1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 * Copyright 2016 Toomas Soome <tsoome@me.com> 30 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 31 * Copyright 2018 Joyent, Inc. 32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 33 * Copyright 2017 Joyent, Inc. 34 * Copyright (c) 2017, Intel Corporation. 35 */ 36 37 /* 38 * SPA: Storage Pool Allocator 39 * 40 * This file contains all the routines used when modifying on-disk SPA state. 41 * This includes opening, importing, destroying, exporting a pool, and syncing a 42 * pool. 43 */ 44 45 #include <sys/zfs_context.h> 46 #include <sys/fm/fs/zfs.h> 47 #include <sys/spa_impl.h> 48 #include <sys/zio.h> 49 #include <sys/zio_checksum.h> 50 #include <sys/dmu.h> 51 #include <sys/dmu_tx.h> 52 #include <sys/zap.h> 53 #include <sys/zil.h> 54 #include <sys/ddt.h> 55 #include <sys/vdev_impl.h> 56 #include <sys/vdev_removal.h> 57 #include <sys/vdev_indirect_mapping.h> 58 #include <sys/vdev_indirect_births.h> 59 #include <sys/vdev_initialize.h> 60 #include <sys/vdev_rebuild.h> 61 #include <sys/vdev_trim.h> 62 #include <sys/vdev_disk.h> 63 #include <sys/metaslab.h> 64 #include <sys/metaslab_impl.h> 65 #include <sys/mmp.h> 66 #include <sys/uberblock_impl.h> 67 #include <sys/txg.h> 68 #include <sys/avl.h> 69 #include <sys/bpobj.h> 70 #include <sys/dmu_traverse.h> 71 #include <sys/dmu_objset.h> 72 #include <sys/unique.h> 73 #include <sys/dsl_pool.h> 74 #include <sys/dsl_dataset.h> 75 #include <sys/dsl_dir.h> 76 #include <sys/dsl_prop.h> 77 #include <sys/dsl_synctask.h> 78 #include <sys/fs/zfs.h> 79 #include <sys/arc.h> 80 #include <sys/callb.h> 81 #include <sys/systeminfo.h> 82 #include <sys/spa_boot.h> 83 #include <sys/zfs_ioctl.h> 84 #include <sys/dsl_scan.h> 85 #include <sys/zfeature.h> 86 #include <sys/dsl_destroy.h> 87 #include <sys/zvol.h> 88 89 #ifdef _KERNEL 90 #include <sys/fm/protocol.h> 91 #include <sys/fm/util.h> 92 #include <sys/callb.h> 93 #include <sys/zone.h> 94 #include <sys/vmsystm.h> 95 #endif /* _KERNEL */ 96 97 #include "zfs_prop.h" 98 #include "zfs_comutil.h" 99 100 /* 101 * The interval, in seconds, at which failed configuration cache file writes 102 * should be retried. 103 */ 104 int zfs_ccw_retry_interval = 300; 105 106 typedef enum zti_modes { 107 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 108 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 109 ZTI_MODE_NULL, /* don't create a taskq */ 110 ZTI_NMODES 111 } zti_modes_t; 112 113 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 114 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 } 115 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 116 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 117 118 #define ZTI_N(n) ZTI_P(n, 1) 119 #define ZTI_ONE ZTI_N(1) 120 121 typedef struct zio_taskq_info { 122 zti_modes_t zti_mode; 123 uint_t zti_value; 124 uint_t zti_count; 125 } zio_taskq_info_t; 126 127 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 128 "iss", "iss_h", "int", "int_h" 129 }; 130 131 /* 132 * This table defines the taskq settings for each ZFS I/O type. When 133 * initializing a pool, we use this table to create an appropriately sized 134 * taskq. Some operations are low volume and therefore have a small, static 135 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 136 * macros. Other operations process a large amount of data; the ZTI_BATCH 137 * macro causes us to create a taskq oriented for throughput. Some operations 138 * are so high frequency and short-lived that the taskq itself can become a 139 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 140 * additional degree of parallelism specified by the number of threads per- 141 * taskq and the number of taskqs; when dispatching an event in this case, the 142 * particular taskq is chosen at random. 143 * 144 * The different taskq priorities are to handle the different contexts (issue 145 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 146 * need to be handled with minimum delay. 147 */ 148 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 149 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 150 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 151 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 152 { ZTI_BATCH, ZTI_N(5), ZTI_P(12, 8), ZTI_N(5) }, /* WRITE */ 153 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 154 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 155 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 156 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */ 157 }; 158 159 static void spa_sync_version(void *arg, dmu_tx_t *tx); 160 static void spa_sync_props(void *arg, dmu_tx_t *tx); 161 static boolean_t spa_has_active_shared_spare(spa_t *spa); 162 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport); 163 static void spa_vdev_resilver_done(spa_t *spa); 164 165 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 166 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 167 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 168 169 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 170 171 /* 172 * Report any spa_load_verify errors found, but do not fail spa_load. 173 * This is used by zdb to analyze non-idle pools. 174 */ 175 boolean_t spa_load_verify_dryrun = B_FALSE; 176 177 /* 178 * This (illegal) pool name is used when temporarily importing a spa_t in order 179 * to get the vdev stats associated with the imported devices. 180 */ 181 #define TRYIMPORT_NAME "$import" 182 183 /* 184 * For debugging purposes: print out vdev tree during pool import. 185 */ 186 int spa_load_print_vdev_tree = B_FALSE; 187 188 /* 189 * A non-zero value for zfs_max_missing_tvds means that we allow importing 190 * pools with missing top-level vdevs. This is strictly intended for advanced 191 * pool recovery cases since missing data is almost inevitable. Pools with 192 * missing devices can only be imported read-only for safety reasons, and their 193 * fail-mode will be automatically set to "continue". 194 * 195 * With 1 missing vdev we should be able to import the pool and mount all 196 * datasets. User data that was not modified after the missing device has been 197 * added should be recoverable. This means that snapshots created prior to the 198 * addition of that device should be completely intact. 199 * 200 * With 2 missing vdevs, some datasets may fail to mount since there are 201 * dataset statistics that are stored as regular metadata. Some data might be 202 * recoverable if those vdevs were added recently. 203 * 204 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries 205 * may be missing entirely. Chances of data recovery are very low. Note that 206 * there are also risks of performing an inadvertent rewind as we might be 207 * missing all the vdevs with the latest uberblocks. 208 */ 209 unsigned long zfs_max_missing_tvds = 0; 210 211 /* 212 * The parameters below are similar to zfs_max_missing_tvds but are only 213 * intended for a preliminary open of the pool with an untrusted config which 214 * might be incomplete or out-dated. 215 * 216 * We are more tolerant for pools opened from a cachefile since we could have 217 * an out-dated cachefile where a device removal was not registered. 218 * We could have set the limit arbitrarily high but in the case where devices 219 * are really missing we would want to return the proper error codes; we chose 220 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available 221 * and we get a chance to retrieve the trusted config. 222 */ 223 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1; 224 225 /* 226 * In the case where config was assembled by scanning device paths (/dev/dsks 227 * by default) we are less tolerant since all the existing devices should have 228 * been detected and we want spa_load to return the right error codes. 229 */ 230 uint64_t zfs_max_missing_tvds_scan = 0; 231 232 /* 233 * Debugging aid that pauses spa_sync() towards the end. 234 */ 235 boolean_t zfs_pause_spa_sync = B_FALSE; 236 237 /* 238 * Variables to indicate the livelist condense zthr func should wait at certain 239 * points for the livelist to be removed - used to test condense/destroy races 240 */ 241 int zfs_livelist_condense_zthr_pause = 0; 242 int zfs_livelist_condense_sync_pause = 0; 243 244 /* 245 * Variables to track whether or not condense cancellation has been 246 * triggered in testing. 247 */ 248 int zfs_livelist_condense_sync_cancel = 0; 249 int zfs_livelist_condense_zthr_cancel = 0; 250 251 /* 252 * Variable to track whether or not extra ALLOC blkptrs were added to a 253 * livelist entry while it was being condensed (caused by the way we track 254 * remapped blkptrs in dbuf_remap_impl) 255 */ 256 int zfs_livelist_condense_new_alloc = 0; 257 258 /* 259 * ========================================================================== 260 * SPA properties routines 261 * ========================================================================== 262 */ 263 264 /* 265 * Add a (source=src, propname=propval) list to an nvlist. 266 */ 267 static void 268 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 269 uint64_t intval, zprop_source_t src) 270 { 271 const char *propname = zpool_prop_to_name(prop); 272 nvlist_t *propval; 273 274 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 275 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 276 277 if (strval != NULL) 278 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 279 else 280 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 281 282 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 283 nvlist_free(propval); 284 } 285 286 /* 287 * Get property values from the spa configuration. 288 */ 289 static void 290 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 291 { 292 vdev_t *rvd = spa->spa_root_vdev; 293 dsl_pool_t *pool = spa->spa_dsl_pool; 294 uint64_t size, alloc, cap, version; 295 const zprop_source_t src = ZPROP_SRC_NONE; 296 spa_config_dirent_t *dp; 297 metaslab_class_t *mc = spa_normal_class(spa); 298 299 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 300 301 if (rvd != NULL) { 302 alloc = metaslab_class_get_alloc(mc); 303 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 304 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 305 306 size = metaslab_class_get_space(mc); 307 size += metaslab_class_get_space(spa_special_class(spa)); 308 size += metaslab_class_get_space(spa_dedup_class(spa)); 309 310 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 311 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 312 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 313 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 314 size - alloc, src); 315 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL, 316 spa->spa_checkpoint_info.sci_dspace, src); 317 318 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 319 metaslab_class_fragmentation(mc), src); 320 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 321 metaslab_class_expandable_space(mc), src); 322 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 323 (spa_mode(spa) == SPA_MODE_READ), src); 324 325 cap = (size == 0) ? 0 : (alloc * 100 / size); 326 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 327 328 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 329 ddt_get_pool_dedup_ratio(spa), src); 330 331 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 332 rvd->vdev_state, src); 333 334 version = spa_version(spa); 335 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) { 336 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, 337 version, ZPROP_SRC_DEFAULT); 338 } else { 339 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, 340 version, ZPROP_SRC_LOCAL); 341 } 342 spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID, 343 NULL, spa_load_guid(spa), src); 344 } 345 346 if (pool != NULL) { 347 /* 348 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 349 * when opening pools before this version freedir will be NULL. 350 */ 351 if (pool->dp_free_dir != NULL) { 352 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 353 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 354 src); 355 } else { 356 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 357 NULL, 0, src); 358 } 359 360 if (pool->dp_leak_dir != NULL) { 361 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 362 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 363 src); 364 } else { 365 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 366 NULL, 0, src); 367 } 368 } 369 370 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 371 372 if (spa->spa_comment != NULL) { 373 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 374 0, ZPROP_SRC_LOCAL); 375 } 376 377 if (spa->spa_root != NULL) 378 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 379 0, ZPROP_SRC_LOCAL); 380 381 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 382 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 383 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 384 } else { 385 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 386 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 387 } 388 389 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) { 390 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, 391 DNODE_MAX_SIZE, ZPROP_SRC_NONE); 392 } else { 393 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, 394 DNODE_MIN_SIZE, ZPROP_SRC_NONE); 395 } 396 397 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 398 if (dp->scd_path == NULL) { 399 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 400 "none", 0, ZPROP_SRC_LOCAL); 401 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 402 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 403 dp->scd_path, 0, ZPROP_SRC_LOCAL); 404 } 405 } 406 } 407 408 /* 409 * Get zpool property values. 410 */ 411 int 412 spa_prop_get(spa_t *spa, nvlist_t **nvp) 413 { 414 objset_t *mos = spa->spa_meta_objset; 415 zap_cursor_t zc; 416 zap_attribute_t za; 417 dsl_pool_t *dp; 418 int err; 419 420 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP); 421 if (err) 422 return (err); 423 424 dp = spa_get_dsl(spa); 425 dsl_pool_config_enter(dp, FTAG); 426 mutex_enter(&spa->spa_props_lock); 427 428 /* 429 * Get properties from the spa config. 430 */ 431 spa_prop_get_config(spa, nvp); 432 433 /* If no pool property object, no more prop to get. */ 434 if (mos == NULL || spa->spa_pool_props_object == 0) 435 goto out; 436 437 /* 438 * Get properties from the MOS pool property object. 439 */ 440 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 441 (err = zap_cursor_retrieve(&zc, &za)) == 0; 442 zap_cursor_advance(&zc)) { 443 uint64_t intval = 0; 444 char *strval = NULL; 445 zprop_source_t src = ZPROP_SRC_DEFAULT; 446 zpool_prop_t prop; 447 448 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL) 449 continue; 450 451 switch (za.za_integer_length) { 452 case 8: 453 /* integer property */ 454 if (za.za_first_integer != 455 zpool_prop_default_numeric(prop)) 456 src = ZPROP_SRC_LOCAL; 457 458 if (prop == ZPOOL_PROP_BOOTFS) { 459 dsl_dataset_t *ds = NULL; 460 461 err = dsl_dataset_hold_obj(dp, 462 za.za_first_integer, FTAG, &ds); 463 if (err != 0) 464 break; 465 466 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, 467 KM_SLEEP); 468 dsl_dataset_name(ds, strval); 469 dsl_dataset_rele(ds, FTAG); 470 } else { 471 strval = NULL; 472 intval = za.za_first_integer; 473 } 474 475 spa_prop_add_list(*nvp, prop, strval, intval, src); 476 477 if (strval != NULL) 478 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); 479 480 break; 481 482 case 1: 483 /* string property */ 484 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 485 err = zap_lookup(mos, spa->spa_pool_props_object, 486 za.za_name, 1, za.za_num_integers, strval); 487 if (err) { 488 kmem_free(strval, za.za_num_integers); 489 break; 490 } 491 spa_prop_add_list(*nvp, prop, strval, 0, src); 492 kmem_free(strval, za.za_num_integers); 493 break; 494 495 default: 496 break; 497 } 498 } 499 zap_cursor_fini(&zc); 500 out: 501 mutex_exit(&spa->spa_props_lock); 502 dsl_pool_config_exit(dp, FTAG); 503 if (err && err != ENOENT) { 504 nvlist_free(*nvp); 505 *nvp = NULL; 506 return (err); 507 } 508 509 return (0); 510 } 511 512 /* 513 * Validate the given pool properties nvlist and modify the list 514 * for the property values to be set. 515 */ 516 static int 517 spa_prop_validate(spa_t *spa, nvlist_t *props) 518 { 519 nvpair_t *elem; 520 int error = 0, reset_bootfs = 0; 521 uint64_t objnum = 0; 522 boolean_t has_feature = B_FALSE; 523 524 elem = NULL; 525 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 526 uint64_t intval; 527 char *strval, *slash, *check, *fname; 528 const char *propname = nvpair_name(elem); 529 zpool_prop_t prop = zpool_name_to_prop(propname); 530 531 switch (prop) { 532 case ZPOOL_PROP_INVAL: 533 if (!zpool_prop_feature(propname)) { 534 error = SET_ERROR(EINVAL); 535 break; 536 } 537 538 /* 539 * Sanitize the input. 540 */ 541 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 542 error = SET_ERROR(EINVAL); 543 break; 544 } 545 546 if (nvpair_value_uint64(elem, &intval) != 0) { 547 error = SET_ERROR(EINVAL); 548 break; 549 } 550 551 if (intval != 0) { 552 error = SET_ERROR(EINVAL); 553 break; 554 } 555 556 fname = strchr(propname, '@') + 1; 557 if (zfeature_lookup_name(fname, NULL) != 0) { 558 error = SET_ERROR(EINVAL); 559 break; 560 } 561 562 has_feature = B_TRUE; 563 break; 564 565 case ZPOOL_PROP_VERSION: 566 error = nvpair_value_uint64(elem, &intval); 567 if (!error && 568 (intval < spa_version(spa) || 569 intval > SPA_VERSION_BEFORE_FEATURES || 570 has_feature)) 571 error = SET_ERROR(EINVAL); 572 break; 573 574 case ZPOOL_PROP_DELEGATION: 575 case ZPOOL_PROP_AUTOREPLACE: 576 case ZPOOL_PROP_LISTSNAPS: 577 case ZPOOL_PROP_AUTOEXPAND: 578 case ZPOOL_PROP_AUTOTRIM: 579 error = nvpair_value_uint64(elem, &intval); 580 if (!error && intval > 1) 581 error = SET_ERROR(EINVAL); 582 break; 583 584 case ZPOOL_PROP_MULTIHOST: 585 error = nvpair_value_uint64(elem, &intval); 586 if (!error && intval > 1) 587 error = SET_ERROR(EINVAL); 588 589 if (!error) { 590 uint32_t hostid = zone_get_hostid(NULL); 591 if (hostid) 592 spa->spa_hostid = hostid; 593 else 594 error = SET_ERROR(ENOTSUP); 595 } 596 597 break; 598 599 case ZPOOL_PROP_BOOTFS: 600 /* 601 * If the pool version is less than SPA_VERSION_BOOTFS, 602 * or the pool is still being created (version == 0), 603 * the bootfs property cannot be set. 604 */ 605 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 606 error = SET_ERROR(ENOTSUP); 607 break; 608 } 609 610 /* 611 * Make sure the vdev config is bootable 612 */ 613 if (!vdev_is_bootable(spa->spa_root_vdev)) { 614 error = SET_ERROR(ENOTSUP); 615 break; 616 } 617 618 reset_bootfs = 1; 619 620 error = nvpair_value_string(elem, &strval); 621 622 if (!error) { 623 objset_t *os; 624 625 if (strval == NULL || strval[0] == '\0') { 626 objnum = zpool_prop_default_numeric( 627 ZPOOL_PROP_BOOTFS); 628 break; 629 } 630 631 error = dmu_objset_hold(strval, FTAG, &os); 632 if (error != 0) 633 break; 634 635 /* Must be ZPL. */ 636 if (dmu_objset_type(os) != DMU_OST_ZFS) { 637 error = SET_ERROR(ENOTSUP); 638 } else { 639 objnum = dmu_objset_id(os); 640 } 641 dmu_objset_rele(os, FTAG); 642 } 643 break; 644 645 case ZPOOL_PROP_FAILUREMODE: 646 error = nvpair_value_uint64(elem, &intval); 647 if (!error && intval > ZIO_FAILURE_MODE_PANIC) 648 error = SET_ERROR(EINVAL); 649 650 /* 651 * This is a special case which only occurs when 652 * the pool has completely failed. This allows 653 * the user to change the in-core failmode property 654 * without syncing it out to disk (I/Os might 655 * currently be blocked). We do this by returning 656 * EIO to the caller (spa_prop_set) to trick it 657 * into thinking we encountered a property validation 658 * error. 659 */ 660 if (!error && spa_suspended(spa)) { 661 spa->spa_failmode = intval; 662 error = SET_ERROR(EIO); 663 } 664 break; 665 666 case ZPOOL_PROP_CACHEFILE: 667 if ((error = nvpair_value_string(elem, &strval)) != 0) 668 break; 669 670 if (strval[0] == '\0') 671 break; 672 673 if (strcmp(strval, "none") == 0) 674 break; 675 676 if (strval[0] != '/') { 677 error = SET_ERROR(EINVAL); 678 break; 679 } 680 681 slash = strrchr(strval, '/'); 682 ASSERT(slash != NULL); 683 684 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 685 strcmp(slash, "/..") == 0) 686 error = SET_ERROR(EINVAL); 687 break; 688 689 case ZPOOL_PROP_COMMENT: 690 if ((error = nvpair_value_string(elem, &strval)) != 0) 691 break; 692 for (check = strval; *check != '\0'; check++) { 693 if (!isprint(*check)) { 694 error = SET_ERROR(EINVAL); 695 break; 696 } 697 } 698 if (strlen(strval) > ZPROP_MAX_COMMENT) 699 error = SET_ERROR(E2BIG); 700 break; 701 702 default: 703 break; 704 } 705 706 if (error) 707 break; 708 } 709 710 (void) nvlist_remove_all(props, 711 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO)); 712 713 if (!error && reset_bootfs) { 714 error = nvlist_remove(props, 715 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 716 717 if (!error) { 718 error = nvlist_add_uint64(props, 719 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 720 } 721 } 722 723 return (error); 724 } 725 726 void 727 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 728 { 729 char *cachefile; 730 spa_config_dirent_t *dp; 731 732 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 733 &cachefile) != 0) 734 return; 735 736 dp = kmem_alloc(sizeof (spa_config_dirent_t), 737 KM_SLEEP); 738 739 if (cachefile[0] == '\0') 740 dp->scd_path = spa_strdup(spa_config_path); 741 else if (strcmp(cachefile, "none") == 0) 742 dp->scd_path = NULL; 743 else 744 dp->scd_path = spa_strdup(cachefile); 745 746 list_insert_head(&spa->spa_config_list, dp); 747 if (need_sync) 748 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 749 } 750 751 int 752 spa_prop_set(spa_t *spa, nvlist_t *nvp) 753 { 754 int error; 755 nvpair_t *elem = NULL; 756 boolean_t need_sync = B_FALSE; 757 758 if ((error = spa_prop_validate(spa, nvp)) != 0) 759 return (error); 760 761 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 762 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 763 764 if (prop == ZPOOL_PROP_CACHEFILE || 765 prop == ZPOOL_PROP_ALTROOT || 766 prop == ZPOOL_PROP_READONLY) 767 continue; 768 769 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) { 770 uint64_t ver; 771 772 if (prop == ZPOOL_PROP_VERSION) { 773 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 774 } else { 775 ASSERT(zpool_prop_feature(nvpair_name(elem))); 776 ver = SPA_VERSION_FEATURES; 777 need_sync = B_TRUE; 778 } 779 780 /* Save time if the version is already set. */ 781 if (ver == spa_version(spa)) 782 continue; 783 784 /* 785 * In addition to the pool directory object, we might 786 * create the pool properties object, the features for 787 * read object, the features for write object, or the 788 * feature descriptions object. 789 */ 790 error = dsl_sync_task(spa->spa_name, NULL, 791 spa_sync_version, &ver, 792 6, ZFS_SPACE_CHECK_RESERVED); 793 if (error) 794 return (error); 795 continue; 796 } 797 798 need_sync = B_TRUE; 799 break; 800 } 801 802 if (need_sync) { 803 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 804 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 805 } 806 807 return (0); 808 } 809 810 /* 811 * If the bootfs property value is dsobj, clear it. 812 */ 813 void 814 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 815 { 816 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 817 VERIFY(zap_remove(spa->spa_meta_objset, 818 spa->spa_pool_props_object, 819 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 820 spa->spa_bootfs = 0; 821 } 822 } 823 824 /*ARGSUSED*/ 825 static int 826 spa_change_guid_check(void *arg, dmu_tx_t *tx) 827 { 828 uint64_t *newguid __maybe_unused = arg; 829 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 830 vdev_t *rvd = spa->spa_root_vdev; 831 uint64_t vdev_state; 832 833 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 834 int error = (spa_has_checkpoint(spa)) ? 835 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 836 return (SET_ERROR(error)); 837 } 838 839 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 840 vdev_state = rvd->vdev_state; 841 spa_config_exit(spa, SCL_STATE, FTAG); 842 843 if (vdev_state != VDEV_STATE_HEALTHY) 844 return (SET_ERROR(ENXIO)); 845 846 ASSERT3U(spa_guid(spa), !=, *newguid); 847 848 return (0); 849 } 850 851 static void 852 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 853 { 854 uint64_t *newguid = arg; 855 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 856 uint64_t oldguid; 857 vdev_t *rvd = spa->spa_root_vdev; 858 859 oldguid = spa_guid(spa); 860 861 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 862 rvd->vdev_guid = *newguid; 863 rvd->vdev_guid_sum += (*newguid - oldguid); 864 vdev_config_dirty(rvd); 865 spa_config_exit(spa, SCL_STATE, FTAG); 866 867 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 868 (u_longlong_t)oldguid, (u_longlong_t)*newguid); 869 } 870 871 /* 872 * Change the GUID for the pool. This is done so that we can later 873 * re-import a pool built from a clone of our own vdevs. We will modify 874 * the root vdev's guid, our own pool guid, and then mark all of our 875 * vdevs dirty. Note that we must make sure that all our vdevs are 876 * online when we do this, or else any vdevs that weren't present 877 * would be orphaned from our pool. We are also going to issue a 878 * sysevent to update any watchers. 879 */ 880 int 881 spa_change_guid(spa_t *spa) 882 { 883 int error; 884 uint64_t guid; 885 886 mutex_enter(&spa->spa_vdev_top_lock); 887 mutex_enter(&spa_namespace_lock); 888 guid = spa_generate_guid(NULL); 889 890 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 891 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 892 893 if (error == 0) { 894 spa_write_cachefile(spa, B_FALSE, B_TRUE); 895 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID); 896 } 897 898 mutex_exit(&spa_namespace_lock); 899 mutex_exit(&spa->spa_vdev_top_lock); 900 901 return (error); 902 } 903 904 /* 905 * ========================================================================== 906 * SPA state manipulation (open/create/destroy/import/export) 907 * ========================================================================== 908 */ 909 910 static int 911 spa_error_entry_compare(const void *a, const void *b) 912 { 913 const spa_error_entry_t *sa = (const spa_error_entry_t *)a; 914 const spa_error_entry_t *sb = (const spa_error_entry_t *)b; 915 int ret; 916 917 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark, 918 sizeof (zbookmark_phys_t)); 919 920 return (TREE_ISIGN(ret)); 921 } 922 923 /* 924 * Utility function which retrieves copies of the current logs and 925 * re-initializes them in the process. 926 */ 927 void 928 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 929 { 930 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 931 932 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 933 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 934 935 avl_create(&spa->spa_errlist_scrub, 936 spa_error_entry_compare, sizeof (spa_error_entry_t), 937 offsetof(spa_error_entry_t, se_avl)); 938 avl_create(&spa->spa_errlist_last, 939 spa_error_entry_compare, sizeof (spa_error_entry_t), 940 offsetof(spa_error_entry_t, se_avl)); 941 } 942 943 static void 944 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 945 { 946 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 947 enum zti_modes mode = ztip->zti_mode; 948 uint_t value = ztip->zti_value; 949 uint_t count = ztip->zti_count; 950 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 951 uint_t flags = 0; 952 boolean_t batch = B_FALSE; 953 954 if (mode == ZTI_MODE_NULL) { 955 tqs->stqs_count = 0; 956 tqs->stqs_taskq = NULL; 957 return; 958 } 959 960 ASSERT3U(count, >, 0); 961 962 tqs->stqs_count = count; 963 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 964 965 switch (mode) { 966 case ZTI_MODE_FIXED: 967 ASSERT3U(value, >=, 1); 968 value = MAX(value, 1); 969 flags |= TASKQ_DYNAMIC; 970 break; 971 972 case ZTI_MODE_BATCH: 973 batch = B_TRUE; 974 flags |= TASKQ_THREADS_CPU_PCT; 975 value = MIN(zio_taskq_batch_pct, 100); 976 break; 977 978 default: 979 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 980 "spa_activate()", 981 zio_type_name[t], zio_taskq_types[q], mode, value); 982 break; 983 } 984 985 for (uint_t i = 0; i < count; i++) { 986 taskq_t *tq; 987 char name[32]; 988 989 (void) snprintf(name, sizeof (name), "%s_%s", 990 zio_type_name[t], zio_taskq_types[q]); 991 992 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 993 if (batch) 994 flags |= TASKQ_DC_BATCH; 995 996 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 997 spa->spa_proc, zio_taskq_basedc, flags); 998 } else { 999 pri_t pri = maxclsyspri; 1000 /* 1001 * The write issue taskq can be extremely CPU 1002 * intensive. Run it at slightly less important 1003 * priority than the other taskqs. Under Linux this 1004 * means incrementing the priority value on platforms 1005 * like illumos it should be decremented. 1006 */ 1007 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 1008 pri++; 1009 1010 tq = taskq_create_proc(name, value, pri, 50, 1011 INT_MAX, spa->spa_proc, flags); 1012 } 1013 1014 tqs->stqs_taskq[i] = tq; 1015 } 1016 } 1017 1018 static void 1019 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 1020 { 1021 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1022 1023 if (tqs->stqs_taskq == NULL) { 1024 ASSERT3U(tqs->stqs_count, ==, 0); 1025 return; 1026 } 1027 1028 for (uint_t i = 0; i < tqs->stqs_count; i++) { 1029 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 1030 taskq_destroy(tqs->stqs_taskq[i]); 1031 } 1032 1033 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 1034 tqs->stqs_taskq = NULL; 1035 } 1036 1037 /* 1038 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 1039 * Note that a type may have multiple discrete taskqs to avoid lock contention 1040 * on the taskq itself. In that case we choose which taskq at random by using 1041 * the low bits of gethrtime(). 1042 */ 1043 void 1044 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 1045 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 1046 { 1047 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1048 taskq_t *tq; 1049 1050 ASSERT3P(tqs->stqs_taskq, !=, NULL); 1051 ASSERT3U(tqs->stqs_count, !=, 0); 1052 1053 if (tqs->stqs_count == 1) { 1054 tq = tqs->stqs_taskq[0]; 1055 } else { 1056 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count]; 1057 } 1058 1059 taskq_dispatch_ent(tq, func, arg, flags, ent); 1060 } 1061 1062 /* 1063 * Same as spa_taskq_dispatch_ent() but block on the task until completion. 1064 */ 1065 void 1066 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 1067 task_func_t *func, void *arg, uint_t flags) 1068 { 1069 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1070 taskq_t *tq; 1071 taskqid_t id; 1072 1073 ASSERT3P(tqs->stqs_taskq, !=, NULL); 1074 ASSERT3U(tqs->stqs_count, !=, 0); 1075 1076 if (tqs->stqs_count == 1) { 1077 tq = tqs->stqs_taskq[0]; 1078 } else { 1079 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count]; 1080 } 1081 1082 id = taskq_dispatch(tq, func, arg, flags); 1083 if (id) 1084 taskq_wait_id(tq, id); 1085 } 1086 1087 static void 1088 spa_create_zio_taskqs(spa_t *spa) 1089 { 1090 for (int t = 0; t < ZIO_TYPES; t++) { 1091 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1092 spa_taskqs_init(spa, t, q); 1093 } 1094 } 1095 } 1096 1097 /* 1098 * Disabled until spa_thread() can be adapted for Linux. 1099 */ 1100 #undef HAVE_SPA_THREAD 1101 1102 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD) 1103 static void 1104 spa_thread(void *arg) 1105 { 1106 psetid_t zio_taskq_psrset_bind = PS_NONE; 1107 callb_cpr_t cprinfo; 1108 1109 spa_t *spa = arg; 1110 user_t *pu = PTOU(curproc); 1111 1112 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 1113 spa->spa_name); 1114 1115 ASSERT(curproc != &p0); 1116 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 1117 "zpool-%s", spa->spa_name); 1118 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 1119 1120 /* bind this thread to the requested psrset */ 1121 if (zio_taskq_psrset_bind != PS_NONE) { 1122 pool_lock(); 1123 mutex_enter(&cpu_lock); 1124 mutex_enter(&pidlock); 1125 mutex_enter(&curproc->p_lock); 1126 1127 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 1128 0, NULL, NULL) == 0) { 1129 curthread->t_bind_pset = zio_taskq_psrset_bind; 1130 } else { 1131 cmn_err(CE_WARN, 1132 "Couldn't bind process for zfs pool \"%s\" to " 1133 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1134 } 1135 1136 mutex_exit(&curproc->p_lock); 1137 mutex_exit(&pidlock); 1138 mutex_exit(&cpu_lock); 1139 pool_unlock(); 1140 } 1141 1142 if (zio_taskq_sysdc) { 1143 sysdc_thread_enter(curthread, 100, 0); 1144 } 1145 1146 spa->spa_proc = curproc; 1147 spa->spa_did = curthread->t_did; 1148 1149 spa_create_zio_taskqs(spa); 1150 1151 mutex_enter(&spa->spa_proc_lock); 1152 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1153 1154 spa->spa_proc_state = SPA_PROC_ACTIVE; 1155 cv_broadcast(&spa->spa_proc_cv); 1156 1157 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1158 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1159 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1160 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1161 1162 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1163 spa->spa_proc_state = SPA_PROC_GONE; 1164 spa->spa_proc = &p0; 1165 cv_broadcast(&spa->spa_proc_cv); 1166 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1167 1168 mutex_enter(&curproc->p_lock); 1169 lwp_exit(); 1170 } 1171 #endif 1172 1173 /* 1174 * Activate an uninitialized pool. 1175 */ 1176 static void 1177 spa_activate(spa_t *spa, spa_mode_t mode) 1178 { 1179 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1180 1181 spa->spa_state = POOL_STATE_ACTIVE; 1182 spa->spa_mode = mode; 1183 1184 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1185 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1186 spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops); 1187 spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops); 1188 1189 /* Try to create a covering process */ 1190 mutex_enter(&spa->spa_proc_lock); 1191 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1192 ASSERT(spa->spa_proc == &p0); 1193 spa->spa_did = 0; 1194 1195 #ifdef HAVE_SPA_THREAD 1196 /* Only create a process if we're going to be around a while. */ 1197 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1198 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1199 NULL, 0) == 0) { 1200 spa->spa_proc_state = SPA_PROC_CREATED; 1201 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1202 cv_wait(&spa->spa_proc_cv, 1203 &spa->spa_proc_lock); 1204 } 1205 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1206 ASSERT(spa->spa_proc != &p0); 1207 ASSERT(spa->spa_did != 0); 1208 } else { 1209 #ifdef _KERNEL 1210 cmn_err(CE_WARN, 1211 "Couldn't create process for zfs pool \"%s\"\n", 1212 spa->spa_name); 1213 #endif 1214 } 1215 } 1216 #endif /* HAVE_SPA_THREAD */ 1217 mutex_exit(&spa->spa_proc_lock); 1218 1219 /* If we didn't create a process, we need to create our taskqs. */ 1220 if (spa->spa_proc == &p0) { 1221 spa_create_zio_taskqs(spa); 1222 } 1223 1224 for (size_t i = 0; i < TXG_SIZE; i++) { 1225 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 1226 ZIO_FLAG_CANFAIL); 1227 } 1228 1229 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1230 offsetof(vdev_t, vdev_config_dirty_node)); 1231 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1232 offsetof(objset_t, os_evicting_node)); 1233 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1234 offsetof(vdev_t, vdev_state_dirty_node)); 1235 1236 txg_list_create(&spa->spa_vdev_txg_list, spa, 1237 offsetof(struct vdev, vdev_txg_node)); 1238 1239 avl_create(&spa->spa_errlist_scrub, 1240 spa_error_entry_compare, sizeof (spa_error_entry_t), 1241 offsetof(spa_error_entry_t, se_avl)); 1242 avl_create(&spa->spa_errlist_last, 1243 spa_error_entry_compare, sizeof (spa_error_entry_t), 1244 offsetof(spa_error_entry_t, se_avl)); 1245 1246 spa_keystore_init(&spa->spa_keystore); 1247 1248 /* 1249 * This taskq is used to perform zvol-minor-related tasks 1250 * asynchronously. This has several advantages, including easy 1251 * resolution of various deadlocks (zfsonlinux bug #3681). 1252 * 1253 * The taskq must be single threaded to ensure tasks are always 1254 * processed in the order in which they were dispatched. 1255 * 1256 * A taskq per pool allows one to keep the pools independent. 1257 * This way if one pool is suspended, it will not impact another. 1258 * 1259 * The preferred location to dispatch a zvol minor task is a sync 1260 * task. In this context, there is easy access to the spa_t and minimal 1261 * error handling is required because the sync task must succeed. 1262 */ 1263 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri, 1264 1, INT_MAX, 0); 1265 1266 /* 1267 * Taskq dedicated to prefetcher threads: this is used to prevent the 1268 * pool traverse code from monopolizing the global (and limited) 1269 * system_taskq by inappropriately scheduling long running tasks on it. 1270 */ 1271 spa->spa_prefetch_taskq = taskq_create("z_prefetch", boot_ncpus, 1272 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC); 1273 1274 /* 1275 * The taskq to upgrade datasets in this pool. Currently used by 1276 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA. 1277 */ 1278 spa->spa_upgrade_taskq = taskq_create("z_upgrade", boot_ncpus, 1279 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC); 1280 } 1281 1282 /* 1283 * Opposite of spa_activate(). 