xref: /freebsd/sys/contrib/openzfs/module/zfs/spa.c (revision e5551216d8e563043248bc7f3cb1c75b2dbd9791)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2018, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31  * Copyright 2018 Joyent, Inc.
32  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33  * Copyright 2017 Joyent, Inc.
34  * Copyright (c) 2017, Intel Corporation.
35  * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36  */
37 
38 /*
39  * SPA: Storage Pool Allocator
40  *
41  * This file contains all the routines used when modifying on-disk SPA state.
42  * This includes opening, importing, destroying, exporting a pool, and syncing a
43  * pool.
44  */
45 
46 #include <sys/zfs_context.h>
47 #include <sys/fm/fs/zfs.h>
48 #include <sys/spa_impl.h>
49 #include <sys/zio.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/dmu.h>
52 #include <sys/dmu_tx.h>
53 #include <sys/zap.h>
54 #include <sys/zil.h>
55 #include <sys/brt.h>
56 #include <sys/ddt.h>
57 #include <sys/vdev_impl.h>
58 #include <sys/vdev_removal.h>
59 #include <sys/vdev_indirect_mapping.h>
60 #include <sys/vdev_indirect_births.h>
61 #include <sys/vdev_initialize.h>
62 #include <sys/vdev_rebuild.h>
63 #include <sys/vdev_trim.h>
64 #include <sys/vdev_disk.h>
65 #include <sys/vdev_draid.h>
66 #include <sys/metaslab.h>
67 #include <sys/metaslab_impl.h>
68 #include <sys/mmp.h>
69 #include <sys/uberblock_impl.h>
70 #include <sys/txg.h>
71 #include <sys/avl.h>
72 #include <sys/bpobj.h>
73 #include <sys/dmu_traverse.h>
74 #include <sys/dmu_objset.h>
75 #include <sys/unique.h>
76 #include <sys/dsl_pool.h>
77 #include <sys/dsl_dataset.h>
78 #include <sys/dsl_dir.h>
79 #include <sys/dsl_prop.h>
80 #include <sys/dsl_synctask.h>
81 #include <sys/fs/zfs.h>
82 #include <sys/arc.h>
83 #include <sys/callb.h>
84 #include <sys/systeminfo.h>
85 #include <sys/zfs_ioctl.h>
86 #include <sys/dsl_scan.h>
87 #include <sys/zfeature.h>
88 #include <sys/dsl_destroy.h>
89 #include <sys/zvol.h>
90 
91 #ifdef	_KERNEL
92 #include <sys/fm/protocol.h>
93 #include <sys/fm/util.h>
94 #include <sys/callb.h>
95 #include <sys/zone.h>
96 #include <sys/vmsystm.h>
97 #endif	/* _KERNEL */
98 
99 #include "zfs_prop.h"
100 #include "zfs_comutil.h"
101 
102 /*
103  * The interval, in seconds, at which failed configuration cache file writes
104  * should be retried.
105  */
106 int zfs_ccw_retry_interval = 300;
107 
108 typedef enum zti_modes {
109 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
110 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
111 	ZTI_MODE_SCALE,			/* Taskqs scale with CPUs. */
112 	ZTI_MODE_NULL,			/* don't create a taskq */
113 	ZTI_NMODES
114 } zti_modes_t;
115 
116 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
117 #define	ZTI_PCT(n)	{ ZTI_MODE_ONLINE_PERCENT, (n), 1 }
118 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
119 #define	ZTI_SCALE	{ ZTI_MODE_SCALE, 0, 1 }
120 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
121 
122 #define	ZTI_N(n)	ZTI_P(n, 1)
123 #define	ZTI_ONE		ZTI_N(1)
124 
125 typedef struct zio_taskq_info {
126 	zti_modes_t zti_mode;
127 	uint_t zti_value;
128 	uint_t zti_count;
129 } zio_taskq_info_t;
130 
131 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
132 	"iss", "iss_h", "int", "int_h"
133 };
134 
135 /*
136  * This table defines the taskq settings for each ZFS I/O type. When
137  * initializing a pool, we use this table to create an appropriately sized
138  * taskq. Some operations are low volume and therefore have a small, static
139  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
140  * macros. Other operations process a large amount of data; the ZTI_BATCH
141  * macro causes us to create a taskq oriented for throughput. Some operations
142  * are so high frequency and short-lived that the taskq itself can become a
143  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
144  * additional degree of parallelism specified by the number of threads per-
145  * taskq and the number of taskqs; when dispatching an event in this case, the
146  * particular taskq is chosen at random. ZTI_SCALE is similar to ZTI_BATCH,
147  * but with number of taskqs also scaling with number of CPUs.
148  *
149  * The different taskq priorities are to handle the different contexts (issue
150  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
151  * need to be handled with minimum delay.
152  */
153 static const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
154 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
155 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
156 	{ ZTI_N(8),	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* READ */
157 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_SCALE,	ZTI_N(5) }, /* WRITE */
158 	{ ZTI_SCALE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
159 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
160 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
161 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
162 };
163 
164 static void spa_sync_version(void *arg, dmu_tx_t *tx);
165 static void spa_sync_props(void *arg, dmu_tx_t *tx);
166 static boolean_t spa_has_active_shared_spare(spa_t *spa);
167 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
168     const char **ereport);
169 static void spa_vdev_resilver_done(spa_t *spa);
170 
171 static uint_t	zio_taskq_batch_pct = 80;	  /* 1 thread per cpu in pset */
172 static uint_t	zio_taskq_batch_tpq;		  /* threads per taskq */
173 static const boolean_t	zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
174 static const uint_t	zio_taskq_basedc = 80;	  /* base duty cycle */
175 
176 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
177 
178 /*
179  * Report any spa_load_verify errors found, but do not fail spa_load.
180  * This is used by zdb to analyze non-idle pools.
181  */
182 boolean_t	spa_load_verify_dryrun = B_FALSE;
183 
184 /*
185  * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
186  * This is used by zdb for spacemaps verification.
187  */
188 boolean_t	spa_mode_readable_spacemaps = B_FALSE;
189 
190 /*
191  * This (illegal) pool name is used when temporarily importing a spa_t in order
192  * to get the vdev stats associated with the imported devices.
193  */
194 #define	TRYIMPORT_NAME	"$import"
195 
196 /*
197  * For debugging purposes: print out vdev tree during pool import.
198  */
199 static int		spa_load_print_vdev_tree = B_FALSE;
200 
201 /*
202  * A non-zero value for zfs_max_missing_tvds means that we allow importing
203  * pools with missing top-level vdevs. This is strictly intended for advanced
204  * pool recovery cases since missing data is almost inevitable. Pools with
205  * missing devices can only be imported read-only for safety reasons, and their
206  * fail-mode will be automatically set to "continue".
207  *
208  * With 1 missing vdev we should be able to import the pool and mount all
209  * datasets. User data that was not modified after the missing device has been
210  * added should be recoverable. This means that snapshots created prior to the
211  * addition of that device should be completely intact.
212  *
213  * With 2 missing vdevs, some datasets may fail to mount since there are
214  * dataset statistics that are stored as regular metadata. Some data might be
215  * recoverable if those vdevs were added recently.
216  *
217  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
218  * may be missing entirely. Chances of data recovery are very low. Note that
219  * there are also risks of performing an inadvertent rewind as we might be
220  * missing all the vdevs with the latest uberblocks.
221  */
222 uint64_t	zfs_max_missing_tvds = 0;
223 
224 /*
225  * The parameters below are similar to zfs_max_missing_tvds but are only
226  * intended for a preliminary open of the pool with an untrusted config which
227  * might be incomplete or out-dated.
228  *
229  * We are more tolerant for pools opened from a cachefile since we could have
230  * an out-dated cachefile where a device removal was not registered.
231  * We could have set the limit arbitrarily high but in the case where devices
232  * are really missing we would want to return the proper error codes; we chose
233  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
234  * and we get a chance to retrieve the trusted config.
235  */
236 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
237 
238 /*
239  * In the case where config was assembled by scanning device paths (/dev/dsks
240  * by default) we are less tolerant since all the existing devices should have
241  * been detected and we want spa_load to return the right error codes.
242  */
243 uint64_t	zfs_max_missing_tvds_scan = 0;
244 
245 /*
246  * Debugging aid that pauses spa_sync() towards the end.
247  */
248 static const boolean_t	zfs_pause_spa_sync = B_FALSE;
249 
250 /*
251  * Variables to indicate the livelist condense zthr func should wait at certain
252  * points for the livelist to be removed - used to test condense/destroy races
253  */
254 static int zfs_livelist_condense_zthr_pause = 0;
255 static int zfs_livelist_condense_sync_pause = 0;
256 
257 /*
258  * Variables to track whether or not condense cancellation has been
259  * triggered in testing.
260  */
261 static int zfs_livelist_condense_sync_cancel = 0;
262 static int zfs_livelist_condense_zthr_cancel = 0;
263 
264 /*
265  * Variable to track whether or not extra ALLOC blkptrs were added to a
266  * livelist entry while it was being condensed (caused by the way we track
267  * remapped blkptrs in dbuf_remap_impl)
268  */
269 static int zfs_livelist_condense_new_alloc = 0;
270 
271 /*
272  * ==========================================================================
273  * SPA properties routines
274  * ==========================================================================
275  */
276 
277 /*
278  * Add a (source=src, propname=propval) list to an nvlist.
279  */
280 static void
281 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
282     uint64_t intval, zprop_source_t src)
283 {
284 	const char *propname = zpool_prop_to_name(prop);
285 	nvlist_t *propval;
286 
287 	propval = fnvlist_alloc();
288 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
289 
290 	if (strval != NULL)
291 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
292 	else
293 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
294 
295 	fnvlist_add_nvlist(nvl, propname, propval);
296 	nvlist_free(propval);
297 }
298 
299 /*
300  * Get property values from the spa configuration.
301  */
302 static void
303 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
304 {
305 	vdev_t *rvd = spa->spa_root_vdev;
306 	dsl_pool_t *pool = spa->spa_dsl_pool;
307 	uint64_t size, alloc, cap, version;
308 	const zprop_source_t src = ZPROP_SRC_NONE;
309 	spa_config_dirent_t *dp;
310 	metaslab_class_t *mc = spa_normal_class(spa);
311 
312 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
313 
314 	if (rvd != NULL) {
315 		alloc = metaslab_class_get_alloc(mc);
316 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
317 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
318 		alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
319 
320 		size = metaslab_class_get_space(mc);
321 		size += metaslab_class_get_space(spa_special_class(spa));
322 		size += metaslab_class_get_space(spa_dedup_class(spa));
323 		size += metaslab_class_get_space(spa_embedded_log_class(spa));
324 
325 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
326 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
327 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
328 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
329 		    size - alloc, src);
330 		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
331 		    spa->spa_checkpoint_info.sci_dspace, src);
332 
333 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
334 		    metaslab_class_fragmentation(mc), src);
335 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
336 		    metaslab_class_expandable_space(mc), src);
337 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
338 		    (spa_mode(spa) == SPA_MODE_READ), src);
339 
340 		cap = (size == 0) ? 0 : (alloc * 100 / size);
341 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
342 
343 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
344 		    ddt_get_pool_dedup_ratio(spa), src);
345 		spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONEUSED, NULL,
346 		    brt_get_used(spa), src);
347 		spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONESAVED, NULL,
348 		    brt_get_saved(spa), src);
349 		spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONERATIO, NULL,
350 		    brt_get_ratio(spa), src);
351 
352 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
353 		    rvd->vdev_state, src);
354 
355 		version = spa_version(spa);
356 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
357 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
358 			    version, ZPROP_SRC_DEFAULT);
359 		} else {
360 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
361 			    version, ZPROP_SRC_LOCAL);
362 		}
363 		spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
364 		    NULL, spa_load_guid(spa), src);
365 	}
366 
367 	if (pool != NULL) {
368 		/*
369 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
370 		 * when opening pools before this version freedir will be NULL.
371 		 */
372 		if (pool->dp_free_dir != NULL) {
373 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
374 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
375 			    src);
376 		} else {
377 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
378 			    NULL, 0, src);
379 		}
380 
381 		if (pool->dp_leak_dir != NULL) {
382 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
383 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
384 			    src);
385 		} else {
386 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
387 			    NULL, 0, src);
388 		}
389 	}
390 
391 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
392 
393 	if (spa->spa_comment != NULL) {
394 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
395 		    0, ZPROP_SRC_LOCAL);
396 	}
397 
398 	if (spa->spa_compatibility != NULL) {
399 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
400 		    spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
401 	}
402 
403 	if (spa->spa_root != NULL)
404 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
405 		    0, ZPROP_SRC_LOCAL);
406 
407 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
408 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
409 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
410 	} else {
411 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
412 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
413 	}
414 
415 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
416 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
417 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
418 	} else {
419 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
420 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
421 	}
422 
423 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
424 		if (dp->scd_path == NULL) {
425 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
426 			    "none", 0, ZPROP_SRC_LOCAL);
427 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
428 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
429 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
430 		}
431 	}
432 }
433 
434 /*
435  * Get zpool property values.
436  */
437 int
438 spa_prop_get(spa_t *spa, nvlist_t **nvp)
439 {
440 	objset_t *mos = spa->spa_meta_objset;
441 	zap_cursor_t zc;
442 	zap_attribute_t za;
443 	dsl_pool_t *dp;
444 	int err;
445 
446 	err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
447 	if (err)
448 		return (err);
449 
450 	dp = spa_get_dsl(spa);
451 	dsl_pool_config_enter(dp, FTAG);
452 	mutex_enter(&spa->spa_props_lock);
453 
454 	/*
455 	 * Get properties from the spa config.
456 	 */
457 	spa_prop_get_config(spa, nvp);
458 
459 	/* If no pool property object, no more prop to get. */
460 	if (mos == NULL || spa->spa_pool_props_object == 0)
461 		goto out;
462 
463 	/*
464 	 * Get properties from the MOS pool property object.
465 	 */
466 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
467 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
468 	    zap_cursor_advance(&zc)) {
469 		uint64_t intval = 0;
470 		char *strval = NULL;
471 		zprop_source_t src = ZPROP_SRC_DEFAULT;
472 		zpool_prop_t prop;
473 
474 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
475 			continue;
476 
477 		switch (za.za_integer_length) {
478 		case 8:
479 			/* integer property */
480 			if (za.za_first_integer !=
481 			    zpool_prop_default_numeric(prop))
482 				src = ZPROP_SRC_LOCAL;
483 
484 			if (prop == ZPOOL_PROP_BOOTFS) {
485 				dsl_dataset_t *ds = NULL;
486 
487 				err = dsl_dataset_hold_obj(dp,
488 				    za.za_first_integer, FTAG, &ds);
489 				if (err != 0)
490 					break;
491 
492 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
493 				    KM_SLEEP);
494 				dsl_dataset_name(ds, strval);
495 				dsl_dataset_rele(ds, FTAG);
496 			} else {
497 				strval = NULL;
498 				intval = za.za_first_integer;
499 			}
500 
501 			spa_prop_add_list(*nvp, prop, strval, intval, src);
502 
503 			if (strval != NULL)
504 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
505 
506 			break;
507 
508 		case 1:
509 			/* string property */
510 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
511 			err = zap_lookup(mos, spa->spa_pool_props_object,
512 			    za.za_name, 1, za.za_num_integers, strval);
513 			if (err) {
514 				kmem_free(strval, za.za_num_integers);
515 				break;
516 			}
517 			spa_prop_add_list(*nvp, prop, strval, 0, src);
518 			kmem_free(strval, za.za_num_integers);
519 			break;
520 
521 		default:
522 			break;
523 		}
524 	}
525 	zap_cursor_fini(&zc);
526 out:
527 	mutex_exit(&spa->spa_props_lock);
528 	dsl_pool_config_exit(dp, FTAG);
529 	if (err && err != ENOENT) {
530 		nvlist_free(*nvp);
531 		*nvp = NULL;
532 		return (err);
533 	}
534 
535 	return (0);
536 }
537 
538 /*
539  * Validate the given pool properties nvlist and modify the list
540  * for the property values to be set.
541  */
542 static int
543 spa_prop_validate(spa_t *spa, nvlist_t *props)
544 {
545 	nvpair_t *elem;
546 	int error = 0, reset_bootfs = 0;
547 	uint64_t objnum = 0;
548 	boolean_t has_feature = B_FALSE;
549 
550 	elem = NULL;
551 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
552 		uint64_t intval;
553 		const char *strval, *slash, *check, *fname;
554 		const char *propname = nvpair_name(elem);
555 		zpool_prop_t prop = zpool_name_to_prop(propname);
556 
557 		switch (prop) {
558 		case ZPOOL_PROP_INVAL:
559 			if (!zpool_prop_feature(propname)) {
560 				error = SET_ERROR(EINVAL);
561 				break;
562 			}
563 
564 			/*
565 			 * Sanitize the input.
566 			 */
567 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
568 				error = SET_ERROR(EINVAL);
569 				break;
570 			}
571 
572 			if (nvpair_value_uint64(elem, &intval) != 0) {
573 				error = SET_ERROR(EINVAL);
574 				break;
575 			}
576 
577 			if (intval != 0) {
578 				error = SET_ERROR(EINVAL);
579 				break;
580 			}
581 
582 			fname = strchr(propname, '@') + 1;
583 			if (zfeature_lookup_name(fname, NULL) != 0) {
584 				error = SET_ERROR(EINVAL);
585 				break;
586 			}
587 
588 			has_feature = B_TRUE;
589 			break;
590 
591 		case ZPOOL_PROP_VERSION:
592 			error = nvpair_value_uint64(elem, &intval);
593 			if (!error &&
594 			    (intval < spa_version(spa) ||
595 			    intval > SPA_VERSION_BEFORE_FEATURES ||
596 			    has_feature))
597 				error = SET_ERROR(EINVAL);
598 			break;
599 
600 		case ZPOOL_PROP_DELEGATION:
601 		case ZPOOL_PROP_AUTOREPLACE:
602 		case ZPOOL_PROP_LISTSNAPS:
603 		case ZPOOL_PROP_AUTOEXPAND:
604 		case ZPOOL_PROP_AUTOTRIM:
605 			error = nvpair_value_uint64(elem, &intval);
606 			if (!error && intval > 1)
607 				error = SET_ERROR(EINVAL);
608 			break;
609 
610 		case ZPOOL_PROP_MULTIHOST:
611 			error = nvpair_value_uint64(elem, &intval);
612 			if (!error && intval > 1)
613 				error = SET_ERROR(EINVAL);
614 
615 			if (!error) {
616 				uint32_t hostid = zone_get_hostid(NULL);
617 				if (hostid)
618 					spa->spa_hostid = hostid;
619 				else
620 					error = SET_ERROR(ENOTSUP);
621 			}
622 
623 			break;
624 
625 		case ZPOOL_PROP_BOOTFS:
626 			/*
627 			 * If the pool version is less than SPA_VERSION_BOOTFS,
628 			 * or the pool is still being created (version == 0),
629 			 * the bootfs property cannot be set.
630 			 */
631 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
632 				error = SET_ERROR(ENOTSUP);
633 				break;
634 			}
635 
636 			/*
637 			 * Make sure the vdev config is bootable
638 			 */
639 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
640 				error = SET_ERROR(ENOTSUP);
641 				break;
642 			}
643 
644 			reset_bootfs = 1;
645 
646 			error = nvpair_value_string(elem, &strval);
647 
648 			if (!error) {
649 				objset_t *os;
650 
651 				if (strval == NULL || strval[0] == '\0') {
652 					objnum = zpool_prop_default_numeric(
653 					    ZPOOL_PROP_BOOTFS);
654 					break;
655 				}
656 
657 				error = dmu_objset_hold(strval, FTAG, &os);
658 				if (error != 0)
659 					break;
660 
661 				/* Must be ZPL. */
662 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
663 					error = SET_ERROR(ENOTSUP);
664 				} else {
665 					objnum = dmu_objset_id(os);
666 				}
667 				dmu_objset_rele(os, FTAG);
668 			}
669 			break;
670 
671 		case ZPOOL_PROP_FAILUREMODE:
672 			error = nvpair_value_uint64(elem, &intval);
673 			if (!error && intval > ZIO_FAILURE_MODE_PANIC)
674 				error = SET_ERROR(EINVAL);
675 
676 			/*
677 			 * This is a special case which only occurs when
678 			 * the pool has completely failed. This allows
679 			 * the user to change the in-core failmode property
680 			 * without syncing it out to disk (I/Os might
681 			 * currently be blocked). We do this by returning
682 			 * EIO to the caller (spa_prop_set) to trick it
683 			 * into thinking we encountered a property validation
684 			 * error.
685 			 */
686 			if (!error && spa_suspended(spa)) {
687 				spa->spa_failmode = intval;
688 				error = SET_ERROR(EIO);
689 			}
690 			break;
691 
692 		case ZPOOL_PROP_CACHEFILE:
693 			if ((error = nvpair_value_string(elem, &strval)) != 0)
694 				break;
695 
696 			if (strval[0] == '\0')
697 				break;
698 
699 			if (strcmp(strval, "none") == 0)
700 				break;
701 
702 			if (strval[0] != '/') {
703 				error = SET_ERROR(EINVAL);
704 				break;
705 			}
706 
707 			slash = strrchr(strval, '/');
708 			ASSERT(slash != NULL);
709 
710 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
711 			    strcmp(slash, "/..") == 0)
712 				error = SET_ERROR(EINVAL);
713 			break;
714 
715 		case ZPOOL_PROP_COMMENT:
716 			if ((error = nvpair_value_string(elem, &strval)) != 0)
717 				break;
718 			for (check = strval; *check != '\0'; check++) {
719 				if (!isprint(*check)) {
720 					error = SET_ERROR(EINVAL);
721 					break;
722 				}
723 			}
724 			if (strlen(strval) > ZPROP_MAX_COMMENT)
725 				error = SET_ERROR(E2BIG);
726 			break;
727 
728 		default:
729 			break;
730 		}
731 
732 		if (error)
733 			break;
734 	}
735 
736 	(void) nvlist_remove_all(props,
737 	    zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
738 
739 	if (!error && reset_bootfs) {
740 		error = nvlist_remove(props,
741 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
742 
743 		if (!error) {
744 			error = nvlist_add_uint64(props,
745 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
746 		}
747 	}
748 
749 	return (error);
750 }
751 
752 void
753 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
754 {
755 	const char *cachefile;
756 	spa_config_dirent_t *dp;
757 
758 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
759 	    &cachefile) != 0)
760 		return;
761 
762 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
763 	    KM_SLEEP);
764 
765 	if (cachefile[0] == '\0')
766 		dp->scd_path = spa_strdup(spa_config_path);
767 	else if (strcmp(cachefile, "none") == 0)
768 		dp->scd_path = NULL;
769 	else
770 		dp->scd_path = spa_strdup(cachefile);
771 
772 	list_insert_head(&spa->spa_config_list, dp);
773 	if (need_sync)
774 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
775 }
776 
777 int
778 spa_prop_set(spa_t *spa, nvlist_t *nvp)
779 {
780 	int error;
781 	nvpair_t *elem = NULL;
782 	boolean_t need_sync = B_FALSE;
783 
784 	if ((error = spa_prop_validate(spa, nvp)) != 0)
785 		return (error);
786 
787 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
788 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
789 
790 		if (prop == ZPOOL_PROP_CACHEFILE ||
791 		    prop == ZPOOL_PROP_ALTROOT ||
792 		    prop == ZPOOL_PROP_READONLY)
793 			continue;
794 
795 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
796 			uint64_t ver = 0;
797 
798 			if (prop == ZPOOL_PROP_VERSION) {
799 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
800 			} else {
801 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
802 				ver = SPA_VERSION_FEATURES;
803 				need_sync = B_TRUE;
804 			}
805 
806 			/* Save time if the version is already set. */
807 			if (ver == spa_version(spa))
808 				continue;
809 
810 			/*
811 			 * In addition to the pool directory object, we might
812 			 * create the pool properties object, the features for
813 			 * read object, the features for write object, or the
814 			 * feature descriptions object.
815 			 */
816 			error = dsl_sync_task(spa->spa_name, NULL,
817 			    spa_sync_version, &ver,
818 			    6, ZFS_SPACE_CHECK_RESERVED);
819 			if (error)
820 				return (error);
821 			continue;
822 		}
823 
824 		need_sync = B_TRUE;
825 		break;
826 	}
827 
828 	if (need_sync) {
829 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
830 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
831 	}
832 
833 	return (0);
834 }
835 
836 /*
837  * If the bootfs property value is dsobj, clear it.
838  */
839 void
840 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
841 {
842 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
843 		VERIFY(zap_remove(spa->spa_meta_objset,
844 		    spa->spa_pool_props_object,
845 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
846 		spa->spa_bootfs = 0;
847 	}
848 }
849 
850 static int
851 spa_change_guid_check(void *arg, dmu_tx_t *tx)
852 {
853 	uint64_t *newguid __maybe_unused = arg;
854 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
855 	vdev_t *rvd = spa->spa_root_vdev;
856 	uint64_t vdev_state;
857 
858 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
859 		int error = (spa_has_checkpoint(spa)) ?
860 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
861 		return (SET_ERROR(error));
862 	}
863 
864 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
865 	vdev_state = rvd->vdev_state;
866 	spa_config_exit(spa, SCL_STATE, FTAG);
867 
868 	if (vdev_state != VDEV_STATE_HEALTHY)
869 		return (SET_ERROR(ENXIO));
870 
871 	ASSERT3U(spa_guid(spa), !=, *newguid);
872 
873 	return (0);
874 }
875 
876 static void
877 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
878 {
879 	uint64_t *newguid = arg;
880 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
881 	uint64_t oldguid;
882 	vdev_t *rvd = spa->spa_root_vdev;
883 
884 	oldguid = spa_guid(spa);
885 
886 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
887 	rvd->vdev_guid = *newguid;
888 	rvd->vdev_guid_sum += (*newguid - oldguid);
889 	vdev_config_dirty(rvd);
890 	spa_config_exit(spa, SCL_STATE, FTAG);
891 
892 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
893 	    (u_longlong_t)oldguid, (u_longlong_t)*newguid);
894 }
895 
896 /*
897  * Change the GUID for the pool.  This is done so that we can later
898  * re-import a pool built from a clone of our own vdevs.  We will modify
899  * the root vdev's guid, our own pool guid, and then mark all of our
900  * vdevs dirty.  Note that we must make sure that all our vdevs are
901  * online when we do this, or else any vdevs that weren't present
902  * would be orphaned from our pool.  We are also going to issue a
903  * sysevent to update any watchers.
904  */
905 int
906 spa_change_guid(spa_t *spa)
907 {
908 	int error;
909 	uint64_t guid;
910 
911 	mutex_enter(&spa->spa_vdev_top_lock);
912 	mutex_enter(&spa_namespace_lock);
913 	guid = spa_generate_guid(NULL);
914 
915 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
916 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
917 
918 	if (error == 0) {
919 		/*
920 		 * Clear the kobj flag from all the vdevs to allow
921 		 * vdev_cache_process_kobj_evt() to post events to all the
922 		 * vdevs since GUID is updated.
923 		 */
924 		vdev_clear_kobj_evt(spa->spa_root_vdev);
925 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
926 			vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
927 
928 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
929 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
930 	}
931 
932 	mutex_exit(&spa_namespace_lock);
933 	mutex_exit(&spa->spa_vdev_top_lock);
934 
935 	return (error);
936 }
937 
938 /*
939  * ==========================================================================
940  * SPA state manipulation (open/create/destroy/import/export)
941  * ==========================================================================
942  */
943 
944 static int
945 spa_error_entry_compare(const void *a, const void *b)
946 {
947 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
948 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
949 	int ret;
950 
951 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
952 	    sizeof (zbookmark_phys_t));
953 
954 	return (TREE_ISIGN(ret));
955 }
956 
957 /*
958  * Utility function which retrieves copies of the current logs and
959  * re-initializes them in the process.
960  */
961 void
962 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
963 {
964 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
965 
966 	memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
967 	memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
968 
969 	avl_create(&spa->spa_errlist_scrub,
970 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
971 	    offsetof(spa_error_entry_t, se_avl));
972 	avl_create(&spa->spa_errlist_last,
973 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
974 	    offsetof(spa_error_entry_t, se_avl));
975 }
976 
977 static void
978 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
979 {
980 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
981 	enum zti_modes mode = ztip->zti_mode;
982 	uint_t value = ztip->zti_value;
983 	uint_t count = ztip->zti_count;
984 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
985 	uint_t cpus, flags = TASKQ_DYNAMIC;
986 	boolean_t batch = B_FALSE;
987 
988 	switch (mode) {
989 	case ZTI_MODE_FIXED:
990 		ASSERT3U(value, >, 0);
991 		break;
992 
993 	case ZTI_MODE_BATCH:
994 		batch = B_TRUE;
995 		flags |= TASKQ_THREADS_CPU_PCT;
996 		value = MIN(zio_taskq_batch_pct, 100);
997 		break;
998 
999 	case ZTI_MODE_SCALE:
1000 		flags |= TASKQ_THREADS_CPU_PCT;
1001 		/*
1002 		 * We want more taskqs to reduce lock contention, but we want
1003 		 * less for better request ordering and CPU utilization.
1004 		 */
1005 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1006 		if (zio_taskq_batch_tpq > 0) {
1007 			count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1008 			    zio_taskq_batch_tpq);
1009 		} else {
1010 			/*
1011 			 * Prefer 6 threads per taskq, but no more taskqs
1012 			 * than threads in them on large systems. For 80%:
1013 			 *
1014 			 *                 taskq   taskq   total
1015 			 * cpus    taskqs  percent threads threads
1016 			 * ------- ------- ------- ------- -------
1017 			 * 1       1       80%     1       1
1018 			 * 2       1       80%     1       1
1019 			 * 4       1       80%     3       3
1020 			 * 8       2       40%     3       6
1021 			 * 16      3       27%     4       12
1022 			 * 32      5       16%     5       25
1023 			 * 64      7       11%     7       49
1024 			 * 128     10      8%      10      100
1025 			 * 256     14      6%      15      210
1026 			 */
1027 			count = 1 + cpus / 6;
1028 			while (count * count > cpus)
1029 				count--;
1030 		}
1031 		/* Limit each taskq within 100% to not trigger assertion. */
1032 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1033 		value = (zio_taskq_batch_pct + count / 2) / count;
1034 		break;
1035 
1036 	case ZTI_MODE_NULL:
1037 		tqs->stqs_count = 0;
1038 		tqs->stqs_taskq = NULL;
1039 		return;
1040 
1041 	default:
1042 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1043 		    "spa_activate()",
1044 		    zio_type_name[t], zio_taskq_types[q], mode, value);
1045 		break;
1046 	}
1047 
1048 	ASSERT3U(count, >, 0);
1049 	tqs->stqs_count = count;
1050 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1051 
1052 	for (uint_t i = 0; i < count; i++) {
1053 		taskq_t *tq;
1054 		char name[32];
1055 
1056 		if (count > 1)
1057 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
1058 			    zio_type_name[t], zio_taskq_types[q], i);
1059 		else
1060 			(void) snprintf(name, sizeof (name), "%s_%s",
1061 			    zio_type_name[t], zio_taskq_types[q]);
1062 
1063 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1064 			if (batch)
1065 				flags |= TASKQ_DC_BATCH;
1066 
1067 			(void) zio_taskq_basedc;
1068 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1069 			    spa->spa_proc, zio_taskq_basedc, flags);
1070 		} else {
1071 			pri_t pri = maxclsyspri;
1072 			/*
1073 			 * The write issue taskq can be extremely CPU
1074 			 * intensive.  Run it at slightly less important
1075 			 * priority than the other taskqs.
1076 			 *
1077 			 * Under Linux and FreeBSD this means incrementing
1078 			 * the priority value as opposed to platforms like
1079 			 * illumos where it should be decremented.
1080 			 *
1081 			 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1082 			 * are equal then a difference between them is
1083 			 * insignificant.
1084 			 */
1085 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1086 #if defined(__linux__)
1087 				pri++;
1088 #elif defined(__FreeBSD__)
1089 				pri += 4;
1090 #else
1091 #error "unknown OS"
1092 #endif
1093 			}
1094 			tq = taskq_create_proc(name, value, pri, 50,
1095 			    INT_MAX, spa->spa_proc, flags);
1096 		}
1097 
1098 		tqs->stqs_taskq[i] = tq;
1099 	}
1100 }
1101 
1102 static void
1103 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1104 {
1105 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1106 
1107 	if (tqs->stqs_taskq == NULL) {
1108 		ASSERT3U(tqs->stqs_count, ==, 0);
1109 		return;
1110 	}
1111 
1112 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1113 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1114 		taskq_destroy(tqs->stqs_taskq[i]);
1115 	}
1116 
1117 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1118 	tqs->stqs_taskq = NULL;
1119 }
1120 
1121 /*
1122  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1123  * Note that a type may have multiple discrete taskqs to avoid lock contention
1124  * on the taskq itself. In that case we choose which taskq at random by using
1125  * the low bits of gethrtime().
1126  */
1127 void
1128 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1129     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1130 {
1131 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1132 	taskq_t *tq;
1133 
1134 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1135 	ASSERT3U(tqs->stqs_count, !=, 0);
1136 
1137 	if (tqs->stqs_count == 1) {
1138 		tq = tqs->stqs_taskq[0];
1139 	} else {
1140 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1141 	}
1142 
1143 	taskq_dispatch_ent(tq, func, arg, flags, ent);
1144 }
1145 
1146 /*
1147  * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1148  */
1149 void
1150 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1151     task_func_t *func, void *arg, uint_t flags)
1152 {
1153 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1154 	taskq_t *tq;
1155 	taskqid_t id;
1156 
1157 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1158 	ASSERT3U(tqs->stqs_count, !=, 0);
1159 
1160 	if (tqs->stqs_count == 1) {
1161 		tq = tqs->stqs_taskq[0];
1162 	} else {
1163 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1164 	}
1165 
1166 	id = taskq_dispatch(tq, func, arg, flags);
1167 	if (id)
1168 		taskq_wait_id(tq, id);
1169 }
1170 
1171 static void
1172 spa_create_zio_taskqs(spa_t *spa)
1173 {
1174 	for (int t = 0; t < ZIO_TYPES; t++) {
1175 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1176 			spa_taskqs_init(spa, t, q);
1177 		}
1178 	}
1179 }
1180 
1181 /*
1182  * Disabled until spa_thread() can be adapted for Linux.
1183  */
1184 #undef HAVE_SPA_THREAD
1185 
1186 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1187 static void
1188 spa_thread(void *arg)
1189 {
1190 	psetid_t zio_taskq_psrset_bind = PS_NONE;
1191 	callb_cpr_t cprinfo;
1192 
1193 	spa_t *spa = arg;
1194 	user_t *pu = PTOU(curproc);
1195 
1196 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1197 	    spa->spa_name);
1198 
1199 	ASSERT(curproc != &p0);
1200 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1201 	    "zpool-%s", spa->spa_name);
1202 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1203 
1204 	/* bind this thread to the requested psrset */
1205 	if (zio_taskq_psrset_bind != PS_NONE) {
1206 		pool_lock();
1207 		mutex_enter(&cpu_lock);
1208 		mutex_enter(&pidlock);
1209 		mutex_enter(&curproc->p_lock);
1210 
1211 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1212 		    0, NULL, NULL) == 0)  {
1213 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1214 		} else {
1215 			cmn_err(CE_WARN,
1216 			    "Couldn't bind process for zfs pool \"%s\" to "
1217 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1218 		}
1219 
1220 		mutex_exit(&curproc->p_lock);
1221 		mutex_exit(&pidlock);
1222 		mutex_exit(&cpu_lock);
1223 		pool_unlock();
1224 	}
1225 
1226 	if (zio_taskq_sysdc) {
1227 		sysdc_thread_enter(curthread, 100, 0);
1228 	}
1229 
1230 	spa->spa_proc = curproc;
1231 	spa->spa_did = curthread->t_did;
1232 
1233 	spa_create_zio_taskqs(spa);
1234 
1235 	mutex_enter(&spa->spa_proc_lock);
1236 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1237 
1238 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1239 	cv_broadcast(&spa->spa_proc_cv);
1240 
1241 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1242 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1243 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1244 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1245 
1246 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1247 	spa->spa_proc_state = SPA_PROC_GONE;
1248 	spa->spa_proc = &p0;
1249 	cv_broadcast(&spa->spa_proc_cv);
1250 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1251 
1252 	mutex_enter(&curproc->p_lock);
1253 	lwp_exit();
1254 }
1255 #endif
1256 
1257 /*
1258  * Activate an uninitialized pool.
1259  */
1260 static void
1261 spa_activate(spa_t *spa, spa_mode_t mode)
1262 {
1263 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1264 
1265 	spa->spa_state = POOL_STATE_ACTIVE;
1266 	spa->spa_mode = mode;
1267 	spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1268 
1269 	spa->spa_normal_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1270 	spa->spa_log_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1271 	spa->spa_embedded_log_class =
1272 	    metaslab_class_create(spa, &zfs_metaslab_ops);
1273 	spa->spa_special_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1274 	spa->spa_dedup_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1275 
1276 	/* Try to create a covering process */
1277 	mutex_enter(&spa->spa_proc_lock);
1278 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1279 	ASSERT(spa->spa_proc == &p0);
1280 	spa->spa_did = 0;
1281 
1282 	(void) spa_create_process;
1283 #ifdef HAVE_SPA_THREAD
1284 	/* Only create a process if we're going to be around a while. */
1285 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1286 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1287 		    NULL, 0) == 0) {
1288 			spa->spa_proc_state = SPA_PROC_CREATED;
1289 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1290 				cv_wait(&spa->spa_proc_cv,
1291 				    &spa->spa_proc_lock);
1292 			}
1293 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1294 			ASSERT(spa->spa_proc != &p0);
1295 			ASSERT(spa->spa_did != 0);
1296 		} else {
1297 #ifdef _KERNEL
1298 			cmn_err(CE_WARN,
1299 			    "Couldn't create process for zfs pool \"%s\"\n",
1300 			    spa->spa_name);
1301 #endif
1302 		}
1303 	}
1304 #endif /* HAVE_SPA_THREAD */
1305 	mutex_exit(&spa->spa_proc_lock);
1306 
1307 	/* If we didn't create a process, we need to create our taskqs. */
1308 	if (spa->spa_proc == &p0) {
1309 		spa_create_zio_taskqs(spa);
1310 	}
1311 
1312 	for (size_t i = 0; i < TXG_SIZE; i++) {
1313 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1314 		    ZIO_FLAG_CANFAIL);
1315 	}
1316 
1317 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1318 	    offsetof(vdev_t, vdev_config_dirty_node));
1319 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1320 	    offsetof(objset_t, os_evicting_node));
1321 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1322 	    offsetof(vdev_t, vdev_state_dirty_node));
1323 
1324 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1325 	    offsetof(struct vdev, vdev_txg_node));
1326 
1327 	avl_create(&spa->spa_errlist_scrub,
1328 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1329 	    offsetof(spa_error_entry_t, se_avl));
1330 	avl_create(&spa->spa_errlist_last,
1331 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1332 	    offsetof(spa_error_entry_t, se_avl));
1333 	avl_create(&spa->spa_errlist_healed,
1334 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1335 	    offsetof(spa_error_entry_t, se_avl));
1336 
1337 	spa_activate_os(spa);
1338 
1339 	spa_keystore_init(&spa->spa_keystore);
1340 
1341 	/*
1342 	 * This taskq is used to perform zvol-minor-related tasks
1343 	 * asynchronously. This has several advantages, including easy
1344 	 * resolution of various deadlocks.
1345 	 *
1346 	 * The taskq must be single threaded to ensure tasks are always
1347 	 * processed in the order in which they were dispatched.
