xref: /freebsd/sys/contrib/openzfs/module/zfs/spa.c (revision dd21556857e8d40f66bf5ad54754d9d52669ebf7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
25  * Copyright (c) 2018, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31  * Copyright 2018 Joyent, Inc.
32  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33  * Copyright 2017 Joyent, Inc.
34  * Copyright (c) 2017, Intel Corporation.
35  * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36  * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
37  * Copyright (c) 2023, 2024, Klara Inc.
38  */
39 
40 /*
41  * SPA: Storage Pool Allocator
42  *
43  * This file contains all the routines used when modifying on-disk SPA state.
44  * This includes opening, importing, destroying, exporting a pool, and syncing a
45  * pool.
46  */
47 
48 #include <sys/zfs_context.h>
49 #include <sys/fm/fs/zfs.h>
50 #include <sys/spa_impl.h>
51 #include <sys/zio.h>
52 #include <sys/zio_checksum.h>
53 #include <sys/dmu.h>
54 #include <sys/dmu_tx.h>
55 #include <sys/zap.h>
56 #include <sys/zil.h>
57 #include <sys/brt.h>
58 #include <sys/ddt.h>
59 #include <sys/vdev_impl.h>
60 #include <sys/vdev_removal.h>
61 #include <sys/vdev_indirect_mapping.h>
62 #include <sys/vdev_indirect_births.h>
63 #include <sys/vdev_initialize.h>
64 #include <sys/vdev_rebuild.h>
65 #include <sys/vdev_trim.h>
66 #include <sys/vdev_disk.h>
67 #include <sys/vdev_raidz.h>
68 #include <sys/vdev_draid.h>
69 #include <sys/metaslab.h>
70 #include <sys/metaslab_impl.h>
71 #include <sys/mmp.h>
72 #include <sys/uberblock_impl.h>
73 #include <sys/txg.h>
74 #include <sys/avl.h>
75 #include <sys/bpobj.h>
76 #include <sys/dmu_traverse.h>
77 #include <sys/dmu_objset.h>
78 #include <sys/unique.h>
79 #include <sys/dsl_pool.h>
80 #include <sys/dsl_dataset.h>
81 #include <sys/dsl_dir.h>
82 #include <sys/dsl_prop.h>
83 #include <sys/dsl_synctask.h>
84 #include <sys/fs/zfs.h>
85 #include <sys/arc.h>
86 #include <sys/callb.h>
87 #include <sys/systeminfo.h>
88 #include <sys/zfs_ioctl.h>
89 #include <sys/dsl_scan.h>
90 #include <sys/zfeature.h>
91 #include <sys/dsl_destroy.h>
92 #include <sys/zvol.h>
93 
94 #ifdef	_KERNEL
95 #include <sys/fm/protocol.h>
96 #include <sys/fm/util.h>
97 #include <sys/callb.h>
98 #include <sys/zone.h>
99 #include <sys/vmsystm.h>
100 #endif	/* _KERNEL */
101 
102 #include "zfs_prop.h"
103 #include "zfs_comutil.h"
104 #include <cityhash.h>
105 
106 /*
107  * spa_thread() existed on Illumos as a parent thread for the various worker
108  * threads that actually run the pool, as a way to both reference the entire
109  * pool work as a single object, and to share properties like scheduling
110  * options. It has not yet been adapted to Linux or FreeBSD. This define is
111  * used to mark related parts of the code to make things easier for the reader,
112  * and to compile this code out. It can be removed when someone implements it,
113  * moves it to some Illumos-specific place, or removes it entirely.
114  */
115 #undef HAVE_SPA_THREAD
116 
117 /*
118  * The "System Duty Cycle" scheduling class is an Illumos feature to help
119  * prevent CPU-intensive kernel threads from affecting latency on interactive
120  * threads. It doesn't exist on Linux or FreeBSD, so the supporting code is
121  * gated behind a define. On Illumos SDC depends on spa_thread(), but
122  * spa_thread() also has other uses, so this is a separate define.
123  */
124 #undef HAVE_SYSDC
125 
126 /*
127  * The interval, in seconds, at which failed configuration cache file writes
128  * should be retried.
129  */
130 int zfs_ccw_retry_interval = 300;
131 
132 typedef enum zti_modes {
133 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
134 	ZTI_MODE_SCALE,			/* Taskqs scale with CPUs. */
135 	ZTI_MODE_SYNC,			/* sync thread assigned */
136 	ZTI_MODE_NULL,			/* don't create a taskq */
137 	ZTI_NMODES
138 } zti_modes_t;
139 
140 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
141 #define	ZTI_PCT(n)	{ ZTI_MODE_ONLINE_PERCENT, (n), 1 }
142 #define	ZTI_SCALE	{ ZTI_MODE_SCALE, 0, 1 }
143 #define	ZTI_SYNC	{ ZTI_MODE_SYNC, 0, 1 }
144 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
145 
146 #define	ZTI_N(n)	ZTI_P(n, 1)
147 #define	ZTI_ONE		ZTI_N(1)
148 
149 typedef struct zio_taskq_info {
150 	zti_modes_t zti_mode;
151 	uint_t zti_value;
152 	uint_t zti_count;
153 } zio_taskq_info_t;
154 
155 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
156 	"iss", "iss_h", "int", "int_h"
157 };
158 
159 /*
160  * This table defines the taskq settings for each ZFS I/O type. When
161  * initializing a pool, we use this table to create an appropriately sized
162  * taskq. Some operations are low volume and therefore have a small, static
163  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
164  * macros. Other operations process a large amount of data; the ZTI_SCALE
165  * macro causes us to create a taskq oriented for throughput. Some operations
166  * are so high frequency and short-lived that the taskq itself can become a
167  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
168  * additional degree of parallelism specified by the number of threads per-
169  * taskq and the number of taskqs; when dispatching an event in this case, the
170  * particular taskq is chosen at random. ZTI_SCALE uses a number of taskqs
171  * that scales with the number of CPUs.
172  *
173  * The different taskq priorities are to handle the different contexts (issue
174  * and interrupt) and then to reserve threads for high priority I/Os that
175  * need to be handled with minimum delay.  Illumos taskq has unfair TQ_FRONT
176  * implementation, so separate high priority threads are used there.
177  */
178 static zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
179 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
180 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
181 	{ ZTI_N(8),	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* READ */
182 #ifdef illumos
183 	{ ZTI_SYNC,	ZTI_N(5),	ZTI_SCALE,	ZTI_N(5) }, /* WRITE */
184 #else
185 	{ ZTI_SYNC,	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* WRITE */
186 #endif
187 	{ ZTI_SCALE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
188 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
189 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FLUSH */
190 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
191 };
192 
193 static void spa_sync_version(void *arg, dmu_tx_t *tx);
194 static void spa_sync_props(void *arg, dmu_tx_t *tx);
195 static boolean_t spa_has_active_shared_spare(spa_t *spa);
196 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
197     const char **ereport);
198 static void spa_vdev_resilver_done(spa_t *spa);
199 
200 /*
201  * Percentage of all CPUs that can be used by the metaslab preload taskq.
202  */
203 static uint_t metaslab_preload_pct = 50;
204 
205 static uint_t	zio_taskq_batch_pct = 80;	  /* 1 thread per cpu in pset */
206 static uint_t	zio_taskq_batch_tpq;		  /* threads per taskq */
207 
208 #ifdef HAVE_SYSDC
209 static const boolean_t	zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
210 static const uint_t	zio_taskq_basedc = 80;	  /* base duty cycle */
211 #endif
212 
213 #ifdef HAVE_SPA_THREAD
214 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
215 #endif
216 
217 static uint_t	zio_taskq_write_tpq = 16;
218 
219 /*
220  * Report any spa_load_verify errors found, but do not fail spa_load.
221  * This is used by zdb to analyze non-idle pools.
222  */
223 boolean_t	spa_load_verify_dryrun = B_FALSE;
224 
225 /*
226  * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
227  * This is used by zdb for spacemaps verification.
228  */
229 boolean_t	spa_mode_readable_spacemaps = B_FALSE;
230 
231 /*
232  * This (illegal) pool name is used when temporarily importing a spa_t in order
233  * to get the vdev stats associated with the imported devices.
234  */
235 #define	TRYIMPORT_NAME	"$import"
236 
237 /*
238  * For debugging purposes: print out vdev tree during pool import.
239  */
240 static int		spa_load_print_vdev_tree = B_FALSE;
241 
242 /*
243  * A non-zero value for zfs_max_missing_tvds means that we allow importing
244  * pools with missing top-level vdevs. This is strictly intended for advanced
245  * pool recovery cases since missing data is almost inevitable. Pools with
246  * missing devices can only be imported read-only for safety reasons, and their
247  * fail-mode will be automatically set to "continue".
248  *
249  * With 1 missing vdev we should be able to import the pool and mount all
250  * datasets. User data that was not modified after the missing device has been
251  * added should be recoverable. This means that snapshots created prior to the
252  * addition of that device should be completely intact.
253  *
254  * With 2 missing vdevs, some datasets may fail to mount since there are
255  * dataset statistics that are stored as regular metadata. Some data might be
256  * recoverable if those vdevs were added recently.
257  *
258  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
259  * may be missing entirely. Chances of data recovery are very low. Note that
260  * there are also risks of performing an inadvertent rewind as we might be
261  * missing all the vdevs with the latest uberblocks.
262  */
263 uint64_t	zfs_max_missing_tvds = 0;
264 
265 /*
266  * The parameters below are similar to zfs_max_missing_tvds but are only
267  * intended for a preliminary open of the pool with an untrusted config which
268  * might be incomplete or out-dated.
269  *
270  * We are more tolerant for pools opened from a cachefile since we could have
271  * an out-dated cachefile where a device removal was not registered.
272  * We could have set the limit arbitrarily high but in the case where devices
273  * are really missing we would want to return the proper error codes; we chose
274  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
275  * and we get a chance to retrieve the trusted config.
276  */
277 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
278 
279 /*
280  * In the case where config was assembled by scanning device paths (/dev/dsks
281  * by default) we are less tolerant since all the existing devices should have
282  * been detected and we want spa_load to return the right error codes.
283  */
284 uint64_t	zfs_max_missing_tvds_scan = 0;
285 
286 /*
287  * Debugging aid that pauses spa_sync() towards the end.
288  */
289 static const boolean_t	zfs_pause_spa_sync = B_FALSE;
290 
291 /*
292  * Variables to indicate the livelist condense zthr func should wait at certain
293  * points for the livelist to be removed - used to test condense/destroy races
294  */
295 static int zfs_livelist_condense_zthr_pause = 0;
296 static int zfs_livelist_condense_sync_pause = 0;
297 
298 /*
299  * Variables to track whether or not condense cancellation has been
300  * triggered in testing.
301  */
302 static int zfs_livelist_condense_sync_cancel = 0;
303 static int zfs_livelist_condense_zthr_cancel = 0;
304 
305 /*
306  * Variable to track whether or not extra ALLOC blkptrs were added to a
307  * livelist entry while it was being condensed (caused by the way we track
308  * remapped blkptrs in dbuf_remap_impl)
309  */
310 static int zfs_livelist_condense_new_alloc = 0;
311 
312 /*
313  * ==========================================================================
314  * SPA properties routines
315  * ==========================================================================
316  */
317 
318 /*
319  * Add a (source=src, propname=propval) list to an nvlist.
320  */
321 static void
spa_prop_add_list(nvlist_t * nvl,zpool_prop_t prop,const char * strval,uint64_t intval,zprop_source_t src)322 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
323     uint64_t intval, zprop_source_t src)
324 {
325 	const char *propname = zpool_prop_to_name(prop);
326 	nvlist_t *propval;
327 
328 	propval = fnvlist_alloc();
329 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
330 
331 	if (strval != NULL)
332 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
333 	else
334 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
335 
336 	fnvlist_add_nvlist(nvl, propname, propval);
337 	nvlist_free(propval);
338 }
339 
340 static int
spa_prop_add(spa_t * spa,const char * propname,nvlist_t * outnvl)341 spa_prop_add(spa_t *spa, const char *propname, nvlist_t *outnvl)
342 {
343 	zpool_prop_t prop = zpool_name_to_prop(propname);
344 	zprop_source_t src = ZPROP_SRC_NONE;
345 	uint64_t intval;
346 	int err;
347 
348 	/*
349 	 * NB: Not all properties lookups via this API require
350 	 * the spa props lock, so they must explicitly grab it here.
351 	 */
352 	switch (prop) {
353 	case ZPOOL_PROP_DEDUPCACHED:
354 		err = ddt_get_pool_dedup_cached(spa, &intval);
355 		if (err != 0)
356 			return (SET_ERROR(err));
357 		break;
358 	default:
359 		return (SET_ERROR(EINVAL));
360 	}
361 
362 	spa_prop_add_list(outnvl, prop, NULL, intval, src);
363 
364 	return (0);
365 }
366 
367 int
spa_prop_get_nvlist(spa_t * spa,char ** props,unsigned int n_props,nvlist_t * outnvl)368 spa_prop_get_nvlist(spa_t *spa, char **props, unsigned int n_props,
369     nvlist_t *outnvl)
370 {
371 	int err = 0;
372 
373 	if (props == NULL)
374 		return (0);
375 
376 	for (unsigned int i = 0; i < n_props && err == 0; i++) {
377 		err = spa_prop_add(spa, props[i], outnvl);
378 	}
379 
380 	return (err);
381 }
382 
383 /*
384  * Add a user property (source=src, propname=propval) to an nvlist.
385  */
386 static void
spa_prop_add_user(nvlist_t * nvl,const char * propname,char * strval,zprop_source_t src)387 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
388     zprop_source_t src)
389 {
390 	nvlist_t *propval;
391 
392 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
393 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
394 	VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
395 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
396 	nvlist_free(propval);
397 }
398 
399 /*
400  * Get property values from the spa configuration.
401  */
402 static void
spa_prop_get_config(spa_t * spa,nvlist_t * nv)403 spa_prop_get_config(spa_t *spa, nvlist_t *nv)
404 {
405 	vdev_t *rvd = spa->spa_root_vdev;
406 	dsl_pool_t *pool = spa->spa_dsl_pool;
407 	uint64_t size, alloc, cap, version;
408 	const zprop_source_t src = ZPROP_SRC_NONE;
409 	spa_config_dirent_t *dp;
410 	metaslab_class_t *mc = spa_normal_class(spa);
411 
412 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
413 
414 	if (rvd != NULL) {
415 		alloc = metaslab_class_get_alloc(mc);
416 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
417 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
418 		alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
419 
420 		size = metaslab_class_get_space(mc);
421 		size += metaslab_class_get_space(spa_special_class(spa));
422 		size += metaslab_class_get_space(spa_dedup_class(spa));
423 		size += metaslab_class_get_space(spa_embedded_log_class(spa));
424 
425 		spa_prop_add_list(nv, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
426 		spa_prop_add_list(nv, ZPOOL_PROP_SIZE, NULL, size, src);
427 		spa_prop_add_list(nv, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
428 		spa_prop_add_list(nv, ZPOOL_PROP_FREE, NULL,
429 		    size - alloc, src);
430 		spa_prop_add_list(nv, ZPOOL_PROP_CHECKPOINT, NULL,
431 		    spa->spa_checkpoint_info.sci_dspace, src);
432 
433 		spa_prop_add_list(nv, ZPOOL_PROP_FRAGMENTATION, NULL,
434 		    metaslab_class_fragmentation(mc), src);
435 		spa_prop_add_list(nv, ZPOOL_PROP_EXPANDSZ, NULL,
436 		    metaslab_class_expandable_space(mc), src);
437 		spa_prop_add_list(nv, ZPOOL_PROP_READONLY, NULL,
438 		    (spa_mode(spa) == SPA_MODE_READ), src);
439 
440 		cap = (size == 0) ? 0 : (alloc * 100 / size);
441 		spa_prop_add_list(nv, ZPOOL_PROP_CAPACITY, NULL, cap, src);
442 
443 		spa_prop_add_list(nv, ZPOOL_PROP_DEDUPRATIO, NULL,
444 		    ddt_get_pool_dedup_ratio(spa), src);
445 		spa_prop_add_list(nv, ZPOOL_PROP_BCLONEUSED, NULL,
446 		    brt_get_used(spa), src);
447 		spa_prop_add_list(nv, ZPOOL_PROP_BCLONESAVED, NULL,
448 		    brt_get_saved(spa), src);
449 		spa_prop_add_list(nv, ZPOOL_PROP_BCLONERATIO, NULL,
450 		    brt_get_ratio(spa), src);
451 
452 		spa_prop_add_list(nv, ZPOOL_PROP_DEDUP_TABLE_SIZE, NULL,
453 		    ddt_get_ddt_dsize(spa), src);
454 		spa_prop_add_list(nv, ZPOOL_PROP_HEALTH, NULL,
455 		    rvd->vdev_state, src);
456 		spa_prop_add_list(nv, ZPOOL_PROP_LAST_SCRUBBED_TXG, NULL,
457 		    spa_get_last_scrubbed_txg(spa), src);
458 
459 		version = spa_version(spa);
460 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
461 			spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
462 			    version, ZPROP_SRC_DEFAULT);
463 		} else {
464 			spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
465 			    version, ZPROP_SRC_LOCAL);
466 		}
467 		spa_prop_add_list(nv, ZPOOL_PROP_LOAD_GUID,
468 		    NULL, spa_load_guid(spa), src);
469 	}
470 
471 	if (pool != NULL) {
472 		/*
473 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
474 		 * when opening pools before this version freedir will be NULL.
475 		 */
476 		if (pool->dp_free_dir != NULL) {
477 			spa_prop_add_list(nv, ZPOOL_PROP_FREEING, NULL,
478 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
479 			    src);
480 		} else {
481 			spa_prop_add_list(nv, ZPOOL_PROP_FREEING,
482 			    NULL, 0, src);
483 		}
484 
485 		if (pool->dp_leak_dir != NULL) {
486 			spa_prop_add_list(nv, ZPOOL_PROP_LEAKED, NULL,
487 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
488 			    src);
489 		} else {
490 			spa_prop_add_list(nv, ZPOOL_PROP_LEAKED,
491 			    NULL, 0, src);
492 		}
493 	}
494 
495 	spa_prop_add_list(nv, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
496 
497 	if (spa->spa_comment != NULL) {
498 		spa_prop_add_list(nv, ZPOOL_PROP_COMMENT, spa->spa_comment,
499 		    0, ZPROP_SRC_LOCAL);
500 	}
501 
502 	if (spa->spa_compatibility != NULL) {
503 		spa_prop_add_list(nv, ZPOOL_PROP_COMPATIBILITY,
504 		    spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
505 	}
506 
507 	if (spa->spa_root != NULL)
508 		spa_prop_add_list(nv, ZPOOL_PROP_ALTROOT, spa->spa_root,
509 		    0, ZPROP_SRC_LOCAL);
510 
511 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
512 		spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
513 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
514 	} else {
515 		spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
516 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
517 	}
518 
519 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
520 		spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
521 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
522 	} else {
523 		spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
524 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
525 	}
526 
527 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
528 		if (dp->scd_path == NULL) {
529 			spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
530 			    "none", 0, ZPROP_SRC_LOCAL);
531 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
532 			spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
533 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
534 		}
535 	}
536 }
537 
538 /*
539  * Get zpool property values.
540  */
541 int
spa_prop_get(spa_t * spa,nvlist_t * nv)542 spa_prop_get(spa_t *spa, nvlist_t *nv)
543 {
544 	objset_t *mos = spa->spa_meta_objset;
545 	zap_cursor_t zc;
546 	zap_attribute_t *za;
547 	dsl_pool_t *dp;
548 	int err = 0;
549 
550 	dp = spa_get_dsl(spa);
551 	dsl_pool_config_enter(dp, FTAG);
552 	za = zap_attribute_alloc();
553 	mutex_enter(&spa->spa_props_lock);
554 
555 	/*
556 	 * Get properties from the spa config.
557 	 */
558 	spa_prop_get_config(spa, nv);
559 
560 	/* If no pool property object, no more prop to get. */
561 	if (mos == NULL || spa->spa_pool_props_object == 0)
562 		goto out;
563 
564 	/*
565 	 * Get properties from the MOS pool property object.
566 	 */
567 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
568 	    (err = zap_cursor_retrieve(&zc, za)) == 0;
569 	    zap_cursor_advance(&zc)) {
570 		uint64_t intval = 0;
571 		char *strval = NULL;
572 		zprop_source_t src = ZPROP_SRC_DEFAULT;
573 		zpool_prop_t prop;
574 
575 		if ((prop = zpool_name_to_prop(za->za_name)) ==
576 		    ZPOOL_PROP_INVAL && !zfs_prop_user(za->za_name))
577 			continue;
578 
579 		switch (za->za_integer_length) {
580 		case 8:
581 			/* integer property */
582 			if (za->za_first_integer !=
583 			    zpool_prop_default_numeric(prop))
584 				src = ZPROP_SRC_LOCAL;
585 
586 			if (prop == ZPOOL_PROP_BOOTFS) {
587 				dsl_dataset_t *ds = NULL;
588 
589 				err = dsl_dataset_hold_obj(dp,
590 				    za->za_first_integer, FTAG, &ds);
591 				if (err != 0)
592 					break;
593 
594 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
595 				    KM_SLEEP);
596 				dsl_dataset_name(ds, strval);
597 				dsl_dataset_rele(ds, FTAG);
598 			} else {
599 				strval = NULL;
600 				intval = za->za_first_integer;
601 			}
602 
603 			spa_prop_add_list(nv, prop, strval, intval, src);
604 
605 			if (strval != NULL)
606 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
607 
608 			break;
609 
610 		case 1:
611 			/* string property */
612 			strval = kmem_alloc(za->za_num_integers, KM_SLEEP);
613 			err = zap_lookup(mos, spa->spa_pool_props_object,
614 			    za->za_name, 1, za->za_num_integers, strval);
615 			if (err) {
616 				kmem_free(strval, za->za_num_integers);
617 				break;
618 			}
619 			if (prop != ZPOOL_PROP_INVAL) {
620 				spa_prop_add_list(nv, prop, strval, 0, src);
621 			} else {
622 				src = ZPROP_SRC_LOCAL;
623 				spa_prop_add_user(nv, za->za_name, strval,
624 				    src);
625 			}
626 			kmem_free(strval, za->za_num_integers);
627 			break;
628 
629 		default:
630 			break;
631 		}
632 	}
633 	zap_cursor_fini(&zc);
634 out:
635 	mutex_exit(&spa->spa_props_lock);
636 	dsl_pool_config_exit(dp, FTAG);
637 	zap_attribute_free(za);
638 
639 	if (err && err != ENOENT)
640 		return (err);
641 
642 	return (0);
643 }
644 
645 /*
646  * Validate the given pool properties nvlist and modify the list
647  * for the property values to be set.
648  */
649 static int
spa_prop_validate(spa_t * spa,nvlist_t * props)650 spa_prop_validate(spa_t *spa, nvlist_t *props)
651 {
652 	nvpair_t *elem;
653 	int error = 0, reset_bootfs = 0;
654 	uint64_t objnum = 0;
655 	boolean_t has_feature = B_FALSE;
656 
657 	elem = NULL;
658 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
659 		uint64_t intval;
660 		const char *strval, *slash, *check, *fname;
661 		const char *propname = nvpair_name(elem);
662 		zpool_prop_t prop = zpool_name_to_prop(propname);
663 
664 		switch (prop) {
665 		case ZPOOL_PROP_INVAL:
666 			/*
667 			 * Sanitize the input.
668 			 */
669 			if (zfs_prop_user(propname)) {
670 				if (strlen(propname) >= ZAP_MAXNAMELEN) {
671 					error = SET_ERROR(ENAMETOOLONG);
672 					break;
673 				}
674 
675 				if (strlen(fnvpair_value_string(elem)) >=
676 				    ZAP_MAXVALUELEN) {
677 					error = SET_ERROR(E2BIG);
678 					break;
679 				}
680 			} else if (zpool_prop_feature(propname)) {
681 				if (nvpair_type(elem) != DATA_TYPE_UINT64) {
682 					error = SET_ERROR(EINVAL);
683 					break;
684 				}
685 
686 				if (nvpair_value_uint64(elem, &intval) != 0) {
687 					error = SET_ERROR(EINVAL);
688 					break;
689 				}
690 
691 				if (intval != 0) {
692 					error = SET_ERROR(EINVAL);
693 					break;
694 				}
695 
696 				fname = strchr(propname, '@') + 1;
697 				if (zfeature_lookup_name(fname, NULL) != 0) {
698 					error = SET_ERROR(EINVAL);
699 					break;
700 				}
701 
702 				has_feature = B_TRUE;
703 			} else {
704 				error = SET_ERROR(EINVAL);
705 				break;
706 			}
707 			break;
708 
709 		case ZPOOL_PROP_VERSION:
710 			error = nvpair_value_uint64(elem, &intval);
711 			if (!error &&
712 			    (intval < spa_version(spa) ||
713 			    intval > SPA_VERSION_BEFORE_FEATURES ||
714 			    has_feature))
715 				error = SET_ERROR(EINVAL);
716 			break;
717 
718 		case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
719 			error = nvpair_value_uint64(elem, &intval);
720 			break;
721 
722 		case ZPOOL_PROP_DELEGATION:
723 		case ZPOOL_PROP_AUTOREPLACE:
724 		case ZPOOL_PROP_LISTSNAPS:
725 		case ZPOOL_PROP_AUTOEXPAND:
726 		case ZPOOL_PROP_AUTOTRIM:
727 			error = nvpair_value_uint64(elem, &intval);
728 			if (!error && intval > 1)
729 				error = SET_ERROR(EINVAL);
730 			break;
731 
732 		case ZPOOL_PROP_MULTIHOST:
733 			error = nvpair_value_uint64(elem, &intval);
734 			if (!error && intval > 1)
735 				error = SET_ERROR(EINVAL);
736 
737 			if (!error) {
738 				uint32_t hostid = zone_get_hostid(NULL);
739 				if (hostid)
740 					spa->spa_hostid = hostid;
741 				else
742 					error = SET_ERROR(ENOTSUP);
743 			}
744 
745 			break;
746 
747 		case ZPOOL_PROP_BOOTFS:
748 			/*
749 			 * If the pool version is less than SPA_VERSION_BOOTFS,
750 			 * or the pool is still being created (version == 0),
751 			 * the bootfs property cannot be set.
752 			 */
753 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
754 				error = SET_ERROR(ENOTSUP);
755 				break;
756 			}
757 
758 			/*
759 			 * Make sure the vdev config is bootable
760 			 */
761 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
762 				error = SET_ERROR(ENOTSUP);
763 				break;
764 			}
765 
766 			reset_bootfs = 1;
767 
768 			error = nvpair_value_string(elem, &strval);
769 
770 			if (!error) {
771 				objset_t *os;
772 
773 				if (strval == NULL || strval[0] == '\0') {
774 					objnum = zpool_prop_default_numeric(
775 					    ZPOOL_PROP_BOOTFS);
776 					break;
777 				}
778 
779 				error = dmu_objset_hold(strval, FTAG, &os);
780 				if (error != 0)
781 					break;
782 
783 				/* Must be ZPL. */
784 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
785 					error = SET_ERROR(ENOTSUP);
786 				} else {
787 					objnum = dmu_objset_id(os);
788 				}
789 				dmu_objset_rele(os, FTAG);
790 			}
791 			break;
792 
793 		case ZPOOL_PROP_FAILUREMODE:
794 			error = nvpair_value_uint64(elem, &intval);
795 			if (!error && intval > ZIO_FAILURE_MODE_PANIC)
796 				error = SET_ERROR(EINVAL);
797 
798 			/*
799 			 * This is a special case which only occurs when
800 			 * the pool has completely failed. This allows
801 			 * the user to change the in-core failmode property
802 			 * without syncing it out to disk (I/Os might
803 			 * currently be blocked). We do this by returning
804 			 * EIO to the caller (spa_prop_set) to trick it
805 			 * into thinking we encountered a property validation
806 			 * error.
807 			 */
808 			if (!error && spa_suspended(spa)) {
809 				spa->spa_failmode = intval;
810 				error = SET_ERROR(EIO);
811 			}
812 			break;
813 
814 		case ZPOOL_PROP_CACHEFILE:
815 			if ((error = nvpair_value_string(elem, &strval)) != 0)
816 				break;
817 
818 			if (strval[0] == '\0')
819 				break;
820 
821 			if (strcmp(strval, "none") == 0)
822 				break;
823 
824 			if (strval[0] != '/') {
825 				error = SET_ERROR(EINVAL);
826 				break;
827 			}
828 
829 			slash = strrchr(strval, '/');
830 			ASSERT(slash != NULL);
831 
832 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
833 			    strcmp(slash, "/..") == 0)
834 				error = SET_ERROR(EINVAL);
835 			break;
836 
837 		case ZPOOL_PROP_COMMENT:
838 			if ((error = nvpair_value_string(elem, &strval)) != 0)
839 				break;
840 			for (check = strval; *check != '\0'; check++) {
841 				if (!isprint(*check)) {
842 					error = SET_ERROR(EINVAL);
843 					break;
844 				}
845 			}
846 			if (strlen(strval) > ZPROP_MAX_COMMENT)
847 				error = SET_ERROR(E2BIG);
848 			break;
849 
850 		default:
851 			break;
852 		}
853 
854 		if (error)
855 			break;
856 	}
857 
858 	(void) nvlist_remove_all(props,
859 	    zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
860 
861 	if (!error && reset_bootfs) {
862 		error = nvlist_remove(props,
863 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
864 
865 		if (!error) {
866 			error = nvlist_add_uint64(props,
867 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
868 		}
869 	}
870 
871 	return (error);
872 }
873 
874 void
spa_configfile_set(spa_t * spa,nvlist_t * nvp,boolean_t need_sync)875 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
876 {
877 	const char *cachefile;
878 	spa_config_dirent_t *dp;
879 
880 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
881 	    &cachefile) != 0)
882 		return;
883 
884 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
885 	    KM_SLEEP);
886 
887 	if (cachefile[0] == '\0')
888 		dp->scd_path = spa_strdup(spa_config_path);
889 	else if (strcmp(cachefile, "none") == 0)
890 		dp->scd_path = NULL;
891 	else
892 		dp->scd_path = spa_strdup(cachefile);
893 
894 	list_insert_head(&spa->spa_config_list, dp);
895 	if (need_sync)
896 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
897 }
898 
899 int
spa_prop_set(spa_t * spa,nvlist_t * nvp)900 spa_prop_set(spa_t *spa, nvlist_t *nvp)
901 {
902 	int error;
903 	nvpair_t *elem = NULL;
904 	boolean_t need_sync = B_FALSE;
905 
906 	if ((error = spa_prop_validate(spa, nvp)) != 0)
907 		return (error);
908 
909 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
910 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
911 
912 		if (prop == ZPOOL_PROP_CACHEFILE ||
913 		    prop == ZPOOL_PROP_ALTROOT ||
914 		    prop == ZPOOL_PROP_READONLY)
915 			continue;
916 
917 		if (prop == ZPOOL_PROP_INVAL &&
918 		    zfs_prop_user(nvpair_name(elem))) {
919 			need_sync = B_TRUE;
920 			break;
921 		}
922 
923 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
924 			uint64_t ver = 0;
925 
926 			if (prop == ZPOOL_PROP_VERSION) {
927 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
928 			} else {
929 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
930 				ver = SPA_VERSION_FEATURES;
931 				need_sync = B_TRUE;
932 			}
933 
934 			/* Save time if the version is already set. */
935 			if (ver == spa_version(spa))
936 				continue;
937 
938 			/*
939 			 * In addition to the pool directory object, we might
940 			 * create the pool properties object, the features for
941 			 * read object, the features for write object, or the
942 			 * feature descriptions object.
943 			 */
944 			error = dsl_sync_task(spa->spa_name, NULL,
945 			    spa_sync_version, &ver,
946 			    6, ZFS_SPACE_CHECK_RESERVED);
947 			if (error)
948 				return (error);
949 			continue;
950 		}
951 
952 		need_sync = B_TRUE;
953 		break;
954 	}
955 
956 	if (need_sync) {
957 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
958 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
959 	}
960 
961 	return (0);
962 }
963 
964 /*
965  * If the bootfs property value is dsobj, clear it.
966  */
967 void
spa_prop_clear_bootfs(spa_t * spa,uint64_t dsobj,dmu_tx_t * tx)968 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
969 {
970 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
971 		VERIFY(zap_remove(spa->spa_meta_objset,
972 		    spa->spa_pool_props_object,
973 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
974 		spa->spa_bootfs = 0;
975 	}
976 }
977 
978 static int
spa_change_guid_check(void * arg,dmu_tx_t * tx)979 spa_change_guid_check(void *arg, dmu_tx_t *tx)
980 {
981 	uint64_t *newguid __maybe_unused = arg;
982 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
983 	vdev_t *rvd = spa->spa_root_vdev;
984 	uint64_t vdev_state;
985 
986 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
987 		int error = (spa_has_checkpoint(spa)) ?
988 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
989 		return (SET_ERROR(error));
990 	}
991 
992 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
993 	vdev_state = rvd->vdev_state;
994 	spa_config_exit(spa, SCL_STATE, FTAG);
995 
996 	if (vdev_state != VDEV_STATE_HEALTHY)
997 		return (SET_ERROR(ENXIO));
998 
999 	ASSERT3U(spa_guid(spa), !=, *newguid);
1000 
1001 	return (0);
1002 }
1003 
1004 static void
spa_change_guid_sync(void * arg,dmu_tx_t * tx)1005 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
1006 {
1007 	uint64_t *newguid = arg;
1008 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1009 	uint64_t oldguid;
1010 	vdev_t *rvd = spa->spa_root_vdev;
1011 
1012 	oldguid = spa_guid(spa);
1013 
1014 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
1015 	rvd->vdev_guid = *newguid;
1016 	rvd->vdev_guid_sum += (*newguid - oldguid);
1017 	vdev_config_dirty(rvd);
1018 	spa_config_exit(spa, SCL_STATE, FTAG);
1019 
1020 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
1021 	    (u_longlong_t)oldguid, (u_longlong_t)*newguid);
1022 }
1023 
1024 /*
1025  * Change the GUID for the pool.  This is done so that we can later
1026  * re-import a pool built from a clone of our own vdevs.  We will modify
1027  * the root vdev's guid, our own pool guid, and then mark all of our
1028  * vdevs dirty.  Note that we must make sure that all our vdevs are
1029  * online when we do this, or else any vdevs that weren't present
1030  * would be orphaned from our pool.  We are also going to issue a
1031  * sysevent to update any watchers.
1032  *
1033  * The GUID of the pool will be changed to the value pointed to by guidp.
1034  * The GUID may not be set to the reserverd value of 0.
1035  * The new GUID will be generated if guidp is NULL.
1036  */
1037 int
spa_change_guid(spa_t * spa,const uint64_t * guidp)1038 spa_change_guid(spa_t *spa, const uint64_t *guidp)
1039 {
1040 	uint64_t guid;
1041 	int error;
1042 
1043 	mutex_enter(&spa->spa_vdev_top_lock);
1044 	mutex_enter(&spa_namespace_lock);
1045 
1046 	if (guidp != NULL) {
1047 		guid = *guidp;
1048 		if (guid == 0) {
1049 			error = SET_ERROR(EINVAL);
1050 			goto out;
1051 		}
1052 
1053 		if (spa_guid_exists(guid, 0)) {
1054 			error = SET_ERROR(EEXIST);
1055 			goto out;
1056 		}
1057 	} else {
1058 		guid = spa_generate_guid(NULL);
1059 	}
1060 
1061 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
1062 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
1063 
1064 	if (error == 0) {
1065 		/*
1066 		 * Clear the kobj flag from all the vdevs to allow
1067 		 * vdev_cache_process_kobj_evt() to post events to all the
1068 		 * vdevs since GUID is updated.
1069 		 */
1070 		vdev_clear_kobj_evt(spa->spa_root_vdev);
1071 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
1072 			vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
1073 
1074 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1075 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
1076 	}
1077 
1078 out:
1079 	mutex_exit(&spa_namespace_lock);
1080 	mutex_exit(&spa->spa_vdev_top_lock);
1081 
1082 	return (error);
1083 }
1084 
1085 /*
1086  * ==========================================================================
1087  * SPA state manipulation (open/create/destroy/import/export)
1088  * ==========================================================================
1089  */
1090 
1091 static int
spa_error_entry_compare(const void * a,const void * b)1092 spa_error_entry_compare(const void *a, const void *b)
1093 {
1094 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
1095 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
1096 	int ret;
1097 
1098 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
1099 	    sizeof (zbookmark_phys_t));
1100 
1101 	return (TREE_ISIGN(ret));
1102 }
1103 
1104 /*
1105  * Utility function which retrieves copies of the current logs and
1106  * re-initializes them in the process.
1107  */
1108 void
spa_get_errlists(spa_t * spa,avl_tree_t * last,avl_tree_t * scrub)1109 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
1110 {
1111 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
1112 
1113 	memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
1114 	memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
1115 
1116 	avl_create(&spa->spa_errlist_scrub,
1117 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1118 	    offsetof(spa_error_entry_t, se_avl));
1119 	avl_create(&spa->spa_errlist_last,
1120 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1121 	    offsetof(spa_error_entry_t, se_avl));
1122 }
1123 
1124 static void
spa_taskqs_init(spa_t * spa,zio_type_t t,zio_taskq_type_t q)1125 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1126 {
1127 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
1128 	enum zti_modes mode = ztip->zti_mode;
1129 	uint_t value = ztip->zti_value;
1130 	uint_t count = ztip->zti_count;
1131 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1132 	uint_t cpus, flags = TASKQ_DYNAMIC;
1133 
1134 	switch (mode) {
1135 	case ZTI_MODE_FIXED:
1136 		ASSERT3U(value, >, 0);
1137 		break;
1138 
1139 	case ZTI_MODE_SYNC:
1140 
1141 		/*
1142 		 * Create one wr_iss taskq for every 'zio_taskq_write_tpq' CPUs,
1143 		 * not to exceed the number of spa allocators, and align to it.
1144 		 */
1145 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1146 		count = MAX(1, cpus / MAX(1, zio_taskq_write_tpq));
1147 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1148 		count = MIN(count, spa->spa_alloc_count);
1149 		while (spa->spa_alloc_count % count != 0 &&
1150 		    spa->spa_alloc_count < count * 2)
1151 			count--;
1152 
1153 		/*
1154 		 * zio_taskq_batch_pct is unbounded and may exceed 100%, but no
1155 		 * single taskq may have more threads than 100% of online cpus.
1156 		 */
1157 		value = (zio_taskq_batch_pct + count / 2) / count;
1158 		value = MIN(value, 100);
1159 		flags |= TASKQ_THREADS_CPU_PCT;
1160 		break;
1161 
1162 	case ZTI_MODE_SCALE:
1163 		flags |= TASKQ_THREADS_CPU_PCT;
1164 		/*
1165 		 * We want more taskqs to reduce lock contention, but we want
1166 		 * less for better request ordering and CPU utilization.
1167 		 */
1168 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1169 		if (zio_taskq_batch_tpq > 0) {
1170 			count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1171 			    zio_taskq_batch_tpq);
1172 		} else {
1173 			/*
1174 			 * Prefer 6 threads per taskq, but no more taskqs
1175 			 * than threads in them on large systems. For 80%:
1176 			 *
1177 			 *                 taskq   taskq   total
1178 			 * cpus    taskqs  percent threads threads
1179 			 * ------- ------- ------- ------- -------
1180 			 * 1       1       80%     1       1
1181 			 * 2       1       80%     1       1
1182 			 * 4       1       80%     3       3
1183 			 * 8       2       40%     3       6
1184 			 * 16      3       27%     4       12
1185 			 * 32      5       16%     5       25
1186 			 * 64      7       11%     7       49
1187 			 * 128     10      8%      10      100
1188 			 * 256     14      6%      15      210
1189 			 */
1190 			count = 1 + cpus / 6;
1191 			while (count * count > cpus)
1192 				count--;
1193 		}
1194 		/* Limit each taskq within 100% to not trigger assertion. */
1195 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1196 		value = (zio_taskq_batch_pct + count / 2) / count;
1197 		break;
1198 
1199 	case ZTI_MODE_NULL:
1200 		tqs->stqs_count = 0;
1201 		tqs->stqs_taskq = NULL;
1202 		return;
1203 
1204 	default:
1205 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1206 		    "spa_taskqs_init()",
1207 		    zio_type_name[t], zio_taskq_types[q], mode, value);
1208 		break;
1209 	}
1210 
1211 	ASSERT3U(count, >, 0);
1212 	tqs->stqs_count = count;
1213 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1214 
1215 	for (uint_t i = 0; i < count; i++) {
1216 		taskq_t *tq;
1217 		char name[32];
1218 
1219 		if (count > 1)
1220 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
1221 			    zio_type_name[t], zio_taskq_types[q], i);
1222 		else
1223 			(void) snprintf(name, sizeof (name), "%s_%s",
1224 			    zio_type_name[t], zio_taskq_types[q]);
1225 
1226 #ifdef HAVE_SYSDC
1227 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1228 			(void) zio_taskq_basedc;
1229 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1230 			    spa->spa_proc, zio_taskq_basedc, flags);
1231 		} else {
1232 #endif
1233 			pri_t pri = maxclsyspri;
1234 			/*
1235 			 * The write issue taskq can be extremely CPU
1236 			 * intensive.  Run it at slightly less important
1237 			 * priority than the other taskqs.
1238 			 *
1239 			 * Under Linux and FreeBSD this means incrementing
1240 			 * the priority value as opposed to platforms like
1241 			 * illumos where it should be decremented.
1242 			 *
1243 			 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1244 			 * are equal then a difference between them is
1245 			 * insignificant.
1246 			 */
1247 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1248 #if defined(__linux__)
1249 				pri++;
1250 #elif defined(__FreeBSD__)
1251 				pri += 4;
1252 #else
1253 #error "unknown OS"
1254 #endif
1255 			}
1256 			tq = taskq_create_proc(name, value, pri, 50,
1257 			    INT_MAX, spa->spa_proc, flags);
1258 #ifdef HAVE_SYSDC
1259 		}
1260 #endif
1261 
1262 		tqs->stqs_taskq[i] = tq;
1263 	}
1264 }
1265 
1266 static void
spa_taskqs_fini(spa_t * spa,zio_type_t t,zio_taskq_type_t q)1267 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1268 {
1269 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1270 
1271 	if (tqs->stqs_taskq == NULL) {
1272 		ASSERT3U(tqs->stqs_count, ==, 0);
1273 		return;
1274 	}
1275 
1276 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1277 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1278 		taskq_destroy(tqs->stqs_taskq[i]);
1279 	}
1280 
1281 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1282 	tqs->stqs_taskq = NULL;
1283 }
1284 
1285 #ifdef _KERNEL
1286 /*
1287  * The READ and WRITE rows of zio_taskqs are configurable at module load time
1288  * by setting zio_taskq_read or zio_taskq_write.
1289  *
1290  * Example (the defaults for READ and WRITE)
1291  *   zio_taskq_read='fixed,1,8 null scale null'
1292  *   zio_taskq_write='sync null scale null'
1293  *
1294  * Each sets the entire row at a time.
1295  *
1296  * 'fixed' is parameterised: fixed,Q,T where Q is number of taskqs, T is number
1297  * of threads per taskq.
1298  *
1299  * 'null' can only be set on the high-priority queues (queue selection for
1300  * high-priority queues will fall back to the regular queue if the high-pri
1301  * is NULL.
1302  */
1303 static const char *const modes[ZTI_NMODES] = {
1304 	"fixed", "scale", "sync", "null"
1305 };
1306 
1307 /* Parse the incoming config string. Modifies cfg */
1308 static int
spa_taskq_param_set(zio_type_t t,char * cfg)1309 spa_taskq_param_set(zio_type_t t, char *cfg)
1310 {
1311 	int err = 0;
1312 
1313 	zio_taskq_info_t row[ZIO_TASKQ_TYPES] = {{0}};
1314 
1315 	char *next = cfg, *tok, *c;
1316 
1317 	/*
1318 	 * Parse out each element from the string and fill `row`. The entire
1319 	 * row has to be set at once, so any errors are flagged by just
1320 	 * breaking out of this loop early.
1321 	 */
1322 	uint_t q;
1323 	for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1324 		/* `next` is the start of the config */
1325 		if (next == NULL)
1326 			break;
1327 
1328 		/* Eat up leading space */
1329 		while (isspace(*next))
1330 			next++;
1331 		if (*next == '\0')
1332 			break;
1333 
1334 		/* Mode ends at space or end of string */
1335 		tok = next;
1336 		next = strchr(tok, ' ');
1337 		if (next != NULL) *next++ = '\0';
1338 
1339 		/* Parameters start after a comma */
1340 		c = strchr(tok, ',');
1341 		if (c != NULL) *c++ = '\0';
1342 
1343 		/* Match mode string */
1344 		uint_t mode;
1345 		for (mode = 0; mode < ZTI_NMODES; mode++)
1346 			if (strcmp(tok, modes[mode]) == 0)
1347 				break;
1348 		if (mode == ZTI_NMODES)
1349 			break;
1350 
1351 		/* Invalid canary */
1352 		row[q].zti_mode = ZTI_NMODES;
1353 
1354 		/* Per-mode setup */
1355 		switch (mode) {
1356 
1357 		/*
1358 		 * FIXED is parameterised: number of queues, and number of
1359 		 * threads per queue.
