xref: /freebsd/sys/contrib/openzfs/module/zfs/spa.c (revision e9e8876a4d6afc1ad5315faaa191b25121a813d7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2018, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31  * Copyright 2018 Joyent, Inc.
32  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33  * Copyright 2017 Joyent, Inc.
34  * Copyright (c) 2017, Intel Corporation.
35  * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36  */
37 
38 /*
39  * SPA: Storage Pool Allocator
40  *
41  * This file contains all the routines used when modifying on-disk SPA state.
42  * This includes opening, importing, destroying, exporting a pool, and syncing a
43  * pool.
44  */
45 
46 #include <sys/zfs_context.h>
47 #include <sys/fm/fs/zfs.h>
48 #include <sys/spa_impl.h>
49 #include <sys/zio.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/dmu.h>
52 #include <sys/dmu_tx.h>
53 #include <sys/zap.h>
54 #include <sys/zil.h>
55 #include <sys/ddt.h>
56 #include <sys/vdev_impl.h>
57 #include <sys/vdev_removal.h>
58 #include <sys/vdev_indirect_mapping.h>
59 #include <sys/vdev_indirect_births.h>
60 #include <sys/vdev_initialize.h>
61 #include <sys/vdev_rebuild.h>
62 #include <sys/vdev_trim.h>
63 #include <sys/vdev_disk.h>
64 #include <sys/vdev_draid.h>
65 #include <sys/metaslab.h>
66 #include <sys/metaslab_impl.h>
67 #include <sys/mmp.h>
68 #include <sys/uberblock_impl.h>
69 #include <sys/txg.h>
70 #include <sys/avl.h>
71 #include <sys/bpobj.h>
72 #include <sys/dmu_traverse.h>
73 #include <sys/dmu_objset.h>
74 #include <sys/unique.h>
75 #include <sys/dsl_pool.h>
76 #include <sys/dsl_dataset.h>
77 #include <sys/dsl_dir.h>
78 #include <sys/dsl_prop.h>
79 #include <sys/dsl_synctask.h>
80 #include <sys/fs/zfs.h>
81 #include <sys/arc.h>
82 #include <sys/callb.h>
83 #include <sys/systeminfo.h>
84 #include <sys/spa_boot.h>
85 #include <sys/zfs_ioctl.h>
86 #include <sys/dsl_scan.h>
87 #include <sys/zfeature.h>
88 #include <sys/dsl_destroy.h>
89 #include <sys/zvol.h>
90 
91 #ifdef	_KERNEL
92 #include <sys/fm/protocol.h>
93 #include <sys/fm/util.h>
94 #include <sys/callb.h>
95 #include <sys/zone.h>
96 #include <sys/vmsystm.h>
97 #endif	/* _KERNEL */
98 
99 #include "zfs_prop.h"
100 #include "zfs_comutil.h"
101 
102 /*
103  * The interval, in seconds, at which failed configuration cache file writes
104  * should be retried.
105  */
106 int zfs_ccw_retry_interval = 300;
107 
108 typedef enum zti_modes {
109 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
110 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
111 	ZTI_MODE_SCALE,			/* Taskqs scale with CPUs. */
112 	ZTI_MODE_NULL,			/* don't create a taskq */
113 	ZTI_NMODES
114 } zti_modes_t;
115 
116 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
117 #define	ZTI_PCT(n)	{ ZTI_MODE_ONLINE_PERCENT, (n), 1 }
118 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
119 #define	ZTI_SCALE	{ ZTI_MODE_SCALE, 0, 1 }
120 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
121 
122 #define	ZTI_N(n)	ZTI_P(n, 1)
123 #define	ZTI_ONE		ZTI_N(1)
124 
125 typedef struct zio_taskq_info {
126 	zti_modes_t zti_mode;
127 	uint_t zti_value;
128 	uint_t zti_count;
129 } zio_taskq_info_t;
130 
131 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
132 	"iss", "iss_h", "int", "int_h"
133 };
134 
135 /*
136  * This table defines the taskq settings for each ZFS I/O type. When
137  * initializing a pool, we use this table to create an appropriately sized
138  * taskq. Some operations are low volume and therefore have a small, static
139  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
140  * macros. Other operations process a large amount of data; the ZTI_BATCH
141  * macro causes us to create a taskq oriented for throughput. Some operations
142  * are so high frequency and short-lived that the taskq itself can become a
143  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
144  * additional degree of parallelism specified by the number of threads per-
145  * taskq and the number of taskqs; when dispatching an event in this case, the
146  * particular taskq is chosen at random. ZTI_SCALE is similar to ZTI_BATCH,
147  * but with number of taskqs also scaling with number of CPUs.
148  *
149  * The different taskq priorities are to handle the different contexts (issue
150  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
151  * need to be handled with minimum delay.
152  */
153 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
154 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
155 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
156 	{ ZTI_N(8),	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* READ */
157 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_SCALE,	ZTI_N(5) }, /* WRITE */
158 	{ ZTI_SCALE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
159 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
160 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
161 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
162 };
163 
164 static void spa_sync_version(void *arg, dmu_tx_t *tx);
165 static void spa_sync_props(void *arg, dmu_tx_t *tx);
166 static boolean_t spa_has_active_shared_spare(spa_t *spa);
167 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
168 static void spa_vdev_resilver_done(spa_t *spa);
169 
170 uint_t		zio_taskq_batch_pct = 80;	/* 1 thread per cpu in pset */
171 uint_t		zio_taskq_batch_tpq;		/* threads per taskq */
172 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
173 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
174 
175 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
176 
177 /*
178  * Report any spa_load_verify errors found, but do not fail spa_load.
179  * This is used by zdb to analyze non-idle pools.
180  */
181 boolean_t	spa_load_verify_dryrun = B_FALSE;
182 
183 /*
184  * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
185  * This is used by zdb for spacemaps verification.
186  */
187 boolean_t	spa_mode_readable_spacemaps = B_FALSE;
188 
189 /*
190  * This (illegal) pool name is used when temporarily importing a spa_t in order
191  * to get the vdev stats associated with the imported devices.
192  */
193 #define	TRYIMPORT_NAME	"$import"
194 
195 /*
196  * For debugging purposes: print out vdev tree during pool import.
197  */
198 int		spa_load_print_vdev_tree = B_FALSE;
199 
200 /*
201  * A non-zero value for zfs_max_missing_tvds means that we allow importing
202  * pools with missing top-level vdevs. This is strictly intended for advanced
203  * pool recovery cases since missing data is almost inevitable. Pools with
204  * missing devices can only be imported read-only for safety reasons, and their
205  * fail-mode will be automatically set to "continue".
206  *
207  * With 1 missing vdev we should be able to import the pool and mount all
208  * datasets. User data that was not modified after the missing device has been
209  * added should be recoverable. This means that snapshots created prior to the
210  * addition of that device should be completely intact.
211  *
212  * With 2 missing vdevs, some datasets may fail to mount since there are
213  * dataset statistics that are stored as regular metadata. Some data might be
214  * recoverable if those vdevs were added recently.
215  *
216  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
217  * may be missing entirely. Chances of data recovery are very low. Note that
218  * there are also risks of performing an inadvertent rewind as we might be
219  * missing all the vdevs with the latest uberblocks.
220  */
221 unsigned long	zfs_max_missing_tvds = 0;
222 
223 /*
224  * The parameters below are similar to zfs_max_missing_tvds but are only
225  * intended for a preliminary open of the pool with an untrusted config which
226  * might be incomplete or out-dated.
227  *
228  * We are more tolerant for pools opened from a cachefile since we could have
229  * an out-dated cachefile where a device removal was not registered.
230  * We could have set the limit arbitrarily high but in the case where devices
231  * are really missing we would want to return the proper error codes; we chose
232  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
233  * and we get a chance to retrieve the trusted config.
234  */
235 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
236 
237 /*
238  * In the case where config was assembled by scanning device paths (/dev/dsks
239  * by default) we are less tolerant since all the existing devices should have
240  * been detected and we want spa_load to return the right error codes.
241  */
242 uint64_t	zfs_max_missing_tvds_scan = 0;
243 
244 /*
245  * Debugging aid that pauses spa_sync() towards the end.
246  */
247 boolean_t	zfs_pause_spa_sync = B_FALSE;
248 
249 /*
250  * Variables to indicate the livelist condense zthr func should wait at certain
251  * points for the livelist to be removed - used to test condense/destroy races
252  */
253 int zfs_livelist_condense_zthr_pause = 0;
254 int zfs_livelist_condense_sync_pause = 0;
255 
256 /*
257  * Variables to track whether or not condense cancellation has been
258  * triggered in testing.
259  */
260 int zfs_livelist_condense_sync_cancel = 0;
261 int zfs_livelist_condense_zthr_cancel = 0;
262 
263 /*
264  * Variable to track whether or not extra ALLOC blkptrs were added to a
265  * livelist entry while it was being condensed (caused by the way we track
266  * remapped blkptrs in dbuf_remap_impl)
267  */
268 int zfs_livelist_condense_new_alloc = 0;
269 
270 /*
271  * ==========================================================================
272  * SPA properties routines
273  * ==========================================================================
274  */
275 
276 /*
277  * Add a (source=src, propname=propval) list to an nvlist.
278  */
279 static void
280 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
281     uint64_t intval, zprop_source_t src)
282 {
283 	const char *propname = zpool_prop_to_name(prop);
284 	nvlist_t *propval;
285 
286 	propval = fnvlist_alloc();
287 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
288 
289 	if (strval != NULL)
290 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
291 	else
292 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
293 
294 	fnvlist_add_nvlist(nvl, propname, propval);
295 	nvlist_free(propval);
296 }
297 
298 /*
299  * Get property values from the spa configuration.
300  */
301 static void
302 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
303 {
304 	vdev_t *rvd = spa->spa_root_vdev;
305 	dsl_pool_t *pool = spa->spa_dsl_pool;
306 	uint64_t size, alloc, cap, version;
307 	const zprop_source_t src = ZPROP_SRC_NONE;
308 	spa_config_dirent_t *dp;
309 	metaslab_class_t *mc = spa_normal_class(spa);
310 
311 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
312 
313 	if (rvd != NULL) {
314 		alloc = metaslab_class_get_alloc(mc);
315 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
316 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
317 		alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
318 
319 		size = metaslab_class_get_space(mc);
320 		size += metaslab_class_get_space(spa_special_class(spa));
321 		size += metaslab_class_get_space(spa_dedup_class(spa));
322 		size += metaslab_class_get_space(spa_embedded_log_class(spa));
323 
324 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
325 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
326 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
327 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
328 		    size - alloc, src);
329 		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
330 		    spa->spa_checkpoint_info.sci_dspace, src);
331 
332 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
333 		    metaslab_class_fragmentation(mc), src);
334 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
335 		    metaslab_class_expandable_space(mc), src);
336 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
337 		    (spa_mode(spa) == SPA_MODE_READ), src);
338 
339 		cap = (size == 0) ? 0 : (alloc * 100 / size);
340 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
341 
342 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
343 		    ddt_get_pool_dedup_ratio(spa), src);
344 
345 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
346 		    rvd->vdev_state, src);
347 
348 		version = spa_version(spa);
349 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
350 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
351 			    version, ZPROP_SRC_DEFAULT);
352 		} else {
353 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
354 			    version, ZPROP_SRC_LOCAL);
355 		}
356 		spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
357 		    NULL, spa_load_guid(spa), src);
358 	}
359 
360 	if (pool != NULL) {
361 		/*
362 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
363 		 * when opening pools before this version freedir will be NULL.
364 		 */
365 		if (pool->dp_free_dir != NULL) {
366 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
367 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
368 			    src);
369 		} else {
370 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
371 			    NULL, 0, src);
372 		}
373 
374 		if (pool->dp_leak_dir != NULL) {
375 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
376 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
377 			    src);
378 		} else {
379 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
380 			    NULL, 0, src);
381 		}
382 	}
383 
384 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
385 
386 	if (spa->spa_comment != NULL) {
387 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
388 		    0, ZPROP_SRC_LOCAL);
389 	}
390 
391 	if (spa->spa_compatibility != NULL) {
392 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
393 		    spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
394 	}
395 
396 	if (spa->spa_root != NULL)
397 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
398 		    0, ZPROP_SRC_LOCAL);
399 
400 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
401 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
402 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
403 	} else {
404 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
405 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
406 	}
407 
408 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
409 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
410 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
411 	} else {
412 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
413 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
414 	}
415 
416 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
417 		if (dp->scd_path == NULL) {
418 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
419 			    "none", 0, ZPROP_SRC_LOCAL);
420 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
421 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
422 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
423 		}
424 	}
425 }
426 
427 /*
428  * Get zpool property values.
429  */
430 int
431 spa_prop_get(spa_t *spa, nvlist_t **nvp)
432 {
433 	objset_t *mos = spa->spa_meta_objset;
434 	zap_cursor_t zc;
435 	zap_attribute_t za;
436 	dsl_pool_t *dp;
437 	int err;
438 
439 	err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
440 	if (err)
441 		return (err);
442 
443 	dp = spa_get_dsl(spa);
444 	dsl_pool_config_enter(dp, FTAG);
445 	mutex_enter(&spa->spa_props_lock);
446 
447 	/*
448 	 * Get properties from the spa config.
449 	 */
450 	spa_prop_get_config(spa, nvp);
451 
452 	/* If no pool property object, no more prop to get. */
453 	if (mos == NULL || spa->spa_pool_props_object == 0)
454 		goto out;
455 
456 	/*
457 	 * Get properties from the MOS pool property object.
458 	 */
459 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
460 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
461 	    zap_cursor_advance(&zc)) {
462 		uint64_t intval = 0;
463 		char *strval = NULL;
464 		zprop_source_t src = ZPROP_SRC_DEFAULT;
465 		zpool_prop_t prop;
466 
467 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
468 			continue;
469 
470 		switch (za.za_integer_length) {
471 		case 8:
472 			/* integer property */
473 			if (za.za_first_integer !=
474 			    zpool_prop_default_numeric(prop))
475 				src = ZPROP_SRC_LOCAL;
476 
477 			if (prop == ZPOOL_PROP_BOOTFS) {
478 				dsl_dataset_t *ds = NULL;
479 
480 				err = dsl_dataset_hold_obj(dp,
481 				    za.za_first_integer, FTAG, &ds);
482 				if (err != 0)
483 					break;
484 
485 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
486 				    KM_SLEEP);
487 				dsl_dataset_name(ds, strval);
488 				dsl_dataset_rele(ds, FTAG);
489 			} else {
490 				strval = NULL;
491 				intval = za.za_first_integer;
492 			}
493 
494 			spa_prop_add_list(*nvp, prop, strval, intval, src);
495 
496 			if (strval != NULL)
497 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
498 
499 			break;
500 
501 		case 1:
502 			/* string property */
503 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
504 			err = zap_lookup(mos, spa->spa_pool_props_object,
505 			    za.za_name, 1, za.za_num_integers, strval);
506 			if (err) {
507 				kmem_free(strval, za.za_num_integers);
508 				break;
509 			}
510 			spa_prop_add_list(*nvp, prop, strval, 0, src);
511 			kmem_free(strval, za.za_num_integers);
512 			break;
513 
514 		default:
515 			break;
516 		}
517 	}
518 	zap_cursor_fini(&zc);
519 out:
520 	mutex_exit(&spa->spa_props_lock);
521 	dsl_pool_config_exit(dp, FTAG);
522 	if (err && err != ENOENT) {
523 		nvlist_free(*nvp);
524 		*nvp = NULL;
525 		return (err);
526 	}
527 
528 	return (0);
529 }
530 
531 /*
532  * Validate the given pool properties nvlist and modify the list
533  * for the property values to be set.
534  */
535 static int
536 spa_prop_validate(spa_t *spa, nvlist_t *props)
537 {
538 	nvpair_t *elem;
539 	int error = 0, reset_bootfs = 0;
540 	uint64_t objnum = 0;
541 	boolean_t has_feature = B_FALSE;
542 
543 	elem = NULL;
544 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
545 		uint64_t intval;
546 		char *strval, *slash, *check, *fname;
547 		const char *propname = nvpair_name(elem);
548 		zpool_prop_t prop = zpool_name_to_prop(propname);
549 
550 		switch (prop) {
551 		case ZPOOL_PROP_INVAL:
552 			if (!zpool_prop_feature(propname)) {
553 				error = SET_ERROR(EINVAL);
554 				break;
555 			}
556 
557 			/*
558 			 * Sanitize the input.
559 			 */
560 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
561 				error = SET_ERROR(EINVAL);
562 				break;
563 			}
564 
565 			if (nvpair_value_uint64(elem, &intval) != 0) {
566 				error = SET_ERROR(EINVAL);
567 				break;
568 			}
569 
570 			if (intval != 0) {
571 				error = SET_ERROR(EINVAL);
572 				break;
573 			}
574 
575 			fname = strchr(propname, '@') + 1;
576 			if (zfeature_lookup_name(fname, NULL) != 0) {
577 				error = SET_ERROR(EINVAL);
578 				break;
579 			}
580 
581 			has_feature = B_TRUE;
582 			break;
583 
584 		case ZPOOL_PROP_VERSION:
585 			error = nvpair_value_uint64(elem, &intval);
586 			if (!error &&
587 			    (intval < spa_version(spa) ||
588 			    intval > SPA_VERSION_BEFORE_FEATURES ||
589 			    has_feature))
590 				error = SET_ERROR(EINVAL);
591 			break;
592 
593 		case ZPOOL_PROP_DELEGATION:
594 		case ZPOOL_PROP_AUTOREPLACE:
595 		case ZPOOL_PROP_LISTSNAPS:
596 		case ZPOOL_PROP_AUTOEXPAND:
597 		case ZPOOL_PROP_AUTOTRIM:
598 			error = nvpair_value_uint64(elem, &intval);
599 			if (!error && intval > 1)
600 				error = SET_ERROR(EINVAL);
601 			break;
602 
603 		case ZPOOL_PROP_MULTIHOST:
604 			error = nvpair_value_uint64(elem, &intval);
605 			if (!error && intval > 1)
606 				error = SET_ERROR(EINVAL);
607 
608 			if (!error) {
609 				uint32_t hostid = zone_get_hostid(NULL);
610 				if (hostid)
611 					spa->spa_hostid = hostid;
612 				else
613 					error = SET_ERROR(ENOTSUP);
614 			}
615 
616 			break;
617 
618 		case ZPOOL_PROP_BOOTFS:
619 			/*
620 			 * If the pool version is less than SPA_VERSION_BOOTFS,
621 			 * or the pool is still being created (version == 0),
622 			 * the bootfs property cannot be set.
623 			 */
624 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
625 				error = SET_ERROR(ENOTSUP);
626 				break;
627 			}
628 
629 			/*
630 			 * Make sure the vdev config is bootable
631 			 */
632 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
633 				error = SET_ERROR(ENOTSUP);
634 				break;
635 			}
636 
637 			reset_bootfs = 1;
638 
639 			error = nvpair_value_string(elem, &strval);
640 
641 			if (!error) {
642 				objset_t *os;
643 
644 				if (strval == NULL || strval[0] == '\0') {
645 					objnum = zpool_prop_default_numeric(
646 					    ZPOOL_PROP_BOOTFS);
647 					break;
648 				}
649 
650 				error = dmu_objset_hold(strval, FTAG, &os);
651 				if (error != 0)
652 					break;
653 
654 				/* Must be ZPL. */
655 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
656 					error = SET_ERROR(ENOTSUP);
657 				} else {
658 					objnum = dmu_objset_id(os);
659 				}
660 				dmu_objset_rele(os, FTAG);
661 			}
662 			break;
663 
664 		case ZPOOL_PROP_FAILUREMODE:
665 			error = nvpair_value_uint64(elem, &intval);
666 			if (!error && intval > ZIO_FAILURE_MODE_PANIC)
667 				error = SET_ERROR(EINVAL);
668 
669 			/*
670 			 * This is a special case which only occurs when
671 			 * the pool has completely failed. This allows
672 			 * the user to change the in-core failmode property
673 			 * without syncing it out to disk (I/Os might
674 			 * currently be blocked). We do this by returning
675 			 * EIO to the caller (spa_prop_set) to trick it
676 			 * into thinking we encountered a property validation
677 			 * error.
678 			 */
679 			if (!error && spa_suspended(spa)) {
680 				spa->spa_failmode = intval;
681 				error = SET_ERROR(EIO);
682 			}
683 			break;
684 
685 		case ZPOOL_PROP_CACHEFILE:
686 			if ((error = nvpair_value_string(elem, &strval)) != 0)
687 				break;
688 
689 			if (strval[0] == '\0')
690 				break;
691 
692 			if (strcmp(strval, "none") == 0)
693 				break;
694 
695 			if (strval[0] != '/') {
696 				error = SET_ERROR(EINVAL);
697 				break;
698 			}
699 
700 			slash = strrchr(strval, '/');
701 			ASSERT(slash != NULL);
702 
703 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
704 			    strcmp(slash, "/..") == 0)
705 				error = SET_ERROR(EINVAL);
706 			break;
707 
708 		case ZPOOL_PROP_COMMENT:
709 			if ((error = nvpair_value_string(elem, &strval)) != 0)
710 				break;
711 			for (check = strval; *check != '\0'; check++) {
712 				if (!isprint(*check)) {
713 					error = SET_ERROR(EINVAL);
714 					break;
715 				}
716 			}
717 			if (strlen(strval) > ZPROP_MAX_COMMENT)
718 				error = SET_ERROR(E2BIG);
719 			break;
720 
721 		default:
722 			break;
723 		}
724 
725 		if (error)
726 			break;
727 	}
728 
729 	(void) nvlist_remove_all(props,
730 	    zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
731 
732 	if (!error && reset_bootfs) {
733 		error = nvlist_remove(props,
734 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
735 
736 		if (!error) {
737 			error = nvlist_add_uint64(props,
738 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
739 		}
740 	}
741 
742 	return (error);
743 }
744 
745 void
746 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
747 {
748 	char *cachefile;
749 	spa_config_dirent_t *dp;
750 
751 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
752 	    &cachefile) != 0)
753 		return;
754 
755 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
756 	    KM_SLEEP);
757 
758 	if (cachefile[0] == '\0')
759 		dp->scd_path = spa_strdup(spa_config_path);
760 	else if (strcmp(cachefile, "none") == 0)
761 		dp->scd_path = NULL;
762 	else
763 		dp->scd_path = spa_strdup(cachefile);
764 
765 	list_insert_head(&spa->spa_config_list, dp);
766 	if (need_sync)
767 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
768 }
769 
770 int
771 spa_prop_set(spa_t *spa, nvlist_t *nvp)
772 {
773 	int error;
774 	nvpair_t *elem = NULL;
775 	boolean_t need_sync = B_FALSE;
776 
777 	if ((error = spa_prop_validate(spa, nvp)) != 0)
778 		return (error);
779 
780 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
781 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
782 
783 		if (prop == ZPOOL_PROP_CACHEFILE ||
784 		    prop == ZPOOL_PROP_ALTROOT ||
785 		    prop == ZPOOL_PROP_READONLY)
786 			continue;
787 
788 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
789 			uint64_t ver = 0;
790 
791 			if (prop == ZPOOL_PROP_VERSION) {
792 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
793 			} else {
794 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
795 				ver = SPA_VERSION_FEATURES;
796 				need_sync = B_TRUE;
797 			}
798 
799 			/* Save time if the version is already set. */
800 			if (ver == spa_version(spa))
801 				continue;
802 
803 			/*
804 			 * In addition to the pool directory object, we might
805 			 * create the pool properties object, the features for
806 			 * read object, the features for write object, or the
807 			 * feature descriptions object.
808 			 */
809 			error = dsl_sync_task(spa->spa_name, NULL,
810 			    spa_sync_version, &ver,
811 			    6, ZFS_SPACE_CHECK_RESERVED);
812 			if (error)
813 				return (error);
814 			continue;
815 		}
816 
817 		need_sync = B_TRUE;
818 		break;
819 	}
820 
821 	if (need_sync) {
822 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
823 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
824 	}
825 
826 	return (0);
827 }
828 
829 /*
830  * If the bootfs property value is dsobj, clear it.
831  */
832 void
833 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
834 {
835 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
836 		VERIFY(zap_remove(spa->spa_meta_objset,
837 		    spa->spa_pool_props_object,
838 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
839 		spa->spa_bootfs = 0;
840 	}
841 }
842 
843 /*ARGSUSED*/
844 static int
845 spa_change_guid_check(void *arg, dmu_tx_t *tx)
846 {
847 	uint64_t *newguid __maybe_unused = arg;
848 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
849 	vdev_t *rvd = spa->spa_root_vdev;
850 	uint64_t vdev_state;
851 
852 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
853 		int error = (spa_has_checkpoint(spa)) ?
854 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
855 		return (SET_ERROR(error));
856 	}
857 
858 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
859 	vdev_state = rvd->vdev_state;
860 	spa_config_exit(spa, SCL_STATE, FTAG);
861 
862 	if (vdev_state != VDEV_STATE_HEALTHY)
863 		return (SET_ERROR(ENXIO));
864 
865 	ASSERT3U(spa_guid(spa), !=, *newguid);
866 
867 	return (0);
868 }
869 
870 static void
871 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
872 {
873 	uint64_t *newguid = arg;
874 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
875 	uint64_t oldguid;
876 	vdev_t *rvd = spa->spa_root_vdev;
877 
878 	oldguid = spa_guid(spa);
879 
880 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
881 	rvd->vdev_guid = *newguid;
882 	rvd->vdev_guid_sum += (*newguid - oldguid);
883 	vdev_config_dirty(rvd);
884 	spa_config_exit(spa, SCL_STATE, FTAG);
885 
886 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
887 	    (u_longlong_t)oldguid, (u_longlong_t)*newguid);
888 }
889 
890 /*
891  * Change the GUID for the pool.  This is done so that we can later
892  * re-import a pool built from a clone of our own vdevs.  We will modify
893  * the root vdev's guid, our own pool guid, and then mark all of our
894  * vdevs dirty.  Note that we must make sure that all our vdevs are
895  * online when we do this, or else any vdevs that weren't present
896  * would be orphaned from our pool.  We are also going to issue a
897  * sysevent to update any watchers.
898  */
899 int
900 spa_change_guid(spa_t *spa)
901 {
902 	int error;
903 	uint64_t guid;
904 
905 	mutex_enter(&spa->spa_vdev_top_lock);
906 	mutex_enter(&spa_namespace_lock);
907 	guid = spa_generate_guid(NULL);
908 
909 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
910 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
911 
912 	if (error == 0) {
913 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
914 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
915 	}
916 
917 	mutex_exit(&spa_namespace_lock);
918 	mutex_exit(&spa->spa_vdev_top_lock);
919 
920 	return (error);
921 }
922 
923 /*
924  * ==========================================================================
925  * SPA state manipulation (open/create/destroy/import/export)
926  * ==========================================================================
927  */
928 
929 static int
930 spa_error_entry_compare(const void *a, const void *b)
931 {
932 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
933 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
934 	int ret;
935 
936 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
937 	    sizeof (zbookmark_phys_t));
938 
939 	return (TREE_ISIGN(ret));
940 }
941 
942 /*
943  * Utility function which retrieves copies of the current logs and
944  * re-initializes them in the process.
945  */
946 void
947 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
948 {
949 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
950 
951 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
952 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
953 
954 	avl_create(&spa->spa_errlist_scrub,
955 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
956 	    offsetof(spa_error_entry_t, se_avl));
957 	avl_create(&spa->spa_errlist_last,
958 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
959 	    offsetof(spa_error_entry_t, se_avl));
960 }
961 
962 static void
963 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
964 {
965 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
966 	enum zti_modes mode = ztip->zti_mode;
967 	uint_t value = ztip->zti_value;
968 	uint_t count = ztip->zti_count;
969 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
970 	uint_t cpus, flags = TASKQ_DYNAMIC;
971 	boolean_t batch = B_FALSE;
972 
973 	switch (mode) {
974 	case ZTI_MODE_FIXED:
975 		ASSERT3U(value, >, 0);
976 		break;
977 
978 	case ZTI_MODE_BATCH:
979 		batch = B_TRUE;
980 		flags |= TASKQ_THREADS_CPU_PCT;
981 		value = MIN(zio_taskq_batch_pct, 100);
982 		break;
983 
984 	case ZTI_MODE_SCALE:
985 		flags |= TASKQ_THREADS_CPU_PCT;
986 		/*
987 		 * We want more taskqs to reduce lock contention, but we want
988 		 * less for better request ordering and CPU utilization.
989 		 */
990 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
991 		if (zio_taskq_batch_tpq > 0) {
992 			count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
993 			    zio_taskq_batch_tpq);
994 		} else {
995 			/*
996 			 * Prefer 6 threads per taskq, but no more taskqs
997 			 * than threads in them on large systems. For 80%:
998 			 *
999 			 *                 taskq   taskq   total
1000 			 * cpus    taskqs  percent threads threads
1001 			 * ------- ------- ------- ------- -------
1002 			 * 1       1       80%     1       1
1003 			 * 2       1       80%     1       1
1004 			 * 4       1       80%     3       3
1005 			 * 8       2       40%     3       6
1006 			 * 16      3       27%     4       12
1007 			 * 32      5       16%     5       25
1008 			 * 64      7       11%     7       49
1009 			 * 128     10      8%      10      100
1010 			 * 256     14      6%      15      210
1011 			 */
1012 			count = 1 + cpus / 6;
1013 			while (count * count > cpus)
1014 				count--;
1015 		}
1016 		/* Limit each taskq within 100% to not trigger assertion. */
1017 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1018 		value = (zio_taskq_batch_pct + count / 2) / count;
1019 		break;
1020 
1021 	case ZTI_MODE_NULL:
1022 		tqs->stqs_count = 0;
1023 		tqs->stqs_taskq = NULL;
1024 		return;
1025 
1026 	default:
1027 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1028 		    "spa_activate()",
1029 		    zio_type_name[t], zio_taskq_types[q], mode, value);
1030 		break;
1031 	}
1032 
1033 	ASSERT3U(count, >, 0);
1034 	tqs->stqs_count = count;
1035 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1036 
1037 	for (uint_t i = 0; i < count; i++) {
1038 		taskq_t *tq;
1039 		char name[32];
1040 
1041 		if (count > 1)
1042 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
1043 			    zio_type_name[t], zio_taskq_types[q], i);
1044 		else
1045 			(void) snprintf(name, sizeof (name), "%s_%s",
1046 			    zio_type_name[t], zio_taskq_types[q]);
1047 
1048 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1049 			if (batch)
1050 				flags |= TASKQ_DC_BATCH;
1051 
1052 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1053 			    spa->spa_proc, zio_taskq_basedc, flags);
1054 		} else {
1055 			pri_t pri = maxclsyspri;
1056 			/*
1057 			 * The write issue taskq can be extremely CPU
1058 			 * intensive.  Run it at slightly less important
1059 			 * priority than the other taskqs.
1060 			 *
1061 			 * Under Linux and FreeBSD this means incrementing
1062 			 * the priority value as opposed to platforms like
1063 			 * illumos where it should be decremented.
1064 			 *
1065 			 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1066 			 * are equal then a difference between them is
1067 			 * insignificant.
1068 			 */
1069 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1070 #if defined(__linux__)
1071 				pri++;
1072 #elif defined(__FreeBSD__)
1073 				pri += 4;
1074 #else
1075 #error "unknown OS"
1076 #endif
1077 			}
1078 			tq = taskq_create_proc(name, value, pri, 50,
1079 			    INT_MAX, spa->spa_proc, flags);
1080 		}
1081 
1082 		tqs->stqs_taskq[i] = tq;
1083 	}
1084 }
1085 
1086 static void
1087 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1088 {
1089 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1090 
1091 	if (tqs->stqs_taskq == NULL) {
1092 		ASSERT3U(tqs->stqs_count, ==, 0);
1093 		return;
1094 	}
1095 
1096 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1097 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1098 		taskq_destroy(tqs->stqs_taskq[i]);
1099 	}
1100 
1101 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1102 	tqs->stqs_taskq = NULL;
1103 }
1104 
1105 /*
1106  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1107  * Note that a type may have multiple discrete taskqs to avoid lock contention
1108  * on the taskq itself. In that case we choose which taskq at random by using
1109  * the low bits of gethrtime().
1110  */
1111 void
1112 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1113     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1114 {
1115 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1116 	taskq_t *tq;
1117 
1118 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1119 	ASSERT3U(tqs->stqs_count, !=, 0);
1120 
1121 	if (tqs->stqs_count == 1) {
1122 		tq = tqs->stqs_taskq[0];
1123 	} else {
1124 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1125 	}
1126 
1127 	taskq_dispatch_ent(tq, func, arg, flags, ent);
1128 }
1129 
1130 /*
1131  * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1132  */
1133 void
1134 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1135     task_func_t *func, void *arg, uint_t flags)
1136 {
1137 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1138 	taskq_t *tq;
1139 	taskqid_t id;
1140 
1141 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1142 	ASSERT3U(tqs->stqs_count, !=, 0);
1143 
1144 	if (tqs->stqs_count == 1) {
1145 		tq = tqs->stqs_taskq[0];
1146 	} else {
1147 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1148 	}
1149 
1150 	id = taskq_dispatch(tq, func, arg, flags);
1151 	if (id)
1152 		taskq_wait_id(tq, id);
1153 }
1154 
1155 static void
1156 spa_create_zio_taskqs(spa_t *spa)
1157 {
1158 	for (int t = 0; t < ZIO_TYPES; t++) {
1159 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1160 			spa_taskqs_init(spa, t, q);
1161 		}
1162 	}
1163 }
1164 
1165 /*
1166  * Disabled until spa_thread() can be adapted for Linux.
1167  */
1168 #undef HAVE_SPA_THREAD
1169 
1170 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1171 static void
1172 spa_thread(void *arg)
1173 {
1174 	psetid_t zio_taskq_psrset_bind = PS_NONE;
1175 	callb_cpr_t cprinfo;
1176 
1177 	spa_t *spa = arg;
1178 	user_t *pu = PTOU(curproc);
1179 
1180 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1181 	    spa->spa_name);
1182 
1183 	ASSERT(curproc != &p0);
1184 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1185 	    "zpool-%s", spa->spa_name);
1186 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1187 
1188 	/* bind this thread to the requested psrset */
1189 	if (zio_taskq_psrset_bind != PS_NONE) {
1190 		pool_lock();
1191 		mutex_enter(&cpu_lock);
1192 		mutex_enter(&pidlock);
1193 		mutex_enter(&curproc->p_lock);
1194 
1195 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1196 		    0, NULL, NULL) == 0)  {
1197 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1198 		} else {
1199 			cmn_err(CE_WARN,
1200 			    "Couldn't bind process for zfs pool \"%s\" to "
1201 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1202 		}
1203 
1204 		mutex_exit(&curproc->p_lock);
1205 		mutex_exit(&pidlock);
1206 		mutex_exit(&cpu_lock);
1207 		pool_unlock();
1208 	}
1209 
1210 	if (zio_taskq_sysdc) {
1211 		sysdc_thread_enter(curthread, 100, 0);
1212 	}
1213 
1214 	spa->spa_proc = curproc;
1215 	spa->spa_did = curthread->t_did;
1216 
1217 	spa_create_zio_taskqs(spa);
1218 
1219 	mutex_enter(&spa->spa_proc_lock);
1220 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1221 
1222 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1223 	cv_broadcast(&spa->spa_proc_cv);
1224 
1225 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1226 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1227 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1228 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1229 
1230 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1231 	spa->spa_proc_state = SPA_PROC_GONE;
1232 	spa->spa_proc = &p0;
1233 	cv_broadcast(&spa->spa_proc_cv);
1234 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1235 
1236 	mutex_enter(&curproc->p_lock);
1237 	lwp_exit();
1238 }
1239 #endif
1240 
1241 /*
1242  * Activate an uninitialized pool.
1243  */
1244 static void
1245 spa_activate(spa_t *spa, spa_mode_t mode)
1246 {
1247 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1248 
1249 	spa->spa_state = POOL_STATE_ACTIVE;
1250 	spa->spa_mode = mode;
1251 	spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1252 
1253 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1254 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1255 	spa->spa_embedded_log_class =
1256 	    metaslab_class_create(spa, zfs_metaslab_ops);
1257 	spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops);
1258 	spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops);
1259 
1260 	/* Try to create a covering process */
1261 	mutex_enter(&spa->spa_proc_lock);
1262 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1263 	ASSERT(spa->spa_proc == &p0);
1264 	spa->spa_did = 0;
1265 
1266 #ifdef HAVE_SPA_THREAD
1267 	/* Only create a process if we're going to be around a while. */
1268 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1269 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1270 		    NULL, 0) == 0) {
1271 			spa->spa_proc_state = SPA_PROC_CREATED;
1272 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1273 				cv_wait(&spa->spa_proc_cv,
1274 				    &spa->spa_proc_lock);
1275 			}
1276 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1277 			ASSERT(spa->spa_proc != &p0);
1278 			ASSERT(spa->spa_did != 0);
1279 		} else {
1280 #ifdef _KERNEL
1281 			cmn_err(CE_WARN,
1282 			    "Couldn't create process for zfs pool \"%s\"\n",
1283 			    spa->spa_name);
1284 #endif
1285 		}
1286 	}
1287 #endif /* HAVE_SPA_THREAD */
1288 	mutex_exit(&spa->spa_proc_lock);
1289 
1290 	/* If we didn't create a process, we need to create our taskqs. */
1291 	if (spa->spa_proc == &p0) {
1292 		spa_create_zio_taskqs(spa);
1293 	}
1294 
1295 	for (size_t i = 0; i < TXG_SIZE; i++) {
1296 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1297 		    ZIO_FLAG_CANFAIL);
1298 	}
1299 
1300 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1301 	    offsetof(vdev_t, vdev_config_dirty_node));
1302 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1303 	    offsetof(objset_t, os_evicting_node));
1304 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1305 	    offsetof(vdev_t, vdev_state_dirty_node));
1306 
1307 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1308 	    offsetof(struct vdev, vdev_txg_node));
1309 
1310 	avl_create(&spa->spa_errlist_scrub,
1311 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1312 	    offsetof(spa_error_entry_t, se_avl));
1313 	avl_create(&spa->spa_errlist_last,
1314 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1315 	    offsetof(spa_error_entry_t, se_avl));
1316 
1317 	spa_keystore_init(&spa->spa_keystore);
1318 
1319 	/*
1320 	 * This taskq is used to perform zvol-minor-related tasks
1321 	 * asynchronously. This has several advantages, including easy
1322 	 * resolution of various deadlocks.
1323 	 *
1324 	 * The taskq must be single threaded to ensure tasks are always
1325 	 * processed in the order in which they were dispatched.
1326 	 *
1327 	 * A taskq per pool allows one to keep the pools independent.
1328 	 * This way if one pool is suspended, it will not impact another.
1329 	 *
1330 	 * The preferred location to dispatch a zvol minor task is a sync
1331 	 * task. In this context, there is easy access to the spa_t and minimal
1332 	 * error handling is required because the sync task must succeed.