1284 */ 1285 static void 1286 spa_deactivate(spa_t *spa) 1287 { 1288 ASSERT(spa->spa_sync_on == B_FALSE); 1289 ASSERT(spa->spa_dsl_pool == NULL); 1290 ASSERT(spa->spa_root_vdev == NULL); 1291 ASSERT(spa->spa_async_zio_root == NULL); 1292 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1293 1294 spa_evicting_os_wait(spa); 1295 1296 if (spa->spa_zvol_taskq) { 1297 taskq_destroy(spa->spa_zvol_taskq); 1298 spa->spa_zvol_taskq = NULL; 1299 } 1300 1301 if (spa->spa_prefetch_taskq) { 1302 taskq_destroy(spa->spa_prefetch_taskq); 1303 spa->spa_prefetch_taskq = NULL; 1304 } 1305 1306 if (spa->spa_upgrade_taskq) { 1307 taskq_destroy(spa->spa_upgrade_taskq); 1308 spa->spa_upgrade_taskq = NULL; 1309 } 1310 1311 txg_list_destroy(&spa->spa_vdev_txg_list); 1312 1313 list_destroy(&spa->spa_config_dirty_list); 1314 list_destroy(&spa->spa_evicting_os_list); 1315 list_destroy(&spa->spa_state_dirty_list); 1316 1317 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 1318 1319 for (int t = 0; t < ZIO_TYPES; t++) { 1320 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1321 spa_taskqs_fini(spa, t, q); 1322 } 1323 } 1324 1325 for (size_t i = 0; i < TXG_SIZE; i++) { 1326 ASSERT3P(spa->spa_txg_zio[i], !=, NULL); 1327 VERIFY0(zio_wait(spa->spa_txg_zio[i])); 1328 spa->spa_txg_zio[i] = NULL; 1329 } 1330 1331 metaslab_class_destroy(spa->spa_normal_class); 1332 spa->spa_normal_class = NULL; 1333 1334 metaslab_class_destroy(spa->spa_log_class); 1335 spa->spa_log_class = NULL; 1336 1337 metaslab_class_destroy(spa->spa_special_class); 1338 spa->spa_special_class = NULL; 1339 1340 metaslab_class_destroy(spa->spa_dedup_class); 1341 spa->spa_dedup_class = NULL; 1342 1343 /* 1344 * If this was part of an import or the open otherwise failed, we may 1345 * still have errors left in the queues. Empty them just in case. 1346 */ 1347 spa_errlog_drain(spa); 1348 avl_destroy(&spa->spa_errlist_scrub); 1349 avl_destroy(&spa->spa_errlist_last); 1350 1351 spa_keystore_fini(&spa->spa_keystore); 1352 1353 spa->spa_state = POOL_STATE_UNINITIALIZED; 1354 1355 mutex_enter(&spa->spa_proc_lock); 1356 if (spa->spa_proc_state != SPA_PROC_NONE) { 1357 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1358 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1359 cv_broadcast(&spa->spa_proc_cv); 1360 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1361 ASSERT(spa->spa_proc != &p0); 1362 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1363 } 1364 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1365 spa->spa_proc_state = SPA_PROC_NONE; 1366 } 1367 ASSERT(spa->spa_proc == &p0); 1368 mutex_exit(&spa->spa_proc_lock); 1369 1370 /* 1371 * We want to make sure spa_thread() has actually exited the ZFS 1372 * module, so that the module can't be unloaded out from underneath 1373 * it. 1374 */ 1375 if (spa->spa_did != 0) { 1376 thread_join(spa->spa_did); 1377 spa->spa_did = 0; 1378 } 1379 } 1380 1381 /* 1382 * Verify a pool configuration, and construct the vdev tree appropriately. This 1383 * will create all the necessary vdevs in the appropriate layout, with each vdev 1384 * in the CLOSED state. This will prep the pool before open/creation/import. 1385 * All vdev validation is done by the vdev_alloc() routine. 1386 */ 1387 int 1388 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1389 uint_t id, int atype) 1390 { 1391 nvlist_t **child; 1392 uint_t children; 1393 int error; 1394 1395 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1396 return (error); 1397 1398 if ((*vdp)->vdev_ops->vdev_op_leaf) 1399 return (0); 1400 1401 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1402 &child, &children); 1403 1404 if (error == ENOENT) 1405 return (0); 1406 1407 if (error) { 1408 vdev_free(*vdp); 1409 *vdp = NULL; 1410 return (SET_ERROR(EINVAL)); 1411 } 1412 1413 for (int c = 0; c < children; c++) { 1414 vdev_t *vd; 1415 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1416 atype)) != 0) { 1417 vdev_free(*vdp); 1418 *vdp = NULL; 1419 return (error); 1420 } 1421 } 1422 1423 ASSERT(*vdp != NULL); 1424 1425 return (0); 1426 } 1427 1428 static boolean_t 1429 spa_should_flush_logs_on_unload(spa_t *spa) 1430 { 1431 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1432 return (B_FALSE); 1433 1434 if (!spa_writeable(spa)) 1435 return (B_FALSE); 1436 1437 if (!spa->spa_sync_on) 1438 return (B_FALSE); 1439 1440 if (spa_state(spa) != POOL_STATE_EXPORTED) 1441 return (B_FALSE); 1442 1443 if (zfs_keep_log_spacemaps_at_export) 1444 return (B_FALSE); 1445 1446 return (B_TRUE); 1447 } 1448 1449 /* 1450 * Opens a transaction that will set the flag that will instruct 1451 * spa_sync to attempt to flush all the metaslabs for that txg. 1452 */ 1453 static void 1454 spa_unload_log_sm_flush_all(spa_t *spa) 1455 { 1456 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 1457 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 1458 1459 ASSERT3U(spa->spa_log_flushall_txg, ==, 0); 1460 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx); 1461 1462 dmu_tx_commit(tx); 1463 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg); 1464 } 1465 1466 static void 1467 spa_unload_log_sm_metadata(spa_t *spa) 1468 { 1469 void *cookie = NULL; 1470 spa_log_sm_t *sls; 1471 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg, 1472 &cookie)) != NULL) { 1473 VERIFY0(sls->sls_mscount); 1474 kmem_free(sls, sizeof (spa_log_sm_t)); 1475 } 1476 1477 for (log_summary_entry_t *e = list_head(&spa->spa_log_summary); 1478 e != NULL; e = list_head(&spa->spa_log_summary)) { 1479 VERIFY0(e->lse_mscount); 1480 list_remove(&spa->spa_log_summary, e); 1481 kmem_free(e, sizeof (log_summary_entry_t)); 1482 } 1483 1484 spa->spa_unflushed_stats.sus_nblocks = 0; 1485 spa->spa_unflushed_stats.sus_memused = 0; 1486 spa->spa_unflushed_stats.sus_blocklimit = 0; 1487 } 1488 1489 static void 1490 spa_destroy_aux_threads(spa_t *spa) 1491 { 1492 if (spa->spa_condense_zthr != NULL) { 1493 zthr_destroy(spa->spa_condense_zthr); 1494 spa->spa_condense_zthr = NULL; 1495 } 1496 if (spa->spa_checkpoint_discard_zthr != NULL) { 1497 zthr_destroy(spa->spa_checkpoint_discard_zthr); 1498 spa->spa_checkpoint_discard_zthr = NULL; 1499 } 1500 if (spa->spa_livelist_delete_zthr != NULL) { 1501 zthr_destroy(spa->spa_livelist_delete_zthr); 1502 spa->spa_livelist_delete_zthr = NULL; 1503 } 1504 if (spa->spa_livelist_condense_zthr != NULL) { 1505 zthr_destroy(spa->spa_livelist_condense_zthr); 1506 spa->spa_livelist_condense_zthr = NULL; 1507 } 1508 } 1509 1510 /* 1511 * Opposite of spa_load(). 1512 */ 1513 static void 1514 spa_unload(spa_t *spa) 1515 { 1516 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1517 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED); 1518 1519 spa_import_progress_remove(spa_guid(spa)); 1520 spa_load_note(spa, "UNLOADING"); 1521 1522 spa_wake_waiters(spa); 1523 1524 /* 1525 * If the log space map feature is enabled and the pool is getting 1526 * exported (but not destroyed), we want to spend some time flushing 1527 * as many metaslabs as we can in an attempt to destroy log space 1528 * maps and save import time. 1529 */ 1530 if (spa_should_flush_logs_on_unload(spa)) 1531 spa_unload_log_sm_flush_all(spa); 1532 1533 /* 1534 * Stop async tasks. 1535 */ 1536 spa_async_suspend(spa); 1537 1538 if (spa->spa_root_vdev) { 1539 vdev_t *root_vdev = spa->spa_root_vdev; 1540 vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE); 1541 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE); 1542 vdev_autotrim_stop_all(spa); 1543 vdev_rebuild_stop_all(spa); 1544 } 1545 1546 /* 1547 * Stop syncing. 1548 */ 1549 if (spa->spa_sync_on) { 1550 txg_sync_stop(spa->spa_dsl_pool); 1551 spa->spa_sync_on = B_FALSE; 1552 } 1553 1554 /* 1555 * This ensures that there is no async metaslab prefetching 1556 * while we attempt to unload the spa. 1557 */ 1558 if (spa->spa_root_vdev != NULL) { 1559 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) { 1560 vdev_t *vc = spa->spa_root_vdev->vdev_child[c]; 1561 if (vc->vdev_mg != NULL) 1562 taskq_wait(vc->vdev_mg->mg_taskq); 1563 } 1564 } 1565 1566 if (spa->spa_mmp.mmp_thread) 1567 mmp_thread_stop(spa); 1568 1569 /* 1570 * Wait for any outstanding async I/O to complete. 1571 */ 1572 if (spa->spa_async_zio_root != NULL) { 1573 for (int i = 0; i < max_ncpus; i++) 1574 (void) zio_wait(spa->spa_async_zio_root[i]); 1575 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1576 spa->spa_async_zio_root = NULL; 1577 } 1578 1579 if (spa->spa_vdev_removal != NULL) { 1580 spa_vdev_removal_destroy(spa->spa_vdev_removal); 1581 spa->spa_vdev_removal = NULL; 1582 } 1583 1584 spa_destroy_aux_threads(spa); 1585 1586 spa_condense_fini(spa); 1587 1588 bpobj_close(&spa->spa_deferred_bpobj); 1589 1590 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1591 1592 /* 1593 * Close all vdevs. 1594 */ 1595 if (spa->spa_root_vdev) 1596 vdev_free(spa->spa_root_vdev); 1597 ASSERT(spa->spa_root_vdev == NULL); 1598 1599 /* 1600 * Close the dsl pool. 1601 */ 1602 if (spa->spa_dsl_pool) { 1603 dsl_pool_close(spa->spa_dsl_pool); 1604 spa->spa_dsl_pool = NULL; 1605 spa->spa_meta_objset = NULL; 1606 } 1607 1608 ddt_unload(spa); 1609 spa_unload_log_sm_metadata(spa); 1610 1611 /* 1612 * Drop and purge level 2 cache 1613 */ 1614 spa_l2cache_drop(spa); 1615 1616 for (int i = 0; i < spa->spa_spares.sav_count; i++) 1617 vdev_free(spa->spa_spares.sav_vdevs[i]); 1618 if (spa->spa_spares.sav_vdevs) { 1619 kmem_free(spa->spa_spares.sav_vdevs, 1620 spa->spa_spares.sav_count * sizeof (void *)); 1621 spa->spa_spares.sav_vdevs = NULL; 1622 } 1623 if (spa->spa_spares.sav_config) { 1624 nvlist_free(spa->spa_spares.sav_config); 1625 spa->spa_spares.sav_config = NULL; 1626 } 1627 spa->spa_spares.sav_count = 0; 1628 1629 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 1630 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1631 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1632 } 1633 if (spa->spa_l2cache.sav_vdevs) { 1634 kmem_free(spa->spa_l2cache.sav_vdevs, 1635 spa->spa_l2cache.sav_count * sizeof (void *)); 1636 spa->spa_l2cache.sav_vdevs = NULL; 1637 } 1638 if (spa->spa_l2cache.sav_config) { 1639 nvlist_free(spa->spa_l2cache.sav_config); 1640 spa->spa_l2cache.sav_config = NULL; 1641 } 1642 spa->spa_l2cache.sav_count = 0; 1643 1644 spa->spa_async_suspended = 0; 1645 1646 spa->spa_indirect_vdevs_loaded = B_FALSE; 1647 1648 if (spa->spa_comment != NULL) { 1649 spa_strfree(spa->spa_comment); 1650 spa->spa_comment = NULL; 1651 } 1652 1653 spa_config_exit(spa, SCL_ALL, spa); 1654 } 1655 1656 /* 1657 * Load (or re-load) the current list of vdevs describing the active spares for 1658 * this pool. When this is called, we have some form of basic information in 1659 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1660 * then re-generate a more complete list including status information. 1661 */ 1662 void 1663 spa_load_spares(spa_t *spa) 1664 { 1665 nvlist_t **spares; 1666 uint_t nspares; 1667 int i; 1668 vdev_t *vd, *tvd; 1669 1670 #ifndef _KERNEL 1671 /* 1672 * zdb opens both the current state of the pool and the 1673 * checkpointed state (if present), with a different spa_t. 1674 * 1675 * As spare vdevs are shared among open pools, we skip loading 1676 * them when we load the checkpointed state of the pool. 1677 */ 1678 if (!spa_writeable(spa)) 1679 return; 1680 #endif 1681 1682 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1683 1684 /* 1685 * First, close and free any existing spare vdevs. 1686 */ 1687 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1688 vd = spa->spa_spares.sav_vdevs[i]; 1689 1690 /* Undo the call to spa_activate() below */ 1691 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1692 B_FALSE)) != NULL && tvd->vdev_isspare) 1693 spa_spare_remove(tvd); 1694 vdev_close(vd); 1695 vdev_free(vd); 1696 } 1697 1698 if (spa->spa_spares.sav_vdevs) 1699 kmem_free(spa->spa_spares.sav_vdevs, 1700 spa->spa_spares.sav_count * sizeof (void *)); 1701 1702 if (spa->spa_spares.sav_config == NULL) 1703 nspares = 0; 1704 else 1705 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1706 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1707 1708 spa->spa_spares.sav_count = (int)nspares; 1709 spa->spa_spares.sav_vdevs = NULL; 1710 1711 if (nspares == 0) 1712 return; 1713 1714 /* 1715 * Construct the array of vdevs, opening them to get status in the 1716 * process. For each spare, there is potentially two different vdev_t 1717 * structures associated with it: one in the list of spares (used only 1718 * for basic validation purposes) and one in the active vdev 1719 * configuration (if it's spared in). During this phase we open and 1720 * validate each vdev on the spare list. If the vdev also exists in the 1721 * active configuration, then we also mark this vdev as an active spare. 1722 */ 1723 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *), 1724 KM_SLEEP); 1725 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1726 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1727 VDEV_ALLOC_SPARE) == 0); 1728 ASSERT(vd != NULL); 1729 1730 spa->spa_spares.sav_vdevs[i] = vd; 1731 1732 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1733 B_FALSE)) != NULL) { 1734 if (!tvd->vdev_isspare) 1735 spa_spare_add(tvd); 1736 1737 /* 1738 * We only mark the spare active if we were successfully 1739 * able to load the vdev. Otherwise, importing a pool 1740 * with a bad active spare would result in strange 1741 * behavior, because multiple pool would think the spare 1742 * is actively in use. 1743 * 1744 * There is a vulnerability here to an equally bizarre 1745 * circumstance, where a dead active spare is later 1746 * brought back to life (onlined or otherwise). Given 1747 * the rarity of this scenario, and the extra complexity 1748 * it adds, we ignore the possibility. 1749 */ 1750 if (!vdev_is_dead(tvd)) 1751 spa_spare_activate(tvd); 1752 } 1753 1754 vd->vdev_top = vd; 1755 vd->vdev_aux = &spa->spa_spares; 1756 1757 if (vdev_open(vd) != 0) 1758 continue; 1759 1760 if (vdev_validate_aux(vd) == 0) 1761 spa_spare_add(vd); 1762 } 1763 1764 /* 1765 * Recompute the stashed list of spares, with status information 1766 * this time. 1767 */ 1768 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1769 DATA_TYPE_NVLIST_ARRAY) == 0); 1770 1771 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1772 KM_SLEEP); 1773 for (i = 0; i < spa->spa_spares.sav_count; i++) 1774 spares[i] = vdev_config_generate(spa, 1775 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1776 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1777 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1778 for (i = 0; i < spa->spa_spares.sav_count; i++) 1779 nvlist_free(spares[i]); 1780 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1781 } 1782 1783 /* 1784 * Load (or re-load) the current list of vdevs describing the active l2cache for 1785 * this pool. When this is called, we have some form of basic information in 1786 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1787 * then re-generate a more complete list including status information. 1788 * Devices which are already active have their details maintained, and are 1789 * not re-opened. 1790 */ 1791 void 1792 spa_load_l2cache(spa_t *spa) 1793 { 1794 nvlist_t **l2cache = NULL; 1795 uint_t nl2cache; 1796 int i, j, oldnvdevs; 1797 uint64_t guid; 1798 vdev_t *vd, **oldvdevs, **newvdevs; 1799 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1800 1801 #ifndef _KERNEL 1802 /* 1803 * zdb opens both the current state of the pool and the 1804 * checkpointed state (if present), with a different spa_t. 1805 * 1806 * As L2 caches are part of the ARC which is shared among open 1807 * pools, we skip loading them when we load the checkpointed 1808 * state of the pool. 1809 */ 1810 if (!spa_writeable(spa)) 1811 return; 1812 #endif 1813 1814 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1815 1816 oldvdevs = sav->sav_vdevs; 1817 oldnvdevs = sav->sav_count; 1818 sav->sav_vdevs = NULL; 1819 sav->sav_count = 0; 1820 1821 if (sav->sav_config == NULL) { 1822 nl2cache = 0; 1823 newvdevs = NULL; 1824 goto out; 1825 } 1826 1827 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1828 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1829 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1830 1831 /* 1832 * Process new nvlist of vdevs. 1833 */ 1834 for (i = 0; i < nl2cache; i++) { 1835 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1836 &guid) == 0); 1837 1838 newvdevs[i] = NULL; 1839 for (j = 0; j < oldnvdevs; j++) { 1840 vd = oldvdevs[j]; 1841 if (vd != NULL && guid == vd->vdev_guid) { 1842 /* 1843 * Retain previous vdev for add/remove ops. 1844 */ 1845 newvdevs[i] = vd; 1846 oldvdevs[j] = NULL; 1847 break; 1848 } 1849 } 1850 1851 if (newvdevs[i] == NULL) { 1852 /* 1853 * Create new vdev 1854 */ 1855 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1856 VDEV_ALLOC_L2CACHE) == 0); 1857 ASSERT(vd != NULL); 1858 newvdevs[i] = vd; 1859 1860 /* 1861 * Commit this vdev as an l2cache device, 1862 * even if it fails to open. 1863 */ 1864 spa_l2cache_add(vd); 1865 1866 vd->vdev_top = vd; 1867 vd->vdev_aux = sav; 1868 1869 spa_l2cache_activate(vd); 1870 1871 if (vdev_open(vd) != 0) 1872 continue; 1873 1874 (void) vdev_validate_aux(vd); 1875 1876 if (!vdev_is_dead(vd)) 1877 l2arc_add_vdev(spa, vd); 1878 1879 /* 1880 * Upon cache device addition to a pool or pool 1881 * creation with a cache device or if the header 1882 * of the device is invalid we issue an async 1883 * TRIM command for the whole device which will 1884 * execute if l2arc_trim_ahead > 0. 1885 */ 1886 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 1887 } 1888 } 1889 1890 sav->sav_vdevs = newvdevs; 1891 sav->sav_count = (int)nl2cache; 1892 1893 /* 1894 * Recompute the stashed list of l2cache devices, with status 1895 * information this time. 1896 */ 1897 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1898 DATA_TYPE_NVLIST_ARRAY) == 0); 1899 1900 if (sav->sav_count > 0) 1901 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), 1902 KM_SLEEP); 1903 for (i = 0; i < sav->sav_count; i++) 1904 l2cache[i] = vdev_config_generate(spa, 1905 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1906 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1907 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1908 1909 out: 1910 /* 1911 * Purge vdevs that were dropped 1912 */ 1913 for (i = 0; i < oldnvdevs; i++) { 1914 uint64_t pool; 1915 1916 vd = oldvdevs[i]; 1917 if (vd != NULL) { 1918 ASSERT(vd->vdev_isl2cache); 1919 1920 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1921 pool != 0ULL && l2arc_vdev_present(vd)) 1922 l2arc_remove_vdev(vd); 1923 vdev_clear_stats(vd); 1924 vdev_free(vd); 1925 } 1926 } 1927 1928 if (oldvdevs) 1929 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1930 1931 for (i = 0; i < sav->sav_count; i++) 1932 nvlist_free(l2cache[i]); 1933 if (sav->sav_count) 1934 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1935 } 1936 1937 static int 1938 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1939 { 1940 dmu_buf_t *db; 1941 char *packed = NULL; 1942 size_t nvsize = 0; 1943 int error; 1944 *value = NULL; 1945 1946 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 1947 if (error) 1948 return (error); 1949 1950 nvsize = *(uint64_t *)db->db_data; 1951 dmu_buf_rele(db, FTAG); 1952 1953 packed = vmem_alloc(nvsize, KM_SLEEP); 1954 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1955 DMU_READ_PREFETCH); 1956 if (error == 0) 1957 error = nvlist_unpack(packed, nvsize, value, 0); 1958 vmem_free(packed, nvsize); 1959 1960 return (error); 1961 } 1962 1963 /* 1964 * Concrete top-level vdevs that are not missing and are not logs. At every 1965 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds. 1966 */ 1967 static uint64_t 1968 spa_healthy_core_tvds(spa_t *spa) 1969 { 1970 vdev_t *rvd = spa->spa_root_vdev; 1971 uint64_t tvds = 0; 1972 1973 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1974 vdev_t *vd = rvd->vdev_child[i]; 1975 if (vd->vdev_islog) 1976 continue; 1977 if (vdev_is_concrete(vd) && !vdev_is_dead(vd)) 1978 tvds++; 1979 } 1980 1981 return (tvds); 1982 } 1983 1984 /* 1985 * Checks to see if the given vdev could not be opened, in which case we post a 1986 * sysevent to notify the autoreplace code that the device has been removed. 1987 */ 1988 static void 1989 spa_check_removed(vdev_t *vd) 1990 { 1991 for (uint64_t c = 0; c < vd->vdev_children; c++) 1992 spa_check_removed(vd->vdev_child[c]); 1993 1994 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1995 vdev_is_concrete(vd)) { 1996 zfs_post_autoreplace(vd->vdev_spa, vd); 1997 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK); 1998 } 1999 } 2000 2001 static int 2002 spa_check_for_missing_logs(spa_t *spa) 2003 { 2004 vdev_t *rvd = spa->spa_root_vdev; 2005 2006 /* 2007 * If we're doing a normal import, then build up any additional 2008 * diagnostic information about missing log devices. 2009 * We'll pass this up to the user for further processing. 2010 */ 2011 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 2012 nvlist_t **child, *nv; 2013 uint64_t idx = 0; 2014 2015 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *), 2016 KM_SLEEP); 2017 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2018 2019 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2020 vdev_t *tvd = rvd->vdev_child[c]; 2021 2022 /* 2023 * We consider a device as missing only if it failed 2024 * to open (i.e. offline or faulted is not considered 2025 * as missing). 2026 */ 2027 if (tvd->vdev_islog && 2028 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 2029 child[idx++] = vdev_config_generate(spa, tvd, 2030 B_FALSE, VDEV_CONFIG_MISSING); 2031 } 2032 } 2033 2034 if (idx > 0) { 2035 fnvlist_add_nvlist_array(nv, 2036 ZPOOL_CONFIG_CHILDREN, child, idx); 2037 fnvlist_add_nvlist(spa->spa_load_info, 2038 ZPOOL_CONFIG_MISSING_DEVICES, nv); 2039 2040 for (uint64_t i = 0; i < idx; i++) 2041 nvlist_free(child[i]); 2042 } 2043 nvlist_free(nv); 2044 kmem_free(child, rvd->vdev_children * sizeof (char **)); 2045 2046 if (idx > 0) { 2047 spa_load_failed(spa, "some log devices are missing"); 2048 vdev_dbgmsg_print_tree(rvd, 2); 2049 return (SET_ERROR(ENXIO)); 2050 } 2051 } else { 2052 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2053 vdev_t *tvd = rvd->vdev_child[c]; 2054 2055 if (tvd->vdev_islog && 2056 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 2057 spa_set_log_state(spa, SPA_LOG_CLEAR); 2058 spa_load_note(spa, "some log devices are " 2059 "missing, ZIL is dropped."); 2060 vdev_dbgmsg_print_tree(rvd, 2); 2061 break; 2062 } 2063 } 2064 } 2065 2066 return (0); 2067 } 2068 2069 /* 2070 * Check for missing log devices 2071 */ 2072 static boolean_t 2073 spa_check_logs(spa_t *spa) 2074 { 2075 boolean_t rv = B_FALSE; 2076 dsl_pool_t *dp = spa_get_dsl(spa); 2077 2078 switch (spa->spa_log_state) { 2079 default: 2080 break; 2081 case SPA_LOG_MISSING: 2082 /* need to recheck in case slog has been restored */ 2083 case SPA_LOG_UNKNOWN: 2084 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2085 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 2086 if (rv) 2087 spa_set_log_state(spa, SPA_LOG_MISSING); 2088 break; 2089 } 2090 return (rv); 2091 } 2092 2093 static boolean_t 2094 spa_passivate_log(spa_t *spa) 2095 { 2096 vdev_t *rvd = spa->spa_root_vdev; 2097 boolean_t slog_found = B_FALSE; 2098 2099 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 2100 2101 if (!spa_has_slogs(spa)) 2102 return (B_FALSE); 2103 2104 for (int c = 0; c < rvd->vdev_children; c++) { 2105 vdev_t *tvd = rvd->vdev_child[c]; 2106 metaslab_group_t *mg = tvd->vdev_mg; 2107 2108 if (tvd->vdev_islog) { 2109 metaslab_group_passivate(mg); 2110 slog_found = B_TRUE; 2111 } 2112 } 2113 2114 return (slog_found); 2115 } 2116 2117 static void 2118 spa_activate_log(spa_t *spa) 2119 { 2120 vdev_t *rvd = spa->spa_root_vdev; 2121 2122 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 2123 2124 for (int c = 0; c < rvd->vdev_children; c++) { 2125 vdev_t *tvd = rvd->vdev_child[c]; 2126 metaslab_group_t *mg = tvd->vdev_mg; 2127 2128 if (tvd->vdev_islog) 2129 metaslab_group_activate(mg); 2130 } 2131 } 2132 2133 int 2134 spa_reset_logs(spa_t *spa) 2135 { 2136 int error; 2137 2138 error = dmu_objset_find(spa_name(spa), zil_reset, 2139 NULL, DS_FIND_CHILDREN); 2140 if (error == 0) { 2141 /* 2142 * We successfully offlined the log device, sync out the 2143 * current txg so that the "stubby" block can be removed 2144 * by zil_sync(). 2145 */ 2146 txg_wait_synced(spa->spa_dsl_pool, 0); 2147 } 2148 return (error); 2149 } 2150 2151 static void 2152 spa_aux_check_removed(spa_aux_vdev_t *sav) 2153 { 2154 for (int i = 0; i < sav->sav_count; i++) 2155 spa_check_removed(sav->sav_vdevs[i]); 2156 } 2157 2158 void 2159 spa_claim_notify(zio_t *zio) 2160 { 2161 spa_t *spa = zio->io_spa; 2162 2163 if (zio->io_error) 2164 return; 2165 2166 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 2167 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 2168 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 2169 mutex_exit(&spa->spa_props_lock); 2170 } 2171 2172 typedef struct spa_load_error { 2173 uint64_t sle_meta_count; 2174 uint64_t sle_data_count; 2175 } spa_load_error_t; 2176 2177 static void 2178 spa_load_verify_done(zio_t *zio) 2179 { 2180 blkptr_t *bp = zio->io_bp; 2181 spa_load_error_t *sle = zio->io_private; 2182 dmu_object_type_t type = BP_GET_TYPE(bp); 2183 int error = zio->io_error; 2184 spa_t *spa = zio->io_spa; 2185 2186 abd_free(zio->io_abd); 2187 if (error) { 2188 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 2189 type != DMU_OT_INTENT_LOG) 2190 atomic_inc_64(&sle->sle_meta_count); 2191 else 2192 atomic_inc_64(&sle->sle_data_count); 2193 } 2194 2195 mutex_enter(&spa->spa_scrub_lock); 2196 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 2197 cv_broadcast(&spa->spa_scrub_io_cv); 2198 mutex_exit(&spa->spa_scrub_lock); 2199 } 2200 2201 /* 2202 * Maximum number of inflight bytes is the log2 fraction of the arc size. 2203 * By default, we set it to 1/16th of the arc. 2204 */ 2205 int spa_load_verify_shift = 4; 2206 int spa_load_verify_metadata = B_TRUE; 2207 int spa_load_verify_data = B_TRUE; 2208 2209 /*ARGSUSED*/ 2210 static int 2211 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 2212 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 2213 { 2214 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 2215 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 2216 return (0); 2217 /* 2218 * Note: normally this routine will not be called if 2219 * spa_load_verify_metadata is not set. However, it may be useful 2220 * to manually set the flag after the traversal has begun. 2221 */ 2222 if (!spa_load_verify_metadata) 2223 return (0); 2224 if (!BP_IS_METADATA(bp) && !spa_load_verify_data) 2225 return (0); 2226 2227 uint64_t maxinflight_bytes = 2228 arc_target_bytes() >> spa_load_verify_shift; 2229 zio_t *rio = arg; 2230 size_t size = BP_GET_PSIZE(bp); 2231 2232 mutex_enter(&spa->spa_scrub_lock); 2233 while (spa->spa_load_verify_bytes >= maxinflight_bytes) 2234 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2235 spa->spa_load_verify_bytes += size; 2236 mutex_exit(&spa->spa_scrub_lock); 2237 2238 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size, 2239 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 2240 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 2241 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 2242 return (0); 2243 } 2244 2245 /* ARGSUSED */ 2246 static int 2247 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 2248 { 2249 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) 2250 return (SET_ERROR(ENAMETOOLONG)); 2251 2252 return (0); 2253 } 2254 2255 static int 2256 spa_load_verify(spa_t *spa) 2257 { 2258 zio_t *rio; 2259 spa_load_error_t sle = { 0 }; 2260 zpool_load_policy_t policy; 2261 boolean_t verify_ok = B_FALSE; 2262 int error = 0; 2263 2264 zpool_get_load_policy(spa->spa_config, &policy); 2265 2266 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND) 2267 return (0); 2268 2269 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 2270 error = dmu_objset_find_dp(spa->spa_dsl_pool, 2271 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, 2272 DS_FIND_CHILDREN); 2273 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 2274 if (error != 0) 2275 return (error); 2276 2277 rio = zio_root(spa, NULL, &sle, 2278 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 2279 2280 if (spa_load_verify_metadata) { 2281 if (spa->spa_extreme_rewind) { 2282 spa_load_note(spa, "performing a complete scan of the " 2283 "pool since extreme rewind is on. This may take " 2284 "a very long time.\n (spa_load_verify_data=%u, " 2285 "spa_load_verify_metadata=%u)", 2286 spa_load_verify_data, spa_load_verify_metadata); 2287 } 2288 2289 error = traverse_pool(spa, spa->spa_verify_min_txg, 2290 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 2291 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio); 2292 } 2293 2294 (void) zio_wait(rio); 2295 ASSERT0(spa->spa_load_verify_bytes); 2296 2297 spa->spa_load_meta_errors = sle.sle_meta_count; 2298 spa->spa_load_data_errors = sle.sle_data_count; 2299 2300 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) { 2301 spa_load_note(spa, "spa_load_verify found %llu metadata errors " 2302 "and %llu data errors", (u_longlong_t)sle.sle_meta_count, 2303 (u_longlong_t)sle.sle_data_count); 2304 } 2305 2306 if (spa_load_verify_dryrun || 2307 (!error && sle.sle_meta_count <= policy.zlp_maxmeta && 2308 sle.sle_data_count <= policy.zlp_maxdata)) { 2309 int64_t loss = 0; 2310 2311 verify_ok = B_TRUE; 2312 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 2313 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 2314 2315 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 2316 VERIFY(nvlist_add_uint64(spa->spa_load_info, 2317 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 2318 VERIFY(nvlist_add_int64(spa->spa_load_info, 2319 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 2320 VERIFY(nvlist_add_uint64(spa->spa_load_info, 2321 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 2322 } else { 2323 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 2324 } 2325 2326 if (spa_load_verify_dryrun) 2327 return (0); 2328 2329 if (error) { 2330 if (error != ENXIO && error != EIO) 2331 error = SET_ERROR(EIO); 2332 return (error); 2333 } 2334 2335 return (verify_ok ? 0 : EIO); 2336 } 2337 2338 /* 2339 * Find a value in the pool props object. 2340 */ 2341 static void 2342 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 2343 { 2344 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 2345 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 2346 } 2347 2348 /* 2349 * Find a value in the pool directory object. 2350 */ 2351 static int 2352 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent) 2353 { 2354 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2355 name, sizeof (uint64_t), 1, val); 2356 2357 if (error != 0 && (error != ENOENT || log_enoent)) { 2358 spa_load_failed(spa, "couldn't get '%s' value in MOS directory " 2359 "[error=%d]", name, error); 2360 } 2361 2362 return (error); 2363 } 2364 2365 static int 2366 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 2367 { 2368 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 2369 return (SET_ERROR(err)); 2370 } 2371 2372 boolean_t 2373 spa_livelist_delete_check(spa_t *spa) 2374 { 2375 return (spa->spa_livelists_to_delete != 0); 2376 } 2377 2378 /* ARGSUSED */ 2379 static boolean_t 2380 spa_livelist_delete_cb_check(void *arg, zthr_t *z) 2381 { 2382 spa_t *spa = arg; 2383 return (spa_livelist_delete_check(spa)); 2384 } 2385 2386 static int 2387 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2388 { 2389 spa_t *spa = arg; 2390 zio_free(spa, tx->tx_txg, bp); 2391 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 2392 -bp_get_dsize_sync(spa, bp), 2393 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 2394 return (0); 2395 } 2396 2397 static int 2398 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp) 2399 { 2400 int err; 2401 zap_cursor_t zc; 2402 zap_attribute_t za; 2403 zap_cursor_init(&zc, os, zap_obj); 2404 err = zap_cursor_retrieve(&zc, &za); 2405 zap_cursor_fini(&zc); 2406 if (err == 0) 2407 *llp = za.za_first_integer; 2408 return (err); 2409 } 2410 2411 /* 2412 * Components of livelist deletion that must be performed in syncing 2413 * context: freeing block pointers and updating the pool-wide data 2414 * structures to indicate how much work is left to do 2415 */ 2416 typedef struct sublist_delete_arg { 2417 spa_t *spa; 2418 dsl_deadlist_t *ll; 2419 uint64_t key; 2420 bplist_t *to_free; 2421 } sublist_delete_arg_t; 2422 2423 static void 2424 sublist_delete_sync(void *arg, dmu_tx_t *tx) 2425 { 2426 sublist_delete_arg_t *sda = arg; 2427 spa_t *spa = sda->spa; 2428 dsl_deadlist_t *ll = sda->ll; 2429 uint64_t key = sda->key; 2430 bplist_t *to_free = sda->to_free; 2431 2432 bplist_iterate(to_free, delete_blkptr_cb, spa, tx); 2433 dsl_deadlist_remove_entry(ll, key, tx); 2434 } 2435 2436 typedef struct livelist_delete_arg { 2437 spa_t *spa; 2438 uint64_t ll_obj; 2439 uint64_t zap_obj; 2440 } livelist_delete_arg_t; 2441 2442 static void 2443 livelist_delete_sync(void *arg, dmu_tx_t *tx) 2444 { 2445 livelist_delete_arg_t *lda = arg; 2446 spa_t *spa = lda->spa; 2447 uint64_t ll_obj = lda->ll_obj; 2448 uint64_t zap_obj = lda->zap_obj; 2449 objset_t *mos = spa->spa_meta_objset; 2450 uint64_t count; 2451 2452 /* free the livelist and decrement the feature count */ 2453 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx)); 2454 dsl_deadlist_free(mos, ll_obj, tx); 2455 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx); 2456 VERIFY0(zap_count(mos, zap_obj, &count)); 2457 if (count == 0) { 2458 /* no more livelists to delete */ 2459 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT, 2460 DMU_POOL_DELETED_CLONES, tx)); 2461 VERIFY0(zap_destroy(mos, zap_obj, tx)); 2462 spa->spa_livelists_to_delete = 0; 2463 spa_notify_waiters(spa); 2464 } 2465 } 2466 2467 /* 2468 * Load in the value for the livelist to be removed and open it. Then, 2469 * load its first sublist and determine which block pointers should actually 2470 * be freed. Then, call a synctask which performs the actual frees and updates 2471 * the pool-wide livelist data. 2472 */ 2473 /* ARGSUSED */ 2474 static void 2475 spa_livelist_delete_cb(void *arg, zthr_t *z) 2476 { 2477 spa_t *spa = arg; 2478 uint64_t ll_obj = 0, count; 2479 objset_t *mos = spa->spa_meta_objset; 2480 uint64_t zap_obj = spa->spa_livelists_to_delete; 2481 /* 2482 * Determine the next livelist to delete. This function should only 2483 * be called if there is at least one deleted clone. 2484 */ 2485 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj)); 2486 VERIFY0(zap_count(mos, ll_obj, &count)); 2487 if (count > 0) { 2488 dsl_deadlist_t ll = { 0 }; 2489 dsl_deadlist_entry_t *dle; 2490 bplist_t to_free; 2491 dsl_deadlist_open(&ll, mos, ll_obj); 2492 dle = dsl_deadlist_first(&ll); 2493 ASSERT3P(dle, !=, NULL); 2494 bplist_create(&to_free); 2495 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free, 2496 z, NULL); 2497 if (err == 0) { 2498 sublist_delete_arg_t sync_arg = { 2499 .spa = spa, 2500 .ll = &ll, 2501 .key = dle->dle_mintxg, 2502 .to_free = &to_free 2503 }; 2504 zfs_dbgmsg("deleting sublist (id %llu) from" 2505 " livelist %llu, %d remaining", 2506 dle->dle_bpobj.bpo_object, ll_obj, count - 1); 2507 VERIFY0(dsl_sync_task(spa_name(spa), NULL, 2508 sublist_delete_sync, &sync_arg, 0, 2509 ZFS_SPACE_CHECK_DESTROY)); 2510 } else { 2511 VERIFY3U(err, ==, EINTR); 2512 } 2513 bplist_clear(&to_free); 2514 bplist_destroy(&to_free); 2515 dsl_deadlist_close(&ll); 2516 } else { 2517 livelist_delete_arg_t sync_arg = { 2518 .spa = spa, 2519 .ll_obj = ll_obj, 2520 .zap_obj = zap_obj 2521 }; 2522 zfs_dbgmsg("deletion of livelist %llu completed", ll_obj); 2523 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync, 2524 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY)); 2525 } 2526 } 2527 2528 static void 2529 spa_start_livelist_destroy_thread(spa_t *spa) 2530 { 2531 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL); 2532 spa->spa_livelist_delete_zthr = 2533 zthr_create("z_livelist_destroy", 2534 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa); 2535 } 2536 2537 typedef struct livelist_new_arg { 2538 bplist_t *allocs; 2539 bplist_t *frees; 2540 } livelist_new_arg_t; 2541 2542 static int 2543 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 2544 dmu_tx_t *tx) 2545 { 2546 ASSERT(tx == NULL); 2547 livelist_new_arg_t *lna = arg; 2548 if (bp_freed) { 2549 bplist_append(lna->frees, bp); 2550 } else { 2551 bplist_append(lna->allocs, bp); 2552 zfs_livelist_condense_new_alloc++; 2553 } 2554 return (0); 2555 } 2556 2557 typedef struct livelist_condense_arg { 2558 spa_t *spa; 2559 bplist_t to_keep; 2560 uint64_t first_size; 2561 uint64_t next_size; 2562 } livelist_condense_arg_t; 2563 2564 static void 2565 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx) 2566 { 2567 livelist_condense_arg_t *lca = arg; 2568 spa_t *spa = lca->spa; 2569 bplist_t new_frees; 2570 dsl_dataset_t *ds = spa->spa_to_condense.ds; 2571 2572 /* Have we been cancelled? */ 2573 if (spa->spa_to_condense.cancelled) { 2574 zfs_livelist_condense_sync_cancel++; 2575 goto out; 2576 } 2577 2578 dsl_deadlist_entry_t *first = spa->spa_to_condense.first; 2579 dsl_deadlist_entry_t *next = spa->spa_to_condense.next; 2580 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist; 2581 2582 /* 2583 * It's possible that the livelist was changed while the zthr was 2584 * running. Therefore, we need to check for new blkptrs in the two 2585 * entries being condensed and continue to track them in the livelist. 2586 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl), 2587 * it's possible that the newly added blkptrs are FREEs or ALLOCs so 2588 * we need to sort them into two different bplists. 