1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31 * Copyright 2018 Joyent, Inc.
32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33 * Copyright 2017 Joyent, Inc.
34 * Copyright (c) 2017, Intel Corporation.
35 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36 * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
37 * Copyright (c) 2023, 2024, Klara Inc.
38 */
39
40 /*
41 * SPA: Storage Pool Allocator
42 *
43 * This file contains all the routines used when modifying on-disk SPA state.
44 * This includes opening, importing, destroying, exporting a pool, and syncing a
45 * pool.
46 */
47
48 #include <sys/zfs_context.h>
49 #include <sys/fm/fs/zfs.h>
50 #include <sys/spa_impl.h>
51 #include <sys/zio.h>
52 #include <sys/zio_checksum.h>
53 #include <sys/dmu.h>
54 #include <sys/dmu_tx.h>
55 #include <sys/zap.h>
56 #include <sys/zil.h>
57 #include <sys/brt.h>
58 #include <sys/ddt.h>
59 #include <sys/vdev_impl.h>
60 #include <sys/vdev_removal.h>
61 #include <sys/vdev_indirect_mapping.h>
62 #include <sys/vdev_indirect_births.h>
63 #include <sys/vdev_initialize.h>
64 #include <sys/vdev_rebuild.h>
65 #include <sys/vdev_trim.h>
66 #include <sys/vdev_disk.h>
67 #include <sys/vdev_raidz.h>
68 #include <sys/vdev_draid.h>
69 #include <sys/metaslab.h>
70 #include <sys/metaslab_impl.h>
71 #include <sys/mmp.h>
72 #include <sys/uberblock_impl.h>
73 #include <sys/txg.h>
74 #include <sys/avl.h>
75 #include <sys/bpobj.h>
76 #include <sys/dmu_traverse.h>
77 #include <sys/dmu_objset.h>
78 #include <sys/unique.h>
79 #include <sys/dsl_pool.h>
80 #include <sys/dsl_dataset.h>
81 #include <sys/dsl_dir.h>
82 #include <sys/dsl_prop.h>
83 #include <sys/dsl_synctask.h>
84 #include <sys/fs/zfs.h>
85 #include <sys/arc.h>
86 #include <sys/callb.h>
87 #include <sys/systeminfo.h>
88 #include <sys/zfs_ioctl.h>
89 #include <sys/dsl_scan.h>
90 #include <sys/zfeature.h>
91 #include <sys/dsl_destroy.h>
92 #include <sys/zvol.h>
93
94 #ifdef _KERNEL
95 #include <sys/fm/protocol.h>
96 #include <sys/fm/util.h>
97 #include <sys/callb.h>
98 #include <sys/zone.h>
99 #include <sys/vmsystm.h>
100 #endif /* _KERNEL */
101
102 #include "zfs_prop.h"
103 #include "zfs_comutil.h"
104 #include <cityhash.h>
105
106 /*
107 * spa_thread() existed on Illumos as a parent thread for the various worker
108 * threads that actually run the pool, as a way to both reference the entire
109 * pool work as a single object, and to share properties like scheduling
110 * options. It has not yet been adapted to Linux or FreeBSD. This define is
111 * used to mark related parts of the code to make things easier for the reader,
112 * and to compile this code out. It can be removed when someone implements it,
113 * moves it to some Illumos-specific place, or removes it entirely.
114 */
115 #undef HAVE_SPA_THREAD
116
117 /*
118 * The "System Duty Cycle" scheduling class is an Illumos feature to help
119 * prevent CPU-intensive kernel threads from affecting latency on interactive
120 * threads. It doesn't exist on Linux or FreeBSD, so the supporting code is
121 * gated behind a define. On Illumos SDC depends on spa_thread(), but
122 * spa_thread() also has other uses, so this is a separate define.
123 */
124 #undef HAVE_SYSDC
125
126 /*
127 * The interval, in seconds, at which failed configuration cache file writes
128 * should be retried.
129 */
130 int zfs_ccw_retry_interval = 300;
131
132 typedef enum zti_modes {
133 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
134 ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */
135 ZTI_MODE_SYNC, /* sync thread assigned */
136 ZTI_MODE_NULL, /* don't create a taskq */
137 ZTI_NMODES
138 } zti_modes_t;
139
140 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
141 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
142 #define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 }
143 #define ZTI_SYNC { ZTI_MODE_SYNC, 0, 1 }
144 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
145
146 #define ZTI_N(n) ZTI_P(n, 1)
147 #define ZTI_ONE ZTI_N(1)
148
149 typedef struct zio_taskq_info {
150 zti_modes_t zti_mode;
151 uint_t zti_value;
152 uint_t zti_count;
153 } zio_taskq_info_t;
154
155 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
156 "iss", "iss_h", "int", "int_h"
157 };
158
159 /*
160 * This table defines the taskq settings for each ZFS I/O type. When
161 * initializing a pool, we use this table to create an appropriately sized
162 * taskq. Some operations are low volume and therefore have a small, static
163 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
164 * macros. Other operations process a large amount of data; the ZTI_SCALE
165 * macro causes us to create a taskq oriented for throughput. Some operations
166 * are so high frequency and short-lived that the taskq itself can become a
167 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
168 * additional degree of parallelism specified by the number of threads per-
169 * taskq and the number of taskqs; when dispatching an event in this case, the
170 * particular taskq is chosen at random. ZTI_SCALE uses a number of taskqs
171 * that scales with the number of CPUs.
172 *
173 * The different taskq priorities are to handle the different contexts (issue
174 * and interrupt) and then to reserve threads for high priority I/Os that
175 * need to be handled with minimum delay. Illumos taskq has unfair TQ_FRONT
176 * implementation, so separate high priority threads are used there.
177 */
178 static zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
179 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
180 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
181 { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */
182 #ifdef illumos
183 { ZTI_SYNC, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */
184 #else
185 { ZTI_SYNC, ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* WRITE */
186 #endif
187 { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
188 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
189 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FLUSH */
190 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */
191 };
192
193 static void spa_sync_version(void *arg, dmu_tx_t *tx);
194 static void spa_sync_props(void *arg, dmu_tx_t *tx);
195 static boolean_t spa_has_active_shared_spare(spa_t *spa);
196 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
197 const char **ereport);
198 static void spa_vdev_resilver_done(spa_t *spa);
199
200 /*
201 * Percentage of all CPUs that can be used by the metaslab preload taskq.
202 */
203 static uint_t metaslab_preload_pct = 50;
204
205 static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */
206 static uint_t zio_taskq_batch_tpq; /* threads per taskq */
207
208 #ifdef HAVE_SYSDC
209 static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
210 static const uint_t zio_taskq_basedc = 80; /* base duty cycle */
211 #endif
212
213 #ifdef HAVE_SPA_THREAD
214 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
215 #endif
216
217 static uint_t zio_taskq_write_tpq = 16;
218
219 /*
220 * Report any spa_load_verify errors found, but do not fail spa_load.
221 * This is used by zdb to analyze non-idle pools.
222 */
223 boolean_t spa_load_verify_dryrun = B_FALSE;
224
225 /*
226 * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
227 * This is used by zdb for spacemaps verification.
228 */
229 boolean_t spa_mode_readable_spacemaps = B_FALSE;
230
231 /*
232 * This (illegal) pool name is used when temporarily importing a spa_t in order
233 * to get the vdev stats associated with the imported devices.
234 */
235 #define TRYIMPORT_NAME "$import"
236
237 /*
238 * For debugging purposes: print out vdev tree during pool import.
239 */
240 static int spa_load_print_vdev_tree = B_FALSE;
241
242 /*
243 * A non-zero value for zfs_max_missing_tvds means that we allow importing
244 * pools with missing top-level vdevs. This is strictly intended for advanced
245 * pool recovery cases since missing data is almost inevitable. Pools with
246 * missing devices can only be imported read-only for safety reasons, and their
247 * fail-mode will be automatically set to "continue".
248 *
249 * With 1 missing vdev we should be able to import the pool and mount all
250 * datasets. User data that was not modified after the missing device has been
251 * added should be recoverable. This means that snapshots created prior to the
252 * addition of that device should be completely intact.
253 *
254 * With 2 missing vdevs, some datasets may fail to mount since there are
255 * dataset statistics that are stored as regular metadata. Some data might be
256 * recoverable if those vdevs were added recently.
257 *
258 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
259 * may be missing entirely. Chances of data recovery are very low. Note that
260 * there are also risks of performing an inadvertent rewind as we might be
261 * missing all the vdevs with the latest uberblocks.
262 */
263 uint64_t zfs_max_missing_tvds = 0;
264
265 /*
266 * The parameters below are similar to zfs_max_missing_tvds but are only
267 * intended for a preliminary open of the pool with an untrusted config which
268 * might be incomplete or out-dated.
269 *
270 * We are more tolerant for pools opened from a cachefile since we could have
271 * an out-dated cachefile where a device removal was not registered.
272 * We could have set the limit arbitrarily high but in the case where devices
273 * are really missing we would want to return the proper error codes; we chose
274 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
275 * and we get a chance to retrieve the trusted config.
276 */
277 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
278
279 /*
280 * In the case where config was assembled by scanning device paths (/dev/dsks
281 * by default) we are less tolerant since all the existing devices should have
282 * been detected and we want spa_load to return the right error codes.
283 */
284 uint64_t zfs_max_missing_tvds_scan = 0;
285
286 /*
287 * Debugging aid that pauses spa_sync() towards the end.
288 */
289 static const boolean_t zfs_pause_spa_sync = B_FALSE;
290
291 /*
292 * Variables to indicate the livelist condense zthr func should wait at certain
293 * points for the livelist to be removed - used to test condense/destroy races
294 */
295 static int zfs_livelist_condense_zthr_pause = 0;
296 static int zfs_livelist_condense_sync_pause = 0;
297
298 /*
299 * Variables to track whether or not condense cancellation has been
300 * triggered in testing.
301 */
302 static int zfs_livelist_condense_sync_cancel = 0;
303 static int zfs_livelist_condense_zthr_cancel = 0;
304
305 /*
306 * Variable to track whether or not extra ALLOC blkptrs were added to a
307 * livelist entry while it was being condensed (caused by the way we track
308 * remapped blkptrs in dbuf_remap_impl)
309 */
310 static int zfs_livelist_condense_new_alloc = 0;
311
312 /*
313 * ==========================================================================
314 * SPA properties routines
315 * ==========================================================================
316 */
317
318 /*
319 * Add a (source=src, propname=propval) list to an nvlist.
320 */
321 static void
spa_prop_add_list(nvlist_t * nvl,zpool_prop_t prop,const char * strval,uint64_t intval,zprop_source_t src)322 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
323 uint64_t intval, zprop_source_t src)
324 {
325 const char *propname = zpool_prop_to_name(prop);
326 nvlist_t *propval;
327
328 propval = fnvlist_alloc();
329 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
330
331 if (strval != NULL)
332 fnvlist_add_string(propval, ZPROP_VALUE, strval);
333 else
334 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
335
336 fnvlist_add_nvlist(nvl, propname, propval);
337 nvlist_free(propval);
338 }
339
340 static int
spa_prop_add(spa_t * spa,const char * propname,nvlist_t * outnvl)341 spa_prop_add(spa_t *spa, const char *propname, nvlist_t *outnvl)
342 {
343 zpool_prop_t prop = zpool_name_to_prop(propname);
344 zprop_source_t src = ZPROP_SRC_NONE;
345 uint64_t intval;
346 int err;
347
348 /*
349 * NB: Not all properties lookups via this API require
350 * the spa props lock, so they must explicitly grab it here.
351 */
352 switch (prop) {
353 case ZPOOL_PROP_DEDUPCACHED:
354 err = ddt_get_pool_dedup_cached(spa, &intval);
355 if (err != 0)
356 return (SET_ERROR(err));
357 break;
358 default:
359 return (SET_ERROR(EINVAL));
360 }
361
362 spa_prop_add_list(outnvl, prop, NULL, intval, src);
363
364 return (0);
365 }
366
367 int
spa_prop_get_nvlist(spa_t * spa,char ** props,unsigned int n_props,nvlist_t * outnvl)368 spa_prop_get_nvlist(spa_t *spa, char **props, unsigned int n_props,
369 nvlist_t *outnvl)
370 {
371 int err = 0;
372
373 if (props == NULL)
374 return (0);
375
376 for (unsigned int i = 0; i < n_props && err == 0; i++) {
377 err = spa_prop_add(spa, props[i], outnvl);
378 }
379
380 return (err);
381 }
382
383 /*
384 * Add a user property (source=src, propname=propval) to an nvlist.
385 */
386 static void
spa_prop_add_user(nvlist_t * nvl,const char * propname,char * strval,zprop_source_t src)387 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
388 zprop_source_t src)
389 {
390 nvlist_t *propval;
391
392 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
393 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
394 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
395 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
396 nvlist_free(propval);
397 }
398
399 /*
400 * Get property values from the spa configuration.
401 */
402 static void
spa_prop_get_config(spa_t * spa,nvlist_t * nv)403 spa_prop_get_config(spa_t *spa, nvlist_t *nv)
404 {
405 vdev_t *rvd = spa->spa_root_vdev;
406 dsl_pool_t *pool = spa->spa_dsl_pool;
407 uint64_t size, alloc, cap, version;
408 const zprop_source_t src = ZPROP_SRC_NONE;
409 spa_config_dirent_t *dp;
410 metaslab_class_t *mc = spa_normal_class(spa);
411
412 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
413
414 if (rvd != NULL) {
415 alloc = metaslab_class_get_alloc(mc);
416 alloc += metaslab_class_get_alloc(spa_special_class(spa));
417 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
418 alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
419
420 size = metaslab_class_get_space(mc);
421 size += metaslab_class_get_space(spa_special_class(spa));
422 size += metaslab_class_get_space(spa_dedup_class(spa));
423 size += metaslab_class_get_space(spa_embedded_log_class(spa));
424
425 spa_prop_add_list(nv, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
426 spa_prop_add_list(nv, ZPOOL_PROP_SIZE, NULL, size, src);
427 spa_prop_add_list(nv, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
428 spa_prop_add_list(nv, ZPOOL_PROP_FREE, NULL,
429 size - alloc, src);
430 spa_prop_add_list(nv, ZPOOL_PROP_CHECKPOINT, NULL,
431 spa->spa_checkpoint_info.sci_dspace, src);
432
433 spa_prop_add_list(nv, ZPOOL_PROP_FRAGMENTATION, NULL,
434 metaslab_class_fragmentation(mc), src);
435 spa_prop_add_list(nv, ZPOOL_PROP_EXPANDSZ, NULL,
436 metaslab_class_expandable_space(mc), src);
437 spa_prop_add_list(nv, ZPOOL_PROP_READONLY, NULL,
438 (spa_mode(spa) == SPA_MODE_READ), src);
439
440 cap = (size == 0) ? 0 : (alloc * 100 / size);
441 spa_prop_add_list(nv, ZPOOL_PROP_CAPACITY, NULL, cap, src);
442
443 spa_prop_add_list(nv, ZPOOL_PROP_DEDUPRATIO, NULL,
444 ddt_get_pool_dedup_ratio(spa), src);
445 spa_prop_add_list(nv, ZPOOL_PROP_BCLONEUSED, NULL,
446 brt_get_used(spa), src);
447 spa_prop_add_list(nv, ZPOOL_PROP_BCLONESAVED, NULL,
448 brt_get_saved(spa), src);
449 spa_prop_add_list(nv, ZPOOL_PROP_BCLONERATIO, NULL,
450 brt_get_ratio(spa), src);
451
452 spa_prop_add_list(nv, ZPOOL_PROP_DEDUP_TABLE_SIZE, NULL,
453 ddt_get_ddt_dsize(spa), src);
454 spa_prop_add_list(nv, ZPOOL_PROP_HEALTH, NULL,
455 rvd->vdev_state, src);
456 spa_prop_add_list(nv, ZPOOL_PROP_LAST_SCRUBBED_TXG, NULL,
457 spa_get_last_scrubbed_txg(spa), src);
458
459 version = spa_version(spa);
460 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
461 spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
462 version, ZPROP_SRC_DEFAULT);
463 } else {
464 spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
465 version, ZPROP_SRC_LOCAL);
466 }
467 spa_prop_add_list(nv, ZPOOL_PROP_LOAD_GUID,
468 NULL, spa_load_guid(spa), src);
469 }
470
471 if (pool != NULL) {
472 /*
473 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
474 * when opening pools before this version freedir will be NULL.
475 */
476 if (pool->dp_free_dir != NULL) {
477 spa_prop_add_list(nv, ZPOOL_PROP_FREEING, NULL,
478 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
479 src);
480 } else {
481 spa_prop_add_list(nv, ZPOOL_PROP_FREEING,
482 NULL, 0, src);
483 }
484
485 if (pool->dp_leak_dir != NULL) {
486 spa_prop_add_list(nv, ZPOOL_PROP_LEAKED, NULL,
487 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
488 src);
489 } else {
490 spa_prop_add_list(nv, ZPOOL_PROP_LEAKED,
491 NULL, 0, src);
492 }
493 }
494
495 spa_prop_add_list(nv, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
496
497 if (spa->spa_comment != NULL) {
498 spa_prop_add_list(nv, ZPOOL_PROP_COMMENT, spa->spa_comment,
499 0, ZPROP_SRC_LOCAL);
500 }
501
502 if (spa->spa_compatibility != NULL) {
503 spa_prop_add_list(nv, ZPOOL_PROP_COMPATIBILITY,
504 spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
505 }
506
507 if (spa->spa_root != NULL)
508 spa_prop_add_list(nv, ZPOOL_PROP_ALTROOT, spa->spa_root,
509 0, ZPROP_SRC_LOCAL);
510
511 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
512 spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
513 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
514 } else {
515 spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
516 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
517 }
518
519 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
520 spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
521 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
522 } else {
523 spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
524 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
525 }
526
527 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
528 if (dp->scd_path == NULL) {
529 spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
530 "none", 0, ZPROP_SRC_LOCAL);
531 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
532 spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
533 dp->scd_path, 0, ZPROP_SRC_LOCAL);
534 }
535 }
536 }
537
538 /*
539 * Get zpool property values.
540 */
541 int
spa_prop_get(spa_t * spa,nvlist_t * nv)542 spa_prop_get(spa_t *spa, nvlist_t *nv)
543 {
544 objset_t *mos = spa->spa_meta_objset;
545 zap_cursor_t zc;
546 zap_attribute_t *za;
547 dsl_pool_t *dp;
548 int err = 0;
549
550 dp = spa_get_dsl(spa);
551 dsl_pool_config_enter(dp, FTAG);
552 za = zap_attribute_alloc();
553 mutex_enter(&spa->spa_props_lock);
554
555 /*
556 * Get properties from the spa config.
557 */
558 spa_prop_get_config(spa, nv);
559
560 /* If no pool property object, no more prop to get. */
561 if (mos == NULL || spa->spa_pool_props_object == 0)
562 goto out;
563
564 /*
565 * Get properties from the MOS pool property object.
566 */
567 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
568 (err = zap_cursor_retrieve(&zc, za)) == 0;
569 zap_cursor_advance(&zc)) {
570 uint64_t intval = 0;
571 char *strval = NULL;
572 zprop_source_t src = ZPROP_SRC_DEFAULT;
573 zpool_prop_t prop;
574
575 if ((prop = zpool_name_to_prop(za->za_name)) ==
576 ZPOOL_PROP_INVAL && !zfs_prop_user(za->za_name))
577 continue;
578
579 switch (za->za_integer_length) {
580 case 8:
581 /* integer property */
582 if (za->za_first_integer !=
583 zpool_prop_default_numeric(prop))
584 src = ZPROP_SRC_LOCAL;
585
586 if (prop == ZPOOL_PROP_BOOTFS) {
587 dsl_dataset_t *ds = NULL;
588
589 err = dsl_dataset_hold_obj(dp,
590 za->za_first_integer, FTAG, &ds);
591 if (err != 0)
592 break;
593
594 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
595 KM_SLEEP);
596 dsl_dataset_name(ds, strval);
597 dsl_dataset_rele(ds, FTAG);
598 } else {
599 strval = NULL;
600 intval = za->za_first_integer;
601 }
602
603 spa_prop_add_list(nv, prop, strval, intval, src);
604
605 if (strval != NULL)
606 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
607
608 break;
609
610 case 1:
611 /* string property */
612 strval = kmem_alloc(za->za_num_integers, KM_SLEEP);
613 err = zap_lookup(mos, spa->spa_pool_props_object,
614 za->za_name, 1, za->za_num_integers, strval);
615 if (err) {
616 kmem_free(strval, za->za_num_integers);
617 break;
618 }
619 if (prop != ZPOOL_PROP_INVAL) {
620 spa_prop_add_list(nv, prop, strval, 0, src);
621 } else {
622 src = ZPROP_SRC_LOCAL;
623 spa_prop_add_user(nv, za->za_name, strval,
624 src);
625 }
626 kmem_free(strval, za->za_num_integers);
627 break;
628
629 default:
630 break;
631 }
632 }
633 zap_cursor_fini(&zc);
634 out:
635 mutex_exit(&spa->spa_props_lock);
636 dsl_pool_config_exit(dp, FTAG);
637 zap_attribute_free(za);
638
639 if (err && err != ENOENT)
640 return (err);
641
642 return (0);
643 }
644
645 /*
646 * Validate the given pool properties nvlist and modify the list
647 * for the property values to be set.
648 */
649 static int
spa_prop_validate(spa_t * spa,nvlist_t * props)650 spa_prop_validate(spa_t *spa, nvlist_t *props)
651 {
652 nvpair_t *elem;
653 int error = 0, reset_bootfs = 0;
654 uint64_t objnum = 0;
655 boolean_t has_feature = B_FALSE;
656
657 elem = NULL;
658 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
659 uint64_t intval;
660 const char *strval, *slash, *check, *fname;
661 const char *propname = nvpair_name(elem);
662 zpool_prop_t prop = zpool_name_to_prop(propname);
663
664 switch (prop) {
665 case ZPOOL_PROP_INVAL:
666 /*
667 * Sanitize the input.
668 */
669 if (zfs_prop_user(propname)) {
670 if (strlen(propname) >= ZAP_MAXNAMELEN) {
671 error = SET_ERROR(ENAMETOOLONG);
672 break;
673 }
674
675 if (strlen(fnvpair_value_string(elem)) >=
676 ZAP_MAXVALUELEN) {
677 error = SET_ERROR(E2BIG);
678 break;
679 }
680 } else if (zpool_prop_feature(propname)) {
681 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
682 error = SET_ERROR(EINVAL);
683 break;
684 }
685
686 if (nvpair_value_uint64(elem, &intval) != 0) {
687 error = SET_ERROR(EINVAL);
688 break;
689 }
690
691 if (intval != 0) {
692 error = SET_ERROR(EINVAL);
693 break;
694 }
695
696 fname = strchr(propname, '@') + 1;
697 if (zfeature_lookup_name(fname, NULL) != 0) {
698 error = SET_ERROR(EINVAL);
699 break;
700 }
701
702 has_feature = B_TRUE;
703 } else {
704 error = SET_ERROR(EINVAL);
705 break;
706 }
707 break;
708
709 case ZPOOL_PROP_VERSION:
710 error = nvpair_value_uint64(elem, &intval);
711 if (!error &&
712 (intval < spa_version(spa) ||
713 intval > SPA_VERSION_BEFORE_FEATURES ||
714 has_feature))
715 error = SET_ERROR(EINVAL);
716 break;
717
718 case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
719 error = nvpair_value_uint64(elem, &intval);
720 break;
721
722 case ZPOOL_PROP_DELEGATION:
723 case ZPOOL_PROP_AUTOREPLACE:
724 case ZPOOL_PROP_LISTSNAPS:
725 case ZPOOL_PROP_AUTOEXPAND:
726 case ZPOOL_PROP_AUTOTRIM:
727 error = nvpair_value_uint64(elem, &intval);
728 if (!error && intval > 1)
729 error = SET_ERROR(EINVAL);
730 break;
731
732 case ZPOOL_PROP_MULTIHOST:
733 error = nvpair_value_uint64(elem, &intval);
734 if (!error && intval > 1)
735 error = SET_ERROR(EINVAL);
736
737 if (!error) {
738 uint32_t hostid = zone_get_hostid(NULL);
739 if (hostid)
740 spa->spa_hostid = hostid;
741 else
742 error = SET_ERROR(ENOTSUP);
743 }
744
745 break;
746
747 case ZPOOL_PROP_BOOTFS:
748 /*
749 * If the pool version is less than SPA_VERSION_BOOTFS,
750 * or the pool is still being created (version == 0),
751 * the bootfs property cannot be set.
752 */
753 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
754 error = SET_ERROR(ENOTSUP);
755 break;
756 }
757
758 /*
759 * Make sure the vdev config is bootable
760 */
761 if (!vdev_is_bootable(spa->spa_root_vdev)) {
762 error = SET_ERROR(ENOTSUP);
763 break;
764 }
765
766 reset_bootfs = 1;
767
768 error = nvpair_value_string(elem, &strval);
769
770 if (!error) {
771 objset_t *os;
772
773 if (strval == NULL || strval[0] == '\0') {
774 objnum = zpool_prop_default_numeric(
775 ZPOOL_PROP_BOOTFS);
776 break;
777 }
778
779 error = dmu_objset_hold(strval, FTAG, &os);
780 if (error != 0)
781 break;
782
783 /* Must be ZPL. */
784 if (dmu_objset_type(os) != DMU_OST_ZFS) {
785 error = SET_ERROR(ENOTSUP);
786 } else {
787 objnum = dmu_objset_id(os);
788 }
789 dmu_objset_rele(os, FTAG);
790 }
791 break;
792
793 case ZPOOL_PROP_FAILUREMODE:
794 error = nvpair_value_uint64(elem, &intval);
795 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
796 error = SET_ERROR(EINVAL);
797
798 /*
799 * This is a special case which only occurs when
800 * the pool has completely failed. This allows
801 * the user to change the in-core failmode property
802 * without syncing it out to disk (I/Os might
803 * currently be blocked). We do this by returning
804 * EIO to the caller (spa_prop_set) to trick it
805 * into thinking we encountered a property validation
806 * error.
807 */
808 if (!error && spa_suspended(spa)) {
809 spa->spa_failmode = intval;
810 error = SET_ERROR(EIO);
811 }
812 break;
813
814 case ZPOOL_PROP_CACHEFILE:
815 if ((error = nvpair_value_string(elem, &strval)) != 0)
816 break;
817
818 if (strval[0] == '\0')
819 break;
820
821 if (strcmp(strval, "none") == 0)
822 break;
823
824 if (strval[0] != '/') {
825 error = SET_ERROR(EINVAL);
826 break;
827 }
828
829 slash = strrchr(strval, '/');
830 ASSERT(slash != NULL);
831
832 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
833 strcmp(slash, "/..") == 0)
834 error = SET_ERROR(EINVAL);
835 break;
836
837 case ZPOOL_PROP_COMMENT:
838 if ((error = nvpair_value_string(elem, &strval)) != 0)
839 break;
840 for (check = strval; *check != '\0'; check++) {
841 if (!isprint(*check)) {
842 error = SET_ERROR(EINVAL);
843 break;
844 }
845 }
846 if (strlen(strval) > ZPROP_MAX_COMMENT)
847 error = SET_ERROR(E2BIG);
848 break;
849
850 default:
851 break;
852 }
853
854 if (error)
855 break;
856 }
857
858 (void) nvlist_remove_all(props,
859 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
860
861 if (!error && reset_bootfs) {
862 error = nvlist_remove(props,
863 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
864
865 if (!error) {
866 error = nvlist_add_uint64(props,
867 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
868 }
869 }
870
871 return (error);
872 }
873
874 void
spa_configfile_set(spa_t * spa,nvlist_t * nvp,boolean_t need_sync)875 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
876 {
877 const char *cachefile;
878 spa_config_dirent_t *dp;
879
880 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
881 &cachefile) != 0)
882 return;
883
884 dp = kmem_alloc(sizeof (spa_config_dirent_t),
885 KM_SLEEP);
886
887 if (cachefile[0] == '\0')
888 dp->scd_path = spa_strdup(spa_config_path);
889 else if (strcmp(cachefile, "none") == 0)
890 dp->scd_path = NULL;
891 else
892 dp->scd_path = spa_strdup(cachefile);
893
894 list_insert_head(&spa->spa_config_list, dp);
895 if (need_sync)
896 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
897 }
898
899 int
spa_prop_set(spa_t * spa,nvlist_t * nvp)900 spa_prop_set(spa_t *spa, nvlist_t *nvp)
901 {
902 int error;
903 nvpair_t *elem = NULL;
904 boolean_t need_sync = B_FALSE;
905
906 if ((error = spa_prop_validate(spa, nvp)) != 0)
907 return (error);
908
909 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
910 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
911
912 if (prop == ZPOOL_PROP_CACHEFILE ||
913 prop == ZPOOL_PROP_ALTROOT ||
914 prop == ZPOOL_PROP_READONLY)
915 continue;
916
917 if (prop == ZPOOL_PROP_INVAL &&
918 zfs_prop_user(nvpair_name(elem))) {
919 need_sync = B_TRUE;
920 break;
921 }
922
923 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
924 uint64_t ver = 0;
925
926 if (prop == ZPOOL_PROP_VERSION) {
927 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
928 } else {
929 ASSERT(zpool_prop_feature(nvpair_name(elem)));
930 ver = SPA_VERSION_FEATURES;
931 need_sync = B_TRUE;
932 }
933
934 /* Save time if the version is already set. */
935 if (ver == spa_version(spa))
936 continue;
937
938 /*
939 * In addition to the pool directory object, we might
940 * create the pool properties object, the features for
941 * read object, the features for write object, or the
942 * feature descriptions object.
943 */
944 error = dsl_sync_task(spa->spa_name, NULL,
945 spa_sync_version, &ver,
946 6, ZFS_SPACE_CHECK_RESERVED);
947 if (error)
948 return (error);
949 continue;
950 }
951
952 need_sync = B_TRUE;
953 break;
954 }
955
956 if (need_sync) {
957 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
958 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
959 }
960
961 return (0);
962 }
963
964 /*
965 * If the bootfs property value is dsobj, clear it.
966 */
967 void
spa_prop_clear_bootfs(spa_t * spa,uint64_t dsobj,dmu_tx_t * tx)968 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
969 {
970 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
971 VERIFY(zap_remove(spa->spa_meta_objset,
972 spa->spa_pool_props_object,
973 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
974 spa->spa_bootfs = 0;
975 }
976 }
977
978 static int
spa_change_guid_check(void * arg,dmu_tx_t * tx)979 spa_change_guid_check(void *arg, dmu_tx_t *tx)
980 {
981 uint64_t *newguid __maybe_unused = arg;
982 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
983 vdev_t *rvd = spa->spa_root_vdev;
984 uint64_t vdev_state;
985
986 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
987 int error = (spa_has_checkpoint(spa)) ?
988 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
989 return (SET_ERROR(error));
990 }
991
992 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
993 vdev_state = rvd->vdev_state;
994 spa_config_exit(spa, SCL_STATE, FTAG);
995
996 if (vdev_state != VDEV_STATE_HEALTHY)
997 return (SET_ERROR(ENXIO));
998
999 ASSERT3U(spa_guid(spa), !=, *newguid);
1000
1001 return (0);
1002 }
1003
1004 static void
spa_change_guid_sync(void * arg,dmu_tx_t * tx)1005 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
1006 {
1007 uint64_t *newguid = arg;
1008 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1009 uint64_t oldguid;
1010 vdev_t *rvd = spa->spa_root_vdev;
1011
1012 oldguid = spa_guid(spa);
1013
1014 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
1015 rvd->vdev_guid = *newguid;
1016 rvd->vdev_guid_sum += (*newguid - oldguid);
1017 vdev_config_dirty(rvd);
1018 spa_config_exit(spa, SCL_STATE, FTAG);
1019
1020 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
1021 (u_longlong_t)oldguid, (u_longlong_t)*newguid);
1022 }
1023
1024 /*
1025 * Change the GUID for the pool. This is done so that we can later
1026 * re-import a pool built from a clone of our own vdevs. We will modify
1027 * the root vdev's guid, our own pool guid, and then mark all of our
1028 * vdevs dirty. Note that we must make sure that all our vdevs are
1029 * online when we do this, or else any vdevs that weren't present
1030 * would be orphaned from our pool. We are also going to issue a
1031 * sysevent to update any watchers.
1032 *
1033 * The GUID of the pool will be changed to the value pointed to by guidp.
1034 * The GUID may not be set to the reserverd value of 0.
1035 * The new GUID will be generated if guidp is NULL.
1036 */
1037 int
spa_change_guid(spa_t * spa,const uint64_t * guidp)1038 spa_change_guid(spa_t *spa, const uint64_t *guidp)
1039 {
1040 uint64_t guid;
1041 int error;
1042
1043 mutex_enter(&spa->spa_vdev_top_lock);
1044 mutex_enter(&spa_namespace_lock);
1045
1046 if (guidp != NULL) {
1047 guid = *guidp;
1048 if (guid == 0) {
1049 error = SET_ERROR(EINVAL);
1050 goto out;
1051 }
1052
1053 if (spa_guid_exists(guid, 0)) {
1054 error = SET_ERROR(EEXIST);
1055 goto out;
1056 }
1057 } else {
1058 guid = spa_generate_guid(NULL);
1059 }
1060
1061 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
1062 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
1063
1064 if (error == 0) {
1065 /*
1066 * Clear the kobj flag from all the vdevs to allow
1067 * vdev_cache_process_kobj_evt() to post events to all the
1068 * vdevs since GUID is updated.
1069 */
1070 vdev_clear_kobj_evt(spa->spa_root_vdev);
1071 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
1072 vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
1073
1074 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1075 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
1076 }
1077
1078 out:
1079 mutex_exit(&spa_namespace_lock);
1080 mutex_exit(&spa->spa_vdev_top_lock);
1081
1082 return (error);
1083 }
1084
1085 /*
1086 * ==========================================================================
1087 * SPA state manipulation (open/create/destroy/import/export)
1088 * ==========================================================================
1089 */
1090
1091 static int
spa_error_entry_compare(const void * a,const void * b)1092 spa_error_entry_compare(const void *a, const void *b)
1093 {
1094 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
1095 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
1096 int ret;
1097
1098 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
1099 sizeof (zbookmark_phys_t));
1100
1101 return (TREE_ISIGN(ret));
1102 }
1103
1104 /*
1105 * Utility function which retrieves copies of the current logs and
1106 * re-initializes them in the process.
1107 */
1108 void
spa_get_errlists(spa_t * spa,avl_tree_t * last,avl_tree_t * scrub)1109 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
1110 {
1111 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
1112
1113 memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
1114 memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
1115
1116 avl_create(&spa->spa_errlist_scrub,
1117 spa_error_entry_compare, sizeof (spa_error_entry_t),
1118 offsetof(spa_error_entry_t, se_avl));
1119 avl_create(&spa->spa_errlist_last,
1120 spa_error_entry_compare, sizeof (spa_error_entry_t),
1121 offsetof(spa_error_entry_t, se_avl));
1122 }
1123
1124 static void
spa_taskqs_init(spa_t * spa,zio_type_t t,zio_taskq_type_t q)1125 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1126 {
1127 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
1128 enum zti_modes mode = ztip->zti_mode;
1129 uint_t value = ztip->zti_value;
1130 uint_t count = ztip->zti_count;
1131 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1132 uint_t cpus, flags = TASKQ_DYNAMIC;
1133
1134 switch (mode) {
1135 case ZTI_MODE_FIXED:
1136 ASSERT3U(value, >, 0);
1137 break;
1138
1139 case ZTI_MODE_SYNC:
1140
1141 /*
1142 * Create one wr_iss taskq for every 'zio_taskq_write_tpq' CPUs,
1143 * not to exceed the number of spa allocators, and align to it.
1144 */
1145 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1146 count = MAX(1, cpus / MAX(1, zio_taskq_write_tpq));
1147 count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1148 count = MIN(count, spa->spa_alloc_count);
1149 while (spa->spa_alloc_count % count != 0 &&
1150 spa->spa_alloc_count < count * 2)
1151 count--;
1152
1153 /*
1154 * zio_taskq_batch_pct is unbounded and may exceed 100%, but no
1155 * single taskq may have more threads than 100% of online cpus.
1156 */
1157 value = (zio_taskq_batch_pct + count / 2) / count;
1158 value = MIN(value, 100);
1159 flags |= TASKQ_THREADS_CPU_PCT;
1160 break;
1161
1162 case ZTI_MODE_SCALE:
1163 flags |= TASKQ_THREADS_CPU_PCT;
1164 /*
1165 * We want more taskqs to reduce lock contention, but we want
1166 * less for better request ordering and CPU utilization.
1167 */
1168 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1169 if (zio_taskq_batch_tpq > 0) {
1170 count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1171 zio_taskq_batch_tpq);
1172 } else {
1173 /*
1174 * Prefer 6 threads per taskq, but no more taskqs
1175 * than threads in them on large systems. For 80%:
1176 *
1177 * taskq taskq total
1178 * cpus taskqs percent threads threads
1179 * ------- ------- ------- ------- -------
1180 * 1 1 80% 1 1
1181 * 2 1 80% 1 1
1182 * 4 1 80% 3 3
1183 * 8 2 40% 3 6
1184 * 16 3 27% 4 12
1185 * 32 5 16% 5 25
1186 * 64 7 11% 7 49
1187 * 128 10 8% 10 100
1188 * 256 14 6% 15 210
1189 */
1190 count = 1 + cpus / 6;
1191 while (count * count > cpus)
1192 count--;
1193 }
1194 /* Limit each taskq within 100% to not trigger assertion. */
1195 count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1196 value = (zio_taskq_batch_pct + count / 2) / count;
1197 break;
1198
1199 case ZTI_MODE_NULL:
1200 tqs->stqs_count = 0;
1201 tqs->stqs_taskq = NULL;
1202 return;
1203
1204 default:
1205 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1206 "spa_taskqs_init()",
1207 zio_type_name[t], zio_taskq_types[q], mode, value);
1208 break;
1209 }
1210
1211 ASSERT3U(count, >, 0);
1212 tqs->stqs_count = count;
1213 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1214
1215 for (uint_t i = 0; i < count; i++) {
1216 taskq_t *tq;
1217 char name[32];
1218
1219 if (count > 1)
1220 (void) snprintf(name, sizeof (name), "%s_%s_%u",
1221 zio_type_name[t], zio_taskq_types[q], i);
1222 else
1223 (void) snprintf(name, sizeof (name), "%s_%s",
1224 zio_type_name[t], zio_taskq_types[q]);
1225
1226 #ifdef HAVE_SYSDC
1227 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1228 (void) zio_taskq_basedc;
1229 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1230 spa->spa_proc, zio_taskq_basedc, flags);
1231 } else {
1232 #endif
1233 pri_t pri = maxclsyspri;
1234 /*
1235 * The write issue taskq can be extremely CPU
1236 * intensive. Run it at slightly less important
1237 * priority than the other taskqs.
1238 *
1239 * Under Linux and FreeBSD this means incrementing
1240 * the priority value as opposed to platforms like
1241 * illumos where it should be decremented.
1242 *
1243 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1244 * are equal then a difference between them is
1245 * insignificant.
1246 */
1247 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1248 #if defined(__linux__)
1249 pri++;
1250 #elif defined(__FreeBSD__)
1251 pri += 4;
1252 #else
1253 #error "unknown OS"
1254 #endif
1255 }
1256 tq = taskq_create_proc(name, value, pri, 50,
1257 INT_MAX, spa->spa_proc, flags);
1258 #ifdef HAVE_SYSDC
1259 }
1260 #endif
1261
1262 tqs->stqs_taskq[i] = tq;
1263 }
1264 }
1265
1266 static void
spa_taskqs_fini(spa_t * spa,zio_type_t t,zio_taskq_type_t q)1267 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1268 {
1269 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1270
1271 if (tqs->stqs_taskq == NULL) {
1272 ASSERT3U(tqs->stqs_count, ==, 0);
1273 return;
1274 }
1275
1276 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1277 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1278 taskq_destroy(tqs->stqs_taskq[i]);
1279 }
1280
1281 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1282 tqs->stqs_taskq = NULL;
1283 }
1284
1285 #ifdef _KERNEL
1286 /*
1287 * The READ and WRITE rows of zio_taskqs are configurable at module load time
1288 * by setting zio_taskq_read or zio_taskq_write.
1289 *
1290 * Example (the defaults for READ and WRITE)
1291 * zio_taskq_read='fixed,1,8 null scale null'
1292 * zio_taskq_write='sync null scale null'
1293 *
1294 * Each sets the entire row at a time.
1295 *
1296 * 'fixed' is parameterised: fixed,Q,T where Q is number of taskqs, T is number
1297 * of threads per taskq.
1298 *
1299 * 'null' can only be set on the high-priority queues (queue selection for
1300 * high-priority queues will fall back to the regular queue if the high-pri
1301 * is NULL.
1302 */
1303 static const char *const modes[ZTI_NMODES] = {
1304 "fixed", "scale", "sync", "null"
1305 };
1306
1307 /* Parse the incoming config string. Modifies cfg */
1308 static int
spa_taskq_param_set(zio_type_t t,char * cfg)1309 spa_taskq_param_set(zio_type_t t, char *cfg)
1310 {
1311 int err = 0;
1312
1313 zio_taskq_info_t row[ZIO_TASKQ_TYPES] = {{0}};
1314
1315 char *next = cfg, *tok, *c;
1316
1317 /*
1318 * Parse out each element from the string and fill `row`. The entire
1319 * row has to be set at once, so any errors are flagged by just
1320 * breaking out of this loop early.