1360 		 */
1361 		case ZTI_MODE_FIXED: {
1362 			/* No parameters? */
1363 			if (c == NULL || *c == '\0')
1364 				break;
1365 
1366 			/* Find next parameter */
1367 			tok = c;
1368 			c = strchr(tok, ',');
1369 			if (c == NULL)
1370 				break;
1371 
1372 			/* Take digits and convert */
1373 			unsigned long long nq;
1374 			if (!(isdigit(*tok)))
1375 				break;
1376 			err = ddi_strtoull(tok, &tok, 10, &nq);
1377 			/* Must succeed and also end at the next param sep */
1378 			if (err != 0 || tok != c)
1379 				break;
1380 
1381 			/* Move past the comma */
1382 			tok++;
1383 			/* Need another number */
1384 			if (!(isdigit(*tok)))
1385 				break;
1386 			/* Remember start to make sure we moved */
1387 			c = tok;
1388 
1389 			/* Take digits */
1390 			unsigned long long ntpq;
1391 			err = ddi_strtoull(tok, &tok, 10, &ntpq);
1392 			/* Must succeed, and moved forward */
1393 			if (err != 0 || tok == c || *tok != '\0')
1394 				break;
1395 
1396 			/*
1397 			 * sanity; zero queues/threads make no sense, and
1398 			 * 16K is almost certainly more than anyone will ever
1399 			 * need and avoids silly numbers like UINT32_MAX
1400 			 */
1401 			if (nq == 0 || nq >= 16384 ||
1402 			    ntpq == 0 || ntpq >= 16384)
1403 				break;
1404 
1405 			const zio_taskq_info_t zti = ZTI_P(ntpq, nq);
1406 			row[q] = zti;
1407 			break;
1408 		}
1409 
1410 		case ZTI_MODE_SCALE: {
1411 			const zio_taskq_info_t zti = ZTI_SCALE;
1412 			row[q] = zti;
1413 			break;
1414 		}
1415 
1416 		case ZTI_MODE_SYNC: {
1417 			const zio_taskq_info_t zti = ZTI_SYNC;
1418 			row[q] = zti;
1419 			break;
1420 		}
1421 
1422 		case ZTI_MODE_NULL: {
1423 			/*
1424 			 * Can only null the high-priority queues; the general-
1425 			 * purpose ones have to exist.
1426 			 */
1427 			if (q != ZIO_TASKQ_ISSUE_HIGH &&
1428 			    q != ZIO_TASKQ_INTERRUPT_HIGH)
1429 				break;
1430 
1431 			const zio_taskq_info_t zti = ZTI_NULL;
1432 			row[q] = zti;
1433 			break;
1434 		}
1435 
1436 		default:
1437 			break;
1438 		}
1439 
1440 		/* Ensure we set a mode */
1441 		if (row[q].zti_mode == ZTI_NMODES)
1442 			break;
1443 	}
1444 
1445 	/* Didn't get a full row, fail */
1446 	if (q < ZIO_TASKQ_TYPES)
1447 		return (SET_ERROR(EINVAL));
1448 
1449 	/* Eat trailing space */
1450 	if (next != NULL)
1451 		while (isspace(*next))
1452 			next++;
1453 
1454 	/* If there's anything left over then fail */
1455 	if (next != NULL && *next != '\0')
1456 		return (SET_ERROR(EINVAL));
1457 
1458 	/* Success! Copy it into the real config */
1459 	for (q = 0; q < ZIO_TASKQ_TYPES; q++)
1460 		zio_taskqs[t][q] = row[q];
1461 
1462 	return (0);
1463 }
1464 
1465 static int
spa_taskq_param_get(zio_type_t t,char * buf,boolean_t add_newline)1466 spa_taskq_param_get(zio_type_t t, char *buf, boolean_t add_newline)
1467 {
1468 	int pos = 0;
1469 
1470 	/* Build paramater string from live config */
1471 	const char *sep = "";
1472 	for (uint_t q = 0; q < ZIO_TASKQ_TYPES; q++) {
1473 		const zio_taskq_info_t *zti = &zio_taskqs[t][q];
1474 		if (zti->zti_mode == ZTI_MODE_FIXED)
1475 			pos += sprintf(&buf[pos], "%s%s,%u,%u", sep,
1476 			    modes[zti->zti_mode], zti->zti_count,
1477 			    zti->zti_value);
1478 		else
1479 			pos += sprintf(&buf[pos], "%s%s", sep,
1480 			    modes[zti->zti_mode]);
1481 		sep = " ";
1482 	}
1483 
1484 	if (add_newline)
1485 		buf[pos++] = '\n';
1486 	buf[pos] = '\0';
1487 
1488 	return (pos);
1489 }
1490 
1491 #ifdef __linux__
1492 static int
spa_taskq_read_param_set(const char * val,zfs_kernel_param_t * kp)1493 spa_taskq_read_param_set(const char *val, zfs_kernel_param_t *kp)
1494 {
1495 	char *cfg = kmem_strdup(val);
1496 	int err = spa_taskq_param_set(ZIO_TYPE_READ, cfg);
1497 	kmem_free(cfg, strlen(val)+1);
1498 	return (-err);
1499 }
1500 static int
spa_taskq_read_param_get(char * buf,zfs_kernel_param_t * kp)1501 spa_taskq_read_param_get(char *buf, zfs_kernel_param_t *kp)
1502 {
1503 	return (spa_taskq_param_get(ZIO_TYPE_READ, buf, TRUE));
1504 }
1505 
1506 static int
spa_taskq_write_param_set(const char * val,zfs_kernel_param_t * kp)1507 spa_taskq_write_param_set(const char *val, zfs_kernel_param_t *kp)
1508 {
1509 	char *cfg = kmem_strdup(val);
1510 	int err = spa_taskq_param_set(ZIO_TYPE_WRITE, cfg);
1511 	kmem_free(cfg, strlen(val)+1);
1512 	return (-err);
1513 }
1514 static int
spa_taskq_write_param_get(char * buf,zfs_kernel_param_t * kp)1515 spa_taskq_write_param_get(char *buf, zfs_kernel_param_t *kp)
1516 {
1517 	return (spa_taskq_param_get(ZIO_TYPE_WRITE, buf, TRUE));
1518 }
1519 #else
1520 /*
1521  * On FreeBSD load-time parameters can be set up before malloc() is available,
1522  * so we have to do all the parsing work on the stack.
1523  */
1524 #define	SPA_TASKQ_PARAM_MAX	(128)
1525 
1526 static int
spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)1527 spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)
1528 {
1529 	char buf[SPA_TASKQ_PARAM_MAX];
1530 	int err;
1531 
1532 	(void) spa_taskq_param_get(ZIO_TYPE_READ, buf, FALSE);
1533 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1534 	if (err || req->newptr == NULL)
1535 		return (err);
1536 	return (spa_taskq_param_set(ZIO_TYPE_READ, buf));
1537 }
1538 
1539 static int
spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)1540 spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)
1541 {
1542 	char buf[SPA_TASKQ_PARAM_MAX];
1543 	int err;
1544 
1545 	(void) spa_taskq_param_get(ZIO_TYPE_WRITE, buf, FALSE);
1546 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1547 	if (err || req->newptr == NULL)
1548 		return (err);
1549 	return (spa_taskq_param_set(ZIO_TYPE_WRITE, buf));
1550 }
1551 #endif
1552 #endif /* _KERNEL */
1553 
1554 /*
1555  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1556  * Note that a type may have multiple discrete taskqs to avoid lock contention
1557  * on the taskq itself.
1558  */
1559 void
spa_taskq_dispatch(spa_t * spa,zio_type_t t,zio_taskq_type_t q,task_func_t * func,zio_t * zio,boolean_t cutinline)1560 spa_taskq_dispatch(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1561     task_func_t *func, zio_t *zio, boolean_t cutinline)
1562 {
1563 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1564 	taskq_t *tq;
1565 
1566 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1567 	ASSERT3U(tqs->stqs_count, !=, 0);
1568 
1569 	/*
1570 	 * NB: We are assuming that the zio can only be dispatched
1571 	 * to a single taskq at a time.  It would be a grievous error
1572 	 * to dispatch the zio to another taskq at the same time.
1573 	 */
1574 	ASSERT(zio);
1575 	ASSERT(taskq_empty_ent(&zio->io_tqent));
1576 
1577 	if (tqs->stqs_count == 1) {
1578 		tq = tqs->stqs_taskq[0];
1579 	} else if ((t == ZIO_TYPE_WRITE) && (q == ZIO_TASKQ_ISSUE) &&
1580 	    ZIO_HAS_ALLOCATOR(zio)) {
1581 		tq = tqs->stqs_taskq[zio->io_allocator % tqs->stqs_count];
1582 	} else {
1583 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1584 	}
1585 
1586 	taskq_dispatch_ent(tq, func, zio, cutinline ? TQ_FRONT : 0,
1587 	    &zio->io_tqent);
1588 }
1589 
1590 static void
spa_create_zio_taskqs(spa_t * spa)1591 spa_create_zio_taskqs(spa_t *spa)
1592 {
1593 	for (int t = 0; t < ZIO_TYPES; t++) {
1594 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1595 			spa_taskqs_init(spa, t, q);
1596 		}
1597 	}
1598 }
1599 
1600 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1601 static void
spa_thread(void * arg)1602 spa_thread(void *arg)
1603 {
1604 	psetid_t zio_taskq_psrset_bind = PS_NONE;
1605 	callb_cpr_t cprinfo;
1606 
1607 	spa_t *spa = arg;
1608 	user_t *pu = PTOU(curproc);
1609 
1610 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1611 	    spa->spa_name);
1612 
1613 	ASSERT(curproc != &p0);
1614 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1615 	    "zpool-%s", spa->spa_name);
1616 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1617 
1618 	/* bind this thread to the requested psrset */
1619 	if (zio_taskq_psrset_bind != PS_NONE) {
1620 		pool_lock();
1621 		mutex_enter(&cpu_lock);
1622 		mutex_enter(&pidlock);
1623 		mutex_enter(&curproc->p_lock);
1624 
1625 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1626 		    0, NULL, NULL) == 0)  {
1627 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1628 		} else {
1629 			cmn_err(CE_WARN,
1630 			    "Couldn't bind process for zfs pool \"%s\" to "
1631 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1632 		}
1633 
1634 		mutex_exit(&curproc->p_lock);
1635 		mutex_exit(&pidlock);
1636 		mutex_exit(&cpu_lock);
1637 		pool_unlock();
1638 	}
1639 
1640 #ifdef HAVE_SYSDC
1641 	if (zio_taskq_sysdc) {
1642 		sysdc_thread_enter(curthread, 100, 0);
1643 	}
1644 #endif
1645 
1646 	spa->spa_proc = curproc;
1647 	spa->spa_did = curthread->t_did;
1648 
1649 	spa_create_zio_taskqs(spa);
1650 
1651 	mutex_enter(&spa->spa_proc_lock);
1652 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1653 
1654 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1655 	cv_broadcast(&spa->spa_proc_cv);
1656 
1657 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1658 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1659 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1660 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1661 
1662 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1663 	spa->spa_proc_state = SPA_PROC_GONE;
1664 	spa->spa_proc = &p0;
1665 	cv_broadcast(&spa->spa_proc_cv);
1666 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1667 
1668 	mutex_enter(&curproc->p_lock);
1669 	lwp_exit();
1670 }
1671 #endif
1672 
1673 extern metaslab_ops_t *metaslab_allocator(spa_t *spa);
1674 
1675 /*
1676  * Activate an uninitialized pool.
1677  */
1678 static void
spa_activate(spa_t * spa,spa_mode_t mode)1679 spa_activate(spa_t *spa, spa_mode_t mode)
1680 {
1681 	metaslab_ops_t *msp = metaslab_allocator(spa);
1682 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1683 
1684 	spa->spa_state = POOL_STATE_ACTIVE;
1685 	spa->spa_mode = mode;
1686 	spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1687 
1688 	spa->spa_normal_class = metaslab_class_create(spa, msp);
1689 	spa->spa_log_class = metaslab_class_create(spa, msp);
1690 	spa->spa_embedded_log_class = metaslab_class_create(spa, msp);
1691 	spa->spa_special_class = metaslab_class_create(spa, msp);
1692 	spa->spa_dedup_class = metaslab_class_create(spa, msp);
1693 
1694 	/* Try to create a covering process */
1695 	mutex_enter(&spa->spa_proc_lock);
1696 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1697 	ASSERT(spa->spa_proc == &p0);
1698 	spa->spa_did = 0;
1699 
1700 #ifdef HAVE_SPA_THREAD
1701 	/* Only create a process if we're going to be around a while. */
1702 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1703 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1704 		    NULL, 0) == 0) {
1705 			spa->spa_proc_state = SPA_PROC_CREATED;
1706 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1707 				cv_wait(&spa->spa_proc_cv,
1708 				    &spa->spa_proc_lock);
1709 			}
1710 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1711 			ASSERT(spa->spa_proc != &p0);
1712 			ASSERT(spa->spa_did != 0);
1713 		} else {
1714 #ifdef _KERNEL
1715 			cmn_err(CE_WARN,
1716 			    "Couldn't create process for zfs pool \"%s\"\n",
1717 			    spa->spa_name);
1718 #endif
1719 		}
1720 	}
1721 #endif /* HAVE_SPA_THREAD */
1722 	mutex_exit(&spa->spa_proc_lock);
1723 
1724 	/* If we didn't create a process, we need to create our taskqs. */
1725 	if (spa->spa_proc == &p0) {
1726 		spa_create_zio_taskqs(spa);
1727 	}
1728 
1729 	for (size_t i = 0; i < TXG_SIZE; i++) {
1730 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1731 		    ZIO_FLAG_CANFAIL);
1732 	}
1733 
1734 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1735 	    offsetof(vdev_t, vdev_config_dirty_node));
1736 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1737 	    offsetof(objset_t, os_evicting_node));
1738 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1739 	    offsetof(vdev_t, vdev_state_dirty_node));
1740 
1741 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1742 	    offsetof(struct vdev, vdev_txg_node));
1743 
1744 	avl_create(&spa->spa_errlist_scrub,
1745 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1746 	    offsetof(spa_error_entry_t, se_avl));
1747 	avl_create(&spa->spa_errlist_last,
1748 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1749 	    offsetof(spa_error_entry_t, se_avl));
1750 	avl_create(&spa->spa_errlist_healed,
1751 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1752 	    offsetof(spa_error_entry_t, se_avl));
1753 
1754 	spa_activate_os(spa);
1755 
1756 	spa_keystore_init(&spa->spa_keystore);
1757 
1758 	/*
1759 	 * This taskq is used to perform zvol-minor-related tasks
1760 	 * asynchronously. This has several advantages, including easy
1761 	 * resolution of various deadlocks.
1762 	 *
1763 	 * The taskq must be single threaded to ensure tasks are always
1764 	 * processed in the order in which they were dispatched.
1765 	 *
1766 	 * A taskq per pool allows one to keep the pools independent.
1767 	 * This way if one pool is suspended, it will not impact another.
1768 	 *
1769 	 * The preferred location to dispatch a zvol minor task is a sync
1770 	 * task. In this context, there is easy access to the spa_t and minimal
1771 	 * error handling is required because the sync task must succeed.
1772 	 */
1773 	spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1774 	    1, INT_MAX, 0);
1775 
1776 	/*
1777 	 * The taskq to preload metaslabs.
1778 	 */
1779 	spa->spa_metaslab_taskq = taskq_create("z_metaslab",
1780 	    metaslab_preload_pct, maxclsyspri, 1, INT_MAX,
1781 	    TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1782 
1783 	/*
1784 	 * Taskq dedicated to prefetcher threads: this is used to prevent the
1785 	 * pool traverse code from monopolizing the global (and limited)
1786 	 * system_taskq by inappropriately scheduling long running tasks on it.
1787 	 */
1788 	spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1789 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1790 
1791 	/*
1792 	 * The taskq to upgrade datasets in this pool. Currently used by
1793 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1794 	 */
1795 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1796 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1797 }
1798 
1799 /*
1800  * Opposite of spa_activate().
1801  */
1802 static void
spa_deactivate(spa_t * spa)1803 spa_deactivate(spa_t *spa)
1804 {
1805 	ASSERT(spa->spa_sync_on == B_FALSE);
1806 	ASSERT(spa->spa_dsl_pool == NULL);
1807 	ASSERT(spa->spa_root_vdev == NULL);
1808 	ASSERT(spa->spa_async_zio_root == NULL);
1809 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1810 
1811 	spa_evicting_os_wait(spa);
1812 
1813 	if (spa->spa_zvol_taskq) {
1814 		taskq_destroy(spa->spa_zvol_taskq);
1815 		spa->spa_zvol_taskq = NULL;
1816 	}
1817 
1818 	if (spa->spa_metaslab_taskq) {
1819 		taskq_destroy(spa->spa_metaslab_taskq);
1820 		spa->spa_metaslab_taskq = NULL;
1821 	}
1822 
1823 	if (spa->spa_prefetch_taskq) {
1824 		taskq_destroy(spa->spa_prefetch_taskq);
1825 		spa->spa_prefetch_taskq = NULL;
1826 	}
1827 
1828 	if (spa->spa_upgrade_taskq) {
1829 		taskq_destroy(spa->spa_upgrade_taskq);
1830 		spa->spa_upgrade_taskq = NULL;
1831 	}
1832 
1833 	txg_list_destroy(&spa->spa_vdev_txg_list);
1834 
1835 	list_destroy(&spa->spa_config_dirty_list);
1836 	list_destroy(&spa->spa_evicting_os_list);
1837 	list_destroy(&spa->spa_state_dirty_list);
1838 
1839 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1840 
1841 	for (int t = 0; t < ZIO_TYPES; t++) {
1842 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1843 			spa_taskqs_fini(spa, t, q);
1844 		}
1845 	}
1846 
1847 	for (size_t i = 0; i < TXG_SIZE; i++) {
1848 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1849 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1850 		spa->spa_txg_zio[i] = NULL;
1851 	}
1852 
1853 	metaslab_class_destroy(spa->spa_normal_class);
1854 	spa->spa_normal_class = NULL;
1855 
1856 	metaslab_class_destroy(spa->spa_log_class);
1857 	spa->spa_log_class = NULL;
1858 
1859 	metaslab_class_destroy(spa->spa_embedded_log_class);
1860 	spa->spa_embedded_log_class = NULL;
1861 
1862 	metaslab_class_destroy(spa->spa_special_class);
1863 	spa->spa_special_class = NULL;
1864 
1865 	metaslab_class_destroy(spa->spa_dedup_class);
1866 	spa->spa_dedup_class = NULL;
1867 
1868 	/*
1869 	 * If this was part of an import or the open otherwise failed, we may
1870 	 * still have errors left in the queues.  Empty them just in case.
1871 	 */
1872 	spa_errlog_drain(spa);
1873 	avl_destroy(&spa->spa_errlist_scrub);
1874 	avl_destroy(&spa->spa_errlist_last);
1875 	avl_destroy(&spa->spa_errlist_healed);
1876 
1877 	spa_keystore_fini(&spa->spa_keystore);
1878 
1879 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1880 
1881 	mutex_enter(&spa->spa_proc_lock);
1882 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1883 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1884 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1885 		cv_broadcast(&spa->spa_proc_cv);
1886 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1887 			ASSERT(spa->spa_proc != &p0);
1888 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1889 		}
1890 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1891 		spa->spa_proc_state = SPA_PROC_NONE;
1892 	}
1893 	ASSERT(spa->spa_proc == &p0);
1894 	mutex_exit(&spa->spa_proc_lock);
1895 
1896 	/*
1897 	 * We want to make sure spa_thread() has actually exited the ZFS
1898 	 * module, so that the module can't be unloaded out from underneath
1899 	 * it.
1900 	 */
1901 	if (spa->spa_did != 0) {
1902 		thread_join(spa->spa_did);
1903 		spa->spa_did = 0;
1904 	}
1905 
1906 	spa_deactivate_os(spa);
1907 
1908 }
1909 
1910 /*
1911  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1912  * will create all the necessary vdevs in the appropriate layout, with each vdev
1913  * in the CLOSED state.  This will prep the pool before open/creation/import.
1914  * All vdev validation is done by the vdev_alloc() routine.
1915  */
1916 int
spa_config_parse(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int atype)1917 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1918     uint_t id, int atype)
1919 {
1920 	nvlist_t **child;
1921 	uint_t children;
1922 	int error;
1923 
1924 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1925 		return (error);
1926 
1927 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1928 		return (0);
1929 
1930 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1931 	    &child, &children);
1932 
1933 	if (error == ENOENT)
1934 		return (0);
1935 
1936 	if (error) {
1937 		vdev_free(*vdp);
1938 		*vdp = NULL;
1939 		return (SET_ERROR(EINVAL));
1940 	}
1941 
1942 	for (int c = 0; c < children; c++) {
1943 		vdev_t *vd;
1944 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1945 		    atype)) != 0) {
1946 			vdev_free(*vdp);
1947 			*vdp = NULL;
1948 			return (error);
1949 		}
1950 	}
1951 
1952 	ASSERT(*vdp != NULL);
1953 
1954 	return (0);
1955 }
1956 
1957 static boolean_t
spa_should_flush_logs_on_unload(spa_t * spa)1958 spa_should_flush_logs_on_unload(spa_t *spa)
1959 {
1960 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1961 		return (B_FALSE);
1962 
1963 	if (!spa_writeable(spa))
1964 		return (B_FALSE);
1965 
1966 	if (!spa->spa_sync_on)
1967 		return (B_FALSE);
1968 
1969 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1970 		return (B_FALSE);
1971 
1972 	if (zfs_keep_log_spacemaps_at_export)
1973 		return (B_FALSE);
1974 
1975 	return (B_TRUE);
1976 }
1977 
1978 /*
1979  * Opens a transaction that will set the flag that will instruct
1980  * spa_sync to attempt to flush all the metaslabs for that txg.
1981  */
1982 static void
spa_unload_log_sm_flush_all(spa_t * spa)1983 spa_unload_log_sm_flush_all(spa_t *spa)
1984 {
1985 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1986 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1987 
1988 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1989 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1990 
1991 	dmu_tx_commit(tx);
1992 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1993 }
1994 
1995 static void
spa_unload_log_sm_metadata(spa_t * spa)1996 spa_unload_log_sm_metadata(spa_t *spa)
1997 {
1998 	void *cookie = NULL;
1999 	spa_log_sm_t *sls;
2000 	log_summary_entry_t *e;
2001 
2002 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
2003 	    &cookie)) != NULL) {
2004 		VERIFY0(sls->sls_mscount);
2005 		kmem_free(sls, sizeof (spa_log_sm_t));
2006 	}
2007 
2008 	while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) {
2009 		VERIFY0(e->lse_mscount);
2010 		kmem_free(e, sizeof (log_summary_entry_t));
2011 	}
2012 
2013 	spa->spa_unflushed_stats.sus_nblocks = 0;
2014 	spa->spa_unflushed_stats.sus_memused = 0;
2015 	spa->spa_unflushed_stats.sus_blocklimit = 0;
2016 }
2017 
2018 static void
spa_destroy_aux_threads(spa_t * spa)2019 spa_destroy_aux_threads(spa_t *spa)
2020 {
2021 	if (spa->spa_condense_zthr != NULL) {
2022 		zthr_destroy(spa->spa_condense_zthr);
2023 		spa->spa_condense_zthr = NULL;
2024 	}
2025 	if (spa->spa_checkpoint_discard_zthr != NULL) {
2026 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
2027 		spa->spa_checkpoint_discard_zthr = NULL;
2028 	}
2029 	if (spa->spa_livelist_delete_zthr != NULL) {
2030 		zthr_destroy(spa->spa_livelist_delete_zthr);
2031 		spa->spa_livelist_delete_zthr = NULL;
2032 	}
2033 	if (spa->spa_livelist_condense_zthr != NULL) {
2034 		zthr_destroy(spa->spa_livelist_condense_zthr);
2035 		spa->spa_livelist_condense_zthr = NULL;
2036 	}
2037 	if (spa->spa_raidz_expand_zthr != NULL) {
2038 		zthr_destroy(spa->spa_raidz_expand_zthr);
2039 		spa->spa_raidz_expand_zthr = NULL;
2040 	}
2041 }
2042 
2043 /*
2044  * Opposite of spa_load().
2045  */
2046 static void
spa_unload(spa_t * spa)2047 spa_unload(spa_t *spa)
2048 {
2049 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
2050 	    spa->spa_export_thread == curthread);
2051 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
2052 
2053 	spa_import_progress_remove(spa_guid(spa));
2054 	spa_load_note(spa, "UNLOADING");
2055 
2056 	spa_wake_waiters(spa);
2057 
2058 	/*
2059 	 * If we have set the spa_final_txg, we have already performed the
2060 	 * tasks below in spa_export_common(). We should not redo it here since
2061 	 * we delay the final TXGs beyond what spa_final_txg is set at.
2062 	 */
2063 	if (spa->spa_final_txg == UINT64_MAX) {
2064 		/*
2065 		 * If the log space map feature is enabled and the pool is
2066 		 * getting exported (but not destroyed), we want to spend some
2067 		 * time flushing as many metaslabs as we can in an attempt to
2068 		 * destroy log space maps and save import time.
2069 		 */
2070 		if (spa_should_flush_logs_on_unload(spa))
2071 			spa_unload_log_sm_flush_all(spa);
2072 
2073 		/*
2074 		 * Stop async tasks.
2075 		 */
2076 		spa_async_suspend(spa);
2077 
2078 		if (spa->spa_root_vdev) {
2079 			vdev_t *root_vdev = spa->spa_root_vdev;
2080 			vdev_initialize_stop_all(root_vdev,
2081 			    VDEV_INITIALIZE_ACTIVE);
2082 			vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
2083 			vdev_autotrim_stop_all(spa);
2084 			vdev_rebuild_stop_all(spa);
2085 			l2arc_spa_rebuild_stop(spa);
2086 		}
2087 	}
2088 
2089 	/*
2090 	 * Stop syncing.
2091 	 */
2092 	if (spa->spa_sync_on) {
2093 		txg_sync_stop(spa->spa_dsl_pool);
2094 		spa->spa_sync_on = B_FALSE;
2095 	}
2096 
2097 	/*
2098 	 * This ensures that there is no async metaslab prefetching
2099 	 * while we attempt to unload the spa.
2100 	 */
2101 	taskq_wait(spa->spa_metaslab_taskq);
2102 
2103 	if (spa->spa_mmp.mmp_thread)
2104 		mmp_thread_stop(spa);
2105 
2106 	/*
2107 	 * Wait for any outstanding async I/O to complete.
2108 	 */
2109 	if (spa->spa_async_zio_root != NULL) {
2110 		for (int i = 0; i < max_ncpus; i++)
2111 			(void) zio_wait(spa->spa_async_zio_root[i]);
2112 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
2113 		spa->spa_async_zio_root = NULL;
2114 	}
2115 
2116 	if (spa->spa_vdev_removal != NULL) {
2117 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
2118 		spa->spa_vdev_removal = NULL;
2119 	}
2120 
2121 	spa_destroy_aux_threads(spa);
2122 
2123 	spa_condense_fini(spa);
2124 
2125 	bpobj_close(&spa->spa_deferred_bpobj);
2126 
2127 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
2128 
2129 	/*
2130 	 * Close all vdevs.
2131 	 */
2132 	if (spa->spa_root_vdev)
2133 		vdev_free(spa->spa_root_vdev);
2134 	ASSERT(spa->spa_root_vdev == NULL);
2135 
2136 	/*
2137 	 * Close the dsl pool.
2138 	 */
2139 	if (spa->spa_dsl_pool) {
2140 		dsl_pool_close(spa->spa_dsl_pool);
2141 		spa->spa_dsl_pool = NULL;
2142 		spa->spa_meta_objset = NULL;
2143 	}
2144 
2145 	ddt_unload(spa);
2146 	brt_unload(spa);
2147 	spa_unload_log_sm_metadata(spa);
2148 
2149 	/*
2150 	 * Drop and purge level 2 cache
2151 	 */
2152 	spa_l2cache_drop(spa);
2153 
2154 	if (spa->spa_spares.sav_vdevs) {
2155 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
2156 			vdev_free(spa->spa_spares.sav_vdevs[i]);
2157 		kmem_free(spa->spa_spares.sav_vdevs,
2158 		    spa->spa_spares.sav_count * sizeof (void *));
2159 		spa->spa_spares.sav_vdevs = NULL;
2160 	}
2161 	if (spa->spa_spares.sav_config) {
2162 		nvlist_free(spa->spa_spares.sav_config);
2163 		spa->spa_spares.sav_config = NULL;
2164 	}
2165 	spa->spa_spares.sav_count = 0;
2166 
2167 	if (spa->spa_l2cache.sav_vdevs) {
2168 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
2169 			vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
2170 			vdev_free(spa->spa_l2cache.sav_vdevs[i]);
2171 		}
2172 		kmem_free(spa->spa_l2cache.sav_vdevs,
2173 		    spa->spa_l2cache.sav_count * sizeof (void *));
2174 		spa->spa_l2cache.sav_vdevs = NULL;
2175 	}
2176 	if (spa->spa_l2cache.sav_config) {
2177 		nvlist_free(spa->spa_l2cache.sav_config);
2178 		spa->spa_l2cache.sav_config = NULL;
2179 	}
2180 	spa->spa_l2cache.sav_count = 0;
2181 
2182 	spa->spa_async_suspended = 0;
2183 
2184 	spa->spa_indirect_vdevs_loaded = B_FALSE;
2185 
2186 	if (spa->spa_comment != NULL) {
2187 		spa_strfree(spa->spa_comment);
2188 		spa->spa_comment = NULL;
2189 	}
2190 	if (spa->spa_compatibility != NULL) {
2191 		spa_strfree(spa->spa_compatibility);
2192 		spa->spa_compatibility = NULL;
2193 	}
2194 
2195 	spa->spa_raidz_expand = NULL;
2196 
2197 	spa_config_exit(spa, SCL_ALL, spa);
2198 }
2199 
2200 /*
2201  * Load (or re-load) the current list of vdevs describing the active spares for
2202  * this pool.  When this is called, we have some form of basic information in
2203  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
2204  * then re-generate a more complete list including status information.
2205  */
2206 void
spa_load_spares(spa_t * spa)2207 spa_load_spares(spa_t *spa)
2208 {
2209 	nvlist_t **spares;
2210 	uint_t nspares;
2211 	int i;
2212 	vdev_t *vd, *tvd;
2213 
2214 #ifndef _KERNEL
2215 	/*
2216 	 * zdb opens both the current state of the pool and the
2217 	 * checkpointed state (if present), with a different spa_t.
2218 	 *
2219 	 * As spare vdevs are shared among open pools, we skip loading
2220 	 * them when we load the checkpointed state of the pool.
2221 	 */
2222 	if (!spa_writeable(spa))
2223 		return;
2224 #endif
2225 
2226 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2227 
2228 	/*
2229 	 * First, close and free any existing spare vdevs.
2230 	 */
2231 	if (spa->spa_spares.sav_vdevs) {
2232 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
2233 			vd = spa->spa_spares.sav_vdevs[i];
2234 
2235 			/* Undo the call to spa_activate() below */
2236 			if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2237 			    B_FALSE)) != NULL && tvd->vdev_isspare)
2238 				spa_spare_remove(tvd);
2239 			vdev_close(vd);
2240 			vdev_free(vd);
2241 		}
2242 
2243 		kmem_free(spa->spa_spares.sav_vdevs,
2244 		    spa->spa_spares.sav_count * sizeof (void *));
2245 	}
2246 
2247 	if (spa->spa_spares.sav_config == NULL)
2248 		nspares = 0;
2249 	else
2250 		VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2251 		    ZPOOL_CONFIG_SPARES, &spares, &nspares));
2252 
2253 	spa->spa_spares.sav_count = (int)nspares;
2254 	spa->spa_spares.sav_vdevs = NULL;
2255 
2256 	if (nspares == 0)
2257 		return;
2258 
2259 	/*
2260 	 * Construct the array of vdevs, opening them to get status in the
2261 	 * process.   For each spare, there is potentially two different vdev_t
2262 	 * structures associated with it: one in the list of spares (used only
2263 	 * for basic validation purposes) and one in the active vdev
2264 	 * configuration (if it's spared in).  During this phase we open and
2265 	 * validate each vdev on the spare list.  If the vdev also exists in the
2266 	 * active configuration, then we also mark this vdev as an active spare.
2267 	 */
2268 	spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
2269 	    KM_SLEEP);
2270 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
2271 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
2272 		    VDEV_ALLOC_SPARE) == 0);
2273 		ASSERT(vd != NULL);
2274 
2275 		spa->spa_spares.sav_vdevs[i] = vd;
2276 
2277 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2278 		    B_FALSE)) != NULL) {
2279 			if (!tvd->vdev_isspare)
2280 				spa_spare_add(tvd);
2281 
2282 			/*
2283 			 * We only mark the spare active if we were successfully
2284 			 * able to load the vdev.  Otherwise, importing a pool
2285 			 * with a bad active spare would result in strange
2286 			 * behavior, because multiple pool would think the spare
2287 			 * is actively in use.
2288 			 *
2289 			 * There is a vulnerability here to an equally bizarre
2290 			 * circumstance, where a dead active spare is later
2291 			 * brought back to life (onlined or otherwise).  Given
2292 			 * the rarity of this scenario, and the extra complexity
2293 			 * it adds, we ignore the possibility.
2294 			 */
2295 			if (!vdev_is_dead(tvd))
2296 				spa_spare_activate(tvd);
2297 		}
2298 
2299 		vd->vdev_top = vd;
2300 		vd->vdev_aux = &spa->spa_spares;
2301 
2302 		if (vdev_open(vd) != 0)
2303 			continue;
2304 
2305 		if (vdev_validate_aux(vd) == 0)
2306 			spa_spare_add(vd);
2307 	}
2308 
2309 	/*
2310 	 * Recompute the stashed list of spares, with status information
2311 	 * this time.
2312 	 */
2313 	fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
2314 
2315 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
2316 	    KM_SLEEP);
2317 	for (i = 0; i < spa->spa_spares.sav_count; i++)
2318 		spares[i] = vdev_config_generate(spa,
2319 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
2320 	fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
2321 	    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
2322 	    spa->spa_spares.sav_count);
2323 	for (i = 0; i < spa->spa_spares.sav_count; i++)
2324 		nvlist_free(spares[i]);
2325 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
2326 }
2327 
2328 /*
2329  * Load (or re-load) the current list of vdevs describing the active l2cache for
2330  * this pool.  When this is called, we have some form of basic information in
2331  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
2332  * then re-generate a more complete list including status information.
2333  * Devices which are already active have their details maintained, and are
2334  * not re-opened.
2335  */
2336 void
spa_load_l2cache(spa_t * spa)2337 spa_load_l2cache(spa_t *spa)
2338 {
2339 	nvlist_t **l2cache = NULL;
2340 	uint_t nl2cache;
2341 	int i, j, oldnvdevs;
2342 	uint64_t guid;
2343 	vdev_t *vd, **oldvdevs, **newvdevs;
2344 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2345 
2346 #ifndef _KERNEL
2347 	/*
2348 	 * zdb opens both the current state of the pool and the
2349 	 * checkpointed state (if present), with a different spa_t.
2350 	 *
2351 	 * As L2 caches are part of the ARC which is shared among open
2352 	 * pools, we skip loading them when we load the checkpointed
2353 	 * state of the pool.
2354 	 */
2355 	if (!spa_writeable(spa))
2356 		return;
2357 #endif
2358 
2359 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2360 
2361 	oldvdevs = sav->sav_vdevs;
2362 	oldnvdevs = sav->sav_count;
2363 	sav->sav_vdevs = NULL;
2364 	sav->sav_count = 0;
2365 
2366 	if (sav->sav_config == NULL) {
2367 		nl2cache = 0;
2368 		newvdevs = NULL;
2369 		goto out;
2370 	}
2371 
2372 	VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
2373 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
2374 	newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
2375 
2376 	/*
2377 	 * Process new nvlist of vdevs.
2378 	 */
2379 	for (i = 0; i < nl2cache; i++) {
2380 		guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
2381 
2382 		newvdevs[i] = NULL;
2383 		for (j = 0; j < oldnvdevs; j++) {
2384 			vd = oldvdevs[j];
2385 			if (vd != NULL && guid == vd->vdev_guid) {
2386 				/*
2387 				 * Retain previous vdev for add/remove ops.
2388 				 */
2389 				newvdevs[i] = vd;
2390 				oldvdevs[j] = NULL;
2391 				break;
2392 			}
2393 		}
2394 
2395 		if (newvdevs[i] == NULL) {
2396 			/*
2397 			 * Create new vdev
2398 			 */
2399 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
2400 			    VDEV_ALLOC_L2CACHE) == 0);
2401 			ASSERT(vd != NULL);
2402 			newvdevs[i] = vd;
2403 
2404 			/*
2405 			 * Commit this vdev as an l2cache device,
2406 			 * even if it fails to open.
2407 			 */
2408 			spa_l2cache_add(vd);
2409 
2410 			vd->vdev_top = vd;
2411 			vd->vdev_aux = sav;
2412 
2413 			spa_l2cache_activate(vd);
2414 
2415 			if (vdev_open(vd) != 0)
2416 				continue;
2417 
2418 			(void) vdev_validate_aux(vd);
2419 
2420 			if (!vdev_is_dead(vd))
2421 				l2arc_add_vdev(spa, vd);
2422 
2423 			/*
2424 			 * Upon cache device addition to a pool or pool
2425 			 * creation with a cache device or if the header
2426 			 * of the device is invalid we issue an async
2427 			 * TRIM command for the whole device which will
2428 			 * execute if l2arc_trim_ahead > 0.
2429 			 */
2430 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2431 		}
2432 	}
2433 
2434 	sav->sav_vdevs = newvdevs;
2435 	sav->sav_count = (int)nl2cache;
2436 
2437 	/*
2438 	 * Recompute the stashed list of l2cache devices, with status
2439 	 * information this time.
2440 	 */
2441 	fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2442 
2443 	if (sav->sav_count > 0)
2444 		l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2445 		    KM_SLEEP);
2446 	for (i = 0; i < sav->sav_count; i++)
2447 		l2cache[i] = vdev_config_generate(spa,
2448 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2449 	fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2450 	    (const nvlist_t * const *)l2cache, sav->sav_count);
2451 
2452 out:
2453 	/*
2454 	 * Purge vdevs that were dropped
2455 	 */
2456 	if (oldvdevs) {
2457 		for (i = 0; i < oldnvdevs; i++) {
2458 			uint64_t pool;
2459 
2460 			vd = oldvdevs[i];
2461 			if (vd != NULL) {
2462 				ASSERT(vd->vdev_isl2cache);
2463 
2464 				if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2465 				    pool != 0ULL && l2arc_vdev_present(vd))
2466 					l2arc_remove_vdev(vd);
2467 				vdev_clear_stats(vd);
2468 				vdev_free(vd);
2469 			}
2470 		}
2471 
2472 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2473 	}
2474 
2475 	for (i = 0; i < sav->sav_count; i++)
2476 		nvlist_free(l2cache[i]);
2477 	if (sav->sav_count)
2478 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
2479 }
2480 
2481 static int
load_nvlist(spa_t * spa,uint64_t obj,nvlist_t ** value)2482 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2483 {
2484 	dmu_buf_t *db;
2485 	char *packed = NULL;
2486 	size_t nvsize = 0;
2487 	int error;
2488 	*value = NULL;
2489 
2490 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2491 	if (error)
2492 		return (error);
2493 
2494 	nvsize = *(uint64_t *)db->db_data;
2495 	dmu_buf_rele(db, FTAG);
2496 
2497 	packed = vmem_alloc(nvsize, KM_SLEEP);
2498 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2499 	    DMU_READ_PREFETCH);
2500 	if (error == 0)
2501 		error = nvlist_unpack(packed, nvsize, value, 0);
2502 	vmem_free(packed, nvsize);
2503 
2504 	return (error);
2505 }
2506 
2507 /*
2508  * Concrete top-level vdevs that are not missing and are not logs. At every
2509  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2510  */
2511 static uint64_t
spa_healthy_core_tvds(spa_t * spa)2512 spa_healthy_core_tvds(spa_t *spa)
2513 {
2514 	vdev_t *rvd = spa->spa_root_vdev;
2515 	uint64_t tvds = 0;
2516 
2517 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2518 		vdev_t *vd = rvd->vdev_child[i];
2519 		if (vd->vdev_islog)
2520 			continue;
2521 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2522 			tvds++;
2523 	}
2524 
2525 	return (tvds);
2526 }
2527 
2528 /*
2529  * Checks to see if the given vdev could not be opened, in which case we post a
2530  * sysevent to notify the autoreplace code that the device has been removed.
2531  */
2532 static void
spa_check_removed(vdev_t * vd)2533 spa_check_removed(vdev_t *vd)
2534 {
2535 	for (uint64_t c = 0; c < vd->vdev_children; c++)
2536 		spa_check_removed(vd->vdev_child[c]);
2537 
2538 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2539 	    vdev_is_concrete(vd)) {
2540 		zfs_post_autoreplace(vd->vdev_spa, vd);
2541 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2542 	}
2543 }
2544 
2545 static int
spa_check_for_missing_logs(spa_t * spa)2546 spa_check_for_missing_logs(spa_t *spa)
2547 {
2548 	vdev_t *rvd = spa->spa_root_vdev;
2549 
2550 	/*
2551 	 * If we're doing a normal import, then build up any additional
2552 	 * diagnostic information about missing log devices.
2553 	 * We'll pass this up to the user for further processing.
2554 	 */
2555 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2556 		nvlist_t **child, *nv;
2557 		uint64_t idx = 0;
2558 
2559 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2560 		    KM_SLEEP);
2561 		nv = fnvlist_alloc();
2562 
2563 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2564 			vdev_t *tvd = rvd->vdev_child[c];
2565 
2566 			/*
2567 			 * We consider a device as missing only if it failed
2568 			 * to open (i.e. offline or faulted is not considered
2569 			 * as missing).
2570 			 */
2571 			if (tvd->vdev_islog &&
2572 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2573 				child[idx++] = vdev_config_generate(spa, tvd,
2574 				    B_FALSE, VDEV_CONFIG_MISSING);
2575 			}
2576 		}
2577 
2578 		if (idx > 0) {
2579 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2580 			    (const nvlist_t * const *)child, idx);
2581 			fnvlist_add_nvlist(spa->spa_load_info,
2582 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
2583 
2584 			for (uint64_t i = 0; i < idx; i++)
2585 				nvlist_free(child[i]);
2586 		}
2587 		nvlist_free(nv);
2588 		kmem_free(child, rvd->vdev_children * sizeof (char **));
2589 
2590 		if (idx > 0) {
2591 			spa_load_failed(spa, "some log devices are missing");
2592 			vdev_dbgmsg_print_tree(rvd, 2);
2593 			return (SET_ERROR(ENXIO));
2594 		}
2595 	} else {
2596 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2597 			vdev_t *tvd = rvd->vdev_child[c];
2598 
2599 			if (tvd->vdev_islog &&
2600 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2601 				spa_set_log_state(spa, SPA_LOG_CLEAR);
2602 				spa_load_note(spa, "some log devices are "
2603 				    "missing, ZIL is dropped.");
2604 				vdev_dbgmsg_print_tree(rvd, 2);
2605 				break;
2606 			}
2607 		}
2608 	}
2609 
2610 	return (0);
2611 }
2612 
2613 /*
2614  * Check for missing log devices
2615  */
2616 static boolean_t
spa_check_logs(spa_t * spa)2617 spa_check_logs(spa_t *spa)
2618 {
2619 	boolean_t rv = B_FALSE;
2620 	dsl_pool_t *dp = spa_get_dsl(spa);
2621 
2622 	switch (spa->spa_log_state) {
2623 	default:
2624 		break;
2625 	case SPA_LOG_MISSING:
2626 		/* need to recheck in case slog has been restored */
2627 	case SPA_LOG_UNKNOWN:
2628 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2629 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2630 		if (rv)
2631 			spa_set_log_state(spa, SPA_LOG_MISSING);
2632 		break;
2633 	}
2634 	return (rv);
2635 }
2636 
2637 /*
2638  * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2639  */
2640 static boolean_t
spa_passivate_log(spa_t * spa)2641 spa_passivate_log(spa_t *spa)
2642 {
2643 	vdev_t *rvd = spa->spa_root_vdev;
2644 	boolean_t slog_found = B_FALSE;
2645 
2646 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2647 
2648 	for (int c = 0; c < rvd->vdev_children; c++) {
2649 		vdev_t *tvd = rvd->vdev_child[c];
2650 
2651 		if (tvd->vdev_islog) {
2652 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2653 			metaslab_group_passivate(tvd->vdev_mg);
2654 			slog_found = B_TRUE;
2655 		}
2656 	}
2657 
2658 	return (slog_found);
2659 }
2660 
2661 /*
2662  * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2663  */
2664 static void
spa_activate_log(spa_t * spa)2665 spa_activate_log(spa_t *spa)
2666 {
2667 	vdev_t *rvd = spa->spa_root_vdev;
2668 
2669 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2670 
2671 	for (int c = 0; c < rvd->vdev_children; c++) {
2672 		vdev_t *tvd = rvd->vdev_child[c];
2673 
2674 		if (tvd->vdev_islog) {
2675 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2676 			metaslab_group_activate(tvd->vdev_mg);
2677 		}
2678 	}
2679 }
2680 
2681 int
spa_reset_logs(spa_t * spa)2682 spa_reset_logs(spa_t *spa)
2683 {
2684 	int error;
2685 
2686 	error = dmu_objset_find(spa_name(spa), zil_reset,
2687 	    NULL, DS_FIND_CHILDREN);
2688 	if (error == 0) {
2689 		/*
2690 		 * We successfully offlined the log device, sync out the
2691 		 * current txg so that the "stubby" block can be removed
2692 		 * by zil_sync().