1333 	 */
1334 	spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1335 	    1, INT_MAX, 0);
1336 
1337 	/*
1338 	 * Taskq dedicated to prefetcher threads: this is used to prevent the
1339 	 * pool traverse code from monopolizing the global (and limited)
1340 	 * system_taskq by inappropriately scheduling long running tasks on it.
1341 	 */
1342 	spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1343 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1344 
1345 	/*
1346 	 * The taskq to upgrade datasets in this pool. Currently used by
1347 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1348 	 */
1349 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1350 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1351 }
1352 
1353 /*
1354  * Opposite of spa_activate().
1355  */
1356 static void
1357 spa_deactivate(spa_t *spa)
1358 {
1359 	ASSERT(spa->spa_sync_on == B_FALSE);
1360 	ASSERT(spa->spa_dsl_pool == NULL);
1361 	ASSERT(spa->spa_root_vdev == NULL);
1362 	ASSERT(spa->spa_async_zio_root == NULL);
1363 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1364 
1365 	spa_evicting_os_wait(spa);
1366 
1367 	if (spa->spa_zvol_taskq) {
1368 		taskq_destroy(spa->spa_zvol_taskq);
1369 		spa->spa_zvol_taskq = NULL;
1370 	}
1371 
1372 	if (spa->spa_prefetch_taskq) {
1373 		taskq_destroy(spa->spa_prefetch_taskq);
1374 		spa->spa_prefetch_taskq = NULL;
1375 	}
1376 
1377 	if (spa->spa_upgrade_taskq) {
1378 		taskq_destroy(spa->spa_upgrade_taskq);
1379 		spa->spa_upgrade_taskq = NULL;
1380 	}
1381 
1382 	txg_list_destroy(&spa->spa_vdev_txg_list);
1383 
1384 	list_destroy(&spa->spa_config_dirty_list);
1385 	list_destroy(&spa->spa_evicting_os_list);
1386 	list_destroy(&spa->spa_state_dirty_list);
1387 
1388 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1389 
1390 	for (int t = 0; t < ZIO_TYPES; t++) {
1391 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1392 			spa_taskqs_fini(spa, t, q);
1393 		}
1394 	}
1395 
1396 	for (size_t i = 0; i < TXG_SIZE; i++) {
1397 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1398 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1399 		spa->spa_txg_zio[i] = NULL;
1400 	}
1401 
1402 	metaslab_class_destroy(spa->spa_normal_class);
1403 	spa->spa_normal_class = NULL;
1404 
1405 	metaslab_class_destroy(spa->spa_log_class);
1406 	spa->spa_log_class = NULL;
1407 
1408 	metaslab_class_destroy(spa->spa_embedded_log_class);
1409 	spa->spa_embedded_log_class = NULL;
1410 
1411 	metaslab_class_destroy(spa->spa_special_class);
1412 	spa->spa_special_class = NULL;
1413 
1414 	metaslab_class_destroy(spa->spa_dedup_class);
1415 	spa->spa_dedup_class = NULL;
1416 
1417 	/*
1418 	 * If this was part of an import or the open otherwise failed, we may
1419 	 * still have errors left in the queues.  Empty them just in case.
1420 	 */
1421 	spa_errlog_drain(spa);
1422 	avl_destroy(&spa->spa_errlist_scrub);
1423 	avl_destroy(&spa->spa_errlist_last);
1424 
1425 	spa_keystore_fini(&spa->spa_keystore);
1426 
1427 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1428 
1429 	mutex_enter(&spa->spa_proc_lock);
1430 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1431 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1432 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1433 		cv_broadcast(&spa->spa_proc_cv);
1434 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1435 			ASSERT(spa->spa_proc != &p0);
1436 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1437 		}
1438 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1439 		spa->spa_proc_state = SPA_PROC_NONE;
1440 	}
1441 	ASSERT(spa->spa_proc == &p0);
1442 	mutex_exit(&spa->spa_proc_lock);
1443 
1444 	/*
1445 	 * We want to make sure spa_thread() has actually exited the ZFS
1446 	 * module, so that the module can't be unloaded out from underneath
1447 	 * it.
1448 	 */
1449 	if (spa->spa_did != 0) {
1450 		thread_join(spa->spa_did);
1451 		spa->spa_did = 0;
1452 	}
1453 }
1454 
1455 /*
1456  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1457  * will create all the necessary vdevs in the appropriate layout, with each vdev
1458  * in the CLOSED state.  This will prep the pool before open/creation/import.
1459  * All vdev validation is done by the vdev_alloc() routine.
1460  */
1461 int
1462 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1463     uint_t id, int atype)
1464 {
1465 	nvlist_t **child;
1466 	uint_t children;
1467 	int error;
1468 
1469 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1470 		return (error);
1471 
1472 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1473 		return (0);
1474 
1475 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1476 	    &child, &children);
1477 
1478 	if (error == ENOENT)
1479 		return (0);
1480 
1481 	if (error) {
1482 		vdev_free(*vdp);
1483 		*vdp = NULL;
1484 		return (SET_ERROR(EINVAL));
1485 	}
1486 
1487 	for (int c = 0; c < children; c++) {
1488 		vdev_t *vd;
1489 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1490 		    atype)) != 0) {
1491 			vdev_free(*vdp);
1492 			*vdp = NULL;
1493 			return (error);
1494 		}
1495 	}
1496 
1497 	ASSERT(*vdp != NULL);
1498 
1499 	return (0);
1500 }
1501 
1502 static boolean_t
1503 spa_should_flush_logs_on_unload(spa_t *spa)
1504 {
1505 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1506 		return (B_FALSE);
1507 
1508 	if (!spa_writeable(spa))
1509 		return (B_FALSE);
1510 
1511 	if (!spa->spa_sync_on)
1512 		return (B_FALSE);
1513 
1514 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1515 		return (B_FALSE);
1516 
1517 	if (zfs_keep_log_spacemaps_at_export)
1518 		return (B_FALSE);
1519 
1520 	return (B_TRUE);
1521 }
1522 
1523 /*
1524  * Opens a transaction that will set the flag that will instruct
1525  * spa_sync to attempt to flush all the metaslabs for that txg.
1526  */
1527 static void
1528 spa_unload_log_sm_flush_all(spa_t *spa)
1529 {
1530 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1531 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1532 
1533 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1534 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1535 
1536 	dmu_tx_commit(tx);
1537 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1538 }
1539 
1540 static void
1541 spa_unload_log_sm_metadata(spa_t *spa)
1542 {
1543 	void *cookie = NULL;
1544 	spa_log_sm_t *sls;
1545 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1546 	    &cookie)) != NULL) {
1547 		VERIFY0(sls->sls_mscount);
1548 		kmem_free(sls, sizeof (spa_log_sm_t));
1549 	}
1550 
1551 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1552 	    e != NULL; e = list_head(&spa->spa_log_summary)) {
1553 		VERIFY0(e->lse_mscount);
1554 		list_remove(&spa->spa_log_summary, e);
1555 		kmem_free(e, sizeof (log_summary_entry_t));
1556 	}
1557 
1558 	spa->spa_unflushed_stats.sus_nblocks = 0;
1559 	spa->spa_unflushed_stats.sus_memused = 0;
1560 	spa->spa_unflushed_stats.sus_blocklimit = 0;
1561 }
1562 
1563 static void
1564 spa_destroy_aux_threads(spa_t *spa)
1565 {
1566 	if (spa->spa_condense_zthr != NULL) {
1567 		zthr_destroy(spa->spa_condense_zthr);
1568 		spa->spa_condense_zthr = NULL;
1569 	}
1570 	if (spa->spa_checkpoint_discard_zthr != NULL) {
1571 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1572 		spa->spa_checkpoint_discard_zthr = NULL;
1573 	}
1574 	if (spa->spa_livelist_delete_zthr != NULL) {
1575 		zthr_destroy(spa->spa_livelist_delete_zthr);
1576 		spa->spa_livelist_delete_zthr = NULL;
1577 	}
1578 	if (spa->spa_livelist_condense_zthr != NULL) {
1579 		zthr_destroy(spa->spa_livelist_condense_zthr);
1580 		spa->spa_livelist_condense_zthr = NULL;
1581 	}
1582 }
1583 
1584 /*
1585  * Opposite of spa_load().
1586  */
1587 static void
1588 spa_unload(spa_t *spa)
1589 {
1590 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1591 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1592 
1593 	spa_import_progress_remove(spa_guid(spa));
1594 	spa_load_note(spa, "UNLOADING");
1595 
1596 	spa_wake_waiters(spa);
1597 
1598 	/*
1599 	 * If the log space map feature is enabled and the pool is getting
1600 	 * exported (but not destroyed), we want to spend some time flushing
1601 	 * as many metaslabs as we can in an attempt to destroy log space
1602 	 * maps and save import time.
1603 	 */
1604 	if (spa_should_flush_logs_on_unload(spa))
1605 		spa_unload_log_sm_flush_all(spa);
1606 
1607 	/*
1608 	 * Stop async tasks.
1609 	 */
1610 	spa_async_suspend(spa);
1611 
1612 	if (spa->spa_root_vdev) {
1613 		vdev_t *root_vdev = spa->spa_root_vdev;
1614 		vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE);
1615 		vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1616 		vdev_autotrim_stop_all(spa);
1617 		vdev_rebuild_stop_all(spa);
1618 	}
1619 
1620 	/*
1621 	 * Stop syncing.
1622 	 */
1623 	if (spa->spa_sync_on) {
1624 		txg_sync_stop(spa->spa_dsl_pool);
1625 		spa->spa_sync_on = B_FALSE;
1626 	}
1627 
1628 	/*
1629 	 * This ensures that there is no async metaslab prefetching
1630 	 * while we attempt to unload the spa.
1631 	 */
1632 	if (spa->spa_root_vdev != NULL) {
1633 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1634 			vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1635 			if (vc->vdev_mg != NULL)
1636 				taskq_wait(vc->vdev_mg->mg_taskq);
1637 		}
1638 	}
1639 
1640 	if (spa->spa_mmp.mmp_thread)
1641 		mmp_thread_stop(spa);
1642 
1643 	/*
1644 	 * Wait for any outstanding async I/O to complete.
1645 	 */
1646 	if (spa->spa_async_zio_root != NULL) {
1647 		for (int i = 0; i < max_ncpus; i++)
1648 			(void) zio_wait(spa->spa_async_zio_root[i]);
1649 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1650 		spa->spa_async_zio_root = NULL;
1651 	}
1652 
1653 	if (spa->spa_vdev_removal != NULL) {
1654 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1655 		spa->spa_vdev_removal = NULL;
1656 	}
1657 
1658 	spa_destroy_aux_threads(spa);
1659 
1660 	spa_condense_fini(spa);
1661 
1662 	bpobj_close(&spa->spa_deferred_bpobj);
1663 
1664 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1665 
1666 	/*
1667 	 * Close all vdevs.
1668 	 */
1669 	if (spa->spa_root_vdev)
1670 		vdev_free(spa->spa_root_vdev);
1671 	ASSERT(spa->spa_root_vdev == NULL);
1672 
1673 	/*
1674 	 * Close the dsl pool.
1675 	 */
1676 	if (spa->spa_dsl_pool) {
1677 		dsl_pool_close(spa->spa_dsl_pool);
1678 		spa->spa_dsl_pool = NULL;
1679 		spa->spa_meta_objset = NULL;
1680 	}
1681 
1682 	ddt_unload(spa);
1683 	spa_unload_log_sm_metadata(spa);
1684 
1685 	/*
1686 	 * Drop and purge level 2 cache
1687 	 */
1688 	spa_l2cache_drop(spa);
1689 
1690 	for (int i = 0; i < spa->spa_spares.sav_count; i++)
1691 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1692 	if (spa->spa_spares.sav_vdevs) {
1693 		kmem_free(spa->spa_spares.sav_vdevs,
1694 		    spa->spa_spares.sav_count * sizeof (void *));
1695 		spa->spa_spares.sav_vdevs = NULL;
1696 	}
1697 	if (spa->spa_spares.sav_config) {
1698 		nvlist_free(spa->spa_spares.sav_config);
1699 		spa->spa_spares.sav_config = NULL;
1700 	}
1701 	spa->spa_spares.sav_count = 0;
1702 
1703 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1704 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1705 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1706 	}
1707 	if (spa->spa_l2cache.sav_vdevs) {
1708 		kmem_free(spa->spa_l2cache.sav_vdevs,
1709 		    spa->spa_l2cache.sav_count * sizeof (void *));
1710 		spa->spa_l2cache.sav_vdevs = NULL;
1711 	}
1712 	if (spa->spa_l2cache.sav_config) {
1713 		nvlist_free(spa->spa_l2cache.sav_config);
1714 		spa->spa_l2cache.sav_config = NULL;
1715 	}
1716 	spa->spa_l2cache.sav_count = 0;
1717 
1718 	spa->spa_async_suspended = 0;
1719 
1720 	spa->spa_indirect_vdevs_loaded = B_FALSE;
1721 
1722 	if (spa->spa_comment != NULL) {
1723 		spa_strfree(spa->spa_comment);
1724 		spa->spa_comment = NULL;
1725 	}
1726 	if (spa->spa_compatibility != NULL) {
1727 		spa_strfree(spa->spa_compatibility);
1728 		spa->spa_compatibility = NULL;
1729 	}
1730 
1731 	spa_config_exit(spa, SCL_ALL, spa);
1732 }
1733 
1734 /*
1735  * Load (or re-load) the current list of vdevs describing the active spares for
1736  * this pool.  When this is called, we have some form of basic information in
1737  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1738  * then re-generate a more complete list including status information.
1739  */
1740 void
1741 spa_load_spares(spa_t *spa)
1742 {
1743 	nvlist_t **spares;
1744 	uint_t nspares;
1745 	int i;
1746 	vdev_t *vd, *tvd;
1747 
1748 #ifndef _KERNEL
1749 	/*
1750 	 * zdb opens both the current state of the pool and the
1751 	 * checkpointed state (if present), with a different spa_t.
1752 	 *
1753 	 * As spare vdevs are shared among open pools, we skip loading
1754 	 * them when we load the checkpointed state of the pool.
1755 	 */
1756 	if (!spa_writeable(spa))
1757 		return;
1758 #endif
1759 
1760 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1761 
1762 	/*
1763 	 * First, close and free any existing spare vdevs.
1764 	 */
1765 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1766 		vd = spa->spa_spares.sav_vdevs[i];
1767 
1768 		/* Undo the call to spa_activate() below */
1769 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1770 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1771 			spa_spare_remove(tvd);
1772 		vdev_close(vd);
1773 		vdev_free(vd);
1774 	}
1775 
1776 	if (spa->spa_spares.sav_vdevs)
1777 		kmem_free(spa->spa_spares.sav_vdevs,
1778 		    spa->spa_spares.sav_count * sizeof (void *));
1779 
1780 	if (spa->spa_spares.sav_config == NULL)
1781 		nspares = 0;
1782 	else
1783 		VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1784 		    ZPOOL_CONFIG_SPARES, &spares, &nspares));
1785 
1786 	spa->spa_spares.sav_count = (int)nspares;
1787 	spa->spa_spares.sav_vdevs = NULL;
1788 
1789 	if (nspares == 0)
1790 		return;
1791 
1792 	/*
1793 	 * Construct the array of vdevs, opening them to get status in the
1794 	 * process.   For each spare, there is potentially two different vdev_t
1795 	 * structures associated with it: one in the list of spares (used only
1796 	 * for basic validation purposes) and one in the active vdev
1797 	 * configuration (if it's spared in).  During this phase we open and
1798 	 * validate each vdev on the spare list.  If the vdev also exists in the
1799 	 * active configuration, then we also mark this vdev as an active spare.
1800 	 */
1801 	spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1802 	    KM_SLEEP);
1803 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1804 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1805 		    VDEV_ALLOC_SPARE) == 0);
1806 		ASSERT(vd != NULL);
1807 
1808 		spa->spa_spares.sav_vdevs[i] = vd;
1809 
1810 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1811 		    B_FALSE)) != NULL) {
1812 			if (!tvd->vdev_isspare)
1813 				spa_spare_add(tvd);
1814 
1815 			/*
1816 			 * We only mark the spare active if we were successfully
1817 			 * able to load the vdev.  Otherwise, importing a pool
1818 			 * with a bad active spare would result in strange
1819 			 * behavior, because multiple pool would think the spare
1820 			 * is actively in use.
1821 			 *
1822 			 * There is a vulnerability here to an equally bizarre
1823 			 * circumstance, where a dead active spare is later
1824 			 * brought back to life (onlined or otherwise).  Given
1825 			 * the rarity of this scenario, and the extra complexity
1826 			 * it adds, we ignore the possibility.
1827 			 */
1828 			if (!vdev_is_dead(tvd))
1829 				spa_spare_activate(tvd);
1830 		}
1831 
1832 		vd->vdev_top = vd;
1833 		vd->vdev_aux = &spa->spa_spares;
1834 
1835 		if (vdev_open(vd) != 0)
1836 			continue;
1837 
1838 		if (vdev_validate_aux(vd) == 0)
1839 			spa_spare_add(vd);
1840 	}
1841 
1842 	/*
1843 	 * Recompute the stashed list of spares, with status information
1844 	 * this time.
1845 	 */
1846 	fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
1847 
1848 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1849 	    KM_SLEEP);
1850 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1851 		spares[i] = vdev_config_generate(spa,
1852 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1853 	fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
1854 	    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
1855 	    spa->spa_spares.sav_count);
1856 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1857 		nvlist_free(spares[i]);
1858 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1859 }
1860 
1861 /*
1862  * Load (or re-load) the current list of vdevs describing the active l2cache for
1863  * this pool.  When this is called, we have some form of basic information in
1864  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1865  * then re-generate a more complete list including status information.
1866  * Devices which are already active have their details maintained, and are
1867  * not re-opened.
1868  */
1869 void
1870 spa_load_l2cache(spa_t *spa)
1871 {
1872 	nvlist_t **l2cache = NULL;
1873 	uint_t nl2cache;
1874 	int i, j, oldnvdevs;
1875 	uint64_t guid;
1876 	vdev_t *vd, **oldvdevs, **newvdevs;
1877 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1878 
1879 #ifndef _KERNEL
1880 	/*
1881 	 * zdb opens both the current state of the pool and the
1882 	 * checkpointed state (if present), with a different spa_t.
1883 	 *
1884 	 * As L2 caches are part of the ARC which is shared among open
1885 	 * pools, we skip loading them when we load the checkpointed
1886 	 * state of the pool.
1887 	 */
1888 	if (!spa_writeable(spa))
1889 		return;
1890 #endif
1891 
1892 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1893 
1894 	oldvdevs = sav->sav_vdevs;
1895 	oldnvdevs = sav->sav_count;
1896 	sav->sav_vdevs = NULL;
1897 	sav->sav_count = 0;
1898 
1899 	if (sav->sav_config == NULL) {
1900 		nl2cache = 0;
1901 		newvdevs = NULL;
1902 		goto out;
1903 	}
1904 
1905 	VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
1906 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
1907 	newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1908 
1909 	/*
1910 	 * Process new nvlist of vdevs.
1911 	 */
1912 	for (i = 0; i < nl2cache; i++) {
1913 		guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
1914 
1915 		newvdevs[i] = NULL;
1916 		for (j = 0; j < oldnvdevs; j++) {
1917 			vd = oldvdevs[j];
1918 			if (vd != NULL && guid == vd->vdev_guid) {
1919 				/*
1920 				 * Retain previous vdev for add/remove ops.
1921 				 */
1922 				newvdevs[i] = vd;
1923 				oldvdevs[j] = NULL;
1924 				break;
1925 			}
1926 		}
1927 
1928 		if (newvdevs[i] == NULL) {
1929 			/*
1930 			 * Create new vdev
1931 			 */
1932 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1933 			    VDEV_ALLOC_L2CACHE) == 0);
1934 			ASSERT(vd != NULL);
1935 			newvdevs[i] = vd;
1936 
1937 			/*
1938 			 * Commit this vdev as an l2cache device,
1939 			 * even if it fails to open.
1940 			 */
1941 			spa_l2cache_add(vd);
1942 
1943 			vd->vdev_top = vd;
1944 			vd->vdev_aux = sav;
1945 
1946 			spa_l2cache_activate(vd);
1947 
1948 			if (vdev_open(vd) != 0)
1949 				continue;
1950 
1951 			(void) vdev_validate_aux(vd);
1952 
1953 			if (!vdev_is_dead(vd))
1954 				l2arc_add_vdev(spa, vd);
1955 
1956 			/*
1957 			 * Upon cache device addition to a pool or pool
1958 			 * creation with a cache device or if the header
1959 			 * of the device is invalid we issue an async
1960 			 * TRIM command for the whole device which will
1961 			 * execute if l2arc_trim_ahead > 0.
1962 			 */
1963 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
1964 		}
1965 	}
1966 
1967 	sav->sav_vdevs = newvdevs;
1968 	sav->sav_count = (int)nl2cache;
1969 
1970 	/*
1971 	 * Recompute the stashed list of l2cache devices, with status
1972 	 * information this time.
1973 	 */
1974 	fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
1975 
1976 	if (sav->sav_count > 0)
1977 		l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
1978 		    KM_SLEEP);
1979 	for (i = 0; i < sav->sav_count; i++)
1980 		l2cache[i] = vdev_config_generate(spa,
1981 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1982 	fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1983 	    (const nvlist_t * const *)l2cache, sav->sav_count);
1984 
1985 out:
1986 	/*
1987 	 * Purge vdevs that were dropped
1988 	 */
1989 	for (i = 0; i < oldnvdevs; i++) {
1990 		uint64_t pool;
1991 
1992 		vd = oldvdevs[i];
1993 		if (vd != NULL) {
1994 			ASSERT(vd->vdev_isl2cache);
1995 
1996 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1997 			    pool != 0ULL && l2arc_vdev_present(vd))
1998 				l2arc_remove_vdev(vd);
1999 			vdev_clear_stats(vd);
2000 			vdev_free(vd);
2001 		}
2002 	}
2003 
2004 	if (oldvdevs)
2005 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2006 
2007 	for (i = 0; i < sav->sav_count; i++)
2008 		nvlist_free(l2cache[i]);
2009 	if (sav->sav_count)
2010 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
2011 }
2012 
2013 static int
2014 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2015 {
2016 	dmu_buf_t *db;
2017 	char *packed = NULL;
2018 	size_t nvsize = 0;
2019 	int error;
2020 	*value = NULL;
2021 
2022 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2023 	if (error)
2024 		return (error);
2025 
2026 	nvsize = *(uint64_t *)db->db_data;
2027 	dmu_buf_rele(db, FTAG);
2028 
2029 	packed = vmem_alloc(nvsize, KM_SLEEP);
2030 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2031 	    DMU_READ_PREFETCH);
2032 	if (error == 0)
2033 		error = nvlist_unpack(packed, nvsize, value, 0);
2034 	vmem_free(packed, nvsize);
2035 
2036 	return (error);
2037 }
2038 
2039 /*
2040  * Concrete top-level vdevs that are not missing and are not logs. At every
2041  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2042  */
2043 static uint64_t
2044 spa_healthy_core_tvds(spa_t *spa)
2045 {
2046 	vdev_t *rvd = spa->spa_root_vdev;
2047 	uint64_t tvds = 0;
2048 
2049 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2050 		vdev_t *vd = rvd->vdev_child[i];
2051 		if (vd->vdev_islog)
2052 			continue;
2053 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2054 			tvds++;
2055 	}
2056 
2057 	return (tvds);
2058 }
2059 
2060 /*
2061  * Checks to see if the given vdev could not be opened, in which case we post a
2062  * sysevent to notify the autoreplace code that the device has been removed.
2063  */
2064 static void
2065 spa_check_removed(vdev_t *vd)
2066 {
2067 	for (uint64_t c = 0; c < vd->vdev_children; c++)
2068 		spa_check_removed(vd->vdev_child[c]);
2069 
2070 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2071 	    vdev_is_concrete(vd)) {
2072 		zfs_post_autoreplace(vd->vdev_spa, vd);
2073 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2074 	}
2075 }
2076 
2077 static int
2078 spa_check_for_missing_logs(spa_t *spa)
2079 {
2080 	vdev_t *rvd = spa->spa_root_vdev;
2081 
2082 	/*
2083 	 * If we're doing a normal import, then build up any additional
2084 	 * diagnostic information about missing log devices.
2085 	 * We'll pass this up to the user for further processing.
2086 	 */
2087 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2088 		nvlist_t **child, *nv;
2089 		uint64_t idx = 0;
2090 
2091 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2092 		    KM_SLEEP);
2093 		nv = fnvlist_alloc();
2094 
2095 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2096 			vdev_t *tvd = rvd->vdev_child[c];
2097 
2098 			/*
2099 			 * We consider a device as missing only if it failed
2100 			 * to open (i.e. offline or faulted is not considered
2101 			 * as missing).
2102 			 */
2103 			if (tvd->vdev_islog &&
2104 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2105 				child[idx++] = vdev_config_generate(spa, tvd,
2106 				    B_FALSE, VDEV_CONFIG_MISSING);
2107 			}
2108 		}
2109 
2110 		if (idx > 0) {
2111 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2112 			    (const nvlist_t * const *)child, idx);
2113 			fnvlist_add_nvlist(spa->spa_load_info,
2114 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
2115 
2116 			for (uint64_t i = 0; i < idx; i++)
2117 				nvlist_free(child[i]);
2118 		}
2119 		nvlist_free(nv);
2120 		kmem_free(child, rvd->vdev_children * sizeof (char **));
2121 
2122 		if (idx > 0) {
2123 			spa_load_failed(spa, "some log devices are missing");
2124 			vdev_dbgmsg_print_tree(rvd, 2);
2125 			return (SET_ERROR(ENXIO));
2126 		}
2127 	} else {
2128 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2129 			vdev_t *tvd = rvd->vdev_child[c];
2130 
2131 			if (tvd->vdev_islog &&
2132 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2133 				spa_set_log_state(spa, SPA_LOG_CLEAR);
2134 				spa_load_note(spa, "some log devices are "
2135 				    "missing, ZIL is dropped.");
2136 				vdev_dbgmsg_print_tree(rvd, 2);
2137 				break;
2138 			}
2139 		}
2140 	}
2141 
2142 	return (0);
2143 }
2144 
2145 /*
2146  * Check for missing log devices
2147  */
2148 static boolean_t
2149 spa_check_logs(spa_t *spa)
2150 {
2151 	boolean_t rv = B_FALSE;
2152 	dsl_pool_t *dp = spa_get_dsl(spa);
2153 
2154 	switch (spa->spa_log_state) {
2155 	default:
2156 		break;
2157 	case SPA_LOG_MISSING:
2158 		/* need to recheck in case slog has been restored */
2159 	case SPA_LOG_UNKNOWN:
2160 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2161 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2162 		if (rv)
2163 			spa_set_log_state(spa, SPA_LOG_MISSING);
2164 		break;
2165 	}
2166 	return (rv);
2167 }
2168 
2169 /*
2170  * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2171  */
2172 static boolean_t
2173 spa_passivate_log(spa_t *spa)
2174 {
2175 	vdev_t *rvd = spa->spa_root_vdev;
2176 	boolean_t slog_found = B_FALSE;
2177 
2178 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2179 
2180 	for (int c = 0; c < rvd->vdev_children; c++) {
2181 		vdev_t *tvd = rvd->vdev_child[c];
2182 
2183 		if (tvd->vdev_islog) {
2184 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2185 			metaslab_group_passivate(tvd->vdev_mg);
2186 			slog_found = B_TRUE;
2187 		}
2188 	}
2189 
2190 	return (slog_found);
2191 }
2192 
2193 /*
2194  * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2195  */
2196 static void
2197 spa_activate_log(spa_t *spa)
2198 {
2199 	vdev_t *rvd = spa->spa_root_vdev;
2200 
2201 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2202 
2203 	for (int c = 0; c < rvd->vdev_children; c++) {
2204 		vdev_t *tvd = rvd->vdev_child[c];
2205 
2206 		if (tvd->vdev_islog) {
2207 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2208 			metaslab_group_activate(tvd->vdev_mg);
2209 		}
2210 	}
2211 }
2212 
2213 int
2214 spa_reset_logs(spa_t *spa)
2215 {
2216 	int error;
2217 
2218 	error = dmu_objset_find(spa_name(spa), zil_reset,
2219 	    NULL, DS_FIND_CHILDREN);
2220 	if (error == 0) {
2221 		/*
2222 		 * We successfully offlined the log device, sync out the
2223 		 * current txg so that the "stubby" block can be removed
2224 		 * by zil_sync().
2225 		 */
2226 		txg_wait_synced(spa->spa_dsl_pool, 0);
2227 	}
2228 	return (error);
2229 }
2230 
2231 static void
2232 spa_aux_check_removed(spa_aux_vdev_t *sav)
2233 {
2234 	for (int i = 0; i < sav->sav_count; i++)
2235 		spa_check_removed(sav->sav_vdevs[i]);
2236 }
2237 
2238 void
2239 spa_claim_notify(zio_t *zio)
2240 {
2241 	spa_t *spa = zio->io_spa;
2242 
2243 	if (zio->io_error)
2244 		return;
2245 
2246 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2247 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2248 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2249 	mutex_exit(&spa->spa_props_lock);
2250 }
2251 
2252 typedef struct spa_load_error {
2253 	uint64_t	sle_meta_count;
2254 	uint64_t	sle_data_count;
2255 } spa_load_error_t;
2256 
2257 static void
2258 spa_load_verify_done(zio_t *zio)
2259 {
2260 	blkptr_t *bp = zio->io_bp;
2261 	spa_load_error_t *sle = zio->io_private;
2262 	dmu_object_type_t type = BP_GET_TYPE(bp);
2263 	int error = zio->io_error;
2264 	spa_t *spa = zio->io_spa;
2265 
2266 	abd_free(zio->io_abd);
2267 	if (error) {
2268 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2269 		    type != DMU_OT_INTENT_LOG)
2270 			atomic_inc_64(&sle->sle_meta_count);
2271 		else
2272 			atomic_inc_64(&sle->sle_data_count);
2273 	}
2274 
2275 	mutex_enter(&spa->spa_scrub_lock);
2276 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2277 	cv_broadcast(&spa->spa_scrub_io_cv);
2278 	mutex_exit(&spa->spa_scrub_lock);
2279 }
2280 
2281 /*
2282  * Maximum number of inflight bytes is the log2 fraction of the arc size.
2283  * By default, we set it to 1/16th of the arc.
2284  */
2285 int spa_load_verify_shift = 4;
2286 int spa_load_verify_metadata = B_TRUE;
2287 int spa_load_verify_data = B_TRUE;
2288 
2289 /*ARGSUSED*/
2290 static int
2291 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2292     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2293 {
2294 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2295 	    BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2296 		return (0);
2297 	/*
2298 	 * Note: normally this routine will not be called if
2299 	 * spa_load_verify_metadata is not set.  However, it may be useful
2300 	 * to manually set the flag after the traversal has begun.
2301 	 */
2302 	if (!spa_load_verify_metadata)
2303 		return (0);
2304 	if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2305 		return (0);
2306 
2307 	uint64_t maxinflight_bytes =
2308 	    arc_target_bytes() >> spa_load_verify_shift;
2309 	zio_t *rio = arg;
2310 	size_t size = BP_GET_PSIZE(bp);
2311 
2312 	mutex_enter(&spa->spa_scrub_lock);
2313 	while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2314 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2315 	spa->spa_load_verify_bytes += size;
2316 	mutex_exit(&spa->spa_scrub_lock);
2317 
2318 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2319 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2320 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2321 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2322 	return (0);
2323 }
2324 
2325 /* ARGSUSED */
2326 static int
2327 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2328 {
2329 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2330 		return (SET_ERROR(ENAMETOOLONG));
2331 
2332 	return (0);
2333 }
2334 
2335 static int
2336 spa_load_verify(spa_t *spa)
2337 {
2338 	zio_t *rio;
2339 	spa_load_error_t sle = { 0 };
2340 	zpool_load_policy_t policy;
2341 	boolean_t verify_ok = B_FALSE;
2342 	int error = 0;
2343 
2344 	zpool_get_load_policy(spa->spa_config, &policy);
2345 
2346 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2347 		return (0);
2348 
2349 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2350 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2351 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2352 	    DS_FIND_CHILDREN);
2353 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2354 	if (error != 0)
2355 		return (error);
2356 
2357 	rio = zio_root(spa, NULL, &sle,
2358 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2359 
2360 	if (spa_load_verify_metadata) {
2361 		if (spa->spa_extreme_rewind) {
2362 			spa_load_note(spa, "performing a complete scan of the "
2363 			    "pool since extreme rewind is on. This may take "
2364 			    "a very long time.\n  (spa_load_verify_data=%u, "
2365 			    "spa_load_verify_metadata=%u)",
2366 			    spa_load_verify_data, spa_load_verify_metadata);
2367 		}
2368 
2369 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2370 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2371 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2372 	}
2373 
2374 	(void) zio_wait(rio);
2375 	ASSERT0(spa->spa_load_verify_bytes);
2376 
2377 	spa->spa_load_meta_errors = sle.sle_meta_count;
2378 	spa->spa_load_data_errors = sle.sle_data_count;
2379 
2380 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2381 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2382 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2383 		    (u_longlong_t)sle.sle_data_count);
2384 	}
2385 
2386 	if (spa_load_verify_dryrun ||
2387 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2388 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2389 		int64_t loss = 0;
2390 
2391 		verify_ok = B_TRUE;
2392 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2393 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2394 
2395 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2396 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2397 		    spa->spa_load_txg_ts);
2398 		fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2399 		    loss);
2400 		fnvlist_add_uint64(spa->spa_load_info,
2401 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2402 	} else {
2403 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2404 	}
2405 
2406 	if (spa_load_verify_dryrun)
2407 		return (0);
2408 
2409 	if (error) {
2410 		if (error != ENXIO && error != EIO)
2411 			error = SET_ERROR(EIO);
2412 		return (error);
2413 	}
2414 
2415 	return (verify_ok ? 0 : EIO);
2416 }
2417 
2418 /*
2419  * Find a value in the pool props object.
2420  */
2421 static void
2422 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2423 {
2424 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2425 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2426 }
2427 
2428 /*
2429  * Find a value in the pool directory object.
2430  */
2431 static int
2432 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2433 {
2434 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2435 	    name, sizeof (uint64_t), 1, val);
2436 
2437 	if (error != 0 && (error != ENOENT || log_enoent)) {
2438 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2439 		    "[error=%d]", name, error);
2440 	}
2441 
2442 	return (error);
2443 }
2444 
2445 static int
2446 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2447 {
2448 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2449 	return (SET_ERROR(err));
2450 }
2451 
2452 boolean_t
2453 spa_livelist_delete_check(spa_t *spa)
2454 {
2455 	return (spa->spa_livelists_to_delete != 0);
2456 }
2457 
2458 /* ARGSUSED */
2459 static boolean_t
2460 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2461 {
2462 	spa_t *spa = arg;
2463 	return (spa_livelist_delete_check(spa));
2464 }
2465 
2466 static int
2467 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2468 {
2469 	spa_t *spa = arg;
2470 	zio_free(spa, tx->tx_txg, bp);
2471 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2472 	    -bp_get_dsize_sync(spa, bp),
2473 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2474 	return (0);
2475 }
2476 
2477 static int
2478 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2479 {
2480 	int err;
2481 	zap_cursor_t zc;
2482 	zap_attribute_t za;
2483 	zap_cursor_init(&zc, os, zap_obj);
2484 	err = zap_cursor_retrieve(&zc, &za);
2485 	zap_cursor_fini(&zc);
2486 	if (err == 0)
2487 		*llp = za.za_first_integer;
2488 	return (err);
2489 }
2490 
2491 /*
2492  * Components of livelist deletion that must be performed in syncing
2493  * context: freeing block pointers and updating the pool-wide data
2494  * structures to indicate how much work is left to do
2495  */
2496 typedef struct sublist_delete_arg {
2497 	spa_t *spa;
2498 	dsl_deadlist_t *ll;
2499 	uint64_t key;
2500 	bplist_t *to_free;
2501 } sublist_delete_arg_t;
2502 
2503 static void
2504 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2505 {
2506 	sublist_delete_arg_t *sda = arg;
2507 	spa_t *spa = sda->spa;
2508 	dsl_deadlist_t *ll = sda->ll;
2509 	uint64_t key = sda->key;
2510 	bplist_t *to_free = sda->to_free;
2511 
2512 	bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2513 	dsl_deadlist_remove_entry(ll, key, tx);
2514 }
2515 
2516 typedef struct livelist_delete_arg {
2517 	spa_t *spa;
2518 	uint64_t ll_obj;
2519 	uint64_t zap_obj;
2520 } livelist_delete_arg_t;
2521 
2522 static void
2523 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2524 {
2525 	livelist_delete_arg_t *lda = arg;
2526 	spa_t *spa = lda->spa;
2527 	uint64_t ll_obj = lda->ll_obj;
2528 	uint64_t zap_obj = lda->zap_obj;
2529 	objset_t *mos = spa->spa_meta_objset;
2530 	uint64_t count;
2531 
2532 	/* free the livelist and decrement the feature count */
2533 	VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2534 	dsl_deadlist_free(mos, ll_obj, tx);
2535 	spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2536 	VERIFY0(zap_count(mos, zap_obj, &count));
2537 	if (count == 0) {
2538 		/* no more livelists to delete */
2539 		VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2540 		    DMU_POOL_DELETED_CLONES, tx));
2541 		VERIFY0(zap_destroy(mos, zap_obj, tx));
2542 		spa->spa_livelists_to_delete = 0;
2543 		spa_notify_waiters(spa);
2544 	}
2545 }
2546 
2547 /*
2548  * Load in the value for the livelist to be removed and open it. Then,
2549  * load its first sublist and determine which block pointers should actually
2550  * be freed. Then, call a synctask which performs the actual frees and updates
2551  * the pool-wide livelist data.
2552  */
2553 /* ARGSUSED */
2554 static void
2555 spa_livelist_delete_cb(void *arg, zthr_t *z)
2556 {
2557 	spa_t *spa = arg;
2558 	uint64_t ll_obj = 0, count;
2559 	objset_t *mos = spa->spa_meta_objset;
2560 	uint64_t zap_obj = spa->spa_livelists_to_delete;
2561 	/*
2562 	 * Determine the next livelist to delete. This function should only
2563 	 * be called if there is at least one deleted clone.