2589 */ 2590 uint64_t first_obj = first->dle_bpobj.bpo_object; 2591 uint64_t next_obj = next->dle_bpobj.bpo_object; 2592 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs; 2593 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs; 2594 2595 bplist_create(&new_frees); 2596 livelist_new_arg_t new_bps = { 2597 .allocs = &lca->to_keep, 2598 .frees = &new_frees, 2599 }; 2600 2601 if (cur_first_size > lca->first_size) { 2602 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj, 2603 livelist_track_new_cb, &new_bps, lca->first_size)); 2604 } 2605 if (cur_next_size > lca->next_size) { 2606 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj, 2607 livelist_track_new_cb, &new_bps, lca->next_size)); 2608 } 2609 2610 dsl_deadlist_clear_entry(first, ll, tx); 2611 ASSERT(bpobj_is_empty(&first->dle_bpobj)); 2612 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx); 2613 2614 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx); 2615 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx); 2616 bplist_destroy(&new_frees); 2617 2618 char dsname[ZFS_MAX_DATASET_NAME_LEN]; 2619 dsl_dataset_name(ds, dsname); 2620 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu " 2621 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu " 2622 "(%llu blkptrs)", tx->tx_txg, dsname, ds->ds_object, first_obj, 2623 cur_first_size, next_obj, cur_next_size, 2624 first->dle_bpobj.bpo_object, 2625 first->dle_bpobj.bpo_phys->bpo_num_blkptrs); 2626 out: 2627 dmu_buf_rele(ds->ds_dbuf, spa); 2628 spa->spa_to_condense.ds = NULL; 2629 bplist_clear(&lca->to_keep); 2630 bplist_destroy(&lca->to_keep); 2631 kmem_free(lca, sizeof (livelist_condense_arg_t)); 2632 spa->spa_to_condense.syncing = B_FALSE; 2633 } 2634 2635 static void 2636 spa_livelist_condense_cb(void *arg, zthr_t *t) 2637 { 2638 while (zfs_livelist_condense_zthr_pause && 2639 !(zthr_has_waiters(t) || zthr_iscancelled(t))) 2640 delay(1); 2641 2642 spa_t *spa = arg; 2643 dsl_deadlist_entry_t *first = spa->spa_to_condense.first; 2644 dsl_deadlist_entry_t *next = spa->spa_to_condense.next; 2645 uint64_t first_size, next_size; 2646 2647 livelist_condense_arg_t *lca = 2648 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP); 2649 bplist_create(&lca->to_keep); 2650 2651 /* 2652 * Process the livelists (matching FREEs and ALLOCs) in open context 2653 * so we have minimal work in syncing context to condense. 2654 * 2655 * We save bpobj sizes (first_size and next_size) to use later in 2656 * syncing context to determine if entries were added to these sublists 2657 * while in open context. This is possible because the clone is still 2658 * active and open for normal writes and we want to make sure the new, 2659 * unprocessed blockpointers are inserted into the livelist normally. 2660 * 2661 * Note that dsl_process_sub_livelist() both stores the size number of 2662 * blockpointers and iterates over them while the bpobj's lock held, so 2663 * the sizes returned to us are consistent which what was actually 2664 * processed. 2665 */ 2666 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t, 2667 &first_size); 2668 if (err == 0) 2669 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep, 2670 t, &next_size); 2671 2672 if (err == 0) { 2673 while (zfs_livelist_condense_sync_pause && 2674 !(zthr_has_waiters(t) || zthr_iscancelled(t))) 2675 delay(1); 2676 2677 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 2678 dmu_tx_mark_netfree(tx); 2679 dmu_tx_hold_space(tx, 1); 2680 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE); 2681 if (err == 0) { 2682 /* 2683 * Prevent the condense zthr restarting before 2684 * the synctask completes. 2685 */ 2686 spa->spa_to_condense.syncing = B_TRUE; 2687 lca->spa = spa; 2688 lca->first_size = first_size; 2689 lca->next_size = next_size; 2690 dsl_sync_task_nowait(spa_get_dsl(spa), 2691 spa_livelist_condense_sync, lca, 0, 2692 ZFS_SPACE_CHECK_NONE, tx); 2693 dmu_tx_commit(tx); 2694 return; 2695 } 2696 } 2697 /* 2698 * Condensing can not continue: either it was externally stopped or 2699 * we were unable to assign to a tx because the pool has run out of 2700 * space. In the second case, we'll just end up trying to condense 2701 * again in a later txg. 2702 */ 2703 ASSERT(err != 0); 2704 bplist_clear(&lca->to_keep); 2705 bplist_destroy(&lca->to_keep); 2706 kmem_free(lca, sizeof (livelist_condense_arg_t)); 2707 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa); 2708 spa->spa_to_condense.ds = NULL; 2709 if (err == EINTR) 2710 zfs_livelist_condense_zthr_cancel++; 2711 } 2712 2713 /* ARGSUSED */ 2714 /* 2715 * Check that there is something to condense but that a condense is not 2716 * already in progress and that condensing has not been cancelled. 2717 */ 2718 static boolean_t 2719 spa_livelist_condense_cb_check(void *arg, zthr_t *z) 2720 { 2721 spa_t *spa = arg; 2722 if ((spa->spa_to_condense.ds != NULL) && 2723 (spa->spa_to_condense.syncing == B_FALSE) && 2724 (spa->spa_to_condense.cancelled == B_FALSE)) { 2725 return (B_TRUE); 2726 } 2727 return (B_FALSE); 2728 } 2729 2730 static void 2731 spa_start_livelist_condensing_thread(spa_t *spa) 2732 { 2733 spa->spa_to_condense.ds = NULL; 2734 spa->spa_to_condense.first = NULL; 2735 spa->spa_to_condense.next = NULL; 2736 spa->spa_to_condense.syncing = B_FALSE; 2737 spa->spa_to_condense.cancelled = B_FALSE; 2738 2739 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL); 2740 spa->spa_livelist_condense_zthr = 2741 zthr_create("z_livelist_condense", 2742 spa_livelist_condense_cb_check, 2743 spa_livelist_condense_cb, spa); 2744 } 2745 2746 static void 2747 spa_spawn_aux_threads(spa_t *spa) 2748 { 2749 ASSERT(spa_writeable(spa)); 2750 2751 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2752 2753 spa_start_indirect_condensing_thread(spa); 2754 spa_start_livelist_destroy_thread(spa); 2755 spa_start_livelist_condensing_thread(spa); 2756 2757 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL); 2758 spa->spa_checkpoint_discard_zthr = 2759 zthr_create("z_checkpoint_discard", 2760 spa_checkpoint_discard_thread_check, 2761 spa_checkpoint_discard_thread, spa); 2762 } 2763 2764 /* 2765 * Fix up config after a partly-completed split. This is done with the 2766 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 2767 * pool have that entry in their config, but only the splitting one contains 2768 * a list of all the guids of the vdevs that are being split off. 2769 * 2770 * This function determines what to do with that list: either rejoin 2771 * all the disks to the pool, or complete the splitting process. To attempt 2772 * the rejoin, each disk that is offlined is marked online again, and 2773 * we do a reopen() call. If the vdev label for every disk that was 2774 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 2775 * then we call vdev_split() on each disk, and complete the split. 2776 * 2777 * Otherwise we leave the config alone, with all the vdevs in place in 2778 * the original pool. 2779 */ 2780 static void 2781 spa_try_repair(spa_t *spa, nvlist_t *config) 2782 { 2783 uint_t extracted; 2784 uint64_t *glist; 2785 uint_t i, gcount; 2786 nvlist_t *nvl; 2787 vdev_t **vd; 2788 boolean_t attempt_reopen; 2789 2790 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 2791 return; 2792 2793 /* check that the config is complete */ 2794 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 2795 &glist, &gcount) != 0) 2796 return; 2797 2798 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 2799 2800 /* attempt to online all the vdevs & validate */ 2801 attempt_reopen = B_TRUE; 2802 for (i = 0; i < gcount; i++) { 2803 if (glist[i] == 0) /* vdev is hole */ 2804 continue; 2805 2806 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2807 if (vd[i] == NULL) { 2808 /* 2809 * Don't bother attempting to reopen the disks; 2810 * just do the split. 2811 */ 2812 attempt_reopen = B_FALSE; 2813 } else { 2814 /* attempt to re-online it */ 2815 vd[i]->vdev_offline = B_FALSE; 2816 } 2817 } 2818 2819 if (attempt_reopen) { 2820 vdev_reopen(spa->spa_root_vdev); 2821 2822 /* check each device to see what state it's in */ 2823 for (extracted = 0, i = 0; i < gcount; i++) { 2824 if (vd[i] != NULL && 2825 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2826 break; 2827 ++extracted; 2828 } 2829 } 2830 2831 /* 2832 * If every disk has been moved to the new pool, or if we never 2833 * even attempted to look at them, then we split them off for 2834 * good. 2835 */ 2836 if (!attempt_reopen || gcount == extracted) { 2837 for (i = 0; i < gcount; i++) 2838 if (vd[i] != NULL) 2839 vdev_split(vd[i]); 2840 vdev_reopen(spa->spa_root_vdev); 2841 } 2842 2843 kmem_free(vd, gcount * sizeof (vdev_t *)); 2844 } 2845 2846 static int 2847 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type) 2848 { 2849 char *ereport = FM_EREPORT_ZFS_POOL; 2850 int error; 2851 2852 spa->spa_load_state = state; 2853 (void) spa_import_progress_set_state(spa_guid(spa), 2854 spa_load_state(spa)); 2855 2856 gethrestime(&spa->spa_loaded_ts); 2857 error = spa_load_impl(spa, type, &ereport); 2858 2859 /* 2860 * Don't count references from objsets that are already closed 2861 * and are making their way through the eviction process. 2862 */ 2863 spa_evicting_os_wait(spa); 2864 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 2865 if (error) { 2866 if (error != EEXIST) { 2867 spa->spa_loaded_ts.tv_sec = 0; 2868 spa->spa_loaded_ts.tv_nsec = 0; 2869 } 2870 if (error != EBADF) { 2871 zfs_ereport_post(ereport, spa, NULL, NULL, NULL, 0, 0); 2872 } 2873 } 2874 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2875 spa->spa_ena = 0; 2876 2877 (void) spa_import_progress_set_state(spa_guid(spa), 2878 spa_load_state(spa)); 2879 2880 return (error); 2881 } 2882 2883 #ifdef ZFS_DEBUG 2884 /* 2885 * Count the number of per-vdev ZAPs associated with all of the vdevs in the 2886 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the 2887 * spa's per-vdev ZAP list. 2888 */ 2889 static uint64_t 2890 vdev_count_verify_zaps(vdev_t *vd) 2891 { 2892 spa_t *spa = vd->vdev_spa; 2893 uint64_t total = 0; 2894 2895 if (vd->vdev_top_zap != 0) { 2896 total++; 2897 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2898 spa->spa_all_vdev_zaps, vd->vdev_top_zap)); 2899 } 2900 if (vd->vdev_leaf_zap != 0) { 2901 total++; 2902 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2903 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); 2904 } 2905 2906 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2907 total += vdev_count_verify_zaps(vd->vdev_child[i]); 2908 } 2909 2910 return (total); 2911 } 2912 #endif 2913 2914 /* 2915 * Determine whether the activity check is required. 2916 */ 2917 static boolean_t 2918 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label, 2919 nvlist_t *config) 2920 { 2921 uint64_t state = 0; 2922 uint64_t hostid = 0; 2923 uint64_t tryconfig_txg = 0; 2924 uint64_t tryconfig_timestamp = 0; 2925 uint16_t tryconfig_mmp_seq = 0; 2926 nvlist_t *nvinfo; 2927 2928 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 2929 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO); 2930 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG, 2931 &tryconfig_txg); 2932 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 2933 &tryconfig_timestamp); 2934 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ, 2935 &tryconfig_mmp_seq); 2936 } 2937 2938 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state); 2939 2940 /* 2941 * Disable the MMP activity check - This is used by zdb which 2942 * is intended to be used on potentially active pools. 2943 */ 2944 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) 2945 return (B_FALSE); 2946 2947 /* 2948 * Skip the activity check when the MMP feature is disabled. 2949 */ 2950 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0) 2951 return (B_FALSE); 2952 2953 /* 2954 * If the tryconfig_ values are nonzero, they are the results of an 2955 * earlier tryimport. If they all match the uberblock we just found, 2956 * then the pool has not changed and we return false so we do not test 2957 * a second time. 2958 */ 2959 if (tryconfig_txg && tryconfig_txg == ub->ub_txg && 2960 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp && 2961 tryconfig_mmp_seq && tryconfig_mmp_seq == 2962 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) 2963 return (B_FALSE); 2964 2965 /* 2966 * Allow the activity check to be skipped when importing the pool 2967 * on the same host which last imported it. Since the hostid from 2968 * configuration may be stale use the one read from the label. 2969 */ 2970 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID)) 2971 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID); 2972 2973 if (hostid == spa_get_hostid(spa)) 2974 return (B_FALSE); 2975 2976 /* 2977 * Skip the activity test when the pool was cleanly exported. 2978 */ 2979 if (state != POOL_STATE_ACTIVE) 2980 return (B_FALSE); 2981 2982 return (B_TRUE); 2983 } 2984 2985 /* 2986 * Nanoseconds the activity check must watch for changes on-disk. 2987 */ 2988 static uint64_t 2989 spa_activity_check_duration(spa_t *spa, uberblock_t *ub) 2990 { 2991 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1); 2992 uint64_t multihost_interval = MSEC2NSEC( 2993 MMP_INTERVAL_OK(zfs_multihost_interval)); 2994 uint64_t import_delay = MAX(NANOSEC, import_intervals * 2995 multihost_interval); 2996 2997 /* 2998 * Local tunables determine a minimum duration except for the case 2999 * where we know when the remote host will suspend the pool if MMP 3000 * writes do not land. 3001 * 3002 * See Big Theory comment at the top of mmp.c for the reasoning behind 3003 * these cases and times. 3004 */ 3005 3006 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100); 3007 3008 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && 3009 MMP_FAIL_INT(ub) > 0) { 3010 3011 /* MMP on remote host will suspend pool after failed writes */ 3012 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) * 3013 MMP_IMPORT_SAFETY_FACTOR / 100; 3014 3015 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp " 3016 "mmp_fails=%llu ub_mmp mmp_interval=%llu " 3017 "import_intervals=%u", import_delay, MMP_FAIL_INT(ub), 3018 MMP_INTERVAL(ub), import_intervals); 3019 3020 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && 3021 MMP_FAIL_INT(ub) == 0) { 3022 3023 /* MMP on remote host will never suspend pool */ 3024 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) + 3025 ub->ub_mmp_delay) * import_intervals); 3026 3027 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp " 3028 "mmp_interval=%llu ub_mmp_delay=%llu " 3029 "import_intervals=%u", import_delay, MMP_INTERVAL(ub), 3030 ub->ub_mmp_delay, import_intervals); 3031 3032 } else if (MMP_VALID(ub)) { 3033 /* 3034 * zfs-0.7 compatibility case 3035 */ 3036 3037 import_delay = MAX(import_delay, (multihost_interval + 3038 ub->ub_mmp_delay) * import_intervals); 3039 3040 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu " 3041 "import_intervals=%u leaves=%u", import_delay, 3042 ub->ub_mmp_delay, import_intervals, 3043 vdev_count_leaves(spa)); 3044 } else { 3045 /* Using local tunings is the only reasonable option */ 3046 zfs_dbgmsg("pool last imported on non-MMP aware " 3047 "host using import_delay=%llu multihost_interval=%llu " 3048 "import_intervals=%u", import_delay, multihost_interval, 3049 import_intervals); 3050 } 3051 3052 return (import_delay); 3053 } 3054 3055 /* 3056 * Perform the import activity check. If the user canceled the import or 3057 * we detected activity then fail. 3058 */ 3059 static int 3060 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config) 3061 { 3062 uint64_t txg = ub->ub_txg; 3063 uint64_t timestamp = ub->ub_timestamp; 3064 uint64_t mmp_config = ub->ub_mmp_config; 3065 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0; 3066 uint64_t import_delay; 3067 hrtime_t import_expire; 3068 nvlist_t *mmp_label = NULL; 3069 vdev_t *rvd = spa->spa_root_vdev; 3070 kcondvar_t cv; 3071 kmutex_t mtx; 3072 int error = 0; 3073 3074 cv_init(&cv, NULL, CV_DEFAULT, NULL); 3075 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL); 3076 mutex_enter(&mtx); 3077 3078 /* 3079 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed 3080 * during the earlier tryimport. If the txg recorded there is 0 then 3081 * the pool is known to be active on another host. 3082 * 3083 * Otherwise, the pool might be in use on another host. Check for 3084 * changes in the uberblocks on disk if necessary. 3085 */ 3086 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 3087 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config, 3088 ZPOOL_CONFIG_LOAD_INFO); 3089 3090 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) && 3091 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) { 3092 vdev_uberblock_load(rvd, ub, &mmp_label); 3093 error = SET_ERROR(EREMOTEIO); 3094 goto out; 3095 } 3096 } 3097 3098 import_delay = spa_activity_check_duration(spa, ub); 3099 3100 /* Add a small random factor in case of simultaneous imports (0-25%) */ 3101 import_delay += import_delay * spa_get_random(250) / 1000; 3102 3103 import_expire = gethrtime() + import_delay; 3104 3105 while (gethrtime() < import_expire) { 3106 (void) spa_import_progress_set_mmp_check(spa_guid(spa), 3107 NSEC2SEC(import_expire - gethrtime())); 3108 3109 vdev_uberblock_load(rvd, ub, &mmp_label); 3110 3111 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp || 3112 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) { 3113 zfs_dbgmsg("multihost activity detected " 3114 "txg %llu ub_txg %llu " 3115 "timestamp %llu ub_timestamp %llu " 3116 "mmp_config %#llx ub_mmp_config %#llx", 3117 txg, ub->ub_txg, timestamp, ub->ub_timestamp, 3118 mmp_config, ub->ub_mmp_config); 3119 3120 error = SET_ERROR(EREMOTEIO); 3121 break; 3122 } 3123 3124 if (mmp_label) { 3125 nvlist_free(mmp_label); 3126 mmp_label = NULL; 3127 } 3128 3129 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz); 3130 if (error != -1) { 3131 error = SET_ERROR(EINTR); 3132 break; 3133 } 3134 error = 0; 3135 } 3136 3137 out: 3138 mutex_exit(&mtx); 3139 mutex_destroy(&mtx); 3140 cv_destroy(&cv); 3141 3142 /* 3143 * If the pool is determined to be active store the status in the 3144 * spa->spa_load_info nvlist. If the remote hostname or hostid are 3145 * available from configuration read from disk store them as well. 3146 * This allows 'zpool import' to generate a more useful message. 3147 * 3148 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory) 3149 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool 3150 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool 3151 */ 3152 if (error == EREMOTEIO) { 3153 char *hostname = "<unknown>"; 3154 uint64_t hostid = 0; 3155 3156 if (mmp_label) { 3157 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) { 3158 hostname = fnvlist_lookup_string(mmp_label, 3159 ZPOOL_CONFIG_HOSTNAME); 3160 fnvlist_add_string(spa->spa_load_info, 3161 ZPOOL_CONFIG_MMP_HOSTNAME, hostname); 3162 } 3163 3164 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) { 3165 hostid = fnvlist_lookup_uint64(mmp_label, 3166 ZPOOL_CONFIG_HOSTID); 3167 fnvlist_add_uint64(spa->spa_load_info, 3168 ZPOOL_CONFIG_MMP_HOSTID, hostid); 3169 } 3170 } 3171 3172 fnvlist_add_uint64(spa->spa_load_info, 3173 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE); 3174 fnvlist_add_uint64(spa->spa_load_info, 3175 ZPOOL_CONFIG_MMP_TXG, 0); 3176 3177 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO); 3178 } 3179 3180 if (mmp_label) 3181 nvlist_free(mmp_label); 3182 3183 return (error); 3184 } 3185 3186 static int 3187 spa_verify_host(spa_t *spa, nvlist_t *mos_config) 3188 { 3189 uint64_t hostid; 3190 char *hostname; 3191 uint64_t myhostid = 0; 3192 3193 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config, 3194 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 3195 hostname = fnvlist_lookup_string(mos_config, 3196 ZPOOL_CONFIG_HOSTNAME); 3197 3198 myhostid = zone_get_hostid(NULL); 3199 3200 if (hostid != 0 && myhostid != 0 && hostid != myhostid) { 3201 cmn_err(CE_WARN, "pool '%s' could not be " 3202 "loaded as it was last accessed by " 3203 "another system (host: %s hostid: 0x%llx). " 3204 "See: http://illumos.org/msg/ZFS-8000-EY", 3205 spa_name(spa), hostname, (u_longlong_t)hostid); 3206 spa_load_failed(spa, "hostid verification failed: pool " 3207 "last accessed by host: %s (hostid: 0x%llx)", 3208 hostname, (u_longlong_t)hostid); 3209 return (SET_ERROR(EBADF)); 3210 } 3211 } 3212 3213 return (0); 3214 } 3215 3216 static int 3217 spa_ld_parse_config(spa_t *spa, spa_import_type_t type) 3218 { 3219 int error = 0; 3220 nvlist_t *nvtree, *nvl, *config = spa->spa_config; 3221 int parse; 3222 vdev_t *rvd; 3223 uint64_t pool_guid; 3224 char *comment; 3225 3226 /* 3227 * Versioning wasn't explicitly added to the label until later, so if 3228 * it's not present treat it as the initial version. 3229 */ 3230 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 3231 &spa->spa_ubsync.ub_version) != 0) 3232 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 3233 3234 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 3235 spa_load_failed(spa, "invalid config provided: '%s' missing", 3236 ZPOOL_CONFIG_POOL_GUID); 3237 return (SET_ERROR(EINVAL)); 3238 } 3239 3240 /* 3241 * If we are doing an import, ensure that the pool is not already 3242 * imported by checking if its pool guid already exists in the 3243 * spa namespace. 3244 * 3245 * The only case that we allow an already imported pool to be 3246 * imported again, is when the pool is checkpointed and we want to 3247 * look at its checkpointed state from userland tools like zdb. 3248 */ 3249 #ifdef _KERNEL 3250 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 3251 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 3252 spa_guid_exists(pool_guid, 0)) { 3253 #else 3254 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 3255 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 3256 spa_guid_exists(pool_guid, 0) && 3257 !spa_importing_readonly_checkpoint(spa)) { 3258 #endif 3259 spa_load_failed(spa, "a pool with guid %llu is already open", 3260 (u_longlong_t)pool_guid); 3261 return (SET_ERROR(EEXIST)); 3262 } 3263 3264 spa->spa_config_guid = pool_guid; 3265 3266 nvlist_free(spa->spa_load_info); 3267 spa->spa_load_info = fnvlist_alloc(); 3268 3269 ASSERT(spa->spa_comment == NULL); 3270 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 3271 spa->spa_comment = spa_strdup(comment); 3272 3273 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 3274 &spa->spa_config_txg); 3275 3276 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0) 3277 spa->spa_config_splitting = fnvlist_dup(nvl); 3278 3279 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) { 3280 spa_load_failed(spa, "invalid config provided: '%s' missing", 3281 ZPOOL_CONFIG_VDEV_TREE); 3282 return (SET_ERROR(EINVAL)); 3283 } 3284 3285 /* 3286 * Create "The Godfather" zio to hold all async IOs 3287 */ 3288 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3289 KM_SLEEP); 3290 for (int i = 0; i < max_ncpus; i++) { 3291 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3292 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3293 ZIO_FLAG_GODFATHER); 3294 } 3295 3296 /* 3297 * Parse the configuration into a vdev tree. We explicitly set the 3298 * value that will be returned by spa_version() since parsing the 3299 * configuration requires knowing the version number. 3300 */ 3301 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3302 parse = (type == SPA_IMPORT_EXISTING ? 3303 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 3304 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse); 3305 spa_config_exit(spa, SCL_ALL, FTAG); 3306 3307 if (error != 0) { 3308 spa_load_failed(spa, "unable to parse config [error=%d]", 3309 error); 3310 return (error); 3311 } 3312 3313 ASSERT(spa->spa_root_vdev == rvd); 3314 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 3315 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 3316 3317 if (type != SPA_IMPORT_ASSEMBLE) { 3318 ASSERT(spa_guid(spa) == pool_guid); 3319 } 3320 3321 return (0); 3322 } 3323 3324 /* 3325 * Recursively open all vdevs in the vdev tree. This function is called twice: 3326 * first with the untrusted config, then with the trusted config. 3327 */ 3328 static int 3329 spa_ld_open_vdevs(spa_t *spa) 3330 { 3331 int error = 0; 3332 3333 /* 3334 * spa_missing_tvds_allowed defines how many top-level vdevs can be 3335 * missing/unopenable for the root vdev to be still considered openable. 3336 */ 3337 if (spa->spa_trust_config) { 3338 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds; 3339 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) { 3340 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile; 3341 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) { 3342 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan; 3343 } else { 3344 spa->spa_missing_tvds_allowed = 0; 3345 } 3346 3347 spa->spa_missing_tvds_allowed = 3348 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed); 3349 3350 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3351 error = vdev_open(spa->spa_root_vdev); 3352 spa_config_exit(spa, SCL_ALL, FTAG); 3353 3354 if (spa->spa_missing_tvds != 0) { 3355 spa_load_note(spa, "vdev tree has %lld missing top-level " 3356 "vdevs.", (u_longlong_t)spa->spa_missing_tvds); 3357 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) { 3358 /* 3359 * Although theoretically we could allow users to open 3360 * incomplete pools in RW mode, we'd need to add a lot 3361 * of extra logic (e.g. adjust pool space to account 3362 * for missing vdevs). 3363 * This limitation also prevents users from accidentally 3364 * opening the pool in RW mode during data recovery and 3365 * damaging it further. 3366 */ 3367 spa_load_note(spa, "pools with missing top-level " 3368 "vdevs can only be opened in read-only mode."); 3369 error = SET_ERROR(ENXIO); 3370 } else { 3371 spa_load_note(spa, "current settings allow for maximum " 3372 "%lld missing top-level vdevs at this stage.", 3373 (u_longlong_t)spa->spa_missing_tvds_allowed); 3374 } 3375 } 3376 if (error != 0) { 3377 spa_load_failed(spa, "unable to open vdev tree [error=%d]", 3378 error); 3379 } 3380 if (spa->spa_missing_tvds != 0 || error != 0) 3381 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2); 3382 3383 return (error); 3384 } 3385 3386 /* 3387 * We need to validate the vdev labels against the configuration that 3388 * we have in hand. This function is called twice: first with an untrusted 3389 * config, then with a trusted config. The validation is more strict when the 3390 * config is trusted. 3391 */ 3392 static int 3393 spa_ld_validate_vdevs(spa_t *spa) 3394 { 3395 int error = 0; 3396 vdev_t *rvd = spa->spa_root_vdev; 3397 3398 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3399 error = vdev_validate(rvd); 3400 spa_config_exit(spa, SCL_ALL, FTAG); 3401 3402 if (error != 0) { 3403 spa_load_failed(spa, "vdev_validate failed [error=%d]", error); 3404 return (error); 3405 } 3406 3407 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 3408 spa_load_failed(spa, "cannot open vdev tree after invalidating " 3409 "some vdevs"); 3410 vdev_dbgmsg_print_tree(rvd, 2); 3411 return (SET_ERROR(ENXIO)); 3412 } 3413 3414 return (0); 3415 } 3416 3417 static void 3418 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub) 3419 { 3420 spa->spa_state = POOL_STATE_ACTIVE; 3421 spa->spa_ubsync = spa->spa_uberblock; 3422 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 3423 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 3424 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 3425 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 3426 spa->spa_claim_max_txg = spa->spa_first_txg; 3427 spa->spa_prev_software_version = ub->ub_software_version; 3428 } 3429 3430 static int 3431 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type) 3432 { 3433 vdev_t *rvd = spa->spa_root_vdev; 3434 nvlist_t *label; 3435 uberblock_t *ub = &spa->spa_uberblock; 3436 boolean_t activity_check = B_FALSE; 3437 3438 /* 3439 * If we are opening the checkpointed state of the pool by 3440 * rewinding to it, at this point we will have written the 3441 * checkpointed uberblock to the vdev labels, so searching 3442 * the labels will find the right uberblock. However, if 3443 * we are opening the checkpointed state read-only, we have 3444 * not modified the labels. Therefore, we must ignore the 3445 * labels and continue using the spa_uberblock that was set 3446 * by spa_ld_checkpoint_rewind. 3447 * 3448 * Note that it would be fine to ignore the labels when 3449 * rewinding (opening writeable) as well. However, if we 3450 * crash just after writing the labels, we will end up 3451 * searching the labels. Doing so in the common case means 3452 * that this code path gets exercised normally, rather than 3453 * just in the edge case. 3454 */ 3455 if (ub->ub_checkpoint_txg != 0 && 3456 spa_importing_readonly_checkpoint(spa)) { 3457 spa_ld_select_uberblock_done(spa, ub); 3458 return (0); 3459 } 3460 3461 /* 3462 * Find the best uberblock. 3463 */ 3464 vdev_uberblock_load(rvd, ub, &label); 3465 3466 /* 3467 * If we weren't able to find a single valid uberblock, return failure. 3468 */ 3469 if (ub->ub_txg == 0) { 3470 nvlist_free(label); 3471 spa_load_failed(spa, "no valid uberblock found"); 3472 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 3473 } 3474 3475 if (spa->spa_load_max_txg != UINT64_MAX) { 3476 (void) spa_import_progress_set_max_txg(spa_guid(spa), 3477 (u_longlong_t)spa->spa_load_max_txg); 3478 } 3479 spa_load_note(spa, "using uberblock with txg=%llu", 3480 (u_longlong_t)ub->ub_txg); 3481 3482 3483 /* 3484 * For pools which have the multihost property on determine if the 3485 * pool is truly inactive and can be safely imported. Prevent 3486 * hosts which don't have a hostid set from importing the pool. 3487 */ 3488 activity_check = spa_activity_check_required(spa, ub, label, 3489 spa->spa_config); 3490 if (activity_check) { 3491 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay && 3492 spa_get_hostid(spa) == 0) { 3493 nvlist_free(label); 3494 fnvlist_add_uint64(spa->spa_load_info, 3495 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 3496 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 3497 } 3498 3499 int error = spa_activity_check(spa, ub, spa->spa_config); 3500 if (error) { 3501 nvlist_free(label); 3502 return (error); 3503 } 3504 3505 fnvlist_add_uint64(spa->spa_load_info, 3506 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE); 3507 fnvlist_add_uint64(spa->spa_load_info, 3508 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg); 3509 fnvlist_add_uint16(spa->spa_load_info, 3510 ZPOOL_CONFIG_MMP_SEQ, 3511 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)); 3512 } 3513 3514 /* 3515 * If the pool has an unsupported version we can't open it. 3516 */ 3517 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 3518 nvlist_free(label); 3519 spa_load_failed(spa, "version %llu is not supported", 3520 (u_longlong_t)ub->ub_version); 3521 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 3522 } 3523 3524 if (ub->ub_version >= SPA_VERSION_FEATURES) { 3525 nvlist_t *features; 3526 3527 /* 3528 * If we weren't able to find what's necessary for reading the 3529 * MOS in the label, return failure. 3530 */ 3531 if (label == NULL) { 3532 spa_load_failed(spa, "label config unavailable"); 3533 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 3534 ENXIO)); 3535 } 3536 3537 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ, 3538 &features) != 0) { 3539 nvlist_free(label); 3540 spa_load_failed(spa, "invalid label: '%s' missing", 3541 ZPOOL_CONFIG_FEATURES_FOR_READ); 3542 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 3543 ENXIO)); 3544 } 3545 3546 /* 3547 * Update our in-core representation with the definitive values 3548 * from the label. 3549 */ 3550 nvlist_free(spa->spa_label_features); 3551 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 3552 } 3553 3554 nvlist_free(label); 3555 3556 /* 3557 * Look through entries in the label nvlist's features_for_read. If 3558 * there is a feature listed there which we don't understand then we 3559 * cannot open a pool. 3560 */ 3561 if (ub->ub_version >= SPA_VERSION_FEATURES) { 3562 nvlist_t *unsup_feat; 3563 3564 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 3565 0); 3566 3567 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 3568 NULL); nvp != NULL; 3569 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 3570 if (!zfeature_is_supported(nvpair_name(nvp))) { 3571 VERIFY(nvlist_add_string(unsup_feat, 3572 nvpair_name(nvp), "") == 0); 3573 } 3574 } 3575 3576 if (!nvlist_empty(unsup_feat)) { 3577 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 3578 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 3579 nvlist_free(unsup_feat); 3580 spa_load_failed(spa, "some features are unsupported"); 3581 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 3582 ENOTSUP)); 3583 } 3584 3585 nvlist_free(unsup_feat); 3586 } 3587 3588 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 3589 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3590 spa_try_repair(spa, spa->spa_config); 3591 spa_config_exit(spa, SCL_ALL, FTAG); 3592 nvlist_free(spa->spa_config_splitting); 3593 spa->spa_config_splitting = NULL; 3594 } 3595 3596 /* 3597 * Initialize internal SPA structures. 3598 */ 3599 spa_ld_select_uberblock_done(spa, ub); 3600 3601 return (0); 3602 } 3603 3604 static int 3605 spa_ld_open_rootbp(spa_t *spa) 3606 { 3607 int error = 0; 3608 vdev_t *rvd = spa->spa_root_vdev; 3609 3610 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 3611 if (error != 0) { 3612 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init " 3613 "[error=%d]", error); 3614 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3615 } 3616 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 3617 3618 return (0); 3619 } 3620 3621 static int 3622 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type, 3623 boolean_t reloading) 3624 { 3625 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 3626 nvlist_t *nv, *mos_config, *policy; 3627 int error = 0, copy_error; 3628 uint64_t healthy_tvds, healthy_tvds_mos; 3629 uint64_t mos_config_txg; 3630 3631 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE) 3632 != 0) 3633 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3634 3635 /* 3636 * If we're assembling a pool from a split, the config provided is 3637 * already trusted so there is nothing to do. 3638 */ 3639 if (type == SPA_IMPORT_ASSEMBLE) 3640 return (0); 3641 3642 healthy_tvds = spa_healthy_core_tvds(spa); 3643 3644 if (load_nvlist(spa, spa->spa_config_object, &mos_config) 3645 != 0) { 3646 spa_load_failed(spa, "unable to retrieve MOS config"); 3647 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3648 } 3649 3650 /* 3651 * If we are doing an open, pool owner wasn't verified yet, thus do 3652 * the verification here. 3653 */ 3654 if (spa->spa_load_state == SPA_LOAD_OPEN) { 3655 error = spa_verify_host(spa, mos_config); 3656 if (error != 0) { 3657 nvlist_free(mos_config); 3658 return (error); 3659 } 3660 } 3661 3662 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE); 3663 3664 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3665 3666 /* 3667 * Build a new vdev tree from the trusted config 3668 */ 3669 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 3670 3671 /* 3672 * Vdev paths in the MOS may be obsolete. If the untrusted config was 3673 * obtained by scanning /dev/dsk, then it will have the right vdev 3674 * paths. We update the trusted MOS config with this information. 3675 * We first try to copy the paths with vdev_copy_path_strict, which 3676 * succeeds only when both configs have exactly the same vdev tree. 3677 * If that fails, we fall back to a more flexible method that has a 3678 * best effort policy. 3679 */ 3680 copy_error = vdev_copy_path_strict(rvd, mrvd); 3681 if (copy_error != 0 || spa_load_print_vdev_tree) { 3682 spa_load_note(spa, "provided vdev tree:"); 3683 vdev_dbgmsg_print_tree(rvd, 2); 3684 spa_load_note(spa, "MOS vdev tree:"); 3685 vdev_dbgmsg_print_tree(mrvd, 2); 3686 } 3687 if (copy_error != 0) { 3688 spa_load_note(spa, "vdev_copy_path_strict failed, falling " 3689 "back to vdev_copy_path_relaxed"); 3690 vdev_copy_path_relaxed(rvd, mrvd); 3691 } 3692 3693 vdev_close(rvd); 3694 vdev_free(rvd); 3695 spa->spa_root_vdev = mrvd; 3696 rvd = mrvd; 3697 spa_config_exit(spa, SCL_ALL, FTAG); 3698 3699 /* 3700 * We will use spa_config if we decide to reload the spa or if spa_load 3701 * fails and we rewind. We must thus regenerate the config using the 3702 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to 3703 * pass settings on how to load the pool and is not stored in the MOS. 3704 * We copy it over to our new, trusted config. 3705 */ 3706 mos_config_txg = fnvlist_lookup_uint64(mos_config, 3707 ZPOOL_CONFIG_POOL_TXG); 3708 nvlist_free(mos_config); 3709 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE); 3710 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY, 3711 &policy) == 0) 3712 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy); 3713 spa_config_set(spa, mos_config); 3714 spa->spa_config_source = SPA_CONFIG_SRC_MOS; 3715 3716 /* 3717 * Now that we got the config from the MOS, we should be more strict 3718 * in checking blkptrs and can make assumptions about the consistency 3719 * of the vdev tree. spa_trust_config must be set to true before opening 3720 * vdevs in order for them to be writeable. 3721 */ 3722 spa->spa_trust_config = B_TRUE; 3723 3724 /* 3725 * Open and validate the new vdev tree 3726 */ 3727 error = spa_ld_open_vdevs(spa); 3728 if (error != 0) 3729 return (error); 3730 3731 error = spa_ld_validate_vdevs(spa); 3732 if (error != 0) 3733 return (error); 3734 3735 if (copy_error != 0 || spa_load_print_vdev_tree) { 3736 spa_load_note(spa, "final vdev tree:"); 3737 vdev_dbgmsg_print_tree(rvd, 2); 3738 } 3739 3740 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT && 3741 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) { 3742 /* 3743 * Sanity check to make sure that we are indeed loading the 3744 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds 3745 * in the config provided and they happened to be the only ones 3746 * to have the latest uberblock, we could involuntarily perform 3747 * an extreme rewind. 