1348 	 *
1349 	 * A taskq per pool allows one to keep the pools independent.
1350 	 * This way if one pool is suspended, it will not impact another.
1351 	 *
1352 	 * The preferred location to dispatch a zvol minor task is a sync
1353 	 * task. In this context, there is easy access to the spa_t and minimal
1354 	 * error handling is required because the sync task must succeed.
1355 	 */
1356 	spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1357 	    1, INT_MAX, 0);
1358 
1359 	/*
1360 	 * Taskq dedicated to prefetcher threads: this is used to prevent the
1361 	 * pool traverse code from monopolizing the global (and limited)
1362 	 * system_taskq by inappropriately scheduling long running tasks on it.
1363 	 */
1364 	spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1365 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1366 
1367 	/*
1368 	 * The taskq to upgrade datasets in this pool. Currently used by
1369 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1370 	 */
1371 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1372 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1373 }
1374 
1375 /*
1376  * Opposite of spa_activate().
1377  */
1378 static void
1379 spa_deactivate(spa_t *spa)
1380 {
1381 	ASSERT(spa->spa_sync_on == B_FALSE);
1382 	ASSERT(spa->spa_dsl_pool == NULL);
1383 	ASSERT(spa->spa_root_vdev == NULL);
1384 	ASSERT(spa->spa_async_zio_root == NULL);
1385 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1386 
1387 	spa_evicting_os_wait(spa);
1388 
1389 	if (spa->spa_zvol_taskq) {
1390 		taskq_destroy(spa->spa_zvol_taskq);
1391 		spa->spa_zvol_taskq = NULL;
1392 	}
1393 
1394 	if (spa->spa_prefetch_taskq) {
1395 		taskq_destroy(spa->spa_prefetch_taskq);
1396 		spa->spa_prefetch_taskq = NULL;
1397 	}
1398 
1399 	if (spa->spa_upgrade_taskq) {
1400 		taskq_destroy(spa->spa_upgrade_taskq);
1401 		spa->spa_upgrade_taskq = NULL;
1402 	}
1403 
1404 	txg_list_destroy(&spa->spa_vdev_txg_list);
1405 
1406 	list_destroy(&spa->spa_config_dirty_list);
1407 	list_destroy(&spa->spa_evicting_os_list);
1408 	list_destroy(&spa->spa_state_dirty_list);
1409 
1410 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1411 
1412 	for (int t = 0; t < ZIO_TYPES; t++) {
1413 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1414 			spa_taskqs_fini(spa, t, q);
1415 		}
1416 	}
1417 
1418 	for (size_t i = 0; i < TXG_SIZE; i++) {
1419 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1420 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1421 		spa->spa_txg_zio[i] = NULL;
1422 	}
1423 
1424 	metaslab_class_destroy(spa->spa_normal_class);
1425 	spa->spa_normal_class = NULL;
1426 
1427 	metaslab_class_destroy(spa->spa_log_class);
1428 	spa->spa_log_class = NULL;
1429 
1430 	metaslab_class_destroy(spa->spa_embedded_log_class);
1431 	spa->spa_embedded_log_class = NULL;
1432 
1433 	metaslab_class_destroy(spa->spa_special_class);
1434 	spa->spa_special_class = NULL;
1435 
1436 	metaslab_class_destroy(spa->spa_dedup_class);
1437 	spa->spa_dedup_class = NULL;
1438 
1439 	/*
1440 	 * If this was part of an import or the open otherwise failed, we may
1441 	 * still have errors left in the queues.  Empty them just in case.
1442 	 */
1443 	spa_errlog_drain(spa);
1444 	avl_destroy(&spa->spa_errlist_scrub);
1445 	avl_destroy(&spa->spa_errlist_last);
1446 	avl_destroy(&spa->spa_errlist_healed);
1447 
1448 	spa_keystore_fini(&spa->spa_keystore);
1449 
1450 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1451 
1452 	mutex_enter(&spa->spa_proc_lock);
1453 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1454 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1455 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1456 		cv_broadcast(&spa->spa_proc_cv);
1457 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1458 			ASSERT(spa->spa_proc != &p0);
1459 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1460 		}
1461 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1462 		spa->spa_proc_state = SPA_PROC_NONE;
1463 	}
1464 	ASSERT(spa->spa_proc == &p0);
1465 	mutex_exit(&spa->spa_proc_lock);
1466 
1467 	/*
1468 	 * We want to make sure spa_thread() has actually exited the ZFS
1469 	 * module, so that the module can't be unloaded out from underneath
1470 	 * it.
1471 	 */
1472 	if (spa->spa_did != 0) {
1473 		thread_join(spa->spa_did);
1474 		spa->spa_did = 0;
1475 	}
1476 
1477 	spa_deactivate_os(spa);
1478 
1479 }
1480 
1481 /*
1482  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1483  * will create all the necessary vdevs in the appropriate layout, with each vdev
1484  * in the CLOSED state.  This will prep the pool before open/creation/import.
1485  * All vdev validation is done by the vdev_alloc() routine.
1486  */
1487 int
1488 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1489     uint_t id, int atype)
1490 {
1491 	nvlist_t **child;
1492 	uint_t children;
1493 	int error;
1494 
1495 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1496 		return (error);
1497 
1498 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1499 		return (0);
1500 
1501 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1502 	    &child, &children);
1503 
1504 	if (error == ENOENT)
1505 		return (0);
1506 
1507 	if (error) {
1508 		vdev_free(*vdp);
1509 		*vdp = NULL;
1510 		return (SET_ERROR(EINVAL));
1511 	}
1512 
1513 	for (int c = 0; c < children; c++) {
1514 		vdev_t *vd;
1515 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1516 		    atype)) != 0) {
1517 			vdev_free(*vdp);
1518 			*vdp = NULL;
1519 			return (error);
1520 		}
1521 	}
1522 
1523 	ASSERT(*vdp != NULL);
1524 
1525 	return (0);
1526 }
1527 
1528 static boolean_t
1529 spa_should_flush_logs_on_unload(spa_t *spa)
1530 {
1531 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1532 		return (B_FALSE);
1533 
1534 	if (!spa_writeable(spa))
1535 		return (B_FALSE);
1536 
1537 	if (!spa->spa_sync_on)
1538 		return (B_FALSE);
1539 
1540 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1541 		return (B_FALSE);
1542 
1543 	if (zfs_keep_log_spacemaps_at_export)
1544 		return (B_FALSE);
1545 
1546 	return (B_TRUE);
1547 }
1548 
1549 /*
1550  * Opens a transaction that will set the flag that will instruct
1551  * spa_sync to attempt to flush all the metaslabs for that txg.
1552  */
1553 static void
1554 spa_unload_log_sm_flush_all(spa_t *spa)
1555 {
1556 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1557 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1558 
1559 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1560 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1561 
1562 	dmu_tx_commit(tx);
1563 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1564 }
1565 
1566 static void
1567 spa_unload_log_sm_metadata(spa_t *spa)
1568 {
1569 	void *cookie = NULL;
1570 	spa_log_sm_t *sls;
1571 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1572 	    &cookie)) != NULL) {
1573 		VERIFY0(sls->sls_mscount);
1574 		kmem_free(sls, sizeof (spa_log_sm_t));
1575 	}
1576 
1577 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1578 	    e != NULL; e = list_head(&spa->spa_log_summary)) {
1579 		VERIFY0(e->lse_mscount);
1580 		list_remove(&spa->spa_log_summary, e);
1581 		kmem_free(e, sizeof (log_summary_entry_t));
1582 	}
1583 
1584 	spa->spa_unflushed_stats.sus_nblocks = 0;
1585 	spa->spa_unflushed_stats.sus_memused = 0;
1586 	spa->spa_unflushed_stats.sus_blocklimit = 0;
1587 }
1588 
1589 static void
1590 spa_destroy_aux_threads(spa_t *spa)
1591 {
1592 	if (spa->spa_condense_zthr != NULL) {
1593 		zthr_destroy(spa->spa_condense_zthr);
1594 		spa->spa_condense_zthr = NULL;
1595 	}
1596 	if (spa->spa_checkpoint_discard_zthr != NULL) {
1597 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1598 		spa->spa_checkpoint_discard_zthr = NULL;
1599 	}
1600 	if (spa->spa_livelist_delete_zthr != NULL) {
1601 		zthr_destroy(spa->spa_livelist_delete_zthr);
1602 		spa->spa_livelist_delete_zthr = NULL;
1603 	}
1604 	if (spa->spa_livelist_condense_zthr != NULL) {
1605 		zthr_destroy(spa->spa_livelist_condense_zthr);
1606 		spa->spa_livelist_condense_zthr = NULL;
1607 	}
1608 }
1609 
1610 /*
1611  * Opposite of spa_load().
1612  */
1613 static void
1614 spa_unload(spa_t *spa)
1615 {
1616 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1617 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1618 
1619 	spa_import_progress_remove(spa_guid(spa));
1620 	spa_load_note(spa, "UNLOADING");
1621 
1622 	spa_wake_waiters(spa);
1623 
1624 	/*
1625 	 * If we have set the spa_final_txg, we have already performed the
1626 	 * tasks below in spa_export_common(). We should not redo it here since
1627 	 * we delay the final TXGs beyond what spa_final_txg is set at.
1628 	 */
1629 	if (spa->spa_final_txg == UINT64_MAX) {
1630 		/*
1631 		 * If the log space map feature is enabled and the pool is
1632 		 * getting exported (but not destroyed), we want to spend some
1633 		 * time flushing as many metaslabs as we can in an attempt to
1634 		 * destroy log space maps and save import time.
1635 		 */
1636 		if (spa_should_flush_logs_on_unload(spa))
1637 			spa_unload_log_sm_flush_all(spa);
1638 
1639 		/*
1640 		 * Stop async tasks.
1641 		 */
1642 		spa_async_suspend(spa);
1643 
1644 		if (spa->spa_root_vdev) {
1645 			vdev_t *root_vdev = spa->spa_root_vdev;
1646 			vdev_initialize_stop_all(root_vdev,
1647 			    VDEV_INITIALIZE_ACTIVE);
1648 			vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1649 			vdev_autotrim_stop_all(spa);
1650 			vdev_rebuild_stop_all(spa);
1651 		}
1652 	}
1653 
1654 	/*
1655 	 * Stop syncing.
1656 	 */
1657 	if (spa->spa_sync_on) {
1658 		txg_sync_stop(spa->spa_dsl_pool);
1659 		spa->spa_sync_on = B_FALSE;
1660 	}
1661 
1662 	/*
1663 	 * This ensures that there is no async metaslab prefetching
1664 	 * while we attempt to unload the spa.
1665 	 */
1666 	if (spa->spa_root_vdev != NULL) {
1667 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1668 			vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1669 			if (vc->vdev_mg != NULL)
1670 				taskq_wait(vc->vdev_mg->mg_taskq);
1671 		}
1672 	}
1673 
1674 	if (spa->spa_mmp.mmp_thread)
1675 		mmp_thread_stop(spa);
1676 
1677 	/*
1678 	 * Wait for any outstanding async I/O to complete.
1679 	 */
1680 	if (spa->spa_async_zio_root != NULL) {
1681 		for (int i = 0; i < max_ncpus; i++)
1682 			(void) zio_wait(spa->spa_async_zio_root[i]);
1683 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1684 		spa->spa_async_zio_root = NULL;
1685 	}
1686 
1687 	if (spa->spa_vdev_removal != NULL) {
1688 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1689 		spa->spa_vdev_removal = NULL;
1690 	}
1691 
1692 	spa_destroy_aux_threads(spa);
1693 
1694 	spa_condense_fini(spa);
1695 
1696 	bpobj_close(&spa->spa_deferred_bpobj);
1697 
1698 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1699 
1700 	/*
1701 	 * Close all vdevs.
1702 	 */
1703 	if (spa->spa_root_vdev)
1704 		vdev_free(spa->spa_root_vdev);
1705 	ASSERT(spa->spa_root_vdev == NULL);
1706 
1707 	/*
1708 	 * Close the dsl pool.
1709 	 */
1710 	if (spa->spa_dsl_pool) {
1711 		dsl_pool_close(spa->spa_dsl_pool);
1712 		spa->spa_dsl_pool = NULL;
1713 		spa->spa_meta_objset = NULL;
1714 	}
1715 
1716 	ddt_unload(spa);
1717 	brt_unload(spa);
1718 	spa_unload_log_sm_metadata(spa);
1719 
1720 	/*
1721 	 * Drop and purge level 2 cache
1722 	 */
1723 	spa_l2cache_drop(spa);
1724 
1725 	if (spa->spa_spares.sav_vdevs) {
1726 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
1727 			vdev_free(spa->spa_spares.sav_vdevs[i]);
1728 		kmem_free(spa->spa_spares.sav_vdevs,
1729 		    spa->spa_spares.sav_count * sizeof (void *));
1730 		spa->spa_spares.sav_vdevs = NULL;
1731 	}
1732 	if (spa->spa_spares.sav_config) {
1733 		nvlist_free(spa->spa_spares.sav_config);
1734 		spa->spa_spares.sav_config = NULL;
1735 	}
1736 	spa->spa_spares.sav_count = 0;
1737 
1738 	if (spa->spa_l2cache.sav_vdevs) {
1739 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1740 			vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1741 			vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1742 		}
1743 		kmem_free(spa->spa_l2cache.sav_vdevs,
1744 		    spa->spa_l2cache.sav_count * sizeof (void *));
1745 		spa->spa_l2cache.sav_vdevs = NULL;
1746 	}
1747 	if (spa->spa_l2cache.sav_config) {
1748 		nvlist_free(spa->spa_l2cache.sav_config);
1749 		spa->spa_l2cache.sav_config = NULL;
1750 	}
1751 	spa->spa_l2cache.sav_count = 0;
1752 
1753 	spa->spa_async_suspended = 0;
1754 
1755 	spa->spa_indirect_vdevs_loaded = B_FALSE;
1756 
1757 	if (spa->spa_comment != NULL) {
1758 		spa_strfree(spa->spa_comment);
1759 		spa->spa_comment = NULL;
1760 	}
1761 	if (spa->spa_compatibility != NULL) {
1762 		spa_strfree(spa->spa_compatibility);
1763 		spa->spa_compatibility = NULL;
1764 	}
1765 
1766 	spa_config_exit(spa, SCL_ALL, spa);
1767 }
1768 
1769 /*
1770  * Load (or re-load) the current list of vdevs describing the active spares for
1771  * this pool.  When this is called, we have some form of basic information in
1772  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1773  * then re-generate a more complete list including status information.
1774  */
1775 void
1776 spa_load_spares(spa_t *spa)
1777 {
1778 	nvlist_t **spares;
1779 	uint_t nspares;
1780 	int i;
1781 	vdev_t *vd, *tvd;
1782 
1783 #ifndef _KERNEL
1784 	/*
1785 	 * zdb opens both the current state of the pool and the
1786 	 * checkpointed state (if present), with a different spa_t.
1787 	 *
1788 	 * As spare vdevs are shared among open pools, we skip loading
1789 	 * them when we load the checkpointed state of the pool.
1790 	 */
1791 	if (!spa_writeable(spa))
1792 		return;
1793 #endif
1794 
1795 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1796 
1797 	/*
1798 	 * First, close and free any existing spare vdevs.
1799 	 */
1800 	if (spa->spa_spares.sav_vdevs) {
1801 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
1802 			vd = spa->spa_spares.sav_vdevs[i];
1803 
1804 			/* Undo the call to spa_activate() below */
1805 			if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1806 			    B_FALSE)) != NULL && tvd->vdev_isspare)
1807 				spa_spare_remove(tvd);
1808 			vdev_close(vd);
1809 			vdev_free(vd);
1810 		}
1811 
1812 		kmem_free(spa->spa_spares.sav_vdevs,
1813 		    spa->spa_spares.sav_count * sizeof (void *));
1814 	}
1815 
1816 	if (spa->spa_spares.sav_config == NULL)
1817 		nspares = 0;
1818 	else
1819 		VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1820 		    ZPOOL_CONFIG_SPARES, &spares, &nspares));
1821 
1822 	spa->spa_spares.sav_count = (int)nspares;
1823 	spa->spa_spares.sav_vdevs = NULL;
1824 
1825 	if (nspares == 0)
1826 		return;
1827 
1828 	/*
1829 	 * Construct the array of vdevs, opening them to get status in the
1830 	 * process.   For each spare, there is potentially two different vdev_t
1831 	 * structures associated with it: one in the list of spares (used only
1832 	 * for basic validation purposes) and one in the active vdev
1833 	 * configuration (if it's spared in).  During this phase we open and
1834 	 * validate each vdev on the spare list.  If the vdev also exists in the
1835 	 * active configuration, then we also mark this vdev as an active spare.
1836 	 */
1837 	spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1838 	    KM_SLEEP);
1839 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1840 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1841 		    VDEV_ALLOC_SPARE) == 0);
1842 		ASSERT(vd != NULL);
1843 
1844 		spa->spa_spares.sav_vdevs[i] = vd;
1845 
1846 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1847 		    B_FALSE)) != NULL) {
1848 			if (!tvd->vdev_isspare)
1849 				spa_spare_add(tvd);
1850 
1851 			/*
1852 			 * We only mark the spare active if we were successfully
1853 			 * able to load the vdev.  Otherwise, importing a pool
1854 			 * with a bad active spare would result in strange
1855 			 * behavior, because multiple pool would think the spare
1856 			 * is actively in use.
1857 			 *
1858 			 * There is a vulnerability here to an equally bizarre
1859 			 * circumstance, where a dead active spare is later
1860 			 * brought back to life (onlined or otherwise).  Given
1861 			 * the rarity of this scenario, and the extra complexity
1862 			 * it adds, we ignore the possibility.
1863 			 */
1864 			if (!vdev_is_dead(tvd))
1865 				spa_spare_activate(tvd);
1866 		}
1867 
1868 		vd->vdev_top = vd;
1869 		vd->vdev_aux = &spa->spa_spares;
1870 
1871 		if (vdev_open(vd) != 0)
1872 			continue;
1873 
1874 		if (vdev_validate_aux(vd) == 0)
1875 			spa_spare_add(vd);
1876 	}
1877 
1878 	/*
1879 	 * Recompute the stashed list of spares, with status information
1880 	 * this time.
1881 	 */
1882 	fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
1883 
1884 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1885 	    KM_SLEEP);
1886 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1887 		spares[i] = vdev_config_generate(spa,
1888 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1889 	fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
1890 	    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
1891 	    spa->spa_spares.sav_count);
1892 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1893 		nvlist_free(spares[i]);
1894 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1895 }
1896 
1897 /*
1898  * Load (or re-load) the current list of vdevs describing the active l2cache for
1899  * this pool.  When this is called, we have some form of basic information in
1900  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1901  * then re-generate a more complete list including status information.
1902  * Devices which are already active have their details maintained, and are
1903  * not re-opened.
1904  */
1905 void
1906 spa_load_l2cache(spa_t *spa)
1907 {
1908 	nvlist_t **l2cache = NULL;
1909 	uint_t nl2cache;
1910 	int i, j, oldnvdevs;
1911 	uint64_t guid;
1912 	vdev_t *vd, **oldvdevs, **newvdevs;
1913 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1914 
1915 #ifndef _KERNEL
1916 	/*
1917 	 * zdb opens both the current state of the pool and the
1918 	 * checkpointed state (if present), with a different spa_t.
1919 	 *
1920 	 * As L2 caches are part of the ARC which is shared among open
1921 	 * pools, we skip loading them when we load the checkpointed
1922 	 * state of the pool.
1923 	 */
1924 	if (!spa_writeable(spa))
1925 		return;
1926 #endif
1927 
1928 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1929 
1930 	oldvdevs = sav->sav_vdevs;
1931 	oldnvdevs = sav->sav_count;
1932 	sav->sav_vdevs = NULL;
1933 	sav->sav_count = 0;
1934 
1935 	if (sav->sav_config == NULL) {
1936 		nl2cache = 0;
1937 		newvdevs = NULL;
1938 		goto out;
1939 	}
1940 
1941 	VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
1942 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
1943 	newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1944 
1945 	/*
1946 	 * Process new nvlist of vdevs.
1947 	 */
1948 	for (i = 0; i < nl2cache; i++) {
1949 		guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
1950 
1951 		newvdevs[i] = NULL;
1952 		for (j = 0; j < oldnvdevs; j++) {
1953 			vd = oldvdevs[j];
1954 			if (vd != NULL && guid == vd->vdev_guid) {
1955 				/*
1956 				 * Retain previous vdev for add/remove ops.
1957 				 */
1958 				newvdevs[i] = vd;
1959 				oldvdevs[j] = NULL;
1960 				break;
1961 			}
1962 		}
1963 
1964 		if (newvdevs[i] == NULL) {
1965 			/*
1966 			 * Create new vdev
1967 			 */
1968 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1969 			    VDEV_ALLOC_L2CACHE) == 0);
1970 			ASSERT(vd != NULL);
1971 			newvdevs[i] = vd;
1972 
1973 			/*
1974 			 * Commit this vdev as an l2cache device,
1975 			 * even if it fails to open.
1976 			 */
1977 			spa_l2cache_add(vd);
1978 
1979 			vd->vdev_top = vd;
1980 			vd->vdev_aux = sav;
1981 
1982 			spa_l2cache_activate(vd);
1983 
1984 			if (vdev_open(vd) != 0)
1985 				continue;
1986 
1987 			(void) vdev_validate_aux(vd);
1988 
1989 			if (!vdev_is_dead(vd))
1990 				l2arc_add_vdev(spa, vd);
1991 
1992 			/*
1993 			 * Upon cache device addition to a pool or pool
1994 			 * creation with a cache device or if the header
1995 			 * of the device is invalid we issue an async
1996 			 * TRIM command for the whole device which will
1997 			 * execute if l2arc_trim_ahead > 0.
1998 			 */
1999 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2000 		}
2001 	}
2002 
2003 	sav->sav_vdevs = newvdevs;
2004 	sav->sav_count = (int)nl2cache;
2005 
2006 	/*
2007 	 * Recompute the stashed list of l2cache devices, with status
2008 	 * information this time.
2009 	 */
2010 	fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2011 
2012 	if (sav->sav_count > 0)
2013 		l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2014 		    KM_SLEEP);
2015 	for (i = 0; i < sav->sav_count; i++)
2016 		l2cache[i] = vdev_config_generate(spa,
2017 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2018 	fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2019 	    (const nvlist_t * const *)l2cache, sav->sav_count);
2020 
2021 out:
2022 	/*
2023 	 * Purge vdevs that were dropped
2024 	 */
2025 	if (oldvdevs) {
2026 		for (i = 0; i < oldnvdevs; i++) {
2027 			uint64_t pool;
2028 
2029 			vd = oldvdevs[i];
2030 			if (vd != NULL) {
2031 				ASSERT(vd->vdev_isl2cache);
2032 
2033 				if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2034 				    pool != 0ULL && l2arc_vdev_present(vd))
2035 					l2arc_remove_vdev(vd);
2036 				vdev_clear_stats(vd);
2037 				vdev_free(vd);
2038 			}
2039 		}
2040 
2041 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2042 	}
2043 
2044 	for (i = 0; i < sav->sav_count; i++)
2045 		nvlist_free(l2cache[i]);
2046 	if (sav->sav_count)
2047 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
2048 }
2049 
2050 static int
2051 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2052 {
2053 	dmu_buf_t *db;
2054 	char *packed = NULL;
2055 	size_t nvsize = 0;
2056 	int error;
2057 	*value = NULL;
2058 
2059 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2060 	if (error)
2061 		return (error);
2062 
2063 	nvsize = *(uint64_t *)db->db_data;
2064 	dmu_buf_rele(db, FTAG);
2065 
2066 	packed = vmem_alloc(nvsize, KM_SLEEP);
2067 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2068 	    DMU_READ_PREFETCH);
2069 	if (error == 0)
2070 		error = nvlist_unpack(packed, nvsize, value, 0);
2071 	vmem_free(packed, nvsize);
2072 
2073 	return (error);
2074 }
2075 
2076 /*
2077  * Concrete top-level vdevs that are not missing and are not logs. At every
2078  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2079  */
2080 static uint64_t
2081 spa_healthy_core_tvds(spa_t *spa)
2082 {
2083 	vdev_t *rvd = spa->spa_root_vdev;
2084 	uint64_t tvds = 0;
2085 
2086 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2087 		vdev_t *vd = rvd->vdev_child[i];
2088 		if (vd->vdev_islog)
2089 			continue;
2090 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2091 			tvds++;
2092 	}
2093 
2094 	return (tvds);
2095 }
2096 
2097 /*
2098  * Checks to see if the given vdev could not be opened, in which case we post a
2099  * sysevent to notify the autoreplace code that the device has been removed.
2100  */
2101 static void
2102 spa_check_removed(vdev_t *vd)
2103 {
2104 	for (uint64_t c = 0; c < vd->vdev_children; c++)
2105 		spa_check_removed(vd->vdev_child[c]);
2106 
2107 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2108 	    vdev_is_concrete(vd)) {
2109 		zfs_post_autoreplace(vd->vdev_spa, vd);
2110 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2111 	}
2112 }
2113 
2114 static int
2115 spa_check_for_missing_logs(spa_t *spa)
2116 {
2117 	vdev_t *rvd = spa->spa_root_vdev;
2118 
2119 	/*
2120 	 * If we're doing a normal import, then build up any additional
2121 	 * diagnostic information about missing log devices.
2122 	 * We'll pass this up to the user for further processing.
2123 	 */
2124 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2125 		nvlist_t **child, *nv;
2126 		uint64_t idx = 0;
2127 
2128 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2129 		    KM_SLEEP);
2130 		nv = fnvlist_alloc();
2131 
2132 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2133 			vdev_t *tvd = rvd->vdev_child[c];
2134 
2135 			/*
2136 			 * We consider a device as missing only if it failed
2137 			 * to open (i.e. offline or faulted is not considered
2138 			 * as missing).
2139 			 */
2140 			if (tvd->vdev_islog &&
2141 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2142 				child[idx++] = vdev_config_generate(spa, tvd,
2143 				    B_FALSE, VDEV_CONFIG_MISSING);
2144 			}
2145 		}
2146 
2147 		if (idx > 0) {
2148 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2149 			    (const nvlist_t * const *)child, idx);
2150 			fnvlist_add_nvlist(spa->spa_load_info,
2151 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
2152 
2153 			for (uint64_t i = 0; i < idx; i++)
2154 				nvlist_free(child[i]);
2155 		}
2156 		nvlist_free(nv);
2157 		kmem_free(child, rvd->vdev_children * sizeof (char **));
2158 
2159 		if (idx > 0) {
2160 			spa_load_failed(spa, "some log devices are missing");
2161 			vdev_dbgmsg_print_tree(rvd, 2);
2162 			return (SET_ERROR(ENXIO));
2163 		}
2164 	} else {
2165 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2166 			vdev_t *tvd = rvd->vdev_child[c];
2167 
2168 			if (tvd->vdev_islog &&
2169 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2170 				spa_set_log_state(spa, SPA_LOG_CLEAR);
2171 				spa_load_note(spa, "some log devices are "
2172 				    "missing, ZIL is dropped.");
2173 				vdev_dbgmsg_print_tree(rvd, 2);
2174 				break;
2175 			}
2176 		}
2177 	}
2178 
2179 	return (0);
2180 }
2181 
2182 /*
2183  * Check for missing log devices
2184  */
2185 static boolean_t
2186 spa_check_logs(spa_t *spa)
2187 {
2188 	boolean_t rv = B_FALSE;
2189 	dsl_pool_t *dp = spa_get_dsl(spa);
2190 
2191 	switch (spa->spa_log_state) {
2192 	default:
2193 		break;
2194 	case SPA_LOG_MISSING:
2195 		/* need to recheck in case slog has been restored */
2196 	case SPA_LOG_UNKNOWN:
2197 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2198 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2199 		if (rv)
2200 			spa_set_log_state(spa, SPA_LOG_MISSING);
2201 		break;
2202 	}
2203 	return (rv);
2204 }
2205 
2206 /*
2207  * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2208  */
2209 static boolean_t
2210 spa_passivate_log(spa_t *spa)
2211 {
2212 	vdev_t *rvd = spa->spa_root_vdev;
2213 	boolean_t slog_found = B_FALSE;
2214 
2215 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2216 
2217 	for (int c = 0; c < rvd->vdev_children; c++) {
2218 		vdev_t *tvd = rvd->vdev_child[c];
2219 
2220 		if (tvd->vdev_islog) {
2221 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2222 			metaslab_group_passivate(tvd->vdev_mg);
2223 			slog_found = B_TRUE;
2224 		}
2225 	}
2226 
2227 	return (slog_found);
2228 }
2229 
2230 /*
2231  * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2232  */
2233 static void
2234 spa_activate_log(spa_t *spa)
2235 {
2236 	vdev_t *rvd = spa->spa_root_vdev;
2237 
2238 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2239 
2240 	for (int c = 0; c < rvd->vdev_children; c++) {
2241 		vdev_t *tvd = rvd->vdev_child[c];
2242 
2243 		if (tvd->vdev_islog) {
2244 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2245 			metaslab_group_activate(tvd->vdev_mg);
2246 		}
2247 	}
2248 }
2249 
2250 int
2251 spa_reset_logs(spa_t *spa)
2252 {
2253 	int error;
2254 
2255 	error = dmu_objset_find(spa_name(spa), zil_reset,
2256 	    NULL, DS_FIND_CHILDREN);
2257 	if (error == 0) {
2258 		/*
2259 		 * We successfully offlined the log device, sync out the
2260 		 * current txg so that the "stubby" block can be removed
2261 		 * by zil_sync().
2262 		 */
2263 		txg_wait_synced(spa->spa_dsl_pool, 0);
2264 	}
2265 	return (error);
2266 }
2267 
2268 static void
2269 spa_aux_check_removed(spa_aux_vdev_t *sav)
2270 {
2271 	for (int i = 0; i < sav->sav_count; i++)
2272 		spa_check_removed(sav->sav_vdevs[i]);
2273 }
2274 
2275 void
2276 spa_claim_notify(zio_t *zio)
2277 {
2278 	spa_t *spa = zio->io_spa;
2279 
2280 	if (zio->io_error)
2281 		return;
2282 
2283 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2284 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2285 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2286 	mutex_exit(&spa->spa_props_lock);
2287 }
2288 
2289 typedef struct spa_load_error {
2290 	boolean_t	sle_verify_data;
2291 	uint64_t	sle_meta_count;
2292 	uint64_t	sle_data_count;
2293 } spa_load_error_t;
2294 
2295 static void
2296 spa_load_verify_done(zio_t *zio)
2297 {
2298 	blkptr_t *bp = zio->io_bp;
2299 	spa_load_error_t *sle = zio->io_private;
2300 	dmu_object_type_t type = BP_GET_TYPE(bp);
2301 	int error = zio->io_error;
2302 	spa_t *spa = zio->io_spa;
2303 
2304 	abd_free(zio->io_abd);
2305 	if (error) {
2306 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2307 		    type != DMU_OT_INTENT_LOG)
2308 			atomic_inc_64(&sle->sle_meta_count);
2309 		else
2310 			atomic_inc_64(&sle->sle_data_count);
2311 	}
2312 
2313 	mutex_enter(&spa->spa_scrub_lock);
2314 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2315 	cv_broadcast(&spa->spa_scrub_io_cv);
2316 	mutex_exit(&spa->spa_scrub_lock);
2317 }
2318 
2319 /*
2320  * Maximum number of inflight bytes is the log2 fraction of the arc size.
2321  * By default, we set it to 1/16th of the arc.
2322  */
2323 static uint_t spa_load_verify_shift = 4;
2324 static int spa_load_verify_metadata = B_TRUE;
2325 static int spa_load_verify_data = B_TRUE;
2326 
2327 static int
2328 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2329     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2330 {
2331 	zio_t *rio = arg;
2332 	spa_load_error_t *sle = rio->io_private;
2333 
2334 	(void) zilog, (void) dnp;
2335 
2336 	/*
2337 	 * Note: normally this routine will not be called if
2338 	 * spa_load_verify_metadata is not set.  However, it may be useful
2339 	 * to manually set the flag after the traversal has begun.
2340 	 */
2341 	if (!spa_load_verify_metadata)
2342 		return (0);
2343 
2344 	/*
2345 	 * Sanity check the block pointer in order to detect obvious damage
2346 	 * before using the contents in subsequent checks or in zio_read().
2347 	 * When damaged consider it to be a metadata error since we cannot
2348 	 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2349 	 */
2350 	if (!zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_LOG)) {
2351 		atomic_inc_64(&sle->sle_meta_count);
2352 		return (0);
2353 	}
2354 
2355 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2356 	    BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2357 		return (0);
2358 
2359 	if (!BP_IS_METADATA(bp) &&
2360 	    (!spa_load_verify_data || !sle->sle_verify_data))
2361 		return (0);
2362 
2363 	uint64_t maxinflight_bytes =
2364 	    arc_target_bytes() >> spa_load_verify_shift;
2365 	size_t size = BP_GET_PSIZE(bp);
2366 
2367 	mutex_enter(&spa->spa_scrub_lock);
2368 	while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2369 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2370 	spa->spa_load_verify_bytes += size;
2371 	mutex_exit(&spa->spa_scrub_lock);
2372 
2373 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2374 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2375 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2376 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2377 	return (0);
2378 }
2379 
2380 static int
2381 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2382 {
2383 	(void) dp, (void) arg;
2384 
2385 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2386 		return (SET_ERROR(ENAMETOOLONG));
2387 
2388 	return (0);
2389 }
2390 
2391 static int
2392 spa_load_verify(spa_t *spa)
2393 {
2394 	zio_t *rio;
2395 	spa_load_error_t sle = { 0 };
2396 	zpool_load_policy_t policy;
2397 	boolean_t verify_ok = B_FALSE;
2398 	int error = 0;
2399 
2400 	zpool_get_load_policy(spa->spa_config, &policy);
2401 
2402 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2403 	    policy.zlp_maxmeta == UINT64_MAX)
2404 		return (0);
2405 
2406 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2407 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2408 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2409 	    DS_FIND_CHILDREN);
2410 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2411 	if (error != 0)
2412 		return (error);
2413 
2414 	/*
2415 	 * Verify data only if we are rewinding or error limit was set.
2416 	 * Otherwise nothing except dbgmsg care about it to waste time.
2417 	 */
2418 	sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2419 	    (policy.zlp_maxdata < UINT64_MAX);
2420 
2421 	rio = zio_root(spa, NULL, &sle,
2422 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2423 
2424 	if (spa_load_verify_metadata) {
2425 		if (spa->spa_extreme_rewind) {
2426 			spa_load_note(spa, "performing a complete scan of the "
2427 			    "pool since extreme rewind is on. This may take "
2428 			    "a very long time.\n  (spa_load_verify_data=%u, "
2429 			    "spa_load_verify_metadata=%u)",
2430 			    spa_load_verify_data, spa_load_verify_metadata);
2431 		}
2432 
2433 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2434 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2435 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2436 	}
2437 
2438 	(void) zio_wait(rio);
2439 	ASSERT0(spa->spa_load_verify_bytes);
2440 
2441 	spa->spa_load_meta_errors = sle.sle_meta_count;
2442 	spa->spa_load_data_errors = sle.sle_data_count;
2443 
2444 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2445 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2446 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2447 		    (u_longlong_t)sle.sle_data_count);
2448 	}
2449 
2450 	if (spa_load_verify_dryrun ||
2451 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2452 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2453 		int64_t loss = 0;
2454 
2455 		verify_ok = B_TRUE;
2456 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2457 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2458 
2459 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2460 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2461 		    spa->spa_load_txg_ts);
2462 		fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2463 		    loss);
2464 		fnvlist_add_uint64(spa->spa_load_info,
2465 		    ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2466 		fnvlist_add_uint64(spa->spa_load_info,
2467 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2468 	} else {
2469 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2470 	}
2471 
2472 	if (spa_load_verify_dryrun)
2473 		return (0);
2474 
2475 	if (error) {
2476 		if (error != ENXIO && error != EIO)
2477 			error = SET_ERROR(EIO);
2478 		return (error);
2479 	}
2480 
2481 	return (verify_ok ? 0 : EIO);
2482 }
2483 
2484 /*
2485  * Find a value in the pool props object.
2486  */
2487 static void
2488 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2489 {
2490 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2491 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2492 }
2493 
2494 /*
2495  * Find a value in the pool directory object.
2496  */
2497 static int
2498 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2499 {
2500 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2501 	    name, sizeof (uint64_t), 1, val);
2502 
2503 	if (error != 0 && (error != ENOENT || log_enoent)) {
2504 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2505 		    "[error=%d]", name, error);
2506 	}
2507 
2508 	return (error);
2509 }
2510 
2511 static int
2512 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2513 {
2514 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2515 	return (SET_ERROR(err));
2516 }
2517 
2518 boolean_t
2519 spa_livelist_delete_check(spa_t *spa)
2520 {
2521 	return (spa->spa_livelists_to_delete != 0);
2522 }
2523 
2524 static boolean_t
2525 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2526 {
2527 	(void) z;
2528 	spa_t *spa = arg;
2529 	return (spa_livelist_delete_check(spa));
2530 }
2531 
2532 static int
2533 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2534 {
2535 	spa_t *spa = arg;
2536 	zio_free(spa, tx->tx_txg, bp);
2537 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2538 	    -bp_get_dsize_sync(spa, bp),
2539 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2540 	return (0);
2541 }
2542 
2543 static int
2544 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2545 {
2546 	int err;
2547 	zap_cursor_t zc;
2548 	zap_attribute_t za;
2549 	zap_cursor_init(&zc, os, zap_obj);
2550 	err = zap_cursor_retrieve(&zc, &za);
2551 	zap_cursor_fini(&zc);
2552 	if (err == 0)
2553 		*llp = za.za_first_integer;
2554 	return (err);
2555 }
2556 
2557 /*
2558  * Components of livelist deletion that must be performed in syncing
2559  * context: freeing block pointers and updating the pool-wide data
2560  * structures to indicate how much work is left to do
2561  */
2562 typedef struct sublist_delete_arg {
2563 	spa_t *spa;
2564 	dsl_deadlist_t *ll;
2565 	uint64_t key;
2566 	bplist_t *to_free;
2567 } sublist_delete_arg_t;
2568 
2569 static void
2570 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2571 {
2572 	sublist_delete_arg_t *sda = arg;
2573 	spa_t *spa = sda->spa;
2574 	dsl_deadlist_t *ll = sda->ll;
2575 	uint64_t key = sda->key;
2576 	bplist_t *to_free = sda->to_free;
2577 
2578 	bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2579 	dsl_deadlist_remove_entry(ll, key, tx);
2580 }
2581 
2582 typedef struct livelist_delete_arg {
2583 	spa_t *spa;
2584 	uint64_t ll_obj;
2585 	uint64_t zap_obj;
2586 } livelist_delete_arg_t;
2587 
2588 static void
2589 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2590 {
2591 	livelist_delete_arg_t *lda = arg;
2592 	spa_t *spa = lda->spa;
2593 	uint64_t ll_obj = lda->ll_obj;
2594 	uint64_t zap_obj = lda->zap_obj;
2595 	objset_t *mos = spa->spa_meta_objset;
2596 	uint64_t count;
2597 
2598 	/* free the livelist and decrement the feature count */
2599 	VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2600 	dsl_deadlist_free(mos, ll_obj, tx);
2601 	spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2602 	VERIFY0(zap_count(mos, zap_obj, &count));
2603 	if (count == 0) {
2604 		/* no more livelists to delete */
2605 		VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2606 		    DMU_POOL_DELETED_CLONES, tx));
2607 		VERIFY0(zap_destroy(mos, zap_obj, tx));
2608 		spa->spa_livelists_to_delete = 0;
2609 		spa_notify_waiters(spa);
2610 	}
2611 }
2612 
2613 /*
2614  * Load in the value for the livelist to be removed and open it. Then,
2615  * load its first sublist and determine which block pointers should actually
2616  * be freed. Then, call a synctask which performs the actual frees and updates
2617  * the pool-wide livelist data.