2693 		 */
2694 		txg_wait_synced(spa->spa_dsl_pool, 0);
2695 	}
2696 	return (error);
2697 }
2698 
2699 static void
spa_aux_check_removed(spa_aux_vdev_t * sav)2700 spa_aux_check_removed(spa_aux_vdev_t *sav)
2701 {
2702 	for (int i = 0; i < sav->sav_count; i++)
2703 		spa_check_removed(sav->sav_vdevs[i]);
2704 }
2705 
2706 void
spa_claim_notify(zio_t * zio)2707 spa_claim_notify(zio_t *zio)
2708 {
2709 	spa_t *spa = zio->io_spa;
2710 
2711 	if (zio->io_error)
2712 		return;
2713 
2714 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2715 	if (spa->spa_claim_max_txg < BP_GET_LOGICAL_BIRTH(zio->io_bp))
2716 		spa->spa_claim_max_txg = BP_GET_LOGICAL_BIRTH(zio->io_bp);
2717 	mutex_exit(&spa->spa_props_lock);
2718 }
2719 
2720 typedef struct spa_load_error {
2721 	boolean_t	sle_verify_data;
2722 	uint64_t	sle_meta_count;
2723 	uint64_t	sle_data_count;
2724 } spa_load_error_t;
2725 
2726 static void
spa_load_verify_done(zio_t * zio)2727 spa_load_verify_done(zio_t *zio)
2728 {
2729 	blkptr_t *bp = zio->io_bp;
2730 	spa_load_error_t *sle = zio->io_private;
2731 	dmu_object_type_t type = BP_GET_TYPE(bp);
2732 	int error = zio->io_error;
2733 	spa_t *spa = zio->io_spa;
2734 
2735 	abd_free(zio->io_abd);
2736 	if (error) {
2737 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2738 		    type != DMU_OT_INTENT_LOG)
2739 			atomic_inc_64(&sle->sle_meta_count);
2740 		else
2741 			atomic_inc_64(&sle->sle_data_count);
2742 	}
2743 
2744 	mutex_enter(&spa->spa_scrub_lock);
2745 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2746 	cv_broadcast(&spa->spa_scrub_io_cv);
2747 	mutex_exit(&spa->spa_scrub_lock);
2748 }
2749 
2750 /*
2751  * Maximum number of inflight bytes is the log2 fraction of the arc size.
2752  * By default, we set it to 1/16th of the arc.
2753  */
2754 static uint_t spa_load_verify_shift = 4;
2755 static int spa_load_verify_metadata = B_TRUE;
2756 static int spa_load_verify_data = B_TRUE;
2757 
2758 static int
spa_load_verify_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)2759 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2760     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2761 {
2762 	zio_t *rio = arg;
2763 	spa_load_error_t *sle = rio->io_private;
2764 
2765 	(void) zilog, (void) dnp;
2766 
2767 	/*
2768 	 * Note: normally this routine will not be called if
2769 	 * spa_load_verify_metadata is not set.  However, it may be useful
2770 	 * to manually set the flag after the traversal has begun.
2771 	 */
2772 	if (!spa_load_verify_metadata)
2773 		return (0);
2774 
2775 	/*
2776 	 * Sanity check the block pointer in order to detect obvious damage
2777 	 * before using the contents in subsequent checks or in zio_read().
2778 	 * When damaged consider it to be a metadata error since we cannot
2779 	 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2780 	 */
2781 	if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2782 		atomic_inc_64(&sle->sle_meta_count);
2783 		return (0);
2784 	}
2785 
2786 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2787 	    BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2788 		return (0);
2789 
2790 	if (!BP_IS_METADATA(bp) &&
2791 	    (!spa_load_verify_data || !sle->sle_verify_data))
2792 		return (0);
2793 
2794 	uint64_t maxinflight_bytes =
2795 	    arc_target_bytes() >> spa_load_verify_shift;
2796 	size_t size = BP_GET_PSIZE(bp);
2797 
2798 	mutex_enter(&spa->spa_scrub_lock);
2799 	while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2800 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2801 	spa->spa_load_verify_bytes += size;
2802 	mutex_exit(&spa->spa_scrub_lock);
2803 
2804 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2805 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2806 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2807 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2808 	return (0);
2809 }
2810 
2811 static int
verify_dataset_name_len(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)2812 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2813 {
2814 	(void) dp, (void) arg;
2815 
2816 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2817 		return (SET_ERROR(ENAMETOOLONG));
2818 
2819 	return (0);
2820 }
2821 
2822 static int
spa_load_verify(spa_t * spa)2823 spa_load_verify(spa_t *spa)
2824 {
2825 	zio_t *rio;
2826 	spa_load_error_t sle = { 0 };
2827 	zpool_load_policy_t policy;
2828 	boolean_t verify_ok = B_FALSE;
2829 	int error = 0;
2830 
2831 	zpool_get_load_policy(spa->spa_config, &policy);
2832 
2833 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2834 	    policy.zlp_maxmeta == UINT64_MAX)
2835 		return (0);
2836 
2837 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2838 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2839 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2840 	    DS_FIND_CHILDREN);
2841 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2842 	if (error != 0)
2843 		return (error);
2844 
2845 	/*
2846 	 * Verify data only if we are rewinding or error limit was set.
2847 	 * Otherwise nothing except dbgmsg care about it to waste time.
2848 	 */
2849 	sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2850 	    (policy.zlp_maxdata < UINT64_MAX);
2851 
2852 	rio = zio_root(spa, NULL, &sle,
2853 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2854 
2855 	if (spa_load_verify_metadata) {
2856 		if (spa->spa_extreme_rewind) {
2857 			spa_load_note(spa, "performing a complete scan of the "
2858 			    "pool since extreme rewind is on. This may take "
2859 			    "a very long time.\n  (spa_load_verify_data=%u, "
2860 			    "spa_load_verify_metadata=%u)",
2861 			    spa_load_verify_data, spa_load_verify_metadata);
2862 		}
2863 
2864 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2865 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2866 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2867 	}
2868 
2869 	(void) zio_wait(rio);
2870 	ASSERT0(spa->spa_load_verify_bytes);
2871 
2872 	spa->spa_load_meta_errors = sle.sle_meta_count;
2873 	spa->spa_load_data_errors = sle.sle_data_count;
2874 
2875 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2876 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2877 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2878 		    (u_longlong_t)sle.sle_data_count);
2879 	}
2880 
2881 	if (spa_load_verify_dryrun ||
2882 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2883 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2884 		int64_t loss = 0;
2885 
2886 		verify_ok = B_TRUE;
2887 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2888 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2889 
2890 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2891 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2892 		    spa->spa_load_txg_ts);
2893 		fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2894 		    loss);
2895 		fnvlist_add_uint64(spa->spa_load_info,
2896 		    ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2897 		fnvlist_add_uint64(spa->spa_load_info,
2898 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2899 	} else {
2900 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2901 	}
2902 
2903 	if (spa_load_verify_dryrun)
2904 		return (0);
2905 
2906 	if (error) {
2907 		if (error != ENXIO && error != EIO)
2908 			error = SET_ERROR(EIO);
2909 		return (error);
2910 	}
2911 
2912 	return (verify_ok ? 0 : EIO);
2913 }
2914 
2915 /*
2916  * Find a value in the pool props object.
2917  */
2918 static void
spa_prop_find(spa_t * spa,zpool_prop_t prop,uint64_t * val)2919 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2920 {
2921 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2922 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2923 }
2924 
2925 /*
2926  * Find a value in the pool directory object.
2927  */
2928 static int
spa_dir_prop(spa_t * spa,const char * name,uint64_t * val,boolean_t log_enoent)2929 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2930 {
2931 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2932 	    name, sizeof (uint64_t), 1, val);
2933 
2934 	if (error != 0 && (error != ENOENT || log_enoent)) {
2935 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2936 		    "[error=%d]", name, error);
2937 	}
2938 
2939 	return (error);
2940 }
2941 
2942 static int
spa_vdev_err(vdev_t * vdev,vdev_aux_t aux,int err)2943 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2944 {
2945 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2946 	return (SET_ERROR(err));
2947 }
2948 
2949 boolean_t
spa_livelist_delete_check(spa_t * spa)2950 spa_livelist_delete_check(spa_t *spa)
2951 {
2952 	return (spa->spa_livelists_to_delete != 0);
2953 }
2954 
2955 static boolean_t
spa_livelist_delete_cb_check(void * arg,zthr_t * z)2956 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2957 {
2958 	(void) z;
2959 	spa_t *spa = arg;
2960 	return (spa_livelist_delete_check(spa));
2961 }
2962 
2963 static int
delete_blkptr_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)2964 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2965 {
2966 	spa_t *spa = arg;
2967 	zio_free(spa, tx->tx_txg, bp);
2968 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2969 	    -bp_get_dsize_sync(spa, bp),
2970 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2971 	return (0);
2972 }
2973 
2974 static int
dsl_get_next_livelist_obj(objset_t * os,uint64_t zap_obj,uint64_t * llp)2975 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2976 {
2977 	int err;
2978 	zap_cursor_t zc;
2979 	zap_attribute_t *za = zap_attribute_alloc();
2980 	zap_cursor_init(&zc, os, zap_obj);
2981 	err = zap_cursor_retrieve(&zc, za);
2982 	zap_cursor_fini(&zc);
2983 	if (err == 0)
2984 		*llp = za->za_first_integer;
2985 	zap_attribute_free(za);
2986 	return (err);
2987 }
2988 
2989 /*
2990  * Components of livelist deletion that must be performed in syncing
2991  * context: freeing block pointers and updating the pool-wide data
2992  * structures to indicate how much work is left to do
2993  */
2994 typedef struct sublist_delete_arg {
2995 	spa_t *spa;
2996 	dsl_deadlist_t *ll;
2997 	uint64_t key;
2998 	bplist_t *to_free;
2999 } sublist_delete_arg_t;
3000 
3001 static void
sublist_delete_sync(void * arg,dmu_tx_t * tx)3002 sublist_delete_sync(void *arg, dmu_tx_t *tx)
3003 {
3004 	sublist_delete_arg_t *sda = arg;
3005 	spa_t *spa = sda->spa;
3006 	dsl_deadlist_t *ll = sda->ll;
3007 	uint64_t key = sda->key;
3008 	bplist_t *to_free = sda->to_free;
3009 
3010 	bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
3011 	dsl_deadlist_remove_entry(ll, key, tx);
3012 }
3013 
3014 typedef struct livelist_delete_arg {
3015 	spa_t *spa;
3016 	uint64_t ll_obj;
3017 	uint64_t zap_obj;
3018 } livelist_delete_arg_t;
3019 
3020 static void
livelist_delete_sync(void * arg,dmu_tx_t * tx)3021 livelist_delete_sync(void *arg, dmu_tx_t *tx)
3022 {
3023 	livelist_delete_arg_t *lda = arg;
3024 	spa_t *spa = lda->spa;
3025 	uint64_t ll_obj = lda->ll_obj;
3026 	uint64_t zap_obj = lda->zap_obj;
3027 	objset_t *mos = spa->spa_meta_objset;
3028 	uint64_t count;
3029 
3030 	/* free the livelist and decrement the feature count */
3031 	VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
3032 	dsl_deadlist_free(mos, ll_obj, tx);
3033 	spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
3034 	VERIFY0(zap_count(mos, zap_obj, &count));
3035 	if (count == 0) {
3036 		/* no more livelists to delete */
3037 		VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
3038 		    DMU_POOL_DELETED_CLONES, tx));
3039 		VERIFY0(zap_destroy(mos, zap_obj, tx));
3040 		spa->spa_livelists_to_delete = 0;
3041 		spa_notify_waiters(spa);
3042 	}
3043 }
3044 
3045 /*
3046  * Load in the value for the livelist to be removed and open it. Then,
3047  * load its first sublist and determine which block pointers should actually
3048  * be freed. Then, call a synctask which performs the actual frees and updates
3049  * the pool-wide livelist data.
3050  */
3051 static void
spa_livelist_delete_cb(void * arg,zthr_t * z)3052 spa_livelist_delete_cb(void *arg, zthr_t *z)
3053 {
3054 	spa_t *spa = arg;
3055 	uint64_t ll_obj = 0, count;
3056 	objset_t *mos = spa->spa_meta_objset;
3057 	uint64_t zap_obj = spa->spa_livelists_to_delete;
3058 	/*
3059 	 * Determine the next livelist to delete. This function should only
3060 	 * be called if there is at least one deleted clone.
3061 	 */
3062 	VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
3063 	VERIFY0(zap_count(mos, ll_obj, &count));
3064 	if (count > 0) {
3065 		dsl_deadlist_t *ll;
3066 		dsl_deadlist_entry_t *dle;
3067 		bplist_t to_free;
3068 		ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
3069 		VERIFY0(dsl_deadlist_open(ll, mos, ll_obj));
3070 		dle = dsl_deadlist_first(ll);
3071 		ASSERT3P(dle, !=, NULL);
3072 		bplist_create(&to_free);
3073 		int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
3074 		    z, NULL);
3075 		if (err == 0) {
3076 			sublist_delete_arg_t sync_arg = {
3077 			    .spa = spa,
3078 			    .ll = ll,
3079 			    .key = dle->dle_mintxg,
3080 			    .to_free = &to_free
3081 			};
3082 			zfs_dbgmsg("deleting sublist (id %llu) from"
3083 			    " livelist %llu, %lld remaining",
3084 			    (u_longlong_t)dle->dle_bpobj.bpo_object,
3085 			    (u_longlong_t)ll_obj, (longlong_t)count - 1);
3086 			VERIFY0(dsl_sync_task(spa_name(spa), NULL,
3087 			    sublist_delete_sync, &sync_arg, 0,
3088 			    ZFS_SPACE_CHECK_DESTROY));
3089 		} else {
3090 			VERIFY3U(err, ==, EINTR);
3091 		}
3092 		bplist_clear(&to_free);
3093 		bplist_destroy(&to_free);
3094 		dsl_deadlist_close(ll);
3095 		kmem_free(ll, sizeof (dsl_deadlist_t));
3096 	} else {
3097 		livelist_delete_arg_t sync_arg = {
3098 		    .spa = spa,
3099 		    .ll_obj = ll_obj,
3100 		    .zap_obj = zap_obj
3101 		};
3102 		zfs_dbgmsg("deletion of livelist %llu completed",
3103 		    (u_longlong_t)ll_obj);
3104 		VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
3105 		    &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
3106 	}
3107 }
3108 
3109 static void
spa_start_livelist_destroy_thread(spa_t * spa)3110 spa_start_livelist_destroy_thread(spa_t *spa)
3111 {
3112 	ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
3113 	spa->spa_livelist_delete_zthr =
3114 	    zthr_create("z_livelist_destroy",
3115 	    spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
3116 	    minclsyspri);
3117 }
3118 
3119 typedef struct livelist_new_arg {
3120 	bplist_t *allocs;
3121 	bplist_t *frees;
3122 } livelist_new_arg_t;
3123 
3124 static int
livelist_track_new_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)3125 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3126     dmu_tx_t *tx)
3127 {
3128 	ASSERT(tx == NULL);
3129 	livelist_new_arg_t *lna = arg;
3130 	if (bp_freed) {
3131 		bplist_append(lna->frees, bp);
3132 	} else {
3133 		bplist_append(lna->allocs, bp);
3134 		zfs_livelist_condense_new_alloc++;
3135 	}
3136 	return (0);
3137 }
3138 
3139 typedef struct livelist_condense_arg {
3140 	spa_t *spa;
3141 	bplist_t to_keep;
3142 	uint64_t first_size;
3143 	uint64_t next_size;
3144 } livelist_condense_arg_t;
3145 
3146 static void
spa_livelist_condense_sync(void * arg,dmu_tx_t * tx)3147 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
3148 {
3149 	livelist_condense_arg_t *lca = arg;
3150 	spa_t *spa = lca->spa;
3151 	bplist_t new_frees;
3152 	dsl_dataset_t *ds = spa->spa_to_condense.ds;
3153 
3154 	/* Have we been cancelled? */
3155 	if (spa->spa_to_condense.cancelled) {
3156 		zfs_livelist_condense_sync_cancel++;
3157 		goto out;
3158 	}
3159 
3160 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3161 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3162 	dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
3163 
3164 	/*
3165 	 * It's possible that the livelist was changed while the zthr was
3166 	 * running. Therefore, we need to check for new blkptrs in the two
3167 	 * entries being condensed and continue to track them in the livelist.
3168 	 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
3169 	 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
3170 	 * we need to sort them into two different bplists.
3171 	 */
3172 	uint64_t first_obj = first->dle_bpobj.bpo_object;
3173 	uint64_t next_obj = next->dle_bpobj.bpo_object;
3174 	uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3175 	uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3176 
3177 	bplist_create(&new_frees);
3178 	livelist_new_arg_t new_bps = {
3179 	    .allocs = &lca->to_keep,
3180 	    .frees = &new_frees,
3181 	};
3182 
3183 	if (cur_first_size > lca->first_size) {
3184 		VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
3185 		    livelist_track_new_cb, &new_bps, lca->first_size));
3186 	}
3187 	if (cur_next_size > lca->next_size) {
3188 		VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
3189 		    livelist_track_new_cb, &new_bps, lca->next_size));
3190 	}
3191 
3192 	dsl_deadlist_clear_entry(first, ll, tx);
3193 	ASSERT(bpobj_is_empty(&first->dle_bpobj));
3194 	dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
3195 
3196 	bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
3197 	bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
3198 	bplist_destroy(&new_frees);
3199 
3200 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
3201 	dsl_dataset_name(ds, dsname);
3202 	zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
3203 	    "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
3204 	    "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
3205 	    (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
3206 	    (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
3207 	    (u_longlong_t)cur_next_size,
3208 	    (u_longlong_t)first->dle_bpobj.bpo_object,
3209 	    (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
3210 out:
3211 	dmu_buf_rele(ds->ds_dbuf, spa);
3212 	spa->spa_to_condense.ds = NULL;
3213 	bplist_clear(&lca->to_keep);
3214 	bplist_destroy(&lca->to_keep);
3215 	kmem_free(lca, sizeof (livelist_condense_arg_t));
3216 	spa->spa_to_condense.syncing = B_FALSE;
3217 }
3218 
3219 static void
spa_livelist_condense_cb(void * arg,zthr_t * t)3220 spa_livelist_condense_cb(void *arg, zthr_t *t)
3221 {
3222 	while (zfs_livelist_condense_zthr_pause &&
3223 	    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3224 		delay(1);
3225 
3226 	spa_t *spa = arg;
3227 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3228 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3229 	uint64_t first_size, next_size;
3230 
3231 	livelist_condense_arg_t *lca =
3232 	    kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
3233 	bplist_create(&lca->to_keep);
3234 
3235 	/*
3236 	 * Process the livelists (matching FREEs and ALLOCs) in open context
3237 	 * so we have minimal work in syncing context to condense.
3238 	 *
3239 	 * We save bpobj sizes (first_size and next_size) to use later in
3240 	 * syncing context to determine if entries were added to these sublists
3241 	 * while in open context. This is possible because the clone is still
3242 	 * active and open for normal writes and we want to make sure the new,
3243 	 * unprocessed blockpointers are inserted into the livelist normally.
3244 	 *
3245 	 * Note that dsl_process_sub_livelist() both stores the size number of
3246 	 * blockpointers and iterates over them while the bpobj's lock held, so
3247 	 * the sizes returned to us are consistent which what was actually
3248 	 * processed.
3249 	 */
3250 	int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
3251 	    &first_size);
3252 	if (err == 0)
3253 		err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
3254 		    t, &next_size);
3255 
3256 	if (err == 0) {
3257 		while (zfs_livelist_condense_sync_pause &&
3258 		    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3259 			delay(1);
3260 
3261 		dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
3262 		dmu_tx_mark_netfree(tx);
3263 		dmu_tx_hold_space(tx, 1);
3264 		err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
3265 		if (err == 0) {
3266 			/*
3267 			 * Prevent the condense zthr restarting before
3268 			 * the synctask completes.
3269 			 */
3270 			spa->spa_to_condense.syncing = B_TRUE;
3271 			lca->spa = spa;
3272 			lca->first_size = first_size;
3273 			lca->next_size = next_size;
3274 			dsl_sync_task_nowait(spa_get_dsl(spa),
3275 			    spa_livelist_condense_sync, lca, tx);
3276 			dmu_tx_commit(tx);
3277 			return;
3278 		}
3279 	}
3280 	/*
3281 	 * Condensing can not continue: either it was externally stopped or
3282 	 * we were unable to assign to a tx because the pool has run out of
3283 	 * space. In the second case, we'll just end up trying to condense
3284 	 * again in a later txg.
3285 	 */
3286 	ASSERT(err != 0);
3287 	bplist_clear(&lca->to_keep);
3288 	bplist_destroy(&lca->to_keep);
3289 	kmem_free(lca, sizeof (livelist_condense_arg_t));
3290 	dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
3291 	spa->spa_to_condense.ds = NULL;
3292 	if (err == EINTR)
3293 		zfs_livelist_condense_zthr_cancel++;
3294 }
3295 
3296 /*
3297  * Check that there is something to condense but that a condense is not
3298  * already in progress and that condensing has not been cancelled.
3299  */
3300 static boolean_t
spa_livelist_condense_cb_check(void * arg,zthr_t * z)3301 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
3302 {
3303 	(void) z;
3304 	spa_t *spa = arg;
3305 	if ((spa->spa_to_condense.ds != NULL) &&
3306 	    (spa->spa_to_condense.syncing == B_FALSE) &&
3307 	    (spa->spa_to_condense.cancelled == B_FALSE)) {
3308 		return (B_TRUE);
3309 	}
3310 	return (B_FALSE);
3311 }
3312 
3313 static void
spa_start_livelist_condensing_thread(spa_t * spa)3314 spa_start_livelist_condensing_thread(spa_t *spa)
3315 {
3316 	spa->spa_to_condense.ds = NULL;
3317 	spa->spa_to_condense.first = NULL;
3318 	spa->spa_to_condense.next = NULL;
3319 	spa->spa_to_condense.syncing = B_FALSE;
3320 	spa->spa_to_condense.cancelled = B_FALSE;
3321 
3322 	ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
3323 	spa->spa_livelist_condense_zthr =
3324 	    zthr_create("z_livelist_condense",
3325 	    spa_livelist_condense_cb_check,
3326 	    spa_livelist_condense_cb, spa, minclsyspri);
3327 }
3328 
3329 static void
spa_spawn_aux_threads(spa_t * spa)3330 spa_spawn_aux_threads(spa_t *spa)
3331 {
3332 	ASSERT(spa_writeable(spa));
3333 
3334 	spa_start_raidz_expansion_thread(spa);
3335 	spa_start_indirect_condensing_thread(spa);
3336 	spa_start_livelist_destroy_thread(spa);
3337 	spa_start_livelist_condensing_thread(spa);
3338 
3339 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
3340 	spa->spa_checkpoint_discard_zthr =
3341 	    zthr_create("z_checkpoint_discard",
3342 	    spa_checkpoint_discard_thread_check,
3343 	    spa_checkpoint_discard_thread, spa, minclsyspri);
3344 }
3345 
3346 /*
3347  * Fix up config after a partly-completed split.  This is done with the
3348  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
3349  * pool have that entry in their config, but only the splitting one contains
3350  * a list of all the guids of the vdevs that are being split off.
3351  *
3352  * This function determines what to do with that list: either rejoin
3353  * all the disks to the pool, or complete the splitting process.  To attempt
3354  * the rejoin, each disk that is offlined is marked online again, and
3355  * we do a reopen() call.  If the vdev label for every disk that was
3356  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
3357  * then we call vdev_split() on each disk, and complete the split.
3358  *
3359  * Otherwise we leave the config alone, with all the vdevs in place in
3360  * the original pool.
3361  */
3362 static void
spa_try_repair(spa_t * spa,nvlist_t * config)3363 spa_try_repair(spa_t *spa, nvlist_t *config)
3364 {
3365 	uint_t extracted;
3366 	uint64_t *glist;
3367 	uint_t i, gcount;
3368 	nvlist_t *nvl;
3369 	vdev_t **vd;
3370 	boolean_t attempt_reopen;
3371 
3372 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
3373 		return;
3374 
3375 	/* check that the config is complete */
3376 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
3377 	    &glist, &gcount) != 0)
3378 		return;
3379 
3380 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
3381 
3382 	/* attempt to online all the vdevs & validate */
3383 	attempt_reopen = B_TRUE;
3384 	for (i = 0; i < gcount; i++) {
3385 		if (glist[i] == 0)	/* vdev is hole */
3386 			continue;
3387 
3388 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
3389 		if (vd[i] == NULL) {
3390 			/*
3391 			 * Don't bother attempting to reopen the disks;
3392 			 * just do the split.
3393 			 */
3394 			attempt_reopen = B_FALSE;
3395 		} else {
3396 			/* attempt to re-online it */
3397 			vd[i]->vdev_offline = B_FALSE;
3398 		}
3399 	}
3400 
3401 	if (attempt_reopen) {
3402 		vdev_reopen(spa->spa_root_vdev);
3403 
3404 		/* check each device to see what state it's in */
3405 		for (extracted = 0, i = 0; i < gcount; i++) {
3406 			if (vd[i] != NULL &&
3407 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
3408 				break;
3409 			++extracted;
3410 		}
3411 	}
3412 
3413 	/*
3414 	 * If every disk has been moved to the new pool, or if we never
3415 	 * even attempted to look at them, then we split them off for
3416 	 * good.
3417 	 */
3418 	if (!attempt_reopen || gcount == extracted) {
3419 		for (i = 0; i < gcount; i++)
3420 			if (vd[i] != NULL)
3421 				vdev_split(vd[i]);
3422 		vdev_reopen(spa->spa_root_vdev);
3423 	}
3424 
3425 	kmem_free(vd, gcount * sizeof (vdev_t *));
3426 }
3427 
3428 static int
spa_load(spa_t * spa,spa_load_state_t state,spa_import_type_t type)3429 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
3430 {
3431 	const char *ereport = FM_EREPORT_ZFS_POOL;
3432 	int error;
3433 
3434 	spa->spa_load_state = state;
3435 	(void) spa_import_progress_set_state(spa_guid(spa),
3436 	    spa_load_state(spa));
3437 	spa_import_progress_set_notes(spa, "spa_load()");
3438 
3439 	gethrestime(&spa->spa_loaded_ts);
3440 	error = spa_load_impl(spa, type, &ereport);
3441 
3442 	/*
3443 	 * Don't count references from objsets that are already closed
3444 	 * and are making their way through the eviction process.
3445 	 */
3446 	spa_evicting_os_wait(spa);
3447 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3448 	if (error) {
3449 		if (error != EEXIST) {
3450 			spa->spa_loaded_ts.tv_sec = 0;
3451 			spa->spa_loaded_ts.tv_nsec = 0;
3452 		}
3453 		if (error != EBADF) {
3454 			(void) zfs_ereport_post(ereport, spa,
3455 			    NULL, NULL, NULL, 0);
3456 		}
3457 	}
3458 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3459 	spa->spa_ena = 0;
3460 
3461 	(void) spa_import_progress_set_state(spa_guid(spa),
3462 	    spa_load_state(spa));
3463 
3464 	return (error);
3465 }
3466 
3467 #ifdef ZFS_DEBUG
3468 /*
3469  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3470  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3471  * spa's per-vdev ZAP list.
3472  */
3473 static uint64_t
vdev_count_verify_zaps(vdev_t * vd)3474 vdev_count_verify_zaps(vdev_t *vd)
3475 {
3476 	spa_t *spa = vd->vdev_spa;
3477 	uint64_t total = 0;
3478 
3479 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
3480 	    vd->vdev_root_zap != 0) {
3481 		total++;
3482 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3483 		    spa->spa_all_vdev_zaps, vd->vdev_root_zap));
3484 	}
3485 	if (vd->vdev_top_zap != 0) {
3486 		total++;
3487 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3488 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3489 	}
3490 	if (vd->vdev_leaf_zap != 0) {
3491 		total++;
3492 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3493 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3494 	}
3495 
3496 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3497 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
3498 	}
3499 
3500 	return (total);
3501 }
3502 #else
3503 #define	vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3504 #endif
3505 
3506 /*
3507  * Determine whether the activity check is required.
3508  */
3509 static boolean_t
spa_activity_check_required(spa_t * spa,uberblock_t * ub,nvlist_t * label,nvlist_t * config)3510 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3511     nvlist_t *config)
3512 {
3513 	uint64_t state = 0;
3514 	uint64_t hostid = 0;
3515 	uint64_t tryconfig_txg = 0;
3516 	uint64_t tryconfig_timestamp = 0;
3517 	uint16_t tryconfig_mmp_seq = 0;
3518 	nvlist_t *nvinfo;
3519 
3520 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3521 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3522 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3523 		    &tryconfig_txg);
3524 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3525 		    &tryconfig_timestamp);
3526 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3527 		    &tryconfig_mmp_seq);
3528 	}
3529 
3530 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3531 
3532 	/*
3533 	 * Disable the MMP activity check - This is used by zdb which
3534 	 * is intended to be used on potentially active pools.
3535 	 */
3536 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3537 		return (B_FALSE);
3538 
3539 	/*
3540 	 * Skip the activity check when the MMP feature is disabled.
3541 	 */
3542 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3543 		return (B_FALSE);
3544 
3545 	/*
3546 	 * If the tryconfig_ values are nonzero, they are the results of an
3547 	 * earlier tryimport.  If they all match the uberblock we just found,
3548 	 * then the pool has not changed and we return false so we do not test
3549 	 * a second time.
3550 	 */
3551 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3552 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3553 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
3554 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3555 		return (B_FALSE);
3556 
3557 	/*
3558 	 * Allow the activity check to be skipped when importing the pool
3559 	 * on the same host which last imported it.  Since the hostid from
3560 	 * configuration may be stale use the one read from the label.
3561 	 */
3562 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3563 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3564 
3565 	if (hostid == spa_get_hostid(spa))
3566 		return (B_FALSE);
3567 
3568 	/*
3569 	 * Skip the activity test when the pool was cleanly exported.
3570 	 */
3571 	if (state != POOL_STATE_ACTIVE)
3572 		return (B_FALSE);
3573 
3574 	return (B_TRUE);
3575 }
3576 
3577 /*
3578  * Nanoseconds the activity check must watch for changes on-disk.
3579  */
3580 static uint64_t
spa_activity_check_duration(spa_t * spa,uberblock_t * ub)3581 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3582 {
3583 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3584 	uint64_t multihost_interval = MSEC2NSEC(
3585 	    MMP_INTERVAL_OK(zfs_multihost_interval));
3586 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
3587 	    multihost_interval);
3588 
3589 	/*
3590 	 * Local tunables determine a minimum duration except for the case
3591 	 * where we know when the remote host will suspend the pool if MMP
3592 	 * writes do not land.
3593 	 *
3594 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
3595 	 * these cases and times.
3596 	 */
3597 
3598 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3599 
3600 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3601 	    MMP_FAIL_INT(ub) > 0) {
3602 
3603 		/* MMP on remote host will suspend pool after failed writes */
3604 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3605 		    MMP_IMPORT_SAFETY_FACTOR / 100;
3606 
3607 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3608 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3609 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3610 		    (u_longlong_t)MMP_FAIL_INT(ub),
3611 		    (u_longlong_t)MMP_INTERVAL(ub),
3612 		    (u_longlong_t)import_intervals);
3613 
3614 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3615 	    MMP_FAIL_INT(ub) == 0) {
3616 
3617 		/* MMP on remote host will never suspend pool */
3618 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3619 		    ub->ub_mmp_delay) * import_intervals);
3620 
3621 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3622 		    "mmp_interval=%llu ub_mmp_delay=%llu "
3623 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3624 		    (u_longlong_t)MMP_INTERVAL(ub),
3625 		    (u_longlong_t)ub->ub_mmp_delay,
3626 		    (u_longlong_t)import_intervals);
3627 
3628 	} else if (MMP_VALID(ub)) {
3629 		/*
3630 		 * zfs-0.7 compatibility case
3631 		 */
3632 
3633 		import_delay = MAX(import_delay, (multihost_interval +
3634 		    ub->ub_mmp_delay) * import_intervals);
3635 
3636 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3637 		    "import_intervals=%llu leaves=%u",
3638 		    (u_longlong_t)import_delay,
3639 		    (u_longlong_t)ub->ub_mmp_delay,
3640 		    (u_longlong_t)import_intervals,
3641 		    vdev_count_leaves(spa));
3642 	} else {
3643 		/* Using local tunings is the only reasonable option */
3644 		zfs_dbgmsg("pool last imported on non-MMP aware "
3645 		    "host using import_delay=%llu multihost_interval=%llu "
3646 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3647 		    (u_longlong_t)multihost_interval,
3648 		    (u_longlong_t)import_intervals);
3649 	}
3650 
3651 	return (import_delay);
3652 }
3653 
3654 /*
3655  * Remote host activity check.
3656  *
3657  * error results:
3658  *          0 - no activity detected
3659  *  EREMOTEIO - remote activity detected
3660  *      EINTR - user canceled the operation
3661  */
3662 static int
spa_activity_check(spa_t * spa,uberblock_t * ub,nvlist_t * config,boolean_t importing)3663 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config,
3664     boolean_t importing)
3665 {
3666 	uint64_t txg = ub->ub_txg;
3667 	uint64_t timestamp = ub->ub_timestamp;
3668 	uint64_t mmp_config = ub->ub_mmp_config;
3669 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3670 	uint64_t import_delay;
3671 	hrtime_t import_expire, now;
3672 	nvlist_t *mmp_label = NULL;
3673 	vdev_t *rvd = spa->spa_root_vdev;
3674 	kcondvar_t cv;
3675 	kmutex_t mtx;
3676 	int error = 0;
3677 
3678 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
3679 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3680 	mutex_enter(&mtx);
3681 
3682 	/*
3683 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3684 	 * during the earlier tryimport.  If the txg recorded there is 0 then
3685 	 * the pool is known to be active on another host.
3686 	 *
3687 	 * Otherwise, the pool might be in use on another host.  Check for
3688 	 * changes in the uberblocks on disk if necessary.
3689 	 */
3690 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3691 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3692 		    ZPOOL_CONFIG_LOAD_INFO);
3693 
3694 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3695 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3696 			vdev_uberblock_load(rvd, ub, &mmp_label);
3697 			error = SET_ERROR(EREMOTEIO);
3698 			goto out;
3699 		}
3700 	}
3701 
3702 	import_delay = spa_activity_check_duration(spa, ub);
3703 
3704 	/* Add a small random factor in case of simultaneous imports (0-25%) */
3705 	import_delay += import_delay * random_in_range(250) / 1000;
3706 
3707 	import_expire = gethrtime() + import_delay;
3708 
3709 	if (importing) {
3710 		spa_import_progress_set_notes(spa, "Checking MMP activity, "
3711 		    "waiting %llu ms", (u_longlong_t)NSEC2MSEC(import_delay));
3712 	}
3713 
3714 	int iterations = 0;
3715 	while ((now = gethrtime()) < import_expire) {
3716 		if (importing && iterations++ % 30 == 0) {
3717 			spa_import_progress_set_notes(spa, "Checking MMP "
3718 			    "activity, %llu ms remaining",
3719 			    (u_longlong_t)NSEC2MSEC(import_expire - now));
3720 		}
3721 
3722 		if (importing) {
3723 			(void) spa_import_progress_set_mmp_check(spa_guid(spa),
3724 			    NSEC2SEC(import_expire - gethrtime()));
3725 		}
3726 
3727 		vdev_uberblock_load(rvd, ub, &mmp_label);
3728 
3729 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3730 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3731 			zfs_dbgmsg("multihost activity detected "
3732 			    "txg %llu ub_txg  %llu "
3733 			    "timestamp %llu ub_timestamp  %llu "
3734 			    "mmp_config %#llx ub_mmp_config %#llx",
3735 			    (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3736 			    (u_longlong_t)timestamp,
3737 			    (u_longlong_t)ub->ub_timestamp,
3738 			    (u_longlong_t)mmp_config,
3739 			    (u_longlong_t)ub->ub_mmp_config);
3740 
3741 			error = SET_ERROR(EREMOTEIO);
3742 			break;
3743 		}
3744 
3745 		if (mmp_label) {
3746 			nvlist_free(mmp_label);
3747 			mmp_label = NULL;
3748 		}
3749 
3750 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3751 		if (error != -1) {
3752 			error = SET_ERROR(EINTR);
3753 			break;
3754 		}
3755 		error = 0;
3756 	}
3757 
3758 out:
3759 	mutex_exit(&mtx);
3760 	mutex_destroy(&mtx);
3761 	cv_destroy(&cv);
3762 
3763 	/*
3764 	 * If the pool is determined to be active store the status in the
3765 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
3766 	 * available from configuration read from disk store them as well.
3767 	 * This allows 'zpool import' to generate a more useful message.
3768 	 *
3769 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
3770 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3771 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
3772 	 */
3773 	if (error == EREMOTEIO) {
3774 		const char *hostname = "<unknown>";
3775 		uint64_t hostid = 0;
3776 
3777 		if (mmp_label) {
3778 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3779 				hostname = fnvlist_lookup_string(mmp_label,
3780 				    ZPOOL_CONFIG_HOSTNAME);
3781 				fnvlist_add_string(spa->spa_load_info,
3782 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3783 			}
3784 
3785 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3786 				hostid = fnvlist_lookup_uint64(mmp_label,
3787 				    ZPOOL_CONFIG_HOSTID);
3788 				fnvlist_add_uint64(spa->spa_load_info,
3789 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
3790 			}
3791 		}
3792 
3793 		fnvlist_add_uint64(spa->spa_load_info,
3794 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3795 		fnvlist_add_uint64(spa->spa_load_info,
3796 		    ZPOOL_CONFIG_MMP_TXG, 0);
3797 
3798 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3799 	}
3800 
3801 	if (mmp_label)
3802 		nvlist_free(mmp_label);
3803 
3804 	return (error);
3805 }
3806 
3807 /*
3808  * Called from zfs_ioc_clear for a pool that was suspended
3809  * after failing mmp write checks.
3810  */
3811 boolean_t
spa_mmp_remote_host_activity(spa_t * spa)3812 spa_mmp_remote_host_activity(spa_t *spa)
3813 {
3814 	ASSERT(spa_multihost(spa) && spa_suspended(spa));
3815 
3816 	nvlist_t *best_label;
3817 	uberblock_t best_ub;
3818 
3819 	/*
3820 	 * Locate the best uberblock on disk
3821 	 */
3822 	vdev_uberblock_load(spa->spa_root_vdev, &best_ub, &best_label);
3823 	if (best_label) {
3824 		/*
3825 		 * confirm that the best hostid matches our hostid
3826 		 */
3827 		if (nvlist_exists(best_label, ZPOOL_CONFIG_HOSTID) &&
3828 		    spa_get_hostid(spa) !=
3829 		    fnvlist_lookup_uint64(best_label, ZPOOL_CONFIG_HOSTID)) {
3830 			nvlist_free(best_label);
3831 			return (B_TRUE);
3832 		}
3833 		nvlist_free(best_label);
3834 	} else {
3835 		return (B_TRUE);
3836 	}
3837 
3838 	if (!MMP_VALID(&best_ub) ||
3839 	    !MMP_FAIL_INT_VALID(&best_ub) ||
3840 	    MMP_FAIL_INT(&best_ub) == 0) {
3841 		return (B_TRUE);
3842 	}
3843 
3844 	if (best_ub.ub_txg != spa->spa_uberblock.ub_txg ||
3845 	    best_ub.ub_timestamp != spa->spa_uberblock.ub_timestamp) {
3846 		zfs_dbgmsg("txg mismatch detected during pool clear "
3847 		    "txg %llu ub_txg %llu timestamp %llu ub_timestamp %llu",
3848 		    (u_longlong_t)spa->spa_uberblock.ub_txg,
3849 		    (u_longlong_t)best_ub.ub_txg,
3850 		    (u_longlong_t)spa->spa_uberblock.ub_timestamp,
3851 		    (u_longlong_t)best_ub.ub_timestamp);
3852 		return (B_TRUE);
3853 	}
3854 
3855 	/*
3856 	 * Perform an activity check looking for any remote writer
3857 	 */
3858 	return (spa_activity_check(spa, &spa->spa_uberblock, spa->spa_config,
3859 	    B_FALSE) != 0);
3860 }
3861 
3862 static int
spa_verify_host(spa_t * spa,nvlist_t * mos_config)3863 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3864 {
3865 	uint64_t hostid;
3866 	const char *hostname;
3867 	uint64_t myhostid = 0;
3868 
3869 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3870 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3871 		hostname = fnvlist_lookup_string(mos_config,
3872 		    ZPOOL_CONFIG_HOSTNAME);
3873 
3874 		myhostid = zone_get_hostid(NULL);
3875 
3876 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3877 			cmn_err(CE_WARN, "pool '%s' could not be "
3878 			    "loaded as it was last accessed by "
3879 			    "another system (host: %s hostid: 0x%llx). "
3880 			    "See: https://openzfs.github.io/openzfs-docs/msg/"
3881 			    "ZFS-8000-EY",
3882 			    spa_name(spa), hostname, (u_longlong_t)hostid);
3883 			spa_load_failed(spa, "hostid verification failed: pool "
3884 			    "last accessed by host: %s (hostid: 0x%llx)",
3885 			    hostname, (u_longlong_t)hostid);
3886 			return (SET_ERROR(EBADF));
3887 		}
3888 	}
3889 
3890 	return (0);
3891 }
3892 
3893 static int
spa_ld_parse_config(spa_t * spa,spa_import_type_t type)3894 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3895 {
3896 	int error = 0;
3897 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3898 	int parse;
3899 	vdev_t *rvd;
3900 	uint64_t pool_guid;
3901 	const char *comment;
3902 	const char *compatibility;
3903 
3904 	/*
3905 	 * Versioning wasn't explicitly added to the label until later, so if
3906 	 * it's not present treat it as the initial version.
3907 	 */
3908 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3909 	    &spa->spa_ubsync.ub_version) != 0)
3910 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3911 
3912 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3913 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3914 		    ZPOOL_CONFIG_POOL_GUID);
3915 		return (SET_ERROR(EINVAL));
3916 	}
3917 
3918 	/*
3919 	 * If we are doing an import, ensure that the pool is not already
3920 	 * imported by checking if its pool guid already exists in the
3921 	 * spa namespace.
3922 	 *
3923 	 * The only case that we allow an already imported pool to be
3924 	 * imported again, is when the pool is checkpointed and we want to
3925 	 * look at its checkpointed state from userland tools like zdb.
3926 	 */
3927 #ifdef _KERNEL
3928 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3929 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3930 	    spa_guid_exists(pool_guid, 0)) {
3931 #else
3932 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3933 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3934 	    spa_guid_exists(pool_guid, 0) &&
3935 	    !spa_importing_readonly_checkpoint(spa)) {
3936 #endif
3937 		spa_load_failed(spa, "a pool with guid %llu is already open",
3938 		    (u_longlong_t)pool_guid);
3939 		return (SET_ERROR(EEXIST));
3940 	}
3941 
3942 	spa->spa_config_guid = pool_guid;
3943 
3944 	nvlist_free(spa->spa_load_info);
3945 	spa->spa_load_info = fnvlist_alloc();
3946 
3947 	ASSERT(spa->spa_comment == NULL);
3948 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3949 		spa->spa_comment = spa_strdup(comment);
3950 
3951 	ASSERT(spa->spa_compatibility == NULL);
3952 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3953 	    &compatibility) == 0)
3954 		spa->spa_compatibility = spa_strdup(compatibility);
3955 
3956 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3957 	    &spa->spa_config_txg);
3958 
3959 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3960 		spa->spa_config_splitting = fnvlist_dup(nvl);
3961 
3962 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3963 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3964 		    ZPOOL_CONFIG_VDEV_TREE);
3965 		return (SET_ERROR(EINVAL));
3966 	}
3967 
3968 	/*
3969 	 * Create "The Godfather" zio to hold all async IOs
3970 	 */
3971 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3972 	    KM_SLEEP);
3973 	for (int i = 0; i < max_ncpus; i++) {
3974 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3975 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3976 		    ZIO_FLAG_GODFATHER);
3977 	}
3978 
3979 	/*
3980 	 * Parse the configuration into a vdev tree.  We explicitly set the
3981 	 * value that will be returned by spa_version() since parsing the
3982 	 * configuration requires knowing the version number.
3983 	 */
3984 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3985 	parse = (type == SPA_IMPORT_EXISTING ?
3986 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3987 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3988 	spa_config_exit(spa, SCL_ALL, FTAG);
3989 
3990 	if (error != 0) {
3991 		spa_load_failed(spa, "unable to parse config [error=%d]",
3992 		    error);
3993 		return (error);
3994 	}
3995 
3996 	ASSERT(spa->spa_root_vdev == rvd);
3997 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3998 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3999 
4000 	if (type != SPA_IMPORT_ASSEMBLE) {
4001 		ASSERT(spa_guid(spa) == pool_guid);
4002 	}
4003 
4004 	return (0);
4005 }
4006 
4007 /*
4008  * Recursively open all vdevs in the vdev tree. This function is called twice:
4009  * first with the untrusted config, then with the trusted config.
4010  */
4011 static int
4012 spa_ld_open_vdevs(spa_t *spa)
4013 {
4014 	int error = 0;
4015 
4016 	/*
4017 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
4018 	 * missing/unopenable for the root vdev to be still considered openable.
4019 	 */
4020 	if (spa->spa_trust_config) {
4021 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
4022 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
4023 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
4024 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
4025 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
4026 	} else {
4027 		spa->spa_missing_tvds_allowed = 0;
4028 	}
4029 
4030 	spa->spa_missing_tvds_allowed =
4031 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
4032 
4033 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4034 	error = vdev_open(spa->spa_root_vdev);
4035 	spa_config_exit(spa, SCL_ALL, FTAG);
4036 
4037 	if (spa->spa_missing_tvds != 0) {
4038 		spa_load_note(spa, "vdev tree has %lld missing top-level "
4039 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
4040 		if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
4041 			/*
4042 			 * Although theoretically we could allow users to open
4043 			 * incomplete pools in RW mode, we'd need to add a lot
4044 			 * of extra logic (e.g. adjust pool space to account
4045 			 * for missing vdevs).
4046 			 * This limitation also prevents users from accidentally
4047 			 * opening the pool in RW mode during data recovery and
4048 			 * damaging it further.
4049 			 */
4050 			spa_load_note(spa, "pools with missing top-level "
4051 			    "vdevs can only be opened in read-only mode.");
4052 			error = SET_ERROR(ENXIO);
4053 		} else {
4054 			spa_load_note(spa, "current settings allow for maximum "
4055 			    "%lld missing top-level vdevs at this stage.",
4056 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
4057 		}
4058 	}
4059 	if (error != 0) {
4060 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
4061 		    error);
4062 	}
4063 	if (spa->spa_missing_tvds != 0 || error != 0)
4064 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
4065 
4066 	return (error);
4067 }
4068 
4069 /*
4070  * We need to validate the vdev labels against the configuration that
4071  * we have in hand. This function is called twice: first with an untrusted
4072  * config, then with a trusted config. The validation is more strict when the
4073  * config is trusted.
