10585 * The tag is used to distinguish between instances of an activity. 10586 * 'initialize' and 'trim' are the only activities that we use this for. 10587 * The other activities can only have a single instance in progress in a 10588 * pool at one time, making the tag unnecessary. 10589 * 10590 * There can be multiple devices being replaced at once, but since they 10591 * all finish once resilvering finishes, we don't bother keeping track 10592 * of them individually, we just wait for them all to finish. 10593 */ 10594 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE && 10595 activity != ZPOOL_WAIT_TRIM) 10596 return (EINVAL); 10597 10598 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES) 10599 return (EINVAL); 10600 10601 spa_t *spa; 10602 int error = spa_open(pool, &spa, FTAG); 10603 if (error != 0) 10604 return (error); 10605 10606 /* 10607 * Increment the spa's waiter count so that we can call spa_close and 10608 * still ensure that the spa_t doesn't get freed before this thread is 10609 * finished with it when the pool is exported. We want to call spa_close 10610 * before we start waiting because otherwise the additional ref would 10611 * prevent the pool from being exported or destroyed throughout the 10612 * potentially long wait. 10613 */ 10614 mutex_enter(&spa->spa_activities_lock); 10615 spa->spa_waiters++; 10616 spa_close(spa, FTAG); 10617 10618 *waited = B_FALSE; 10619 for (;;) { 10620 boolean_t in_progress; 10621 error = spa_activity_in_progress(spa, activity, use_tag, tag, 10622 &in_progress); 10623 10624 if (error || !in_progress || spa->spa_waiters_cancel) 10625 break; 10626 10627 *waited = B_TRUE; 10628 10629 if (cv_wait_sig(&spa->spa_activities_cv, 10630 &spa->spa_activities_lock) == 0) { 10631 error = EINTR; 10632 break; 10633 } 10634 } 10635 10636 spa->spa_waiters--; 10637 cv_signal(&spa->spa_waiters_cv); 10638 mutex_exit(&spa->spa_activities_lock); 10639 10640 return (error); 10641 } 10642 10643 /* 10644 * Wait for a particular instance of the specified activity to complete, where 10645 * the instance is identified by 'tag' 10646 */ 10647 int 10648 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag, 10649 boolean_t *waited) 10650 { 10651 return (spa_wait_common(pool, activity, B_TRUE, tag, waited)); 10652 } 10653 10654 /* 10655 * Wait for all instances of the specified activity complete 10656 */ 10657 int 10658 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited) 10659 { 10660 10661 return (spa_wait_common(pool, activity, B_FALSE, 0, waited)); 10662 } 10663 10664 sysevent_t * 10665 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 10666 { 10667 sysevent_t *ev = NULL; 10668 #ifdef _KERNEL 10669 nvlist_t *resource; 10670 10671 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl); 10672 if (resource) { 10673 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP); 10674 ev->resource = resource; 10675 } 10676 #else 10677 (void) spa, (void) vd, (void) hist_nvl, (void) name; 10678 #endif 10679 return (ev); 10680 } 10681 10682 void 10683 spa_event_post(sysevent_t *ev) 10684 { 10685 #ifdef _KERNEL 10686 if (ev) { 10687 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb); 10688 kmem_free(ev, sizeof (*ev)); 10689 } 10690 #else 10691 (void) ev; 10692 #endif 10693 } 10694 10695 /* 10696 * Post a zevent corresponding to the given sysevent. The 'name' must be one 10697 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be 10698 * filled in from the spa and (optionally) the vdev. This doesn't do anything 10699 * in the userland libzpool, as we don't want consumers to misinterpret ztest 10700 * or zdb as real changes. 