1321 */
1322 uint_t q;
1323 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1324 /* `next` is the start of the config */
1325 if (next == NULL)
1326 break;
1327
1328 /* Eat up leading space */
1329 while (isspace(*next))
1330 next++;
1331 if (*next == '\0')
1332 break;
1333
1334 /* Mode ends at space or end of string */
1335 tok = next;
1336 next = strchr(tok, ' ');
1337 if (next != NULL) *next++ = '\0';
1338
1339 /* Parameters start after a comma */
1340 c = strchr(tok, ',');
1341 if (c != NULL) *c++ = '\0';
1342
1343 /* Match mode string */
1344 uint_t mode;
1345 for (mode = 0; mode < ZTI_NMODES; mode++)
1346 if (strcmp(tok, modes[mode]) == 0)
1347 break;
1348 if (mode == ZTI_NMODES)
1349 break;
1350
1351 /* Invalid canary */
1352 row[q].zti_mode = ZTI_NMODES;
1353
1354 /* Per-mode setup */
1355 switch (mode) {
1356
1357 /*
1358 * FIXED is parameterised: number of queues, and number of
1359 * threads per queue.
1360 */
1361 case ZTI_MODE_FIXED: {
1362 /* No parameters? */
1363 if (c == NULL || *c == '\0')
1364 break;
1365
1366 /* Find next parameter */
1367 tok = c;
1368 c = strchr(tok, ',');
1369 if (c == NULL)
1370 break;
1371
1372 /* Take digits and convert */
1373 unsigned long long nq;
1374 if (!(isdigit(*tok)))
1375 break;
1376 err = ddi_strtoull(tok, &tok, 10, &nq);
1377 /* Must succeed and also end at the next param sep */
1378 if (err != 0 || tok != c)
1379 break;
1380
1381 /* Move past the comma */
1382 tok++;
1383 /* Need another number */
1384 if (!(isdigit(*tok)))
1385 break;
1386 /* Remember start to make sure we moved */
1387 c = tok;
1388
1389 /* Take digits */
1390 unsigned long long ntpq;
1391 err = ddi_strtoull(tok, &tok, 10, &ntpq);
1392 /* Must succeed, and moved forward */
1393 if (err != 0 || tok == c || *tok != '\0')
1394 break;
1395
1396 /*
1397 * sanity; zero queues/threads make no sense, and
1398 * 16K is almost certainly more than anyone will ever
1399 * need and avoids silly numbers like UINT32_MAX
1400 */
1401 if (nq == 0 || nq >= 16384 ||
1402 ntpq == 0 || ntpq >= 16384)
1403 break;
1404
1405 const zio_taskq_info_t zti = ZTI_P(ntpq, nq);
1406 row[q] = zti;
1407 break;
1408 }
1409
1410 case ZTI_MODE_SCALE: {
1411 const zio_taskq_info_t zti = ZTI_SCALE;
1412 row[q] = zti;
1413 break;
1414 }
1415
1416 case ZTI_MODE_SYNC: {
1417 const zio_taskq_info_t zti = ZTI_SYNC;
1418 row[q] = zti;
1419 break;
1420 }
1421
1422 case ZTI_MODE_NULL: {
1423 /*
1424 * Can only null the high-priority queues; the general-
1425 * purpose ones have to exist.
1426 */
1427 if (q != ZIO_TASKQ_ISSUE_HIGH &&
1428 q != ZIO_TASKQ_INTERRUPT_HIGH)
1429 break;
1430
1431 const zio_taskq_info_t zti = ZTI_NULL;
1432 row[q] = zti;
1433 break;
1434 }
1435
1436 default:
1437 break;
1438 }
1439
1440 /* Ensure we set a mode */
1441 if (row[q].zti_mode == ZTI_NMODES)
1442 break;
1443 }
1444
1445 /* Didn't get a full row, fail */
1446 if (q < ZIO_TASKQ_TYPES)
1447 return (SET_ERROR(EINVAL));
1448
1449 /* Eat trailing space */
1450 if (next != NULL)
1451 while (isspace(*next))
1452 next++;
1453
1454 /* If there's anything left over then fail */
1455 if (next != NULL && *next != '\0')
1456 return (SET_ERROR(EINVAL));
1457
1458 /* Success! Copy it into the real config */
1459 for (q = 0; q < ZIO_TASKQ_TYPES; q++)
1460 zio_taskqs[t][q] = row[q];
1461
1462 return (0);
1463 }
1464
1465 static int
spa_taskq_param_get(zio_type_t t,char * buf,boolean_t add_newline)1466 spa_taskq_param_get(zio_type_t t, char *buf, boolean_t add_newline)
1467 {
1468 int pos = 0;
1469
1470 /* Build paramater string from live config */
1471 const char *sep = "";
1472 for (uint_t q = 0; q < ZIO_TASKQ_TYPES; q++) {
1473 const zio_taskq_info_t *zti = &zio_taskqs[t][q];
1474 if (zti->zti_mode == ZTI_MODE_FIXED)
1475 pos += sprintf(&buf[pos], "%s%s,%u,%u", sep,
1476 modes[zti->zti_mode], zti->zti_count,
1477 zti->zti_value);
1478 else
1479 pos += sprintf(&buf[pos], "%s%s", sep,
1480 modes[zti->zti_mode]);
1481 sep = " ";
1482 }
1483
1484 if (add_newline)
1485 buf[pos++] = '\n';
1486 buf[pos] = '\0';
1487
1488 return (pos);
1489 }
1490
1491 #ifdef __linux__
1492 static int
spa_taskq_read_param_set(const char * val,zfs_kernel_param_t * kp)1493 spa_taskq_read_param_set(const char *val, zfs_kernel_param_t *kp)
1494 {
1495 char *cfg = kmem_strdup(val);
1496 int err = spa_taskq_param_set(ZIO_TYPE_READ, cfg);
1497 kmem_free(cfg, strlen(val)+1);
1498 return (-err);
1499 }
1500 static int
spa_taskq_read_param_get(char * buf,zfs_kernel_param_t * kp)1501 spa_taskq_read_param_get(char *buf, zfs_kernel_param_t *kp)
1502 {
1503 return (spa_taskq_param_get(ZIO_TYPE_READ, buf, TRUE));
1504 }
1505
1506 static int
spa_taskq_write_param_set(const char * val,zfs_kernel_param_t * kp)1507 spa_taskq_write_param_set(const char *val, zfs_kernel_param_t *kp)
1508 {
1509 char *cfg = kmem_strdup(val);
1510 int err = spa_taskq_param_set(ZIO_TYPE_WRITE, cfg);
1511 kmem_free(cfg, strlen(val)+1);
1512 return (-err);
1513 }
1514 static int
spa_taskq_write_param_get(char * buf,zfs_kernel_param_t * kp)1515 spa_taskq_write_param_get(char *buf, zfs_kernel_param_t *kp)
1516 {
1517 return (spa_taskq_param_get(ZIO_TYPE_WRITE, buf, TRUE));
1518 }
1519 #else
1520 /*
1521 * On FreeBSD load-time parameters can be set up before malloc() is available,
1522 * so we have to do all the parsing work on the stack.
1523 */
1524 #define SPA_TASKQ_PARAM_MAX (128)
1525
1526 static int
spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)1527 spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)
1528 {
1529 char buf[SPA_TASKQ_PARAM_MAX];
1530 int err;
1531
1532 (void) spa_taskq_param_get(ZIO_TYPE_READ, buf, FALSE);
1533 err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1534 if (err || req->newptr == NULL)
1535 return (err);
1536 return (spa_taskq_param_set(ZIO_TYPE_READ, buf));
1537 }
1538
1539 static int
spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)1540 spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)
1541 {
1542 char buf[SPA_TASKQ_PARAM_MAX];
1543 int err;
1544
1545 (void) spa_taskq_param_get(ZIO_TYPE_WRITE, buf, FALSE);
1546 err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1547 if (err || req->newptr == NULL)
1548 return (err);
1549 return (spa_taskq_param_set(ZIO_TYPE_WRITE, buf));
1550 }
1551 #endif
1552 #endif /* _KERNEL */
1553
1554 /*
1555 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1556 * Note that a type may have multiple discrete taskqs to avoid lock contention
1557 * on the taskq itself.
1558 */
1559 void
spa_taskq_dispatch(spa_t * spa,zio_type_t t,zio_taskq_type_t q,task_func_t * func,zio_t * zio,boolean_t cutinline)1560 spa_taskq_dispatch(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1561 task_func_t *func, zio_t *zio, boolean_t cutinline)
1562 {
1563 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1564 taskq_t *tq;
1565
1566 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1567 ASSERT3U(tqs->stqs_count, !=, 0);
1568
1569 /*
1570 * NB: We are assuming that the zio can only be dispatched
1571 * to a single taskq at a time. It would be a grievous error
1572 * to dispatch the zio to another taskq at the same time.
1573 */
1574 ASSERT(zio);
1575 ASSERT(taskq_empty_ent(&zio->io_tqent));
1576
1577 if (tqs->stqs_count == 1) {
1578 tq = tqs->stqs_taskq[0];
1579 } else if ((t == ZIO_TYPE_WRITE) && (q == ZIO_TASKQ_ISSUE) &&
1580 ZIO_HAS_ALLOCATOR(zio)) {
1581 tq = tqs->stqs_taskq[zio->io_allocator % tqs->stqs_count];
1582 } else {
1583 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1584 }
1585
1586 taskq_dispatch_ent(tq, func, zio, cutinline ? TQ_FRONT : 0,
1587 &zio->io_tqent);
1588 }
1589
1590 static void
spa_create_zio_taskqs(spa_t * spa)1591 spa_create_zio_taskqs(spa_t *spa)
1592 {
1593 for (int t = 0; t < ZIO_TYPES; t++) {
1594 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1595 spa_taskqs_init(spa, t, q);
1596 }
1597 }
1598 }
1599
1600 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1601 static void
spa_thread(void * arg)1602 spa_thread(void *arg)
1603 {
1604 psetid_t zio_taskq_psrset_bind = PS_NONE;
1605 callb_cpr_t cprinfo;
1606
1607 spa_t *spa = arg;
1608 user_t *pu = PTOU(curproc);
1609
1610 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1611 spa->spa_name);
1612
1613 ASSERT(curproc != &p0);
1614 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1615 "zpool-%s", spa->spa_name);
1616 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1617
1618 /* bind this thread to the requested psrset */
1619 if (zio_taskq_psrset_bind != PS_NONE) {
1620 pool_lock();
1621 mutex_enter(&cpu_lock);
1622 mutex_enter(&pidlock);
1623 mutex_enter(&curproc->p_lock);
1624
1625 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1626 0, NULL, NULL) == 0) {
1627 curthread->t_bind_pset = zio_taskq_psrset_bind;
1628 } else {
1629 cmn_err(CE_WARN,
1630 "Couldn't bind process for zfs pool \"%s\" to "
1631 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1632 }
1633
1634 mutex_exit(&curproc->p_lock);
1635 mutex_exit(&pidlock);
1636 mutex_exit(&cpu_lock);
1637 pool_unlock();
1638 }
1639
1640 #ifdef HAVE_SYSDC
1641 if (zio_taskq_sysdc) {
1642 sysdc_thread_enter(curthread, 100, 0);
1643 }
1644 #endif
1645
1646 spa->spa_proc = curproc;
1647 spa->spa_did = curthread->t_did;
1648
1649 spa_create_zio_taskqs(spa);
1650
1651 mutex_enter(&spa->spa_proc_lock);
1652 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1653
1654 spa->spa_proc_state = SPA_PROC_ACTIVE;
1655 cv_broadcast(&spa->spa_proc_cv);
1656
1657 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1658 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1659 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1660 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1661
1662 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1663 spa->spa_proc_state = SPA_PROC_GONE;
1664 spa->spa_proc = &p0;
1665 cv_broadcast(&spa->spa_proc_cv);
1666 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1667
1668 mutex_enter(&curproc->p_lock);
1669 lwp_exit();
1670 }
1671 #endif
1672
1673 extern metaslab_ops_t *metaslab_allocator(spa_t *spa);
1674
1675 /*
1676 * Activate an uninitialized pool.
1677 */
1678 static void
spa_activate(spa_t * spa,spa_mode_t mode)1679 spa_activate(spa_t *spa, spa_mode_t mode)
1680 {
1681 metaslab_ops_t *msp = metaslab_allocator(spa);
1682 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1683
1684 spa->spa_state = POOL_STATE_ACTIVE;
1685 spa->spa_mode = mode;
1686 spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1687
1688 spa->spa_normal_class = metaslab_class_create(spa, msp);
1689 spa->spa_log_class = metaslab_class_create(spa, msp);
1690 spa->spa_embedded_log_class = metaslab_class_create(spa, msp);
1691 spa->spa_special_class = metaslab_class_create(spa, msp);
1692 spa->spa_dedup_class = metaslab_class_create(spa, msp);
1693
1694 /* Try to create a covering process */
1695 mutex_enter(&spa->spa_proc_lock);
1696 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1697 ASSERT(spa->spa_proc == &p0);
1698 spa->spa_did = 0;
1699
1700 #ifdef HAVE_SPA_THREAD
1701 /* Only create a process if we're going to be around a while. */
1702 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1703 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1704 NULL, 0) == 0) {
1705 spa->spa_proc_state = SPA_PROC_CREATED;
1706 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1707 cv_wait(&spa->spa_proc_cv,
1708 &spa->spa_proc_lock);
1709 }
1710 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1711 ASSERT(spa->spa_proc != &p0);
1712 ASSERT(spa->spa_did != 0);
1713 } else {
1714 #ifdef _KERNEL
1715 cmn_err(CE_WARN,
1716 "Couldn't create process for zfs pool \"%s\"\n",
1717 spa->spa_name);
1718 #endif
1719 }
1720 }
1721 #endif /* HAVE_SPA_THREAD */
1722 mutex_exit(&spa->spa_proc_lock);
1723
1724 /* If we didn't create a process, we need to create our taskqs. */
1725 if (spa->spa_proc == &p0) {
1726 spa_create_zio_taskqs(spa);
1727 }
1728
1729 for (size_t i = 0; i < TXG_SIZE; i++) {
1730 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1731 ZIO_FLAG_CANFAIL);
1732 }
1733
1734 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1735 offsetof(vdev_t, vdev_config_dirty_node));
1736 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1737 offsetof(objset_t, os_evicting_node));
1738 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1739 offsetof(vdev_t, vdev_state_dirty_node));
1740
1741 txg_list_create(&spa->spa_vdev_txg_list, spa,
1742 offsetof(struct vdev, vdev_txg_node));
1743
1744 avl_create(&spa->spa_errlist_scrub,
1745 spa_error_entry_compare, sizeof (spa_error_entry_t),
1746 offsetof(spa_error_entry_t, se_avl));
1747 avl_create(&spa->spa_errlist_last,
1748 spa_error_entry_compare, sizeof (spa_error_entry_t),
1749 offsetof(spa_error_entry_t, se_avl));
1750 avl_create(&spa->spa_errlist_healed,
1751 spa_error_entry_compare, sizeof (spa_error_entry_t),
1752 offsetof(spa_error_entry_t, se_avl));
1753
1754 spa_activate_os(spa);
1755
1756 spa_keystore_init(&spa->spa_keystore);
1757
1758 /*
1759 * This taskq is used to perform zvol-minor-related tasks
1760 * asynchronously. This has several advantages, including easy
1761 * resolution of various deadlocks.
1762 *
1763 * The taskq must be single threaded to ensure tasks are always
1764 * processed in the order in which they were dispatched.
1765 *
1766 * A taskq per pool allows one to keep the pools independent.
1767 * This way if one pool is suspended, it will not impact another.
1768 *
1769 * The preferred location to dispatch a zvol minor task is a sync
1770 * task. In this context, there is easy access to the spa_t and minimal
1771 * error handling is required because the sync task must succeed.
1772 */
1773 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1774 1, INT_MAX, 0);
1775
1776 /*
1777 * The taskq to preload metaslabs.
1778 */
1779 spa->spa_metaslab_taskq = taskq_create("z_metaslab",
1780 metaslab_preload_pct, maxclsyspri, 1, INT_MAX,
1781 TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1782
1783 /*
1784 * Taskq dedicated to prefetcher threads: this is used to prevent the
1785 * pool traverse code from monopolizing the global (and limited)
1786 * system_taskq by inappropriately scheduling long running tasks on it.
1787 */
1788 spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1789 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1790
1791 /*
1792 * The taskq to upgrade datasets in this pool. Currently used by
1793 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1794 */
1795 spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1796 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1797 }
1798
1799 /*
1800 * Opposite of spa_activate().
1801 */
1802 static void
spa_deactivate(spa_t * spa)1803 spa_deactivate(spa_t *spa)
1804 {
1805 ASSERT(spa->spa_sync_on == B_FALSE);
1806 ASSERT(spa->spa_dsl_pool == NULL);
1807 ASSERT(spa->spa_root_vdev == NULL);
1808 ASSERT(spa->spa_async_zio_root == NULL);
1809 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1810
1811 spa_evicting_os_wait(spa);
1812
1813 if (spa->spa_zvol_taskq) {
1814 taskq_destroy(spa->spa_zvol_taskq);
1815 spa->spa_zvol_taskq = NULL;
1816 }
1817
1818 if (spa->spa_metaslab_taskq) {
1819 taskq_destroy(spa->spa_metaslab_taskq);
1820 spa->spa_metaslab_taskq = NULL;
1821 }
1822
1823 if (spa->spa_prefetch_taskq) {
1824 taskq_destroy(spa->spa_prefetch_taskq);
1825 spa->spa_prefetch_taskq = NULL;
1826 }
1827
1828 if (spa->spa_upgrade_taskq) {
1829 taskq_destroy(spa->spa_upgrade_taskq);
1830 spa->spa_upgrade_taskq = NULL;
1831 }
1832
1833 txg_list_destroy(&spa->spa_vdev_txg_list);
1834
1835 list_destroy(&spa->spa_config_dirty_list);
1836 list_destroy(&spa->spa_evicting_os_list);
1837 list_destroy(&spa->spa_state_dirty_list);
1838
1839 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1840
1841 for (int t = 0; t < ZIO_TYPES; t++) {
1842 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1843 spa_taskqs_fini(spa, t, q);
1844 }
1845 }
1846
1847 for (size_t i = 0; i < TXG_SIZE; i++) {
1848 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1849 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1850 spa->spa_txg_zio[i] = NULL;
1851 }
1852
1853 metaslab_class_destroy(spa->spa_normal_class);
1854 spa->spa_normal_class = NULL;
1855
1856 metaslab_class_destroy(spa->spa_log_class);
1857 spa->spa_log_class = NULL;
1858
1859 metaslab_class_destroy(spa->spa_embedded_log_class);
1860 spa->spa_embedded_log_class = NULL;
1861
1862 metaslab_class_destroy(spa->spa_special_class);
1863 spa->spa_special_class = NULL;
1864
1865 metaslab_class_destroy(spa->spa_dedup_class);
1866 spa->spa_dedup_class = NULL;
1867
1868 /*
1869 * If this was part of an import or the open otherwise failed, we may
1870 * still have errors left in the queues. Empty them just in case.
1871 */
1872 spa_errlog_drain(spa);
1873 avl_destroy(&spa->spa_errlist_scrub);
1874 avl_destroy(&spa->spa_errlist_last);
1875 avl_destroy(&spa->spa_errlist_healed);
1876
1877 spa_keystore_fini(&spa->spa_keystore);
1878
1879 spa->spa_state = POOL_STATE_UNINITIALIZED;
1880
1881 mutex_enter(&spa->spa_proc_lock);
1882 if (spa->spa_proc_state != SPA_PROC_NONE) {
1883 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1884 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1885 cv_broadcast(&spa->spa_proc_cv);
1886 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1887 ASSERT(spa->spa_proc != &p0);
1888 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1889 }
1890 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1891 spa->spa_proc_state = SPA_PROC_NONE;
1892 }
1893 ASSERT(spa->spa_proc == &p0);
1894 mutex_exit(&spa->spa_proc_lock);
1895
1896 /*
1897 * We want to make sure spa_thread() has actually exited the ZFS
1898 * module, so that the module can't be unloaded out from underneath
1899 * it.
1900 */
1901 if (spa->spa_did != 0) {
1902 thread_join(spa->spa_did);
1903 spa->spa_did = 0;
1904 }
1905
1906 spa_deactivate_os(spa);
1907
1908 }
1909
1910 /*
1911 * Verify a pool configuration, and construct the vdev tree appropriately. This
1912 * will create all the necessary vdevs in the appropriate layout, with each vdev
1913 * in the CLOSED state. This will prep the pool before open/creation/import.
1914 * All vdev validation is done by the vdev_alloc() routine.
1915 */
1916 int
spa_config_parse(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int atype)1917 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1918 uint_t id, int atype)
1919 {
1920 nvlist_t **child;
1921 uint_t children;
1922 int error;
1923
1924 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1925 return (error);
1926
1927 if ((*vdp)->vdev_ops->vdev_op_leaf)
1928 return (0);
1929
1930 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1931 &child, &children);
1932
1933 if (error == ENOENT)
1934 return (0);
1935
1936 if (error) {
1937 vdev_free(*vdp);
1938 *vdp = NULL;
1939 return (SET_ERROR(EINVAL));
1940 }
1941
1942 for (int c = 0; c < children; c++) {
1943 vdev_t *vd;
1944 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1945 atype)) != 0) {
1946 vdev_free(*vdp);
1947 *vdp = NULL;
1948 return (error);
1949 }
1950 }
1951
1952 ASSERT(*vdp != NULL);
1953
1954 return (0);
1955 }
1956
1957 static boolean_t
spa_should_flush_logs_on_unload(spa_t * spa)1958 spa_should_flush_logs_on_unload(spa_t *spa)
1959 {
1960 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1961 return (B_FALSE);
1962
1963 if (!spa_writeable(spa))
1964 return (B_FALSE);
1965
1966 if (!spa->spa_sync_on)
1967 return (B_FALSE);
1968
1969 if (spa_state(spa) != POOL_STATE_EXPORTED)
1970 return (B_FALSE);
1971
1972 if (zfs_keep_log_spacemaps_at_export)
1973 return (B_FALSE);
1974
1975 return (B_TRUE);
1976 }
1977
1978 /*
1979 * Opens a transaction that will set the flag that will instruct
1980 * spa_sync to attempt to flush all the metaslabs for that txg.
1981 */
1982 static void
spa_unload_log_sm_flush_all(spa_t * spa)1983 spa_unload_log_sm_flush_all(spa_t *spa)
1984 {
1985 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1986 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1987
1988 ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1989 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1990
1991 dmu_tx_commit(tx);
1992 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1993 }
1994
1995 static void
spa_unload_log_sm_metadata(spa_t * spa)1996 spa_unload_log_sm_metadata(spa_t *spa)
1997 {
1998 void *cookie = NULL;
1999 spa_log_sm_t *sls;
2000 log_summary_entry_t *e;
2001
2002 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
2003 &cookie)) != NULL) {
2004 VERIFY0(sls->sls_mscount);
2005 kmem_free(sls, sizeof (spa_log_sm_t));
2006 }
2007
2008 while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) {
2009 VERIFY0(e->lse_mscount);
2010 kmem_free(e, sizeof (log_summary_entry_t));
2011 }
2012
2013 spa->spa_unflushed_stats.sus_nblocks = 0;
2014 spa->spa_unflushed_stats.sus_memused = 0;
2015 spa->spa_unflushed_stats.sus_blocklimit = 0;
2016 }
2017
2018 static void
spa_destroy_aux_threads(spa_t * spa)2019 spa_destroy_aux_threads(spa_t *spa)
2020 {
2021 if (spa->spa_condense_zthr != NULL) {
2022 zthr_destroy(spa->spa_condense_zthr);
2023 spa->spa_condense_zthr = NULL;
2024 }
2025 if (spa->spa_checkpoint_discard_zthr != NULL) {
2026 zthr_destroy(spa->spa_checkpoint_discard_zthr);
2027 spa->spa_checkpoint_discard_zthr = NULL;
2028 }
2029 if (spa->spa_livelist_delete_zthr != NULL) {
2030 zthr_destroy(spa->spa_livelist_delete_zthr);
2031 spa->spa_livelist_delete_zthr = NULL;
2032 }
2033 if (spa->spa_livelist_condense_zthr != NULL) {
2034 zthr_destroy(spa->spa_livelist_condense_zthr);
2035 spa->spa_livelist_condense_zthr = NULL;
2036 }
2037 if (spa->spa_raidz_expand_zthr != NULL) {
2038 zthr_destroy(spa->spa_raidz_expand_zthr);
2039 spa->spa_raidz_expand_zthr = NULL;
2040 }
2041 }
2042
2043 /*
2044 * Opposite of spa_load().
2045 */
2046 static void
spa_unload(spa_t * spa)2047 spa_unload(spa_t *spa)
2048 {
2049 ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
2050 spa->spa_export_thread == curthread);
2051 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
2052
2053 spa_import_progress_remove(spa_guid(spa));
2054 spa_load_note(spa, "UNLOADING");
2055
2056 spa_wake_waiters(spa);
2057
2058 /*
2059 * If we have set the spa_final_txg, we have already performed the
2060 * tasks below in spa_export_common(). We should not redo it here since
2061 * we delay the final TXGs beyond what spa_final_txg is set at.
2062 */
2063 if (spa->spa_final_txg == UINT64_MAX) {
2064 /*
2065 * If the log space map feature is enabled and the pool is
2066 * getting exported (but not destroyed), we want to spend some
2067 * time flushing as many metaslabs as we can in an attempt to
2068 * destroy log space maps and save import time.
2069 */
2070 if (spa_should_flush_logs_on_unload(spa))
2071 spa_unload_log_sm_flush_all(spa);
2072
2073 /*
2074 * Stop async tasks.
2075 */
2076 spa_async_suspend(spa);
2077
2078 if (spa->spa_root_vdev) {
2079 vdev_t *root_vdev = spa->spa_root_vdev;
2080 vdev_initialize_stop_all(root_vdev,
2081 VDEV_INITIALIZE_ACTIVE);
2082 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
2083 vdev_autotrim_stop_all(spa);
2084 vdev_rebuild_stop_all(spa);
2085 l2arc_spa_rebuild_stop(spa);
2086 }
2087 }
2088
2089 /*
2090 * Stop syncing.
2091 */
2092 if (spa->spa_sync_on) {
2093 txg_sync_stop(spa->spa_dsl_pool);
2094 spa->spa_sync_on = B_FALSE;
2095 }
2096
2097 /*
2098 * This ensures that there is no async metaslab prefetching
2099 * while we attempt to unload the spa.
2100 */
2101 taskq_wait(spa->spa_metaslab_taskq);
2102
2103 if (spa->spa_mmp.mmp_thread)
2104 mmp_thread_stop(spa);
2105
2106 /*
2107 * Wait for any outstanding async I/O to complete.
2108 */
2109 if (spa->spa_async_zio_root != NULL) {
2110 for (int i = 0; i < max_ncpus; i++)
2111 (void) zio_wait(spa->spa_async_zio_root[i]);
2112 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
2113 spa->spa_async_zio_root = NULL;
2114 }
2115
2116 if (spa->spa_vdev_removal != NULL) {
2117 spa_vdev_removal_destroy(spa->spa_vdev_removal);
2118 spa->spa_vdev_removal = NULL;
2119 }
2120
2121 spa_destroy_aux_threads(spa);
2122
2123 spa_condense_fini(spa);
2124
2125 bpobj_close(&spa->spa_deferred_bpobj);
2126
2127 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
2128
2129 /*
2130 * Close all vdevs.
2131 */
2132 if (spa->spa_root_vdev)
2133 vdev_free(spa->spa_root_vdev);
2134 ASSERT(spa->spa_root_vdev == NULL);
2135
2136 /*
2137 * Close the dsl pool.
2138 */
2139 if (spa->spa_dsl_pool) {
2140 dsl_pool_close(spa->spa_dsl_pool);
2141 spa->spa_dsl_pool = NULL;
2142 spa->spa_meta_objset = NULL;
2143 }
2144
2145 ddt_unload(spa);
2146 brt_unload(spa);
2147 spa_unload_log_sm_metadata(spa);
2148
2149 /*
2150 * Drop and purge level 2 cache
2151 */
2152 spa_l2cache_drop(spa);
2153
2154 if (spa->spa_spares.sav_vdevs) {
2155 for (int i = 0; i < spa->spa_spares.sav_count; i++)
2156 vdev_free(spa->spa_spares.sav_vdevs[i]);
2157 kmem_free(spa->spa_spares.sav_vdevs,
2158 spa->spa_spares.sav_count * sizeof (void *));
2159 spa->spa_spares.sav_vdevs = NULL;
2160 }
2161 if (spa->spa_spares.sav_config) {
2162 nvlist_free(spa->spa_spares.sav_config);
2163 spa->spa_spares.sav_config = NULL;
2164 }
2165 spa->spa_spares.sav_count = 0;
2166
2167 if (spa->spa_l2cache.sav_vdevs) {
2168 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
2169 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
2170 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
2171 }
2172 kmem_free(spa->spa_l2cache.sav_vdevs,
2173 spa->spa_l2cache.sav_count * sizeof (void *));
2174 spa->spa_l2cache.sav_vdevs = NULL;
2175 }
2176 if (spa->spa_l2cache.sav_config) {
2177 nvlist_free(spa->spa_l2cache.sav_config);
2178 spa->spa_l2cache.sav_config = NULL;
2179 }
2180 spa->spa_l2cache.sav_count = 0;
2181
2182 spa->spa_async_suspended = 0;
2183
2184 spa->spa_indirect_vdevs_loaded = B_FALSE;
2185
2186 if (spa->spa_comment != NULL) {
2187 spa_strfree(spa->spa_comment);
2188 spa->spa_comment = NULL;
2189 }
2190 if (spa->spa_compatibility != NULL) {
2191 spa_strfree(spa->spa_compatibility);
2192 spa->spa_compatibility = NULL;
2193 }
2194
2195 spa->spa_raidz_expand = NULL;
2196
2197 spa_config_exit(spa, SCL_ALL, spa);
2198 }
2199
2200 /*
2201 * Load (or re-load) the current list of vdevs describing the active spares for
2202 * this pool. When this is called, we have some form of basic information in
2203 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
2204 * then re-generate a more complete list including status information.
2205 */
2206 void
spa_load_spares(spa_t * spa)2207 spa_load_spares(spa_t *spa)
2208 {
2209 nvlist_t **spares;
2210 uint_t nspares;
2211 int i;
2212 vdev_t *vd, *tvd;
2213
2214 #ifndef _KERNEL
2215 /*
2216 * zdb opens both the current state of the pool and the
2217 * checkpointed state (if present), with a different spa_t.
2218 *
2219 * As spare vdevs are shared among open pools, we skip loading
2220 * them when we load the checkpointed state of the pool.
2221 */
2222 if (!spa_writeable(spa))
2223 return;
2224 #endif
2225
2226 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2227
2228 /*
2229 * First, close and free any existing spare vdevs.
2230 */
2231 if (spa->spa_spares.sav_vdevs) {
2232 for (i = 0; i < spa->spa_spares.sav_count; i++) {
2233 vd = spa->spa_spares.sav_vdevs[i];
2234
2235 /* Undo the call to spa_activate() below */
2236 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2237 B_FALSE)) != NULL && tvd->vdev_isspare)
2238 spa_spare_remove(tvd);
2239 vdev_close(vd);
2240 vdev_free(vd);
2241 }
2242
2243 kmem_free(spa->spa_spares.sav_vdevs,
2244 spa->spa_spares.sav_count * sizeof (void *));
2245 }
2246
2247 if (spa->spa_spares.sav_config == NULL)
2248 nspares = 0;
2249 else
2250 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2251 ZPOOL_CONFIG_SPARES, &spares, &nspares));
2252
2253 spa->spa_spares.sav_count = (int)nspares;
2254 spa->spa_spares.sav_vdevs = NULL;
2255
2256 if (nspares == 0)
2257 return;
2258
2259 /*
2260 * Construct the array of vdevs, opening them to get status in the
2261 * process. For each spare, there is potentially two different vdev_t
2262 * structures associated with it: one in the list of spares (used only
2263 * for basic validation purposes) and one in the active vdev
2264 * configuration (if it's spared in). During this phase we open and
2265 * validate each vdev on the spare list. If the vdev also exists in the
2266 * active configuration, then we also mark this vdev as an active spare.
2267 */
2268 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
2269 KM_SLEEP);
2270 for (i = 0; i < spa->spa_spares.sav_count; i++) {
2271 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
2272 VDEV_ALLOC_SPARE) == 0);
2273 ASSERT(vd != NULL);
2274
2275 spa->spa_spares.sav_vdevs[i] = vd;
2276
2277 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2278 B_FALSE)) != NULL) {
2279 if (!tvd->vdev_isspare)
2280 spa_spare_add(tvd);
2281
2282 /*
2283 * We only mark the spare active if we were successfully
2284 * able to load the vdev. Otherwise, importing a pool
2285 * with a bad active spare would result in strange
2286 * behavior, because multiple pool would think the spare
2287 * is actively in use.
2288 *
2289 * There is a vulnerability here to an equally bizarre
2290 * circumstance, where a dead active spare is later
2291 * brought back to life (onlined or otherwise). Given
2292 * the rarity of this scenario, and the extra complexity
2293 * it adds, we ignore the possibility.
2294 */
2295 if (!vdev_is_dead(tvd))
2296 spa_spare_activate(tvd);
2297 }
2298
2299 vd->vdev_top = vd;
2300 vd->vdev_aux = &spa->spa_spares;
2301
2302 if (vdev_open(vd) != 0)
2303 continue;
2304
2305 if (vdev_validate_aux(vd) == 0)
2306 spa_spare_add(vd);
2307 }
2308
2309 /*
2310 * Recompute the stashed list of spares, with status information
2311 * this time.
2312 */
2313 fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
2314
2315 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
2316 KM_SLEEP);
2317 for (i = 0; i < spa->spa_spares.sav_count; i++)
2318 spares[i] = vdev_config_generate(spa,
2319 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
2320 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
2321 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
2322 spa->spa_spares.sav_count);
2323 for (i = 0; i < spa->spa_spares.sav_count; i++)
2324 nvlist_free(spares[i]);
2325 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
2326 }
2327
2328 /*
2329 * Load (or re-load) the current list of vdevs describing the active l2cache for
2330 * this pool. When this is called, we have some form of basic information in
2331 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
2332 * then re-generate a more complete list including status information.
2333 * Devices which are already active have their details maintained, and are
2334 * not re-opened.
2335 */
2336 void
spa_load_l2cache(spa_t * spa)2337 spa_load_l2cache(spa_t *spa)
2338 {
2339 nvlist_t **l2cache = NULL;
2340 uint_t nl2cache;
2341 int i, j, oldnvdevs;
2342 uint64_t guid;
2343 vdev_t *vd, **oldvdevs, **newvdevs;
2344 spa_aux_vdev_t *sav = &spa->spa_l2cache;
2345
2346 #ifndef _KERNEL
2347 /*
2348 * zdb opens both the current state of the pool and the
2349 * checkpointed state (if present), with a different spa_t.
2350 *
2351 * As L2 caches are part of the ARC which is shared among open
2352 * pools, we skip loading them when we load the checkpointed
2353 * state of the pool.
2354 */
2355 if (!spa_writeable(spa))
2356 return;
2357 #endif
2358
2359 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2360
2361 oldvdevs = sav->sav_vdevs;
2362 oldnvdevs = sav->sav_count;
2363 sav->sav_vdevs = NULL;
2364 sav->sav_count = 0;
2365
2366 if (sav->sav_config == NULL) {
2367 nl2cache = 0;
2368 newvdevs = NULL;
2369 goto out;
2370 }
2371
2372 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
2373 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
2374 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
2375
2376 /*
2377 * Process new nvlist of vdevs.
2378 */
2379 for (i = 0; i < nl2cache; i++) {
2380 guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
2381
2382 newvdevs[i] = NULL;
2383 for (j = 0; j < oldnvdevs; j++) {
2384 vd = oldvdevs[j];
2385 if (vd != NULL && guid == vd->vdev_guid) {
2386 /*
2387 * Retain previous vdev for add/remove ops.
2388 */
2389 newvdevs[i] = vd;
2390 oldvdevs[j] = NULL;
2391 break;
2392 }
2393 }
2394
2395 if (newvdevs[i] == NULL) {
2396 /*
2397 * Create new vdev
2398 */
2399 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
2400 VDEV_ALLOC_L2CACHE) == 0);
2401 ASSERT(vd != NULL);
2402 newvdevs[i] = vd;
2403
2404 /*
2405 * Commit this vdev as an l2cache device,
2406 * even if it fails to open.
2407 */
2408 spa_l2cache_add(vd);
2409
2410 vd->vdev_top = vd;
2411 vd->vdev_aux = sav;
2412
2413 spa_l2cache_activate(vd);
2414
2415 if (vdev_open(vd) != 0)
2416 continue;
2417
2418 (void) vdev_validate_aux(vd);
2419
2420 if (!vdev_is_dead(vd))
2421 l2arc_add_vdev(spa, vd);
2422
2423 /*
2424 * Upon cache device addition to a pool or pool
2425 * creation with a cache device or if the header
2426 * of the device is invalid we issue an async
2427 * TRIM command for the whole device which will
2428 * execute if l2arc_trim_ahead > 0.
2429 */
2430 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2431 }
2432 }
2433
2434 sav->sav_vdevs = newvdevs;
2435 sav->sav_count = (int)nl2cache;
2436
2437 /*
2438 * Recompute the stashed list of l2cache devices, with status
2439 * information this time.
2440 */
2441 fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2442
2443 if (sav->sav_count > 0)
2444 l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2445 KM_SLEEP);
2446 for (i = 0; i < sav->sav_count; i++)
2447 l2cache[i] = vdev_config_generate(spa,
2448 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2449 fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2450 (const nvlist_t * const *)l2cache, sav->sav_count);
2451
2452 out:
2453 /*
2454 * Purge vdevs that were dropped
2455 */
2456 if (oldvdevs) {
2457 for (i = 0; i < oldnvdevs; i++) {
2458 uint64_t pool;
2459
2460 vd = oldvdevs[i];
2461 if (vd != NULL) {
2462 ASSERT(vd->vdev_isl2cache);
2463
2464 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2465 pool != 0ULL && l2arc_vdev_present(vd))
2466 l2arc_remove_vdev(vd);
2467 vdev_clear_stats(vd);
2468 vdev_free(vd);
2469 }
2470 }
2471
2472 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2473 }
2474
2475 for (i = 0; i < sav->sav_count; i++)
2476 nvlist_free(l2cache[i]);
2477 if (sav->sav_count)
2478 kmem_free(l2cache, sav->sav_count * sizeof (void *));
2479 }
2480
2481 static int
load_nvlist(spa_t * spa,uint64_t obj,nvlist_t ** value)2482 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2483 {
2484 dmu_buf_t *db;
2485 char *packed = NULL;
2486 size_t nvsize = 0;
2487 int error;
2488 *value = NULL;
2489
2490 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2491 if (error)
2492 return (error);
2493
2494 nvsize = *(uint64_t *)db->db_data;
2495 dmu_buf_rele(db, FTAG);
2496
2497 packed = vmem_alloc(nvsize, KM_SLEEP);
2498 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2499 DMU_READ_PREFETCH);
2500 if (error == 0)
2501 error = nvlist_unpack(packed, nvsize, value, 0);
2502 vmem_free(packed, nvsize);
2503
2504 return (error);
2505 }
2506
2507 /*
2508 * Concrete top-level vdevs that are not missing and are not logs. At every
2509 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2510 */
2511 static uint64_t
spa_healthy_core_tvds(spa_t * spa)2512 spa_healthy_core_tvds(spa_t *spa)
2513 {
2514 vdev_t *rvd = spa->spa_root_vdev;
2515 uint64_t tvds = 0;
2516
2517 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2518 vdev_t *vd = rvd->vdev_child[i];
2519 if (vd->vdev_islog)
2520 continue;
2521 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2522 tvds++;
2523 }
2524
2525 return (tvds);
2526 }
2527
2528 /*
2529 * Checks to see if the given vdev could not be opened, in which case we post a
2530 * sysevent to notify the autoreplace code that the device has been removed.
2531 */
2532 static void
spa_check_removed(vdev_t * vd)2533 spa_check_removed(vdev_t *vd)
2534 {
2535 for (uint64_t c = 0; c < vd->vdev_children; c++)
2536 spa_check_removed(vd->vdev_child[c]);
2537
2538 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2539 vdev_is_concrete(vd)) {
2540 zfs_post_autoreplace(vd->vdev_spa, vd);
2541 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2542 }
2543 }
2544
2545 static int
spa_check_for_missing_logs(spa_t * spa)2546 spa_check_for_missing_logs(spa_t *spa)
2547 {
2548 vdev_t *rvd = spa->spa_root_vdev;
2549
2550 /*
2551 * If we're doing a normal import, then build up any additional
2552 * diagnostic information about missing log devices.
2553 * We'll pass this up to the user for further processing.
2554 */
2555 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2556 nvlist_t **child, *nv;
2557 uint64_t idx = 0;
2558
2559 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2560 KM_SLEEP);
2561 nv = fnvlist_alloc();
2562
2563 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2564 vdev_t *tvd = rvd->vdev_child[c];
2565
2566 /*
2567 * We consider a device as missing only if it failed
2568 * to open (i.e. offline or faulted is not considered
2569 * as missing).