4074  */
4075 static int
4076 spa_ld_validate_vdevs(spa_t *spa)
4077 {
4078 	int error = 0;
4079 	vdev_t *rvd = spa->spa_root_vdev;
4080 
4081 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4082 	error = vdev_validate(rvd);
4083 	spa_config_exit(spa, SCL_ALL, FTAG);
4084 
4085 	if (error != 0) {
4086 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
4087 		return (error);
4088 	}
4089 
4090 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
4091 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
4092 		    "some vdevs");
4093 		vdev_dbgmsg_print_tree(rvd, 2);
4094 		return (SET_ERROR(ENXIO));
4095 	}
4096 
4097 	return (0);
4098 }
4099 
4100 static void
4101 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
4102 {
4103 	spa->spa_state = POOL_STATE_ACTIVE;
4104 	spa->spa_ubsync = spa->spa_uberblock;
4105 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
4106 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
4107 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
4108 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
4109 	spa->spa_claim_max_txg = spa->spa_first_txg;
4110 	spa->spa_prev_software_version = ub->ub_software_version;
4111 }
4112 
4113 static int
4114 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
4115 {
4116 	vdev_t *rvd = spa->spa_root_vdev;
4117 	nvlist_t *label;
4118 	uberblock_t *ub = &spa->spa_uberblock;
4119 	boolean_t activity_check = B_FALSE;
4120 
4121 	/*
4122 	 * If we are opening the checkpointed state of the pool by
4123 	 * rewinding to it, at this point we will have written the
4124 	 * checkpointed uberblock to the vdev labels, so searching
4125 	 * the labels will find the right uberblock.  However, if
4126 	 * we are opening the checkpointed state read-only, we have
4127 	 * not modified the labels. Therefore, we must ignore the
4128 	 * labels and continue using the spa_uberblock that was set
4129 	 * by spa_ld_checkpoint_rewind.
4130 	 *
4131 	 * Note that it would be fine to ignore the labels when
4132 	 * rewinding (opening writeable) as well. However, if we
4133 	 * crash just after writing the labels, we will end up
4134 	 * searching the labels. Doing so in the common case means
4135 	 * that this code path gets exercised normally, rather than
4136 	 * just in the edge case.
4137 	 */
4138 	if (ub->ub_checkpoint_txg != 0 &&
4139 	    spa_importing_readonly_checkpoint(spa)) {
4140 		spa_ld_select_uberblock_done(spa, ub);
4141 		return (0);
4142 	}
4143 
4144 	/*
4145 	 * Find the best uberblock.
4146 	 */
4147 	vdev_uberblock_load(rvd, ub, &label);
4148 
4149 	/*
4150 	 * If we weren't able to find a single valid uberblock, return failure.
4151 	 */
4152 	if (ub->ub_txg == 0) {
4153 		nvlist_free(label);
4154 		spa_load_failed(spa, "no valid uberblock found");
4155 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
4156 	}
4157 
4158 	if (spa->spa_load_max_txg != UINT64_MAX) {
4159 		(void) spa_import_progress_set_max_txg(spa_guid(spa),
4160 		    (u_longlong_t)spa->spa_load_max_txg);
4161 	}
4162 	spa_load_note(spa, "using uberblock with txg=%llu",
4163 	    (u_longlong_t)ub->ub_txg);
4164 	if (ub->ub_raidz_reflow_info != 0) {
4165 		spa_load_note(spa, "uberblock raidz_reflow_info: "
4166 		    "state=%u offset=%llu",
4167 		    (int)RRSS_GET_STATE(ub),
4168 		    (u_longlong_t)RRSS_GET_OFFSET(ub));
4169 	}
4170 
4171 
4172 	/*
4173 	 * For pools which have the multihost property on determine if the
4174 	 * pool is truly inactive and can be safely imported.  Prevent
4175 	 * hosts which don't have a hostid set from importing the pool.
4176 	 */
4177 	activity_check = spa_activity_check_required(spa, ub, label,
4178 	    spa->spa_config);
4179 	if (activity_check) {
4180 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
4181 		    spa_get_hostid(spa) == 0) {
4182 			nvlist_free(label);
4183 			fnvlist_add_uint64(spa->spa_load_info,
4184 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4185 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4186 		}
4187 
4188 		int error =
4189 		    spa_activity_check(spa, ub, spa->spa_config, B_TRUE);
4190 		if (error) {
4191 			nvlist_free(label);
4192 			return (error);
4193 		}
4194 
4195 		fnvlist_add_uint64(spa->spa_load_info,
4196 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
4197 		fnvlist_add_uint64(spa->spa_load_info,
4198 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
4199 		fnvlist_add_uint16(spa->spa_load_info,
4200 		    ZPOOL_CONFIG_MMP_SEQ,
4201 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
4202 	}
4203 
4204 	/*
4205 	 * If the pool has an unsupported version we can't open it.
4206 	 */
4207 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
4208 		nvlist_free(label);
4209 		spa_load_failed(spa, "version %llu is not supported",
4210 		    (u_longlong_t)ub->ub_version);
4211 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
4212 	}
4213 
4214 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
4215 		nvlist_t *features;
4216 
4217 		/*
4218 		 * If we weren't able to find what's necessary for reading the
4219 		 * MOS in the label, return failure.
4220 		 */
4221 		if (label == NULL) {
4222 			spa_load_failed(spa, "label config unavailable");
4223 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4224 			    ENXIO));
4225 		}
4226 
4227 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
4228 		    &features) != 0) {
4229 			nvlist_free(label);
4230 			spa_load_failed(spa, "invalid label: '%s' missing",
4231 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
4232 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4233 			    ENXIO));
4234 		}
4235 
4236 		/*
4237 		 * Update our in-core representation with the definitive values
4238 		 * from the label.
4239 		 */
4240 		nvlist_free(spa->spa_label_features);
4241 		spa->spa_label_features = fnvlist_dup(features);
4242 	}
4243 
4244 	nvlist_free(label);
4245 
4246 	/*
4247 	 * Look through entries in the label nvlist's features_for_read. If
4248 	 * there is a feature listed there which we don't understand then we
4249 	 * cannot open a pool.
4250 	 */
4251 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
4252 		nvlist_t *unsup_feat;
4253 
4254 		unsup_feat = fnvlist_alloc();
4255 
4256 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
4257 		    NULL); nvp != NULL;
4258 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
4259 			if (!zfeature_is_supported(nvpair_name(nvp))) {
4260 				fnvlist_add_string(unsup_feat,
4261 				    nvpair_name(nvp), "");
4262 			}
4263 		}
4264 
4265 		if (!nvlist_empty(unsup_feat)) {
4266 			fnvlist_add_nvlist(spa->spa_load_info,
4267 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4268 			nvlist_free(unsup_feat);
4269 			spa_load_failed(spa, "some features are unsupported");
4270 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4271 			    ENOTSUP));
4272 		}
4273 
4274 		nvlist_free(unsup_feat);
4275 	}
4276 
4277 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
4278 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4279 		spa_try_repair(spa, spa->spa_config);
4280 		spa_config_exit(spa, SCL_ALL, FTAG);
4281 		nvlist_free(spa->spa_config_splitting);
4282 		spa->spa_config_splitting = NULL;
4283 	}
4284 
4285 	/*
4286 	 * Initialize internal SPA structures.
4287 	 */
4288 	spa_ld_select_uberblock_done(spa, ub);
4289 
4290 	return (0);
4291 }
4292 
4293 static int
4294 spa_ld_open_rootbp(spa_t *spa)
4295 {
4296 	int error = 0;
4297 	vdev_t *rvd = spa->spa_root_vdev;
4298 
4299 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
4300 	if (error != 0) {
4301 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
4302 		    "[error=%d]", error);
4303 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4304 	}
4305 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
4306 
4307 	return (0);
4308 }
4309 
4310 static int
4311 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
4312     boolean_t reloading)
4313 {
4314 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
4315 	nvlist_t *nv, *mos_config, *policy;
4316 	int error = 0, copy_error;
4317 	uint64_t healthy_tvds, healthy_tvds_mos;
4318 	uint64_t mos_config_txg;
4319 
4320 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
4321 	    != 0)
4322 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4323 
4324 	/*
4325 	 * If we're assembling a pool from a split, the config provided is
4326 	 * already trusted so there is nothing to do.
4327 	 */
4328 	if (type == SPA_IMPORT_ASSEMBLE)
4329 		return (0);
4330 
4331 	healthy_tvds = spa_healthy_core_tvds(spa);
4332 
4333 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
4334 	    != 0) {
4335 		spa_load_failed(spa, "unable to retrieve MOS config");
4336 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4337 	}
4338 
4339 	/*
4340 	 * If we are doing an open, pool owner wasn't verified yet, thus do
4341 	 * the verification here.
4342 	 */
4343 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
4344 		error = spa_verify_host(spa, mos_config);
4345 		if (error != 0) {
4346 			nvlist_free(mos_config);
4347 			return (error);
4348 		}
4349 	}
4350 
4351 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
4352 
4353 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4354 
4355 	/*
4356 	 * Build a new vdev tree from the trusted config
4357 	 */
4358 	error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
4359 	if (error != 0) {
4360 		nvlist_free(mos_config);
4361 		spa_config_exit(spa, SCL_ALL, FTAG);
4362 		spa_load_failed(spa, "spa_config_parse failed [error=%d]",
4363 		    error);
4364 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4365 	}
4366 
4367 	/*
4368 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
4369 	 * obtained by scanning /dev/dsk, then it will have the right vdev
4370 	 * paths. We update the trusted MOS config with this information.
4371 	 * We first try to copy the paths with vdev_copy_path_strict, which
4372 	 * succeeds only when both configs have exactly the same vdev tree.
4373 	 * If that fails, we fall back to a more flexible method that has a
4374 	 * best effort policy.
4375 	 */
4376 	copy_error = vdev_copy_path_strict(rvd, mrvd);
4377 	if (copy_error != 0 || spa_load_print_vdev_tree) {
4378 		spa_load_note(spa, "provided vdev tree:");
4379 		vdev_dbgmsg_print_tree(rvd, 2);
4380 		spa_load_note(spa, "MOS vdev tree:");
4381 		vdev_dbgmsg_print_tree(mrvd, 2);
4382 	}
4383 	if (copy_error != 0) {
4384 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
4385 		    "back to vdev_copy_path_relaxed");
4386 		vdev_copy_path_relaxed(rvd, mrvd);
4387 	}
4388 
4389 	vdev_close(rvd);
4390 	vdev_free(rvd);
4391 	spa->spa_root_vdev = mrvd;
4392 	rvd = mrvd;
4393 	spa_config_exit(spa, SCL_ALL, FTAG);
4394 
4395 	/*
4396 	 * If 'zpool import' used a cached config, then the on-disk hostid and
4397 	 * hostname may be different to the cached config in ways that should
4398 	 * prevent import.  Userspace can't discover this without a scan, but
4399 	 * we know, so we add these values to LOAD_INFO so the caller can know
4400 	 * the difference.
4401 	 *
4402 	 * Note that we have to do this before the config is regenerated,
4403 	 * because the new config will have the hostid and hostname for this
4404 	 * host, in readiness for import.
4405 	 */
4406 	if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID))
4407 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID,
4408 		    fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID));
4409 	if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME))
4410 		fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME,
4411 		    fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME));
4412 
4413 	/*
4414 	 * We will use spa_config if we decide to reload the spa or if spa_load
4415 	 * fails and we rewind. We must thus regenerate the config using the
4416 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
4417 	 * pass settings on how to load the pool and is not stored in the MOS.
4418 	 * We copy it over to our new, trusted config.
4419 	 */
4420 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
4421 	    ZPOOL_CONFIG_POOL_TXG);
4422 	nvlist_free(mos_config);
4423 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
4424 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
4425 	    &policy) == 0)
4426 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
4427 	spa_config_set(spa, mos_config);
4428 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
4429 
4430 	/*
4431 	 * Now that we got the config from the MOS, we should be more strict
4432 	 * in checking blkptrs and can make assumptions about the consistency
4433 	 * of the vdev tree. spa_trust_config must be set to true before opening
4434 	 * vdevs in order for them to be writeable.
4435 	 */
4436 	spa->spa_trust_config = B_TRUE;
4437 
4438 	/*
4439 	 * Open and validate the new vdev tree
4440 	 */
4441 	error = spa_ld_open_vdevs(spa);
4442 	if (error != 0)
4443 		return (error);
4444 
4445 	error = spa_ld_validate_vdevs(spa);
4446 	if (error != 0)
4447 		return (error);
4448 
4449 	if (copy_error != 0 || spa_load_print_vdev_tree) {
4450 		spa_load_note(spa, "final vdev tree:");
4451 		vdev_dbgmsg_print_tree(rvd, 2);
4452 	}
4453 
4454 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
4455 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
4456 		/*
4457 		 * Sanity check to make sure that we are indeed loading the
4458 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
4459 		 * in the config provided and they happened to be the only ones
4460 		 * to have the latest uberblock, we could involuntarily perform
4461 		 * an extreme rewind.
4462 		 */
4463 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
4464 		if (healthy_tvds_mos - healthy_tvds >=
4465 		    SPA_SYNC_MIN_VDEVS) {
4466 			spa_load_note(spa, "config provided misses too many "
4467 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
4468 			    (u_longlong_t)healthy_tvds,
4469 			    (u_longlong_t)healthy_tvds_mos);
4470 			spa_load_note(spa, "vdev tree:");
4471 			vdev_dbgmsg_print_tree(rvd, 2);
4472 			if (reloading) {
4473 				spa_load_failed(spa, "config was already "
4474 				    "provided from MOS. Aborting.");
4475 				return (spa_vdev_err(rvd,
4476 				    VDEV_AUX_CORRUPT_DATA, EIO));
4477 			}
4478 			spa_load_note(spa, "spa must be reloaded using MOS "
4479 			    "config");
4480 			return (SET_ERROR(EAGAIN));
4481 		}
4482 	}
4483 
4484 	error = spa_check_for_missing_logs(spa);
4485 	if (error != 0)
4486 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
4487 
4488 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
4489 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
4490 		    "guid sum (%llu != %llu)",
4491 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
4492 		    (u_longlong_t)rvd->vdev_guid_sum);
4493 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
4494 		    ENXIO));
4495 	}
4496 
4497 	return (0);
4498 }
4499 
4500 static int
4501 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
4502 {
4503 	int error = 0;
4504 	vdev_t *rvd = spa->spa_root_vdev;
4505 
4506 	/*
4507 	 * Everything that we read before spa_remove_init() must be stored
4508 	 * on concreted vdevs.  Therefore we do this as early as possible.
4509 	 */
4510 	error = spa_remove_init(spa);
4511 	if (error != 0) {
4512 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
4513 		    error);
4514 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4515 	}
4516 
4517 	/*
4518 	 * Retrieve information needed to condense indirect vdev mappings.
4519 	 */
4520 	error = spa_condense_init(spa);
4521 	if (error != 0) {
4522 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
4523 		    error);
4524 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4525 	}
4526 
4527 	return (0);
4528 }
4529 
4530 static int
4531 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
4532 {
4533 	int error = 0;
4534 	vdev_t *rvd = spa->spa_root_vdev;
4535 
4536 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4537 		boolean_t missing_feat_read = B_FALSE;
4538 		nvlist_t *unsup_feat, *enabled_feat;
4539 
4540 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4541 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4542 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4543 		}
4544 
4545 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4546 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4547 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4548 		}
4549 
4550 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4551 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4552 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4553 		}
4554 
4555 		enabled_feat = fnvlist_alloc();
4556 		unsup_feat = fnvlist_alloc();
4557 
4558 		if (!spa_features_check(spa, B_FALSE,
4559 		    unsup_feat, enabled_feat))
4560 			missing_feat_read = B_TRUE;
4561 
4562 		if (spa_writeable(spa) ||
4563 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4564 			if (!spa_features_check(spa, B_TRUE,
4565 			    unsup_feat, enabled_feat)) {
4566 				*missing_feat_writep = B_TRUE;
4567 			}
4568 		}
4569 
4570 		fnvlist_add_nvlist(spa->spa_load_info,
4571 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4572 
4573 		if (!nvlist_empty(unsup_feat)) {
4574 			fnvlist_add_nvlist(spa->spa_load_info,
4575 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4576 		}
4577 
4578 		fnvlist_free(enabled_feat);
4579 		fnvlist_free(unsup_feat);
4580 
4581 		if (!missing_feat_read) {
4582 			fnvlist_add_boolean(spa->spa_load_info,
4583 			    ZPOOL_CONFIG_CAN_RDONLY);
4584 		}
4585 
4586 		/*
4587 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4588 		 * twofold: to determine whether the pool is available for
4589 		 * import in read-write mode and (if it is not) whether the
4590 		 * pool is available for import in read-only mode. If the pool
4591 		 * is available for import in read-write mode, it is displayed
4592 		 * as available in userland; if it is not available for import
4593 		 * in read-only mode, it is displayed as unavailable in
4594 		 * userland. If the pool is available for import in read-only
4595 		 * mode but not read-write mode, it is displayed as unavailable
4596 		 * in userland with a special note that the pool is actually
4597 		 * available for open in read-only mode.
4598 		 *
4599 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4600 		 * missing a feature for write, we must first determine whether
4601 		 * the pool can be opened read-only before returning to
4602 		 * userland in order to know whether to display the
4603 		 * abovementioned note.
4604 		 */
4605 		if (missing_feat_read || (*missing_feat_writep &&
4606 		    spa_writeable(spa))) {
4607 			spa_load_failed(spa, "pool uses unsupported features");
4608 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4609 			    ENOTSUP));
4610 		}
4611 
4612 		/*
4613 		 * Load refcounts for ZFS features from disk into an in-memory
4614 		 * cache during SPA initialization.
4615 		 */
4616 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4617 			uint64_t refcount;
4618 
4619 			error = feature_get_refcount_from_disk(spa,
4620 			    &spa_feature_table[i], &refcount);
4621 			if (error == 0) {
4622 				spa->spa_feat_refcount_cache[i] = refcount;
4623 			} else if (error == ENOTSUP) {
4624 				spa->spa_feat_refcount_cache[i] =
4625 				    SPA_FEATURE_DISABLED;
4626 			} else {
4627 				spa_load_failed(spa, "error getting refcount "
4628 				    "for feature %s [error=%d]",
4629 				    spa_feature_table[i].fi_guid, error);
4630 				return (spa_vdev_err(rvd,
4631 				    VDEV_AUX_CORRUPT_DATA, EIO));
4632 			}
4633 		}
4634 	}
4635 
4636 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4637 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4638 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4639 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4640 	}
4641 
4642 	/*
4643 	 * Encryption was added before bookmark_v2, even though bookmark_v2
4644 	 * is now a dependency. If this pool has encryption enabled without
4645 	 * bookmark_v2, trigger an errata message.
4646 	 */
4647 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4648 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4649 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4650 	}
4651 
4652 	return (0);
4653 }
4654 
4655 static int
4656 spa_ld_load_special_directories(spa_t *spa)
4657 {
4658 	int error = 0;
4659 	vdev_t *rvd = spa->spa_root_vdev;
4660 
4661 	spa->spa_is_initializing = B_TRUE;
4662 	error = dsl_pool_open(spa->spa_dsl_pool);
4663 	spa->spa_is_initializing = B_FALSE;
4664 	if (error != 0) {
4665 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4666 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4667 	}
4668 
4669 	return (0);
4670 }
4671 
4672 static int
4673 spa_ld_get_props(spa_t *spa)
4674 {
4675 	int error = 0;
4676 	uint64_t obj;
4677 	vdev_t *rvd = spa->spa_root_vdev;
4678 
4679 	/* Grab the checksum salt from the MOS. */
4680 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4681 	    DMU_POOL_CHECKSUM_SALT, 1,
4682 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
4683 	    spa->spa_cksum_salt.zcs_bytes);
4684 	if (error == ENOENT) {
4685 		/* Generate a new salt for subsequent use */
4686 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4687 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
4688 	} else if (error != 0) {
4689 		spa_load_failed(spa, "unable to retrieve checksum salt from "
4690 		    "MOS [error=%d]", error);
4691 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4692 	}
4693 
4694 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4695 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4696 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4697 	if (error != 0) {
4698 		spa_load_failed(spa, "error opening deferred-frees bpobj "
4699 		    "[error=%d]", error);
4700 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4701 	}
4702 
4703 	/*
4704 	 * Load the bit that tells us to use the new accounting function
4705 	 * (raid-z deflation).  If we have an older pool, this will not
4706 	 * be present.
4707 	 */
4708 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4709 	if (error != 0 && error != ENOENT)
4710 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4711 
4712 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4713 	    &spa->spa_creation_version, B_FALSE);
4714 	if (error != 0 && error != ENOENT)
4715 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4716 
4717 	/*
4718 	 * Load the persistent error log.  If we have an older pool, this will
4719 	 * not be present.
4720 	 */
4721 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4722 	    B_FALSE);
4723 	if (error != 0 && error != ENOENT)
4724 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4725 
4726 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4727 	    &spa->spa_errlog_scrub, B_FALSE);
4728 	if (error != 0 && error != ENOENT)
4729 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4730 
4731 	/* Load the last scrubbed txg. */
4732 	error = spa_dir_prop(spa, DMU_POOL_LAST_SCRUBBED_TXG,
4733 	    &spa->spa_scrubbed_last_txg, B_FALSE);
4734 	if (error != 0 && error != ENOENT)
4735 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4736 
4737 	/*
4738 	 * Load the livelist deletion field. If a livelist is queued for
4739 	 * deletion, indicate that in the spa
4740 	 */
4741 	error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4742 	    &spa->spa_livelists_to_delete, B_FALSE);
4743 	if (error != 0 && error != ENOENT)
4744 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4745 
4746 	/*
4747 	 * Load the history object.  If we have an older pool, this
4748 	 * will not be present.
4749 	 */
4750 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4751 	if (error != 0 && error != ENOENT)
4752 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4753 
4754 	/*
4755 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
4756 	 * be present; in this case, defer its creation to a later time to
4757 	 * avoid dirtying the MOS this early / out of sync context. See
4758 	 * spa_sync_config_object.
4759 	 */
4760 
4761 	/* The sentinel is only available in the MOS config. */
4762 	nvlist_t *mos_config;
4763 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4764 		spa_load_failed(spa, "unable to retrieve MOS config");
4765 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4766 	}
4767 
4768 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4769 	    &spa->spa_all_vdev_zaps, B_FALSE);
4770 
4771 	if (error == ENOENT) {
4772 		VERIFY(!nvlist_exists(mos_config,
4773 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4774 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4775 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4776 	} else if (error != 0) {
4777 		nvlist_free(mos_config);
4778 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4779 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4780 		/*
4781 		 * An older version of ZFS overwrote the sentinel value, so
4782 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4783 		 * destruction to later; see spa_sync_config_object.
4784 		 */
4785 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
4786 		/*
4787 		 * We're assuming that no vdevs have had their ZAPs created
4788 		 * before this. Better be sure of it.
4789 		 */
4790 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4791 	}
4792 	nvlist_free(mos_config);
4793 
4794 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4795 
4796 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4797 	    B_FALSE);
4798 	if (error && error != ENOENT)
4799 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4800 
4801 	if (error == 0) {
4802 		uint64_t autoreplace = 0;
4803 
4804 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4805 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4806 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4807 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4808 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4809 		spa_prop_find(spa, ZPOOL_PROP_DEDUP_TABLE_QUOTA,
4810 		    &spa->spa_dedup_table_quota);
4811 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4812 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4813 		spa->spa_autoreplace = (autoreplace != 0);
4814 	}
4815 
4816 	/*
4817 	 * If we are importing a pool with missing top-level vdevs,
4818 	 * we enforce that the pool doesn't panic or get suspended on
4819 	 * error since the likelihood of missing data is extremely high.
4820 	 */
4821 	if (spa->spa_missing_tvds > 0 &&
4822 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4823 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4824 		spa_load_note(spa, "forcing failmode to 'continue' "
4825 		    "as some top level vdevs are missing");
4826 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4827 	}
4828 
4829 	return (0);
4830 }
4831 
4832 static int
4833 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4834 {
4835 	int error = 0;
4836 	vdev_t *rvd = spa->spa_root_vdev;
4837 
4838 	/*
4839 	 * If we're assembling the pool from the split-off vdevs of
4840 	 * an existing pool, we don't want to attach the spares & cache
4841 	 * devices.
4842 	 */
4843 
4844 	/*
4845 	 * Load any hot spares for this pool.
4846 	 */
4847 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4848 	    B_FALSE);
4849 	if (error != 0 && error != ENOENT)
4850 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4851 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4852 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4853 		if (load_nvlist(spa, spa->spa_spares.sav_object,
4854 		    &spa->spa_spares.sav_config) != 0) {
4855 			spa_load_failed(spa, "error loading spares nvlist");
4856 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4857 		}
4858 
4859 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4860 		spa_load_spares(spa);
4861 		spa_config_exit(spa, SCL_ALL, FTAG);
4862 	} else if (error == 0) {
4863 		spa->spa_spares.sav_sync = B_TRUE;
4864 	}
4865 
4866 	/*
4867 	 * Load any level 2 ARC devices for this pool.
4868 	 */
4869 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4870 	    &spa->spa_l2cache.sav_object, B_FALSE);
4871 	if (error != 0 && error != ENOENT)
4872 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4873 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4874 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4875 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4876 		    &spa->spa_l2cache.sav_config) != 0) {
4877 			spa_load_failed(spa, "error loading l2cache nvlist");
4878 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4879 		}
4880 
4881 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4882 		spa_load_l2cache(spa);
4883 		spa_config_exit(spa, SCL_ALL, FTAG);
4884 	} else if (error == 0) {
4885 		spa->spa_l2cache.sav_sync = B_TRUE;
4886 	}
4887 
4888 	return (0);
4889 }
4890 
4891 static int
4892 spa_ld_load_vdev_metadata(spa_t *spa)
4893 {
4894 	int error = 0;
4895 	vdev_t *rvd = spa->spa_root_vdev;
4896 
4897 	/*
4898 	 * If the 'multihost' property is set, then never allow a pool to
4899 	 * be imported when the system hostid is zero.  The exception to
4900 	 * this rule is zdb which is always allowed to access pools.
4901 	 */
4902 	if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4903 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4904 		fnvlist_add_uint64(spa->spa_load_info,
4905 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4906 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4907 	}
4908 
4909 	/*
4910 	 * If the 'autoreplace' property is set, then post a resource notifying
4911 	 * the ZFS DE that it should not issue any faults for unopenable
4912 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
4913 	 * unopenable vdevs so that the normal autoreplace handler can take
4914 	 * over.
4915 	 */
4916 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4917 		spa_check_removed(spa->spa_root_vdev);
4918 		/*
4919 		 * For the import case, this is done in spa_import(), because
4920 		 * at this point we're using the spare definitions from
4921 		 * the MOS config, not necessarily from the userland config.
4922 		 */
4923 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4924 			spa_aux_check_removed(&spa->spa_spares);
4925 			spa_aux_check_removed(&spa->spa_l2cache);
4926 		}
4927 	}
4928 
4929 	/*
4930 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4931 	 */
4932 	error = vdev_load(rvd);
4933 	if (error != 0) {
4934 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4935 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4936 	}
4937 
4938 	error = spa_ld_log_spacemaps(spa);
4939 	if (error != 0) {
4940 		spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4941 		    error);
4942 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4943 	}
4944 
4945 	/*
4946 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4947 	 */
4948 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4949 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4950 	spa_config_exit(spa, SCL_ALL, FTAG);
4951 
4952 	return (0);
4953 }
4954 
4955 static int
4956 spa_ld_load_dedup_tables(spa_t *spa)
4957 {
4958 	int error = 0;
4959 	vdev_t *rvd = spa->spa_root_vdev;
4960 
4961 	error = ddt_load(spa);
4962 	if (error != 0) {
4963 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4964 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4965 	}
4966 
4967 	return (0);
4968 }
4969 
4970 static int
4971 spa_ld_load_brt(spa_t *spa)
4972 {
4973 	int error = 0;
4974 	vdev_t *rvd = spa->spa_root_vdev;
4975 
4976 	error = brt_load(spa);
4977 	if (error != 0) {
4978 		spa_load_failed(spa, "brt_load failed [error=%d]", error);
4979 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4980 	}
4981 
4982 	return (0);
4983 }
4984 
4985 static int
4986 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4987 {
4988 	vdev_t *rvd = spa->spa_root_vdev;
4989 
4990 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4991 		boolean_t missing = spa_check_logs(spa);
4992 		if (missing) {
4993 			if (spa->spa_missing_tvds != 0) {
4994 				spa_load_note(spa, "spa_check_logs failed "
4995 				    "so dropping the logs");
4996 			} else {
4997 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4998 				spa_load_failed(spa, "spa_check_logs failed");
4999 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
5000 				    ENXIO));
5001 			}
5002 		}
5003 	}
5004 
5005 	return (0);
5006 }
5007 
5008 static int
5009 spa_ld_verify_pool_data(spa_t *spa)
5010 {
5011 	int error = 0;
5012 	vdev_t *rvd = spa->spa_root_vdev;
5013 
5014 	/*
5015 	 * We've successfully opened the pool, verify that we're ready
5016 	 * to start pushing transactions.
5017 	 */
5018 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
5019 		error = spa_load_verify(spa);
5020 		if (error != 0) {
5021 			spa_load_failed(spa, "spa_load_verify failed "
5022 			    "[error=%d]", error);
5023 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
5024 			    error));
5025 		}
5026 	}
5027 
5028 	return (0);
5029 }
5030 
5031 static void
5032 spa_ld_claim_log_blocks(spa_t *spa)
5033 {
5034 	dmu_tx_t *tx;
5035 	dsl_pool_t *dp = spa_get_dsl(spa);
5036 
5037 	/*
5038 	 * Claim log blocks that haven't been committed yet.
5039 	 * This must all happen in a single txg.
5040 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
5041 	 * invoked from zil_claim_log_block()'s i/o done callback.
5042 	 * Price of rollback is that we abandon the log.
5043 	 */
5044 	spa->spa_claiming = B_TRUE;
5045 
5046 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
5047 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
5048 	    zil_claim, tx, DS_FIND_CHILDREN);
5049 	dmu_tx_commit(tx);
5050 
5051 	spa->spa_claiming = B_FALSE;
5052 
5053 	spa_set_log_state(spa, SPA_LOG_GOOD);
5054 }
5055 
5056 static void
5057 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
5058     boolean_t update_config_cache)
5059 {
5060 	vdev_t *rvd = spa->spa_root_vdev;
5061 	int need_update = B_FALSE;
5062 
5063 	/*
5064 	 * If the config cache is stale, or we have uninitialized
5065 	 * metaslabs (see spa_vdev_add()), then update the config.
5066 	 *
5067 	 * If this is a verbatim import, trust the current
5068 	 * in-core spa_config and update the disk labels.
5069 	 */
5070 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
5071 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
5072 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
5073 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
5074 		need_update = B_TRUE;
5075 
5076 	for (int c = 0; c < rvd->vdev_children; c++)
5077 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
5078 			need_update = B_TRUE;
5079 
5080 	/*
5081 	 * Update the config cache asynchronously in case we're the
5082 	 * root pool, in which case the config cache isn't writable yet.
5083 	 */
5084 	if (need_update)
5085 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
5086 }
5087 
5088 static void
5089 spa_ld_prepare_for_reload(spa_t *spa)
5090 {
5091 	spa_mode_t mode = spa->spa_mode;
5092 	int async_suspended = spa->spa_async_suspended;
5093 
5094 	spa_unload(spa);
5095 	spa_deactivate(spa);
5096 	spa_activate(spa, mode);
5097 
5098 	/*
5099 	 * We save the value of spa_async_suspended as it gets reset to 0 by
5100 	 * spa_unload(). We want to restore it back to the original value before
5101 	 * returning as we might be calling spa_async_resume() later.
5102 	 */
5103 	spa->spa_async_suspended = async_suspended;
5104 }
5105 
5106 static int
5107 spa_ld_read_checkpoint_txg(spa_t *spa)
5108 {
5109 	uberblock_t checkpoint;
5110 	int error = 0;
5111 
5112 	ASSERT0(spa->spa_checkpoint_txg);
5113 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
5114 	    spa->spa_load_thread == curthread);
5115 
5116 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5117 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5118 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5119 
5120 	if (error == ENOENT)
5121 		return (0);
5122 
5123 	if (error != 0)
5124 		return (error);
5125 
5126 	ASSERT3U(checkpoint.ub_txg, !=, 0);
5127 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
5128 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
5129 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
5130 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
5131 
5132 	return (0);
5133 }
5134 
5135 static int
5136 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
5137 {
5138 	int error = 0;
5139 
5140 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5141 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5142 
5143 	/*
5144 	 * Never trust the config that is provided unless we are assembling
5145 	 * a pool following a split.
5146 	 * This means don't trust blkptrs and the vdev tree in general. This
5147 	 * also effectively puts the spa in read-only mode since
5148 	 * spa_writeable() checks for spa_trust_config to be true.
5149 	 * We will later load a trusted config from the MOS.
5150 	 */
5151 	if (type != SPA_IMPORT_ASSEMBLE)
5152 		spa->spa_trust_config = B_FALSE;
5153 
5154 	/*
5155 	 * Parse the config provided to create a vdev tree.
5156 	 */
5157 	error = spa_ld_parse_config(spa, type);
5158 	if (error != 0)
5159 		return (error);
5160 
5161 	spa_import_progress_add(spa);
5162 
5163 	/*
5164 	 * Now that we have the vdev tree, try to open each vdev. This involves
5165 	 * opening the underlying physical device, retrieving its geometry and
5166 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
5167 	 * based on the success of those operations. After this we'll be ready
5168 	 * to read from the vdevs.
5169 	 */
5170 	error = spa_ld_open_vdevs(spa);
5171 	if (error != 0)
5172 		return (error);
5173 
5174 	/*
5175 	 * Read the label of each vdev and make sure that the GUIDs stored
5176 	 * there match the GUIDs in the config provided.
5177 	 * If we're assembling a new pool that's been split off from an
5178 	 * existing pool, the labels haven't yet been updated so we skip
5179 	 * validation for now.
5180 	 */
5181 	if (type != SPA_IMPORT_ASSEMBLE) {
5182 		error = spa_ld_validate_vdevs(spa);
5183 		if (error != 0)
5184 			return (error);
5185 	}
5186 
5187 	/*
5188 	 * Read all vdev labels to find the best uberblock (i.e. latest,
5189 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
5190 	 * get the list of features required to read blkptrs in the MOS from
5191 	 * the vdev label with the best uberblock and verify that our version
5192 	 * of zfs supports them all.
5193 	 */
5194 	error = spa_ld_select_uberblock(spa, type);
5195 	if (error != 0)
5196 		return (error);
5197 
5198 	/*
5199 	 * Pass that uberblock to the dsl_pool layer which will open the root
5200 	 * blkptr. This blkptr points to the latest version of the MOS and will
5201 	 * allow us to read its contents.
5202 	 */
5203 	error = spa_ld_open_rootbp(spa);
5204 	if (error != 0)
5205 		return (error);
5206 
5207 	return (0);
5208 }
5209 
5210 static int
5211 spa_ld_checkpoint_rewind(spa_t *spa)
5212 {
5213 	uberblock_t checkpoint;
5214 	int error = 0;
5215 
5216 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5217 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5218 
5219 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5220 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5221 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5222 
5223 	if (error != 0) {
5224 		spa_load_failed(spa, "unable to retrieve checkpointed "
5225 		    "uberblock from the MOS config [error=%d]", error);
5226 
5227 		if (error == ENOENT)
5228 			error = ZFS_ERR_NO_CHECKPOINT;
5229 
5230 		return (error);
5231 	}
5232 
5233 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
5234 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
5235 
5236 	/*
5237 	 * We need to update the txg and timestamp of the checkpointed
5238 	 * uberblock to be higher than the latest one. This ensures that
5239 	 * the checkpointed uberblock is selected if we were to close and
5240 	 * reopen the pool right after we've written it in the vdev labels.
5241 	 * (also see block comment in vdev_uberblock_compare)
5242 	 */
5243 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
5244 	checkpoint.ub_timestamp = gethrestime_sec();
5245 
5246 	/*
5247 	 * Set current uberblock to be the checkpointed uberblock.
5248 	 */
5249 	spa->spa_uberblock = checkpoint;
5250 
5251 	/*
5252 	 * If we are doing a normal rewind, then the pool is open for
5253 	 * writing and we sync the "updated" checkpointed uberblock to
5254 	 * disk. Once this is done, we've basically rewound the whole
5255 	 * pool and there is no way back.
5256 	 *
5257 	 * There are cases when we don't want to attempt and sync the
5258 	 * checkpointed uberblock to disk because we are opening a
5259 	 * pool as read-only. Specifically, verifying the checkpointed
5260 	 * state with zdb, and importing the checkpointed state to get
5261 	 * a "preview" of its content.
5262 	 */
5263 	if (spa_writeable(spa)) {
5264 		vdev_t *rvd = spa->spa_root_vdev;
5265 
5266 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5267 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
5268 		int svdcount = 0;
5269 		int children = rvd->vdev_children;
5270 		int c0 = random_in_range(children);
5271 
5272 		for (int c = 0; c < children; c++) {
5273 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
5274 
5275 			/* Stop when revisiting the first vdev */
5276 			if (c > 0 && svd[0] == vd)
5277 				break;
5278 
5279 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
5280 			    !vdev_is_concrete(vd))
5281 				continue;
5282 
5283 			svd[svdcount++] = vd;
5284 			if (svdcount == SPA_SYNC_MIN_VDEVS)
5285 				break;
5286 		}
5287 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
5288 		if (error == 0)
5289 			spa->spa_last_synced_guid = rvd->vdev_guid;
5290 		spa_config_exit(spa, SCL_ALL, FTAG);
5291 
5292 		if (error != 0) {
5293 			spa_load_failed(spa, "failed to write checkpointed "
5294 			    "uberblock to the vdev labels [error=%d]", error);
5295 			return (error);
5296 		}
5297 	}
5298 
5299 	return (0);
5300 }
5301 
5302 static int
5303 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
5304     boolean_t *update_config_cache)
5305 {
5306 	int error;
5307 
5308 	/*
5309 	 * Parse the config for pool, open and validate vdevs,
5310 	 * select an uberblock, and use that uberblock to open
5311 	 * the MOS.
5312 	 */
5313 	error = spa_ld_mos_init(spa, type);
5314 	if (error != 0)
5315 		return (error);
5316 
5317 	/*
5318 	 * Retrieve the trusted config stored in the MOS and use it to create
5319 	 * a new, exact version of the vdev tree, then reopen all vdevs.
5320 	 */
5321 	error = spa_ld_trusted_config(spa, type, B_FALSE);
5322 	if (error == EAGAIN) {
5323 		if (update_config_cache != NULL)
5324 			*update_config_cache = B_TRUE;
5325 
5326 		/*
5327 		 * Redo the loading process with the trusted config if it is
5328 		 * too different from the untrusted config.
5329 		 */
5330 		spa_ld_prepare_for_reload(spa);
5331 		spa_load_note(spa, "RELOADING");
5332 		error = spa_ld_mos_init(spa, type);
5333 		if (error != 0)
5334 			return (error);
5335 
5336 		error = spa_ld_trusted_config(spa, type, B_TRUE);
5337 		if (error != 0)
5338 			return (error);
5339 
5340 	} else if (error != 0) {
5341 		return (error);
5342 	}
5343 
5344 	return (0);
5345 }
5346 
5347 /*
5348  * Load an existing storage pool, using the config provided. This config
5349  * describes which vdevs are part of the pool and is later validated against
5350  * partial configs present in each vdev's label and an entire copy of the
5351  * config stored in the MOS.
5352  */
5353 static int
5354 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
5355 {
5356 	int error = 0;
5357 	boolean_t missing_feat_write = B_FALSE;
5358 	boolean_t checkpoint_rewind =
5359 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5360 	boolean_t update_config_cache = B_FALSE;
5361 	hrtime_t load_start = gethrtime();
5362 
5363 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5364 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5365 
5366 	spa_load_note(spa, "LOADING");
5367 
5368 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
5369 	if (error != 0)
5370 		return (error);
5371 
5372 	/*
5373 	 * If we are rewinding to the checkpoint then we need to repeat
5374 	 * everything we've done so far in this function but this time
5375 	 * selecting the checkpointed uberblock and using that to open
5376 	 * the MOS.
5377 	 */
5378 	if (checkpoint_rewind) {
5379 		/*
5380 		 * If we are rewinding to the checkpoint update config cache
5381 		 * anyway.
5382 		 */
5383 		update_config_cache = B_TRUE;
5384 
5385 		/*
5386 		 * Extract the checkpointed uberblock from the current MOS
5387 		 * and use this as the pool's uberblock from now on. If the
5388 		 * pool is imported as writeable we also write the checkpoint
5389 		 * uberblock to the labels, making the rewind permanent.
5390 		 */
5391 		error = spa_ld_checkpoint_rewind(spa);
5392 		if (error != 0)
5393 			return (error);
5394 
5395 		/*
5396 		 * Redo the loading process again with the
5397 		 * checkpointed uberblock.
5398 		 */
5399 		spa_ld_prepare_for_reload(spa);
5400 		spa_load_note(spa, "LOADING checkpointed uberblock");
5401 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
5402 		if (error != 0)
5403 			return (error);
5404 	}
5405 
5406 	/*
5407 	 * Drop the namespace lock for the rest of the function.
5408 	 */
5409 	spa->spa_load_thread = curthread;
5410 	mutex_exit(&spa_namespace_lock);
5411 
5412 	/*
5413 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
5414 	 */
5415 	spa_import_progress_set_notes(spa, "Loading checkpoint txg");
5416 	error = spa_ld_read_checkpoint_txg(spa);
5417 	if (error != 0)
5418 		goto fail;
5419 
5420 	/*
5421 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
5422 	 * from the pool and their contents were re-mapped to other vdevs. Note
5423 	 * that everything that we read before this step must have been
5424 	 * rewritten on concrete vdevs after the last device removal was
5425 	 * initiated. Otherwise we could be reading from indirect vdevs before
5426 	 * we have loaded their mappings.
5427 	 */
5428 	spa_import_progress_set_notes(spa, "Loading indirect vdev metadata");
5429 	error = spa_ld_open_indirect_vdev_metadata(spa);
5430 	if (error != 0)
5431 		goto fail;
5432 
5433 	/*
5434 	 * Retrieve the full list of active features from the MOS and check if
5435 	 * they are all supported.
5436 	 */
5437 	spa_import_progress_set_notes(spa, "Checking feature flags");
5438 	error = spa_ld_check_features(spa, &missing_feat_write);
5439 	if (error != 0)
5440 		goto fail;
5441 
5442 	/*
5443 	 * Load several special directories from the MOS needed by the dsl_pool
5444 	 * layer.
5445 	 */
5446 	spa_import_progress_set_notes(spa, "Loading special MOS directories");
5447 	error = spa_ld_load_special_directories(spa);
5448 	if (error != 0)
5449 		goto fail;
5450 
5451 	/*
5452 	 * Retrieve pool properties from the MOS.
5453 	 */
5454 	spa_import_progress_set_notes(spa, "Loading properties");
5455 	error = spa_ld_get_props(spa);
5456 	if (error != 0)
5457 		goto fail;
5458 
5459 	/*
5460 	 * Retrieve the list of auxiliary devices - cache devices and spares -
5461 	 * and open them.
5462 	 */
5463 	spa_import_progress_set_notes(spa, "Loading AUX vdevs");
5464 	error = spa_ld_open_aux_vdevs(spa, type);
5465 	if (error != 0)
5466 		goto fail;
5467 
5468 	/*
5469 	 * Load the metadata for all vdevs. Also check if unopenable devices
5470 	 * should be autoreplaced.
5471 	 */
5472 	spa_import_progress_set_notes(spa, "Loading vdev metadata");
5473 	error = spa_ld_load_vdev_metadata(spa);
5474 	if (error != 0)
5475 		goto fail;
5476 
5477 	spa_import_progress_set_notes(spa, "Loading dedup tables");
5478 	error = spa_ld_load_dedup_tables(spa);
5479 	if (error != 0)
5480 		goto fail;
5481 
5482 	spa_import_progress_set_notes(spa, "Loading BRT");
5483 	error = spa_ld_load_brt(spa);
5484 	if (error != 0)
5485 		goto fail;
5486 
5487 	/*
5488 	 * Verify the logs now to make sure we don't have any unexpected errors
5489 	 * when we claim log blocks later.
5490 	 */
5491 	spa_import_progress_set_notes(spa, "Verifying Log Devices");
5492 	error = spa_ld_verify_logs(spa, type, ereport);
5493 	if (error != 0)
5494 		goto fail;
5495 
5496 	if (missing_feat_write) {
5497 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
5498 
5499 		/*
5500 		 * At this point, we know that we can open the pool in
5501 		 * read-only mode but not read-write mode. We now have enough
5502 		 * information and can return to userland.
5503 		 */
5504 		error = spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
5505 		    ENOTSUP);
5506 		goto fail;
5507 	}
5508 
5509 	/*
5510 	 * Traverse the last txgs to make sure the pool was left off in a safe
5511 	 * state. When performing an extreme rewind, we verify the whole pool,
5512 	 * which can take a very long time.
5513 	 */
5514 	spa_import_progress_set_notes(spa, "Verifying pool data");
5515 	error = spa_ld_verify_pool_data(spa);
5516 	if (error != 0)
5517 		goto fail;
5518 
5519 	/*
5520 	 * Calculate the deflated space for the pool. This must be done before
5521 	 * we write anything to the pool because we'd need to update the space
5522 	 * accounting using the deflated sizes.