10701 */ 10702 void 10703 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 10704 { 10705 spa_event_post(spa_event_create(spa, vd, hist_nvl, name)); 10706 } 10707 10708 /* state manipulation functions */ 10709 EXPORT_SYMBOL(spa_open); 10710 EXPORT_SYMBOL(spa_open_rewind); 10711 EXPORT_SYMBOL(spa_get_stats); 10712 EXPORT_SYMBOL(spa_create); 10713 EXPORT_SYMBOL(spa_import); 10714 EXPORT_SYMBOL(spa_tryimport); 10715 EXPORT_SYMBOL(spa_destroy); 10716 EXPORT_SYMBOL(spa_export); 10717 EXPORT_SYMBOL(spa_reset); 10718 EXPORT_SYMBOL(spa_async_request); 10719 EXPORT_SYMBOL(spa_async_suspend); 10720 EXPORT_SYMBOL(spa_async_resume); 10721 EXPORT_SYMBOL(spa_inject_addref); 10722 EXPORT_SYMBOL(spa_inject_delref); 10723 EXPORT_SYMBOL(spa_scan_stat_init); 10724 EXPORT_SYMBOL(spa_scan_get_stats); 10725 10726 /* device manipulation */ 10727 EXPORT_SYMBOL(spa_vdev_add); 10728 EXPORT_SYMBOL(spa_vdev_attach); 10729 EXPORT_SYMBOL(spa_vdev_detach); 10730 EXPORT_SYMBOL(spa_vdev_setpath); 10731 EXPORT_SYMBOL(spa_vdev_setfru); 10732 EXPORT_SYMBOL(spa_vdev_split_mirror); 10733 10734 /* spare statech is global across all pools) */ 10735 EXPORT_SYMBOL(spa_spare_add); 10736 EXPORT_SYMBOL(spa_spare_remove); 10737 EXPORT_SYMBOL(spa_spare_exists); 10738 EXPORT_SYMBOL(spa_spare_activate); 10739 10740 /* L2ARC statech is global across all pools) */ 10741 EXPORT_SYMBOL(spa_l2cache_add); 10742 EXPORT_SYMBOL(spa_l2cache_remove); 10743 EXPORT_SYMBOL(spa_l2cache_exists); 10744 EXPORT_SYMBOL(spa_l2cache_activate); 10745 EXPORT_SYMBOL(spa_l2cache_drop); 10746 10747 /* scanning */ 10748 EXPORT_SYMBOL(spa_scan); 10749 EXPORT_SYMBOL(spa_scan_stop); 10750 10751 /* spa syncing */ 10752 EXPORT_SYMBOL(spa_sync); /* only for DMU use */ 10753 EXPORT_SYMBOL(spa_sync_allpools); 10754 10755 /* properties */ 10756 EXPORT_SYMBOL(spa_prop_set); 10757 EXPORT_SYMBOL(spa_prop_get); 10758 EXPORT_SYMBOL(spa_prop_clear_bootfs); 10759 10760 /* asynchronous event notification */ 10761 EXPORT_SYMBOL(spa_event_notify); 10762 10763 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW, 10764 "Percentage of CPUs to run a metaslab preload taskq"); 10765 10766 /* BEGIN CSTYLED */ 10767 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW, 10768 "log2 fraction of arc that can be used by inflight I/Os when " 10769 "verifying pool during import"); 10770 /* END CSTYLED */ 10771 10772 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW, 10773 "Set to traverse metadata on pool import"); 10774 10775 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW, 10776 "Set to traverse data on pool import"); 10777 10778 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW, 10779 "Print vdev tree to zfs_dbgmsg during pool import"); 10780 10781 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD, 10782 "Percentage of CPUs to run an IO worker thread"); 10783 10784 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD, 10785 "Number of threads per IO worker taskqueue"); 10786 10787 /* BEGIN CSTYLED */ 10788 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW, 10789 "Allow importing pool with up to this number of missing top-level " 10790 "vdevs (in read-only mode)"); 10791 /* END CSTYLED */ 10792 10793 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT, 10794 ZMOD_RW, "Set the livelist condense zthr to pause"); 10795 10796 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT, 10797 ZMOD_RW, "Set the livelist condense synctask to pause"); 10798 10799 /* BEGIN CSTYLED */ 10800 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel, 10801 INT, ZMOD_RW, 10802 "Whether livelist condensing was canceled in the synctask"); 10803 10804 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel, 10805 INT, ZMOD_RW, 10806 "Whether livelist condensing was canceled in the zthr function"); 10807 10808 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT, 10809 ZMOD_RW, 10810 "Whether extra ALLOC blkptrs were added to a livelist entry while it " 10811 "was being condensed"); 10812 10813 #ifdef _KERNEL 10814 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_read, 10815 spa_taskq_read_param_set, spa_taskq_read_param_get, ZMOD_RD, 10816 "Configure IO queues for read IO"); 10817 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_write, 10818 spa_taskq_write_param_set, spa_taskq_write_param_get, ZMOD_RD, 10819 "Configure IO queues for write IO"); 10820 #endif 10821 /* END CSTYLED */ 10822 10823 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_wr_iss_ncpus, UINT, ZMOD_RW, 10824 "Number of CPUs to run write issue taskqs"); 10825