2570 */
2571 if (tvd->vdev_islog &&
2572 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2573 child[idx++] = vdev_config_generate(spa, tvd,
2574 B_FALSE, VDEV_CONFIG_MISSING);
2575 }
2576 }
2577
2578 if (idx > 0) {
2579 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2580 (const nvlist_t * const *)child, idx);
2581 fnvlist_add_nvlist(spa->spa_load_info,
2582 ZPOOL_CONFIG_MISSING_DEVICES, nv);
2583
2584 for (uint64_t i = 0; i < idx; i++)
2585 nvlist_free(child[i]);
2586 }
2587 nvlist_free(nv);
2588 kmem_free(child, rvd->vdev_children * sizeof (char **));
2589
2590 if (idx > 0) {
2591 spa_load_failed(spa, "some log devices are missing");
2592 vdev_dbgmsg_print_tree(rvd, 2);
2593 return (SET_ERROR(ENXIO));
2594 }
2595 } else {
2596 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2597 vdev_t *tvd = rvd->vdev_child[c];
2598
2599 if (tvd->vdev_islog &&
2600 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2601 spa_set_log_state(spa, SPA_LOG_CLEAR);
2602 spa_load_note(spa, "some log devices are "
2603 "missing, ZIL is dropped.");
2604 vdev_dbgmsg_print_tree(rvd, 2);
2605 break;
2606 }
2607 }
2608 }
2609
2610 return (0);
2611 }
2612
2613 /*
2614 * Check for missing log devices
2615 */
2616 static boolean_t
spa_check_logs(spa_t * spa)2617 spa_check_logs(spa_t *spa)
2618 {
2619 boolean_t rv = B_FALSE;
2620 dsl_pool_t *dp = spa_get_dsl(spa);
2621
2622 switch (spa->spa_log_state) {
2623 default:
2624 break;
2625 case SPA_LOG_MISSING:
2626 /* need to recheck in case slog has been restored */
2627 case SPA_LOG_UNKNOWN:
2628 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2629 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2630 if (rv)
2631 spa_set_log_state(spa, SPA_LOG_MISSING);
2632 break;
2633 }
2634 return (rv);
2635 }
2636
2637 /*
2638 * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2639 */
2640 static boolean_t
spa_passivate_log(spa_t * spa)2641 spa_passivate_log(spa_t *spa)
2642 {
2643 vdev_t *rvd = spa->spa_root_vdev;
2644 boolean_t slog_found = B_FALSE;
2645
2646 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2647
2648 for (int c = 0; c < rvd->vdev_children; c++) {
2649 vdev_t *tvd = rvd->vdev_child[c];
2650
2651 if (tvd->vdev_islog) {
2652 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2653 metaslab_group_passivate(tvd->vdev_mg);
2654 slog_found = B_TRUE;
2655 }
2656 }
2657
2658 return (slog_found);
2659 }
2660
2661 /*
2662 * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2663 */
2664 static void
spa_activate_log(spa_t * spa)2665 spa_activate_log(spa_t *spa)
2666 {
2667 vdev_t *rvd = spa->spa_root_vdev;
2668
2669 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2670
2671 for (int c = 0; c < rvd->vdev_children; c++) {
2672 vdev_t *tvd = rvd->vdev_child[c];
2673
2674 if (tvd->vdev_islog) {
2675 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2676 metaslab_group_activate(tvd->vdev_mg);
2677 }
2678 }
2679 }
2680
2681 int
spa_reset_logs(spa_t * spa)2682 spa_reset_logs(spa_t *spa)
2683 {
2684 int error;
2685
2686 error = dmu_objset_find(spa_name(spa), zil_reset,
2687 NULL, DS_FIND_CHILDREN);
2688 if (error == 0) {
2689 /*
2690 * We successfully offlined the log device, sync out the
2691 * current txg so that the "stubby" block can be removed
2692 * by zil_sync().
2693 */
2694 txg_wait_synced(spa->spa_dsl_pool, 0);
2695 }
2696 return (error);
2697 }
2698
2699 static void
spa_aux_check_removed(spa_aux_vdev_t * sav)2700 spa_aux_check_removed(spa_aux_vdev_t *sav)
2701 {
2702 for (int i = 0; i < sav->sav_count; i++)
2703 spa_check_removed(sav->sav_vdevs[i]);
2704 }
2705
2706 void
spa_claim_notify(zio_t * zio)2707 spa_claim_notify(zio_t *zio)
2708 {
2709 spa_t *spa = zio->io_spa;
2710
2711 if (zio->io_error)
2712 return;
2713
2714 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2715 if (spa->spa_claim_max_txg < BP_GET_LOGICAL_BIRTH(zio->io_bp))
2716 spa->spa_claim_max_txg = BP_GET_LOGICAL_BIRTH(zio->io_bp);
2717 mutex_exit(&spa->spa_props_lock);
2718 }
2719
2720 typedef struct spa_load_error {
2721 boolean_t sle_verify_data;
2722 uint64_t sle_meta_count;
2723 uint64_t sle_data_count;
2724 } spa_load_error_t;
2725
2726 static void
spa_load_verify_done(zio_t * zio)2727 spa_load_verify_done(zio_t *zio)
2728 {
2729 blkptr_t *bp = zio->io_bp;
2730 spa_load_error_t *sle = zio->io_private;
2731 dmu_object_type_t type = BP_GET_TYPE(bp);
2732 int error = zio->io_error;
2733 spa_t *spa = zio->io_spa;
2734
2735 abd_free(zio->io_abd);
2736 if (error) {
2737 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2738 type != DMU_OT_INTENT_LOG)
2739 atomic_inc_64(&sle->sle_meta_count);
2740 else
2741 atomic_inc_64(&sle->sle_data_count);
2742 }
2743
2744 mutex_enter(&spa->spa_scrub_lock);
2745 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2746 cv_broadcast(&spa->spa_scrub_io_cv);
2747 mutex_exit(&spa->spa_scrub_lock);
2748 }
2749
2750 /*
2751 * Maximum number of inflight bytes is the log2 fraction of the arc size.
2752 * By default, we set it to 1/16th of the arc.
2753 */
2754 static uint_t spa_load_verify_shift = 4;
2755 static int spa_load_verify_metadata = B_TRUE;
2756 static int spa_load_verify_data = B_TRUE;
2757
2758 static int
spa_load_verify_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)2759 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2760 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2761 {
2762 zio_t *rio = arg;
2763 spa_load_error_t *sle = rio->io_private;
2764
2765 (void) zilog, (void) dnp;
2766
2767 /*
2768 * Note: normally this routine will not be called if
2769 * spa_load_verify_metadata is not set. However, it may be useful
2770 * to manually set the flag after the traversal has begun.
2771 */
2772 if (!spa_load_verify_metadata)
2773 return (0);
2774
2775 /*
2776 * Sanity check the block pointer in order to detect obvious damage
2777 * before using the contents in subsequent checks or in zio_read().
2778 * When damaged consider it to be a metadata error since we cannot
2779 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2780 */
2781 if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2782 atomic_inc_64(&sle->sle_meta_count);
2783 return (0);
2784 }
2785
2786 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2787 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2788 return (0);
2789
2790 if (!BP_IS_METADATA(bp) &&
2791 (!spa_load_verify_data || !sle->sle_verify_data))
2792 return (0);
2793
2794 uint64_t maxinflight_bytes =
2795 arc_target_bytes() >> spa_load_verify_shift;
2796 size_t size = BP_GET_PSIZE(bp);
2797
2798 mutex_enter(&spa->spa_scrub_lock);
2799 while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2800 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2801 spa->spa_load_verify_bytes += size;
2802 mutex_exit(&spa->spa_scrub_lock);
2803
2804 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2805 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2806 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2807 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2808 return (0);
2809 }
2810
2811 static int
verify_dataset_name_len(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)2812 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2813 {
2814 (void) dp, (void) arg;
2815
2816 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2817 return (SET_ERROR(ENAMETOOLONG));
2818
2819 return (0);
2820 }
2821
2822 static int
spa_load_verify(spa_t * spa)2823 spa_load_verify(spa_t *spa)
2824 {
2825 zio_t *rio;
2826 spa_load_error_t sle = { 0 };
2827 zpool_load_policy_t policy;
2828 boolean_t verify_ok = B_FALSE;
2829 int error = 0;
2830
2831 zpool_get_load_policy(spa->spa_config, &policy);
2832
2833 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2834 policy.zlp_maxmeta == UINT64_MAX)
2835 return (0);
2836
2837 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2838 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2839 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2840 DS_FIND_CHILDREN);
2841 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2842 if (error != 0)
2843 return (error);
2844
2845 /*
2846 * Verify data only if we are rewinding or error limit was set.
2847 * Otherwise nothing except dbgmsg care about it to waste time.
2848 */
2849 sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2850 (policy.zlp_maxdata < UINT64_MAX);
2851
2852 rio = zio_root(spa, NULL, &sle,
2853 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2854
2855 if (spa_load_verify_metadata) {
2856 if (spa->spa_extreme_rewind) {
2857 spa_load_note(spa, "performing a complete scan of the "
2858 "pool since extreme rewind is on. This may take "
2859 "a very long time.\n (spa_load_verify_data=%u, "
2860 "spa_load_verify_metadata=%u)",
2861 spa_load_verify_data, spa_load_verify_metadata);
2862 }
2863
2864 error = traverse_pool(spa, spa->spa_verify_min_txg,
2865 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2866 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2867 }
2868
2869 (void) zio_wait(rio);
2870 ASSERT0(spa->spa_load_verify_bytes);
2871
2872 spa->spa_load_meta_errors = sle.sle_meta_count;
2873 spa->spa_load_data_errors = sle.sle_data_count;
2874
2875 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2876 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2877 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2878 (u_longlong_t)sle.sle_data_count);
2879 }
2880
2881 if (spa_load_verify_dryrun ||
2882 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2883 sle.sle_data_count <= policy.zlp_maxdata)) {
2884 int64_t loss = 0;
2885
2886 verify_ok = B_TRUE;
2887 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2888 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2889
2890 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2891 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2892 spa->spa_load_txg_ts);
2893 fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2894 loss);
2895 fnvlist_add_uint64(spa->spa_load_info,
2896 ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2897 fnvlist_add_uint64(spa->spa_load_info,
2898 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2899 } else {
2900 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2901 }
2902
2903 if (spa_load_verify_dryrun)
2904 return (0);
2905
2906 if (error) {
2907 if (error != ENXIO && error != EIO)
2908 error = SET_ERROR(EIO);
2909 return (error);
2910 }
2911
2912 return (verify_ok ? 0 : EIO);
2913 }
2914
2915 /*
2916 * Find a value in the pool props object.
2917 */
2918 static void
spa_prop_find(spa_t * spa,zpool_prop_t prop,uint64_t * val)2919 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2920 {
2921 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2922 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2923 }
2924
2925 /*
2926 * Find a value in the pool directory object.
2927 */
2928 static int
spa_dir_prop(spa_t * spa,const char * name,uint64_t * val,boolean_t log_enoent)2929 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2930 {
2931 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2932 name, sizeof (uint64_t), 1, val);
2933
2934 if (error != 0 && (error != ENOENT || log_enoent)) {
2935 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2936 "[error=%d]", name, error);
2937 }
2938
2939 return (error);
2940 }
2941
2942 static int
spa_vdev_err(vdev_t * vdev,vdev_aux_t aux,int err)2943 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2944 {
2945 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2946 return (SET_ERROR(err));
2947 }
2948
2949 boolean_t
spa_livelist_delete_check(spa_t * spa)2950 spa_livelist_delete_check(spa_t *spa)
2951 {
2952 return (spa->spa_livelists_to_delete != 0);
2953 }
2954
2955 static boolean_t
spa_livelist_delete_cb_check(void * arg,zthr_t * z)2956 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2957 {
2958 (void) z;
2959 spa_t *spa = arg;
2960 return (spa_livelist_delete_check(spa));
2961 }
2962
2963 static int
delete_blkptr_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)2964 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2965 {
2966 spa_t *spa = arg;
2967 zio_free(spa, tx->tx_txg, bp);
2968 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2969 -bp_get_dsize_sync(spa, bp),
2970 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2971 return (0);
2972 }
2973
2974 static int
dsl_get_next_livelist_obj(objset_t * os,uint64_t zap_obj,uint64_t * llp)2975 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2976 {
2977 int err;
2978 zap_cursor_t zc;
2979 zap_attribute_t *za = zap_attribute_alloc();
2980 zap_cursor_init(&zc, os, zap_obj);
2981 err = zap_cursor_retrieve(&zc, za);
2982 zap_cursor_fini(&zc);
2983 if (err == 0)
2984 *llp = za->za_first_integer;
2985 zap_attribute_free(za);
2986 return (err);
2987 }
2988
2989 /*
2990 * Components of livelist deletion that must be performed in syncing
2991 * context: freeing block pointers and updating the pool-wide data
2992 * structures to indicate how much work is left to do
2993 */
2994 typedef struct sublist_delete_arg {
2995 spa_t *spa;
2996 dsl_deadlist_t *ll;
2997 uint64_t key;
2998 bplist_t *to_free;
2999 } sublist_delete_arg_t;
3000
3001 static void
sublist_delete_sync(void * arg,dmu_tx_t * tx)3002 sublist_delete_sync(void *arg, dmu_tx_t *tx)
3003 {
3004 sublist_delete_arg_t *sda = arg;
3005 spa_t *spa = sda->spa;
3006 dsl_deadlist_t *ll = sda->ll;
3007 uint64_t key = sda->key;
3008 bplist_t *to_free = sda->to_free;
3009
3010 bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
3011 dsl_deadlist_remove_entry(ll, key, tx);
3012 }
3013
3014 typedef struct livelist_delete_arg {
3015 spa_t *spa;
3016 uint64_t ll_obj;
3017 uint64_t zap_obj;
3018 } livelist_delete_arg_t;
3019
3020 static void
livelist_delete_sync(void * arg,dmu_tx_t * tx)3021 livelist_delete_sync(void *arg, dmu_tx_t *tx)
3022 {
3023 livelist_delete_arg_t *lda = arg;
3024 spa_t *spa = lda->spa;
3025 uint64_t ll_obj = lda->ll_obj;
3026 uint64_t zap_obj = lda->zap_obj;
3027 objset_t *mos = spa->spa_meta_objset;
3028 uint64_t count;
3029
3030 /* free the livelist and decrement the feature count */
3031 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
3032 dsl_deadlist_free(mos, ll_obj, tx);
3033 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
3034 VERIFY0(zap_count(mos, zap_obj, &count));
3035 if (count == 0) {
3036 /* no more livelists to delete */
3037 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
3038 DMU_POOL_DELETED_CLONES, tx));
3039 VERIFY0(zap_destroy(mos, zap_obj, tx));
3040 spa->spa_livelists_to_delete = 0;
3041 spa_notify_waiters(spa);
3042 }
3043 }
3044
3045 /*
3046 * Load in the value for the livelist to be removed and open it. Then,
3047 * load its first sublist and determine which block pointers should actually
3048 * be freed. Then, call a synctask which performs the actual frees and updates
3049 * the pool-wide livelist data.
3050 */
3051 static void
spa_livelist_delete_cb(void * arg,zthr_t * z)3052 spa_livelist_delete_cb(void *arg, zthr_t *z)
3053 {
3054 spa_t *spa = arg;
3055 uint64_t ll_obj = 0, count;
3056 objset_t *mos = spa->spa_meta_objset;
3057 uint64_t zap_obj = spa->spa_livelists_to_delete;
3058 /*
3059 * Determine the next livelist to delete. This function should only
3060 * be called if there is at least one deleted clone.
3061 */
3062 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
3063 VERIFY0(zap_count(mos, ll_obj, &count));
3064 if (count > 0) {
3065 dsl_deadlist_t *ll;
3066 dsl_deadlist_entry_t *dle;
3067 bplist_t to_free;
3068 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
3069 VERIFY0(dsl_deadlist_open(ll, mos, ll_obj));
3070 dle = dsl_deadlist_first(ll);
3071 ASSERT3P(dle, !=, NULL);
3072 bplist_create(&to_free);
3073 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
3074 z, NULL);
3075 if (err == 0) {
3076 sublist_delete_arg_t sync_arg = {
3077 .spa = spa,
3078 .ll = ll,
3079 .key = dle->dle_mintxg,
3080 .to_free = &to_free
3081 };
3082 zfs_dbgmsg("deleting sublist (id %llu) from"
3083 " livelist %llu, %lld remaining",
3084 (u_longlong_t)dle->dle_bpobj.bpo_object,
3085 (u_longlong_t)ll_obj, (longlong_t)count - 1);
3086 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
3087 sublist_delete_sync, &sync_arg, 0,
3088 ZFS_SPACE_CHECK_DESTROY));
3089 } else {
3090 VERIFY3U(err, ==, EINTR);
3091 }
3092 bplist_clear(&to_free);
3093 bplist_destroy(&to_free);
3094 dsl_deadlist_close(ll);
3095 kmem_free(ll, sizeof (dsl_deadlist_t));
3096 } else {
3097 livelist_delete_arg_t sync_arg = {
3098 .spa = spa,
3099 .ll_obj = ll_obj,
3100 .zap_obj = zap_obj
3101 };
3102 zfs_dbgmsg("deletion of livelist %llu completed",
3103 (u_longlong_t)ll_obj);
3104 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
3105 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
3106 }
3107 }
3108
3109 static void
spa_start_livelist_destroy_thread(spa_t * spa)3110 spa_start_livelist_destroy_thread(spa_t *spa)
3111 {
3112 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
3113 spa->spa_livelist_delete_zthr =
3114 zthr_create("z_livelist_destroy",
3115 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
3116 minclsyspri);
3117 }
3118
3119 typedef struct livelist_new_arg {
3120 bplist_t *allocs;
3121 bplist_t *frees;
3122 } livelist_new_arg_t;
3123
3124 static int
livelist_track_new_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)3125 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3126 dmu_tx_t *tx)
3127 {
3128 ASSERT(tx == NULL);
3129 livelist_new_arg_t *lna = arg;
3130 if (bp_freed) {
3131 bplist_append(lna->frees, bp);
3132 } else {
3133 bplist_append(lna->allocs, bp);
3134 zfs_livelist_condense_new_alloc++;
3135 }
3136 return (0);
3137 }
3138
3139 typedef struct livelist_condense_arg {
3140 spa_t *spa;
3141 bplist_t to_keep;
3142 uint64_t first_size;
3143 uint64_t next_size;
3144 } livelist_condense_arg_t;
3145
3146 static void
spa_livelist_condense_sync(void * arg,dmu_tx_t * tx)3147 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
3148 {
3149 livelist_condense_arg_t *lca = arg;
3150 spa_t *spa = lca->spa;
3151 bplist_t new_frees;
3152 dsl_dataset_t *ds = spa->spa_to_condense.ds;
3153
3154 /* Have we been cancelled? */
3155 if (spa->spa_to_condense.cancelled) {
3156 zfs_livelist_condense_sync_cancel++;
3157 goto out;
3158 }
3159
3160 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3161 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3162 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
3163
3164 /*
3165 * It's possible that the livelist was changed while the zthr was
3166 * running. Therefore, we need to check for new blkptrs in the two
3167 * entries being condensed and continue to track them in the livelist.
3168 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
3169 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
3170 * we need to sort them into two different bplists.
3171 */
3172 uint64_t first_obj = first->dle_bpobj.bpo_object;
3173 uint64_t next_obj = next->dle_bpobj.bpo_object;
3174 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3175 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3176
3177 bplist_create(&new_frees);
3178 livelist_new_arg_t new_bps = {
3179 .allocs = &lca->to_keep,
3180 .frees = &new_frees,
3181 };
3182
3183 if (cur_first_size > lca->first_size) {
3184 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
3185 livelist_track_new_cb, &new_bps, lca->first_size));
3186 }
3187 if (cur_next_size > lca->next_size) {
3188 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
3189 livelist_track_new_cb, &new_bps, lca->next_size));
3190 }
3191
3192 dsl_deadlist_clear_entry(first, ll, tx);
3193 ASSERT(bpobj_is_empty(&first->dle_bpobj));
3194 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
3195
3196 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
3197 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
3198 bplist_destroy(&new_frees);
3199
3200 char dsname[ZFS_MAX_DATASET_NAME_LEN];
3201 dsl_dataset_name(ds, dsname);
3202 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
3203 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
3204 "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
3205 (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
3206 (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
3207 (u_longlong_t)cur_next_size,
3208 (u_longlong_t)first->dle_bpobj.bpo_object,
3209 (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
3210 out:
3211 dmu_buf_rele(ds->ds_dbuf, spa);
3212 spa->spa_to_condense.ds = NULL;
3213 bplist_clear(&lca->to_keep);
3214 bplist_destroy(&lca->to_keep);
3215 kmem_free(lca, sizeof (livelist_condense_arg_t));
3216 spa->spa_to_condense.syncing = B_FALSE;
3217 }
3218
3219 static void
spa_livelist_condense_cb(void * arg,zthr_t * t)3220 spa_livelist_condense_cb(void *arg, zthr_t *t)
3221 {
3222 while (zfs_livelist_condense_zthr_pause &&
3223 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3224 delay(1);
3225
3226 spa_t *spa = arg;
3227 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3228 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3229 uint64_t first_size, next_size;
3230
3231 livelist_condense_arg_t *lca =
3232 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
3233 bplist_create(&lca->to_keep);
3234
3235 /*
3236 * Process the livelists (matching FREEs and ALLOCs) in open context
3237 * so we have minimal work in syncing context to condense.
3238 *
3239 * We save bpobj sizes (first_size and next_size) to use later in
3240 * syncing context to determine if entries were added to these sublists
3241 * while in open context. This is possible because the clone is still
3242 * active and open for normal writes and we want to make sure the new,
3243 * unprocessed blockpointers are inserted into the livelist normally.
3244 *
3245 * Note that dsl_process_sub_livelist() both stores the size number of
3246 * blockpointers and iterates over them while the bpobj's lock held, so
3247 * the sizes returned to us are consistent which what was actually
3248 * processed.
3249 */
3250 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
3251 &first_size);
3252 if (err == 0)
3253 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
3254 t, &next_size);
3255
3256 if (err == 0) {
3257 while (zfs_livelist_condense_sync_pause &&
3258 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3259 delay(1);
3260
3261 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
3262 dmu_tx_mark_netfree(tx);
3263 dmu_tx_hold_space(tx, 1);
3264 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
3265 if (err == 0) {
3266 /*
3267 * Prevent the condense zthr restarting before
3268 * the synctask completes.
3269 */
3270 spa->spa_to_condense.syncing = B_TRUE;
3271 lca->spa = spa;
3272 lca->first_size = first_size;
3273 lca->next_size = next_size;
3274 dsl_sync_task_nowait(spa_get_dsl(spa),
3275 spa_livelist_condense_sync, lca, tx);
3276 dmu_tx_commit(tx);
3277 return;
3278 }
3279 }
3280 /*
3281 * Condensing can not continue: either it was externally stopped or
3282 * we were unable to assign to a tx because the pool has run out of
3283 * space. In the second case, we'll just end up trying to condense
3284 * again in a later txg.
3285 */
3286 ASSERT(err != 0);
3287 bplist_clear(&lca->to_keep);
3288 bplist_destroy(&lca->to_keep);
3289 kmem_free(lca, sizeof (livelist_condense_arg_t));
3290 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
3291 spa->spa_to_condense.ds = NULL;
3292 if (err == EINTR)
3293 zfs_livelist_condense_zthr_cancel++;
3294 }
3295
3296 /*
3297 * Check that there is something to condense but that a condense is not
3298 * already in progress and that condensing has not been cancelled.
3299 */
3300 static boolean_t
spa_livelist_condense_cb_check(void * arg,zthr_t * z)3301 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
3302 {
3303 (void) z;
3304 spa_t *spa = arg;
3305 if ((spa->spa_to_condense.ds != NULL) &&
3306 (spa->spa_to_condense.syncing == B_FALSE) &&
3307 (spa->spa_to_condense.cancelled == B_FALSE)) {
3308 return (B_TRUE);
3309 }
3310 return (B_FALSE);
3311 }
3312
3313 static void
spa_start_livelist_condensing_thread(spa_t * spa)3314 spa_start_livelist_condensing_thread(spa_t *spa)
3315 {
3316 spa->spa_to_condense.ds = NULL;
3317 spa->spa_to_condense.first = NULL;
3318 spa->spa_to_condense.next = NULL;
3319 spa->spa_to_condense.syncing = B_FALSE;
3320 spa->spa_to_condense.cancelled = B_FALSE;
3321
3322 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
3323 spa->spa_livelist_condense_zthr =
3324 zthr_create("z_livelist_condense",
3325 spa_livelist_condense_cb_check,
3326 spa_livelist_condense_cb, spa, minclsyspri);
3327 }
3328
3329 static void
spa_spawn_aux_threads(spa_t * spa)3330 spa_spawn_aux_threads(spa_t *spa)
3331 {
3332 ASSERT(spa_writeable(spa));
3333
3334 spa_start_raidz_expansion_thread(spa);
3335 spa_start_indirect_condensing_thread(spa);
3336 spa_start_livelist_destroy_thread(spa);
3337 spa_start_livelist_condensing_thread(spa);
3338
3339 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
3340 spa->spa_checkpoint_discard_zthr =
3341 zthr_create("z_checkpoint_discard",
3342 spa_checkpoint_discard_thread_check,
3343 spa_checkpoint_discard_thread, spa, minclsyspri);
3344 }
3345
3346 /*
3347 * Fix up config after a partly-completed split. This is done with the
3348 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
3349 * pool have that entry in their config, but only the splitting one contains
3350 * a list of all the guids of the vdevs that are being split off.
3351 *
3352 * This function determines what to do with that list: either rejoin
3353 * all the disks to the pool, or complete the splitting process. To attempt
3354 * the rejoin, each disk that is offlined is marked online again, and
3355 * we do a reopen() call. If the vdev label for every disk that was
3356 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
3357 * then we call vdev_split() on each disk, and complete the split.
3358 *
3359 * Otherwise we leave the config alone, with all the vdevs in place in
3360 * the original pool.
3361 */
3362 static void
spa_try_repair(spa_t * spa,nvlist_t * config)3363 spa_try_repair(spa_t *spa, nvlist_t *config)
3364 {
3365 uint_t extracted;
3366 uint64_t *glist;
3367 uint_t i, gcount;
3368 nvlist_t *nvl;
3369 vdev_t **vd;
3370 boolean_t attempt_reopen;
3371
3372 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
3373 return;
3374
3375 /* check that the config is complete */
3376 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
3377 &glist, &gcount) != 0)
3378 return;
3379
3380 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
3381
3382 /* attempt to online all the vdevs & validate */
3383 attempt_reopen = B_TRUE;
3384 for (i = 0; i < gcount; i++) {
3385 if (glist[i] == 0) /* vdev is hole */
3386 continue;
3387
3388 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
3389 if (vd[i] == NULL) {
3390 /*
3391 * Don't bother attempting to reopen the disks;
3392 * just do the split.
3393 */
3394 attempt_reopen = B_FALSE;
3395 } else {
3396 /* attempt to re-online it */
3397 vd[i]->vdev_offline = B_FALSE;
3398 }
3399 }
3400
3401 if (attempt_reopen) {
3402 vdev_reopen(spa->spa_root_vdev);
3403
3404 /* check each device to see what state it's in */
3405 for (extracted = 0, i = 0; i < gcount; i++) {
3406 if (vd[i] != NULL &&
3407 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
3408 break;
3409 ++extracted;
3410 }
3411 }
3412
3413 /*
3414 * If every disk has been moved to the new pool, or if we never
3415 * even attempted to look at them, then we split them off for
3416 * good.
3417 */
3418 if (!attempt_reopen || gcount == extracted) {
3419 for (i = 0; i < gcount; i++)
3420 if (vd[i] != NULL)
3421 vdev_split(vd[i]);
3422 vdev_reopen(spa->spa_root_vdev);
3423 }
3424
3425 kmem_free(vd, gcount * sizeof (vdev_t *));
3426 }
3427
3428 static int
spa_load(spa_t * spa,spa_load_state_t state,spa_import_type_t type)3429 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
3430 {
3431 const char *ereport = FM_EREPORT_ZFS_POOL;
3432 int error;
3433
3434 spa->spa_load_state = state;
3435 (void) spa_import_progress_set_state(spa_guid(spa),
3436 spa_load_state(spa));
3437 spa_import_progress_set_notes(spa, "spa_load()");
3438
3439 gethrestime(&spa->spa_loaded_ts);
3440 error = spa_load_impl(spa, type, &ereport);
3441
3442 /*
3443 * Don't count references from objsets that are already closed
3444 * and are making their way through the eviction process.
3445 */
3446 spa_evicting_os_wait(spa);
3447 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3448 if (error) {
3449 if (error != EEXIST) {
3450 spa->spa_loaded_ts.tv_sec = 0;
3451 spa->spa_loaded_ts.tv_nsec = 0;
3452 }
3453 if (error != EBADF) {
3454 (void) zfs_ereport_post(ereport, spa,
3455 NULL, NULL, NULL, 0);
3456 }
3457 }
3458 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3459 spa->spa_ena = 0;
3460
3461 (void) spa_import_progress_set_state(spa_guid(spa),
3462 spa_load_state(spa));
3463
3464 return (error);
3465 }
3466
3467 #ifdef ZFS_DEBUG
3468 /*
3469 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3470 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3471 * spa's per-vdev ZAP list.
3472 */
3473 static uint64_t
vdev_count_verify_zaps(vdev_t * vd)3474 vdev_count_verify_zaps(vdev_t *vd)
3475 {
3476 spa_t *spa = vd->vdev_spa;
3477 uint64_t total = 0;
3478
3479 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
3480 vd->vdev_root_zap != 0) {
3481 total++;
3482 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3483 spa->spa_all_vdev_zaps, vd->vdev_root_zap));
3484 }
3485 if (vd->vdev_top_zap != 0) {
3486 total++;
3487 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3488 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3489 }
3490 if (vd->vdev_leaf_zap != 0) {
3491 total++;
3492 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3493 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3494 }
3495
3496 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3497 total += vdev_count_verify_zaps(vd->vdev_child[i]);
3498 }
3499
3500 return (total);
3501 }
3502 #else
3503 #define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3504 #endif
3505
3506 /*
3507 * Determine whether the activity check is required.
3508 */
3509 static boolean_t
spa_activity_check_required(spa_t * spa,uberblock_t * ub,nvlist_t * label,nvlist_t * config)3510 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3511 nvlist_t *config)
3512 {
3513 uint64_t state = 0;
3514 uint64_t hostid = 0;
3515 uint64_t tryconfig_txg = 0;
3516 uint64_t tryconfig_timestamp = 0;
3517 uint16_t tryconfig_mmp_seq = 0;
3518 nvlist_t *nvinfo;
3519
3520 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3521 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3522 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3523 &tryconfig_txg);
3524 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3525 &tryconfig_timestamp);
3526 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3527 &tryconfig_mmp_seq);
3528 }
3529
3530 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3531
3532 /*
3533 * Disable the MMP activity check - This is used by zdb which
3534 * is intended to be used on potentially active pools.
3535 */
3536 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3537 return (B_FALSE);
3538
3539 /*
3540 * Skip the activity check when the MMP feature is disabled.
3541 */
3542 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3543 return (B_FALSE);
3544
3545 /*
3546 * If the tryconfig_ values are nonzero, they are the results of an
3547 * earlier tryimport. If they all match the uberblock we just found,
3548 * then the pool has not changed and we return false so we do not test
3549 * a second time.
3550 */
3551 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3552 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3553 tryconfig_mmp_seq && tryconfig_mmp_seq ==
3554 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3555 return (B_FALSE);
3556
3557 /*
3558 * Allow the activity check to be skipped when importing the pool
3559 * on the same host which last imported it. Since the hostid from
3560 * configuration may be stale use the one read from the label.
3561 */
3562 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3563 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3564
3565 if (hostid == spa_get_hostid(spa))
3566 return (B_FALSE);
3567
3568 /*
3569 * Skip the activity test when the pool was cleanly exported.
3570 */
3571 if (state != POOL_STATE_ACTIVE)
3572 return (B_FALSE);
3573
3574 return (B_TRUE);
3575 }
3576
3577 /*
3578 * Nanoseconds the activity check must watch for changes on-disk.
3579 */
3580 static uint64_t
spa_activity_check_duration(spa_t * spa,uberblock_t * ub)3581 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3582 {
3583 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3584 uint64_t multihost_interval = MSEC2NSEC(
3585 MMP_INTERVAL_OK(zfs_multihost_interval));
3586 uint64_t import_delay = MAX(NANOSEC, import_intervals *
3587 multihost_interval);
3588
3589 /*
3590 * Local tunables determine a minimum duration except for the case
3591 * where we know when the remote host will suspend the pool if MMP
3592 * writes do not land.
3593 *
3594 * See Big Theory comment at the top of mmp.c for the reasoning behind
3595 * these cases and times.
3596 */
3597
3598 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3599
3600 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3601 MMP_FAIL_INT(ub) > 0) {
3602
3603 /* MMP on remote host will suspend pool after failed writes */
3604 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3605 MMP_IMPORT_SAFETY_FACTOR / 100;
3606
3607 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3608 "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3609 "import_intervals=%llu", (u_longlong_t)import_delay,
3610 (u_longlong_t)MMP_FAIL_INT(ub),
3611 (u_longlong_t)MMP_INTERVAL(ub),
3612 (u_longlong_t)import_intervals);
3613
3614 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3615 MMP_FAIL_INT(ub) == 0) {
3616
3617 /* MMP on remote host will never suspend pool */
3618 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3619 ub->ub_mmp_delay) * import_intervals);
3620
3621 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3622 "mmp_interval=%llu ub_mmp_delay=%llu "
3623 "import_intervals=%llu", (u_longlong_t)import_delay,
3624 (u_longlong_t)MMP_INTERVAL(ub),
3625 (u_longlong_t)ub->ub_mmp_delay,
3626 (u_longlong_t)import_intervals);
3627
3628 } else if (MMP_VALID(ub)) {
3629 /*
3630 * zfs-0.7 compatibility case
3631 */
3632
3633 import_delay = MAX(import_delay, (multihost_interval +
3634 ub->ub_mmp_delay) * import_intervals);
3635
3636 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3637 "import_intervals=%llu leaves=%u",
3638 (u_longlong_t)import_delay,
3639 (u_longlong_t)ub->ub_mmp_delay,
3640 (u_longlong_t)import_intervals,
3641 vdev_count_leaves(spa));
3642 } else {
3643 /* Using local tunings is the only reasonable option */
3644 zfs_dbgmsg("pool last imported on non-MMP aware "
3645 "host using import_delay=%llu multihost_interval=%llu "
3646 "import_intervals=%llu", (u_longlong_t)import_delay,
3647 (u_longlong_t)multihost_interval,
3648 (u_longlong_t)import_intervals);
3649 }
3650
3651 return (import_delay);
3652 }
3653
3654 /*
3655 * Remote host activity check.
3656 *
3657 * error results:
3658 * 0 - no activity detected
3659 * EREMOTEIO - remote activity detected
3660 * EINTR - user canceled the operation
3661 */
3662 static int
spa_activity_check(spa_t * spa,uberblock_t * ub,nvlist_t * config,boolean_t importing)3663 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config,
3664 boolean_t importing)
3665 {
3666 uint64_t txg = ub->ub_txg;
3667 uint64_t timestamp = ub->ub_timestamp;
3668 uint64_t mmp_config = ub->ub_mmp_config;
3669 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3670 uint64_t import_delay;
3671 hrtime_t import_expire, now;
3672 nvlist_t *mmp_label = NULL;
3673 vdev_t *rvd = spa->spa_root_vdev;
3674 kcondvar_t cv;
3675 kmutex_t mtx;
3676 int error = 0;
3677
3678 cv_init(&cv, NULL, CV_DEFAULT, NULL);
3679 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3680 mutex_enter(&mtx);
3681
3682 /*
3683 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3684 * during the earlier tryimport. If the txg recorded there is 0 then
3685 * the pool is known to be active on another host.
3686 *
3687 * Otherwise, the pool might be in use on another host. Check for
3688 * changes in the uberblocks on disk if necessary.
3689 */
3690 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3691 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3692 ZPOOL_CONFIG_LOAD_INFO);
3693
3694 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3695 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3696 vdev_uberblock_load(rvd, ub, &mmp_label);
3697 error = SET_ERROR(EREMOTEIO);
3698 goto out;
3699 }
3700 }
3701
3702 import_delay = spa_activity_check_duration(spa, ub);
3703
3704 /* Add a small random factor in case of simultaneous imports (0-25%) */
3705 import_delay += import_delay * random_in_range(250) / 1000;
3706
3707 import_expire = gethrtime() + import_delay;
3708
3709 if (importing) {
3710 spa_import_progress_set_notes(spa, "Checking MMP activity, "
3711 "waiting %llu ms", (u_longlong_t)NSEC2MSEC(import_delay));
3712 }
3713
3714 int iterations = 0;
3715 while ((now = gethrtime()) < import_expire) {
3716 if (importing && iterations++ % 30 == 0) {
3717 spa_import_progress_set_notes(spa, "Checking MMP "
3718 "activity, %llu ms remaining",
3719 (u_longlong_t)NSEC2MSEC(import_expire - now));
3720 }
3721
3722 if (importing) {
3723 (void) spa_import_progress_set_mmp_check(spa_guid(spa),
3724 NSEC2SEC(import_expire - gethrtime()));
3725 }
3726
3727 vdev_uberblock_load(rvd, ub, &mmp_label);
3728
3729 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3730 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3731 zfs_dbgmsg("multihost activity detected "
3732 "txg %llu ub_txg %llu "
3733 "timestamp %llu ub_timestamp %llu "
3734 "mmp_config %#llx ub_mmp_config %#llx",
3735 (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3736 (u_longlong_t)timestamp,
3737 (u_longlong_t)ub->ub_timestamp,
3738 (u_longlong_t)mmp_config,
3739 (u_longlong_t)ub->ub_mmp_config);
3740
3741 error = SET_ERROR(EREMOTEIO);
3742 break;
3743 }
3744
3745 if (mmp_label) {
3746 nvlist_free(mmp_label);
3747 mmp_label = NULL;
3748 }
3749
3750 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3751 if (error != -1) {
3752 error = SET_ERROR(EINTR);
3753 break;
3754 }
3755 error = 0;
3756 }
3757
3758 out:
3759 mutex_exit(&mtx);
3760 mutex_destroy(&mtx);
3761 cv_destroy(&cv);
3762
3763 /*
3764 * If the pool is determined to be active store the status in the
3765 * spa->spa_load_info nvlist. If the remote hostname or hostid are
3766 * available from configuration read from disk store them as well.
3767 * This allows 'zpool import' to generate a more useful message.
3768 *
3769 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
3770 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3771 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
3772 */
3773 if (error == EREMOTEIO) {
3774 const char *hostname = "<unknown>";
3775 uint64_t hostid = 0;
3776
3777 if (mmp_label) {
3778 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3779 hostname = fnvlist_lookup_string(mmp_label,
3780 ZPOOL_CONFIG_HOSTNAME);
3781 fnvlist_add_string(spa->spa_load_info,
3782 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3783 }
3784
3785 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3786 hostid = fnvlist_lookup_uint64(mmp_label,
3787 ZPOOL_CONFIG_HOSTID);
3788 fnvlist_add_uint64(spa->spa_load_info,
3789 ZPOOL_CONFIG_MMP_HOSTID, hostid);
3790 }
3791 }
3792
3793 fnvlist_add_uint64(spa->spa_load_info,
3794 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3795 fnvlist_add_uint64(spa->spa_load_info,
3796 ZPOOL_CONFIG_MMP_TXG, 0);
3797
3798 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3799 }
3800
3801 if (mmp_label)
3802 nvlist_free(mmp_label);
3803
3804 return (error);
3805 }
3806
3807 /*
3808 * Called from zfs_ioc_clear for a pool that was suspended
3809 * after failing mmp write checks.
3810 */
3811 boolean_t
spa_mmp_remote_host_activity(spa_t * spa)3812 spa_mmp_remote_host_activity(spa_t *spa)
3813 {
3814 ASSERT(spa_multihost(spa) && spa_suspended(spa));
3815
3816 nvlist_t *best_label;
3817 uberblock_t best_ub;
3818
3819 /*
3820 * Locate the best uberblock on disk
3821 */
3822 vdev_uberblock_load(spa->spa_root_vdev, &best_ub, &best_label);
3823 if (best_label) {
3824 /*
3825 * confirm that the best hostid matches our hostid
3826 */
3827 if (nvlist_exists(best_label, ZPOOL_CONFIG_HOSTID) &&
3828 spa_get_hostid(spa) !=
3829 fnvlist_lookup_uint64(best_label, ZPOOL_CONFIG_HOSTID)) {
3830 nvlist_free(best_label);
3831 return (B_TRUE);
3832 }
3833 nvlist_free(best_label);
3834 } else {
3835 return (B_TRUE);
3836 }
3837
3838 if (!MMP_VALID(&best_ub) ||
3839 !MMP_FAIL_INT_VALID(&best_ub) ||
3840 MMP_FAIL_INT(&best_ub) == 0) {
3841 return (B_TRUE);
3842 }
3843
3844 if (best_ub.ub_txg != spa->spa_uberblock.ub_txg ||
3845 best_ub.ub_timestamp != spa->spa_uberblock.ub_timestamp) {
3846 zfs_dbgmsg("txg mismatch detected during pool clear "
3847 "txg %llu ub_txg %llu timestamp %llu ub_timestamp %llu",
3848 (u_longlong_t)spa->spa_uberblock.ub_txg,
3849 (u_longlong_t)best_ub.ub_txg,
3850 (u_longlong_t)spa->spa_uberblock.ub_timestamp,
3851 (u_longlong_t)best_ub.ub_timestamp);
3852 return (B_TRUE);
3853 }
3854
3855 /*
3856 * Perform an activity check looking for any remote writer
3857 */
3858 return (spa_activity_check(spa, &spa->spa_uberblock, spa->spa_config,
3859 B_FALSE) != 0);
3860 }
3861
3862 static int
spa_verify_host(spa_t * spa,nvlist_t * mos_config)3863 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3864 {
3865 uint64_t hostid;
3866 const char *hostname;
3867 uint64_t myhostid = 0;
3868
3869 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3870 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3871 hostname = fnvlist_lookup_string(mos_config,
3872 ZPOOL_CONFIG_HOSTNAME);
3873
3874 myhostid = zone_get_hostid(NULL);
3875
3876 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3877 cmn_err(CE_WARN, "pool '%s' could not be "
3878 "loaded as it was last accessed by "
3879 "another system (host: %s hostid: 0x%llx). "
3880 "See: https://openzfs.github.io/openzfs-docs/msg/"
3881 "ZFS-8000-EY",
3882 spa_name(spa), hostname, (u_longlong_t)hostid);
3883 spa_load_failed(spa, "hostid verification failed: pool "
3884 "last accessed by host: %s (hostid: 0x%llx)",
3885 hostname, (u_longlong_t)hostid);
3886 return (SET_ERROR(EBADF));
3887 }
3888 }
3889
3890 return (0);
3891 }
3892
3893 static int
spa_ld_parse_config(spa_t * spa,spa_import_type_t type)3894 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3895 {
3896 int error = 0;
3897 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3898 int parse;
3899 vdev_t *rvd;
3900 uint64_t pool_guid;
3901 const char *comment;
3902 const char *compatibility;
3903
3904 /*
3905 * Versioning wasn't explicitly added to the label until later, so if
3906 * it's not present treat it as the initial version.