2564 	 */
2565 	VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2566 	VERIFY0(zap_count(mos, ll_obj, &count));
2567 	if (count > 0) {
2568 		dsl_deadlist_t *ll;
2569 		dsl_deadlist_entry_t *dle;
2570 		bplist_t to_free;
2571 		ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
2572 		dsl_deadlist_open(ll, mos, ll_obj);
2573 		dle = dsl_deadlist_first(ll);
2574 		ASSERT3P(dle, !=, NULL);
2575 		bplist_create(&to_free);
2576 		int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
2577 		    z, NULL);
2578 		if (err == 0) {
2579 			sublist_delete_arg_t sync_arg = {
2580 			    .spa = spa,
2581 			    .ll = ll,
2582 			    .key = dle->dle_mintxg,
2583 			    .to_free = &to_free
2584 			};
2585 			zfs_dbgmsg("deleting sublist (id %llu) from"
2586 			    " livelist %llu, %lld remaining",
2587 			    (u_longlong_t)dle->dle_bpobj.bpo_object,
2588 			    (u_longlong_t)ll_obj, (longlong_t)count - 1);
2589 			VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2590 			    sublist_delete_sync, &sync_arg, 0,
2591 			    ZFS_SPACE_CHECK_DESTROY));
2592 		} else {
2593 			VERIFY3U(err, ==, EINTR);
2594 		}
2595 		bplist_clear(&to_free);
2596 		bplist_destroy(&to_free);
2597 		dsl_deadlist_close(ll);
2598 		kmem_free(ll, sizeof (dsl_deadlist_t));
2599 	} else {
2600 		livelist_delete_arg_t sync_arg = {
2601 		    .spa = spa,
2602 		    .ll_obj = ll_obj,
2603 		    .zap_obj = zap_obj
2604 		};
2605 		zfs_dbgmsg("deletion of livelist %llu completed",
2606 		    (u_longlong_t)ll_obj);
2607 		VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
2608 		    &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
2609 	}
2610 }
2611 
2612 static void
2613 spa_start_livelist_destroy_thread(spa_t *spa)
2614 {
2615 	ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
2616 	spa->spa_livelist_delete_zthr =
2617 	    zthr_create("z_livelist_destroy",
2618 	    spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
2619 	    minclsyspri);
2620 }
2621 
2622 typedef struct livelist_new_arg {
2623 	bplist_t *allocs;
2624 	bplist_t *frees;
2625 } livelist_new_arg_t;
2626 
2627 static int
2628 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
2629     dmu_tx_t *tx)
2630 {
2631 	ASSERT(tx == NULL);
2632 	livelist_new_arg_t *lna = arg;
2633 	if (bp_freed) {
2634 		bplist_append(lna->frees, bp);
2635 	} else {
2636 		bplist_append(lna->allocs, bp);
2637 		zfs_livelist_condense_new_alloc++;
2638 	}
2639 	return (0);
2640 }
2641 
2642 typedef struct livelist_condense_arg {
2643 	spa_t *spa;
2644 	bplist_t to_keep;
2645 	uint64_t first_size;
2646 	uint64_t next_size;
2647 } livelist_condense_arg_t;
2648 
2649 static void
2650 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
2651 {
2652 	livelist_condense_arg_t *lca = arg;
2653 	spa_t *spa = lca->spa;
2654 	bplist_t new_frees;
2655 	dsl_dataset_t *ds = spa->spa_to_condense.ds;
2656 
2657 	/* Have we been cancelled? */
2658 	if (spa->spa_to_condense.cancelled) {
2659 		zfs_livelist_condense_sync_cancel++;
2660 		goto out;
2661 	}
2662 
2663 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2664 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2665 	dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
2666 
2667 	/*
2668 	 * It's possible that the livelist was changed while the zthr was
2669 	 * running. Therefore, we need to check for new blkptrs in the two
2670 	 * entries being condensed and continue to track them in the livelist.
2671 	 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
2672 	 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
2673 	 * we need to sort them into two different bplists.
2674 	 */
2675 	uint64_t first_obj = first->dle_bpobj.bpo_object;
2676 	uint64_t next_obj = next->dle_bpobj.bpo_object;
2677 	uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2678 	uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2679 
2680 	bplist_create(&new_frees);
2681 	livelist_new_arg_t new_bps = {
2682 	    .allocs = &lca->to_keep,
2683 	    .frees = &new_frees,
2684 	};
2685 
2686 	if (cur_first_size > lca->first_size) {
2687 		VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
2688 		    livelist_track_new_cb, &new_bps, lca->first_size));
2689 	}
2690 	if (cur_next_size > lca->next_size) {
2691 		VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
2692 		    livelist_track_new_cb, &new_bps, lca->next_size));
2693 	}
2694 
2695 	dsl_deadlist_clear_entry(first, ll, tx);
2696 	ASSERT(bpobj_is_empty(&first->dle_bpobj));
2697 	dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
2698 
2699 	bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
2700 	bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
2701 	bplist_destroy(&new_frees);
2702 
2703 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
2704 	dsl_dataset_name(ds, dsname);
2705 	zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
2706 	    "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
2707 	    "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
2708 	    (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
2709 	    (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
2710 	    (u_longlong_t)cur_next_size,
2711 	    (u_longlong_t)first->dle_bpobj.bpo_object,
2712 	    (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
2713 out:
2714 	dmu_buf_rele(ds->ds_dbuf, spa);
2715 	spa->spa_to_condense.ds = NULL;
2716 	bplist_clear(&lca->to_keep);
2717 	bplist_destroy(&lca->to_keep);
2718 	kmem_free(lca, sizeof (livelist_condense_arg_t));
2719 	spa->spa_to_condense.syncing = B_FALSE;
2720 }
2721 
2722 static void
2723 spa_livelist_condense_cb(void *arg, zthr_t *t)
2724 {
2725 	while (zfs_livelist_condense_zthr_pause &&
2726 	    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2727 		delay(1);
2728 
2729 	spa_t *spa = arg;
2730 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2731 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2732 	uint64_t first_size, next_size;
2733 
2734 	livelist_condense_arg_t *lca =
2735 	    kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
2736 	bplist_create(&lca->to_keep);
2737 
2738 	/*
2739 	 * Process the livelists (matching FREEs and ALLOCs) in open context
2740 	 * so we have minimal work in syncing context to condense.
2741 	 *
2742 	 * We save bpobj sizes (first_size and next_size) to use later in
2743 	 * syncing context to determine if entries were added to these sublists
2744 	 * while in open context. This is possible because the clone is still
2745 	 * active and open for normal writes and we want to make sure the new,
2746 	 * unprocessed blockpointers are inserted into the livelist normally.
2747 	 *
2748 	 * Note that dsl_process_sub_livelist() both stores the size number of
2749 	 * blockpointers and iterates over them while the bpobj's lock held, so
2750 	 * the sizes returned to us are consistent which what was actually
2751 	 * processed.
2752 	 */
2753 	int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
2754 	    &first_size);
2755 	if (err == 0)
2756 		err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
2757 		    t, &next_size);
2758 
2759 	if (err == 0) {
2760 		while (zfs_livelist_condense_sync_pause &&
2761 		    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2762 			delay(1);
2763 
2764 		dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2765 		dmu_tx_mark_netfree(tx);
2766 		dmu_tx_hold_space(tx, 1);
2767 		err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
2768 		if (err == 0) {
2769 			/*
2770 			 * Prevent the condense zthr restarting before
2771 			 * the synctask completes.
2772 			 */
2773 			spa->spa_to_condense.syncing = B_TRUE;
2774 			lca->spa = spa;
2775 			lca->first_size = first_size;
2776 			lca->next_size = next_size;
2777 			dsl_sync_task_nowait(spa_get_dsl(spa),
2778 			    spa_livelist_condense_sync, lca, tx);
2779 			dmu_tx_commit(tx);
2780 			return;
2781 		}
2782 	}
2783 	/*
2784 	 * Condensing can not continue: either it was externally stopped or
2785 	 * we were unable to assign to a tx because the pool has run out of
2786 	 * space. In the second case, we'll just end up trying to condense
2787 	 * again in a later txg.
2788 	 */
2789 	ASSERT(err != 0);
2790 	bplist_clear(&lca->to_keep);
2791 	bplist_destroy(&lca->to_keep);
2792 	kmem_free(lca, sizeof (livelist_condense_arg_t));
2793 	dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
2794 	spa->spa_to_condense.ds = NULL;
2795 	if (err == EINTR)
2796 		zfs_livelist_condense_zthr_cancel++;
2797 }
2798 
2799 /* ARGSUSED */
2800 /*
2801  * Check that there is something to condense but that a condense is not
2802  * already in progress and that condensing has not been cancelled.
2803  */
2804 static boolean_t
2805 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
2806 {
2807 	spa_t *spa = arg;
2808 	if ((spa->spa_to_condense.ds != NULL) &&
2809 	    (spa->spa_to_condense.syncing == B_FALSE) &&
2810 	    (spa->spa_to_condense.cancelled == B_FALSE)) {
2811 		return (B_TRUE);
2812 	}
2813 	return (B_FALSE);
2814 }
2815 
2816 static void
2817 spa_start_livelist_condensing_thread(spa_t *spa)
2818 {
2819 	spa->spa_to_condense.ds = NULL;
2820 	spa->spa_to_condense.first = NULL;
2821 	spa->spa_to_condense.next = NULL;
2822 	spa->spa_to_condense.syncing = B_FALSE;
2823 	spa->spa_to_condense.cancelled = B_FALSE;
2824 
2825 	ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
2826 	spa->spa_livelist_condense_zthr =
2827 	    zthr_create("z_livelist_condense",
2828 	    spa_livelist_condense_cb_check,
2829 	    spa_livelist_condense_cb, spa, minclsyspri);
2830 }
2831 
2832 static void
2833 spa_spawn_aux_threads(spa_t *spa)
2834 {
2835 	ASSERT(spa_writeable(spa));
2836 
2837 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2838 
2839 	spa_start_indirect_condensing_thread(spa);
2840 	spa_start_livelist_destroy_thread(spa);
2841 	spa_start_livelist_condensing_thread(spa);
2842 
2843 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2844 	spa->spa_checkpoint_discard_zthr =
2845 	    zthr_create("z_checkpoint_discard",
2846 	    spa_checkpoint_discard_thread_check,
2847 	    spa_checkpoint_discard_thread, spa, minclsyspri);
2848 }
2849 
2850 /*
2851  * Fix up config after a partly-completed split.  This is done with the
2852  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2853  * pool have that entry in their config, but only the splitting one contains
2854  * a list of all the guids of the vdevs that are being split off.
2855  *
2856  * This function determines what to do with that list: either rejoin
2857  * all the disks to the pool, or complete the splitting process.  To attempt
2858  * the rejoin, each disk that is offlined is marked online again, and
2859  * we do a reopen() call.  If the vdev label for every disk that was
2860  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2861  * then we call vdev_split() on each disk, and complete the split.
2862  *
2863  * Otherwise we leave the config alone, with all the vdevs in place in
2864  * the original pool.
2865  */
2866 static void
2867 spa_try_repair(spa_t *spa, nvlist_t *config)
2868 {
2869 	uint_t extracted;
2870 	uint64_t *glist;
2871 	uint_t i, gcount;
2872 	nvlist_t *nvl;
2873 	vdev_t **vd;
2874 	boolean_t attempt_reopen;
2875 
2876 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2877 		return;
2878 
2879 	/* check that the config is complete */
2880 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2881 	    &glist, &gcount) != 0)
2882 		return;
2883 
2884 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2885 
2886 	/* attempt to online all the vdevs & validate */
2887 	attempt_reopen = B_TRUE;
2888 	for (i = 0; i < gcount; i++) {
2889 		if (glist[i] == 0)	/* vdev is hole */
2890 			continue;
2891 
2892 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2893 		if (vd[i] == NULL) {
2894 			/*
2895 			 * Don't bother attempting to reopen the disks;
2896 			 * just do the split.
2897 			 */
2898 			attempt_reopen = B_FALSE;
2899 		} else {
2900 			/* attempt to re-online it */
2901 			vd[i]->vdev_offline = B_FALSE;
2902 		}
2903 	}
2904 
2905 	if (attempt_reopen) {
2906 		vdev_reopen(spa->spa_root_vdev);
2907 
2908 		/* check each device to see what state it's in */
2909 		for (extracted = 0, i = 0; i < gcount; i++) {
2910 			if (vd[i] != NULL &&
2911 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2912 				break;
2913 			++extracted;
2914 		}
2915 	}
2916 
2917 	/*
2918 	 * If every disk has been moved to the new pool, or if we never
2919 	 * even attempted to look at them, then we split them off for
2920 	 * good.
2921 	 */
2922 	if (!attempt_reopen || gcount == extracted) {
2923 		for (i = 0; i < gcount; i++)
2924 			if (vd[i] != NULL)
2925 				vdev_split(vd[i]);
2926 		vdev_reopen(spa->spa_root_vdev);
2927 	}
2928 
2929 	kmem_free(vd, gcount * sizeof (vdev_t *));
2930 }
2931 
2932 static int
2933 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2934 {
2935 	char *ereport = FM_EREPORT_ZFS_POOL;
2936 	int error;
2937 
2938 	spa->spa_load_state = state;
2939 	(void) spa_import_progress_set_state(spa_guid(spa),
2940 	    spa_load_state(spa));
2941 
2942 	gethrestime(&spa->spa_loaded_ts);
2943 	error = spa_load_impl(spa, type, &ereport);
2944 
2945 	/*
2946 	 * Don't count references from objsets that are already closed
2947 	 * and are making their way through the eviction process.
2948 	 */
2949 	spa_evicting_os_wait(spa);
2950 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2951 	if (error) {
2952 		if (error != EEXIST) {
2953 			spa->spa_loaded_ts.tv_sec = 0;
2954 			spa->spa_loaded_ts.tv_nsec = 0;
2955 		}
2956 		if (error != EBADF) {
2957 			(void) zfs_ereport_post(ereport, spa,
2958 			    NULL, NULL, NULL, 0);
2959 		}
2960 	}
2961 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2962 	spa->spa_ena = 0;
2963 
2964 	(void) spa_import_progress_set_state(spa_guid(spa),
2965 	    spa_load_state(spa));
2966 
2967 	return (error);
2968 }
2969 
2970 #ifdef ZFS_DEBUG
2971 /*
2972  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2973  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2974  * spa's per-vdev ZAP list.
2975  */
2976 static uint64_t
2977 vdev_count_verify_zaps(vdev_t *vd)
2978 {
2979 	spa_t *spa = vd->vdev_spa;
2980 	uint64_t total = 0;
2981 
2982 	if (vd->vdev_top_zap != 0) {
2983 		total++;
2984 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2985 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2986 	}
2987 	if (vd->vdev_leaf_zap != 0) {
2988 		total++;
2989 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2990 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2991 	}
2992 
2993 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2994 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2995 	}
2996 
2997 	return (total);
2998 }
2999 #endif
3000 
3001 /*
3002  * Determine whether the activity check is required.
3003  */
3004 static boolean_t
3005 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3006     nvlist_t *config)
3007 {
3008 	uint64_t state = 0;
3009 	uint64_t hostid = 0;
3010 	uint64_t tryconfig_txg = 0;
3011 	uint64_t tryconfig_timestamp = 0;
3012 	uint16_t tryconfig_mmp_seq = 0;
3013 	nvlist_t *nvinfo;
3014 
3015 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3016 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3017 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3018 		    &tryconfig_txg);
3019 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3020 		    &tryconfig_timestamp);
3021 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3022 		    &tryconfig_mmp_seq);
3023 	}
3024 
3025 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3026 
3027 	/*
3028 	 * Disable the MMP activity check - This is used by zdb which
3029 	 * is intended to be used on potentially active pools.
3030 	 */
3031 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3032 		return (B_FALSE);
3033 
3034 	/*
3035 	 * Skip the activity check when the MMP feature is disabled.
3036 	 */
3037 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3038 		return (B_FALSE);
3039 
3040 	/*
3041 	 * If the tryconfig_ values are nonzero, they are the results of an
3042 	 * earlier tryimport.  If they all match the uberblock we just found,
3043 	 * then the pool has not changed and we return false so we do not test
3044 	 * a second time.
3045 	 */
3046 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3047 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3048 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
3049 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3050 		return (B_FALSE);
3051 
3052 	/*
3053 	 * Allow the activity check to be skipped when importing the pool
3054 	 * on the same host which last imported it.  Since the hostid from
3055 	 * configuration may be stale use the one read from the label.
3056 	 */
3057 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3058 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3059 
3060 	if (hostid == spa_get_hostid(spa))
3061 		return (B_FALSE);
3062 
3063 	/*
3064 	 * Skip the activity test when the pool was cleanly exported.
3065 	 */
3066 	if (state != POOL_STATE_ACTIVE)
3067 		return (B_FALSE);
3068 
3069 	return (B_TRUE);
3070 }
3071 
3072 /*
3073  * Nanoseconds the activity check must watch for changes on-disk.
3074  */
3075 static uint64_t
3076 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3077 {
3078 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3079 	uint64_t multihost_interval = MSEC2NSEC(
3080 	    MMP_INTERVAL_OK(zfs_multihost_interval));
3081 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
3082 	    multihost_interval);
3083 
3084 	/*
3085 	 * Local tunables determine a minimum duration except for the case
3086 	 * where we know when the remote host will suspend the pool if MMP
3087 	 * writes do not land.
3088 	 *
3089 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
3090 	 * these cases and times.
3091 	 */
3092 
3093 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3094 
3095 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3096 	    MMP_FAIL_INT(ub) > 0) {
3097 
3098 		/* MMP on remote host will suspend pool after failed writes */
3099 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3100 		    MMP_IMPORT_SAFETY_FACTOR / 100;
3101 
3102 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3103 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3104 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3105 		    (u_longlong_t)MMP_FAIL_INT(ub),
3106 		    (u_longlong_t)MMP_INTERVAL(ub),
3107 		    (u_longlong_t)import_intervals);
3108 
3109 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3110 	    MMP_FAIL_INT(ub) == 0) {
3111 
3112 		/* MMP on remote host will never suspend pool */
3113 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3114 		    ub->ub_mmp_delay) * import_intervals);
3115 
3116 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3117 		    "mmp_interval=%llu ub_mmp_delay=%llu "
3118 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3119 		    (u_longlong_t)MMP_INTERVAL(ub),
3120 		    (u_longlong_t)ub->ub_mmp_delay,
3121 		    (u_longlong_t)import_intervals);
3122 
3123 	} else if (MMP_VALID(ub)) {
3124 		/*
3125 		 * zfs-0.7 compatibility case
3126 		 */
3127 
3128 		import_delay = MAX(import_delay, (multihost_interval +
3129 		    ub->ub_mmp_delay) * import_intervals);
3130 
3131 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3132 		    "import_intervals=%llu leaves=%u",
3133 		    (u_longlong_t)import_delay,
3134 		    (u_longlong_t)ub->ub_mmp_delay,
3135 		    (u_longlong_t)import_intervals,
3136 		    vdev_count_leaves(spa));
3137 	} else {
3138 		/* Using local tunings is the only reasonable option */
3139 		zfs_dbgmsg("pool last imported on non-MMP aware "
3140 		    "host using import_delay=%llu multihost_interval=%llu "
3141 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3142 		    (u_longlong_t)multihost_interval,
3143 		    (u_longlong_t)import_intervals);
3144 	}
3145 
3146 	return (import_delay);
3147 }
3148 
3149 /*
3150  * Perform the import activity check.  If the user canceled the import or
3151  * we detected activity then fail.
3152  */
3153 static int
3154 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3155 {
3156 	uint64_t txg = ub->ub_txg;
3157 	uint64_t timestamp = ub->ub_timestamp;
3158 	uint64_t mmp_config = ub->ub_mmp_config;
3159 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3160 	uint64_t import_delay;
3161 	hrtime_t import_expire;
3162 	nvlist_t *mmp_label = NULL;
3163 	vdev_t *rvd = spa->spa_root_vdev;
3164 	kcondvar_t cv;
3165 	kmutex_t mtx;
3166 	int error = 0;
3167 
3168 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
3169 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3170 	mutex_enter(&mtx);
3171 
3172 	/*
3173 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3174 	 * during the earlier tryimport.  If the txg recorded there is 0 then
3175 	 * the pool is known to be active on another host.
3176 	 *
3177 	 * Otherwise, the pool might be in use on another host.  Check for
3178 	 * changes in the uberblocks on disk if necessary.
3179 	 */
3180 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3181 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3182 		    ZPOOL_CONFIG_LOAD_INFO);
3183 
3184 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3185 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3186 			vdev_uberblock_load(rvd, ub, &mmp_label);
3187 			error = SET_ERROR(EREMOTEIO);
3188 			goto out;
3189 		}
3190 	}
3191 
3192 	import_delay = spa_activity_check_duration(spa, ub);
3193 
3194 	/* Add a small random factor in case of simultaneous imports (0-25%) */
3195 	import_delay += import_delay * random_in_range(250) / 1000;
3196 
3197 	import_expire = gethrtime() + import_delay;
3198 
3199 	while (gethrtime() < import_expire) {
3200 		(void) spa_import_progress_set_mmp_check(spa_guid(spa),
3201 		    NSEC2SEC(import_expire - gethrtime()));
3202 
3203 		vdev_uberblock_load(rvd, ub, &mmp_label);
3204 
3205 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3206 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3207 			zfs_dbgmsg("multihost activity detected "
3208 			    "txg %llu ub_txg  %llu "
3209 			    "timestamp %llu ub_timestamp  %llu "
3210 			    "mmp_config %#llx ub_mmp_config %#llx",
3211 			    (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3212 			    (u_longlong_t)timestamp,
3213 			    (u_longlong_t)ub->ub_timestamp,
3214 			    (u_longlong_t)mmp_config,
3215 			    (u_longlong_t)ub->ub_mmp_config);
3216 
3217 			error = SET_ERROR(EREMOTEIO);
3218 			break;
3219 		}
3220 
3221 		if (mmp_label) {
3222 			nvlist_free(mmp_label);
3223 			mmp_label = NULL;
3224 		}
3225 
3226 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3227 		if (error != -1) {
3228 			error = SET_ERROR(EINTR);
3229 			break;
3230 		}
3231 		error = 0;
3232 	}
3233 
3234 out:
3235 	mutex_exit(&mtx);
3236 	mutex_destroy(&mtx);
3237 	cv_destroy(&cv);
3238 
3239 	/*
3240 	 * If the pool is determined to be active store the status in the
3241 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
3242 	 * available from configuration read from disk store them as well.
3243 	 * This allows 'zpool import' to generate a more useful message.
3244 	 *
3245 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
3246 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3247 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
3248 	 */
3249 	if (error == EREMOTEIO) {
3250 		char *hostname = "<unknown>";
3251 		uint64_t hostid = 0;
3252 
3253 		if (mmp_label) {
3254 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3255 				hostname = fnvlist_lookup_string(mmp_label,
3256 				    ZPOOL_CONFIG_HOSTNAME);
3257 				fnvlist_add_string(spa->spa_load_info,
3258 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3259 			}
3260 
3261 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3262 				hostid = fnvlist_lookup_uint64(mmp_label,
3263 				    ZPOOL_CONFIG_HOSTID);
3264 				fnvlist_add_uint64(spa->spa_load_info,
3265 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
3266 			}
3267 		}
3268 
3269 		fnvlist_add_uint64(spa->spa_load_info,
3270 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3271 		fnvlist_add_uint64(spa->spa_load_info,
3272 		    ZPOOL_CONFIG_MMP_TXG, 0);
3273 
3274 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3275 	}
3276 
3277 	if (mmp_label)
3278 		nvlist_free(mmp_label);
3279 
3280 	return (error);
3281 }
3282 
3283 static int
3284 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3285 {
3286 	uint64_t hostid;
3287 	char *hostname;
3288 	uint64_t myhostid = 0;
3289 
3290 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3291 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3292 		hostname = fnvlist_lookup_string(mos_config,
3293 		    ZPOOL_CONFIG_HOSTNAME);
3294 
3295 		myhostid = zone_get_hostid(NULL);
3296 
3297 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3298 			cmn_err(CE_WARN, "pool '%s' could not be "
3299 			    "loaded as it was last accessed by "
3300 			    "another system (host: %s hostid: 0x%llx). "
3301 			    "See: https://openzfs.github.io/openzfs-docs/msg/"
3302 			    "ZFS-8000-EY",
3303 			    spa_name(spa), hostname, (u_longlong_t)hostid);
3304 			spa_load_failed(spa, "hostid verification failed: pool "
3305 			    "last accessed by host: %s (hostid: 0x%llx)",
3306 			    hostname, (u_longlong_t)hostid);
3307 			return (SET_ERROR(EBADF));
3308 		}
3309 	}
3310 
3311 	return (0);
3312 }
3313 
3314 static int
3315 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3316 {
3317 	int error = 0;
3318 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3319 	int parse;
3320 	vdev_t *rvd;
3321 	uint64_t pool_guid;
3322 	char *comment;
3323 	char *compatibility;
3324 
3325 	/*
3326 	 * Versioning wasn't explicitly added to the label until later, so if
3327 	 * it's not present treat it as the initial version.
3328 	 */
3329 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3330 	    &spa->spa_ubsync.ub_version) != 0)
3331 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3332 
3333 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3334 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3335 		    ZPOOL_CONFIG_POOL_GUID);
3336 		return (SET_ERROR(EINVAL));
3337 	}
3338 
3339 	/*
3340 	 * If we are doing an import, ensure that the pool is not already
3341 	 * imported by checking if its pool guid already exists in the
3342 	 * spa namespace.
3343 	 *
3344 	 * The only case that we allow an already imported pool to be
3345 	 * imported again, is when the pool is checkpointed and we want to
3346 	 * look at its checkpointed state from userland tools like zdb.
3347 	 */
3348 #ifdef _KERNEL
3349 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3350 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3351 	    spa_guid_exists(pool_guid, 0)) {
3352 #else
3353 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3354 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3355 	    spa_guid_exists(pool_guid, 0) &&
3356 	    !spa_importing_readonly_checkpoint(spa)) {
3357 #endif
3358 		spa_load_failed(spa, "a pool with guid %llu is already open",
3359 		    (u_longlong_t)pool_guid);
3360 		return (SET_ERROR(EEXIST));
3361 	}
3362 
3363 	spa->spa_config_guid = pool_guid;
3364 
3365 	nvlist_free(spa->spa_load_info);
3366 	spa->spa_load_info = fnvlist_alloc();
3367 
3368 	ASSERT(spa->spa_comment == NULL);
3369 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3370 		spa->spa_comment = spa_strdup(comment);
3371 
3372 	ASSERT(spa->spa_compatibility == NULL);
3373 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3374 	    &compatibility) == 0)
3375 		spa->spa_compatibility = spa_strdup(compatibility);
3376 
3377 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3378 	    &spa->spa_config_txg);
3379 
3380 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3381 		spa->spa_config_splitting = fnvlist_dup(nvl);
3382 
3383 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3384 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3385 		    ZPOOL_CONFIG_VDEV_TREE);
3386 		return (SET_ERROR(EINVAL));
3387 	}
3388 
3389 	/*
3390 	 * Create "The Godfather" zio to hold all async IOs
3391 	 */
3392 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3393 	    KM_SLEEP);
3394 	for (int i = 0; i < max_ncpus; i++) {
3395 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3396 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3397 		    ZIO_FLAG_GODFATHER);
3398 	}
3399 
3400 	/*
3401 	 * Parse the configuration into a vdev tree.  We explicitly set the
3402 	 * value that will be returned by spa_version() since parsing the
3403 	 * configuration requires knowing the version number.
3404 	 */
3405 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3406 	parse = (type == SPA_IMPORT_EXISTING ?
3407 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3408 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3409 	spa_config_exit(spa, SCL_ALL, FTAG);
3410 
3411 	if (error != 0) {
3412 		spa_load_failed(spa, "unable to parse config [error=%d]",
3413 		    error);
3414 		return (error);
3415 	}
3416 
3417 	ASSERT(spa->spa_root_vdev == rvd);
3418 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3419 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3420 
3421 	if (type != SPA_IMPORT_ASSEMBLE) {
3422 		ASSERT(spa_guid(spa) == pool_guid);
3423 	}
3424 
3425 	return (0);
3426 }
3427 
3428 /*
3429  * Recursively open all vdevs in the vdev tree. This function is called twice:
3430  * first with the untrusted config, then with the trusted config.
3431  */
3432 static int
3433 spa_ld_open_vdevs(spa_t *spa)
3434 {
3435 	int error = 0;
3436 
3437 	/*
3438 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3439 	 * missing/unopenable for the root vdev to be still considered openable.
3440 	 */
3441 	if (spa->spa_trust_config) {
3442 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3443 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3444 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3445 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3446 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3447 	} else {
3448 		spa->spa_missing_tvds_allowed = 0;
3449 	}
3450 
3451 	spa->spa_missing_tvds_allowed =
3452 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3453 
3454 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3455 	error = vdev_open(spa->spa_root_vdev);
3456 	spa_config_exit(spa, SCL_ALL, FTAG);
3457 
3458 	if (spa->spa_missing_tvds != 0) {
3459 		spa_load_note(spa, "vdev tree has %lld missing top-level "
3460 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3461 		if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3462 			/*
3463 			 * Although theoretically we could allow users to open
3464 			 * incomplete pools in RW mode, we'd need to add a lot
3465 			 * of extra logic (e.g. adjust pool space to account
3466 			 * for missing vdevs).
3467 			 * This limitation also prevents users from accidentally
3468 			 * opening the pool in RW mode during data recovery and
3469 			 * damaging it further.
3470 			 */
3471 			spa_load_note(spa, "pools with missing top-level "
3472 			    "vdevs can only be opened in read-only mode.");
3473 			error = SET_ERROR(ENXIO);
3474 		} else {
3475 			spa_load_note(spa, "current settings allow for maximum "
3476 			    "%lld missing top-level vdevs at this stage.",
3477 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
3478 		}
3479 	}
3480 	if (error != 0) {
3481 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3482 		    error);
3483 	}
3484 	if (spa->spa_missing_tvds != 0 || error != 0)
3485 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3486 
3487 	return (error);
3488 }
3489 
3490 /*
3491  * We need to validate the vdev labels against the configuration that
3492  * we have in hand. This function is called twice: first with an untrusted
3493  * config, then with a trusted config. The validation is more strict when the
3494  * config is trusted.
3495  */
3496 static int
3497 spa_ld_validate_vdevs(spa_t *spa)
3498 {
3499 	int error = 0;
3500 	vdev_t *rvd = spa->spa_root_vdev;
3501 
3502 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3503 	error = vdev_validate(rvd);
3504 	spa_config_exit(spa, SCL_ALL, FTAG);
3505 
3506 	if (error != 0) {
3507 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3508 		return (error);
3509 	}
3510 
3511 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3512 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
3513 		    "some vdevs");
3514 		vdev_dbgmsg_print_tree(rvd, 2);
3515 		return (SET_ERROR(ENXIO));
3516 	}
3517 
3518 	return (0);
3519 }
3520 
3521 static void
3522 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3523 {
3524 	spa->spa_state = POOL_STATE_ACTIVE;
3525 	spa->spa_ubsync = spa->spa_uberblock;
3526 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3527 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3528 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3529 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3530 	spa->spa_claim_max_txg = spa->spa_first_txg;
3531 	spa->spa_prev_software_version = ub->ub_software_version;
3532 }
3533 
3534 static int
3535 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3536 {
3537 	vdev_t *rvd = spa->spa_root_vdev;
3538 	nvlist_t *label;
3539 	uberblock_t *ub = &spa->spa_uberblock;
3540 	boolean_t activity_check = B_FALSE;
3541 
3542 	/*
3543 	 * If we are opening the checkpointed state of the pool by
3544 	 * rewinding to it, at this point we will have written the
3545 	 * checkpointed uberblock to the vdev labels, so searching
3546 	 * the labels will find the right uberblock.  However, if
3547 	 * we are opening the checkpointed state read-only, we have
3548 	 * not modified the labels. Therefore, we must ignore the
3549 	 * labels and continue using the spa_uberblock that was set
3550 	 * by spa_ld_checkpoint_rewind.
3551 	 *
3552 	 * Note that it would be fine to ignore the labels when
3553 	 * rewinding (opening writeable) as well. However, if we
3554 	 * crash just after writing the labels, we will end up
3555 	 * searching the labels. Doing so in the common case means
3556 	 * that this code path gets exercised normally, rather than
3557 	 * just in the edge case.
3558 	 */
3559 	if (ub->ub_checkpoint_txg != 0 &&
3560 	    spa_importing_readonly_checkpoint(spa)) {
3561 		spa_ld_select_uberblock_done(spa, ub);
3562 		return (0);
3563 	}
3564 
3565 	/*
3566 	 * Find the best uberblock.
3567 	 */
3568 	vdev_uberblock_load(rvd, ub, &label);
3569 
3570 	/*
3571 	 * If we weren't able to find a single valid uberblock, return failure.
3572 	 */
3573 	if (ub->ub_txg == 0) {
3574 		nvlist_free(label);
3575 		spa_load_failed(spa, "no valid uberblock found");
3576 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3577 	}
3578 
3579 	if (spa->spa_load_max_txg != UINT64_MAX) {
3580 		(void) spa_import_progress_set_max_txg(spa_guid(spa),
3581 		    (u_longlong_t)spa->spa_load_max_txg);
3582 	}
3583 	spa_load_note(spa, "using uberblock with txg=%llu",
3584 	    (u_longlong_t)ub->ub_txg);
3585 
3586 
3587 	/*
3588 	 * For pools which have the multihost property on determine if the
3589 	 * pool is truly inactive and can be safely imported.  Prevent
3590 	 * hosts which don't have a hostid set from importing the pool.
3591 	 */
3592 	activity_check = spa_activity_check_required(spa, ub, label,
3593 	    spa->spa_config);
3594 	if (activity_check) {
3595 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3596 		    spa_get_hostid(spa) == 0) {
3597 			nvlist_free(label);
3598 			fnvlist_add_uint64(spa->spa_load_info,
3599 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3600 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3601 		}
3602 
3603 		int error = spa_activity_check(spa, ub, spa->spa_config);
3604 		if (error) {
3605 			nvlist_free(label);
3606 			return (error);
3607 		}
3608 
3609 		fnvlist_add_uint64(spa->spa_load_info,
3610 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3611 		fnvlist_add_uint64(spa->spa_load_info,
3612 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3613 		fnvlist_add_uint16(spa->spa_load_info,
3614 		    ZPOOL_CONFIG_MMP_SEQ,
3615 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3616 	}
3617 
3618 	/*
3619 	 * If the pool has an unsupported version we can't open it.
3620 	 */
3621 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3622 		nvlist_free(label);
3623 		spa_load_failed(spa, "version %llu is not supported",
3624 		    (u_longlong_t)ub->ub_version);
3625 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3626 	}
3627 
3628 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3629 		nvlist_t *features;
3630 
3631 		/*
3632 		 * If we weren't able to find what's necessary for reading the
3633 		 * MOS in the label, return failure.
3634 		 */
3635 		if (label == NULL) {
3636 			spa_load_failed(spa, "label config unavailable");
3637 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3638 			    ENXIO));
3639 		}
3640 
3641 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3642 		    &features) != 0) {
3643 			nvlist_free(label);
3644 			spa_load_failed(spa, "invalid label: '%s' missing",
3645 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
3646 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3647 			    ENXIO));
3648 		}
3649 
3650 		/*
3651 		 * Update our in-core representation with the definitive values
3652 		 * from the label.
3653 		 */
3654 		nvlist_free(spa->spa_label_features);
3655 		spa->spa_label_features = fnvlist_dup(features);
3656 	}
3657 
3658 	nvlist_free(label);
3659 
3660 	/*
3661 	 * Look through entries in the label nvlist's features_for_read. If
3662 	 * there is a feature listed there which we don't understand then we
3663 	 * cannot open a pool.
3664 	 */
3665 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3666 		nvlist_t *unsup_feat;
3667 
3668 		unsup_feat = fnvlist_alloc();
3669 
3670 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3671 		    NULL); nvp != NULL;
3672 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3673 			if (!zfeature_is_supported(nvpair_name(nvp))) {
3674 				fnvlist_add_string(unsup_feat,
3675 				    nvpair_name(nvp), "");
3676 			}
3677 		}
3678 
3679 		if (!nvlist_empty(unsup_feat)) {
3680 			fnvlist_add_nvlist(spa->spa_load_info,
3681 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3682 			nvlist_free(unsup_feat);
3683 			spa_load_failed(spa, "some features are unsupported");
3684 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3685 			    ENOTSUP));
3686 		}
3687 
3688 		nvlist_free(unsup_feat);
3689 	}
3690 
3691 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3692 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3693 		spa_try_repair(spa, spa->spa_config);
3694 		spa_config_exit(spa, SCL_ALL, FTAG);
3695 		nvlist_free(spa->spa_config_splitting);
3696 		spa->spa_config_splitting = NULL;
3697 	}
3698 
3699 	/*
3700 	 * Initialize internal SPA structures.
3701 	 */
3702 	spa_ld_select_uberblock_done(spa, ub);
3703 
3704 	return (0);
3705 }
3706 
3707 static int
3708 spa_ld_open_rootbp(spa_t *spa)
3709 {
3710 	int error = 0;
3711 	vdev_t *rvd = spa->spa_root_vdev;
3712 
3713 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3714 	if (error != 0) {
3715 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3716 		    "[error=%d]", error);
3717 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3718 	}
3719 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3720 
3721 	return (0);
3722 }
3723 
3724 static int
3725 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3726     boolean_t reloading)
3727 {
3728 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3729 	nvlist_t *nv, *mos_config, *policy;
3730 	int error = 0, copy_error;
3731 	uint64_t healthy_tvds, healthy_tvds_mos;
3732 	uint64_t mos_config_txg;
3733 
3734 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3735 	    != 0)
3736 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3737 
3738 	/*
3739 	 * If we're assembling a pool from a split, the config provided is
3740 	 * already trusted so there is nothing to do.
3741 	 */
3742 	if (type == SPA_IMPORT_ASSEMBLE)
3743 		return (0);
3744 
3745 	healthy_tvds = spa_healthy_core_tvds(spa);
3746 
3747 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3748 	    != 0) {
3749 		spa_load_failed(spa, "unable to retrieve MOS config");
3750 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3751 	}
3752 
3753 	/*
3754 	 * If we are doing an open, pool owner wasn't verified yet, thus do
3755 	 * the verification here.
3756 	 */
3757 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
3758 		error = spa_verify_host(spa, mos_config);
3759 		if (error != 0) {
3760 			nvlist_free(mos_config);
3761 			return (error);
3762 		}
3763 	}
3764 
3765 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3766 
3767 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3768 
3769 	/*
3770 	 * Build a new vdev tree from the trusted config
3771 	 */
3772 	error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
3773 	if (error != 0) {
3774 		nvlist_free(mos_config);
3775 		spa_config_exit(spa, SCL_ALL, FTAG);
3776 		spa_load_failed(spa, "spa_config_parse failed [error=%d]",
3777 		    error);
3778 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3779 	}
3780 
3781 	/*
3782 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3783 	 * obtained by scanning /dev/dsk, then it will have the right vdev
3784 	 * paths. We update the trusted MOS config with this information.
3785 	 * We first try to copy the paths with vdev_copy_path_strict, which
3786 	 * succeeds only when both configs have exactly the same vdev tree.
3787 	 * If that fails, we fall back to a more flexible method that has a
3788 	 * best effort policy.