5523 	 */
5524 	spa_import_progress_set_notes(spa, "Calculating deflated space");
5525 	spa_update_dspace(spa);
5526 
5527 	/*
5528 	 * We have now retrieved all the information we needed to open the
5529 	 * pool. If we are importing the pool in read-write mode, a few
5530 	 * additional steps must be performed to finish the import.
5531 	 */
5532 	spa_import_progress_set_notes(spa, "Starting import");
5533 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
5534 	    spa->spa_load_max_txg == UINT64_MAX)) {
5535 		uint64_t config_cache_txg = spa->spa_config_txg;
5536 
5537 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
5538 
5539 		/*
5540 		 * Before we do any zio_write's, complete the raidz expansion
5541 		 * scratch space copying, if necessary.
5542 		 */
5543 		if (RRSS_GET_STATE(&spa->spa_uberblock) == RRSS_SCRATCH_VALID)
5544 			vdev_raidz_reflow_copy_scratch(spa);
5545 
5546 		/*
5547 		 * In case of a checkpoint rewind, log the original txg
5548 		 * of the checkpointed uberblock.
5549 		 */
5550 		if (checkpoint_rewind) {
5551 			spa_history_log_internal(spa, "checkpoint rewind",
5552 			    NULL, "rewound state to txg=%llu",
5553 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
5554 		}
5555 
5556 		spa_import_progress_set_notes(spa, "Claiming ZIL blocks");
5557 		/*
5558 		 * Traverse the ZIL and claim all blocks.
5559 		 */
5560 		spa_ld_claim_log_blocks(spa);
5561 
5562 		/*
5563 		 * Kick-off the syncing thread.
5564 		 */
5565 		spa->spa_sync_on = B_TRUE;
5566 		txg_sync_start(spa->spa_dsl_pool);
5567 		mmp_thread_start(spa);
5568 
5569 		/*
5570 		 * Wait for all claims to sync.  We sync up to the highest
5571 		 * claimed log block birth time so that claimed log blocks
5572 		 * don't appear to be from the future.  spa_claim_max_txg
5573 		 * will have been set for us by ZIL traversal operations
5574 		 * performed above.
5575 		 */
5576 		spa_import_progress_set_notes(spa, "Syncing ZIL claims");
5577 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5578 
5579 		/*
5580 		 * Check if we need to request an update of the config. On the
5581 		 * next sync, we would update the config stored in vdev labels
5582 		 * and the cachefile (by default /etc/zfs/zpool.cache).
5583 		 */
5584 		spa_import_progress_set_notes(spa, "Updating configs");
5585 		spa_ld_check_for_config_update(spa, config_cache_txg,
5586 		    update_config_cache);
5587 
5588 		/*
5589 		 * Check if a rebuild was in progress and if so resume it.
5590 		 * Then check all DTLs to see if anything needs resilvering.
5591 		 * The resilver will be deferred if a rebuild was started.
5592 		 */
5593 		spa_import_progress_set_notes(spa, "Starting resilvers");
5594 		if (vdev_rebuild_active(spa->spa_root_vdev)) {
5595 			vdev_rebuild_restart(spa);
5596 		} else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5597 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5598 			spa_async_request(spa, SPA_ASYNC_RESILVER);
5599 		}
5600 
5601 		/*
5602 		 * Log the fact that we booted up (so that we can detect if
5603 		 * we rebooted in the middle of an operation).
5604 		 */
5605 		spa_history_log_version(spa, "open", NULL);
5606 
5607 		spa_import_progress_set_notes(spa,
5608 		    "Restarting device removals");
5609 		spa_restart_removal(spa);
5610 		spa_spawn_aux_threads(spa);
5611 
5612 		/*
5613 		 * Delete any inconsistent datasets.
5614 		 *
5615 		 * Note:
5616 		 * Since we may be issuing deletes for clones here,
5617 		 * we make sure to do so after we've spawned all the
5618 		 * auxiliary threads above (from which the livelist
5619 		 * deletion zthr is part of).
5620 		 */
5621 		spa_import_progress_set_notes(spa,
5622 		    "Cleaning up inconsistent objsets");
5623 		(void) dmu_objset_find(spa_name(spa),
5624 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5625 
5626 		/*
5627 		 * Clean up any stale temporary dataset userrefs.
5628 		 */
5629 		spa_import_progress_set_notes(spa,
5630 		    "Cleaning up temporary userrefs");
5631 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5632 
5633 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5634 		spa_import_progress_set_notes(spa, "Restarting initialize");
5635 		vdev_initialize_restart(spa->spa_root_vdev);
5636 		spa_import_progress_set_notes(spa, "Restarting TRIM");
5637 		vdev_trim_restart(spa->spa_root_vdev);
5638 		vdev_autotrim_restart(spa);
5639 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5640 		spa_import_progress_set_notes(spa, "Finished importing");
5641 	}
5642 	zio_handle_import_delay(spa, gethrtime() - load_start);
5643 
5644 	spa_import_progress_remove(spa_guid(spa));
5645 	spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5646 
5647 	spa_load_note(spa, "LOADED");
5648 fail:
5649 	mutex_enter(&spa_namespace_lock);
5650 	spa->spa_load_thread = NULL;
5651 	cv_broadcast(&spa_namespace_cv);
5652 
5653 	return (error);
5654 
5655 }
5656 
5657 static int
5658 spa_load_retry(spa_t *spa, spa_load_state_t state)
5659 {
5660 	spa_mode_t mode = spa->spa_mode;
5661 
5662 	spa_unload(spa);
5663 	spa_deactivate(spa);
5664 
5665 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5666 
5667 	spa_activate(spa, mode);
5668 	spa_async_suspend(spa);
5669 
5670 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5671 	    (u_longlong_t)spa->spa_load_max_txg);
5672 
5673 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5674 }
5675 
5676 /*
5677  * If spa_load() fails this function will try loading prior txg's. If
5678  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5679  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5680  * function will not rewind the pool and will return the same error as
5681  * spa_load().
5682  */
5683 static int
5684 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5685     int rewind_flags)
5686 {
5687 	nvlist_t *loadinfo = NULL;
5688 	nvlist_t *config = NULL;
5689 	int load_error, rewind_error;
5690 	uint64_t safe_rewind_txg;
5691 	uint64_t min_txg;
5692 
5693 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5694 		spa->spa_load_max_txg = spa->spa_load_txg;
5695 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5696 	} else {
5697 		spa->spa_load_max_txg = max_request;
5698 		if (max_request != UINT64_MAX)
5699 			spa->spa_extreme_rewind = B_TRUE;
5700 	}
5701 
5702 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5703 	if (load_error == 0)
5704 		return (0);
5705 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5706 		/*
5707 		 * When attempting checkpoint-rewind on a pool with no
5708 		 * checkpoint, we should not attempt to load uberblocks
5709 		 * from previous txgs when spa_load fails.
5710 		 */
5711 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5712 		spa_import_progress_remove(spa_guid(spa));
5713 		return (load_error);
5714 	}
5715 
5716 	if (spa->spa_root_vdev != NULL)
5717 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5718 
5719 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5720 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5721 
5722 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
5723 		nvlist_free(config);
5724 		spa_import_progress_remove(spa_guid(spa));
5725 		return (load_error);
5726 	}
5727 
5728 	if (state == SPA_LOAD_RECOVER) {
5729 		/* Price of rolling back is discarding txgs, including log */
5730 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5731 	} else {
5732 		/*
5733 		 * If we aren't rolling back save the load info from our first
5734 		 * import attempt so that we can restore it after attempting
5735 		 * to rewind.
5736 		 */
5737 		loadinfo = spa->spa_load_info;
5738 		spa->spa_load_info = fnvlist_alloc();
5739 	}
5740 
5741 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5742 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5743 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5744 	    TXG_INITIAL : safe_rewind_txg;
5745 
5746 	/*
5747 	 * Continue as long as we're finding errors, we're still within
5748 	 * the acceptable rewind range, and we're still finding uberblocks
5749 	 */
5750 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5751 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5752 		if (spa->spa_load_max_txg < safe_rewind_txg)
5753 			spa->spa_extreme_rewind = B_TRUE;
5754 		rewind_error = spa_load_retry(spa, state);
5755 	}
5756 
5757 	spa->spa_extreme_rewind = B_FALSE;
5758 	spa->spa_load_max_txg = UINT64_MAX;
5759 
5760 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5761 		spa_config_set(spa, config);
5762 	else
5763 		nvlist_free(config);
5764 
5765 	if (state == SPA_LOAD_RECOVER) {
5766 		ASSERT3P(loadinfo, ==, NULL);
5767 		spa_import_progress_remove(spa_guid(spa));
5768 		return (rewind_error);
5769 	} else {
5770 		/* Store the rewind info as part of the initial load info */
5771 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5772 		    spa->spa_load_info);
5773 
5774 		/* Restore the initial load info */
5775 		fnvlist_free(spa->spa_load_info);
5776 		spa->spa_load_info = loadinfo;
5777 
5778 		spa_import_progress_remove(spa_guid(spa));
5779 		return (load_error);
5780 	}
5781 }
5782 
5783 /*
5784  * Pool Open/Import
5785  *
5786  * The import case is identical to an open except that the configuration is sent
5787  * down from userland, instead of grabbed from the configuration cache.  For the
5788  * case of an open, the pool configuration will exist in the
5789  * POOL_STATE_UNINITIALIZED state.
5790  *
5791  * The stats information (gen/count/ustats) is used to gather vdev statistics at
5792  * the same time open the pool, without having to keep around the spa_t in some
5793  * ambiguous state.
5794  */
5795 static int
5796 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5797     nvlist_t *nvpolicy, nvlist_t **config)
5798 {
5799 	spa_t *spa;
5800 	spa_load_state_t state = SPA_LOAD_OPEN;
5801 	int error;
5802 	int locked = B_FALSE;
5803 	int firstopen = B_FALSE;
5804 
5805 	*spapp = NULL;
5806 
5807 	/*
5808 	 * As disgusting as this is, we need to support recursive calls to this
5809 	 * function because dsl_dir_open() is called during spa_load(), and ends
5810 	 * up calling spa_open() again.  The real fix is to figure out how to
5811 	 * avoid dsl_dir_open() calling this in the first place.
5812 	 */
5813 	if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5814 		mutex_enter(&spa_namespace_lock);
5815 		locked = B_TRUE;
5816 	}
5817 
5818 	if ((spa = spa_lookup(pool)) == NULL) {
5819 		if (locked)
5820 			mutex_exit(&spa_namespace_lock);
5821 		return (SET_ERROR(ENOENT));
5822 	}
5823 
5824 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5825 		zpool_load_policy_t policy;
5826 
5827 		firstopen = B_TRUE;
5828 
5829 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5830 		    &policy);
5831 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5832 			state = SPA_LOAD_RECOVER;
5833 
5834 		spa_activate(spa, spa_mode_global);
5835 
5836 		if (state != SPA_LOAD_RECOVER)
5837 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5838 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5839 
5840 		zfs_dbgmsg("spa_open_common: opening %s", pool);
5841 		error = spa_load_best(spa, state, policy.zlp_txg,
5842 		    policy.zlp_rewind);
5843 
5844 		if (error == EBADF) {
5845 			/*
5846 			 * If vdev_validate() returns failure (indicated by
5847 			 * EBADF), it indicates that one of the vdevs indicates
5848 			 * that the pool has been exported or destroyed.  If
5849 			 * this is the case, the config cache is out of sync and
5850 			 * we should remove the pool from the namespace.
5851 			 */
5852 			spa_unload(spa);
5853 			spa_deactivate(spa);
5854 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5855 			spa_remove(spa);
5856 			if (locked)
5857 				mutex_exit(&spa_namespace_lock);
5858 			return (SET_ERROR(ENOENT));
5859 		}
5860 
5861 		if (error) {
5862 			/*
5863 			 * We can't open the pool, but we still have useful
5864 			 * information: the state of each vdev after the
5865 			 * attempted vdev_open().  Return this to the user.
5866 			 */
5867 			if (config != NULL && spa->spa_config) {
5868 				*config = fnvlist_dup(spa->spa_config);
5869 				fnvlist_add_nvlist(*config,
5870 				    ZPOOL_CONFIG_LOAD_INFO,
5871 				    spa->spa_load_info);
5872 			}
5873 			spa_unload(spa);
5874 			spa_deactivate(spa);
5875 			spa->spa_last_open_failed = error;
5876 			if (locked)
5877 				mutex_exit(&spa_namespace_lock);
5878 			*spapp = NULL;
5879 			return (error);
5880 		}
5881 	}
5882 
5883 	spa_open_ref(spa, tag);
5884 
5885 	if (config != NULL)
5886 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5887 
5888 	/*
5889 	 * If we've recovered the pool, pass back any information we
5890 	 * gathered while doing the load.
5891 	 */
5892 	if (state == SPA_LOAD_RECOVER && config != NULL) {
5893 		fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5894 		    spa->spa_load_info);
5895 	}
5896 
5897 	if (locked) {
5898 		spa->spa_last_open_failed = 0;
5899 		spa->spa_last_ubsync_txg = 0;
5900 		spa->spa_load_txg = 0;
5901 		mutex_exit(&spa_namespace_lock);
5902 	}
5903 
5904 	if (firstopen)
5905 		zvol_create_minors_recursive(spa_name(spa));
5906 
5907 	*spapp = spa;
5908 
5909 	return (0);
5910 }
5911 
5912 int
5913 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5914     nvlist_t *policy, nvlist_t **config)
5915 {
5916 	return (spa_open_common(name, spapp, tag, policy, config));
5917 }
5918 
5919 int
5920 spa_open(const char *name, spa_t **spapp, const void *tag)
5921 {
5922 	return (spa_open_common(name, spapp, tag, NULL, NULL));
5923 }
5924 
5925 /*
5926  * Lookup the given spa_t, incrementing the inject count in the process,
5927  * preventing it from being exported or destroyed.
5928  */
5929 spa_t *
5930 spa_inject_addref(char *name)
5931 {
5932 	spa_t *spa;
5933 
5934 	mutex_enter(&spa_namespace_lock);
5935 	if ((spa = spa_lookup(name)) == NULL) {
5936 		mutex_exit(&spa_namespace_lock);
5937 		return (NULL);
5938 	}
5939 	spa->spa_inject_ref++;
5940 	mutex_exit(&spa_namespace_lock);
5941 
5942 	return (spa);
5943 }
5944 
5945 void
5946 spa_inject_delref(spa_t *spa)
5947 {
5948 	mutex_enter(&spa_namespace_lock);
5949 	spa->spa_inject_ref--;
5950 	mutex_exit(&spa_namespace_lock);
5951 }
5952 
5953 /*
5954  * Add spares device information to the nvlist.
5955  */
5956 static void
5957 spa_add_spares(spa_t *spa, nvlist_t *config)
5958 {
5959 	nvlist_t **spares;
5960 	uint_t i, nspares;
5961 	nvlist_t *nvroot;
5962 	uint64_t guid;
5963 	vdev_stat_t *vs;
5964 	uint_t vsc;
5965 	uint64_t pool;
5966 
5967 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5968 
5969 	if (spa->spa_spares.sav_count == 0)
5970 		return;
5971 
5972 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5973 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5974 	    ZPOOL_CONFIG_SPARES, &spares, &nspares));
5975 	if (nspares != 0) {
5976 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5977 		    (const nvlist_t * const *)spares, nspares);
5978 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5979 		    &spares, &nspares));
5980 
5981 		/*
5982 		 * Go through and find any spares which have since been
5983 		 * repurposed as an active spare.  If this is the case, update
5984 		 * their status appropriately.
5985 		 */
5986 		for (i = 0; i < nspares; i++) {
5987 			guid = fnvlist_lookup_uint64(spares[i],
5988 			    ZPOOL_CONFIG_GUID);
5989 			VERIFY0(nvlist_lookup_uint64_array(spares[i],
5990 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5991 			if (spa_spare_exists(guid, &pool, NULL) &&
5992 			    pool != 0ULL) {
5993 				vs->vs_state = VDEV_STATE_CANT_OPEN;
5994 				vs->vs_aux = VDEV_AUX_SPARED;
5995 			} else {
5996 				vs->vs_state =
5997 				    spa->spa_spares.sav_vdevs[i]->vdev_state;
5998 			}
5999 		}
6000 	}
6001 }
6002 
6003 /*
6004  * Add l2cache device information to the nvlist, including vdev stats.
6005  */
6006 static void
6007 spa_add_l2cache(spa_t *spa, nvlist_t *config)
6008 {
6009 	nvlist_t **l2cache;
6010 	uint_t i, j, nl2cache;
6011 	nvlist_t *nvroot;
6012 	uint64_t guid;
6013 	vdev_t *vd;
6014 	vdev_stat_t *vs;
6015 	uint_t vsc;
6016 
6017 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6018 
6019 	if (spa->spa_l2cache.sav_count == 0)
6020 		return;
6021 
6022 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6023 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
6024 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
6025 	if (nl2cache != 0) {
6026 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6027 		    (const nvlist_t * const *)l2cache, nl2cache);
6028 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6029 		    &l2cache, &nl2cache));
6030 
6031 		/*
6032 		 * Update level 2 cache device stats.
6033 		 */
6034 
6035 		for (i = 0; i < nl2cache; i++) {
6036 			guid = fnvlist_lookup_uint64(l2cache[i],
6037 			    ZPOOL_CONFIG_GUID);
6038 
6039 			vd = NULL;
6040 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
6041 				if (guid ==
6042 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
6043 					vd = spa->spa_l2cache.sav_vdevs[j];
6044 					break;
6045 				}
6046 			}
6047 			ASSERT(vd != NULL);
6048 
6049 			VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
6050 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
6051 			vdev_get_stats(vd, vs);
6052 			vdev_config_generate_stats(vd, l2cache[i]);
6053 
6054 		}
6055 	}
6056 }
6057 
6058 static void
6059 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
6060 {
6061 	zap_cursor_t zc;
6062 	zap_attribute_t *za = zap_attribute_alloc();
6063 
6064 	if (spa->spa_feat_for_read_obj != 0) {
6065 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6066 		    spa->spa_feat_for_read_obj);
6067 		    zap_cursor_retrieve(&zc, za) == 0;
6068 		    zap_cursor_advance(&zc)) {
6069 			ASSERT(za->za_integer_length == sizeof (uint64_t) &&
6070 			    za->za_num_integers == 1);
6071 			VERIFY0(nvlist_add_uint64(features, za->za_name,
6072 			    za->za_first_integer));
6073 		}
6074 		zap_cursor_fini(&zc);
6075 	}
6076 
6077 	if (spa->spa_feat_for_write_obj != 0) {
6078 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6079 		    spa->spa_feat_for_write_obj);
6080 		    zap_cursor_retrieve(&zc, za) == 0;
6081 		    zap_cursor_advance(&zc)) {
6082 			ASSERT(za->za_integer_length == sizeof (uint64_t) &&
6083 			    za->za_num_integers == 1);
6084 			VERIFY0(nvlist_add_uint64(features, za->za_name,
6085 			    za->za_first_integer));
6086 		}
6087 		zap_cursor_fini(&zc);
6088 	}
6089 	zap_attribute_free(za);
6090 }
6091 
6092 static void
6093 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
6094 {
6095 	int i;
6096 
6097 	for (i = 0; i < SPA_FEATURES; i++) {
6098 		zfeature_info_t feature = spa_feature_table[i];
6099 		uint64_t refcount;
6100 
6101 		if (feature_get_refcount(spa, &feature, &refcount) != 0)
6102 			continue;
6103 
6104 		VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
6105 	}
6106 }
6107 
6108 /*
6109  * Store a list of pool features and their reference counts in the
6110  * config.
6111  *
6112  * The first time this is called on a spa, allocate a new nvlist, fetch
6113  * the pool features and reference counts from disk, then save the list
6114  * in the spa. In subsequent calls on the same spa use the saved nvlist
6115  * and refresh its values from the cached reference counts.  This
6116  * ensures we don't block here on I/O on a suspended pool so 'zpool
6117  * clear' can resume the pool.
6118  */
6119 static void
6120 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
6121 {
6122 	nvlist_t *features;
6123 
6124 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6125 
6126 	mutex_enter(&spa->spa_feat_stats_lock);
6127 	features = spa->spa_feat_stats;
6128 
6129 	if (features != NULL) {
6130 		spa_feature_stats_from_cache(spa, features);
6131 	} else {
6132 		VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
6133 		spa->spa_feat_stats = features;
6134 		spa_feature_stats_from_disk(spa, features);
6135 	}
6136 
6137 	VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
6138 	    features));
6139 
6140 	mutex_exit(&spa->spa_feat_stats_lock);
6141 }
6142 
6143 int
6144 spa_get_stats(const char *name, nvlist_t **config,
6145     char *altroot, size_t buflen)
6146 {
6147 	int error;
6148 	spa_t *spa;
6149 
6150 	*config = NULL;
6151 	error = spa_open_common(name, &spa, FTAG, NULL, config);
6152 
6153 	if (spa != NULL) {
6154 		/*
6155 		 * This still leaves a window of inconsistency where the spares
6156 		 * or l2cache devices could change and the config would be
6157 		 * self-inconsistent.
6158 		 */
6159 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6160 
6161 		if (*config != NULL) {
6162 			uint64_t loadtimes[2];
6163 
6164 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
6165 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
6166 			fnvlist_add_uint64_array(*config,
6167 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
6168 
6169 			fnvlist_add_uint64(*config,
6170 			    ZPOOL_CONFIG_ERRCOUNT,
6171 			    spa_approx_errlog_size(spa));
6172 
6173 			if (spa_suspended(spa)) {
6174 				fnvlist_add_uint64(*config,
6175 				    ZPOOL_CONFIG_SUSPENDED,
6176 				    spa->spa_failmode);
6177 				fnvlist_add_uint64(*config,
6178 				    ZPOOL_CONFIG_SUSPENDED_REASON,
6179 				    spa->spa_suspended);
6180 			}
6181 
6182 			spa_add_spares(spa, *config);
6183 			spa_add_l2cache(spa, *config);
6184 			spa_add_feature_stats(spa, *config);
6185 		}
6186 	}
6187 
6188 	/*
6189 	 * We want to get the alternate root even for faulted pools, so we cheat
6190 	 * and call spa_lookup() directly.
6191 	 */
6192 	if (altroot) {
6193 		if (spa == NULL) {
6194 			mutex_enter(&spa_namespace_lock);
6195 			spa = spa_lookup(name);
6196 			if (spa)
6197 				spa_altroot(spa, altroot, buflen);
6198 			else
6199 				altroot[0] = '\0';
6200 			spa = NULL;
6201 			mutex_exit(&spa_namespace_lock);
6202 		} else {
6203 			spa_altroot(spa, altroot, buflen);
6204 		}
6205 	}
6206 
6207 	if (spa != NULL) {
6208 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6209 		spa_close(spa, FTAG);
6210 	}
6211 
6212 	return (error);
6213 }
6214 
6215 /*
6216  * Validate that the auxiliary device array is well formed.  We must have an
6217  * array of nvlists, each which describes a valid leaf vdev.  If this is an
6218  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
6219  * specified, as long as they are well-formed.
6220  */
6221 static int
6222 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
6223     spa_aux_vdev_t *sav, const char *config, uint64_t version,
6224     vdev_labeltype_t label)
6225 {
6226 	nvlist_t **dev;
6227 	uint_t i, ndev;
6228 	vdev_t *vd;
6229 	int error;
6230 
6231 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6232 
6233 	/*
6234 	 * It's acceptable to have no devs specified.
6235 	 */
6236 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
6237 		return (0);
6238 
6239 	if (ndev == 0)
6240 		return (SET_ERROR(EINVAL));
6241 
6242 	/*
6243 	 * Make sure the pool is formatted with a version that supports this
6244 	 * device type.
6245 	 */
6246 	if (spa_version(spa) < version)
6247 		return (SET_ERROR(ENOTSUP));
6248 
6249 	/*
6250 	 * Set the pending device list so we correctly handle device in-use
6251 	 * checking.
6252 	 */
6253 	sav->sav_pending = dev;
6254 	sav->sav_npending = ndev;
6255 
6256 	for (i = 0; i < ndev; i++) {
6257 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
6258 		    mode)) != 0)
6259 			goto out;
6260 
6261 		if (!vd->vdev_ops->vdev_op_leaf) {
6262 			vdev_free(vd);
6263 			error = SET_ERROR(EINVAL);
6264 			goto out;
6265 		}
6266 
6267 		vd->vdev_top = vd;
6268 
6269 		if ((error = vdev_open(vd)) == 0 &&
6270 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
6271 			fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
6272 			    vd->vdev_guid);
6273 		}
6274 
6275 		vdev_free(vd);
6276 
6277 		if (error &&
6278 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
6279 			goto out;
6280 		else
6281 			error = 0;
6282 	}
6283 
6284 out:
6285 	sav->sav_pending = NULL;
6286 	sav->sav_npending = 0;
6287 	return (error);
6288 }
6289 
6290 static int
6291 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
6292 {
6293 	int error;
6294 
6295 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6296 
6297 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6298 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
6299 	    VDEV_LABEL_SPARE)) != 0) {
6300 		return (error);
6301 	}
6302 
6303 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6304 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
6305 	    VDEV_LABEL_L2CACHE));
6306 }
6307 
6308 static void
6309 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
6310     const char *config)
6311 {
6312 	int i;
6313 
6314 	if (sav->sav_config != NULL) {
6315 		nvlist_t **olddevs;
6316 		uint_t oldndevs;
6317 		nvlist_t **newdevs;
6318 
6319 		/*
6320 		 * Generate new dev list by concatenating with the
6321 		 * current dev list.
6322 		 */
6323 		VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
6324 		    &olddevs, &oldndevs));
6325 
6326 		newdevs = kmem_alloc(sizeof (void *) *
6327 		    (ndevs + oldndevs), KM_SLEEP);
6328 		for (i = 0; i < oldndevs; i++)
6329 			newdevs[i] = fnvlist_dup(olddevs[i]);
6330 		for (i = 0; i < ndevs; i++)
6331 			newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
6332 
6333 		fnvlist_remove(sav->sav_config, config);
6334 
6335 		fnvlist_add_nvlist_array(sav->sav_config, config,
6336 		    (const nvlist_t * const *)newdevs, ndevs + oldndevs);
6337 		for (i = 0; i < oldndevs + ndevs; i++)
6338 			nvlist_free(newdevs[i]);
6339 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
6340 	} else {
6341 		/*
6342 		 * Generate a new dev list.
6343 		 */
6344 		sav->sav_config = fnvlist_alloc();
6345 		fnvlist_add_nvlist_array(sav->sav_config, config,
6346 		    (const nvlist_t * const *)devs, ndevs);
6347 	}
6348 }
6349 
6350 /*
6351  * Stop and drop level 2 ARC devices
6352  */
6353 void
6354 spa_l2cache_drop(spa_t *spa)
6355 {
6356 	vdev_t *vd;
6357 	int i;
6358 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
6359 
6360 	for (i = 0; i < sav->sav_count; i++) {
6361 		uint64_t pool;
6362 
6363 		vd = sav->sav_vdevs[i];
6364 		ASSERT(vd != NULL);
6365 
6366 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
6367 		    pool != 0ULL && l2arc_vdev_present(vd))
6368 			l2arc_remove_vdev(vd);
6369 	}
6370 }
6371 
6372 /*
6373  * Verify encryption parameters for spa creation. If we are encrypting, we must
6374  * have the encryption feature flag enabled.
6375  */
6376 static int
6377 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
6378     boolean_t has_encryption)
6379 {
6380 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
6381 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
6382 	    !has_encryption)
6383 		return (SET_ERROR(ENOTSUP));
6384 
6385 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
6386 }
6387 
6388 /*
6389  * Pool Creation
6390  */
6391 int
6392 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
6393     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
6394 {
6395 	spa_t *spa;
6396 	const char *altroot = NULL;
6397 	vdev_t *rvd;
6398 	dsl_pool_t *dp;
6399 	dmu_tx_t *tx;
6400 	int error = 0;
6401 	uint64_t txg = TXG_INITIAL;
6402 	nvlist_t **spares, **l2cache;
6403 	uint_t nspares, nl2cache;
6404 	uint64_t version, obj, ndraid = 0;
6405 	boolean_t has_features;
6406 	boolean_t has_encryption;
6407 	boolean_t has_allocclass;
6408 	spa_feature_t feat;
6409 	const char *feat_name;
6410 	const char *poolname;
6411 	nvlist_t *nvl;
6412 
6413 	if (props == NULL ||
6414 	    nvlist_lookup_string(props,
6415 	    zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
6416 		poolname = (char *)pool;
6417 
6418 	/*
6419 	 * If this pool already exists, return failure.
6420 	 */
6421 	mutex_enter(&spa_namespace_lock);
6422 	if (spa_lookup(poolname) != NULL) {
6423 		mutex_exit(&spa_namespace_lock);
6424 		return (SET_ERROR(EEXIST));
6425 	}
6426 
6427 	/*
6428 	 * Allocate a new spa_t structure.
6429 	 */
6430 	nvl = fnvlist_alloc();
6431 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
6432 	(void) nvlist_lookup_string(props,
6433 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6434 	spa = spa_add(poolname, nvl, altroot);
6435 	fnvlist_free(nvl);
6436 	spa_activate(spa, spa_mode_global);
6437 
6438 	if (props && (error = spa_prop_validate(spa, props))) {
6439 		spa_deactivate(spa);
6440 		spa_remove(spa);
6441 		mutex_exit(&spa_namespace_lock);
6442 		return (error);
6443 	}
6444 
6445 	/*
6446 	 * Temporary pool names should never be written to disk.
6447 	 */
6448 	if (poolname != pool)
6449 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
6450 
6451 	has_features = B_FALSE;
6452 	has_encryption = B_FALSE;
6453 	has_allocclass = B_FALSE;
6454 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
6455 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
6456 		if (zpool_prop_feature(nvpair_name(elem))) {
6457 			has_features = B_TRUE;
6458 
6459 			feat_name = strchr(nvpair_name(elem), '@') + 1;
6460 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
6461 			if (feat == SPA_FEATURE_ENCRYPTION)
6462 				has_encryption = B_TRUE;
6463 			if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
6464 				has_allocclass = B_TRUE;
6465 		}
6466 	}
6467 
6468 	/* verify encryption params, if they were provided */
6469 	if (dcp != NULL) {
6470 		error = spa_create_check_encryption_params(dcp, has_encryption);
6471 		if (error != 0) {
6472 			spa_deactivate(spa);
6473 			spa_remove(spa);
6474 			mutex_exit(&spa_namespace_lock);
6475 			return (error);
6476 		}
6477 	}
6478 	if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
6479 		spa_deactivate(spa);
6480 		spa_remove(spa);
6481 		mutex_exit(&spa_namespace_lock);
6482 		return (ENOTSUP);
6483 	}
6484 
6485 	if (has_features || nvlist_lookup_uint64(props,
6486 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
6487 		version = SPA_VERSION;
6488 	}
6489 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6490 
6491 	spa->spa_first_txg = txg;
6492 	spa->spa_uberblock.ub_txg = txg - 1;
6493 	spa->spa_uberblock.ub_version = version;
6494 	spa->spa_ubsync = spa->spa_uberblock;
6495 	spa->spa_load_state = SPA_LOAD_CREATE;
6496 	spa->spa_removing_phys.sr_state = DSS_NONE;
6497 	spa->spa_removing_phys.sr_removing_vdev = -1;
6498 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
6499 	spa->spa_indirect_vdevs_loaded = B_TRUE;
6500 
6501 	/*
6502 	 * Create "The Godfather" zio to hold all async IOs
6503 	 */
6504 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
6505 	    KM_SLEEP);
6506 	for (int i = 0; i < max_ncpus; i++) {
6507 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
6508 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6509 		    ZIO_FLAG_GODFATHER);
6510 	}
6511 
6512 	/*
6513 	 * Create the root vdev.
6514 	 */
6515 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6516 
6517 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
6518 
6519 	ASSERT(error != 0 || rvd != NULL);
6520 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
6521 
6522 	if (error == 0 && !zfs_allocatable_devs(nvroot))
6523 		error = SET_ERROR(EINVAL);
6524 
6525 	if (error == 0 &&
6526 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
6527 	    (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
6528 	    (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
6529 		/*
6530 		 * instantiate the metaslab groups (this will dirty the vdevs)
6531 		 * we can no longer error exit past this point
6532 		 */
6533 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
6534 			vdev_t *vd = rvd->vdev_child[c];
6535 
6536 			vdev_metaslab_set_size(vd);
6537 			vdev_expand(vd, txg);
6538 		}
6539 	}
6540 
6541 	spa_config_exit(spa, SCL_ALL, FTAG);
6542 
6543 	if (error != 0) {
6544 		spa_unload(spa);
6545 		spa_deactivate(spa);
6546 		spa_remove(spa);
6547 		mutex_exit(&spa_namespace_lock);
6548 		return (error);
6549 	}
6550 
6551 	/*
6552 	 * Get the list of spares, if specified.
6553 	 */
6554 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6555 	    &spares, &nspares) == 0) {
6556 		spa->spa_spares.sav_config = fnvlist_alloc();
6557 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6558 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6559 		    nspares);
6560 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6561 		spa_load_spares(spa);
6562 		spa_config_exit(spa, SCL_ALL, FTAG);
6563 		spa->spa_spares.sav_sync = B_TRUE;
6564 	}
6565 
6566 	/*
6567 	 * Get the list of level 2 cache devices, if specified.
6568 	 */
6569 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6570 	    &l2cache, &nl2cache) == 0) {
6571 		VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
6572 		    NV_UNIQUE_NAME, KM_SLEEP));
6573 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6574 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6575 		    nl2cache);
6576 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6577 		spa_load_l2cache(spa);
6578 		spa_config_exit(spa, SCL_ALL, FTAG);
6579 		spa->spa_l2cache.sav_sync = B_TRUE;
6580 	}
6581 
6582 	spa->spa_is_initializing = B_TRUE;
6583 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
6584 	spa->spa_is_initializing = B_FALSE;
6585 
6586 	/*
6587 	 * Create DDTs (dedup tables).
6588 	 */
6589 	ddt_create(spa);
6590 	/*
6591 	 * Create BRT table and BRT table object.
6592 	 */
6593 	brt_create(spa);
6594 
6595 	spa_update_dspace(spa);
6596 
6597 	tx = dmu_tx_create_assigned(dp, txg);
6598 
6599 	/*
6600 	 * Create the pool's history object.
6601 	 */
6602 	if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6603 		spa_history_create_obj(spa, tx);
6604 
6605 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6606 	spa_history_log_version(spa, "create", tx);
6607 
6608 	/*
6609 	 * Create the pool config object.
6610 	 */
6611 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6612 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6613 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6614 
6615 	if (zap_add(spa->spa_meta_objset,
6616 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6617 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6618 		cmn_err(CE_PANIC, "failed to add pool config");
6619 	}
6620 
6621 	if (zap_add(spa->spa_meta_objset,
6622 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6623 	    sizeof (uint64_t), 1, &version, tx) != 0) {
6624 		cmn_err(CE_PANIC, "failed to add pool version");
6625 	}
6626 
6627 	/* Newly created pools with the right version are always deflated. */
6628 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6629 		spa->spa_deflate = TRUE;
6630 		if (zap_add(spa->spa_meta_objset,
6631 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6632 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6633 			cmn_err(CE_PANIC, "failed to add deflate");
6634 		}
6635 	}
6636 
6637 	/*
6638 	 * Create the deferred-free bpobj.  Turn off compression
6639 	 * because sync-to-convergence takes longer if the blocksize
6640 	 * keeps changing.
6641 	 */
6642 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6643 	dmu_object_set_compress(spa->spa_meta_objset, obj,
6644 	    ZIO_COMPRESS_OFF, tx);
6645 	if (zap_add(spa->spa_meta_objset,
6646 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6647 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
6648 		cmn_err(CE_PANIC, "failed to add bpobj");
6649 	}
6650 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6651 	    spa->spa_meta_objset, obj));
6652 
6653 	/*
6654 	 * Generate some random noise for salted checksums to operate on.
6655 	 */
6656 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6657 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
6658 
6659 	/*
6660 	 * Set pool properties.
6661 	 */
6662 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6663 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6664 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6665 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6666 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6667 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6668 	spa->spa_dedup_table_quota =
6669 	    zpool_prop_default_numeric(ZPOOL_PROP_DEDUP_TABLE_QUOTA);
6670 
6671 	if (props != NULL) {
6672 		spa_configfile_set(spa, props, B_FALSE);
6673 		spa_sync_props(props, tx);
6674 	}
6675 
6676 	for (int i = 0; i < ndraid; i++)
6677 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6678 
6679 	dmu_tx_commit(tx);
6680 
6681 	spa->spa_sync_on = B_TRUE;
6682 	txg_sync_start(dp);
6683 	mmp_thread_start(spa);
6684 	txg_wait_synced(dp, txg);
6685 
6686 	spa_spawn_aux_threads(spa);
6687 
6688 	spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6689 
6690 	/*
6691 	 * Don't count references from objsets that are already closed
6692 	 * and are making their way through the eviction process.
6693 	 */
6694 	spa_evicting_os_wait(spa);
6695 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6696 	spa->spa_load_state = SPA_LOAD_NONE;
6697 
6698 	spa_import_os(spa);
6699 
6700 	mutex_exit(&spa_namespace_lock);
6701 
6702 	return (0);
6703 }
6704 
6705 /*
6706  * Import a non-root pool into the system.
6707  */
6708 int
6709 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6710 {
6711 	spa_t *spa;
6712 	const char *altroot = NULL;
6713 	spa_load_state_t state = SPA_LOAD_IMPORT;
6714 	zpool_load_policy_t policy;
6715 	spa_mode_t mode = spa_mode_global;
6716 	uint64_t readonly = B_FALSE;
6717 	int error;
6718 	nvlist_t *nvroot;
6719 	nvlist_t **spares, **l2cache;
6720 	uint_t nspares, nl2cache;
6721 
6722 	/*
6723 	 * If a pool with this name exists, return failure.
6724 	 */
6725 	mutex_enter(&spa_namespace_lock);
6726 	if (spa_lookup(pool) != NULL) {
6727 		mutex_exit(&spa_namespace_lock);
6728 		return (SET_ERROR(EEXIST));
6729 	}
6730 
6731 	/*
6732 	 * Create and initialize the spa structure.
6733 	 */
6734 	(void) nvlist_lookup_string(props,
6735 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6736 	(void) nvlist_lookup_uint64(props,
6737 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6738 	if (readonly)
6739 		mode = SPA_MODE_READ;
6740 	spa = spa_add(pool, config, altroot);
6741 	spa->spa_import_flags = flags;
6742 
6743 	/*
6744 	 * Verbatim import - Take a pool and insert it into the namespace
6745 	 * as if it had been loaded at boot.
6746 	 */
6747 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6748 		if (props != NULL)
6749 			spa_configfile_set(spa, props, B_FALSE);
6750 
6751 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6752 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6753 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6754 		mutex_exit(&spa_namespace_lock);
6755 		return (0);
6756 	}
6757 
6758 	spa_activate(spa, mode);
6759 
6760 	/*
6761 	 * Don't start async tasks until we know everything is healthy.
6762 	 */
6763 	spa_async_suspend(spa);
6764 
6765 	zpool_get_load_policy(config, &policy);
6766 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6767 		state = SPA_LOAD_RECOVER;
6768 
6769 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6770 
6771 	if (state != SPA_LOAD_RECOVER) {
6772 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6773 		zfs_dbgmsg("spa_import: importing %s", pool);
6774 	} else {
6775 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6776 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6777 	}
6778 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6779 
6780 	/*
6781 	 * Propagate anything learned while loading the pool and pass it
6782 	 * back to caller (i.e. rewind info, missing devices, etc).
6783 	 */
6784 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6785 
6786 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6787 	/*
6788 	 * Toss any existing sparelist, as it doesn't have any validity
6789 	 * anymore, and conflicts with spa_has_spare().
6790 	 */
6791 	if (spa->spa_spares.sav_config) {
6792 		nvlist_free(spa->spa_spares.sav_config);
6793 		spa->spa_spares.sav_config = NULL;
6794 		spa_load_spares(spa);
6795 	}
6796 	if (spa->spa_l2cache.sav_config) {
6797 		nvlist_free(spa->spa_l2cache.sav_config);
6798 		spa->spa_l2cache.sav_config = NULL;
6799 		spa_load_l2cache(spa);
6800 	}
6801 
6802 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6803 	spa_config_exit(spa, SCL_ALL, FTAG);
6804 
6805 	if (props != NULL)
6806 		spa_configfile_set(spa, props, B_FALSE);
6807 
6808 	if (error != 0 || (props && spa_writeable(spa) &&
6809 	    (error = spa_prop_set(spa, props)))) {
6810 		spa_unload(spa);
6811 		spa_deactivate(spa);
6812 		spa_remove(spa);
6813 		mutex_exit(&spa_namespace_lock);
6814 		return (error);
6815 	}
6816 
6817 	spa_async_resume(spa);
6818 
6819 	/*
6820 	 * Override any spares and level 2 cache devices as specified by
6821 	 * the user, as these may have correct device names/devids, etc.
6822 	 */
6823 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6824 	    &spares, &nspares) == 0) {
6825 		if (spa->spa_spares.sav_config)
6826 			fnvlist_remove(spa->spa_spares.sav_config,
6827 			    ZPOOL_CONFIG_SPARES);
6828 		else
6829 			spa->spa_spares.sav_config = fnvlist_alloc();
6830 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6831 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6832 		    nspares);
6833 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6834 		spa_load_spares(spa);
6835 		spa_config_exit(spa, SCL_ALL, FTAG);
6836 		spa->spa_spares.sav_sync = B_TRUE;
6837 		spa->spa_spares.sav_label_sync = B_TRUE;
6838 	}
6839 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6840 	    &l2cache, &nl2cache) == 0) {
6841 		if (spa->spa_l2cache.sav_config)
6842 			fnvlist_remove(spa->spa_l2cache.sav_config,
6843 			    ZPOOL_CONFIG_L2CACHE);
6844 		else
6845 			spa->spa_l2cache.sav_config = fnvlist_alloc();
6846 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6847 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6848 		    nl2cache);
6849 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6850 		spa_load_l2cache(spa);
6851 		spa_config_exit(spa, SCL_ALL, FTAG);
6852 		spa->spa_l2cache.sav_sync = B_TRUE;
6853 		spa->spa_l2cache.sav_label_sync = B_TRUE;
6854 	}
6855 
6856 	/*
6857 	 * Check for any removed devices.
6858 	 */
6859 	if (spa->spa_autoreplace) {
6860 		spa_aux_check_removed(&spa->spa_spares);
6861 		spa_aux_check_removed(&spa->spa_l2cache);
6862 	}
6863 
6864 	if (spa_writeable(spa)) {
6865 		/*
6866 		 * Update the config cache to include the newly-imported pool.
6867 		 */
6868 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6869 	}
6870 
6871 	/*
6872 	 * It's possible that the pool was expanded while it was exported.
6873 	 * We kick off an async task to handle this for us.
6874 	 */
6875 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6876 
6877 	spa_history_log_version(spa, "import", NULL);
6878 
6879 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6880 
6881 	mutex_exit(&spa_namespace_lock);
6882 
6883 	zvol_create_minors_recursive(pool);
6884 
6885 	spa_import_os(spa);
6886 
6887 	return (0);
6888 }
6889 
6890 nvlist_t *
6891 spa_tryimport(nvlist_t *tryconfig)
6892 {
6893 	nvlist_t *config = NULL;
6894 	const char *poolname, *cachefile;
6895 	spa_t *spa;
6896 	uint64_t state;
6897 	int error;
6898 	zpool_load_policy_t policy;
6899 
6900 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6901 		return (NULL);
6902 
6903 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6904 		return (NULL);
6905 
6906 	/*
6907 	 * Create and initialize the spa structure.
6908 	 */
6909 	char *name = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6910 	(void) snprintf(name, MAXPATHLEN, "%s-%llx-%s",
6911 	    TRYIMPORT_NAME, (u_longlong_t)(uintptr_t)curthread, poolname);
6912 
6913 	mutex_enter(&spa_namespace_lock);
6914 	spa = spa_add(name, tryconfig, NULL);
6915 	spa_activate(spa, SPA_MODE_READ);
6916 	kmem_free(name, MAXPATHLEN);
6917 
6918 	/*
6919 	 * Rewind pool if a max txg was provided.
6920 	 */
6921 	zpool_get_load_policy(spa->spa_config, &policy);
6922 	if (policy.zlp_txg != UINT64_MAX) {
6923 		spa->spa_load_max_txg = policy.zlp_txg;
6924 		spa->spa_extreme_rewind = B_TRUE;
6925 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6926 		    poolname, (longlong_t)policy.zlp_txg);
6927 	} else {
6928 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6929 	}
6930 
6931 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6932 	    == 0) {
6933 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6934 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6935 	} else {
6936 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6937 	}
6938 
6939 	/*
6940 	 * spa_import() relies on a pool config fetched by spa_try_import()
6941 	 * for spare/cache devices. Import flags are not passed to
6942 	 * spa_tryimport(), which makes it return early due to a missing log
6943 	 * device and missing retrieving the cache device and spare eventually.
6944 	 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
6945 	 * the correct configuration regardless of the missing log device.
6946 	 */
6947 	spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
6948 
6949 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6950 
6951 	/*
6952 	 * If 'tryconfig' was at least parsable, return the current config.
6953 	 */
6954 	if (spa->spa_root_vdev != NULL) {
6955 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6956 		fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6957 		fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6958 		fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6959 		    spa->spa_uberblock.ub_timestamp);
6960 		fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6961 		    spa->spa_load_info);
6962 		fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6963 		    spa->spa_errata);
6964 
6965 		/*
6966 		 * If the bootfs property exists on this pool then we
6967 		 * copy it out so that external consumers can tell which
6968 		 * pools are bootable.
6969 		 */
6970 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
6971 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6972 
6973 			/*
6974 			 * We have to play games with the name since the
6975 			 * pool was opened as TRYIMPORT_NAME.