3748 */ 3749 healthy_tvds_mos = spa_healthy_core_tvds(spa); 3750 if (healthy_tvds_mos - healthy_tvds >= 3751 SPA_SYNC_MIN_VDEVS) { 3752 spa_load_note(spa, "config provided misses too many " 3753 "top-level vdevs compared to MOS (%lld vs %lld). ", 3754 (u_longlong_t)healthy_tvds, 3755 (u_longlong_t)healthy_tvds_mos); 3756 spa_load_note(spa, "vdev tree:"); 3757 vdev_dbgmsg_print_tree(rvd, 2); 3758 if (reloading) { 3759 spa_load_failed(spa, "config was already " 3760 "provided from MOS. Aborting."); 3761 return (spa_vdev_err(rvd, 3762 VDEV_AUX_CORRUPT_DATA, EIO)); 3763 } 3764 spa_load_note(spa, "spa must be reloaded using MOS " 3765 "config"); 3766 return (SET_ERROR(EAGAIN)); 3767 } 3768 } 3769 3770 error = spa_check_for_missing_logs(spa); 3771 if (error != 0) 3772 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 3773 3774 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) { 3775 spa_load_failed(spa, "uberblock guid sum doesn't match MOS " 3776 "guid sum (%llu != %llu)", 3777 (u_longlong_t)spa->spa_uberblock.ub_guid_sum, 3778 (u_longlong_t)rvd->vdev_guid_sum); 3779 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 3780 ENXIO)); 3781 } 3782 3783 return (0); 3784 } 3785 3786 static int 3787 spa_ld_open_indirect_vdev_metadata(spa_t *spa) 3788 { 3789 int error = 0; 3790 vdev_t *rvd = spa->spa_root_vdev; 3791 3792 /* 3793 * Everything that we read before spa_remove_init() must be stored 3794 * on concreted vdevs. Therefore we do this as early as possible. 3795 */ 3796 error = spa_remove_init(spa); 3797 if (error != 0) { 3798 spa_load_failed(spa, "spa_remove_init failed [error=%d]", 3799 error); 3800 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3801 } 3802 3803 /* 3804 * Retrieve information needed to condense indirect vdev mappings. 3805 */ 3806 error = spa_condense_init(spa); 3807 if (error != 0) { 3808 spa_load_failed(spa, "spa_condense_init failed [error=%d]", 3809 error); 3810 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 3811 } 3812 3813 return (0); 3814 } 3815 3816 static int 3817 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep) 3818 { 3819 int error = 0; 3820 vdev_t *rvd = spa->spa_root_vdev; 3821 3822 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 3823 boolean_t missing_feat_read = B_FALSE; 3824 nvlist_t *unsup_feat, *enabled_feat; 3825 3826 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 3827 &spa->spa_feat_for_read_obj, B_TRUE) != 0) { 3828 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3829 } 3830 3831 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 3832 &spa->spa_feat_for_write_obj, B_TRUE) != 0) { 3833 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3834 } 3835 3836 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 3837 &spa->spa_feat_desc_obj, B_TRUE) != 0) { 3838 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3839 } 3840 3841 enabled_feat = fnvlist_alloc(); 3842 unsup_feat = fnvlist_alloc(); 3843 3844 if (!spa_features_check(spa, B_FALSE, 3845 unsup_feat, enabled_feat)) 3846 missing_feat_read = B_TRUE; 3847 3848 if (spa_writeable(spa) || 3849 spa->spa_load_state == SPA_LOAD_TRYIMPORT) { 3850 if (!spa_features_check(spa, B_TRUE, 3851 unsup_feat, enabled_feat)) { 3852 *missing_feat_writep = B_TRUE; 3853 } 3854 } 3855 3856 fnvlist_add_nvlist(spa->spa_load_info, 3857 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 3858 3859 if (!nvlist_empty(unsup_feat)) { 3860 fnvlist_add_nvlist(spa->spa_load_info, 3861 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 3862 } 3863 3864 fnvlist_free(enabled_feat); 3865 fnvlist_free(unsup_feat); 3866 3867 if (!missing_feat_read) { 3868 fnvlist_add_boolean(spa->spa_load_info, 3869 ZPOOL_CONFIG_CAN_RDONLY); 3870 } 3871 3872 /* 3873 * If the state is SPA_LOAD_TRYIMPORT, our objective is 3874 * twofold: to determine whether the pool is available for 3875 * import in read-write mode and (if it is not) whether the 3876 * pool is available for import in read-only mode. If the pool 3877 * is available for import in read-write mode, it is displayed 3878 * as available in userland; if it is not available for import 3879 * in read-only mode, it is displayed as unavailable in 3880 * userland. If the pool is available for import in read-only 3881 * mode but not read-write mode, it is displayed as unavailable 3882 * in userland with a special note that the pool is actually 3883 * available for open in read-only mode. 3884 * 3885 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 3886 * missing a feature for write, we must first determine whether 3887 * the pool can be opened read-only before returning to 3888 * userland in order to know whether to display the 3889 * abovementioned note. 3890 */ 3891 if (missing_feat_read || (*missing_feat_writep && 3892 spa_writeable(spa))) { 3893 spa_load_failed(spa, "pool uses unsupported features"); 3894 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 3895 ENOTSUP)); 3896 } 3897 3898 /* 3899 * Load refcounts for ZFS features from disk into an in-memory 3900 * cache during SPA initialization. 3901 */ 3902 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 3903 uint64_t refcount; 3904 3905 error = feature_get_refcount_from_disk(spa, 3906 &spa_feature_table[i], &refcount); 3907 if (error == 0) { 3908 spa->spa_feat_refcount_cache[i] = refcount; 3909 } else if (error == ENOTSUP) { 3910 spa->spa_feat_refcount_cache[i] = 3911 SPA_FEATURE_DISABLED; 3912 } else { 3913 spa_load_failed(spa, "error getting refcount " 3914 "for feature %s [error=%d]", 3915 spa_feature_table[i].fi_guid, error); 3916 return (spa_vdev_err(rvd, 3917 VDEV_AUX_CORRUPT_DATA, EIO)); 3918 } 3919 } 3920 } 3921 3922 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 3923 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 3924 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0) 3925 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3926 } 3927 3928 /* 3929 * Encryption was added before bookmark_v2, even though bookmark_v2 3930 * is now a dependency. If this pool has encryption enabled without 3931 * bookmark_v2, trigger an errata message. 3932 */ 3933 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) && 3934 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) { 3935 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION; 3936 } 3937 3938 return (0); 3939 } 3940 3941 static int 3942 spa_ld_load_special_directories(spa_t *spa) 3943 { 3944 int error = 0; 3945 vdev_t *rvd = spa->spa_root_vdev; 3946 3947 spa->spa_is_initializing = B_TRUE; 3948 error = dsl_pool_open(spa->spa_dsl_pool); 3949 spa->spa_is_initializing = B_FALSE; 3950 if (error != 0) { 3951 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error); 3952 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3953 } 3954 3955 return (0); 3956 } 3957 3958 static int 3959 spa_ld_get_props(spa_t *spa) 3960 { 3961 int error = 0; 3962 uint64_t obj; 3963 vdev_t *rvd = spa->spa_root_vdev; 3964 3965 /* Grab the checksum salt from the MOS. */ 3966 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3967 DMU_POOL_CHECKSUM_SALT, 1, 3968 sizeof (spa->spa_cksum_salt.zcs_bytes), 3969 spa->spa_cksum_salt.zcs_bytes); 3970 if (error == ENOENT) { 3971 /* Generate a new salt for subsequent use */ 3972 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 3973 sizeof (spa->spa_cksum_salt.zcs_bytes)); 3974 } else if (error != 0) { 3975 spa_load_failed(spa, "unable to retrieve checksum salt from " 3976 "MOS [error=%d]", error); 3977 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3978 } 3979 3980 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0) 3981 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3982 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 3983 if (error != 0) { 3984 spa_load_failed(spa, "error opening deferred-frees bpobj " 3985 "[error=%d]", error); 3986 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3987 } 3988 3989 /* 3990 * Load the bit that tells us to use the new accounting function 3991 * (raid-z deflation). If we have an older pool, this will not 3992 * be present. 3993 */ 3994 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE); 3995 if (error != 0 && error != ENOENT) 3996 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3997 3998 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 3999 &spa->spa_creation_version, B_FALSE); 4000 if (error != 0 && error != ENOENT) 4001 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4002 4003 /* 4004 * Load the persistent error log. If we have an older pool, this will 4005 * not be present. 4006 */ 4007 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last, 4008 B_FALSE); 4009 if (error != 0 && error != ENOENT) 4010 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4011 4012 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 4013 &spa->spa_errlog_scrub, B_FALSE); 4014 if (error != 0 && error != ENOENT) 4015 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4016 4017 /* 4018 * Load the livelist deletion field. If a livelist is queued for 4019 * deletion, indicate that in the spa 4020 */ 4021 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES, 4022 &spa->spa_livelists_to_delete, B_FALSE); 4023 if (error != 0 && error != ENOENT) 4024 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4025 4026 /* 4027 * Load the history object. If we have an older pool, this 4028 * will not be present. 4029 */ 4030 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE); 4031 if (error != 0 && error != ENOENT) 4032 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4033 4034 /* 4035 * Load the per-vdev ZAP map. If we have an older pool, this will not 4036 * be present; in this case, defer its creation to a later time to 4037 * avoid dirtying the MOS this early / out of sync context. See 4038 * spa_sync_config_object. 4039 */ 4040 4041 /* The sentinel is only available in the MOS config. */ 4042 nvlist_t *mos_config; 4043 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { 4044 spa_load_failed(spa, "unable to retrieve MOS config"); 4045 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4046 } 4047 4048 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, 4049 &spa->spa_all_vdev_zaps, B_FALSE); 4050 4051 if (error == ENOENT) { 4052 VERIFY(!nvlist_exists(mos_config, 4053 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 4054 spa->spa_avz_action = AVZ_ACTION_INITIALIZE; 4055 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 4056 } else if (error != 0) { 4057 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4058 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { 4059 /* 4060 * An older version of ZFS overwrote the sentinel value, so 4061 * we have orphaned per-vdev ZAPs in the MOS. Defer their 4062 * destruction to later; see spa_sync_config_object. 4063 */ 4064 spa->spa_avz_action = AVZ_ACTION_DESTROY; 4065 /* 4066 * We're assuming that no vdevs have had their ZAPs created 4067 * before this. Better be sure of it. 4068 */ 4069 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 4070 } 4071 nvlist_free(mos_config); 4072 4073 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 4074 4075 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object, 4076 B_FALSE); 4077 if (error && error != ENOENT) 4078 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4079 4080 if (error == 0) { 4081 uint64_t autoreplace; 4082 4083 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 4084 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 4085 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 4086 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 4087 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 4088 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost); 4089 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim); 4090 spa->spa_autoreplace = (autoreplace != 0); 4091 } 4092 4093 /* 4094 * If we are importing a pool with missing top-level vdevs, 4095 * we enforce that the pool doesn't panic or get suspended on 4096 * error since the likelihood of missing data is extremely high. 4097 */ 4098 if (spa->spa_missing_tvds > 0 && 4099 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE && 4100 spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4101 spa_load_note(spa, "forcing failmode to 'continue' " 4102 "as some top level vdevs are missing"); 4103 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE; 4104 } 4105 4106 return (0); 4107 } 4108 4109 static int 4110 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type) 4111 { 4112 int error = 0; 4113 vdev_t *rvd = spa->spa_root_vdev; 4114 4115 /* 4116 * If we're assembling the pool from the split-off vdevs of 4117 * an existing pool, we don't want to attach the spares & cache 4118 * devices. 4119 */ 4120 4121 /* 4122 * Load any hot spares for this pool. 4123 */ 4124 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object, 4125 B_FALSE); 4126 if (error != 0 && error != ENOENT) 4127 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4128 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 4129 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 4130 if (load_nvlist(spa, spa->spa_spares.sav_object, 4131 &spa->spa_spares.sav_config) != 0) { 4132 spa_load_failed(spa, "error loading spares nvlist"); 4133 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4134 } 4135 4136 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4137 spa_load_spares(spa); 4138 spa_config_exit(spa, SCL_ALL, FTAG); 4139 } else if (error == 0) { 4140 spa->spa_spares.sav_sync = B_TRUE; 4141 } 4142 4143 /* 4144 * Load any level 2 ARC devices for this pool. 4145 */ 4146 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 4147 &spa->spa_l2cache.sav_object, B_FALSE); 4148 if (error != 0 && error != ENOENT) 4149 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4150 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 4151 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 4152 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 4153 &spa->spa_l2cache.sav_config) != 0) { 4154 spa_load_failed(spa, "error loading l2cache nvlist"); 4155 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4156 } 4157 4158 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4159 spa_load_l2cache(spa); 4160 spa_config_exit(spa, SCL_ALL, FTAG); 4161 } else if (error == 0) { 4162 spa->spa_l2cache.sav_sync = B_TRUE; 4163 } 4164 4165 return (0); 4166 } 4167 4168 static int 4169 spa_ld_load_vdev_metadata(spa_t *spa) 4170 { 4171 int error = 0; 4172 vdev_t *rvd = spa->spa_root_vdev; 4173 4174 /* 4175 * If the 'multihost' property is set, then never allow a pool to 4176 * be imported when the system hostid is zero. The exception to 4177 * this rule is zdb which is always allowed to access pools. 4178 */ 4179 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 && 4180 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) { 4181 fnvlist_add_uint64(spa->spa_load_info, 4182 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 4183 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 4184 } 4185 4186 /* 4187 * If the 'autoreplace' property is set, then post a resource notifying 4188 * the ZFS DE that it should not issue any faults for unopenable 4189 * devices. We also iterate over the vdevs, and post a sysevent for any 4190 * unopenable vdevs so that the normal autoreplace handler can take 4191 * over. 4192 */ 4193 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4194 spa_check_removed(spa->spa_root_vdev); 4195 /* 4196 * For the import case, this is done in spa_import(), because 4197 * at this point we're using the spare definitions from 4198 * the MOS config, not necessarily from the userland config. 4199 */ 4200 if (spa->spa_load_state != SPA_LOAD_IMPORT) { 4201 spa_aux_check_removed(&spa->spa_spares); 4202 spa_aux_check_removed(&spa->spa_l2cache); 4203 } 4204 } 4205 4206 /* 4207 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc. 4208 */ 4209 error = vdev_load(rvd); 4210 if (error != 0) { 4211 spa_load_failed(spa, "vdev_load failed [error=%d]", error); 4212 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4213 } 4214 4215 error = spa_ld_log_spacemaps(spa); 4216 if (error != 0) { 4217 spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]", 4218 error); 4219 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4220 } 4221 4222 /* 4223 * Propagate the leaf DTLs we just loaded all the way up the vdev tree. 4224 */ 4225 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4226 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE); 4227 spa_config_exit(spa, SCL_ALL, FTAG); 4228 4229 return (0); 4230 } 4231 4232 static int 4233 spa_ld_load_dedup_tables(spa_t *spa) 4234 { 4235 int error = 0; 4236 vdev_t *rvd = spa->spa_root_vdev; 4237 4238 error = ddt_load(spa); 4239 if (error != 0) { 4240 spa_load_failed(spa, "ddt_load failed [error=%d]", error); 4241 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4242 } 4243 4244 return (0); 4245 } 4246 4247 static int 4248 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport) 4249 { 4250 vdev_t *rvd = spa->spa_root_vdev; 4251 4252 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) { 4253 boolean_t missing = spa_check_logs(spa); 4254 if (missing) { 4255 if (spa->spa_missing_tvds != 0) { 4256 spa_load_note(spa, "spa_check_logs failed " 4257 "so dropping the logs"); 4258 } else { 4259 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 4260 spa_load_failed(spa, "spa_check_logs failed"); 4261 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, 4262 ENXIO)); 4263 } 4264 } 4265 } 4266 4267 return (0); 4268 } 4269 4270 static int 4271 spa_ld_verify_pool_data(spa_t *spa) 4272 { 4273 int error = 0; 4274 vdev_t *rvd = spa->spa_root_vdev; 4275 4276 /* 4277 * We've successfully opened the pool, verify that we're ready 4278 * to start pushing transactions. 4279 */ 4280 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4281 error = spa_load_verify(spa); 4282 if (error != 0) { 4283 spa_load_failed(spa, "spa_load_verify failed " 4284 "[error=%d]", error); 4285 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 4286 error)); 4287 } 4288 } 4289 4290 return (0); 4291 } 4292 4293 static void 4294 spa_ld_claim_log_blocks(spa_t *spa) 4295 { 4296 dmu_tx_t *tx; 4297 dsl_pool_t *dp = spa_get_dsl(spa); 4298 4299 /* 4300 * Claim log blocks that haven't been committed yet. 4301 * This must all happen in a single txg. 4302 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 4303 * invoked from zil_claim_log_block()'s i/o done callback. 4304 * Price of rollback is that we abandon the log. 4305 */ 4306 spa->spa_claiming = B_TRUE; 4307 4308 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 4309 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 4310 zil_claim, tx, DS_FIND_CHILDREN); 4311 dmu_tx_commit(tx); 4312 4313 spa->spa_claiming = B_FALSE; 4314 4315 spa_set_log_state(spa, SPA_LOG_GOOD); 4316 } 4317 4318 static void 4319 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg, 4320 boolean_t update_config_cache) 4321 { 4322 vdev_t *rvd = spa->spa_root_vdev; 4323 int need_update = B_FALSE; 4324 4325 /* 4326 * If the config cache is stale, or we have uninitialized 4327 * metaslabs (see spa_vdev_add()), then update the config. 4328 * 4329 * If this is a verbatim import, trust the current 4330 * in-core spa_config and update the disk labels. 4331 */ 4332 if (update_config_cache || config_cache_txg != spa->spa_config_txg || 4333 spa->spa_load_state == SPA_LOAD_IMPORT || 4334 spa->spa_load_state == SPA_LOAD_RECOVER || 4335 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 4336 need_update = B_TRUE; 4337 4338 for (int c = 0; c < rvd->vdev_children; c++) 4339 if (rvd->vdev_child[c]->vdev_ms_array == 0) 4340 need_update = B_TRUE; 4341 4342 /* 4343 * Update the config cache asynchronously in case we're the 4344 * root pool, in which case the config cache isn't writable yet. 4345 */ 4346 if (need_update) 4347 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 4348 } 4349 4350 static void 4351 spa_ld_prepare_for_reload(spa_t *spa) 4352 { 4353 spa_mode_t mode = spa->spa_mode; 4354 int async_suspended = spa->spa_async_suspended; 4355 4356 spa_unload(spa); 4357 spa_deactivate(spa); 4358 spa_activate(spa, mode); 4359 4360 /* 4361 * We save the value of spa_async_suspended as it gets reset to 0 by 4362 * spa_unload(). We want to restore it back to the original value before 4363 * returning as we might be calling spa_async_resume() later. 4364 */ 4365 spa->spa_async_suspended = async_suspended; 4366 } 4367 4368 static int 4369 spa_ld_read_checkpoint_txg(spa_t *spa) 4370 { 4371 uberblock_t checkpoint; 4372 int error = 0; 4373 4374 ASSERT0(spa->spa_checkpoint_txg); 4375 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4376 4377 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 4378 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 4379 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 4380 4381 if (error == ENOENT) 4382 return (0); 4383 4384 if (error != 0) 4385 return (error); 4386 4387 ASSERT3U(checkpoint.ub_txg, !=, 0); 4388 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0); 4389 ASSERT3U(checkpoint.ub_timestamp, !=, 0); 4390 spa->spa_checkpoint_txg = checkpoint.ub_txg; 4391 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp; 4392 4393 return (0); 4394 } 4395 4396 static int 4397 spa_ld_mos_init(spa_t *spa, spa_import_type_t type) 4398 { 4399 int error = 0; 4400 4401 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4402 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 4403 4404 /* 4405 * Never trust the config that is provided unless we are assembling 4406 * a pool following a split. 4407 * This means don't trust blkptrs and the vdev tree in general. This 4408 * also effectively puts the spa in read-only mode since 4409 * spa_writeable() checks for spa_trust_config to be true. 4410 * We will later load a trusted config from the MOS. 4411 */ 4412 if (type != SPA_IMPORT_ASSEMBLE) 4413 spa->spa_trust_config = B_FALSE; 4414 4415 /* 4416 * Parse the config provided to create a vdev tree. 4417 */ 4418 error = spa_ld_parse_config(spa, type); 4419 if (error != 0) 4420 return (error); 4421 4422 spa_import_progress_add(spa); 4423 4424 /* 4425 * Now that we have the vdev tree, try to open each vdev. This involves 4426 * opening the underlying physical device, retrieving its geometry and 4427 * probing the vdev with a dummy I/O. The state of each vdev will be set 4428 * based on the success of those operations. After this we'll be ready 4429 * to read from the vdevs. 4430 */ 4431 error = spa_ld_open_vdevs(spa); 4432 if (error != 0) 4433 return (error); 4434 4435 /* 4436 * Read the label of each vdev and make sure that the GUIDs stored 4437 * there match the GUIDs in the config provided. 4438 * If we're assembling a new pool that's been split off from an 4439 * existing pool, the labels haven't yet been updated so we skip 4440 * validation for now. 4441 */ 4442 if (type != SPA_IMPORT_ASSEMBLE) { 4443 error = spa_ld_validate_vdevs(spa); 4444 if (error != 0) 4445 return (error); 4446 } 4447 4448 /* 4449 * Read all vdev labels to find the best uberblock (i.e. latest, 4450 * unless spa_load_max_txg is set) and store it in spa_uberblock. We 4451 * get the list of features required to read blkptrs in the MOS from 4452 * the vdev label with the best uberblock and verify that our version 4453 * of zfs supports them all. 4454 */ 4455 error = spa_ld_select_uberblock(spa, type); 4456 if (error != 0) 4457 return (error); 4458 4459 /* 4460 * Pass that uberblock to the dsl_pool layer which will open the root 4461 * blkptr. This blkptr points to the latest version of the MOS and will 4462 * allow us to read its contents. 4463 */ 4464 error = spa_ld_open_rootbp(spa); 4465 if (error != 0) 4466 return (error); 4467 4468 return (0); 4469 } 4470 4471 static int 4472 spa_ld_checkpoint_rewind(spa_t *spa) 4473 { 4474 uberblock_t checkpoint; 4475 int error = 0; 4476 4477 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4478 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 4479 4480 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 4481 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 4482 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 4483 4484 if (error != 0) { 4485 spa_load_failed(spa, "unable to retrieve checkpointed " 4486 "uberblock from the MOS config [error=%d]", error); 4487 4488 if (error == ENOENT) 4489 error = ZFS_ERR_NO_CHECKPOINT; 4490 4491 return (error); 4492 } 4493 4494 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg); 4495 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg); 4496 4497 /* 4498 * We need to update the txg and timestamp of the checkpointed 4499 * uberblock to be higher than the latest one. This ensures that 4500 * the checkpointed uberblock is selected if we were to close and 4501 * reopen the pool right after we've written it in the vdev labels. 4502 * (also see block comment in vdev_uberblock_compare) 4503 */ 4504 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1; 4505 checkpoint.ub_timestamp = gethrestime_sec(); 4506 4507 /* 4508 * Set current uberblock to be the checkpointed uberblock. 4509 */ 4510 spa->spa_uberblock = checkpoint; 4511 4512 /* 4513 * If we are doing a normal rewind, then the pool is open for 4514 * writing and we sync the "updated" checkpointed uberblock to 4515 * disk. Once this is done, we've basically rewound the whole 4516 * pool and there is no way back. 4517 * 4518 * There are cases when we don't want to attempt and sync the 4519 * checkpointed uberblock to disk because we are opening a 4520 * pool as read-only. Specifically, verifying the checkpointed 4521 * state with zdb, and importing the checkpointed state to get 4522 * a "preview" of its content. 4523 */ 4524 if (spa_writeable(spa)) { 4525 vdev_t *rvd = spa->spa_root_vdev; 4526 4527 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4528 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 4529 int svdcount = 0; 4530 int children = rvd->vdev_children; 4531 int c0 = spa_get_random(children); 4532 4533 for (int c = 0; c < children; c++) { 4534 vdev_t *vd = rvd->vdev_child[(c0 + c) % children]; 4535 4536 /* Stop when revisiting the first vdev */ 4537 if (c > 0 && svd[0] == vd) 4538 break; 4539 4540 if (vd->vdev_ms_array == 0 || vd->vdev_islog || 4541 !vdev_is_concrete(vd)) 4542 continue; 4543 4544 svd[svdcount++] = vd; 4545 if (svdcount == SPA_SYNC_MIN_VDEVS) 4546 break; 4547 } 4548 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg); 4549 if (error == 0) 4550 spa->spa_last_synced_guid = rvd->vdev_guid; 4551 spa_config_exit(spa, SCL_ALL, FTAG); 4552 4553 if (error != 0) { 4554 spa_load_failed(spa, "failed to write checkpointed " 4555 "uberblock to the vdev labels [error=%d]", error); 4556 return (error); 4557 } 4558 } 4559 4560 return (0); 4561 } 4562 4563 static int 4564 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type, 4565 boolean_t *update_config_cache) 4566 { 4567 int error; 4568 4569 /* 4570 * Parse the config for pool, open and validate vdevs, 4571 * select an uberblock, and use that uberblock to open 4572 * the MOS. 4573 */ 4574 error = spa_ld_mos_init(spa, type); 4575 if (error != 0) 4576 return (error); 4577 4578 /* 4579 * Retrieve the trusted config stored in the MOS and use it to create 4580 * a new, exact version of the vdev tree, then reopen all vdevs. 4581 */ 4582 error = spa_ld_trusted_config(spa, type, B_FALSE); 4583 if (error == EAGAIN) { 4584 if (update_config_cache != NULL) 4585 *update_config_cache = B_TRUE; 4586 4587 /* 4588 * Redo the loading process with the trusted config if it is 4589 * too different from the untrusted config. 4590 */ 4591 spa_ld_prepare_for_reload(spa); 4592 spa_load_note(spa, "RELOADING"); 4593 error = spa_ld_mos_init(spa, type); 4594 if (error != 0) 4595 return (error); 4596 4597 error = spa_ld_trusted_config(spa, type, B_TRUE); 4598 if (error != 0) 4599 return (error); 4600 4601 } else if (error != 0) { 4602 return (error); 4603 } 4604 4605 return (0); 4606 } 4607 4608 /* 4609 * Load an existing storage pool, using the config provided. This config 4610 * describes which vdevs are part of the pool and is later validated against 4611 * partial configs present in each vdev's label and an entire copy of the 4612 * config stored in the MOS. 4613 */ 4614 static int 4615 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport) 4616 { 4617 int error = 0; 4618 boolean_t missing_feat_write = B_FALSE; 4619 boolean_t checkpoint_rewind = 4620 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 4621 boolean_t update_config_cache = B_FALSE; 4622 4623 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4624 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 4625 4626 spa_load_note(spa, "LOADING"); 4627 4628 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache); 4629 if (error != 0) 4630 return (error); 4631 4632 /* 4633 * If we are rewinding to the checkpoint then we need to repeat 4634 * everything we've done so far in this function but this time 4635 * selecting the checkpointed uberblock and using that to open 4636 * the MOS. 4637 */ 4638 if (checkpoint_rewind) { 4639 /* 4640 * If we are rewinding to the checkpoint update config cache 4641 * anyway. 4642 */ 4643 update_config_cache = B_TRUE; 4644 4645 /* 4646 * Extract the checkpointed uberblock from the current MOS 4647 * and use this as the pool's uberblock from now on. If the 4648 * pool is imported as writeable we also write the checkpoint 4649 * uberblock to the labels, making the rewind permanent. 4650 */ 4651 error = spa_ld_checkpoint_rewind(spa); 4652 if (error != 0) 4653 return (error); 4654 4655 /* 4656 * Redo the loading process again with the 4657 * checkpointed uberblock. 4658 */ 4659 spa_ld_prepare_for_reload(spa); 4660 spa_load_note(spa, "LOADING checkpointed uberblock"); 4661 error = spa_ld_mos_with_trusted_config(spa, type, NULL); 4662 if (error != 0) 4663 return (error); 4664 } 4665 4666 /* 4667 * Retrieve the checkpoint txg if the pool has a checkpoint. 4668 */ 4669 error = spa_ld_read_checkpoint_txg(spa); 4670 if (error != 0) 4671 return (error); 4672 4673 /* 4674 * Retrieve the mapping of indirect vdevs. Those vdevs were removed 4675 * from the pool and their contents were re-mapped to other vdevs. Note 4676 * that everything that we read before this step must have been 4677 * rewritten on concrete vdevs after the last device removal was 4678 * initiated. Otherwise we could be reading from indirect vdevs before 4679 * we have loaded their mappings. 4680 */ 4681 error = spa_ld_open_indirect_vdev_metadata(spa); 4682 if (error != 0) 4683 return (error); 4684 4685 /* 4686 * Retrieve the full list of active features from the MOS and check if 4687 * they are all supported. 4688 */ 4689 error = spa_ld_check_features(spa, &missing_feat_write); 4690 if (error != 0) 4691 return (error); 4692 4693 /* 4694 * Load several special directories from the MOS needed by the dsl_pool 4695 * layer. 4696 */ 4697 error = spa_ld_load_special_directories(spa); 4698 if (error != 0) 4699 return (error); 4700 4701 /* 4702 * Retrieve pool properties from the MOS. 4703 */ 4704 error = spa_ld_get_props(spa); 4705 if (error != 0) 4706 return (error); 4707 4708 /* 4709 * Retrieve the list of auxiliary devices - cache devices and spares - 4710 * and open them. 4711 */ 4712 error = spa_ld_open_aux_vdevs(spa, type); 4713 if (error != 0) 4714 return (error); 4715 4716 /* 4717 * Load the metadata for all vdevs. Also check if unopenable devices 4718 * should be autoreplaced. 4719 */ 4720 error = spa_ld_load_vdev_metadata(spa); 4721 if (error != 0) 4722 return (error); 4723 4724 error = spa_ld_load_dedup_tables(spa); 4725 if (error != 0) 4726 return (error); 4727 4728 /* 4729 * Verify the logs now to make sure we don't have any unexpected errors 4730 * when we claim log blocks later. 4731 */ 4732 error = spa_ld_verify_logs(spa, type, ereport); 4733 if (error != 0) 4734 return (error); 4735 4736 if (missing_feat_write) { 4737 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT); 4738 4739 /* 4740 * At this point, we know that we can open the pool in 4741 * read-only mode but not read-write mode. We now have enough 4742 * information and can return to userland. 4743 */ 4744 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT, 4745 ENOTSUP)); 4746 } 4747 4748 /* 4749 * Traverse the last txgs to make sure the pool was left off in a safe 4750 * state. When performing an extreme rewind, we verify the whole pool, 4751 * which can take a very long time. 4752 */ 4753 error = spa_ld_verify_pool_data(spa); 4754 if (error != 0) 4755 return (error); 4756 4757 /* 4758 * Calculate the deflated space for the pool. This must be done before 4759 * we write anything to the pool because we'd need to update the space 4760 * accounting using the deflated sizes. 4761 */ 4762 spa_update_dspace(spa); 4763 4764 /* 4765 * We have now retrieved all the information we needed to open the 4766 * pool. If we are importing the pool in read-write mode, a few 4767 * additional steps must be performed to finish the import. 4768 */ 4769 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER || 4770 spa->spa_load_max_txg == UINT64_MAX)) { 4771 uint64_t config_cache_txg = spa->spa_config_txg; 4772 4773 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT); 4774 4775 /* 4776 * In case of a checkpoint rewind, log the original txg 4777 * of the checkpointed uberblock. 4778 */ 4779 if (checkpoint_rewind) { 4780 spa_history_log_internal(spa, "checkpoint rewind", 4781 NULL, "rewound state to txg=%llu", 4782 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg); 4783 } 4784 4785 /* 4786 * Traverse the ZIL and claim all blocks. 4787 */ 4788 spa_ld_claim_log_blocks(spa); 4789 4790 /* 4791 * Kick-off the syncing thread. 4792 */ 4793 spa->spa_sync_on = B_TRUE; 4794 txg_sync_start(spa->spa_dsl_pool); 4795 mmp_thread_start(spa); 4796 4797 /* 4798 * Wait for all claims to sync. We sync up to the highest 4799 * claimed log block birth time so that claimed log blocks 4800 * don't appear to be from the future. spa_claim_max_txg 4801 * will have been set for us by ZIL traversal operations 4802 * performed above. 4803 */ 4804 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 4805 4806 /* 4807 * Check if we need to request an update of the config. On the 4808 * next sync, we would update the config stored in vdev labels 4809 * and the cachefile (by default /etc/zfs/zpool.cache). 4810 */ 4811 spa_ld_check_for_config_update(spa, config_cache_txg, 4812 update_config_cache); 4813 4814 /* 4815 * Check if a rebuild was in progress and if so resume it. 4816 * Then check all DTLs to see if anything needs resilvering. 4817 * The resilver will be deferred if a rebuild was started. 4818 */ 4819 if (vdev_rebuild_active(spa->spa_root_vdev)) { 4820 vdev_rebuild_restart(spa); 4821 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 4822 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 4823 spa_async_request(spa, SPA_ASYNC_RESILVER); 4824 } 4825 4826 /* 4827 * Log the fact that we booted up (so that we can detect if 4828 * we rebooted in the middle of an operation). 4829 */ 4830 spa_history_log_version(spa, "open", NULL); 4831 4832 spa_restart_removal(spa); 4833 spa_spawn_aux_threads(spa); 4834 4835 /* 4836 * Delete any inconsistent datasets. 4837 * 4838 * Note: 4839 * Since we may be issuing deletes for clones here, 4840 * we make sure to do so after we've spawned all the 4841 * auxiliary threads above (from which the livelist 4842 * deletion zthr is part of). 4843 */ 4844 (void) dmu_objset_find(spa_name(spa), 4845 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 4846 4847 /* 4848 * Clean up any stale temporary dataset userrefs. 4849 */ 4850 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 4851 4852 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4853 vdev_initialize_restart(spa->spa_root_vdev); 4854 vdev_trim_restart(spa->spa_root_vdev); 4855 vdev_autotrim_restart(spa); 4856 spa_config_exit(spa, SCL_CONFIG, FTAG); 4857 } 4858 4859 spa_import_progress_remove(spa_guid(spa)); 4860 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 4861 4862 spa_load_note(spa, "LOADED"); 4863 4864 return (0); 4865 } 4866 4867 static int 4868 spa_load_retry(spa_t *spa, spa_load_state_t state) 4869 { 4870 spa_mode_t mode = spa->spa_mode; 4871 4872 spa_unload(spa); 4873 spa_deactivate(spa); 4874 4875 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 4876 4877 spa_activate(spa, mode); 4878 spa_async_suspend(spa); 4879 4880 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu", 4881 (u_longlong_t)spa->spa_load_max_txg); 4882 4883 return (spa_load(spa, state, SPA_IMPORT_EXISTING)); 4884 } 4885 4886 /* 4887 * If spa_load() fails this function will try loading prior txg's. If 4888 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 4889 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 4890 * function will not rewind the pool and will return the same error as 4891 * spa_load(). 4892 */ 4893 static int 4894 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request, 4895 int rewind_flags) 4896 { 4897 nvlist_t *loadinfo = NULL; 4898 nvlist_t *config = NULL; 4899 int load_error, rewind_error; 4900 uint64_t safe_rewind_txg; 4901 uint64_t min_txg; 4902 4903 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 4904 spa->spa_load_max_txg = spa->spa_load_txg; 4905 spa_set_log_state(spa, SPA_LOG_CLEAR); 4906 } else { 4907 spa->spa_load_max_txg = max_request; 4908 if (max_request != UINT64_MAX) 4909 spa->spa_extreme_rewind = B_TRUE; 4910 } 4911 4912 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING); 4913 if (load_error == 0) 4914 return (0); 4915 if (load_error == ZFS_ERR_NO_CHECKPOINT) { 4916 /* 4917 * When attempting checkpoint-rewind on a pool with no 4918 * checkpoint, we should not attempt to load uberblocks 4919 * from previous txgs when spa_load fails. 