3789 	 */
3790 	copy_error = vdev_copy_path_strict(rvd, mrvd);
3791 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3792 		spa_load_note(spa, "provided vdev tree:");
3793 		vdev_dbgmsg_print_tree(rvd, 2);
3794 		spa_load_note(spa, "MOS vdev tree:");
3795 		vdev_dbgmsg_print_tree(mrvd, 2);
3796 	}
3797 	if (copy_error != 0) {
3798 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3799 		    "back to vdev_copy_path_relaxed");
3800 		vdev_copy_path_relaxed(rvd, mrvd);
3801 	}
3802 
3803 	vdev_close(rvd);
3804 	vdev_free(rvd);
3805 	spa->spa_root_vdev = mrvd;
3806 	rvd = mrvd;
3807 	spa_config_exit(spa, SCL_ALL, FTAG);
3808 
3809 	/*
3810 	 * We will use spa_config if we decide to reload the spa or if spa_load
3811 	 * fails and we rewind. We must thus regenerate the config using the
3812 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3813 	 * pass settings on how to load the pool and is not stored in the MOS.
3814 	 * We copy it over to our new, trusted config.
3815 	 */
3816 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
3817 	    ZPOOL_CONFIG_POOL_TXG);
3818 	nvlist_free(mos_config);
3819 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3820 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3821 	    &policy) == 0)
3822 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3823 	spa_config_set(spa, mos_config);
3824 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3825 
3826 	/*
3827 	 * Now that we got the config from the MOS, we should be more strict
3828 	 * in checking blkptrs and can make assumptions about the consistency
3829 	 * of the vdev tree. spa_trust_config must be set to true before opening
3830 	 * vdevs in order for them to be writeable.
3831 	 */
3832 	spa->spa_trust_config = B_TRUE;
3833 
3834 	/*
3835 	 * Open and validate the new vdev tree
3836 	 */
3837 	error = spa_ld_open_vdevs(spa);
3838 	if (error != 0)
3839 		return (error);
3840 
3841 	error = spa_ld_validate_vdevs(spa);
3842 	if (error != 0)
3843 		return (error);
3844 
3845 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3846 		spa_load_note(spa, "final vdev tree:");
3847 		vdev_dbgmsg_print_tree(rvd, 2);
3848 	}
3849 
3850 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3851 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3852 		/*
3853 		 * Sanity check to make sure that we are indeed loading the
3854 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3855 		 * in the config provided and they happened to be the only ones
3856 		 * to have the latest uberblock, we could involuntarily perform
3857 		 * an extreme rewind.
3858 		 */
3859 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
3860 		if (healthy_tvds_mos - healthy_tvds >=
3861 		    SPA_SYNC_MIN_VDEVS) {
3862 			spa_load_note(spa, "config provided misses too many "
3863 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
3864 			    (u_longlong_t)healthy_tvds,
3865 			    (u_longlong_t)healthy_tvds_mos);
3866 			spa_load_note(spa, "vdev tree:");
3867 			vdev_dbgmsg_print_tree(rvd, 2);
3868 			if (reloading) {
3869 				spa_load_failed(spa, "config was already "
3870 				    "provided from MOS. Aborting.");
3871 				return (spa_vdev_err(rvd,
3872 				    VDEV_AUX_CORRUPT_DATA, EIO));
3873 			}
3874 			spa_load_note(spa, "spa must be reloaded using MOS "
3875 			    "config");
3876 			return (SET_ERROR(EAGAIN));
3877 		}
3878 	}
3879 
3880 	error = spa_check_for_missing_logs(spa);
3881 	if (error != 0)
3882 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3883 
3884 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3885 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3886 		    "guid sum (%llu != %llu)",
3887 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3888 		    (u_longlong_t)rvd->vdev_guid_sum);
3889 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3890 		    ENXIO));
3891 	}
3892 
3893 	return (0);
3894 }
3895 
3896 static int
3897 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3898 {
3899 	int error = 0;
3900 	vdev_t *rvd = spa->spa_root_vdev;
3901 
3902 	/*
3903 	 * Everything that we read before spa_remove_init() must be stored
3904 	 * on concreted vdevs.  Therefore we do this as early as possible.
3905 	 */
3906 	error = spa_remove_init(spa);
3907 	if (error != 0) {
3908 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3909 		    error);
3910 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3911 	}
3912 
3913 	/*
3914 	 * Retrieve information needed to condense indirect vdev mappings.
3915 	 */
3916 	error = spa_condense_init(spa);
3917 	if (error != 0) {
3918 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3919 		    error);
3920 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3921 	}
3922 
3923 	return (0);
3924 }
3925 
3926 static int
3927 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3928 {
3929 	int error = 0;
3930 	vdev_t *rvd = spa->spa_root_vdev;
3931 
3932 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3933 		boolean_t missing_feat_read = B_FALSE;
3934 		nvlist_t *unsup_feat, *enabled_feat;
3935 
3936 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3937 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3938 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3939 		}
3940 
3941 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3942 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3943 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3944 		}
3945 
3946 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3947 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3948 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3949 		}
3950 
3951 		enabled_feat = fnvlist_alloc();
3952 		unsup_feat = fnvlist_alloc();
3953 
3954 		if (!spa_features_check(spa, B_FALSE,
3955 		    unsup_feat, enabled_feat))
3956 			missing_feat_read = B_TRUE;
3957 
3958 		if (spa_writeable(spa) ||
3959 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3960 			if (!spa_features_check(spa, B_TRUE,
3961 			    unsup_feat, enabled_feat)) {
3962 				*missing_feat_writep = B_TRUE;
3963 			}
3964 		}
3965 
3966 		fnvlist_add_nvlist(spa->spa_load_info,
3967 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3968 
3969 		if (!nvlist_empty(unsup_feat)) {
3970 			fnvlist_add_nvlist(spa->spa_load_info,
3971 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3972 		}
3973 
3974 		fnvlist_free(enabled_feat);
3975 		fnvlist_free(unsup_feat);
3976 
3977 		if (!missing_feat_read) {
3978 			fnvlist_add_boolean(spa->spa_load_info,
3979 			    ZPOOL_CONFIG_CAN_RDONLY);
3980 		}
3981 
3982 		/*
3983 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3984 		 * twofold: to determine whether the pool is available for
3985 		 * import in read-write mode and (if it is not) whether the
3986 		 * pool is available for import in read-only mode. If the pool
3987 		 * is available for import in read-write mode, it is displayed
3988 		 * as available in userland; if it is not available for import
3989 		 * in read-only mode, it is displayed as unavailable in
3990 		 * userland. If the pool is available for import in read-only
3991 		 * mode but not read-write mode, it is displayed as unavailable
3992 		 * in userland with a special note that the pool is actually
3993 		 * available for open in read-only mode.
3994 		 *
3995 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3996 		 * missing a feature for write, we must first determine whether
3997 		 * the pool can be opened read-only before returning to
3998 		 * userland in order to know whether to display the
3999 		 * abovementioned note.
4000 		 */
4001 		if (missing_feat_read || (*missing_feat_writep &&
4002 		    spa_writeable(spa))) {
4003 			spa_load_failed(spa, "pool uses unsupported features");
4004 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4005 			    ENOTSUP));
4006 		}
4007 
4008 		/*
4009 		 * Load refcounts for ZFS features from disk into an in-memory
4010 		 * cache during SPA initialization.
4011 		 */
4012 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4013 			uint64_t refcount;
4014 
4015 			error = feature_get_refcount_from_disk(spa,
4016 			    &spa_feature_table[i], &refcount);
4017 			if (error == 0) {
4018 				spa->spa_feat_refcount_cache[i] = refcount;
4019 			} else if (error == ENOTSUP) {
4020 				spa->spa_feat_refcount_cache[i] =
4021 				    SPA_FEATURE_DISABLED;
4022 			} else {
4023 				spa_load_failed(spa, "error getting refcount "
4024 				    "for feature %s [error=%d]",
4025 				    spa_feature_table[i].fi_guid, error);
4026 				return (spa_vdev_err(rvd,
4027 				    VDEV_AUX_CORRUPT_DATA, EIO));
4028 			}
4029 		}
4030 	}
4031 
4032 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4033 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4034 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4035 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4036 	}
4037 
4038 	/*
4039 	 * Encryption was added before bookmark_v2, even though bookmark_v2
4040 	 * is now a dependency. If this pool has encryption enabled without
4041 	 * bookmark_v2, trigger an errata message.
4042 	 */
4043 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4044 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4045 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4046 	}
4047 
4048 	return (0);
4049 }
4050 
4051 static int
4052 spa_ld_load_special_directories(spa_t *spa)
4053 {
4054 	int error = 0;
4055 	vdev_t *rvd = spa->spa_root_vdev;
4056 
4057 	spa->spa_is_initializing = B_TRUE;
4058 	error = dsl_pool_open(spa->spa_dsl_pool);
4059 	spa->spa_is_initializing = B_FALSE;
4060 	if (error != 0) {
4061 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4062 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4063 	}
4064 
4065 	return (0);
4066 }
4067 
4068 static int
4069 spa_ld_get_props(spa_t *spa)
4070 {
4071 	int error = 0;
4072 	uint64_t obj;
4073 	vdev_t *rvd = spa->spa_root_vdev;
4074 
4075 	/* Grab the checksum salt from the MOS. */
4076 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4077 	    DMU_POOL_CHECKSUM_SALT, 1,
4078 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
4079 	    spa->spa_cksum_salt.zcs_bytes);
4080 	if (error == ENOENT) {
4081 		/* Generate a new salt for subsequent use */
4082 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4083 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
4084 	} else if (error != 0) {
4085 		spa_load_failed(spa, "unable to retrieve checksum salt from "
4086 		    "MOS [error=%d]", error);
4087 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4088 	}
4089 
4090 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4091 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4092 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4093 	if (error != 0) {
4094 		spa_load_failed(spa, "error opening deferred-frees bpobj "
4095 		    "[error=%d]", error);
4096 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4097 	}
4098 
4099 	/*
4100 	 * Load the bit that tells us to use the new accounting function
4101 	 * (raid-z deflation).  If we have an older pool, this will not
4102 	 * be present.
4103 	 */
4104 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4105 	if (error != 0 && error != ENOENT)
4106 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4107 
4108 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4109 	    &spa->spa_creation_version, B_FALSE);
4110 	if (error != 0 && error != ENOENT)
4111 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4112 
4113 	/*
4114 	 * Load the persistent error log.  If we have an older pool, this will
4115 	 * not be present.
4116 	 */
4117 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4118 	    B_FALSE);
4119 	if (error != 0 && error != ENOENT)
4120 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4121 
4122 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4123 	    &spa->spa_errlog_scrub, B_FALSE);
4124 	if (error != 0 && error != ENOENT)
4125 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4126 
4127 	/*
4128 	 * Load the livelist deletion field. If a livelist is queued for
4129 	 * deletion, indicate that in the spa
4130 	 */
4131 	error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4132 	    &spa->spa_livelists_to_delete, B_FALSE);
4133 	if (error != 0 && error != ENOENT)
4134 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4135 
4136 	/*
4137 	 * Load the history object.  If we have an older pool, this
4138 	 * will not be present.
4139 	 */
4140 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4141 	if (error != 0 && error != ENOENT)
4142 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4143 
4144 	/*
4145 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
4146 	 * be present; in this case, defer its creation to a later time to
4147 	 * avoid dirtying the MOS this early / out of sync context. See
4148 	 * spa_sync_config_object.
4149 	 */
4150 
4151 	/* The sentinel is only available in the MOS config. */
4152 	nvlist_t *mos_config;
4153 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4154 		spa_load_failed(spa, "unable to retrieve MOS config");
4155 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4156 	}
4157 
4158 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4159 	    &spa->spa_all_vdev_zaps, B_FALSE);
4160 
4161 	if (error == ENOENT) {
4162 		VERIFY(!nvlist_exists(mos_config,
4163 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4164 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4165 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4166 	} else if (error != 0) {
4167 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4168 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4169 		/*
4170 		 * An older version of ZFS overwrote the sentinel value, so
4171 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4172 		 * destruction to later; see spa_sync_config_object.
4173 		 */
4174 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
4175 		/*
4176 		 * We're assuming that no vdevs have had their ZAPs created
4177 		 * before this. Better be sure of it.
4178 		 */
4179 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4180 	}
4181 	nvlist_free(mos_config);
4182 
4183 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4184 
4185 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4186 	    B_FALSE);
4187 	if (error && error != ENOENT)
4188 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4189 
4190 	if (error == 0) {
4191 		uint64_t autoreplace = 0;
4192 
4193 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4194 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4195 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4196 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4197 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4198 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4199 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4200 		spa->spa_autoreplace = (autoreplace != 0);
4201 	}
4202 
4203 	/*
4204 	 * If we are importing a pool with missing top-level vdevs,
4205 	 * we enforce that the pool doesn't panic or get suspended on
4206 	 * error since the likelihood of missing data is extremely high.
4207 	 */
4208 	if (spa->spa_missing_tvds > 0 &&
4209 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4210 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4211 		spa_load_note(spa, "forcing failmode to 'continue' "
4212 		    "as some top level vdevs are missing");
4213 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4214 	}
4215 
4216 	return (0);
4217 }
4218 
4219 static int
4220 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4221 {
4222 	int error = 0;
4223 	vdev_t *rvd = spa->spa_root_vdev;
4224 
4225 	/*
4226 	 * If we're assembling the pool from the split-off vdevs of
4227 	 * an existing pool, we don't want to attach the spares & cache
4228 	 * devices.
4229 	 */
4230 
4231 	/*
4232 	 * Load any hot spares for this pool.
4233 	 */
4234 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4235 	    B_FALSE);
4236 	if (error != 0 && error != ENOENT)
4237 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4238 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4239 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4240 		if (load_nvlist(spa, spa->spa_spares.sav_object,
4241 		    &spa->spa_spares.sav_config) != 0) {
4242 			spa_load_failed(spa, "error loading spares nvlist");
4243 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4244 		}
4245 
4246 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4247 		spa_load_spares(spa);
4248 		spa_config_exit(spa, SCL_ALL, FTAG);
4249 	} else if (error == 0) {
4250 		spa->spa_spares.sav_sync = B_TRUE;
4251 	}
4252 
4253 	/*
4254 	 * Load any level 2 ARC devices for this pool.
4255 	 */
4256 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4257 	    &spa->spa_l2cache.sav_object, B_FALSE);
4258 	if (error != 0 && error != ENOENT)
4259 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4260 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4261 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4262 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4263 		    &spa->spa_l2cache.sav_config) != 0) {
4264 			spa_load_failed(spa, "error loading l2cache nvlist");
4265 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4266 		}
4267 
4268 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4269 		spa_load_l2cache(spa);
4270 		spa_config_exit(spa, SCL_ALL, FTAG);
4271 	} else if (error == 0) {
4272 		spa->spa_l2cache.sav_sync = B_TRUE;
4273 	}
4274 
4275 	return (0);
4276 }
4277 
4278 static int
4279 spa_ld_load_vdev_metadata(spa_t *spa)
4280 {
4281 	int error = 0;
4282 	vdev_t *rvd = spa->spa_root_vdev;
4283 
4284 	/*
4285 	 * If the 'multihost' property is set, then never allow a pool to
4286 	 * be imported when the system hostid is zero.  The exception to
4287 	 * this rule is zdb which is always allowed to access pools.
4288 	 */
4289 	if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4290 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4291 		fnvlist_add_uint64(spa->spa_load_info,
4292 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4293 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4294 	}
4295 
4296 	/*
4297 	 * If the 'autoreplace' property is set, then post a resource notifying
4298 	 * the ZFS DE that it should not issue any faults for unopenable
4299 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
4300 	 * unopenable vdevs so that the normal autoreplace handler can take
4301 	 * over.
4302 	 */
4303 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4304 		spa_check_removed(spa->spa_root_vdev);
4305 		/*
4306 		 * For the import case, this is done in spa_import(), because
4307 		 * at this point we're using the spare definitions from
4308 		 * the MOS config, not necessarily from the userland config.
4309 		 */
4310 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4311 			spa_aux_check_removed(&spa->spa_spares);
4312 			spa_aux_check_removed(&spa->spa_l2cache);
4313 		}
4314 	}
4315 
4316 	/*
4317 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4318 	 */
4319 	error = vdev_load(rvd);
4320 	if (error != 0) {
4321 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4322 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4323 	}
4324 
4325 	error = spa_ld_log_spacemaps(spa);
4326 	if (error != 0) {
4327 		spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]",
4328 		    error);
4329 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4330 	}
4331 
4332 	/*
4333 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4334 	 */
4335 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4336 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4337 	spa_config_exit(spa, SCL_ALL, FTAG);
4338 
4339 	return (0);
4340 }
4341 
4342 static int
4343 spa_ld_load_dedup_tables(spa_t *spa)
4344 {
4345 	int error = 0;
4346 	vdev_t *rvd = spa->spa_root_vdev;
4347 
4348 	error = ddt_load(spa);
4349 	if (error != 0) {
4350 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4351 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4352 	}
4353 
4354 	return (0);
4355 }
4356 
4357 static int
4358 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
4359 {
4360 	vdev_t *rvd = spa->spa_root_vdev;
4361 
4362 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4363 		boolean_t missing = spa_check_logs(spa);
4364 		if (missing) {
4365 			if (spa->spa_missing_tvds != 0) {
4366 				spa_load_note(spa, "spa_check_logs failed "
4367 				    "so dropping the logs");
4368 			} else {
4369 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4370 				spa_load_failed(spa, "spa_check_logs failed");
4371 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4372 				    ENXIO));
4373 			}
4374 		}
4375 	}
4376 
4377 	return (0);
4378 }
4379 
4380 static int
4381 spa_ld_verify_pool_data(spa_t *spa)
4382 {
4383 	int error = 0;
4384 	vdev_t *rvd = spa->spa_root_vdev;
4385 
4386 	/*
4387 	 * We've successfully opened the pool, verify that we're ready
4388 	 * to start pushing transactions.
4389 	 */
4390 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4391 		error = spa_load_verify(spa);
4392 		if (error != 0) {
4393 			spa_load_failed(spa, "spa_load_verify failed "
4394 			    "[error=%d]", error);
4395 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4396 			    error));
4397 		}
4398 	}
4399 
4400 	return (0);
4401 }
4402 
4403 static void
4404 spa_ld_claim_log_blocks(spa_t *spa)
4405 {
4406 	dmu_tx_t *tx;
4407 	dsl_pool_t *dp = spa_get_dsl(spa);
4408 
4409 	/*
4410 	 * Claim log blocks that haven't been committed yet.
4411 	 * This must all happen in a single txg.
4412 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4413 	 * invoked from zil_claim_log_block()'s i/o done callback.
4414 	 * Price of rollback is that we abandon the log.
4415 	 */
4416 	spa->spa_claiming = B_TRUE;
4417 
4418 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4419 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4420 	    zil_claim, tx, DS_FIND_CHILDREN);
4421 	dmu_tx_commit(tx);
4422 
4423 	spa->spa_claiming = B_FALSE;
4424 
4425 	spa_set_log_state(spa, SPA_LOG_GOOD);
4426 }
4427 
4428 static void
4429 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4430     boolean_t update_config_cache)
4431 {
4432 	vdev_t *rvd = spa->spa_root_vdev;
4433 	int need_update = B_FALSE;
4434 
4435 	/*
4436 	 * If the config cache is stale, or we have uninitialized
4437 	 * metaslabs (see spa_vdev_add()), then update the config.
4438 	 *
4439 	 * If this is a verbatim import, trust the current
4440 	 * in-core spa_config and update the disk labels.
4441 	 */
4442 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4443 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
4444 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
4445 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4446 		need_update = B_TRUE;
4447 
4448 	for (int c = 0; c < rvd->vdev_children; c++)
4449 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
4450 			need_update = B_TRUE;
4451 
4452 	/*
4453 	 * Update the config cache asynchronously in case we're the
4454 	 * root pool, in which case the config cache isn't writable yet.
4455 	 */
4456 	if (need_update)
4457 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4458 }
4459 
4460 static void
4461 spa_ld_prepare_for_reload(spa_t *spa)
4462 {
4463 	spa_mode_t mode = spa->spa_mode;
4464 	int async_suspended = spa->spa_async_suspended;
4465 
4466 	spa_unload(spa);
4467 	spa_deactivate(spa);
4468 	spa_activate(spa, mode);
4469 
4470 	/*
4471 	 * We save the value of spa_async_suspended as it gets reset to 0 by
4472 	 * spa_unload(). We want to restore it back to the original value before
4473 	 * returning as we might be calling spa_async_resume() later.
4474 	 */
4475 	spa->spa_async_suspended = async_suspended;
4476 }
4477 
4478 static int
4479 spa_ld_read_checkpoint_txg(spa_t *spa)
4480 {
4481 	uberblock_t checkpoint;
4482 	int error = 0;
4483 
4484 	ASSERT0(spa->spa_checkpoint_txg);
4485 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4486 
4487 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4488 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4489 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4490 
4491 	if (error == ENOENT)
4492 		return (0);
4493 
4494 	if (error != 0)
4495 		return (error);
4496 
4497 	ASSERT3U(checkpoint.ub_txg, !=, 0);
4498 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4499 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4500 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
4501 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
4502 
4503 	return (0);
4504 }
4505 
4506 static int
4507 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
4508 {
4509 	int error = 0;
4510 
4511 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4512 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4513 
4514 	/*
4515 	 * Never trust the config that is provided unless we are assembling
4516 	 * a pool following a split.
4517 	 * This means don't trust blkptrs and the vdev tree in general. This
4518 	 * also effectively puts the spa in read-only mode since
4519 	 * spa_writeable() checks for spa_trust_config to be true.
4520 	 * We will later load a trusted config from the MOS.
4521 	 */
4522 	if (type != SPA_IMPORT_ASSEMBLE)
4523 		spa->spa_trust_config = B_FALSE;
4524 
4525 	/*
4526 	 * Parse the config provided to create a vdev tree.
4527 	 */
4528 	error = spa_ld_parse_config(spa, type);
4529 	if (error != 0)
4530 		return (error);
4531 
4532 	spa_import_progress_add(spa);
4533 
4534 	/*
4535 	 * Now that we have the vdev tree, try to open each vdev. This involves
4536 	 * opening the underlying physical device, retrieving its geometry and
4537 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
4538 	 * based on the success of those operations. After this we'll be ready
4539 	 * to read from the vdevs.
4540 	 */
4541 	error = spa_ld_open_vdevs(spa);
4542 	if (error != 0)
4543 		return (error);
4544 
4545 	/*
4546 	 * Read the label of each vdev and make sure that the GUIDs stored
4547 	 * there match the GUIDs in the config provided.
4548 	 * If we're assembling a new pool that's been split off from an
4549 	 * existing pool, the labels haven't yet been updated so we skip
4550 	 * validation for now.
4551 	 */
4552 	if (type != SPA_IMPORT_ASSEMBLE) {
4553 		error = spa_ld_validate_vdevs(spa);
4554 		if (error != 0)
4555 			return (error);
4556 	}
4557 
4558 	/*
4559 	 * Read all vdev labels to find the best uberblock (i.e. latest,
4560 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
4561 	 * get the list of features required to read blkptrs in the MOS from
4562 	 * the vdev label with the best uberblock and verify that our version
4563 	 * of zfs supports them all.
4564 	 */
4565 	error = spa_ld_select_uberblock(spa, type);
4566 	if (error != 0)
4567 		return (error);
4568 
4569 	/*
4570 	 * Pass that uberblock to the dsl_pool layer which will open the root
4571 	 * blkptr. This blkptr points to the latest version of the MOS and will
4572 	 * allow us to read its contents.
4573 	 */
4574 	error = spa_ld_open_rootbp(spa);
4575 	if (error != 0)
4576 		return (error);
4577 
4578 	return (0);
4579 }
4580 
4581 static int
4582 spa_ld_checkpoint_rewind(spa_t *spa)
4583 {
4584 	uberblock_t checkpoint;
4585 	int error = 0;
4586 
4587 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4588 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4589 
4590 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4591 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4592 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4593 
4594 	if (error != 0) {
4595 		spa_load_failed(spa, "unable to retrieve checkpointed "
4596 		    "uberblock from the MOS config [error=%d]", error);
4597 
4598 		if (error == ENOENT)
4599 			error = ZFS_ERR_NO_CHECKPOINT;
4600 
4601 		return (error);
4602 	}
4603 
4604 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4605 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4606 
4607 	/*
4608 	 * We need to update the txg and timestamp of the checkpointed
4609 	 * uberblock to be higher than the latest one. This ensures that
4610 	 * the checkpointed uberblock is selected if we were to close and
4611 	 * reopen the pool right after we've written it in the vdev labels.
4612 	 * (also see block comment in vdev_uberblock_compare)
4613 	 */
4614 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4615 	checkpoint.ub_timestamp = gethrestime_sec();
4616 
4617 	/*
4618 	 * Set current uberblock to be the checkpointed uberblock.
4619 	 */
4620 	spa->spa_uberblock = checkpoint;
4621 
4622 	/*
4623 	 * If we are doing a normal rewind, then the pool is open for
4624 	 * writing and we sync the "updated" checkpointed uberblock to
4625 	 * disk. Once this is done, we've basically rewound the whole
4626 	 * pool and there is no way back.
4627 	 *
4628 	 * There are cases when we don't want to attempt and sync the
4629 	 * checkpointed uberblock to disk because we are opening a
4630 	 * pool as read-only. Specifically, verifying the checkpointed
4631 	 * state with zdb, and importing the checkpointed state to get
4632 	 * a "preview" of its content.
4633 	 */
4634 	if (spa_writeable(spa)) {
4635 		vdev_t *rvd = spa->spa_root_vdev;
4636 
4637 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4638 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4639 		int svdcount = 0;
4640 		int children = rvd->vdev_children;
4641 		int c0 = random_in_range(children);
4642 
4643 		for (int c = 0; c < children; c++) {
4644 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4645 
4646 			/* Stop when revisiting the first vdev */
4647 			if (c > 0 && svd[0] == vd)
4648 				break;
4649 
4650 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4651 			    !vdev_is_concrete(vd))
4652 				continue;
4653 
4654 			svd[svdcount++] = vd;
4655 			if (svdcount == SPA_SYNC_MIN_VDEVS)
4656 				break;
4657 		}
4658 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4659 		if (error == 0)
4660 			spa->spa_last_synced_guid = rvd->vdev_guid;
4661 		spa_config_exit(spa, SCL_ALL, FTAG);
4662 
4663 		if (error != 0) {
4664 			spa_load_failed(spa, "failed to write checkpointed "
4665 			    "uberblock to the vdev labels [error=%d]", error);
4666 			return (error);
4667 		}
4668 	}
4669 
4670 	return (0);
4671 }
4672 
4673 static int
4674 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4675     boolean_t *update_config_cache)
4676 {
4677 	int error;
4678 
4679 	/*
4680 	 * Parse the config for pool, open and validate vdevs,
4681 	 * select an uberblock, and use that uberblock to open
4682 	 * the MOS.
4683 	 */
4684 	error = spa_ld_mos_init(spa, type);
4685 	if (error != 0)
4686 		return (error);
4687 
4688 	/*
4689 	 * Retrieve the trusted config stored in the MOS and use it to create
4690 	 * a new, exact version of the vdev tree, then reopen all vdevs.
4691 	 */
4692 	error = spa_ld_trusted_config(spa, type, B_FALSE);
4693 	if (error == EAGAIN) {
4694 		if (update_config_cache != NULL)
4695 			*update_config_cache = B_TRUE;
4696 
4697 		/*
4698 		 * Redo the loading process with the trusted config if it is
4699 		 * too different from the untrusted config.
4700 		 */
4701 		spa_ld_prepare_for_reload(spa);
4702 		spa_load_note(spa, "RELOADING");
4703 		error = spa_ld_mos_init(spa, type);
4704 		if (error != 0)
4705 			return (error);
4706 
4707 		error = spa_ld_trusted_config(spa, type, B_TRUE);
4708 		if (error != 0)
4709 			return (error);
4710 
4711 	} else if (error != 0) {
4712 		return (error);
4713 	}
4714 
4715 	return (0);
4716 }
4717 
4718 /*
4719  * Load an existing storage pool, using the config provided. This config
4720  * describes which vdevs are part of the pool and is later validated against
4721  * partial configs present in each vdev's label and an entire copy of the
4722  * config stored in the MOS.
4723  */
4724 static int
4725 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
4726 {
4727 	int error = 0;
4728 	boolean_t missing_feat_write = B_FALSE;
4729 	boolean_t checkpoint_rewind =
4730 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4731 	boolean_t update_config_cache = B_FALSE;
4732 
4733 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4734 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4735 
4736 	spa_load_note(spa, "LOADING");
4737 
4738 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4739 	if (error != 0)
4740 		return (error);
4741 
4742 	/*
4743 	 * If we are rewinding to the checkpoint then we need to repeat
4744 	 * everything we've done so far in this function but this time
4745 	 * selecting the checkpointed uberblock and using that to open
4746 	 * the MOS.
4747 	 */
4748 	if (checkpoint_rewind) {
4749 		/*
4750 		 * If we are rewinding to the checkpoint update config cache
4751 		 * anyway.
4752 		 */
4753 		update_config_cache = B_TRUE;
4754 
4755 		/*
4756 		 * Extract the checkpointed uberblock from the current MOS
4757 		 * and use this as the pool's uberblock from now on. If the
4758 		 * pool is imported as writeable we also write the checkpoint
4759 		 * uberblock to the labels, making the rewind permanent.
4760 		 */
4761 		error = spa_ld_checkpoint_rewind(spa);
4762 		if (error != 0)
4763 			return (error);
4764 
4765 		/*
4766 		 * Redo the loading process again with the
4767 		 * checkpointed uberblock.
4768 		 */
4769 		spa_ld_prepare_for_reload(spa);
4770 		spa_load_note(spa, "LOADING checkpointed uberblock");
4771 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4772 		if (error != 0)
4773 			return (error);
4774 	}
4775 
4776 	/*
4777 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
4778 	 */
4779 	error = spa_ld_read_checkpoint_txg(spa);
4780 	if (error != 0)
4781 		return (error);
4782 
4783 	/*
4784 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4785 	 * from the pool and their contents were re-mapped to other vdevs. Note
4786 	 * that everything that we read before this step must have been
4787 	 * rewritten on concrete vdevs after the last device removal was
4788 	 * initiated. Otherwise we could be reading from indirect vdevs before
4789 	 * we have loaded their mappings.
4790 	 */
4791 	error = spa_ld_open_indirect_vdev_metadata(spa);
4792 	if (error != 0)
4793 		return (error);
4794 
4795 	/*
4796 	 * Retrieve the full list of active features from the MOS and check if
4797 	 * they are all supported.
4798 	 */
4799 	error = spa_ld_check_features(spa, &missing_feat_write);
4800 	if (error != 0)
4801 		return (error);
4802 
4803 	/*
4804 	 * Load several special directories from the MOS needed by the dsl_pool
4805 	 * layer.
4806 	 */
4807 	error = spa_ld_load_special_directories(spa);
4808 	if (error != 0)
4809 		return (error);
4810 
4811 	/*
4812 	 * Retrieve pool properties from the MOS.
4813 	 */
4814 	error = spa_ld_get_props(spa);
4815 	if (error != 0)
4816 		return (error);
4817 
4818 	/*
4819 	 * Retrieve the list of auxiliary devices - cache devices and spares -
4820 	 * and open them.
4821 	 */
4822 	error = spa_ld_open_aux_vdevs(spa, type);
4823 	if (error != 0)
4824 		return (error);
4825 
4826 	/*
4827 	 * Load the metadata for all vdevs. Also check if unopenable devices
4828 	 * should be autoreplaced.
4829 	 */
4830 	error = spa_ld_load_vdev_metadata(spa);
4831 	if (error != 0)
4832 		return (error);
4833 
4834 	error = spa_ld_load_dedup_tables(spa);
4835 	if (error != 0)
4836 		return (error);
4837 
4838 	/*
4839 	 * Verify the logs now to make sure we don't have any unexpected errors
4840 	 * when we claim log blocks later.
4841 	 */
4842 	error = spa_ld_verify_logs(spa, type, ereport);
4843 	if (error != 0)
4844 		return (error);
4845 
4846 	if (missing_feat_write) {
4847 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4848 
4849 		/*
4850 		 * At this point, we know that we can open the pool in
4851 		 * read-only mode but not read-write mode. We now have enough
4852 		 * information and can return to userland.
4853 		 */
4854 		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4855 		    ENOTSUP));
4856 	}
4857 
4858 	/*
4859 	 * Traverse the last txgs to make sure the pool was left off in a safe
4860 	 * state. When performing an extreme rewind, we verify the whole pool,
4861 	 * which can take a very long time.
4862 	 */
4863 	error = spa_ld_verify_pool_data(spa);
4864 	if (error != 0)
4865 		return (error);
4866 
4867 	/*
4868 	 * Calculate the deflated space for the pool. This must be done before
4869 	 * we write anything to the pool because we'd need to update the space
4870 	 * accounting using the deflated sizes.
4871 	 */
4872 	spa_update_dspace(spa);
4873 
4874 	/*
4875 	 * We have now retrieved all the information we needed to open the
4876 	 * pool. If we are importing the pool in read-write mode, a few
4877 	 * additional steps must be performed to finish the import.
4878 	 */
4879 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4880 	    spa->spa_load_max_txg == UINT64_MAX)) {
4881 		uint64_t config_cache_txg = spa->spa_config_txg;
4882 
4883 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4884 
4885 		/*
4886 		 * In case of a checkpoint rewind, log the original txg
4887 		 * of the checkpointed uberblock.
4888 		 */
4889 		if (checkpoint_rewind) {
4890 			spa_history_log_internal(spa, "checkpoint rewind",
4891 			    NULL, "rewound state to txg=%llu",
4892 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4893 		}
4894 
4895 		/*
4896 		 * Traverse the ZIL and claim all blocks.
4897 		 */
4898 		spa_ld_claim_log_blocks(spa);
4899 
4900 		/*
4901 		 * Kick-off the syncing thread.
4902 		 */
4903 		spa->spa_sync_on = B_TRUE;
4904 		txg_sync_start(spa->spa_dsl_pool);
4905 		mmp_thread_start(spa);
4906 
4907 		/*
4908 		 * Wait for all claims to sync.  We sync up to the highest
4909 		 * claimed log block birth time so that claimed log blocks
4910 		 * don't appear to be from the future.  spa_claim_max_txg
4911 		 * will have been set for us by ZIL traversal operations
4912 		 * performed above.
4913 		 */
4914 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4915 
4916 		/*
4917 		 * Check if we need to request an update of the config. On the
4918 		 * next sync, we would update the config stored in vdev labels
4919 		 * and the cachefile (by default /etc/zfs/zpool.cache).
4920 		 */
4921 		spa_ld_check_for_config_update(spa, config_cache_txg,
4922 		    update_config_cache);
4923 
4924 		/*
4925 		 * Check if a rebuild was in progress and if so resume it.
4926 		 * Then check all DTLs to see if anything needs resilvering.
4927 		 * The resilver will be deferred if a rebuild was started.
4928 		 */
4929 		if (vdev_rebuild_active(spa->spa_root_vdev)) {
4930 			vdev_rebuild_restart(spa);
4931 		} else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4932 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4933 			spa_async_request(spa, SPA_ASYNC_RESILVER);
4934 		}
4935 
4936 		/*
4937 		 * Log the fact that we booted up (so that we can detect if
4938 		 * we rebooted in the middle of an operation).
4939 		 */
4940 		spa_history_log_version(spa, "open", NULL);
4941 
4942 		spa_restart_removal(spa);
4943 		spa_spawn_aux_threads(spa);
4944 
4945 		/*
4946 		 * Delete any inconsistent datasets.
4947 		 *
4948 		 * Note:
4949 		 * Since we may be issuing deletes for clones here,
4950 		 * we make sure to do so after we've spawned all the
4951 		 * auxiliary threads above (from which the livelist
4952 		 * deletion zthr is part of).
4953 		 */
4954 		(void) dmu_objset_find(spa_name(spa),
4955 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
4956 
4957 		/*
4958 		 * Clean up any stale temporary dataset userrefs.
4959 		 */
4960 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
4961 
4962 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4963 		vdev_initialize_restart(spa->spa_root_vdev);
4964 		vdev_trim_restart(spa->spa_root_vdev);
4965 		vdev_autotrim_restart(spa);
4966 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4967 	}
4968 
4969 	spa_import_progress_remove(spa_guid(spa));
4970 	spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
4971 
4972 	spa_load_note(spa, "LOADED");
4973 
4974 	return (0);
4975 }
4976 
4977 static int
4978 spa_load_retry(spa_t *spa, spa_load_state_t state)
4979 {
4980 	spa_mode_t mode = spa->spa_mode;
4981 
4982 	spa_unload(spa);
4983 	spa_deactivate(spa);
4984 
4985 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
4986 
4987 	spa_activate(spa, mode);
4988 	spa_async_suspend(spa);
4989 
4990 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
4991 	    (u_longlong_t)spa->spa_load_max_txg);
4992 
4993 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
4994 }
4995 
4996 /*
4997  * If spa_load() fails this function will try loading prior txg's. If
4998  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
4999  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5000  * function will not rewind the pool and will return the same error as
5001  * spa_load().
5002  */
5003 static int
5004 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5005     int rewind_flags)
5006 {
5007 	nvlist_t *loadinfo = NULL;
5008 	nvlist_t *config = NULL;
5009 	int load_error, rewind_error;
5010 	uint64_t safe_rewind_txg;
5011 	uint64_t min_txg;
5012 
5013 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5014 		spa->spa_load_max_txg = spa->spa_load_txg;
5015 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5016 	} else {
5017 		spa->spa_load_max_txg = max_request;
5018 		if (max_request != UINT64_MAX)
5019 			spa->spa_extreme_rewind = B_TRUE;
5020 	}
5021 
5022 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5023 	if (load_error == 0)
5024 		return (0);
5025 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5026 		/*
5027 		 * When attempting checkpoint-rewind on a pool with no
5028 		 * checkpoint, we should not attempt to load uberblocks
5029 		 * from previous txgs when spa_load fails.
5030 		 */
5031 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5032 		spa_import_progress_remove(spa_guid(spa));
5033 		return (load_error);
5034 	}
5035 
5036 	if (spa->spa_root_vdev != NULL)
5037 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5038 
5039 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5040 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5041 
5042 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
5043 		nvlist_free(config);
5044 		spa_import_progress_remove(spa_guid(spa));
5045 		return (load_error);
5046 	}
5047 
5048 	if (state == SPA_LOAD_RECOVER) {
5049 		/* Price of rolling back is discarding txgs, including log */
5050 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5051 	} else {
5052 		/*
5053 		 * If we aren't rolling back save the load info from our first
5054 		 * import attempt so that we can restore it after attempting
5055 		 * to rewind.