6976 			 */
6977 			if (dsl_dsobj_to_dsname(spa_name(spa),
6978 			    spa->spa_bootfs, tmpname) == 0) {
6979 				char *cp;
6980 				char *dsname;
6981 
6982 				dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6983 
6984 				cp = strchr(tmpname, '/');
6985 				if (cp == NULL) {
6986 					(void) strlcpy(dsname, tmpname,
6987 					    MAXPATHLEN);
6988 				} else {
6989 					(void) snprintf(dsname, MAXPATHLEN,
6990 					    "%s/%s", poolname, ++cp);
6991 				}
6992 				fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6993 				    dsname);
6994 				kmem_free(dsname, MAXPATHLEN);
6995 			}
6996 			kmem_free(tmpname, MAXPATHLEN);
6997 		}
6998 
6999 		/*
7000 		 * Add the list of hot spares and level 2 cache devices.
7001 		 */
7002 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7003 		spa_add_spares(spa, config);
7004 		spa_add_l2cache(spa, config);
7005 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7006 	}
7007 
7008 	spa_unload(spa);
7009 	spa_deactivate(spa);
7010 	spa_remove(spa);
7011 	mutex_exit(&spa_namespace_lock);
7012 
7013 	return (config);
7014 }
7015 
7016 /*
7017  * Pool export/destroy
7018  *
7019  * The act of destroying or exporting a pool is very simple.  We make sure there
7020  * is no more pending I/O and any references to the pool are gone.  Then, we
7021  * update the pool state and sync all the labels to disk, removing the
7022  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
7023  * we don't sync the labels or remove the configuration cache.
7024  */
7025 static int
7026 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
7027     boolean_t force, boolean_t hardforce)
7028 {
7029 	int error = 0;
7030 	spa_t *spa;
7031 	hrtime_t export_start = gethrtime();
7032 
7033 	if (oldconfig)
7034 		*oldconfig = NULL;
7035 
7036 	if (!(spa_mode_global & SPA_MODE_WRITE))
7037 		return (SET_ERROR(EROFS));
7038 
7039 	mutex_enter(&spa_namespace_lock);
7040 	if ((spa = spa_lookup(pool)) == NULL) {
7041 		mutex_exit(&spa_namespace_lock);
7042 		return (SET_ERROR(ENOENT));
7043 	}
7044 
7045 	if (spa->spa_is_exporting) {
7046 		/* the pool is being exported by another thread */
7047 		mutex_exit(&spa_namespace_lock);
7048 		return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
7049 	}
7050 	spa->spa_is_exporting = B_TRUE;
7051 
7052 	/*
7053 	 * Put a hold on the pool, drop the namespace lock, stop async tasks
7054 	 * and see if we can export.
7055 	 */
7056 	spa_open_ref(spa, FTAG);
7057 	mutex_exit(&spa_namespace_lock);
7058 	spa_async_suspend(spa);
7059 	if (spa->spa_zvol_taskq) {
7060 		zvol_remove_minors(spa, spa_name(spa), B_TRUE);
7061 		taskq_wait(spa->spa_zvol_taskq);
7062 	}
7063 	mutex_enter(&spa_namespace_lock);
7064 	spa->spa_export_thread = curthread;
7065 	spa_close(spa, FTAG);
7066 
7067 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
7068 		mutex_exit(&spa_namespace_lock);
7069 		goto export_spa;
7070 	}
7071 
7072 	/*
7073 	 * The pool will be in core if it's openable, in which case we can
7074 	 * modify its state.  Objsets may be open only because they're dirty,
7075 	 * so we have to force it to sync before checking spa_refcnt.
7076 	 */
7077 	if (spa->spa_sync_on) {
7078 		txg_wait_synced(spa->spa_dsl_pool, 0);
7079 		spa_evicting_os_wait(spa);
7080 	}
7081 
7082 	/*
7083 	 * A pool cannot be exported or destroyed if there are active
7084 	 * references.  If we are resetting a pool, allow references by
7085 	 * fault injection handlers.
7086 	 */
7087 	if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
7088 		error = SET_ERROR(EBUSY);
7089 		goto fail;
7090 	}
7091 
7092 	mutex_exit(&spa_namespace_lock);
7093 	/*
7094 	 * At this point we no longer hold the spa_namespace_lock and
7095 	 * there were no references on the spa. Future spa_lookups will
7096 	 * notice the spa->spa_export_thread and wait until we signal
7097 	 * that we are finshed.
7098 	 */
7099 
7100 	if (spa->spa_sync_on) {
7101 		vdev_t *rvd = spa->spa_root_vdev;
7102 		/*
7103 		 * A pool cannot be exported if it has an active shared spare.
7104 		 * This is to prevent other pools stealing the active spare
7105 		 * from an exported pool. At user's own will, such pool can
7106 		 * be forcedly exported.
7107 		 */
7108 		if (!force && new_state == POOL_STATE_EXPORTED &&
7109 		    spa_has_active_shared_spare(spa)) {
7110 			error = SET_ERROR(EXDEV);
7111 			mutex_enter(&spa_namespace_lock);
7112 			goto fail;
7113 		}
7114 
7115 		/*
7116 		 * We're about to export or destroy this pool. Make sure
7117 		 * we stop all initialization and trim activity here before
7118 		 * we set the spa_final_txg. This will ensure that all
7119 		 * dirty data resulting from the initialization is
7120 		 * committed to disk before we unload the pool.
7121 		 */
7122 		vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
7123 		vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
7124 		vdev_autotrim_stop_all(spa);
7125 		vdev_rebuild_stop_all(spa);
7126 		l2arc_spa_rebuild_stop(spa);
7127 
7128 		/*
7129 		 * We want this to be reflected on every label,
7130 		 * so mark them all dirty.  spa_unload() will do the
7131 		 * final sync that pushes these changes out.
7132 		 */
7133 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7134 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7135 			spa->spa_state = new_state;
7136 			vdev_config_dirty(rvd);
7137 			spa_config_exit(spa, SCL_ALL, FTAG);
7138 		}
7139 
7140 		/*
7141 		 * If the log space map feature is enabled and the pool is
7142 		 * getting exported (but not destroyed), we want to spend some
7143 		 * time flushing as many metaslabs as we can in an attempt to
7144 		 * destroy log space maps and save import time. This has to be
7145 		 * done before we set the spa_final_txg, otherwise
7146 		 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
7147 		 * spa_should_flush_logs_on_unload() should be called after
7148 		 * spa_state has been set to the new_state.
7149 		 */
7150 		if (spa_should_flush_logs_on_unload(spa))
7151 			spa_unload_log_sm_flush_all(spa);
7152 
7153 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7154 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7155 			spa->spa_final_txg = spa_last_synced_txg(spa) +
7156 			    TXG_DEFER_SIZE + 1;
7157 			spa_config_exit(spa, SCL_ALL, FTAG);
7158 		}
7159 	}
7160 
7161 export_spa:
7162 	spa_export_os(spa);
7163 
7164 	if (new_state == POOL_STATE_DESTROYED)
7165 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
7166 	else if (new_state == POOL_STATE_EXPORTED)
7167 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
7168 
7169 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7170 		spa_unload(spa);
7171 		spa_deactivate(spa);
7172 	}
7173 
7174 	if (oldconfig && spa->spa_config)
7175 		*oldconfig = fnvlist_dup(spa->spa_config);
7176 
7177 	if (new_state == POOL_STATE_EXPORTED)
7178 		zio_handle_export_delay(spa, gethrtime() - export_start);
7179 
7180 	/*
7181 	 * Take the namespace lock for the actual spa_t removal
7182 	 */
7183 	mutex_enter(&spa_namespace_lock);
7184 	if (new_state != POOL_STATE_UNINITIALIZED) {
7185 		if (!hardforce)
7186 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
7187 		spa_remove(spa);
7188 	} else {
7189 		/*
7190 		 * If spa_remove() is not called for this spa_t and
7191 		 * there is any possibility that it can be reused,
7192 		 * we make sure to reset the exporting flag.
7193 		 */
7194 		spa->spa_is_exporting = B_FALSE;
7195 		spa->spa_export_thread = NULL;
7196 	}
7197 
7198 	/*
7199 	 * Wake up any waiters in spa_lookup()
7200 	 */
7201 	cv_broadcast(&spa_namespace_cv);
7202 	mutex_exit(&spa_namespace_lock);
7203 	return (0);
7204 
7205 fail:
7206 	spa->spa_is_exporting = B_FALSE;
7207 	spa->spa_export_thread = NULL;
7208 
7209 	spa_async_resume(spa);
7210 	/*
7211 	 * Wake up any waiters in spa_lookup()
7212 	 */
7213 	cv_broadcast(&spa_namespace_cv);
7214 	mutex_exit(&spa_namespace_lock);
7215 	return (error);
7216 }
7217 
7218 /*
7219  * Destroy a storage pool.
7220  */
7221 int
7222 spa_destroy(const char *pool)
7223 {
7224 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
7225 	    B_FALSE, B_FALSE));
7226 }
7227 
7228 /*
7229  * Export a storage pool.
7230  */
7231 int
7232 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
7233     boolean_t hardforce)
7234 {
7235 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
7236 	    force, hardforce));
7237 }
7238 
7239 /*
7240  * Similar to spa_export(), this unloads the spa_t without actually removing it
7241  * from the namespace in any way.
7242  */
7243 int
7244 spa_reset(const char *pool)
7245 {
7246 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
7247 	    B_FALSE, B_FALSE));
7248 }
7249 
7250 /*
7251  * ==========================================================================
7252  * Device manipulation
7253  * ==========================================================================
7254  */
7255 
7256 /*
7257  * This is called as a synctask to increment the draid feature flag
7258  */
7259 static void
7260 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
7261 {
7262 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7263 	int draid = (int)(uintptr_t)arg;
7264 
7265 	for (int c = 0; c < draid; c++)
7266 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
7267 }
7268 
7269 /*
7270  * Add a device to a storage pool.
7271  */
7272 int
7273 spa_vdev_add(spa_t *spa, nvlist_t *nvroot, boolean_t check_ashift)
7274 {
7275 	uint64_t txg, ndraid = 0;
7276 	int error;
7277 	vdev_t *rvd = spa->spa_root_vdev;
7278 	vdev_t *vd, *tvd;
7279 	nvlist_t **spares, **l2cache;
7280 	uint_t nspares, nl2cache;
7281 
7282 	ASSERT(spa_writeable(spa));
7283 
7284 	txg = spa_vdev_enter(spa);
7285 
7286 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
7287 	    VDEV_ALLOC_ADD)) != 0)
7288 		return (spa_vdev_exit(spa, NULL, txg, error));
7289 
7290 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
7291 
7292 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
7293 	    &nspares) != 0)
7294 		nspares = 0;
7295 
7296 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
7297 	    &nl2cache) != 0)
7298 		nl2cache = 0;
7299 
7300 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
7301 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
7302 
7303 	if (vd->vdev_children != 0 &&
7304 	    (error = vdev_create(vd, txg, B_FALSE)) != 0) {
7305 		return (spa_vdev_exit(spa, vd, txg, error));
7306 	}
7307 
7308 	/*
7309 	 * The virtual dRAID spares must be added after vdev tree is created
7310 	 * and the vdev guids are generated.  The guid of their associated
7311 	 * dRAID is stored in the config and used when opening the spare.
7312 	 */
7313 	if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
7314 	    rvd->vdev_children)) == 0) {
7315 		if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
7316 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
7317 			nspares = 0;
7318 	} else {
7319 		return (spa_vdev_exit(spa, vd, txg, error));
7320 	}
7321 
7322 	/*
7323 	 * We must validate the spares and l2cache devices after checking the
7324 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
7325 	 */
7326 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
7327 		return (spa_vdev_exit(spa, vd, txg, error));
7328 
7329 	/*
7330 	 * If we are in the middle of a device removal, we can only add
7331 	 * devices which match the existing devices in the pool.
7332 	 * If we are in the middle of a removal, or have some indirect
7333 	 * vdevs, we can not add raidz or dRAID top levels.
7334 	 */
7335 	if (spa->spa_vdev_removal != NULL ||
7336 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7337 		for (int c = 0; c < vd->vdev_children; c++) {
7338 			tvd = vd->vdev_child[c];
7339 			if (spa->spa_vdev_removal != NULL &&
7340 			    tvd->vdev_ashift != spa->spa_max_ashift) {
7341 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
7342 			}
7343 			/* Fail if top level vdev is raidz or a dRAID */
7344 			if (vdev_get_nparity(tvd) != 0)
7345 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
7346 
7347 			/*
7348 			 * Need the top level mirror to be
7349 			 * a mirror of leaf vdevs only
7350 			 */
7351 			if (tvd->vdev_ops == &vdev_mirror_ops) {
7352 				for (uint64_t cid = 0;
7353 				    cid < tvd->vdev_children; cid++) {
7354 					vdev_t *cvd = tvd->vdev_child[cid];
7355 					if (!cvd->vdev_ops->vdev_op_leaf) {
7356 						return (spa_vdev_exit(spa, vd,
7357 						    txg, EINVAL));
7358 					}
7359 				}
7360 			}
7361 		}
7362 	}
7363 
7364 	if (check_ashift && spa->spa_max_ashift == spa->spa_min_ashift) {
7365 		for (int c = 0; c < vd->vdev_children; c++) {
7366 			tvd = vd->vdev_child[c];
7367 			if (tvd->vdev_ashift != spa->spa_max_ashift) {
7368 				return (spa_vdev_exit(spa, vd, txg,
7369 				    ZFS_ERR_ASHIFT_MISMATCH));
7370 			}
7371 		}
7372 	}
7373 
7374 	for (int c = 0; c < vd->vdev_children; c++) {
7375 		tvd = vd->vdev_child[c];
7376 		vdev_remove_child(vd, tvd);
7377 		tvd->vdev_id = rvd->vdev_children;
7378 		vdev_add_child(rvd, tvd);
7379 		vdev_config_dirty(tvd);
7380 	}
7381 
7382 	if (nspares != 0) {
7383 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
7384 		    ZPOOL_CONFIG_SPARES);
7385 		spa_load_spares(spa);
7386 		spa->spa_spares.sav_sync = B_TRUE;
7387 	}
7388 
7389 	if (nl2cache != 0) {
7390 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
7391 		    ZPOOL_CONFIG_L2CACHE);
7392 		spa_load_l2cache(spa);
7393 		spa->spa_l2cache.sav_sync = B_TRUE;
7394 	}
7395 
7396 	/*
7397 	 * We can't increment a feature while holding spa_vdev so we
7398 	 * have to do it in a synctask.
7399 	 */
7400 	if (ndraid != 0) {
7401 		dmu_tx_t *tx;
7402 
7403 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
7404 		dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
7405 		    (void *)(uintptr_t)ndraid, tx);
7406 		dmu_tx_commit(tx);
7407 	}
7408 
7409 	/*
7410 	 * We have to be careful when adding new vdevs to an existing pool.
7411 	 * If other threads start allocating from these vdevs before we
7412 	 * sync the config cache, and we lose power, then upon reboot we may
7413 	 * fail to open the pool because there are DVAs that the config cache
7414 	 * can't translate.  Therefore, we first add the vdevs without
7415 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
7416 	 * and then let spa_config_update() initialize the new metaslabs.
7417 	 *
7418 	 * spa_load() checks for added-but-not-initialized vdevs, so that
7419 	 * if we lose power at any point in this sequence, the remaining
7420 	 * steps will be completed the next time we load the pool.
7421 	 */
7422 	(void) spa_vdev_exit(spa, vd, txg, 0);
7423 
7424 	mutex_enter(&spa_namespace_lock);
7425 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7426 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
7427 	mutex_exit(&spa_namespace_lock);
7428 
7429 	return (0);
7430 }
7431 
7432 /*
7433  * Attach a device to a vdev specified by its guid.  The vdev type can be
7434  * a mirror, a raidz, or a leaf device that is also a top-level (e.g. a
7435  * single device). When the vdev is a single device, a mirror vdev will be
7436  * automatically inserted.
7437  *
7438  * If 'replacing' is specified, the new device is intended to replace the
7439  * existing device; in this case the two devices are made into their own
7440  * mirror using the 'replacing' vdev, which is functionally identical to
7441  * the mirror vdev (it actually reuses all the same ops) but has a few
7442  * extra rules: you can't attach to it after it's been created, and upon
7443  * completion of resilvering, the first disk (the one being replaced)
7444  * is automatically detached.
7445  *
7446  * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
7447  * should be performed instead of traditional healing reconstruction.  From
7448  * an administrators perspective these are both resilver operations.
7449  */
7450 int
7451 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
7452     int rebuild)
7453 {
7454 	uint64_t txg, dtl_max_txg;
7455 	vdev_t *rvd = spa->spa_root_vdev;
7456 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
7457 	vdev_ops_t *pvops;
7458 	char *oldvdpath, *newvdpath;
7459 	int newvd_isspare = B_FALSE;
7460 	int error;
7461 
7462 	ASSERT(spa_writeable(spa));
7463 
7464 	txg = spa_vdev_enter(spa);
7465 
7466 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
7467 
7468 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7469 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7470 		error = (spa_has_checkpoint(spa)) ?
7471 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7472 		return (spa_vdev_exit(spa, NULL, txg, error));
7473 	}
7474 
7475 	if (rebuild) {
7476 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
7477 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7478 
7479 		if (dsl_scan_resilvering(spa_get_dsl(spa)) ||
7480 		    dsl_scan_resilver_scheduled(spa_get_dsl(spa))) {
7481 			return (spa_vdev_exit(spa, NULL, txg,
7482 			    ZFS_ERR_RESILVER_IN_PROGRESS));
7483 		}
7484 	} else {
7485 		if (vdev_rebuild_active(rvd))
7486 			return (spa_vdev_exit(spa, NULL, txg,
7487 			    ZFS_ERR_REBUILD_IN_PROGRESS));
7488 	}
7489 
7490 	if (spa->spa_vdev_removal != NULL) {
7491 		return (spa_vdev_exit(spa, NULL, txg,
7492 		    ZFS_ERR_DEVRM_IN_PROGRESS));
7493 	}
7494 
7495 	if (oldvd == NULL)
7496 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7497 
7498 	boolean_t raidz = oldvd->vdev_ops == &vdev_raidz_ops;
7499 
7500 	if (raidz) {
7501 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_RAIDZ_EXPANSION))
7502 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7503 
7504 		/*
7505 		 * Can't expand a raidz while prior expand is in progress.
7506 		 */
7507 		if (spa->spa_raidz_expand != NULL) {
7508 			return (spa_vdev_exit(spa, NULL, txg,
7509 			    ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS));
7510 		}
7511 	} else if (!oldvd->vdev_ops->vdev_op_leaf) {
7512 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7513 	}
7514 
7515 	if (raidz)
7516 		pvd = oldvd;
7517 	else
7518 		pvd = oldvd->vdev_parent;
7519 
7520 	if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
7521 	    VDEV_ALLOC_ATTACH) != 0)
7522 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7523 
7524 	if (newrootvd->vdev_children != 1)
7525 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7526 
7527 	newvd = newrootvd->vdev_child[0];
7528 
7529 	if (!newvd->vdev_ops->vdev_op_leaf)
7530 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7531 
7532 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
7533 		return (spa_vdev_exit(spa, newrootvd, txg, error));
7534 
7535 	/*
7536 	 * log, dedup and special vdevs should not be replaced by spares.
7537 	 */
7538 	if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
7539 	    oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
7540 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7541 	}
7542 
7543 	/*
7544 	 * A dRAID spare can only replace a child of its parent dRAID vdev.
7545 	 */
7546 	if (newvd->vdev_ops == &vdev_draid_spare_ops &&
7547 	    oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
7548 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7549 	}
7550 
7551 	if (rebuild) {
7552 		/*
7553 		 * For rebuilds, the top vdev must support reconstruction
7554 		 * using only space maps.  This means the only allowable
7555 		 * vdevs types are the root vdev, a mirror, or dRAID.
7556 		 */
7557 		tvd = pvd;
7558 		if (pvd->vdev_top != NULL)
7559 			tvd = pvd->vdev_top;
7560 
7561 		if (tvd->vdev_ops != &vdev_mirror_ops &&
7562 		    tvd->vdev_ops != &vdev_root_ops &&
7563 		    tvd->vdev_ops != &vdev_draid_ops) {
7564 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7565 		}
7566 	}
7567 
7568 	if (!replacing) {
7569 		/*
7570 		 * For attach, the only allowable parent is a mirror or
7571 		 * the root vdev. A raidz vdev can be attached to, but
7572 		 * you cannot attach to a raidz child.
7573 		 */
7574 		if (pvd->vdev_ops != &vdev_mirror_ops &&
7575 		    pvd->vdev_ops != &vdev_root_ops &&
7576 		    !raidz)
7577 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7578 
7579 		pvops = &vdev_mirror_ops;
7580 	} else {
7581 		/*
7582 		 * Active hot spares can only be replaced by inactive hot
7583 		 * spares.
7584 		 */
7585 		if (pvd->vdev_ops == &vdev_spare_ops &&
7586 		    oldvd->vdev_isspare &&
7587 		    !spa_has_spare(spa, newvd->vdev_guid))
7588 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7589 
7590 		/*
7591 		 * If the source is a hot spare, and the parent isn't already a
7592 		 * spare, then we want to create a new hot spare.  Otherwise, we
7593 		 * want to create a replacing vdev.  The user is not allowed to
7594 		 * attach to a spared vdev child unless the 'isspare' state is
7595 		 * the same (spare replaces spare, non-spare replaces
7596 		 * non-spare).
7597 		 */
7598 		if (pvd->vdev_ops == &vdev_replacing_ops &&
7599 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
7600 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7601 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
7602 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
7603 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7604 		}
7605 
7606 		if (newvd->vdev_isspare)
7607 			pvops = &vdev_spare_ops;
7608 		else
7609 			pvops = &vdev_replacing_ops;
7610 	}
7611 
7612 	/*
7613 	 * Make sure the new device is big enough.
7614 	 */
7615 	vdev_t *min_vdev = raidz ? oldvd->vdev_child[0] : oldvd;
7616 	if (newvd->vdev_asize < vdev_get_min_asize(min_vdev))
7617 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
7618 
7619 	/*
7620 	 * The new device cannot have a higher alignment requirement
7621 	 * than the top-level vdev.
7622 	 */
7623 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) {
7624 		return (spa_vdev_exit(spa, newrootvd, txg,
7625 		    ZFS_ERR_ASHIFT_MISMATCH));
7626 	}
7627 
7628 	/*
7629 	 * RAIDZ-expansion-specific checks.
7630 	 */
7631 	if (raidz) {
7632 		if (vdev_raidz_attach_check(newvd) != 0)
7633 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7634 
7635 		/*
7636 		 * Fail early if a child is not healthy or being replaced
7637 		 */
7638 		for (int i = 0; i < oldvd->vdev_children; i++) {
7639 			if (vdev_is_dead(oldvd->vdev_child[i]) ||
7640 			    !oldvd->vdev_child[i]->vdev_ops->vdev_op_leaf) {
7641 				return (spa_vdev_exit(spa, newrootvd, txg,
7642 				    ENXIO));
7643 			}
7644 			/* Also fail if reserved boot area is in-use */
7645 			if (vdev_check_boot_reserve(spa, oldvd->vdev_child[i])
7646 			    != 0) {
7647 				return (spa_vdev_exit(spa, newrootvd, txg,
7648 				    EADDRINUSE));
7649 			}
7650 		}
7651 	}
7652 
7653 	if (raidz) {
7654 		/*
7655 		 * Note: oldvdpath is freed by spa_strfree(),  but
7656 		 * kmem_asprintf() is freed by kmem_strfree(), so we have to
7657 		 * move it to a spa_strdup-ed string.
7658 		 */
7659 		char *tmp = kmem_asprintf("raidz%u-%u",
7660 		    (uint_t)vdev_get_nparity(oldvd), (uint_t)oldvd->vdev_id);
7661 		oldvdpath = spa_strdup(tmp);
7662 		kmem_strfree(tmp);
7663 	} else {
7664 		oldvdpath = spa_strdup(oldvd->vdev_path);
7665 	}
7666 	newvdpath = spa_strdup(newvd->vdev_path);
7667 
7668 	/*
7669 	 * If this is an in-place replacement, update oldvd's path and devid
7670 	 * to make it distinguishable from newvd, and unopenable from now on.
7671 	 */
7672 	if (strcmp(oldvdpath, newvdpath) == 0) {
7673 		spa_strfree(oldvd->vdev_path);
7674 		oldvd->vdev_path = kmem_alloc(strlen(newvdpath) + 5,
7675 		    KM_SLEEP);
7676 		(void) sprintf(oldvd->vdev_path, "%s/old",
7677 		    newvdpath);
7678 		if (oldvd->vdev_devid != NULL) {
7679 			spa_strfree(oldvd->vdev_devid);
7680 			oldvd->vdev_devid = NULL;
7681 		}
7682 		spa_strfree(oldvdpath);
7683 		oldvdpath = spa_strdup(oldvd->vdev_path);
7684 	}
7685 
7686 	/*
7687 	 * If the parent is not a mirror, or if we're replacing, insert the new
7688 	 * mirror/replacing/spare vdev above oldvd.
7689 	 */
7690 	if (!raidz && pvd->vdev_ops != pvops) {
7691 		pvd = vdev_add_parent(oldvd, pvops);
7692 		ASSERT(pvd->vdev_ops == pvops);
7693 		ASSERT(oldvd->vdev_parent == pvd);
7694 	}
7695 
7696 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
7697 
7698 	/*
7699 	 * Extract the new device from its root and add it to pvd.
7700 	 */
7701 	vdev_remove_child(newrootvd, newvd);
7702 	newvd->vdev_id = pvd->vdev_children;
7703 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
7704 	vdev_add_child(pvd, newvd);
7705 
7706 	/*
7707 	 * Reevaluate the parent vdev state.
7708 	 */
7709 	vdev_propagate_state(pvd);
7710 
7711 	tvd = newvd->vdev_top;
7712 	ASSERT(pvd->vdev_top == tvd);
7713 	ASSERT(tvd->vdev_parent == rvd);
7714 
7715 	vdev_config_dirty(tvd);
7716 
7717 	/*
7718 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
7719 	 * for any dmu_sync-ed blocks.  It will propagate upward when
7720 	 * spa_vdev_exit() calls vdev_dtl_reassess().
7721 	 */
7722 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
7723 
7724 	if (raidz) {
7725 		/*
7726 		 * Wait for the youngest allocations and frees to sync,
7727 		 * and then wait for the deferral of those frees to finish.
7728 		 */
7729 		spa_vdev_config_exit(spa, NULL,
7730 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
7731 
7732 		vdev_initialize_stop_all(tvd, VDEV_INITIALIZE_ACTIVE);
7733 		vdev_trim_stop_all(tvd, VDEV_TRIM_ACTIVE);
7734 		vdev_autotrim_stop_wait(tvd);
7735 
7736 		dtl_max_txg = spa_vdev_config_enter(spa);
7737 
7738 		tvd->vdev_rz_expanding = B_TRUE;
7739 
7740 		vdev_dirty_leaves(tvd, VDD_DTL, dtl_max_txg);
7741 		vdev_config_dirty(tvd);
7742 
7743 		dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool,
7744 		    dtl_max_txg);
7745 		dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_raidz_attach_sync,
7746 		    newvd, tx);
7747 		dmu_tx_commit(tx);
7748 	} else {
7749 		vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
7750 		    dtl_max_txg - TXG_INITIAL);
7751 
7752 		if (newvd->vdev_isspare) {
7753 			spa_spare_activate(newvd);
7754 			spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
7755 		}
7756 
7757 		newvd_isspare = newvd->vdev_isspare;
7758 
7759 		/*
7760 		 * Mark newvd's DTL dirty in this txg.
7761 		 */
7762 		vdev_dirty(tvd, VDD_DTL, newvd, txg);
7763 
7764 		/*
7765 		 * Schedule the resilver or rebuild to restart in the future.
7766 		 * We do this to ensure that dmu_sync-ed blocks have been
7767 		 * stitched into the respective datasets.
7768 		 */
7769 		if (rebuild) {
7770 			newvd->vdev_rebuild_txg = txg;
7771 
7772 			vdev_rebuild(tvd);
7773 		} else {
7774 			newvd->vdev_resilver_txg = txg;
7775 
7776 			if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
7777 			    spa_feature_is_enabled(spa,
7778 			    SPA_FEATURE_RESILVER_DEFER)) {
7779 				vdev_defer_resilver(newvd);
7780 			} else {
7781 				dsl_scan_restart_resilver(spa->spa_dsl_pool,
7782 				    dtl_max_txg);
7783 			}
7784 		}
7785 	}
7786 
7787 	if (spa->spa_bootfs)
7788 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7789 
7790 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7791 
7792 	/*
7793 	 * Commit the config
7794 	 */
7795 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7796 
7797 	spa_history_log_internal(spa, "vdev attach", NULL,
7798 	    "%s vdev=%s %s vdev=%s",
7799 	    replacing && newvd_isspare ? "spare in" :
7800 	    replacing ? "replace" : "attach", newvdpath,
7801 	    replacing ? "for" : "to", oldvdpath);
7802 
7803 	spa_strfree(oldvdpath);
7804 	spa_strfree(newvdpath);
7805 
7806 	return (0);
7807 }
7808 
7809 /*
7810  * Detach a device from a mirror or replacing vdev.
7811  *
7812  * If 'replace_done' is specified, only detach if the parent
7813  * is a replacing or a spare vdev.
7814  */
7815 int
7816 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7817 {
7818 	uint64_t txg;
7819 	int error;
7820 	vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7821 	vdev_t *vd, *pvd, *cvd, *tvd;
7822 	boolean_t unspare = B_FALSE;
7823 	uint64_t unspare_guid = 0;
7824 	char *vdpath;
7825 
7826 	ASSERT(spa_writeable(spa));
7827 
7828 	txg = spa_vdev_detach_enter(spa, guid);
7829 
7830 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7831 
7832 	/*
7833 	 * Besides being called directly from the userland through the
7834 	 * ioctl interface, spa_vdev_detach() can be potentially called
7835 	 * at the end of spa_vdev_resilver_done().
7836 	 *
7837 	 * In the regular case, when we have a checkpoint this shouldn't
7838 	 * happen as we never empty the DTLs of a vdev during the scrub
7839 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7840 	 * should never get here when we have a checkpoint.
7841 	 *
7842 	 * That said, even in a case when we checkpoint the pool exactly
7843 	 * as spa_vdev_resilver_done() calls this function everything
7844 	 * should be fine as the resilver will return right away.
7845 	 */
7846 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7847 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7848 		error = (spa_has_checkpoint(spa)) ?
7849 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7850 		return (spa_vdev_exit(spa, NULL, txg, error));
7851 	}
7852 
7853 	if (vd == NULL)
7854 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7855 
7856 	if (!vd->vdev_ops->vdev_op_leaf)
7857 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7858 
7859 	pvd = vd->vdev_parent;
7860 
7861 	/*
7862 	 * If the parent/child relationship is not as expected, don't do it.
7863 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7864 	 * vdev that's replacing B with C.  The user's intent in replacing
7865 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
7866 	 * the replace by detaching C, the expected behavior is to end up
7867 	 * M(A,B).  But suppose that right after deciding to detach C,
7868 	 * the replacement of B completes.  We would have M(A,C), and then
7869 	 * ask to detach C, which would leave us with just A -- not what
7870 	 * the user wanted.  To prevent this, we make sure that the
7871 	 * parent/child relationship hasn't changed -- in this example,
7872 	 * that C's parent is still the replacing vdev R.
7873 	 */
7874 	if (pvd->vdev_guid != pguid && pguid != 0)
7875 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7876 
7877 	/*
7878 	 * Only 'replacing' or 'spare' vdevs can be replaced.
7879 	 */
7880 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7881 	    pvd->vdev_ops != &vdev_spare_ops)
7882 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7883 
7884 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7885 	    spa_version(spa) >= SPA_VERSION_SPARES);
7886 
7887 	/*
7888 	 * Only mirror, replacing, and spare vdevs support detach.
7889 	 */
7890 	if (pvd->vdev_ops != &vdev_replacing_ops &&
7891 	    pvd->vdev_ops != &vdev_mirror_ops &&
7892 	    pvd->vdev_ops != &vdev_spare_ops)
7893 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7894 
7895 	/*
7896 	 * If this device has the only valid copy of some data,
7897 	 * we cannot safely detach it.
7898 	 */
7899 	if (vdev_dtl_required(vd))
7900 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7901 
7902 	ASSERT(pvd->vdev_children >= 2);
7903 
7904 	/*
7905 	 * If we are detaching the second disk from a replacing vdev, then
7906 	 * check to see if we changed the original vdev's path to have "/old"
7907 	 * at the end in spa_vdev_attach().  If so, undo that change now.
7908 	 */
7909 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7910 	    vd->vdev_path != NULL) {
7911 		size_t len = strlen(vd->vdev_path);
7912 
7913 		for (int c = 0; c < pvd->vdev_children; c++) {
7914 			cvd = pvd->vdev_child[c];
7915 
7916 			if (cvd == vd || cvd->vdev_path == NULL)
7917 				continue;
7918 
7919 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7920 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
7921 				spa_strfree(cvd->vdev_path);
7922 				cvd->vdev_path = spa_strdup(vd->vdev_path);
7923 				break;
7924 			}
7925 		}
7926 	}
7927 
7928 	/*
7929 	 * If we are detaching the original disk from a normal spare, then it
7930 	 * implies that the spare should become a real disk, and be removed
7931 	 * from the active spare list for the pool.  dRAID spares on the
7932 	 * other hand are coupled to the pool and thus should never be removed
7933 	 * from the spares list.
7934 	 */
7935 	if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7936 		vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7937 
7938 		if (last_cvd->vdev_isspare &&
7939 		    last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7940 			unspare = B_TRUE;
7941 		}
7942 	}
7943 
7944 	/*
7945 	 * Erase the disk labels so the disk can be used for other things.
7946 	 * This must be done after all other error cases are handled,
7947 	 * but before we disembowel vd (so we can still do I/O to it).
7948 	 * But if we can't do it, don't treat the error as fatal --
7949 	 * it may be that the unwritability of the disk is the reason
7950 	 * it's being detached!
7951 	 */
7952 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7953 
7954 	/*
7955 	 * Remove vd from its parent and compact the parent's children.
7956 	 */
7957 	vdev_remove_child(pvd, vd);
7958 	vdev_compact_children(pvd);
7959 
7960 	/*
7961 	 * Remember one of the remaining children so we can get tvd below.
7962 	 */
7963 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
7964 
7965 	/*
7966 	 * If we need to remove the remaining child from the list of hot spares,
7967 	 * do it now, marking the vdev as no longer a spare in the process.
7968 	 * We must do this before vdev_remove_parent(), because that can
7969 	 * change the GUID if it creates a new toplevel GUID.  For a similar
7970 	 * reason, we must remove the spare now, in the same txg as the detach;
7971 	 * otherwise someone could attach a new sibling, change the GUID, and
7972 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7973 	 */
7974 	if (unspare) {
7975 		ASSERT(cvd->vdev_isspare);
7976 		spa_spare_remove(cvd);
7977 		unspare_guid = cvd->vdev_guid;
7978 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7979 		cvd->vdev_unspare = B_TRUE;
7980 	}
7981 
7982 	/*
7983 	 * If the parent mirror/replacing vdev only has one child,
7984 	 * the parent is no longer needed.  Remove it from the tree.
7985 	 */
7986 	if (pvd->vdev_children == 1) {
7987 		if (pvd->vdev_ops == &vdev_spare_ops)
7988 			cvd->vdev_unspare = B_FALSE;
7989 		vdev_remove_parent(cvd);
7990 	}
7991 
7992 	/*
7993 	 * We don't set tvd until now because the parent we just removed
7994 	 * may have been the previous top-level vdev.
7995 	 */
7996 	tvd = cvd->vdev_top;
7997 	ASSERT(tvd->vdev_parent == rvd);
7998 
7999 	/*
8000 	 * Reevaluate the parent vdev state.
8001 	 */
8002 	vdev_propagate_state(cvd);
8003 
8004 	/*
8005 	 * If the 'autoexpand' property is set on the pool then automatically
8006 	 * try to expand the size of the pool. For example if the device we
8007 	 * just detached was smaller than the others, it may be possible to
8008 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
8009 	 * first so that we can obtain the updated sizes of the leaf vdevs.
8010 	 */
8011 	if (spa->spa_autoexpand) {
8012 		vdev_reopen(tvd);
8013 		vdev_expand(tvd, txg);
8014 	}
8015 
8016 	vdev_config_dirty(tvd);
8017 
8018 	/*
8019 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
8020 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
8021 	 * But first make sure we're not on any *other* txg's DTL list, to
8022 	 * prevent vd from being accessed after it's freed.
8023 	 */
8024 	vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
8025 	for (int t = 0; t < TXG_SIZE; t++)
8026 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
8027 	vd->vdev_detached = B_TRUE;
8028 	vdev_dirty(tvd, VDD_DTL, vd, txg);
8029 
8030 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
8031 	spa_notify_waiters(spa);
8032 
8033 	/* hang on to the spa before we release the lock */
8034 	spa_open_ref(spa, FTAG);
8035 
8036 	error = spa_vdev_exit(spa, vd, txg, 0);
8037 
8038 	spa_history_log_internal(spa, "detach", NULL,
8039 	    "vdev=%s", vdpath);
8040 	spa_strfree(vdpath);
8041 
8042 	/*
8043 	 * If this was the removal of the original device in a hot spare vdev,
8044 	 * then we want to go through and remove the device from the hot spare
8045 	 * list of every other pool.
8046 	 */
8047 	if (unspare) {
8048 		spa_t *altspa = NULL;
8049 
8050 		mutex_enter(&spa_namespace_lock);
8051 		while ((altspa = spa_next(altspa)) != NULL) {
8052 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
8053 			    altspa == spa)
8054 				continue;
8055 
8056 			spa_open_ref(altspa, FTAG);
8057 			mutex_exit(&spa_namespace_lock);
8058 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
8059 			mutex_enter(&spa_namespace_lock);
8060 			spa_close(altspa, FTAG);
8061 		}
8062 		mutex_exit(&spa_namespace_lock);
8063 
8064 		/* search the rest of the vdevs for spares to remove */
8065 		spa_vdev_resilver_done(spa);
8066 	}
8067 
8068 	/* all done with the spa; OK to release */
8069 	mutex_enter(&spa_namespace_lock);
8070 	spa_close(spa, FTAG);
8071 	mutex_exit(&spa_namespace_lock);
8072 
8073 	return (error);
8074 }
8075 
8076 static int
8077 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8078     list_t *vd_list)
8079 {
8080 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8081 
8082 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8083 
8084 	/* Look up vdev and ensure it's a leaf. */
8085 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8086 	if (vd == NULL || vd->vdev_detached) {
8087 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8088 		return (SET_ERROR(ENODEV));
8089 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8090 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8091 		return (SET_ERROR(EINVAL));
8092 	} else if (!vdev_writeable(vd)) {
8093 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8094 		return (SET_ERROR(EROFS));
8095 	}
8096 	mutex_enter(&vd->vdev_initialize_lock);
8097 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8098 
8099 	/*
8100 	 * When we activate an initialize action we check to see
8101 	 * if the vdev_initialize_thread is NULL. We do this instead
8102 	 * of using the vdev_initialize_state since there might be
8103 	 * a previous initialization process which has completed but
8104 	 * the thread is not exited.
8105 	 */
8106 	if (cmd_type == POOL_INITIALIZE_START &&
8107 	    (vd->vdev_initialize_thread != NULL ||
8108 	    vd->vdev_top->vdev_removing || vd->vdev_top->vdev_rz_expanding)) {
8109 		mutex_exit(&vd->vdev_initialize_lock);
8110 		return (SET_ERROR(EBUSY));
8111 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
8112 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
8113 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
8114 		mutex_exit(&vd->vdev_initialize_lock);
8115 		return (SET_ERROR(ESRCH));
8116 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
8117 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
8118 		mutex_exit(&vd->vdev_initialize_lock);
8119 		return (SET_ERROR(ESRCH));
8120 	} else if (cmd_type == POOL_INITIALIZE_UNINIT &&
8121 	    vd->vdev_initialize_thread != NULL) {
8122 		mutex_exit(&vd->vdev_initialize_lock);
8123 		return (SET_ERROR(EBUSY));
8124 	}
8125 
8126 	switch (cmd_type) {
8127 	case POOL_INITIALIZE_START:
8128 		vdev_initialize(vd);
8129 		break;
8130 	case POOL_INITIALIZE_CANCEL:
8131 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
8132 		break;
8133 	case POOL_INITIALIZE_SUSPEND:
8134 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
8135 		break;
8136 	case POOL_INITIALIZE_UNINIT:
8137 		vdev_uninitialize(vd);
8138 		break;
8139 	default:
8140 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8141 	}
8142 	mutex_exit(&vd->vdev_initialize_lock);
8143 
8144 	return (0);
8145 }
8146 
8147 int
8148 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
8149     nvlist_t *vdev_errlist)
8150 {
8151 	int total_errors = 0;
8152 	list_t vd_list;
8153 
8154 	list_create(&vd_list, sizeof (vdev_t),
8155 	    offsetof(vdev_t, vdev_initialize_node));
8156 
8157 	/*
8158 	 * We hold the namespace lock through the whole function
8159 	 * to prevent any changes to the pool while we're starting or
8160 	 * stopping initialization. The config and state locks are held so that
8161 	 * we can properly assess the vdev state before we commit to
8162 	 * the initializing operation.
8163 	 */
8164 	mutex_enter(&spa_namespace_lock);
8165 
8166 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8167 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8168 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
8169 
8170 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
8171 		    &vd_list);
8172 		if (error != 0) {
8173 			char guid_as_str[MAXNAMELEN];
8174 
8175 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
8176 			    "%llu", (unsigned long long)vdev_guid);
8177 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8178 			total_errors++;
8179 		}
8180 	}
8181 
8182 	/* Wait for all initialize threads to stop. */
8183 	vdev_initialize_stop_wait(spa, &vd_list);
8184 
8185 	/* Sync out the initializing state */
8186 	txg_wait_synced(spa->spa_dsl_pool, 0);
8187 	mutex_exit(&spa_namespace_lock);
8188 
8189 	list_destroy(&vd_list);
8190 
8191 	return (total_errors);
8192 }
8193 
8194 static int
8195 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8196     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
8197 {
8198 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8199 
8200 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8201 
8202 	/* Look up vdev and ensure it's a leaf. */
8203 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8204 	if (vd == NULL || vd->vdev_detached) {
8205 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8206 		return (SET_ERROR(ENODEV));
8207 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8208 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8209 		return (SET_ERROR(EINVAL));
8210 	} else if (!vdev_writeable(vd)) {
8211 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8212 		return (SET_ERROR(EROFS));
8213 	} else if (!vd->vdev_has_trim) {
8214 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8215 		return (SET_ERROR(EOPNOTSUPP));
8216 	} else if (secure && !vd->vdev_has_securetrim) {
8217 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8218 		return (SET_ERROR(EOPNOTSUPP));
8219 	}
8220 	mutex_enter(&vd->vdev_trim_lock);
8221 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8222 
8223 	/*
8224 	 * When we activate a TRIM action we check to see if the
8225 	 * vdev_trim_thread is NULL. We do this instead of using the
8226 	 * vdev_trim_state since there might be a previous TRIM process
8227 	 * which has completed but the thread is not exited.
8228 	 */
8229 	if (cmd_type == POOL_TRIM_START &&
8230 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing ||
8231 	    vd->vdev_top->vdev_rz_expanding)) {
8232 		mutex_exit(&vd->vdev_trim_lock);
8233 		return (SET_ERROR(EBUSY));
8234 	} else if (cmd_type == POOL_TRIM_CANCEL &&
8235 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
8236 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
8237 		mutex_exit(&vd->vdev_trim_lock);
8238 		return (SET_ERROR(ESRCH));
8239 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
8240 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
8241 		mutex_exit(&vd->vdev_trim_lock);
8242 		return (SET_ERROR(ESRCH));
8243 	}
8244 
8245 	switch (cmd_type) {
8246 	case POOL_TRIM_START:
8247 		vdev_trim(vd, rate, partial, secure);
8248 		break;
8249 	case POOL_TRIM_CANCEL:
8250 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
8251 		break;
8252 	case POOL_TRIM_SUSPEND:
8253 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
8254 		break;
8255 	default:
8256 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8257 	}
8258 	mutex_exit(&vd->vdev_trim_lock);
8259 
8260 	return (0);
8261 }
8262 
8263 /*
8264  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
8265  * TRIM threads for each child vdev.  These threads pass over all of the free
8266  * space in the vdev's metaslabs and issues TRIM commands for that space.
8267  */
8268 int
8269 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
8270     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
8271 {
8272 	int total_errors = 0;
8273 	list_t vd_list;
8274 
8275 	list_create(&vd_list, sizeof (vdev_t),
8276 	    offsetof(vdev_t, vdev_trim_node));
8277 
8278 	/*
8279 	 * We hold the namespace lock through the whole function
8280 	 * to prevent any changes to the pool while we're starting or
8281 	 * stopping TRIM. The config and state locks are held so that
8282 	 * we can properly assess the vdev state before we commit to
8283 	 * the TRIM operation.
8284 	 */
8285 	mutex_enter(&spa_namespace_lock);
8286 
8287 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8288 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8289 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
8290 
8291 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
8292 		    rate, partial, secure, &vd_list);
8293 		if (error != 0) {
8294 			char guid_as_str[MAXNAMELEN];
8295 
8296 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
8297 			    "%llu", (unsigned long long)vdev_guid);
8298 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8299 			total_errors++;
8300 		}
8301 	}
8302 
8303 	/* Wait for all TRIM threads to stop. */
8304 	vdev_trim_stop_wait(spa, &vd_list);
8305 
8306 	/* Sync out the TRIM state */
8307 	txg_wait_synced(spa->spa_dsl_pool, 0);
8308 	mutex_exit(&spa_namespace_lock);
8309 
8310 	list_destroy(&vd_list);
8311 
8312 	return (total_errors);
8313 }
8314 
8315 /*
8316  * Split a set of devices from their mirrors, and create a new pool from them.