2618  */
2619 static void
2620 spa_livelist_delete_cb(void *arg, zthr_t *z)
2621 {
2622 	spa_t *spa = arg;
2623 	uint64_t ll_obj = 0, count;
2624 	objset_t *mos = spa->spa_meta_objset;
2625 	uint64_t zap_obj = spa->spa_livelists_to_delete;
2626 	/*
2627 	 * Determine the next livelist to delete. This function should only
2628 	 * be called if there is at least one deleted clone.
2629 	 */
2630 	VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2631 	VERIFY0(zap_count(mos, ll_obj, &count));
2632 	if (count > 0) {
2633 		dsl_deadlist_t *ll;
2634 		dsl_deadlist_entry_t *dle;
2635 		bplist_t to_free;
2636 		ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
2637 		dsl_deadlist_open(ll, mos, ll_obj);
2638 		dle = dsl_deadlist_first(ll);
2639 		ASSERT3P(dle, !=, NULL);
2640 		bplist_create(&to_free);
2641 		int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
2642 		    z, NULL);
2643 		if (err == 0) {
2644 			sublist_delete_arg_t sync_arg = {
2645 			    .spa = spa,
2646 			    .ll = ll,
2647 			    .key = dle->dle_mintxg,
2648 			    .to_free = &to_free
2649 			};
2650 			zfs_dbgmsg("deleting sublist (id %llu) from"
2651 			    " livelist %llu, %lld remaining",
2652 			    (u_longlong_t)dle->dle_bpobj.bpo_object,
2653 			    (u_longlong_t)ll_obj, (longlong_t)count - 1);
2654 			VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2655 			    sublist_delete_sync, &sync_arg, 0,
2656 			    ZFS_SPACE_CHECK_DESTROY));
2657 		} else {
2658 			VERIFY3U(err, ==, EINTR);
2659 		}
2660 		bplist_clear(&to_free);
2661 		bplist_destroy(&to_free);
2662 		dsl_deadlist_close(ll);
2663 		kmem_free(ll, sizeof (dsl_deadlist_t));
2664 	} else {
2665 		livelist_delete_arg_t sync_arg = {
2666 		    .spa = spa,
2667 		    .ll_obj = ll_obj,
2668 		    .zap_obj = zap_obj
2669 		};
2670 		zfs_dbgmsg("deletion of livelist %llu completed",
2671 		    (u_longlong_t)ll_obj);
2672 		VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
2673 		    &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
2674 	}
2675 }
2676 
2677 static void
2678 spa_start_livelist_destroy_thread(spa_t *spa)
2679 {
2680 	ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
2681 	spa->spa_livelist_delete_zthr =
2682 	    zthr_create("z_livelist_destroy",
2683 	    spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
2684 	    minclsyspri);
2685 }
2686 
2687 typedef struct livelist_new_arg {
2688 	bplist_t *allocs;
2689 	bplist_t *frees;
2690 } livelist_new_arg_t;
2691 
2692 static int
2693 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
2694     dmu_tx_t *tx)
2695 {
2696 	ASSERT(tx == NULL);
2697 	livelist_new_arg_t *lna = arg;
2698 	if (bp_freed) {
2699 		bplist_append(lna->frees, bp);
2700 	} else {
2701 		bplist_append(lna->allocs, bp);
2702 		zfs_livelist_condense_new_alloc++;
2703 	}
2704 	return (0);
2705 }
2706 
2707 typedef struct livelist_condense_arg {
2708 	spa_t *spa;
2709 	bplist_t to_keep;
2710 	uint64_t first_size;
2711 	uint64_t next_size;
2712 } livelist_condense_arg_t;
2713 
2714 static void
2715 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
2716 {
2717 	livelist_condense_arg_t *lca = arg;
2718 	spa_t *spa = lca->spa;
2719 	bplist_t new_frees;
2720 	dsl_dataset_t *ds = spa->spa_to_condense.ds;
2721 
2722 	/* Have we been cancelled? */
2723 	if (spa->spa_to_condense.cancelled) {
2724 		zfs_livelist_condense_sync_cancel++;
2725 		goto out;
2726 	}
2727 
2728 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2729 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2730 	dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
2731 
2732 	/*
2733 	 * It's possible that the livelist was changed while the zthr was
2734 	 * running. Therefore, we need to check for new blkptrs in the two
2735 	 * entries being condensed and continue to track them in the livelist.
2736 	 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
2737 	 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
2738 	 * we need to sort them into two different bplists.
2739 	 */
2740 	uint64_t first_obj = first->dle_bpobj.bpo_object;
2741 	uint64_t next_obj = next->dle_bpobj.bpo_object;
2742 	uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2743 	uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2744 
2745 	bplist_create(&new_frees);
2746 	livelist_new_arg_t new_bps = {
2747 	    .allocs = &lca->to_keep,
2748 	    .frees = &new_frees,
2749 	};
2750 
2751 	if (cur_first_size > lca->first_size) {
2752 		VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
2753 		    livelist_track_new_cb, &new_bps, lca->first_size));
2754 	}
2755 	if (cur_next_size > lca->next_size) {
2756 		VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
2757 		    livelist_track_new_cb, &new_bps, lca->next_size));
2758 	}
2759 
2760 	dsl_deadlist_clear_entry(first, ll, tx);
2761 	ASSERT(bpobj_is_empty(&first->dle_bpobj));
2762 	dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
2763 
2764 	bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
2765 	bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
2766 	bplist_destroy(&new_frees);
2767 
2768 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
2769 	dsl_dataset_name(ds, dsname);
2770 	zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
2771 	    "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
2772 	    "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
2773 	    (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
2774 	    (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
2775 	    (u_longlong_t)cur_next_size,
2776 	    (u_longlong_t)first->dle_bpobj.bpo_object,
2777 	    (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
2778 out:
2779 	dmu_buf_rele(ds->ds_dbuf, spa);
2780 	spa->spa_to_condense.ds = NULL;
2781 	bplist_clear(&lca->to_keep);
2782 	bplist_destroy(&lca->to_keep);
2783 	kmem_free(lca, sizeof (livelist_condense_arg_t));
2784 	spa->spa_to_condense.syncing = B_FALSE;
2785 }
2786 
2787 static void
2788 spa_livelist_condense_cb(void *arg, zthr_t *t)
2789 {
2790 	while (zfs_livelist_condense_zthr_pause &&
2791 	    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2792 		delay(1);
2793 
2794 	spa_t *spa = arg;
2795 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2796 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2797 	uint64_t first_size, next_size;
2798 
2799 	livelist_condense_arg_t *lca =
2800 	    kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
2801 	bplist_create(&lca->to_keep);
2802 
2803 	/*
2804 	 * Process the livelists (matching FREEs and ALLOCs) in open context
2805 	 * so we have minimal work in syncing context to condense.
2806 	 *
2807 	 * We save bpobj sizes (first_size and next_size) to use later in
2808 	 * syncing context to determine if entries were added to these sublists
2809 	 * while in open context. This is possible because the clone is still
2810 	 * active and open for normal writes and we want to make sure the new,
2811 	 * unprocessed blockpointers are inserted into the livelist normally.
2812 	 *
2813 	 * Note that dsl_process_sub_livelist() both stores the size number of
2814 	 * blockpointers and iterates over them while the bpobj's lock held, so
2815 	 * the sizes returned to us are consistent which what was actually
2816 	 * processed.
2817 	 */
2818 	int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
2819 	    &first_size);
2820 	if (err == 0)
2821 		err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
2822 		    t, &next_size);
2823 
2824 	if (err == 0) {
2825 		while (zfs_livelist_condense_sync_pause &&
2826 		    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2827 			delay(1);
2828 
2829 		dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2830 		dmu_tx_mark_netfree(tx);
2831 		dmu_tx_hold_space(tx, 1);
2832 		err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
2833 		if (err == 0) {
2834 			/*
2835 			 * Prevent the condense zthr restarting before
2836 			 * the synctask completes.
2837 			 */
2838 			spa->spa_to_condense.syncing = B_TRUE;
2839 			lca->spa = spa;
2840 			lca->first_size = first_size;
2841 			lca->next_size = next_size;
2842 			dsl_sync_task_nowait(spa_get_dsl(spa),
2843 			    spa_livelist_condense_sync, lca, tx);
2844 			dmu_tx_commit(tx);
2845 			return;
2846 		}
2847 	}
2848 	/*
2849 	 * Condensing can not continue: either it was externally stopped or
2850 	 * we were unable to assign to a tx because the pool has run out of
2851 	 * space. In the second case, we'll just end up trying to condense
2852 	 * again in a later txg.
2853 	 */
2854 	ASSERT(err != 0);
2855 	bplist_clear(&lca->to_keep);
2856 	bplist_destroy(&lca->to_keep);
2857 	kmem_free(lca, sizeof (livelist_condense_arg_t));
2858 	dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
2859 	spa->spa_to_condense.ds = NULL;
2860 	if (err == EINTR)
2861 		zfs_livelist_condense_zthr_cancel++;
2862 }
2863 
2864 /*
2865  * Check that there is something to condense but that a condense is not
2866  * already in progress and that condensing has not been cancelled.
2867  */
2868 static boolean_t
2869 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
2870 {
2871 	(void) z;
2872 	spa_t *spa = arg;
2873 	if ((spa->spa_to_condense.ds != NULL) &&
2874 	    (spa->spa_to_condense.syncing == B_FALSE) &&
2875 	    (spa->spa_to_condense.cancelled == B_FALSE)) {
2876 		return (B_TRUE);
2877 	}
2878 	return (B_FALSE);
2879 }
2880 
2881 static void
2882 spa_start_livelist_condensing_thread(spa_t *spa)
2883 {
2884 	spa->spa_to_condense.ds = NULL;
2885 	spa->spa_to_condense.first = NULL;
2886 	spa->spa_to_condense.next = NULL;
2887 	spa->spa_to_condense.syncing = B_FALSE;
2888 	spa->spa_to_condense.cancelled = B_FALSE;
2889 
2890 	ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
2891 	spa->spa_livelist_condense_zthr =
2892 	    zthr_create("z_livelist_condense",
2893 	    spa_livelist_condense_cb_check,
2894 	    spa_livelist_condense_cb, spa, minclsyspri);
2895 }
2896 
2897 static void
2898 spa_spawn_aux_threads(spa_t *spa)
2899 {
2900 	ASSERT(spa_writeable(spa));
2901 
2902 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2903 
2904 	spa_start_indirect_condensing_thread(spa);
2905 	spa_start_livelist_destroy_thread(spa);
2906 	spa_start_livelist_condensing_thread(spa);
2907 
2908 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2909 	spa->spa_checkpoint_discard_zthr =
2910 	    zthr_create("z_checkpoint_discard",
2911 	    spa_checkpoint_discard_thread_check,
2912 	    spa_checkpoint_discard_thread, spa, minclsyspri);
2913 }
2914 
2915 /*
2916  * Fix up config after a partly-completed split.  This is done with the
2917  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2918  * pool have that entry in their config, but only the splitting one contains
2919  * a list of all the guids of the vdevs that are being split off.
2920  *
2921  * This function determines what to do with that list: either rejoin
2922  * all the disks to the pool, or complete the splitting process.  To attempt
2923  * the rejoin, each disk that is offlined is marked online again, and
2924  * we do a reopen() call.  If the vdev label for every disk that was
2925  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2926  * then we call vdev_split() on each disk, and complete the split.
2927  *
2928  * Otherwise we leave the config alone, with all the vdevs in place in
2929  * the original pool.
2930  */
2931 static void
2932 spa_try_repair(spa_t *spa, nvlist_t *config)
2933 {
2934 	uint_t extracted;
2935 	uint64_t *glist;
2936 	uint_t i, gcount;
2937 	nvlist_t *nvl;
2938 	vdev_t **vd;
2939 	boolean_t attempt_reopen;
2940 
2941 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2942 		return;
2943 
2944 	/* check that the config is complete */
2945 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2946 	    &glist, &gcount) != 0)
2947 		return;
2948 
2949 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2950 
2951 	/* attempt to online all the vdevs & validate */
2952 	attempt_reopen = B_TRUE;
2953 	for (i = 0; i < gcount; i++) {
2954 		if (glist[i] == 0)	/* vdev is hole */
2955 			continue;
2956 
2957 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2958 		if (vd[i] == NULL) {
2959 			/*
2960 			 * Don't bother attempting to reopen the disks;
2961 			 * just do the split.
2962 			 */
2963 			attempt_reopen = B_FALSE;
2964 		} else {
2965 			/* attempt to re-online it */
2966 			vd[i]->vdev_offline = B_FALSE;
2967 		}
2968 	}
2969 
2970 	if (attempt_reopen) {
2971 		vdev_reopen(spa->spa_root_vdev);
2972 
2973 		/* check each device to see what state it's in */
2974 		for (extracted = 0, i = 0; i < gcount; i++) {
2975 			if (vd[i] != NULL &&
2976 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2977 				break;
2978 			++extracted;
2979 		}
2980 	}
2981 
2982 	/*
2983 	 * If every disk has been moved to the new pool, or if we never
2984 	 * even attempted to look at them, then we split them off for
2985 	 * good.
2986 	 */
2987 	if (!attempt_reopen || gcount == extracted) {
2988 		for (i = 0; i < gcount; i++)
2989 			if (vd[i] != NULL)
2990 				vdev_split(vd[i]);
2991 		vdev_reopen(spa->spa_root_vdev);
2992 	}
2993 
2994 	kmem_free(vd, gcount * sizeof (vdev_t *));
2995 }
2996 
2997 static int
2998 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2999 {
3000 	const char *ereport = FM_EREPORT_ZFS_POOL;
3001 	int error;
3002 
3003 	spa->spa_load_state = state;
3004 	(void) spa_import_progress_set_state(spa_guid(spa),
3005 	    spa_load_state(spa));
3006 
3007 	gethrestime(&spa->spa_loaded_ts);
3008 	error = spa_load_impl(spa, type, &ereport);
3009 
3010 	/*
3011 	 * Don't count references from objsets that are already closed
3012 	 * and are making their way through the eviction process.
3013 	 */
3014 	spa_evicting_os_wait(spa);
3015 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3016 	if (error) {
3017 		if (error != EEXIST) {
3018 			spa->spa_loaded_ts.tv_sec = 0;
3019 			spa->spa_loaded_ts.tv_nsec = 0;
3020 		}
3021 		if (error != EBADF) {
3022 			(void) zfs_ereport_post(ereport, spa,
3023 			    NULL, NULL, NULL, 0);
3024 		}
3025 	}
3026 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3027 	spa->spa_ena = 0;
3028 
3029 	(void) spa_import_progress_set_state(spa_guid(spa),
3030 	    spa_load_state(spa));
3031 
3032 	return (error);
3033 }
3034 
3035 #ifdef ZFS_DEBUG
3036 /*
3037  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3038  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3039  * spa's per-vdev ZAP list.
3040  */
3041 static uint64_t
3042 vdev_count_verify_zaps(vdev_t *vd)
3043 {
3044 	spa_t *spa = vd->vdev_spa;
3045 	uint64_t total = 0;
3046 
3047 	if (vd->vdev_top_zap != 0) {
3048 		total++;
3049 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3050 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3051 	}
3052 	if (vd->vdev_leaf_zap != 0) {
3053 		total++;
3054 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3055 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3056 	}
3057 
3058 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3059 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
3060 	}
3061 
3062 	return (total);
3063 }
3064 #else
3065 #define	vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3066 #endif
3067 
3068 /*
3069  * Determine whether the activity check is required.
3070  */
3071 static boolean_t
3072 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3073     nvlist_t *config)
3074 {
3075 	uint64_t state = 0;
3076 	uint64_t hostid = 0;
3077 	uint64_t tryconfig_txg = 0;
3078 	uint64_t tryconfig_timestamp = 0;
3079 	uint16_t tryconfig_mmp_seq = 0;
3080 	nvlist_t *nvinfo;
3081 
3082 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3083 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3084 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3085 		    &tryconfig_txg);
3086 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3087 		    &tryconfig_timestamp);
3088 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3089 		    &tryconfig_mmp_seq);
3090 	}
3091 
3092 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3093 
3094 	/*
3095 	 * Disable the MMP activity check - This is used by zdb which
3096 	 * is intended to be used on potentially active pools.
3097 	 */
3098 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3099 		return (B_FALSE);
3100 
3101 	/*
3102 	 * Skip the activity check when the MMP feature is disabled.
3103 	 */
3104 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3105 		return (B_FALSE);
3106 
3107 	/*
3108 	 * If the tryconfig_ values are nonzero, they are the results of an
3109 	 * earlier tryimport.  If they all match the uberblock we just found,
3110 	 * then the pool has not changed and we return false so we do not test
3111 	 * a second time.
3112 	 */
3113 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3114 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3115 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
3116 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3117 		return (B_FALSE);
3118 
3119 	/*
3120 	 * Allow the activity check to be skipped when importing the pool
3121 	 * on the same host which last imported it.  Since the hostid from
3122 	 * configuration may be stale use the one read from the label.
3123 	 */
3124 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3125 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3126 
3127 	if (hostid == spa_get_hostid(spa))
3128 		return (B_FALSE);
3129 
3130 	/*
3131 	 * Skip the activity test when the pool was cleanly exported.
3132 	 */
3133 	if (state != POOL_STATE_ACTIVE)
3134 		return (B_FALSE);
3135 
3136 	return (B_TRUE);
3137 }
3138 
3139 /*
3140  * Nanoseconds the activity check must watch for changes on-disk.
3141  */
3142 static uint64_t
3143 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3144 {
3145 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3146 	uint64_t multihost_interval = MSEC2NSEC(
3147 	    MMP_INTERVAL_OK(zfs_multihost_interval));
3148 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
3149 	    multihost_interval);
3150 
3151 	/*
3152 	 * Local tunables determine a minimum duration except for the case
3153 	 * where we know when the remote host will suspend the pool if MMP
3154 	 * writes do not land.
3155 	 *
3156 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
3157 	 * these cases and times.
3158 	 */
3159 
3160 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3161 
3162 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3163 	    MMP_FAIL_INT(ub) > 0) {
3164 
3165 		/* MMP on remote host will suspend pool after failed writes */
3166 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3167 		    MMP_IMPORT_SAFETY_FACTOR / 100;
3168 
3169 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3170 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3171 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3172 		    (u_longlong_t)MMP_FAIL_INT(ub),
3173 		    (u_longlong_t)MMP_INTERVAL(ub),
3174 		    (u_longlong_t)import_intervals);
3175 
3176 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3177 	    MMP_FAIL_INT(ub) == 0) {
3178 
3179 		/* MMP on remote host will never suspend pool */
3180 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3181 		    ub->ub_mmp_delay) * import_intervals);
3182 
3183 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3184 		    "mmp_interval=%llu ub_mmp_delay=%llu "
3185 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3186 		    (u_longlong_t)MMP_INTERVAL(ub),
3187 		    (u_longlong_t)ub->ub_mmp_delay,
3188 		    (u_longlong_t)import_intervals);
3189 
3190 	} else if (MMP_VALID(ub)) {
3191 		/*
3192 		 * zfs-0.7 compatibility case
3193 		 */
3194 
3195 		import_delay = MAX(import_delay, (multihost_interval +
3196 		    ub->ub_mmp_delay) * import_intervals);
3197 
3198 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3199 		    "import_intervals=%llu leaves=%u",
3200 		    (u_longlong_t)import_delay,
3201 		    (u_longlong_t)ub->ub_mmp_delay,
3202 		    (u_longlong_t)import_intervals,
3203 		    vdev_count_leaves(spa));
3204 	} else {
3205 		/* Using local tunings is the only reasonable option */
3206 		zfs_dbgmsg("pool last imported on non-MMP aware "
3207 		    "host using import_delay=%llu multihost_interval=%llu "
3208 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3209 		    (u_longlong_t)multihost_interval,
3210 		    (u_longlong_t)import_intervals);
3211 	}
3212 
3213 	return (import_delay);
3214 }
3215 
3216 /*
3217  * Perform the import activity check.  If the user canceled the import or
3218  * we detected activity then fail.
3219  */
3220 static int
3221 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3222 {
3223 	uint64_t txg = ub->ub_txg;
3224 	uint64_t timestamp = ub->ub_timestamp;
3225 	uint64_t mmp_config = ub->ub_mmp_config;
3226 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3227 	uint64_t import_delay;
3228 	hrtime_t import_expire;
3229 	nvlist_t *mmp_label = NULL;
3230 	vdev_t *rvd = spa->spa_root_vdev;
3231 	kcondvar_t cv;
3232 	kmutex_t mtx;
3233 	int error = 0;
3234 
3235 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
3236 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3237 	mutex_enter(&mtx);
3238 
3239 	/*
3240 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3241 	 * during the earlier tryimport.  If the txg recorded there is 0 then
3242 	 * the pool is known to be active on another host.
3243 	 *
3244 	 * Otherwise, the pool might be in use on another host.  Check for
3245 	 * changes in the uberblocks on disk if necessary.
3246 	 */
3247 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3248 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3249 		    ZPOOL_CONFIG_LOAD_INFO);
3250 
3251 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3252 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3253 			vdev_uberblock_load(rvd, ub, &mmp_label);
3254 			error = SET_ERROR(EREMOTEIO);
3255 			goto out;
3256 		}
3257 	}
3258 
3259 	import_delay = spa_activity_check_duration(spa, ub);
3260 
3261 	/* Add a small random factor in case of simultaneous imports (0-25%) */
3262 	import_delay += import_delay * random_in_range(250) / 1000;
3263 
3264 	import_expire = gethrtime() + import_delay;
3265 
3266 	while (gethrtime() < import_expire) {
3267 		(void) spa_import_progress_set_mmp_check(spa_guid(spa),
3268 		    NSEC2SEC(import_expire - gethrtime()));
3269 
3270 		vdev_uberblock_load(rvd, ub, &mmp_label);
3271 
3272 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3273 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3274 			zfs_dbgmsg("multihost activity detected "
3275 			    "txg %llu ub_txg  %llu "
3276 			    "timestamp %llu ub_timestamp  %llu "
3277 			    "mmp_config %#llx ub_mmp_config %#llx",
3278 			    (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3279 			    (u_longlong_t)timestamp,
3280 			    (u_longlong_t)ub->ub_timestamp,
3281 			    (u_longlong_t)mmp_config,
3282 			    (u_longlong_t)ub->ub_mmp_config);
3283 
3284 			error = SET_ERROR(EREMOTEIO);
3285 			break;
3286 		}
3287 
3288 		if (mmp_label) {
3289 			nvlist_free(mmp_label);
3290 			mmp_label = NULL;
3291 		}
3292 
3293 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3294 		if (error != -1) {
3295 			error = SET_ERROR(EINTR);
3296 			break;
3297 		}
3298 		error = 0;
3299 	}
3300 
3301 out:
3302 	mutex_exit(&mtx);
3303 	mutex_destroy(&mtx);
3304 	cv_destroy(&cv);
3305 
3306 	/*
3307 	 * If the pool is determined to be active store the status in the
3308 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
3309 	 * available from configuration read from disk store them as well.
3310 	 * This allows 'zpool import' to generate a more useful message.
3311 	 *
3312 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
3313 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3314 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
3315 	 */
3316 	if (error == EREMOTEIO) {
3317 		const char *hostname = "<unknown>";
3318 		uint64_t hostid = 0;
3319 
3320 		if (mmp_label) {
3321 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3322 				hostname = fnvlist_lookup_string(mmp_label,
3323 				    ZPOOL_CONFIG_HOSTNAME);
3324 				fnvlist_add_string(spa->spa_load_info,
3325 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3326 			}
3327 
3328 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3329 				hostid = fnvlist_lookup_uint64(mmp_label,
3330 				    ZPOOL_CONFIG_HOSTID);
3331 				fnvlist_add_uint64(spa->spa_load_info,
3332 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
3333 			}
3334 		}
3335 
3336 		fnvlist_add_uint64(spa->spa_load_info,
3337 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3338 		fnvlist_add_uint64(spa->spa_load_info,
3339 		    ZPOOL_CONFIG_MMP_TXG, 0);
3340 
3341 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3342 	}
3343 
3344 	if (mmp_label)
3345 		nvlist_free(mmp_label);
3346 
3347 	return (error);
3348 }
3349 
3350 static int
3351 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3352 {
3353 	uint64_t hostid;
3354 	const char *hostname;
3355 	uint64_t myhostid = 0;
3356 
3357 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3358 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3359 		hostname = fnvlist_lookup_string(mos_config,
3360 		    ZPOOL_CONFIG_HOSTNAME);
3361 
3362 		myhostid = zone_get_hostid(NULL);
3363 
3364 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3365 			cmn_err(CE_WARN, "pool '%s' could not be "
3366 			    "loaded as it was last accessed by "
3367 			    "another system (host: %s hostid: 0x%llx). "
3368 			    "See: https://openzfs.github.io/openzfs-docs/msg/"
3369 			    "ZFS-8000-EY",
3370 			    spa_name(spa), hostname, (u_longlong_t)hostid);
3371 			spa_load_failed(spa, "hostid verification failed: pool "
3372 			    "last accessed by host: %s (hostid: 0x%llx)",
3373 			    hostname, (u_longlong_t)hostid);
3374 			return (SET_ERROR(EBADF));
3375 		}
3376 	}
3377 
3378 	return (0);
3379 }
3380 
3381 static int
3382 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3383 {
3384 	int error = 0;
3385 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3386 	int parse;
3387 	vdev_t *rvd;
3388 	uint64_t pool_guid;
3389 	const char *comment;
3390 	const char *compatibility;
3391 
3392 	/*
3393 	 * Versioning wasn't explicitly added to the label until later, so if
3394 	 * it's not present treat it as the initial version.
3395 	 */
3396 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3397 	    &spa->spa_ubsync.ub_version) != 0)
3398 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3399 
3400 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3401 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3402 		    ZPOOL_CONFIG_POOL_GUID);
3403 		return (SET_ERROR(EINVAL));
3404 	}
3405 
3406 	/*
3407 	 * If we are doing an import, ensure that the pool is not already
3408 	 * imported by checking if its pool guid already exists in the
3409 	 * spa namespace.
3410 	 *
3411 	 * The only case that we allow an already imported pool to be
3412 	 * imported again, is when the pool is checkpointed and we want to
3413 	 * look at its checkpointed state from userland tools like zdb.
3414 	 */
3415 #ifdef _KERNEL
3416 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3417 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3418 	    spa_guid_exists(pool_guid, 0)) {
3419 #else
3420 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3421 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3422 	    spa_guid_exists(pool_guid, 0) &&
3423 	    !spa_importing_readonly_checkpoint(spa)) {
3424 #endif
3425 		spa_load_failed(spa, "a pool with guid %llu is already open",
3426 		    (u_longlong_t)pool_guid);
3427 		return (SET_ERROR(EEXIST));
3428 	}
3429 
3430 	spa->spa_config_guid = pool_guid;
3431 
3432 	nvlist_free(spa->spa_load_info);
3433 	spa->spa_load_info = fnvlist_alloc();
3434 
3435 	ASSERT(spa->spa_comment == NULL);
3436 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3437 		spa->spa_comment = spa_strdup(comment);
3438 
3439 	ASSERT(spa->spa_compatibility == NULL);
3440 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3441 	    &compatibility) == 0)
3442 		spa->spa_compatibility = spa_strdup(compatibility);
3443 
3444 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3445 	    &spa->spa_config_txg);
3446 
3447 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3448 		spa->spa_config_splitting = fnvlist_dup(nvl);
3449 
3450 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3451 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3452 		    ZPOOL_CONFIG_VDEV_TREE);
3453 		return (SET_ERROR(EINVAL));
3454 	}
3455 
3456 	/*
3457 	 * Create "The Godfather" zio to hold all async IOs
3458 	 */
3459 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3460 	    KM_SLEEP);
3461 	for (int i = 0; i < max_ncpus; i++) {
3462 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3463 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3464 		    ZIO_FLAG_GODFATHER);
3465 	}
3466 
3467 	/*
3468 	 * Parse the configuration into a vdev tree.  We explicitly set the
3469 	 * value that will be returned by spa_version() since parsing the
3470 	 * configuration requires knowing the version number.
3471 	 */
3472 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3473 	parse = (type == SPA_IMPORT_EXISTING ?
3474 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3475 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3476 	spa_config_exit(spa, SCL_ALL, FTAG);
3477 
3478 	if (error != 0) {
3479 		spa_load_failed(spa, "unable to parse config [error=%d]",
3480 		    error);
3481 		return (error);
3482 	}
3483 
3484 	ASSERT(spa->spa_root_vdev == rvd);
3485 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3486 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3487 
3488 	if (type != SPA_IMPORT_ASSEMBLE) {
3489 		ASSERT(spa_guid(spa) == pool_guid);
3490 	}
3491 
3492 	return (0);
3493 }
3494 
3495 /*
3496  * Recursively open all vdevs in the vdev tree. This function is called twice:
3497  * first with the untrusted config, then with the trusted config.
3498  */
3499 static int
3500 spa_ld_open_vdevs(spa_t *spa)
3501 {
3502 	int error = 0;
3503 
3504 	/*
3505 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3506 	 * missing/unopenable for the root vdev to be still considered openable.
3507 	 */
3508 	if (spa->spa_trust_config) {
3509 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3510 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3511 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3512 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3513 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3514 	} else {
3515 		spa->spa_missing_tvds_allowed = 0;
3516 	}
3517 
3518 	spa->spa_missing_tvds_allowed =
3519 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3520 
3521 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3522 	error = vdev_open(spa->spa_root_vdev);
3523 	spa_config_exit(spa, SCL_ALL, FTAG);
3524 
3525 	if (spa->spa_missing_tvds != 0) {
3526 		spa_load_note(spa, "vdev tree has %lld missing top-level "
3527 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3528 		if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3529 			/*
3530 			 * Although theoretically we could allow users to open
3531 			 * incomplete pools in RW mode, we'd need to add a lot
3532 			 * of extra logic (e.g. adjust pool space to account
3533 			 * for missing vdevs).
3534 			 * This limitation also prevents users from accidentally
3535 			 * opening the pool in RW mode during data recovery and
3536 			 * damaging it further.
3537 			 */
3538 			spa_load_note(spa, "pools with missing top-level "
3539 			    "vdevs can only be opened in read-only mode.");
3540 			error = SET_ERROR(ENXIO);
3541 		} else {
3542 			spa_load_note(spa, "current settings allow for maximum "
3543 			    "%lld missing top-level vdevs at this stage.",
3544 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
3545 		}
3546 	}
3547 	if (error != 0) {
3548 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3549 		    error);
3550 	}
3551 	if (spa->spa_missing_tvds != 0 || error != 0)
3552 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3553 
3554 	return (error);
3555 }
3556 
3557 /*
3558  * We need to validate the vdev labels against the configuration that
3559  * we have in hand. This function is called twice: first with an untrusted
3560  * config, then with a trusted config. The validation is more strict when the
3561  * config is trusted.
3562  */
3563 static int
3564 spa_ld_validate_vdevs(spa_t *spa)
3565 {
3566 	int error = 0;
3567 	vdev_t *rvd = spa->spa_root_vdev;
3568 
3569 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3570 	error = vdev_validate(rvd);
3571 	spa_config_exit(spa, SCL_ALL, FTAG);
3572 
3573 	if (error != 0) {
3574 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3575 		return (error);
3576 	}
3577 
3578 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3579 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
3580 		    "some vdevs");
3581 		vdev_dbgmsg_print_tree(rvd, 2);
3582 		return (SET_ERROR(ENXIO));
3583 	}
3584 
3585 	return (0);
3586 }
3587 
3588 static void
3589 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3590 {
3591 	spa->spa_state = POOL_STATE_ACTIVE;
3592 	spa->spa_ubsync = spa->spa_uberblock;
3593 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3594 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3595 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3596 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3597 	spa->spa_claim_max_txg = spa->spa_first_txg;
3598 	spa->spa_prev_software_version = ub->ub_software_version;
3599 }
3600 
3601 static int
3602 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3603 {
3604 	vdev_t *rvd = spa->spa_root_vdev;
3605 	nvlist_t *label;
3606 	uberblock_t *ub = &spa->spa_uberblock;
3607 	boolean_t activity_check = B_FALSE;
3608 
3609 	/*
3610 	 * If we are opening the checkpointed state of the pool by
3611 	 * rewinding to it, at this point we will have written the
3612 	 * checkpointed uberblock to the vdev labels, so searching
3613 	 * the labels will find the right uberblock.  However, if
3614 	 * we are opening the checkpointed state read-only, we have
3615 	 * not modified the labels. Therefore, we must ignore the
3616 	 * labels and continue using the spa_uberblock that was set
3617 	 * by spa_ld_checkpoint_rewind.
3618 	 *
3619 	 * Note that it would be fine to ignore the labels when
3620 	 * rewinding (opening writeable) as well. However, if we
3621 	 * crash just after writing the labels, we will end up
3622 	 * searching the labels. Doing so in the common case means
3623 	 * that this code path gets exercised normally, rather than
3624 	 * just in the edge case.
3625 	 */
3626 	if (ub->ub_checkpoint_txg != 0 &&
3627 	    spa_importing_readonly_checkpoint(spa)) {
3628 		spa_ld_select_uberblock_done(spa, ub);
3629 		return (0);
3630 	}
3631 
3632 	/*
3633 	 * Find the best uberblock.
3634 	 */
3635 	vdev_uberblock_load(rvd, ub, &label);
3636 
3637 	/*
3638 	 * If we weren't able to find a single valid uberblock, return failure.
3639 	 */
3640 	if (ub->ub_txg == 0) {
3641 		nvlist_free(label);
3642 		spa_load_failed(spa, "no valid uberblock found");
3643 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3644 	}
3645 
3646 	if (spa->spa_load_max_txg != UINT64_MAX) {
3647 		(void) spa_import_progress_set_max_txg(spa_guid(spa),
3648 		    (u_longlong_t)spa->spa_load_max_txg);
3649 	}
3650 	spa_load_note(spa, "using uberblock with txg=%llu",
3651 	    (u_longlong_t)ub->ub_txg);
3652 
3653 
3654 	/*
3655 	 * For pools which have the multihost property on determine if the
3656 	 * pool is truly inactive and can be safely imported.  Prevent
3657 	 * hosts which don't have a hostid set from importing the pool.
3658 	 */
3659 	activity_check = spa_activity_check_required(spa, ub, label,
3660 	    spa->spa_config);
3661 	if (activity_check) {
3662 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3663 		    spa_get_hostid(spa) == 0) {
3664 			nvlist_free(label);
3665 			fnvlist_add_uint64(spa->spa_load_info,
3666 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3667 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3668 		}
3669 
3670 		int error = spa_activity_check(spa, ub, spa->spa_config);
3671 		if (error) {
3672 			nvlist_free(label);
3673 			return (error);
3674 		}
3675 
3676 		fnvlist_add_uint64(spa->spa_load_info,
3677 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3678 		fnvlist_add_uint64(spa->spa_load_info,
3679 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3680 		fnvlist_add_uint16(spa->spa_load_info,
3681 		    ZPOOL_CONFIG_MMP_SEQ,
3682 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3683 	}
3684 
3685 	/*
3686 	 * If the pool has an unsupported version we can't open it.
3687 	 */
3688 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3689 		nvlist_free(label);
3690 		spa_load_failed(spa, "version %llu is not supported",
3691 		    (u_longlong_t)ub->ub_version);
3692 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3693 	}
3694 
3695 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3696 		nvlist_t *features;
3697 
3698 		/*
3699 		 * If we weren't able to find what's necessary for reading the
3700 		 * MOS in the label, return failure.
3701 		 */
3702 		if (label == NULL) {
3703 			spa_load_failed(spa, "label config unavailable");
3704 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3705 			    ENXIO));
3706 		}
3707 
3708 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3709 		    &features) != 0) {
3710 			nvlist_free(label);
3711 			spa_load_failed(spa, "invalid label: '%s' missing",
3712 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
3713 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3714 			    ENXIO));
3715 		}
3716 
3717 		/*
3718 		 * Update our in-core representation with the definitive values
3719 		 * from the label.
3720 		 */
3721 		nvlist_free(spa->spa_label_features);
3722 		spa->spa_label_features = fnvlist_dup(features);
3723 	}
3724 
3725 	nvlist_free(label);
3726 
3727 	/*
3728 	 * Look through entries in the label nvlist's features_for_read. If
3729 	 * there is a feature listed there which we don't understand then we
3730 	 * cannot open a pool.
3731 	 */
3732 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3733 		nvlist_t *unsup_feat;
3734 
3735 		unsup_feat = fnvlist_alloc();
3736 
3737 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3738 		    NULL); nvp != NULL;
3739 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3740 			if (!zfeature_is_supported(nvpair_name(nvp))) {
3741 				fnvlist_add_string(unsup_feat,
3742 				    nvpair_name(nvp), "");
3743 			}
3744 		}
3745 
3746 		if (!nvlist_empty(unsup_feat)) {
3747 			fnvlist_add_nvlist(spa->spa_load_info,
3748 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3749 			nvlist_free(unsup_feat);
3750 			spa_load_failed(spa, "some features are unsupported");
3751 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3752 			    ENOTSUP));
3753 		}
3754 
3755 		nvlist_free(unsup_feat);
3756 	}
3757 
3758 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3759 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3760 		spa_try_repair(spa, spa->spa_config);
3761 		spa_config_exit(spa, SCL_ALL, FTAG);
3762 		nvlist_free(spa->spa_config_splitting);
3763 		spa->spa_config_splitting = NULL;
3764 	}
3765 
3766 	/*
3767 	 * Initialize internal SPA structures.
3768 	 */
3769 	spa_ld_select_uberblock_done(spa, ub);
3770 
3771 	return (0);
3772 }
3773 
3774 static int
3775 spa_ld_open_rootbp(spa_t *spa)
3776 {
3777 	int error = 0;
3778 	vdev_t *rvd = spa->spa_root_vdev;
3779 
3780 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3781 	if (error != 0) {
3782 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3783 		    "[error=%d]", error);
3784 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3785 	}
3786 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3787 
3788 	return (0);
3789 }
3790 
3791 static int
3792 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3793     boolean_t reloading)
3794 {
3795 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3796 	nvlist_t *nv, *mos_config, *policy;
3797 	int error = 0, copy_error;
3798 	uint64_t healthy_tvds, healthy_tvds_mos;
3799 	uint64_t mos_config_txg;
3800 
3801 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3802 	    != 0)
3803 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3804 
3805 	/*
3806 	 * If we're assembling a pool from a split, the config provided is
3807 	 * already trusted so there is nothing to do.
3808 	 */
3809 	if (type == SPA_IMPORT_ASSEMBLE)
3810 		return (0);
3811 
3812 	healthy_tvds = spa_healthy_core_tvds(spa);
3813 
3814 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3815 	    != 0) {
3816 		spa_load_failed(spa, "unable to retrieve MOS config");
3817 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3818 	}
3819 
3820 	/*
3821 	 * If we are doing an open, pool owner wasn't verified yet, thus do
3822 	 * the verification here.
3823 	 */
3824 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
3825 		error = spa_verify_host(spa, mos_config);
3826 		if (error != 0) {
3827 			nvlist_free(mos_config);
3828 			return (error);
3829 		}
3830 	}
3831 
3832 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3833 
3834 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3835 
3836 	/*
3837 	 * Build a new vdev tree from the trusted config
3838 	 */
3839 	error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
3840 	if (error != 0) {
3841 		nvlist_free(mos_config);
3842 		spa_config_exit(spa, SCL_ALL, FTAG);
3843 		spa_load_failed(spa, "spa_config_parse failed [error=%d]",
3844 		    error);
3845 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3846 	}
3847 
3848 	/*
3849 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3850 	 * obtained by scanning /dev/dsk, then it will have the right vdev
3851 	 * paths. We update the trusted MOS config with this information.