3907 */
3908 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3909 &spa->spa_ubsync.ub_version) != 0)
3910 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3911
3912 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3913 spa_load_failed(spa, "invalid config provided: '%s' missing",
3914 ZPOOL_CONFIG_POOL_GUID);
3915 return (SET_ERROR(EINVAL));
3916 }
3917
3918 /*
3919 * If we are doing an import, ensure that the pool is not already
3920 * imported by checking if its pool guid already exists in the
3921 * spa namespace.
3922 *
3923 * The only case that we allow an already imported pool to be
3924 * imported again, is when the pool is checkpointed and we want to
3925 * look at its checkpointed state from userland tools like zdb.
3926 */
3927 #ifdef _KERNEL
3928 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3929 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3930 spa_guid_exists(pool_guid, 0)) {
3931 #else
3932 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3933 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3934 spa_guid_exists(pool_guid, 0) &&
3935 !spa_importing_readonly_checkpoint(spa)) {
3936 #endif
3937 spa_load_failed(spa, "a pool with guid %llu is already open",
3938 (u_longlong_t)pool_guid);
3939 return (SET_ERROR(EEXIST));
3940 }
3941
3942 spa->spa_config_guid = pool_guid;
3943
3944 nvlist_free(spa->spa_load_info);
3945 spa->spa_load_info = fnvlist_alloc();
3946
3947 ASSERT(spa->spa_comment == NULL);
3948 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3949 spa->spa_comment = spa_strdup(comment);
3950
3951 ASSERT(spa->spa_compatibility == NULL);
3952 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3953 &compatibility) == 0)
3954 spa->spa_compatibility = spa_strdup(compatibility);
3955
3956 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3957 &spa->spa_config_txg);
3958
3959 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3960 spa->spa_config_splitting = fnvlist_dup(nvl);
3961
3962 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3963 spa_load_failed(spa, "invalid config provided: '%s' missing",
3964 ZPOOL_CONFIG_VDEV_TREE);
3965 return (SET_ERROR(EINVAL));
3966 }
3967
3968 /*
3969 * Create "The Godfather" zio to hold all async IOs
3970 */
3971 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3972 KM_SLEEP);
3973 for (int i = 0; i < max_ncpus; i++) {
3974 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3975 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3976 ZIO_FLAG_GODFATHER);
3977 }
3978
3979 /*
3980 * Parse the configuration into a vdev tree. We explicitly set the
3981 * value that will be returned by spa_version() since parsing the
3982 * configuration requires knowing the version number.
3983 */
3984 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3985 parse = (type == SPA_IMPORT_EXISTING ?
3986 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3987 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3988 spa_config_exit(spa, SCL_ALL, FTAG);
3989
3990 if (error != 0) {
3991 spa_load_failed(spa, "unable to parse config [error=%d]",
3992 error);
3993 return (error);
3994 }
3995
3996 ASSERT(spa->spa_root_vdev == rvd);
3997 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3998 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3999
4000 if (type != SPA_IMPORT_ASSEMBLE) {
4001 ASSERT(spa_guid(spa) == pool_guid);
4002 }
4003
4004 return (0);
4005 }
4006
4007 /*
4008 * Recursively open all vdevs in the vdev tree. This function is called twice:
4009 * first with the untrusted config, then with the trusted config.
4010 */
4011 static int
4012 spa_ld_open_vdevs(spa_t *spa)
4013 {
4014 int error = 0;
4015
4016 /*
4017 * spa_missing_tvds_allowed defines how many top-level vdevs can be
4018 * missing/unopenable for the root vdev to be still considered openable.
4019 */
4020 if (spa->spa_trust_config) {
4021 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
4022 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
4023 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
4024 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
4025 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
4026 } else {
4027 spa->spa_missing_tvds_allowed = 0;
4028 }
4029
4030 spa->spa_missing_tvds_allowed =
4031 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
4032
4033 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4034 error = vdev_open(spa->spa_root_vdev);
4035 spa_config_exit(spa, SCL_ALL, FTAG);
4036
4037 if (spa->spa_missing_tvds != 0) {
4038 spa_load_note(spa, "vdev tree has %lld missing top-level "
4039 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
4040 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
4041 /*
4042 * Although theoretically we could allow users to open
4043 * incomplete pools in RW mode, we'd need to add a lot
4044 * of extra logic (e.g. adjust pool space to account
4045 * for missing vdevs).
4046 * This limitation also prevents users from accidentally
4047 * opening the pool in RW mode during data recovery and
4048 * damaging it further.
4049 */
4050 spa_load_note(spa, "pools with missing top-level "
4051 "vdevs can only be opened in read-only mode.");
4052 error = SET_ERROR(ENXIO);
4053 } else {
4054 spa_load_note(spa, "current settings allow for maximum "
4055 "%lld missing top-level vdevs at this stage.",
4056 (u_longlong_t)spa->spa_missing_tvds_allowed);
4057 }
4058 }
4059 if (error != 0) {
4060 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
4061 error);
4062 }
4063 if (spa->spa_missing_tvds != 0 || error != 0)
4064 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
4065
4066 return (error);
4067 }
4068
4069 /*
4070 * We need to validate the vdev labels against the configuration that
4071 * we have in hand. This function is called twice: first with an untrusted
4072 * config, then with a trusted config. The validation is more strict when the
4073 * config is trusted.
4074 */
4075 static int
4076 spa_ld_validate_vdevs(spa_t *spa)
4077 {
4078 int error = 0;
4079 vdev_t *rvd = spa->spa_root_vdev;
4080
4081 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4082 error = vdev_validate(rvd);
4083 spa_config_exit(spa, SCL_ALL, FTAG);
4084
4085 if (error != 0) {
4086 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
4087 return (error);
4088 }
4089
4090 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
4091 spa_load_failed(spa, "cannot open vdev tree after invalidating "
4092 "some vdevs");
4093 vdev_dbgmsg_print_tree(rvd, 2);
4094 return (SET_ERROR(ENXIO));
4095 }
4096
4097 return (0);
4098 }
4099
4100 static void
4101 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
4102 {
4103 spa->spa_state = POOL_STATE_ACTIVE;
4104 spa->spa_ubsync = spa->spa_uberblock;
4105 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
4106 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
4107 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
4108 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
4109 spa->spa_claim_max_txg = spa->spa_first_txg;
4110 spa->spa_prev_software_version = ub->ub_software_version;
4111 }
4112
4113 static int
4114 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
4115 {
4116 vdev_t *rvd = spa->spa_root_vdev;
4117 nvlist_t *label;
4118 uberblock_t *ub = &spa->spa_uberblock;
4119 boolean_t activity_check = B_FALSE;
4120
4121 /*
4122 * If we are opening the checkpointed state of the pool by
4123 * rewinding to it, at this point we will have written the
4124 * checkpointed uberblock to the vdev labels, so searching
4125 * the labels will find the right uberblock. However, if
4126 * we are opening the checkpointed state read-only, we have
4127 * not modified the labels. Therefore, we must ignore the
4128 * labels and continue using the spa_uberblock that was set
4129 * by spa_ld_checkpoint_rewind.
4130 *
4131 * Note that it would be fine to ignore the labels when
4132 * rewinding (opening writeable) as well. However, if we
4133 * crash just after writing the labels, we will end up
4134 * searching the labels. Doing so in the common case means
4135 * that this code path gets exercised normally, rather than
4136 * just in the edge case.
4137 */
4138 if (ub->ub_checkpoint_txg != 0 &&
4139 spa_importing_readonly_checkpoint(spa)) {
4140 spa_ld_select_uberblock_done(spa, ub);
4141 return (0);
4142 }
4143
4144 /*
4145 * Find the best uberblock.
4146 */
4147 vdev_uberblock_load(rvd, ub, &label);
4148
4149 /*
4150 * If we weren't able to find a single valid uberblock, return failure.
4151 */
4152 if (ub->ub_txg == 0) {
4153 nvlist_free(label);
4154 spa_load_failed(spa, "no valid uberblock found");
4155 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
4156 }
4157
4158 if (spa->spa_load_max_txg != UINT64_MAX) {
4159 (void) spa_import_progress_set_max_txg(spa_guid(spa),
4160 (u_longlong_t)spa->spa_load_max_txg);
4161 }
4162 spa_load_note(spa, "using uberblock with txg=%llu",
4163 (u_longlong_t)ub->ub_txg);
4164 if (ub->ub_raidz_reflow_info != 0) {
4165 spa_load_note(spa, "uberblock raidz_reflow_info: "
4166 "state=%u offset=%llu",
4167 (int)RRSS_GET_STATE(ub),
4168 (u_longlong_t)RRSS_GET_OFFSET(ub));
4169 }
4170
4171
4172 /*
4173 * For pools which have the multihost property on determine if the
4174 * pool is truly inactive and can be safely imported. Prevent
4175 * hosts which don't have a hostid set from importing the pool.
4176 */
4177 activity_check = spa_activity_check_required(spa, ub, label,
4178 spa->spa_config);
4179 if (activity_check) {
4180 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
4181 spa_get_hostid(spa) == 0) {
4182 nvlist_free(label);
4183 fnvlist_add_uint64(spa->spa_load_info,
4184 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4185 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4186 }
4187
4188 int error =
4189 spa_activity_check(spa, ub, spa->spa_config, B_TRUE);
4190 if (error) {
4191 nvlist_free(label);
4192 return (error);
4193 }
4194
4195 fnvlist_add_uint64(spa->spa_load_info,
4196 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
4197 fnvlist_add_uint64(spa->spa_load_info,
4198 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
4199 fnvlist_add_uint16(spa->spa_load_info,
4200 ZPOOL_CONFIG_MMP_SEQ,
4201 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
4202 }
4203
4204 /*
4205 * If the pool has an unsupported version we can't open it.
4206 */
4207 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
4208 nvlist_free(label);
4209 spa_load_failed(spa, "version %llu is not supported",
4210 (u_longlong_t)ub->ub_version);
4211 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
4212 }
4213
4214 if (ub->ub_version >= SPA_VERSION_FEATURES) {
4215 nvlist_t *features;
4216
4217 /*
4218 * If we weren't able to find what's necessary for reading the
4219 * MOS in the label, return failure.
4220 */
4221 if (label == NULL) {
4222 spa_load_failed(spa, "label config unavailable");
4223 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4224 ENXIO));
4225 }
4226
4227 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
4228 &features) != 0) {
4229 nvlist_free(label);
4230 spa_load_failed(spa, "invalid label: '%s' missing",
4231 ZPOOL_CONFIG_FEATURES_FOR_READ);
4232 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4233 ENXIO));
4234 }
4235
4236 /*
4237 * Update our in-core representation with the definitive values
4238 * from the label.
4239 */
4240 nvlist_free(spa->spa_label_features);
4241 spa->spa_label_features = fnvlist_dup(features);
4242 }
4243
4244 nvlist_free(label);
4245
4246 /*
4247 * Look through entries in the label nvlist's features_for_read. If
4248 * there is a feature listed there which we don't understand then we
4249 * cannot open a pool.
4250 */
4251 if (ub->ub_version >= SPA_VERSION_FEATURES) {
4252 nvlist_t *unsup_feat;
4253
4254 unsup_feat = fnvlist_alloc();
4255
4256 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
4257 NULL); nvp != NULL;
4258 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
4259 if (!zfeature_is_supported(nvpair_name(nvp))) {
4260 fnvlist_add_string(unsup_feat,
4261 nvpair_name(nvp), "");
4262 }
4263 }
4264
4265 if (!nvlist_empty(unsup_feat)) {
4266 fnvlist_add_nvlist(spa->spa_load_info,
4267 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4268 nvlist_free(unsup_feat);
4269 spa_load_failed(spa, "some features are unsupported");
4270 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4271 ENOTSUP));
4272 }
4273
4274 nvlist_free(unsup_feat);
4275 }
4276
4277 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
4278 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4279 spa_try_repair(spa, spa->spa_config);
4280 spa_config_exit(spa, SCL_ALL, FTAG);
4281 nvlist_free(spa->spa_config_splitting);
4282 spa->spa_config_splitting = NULL;
4283 }
4284
4285 /*
4286 * Initialize internal SPA structures.
4287 */
4288 spa_ld_select_uberblock_done(spa, ub);
4289
4290 return (0);
4291 }
4292
4293 static int
4294 spa_ld_open_rootbp(spa_t *spa)
4295 {
4296 int error = 0;
4297 vdev_t *rvd = spa->spa_root_vdev;
4298
4299 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
4300 if (error != 0) {
4301 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
4302 "[error=%d]", error);
4303 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4304 }
4305 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
4306
4307 return (0);
4308 }
4309
4310 static int
4311 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
4312 boolean_t reloading)
4313 {
4314 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
4315 nvlist_t *nv, *mos_config, *policy;
4316 int error = 0, copy_error;
4317 uint64_t healthy_tvds, healthy_tvds_mos;
4318 uint64_t mos_config_txg;
4319
4320 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
4321 != 0)
4322 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4323
4324 /*
4325 * If we're assembling a pool from a split, the config provided is
4326 * already trusted so there is nothing to do.
4327 */
4328 if (type == SPA_IMPORT_ASSEMBLE)
4329 return (0);
4330
4331 healthy_tvds = spa_healthy_core_tvds(spa);
4332
4333 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
4334 != 0) {
4335 spa_load_failed(spa, "unable to retrieve MOS config");
4336 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4337 }
4338
4339 /*
4340 * If we are doing an open, pool owner wasn't verified yet, thus do
4341 * the verification here.
4342 */
4343 if (spa->spa_load_state == SPA_LOAD_OPEN) {
4344 error = spa_verify_host(spa, mos_config);
4345 if (error != 0) {
4346 nvlist_free(mos_config);
4347 return (error);
4348 }
4349 }
4350
4351 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
4352
4353 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4354
4355 /*
4356 * Build a new vdev tree from the trusted config
4357 */
4358 error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
4359 if (error != 0) {
4360 nvlist_free(mos_config);
4361 spa_config_exit(spa, SCL_ALL, FTAG);
4362 spa_load_failed(spa, "spa_config_parse failed [error=%d]",
4363 error);
4364 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4365 }
4366
4367 /*
4368 * Vdev paths in the MOS may be obsolete. If the untrusted config was
4369 * obtained by scanning /dev/dsk, then it will have the right vdev
4370 * paths. We update the trusted MOS config with this information.
4371 * We first try to copy the paths with vdev_copy_path_strict, which
4372 * succeeds only when both configs have exactly the same vdev tree.
4373 * If that fails, we fall back to a more flexible method that has a
4374 * best effort policy.
4375 */
4376 copy_error = vdev_copy_path_strict(rvd, mrvd);
4377 if (copy_error != 0 || spa_load_print_vdev_tree) {
4378 spa_load_note(spa, "provided vdev tree:");
4379 vdev_dbgmsg_print_tree(rvd, 2);
4380 spa_load_note(spa, "MOS vdev tree:");
4381 vdev_dbgmsg_print_tree(mrvd, 2);
4382 }
4383 if (copy_error != 0) {
4384 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
4385 "back to vdev_copy_path_relaxed");
4386 vdev_copy_path_relaxed(rvd, mrvd);
4387 }
4388
4389 vdev_close(rvd);
4390 vdev_free(rvd);
4391 spa->spa_root_vdev = mrvd;
4392 rvd = mrvd;
4393 spa_config_exit(spa, SCL_ALL, FTAG);
4394
4395 /*
4396 * If 'zpool import' used a cached config, then the on-disk hostid and
4397 * hostname may be different to the cached config in ways that should
4398 * prevent import. Userspace can't discover this without a scan, but
4399 * we know, so we add these values to LOAD_INFO so the caller can know
4400 * the difference.
4401 *
4402 * Note that we have to do this before the config is regenerated,
4403 * because the new config will have the hostid and hostname for this
4404 * host, in readiness for import.
4405 */
4406 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID))
4407 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID,
4408 fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID));
4409 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME))
4410 fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME,
4411 fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME));
4412
4413 /*
4414 * We will use spa_config if we decide to reload the spa or if spa_load
4415 * fails and we rewind. We must thus regenerate the config using the
4416 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
4417 * pass settings on how to load the pool and is not stored in the MOS.
4418 * We copy it over to our new, trusted config.
4419 */
4420 mos_config_txg = fnvlist_lookup_uint64(mos_config,
4421 ZPOOL_CONFIG_POOL_TXG);
4422 nvlist_free(mos_config);
4423 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
4424 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
4425 &policy) == 0)
4426 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
4427 spa_config_set(spa, mos_config);
4428 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
4429
4430 /*
4431 * Now that we got the config from the MOS, we should be more strict
4432 * in checking blkptrs and can make assumptions about the consistency
4433 * of the vdev tree. spa_trust_config must be set to true before opening
4434 * vdevs in order for them to be writeable.
4435 */
4436 spa->spa_trust_config = B_TRUE;
4437
4438 /*
4439 * Open and validate the new vdev tree
4440 */
4441 error = spa_ld_open_vdevs(spa);
4442 if (error != 0)
4443 return (error);
4444
4445 error = spa_ld_validate_vdevs(spa);
4446 if (error != 0)
4447 return (error);
4448
4449 if (copy_error != 0 || spa_load_print_vdev_tree) {
4450 spa_load_note(spa, "final vdev tree:");
4451 vdev_dbgmsg_print_tree(rvd, 2);
4452 }
4453
4454 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
4455 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
4456 /*
4457 * Sanity check to make sure that we are indeed loading the
4458 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
4459 * in the config provided and they happened to be the only ones
4460 * to have the latest uberblock, we could involuntarily perform
4461 * an extreme rewind.
4462 */
4463 healthy_tvds_mos = spa_healthy_core_tvds(spa);
4464 if (healthy_tvds_mos - healthy_tvds >=
4465 SPA_SYNC_MIN_VDEVS) {
4466 spa_load_note(spa, "config provided misses too many "
4467 "top-level vdevs compared to MOS (%lld vs %lld). ",
4468 (u_longlong_t)healthy_tvds,
4469 (u_longlong_t)healthy_tvds_mos);
4470 spa_load_note(spa, "vdev tree:");
4471 vdev_dbgmsg_print_tree(rvd, 2);
4472 if (reloading) {
4473 spa_load_failed(spa, "config was already "
4474 "provided from MOS. Aborting.");
4475 return (spa_vdev_err(rvd,
4476 VDEV_AUX_CORRUPT_DATA, EIO));
4477 }
4478 spa_load_note(spa, "spa must be reloaded using MOS "
4479 "config");
4480 return (SET_ERROR(EAGAIN));
4481 }
4482 }
4483
4484 error = spa_check_for_missing_logs(spa);
4485 if (error != 0)
4486 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
4487
4488 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
4489 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
4490 "guid sum (%llu != %llu)",
4491 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
4492 (u_longlong_t)rvd->vdev_guid_sum);
4493 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
4494 ENXIO));
4495 }
4496
4497 return (0);
4498 }
4499
4500 static int
4501 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
4502 {
4503 int error = 0;
4504 vdev_t *rvd = spa->spa_root_vdev;
4505
4506 /*
4507 * Everything that we read before spa_remove_init() must be stored
4508 * on concreted vdevs. Therefore we do this as early as possible.
4509 */
4510 error = spa_remove_init(spa);
4511 if (error != 0) {
4512 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
4513 error);
4514 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4515 }
4516
4517 /*
4518 * Retrieve information needed to condense indirect vdev mappings.
4519 */
4520 error = spa_condense_init(spa);
4521 if (error != 0) {
4522 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
4523 error);
4524 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4525 }
4526
4527 return (0);
4528 }
4529
4530 static int
4531 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
4532 {
4533 int error = 0;
4534 vdev_t *rvd = spa->spa_root_vdev;
4535
4536 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4537 boolean_t missing_feat_read = B_FALSE;
4538 nvlist_t *unsup_feat, *enabled_feat;
4539
4540 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4541 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4542 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4543 }
4544
4545 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4546 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4547 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4548 }
4549
4550 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4551 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4552 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4553 }
4554
4555 enabled_feat = fnvlist_alloc();
4556 unsup_feat = fnvlist_alloc();
4557
4558 if (!spa_features_check(spa, B_FALSE,
4559 unsup_feat, enabled_feat))
4560 missing_feat_read = B_TRUE;
4561
4562 if (spa_writeable(spa) ||
4563 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4564 if (!spa_features_check(spa, B_TRUE,
4565 unsup_feat, enabled_feat)) {
4566 *missing_feat_writep = B_TRUE;
4567 }
4568 }
4569
4570 fnvlist_add_nvlist(spa->spa_load_info,
4571 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4572
4573 if (!nvlist_empty(unsup_feat)) {
4574 fnvlist_add_nvlist(spa->spa_load_info,
4575 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4576 }
4577
4578 fnvlist_free(enabled_feat);
4579 fnvlist_free(unsup_feat);
4580
4581 if (!missing_feat_read) {
4582 fnvlist_add_boolean(spa->spa_load_info,
4583 ZPOOL_CONFIG_CAN_RDONLY);
4584 }
4585
4586 /*
4587 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4588 * twofold: to determine whether the pool is available for
4589 * import in read-write mode and (if it is not) whether the
4590 * pool is available for import in read-only mode. If the pool
4591 * is available for import in read-write mode, it is displayed
4592 * as available in userland; if it is not available for import
4593 * in read-only mode, it is displayed as unavailable in
4594 * userland. If the pool is available for import in read-only
4595 * mode but not read-write mode, it is displayed as unavailable
4596 * in userland with a special note that the pool is actually
4597 * available for open in read-only mode.
4598 *
4599 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4600 * missing a feature for write, we must first determine whether
4601 * the pool can be opened read-only before returning to
4602 * userland in order to know whether to display the
4603 * abovementioned note.
4604 */
4605 if (missing_feat_read || (*missing_feat_writep &&
4606 spa_writeable(spa))) {
4607 spa_load_failed(spa, "pool uses unsupported features");
4608 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4609 ENOTSUP));
4610 }
4611
4612 /*
4613 * Load refcounts for ZFS features from disk into an in-memory
4614 * cache during SPA initialization.
4615 */
4616 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4617 uint64_t refcount;
4618
4619 error = feature_get_refcount_from_disk(spa,
4620 &spa_feature_table[i], &refcount);
4621 if (error == 0) {
4622 spa->spa_feat_refcount_cache[i] = refcount;
4623 } else if (error == ENOTSUP) {
4624 spa->spa_feat_refcount_cache[i] =
4625 SPA_FEATURE_DISABLED;
4626 } else {
4627 spa_load_failed(spa, "error getting refcount "
4628 "for feature %s [error=%d]",
4629 spa_feature_table[i].fi_guid, error);
4630 return (spa_vdev_err(rvd,
4631 VDEV_AUX_CORRUPT_DATA, EIO));
4632 }
4633 }
4634 }
4635
4636 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4637 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4638 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4639 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4640 }
4641
4642 /*
4643 * Encryption was added before bookmark_v2, even though bookmark_v2
4644 * is now a dependency. If this pool has encryption enabled without
4645 * bookmark_v2, trigger an errata message.
4646 */
4647 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4648 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4649 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4650 }
4651
4652 return (0);
4653 }
4654
4655 static int
4656 spa_ld_load_special_directories(spa_t *spa)
4657 {
4658 int error = 0;
4659 vdev_t *rvd = spa->spa_root_vdev;
4660
4661 spa->spa_is_initializing = B_TRUE;
4662 error = dsl_pool_open(spa->spa_dsl_pool);
4663 spa->spa_is_initializing = B_FALSE;
4664 if (error != 0) {
4665 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4666 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4667 }
4668
4669 return (0);
4670 }
4671
4672 static int
4673 spa_ld_get_props(spa_t *spa)
4674 {
4675 int error = 0;
4676 uint64_t obj;
4677 vdev_t *rvd = spa->spa_root_vdev;
4678
4679 /* Grab the checksum salt from the MOS. */
4680 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4681 DMU_POOL_CHECKSUM_SALT, 1,
4682 sizeof (spa->spa_cksum_salt.zcs_bytes),
4683 spa->spa_cksum_salt.zcs_bytes);
4684 if (error == ENOENT) {
4685 /* Generate a new salt for subsequent use */
4686 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4687 sizeof (spa->spa_cksum_salt.zcs_bytes));
4688 } else if (error != 0) {
4689 spa_load_failed(spa, "unable to retrieve checksum salt from "
4690 "MOS [error=%d]", error);
4691 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4692 }
4693
4694 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4695 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4696 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4697 if (error != 0) {
4698 spa_load_failed(spa, "error opening deferred-frees bpobj "
4699 "[error=%d]", error);
4700 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4701 }
4702
4703 /*
4704 * Load the bit that tells us to use the new accounting function
4705 * (raid-z deflation). If we have an older pool, this will not
4706 * be present.
4707 */
4708 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4709 if (error != 0 && error != ENOENT)
4710 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4711
4712 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4713 &spa->spa_creation_version, B_FALSE);
4714 if (error != 0 && error != ENOENT)
4715 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4716
4717 /*
4718 * Load the persistent error log. If we have an older pool, this will
4719 * not be present.
4720 */
4721 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4722 B_FALSE);
4723 if (error != 0 && error != ENOENT)
4724 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4725
4726 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4727 &spa->spa_errlog_scrub, B_FALSE);
4728 if (error != 0 && error != ENOENT)
4729 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4730
4731 /* Load the last scrubbed txg. */
4732 error = spa_dir_prop(spa, DMU_POOL_LAST_SCRUBBED_TXG,
4733 &spa->spa_scrubbed_last_txg, B_FALSE);
4734 if (error != 0 && error != ENOENT)
4735 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4736
4737 /*
4738 * Load the livelist deletion field. If a livelist is queued for
4739 * deletion, indicate that in the spa
4740 */
4741 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4742 &spa->spa_livelists_to_delete, B_FALSE);
4743 if (error != 0 && error != ENOENT)
4744 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4745
4746 /*
4747 * Load the history object. If we have an older pool, this
4748 * will not be present.
4749 */
4750 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4751 if (error != 0 && error != ENOENT)
4752 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4753
4754 /*
4755 * Load the per-vdev ZAP map. If we have an older pool, this will not
4756 * be present; in this case, defer its creation to a later time to
4757 * avoid dirtying the MOS this early / out of sync context. See
4758 * spa_sync_config_object.
4759 */
4760
4761 /* The sentinel is only available in the MOS config. */
4762 nvlist_t *mos_config;
4763 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4764 spa_load_failed(spa, "unable to retrieve MOS config");
4765 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4766 }
4767
4768 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4769 &spa->spa_all_vdev_zaps, B_FALSE);
4770
4771 if (error == ENOENT) {
4772 VERIFY(!nvlist_exists(mos_config,
4773 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4774 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4775 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4776 } else if (error != 0) {
4777 nvlist_free(mos_config);
4778 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4779 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4780 /*
4781 * An older version of ZFS overwrote the sentinel value, so
4782 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4783 * destruction to later; see spa_sync_config_object.
4784 */
4785 spa->spa_avz_action = AVZ_ACTION_DESTROY;
4786 /*
4787 * We're assuming that no vdevs have had their ZAPs created
4788 * before this. Better be sure of it.
4789 */
4790 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4791 }
4792 nvlist_free(mos_config);
4793
4794 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4795
4796 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4797 B_FALSE);
4798 if (error && error != ENOENT)
4799 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4800
4801 if (error == 0) {
4802 uint64_t autoreplace = 0;
4803
4804 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4805 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4806 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4807 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4808 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4809 spa_prop_find(spa, ZPOOL_PROP_DEDUP_TABLE_QUOTA,
4810 &spa->spa_dedup_table_quota);
4811 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4812 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4813 spa->spa_autoreplace = (autoreplace != 0);
4814 }
4815
4816 /*
4817 * If we are importing a pool with missing top-level vdevs,
4818 * we enforce that the pool doesn't panic or get suspended on
4819 * error since the likelihood of missing data is extremely high.
4820 */
4821 if (spa->spa_missing_tvds > 0 &&
4822 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4823 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4824 spa_load_note(spa, "forcing failmode to 'continue' "
4825 "as some top level vdevs are missing");
4826 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4827 }
4828
4829 return (0);
4830 }
4831
4832 static int
4833 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4834 {
4835 int error = 0;
4836 vdev_t *rvd = spa->spa_root_vdev;
4837
4838 /*
4839 * If we're assembling the pool from the split-off vdevs of
4840 * an existing pool, we don't want to attach the spares & cache
4841 * devices.
4842 */
4843
4844 /*
4845 * Load any hot spares for this pool.
4846 */
4847 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4848 B_FALSE);
4849 if (error != 0 && error != ENOENT)
4850 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4851 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4852 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4853 if (load_nvlist(spa, spa->spa_spares.sav_object,
4854 &spa->spa_spares.sav_config) != 0) {
4855 spa_load_failed(spa, "error loading spares nvlist");
4856 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4857 }
4858
4859 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4860 spa_load_spares(spa);
4861 spa_config_exit(spa, SCL_ALL, FTAG);
4862 } else if (error == 0) {
4863 spa->spa_spares.sav_sync = B_TRUE;
4864 }
4865
4866 /*
4867 * Load any level 2 ARC devices for this pool.
4868 */
4869 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4870 &spa->spa_l2cache.sav_object, B_FALSE);
4871 if (error != 0 && error != ENOENT)
4872 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4873 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4874 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4875 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4876 &spa->spa_l2cache.sav_config) != 0) {
4877 spa_load_failed(spa, "error loading l2cache nvlist");
4878 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4879 }
4880
4881 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4882 spa_load_l2cache(spa);
4883 spa_config_exit(spa, SCL_ALL, FTAG);
4884 } else if (error == 0) {
4885 spa->spa_l2cache.sav_sync = B_TRUE;
4886 }
4887
4888 return (0);
4889 }
4890
4891 static int
4892 spa_ld_load_vdev_metadata(spa_t *spa)
4893 {
4894 int error = 0;
4895 vdev_t *rvd = spa->spa_root_vdev;
4896
4897 /*
4898 * If the 'multihost' property is set, then never allow a pool to
4899 * be imported when the system hostid is zero. The exception to
4900 * this rule is zdb which is always allowed to access pools.
4901 */
4902 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4903 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4904 fnvlist_add_uint64(spa->spa_load_info,
4905 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4906 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4907 }
4908
4909 /*
4910 * If the 'autoreplace' property is set, then post a resource notifying
4911 * the ZFS DE that it should not issue any faults for unopenable
4912 * devices. We also iterate over the vdevs, and post a sysevent for any
4913 * unopenable vdevs so that the normal autoreplace handler can take
4914 * over.
4915 */
4916 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4917 spa_check_removed(spa->spa_root_vdev);
4918 /*
4919 * For the import case, this is done in spa_import(), because
4920 * at this point we're using the spare definitions from
4921 * the MOS config, not necessarily from the userland config.
4922 */
4923 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4924 spa_aux_check_removed(&spa->spa_spares);
4925 spa_aux_check_removed(&spa->spa_l2cache);
4926 }
4927 }
4928
4929 /*
4930 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4931 */
4932 error = vdev_load(rvd);
4933 if (error != 0) {
4934 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4935 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4936 }
4937
4938 error = spa_ld_log_spacemaps(spa);
4939 if (error != 0) {
4940 spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4941 error);
4942 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4943 }
4944
4945 /*
4946 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4947 */
4948 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4949 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4950 spa_config_exit(spa, SCL_ALL, FTAG);
4951
4952 return (0);
4953 }
4954
4955 static int
4956 spa_ld_load_dedup_tables(spa_t *spa)
4957 {
4958 int error = 0;
4959 vdev_t *rvd = spa->spa_root_vdev;
4960
4961 error = ddt_load(spa);
4962 if (error != 0) {
4963 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4964 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4965 }
4966
4967 return (0);
4968 }
4969
4970 static int
4971 spa_ld_load_brt(spa_t *spa)
4972 {
4973 int error = 0;
4974 vdev_t *rvd = spa->spa_root_vdev;
4975
4976 error = brt_load(spa);
4977 if (error != 0) {
4978 spa_load_failed(spa, "brt_load failed [error=%d]", error);
4979 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4980 }
4981
4982 return (0);
4983 }
4984
4985 static int
4986 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4987 {
4988 vdev_t *rvd = spa->spa_root_vdev;
4989
4990 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4991 boolean_t missing = spa_check_logs(spa);
4992 if (missing) {
4993 if (spa->spa_missing_tvds != 0) {
4994 spa_load_note(spa, "spa_check_logs failed "
4995 "so dropping the logs");
4996 } else {
4997 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4998 spa_load_failed(spa, "spa_check_logs failed");
4999 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
5000 ENXIO));
5001 }
5002 }
5003 }
5004
5005 return (0);
5006 }
5007
5008 static int
5009 spa_ld_verify_pool_data(spa_t *spa)
5010 {
5011 int error = 0;
5012 vdev_t *rvd = spa->spa_root_vdev;
5013
5014 /*
5015 * We've successfully opened the pool, verify that we're ready
5016 * to start pushing transactions.
5017 */
5018 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
5019 error = spa_load_verify(spa);
5020 if (error != 0) {
5021 spa_load_failed(spa, "spa_load_verify failed "
5022 "[error=%d]", error);
5023 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
5024 error));
5025 }
5026 }
5027
5028 return (0);
5029 }
5030
5031 static void
5032 spa_ld_claim_log_blocks(spa_t *spa)
5033 {
5034 dmu_tx_t *tx;
5035 dsl_pool_t *dp = spa_get_dsl(spa);
5036
5037 /*
5038 * Claim log blocks that haven't been committed yet.
5039 * This must all happen in a single txg.
5040 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
5041 * invoked from zil_claim_log_block()'s i/o done callback.
5042 * Price of rollback is that we abandon the log.
5043 */
5044 spa->spa_claiming = B_TRUE;
5045
5046 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
5047 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
5048 zil_claim, tx, DS_FIND_CHILDREN);
5049 dmu_tx_commit(tx);
5050
5051 spa->spa_claiming = B_FALSE;
5052
5053 spa_set_log_state(spa, SPA_LOG_GOOD);
5054 }
5055
5056 static void
5057 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
5058 boolean_t update_config_cache)
5059 {
5060 vdev_t *rvd = spa->spa_root_vdev;
5061 int need_update = B_FALSE;
5062
5063 /*
5064 * If the config cache is stale, or we have uninitialized
5065 * metaslabs (see spa_vdev_add()), then update the config.
5066 *
5067 * If this is a verbatim import, trust the current
5068 * in-core spa_config and update the disk labels.
5069 */
5070 if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
5071 spa->spa_load_state == SPA_LOAD_IMPORT ||
5072 spa->spa_load_state == SPA_LOAD_RECOVER ||
5073 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
5074 need_update = B_TRUE;
5075
5076 for (int c = 0; c < rvd->vdev_children; c++)
5077 if (rvd->vdev_child[c]->vdev_ms_array == 0)
5078 need_update = B_TRUE;
5079
5080 /*
5081 * Update the config cache asynchronously in case we're the
5082 * root pool, in which case the config cache isn't writable yet.
5083 */
5084 if (need_update)
5085 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
5086 }
5087
5088 static void
5089 spa_ld_prepare_for_reload(spa_t *spa)
5090 {
5091 spa_mode_t mode = spa->spa_mode;
5092 int async_suspended = spa->spa_async_suspended;
5093
5094 spa_unload(spa);
5095 spa_deactivate(spa);
5096 spa_activate(spa, mode);
5097
5098 /*
5099 * We save the value of spa_async_suspended as it gets reset to 0 by
5100 * spa_unload(). We want to restore it back to the original value before
5101 * returning as we might be calling spa_async_resume() later.
5102 */
5103 spa->spa_async_suspended = async_suspended;
5104 }
5105
5106 static int
5107 spa_ld_read_checkpoint_txg(spa_t *spa)
5108 {
5109 uberblock_t checkpoint;
5110 int error = 0;
5111
5112 ASSERT0(spa->spa_checkpoint_txg);
5113 ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
5114 spa->spa_load_thread == curthread);
5115
5116 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5117 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5118 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5119
5120 if (error == ENOENT)
5121 return (0);
5122
5123 if (error != 0)
5124 return (error);
5125
5126 ASSERT3U(checkpoint.ub_txg, !=, 0);
5127 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
5128 ASSERT3U(checkpoint.ub_timestamp, !=, 0);
5129 spa->spa_checkpoint_txg = checkpoint.ub_txg;
5130 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
5131
5132 return (0);
5133 }
5134
5135 static int
5136 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
5137 {
5138 int error = 0;
5139
5140 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5141 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5142
5143 /*
5144 * Never trust the config that is provided unless we are assembling
5145 * a pool following a split.
5146 * This means don't trust blkptrs and the vdev tree in general. This
5147 * also effectively puts the spa in read-only mode since
5148 * spa_writeable() checks for spa_trust_config to be true.
5149 * We will later load a trusted config from the MOS.
5150 */
5151 if (type != SPA_IMPORT_ASSEMBLE)
5152 spa->spa_trust_config = B_FALSE;
5153
5154 /*
5155 * Parse the config provided to create a vdev tree.
5156 */
5157 error = spa_ld_parse_config(spa, type);
5158 if (error != 0)
5159 return (error);
5160
5161 spa_import_progress_add(spa);
5162
5163 /*
5164 * Now that we have the vdev tree, try to open each vdev. This involves
5165 * opening the underlying physical device, retrieving its geometry and
5166 * probing the vdev with a dummy I/O. The state of each vdev will be set
5167 * based on the success of those operations. After this we'll be ready
5168 * to read from the vdevs.
5169 */
5170 error = spa_ld_open_vdevs(spa);
5171 if (error != 0)
5172 return (error);
5173
5174 /*
5175 * Read the label of each vdev and make sure that the GUIDs stored
5176 * there match the GUIDs in the config provided.
5177 * If we're assembling a new pool that's been split off from an
5178 * existing pool, the labels haven't yet been updated so we skip
5179 * validation for now.
5180 */
5181 if (type != SPA_IMPORT_ASSEMBLE) {
5182 error = spa_ld_validate_vdevs(spa);
5183 if (error != 0)
5184 return (error);
5185 }
5186
5187 /*
5188 * Read all vdev labels to find the best uberblock (i.e. latest,
5189 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
5190 * get the list of features required to read blkptrs in the MOS from
5191 * the vdev label with the best uberblock and verify that our version
5192 * of zfs supports them all.
5193 */
5194 error = spa_ld_select_uberblock(spa, type);
5195 if (error != 0)
5196 return (error);
5197
5198 /*
5199 * Pass that uberblock to the dsl_pool layer which will open the root
5200 * blkptr. This blkptr points to the latest version of the MOS and will
5201 * allow us to read its contents.
5202 */
5203 error = spa_ld_open_rootbp(spa);
5204 if (error != 0)
5205 return (error);
5206
5207 return (0);
5208 }
5209
5210 static int
5211 spa_ld_checkpoint_rewind(spa_t *spa)
5212 {
5213 uberblock_t checkpoint;
5214 int error = 0;
5215
5216 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5217 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5218
5219 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5220 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5221 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5222
5223 if (error != 0) {
5224 spa_load_failed(spa, "unable to retrieve checkpointed "
5225 "uberblock from the MOS config [error=%d]", error);
5226
5227 if (error == ENOENT)
5228 error = ZFS_ERR_NO_CHECKPOINT;
5229
5230 return (error);
5231 }
5232
5233 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
5234 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
5235
5236 /*
5237 * We need to update the txg and timestamp of the checkpointed
5238 * uberblock to be higher than the latest one. This ensures that
5239 * the checkpointed uberblock is selected if we were to close and
5240 * reopen the pool right after we've written it in the vdev labels.
5241 * (also see block comment in vdev_uberblock_compare)
5242 */
5243 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
5244 checkpoint.ub_timestamp = gethrestime_sec();
5245
5246 /*
5247 * Set current uberblock to be the checkpointed uberblock.
5248 */
5249 spa->spa_uberblock = checkpoint;
5250
5251 /*
5252 * If we are doing a normal rewind, then the pool is open for
5253 * writing and we sync the "updated" checkpointed uberblock to
5254 * disk. Once this is done, we've basically rewound the whole
5255 * pool and there is no way back.
5256 *
5257 * There are cases when we don't want to attempt and sync the
5258 * checkpointed uberblock to disk because we are opening a
5259 * pool as read-only. Specifically, verifying the checkpointed
5260 * state with zdb, and importing the checkpointed state to get
5261 * a "preview" of its content.