8317  */
8318 int
8319 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
8320     nvlist_t *props, boolean_t exp)
8321 {
8322 	int error = 0;
8323 	uint64_t txg, *glist;
8324 	spa_t *newspa;
8325 	uint_t c, children, lastlog;
8326 	nvlist_t **child, *nvl, *tmp;
8327 	dmu_tx_t *tx;
8328 	const char *altroot = NULL;
8329 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
8330 	boolean_t activate_slog;
8331 
8332 	ASSERT(spa_writeable(spa));
8333 
8334 	txg = spa_vdev_enter(spa);
8335 
8336 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8337 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
8338 		error = (spa_has_checkpoint(spa)) ?
8339 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
8340 		return (spa_vdev_exit(spa, NULL, txg, error));
8341 	}
8342 
8343 	/* clear the log and flush everything up to now */
8344 	activate_slog = spa_passivate_log(spa);
8345 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8346 	error = spa_reset_logs(spa);
8347 	txg = spa_vdev_config_enter(spa);
8348 
8349 	if (activate_slog)
8350 		spa_activate_log(spa);
8351 
8352 	if (error != 0)
8353 		return (spa_vdev_exit(spa, NULL, txg, error));
8354 
8355 	/* check new spa name before going any further */
8356 	if (spa_lookup(newname) != NULL)
8357 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
8358 
8359 	/*
8360 	 * scan through all the children to ensure they're all mirrors
8361 	 */
8362 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
8363 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
8364 	    &children) != 0)
8365 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8366 
8367 	/* first, check to ensure we've got the right child count */
8368 	rvd = spa->spa_root_vdev;
8369 	lastlog = 0;
8370 	for (c = 0; c < rvd->vdev_children; c++) {
8371 		vdev_t *vd = rvd->vdev_child[c];
8372 
8373 		/* don't count the holes & logs as children */
8374 		if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
8375 		    !vdev_is_concrete(vd))) {
8376 			if (lastlog == 0)
8377 				lastlog = c;
8378 			continue;
8379 		}
8380 
8381 		lastlog = 0;
8382 	}
8383 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
8384 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8385 
8386 	/* next, ensure no spare or cache devices are part of the split */
8387 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
8388 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
8389 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8390 
8391 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
8392 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
8393 
8394 	/* then, loop over each vdev and validate it */
8395 	for (c = 0; c < children; c++) {
8396 		uint64_t is_hole = 0;
8397 
8398 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
8399 		    &is_hole);
8400 
8401 		if (is_hole != 0) {
8402 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
8403 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
8404 				continue;
8405 			} else {
8406 				error = SET_ERROR(EINVAL);
8407 				break;
8408 			}
8409 		}
8410 
8411 		/* deal with indirect vdevs */
8412 		if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
8413 		    &vdev_indirect_ops)
8414 			continue;
8415 
8416 		/* which disk is going to be split? */
8417 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
8418 		    &glist[c]) != 0) {
8419 			error = SET_ERROR(EINVAL);
8420 			break;
8421 		}
8422 
8423 		/* look it up in the spa */
8424 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
8425 		if (vml[c] == NULL) {
8426 			error = SET_ERROR(ENODEV);
8427 			break;
8428 		}
8429 
8430 		/* make sure there's nothing stopping the split */
8431 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
8432 		    vml[c]->vdev_islog ||
8433 		    !vdev_is_concrete(vml[c]) ||
8434 		    vml[c]->vdev_isspare ||
8435 		    vml[c]->vdev_isl2cache ||
8436 		    !vdev_writeable(vml[c]) ||
8437 		    vml[c]->vdev_children != 0 ||
8438 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
8439 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
8440 			error = SET_ERROR(EINVAL);
8441 			break;
8442 		}
8443 
8444 		if (vdev_dtl_required(vml[c]) ||
8445 		    vdev_resilver_needed(vml[c], NULL, NULL)) {
8446 			error = SET_ERROR(EBUSY);
8447 			break;
8448 		}
8449 
8450 		/* we need certain info from the top level */
8451 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
8452 		    vml[c]->vdev_top->vdev_ms_array);
8453 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
8454 		    vml[c]->vdev_top->vdev_ms_shift);
8455 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
8456 		    vml[c]->vdev_top->vdev_asize);
8457 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
8458 		    vml[c]->vdev_top->vdev_ashift);
8459 
8460 		/* transfer per-vdev ZAPs */
8461 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
8462 		VERIFY0(nvlist_add_uint64(child[c],
8463 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
8464 
8465 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
8466 		VERIFY0(nvlist_add_uint64(child[c],
8467 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
8468 		    vml[c]->vdev_parent->vdev_top_zap));
8469 	}
8470 
8471 	if (error != 0) {
8472 		kmem_free(vml, children * sizeof (vdev_t *));
8473 		kmem_free(glist, children * sizeof (uint64_t));
8474 		return (spa_vdev_exit(spa, NULL, txg, error));
8475 	}
8476 
8477 	/* stop writers from using the disks */
8478 	for (c = 0; c < children; c++) {
8479 		if (vml[c] != NULL)
8480 			vml[c]->vdev_offline = B_TRUE;
8481 	}
8482 	vdev_reopen(spa->spa_root_vdev);
8483 
8484 	/*
8485 	 * Temporarily record the splitting vdevs in the spa config.  This
8486 	 * will disappear once the config is regenerated.
8487 	 */
8488 	nvl = fnvlist_alloc();
8489 	fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
8490 	kmem_free(glist, children * sizeof (uint64_t));
8491 
8492 	mutex_enter(&spa->spa_props_lock);
8493 	fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
8494 	mutex_exit(&spa->spa_props_lock);
8495 	spa->spa_config_splitting = nvl;
8496 	vdev_config_dirty(spa->spa_root_vdev);
8497 
8498 	/* configure and create the new pool */
8499 	fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
8500 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
8501 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
8502 	fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
8503 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
8504 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
8505 	    spa_generate_guid(NULL));
8506 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
8507 	(void) nvlist_lookup_string(props,
8508 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
8509 
8510 	/* add the new pool to the namespace */
8511 	newspa = spa_add(newname, config, altroot);
8512 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
8513 	newspa->spa_config_txg = spa->spa_config_txg;
8514 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
8515 
8516 	/* release the spa config lock, retaining the namespace lock */
8517 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8518 
8519 	if (zio_injection_enabled)
8520 		zio_handle_panic_injection(spa, FTAG, 1);
8521 
8522 	spa_activate(newspa, spa_mode_global);
8523 	spa_async_suspend(newspa);
8524 
8525 	/*
8526 	 * Temporarily stop the initializing and TRIM activity.  We set the
8527 	 * state to ACTIVE so that we know to resume initializing or TRIM
8528 	 * once the split has completed.
8529 	 */
8530 	list_t vd_initialize_list;
8531 	list_create(&vd_initialize_list, sizeof (vdev_t),
8532 	    offsetof(vdev_t, vdev_initialize_node));
8533 
8534 	list_t vd_trim_list;
8535 	list_create(&vd_trim_list, sizeof (vdev_t),
8536 	    offsetof(vdev_t, vdev_trim_node));
8537 
8538 	for (c = 0; c < children; c++) {
8539 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8540 			mutex_enter(&vml[c]->vdev_initialize_lock);
8541 			vdev_initialize_stop(vml[c],
8542 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
8543 			mutex_exit(&vml[c]->vdev_initialize_lock);
8544 
8545 			mutex_enter(&vml[c]->vdev_trim_lock);
8546 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
8547 			mutex_exit(&vml[c]->vdev_trim_lock);
8548 		}
8549 	}
8550 
8551 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
8552 	vdev_trim_stop_wait(spa, &vd_trim_list);
8553 
8554 	list_destroy(&vd_initialize_list);
8555 	list_destroy(&vd_trim_list);
8556 
8557 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
8558 	newspa->spa_is_splitting = B_TRUE;
8559 
8560 	/* create the new pool from the disks of the original pool */
8561 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
8562 	if (error)
8563 		goto out;
8564 
8565 	/* if that worked, generate a real config for the new pool */
8566 	if (newspa->spa_root_vdev != NULL) {
8567 		newspa->spa_config_splitting = fnvlist_alloc();
8568 		fnvlist_add_uint64(newspa->spa_config_splitting,
8569 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
8570 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
8571 		    B_TRUE));
8572 	}
8573 
8574 	/* set the props */
8575 	if (props != NULL) {
8576 		spa_configfile_set(newspa, props, B_FALSE);
8577 		error = spa_prop_set(newspa, props);
8578 		if (error)
8579 			goto out;
8580 	}
8581 
8582 	/* flush everything */
8583 	txg = spa_vdev_config_enter(newspa);
8584 	vdev_config_dirty(newspa->spa_root_vdev);
8585 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
8586 
8587 	if (zio_injection_enabled)
8588 		zio_handle_panic_injection(spa, FTAG, 2);
8589 
8590 	spa_async_resume(newspa);
8591 
8592 	/* finally, update the original pool's config */
8593 	txg = spa_vdev_config_enter(spa);
8594 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
8595 	error = dmu_tx_assign(tx, TXG_WAIT);
8596 	if (error != 0)
8597 		dmu_tx_abort(tx);
8598 	for (c = 0; c < children; c++) {
8599 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8600 			vdev_t *tvd = vml[c]->vdev_top;
8601 
8602 			/*
8603 			 * Need to be sure the detachable VDEV is not
8604 			 * on any *other* txg's DTL list to prevent it
8605 			 * from being accessed after it's freed.
8606 			 */
8607 			for (int t = 0; t < TXG_SIZE; t++) {
8608 				(void) txg_list_remove_this(
8609 				    &tvd->vdev_dtl_list, vml[c], t);
8610 			}
8611 
8612 			vdev_split(vml[c]);
8613 			if (error == 0)
8614 				spa_history_log_internal(spa, "detach", tx,
8615 				    "vdev=%s", vml[c]->vdev_path);
8616 
8617 			vdev_free(vml[c]);
8618 		}
8619 	}
8620 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
8621 	vdev_config_dirty(spa->spa_root_vdev);
8622 	spa->spa_config_splitting = NULL;
8623 	nvlist_free(nvl);
8624 	if (error == 0)
8625 		dmu_tx_commit(tx);
8626 	(void) spa_vdev_exit(spa, NULL, txg, 0);
8627 
8628 	if (zio_injection_enabled)
8629 		zio_handle_panic_injection(spa, FTAG, 3);
8630 
8631 	/* split is complete; log a history record */
8632 	spa_history_log_internal(newspa, "split", NULL,
8633 	    "from pool %s", spa_name(spa));
8634 
8635 	newspa->spa_is_splitting = B_FALSE;
8636 	kmem_free(vml, children * sizeof (vdev_t *));
8637 
8638 	/* if we're not going to mount the filesystems in userland, export */
8639 	if (exp)
8640 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
8641 		    B_FALSE, B_FALSE);
8642 
8643 	return (error);
8644 
8645 out:
8646 	spa_unload(newspa);
8647 	spa_deactivate(newspa);
8648 	spa_remove(newspa);
8649 
8650 	txg = spa_vdev_config_enter(spa);
8651 
8652 	/* re-online all offlined disks */
8653 	for (c = 0; c < children; c++) {
8654 		if (vml[c] != NULL)
8655 			vml[c]->vdev_offline = B_FALSE;
8656 	}
8657 
8658 	/* restart initializing or trimming disks as necessary */
8659 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
8660 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
8661 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
8662 
8663 	vdev_reopen(spa->spa_root_vdev);
8664 
8665 	nvlist_free(spa->spa_config_splitting);
8666 	spa->spa_config_splitting = NULL;
8667 	(void) spa_vdev_exit(spa, NULL, txg, error);
8668 
8669 	kmem_free(vml, children * sizeof (vdev_t *));
8670 	return (error);
8671 }
8672 
8673 /*
8674  * Find any device that's done replacing, or a vdev marked 'unspare' that's
8675  * currently spared, so we can detach it.
8676  */
8677 static vdev_t *
8678 spa_vdev_resilver_done_hunt(vdev_t *vd)
8679 {
8680 	vdev_t *newvd, *oldvd;
8681 
8682 	for (int c = 0; c < vd->vdev_children; c++) {
8683 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
8684 		if (oldvd != NULL)
8685 			return (oldvd);
8686 	}
8687 
8688 	/*
8689 	 * Check for a completed replacement.  We always consider the first
8690 	 * vdev in the list to be the oldest vdev, and the last one to be
8691 	 * the newest (see spa_vdev_attach() for how that works).  In
8692 	 * the case where the newest vdev is faulted, we will not automatically
8693 	 * remove it after a resilver completes.  This is OK as it will require
8694 	 * user intervention to determine which disk the admin wishes to keep.
8695 	 */
8696 	if (vd->vdev_ops == &vdev_replacing_ops) {
8697 		ASSERT(vd->vdev_children > 1);
8698 
8699 		newvd = vd->vdev_child[vd->vdev_children - 1];
8700 		oldvd = vd->vdev_child[0];
8701 
8702 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
8703 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8704 		    !vdev_dtl_required(oldvd))
8705 			return (oldvd);
8706 	}
8707 
8708 	/*
8709 	 * Check for a completed resilver with the 'unspare' flag set.
8710 	 * Also potentially update faulted state.
8711 	 */
8712 	if (vd->vdev_ops == &vdev_spare_ops) {
8713 		vdev_t *first = vd->vdev_child[0];
8714 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
8715 
8716 		if (last->vdev_unspare) {
8717 			oldvd = first;
8718 			newvd = last;
8719 		} else if (first->vdev_unspare) {
8720 			oldvd = last;
8721 			newvd = first;
8722 		} else {
8723 			oldvd = NULL;
8724 		}
8725 
8726 		if (oldvd != NULL &&
8727 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
8728 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8729 		    !vdev_dtl_required(oldvd))
8730 			return (oldvd);
8731 
8732 		vdev_propagate_state(vd);
8733 
8734 		/*
8735 		 * If there are more than two spares attached to a disk,
8736 		 * and those spares are not required, then we want to
8737 		 * attempt to free them up now so that they can be used
8738 		 * by other pools.  Once we're back down to a single
8739 		 * disk+spare, we stop removing them.
8740 		 */
8741 		if (vd->vdev_children > 2) {
8742 			newvd = vd->vdev_child[1];
8743 
8744 			if (newvd->vdev_isspare && last->vdev_isspare &&
8745 			    vdev_dtl_empty(last, DTL_MISSING) &&
8746 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
8747 			    !vdev_dtl_required(newvd))
8748 				return (newvd);
8749 		}
8750 	}
8751 
8752 	return (NULL);
8753 }
8754 
8755 static void
8756 spa_vdev_resilver_done(spa_t *spa)
8757 {
8758 	vdev_t *vd, *pvd, *ppvd;
8759 	uint64_t guid, sguid, pguid, ppguid;
8760 
8761 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8762 
8763 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
8764 		pvd = vd->vdev_parent;
8765 		ppvd = pvd->vdev_parent;
8766 		guid = vd->vdev_guid;
8767 		pguid = pvd->vdev_guid;
8768 		ppguid = ppvd->vdev_guid;
8769 		sguid = 0;
8770 		/*
8771 		 * If we have just finished replacing a hot spared device, then
8772 		 * we need to detach the parent's first child (the original hot
8773 		 * spare) as well.
8774 		 */
8775 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
8776 		    ppvd->vdev_children == 2) {
8777 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
8778 			sguid = ppvd->vdev_child[1]->vdev_guid;
8779 		}
8780 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
8781 
8782 		spa_config_exit(spa, SCL_ALL, FTAG);
8783 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
8784 			return;
8785 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
8786 			return;
8787 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8788 	}
8789 
8790 	spa_config_exit(spa, SCL_ALL, FTAG);
8791 
8792 	/*
8793 	 * If a detach was not performed above replace waiters will not have
8794 	 * been notified.  In which case we must do so now.
8795 	 */
8796 	spa_notify_waiters(spa);
8797 }
8798 
8799 /*
8800  * Update the stored path or FRU for this vdev.
8801  */
8802 static int
8803 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8804     boolean_t ispath)
8805 {
8806 	vdev_t *vd;
8807 	boolean_t sync = B_FALSE;
8808 
8809 	ASSERT(spa_writeable(spa));
8810 
8811 	spa_vdev_state_enter(spa, SCL_ALL);
8812 
8813 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8814 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
8815 
8816 	if (!vd->vdev_ops->vdev_op_leaf)
8817 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8818 
8819 	if (ispath) {
8820 		if (strcmp(value, vd->vdev_path) != 0) {
8821 			spa_strfree(vd->vdev_path);
8822 			vd->vdev_path = spa_strdup(value);
8823 			sync = B_TRUE;
8824 		}
8825 	} else {
8826 		if (vd->vdev_fru == NULL) {
8827 			vd->vdev_fru = spa_strdup(value);
8828 			sync = B_TRUE;
8829 		} else if (strcmp(value, vd->vdev_fru) != 0) {
8830 			spa_strfree(vd->vdev_fru);
8831 			vd->vdev_fru = spa_strdup(value);
8832 			sync = B_TRUE;
8833 		}
8834 	}
8835 
8836 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8837 }
8838 
8839 int
8840 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8841 {
8842 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8843 }
8844 
8845 int
8846 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8847 {
8848 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8849 }
8850 
8851 /*
8852  * ==========================================================================
8853  * SPA Scanning
8854  * ==========================================================================
8855  */
8856 int
8857 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8858 {
8859 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8860 
8861 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8862 		return (SET_ERROR(EBUSY));
8863 
8864 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8865 }
8866 
8867 int
8868 spa_scan_stop(spa_t *spa)
8869 {
8870 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8871 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8872 		return (SET_ERROR(EBUSY));
8873 
8874 	return (dsl_scan_cancel(spa->spa_dsl_pool));
8875 }
8876 
8877 int
8878 spa_scan(spa_t *spa, pool_scan_func_t func)
8879 {
8880 	return (spa_scan_range(spa, func, 0, 0));
8881 }
8882 
8883 int
8884 spa_scan_range(spa_t *spa, pool_scan_func_t func, uint64_t txgstart,
8885     uint64_t txgend)
8886 {
8887 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8888 
8889 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8890 		return (SET_ERROR(ENOTSUP));
8891 
8892 	if (func == POOL_SCAN_RESILVER &&
8893 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8894 		return (SET_ERROR(ENOTSUP));
8895 
8896 	if (func != POOL_SCAN_SCRUB && (txgstart != 0 || txgend != 0))
8897 		return (SET_ERROR(ENOTSUP));
8898 
8899 	/*
8900 	 * If a resilver was requested, but there is no DTL on a
8901 	 * writeable leaf device, we have nothing to do.
8902 	 */
8903 	if (func == POOL_SCAN_RESILVER &&
8904 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8905 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8906 		return (0);
8907 	}
8908 
8909 	if (func == POOL_SCAN_ERRORSCRUB &&
8910 	    !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG))
8911 		return (SET_ERROR(ENOTSUP));
8912 
8913 	return (dsl_scan(spa->spa_dsl_pool, func, txgstart, txgend));
8914 }
8915 
8916 /*
8917  * ==========================================================================
8918  * SPA async task processing
8919  * ==========================================================================
8920  */
8921 
8922 static void
8923 spa_async_remove(spa_t *spa, vdev_t *vd)
8924 {
8925 	if (vd->vdev_remove_wanted) {
8926 		vd->vdev_remove_wanted = B_FALSE;
8927 		vd->vdev_delayed_close = B_FALSE;
8928 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8929 
8930 		/*
8931 		 * We want to clear the stats, but we don't want to do a full
8932 		 * vdev_clear() as that will cause us to throw away
8933 		 * degraded/faulted state as well as attempt to reopen the
8934 		 * device, all of which is a waste.
8935 		 */
8936 		vd->vdev_stat.vs_read_errors = 0;
8937 		vd->vdev_stat.vs_write_errors = 0;
8938 		vd->vdev_stat.vs_checksum_errors = 0;
8939 
8940 		vdev_state_dirty(vd->vdev_top);
8941 
8942 		/* Tell userspace that the vdev is gone. */
8943 		zfs_post_remove(spa, vd);
8944 	}
8945 
8946 	for (int c = 0; c < vd->vdev_children; c++)
8947 		spa_async_remove(spa, vd->vdev_child[c]);
8948 }
8949 
8950 static void
8951 spa_async_fault_vdev(vdev_t *vd, boolean_t *suspend)
8952 {
8953 	if (vd->vdev_fault_wanted) {
8954 		vdev_state_t newstate = VDEV_STATE_FAULTED;
8955 		vd->vdev_fault_wanted = B_FALSE;
8956 
8957 		/*
8958 		 * If this device has the only valid copy of the data, then
8959 		 * back off and simply mark the vdev as degraded instead.
8960 		 */
8961 		if (!vd->vdev_top->vdev_islog && vd->vdev_aux == NULL &&
8962 		    vdev_dtl_required(vd)) {
8963 			newstate = VDEV_STATE_DEGRADED;
8964 			/* A required disk is missing so suspend the pool */
8965 			*suspend = B_TRUE;
8966 		}
8967 		vdev_set_state(vd, B_TRUE, newstate, VDEV_AUX_ERR_EXCEEDED);
8968 	}
8969 	for (int c = 0; c < vd->vdev_children; c++)
8970 		spa_async_fault_vdev(vd->vdev_child[c], suspend);
8971 }
8972 
8973 static void
8974 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8975 {
8976 	if (!spa->spa_autoexpand)
8977 		return;
8978 
8979 	for (int c = 0; c < vd->vdev_children; c++) {
8980 		vdev_t *cvd = vd->vdev_child[c];
8981 		spa_async_autoexpand(spa, cvd);
8982 	}
8983 
8984 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8985 		return;
8986 
8987 	spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8988 }
8989 
8990 static __attribute__((noreturn)) void
8991 spa_async_thread(void *arg)
8992 {
8993 	spa_t *spa = (spa_t *)arg;
8994 	dsl_pool_t *dp = spa->spa_dsl_pool;
8995 	int tasks;
8996 
8997 	ASSERT(spa->spa_sync_on);
8998 
8999 	mutex_enter(&spa->spa_async_lock);
9000 	tasks = spa->spa_async_tasks;
9001 	spa->spa_async_tasks = 0;
9002 	mutex_exit(&spa->spa_async_lock);
9003 
9004 	/*
9005 	 * See if the config needs to be updated.
9006 	 */
9007 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
9008 		uint64_t old_space, new_space;
9009 
9010 		mutex_enter(&spa_namespace_lock);
9011 		old_space = metaslab_class_get_space(spa_normal_class(spa));
9012 		old_space += metaslab_class_get_space(spa_special_class(spa));
9013 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
9014 		old_space += metaslab_class_get_space(
9015 		    spa_embedded_log_class(spa));
9016 
9017 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
9018 
9019 		new_space = metaslab_class_get_space(spa_normal_class(spa));
9020 		new_space += metaslab_class_get_space(spa_special_class(spa));
9021 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
9022 		new_space += metaslab_class_get_space(
9023 		    spa_embedded_log_class(spa));
9024 		mutex_exit(&spa_namespace_lock);
9025 
9026 		/*
9027 		 * If the pool grew as a result of the config update,
9028 		 * then log an internal history event.
9029 		 */
9030 		if (new_space != old_space) {
9031 			spa_history_log_internal(spa, "vdev online", NULL,
9032 			    "pool '%s' size: %llu(+%llu)",
9033 			    spa_name(spa), (u_longlong_t)new_space,
9034 			    (u_longlong_t)(new_space - old_space));
9035 		}
9036 	}
9037 
9038 	/*
9039 	 * See if any devices need to be marked REMOVED.
9040 	 */
9041 	if (tasks & SPA_ASYNC_REMOVE) {
9042 		spa_vdev_state_enter(spa, SCL_NONE);
9043 		spa_async_remove(spa, spa->spa_root_vdev);
9044 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
9045 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
9046 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
9047 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
9048 		(void) spa_vdev_state_exit(spa, NULL, 0);
9049 	}
9050 
9051 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
9052 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9053 		spa_async_autoexpand(spa, spa->spa_root_vdev);
9054 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9055 	}
9056 
9057 	/*
9058 	 * See if any devices need to be marked faulted.
9059 	 */
9060 	if (tasks & SPA_ASYNC_FAULT_VDEV) {
9061 		spa_vdev_state_enter(spa, SCL_NONE);
9062 		boolean_t suspend = B_FALSE;
9063 		spa_async_fault_vdev(spa->spa_root_vdev, &suspend);
9064 		(void) spa_vdev_state_exit(spa, NULL, 0);
9065 		if (suspend)
9066 			zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9067 	}
9068 
9069 	/*
9070 	 * If any devices are done replacing, detach them.
9071 	 */
9072 	if (tasks & SPA_ASYNC_RESILVER_DONE ||
9073 	    tasks & SPA_ASYNC_REBUILD_DONE ||
9074 	    tasks & SPA_ASYNC_DETACH_SPARE) {
9075 		spa_vdev_resilver_done(spa);
9076 	}
9077 
9078 	/*
9079 	 * Kick off a resilver.
9080 	 */
9081 	if (tasks & SPA_ASYNC_RESILVER &&
9082 	    !vdev_rebuild_active(spa->spa_root_vdev) &&
9083 	    (!dsl_scan_resilvering(dp) ||
9084 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
9085 		dsl_scan_restart_resilver(dp, 0);
9086 
9087 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
9088 		mutex_enter(&spa_namespace_lock);
9089 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9090 		vdev_initialize_restart(spa->spa_root_vdev);
9091 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9092 		mutex_exit(&spa_namespace_lock);
9093 	}
9094 
9095 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
9096 		mutex_enter(&spa_namespace_lock);
9097 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9098 		vdev_trim_restart(spa->spa_root_vdev);
9099 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9100 		mutex_exit(&spa_namespace_lock);
9101 	}
9102 
9103 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
9104 		mutex_enter(&spa_namespace_lock);
9105 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9106 		vdev_autotrim_restart(spa);
9107 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9108 		mutex_exit(&spa_namespace_lock);
9109 	}
9110 
9111 	/*
9112 	 * Kick off L2 cache whole device TRIM.
9113 	 */
9114 	if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
9115 		mutex_enter(&spa_namespace_lock);
9116 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9117 		vdev_trim_l2arc(spa);
9118 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9119 		mutex_exit(&spa_namespace_lock);
9120 	}
9121 
9122 	/*
9123 	 * Kick off L2 cache rebuilding.
9124 	 */
9125 	if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
9126 		mutex_enter(&spa_namespace_lock);
9127 		spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
9128 		l2arc_spa_rebuild_start(spa);
9129 		spa_config_exit(spa, SCL_L2ARC, FTAG);
9130 		mutex_exit(&spa_namespace_lock);
9131 	}
9132 
9133 	/*
9134 	 * Let the world know that we're done.
9135 	 */
9136 	mutex_enter(&spa->spa_async_lock);
9137 	spa->spa_async_thread = NULL;
9138 	cv_broadcast(&spa->spa_async_cv);
9139 	mutex_exit(&spa->spa_async_lock);
9140 	thread_exit();
9141 }
9142 
9143 void
9144 spa_async_suspend(spa_t *spa)
9145 {
9146 	mutex_enter(&spa->spa_async_lock);
9147 	spa->spa_async_suspended++;
9148 	while (spa->spa_async_thread != NULL)
9149 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
9150 	mutex_exit(&spa->spa_async_lock);
9151 
9152 	spa_vdev_remove_suspend(spa);
9153 
9154 	zthr_t *condense_thread = spa->spa_condense_zthr;
9155 	if (condense_thread != NULL)
9156 		zthr_cancel(condense_thread);
9157 
9158 	zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9159 	if (raidz_expand_thread != NULL)
9160 		zthr_cancel(raidz_expand_thread);
9161 
9162 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9163 	if (discard_thread != NULL)
9164 		zthr_cancel(discard_thread);
9165 
9166 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9167 	if (ll_delete_thread != NULL)
9168 		zthr_cancel(ll_delete_thread);
9169 
9170 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9171 	if (ll_condense_thread != NULL)
9172 		zthr_cancel(ll_condense_thread);
9173 }
9174 
9175 void
9176 spa_async_resume(spa_t *spa)
9177 {
9178 	mutex_enter(&spa->spa_async_lock);
9179 	ASSERT(spa->spa_async_suspended != 0);
9180 	spa->spa_async_suspended--;
9181 	mutex_exit(&spa->spa_async_lock);
9182 	spa_restart_removal(spa);
9183 
9184 	zthr_t *condense_thread = spa->spa_condense_zthr;
9185 	if (condense_thread != NULL)
9186 		zthr_resume(condense_thread);
9187 
9188 	zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9189 	if (raidz_expand_thread != NULL)
9190 		zthr_resume(raidz_expand_thread);
9191 
9192 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9193 	if (discard_thread != NULL)
9194 		zthr_resume(discard_thread);
9195 
9196 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9197 	if (ll_delete_thread != NULL)
9198 		zthr_resume(ll_delete_thread);
9199 
9200 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9201 	if (ll_condense_thread != NULL)
9202 		zthr_resume(ll_condense_thread);
9203 }
9204 
9205 static boolean_t
9206 spa_async_tasks_pending(spa_t *spa)
9207 {
9208 	uint_t non_config_tasks;
9209 	uint_t config_task;
9210 	boolean_t config_task_suspended;
9211 
9212 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
9213 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
9214 	if (spa->spa_ccw_fail_time == 0) {
9215 		config_task_suspended = B_FALSE;
9216 	} else {
9217 		config_task_suspended =
9218 		    (gethrtime() - spa->spa_ccw_fail_time) <
9219 		    ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
9220 	}
9221 
9222 	return (non_config_tasks || (config_task && !config_task_suspended));
9223 }
9224 
9225 static void
9226 spa_async_dispatch(spa_t *spa)
9227 {
9228 	mutex_enter(&spa->spa_async_lock);
9229 	if (spa_async_tasks_pending(spa) &&
9230 	    !spa->spa_async_suspended &&
9231 	    spa->spa_async_thread == NULL)
9232 		spa->spa_async_thread = thread_create(NULL, 0,
9233 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
9234 	mutex_exit(&spa->spa_async_lock);
9235 }
9236 
9237 void
9238 spa_async_request(spa_t *spa, int task)
9239 {
9240 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
9241 	mutex_enter(&spa->spa_async_lock);
9242 	spa->spa_async_tasks |= task;
9243 	mutex_exit(&spa->spa_async_lock);
9244 }
9245 
9246 int
9247 spa_async_tasks(spa_t *spa)
9248 {
9249 	return (spa->spa_async_tasks);
9250 }
9251 
9252 /*
9253  * ==========================================================================
9254  * SPA syncing routines
9255  * ==========================================================================
9256  */
9257 
9258 
9259 static int
9260 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9261     dmu_tx_t *tx)
9262 {
9263 	bpobj_t *bpo = arg;
9264 	bpobj_enqueue(bpo, bp, bp_freed, tx);
9265 	return (0);
9266 }
9267 
9268 int
9269 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9270 {
9271 	return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
9272 }
9273 
9274 int
9275 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9276 {
9277 	return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
9278 }
9279 
9280 static int
9281 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9282 {
9283 	zio_t *pio = arg;
9284 
9285 	zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
9286 	    pio->io_flags));
9287 	return (0);
9288 }
9289 
9290 static int
9291 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9292     dmu_tx_t *tx)
9293 {
9294 	ASSERT(!bp_freed);
9295 	return (spa_free_sync_cb(arg, bp, tx));
9296 }
9297 
9298 /*
9299  * Note: this simple function is not inlined to make it easier to dtrace the
9300  * amount of time spent syncing frees.
9301  */
9302 static void
9303 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
9304 {
9305 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
9306 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
9307 	VERIFY(zio_wait(zio) == 0);
9308 }
9309 
9310 /*
9311  * Note: this simple function is not inlined to make it easier to dtrace the
9312  * amount of time spent syncing deferred frees.
9313  */
9314 static void
9315 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
9316 {
9317 	if (spa_sync_pass(spa) != 1)
9318 		return;
9319 
9320 	/*
9321 	 * Note:
9322 	 * If the log space map feature is active, we stop deferring
9323 	 * frees to the next TXG and therefore running this function
9324 	 * would be considered a no-op as spa_deferred_bpobj should
9325 	 * not have any entries.
9326 	 *
9327 	 * That said we run this function anyway (instead of returning
9328 	 * immediately) for the edge-case scenario where we just
9329 	 * activated the log space map feature in this TXG but we have
9330 	 * deferred frees from the previous TXG.
9331 	 */
9332 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
9333 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
9334 	    bpobj_spa_free_sync_cb, zio, tx), ==, 0);
9335 	VERIFY0(zio_wait(zio));
9336 }
9337 
9338 static void
9339 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
9340 {
9341 	char *packed = NULL;
9342 	size_t bufsize;
9343 	size_t nvsize = 0;
9344 	dmu_buf_t *db;
9345 
9346 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
9347 
9348 	/*
9349 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
9350 	 * information.  This avoids the dmu_buf_will_dirty() path and
9351 	 * saves us a pre-read to get data we don't actually care about.
9352 	 */
9353 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
9354 	packed = vmem_alloc(bufsize, KM_SLEEP);
9355 
9356 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
9357 	    KM_SLEEP) == 0);
9358 	memset(packed + nvsize, 0, bufsize - nvsize);
9359 
9360 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
9361 
9362 	vmem_free(packed, bufsize);
9363 
9364 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
9365 	dmu_buf_will_dirty(db, tx);
9366 	*(uint64_t *)db->db_data = nvsize;
9367 	dmu_buf_rele(db, FTAG);
9368 }
9369 
9370 static void
9371 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
9372     const char *config, const char *entry)
9373 {
9374 	nvlist_t *nvroot;
9375 	nvlist_t **list;
9376 	int i;
9377 
9378 	if (!sav->sav_sync)
9379 		return;
9380 
9381 	/*
9382 	 * Update the MOS nvlist describing the list of available devices.
9383 	 * spa_validate_aux() will have already made sure this nvlist is
9384 	 * valid and the vdevs are labeled appropriately.
9385 	 */
9386 	if (sav->sav_object == 0) {
9387 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
9388 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
9389 		    sizeof (uint64_t), tx);
9390 		VERIFY(zap_update(spa->spa_meta_objset,
9391 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
9392 		    &sav->sav_object, tx) == 0);
9393 	}
9394 
9395 	nvroot = fnvlist_alloc();
9396 	if (sav->sav_count == 0) {
9397 		fnvlist_add_nvlist_array(nvroot, config,
9398 		    (const nvlist_t * const *)NULL, 0);
9399 	} else {
9400 		list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
9401 		for (i = 0; i < sav->sav_count; i++)
9402 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
9403 			    B_FALSE, VDEV_CONFIG_L2CACHE);
9404 		fnvlist_add_nvlist_array(nvroot, config,
9405 		    (const nvlist_t * const *)list, sav->sav_count);
9406 		for (i = 0; i < sav->sav_count; i++)
9407 			nvlist_free(list[i]);
9408 		kmem_free(list, sav->sav_count * sizeof (void *));
9409 	}
9410 
9411 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
9412 	nvlist_free(nvroot);
9413 
9414 	sav->sav_sync = B_FALSE;
9415 }
9416 
9417 /*
9418  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
9419  * The all-vdev ZAP must be empty.
9420  */
9421 static void
9422 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
9423 {
9424 	spa_t *spa = vd->vdev_spa;
9425 
9426 	if (vd->vdev_root_zap != 0 &&
9427 	    spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
9428 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9429 		    vd->vdev_root_zap, tx));
9430 	}
9431 	if (vd->vdev_top_zap != 0) {
9432 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9433 		    vd->vdev_top_zap, tx));
9434 	}
9435 	if (vd->vdev_leaf_zap != 0) {
9436 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9437 		    vd->vdev_leaf_zap, tx));
9438 	}
9439 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
9440 		spa_avz_build(vd->vdev_child[i], avz, tx);
9441 	}
9442 }
9443 
9444 static void
9445 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
9446 {
9447 	nvlist_t *config;
9448 
9449 	/*
9450 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
9451 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
9452 	 * Similarly, if the pool is being assembled (e.g. after a split), we
9453 	 * need to rebuild the AVZ although the config may not be dirty.
9454 	 */
9455 	if (list_is_empty(&spa->spa_config_dirty_list) &&
9456 	    spa->spa_avz_action == AVZ_ACTION_NONE)
9457 		return;
9458 
9459 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9460 
9461 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
9462 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
9463 	    spa->spa_all_vdev_zaps != 0);
9464 
9465 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
9466 		/* Make and build the new AVZ */
9467 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
9468 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
9469 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
9470 
9471 		/* Diff old AVZ with new one */
9472 		zap_cursor_t zc;
9473 		zap_attribute_t *za = zap_attribute_alloc();
9474 
9475 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
9476 		    spa->spa_all_vdev_zaps);
9477 		    zap_cursor_retrieve(&zc, za) == 0;
9478 		    zap_cursor_advance(&zc)) {
9479 			uint64_t vdzap = za->za_first_integer;
9480 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
9481 			    vdzap) == ENOENT) {
9482 				/*
9483 				 * ZAP is listed in old AVZ but not in new one;
9484 				 * destroy it
9485 				 */
9486 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
9487 				    tx));
9488 			}
9489 		}
9490 
9491 		zap_cursor_fini(&zc);
9492 		zap_attribute_free(za);
9493 
9494 		/* Destroy the old AVZ */
9495 		VERIFY0(zap_destroy(spa->spa_meta_objset,
9496 		    spa->spa_all_vdev_zaps, tx));
9497 
9498 		/* Replace the old AVZ in the dir obj with the new one */
9499 		VERIFY0(zap_update(spa->spa_meta_objset,
9500 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
9501 		    sizeof (new_avz), 1, &new_avz, tx));
9502 
9503 		spa->spa_all_vdev_zaps = new_avz;
9504 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
9505 		zap_cursor_t zc;
9506 		zap_attribute_t *za = zap_attribute_alloc();
9507 
9508 		/* Walk through the AVZ and destroy all listed ZAPs */
9509 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
9510 		    spa->spa_all_vdev_zaps);
9511 		    zap_cursor_retrieve(&zc, za) == 0;
9512 		    zap_cursor_advance(&zc)) {
9513 			uint64_t zap = za->za_first_integer;
9514 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
9515 		}
9516 
9517 		zap_cursor_fini(&zc);
9518 		zap_attribute_free(za);
9519 
9520 		/* Destroy and unlink the AVZ itself */
9521 		VERIFY0(zap_destroy(spa->spa_meta_objset,
9522 		    spa->spa_all_vdev_zaps, tx));
9523 		VERIFY0(zap_remove(spa->spa_meta_objset,
9524 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
9525 		spa->spa_all_vdev_zaps = 0;
9526 	}
9527 
9528 	if (spa->spa_all_vdev_zaps == 0) {
9529 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
9530 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
9531 		    DMU_POOL_VDEV_ZAP_MAP, tx);
9532 	}
9533 	spa->spa_avz_action = AVZ_ACTION_NONE;
9534 
9535 	/* Create ZAPs for vdevs that don't have them. */
9536 	vdev_construct_zaps(spa->spa_root_vdev, tx);
9537 
9538 	config = spa_config_generate(spa, spa->spa_root_vdev,
9539 	    dmu_tx_get_txg(tx), B_FALSE);
9540 
9541 	/*
9542 	 * If we're upgrading the spa version then make sure that
9543 	 * the config object gets updated with the correct version.
9544 	 */
9545 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
9546 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
9547 		    spa->spa_uberblock.ub_version);
9548 
9549 	spa_config_exit(spa, SCL_STATE, FTAG);
9550 
9551 	nvlist_free(spa->spa_config_syncing);
9552 	spa->spa_config_syncing = config;
9553 
9554 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
9555 }
9556 
9557 static void
9558 spa_sync_version(void *arg, dmu_tx_t *tx)
9559 {
9560 	uint64_t *versionp = arg;
9561 	uint64_t version = *versionp;
9562 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9563 
9564 	/*
9565 	 * Setting the version is special cased when first creating the pool.
9566 	 */
9567 	ASSERT(tx->tx_txg != TXG_INITIAL);
9568 
9569 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
9570 	ASSERT(version >= spa_version(spa));
9571 
9572 	spa->spa_uberblock.ub_version = version;
9573 	vdev_config_dirty(spa->spa_root_vdev);
9574 	spa_history_log_internal(spa, "set", tx, "version=%lld",
9575 	    (longlong_t)version);
9576 }
9577 
9578 /*
9579  * Set zpool properties.
9580  */
9581 static void
9582 spa_sync_props(void *arg, dmu_tx_t *tx)
9583 {
9584 	nvlist_t *nvp = arg;
9585 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9586 	objset_t *mos = spa->spa_meta_objset;
9587 	nvpair_t *elem = NULL;
9588 
9589 	mutex_enter(&spa->spa_props_lock);
9590 
9591 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
9592 		uint64_t intval;
9593 		const char *strval, *fname;
9594 		zpool_prop_t prop;
9595 		const char *propname;
9596 		const char *elemname = nvpair_name(elem);
9597 		zprop_type_t proptype;
9598 		spa_feature_t fid;
9599 
9600 		switch (prop = zpool_name_to_prop(elemname)) {
9601 		case ZPOOL_PROP_VERSION:
9602 			intval = fnvpair_value_uint64(elem);
9603 			/*
9604 			 * The version is synced separately before other
9605 			 * properties and should be correct by now.
9606 			 */
9607 			ASSERT3U(spa_version(spa), >=, intval);
9608 			break;
9609 
9610 		case ZPOOL_PROP_ALTROOT:
9611 			/*
9612 			 * 'altroot' is a non-persistent property. It should
9613 			 * have been set temporarily at creation or import time.
9614 			 */
9615 			ASSERT(spa->spa_root != NULL);
9616 			break;
9617 
9618 		case ZPOOL_PROP_READONLY:
9619 		case ZPOOL_PROP_CACHEFILE:
9620 			/*
9621 			 * 'readonly' and 'cachefile' are also non-persistent
9622 			 * properties.
9623 			 */
9624 			break;
9625 		case ZPOOL_PROP_COMMENT:
9626 			strval = fnvpair_value_string(elem);
9627 			if (spa->spa_comment != NULL)
9628 				spa_strfree(spa->spa_comment);
9629 			spa->spa_comment = spa_strdup(strval);
9630 			/*
9631 			 * We need to dirty the configuration on all the vdevs
9632 			 * so that their labels get updated.  We also need to
9633 			 * update the cache file to keep it in sync with the
9634 			 * MOS version. It's unnecessary to do this for pool
9635 			 * creation since the vdev's configuration has already
9636 			 * been dirtied.
9637 			 */
9638 			if (tx->tx_txg != TXG_INITIAL) {
9639 				vdev_config_dirty(spa->spa_root_vdev);
9640 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9641 			}
9642 			spa_history_log_internal(spa, "set", tx,
9643 			    "%s=%s", elemname, strval);
9644 			break;
9645 		case ZPOOL_PROP_COMPATIBILITY:
9646 			strval = fnvpair_value_string(elem);
9647 			if (spa->spa_compatibility != NULL)
9648 				spa_strfree(spa->spa_compatibility);
9649 			spa->spa_compatibility = spa_strdup(strval);
9650 			/*
9651 			 * Dirty the configuration on vdevs as above.
9652 			 */
9653 			if (tx->tx_txg != TXG_INITIAL) {
9654 				vdev_config_dirty(spa->spa_root_vdev);
9655 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9656 			}
9657 
9658 			spa_history_log_internal(spa, "set", tx,
9659 			    "%s=%s", nvpair_name(elem), strval);
9660 			break;
9661 
9662 		case ZPOOL_PROP_INVAL:
9663 			if (zpool_prop_feature(elemname)) {
9664 				fname = strchr(elemname, '@') + 1;
9665 				VERIFY0(zfeature_lookup_name(fname, &fid));
9666 
9667 				spa_feature_enable(spa, fid, tx);
9668 				spa_history_log_internal(spa, "set", tx,
9669 				    "%s=enabled", elemname);
9670 				break;
9671 			} else if (!zfs_prop_user(elemname)) {
9672 				ASSERT(zpool_prop_feature(elemname));
9673 				break;
9674 			}
9675 			zfs_fallthrough;
9676 		default:
9677 			/*
9678 			 * Set pool property values in the poolprops mos object.
9679 			 */
9680 			if (spa->spa_pool_props_object == 0) {
9681 				spa->spa_pool_props_object =
9682 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
9683 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
9684 				    tx);
9685 			}
9686 
9687 			/* normalize the property name */
9688 			if (prop == ZPOOL_PROP_INVAL) {
9689 				propname = elemname;
9690 				proptype = PROP_TYPE_STRING;
9691 			} else {
9692 				propname = zpool_prop_to_name(prop);
9693 				proptype = zpool_prop_get_type(prop);
9694 			}
9695 
9696 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
9697 				ASSERT(proptype == PROP_TYPE_STRING);
9698 				strval = fnvpair_value_string(elem);
9699 				if (strlen(strval) == 0) {
9700 					/* remove the property if value == "" */
9701 					(void) zap_remove(mos,
9702 					    spa->spa_pool_props_object,
9703 					    propname, tx);
9704 				} else {
9705 					VERIFY0(zap_update(mos,
9706 					    spa->spa_pool_props_object,
9707 					    propname, 1, strlen(strval) + 1,
9708 					    strval, tx));
9709 				}
9710 				spa_history_log_internal(spa, "set", tx,
9711 				    "%s=%s", elemname, strval);
9712 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
9713 				intval = fnvpair_value_uint64(elem);
9714 
9715 				if (proptype == PROP_TYPE_INDEX) {
9716 					const char *unused;
9717 					VERIFY0(zpool_prop_index_to_string(
9718 					    prop, intval, &unused));
9719 				}
9720 				VERIFY0(zap_update(mos,
9721 				    spa->spa_pool_props_object, propname,
9722 				    8, 1, &intval, tx));
9723 				spa_history_log_internal(spa, "set", tx,
9724 				    "%s=%lld", elemname,
9725 				    (longlong_t)intval);
9726 
9727 				switch (prop) {
9728 				case ZPOOL_PROP_DELEGATION:
9729 					spa->spa_delegation = intval;
9730 					break;
9731 				case ZPOOL_PROP_BOOTFS:
9732 					spa->spa_bootfs = intval;
9733 					break;
9734 				case ZPOOL_PROP_FAILUREMODE:
9735 					spa->spa_failmode = intval;
9736 					break;
9737 				case ZPOOL_PROP_AUTOTRIM:
9738 					spa->spa_autotrim = intval;
9739 					spa_async_request(spa,
9740 					    SPA_ASYNC_AUTOTRIM_RESTART);
9741 					break;
9742 				case ZPOOL_PROP_AUTOEXPAND:
9743 					spa->spa_autoexpand = intval;
9744 					if (tx->tx_txg != TXG_INITIAL)
9745 						spa_async_request(spa,
9746 						    SPA_ASYNC_AUTOEXPAND);
9747 					break;
9748 				case ZPOOL_PROP_MULTIHOST:
9749 					spa->spa_multihost = intval;
9750 					break;
9751 				case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
9752 					spa->spa_dedup_table_quota = intval;
9753 					break;
9754 				default:
9755 					break;
9756 				}
9757 			} else {
9758 				ASSERT(0); /* not allowed */
9759 			}
9760 		}
9761 
9762 	}
9763 
9764 	mutex_exit(&spa->spa_props_lock);
9765 }
9766 
9767 /*
9768  * Perform one-time upgrade on-disk changes.  spa_version() does not
9769  * reflect the new version this txg, so there must be no changes this
9770  * txg to anything that the upgrade code depends on after it executes.