3852 	 * We first try to copy the paths with vdev_copy_path_strict, which
3853 	 * succeeds only when both configs have exactly the same vdev tree.
3854 	 * If that fails, we fall back to a more flexible method that has a
3855 	 * best effort policy.
3856 	 */
3857 	copy_error = vdev_copy_path_strict(rvd, mrvd);
3858 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3859 		spa_load_note(spa, "provided vdev tree:");
3860 		vdev_dbgmsg_print_tree(rvd, 2);
3861 		spa_load_note(spa, "MOS vdev tree:");
3862 		vdev_dbgmsg_print_tree(mrvd, 2);
3863 	}
3864 	if (copy_error != 0) {
3865 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3866 		    "back to vdev_copy_path_relaxed");
3867 		vdev_copy_path_relaxed(rvd, mrvd);
3868 	}
3869 
3870 	vdev_close(rvd);
3871 	vdev_free(rvd);
3872 	spa->spa_root_vdev = mrvd;
3873 	rvd = mrvd;
3874 	spa_config_exit(spa, SCL_ALL, FTAG);
3875 
3876 	/*
3877 	 * We will use spa_config if we decide to reload the spa or if spa_load
3878 	 * fails and we rewind. We must thus regenerate the config using the
3879 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3880 	 * pass settings on how to load the pool and is not stored in the MOS.
3881 	 * We copy it over to our new, trusted config.
3882 	 */
3883 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
3884 	    ZPOOL_CONFIG_POOL_TXG);
3885 	nvlist_free(mos_config);
3886 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3887 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3888 	    &policy) == 0)
3889 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3890 	spa_config_set(spa, mos_config);
3891 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3892 
3893 	/*
3894 	 * Now that we got the config from the MOS, we should be more strict
3895 	 * in checking blkptrs and can make assumptions about the consistency
3896 	 * of the vdev tree. spa_trust_config must be set to true before opening
3897 	 * vdevs in order for them to be writeable.
3898 	 */
3899 	spa->spa_trust_config = B_TRUE;
3900 
3901 	/*
3902 	 * Open and validate the new vdev tree
3903 	 */
3904 	error = spa_ld_open_vdevs(spa);
3905 	if (error != 0)
3906 		return (error);
3907 
3908 	error = spa_ld_validate_vdevs(spa);
3909 	if (error != 0)
3910 		return (error);
3911 
3912 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3913 		spa_load_note(spa, "final vdev tree:");
3914 		vdev_dbgmsg_print_tree(rvd, 2);
3915 	}
3916 
3917 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3918 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3919 		/*
3920 		 * Sanity check to make sure that we are indeed loading the
3921 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3922 		 * in the config provided and they happened to be the only ones
3923 		 * to have the latest uberblock, we could involuntarily perform
3924 		 * an extreme rewind.
3925 		 */
3926 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
3927 		if (healthy_tvds_mos - healthy_tvds >=
3928 		    SPA_SYNC_MIN_VDEVS) {
3929 			spa_load_note(spa, "config provided misses too many "
3930 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
3931 			    (u_longlong_t)healthy_tvds,
3932 			    (u_longlong_t)healthy_tvds_mos);
3933 			spa_load_note(spa, "vdev tree:");
3934 			vdev_dbgmsg_print_tree(rvd, 2);
3935 			if (reloading) {
3936 				spa_load_failed(spa, "config was already "
3937 				    "provided from MOS. Aborting.");
3938 				return (spa_vdev_err(rvd,
3939 				    VDEV_AUX_CORRUPT_DATA, EIO));
3940 			}
3941 			spa_load_note(spa, "spa must be reloaded using MOS "
3942 			    "config");
3943 			return (SET_ERROR(EAGAIN));
3944 		}
3945 	}
3946 
3947 	error = spa_check_for_missing_logs(spa);
3948 	if (error != 0)
3949 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3950 
3951 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3952 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3953 		    "guid sum (%llu != %llu)",
3954 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3955 		    (u_longlong_t)rvd->vdev_guid_sum);
3956 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3957 		    ENXIO));
3958 	}
3959 
3960 	return (0);
3961 }
3962 
3963 static int
3964 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3965 {
3966 	int error = 0;
3967 	vdev_t *rvd = spa->spa_root_vdev;
3968 
3969 	/*
3970 	 * Everything that we read before spa_remove_init() must be stored
3971 	 * on concreted vdevs.  Therefore we do this as early as possible.
3972 	 */
3973 	error = spa_remove_init(spa);
3974 	if (error != 0) {
3975 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3976 		    error);
3977 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3978 	}
3979 
3980 	/*
3981 	 * Retrieve information needed to condense indirect vdev mappings.
3982 	 */
3983 	error = spa_condense_init(spa);
3984 	if (error != 0) {
3985 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3986 		    error);
3987 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3988 	}
3989 
3990 	return (0);
3991 }
3992 
3993 static int
3994 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3995 {
3996 	int error = 0;
3997 	vdev_t *rvd = spa->spa_root_vdev;
3998 
3999 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4000 		boolean_t missing_feat_read = B_FALSE;
4001 		nvlist_t *unsup_feat, *enabled_feat;
4002 
4003 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4004 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4005 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4006 		}
4007 
4008 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4009 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4010 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4011 		}
4012 
4013 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4014 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4015 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4016 		}
4017 
4018 		enabled_feat = fnvlist_alloc();
4019 		unsup_feat = fnvlist_alloc();
4020 
4021 		if (!spa_features_check(spa, B_FALSE,
4022 		    unsup_feat, enabled_feat))
4023 			missing_feat_read = B_TRUE;
4024 
4025 		if (spa_writeable(spa) ||
4026 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4027 			if (!spa_features_check(spa, B_TRUE,
4028 			    unsup_feat, enabled_feat)) {
4029 				*missing_feat_writep = B_TRUE;
4030 			}
4031 		}
4032 
4033 		fnvlist_add_nvlist(spa->spa_load_info,
4034 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4035 
4036 		if (!nvlist_empty(unsup_feat)) {
4037 			fnvlist_add_nvlist(spa->spa_load_info,
4038 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4039 		}
4040 
4041 		fnvlist_free(enabled_feat);
4042 		fnvlist_free(unsup_feat);
4043 
4044 		if (!missing_feat_read) {
4045 			fnvlist_add_boolean(spa->spa_load_info,
4046 			    ZPOOL_CONFIG_CAN_RDONLY);
4047 		}
4048 
4049 		/*
4050 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4051 		 * twofold: to determine whether the pool is available for
4052 		 * import in read-write mode and (if it is not) whether the
4053 		 * pool is available for import in read-only mode. If the pool
4054 		 * is available for import in read-write mode, it is displayed
4055 		 * as available in userland; if it is not available for import
4056 		 * in read-only mode, it is displayed as unavailable in
4057 		 * userland. If the pool is available for import in read-only
4058 		 * mode but not read-write mode, it is displayed as unavailable
4059 		 * in userland with a special note that the pool is actually
4060 		 * available for open in read-only mode.
4061 		 *
4062 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4063 		 * missing a feature for write, we must first determine whether
4064 		 * the pool can be opened read-only before returning to
4065 		 * userland in order to know whether to display the
4066 		 * abovementioned note.
4067 		 */
4068 		if (missing_feat_read || (*missing_feat_writep &&
4069 		    spa_writeable(spa))) {
4070 			spa_load_failed(spa, "pool uses unsupported features");
4071 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4072 			    ENOTSUP));
4073 		}
4074 
4075 		/*
4076 		 * Load refcounts for ZFS features from disk into an in-memory
4077 		 * cache during SPA initialization.
4078 		 */
4079 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4080 			uint64_t refcount;
4081 
4082 			error = feature_get_refcount_from_disk(spa,
4083 			    &spa_feature_table[i], &refcount);
4084 			if (error == 0) {
4085 				spa->spa_feat_refcount_cache[i] = refcount;
4086 			} else if (error == ENOTSUP) {
4087 				spa->spa_feat_refcount_cache[i] =
4088 				    SPA_FEATURE_DISABLED;
4089 			} else {
4090 				spa_load_failed(spa, "error getting refcount "
4091 				    "for feature %s [error=%d]",
4092 				    spa_feature_table[i].fi_guid, error);
4093 				return (spa_vdev_err(rvd,
4094 				    VDEV_AUX_CORRUPT_DATA, EIO));
4095 			}
4096 		}
4097 	}
4098 
4099 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4100 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4101 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4102 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4103 	}
4104 
4105 	/*
4106 	 * Encryption was added before bookmark_v2, even though bookmark_v2
4107 	 * is now a dependency. If this pool has encryption enabled without
4108 	 * bookmark_v2, trigger an errata message.
4109 	 */
4110 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4111 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4112 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4113 	}
4114 
4115 	return (0);
4116 }
4117 
4118 static int
4119 spa_ld_load_special_directories(spa_t *spa)
4120 {
4121 	int error = 0;
4122 	vdev_t *rvd = spa->spa_root_vdev;
4123 
4124 	spa->spa_is_initializing = B_TRUE;
4125 	error = dsl_pool_open(spa->spa_dsl_pool);
4126 	spa->spa_is_initializing = B_FALSE;
4127 	if (error != 0) {
4128 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4129 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4130 	}
4131 
4132 	return (0);
4133 }
4134 
4135 static int
4136 spa_ld_get_props(spa_t *spa)
4137 {
4138 	int error = 0;
4139 	uint64_t obj;
4140 	vdev_t *rvd = spa->spa_root_vdev;
4141 
4142 	/* Grab the checksum salt from the MOS. */
4143 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4144 	    DMU_POOL_CHECKSUM_SALT, 1,
4145 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
4146 	    spa->spa_cksum_salt.zcs_bytes);
4147 	if (error == ENOENT) {
4148 		/* Generate a new salt for subsequent use */
4149 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4150 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
4151 	} else if (error != 0) {
4152 		spa_load_failed(spa, "unable to retrieve checksum salt from "
4153 		    "MOS [error=%d]", error);
4154 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4155 	}
4156 
4157 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4158 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4159 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4160 	if (error != 0) {
4161 		spa_load_failed(spa, "error opening deferred-frees bpobj "
4162 		    "[error=%d]", error);
4163 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4164 	}
4165 
4166 	/*
4167 	 * Load the bit that tells us to use the new accounting function
4168 	 * (raid-z deflation).  If we have an older pool, this will not
4169 	 * be present.
4170 	 */
4171 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4172 	if (error != 0 && error != ENOENT)
4173 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4174 
4175 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4176 	    &spa->spa_creation_version, B_FALSE);
4177 	if (error != 0 && error != ENOENT)
4178 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4179 
4180 	/*
4181 	 * Load the persistent error log.  If we have an older pool, this will
4182 	 * not be present.
4183 	 */
4184 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4185 	    B_FALSE);
4186 	if (error != 0 && error != ENOENT)
4187 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4188 
4189 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4190 	    &spa->spa_errlog_scrub, B_FALSE);
4191 	if (error != 0 && error != ENOENT)
4192 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4193 
4194 	/*
4195 	 * Load the livelist deletion field. If a livelist is queued for
4196 	 * deletion, indicate that in the spa
4197 	 */
4198 	error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4199 	    &spa->spa_livelists_to_delete, B_FALSE);
4200 	if (error != 0 && error != ENOENT)
4201 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4202 
4203 	/*
4204 	 * Load the history object.  If we have an older pool, this
4205 	 * will not be present.
4206 	 */
4207 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4208 	if (error != 0 && error != ENOENT)
4209 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4210 
4211 	/*
4212 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
4213 	 * be present; in this case, defer its creation to a later time to
4214 	 * avoid dirtying the MOS this early / out of sync context. See
4215 	 * spa_sync_config_object.
4216 	 */
4217 
4218 	/* The sentinel is only available in the MOS config. */
4219 	nvlist_t *mos_config;
4220 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4221 		spa_load_failed(spa, "unable to retrieve MOS config");
4222 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4223 	}
4224 
4225 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4226 	    &spa->spa_all_vdev_zaps, B_FALSE);
4227 
4228 	if (error == ENOENT) {
4229 		VERIFY(!nvlist_exists(mos_config,
4230 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4231 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4232 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4233 	} else if (error != 0) {
4234 		nvlist_free(mos_config);
4235 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4236 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4237 		/*
4238 		 * An older version of ZFS overwrote the sentinel value, so
4239 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4240 		 * destruction to later; see spa_sync_config_object.
4241 		 */
4242 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
4243 		/*
4244 		 * We're assuming that no vdevs have had their ZAPs created
4245 		 * before this. Better be sure of it.
4246 		 */
4247 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4248 	}
4249 	nvlist_free(mos_config);
4250 
4251 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4252 
4253 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4254 	    B_FALSE);
4255 	if (error && error != ENOENT)
4256 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4257 
4258 	if (error == 0) {
4259 		uint64_t autoreplace = 0;
4260 
4261 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4262 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4263 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4264 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4265 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4266 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4267 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4268 		spa->spa_autoreplace = (autoreplace != 0);
4269 	}
4270 
4271 	/*
4272 	 * If we are importing a pool with missing top-level vdevs,
4273 	 * we enforce that the pool doesn't panic or get suspended on
4274 	 * error since the likelihood of missing data is extremely high.
4275 	 */
4276 	if (spa->spa_missing_tvds > 0 &&
4277 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4278 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4279 		spa_load_note(spa, "forcing failmode to 'continue' "
4280 		    "as some top level vdevs are missing");
4281 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4282 	}
4283 
4284 	return (0);
4285 }
4286 
4287 static int
4288 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4289 {
4290 	int error = 0;
4291 	vdev_t *rvd = spa->spa_root_vdev;
4292 
4293 	/*
4294 	 * If we're assembling the pool from the split-off vdevs of
4295 	 * an existing pool, we don't want to attach the spares & cache
4296 	 * devices.
4297 	 */
4298 
4299 	/*
4300 	 * Load any hot spares for this pool.
4301 	 */
4302 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4303 	    B_FALSE);
4304 	if (error != 0 && error != ENOENT)
4305 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4306 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4307 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4308 		if (load_nvlist(spa, spa->spa_spares.sav_object,
4309 		    &spa->spa_spares.sav_config) != 0) {
4310 			spa_load_failed(spa, "error loading spares nvlist");
4311 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4312 		}
4313 
4314 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4315 		spa_load_spares(spa);
4316 		spa_config_exit(spa, SCL_ALL, FTAG);
4317 	} else if (error == 0) {
4318 		spa->spa_spares.sav_sync = B_TRUE;
4319 	}
4320 
4321 	/*
4322 	 * Load any level 2 ARC devices for this pool.
4323 	 */
4324 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4325 	    &spa->spa_l2cache.sav_object, B_FALSE);
4326 	if (error != 0 && error != ENOENT)
4327 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4328 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4329 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4330 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4331 		    &spa->spa_l2cache.sav_config) != 0) {
4332 			spa_load_failed(spa, "error loading l2cache nvlist");
4333 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4334 		}
4335 
4336 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4337 		spa_load_l2cache(spa);
4338 		spa_config_exit(spa, SCL_ALL, FTAG);
4339 	} else if (error == 0) {
4340 		spa->spa_l2cache.sav_sync = B_TRUE;
4341 	}
4342 
4343 	return (0);
4344 }
4345 
4346 static int
4347 spa_ld_load_vdev_metadata(spa_t *spa)
4348 {
4349 	int error = 0;
4350 	vdev_t *rvd = spa->spa_root_vdev;
4351 
4352 	/*
4353 	 * If the 'multihost' property is set, then never allow a pool to
4354 	 * be imported when the system hostid is zero.  The exception to
4355 	 * this rule is zdb which is always allowed to access pools.
4356 	 */
4357 	if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4358 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4359 		fnvlist_add_uint64(spa->spa_load_info,
4360 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4361 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4362 	}
4363 
4364 	/*
4365 	 * If the 'autoreplace' property is set, then post a resource notifying
4366 	 * the ZFS DE that it should not issue any faults for unopenable
4367 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
4368 	 * unopenable vdevs so that the normal autoreplace handler can take
4369 	 * over.
4370 	 */
4371 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4372 		spa_check_removed(spa->spa_root_vdev);
4373 		/*
4374 		 * For the import case, this is done in spa_import(), because
4375 		 * at this point we're using the spare definitions from
4376 		 * the MOS config, not necessarily from the userland config.
4377 		 */
4378 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4379 			spa_aux_check_removed(&spa->spa_spares);
4380 			spa_aux_check_removed(&spa->spa_l2cache);
4381 		}
4382 	}
4383 
4384 	/*
4385 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4386 	 */
4387 	error = vdev_load(rvd);
4388 	if (error != 0) {
4389 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4390 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4391 	}
4392 
4393 	error = spa_ld_log_spacemaps(spa);
4394 	if (error != 0) {
4395 		spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4396 		    error);
4397 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4398 	}
4399 
4400 	/*
4401 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4402 	 */
4403 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4404 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4405 	spa_config_exit(spa, SCL_ALL, FTAG);
4406 
4407 	return (0);
4408 }
4409 
4410 static int
4411 spa_ld_load_dedup_tables(spa_t *spa)
4412 {
4413 	int error = 0;
4414 	vdev_t *rvd = spa->spa_root_vdev;
4415 
4416 	error = ddt_load(spa);
4417 	if (error != 0) {
4418 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4419 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4420 	}
4421 
4422 	return (0);
4423 }
4424 
4425 static int
4426 spa_ld_load_brt(spa_t *spa)
4427 {
4428 	int error = 0;
4429 	vdev_t *rvd = spa->spa_root_vdev;
4430 
4431 	error = brt_load(spa);
4432 	if (error != 0) {
4433 		spa_load_failed(spa, "brt_load failed [error=%d]", error);
4434 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4435 	}
4436 
4437 	return (0);
4438 }
4439 
4440 static int
4441 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4442 {
4443 	vdev_t *rvd = spa->spa_root_vdev;
4444 
4445 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4446 		boolean_t missing = spa_check_logs(spa);
4447 		if (missing) {
4448 			if (spa->spa_missing_tvds != 0) {
4449 				spa_load_note(spa, "spa_check_logs failed "
4450 				    "so dropping the logs");
4451 			} else {
4452 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4453 				spa_load_failed(spa, "spa_check_logs failed");
4454 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4455 				    ENXIO));
4456 			}
4457 		}
4458 	}
4459 
4460 	return (0);
4461 }
4462 
4463 static int
4464 spa_ld_verify_pool_data(spa_t *spa)
4465 {
4466 	int error = 0;
4467 	vdev_t *rvd = spa->spa_root_vdev;
4468 
4469 	/*
4470 	 * We've successfully opened the pool, verify that we're ready
4471 	 * to start pushing transactions.
4472 	 */
4473 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4474 		error = spa_load_verify(spa);
4475 		if (error != 0) {
4476 			spa_load_failed(spa, "spa_load_verify failed "
4477 			    "[error=%d]", error);
4478 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4479 			    error));
4480 		}
4481 	}
4482 
4483 	return (0);
4484 }
4485 
4486 static void
4487 spa_ld_claim_log_blocks(spa_t *spa)
4488 {
4489 	dmu_tx_t *tx;
4490 	dsl_pool_t *dp = spa_get_dsl(spa);
4491 
4492 	/*
4493 	 * Claim log blocks that haven't been committed yet.
4494 	 * This must all happen in a single txg.
4495 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4496 	 * invoked from zil_claim_log_block()'s i/o done callback.
4497 	 * Price of rollback is that we abandon the log.
4498 	 */
4499 	spa->spa_claiming = B_TRUE;
4500 
4501 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4502 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4503 	    zil_claim, tx, DS_FIND_CHILDREN);
4504 	dmu_tx_commit(tx);
4505 
4506 	spa->spa_claiming = B_FALSE;
4507 
4508 	spa_set_log_state(spa, SPA_LOG_GOOD);
4509 }
4510 
4511 static void
4512 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4513     boolean_t update_config_cache)
4514 {
4515 	vdev_t *rvd = spa->spa_root_vdev;
4516 	int need_update = B_FALSE;
4517 
4518 	/*
4519 	 * If the config cache is stale, or we have uninitialized
4520 	 * metaslabs (see spa_vdev_add()), then update the config.
4521 	 *
4522 	 * If this is a verbatim import, trust the current
4523 	 * in-core spa_config and update the disk labels.
4524 	 */
4525 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4526 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
4527 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
4528 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4529 		need_update = B_TRUE;
4530 
4531 	for (int c = 0; c < rvd->vdev_children; c++)
4532 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
4533 			need_update = B_TRUE;
4534 
4535 	/*
4536 	 * Update the config cache asynchronously in case we're the
4537 	 * root pool, in which case the config cache isn't writable yet.
4538 	 */
4539 	if (need_update)
4540 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4541 }
4542 
4543 static void
4544 spa_ld_prepare_for_reload(spa_t *spa)
4545 {
4546 	spa_mode_t mode = spa->spa_mode;
4547 	int async_suspended = spa->spa_async_suspended;
4548 
4549 	spa_unload(spa);
4550 	spa_deactivate(spa);
4551 	spa_activate(spa, mode);
4552 
4553 	/*
4554 	 * We save the value of spa_async_suspended as it gets reset to 0 by
4555 	 * spa_unload(). We want to restore it back to the original value before
4556 	 * returning as we might be calling spa_async_resume() later.
4557 	 */
4558 	spa->spa_async_suspended = async_suspended;
4559 }
4560 
4561 static int
4562 spa_ld_read_checkpoint_txg(spa_t *spa)
4563 {
4564 	uberblock_t checkpoint;
4565 	int error = 0;
4566 
4567 	ASSERT0(spa->spa_checkpoint_txg);
4568 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4569 
4570 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4571 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4572 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4573 
4574 	if (error == ENOENT)
4575 		return (0);
4576 
4577 	if (error != 0)
4578 		return (error);
4579 
4580 	ASSERT3U(checkpoint.ub_txg, !=, 0);
4581 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4582 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4583 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
4584 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
4585 
4586 	return (0);
4587 }
4588 
4589 static int
4590 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
4591 {
4592 	int error = 0;
4593 
4594 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4595 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4596 
4597 	/*
4598 	 * Never trust the config that is provided unless we are assembling
4599 	 * a pool following a split.
4600 	 * This means don't trust blkptrs and the vdev tree in general. This
4601 	 * also effectively puts the spa in read-only mode since
4602 	 * spa_writeable() checks for spa_trust_config to be true.
4603 	 * We will later load a trusted config from the MOS.
4604 	 */
4605 	if (type != SPA_IMPORT_ASSEMBLE)
4606 		spa->spa_trust_config = B_FALSE;
4607 
4608 	/*
4609 	 * Parse the config provided to create a vdev tree.
4610 	 */
4611 	error = spa_ld_parse_config(spa, type);
4612 	if (error != 0)
4613 		return (error);
4614 
4615 	spa_import_progress_add(spa);
4616 
4617 	/*
4618 	 * Now that we have the vdev tree, try to open each vdev. This involves
4619 	 * opening the underlying physical device, retrieving its geometry and
4620 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
4621 	 * based on the success of those operations. After this we'll be ready
4622 	 * to read from the vdevs.
4623 	 */
4624 	error = spa_ld_open_vdevs(spa);
4625 	if (error != 0)
4626 		return (error);
4627 
4628 	/*
4629 	 * Read the label of each vdev and make sure that the GUIDs stored
4630 	 * there match the GUIDs in the config provided.
4631 	 * If we're assembling a new pool that's been split off from an
4632 	 * existing pool, the labels haven't yet been updated so we skip
4633 	 * validation for now.
4634 	 */
4635 	if (type != SPA_IMPORT_ASSEMBLE) {
4636 		error = spa_ld_validate_vdevs(spa);
4637 		if (error != 0)
4638 			return (error);
4639 	}
4640 
4641 	/*
4642 	 * Read all vdev labels to find the best uberblock (i.e. latest,
4643 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
4644 	 * get the list of features required to read blkptrs in the MOS from
4645 	 * the vdev label with the best uberblock and verify that our version
4646 	 * of zfs supports them all.
4647 	 */
4648 	error = spa_ld_select_uberblock(spa, type);
4649 	if (error != 0)
4650 		return (error);
4651 
4652 	/*
4653 	 * Pass that uberblock to the dsl_pool layer which will open the root
4654 	 * blkptr. This blkptr points to the latest version of the MOS and will
4655 	 * allow us to read its contents.
4656 	 */
4657 	error = spa_ld_open_rootbp(spa);
4658 	if (error != 0)
4659 		return (error);
4660 
4661 	return (0);
4662 }
4663 
4664 static int
4665 spa_ld_checkpoint_rewind(spa_t *spa)
4666 {
4667 	uberblock_t checkpoint;
4668 	int error = 0;
4669 
4670 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4671 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4672 
4673 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4674 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4675 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4676 
4677 	if (error != 0) {
4678 		spa_load_failed(spa, "unable to retrieve checkpointed "
4679 		    "uberblock from the MOS config [error=%d]", error);
4680 
4681 		if (error == ENOENT)
4682 			error = ZFS_ERR_NO_CHECKPOINT;
4683 
4684 		return (error);
4685 	}
4686 
4687 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4688 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4689 
4690 	/*
4691 	 * We need to update the txg and timestamp of the checkpointed
4692 	 * uberblock to be higher than the latest one. This ensures that
4693 	 * the checkpointed uberblock is selected if we were to close and
4694 	 * reopen the pool right after we've written it in the vdev labels.
4695 	 * (also see block comment in vdev_uberblock_compare)
4696 	 */
4697 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4698 	checkpoint.ub_timestamp = gethrestime_sec();
4699 
4700 	/*
4701 	 * Set current uberblock to be the checkpointed uberblock.
4702 	 */
4703 	spa->spa_uberblock = checkpoint;
4704 
4705 	/*
4706 	 * If we are doing a normal rewind, then the pool is open for
4707 	 * writing and we sync the "updated" checkpointed uberblock to
4708 	 * disk. Once this is done, we've basically rewound the whole
4709 	 * pool and there is no way back.
4710 	 *
4711 	 * There are cases when we don't want to attempt and sync the
4712 	 * checkpointed uberblock to disk because we are opening a
4713 	 * pool as read-only. Specifically, verifying the checkpointed
4714 	 * state with zdb, and importing the checkpointed state to get
4715 	 * a "preview" of its content.
4716 	 */
4717 	if (spa_writeable(spa)) {
4718 		vdev_t *rvd = spa->spa_root_vdev;
4719 
4720 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4721 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4722 		int svdcount = 0;
4723 		int children = rvd->vdev_children;
4724 		int c0 = random_in_range(children);
4725 
4726 		for (int c = 0; c < children; c++) {
4727 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4728 
4729 			/* Stop when revisiting the first vdev */
4730 			if (c > 0 && svd[0] == vd)
4731 				break;
4732 
4733 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4734 			    !vdev_is_concrete(vd))
4735 				continue;
4736 
4737 			svd[svdcount++] = vd;
4738 			if (svdcount == SPA_SYNC_MIN_VDEVS)
4739 				break;
4740 		}
4741 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4742 		if (error == 0)
4743 			spa->spa_last_synced_guid = rvd->vdev_guid;
4744 		spa_config_exit(spa, SCL_ALL, FTAG);
4745 
4746 		if (error != 0) {
4747 			spa_load_failed(spa, "failed to write checkpointed "
4748 			    "uberblock to the vdev labels [error=%d]", error);
4749 			return (error);
4750 		}
4751 	}
4752 
4753 	return (0);
4754 }
4755 
4756 static int
4757 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4758     boolean_t *update_config_cache)
4759 {
4760 	int error;
4761 
4762 	/*
4763 	 * Parse the config for pool, open and validate vdevs,
4764 	 * select an uberblock, and use that uberblock to open
4765 	 * the MOS.
4766 	 */
4767 	error = spa_ld_mos_init(spa, type);
4768 	if (error != 0)
4769 		return (error);
4770 
4771 	/*
4772 	 * Retrieve the trusted config stored in the MOS and use it to create
4773 	 * a new, exact version of the vdev tree, then reopen all vdevs.
4774 	 */
4775 	error = spa_ld_trusted_config(spa, type, B_FALSE);
4776 	if (error == EAGAIN) {
4777 		if (update_config_cache != NULL)
4778 			*update_config_cache = B_TRUE;
4779 
4780 		/*
4781 		 * Redo the loading process with the trusted config if it is
4782 		 * too different from the untrusted config.
4783 		 */
4784 		spa_ld_prepare_for_reload(spa);
4785 		spa_load_note(spa, "RELOADING");
4786 		error = spa_ld_mos_init(spa, type);
4787 		if (error != 0)
4788 			return (error);
4789 
4790 		error = spa_ld_trusted_config(spa, type, B_TRUE);
4791 		if (error != 0)
4792 			return (error);
4793 
4794 	} else if (error != 0) {
4795 		return (error);
4796 	}
4797 
4798 	return (0);
4799 }
4800 
4801 /*
4802  * Load an existing storage pool, using the config provided. This config
4803  * describes which vdevs are part of the pool and is later validated against
4804  * partial configs present in each vdev's label and an entire copy of the
4805  * config stored in the MOS.
4806  */
4807 static int
4808 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
4809 {
4810 	int error = 0;
4811 	boolean_t missing_feat_write = B_FALSE;
4812 	boolean_t checkpoint_rewind =
4813 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4814 	boolean_t update_config_cache = B_FALSE;
4815 
4816 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4817 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4818 
4819 	spa_load_note(spa, "LOADING");
4820 
4821 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4822 	if (error != 0)
4823 		return (error);
4824 
4825 	/*
4826 	 * If we are rewinding to the checkpoint then we need to repeat
4827 	 * everything we've done so far in this function but this time
4828 	 * selecting the checkpointed uberblock and using that to open
4829 	 * the MOS.
4830 	 */
4831 	if (checkpoint_rewind) {
4832 		/*
4833 		 * If we are rewinding to the checkpoint update config cache
4834 		 * anyway.
4835 		 */
4836 		update_config_cache = B_TRUE;
4837 
4838 		/*
4839 		 * Extract the checkpointed uberblock from the current MOS
4840 		 * and use this as the pool's uberblock from now on. If the
4841 		 * pool is imported as writeable we also write the checkpoint
4842 		 * uberblock to the labels, making the rewind permanent.
4843 		 */
4844 		error = spa_ld_checkpoint_rewind(spa);
4845 		if (error != 0)
4846 			return (error);
4847 
4848 		/*
4849 		 * Redo the loading process again with the
4850 		 * checkpointed uberblock.
4851 		 */
4852 		spa_ld_prepare_for_reload(spa);
4853 		spa_load_note(spa, "LOADING checkpointed uberblock");
4854 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4855 		if (error != 0)
4856 			return (error);
4857 	}
4858 
4859 	/*
4860 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
4861 	 */
4862 	error = spa_ld_read_checkpoint_txg(spa);
4863 	if (error != 0)
4864 		return (error);
4865 
4866 	/*
4867 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4868 	 * from the pool and their contents were re-mapped to other vdevs. Note
4869 	 * that everything that we read before this step must have been
4870 	 * rewritten on concrete vdevs after the last device removal was
4871 	 * initiated. Otherwise we could be reading from indirect vdevs before
4872 	 * we have loaded their mappings.
4873 	 */
4874 	error = spa_ld_open_indirect_vdev_metadata(spa);
4875 	if (error != 0)
4876 		return (error);
4877 
4878 	/*
4879 	 * Retrieve the full list of active features from the MOS and check if
4880 	 * they are all supported.
4881 	 */
4882 	error = spa_ld_check_features(spa, &missing_feat_write);
4883 	if (error != 0)
4884 		return (error);
4885 
4886 	/*
4887 	 * Load several special directories from the MOS needed by the dsl_pool
4888 	 * layer.
4889 	 */
4890 	error = spa_ld_load_special_directories(spa);
4891 	if (error != 0)
4892 		return (error);
4893 
4894 	/*
4895 	 * Retrieve pool properties from the MOS.
4896 	 */
4897 	error = spa_ld_get_props(spa);
4898 	if (error != 0)
4899 		return (error);
4900 
4901 	/*
4902 	 * Retrieve the list of auxiliary devices - cache devices and spares -
4903 	 * and open them.
4904 	 */
4905 	error = spa_ld_open_aux_vdevs(spa, type);
4906 	if (error != 0)
4907 		return (error);
4908 
4909 	/*
4910 	 * Load the metadata for all vdevs. Also check if unopenable devices
4911 	 * should be autoreplaced.
4912 	 */
4913 	error = spa_ld_load_vdev_metadata(spa);
4914 	if (error != 0)
4915 		return (error);
4916 
4917 	error = spa_ld_load_dedup_tables(spa);
4918 	if (error != 0)
4919 		return (error);
4920 
4921 	error = spa_ld_load_brt(spa);
4922 	if (error != 0)
4923 		return (error);
4924 
4925 	/*
4926 	 * Verify the logs now to make sure we don't have any unexpected errors
4927 	 * when we claim log blocks later.
4928 	 */
4929 	error = spa_ld_verify_logs(spa, type, ereport);
4930 	if (error != 0)
4931 		return (error);
4932 
4933 	if (missing_feat_write) {
4934 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4935 
4936 		/*
4937 		 * At this point, we know that we can open the pool in
4938 		 * read-only mode but not read-write mode. We now have enough
4939 		 * information and can return to userland.
4940 		 */
4941 		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4942 		    ENOTSUP));
4943 	}
4944 
4945 	/*
4946 	 * Traverse the last txgs to make sure the pool was left off in a safe
4947 	 * state. When performing an extreme rewind, we verify the whole pool,
4948 	 * which can take a very long time.
4949 	 */
4950 	error = spa_ld_verify_pool_data(spa);
4951 	if (error != 0)
4952 		return (error);
4953 
4954 	/*
4955 	 * Calculate the deflated space for the pool. This must be done before
4956 	 * we write anything to the pool because we'd need to update the space
4957 	 * accounting using the deflated sizes.
4958 	 */
4959 	spa_update_dspace(spa);
4960 
4961 	/*
4962 	 * We have now retrieved all the information we needed to open the
4963 	 * pool. If we are importing the pool in read-write mode, a few
4964 	 * additional steps must be performed to finish the import.
4965 	 */
4966 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4967 	    spa->spa_load_max_txg == UINT64_MAX)) {
4968 		uint64_t config_cache_txg = spa->spa_config_txg;
4969 
4970 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4971 
4972 		/*
4973 		 * In case of a checkpoint rewind, log the original txg
4974 		 * of the checkpointed uberblock.
4975 		 */
4976 		if (checkpoint_rewind) {
4977 			spa_history_log_internal(spa, "checkpoint rewind",
4978 			    NULL, "rewound state to txg=%llu",
4979 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4980 		}
4981 
4982 		/*
4983 		 * Traverse the ZIL and claim all blocks.
4984 		 */
4985 		spa_ld_claim_log_blocks(spa);
4986 
4987 		/*
4988 		 * Kick-off the syncing thread.
4989 		 */
4990 		spa->spa_sync_on = B_TRUE;
4991 		txg_sync_start(spa->spa_dsl_pool);
4992 		mmp_thread_start(spa);
4993 
4994 		/*
4995 		 * Wait for all claims to sync.  We sync up to the highest
4996 		 * claimed log block birth time so that claimed log blocks
4997 		 * don't appear to be from the future.  spa_claim_max_txg
4998 		 * will have been set for us by ZIL traversal operations
4999 		 * performed above.
5000 		 */
5001 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5002 
5003 		/*
5004 		 * Check if we need to request an update of the config. On the
5005 		 * next sync, we would update the config stored in vdev labels
5006 		 * and the cachefile (by default /etc/zfs/zpool.cache).
5007 		 */
5008 		spa_ld_check_for_config_update(spa, config_cache_txg,
5009 		    update_config_cache);
5010 
5011 		/*
5012 		 * Check if a rebuild was in progress and if so resume it.
5013 		 * Then check all DTLs to see if anything needs resilvering.
5014 		 * The resilver will be deferred if a rebuild was started.
5015 		 */
5016 		if (vdev_rebuild_active(spa->spa_root_vdev)) {
5017 			vdev_rebuild_restart(spa);
5018 		} else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5019 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5020 			spa_async_request(spa, SPA_ASYNC_RESILVER);
5021 		}
5022 
5023 		/*
5024 		 * Log the fact that we booted up (so that we can detect if
5025 		 * we rebooted in the middle of an operation).
5026 		 */
5027 		spa_history_log_version(spa, "open", NULL);
5028 
5029 		spa_restart_removal(spa);
5030 		spa_spawn_aux_threads(spa);
5031 
5032 		/*
5033 		 * Delete any inconsistent datasets.
5034 		 *
5035 		 * Note:
5036 		 * Since we may be issuing deletes for clones here,
5037 		 * we make sure to do so after we've spawned all the
5038 		 * auxiliary threads above (from which the livelist
5039 		 * deletion zthr is part of).
5040 		 */
5041 		(void) dmu_objset_find(spa_name(spa),
5042 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5043 
5044 		/*
5045 		 * Clean up any stale temporary dataset userrefs.
5046 		 */
5047 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5048 
5049 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5050 		vdev_initialize_restart(spa->spa_root_vdev);
5051 		vdev_trim_restart(spa->spa_root_vdev);
5052 		vdev_autotrim_restart(spa);
5053 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5054 	}
5055 
5056 	spa_import_progress_remove(spa_guid(spa));
5057 	spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5058 
5059 	spa_load_note(spa, "LOADED");
5060 
5061 	return (0);
5062 }
5063 
5064 static int
5065 spa_load_retry(spa_t *spa, spa_load_state_t state)
5066 {
5067 	spa_mode_t mode = spa->spa_mode;
5068 
5069 	spa_unload(spa);
5070 	spa_deactivate(spa);
5071 
5072 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5073 
5074 	spa_activate(spa, mode);
5075 	spa_async_suspend(spa);
5076 
5077 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5078 	    (u_longlong_t)spa->spa_load_max_txg);
5079 
5080 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5081 }
5082 
5083 /*
5084  * If spa_load() fails this function will try loading prior txg's. If
5085  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5086  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5087  * function will not rewind the pool and will return the same error as
5088  * spa_load().
5089  */
5090 static int
5091 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5092     int rewind_flags)
5093 {
5094 	nvlist_t *loadinfo = NULL;
5095 	nvlist_t *config = NULL;
5096 	int load_error, rewind_error;
5097 	uint64_t safe_rewind_txg;
5098 	uint64_t min_txg;
5099 
5100 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5101 		spa->spa_load_max_txg = spa->spa_load_txg;
5102 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5103 	} else {
5104 		spa->spa_load_max_txg = max_request;
5105 		if (max_request != UINT64_MAX)
5106 			spa->spa_extreme_rewind = B_TRUE;
5107 	}
5108 
5109 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5110 	if (load_error == 0)
5111 		return (0);
5112 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5113 		/*
5114 		 * When attempting checkpoint-rewind on a pool with no
5115 		 * checkpoint, we should not attempt to load uberblocks
5116 		 * from previous txgs when spa_load fails.
5117 		 */
5118 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5119 		spa_import_progress_remove(spa_guid(spa));
5120 		return (load_error);
5121 	}
5122 
5123 	if (spa->spa_root_vdev != NULL)
5124 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5125 
5126 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5127 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5128 
5129 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
5130 		nvlist_free(config);
5131 		spa_import_progress_remove(spa_guid(spa));
5132 		return (load_error);
5133 	}
5134 
5135 	if (state == SPA_LOAD_RECOVER) {
5136 		/* Price of rolling back is discarding txgs, including log */
5137 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5138 	} else {
5139 		/*
5140 		 * If we aren't rolling back save the load info from our first
5141 		 * import attempt so that we can restore it after attempting
5142 		 * to rewind.