4920 */ 4921 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 4922 spa_import_progress_remove(spa_guid(spa)); 4923 return (load_error); 4924 } 4925 4926 if (spa->spa_root_vdev != NULL) 4927 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4928 4929 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 4930 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 4931 4932 if (rewind_flags & ZPOOL_NEVER_REWIND) { 4933 nvlist_free(config); 4934 spa_import_progress_remove(spa_guid(spa)); 4935 return (load_error); 4936 } 4937 4938 if (state == SPA_LOAD_RECOVER) { 4939 /* Price of rolling back is discarding txgs, including log */ 4940 spa_set_log_state(spa, SPA_LOG_CLEAR); 4941 } else { 4942 /* 4943 * If we aren't rolling back save the load info from our first 4944 * import attempt so that we can restore it after attempting 4945 * to rewind. 4946 */ 4947 loadinfo = spa->spa_load_info; 4948 spa->spa_load_info = fnvlist_alloc(); 4949 } 4950 4951 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 4952 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 4953 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 4954 TXG_INITIAL : safe_rewind_txg; 4955 4956 /* 4957 * Continue as long as we're finding errors, we're still within 4958 * the acceptable rewind range, and we're still finding uberblocks 4959 */ 4960 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 4961 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 4962 if (spa->spa_load_max_txg < safe_rewind_txg) 4963 spa->spa_extreme_rewind = B_TRUE; 4964 rewind_error = spa_load_retry(spa, state); 4965 } 4966 4967 spa->spa_extreme_rewind = B_FALSE; 4968 spa->spa_load_max_txg = UINT64_MAX; 4969 4970 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 4971 spa_config_set(spa, config); 4972 else 4973 nvlist_free(config); 4974 4975 if (state == SPA_LOAD_RECOVER) { 4976 ASSERT3P(loadinfo, ==, NULL); 4977 spa_import_progress_remove(spa_guid(spa)); 4978 return (rewind_error); 4979 } else { 4980 /* Store the rewind info as part of the initial load info */ 4981 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 4982 spa->spa_load_info); 4983 4984 /* Restore the initial load info */ 4985 fnvlist_free(spa->spa_load_info); 4986 spa->spa_load_info = loadinfo; 4987 4988 spa_import_progress_remove(spa_guid(spa)); 4989 return (load_error); 4990 } 4991 } 4992 4993 /* 4994 * Pool Open/Import 4995 * 4996 * The import case is identical to an open except that the configuration is sent 4997 * down from userland, instead of grabbed from the configuration cache. For the 4998 * case of an open, the pool configuration will exist in the 4999 * POOL_STATE_UNINITIALIZED state. 5000 * 5001 * The stats information (gen/count/ustats) is used to gather vdev statistics at 5002 * the same time open the pool, without having to keep around the spa_t in some 5003 * ambiguous state. 5004 */ 5005 static int 5006 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 5007 nvlist_t **config) 5008 { 5009 spa_t *spa; 5010 spa_load_state_t state = SPA_LOAD_OPEN; 5011 int error; 5012 int locked = B_FALSE; 5013 int firstopen = B_FALSE; 5014 5015 *spapp = NULL; 5016 5017 /* 5018 * As disgusting as this is, we need to support recursive calls to this 5019 * function because dsl_dir_open() is called during spa_load(), and ends 5020 * up calling spa_open() again. The real fix is to figure out how to 5021 * avoid dsl_dir_open() calling this in the first place. 5022 */ 5023 if (MUTEX_NOT_HELD(&spa_namespace_lock)) { 5024 mutex_enter(&spa_namespace_lock); 5025 locked = B_TRUE; 5026 } 5027 5028 if ((spa = spa_lookup(pool)) == NULL) { 5029 if (locked) 5030 mutex_exit(&spa_namespace_lock); 5031 return (SET_ERROR(ENOENT)); 5032 } 5033 5034 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 5035 zpool_load_policy_t policy; 5036 5037 firstopen = B_TRUE; 5038 5039 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config, 5040 &policy); 5041 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 5042 state = SPA_LOAD_RECOVER; 5043 5044 spa_activate(spa, spa_mode_global); 5045 5046 if (state != SPA_LOAD_RECOVER) 5047 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 5048 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 5049 5050 zfs_dbgmsg("spa_open_common: opening %s", pool); 5051 error = spa_load_best(spa, state, policy.zlp_txg, 5052 policy.zlp_rewind); 5053 5054 if (error == EBADF) { 5055 /* 5056 * If vdev_validate() returns failure (indicated by 5057 * EBADF), it indicates that one of the vdevs indicates 5058 * that the pool has been exported or destroyed. If 5059 * this is the case, the config cache is out of sync and 5060 * we should remove the pool from the namespace. 5061 */ 5062 spa_unload(spa); 5063 spa_deactivate(spa); 5064 spa_write_cachefile(spa, B_TRUE, B_TRUE); 5065 spa_remove(spa); 5066 if (locked) 5067 mutex_exit(&spa_namespace_lock); 5068 return (SET_ERROR(ENOENT)); 5069 } 5070 5071 if (error) { 5072 /* 5073 * We can't open the pool, but we still have useful 5074 * information: the state of each vdev after the 5075 * attempted vdev_open(). Return this to the user. 5076 */ 5077 if (config != NULL && spa->spa_config) { 5078 VERIFY(nvlist_dup(spa->spa_config, config, 5079 KM_SLEEP) == 0); 5080 VERIFY(nvlist_add_nvlist(*config, 5081 ZPOOL_CONFIG_LOAD_INFO, 5082 spa->spa_load_info) == 0); 5083 } 5084 spa_unload(spa); 5085 spa_deactivate(spa); 5086 spa->spa_last_open_failed = error; 5087 if (locked) 5088 mutex_exit(&spa_namespace_lock); 5089 *spapp = NULL; 5090 return (error); 5091 } 5092 } 5093 5094 spa_open_ref(spa, tag); 5095 5096 if (config != NULL) 5097 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 5098 5099 /* 5100 * If we've recovered the pool, pass back any information we 5101 * gathered while doing the load. 5102 */ 5103 if (state == SPA_LOAD_RECOVER) { 5104 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 5105 spa->spa_load_info) == 0); 5106 } 5107 5108 if (locked) { 5109 spa->spa_last_open_failed = 0; 5110 spa->spa_last_ubsync_txg = 0; 5111 spa->spa_load_txg = 0; 5112 mutex_exit(&spa_namespace_lock); 5113 } 5114 5115 if (firstopen) 5116 zvol_create_minors_recursive(spa_name(spa)); 5117 5118 *spapp = spa; 5119 5120 return (0); 5121 } 5122 5123 int 5124 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 5125 nvlist_t **config) 5126 { 5127 return (spa_open_common(name, spapp, tag, policy, config)); 5128 } 5129 5130 int 5131 spa_open(const char *name, spa_t **spapp, void *tag) 5132 { 5133 return (spa_open_common(name, spapp, tag, NULL, NULL)); 5134 } 5135 5136 /* 5137 * Lookup the given spa_t, incrementing the inject count in the process, 5138 * preventing it from being exported or destroyed. 5139 */ 5140 spa_t * 5141 spa_inject_addref(char *name) 5142 { 5143 spa_t *spa; 5144 5145 mutex_enter(&spa_namespace_lock); 5146 if ((spa = spa_lookup(name)) == NULL) { 5147 mutex_exit(&spa_namespace_lock); 5148 return (NULL); 5149 } 5150 spa->spa_inject_ref++; 5151 mutex_exit(&spa_namespace_lock); 5152 5153 return (spa); 5154 } 5155 5156 void 5157 spa_inject_delref(spa_t *spa) 5158 { 5159 mutex_enter(&spa_namespace_lock); 5160 spa->spa_inject_ref--; 5161 mutex_exit(&spa_namespace_lock); 5162 } 5163 5164 /* 5165 * Add spares device information to the nvlist. 5166 */ 5167 static void 5168 spa_add_spares(spa_t *spa, nvlist_t *config) 5169 { 5170 nvlist_t **spares; 5171 uint_t i, nspares; 5172 nvlist_t *nvroot; 5173 uint64_t guid; 5174 vdev_stat_t *vs; 5175 uint_t vsc; 5176 uint64_t pool; 5177 5178 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 5179 5180 if (spa->spa_spares.sav_count == 0) 5181 return; 5182 5183 VERIFY(nvlist_lookup_nvlist(config, 5184 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 5185 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5186 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 5187 if (nspares != 0) { 5188 VERIFY(nvlist_add_nvlist_array(nvroot, 5189 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 5190 VERIFY(nvlist_lookup_nvlist_array(nvroot, 5191 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 5192 5193 /* 5194 * Go through and find any spares which have since been 5195 * repurposed as an active spare. If this is the case, update 5196 * their status appropriately. 5197 */ 5198 for (i = 0; i < nspares; i++) { 5199 VERIFY(nvlist_lookup_uint64(spares[i], 5200 ZPOOL_CONFIG_GUID, &guid) == 0); 5201 if (spa_spare_exists(guid, &pool, NULL) && 5202 pool != 0ULL) { 5203 VERIFY(nvlist_lookup_uint64_array( 5204 spares[i], ZPOOL_CONFIG_VDEV_STATS, 5205 (uint64_t **)&vs, &vsc) == 0); 5206 vs->vs_state = VDEV_STATE_CANT_OPEN; 5207 vs->vs_aux = VDEV_AUX_SPARED; 5208 } 5209 } 5210 } 5211 } 5212 5213 /* 5214 * Add l2cache device information to the nvlist, including vdev stats. 5215 */ 5216 static void 5217 spa_add_l2cache(spa_t *spa, nvlist_t *config) 5218 { 5219 nvlist_t **l2cache; 5220 uint_t i, j, nl2cache; 5221 nvlist_t *nvroot; 5222 uint64_t guid; 5223 vdev_t *vd; 5224 vdev_stat_t *vs; 5225 uint_t vsc; 5226 5227 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 5228 5229 if (spa->spa_l2cache.sav_count == 0) 5230 return; 5231 5232 VERIFY(nvlist_lookup_nvlist(config, 5233 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 5234 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5235 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 5236 if (nl2cache != 0) { 5237 VERIFY(nvlist_add_nvlist_array(nvroot, 5238 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 5239 VERIFY(nvlist_lookup_nvlist_array(nvroot, 5240 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 5241 5242 /* 5243 * Update level 2 cache device stats. 5244 */ 5245 5246 for (i = 0; i < nl2cache; i++) { 5247 VERIFY(nvlist_lookup_uint64(l2cache[i], 5248 ZPOOL_CONFIG_GUID, &guid) == 0); 5249 5250 vd = NULL; 5251 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 5252 if (guid == 5253 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 5254 vd = spa->spa_l2cache.sav_vdevs[j]; 5255 break; 5256 } 5257 } 5258 ASSERT(vd != NULL); 5259 5260 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 5261 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 5262 == 0); 5263 vdev_get_stats(vd, vs); 5264 vdev_config_generate_stats(vd, l2cache[i]); 5265 5266 } 5267 } 5268 } 5269 5270 static void 5271 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features) 5272 { 5273 zap_cursor_t zc; 5274 zap_attribute_t za; 5275 5276 if (spa->spa_feat_for_read_obj != 0) { 5277 for (zap_cursor_init(&zc, spa->spa_meta_objset, 5278 spa->spa_feat_for_read_obj); 5279 zap_cursor_retrieve(&zc, &za) == 0; 5280 zap_cursor_advance(&zc)) { 5281 ASSERT(za.za_integer_length == sizeof (uint64_t) && 5282 za.za_num_integers == 1); 5283 VERIFY0(nvlist_add_uint64(features, za.za_name, 5284 za.za_first_integer)); 5285 } 5286 zap_cursor_fini(&zc); 5287 } 5288 5289 if (spa->spa_feat_for_write_obj != 0) { 5290 for (zap_cursor_init(&zc, spa->spa_meta_objset, 5291 spa->spa_feat_for_write_obj); 5292 zap_cursor_retrieve(&zc, &za) == 0; 5293 zap_cursor_advance(&zc)) { 5294 ASSERT(za.za_integer_length == sizeof (uint64_t) && 5295 za.za_num_integers == 1); 5296 VERIFY0(nvlist_add_uint64(features, za.za_name, 5297 za.za_first_integer)); 5298 } 5299 zap_cursor_fini(&zc); 5300 } 5301 } 5302 5303 static void 5304 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features) 5305 { 5306 int i; 5307 5308 for (i = 0; i < SPA_FEATURES; i++) { 5309 zfeature_info_t feature = spa_feature_table[i]; 5310 uint64_t refcount; 5311 5312 if (feature_get_refcount(spa, &feature, &refcount) != 0) 5313 continue; 5314 5315 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount)); 5316 } 5317 } 5318 5319 /* 5320 * Store a list of pool features and their reference counts in the 5321 * config. 5322 * 5323 * The first time this is called on a spa, allocate a new nvlist, fetch 5324 * the pool features and reference counts from disk, then save the list 5325 * in the spa. In subsequent calls on the same spa use the saved nvlist 5326 * and refresh its values from the cached reference counts. This 5327 * ensures we don't block here on I/O on a suspended pool so 'zpool 5328 * clear' can resume the pool. 5329 */ 5330 static void 5331 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 5332 { 5333 nvlist_t *features; 5334 5335 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 5336 5337 mutex_enter(&spa->spa_feat_stats_lock); 5338 features = spa->spa_feat_stats; 5339 5340 if (features != NULL) { 5341 spa_feature_stats_from_cache(spa, features); 5342 } else { 5343 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP)); 5344 spa->spa_feat_stats = features; 5345 spa_feature_stats_from_disk(spa, features); 5346 } 5347 5348 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 5349 features)); 5350 5351 mutex_exit(&spa->spa_feat_stats_lock); 5352 } 5353 5354 int 5355 spa_get_stats(const char *name, nvlist_t **config, 5356 char *altroot, size_t buflen) 5357 { 5358 int error; 5359 spa_t *spa; 5360 5361 *config = NULL; 5362 error = spa_open_common(name, &spa, FTAG, NULL, config); 5363 5364 if (spa != NULL) { 5365 /* 5366 * This still leaves a window of inconsistency where the spares 5367 * or l2cache devices could change and the config would be 5368 * self-inconsistent. 5369 */ 5370 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5371 5372 if (*config != NULL) { 5373 uint64_t loadtimes[2]; 5374 5375 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 5376 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 5377 VERIFY(nvlist_add_uint64_array(*config, 5378 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 5379 5380 VERIFY(nvlist_add_uint64(*config, 5381 ZPOOL_CONFIG_ERRCOUNT, 5382 spa_get_errlog_size(spa)) == 0); 5383 5384 if (spa_suspended(spa)) { 5385 VERIFY(nvlist_add_uint64(*config, 5386 ZPOOL_CONFIG_SUSPENDED, 5387 spa->spa_failmode) == 0); 5388 VERIFY(nvlist_add_uint64(*config, 5389 ZPOOL_CONFIG_SUSPENDED_REASON, 5390 spa->spa_suspended) == 0); 5391 } 5392 5393 spa_add_spares(spa, *config); 5394 spa_add_l2cache(spa, *config); 5395 spa_add_feature_stats(spa, *config); 5396 } 5397 } 5398 5399 /* 5400 * We want to get the alternate root even for faulted pools, so we cheat 5401 * and call spa_lookup() directly. 5402 */ 5403 if (altroot) { 5404 if (spa == NULL) { 5405 mutex_enter(&spa_namespace_lock); 5406 spa = spa_lookup(name); 5407 if (spa) 5408 spa_altroot(spa, altroot, buflen); 5409 else 5410 altroot[0] = '\0'; 5411 spa = NULL; 5412 mutex_exit(&spa_namespace_lock); 5413 } else { 5414 spa_altroot(spa, altroot, buflen); 5415 } 5416 } 5417 5418 if (spa != NULL) { 5419 spa_config_exit(spa, SCL_CONFIG, FTAG); 5420 spa_close(spa, FTAG); 5421 } 5422 5423 return (error); 5424 } 5425 5426 /* 5427 * Validate that the auxiliary device array is well formed. We must have an 5428 * array of nvlists, each which describes a valid leaf vdev. If this is an 5429 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 5430 * specified, as long as they are well-formed. 5431 */ 5432 static int 5433 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 5434 spa_aux_vdev_t *sav, const char *config, uint64_t version, 5435 vdev_labeltype_t label) 5436 { 5437 nvlist_t **dev; 5438 uint_t i, ndev; 5439 vdev_t *vd; 5440 int error; 5441 5442 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5443 5444 /* 5445 * It's acceptable to have no devs specified. 5446 */ 5447 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 5448 return (0); 5449 5450 if (ndev == 0) 5451 return (SET_ERROR(EINVAL)); 5452 5453 /* 5454 * Make sure the pool is formatted with a version that supports this 5455 * device type. 5456 */ 5457 if (spa_version(spa) < version) 5458 return (SET_ERROR(ENOTSUP)); 5459 5460 /* 5461 * Set the pending device list so we correctly handle device in-use 5462 * checking. 5463 */ 5464 sav->sav_pending = dev; 5465 sav->sav_npending = ndev; 5466 5467 for (i = 0; i < ndev; i++) { 5468 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 5469 mode)) != 0) 5470 goto out; 5471 5472 if (!vd->vdev_ops->vdev_op_leaf) { 5473 vdev_free(vd); 5474 error = SET_ERROR(EINVAL); 5475 goto out; 5476 } 5477 5478 vd->vdev_top = vd; 5479 5480 if ((error = vdev_open(vd)) == 0 && 5481 (error = vdev_label_init(vd, crtxg, label)) == 0) { 5482 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 5483 vd->vdev_guid) == 0); 5484 } 5485 5486 vdev_free(vd); 5487 5488 if (error && 5489 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 5490 goto out; 5491 else 5492 error = 0; 5493 } 5494 5495 out: 5496 sav->sav_pending = NULL; 5497 sav->sav_npending = 0; 5498 return (error); 5499 } 5500 5501 static int 5502 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 5503 { 5504 int error; 5505 5506 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5507 5508 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 5509 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 5510 VDEV_LABEL_SPARE)) != 0) { 5511 return (error); 5512 } 5513 5514 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 5515 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 5516 VDEV_LABEL_L2CACHE)); 5517 } 5518 5519 static void 5520 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 5521 const char *config) 5522 { 5523 int i; 5524 5525 if (sav->sav_config != NULL) { 5526 nvlist_t **olddevs; 5527 uint_t oldndevs; 5528 nvlist_t **newdevs; 5529 5530 /* 5531 * Generate new dev list by concatenating with the 5532 * current dev list. 5533 */ 5534 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 5535 &olddevs, &oldndevs) == 0); 5536 5537 newdevs = kmem_alloc(sizeof (void *) * 5538 (ndevs + oldndevs), KM_SLEEP); 5539 for (i = 0; i < oldndevs; i++) 5540 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 5541 KM_SLEEP) == 0); 5542 for (i = 0; i < ndevs; i++) 5543 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 5544 KM_SLEEP) == 0); 5545 5546 VERIFY(nvlist_remove(sav->sav_config, config, 5547 DATA_TYPE_NVLIST_ARRAY) == 0); 5548 5549 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 5550 config, newdevs, ndevs + oldndevs) == 0); 5551 for (i = 0; i < oldndevs + ndevs; i++) 5552 nvlist_free(newdevs[i]); 5553 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 5554 } else { 5555 /* 5556 * Generate a new dev list. 5557 */ 5558 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 5559 KM_SLEEP) == 0); 5560 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 5561 devs, ndevs) == 0); 5562 } 5563 } 5564 5565 /* 5566 * Stop and drop level 2 ARC devices 5567 */ 5568 void 5569 spa_l2cache_drop(spa_t *spa) 5570 { 5571 vdev_t *vd; 5572 int i; 5573 spa_aux_vdev_t *sav = &spa->spa_l2cache; 5574 5575 for (i = 0; i < sav->sav_count; i++) { 5576 uint64_t pool; 5577 5578 vd = sav->sav_vdevs[i]; 5579 ASSERT(vd != NULL); 5580 5581 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 5582 pool != 0ULL && l2arc_vdev_present(vd)) 5583 l2arc_remove_vdev(vd); 5584 } 5585 } 5586 5587 /* 5588 * Verify encryption parameters for spa creation. If we are encrypting, we must 5589 * have the encryption feature flag enabled. 5590 */ 5591 static int 5592 spa_create_check_encryption_params(dsl_crypto_params_t *dcp, 5593 boolean_t has_encryption) 5594 { 5595 if (dcp->cp_crypt != ZIO_CRYPT_OFF && 5596 dcp->cp_crypt != ZIO_CRYPT_INHERIT && 5597 !has_encryption) 5598 return (SET_ERROR(ENOTSUP)); 5599 5600 return (dmu_objset_create_crypt_check(NULL, dcp, NULL)); 5601 } 5602 5603 /* 5604 * Pool Creation 5605 */ 5606 int 5607 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 5608 nvlist_t *zplprops, dsl_crypto_params_t *dcp) 5609 { 5610 spa_t *spa; 5611 char *altroot = NULL; 5612 vdev_t *rvd; 5613 dsl_pool_t *dp; 5614 dmu_tx_t *tx; 5615 int error = 0; 5616 uint64_t txg = TXG_INITIAL; 5617 nvlist_t **spares, **l2cache; 5618 uint_t nspares, nl2cache; 5619 uint64_t version, obj; 5620 boolean_t has_features; 5621 boolean_t has_encryption; 5622 boolean_t has_allocclass; 5623 spa_feature_t feat; 5624 char *feat_name; 5625 char *poolname; 5626 nvlist_t *nvl; 5627 5628 if (props == NULL || 5629 nvlist_lookup_string(props, "tname", &poolname) != 0) 5630 poolname = (char *)pool; 5631 5632 /* 5633 * If this pool already exists, return failure. 5634 */ 5635 mutex_enter(&spa_namespace_lock); 5636 if (spa_lookup(poolname) != NULL) { 5637 mutex_exit(&spa_namespace_lock); 5638 return (SET_ERROR(EEXIST)); 5639 } 5640 5641 /* 5642 * Allocate a new spa_t structure. 5643 */ 5644 nvl = fnvlist_alloc(); 5645 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool); 5646 (void) nvlist_lookup_string(props, 5647 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5648 spa = spa_add(poolname, nvl, altroot); 5649 fnvlist_free(nvl); 5650 spa_activate(spa, spa_mode_global); 5651 5652 if (props && (error = spa_prop_validate(spa, props))) { 5653 spa_deactivate(spa); 5654 spa_remove(spa); 5655 mutex_exit(&spa_namespace_lock); 5656 return (error); 5657 } 5658 5659 /* 5660 * Temporary pool names should never be written to disk. 5661 */ 5662 if (poolname != pool) 5663 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME; 5664 5665 has_features = B_FALSE; 5666 has_encryption = B_FALSE; 5667 has_allocclass = B_FALSE; 5668 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 5669 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 5670 if (zpool_prop_feature(nvpair_name(elem))) { 5671 has_features = B_TRUE; 5672 5673 feat_name = strchr(nvpair_name(elem), '@') + 1; 5674 VERIFY0(zfeature_lookup_name(feat_name, &feat)); 5675 if (feat == SPA_FEATURE_ENCRYPTION) 5676 has_encryption = B_TRUE; 5677 if (feat == SPA_FEATURE_ALLOCATION_CLASSES) 5678 has_allocclass = B_TRUE; 5679 } 5680 } 5681 5682 /* verify encryption params, if they were provided */ 5683 if (dcp != NULL) { 5684 error = spa_create_check_encryption_params(dcp, has_encryption); 5685 if (error != 0) { 5686 spa_deactivate(spa); 5687 spa_remove(spa); 5688 mutex_exit(&spa_namespace_lock); 5689 return (error); 5690 } 5691 } 5692 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) { 5693 spa_deactivate(spa); 5694 spa_remove(spa); 5695 mutex_exit(&spa_namespace_lock); 5696 return (ENOTSUP); 5697 } 5698 5699 if (has_features || nvlist_lookup_uint64(props, 5700 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 5701 version = SPA_VERSION; 5702 } 5703 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5704 5705 spa->spa_first_txg = txg; 5706 spa->spa_uberblock.ub_txg = txg - 1; 5707 spa->spa_uberblock.ub_version = version; 5708 spa->spa_ubsync = spa->spa_uberblock; 5709 spa->spa_load_state = SPA_LOAD_CREATE; 5710 spa->spa_removing_phys.sr_state = DSS_NONE; 5711 spa->spa_removing_phys.sr_removing_vdev = -1; 5712 spa->spa_removing_phys.sr_prev_indirect_vdev = -1; 5713 spa->spa_indirect_vdevs_loaded = B_TRUE; 5714 5715 /* 5716 * Create "The Godfather" zio to hold all async IOs 5717 */ 5718 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 5719 KM_SLEEP); 5720 for (int i = 0; i < max_ncpus; i++) { 5721 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 5722 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 5723 ZIO_FLAG_GODFATHER); 5724 } 5725 5726 /* 5727 * Create the root vdev. 5728 */ 5729 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5730 5731 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 5732 5733 ASSERT(error != 0 || rvd != NULL); 5734 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 5735 5736 if (error == 0 && !zfs_allocatable_devs(nvroot)) 5737 error = SET_ERROR(EINVAL); 5738 5739 if (error == 0 && 5740 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 5741 (error = spa_validate_aux(spa, nvroot, txg, 5742 VDEV_ALLOC_ADD)) == 0) { 5743 /* 5744 * instantiate the metaslab groups (this will dirty the vdevs) 5745 * we can no longer error exit past this point 5746 */ 5747 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) { 5748 vdev_t *vd = rvd->vdev_child[c]; 5749 5750 vdev_ashift_optimize(vd); 5751 vdev_metaslab_set_size(vd); 5752 vdev_expand(vd, txg); 5753 } 5754 } 5755 5756 spa_config_exit(spa, SCL_ALL, FTAG); 5757 5758 if (error != 0) { 5759 spa_unload(spa); 5760 spa_deactivate(spa); 5761 spa_remove(spa); 5762 mutex_exit(&spa_namespace_lock); 5763 return (error); 5764 } 5765 5766 /* 5767 * Get the list of spares, if specified. 5768 */ 5769 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5770 &spares, &nspares) == 0) { 5771 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 5772 KM_SLEEP) == 0); 5773 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 5774 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 5775 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5776 spa_load_spares(spa); 5777 spa_config_exit(spa, SCL_ALL, FTAG); 5778 spa->spa_spares.sav_sync = B_TRUE; 5779 } 5780 5781 /* 5782 * Get the list of level 2 cache devices, if specified. 5783 */ 5784 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 5785 &l2cache, &nl2cache) == 0) { 5786 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 5787 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5788 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 5789 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 5790 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5791 spa_load_l2cache(spa); 5792 spa_config_exit(spa, SCL_ALL, FTAG); 5793 spa->spa_l2cache.sav_sync = B_TRUE; 5794 } 5795 5796 spa->spa_is_initializing = B_TRUE; 5797 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg); 5798 spa->spa_is_initializing = B_FALSE; 5799 5800 /* 5801 * Create DDTs (dedup tables). 5802 */ 5803 ddt_create(spa); 5804 5805 spa_update_dspace(spa); 5806 5807 tx = dmu_tx_create_assigned(dp, txg); 5808 5809 /* 5810 * Create the pool's history object. 5811 */ 5812 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history) 5813 spa_history_create_obj(spa, tx); 5814 5815 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE); 5816 spa_history_log_version(spa, "create", tx); 5817 5818 /* 5819 * Create the pool config object. 5820 */ 5821 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 5822 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 5823 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 5824 5825 if (zap_add(spa->spa_meta_objset, 5826 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 5827 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 5828 cmn_err(CE_PANIC, "failed to add pool config"); 5829 } 5830 5831 if (zap_add(spa->spa_meta_objset, 5832 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 5833 sizeof (uint64_t), 1, &version, tx) != 0) { 5834 cmn_err(CE_PANIC, "failed to add pool version"); 5835 } 5836 5837 /* Newly created pools with the right version are always deflated. */ 5838 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 5839 spa->spa_deflate = TRUE; 5840 if (zap_add(spa->spa_meta_objset, 5841 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 5842 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 5843 cmn_err(CE_PANIC, "failed to add deflate"); 5844 } 5845 } 5846 5847 /* 5848 * Create the deferred-free bpobj. Turn off compression 5849 * because sync-to-convergence takes longer if the blocksize 5850 * keeps changing. 5851 */ 5852 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 5853 dmu_object_set_compress(spa->spa_meta_objset, obj, 5854 ZIO_COMPRESS_OFF, tx); 5855 if (zap_add(spa->spa_meta_objset, 5856 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 5857 sizeof (uint64_t), 1, &obj, tx) != 0) { 5858 cmn_err(CE_PANIC, "failed to add bpobj"); 5859 } 5860 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 5861 spa->spa_meta_objset, obj)); 5862 5863 /* 5864 * Generate some random noise for salted checksums to operate on. 5865 */ 5866 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 5867 sizeof (spa->spa_cksum_salt.zcs_bytes)); 5868 5869 /* 5870 * Set pool properties. 5871 */ 5872 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 5873 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 5874 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 5875 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 5876 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST); 5877 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM); 5878 5879 if (props != NULL) { 5880 spa_configfile_set(spa, props, B_FALSE); 5881 spa_sync_props(props, tx); 5882 } 5883 5884 dmu_tx_commit(tx); 5885 5886 spa->spa_sync_on = B_TRUE; 5887 txg_sync_start(dp); 5888 mmp_thread_start(spa); 5889 txg_wait_synced(dp, txg); 5890 5891 spa_spawn_aux_threads(spa); 5892 5893 spa_write_cachefile(spa, B_FALSE, B_TRUE); 5894 5895 /* 5896 * Don't count references from objsets that are already closed 5897 * and are making their way through the eviction process. 5898 */ 5899 spa_evicting_os_wait(spa); 5900 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 5901 spa->spa_load_state = SPA_LOAD_NONE; 5902 5903 mutex_exit(&spa_namespace_lock); 5904 5905 return (0); 5906 } 5907 5908 /* 5909 * Import a non-root pool into the system. 5910 */ 5911 int 5912 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 5913 { 5914 spa_t *spa; 5915 char *altroot = NULL; 5916 spa_load_state_t state = SPA_LOAD_IMPORT; 5917 zpool_load_policy_t policy; 5918 spa_mode_t mode = spa_mode_global; 5919 uint64_t readonly = B_FALSE; 5920 int error; 5921 nvlist_t *nvroot; 5922 nvlist_t **spares, **l2cache; 5923 uint_t nspares, nl2cache; 5924 5925 /* 5926 * If a pool with this name exists, return failure. 5927 */ 5928 mutex_enter(&spa_namespace_lock); 5929 if (spa_lookup(pool) != NULL) { 5930 mutex_exit(&spa_namespace_lock); 5931 return (SET_ERROR(EEXIST)); 5932 } 5933 5934 /* 5935 * Create and initialize the spa structure. 5936 */ 5937 (void) nvlist_lookup_string(props, 5938 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5939 (void) nvlist_lookup_uint64(props, 5940 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 5941 if (readonly) 5942 mode = SPA_MODE_READ; 5943 spa = spa_add(pool, config, altroot); 5944 spa->spa_import_flags = flags; 5945 5946 /* 5947 * Verbatim import - Take a pool and insert it into the namespace 5948 * as if it had been loaded at boot. 5949 */ 5950 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 5951 if (props != NULL) 5952 spa_configfile_set(spa, props, B_FALSE); 5953 5954 spa_write_cachefile(spa, B_FALSE, B_TRUE); 5955 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 5956 zfs_dbgmsg("spa_import: verbatim import of %s", pool); 5957 mutex_exit(&spa_namespace_lock); 5958 return (0); 5959 } 5960 5961 spa_activate(spa, mode); 5962 5963 /* 5964 * Don't start async tasks until we know everything is healthy. 5965 */ 5966 spa_async_suspend(spa); 5967 5968 zpool_get_load_policy(config, &policy); 5969 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 5970 state = SPA_LOAD_RECOVER; 5971 5972 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT; 5973 5974 if (state != SPA_LOAD_RECOVER) { 5975 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 5976 zfs_dbgmsg("spa_import: importing %s", pool); 5977 } else { 5978 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld " 5979 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg); 5980 } 5981 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind); 5982 5983 /* 5984 * Propagate anything learned while loading the pool and pass it 5985 * back to caller (i.e. rewind info, missing devices, etc). 5986 */ 5987 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 5988 spa->spa_load_info) == 0); 5989 5990 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5991 /* 5992 * Toss any existing sparelist, as it doesn't have any validity 5993 * anymore, and conflicts with spa_has_spare(). 5994 */ 5995 if (spa->spa_spares.sav_config) { 5996 nvlist_free(spa->spa_spares.sav_config); 5997 spa->spa_spares.sav_config = NULL; 5998 spa_load_spares(spa); 5999 } 6000 if (spa->spa_l2cache.sav_config) { 6001 nvlist_free(spa->spa_l2cache.sav_config); 6002 spa->spa_l2cache.sav_config = NULL; 6003 spa_load_l2cache(spa); 6004 } 6005 6006 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 6007 &nvroot) == 0); 6008 spa_config_exit(spa, SCL_ALL, FTAG); 6009 6010 if (props != NULL) 6011 spa_configfile_set(spa, props, B_FALSE); 6012 6013 if (error != 0 || (props && spa_writeable(spa) && 6014 (error = spa_prop_set(spa, props)))) { 6015 spa_unload(spa); 6016 spa_deactivate(spa); 6017 spa_remove(spa); 6018 mutex_exit(&spa_namespace_lock); 6019 return (error); 6020 } 6021 6022 spa_async_resume(spa); 6023 6024 /* 6025 * Override any spares and level 2 cache devices as specified by 6026 * the user, as these may have correct device names/devids, etc. 6027 */ 6028 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 6029 &spares, &nspares) == 0) { 6030 if (spa->spa_spares.sav_config) 6031 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 6032 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 6033 else 6034 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 6035 NV_UNIQUE_NAME, KM_SLEEP) == 0); 6036 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 6037 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 6038 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6039 spa_load_spares(spa); 6040 spa_config_exit(spa, SCL_ALL, FTAG); 6041 spa->spa_spares.sav_sync = B_TRUE; 6042 } 6043 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 6044 &l2cache, &nl2cache) == 0) { 6045 if (spa->spa_l2cache.sav_config) 6046 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 6047 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 6048 else 6049 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 6050 NV_UNIQUE_NAME, KM_SLEEP) == 0); 6051 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 6052 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 6053 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6054 spa_load_l2cache(spa); 6055 spa_config_exit(spa, SCL_ALL, FTAG); 6056 spa->spa_l2cache.sav_sync = B_TRUE; 6057 } 6058 6059 /* 6060 * Check for any removed devices. 6061 */ 6062 if (spa->spa_autoreplace) { 6063 spa_aux_check_removed(&spa->spa_spares); 6064 spa_aux_check_removed(&spa->spa_l2cache); 6065 } 6066 6067 if (spa_writeable(spa)) { 6068 /* 6069 * Update the config cache to include the newly-imported pool. 6070 */ 6071 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 6072 } 6073 6074 /* 6075 * It's possible that the pool was expanded while it was exported. 6076 * We kick off an async task to handle this for us. 6077 */ 6078 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 6079 6080 spa_history_log_version(spa, "import", NULL); 6081 6082 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 6083 6084 mutex_exit(&spa_namespace_lock); 6085 6086 zvol_create_minors_recursive(pool); 6087 6088 return (0); 6089 } 6090 6091 nvlist_t * 6092 spa_tryimport(nvlist_t *tryconfig) 6093 { 6094 nvlist_t *config = NULL; 6095 char *poolname, *cachefile; 6096 spa_t *spa; 6097 uint64_t state; 6098 int error; 6099 zpool_load_policy_t policy; 6100 6101 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 6102 return (NULL); 6103 6104 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 6105 return (NULL); 6106 6107 /* 6108 * Create and initialize the spa structure. 6109 */ 6110 mutex_enter(&spa_namespace_lock); 6111 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 6112 spa_activate(spa, SPA_MODE_READ); 6113 6114 /* 6115 * Rewind pool if a max txg was provided. 6116 */ 6117 zpool_get_load_policy(spa->spa_config, &policy); 6118 if (policy.zlp_txg != UINT64_MAX) { 6119 spa->spa_load_max_txg = policy.zlp_txg; 6120 spa->spa_extreme_rewind = B_TRUE; 6121 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld", 6122 poolname, (longlong_t)policy.zlp_txg); 6123 } else { 6124 zfs_dbgmsg("spa_tryimport: importing %s", poolname); 6125 } 6126 6127 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile) 6128 == 0) { 6129 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile); 6130 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 6131 } else { 6132 spa->spa_config_source = SPA_CONFIG_SRC_SCAN; 6133 } 6134 6135 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING); 6136 6137 /* 6138 * If 'tryconfig' was at least parsable, return the current config. 6139 */ 6140 if (spa->spa_root_vdev != NULL) { 6141 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 6142 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 6143 poolname) == 0); 6144 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 6145 state) == 0); 6146 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 6147 spa->spa_uberblock.ub_timestamp) == 0); 6148 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 6149 spa->spa_load_info) == 0); 6150 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA, 6151 spa->spa_errata) == 0); 6152 6153 /* 6154 * If the bootfs property exists on this pool then we 6155 * copy it out so that external consumers can tell which 6156 * pools are bootable. 6157 */ 6158 if ((!error || error == EEXIST) && spa->spa_bootfs) { 6159 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6160 6161 /* 6162 * We have to play games with the name since the 6163 * pool was opened as TRYIMPORT_NAME. 6164 */ 6165 if (dsl_dsobj_to_dsname(spa_name(spa), 6166 spa->spa_bootfs, tmpname) == 0) { 6167 char *cp; 6168 char *dsname; 6169 6170 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6171 6172 cp = strchr(tmpname, '/'); 6173 if (cp == NULL) { 6174 (void) strlcpy(dsname, tmpname, 6175 MAXPATHLEN); 6176 } else { 6177 (void) snprintf(dsname, MAXPATHLEN, 6178 "%s/%s", poolname, ++cp); 6179 } 6180 VERIFY(nvlist_add_string(config, 6181 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 6182 kmem_free(dsname, MAXPATHLEN); 6183 } 6184 kmem_free(tmpname, MAXPATHLEN); 6185 } 6186 6187 /* 6188 * Add the list of hot spares and level 2 cache devices. 6189 */ 6190 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6191 spa_add_spares(spa, config); 6192 spa_add_l2cache(spa, config); 6193 spa_config_exit(spa, SCL_CONFIG, FTAG); 6194 } 6195 6196 spa_unload(spa); 6197 spa_deactivate(spa); 6198 spa_remove(spa); 6199 mutex_exit(&spa_namespace_lock); 6200 6201 return (config); 6202 } 6203 6204 /* 6205 * Pool export/destroy 6206 * 6207 * The act of destroying or exporting a pool is very simple. We make sure there 6208 * is no more pending I/O and any references to the pool are gone. Then, we 6209 * update the pool state and sync all the labels to disk, removing the 6210 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 6211 * we don't sync the labels or remove the configuration cache. 