5056 		 */
5057 		loadinfo = spa->spa_load_info;
5058 		spa->spa_load_info = fnvlist_alloc();
5059 	}
5060 
5061 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5062 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5063 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5064 	    TXG_INITIAL : safe_rewind_txg;
5065 
5066 	/*
5067 	 * Continue as long as we're finding errors, we're still within
5068 	 * the acceptable rewind range, and we're still finding uberblocks
5069 	 */
5070 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5071 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5072 		if (spa->spa_load_max_txg < safe_rewind_txg)
5073 			spa->spa_extreme_rewind = B_TRUE;
5074 		rewind_error = spa_load_retry(spa, state);
5075 	}
5076 
5077 	spa->spa_extreme_rewind = B_FALSE;
5078 	spa->spa_load_max_txg = UINT64_MAX;
5079 
5080 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5081 		spa_config_set(spa, config);
5082 	else
5083 		nvlist_free(config);
5084 
5085 	if (state == SPA_LOAD_RECOVER) {
5086 		ASSERT3P(loadinfo, ==, NULL);
5087 		spa_import_progress_remove(spa_guid(spa));
5088 		return (rewind_error);
5089 	} else {
5090 		/* Store the rewind info as part of the initial load info */
5091 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5092 		    spa->spa_load_info);
5093 
5094 		/* Restore the initial load info */
5095 		fnvlist_free(spa->spa_load_info);
5096 		spa->spa_load_info = loadinfo;
5097 
5098 		spa_import_progress_remove(spa_guid(spa));
5099 		return (load_error);
5100 	}
5101 }
5102 
5103 /*
5104  * Pool Open/Import
5105  *
5106  * The import case is identical to an open except that the configuration is sent
5107  * down from userland, instead of grabbed from the configuration cache.  For the
5108  * case of an open, the pool configuration will exist in the
5109  * POOL_STATE_UNINITIALIZED state.
5110  *
5111  * The stats information (gen/count/ustats) is used to gather vdev statistics at
5112  * the same time open the pool, without having to keep around the spa_t in some
5113  * ambiguous state.
5114  */
5115 static int
5116 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
5117     nvlist_t **config)
5118 {
5119 	spa_t *spa;
5120 	spa_load_state_t state = SPA_LOAD_OPEN;
5121 	int error;
5122 	int locked = B_FALSE;
5123 	int firstopen = B_FALSE;
5124 
5125 	*spapp = NULL;
5126 
5127 	/*
5128 	 * As disgusting as this is, we need to support recursive calls to this
5129 	 * function because dsl_dir_open() is called during spa_load(), and ends
5130 	 * up calling spa_open() again.  The real fix is to figure out how to
5131 	 * avoid dsl_dir_open() calling this in the first place.
5132 	 */
5133 	if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5134 		mutex_enter(&spa_namespace_lock);
5135 		locked = B_TRUE;
5136 	}
5137 
5138 	if ((spa = spa_lookup(pool)) == NULL) {
5139 		if (locked)
5140 			mutex_exit(&spa_namespace_lock);
5141 		return (SET_ERROR(ENOENT));
5142 	}
5143 
5144 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5145 		zpool_load_policy_t policy;
5146 
5147 		firstopen = B_TRUE;
5148 
5149 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5150 		    &policy);
5151 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5152 			state = SPA_LOAD_RECOVER;
5153 
5154 		spa_activate(spa, spa_mode_global);
5155 
5156 		if (state != SPA_LOAD_RECOVER)
5157 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5158 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5159 
5160 		zfs_dbgmsg("spa_open_common: opening %s", pool);
5161 		error = spa_load_best(spa, state, policy.zlp_txg,
5162 		    policy.zlp_rewind);
5163 
5164 		if (error == EBADF) {
5165 			/*
5166 			 * If vdev_validate() returns failure (indicated by
5167 			 * EBADF), it indicates that one of the vdevs indicates
5168 			 * that the pool has been exported or destroyed.  If
5169 			 * this is the case, the config cache is out of sync and
5170 			 * we should remove the pool from the namespace.
5171 			 */
5172 			spa_unload(spa);
5173 			spa_deactivate(spa);
5174 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
5175 			spa_remove(spa);
5176 			if (locked)
5177 				mutex_exit(&spa_namespace_lock);
5178 			return (SET_ERROR(ENOENT));
5179 		}
5180 
5181 		if (error) {
5182 			/*
5183 			 * We can't open the pool, but we still have useful
5184 			 * information: the state of each vdev after the
5185 			 * attempted vdev_open().  Return this to the user.
5186 			 */
5187 			if (config != NULL && spa->spa_config) {
5188 				*config = fnvlist_dup(spa->spa_config);
5189 				fnvlist_add_nvlist(*config,
5190 				    ZPOOL_CONFIG_LOAD_INFO,
5191 				    spa->spa_load_info);
5192 			}
5193 			spa_unload(spa);
5194 			spa_deactivate(spa);
5195 			spa->spa_last_open_failed = error;
5196 			if (locked)
5197 				mutex_exit(&spa_namespace_lock);
5198 			*spapp = NULL;
5199 			return (error);
5200 		}
5201 	}
5202 
5203 	spa_open_ref(spa, tag);
5204 
5205 	if (config != NULL)
5206 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5207 
5208 	/*
5209 	 * If we've recovered the pool, pass back any information we
5210 	 * gathered while doing the load.
5211 	 */
5212 	if (state == SPA_LOAD_RECOVER) {
5213 		fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5214 		    spa->spa_load_info);
5215 	}
5216 
5217 	if (locked) {
5218 		spa->spa_last_open_failed = 0;
5219 		spa->spa_last_ubsync_txg = 0;
5220 		spa->spa_load_txg = 0;
5221 		mutex_exit(&spa_namespace_lock);
5222 	}
5223 
5224 	if (firstopen)
5225 		zvol_create_minors_recursive(spa_name(spa));
5226 
5227 	*spapp = spa;
5228 
5229 	return (0);
5230 }
5231 
5232 int
5233 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
5234     nvlist_t **config)
5235 {
5236 	return (spa_open_common(name, spapp, tag, policy, config));
5237 }
5238 
5239 int
5240 spa_open(const char *name, spa_t **spapp, void *tag)
5241 {
5242 	return (spa_open_common(name, spapp, tag, NULL, NULL));
5243 }
5244 
5245 /*
5246  * Lookup the given spa_t, incrementing the inject count in the process,
5247  * preventing it from being exported or destroyed.
5248  */
5249 spa_t *
5250 spa_inject_addref(char *name)
5251 {
5252 	spa_t *spa;
5253 
5254 	mutex_enter(&spa_namespace_lock);
5255 	if ((spa = spa_lookup(name)) == NULL) {
5256 		mutex_exit(&spa_namespace_lock);
5257 		return (NULL);
5258 	}
5259 	spa->spa_inject_ref++;
5260 	mutex_exit(&spa_namespace_lock);
5261 
5262 	return (spa);
5263 }
5264 
5265 void
5266 spa_inject_delref(spa_t *spa)
5267 {
5268 	mutex_enter(&spa_namespace_lock);
5269 	spa->spa_inject_ref--;
5270 	mutex_exit(&spa_namespace_lock);
5271 }
5272 
5273 /*
5274  * Add spares device information to the nvlist.
5275  */
5276 static void
5277 spa_add_spares(spa_t *spa, nvlist_t *config)
5278 {
5279 	nvlist_t **spares;
5280 	uint_t i, nspares;
5281 	nvlist_t *nvroot;
5282 	uint64_t guid;
5283 	vdev_stat_t *vs;
5284 	uint_t vsc;
5285 	uint64_t pool;
5286 
5287 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5288 
5289 	if (spa->spa_spares.sav_count == 0)
5290 		return;
5291 
5292 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5293 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5294 	    ZPOOL_CONFIG_SPARES, &spares, &nspares));
5295 	if (nspares != 0) {
5296 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5297 		    (const nvlist_t * const *)spares, nspares);
5298 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5299 		    &spares, &nspares));
5300 
5301 		/*
5302 		 * Go through and find any spares which have since been
5303 		 * repurposed as an active spare.  If this is the case, update
5304 		 * their status appropriately.
5305 		 */
5306 		for (i = 0; i < nspares; i++) {
5307 			guid = fnvlist_lookup_uint64(spares[i],
5308 			    ZPOOL_CONFIG_GUID);
5309 			if (spa_spare_exists(guid, &pool, NULL) &&
5310 			    pool != 0ULL) {
5311 				VERIFY0(nvlist_lookup_uint64_array(spares[i],
5312 				    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs,
5313 				    &vsc));
5314 				vs->vs_state = VDEV_STATE_CANT_OPEN;
5315 				vs->vs_aux = VDEV_AUX_SPARED;
5316 			}
5317 		}
5318 	}
5319 }
5320 
5321 /*
5322  * Add l2cache device information to the nvlist, including vdev stats.
5323  */
5324 static void
5325 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5326 {
5327 	nvlist_t **l2cache;
5328 	uint_t i, j, nl2cache;
5329 	nvlist_t *nvroot;
5330 	uint64_t guid;
5331 	vdev_t *vd;
5332 	vdev_stat_t *vs;
5333 	uint_t vsc;
5334 
5335 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5336 
5337 	if (spa->spa_l2cache.sav_count == 0)
5338 		return;
5339 
5340 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5341 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5342 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
5343 	if (nl2cache != 0) {
5344 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5345 		    (const nvlist_t * const *)l2cache, nl2cache);
5346 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5347 		    &l2cache, &nl2cache));
5348 
5349 		/*
5350 		 * Update level 2 cache device stats.
5351 		 */
5352 
5353 		for (i = 0; i < nl2cache; i++) {
5354 			guid = fnvlist_lookup_uint64(l2cache[i],
5355 			    ZPOOL_CONFIG_GUID);
5356 
5357 			vd = NULL;
5358 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5359 				if (guid ==
5360 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5361 					vd = spa->spa_l2cache.sav_vdevs[j];
5362 					break;
5363 				}
5364 			}
5365 			ASSERT(vd != NULL);
5366 
5367 			VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
5368 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5369 			vdev_get_stats(vd, vs);
5370 			vdev_config_generate_stats(vd, l2cache[i]);
5371 
5372 		}
5373 	}
5374 }
5375 
5376 static void
5377 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5378 {
5379 	zap_cursor_t zc;
5380 	zap_attribute_t za;
5381 
5382 	if (spa->spa_feat_for_read_obj != 0) {
5383 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5384 		    spa->spa_feat_for_read_obj);
5385 		    zap_cursor_retrieve(&zc, &za) == 0;
5386 		    zap_cursor_advance(&zc)) {
5387 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5388 			    za.za_num_integers == 1);
5389 			VERIFY0(nvlist_add_uint64(features, za.za_name,
5390 			    za.za_first_integer));
5391 		}
5392 		zap_cursor_fini(&zc);
5393 	}
5394 
5395 	if (spa->spa_feat_for_write_obj != 0) {
5396 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5397 		    spa->spa_feat_for_write_obj);
5398 		    zap_cursor_retrieve(&zc, &za) == 0;
5399 		    zap_cursor_advance(&zc)) {
5400 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5401 			    za.za_num_integers == 1);
5402 			VERIFY0(nvlist_add_uint64(features, za.za_name,
5403 			    za.za_first_integer));
5404 		}
5405 		zap_cursor_fini(&zc);
5406 	}
5407 }
5408 
5409 static void
5410 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5411 {
5412 	int i;
5413 
5414 	for (i = 0; i < SPA_FEATURES; i++) {
5415 		zfeature_info_t feature = spa_feature_table[i];
5416 		uint64_t refcount;
5417 
5418 		if (feature_get_refcount(spa, &feature, &refcount) != 0)
5419 			continue;
5420 
5421 		VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5422 	}
5423 }
5424 
5425 /*
5426  * Store a list of pool features and their reference counts in the
5427  * config.
5428  *
5429  * The first time this is called on a spa, allocate a new nvlist, fetch
5430  * the pool features and reference counts from disk, then save the list
5431  * in the spa. In subsequent calls on the same spa use the saved nvlist
5432  * and refresh its values from the cached reference counts.  This
5433  * ensures we don't block here on I/O on a suspended pool so 'zpool
5434  * clear' can resume the pool.
5435  */
5436 static void
5437 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5438 {
5439 	nvlist_t *features;
5440 
5441 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5442 
5443 	mutex_enter(&spa->spa_feat_stats_lock);
5444 	features = spa->spa_feat_stats;
5445 
5446 	if (features != NULL) {
5447 		spa_feature_stats_from_cache(spa, features);
5448 	} else {
5449 		VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
5450 		spa->spa_feat_stats = features;
5451 		spa_feature_stats_from_disk(spa, features);
5452 	}
5453 
5454 	VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
5455 	    features));
5456 
5457 	mutex_exit(&spa->spa_feat_stats_lock);
5458 }
5459 
5460 int
5461 spa_get_stats(const char *name, nvlist_t **config,
5462     char *altroot, size_t buflen)
5463 {
5464 	int error;
5465 	spa_t *spa;
5466 
5467 	*config = NULL;
5468 	error = spa_open_common(name, &spa, FTAG, NULL, config);
5469 
5470 	if (spa != NULL) {
5471 		/*
5472 		 * This still leaves a window of inconsistency where the spares
5473 		 * or l2cache devices could change and the config would be
5474 		 * self-inconsistent.
5475 		 */
5476 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5477 
5478 		if (*config != NULL) {
5479 			uint64_t loadtimes[2];
5480 
5481 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
5482 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
5483 			fnvlist_add_uint64_array(*config,
5484 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
5485 
5486 			fnvlist_add_uint64(*config,
5487 			    ZPOOL_CONFIG_ERRCOUNT,
5488 			    spa_get_errlog_size(spa));
5489 
5490 			if (spa_suspended(spa)) {
5491 				fnvlist_add_uint64(*config,
5492 				    ZPOOL_CONFIG_SUSPENDED,
5493 				    spa->spa_failmode);
5494 				fnvlist_add_uint64(*config,
5495 				    ZPOOL_CONFIG_SUSPENDED_REASON,
5496 				    spa->spa_suspended);
5497 			}
5498 
5499 			spa_add_spares(spa, *config);
5500 			spa_add_l2cache(spa, *config);
5501 			spa_add_feature_stats(spa, *config);
5502 		}
5503 	}
5504 
5505 	/*
5506 	 * We want to get the alternate root even for faulted pools, so we cheat
5507 	 * and call spa_lookup() directly.
5508 	 */
5509 	if (altroot) {
5510 		if (spa == NULL) {
5511 			mutex_enter(&spa_namespace_lock);
5512 			spa = spa_lookup(name);
5513 			if (spa)
5514 				spa_altroot(spa, altroot, buflen);
5515 			else
5516 				altroot[0] = '\0';
5517 			spa = NULL;
5518 			mutex_exit(&spa_namespace_lock);
5519 		} else {
5520 			spa_altroot(spa, altroot, buflen);
5521 		}
5522 	}
5523 
5524 	if (spa != NULL) {
5525 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5526 		spa_close(spa, FTAG);
5527 	}
5528 
5529 	return (error);
5530 }
5531 
5532 /*
5533  * Validate that the auxiliary device array is well formed.  We must have an
5534  * array of nvlists, each which describes a valid leaf vdev.  If this is an
5535  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
5536  * specified, as long as they are well-formed.
5537  */
5538 static int
5539 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
5540     spa_aux_vdev_t *sav, const char *config, uint64_t version,
5541     vdev_labeltype_t label)
5542 {
5543 	nvlist_t **dev;
5544 	uint_t i, ndev;
5545 	vdev_t *vd;
5546 	int error;
5547 
5548 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5549 
5550 	/*
5551 	 * It's acceptable to have no devs specified.
5552 	 */
5553 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
5554 		return (0);
5555 
5556 	if (ndev == 0)
5557 		return (SET_ERROR(EINVAL));
5558 
5559 	/*
5560 	 * Make sure the pool is formatted with a version that supports this
5561 	 * device type.
5562 	 */
5563 	if (spa_version(spa) < version)
5564 		return (SET_ERROR(ENOTSUP));
5565 
5566 	/*
5567 	 * Set the pending device list so we correctly handle device in-use
5568 	 * checking.
5569 	 */
5570 	sav->sav_pending = dev;
5571 	sav->sav_npending = ndev;
5572 
5573 	for (i = 0; i < ndev; i++) {
5574 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
5575 		    mode)) != 0)
5576 			goto out;
5577 
5578 		if (!vd->vdev_ops->vdev_op_leaf) {
5579 			vdev_free(vd);
5580 			error = SET_ERROR(EINVAL);
5581 			goto out;
5582 		}
5583 
5584 		vd->vdev_top = vd;
5585 
5586 		if ((error = vdev_open(vd)) == 0 &&
5587 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
5588 			fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
5589 			    vd->vdev_guid);
5590 		}
5591 
5592 		vdev_free(vd);
5593 
5594 		if (error &&
5595 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
5596 			goto out;
5597 		else
5598 			error = 0;
5599 	}
5600 
5601 out:
5602 	sav->sav_pending = NULL;
5603 	sav->sav_npending = 0;
5604 	return (error);
5605 }
5606 
5607 static int
5608 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
5609 {
5610 	int error;
5611 
5612 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5613 
5614 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5615 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
5616 	    VDEV_LABEL_SPARE)) != 0) {
5617 		return (error);
5618 	}
5619 
5620 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5621 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
5622 	    VDEV_LABEL_L2CACHE));
5623 }
5624 
5625 static void
5626 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
5627     const char *config)
5628 {
5629 	int i;
5630 
5631 	if (sav->sav_config != NULL) {
5632 		nvlist_t **olddevs;
5633 		uint_t oldndevs;
5634 		nvlist_t **newdevs;
5635 
5636 		/*
5637 		 * Generate new dev list by concatenating with the
5638 		 * current dev list.
5639 		 */
5640 		VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
5641 		    &olddevs, &oldndevs));
5642 
5643 		newdevs = kmem_alloc(sizeof (void *) *
5644 		    (ndevs + oldndevs), KM_SLEEP);
5645 		for (i = 0; i < oldndevs; i++)
5646 			newdevs[i] = fnvlist_dup(olddevs[i]);
5647 		for (i = 0; i < ndevs; i++)
5648 			newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
5649 
5650 		fnvlist_remove(sav->sav_config, config);
5651 
5652 		fnvlist_add_nvlist_array(sav->sav_config, config,
5653 		    (const nvlist_t * const *)newdevs, ndevs + oldndevs);
5654 		for (i = 0; i < oldndevs + ndevs; i++)
5655 			nvlist_free(newdevs[i]);
5656 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5657 	} else {
5658 		/*
5659 		 * Generate a new dev list.
5660 		 */
5661 		sav->sav_config = fnvlist_alloc();
5662 		fnvlist_add_nvlist_array(sav->sav_config, config,
5663 		    (const nvlist_t * const *)devs, ndevs);
5664 	}
5665 }
5666 
5667 /*
5668  * Stop and drop level 2 ARC devices
5669  */
5670 void
5671 spa_l2cache_drop(spa_t *spa)
5672 {
5673 	vdev_t *vd;
5674 	int i;
5675 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
5676 
5677 	for (i = 0; i < sav->sav_count; i++) {
5678 		uint64_t pool;
5679 
5680 		vd = sav->sav_vdevs[i];
5681 		ASSERT(vd != NULL);
5682 
5683 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5684 		    pool != 0ULL && l2arc_vdev_present(vd))
5685 			l2arc_remove_vdev(vd);
5686 	}
5687 }
5688 
5689 /*
5690  * Verify encryption parameters for spa creation. If we are encrypting, we must
5691  * have the encryption feature flag enabled.
5692  */
5693 static int
5694 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5695     boolean_t has_encryption)
5696 {
5697 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5698 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5699 	    !has_encryption)
5700 		return (SET_ERROR(ENOTSUP));
5701 
5702 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5703 }
5704 
5705 /*
5706  * Pool Creation
5707  */
5708 int
5709 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5710     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5711 {
5712 	spa_t *spa;
5713 	char *altroot = NULL;
5714 	vdev_t *rvd;
5715 	dsl_pool_t *dp;
5716 	dmu_tx_t *tx;
5717 	int error = 0;
5718 	uint64_t txg = TXG_INITIAL;
5719 	nvlist_t **spares, **l2cache;
5720 	uint_t nspares, nl2cache;
5721 	uint64_t version, obj, ndraid = 0;
5722 	boolean_t has_features;
5723 	boolean_t has_encryption;
5724 	boolean_t has_allocclass;
5725 	spa_feature_t feat;
5726 	char *feat_name;
5727 	char *poolname;
5728 	nvlist_t *nvl;
5729 
5730 	if (props == NULL ||
5731 	    nvlist_lookup_string(props, "tname", &poolname) != 0)
5732 		poolname = (char *)pool;
5733 
5734 	/*
5735 	 * If this pool already exists, return failure.
5736 	 */
5737 	mutex_enter(&spa_namespace_lock);
5738 	if (spa_lookup(poolname) != NULL) {
5739 		mutex_exit(&spa_namespace_lock);
5740 		return (SET_ERROR(EEXIST));
5741 	}
5742 
5743 	/*
5744 	 * Allocate a new spa_t structure.
5745 	 */
5746 	nvl = fnvlist_alloc();
5747 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5748 	(void) nvlist_lookup_string(props,
5749 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5750 	spa = spa_add(poolname, nvl, altroot);
5751 	fnvlist_free(nvl);
5752 	spa_activate(spa, spa_mode_global);
5753 
5754 	if (props && (error = spa_prop_validate(spa, props))) {
5755 		spa_deactivate(spa);
5756 		spa_remove(spa);
5757 		mutex_exit(&spa_namespace_lock);
5758 		return (error);
5759 	}
5760 
5761 	/*
5762 	 * Temporary pool names should never be written to disk.
5763 	 */
5764 	if (poolname != pool)
5765 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5766 
5767 	has_features = B_FALSE;
5768 	has_encryption = B_FALSE;
5769 	has_allocclass = B_FALSE;
5770 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5771 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5772 		if (zpool_prop_feature(nvpair_name(elem))) {
5773 			has_features = B_TRUE;
5774 
5775 			feat_name = strchr(nvpair_name(elem), '@') + 1;
5776 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
5777 			if (feat == SPA_FEATURE_ENCRYPTION)
5778 				has_encryption = B_TRUE;
5779 			if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
5780 				has_allocclass = B_TRUE;
5781 		}
5782 	}
5783 
5784 	/* verify encryption params, if they were provided */
5785 	if (dcp != NULL) {
5786 		error = spa_create_check_encryption_params(dcp, has_encryption);
5787 		if (error != 0) {
5788 			spa_deactivate(spa);
5789 			spa_remove(spa);
5790 			mutex_exit(&spa_namespace_lock);
5791 			return (error);
5792 		}
5793 	}
5794 	if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
5795 		spa_deactivate(spa);
5796 		spa_remove(spa);
5797 		mutex_exit(&spa_namespace_lock);
5798 		return (ENOTSUP);
5799 	}
5800 
5801 	if (has_features || nvlist_lookup_uint64(props,
5802 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5803 		version = SPA_VERSION;
5804 	}
5805 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5806 
5807 	spa->spa_first_txg = txg;
5808 	spa->spa_uberblock.ub_txg = txg - 1;
5809 	spa->spa_uberblock.ub_version = version;
5810 	spa->spa_ubsync = spa->spa_uberblock;
5811 	spa->spa_load_state = SPA_LOAD_CREATE;
5812 	spa->spa_removing_phys.sr_state = DSS_NONE;
5813 	spa->spa_removing_phys.sr_removing_vdev = -1;
5814 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5815 	spa->spa_indirect_vdevs_loaded = B_TRUE;
5816 
5817 	/*
5818 	 * Create "The Godfather" zio to hold all async IOs
5819 	 */
5820 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5821 	    KM_SLEEP);
5822 	for (int i = 0; i < max_ncpus; i++) {
5823 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5824 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5825 		    ZIO_FLAG_GODFATHER);
5826 	}
5827 
5828 	/*
5829 	 * Create the root vdev.
5830 	 */
5831 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5832 
5833 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5834 
5835 	ASSERT(error != 0 || rvd != NULL);
5836 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5837 
5838 	if (error == 0 && !zfs_allocatable_devs(nvroot))
5839 		error = SET_ERROR(EINVAL);
5840 
5841 	if (error == 0 &&
5842 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5843 	    (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
5844 	    (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
5845 		/*
5846 		 * instantiate the metaslab groups (this will dirty the vdevs)
5847 		 * we can no longer error exit past this point
5848 		 */
5849 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5850 			vdev_t *vd = rvd->vdev_child[c];
5851 
5852 			vdev_metaslab_set_size(vd);
5853 			vdev_expand(vd, txg);
5854 		}
5855 	}
5856 
5857 	spa_config_exit(spa, SCL_ALL, FTAG);
5858 
5859 	if (error != 0) {
5860 		spa_unload(spa);
5861 		spa_deactivate(spa);
5862 		spa_remove(spa);
5863 		mutex_exit(&spa_namespace_lock);
5864 		return (error);
5865 	}
5866 
5867 	/*
5868 	 * Get the list of spares, if specified.
5869 	 */
5870 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5871 	    &spares, &nspares) == 0) {
5872 		spa->spa_spares.sav_config = fnvlist_alloc();
5873 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
5874 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
5875 		    nspares);
5876 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5877 		spa_load_spares(spa);
5878 		spa_config_exit(spa, SCL_ALL, FTAG);
5879 		spa->spa_spares.sav_sync = B_TRUE;
5880 	}
5881 
5882 	/*
5883 	 * Get the list of level 2 cache devices, if specified.
5884 	 */
5885 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5886 	    &l2cache, &nl2cache) == 0) {
5887 		VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
5888 		    NV_UNIQUE_NAME, KM_SLEEP));
5889 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5890 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
5891 		    nl2cache);
5892 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5893 		spa_load_l2cache(spa);
5894 		spa_config_exit(spa, SCL_ALL, FTAG);
5895 		spa->spa_l2cache.sav_sync = B_TRUE;
5896 	}
5897 
5898 	spa->spa_is_initializing = B_TRUE;
5899 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5900 	spa->spa_is_initializing = B_FALSE;
5901 
5902 	/*
5903 	 * Create DDTs (dedup tables).
5904 	 */
5905 	ddt_create(spa);
5906 
5907 	spa_update_dspace(spa);
5908 
5909 	tx = dmu_tx_create_assigned(dp, txg);
5910 
5911 	/*
5912 	 * Create the pool's history object.
5913 	 */
5914 	if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
5915 		spa_history_create_obj(spa, tx);
5916 
5917 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5918 	spa_history_log_version(spa, "create", tx);
5919 
5920 	/*
5921 	 * Create the pool config object.
5922 	 */
5923 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5924 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5925 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5926 
5927 	if (zap_add(spa->spa_meta_objset,
5928 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5929 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5930 		cmn_err(CE_PANIC, "failed to add pool config");
5931 	}
5932 
5933 	if (zap_add(spa->spa_meta_objset,
5934 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5935 	    sizeof (uint64_t), 1, &version, tx) != 0) {
5936 		cmn_err(CE_PANIC, "failed to add pool version");
5937 	}
5938 
5939 	/* Newly created pools with the right version are always deflated. */
5940 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5941 		spa->spa_deflate = TRUE;
5942 		if (zap_add(spa->spa_meta_objset,
5943 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5944 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
5945 			cmn_err(CE_PANIC, "failed to add deflate");
5946 		}
5947 	}
5948 
5949 	/*
5950 	 * Create the deferred-free bpobj.  Turn off compression
5951 	 * because sync-to-convergence takes longer if the blocksize
5952 	 * keeps changing.
5953 	 */
5954 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
5955 	dmu_object_set_compress(spa->spa_meta_objset, obj,
5956 	    ZIO_COMPRESS_OFF, tx);
5957 	if (zap_add(spa->spa_meta_objset,
5958 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
5959 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
5960 		cmn_err(CE_PANIC, "failed to add bpobj");
5961 	}
5962 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
5963 	    spa->spa_meta_objset, obj));
5964 
5965 	/*
5966 	 * Generate some random noise for salted checksums to operate on.
5967 	 */
5968 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
5969 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
5970 
5971 	/*
5972 	 * Set pool properties.
5973 	 */
5974 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
5975 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
5976 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
5977 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
5978 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
5979 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
5980 
5981 	if (props != NULL) {
5982 		spa_configfile_set(spa, props, B_FALSE);
5983 		spa_sync_props(props, tx);
5984 	}
5985 
5986 	for (int i = 0; i < ndraid; i++)
5987 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
5988 
5989 	dmu_tx_commit(tx);
5990 
5991 	spa->spa_sync_on = B_TRUE;
5992 	txg_sync_start(dp);
5993 	mmp_thread_start(spa);
5994 	txg_wait_synced(dp, txg);
5995 
5996 	spa_spawn_aux_threads(spa);
5997 
5998 	spa_write_cachefile(spa, B_FALSE, B_TRUE);
5999 
6000 	/*
6001 	 * Don't count references from objsets that are already closed
6002 	 * and are making their way through the eviction process.
6003 	 */
6004 	spa_evicting_os_wait(spa);
6005 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6006 	spa->spa_load_state = SPA_LOAD_NONE;
6007 
6008 	mutex_exit(&spa_namespace_lock);
6009 
6010 	return (0);
6011 }
6012 
6013 /*
6014  * Import a non-root pool into the system.
6015  */
6016 int
6017 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6018 {
6019 	spa_t *spa;
6020 	char *altroot = NULL;
6021 	spa_load_state_t state = SPA_LOAD_IMPORT;
6022 	zpool_load_policy_t policy;
6023 	spa_mode_t mode = spa_mode_global;
6024 	uint64_t readonly = B_FALSE;
6025 	int error;
6026 	nvlist_t *nvroot;
6027 	nvlist_t **spares, **l2cache;
6028 	uint_t nspares, nl2cache;
6029 
6030 	/*
6031 	 * If a pool with this name exists, return failure.
6032 	 */
6033 	mutex_enter(&spa_namespace_lock);
6034 	if (spa_lookup(pool) != NULL) {
6035 		mutex_exit(&spa_namespace_lock);
6036 		return (SET_ERROR(EEXIST));
6037 	}
6038 
6039 	/*
6040 	 * Create and initialize the spa structure.
6041 	 */
6042 	(void) nvlist_lookup_string(props,
6043 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6044 	(void) nvlist_lookup_uint64(props,
6045 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6046 	if (readonly)
6047 		mode = SPA_MODE_READ;
6048 	spa = spa_add(pool, config, altroot);
6049 	spa->spa_import_flags = flags;
6050 
6051 	/*
6052 	 * Verbatim import - Take a pool and insert it into the namespace
6053 	 * as if it had been loaded at boot.
6054 	 */
6055 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6056 		if (props != NULL)
6057 			spa_configfile_set(spa, props, B_FALSE);
6058 
6059 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
6060 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6061 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6062 		mutex_exit(&spa_namespace_lock);
6063 		return (0);
6064 	}
6065 
6066 	spa_activate(spa, mode);
6067 
6068 	/*
6069 	 * Don't start async tasks until we know everything is healthy.
6070 	 */
6071 	spa_async_suspend(spa);
6072 
6073 	zpool_get_load_policy(config, &policy);
6074 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6075 		state = SPA_LOAD_RECOVER;
6076 
6077 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6078 
6079 	if (state != SPA_LOAD_RECOVER) {
6080 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6081 		zfs_dbgmsg("spa_import: importing %s", pool);
6082 	} else {
6083 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6084 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6085 	}
6086 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6087 
6088 	/*
6089 	 * Propagate anything learned while loading the pool and pass it
6090 	 * back to caller (i.e. rewind info, missing devices, etc).
6091 	 */
6092 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6093 
6094 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6095 	/*
6096 	 * Toss any existing sparelist, as it doesn't have any validity
6097 	 * anymore, and conflicts with spa_has_spare().
6098 	 */
6099 	if (spa->spa_spares.sav_config) {
6100 		nvlist_free(spa->spa_spares.sav_config);
6101 		spa->spa_spares.sav_config = NULL;
6102 		spa_load_spares(spa);
6103 	}
6104 	if (spa->spa_l2cache.sav_config) {
6105 		nvlist_free(spa->spa_l2cache.sav_config);
6106 		spa->spa_l2cache.sav_config = NULL;
6107 		spa_load_l2cache(spa);
6108 	}
6109 
6110 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6111 	spa_config_exit(spa, SCL_ALL, FTAG);
6112 
6113 	if (props != NULL)
6114 		spa_configfile_set(spa, props, B_FALSE);
6115 
6116 	if (error != 0 || (props && spa_writeable(spa) &&
6117 	    (error = spa_prop_set(spa, props)))) {
6118 		spa_unload(spa);
6119 		spa_deactivate(spa);
6120 		spa_remove(spa);
6121 		mutex_exit(&spa_namespace_lock);
6122 		return (error);
6123 	}
6124 
6125 	spa_async_resume(spa);
6126 
6127 	/*
6128 	 * Override any spares and level 2 cache devices as specified by
6129 	 * the user, as these may have correct device names/devids, etc.
6130 	 */
6131 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6132 	    &spares, &nspares) == 0) {
6133 		if (spa->spa_spares.sav_config)
6134 			fnvlist_remove(spa->spa_spares.sav_config,
6135 			    ZPOOL_CONFIG_SPARES);
6136 		else
6137 			spa->spa_spares.sav_config = fnvlist_alloc();
6138 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6139 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6140 		    nspares);
6141 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6142 		spa_load_spares(spa);
6143 		spa_config_exit(spa, SCL_ALL, FTAG);
6144 		spa->spa_spares.sav_sync = B_TRUE;
6145 	}
6146 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6147 	    &l2cache, &nl2cache) == 0) {
6148 		if (spa->spa_l2cache.sav_config)
6149 			fnvlist_remove(spa->spa_l2cache.sav_config,
6150 			    ZPOOL_CONFIG_L2CACHE);
6151 		else
6152 			spa->spa_l2cache.sav_config = fnvlist_alloc();
6153 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6154 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6155 		    nl2cache);
6156 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6157 		spa_load_l2cache(spa);
6158 		spa_config_exit(spa, SCL_ALL, FTAG);
6159 		spa->spa_l2cache.sav_sync = B_TRUE;
6160 	}
6161 
6162 	/*
6163 	 * Check for any removed devices.
6164 	 */
6165 	if (spa->spa_autoreplace) {
6166 		spa_aux_check_removed(&spa->spa_spares);
6167 		spa_aux_check_removed(&spa->spa_l2cache);
6168 	}
6169 
6170 	if (spa_writeable(spa)) {
6171 		/*
6172 		 * Update the config cache to include the newly-imported pool.
6173 		 */
6174 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6175 	}
6176 
6177 	/*
6178 	 * It's possible that the pool was expanded while it was exported.
6179 	 * We kick off an async task to handle this for us.
6180 	 */
6181 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6182 
6183 	spa_history_log_version(spa, "import", NULL);
6184 
6185 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6186 
6187 	mutex_exit(&spa_namespace_lock);
6188 
6189 	zvol_create_minors_recursive(pool);
6190 
6191 	return (0);
6192 }
6193 
6194 nvlist_t *
6195 spa_tryimport(nvlist_t *tryconfig)
6196 {
6197 	nvlist_t *config = NULL;
6198 	char *poolname, *cachefile;
6199 	spa_t *spa;
6200 	uint64_t state;
6201 	int error;
6202 	zpool_load_policy_t policy;
6203 
6204 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6205 		return (NULL);
6206 
6207 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6208 		return (NULL);
6209 
6210 	/*
6211 	 * Create and initialize the spa structure.
6212 	 */
6213 	mutex_enter(&spa_namespace_lock);
6214 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6215 	spa_activate(spa, SPA_MODE_READ);
6216 
6217 	/*
6218 	 * Rewind pool if a max txg was provided.
6219 	 */
6220 	zpool_get_load_policy(spa->spa_config, &policy);
6221 	if (policy.zlp_txg != UINT64_MAX) {
6222 		spa->spa_load_max_txg = policy.zlp_txg;
6223 		spa->spa_extreme_rewind = B_TRUE;
6224 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6225 		    poolname, (longlong_t)policy.zlp_txg);
6226 	} else {
6227 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6228 	}
6229 
6230 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6231 	    == 0) {
6232 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6233 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6234 	} else {
6235 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6236 	}
6237 
6238 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6239 
6240 	/*
6241 	 * If 'tryconfig' was at least parsable, return the current config.
6242 	 */
6243 	if (spa->spa_root_vdev != NULL) {
6244 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6245 		fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6246 		fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6247 		fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6248 		    spa->spa_uberblock.ub_timestamp);
6249 		fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6250 		    spa->spa_load_info);
6251 		fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6252 		    spa->spa_errata);
6253 
6254 		/*
6255 		 * If the bootfs property exists on this pool then we
6256 		 * copy it out so that external consumers can tell which
6257 		 * pools are bootable.
6258 		 */
6259 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
6260 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6261 
6262 			/*
6263 			 * We have to play games with the name since the
6264 			 * pool was opened as TRYIMPORT_NAME.
6265 			 */
6266 			if (dsl_dsobj_to_dsname(spa_name(spa),
6267 			    spa->spa_bootfs, tmpname) == 0) {
6268 				char *cp;
6269 				char *dsname;
6270 
6271 				dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6272 
6273 				cp = strchr(tmpname, '/');
6274 				if (cp == NULL) {
6275 					(void) strlcpy(dsname, tmpname,
6276 					    MAXPATHLEN);
6277 				} else {
6278 					(void) snprintf(dsname, MAXPATHLEN,
6279 					    "%s/%s", poolname, ++cp);
6280 				}
6281 				fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6282 				    dsname);
6283 				kmem_free(dsname, MAXPATHLEN);
6284 			}
6285 			kmem_free(tmpname, MAXPATHLEN);
6286 		}
6287 
6288 		/*
6289 		 * Add the list of hot spares and level 2 cache devices.
6290 		 */
6291 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6292 		spa_add_spares(spa, config);
6293 		spa_add_l2cache(spa, config);
6294 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6295 	}
6296 
6297 	spa_unload(spa);
6298 	spa_deactivate(spa);
6299 	spa_remove(spa);
6300 	mutex_exit(&spa_namespace_lock);
6301 
6302 	return (config);
6303 }
6304 
6305 /*
6306  * Pool export/destroy
6307  *
6308  * The act of destroying or exporting a pool is very simple.  We make sure there
6309  * is no more pending I/O and any references to the pool are gone.  Then, we
6310  * update the pool state and sync all the labels to disk, removing the
6311  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6312  * we don't sync the labels or remove the configuration cache.
6313  */
6314 static int
6315 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6316     boolean_t force, boolean_t hardforce)
6317 {
6318 	int error;
6319 	spa_t *spa;
6320 
6321 	if (oldconfig)
6322 		*oldconfig = NULL;
6323 
6324 	if (!(spa_mode_global & SPA_MODE_WRITE))
6325 		return (SET_ERROR(EROFS));
6326 
6327 	mutex_enter(&spa_namespace_lock);
6328 	if ((spa = spa_lookup(pool)) == NULL) {
6329 		mutex_exit(&spa_namespace_lock);
6330 		return (SET_ERROR(ENOENT));
6331 	}
6332 
6333 	if (spa->spa_is_exporting) {
6334 		/* the pool is being exported by another thread */
6335 		mutex_exit(&spa_namespace_lock);
6336 		return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6337 	}
6338 	spa->spa_is_exporting = B_TRUE;
6339 
6340 	/*
6341 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6342 	 * reacquire the namespace lock, and see if we can export.