5143 		 */
5144 		loadinfo = spa->spa_load_info;
5145 		spa->spa_load_info = fnvlist_alloc();
5146 	}
5147 
5148 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5149 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5150 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5151 	    TXG_INITIAL : safe_rewind_txg;
5152 
5153 	/*
5154 	 * Continue as long as we're finding errors, we're still within
5155 	 * the acceptable rewind range, and we're still finding uberblocks
5156 	 */
5157 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5158 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5159 		if (spa->spa_load_max_txg < safe_rewind_txg)
5160 			spa->spa_extreme_rewind = B_TRUE;
5161 		rewind_error = spa_load_retry(spa, state);
5162 	}
5163 
5164 	spa->spa_extreme_rewind = B_FALSE;
5165 	spa->spa_load_max_txg = UINT64_MAX;
5166 
5167 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5168 		spa_config_set(spa, config);
5169 	else
5170 		nvlist_free(config);
5171 
5172 	if (state == SPA_LOAD_RECOVER) {
5173 		ASSERT3P(loadinfo, ==, NULL);
5174 		spa_import_progress_remove(spa_guid(spa));
5175 		return (rewind_error);
5176 	} else {
5177 		/* Store the rewind info as part of the initial load info */
5178 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5179 		    spa->spa_load_info);
5180 
5181 		/* Restore the initial load info */
5182 		fnvlist_free(spa->spa_load_info);
5183 		spa->spa_load_info = loadinfo;
5184 
5185 		spa_import_progress_remove(spa_guid(spa));
5186 		return (load_error);
5187 	}
5188 }
5189 
5190 /*
5191  * Pool Open/Import
5192  *
5193  * The import case is identical to an open except that the configuration is sent
5194  * down from userland, instead of grabbed from the configuration cache.  For the
5195  * case of an open, the pool configuration will exist in the
5196  * POOL_STATE_UNINITIALIZED state.
5197  *
5198  * The stats information (gen/count/ustats) is used to gather vdev statistics at
5199  * the same time open the pool, without having to keep around the spa_t in some
5200  * ambiguous state.
5201  */
5202 static int
5203 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5204     nvlist_t *nvpolicy, nvlist_t **config)
5205 {
5206 	spa_t *spa;
5207 	spa_load_state_t state = SPA_LOAD_OPEN;
5208 	int error;
5209 	int locked = B_FALSE;
5210 	int firstopen = B_FALSE;
5211 
5212 	*spapp = NULL;
5213 
5214 	/*
5215 	 * As disgusting as this is, we need to support recursive calls to this
5216 	 * function because dsl_dir_open() is called during spa_load(), and ends
5217 	 * up calling spa_open() again.  The real fix is to figure out how to
5218 	 * avoid dsl_dir_open() calling this in the first place.
5219 	 */
5220 	if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5221 		mutex_enter(&spa_namespace_lock);
5222 		locked = B_TRUE;
5223 	}
5224 
5225 	if ((spa = spa_lookup(pool)) == NULL) {
5226 		if (locked)
5227 			mutex_exit(&spa_namespace_lock);
5228 		return (SET_ERROR(ENOENT));
5229 	}
5230 
5231 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5232 		zpool_load_policy_t policy;
5233 
5234 		firstopen = B_TRUE;
5235 
5236 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5237 		    &policy);
5238 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5239 			state = SPA_LOAD_RECOVER;
5240 
5241 		spa_activate(spa, spa_mode_global);
5242 
5243 		if (state != SPA_LOAD_RECOVER)
5244 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5245 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5246 
5247 		zfs_dbgmsg("spa_open_common: opening %s", pool);
5248 		error = spa_load_best(spa, state, policy.zlp_txg,
5249 		    policy.zlp_rewind);
5250 
5251 		if (error == EBADF) {
5252 			/*
5253 			 * If vdev_validate() returns failure (indicated by
5254 			 * EBADF), it indicates that one of the vdevs indicates
5255 			 * that the pool has been exported or destroyed.  If
5256 			 * this is the case, the config cache is out of sync and
5257 			 * we should remove the pool from the namespace.
5258 			 */
5259 			spa_unload(spa);
5260 			spa_deactivate(spa);
5261 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5262 			spa_remove(spa);
5263 			if (locked)
5264 				mutex_exit(&spa_namespace_lock);
5265 			return (SET_ERROR(ENOENT));
5266 		}
5267 
5268 		if (error) {
5269 			/*
5270 			 * We can't open the pool, but we still have useful
5271 			 * information: the state of each vdev after the
5272 			 * attempted vdev_open().  Return this to the user.
5273 			 */
5274 			if (config != NULL && spa->spa_config) {
5275 				*config = fnvlist_dup(spa->spa_config);
5276 				fnvlist_add_nvlist(*config,
5277 				    ZPOOL_CONFIG_LOAD_INFO,
5278 				    spa->spa_load_info);
5279 			}
5280 			spa_unload(spa);
5281 			spa_deactivate(spa);
5282 			spa->spa_last_open_failed = error;
5283 			if (locked)
5284 				mutex_exit(&spa_namespace_lock);
5285 			*spapp = NULL;
5286 			return (error);
5287 		}
5288 	}
5289 
5290 	spa_open_ref(spa, tag);
5291 
5292 	if (config != NULL)
5293 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5294 
5295 	/*
5296 	 * If we've recovered the pool, pass back any information we
5297 	 * gathered while doing the load.
5298 	 */
5299 	if (state == SPA_LOAD_RECOVER && config != NULL) {
5300 		fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5301 		    spa->spa_load_info);
5302 	}
5303 
5304 	if (locked) {
5305 		spa->spa_last_open_failed = 0;
5306 		spa->spa_last_ubsync_txg = 0;
5307 		spa->spa_load_txg = 0;
5308 		mutex_exit(&spa_namespace_lock);
5309 	}
5310 
5311 	if (firstopen)
5312 		zvol_create_minors_recursive(spa_name(spa));
5313 
5314 	*spapp = spa;
5315 
5316 	return (0);
5317 }
5318 
5319 int
5320 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5321     nvlist_t *policy, nvlist_t **config)
5322 {
5323 	return (spa_open_common(name, spapp, tag, policy, config));
5324 }
5325 
5326 int
5327 spa_open(const char *name, spa_t **spapp, const void *tag)
5328 {
5329 	return (spa_open_common(name, spapp, tag, NULL, NULL));
5330 }
5331 
5332 /*
5333  * Lookup the given spa_t, incrementing the inject count in the process,
5334  * preventing it from being exported or destroyed.
5335  */
5336 spa_t *
5337 spa_inject_addref(char *name)
5338 {
5339 	spa_t *spa;
5340 
5341 	mutex_enter(&spa_namespace_lock);
5342 	if ((spa = spa_lookup(name)) == NULL) {
5343 		mutex_exit(&spa_namespace_lock);
5344 		return (NULL);
5345 	}
5346 	spa->spa_inject_ref++;
5347 	mutex_exit(&spa_namespace_lock);
5348 
5349 	return (spa);
5350 }
5351 
5352 void
5353 spa_inject_delref(spa_t *spa)
5354 {
5355 	mutex_enter(&spa_namespace_lock);
5356 	spa->spa_inject_ref--;
5357 	mutex_exit(&spa_namespace_lock);
5358 }
5359 
5360 /*
5361  * Add spares device information to the nvlist.
5362  */
5363 static void
5364 spa_add_spares(spa_t *spa, nvlist_t *config)
5365 {
5366 	nvlist_t **spares;
5367 	uint_t i, nspares;
5368 	nvlist_t *nvroot;
5369 	uint64_t guid;
5370 	vdev_stat_t *vs;
5371 	uint_t vsc;
5372 	uint64_t pool;
5373 
5374 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5375 
5376 	if (spa->spa_spares.sav_count == 0)
5377 		return;
5378 
5379 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5380 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5381 	    ZPOOL_CONFIG_SPARES, &spares, &nspares));
5382 	if (nspares != 0) {
5383 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5384 		    (const nvlist_t * const *)spares, nspares);
5385 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5386 		    &spares, &nspares));
5387 
5388 		/*
5389 		 * Go through and find any spares which have since been
5390 		 * repurposed as an active spare.  If this is the case, update
5391 		 * their status appropriately.
5392 		 */
5393 		for (i = 0; i < nspares; i++) {
5394 			guid = fnvlist_lookup_uint64(spares[i],
5395 			    ZPOOL_CONFIG_GUID);
5396 			VERIFY0(nvlist_lookup_uint64_array(spares[i],
5397 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5398 			if (spa_spare_exists(guid, &pool, NULL) &&
5399 			    pool != 0ULL) {
5400 				vs->vs_state = VDEV_STATE_CANT_OPEN;
5401 				vs->vs_aux = VDEV_AUX_SPARED;
5402 			} else {
5403 				vs->vs_state =
5404 				    spa->spa_spares.sav_vdevs[i]->vdev_state;
5405 			}
5406 		}
5407 	}
5408 }
5409 
5410 /*
5411  * Add l2cache device information to the nvlist, including vdev stats.
5412  */
5413 static void
5414 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5415 {
5416 	nvlist_t **l2cache;
5417 	uint_t i, j, nl2cache;
5418 	nvlist_t *nvroot;
5419 	uint64_t guid;
5420 	vdev_t *vd;
5421 	vdev_stat_t *vs;
5422 	uint_t vsc;
5423 
5424 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5425 
5426 	if (spa->spa_l2cache.sav_count == 0)
5427 		return;
5428 
5429 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5430 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5431 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
5432 	if (nl2cache != 0) {
5433 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5434 		    (const nvlist_t * const *)l2cache, nl2cache);
5435 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5436 		    &l2cache, &nl2cache));
5437 
5438 		/*
5439 		 * Update level 2 cache device stats.
5440 		 */
5441 
5442 		for (i = 0; i < nl2cache; i++) {
5443 			guid = fnvlist_lookup_uint64(l2cache[i],
5444 			    ZPOOL_CONFIG_GUID);
5445 
5446 			vd = NULL;
5447 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5448 				if (guid ==
5449 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5450 					vd = spa->spa_l2cache.sav_vdevs[j];
5451 					break;
5452 				}
5453 			}
5454 			ASSERT(vd != NULL);
5455 
5456 			VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
5457 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5458 			vdev_get_stats(vd, vs);
5459 			vdev_config_generate_stats(vd, l2cache[i]);
5460 
5461 		}
5462 	}
5463 }
5464 
5465 static void
5466 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5467 {
5468 	zap_cursor_t zc;
5469 	zap_attribute_t za;
5470 
5471 	if (spa->spa_feat_for_read_obj != 0) {
5472 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5473 		    spa->spa_feat_for_read_obj);
5474 		    zap_cursor_retrieve(&zc, &za) == 0;
5475 		    zap_cursor_advance(&zc)) {
5476 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5477 			    za.za_num_integers == 1);
5478 			VERIFY0(nvlist_add_uint64(features, za.za_name,
5479 			    za.za_first_integer));
5480 		}
5481 		zap_cursor_fini(&zc);
5482 	}
5483 
5484 	if (spa->spa_feat_for_write_obj != 0) {
5485 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5486 		    spa->spa_feat_for_write_obj);
5487 		    zap_cursor_retrieve(&zc, &za) == 0;
5488 		    zap_cursor_advance(&zc)) {
5489 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5490 			    za.za_num_integers == 1);
5491 			VERIFY0(nvlist_add_uint64(features, za.za_name,
5492 			    za.za_first_integer));
5493 		}
5494 		zap_cursor_fini(&zc);
5495 	}
5496 }
5497 
5498 static void
5499 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5500 {
5501 	int i;
5502 
5503 	for (i = 0; i < SPA_FEATURES; i++) {
5504 		zfeature_info_t feature = spa_feature_table[i];
5505 		uint64_t refcount;
5506 
5507 		if (feature_get_refcount(spa, &feature, &refcount) != 0)
5508 			continue;
5509 
5510 		VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5511 	}
5512 }
5513 
5514 /*
5515  * Store a list of pool features and their reference counts in the
5516  * config.
5517  *
5518  * The first time this is called on a spa, allocate a new nvlist, fetch
5519  * the pool features and reference counts from disk, then save the list
5520  * in the spa. In subsequent calls on the same spa use the saved nvlist
5521  * and refresh its values from the cached reference counts.  This
5522  * ensures we don't block here on I/O on a suspended pool so 'zpool
5523  * clear' can resume the pool.
5524  */
5525 static void
5526 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5527 {
5528 	nvlist_t *features;
5529 
5530 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5531 
5532 	mutex_enter(&spa->spa_feat_stats_lock);
5533 	features = spa->spa_feat_stats;
5534 
5535 	if (features != NULL) {
5536 		spa_feature_stats_from_cache(spa, features);
5537 	} else {
5538 		VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
5539 		spa->spa_feat_stats = features;
5540 		spa_feature_stats_from_disk(spa, features);
5541 	}
5542 
5543 	VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
5544 	    features));
5545 
5546 	mutex_exit(&spa->spa_feat_stats_lock);
5547 }
5548 
5549 int
5550 spa_get_stats(const char *name, nvlist_t **config,
5551     char *altroot, size_t buflen)
5552 {
5553 	int error;
5554 	spa_t *spa;
5555 
5556 	*config = NULL;
5557 	error = spa_open_common(name, &spa, FTAG, NULL, config);
5558 
5559 	if (spa != NULL) {
5560 		/*
5561 		 * This still leaves a window of inconsistency where the spares
5562 		 * or l2cache devices could change and the config would be
5563 		 * self-inconsistent.
5564 		 */
5565 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5566 
5567 		if (*config != NULL) {
5568 			uint64_t loadtimes[2];
5569 
5570 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
5571 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
5572 			fnvlist_add_uint64_array(*config,
5573 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
5574 
5575 			fnvlist_add_uint64(*config,
5576 			    ZPOOL_CONFIG_ERRCOUNT,
5577 			    spa_approx_errlog_size(spa));
5578 
5579 			if (spa_suspended(spa)) {
5580 				fnvlist_add_uint64(*config,
5581 				    ZPOOL_CONFIG_SUSPENDED,
5582 				    spa->spa_failmode);
5583 				fnvlist_add_uint64(*config,
5584 				    ZPOOL_CONFIG_SUSPENDED_REASON,
5585 				    spa->spa_suspended);
5586 			}
5587 
5588 			spa_add_spares(spa, *config);
5589 			spa_add_l2cache(spa, *config);
5590 			spa_add_feature_stats(spa, *config);
5591 		}
5592 	}
5593 
5594 	/*
5595 	 * We want to get the alternate root even for faulted pools, so we cheat
5596 	 * and call spa_lookup() directly.
5597 	 */
5598 	if (altroot) {
5599 		if (spa == NULL) {
5600 			mutex_enter(&spa_namespace_lock);
5601 			spa = spa_lookup(name);
5602 			if (spa)
5603 				spa_altroot(spa, altroot, buflen);
5604 			else
5605 				altroot[0] = '\0';
5606 			spa = NULL;
5607 			mutex_exit(&spa_namespace_lock);
5608 		} else {
5609 			spa_altroot(spa, altroot, buflen);
5610 		}
5611 	}
5612 
5613 	if (spa != NULL) {
5614 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5615 		spa_close(spa, FTAG);
5616 	}
5617 
5618 	return (error);
5619 }
5620 
5621 /*
5622  * Validate that the auxiliary device array is well formed.  We must have an
5623  * array of nvlists, each which describes a valid leaf vdev.  If this is an
5624  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
5625  * specified, as long as they are well-formed.
5626  */
5627 static int
5628 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
5629     spa_aux_vdev_t *sav, const char *config, uint64_t version,
5630     vdev_labeltype_t label)
5631 {
5632 	nvlist_t **dev;
5633 	uint_t i, ndev;
5634 	vdev_t *vd;
5635 	int error;
5636 
5637 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5638 
5639 	/*
5640 	 * It's acceptable to have no devs specified.
5641 	 */
5642 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
5643 		return (0);
5644 
5645 	if (ndev == 0)
5646 		return (SET_ERROR(EINVAL));
5647 
5648 	/*
5649 	 * Make sure the pool is formatted with a version that supports this
5650 	 * device type.
5651 	 */
5652 	if (spa_version(spa) < version)
5653 		return (SET_ERROR(ENOTSUP));
5654 
5655 	/*
5656 	 * Set the pending device list so we correctly handle device in-use
5657 	 * checking.
5658 	 */
5659 	sav->sav_pending = dev;
5660 	sav->sav_npending = ndev;
5661 
5662 	for (i = 0; i < ndev; i++) {
5663 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
5664 		    mode)) != 0)
5665 			goto out;
5666 
5667 		if (!vd->vdev_ops->vdev_op_leaf) {
5668 			vdev_free(vd);
5669 			error = SET_ERROR(EINVAL);
5670 			goto out;
5671 		}
5672 
5673 		vd->vdev_top = vd;
5674 
5675 		if ((error = vdev_open(vd)) == 0 &&
5676 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
5677 			fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
5678 			    vd->vdev_guid);
5679 		}
5680 
5681 		vdev_free(vd);
5682 
5683 		if (error &&
5684 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
5685 			goto out;
5686 		else
5687 			error = 0;
5688 	}
5689 
5690 out:
5691 	sav->sav_pending = NULL;
5692 	sav->sav_npending = 0;
5693 	return (error);
5694 }
5695 
5696 static int
5697 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
5698 {
5699 	int error;
5700 
5701 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5702 
5703 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5704 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
5705 	    VDEV_LABEL_SPARE)) != 0) {
5706 		return (error);
5707 	}
5708 
5709 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5710 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
5711 	    VDEV_LABEL_L2CACHE));
5712 }
5713 
5714 static void
5715 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
5716     const char *config)
5717 {
5718 	int i;
5719 
5720 	if (sav->sav_config != NULL) {
5721 		nvlist_t **olddevs;
5722 		uint_t oldndevs;
5723 		nvlist_t **newdevs;
5724 
5725 		/*
5726 		 * Generate new dev list by concatenating with the
5727 		 * current dev list.
5728 		 */
5729 		VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
5730 		    &olddevs, &oldndevs));
5731 
5732 		newdevs = kmem_alloc(sizeof (void *) *
5733 		    (ndevs + oldndevs), KM_SLEEP);
5734 		for (i = 0; i < oldndevs; i++)
5735 			newdevs[i] = fnvlist_dup(olddevs[i]);
5736 		for (i = 0; i < ndevs; i++)
5737 			newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
5738 
5739 		fnvlist_remove(sav->sav_config, config);
5740 
5741 		fnvlist_add_nvlist_array(sav->sav_config, config,
5742 		    (const nvlist_t * const *)newdevs, ndevs + oldndevs);
5743 		for (i = 0; i < oldndevs + ndevs; i++)
5744 			nvlist_free(newdevs[i]);
5745 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5746 	} else {
5747 		/*
5748 		 * Generate a new dev list.
5749 		 */
5750 		sav->sav_config = fnvlist_alloc();
5751 		fnvlist_add_nvlist_array(sav->sav_config, config,
5752 		    (const nvlist_t * const *)devs, ndevs);
5753 	}
5754 }
5755 
5756 /*
5757  * Stop and drop level 2 ARC devices
5758  */
5759 void
5760 spa_l2cache_drop(spa_t *spa)
5761 {
5762 	vdev_t *vd;
5763 	int i;
5764 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
5765 
5766 	for (i = 0; i < sav->sav_count; i++) {
5767 		uint64_t pool;
5768 
5769 		vd = sav->sav_vdevs[i];
5770 		ASSERT(vd != NULL);
5771 
5772 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5773 		    pool != 0ULL && l2arc_vdev_present(vd))
5774 			l2arc_remove_vdev(vd);
5775 	}
5776 }
5777 
5778 /*
5779  * Verify encryption parameters for spa creation. If we are encrypting, we must
5780  * have the encryption feature flag enabled.
5781  */
5782 static int
5783 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5784     boolean_t has_encryption)
5785 {
5786 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5787 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5788 	    !has_encryption)
5789 		return (SET_ERROR(ENOTSUP));
5790 
5791 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5792 }
5793 
5794 /*
5795  * Pool Creation
5796  */
5797 int
5798 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5799     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5800 {
5801 	spa_t *spa;
5802 	const char *altroot = NULL;
5803 	vdev_t *rvd;
5804 	dsl_pool_t *dp;
5805 	dmu_tx_t *tx;
5806 	int error = 0;
5807 	uint64_t txg = TXG_INITIAL;
5808 	nvlist_t **spares, **l2cache;
5809 	uint_t nspares, nl2cache;
5810 	uint64_t version, obj, ndraid = 0;
5811 	boolean_t has_features;
5812 	boolean_t has_encryption;
5813 	boolean_t has_allocclass;
5814 	spa_feature_t feat;
5815 	const char *feat_name;
5816 	const char *poolname;
5817 	nvlist_t *nvl;
5818 
5819 	if (props == NULL ||
5820 	    nvlist_lookup_string(props, "tname", &poolname) != 0)
5821 		poolname = (char *)pool;
5822 
5823 	/*
5824 	 * If this pool already exists, return failure.
5825 	 */
5826 	mutex_enter(&spa_namespace_lock);
5827 	if (spa_lookup(poolname) != NULL) {
5828 		mutex_exit(&spa_namespace_lock);
5829 		return (SET_ERROR(EEXIST));
5830 	}
5831 
5832 	/*
5833 	 * Allocate a new spa_t structure.
5834 	 */
5835 	nvl = fnvlist_alloc();
5836 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5837 	(void) nvlist_lookup_string(props,
5838 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5839 	spa = spa_add(poolname, nvl, altroot);
5840 	fnvlist_free(nvl);
5841 	spa_activate(spa, spa_mode_global);
5842 
5843 	if (props && (error = spa_prop_validate(spa, props))) {
5844 		spa_deactivate(spa);
5845 		spa_remove(spa);
5846 		mutex_exit(&spa_namespace_lock);
5847 		return (error);
5848 	}
5849 
5850 	/*
5851 	 * Temporary pool names should never be written to disk.
5852 	 */
5853 	if (poolname != pool)
5854 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5855 
5856 	has_features = B_FALSE;
5857 	has_encryption = B_FALSE;
5858 	has_allocclass = B_FALSE;
5859 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5860 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5861 		if (zpool_prop_feature(nvpair_name(elem))) {
5862 			has_features = B_TRUE;
5863 
5864 			feat_name = strchr(nvpair_name(elem), '@') + 1;
5865 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
5866 			if (feat == SPA_FEATURE_ENCRYPTION)
5867 				has_encryption = B_TRUE;
5868 			if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
5869 				has_allocclass = B_TRUE;
5870 		}
5871 	}
5872 
5873 	/* verify encryption params, if they were provided */
5874 	if (dcp != NULL) {
5875 		error = spa_create_check_encryption_params(dcp, has_encryption);
5876 		if (error != 0) {
5877 			spa_deactivate(spa);
5878 			spa_remove(spa);
5879 			mutex_exit(&spa_namespace_lock);
5880 			return (error);
5881 		}
5882 	}
5883 	if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
5884 		spa_deactivate(spa);
5885 		spa_remove(spa);
5886 		mutex_exit(&spa_namespace_lock);
5887 		return (ENOTSUP);
5888 	}
5889 
5890 	if (has_features || nvlist_lookup_uint64(props,
5891 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5892 		version = SPA_VERSION;
5893 	}
5894 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5895 
5896 	spa->spa_first_txg = txg;
5897 	spa->spa_uberblock.ub_txg = txg - 1;
5898 	spa->spa_uberblock.ub_version = version;
5899 	spa->spa_ubsync = spa->spa_uberblock;
5900 	spa->spa_load_state = SPA_LOAD_CREATE;
5901 	spa->spa_removing_phys.sr_state = DSS_NONE;
5902 	spa->spa_removing_phys.sr_removing_vdev = -1;
5903 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5904 	spa->spa_indirect_vdevs_loaded = B_TRUE;
5905 
5906 	/*
5907 	 * Create "The Godfather" zio to hold all async IOs
5908 	 */
5909 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5910 	    KM_SLEEP);
5911 	for (int i = 0; i < max_ncpus; i++) {
5912 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5913 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5914 		    ZIO_FLAG_GODFATHER);
5915 	}
5916 
5917 	/*
5918 	 * Create the root vdev.
5919 	 */
5920 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5921 
5922 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5923 
5924 	ASSERT(error != 0 || rvd != NULL);
5925 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5926 
5927 	if (error == 0 && !zfs_allocatable_devs(nvroot))
5928 		error = SET_ERROR(EINVAL);
5929 
5930 	if (error == 0 &&
5931 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5932 	    (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
5933 	    (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
5934 		/*
5935 		 * instantiate the metaslab groups (this will dirty the vdevs)
5936 		 * we can no longer error exit past this point
5937 		 */
5938 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5939 			vdev_t *vd = rvd->vdev_child[c];
5940 
5941 			vdev_metaslab_set_size(vd);
5942 			vdev_expand(vd, txg);
5943 		}
5944 	}
5945 
5946 	spa_config_exit(spa, SCL_ALL, FTAG);
5947 
5948 	if (error != 0) {
5949 		spa_unload(spa);
5950 		spa_deactivate(spa);
5951 		spa_remove(spa);
5952 		mutex_exit(&spa_namespace_lock);
5953 		return (error);
5954 	}
5955 
5956 	/*
5957 	 * Get the list of spares, if specified.
5958 	 */
5959 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5960 	    &spares, &nspares) == 0) {
5961 		spa->spa_spares.sav_config = fnvlist_alloc();
5962 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
5963 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
5964 		    nspares);
5965 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5966 		spa_load_spares(spa);
5967 		spa_config_exit(spa, SCL_ALL, FTAG);
5968 		spa->spa_spares.sav_sync = B_TRUE;
5969 	}
5970 
5971 	/*
5972 	 * Get the list of level 2 cache devices, if specified.
5973 	 */
5974 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5975 	    &l2cache, &nl2cache) == 0) {
5976 		VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
5977 		    NV_UNIQUE_NAME, KM_SLEEP));
5978 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5979 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
5980 		    nl2cache);
5981 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5982 		spa_load_l2cache(spa);
5983 		spa_config_exit(spa, SCL_ALL, FTAG);
5984 		spa->spa_l2cache.sav_sync = B_TRUE;
5985 	}
5986 
5987 	spa->spa_is_initializing = B_TRUE;
5988 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5989 	spa->spa_is_initializing = B_FALSE;
5990 
5991 	/*
5992 	 * Create DDTs (dedup tables).
5993 	 */
5994 	ddt_create(spa);
5995 	/*
5996 	 * Create BRT table and BRT table object.
5997 	 */
5998 	brt_create(spa);
5999 
6000 	spa_update_dspace(spa);
6001 
6002 	tx = dmu_tx_create_assigned(dp, txg);
6003 
6004 	/*
6005 	 * Create the pool's history object.
6006 	 */
6007 	if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6008 		spa_history_create_obj(spa, tx);
6009 
6010 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6011 	spa_history_log_version(spa, "create", tx);
6012 
6013 	/*
6014 	 * Create the pool config object.
6015 	 */
6016 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6017 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6018 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6019 
6020 	if (zap_add(spa->spa_meta_objset,
6021 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6022 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6023 		cmn_err(CE_PANIC, "failed to add pool config");
6024 	}
6025 
6026 	if (zap_add(spa->spa_meta_objset,
6027 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6028 	    sizeof (uint64_t), 1, &version, tx) != 0) {
6029 		cmn_err(CE_PANIC, "failed to add pool version");
6030 	}
6031 
6032 	/* Newly created pools with the right version are always deflated. */
6033 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6034 		spa->spa_deflate = TRUE;
6035 		if (zap_add(spa->spa_meta_objset,
6036 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6037 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6038 			cmn_err(CE_PANIC, "failed to add deflate");
6039 		}
6040 	}
6041 
6042 	/*
6043 	 * Create the deferred-free bpobj.  Turn off compression
6044 	 * because sync-to-convergence takes longer if the blocksize
6045 	 * keeps changing.
6046 	 */
6047 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6048 	dmu_object_set_compress(spa->spa_meta_objset, obj,
6049 	    ZIO_COMPRESS_OFF, tx);
6050 	if (zap_add(spa->spa_meta_objset,
6051 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6052 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
6053 		cmn_err(CE_PANIC, "failed to add bpobj");
6054 	}
6055 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6056 	    spa->spa_meta_objset, obj));
6057 
6058 	/*
6059 	 * Generate some random noise for salted checksums to operate on.
6060 	 */
6061 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6062 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
6063 
6064 	/*
6065 	 * Set pool properties.
6066 	 */
6067 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6068 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6069 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6070 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6071 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6072 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6073 
6074 	if (props != NULL) {
6075 		spa_configfile_set(spa, props, B_FALSE);
6076 		spa_sync_props(props, tx);
6077 	}
6078 
6079 	for (int i = 0; i < ndraid; i++)
6080 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6081 
6082 	dmu_tx_commit(tx);
6083 
6084 	spa->spa_sync_on = B_TRUE;
6085 	txg_sync_start(dp);
6086 	mmp_thread_start(spa);
6087 	txg_wait_synced(dp, txg);
6088 
6089 	spa_spawn_aux_threads(spa);
6090 
6091 	spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6092 
6093 	/*
6094 	 * Don't count references from objsets that are already closed
6095 	 * and are making their way through the eviction process.
6096 	 */
6097 	spa_evicting_os_wait(spa);
6098 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6099 	spa->spa_load_state = SPA_LOAD_NONE;
6100 
6101 	spa_import_os(spa);
6102 
6103 	mutex_exit(&spa_namespace_lock);
6104 
6105 	return (0);
6106 }
6107 
6108 /*
6109  * Import a non-root pool into the system.
6110  */
6111 int
6112 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6113 {
6114 	spa_t *spa;
6115 	const char *altroot = NULL;
6116 	spa_load_state_t state = SPA_LOAD_IMPORT;
6117 	zpool_load_policy_t policy;
6118 	spa_mode_t mode = spa_mode_global;
6119 	uint64_t readonly = B_FALSE;
6120 	int error;
6121 	nvlist_t *nvroot;
6122 	nvlist_t **spares, **l2cache;
6123 	uint_t nspares, nl2cache;
6124 
6125 	/*
6126 	 * If a pool with this name exists, return failure.
6127 	 */
6128 	mutex_enter(&spa_namespace_lock);
6129 	if (spa_lookup(pool) != NULL) {
6130 		mutex_exit(&spa_namespace_lock);
6131 		return (SET_ERROR(EEXIST));
6132 	}
6133 
6134 	/*
6135 	 * Create and initialize the spa structure.
6136 	 */
6137 	(void) nvlist_lookup_string(props,
6138 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6139 	(void) nvlist_lookup_uint64(props,
6140 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6141 	if (readonly)
6142 		mode = SPA_MODE_READ;
6143 	spa = spa_add(pool, config, altroot);
6144 	spa->spa_import_flags = flags;
6145 
6146 	/*
6147 	 * Verbatim import - Take a pool and insert it into the namespace
6148 	 * as if it had been loaded at boot.
6149 	 */
6150 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6151 		if (props != NULL)
6152 			spa_configfile_set(spa, props, B_FALSE);
6153 
6154 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6155 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6156 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6157 		mutex_exit(&spa_namespace_lock);
6158 		return (0);
6159 	}
6160 
6161 	spa_activate(spa, mode);
6162 
6163 	/*
6164 	 * Don't start async tasks until we know everything is healthy.
6165 	 */
6166 	spa_async_suspend(spa);
6167 
6168 	zpool_get_load_policy(config, &policy);
6169 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6170 		state = SPA_LOAD_RECOVER;
6171 
6172 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6173 
6174 	if (state != SPA_LOAD_RECOVER) {
6175 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6176 		zfs_dbgmsg("spa_import: importing %s", pool);
6177 	} else {
6178 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6179 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6180 	}
6181 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6182 
6183 	/*
6184 	 * Propagate anything learned while loading the pool and pass it
6185 	 * back to caller (i.e. rewind info, missing devices, etc).
6186 	 */
6187 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6188 
6189 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6190 	/*
6191 	 * Toss any existing sparelist, as it doesn't have any validity
6192 	 * anymore, and conflicts with spa_has_spare().
6193 	 */
6194 	if (spa->spa_spares.sav_config) {
6195 		nvlist_free(spa->spa_spares.sav_config);
6196 		spa->spa_spares.sav_config = NULL;
6197 		spa_load_spares(spa);
6198 	}
6199 	if (spa->spa_l2cache.sav_config) {
6200 		nvlist_free(spa->spa_l2cache.sav_config);
6201 		spa->spa_l2cache.sav_config = NULL;
6202 		spa_load_l2cache(spa);
6203 	}
6204 
6205 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6206 	spa_config_exit(spa, SCL_ALL, FTAG);
6207 
6208 	if (props != NULL)
6209 		spa_configfile_set(spa, props, B_FALSE);
6210 
6211 	if (error != 0 || (props && spa_writeable(spa) &&
6212 	    (error = spa_prop_set(spa, props)))) {
6213 		spa_unload(spa);
6214 		spa_deactivate(spa);
6215 		spa_remove(spa);
6216 		mutex_exit(&spa_namespace_lock);
6217 		return (error);
6218 	}
6219 
6220 	spa_async_resume(spa);
6221 
6222 	/*
6223 	 * Override any spares and level 2 cache devices as specified by
6224 	 * the user, as these may have correct device names/devids, etc.
6225 	 */
6226 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6227 	    &spares, &nspares) == 0) {
6228 		if (spa->spa_spares.sav_config)
6229 			fnvlist_remove(spa->spa_spares.sav_config,
6230 			    ZPOOL_CONFIG_SPARES);
6231 		else
6232 			spa->spa_spares.sav_config = fnvlist_alloc();
6233 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6234 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6235 		    nspares);
6236 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6237 		spa_load_spares(spa);
6238 		spa_config_exit(spa, SCL_ALL, FTAG);
6239 		spa->spa_spares.sav_sync = B_TRUE;
6240 	}
6241 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6242 	    &l2cache, &nl2cache) == 0) {
6243 		if (spa->spa_l2cache.sav_config)
6244 			fnvlist_remove(spa->spa_l2cache.sav_config,
6245 			    ZPOOL_CONFIG_L2CACHE);
6246 		else
6247 			spa->spa_l2cache.sav_config = fnvlist_alloc();
6248 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6249 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6250 		    nl2cache);
6251 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6252 		spa_load_l2cache(spa);
6253 		spa_config_exit(spa, SCL_ALL, FTAG);
6254 		spa->spa_l2cache.sav_sync = B_TRUE;
6255 	}
6256 
6257 	/*
6258 	 * Check for any removed devices.
6259 	 */
6260 	if (spa->spa_autoreplace) {
6261 		spa_aux_check_removed(&spa->spa_spares);
6262 		spa_aux_check_removed(&spa->spa_l2cache);
6263 	}
6264 
6265 	if (spa_writeable(spa)) {
6266 		/*
6267 		 * Update the config cache to include the newly-imported pool.
6268 		 */
6269 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6270 	}
6271 
6272 	/*
6273 	 * It's possible that the pool was expanded while it was exported.
6274 	 * We kick off an async task to handle this for us.
6275 	 */
6276 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6277 
6278 	spa_history_log_version(spa, "import", NULL);
6279 
6280 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6281 
6282 	mutex_exit(&spa_namespace_lock);
6283 
6284 	zvol_create_minors_recursive(pool);
6285 
6286 	spa_import_os(spa);
6287 
6288 	return (0);
6289 }
6290 
6291 nvlist_t *
6292 spa_tryimport(nvlist_t *tryconfig)
6293 {
6294 	nvlist_t *config = NULL;
6295 	const char *poolname, *cachefile;
6296 	spa_t *spa;
6297 	uint64_t state;
6298 	int error;
6299 	zpool_load_policy_t policy;
6300 
6301 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6302 		return (NULL);
6303 
6304 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6305 		return (NULL);
6306 
6307 	/*
6308 	 * Create and initialize the spa structure.
6309 	 */
6310 	mutex_enter(&spa_namespace_lock);
6311 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6312 	spa_activate(spa, SPA_MODE_READ);
6313 
6314 	/*
6315 	 * Rewind pool if a max txg was provided.
6316 	 */
6317 	zpool_get_load_policy(spa->spa_config, &policy);
6318 	if (policy.zlp_txg != UINT64_MAX) {
6319 		spa->spa_load_max_txg = policy.zlp_txg;
6320 		spa->spa_extreme_rewind = B_TRUE;
6321 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6322 		    poolname, (longlong_t)policy.zlp_txg);
6323 	} else {
6324 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6325 	}
6326 
6327 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6328 	    == 0) {
6329 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6330 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6331 	} else {
6332 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6333 	}
6334 
6335 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6336 
6337 	/*
6338 	 * If 'tryconfig' was at least parsable, return the current config.
6339 	 */
6340 	if (spa->spa_root_vdev != NULL) {
6341 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6342 		fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6343 		fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6344 		fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6345 		    spa->spa_uberblock.ub_timestamp);
6346 		fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6347 		    spa->spa_load_info);
6348 		fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6349 		    spa->spa_errata);
6350 
6351 		/*
6352 		 * If the bootfs property exists on this pool then we
6353 		 * copy it out so that external consumers can tell which
6354 		 * pools are bootable.
6355 		 */
6356 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
6357 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6358 
6359 			/*
6360 			 * We have to play games with the name since the
6361 			 * pool was opened as TRYIMPORT_NAME.
6362 			 */
6363 			if (dsl_dsobj_to_dsname(spa_name(spa),
6364 			    spa->spa_bootfs, tmpname) == 0) {
6365 				char *cp;
6366 				char *dsname;
6367 
6368 				dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6369 
6370 				cp = strchr(tmpname, '/');
6371 				if (cp == NULL) {
6372 					(void) strlcpy(dsname, tmpname,
6373 					    MAXPATHLEN);
6374 				} else {
6375 					(void) snprintf(dsname, MAXPATHLEN,
6376 					    "%s/%s", poolname, ++cp);
6377 				}
6378 				fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6379 				    dsname);
6380 				kmem_free(dsname, MAXPATHLEN);
6381 			}
6382 			kmem_free(tmpname, MAXPATHLEN);
6383 		}
6384 
6385 		/*
6386 		 * Add the list of hot spares and level 2 cache devices.
6387 		 */
6388 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6389 		spa_add_spares(spa, config);
6390 		spa_add_l2cache(spa, config);
6391 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6392 	}
6393 
6394 	spa_unload(spa);
6395 	spa_deactivate(spa);
6396 	spa_remove(spa);
6397 	mutex_exit(&spa_namespace_lock);
6398 
6399 	return (config);
6400 }
6401 
6402 /*
6403  * Pool export/destroy
6404  *
6405  * The act of destroying or exporting a pool is very simple.  We make sure there
6406  * is no more pending I/O and any references to the pool are gone.  Then, we
6407  * update the pool state and sync all the labels to disk, removing the
6408  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6409  * we don't sync the labels or remove the configuration cache.
6410  */
6411 static int
6412 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6413     boolean_t force, boolean_t hardforce)
6414 {
6415 	int error;
6416 	spa_t *spa;
6417 
6418 	if (oldconfig)
6419 		*oldconfig = NULL;
6420 
6421 	if (!(spa_mode_global & SPA_MODE_WRITE))
6422 		return (SET_ERROR(EROFS));
6423 
6424 	mutex_enter(&spa_namespace_lock);
6425 	if ((spa = spa_lookup(pool)) == NULL) {
6426 		mutex_exit(&spa_namespace_lock);
6427 		return (SET_ERROR(ENOENT));
6428 	}
6429 
6430 	if (spa->spa_is_exporting) {
6431 		/* the pool is being exported by another thread */
6432 		mutex_exit(&spa_namespace_lock);
6433 		return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6434 	}
6435 	spa->spa_is_exporting = B_TRUE;
6436 
6437 	/*
6438 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6439 	 * reacquire the namespace lock, and see if we can export.