5262 */
5263 if (spa_writeable(spa)) {
5264 vdev_t *rvd = spa->spa_root_vdev;
5265
5266 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5267 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
5268 int svdcount = 0;
5269 int children = rvd->vdev_children;
5270 int c0 = random_in_range(children);
5271
5272 for (int c = 0; c < children; c++) {
5273 vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
5274
5275 /* Stop when revisiting the first vdev */
5276 if (c > 0 && svd[0] == vd)
5277 break;
5278
5279 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
5280 !vdev_is_concrete(vd))
5281 continue;
5282
5283 svd[svdcount++] = vd;
5284 if (svdcount == SPA_SYNC_MIN_VDEVS)
5285 break;
5286 }
5287 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
5288 if (error == 0)
5289 spa->spa_last_synced_guid = rvd->vdev_guid;
5290 spa_config_exit(spa, SCL_ALL, FTAG);
5291
5292 if (error != 0) {
5293 spa_load_failed(spa, "failed to write checkpointed "
5294 "uberblock to the vdev labels [error=%d]", error);
5295 return (error);
5296 }
5297 }
5298
5299 return (0);
5300 }
5301
5302 static int
5303 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
5304 boolean_t *update_config_cache)
5305 {
5306 int error;
5307
5308 /*
5309 * Parse the config for pool, open and validate vdevs,
5310 * select an uberblock, and use that uberblock to open
5311 * the MOS.
5312 */
5313 error = spa_ld_mos_init(spa, type);
5314 if (error != 0)
5315 return (error);
5316
5317 /*
5318 * Retrieve the trusted config stored in the MOS and use it to create
5319 * a new, exact version of the vdev tree, then reopen all vdevs.
5320 */
5321 error = spa_ld_trusted_config(spa, type, B_FALSE);
5322 if (error == EAGAIN) {
5323 if (update_config_cache != NULL)
5324 *update_config_cache = B_TRUE;
5325
5326 /*
5327 * Redo the loading process with the trusted config if it is
5328 * too different from the untrusted config.
5329 */
5330 spa_ld_prepare_for_reload(spa);
5331 spa_load_note(spa, "RELOADING");
5332 error = spa_ld_mos_init(spa, type);
5333 if (error != 0)
5334 return (error);
5335
5336 error = spa_ld_trusted_config(spa, type, B_TRUE);
5337 if (error != 0)
5338 return (error);
5339
5340 } else if (error != 0) {
5341 return (error);
5342 }
5343
5344 return (0);
5345 }
5346
5347 /*
5348 * Load an existing storage pool, using the config provided. This config
5349 * describes which vdevs are part of the pool and is later validated against
5350 * partial configs present in each vdev's label and an entire copy of the
5351 * config stored in the MOS.
5352 */
5353 static int
5354 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
5355 {
5356 int error = 0;
5357 boolean_t missing_feat_write = B_FALSE;
5358 boolean_t checkpoint_rewind =
5359 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5360 boolean_t update_config_cache = B_FALSE;
5361 hrtime_t load_start = gethrtime();
5362
5363 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5364 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5365
5366 spa_load_note(spa, "LOADING");
5367
5368 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
5369 if (error != 0)
5370 return (error);
5371
5372 /*
5373 * If we are rewinding to the checkpoint then we need to repeat
5374 * everything we've done so far in this function but this time
5375 * selecting the checkpointed uberblock and using that to open
5376 * the MOS.
5377 */
5378 if (checkpoint_rewind) {
5379 /*
5380 * If we are rewinding to the checkpoint update config cache
5381 * anyway.
5382 */
5383 update_config_cache = B_TRUE;
5384
5385 /*
5386 * Extract the checkpointed uberblock from the current MOS
5387 * and use this as the pool's uberblock from now on. If the
5388 * pool is imported as writeable we also write the checkpoint
5389 * uberblock to the labels, making the rewind permanent.
5390 */
5391 error = spa_ld_checkpoint_rewind(spa);
5392 if (error != 0)
5393 return (error);
5394
5395 /*
5396 * Redo the loading process again with the
5397 * checkpointed uberblock.
5398 */
5399 spa_ld_prepare_for_reload(spa);
5400 spa_load_note(spa, "LOADING checkpointed uberblock");
5401 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
5402 if (error != 0)
5403 return (error);
5404 }
5405
5406 /*
5407 * Drop the namespace lock for the rest of the function.
5408 */
5409 spa->spa_load_thread = curthread;
5410 mutex_exit(&spa_namespace_lock);
5411
5412 /*
5413 * Retrieve the checkpoint txg if the pool has a checkpoint.
5414 */
5415 spa_import_progress_set_notes(spa, "Loading checkpoint txg");
5416 error = spa_ld_read_checkpoint_txg(spa);
5417 if (error != 0)
5418 goto fail;
5419
5420 /*
5421 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
5422 * from the pool and their contents were re-mapped to other vdevs. Note
5423 * that everything that we read before this step must have been
5424 * rewritten on concrete vdevs after the last device removal was
5425 * initiated. Otherwise we could be reading from indirect vdevs before
5426 * we have loaded their mappings.
5427 */
5428 spa_import_progress_set_notes(spa, "Loading indirect vdev metadata");
5429 error = spa_ld_open_indirect_vdev_metadata(spa);
5430 if (error != 0)
5431 goto fail;
5432
5433 /*
5434 * Retrieve the full list of active features from the MOS and check if
5435 * they are all supported.
5436 */
5437 spa_import_progress_set_notes(spa, "Checking feature flags");
5438 error = spa_ld_check_features(spa, &missing_feat_write);
5439 if (error != 0)
5440 goto fail;
5441
5442 /*
5443 * Load several special directories from the MOS needed by the dsl_pool
5444 * layer.
5445 */
5446 spa_import_progress_set_notes(spa, "Loading special MOS directories");
5447 error = spa_ld_load_special_directories(spa);
5448 if (error != 0)
5449 goto fail;
5450
5451 /*
5452 * Retrieve pool properties from the MOS.
5453 */
5454 spa_import_progress_set_notes(spa, "Loading properties");
5455 error = spa_ld_get_props(spa);
5456 if (error != 0)
5457 goto fail;
5458
5459 /*
5460 * Retrieve the list of auxiliary devices - cache devices and spares -
5461 * and open them.
5462 */
5463 spa_import_progress_set_notes(spa, "Loading AUX vdevs");
5464 error = spa_ld_open_aux_vdevs(spa, type);
5465 if (error != 0)
5466 goto fail;
5467
5468 /*
5469 * Load the metadata for all vdevs. Also check if unopenable devices
5470 * should be autoreplaced.
5471 */
5472 spa_import_progress_set_notes(spa, "Loading vdev metadata");
5473 error = spa_ld_load_vdev_metadata(spa);
5474 if (error != 0)
5475 goto fail;
5476
5477 spa_import_progress_set_notes(spa, "Loading dedup tables");
5478 error = spa_ld_load_dedup_tables(spa);
5479 if (error != 0)
5480 goto fail;
5481
5482 spa_import_progress_set_notes(spa, "Loading BRT");
5483 error = spa_ld_load_brt(spa);
5484 if (error != 0)
5485 goto fail;
5486
5487 /*
5488 * Verify the logs now to make sure we don't have any unexpected errors
5489 * when we claim log blocks later.
5490 */
5491 spa_import_progress_set_notes(spa, "Verifying Log Devices");
5492 error = spa_ld_verify_logs(spa, type, ereport);
5493 if (error != 0)
5494 goto fail;
5495
5496 if (missing_feat_write) {
5497 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
5498
5499 /*
5500 * At this point, we know that we can open the pool in
5501 * read-only mode but not read-write mode. We now have enough
5502 * information and can return to userland.
5503 */
5504 error = spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
5505 ENOTSUP);
5506 goto fail;
5507 }
5508
5509 /*
5510 * Traverse the last txgs to make sure the pool was left off in a safe
5511 * state. When performing an extreme rewind, we verify the whole pool,
5512 * which can take a very long time.
5513 */
5514 spa_import_progress_set_notes(spa, "Verifying pool data");
5515 error = spa_ld_verify_pool_data(spa);
5516 if (error != 0)
5517 goto fail;
5518
5519 /*
5520 * Calculate the deflated space for the pool. This must be done before
5521 * we write anything to the pool because we'd need to update the space
5522 * accounting using the deflated sizes.
5523 */
5524 spa_import_progress_set_notes(spa, "Calculating deflated space");
5525 spa_update_dspace(spa);
5526
5527 /*
5528 * We have now retrieved all the information we needed to open the
5529 * pool. If we are importing the pool in read-write mode, a few
5530 * additional steps must be performed to finish the import.
5531 */
5532 spa_import_progress_set_notes(spa, "Starting import");
5533 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
5534 spa->spa_load_max_txg == UINT64_MAX)) {
5535 uint64_t config_cache_txg = spa->spa_config_txg;
5536
5537 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
5538
5539 /*
5540 * Before we do any zio_write's, complete the raidz expansion
5541 * scratch space copying, if necessary.
5542 */
5543 if (RRSS_GET_STATE(&spa->spa_uberblock) == RRSS_SCRATCH_VALID)
5544 vdev_raidz_reflow_copy_scratch(spa);
5545
5546 /*
5547 * In case of a checkpoint rewind, log the original txg
5548 * of the checkpointed uberblock.
5549 */
5550 if (checkpoint_rewind) {
5551 spa_history_log_internal(spa, "checkpoint rewind",
5552 NULL, "rewound state to txg=%llu",
5553 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
5554 }
5555
5556 spa_import_progress_set_notes(spa, "Claiming ZIL blocks");
5557 /*
5558 * Traverse the ZIL and claim all blocks.
5559 */
5560 spa_ld_claim_log_blocks(spa);
5561
5562 /*
5563 * Kick-off the syncing thread.
5564 */
5565 spa->spa_sync_on = B_TRUE;
5566 txg_sync_start(spa->spa_dsl_pool);
5567 mmp_thread_start(spa);
5568
5569 /*
5570 * Wait for all claims to sync. We sync up to the highest
5571 * claimed log block birth time so that claimed log blocks
5572 * don't appear to be from the future. spa_claim_max_txg
5573 * will have been set for us by ZIL traversal operations
5574 * performed above.
5575 */
5576 spa_import_progress_set_notes(spa, "Syncing ZIL claims");
5577 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5578
5579 /*
5580 * Check if we need to request an update of the config. On the
5581 * next sync, we would update the config stored in vdev labels
5582 * and the cachefile (by default /etc/zfs/zpool.cache).
5583 */
5584 spa_import_progress_set_notes(spa, "Updating configs");
5585 spa_ld_check_for_config_update(spa, config_cache_txg,
5586 update_config_cache);
5587
5588 /*
5589 * Check if a rebuild was in progress and if so resume it.
5590 * Then check all DTLs to see if anything needs resilvering.
5591 * The resilver will be deferred if a rebuild was started.
5592 */
5593 spa_import_progress_set_notes(spa, "Starting resilvers");
5594 if (vdev_rebuild_active(spa->spa_root_vdev)) {
5595 vdev_rebuild_restart(spa);
5596 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5597 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5598 spa_async_request(spa, SPA_ASYNC_RESILVER);
5599 }
5600
5601 /*
5602 * Log the fact that we booted up (so that we can detect if
5603 * we rebooted in the middle of an operation).
5604 */
5605 spa_history_log_version(spa, "open", NULL);
5606
5607 spa_import_progress_set_notes(spa,
5608 "Restarting device removals");
5609 spa_restart_removal(spa);
5610 spa_spawn_aux_threads(spa);
5611
5612 /*
5613 * Delete any inconsistent datasets.
5614 *
5615 * Note:
5616 * Since we may be issuing deletes for clones here,
5617 * we make sure to do so after we've spawned all the
5618 * auxiliary threads above (from which the livelist
5619 * deletion zthr is part of).
5620 */
5621 spa_import_progress_set_notes(spa,
5622 "Cleaning up inconsistent objsets");
5623 (void) dmu_objset_find(spa_name(spa),
5624 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5625
5626 /*
5627 * Clean up any stale temporary dataset userrefs.
5628 */
5629 spa_import_progress_set_notes(spa,
5630 "Cleaning up temporary userrefs");
5631 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5632
5633 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5634 spa_import_progress_set_notes(spa, "Restarting initialize");
5635 vdev_initialize_restart(spa->spa_root_vdev);
5636 spa_import_progress_set_notes(spa, "Restarting TRIM");
5637 vdev_trim_restart(spa->spa_root_vdev);
5638 vdev_autotrim_restart(spa);
5639 spa_config_exit(spa, SCL_CONFIG, FTAG);
5640 spa_import_progress_set_notes(spa, "Finished importing");
5641 }
5642 zio_handle_import_delay(spa, gethrtime() - load_start);
5643
5644 spa_import_progress_remove(spa_guid(spa));
5645 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5646
5647 spa_load_note(spa, "LOADED");
5648 fail:
5649 mutex_enter(&spa_namespace_lock);
5650 spa->spa_load_thread = NULL;
5651 cv_broadcast(&spa_namespace_cv);
5652
5653 return (error);
5654
5655 }
5656
5657 static int
5658 spa_load_retry(spa_t *spa, spa_load_state_t state)
5659 {
5660 spa_mode_t mode = spa->spa_mode;
5661
5662 spa_unload(spa);
5663 spa_deactivate(spa);
5664
5665 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5666
5667 spa_activate(spa, mode);
5668 spa_async_suspend(spa);
5669
5670 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5671 (u_longlong_t)spa->spa_load_max_txg);
5672
5673 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5674 }
5675
5676 /*
5677 * If spa_load() fails this function will try loading prior txg's. If
5678 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5679 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5680 * function will not rewind the pool and will return the same error as
5681 * spa_load().
5682 */
5683 static int
5684 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5685 int rewind_flags)
5686 {
5687 nvlist_t *loadinfo = NULL;
5688 nvlist_t *config = NULL;
5689 int load_error, rewind_error;
5690 uint64_t safe_rewind_txg;
5691 uint64_t min_txg;
5692
5693 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5694 spa->spa_load_max_txg = spa->spa_load_txg;
5695 spa_set_log_state(spa, SPA_LOG_CLEAR);
5696 } else {
5697 spa->spa_load_max_txg = max_request;
5698 if (max_request != UINT64_MAX)
5699 spa->spa_extreme_rewind = B_TRUE;
5700 }
5701
5702 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5703 if (load_error == 0)
5704 return (0);
5705 if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5706 /*
5707 * When attempting checkpoint-rewind on a pool with no
5708 * checkpoint, we should not attempt to load uberblocks
5709 * from previous txgs when spa_load fails.
5710 */
5711 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5712 spa_import_progress_remove(spa_guid(spa));
5713 return (load_error);
5714 }
5715
5716 if (spa->spa_root_vdev != NULL)
5717 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5718
5719 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5720 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5721
5722 if (rewind_flags & ZPOOL_NEVER_REWIND) {
5723 nvlist_free(config);
5724 spa_import_progress_remove(spa_guid(spa));
5725 return (load_error);
5726 }
5727
5728 if (state == SPA_LOAD_RECOVER) {
5729 /* Price of rolling back is discarding txgs, including log */
5730 spa_set_log_state(spa, SPA_LOG_CLEAR);
5731 } else {
5732 /*
5733 * If we aren't rolling back save the load info from our first
5734 * import attempt so that we can restore it after attempting
5735 * to rewind.
5736 */
5737 loadinfo = spa->spa_load_info;
5738 spa->spa_load_info = fnvlist_alloc();
5739 }
5740
5741 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5742 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5743 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5744 TXG_INITIAL : safe_rewind_txg;
5745
5746 /*
5747 * Continue as long as we're finding errors, we're still within
5748 * the acceptable rewind range, and we're still finding uberblocks
5749 */
5750 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5751 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5752 if (spa->spa_load_max_txg < safe_rewind_txg)
5753 spa->spa_extreme_rewind = B_TRUE;
5754 rewind_error = spa_load_retry(spa, state);
5755 }
5756
5757 spa->spa_extreme_rewind = B_FALSE;
5758 spa->spa_load_max_txg = UINT64_MAX;
5759
5760 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5761 spa_config_set(spa, config);
5762 else
5763 nvlist_free(config);
5764
5765 if (state == SPA_LOAD_RECOVER) {
5766 ASSERT3P(loadinfo, ==, NULL);
5767 spa_import_progress_remove(spa_guid(spa));
5768 return (rewind_error);
5769 } else {
5770 /* Store the rewind info as part of the initial load info */
5771 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5772 spa->spa_load_info);
5773
5774 /* Restore the initial load info */
5775 fnvlist_free(spa->spa_load_info);
5776 spa->spa_load_info = loadinfo;
5777
5778 spa_import_progress_remove(spa_guid(spa));
5779 return (load_error);
5780 }
5781 }
5782
5783 /*
5784 * Pool Open/Import
5785 *
5786 * The import case is identical to an open except that the configuration is sent
5787 * down from userland, instead of grabbed from the configuration cache. For the
5788 * case of an open, the pool configuration will exist in the
5789 * POOL_STATE_UNINITIALIZED state.
5790 *
5791 * The stats information (gen/count/ustats) is used to gather vdev statistics at
5792 * the same time open the pool, without having to keep around the spa_t in some
5793 * ambiguous state.
5794 */
5795 static int
5796 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5797 nvlist_t *nvpolicy, nvlist_t **config)
5798 {
5799 spa_t *spa;
5800 spa_load_state_t state = SPA_LOAD_OPEN;
5801 int error;
5802 int locked = B_FALSE;
5803 int firstopen = B_FALSE;
5804
5805 *spapp = NULL;
5806
5807 /*
5808 * As disgusting as this is, we need to support recursive calls to this
5809 * function because dsl_dir_open() is called during spa_load(), and ends
5810 * up calling spa_open() again. The real fix is to figure out how to
5811 * avoid dsl_dir_open() calling this in the first place.
5812 */
5813 if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5814 mutex_enter(&spa_namespace_lock);
5815 locked = B_TRUE;
5816 }
5817
5818 if ((spa = spa_lookup(pool)) == NULL) {
5819 if (locked)
5820 mutex_exit(&spa_namespace_lock);
5821 return (SET_ERROR(ENOENT));
5822 }
5823
5824 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5825 zpool_load_policy_t policy;
5826
5827 firstopen = B_TRUE;
5828
5829 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5830 &policy);
5831 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5832 state = SPA_LOAD_RECOVER;
5833
5834 spa_activate(spa, spa_mode_global);
5835
5836 if (state != SPA_LOAD_RECOVER)
5837 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5838 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5839
5840 zfs_dbgmsg("spa_open_common: opening %s", pool);
5841 error = spa_load_best(spa, state, policy.zlp_txg,
5842 policy.zlp_rewind);
5843
5844 if (error == EBADF) {
5845 /*
5846 * If vdev_validate() returns failure (indicated by
5847 * EBADF), it indicates that one of the vdevs indicates
5848 * that the pool has been exported or destroyed. If
5849 * this is the case, the config cache is out of sync and
5850 * we should remove the pool from the namespace.
5851 */
5852 spa_unload(spa);
5853 spa_deactivate(spa);
5854 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5855 spa_remove(spa);
5856 if (locked)
5857 mutex_exit(&spa_namespace_lock);
5858 return (SET_ERROR(ENOENT));
5859 }
5860
5861 if (error) {
5862 /*
5863 * We can't open the pool, but we still have useful
5864 * information: the state of each vdev after the
5865 * attempted vdev_open(). Return this to the user.
5866 */
5867 if (config != NULL && spa->spa_config) {
5868 *config = fnvlist_dup(spa->spa_config);
5869 fnvlist_add_nvlist(*config,
5870 ZPOOL_CONFIG_LOAD_INFO,
5871 spa->spa_load_info);
5872 }
5873 spa_unload(spa);
5874 spa_deactivate(spa);
5875 spa->spa_last_open_failed = error;
5876 if (locked)
5877 mutex_exit(&spa_namespace_lock);
5878 *spapp = NULL;
5879 return (error);
5880 }
5881 }
5882
5883 spa_open_ref(spa, tag);
5884
5885 if (config != NULL)
5886 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5887
5888 /*
5889 * If we've recovered the pool, pass back any information we
5890 * gathered while doing the load.
5891 */
5892 if (state == SPA_LOAD_RECOVER && config != NULL) {
5893 fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5894 spa->spa_load_info);
5895 }
5896
5897 if (locked) {
5898 spa->spa_last_open_failed = 0;
5899 spa->spa_last_ubsync_txg = 0;
5900 spa->spa_load_txg = 0;
5901 mutex_exit(&spa_namespace_lock);
5902 }
5903
5904 if (firstopen)
5905 zvol_create_minors_recursive(spa_name(spa));
5906
5907 *spapp = spa;
5908
5909 return (0);
5910 }
5911
5912 int
5913 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5914 nvlist_t *policy, nvlist_t **config)
5915 {
5916 return (spa_open_common(name, spapp, tag, policy, config));
5917 }
5918
5919 int
5920 spa_open(const char *name, spa_t **spapp, const void *tag)
5921 {
5922 return (spa_open_common(name, spapp, tag, NULL, NULL));
5923 }
5924
5925 /*
5926 * Lookup the given spa_t, incrementing the inject count in the process,
5927 * preventing it from being exported or destroyed.
5928 */
5929 spa_t *
5930 spa_inject_addref(char *name)
5931 {
5932 spa_t *spa;
5933
5934 mutex_enter(&spa_namespace_lock);
5935 if ((spa = spa_lookup(name)) == NULL) {
5936 mutex_exit(&spa_namespace_lock);
5937 return (NULL);
5938 }
5939 spa->spa_inject_ref++;
5940 mutex_exit(&spa_namespace_lock);
5941
5942 return (spa);
5943 }
5944
5945 void
5946 spa_inject_delref(spa_t *spa)
5947 {
5948 mutex_enter(&spa_namespace_lock);
5949 spa->spa_inject_ref--;
5950 mutex_exit(&spa_namespace_lock);
5951 }
5952
5953 /*
5954 * Add spares device information to the nvlist.
5955 */
5956 static void
5957 spa_add_spares(spa_t *spa, nvlist_t *config)
5958 {
5959 nvlist_t **spares;
5960 uint_t i, nspares;
5961 nvlist_t *nvroot;
5962 uint64_t guid;
5963 vdev_stat_t *vs;
5964 uint_t vsc;
5965 uint64_t pool;
5966
5967 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5968
5969 if (spa->spa_spares.sav_count == 0)
5970 return;
5971
5972 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5973 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5974 ZPOOL_CONFIG_SPARES, &spares, &nspares));
5975 if (nspares != 0) {
5976 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5977 (const nvlist_t * const *)spares, nspares);
5978 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5979 &spares, &nspares));
5980
5981 /*
5982 * Go through and find any spares which have since been
5983 * repurposed as an active spare. If this is the case, update
5984 * their status appropriately.
5985 */
5986 for (i = 0; i < nspares; i++) {
5987 guid = fnvlist_lookup_uint64(spares[i],
5988 ZPOOL_CONFIG_GUID);
5989 VERIFY0(nvlist_lookup_uint64_array(spares[i],
5990 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5991 if (spa_spare_exists(guid, &pool, NULL) &&
5992 pool != 0ULL) {
5993 vs->vs_state = VDEV_STATE_CANT_OPEN;
5994 vs->vs_aux = VDEV_AUX_SPARED;
5995 } else {
5996 vs->vs_state =
5997 spa->spa_spares.sav_vdevs[i]->vdev_state;
5998 }
5999 }
6000 }
6001 }
6002
6003 /*
6004 * Add l2cache device information to the nvlist, including vdev stats.
6005 */
6006 static void
6007 spa_add_l2cache(spa_t *spa, nvlist_t *config)
6008 {
6009 nvlist_t **l2cache;
6010 uint_t i, j, nl2cache;
6011 nvlist_t *nvroot;
6012 uint64_t guid;
6013 vdev_t *vd;
6014 vdev_stat_t *vs;
6015 uint_t vsc;
6016
6017 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6018
6019 if (spa->spa_l2cache.sav_count == 0)
6020 return;
6021
6022 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6023 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
6024 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
6025 if (nl2cache != 0) {
6026 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6027 (const nvlist_t * const *)l2cache, nl2cache);
6028 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6029 &l2cache, &nl2cache));
6030
6031 /*
6032 * Update level 2 cache device stats.
6033 */
6034
6035 for (i = 0; i < nl2cache; i++) {
6036 guid = fnvlist_lookup_uint64(l2cache[i],
6037 ZPOOL_CONFIG_GUID);
6038
6039 vd = NULL;
6040 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
6041 if (guid ==
6042 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
6043 vd = spa->spa_l2cache.sav_vdevs[j];
6044 break;
6045 }
6046 }
6047 ASSERT(vd != NULL);
6048
6049 VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
6050 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
6051 vdev_get_stats(vd, vs);
6052 vdev_config_generate_stats(vd, l2cache[i]);
6053
6054 }
6055 }
6056 }
6057
6058 static void
6059 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
6060 {
6061 zap_cursor_t zc;
6062 zap_attribute_t *za = zap_attribute_alloc();
6063
6064 if (spa->spa_feat_for_read_obj != 0) {
6065 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6066 spa->spa_feat_for_read_obj);
6067 zap_cursor_retrieve(&zc, za) == 0;
6068 zap_cursor_advance(&zc)) {
6069 ASSERT(za->za_integer_length == sizeof (uint64_t) &&
6070 za->za_num_integers == 1);
6071 VERIFY0(nvlist_add_uint64(features, za->za_name,
6072 za->za_first_integer));
6073 }
6074 zap_cursor_fini(&zc);
6075 }
6076
6077 if (spa->spa_feat_for_write_obj != 0) {
6078 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6079 spa->spa_feat_for_write_obj);
6080 zap_cursor_retrieve(&zc, za) == 0;
6081 zap_cursor_advance(&zc)) {
6082 ASSERT(za->za_integer_length == sizeof (uint64_t) &&
6083 za->za_num_integers == 1);
6084 VERIFY0(nvlist_add_uint64(features, za->za_name,
6085 za->za_first_integer));
6086 }
6087 zap_cursor_fini(&zc);
6088 }
6089 zap_attribute_free(za);
6090 }
6091
6092 static void
6093 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
6094 {
6095 int i;
6096
6097 for (i = 0; i < SPA_FEATURES; i++) {
6098 zfeature_info_t feature = spa_feature_table[i];
6099 uint64_t refcount;
6100
6101 if (feature_get_refcount(spa, &feature, &refcount) != 0)
6102 continue;
6103
6104 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
6105 }
6106 }
6107
6108 /*
6109 * Store a list of pool features and their reference counts in the
6110 * config.
6111 *
6112 * The first time this is called on a spa, allocate a new nvlist, fetch
6113 * the pool features and reference counts from disk, then save the list
6114 * in the spa. In subsequent calls on the same spa use the saved nvlist
6115 * and refresh its values from the cached reference counts. This
6116 * ensures we don't block here on I/O on a suspended pool so 'zpool
6117 * clear' can resume the pool.
6118 */
6119 static void
6120 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
6121 {
6122 nvlist_t *features;
6123
6124 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6125
6126 mutex_enter(&spa->spa_feat_stats_lock);
6127 features = spa->spa_feat_stats;
6128
6129 if (features != NULL) {
6130 spa_feature_stats_from_cache(spa, features);
6131 } else {
6132 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
6133 spa->spa_feat_stats = features;
6134 spa_feature_stats_from_disk(spa, features);
6135 }
6136
6137 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
6138 features));
6139
6140 mutex_exit(&spa->spa_feat_stats_lock);
6141 }
6142
6143 int
6144 spa_get_stats(const char *name, nvlist_t **config,
6145 char *altroot, size_t buflen)
6146 {
6147 int error;
6148 spa_t *spa;
6149
6150 *config = NULL;
6151 error = spa_open_common(name, &spa, FTAG, NULL, config);
6152
6153 if (spa != NULL) {
6154 /*
6155 * This still leaves a window of inconsistency where the spares
6156 * or l2cache devices could change and the config would be
6157 * self-inconsistent.
6158 */
6159 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6160
6161 if (*config != NULL) {
6162 uint64_t loadtimes[2];
6163
6164 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
6165 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
6166 fnvlist_add_uint64_array(*config,
6167 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
6168
6169 fnvlist_add_uint64(*config,
6170 ZPOOL_CONFIG_ERRCOUNT,
6171 spa_approx_errlog_size(spa));
6172
6173 if (spa_suspended(spa)) {
6174 fnvlist_add_uint64(*config,
6175 ZPOOL_CONFIG_SUSPENDED,
6176 spa->spa_failmode);
6177 fnvlist_add_uint64(*config,
6178 ZPOOL_CONFIG_SUSPENDED_REASON,
6179 spa->spa_suspended);
6180 }
6181
6182 spa_add_spares(spa, *config);
6183 spa_add_l2cache(spa, *config);
6184 spa_add_feature_stats(spa, *config);
6185 }
6186 }
6187
6188 /*
6189 * We want to get the alternate root even for faulted pools, so we cheat
6190 * and call spa_lookup() directly.
6191 */
6192 if (altroot) {
6193 if (spa == NULL) {
6194 mutex_enter(&spa_namespace_lock);
6195 spa = spa_lookup(name);
6196 if (spa)
6197 spa_altroot(spa, altroot, buflen);
6198 else
6199 altroot[0] = '\0';
6200 spa = NULL;
6201 mutex_exit(&spa_namespace_lock);
6202 } else {
6203 spa_altroot(spa, altroot, buflen);
6204 }
6205 }
6206
6207 if (spa != NULL) {
6208 spa_config_exit(spa, SCL_CONFIG, FTAG);
6209 spa_close(spa, FTAG);
6210 }
6211
6212 return (error);
6213 }
6214
6215 /*
6216 * Validate that the auxiliary device array is well formed. We must have an
6217 * array of nvlists, each which describes a valid leaf vdev. If this is an
6218 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
6219 * specified, as long as they are well-formed.
6220 */
6221 static int
6222 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
6223 spa_aux_vdev_t *sav, const char *config, uint64_t version,
6224 vdev_labeltype_t label)
6225 {
6226 nvlist_t **dev;
6227 uint_t i, ndev;
6228 vdev_t *vd;
6229 int error;
6230
6231 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6232
6233 /*
6234 * It's acceptable to have no devs specified.
6235 */
6236 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
6237 return (0);
6238
6239 if (ndev == 0)
6240 return (SET_ERROR(EINVAL));
6241
6242 /*
6243 * Make sure the pool is formatted with a version that supports this
6244 * device type.
6245 */
6246 if (spa_version(spa) < version)
6247 return (SET_ERROR(ENOTSUP));
6248
6249 /*
6250 * Set the pending device list so we correctly handle device in-use
6251 * checking.
6252 */
6253 sav->sav_pending = dev;
6254 sav->sav_npending = ndev;
6255
6256 for (i = 0; i < ndev; i++) {
6257 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
6258 mode)) != 0)
6259 goto out;
6260
6261 if (!vd->vdev_ops->vdev_op_leaf) {
6262 vdev_free(vd);
6263 error = SET_ERROR(EINVAL);
6264 goto out;
6265 }
6266
6267 vd->vdev_top = vd;
6268
6269 if ((error = vdev_open(vd)) == 0 &&
6270 (error = vdev_label_init(vd, crtxg, label)) == 0) {
6271 fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
6272 vd->vdev_guid);
6273 }
6274
6275 vdev_free(vd);
6276
6277 if (error &&
6278 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
6279 goto out;
6280 else
6281 error = 0;
6282 }
6283
6284 out:
6285 sav->sav_pending = NULL;
6286 sav->sav_npending = 0;
6287 return (error);
6288 }
6289
6290 static int
6291 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
6292 {
6293 int error;
6294
6295 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6296
6297 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6298 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
6299 VDEV_LABEL_SPARE)) != 0) {
6300 return (error);
6301 }
6302
6303 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6304 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
6305 VDEV_LABEL_L2CACHE));
6306 }
6307
6308 static void
6309 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
6310 const char *config)
6311 {
6312 int i;
6313
6314 if (sav->sav_config != NULL) {
6315 nvlist_t **olddevs;
6316 uint_t oldndevs;
6317 nvlist_t **newdevs;
6318
6319 /*
6320 * Generate new dev list by concatenating with the
6321 * current dev list.
6322 */
6323 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
6324 &olddevs, &oldndevs));
6325
6326 newdevs = kmem_alloc(sizeof (void *) *
6327 (ndevs + oldndevs), KM_SLEEP);
6328 for (i = 0; i < oldndevs; i++)
6329 newdevs[i] = fnvlist_dup(olddevs[i]);
6330 for (i = 0; i < ndevs; i++)
6331 newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
6332
6333 fnvlist_remove(sav->sav_config, config);
6334
6335 fnvlist_add_nvlist_array(sav->sav_config, config,
6336 (const nvlist_t * const *)newdevs, ndevs + oldndevs);
6337 for (i = 0; i < oldndevs + ndevs; i++)
6338 nvlist_free(newdevs[i]);
6339 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
6340 } else {
6341 /*
6342 * Generate a new dev list.
6343 */
6344 sav->sav_config = fnvlist_alloc();
6345 fnvlist_add_nvlist_array(sav->sav_config, config,
6346 (const nvlist_t * const *)devs, ndevs);
6347 }
6348 }
6349
6350 /*
6351 * Stop and drop level 2 ARC devices
6352 */
6353 void
6354 spa_l2cache_drop(spa_t *spa)
6355 {
6356 vdev_t *vd;
6357 int i;
6358 spa_aux_vdev_t *sav = &spa->spa_l2cache;
6359
6360 for (i = 0; i < sav->sav_count; i++) {
6361 uint64_t pool;
6362
6363 vd = sav->sav_vdevs[i];
6364 ASSERT(vd != NULL);
6365
6366 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
6367 pool != 0ULL && l2arc_vdev_present(vd))
6368 l2arc_remove_vdev(vd);
6369 }
6370 }
6371
6372 /*
6373 * Verify encryption parameters for spa creation. If we are encrypting, we must
6374 * have the encryption feature flag enabled.
6375 */
6376 static int
6377 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
6378 boolean_t has_encryption)
6379 {
6380 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
6381 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
6382 !has_encryption)
6383 return (SET_ERROR(ENOTSUP));
6384
6385 return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
6386 }
6387
6388 /*
6389 * Pool Creation
6390 */
6391 int
6392 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
6393 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
6394 {
6395 spa_t *spa;
6396 const char *altroot = NULL;
6397 vdev_t *rvd;
6398 dsl_pool_t *dp;
6399 dmu_tx_t *tx;
6400 int error = 0;
6401 uint64_t txg = TXG_INITIAL;
6402 nvlist_t **spares, **l2cache;
6403 uint_t nspares, nl2cache;
6404 uint64_t version, obj, ndraid = 0;
6405 boolean_t has_features;
6406 boolean_t has_encryption;
6407 boolean_t has_allocclass;
6408 spa_feature_t feat;
6409 const char *feat_name;
6410 const char *poolname;
6411 nvlist_t *nvl;
6412
6413 if (props == NULL ||
6414 nvlist_lookup_string(props,
6415 zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
6416 poolname = (char *)pool;
6417
6418 /*
6419 * If this pool already exists, return failure.
6420 */
6421 mutex_enter(&spa_namespace_lock);
6422 if (spa_lookup(poolname) != NULL) {
6423 mutex_exit(&spa_namespace_lock);
6424 return (SET_ERROR(EEXIST));
6425 }
6426
6427 /*
6428 * Allocate a new spa_t structure.
6429 */
6430 nvl = fnvlist_alloc();
6431 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
6432 (void) nvlist_lookup_string(props,
6433 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6434 spa = spa_add(poolname, nvl, altroot);
6435 fnvlist_free(nvl);
6436 spa_activate(spa, spa_mode_global);
6437
6438 if (props && (error = spa_prop_validate(spa, props))) {
6439 spa_deactivate(spa);
6440 spa_remove(spa);
6441 mutex_exit(&spa_namespace_lock);
6442 return (error);
6443 }
6444
6445 /*
6446 * Temporary pool names should never be written to disk.
6447 */
6448 if (poolname != pool)
6449 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
6450
6451 has_features = B_FALSE;
6452 has_encryption = B_FALSE;
6453 has_allocclass = B_FALSE;
6454 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
6455 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
6456 if (zpool_prop_feature(nvpair_name(elem))) {
6457 has_features = B_TRUE;
6458
6459 feat_name = strchr(nvpair_name(elem), '@') + 1;
6460 VERIFY0(zfeature_lookup_name(feat_name, &feat));
6461 if (feat == SPA_FEATURE_ENCRYPTION)
6462 has_encryption = B_TRUE;
6463 if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
6464 has_allocclass = B_TRUE;
6465 }
6466 }
6467
6468 /* verify encryption params, if they were provided */
6469 if (dcp != NULL) {
6470 error = spa_create_check_encryption_params(dcp, has_encryption);
6471 if (error != 0) {
6472 spa_deactivate(spa);
6473 spa_remove(spa);
6474 mutex_exit(&spa_namespace_lock);
6475 return (error);
6476 }
6477 }
6478 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
6479 spa_deactivate(spa);
6480 spa_remove(spa);
6481 mutex_exit(&spa_namespace_lock);
6482 return (ENOTSUP);
6483 }
6484
6485 if (has_features || nvlist_lookup_uint64(props,
6486 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
6487 version = SPA_VERSION;
6488 }
6489 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6490
6491 spa->spa_first_txg = txg;
6492 spa->spa_uberblock.ub_txg = txg - 1;
6493 spa->spa_uberblock.ub_version = version;
6494 spa->spa_ubsync = spa->spa_uberblock;
6495 spa->spa_load_state = SPA_LOAD_CREATE;
6496 spa->spa_removing_phys.sr_state = DSS_NONE;
6497 spa->spa_removing_phys.sr_removing_vdev = -1;
6498 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
6499 spa->spa_indirect_vdevs_loaded = B_TRUE;
6500
6501 /*
6502 * Create "The Godfather" zio to hold all async IOs
6503 */
6504 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
6505 KM_SLEEP);
6506 for (int i = 0; i < max_ncpus; i++) {
6507 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
6508 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6509 ZIO_FLAG_GODFATHER);
6510 }
6511
6512 /*
6513 * Create the root vdev.
6514 */
6515 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6516
6517 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
6518
6519 ASSERT(error != 0 || rvd != NULL);
6520 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
6521
6522 if (error == 0 && !zfs_allocatable_devs(nvroot))
6523 error = SET_ERROR(EINVAL);
6524
6525 if (error == 0 &&
6526 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
6527 (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
6528 (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
6529 /*
6530 * instantiate the metaslab groups (this will dirty the vdevs)
6531 * we can no longer error exit past this point
6532 */
6533 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
6534 vdev_t *vd = rvd->vdev_child[c];
6535
6536 vdev_metaslab_set_size(vd);
6537 vdev_expand(vd, txg);
6538 }
6539 }
6540
6541 spa_config_exit(spa, SCL_ALL, FTAG);
6542
6543 if (error != 0) {
6544 spa_unload(spa);
6545 spa_deactivate(spa);
6546 spa_remove(spa);
6547 mutex_exit(&spa_namespace_lock);
6548 return (error);
6549 }
6550
6551 /*
6552 * Get the list of spares, if specified.
6553 */
6554 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6555 &spares, &nspares) == 0) {
6556 spa->spa_spares.sav_config = fnvlist_alloc();
6557 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6558 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6559 nspares);
6560 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6561 spa_load_spares(spa);
6562 spa_config_exit(spa, SCL_ALL, FTAG);
6563 spa->spa_spares.sav_sync = B_TRUE;
6564 }
6565
6566 /*
6567 * Get the list of level 2 cache devices, if specified.
6568 */
6569 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6570 &l2cache, &nl2cache) == 0) {
6571 VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
6572 NV_UNIQUE_NAME, KM_SLEEP));
6573 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6574 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6575 nl2cache);
6576 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6577 spa_load_l2cache(spa);
6578 spa_config_exit(spa, SCL_ALL, FTAG);
6579 spa->spa_l2cache.sav_sync = B_TRUE;
6580 }
6581
6582 spa->spa_is_initializing = B_TRUE;
6583 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
6584 spa->spa_is_initializing = B_FALSE;
6585
6586 /*
6587 * Create DDTs (dedup tables).
6588 */
6589 ddt_create(spa);
6590 /*
6591 * Create BRT table and BRT table object.
6592 */
6593 brt_create(spa);
6594
6595 spa_update_dspace(spa);
6596
6597 tx = dmu_tx_create_assigned(dp, txg);
6598
6599 /*
6600 * Create the pool's history object.
6601 */
6602 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6603 spa_history_create_obj(spa, tx);
6604
6605 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6606 spa_history_log_version(spa, "create", tx);
6607
6608 /*
6609 * Create the pool config object.
6610 */
6611 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6612 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6613 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6614
6615 if (zap_add(spa->spa_meta_objset,
6616 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6617 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6618 cmn_err(CE_PANIC, "failed to add pool config");
6619 }
6620
6621 if (zap_add(spa->spa_meta_objset,
6622 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6623 sizeof (uint64_t), 1, &version, tx) != 0) {
6624 cmn_err(CE_PANIC, "failed to add pool version");
6625 }
6626
6627 /* Newly created pools with the right version are always deflated. */
6628 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6629 spa->spa_deflate = TRUE;
6630 if (zap_add(spa->spa_meta_objset,
6631 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6632 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6633 cmn_err(CE_PANIC, "failed to add deflate");
6634 }
6635 }
6636
6637 /*
6638 * Create the deferred-free bpobj. Turn off compression
6639 * because sync-to-convergence takes longer if the blocksize
6640 * keeps changing.