6343 	 */
6344 	spa_open_ref(spa, FTAG);
6345 	mutex_exit(&spa_namespace_lock);
6346 	spa_async_suspend(spa);
6347 	if (spa->spa_zvol_taskq) {
6348 		zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6349 		taskq_wait(spa->spa_zvol_taskq);
6350 	}
6351 	mutex_enter(&spa_namespace_lock);
6352 	spa_close(spa, FTAG);
6353 
6354 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6355 		goto export_spa;
6356 	/*
6357 	 * The pool will be in core if it's openable, in which case we can
6358 	 * modify its state.  Objsets may be open only because they're dirty,
6359 	 * so we have to force it to sync before checking spa_refcnt.
6360 	 */
6361 	if (spa->spa_sync_on) {
6362 		txg_wait_synced(spa->spa_dsl_pool, 0);
6363 		spa_evicting_os_wait(spa);
6364 	}
6365 
6366 	/*
6367 	 * A pool cannot be exported or destroyed if there are active
6368 	 * references.  If we are resetting a pool, allow references by
6369 	 * fault injection handlers.
6370 	 */
6371 	if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
6372 		error = SET_ERROR(EBUSY);
6373 		goto fail;
6374 	}
6375 
6376 	if (spa->spa_sync_on) {
6377 		/*
6378 		 * A pool cannot be exported if it has an active shared spare.
6379 		 * This is to prevent other pools stealing the active spare
6380 		 * from an exported pool. At user's own will, such pool can
6381 		 * be forcedly exported.
6382 		 */
6383 		if (!force && new_state == POOL_STATE_EXPORTED &&
6384 		    spa_has_active_shared_spare(spa)) {
6385 			error = SET_ERROR(EXDEV);
6386 			goto fail;
6387 		}
6388 
6389 		/*
6390 		 * We're about to export or destroy this pool. Make sure
6391 		 * we stop all initialization and trim activity here before
6392 		 * we set the spa_final_txg. This will ensure that all
6393 		 * dirty data resulting from the initialization is
6394 		 * committed to disk before we unload the pool.
6395 		 */
6396 		if (spa->spa_root_vdev != NULL) {
6397 			vdev_t *rvd = spa->spa_root_vdev;
6398 			vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6399 			vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6400 			vdev_autotrim_stop_all(spa);
6401 			vdev_rebuild_stop_all(spa);
6402 		}
6403 
6404 		/*
6405 		 * We want this to be reflected on every label,
6406 		 * so mark them all dirty.  spa_unload() will do the
6407 		 * final sync that pushes these changes out.
6408 		 */
6409 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6410 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6411 			spa->spa_state = new_state;
6412 			spa->spa_final_txg = spa_last_synced_txg(spa) +
6413 			    TXG_DEFER_SIZE + 1;
6414 			vdev_config_dirty(spa->spa_root_vdev);
6415 			spa_config_exit(spa, SCL_ALL, FTAG);
6416 		}
6417 	}
6418 
6419 export_spa:
6420 	if (new_state == POOL_STATE_DESTROYED)
6421 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6422 	else if (new_state == POOL_STATE_EXPORTED)
6423 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
6424 
6425 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6426 		spa_unload(spa);
6427 		spa_deactivate(spa);
6428 	}
6429 
6430 	if (oldconfig && spa->spa_config)
6431 		*oldconfig = fnvlist_dup(spa->spa_config);
6432 
6433 	if (new_state != POOL_STATE_UNINITIALIZED) {
6434 		if (!hardforce)
6435 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
6436 		spa_remove(spa);
6437 	} else {
6438 		/*
6439 		 * If spa_remove() is not called for this spa_t and
6440 		 * there is any possibility that it can be reused,
6441 		 * we make sure to reset the exporting flag.
6442 		 */
6443 		spa->spa_is_exporting = B_FALSE;
6444 	}
6445 
6446 	mutex_exit(&spa_namespace_lock);
6447 	return (0);
6448 
6449 fail:
6450 	spa->spa_is_exporting = B_FALSE;
6451 	spa_async_resume(spa);
6452 	mutex_exit(&spa_namespace_lock);
6453 	return (error);
6454 }
6455 
6456 /*
6457  * Destroy a storage pool.
6458  */
6459 int
6460 spa_destroy(const char *pool)
6461 {
6462 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6463 	    B_FALSE, B_FALSE));
6464 }
6465 
6466 /*
6467  * Export a storage pool.
6468  */
6469 int
6470 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
6471     boolean_t hardforce)
6472 {
6473 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6474 	    force, hardforce));
6475 }
6476 
6477 /*
6478  * Similar to spa_export(), this unloads the spa_t without actually removing it
6479  * from the namespace in any way.
6480  */
6481 int
6482 spa_reset(const char *pool)
6483 {
6484 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6485 	    B_FALSE, B_FALSE));
6486 }
6487 
6488 /*
6489  * ==========================================================================
6490  * Device manipulation
6491  * ==========================================================================
6492  */
6493 
6494 /*
6495  * This is called as a synctask to increment the draid feature flag
6496  */
6497 static void
6498 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
6499 {
6500 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6501 	int draid = (int)(uintptr_t)arg;
6502 
6503 	for (int c = 0; c < draid; c++)
6504 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6505 }
6506 
6507 /*
6508  * Add a device to a storage pool.
6509  */
6510 int
6511 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6512 {
6513 	uint64_t txg, ndraid = 0;
6514 	int error;
6515 	vdev_t *rvd = spa->spa_root_vdev;
6516 	vdev_t *vd, *tvd;
6517 	nvlist_t **spares, **l2cache;
6518 	uint_t nspares, nl2cache;
6519 
6520 	ASSERT(spa_writeable(spa));
6521 
6522 	txg = spa_vdev_enter(spa);
6523 
6524 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6525 	    VDEV_ALLOC_ADD)) != 0)
6526 		return (spa_vdev_exit(spa, NULL, txg, error));
6527 
6528 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
6529 
6530 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6531 	    &nspares) != 0)
6532 		nspares = 0;
6533 
6534 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6535 	    &nl2cache) != 0)
6536 		nl2cache = 0;
6537 
6538 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6539 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
6540 
6541 	if (vd->vdev_children != 0 &&
6542 	    (error = vdev_create(vd, txg, B_FALSE)) != 0) {
6543 		return (spa_vdev_exit(spa, vd, txg, error));
6544 	}
6545 
6546 	/*
6547 	 * The virtual dRAID spares must be added after vdev tree is created
6548 	 * and the vdev guids are generated.  The guid of their associated
6549 	 * dRAID is stored in the config and used when opening the spare.
6550 	 */
6551 	if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
6552 	    rvd->vdev_children)) == 0) {
6553 		if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
6554 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
6555 			nspares = 0;
6556 	} else {
6557 		return (spa_vdev_exit(spa, vd, txg, error));
6558 	}
6559 
6560 	/*
6561 	 * We must validate the spares and l2cache devices after checking the
6562 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
6563 	 */
6564 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6565 		return (spa_vdev_exit(spa, vd, txg, error));
6566 
6567 	/*
6568 	 * If we are in the middle of a device removal, we can only add
6569 	 * devices which match the existing devices in the pool.
6570 	 * If we are in the middle of a removal, or have some indirect
6571 	 * vdevs, we can not add raidz or dRAID top levels.
6572 	 */
6573 	if (spa->spa_vdev_removal != NULL ||
6574 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6575 		for (int c = 0; c < vd->vdev_children; c++) {
6576 			tvd = vd->vdev_child[c];
6577 			if (spa->spa_vdev_removal != NULL &&
6578 			    tvd->vdev_ashift != spa->spa_max_ashift) {
6579 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6580 			}
6581 			/* Fail if top level vdev is raidz or a dRAID */
6582 			if (vdev_get_nparity(tvd) != 0)
6583 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6584 
6585 			/*
6586 			 * Need the top level mirror to be
6587 			 * a mirror of leaf vdevs only
6588 			 */
6589 			if (tvd->vdev_ops == &vdev_mirror_ops) {
6590 				for (uint64_t cid = 0;
6591 				    cid < tvd->vdev_children; cid++) {
6592 					vdev_t *cvd = tvd->vdev_child[cid];
6593 					if (!cvd->vdev_ops->vdev_op_leaf) {
6594 						return (spa_vdev_exit(spa, vd,
6595 						    txg, EINVAL));
6596 					}
6597 				}
6598 			}
6599 		}
6600 	}
6601 
6602 	for (int c = 0; c < vd->vdev_children; c++) {
6603 		tvd = vd->vdev_child[c];
6604 		vdev_remove_child(vd, tvd);
6605 		tvd->vdev_id = rvd->vdev_children;
6606 		vdev_add_child(rvd, tvd);
6607 		vdev_config_dirty(tvd);
6608 	}
6609 
6610 	if (nspares != 0) {
6611 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6612 		    ZPOOL_CONFIG_SPARES);
6613 		spa_load_spares(spa);
6614 		spa->spa_spares.sav_sync = B_TRUE;
6615 	}
6616 
6617 	if (nl2cache != 0) {
6618 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6619 		    ZPOOL_CONFIG_L2CACHE);
6620 		spa_load_l2cache(spa);
6621 		spa->spa_l2cache.sav_sync = B_TRUE;
6622 	}
6623 
6624 	/*
6625 	 * We can't increment a feature while holding spa_vdev so we
6626 	 * have to do it in a synctask.
6627 	 */
6628 	if (ndraid != 0) {
6629 		dmu_tx_t *tx;
6630 
6631 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
6632 		dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
6633 		    (void *)(uintptr_t)ndraid, tx);
6634 		dmu_tx_commit(tx);
6635 	}
6636 
6637 	/*
6638 	 * We have to be careful when adding new vdevs to an existing pool.
6639 	 * If other threads start allocating from these vdevs before we
6640 	 * sync the config cache, and we lose power, then upon reboot we may
6641 	 * fail to open the pool because there are DVAs that the config cache
6642 	 * can't translate.  Therefore, we first add the vdevs without
6643 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6644 	 * and then let spa_config_update() initialize the new metaslabs.
6645 	 *
6646 	 * spa_load() checks for added-but-not-initialized vdevs, so that
6647 	 * if we lose power at any point in this sequence, the remaining
6648 	 * steps will be completed the next time we load the pool.
6649 	 */
6650 	(void) spa_vdev_exit(spa, vd, txg, 0);
6651 
6652 	mutex_enter(&spa_namespace_lock);
6653 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6654 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6655 	mutex_exit(&spa_namespace_lock);
6656 
6657 	return (0);
6658 }
6659 
6660 /*
6661  * Attach a device to a mirror.  The arguments are the path to any device
6662  * in the mirror, and the nvroot for the new device.  If the path specifies
6663  * a device that is not mirrored, we automatically insert the mirror vdev.
6664  *
6665  * If 'replacing' is specified, the new device is intended to replace the
6666  * existing device; in this case the two devices are made into their own
6667  * mirror using the 'replacing' vdev, which is functionally identical to
6668  * the mirror vdev (it actually reuses all the same ops) but has a few
6669  * extra rules: you can't attach to it after it's been created, and upon
6670  * completion of resilvering, the first disk (the one being replaced)
6671  * is automatically detached.
6672  *
6673  * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
6674  * should be performed instead of traditional healing reconstruction.  From
6675  * an administrators perspective these are both resilver operations.
6676  */
6677 int
6678 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
6679     int rebuild)
6680 {
6681 	uint64_t txg, dtl_max_txg;
6682 	vdev_t *rvd = spa->spa_root_vdev;
6683 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6684 	vdev_ops_t *pvops;
6685 	char *oldvdpath, *newvdpath;
6686 	int newvd_isspare;
6687 	int error;
6688 
6689 	ASSERT(spa_writeable(spa));
6690 
6691 	txg = spa_vdev_enter(spa);
6692 
6693 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6694 
6695 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6696 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6697 		error = (spa_has_checkpoint(spa)) ?
6698 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6699 		return (spa_vdev_exit(spa, NULL, txg, error));
6700 	}
6701 
6702 	if (rebuild) {
6703 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
6704 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6705 
6706 		if (dsl_scan_resilvering(spa_get_dsl(spa)))
6707 			return (spa_vdev_exit(spa, NULL, txg,
6708 			    ZFS_ERR_RESILVER_IN_PROGRESS));
6709 	} else {
6710 		if (vdev_rebuild_active(rvd))
6711 			return (spa_vdev_exit(spa, NULL, txg,
6712 			    ZFS_ERR_REBUILD_IN_PROGRESS));
6713 	}
6714 
6715 	if (spa->spa_vdev_removal != NULL)
6716 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6717 
6718 	if (oldvd == NULL)
6719 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6720 
6721 	if (!oldvd->vdev_ops->vdev_op_leaf)
6722 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6723 
6724 	pvd = oldvd->vdev_parent;
6725 
6726 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6727 	    VDEV_ALLOC_ATTACH)) != 0)
6728 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6729 
6730 	if (newrootvd->vdev_children != 1)
6731 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6732 
6733 	newvd = newrootvd->vdev_child[0];
6734 
6735 	if (!newvd->vdev_ops->vdev_op_leaf)
6736 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6737 
6738 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6739 		return (spa_vdev_exit(spa, newrootvd, txg, error));
6740 
6741 	/*
6742 	 * Spares can't replace logs
6743 	 */
6744 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
6745 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6746 
6747 	/*
6748 	 * A dRAID spare can only replace a child of its parent dRAID vdev.
6749 	 */
6750 	if (newvd->vdev_ops == &vdev_draid_spare_ops &&
6751 	    oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
6752 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6753 	}
6754 
6755 	if (rebuild) {
6756 		/*
6757 		 * For rebuilds, the top vdev must support reconstruction
6758 		 * using only space maps.  This means the only allowable
6759 		 * vdevs types are the root vdev, a mirror, or dRAID.
6760 		 */
6761 		tvd = pvd;
6762 		if (pvd->vdev_top != NULL)
6763 			tvd = pvd->vdev_top;
6764 
6765 		if (tvd->vdev_ops != &vdev_mirror_ops &&
6766 		    tvd->vdev_ops != &vdev_root_ops &&
6767 		    tvd->vdev_ops != &vdev_draid_ops) {
6768 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6769 		}
6770 	}
6771 
6772 	if (!replacing) {
6773 		/*
6774 		 * For attach, the only allowable parent is a mirror or the root
6775 		 * vdev.
6776 		 */
6777 		if (pvd->vdev_ops != &vdev_mirror_ops &&
6778 		    pvd->vdev_ops != &vdev_root_ops)
6779 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6780 
6781 		pvops = &vdev_mirror_ops;
6782 	} else {
6783 		/*
6784 		 * Active hot spares can only be replaced by inactive hot
6785 		 * spares.
6786 		 */
6787 		if (pvd->vdev_ops == &vdev_spare_ops &&
6788 		    oldvd->vdev_isspare &&
6789 		    !spa_has_spare(spa, newvd->vdev_guid))
6790 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6791 
6792 		/*
6793 		 * If the source is a hot spare, and the parent isn't already a
6794 		 * spare, then we want to create a new hot spare.  Otherwise, we
6795 		 * want to create a replacing vdev.  The user is not allowed to
6796 		 * attach to a spared vdev child unless the 'isspare' state is
6797 		 * the same (spare replaces spare, non-spare replaces
6798 		 * non-spare).
6799 		 */
6800 		if (pvd->vdev_ops == &vdev_replacing_ops &&
6801 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6802 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6803 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
6804 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
6805 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6806 		}
6807 
6808 		if (newvd->vdev_isspare)
6809 			pvops = &vdev_spare_ops;
6810 		else
6811 			pvops = &vdev_replacing_ops;
6812 	}
6813 
6814 	/*
6815 	 * Make sure the new device is big enough.
6816 	 */
6817 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6818 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6819 
6820 	/*
6821 	 * The new device cannot have a higher alignment requirement
6822 	 * than the top-level vdev.
6823 	 */
6824 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6825 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6826 
6827 	/*
6828 	 * If this is an in-place replacement, update oldvd's path and devid
6829 	 * to make it distinguishable from newvd, and unopenable from now on.
6830 	 */
6831 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6832 		spa_strfree(oldvd->vdev_path);
6833 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6834 		    KM_SLEEP);
6835 		(void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5,
6836 		    "%s/%s", newvd->vdev_path, "old");
6837 		if (oldvd->vdev_devid != NULL) {
6838 			spa_strfree(oldvd->vdev_devid);
6839 			oldvd->vdev_devid = NULL;
6840 		}
6841 	}
6842 
6843 	/*
6844 	 * If the parent is not a mirror, or if we're replacing, insert the new
6845 	 * mirror/replacing/spare vdev above oldvd.
6846 	 */
6847 	if (pvd->vdev_ops != pvops)
6848 		pvd = vdev_add_parent(oldvd, pvops);
6849 
6850 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
6851 	ASSERT(pvd->vdev_ops == pvops);
6852 	ASSERT(oldvd->vdev_parent == pvd);
6853 
6854 	/*
6855 	 * Extract the new device from its root and add it to pvd.
6856 	 */
6857 	vdev_remove_child(newrootvd, newvd);
6858 	newvd->vdev_id = pvd->vdev_children;
6859 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
6860 	vdev_add_child(pvd, newvd);
6861 
6862 	/*
6863 	 * Reevaluate the parent vdev state.
6864 	 */
6865 	vdev_propagate_state(pvd);
6866 
6867 	tvd = newvd->vdev_top;
6868 	ASSERT(pvd->vdev_top == tvd);
6869 	ASSERT(tvd->vdev_parent == rvd);
6870 
6871 	vdev_config_dirty(tvd);
6872 
6873 	/*
6874 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6875 	 * for any dmu_sync-ed blocks.  It will propagate upward when
6876 	 * spa_vdev_exit() calls vdev_dtl_reassess().
6877 	 */
6878 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6879 
6880 	vdev_dtl_dirty(newvd, DTL_MISSING,
6881 	    TXG_INITIAL, dtl_max_txg - TXG_INITIAL);
6882 
6883 	if (newvd->vdev_isspare) {
6884 		spa_spare_activate(newvd);
6885 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6886 	}
6887 
6888 	oldvdpath = spa_strdup(oldvd->vdev_path);
6889 	newvdpath = spa_strdup(newvd->vdev_path);
6890 	newvd_isspare = newvd->vdev_isspare;
6891 
6892 	/*
6893 	 * Mark newvd's DTL dirty in this txg.
6894 	 */
6895 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
6896 
6897 	/*
6898 	 * Schedule the resilver or rebuild to restart in the future. We do
6899 	 * this to ensure that dmu_sync-ed blocks have been stitched into the
6900 	 * respective datasets.
6901 	 */
6902 	if (rebuild) {
6903 		newvd->vdev_rebuild_txg = txg;
6904 
6905 		vdev_rebuild(tvd);
6906 	} else {
6907 		newvd->vdev_resilver_txg = txg;
6908 
6909 		if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6910 		    spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
6911 			vdev_defer_resilver(newvd);
6912 		} else {
6913 			dsl_scan_restart_resilver(spa->spa_dsl_pool,
6914 			    dtl_max_txg);
6915 		}
6916 	}
6917 
6918 	if (spa->spa_bootfs)
6919 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6920 
6921 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6922 
6923 	/*
6924 	 * Commit the config
6925 	 */
6926 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6927 
6928 	spa_history_log_internal(spa, "vdev attach", NULL,
6929 	    "%s vdev=%s %s vdev=%s",
6930 	    replacing && newvd_isspare ? "spare in" :
6931 	    replacing ? "replace" : "attach", newvdpath,
6932 	    replacing ? "for" : "to", oldvdpath);
6933 
6934 	spa_strfree(oldvdpath);
6935 	spa_strfree(newvdpath);
6936 
6937 	return (0);
6938 }
6939 
6940 /*
6941  * Detach a device from a mirror or replacing vdev.
6942  *
6943  * If 'replace_done' is specified, only detach if the parent
6944  * is a replacing vdev.
6945  */
6946 int
6947 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
6948 {
6949 	uint64_t txg;
6950 	int error;
6951 	vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
6952 	vdev_t *vd, *pvd, *cvd, *tvd;
6953 	boolean_t unspare = B_FALSE;
6954 	uint64_t unspare_guid = 0;
6955 	char *vdpath;
6956 
6957 	ASSERT(spa_writeable(spa));
6958 
6959 	txg = spa_vdev_detach_enter(spa, guid);
6960 
6961 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6962 
6963 	/*
6964 	 * Besides being called directly from the userland through the
6965 	 * ioctl interface, spa_vdev_detach() can be potentially called
6966 	 * at the end of spa_vdev_resilver_done().
6967 	 *
6968 	 * In the regular case, when we have a checkpoint this shouldn't
6969 	 * happen as we never empty the DTLs of a vdev during the scrub
6970 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
6971 	 * should never get here when we have a checkpoint.
6972 	 *
6973 	 * That said, even in a case when we checkpoint the pool exactly
6974 	 * as spa_vdev_resilver_done() calls this function everything
6975 	 * should be fine as the resilver will return right away.
6976 	 */
6977 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6978 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6979 		error = (spa_has_checkpoint(spa)) ?
6980 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6981 		return (spa_vdev_exit(spa, NULL, txg, error));
6982 	}
6983 
6984 	if (vd == NULL)
6985 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6986 
6987 	if (!vd->vdev_ops->vdev_op_leaf)
6988 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6989 
6990 	pvd = vd->vdev_parent;
6991 
6992 	/*
6993 	 * If the parent/child relationship is not as expected, don't do it.
6994 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
6995 	 * vdev that's replacing B with C.  The user's intent in replacing
6996 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
6997 	 * the replace by detaching C, the expected behavior is to end up
6998 	 * M(A,B).  But suppose that right after deciding to detach C,
6999 	 * the replacement of B completes.  We would have M(A,C), and then
7000 	 * ask to detach C, which would leave us with just A -- not what
7001 	 * the user wanted.  To prevent this, we make sure that the
7002 	 * parent/child relationship hasn't changed -- in this example,
7003 	 * that C's parent is still the replacing vdev R.
7004 	 */
7005 	if (pvd->vdev_guid != pguid && pguid != 0)
7006 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7007 
7008 	/*
7009 	 * Only 'replacing' or 'spare' vdevs can be replaced.
7010 	 */
7011 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7012 	    pvd->vdev_ops != &vdev_spare_ops)
7013 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7014 
7015 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7016 	    spa_version(spa) >= SPA_VERSION_SPARES);
7017 
7018 	/*
7019 	 * Only mirror, replacing, and spare vdevs support detach.
7020 	 */
7021 	if (pvd->vdev_ops != &vdev_replacing_ops &&
7022 	    pvd->vdev_ops != &vdev_mirror_ops &&
7023 	    pvd->vdev_ops != &vdev_spare_ops)
7024 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7025 
7026 	/*
7027 	 * If this device has the only valid copy of some data,
7028 	 * we cannot safely detach it.
7029 	 */
7030 	if (vdev_dtl_required(vd))
7031 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7032 
7033 	ASSERT(pvd->vdev_children >= 2);
7034 
7035 	/*
7036 	 * If we are detaching the second disk from a replacing vdev, then
7037 	 * check to see if we changed the original vdev's path to have "/old"
7038 	 * at the end in spa_vdev_attach().  If so, undo that change now.
7039 	 */
7040 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7041 	    vd->vdev_path != NULL) {
7042 		size_t len = strlen(vd->vdev_path);
7043 
7044 		for (int c = 0; c < pvd->vdev_children; c++) {
7045 			cvd = pvd->vdev_child[c];
7046 
7047 			if (cvd == vd || cvd->vdev_path == NULL)
7048 				continue;
7049 
7050 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7051 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
7052 				spa_strfree(cvd->vdev_path);
7053 				cvd->vdev_path = spa_strdup(vd->vdev_path);
7054 				break;
7055 			}
7056 		}
7057 	}
7058 
7059 	/*
7060 	 * If we are detaching the original disk from a normal spare, then it
7061 	 * implies that the spare should become a real disk, and be removed
7062 	 * from the active spare list for the pool.  dRAID spares on the
7063 	 * other hand are coupled to the pool and thus should never be removed
7064 	 * from the spares list.
7065 	 */
7066 	if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7067 		vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7068 
7069 		if (last_cvd->vdev_isspare &&
7070 		    last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7071 			unspare = B_TRUE;
7072 		}
7073 	}
7074 
7075 	/*
7076 	 * Erase the disk labels so the disk can be used for other things.
7077 	 * This must be done after all other error cases are handled,
7078 	 * but before we disembowel vd (so we can still do I/O to it).
7079 	 * But if we can't do it, don't treat the error as fatal --
7080 	 * it may be that the unwritability of the disk is the reason
7081 	 * it's being detached!
7082 	 */
7083 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7084 
7085 	/*
7086 	 * Remove vd from its parent and compact the parent's children.
7087 	 */
7088 	vdev_remove_child(pvd, vd);
7089 	vdev_compact_children(pvd);
7090 
7091 	/*
7092 	 * Remember one of the remaining children so we can get tvd below.
7093 	 */
7094 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
7095 
7096 	/*
7097 	 * If we need to remove the remaining child from the list of hot spares,
7098 	 * do it now, marking the vdev as no longer a spare in the process.
7099 	 * We must do this before vdev_remove_parent(), because that can
7100 	 * change the GUID if it creates a new toplevel GUID.  For a similar
7101 	 * reason, we must remove the spare now, in the same txg as the detach;
7102 	 * otherwise someone could attach a new sibling, change the GUID, and
7103 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7104 	 */
7105 	if (unspare) {
7106 		ASSERT(cvd->vdev_isspare);
7107 		spa_spare_remove(cvd);
7108 		unspare_guid = cvd->vdev_guid;
7109 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7110 		cvd->vdev_unspare = B_TRUE;
7111 	}
7112 
7113 	/*
7114 	 * If the parent mirror/replacing vdev only has one child,
7115 	 * the parent is no longer needed.  Remove it from the tree.
7116 	 */
7117 	if (pvd->vdev_children == 1) {
7118 		if (pvd->vdev_ops == &vdev_spare_ops)
7119 			cvd->vdev_unspare = B_FALSE;
7120 		vdev_remove_parent(cvd);
7121 	}
7122 
7123 	/*
7124 	 * We don't set tvd until now because the parent we just removed
7125 	 * may have been the previous top-level vdev.
7126 	 */
7127 	tvd = cvd->vdev_top;
7128 	ASSERT(tvd->vdev_parent == rvd);
7129 
7130 	/*
7131 	 * Reevaluate the parent vdev state.
7132 	 */
7133 	vdev_propagate_state(cvd);
7134 
7135 	/*
7136 	 * If the 'autoexpand' property is set on the pool then automatically
7137 	 * try to expand the size of the pool. For example if the device we
7138 	 * just detached was smaller than the others, it may be possible to
7139 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7140 	 * first so that we can obtain the updated sizes of the leaf vdevs.
7141 	 */
7142 	if (spa->spa_autoexpand) {
7143 		vdev_reopen(tvd);
7144 		vdev_expand(tvd, txg);
7145 	}
7146 
7147 	vdev_config_dirty(tvd);
7148 
7149 	/*
7150 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
7151 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7152 	 * But first make sure we're not on any *other* txg's DTL list, to
7153 	 * prevent vd from being accessed after it's freed.
7154 	 */
7155 	vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7156 	for (int t = 0; t < TXG_SIZE; t++)
7157 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7158 	vd->vdev_detached = B_TRUE;
7159 	vdev_dirty(tvd, VDD_DTL, vd, txg);
7160 
7161 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7162 	spa_notify_waiters(spa);
7163 
7164 	/* hang on to the spa before we release the lock */
7165 	spa_open_ref(spa, FTAG);
7166 
7167 	error = spa_vdev_exit(spa, vd, txg, 0);
7168 
7169 	spa_history_log_internal(spa, "detach", NULL,
7170 	    "vdev=%s", vdpath);
7171 	spa_strfree(vdpath);
7172 
7173 	/*
7174 	 * If this was the removal of the original device in a hot spare vdev,
7175 	 * then we want to go through and remove the device from the hot spare
7176 	 * list of every other pool.
7177 	 */
7178 	if (unspare) {
7179 		spa_t *altspa = NULL;
7180 
7181 		mutex_enter(&spa_namespace_lock);
7182 		while ((altspa = spa_next(altspa)) != NULL) {
7183 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
7184 			    altspa == spa)
7185 				continue;
7186 
7187 			spa_open_ref(altspa, FTAG);
7188 			mutex_exit(&spa_namespace_lock);
7189 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7190 			mutex_enter(&spa_namespace_lock);
7191 			spa_close(altspa, FTAG);
7192 		}
7193 		mutex_exit(&spa_namespace_lock);
7194 
7195 		/* search the rest of the vdevs for spares to remove */
7196 		spa_vdev_resilver_done(spa);
7197 	}
7198 
7199 	/* all done with the spa; OK to release */
7200 	mutex_enter(&spa_namespace_lock);
7201 	spa_close(spa, FTAG);
7202 	mutex_exit(&spa_namespace_lock);
7203 
7204 	return (error);
7205 }
7206 
7207 static int
7208 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7209     list_t *vd_list)
7210 {
7211 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7212 
7213 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7214 
7215 	/* Look up vdev and ensure it's a leaf. */
7216 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7217 	if (vd == NULL || vd->vdev_detached) {
7218 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7219 		return (SET_ERROR(ENODEV));
7220 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7221 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7222 		return (SET_ERROR(EINVAL));
7223 	} else if (!vdev_writeable(vd)) {
7224 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7225 		return (SET_ERROR(EROFS));
7226 	}
7227 	mutex_enter(&vd->vdev_initialize_lock);
7228 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7229 
7230 	/*
7231 	 * When we activate an initialize action we check to see
7232 	 * if the vdev_initialize_thread is NULL. We do this instead
7233 	 * of using the vdev_initialize_state since there might be
7234 	 * a previous initialization process which has completed but
7235 	 * the thread is not exited.
7236 	 */
7237 	if (cmd_type == POOL_INITIALIZE_START &&
7238 	    (vd->vdev_initialize_thread != NULL ||
7239 	    vd->vdev_top->vdev_removing)) {
7240 		mutex_exit(&vd->vdev_initialize_lock);
7241 		return (SET_ERROR(EBUSY));
7242 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7243 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7244 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7245 		mutex_exit(&vd->vdev_initialize_lock);
7246 		return (SET_ERROR(ESRCH));
7247 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7248 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7249 		mutex_exit(&vd->vdev_initialize_lock);
7250 		return (SET_ERROR(ESRCH));
7251 	}
7252 
7253 	switch (cmd_type) {
7254 	case POOL_INITIALIZE_START:
7255 		vdev_initialize(vd);
7256 		break;
7257 	case POOL_INITIALIZE_CANCEL:
7258 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7259 		break;
7260 	case POOL_INITIALIZE_SUSPEND:
7261 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7262 		break;
7263 	default:
7264 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7265 	}
7266 	mutex_exit(&vd->vdev_initialize_lock);
7267 
7268 	return (0);
7269 }
7270 
7271 int
7272 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7273     nvlist_t *vdev_errlist)
7274 {
7275 	int total_errors = 0;
7276 	list_t vd_list;
7277 
7278 	list_create(&vd_list, sizeof (vdev_t),
7279 	    offsetof(vdev_t, vdev_initialize_node));
7280 
7281 	/*
7282 	 * We hold the namespace lock through the whole function
7283 	 * to prevent any changes to the pool while we're starting or
7284 	 * stopping initialization. The config and state locks are held so that
7285 	 * we can properly assess the vdev state before we commit to
7286 	 * the initializing operation.
7287 	 */
7288 	mutex_enter(&spa_namespace_lock);
7289 
7290 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7291 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7292 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
7293 
7294 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7295 		    &vd_list);
7296 		if (error != 0) {
7297 			char guid_as_str[MAXNAMELEN];
7298 
7299 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
7300 			    "%llu", (unsigned long long)vdev_guid);
7301 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7302 			total_errors++;
7303 		}
7304 	}
7305 
7306 	/* Wait for all initialize threads to stop. */
7307 	vdev_initialize_stop_wait(spa, &vd_list);
7308 
7309 	/* Sync out the initializing state */
7310 	txg_wait_synced(spa->spa_dsl_pool, 0);
7311 	mutex_exit(&spa_namespace_lock);
7312 
7313 	list_destroy(&vd_list);
7314 
7315 	return (total_errors);
7316 }
7317 
7318 static int
7319 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7320     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
7321 {
7322 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7323 
7324 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7325 
7326 	/* Look up vdev and ensure it's a leaf. */
7327 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7328 	if (vd == NULL || vd->vdev_detached) {
7329 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7330 		return (SET_ERROR(ENODEV));
7331 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7332 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7333 		return (SET_ERROR(EINVAL));
7334 	} else if (!vdev_writeable(vd)) {
7335 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7336 		return (SET_ERROR(EROFS));
7337 	} else if (!vd->vdev_has_trim) {
7338 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7339 		return (SET_ERROR(EOPNOTSUPP));
7340 	} else if (secure && !vd->vdev_has_securetrim) {
7341 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7342 		return (SET_ERROR(EOPNOTSUPP));
7343 	}
7344 	mutex_enter(&vd->vdev_trim_lock);
7345 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7346 
7347 	/*
7348 	 * When we activate a TRIM action we check to see if the
7349 	 * vdev_trim_thread is NULL. We do this instead of using the
7350 	 * vdev_trim_state since there might be a previous TRIM process
7351 	 * which has completed but the thread is not exited.
7352 	 */
7353 	if (cmd_type == POOL_TRIM_START &&
7354 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
7355 		mutex_exit(&vd->vdev_trim_lock);
7356 		return (SET_ERROR(EBUSY));
7357 	} else if (cmd_type == POOL_TRIM_CANCEL &&
7358 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
7359 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
7360 		mutex_exit(&vd->vdev_trim_lock);
7361 		return (SET_ERROR(ESRCH));
7362 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
7363 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
7364 		mutex_exit(&vd->vdev_trim_lock);
7365 		return (SET_ERROR(ESRCH));
7366 	}
7367 
7368 	switch (cmd_type) {
7369 	case POOL_TRIM_START:
7370 		vdev_trim(vd, rate, partial, secure);
7371 		break;
7372 	case POOL_TRIM_CANCEL:
7373 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
7374 		break;
7375 	case POOL_TRIM_SUSPEND:
7376 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
7377 		break;
7378 	default:
7379 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7380 	}
7381 	mutex_exit(&vd->vdev_trim_lock);
7382 
7383 	return (0);
7384 }
7385 
7386 /*
7387  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
7388  * TRIM threads for each child vdev.  These threads pass over all of the free
7389  * space in the vdev's metaslabs and issues TRIM commands for that space.
7390  */
7391 int
7392 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
7393     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
7394 {
7395 	int total_errors = 0;
7396 	list_t vd_list;
7397 
7398 	list_create(&vd_list, sizeof (vdev_t),
7399 	    offsetof(vdev_t, vdev_trim_node));
7400 
7401 	/*
7402 	 * We hold the namespace lock through the whole function
7403 	 * to prevent any changes to the pool while we're starting or
7404 	 * stopping TRIM. The config and state locks are held so that
7405 	 * we can properly assess the vdev state before we commit to
7406 	 * the TRIM operation.
7407 	 */
7408 	mutex_enter(&spa_namespace_lock);
7409 
7410 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7411 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7412 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
7413 
7414 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
7415 		    rate, partial, secure, &vd_list);
7416 		if (error != 0) {
7417 			char guid_as_str[MAXNAMELEN];
7418 
7419 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
7420 			    "%llu", (unsigned long long)vdev_guid);
7421 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7422 			total_errors++;
7423 		}
7424 	}
7425 
7426 	/* Wait for all TRIM threads to stop. */
7427 	vdev_trim_stop_wait(spa, &vd_list);
7428 
7429 	/* Sync out the TRIM state */
7430 	txg_wait_synced(spa->spa_dsl_pool, 0);
7431 	mutex_exit(&spa_namespace_lock);
7432 
7433 	list_destroy(&vd_list);
7434 
7435 	return (total_errors);
7436 }
7437 
7438 /*
7439  * Split a set of devices from their mirrors, and create a new pool from them.
7440  */
7441 int
7442 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
7443     nvlist_t *props, boolean_t exp)
7444 {
7445 	int error = 0;
7446 	uint64_t txg, *glist;
7447 	spa_t *newspa;
7448 	uint_t c, children, lastlog;
7449 	nvlist_t **child, *nvl, *tmp;
7450 	dmu_tx_t *tx;
7451 	char *altroot = NULL;
7452 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
7453 	boolean_t activate_slog;
7454 
7455 	ASSERT(spa_writeable(spa));
7456 
7457 	txg = spa_vdev_enter(spa);
7458 
7459 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7460 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7461 		error = (spa_has_checkpoint(spa)) ?
7462 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7463 		return (spa_vdev_exit(spa, NULL, txg, error));
7464 	}
7465 
7466 	/* clear the log and flush everything up to now */
7467 	activate_slog = spa_passivate_log(spa);
7468 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7469 	error = spa_reset_logs(spa);
7470 	txg = spa_vdev_config_enter(spa);
7471 
7472 	if (activate_slog)
7473 		spa_activate_log(spa);
7474 
7475 	if (error != 0)
7476 		return (spa_vdev_exit(spa, NULL, txg, error));
7477 
7478 	/* check new spa name before going any further */
7479 	if (spa_lookup(newname) != NULL)
7480 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
7481 
7482 	/*
7483 	 * scan through all the children to ensure they're all mirrors
7484 	 */
7485 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
7486 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
7487 	    &children) != 0)
7488 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7489 
7490 	/* first, check to ensure we've got the right child count */
7491 	rvd = spa->spa_root_vdev;
7492 	lastlog = 0;
7493 	for (c = 0; c < rvd->vdev_children; c++) {
7494 		vdev_t *vd = rvd->vdev_child[c];
7495 
7496 		/* don't count the holes & logs as children */
7497 		if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
7498 		    !vdev_is_concrete(vd))) {
7499 			if (lastlog == 0)
7500 				lastlog = c;
7501 			continue;
7502 		}
7503 
7504 		lastlog = 0;
7505 	}
7506 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7507 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7508 
7509 	/* next, ensure no spare or cache devices are part of the split */
7510 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7511 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7512 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7513 
7514 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7515 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7516 
7517 	/* then, loop over each vdev and validate it */
7518 	for (c = 0; c < children; c++) {
7519 		uint64_t is_hole = 0;
7520 
7521 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7522 		    &is_hole);
7523 
7524 		if (is_hole != 0) {
7525 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7526 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7527 				continue;
7528 			} else {
7529 				error = SET_ERROR(EINVAL);
7530 				break;
7531 			}
7532 		}
7533 
7534 		/* deal with indirect vdevs */
7535 		if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
7536 		    &vdev_indirect_ops)
7537 			continue;
7538 
7539 		/* which disk is going to be split? */
7540 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7541 		    &glist[c]) != 0) {
7542 			error = SET_ERROR(EINVAL);
7543 			break;
7544 		}
7545 
7546 		/* look it up in the spa */
7547 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7548 		if (vml[c] == NULL) {
7549 			error = SET_ERROR(ENODEV);
7550 			break;
7551 		}
7552 
7553 		/* make sure there's nothing stopping the split */
7554 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7555 		    vml[c]->vdev_islog ||
7556 		    !vdev_is_concrete(vml[c]) ||
7557 		    vml[c]->vdev_isspare ||
7558 		    vml[c]->vdev_isl2cache ||
7559 		    !vdev_writeable(vml[c]) ||
7560 		    vml[c]->vdev_children != 0 ||
7561 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7562 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7563 			error = SET_ERROR(EINVAL);
7564 			break;
7565 		}
7566 
7567 		if (vdev_dtl_required(vml[c]) ||
7568 		    vdev_resilver_needed(vml[c], NULL, NULL)) {
7569 			error = SET_ERROR(EBUSY);
7570 			break;
7571 		}
7572 
7573 		/* we need certain info from the top level */
7574 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7575 		    vml[c]->vdev_top->vdev_ms_array);
7576 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7577 		    vml[c]->vdev_top->vdev_ms_shift);
7578 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7579 		    vml[c]->vdev_top->vdev_asize);
7580 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7581 		    vml[c]->vdev_top->vdev_ashift);
7582 
7583 		/* transfer per-vdev ZAPs */
7584 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7585 		VERIFY0(nvlist_add_uint64(child[c],
7586 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7587 
7588 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7589 		VERIFY0(nvlist_add_uint64(child[c],
7590 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
7591 		    vml[c]->vdev_parent->vdev_top_zap));
7592 	}
7593 
7594 	if (error != 0) {
7595 		kmem_free(vml, children * sizeof (vdev_t *));
7596 		kmem_free(glist, children * sizeof (uint64_t));
7597 		return (spa_vdev_exit(spa, NULL, txg, error));
7598 	}
7599 
7600 	/* stop writers from using the disks */
7601 	for (c = 0; c < children; c++) {
7602 		if (vml[c] != NULL)
7603 			vml[c]->vdev_offline = B_TRUE;
7604 	}
7605 	vdev_reopen(spa->spa_root_vdev);
7606 
7607 	/*
7608 	 * Temporarily record the splitting vdevs in the spa config.  This
7609 	 * will disappear once the config is regenerated.