6440 	 */
6441 	spa_open_ref(spa, FTAG);
6442 	mutex_exit(&spa_namespace_lock);
6443 	spa_async_suspend(spa);
6444 	if (spa->spa_zvol_taskq) {
6445 		zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6446 		taskq_wait(spa->spa_zvol_taskq);
6447 	}
6448 	mutex_enter(&spa_namespace_lock);
6449 	spa_close(spa, FTAG);
6450 
6451 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6452 		goto export_spa;
6453 	/*
6454 	 * The pool will be in core if it's openable, in which case we can
6455 	 * modify its state.  Objsets may be open only because they're dirty,
6456 	 * so we have to force it to sync before checking spa_refcnt.
6457 	 */
6458 	if (spa->spa_sync_on) {
6459 		txg_wait_synced(spa->spa_dsl_pool, 0);
6460 		spa_evicting_os_wait(spa);
6461 	}
6462 
6463 	/*
6464 	 * A pool cannot be exported or destroyed if there are active
6465 	 * references.  If we are resetting a pool, allow references by
6466 	 * fault injection handlers.
6467 	 */
6468 	if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
6469 		error = SET_ERROR(EBUSY);
6470 		goto fail;
6471 	}
6472 
6473 	if (spa->spa_sync_on) {
6474 		vdev_t *rvd = spa->spa_root_vdev;
6475 		/*
6476 		 * A pool cannot be exported if it has an active shared spare.
6477 		 * This is to prevent other pools stealing the active spare
6478 		 * from an exported pool. At user's own will, such pool can
6479 		 * be forcedly exported.
6480 		 */
6481 		if (!force && new_state == POOL_STATE_EXPORTED &&
6482 		    spa_has_active_shared_spare(spa)) {
6483 			error = SET_ERROR(EXDEV);
6484 			goto fail;
6485 		}
6486 
6487 		/*
6488 		 * We're about to export or destroy this pool. Make sure
6489 		 * we stop all initialization and trim activity here before
6490 		 * we set the spa_final_txg. This will ensure that all
6491 		 * dirty data resulting from the initialization is
6492 		 * committed to disk before we unload the pool.
6493 		 */
6494 		vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6495 		vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6496 		vdev_autotrim_stop_all(spa);
6497 		vdev_rebuild_stop_all(spa);
6498 
6499 		/*
6500 		 * We want this to be reflected on every label,
6501 		 * so mark them all dirty.  spa_unload() will do the
6502 		 * final sync that pushes these changes out.
6503 		 */
6504 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6505 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6506 			spa->spa_state = new_state;
6507 			vdev_config_dirty(rvd);
6508 			spa_config_exit(spa, SCL_ALL, FTAG);
6509 		}
6510 
6511 		/*
6512 		 * If the log space map feature is enabled and the pool is
6513 		 * getting exported (but not destroyed), we want to spend some
6514 		 * time flushing as many metaslabs as we can in an attempt to
6515 		 * destroy log space maps and save import time. This has to be
6516 		 * done before we set the spa_final_txg, otherwise
6517 		 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
6518 		 * spa_should_flush_logs_on_unload() should be called after
6519 		 * spa_state has been set to the new_state.
6520 		 */
6521 		if (spa_should_flush_logs_on_unload(spa))
6522 			spa_unload_log_sm_flush_all(spa);
6523 
6524 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6525 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6526 			spa->spa_final_txg = spa_last_synced_txg(spa) +
6527 			    TXG_DEFER_SIZE + 1;
6528 			spa_config_exit(spa, SCL_ALL, FTAG);
6529 		}
6530 	}
6531 
6532 export_spa:
6533 	spa_export_os(spa);
6534 
6535 	if (new_state == POOL_STATE_DESTROYED)
6536 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6537 	else if (new_state == POOL_STATE_EXPORTED)
6538 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
6539 
6540 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6541 		spa_unload(spa);
6542 		spa_deactivate(spa);
6543 	}
6544 
6545 	if (oldconfig && spa->spa_config)
6546 		*oldconfig = fnvlist_dup(spa->spa_config);
6547 
6548 	if (new_state != POOL_STATE_UNINITIALIZED) {
6549 		if (!hardforce)
6550 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
6551 		spa_remove(spa);
6552 	} else {
6553 		/*
6554 		 * If spa_remove() is not called for this spa_t and
6555 		 * there is any possibility that it can be reused,
6556 		 * we make sure to reset the exporting flag.
6557 		 */
6558 		spa->spa_is_exporting = B_FALSE;
6559 	}
6560 
6561 	mutex_exit(&spa_namespace_lock);
6562 	return (0);
6563 
6564 fail:
6565 	spa->spa_is_exporting = B_FALSE;
6566 	spa_async_resume(spa);
6567 	mutex_exit(&spa_namespace_lock);
6568 	return (error);
6569 }
6570 
6571 /*
6572  * Destroy a storage pool.
6573  */
6574 int
6575 spa_destroy(const char *pool)
6576 {
6577 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6578 	    B_FALSE, B_FALSE));
6579 }
6580 
6581 /*
6582  * Export a storage pool.
6583  */
6584 int
6585 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
6586     boolean_t hardforce)
6587 {
6588 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6589 	    force, hardforce));
6590 }
6591 
6592 /*
6593  * Similar to spa_export(), this unloads the spa_t without actually removing it
6594  * from the namespace in any way.
6595  */
6596 int
6597 spa_reset(const char *pool)
6598 {
6599 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6600 	    B_FALSE, B_FALSE));
6601 }
6602 
6603 /*
6604  * ==========================================================================
6605  * Device manipulation
6606  * ==========================================================================
6607  */
6608 
6609 /*
6610  * This is called as a synctask to increment the draid feature flag
6611  */
6612 static void
6613 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
6614 {
6615 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6616 	int draid = (int)(uintptr_t)arg;
6617 
6618 	for (int c = 0; c < draid; c++)
6619 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6620 }
6621 
6622 /*
6623  * Add a device to a storage pool.
6624  */
6625 int
6626 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6627 {
6628 	uint64_t txg, ndraid = 0;
6629 	int error;
6630 	vdev_t *rvd = spa->spa_root_vdev;
6631 	vdev_t *vd, *tvd;
6632 	nvlist_t **spares, **l2cache;
6633 	uint_t nspares, nl2cache;
6634 
6635 	ASSERT(spa_writeable(spa));
6636 
6637 	txg = spa_vdev_enter(spa);
6638 
6639 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6640 	    VDEV_ALLOC_ADD)) != 0)
6641 		return (spa_vdev_exit(spa, NULL, txg, error));
6642 
6643 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
6644 
6645 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6646 	    &nspares) != 0)
6647 		nspares = 0;
6648 
6649 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6650 	    &nl2cache) != 0)
6651 		nl2cache = 0;
6652 
6653 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6654 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
6655 
6656 	if (vd->vdev_children != 0 &&
6657 	    (error = vdev_create(vd, txg, B_FALSE)) != 0) {
6658 		return (spa_vdev_exit(spa, vd, txg, error));
6659 	}
6660 
6661 	/*
6662 	 * The virtual dRAID spares must be added after vdev tree is created
6663 	 * and the vdev guids are generated.  The guid of their associated
6664 	 * dRAID is stored in the config and used when opening the spare.
6665 	 */
6666 	if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
6667 	    rvd->vdev_children)) == 0) {
6668 		if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
6669 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
6670 			nspares = 0;
6671 	} else {
6672 		return (spa_vdev_exit(spa, vd, txg, error));
6673 	}
6674 
6675 	/*
6676 	 * We must validate the spares and l2cache devices after checking the
6677 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
6678 	 */
6679 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6680 		return (spa_vdev_exit(spa, vd, txg, error));
6681 
6682 	/*
6683 	 * If we are in the middle of a device removal, we can only add
6684 	 * devices which match the existing devices in the pool.
6685 	 * If we are in the middle of a removal, or have some indirect
6686 	 * vdevs, we can not add raidz or dRAID top levels.
6687 	 */
6688 	if (spa->spa_vdev_removal != NULL ||
6689 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6690 		for (int c = 0; c < vd->vdev_children; c++) {
6691 			tvd = vd->vdev_child[c];
6692 			if (spa->spa_vdev_removal != NULL &&
6693 			    tvd->vdev_ashift != spa->spa_max_ashift) {
6694 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6695 			}
6696 			/* Fail if top level vdev is raidz or a dRAID */
6697 			if (vdev_get_nparity(tvd) != 0)
6698 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6699 
6700 			/*
6701 			 * Need the top level mirror to be
6702 			 * a mirror of leaf vdevs only
6703 			 */
6704 			if (tvd->vdev_ops == &vdev_mirror_ops) {
6705 				for (uint64_t cid = 0;
6706 				    cid < tvd->vdev_children; cid++) {
6707 					vdev_t *cvd = tvd->vdev_child[cid];
6708 					if (!cvd->vdev_ops->vdev_op_leaf) {
6709 						return (spa_vdev_exit(spa, vd,
6710 						    txg, EINVAL));
6711 					}
6712 				}
6713 			}
6714 		}
6715 	}
6716 
6717 	for (int c = 0; c < vd->vdev_children; c++) {
6718 		tvd = vd->vdev_child[c];
6719 		vdev_remove_child(vd, tvd);
6720 		tvd->vdev_id = rvd->vdev_children;
6721 		vdev_add_child(rvd, tvd);
6722 		vdev_config_dirty(tvd);
6723 	}
6724 
6725 	if (nspares != 0) {
6726 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6727 		    ZPOOL_CONFIG_SPARES);
6728 		spa_load_spares(spa);
6729 		spa->spa_spares.sav_sync = B_TRUE;
6730 	}
6731 
6732 	if (nl2cache != 0) {
6733 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6734 		    ZPOOL_CONFIG_L2CACHE);
6735 		spa_load_l2cache(spa);
6736 		spa->spa_l2cache.sav_sync = B_TRUE;
6737 	}
6738 
6739 	/*
6740 	 * We can't increment a feature while holding spa_vdev so we
6741 	 * have to do it in a synctask.
6742 	 */
6743 	if (ndraid != 0) {
6744 		dmu_tx_t *tx;
6745 
6746 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
6747 		dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
6748 		    (void *)(uintptr_t)ndraid, tx);
6749 		dmu_tx_commit(tx);
6750 	}
6751 
6752 	/*
6753 	 * We have to be careful when adding new vdevs to an existing pool.
6754 	 * If other threads start allocating from these vdevs before we
6755 	 * sync the config cache, and we lose power, then upon reboot we may
6756 	 * fail to open the pool because there are DVAs that the config cache
6757 	 * can't translate.  Therefore, we first add the vdevs without
6758 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6759 	 * and then let spa_config_update() initialize the new metaslabs.
6760 	 *
6761 	 * spa_load() checks for added-but-not-initialized vdevs, so that
6762 	 * if we lose power at any point in this sequence, the remaining
6763 	 * steps will be completed the next time we load the pool.
6764 	 */
6765 	(void) spa_vdev_exit(spa, vd, txg, 0);
6766 
6767 	mutex_enter(&spa_namespace_lock);
6768 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6769 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6770 	mutex_exit(&spa_namespace_lock);
6771 
6772 	return (0);
6773 }
6774 
6775 /*
6776  * Attach a device to a mirror.  The arguments are the path to any device
6777  * in the mirror, and the nvroot for the new device.  If the path specifies
6778  * a device that is not mirrored, we automatically insert the mirror vdev.
6779  *
6780  * If 'replacing' is specified, the new device is intended to replace the
6781  * existing device; in this case the two devices are made into their own
6782  * mirror using the 'replacing' vdev, which is functionally identical to
6783  * the mirror vdev (it actually reuses all the same ops) but has a few
6784  * extra rules: you can't attach to it after it's been created, and upon
6785  * completion of resilvering, the first disk (the one being replaced)
6786  * is automatically detached.
6787  *
6788  * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
6789  * should be performed instead of traditional healing reconstruction.  From
6790  * an administrators perspective these are both resilver operations.
6791  */
6792 int
6793 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
6794     int rebuild)
6795 {
6796 	uint64_t txg, dtl_max_txg;
6797 	vdev_t *rvd = spa->spa_root_vdev;
6798 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6799 	vdev_ops_t *pvops;
6800 	char *oldvdpath, *newvdpath;
6801 	int newvd_isspare;
6802 	int error;
6803 
6804 	ASSERT(spa_writeable(spa));
6805 
6806 	txg = spa_vdev_enter(spa);
6807 
6808 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6809 
6810 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6811 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6812 		error = (spa_has_checkpoint(spa)) ?
6813 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6814 		return (spa_vdev_exit(spa, NULL, txg, error));
6815 	}
6816 
6817 	if (rebuild) {
6818 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
6819 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6820 
6821 		if (dsl_scan_resilvering(spa_get_dsl(spa)))
6822 			return (spa_vdev_exit(spa, NULL, txg,
6823 			    ZFS_ERR_RESILVER_IN_PROGRESS));
6824 	} else {
6825 		if (vdev_rebuild_active(rvd))
6826 			return (spa_vdev_exit(spa, NULL, txg,
6827 			    ZFS_ERR_REBUILD_IN_PROGRESS));
6828 	}
6829 
6830 	if (spa->spa_vdev_removal != NULL)
6831 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6832 
6833 	if (oldvd == NULL)
6834 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6835 
6836 	if (!oldvd->vdev_ops->vdev_op_leaf)
6837 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6838 
6839 	pvd = oldvd->vdev_parent;
6840 
6841 	if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6842 	    VDEV_ALLOC_ATTACH) != 0)
6843 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6844 
6845 	if (newrootvd->vdev_children != 1)
6846 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6847 
6848 	newvd = newrootvd->vdev_child[0];
6849 
6850 	if (!newvd->vdev_ops->vdev_op_leaf)
6851 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6852 
6853 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6854 		return (spa_vdev_exit(spa, newrootvd, txg, error));
6855 
6856 	/*
6857 	 * log, dedup and special vdevs should not be replaced by spares.
6858 	 */
6859 	if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
6860 	    oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
6861 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6862 	}
6863 
6864 	/*
6865 	 * A dRAID spare can only replace a child of its parent dRAID vdev.
6866 	 */
6867 	if (newvd->vdev_ops == &vdev_draid_spare_ops &&
6868 	    oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
6869 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6870 	}
6871 
6872 	if (rebuild) {
6873 		/*
6874 		 * For rebuilds, the top vdev must support reconstruction
6875 		 * using only space maps.  This means the only allowable
6876 		 * vdevs types are the root vdev, a mirror, or dRAID.
6877 		 */
6878 		tvd = pvd;
6879 		if (pvd->vdev_top != NULL)
6880 			tvd = pvd->vdev_top;
6881 
6882 		if (tvd->vdev_ops != &vdev_mirror_ops &&
6883 		    tvd->vdev_ops != &vdev_root_ops &&
6884 		    tvd->vdev_ops != &vdev_draid_ops) {
6885 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6886 		}
6887 	}
6888 
6889 	if (!replacing) {
6890 		/*
6891 		 * For attach, the only allowable parent is a mirror or the root
6892 		 * vdev.
6893 		 */
6894 		if (pvd->vdev_ops != &vdev_mirror_ops &&
6895 		    pvd->vdev_ops != &vdev_root_ops)
6896 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6897 
6898 		pvops = &vdev_mirror_ops;
6899 	} else {
6900 		/*
6901 		 * Active hot spares can only be replaced by inactive hot
6902 		 * spares.
6903 		 */
6904 		if (pvd->vdev_ops == &vdev_spare_ops &&
6905 		    oldvd->vdev_isspare &&
6906 		    !spa_has_spare(spa, newvd->vdev_guid))
6907 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6908 
6909 		/*
6910 		 * If the source is a hot spare, and the parent isn't already a
6911 		 * spare, then we want to create a new hot spare.  Otherwise, we
6912 		 * want to create a replacing vdev.  The user is not allowed to
6913 		 * attach to a spared vdev child unless the 'isspare' state is
6914 		 * the same (spare replaces spare, non-spare replaces
6915 		 * non-spare).
6916 		 */
6917 		if (pvd->vdev_ops == &vdev_replacing_ops &&
6918 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6919 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6920 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
6921 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
6922 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6923 		}
6924 
6925 		if (newvd->vdev_isspare)
6926 			pvops = &vdev_spare_ops;
6927 		else
6928 			pvops = &vdev_replacing_ops;
6929 	}
6930 
6931 	/*
6932 	 * Make sure the new device is big enough.
6933 	 */
6934 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6935 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6936 
6937 	/*
6938 	 * The new device cannot have a higher alignment requirement
6939 	 * than the top-level vdev.
6940 	 */
6941 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6942 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6943 
6944 	/*
6945 	 * If this is an in-place replacement, update oldvd's path and devid
6946 	 * to make it distinguishable from newvd, and unopenable from now on.
6947 	 */
6948 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6949 		spa_strfree(oldvd->vdev_path);
6950 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6951 		    KM_SLEEP);
6952 		(void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5,
6953 		    "%s/%s", newvd->vdev_path, "old");
6954 		if (oldvd->vdev_devid != NULL) {
6955 			spa_strfree(oldvd->vdev_devid);
6956 			oldvd->vdev_devid = NULL;
6957 		}
6958 	}
6959 
6960 	/*
6961 	 * If the parent is not a mirror, or if we're replacing, insert the new
6962 	 * mirror/replacing/spare vdev above oldvd.
6963 	 */
6964 	if (pvd->vdev_ops != pvops)
6965 		pvd = vdev_add_parent(oldvd, pvops);
6966 
6967 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
6968 	ASSERT(pvd->vdev_ops == pvops);
6969 	ASSERT(oldvd->vdev_parent == pvd);
6970 
6971 	/*
6972 	 * Extract the new device from its root and add it to pvd.
6973 	 */
6974 	vdev_remove_child(newrootvd, newvd);
6975 	newvd->vdev_id = pvd->vdev_children;
6976 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
6977 	vdev_add_child(pvd, newvd);
6978 
6979 	/*
6980 	 * Reevaluate the parent vdev state.
6981 	 */
6982 	vdev_propagate_state(pvd);
6983 
6984 	tvd = newvd->vdev_top;
6985 	ASSERT(pvd->vdev_top == tvd);
6986 	ASSERT(tvd->vdev_parent == rvd);
6987 
6988 	vdev_config_dirty(tvd);
6989 
6990 	/*
6991 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6992 	 * for any dmu_sync-ed blocks.  It will propagate upward when
6993 	 * spa_vdev_exit() calls vdev_dtl_reassess().
6994 	 */
6995 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6996 
6997 	vdev_dtl_dirty(newvd, DTL_MISSING,
6998 	    TXG_INITIAL, dtl_max_txg - TXG_INITIAL);
6999 
7000 	if (newvd->vdev_isspare) {
7001 		spa_spare_activate(newvd);
7002 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
7003 	}
7004 
7005 	oldvdpath = spa_strdup(oldvd->vdev_path);
7006 	newvdpath = spa_strdup(newvd->vdev_path);
7007 	newvd_isspare = newvd->vdev_isspare;
7008 
7009 	/*
7010 	 * Mark newvd's DTL dirty in this txg.
7011 	 */
7012 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
7013 
7014 	/*
7015 	 * Schedule the resilver or rebuild to restart in the future. We do
7016 	 * this to ensure that dmu_sync-ed blocks have been stitched into the
7017 	 * respective datasets.
7018 	 */
7019 	if (rebuild) {
7020 		newvd->vdev_rebuild_txg = txg;
7021 
7022 		vdev_rebuild(tvd);
7023 	} else {
7024 		newvd->vdev_resilver_txg = txg;
7025 
7026 		if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
7027 		    spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
7028 			vdev_defer_resilver(newvd);
7029 		} else {
7030 			dsl_scan_restart_resilver(spa->spa_dsl_pool,
7031 			    dtl_max_txg);
7032 		}
7033 	}
7034 
7035 	if (spa->spa_bootfs)
7036 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7037 
7038 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7039 
7040 	/*
7041 	 * Commit the config
7042 	 */
7043 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7044 
7045 	spa_history_log_internal(spa, "vdev attach", NULL,
7046 	    "%s vdev=%s %s vdev=%s",
7047 	    replacing && newvd_isspare ? "spare in" :
7048 	    replacing ? "replace" : "attach", newvdpath,
7049 	    replacing ? "for" : "to", oldvdpath);
7050 
7051 	spa_strfree(oldvdpath);
7052 	spa_strfree(newvdpath);
7053 
7054 	return (0);
7055 }
7056 
7057 /*
7058  * Detach a device from a mirror or replacing vdev.
7059  *
7060  * If 'replace_done' is specified, only detach if the parent
7061  * is a replacing vdev.
7062  */
7063 int
7064 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7065 {
7066 	uint64_t txg;
7067 	int error;
7068 	vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7069 	vdev_t *vd, *pvd, *cvd, *tvd;
7070 	boolean_t unspare = B_FALSE;
7071 	uint64_t unspare_guid = 0;
7072 	char *vdpath;
7073 
7074 	ASSERT(spa_writeable(spa));
7075 
7076 	txg = spa_vdev_detach_enter(spa, guid);
7077 
7078 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7079 
7080 	/*
7081 	 * Besides being called directly from the userland through the
7082 	 * ioctl interface, spa_vdev_detach() can be potentially called
7083 	 * at the end of spa_vdev_resilver_done().
7084 	 *
7085 	 * In the regular case, when we have a checkpoint this shouldn't
7086 	 * happen as we never empty the DTLs of a vdev during the scrub
7087 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7088 	 * should never get here when we have a checkpoint.
7089 	 *
7090 	 * That said, even in a case when we checkpoint the pool exactly
7091 	 * as spa_vdev_resilver_done() calls this function everything
7092 	 * should be fine as the resilver will return right away.
7093 	 */
7094 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7095 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7096 		error = (spa_has_checkpoint(spa)) ?
7097 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7098 		return (spa_vdev_exit(spa, NULL, txg, error));
7099 	}
7100 
7101 	if (vd == NULL)
7102 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7103 
7104 	if (!vd->vdev_ops->vdev_op_leaf)
7105 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7106 
7107 	pvd = vd->vdev_parent;
7108 
7109 	/*
7110 	 * If the parent/child relationship is not as expected, don't do it.
7111 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7112 	 * vdev that's replacing B with C.  The user's intent in replacing
7113 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
7114 	 * the replace by detaching C, the expected behavior is to end up
7115 	 * M(A,B).  But suppose that right after deciding to detach C,
7116 	 * the replacement of B completes.  We would have M(A,C), and then
7117 	 * ask to detach C, which would leave us with just A -- not what
7118 	 * the user wanted.  To prevent this, we make sure that the
7119 	 * parent/child relationship hasn't changed -- in this example,
7120 	 * that C's parent is still the replacing vdev R.
7121 	 */
7122 	if (pvd->vdev_guid != pguid && pguid != 0)
7123 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7124 
7125 	/*
7126 	 * Only 'replacing' or 'spare' vdevs can be replaced.
7127 	 */
7128 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7129 	    pvd->vdev_ops != &vdev_spare_ops)
7130 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7131 
7132 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7133 	    spa_version(spa) >= SPA_VERSION_SPARES);
7134 
7135 	/*
7136 	 * Only mirror, replacing, and spare vdevs support detach.
7137 	 */
7138 	if (pvd->vdev_ops != &vdev_replacing_ops &&
7139 	    pvd->vdev_ops != &vdev_mirror_ops &&
7140 	    pvd->vdev_ops != &vdev_spare_ops)
7141 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7142 
7143 	/*
7144 	 * If this device has the only valid copy of some data,
7145 	 * we cannot safely detach it.
7146 	 */
7147 	if (vdev_dtl_required(vd))
7148 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7149 
7150 	ASSERT(pvd->vdev_children >= 2);
7151 
7152 	/*
7153 	 * If we are detaching the second disk from a replacing vdev, then
7154 	 * check to see if we changed the original vdev's path to have "/old"
7155 	 * at the end in spa_vdev_attach().  If so, undo that change now.
7156 	 */
7157 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7158 	    vd->vdev_path != NULL) {
7159 		size_t len = strlen(vd->vdev_path);
7160 
7161 		for (int c = 0; c < pvd->vdev_children; c++) {
7162 			cvd = pvd->vdev_child[c];
7163 
7164 			if (cvd == vd || cvd->vdev_path == NULL)
7165 				continue;
7166 
7167 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7168 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
7169 				spa_strfree(cvd->vdev_path);
7170 				cvd->vdev_path = spa_strdup(vd->vdev_path);
7171 				break;
7172 			}
7173 		}
7174 	}
7175 
7176 	/*
7177 	 * If we are detaching the original disk from a normal spare, then it
7178 	 * implies that the spare should become a real disk, and be removed
7179 	 * from the active spare list for the pool.  dRAID spares on the
7180 	 * other hand are coupled to the pool and thus should never be removed
7181 	 * from the spares list.
7182 	 */
7183 	if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7184 		vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7185 
7186 		if (last_cvd->vdev_isspare &&
7187 		    last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7188 			unspare = B_TRUE;
7189 		}
7190 	}
7191 
7192 	/*
7193 	 * Erase the disk labels so the disk can be used for other things.
7194 	 * This must be done after all other error cases are handled,
7195 	 * but before we disembowel vd (so we can still do I/O to it).
7196 	 * But if we can't do it, don't treat the error as fatal --
7197 	 * it may be that the unwritability of the disk is the reason
7198 	 * it's being detached!
7199 	 */
7200 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7201 
7202 	/*
7203 	 * Remove vd from its parent and compact the parent's children.
7204 	 */
7205 	vdev_remove_child(pvd, vd);
7206 	vdev_compact_children(pvd);
7207 
7208 	/*
7209 	 * Remember one of the remaining children so we can get tvd below.
7210 	 */
7211 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
7212 
7213 	/*
7214 	 * If we need to remove the remaining child from the list of hot spares,
7215 	 * do it now, marking the vdev as no longer a spare in the process.
7216 	 * We must do this before vdev_remove_parent(), because that can
7217 	 * change the GUID if it creates a new toplevel GUID.  For a similar
7218 	 * reason, we must remove the spare now, in the same txg as the detach;
7219 	 * otherwise someone could attach a new sibling, change the GUID, and
7220 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7221 	 */
7222 	if (unspare) {
7223 		ASSERT(cvd->vdev_isspare);
7224 		spa_spare_remove(cvd);
7225 		unspare_guid = cvd->vdev_guid;
7226 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7227 		cvd->vdev_unspare = B_TRUE;
7228 	}
7229 
7230 	/*
7231 	 * If the parent mirror/replacing vdev only has one child,
7232 	 * the parent is no longer needed.  Remove it from the tree.
7233 	 */
7234 	if (pvd->vdev_children == 1) {
7235 		if (pvd->vdev_ops == &vdev_spare_ops)
7236 			cvd->vdev_unspare = B_FALSE;
7237 		vdev_remove_parent(cvd);
7238 	}
7239 
7240 	/*
7241 	 * We don't set tvd until now because the parent we just removed
7242 	 * may have been the previous top-level vdev.
7243 	 */
7244 	tvd = cvd->vdev_top;
7245 	ASSERT(tvd->vdev_parent == rvd);
7246 
7247 	/*
7248 	 * Reevaluate the parent vdev state.
7249 	 */
7250 	vdev_propagate_state(cvd);
7251 
7252 	/*
7253 	 * If the 'autoexpand' property is set on the pool then automatically
7254 	 * try to expand the size of the pool. For example if the device we
7255 	 * just detached was smaller than the others, it may be possible to
7256 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7257 	 * first so that we can obtain the updated sizes of the leaf vdevs.
7258 	 */
7259 	if (spa->spa_autoexpand) {
7260 		vdev_reopen(tvd);
7261 		vdev_expand(tvd, txg);
7262 	}
7263 
7264 	vdev_config_dirty(tvd);
7265 
7266 	/*
7267 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
7268 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7269 	 * But first make sure we're not on any *other* txg's DTL list, to
7270 	 * prevent vd from being accessed after it's freed.
7271 	 */
7272 	vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7273 	for (int t = 0; t < TXG_SIZE; t++)
7274 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7275 	vd->vdev_detached = B_TRUE;
7276 	vdev_dirty(tvd, VDD_DTL, vd, txg);
7277 
7278 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7279 	spa_notify_waiters(spa);
7280 
7281 	/* hang on to the spa before we release the lock */
7282 	spa_open_ref(spa, FTAG);
7283 
7284 	error = spa_vdev_exit(spa, vd, txg, 0);
7285 
7286 	spa_history_log_internal(spa, "detach", NULL,
7287 	    "vdev=%s", vdpath);
7288 	spa_strfree(vdpath);
7289 
7290 	/*
7291 	 * If this was the removal of the original device in a hot spare vdev,
7292 	 * then we want to go through and remove the device from the hot spare
7293 	 * list of every other pool.
7294 	 */
7295 	if (unspare) {
7296 		spa_t *altspa = NULL;
7297 
7298 		mutex_enter(&spa_namespace_lock);
7299 		while ((altspa = spa_next(altspa)) != NULL) {
7300 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
7301 			    altspa == spa)
7302 				continue;
7303 
7304 			spa_open_ref(altspa, FTAG);
7305 			mutex_exit(&spa_namespace_lock);
7306 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7307 			mutex_enter(&spa_namespace_lock);
7308 			spa_close(altspa, FTAG);
7309 		}
7310 		mutex_exit(&spa_namespace_lock);
7311 
7312 		/* search the rest of the vdevs for spares to remove */
7313 		spa_vdev_resilver_done(spa);
7314 	}
7315 
7316 	/* all done with the spa; OK to release */
7317 	mutex_enter(&spa_namespace_lock);
7318 	spa_close(spa, FTAG);
7319 	mutex_exit(&spa_namespace_lock);
7320 
7321 	return (error);
7322 }
7323 
7324 static int
7325 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7326     list_t *vd_list)
7327 {
7328 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7329 
7330 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7331 
7332 	/* Look up vdev and ensure it's a leaf. */
7333 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7334 	if (vd == NULL || vd->vdev_detached) {
7335 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7336 		return (SET_ERROR(ENODEV));
7337 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7338 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7339 		return (SET_ERROR(EINVAL));
7340 	} else if (!vdev_writeable(vd)) {
7341 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7342 		return (SET_ERROR(EROFS));
7343 	}
7344 	mutex_enter(&vd->vdev_initialize_lock);
7345 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7346 
7347 	/*
7348 	 * When we activate an initialize action we check to see
7349 	 * if the vdev_initialize_thread is NULL. We do this instead
7350 	 * of using the vdev_initialize_state since there might be
7351 	 * a previous initialization process which has completed but
7352 	 * the thread is not exited.
7353 	 */
7354 	if (cmd_type == POOL_INITIALIZE_START &&
7355 	    (vd->vdev_initialize_thread != NULL ||
7356 	    vd->vdev_top->vdev_removing)) {
7357 		mutex_exit(&vd->vdev_initialize_lock);
7358 		return (SET_ERROR(EBUSY));
7359 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7360 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7361 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7362 		mutex_exit(&vd->vdev_initialize_lock);
7363 		return (SET_ERROR(ESRCH));
7364 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7365 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7366 		mutex_exit(&vd->vdev_initialize_lock);
7367 		return (SET_ERROR(ESRCH));
7368 	}
7369 
7370 	switch (cmd_type) {
7371 	case POOL_INITIALIZE_START:
7372 		vdev_initialize(vd);
7373 		break;
7374 	case POOL_INITIALIZE_CANCEL:
7375 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7376 		break;
7377 	case POOL_INITIALIZE_SUSPEND:
7378 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7379 		break;
7380 	default:
7381 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7382 	}
7383 	mutex_exit(&vd->vdev_initialize_lock);
7384 
7385 	return (0);
7386 }
7387 
7388 int
7389 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7390     nvlist_t *vdev_errlist)
7391 {
7392 	int total_errors = 0;
7393 	list_t vd_list;
7394 
7395 	list_create(&vd_list, sizeof (vdev_t),
7396 	    offsetof(vdev_t, vdev_initialize_node));
7397 
7398 	/*
7399 	 * We hold the namespace lock through the whole function
7400 	 * to prevent any changes to the pool while we're starting or
7401 	 * stopping initialization. The config and state locks are held so that
7402 	 * we can properly assess the vdev state before we commit to
7403 	 * the initializing operation.
7404 	 */
7405 	mutex_enter(&spa_namespace_lock);
7406 
7407 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7408 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7409 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
7410 
7411 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7412 		    &vd_list);
7413 		if (error != 0) {
7414 			char guid_as_str[MAXNAMELEN];
7415 
7416 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
7417 			    "%llu", (unsigned long long)vdev_guid);
7418 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7419 			total_errors++;
7420 		}
7421 	}
7422 
7423 	/* Wait for all initialize threads to stop. */
7424 	vdev_initialize_stop_wait(spa, &vd_list);
7425 
7426 	/* Sync out the initializing state */
7427 	txg_wait_synced(spa->spa_dsl_pool, 0);
7428 	mutex_exit(&spa_namespace_lock);
7429 
7430 	list_destroy(&vd_list);
7431 
7432 	return (total_errors);
7433 }
7434 
7435 static int
7436 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7437     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
7438 {
7439 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7440 
7441 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7442 
7443 	/* Look up vdev and ensure it's a leaf. */
7444 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7445 	if (vd == NULL || vd->vdev_detached) {
7446 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7447 		return (SET_ERROR(ENODEV));
7448 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7449 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7450 		return (SET_ERROR(EINVAL));
7451 	} else if (!vdev_writeable(vd)) {
7452 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7453 		return (SET_ERROR(EROFS));
7454 	} else if (!vd->vdev_has_trim) {
7455 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7456 		return (SET_ERROR(EOPNOTSUPP));
7457 	} else if (secure && !vd->vdev_has_securetrim) {
7458 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7459 		return (SET_ERROR(EOPNOTSUPP));
7460 	}
7461 	mutex_enter(&vd->vdev_trim_lock);
7462 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7463 
7464 	/*
7465 	 * When we activate a TRIM action we check to see if the
7466 	 * vdev_trim_thread is NULL. We do this instead of using the
7467 	 * vdev_trim_state since there might be a previous TRIM process
7468 	 * which has completed but the thread is not exited.
7469 	 */
7470 	if (cmd_type == POOL_TRIM_START &&
7471 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
7472 		mutex_exit(&vd->vdev_trim_lock);
7473 		return (SET_ERROR(EBUSY));
7474 	} else if (cmd_type == POOL_TRIM_CANCEL &&
7475 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
7476 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
7477 		mutex_exit(&vd->vdev_trim_lock);
7478 		return (SET_ERROR(ESRCH));
7479 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
7480 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
7481 		mutex_exit(&vd->vdev_trim_lock);
7482 		return (SET_ERROR(ESRCH));
7483 	}
7484 
7485 	switch (cmd_type) {
7486 	case POOL_TRIM_START:
7487 		vdev_trim(vd, rate, partial, secure);
7488 		break;
7489 	case POOL_TRIM_CANCEL:
7490 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
7491 		break;
7492 	case POOL_TRIM_SUSPEND:
7493 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
7494 		break;
7495 	default:
7496 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7497 	}
7498 	mutex_exit(&vd->vdev_trim_lock);
7499 
7500 	return (0);
7501 }
7502 
7503 /*
7504  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
7505  * TRIM threads for each child vdev.  These threads pass over all of the free
7506  * space in the vdev's metaslabs and issues TRIM commands for that space.
7507  */
7508 int
7509 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
7510     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
7511 {
7512 	int total_errors = 0;
7513 	list_t vd_list;
7514 
7515 	list_create(&vd_list, sizeof (vdev_t),
7516 	    offsetof(vdev_t, vdev_trim_node));
7517 
7518 	/*
7519 	 * We hold the namespace lock through the whole function
7520 	 * to prevent any changes to the pool while we're starting or
7521 	 * stopping TRIM. The config and state locks are held so that
7522 	 * we can properly assess the vdev state before we commit to
7523 	 * the TRIM operation.
7524 	 */
7525 	mutex_enter(&spa_namespace_lock);
7526 
7527 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7528 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7529 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
7530 
7531 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
7532 		    rate, partial, secure, &vd_list);
7533 		if (error != 0) {
7534 			char guid_as_str[MAXNAMELEN];
7535 
7536 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
7537 			    "%llu", (unsigned long long)vdev_guid);
7538 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7539 			total_errors++;
7540 		}
7541 	}
7542 
7543 	/* Wait for all TRIM threads to stop. */
7544 	vdev_trim_stop_wait(spa, &vd_list);
7545 
7546 	/* Sync out the TRIM state */
7547 	txg_wait_synced(spa->spa_dsl_pool, 0);
7548 	mutex_exit(&spa_namespace_lock);
7549 
7550 	list_destroy(&vd_list);
7551 
7552 	return (total_errors);
7553 }
7554 
7555 /*
7556  * Split a set of devices from their mirrors, and create a new pool from them.
7557  */
7558 int
7559 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
7560     nvlist_t *props, boolean_t exp)
7561 {
7562 	int error = 0;
7563 	uint64_t txg, *glist;
7564 	spa_t *newspa;
7565 	uint_t c, children, lastlog;
7566 	nvlist_t **child, *nvl, *tmp;
7567 	dmu_tx_t *tx;
7568 	const char *altroot = NULL;
7569 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
7570 	boolean_t activate_slog;
7571 
7572 	ASSERT(spa_writeable(spa));
7573 
7574 	txg = spa_vdev_enter(spa);
7575 
7576 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7577 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7578 		error = (spa_has_checkpoint(spa)) ?