6641 */
6642 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6643 dmu_object_set_compress(spa->spa_meta_objset, obj,
6644 ZIO_COMPRESS_OFF, tx);
6645 if (zap_add(spa->spa_meta_objset,
6646 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6647 sizeof (uint64_t), 1, &obj, tx) != 0) {
6648 cmn_err(CE_PANIC, "failed to add bpobj");
6649 }
6650 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6651 spa->spa_meta_objset, obj));
6652
6653 /*
6654 * Generate some random noise for salted checksums to operate on.
6655 */
6656 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6657 sizeof (spa->spa_cksum_salt.zcs_bytes));
6658
6659 /*
6660 * Set pool properties.
6661 */
6662 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6663 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6664 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6665 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6666 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6667 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6668 spa->spa_dedup_table_quota =
6669 zpool_prop_default_numeric(ZPOOL_PROP_DEDUP_TABLE_QUOTA);
6670
6671 if (props != NULL) {
6672 spa_configfile_set(spa, props, B_FALSE);
6673 spa_sync_props(props, tx);
6674 }
6675
6676 for (int i = 0; i < ndraid; i++)
6677 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6678
6679 dmu_tx_commit(tx);
6680
6681 spa->spa_sync_on = B_TRUE;
6682 txg_sync_start(dp);
6683 mmp_thread_start(spa);
6684 txg_wait_synced(dp, txg);
6685
6686 spa_spawn_aux_threads(spa);
6687
6688 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6689
6690 /*
6691 * Don't count references from objsets that are already closed
6692 * and are making their way through the eviction process.
6693 */
6694 spa_evicting_os_wait(spa);
6695 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6696 spa->spa_load_state = SPA_LOAD_NONE;
6697
6698 spa_import_os(spa);
6699
6700 mutex_exit(&spa_namespace_lock);
6701
6702 return (0);
6703 }
6704
6705 /*
6706 * Import a non-root pool into the system.
6707 */
6708 int
6709 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6710 {
6711 spa_t *spa;
6712 const char *altroot = NULL;
6713 spa_load_state_t state = SPA_LOAD_IMPORT;
6714 zpool_load_policy_t policy;
6715 spa_mode_t mode = spa_mode_global;
6716 uint64_t readonly = B_FALSE;
6717 int error;
6718 nvlist_t *nvroot;
6719 nvlist_t **spares, **l2cache;
6720 uint_t nspares, nl2cache;
6721
6722 /*
6723 * If a pool with this name exists, return failure.
6724 */
6725 mutex_enter(&spa_namespace_lock);
6726 if (spa_lookup(pool) != NULL) {
6727 mutex_exit(&spa_namespace_lock);
6728 return (SET_ERROR(EEXIST));
6729 }
6730
6731 /*
6732 * Create and initialize the spa structure.
6733 */
6734 (void) nvlist_lookup_string(props,
6735 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6736 (void) nvlist_lookup_uint64(props,
6737 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6738 if (readonly)
6739 mode = SPA_MODE_READ;
6740 spa = spa_add(pool, config, altroot);
6741 spa->spa_import_flags = flags;
6742
6743 /*
6744 * Verbatim import - Take a pool and insert it into the namespace
6745 * as if it had been loaded at boot.
6746 */
6747 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6748 if (props != NULL)
6749 spa_configfile_set(spa, props, B_FALSE);
6750
6751 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6752 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6753 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6754 mutex_exit(&spa_namespace_lock);
6755 return (0);
6756 }
6757
6758 spa_activate(spa, mode);
6759
6760 /*
6761 * Don't start async tasks until we know everything is healthy.
6762 */
6763 spa_async_suspend(spa);
6764
6765 zpool_get_load_policy(config, &policy);
6766 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6767 state = SPA_LOAD_RECOVER;
6768
6769 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6770
6771 if (state != SPA_LOAD_RECOVER) {
6772 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6773 zfs_dbgmsg("spa_import: importing %s", pool);
6774 } else {
6775 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6776 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6777 }
6778 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6779
6780 /*
6781 * Propagate anything learned while loading the pool and pass it
6782 * back to caller (i.e. rewind info, missing devices, etc).
6783 */
6784 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6785
6786 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6787 /*
6788 * Toss any existing sparelist, as it doesn't have any validity
6789 * anymore, and conflicts with spa_has_spare().
6790 */
6791 if (spa->spa_spares.sav_config) {
6792 nvlist_free(spa->spa_spares.sav_config);
6793 spa->spa_spares.sav_config = NULL;
6794 spa_load_spares(spa);
6795 }
6796 if (spa->spa_l2cache.sav_config) {
6797 nvlist_free(spa->spa_l2cache.sav_config);
6798 spa->spa_l2cache.sav_config = NULL;
6799 spa_load_l2cache(spa);
6800 }
6801
6802 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6803 spa_config_exit(spa, SCL_ALL, FTAG);
6804
6805 if (props != NULL)
6806 spa_configfile_set(spa, props, B_FALSE);
6807
6808 if (error != 0 || (props && spa_writeable(spa) &&
6809 (error = spa_prop_set(spa, props)))) {
6810 spa_unload(spa);
6811 spa_deactivate(spa);
6812 spa_remove(spa);
6813 mutex_exit(&spa_namespace_lock);
6814 return (error);
6815 }
6816
6817 spa_async_resume(spa);
6818
6819 /*
6820 * Override any spares and level 2 cache devices as specified by
6821 * the user, as these may have correct device names/devids, etc.
6822 */
6823 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6824 &spares, &nspares) == 0) {
6825 if (spa->spa_spares.sav_config)
6826 fnvlist_remove(spa->spa_spares.sav_config,
6827 ZPOOL_CONFIG_SPARES);
6828 else
6829 spa->spa_spares.sav_config = fnvlist_alloc();
6830 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6831 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6832 nspares);
6833 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6834 spa_load_spares(spa);
6835 spa_config_exit(spa, SCL_ALL, FTAG);
6836 spa->spa_spares.sav_sync = B_TRUE;
6837 spa->spa_spares.sav_label_sync = B_TRUE;
6838 }
6839 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6840 &l2cache, &nl2cache) == 0) {
6841 if (spa->spa_l2cache.sav_config)
6842 fnvlist_remove(spa->spa_l2cache.sav_config,
6843 ZPOOL_CONFIG_L2CACHE);
6844 else
6845 spa->spa_l2cache.sav_config = fnvlist_alloc();
6846 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6847 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6848 nl2cache);
6849 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6850 spa_load_l2cache(spa);
6851 spa_config_exit(spa, SCL_ALL, FTAG);
6852 spa->spa_l2cache.sav_sync = B_TRUE;
6853 spa->spa_l2cache.sav_label_sync = B_TRUE;
6854 }
6855
6856 /*
6857 * Check for any removed devices.
6858 */
6859 if (spa->spa_autoreplace) {
6860 spa_aux_check_removed(&spa->spa_spares);
6861 spa_aux_check_removed(&spa->spa_l2cache);
6862 }
6863
6864 if (spa_writeable(spa)) {
6865 /*
6866 * Update the config cache to include the newly-imported pool.
6867 */
6868 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6869 }
6870
6871 /*
6872 * It's possible that the pool was expanded while it was exported.
6873 * We kick off an async task to handle this for us.
6874 */
6875 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6876
6877 spa_history_log_version(spa, "import", NULL);
6878
6879 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6880
6881 mutex_exit(&spa_namespace_lock);
6882
6883 zvol_create_minors_recursive(pool);
6884
6885 spa_import_os(spa);
6886
6887 return (0);
6888 }
6889
6890 nvlist_t *
6891 spa_tryimport(nvlist_t *tryconfig)
6892 {
6893 nvlist_t *config = NULL;
6894 const char *poolname, *cachefile;
6895 spa_t *spa;
6896 uint64_t state;
6897 int error;
6898 zpool_load_policy_t policy;
6899
6900 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6901 return (NULL);
6902
6903 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6904 return (NULL);
6905
6906 /*
6907 * Create and initialize the spa structure.
6908 */
6909 char *name = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6910 (void) snprintf(name, MAXPATHLEN, "%s-%llx-%s",
6911 TRYIMPORT_NAME, (u_longlong_t)(uintptr_t)curthread, poolname);
6912
6913 mutex_enter(&spa_namespace_lock);
6914 spa = spa_add(name, tryconfig, NULL);
6915 spa_activate(spa, SPA_MODE_READ);
6916 kmem_free(name, MAXPATHLEN);
6917
6918 /*
6919 * Rewind pool if a max txg was provided.
6920 */
6921 zpool_get_load_policy(spa->spa_config, &policy);
6922 if (policy.zlp_txg != UINT64_MAX) {
6923 spa->spa_load_max_txg = policy.zlp_txg;
6924 spa->spa_extreme_rewind = B_TRUE;
6925 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6926 poolname, (longlong_t)policy.zlp_txg);
6927 } else {
6928 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6929 }
6930
6931 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6932 == 0) {
6933 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6934 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6935 } else {
6936 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6937 }
6938
6939 /*
6940 * spa_import() relies on a pool config fetched by spa_try_import()
6941 * for spare/cache devices. Import flags are not passed to
6942 * spa_tryimport(), which makes it return early due to a missing log
6943 * device and missing retrieving the cache device and spare eventually.
6944 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
6945 * the correct configuration regardless of the missing log device.
6946 */
6947 spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
6948
6949 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6950
6951 /*
6952 * If 'tryconfig' was at least parsable, return the current config.
6953 */
6954 if (spa->spa_root_vdev != NULL) {
6955 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6956 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6957 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6958 fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6959 spa->spa_uberblock.ub_timestamp);
6960 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6961 spa->spa_load_info);
6962 fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6963 spa->spa_errata);
6964
6965 /*
6966 * If the bootfs property exists on this pool then we
6967 * copy it out so that external consumers can tell which
6968 * pools are bootable.
6969 */
6970 if ((!error || error == EEXIST) && spa->spa_bootfs) {
6971 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6972
6973 /*
6974 * We have to play games with the name since the
6975 * pool was opened as TRYIMPORT_NAME.
6976 */
6977 if (dsl_dsobj_to_dsname(spa_name(spa),
6978 spa->spa_bootfs, tmpname) == 0) {
6979 char *cp;
6980 char *dsname;
6981
6982 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6983
6984 cp = strchr(tmpname, '/');
6985 if (cp == NULL) {
6986 (void) strlcpy(dsname, tmpname,
6987 MAXPATHLEN);
6988 } else {
6989 (void) snprintf(dsname, MAXPATHLEN,
6990 "%s/%s", poolname, ++cp);
6991 }
6992 fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6993 dsname);
6994 kmem_free(dsname, MAXPATHLEN);
6995 }
6996 kmem_free(tmpname, MAXPATHLEN);
6997 }
6998
6999 /*
7000 * Add the list of hot spares and level 2 cache devices.
7001 */
7002 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7003 spa_add_spares(spa, config);
7004 spa_add_l2cache(spa, config);
7005 spa_config_exit(spa, SCL_CONFIG, FTAG);
7006 }
7007
7008 spa_unload(spa);
7009 spa_deactivate(spa);
7010 spa_remove(spa);
7011 mutex_exit(&spa_namespace_lock);
7012
7013 return (config);
7014 }
7015
7016 /*
7017 * Pool export/destroy
7018 *
7019 * The act of destroying or exporting a pool is very simple. We make sure there
7020 * is no more pending I/O and any references to the pool are gone. Then, we
7021 * update the pool state and sync all the labels to disk, removing the
7022 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
7023 * we don't sync the labels or remove the configuration cache.
7024 */
7025 static int
7026 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
7027 boolean_t force, boolean_t hardforce)
7028 {
7029 int error = 0;
7030 spa_t *spa;
7031 hrtime_t export_start = gethrtime();
7032
7033 if (oldconfig)
7034 *oldconfig = NULL;
7035
7036 if (!(spa_mode_global & SPA_MODE_WRITE))
7037 return (SET_ERROR(EROFS));
7038
7039 mutex_enter(&spa_namespace_lock);
7040 if ((spa = spa_lookup(pool)) == NULL) {
7041 mutex_exit(&spa_namespace_lock);
7042 return (SET_ERROR(ENOENT));
7043 }
7044
7045 if (spa->spa_is_exporting) {
7046 /* the pool is being exported by another thread */
7047 mutex_exit(&spa_namespace_lock);
7048 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
7049 }
7050 spa->spa_is_exporting = B_TRUE;
7051
7052 /*
7053 * Put a hold on the pool, drop the namespace lock, stop async tasks
7054 * and see if we can export.
7055 */
7056 spa_open_ref(spa, FTAG);
7057 mutex_exit(&spa_namespace_lock);
7058 spa_async_suspend(spa);
7059 if (spa->spa_zvol_taskq) {
7060 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
7061 taskq_wait(spa->spa_zvol_taskq);
7062 }
7063 mutex_enter(&spa_namespace_lock);
7064 spa->spa_export_thread = curthread;
7065 spa_close(spa, FTAG);
7066
7067 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
7068 mutex_exit(&spa_namespace_lock);
7069 goto export_spa;
7070 }
7071
7072 /*
7073 * The pool will be in core if it's openable, in which case we can
7074 * modify its state. Objsets may be open only because they're dirty,
7075 * so we have to force it to sync before checking spa_refcnt.
7076 */
7077 if (spa->spa_sync_on) {
7078 txg_wait_synced(spa->spa_dsl_pool, 0);
7079 spa_evicting_os_wait(spa);
7080 }
7081
7082 /*
7083 * A pool cannot be exported or destroyed if there are active
7084 * references. If we are resetting a pool, allow references by
7085 * fault injection handlers.
7086 */
7087 if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
7088 error = SET_ERROR(EBUSY);
7089 goto fail;
7090 }
7091
7092 mutex_exit(&spa_namespace_lock);
7093 /*
7094 * At this point we no longer hold the spa_namespace_lock and
7095 * there were no references on the spa. Future spa_lookups will
7096 * notice the spa->spa_export_thread and wait until we signal
7097 * that we are finshed.
7098 */
7099
7100 if (spa->spa_sync_on) {
7101 vdev_t *rvd = spa->spa_root_vdev;
7102 /*
7103 * A pool cannot be exported if it has an active shared spare.
7104 * This is to prevent other pools stealing the active spare
7105 * from an exported pool. At user's own will, such pool can
7106 * be forcedly exported.
7107 */
7108 if (!force && new_state == POOL_STATE_EXPORTED &&
7109 spa_has_active_shared_spare(spa)) {
7110 error = SET_ERROR(EXDEV);
7111 mutex_enter(&spa_namespace_lock);
7112 goto fail;
7113 }
7114
7115 /*
7116 * We're about to export or destroy this pool. Make sure
7117 * we stop all initialization and trim activity here before
7118 * we set the spa_final_txg. This will ensure that all
7119 * dirty data resulting from the initialization is
7120 * committed to disk before we unload the pool.
7121 */
7122 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
7123 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
7124 vdev_autotrim_stop_all(spa);
7125 vdev_rebuild_stop_all(spa);
7126 l2arc_spa_rebuild_stop(spa);
7127
7128 /*
7129 * We want this to be reflected on every label,
7130 * so mark them all dirty. spa_unload() will do the
7131 * final sync that pushes these changes out.
7132 */
7133 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7134 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7135 spa->spa_state = new_state;
7136 vdev_config_dirty(rvd);
7137 spa_config_exit(spa, SCL_ALL, FTAG);
7138 }
7139
7140 /*
7141 * If the log space map feature is enabled and the pool is
7142 * getting exported (but not destroyed), we want to spend some
7143 * time flushing as many metaslabs as we can in an attempt to
7144 * destroy log space maps and save import time. This has to be
7145 * done before we set the spa_final_txg, otherwise
7146 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
7147 * spa_should_flush_logs_on_unload() should be called after
7148 * spa_state has been set to the new_state.
7149 */
7150 if (spa_should_flush_logs_on_unload(spa))
7151 spa_unload_log_sm_flush_all(spa);
7152
7153 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7154 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7155 spa->spa_final_txg = spa_last_synced_txg(spa) +
7156 TXG_DEFER_SIZE + 1;
7157 spa_config_exit(spa, SCL_ALL, FTAG);
7158 }
7159 }
7160
7161 export_spa:
7162 spa_export_os(spa);
7163
7164 if (new_state == POOL_STATE_DESTROYED)
7165 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
7166 else if (new_state == POOL_STATE_EXPORTED)
7167 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
7168
7169 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7170 spa_unload(spa);
7171 spa_deactivate(spa);
7172 }
7173
7174 if (oldconfig && spa->spa_config)
7175 *oldconfig = fnvlist_dup(spa->spa_config);
7176
7177 if (new_state == POOL_STATE_EXPORTED)
7178 zio_handle_export_delay(spa, gethrtime() - export_start);
7179
7180 /*
7181 * Take the namespace lock for the actual spa_t removal
7182 */
7183 mutex_enter(&spa_namespace_lock);
7184 if (new_state != POOL_STATE_UNINITIALIZED) {
7185 if (!hardforce)
7186 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
7187 spa_remove(spa);
7188 } else {
7189 /*
7190 * If spa_remove() is not called for this spa_t and
7191 * there is any possibility that it can be reused,
7192 * we make sure to reset the exporting flag.
7193 */
7194 spa->spa_is_exporting = B_FALSE;
7195 spa->spa_export_thread = NULL;
7196 }
7197
7198 /*
7199 * Wake up any waiters in spa_lookup()
7200 */
7201 cv_broadcast(&spa_namespace_cv);
7202 mutex_exit(&spa_namespace_lock);
7203 return (0);
7204
7205 fail:
7206 spa->spa_is_exporting = B_FALSE;
7207 spa->spa_export_thread = NULL;
7208
7209 spa_async_resume(spa);
7210 /*
7211 * Wake up any waiters in spa_lookup()
7212 */
7213 cv_broadcast(&spa_namespace_cv);
7214 mutex_exit(&spa_namespace_lock);
7215 return (error);
7216 }
7217
7218 /*
7219 * Destroy a storage pool.
7220 */
7221 int
7222 spa_destroy(const char *pool)
7223 {
7224 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
7225 B_FALSE, B_FALSE));
7226 }
7227
7228 /*
7229 * Export a storage pool.
7230 */
7231 int
7232 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
7233 boolean_t hardforce)
7234 {
7235 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
7236 force, hardforce));
7237 }
7238
7239 /*
7240 * Similar to spa_export(), this unloads the spa_t without actually removing it
7241 * from the namespace in any way.
7242 */
7243 int
7244 spa_reset(const char *pool)
7245 {
7246 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
7247 B_FALSE, B_FALSE));
7248 }
7249
7250 /*
7251 * ==========================================================================
7252 * Device manipulation
7253 * ==========================================================================
7254 */
7255
7256 /*
7257 * This is called as a synctask to increment the draid feature flag
7258 */
7259 static void
7260 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
7261 {
7262 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7263 int draid = (int)(uintptr_t)arg;
7264
7265 for (int c = 0; c < draid; c++)
7266 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
7267 }
7268
7269 /*
7270 * Add a device to a storage pool.
7271 */
7272 int
7273 spa_vdev_add(spa_t *spa, nvlist_t *nvroot, boolean_t check_ashift)
7274 {
7275 uint64_t txg, ndraid = 0;
7276 int error;
7277 vdev_t *rvd = spa->spa_root_vdev;
7278 vdev_t *vd, *tvd;
7279 nvlist_t **spares, **l2cache;
7280 uint_t nspares, nl2cache;
7281
7282 ASSERT(spa_writeable(spa));
7283
7284 txg = spa_vdev_enter(spa);
7285
7286 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
7287 VDEV_ALLOC_ADD)) != 0)
7288 return (spa_vdev_exit(spa, NULL, txg, error));
7289
7290 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
7291
7292 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
7293 &nspares) != 0)
7294 nspares = 0;
7295
7296 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
7297 &nl2cache) != 0)
7298 nl2cache = 0;
7299
7300 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
7301 return (spa_vdev_exit(spa, vd, txg, EINVAL));
7302
7303 if (vd->vdev_children != 0 &&
7304 (error = vdev_create(vd, txg, B_FALSE)) != 0) {
7305 return (spa_vdev_exit(spa, vd, txg, error));
7306 }
7307
7308 /*
7309 * The virtual dRAID spares must be added after vdev tree is created
7310 * and the vdev guids are generated. The guid of their associated
7311 * dRAID is stored in the config and used when opening the spare.
7312 */
7313 if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
7314 rvd->vdev_children)) == 0) {
7315 if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
7316 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
7317 nspares = 0;
7318 } else {
7319 return (spa_vdev_exit(spa, vd, txg, error));
7320 }
7321
7322 /*
7323 * We must validate the spares and l2cache devices after checking the
7324 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
7325 */
7326 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
7327 return (spa_vdev_exit(spa, vd, txg, error));
7328
7329 /*
7330 * If we are in the middle of a device removal, we can only add
7331 * devices which match the existing devices in the pool.
7332 * If we are in the middle of a removal, or have some indirect
7333 * vdevs, we can not add raidz or dRAID top levels.
7334 */
7335 if (spa->spa_vdev_removal != NULL ||
7336 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7337 for (int c = 0; c < vd->vdev_children; c++) {
7338 tvd = vd->vdev_child[c];
7339 if (spa->spa_vdev_removal != NULL &&
7340 tvd->vdev_ashift != spa->spa_max_ashift) {
7341 return (spa_vdev_exit(spa, vd, txg, EINVAL));
7342 }
7343 /* Fail if top level vdev is raidz or a dRAID */
7344 if (vdev_get_nparity(tvd) != 0)
7345 return (spa_vdev_exit(spa, vd, txg, EINVAL));
7346
7347 /*
7348 * Need the top level mirror to be
7349 * a mirror of leaf vdevs only
7350 */
7351 if (tvd->vdev_ops == &vdev_mirror_ops) {
7352 for (uint64_t cid = 0;
7353 cid < tvd->vdev_children; cid++) {
7354 vdev_t *cvd = tvd->vdev_child[cid];
7355 if (!cvd->vdev_ops->vdev_op_leaf) {
7356 return (spa_vdev_exit(spa, vd,
7357 txg, EINVAL));
7358 }
7359 }
7360 }
7361 }
7362 }
7363
7364 if (check_ashift && spa->spa_max_ashift == spa->spa_min_ashift) {
7365 for (int c = 0; c < vd->vdev_children; c++) {
7366 tvd = vd->vdev_child[c];
7367 if (tvd->vdev_ashift != spa->spa_max_ashift) {
7368 return (spa_vdev_exit(spa, vd, txg,
7369 ZFS_ERR_ASHIFT_MISMATCH));
7370 }
7371 }
7372 }
7373
7374 for (int c = 0; c < vd->vdev_children; c++) {
7375 tvd = vd->vdev_child[c];
7376 vdev_remove_child(vd, tvd);
7377 tvd->vdev_id = rvd->vdev_children;
7378 vdev_add_child(rvd, tvd);
7379 vdev_config_dirty(tvd);
7380 }
7381
7382 if (nspares != 0) {
7383 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
7384 ZPOOL_CONFIG_SPARES);
7385 spa_load_spares(spa);
7386 spa->spa_spares.sav_sync = B_TRUE;
7387 }
7388
7389 if (nl2cache != 0) {
7390 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
7391 ZPOOL_CONFIG_L2CACHE);
7392 spa_load_l2cache(spa);
7393 spa->spa_l2cache.sav_sync = B_TRUE;
7394 }
7395
7396 /*
7397 * We can't increment a feature while holding spa_vdev so we
7398 * have to do it in a synctask.
7399 */
7400 if (ndraid != 0) {
7401 dmu_tx_t *tx;
7402
7403 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
7404 dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
7405 (void *)(uintptr_t)ndraid, tx);
7406 dmu_tx_commit(tx);
7407 }
7408
7409 /*
7410 * We have to be careful when adding new vdevs to an existing pool.
7411 * If other threads start allocating from these vdevs before we
7412 * sync the config cache, and we lose power, then upon reboot we may
7413 * fail to open the pool because there are DVAs that the config cache
7414 * can't translate. Therefore, we first add the vdevs without
7415 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
7416 * and then let spa_config_update() initialize the new metaslabs.
7417 *
7418 * spa_load() checks for added-but-not-initialized vdevs, so that
7419 * if we lose power at any point in this sequence, the remaining
7420 * steps will be completed the next time we load the pool.
7421 */
7422 (void) spa_vdev_exit(spa, vd, txg, 0);
7423
7424 mutex_enter(&spa_namespace_lock);
7425 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7426 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
7427 mutex_exit(&spa_namespace_lock);
7428
7429 return (0);
7430 }
7431
7432 /*
7433 * Attach a device to a vdev specified by its guid. The vdev type can be
7434 * a mirror, a raidz, or a leaf device that is also a top-level (e.g. a
7435 * single device). When the vdev is a single device, a mirror vdev will be
7436 * automatically inserted.
7437 *
7438 * If 'replacing' is specified, the new device is intended to replace the
7439 * existing device; in this case the two devices are made into their own
7440 * mirror using the 'replacing' vdev, which is functionally identical to
7441 * the mirror vdev (it actually reuses all the same ops) but has a few
7442 * extra rules: you can't attach to it after it's been created, and upon
7443 * completion of resilvering, the first disk (the one being replaced)
7444 * is automatically detached.
7445 *
7446 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
7447 * should be performed instead of traditional healing reconstruction. From
7448 * an administrators perspective these are both resilver operations.
7449 */
7450 int
7451 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
7452 int rebuild)
7453 {
7454 uint64_t txg, dtl_max_txg;
7455 vdev_t *rvd = spa->spa_root_vdev;
7456 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
7457 vdev_ops_t *pvops;
7458 char *oldvdpath, *newvdpath;
7459 int newvd_isspare = B_FALSE;
7460 int error;
7461
7462 ASSERT(spa_writeable(spa));
7463
7464 txg = spa_vdev_enter(spa);
7465
7466 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
7467
7468 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7469 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7470 error = (spa_has_checkpoint(spa)) ?
7471 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7472 return (spa_vdev_exit(spa, NULL, txg, error));
7473 }
7474
7475 if (rebuild) {
7476 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
7477 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7478
7479 if (dsl_scan_resilvering(spa_get_dsl(spa)) ||
7480 dsl_scan_resilver_scheduled(spa_get_dsl(spa))) {
7481 return (spa_vdev_exit(spa, NULL, txg,
7482 ZFS_ERR_RESILVER_IN_PROGRESS));
7483 }
7484 } else {
7485 if (vdev_rebuild_active(rvd))
7486 return (spa_vdev_exit(spa, NULL, txg,
7487 ZFS_ERR_REBUILD_IN_PROGRESS));
7488 }
7489
7490 if (spa->spa_vdev_removal != NULL) {
7491 return (spa_vdev_exit(spa, NULL, txg,
7492 ZFS_ERR_DEVRM_IN_PROGRESS));
7493 }
7494
7495 if (oldvd == NULL)
7496 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7497
7498 boolean_t raidz = oldvd->vdev_ops == &vdev_raidz_ops;
7499
7500 if (raidz) {
7501 if (!spa_feature_is_enabled(spa, SPA_FEATURE_RAIDZ_EXPANSION))
7502 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7503
7504 /*
7505 * Can't expand a raidz while prior expand is in progress.
7506 */
7507 if (spa->spa_raidz_expand != NULL) {
7508 return (spa_vdev_exit(spa, NULL, txg,
7509 ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS));
7510 }
7511 } else if (!oldvd->vdev_ops->vdev_op_leaf) {
7512 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7513 }
7514
7515 if (raidz)
7516 pvd = oldvd;
7517 else
7518 pvd = oldvd->vdev_parent;
7519
7520 if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
7521 VDEV_ALLOC_ATTACH) != 0)
7522 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7523
7524 if (newrootvd->vdev_children != 1)
7525 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7526
7527 newvd = newrootvd->vdev_child[0];
7528
7529 if (!newvd->vdev_ops->vdev_op_leaf)
7530 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7531
7532 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
7533 return (spa_vdev_exit(spa, newrootvd, txg, error));
7534
7535 /*
7536 * log, dedup and special vdevs should not be replaced by spares.
7537 */
7538 if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
7539 oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
7540 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7541 }
7542
7543 /*
7544 * A dRAID spare can only replace a child of its parent dRAID vdev.
7545 */
7546 if (newvd->vdev_ops == &vdev_draid_spare_ops &&
7547 oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
7548 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7549 }
7550
7551 if (rebuild) {
7552 /*
7553 * For rebuilds, the top vdev must support reconstruction
7554 * using only space maps. This means the only allowable
7555 * vdevs types are the root vdev, a mirror, or dRAID.
7556 */
7557 tvd = pvd;
7558 if (pvd->vdev_top != NULL)
7559 tvd = pvd->vdev_top;
7560
7561 if (tvd->vdev_ops != &vdev_mirror_ops &&
7562 tvd->vdev_ops != &vdev_root_ops &&
7563 tvd->vdev_ops != &vdev_draid_ops) {
7564 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7565 }
7566 }
7567
7568 if (!replacing) {
7569 /*
7570 * For attach, the only allowable parent is a mirror or
7571 * the root vdev. A raidz vdev can be attached to, but
7572 * you cannot attach to a raidz child.
7573 */
7574 if (pvd->vdev_ops != &vdev_mirror_ops &&
7575 pvd->vdev_ops != &vdev_root_ops &&
7576 !raidz)
7577 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7578
7579 pvops = &vdev_mirror_ops;
7580 } else {
7581 /*
7582 * Active hot spares can only be replaced by inactive hot
7583 * spares.
7584 */
7585 if (pvd->vdev_ops == &vdev_spare_ops &&
7586 oldvd->vdev_isspare &&
7587 !spa_has_spare(spa, newvd->vdev_guid))
7588 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7589
7590 /*
7591 * If the source is a hot spare, and the parent isn't already a
7592 * spare, then we want to create a new hot spare. Otherwise, we
7593 * want to create a replacing vdev. The user is not allowed to
7594 * attach to a spared vdev child unless the 'isspare' state is
7595 * the same (spare replaces spare, non-spare replaces
7596 * non-spare).
7597 */
7598 if (pvd->vdev_ops == &vdev_replacing_ops &&
7599 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
7600 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7601 } else if (pvd->vdev_ops == &vdev_spare_ops &&
7602 newvd->vdev_isspare != oldvd->vdev_isspare) {
7603 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7604 }
7605
7606 if (newvd->vdev_isspare)
7607 pvops = &vdev_spare_ops;
7608 else
7609 pvops = &vdev_replacing_ops;
7610 }
7611
7612 /*
7613 * Make sure the new device is big enough.
7614 */
7615 vdev_t *min_vdev = raidz ? oldvd->vdev_child[0] : oldvd;
7616 if (newvd->vdev_asize < vdev_get_min_asize(min_vdev))
7617 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
7618
7619 /*
7620 * The new device cannot have a higher alignment requirement
7621 * than the top-level vdev.
7622 */
7623 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) {
7624 return (spa_vdev_exit(spa, newrootvd, txg,
7625 ZFS_ERR_ASHIFT_MISMATCH));
7626 }
7627
7628 /*
7629 * RAIDZ-expansion-specific checks.
7630 */
7631 if (raidz) {
7632 if (vdev_raidz_attach_check(newvd) != 0)
7633 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7634
7635 /*
7636 * Fail early if a child is not healthy or being replaced
7637 */
7638 for (int i = 0; i < oldvd->vdev_children; i++) {
7639 if (vdev_is_dead(oldvd->vdev_child[i]) ||
7640 !oldvd->vdev_child[i]->vdev_ops->vdev_op_leaf) {
7641 return (spa_vdev_exit(spa, newrootvd, txg,
7642 ENXIO));
7643 }
7644 /* Also fail if reserved boot area is in-use */
7645 if (vdev_check_boot_reserve(spa, oldvd->vdev_child[i])
7646 != 0) {
7647 return (spa_vdev_exit(spa, newrootvd, txg,
7648 EADDRINUSE));
7649 }
7650 }
7651 }
7652
7653 if (raidz) {
7654 /*
7655 * Note: oldvdpath is freed by spa_strfree(), but
7656 * kmem_asprintf() is freed by kmem_strfree(), so we have to
7657 * move it to a spa_strdup-ed string.
7658 */
7659 char *tmp = kmem_asprintf("raidz%u-%u",
7660 (uint_t)vdev_get_nparity(oldvd), (uint_t)oldvd->vdev_id);
7661 oldvdpath = spa_strdup(tmp);
7662 kmem_strfree(tmp);
7663 } else {
7664 oldvdpath = spa_strdup(oldvd->vdev_path);
7665 }
7666 newvdpath = spa_strdup(newvd->vdev_path);
7667
7668 /*
7669 * If this is an in-place replacement, update oldvd's path and devid
7670 * to make it distinguishable from newvd, and unopenable from now on.
7671 */
7672 if (strcmp(oldvdpath, newvdpath) == 0) {
7673 spa_strfree(oldvd->vdev_path);
7674 oldvd->vdev_path = kmem_alloc(strlen(newvdpath) + 5,
7675 KM_SLEEP);
7676 (void) sprintf(oldvd->vdev_path, "%s/old",
7677 newvdpath);
7678 if (oldvd->vdev_devid != NULL) {
7679 spa_strfree(oldvd->vdev_devid);
7680 oldvd->vdev_devid = NULL;
7681 }
7682 spa_strfree(oldvdpath);
7683 oldvdpath = spa_strdup(oldvd->vdev_path);
7684 }
7685
7686 /*
7687 * If the parent is not a mirror, or if we're replacing, insert the new
7688 * mirror/replacing/spare vdev above oldvd.
7689 */
7690 if (!raidz && pvd->vdev_ops != pvops) {
7691 pvd = vdev_add_parent(oldvd, pvops);
7692 ASSERT(pvd->vdev_ops == pvops);
7693 ASSERT(oldvd->vdev_parent == pvd);
7694 }
7695
7696 ASSERT(pvd->vdev_top->vdev_parent == rvd);
7697
7698 /*
7699 * Extract the new device from its root and add it to pvd.
7700 */
7701 vdev_remove_child(newrootvd, newvd);
7702 newvd->vdev_id = pvd->vdev_children;
7703 newvd->vdev_crtxg = oldvd->vdev_crtxg;
7704 vdev_add_child(pvd, newvd);
7705
7706 /*
7707 * Reevaluate the parent vdev state.
7708 */
7709 vdev_propagate_state(pvd);
7710
7711 tvd = newvd->vdev_top;
7712 ASSERT(pvd->vdev_top == tvd);
7713 ASSERT(tvd->vdev_parent == rvd);
7714
7715 vdev_config_dirty(tvd);
7716
7717 /*
7718 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
7719 * for any dmu_sync-ed blocks. It will propagate upward when
7720 * spa_vdev_exit() calls vdev_dtl_reassess().
7721 */
7722 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
7723
7724 if (raidz) {
7725 /*
7726 * Wait for the youngest allocations and frees to sync,
7727 * and then wait for the deferral of those frees to finish.
7728 */
7729 spa_vdev_config_exit(spa, NULL,
7730 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
7731
7732 vdev_initialize_stop_all(tvd, VDEV_INITIALIZE_ACTIVE);
7733 vdev_trim_stop_all(tvd, VDEV_TRIM_ACTIVE);
7734 vdev_autotrim_stop_wait(tvd);
7735
7736 dtl_max_txg = spa_vdev_config_enter(spa);
7737
7738 tvd->vdev_rz_expanding = B_TRUE;
7739
7740 vdev_dirty_leaves(tvd, VDD_DTL, dtl_max_txg);
7741 vdev_config_dirty(tvd);
7742
7743 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool,
7744 dtl_max_txg);
7745 dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_raidz_attach_sync,
7746 newvd, tx);
7747 dmu_tx_commit(tx);
7748 } else {
7749 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
7750 dtl_max_txg - TXG_INITIAL);
7751
7752 if (newvd->vdev_isspare) {
7753 spa_spare_activate(newvd);
7754 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
7755 }
7756
7757 newvd_isspare = newvd->vdev_isspare;
7758
7759 /*
7760 * Mark newvd's DTL dirty in this txg.
7761 */
7762 vdev_dirty(tvd, VDD_DTL, newvd, txg);
7763
7764 /*
7765 * Schedule the resilver or rebuild to restart in the future.
7766 * We do this to ensure that dmu_sync-ed blocks have been
7767 * stitched into the respective datasets.
7768 */
7769 if (rebuild) {
7770 newvd->vdev_rebuild_txg = txg;
7771
7772 vdev_rebuild(tvd);
7773 } else {
7774 newvd->vdev_resilver_txg = txg;
7775
7776 if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
7777 spa_feature_is_enabled(spa,
7778 SPA_FEATURE_RESILVER_DEFER)) {
7779 vdev_defer_resilver(newvd);
7780 } else {
7781 dsl_scan_restart_resilver(spa->spa_dsl_pool,
7782 dtl_max_txg);
7783 }
7784 }
7785 }
7786
7787 if (spa->spa_bootfs)
7788 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7789
7790 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7791
7792 /*
7793 * Commit the config
7794 */
7795 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7796
7797 spa_history_log_internal(spa, "vdev attach", NULL,
7798 "%s vdev=%s %s vdev=%s",
7799 replacing && newvd_isspare ? "spare in" :
7800 replacing ? "replace" : "attach", newvdpath,
7801 replacing ? "for" : "to", oldvdpath);
7802
7803 spa_strfree(oldvdpath);
7804 spa_strfree(newvdpath);
7805
7806 return (0);
7807 }
7808
7809 /*
7810 * Detach a device from a mirror or replacing vdev.
7811 *
7812 * If 'replace_done' is specified, only detach if the parent
7813 * is a replacing or a spare vdev.
7814 */
7815 int
7816 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7817 {
7818 uint64_t txg;
7819 int error;
7820 vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7821 vdev_t *vd, *pvd, *cvd, *tvd;
7822 boolean_t unspare = B_FALSE;
7823 uint64_t unspare_guid = 0;
7824 char *vdpath;
7825
7826 ASSERT(spa_writeable(spa));
7827
7828 txg = spa_vdev_detach_enter(spa, guid);
7829
7830 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7831
7832 /*
7833 * Besides being called directly from the userland through the
7834 * ioctl interface, spa_vdev_detach() can be potentially called
7835 * at the end of spa_vdev_resilver_done().
7836 *
7837 * In the regular case, when we have a checkpoint this shouldn't
7838 * happen as we never empty the DTLs of a vdev during the scrub
7839 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7840 * should never get here when we have a checkpoint.
7841 *
7842 * That said, even in a case when we checkpoint the pool exactly
7843 * as spa_vdev_resilver_done() calls this function everything
7844 * should be fine as the resilver will return right away.
7845 */
7846 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7847 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7848 error = (spa_has_checkpoint(spa)) ?
7849 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7850 return (spa_vdev_exit(spa, NULL, txg, error));
7851 }
7852
7853 if (vd == NULL)
7854 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7855
7856 if (!vd->vdev_ops->vdev_op_leaf)
7857 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7858
7859 pvd = vd->vdev_parent;
7860
7861 /*
7862 * If the parent/child relationship is not as expected, don't do it.
7863 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7864 * vdev that's replacing B with C. The user's intent in replacing
7865 * is to go from M(A,B) to M(A,C). If the user decides to cancel
7866 * the replace by detaching C, the expected behavior is to end up
7867 * M(A,B). But suppose that right after deciding to detach C,
7868 * the replacement of B completes. We would have M(A,C), and then
7869 * ask to detach C, which would leave us with just A -- not what
7870 * the user wanted. To prevent this, we make sure that the
7871 * parent/child relationship hasn't changed -- in this example,
7872 * that C's parent is still the replacing vdev R.
7873 */
7874 if (pvd->vdev_guid != pguid && pguid != 0)
7875 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7876
7877 /*
7878 * Only 'replacing' or 'spare' vdevs can be replaced.
7879 */
7880 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7881 pvd->vdev_ops != &vdev_spare_ops)
7882 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7883
7884 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7885 spa_version(spa) >= SPA_VERSION_SPARES);
7886
7887 /*
7888 * Only mirror, replacing, and spare vdevs support detach.
7889 */
7890 if (pvd->vdev_ops != &vdev_replacing_ops &&
7891 pvd->vdev_ops != &vdev_mirror_ops &&
7892 pvd->vdev_ops != &vdev_spare_ops)
7893 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7894
7895 /*
7896 * If this device has the only valid copy of some data,
7897 * we cannot safely detach it.
7898 */
7899 if (vdev_dtl_required(vd))
7900 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7901
7902 ASSERT(pvd->vdev_children >= 2);
7903
7904 /*
7905 * If we are detaching the second disk from a replacing vdev, then
7906 * check to see if we changed the original vdev's path to have "/old"
7907 * at the end in spa_vdev_attach(). If so, undo that change now.
7908 */
7909 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7910 vd->vdev_path != NULL) {
7911 size_t len = strlen(vd->vdev_path);
7912
7913 for (int c = 0; c < pvd->vdev_children; c++) {
7914 cvd = pvd->vdev_child[c];
7915
7916 if (cvd == vd || cvd->vdev_path == NULL)
7917 continue;
7918
7919 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7920 strcmp(cvd->vdev_path + len, "/old") == 0) {
7921 spa_strfree(cvd->vdev_path);
7922 cvd->vdev_path = spa_strdup(vd->vdev_path);
7923 break;
7924 }
7925 }
7926 }
7927
7928 /*
7929 * If we are detaching the original disk from a normal spare, then it
7930 * implies that the spare should become a real disk, and be removed
7931 * from the active spare list for the pool. dRAID spares on the
7932 * other hand are coupled to the pool and thus should never be removed
7933 * from the spares list.
7934 */
7935 if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7936 vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7937
7938 if (last_cvd->vdev_isspare &&
7939 last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7940 unspare = B_TRUE;
7941 }
7942 }
7943
7944 /*
7945 * Erase the disk labels so the disk can be used for other things.
7946 * This must be done after all other error cases are handled,
7947 * but before we disembowel vd (so we can still do I/O to it).