7610 	 */
7611 	nvl = fnvlist_alloc();
7612 	fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
7613 	kmem_free(glist, children * sizeof (uint64_t));
7614 
7615 	mutex_enter(&spa->spa_props_lock);
7616 	fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
7617 	mutex_exit(&spa->spa_props_lock);
7618 	spa->spa_config_splitting = nvl;
7619 	vdev_config_dirty(spa->spa_root_vdev);
7620 
7621 	/* configure and create the new pool */
7622 	fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
7623 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7624 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
7625 	fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
7626 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
7627 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7628 	    spa_generate_guid(NULL));
7629 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7630 	(void) nvlist_lookup_string(props,
7631 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7632 
7633 	/* add the new pool to the namespace */
7634 	newspa = spa_add(newname, config, altroot);
7635 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7636 	newspa->spa_config_txg = spa->spa_config_txg;
7637 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
7638 
7639 	/* release the spa config lock, retaining the namespace lock */
7640 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7641 
7642 	if (zio_injection_enabled)
7643 		zio_handle_panic_injection(spa, FTAG, 1);
7644 
7645 	spa_activate(newspa, spa_mode_global);
7646 	spa_async_suspend(newspa);
7647 
7648 	/*
7649 	 * Temporarily stop the initializing and TRIM activity.  We set the
7650 	 * state to ACTIVE so that we know to resume initializing or TRIM
7651 	 * once the split has completed.
7652 	 */
7653 	list_t vd_initialize_list;
7654 	list_create(&vd_initialize_list, sizeof (vdev_t),
7655 	    offsetof(vdev_t, vdev_initialize_node));
7656 
7657 	list_t vd_trim_list;
7658 	list_create(&vd_trim_list, sizeof (vdev_t),
7659 	    offsetof(vdev_t, vdev_trim_node));
7660 
7661 	for (c = 0; c < children; c++) {
7662 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7663 			mutex_enter(&vml[c]->vdev_initialize_lock);
7664 			vdev_initialize_stop(vml[c],
7665 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7666 			mutex_exit(&vml[c]->vdev_initialize_lock);
7667 
7668 			mutex_enter(&vml[c]->vdev_trim_lock);
7669 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7670 			mutex_exit(&vml[c]->vdev_trim_lock);
7671 		}
7672 	}
7673 
7674 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
7675 	vdev_trim_stop_wait(spa, &vd_trim_list);
7676 
7677 	list_destroy(&vd_initialize_list);
7678 	list_destroy(&vd_trim_list);
7679 
7680 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7681 	newspa->spa_is_splitting = B_TRUE;
7682 
7683 	/* create the new pool from the disks of the original pool */
7684 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7685 	if (error)
7686 		goto out;
7687 
7688 	/* if that worked, generate a real config for the new pool */
7689 	if (newspa->spa_root_vdev != NULL) {
7690 		newspa->spa_config_splitting = fnvlist_alloc();
7691 		fnvlist_add_uint64(newspa->spa_config_splitting,
7692 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
7693 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7694 		    B_TRUE));
7695 	}
7696 
7697 	/* set the props */
7698 	if (props != NULL) {
7699 		spa_configfile_set(newspa, props, B_FALSE);
7700 		error = spa_prop_set(newspa, props);
7701 		if (error)
7702 			goto out;
7703 	}
7704 
7705 	/* flush everything */
7706 	txg = spa_vdev_config_enter(newspa);
7707 	vdev_config_dirty(newspa->spa_root_vdev);
7708 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7709 
7710 	if (zio_injection_enabled)
7711 		zio_handle_panic_injection(spa, FTAG, 2);
7712 
7713 	spa_async_resume(newspa);
7714 
7715 	/* finally, update the original pool's config */
7716 	txg = spa_vdev_config_enter(spa);
7717 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7718 	error = dmu_tx_assign(tx, TXG_WAIT);
7719 	if (error != 0)
7720 		dmu_tx_abort(tx);
7721 	for (c = 0; c < children; c++) {
7722 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7723 			vdev_t *tvd = vml[c]->vdev_top;
7724 
7725 			/*
7726 			 * Need to be sure the detachable VDEV is not
7727 			 * on any *other* txg's DTL list to prevent it
7728 			 * from being accessed after it's freed.
7729 			 */
7730 			for (int t = 0; t < TXG_SIZE; t++) {
7731 				(void) txg_list_remove_this(
7732 				    &tvd->vdev_dtl_list, vml[c], t);
7733 			}
7734 
7735 			vdev_split(vml[c]);
7736 			if (error == 0)
7737 				spa_history_log_internal(spa, "detach", tx,
7738 				    "vdev=%s", vml[c]->vdev_path);
7739 
7740 			vdev_free(vml[c]);
7741 		}
7742 	}
7743 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
7744 	vdev_config_dirty(spa->spa_root_vdev);
7745 	spa->spa_config_splitting = NULL;
7746 	nvlist_free(nvl);
7747 	if (error == 0)
7748 		dmu_tx_commit(tx);
7749 	(void) spa_vdev_exit(spa, NULL, txg, 0);
7750 
7751 	if (zio_injection_enabled)
7752 		zio_handle_panic_injection(spa, FTAG, 3);
7753 
7754 	/* split is complete; log a history record */
7755 	spa_history_log_internal(newspa, "split", NULL,
7756 	    "from pool %s", spa_name(spa));
7757 
7758 	newspa->spa_is_splitting = B_FALSE;
7759 	kmem_free(vml, children * sizeof (vdev_t *));
7760 
7761 	/* if we're not going to mount the filesystems in userland, export */
7762 	if (exp)
7763 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7764 		    B_FALSE, B_FALSE);
7765 
7766 	return (error);
7767 
7768 out:
7769 	spa_unload(newspa);
7770 	spa_deactivate(newspa);
7771 	spa_remove(newspa);
7772 
7773 	txg = spa_vdev_config_enter(spa);
7774 
7775 	/* re-online all offlined disks */
7776 	for (c = 0; c < children; c++) {
7777 		if (vml[c] != NULL)
7778 			vml[c]->vdev_offline = B_FALSE;
7779 	}
7780 
7781 	/* restart initializing or trimming disks as necessary */
7782 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7783 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7784 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7785 
7786 	vdev_reopen(spa->spa_root_vdev);
7787 
7788 	nvlist_free(spa->spa_config_splitting);
7789 	spa->spa_config_splitting = NULL;
7790 	(void) spa_vdev_exit(spa, NULL, txg, error);
7791 
7792 	kmem_free(vml, children * sizeof (vdev_t *));
7793 	return (error);
7794 }
7795 
7796 /*
7797  * Find any device that's done replacing, or a vdev marked 'unspare' that's
7798  * currently spared, so we can detach it.
7799  */
7800 static vdev_t *
7801 spa_vdev_resilver_done_hunt(vdev_t *vd)
7802 {
7803 	vdev_t *newvd, *oldvd;
7804 
7805 	for (int c = 0; c < vd->vdev_children; c++) {
7806 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7807 		if (oldvd != NULL)
7808 			return (oldvd);
7809 	}
7810 
7811 	/*
7812 	 * Check for a completed replacement.  We always consider the first
7813 	 * vdev in the list to be the oldest vdev, and the last one to be
7814 	 * the newest (see spa_vdev_attach() for how that works).  In
7815 	 * the case where the newest vdev is faulted, we will not automatically
7816 	 * remove it after a resilver completes.  This is OK as it will require
7817 	 * user intervention to determine which disk the admin wishes to keep.
7818 	 */
7819 	if (vd->vdev_ops == &vdev_replacing_ops) {
7820 		ASSERT(vd->vdev_children > 1);
7821 
7822 		newvd = vd->vdev_child[vd->vdev_children - 1];
7823 		oldvd = vd->vdev_child[0];
7824 
7825 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7826 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7827 		    !vdev_dtl_required(oldvd))
7828 			return (oldvd);
7829 	}
7830 
7831 	/*
7832 	 * Check for a completed resilver with the 'unspare' flag set.
7833 	 * Also potentially update faulted state.
7834 	 */
7835 	if (vd->vdev_ops == &vdev_spare_ops) {
7836 		vdev_t *first = vd->vdev_child[0];
7837 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7838 
7839 		if (last->vdev_unspare) {
7840 			oldvd = first;
7841 			newvd = last;
7842 		} else if (first->vdev_unspare) {
7843 			oldvd = last;
7844 			newvd = first;
7845 		} else {
7846 			oldvd = NULL;
7847 		}
7848 
7849 		if (oldvd != NULL &&
7850 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
7851 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7852 		    !vdev_dtl_required(oldvd))
7853 			return (oldvd);
7854 
7855 		vdev_propagate_state(vd);
7856 
7857 		/*
7858 		 * If there are more than two spares attached to a disk,
7859 		 * and those spares are not required, then we want to
7860 		 * attempt to free them up now so that they can be used
7861 		 * by other pools.  Once we're back down to a single
7862 		 * disk+spare, we stop removing them.
7863 		 */
7864 		if (vd->vdev_children > 2) {
7865 			newvd = vd->vdev_child[1];
7866 
7867 			if (newvd->vdev_isspare && last->vdev_isspare &&
7868 			    vdev_dtl_empty(last, DTL_MISSING) &&
7869 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
7870 			    !vdev_dtl_required(newvd))
7871 				return (newvd);
7872 		}
7873 	}
7874 
7875 	return (NULL);
7876 }
7877 
7878 static void
7879 spa_vdev_resilver_done(spa_t *spa)
7880 {
7881 	vdev_t *vd, *pvd, *ppvd;
7882 	uint64_t guid, sguid, pguid, ppguid;
7883 
7884 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7885 
7886 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
7887 		pvd = vd->vdev_parent;
7888 		ppvd = pvd->vdev_parent;
7889 		guid = vd->vdev_guid;
7890 		pguid = pvd->vdev_guid;
7891 		ppguid = ppvd->vdev_guid;
7892 		sguid = 0;
7893 		/*
7894 		 * If we have just finished replacing a hot spared device, then
7895 		 * we need to detach the parent's first child (the original hot
7896 		 * spare) as well.
7897 		 */
7898 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
7899 		    ppvd->vdev_children == 2) {
7900 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
7901 			sguid = ppvd->vdev_child[1]->vdev_guid;
7902 		}
7903 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
7904 
7905 		spa_config_exit(spa, SCL_ALL, FTAG);
7906 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
7907 			return;
7908 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
7909 			return;
7910 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7911 	}
7912 
7913 	spa_config_exit(spa, SCL_ALL, FTAG);
7914 
7915 	/*
7916 	 * If a detach was not performed above replace waiters will not have
7917 	 * been notified.  In which case we must do so now.
7918 	 */
7919 	spa_notify_waiters(spa);
7920 }
7921 
7922 /*
7923  * Update the stored path or FRU for this vdev.
7924  */
7925 static int
7926 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
7927     boolean_t ispath)
7928 {
7929 	vdev_t *vd;
7930 	boolean_t sync = B_FALSE;
7931 
7932 	ASSERT(spa_writeable(spa));
7933 
7934 	spa_vdev_state_enter(spa, SCL_ALL);
7935 
7936 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
7937 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
7938 
7939 	if (!vd->vdev_ops->vdev_op_leaf)
7940 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
7941 
7942 	if (ispath) {
7943 		if (strcmp(value, vd->vdev_path) != 0) {
7944 			spa_strfree(vd->vdev_path);
7945 			vd->vdev_path = spa_strdup(value);
7946 			sync = B_TRUE;
7947 		}
7948 	} else {
7949 		if (vd->vdev_fru == NULL) {
7950 			vd->vdev_fru = spa_strdup(value);
7951 			sync = B_TRUE;
7952 		} else if (strcmp(value, vd->vdev_fru) != 0) {
7953 			spa_strfree(vd->vdev_fru);
7954 			vd->vdev_fru = spa_strdup(value);
7955 			sync = B_TRUE;
7956 		}
7957 	}
7958 
7959 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
7960 }
7961 
7962 int
7963 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
7964 {
7965 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
7966 }
7967 
7968 int
7969 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
7970 {
7971 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
7972 }
7973 
7974 /*
7975  * ==========================================================================
7976  * SPA Scanning
7977  * ==========================================================================
7978  */
7979 int
7980 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
7981 {
7982 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7983 
7984 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7985 		return (SET_ERROR(EBUSY));
7986 
7987 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
7988 }
7989 
7990 int
7991 spa_scan_stop(spa_t *spa)
7992 {
7993 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7994 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7995 		return (SET_ERROR(EBUSY));
7996 	return (dsl_scan_cancel(spa->spa_dsl_pool));
7997 }
7998 
7999 int
8000 spa_scan(spa_t *spa, pool_scan_func_t func)
8001 {
8002 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8003 
8004 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8005 		return (SET_ERROR(ENOTSUP));
8006 
8007 	if (func == POOL_SCAN_RESILVER &&
8008 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8009 		return (SET_ERROR(ENOTSUP));
8010 
8011 	/*
8012 	 * If a resilver was requested, but there is no DTL on a
8013 	 * writeable leaf device, we have nothing to do.
8014 	 */
8015 	if (func == POOL_SCAN_RESILVER &&
8016 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8017 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8018 		return (0);
8019 	}
8020 
8021 	return (dsl_scan(spa->spa_dsl_pool, func));
8022 }
8023 
8024 /*
8025  * ==========================================================================
8026  * SPA async task processing
8027  * ==========================================================================
8028  */
8029 
8030 static void
8031 spa_async_remove(spa_t *spa, vdev_t *vd)
8032 {
8033 	if (vd->vdev_remove_wanted) {
8034 		vd->vdev_remove_wanted = B_FALSE;
8035 		vd->vdev_delayed_close = B_FALSE;
8036 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8037 
8038 		/*
8039 		 * We want to clear the stats, but we don't want to do a full
8040 		 * vdev_clear() as that will cause us to throw away
8041 		 * degraded/faulted state as well as attempt to reopen the
8042 		 * device, all of which is a waste.
8043 		 */
8044 		vd->vdev_stat.vs_read_errors = 0;
8045 		vd->vdev_stat.vs_write_errors = 0;
8046 		vd->vdev_stat.vs_checksum_errors = 0;
8047 
8048 		vdev_state_dirty(vd->vdev_top);
8049 
8050 		/* Tell userspace that the vdev is gone. */
8051 		zfs_post_remove(spa, vd);
8052 	}
8053 
8054 	for (int c = 0; c < vd->vdev_children; c++)
8055 		spa_async_remove(spa, vd->vdev_child[c]);
8056 }
8057 
8058 static void
8059 spa_async_probe(spa_t *spa, vdev_t *vd)
8060 {
8061 	if (vd->vdev_probe_wanted) {
8062 		vd->vdev_probe_wanted = B_FALSE;
8063 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
8064 	}
8065 
8066 	for (int c = 0; c < vd->vdev_children; c++)
8067 		spa_async_probe(spa, vd->vdev_child[c]);
8068 }
8069 
8070 static void
8071 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8072 {
8073 	if (!spa->spa_autoexpand)
8074 		return;
8075 
8076 	for (int c = 0; c < vd->vdev_children; c++) {
8077 		vdev_t *cvd = vd->vdev_child[c];
8078 		spa_async_autoexpand(spa, cvd);
8079 	}
8080 
8081 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8082 		return;
8083 
8084 	spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8085 }
8086 
8087 static void
8088 spa_async_thread(void *arg)
8089 {
8090 	spa_t *spa = (spa_t *)arg;
8091 	dsl_pool_t *dp = spa->spa_dsl_pool;
8092 	int tasks;
8093 
8094 	ASSERT(spa->spa_sync_on);
8095 
8096 	mutex_enter(&spa->spa_async_lock);
8097 	tasks = spa->spa_async_tasks;
8098 	spa->spa_async_tasks = 0;
8099 	mutex_exit(&spa->spa_async_lock);
8100 
8101 	/*
8102 	 * See if the config needs to be updated.
8103 	 */
8104 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8105 		uint64_t old_space, new_space;
8106 
8107 		mutex_enter(&spa_namespace_lock);
8108 		old_space = metaslab_class_get_space(spa_normal_class(spa));
8109 		old_space += metaslab_class_get_space(spa_special_class(spa));
8110 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
8111 		old_space += metaslab_class_get_space(
8112 		    spa_embedded_log_class(spa));
8113 
8114 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8115 
8116 		new_space = metaslab_class_get_space(spa_normal_class(spa));
8117 		new_space += metaslab_class_get_space(spa_special_class(spa));
8118 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
8119 		new_space += metaslab_class_get_space(
8120 		    spa_embedded_log_class(spa));
8121 		mutex_exit(&spa_namespace_lock);
8122 
8123 		/*
8124 		 * If the pool grew as a result of the config update,
8125 		 * then log an internal history event.
8126 		 */
8127 		if (new_space != old_space) {
8128 			spa_history_log_internal(spa, "vdev online", NULL,
8129 			    "pool '%s' size: %llu(+%llu)",
8130 			    spa_name(spa), (u_longlong_t)new_space,
8131 			    (u_longlong_t)(new_space - old_space));
8132 		}
8133 	}
8134 
8135 	/*
8136 	 * See if any devices need to be marked REMOVED.
8137 	 */
8138 	if (tasks & SPA_ASYNC_REMOVE) {
8139 		spa_vdev_state_enter(spa, SCL_NONE);
8140 		spa_async_remove(spa, spa->spa_root_vdev);
8141 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
8142 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
8143 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
8144 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
8145 		(void) spa_vdev_state_exit(spa, NULL, 0);
8146 	}
8147 
8148 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8149 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8150 		spa_async_autoexpand(spa, spa->spa_root_vdev);
8151 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8152 	}
8153 
8154 	/*
8155 	 * See if any devices need to be probed.
8156 	 */
8157 	if (tasks & SPA_ASYNC_PROBE) {
8158 		spa_vdev_state_enter(spa, SCL_NONE);
8159 		spa_async_probe(spa, spa->spa_root_vdev);
8160 		(void) spa_vdev_state_exit(spa, NULL, 0);
8161 	}
8162 
8163 	/*
8164 	 * If any devices are done replacing, detach them.
8165 	 */
8166 	if (tasks & SPA_ASYNC_RESILVER_DONE ||
8167 	    tasks & SPA_ASYNC_REBUILD_DONE) {
8168 		spa_vdev_resilver_done(spa);
8169 	}
8170 
8171 	/*
8172 	 * Kick off a resilver.
8173 	 */
8174 	if (tasks & SPA_ASYNC_RESILVER &&
8175 	    !vdev_rebuild_active(spa->spa_root_vdev) &&
8176 	    (!dsl_scan_resilvering(dp) ||
8177 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8178 		dsl_scan_restart_resilver(dp, 0);
8179 
8180 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8181 		mutex_enter(&spa_namespace_lock);
8182 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8183 		vdev_initialize_restart(spa->spa_root_vdev);
8184 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8185 		mutex_exit(&spa_namespace_lock);
8186 	}
8187 
8188 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
8189 		mutex_enter(&spa_namespace_lock);
8190 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8191 		vdev_trim_restart(spa->spa_root_vdev);
8192 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8193 		mutex_exit(&spa_namespace_lock);
8194 	}
8195 
8196 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8197 		mutex_enter(&spa_namespace_lock);
8198 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8199 		vdev_autotrim_restart(spa);
8200 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8201 		mutex_exit(&spa_namespace_lock);
8202 	}
8203 
8204 	/*
8205 	 * Kick off L2 cache whole device TRIM.
8206 	 */
8207 	if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8208 		mutex_enter(&spa_namespace_lock);
8209 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8210 		vdev_trim_l2arc(spa);
8211 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8212 		mutex_exit(&spa_namespace_lock);
8213 	}
8214 
8215 	/*
8216 	 * Kick off L2 cache rebuilding.
8217 	 */
8218 	if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8219 		mutex_enter(&spa_namespace_lock);
8220 		spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8221 		l2arc_spa_rebuild_start(spa);
8222 		spa_config_exit(spa, SCL_L2ARC, FTAG);
8223 		mutex_exit(&spa_namespace_lock);
8224 	}
8225 
8226 	/*
8227 	 * Let the world know that we're done.
8228 	 */
8229 	mutex_enter(&spa->spa_async_lock);
8230 	spa->spa_async_thread = NULL;
8231 	cv_broadcast(&spa->spa_async_cv);
8232 	mutex_exit(&spa->spa_async_lock);
8233 	thread_exit();
8234 }
8235 
8236 void
8237 spa_async_suspend(spa_t *spa)
8238 {
8239 	mutex_enter(&spa->spa_async_lock);
8240 	spa->spa_async_suspended++;
8241 	while (spa->spa_async_thread != NULL)
8242 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8243 	mutex_exit(&spa->spa_async_lock);
8244 
8245 	spa_vdev_remove_suspend(spa);
8246 
8247 	zthr_t *condense_thread = spa->spa_condense_zthr;
8248 	if (condense_thread != NULL)
8249 		zthr_cancel(condense_thread);
8250 
8251 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8252 	if (discard_thread != NULL)
8253 		zthr_cancel(discard_thread);
8254 
8255 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8256 	if (ll_delete_thread != NULL)
8257 		zthr_cancel(ll_delete_thread);
8258 
8259 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8260 	if (ll_condense_thread != NULL)
8261 		zthr_cancel(ll_condense_thread);
8262 }
8263 
8264 void
8265 spa_async_resume(spa_t *spa)
8266 {
8267 	mutex_enter(&spa->spa_async_lock);
8268 	ASSERT(spa->spa_async_suspended != 0);
8269 	spa->spa_async_suspended--;
8270 	mutex_exit(&spa->spa_async_lock);
8271 	spa_restart_removal(spa);
8272 
8273 	zthr_t *condense_thread = spa->spa_condense_zthr;
8274 	if (condense_thread != NULL)
8275 		zthr_resume(condense_thread);
8276 
8277 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8278 	if (discard_thread != NULL)
8279 		zthr_resume(discard_thread);
8280 
8281 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8282 	if (ll_delete_thread != NULL)
8283 		zthr_resume(ll_delete_thread);
8284 
8285 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8286 	if (ll_condense_thread != NULL)
8287 		zthr_resume(ll_condense_thread);
8288 }
8289 
8290 static boolean_t
8291 spa_async_tasks_pending(spa_t *spa)
8292 {
8293 	uint_t non_config_tasks;
8294 	uint_t config_task;
8295 	boolean_t config_task_suspended;
8296 
8297 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
8298 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
8299 	if (spa->spa_ccw_fail_time == 0) {
8300 		config_task_suspended = B_FALSE;
8301 	} else {
8302 		config_task_suspended =
8303 		    (gethrtime() - spa->spa_ccw_fail_time) <
8304 		    ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
8305 	}
8306 
8307 	return (non_config_tasks || (config_task && !config_task_suspended));
8308 }
8309 
8310 static void
8311 spa_async_dispatch(spa_t *spa)
8312 {
8313 	mutex_enter(&spa->spa_async_lock);
8314 	if (spa_async_tasks_pending(spa) &&
8315 	    !spa->spa_async_suspended &&
8316 	    spa->spa_async_thread == NULL)
8317 		spa->spa_async_thread = thread_create(NULL, 0,
8318 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
8319 	mutex_exit(&spa->spa_async_lock);
8320 }
8321 
8322 void
8323 spa_async_request(spa_t *spa, int task)
8324 {
8325 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
8326 	mutex_enter(&spa->spa_async_lock);
8327 	spa->spa_async_tasks |= task;
8328 	mutex_exit(&spa->spa_async_lock);
8329 }
8330 
8331 int
8332 spa_async_tasks(spa_t *spa)
8333 {
8334 	return (spa->spa_async_tasks);
8335 }
8336 
8337 /*
8338  * ==========================================================================
8339  * SPA syncing routines
8340  * ==========================================================================
8341  */
8342 
8343 
8344 static int
8345 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8346     dmu_tx_t *tx)
8347 {
8348 	bpobj_t *bpo = arg;
8349 	bpobj_enqueue(bpo, bp, bp_freed, tx);
8350 	return (0);
8351 }
8352 
8353 int
8354 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8355 {
8356 	return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
8357 }
8358 
8359 int
8360 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8361 {
8362 	return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
8363 }
8364 
8365 static int
8366 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8367 {
8368 	zio_t *pio = arg;
8369 
8370 	zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
8371 	    pio->io_flags));
8372 	return (0);
8373 }
8374 
8375 static int
8376 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8377     dmu_tx_t *tx)
8378 {
8379 	ASSERT(!bp_freed);
8380 	return (spa_free_sync_cb(arg, bp, tx));
8381 }
8382 
8383 /*
8384  * Note: this simple function is not inlined to make it easier to dtrace the
8385  * amount of time spent syncing frees.
8386  */
8387 static void
8388 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
8389 {
8390 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
8391 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
8392 	VERIFY(zio_wait(zio) == 0);
8393 }
8394 
8395 /*
8396  * Note: this simple function is not inlined to make it easier to dtrace the
8397  * amount of time spent syncing deferred frees.
8398  */
8399 static void
8400 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
8401 {
8402 	if (spa_sync_pass(spa) != 1)
8403 		return;
8404 
8405 	/*
8406 	 * Note:
8407 	 * If the log space map feature is active, we stop deferring
8408 	 * frees to the next TXG and therefore running this function
8409 	 * would be considered a no-op as spa_deferred_bpobj should
8410 	 * not have any entries.
8411 	 *
8412 	 * That said we run this function anyway (instead of returning
8413 	 * immediately) for the edge-case scenario where we just
8414 	 * activated the log space map feature in this TXG but we have
8415 	 * deferred frees from the previous TXG.
8416 	 */
8417 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
8418 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
8419 	    bpobj_spa_free_sync_cb, zio, tx), ==, 0);
8420 	VERIFY0(zio_wait(zio));
8421 }
8422 
8423 static void
8424 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
8425 {
8426 	char *packed = NULL;
8427 	size_t bufsize;
8428 	size_t nvsize = 0;
8429 	dmu_buf_t *db;
8430 
8431 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
8432 
8433 	/*
8434 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
8435 	 * information.  This avoids the dmu_buf_will_dirty() path and
8436 	 * saves us a pre-read to get data we don't actually care about.
8437 	 */
8438 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
8439 	packed = vmem_alloc(bufsize, KM_SLEEP);
8440 
8441 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
8442 	    KM_SLEEP) == 0);
8443 	bzero(packed + nvsize, bufsize - nvsize);
8444 
8445 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
8446 
8447 	vmem_free(packed, bufsize);
8448 
8449 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
8450 	dmu_buf_will_dirty(db, tx);
8451 	*(uint64_t *)db->db_data = nvsize;
8452 	dmu_buf_rele(db, FTAG);
8453 }
8454 
8455 static void
8456 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
8457     const char *config, const char *entry)
8458 {
8459 	nvlist_t *nvroot;
8460 	nvlist_t **list;
8461 	int i;
8462 
8463 	if (!sav->sav_sync)
8464 		return;
8465 
8466 	/*
8467 	 * Update the MOS nvlist describing the list of available devices.
8468 	 * spa_validate_aux() will have already made sure this nvlist is
8469 	 * valid and the vdevs are labeled appropriately.
8470 	 */
8471 	if (sav->sav_object == 0) {
8472 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
8473 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
8474 		    sizeof (uint64_t), tx);
8475 		VERIFY(zap_update(spa->spa_meta_objset,
8476 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
8477 		    &sav->sav_object, tx) == 0);
8478 	}
8479 
8480 	nvroot = fnvlist_alloc();
8481 	if (sav->sav_count == 0) {
8482 		fnvlist_add_nvlist_array(nvroot, config,
8483 		    (const nvlist_t * const *)NULL, 0);
8484 	} else {
8485 		list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
8486 		for (i = 0; i < sav->sav_count; i++)
8487 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
8488 			    B_FALSE, VDEV_CONFIG_L2CACHE);
8489 		fnvlist_add_nvlist_array(nvroot, config,
8490 		    (const nvlist_t * const *)list, sav->sav_count);
8491 		for (i = 0; i < sav->sav_count; i++)
8492 			nvlist_free(list[i]);
8493 		kmem_free(list, sav->sav_count * sizeof (void *));
8494 	}
8495 
8496 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
8497 	nvlist_free(nvroot);
8498 
8499 	sav->sav_sync = B_FALSE;
8500 }
8501 
8502 /*
8503  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
8504  * The all-vdev ZAP must be empty.
8505  */
8506 static void
8507 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
8508 {
8509 	spa_t *spa = vd->vdev_spa;
8510 
8511 	if (vd->vdev_top_zap != 0) {
8512 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8513 		    vd->vdev_top_zap, tx));
8514 	}
8515 	if (vd->vdev_leaf_zap != 0) {
8516 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8517 		    vd->vdev_leaf_zap, tx));
8518 	}
8519 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
8520 		spa_avz_build(vd->vdev_child[i], avz, tx);
8521 	}
8522 }
8523 
8524 static void
8525 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
8526 {
8527 	nvlist_t *config;
8528 
8529 	/*
8530 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
8531 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
8532 	 * Similarly, if the pool is being assembled (e.g. after a split), we
8533 	 * need to rebuild the AVZ although the config may not be dirty.
8534 	 */
8535 	if (list_is_empty(&spa->spa_config_dirty_list) &&
8536 	    spa->spa_avz_action == AVZ_ACTION_NONE)
8537 		return;
8538 
8539 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8540 
8541 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
8542 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
8543 	    spa->spa_all_vdev_zaps != 0);
8544 
8545 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
8546 		/* Make and build the new AVZ */
8547 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
8548 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
8549 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
8550 
8551 		/* Diff old AVZ with new one */
8552 		zap_cursor_t zc;
8553 		zap_attribute_t za;
8554 
8555 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8556 		    spa->spa_all_vdev_zaps);
8557 		    zap_cursor_retrieve(&zc, &za) == 0;
8558 		    zap_cursor_advance(&zc)) {
8559 			uint64_t vdzap = za.za_first_integer;
8560 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
8561 			    vdzap) == ENOENT) {
8562 				/*
8563 				 * ZAP is listed in old AVZ but not in new one;
8564 				 * destroy it
8565 				 */
8566 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
8567 				    tx));
8568 			}
8569 		}
8570 
8571 		zap_cursor_fini(&zc);
8572 
8573 		/* Destroy the old AVZ */
8574 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8575 		    spa->spa_all_vdev_zaps, tx));
8576 
8577 		/* Replace the old AVZ in the dir obj with the new one */
8578 		VERIFY0(zap_update(spa->spa_meta_objset,
8579 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8580 		    sizeof (new_avz), 1, &new_avz, tx));
8581 
8582 		spa->spa_all_vdev_zaps = new_avz;
8583 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8584 		zap_cursor_t zc;
8585 		zap_attribute_t za;
8586 
8587 		/* Walk through the AVZ and destroy all listed ZAPs */
8588 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8589 		    spa->spa_all_vdev_zaps);
8590 		    zap_cursor_retrieve(&zc, &za) == 0;
8591 		    zap_cursor_advance(&zc)) {
8592 			uint64_t zap = za.za_first_integer;
8593 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8594 		}
8595 
8596 		zap_cursor_fini(&zc);
8597 
8598 		/* Destroy and unlink the AVZ itself */
8599 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8600 		    spa->spa_all_vdev_zaps, tx));
8601 		VERIFY0(zap_remove(spa->spa_meta_objset,
8602 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8603 		spa->spa_all_vdev_zaps = 0;
8604 	}
8605 
8606 	if (spa->spa_all_vdev_zaps == 0) {
8607 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8608 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8609 		    DMU_POOL_VDEV_ZAP_MAP, tx);
8610 	}
8611 	spa->spa_avz_action = AVZ_ACTION_NONE;
8612 
8613 	/* Create ZAPs for vdevs that don't have them. */
8614 	vdev_construct_zaps(spa->spa_root_vdev, tx);
8615 
8616 	config = spa_config_generate(spa, spa->spa_root_vdev,
8617 	    dmu_tx_get_txg(tx), B_FALSE);
8618 
8619 	/*
8620 	 * If we're upgrading the spa version then make sure that
8621 	 * the config object gets updated with the correct version.
8622 	 */
8623 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8624 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8625 		    spa->spa_uberblock.ub_version);
8626 
8627 	spa_config_exit(spa, SCL_STATE, FTAG);
8628 
8629 	nvlist_free(spa->spa_config_syncing);
8630 	spa->spa_config_syncing = config;
8631 
8632 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8633 }
8634 
8635 static void
8636 spa_sync_version(void *arg, dmu_tx_t *tx)
8637 {
8638 	uint64_t *versionp = arg;
8639 	uint64_t version = *versionp;
8640 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8641 
8642 	/*
8643 	 * Setting the version is special cased when first creating the pool.
8644 	 */
8645 	ASSERT(tx->tx_txg != TXG_INITIAL);
8646 
8647 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8648 	ASSERT(version >= spa_version(spa));
8649 
8650 	spa->spa_uberblock.ub_version = version;
8651 	vdev_config_dirty(spa->spa_root_vdev);
8652 	spa_history_log_internal(spa, "set", tx, "version=%lld",
8653 	    (longlong_t)version);
8654 }
8655 
8656 /*
8657  * Set zpool properties.
8658  */
8659 static void
8660 spa_sync_props(void *arg, dmu_tx_t *tx)
8661 {
8662 	nvlist_t *nvp = arg;
8663 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8664 	objset_t *mos = spa->spa_meta_objset;
8665 	nvpair_t *elem = NULL;
8666 
8667 	mutex_enter(&spa->spa_props_lock);
8668 
8669 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
8670 		uint64_t intval;
8671 		char *strval, *fname;
8672 		zpool_prop_t prop;
8673 		const char *propname;
8674 		zprop_type_t proptype;
8675 		spa_feature_t fid;
8676 
8677 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
8678 		case ZPOOL_PROP_INVAL:
8679 			/*
8680 			 * We checked this earlier in spa_prop_validate().
8681 			 */
8682 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
8683 
8684 			fname = strchr(nvpair_name(elem), '@') + 1;
8685 			VERIFY0(zfeature_lookup_name(fname, &fid));
8686 
8687 			spa_feature_enable(spa, fid, tx);
8688 			spa_history_log_internal(spa, "set", tx,
8689 			    "%s=enabled", nvpair_name(elem));
8690 			break;
8691 
8692 		case ZPOOL_PROP_VERSION:
8693 			intval = fnvpair_value_uint64(elem);
8694 			/*
8695 			 * The version is synced separately before other
8696 			 * properties and should be correct by now.
8697 			 */
8698 			ASSERT3U(spa_version(spa), >=, intval);
8699 			break;
8700 
8701 		case ZPOOL_PROP_ALTROOT:
8702 			/*
8703 			 * 'altroot' is a non-persistent property. It should
8704 			 * have been set temporarily at creation or import time.
8705 			 */
8706 			ASSERT(spa->spa_root != NULL);
8707 			break;
8708 
8709 		case ZPOOL_PROP_READONLY:
8710 		case ZPOOL_PROP_CACHEFILE:
8711 			/*
8712 			 * 'readonly' and 'cachefile' are also non-persistent
8713 			 * properties.
8714 			 */
8715 			break;
8716 		case ZPOOL_PROP_COMMENT:
8717 			strval = fnvpair_value_string(elem);
8718 			if (spa->spa_comment != NULL)
8719 				spa_strfree(spa->spa_comment);
8720 			spa->spa_comment = spa_strdup(strval);
8721 			/*
8722 			 * We need to dirty the configuration on all the vdevs
8723 			 * so that their labels get updated.  We also need to
8724 			 * update the cache file to keep it in sync with the
8725 			 * MOS version. It's unnecessary to do this for pool
8726 			 * creation since the vdev's configuration has already
8727 			 * been dirtied.
8728 			 */
8729 			if (tx->tx_txg != TXG_INITIAL) {
8730 				vdev_config_dirty(spa->spa_root_vdev);
8731 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8732 			}
8733 			spa_history_log_internal(spa, "set", tx,
8734 			    "%s=%s", nvpair_name(elem), strval);
8735 			break;
8736 		case ZPOOL_PROP_COMPATIBILITY:
8737 			strval = fnvpair_value_string(elem);
8738 			if (spa->spa_compatibility != NULL)
8739 				spa_strfree(spa->spa_compatibility);
8740 			spa->spa_compatibility = spa_strdup(strval);
8741 			/*
8742 			 * Dirty the configuration on vdevs as above.
8743 			 */
8744 			if (tx->tx_txg != TXG_INITIAL) {
8745 				vdev_config_dirty(spa->spa_root_vdev);
8746 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8747 			}
8748 
8749 			spa_history_log_internal(spa, "set", tx,
8750 			    "%s=%s", nvpair_name(elem), strval);
8751 			break;
8752 
8753 		default:
8754 			/*
8755 			 * Set pool property values in the poolprops mos object.