6212 */ 6213 static int 6214 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 6215 boolean_t force, boolean_t hardforce) 6216 { 6217 spa_t *spa; 6218 6219 if (oldconfig) 6220 *oldconfig = NULL; 6221 6222 if (!(spa_mode_global & SPA_MODE_WRITE)) 6223 return (SET_ERROR(EROFS)); 6224 6225 mutex_enter(&spa_namespace_lock); 6226 if ((spa = spa_lookup(pool)) == NULL) { 6227 mutex_exit(&spa_namespace_lock); 6228 return (SET_ERROR(ENOENT)); 6229 } 6230 6231 if (spa->spa_is_exporting) { 6232 /* the pool is being exported by another thread */ 6233 mutex_exit(&spa_namespace_lock); 6234 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS)); 6235 } 6236 spa->spa_is_exporting = B_TRUE; 6237 6238 /* 6239 * Put a hold on the pool, drop the namespace lock, stop async tasks, 6240 * reacquire the namespace lock, and see if we can export. 6241 */ 6242 spa_open_ref(spa, FTAG); 6243 mutex_exit(&spa_namespace_lock); 6244 spa_async_suspend(spa); 6245 if (spa->spa_zvol_taskq) { 6246 zvol_remove_minors(spa, spa_name(spa), B_TRUE); 6247 taskq_wait(spa->spa_zvol_taskq); 6248 } 6249 mutex_enter(&spa_namespace_lock); 6250 spa_close(spa, FTAG); 6251 6252 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 6253 goto export_spa; 6254 /* 6255 * The pool will be in core if it's openable, in which case we can 6256 * modify its state. Objsets may be open only because they're dirty, 6257 * so we have to force it to sync before checking spa_refcnt. 6258 */ 6259 if (spa->spa_sync_on) { 6260 txg_wait_synced(spa->spa_dsl_pool, 0); 6261 spa_evicting_os_wait(spa); 6262 } 6263 6264 /* 6265 * A pool cannot be exported or destroyed if there are active 6266 * references. If we are resetting a pool, allow references by 6267 * fault injection handlers. 6268 */ 6269 if (!spa_refcount_zero(spa) || 6270 (spa->spa_inject_ref != 0 && 6271 new_state != POOL_STATE_UNINITIALIZED)) { 6272 spa_async_resume(spa); 6273 spa->spa_is_exporting = B_FALSE; 6274 mutex_exit(&spa_namespace_lock); 6275 return (SET_ERROR(EBUSY)); 6276 } 6277 6278 if (spa->spa_sync_on) { 6279 /* 6280 * A pool cannot be exported if it has an active shared spare. 6281 * This is to prevent other pools stealing the active spare 6282 * from an exported pool. At user's own will, such pool can 6283 * be forcedly exported. 6284 */ 6285 if (!force && new_state == POOL_STATE_EXPORTED && 6286 spa_has_active_shared_spare(spa)) { 6287 spa_async_resume(spa); 6288 spa->spa_is_exporting = B_FALSE; 6289 mutex_exit(&spa_namespace_lock); 6290 return (SET_ERROR(EXDEV)); 6291 } 6292 6293 /* 6294 * We're about to export or destroy this pool. Make sure 6295 * we stop all initialization and trim activity here before 6296 * we set the spa_final_txg. This will ensure that all 6297 * dirty data resulting from the initialization is 6298 * committed to disk before we unload the pool. 6299 */ 6300 if (spa->spa_root_vdev != NULL) { 6301 vdev_t *rvd = spa->spa_root_vdev; 6302 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE); 6303 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE); 6304 vdev_autotrim_stop_all(spa); 6305 vdev_rebuild_stop_all(spa); 6306 } 6307 6308 /* 6309 * We want this to be reflected on every label, 6310 * so mark them all dirty. spa_unload() will do the 6311 * final sync that pushes these changes out. 6312 */ 6313 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 6314 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6315 spa->spa_state = new_state; 6316 spa->spa_final_txg = spa_last_synced_txg(spa) + 6317 TXG_DEFER_SIZE + 1; 6318 vdev_config_dirty(spa->spa_root_vdev); 6319 spa_config_exit(spa, SCL_ALL, FTAG); 6320 } 6321 } 6322 6323 export_spa: 6324 if (new_state == POOL_STATE_DESTROYED) 6325 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY); 6326 else if (new_state == POOL_STATE_EXPORTED) 6327 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT); 6328 6329 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6330 spa_unload(spa); 6331 spa_deactivate(spa); 6332 } 6333 6334 if (oldconfig && spa->spa_config) 6335 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 6336 6337 if (new_state != POOL_STATE_UNINITIALIZED) { 6338 if (!hardforce) 6339 spa_write_cachefile(spa, B_TRUE, B_TRUE); 6340 spa_remove(spa); 6341 } else { 6342 /* 6343 * If spa_remove() is not called for this spa_t and 6344 * there is any possibility that it can be reused, 6345 * we make sure to reset the exporting flag. 6346 */ 6347 spa->spa_is_exporting = B_FALSE; 6348 } 6349 6350 mutex_exit(&spa_namespace_lock); 6351 return (0); 6352 } 6353 6354 /* 6355 * Destroy a storage pool. 6356 */ 6357 int 6358 spa_destroy(char *pool) 6359 { 6360 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 6361 B_FALSE, B_FALSE)); 6362 } 6363 6364 /* 6365 * Export a storage pool. 6366 */ 6367 int 6368 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 6369 boolean_t hardforce) 6370 { 6371 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 6372 force, hardforce)); 6373 } 6374 6375 /* 6376 * Similar to spa_export(), this unloads the spa_t without actually removing it 6377 * from the namespace in any way. 6378 */ 6379 int 6380 spa_reset(char *pool) 6381 { 6382 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 6383 B_FALSE, B_FALSE)); 6384 } 6385 6386 /* 6387 * ========================================================================== 6388 * Device manipulation 6389 * ========================================================================== 6390 */ 6391 6392 /* 6393 * Add a device to a storage pool. 6394 */ 6395 int 6396 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 6397 { 6398 uint64_t txg; 6399 int error; 6400 vdev_t *rvd = spa->spa_root_vdev; 6401 vdev_t *vd, *tvd; 6402 nvlist_t **spares, **l2cache; 6403 uint_t nspares, nl2cache; 6404 6405 ASSERT(spa_writeable(spa)); 6406 6407 txg = spa_vdev_enter(spa); 6408 6409 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 6410 VDEV_ALLOC_ADD)) != 0) 6411 return (spa_vdev_exit(spa, NULL, txg, error)); 6412 6413 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 6414 6415 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 6416 &nspares) != 0) 6417 nspares = 0; 6418 6419 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 6420 &nl2cache) != 0) 6421 nl2cache = 0; 6422 6423 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 6424 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 6425 6426 if (vd->vdev_children != 0 && 6427 (error = vdev_create(vd, txg, B_FALSE)) != 0) 6428 return (spa_vdev_exit(spa, vd, txg, error)); 6429 6430 /* 6431 * We must validate the spares and l2cache devices after checking the 6432 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 6433 */ 6434 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 6435 return (spa_vdev_exit(spa, vd, txg, error)); 6436 6437 /* 6438 * If we are in the middle of a device removal, we can only add 6439 * devices which match the existing devices in the pool. 6440 * If we are in the middle of a removal, or have some indirect 6441 * vdevs, we can not add raidz toplevels. 6442 */ 6443 if (spa->spa_vdev_removal != NULL || 6444 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { 6445 for (int c = 0; c < vd->vdev_children; c++) { 6446 tvd = vd->vdev_child[c]; 6447 if (spa->spa_vdev_removal != NULL && 6448 tvd->vdev_ashift != spa->spa_max_ashift) { 6449 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 6450 } 6451 /* Fail if top level vdev is raidz */ 6452 if (tvd->vdev_ops == &vdev_raidz_ops) { 6453 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 6454 } 6455 /* 6456 * Need the top level mirror to be 6457 * a mirror of leaf vdevs only 6458 */ 6459 if (tvd->vdev_ops == &vdev_mirror_ops) { 6460 for (uint64_t cid = 0; 6461 cid < tvd->vdev_children; cid++) { 6462 vdev_t *cvd = tvd->vdev_child[cid]; 6463 if (!cvd->vdev_ops->vdev_op_leaf) { 6464 return (spa_vdev_exit(spa, vd, 6465 txg, EINVAL)); 6466 } 6467 } 6468 } 6469 } 6470 } 6471 6472 for (int c = 0; c < vd->vdev_children; c++) { 6473 tvd = vd->vdev_child[c]; 6474 vdev_remove_child(vd, tvd); 6475 tvd->vdev_id = rvd->vdev_children; 6476 vdev_add_child(rvd, tvd); 6477 vdev_config_dirty(tvd); 6478 } 6479 6480 if (nspares != 0) { 6481 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 6482 ZPOOL_CONFIG_SPARES); 6483 spa_load_spares(spa); 6484 spa->spa_spares.sav_sync = B_TRUE; 6485 } 6486 6487 if (nl2cache != 0) { 6488 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 6489 ZPOOL_CONFIG_L2CACHE); 6490 spa_load_l2cache(spa); 6491 spa->spa_l2cache.sav_sync = B_TRUE; 6492 } 6493 6494 /* 6495 * We have to be careful when adding new vdevs to an existing pool. 6496 * If other threads start allocating from these vdevs before we 6497 * sync the config cache, and we lose power, then upon reboot we may 6498 * fail to open the pool because there are DVAs that the config cache 6499 * can't translate. Therefore, we first add the vdevs without 6500 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 6501 * and then let spa_config_update() initialize the new metaslabs. 6502 * 6503 * spa_load() checks for added-but-not-initialized vdevs, so that 6504 * if we lose power at any point in this sequence, the remaining 6505 * steps will be completed the next time we load the pool. 6506 */ 6507 (void) spa_vdev_exit(spa, vd, txg, 0); 6508 6509 mutex_enter(&spa_namespace_lock); 6510 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 6511 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD); 6512 mutex_exit(&spa_namespace_lock); 6513 6514 return (0); 6515 } 6516 6517 /* 6518 * Attach a device to a mirror. The arguments are the path to any device 6519 * in the mirror, and the nvroot for the new device. If the path specifies 6520 * a device that is not mirrored, we automatically insert the mirror vdev. 6521 * 6522 * If 'replacing' is specified, the new device is intended to replace the 6523 * existing device; in this case the two devices are made into their own 6524 * mirror using the 'replacing' vdev, which is functionally identical to 6525 * the mirror vdev (it actually reuses all the same ops) but has a few 6526 * extra rules: you can't attach to it after it's been created, and upon 6527 * completion of resilvering, the first disk (the one being replaced) 6528 * is automatically detached. 6529 * 6530 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild) 6531 * should be performed instead of traditional healing reconstruction. From 6532 * an administrators perspective these are both resilver operations. 6533 */ 6534 int 6535 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing, 6536 int rebuild) 6537 { 6538 uint64_t txg, dtl_max_txg; 6539 vdev_t *rvd = spa->spa_root_vdev; 6540 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 6541 vdev_ops_t *pvops; 6542 char *oldvdpath, *newvdpath; 6543 int newvd_isspare; 6544 int error; 6545 6546 ASSERT(spa_writeable(spa)); 6547 6548 txg = spa_vdev_enter(spa); 6549 6550 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 6551 6552 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 6553 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 6554 error = (spa_has_checkpoint(spa)) ? 6555 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 6556 return (spa_vdev_exit(spa, NULL, txg, error)); 6557 } 6558 6559 if (rebuild) { 6560 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) 6561 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6562 6563 if (dsl_scan_resilvering(spa_get_dsl(spa))) 6564 return (spa_vdev_exit(spa, NULL, txg, 6565 ZFS_ERR_RESILVER_IN_PROGRESS)); 6566 } else { 6567 if (vdev_rebuild_active(rvd)) 6568 return (spa_vdev_exit(spa, NULL, txg, 6569 ZFS_ERR_REBUILD_IN_PROGRESS)); 6570 } 6571 6572 if (spa->spa_vdev_removal != NULL) 6573 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 6574 6575 if (oldvd == NULL) 6576 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 6577 6578 if (!oldvd->vdev_ops->vdev_op_leaf) 6579 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6580 6581 pvd = oldvd->vdev_parent; 6582 6583 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 6584 VDEV_ALLOC_ATTACH)) != 0) 6585 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 6586 6587 if (newrootvd->vdev_children != 1) 6588 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 6589 6590 newvd = newrootvd->vdev_child[0]; 6591 6592 if (!newvd->vdev_ops->vdev_op_leaf) 6593 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 6594 6595 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 6596 return (spa_vdev_exit(spa, newrootvd, txg, error)); 6597 6598 /* 6599 * Spares can't replace logs 6600 */ 6601 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 6602 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6603 6604 if (rebuild) { 6605 /* 6606 * For rebuilds, the parent vdev must support reconstruction 6607 * using only space maps. This means the only allowable 6608 * parents are the root vdev or a mirror vdev. 6609 */ 6610 if (pvd->vdev_ops != &vdev_mirror_ops && 6611 pvd->vdev_ops != &vdev_root_ops) { 6612 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6613 } 6614 } 6615 6616 if (!replacing) { 6617 /* 6618 * For attach, the only allowable parent is a mirror or the root 6619 * vdev. 6620 */ 6621 if (pvd->vdev_ops != &vdev_mirror_ops && 6622 pvd->vdev_ops != &vdev_root_ops) 6623 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6624 6625 pvops = &vdev_mirror_ops; 6626 } else { 6627 /* 6628 * Active hot spares can only be replaced by inactive hot 6629 * spares. 6630 */ 6631 if (pvd->vdev_ops == &vdev_spare_ops && 6632 oldvd->vdev_isspare && 6633 !spa_has_spare(spa, newvd->vdev_guid)) 6634 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6635 6636 /* 6637 * If the source is a hot spare, and the parent isn't already a 6638 * spare, then we want to create a new hot spare. Otherwise, we 6639 * want to create a replacing vdev. The user is not allowed to 6640 * attach to a spared vdev child unless the 'isspare' state is 6641 * the same (spare replaces spare, non-spare replaces 6642 * non-spare). 6643 */ 6644 if (pvd->vdev_ops == &vdev_replacing_ops && 6645 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 6646 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6647 } else if (pvd->vdev_ops == &vdev_spare_ops && 6648 newvd->vdev_isspare != oldvd->vdev_isspare) { 6649 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6650 } 6651 6652 if (newvd->vdev_isspare) 6653 pvops = &vdev_spare_ops; 6654 else 6655 pvops = &vdev_replacing_ops; 6656 } 6657 6658 /* 6659 * Make sure the new device is big enough. 6660 */ 6661 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 6662 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 6663 6664 /* 6665 * The new device cannot have a higher alignment requirement 6666 * than the top-level vdev. 6667 */ 6668 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 6669 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6670 6671 /* 6672 * If this is an in-place replacement, update oldvd's path and devid 6673 * to make it distinguishable from newvd, and unopenable from now on. 6674 */ 6675 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 6676 spa_strfree(oldvd->vdev_path); 6677 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 6678 KM_SLEEP); 6679 (void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5, 6680 "%s/%s", newvd->vdev_path, "old"); 6681 if (oldvd->vdev_devid != NULL) { 6682 spa_strfree(oldvd->vdev_devid); 6683 oldvd->vdev_devid = NULL; 6684 } 6685 } 6686 6687 /* 6688 * If the parent is not a mirror, or if we're replacing, insert the new 6689 * mirror/replacing/spare vdev above oldvd. 6690 */ 6691 if (pvd->vdev_ops != pvops) 6692 pvd = vdev_add_parent(oldvd, pvops); 6693 6694 ASSERT(pvd->vdev_top->vdev_parent == rvd); 6695 ASSERT(pvd->vdev_ops == pvops); 6696 ASSERT(oldvd->vdev_parent == pvd); 6697 6698 /* 6699 * Extract the new device from its root and add it to pvd. 6700 */ 6701 vdev_remove_child(newrootvd, newvd); 6702 newvd->vdev_id = pvd->vdev_children; 6703 newvd->vdev_crtxg = oldvd->vdev_crtxg; 6704 vdev_add_child(pvd, newvd); 6705 6706 /* 6707 * Reevaluate the parent vdev state. 6708 */ 6709 vdev_propagate_state(pvd); 6710 6711 tvd = newvd->vdev_top; 6712 ASSERT(pvd->vdev_top == tvd); 6713 ASSERT(tvd->vdev_parent == rvd); 6714 6715 vdev_config_dirty(tvd); 6716 6717 /* 6718 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 6719 * for any dmu_sync-ed blocks. It will propagate upward when 6720 * spa_vdev_exit() calls vdev_dtl_reassess(). 6721 */ 6722 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 6723 6724 vdev_dtl_dirty(newvd, DTL_MISSING, 6725 TXG_INITIAL, dtl_max_txg - TXG_INITIAL); 6726 6727 if (newvd->vdev_isspare) { 6728 spa_spare_activate(newvd); 6729 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE); 6730 } 6731 6732 oldvdpath = spa_strdup(oldvd->vdev_path); 6733 newvdpath = spa_strdup(newvd->vdev_path); 6734 newvd_isspare = newvd->vdev_isspare; 6735 6736 /* 6737 * Mark newvd's DTL dirty in this txg. 6738 */ 6739 vdev_dirty(tvd, VDD_DTL, newvd, txg); 6740 6741 /* 6742 * Schedule the resilver or rebuild to restart in the future. We do 6743 * this to ensure that dmu_sync-ed blocks have been stitched into the 6744 * respective datasets. 6745 */ 6746 if (rebuild) { 6747 newvd->vdev_rebuild_txg = txg; 6748 6749 vdev_rebuild(tvd); 6750 } else { 6751 newvd->vdev_resilver_txg = txg; 6752 6753 if (dsl_scan_resilvering(spa_get_dsl(spa)) && 6754 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) { 6755 vdev_defer_resilver(newvd); 6756 } else { 6757 dsl_scan_restart_resilver(spa->spa_dsl_pool, 6758 dtl_max_txg); 6759 } 6760 } 6761 6762 if (spa->spa_bootfs) 6763 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH); 6764 6765 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH); 6766 6767 /* 6768 * Commit the config 6769 */ 6770 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 6771 6772 spa_history_log_internal(spa, "vdev attach", NULL, 6773 "%s vdev=%s %s vdev=%s", 6774 replacing && newvd_isspare ? "spare in" : 6775 replacing ? "replace" : "attach", newvdpath, 6776 replacing ? "for" : "to", oldvdpath); 6777 6778 spa_strfree(oldvdpath); 6779 spa_strfree(newvdpath); 6780 6781 return (0); 6782 } 6783 6784 /* 6785 * Detach a device from a mirror or replacing vdev. 6786 * 6787 * If 'replace_done' is specified, only detach if the parent 6788 * is a replacing vdev. 6789 */ 6790 int 6791 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 6792 { 6793 uint64_t txg; 6794 int error; 6795 vdev_t *rvd __maybe_unused = spa->spa_root_vdev; 6796 vdev_t *vd, *pvd, *cvd, *tvd; 6797 boolean_t unspare = B_FALSE; 6798 uint64_t unspare_guid = 0; 6799 char *vdpath; 6800 6801 ASSERT(spa_writeable(spa)); 6802 6803 txg = spa_vdev_detach_enter(spa, guid); 6804 6805 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 6806 6807 /* 6808 * Besides being called directly from the userland through the 6809 * ioctl interface, spa_vdev_detach() can be potentially called 6810 * at the end of spa_vdev_resilver_done(). 6811 * 6812 * In the regular case, when we have a checkpoint this shouldn't 6813 * happen as we never empty the DTLs of a vdev during the scrub 6814 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done() 6815 * should never get here when we have a checkpoint. 6816 * 6817 * That said, even in a case when we checkpoint the pool exactly 6818 * as spa_vdev_resilver_done() calls this function everything 6819 * should be fine as the resilver will return right away. 6820 */ 6821 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 6822 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 6823 error = (spa_has_checkpoint(spa)) ? 6824 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 6825 return (spa_vdev_exit(spa, NULL, txg, error)); 6826 } 6827 6828 if (vd == NULL) 6829 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 6830 6831 if (!vd->vdev_ops->vdev_op_leaf) 6832 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6833 6834 pvd = vd->vdev_parent; 6835 6836 /* 6837 * If the parent/child relationship is not as expected, don't do it. 6838 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 6839 * vdev that's replacing B with C. The user's intent in replacing 6840 * is to go from M(A,B) to M(A,C). If the user decides to cancel 6841 * the replace by detaching C, the expected behavior is to end up 6842 * M(A,B). But suppose that right after deciding to detach C, 6843 * the replacement of B completes. We would have M(A,C), and then 6844 * ask to detach C, which would leave us with just A -- not what 6845 * the user wanted. To prevent this, we make sure that the 6846 * parent/child relationship hasn't changed -- in this example, 6847 * that C's parent is still the replacing vdev R. 6848 */ 6849 if (pvd->vdev_guid != pguid && pguid != 0) 6850 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 6851 6852 /* 6853 * Only 'replacing' or 'spare' vdevs can be replaced. 6854 */ 6855 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 6856 pvd->vdev_ops != &vdev_spare_ops) 6857 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6858 6859 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 6860 spa_version(spa) >= SPA_VERSION_SPARES); 6861 6862 /* 6863 * Only mirror, replacing, and spare vdevs support detach. 6864 */ 6865 if (pvd->vdev_ops != &vdev_replacing_ops && 6866 pvd->vdev_ops != &vdev_mirror_ops && 6867 pvd->vdev_ops != &vdev_spare_ops) 6868 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6869 6870 /* 6871 * If this device has the only valid copy of some data, 6872 * we cannot safely detach it. 6873 */ 6874 if (vdev_dtl_required(vd)) 6875 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 6876 6877 ASSERT(pvd->vdev_children >= 2); 6878 6879 /* 6880 * If we are detaching the second disk from a replacing vdev, then 6881 * check to see if we changed the original vdev's path to have "/old" 6882 * at the end in spa_vdev_attach(). If so, undo that change now. 6883 */ 6884 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 6885 vd->vdev_path != NULL) { 6886 size_t len = strlen(vd->vdev_path); 6887 6888 for (int c = 0; c < pvd->vdev_children; c++) { 6889 cvd = pvd->vdev_child[c]; 6890 6891 if (cvd == vd || cvd->vdev_path == NULL) 6892 continue; 6893 6894 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 6895 strcmp(cvd->vdev_path + len, "/old") == 0) { 6896 spa_strfree(cvd->vdev_path); 6897 cvd->vdev_path = spa_strdup(vd->vdev_path); 6898 break; 6899 } 6900 } 6901 } 6902 6903 /* 6904 * If we are detaching the original disk from a spare, then it implies 6905 * that the spare should become a real disk, and be removed from the 6906 * active spare list for the pool. 6907 */ 6908 if (pvd->vdev_ops == &vdev_spare_ops && 6909 vd->vdev_id == 0 && 6910 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 6911 unspare = B_TRUE; 6912 6913 /* 6914 * Erase the disk labels so the disk can be used for other things. 6915 * This must be done after all other error cases are handled, 6916 * but before we disembowel vd (so we can still do I/O to it). 6917 * But if we can't do it, don't treat the error as fatal -- 6918 * it may be that the unwritability of the disk is the reason 6919 * it's being detached! 6920 */ 6921 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 6922 6923 /* 6924 * Remove vd from its parent and compact the parent's children. 6925 */ 6926 vdev_remove_child(pvd, vd); 6927 vdev_compact_children(pvd); 6928 6929 /* 6930 * Remember one of the remaining children so we can get tvd below. 6931 */ 6932 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 6933 6934 /* 6935 * If we need to remove the remaining child from the list of hot spares, 6936 * do it now, marking the vdev as no longer a spare in the process. 6937 * We must do this before vdev_remove_parent(), because that can 6938 * change the GUID if it creates a new toplevel GUID. For a similar 6939 * reason, we must remove the spare now, in the same txg as the detach; 6940 * otherwise someone could attach a new sibling, change the GUID, and 6941 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 6942 */ 6943 if (unspare) { 6944 ASSERT(cvd->vdev_isspare); 6945 spa_spare_remove(cvd); 6946 unspare_guid = cvd->vdev_guid; 6947 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 6948 cvd->vdev_unspare = B_TRUE; 6949 } 6950 6951 /* 6952 * If the parent mirror/replacing vdev only has one child, 6953 * the parent is no longer needed. Remove it from the tree. 6954 */ 6955 if (pvd->vdev_children == 1) { 6956 if (pvd->vdev_ops == &vdev_spare_ops) 6957 cvd->vdev_unspare = B_FALSE; 6958 vdev_remove_parent(cvd); 6959 } 6960 6961 /* 6962 * We don't set tvd until now because the parent we just removed 6963 * may have been the previous top-level vdev. 6964 */ 6965 tvd = cvd->vdev_top; 6966 ASSERT(tvd->vdev_parent == rvd); 6967 6968 /* 6969 * Reevaluate the parent vdev state. 6970 */ 6971 vdev_propagate_state(cvd); 6972 6973 /* 6974 * If the 'autoexpand' property is set on the pool then automatically 6975 * try to expand the size of the pool. For example if the device we 6976 * just detached was smaller than the others, it may be possible to 6977 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 6978 * first so that we can obtain the updated sizes of the leaf vdevs. 6979 */ 6980 if (spa->spa_autoexpand) { 6981 vdev_reopen(tvd); 6982 vdev_expand(tvd, txg); 6983 } 6984 6985 vdev_config_dirty(tvd); 6986 6987 /* 6988 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 6989 * vd->vdev_detached is set and free vd's DTL object in syncing context. 6990 * But first make sure we're not on any *other* txg's DTL list, to 6991 * prevent vd from being accessed after it's freed. 6992 */ 6993 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none"); 6994 for (int t = 0; t < TXG_SIZE; t++) 6995 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 6996 vd->vdev_detached = B_TRUE; 6997 vdev_dirty(tvd, VDD_DTL, vd, txg); 6998 6999 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE); 7000 spa_notify_waiters(spa); 7001 7002 /* hang on to the spa before we release the lock */ 7003 spa_open_ref(spa, FTAG); 7004 7005 error = spa_vdev_exit(spa, vd, txg, 0); 7006 7007 spa_history_log_internal(spa, "detach", NULL, 7008 "vdev=%s", vdpath); 7009 spa_strfree(vdpath); 7010 7011 /* 7012 * If this was the removal of the original device in a hot spare vdev, 7013 * then we want to go through and remove the device from the hot spare 7014 * list of every other pool. 7015 */ 7016 if (unspare) { 7017 spa_t *altspa = NULL; 7018 7019 mutex_enter(&spa_namespace_lock); 7020 while ((altspa = spa_next(altspa)) != NULL) { 7021 if (altspa->spa_state != POOL_STATE_ACTIVE || 7022 altspa == spa) 7023 continue; 7024 7025 spa_open_ref(altspa, FTAG); 7026 mutex_exit(&spa_namespace_lock); 7027 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 7028 mutex_enter(&spa_namespace_lock); 7029 spa_close(altspa, FTAG); 7030 } 7031 mutex_exit(&spa_namespace_lock); 7032 7033 /* search the rest of the vdevs for spares to remove */ 7034 spa_vdev_resilver_done(spa); 7035 } 7036 7037 /* all done with the spa; OK to release */ 7038 mutex_enter(&spa_namespace_lock); 7039 spa_close(spa, FTAG); 7040 mutex_exit(&spa_namespace_lock); 7041 7042 return (error); 7043 } 7044 7045 static int 7046 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, 7047 list_t *vd_list) 7048 { 7049 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7050 7051 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 7052 7053 /* Look up vdev and ensure it's a leaf. */ 7054 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 7055 if (vd == NULL || vd->vdev_detached) { 7056 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7057 return (SET_ERROR(ENODEV)); 7058 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 7059 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7060 return (SET_ERROR(EINVAL)); 7061 } else if (!vdev_writeable(vd)) { 7062 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7063 return (SET_ERROR(EROFS)); 7064 } 7065 mutex_enter(&vd->vdev_initialize_lock); 7066 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7067 7068 /* 7069 * When we activate an initialize action we check to see 7070 * if the vdev_initialize_thread is NULL. We do this instead 7071 * of using the vdev_initialize_state since there might be 7072 * a previous initialization process which has completed but 7073 * the thread is not exited. 7074 */ 7075 if (cmd_type == POOL_INITIALIZE_START && 7076 (vd->vdev_initialize_thread != NULL || 7077 vd->vdev_top->vdev_removing)) { 7078 mutex_exit(&vd->vdev_initialize_lock); 7079 return (SET_ERROR(EBUSY)); 7080 } else if (cmd_type == POOL_INITIALIZE_CANCEL && 7081 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE && 7082 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) { 7083 mutex_exit(&vd->vdev_initialize_lock); 7084 return (SET_ERROR(ESRCH)); 7085 } else if (cmd_type == POOL_INITIALIZE_SUSPEND && 7086 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) { 7087 mutex_exit(&vd->vdev_initialize_lock); 7088 return (SET_ERROR(ESRCH)); 7089 } 7090 7091 switch (cmd_type) { 7092 case POOL_INITIALIZE_START: 7093 vdev_initialize(vd); 7094 break; 7095 case POOL_INITIALIZE_CANCEL: 7096 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list); 7097 break; 7098 case POOL_INITIALIZE_SUSPEND: 7099 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list); 7100 break; 7101 default: 7102 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 7103 } 7104 mutex_exit(&vd->vdev_initialize_lock); 7105 7106 return (0); 7107 } 7108 7109 int 7110 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, 7111 nvlist_t *vdev_errlist) 7112 { 7113 int total_errors = 0; 7114 list_t vd_list; 7115 7116 list_create(&vd_list, sizeof (vdev_t), 7117 offsetof(vdev_t, vdev_initialize_node)); 7118 7119 /* 7120 * We hold the namespace lock through the whole function 7121 * to prevent any changes to the pool while we're starting or 7122 * stopping initialization. The config and state locks are held so that 7123 * we can properly assess the vdev state before we commit to 7124 * the initializing operation. 7125 */ 7126 mutex_enter(&spa_namespace_lock); 7127 7128 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 7129 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { 7130 uint64_t vdev_guid = fnvpair_value_uint64(pair); 7131 7132 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type, 7133 &vd_list); 7134 if (error != 0) { 7135 char guid_as_str[MAXNAMELEN]; 7136 7137 (void) snprintf(guid_as_str, sizeof (guid_as_str), 7138 "%llu", (unsigned long long)vdev_guid); 7139 fnvlist_add_int64(vdev_errlist, guid_as_str, error); 7140 total_errors++; 7141 } 7142 } 7143 7144 /* Wait for all initialize threads to stop. */ 7145 vdev_initialize_stop_wait(spa, &vd_list); 7146 7147 /* Sync out the initializing state */ 7148 txg_wait_synced(spa->spa_dsl_pool, 0); 7149 mutex_exit(&spa_namespace_lock); 7150 7151 list_destroy(&vd_list); 7152 7153 return (total_errors); 7154 } 7155 7156 static int 7157 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, 7158 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list) 7159 { 7160 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7161 7162 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 7163 7164 /* Look up vdev and ensure it's a leaf. */ 7165 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 7166 if (vd == NULL || vd->vdev_detached) { 7167 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7168 return (SET_ERROR(ENODEV)); 7169 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 7170 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7171 return (SET_ERROR(EINVAL)); 7172 } else if (!vdev_writeable(vd)) { 7173 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7174 return (SET_ERROR(EROFS)); 7175 } else if (!vd->vdev_has_trim) { 7176 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7177 return (SET_ERROR(EOPNOTSUPP)); 7178 } else if (secure && !vd->vdev_has_securetrim) { 7179 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7180 return (SET_ERROR(EOPNOTSUPP)); 7181 } 7182 mutex_enter(&vd->vdev_trim_lock); 7183 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7184 7185 /* 7186 * When we activate a TRIM action we check to see if the 7187 * vdev_trim_thread is NULL. We do this instead of using the 7188 * vdev_trim_state since there might be a previous TRIM process 7189 * which has completed but the thread is not exited. 7190 */ 7191 if (cmd_type == POOL_TRIM_START && 7192 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) { 7193 mutex_exit(&vd->vdev_trim_lock); 7194 return (SET_ERROR(EBUSY)); 7195 } else if (cmd_type == POOL_TRIM_CANCEL && 7196 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE && 7197 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) { 7198 mutex_exit(&vd->vdev_trim_lock); 7199 return (SET_ERROR(ESRCH)); 7200 } else if (cmd_type == POOL_TRIM_SUSPEND && 7201 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) { 7202 mutex_exit(&vd->vdev_trim_lock); 7203 return (SET_ERROR(ESRCH)); 7204 } 7205 7206 switch (cmd_type) { 7207 case POOL_TRIM_START: 7208 vdev_trim(vd, rate, partial, secure); 7209 break; 7210 case POOL_TRIM_CANCEL: 7211 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list); 7212 break; 7213 case POOL_TRIM_SUSPEND: 7214 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list); 7215 break; 7216 default: 7217 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 7218 } 7219 mutex_exit(&vd->vdev_trim_lock); 7220 7221 return (0); 7222 } 7223 7224 /* 7225 * Initiates a manual TRIM for the requested vdevs. This kicks off individual 7226 * TRIM threads for each child vdev. These threads pass over all of the free 7227 * space in the vdev's metaslabs and issues TRIM commands for that space. 7228 */ 7229 int 7230 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate, 7231 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist) 7232 { 7233 int total_errors = 0; 7234 list_t vd_list; 7235 7236 list_create(&vd_list, sizeof (vdev_t), 7237 offsetof(vdev_t, vdev_trim_node)); 7238 7239 /* 7240 * We hold the namespace lock through the whole function 7241 * to prevent any changes to the pool while we're starting or 7242 * stopping TRIM. The config and state locks are held so that 7243 * we can properly assess the vdev state before we commit to 7244 * the TRIM operation. 7245 */ 7246 mutex_enter(&spa_namespace_lock); 7247 7248 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 7249 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { 7250 uint64_t vdev_guid = fnvpair_value_uint64(pair); 7251 7252 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type, 7253 rate, partial, secure, &vd_list); 7254 if (error != 0) { 7255 char guid_as_str[MAXNAMELEN]; 7256 7257 (void) snprintf(guid_as_str, sizeof (guid_as_str), 7258 "%llu", (unsigned long long)vdev_guid); 7259 fnvlist_add_int64(vdev_errlist, guid_as_str, error); 7260 total_errors++; 7261 } 7262 } 7263 7264 /* Wait for all TRIM threads to stop. */ 7265 vdev_trim_stop_wait(spa, &vd_list); 7266 7267 /* Sync out the TRIM state */ 7268 txg_wait_synced(spa->spa_dsl_pool, 0); 7269 mutex_exit(&spa_namespace_lock); 7270 7271 list_destroy(&vd_list); 7272 7273 return (total_errors); 7274 } 7275 7276 /* 7277 * Split a set of devices from their mirrors, and create a new pool from them. 7278 */ 7279 int 7280 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 7281 nvlist_t *props, boolean_t exp) 7282 { 7283 int error = 0; 7284 uint64_t txg, *glist; 7285 spa_t *newspa; 7286 uint_t c, children, lastlog; 7287 nvlist_t **child, *nvl, *tmp; 7288 dmu_tx_t *tx; 7289 char *altroot = NULL; 7290 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 7291 boolean_t activate_slog; 7292 7293 ASSERT(spa_writeable(spa)); 7294 7295 txg = spa_vdev_enter(spa); 7296 7297 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7298 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 7299 error = (spa_has_checkpoint(spa)) ? 