7579 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7580 		return (spa_vdev_exit(spa, NULL, txg, error));
7581 	}
7582 
7583 	/* clear the log and flush everything up to now */
7584 	activate_slog = spa_passivate_log(spa);
7585 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7586 	error = spa_reset_logs(spa);
7587 	txg = spa_vdev_config_enter(spa);
7588 
7589 	if (activate_slog)
7590 		spa_activate_log(spa);
7591 
7592 	if (error != 0)
7593 		return (spa_vdev_exit(spa, NULL, txg, error));
7594 
7595 	/* check new spa name before going any further */
7596 	if (spa_lookup(newname) != NULL)
7597 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
7598 
7599 	/*
7600 	 * scan through all the children to ensure they're all mirrors
7601 	 */
7602 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
7603 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
7604 	    &children) != 0)
7605 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7606 
7607 	/* first, check to ensure we've got the right child count */
7608 	rvd = spa->spa_root_vdev;
7609 	lastlog = 0;
7610 	for (c = 0; c < rvd->vdev_children; c++) {
7611 		vdev_t *vd = rvd->vdev_child[c];
7612 
7613 		/* don't count the holes & logs as children */
7614 		if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
7615 		    !vdev_is_concrete(vd))) {
7616 			if (lastlog == 0)
7617 				lastlog = c;
7618 			continue;
7619 		}
7620 
7621 		lastlog = 0;
7622 	}
7623 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7624 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7625 
7626 	/* next, ensure no spare or cache devices are part of the split */
7627 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7628 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7629 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7630 
7631 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7632 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7633 
7634 	/* then, loop over each vdev and validate it */
7635 	for (c = 0; c < children; c++) {
7636 		uint64_t is_hole = 0;
7637 
7638 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7639 		    &is_hole);
7640 
7641 		if (is_hole != 0) {
7642 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7643 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7644 				continue;
7645 			} else {
7646 				error = SET_ERROR(EINVAL);
7647 				break;
7648 			}
7649 		}
7650 
7651 		/* deal with indirect vdevs */
7652 		if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
7653 		    &vdev_indirect_ops)
7654 			continue;
7655 
7656 		/* which disk is going to be split? */
7657 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7658 		    &glist[c]) != 0) {
7659 			error = SET_ERROR(EINVAL);
7660 			break;
7661 		}
7662 
7663 		/* look it up in the spa */
7664 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7665 		if (vml[c] == NULL) {
7666 			error = SET_ERROR(ENODEV);
7667 			break;
7668 		}
7669 
7670 		/* make sure there's nothing stopping the split */
7671 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7672 		    vml[c]->vdev_islog ||
7673 		    !vdev_is_concrete(vml[c]) ||
7674 		    vml[c]->vdev_isspare ||
7675 		    vml[c]->vdev_isl2cache ||
7676 		    !vdev_writeable(vml[c]) ||
7677 		    vml[c]->vdev_children != 0 ||
7678 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7679 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7680 			error = SET_ERROR(EINVAL);
7681 			break;
7682 		}
7683 
7684 		if (vdev_dtl_required(vml[c]) ||
7685 		    vdev_resilver_needed(vml[c], NULL, NULL)) {
7686 			error = SET_ERROR(EBUSY);
7687 			break;
7688 		}
7689 
7690 		/* we need certain info from the top level */
7691 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7692 		    vml[c]->vdev_top->vdev_ms_array);
7693 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7694 		    vml[c]->vdev_top->vdev_ms_shift);
7695 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7696 		    vml[c]->vdev_top->vdev_asize);
7697 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7698 		    vml[c]->vdev_top->vdev_ashift);
7699 
7700 		/* transfer per-vdev ZAPs */
7701 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7702 		VERIFY0(nvlist_add_uint64(child[c],
7703 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7704 
7705 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7706 		VERIFY0(nvlist_add_uint64(child[c],
7707 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
7708 		    vml[c]->vdev_parent->vdev_top_zap));
7709 	}
7710 
7711 	if (error != 0) {
7712 		kmem_free(vml, children * sizeof (vdev_t *));
7713 		kmem_free(glist, children * sizeof (uint64_t));
7714 		return (spa_vdev_exit(spa, NULL, txg, error));
7715 	}
7716 
7717 	/* stop writers from using the disks */
7718 	for (c = 0; c < children; c++) {
7719 		if (vml[c] != NULL)
7720 			vml[c]->vdev_offline = B_TRUE;
7721 	}
7722 	vdev_reopen(spa->spa_root_vdev);
7723 
7724 	/*
7725 	 * Temporarily record the splitting vdevs in the spa config.  This
7726 	 * will disappear once the config is regenerated.
7727 	 */
7728 	nvl = fnvlist_alloc();
7729 	fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
7730 	kmem_free(glist, children * sizeof (uint64_t));
7731 
7732 	mutex_enter(&spa->spa_props_lock);
7733 	fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
7734 	mutex_exit(&spa->spa_props_lock);
7735 	spa->spa_config_splitting = nvl;
7736 	vdev_config_dirty(spa->spa_root_vdev);
7737 
7738 	/* configure and create the new pool */
7739 	fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
7740 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7741 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
7742 	fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
7743 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
7744 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7745 	    spa_generate_guid(NULL));
7746 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7747 	(void) nvlist_lookup_string(props,
7748 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7749 
7750 	/* add the new pool to the namespace */
7751 	newspa = spa_add(newname, config, altroot);
7752 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7753 	newspa->spa_config_txg = spa->spa_config_txg;
7754 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
7755 
7756 	/* release the spa config lock, retaining the namespace lock */
7757 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7758 
7759 	if (zio_injection_enabled)
7760 		zio_handle_panic_injection(spa, FTAG, 1);
7761 
7762 	spa_activate(newspa, spa_mode_global);
7763 	spa_async_suspend(newspa);
7764 
7765 	/*
7766 	 * Temporarily stop the initializing and TRIM activity.  We set the
7767 	 * state to ACTIVE so that we know to resume initializing or TRIM
7768 	 * once the split has completed.
7769 	 */
7770 	list_t vd_initialize_list;
7771 	list_create(&vd_initialize_list, sizeof (vdev_t),
7772 	    offsetof(vdev_t, vdev_initialize_node));
7773 
7774 	list_t vd_trim_list;
7775 	list_create(&vd_trim_list, sizeof (vdev_t),
7776 	    offsetof(vdev_t, vdev_trim_node));
7777 
7778 	for (c = 0; c < children; c++) {
7779 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7780 			mutex_enter(&vml[c]->vdev_initialize_lock);
7781 			vdev_initialize_stop(vml[c],
7782 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7783 			mutex_exit(&vml[c]->vdev_initialize_lock);
7784 
7785 			mutex_enter(&vml[c]->vdev_trim_lock);
7786 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7787 			mutex_exit(&vml[c]->vdev_trim_lock);
7788 		}
7789 	}
7790 
7791 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
7792 	vdev_trim_stop_wait(spa, &vd_trim_list);
7793 
7794 	list_destroy(&vd_initialize_list);
7795 	list_destroy(&vd_trim_list);
7796 
7797 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7798 	newspa->spa_is_splitting = B_TRUE;
7799 
7800 	/* create the new pool from the disks of the original pool */
7801 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7802 	if (error)
7803 		goto out;
7804 
7805 	/* if that worked, generate a real config for the new pool */
7806 	if (newspa->spa_root_vdev != NULL) {
7807 		newspa->spa_config_splitting = fnvlist_alloc();
7808 		fnvlist_add_uint64(newspa->spa_config_splitting,
7809 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
7810 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7811 		    B_TRUE));
7812 	}
7813 
7814 	/* set the props */
7815 	if (props != NULL) {
7816 		spa_configfile_set(newspa, props, B_FALSE);
7817 		error = spa_prop_set(newspa, props);
7818 		if (error)
7819 			goto out;
7820 	}
7821 
7822 	/* flush everything */
7823 	txg = spa_vdev_config_enter(newspa);
7824 	vdev_config_dirty(newspa->spa_root_vdev);
7825 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7826 
7827 	if (zio_injection_enabled)
7828 		zio_handle_panic_injection(spa, FTAG, 2);
7829 
7830 	spa_async_resume(newspa);
7831 
7832 	/* finally, update the original pool's config */
7833 	txg = spa_vdev_config_enter(spa);
7834 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7835 	error = dmu_tx_assign(tx, TXG_WAIT);
7836 	if (error != 0)
7837 		dmu_tx_abort(tx);
7838 	for (c = 0; c < children; c++) {
7839 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7840 			vdev_t *tvd = vml[c]->vdev_top;
7841 
7842 			/*
7843 			 * Need to be sure the detachable VDEV is not
7844 			 * on any *other* txg's DTL list to prevent it
7845 			 * from being accessed after it's freed.
7846 			 */
7847 			for (int t = 0; t < TXG_SIZE; t++) {
7848 				(void) txg_list_remove_this(
7849 				    &tvd->vdev_dtl_list, vml[c], t);
7850 			}
7851 
7852 			vdev_split(vml[c]);
7853 			if (error == 0)
7854 				spa_history_log_internal(spa, "detach", tx,
7855 				    "vdev=%s", vml[c]->vdev_path);
7856 
7857 			vdev_free(vml[c]);
7858 		}
7859 	}
7860 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
7861 	vdev_config_dirty(spa->spa_root_vdev);
7862 	spa->spa_config_splitting = NULL;
7863 	nvlist_free(nvl);
7864 	if (error == 0)
7865 		dmu_tx_commit(tx);
7866 	(void) spa_vdev_exit(spa, NULL, txg, 0);
7867 
7868 	if (zio_injection_enabled)
7869 		zio_handle_panic_injection(spa, FTAG, 3);
7870 
7871 	/* split is complete; log a history record */
7872 	spa_history_log_internal(newspa, "split", NULL,
7873 	    "from pool %s", spa_name(spa));
7874 
7875 	newspa->spa_is_splitting = B_FALSE;
7876 	kmem_free(vml, children * sizeof (vdev_t *));
7877 
7878 	/* if we're not going to mount the filesystems in userland, export */
7879 	if (exp)
7880 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7881 		    B_FALSE, B_FALSE);
7882 
7883 	return (error);
7884 
7885 out:
7886 	spa_unload(newspa);
7887 	spa_deactivate(newspa);
7888 	spa_remove(newspa);
7889 
7890 	txg = spa_vdev_config_enter(spa);
7891 
7892 	/* re-online all offlined disks */
7893 	for (c = 0; c < children; c++) {
7894 		if (vml[c] != NULL)
7895 			vml[c]->vdev_offline = B_FALSE;
7896 	}
7897 
7898 	/* restart initializing or trimming disks as necessary */
7899 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7900 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7901 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7902 
7903 	vdev_reopen(spa->spa_root_vdev);
7904 
7905 	nvlist_free(spa->spa_config_splitting);
7906 	spa->spa_config_splitting = NULL;
7907 	(void) spa_vdev_exit(spa, NULL, txg, error);
7908 
7909 	kmem_free(vml, children * sizeof (vdev_t *));
7910 	return (error);
7911 }
7912 
7913 /*
7914  * Find any device that's done replacing, or a vdev marked 'unspare' that's
7915  * currently spared, so we can detach it.
7916  */
7917 static vdev_t *
7918 spa_vdev_resilver_done_hunt(vdev_t *vd)
7919 {
7920 	vdev_t *newvd, *oldvd;
7921 
7922 	for (int c = 0; c < vd->vdev_children; c++) {
7923 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7924 		if (oldvd != NULL)
7925 			return (oldvd);
7926 	}
7927 
7928 	/*
7929 	 * Check for a completed replacement.  We always consider the first
7930 	 * vdev in the list to be the oldest vdev, and the last one to be
7931 	 * the newest (see spa_vdev_attach() for how that works).  In
7932 	 * the case where the newest vdev is faulted, we will not automatically
7933 	 * remove it after a resilver completes.  This is OK as it will require
7934 	 * user intervention to determine which disk the admin wishes to keep.
7935 	 */
7936 	if (vd->vdev_ops == &vdev_replacing_ops) {
7937 		ASSERT(vd->vdev_children > 1);
7938 
7939 		newvd = vd->vdev_child[vd->vdev_children - 1];
7940 		oldvd = vd->vdev_child[0];
7941 
7942 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7943 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7944 		    !vdev_dtl_required(oldvd))
7945 			return (oldvd);
7946 	}
7947 
7948 	/*
7949 	 * Check for a completed resilver with the 'unspare' flag set.
7950 	 * Also potentially update faulted state.
7951 	 */
7952 	if (vd->vdev_ops == &vdev_spare_ops) {
7953 		vdev_t *first = vd->vdev_child[0];
7954 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7955 
7956 		if (last->vdev_unspare) {
7957 			oldvd = first;
7958 			newvd = last;
7959 		} else if (first->vdev_unspare) {
7960 			oldvd = last;
7961 			newvd = first;
7962 		} else {
7963 			oldvd = NULL;
7964 		}
7965 
7966 		if (oldvd != NULL &&
7967 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
7968 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7969 		    !vdev_dtl_required(oldvd))
7970 			return (oldvd);
7971 
7972 		vdev_propagate_state(vd);
7973 
7974 		/*
7975 		 * If there are more than two spares attached to a disk,
7976 		 * and those spares are not required, then we want to
7977 		 * attempt to free them up now so that they can be used
7978 		 * by other pools.  Once we're back down to a single
7979 		 * disk+spare, we stop removing them.
7980 		 */
7981 		if (vd->vdev_children > 2) {
7982 			newvd = vd->vdev_child[1];
7983 
7984 			if (newvd->vdev_isspare && last->vdev_isspare &&
7985 			    vdev_dtl_empty(last, DTL_MISSING) &&
7986 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
7987 			    !vdev_dtl_required(newvd))
7988 				return (newvd);
7989 		}
7990 	}
7991 
7992 	return (NULL);
7993 }
7994 
7995 static void
7996 spa_vdev_resilver_done(spa_t *spa)
7997 {
7998 	vdev_t *vd, *pvd, *ppvd;
7999 	uint64_t guid, sguid, pguid, ppguid;
8000 
8001 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8002 
8003 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
8004 		pvd = vd->vdev_parent;
8005 		ppvd = pvd->vdev_parent;
8006 		guid = vd->vdev_guid;
8007 		pguid = pvd->vdev_guid;
8008 		ppguid = ppvd->vdev_guid;
8009 		sguid = 0;
8010 		/*
8011 		 * If we have just finished replacing a hot spared device, then
8012 		 * we need to detach the parent's first child (the original hot
8013 		 * spare) as well.
8014 		 */
8015 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
8016 		    ppvd->vdev_children == 2) {
8017 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
8018 			sguid = ppvd->vdev_child[1]->vdev_guid;
8019 		}
8020 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
8021 
8022 		spa_config_exit(spa, SCL_ALL, FTAG);
8023 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
8024 			return;
8025 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
8026 			return;
8027 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8028 	}
8029 
8030 	spa_config_exit(spa, SCL_ALL, FTAG);
8031 
8032 	/*
8033 	 * If a detach was not performed above replace waiters will not have
8034 	 * been notified.  In which case we must do so now.
8035 	 */
8036 	spa_notify_waiters(spa);
8037 }
8038 
8039 /*
8040  * Update the stored path or FRU for this vdev.
8041  */
8042 static int
8043 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8044     boolean_t ispath)
8045 {
8046 	vdev_t *vd;
8047 	boolean_t sync = B_FALSE;
8048 
8049 	ASSERT(spa_writeable(spa));
8050 
8051 	spa_vdev_state_enter(spa, SCL_ALL);
8052 
8053 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8054 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
8055 
8056 	if (!vd->vdev_ops->vdev_op_leaf)
8057 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8058 
8059 	if (ispath) {
8060 		if (strcmp(value, vd->vdev_path) != 0) {
8061 			spa_strfree(vd->vdev_path);
8062 			vd->vdev_path = spa_strdup(value);
8063 			sync = B_TRUE;
8064 		}
8065 	} else {
8066 		if (vd->vdev_fru == NULL) {
8067 			vd->vdev_fru = spa_strdup(value);
8068 			sync = B_TRUE;
8069 		} else if (strcmp(value, vd->vdev_fru) != 0) {
8070 			spa_strfree(vd->vdev_fru);
8071 			vd->vdev_fru = spa_strdup(value);
8072 			sync = B_TRUE;
8073 		}
8074 	}
8075 
8076 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8077 }
8078 
8079 int
8080 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8081 {
8082 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8083 }
8084 
8085 int
8086 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8087 {
8088 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8089 }
8090 
8091 /*
8092  * ==========================================================================
8093  * SPA Scanning
8094  * ==========================================================================
8095  */
8096 int
8097 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8098 {
8099 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8100 
8101 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8102 		return (SET_ERROR(EBUSY));
8103 
8104 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8105 }
8106 
8107 int
8108 spa_scan_stop(spa_t *spa)
8109 {
8110 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8111 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8112 		return (SET_ERROR(EBUSY));
8113 	return (dsl_scan_cancel(spa->spa_dsl_pool));
8114 }
8115 
8116 int
8117 spa_scan(spa_t *spa, pool_scan_func_t func)
8118 {
8119 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8120 
8121 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8122 		return (SET_ERROR(ENOTSUP));
8123 
8124 	if (func == POOL_SCAN_RESILVER &&
8125 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8126 		return (SET_ERROR(ENOTSUP));
8127 
8128 	/*
8129 	 * If a resilver was requested, but there is no DTL on a
8130 	 * writeable leaf device, we have nothing to do.
8131 	 */
8132 	if (func == POOL_SCAN_RESILVER &&
8133 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8134 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8135 		return (0);
8136 	}
8137 
8138 	return (dsl_scan(spa->spa_dsl_pool, func));
8139 }
8140 
8141 /*
8142  * ==========================================================================
8143  * SPA async task processing
8144  * ==========================================================================
8145  */
8146 
8147 static void
8148 spa_async_remove(spa_t *spa, vdev_t *vd)
8149 {
8150 	if (vd->vdev_remove_wanted) {
8151 		vd->vdev_remove_wanted = B_FALSE;
8152 		vd->vdev_delayed_close = B_FALSE;
8153 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8154 
8155 		/*
8156 		 * We want to clear the stats, but we don't want to do a full
8157 		 * vdev_clear() as that will cause us to throw away
8158 		 * degraded/faulted state as well as attempt to reopen the
8159 		 * device, all of which is a waste.
8160 		 */
8161 		vd->vdev_stat.vs_read_errors = 0;
8162 		vd->vdev_stat.vs_write_errors = 0;
8163 		vd->vdev_stat.vs_checksum_errors = 0;
8164 
8165 		vdev_state_dirty(vd->vdev_top);
8166 
8167 		/* Tell userspace that the vdev is gone. */
8168 		zfs_post_remove(spa, vd);
8169 	}
8170 
8171 	for (int c = 0; c < vd->vdev_children; c++)
8172 		spa_async_remove(spa, vd->vdev_child[c]);
8173 }
8174 
8175 static void
8176 spa_async_probe(spa_t *spa, vdev_t *vd)
8177 {
8178 	if (vd->vdev_probe_wanted) {
8179 		vd->vdev_probe_wanted = B_FALSE;
8180 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
8181 	}
8182 
8183 	for (int c = 0; c < vd->vdev_children; c++)
8184 		spa_async_probe(spa, vd->vdev_child[c]);
8185 }
8186 
8187 static void
8188 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8189 {
8190 	if (!spa->spa_autoexpand)
8191 		return;
8192 
8193 	for (int c = 0; c < vd->vdev_children; c++) {
8194 		vdev_t *cvd = vd->vdev_child[c];
8195 		spa_async_autoexpand(spa, cvd);
8196 	}
8197 
8198 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8199 		return;
8200 
8201 	spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8202 }
8203 
8204 static __attribute__((noreturn)) void
8205 spa_async_thread(void *arg)
8206 {
8207 	spa_t *spa = (spa_t *)arg;
8208 	dsl_pool_t *dp = spa->spa_dsl_pool;
8209 	int tasks;
8210 
8211 	ASSERT(spa->spa_sync_on);
8212 
8213 	mutex_enter(&spa->spa_async_lock);
8214 	tasks = spa->spa_async_tasks;
8215 	spa->spa_async_tasks = 0;
8216 	mutex_exit(&spa->spa_async_lock);
8217 
8218 	/*
8219 	 * See if the config needs to be updated.
8220 	 */
8221 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8222 		uint64_t old_space, new_space;
8223 
8224 		mutex_enter(&spa_namespace_lock);
8225 		old_space = metaslab_class_get_space(spa_normal_class(spa));
8226 		old_space += metaslab_class_get_space(spa_special_class(spa));
8227 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
8228 		old_space += metaslab_class_get_space(
8229 		    spa_embedded_log_class(spa));
8230 
8231 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8232 
8233 		new_space = metaslab_class_get_space(spa_normal_class(spa));
8234 		new_space += metaslab_class_get_space(spa_special_class(spa));
8235 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
8236 		new_space += metaslab_class_get_space(
8237 		    spa_embedded_log_class(spa));
8238 		mutex_exit(&spa_namespace_lock);
8239 
8240 		/*
8241 		 * If the pool grew as a result of the config update,
8242 		 * then log an internal history event.
8243 		 */
8244 		if (new_space != old_space) {
8245 			spa_history_log_internal(spa, "vdev online", NULL,
8246 			    "pool '%s' size: %llu(+%llu)",
8247 			    spa_name(spa), (u_longlong_t)new_space,
8248 			    (u_longlong_t)(new_space - old_space));
8249 		}
8250 	}
8251 
8252 	/*
8253 	 * See if any devices need to be marked REMOVED.
8254 	 */
8255 	if (tasks & SPA_ASYNC_REMOVE) {
8256 		spa_vdev_state_enter(spa, SCL_NONE);
8257 		spa_async_remove(spa, spa->spa_root_vdev);
8258 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
8259 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
8260 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
8261 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
8262 		(void) spa_vdev_state_exit(spa, NULL, 0);
8263 	}
8264 
8265 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8266 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8267 		spa_async_autoexpand(spa, spa->spa_root_vdev);
8268 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8269 	}
8270 
8271 	/*
8272 	 * See if any devices need to be probed.
8273 	 */
8274 	if (tasks & SPA_ASYNC_PROBE) {
8275 		spa_vdev_state_enter(spa, SCL_NONE);
8276 		spa_async_probe(spa, spa->spa_root_vdev);
8277 		(void) spa_vdev_state_exit(spa, NULL, 0);
8278 	}
8279 
8280 	/*
8281 	 * If any devices are done replacing, detach them.
8282 	 */
8283 	if (tasks & SPA_ASYNC_RESILVER_DONE ||
8284 	    tasks & SPA_ASYNC_REBUILD_DONE) {
8285 		spa_vdev_resilver_done(spa);
8286 	}
8287 
8288 	/*
8289 	 * Kick off a resilver.
8290 	 */
8291 	if (tasks & SPA_ASYNC_RESILVER &&
8292 	    !vdev_rebuild_active(spa->spa_root_vdev) &&
8293 	    (!dsl_scan_resilvering(dp) ||
8294 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8295 		dsl_scan_restart_resilver(dp, 0);
8296 
8297 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8298 		mutex_enter(&spa_namespace_lock);
8299 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8300 		vdev_initialize_restart(spa->spa_root_vdev);
8301 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8302 		mutex_exit(&spa_namespace_lock);
8303 	}
8304 
8305 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
8306 		mutex_enter(&spa_namespace_lock);
8307 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8308 		vdev_trim_restart(spa->spa_root_vdev);
8309 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8310 		mutex_exit(&spa_namespace_lock);
8311 	}
8312 
8313 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8314 		mutex_enter(&spa_namespace_lock);
8315 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8316 		vdev_autotrim_restart(spa);
8317 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8318 		mutex_exit(&spa_namespace_lock);
8319 	}
8320 
8321 	/*
8322 	 * Kick off L2 cache whole device TRIM.
8323 	 */
8324 	if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8325 		mutex_enter(&spa_namespace_lock);
8326 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8327 		vdev_trim_l2arc(spa);
8328 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8329 		mutex_exit(&spa_namespace_lock);
8330 	}
8331 
8332 	/*
8333 	 * Kick off L2 cache rebuilding.
8334 	 */
8335 	if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8336 		mutex_enter(&spa_namespace_lock);
8337 		spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8338 		l2arc_spa_rebuild_start(spa);
8339 		spa_config_exit(spa, SCL_L2ARC, FTAG);
8340 		mutex_exit(&spa_namespace_lock);
8341 	}
8342 
8343 	/*
8344 	 * Let the world know that we're done.
8345 	 */
8346 	mutex_enter(&spa->spa_async_lock);
8347 	spa->spa_async_thread = NULL;
8348 	cv_broadcast(&spa->spa_async_cv);
8349 	mutex_exit(&spa->spa_async_lock);
8350 	thread_exit();
8351 }
8352 
8353 void
8354 spa_async_suspend(spa_t *spa)
8355 {
8356 	mutex_enter(&spa->spa_async_lock);
8357 	spa->spa_async_suspended++;
8358 	while (spa->spa_async_thread != NULL)
8359 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8360 	mutex_exit(&spa->spa_async_lock);
8361 
8362 	spa_vdev_remove_suspend(spa);
8363 
8364 	zthr_t *condense_thread = spa->spa_condense_zthr;
8365 	if (condense_thread != NULL)
8366 		zthr_cancel(condense_thread);
8367 
8368 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8369 	if (discard_thread != NULL)
8370 		zthr_cancel(discard_thread);
8371 
8372 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8373 	if (ll_delete_thread != NULL)
8374 		zthr_cancel(ll_delete_thread);
8375 
8376 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8377 	if (ll_condense_thread != NULL)
8378 		zthr_cancel(ll_condense_thread);
8379 }
8380 
8381 void
8382 spa_async_resume(spa_t *spa)
8383 {
8384 	mutex_enter(&spa->spa_async_lock);
8385 	ASSERT(spa->spa_async_suspended != 0);
8386 	spa->spa_async_suspended--;
8387 	mutex_exit(&spa->spa_async_lock);
8388 	spa_restart_removal(spa);
8389 
8390 	zthr_t *condense_thread = spa->spa_condense_zthr;
8391 	if (condense_thread != NULL)
8392 		zthr_resume(condense_thread);
8393 
8394 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8395 	if (discard_thread != NULL)
8396 		zthr_resume(discard_thread);
8397 
8398 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8399 	if (ll_delete_thread != NULL)
8400 		zthr_resume(ll_delete_thread);
8401 
8402 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8403 	if (ll_condense_thread != NULL)
8404 		zthr_resume(ll_condense_thread);
8405 }
8406 
8407 static boolean_t
8408 spa_async_tasks_pending(spa_t *spa)
8409 {
8410 	uint_t non_config_tasks;
8411 	uint_t config_task;
8412 	boolean_t config_task_suspended;
8413 
8414 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
8415 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
8416 	if (spa->spa_ccw_fail_time == 0) {
8417 		config_task_suspended = B_FALSE;
8418 	} else {
8419 		config_task_suspended =
8420 		    (gethrtime() - spa->spa_ccw_fail_time) <
8421 		    ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
8422 	}
8423 
8424 	return (non_config_tasks || (config_task && !config_task_suspended));
8425 }
8426 
8427 static void
8428 spa_async_dispatch(spa_t *spa)
8429 {
8430 	mutex_enter(&spa->spa_async_lock);
8431 	if (spa_async_tasks_pending(spa) &&
8432 	    !spa->spa_async_suspended &&
8433 	    spa->spa_async_thread == NULL)
8434 		spa->spa_async_thread = thread_create(NULL, 0,
8435 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
8436 	mutex_exit(&spa->spa_async_lock);
8437 }
8438 
8439 void
8440 spa_async_request(spa_t *spa, int task)
8441 {
8442 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
8443 	mutex_enter(&spa->spa_async_lock);
8444 	spa->spa_async_tasks |= task;
8445 	mutex_exit(&spa->spa_async_lock);
8446 }
8447 
8448 int
8449 spa_async_tasks(spa_t *spa)
8450 {
8451 	return (spa->spa_async_tasks);
8452 }
8453 
8454 /*
8455  * ==========================================================================
8456  * SPA syncing routines
8457  * ==========================================================================
8458  */
8459 
8460 
8461 static int
8462 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8463     dmu_tx_t *tx)
8464 {
8465 	bpobj_t *bpo = arg;
8466 	bpobj_enqueue(bpo, bp, bp_freed, tx);
8467 	return (0);
8468 }
8469 
8470 int
8471 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8472 {
8473 	return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
8474 }
8475 
8476 int
8477 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8478 {
8479 	return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
8480 }
8481 
8482 static int
8483 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8484 {
8485 	zio_t *pio = arg;
8486 
8487 	zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
8488 	    pio->io_flags));
8489 	return (0);
8490 }
8491 
8492 static int
8493 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8494     dmu_tx_t *tx)
8495 {
8496 	ASSERT(!bp_freed);
8497 	return (spa_free_sync_cb(arg, bp, tx));
8498 }
8499 
8500 /*
8501  * Note: this simple function is not inlined to make it easier to dtrace the
8502  * amount of time spent syncing frees.
8503  */
8504 static void
8505 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
8506 {
8507 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
8508 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
8509 	VERIFY(zio_wait(zio) == 0);
8510 }
8511 
8512 /*
8513  * Note: this simple function is not inlined to make it easier to dtrace the
8514  * amount of time spent syncing deferred frees.
8515  */
8516 static void
8517 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
8518 {
8519 	if (spa_sync_pass(spa) != 1)
8520 		return;
8521 
8522 	/*
8523 	 * Note:
8524 	 * If the log space map feature is active, we stop deferring
8525 	 * frees to the next TXG and therefore running this function
8526 	 * would be considered a no-op as spa_deferred_bpobj should
8527 	 * not have any entries.
8528 	 *
8529 	 * That said we run this function anyway (instead of returning
8530 	 * immediately) for the edge-case scenario where we just
8531 	 * activated the log space map feature in this TXG but we have
8532 	 * deferred frees from the previous TXG.
8533 	 */
8534 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
8535 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
8536 	    bpobj_spa_free_sync_cb, zio, tx), ==, 0);
8537 	VERIFY0(zio_wait(zio));
8538 }
8539 
8540 static void
8541 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
8542 {
8543 	char *packed = NULL;
8544 	size_t bufsize;
8545 	size_t nvsize = 0;
8546 	dmu_buf_t *db;
8547 
8548 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
8549 
8550 	/*
8551 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
8552 	 * information.  This avoids the dmu_buf_will_dirty() path and
8553 	 * saves us a pre-read to get data we don't actually care about.
8554 	 */
8555 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
8556 	packed = vmem_alloc(bufsize, KM_SLEEP);
8557 
8558 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
8559 	    KM_SLEEP) == 0);
8560 	memset(packed + nvsize, 0, bufsize - nvsize);
8561 
8562 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
8563 
8564 	vmem_free(packed, bufsize);
8565 
8566 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
8567 	dmu_buf_will_dirty(db, tx);
8568 	*(uint64_t *)db->db_data = nvsize;
8569 	dmu_buf_rele(db, FTAG);
8570 }
8571 
8572 static void
8573 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
8574     const char *config, const char *entry)
8575 {
8576 	nvlist_t *nvroot;
8577 	nvlist_t **list;
8578 	int i;
8579 
8580 	if (!sav->sav_sync)
8581 		return;
8582 
8583 	/*
8584 	 * Update the MOS nvlist describing the list of available devices.
8585 	 * spa_validate_aux() will have already made sure this nvlist is
8586 	 * valid and the vdevs are labeled appropriately.
8587 	 */
8588 	if (sav->sav_object == 0) {
8589 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
8590 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
8591 		    sizeof (uint64_t), tx);
8592 		VERIFY(zap_update(spa->spa_meta_objset,
8593 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
8594 		    &sav->sav_object, tx) == 0);
8595 	}
8596 
8597 	nvroot = fnvlist_alloc();
8598 	if (sav->sav_count == 0) {
8599 		fnvlist_add_nvlist_array(nvroot, config,
8600 		    (const nvlist_t * const *)NULL, 0);
8601 	} else {
8602 		list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
8603 		for (i = 0; i < sav->sav_count; i++)
8604 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
8605 			    B_FALSE, VDEV_CONFIG_L2CACHE);
8606 		fnvlist_add_nvlist_array(nvroot, config,
8607 		    (const nvlist_t * const *)list, sav->sav_count);
8608 		for (i = 0; i < sav->sav_count; i++)
8609 			nvlist_free(list[i]);
8610 		kmem_free(list, sav->sav_count * sizeof (void *));
8611 	}
8612 
8613 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
8614 	nvlist_free(nvroot);
8615 
8616 	sav->sav_sync = B_FALSE;
8617 }
8618 
8619 /*
8620  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
8621  * The all-vdev ZAP must be empty.
8622  */
8623 static void
8624 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
8625 {
8626 	spa_t *spa = vd->vdev_spa;
8627 
8628 	if (vd->vdev_top_zap != 0) {
8629 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8630 		    vd->vdev_top_zap, tx));
8631 	}
8632 	if (vd->vdev_leaf_zap != 0) {
8633 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8634 		    vd->vdev_leaf_zap, tx));
8635 	}
8636 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
8637 		spa_avz_build(vd->vdev_child[i], avz, tx);
8638 	}
8639 }
8640 
8641 static void
8642 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
8643 {
8644 	nvlist_t *config;
8645 
8646 	/*
8647 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
8648 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
8649 	 * Similarly, if the pool is being assembled (e.g. after a split), we
8650 	 * need to rebuild the AVZ although the config may not be dirty.
8651 	 */
8652 	if (list_is_empty(&spa->spa_config_dirty_list) &&
8653 	    spa->spa_avz_action == AVZ_ACTION_NONE)
8654 		return;
8655 
8656 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8657 
8658 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
8659 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
8660 	    spa->spa_all_vdev_zaps != 0);
8661 
8662 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
8663 		/* Make and build the new AVZ */
8664 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
8665 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
8666 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
8667 
8668 		/* Diff old AVZ with new one */
8669 		zap_cursor_t zc;
8670 		zap_attribute_t za;
8671 
8672 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8673 		    spa->spa_all_vdev_zaps);
8674 		    zap_cursor_retrieve(&zc, &za) == 0;
8675 		    zap_cursor_advance(&zc)) {
8676 			uint64_t vdzap = za.za_first_integer;
8677 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
8678 			    vdzap) == ENOENT) {
8679 				/*
8680 				 * ZAP is listed in old AVZ but not in new one;
8681 				 * destroy it
8682 				 */
8683 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
8684 				    tx));
8685 			}
8686 		}
8687 
8688 		zap_cursor_fini(&zc);
8689 
8690 		/* Destroy the old AVZ */
8691 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8692 		    spa->spa_all_vdev_zaps, tx));
8693 
8694 		/* Replace the old AVZ in the dir obj with the new one */
8695 		VERIFY0(zap_update(spa->spa_meta_objset,
8696 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8697 		    sizeof (new_avz), 1, &new_avz, tx));
8698 
8699 		spa->spa_all_vdev_zaps = new_avz;
8700 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8701 		zap_cursor_t zc;
8702 		zap_attribute_t za;
8703 
8704 		/* Walk through the AVZ and destroy all listed ZAPs */
8705 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8706 		    spa->spa_all_vdev_zaps);
8707 		    zap_cursor_retrieve(&zc, &za) == 0;
8708 		    zap_cursor_advance(&zc)) {
8709 			uint64_t zap = za.za_first_integer;
8710 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8711 		}
8712 
8713 		zap_cursor_fini(&zc);
8714 
8715 		/* Destroy and unlink the AVZ itself */
8716 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8717 		    spa->spa_all_vdev_zaps, tx));
8718 		VERIFY0(zap_remove(spa->spa_meta_objset,
8719 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8720 		spa->spa_all_vdev_zaps = 0;
8721 	}
8722 
8723 	if (spa->spa_all_vdev_zaps == 0) {
8724 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8725 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8726 		    DMU_POOL_VDEV_ZAP_MAP, tx);
8727 	}
8728 	spa->spa_avz_action = AVZ_ACTION_NONE;
8729 
8730 	/* Create ZAPs for vdevs that don't have them. */
8731 	vdev_construct_zaps(spa->spa_root_vdev, tx);
8732 
8733 	config = spa_config_generate(spa, spa->spa_root_vdev,
8734 	    dmu_tx_get_txg(tx), B_FALSE);
8735 
8736 	/*
8737 	 * If we're upgrading the spa version then make sure that
8738 	 * the config object gets updated with the correct version.
8739 	 */
8740 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8741 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8742 		    spa->spa_uberblock.ub_version);
8743 
8744 	spa_config_exit(spa, SCL_STATE, FTAG);
8745 
8746 	nvlist_free(spa->spa_config_syncing);
8747 	spa->spa_config_syncing = config;
8748 
8749 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8750 }
8751 
8752 static void
8753 spa_sync_version(void *arg, dmu_tx_t *tx)
8754 {
8755 	uint64_t *versionp = arg;
8756 	uint64_t version = *versionp;
8757 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8758 
8759 	/*
8760 	 * Setting the version is special cased when first creating the pool.
8761 	 */
8762 	ASSERT(tx->tx_txg != TXG_INITIAL);
8763 
8764 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8765 	ASSERT(version >= spa_version(spa));
8766 
8767 	spa->spa_uberblock.ub_version = version;
8768 	vdev_config_dirty(spa->spa_root_vdev);
8769 	spa_history_log_internal(spa, "set", tx, "version=%lld",
8770 	    (longlong_t)version);
8771 }
8772 
8773 /*
8774  * Set zpool properties.
8775  */
8776 static void
8777 spa_sync_props(void *arg, dmu_tx_t *tx)
8778 {
8779 	nvlist_t *nvp = arg;
8780 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8781 	objset_t *mos = spa->spa_meta_objset;
8782 	nvpair_t *elem = NULL;
8783 
8784 	mutex_enter(&spa->spa_props_lock);
8785 
8786 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
8787 		uint64_t intval;
8788 		const char *strval, *fname;
8789 		zpool_prop_t prop;
8790 		const char *propname;
8791 		zprop_type_t proptype;
8792 		spa_feature_t fid;
8793 
8794 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
8795 		case ZPOOL_PROP_INVAL:
8796 			/*
8797 			 * We checked this earlier in spa_prop_validate().
8798 			 */
8799 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
8800 
8801 			fname = strchr(nvpair_name(elem), '@') + 1;
8802 			VERIFY0(zfeature_lookup_name(fname, &fid));
8803 
8804 			spa_feature_enable(spa, fid, tx);
8805 			spa_history_log_internal(spa, "set", tx,
8806 			    "%s=enabled", nvpair_name(elem));
8807 			break;
8808 
8809 		case ZPOOL_PROP_VERSION:
8810 			intval = fnvpair_value_uint64(elem);
8811 			/*
8812 			 * The version is synced separately before other
8813 			 * properties and should be correct by now.
8814 			 */
8815 			ASSERT3U(spa_version(spa), >=, intval);
8816 			break;
8817 
8818 		case ZPOOL_PROP_ALTROOT:
8819 			/*
8820 			 * 'altroot' is a non-persistent property. It should
8821 			 * have been set temporarily at creation or import time.
8822 			 */
8823 			ASSERT(spa->spa_root != NULL);
8824 			break;
8825 
8826 		case ZPOOL_PROP_READONLY:
8827 		case ZPOOL_PROP_CACHEFILE:
8828 			/*
8829 			 * 'readonly' and 'cachefile' are also non-persistent
8830 			 * properties.
8831 			 */
8832 			break;
8833 		case ZPOOL_PROP_COMMENT:
8834 			strval = fnvpair_value_string(elem);
8835 			if (spa->spa_comment != NULL)
8836 				spa_strfree(spa->spa_comment);
8837 			spa->spa_comment = spa_strdup(strval);
8838 			/*
8839 			 * We need to dirty the configuration on all the vdevs
8840 			 * so that their labels get updated.  We also need to
8841 			 * update the cache file to keep it in sync with the
8842 			 * MOS version. It's unnecessary to do this for pool
8843 			 * creation since the vdev's configuration has already
8844 			 * been dirtied.
8845 			 */
8846 			if (tx->tx_txg != TXG_INITIAL) {
8847 				vdev_config_dirty(spa->spa_root_vdev);
8848 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8849 			}
8850 			spa_history_log_internal(spa, "set", tx,
8851 			    "%s=%s", nvpair_name(elem), strval);
8852 			break;
8853 		case ZPOOL_PROP_COMPATIBILITY:
8854 			strval = fnvpair_value_string(elem);
8855 			if (spa->spa_compatibility != NULL)
8856 				spa_strfree(spa->spa_compatibility);
8857 			spa->spa_compatibility = spa_strdup(strval);
8858 			/*
8859 			 * Dirty the configuration on vdevs as above.
8860 			 */
8861 			if (tx->tx_txg != TXG_INITIAL) {
8862 				vdev_config_dirty(spa->spa_root_vdev);
8863 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8864 			}
8865 
8866 			spa_history_log_internal(spa, "set", tx,
8867 			    "%s=%s", nvpair_name(elem), strval);
8868 			break;
8869 
8870 		default:
8871 			/*
8872 			 * Set pool property values in the poolprops mos object.