7948 * But if we can't do it, don't treat the error as fatal --
7949 * it may be that the unwritability of the disk is the reason
7950 * it's being detached!
7951 */
7952 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7953
7954 /*
7955 * Remove vd from its parent and compact the parent's children.
7956 */
7957 vdev_remove_child(pvd, vd);
7958 vdev_compact_children(pvd);
7959
7960 /*
7961 * Remember one of the remaining children so we can get tvd below.
7962 */
7963 cvd = pvd->vdev_child[pvd->vdev_children - 1];
7964
7965 /*
7966 * If we need to remove the remaining child from the list of hot spares,
7967 * do it now, marking the vdev as no longer a spare in the process.
7968 * We must do this before vdev_remove_parent(), because that can
7969 * change the GUID if it creates a new toplevel GUID. For a similar
7970 * reason, we must remove the spare now, in the same txg as the detach;
7971 * otherwise someone could attach a new sibling, change the GUID, and
7972 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7973 */
7974 if (unspare) {
7975 ASSERT(cvd->vdev_isspare);
7976 spa_spare_remove(cvd);
7977 unspare_guid = cvd->vdev_guid;
7978 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7979 cvd->vdev_unspare = B_TRUE;
7980 }
7981
7982 /*
7983 * If the parent mirror/replacing vdev only has one child,
7984 * the parent is no longer needed. Remove it from the tree.
7985 */
7986 if (pvd->vdev_children == 1) {
7987 if (pvd->vdev_ops == &vdev_spare_ops)
7988 cvd->vdev_unspare = B_FALSE;
7989 vdev_remove_parent(cvd);
7990 }
7991
7992 /*
7993 * We don't set tvd until now because the parent we just removed
7994 * may have been the previous top-level vdev.
7995 */
7996 tvd = cvd->vdev_top;
7997 ASSERT(tvd->vdev_parent == rvd);
7998
7999 /*
8000 * Reevaluate the parent vdev state.
8001 */
8002 vdev_propagate_state(cvd);
8003
8004 /*
8005 * If the 'autoexpand' property is set on the pool then automatically
8006 * try to expand the size of the pool. For example if the device we
8007 * just detached was smaller than the others, it may be possible to
8008 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
8009 * first so that we can obtain the updated sizes of the leaf vdevs.
8010 */
8011 if (spa->spa_autoexpand) {
8012 vdev_reopen(tvd);
8013 vdev_expand(tvd, txg);
8014 }
8015
8016 vdev_config_dirty(tvd);
8017
8018 /*
8019 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
8020 * vd->vdev_detached is set and free vd's DTL object in syncing context.
8021 * But first make sure we're not on any *other* txg's DTL list, to
8022 * prevent vd from being accessed after it's freed.
8023 */
8024 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
8025 for (int t = 0; t < TXG_SIZE; t++)
8026 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
8027 vd->vdev_detached = B_TRUE;
8028 vdev_dirty(tvd, VDD_DTL, vd, txg);
8029
8030 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
8031 spa_notify_waiters(spa);
8032
8033 /* hang on to the spa before we release the lock */
8034 spa_open_ref(spa, FTAG);
8035
8036 error = spa_vdev_exit(spa, vd, txg, 0);
8037
8038 spa_history_log_internal(spa, "detach", NULL,
8039 "vdev=%s", vdpath);
8040 spa_strfree(vdpath);
8041
8042 /*
8043 * If this was the removal of the original device in a hot spare vdev,
8044 * then we want to go through and remove the device from the hot spare
8045 * list of every other pool.
8046 */
8047 if (unspare) {
8048 spa_t *altspa = NULL;
8049
8050 mutex_enter(&spa_namespace_lock);
8051 while ((altspa = spa_next(altspa)) != NULL) {
8052 if (altspa->spa_state != POOL_STATE_ACTIVE ||
8053 altspa == spa)
8054 continue;
8055
8056 spa_open_ref(altspa, FTAG);
8057 mutex_exit(&spa_namespace_lock);
8058 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
8059 mutex_enter(&spa_namespace_lock);
8060 spa_close(altspa, FTAG);
8061 }
8062 mutex_exit(&spa_namespace_lock);
8063
8064 /* search the rest of the vdevs for spares to remove */
8065 spa_vdev_resilver_done(spa);
8066 }
8067
8068 /* all done with the spa; OK to release */
8069 mutex_enter(&spa_namespace_lock);
8070 spa_close(spa, FTAG);
8071 mutex_exit(&spa_namespace_lock);
8072
8073 return (error);
8074 }
8075
8076 static int
8077 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8078 list_t *vd_list)
8079 {
8080 ASSERT(MUTEX_HELD(&spa_namespace_lock));
8081
8082 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8083
8084 /* Look up vdev and ensure it's a leaf. */
8085 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8086 if (vd == NULL || vd->vdev_detached) {
8087 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8088 return (SET_ERROR(ENODEV));
8089 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8090 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8091 return (SET_ERROR(EINVAL));
8092 } else if (!vdev_writeable(vd)) {
8093 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8094 return (SET_ERROR(EROFS));
8095 }
8096 mutex_enter(&vd->vdev_initialize_lock);
8097 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8098
8099 /*
8100 * When we activate an initialize action we check to see
8101 * if the vdev_initialize_thread is NULL. We do this instead
8102 * of using the vdev_initialize_state since there might be
8103 * a previous initialization process which has completed but
8104 * the thread is not exited.
8105 */
8106 if (cmd_type == POOL_INITIALIZE_START &&
8107 (vd->vdev_initialize_thread != NULL ||
8108 vd->vdev_top->vdev_removing || vd->vdev_top->vdev_rz_expanding)) {
8109 mutex_exit(&vd->vdev_initialize_lock);
8110 return (SET_ERROR(EBUSY));
8111 } else if (cmd_type == POOL_INITIALIZE_CANCEL &&
8112 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
8113 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
8114 mutex_exit(&vd->vdev_initialize_lock);
8115 return (SET_ERROR(ESRCH));
8116 } else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
8117 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
8118 mutex_exit(&vd->vdev_initialize_lock);
8119 return (SET_ERROR(ESRCH));
8120 } else if (cmd_type == POOL_INITIALIZE_UNINIT &&
8121 vd->vdev_initialize_thread != NULL) {
8122 mutex_exit(&vd->vdev_initialize_lock);
8123 return (SET_ERROR(EBUSY));
8124 }
8125
8126 switch (cmd_type) {
8127 case POOL_INITIALIZE_START:
8128 vdev_initialize(vd);
8129 break;
8130 case POOL_INITIALIZE_CANCEL:
8131 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
8132 break;
8133 case POOL_INITIALIZE_SUSPEND:
8134 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
8135 break;
8136 case POOL_INITIALIZE_UNINIT:
8137 vdev_uninitialize(vd);
8138 break;
8139 default:
8140 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8141 }
8142 mutex_exit(&vd->vdev_initialize_lock);
8143
8144 return (0);
8145 }
8146
8147 int
8148 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
8149 nvlist_t *vdev_errlist)
8150 {
8151 int total_errors = 0;
8152 list_t vd_list;
8153
8154 list_create(&vd_list, sizeof (vdev_t),
8155 offsetof(vdev_t, vdev_initialize_node));
8156
8157 /*
8158 * We hold the namespace lock through the whole function
8159 * to prevent any changes to the pool while we're starting or
8160 * stopping initialization. The config and state locks are held so that
8161 * we can properly assess the vdev state before we commit to
8162 * the initializing operation.
8163 */
8164 mutex_enter(&spa_namespace_lock);
8165
8166 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8167 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8168 uint64_t vdev_guid = fnvpair_value_uint64(pair);
8169
8170 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
8171 &vd_list);
8172 if (error != 0) {
8173 char guid_as_str[MAXNAMELEN];
8174
8175 (void) snprintf(guid_as_str, sizeof (guid_as_str),
8176 "%llu", (unsigned long long)vdev_guid);
8177 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8178 total_errors++;
8179 }
8180 }
8181
8182 /* Wait for all initialize threads to stop. */
8183 vdev_initialize_stop_wait(spa, &vd_list);
8184
8185 /* Sync out the initializing state */
8186 txg_wait_synced(spa->spa_dsl_pool, 0);
8187 mutex_exit(&spa_namespace_lock);
8188
8189 list_destroy(&vd_list);
8190
8191 return (total_errors);
8192 }
8193
8194 static int
8195 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8196 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
8197 {
8198 ASSERT(MUTEX_HELD(&spa_namespace_lock));
8199
8200 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8201
8202 /* Look up vdev and ensure it's a leaf. */
8203 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8204 if (vd == NULL || vd->vdev_detached) {
8205 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8206 return (SET_ERROR(ENODEV));
8207 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8208 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8209 return (SET_ERROR(EINVAL));
8210 } else if (!vdev_writeable(vd)) {
8211 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8212 return (SET_ERROR(EROFS));
8213 } else if (!vd->vdev_has_trim) {
8214 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8215 return (SET_ERROR(EOPNOTSUPP));
8216 } else if (secure && !vd->vdev_has_securetrim) {
8217 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8218 return (SET_ERROR(EOPNOTSUPP));
8219 }
8220 mutex_enter(&vd->vdev_trim_lock);
8221 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8222
8223 /*
8224 * When we activate a TRIM action we check to see if the
8225 * vdev_trim_thread is NULL. We do this instead of using the
8226 * vdev_trim_state since there might be a previous TRIM process
8227 * which has completed but the thread is not exited.
8228 */
8229 if (cmd_type == POOL_TRIM_START &&
8230 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing ||
8231 vd->vdev_top->vdev_rz_expanding)) {
8232 mutex_exit(&vd->vdev_trim_lock);
8233 return (SET_ERROR(EBUSY));
8234 } else if (cmd_type == POOL_TRIM_CANCEL &&
8235 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
8236 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
8237 mutex_exit(&vd->vdev_trim_lock);
8238 return (SET_ERROR(ESRCH));
8239 } else if (cmd_type == POOL_TRIM_SUSPEND &&
8240 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
8241 mutex_exit(&vd->vdev_trim_lock);
8242 return (SET_ERROR(ESRCH));
8243 }
8244
8245 switch (cmd_type) {
8246 case POOL_TRIM_START:
8247 vdev_trim(vd, rate, partial, secure);
8248 break;
8249 case POOL_TRIM_CANCEL:
8250 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
8251 break;
8252 case POOL_TRIM_SUSPEND:
8253 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
8254 break;
8255 default:
8256 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8257 }
8258 mutex_exit(&vd->vdev_trim_lock);
8259
8260 return (0);
8261 }
8262
8263 /*
8264 * Initiates a manual TRIM for the requested vdevs. This kicks off individual
8265 * TRIM threads for each child vdev. These threads pass over all of the free
8266 * space in the vdev's metaslabs and issues TRIM commands for that space.
8267 */
8268 int
8269 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
8270 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
8271 {
8272 int total_errors = 0;
8273 list_t vd_list;
8274
8275 list_create(&vd_list, sizeof (vdev_t),
8276 offsetof(vdev_t, vdev_trim_node));
8277
8278 /*
8279 * We hold the namespace lock through the whole function
8280 * to prevent any changes to the pool while we're starting or
8281 * stopping TRIM. The config and state locks are held so that
8282 * we can properly assess the vdev state before we commit to
8283 * the TRIM operation.
8284 */
8285 mutex_enter(&spa_namespace_lock);
8286
8287 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8288 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8289 uint64_t vdev_guid = fnvpair_value_uint64(pair);
8290
8291 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
8292 rate, partial, secure, &vd_list);
8293 if (error != 0) {
8294 char guid_as_str[MAXNAMELEN];
8295
8296 (void) snprintf(guid_as_str, sizeof (guid_as_str),
8297 "%llu", (unsigned long long)vdev_guid);
8298 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8299 total_errors++;
8300 }
8301 }
8302
8303 /* Wait for all TRIM threads to stop. */
8304 vdev_trim_stop_wait(spa, &vd_list);
8305
8306 /* Sync out the TRIM state */
8307 txg_wait_synced(spa->spa_dsl_pool, 0);
8308 mutex_exit(&spa_namespace_lock);
8309
8310 list_destroy(&vd_list);
8311
8312 return (total_errors);
8313 }
8314
8315 /*
8316 * Split a set of devices from their mirrors, and create a new pool from them.
8317 */
8318 int
8319 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
8320 nvlist_t *props, boolean_t exp)
8321 {
8322 int error = 0;
8323 uint64_t txg, *glist;
8324 spa_t *newspa;
8325 uint_t c, children, lastlog;
8326 nvlist_t **child, *nvl, *tmp;
8327 dmu_tx_t *tx;
8328 const char *altroot = NULL;
8329 vdev_t *rvd, **vml = NULL; /* vdev modify list */
8330 boolean_t activate_slog;
8331
8332 ASSERT(spa_writeable(spa));
8333
8334 txg = spa_vdev_enter(spa);
8335
8336 ASSERT(MUTEX_HELD(&spa_namespace_lock));
8337 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
8338 error = (spa_has_checkpoint(spa)) ?
8339 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
8340 return (spa_vdev_exit(spa, NULL, txg, error));
8341 }
8342
8343 /* clear the log and flush everything up to now */
8344 activate_slog = spa_passivate_log(spa);
8345 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8346 error = spa_reset_logs(spa);
8347 txg = spa_vdev_config_enter(spa);
8348
8349 if (activate_slog)
8350 spa_activate_log(spa);
8351
8352 if (error != 0)
8353 return (spa_vdev_exit(spa, NULL, txg, error));
8354
8355 /* check new spa name before going any further */
8356 if (spa_lookup(newname) != NULL)
8357 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
8358
8359 /*
8360 * scan through all the children to ensure they're all mirrors
8361 */
8362 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
8363 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
8364 &children) != 0)
8365 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8366
8367 /* first, check to ensure we've got the right child count */
8368 rvd = spa->spa_root_vdev;
8369 lastlog = 0;
8370 for (c = 0; c < rvd->vdev_children; c++) {
8371 vdev_t *vd = rvd->vdev_child[c];
8372
8373 /* don't count the holes & logs as children */
8374 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
8375 !vdev_is_concrete(vd))) {
8376 if (lastlog == 0)
8377 lastlog = c;
8378 continue;
8379 }
8380
8381 lastlog = 0;
8382 }
8383 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
8384 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8385
8386 /* next, ensure no spare or cache devices are part of the split */
8387 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
8388 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
8389 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8390
8391 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
8392 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
8393
8394 /* then, loop over each vdev and validate it */
8395 for (c = 0; c < children; c++) {
8396 uint64_t is_hole = 0;
8397
8398 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
8399 &is_hole);
8400
8401 if (is_hole != 0) {
8402 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
8403 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
8404 continue;
8405 } else {
8406 error = SET_ERROR(EINVAL);
8407 break;
8408 }
8409 }
8410
8411 /* deal with indirect vdevs */
8412 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
8413 &vdev_indirect_ops)
8414 continue;
8415
8416 /* which disk is going to be split? */
8417 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
8418 &glist[c]) != 0) {
8419 error = SET_ERROR(EINVAL);
8420 break;
8421 }
8422
8423 /* look it up in the spa */
8424 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
8425 if (vml[c] == NULL) {
8426 error = SET_ERROR(ENODEV);
8427 break;
8428 }
8429
8430 /* make sure there's nothing stopping the split */
8431 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
8432 vml[c]->vdev_islog ||
8433 !vdev_is_concrete(vml[c]) ||
8434 vml[c]->vdev_isspare ||
8435 vml[c]->vdev_isl2cache ||
8436 !vdev_writeable(vml[c]) ||
8437 vml[c]->vdev_children != 0 ||
8438 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
8439 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
8440 error = SET_ERROR(EINVAL);
8441 break;
8442 }
8443
8444 if (vdev_dtl_required(vml[c]) ||
8445 vdev_resilver_needed(vml[c], NULL, NULL)) {
8446 error = SET_ERROR(EBUSY);
8447 break;
8448 }
8449
8450 /* we need certain info from the top level */
8451 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
8452 vml[c]->vdev_top->vdev_ms_array);
8453 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
8454 vml[c]->vdev_top->vdev_ms_shift);
8455 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
8456 vml[c]->vdev_top->vdev_asize);
8457 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
8458 vml[c]->vdev_top->vdev_ashift);
8459
8460 /* transfer per-vdev ZAPs */
8461 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
8462 VERIFY0(nvlist_add_uint64(child[c],
8463 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
8464
8465 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
8466 VERIFY0(nvlist_add_uint64(child[c],
8467 ZPOOL_CONFIG_VDEV_TOP_ZAP,
8468 vml[c]->vdev_parent->vdev_top_zap));
8469 }
8470
8471 if (error != 0) {
8472 kmem_free(vml, children * sizeof (vdev_t *));
8473 kmem_free(glist, children * sizeof (uint64_t));
8474 return (spa_vdev_exit(spa, NULL, txg, error));
8475 }
8476
8477 /* stop writers from using the disks */
8478 for (c = 0; c < children; c++) {
8479 if (vml[c] != NULL)
8480 vml[c]->vdev_offline = B_TRUE;
8481 }
8482 vdev_reopen(spa->spa_root_vdev);
8483
8484 /*
8485 * Temporarily record the splitting vdevs in the spa config. This
8486 * will disappear once the config is regenerated.
8487 */
8488 nvl = fnvlist_alloc();
8489 fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
8490 kmem_free(glist, children * sizeof (uint64_t));
8491
8492 mutex_enter(&spa->spa_props_lock);
8493 fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
8494 mutex_exit(&spa->spa_props_lock);
8495 spa->spa_config_splitting = nvl;
8496 vdev_config_dirty(spa->spa_root_vdev);
8497
8498 /* configure and create the new pool */
8499 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
8500 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
8501 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
8502 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
8503 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
8504 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
8505 spa_generate_guid(NULL));
8506 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
8507 (void) nvlist_lookup_string(props,
8508 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
8509
8510 /* add the new pool to the namespace */
8511 newspa = spa_add(newname, config, altroot);
8512 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
8513 newspa->spa_config_txg = spa->spa_config_txg;
8514 spa_set_log_state(newspa, SPA_LOG_CLEAR);
8515
8516 /* release the spa config lock, retaining the namespace lock */
8517 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8518
8519 if (zio_injection_enabled)
8520 zio_handle_panic_injection(spa, FTAG, 1);
8521
8522 spa_activate(newspa, spa_mode_global);
8523 spa_async_suspend(newspa);
8524
8525 /*
8526 * Temporarily stop the initializing and TRIM activity. We set the
8527 * state to ACTIVE so that we know to resume initializing or TRIM
8528 * once the split has completed.
8529 */
8530 list_t vd_initialize_list;
8531 list_create(&vd_initialize_list, sizeof (vdev_t),
8532 offsetof(vdev_t, vdev_initialize_node));
8533
8534 list_t vd_trim_list;
8535 list_create(&vd_trim_list, sizeof (vdev_t),
8536 offsetof(vdev_t, vdev_trim_node));
8537
8538 for (c = 0; c < children; c++) {
8539 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8540 mutex_enter(&vml[c]->vdev_initialize_lock);
8541 vdev_initialize_stop(vml[c],
8542 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
8543 mutex_exit(&vml[c]->vdev_initialize_lock);
8544
8545 mutex_enter(&vml[c]->vdev_trim_lock);
8546 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
8547 mutex_exit(&vml[c]->vdev_trim_lock);
8548 }
8549 }
8550
8551 vdev_initialize_stop_wait(spa, &vd_initialize_list);
8552 vdev_trim_stop_wait(spa, &vd_trim_list);
8553
8554 list_destroy(&vd_initialize_list);
8555 list_destroy(&vd_trim_list);
8556
8557 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
8558 newspa->spa_is_splitting = B_TRUE;
8559
8560 /* create the new pool from the disks of the original pool */
8561 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
8562 if (error)
8563 goto out;
8564
8565 /* if that worked, generate a real config for the new pool */
8566 if (newspa->spa_root_vdev != NULL) {
8567 newspa->spa_config_splitting = fnvlist_alloc();
8568 fnvlist_add_uint64(newspa->spa_config_splitting,
8569 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
8570 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
8571 B_TRUE));
8572 }
8573
8574 /* set the props */
8575 if (props != NULL) {
8576 spa_configfile_set(newspa, props, B_FALSE);
8577 error = spa_prop_set(newspa, props);
8578 if (error)
8579 goto out;
8580 }
8581
8582 /* flush everything */
8583 txg = spa_vdev_config_enter(newspa);
8584 vdev_config_dirty(newspa->spa_root_vdev);
8585 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
8586
8587 if (zio_injection_enabled)
8588 zio_handle_panic_injection(spa, FTAG, 2);
8589
8590 spa_async_resume(newspa);
8591
8592 /* finally, update the original pool's config */
8593 txg = spa_vdev_config_enter(spa);
8594 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
8595 error = dmu_tx_assign(tx, TXG_WAIT);
8596 if (error != 0)
8597 dmu_tx_abort(tx);
8598 for (c = 0; c < children; c++) {
8599 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8600 vdev_t *tvd = vml[c]->vdev_top;
8601
8602 /*
8603 * Need to be sure the detachable VDEV is not
8604 * on any *other* txg's DTL list to prevent it
8605 * from being accessed after it's freed.
8606 */
8607 for (int t = 0; t < TXG_SIZE; t++) {
8608 (void) txg_list_remove_this(
8609 &tvd->vdev_dtl_list, vml[c], t);
8610 }
8611
8612 vdev_split(vml[c]);
8613 if (error == 0)
8614 spa_history_log_internal(spa, "detach", tx,
8615 "vdev=%s", vml[c]->vdev_path);
8616
8617 vdev_free(vml[c]);
8618 }
8619 }
8620 spa->spa_avz_action = AVZ_ACTION_REBUILD;
8621 vdev_config_dirty(spa->spa_root_vdev);
8622 spa->spa_config_splitting = NULL;
8623 nvlist_free(nvl);
8624 if (error == 0)
8625 dmu_tx_commit(tx);
8626 (void) spa_vdev_exit(spa, NULL, txg, 0);
8627
8628 if (zio_injection_enabled)
8629 zio_handle_panic_injection(spa, FTAG, 3);
8630
8631 /* split is complete; log a history record */
8632 spa_history_log_internal(newspa, "split", NULL,
8633 "from pool %s", spa_name(spa));
8634
8635 newspa->spa_is_splitting = B_FALSE;
8636 kmem_free(vml, children * sizeof (vdev_t *));
8637
8638 /* if we're not going to mount the filesystems in userland, export */
8639 if (exp)
8640 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
8641 B_FALSE, B_FALSE);
8642
8643 return (error);
8644
8645 out:
8646 spa_unload(newspa);
8647 spa_deactivate(newspa);
8648 spa_remove(newspa);
8649
8650 txg = spa_vdev_config_enter(spa);
8651
8652 /* re-online all offlined disks */
8653 for (c = 0; c < children; c++) {
8654 if (vml[c] != NULL)
8655 vml[c]->vdev_offline = B_FALSE;
8656 }
8657
8658 /* restart initializing or trimming disks as necessary */
8659 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
8660 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
8661 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
8662
8663 vdev_reopen(spa->spa_root_vdev);
8664
8665 nvlist_free(spa->spa_config_splitting);
8666 spa->spa_config_splitting = NULL;
8667 (void) spa_vdev_exit(spa, NULL, txg, error);
8668
8669 kmem_free(vml, children * sizeof (vdev_t *));
8670 return (error);
8671 }
8672
8673 /*
8674 * Find any device that's done replacing, or a vdev marked 'unspare' that's
8675 * currently spared, so we can detach it.
8676 */
8677 static vdev_t *
8678 spa_vdev_resilver_done_hunt(vdev_t *vd)
8679 {
8680 vdev_t *newvd, *oldvd;
8681
8682 for (int c = 0; c < vd->vdev_children; c++) {
8683 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
8684 if (oldvd != NULL)
8685 return (oldvd);
8686 }
8687
8688 /*
8689 * Check for a completed replacement. We always consider the first
8690 * vdev in the list to be the oldest vdev, and the last one to be
8691 * the newest (see spa_vdev_attach() for how that works). In
8692 * the case where the newest vdev is faulted, we will not automatically
8693 * remove it after a resilver completes. This is OK as it will require
8694 * user intervention to determine which disk the admin wishes to keep.
8695 */
8696 if (vd->vdev_ops == &vdev_replacing_ops) {
8697 ASSERT(vd->vdev_children > 1);
8698
8699 newvd = vd->vdev_child[vd->vdev_children - 1];
8700 oldvd = vd->vdev_child[0];
8701
8702 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
8703 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8704 !vdev_dtl_required(oldvd))
8705 return (oldvd);
8706 }
8707
8708 /*
8709 * Check for a completed resilver with the 'unspare' flag set.
8710 * Also potentially update faulted state.
8711 */
8712 if (vd->vdev_ops == &vdev_spare_ops) {
8713 vdev_t *first = vd->vdev_child[0];
8714 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
8715
8716 if (last->vdev_unspare) {
8717 oldvd = first;
8718 newvd = last;
8719 } else if (first->vdev_unspare) {
8720 oldvd = last;
8721 newvd = first;
8722 } else {
8723 oldvd = NULL;
8724 }
8725
8726 if (oldvd != NULL &&
8727 vdev_dtl_empty(newvd, DTL_MISSING) &&
8728 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8729 !vdev_dtl_required(oldvd))
8730 return (oldvd);
8731
8732 vdev_propagate_state(vd);
8733
8734 /*
8735 * If there are more than two spares attached to a disk,
8736 * and those spares are not required, then we want to
8737 * attempt to free them up now so that they can be used
8738 * by other pools. Once we're back down to a single
8739 * disk+spare, we stop removing them.
8740 */
8741 if (vd->vdev_children > 2) {
8742 newvd = vd->vdev_child[1];
8743
8744 if (newvd->vdev_isspare && last->vdev_isspare &&
8745 vdev_dtl_empty(last, DTL_MISSING) &&
8746 vdev_dtl_empty(last, DTL_OUTAGE) &&
8747 !vdev_dtl_required(newvd))
8748 return (newvd);
8749 }
8750 }
8751
8752 return (NULL);
8753 }
8754
8755 static void
8756 spa_vdev_resilver_done(spa_t *spa)
8757 {
8758 vdev_t *vd, *pvd, *ppvd;
8759 uint64_t guid, sguid, pguid, ppguid;
8760
8761 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8762
8763 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
8764 pvd = vd->vdev_parent;
8765 ppvd = pvd->vdev_parent;
8766 guid = vd->vdev_guid;
8767 pguid = pvd->vdev_guid;
8768 ppguid = ppvd->vdev_guid;
8769 sguid = 0;
8770 /*
8771 * If we have just finished replacing a hot spared device, then
8772 * we need to detach the parent's first child (the original hot
8773 * spare) as well.
8774 */
8775 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
8776 ppvd->vdev_children == 2) {
8777 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
8778 sguid = ppvd->vdev_child[1]->vdev_guid;
8779 }
8780 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
8781
8782 spa_config_exit(spa, SCL_ALL, FTAG);
8783 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
8784 return;
8785 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
8786 return;
8787 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8788 }
8789
8790 spa_config_exit(spa, SCL_ALL, FTAG);
8791
8792 /*
8793 * If a detach was not performed above replace waiters will not have
8794 * been notified. In which case we must do so now.
8795 */
8796 spa_notify_waiters(spa);
8797 }
8798
8799 /*
8800 * Update the stored path or FRU for this vdev.
8801 */
8802 static int
8803 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8804 boolean_t ispath)
8805 {
8806 vdev_t *vd;
8807 boolean_t sync = B_FALSE;
8808
8809 ASSERT(spa_writeable(spa));
8810
8811 spa_vdev_state_enter(spa, SCL_ALL);
8812
8813 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8814 return (spa_vdev_state_exit(spa, NULL, ENOENT));
8815
8816 if (!vd->vdev_ops->vdev_op_leaf)
8817 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8818
8819 if (ispath) {
8820 if (strcmp(value, vd->vdev_path) != 0) {
8821 spa_strfree(vd->vdev_path);
8822 vd->vdev_path = spa_strdup(value);
8823 sync = B_TRUE;
8824 }
8825 } else {
8826 if (vd->vdev_fru == NULL) {
8827 vd->vdev_fru = spa_strdup(value);
8828 sync = B_TRUE;
8829 } else if (strcmp(value, vd->vdev_fru) != 0) {
8830 spa_strfree(vd->vdev_fru);
8831 vd->vdev_fru = spa_strdup(value);
8832 sync = B_TRUE;
8833 }
8834 }
8835
8836 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8837 }
8838
8839 int
8840 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8841 {
8842 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8843 }
8844
8845 int
8846 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8847 {
8848 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8849 }
8850
8851 /*
8852 * ==========================================================================
8853 * SPA Scanning
8854 * ==========================================================================
8855 */
8856 int
8857 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8858 {
8859 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8860
8861 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8862 return (SET_ERROR(EBUSY));
8863
8864 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8865 }
8866
8867 int
8868 spa_scan_stop(spa_t *spa)
8869 {
8870 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8871 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8872 return (SET_ERROR(EBUSY));
8873
8874 return (dsl_scan_cancel(spa->spa_dsl_pool));
8875 }
8876
8877 int
8878 spa_scan(spa_t *spa, pool_scan_func_t func)
8879 {
8880 return (spa_scan_range(spa, func, 0, 0));
8881 }
8882
8883 int
8884 spa_scan_range(spa_t *spa, pool_scan_func_t func, uint64_t txgstart,
8885 uint64_t txgend)
8886 {
8887 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8888
8889 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8890 return (SET_ERROR(ENOTSUP));
8891
8892 if (func == POOL_SCAN_RESILVER &&
8893 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8894 return (SET_ERROR(ENOTSUP));
8895
8896 if (func != POOL_SCAN_SCRUB && (txgstart != 0 || txgend != 0))
8897 return (SET_ERROR(ENOTSUP));
8898
8899 /*
8900 * If a resilver was requested, but there is no DTL on a
8901 * writeable leaf device, we have nothing to do.
8902 */
8903 if (func == POOL_SCAN_RESILVER &&
8904 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8905 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8906 return (0);
8907 }
8908
8909 if (func == POOL_SCAN_ERRORSCRUB &&
8910 !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG))
8911 return (SET_ERROR(ENOTSUP));
8912
8913 return (dsl_scan(spa->spa_dsl_pool, func, txgstart, txgend));
8914 }
8915
8916 /*
8917 * ==========================================================================
8918 * SPA async task processing
8919 * ==========================================================================
8920 */
8921
8922 static void
8923 spa_async_remove(spa_t *spa, vdev_t *vd)
8924 {
8925 if (vd->vdev_remove_wanted) {
8926 vd->vdev_remove_wanted = B_FALSE;
8927 vd->vdev_delayed_close = B_FALSE;
8928 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8929
8930 /*
8931 * We want to clear the stats, but we don't want to do a full
8932 * vdev_clear() as that will cause us to throw away
8933 * degraded/faulted state as well as attempt to reopen the
8934 * device, all of which is a waste.
8935 */
8936 vd->vdev_stat.vs_read_errors = 0;
8937 vd->vdev_stat.vs_write_errors = 0;
8938 vd->vdev_stat.vs_checksum_errors = 0;
8939
8940 vdev_state_dirty(vd->vdev_top);
8941
8942 /* Tell userspace that the vdev is gone. */
8943 zfs_post_remove(spa, vd);
8944 }
8945
8946 for (int c = 0; c < vd->vdev_children; c++)
8947 spa_async_remove(spa, vd->vdev_child[c]);
8948 }
8949
8950 static void
8951 spa_async_fault_vdev(vdev_t *vd, boolean_t *suspend)
8952 {
8953 if (vd->vdev_fault_wanted) {
8954 vdev_state_t newstate = VDEV_STATE_FAULTED;
8955 vd->vdev_fault_wanted = B_FALSE;
8956
8957 /*
8958 * If this device has the only valid copy of the data, then
8959 * back off and simply mark the vdev as degraded instead.
8960 */
8961 if (!vd->vdev_top->vdev_islog && vd->vdev_aux == NULL &&
8962 vdev_dtl_required(vd)) {
8963 newstate = VDEV_STATE_DEGRADED;
8964 /* A required disk is missing so suspend the pool */
8965 *suspend = B_TRUE;
8966 }
8967 vdev_set_state(vd, B_TRUE, newstate, VDEV_AUX_ERR_EXCEEDED);
8968 }
8969 for (int c = 0; c < vd->vdev_children; c++)
8970 spa_async_fault_vdev(vd->vdev_child[c], suspend);
8971 }
8972
8973 static void
8974 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8975 {
8976 if (!spa->spa_autoexpand)
8977 return;
8978
8979 for (int c = 0; c < vd->vdev_children; c++) {
8980 vdev_t *cvd = vd->vdev_child[c];
8981 spa_async_autoexpand(spa, cvd);
8982 }
8983
8984 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8985 return;
8986
8987 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8988 }
8989
8990 static __attribute__((noreturn)) void
8991 spa_async_thread(void *arg)
8992 {
8993 spa_t *spa = (spa_t *)arg;
8994 dsl_pool_t *dp = spa->spa_dsl_pool;
8995 int tasks;
8996
8997 ASSERT(spa->spa_sync_on);
8998
8999 mutex_enter(&spa->spa_async_lock);
9000 tasks = spa->spa_async_tasks;
9001 spa->spa_async_tasks = 0;
9002 mutex_exit(&spa->spa_async_lock);
9003
9004 /*
9005 * See if the config needs to be updated.
9006 */
9007 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
9008 uint64_t old_space, new_space;
9009
9010 mutex_enter(&spa_namespace_lock);
9011 old_space = metaslab_class_get_space(spa_normal_class(spa));
9012 old_space += metaslab_class_get_space(spa_special_class(spa));
9013 old_space += metaslab_class_get_space(spa_dedup_class(spa));
9014 old_space += metaslab_class_get_space(
9015 spa_embedded_log_class(spa));
9016
9017 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
9018
9019 new_space = metaslab_class_get_space(spa_normal_class(spa));
9020 new_space += metaslab_class_get_space(spa_special_class(spa));
9021 new_space += metaslab_class_get_space(spa_dedup_class(spa));
9022 new_space += metaslab_class_get_space(
9023 spa_embedded_log_class(spa));
9024 mutex_exit(&spa_namespace_lock);
9025
9026 /*
9027 * If the pool grew as a result of the config update,
9028 * then log an internal history event.
9029 */
9030 if (new_space != old_space) {
9031 spa_history_log_internal(spa, "vdev online", NULL,
9032 "pool '%s' size: %llu(+%llu)",
9033 spa_name(spa), (u_longlong_t)new_space,
9034 (u_longlong_t)(new_space - old_space));
9035 }
9036 }
9037
9038 /*
9039 * See if any devices need to be marked REMOVED.
9040 */
9041 if (tasks & SPA_ASYNC_REMOVE) {
9042 spa_vdev_state_enter(spa, SCL_NONE);
9043 spa_async_remove(spa, spa->spa_root_vdev);
9044 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
9045 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
9046 for (int i = 0; i < spa->spa_spares.sav_count; i++)
9047 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
9048 (void) spa_vdev_state_exit(spa, NULL, 0);
9049 }
9050
9051 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
9052 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9053 spa_async_autoexpand(spa, spa->spa_root_vdev);
9054 spa_config_exit(spa, SCL_CONFIG, FTAG);
9055 }
9056
9057 /*
9058 * See if any devices need to be marked faulted.
9059 */
9060 if (tasks & SPA_ASYNC_FAULT_VDEV) {
9061 spa_vdev_state_enter(spa, SCL_NONE);
9062 boolean_t suspend = B_FALSE;
9063 spa_async_fault_vdev(spa->spa_root_vdev, &suspend);
9064 (void) spa_vdev_state_exit(spa, NULL, 0);
9065 if (suspend)
9066 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9067 }
9068
9069 /*
9070 * If any devices are done replacing, detach them.
9071 */
9072 if (tasks & SPA_ASYNC_RESILVER_DONE ||
9073 tasks & SPA_ASYNC_REBUILD_DONE ||
9074 tasks & SPA_ASYNC_DETACH_SPARE) {
9075 spa_vdev_resilver_done(spa);
9076 }
9077
9078 /*
9079 * Kick off a resilver.
9080 */
9081 if (tasks & SPA_ASYNC_RESILVER &&
9082 !vdev_rebuild_active(spa->spa_root_vdev) &&
9083 (!dsl_scan_resilvering(dp) ||
9084 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
9085 dsl_scan_restart_resilver(dp, 0);
9086
9087 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
9088 mutex_enter(&spa_namespace_lock);
9089 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9090 vdev_initialize_restart(spa->spa_root_vdev);
9091 spa_config_exit(spa, SCL_CONFIG, FTAG);
9092 mutex_exit(&spa_namespace_lock);
9093 }
9094
9095 if (tasks & SPA_ASYNC_TRIM_RESTART) {
9096 mutex_enter(&spa_namespace_lock);
9097 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9098 vdev_trim_restart(spa->spa_root_vdev);
9099 spa_config_exit(spa, SCL_CONFIG, FTAG);
9100 mutex_exit(&spa_namespace_lock);
9101 }
9102
9103 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
9104 mutex_enter(&spa_namespace_lock);
9105 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9106 vdev_autotrim_restart(spa);
9107 spa_config_exit(spa, SCL_CONFIG, FTAG);
9108 mutex_exit(&spa_namespace_lock);
9109 }
9110
9111 /*
9112 * Kick off L2 cache whole device TRIM.
9113 */
9114 if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
9115 mutex_enter(&spa_namespace_lock);
9116 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9117 vdev_trim_l2arc(spa);
9118 spa_config_exit(spa, SCL_CONFIG, FTAG);
9119 mutex_exit(&spa_namespace_lock);
9120 }
9121
9122 /*
9123 * Kick off L2 cache rebuilding.
9124 */
9125 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
9126 mutex_enter(&spa_namespace_lock);
9127 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
9128 l2arc_spa_rebuild_start(spa);
9129 spa_config_exit(spa, SCL_L2ARC, FTAG);
9130 mutex_exit(&spa_namespace_lock);
9131 }
9132
9133 /*
9134 * Let the world know that we're done.
9135 */
9136 mutex_enter(&spa->spa_async_lock);
9137 spa->spa_async_thread = NULL;
9138 cv_broadcast(&spa->spa_async_cv);
9139 mutex_exit(&spa->spa_async_lock);
9140 thread_exit();
9141 }
9142
9143 void
9144 spa_async_suspend(spa_t *spa)
9145 {
9146 mutex_enter(&spa->spa_async_lock);
9147 spa->spa_async_suspended++;
9148 while (spa->spa_async_thread != NULL)
9149 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
9150 mutex_exit(&spa->spa_async_lock);
9151
9152 spa_vdev_remove_suspend(spa);
9153
9154 zthr_t *condense_thread = spa->spa_condense_zthr;
9155 if (condense_thread != NULL)
9156 zthr_cancel(condense_thread);
9157
9158 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9159 if (raidz_expand_thread != NULL)
9160 zthr_cancel(raidz_expand_thread);
9161
9162 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9163 if (discard_thread != NULL)
9164 zthr_cancel(discard_thread);
9165
9166 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9167 if (ll_delete_thread != NULL)
9168 zthr_cancel(ll_delete_thread);
9169
9170 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9171 if (ll_condense_thread != NULL)
9172 zthr_cancel(ll_condense_thread);
9173 }
9174
9175 void
9176 spa_async_resume(spa_t *spa)
9177 {
9178 mutex_enter(&spa->spa_async_lock);
9179 ASSERT(spa->spa_async_suspended != 0);
9180 spa->spa_async_suspended--;
9181 mutex_exit(&spa->spa_async_lock);
9182 spa_restart_removal(spa);
9183
9184 zthr_t *condense_thread = spa->spa_condense_zthr;
9185 if (condense_thread != NULL)
9186 zthr_resume(condense_thread);
9187
9188 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9189 if (raidz_expand_thread != NULL)
9190 zthr_resume(raidz_expand_thread);
9191
9192 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9193 if (discard_thread != NULL)
9194 zthr_resume(discard_thread);
9195
9196 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9197 if (ll_delete_thread != NULL)
9198 zthr_resume(ll_delete_thread);
9199
9200 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9201 if (ll_condense_thread != NULL)
9202 zthr_resume(ll_condense_thread);
9203 }
9204
9205 static boolean_t
9206 spa_async_tasks_pending(spa_t *spa)
9207 {
9208 uint_t non_config_tasks;
9209 uint_t config_task;
9210 boolean_t config_task_suspended;
9211
9212 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
9213 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
9214 if (spa->spa_ccw_fail_time == 0) {
9215 config_task_suspended = B_FALSE;
9216 } else {
9217 config_task_suspended =
9218 (gethrtime() - spa->spa_ccw_fail_time) <
9219 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
9220 }
9221
9222 return (non_config_tasks || (config_task && !config_task_suspended));
9223 }
9224
9225 static void
9226 spa_async_dispatch(spa_t *spa)
9227 {
9228 mutex_enter(&spa->spa_async_lock);
9229 if (spa_async_tasks_pending(spa) &&
9230 !spa->spa_async_suspended &&
9231 spa->spa_async_thread == NULL)
9232 spa->spa_async_thread = thread_create(NULL, 0,
9233 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
9234 mutex_exit(&spa->spa_async_lock);
9235 }
9236
9237 void
9238 spa_async_request(spa_t *spa, int task)
9239 {
9240 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
9241 mutex_enter(&spa->spa_async_lock);
9242 spa->spa_async_tasks |= task;
9243 mutex_exit(&spa->spa_async_lock);
9244 }
9245
9246 int
9247 spa_async_tasks(spa_t *spa)
9248 {
9249 return (spa->spa_async_tasks);
9250 }
9251
9252 /*
9253 * ==========================================================================
9254 * SPA syncing routines
9255 * ==========================================================================
9256 */
9257
9258
9259 static int
9260 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9261 dmu_tx_t *tx)
9262 {
9263 bpobj_t *bpo = arg;
9264 bpobj_enqueue(bpo, bp, bp_freed, tx);
9265 return (0);
9266 }
9267
9268 int
9269 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9270 {
9271 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
9272 }
9273
9274 int
9275 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9276 {
9277 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
9278 }
9279
9280 static int
9281 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9282 {
9283 zio_t *pio = arg;
9284
9285 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
9286 pio->io_flags));
9287 return (0);
9288 }
9289
9290 static int
9291 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9292 dmu_tx_t *tx)
9293 {
9294 ASSERT(!bp_freed);
9295 return (spa_free_sync_cb(arg, bp, tx));
9296 }
9297
9298 /*
9299 * Note: this simple function is not inlined to make it easier to dtrace the
9300 * amount of time spent syncing frees.