7300 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 7301 return (spa_vdev_exit(spa, NULL, txg, error)); 7302 } 7303 7304 /* clear the log and flush everything up to now */ 7305 activate_slog = spa_passivate_log(spa); 7306 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 7307 error = spa_reset_logs(spa); 7308 txg = spa_vdev_config_enter(spa); 7309 7310 if (activate_slog) 7311 spa_activate_log(spa); 7312 7313 if (error != 0) 7314 return (spa_vdev_exit(spa, NULL, txg, error)); 7315 7316 /* check new spa name before going any further */ 7317 if (spa_lookup(newname) != NULL) 7318 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 7319 7320 /* 7321 * scan through all the children to ensure they're all mirrors 7322 */ 7323 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 7324 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 7325 &children) != 0) 7326 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 7327 7328 /* first, check to ensure we've got the right child count */ 7329 rvd = spa->spa_root_vdev; 7330 lastlog = 0; 7331 for (c = 0; c < rvd->vdev_children; c++) { 7332 vdev_t *vd = rvd->vdev_child[c]; 7333 7334 /* don't count the holes & logs as children */ 7335 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops && 7336 !vdev_is_concrete(vd))) { 7337 if (lastlog == 0) 7338 lastlog = c; 7339 continue; 7340 } 7341 7342 lastlog = 0; 7343 } 7344 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 7345 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 7346 7347 /* next, ensure no spare or cache devices are part of the split */ 7348 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 7349 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 7350 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 7351 7352 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 7353 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 7354 7355 /* then, loop over each vdev and validate it */ 7356 for (c = 0; c < children; c++) { 7357 uint64_t is_hole = 0; 7358 7359 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 7360 &is_hole); 7361 7362 if (is_hole != 0) { 7363 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 7364 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 7365 continue; 7366 } else { 7367 error = SET_ERROR(EINVAL); 7368 break; 7369 } 7370 } 7371 7372 /* deal with indirect vdevs */ 7373 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops == 7374 &vdev_indirect_ops) 7375 continue; 7376 7377 /* which disk is going to be split? */ 7378 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 7379 &glist[c]) != 0) { 7380 error = SET_ERROR(EINVAL); 7381 break; 7382 } 7383 7384 /* look it up in the spa */ 7385 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 7386 if (vml[c] == NULL) { 7387 error = SET_ERROR(ENODEV); 7388 break; 7389 } 7390 7391 /* make sure there's nothing stopping the split */ 7392 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 7393 vml[c]->vdev_islog || 7394 !vdev_is_concrete(vml[c]) || 7395 vml[c]->vdev_isspare || 7396 vml[c]->vdev_isl2cache || 7397 !vdev_writeable(vml[c]) || 7398 vml[c]->vdev_children != 0 || 7399 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 7400 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 7401 error = SET_ERROR(EINVAL); 7402 break; 7403 } 7404 7405 if (vdev_dtl_required(vml[c]) || 7406 vdev_resilver_needed(vml[c], NULL, NULL)) { 7407 error = SET_ERROR(EBUSY); 7408 break; 7409 } 7410 7411 /* we need certain info from the top level */ 7412 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 7413 vml[c]->vdev_top->vdev_ms_array) == 0); 7414 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 7415 vml[c]->vdev_top->vdev_ms_shift) == 0); 7416 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 7417 vml[c]->vdev_top->vdev_asize) == 0); 7418 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 7419 vml[c]->vdev_top->vdev_ashift) == 0); 7420 7421 /* transfer per-vdev ZAPs */ 7422 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); 7423 VERIFY0(nvlist_add_uint64(child[c], 7424 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); 7425 7426 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); 7427 VERIFY0(nvlist_add_uint64(child[c], 7428 ZPOOL_CONFIG_VDEV_TOP_ZAP, 7429 vml[c]->vdev_parent->vdev_top_zap)); 7430 } 7431 7432 if (error != 0) { 7433 kmem_free(vml, children * sizeof (vdev_t *)); 7434 kmem_free(glist, children * sizeof (uint64_t)); 7435 return (spa_vdev_exit(spa, NULL, txg, error)); 7436 } 7437 7438 /* stop writers from using the disks */ 7439 for (c = 0; c < children; c++) { 7440 if (vml[c] != NULL) 7441 vml[c]->vdev_offline = B_TRUE; 7442 } 7443 vdev_reopen(spa->spa_root_vdev); 7444 7445 /* 7446 * Temporarily record the splitting vdevs in the spa config. This 7447 * will disappear once the config is regenerated. 7448 */ 7449 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 7450 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 7451 glist, children) == 0); 7452 kmem_free(glist, children * sizeof (uint64_t)); 7453 7454 mutex_enter(&spa->spa_props_lock); 7455 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 7456 nvl) == 0); 7457 mutex_exit(&spa->spa_props_lock); 7458 spa->spa_config_splitting = nvl; 7459 vdev_config_dirty(spa->spa_root_vdev); 7460 7461 /* configure and create the new pool */ 7462 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 7463 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 7464 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 7465 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 7466 spa_version(spa)) == 0); 7467 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 7468 spa->spa_config_txg) == 0); 7469 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 7470 spa_generate_guid(NULL)) == 0); 7471 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 7472 (void) nvlist_lookup_string(props, 7473 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 7474 7475 /* add the new pool to the namespace */ 7476 newspa = spa_add(newname, config, altroot); 7477 newspa->spa_avz_action = AVZ_ACTION_REBUILD; 7478 newspa->spa_config_txg = spa->spa_config_txg; 7479 spa_set_log_state(newspa, SPA_LOG_CLEAR); 7480 7481 /* release the spa config lock, retaining the namespace lock */ 7482 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 7483 7484 if (zio_injection_enabled) 7485 zio_handle_panic_injection(spa, FTAG, 1); 7486 7487 spa_activate(newspa, spa_mode_global); 7488 spa_async_suspend(newspa); 7489 7490 /* 7491 * Temporarily stop the initializing and TRIM activity. We set the 7492 * state to ACTIVE so that we know to resume initializing or TRIM 7493 * once the split has completed. 7494 */ 7495 list_t vd_initialize_list; 7496 list_create(&vd_initialize_list, sizeof (vdev_t), 7497 offsetof(vdev_t, vdev_initialize_node)); 7498 7499 list_t vd_trim_list; 7500 list_create(&vd_trim_list, sizeof (vdev_t), 7501 offsetof(vdev_t, vdev_trim_node)); 7502 7503 for (c = 0; c < children; c++) { 7504 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { 7505 mutex_enter(&vml[c]->vdev_initialize_lock); 7506 vdev_initialize_stop(vml[c], 7507 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list); 7508 mutex_exit(&vml[c]->vdev_initialize_lock); 7509 7510 mutex_enter(&vml[c]->vdev_trim_lock); 7511 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list); 7512 mutex_exit(&vml[c]->vdev_trim_lock); 7513 } 7514 } 7515 7516 vdev_initialize_stop_wait(spa, &vd_initialize_list); 7517 vdev_trim_stop_wait(spa, &vd_trim_list); 7518 7519 list_destroy(&vd_initialize_list); 7520 list_destroy(&vd_trim_list); 7521 7522 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT; 7523 newspa->spa_is_splitting = B_TRUE; 7524 7525 /* create the new pool from the disks of the original pool */ 7526 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE); 7527 if (error) 7528 goto out; 7529 7530 /* if that worked, generate a real config for the new pool */ 7531 if (newspa->spa_root_vdev != NULL) { 7532 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 7533 NV_UNIQUE_NAME, KM_SLEEP) == 0); 7534 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 7535 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 7536 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 7537 B_TRUE)); 7538 } 7539 7540 /* set the props */ 7541 if (props != NULL) { 7542 spa_configfile_set(newspa, props, B_FALSE); 7543 error = spa_prop_set(newspa, props); 7544 if (error) 7545 goto out; 7546 } 7547 7548 /* flush everything */ 7549 txg = spa_vdev_config_enter(newspa); 7550 vdev_config_dirty(newspa->spa_root_vdev); 7551 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 7552 7553 if (zio_injection_enabled) 7554 zio_handle_panic_injection(spa, FTAG, 2); 7555 7556 spa_async_resume(newspa); 7557 7558 /* finally, update the original pool's config */ 7559 txg = spa_vdev_config_enter(spa); 7560 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 7561 error = dmu_tx_assign(tx, TXG_WAIT); 7562 if (error != 0) 7563 dmu_tx_abort(tx); 7564 for (c = 0; c < children; c++) { 7565 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { 7566 vdev_t *tvd = vml[c]->vdev_top; 7567 7568 /* 7569 * Need to be sure the detachable VDEV is not 7570 * on any *other* txg's DTL list to prevent it 7571 * from being accessed after it's freed. 7572 */ 7573 for (int t = 0; t < TXG_SIZE; t++) { 7574 (void) txg_list_remove_this( 7575 &tvd->vdev_dtl_list, vml[c], t); 7576 } 7577 7578 vdev_split(vml[c]); 7579 if (error == 0) 7580 spa_history_log_internal(spa, "detach", tx, 7581 "vdev=%s", vml[c]->vdev_path); 7582 7583 vdev_free(vml[c]); 7584 } 7585 } 7586 spa->spa_avz_action = AVZ_ACTION_REBUILD; 7587 vdev_config_dirty(spa->spa_root_vdev); 7588 spa->spa_config_splitting = NULL; 7589 nvlist_free(nvl); 7590 if (error == 0) 7591 dmu_tx_commit(tx); 7592 (void) spa_vdev_exit(spa, NULL, txg, 0); 7593 7594 if (zio_injection_enabled) 7595 zio_handle_panic_injection(spa, FTAG, 3); 7596 7597 /* split is complete; log a history record */ 7598 spa_history_log_internal(newspa, "split", NULL, 7599 "from pool %s", spa_name(spa)); 7600 7601 newspa->spa_is_splitting = B_FALSE; 7602 kmem_free(vml, children * sizeof (vdev_t *)); 7603 7604 /* if we're not going to mount the filesystems in userland, export */ 7605 if (exp) 7606 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 7607 B_FALSE, B_FALSE); 7608 7609 return (error); 7610 7611 out: 7612 spa_unload(newspa); 7613 spa_deactivate(newspa); 7614 spa_remove(newspa); 7615 7616 txg = spa_vdev_config_enter(spa); 7617 7618 /* re-online all offlined disks */ 7619 for (c = 0; c < children; c++) { 7620 if (vml[c] != NULL) 7621 vml[c]->vdev_offline = B_FALSE; 7622 } 7623 7624 /* restart initializing or trimming disks as necessary */ 7625 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART); 7626 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART); 7627 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART); 7628 7629 vdev_reopen(spa->spa_root_vdev); 7630 7631 nvlist_free(spa->spa_config_splitting); 7632 spa->spa_config_splitting = NULL; 7633 (void) spa_vdev_exit(spa, NULL, txg, error); 7634 7635 kmem_free(vml, children * sizeof (vdev_t *)); 7636 return (error); 7637 } 7638 7639 /* 7640 * Find any device that's done replacing, or a vdev marked 'unspare' that's 7641 * currently spared, so we can detach it. 7642 */ 7643 static vdev_t * 7644 spa_vdev_resilver_done_hunt(vdev_t *vd) 7645 { 7646 vdev_t *newvd, *oldvd; 7647 7648 for (int c = 0; c < vd->vdev_children; c++) { 7649 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 7650 if (oldvd != NULL) 7651 return (oldvd); 7652 } 7653 7654 /* 7655 * Check for a completed replacement. We always consider the first 7656 * vdev in the list to be the oldest vdev, and the last one to be 7657 * the newest (see spa_vdev_attach() for how that works). In 7658 * the case where the newest vdev is faulted, we will not automatically 7659 * remove it after a resilver completes. This is OK as it will require 7660 * user intervention to determine which disk the admin wishes to keep. 7661 */ 7662 if (vd->vdev_ops == &vdev_replacing_ops) { 7663 ASSERT(vd->vdev_children > 1); 7664 7665 newvd = vd->vdev_child[vd->vdev_children - 1]; 7666 oldvd = vd->vdev_child[0]; 7667 7668 if (vdev_dtl_empty(newvd, DTL_MISSING) && 7669 vdev_dtl_empty(newvd, DTL_OUTAGE) && 7670 !vdev_dtl_required(oldvd)) 7671 return (oldvd); 7672 } 7673 7674 /* 7675 * Check for a completed resilver with the 'unspare' flag set. 7676 * Also potentially update faulted state. 7677 */ 7678 if (vd->vdev_ops == &vdev_spare_ops) { 7679 vdev_t *first = vd->vdev_child[0]; 7680 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 7681 7682 if (last->vdev_unspare) { 7683 oldvd = first; 7684 newvd = last; 7685 } else if (first->vdev_unspare) { 7686 oldvd = last; 7687 newvd = first; 7688 } else { 7689 oldvd = NULL; 7690 } 7691 7692 if (oldvd != NULL && 7693 vdev_dtl_empty(newvd, DTL_MISSING) && 7694 vdev_dtl_empty(newvd, DTL_OUTAGE) && 7695 !vdev_dtl_required(oldvd)) 7696 return (oldvd); 7697 7698 vdev_propagate_state(vd); 7699 7700 /* 7701 * If there are more than two spares attached to a disk, 7702 * and those spares are not required, then we want to 7703 * attempt to free them up now so that they can be used 7704 * by other pools. Once we're back down to a single 7705 * disk+spare, we stop removing them. 7706 */ 7707 if (vd->vdev_children > 2) { 7708 newvd = vd->vdev_child[1]; 7709 7710 if (newvd->vdev_isspare && last->vdev_isspare && 7711 vdev_dtl_empty(last, DTL_MISSING) && 7712 vdev_dtl_empty(last, DTL_OUTAGE) && 7713 !vdev_dtl_required(newvd)) 7714 return (newvd); 7715 } 7716 } 7717 7718 return (NULL); 7719 } 7720 7721 static void 7722 spa_vdev_resilver_done(spa_t *spa) 7723 { 7724 vdev_t *vd, *pvd, *ppvd; 7725 uint64_t guid, sguid, pguid, ppguid; 7726 7727 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 7728 7729 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 7730 pvd = vd->vdev_parent; 7731 ppvd = pvd->vdev_parent; 7732 guid = vd->vdev_guid; 7733 pguid = pvd->vdev_guid; 7734 ppguid = ppvd->vdev_guid; 7735 sguid = 0; 7736 /* 7737 * If we have just finished replacing a hot spared device, then 7738 * we need to detach the parent's first child (the original hot 7739 * spare) as well. 7740 */ 7741 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 7742 ppvd->vdev_children == 2) { 7743 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 7744 sguid = ppvd->vdev_child[1]->vdev_guid; 7745 } 7746 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 7747 7748 spa_config_exit(spa, SCL_ALL, FTAG); 7749 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 7750 return; 7751 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 7752 return; 7753 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 7754 } 7755 7756 spa_config_exit(spa, SCL_ALL, FTAG); 7757 7758 /* 7759 * If a detach was not performed above replace waiters will not have 7760 * been notified. In which case we must do so now. 7761 */ 7762 spa_notify_waiters(spa); 7763 } 7764 7765 /* 7766 * Update the stored path or FRU for this vdev. 7767 */ 7768 static int 7769 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 7770 boolean_t ispath) 7771 { 7772 vdev_t *vd; 7773 boolean_t sync = B_FALSE; 7774 7775 ASSERT(spa_writeable(spa)); 7776 7777 spa_vdev_state_enter(spa, SCL_ALL); 7778 7779 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 7780 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 7781 7782 if (!vd->vdev_ops->vdev_op_leaf) 7783 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 7784 7785 if (ispath) { 7786 if (strcmp(value, vd->vdev_path) != 0) { 7787 spa_strfree(vd->vdev_path); 7788 vd->vdev_path = spa_strdup(value); 7789 sync = B_TRUE; 7790 } 7791 } else { 7792 if (vd->vdev_fru == NULL) { 7793 vd->vdev_fru = spa_strdup(value); 7794 sync = B_TRUE; 7795 } else if (strcmp(value, vd->vdev_fru) != 0) { 7796 spa_strfree(vd->vdev_fru); 7797 vd->vdev_fru = spa_strdup(value); 7798 sync = B_TRUE; 7799 } 7800 } 7801 7802 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 7803 } 7804 7805 int 7806 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 7807 { 7808 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 7809 } 7810 7811 int 7812 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 7813 { 7814 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 7815 } 7816 7817 /* 7818 * ========================================================================== 7819 * SPA Scanning 7820 * ========================================================================== 7821 */ 7822 int 7823 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd) 7824 { 7825 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 7826 7827 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 7828 return (SET_ERROR(EBUSY)); 7829 7830 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd)); 7831 } 7832 7833 int 7834 spa_scan_stop(spa_t *spa) 7835 { 7836 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 7837 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 7838 return (SET_ERROR(EBUSY)); 7839 return (dsl_scan_cancel(spa->spa_dsl_pool)); 7840 } 7841 7842 int 7843 spa_scan(spa_t *spa, pool_scan_func_t func) 7844 { 7845 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 7846 7847 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 7848 return (SET_ERROR(ENOTSUP)); 7849 7850 if (func == POOL_SCAN_RESILVER && 7851 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) 7852 return (SET_ERROR(ENOTSUP)); 7853 7854 /* 7855 * If a resilver was requested, but there is no DTL on a 7856 * writeable leaf device, we have nothing to do. 7857 */ 7858 if (func == POOL_SCAN_RESILVER && 7859 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 7860 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 7861 return (0); 7862 } 7863 7864 return (dsl_scan(spa->spa_dsl_pool, func)); 7865 } 7866 7867 /* 7868 * ========================================================================== 7869 * SPA async task processing 7870 * ========================================================================== 7871 */ 7872 7873 static void 7874 spa_async_remove(spa_t *spa, vdev_t *vd) 7875 { 7876 if (vd->vdev_remove_wanted) { 7877 vd->vdev_remove_wanted = B_FALSE; 7878 vd->vdev_delayed_close = B_FALSE; 7879 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 7880 7881 /* 7882 * We want to clear the stats, but we don't want to do a full 7883 * vdev_clear() as that will cause us to throw away 7884 * degraded/faulted state as well as attempt to reopen the 7885 * device, all of which is a waste. 7886 */ 7887 vd->vdev_stat.vs_read_errors = 0; 7888 vd->vdev_stat.vs_write_errors = 0; 7889 vd->vdev_stat.vs_checksum_errors = 0; 7890 7891 vdev_state_dirty(vd->vdev_top); 7892 } 7893 7894 for (int c = 0; c < vd->vdev_children; c++) 7895 spa_async_remove(spa, vd->vdev_child[c]); 7896 } 7897 7898 static void 7899 spa_async_probe(spa_t *spa, vdev_t *vd) 7900 { 7901 if (vd->vdev_probe_wanted) { 7902 vd->vdev_probe_wanted = B_FALSE; 7903 vdev_reopen(vd); /* vdev_open() does the actual probe */ 7904 } 7905 7906 for (int c = 0; c < vd->vdev_children; c++) 7907 spa_async_probe(spa, vd->vdev_child[c]); 7908 } 7909 7910 static void 7911 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 7912 { 7913 if (!spa->spa_autoexpand) 7914 return; 7915 7916 for (int c = 0; c < vd->vdev_children; c++) { 7917 vdev_t *cvd = vd->vdev_child[c]; 7918 spa_async_autoexpand(spa, cvd); 7919 } 7920 7921 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 7922 return; 7923 7924 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND); 7925 } 7926 7927 static void 7928 spa_async_thread(void *arg) 7929 { 7930 spa_t *spa = (spa_t *)arg; 7931 dsl_pool_t *dp = spa->spa_dsl_pool; 7932 int tasks; 7933 7934 ASSERT(spa->spa_sync_on); 7935 7936 mutex_enter(&spa->spa_async_lock); 7937 tasks = spa->spa_async_tasks; 7938 spa->spa_async_tasks = 0; 7939 mutex_exit(&spa->spa_async_lock); 7940 7941 /* 7942 * See if the config needs to be updated. 7943 */ 7944 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 7945 uint64_t old_space, new_space; 7946 7947 mutex_enter(&spa_namespace_lock); 7948 old_space = metaslab_class_get_space(spa_normal_class(spa)); 7949 old_space += metaslab_class_get_space(spa_special_class(spa)); 7950 old_space += metaslab_class_get_space(spa_dedup_class(spa)); 7951 7952 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 7953 7954 new_space = metaslab_class_get_space(spa_normal_class(spa)); 7955 new_space += metaslab_class_get_space(spa_special_class(spa)); 7956 new_space += metaslab_class_get_space(spa_dedup_class(spa)); 7957 mutex_exit(&spa_namespace_lock); 7958 7959 /* 7960 * If the pool grew as a result of the config update, 7961 * then log an internal history event. 7962 */ 7963 if (new_space != old_space) { 7964 spa_history_log_internal(spa, "vdev online", NULL, 7965 "pool '%s' size: %llu(+%llu)", 7966 spa_name(spa), (u_longlong_t)new_space, 7967 (u_longlong_t)(new_space - old_space)); 7968 } 7969 } 7970 7971 /* 7972 * See if any devices need to be marked REMOVED. 7973 */ 7974 if (tasks & SPA_ASYNC_REMOVE) { 7975 spa_vdev_state_enter(spa, SCL_NONE); 7976 spa_async_remove(spa, spa->spa_root_vdev); 7977 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 7978 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 7979 for (int i = 0; i < spa->spa_spares.sav_count; i++) 7980 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 7981 (void) spa_vdev_state_exit(spa, NULL, 0); 7982 } 7983 7984 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 7985 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7986 spa_async_autoexpand(spa, spa->spa_root_vdev); 7987 spa_config_exit(spa, SCL_CONFIG, FTAG); 7988 } 7989 7990 /* 7991 * See if any devices need to be probed. 7992 */ 7993 if (tasks & SPA_ASYNC_PROBE) { 7994 spa_vdev_state_enter(spa, SCL_NONE); 7995 spa_async_probe(spa, spa->spa_root_vdev); 7996 (void) spa_vdev_state_exit(spa, NULL, 0); 7997 } 7998 7999 /* 8000 * If any devices are done replacing, detach them. 8001 */ 8002 if (tasks & SPA_ASYNC_RESILVER_DONE) 8003 spa_vdev_resilver_done(spa); 8004 8005 /* 8006 * If any devices are done replacing, detach them. Then if no 8007 * top-level vdevs are rebuilding attempt to kick off a scrub. 8008 */ 8009 if (tasks & SPA_ASYNC_REBUILD_DONE) { 8010 spa_vdev_resilver_done(spa); 8011 8012 if (!vdev_rebuild_active(spa->spa_root_vdev)) 8013 (void) dsl_scan(spa->spa_dsl_pool, POOL_SCAN_SCRUB); 8014 } 8015 8016 /* 8017 * Kick off a resilver. 8018 */ 8019 if (tasks & SPA_ASYNC_RESILVER && 8020 !vdev_rebuild_active(spa->spa_root_vdev) && 8021 (!dsl_scan_resilvering(dp) || 8022 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))) 8023 dsl_scan_restart_resilver(dp, 0); 8024 8025 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) { 8026 mutex_enter(&spa_namespace_lock); 8027 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8028 vdev_initialize_restart(spa->spa_root_vdev); 8029 spa_config_exit(spa, SCL_CONFIG, FTAG); 8030 mutex_exit(&spa_namespace_lock); 8031 } 8032 8033 if (tasks & SPA_ASYNC_TRIM_RESTART) { 8034 mutex_enter(&spa_namespace_lock); 8035 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8036 vdev_trim_restart(spa->spa_root_vdev); 8037 spa_config_exit(spa, SCL_CONFIG, FTAG); 8038 mutex_exit(&spa_namespace_lock); 8039 } 8040 8041 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) { 8042 mutex_enter(&spa_namespace_lock); 8043 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8044 vdev_autotrim_restart(spa); 8045 spa_config_exit(spa, SCL_CONFIG, FTAG); 8046 mutex_exit(&spa_namespace_lock); 8047 } 8048 8049 /* 8050 * Kick off L2 cache whole device TRIM. 8051 */ 8052 if (tasks & SPA_ASYNC_L2CACHE_TRIM) { 8053 mutex_enter(&spa_namespace_lock); 8054 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8055 vdev_trim_l2arc(spa); 8056 spa_config_exit(spa, SCL_CONFIG, FTAG); 8057 mutex_exit(&spa_namespace_lock); 8058 } 8059 8060 /* 8061 * Kick off L2 cache rebuilding. 8062 */ 8063 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) { 8064 mutex_enter(&spa_namespace_lock); 8065 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER); 8066 l2arc_spa_rebuild_start(spa); 8067 spa_config_exit(spa, SCL_L2ARC, FTAG); 8068 mutex_exit(&spa_namespace_lock); 8069 } 8070 8071 /* 8072 * Let the world know that we're done. 8073 */ 8074 mutex_enter(&spa->spa_async_lock); 8075 spa->spa_async_thread = NULL; 8076 cv_broadcast(&spa->spa_async_cv); 8077 mutex_exit(&spa->spa_async_lock); 8078 thread_exit(); 8079 } 8080 8081 void 8082 spa_async_suspend(spa_t *spa) 8083 { 8084 mutex_enter(&spa->spa_async_lock); 8085 spa->spa_async_suspended++; 8086 while (spa->spa_async_thread != NULL) 8087 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 8088 mutex_exit(&spa->spa_async_lock); 8089 8090 spa_vdev_remove_suspend(spa); 8091 8092 zthr_t *condense_thread = spa->spa_condense_zthr; 8093 if (condense_thread != NULL) 8094 zthr_cancel(condense_thread); 8095 8096 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 8097 if (discard_thread != NULL) 8098 zthr_cancel(discard_thread); 8099 8100 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; 8101 if (ll_delete_thread != NULL) 8102 zthr_cancel(ll_delete_thread); 8103 8104 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 8105 if (ll_condense_thread != NULL) 8106 zthr_cancel(ll_condense_thread); 8107 } 8108 8109 void 8110 spa_async_resume(spa_t *spa) 8111 { 8112 mutex_enter(&spa->spa_async_lock); 8113 ASSERT(spa->spa_async_suspended != 0); 8114 spa->spa_async_suspended--; 8115 mutex_exit(&spa->spa_async_lock); 8116 spa_restart_removal(spa); 8117 8118 zthr_t *condense_thread = spa->spa_condense_zthr; 8119 if (condense_thread != NULL) 8120 zthr_resume(condense_thread); 8121 8122 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 8123 if (discard_thread != NULL) 8124 zthr_resume(discard_thread); 8125 8126 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; 8127 if (ll_delete_thread != NULL) 8128 zthr_resume(ll_delete_thread); 8129 8130 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 8131 if (ll_condense_thread != NULL) 8132 zthr_resume(ll_condense_thread); 8133 } 8134 8135 static boolean_t 8136 spa_async_tasks_pending(spa_t *spa) 8137 { 8138 uint_t non_config_tasks; 8139 uint_t config_task; 8140 boolean_t config_task_suspended; 8141 8142 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 8143 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 8144 if (spa->spa_ccw_fail_time == 0) { 8145 config_task_suspended = B_FALSE; 8146 } else { 8147 config_task_suspended = 8148 (gethrtime() - spa->spa_ccw_fail_time) < 8149 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC); 8150 } 8151 8152 return (non_config_tasks || (config_task && !config_task_suspended)); 8153 } 8154 8155 static void 8156 spa_async_dispatch(spa_t *spa) 8157 { 8158 mutex_enter(&spa->spa_async_lock); 8159 if (spa_async_tasks_pending(spa) && 8160 !spa->spa_async_suspended && 8161 spa->spa_async_thread == NULL) 8162 spa->spa_async_thread = thread_create(NULL, 0, 8163 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 8164 mutex_exit(&spa->spa_async_lock); 8165 } 8166 8167 void 8168 spa_async_request(spa_t *spa, int task) 8169 { 8170 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 8171 mutex_enter(&spa->spa_async_lock); 8172 spa->spa_async_tasks |= task; 8173 mutex_exit(&spa->spa_async_lock); 8174 } 8175 8176 int 8177 spa_async_tasks(spa_t *spa) 8178 { 8179 return (spa->spa_async_tasks); 8180 } 8181 8182 /* 8183 * ========================================================================== 8184 * SPA syncing routines 8185 * ========================================================================== 8186 */ 8187 8188 8189 static int 8190 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 8191 dmu_tx_t *tx) 8192 { 8193 bpobj_t *bpo = arg; 8194 bpobj_enqueue(bpo, bp, bp_freed, tx); 8195 return (0); 8196 } 8197 8198 int 8199 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 8200 { 8201 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx)); 8202 } 8203 8204 int 8205 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 8206 { 8207 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx)); 8208 } 8209 8210 static int 8211 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 8212 { 8213 zio_t *pio = arg; 8214 8215 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp, 8216 pio->io_flags)); 8217 return (0); 8218 } 8219 8220 static int 8221 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 8222 dmu_tx_t *tx) 8223 { 8224 ASSERT(!bp_freed); 8225 return (spa_free_sync_cb(arg, bp, tx)); 8226 } 8227 8228 /* 8229 * Note: this simple function is not inlined to make it easier to dtrace the 8230 * amount of time spent syncing frees. 8231 */ 8232 static void 8233 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 8234 { 8235 zio_t *zio = zio_root(spa, NULL, NULL, 0); 8236 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 8237 VERIFY(zio_wait(zio) == 0); 8238 } 8239 8240 /* 8241 * Note: this simple function is not inlined to make it easier to dtrace the 8242 * amount of time spent syncing deferred frees. 8243 */ 8244 static void 8245 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 8246 { 8247 if (spa_sync_pass(spa) != 1) 8248 return; 8249 8250 /* 8251 * Note: 8252 * If the log space map feature is active, we stop deferring 8253 * frees to the next TXG and therefore running this function 8254 * would be considered a no-op as spa_deferred_bpobj should 8255 * not have any entries. 8256 * 8257 * That said we run this function anyway (instead of returning 8258 * immediately) for the edge-case scenario where we just 8259 * activated the log space map feature in this TXG but we have 8260 * deferred frees from the previous TXG. 8261 */ 8262 zio_t *zio = zio_root(spa, NULL, NULL, 0); 8263 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 8264 bpobj_spa_free_sync_cb, zio, tx), ==, 0); 8265 VERIFY0(zio_wait(zio)); 8266 } 8267 8268 static void 8269 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 8270 { 8271 char *packed = NULL; 8272 size_t bufsize; 8273 size_t nvsize = 0; 8274 dmu_buf_t *db; 8275 8276 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 8277 8278 /* 8279 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 8280 * information. This avoids the dmu_buf_will_dirty() path and 8281 * saves us a pre-read to get data we don't actually care about. 8282 */ 8283 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 8284 packed = vmem_alloc(bufsize, KM_SLEEP); 8285 8286 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 8287 KM_SLEEP) == 0); 8288 bzero(packed + nvsize, bufsize - nvsize); 8289 8290 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 8291 8292 vmem_free(packed, bufsize); 8293 8294 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 8295 dmu_buf_will_dirty(db, tx); 8296 *(uint64_t *)db->db_data = nvsize; 8297 dmu_buf_rele(db, FTAG); 8298 } 8299 8300 static void 8301 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 8302 const char *config, const char *entry) 8303 { 8304 nvlist_t *nvroot; 8305 nvlist_t **list; 8306 int i; 8307 8308 if (!sav->sav_sync) 8309 return; 8310 8311 /* 8312 * Update the MOS nvlist describing the list of available devices. 8313 * spa_validate_aux() will have already made sure this nvlist is 8314 * valid and the vdevs are labeled appropriately. 8315 */ 8316 if (sav->sav_object == 0) { 8317 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 8318 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 8319 sizeof (uint64_t), tx); 8320 VERIFY(zap_update(spa->spa_meta_objset, 8321 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 8322 &sav->sav_object, tx) == 0); 8323 } 8324 8325 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 8326 if (sav->sav_count == 0) { 8327 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 8328 } else { 8329 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP); 8330 for (i = 0; i < sav->sav_count; i++) 8331 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 8332 B_FALSE, VDEV_CONFIG_L2CACHE); 8333 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 8334 sav->sav_count) == 0); 8335 for (i = 0; i < sav->sav_count; i++) 8336 nvlist_free(list[i]); 8337 kmem_free(list, sav->sav_count * sizeof (void *)); 8338 } 8339 8340 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 8341 nvlist_free(nvroot); 8342 8343 sav->sav_sync = B_FALSE; 8344 } 8345 8346 /* 8347 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. 8348 * The all-vdev ZAP must be empty. 8349 */ 8350 static void 8351 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) 8352 { 8353 spa_t *spa = vd->vdev_spa; 8354 8355 if (vd->vdev_top_zap != 0) { 8356 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 8357 vd->vdev_top_zap, tx)); 8358 } 8359 if (vd->vdev_leaf_zap != 0) { 8360 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 8361 vd->vdev_leaf_zap, tx)); 8362 } 8363 for (uint64_t i = 0; i < vd->vdev_children; i++) { 8364 spa_avz_build(vd->vdev_child[i], avz, tx); 8365 } 8366 } 8367 8368 static void 8369 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 8370 { 8371 nvlist_t *config; 8372 8373 /* 8374 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, 8375 * its config may not be dirty but we still need to build per-vdev ZAPs. 8376 * Similarly, if the pool is being assembled (e.g. after a split), we 8377 * need to rebuild the AVZ although the config may not be dirty. 8378 */ 8379 if (list_is_empty(&spa->spa_config_dirty_list) && 8380 spa->spa_avz_action == AVZ_ACTION_NONE) 8381 return; 8382 8383 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8384 8385 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || 8386 spa->spa_avz_action == AVZ_ACTION_INITIALIZE || 8387 spa->spa_all_vdev_zaps != 0); 8388 8389 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { 8390 /* Make and build the new AVZ */ 8391 uint64_t new_avz = zap_create(spa->spa_meta_objset, 8392 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); 8393 spa_avz_build(spa->spa_root_vdev, new_avz, tx); 8394 8395 /* Diff old AVZ with new one */ 8396 zap_cursor_t zc; 8397 zap_attribute_t za; 8398 8399 for (zap_cursor_init(&zc, spa->spa_meta_objset, 8400 spa->spa_all_vdev_zaps); 8401 zap_cursor_retrieve(&zc, &za) == 0; 8402 zap_cursor_advance(&zc)) { 8403 uint64_t vdzap = za.za_first_integer; 8404 if (zap_lookup_int(spa->spa_meta_objset, new_avz, 8405 vdzap) == ENOENT) { 8406 /* 8407 * ZAP is listed in old AVZ but not in new one; 8408 * destroy it 8409 */ 8410 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, 8411 tx)); 8412 } 8413 } 8414 8415 zap_cursor_fini(&zc); 8416 8417 /* Destroy the old AVZ */ 8418 VERIFY0(zap_destroy(spa->spa_meta_objset, 8419 spa->spa_all_vdev_zaps, tx)); 8420 8421 /* Replace the old AVZ in the dir obj with the new one */ 8422 VERIFY0(zap_update(spa->spa_meta_objset, 8423 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, 8424 sizeof (new_avz), 1, &new_avz, tx)); 8425 8426 spa->spa_all_vdev_zaps = new_avz; 8427 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { 8428 zap_cursor_t zc; 8429 zap_attribute_t za; 8430 8431 /* Walk through the AVZ and destroy all listed ZAPs */ 8432 for (zap_cursor_init(&zc, spa->spa_meta_objset, 8433 spa->spa_all_vdev_zaps); 8434 zap_cursor_retrieve(&zc, &za) == 0; 8435 zap_cursor_advance(&zc)) { 8436 uint64_t zap = za.za_first_integer; 8437 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); 8438 } 8439 8440 zap_cursor_fini(&zc); 8441 8442 /* Destroy and unlink the AVZ itself */ 8443 VERIFY0(zap_destroy(spa->spa_meta_objset, 8444 spa->spa_all_vdev_zaps, tx)); 8445 VERIFY0(zap_remove(spa->spa_meta_objset, 8446 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); 8447 spa->spa_all_vdev_zaps = 0; 8448 } 8449 8450 if (spa->spa_all_vdev_zaps == 0) { 8451 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, 8452 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, 8453 DMU_POOL_VDEV_ZAP_MAP, tx); 8454 } 8455 spa->spa_avz_action = AVZ_ACTION_NONE; 8456 8457 /* Create ZAPs for vdevs that don't have them. */ 8458 vdev_construct_zaps(spa->spa_root_vdev, tx); 8459 8460 config = spa_config_generate(spa, spa->spa_root_vdev, 8461 dmu_tx_get_txg(tx), B_FALSE); 8462 8463 /* 8464 * If we're upgrading the spa version then make sure that 8465 * the config object gets updated with the correct version. 8466 */ 8467 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 8468 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 8469 spa->spa_uberblock.ub_version); 8470 8471 spa_config_exit(spa, SCL_STATE, FTAG); 8472 8473 nvlist_free(spa->spa_config_syncing); 8474 spa->spa_config_syncing = config; 8475 8476 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 8477 } 8478 8479 static void 8480 spa_sync_version(void *arg, dmu_tx_t *tx) 8481 { 8482 uint64_t *versionp = arg; 8483 uint64_t version = *versionp; 8484 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 8485 8486 /* 8487 * Setting the version is special cased when first creating the pool. 8488 */ 8489 ASSERT(tx->tx_txg != TXG_INITIAL); 8490 8491 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 8492 ASSERT(version >= spa_version(spa)); 8493 8494 spa->spa_uberblock.ub_version = version; 8495 vdev_config_dirty(spa->spa_root_vdev); 8496 spa_history_log_internal(spa, "set", tx, "version=%lld", 8497 (longlong_t)version); 8498 } 8499 8500 /* 8501 * Set zpool properties. 8502 */ 8503 static void 8504 spa_sync_props(void *arg, dmu_tx_t *tx) 8505 { 8506 nvlist_t *nvp = arg; 8507 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 8508 objset_t *mos = spa->spa_meta_objset; 8509 nvpair_t *elem = NULL; 8510 8511 mutex_enter(&spa->spa_props_lock); 8512 8513 while ((elem = nvlist_next_nvpair(nvp, elem))) { 8514 uint64_t intval; 8515 char *strval, *fname; 8516 zpool_prop_t prop; 8517 const char *propname; 8518 zprop_type_t proptype; 8519 spa_feature_t fid; 8520 8521 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 8522 case ZPOOL_PROP_INVAL: 8523 /* 8524 * We checked this earlier in spa_prop_validate(). 8525 */ 8526 ASSERT(zpool_prop_feature(nvpair_name(elem))); 8527 8528 fname = strchr(nvpair_name(elem), '@') + 1; 8529 VERIFY0(zfeature_lookup_name(fname, &fid)); 8530 8531 spa_feature_enable(spa, fid, tx); 8532 spa_history_log_internal(spa, "set", tx, 8533 "%s=enabled", nvpair_name(elem)); 8534 break; 8535 8536 case ZPOOL_PROP_VERSION: 8537 intval = fnvpair_value_uint64(elem); 8538 /* 8539 * The version is synced separately before other 8540 * properties and should be correct by now. 8541 */ 8542 ASSERT3U(spa_version(spa), >=, intval); 8543 break; 8544 8545 case ZPOOL_PROP_ALTROOT: 8546 /* 8547 * 'altroot' is a non-persistent property. It should 8548 * have been set temporarily at creation or import time. 8549 */ 8550 ASSERT(spa->spa_root != NULL); 8551 break; 8552 8553 case ZPOOL_PROP_READONLY: 8554 case ZPOOL_PROP_CACHEFILE: 8555 /* 8556 * 'readonly' and 'cachefile' are also non-persistent 8557 * properties. 8558 */ 8559 break; 8560 case ZPOOL_PROP_COMMENT: 8561 strval = fnvpair_value_string(elem); 8562 if (spa->spa_comment != NULL) 8563 spa_strfree(spa->spa_comment); 8564 spa->spa_comment = spa_strdup(strval); 8565 /* 8566 * We need to dirty the configuration on all the vdevs 8567 * so that their labels get updated. It's unnecessary 8568 * to do this for pool creation since the vdev's 8569 * configuration has already been dirtied. 8570 */ 8571 if (tx->tx_txg != TXG_INITIAL) 8572 vdev_config_dirty(spa->spa_root_vdev); 8573 spa_history_log_internal(spa, "set", tx, 8574 "%s=%s", nvpair_name(elem), strval); 8575 break; 8576 default: 8577 /* 8578 * Set pool property values in the poolprops mos object. 