9771  * Therefore this must be called after dsl_pool_sync() does the sync
9772  * tasks.
9773  */
9774 static void
9775 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
9776 {
9777 	if (spa_sync_pass(spa) != 1)
9778 		return;
9779 
9780 	dsl_pool_t *dp = spa->spa_dsl_pool;
9781 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
9782 
9783 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
9784 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
9785 		dsl_pool_create_origin(dp, tx);
9786 
9787 		/* Keeping the origin open increases spa_minref */
9788 		spa->spa_minref += 3;
9789 	}
9790 
9791 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
9792 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
9793 		dsl_pool_upgrade_clones(dp, tx);
9794 	}
9795 
9796 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
9797 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
9798 		dsl_pool_upgrade_dir_clones(dp, tx);
9799 
9800 		/* Keeping the freedir open increases spa_minref */
9801 		spa->spa_minref += 3;
9802 	}
9803 
9804 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
9805 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9806 		spa_feature_create_zap_objects(spa, tx);
9807 	}
9808 
9809 	/*
9810 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
9811 	 * when possibility to use lz4 compression for metadata was added
9812 	 * Old pools that have this feature enabled must be upgraded to have
9813 	 * this feature active
9814 	 */
9815 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9816 		boolean_t lz4_en = spa_feature_is_enabled(spa,
9817 		    SPA_FEATURE_LZ4_COMPRESS);
9818 		boolean_t lz4_ac = spa_feature_is_active(spa,
9819 		    SPA_FEATURE_LZ4_COMPRESS);
9820 
9821 		if (lz4_en && !lz4_ac)
9822 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
9823 	}
9824 
9825 	/*
9826 	 * If we haven't written the salt, do so now.  Note that the
9827 	 * feature may not be activated yet, but that's fine since
9828 	 * the presence of this ZAP entry is backwards compatible.
9829 	 */
9830 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
9831 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
9832 		VERIFY0(zap_add(spa->spa_meta_objset,
9833 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
9834 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
9835 		    spa->spa_cksum_salt.zcs_bytes, tx));
9836 	}
9837 
9838 	rrw_exit(&dp->dp_config_rwlock, FTAG);
9839 }
9840 
9841 static void
9842 vdev_indirect_state_sync_verify(vdev_t *vd)
9843 {
9844 	vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
9845 	vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
9846 
9847 	if (vd->vdev_ops == &vdev_indirect_ops) {
9848 		ASSERT(vim != NULL);
9849 		ASSERT(vib != NULL);
9850 	}
9851 
9852 	uint64_t obsolete_sm_object = 0;
9853 	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
9854 	if (obsolete_sm_object != 0) {
9855 		ASSERT(vd->vdev_obsolete_sm != NULL);
9856 		ASSERT(vd->vdev_removing ||
9857 		    vd->vdev_ops == &vdev_indirect_ops);
9858 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9859 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9860 		ASSERT3U(obsolete_sm_object, ==,
9861 		    space_map_object(vd->vdev_obsolete_sm));
9862 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9863 		    space_map_allocated(vd->vdev_obsolete_sm));
9864 	}
9865 	ASSERT(vd->vdev_obsolete_segments != NULL);
9866 
9867 	/*
9868 	 * Since frees / remaps to an indirect vdev can only
9869 	 * happen in syncing context, the obsolete segments
9870 	 * tree must be empty when we start syncing.
9871 	 */
9872 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
9873 }
9874 
9875 /*
9876  * Set the top-level vdev's max queue depth. Evaluate each top-level's
9877  * async write queue depth in case it changed. The max queue depth will
9878  * not change in the middle of syncing out this txg.
9879  */
9880 static void
9881 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9882 {
9883 	ASSERT(spa_writeable(spa));
9884 
9885 	vdev_t *rvd = spa->spa_root_vdev;
9886 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9887 	    zfs_vdev_queue_depth_pct / 100;
9888 	metaslab_class_t *normal = spa_normal_class(spa);
9889 	metaslab_class_t *special = spa_special_class(spa);
9890 	metaslab_class_t *dedup = spa_dedup_class(spa);
9891 
9892 	uint64_t slots_per_allocator = 0;
9893 	for (int c = 0; c < rvd->vdev_children; c++) {
9894 		vdev_t *tvd = rvd->vdev_child[c];
9895 
9896 		metaslab_group_t *mg = tvd->vdev_mg;
9897 		if (mg == NULL || !metaslab_group_initialized(mg))
9898 			continue;
9899 
9900 		metaslab_class_t *mc = mg->mg_class;
9901 		if (mc != normal && mc != special && mc != dedup)
9902 			continue;
9903 
9904 		/*
9905 		 * It is safe to do a lock-free check here because only async
9906 		 * allocations look at mg_max_alloc_queue_depth, and async
9907 		 * allocations all happen from spa_sync().
9908 		 */
9909 		for (int i = 0; i < mg->mg_allocators; i++) {
9910 			ASSERT0(zfs_refcount_count(
9911 			    &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9912 		}
9913 		mg->mg_max_alloc_queue_depth = max_queue_depth;
9914 
9915 		for (int i = 0; i < mg->mg_allocators; i++) {
9916 			mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9917 			    zfs_vdev_def_queue_depth;
9918 		}
9919 		slots_per_allocator += zfs_vdev_def_queue_depth;
9920 	}
9921 
9922 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9923 		ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9924 		    mca_alloc_slots));
9925 		ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9926 		    mca_alloc_slots));
9927 		ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9928 		    mca_alloc_slots));
9929 		normal->mc_allocator[i].mca_alloc_max_slots =
9930 		    slots_per_allocator;
9931 		special->mc_allocator[i].mca_alloc_max_slots =
9932 		    slots_per_allocator;
9933 		dedup->mc_allocator[i].mca_alloc_max_slots =
9934 		    slots_per_allocator;
9935 	}
9936 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9937 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9938 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9939 }
9940 
9941 static void
9942 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9943 {
9944 	ASSERT(spa_writeable(spa));
9945 
9946 	vdev_t *rvd = spa->spa_root_vdev;
9947 	for (int c = 0; c < rvd->vdev_children; c++) {
9948 		vdev_t *vd = rvd->vdev_child[c];
9949 		vdev_indirect_state_sync_verify(vd);
9950 
9951 		if (vdev_indirect_should_condense(vd)) {
9952 			spa_condense_indirect_start_sync(vd, tx);
9953 			break;
9954 		}
9955 	}
9956 }
9957 
9958 static void
9959 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9960 {
9961 	objset_t *mos = spa->spa_meta_objset;
9962 	dsl_pool_t *dp = spa->spa_dsl_pool;
9963 	uint64_t txg = tx->tx_txg;
9964 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9965 
9966 	do {
9967 		int pass = ++spa->spa_sync_pass;
9968 
9969 		spa_sync_config_object(spa, tx);
9970 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9971 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9972 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9973 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9974 		spa_errlog_sync(spa, txg);
9975 		dsl_pool_sync(dp, txg);
9976 
9977 		if (pass < zfs_sync_pass_deferred_free ||
9978 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9979 			/*
9980 			 * If the log space map feature is active we don't
9981 			 * care about deferred frees and the deferred bpobj
9982 			 * as the log space map should effectively have the
9983 			 * same results (i.e. appending only to one object).
9984 			 */
9985 			spa_sync_frees(spa, free_bpl, tx);
9986 		} else {
9987 			/*
9988 			 * We can not defer frees in pass 1, because
9989 			 * we sync the deferred frees later in pass 1.
9990 			 */
9991 			ASSERT3U(pass, >, 1);
9992 			bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9993 			    &spa->spa_deferred_bpobj, tx);
9994 		}
9995 
9996 		brt_sync(spa, txg);
9997 		ddt_sync(spa, txg);
9998 		dsl_scan_sync(dp, tx);
9999 		dsl_errorscrub_sync(dp, tx);
10000 		svr_sync(spa, tx);
10001 		spa_sync_upgrades(spa, tx);
10002 
10003 		spa_flush_metaslabs(spa, tx);
10004 
10005 		vdev_t *vd = NULL;
10006 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
10007 		    != NULL)
10008 			vdev_sync(vd, txg);
10009 
10010 		if (pass == 1) {
10011 			/*
10012 			 * dsl_pool_sync() -> dp_sync_tasks may have dirtied
10013 			 * the config. If that happens, this txg should not
10014 			 * be a no-op. So we must sync the config to the MOS
10015 			 * before checking for no-op.
10016 			 *
10017 			 * Note that when the config is dirty, it will
10018 			 * be written to the MOS (i.e. the MOS will be
10019 			 * dirtied) every time we call spa_sync_config_object()
10020 			 * in this txg.  Therefore we can't call this after
10021 			 * dsl_pool_sync() every pass, because it would
10022 			 * prevent us from converging, since we'd dirty
10023 			 * the MOS every pass.
10024 			 *
10025 			 * Sync tasks can only be processed in pass 1, so
10026 			 * there's no need to do this in later passes.
10027 			 */
10028 			spa_sync_config_object(spa, tx);
10029 		}
10030 
10031 		/*
10032 		 * Note: We need to check if the MOS is dirty because we could
10033 		 * have marked the MOS dirty without updating the uberblock
10034 		 * (e.g. if we have sync tasks but no dirty user data). We need
10035 		 * to check the uberblock's rootbp because it is updated if we
10036 		 * have synced out dirty data (though in this case the MOS will
10037 		 * most likely also be dirty due to second order effects, we
10038 		 * don't want to rely on that here).
10039 		 */
10040 		if (pass == 1 &&
10041 		    BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp) < txg &&
10042 		    !dmu_objset_is_dirty(mos, txg)) {
10043 			/*
10044 			 * Nothing changed on the first pass, therefore this
10045 			 * TXG is a no-op. Avoid syncing deferred frees, so
10046 			 * that we can keep this TXG as a no-op.
10047 			 */
10048 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10049 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10050 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
10051 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
10052 			break;
10053 		}
10054 
10055 		spa_sync_deferred_frees(spa, tx);
10056 	} while (dmu_objset_is_dirty(mos, txg));
10057 }
10058 
10059 /*
10060  * Rewrite the vdev configuration (which includes the uberblock) to
10061  * commit the transaction group.
10062  *
10063  * If there are no dirty vdevs, we sync the uberblock to a few random
10064  * top-level vdevs that are known to be visible in the config cache
10065  * (see spa_vdev_add() for a complete description). If there *are* dirty
10066  * vdevs, sync the uberblock to all vdevs.
10067  */
10068 static void
10069 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
10070 {
10071 	vdev_t *rvd = spa->spa_root_vdev;
10072 	uint64_t txg = tx->tx_txg;
10073 
10074 	for (;;) {
10075 		int error = 0;
10076 
10077 		/*
10078 		 * We hold SCL_STATE to prevent vdev open/close/etc.
10079 		 * while we're attempting to write the vdev labels.
10080 		 */
10081 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10082 
10083 		if (list_is_empty(&spa->spa_config_dirty_list)) {
10084 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
10085 			int svdcount = 0;
10086 			int children = rvd->vdev_children;
10087 			int c0 = random_in_range(children);
10088 
10089 			for (int c = 0; c < children; c++) {
10090 				vdev_t *vd =
10091 				    rvd->vdev_child[(c0 + c) % children];
10092 
10093 				/* Stop when revisiting the first vdev */
10094 				if (c > 0 && svd[0] == vd)
10095 					break;
10096 
10097 				if (vd->vdev_ms_array == 0 ||
10098 				    vd->vdev_islog ||
10099 				    !vdev_is_concrete(vd))
10100 					continue;
10101 
10102 				svd[svdcount++] = vd;
10103 				if (svdcount == SPA_SYNC_MIN_VDEVS)
10104 					break;
10105 			}
10106 			error = vdev_config_sync(svd, svdcount, txg);
10107 		} else {
10108 			error = vdev_config_sync(rvd->vdev_child,
10109 			    rvd->vdev_children, txg);
10110 		}
10111 
10112 		if (error == 0)
10113 			spa->spa_last_synced_guid = rvd->vdev_guid;
10114 
10115 		spa_config_exit(spa, SCL_STATE, FTAG);
10116 
10117 		if (error == 0)
10118 			break;
10119 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
10120 		zio_resume_wait(spa);
10121 	}
10122 }
10123 
10124 /*
10125  * Sync the specified transaction group.  New blocks may be dirtied as
10126  * part of the process, so we iterate until it converges.
10127  */
10128 void
10129 spa_sync(spa_t *spa, uint64_t txg)
10130 {
10131 	vdev_t *vd = NULL;
10132 
10133 	VERIFY(spa_writeable(spa));
10134 
10135 	/*
10136 	 * Wait for i/os issued in open context that need to complete
10137 	 * before this txg syncs.
10138 	 */
10139 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
10140 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
10141 	    ZIO_FLAG_CANFAIL);
10142 
10143 	/*
10144 	 * Now that there can be no more cloning in this transaction group,
10145 	 * but we are still before issuing frees, we can process pending BRT
10146 	 * updates.
10147 	 */
10148 	brt_pending_apply(spa, txg);
10149 
10150 	/*
10151 	 * Lock out configuration changes.
10152 	 */
10153 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
10154 
10155 	spa->spa_syncing_txg = txg;
10156 	spa->spa_sync_pass = 0;
10157 
10158 	for (int i = 0; i < spa->spa_alloc_count; i++) {
10159 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
10160 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
10161 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
10162 	}
10163 
10164 	/*
10165 	 * If there are any pending vdev state changes, convert them
10166 	 * into config changes that go out with this transaction group.
10167 	 */
10168 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10169 	while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10170 		/* Avoid holding the write lock unless actually necessary */
10171 		if (vd->vdev_aux == NULL) {
10172 			vdev_state_clean(vd);
10173 			vdev_config_dirty(vd);
10174 			continue;
10175 		}
10176 		/*
10177 		 * We need the write lock here because, for aux vdevs,
10178 		 * calling vdev_config_dirty() modifies sav_config.
10179 		 * This is ugly and will become unnecessary when we
10180 		 * eliminate the aux vdev wart by integrating all vdevs
10181 		 * into the root vdev tree.
10182 		 */
10183 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10184 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
10185 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10186 			vdev_state_clean(vd);
10187 			vdev_config_dirty(vd);
10188 		}
10189 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10190 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10191 	}
10192 	spa_config_exit(spa, SCL_STATE, FTAG);
10193 
10194 	dsl_pool_t *dp = spa->spa_dsl_pool;
10195 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
10196 
10197 	spa->spa_sync_starttime = gethrtime();
10198 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10199 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
10200 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
10201 	    NSEC_TO_TICK(spa->spa_deadman_synctime));
10202 
10203 	/*
10204 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
10205 	 * set spa_deflate if we have no raid-z vdevs.
10206 	 */
10207 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
10208 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
10209 		vdev_t *rvd = spa->spa_root_vdev;
10210 
10211 		int i;
10212 		for (i = 0; i < rvd->vdev_children; i++) {
10213 			vd = rvd->vdev_child[i];
10214 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
10215 				break;
10216 		}
10217 		if (i == rvd->vdev_children) {
10218 			spa->spa_deflate = TRUE;
10219 			VERIFY0(zap_add(spa->spa_meta_objset,
10220 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
10221 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
10222 		}
10223 	}
10224 
10225 	spa_sync_adjust_vdev_max_queue_depth(spa);
10226 
10227 	spa_sync_condense_indirect(spa, tx);
10228 
10229 	spa_sync_iterate_to_convergence(spa, tx);
10230 
10231 #ifdef ZFS_DEBUG
10232 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
10233 	/*
10234 	 * Make sure that the number of ZAPs for all the vdevs matches
10235 	 * the number of ZAPs in the per-vdev ZAP list. This only gets
10236 	 * called if the config is dirty; otherwise there may be
10237 	 * outstanding AVZ operations that weren't completed in
10238 	 * spa_sync_config_object.
10239 	 */
10240 		uint64_t all_vdev_zap_entry_count;
10241 		ASSERT0(zap_count(spa->spa_meta_objset,
10242 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
10243 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
10244 		    all_vdev_zap_entry_count);
10245 	}
10246 #endif
10247 
10248 	if (spa->spa_vdev_removal != NULL) {
10249 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
10250 	}
10251 
10252 	spa_sync_rewrite_vdev_config(spa, tx);
10253 	dmu_tx_commit(tx);
10254 
10255 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10256 	spa->spa_deadman_tqid = 0;
10257 
10258 	/*
10259 	 * Clear the dirty config list.
10260 	 */
10261 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
10262 		vdev_config_clean(vd);
10263 
10264 	/*
10265 	 * Now that the new config has synced transactionally,
10266 	 * let it become visible to the config cache.
10267 	 */
10268 	if (spa->spa_config_syncing != NULL) {
10269 		spa_config_set(spa, spa->spa_config_syncing);
10270 		spa->spa_config_txg = txg;
10271 		spa->spa_config_syncing = NULL;
10272 	}
10273 
10274 	dsl_pool_sync_done(dp, txg);
10275 
10276 	for (int i = 0; i < spa->spa_alloc_count; i++) {
10277 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
10278 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
10279 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
10280 	}
10281 
10282 	/*
10283 	 * Update usable space statistics.
10284 	 */
10285 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
10286 	    != NULL)
10287 		vdev_sync_done(vd, txg);
10288 
10289 	metaslab_class_evict_old(spa->spa_normal_class, txg);
10290 	metaslab_class_evict_old(spa->spa_log_class, txg);
10291 	/* spa_embedded_log_class has only one metaslab per vdev. */
10292 	metaslab_class_evict_old(spa->spa_special_class, txg);
10293 	metaslab_class_evict_old(spa->spa_dedup_class, txg);
10294 
10295 	spa_sync_close_syncing_log_sm(spa);
10296 
10297 	spa_update_dspace(spa);
10298 
10299 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
10300 		vdev_autotrim_kick(spa);
10301 
10302 	/*
10303 	 * It had better be the case that we didn't dirty anything
10304 	 * since vdev_config_sync().
10305 	 */
10306 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10307 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10308 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
10309 
10310 	while (zfs_pause_spa_sync)
10311 		delay(1);
10312 
10313 	spa->spa_sync_pass = 0;
10314 
10315 	/*
10316 	 * Update the last synced uberblock here. We want to do this at
10317 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
10318 	 * will be guaranteed that all the processing associated with
10319 	 * that txg has been completed.
10320 	 */
10321 	spa->spa_ubsync = spa->spa_uberblock;
10322 	spa_config_exit(spa, SCL_CONFIG, FTAG);
10323 
10324 	spa_handle_ignored_writes(spa);
10325 
10326 	/*
10327 	 * If any async tasks have been requested, kick them off.
10328 	 */
10329 	spa_async_dispatch(spa);
10330 }
10331 
10332 /*
10333  * Sync all pools.  We don't want to hold the namespace lock across these
10334  * operations, so we take a reference on the spa_t and drop the lock during the
10335  * sync.
10336  */
10337 void
10338 spa_sync_allpools(void)
10339 {
10340 	spa_t *spa = NULL;
10341 	mutex_enter(&spa_namespace_lock);
10342 	while ((spa = spa_next(spa)) != NULL) {
10343 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
10344 		    !spa_writeable(spa) || spa_suspended(spa))
10345 			continue;
10346 		spa_open_ref(spa, FTAG);
10347 		mutex_exit(&spa_namespace_lock);
10348 		txg_wait_synced(spa_get_dsl(spa), 0);
10349 		mutex_enter(&spa_namespace_lock);
10350 		spa_close(spa, FTAG);
10351 	}
10352 	mutex_exit(&spa_namespace_lock);
10353 }
10354 
10355 taskq_t *
10356 spa_sync_tq_create(spa_t *spa, const char *name)
10357 {
10358 	kthread_t **kthreads;
10359 
10360 	ASSERT(spa->spa_sync_tq == NULL);
10361 	ASSERT3S(spa->spa_alloc_count, <=, boot_ncpus);
10362 
10363 	/*
10364 	 * - do not allow more allocators than cpus.
10365 	 * - there may be more cpus than allocators.
10366 	 * - do not allow more sync taskq threads than allocators or cpus.
10367 	 */
10368 	int nthreads = spa->spa_alloc_count;
10369 	spa->spa_syncthreads = kmem_zalloc(sizeof (spa_syncthread_info_t) *
10370 	    nthreads, KM_SLEEP);
10371 
10372 	spa->spa_sync_tq = taskq_create_synced(name, nthreads, minclsyspri,
10373 	    nthreads, INT_MAX, TASKQ_PREPOPULATE, &kthreads);
10374 	VERIFY(spa->spa_sync_tq != NULL);
10375 	VERIFY(kthreads != NULL);
10376 
10377 	spa_syncthread_info_t *ti = spa->spa_syncthreads;
10378 	for (int i = 0; i < nthreads; i++, ti++) {
10379 		ti->sti_thread = kthreads[i];
10380 		ti->sti_allocator = i;
10381 	}
10382 
10383 	kmem_free(kthreads, sizeof (*kthreads) * nthreads);
10384 	return (spa->spa_sync_tq);
10385 }
10386 
10387 void
10388 spa_sync_tq_destroy(spa_t *spa)
10389 {
10390 	ASSERT(spa->spa_sync_tq != NULL);
10391 
10392 	taskq_wait(spa->spa_sync_tq);
10393 	taskq_destroy(spa->spa_sync_tq);
10394 	kmem_free(spa->spa_syncthreads,
10395 	    sizeof (spa_syncthread_info_t) * spa->spa_alloc_count);
10396 	spa->spa_sync_tq = NULL;
10397 }
10398 
10399 uint_t
10400 spa_acq_allocator(spa_t *spa)
10401 {
10402 	int i;
10403 
10404 	if (spa->spa_alloc_count == 1)
10405 		return (0);
10406 
10407 	mutex_enter(&spa->spa_allocs_use->sau_lock);
10408 	uint_t r = spa->spa_allocs_use->sau_rotor;
10409 	do {
10410 		if (++r == spa->spa_alloc_count)
10411 			r = 0;
10412 	} while (spa->spa_allocs_use->sau_inuse[r]);
10413 	spa->spa_allocs_use->sau_inuse[r] = B_TRUE;
10414 	spa->spa_allocs_use->sau_rotor = r;
10415 	mutex_exit(&spa->spa_allocs_use->sau_lock);
10416 
10417 	spa_syncthread_info_t *ti = spa->spa_syncthreads;
10418 	for (i = 0; i < spa->spa_alloc_count; i++, ti++) {
10419 		if (ti->sti_thread == curthread) {
10420 			ti->sti_allocator = r;
10421 			break;
10422 		}
10423 	}
10424 	ASSERT3S(i, <, spa->spa_alloc_count);
10425 	return (r);
10426 }
10427 
10428 void
10429 spa_rel_allocator(spa_t *spa, uint_t allocator)
10430 {
10431 	if (spa->spa_alloc_count > 1)
10432 		spa->spa_allocs_use->sau_inuse[allocator] = B_FALSE;
10433 }
10434 
10435 void
10436 spa_select_allocator(zio_t *zio)
10437 {
10438 	zbookmark_phys_t *bm = &zio->io_bookmark;
10439 	spa_t *spa = zio->io_spa;
10440 
10441 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
10442 
10443 	/*
10444 	 * A gang block (for example) may have inherited its parent's
10445 	 * allocator, in which case there is nothing further to do here.
10446 	 */
10447 	if (ZIO_HAS_ALLOCATOR(zio))
10448 		return;
10449 
10450 	ASSERT(spa != NULL);
10451 	ASSERT(bm != NULL);
10452 
10453 	/*
10454 	 * First try to use an allocator assigned to the syncthread, and set
10455 	 * the corresponding write issue taskq for the allocator.
10456 	 * Note, we must have an open pool to do this.
10457 	 */
10458 	if (spa->spa_sync_tq != NULL) {
10459 		spa_syncthread_info_t *ti = spa->spa_syncthreads;
10460 		for (int i = 0; i < spa->spa_alloc_count; i++, ti++) {
10461 			if (ti->sti_thread == curthread) {
10462 				zio->io_allocator = ti->sti_allocator;
10463 				return;
10464 			}
10465 		}
10466 	}
10467 
10468 	/*
10469 	 * We want to try to use as many allocators as possible to help improve
10470 	 * performance, but we also want logically adjacent IOs to be physically
10471 	 * adjacent to improve sequential read performance. We chunk each object
10472 	 * into 2^20 block regions, and then hash based on the objset, object,
10473 	 * level, and region to accomplish both of these goals.
10474 	 */
10475 	uint64_t hv = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level,
10476 	    bm->zb_blkid >> 20);
10477 
10478 	zio->io_allocator = (uint_t)hv % spa->spa_alloc_count;
10479 }
10480 
10481 /*
10482  * ==========================================================================
10483  * Miscellaneous routines
10484  * ==========================================================================
10485  */
10486 
10487 /*
10488  * Remove all pools in the system.
10489  */
10490 void
10491 spa_evict_all(void)
10492 {
10493 	spa_t *spa;
10494 
10495 	/*
10496 	 * Remove all cached state.  All pools should be closed now,
10497 	 * so every spa in the AVL tree should be unreferenced.
10498 	 */
10499 	mutex_enter(&spa_namespace_lock);
10500 	while ((spa = spa_next(NULL)) != NULL) {
10501 		/*
10502 		 * Stop async tasks.  The async thread may need to detach
10503 		 * a device that's been replaced, which requires grabbing
10504 		 * spa_namespace_lock, so we must drop it here.
10505 		 */
10506 		spa_open_ref(spa, FTAG);
10507 		mutex_exit(&spa_namespace_lock);
10508 		spa_async_suspend(spa);
10509 		mutex_enter(&spa_namespace_lock);
10510 		spa_close(spa, FTAG);
10511 
10512 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
10513 			spa_unload(spa);
10514 			spa_deactivate(spa);
10515 		}
10516 		spa_remove(spa);
10517 	}
10518 	mutex_exit(&spa_namespace_lock);
10519 }
10520 
10521 vdev_t *
10522 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
10523 {
10524 	vdev_t *vd;
10525 	int i;
10526 
10527 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
10528 		return (vd);
10529 
10530 	if (aux) {
10531 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
10532 			vd = spa->spa_l2cache.sav_vdevs[i];
10533 			if (vd->vdev_guid == guid)
10534 				return (vd);
10535 		}
10536 
10537 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
10538 			vd = spa->spa_spares.sav_vdevs[i];
10539 			if (vd->vdev_guid == guid)
10540 				return (vd);
10541 		}
10542 	}
10543 
10544 	return (NULL);
10545 }
10546 
10547 void
10548 spa_upgrade(spa_t *spa, uint64_t version)
10549 {
10550 	ASSERT(spa_writeable(spa));
10551 
10552 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
10553 
10554 	/*
10555 	 * This should only be called for a non-faulted pool, and since a
10556 	 * future version would result in an unopenable pool, this shouldn't be
10557 	 * possible.
10558 	 */
10559 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
10560 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
10561 
10562 	spa->spa_uberblock.ub_version = version;
10563 	vdev_config_dirty(spa->spa_root_vdev);
10564 
10565 	spa_config_exit(spa, SCL_ALL, FTAG);
10566 
10567 	txg_wait_synced(spa_get_dsl(spa), 0);
10568 }
10569 
10570 static boolean_t
10571 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
10572 {
10573 	(void) spa;
10574 	int i;
10575 	uint64_t vdev_guid;
10576 
10577 	for (i = 0; i < sav->sav_count; i++)
10578 		if (sav->sav_vdevs[i]->vdev_guid == guid)
10579 			return (B_TRUE);
10580 
10581 	for (i = 0; i < sav->sav_npending; i++) {
10582 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
10583 		    &vdev_guid) == 0 && vdev_guid == guid)
10584 			return (B_TRUE);
10585 	}
10586 
10587 	return (B_FALSE);
10588 }
10589 
10590 boolean_t
10591 spa_has_l2cache(spa_t *spa, uint64_t guid)
10592 {
10593 	return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
10594 }
10595 
10596 boolean_t
10597 spa_has_spare(spa_t *spa, uint64_t guid)
10598 {
10599 	return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
10600 }
10601 
10602 /*
10603  * Check if a pool has an active shared spare device.
10604  * Note: reference count of an active spare is 2, as a spare and as a replace
10605  */
10606 static boolean_t
10607 spa_has_active_shared_spare(spa_t *spa)
10608 {
10609 	int i, refcnt;
10610 	uint64_t pool;
10611 	spa_aux_vdev_t *sav = &spa->spa_spares;
10612 
10613 	for (i = 0; i < sav->sav_count; i++) {
10614 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
10615 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
10616 		    refcnt > 2)
10617 			return (B_TRUE);
10618 	}
10619 
10620 	return (B_FALSE);
10621 }
10622 
10623 uint64_t
10624 spa_total_metaslabs(spa_t *spa)
10625 {
10626 	vdev_t *rvd = spa->spa_root_vdev;
10627 
10628 	uint64_t m = 0;
10629 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
10630 		vdev_t *vd = rvd->vdev_child[c];
10631 		if (!vdev_is_concrete(vd))
10632 			continue;
10633 		m += vd->vdev_ms_count;
10634 	}
10635 	return (m);
10636 }
10637 
10638 /*
10639  * Notify any waiting threads that some activity has switched from being in-
10640  * progress to not-in-progress so that the thread can wake up and determine
10641  * whether it is finished waiting.
10642  */
10643 void
10644 spa_notify_waiters(spa_t *spa)
10645 {
10646 	/*
10647 	 * Acquiring spa_activities_lock here prevents the cv_broadcast from
10648 	 * happening between the waiting thread's check and cv_wait.
10649 	 */
10650 	mutex_enter(&spa->spa_activities_lock);
10651 	cv_broadcast(&spa->spa_activities_cv);
10652 	mutex_exit(&spa->spa_activities_lock);
10653 }
10654 
10655 /*
10656  * Notify any waiting threads that the pool is exporting, and then block until
10657  * they are finished using the spa_t.
10658  */
10659 void
10660 spa_wake_waiters(spa_t *spa)
10661 {
10662 	mutex_enter(&spa->spa_activities_lock);
10663 	spa->spa_waiters_cancel = B_TRUE;
10664 	cv_broadcast(&spa->spa_activities_cv);
10665 	while (spa->spa_waiters != 0)
10666 		cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
10667 	spa->spa_waiters_cancel = B_FALSE;
10668 	mutex_exit(&spa->spa_activities_lock);
10669 }
10670 
10671 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
10672 static boolean_t
10673 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
10674 {
10675 	spa_t *spa = vd->vdev_spa;
10676 
10677 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
10678 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10679 	ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
10680 	    activity == ZPOOL_WAIT_TRIM);
10681 
10682 	kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
10683 	    &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
10684 
10685 	mutex_exit(&spa->spa_activities_lock);
10686 	mutex_enter(lock);
10687 	mutex_enter(&spa->spa_activities_lock);
10688 
10689 	boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
10690 	    (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
10691 	    (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
10692 	mutex_exit(lock);
10693 
10694 	if (in_progress)
10695 		return (B_TRUE);
10696 
10697 	for (int i = 0; i < vd->vdev_children; i++) {
10698 		if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
10699 		    activity))
10700 			return (B_TRUE);
10701 	}
10702 
10703 	return (B_FALSE);
10704 }
10705 
10706 /*
10707  * If use_guid is true, this checks whether the vdev specified by guid is
10708  * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
10709  * is being initialized/trimmed. The caller must hold the config lock and
10710  * spa_activities_lock.
10711  */
10712 static int
10713 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
10714     zpool_wait_activity_t activity, boolean_t *in_progress)
10715 {
10716 	mutex_exit(&spa->spa_activities_lock);
10717 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10718 	mutex_enter(&spa->spa_activities_lock);
10719 
10720 	vdev_t *vd;
10721 	if (use_guid) {
10722 		vd = spa_lookup_by_guid(spa, guid, B_FALSE);
10723 		if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
10724 			spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10725 			return (EINVAL);
10726 		}
10727 	} else {
10728 		vd = spa->spa_root_vdev;
10729 	}
10730 
10731 	*in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
10732 
10733 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10734 	return (0);
10735 }
10736 
10737 /*
10738  * Locking for waiting threads
10739  * ---------------------------
10740  *
10741  * Waiting threads need a way to check whether a given activity is in progress,
10742  * and then, if it is, wait for it to complete. Each activity will have some
10743  * in-memory representation of the relevant on-disk state which can be used to
10744  * determine whether or not the activity is in progress. The in-memory state and
10745  * the locking used to protect it will be different for each activity, and may
10746  * not be suitable for use with a cvar (e.g., some state is protected by the
10747  * config lock). To allow waiting threads to wait without any races, another
10748  * lock, spa_activities_lock, is used.
10749  *
10750  * When the state is checked, both the activity-specific lock (if there is one)
10751  * and spa_activities_lock are held. In some cases, the activity-specific lock
10752  * is acquired explicitly (e.g. the config lock). In others, the locking is
10753  * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
10754  * thread releases the activity-specific lock and, if the activity is in
10755  * progress, then cv_waits using spa_activities_lock.
10756  *
10757  * The waiting thread is woken when another thread, one completing some
10758  * activity, updates the state of the activity and then calls
10759  * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
10760  * needs to hold its activity-specific lock when updating the state, and this
10761  * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
10762  *
10763  * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
10764  * and because it is held when the waiting thread checks the state of the
10765  * activity, it can never be the case that the completing thread both updates
10766  * the activity state and cv_broadcasts in between the waiting thread's check
10767  * and cv_wait. Thus, a waiting thread can never miss a wakeup.
10768  *
10769  * In order to prevent deadlock, when the waiting thread does its check, in some
10770  * cases it will temporarily drop spa_activities_lock in order to acquire the
10771  * activity-specific lock. The order in which spa_activities_lock and the
10772  * activity specific lock are acquired in the waiting thread is determined by
10773  * the order in which they are acquired in the completing thread; if the
10774  * completing thread calls spa_notify_waiters with the activity-specific lock
10775  * held, then the waiting thread must also acquire the activity-specific lock
10776  * first.
10777  */
10778 
10779 static int
10780 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
10781     boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
10782 {
10783 	int error = 0;
10784 
10785 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10786 
10787 	switch (activity) {
10788 	case ZPOOL_WAIT_CKPT_DISCARD:
10789 		*in_progress =
10790 		    (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
10791 		    zap_contains(spa_meta_objset(spa),
10792 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
10793 		    ENOENT);
10794 		break;
10795 	case ZPOOL_WAIT_FREE:
10796 		*in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
10797 		    !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
10798 		    spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
10799 		    spa_livelist_delete_check(spa));
10800 		break;
10801 	case ZPOOL_WAIT_INITIALIZE:
10802 	case ZPOOL_WAIT_TRIM:
10803 		error = spa_vdev_activity_in_progress(spa, use_tag, tag,
10804 		    activity, in_progress);
10805 		break;
10806 	case ZPOOL_WAIT_REPLACE:
10807 		mutex_exit(&spa->spa_activities_lock);
10808 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10809 		mutex_enter(&spa->spa_activities_lock);
10810 
10811 		*in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
10812 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10813 		break;
10814 	case ZPOOL_WAIT_REMOVE:
10815 		*in_progress = (spa->spa_removing_phys.sr_state ==
10816 		    DSS_SCANNING);
10817 		break;
10818 	case ZPOOL_WAIT_RESILVER:
10819 		*in_progress = vdev_rebuild_active(spa->spa_root_vdev);
10820 		if (*in_progress)
10821 			break;
10822 		zfs_fallthrough;
10823 	case ZPOOL_WAIT_SCRUB:
10824 	{
10825 		boolean_t scanning, paused, is_scrub;
10826 		dsl_scan_t *scn =  spa->spa_dsl_pool->dp_scan;
10827 
10828 		is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
10829 		scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
10830 		paused = dsl_scan_is_paused_scrub(scn);
10831 		*in_progress = (scanning && !paused &&
10832 		    is_scrub == (activity == ZPOOL_WAIT_SCRUB));
10833 		break;
10834 	}
10835 	case ZPOOL_WAIT_RAIDZ_EXPAND:
10836 	{
10837 		vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
10838 		*in_progress = (vre != NULL && vre->vre_state == DSS_SCANNING);
10839 		break;
10840 	}
10841 	default:
10842 		panic("unrecognized value for activity %d", activity);
10843 	}
10844 
10845 	return (error);
10846 }
10847 
10848 static int
10849 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
10850     boolean_t use_tag, uint64_t tag, boolean_t *waited)
10851 {
10852 	/*
10853 	 * The tag is used to distinguish between instances of an activity.
10854 	 * 'initialize' and 'trim' are the only activities that we use this for.
10855 	 * The other activities can only have a single instance in progress in a
10856 	 * pool at one time, making the tag unnecessary.
10857 	 *
10858 	 * There can be multiple devices being replaced at once, but since they
10859 	 * all finish once resilvering finishes, we don't bother keeping track
10860 	 * of them individually, we just wait for them all to finish.
10861 	 */
10862 	if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
10863 	    activity != ZPOOL_WAIT_TRIM)
10864 		return (EINVAL);
10865 
10866 	if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
10867 		return (EINVAL);
10868 
10869 	spa_t *spa;
10870 	int error = spa_open(pool, &spa, FTAG);
10871 	if (error != 0)
10872 		return (error);
10873 
10874 	/*
10875 	 * Increment the spa's waiter count so that we can call spa_close and
10876 	 * still ensure that the spa_t doesn't get freed before this thread is
10877 	 * finished with it when the pool is exported. We want to call spa_close
10878 	 * before we start waiting because otherwise the additional ref would
10879 	 * prevent the pool from being exported or destroyed throughout the
10880 	 * potentially long wait.
10881 	 */
10882 	mutex_enter(&spa->spa_activities_lock);
10883 	spa->spa_waiters++;
10884 	spa_close(spa, FTAG);
10885 
10886 	*waited = B_FALSE;
10887 	for (;;) {
10888 		boolean_t in_progress;
10889 		error = spa_activity_in_progress(spa, activity, use_tag, tag,
10890 		    &in_progress);
10891 
10892 		if (error || !in_progress || spa->spa_waiters_cancel)
10893 			break;
10894 
10895 		*waited = B_TRUE;
10896 
10897 		if (cv_wait_sig(&spa->spa_activities_cv,
10898 		    &spa->spa_activities_lock) == 0) {
10899 			error = EINTR;
10900 			break;
10901 		}
10902 	}
10903 
10904 	spa->spa_waiters--;
10905 	cv_signal(&spa->spa_waiters_cv);
10906 	mutex_exit(&spa->spa_activities_lock);
10907 
10908 	return (error);
10909 }
10910 
10911 /*
10912  * Wait for a particular instance of the specified activity to complete, where
10913  * the instance is identified by 'tag'
10914  */
10915 int
10916 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
10917     boolean_t *waited)
10918 {
10919 	return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
10920 }
10921 
10922 /*
10923  * Wait for all instances of the specified activity complete
10924  */
10925 int
10926 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
10927 {
10928 
10929 	return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
10930 }
10931 
10932 sysevent_t *
10933 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10934 {
10935 	sysevent_t *ev = NULL;
10936 #ifdef _KERNEL
10937 	nvlist_t *resource;
10938 
10939 	resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
10940 	if (resource) {
10941 		ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
10942 		ev->resource = resource;
10943 	}
10944 #else
10945 	(void) spa, (void) vd, (void) hist_nvl, (void) name;
10946 #endif
10947 	return (ev);
10948 }
10949 
10950 void
10951 spa_event_post(sysevent_t *ev)
10952 {
10953 #ifdef _KERNEL
10954 	if (ev) {
10955 		zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
10956 		kmem_free(ev, sizeof (*ev));
10957 	}
10958 #else
10959 	(void) ev;
10960 #endif
10961 }
10962 
10963 /*
10964  * Post a zevent corresponding to the given sysevent.   The 'name' must be one
10965  * of the event definitions in sys/sysevent/eventdefs.h.  The payload will be
10966  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
10967  * in the userland libzpool, as we don't want consumers to misinterpret ztest
10968  * or zdb as real changes.
10969  */
10970 void
10971 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10972 {
10973 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
10974 }
10975 
10976 /* state manipulation functions */
10977 EXPORT_SYMBOL(spa_open);
10978 EXPORT_SYMBOL(spa_open_rewind);
10979 EXPORT_SYMBOL(spa_get_stats);
10980 EXPORT_SYMBOL(spa_create);
10981 EXPORT_SYMBOL(spa_import);
10982 EXPORT_SYMBOL(spa_tryimport);
10983 EXPORT_SYMBOL(spa_destroy);
10984 EXPORT_SYMBOL(spa_export);
10985 EXPORT_SYMBOL(spa_reset);
10986 EXPORT_SYMBOL(spa_async_request);
10987 EXPORT_SYMBOL(spa_async_suspend);
10988 EXPORT_SYMBOL(spa_async_resume);
10989 EXPORT_SYMBOL(spa_inject_addref);
10990 EXPORT_SYMBOL(spa_inject_delref);
10991 EXPORT_SYMBOL(spa_scan_stat_init);
10992 EXPORT_SYMBOL(spa_scan_get_stats);
10993 
10994 /* device manipulation */
10995 EXPORT_SYMBOL(spa_vdev_add);
10996 EXPORT_SYMBOL(spa_vdev_attach);
10997 EXPORT_SYMBOL(spa_vdev_detach);
10998 EXPORT_SYMBOL(spa_vdev_setpath);
10999 EXPORT_SYMBOL(spa_vdev_setfru);
11000 EXPORT_SYMBOL(spa_vdev_split_mirror);
11001 
11002 /* spare statech is global across all pools) */
11003 EXPORT_SYMBOL(spa_spare_add);
11004 EXPORT_SYMBOL(spa_spare_remove);
11005 EXPORT_SYMBOL(spa_spare_exists);
11006 EXPORT_SYMBOL(spa_spare_activate);
11007 
11008 /* L2ARC statech is global across all pools) */
11009 EXPORT_SYMBOL(spa_l2cache_add);
11010 EXPORT_SYMBOL(spa_l2cache_remove);
11011 EXPORT_SYMBOL(spa_l2cache_exists);
11012 EXPORT_SYMBOL(spa_l2cache_activate);
11013 EXPORT_SYMBOL(spa_l2cache_drop);
11014 
11015 /* scanning */
11016 EXPORT_SYMBOL(spa_scan);
11017 EXPORT_SYMBOL(spa_scan_range);
11018 EXPORT_SYMBOL(spa_scan_stop);
11019 
11020 /* spa syncing */
11021 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
11022 EXPORT_SYMBOL(spa_sync_allpools);
11023 
11024 /* properties */
11025 EXPORT_SYMBOL(spa_prop_set);
11026 EXPORT_SYMBOL(spa_prop_get);
11027 EXPORT_SYMBOL(spa_prop_clear_bootfs);
11028 
11029 /* asynchronous event notification */
11030 EXPORT_SYMBOL(spa_event_notify);
11031 
11032 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW,
11033 	"Percentage of CPUs to run a metaslab preload taskq");
11034 
11035 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
11036 	"log2 fraction of arc that can be used by inflight I/Os when "
11037 	"verifying pool during import");
11038 
11039 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
11040 	"Set to traverse metadata on pool import");
11041 
11042 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
11043 	"Set to traverse data on pool import");
11044 
11045 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
11046 	"Print vdev tree to zfs_dbgmsg during pool import");
11047 
11048 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RW,
11049 	"Percentage of CPUs to run an IO worker thread");
11050 
11051 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RW,
11052 	"Number of threads per IO worker taskqueue");
11053 
11054 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
11055 	"Allow importing pool with up to this number of missing top-level "
11056 	"vdevs (in read-only mode)");
11057 
11058 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
11059 	ZMOD_RW, "Set the livelist condense zthr to pause");
11060 
11061 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
11062 	ZMOD_RW, "Set the livelist condense synctask to pause");
11063 
11064 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
11065 	INT, ZMOD_RW,
11066 	"Whether livelist condensing was canceled in the synctask");
11067 
11068 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
11069 	INT, ZMOD_RW,
11070 	"Whether livelist condensing was canceled in the zthr function");
11071 
11072 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
11073 	ZMOD_RW,
11074 	"Whether extra ALLOC blkptrs were added to a livelist entry while it "
11075 	"was being condensed");
11076 
11077 #ifdef _KERNEL
11078 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_read,
11079 	spa_taskq_read_param_set, spa_taskq_read_param_get, ZMOD_RW,
11080 	"Configure IO queues for read IO");
11081 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_write,
11082 	spa_taskq_write_param_set, spa_taskq_write_param_get, ZMOD_RW,
11083 	"Configure IO queues for write IO");
11084 #endif
11085 
11086 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_write_tpq, UINT, ZMOD_RW,
11087 	"Number of CPUs per write issue taskq");
11088