8873 			 */
8874 			if (spa->spa_pool_props_object == 0) {
8875 				spa->spa_pool_props_object =
8876 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
8877 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8878 				    tx);
8879 			}
8880 
8881 			/* normalize the property name */
8882 			propname = zpool_prop_to_name(prop);
8883 			proptype = zpool_prop_get_type(prop);
8884 
8885 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
8886 				ASSERT(proptype == PROP_TYPE_STRING);
8887 				strval = fnvpair_value_string(elem);
8888 				VERIFY0(zap_update(mos,
8889 				    spa->spa_pool_props_object, propname,
8890 				    1, strlen(strval) + 1, strval, tx));
8891 				spa_history_log_internal(spa, "set", tx,
8892 				    "%s=%s", nvpair_name(elem), strval);
8893 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8894 				intval = fnvpair_value_uint64(elem);
8895 
8896 				if (proptype == PROP_TYPE_INDEX) {
8897 					const char *unused;
8898 					VERIFY0(zpool_prop_index_to_string(
8899 					    prop, intval, &unused));
8900 				}
8901 				VERIFY0(zap_update(mos,
8902 				    spa->spa_pool_props_object, propname,
8903 				    8, 1, &intval, tx));
8904 				spa_history_log_internal(spa, "set", tx,
8905 				    "%s=%lld", nvpair_name(elem),
8906 				    (longlong_t)intval);
8907 
8908 				switch (prop) {
8909 				case ZPOOL_PROP_DELEGATION:
8910 					spa->spa_delegation = intval;
8911 					break;
8912 				case ZPOOL_PROP_BOOTFS:
8913 					spa->spa_bootfs = intval;
8914 					break;
8915 				case ZPOOL_PROP_FAILUREMODE:
8916 					spa->spa_failmode = intval;
8917 					break;
8918 				case ZPOOL_PROP_AUTOTRIM:
8919 					spa->spa_autotrim = intval;
8920 					spa_async_request(spa,
8921 					    SPA_ASYNC_AUTOTRIM_RESTART);
8922 					break;
8923 				case ZPOOL_PROP_AUTOEXPAND:
8924 					spa->spa_autoexpand = intval;
8925 					if (tx->tx_txg != TXG_INITIAL)
8926 						spa_async_request(spa,
8927 						    SPA_ASYNC_AUTOEXPAND);
8928 					break;
8929 				case ZPOOL_PROP_MULTIHOST:
8930 					spa->spa_multihost = intval;
8931 					break;
8932 				default:
8933 					break;
8934 				}
8935 			} else {
8936 				ASSERT(0); /* not allowed */
8937 			}
8938 		}
8939 
8940 	}
8941 
8942 	mutex_exit(&spa->spa_props_lock);
8943 }
8944 
8945 /*
8946  * Perform one-time upgrade on-disk changes.  spa_version() does not
8947  * reflect the new version this txg, so there must be no changes this
8948  * txg to anything that the upgrade code depends on after it executes.
8949  * Therefore this must be called after dsl_pool_sync() does the sync
8950  * tasks.
8951  */
8952 static void
8953 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8954 {
8955 	if (spa_sync_pass(spa) != 1)
8956 		return;
8957 
8958 	dsl_pool_t *dp = spa->spa_dsl_pool;
8959 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8960 
8961 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8962 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8963 		dsl_pool_create_origin(dp, tx);
8964 
8965 		/* Keeping the origin open increases spa_minref */
8966 		spa->spa_minref += 3;
8967 	}
8968 
8969 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8970 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8971 		dsl_pool_upgrade_clones(dp, tx);
8972 	}
8973 
8974 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8975 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8976 		dsl_pool_upgrade_dir_clones(dp, tx);
8977 
8978 		/* Keeping the freedir open increases spa_minref */
8979 		spa->spa_minref += 3;
8980 	}
8981 
8982 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8983 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8984 		spa_feature_create_zap_objects(spa, tx);
8985 	}
8986 
8987 	/*
8988 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8989 	 * when possibility to use lz4 compression for metadata was added
8990 	 * Old pools that have this feature enabled must be upgraded to have
8991 	 * this feature active
8992 	 */
8993 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8994 		boolean_t lz4_en = spa_feature_is_enabled(spa,
8995 		    SPA_FEATURE_LZ4_COMPRESS);
8996 		boolean_t lz4_ac = spa_feature_is_active(spa,
8997 		    SPA_FEATURE_LZ4_COMPRESS);
8998 
8999 		if (lz4_en && !lz4_ac)
9000 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
9001 	}
9002 
9003 	/*
9004 	 * If we haven't written the salt, do so now.  Note that the
9005 	 * feature may not be activated yet, but that's fine since
9006 	 * the presence of this ZAP entry is backwards compatible.
9007 	 */
9008 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
9009 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
9010 		VERIFY0(zap_add(spa->spa_meta_objset,
9011 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
9012 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
9013 		    spa->spa_cksum_salt.zcs_bytes, tx));
9014 	}
9015 
9016 	rrw_exit(&dp->dp_config_rwlock, FTAG);
9017 }
9018 
9019 static void
9020 vdev_indirect_state_sync_verify(vdev_t *vd)
9021 {
9022 	vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
9023 	vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
9024 
9025 	if (vd->vdev_ops == &vdev_indirect_ops) {
9026 		ASSERT(vim != NULL);
9027 		ASSERT(vib != NULL);
9028 	}
9029 
9030 	uint64_t obsolete_sm_object = 0;
9031 	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
9032 	if (obsolete_sm_object != 0) {
9033 		ASSERT(vd->vdev_obsolete_sm != NULL);
9034 		ASSERT(vd->vdev_removing ||
9035 		    vd->vdev_ops == &vdev_indirect_ops);
9036 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9037 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9038 		ASSERT3U(obsolete_sm_object, ==,
9039 		    space_map_object(vd->vdev_obsolete_sm));
9040 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9041 		    space_map_allocated(vd->vdev_obsolete_sm));
9042 	}
9043 	ASSERT(vd->vdev_obsolete_segments != NULL);
9044 
9045 	/*
9046 	 * Since frees / remaps to an indirect vdev can only
9047 	 * happen in syncing context, the obsolete segments
9048 	 * tree must be empty when we start syncing.
9049 	 */
9050 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
9051 }
9052 
9053 /*
9054  * Set the top-level vdev's max queue depth. Evaluate each top-level's
9055  * async write queue depth in case it changed. The max queue depth will
9056  * not change in the middle of syncing out this txg.
9057  */
9058 static void
9059 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9060 {
9061 	ASSERT(spa_writeable(spa));
9062 
9063 	vdev_t *rvd = spa->spa_root_vdev;
9064 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9065 	    zfs_vdev_queue_depth_pct / 100;
9066 	metaslab_class_t *normal = spa_normal_class(spa);
9067 	metaslab_class_t *special = spa_special_class(spa);
9068 	metaslab_class_t *dedup = spa_dedup_class(spa);
9069 
9070 	uint64_t slots_per_allocator = 0;
9071 	for (int c = 0; c < rvd->vdev_children; c++) {
9072 		vdev_t *tvd = rvd->vdev_child[c];
9073 
9074 		metaslab_group_t *mg = tvd->vdev_mg;
9075 		if (mg == NULL || !metaslab_group_initialized(mg))
9076 			continue;
9077 
9078 		metaslab_class_t *mc = mg->mg_class;
9079 		if (mc != normal && mc != special && mc != dedup)
9080 			continue;
9081 
9082 		/*
9083 		 * It is safe to do a lock-free check here because only async
9084 		 * allocations look at mg_max_alloc_queue_depth, and async
9085 		 * allocations all happen from spa_sync().
9086 		 */
9087 		for (int i = 0; i < mg->mg_allocators; i++) {
9088 			ASSERT0(zfs_refcount_count(
9089 			    &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9090 		}
9091 		mg->mg_max_alloc_queue_depth = max_queue_depth;
9092 
9093 		for (int i = 0; i < mg->mg_allocators; i++) {
9094 			mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9095 			    zfs_vdev_def_queue_depth;
9096 		}
9097 		slots_per_allocator += zfs_vdev_def_queue_depth;
9098 	}
9099 
9100 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9101 		ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9102 		    mca_alloc_slots));
9103 		ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9104 		    mca_alloc_slots));
9105 		ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9106 		    mca_alloc_slots));
9107 		normal->mc_allocator[i].mca_alloc_max_slots =
9108 		    slots_per_allocator;
9109 		special->mc_allocator[i].mca_alloc_max_slots =
9110 		    slots_per_allocator;
9111 		dedup->mc_allocator[i].mca_alloc_max_slots =
9112 		    slots_per_allocator;
9113 	}
9114 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9115 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9116 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9117 }
9118 
9119 static void
9120 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9121 {
9122 	ASSERT(spa_writeable(spa));
9123 
9124 	vdev_t *rvd = spa->spa_root_vdev;
9125 	for (int c = 0; c < rvd->vdev_children; c++) {
9126 		vdev_t *vd = rvd->vdev_child[c];
9127 		vdev_indirect_state_sync_verify(vd);
9128 
9129 		if (vdev_indirect_should_condense(vd)) {
9130 			spa_condense_indirect_start_sync(vd, tx);
9131 			break;
9132 		}
9133 	}
9134 }
9135 
9136 static void
9137 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9138 {
9139 	objset_t *mos = spa->spa_meta_objset;
9140 	dsl_pool_t *dp = spa->spa_dsl_pool;
9141 	uint64_t txg = tx->tx_txg;
9142 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9143 
9144 	do {
9145 		int pass = ++spa->spa_sync_pass;
9146 
9147 		spa_sync_config_object(spa, tx);
9148 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9149 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9150 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9151 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9152 		spa_errlog_sync(spa, txg);
9153 		dsl_pool_sync(dp, txg);
9154 
9155 		if (pass < zfs_sync_pass_deferred_free ||
9156 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9157 			/*
9158 			 * If the log space map feature is active we don't
9159 			 * care about deferred frees and the deferred bpobj
9160 			 * as the log space map should effectively have the
9161 			 * same results (i.e. appending only to one object).
9162 			 */
9163 			spa_sync_frees(spa, free_bpl, tx);
9164 		} else {
9165 			/*
9166 			 * We can not defer frees in pass 1, because
9167 			 * we sync the deferred frees later in pass 1.
9168 			 */
9169 			ASSERT3U(pass, >, 1);
9170 			bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9171 			    &spa->spa_deferred_bpobj, tx);
9172 		}
9173 
9174 		brt_sync(spa, txg);
9175 		ddt_sync(spa, txg);
9176 		dsl_scan_sync(dp, tx);
9177 		svr_sync(spa, tx);
9178 		spa_sync_upgrades(spa, tx);
9179 
9180 		spa_flush_metaslabs(spa, tx);
9181 
9182 		vdev_t *vd = NULL;
9183 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9184 		    != NULL)
9185 			vdev_sync(vd, txg);
9186 
9187 		/*
9188 		 * Note: We need to check if the MOS is dirty because we could
9189 		 * have marked the MOS dirty without updating the uberblock
9190 		 * (e.g. if we have sync tasks but no dirty user data). We need
9191 		 * to check the uberblock's rootbp because it is updated if we
9192 		 * have synced out dirty data (though in this case the MOS will
9193 		 * most likely also be dirty due to second order effects, we
9194 		 * don't want to rely on that here).
9195 		 */
9196 		if (pass == 1 &&
9197 		    spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
9198 		    !dmu_objset_is_dirty(mos, txg)) {
9199 			/*
9200 			 * Nothing changed on the first pass, therefore this
9201 			 * TXG is a no-op. Avoid syncing deferred frees, so
9202 			 * that we can keep this TXG as a no-op.
9203 			 */
9204 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9205 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9206 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9207 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9208 			break;
9209 		}
9210 
9211 		spa_sync_deferred_frees(spa, tx);
9212 	} while (dmu_objset_is_dirty(mos, txg));
9213 }
9214 
9215 /*
9216  * Rewrite the vdev configuration (which includes the uberblock) to
9217  * commit the transaction group.
9218  *
9219  * If there are no dirty vdevs, we sync the uberblock to a few random
9220  * top-level vdevs that are known to be visible in the config cache
9221  * (see spa_vdev_add() for a complete description). If there *are* dirty
9222  * vdevs, sync the uberblock to all vdevs.
9223  */
9224 static void
9225 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
9226 {
9227 	vdev_t *rvd = spa->spa_root_vdev;
9228 	uint64_t txg = tx->tx_txg;
9229 
9230 	for (;;) {
9231 		int error = 0;
9232 
9233 		/*
9234 		 * We hold SCL_STATE to prevent vdev open/close/etc.
9235 		 * while we're attempting to write the vdev labels.
9236 		 */
9237 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9238 
9239 		if (list_is_empty(&spa->spa_config_dirty_list)) {
9240 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
9241 			int svdcount = 0;
9242 			int children = rvd->vdev_children;
9243 			int c0 = random_in_range(children);
9244 
9245 			for (int c = 0; c < children; c++) {
9246 				vdev_t *vd =
9247 				    rvd->vdev_child[(c0 + c) % children];
9248 
9249 				/* Stop when revisiting the first vdev */
9250 				if (c > 0 && svd[0] == vd)
9251 					break;
9252 
9253 				if (vd->vdev_ms_array == 0 ||
9254 				    vd->vdev_islog ||
9255 				    !vdev_is_concrete(vd))
9256 					continue;
9257 
9258 				svd[svdcount++] = vd;
9259 				if (svdcount == SPA_SYNC_MIN_VDEVS)
9260 					break;
9261 			}
9262 			error = vdev_config_sync(svd, svdcount, txg);
9263 		} else {
9264 			error = vdev_config_sync(rvd->vdev_child,
9265 			    rvd->vdev_children, txg);
9266 		}
9267 
9268 		if (error == 0)
9269 			spa->spa_last_synced_guid = rvd->vdev_guid;
9270 
9271 		spa_config_exit(spa, SCL_STATE, FTAG);
9272 
9273 		if (error == 0)
9274 			break;
9275 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9276 		zio_resume_wait(spa);
9277 	}
9278 }
9279 
9280 /*
9281  * Sync the specified transaction group.  New blocks may be dirtied as
9282  * part of the process, so we iterate until it converges.
9283  */
9284 void
9285 spa_sync(spa_t *spa, uint64_t txg)
9286 {
9287 	vdev_t *vd = NULL;
9288 
9289 	VERIFY(spa_writeable(spa));
9290 
9291 	/*
9292 	 * Wait for i/os issued in open context that need to complete
9293 	 * before this txg syncs.
9294 	 */
9295 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
9296 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
9297 	    ZIO_FLAG_CANFAIL);
9298 
9299 	/*
9300 	 * Now that there can be no more cloning in this transaction group,
9301 	 * but we are still before issuing frees, we can process pending BRT
9302 	 * updates.
9303 	 */
9304 	brt_pending_apply(spa, txg);
9305 
9306 	/*
9307 	 * Lock out configuration changes.
9308 	 */
9309 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9310 
9311 	spa->spa_syncing_txg = txg;
9312 	spa->spa_sync_pass = 0;
9313 
9314 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9315 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
9316 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9317 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
9318 	}
9319 
9320 	/*
9321 	 * If there are any pending vdev state changes, convert them
9322 	 * into config changes that go out with this transaction group.
9323 	 */
9324 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9325 	while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9326 		/* Avoid holding the write lock unless actually necessary */
9327 		if (vd->vdev_aux == NULL) {
9328 			vdev_state_clean(vd);
9329 			vdev_config_dirty(vd);
9330 			continue;
9331 		}
9332 		/*
9333 		 * We need the write lock here because, for aux vdevs,
9334 		 * calling vdev_config_dirty() modifies sav_config.
9335 		 * This is ugly and will become unnecessary when we
9336 		 * eliminate the aux vdev wart by integrating all vdevs
9337 		 * into the root vdev tree.
9338 		 */
9339 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9340 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9341 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9342 			vdev_state_clean(vd);
9343 			vdev_config_dirty(vd);
9344 		}
9345 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9346 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9347 	}
9348 	spa_config_exit(spa, SCL_STATE, FTAG);
9349 
9350 	dsl_pool_t *dp = spa->spa_dsl_pool;
9351 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9352 
9353 	spa->spa_sync_starttime = gethrtime();
9354 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9355 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9356 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9357 	    NSEC_TO_TICK(spa->spa_deadman_synctime));
9358 
9359 	/*
9360 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
9361 	 * set spa_deflate if we have no raid-z vdevs.
9362 	 */
9363 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
9364 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
9365 		vdev_t *rvd = spa->spa_root_vdev;
9366 
9367 		int i;
9368 		for (i = 0; i < rvd->vdev_children; i++) {
9369 			vd = rvd->vdev_child[i];
9370 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
9371 				break;
9372 		}
9373 		if (i == rvd->vdev_children) {
9374 			spa->spa_deflate = TRUE;
9375 			VERIFY0(zap_add(spa->spa_meta_objset,
9376 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
9377 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
9378 		}
9379 	}
9380 
9381 	spa_sync_adjust_vdev_max_queue_depth(spa);
9382 
9383 	spa_sync_condense_indirect(spa, tx);
9384 
9385 	spa_sync_iterate_to_convergence(spa, tx);
9386 
9387 #ifdef ZFS_DEBUG
9388 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
9389 	/*
9390 	 * Make sure that the number of ZAPs for all the vdevs matches
9391 	 * the number of ZAPs in the per-vdev ZAP list. This only gets
9392 	 * called if the config is dirty; otherwise there may be
9393 	 * outstanding AVZ operations that weren't completed in
9394 	 * spa_sync_config_object.
9395 	 */
9396 		uint64_t all_vdev_zap_entry_count;
9397 		ASSERT0(zap_count(spa->spa_meta_objset,
9398 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
9399 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
9400 		    all_vdev_zap_entry_count);
9401 	}
9402 #endif
9403 
9404 	if (spa->spa_vdev_removal != NULL) {
9405 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
9406 	}
9407 
9408 	spa_sync_rewrite_vdev_config(spa, tx);
9409 	dmu_tx_commit(tx);
9410 
9411 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9412 	spa->spa_deadman_tqid = 0;
9413 
9414 	/*
9415 	 * Clear the dirty config list.
9416 	 */
9417 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
9418 		vdev_config_clean(vd);
9419 
9420 	/*
9421 	 * Now that the new config has synced transactionally,
9422 	 * let it become visible to the config cache.
9423 	 */
9424 	if (spa->spa_config_syncing != NULL) {
9425 		spa_config_set(spa, spa->spa_config_syncing);
9426 		spa->spa_config_txg = txg;
9427 		spa->spa_config_syncing = NULL;
9428 	}
9429 
9430 	dsl_pool_sync_done(dp, txg);
9431 
9432 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9433 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
9434 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9435 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
9436 	}
9437 
9438 	/*
9439 	 * Update usable space statistics.
9440 	 */
9441 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
9442 	    != NULL)
9443 		vdev_sync_done(vd, txg);
9444 
9445 	metaslab_class_evict_old(spa->spa_normal_class, txg);
9446 	metaslab_class_evict_old(spa->spa_log_class, txg);
9447 
9448 	spa_sync_close_syncing_log_sm(spa);
9449 
9450 	spa_update_dspace(spa);
9451 
9452 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
9453 		vdev_autotrim_kick(spa);
9454 
9455 	/*
9456 	 * It had better be the case that we didn't dirty anything
9457 	 * since vdev_config_sync().
9458 	 */
9459 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9460 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9461 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
9462 
9463 	while (zfs_pause_spa_sync)
9464 		delay(1);
9465 
9466 	spa->spa_sync_pass = 0;
9467 
9468 	/*
9469 	 * Update the last synced uberblock here. We want to do this at
9470 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
9471 	 * will be guaranteed that all the processing associated with
9472 	 * that txg has been completed.
9473 	 */
9474 	spa->spa_ubsync = spa->spa_uberblock;
9475 	spa_config_exit(spa, SCL_CONFIG, FTAG);
9476 
9477 	spa_handle_ignored_writes(spa);
9478 
9479 	/*
9480 	 * If any async tasks have been requested, kick them off.
9481 	 */
9482 	spa_async_dispatch(spa);
9483 }
9484 
9485 /*
9486  * Sync all pools.  We don't want to hold the namespace lock across these
9487  * operations, so we take a reference on the spa_t and drop the lock during the
9488  * sync.
9489  */
9490 void
9491 spa_sync_allpools(void)
9492 {
9493 	spa_t *spa = NULL;
9494 	mutex_enter(&spa_namespace_lock);
9495 	while ((spa = spa_next(spa)) != NULL) {
9496 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
9497 		    !spa_writeable(spa) || spa_suspended(spa))
9498 			continue;
9499 		spa_open_ref(spa, FTAG);
9500 		mutex_exit(&spa_namespace_lock);
9501 		txg_wait_synced(spa_get_dsl(spa), 0);
9502 		mutex_enter(&spa_namespace_lock);
9503 		spa_close(spa, FTAG);
9504 	}
9505 	mutex_exit(&spa_namespace_lock);
9506 }
9507 
9508 /*
9509  * ==========================================================================
9510  * Miscellaneous routines
9511  * ==========================================================================
9512  */
9513 
9514 /*
9515  * Remove all pools in the system.
9516  */
9517 void
9518 spa_evict_all(void)
9519 {
9520 	spa_t *spa;
9521 
9522 	/*
9523 	 * Remove all cached state.  All pools should be closed now,
9524 	 * so every spa in the AVL tree should be unreferenced.
9525 	 */
9526 	mutex_enter(&spa_namespace_lock);
9527 	while ((spa = spa_next(NULL)) != NULL) {
9528 		/*
9529 		 * Stop async tasks.  The async thread may need to detach
9530 		 * a device that's been replaced, which requires grabbing
9531 		 * spa_namespace_lock, so we must drop it here.
9532 		 */
9533 		spa_open_ref(spa, FTAG);
9534 		mutex_exit(&spa_namespace_lock);
9535 		spa_async_suspend(spa);
9536 		mutex_enter(&spa_namespace_lock);
9537 		spa_close(spa, FTAG);
9538 
9539 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
9540 			spa_unload(spa);
9541 			spa_deactivate(spa);
9542 		}
9543 		spa_remove(spa);
9544 	}
9545 	mutex_exit(&spa_namespace_lock);
9546 }
9547 
9548 vdev_t *
9549 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
9550 {
9551 	vdev_t *vd;
9552 	int i;
9553 
9554 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
9555 		return (vd);
9556 
9557 	if (aux) {
9558 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
9559 			vd = spa->spa_l2cache.sav_vdevs[i];
9560 			if (vd->vdev_guid == guid)
9561 				return (vd);
9562 		}
9563 
9564 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
9565 			vd = spa->spa_spares.sav_vdevs[i];
9566 			if (vd->vdev_guid == guid)
9567 				return (vd);
9568 		}
9569 	}
9570 
9571 	return (NULL);
9572 }
9573 
9574 void
9575 spa_upgrade(spa_t *spa, uint64_t version)
9576 {
9577 	ASSERT(spa_writeable(spa));
9578 
9579 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9580 
9581 	/*
9582 	 * This should only be called for a non-faulted pool, and since a
9583 	 * future version would result in an unopenable pool, this shouldn't be
9584 	 * possible.
9585 	 */
9586 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
9587 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
9588 
9589 	spa->spa_uberblock.ub_version = version;
9590 	vdev_config_dirty(spa->spa_root_vdev);
9591 
9592 	spa_config_exit(spa, SCL_ALL, FTAG);
9593 
9594 	txg_wait_synced(spa_get_dsl(spa), 0);
9595 }
9596 
9597 static boolean_t
9598 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
9599 {
9600 	(void) spa;
9601 	int i;
9602 	uint64_t vdev_guid;
9603 
9604 	for (i = 0; i < sav->sav_count; i++)
9605 		if (sav->sav_vdevs[i]->vdev_guid == guid)
9606 			return (B_TRUE);
9607 
9608 	for (i = 0; i < sav->sav_npending; i++) {
9609 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
9610 		    &vdev_guid) == 0 && vdev_guid == guid)
9611 			return (B_TRUE);
9612 	}
9613 
9614 	return (B_FALSE);
9615 }
9616 
9617 boolean_t
9618 spa_has_l2cache(spa_t *spa, uint64_t guid)
9619 {
9620 	return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
9621 }
9622 
9623 boolean_t
9624 spa_has_spare(spa_t *spa, uint64_t guid)
9625 {
9626 	return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
9627 }
9628 
9629 /*
9630  * Check if a pool has an active shared spare device.
9631  * Note: reference count of an active spare is 2, as a spare and as a replace
9632  */
9633 static boolean_t
9634 spa_has_active_shared_spare(spa_t *spa)
9635 {
9636 	int i, refcnt;
9637 	uint64_t pool;
9638 	spa_aux_vdev_t *sav = &spa->spa_spares;
9639 
9640 	for (i = 0; i < sav->sav_count; i++) {
9641 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
9642 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
9643 		    refcnt > 2)
9644 			return (B_TRUE);
9645 	}
9646 
9647 	return (B_FALSE);
9648 }
9649 
9650 uint64_t
9651 spa_total_metaslabs(spa_t *spa)
9652 {
9653 	vdev_t *rvd = spa->spa_root_vdev;
9654 
9655 	uint64_t m = 0;
9656 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
9657 		vdev_t *vd = rvd->vdev_child[c];
9658 		if (!vdev_is_concrete(vd))
9659 			continue;
9660 		m += vd->vdev_ms_count;
9661 	}
9662 	return (m);
9663 }
9664 
9665 /*
9666  * Notify any waiting threads that some activity has switched from being in-
9667  * progress to not-in-progress so that the thread can wake up and determine
9668  * whether it is finished waiting.
9669  */
9670 void
9671 spa_notify_waiters(spa_t *spa)
9672 {
9673 	/*
9674 	 * Acquiring spa_activities_lock here prevents the cv_broadcast from
9675 	 * happening between the waiting thread's check and cv_wait.
9676 	 */
9677 	mutex_enter(&spa->spa_activities_lock);
9678 	cv_broadcast(&spa->spa_activities_cv);
9679 	mutex_exit(&spa->spa_activities_lock);
9680 }
9681 
9682 /*
9683  * Notify any waiting threads that the pool is exporting, and then block until
9684  * they are finished using the spa_t.
9685  */
9686 void
9687 spa_wake_waiters(spa_t *spa)
9688 {
9689 	mutex_enter(&spa->spa_activities_lock);
9690 	spa->spa_waiters_cancel = B_TRUE;
9691 	cv_broadcast(&spa->spa_activities_cv);
9692 	while (spa->spa_waiters != 0)
9693 		cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
9694 	spa->spa_waiters_cancel = B_FALSE;
9695 	mutex_exit(&spa->spa_activities_lock);
9696 }
9697 
9698 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
9699 static boolean_t
9700 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
9701 {
9702 	spa_t *spa = vd->vdev_spa;
9703 
9704 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
9705 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9706 	ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
9707 	    activity == ZPOOL_WAIT_TRIM);
9708 
9709 	kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
9710 	    &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
9711 
9712 	mutex_exit(&spa->spa_activities_lock);
9713 	mutex_enter(lock);
9714 	mutex_enter(&spa->spa_activities_lock);
9715 
9716 	boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
9717 	    (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
9718 	    (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
9719 	mutex_exit(lock);
9720 
9721 	if (in_progress)
9722 		return (B_TRUE);
9723 
9724 	for (int i = 0; i < vd->vdev_children; i++) {
9725 		if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
9726 		    activity))
9727 			return (B_TRUE);
9728 	}
9729 
9730 	return (B_FALSE);
9731 }
9732 
9733 /*
9734  * If use_guid is true, this checks whether the vdev specified by guid is
9735  * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
9736  * is being initialized/trimmed. The caller must hold the config lock and
9737  * spa_activities_lock.
9738  */
9739 static int
9740 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
9741     zpool_wait_activity_t activity, boolean_t *in_progress)
9742 {
9743 	mutex_exit(&spa->spa_activities_lock);
9744 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9745 	mutex_enter(&spa->spa_activities_lock);
9746 
9747 	vdev_t *vd;
9748 	if (use_guid) {
9749 		vd = spa_lookup_by_guid(spa, guid, B_FALSE);
9750 		if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
9751 			spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9752 			return (EINVAL);
9753 		}
9754 	} else {
9755 		vd = spa->spa_root_vdev;
9756 	}
9757 
9758 	*in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
9759 
9760 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9761 	return (0);
9762 }
9763 
9764 /*
9765  * Locking for waiting threads
9766  * ---------------------------
9767  *
9768  * Waiting threads need a way to check whether a given activity is in progress,
9769  * and then, if it is, wait for it to complete. Each activity will have some
9770  * in-memory representation of the relevant on-disk state which can be used to
9771  * determine whether or not the activity is in progress. The in-memory state and
9772  * the locking used to protect it will be different for each activity, and may
9773  * not be suitable for use with a cvar (e.g., some state is protected by the
9774  * config lock). To allow waiting threads to wait without any races, another
9775  * lock, spa_activities_lock, is used.
9776  *
9777  * When the state is checked, both the activity-specific lock (if there is one)
9778  * and spa_activities_lock are held. In some cases, the activity-specific lock
9779  * is acquired explicitly (e.g. the config lock). In others, the locking is
9780  * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
9781  * thread releases the activity-specific lock and, if the activity is in
9782  * progress, then cv_waits using spa_activities_lock.
9783  *
9784  * The waiting thread is woken when another thread, one completing some
9785  * activity, updates the state of the activity and then calls
9786  * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
9787  * needs to hold its activity-specific lock when updating the state, and this
9788  * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
9789  *
9790  * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
9791  * and because it is held when the waiting thread checks the state of the
9792  * activity, it can never be the case that the completing thread both updates
9793  * the activity state and cv_broadcasts in between the waiting thread's check
9794  * and cv_wait. Thus, a waiting thread can never miss a wakeup.
9795  *
9796  * In order to prevent deadlock, when the waiting thread does its check, in some
9797  * cases it will temporarily drop spa_activities_lock in order to acquire the
9798  * activity-specific lock. The order in which spa_activities_lock and the
9799  * activity specific lock are acquired in the waiting thread is determined by
9800  * the order in which they are acquired in the completing thread; if the
9801  * completing thread calls spa_notify_waiters with the activity-specific lock
9802  * held, then the waiting thread must also acquire the activity-specific lock
9803  * first.
9804  */
9805 
9806 static int
9807 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
9808     boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
9809 {
9810 	int error = 0;
9811 
9812 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9813 
9814 	switch (activity) {
9815 	case ZPOOL_WAIT_CKPT_DISCARD:
9816 		*in_progress =
9817 		    (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
9818 		    zap_contains(spa_meta_objset(spa),
9819 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
9820 		    ENOENT);
9821 		break;
9822 	case ZPOOL_WAIT_FREE:
9823 		*in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
9824 		    !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
9825 		    spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
9826 		    spa_livelist_delete_check(spa));
9827 		break;
9828 	case ZPOOL_WAIT_INITIALIZE:
9829 	case ZPOOL_WAIT_TRIM:
9830 		error = spa_vdev_activity_in_progress(spa, use_tag, tag,
9831 		    activity, in_progress);
9832 		break;
9833 	case ZPOOL_WAIT_REPLACE:
9834 		mutex_exit(&spa->spa_activities_lock);
9835 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9836 		mutex_enter(&spa->spa_activities_lock);
9837 
9838 		*in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
9839 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9840 		break;
9841 	case ZPOOL_WAIT_REMOVE:
9842 		*in_progress = (spa->spa_removing_phys.sr_state ==
9843 		    DSS_SCANNING);
9844 		break;
9845 	case ZPOOL_WAIT_RESILVER:
9846 		if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev)))
9847 			break;
9848 		zfs_fallthrough;
9849 	case ZPOOL_WAIT_SCRUB:
9850 	{
9851 		boolean_t scanning, paused, is_scrub;
9852 		dsl_scan_t *scn =  spa->spa_dsl_pool->dp_scan;
9853 
9854 		is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
9855 		scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
9856 		paused = dsl_scan_is_paused_scrub(scn);
9857 		*in_progress = (scanning && !paused &&
9858 		    is_scrub == (activity == ZPOOL_WAIT_SCRUB));
9859 		break;
9860 	}
9861 	default:
9862 		panic("unrecognized value for activity %d", activity);
9863 	}
9864 
9865 	return (error);
9866 }
9867 
9868 static int
9869 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
9870     boolean_t use_tag, uint64_t tag, boolean_t *waited)
9871 {
9872 	/*
9873 	 * The tag is used to distinguish between instances of an activity.
9874 	 * 'initialize' and 'trim' are the only activities that we use this for.
9875 	 * The other activities can only have a single instance in progress in a
9876 	 * pool at one time, making the tag unnecessary.
9877 	 *
9878 	 * There can be multiple devices being replaced at once, but since they
9879 	 * all finish once resilvering finishes, we don't bother keeping track
9880 	 * of them individually, we just wait for them all to finish.
9881 	 */
9882 	if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
9883 	    activity != ZPOOL_WAIT_TRIM)
9884 		return (EINVAL);
9885 
9886 	if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
9887 		return (EINVAL);
9888 
9889 	spa_t *spa;
9890 	int error = spa_open(pool, &spa, FTAG);
9891 	if (error != 0)
9892 		return (error);
9893 
9894 	/*
9895 	 * Increment the spa's waiter count so that we can call spa_close and
9896 	 * still ensure that the spa_t doesn't get freed before this thread is
9897 	 * finished with it when the pool is exported. We want to call spa_close
9898 	 * before we start waiting because otherwise the additional ref would
9899 	 * prevent the pool from being exported or destroyed throughout the
9900 	 * potentially long wait.
9901 	 */
9902 	mutex_enter(&spa->spa_activities_lock);
9903 	spa->spa_waiters++;
9904 	spa_close(spa, FTAG);
9905 
9906 	*waited = B_FALSE;
9907 	for (;;) {
9908 		boolean_t in_progress;
9909 		error = spa_activity_in_progress(spa, activity, use_tag, tag,
9910 		    &in_progress);
9911 
9912 		if (error || !in_progress || spa->spa_waiters_cancel)
9913 			break;
9914 
9915 		*waited = B_TRUE;
9916 
9917 		if (cv_wait_sig(&spa->spa_activities_cv,
9918 		    &spa->spa_activities_lock) == 0) {
9919 			error = EINTR;
9920 			break;
9921 		}
9922 	}
9923 
9924 	spa->spa_waiters--;
9925 	cv_signal(&spa->spa_waiters_cv);
9926 	mutex_exit(&spa->spa_activities_lock);
9927 
9928 	return (error);
9929 }
9930 
9931 /*
9932  * Wait for a particular instance of the specified activity to complete, where
9933  * the instance is identified by 'tag'
9934  */
9935 int
9936 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
9937     boolean_t *waited)
9938 {
9939 	return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
9940 }
9941 
9942 /*
9943  * Wait for all instances of the specified activity complete
9944  */
9945 int
9946 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
9947 {
9948 
9949 	return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
9950 }
9951 
9952 sysevent_t *
9953 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9954 {
9955 	sysevent_t *ev = NULL;
9956 #ifdef _KERNEL
9957 	nvlist_t *resource;
9958 
9959 	resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
9960 	if (resource) {
9961 		ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
9962 		ev->resource = resource;
9963 	}
9964 #else
9965 	(void) spa, (void) vd, (void) hist_nvl, (void) name;
9966 #endif
9967 	return (ev);
9968 }
9969 
9970 void
9971 spa_event_post(sysevent_t *ev)
9972 {
9973 #ifdef _KERNEL
9974 	if (ev) {
9975 		zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
9976 		kmem_free(ev, sizeof (*ev));
9977 	}
9978 #else
9979 	(void) ev;
9980 #endif
9981 }
9982 
9983 /*
9984  * Post a zevent corresponding to the given sysevent.   The 'name' must be one
9985  * of the event definitions in sys/sysevent/eventdefs.h.  The payload will be
9986  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
9987  * in the userland libzpool, as we don't want consumers to misinterpret ztest
9988  * or zdb as real changes.
9989  */
9990 void
9991 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9992 {
9993 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
9994 }
9995 
9996 /* state manipulation functions */
9997 EXPORT_SYMBOL(spa_open);
9998 EXPORT_SYMBOL(spa_open_rewind);
9999 EXPORT_SYMBOL(spa_get_stats);
10000 EXPORT_SYMBOL(spa_create);
10001 EXPORT_SYMBOL(spa_import);
10002 EXPORT_SYMBOL(spa_tryimport);
10003 EXPORT_SYMBOL(spa_destroy);
10004 EXPORT_SYMBOL(spa_export);
10005 EXPORT_SYMBOL(spa_reset);
10006 EXPORT_SYMBOL(spa_async_request);
10007 EXPORT_SYMBOL(spa_async_suspend);
10008 EXPORT_SYMBOL(spa_async_resume);
10009 EXPORT_SYMBOL(spa_inject_addref);
10010 EXPORT_SYMBOL(spa_inject_delref);
10011 EXPORT_SYMBOL(spa_scan_stat_init);
10012 EXPORT_SYMBOL(spa_scan_get_stats);
10013 
10014 /* device manipulation */
10015 EXPORT_SYMBOL(spa_vdev_add);
10016 EXPORT_SYMBOL(spa_vdev_attach);
10017 EXPORT_SYMBOL(spa_vdev_detach);
10018 EXPORT_SYMBOL(spa_vdev_setpath);
10019 EXPORT_SYMBOL(spa_vdev_setfru);
10020 EXPORT_SYMBOL(spa_vdev_split_mirror);
10021 
10022 /* spare statech is global across all pools) */
10023 EXPORT_SYMBOL(spa_spare_add);
10024 EXPORT_SYMBOL(spa_spare_remove);
10025 EXPORT_SYMBOL(spa_spare_exists);
10026 EXPORT_SYMBOL(spa_spare_activate);
10027 
10028 /* L2ARC statech is global across all pools) */
10029 EXPORT_SYMBOL(spa_l2cache_add);
10030 EXPORT_SYMBOL(spa_l2cache_remove);
10031 EXPORT_SYMBOL(spa_l2cache_exists);
10032 EXPORT_SYMBOL(spa_l2cache_activate);
10033 EXPORT_SYMBOL(spa_l2cache_drop);
10034 
10035 /* scanning */
10036 EXPORT_SYMBOL(spa_scan);
10037 EXPORT_SYMBOL(spa_scan_stop);
10038 
10039 /* spa syncing */
10040 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
10041 EXPORT_SYMBOL(spa_sync_allpools);
10042 
10043 /* properties */
10044 EXPORT_SYMBOL(spa_prop_set);
10045 EXPORT_SYMBOL(spa_prop_get);
10046 EXPORT_SYMBOL(spa_prop_clear_bootfs);
10047 
10048 /* asynchronous event notification */
10049 EXPORT_SYMBOL(spa_event_notify);
10050 
10051 /* BEGIN CSTYLED */
10052 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
10053 	"log2 fraction of arc that can be used by inflight I/Os when "
10054 	"verifying pool during import");
10055 /* END CSTYLED */
10056 
10057 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
10058 	"Set to traverse metadata on pool import");
10059 
10060 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
10061 	"Set to traverse data on pool import");
10062 
10063 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
10064 	"Print vdev tree to zfs_dbgmsg during pool import");
10065 
10066 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
10067 	"Percentage of CPUs to run an IO worker thread");
10068 
10069 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD,
10070 	"Number of threads per IO worker taskqueue");
10071 
10072 /* BEGIN CSTYLED */
10073 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
10074 	"Allow importing pool with up to this number of missing top-level "
10075 	"vdevs (in read-only mode)");
10076 /* END CSTYLED */
10077 
10078 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
10079 	ZMOD_RW, "Set the livelist condense zthr to pause");
10080 
10081 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
10082 	ZMOD_RW, "Set the livelist condense synctask to pause");
10083 
10084 /* BEGIN CSTYLED */
10085 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
10086 	INT, ZMOD_RW,
10087 	"Whether livelist condensing was canceled in the synctask");
10088 
10089 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
10090 	INT, ZMOD_RW,
10091 	"Whether livelist condensing was canceled in the zthr function");
10092 
10093 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
10094 	ZMOD_RW,
10095 	"Whether extra ALLOC blkptrs were added to a livelist entry while it "
10096 	"was being condensed");
10097 /* END CSTYLED */
10098