8579 */ 8580 if (spa->spa_pool_props_object == 0) { 8581 spa->spa_pool_props_object = 8582 zap_create_link(mos, DMU_OT_POOL_PROPS, 8583 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 8584 tx); 8585 } 8586 8587 /* normalize the property name */ 8588 propname = zpool_prop_to_name(prop); 8589 proptype = zpool_prop_get_type(prop); 8590 8591 if (nvpair_type(elem) == DATA_TYPE_STRING) { 8592 ASSERT(proptype == PROP_TYPE_STRING); 8593 strval = fnvpair_value_string(elem); 8594 VERIFY0(zap_update(mos, 8595 spa->spa_pool_props_object, propname, 8596 1, strlen(strval) + 1, strval, tx)); 8597 spa_history_log_internal(spa, "set", tx, 8598 "%s=%s", nvpair_name(elem), strval); 8599 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 8600 intval = fnvpair_value_uint64(elem); 8601 8602 if (proptype == PROP_TYPE_INDEX) { 8603 const char *unused; 8604 VERIFY0(zpool_prop_index_to_string( 8605 prop, intval, &unused)); 8606 } 8607 VERIFY0(zap_update(mos, 8608 spa->spa_pool_props_object, propname, 8609 8, 1, &intval, tx)); 8610 spa_history_log_internal(spa, "set", tx, 8611 "%s=%lld", nvpair_name(elem), 8612 (longlong_t)intval); 8613 } else { 8614 ASSERT(0); /* not allowed */ 8615 } 8616 8617 switch (prop) { 8618 case ZPOOL_PROP_DELEGATION: 8619 spa->spa_delegation = intval; 8620 break; 8621 case ZPOOL_PROP_BOOTFS: 8622 spa->spa_bootfs = intval; 8623 break; 8624 case ZPOOL_PROP_FAILUREMODE: 8625 spa->spa_failmode = intval; 8626 break; 8627 case ZPOOL_PROP_AUTOTRIM: 8628 spa->spa_autotrim = intval; 8629 spa_async_request(spa, 8630 SPA_ASYNC_AUTOTRIM_RESTART); 8631 break; 8632 case ZPOOL_PROP_AUTOEXPAND: 8633 spa->spa_autoexpand = intval; 8634 if (tx->tx_txg != TXG_INITIAL) 8635 spa_async_request(spa, 8636 SPA_ASYNC_AUTOEXPAND); 8637 break; 8638 case ZPOOL_PROP_MULTIHOST: 8639 spa->spa_multihost = intval; 8640 break; 8641 default: 8642 break; 8643 } 8644 } 8645 8646 } 8647 8648 mutex_exit(&spa->spa_props_lock); 8649 } 8650 8651 /* 8652 * Perform one-time upgrade on-disk changes. spa_version() does not 8653 * reflect the new version this txg, so there must be no changes this 8654 * txg to anything that the upgrade code depends on after it executes. 8655 * Therefore this must be called after dsl_pool_sync() does the sync 8656 * tasks. 8657 */ 8658 static void 8659 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 8660 { 8661 if (spa_sync_pass(spa) != 1) 8662 return; 8663 8664 dsl_pool_t *dp = spa->spa_dsl_pool; 8665 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 8666 8667 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 8668 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 8669 dsl_pool_create_origin(dp, tx); 8670 8671 /* Keeping the origin open increases spa_minref */ 8672 spa->spa_minref += 3; 8673 } 8674 8675 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 8676 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 8677 dsl_pool_upgrade_clones(dp, tx); 8678 } 8679 8680 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 8681 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 8682 dsl_pool_upgrade_dir_clones(dp, tx); 8683 8684 /* Keeping the freedir open increases spa_minref */ 8685 spa->spa_minref += 3; 8686 } 8687 8688 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 8689 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 8690 spa_feature_create_zap_objects(spa, tx); 8691 } 8692 8693 /* 8694 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 8695 * when possibility to use lz4 compression for metadata was added 8696 * Old pools that have this feature enabled must be upgraded to have 8697 * this feature active 8698 */ 8699 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 8700 boolean_t lz4_en = spa_feature_is_enabled(spa, 8701 SPA_FEATURE_LZ4_COMPRESS); 8702 boolean_t lz4_ac = spa_feature_is_active(spa, 8703 SPA_FEATURE_LZ4_COMPRESS); 8704 8705 if (lz4_en && !lz4_ac) 8706 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 8707 } 8708 8709 /* 8710 * If we haven't written the salt, do so now. Note that the 8711 * feature may not be activated yet, but that's fine since 8712 * the presence of this ZAP entry is backwards compatible. 8713 */ 8714 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 8715 DMU_POOL_CHECKSUM_SALT) == ENOENT) { 8716 VERIFY0(zap_add(spa->spa_meta_objset, 8717 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, 8718 sizeof (spa->spa_cksum_salt.zcs_bytes), 8719 spa->spa_cksum_salt.zcs_bytes, tx)); 8720 } 8721 8722 rrw_exit(&dp->dp_config_rwlock, FTAG); 8723 } 8724 8725 static void 8726 vdev_indirect_state_sync_verify(vdev_t *vd) 8727 { 8728 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping; 8729 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births; 8730 8731 if (vd->vdev_ops == &vdev_indirect_ops) { 8732 ASSERT(vim != NULL); 8733 ASSERT(vib != NULL); 8734 } 8735 8736 uint64_t obsolete_sm_object = 0; 8737 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 8738 if (obsolete_sm_object != 0) { 8739 ASSERT(vd->vdev_obsolete_sm != NULL); 8740 ASSERT(vd->vdev_removing || 8741 vd->vdev_ops == &vdev_indirect_ops); 8742 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0); 8743 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0); 8744 ASSERT3U(obsolete_sm_object, ==, 8745 space_map_object(vd->vdev_obsolete_sm)); 8746 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=, 8747 space_map_allocated(vd->vdev_obsolete_sm)); 8748 } 8749 ASSERT(vd->vdev_obsolete_segments != NULL); 8750 8751 /* 8752 * Since frees / remaps to an indirect vdev can only 8753 * happen in syncing context, the obsolete segments 8754 * tree must be empty when we start syncing. 8755 */ 8756 ASSERT0(range_tree_space(vd->vdev_obsolete_segments)); 8757 } 8758 8759 /* 8760 * Set the top-level vdev's max queue depth. Evaluate each top-level's 8761 * async write queue depth in case it changed. The max queue depth will 8762 * not change in the middle of syncing out this txg. 8763 */ 8764 static void 8765 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa) 8766 { 8767 ASSERT(spa_writeable(spa)); 8768 8769 vdev_t *rvd = spa->spa_root_vdev; 8770 uint32_t max_queue_depth = zfs_vdev_async_write_max_active * 8771 zfs_vdev_queue_depth_pct / 100; 8772 metaslab_class_t *normal = spa_normal_class(spa); 8773 metaslab_class_t *special = spa_special_class(spa); 8774 metaslab_class_t *dedup = spa_dedup_class(spa); 8775 8776 uint64_t slots_per_allocator = 0; 8777 for (int c = 0; c < rvd->vdev_children; c++) { 8778 vdev_t *tvd = rvd->vdev_child[c]; 8779 8780 metaslab_group_t *mg = tvd->vdev_mg; 8781 if (mg == NULL || !metaslab_group_initialized(mg)) 8782 continue; 8783 8784 metaslab_class_t *mc = mg->mg_class; 8785 if (mc != normal && mc != special && mc != dedup) 8786 continue; 8787 8788 /* 8789 * It is safe to do a lock-free check here because only async 8790 * allocations look at mg_max_alloc_queue_depth, and async 8791 * allocations all happen from spa_sync(). 8792 */ 8793 for (int i = 0; i < mg->mg_allocators; i++) { 8794 ASSERT0(zfs_refcount_count( 8795 &(mg->mg_allocator[i].mga_alloc_queue_depth))); 8796 } 8797 mg->mg_max_alloc_queue_depth = max_queue_depth; 8798 8799 for (int i = 0; i < mg->mg_allocators; i++) { 8800 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth = 8801 zfs_vdev_def_queue_depth; 8802 } 8803 slots_per_allocator += zfs_vdev_def_queue_depth; 8804 } 8805 8806 for (int i = 0; i < spa->spa_alloc_count; i++) { 8807 ASSERT0(zfs_refcount_count(&normal->mc_alloc_slots[i])); 8808 ASSERT0(zfs_refcount_count(&special->mc_alloc_slots[i])); 8809 ASSERT0(zfs_refcount_count(&dedup->mc_alloc_slots[i])); 8810 normal->mc_alloc_max_slots[i] = slots_per_allocator; 8811 special->mc_alloc_max_slots[i] = slots_per_allocator; 8812 dedup->mc_alloc_max_slots[i] = slots_per_allocator; 8813 } 8814 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 8815 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 8816 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 8817 } 8818 8819 static void 8820 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx) 8821 { 8822 ASSERT(spa_writeable(spa)); 8823 8824 vdev_t *rvd = spa->spa_root_vdev; 8825 for (int c = 0; c < rvd->vdev_children; c++) { 8826 vdev_t *vd = rvd->vdev_child[c]; 8827 vdev_indirect_state_sync_verify(vd); 8828 8829 if (vdev_indirect_should_condense(vd)) { 8830 spa_condense_indirect_start_sync(vd, tx); 8831 break; 8832 } 8833 } 8834 } 8835 8836 static void 8837 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx) 8838 { 8839 objset_t *mos = spa->spa_meta_objset; 8840 dsl_pool_t *dp = spa->spa_dsl_pool; 8841 uint64_t txg = tx->tx_txg; 8842 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 8843 8844 do { 8845 int pass = ++spa->spa_sync_pass; 8846 8847 spa_sync_config_object(spa, tx); 8848 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 8849 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 8850 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 8851 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 8852 spa_errlog_sync(spa, txg); 8853 dsl_pool_sync(dp, txg); 8854 8855 if (pass < zfs_sync_pass_deferred_free || 8856 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 8857 /* 8858 * If the log space map feature is active we don't 8859 * care about deferred frees and the deferred bpobj 8860 * as the log space map should effectively have the 8861 * same results (i.e. appending only to one object). 8862 */ 8863 spa_sync_frees(spa, free_bpl, tx); 8864 } else { 8865 /* 8866 * We can not defer frees in pass 1, because 8867 * we sync the deferred frees later in pass 1. 8868 */ 8869 ASSERT3U(pass, >, 1); 8870 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb, 8871 &spa->spa_deferred_bpobj, tx); 8872 } 8873 8874 ddt_sync(spa, txg); 8875 dsl_scan_sync(dp, tx); 8876 svr_sync(spa, tx); 8877 spa_sync_upgrades(spa, tx); 8878 8879 spa_flush_metaslabs(spa, tx); 8880 8881 vdev_t *vd = NULL; 8882 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 8883 != NULL) 8884 vdev_sync(vd, txg); 8885 8886 /* 8887 * Note: We need to check if the MOS is dirty because we could 8888 * have marked the MOS dirty without updating the uberblock 8889 * (e.g. if we have sync tasks but no dirty user data). We need 8890 * to check the uberblock's rootbp because it is updated if we 8891 * have synced out dirty data (though in this case the MOS will 8892 * most likely also be dirty due to second order effects, we 8893 * don't want to rely on that here). 8894 */ 8895 if (pass == 1 && 8896 spa->spa_uberblock.ub_rootbp.blk_birth < txg && 8897 !dmu_objset_is_dirty(mos, txg)) { 8898 /* 8899 * Nothing changed on the first pass, therefore this 8900 * TXG is a no-op. Avoid syncing deferred frees, so 8901 * that we can keep this TXG as a no-op. 8902 */ 8903 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 8904 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 8905 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 8906 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg)); 8907 break; 8908 } 8909 8910 spa_sync_deferred_frees(spa, tx); 8911 } while (dmu_objset_is_dirty(mos, txg)); 8912 } 8913 8914 /* 8915 * Rewrite the vdev configuration (which includes the uberblock) to 8916 * commit the transaction group. 8917 * 8918 * If there are no dirty vdevs, we sync the uberblock to a few random 8919 * top-level vdevs that are known to be visible in the config cache 8920 * (see spa_vdev_add() for a complete description). If there *are* dirty 8921 * vdevs, sync the uberblock to all vdevs. 8922 */ 8923 static void 8924 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx) 8925 { 8926 vdev_t *rvd = spa->spa_root_vdev; 8927 uint64_t txg = tx->tx_txg; 8928 8929 for (;;) { 8930 int error = 0; 8931 8932 /* 8933 * We hold SCL_STATE to prevent vdev open/close/etc. 8934 * while we're attempting to write the vdev labels. 8935 */ 8936 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8937 8938 if (list_is_empty(&spa->spa_config_dirty_list)) { 8939 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 8940 int svdcount = 0; 8941 int children = rvd->vdev_children; 8942 int c0 = spa_get_random(children); 8943 8944 for (int c = 0; c < children; c++) { 8945 vdev_t *vd = 8946 rvd->vdev_child[(c0 + c) % children]; 8947 8948 /* Stop when revisiting the first vdev */ 8949 if (c > 0 && svd[0] == vd) 8950 break; 8951 8952 if (vd->vdev_ms_array == 0 || 8953 vd->vdev_islog || 8954 !vdev_is_concrete(vd)) 8955 continue; 8956 8957 svd[svdcount++] = vd; 8958 if (svdcount == SPA_SYNC_MIN_VDEVS) 8959 break; 8960 } 8961 error = vdev_config_sync(svd, svdcount, txg); 8962 } else { 8963 error = vdev_config_sync(rvd->vdev_child, 8964 rvd->vdev_children, txg); 8965 } 8966 8967 if (error == 0) 8968 spa->spa_last_synced_guid = rvd->vdev_guid; 8969 8970 spa_config_exit(spa, SCL_STATE, FTAG); 8971 8972 if (error == 0) 8973 break; 8974 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR); 8975 zio_resume_wait(spa); 8976 } 8977 } 8978 8979 /* 8980 * Sync the specified transaction group. New blocks may be dirtied as 8981 * part of the process, so we iterate until it converges. 8982 */ 8983 void 8984 spa_sync(spa_t *spa, uint64_t txg) 8985 { 8986 vdev_t *vd = NULL; 8987 8988 VERIFY(spa_writeable(spa)); 8989 8990 /* 8991 * Wait for i/os issued in open context that need to complete 8992 * before this txg syncs. 8993 */ 8994 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]); 8995 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 8996 ZIO_FLAG_CANFAIL); 8997 8998 /* 8999 * Lock out configuration changes. 9000 */ 9001 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 9002 9003 spa->spa_syncing_txg = txg; 9004 spa->spa_sync_pass = 0; 9005 9006 for (int i = 0; i < spa->spa_alloc_count; i++) { 9007 mutex_enter(&spa->spa_alloc_locks[i]); 9008 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i])); 9009 mutex_exit(&spa->spa_alloc_locks[i]); 9010 } 9011 9012 /* 9013 * If there are any pending vdev state changes, convert them 9014 * into config changes that go out with this transaction group. 9015 */ 9016 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 9017 while (list_head(&spa->spa_state_dirty_list) != NULL) { 9018 /* 9019 * We need the write lock here because, for aux vdevs, 9020 * calling vdev_config_dirty() modifies sav_config. 9021 * This is ugly and will become unnecessary when we 9022 * eliminate the aux vdev wart by integrating all vdevs 9023 * into the root vdev tree. 9024 */ 9025 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9026 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 9027 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 9028 vdev_state_clean(vd); 9029 vdev_config_dirty(vd); 9030 } 9031 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9032 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 9033 } 9034 spa_config_exit(spa, SCL_STATE, FTAG); 9035 9036 dsl_pool_t *dp = spa->spa_dsl_pool; 9037 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 9038 9039 spa->spa_sync_starttime = gethrtime(); 9040 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 9041 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, 9042 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + 9043 NSEC_TO_TICK(spa->spa_deadman_synctime)); 9044 9045 /* 9046 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 9047 * set spa_deflate if we have no raid-z vdevs. 9048 */ 9049 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 9050 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 9051 vdev_t *rvd = spa->spa_root_vdev; 9052 9053 int i; 9054 for (i = 0; i < rvd->vdev_children; i++) { 9055 vd = rvd->vdev_child[i]; 9056 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 9057 break; 9058 } 9059 if (i == rvd->vdev_children) { 9060 spa->spa_deflate = TRUE; 9061 VERIFY0(zap_add(spa->spa_meta_objset, 9062 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 9063 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 9064 } 9065 } 9066 9067 spa_sync_adjust_vdev_max_queue_depth(spa); 9068 9069 spa_sync_condense_indirect(spa, tx); 9070 9071 spa_sync_iterate_to_convergence(spa, tx); 9072 9073 #ifdef ZFS_DEBUG 9074 if (!list_is_empty(&spa->spa_config_dirty_list)) { 9075 /* 9076 * Make sure that the number of ZAPs for all the vdevs matches 9077 * the number of ZAPs in the per-vdev ZAP list. This only gets 9078 * called if the config is dirty; otherwise there may be 9079 * outstanding AVZ operations that weren't completed in 9080 * spa_sync_config_object. 9081 */ 9082 uint64_t all_vdev_zap_entry_count; 9083 ASSERT0(zap_count(spa->spa_meta_objset, 9084 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); 9085 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, 9086 all_vdev_zap_entry_count); 9087 } 9088 #endif 9089 9090 if (spa->spa_vdev_removal != NULL) { 9091 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]); 9092 } 9093 9094 spa_sync_rewrite_vdev_config(spa, tx); 9095 dmu_tx_commit(tx); 9096 9097 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 9098 spa->spa_deadman_tqid = 0; 9099 9100 /* 9101 * Clear the dirty config list. 9102 */ 9103 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 9104 vdev_config_clean(vd); 9105 9106 /* 9107 * Now that the new config has synced transactionally, 9108 * let it become visible to the config cache. 9109 */ 9110 if (spa->spa_config_syncing != NULL) { 9111 spa_config_set(spa, spa->spa_config_syncing); 9112 spa->spa_config_txg = txg; 9113 spa->spa_config_syncing = NULL; 9114 } 9115 9116 dsl_pool_sync_done(dp, txg); 9117 9118 for (int i = 0; i < spa->spa_alloc_count; i++) { 9119 mutex_enter(&spa->spa_alloc_locks[i]); 9120 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i])); 9121 mutex_exit(&spa->spa_alloc_locks[i]); 9122 } 9123 9124 /* 9125 * Update usable space statistics. 9126 */ 9127 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 9128 != NULL) 9129 vdev_sync_done(vd, txg); 9130 9131 metaslab_class_evict_old(spa->spa_normal_class, txg); 9132 metaslab_class_evict_old(spa->spa_log_class, txg); 9133 9134 spa_sync_close_syncing_log_sm(spa); 9135 9136 spa_update_dspace(spa); 9137 9138 /* 9139 * It had better be the case that we didn't dirty anything 9140 * since vdev_config_sync(). 9141 */ 9142 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 9143 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 9144 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 9145 9146 while (zfs_pause_spa_sync) 9147 delay(1); 9148 9149 spa->spa_sync_pass = 0; 9150 9151 /* 9152 * Update the last synced uberblock here. We want to do this at 9153 * the end of spa_sync() so that consumers of spa_last_synced_txg() 9154 * will be guaranteed that all the processing associated with 9155 * that txg has been completed. 9156 */ 9157 spa->spa_ubsync = spa->spa_uberblock; 9158 spa_config_exit(spa, SCL_CONFIG, FTAG); 9159 9160 spa_handle_ignored_writes(spa); 9161 9162 /* 9163 * If any async tasks have been requested, kick them off. 9164 */ 9165 spa_async_dispatch(spa); 9166 } 9167 9168 /* 9169 * Sync all pools. We don't want to hold the namespace lock across these 9170 * operations, so we take a reference on the spa_t and drop the lock during the 9171 * sync. 9172 */ 9173 void 9174 spa_sync_allpools(void) 9175 { 9176 spa_t *spa = NULL; 9177 mutex_enter(&spa_namespace_lock); 9178 while ((spa = spa_next(spa)) != NULL) { 9179 if (spa_state(spa) != POOL_STATE_ACTIVE || 9180 !spa_writeable(spa) || spa_suspended(spa)) 9181 continue; 9182 spa_open_ref(spa, FTAG); 9183 mutex_exit(&spa_namespace_lock); 9184 txg_wait_synced(spa_get_dsl(spa), 0); 9185 mutex_enter(&spa_namespace_lock); 9186 spa_close(spa, FTAG); 9187 } 9188 mutex_exit(&spa_namespace_lock); 9189 } 9190 9191 /* 9192 * ========================================================================== 9193 * Miscellaneous routines 9194 * ========================================================================== 9195 */ 9196 9197 /* 9198 * Remove all pools in the system. 9199 */ 9200 void 9201 spa_evict_all(void) 9202 { 9203 spa_t *spa; 9204 9205 /* 9206 * Remove all cached state. All pools should be closed now, 9207 * so every spa in the AVL tree should be unreferenced. 9208 */ 9209 mutex_enter(&spa_namespace_lock); 9210 while ((spa = spa_next(NULL)) != NULL) { 9211 /* 9212 * Stop async tasks. The async thread may need to detach 9213 * a device that's been replaced, which requires grabbing 9214 * spa_namespace_lock, so we must drop it here. 9215 */ 9216 spa_open_ref(spa, FTAG); 9217 mutex_exit(&spa_namespace_lock); 9218 spa_async_suspend(spa); 9219 mutex_enter(&spa_namespace_lock); 9220 spa_close(spa, FTAG); 9221 9222 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 9223 spa_unload(spa); 9224 spa_deactivate(spa); 9225 } 9226 spa_remove(spa); 9227 } 9228 mutex_exit(&spa_namespace_lock); 9229 } 9230 9231 vdev_t * 9232 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 9233 { 9234 vdev_t *vd; 9235 int i; 9236 9237 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 9238 return (vd); 9239 9240 if (aux) { 9241 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 9242 vd = spa->spa_l2cache.sav_vdevs[i]; 9243 if (vd->vdev_guid == guid) 9244 return (vd); 9245 } 9246 9247 for (i = 0; i < spa->spa_spares.sav_count; i++) { 9248 vd = spa->spa_spares.sav_vdevs[i]; 9249 if (vd->vdev_guid == guid) 9250 return (vd); 9251 } 9252 } 9253 9254 return (NULL); 9255 } 9256 9257 void 9258 spa_upgrade(spa_t *spa, uint64_t version) 9259 { 9260 ASSERT(spa_writeable(spa)); 9261 9262 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 9263 9264 /* 9265 * This should only be called for a non-faulted pool, and since a 9266 * future version would result in an unopenable pool, this shouldn't be 9267 * possible. 9268 */ 9269 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 9270 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 9271 9272 spa->spa_uberblock.ub_version = version; 9273 vdev_config_dirty(spa->spa_root_vdev); 9274 9275 spa_config_exit(spa, SCL_ALL, FTAG); 9276 9277 txg_wait_synced(spa_get_dsl(spa), 0); 9278 } 9279 9280 boolean_t 9281 spa_has_spare(spa_t *spa, uint64_t guid) 9282 { 9283 int i; 9284 uint64_t spareguid; 9285 spa_aux_vdev_t *sav = &spa->spa_spares; 9286 9287 for (i = 0; i < sav->sav_count; i++) 9288 if (sav->sav_vdevs[i]->vdev_guid == guid) 9289 return (B_TRUE); 9290 9291 for (i = 0; i < sav->sav_npending; i++) { 9292 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 9293 &spareguid) == 0 && spareguid == guid) 9294 return (B_TRUE); 9295 } 9296 9297 return (B_FALSE); 9298 } 9299 9300 /* 9301 * Check if a pool has an active shared spare device. 9302 * Note: reference count of an active spare is 2, as a spare and as a replace 9303 */ 9304 static boolean_t 9305 spa_has_active_shared_spare(spa_t *spa) 9306 { 9307 int i, refcnt; 9308 uint64_t pool; 9309 spa_aux_vdev_t *sav = &spa->spa_spares; 9310 9311 for (i = 0; i < sav->sav_count; i++) { 9312 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 9313 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 9314 refcnt > 2) 9315 return (B_TRUE); 9316 } 9317 9318 return (B_FALSE); 9319 } 9320 9321 uint64_t 9322 spa_total_metaslabs(spa_t *spa) 9323 { 9324 vdev_t *rvd = spa->spa_root_vdev; 9325 9326 uint64_t m = 0; 9327 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 9328 vdev_t *vd = rvd->vdev_child[c]; 9329 if (!vdev_is_concrete(vd)) 9330 continue; 9331 m += vd->vdev_ms_count; 9332 } 9333 return (m); 9334 } 9335 9336 /* 9337 * Notify any waiting threads that some activity has switched from being in- 9338 * progress to not-in-progress so that the thread can wake up and determine 9339 * whether it is finished waiting. 9340 */ 9341 void 9342 spa_notify_waiters(spa_t *spa) 9343 { 9344 /* 9345 * Acquiring spa_activities_lock here prevents the cv_broadcast from 9346 * happening between the waiting thread's check and cv_wait. 9347 */ 9348 mutex_enter(&spa->spa_activities_lock); 9349 cv_broadcast(&spa->spa_activities_cv); 9350 mutex_exit(&spa->spa_activities_lock); 9351 } 9352 9353 /* 9354 * Notify any waiting threads that the pool is exporting, and then block until 9355 * they are finished using the spa_t. 9356 */ 9357 void 9358 spa_wake_waiters(spa_t *spa) 9359 { 9360 mutex_enter(&spa->spa_activities_lock); 9361 spa->spa_waiters_cancel = B_TRUE; 9362 cv_broadcast(&spa->spa_activities_cv); 9363 while (spa->spa_waiters != 0) 9364 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock); 9365 spa->spa_waiters_cancel = B_FALSE; 9366 mutex_exit(&spa->spa_activities_lock); 9367 } 9368 9369 /* Whether the vdev or any of its descendants are being initialized/trimmed. */ 9370 static boolean_t 9371 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity) 9372 { 9373 spa_t *spa = vd->vdev_spa; 9374 9375 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER)); 9376 ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); 9377 ASSERT(activity == ZPOOL_WAIT_INITIALIZE || 9378 activity == ZPOOL_WAIT_TRIM); 9379 9380 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ? 9381 &vd->vdev_initialize_lock : &vd->vdev_trim_lock; 9382 9383 mutex_exit(&spa->spa_activities_lock); 9384 mutex_enter(lock); 9385 mutex_enter(&spa->spa_activities_lock); 9386 9387 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ? 9388 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) : 9389 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE); 9390 mutex_exit(lock); 9391 9392 if (in_progress) 9393 return (B_TRUE); 9394 9395 for (int i = 0; i < vd->vdev_children; i++) { 9396 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i], 9397 activity)) 9398 return (B_TRUE); 9399 } 9400 9401 return (B_FALSE); 9402 } 9403 9404 /* 9405 * If use_guid is true, this checks whether the vdev specified by guid is 9406 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool 9407 * is being initialized/trimmed. The caller must hold the config lock and 9408 * spa_activities_lock. 9409 */ 9410 static int 9411 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid, 9412 zpool_wait_activity_t activity, boolean_t *in_progress) 9413 { 9414 mutex_exit(&spa->spa_activities_lock); 9415 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 9416 mutex_enter(&spa->spa_activities_lock); 9417 9418 vdev_t *vd; 9419 if (use_guid) { 9420 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 9421 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) { 9422 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9423 return (EINVAL); 9424 } 9425 } else { 9426 vd = spa->spa_root_vdev; 9427 } 9428 9429 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity); 9430 9431 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9432 return (0); 9433 } 9434 9435 /* 9436 * Locking for waiting threads 9437 * --------------------------- 9438 * 9439 * Waiting threads need a way to check whether a given activity is in progress, 9440 * and then, if it is, wait for it to complete. Each activity will have some 9441 * in-memory representation of the relevant on-disk state which can be used to 9442 * determine whether or not the activity is in progress. The in-memory state and 9443 * the locking used to protect it will be different for each activity, and may 9444 * not be suitable for use with a cvar (e.g., some state is protected by the 9445 * config lock). To allow waiting threads to wait without any races, another 9446 * lock, spa_activities_lock, is used. 9447 * 9448 * When the state is checked, both the activity-specific lock (if there is one) 9449 * and spa_activities_lock are held. In some cases, the activity-specific lock 9450 * is acquired explicitly (e.g. the config lock). In others, the locking is 9451 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting 9452 * thread releases the activity-specific lock and, if the activity is in 9453 * progress, then cv_waits using spa_activities_lock. 9454 * 9455 * The waiting thread is woken when another thread, one completing some 9456 * activity, updates the state of the activity and then calls 9457 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only 9458 * needs to hold its activity-specific lock when updating the state, and this 9459 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters. 9460 * 9461 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting, 9462 * and because it is held when the waiting thread checks the state of the 9463 * activity, it can never be the case that the completing thread both updates 9464 * the activity state and cv_broadcasts in between the waiting thread's check 9465 * and cv_wait. Thus, a waiting thread can never miss a wakeup. 9466 * 9467 * In order to prevent deadlock, when the waiting thread does its check, in some 9468 * cases it will temporarily drop spa_activities_lock in order to acquire the 9469 * activity-specific lock. The order in which spa_activities_lock and the 9470 * activity specific lock are acquired in the waiting thread is determined by 9471 * the order in which they are acquired in the completing thread; if the 9472 * completing thread calls spa_notify_waiters with the activity-specific lock 9473 * held, then the waiting thread must also acquire the activity-specific lock 9474 * first. 9475 */ 9476 9477 static int 9478 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity, 9479 boolean_t use_tag, uint64_t tag, boolean_t *in_progress) 9480 { 9481 int error = 0; 9482 9483 ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); 9484 9485 switch (activity) { 9486 case ZPOOL_WAIT_CKPT_DISCARD: 9487 *in_progress = 9488 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) && 9489 zap_contains(spa_meta_objset(spa), 9490 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) == 9491 ENOENT); 9492 break; 9493 case ZPOOL_WAIT_FREE: 9494 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS && 9495 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) || 9496 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) || 9497 spa_livelist_delete_check(spa)); 9498 break; 9499 case ZPOOL_WAIT_INITIALIZE: 9500 case ZPOOL_WAIT_TRIM: 9501 error = spa_vdev_activity_in_progress(spa, use_tag, tag, 9502 activity, in_progress); 9503 break; 9504 case ZPOOL_WAIT_REPLACE: 9505 mutex_exit(&spa->spa_activities_lock); 9506 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 9507 mutex_enter(&spa->spa_activities_lock); 9508 9509 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev); 9510 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9511 break; 9512 case ZPOOL_WAIT_REMOVE: 9513 *in_progress = (spa->spa_removing_phys.sr_state == 9514 DSS_SCANNING); 9515 break; 9516 case ZPOOL_WAIT_RESILVER: 9517 if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev))) 9518 break; 9519 /* fall through */ 9520 case ZPOOL_WAIT_SCRUB: 9521 { 9522 boolean_t scanning, paused, is_scrub; 9523 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 9524 9525 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB); 9526 scanning = (scn->scn_phys.scn_state == DSS_SCANNING); 9527 paused = dsl_scan_is_paused_scrub(scn); 9528 *in_progress = (scanning && !paused && 9529 is_scrub == (activity == ZPOOL_WAIT_SCRUB)); 9530 break; 9531 } 9532 default: 9533 panic("unrecognized value for activity %d", activity); 9534 } 9535 9536 return (error); 9537 } 9538 9539 static int 9540 spa_wait_common(const char *pool, zpool_wait_activity_t activity, 9541 boolean_t use_tag, uint64_t tag, boolean_t *waited) 9542 { 9543 /* 9544 * The tag is used to distinguish between instances of an activity. 9545 * 'initialize' and 'trim' are the only activities that we use this for. 9546 * The other activities can only have a single instance in progress in a 9547 * pool at one time, making the tag unnecessary. 9548 * 9549 * There can be multiple devices being replaced at once, but since they 9550 * all finish once resilvering finishes, we don't bother keeping track 9551 * of them individually, we just wait for them all to finish. 9552 */ 9553 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE && 9554 activity != ZPOOL_WAIT_TRIM) 9555 return (EINVAL); 9556 9557 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES) 9558 return (EINVAL); 9559 9560 spa_t *spa; 9561 int error = spa_open(pool, &spa, FTAG); 9562 if (error != 0) 9563 return (error); 9564 9565 /* 9566 * Increment the spa's waiter count so that we can call spa_close and 9567 * still ensure that the spa_t doesn't get freed before this thread is 9568 * finished with it when the pool is exported. We want to call spa_close 9569 * before we start waiting because otherwise the additional ref would 9570 * prevent the pool from being exported or destroyed throughout the 9571 * potentially long wait. 9572 */ 9573 mutex_enter(&spa->spa_activities_lock); 9574 spa->spa_waiters++; 9575 spa_close(spa, FTAG); 9576 9577 *waited = B_FALSE; 9578 for (;;) { 9579 boolean_t in_progress; 9580 error = spa_activity_in_progress(spa, activity, use_tag, tag, 9581 &in_progress); 9582 9583 if (error || !in_progress || spa->spa_waiters_cancel) 9584 break; 9585 9586 *waited = B_TRUE; 9587 9588 if (cv_wait_sig(&spa->spa_activities_cv, 9589 &spa->spa_activities_lock) == 0) { 9590 error = EINTR; 9591 break; 9592 } 9593 } 9594 9595 spa->spa_waiters--; 9596 cv_signal(&spa->spa_waiters_cv); 9597 mutex_exit(&spa->spa_activities_lock); 9598 9599 return (error); 9600 } 9601 9602 /* 9603 * Wait for a particular instance of the specified activity to complete, where 9604 * the instance is identified by 'tag' 9605 */ 9606 int 9607 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag, 9608 boolean_t *waited) 9609 { 9610 return (spa_wait_common(pool, activity, B_TRUE, tag, waited)); 9611 } 9612 9613 /* 9614 * Wait for all instances of the specified activity complete 9615 */ 9616 int 9617 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited) 9618 { 9619 9620 return (spa_wait_common(pool, activity, B_FALSE, 0, waited)); 9621 } 9622 9623 sysevent_t * 9624 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 9625 { 9626 sysevent_t *ev = NULL; 9627 #ifdef _KERNEL 9628 nvlist_t *resource; 9629 9630 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl); 9631 if (resource) { 9632 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP); 9633 ev->resource = resource; 9634 } 9635 #endif 9636 return (ev); 9637 } 9638 9639 void 9640 spa_event_post(sysevent_t *ev) 9641 { 9642 #ifdef _KERNEL 9643 if (ev) { 9644 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb); 9645 kmem_free(ev, sizeof (*ev)); 9646 } 9647 #endif 9648 } 9649 9650 /* 9651 * Post a zevent corresponding to the given sysevent. The 'name' must be one 9652 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be 9653 * filled in from the spa and (optionally) the vdev. This doesn't do anything 9654 * in the userland libzpool, as we don't want consumers to misinterpret ztest 9655 * or zdb as real changes. 9656 */ 9657 void 9658 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 9659 { 9660 spa_event_post(spa_event_create(spa, vd, hist_nvl, name)); 9661 } 9662 9663 /* state manipulation functions */ 9664 EXPORT_SYMBOL(spa_open); 9665 EXPORT_SYMBOL(spa_open_rewind); 9666 EXPORT_SYMBOL(spa_get_stats); 9667 EXPORT_SYMBOL(spa_create); 9668 EXPORT_SYMBOL(spa_import); 9669 EXPORT_SYMBOL(spa_tryimport); 9670 EXPORT_SYMBOL(spa_destroy); 9671 EXPORT_SYMBOL(spa_export); 9672 EXPORT_SYMBOL(spa_reset); 9673 EXPORT_SYMBOL(spa_async_request); 9674 EXPORT_SYMBOL(spa_async_suspend); 9675 EXPORT_SYMBOL(spa_async_resume); 9676 EXPORT_SYMBOL(spa_inject_addref); 9677 EXPORT_SYMBOL(spa_inject_delref); 9678 EXPORT_SYMBOL(spa_scan_stat_init); 9679 EXPORT_SYMBOL(spa_scan_get_stats); 9680 9681 /* device manipulation */ 9682 EXPORT_SYMBOL(spa_vdev_add); 9683 EXPORT_SYMBOL(spa_vdev_attach); 9684 EXPORT_SYMBOL(spa_vdev_detach); 9685 EXPORT_SYMBOL(spa_vdev_setpath); 9686 EXPORT_SYMBOL(spa_vdev_setfru); 9687 EXPORT_SYMBOL(spa_vdev_split_mirror); 9688 9689 /* spare statech is global across all pools) */ 9690 EXPORT_SYMBOL(spa_spare_add); 9691 EXPORT_SYMBOL(spa_spare_remove); 9692 EXPORT_SYMBOL(spa_spare_exists); 9693 EXPORT_SYMBOL(spa_spare_activate); 9694 9695 /* L2ARC statech is global across all pools) */ 9696 EXPORT_SYMBOL(spa_l2cache_add); 9697 EXPORT_SYMBOL(spa_l2cache_remove); 9698 EXPORT_SYMBOL(spa_l2cache_exists); 9699 EXPORT_SYMBOL(spa_l2cache_activate); 9700 EXPORT_SYMBOL(spa_l2cache_drop); 9701 9702 /* scanning */ 9703 EXPORT_SYMBOL(spa_scan); 9704 EXPORT_SYMBOL(spa_scan_stop); 9705 9706 /* spa syncing */ 9707 EXPORT_SYMBOL(spa_sync); /* only for DMU use */ 9708 EXPORT_SYMBOL(spa_sync_allpools); 9709 9710 /* properties */ 9711 EXPORT_SYMBOL(spa_prop_set); 9712 EXPORT_SYMBOL(spa_prop_get); 9713 EXPORT_SYMBOL(spa_prop_clear_bootfs); 9714 9715 /* asynchronous event notification */ 9716 EXPORT_SYMBOL(spa_event_notify); 9717 9718 /* BEGIN CSTYLED */ 9719 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, INT, ZMOD_RW, 9720 "log2(fraction of arc that can be used by inflight I/Os when " 9721 "verifying pool during import"); 9722 9723 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW, 9724 "Set to traverse metadata on pool import"); 9725 9726 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW, 9727 "Set to traverse data on pool import"); 9728 9729 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW, 9730 "Print vdev tree to zfs_dbgmsg during pool import"); 9731 9732 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD, 9733 "Percentage of CPUs to run an IO worker thread"); 9734 9735 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, ULONG, ZMOD_RW, 9736 "Allow importing pool with up to this number of missing top-level " 9737 "vdevs (in read-only mode)"); 9738 9739 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT, ZMOD_RW, 9740 "Set the livelist condense zthr to pause"); 9741 9742 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT, ZMOD_RW, 9743 "Set the livelist condense synctask to pause"); 9744 9745 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel, INT, ZMOD_RW, 9746 "Whether livelist condensing was canceled in the synctask"); 9747 9748 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel, INT, ZMOD_RW, 9749 "Whether livelist condensing was canceled in the zthr function"); 9750 9751 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT, ZMOD_RW, 9752 "Whether extra ALLOC blkptrs were added to a livelist entry while it " 9753 "was being condensed"); 9754 /* END CSTYLED */ 9755