8756 			 */
8757 			if (spa->spa_pool_props_object == 0) {
8758 				spa->spa_pool_props_object =
8759 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
8760 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8761 				    tx);
8762 			}
8763 
8764 			/* normalize the property name */
8765 			propname = zpool_prop_to_name(prop);
8766 			proptype = zpool_prop_get_type(prop);
8767 
8768 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
8769 				ASSERT(proptype == PROP_TYPE_STRING);
8770 				strval = fnvpair_value_string(elem);
8771 				VERIFY0(zap_update(mos,
8772 				    spa->spa_pool_props_object, propname,
8773 				    1, strlen(strval) + 1, strval, tx));
8774 				spa_history_log_internal(spa, "set", tx,
8775 				    "%s=%s", nvpair_name(elem), strval);
8776 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8777 				intval = fnvpair_value_uint64(elem);
8778 
8779 				if (proptype == PROP_TYPE_INDEX) {
8780 					const char *unused;
8781 					VERIFY0(zpool_prop_index_to_string(
8782 					    prop, intval, &unused));
8783 				}
8784 				VERIFY0(zap_update(mos,
8785 				    spa->spa_pool_props_object, propname,
8786 				    8, 1, &intval, tx));
8787 				spa_history_log_internal(spa, "set", tx,
8788 				    "%s=%lld", nvpair_name(elem),
8789 				    (longlong_t)intval);
8790 			} else {
8791 				ASSERT(0); /* not allowed */
8792 			}
8793 
8794 			switch (prop) {
8795 			case ZPOOL_PROP_DELEGATION:
8796 				spa->spa_delegation = intval;
8797 				break;
8798 			case ZPOOL_PROP_BOOTFS:
8799 				spa->spa_bootfs = intval;
8800 				break;
8801 			case ZPOOL_PROP_FAILUREMODE:
8802 				spa->spa_failmode = intval;
8803 				break;
8804 			case ZPOOL_PROP_AUTOTRIM:
8805 				spa->spa_autotrim = intval;
8806 				spa_async_request(spa,
8807 				    SPA_ASYNC_AUTOTRIM_RESTART);
8808 				break;
8809 			case ZPOOL_PROP_AUTOEXPAND:
8810 				spa->spa_autoexpand = intval;
8811 				if (tx->tx_txg != TXG_INITIAL)
8812 					spa_async_request(spa,
8813 					    SPA_ASYNC_AUTOEXPAND);
8814 				break;
8815 			case ZPOOL_PROP_MULTIHOST:
8816 				spa->spa_multihost = intval;
8817 				break;
8818 			default:
8819 				break;
8820 			}
8821 		}
8822 
8823 	}
8824 
8825 	mutex_exit(&spa->spa_props_lock);
8826 }
8827 
8828 /*
8829  * Perform one-time upgrade on-disk changes.  spa_version() does not
8830  * reflect the new version this txg, so there must be no changes this
8831  * txg to anything that the upgrade code depends on after it executes.
8832  * Therefore this must be called after dsl_pool_sync() does the sync
8833  * tasks.
8834  */
8835 static void
8836 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8837 {
8838 	if (spa_sync_pass(spa) != 1)
8839 		return;
8840 
8841 	dsl_pool_t *dp = spa->spa_dsl_pool;
8842 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8843 
8844 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8845 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8846 		dsl_pool_create_origin(dp, tx);
8847 
8848 		/* Keeping the origin open increases spa_minref */
8849 		spa->spa_minref += 3;
8850 	}
8851 
8852 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8853 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8854 		dsl_pool_upgrade_clones(dp, tx);
8855 	}
8856 
8857 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8858 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8859 		dsl_pool_upgrade_dir_clones(dp, tx);
8860 
8861 		/* Keeping the freedir open increases spa_minref */
8862 		spa->spa_minref += 3;
8863 	}
8864 
8865 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8866 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8867 		spa_feature_create_zap_objects(spa, tx);
8868 	}
8869 
8870 	/*
8871 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8872 	 * when possibility to use lz4 compression for metadata was added
8873 	 * Old pools that have this feature enabled must be upgraded to have
8874 	 * this feature active
8875 	 */
8876 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8877 		boolean_t lz4_en = spa_feature_is_enabled(spa,
8878 		    SPA_FEATURE_LZ4_COMPRESS);
8879 		boolean_t lz4_ac = spa_feature_is_active(spa,
8880 		    SPA_FEATURE_LZ4_COMPRESS);
8881 
8882 		if (lz4_en && !lz4_ac)
8883 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
8884 	}
8885 
8886 	/*
8887 	 * If we haven't written the salt, do so now.  Note that the
8888 	 * feature may not be activated yet, but that's fine since
8889 	 * the presence of this ZAP entry is backwards compatible.
8890 	 */
8891 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8892 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
8893 		VERIFY0(zap_add(spa->spa_meta_objset,
8894 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
8895 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
8896 		    spa->spa_cksum_salt.zcs_bytes, tx));
8897 	}
8898 
8899 	rrw_exit(&dp->dp_config_rwlock, FTAG);
8900 }
8901 
8902 static void
8903 vdev_indirect_state_sync_verify(vdev_t *vd)
8904 {
8905 	vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
8906 	vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
8907 
8908 	if (vd->vdev_ops == &vdev_indirect_ops) {
8909 		ASSERT(vim != NULL);
8910 		ASSERT(vib != NULL);
8911 	}
8912 
8913 	uint64_t obsolete_sm_object = 0;
8914 	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
8915 	if (obsolete_sm_object != 0) {
8916 		ASSERT(vd->vdev_obsolete_sm != NULL);
8917 		ASSERT(vd->vdev_removing ||
8918 		    vd->vdev_ops == &vdev_indirect_ops);
8919 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
8920 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
8921 		ASSERT3U(obsolete_sm_object, ==,
8922 		    space_map_object(vd->vdev_obsolete_sm));
8923 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
8924 		    space_map_allocated(vd->vdev_obsolete_sm));
8925 	}
8926 	ASSERT(vd->vdev_obsolete_segments != NULL);
8927 
8928 	/*
8929 	 * Since frees / remaps to an indirect vdev can only
8930 	 * happen in syncing context, the obsolete segments
8931 	 * tree must be empty when we start syncing.
8932 	 */
8933 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
8934 }
8935 
8936 /*
8937  * Set the top-level vdev's max queue depth. Evaluate each top-level's
8938  * async write queue depth in case it changed. The max queue depth will
8939  * not change in the middle of syncing out this txg.
8940  */
8941 static void
8942 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
8943 {
8944 	ASSERT(spa_writeable(spa));
8945 
8946 	vdev_t *rvd = spa->spa_root_vdev;
8947 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
8948 	    zfs_vdev_queue_depth_pct / 100;
8949 	metaslab_class_t *normal = spa_normal_class(spa);
8950 	metaslab_class_t *special = spa_special_class(spa);
8951 	metaslab_class_t *dedup = spa_dedup_class(spa);
8952 
8953 	uint64_t slots_per_allocator = 0;
8954 	for (int c = 0; c < rvd->vdev_children; c++) {
8955 		vdev_t *tvd = rvd->vdev_child[c];
8956 
8957 		metaslab_group_t *mg = tvd->vdev_mg;
8958 		if (mg == NULL || !metaslab_group_initialized(mg))
8959 			continue;
8960 
8961 		metaslab_class_t *mc = mg->mg_class;
8962 		if (mc != normal && mc != special && mc != dedup)
8963 			continue;
8964 
8965 		/*
8966 		 * It is safe to do a lock-free check here because only async
8967 		 * allocations look at mg_max_alloc_queue_depth, and async
8968 		 * allocations all happen from spa_sync().
8969 		 */
8970 		for (int i = 0; i < mg->mg_allocators; i++) {
8971 			ASSERT0(zfs_refcount_count(
8972 			    &(mg->mg_allocator[i].mga_alloc_queue_depth)));
8973 		}
8974 		mg->mg_max_alloc_queue_depth = max_queue_depth;
8975 
8976 		for (int i = 0; i < mg->mg_allocators; i++) {
8977 			mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
8978 			    zfs_vdev_def_queue_depth;
8979 		}
8980 		slots_per_allocator += zfs_vdev_def_queue_depth;
8981 	}
8982 
8983 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8984 		ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
8985 		    mca_alloc_slots));
8986 		ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
8987 		    mca_alloc_slots));
8988 		ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
8989 		    mca_alloc_slots));
8990 		normal->mc_allocator[i].mca_alloc_max_slots =
8991 		    slots_per_allocator;
8992 		special->mc_allocator[i].mca_alloc_max_slots =
8993 		    slots_per_allocator;
8994 		dedup->mc_allocator[i].mca_alloc_max_slots =
8995 		    slots_per_allocator;
8996 	}
8997 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8998 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8999 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9000 }
9001 
9002 static void
9003 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9004 {
9005 	ASSERT(spa_writeable(spa));
9006 
9007 	vdev_t *rvd = spa->spa_root_vdev;
9008 	for (int c = 0; c < rvd->vdev_children; c++) {
9009 		vdev_t *vd = rvd->vdev_child[c];
9010 		vdev_indirect_state_sync_verify(vd);
9011 
9012 		if (vdev_indirect_should_condense(vd)) {
9013 			spa_condense_indirect_start_sync(vd, tx);
9014 			break;
9015 		}
9016 	}
9017 }
9018 
9019 static void
9020 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9021 {
9022 	objset_t *mos = spa->spa_meta_objset;
9023 	dsl_pool_t *dp = spa->spa_dsl_pool;
9024 	uint64_t txg = tx->tx_txg;
9025 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9026 
9027 	do {
9028 		int pass = ++spa->spa_sync_pass;
9029 
9030 		spa_sync_config_object(spa, tx);
9031 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9032 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9033 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9034 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9035 		spa_errlog_sync(spa, txg);
9036 		dsl_pool_sync(dp, txg);
9037 
9038 		if (pass < zfs_sync_pass_deferred_free ||
9039 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9040 			/*
9041 			 * If the log space map feature is active we don't
9042 			 * care about deferred frees and the deferred bpobj
9043 			 * as the log space map should effectively have the
9044 			 * same results (i.e. appending only to one object).
9045 			 */
9046 			spa_sync_frees(spa, free_bpl, tx);
9047 		} else {
9048 			/*
9049 			 * We can not defer frees in pass 1, because
9050 			 * we sync the deferred frees later in pass 1.
9051 			 */
9052 			ASSERT3U(pass, >, 1);
9053 			bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9054 			    &spa->spa_deferred_bpobj, tx);
9055 		}
9056 
9057 		ddt_sync(spa, txg);
9058 		dsl_scan_sync(dp, tx);
9059 		svr_sync(spa, tx);
9060 		spa_sync_upgrades(spa, tx);
9061 
9062 		spa_flush_metaslabs(spa, tx);
9063 
9064 		vdev_t *vd = NULL;
9065 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9066 		    != NULL)
9067 			vdev_sync(vd, txg);
9068 
9069 		/*
9070 		 * Note: We need to check if the MOS is dirty because we could
9071 		 * have marked the MOS dirty without updating the uberblock
9072 		 * (e.g. if we have sync tasks but no dirty user data). We need
9073 		 * to check the uberblock's rootbp because it is updated if we
9074 		 * have synced out dirty data (though in this case the MOS will
9075 		 * most likely also be dirty due to second order effects, we
9076 		 * don't want to rely on that here).
9077 		 */
9078 		if (pass == 1 &&
9079 		    spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
9080 		    !dmu_objset_is_dirty(mos, txg)) {
9081 			/*
9082 			 * Nothing changed on the first pass, therefore this
9083 			 * TXG is a no-op. Avoid syncing deferred frees, so
9084 			 * that we can keep this TXG as a no-op.
9085 			 */
9086 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9087 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9088 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9089 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9090 			break;
9091 		}
9092 
9093 		spa_sync_deferred_frees(spa, tx);
9094 	} while (dmu_objset_is_dirty(mos, txg));
9095 }
9096 
9097 /*
9098  * Rewrite the vdev configuration (which includes the uberblock) to
9099  * commit the transaction group.
9100  *
9101  * If there are no dirty vdevs, we sync the uberblock to a few random
9102  * top-level vdevs that are known to be visible in the config cache
9103  * (see spa_vdev_add() for a complete description). If there *are* dirty
9104  * vdevs, sync the uberblock to all vdevs.
9105  */
9106 static void
9107 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
9108 {
9109 	vdev_t *rvd = spa->spa_root_vdev;
9110 	uint64_t txg = tx->tx_txg;
9111 
9112 	for (;;) {
9113 		int error = 0;
9114 
9115 		/*
9116 		 * We hold SCL_STATE to prevent vdev open/close/etc.
9117 		 * while we're attempting to write the vdev labels.
9118 		 */
9119 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9120 
9121 		if (list_is_empty(&spa->spa_config_dirty_list)) {
9122 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
9123 			int svdcount = 0;
9124 			int children = rvd->vdev_children;
9125 			int c0 = random_in_range(children);
9126 
9127 			for (int c = 0; c < children; c++) {
9128 				vdev_t *vd =
9129 				    rvd->vdev_child[(c0 + c) % children];
9130 
9131 				/* Stop when revisiting the first vdev */
9132 				if (c > 0 && svd[0] == vd)
9133 					break;
9134 
9135 				if (vd->vdev_ms_array == 0 ||
9136 				    vd->vdev_islog ||
9137 				    !vdev_is_concrete(vd))
9138 					continue;
9139 
9140 				svd[svdcount++] = vd;
9141 				if (svdcount == SPA_SYNC_MIN_VDEVS)
9142 					break;
9143 			}
9144 			error = vdev_config_sync(svd, svdcount, txg);
9145 		} else {
9146 			error = vdev_config_sync(rvd->vdev_child,
9147 			    rvd->vdev_children, txg);
9148 		}
9149 
9150 		if (error == 0)
9151 			spa->spa_last_synced_guid = rvd->vdev_guid;
9152 
9153 		spa_config_exit(spa, SCL_STATE, FTAG);
9154 
9155 		if (error == 0)
9156 			break;
9157 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9158 		zio_resume_wait(spa);
9159 	}
9160 }
9161 
9162 /*
9163  * Sync the specified transaction group.  New blocks may be dirtied as
9164  * part of the process, so we iterate until it converges.
9165  */
9166 void
9167 spa_sync(spa_t *spa, uint64_t txg)
9168 {
9169 	vdev_t *vd = NULL;
9170 
9171 	VERIFY(spa_writeable(spa));
9172 
9173 	/*
9174 	 * Wait for i/os issued in open context that need to complete
9175 	 * before this txg syncs.
9176 	 */
9177 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
9178 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
9179 	    ZIO_FLAG_CANFAIL);
9180 
9181 	/*
9182 	 * Lock out configuration changes.
9183 	 */
9184 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9185 
9186 	spa->spa_syncing_txg = txg;
9187 	spa->spa_sync_pass = 0;
9188 
9189 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9190 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
9191 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9192 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
9193 	}
9194 
9195 	/*
9196 	 * If there are any pending vdev state changes, convert them
9197 	 * into config changes that go out with this transaction group.
9198 	 */
9199 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9200 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
9201 		/*
9202 		 * We need the write lock here because, for aux vdevs,
9203 		 * calling vdev_config_dirty() modifies sav_config.
9204 		 * This is ugly and will become unnecessary when we
9205 		 * eliminate the aux vdev wart by integrating all vdevs
9206 		 * into the root vdev tree.
9207 		 */
9208 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9209 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9210 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9211 			vdev_state_clean(vd);
9212 			vdev_config_dirty(vd);
9213 		}
9214 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9215 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9216 	}
9217 	spa_config_exit(spa, SCL_STATE, FTAG);
9218 
9219 	dsl_pool_t *dp = spa->spa_dsl_pool;
9220 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9221 
9222 	spa->spa_sync_starttime = gethrtime();
9223 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9224 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9225 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9226 	    NSEC_TO_TICK(spa->spa_deadman_synctime));
9227 
9228 	/*
9229 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
9230 	 * set spa_deflate if we have no raid-z vdevs.
9231 	 */
9232 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
9233 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
9234 		vdev_t *rvd = spa->spa_root_vdev;
9235 
9236 		int i;
9237 		for (i = 0; i < rvd->vdev_children; i++) {
9238 			vd = rvd->vdev_child[i];
9239 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
9240 				break;
9241 		}
9242 		if (i == rvd->vdev_children) {
9243 			spa->spa_deflate = TRUE;
9244 			VERIFY0(zap_add(spa->spa_meta_objset,
9245 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
9246 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
9247 		}
9248 	}
9249 
9250 	spa_sync_adjust_vdev_max_queue_depth(spa);
9251 
9252 	spa_sync_condense_indirect(spa, tx);
9253 
9254 	spa_sync_iterate_to_convergence(spa, tx);
9255 
9256 #ifdef ZFS_DEBUG
9257 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
9258 	/*
9259 	 * Make sure that the number of ZAPs for all the vdevs matches
9260 	 * the number of ZAPs in the per-vdev ZAP list. This only gets
9261 	 * called if the config is dirty; otherwise there may be
9262 	 * outstanding AVZ operations that weren't completed in
9263 	 * spa_sync_config_object.
9264 	 */
9265 		uint64_t all_vdev_zap_entry_count;
9266 		ASSERT0(zap_count(spa->spa_meta_objset,
9267 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
9268 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
9269 		    all_vdev_zap_entry_count);
9270 	}
9271 #endif
9272 
9273 	if (spa->spa_vdev_removal != NULL) {
9274 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
9275 	}
9276 
9277 	spa_sync_rewrite_vdev_config(spa, tx);
9278 	dmu_tx_commit(tx);
9279 
9280 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9281 	spa->spa_deadman_tqid = 0;
9282 
9283 	/*
9284 	 * Clear the dirty config list.
9285 	 */
9286 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
9287 		vdev_config_clean(vd);
9288 
9289 	/*
9290 	 * Now that the new config has synced transactionally,
9291 	 * let it become visible to the config cache.
9292 	 */
9293 	if (spa->spa_config_syncing != NULL) {
9294 		spa_config_set(spa, spa->spa_config_syncing);
9295 		spa->spa_config_txg = txg;
9296 		spa->spa_config_syncing = NULL;
9297 	}
9298 
9299 	dsl_pool_sync_done(dp, txg);
9300 
9301 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9302 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
9303 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9304 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
9305 	}
9306 
9307 	/*
9308 	 * Update usable space statistics.
9309 	 */
9310 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
9311 	    != NULL)
9312 		vdev_sync_done(vd, txg);
9313 
9314 	metaslab_class_evict_old(spa->spa_normal_class, txg);
9315 	metaslab_class_evict_old(spa->spa_log_class, txg);
9316 
9317 	spa_sync_close_syncing_log_sm(spa);
9318 
9319 	spa_update_dspace(spa);
9320 
9321 	/*
9322 	 * It had better be the case that we didn't dirty anything
9323 	 * since vdev_config_sync().
9324 	 */
9325 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9326 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9327 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
9328 
9329 	while (zfs_pause_spa_sync)
9330 		delay(1);
9331 
9332 	spa->spa_sync_pass = 0;
9333 
9334 	/*
9335 	 * Update the last synced uberblock here. We want to do this at
9336 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
9337 	 * will be guaranteed that all the processing associated with
9338 	 * that txg has been completed.
9339 	 */
9340 	spa->spa_ubsync = spa->spa_uberblock;
9341 	spa_config_exit(spa, SCL_CONFIG, FTAG);
9342 
9343 	spa_handle_ignored_writes(spa);
9344 
9345 	/*
9346 	 * If any async tasks have been requested, kick them off.
9347 	 */
9348 	spa_async_dispatch(spa);
9349 }
9350 
9351 /*
9352  * Sync all pools.  We don't want to hold the namespace lock across these
9353  * operations, so we take a reference on the spa_t and drop the lock during the
9354  * sync.
9355  */
9356 void
9357 spa_sync_allpools(void)
9358 {
9359 	spa_t *spa = NULL;
9360 	mutex_enter(&spa_namespace_lock);
9361 	while ((spa = spa_next(spa)) != NULL) {
9362 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
9363 		    !spa_writeable(spa) || spa_suspended(spa))
9364 			continue;
9365 		spa_open_ref(spa, FTAG);
9366 		mutex_exit(&spa_namespace_lock);
9367 		txg_wait_synced(spa_get_dsl(spa), 0);
9368 		mutex_enter(&spa_namespace_lock);
9369 		spa_close(spa, FTAG);
9370 	}
9371 	mutex_exit(&spa_namespace_lock);
9372 }
9373 
9374 /*
9375  * ==========================================================================
9376  * Miscellaneous routines
9377  * ==========================================================================
9378  */
9379 
9380 /*
9381  * Remove all pools in the system.
9382  */
9383 void
9384 spa_evict_all(void)
9385 {
9386 	spa_t *spa;
9387 
9388 	/*
9389 	 * Remove all cached state.  All pools should be closed now,
9390 	 * so every spa in the AVL tree should be unreferenced.
9391 	 */
9392 	mutex_enter(&spa_namespace_lock);
9393 	while ((spa = spa_next(NULL)) != NULL) {
9394 		/*
9395 		 * Stop async tasks.  The async thread may need to detach
9396 		 * a device that's been replaced, which requires grabbing
9397 		 * spa_namespace_lock, so we must drop it here.
9398 		 */
9399 		spa_open_ref(spa, FTAG);
9400 		mutex_exit(&spa_namespace_lock);
9401 		spa_async_suspend(spa);
9402 		mutex_enter(&spa_namespace_lock);
9403 		spa_close(spa, FTAG);
9404 
9405 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
9406 			spa_unload(spa);
9407 			spa_deactivate(spa);
9408 		}
9409 		spa_remove(spa);
9410 	}
9411 	mutex_exit(&spa_namespace_lock);
9412 }
9413 
9414 vdev_t *
9415 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
9416 {
9417 	vdev_t *vd;
9418 	int i;
9419 
9420 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
9421 		return (vd);
9422 
9423 	if (aux) {
9424 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
9425 			vd = spa->spa_l2cache.sav_vdevs[i];
9426 			if (vd->vdev_guid == guid)
9427 				return (vd);
9428 		}
9429 
9430 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
9431 			vd = spa->spa_spares.sav_vdevs[i];
9432 			if (vd->vdev_guid == guid)
9433 				return (vd);
9434 		}
9435 	}
9436 
9437 	return (NULL);
9438 }
9439 
9440 void
9441 spa_upgrade(spa_t *spa, uint64_t version)
9442 {
9443 	ASSERT(spa_writeable(spa));
9444 
9445 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9446 
9447 	/*
9448 	 * This should only be called for a non-faulted pool, and since a
9449 	 * future version would result in an unopenable pool, this shouldn't be
9450 	 * possible.
9451 	 */
9452 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
9453 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
9454 
9455 	spa->spa_uberblock.ub_version = version;
9456 	vdev_config_dirty(spa->spa_root_vdev);
9457 
9458 	spa_config_exit(spa, SCL_ALL, FTAG);
9459 
9460 	txg_wait_synced(spa_get_dsl(spa), 0);
9461 }
9462 
9463 static boolean_t
9464 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
9465 {
9466 	int i;
9467 	uint64_t vdev_guid;
9468 
9469 	for (i = 0; i < sav->sav_count; i++)
9470 		if (sav->sav_vdevs[i]->vdev_guid == guid)
9471 			return (B_TRUE);
9472 
9473 	for (i = 0; i < sav->sav_npending; i++) {
9474 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
9475 		    &vdev_guid) == 0 && vdev_guid == guid)
9476 			return (B_TRUE);
9477 	}
9478 
9479 	return (B_FALSE);
9480 }
9481 
9482 boolean_t
9483 spa_has_l2cache(spa_t *spa, uint64_t guid)
9484 {
9485 	return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
9486 }
9487 
9488 boolean_t
9489 spa_has_spare(spa_t *spa, uint64_t guid)
9490 {
9491 	return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
9492 }
9493 
9494 /*
9495  * Check if a pool has an active shared spare device.
9496  * Note: reference count of an active spare is 2, as a spare and as a replace
9497  */
9498 static boolean_t
9499 spa_has_active_shared_spare(spa_t *spa)
9500 {
9501 	int i, refcnt;
9502 	uint64_t pool;
9503 	spa_aux_vdev_t *sav = &spa->spa_spares;
9504 
9505 	for (i = 0; i < sav->sav_count; i++) {
9506 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
9507 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
9508 		    refcnt > 2)
9509 			return (B_TRUE);
9510 	}
9511 
9512 	return (B_FALSE);
9513 }
9514 
9515 uint64_t
9516 spa_total_metaslabs(spa_t *spa)
9517 {
9518 	vdev_t *rvd = spa->spa_root_vdev;
9519 
9520 	uint64_t m = 0;
9521 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
9522 		vdev_t *vd = rvd->vdev_child[c];
9523 		if (!vdev_is_concrete(vd))
9524 			continue;
9525 		m += vd->vdev_ms_count;
9526 	}
9527 	return (m);
9528 }
9529 
9530 /*
9531  * Notify any waiting threads that some activity has switched from being in-
9532  * progress to not-in-progress so that the thread can wake up and determine
9533  * whether it is finished waiting.
9534  */
9535 void
9536 spa_notify_waiters(spa_t *spa)
9537 {
9538 	/*
9539 	 * Acquiring spa_activities_lock here prevents the cv_broadcast from
9540 	 * happening between the waiting thread's check and cv_wait.
9541 	 */
9542 	mutex_enter(&spa->spa_activities_lock);
9543 	cv_broadcast(&spa->spa_activities_cv);
9544 	mutex_exit(&spa->spa_activities_lock);
9545 }
9546 
9547 /*
9548  * Notify any waiting threads that the pool is exporting, and then block until
9549  * they are finished using the spa_t.
9550  */
9551 void
9552 spa_wake_waiters(spa_t *spa)
9553 {
9554 	mutex_enter(&spa->spa_activities_lock);
9555 	spa->spa_waiters_cancel = B_TRUE;
9556 	cv_broadcast(&spa->spa_activities_cv);
9557 	while (spa->spa_waiters != 0)
9558 		cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
9559 	spa->spa_waiters_cancel = B_FALSE;
9560 	mutex_exit(&spa->spa_activities_lock);
9561 }
9562 
9563 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
9564 static boolean_t
9565 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
9566 {
9567 	spa_t *spa = vd->vdev_spa;
9568 
9569 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
9570 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9571 	ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
9572 	    activity == ZPOOL_WAIT_TRIM);
9573 
9574 	kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
9575 	    &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
9576 
9577 	mutex_exit(&spa->spa_activities_lock);
9578 	mutex_enter(lock);
9579 	mutex_enter(&spa->spa_activities_lock);
9580 
9581 	boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
9582 	    (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
9583 	    (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
9584 	mutex_exit(lock);
9585 
9586 	if (in_progress)
9587 		return (B_TRUE);
9588 
9589 	for (int i = 0; i < vd->vdev_children; i++) {
9590 		if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
9591 		    activity))
9592 			return (B_TRUE);
9593 	}
9594 
9595 	return (B_FALSE);
9596 }
9597 
9598 /*
9599  * If use_guid is true, this checks whether the vdev specified by guid is
9600  * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
9601  * is being initialized/trimmed. The caller must hold the config lock and
9602  * spa_activities_lock.
9603  */
9604 static int
9605 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
9606     zpool_wait_activity_t activity, boolean_t *in_progress)
9607 {
9608 	mutex_exit(&spa->spa_activities_lock);
9609 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9610 	mutex_enter(&spa->spa_activities_lock);
9611 
9612 	vdev_t *vd;
9613 	if (use_guid) {
9614 		vd = spa_lookup_by_guid(spa, guid, B_FALSE);
9615 		if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
9616 			spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9617 			return (EINVAL);
9618 		}
9619 	} else {
9620 		vd = spa->spa_root_vdev;
9621 	}
9622 
9623 	*in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
9624 
9625 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9626 	return (0);
9627 }
9628 
9629 /*
9630  * Locking for waiting threads
9631  * ---------------------------
9632  *
9633  * Waiting threads need a way to check whether a given activity is in progress,
9634  * and then, if it is, wait for it to complete. Each activity will have some
9635  * in-memory representation of the relevant on-disk state which can be used to
9636  * determine whether or not the activity is in progress. The in-memory state and
9637  * the locking used to protect it will be different for each activity, and may
9638  * not be suitable for use with a cvar (e.g., some state is protected by the
9639  * config lock). To allow waiting threads to wait without any races, another
9640  * lock, spa_activities_lock, is used.
9641  *
9642  * When the state is checked, both the activity-specific lock (if there is one)
9643  * and spa_activities_lock are held. In some cases, the activity-specific lock
9644  * is acquired explicitly (e.g. the config lock). In others, the locking is
9645  * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
9646  * thread releases the activity-specific lock and, if the activity is in
9647  * progress, then cv_waits using spa_activities_lock.
9648  *
9649  * The waiting thread is woken when another thread, one completing some
9650  * activity, updates the state of the activity and then calls
9651  * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
9652  * needs to hold its activity-specific lock when updating the state, and this
9653  * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
9654  *
9655  * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
9656  * and because it is held when the waiting thread checks the state of the
9657  * activity, it can never be the case that the completing thread both updates
9658  * the activity state and cv_broadcasts in between the waiting thread's check
9659  * and cv_wait. Thus, a waiting thread can never miss a wakeup.
9660  *
9661  * In order to prevent deadlock, when the waiting thread does its check, in some
9662  * cases it will temporarily drop spa_activities_lock in order to acquire the
9663  * activity-specific lock. The order in which spa_activities_lock and the
9664  * activity specific lock are acquired in the waiting thread is determined by
9665  * the order in which they are acquired in the completing thread; if the
9666  * completing thread calls spa_notify_waiters with the activity-specific lock
9667  * held, then the waiting thread must also acquire the activity-specific lock
9668  * first.
9669  */
9670 
9671 static int
9672 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
9673     boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
9674 {
9675 	int error = 0;
9676 
9677 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9678 
9679 	switch (activity) {
9680 	case ZPOOL_WAIT_CKPT_DISCARD:
9681 		*in_progress =
9682 		    (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
9683 		    zap_contains(spa_meta_objset(spa),
9684 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
9685 		    ENOENT);
9686 		break;
9687 	case ZPOOL_WAIT_FREE:
9688 		*in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
9689 		    !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
9690 		    spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
9691 		    spa_livelist_delete_check(spa));
9692 		break;
9693 	case ZPOOL_WAIT_INITIALIZE:
9694 	case ZPOOL_WAIT_TRIM:
9695 		error = spa_vdev_activity_in_progress(spa, use_tag, tag,
9696 		    activity, in_progress);
9697 		break;
9698 	case ZPOOL_WAIT_REPLACE:
9699 		mutex_exit(&spa->spa_activities_lock);
9700 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9701 		mutex_enter(&spa->spa_activities_lock);
9702 
9703 		*in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
9704 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9705 		break;
9706 	case ZPOOL_WAIT_REMOVE:
9707 		*in_progress = (spa->spa_removing_phys.sr_state ==
9708 		    DSS_SCANNING);
9709 		break;
9710 	case ZPOOL_WAIT_RESILVER:
9711 		if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev)))
9712 			break;
9713 		fallthrough;
9714 	case ZPOOL_WAIT_SCRUB:
9715 	{
9716 		boolean_t scanning, paused, is_scrub;
9717 		dsl_scan_t *scn =  spa->spa_dsl_pool->dp_scan;
9718 
9719 		is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
9720 		scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
9721 		paused = dsl_scan_is_paused_scrub(scn);
9722 		*in_progress = (scanning && !paused &&
9723 		    is_scrub == (activity == ZPOOL_WAIT_SCRUB));
9724 		break;
9725 	}
9726 	default:
9727 		panic("unrecognized value for activity %d", activity);
9728 	}
9729 
9730 	return (error);
9731 }
9732 
9733 static int
9734 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
9735     boolean_t use_tag, uint64_t tag, boolean_t *waited)
9736 {
9737 	/*
9738 	 * The tag is used to distinguish between instances of an activity.
9739 	 * 'initialize' and 'trim' are the only activities that we use this for.
9740 	 * The other activities can only have a single instance in progress in a
9741 	 * pool at one time, making the tag unnecessary.
9742 	 *
9743 	 * There can be multiple devices being replaced at once, but since they
9744 	 * all finish once resilvering finishes, we don't bother keeping track
9745 	 * of them individually, we just wait for them all to finish.
9746 	 */
9747 	if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
9748 	    activity != ZPOOL_WAIT_TRIM)
9749 		return (EINVAL);
9750 
9751 	if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
9752 		return (EINVAL);
9753 
9754 	spa_t *spa;
9755 	int error = spa_open(pool, &spa, FTAG);
9756 	if (error != 0)
9757 		return (error);
9758 
9759 	/*
9760 	 * Increment the spa's waiter count so that we can call spa_close and
9761 	 * still ensure that the spa_t doesn't get freed before this thread is
9762 	 * finished with it when the pool is exported. We want to call spa_close
9763 	 * before we start waiting because otherwise the additional ref would
9764 	 * prevent the pool from being exported or destroyed throughout the
9765 	 * potentially long wait.
9766 	 */
9767 	mutex_enter(&spa->spa_activities_lock);
9768 	spa->spa_waiters++;
9769 	spa_close(spa, FTAG);
9770 
9771 	*waited = B_FALSE;
9772 	for (;;) {
9773 		boolean_t in_progress;
9774 		error = spa_activity_in_progress(spa, activity, use_tag, tag,
9775 		    &in_progress);
9776 
9777 		if (error || !in_progress || spa->spa_waiters_cancel)
9778 			break;
9779 
9780 		*waited = B_TRUE;
9781 
9782 		if (cv_wait_sig(&spa->spa_activities_cv,
9783 		    &spa->spa_activities_lock) == 0) {
9784 			error = EINTR;
9785 			break;
9786 		}
9787 	}
9788 
9789 	spa->spa_waiters--;
9790 	cv_signal(&spa->spa_waiters_cv);
9791 	mutex_exit(&spa->spa_activities_lock);
9792 
9793 	return (error);
9794 }
9795 
9796 /*
9797  * Wait for a particular instance of the specified activity to complete, where
9798  * the instance is identified by 'tag'
9799  */
9800 int
9801 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
9802     boolean_t *waited)
9803 {
9804 	return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
9805 }
9806 
9807 /*
9808  * Wait for all instances of the specified activity complete
9809  */
9810 int
9811 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
9812 {
9813 
9814 	return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
9815 }
9816 
9817 sysevent_t *
9818 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9819 {
9820 	sysevent_t *ev = NULL;
9821 #ifdef _KERNEL
9822 	nvlist_t *resource;
9823 
9824 	resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
9825 	if (resource) {
9826 		ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
9827 		ev->resource = resource;
9828 	}
9829 #endif
9830 	return (ev);
9831 }
9832 
9833 void
9834 spa_event_post(sysevent_t *ev)
9835 {
9836 #ifdef _KERNEL
9837 	if (ev) {
9838 		zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
9839 		kmem_free(ev, sizeof (*ev));
9840 	}
9841 #endif
9842 }
9843 
9844 /*
9845  * Post a zevent corresponding to the given sysevent.   The 'name' must be one
9846  * of the event definitions in sys/sysevent/eventdefs.h.  The payload will be
9847  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
9848  * in the userland libzpool, as we don't want consumers to misinterpret ztest
9849  * or zdb as real changes.
9850  */
9851 void
9852 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9853 {
9854 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
9855 }
9856 
9857 /* state manipulation functions */
9858 EXPORT_SYMBOL(spa_open);
9859 EXPORT_SYMBOL(spa_open_rewind);
9860 EXPORT_SYMBOL(spa_get_stats);
9861 EXPORT_SYMBOL(spa_create);
9862 EXPORT_SYMBOL(spa_import);
9863 EXPORT_SYMBOL(spa_tryimport);
9864 EXPORT_SYMBOL(spa_destroy);
9865 EXPORT_SYMBOL(spa_export);
9866 EXPORT_SYMBOL(spa_reset);
9867 EXPORT_SYMBOL(spa_async_request);
9868 EXPORT_SYMBOL(spa_async_suspend);
9869 EXPORT_SYMBOL(spa_async_resume);
9870 EXPORT_SYMBOL(spa_inject_addref);
9871 EXPORT_SYMBOL(spa_inject_delref);
9872 EXPORT_SYMBOL(spa_scan_stat_init);
9873 EXPORT_SYMBOL(spa_scan_get_stats);
9874 
9875 /* device manipulation */
9876 EXPORT_SYMBOL(spa_vdev_add);
9877 EXPORT_SYMBOL(spa_vdev_attach);
9878 EXPORT_SYMBOL(spa_vdev_detach);
9879 EXPORT_SYMBOL(spa_vdev_setpath);
9880 EXPORT_SYMBOL(spa_vdev_setfru);
9881 EXPORT_SYMBOL(spa_vdev_split_mirror);
9882 
9883 /* spare statech is global across all pools) */
9884 EXPORT_SYMBOL(spa_spare_add);
9885 EXPORT_SYMBOL(spa_spare_remove);
9886 EXPORT_SYMBOL(spa_spare_exists);
9887 EXPORT_SYMBOL(spa_spare_activate);
9888 
9889 /* L2ARC statech is global across all pools) */
9890 EXPORT_SYMBOL(spa_l2cache_add);
9891 EXPORT_SYMBOL(spa_l2cache_remove);
9892 EXPORT_SYMBOL(spa_l2cache_exists);
9893 EXPORT_SYMBOL(spa_l2cache_activate);
9894 EXPORT_SYMBOL(spa_l2cache_drop);
9895 
9896 /* scanning */
9897 EXPORT_SYMBOL(spa_scan);
9898 EXPORT_SYMBOL(spa_scan_stop);
9899 
9900 /* spa syncing */
9901 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
9902 EXPORT_SYMBOL(spa_sync_allpools);
9903 
9904 /* properties */
9905 EXPORT_SYMBOL(spa_prop_set);
9906 EXPORT_SYMBOL(spa_prop_get);
9907 EXPORT_SYMBOL(spa_prop_clear_bootfs);
9908 
9909 /* asynchronous event notification */
9910 EXPORT_SYMBOL(spa_event_notify);
9911 
9912 /* BEGIN CSTYLED */
9913 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, INT, ZMOD_RW,
9914 	"log2 fraction of arc that can be used by inflight I/Os when "
9915 	"verifying pool during import");
9916 
9917 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
9918 	"Set to traverse metadata on pool import");
9919 
9920 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
9921 	"Set to traverse data on pool import");
9922 
9923 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
9924 	"Print vdev tree to zfs_dbgmsg during pool import");
9925 
9926 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
9927 	"Percentage of CPUs to run an IO worker thread");
9928 
9929 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD,
9930 	"Number of threads per IO worker taskqueue");
9931 
9932 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, ULONG, ZMOD_RW,
9933 	"Allow importing pool with up to this number of missing top-level "
9934 	"vdevs (in read-only mode)");
9935 
9936 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT, ZMOD_RW,
9937 	"Set the livelist condense zthr to pause");
9938 
9939 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT, ZMOD_RW,
9940 	"Set the livelist condense synctask to pause");
9941 
9942 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel, INT, ZMOD_RW,
9943 	"Whether livelist condensing was canceled in the synctask");
9944 
9945 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel, INT, ZMOD_RW,
9946 	"Whether livelist condensing was canceled in the zthr function");
9947 
9948 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT, ZMOD_RW,
9949 	"Whether extra ALLOC blkptrs were added to a livelist entry while it "
9950 	"was being condensed");
9951 /* END CSTYLED */
9952