9301 */
9302 static void
9303 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
9304 {
9305 zio_t *zio = zio_root(spa, NULL, NULL, 0);
9306 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
9307 VERIFY(zio_wait(zio) == 0);
9308 }
9309
9310 /*
9311 * Note: this simple function is not inlined to make it easier to dtrace the
9312 * amount of time spent syncing deferred frees.
9313 */
9314 static void
9315 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
9316 {
9317 if (spa_sync_pass(spa) != 1)
9318 return;
9319
9320 /*
9321 * Note:
9322 * If the log space map feature is active, we stop deferring
9323 * frees to the next TXG and therefore running this function
9324 * would be considered a no-op as spa_deferred_bpobj should
9325 * not have any entries.
9326 *
9327 * That said we run this function anyway (instead of returning
9328 * immediately) for the edge-case scenario where we just
9329 * activated the log space map feature in this TXG but we have
9330 * deferred frees from the previous TXG.
9331 */
9332 zio_t *zio = zio_root(spa, NULL, NULL, 0);
9333 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
9334 bpobj_spa_free_sync_cb, zio, tx), ==, 0);
9335 VERIFY0(zio_wait(zio));
9336 }
9337
9338 static void
9339 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
9340 {
9341 char *packed = NULL;
9342 size_t bufsize;
9343 size_t nvsize = 0;
9344 dmu_buf_t *db;
9345
9346 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
9347
9348 /*
9349 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
9350 * information. This avoids the dmu_buf_will_dirty() path and
9351 * saves us a pre-read to get data we don't actually care about.
9352 */
9353 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
9354 packed = vmem_alloc(bufsize, KM_SLEEP);
9355
9356 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
9357 KM_SLEEP) == 0);
9358 memset(packed + nvsize, 0, bufsize - nvsize);
9359
9360 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
9361
9362 vmem_free(packed, bufsize);
9363
9364 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
9365 dmu_buf_will_dirty(db, tx);
9366 *(uint64_t *)db->db_data = nvsize;
9367 dmu_buf_rele(db, FTAG);
9368 }
9369
9370 static void
9371 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
9372 const char *config, const char *entry)
9373 {
9374 nvlist_t *nvroot;
9375 nvlist_t **list;
9376 int i;
9377
9378 if (!sav->sav_sync)
9379 return;
9380
9381 /*
9382 * Update the MOS nvlist describing the list of available devices.
9383 * spa_validate_aux() will have already made sure this nvlist is
9384 * valid and the vdevs are labeled appropriately.
9385 */
9386 if (sav->sav_object == 0) {
9387 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
9388 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
9389 sizeof (uint64_t), tx);
9390 VERIFY(zap_update(spa->spa_meta_objset,
9391 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
9392 &sav->sav_object, tx) == 0);
9393 }
9394
9395 nvroot = fnvlist_alloc();
9396 if (sav->sav_count == 0) {
9397 fnvlist_add_nvlist_array(nvroot, config,
9398 (const nvlist_t * const *)NULL, 0);
9399 } else {
9400 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
9401 for (i = 0; i < sav->sav_count; i++)
9402 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
9403 B_FALSE, VDEV_CONFIG_L2CACHE);
9404 fnvlist_add_nvlist_array(nvroot, config,
9405 (const nvlist_t * const *)list, sav->sav_count);
9406 for (i = 0; i < sav->sav_count; i++)
9407 nvlist_free(list[i]);
9408 kmem_free(list, sav->sav_count * sizeof (void *));
9409 }
9410
9411 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
9412 nvlist_free(nvroot);
9413
9414 sav->sav_sync = B_FALSE;
9415 }
9416
9417 /*
9418 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
9419 * The all-vdev ZAP must be empty.
9420 */
9421 static void
9422 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
9423 {
9424 spa_t *spa = vd->vdev_spa;
9425
9426 if (vd->vdev_root_zap != 0 &&
9427 spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
9428 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9429 vd->vdev_root_zap, tx));
9430 }
9431 if (vd->vdev_top_zap != 0) {
9432 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9433 vd->vdev_top_zap, tx));
9434 }
9435 if (vd->vdev_leaf_zap != 0) {
9436 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9437 vd->vdev_leaf_zap, tx));
9438 }
9439 for (uint64_t i = 0; i < vd->vdev_children; i++) {
9440 spa_avz_build(vd->vdev_child[i], avz, tx);
9441 }
9442 }
9443
9444 static void
9445 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
9446 {
9447 nvlist_t *config;
9448
9449 /*
9450 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
9451 * its config may not be dirty but we still need to build per-vdev ZAPs.
9452 * Similarly, if the pool is being assembled (e.g. after a split), we
9453 * need to rebuild the AVZ although the config may not be dirty.
9454 */
9455 if (list_is_empty(&spa->spa_config_dirty_list) &&
9456 spa->spa_avz_action == AVZ_ACTION_NONE)
9457 return;
9458
9459 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9460
9461 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
9462 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
9463 spa->spa_all_vdev_zaps != 0);
9464
9465 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
9466 /* Make and build the new AVZ */
9467 uint64_t new_avz = zap_create(spa->spa_meta_objset,
9468 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
9469 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
9470
9471 /* Diff old AVZ with new one */
9472 zap_cursor_t zc;
9473 zap_attribute_t *za = zap_attribute_alloc();
9474
9475 for (zap_cursor_init(&zc, spa->spa_meta_objset,
9476 spa->spa_all_vdev_zaps);
9477 zap_cursor_retrieve(&zc, za) == 0;
9478 zap_cursor_advance(&zc)) {
9479 uint64_t vdzap = za->za_first_integer;
9480 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
9481 vdzap) == ENOENT) {
9482 /*
9483 * ZAP is listed in old AVZ but not in new one;
9484 * destroy it
9485 */
9486 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
9487 tx));
9488 }
9489 }
9490
9491 zap_cursor_fini(&zc);
9492 zap_attribute_free(za);
9493
9494 /* Destroy the old AVZ */
9495 VERIFY0(zap_destroy(spa->spa_meta_objset,
9496 spa->spa_all_vdev_zaps, tx));
9497
9498 /* Replace the old AVZ in the dir obj with the new one */
9499 VERIFY0(zap_update(spa->spa_meta_objset,
9500 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
9501 sizeof (new_avz), 1, &new_avz, tx));
9502
9503 spa->spa_all_vdev_zaps = new_avz;
9504 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
9505 zap_cursor_t zc;
9506 zap_attribute_t *za = zap_attribute_alloc();
9507
9508 /* Walk through the AVZ and destroy all listed ZAPs */
9509 for (zap_cursor_init(&zc, spa->spa_meta_objset,
9510 spa->spa_all_vdev_zaps);
9511 zap_cursor_retrieve(&zc, za) == 0;
9512 zap_cursor_advance(&zc)) {
9513 uint64_t zap = za->za_first_integer;
9514 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
9515 }
9516
9517 zap_cursor_fini(&zc);
9518 zap_attribute_free(za);
9519
9520 /* Destroy and unlink the AVZ itself */
9521 VERIFY0(zap_destroy(spa->spa_meta_objset,
9522 spa->spa_all_vdev_zaps, tx));
9523 VERIFY0(zap_remove(spa->spa_meta_objset,
9524 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
9525 spa->spa_all_vdev_zaps = 0;
9526 }
9527
9528 if (spa->spa_all_vdev_zaps == 0) {
9529 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
9530 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
9531 DMU_POOL_VDEV_ZAP_MAP, tx);
9532 }
9533 spa->spa_avz_action = AVZ_ACTION_NONE;
9534
9535 /* Create ZAPs for vdevs that don't have them. */
9536 vdev_construct_zaps(spa->spa_root_vdev, tx);
9537
9538 config = spa_config_generate(spa, spa->spa_root_vdev,
9539 dmu_tx_get_txg(tx), B_FALSE);
9540
9541 /*
9542 * If we're upgrading the spa version then make sure that
9543 * the config object gets updated with the correct version.
9544 */
9545 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
9546 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
9547 spa->spa_uberblock.ub_version);
9548
9549 spa_config_exit(spa, SCL_STATE, FTAG);
9550
9551 nvlist_free(spa->spa_config_syncing);
9552 spa->spa_config_syncing = config;
9553
9554 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
9555 }
9556
9557 static void
9558 spa_sync_version(void *arg, dmu_tx_t *tx)
9559 {
9560 uint64_t *versionp = arg;
9561 uint64_t version = *versionp;
9562 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9563
9564 /*
9565 * Setting the version is special cased when first creating the pool.
9566 */
9567 ASSERT(tx->tx_txg != TXG_INITIAL);
9568
9569 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
9570 ASSERT(version >= spa_version(spa));
9571
9572 spa->spa_uberblock.ub_version = version;
9573 vdev_config_dirty(spa->spa_root_vdev);
9574 spa_history_log_internal(spa, "set", tx, "version=%lld",
9575 (longlong_t)version);
9576 }
9577
9578 /*
9579 * Set zpool properties.
9580 */
9581 static void
9582 spa_sync_props(void *arg, dmu_tx_t *tx)
9583 {
9584 nvlist_t *nvp = arg;
9585 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9586 objset_t *mos = spa->spa_meta_objset;
9587 nvpair_t *elem = NULL;
9588
9589 mutex_enter(&spa->spa_props_lock);
9590
9591 while ((elem = nvlist_next_nvpair(nvp, elem))) {
9592 uint64_t intval;
9593 const char *strval, *fname;
9594 zpool_prop_t prop;
9595 const char *propname;
9596 const char *elemname = nvpair_name(elem);
9597 zprop_type_t proptype;
9598 spa_feature_t fid;
9599
9600 switch (prop = zpool_name_to_prop(elemname)) {
9601 case ZPOOL_PROP_VERSION:
9602 intval = fnvpair_value_uint64(elem);
9603 /*
9604 * The version is synced separately before other
9605 * properties and should be correct by now.
9606 */
9607 ASSERT3U(spa_version(spa), >=, intval);
9608 break;
9609
9610 case ZPOOL_PROP_ALTROOT:
9611 /*
9612 * 'altroot' is a non-persistent property. It should
9613 * have been set temporarily at creation or import time.
9614 */
9615 ASSERT(spa->spa_root != NULL);
9616 break;
9617
9618 case ZPOOL_PROP_READONLY:
9619 case ZPOOL_PROP_CACHEFILE:
9620 /*
9621 * 'readonly' and 'cachefile' are also non-persistent
9622 * properties.
9623 */
9624 break;
9625 case ZPOOL_PROP_COMMENT:
9626 strval = fnvpair_value_string(elem);
9627 if (spa->spa_comment != NULL)
9628 spa_strfree(spa->spa_comment);
9629 spa->spa_comment = spa_strdup(strval);
9630 /*
9631 * We need to dirty the configuration on all the vdevs
9632 * so that their labels get updated. We also need to
9633 * update the cache file to keep it in sync with the
9634 * MOS version. It's unnecessary to do this for pool
9635 * creation since the vdev's configuration has already
9636 * been dirtied.
9637 */
9638 if (tx->tx_txg != TXG_INITIAL) {
9639 vdev_config_dirty(spa->spa_root_vdev);
9640 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9641 }
9642 spa_history_log_internal(spa, "set", tx,
9643 "%s=%s", elemname, strval);
9644 break;
9645 case ZPOOL_PROP_COMPATIBILITY:
9646 strval = fnvpair_value_string(elem);
9647 if (spa->spa_compatibility != NULL)
9648 spa_strfree(spa->spa_compatibility);
9649 spa->spa_compatibility = spa_strdup(strval);
9650 /*
9651 * Dirty the configuration on vdevs as above.
9652 */
9653 if (tx->tx_txg != TXG_INITIAL) {
9654 vdev_config_dirty(spa->spa_root_vdev);
9655 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9656 }
9657
9658 spa_history_log_internal(spa, "set", tx,
9659 "%s=%s", nvpair_name(elem), strval);
9660 break;
9661
9662 case ZPOOL_PROP_INVAL:
9663 if (zpool_prop_feature(elemname)) {
9664 fname = strchr(elemname, '@') + 1;
9665 VERIFY0(zfeature_lookup_name(fname, &fid));
9666
9667 spa_feature_enable(spa, fid, tx);
9668 spa_history_log_internal(spa, "set", tx,
9669 "%s=enabled", elemname);
9670 break;
9671 } else if (!zfs_prop_user(elemname)) {
9672 ASSERT(zpool_prop_feature(elemname));
9673 break;
9674 }
9675 zfs_fallthrough;
9676 default:
9677 /*
9678 * Set pool property values in the poolprops mos object.
9679 */
9680 if (spa->spa_pool_props_object == 0) {
9681 spa->spa_pool_props_object =
9682 zap_create_link(mos, DMU_OT_POOL_PROPS,
9683 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
9684 tx);
9685 }
9686
9687 /* normalize the property name */
9688 if (prop == ZPOOL_PROP_INVAL) {
9689 propname = elemname;
9690 proptype = PROP_TYPE_STRING;
9691 } else {
9692 propname = zpool_prop_to_name(prop);
9693 proptype = zpool_prop_get_type(prop);
9694 }
9695
9696 if (nvpair_type(elem) == DATA_TYPE_STRING) {
9697 ASSERT(proptype == PROP_TYPE_STRING);
9698 strval = fnvpair_value_string(elem);
9699 if (strlen(strval) == 0) {
9700 /* remove the property if value == "" */
9701 (void) zap_remove(mos,
9702 spa->spa_pool_props_object,
9703 propname, tx);
9704 } else {
9705 VERIFY0(zap_update(mos,
9706 spa->spa_pool_props_object,
9707 propname, 1, strlen(strval) + 1,
9708 strval, tx));
9709 }
9710 spa_history_log_internal(spa, "set", tx,
9711 "%s=%s", elemname, strval);
9712 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
9713 intval = fnvpair_value_uint64(elem);
9714
9715 if (proptype == PROP_TYPE_INDEX) {
9716 const char *unused;
9717 VERIFY0(zpool_prop_index_to_string(
9718 prop, intval, &unused));
9719 }
9720 VERIFY0(zap_update(mos,
9721 spa->spa_pool_props_object, propname,
9722 8, 1, &intval, tx));
9723 spa_history_log_internal(spa, "set", tx,
9724 "%s=%lld", elemname,
9725 (longlong_t)intval);
9726
9727 switch (prop) {
9728 case ZPOOL_PROP_DELEGATION:
9729 spa->spa_delegation = intval;
9730 break;
9731 case ZPOOL_PROP_BOOTFS:
9732 spa->spa_bootfs = intval;
9733 break;
9734 case ZPOOL_PROP_FAILUREMODE:
9735 spa->spa_failmode = intval;
9736 break;
9737 case ZPOOL_PROP_AUTOTRIM:
9738 spa->spa_autotrim = intval;
9739 spa_async_request(spa,
9740 SPA_ASYNC_AUTOTRIM_RESTART);
9741 break;
9742 case ZPOOL_PROP_AUTOEXPAND:
9743 spa->spa_autoexpand = intval;
9744 if (tx->tx_txg != TXG_INITIAL)
9745 spa_async_request(spa,
9746 SPA_ASYNC_AUTOEXPAND);
9747 break;
9748 case ZPOOL_PROP_MULTIHOST:
9749 spa->spa_multihost = intval;
9750 break;
9751 case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
9752 spa->spa_dedup_table_quota = intval;
9753 break;
9754 default:
9755 break;
9756 }
9757 } else {
9758 ASSERT(0); /* not allowed */
9759 }
9760 }
9761
9762 }
9763
9764 mutex_exit(&spa->spa_props_lock);
9765 }
9766
9767 /*
9768 * Perform one-time upgrade on-disk changes. spa_version() does not
9769 * reflect the new version this txg, so there must be no changes this
9770 * txg to anything that the upgrade code depends on after it executes.
9771 * Therefore this must be called after dsl_pool_sync() does the sync
9772 * tasks.
9773 */
9774 static void
9775 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
9776 {
9777 if (spa_sync_pass(spa) != 1)
9778 return;
9779
9780 dsl_pool_t *dp = spa->spa_dsl_pool;
9781 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
9782
9783 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
9784 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
9785 dsl_pool_create_origin(dp, tx);
9786
9787 /* Keeping the origin open increases spa_minref */
9788 spa->spa_minref += 3;
9789 }
9790
9791 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
9792 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
9793 dsl_pool_upgrade_clones(dp, tx);
9794 }
9795
9796 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
9797 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
9798 dsl_pool_upgrade_dir_clones(dp, tx);
9799
9800 /* Keeping the freedir open increases spa_minref */
9801 spa->spa_minref += 3;
9802 }
9803
9804 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
9805 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9806 spa_feature_create_zap_objects(spa, tx);
9807 }
9808
9809 /*
9810 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
9811 * when possibility to use lz4 compression for metadata was added
9812 * Old pools that have this feature enabled must be upgraded to have
9813 * this feature active
9814 */
9815 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9816 boolean_t lz4_en = spa_feature_is_enabled(spa,
9817 SPA_FEATURE_LZ4_COMPRESS);
9818 boolean_t lz4_ac = spa_feature_is_active(spa,
9819 SPA_FEATURE_LZ4_COMPRESS);
9820
9821 if (lz4_en && !lz4_ac)
9822 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
9823 }
9824
9825 /*
9826 * If we haven't written the salt, do so now. Note that the
9827 * feature may not be activated yet, but that's fine since
9828 * the presence of this ZAP entry is backwards compatible.
9829 */
9830 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
9831 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
9832 VERIFY0(zap_add(spa->spa_meta_objset,
9833 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
9834 sizeof (spa->spa_cksum_salt.zcs_bytes),
9835 spa->spa_cksum_salt.zcs_bytes, tx));
9836 }
9837
9838 rrw_exit(&dp->dp_config_rwlock, FTAG);
9839 }
9840
9841 static void
9842 vdev_indirect_state_sync_verify(vdev_t *vd)
9843 {
9844 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
9845 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
9846
9847 if (vd->vdev_ops == &vdev_indirect_ops) {
9848 ASSERT(vim != NULL);
9849 ASSERT(vib != NULL);
9850 }
9851
9852 uint64_t obsolete_sm_object = 0;
9853 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
9854 if (obsolete_sm_object != 0) {
9855 ASSERT(vd->vdev_obsolete_sm != NULL);
9856 ASSERT(vd->vdev_removing ||
9857 vd->vdev_ops == &vdev_indirect_ops);
9858 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9859 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9860 ASSERT3U(obsolete_sm_object, ==,
9861 space_map_object(vd->vdev_obsolete_sm));
9862 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9863 space_map_allocated(vd->vdev_obsolete_sm));
9864 }
9865 ASSERT(vd->vdev_obsolete_segments != NULL);
9866
9867 /*
9868 * Since frees / remaps to an indirect vdev can only
9869 * happen in syncing context, the obsolete segments
9870 * tree must be empty when we start syncing.
9871 */
9872 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
9873 }
9874
9875 /*
9876 * Set the top-level vdev's max queue depth. Evaluate each top-level's
9877 * async write queue depth in case it changed. The max queue depth will
9878 * not change in the middle of syncing out this txg.
9879 */
9880 static void
9881 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9882 {
9883 ASSERT(spa_writeable(spa));
9884
9885 vdev_t *rvd = spa->spa_root_vdev;
9886 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9887 zfs_vdev_queue_depth_pct / 100;
9888 metaslab_class_t *normal = spa_normal_class(spa);
9889 metaslab_class_t *special = spa_special_class(spa);
9890 metaslab_class_t *dedup = spa_dedup_class(spa);
9891
9892 uint64_t slots_per_allocator = 0;
9893 for (int c = 0; c < rvd->vdev_children; c++) {
9894 vdev_t *tvd = rvd->vdev_child[c];
9895
9896 metaslab_group_t *mg = tvd->vdev_mg;
9897 if (mg == NULL || !metaslab_group_initialized(mg))
9898 continue;
9899
9900 metaslab_class_t *mc = mg->mg_class;
9901 if (mc != normal && mc != special && mc != dedup)
9902 continue;
9903
9904 /*
9905 * It is safe to do a lock-free check here because only async
9906 * allocations look at mg_max_alloc_queue_depth, and async
9907 * allocations all happen from spa_sync().
9908 */
9909 for (int i = 0; i < mg->mg_allocators; i++) {
9910 ASSERT0(zfs_refcount_count(
9911 &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9912 }
9913 mg->mg_max_alloc_queue_depth = max_queue_depth;
9914
9915 for (int i = 0; i < mg->mg_allocators; i++) {
9916 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9917 zfs_vdev_def_queue_depth;
9918 }
9919 slots_per_allocator += zfs_vdev_def_queue_depth;
9920 }
9921
9922 for (int i = 0; i < spa->spa_alloc_count; i++) {
9923 ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9924 mca_alloc_slots));
9925 ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9926 mca_alloc_slots));
9927 ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9928 mca_alloc_slots));
9929 normal->mc_allocator[i].mca_alloc_max_slots =
9930 slots_per_allocator;
9931 special->mc_allocator[i].mca_alloc_max_slots =
9932 slots_per_allocator;
9933 dedup->mc_allocator[i].mca_alloc_max_slots =
9934 slots_per_allocator;
9935 }
9936 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9937 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9938 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9939 }
9940
9941 static void
9942 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9943 {
9944 ASSERT(spa_writeable(spa));
9945
9946 vdev_t *rvd = spa->spa_root_vdev;
9947 for (int c = 0; c < rvd->vdev_children; c++) {
9948 vdev_t *vd = rvd->vdev_child[c];
9949 vdev_indirect_state_sync_verify(vd);
9950
9951 if (vdev_indirect_should_condense(vd)) {
9952 spa_condense_indirect_start_sync(vd, tx);
9953 break;
9954 }
9955 }
9956 }
9957
9958 static void
9959 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9960 {
9961 objset_t *mos = spa->spa_meta_objset;
9962 dsl_pool_t *dp = spa->spa_dsl_pool;
9963 uint64_t txg = tx->tx_txg;
9964 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9965
9966 do {
9967 int pass = ++spa->spa_sync_pass;
9968
9969 spa_sync_config_object(spa, tx);
9970 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9971 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9972 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9973 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9974 spa_errlog_sync(spa, txg);
9975 dsl_pool_sync(dp, txg);
9976
9977 if (pass < zfs_sync_pass_deferred_free ||
9978 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9979 /*
9980 * If the log space map feature is active we don't
9981 * care about deferred frees and the deferred bpobj
9982 * as the log space map should effectively have the
9983 * same results (i.e. appending only to one object).
9984 */
9985 spa_sync_frees(spa, free_bpl, tx);
9986 } else {
9987 /*
9988 * We can not defer frees in pass 1, because
9989 * we sync the deferred frees later in pass 1.
9990 */
9991 ASSERT3U(pass, >, 1);
9992 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9993 &spa->spa_deferred_bpobj, tx);
9994 }
9995
9996 brt_sync(spa, txg);
9997 ddt_sync(spa, txg);
9998 dsl_scan_sync(dp, tx);
9999 dsl_errorscrub_sync(dp, tx);
10000 svr_sync(spa, tx);
10001 spa_sync_upgrades(spa, tx);
10002
10003 spa_flush_metaslabs(spa, tx);
10004
10005 vdev_t *vd = NULL;
10006 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
10007 != NULL)
10008 vdev_sync(vd, txg);
10009
10010 if (pass == 1) {
10011 /*
10012 * dsl_pool_sync() -> dp_sync_tasks may have dirtied
10013 * the config. If that happens, this txg should not
10014 * be a no-op. So we must sync the config to the MOS
10015 * before checking for no-op.
10016 *
10017 * Note that when the config is dirty, it will
10018 * be written to the MOS (i.e. the MOS will be
10019 * dirtied) every time we call spa_sync_config_object()
10020 * in this txg. Therefore we can't call this after
10021 * dsl_pool_sync() every pass, because it would
10022 * prevent us from converging, since we'd dirty
10023 * the MOS every pass.
10024 *
10025 * Sync tasks can only be processed in pass 1, so
10026 * there's no need to do this in later passes.
10027 */
10028 spa_sync_config_object(spa, tx);
10029 }
10030
10031 /*
10032 * Note: We need to check if the MOS is dirty because we could
10033 * have marked the MOS dirty without updating the uberblock
10034 * (e.g. if we have sync tasks but no dirty user data). We need
10035 * to check the uberblock's rootbp because it is updated if we
10036 * have synced out dirty data (though in this case the MOS will
10037 * most likely also be dirty due to second order effects, we
10038 * don't want to rely on that here).
10039 */
10040 if (pass == 1 &&
10041 BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp) < txg &&
10042 !dmu_objset_is_dirty(mos, txg)) {
10043 /*
10044 * Nothing changed on the first pass, therefore this
10045 * TXG is a no-op. Avoid syncing deferred frees, so
10046 * that we can keep this TXG as a no-op.
10047 */
10048 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10049 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10050 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
10051 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
10052 break;
10053 }
10054
10055 spa_sync_deferred_frees(spa, tx);
10056 } while (dmu_objset_is_dirty(mos, txg));
10057 }
10058
10059 /*
10060 * Rewrite the vdev configuration (which includes the uberblock) to
10061 * commit the transaction group.
10062 *
10063 * If there are no dirty vdevs, we sync the uberblock to a few random
10064 * top-level vdevs that are known to be visible in the config cache
10065 * (see spa_vdev_add() for a complete description). If there *are* dirty
10066 * vdevs, sync the uberblock to all vdevs.
10067 */
10068 static void
10069 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
10070 {
10071 vdev_t *rvd = spa->spa_root_vdev;
10072 uint64_t txg = tx->tx_txg;
10073
10074 for (;;) {
10075 int error = 0;
10076
10077 /*
10078 * We hold SCL_STATE to prevent vdev open/close/etc.
10079 * while we're attempting to write the vdev labels.
10080 */
10081 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10082
10083 if (list_is_empty(&spa->spa_config_dirty_list)) {
10084 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
10085 int svdcount = 0;
10086 int children = rvd->vdev_children;
10087 int c0 = random_in_range(children);
10088
10089 for (int c = 0; c < children; c++) {
10090 vdev_t *vd =
10091 rvd->vdev_child[(c0 + c) % children];
10092
10093 /* Stop when revisiting the first vdev */
10094 if (c > 0 && svd[0] == vd)
10095 break;
10096
10097 if (vd->vdev_ms_array == 0 ||
10098 vd->vdev_islog ||
10099 !vdev_is_concrete(vd))
10100 continue;
10101
10102 svd[svdcount++] = vd;
10103 if (svdcount == SPA_SYNC_MIN_VDEVS)
10104 break;
10105 }
10106 error = vdev_config_sync(svd, svdcount, txg);
10107 } else {
10108 error = vdev_config_sync(rvd->vdev_child,
10109 rvd->vdev_children, txg);
10110 }
10111
10112 if (error == 0)
10113 spa->spa_last_synced_guid = rvd->vdev_guid;
10114
10115 spa_config_exit(spa, SCL_STATE, FTAG);
10116
10117 if (error == 0)
10118 break;
10119 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
10120 zio_resume_wait(spa);
10121 }
10122 }
10123
10124 /*
10125 * Sync the specified transaction group. New blocks may be dirtied as
10126 * part of the process, so we iterate until it converges.
10127 */
10128 void
10129 spa_sync(spa_t *spa, uint64_t txg)
10130 {
10131 vdev_t *vd = NULL;
10132
10133 VERIFY(spa_writeable(spa));
10134
10135 /*
10136 * Wait for i/os issued in open context that need to complete
10137 * before this txg syncs.
10138 */
10139 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
10140 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
10141 ZIO_FLAG_CANFAIL);
10142
10143 /*
10144 * Now that there can be no more cloning in this transaction group,
10145 * but we are still before issuing frees, we can process pending BRT
10146 * updates.
10147 */
10148 brt_pending_apply(spa, txg);
10149
10150 /*
10151 * Lock out configuration changes.
10152 */
10153 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
10154
10155 spa->spa_syncing_txg = txg;
10156 spa->spa_sync_pass = 0;
10157
10158 for (int i = 0; i < spa->spa_alloc_count; i++) {
10159 mutex_enter(&spa->spa_allocs[i].spaa_lock);
10160 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
10161 mutex_exit(&spa->spa_allocs[i].spaa_lock);
10162 }
10163
10164 /*
10165 * If there are any pending vdev state changes, convert them
10166 * into config changes that go out with this transaction group.
10167 */
10168 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10169 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10170 /* Avoid holding the write lock unless actually necessary */
10171 if (vd->vdev_aux == NULL) {
10172 vdev_state_clean(vd);
10173 vdev_config_dirty(vd);
10174 continue;
10175 }
10176 /*
10177 * We need the write lock here because, for aux vdevs,
10178 * calling vdev_config_dirty() modifies sav_config.
10179 * This is ugly and will become unnecessary when we
10180 * eliminate the aux vdev wart by integrating all vdevs
10181 * into the root vdev tree.
10182 */
10183 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10184 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
10185 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10186 vdev_state_clean(vd);
10187 vdev_config_dirty(vd);
10188 }
10189 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10190 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10191 }
10192 spa_config_exit(spa, SCL_STATE, FTAG);
10193
10194 dsl_pool_t *dp = spa->spa_dsl_pool;
10195 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
10196
10197 spa->spa_sync_starttime = gethrtime();
10198 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10199 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
10200 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
10201 NSEC_TO_TICK(spa->spa_deadman_synctime));
10202
10203 /*
10204 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
10205 * set spa_deflate if we have no raid-z vdevs.
10206 */
10207 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
10208 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
10209 vdev_t *rvd = spa->spa_root_vdev;
10210
10211 int i;
10212 for (i = 0; i < rvd->vdev_children; i++) {
10213 vd = rvd->vdev_child[i];
10214 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
10215 break;
10216 }
10217 if (i == rvd->vdev_children) {
10218 spa->spa_deflate = TRUE;
10219 VERIFY0(zap_add(spa->spa_meta_objset,
10220 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
10221 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
10222 }
10223 }
10224
10225 spa_sync_adjust_vdev_max_queue_depth(spa);
10226
10227 spa_sync_condense_indirect(spa, tx);
10228
10229 spa_sync_iterate_to_convergence(spa, tx);
10230
10231 #ifdef ZFS_DEBUG
10232 if (!list_is_empty(&spa->spa_config_dirty_list)) {
10233 /*
10234 * Make sure that the number of ZAPs for all the vdevs matches
10235 * the number of ZAPs in the per-vdev ZAP list. This only gets
10236 * called if the config is dirty; otherwise there may be
10237 * outstanding AVZ operations that weren't completed in
10238 * spa_sync_config_object.
10239 */
10240 uint64_t all_vdev_zap_entry_count;
10241 ASSERT0(zap_count(spa->spa_meta_objset,
10242 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
10243 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
10244 all_vdev_zap_entry_count);
10245 }
10246 #endif
10247
10248 if (spa->spa_vdev_removal != NULL) {
10249 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
10250 }
10251
10252 spa_sync_rewrite_vdev_config(spa, tx);
10253 dmu_tx_commit(tx);
10254
10255 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10256 spa->spa_deadman_tqid = 0;
10257
10258 /*
10259 * Clear the dirty config list.
10260 */
10261 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
10262 vdev_config_clean(vd);
10263
10264 /*
10265 * Now that the new config has synced transactionally,
10266 * let it become visible to the config cache.
10267 */
10268 if (spa->spa_config_syncing != NULL) {
10269 spa_config_set(spa, spa->spa_config_syncing);
10270 spa->spa_config_txg = txg;
10271 spa->spa_config_syncing = NULL;
10272 }
10273
10274 dsl_pool_sync_done(dp, txg);
10275
10276 for (int i = 0; i < spa->spa_alloc_count; i++) {
10277 mutex_enter(&spa->spa_allocs[i].spaa_lock);
10278 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
10279 mutex_exit(&spa->spa_allocs[i].spaa_lock);
10280 }
10281
10282 /*
10283 * Update usable space statistics.
10284 */
10285 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
10286 != NULL)
10287 vdev_sync_done(vd, txg);
10288
10289 metaslab_class_evict_old(spa->spa_normal_class, txg);
10290 metaslab_class_evict_old(spa->spa_log_class, txg);
10291 /* spa_embedded_log_class has only one metaslab per vdev. */
10292 metaslab_class_evict_old(spa->spa_special_class, txg);
10293 metaslab_class_evict_old(spa->spa_dedup_class, txg);
10294
10295 spa_sync_close_syncing_log_sm(spa);
10296
10297 spa_update_dspace(spa);
10298
10299 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
10300 vdev_autotrim_kick(spa);
10301
10302 /*
10303 * It had better be the case that we didn't dirty anything
10304 * since vdev_config_sync().
10305 */
10306 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10307 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10308 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
10309
10310 while (zfs_pause_spa_sync)
10311 delay(1);
10312
10313 spa->spa_sync_pass = 0;
10314
10315 /*
10316 * Update the last synced uberblock here. We want to do this at
10317 * the end of spa_sync() so that consumers of spa_last_synced_txg()
10318 * will be guaranteed that all the processing associated with
10319 * that txg has been completed.
10320 */
10321 spa->spa_ubsync = spa->spa_uberblock;
10322 spa_config_exit(spa, SCL_CONFIG, FTAG);
10323
10324 spa_handle_ignored_writes(spa);
10325
10326 /*
10327 * If any async tasks have been requested, kick them off.
10328 */
10329 spa_async_dispatch(spa);
10330 }
10331
10332 /*
10333 * Sync all pools. We don't want to hold the namespace lock across these
10334 * operations, so we take a reference on the spa_t and drop the lock during the
10335 * sync.
10336 */
10337 void
10338 spa_sync_allpools(void)
10339 {
10340 spa_t *spa = NULL;
10341 mutex_enter(&spa_namespace_lock);
10342 while ((spa = spa_next(spa)) != NULL) {
10343 if (spa_state(spa) != POOL_STATE_ACTIVE ||
10344 !spa_writeable(spa) || spa_suspended(spa))
10345 continue;
10346 spa_open_ref(spa, FTAG);
10347 mutex_exit(&spa_namespace_lock);
10348 txg_wait_synced(spa_get_dsl(spa), 0);
10349 mutex_enter(&spa_namespace_lock);
10350 spa_close(spa, FTAG);
10351 }
10352 mutex_exit(&spa_namespace_lock);
10353 }
10354
10355 taskq_t *
10356 spa_sync_tq_create(spa_t *spa, const char *name)
10357 {
10358 kthread_t **kthreads;
10359
10360 ASSERT(spa->spa_sync_tq == NULL);
10361 ASSERT3S(spa->spa_alloc_count, <=, boot_ncpus);
10362
10363 /*
10364 * - do not allow more allocators than cpus.
10365 * - there may be more cpus than allocators.
10366 * - do not allow more sync taskq threads than allocators or cpus.
10367 */
10368 int nthreads = spa->spa_alloc_count;
10369 spa->spa_syncthreads = kmem_zalloc(sizeof (spa_syncthread_info_t) *
10370 nthreads, KM_SLEEP);
10371
10372 spa->spa_sync_tq = taskq_create_synced(name, nthreads, minclsyspri,
10373 nthreads, INT_MAX, TASKQ_PREPOPULATE, &kthreads);
10374 VERIFY(spa->spa_sync_tq != NULL);
10375 VERIFY(kthreads != NULL);
10376
10377 spa_syncthread_info_t *ti = spa->spa_syncthreads;
10378 for (int i = 0; i < nthreads; i++, ti++) {
10379 ti->sti_thread = kthreads[i];
10380 ti->sti_allocator = i;
10381 }
10382
10383 kmem_free(kthreads, sizeof (*kthreads) * nthreads);
10384 return (spa->spa_sync_tq);
10385 }
10386
10387 void
10388 spa_sync_tq_destroy(spa_t *spa)
10389 {
10390 ASSERT(spa->spa_sync_tq != NULL);
10391
10392 taskq_wait(spa->spa_sync_tq);
10393 taskq_destroy(spa->spa_sync_tq);
10394 kmem_free(spa->spa_syncthreads,
10395 sizeof (spa_syncthread_info_t) * spa->spa_alloc_count);
10396 spa->spa_sync_tq = NULL;
10397 }
10398
10399 uint_t
10400 spa_acq_allocator(spa_t *spa)
10401 {
10402 int i;
10403
10404 if (spa->spa_alloc_count == 1)
10405 return (0);
10406
10407 mutex_enter(&spa->spa_allocs_use->sau_lock);
10408 uint_t r = spa->spa_allocs_use->sau_rotor;
10409 do {
10410 if (++r == spa->spa_alloc_count)
10411 r = 0;
10412 } while (spa->spa_allocs_use->sau_inuse[r]);
10413 spa->spa_allocs_use->sau_inuse[r] = B_TRUE;
10414 spa->spa_allocs_use->sau_rotor = r;
10415 mutex_exit(&spa->spa_allocs_use->sau_lock);
10416
10417 spa_syncthread_info_t *ti = spa->spa_syncthreads;
10418 for (i = 0; i < spa->spa_alloc_count; i++, ti++) {
10419 if (ti->sti_thread == curthread) {
10420 ti->sti_allocator = r;
10421 break;
10422 }
10423 }
10424 ASSERT3S(i, <, spa->spa_alloc_count);
10425 return (r);
10426 }
10427
10428 void
10429 spa_rel_allocator(spa_t *spa, uint_t allocator)
10430 {
10431 if (spa->spa_alloc_count > 1)
10432 spa->spa_allocs_use->sau_inuse[allocator] = B_FALSE;
10433 }
10434
10435 void
10436 spa_select_allocator(zio_t *zio)
10437 {
10438 zbookmark_phys_t *bm = &zio->io_bookmark;
10439 spa_t *spa = zio->io_spa;
10440
10441 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
10442
10443 /*
10444 * A gang block (for example) may have inherited its parent's
10445 * allocator, in which case there is nothing further to do here.
10446 */
10447 if (ZIO_HAS_ALLOCATOR(zio))
10448 return;
10449
10450 ASSERT(spa != NULL);
10451 ASSERT(bm != NULL);
10452
10453 /*
10454 * First try to use an allocator assigned to the syncthread, and set
10455 * the corresponding write issue taskq for the allocator.
10456 * Note, we must have an open pool to do this.
10457 */
10458 if (spa->spa_sync_tq != NULL) {
10459 spa_syncthread_info_t *ti = spa->spa_syncthreads;
10460 for (int i = 0; i < spa->spa_alloc_count; i++, ti++) {
10461 if (ti->sti_thread == curthread) {
10462 zio->io_allocator = ti->sti_allocator;
10463 return;
10464 }
10465 }
10466 }
10467
10468 /*
10469 * We want to try to use as many allocators as possible to help improve
10470 * performance, but we also want logically adjacent IOs to be physically
10471 * adjacent to improve sequential read performance. We chunk each object
10472 * into 2^20 block regions, and then hash based on the objset, object,
10473 * level, and region to accomplish both of these goals.
10474 */
10475 uint64_t hv = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level,
10476 bm->zb_blkid >> 20);
10477
10478 zio->io_allocator = (uint_t)hv % spa->spa_alloc_count;
10479 }
10480
10481 /*
10482 * ==========================================================================
10483 * Miscellaneous routines
10484 * ==========================================================================
10485 */
10486
10487 /*
10488 * Remove all pools in the system.
10489 */
10490 void
10491 spa_evict_all(void)
10492 {
10493 spa_t *spa;
10494
10495 /*
10496 * Remove all cached state. All pools should be closed now,
10497 * so every spa in the AVL tree should be unreferenced.
10498 */
10499 mutex_enter(&spa_namespace_lock);
10500 while ((spa = spa_next(NULL)) != NULL) {
10501 /*
10502 * Stop async tasks. The async thread may need to detach
10503 * a device that's been replaced, which requires grabbing
10504 * spa_namespace_lock, so we must drop it here.
10505 */
10506 spa_open_ref(spa, FTAG);
10507 mutex_exit(&spa_namespace_lock);
10508 spa_async_suspend(spa);
10509 mutex_enter(&spa_namespace_lock);
10510 spa_close(spa, FTAG);
10511
10512 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
10513 spa_unload(spa);
10514 spa_deactivate(spa);
10515 }
10516 spa_remove(spa);
10517 }
10518 mutex_exit(&spa_namespace_lock);
10519 }
10520
10521 vdev_t *
10522 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
10523 {
10524 vdev_t *vd;
10525 int i;
10526
10527 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
10528 return (vd);
10529
10530 if (aux) {
10531 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
10532 vd = spa->spa_l2cache.sav_vdevs[i];
10533 if (vd->vdev_guid == guid)
10534 return (vd);
10535 }
10536
10537 for (i = 0; i < spa->spa_spares.sav_count; i++) {
10538 vd = spa->spa_spares.sav_vdevs[i];
10539 if (vd->vdev_guid == guid)
10540 return (vd);
10541 }
10542 }
10543
10544 return (NULL);
10545 }
10546
10547 void
10548 spa_upgrade(spa_t *spa, uint64_t version)
10549 {
10550 ASSERT(spa_writeable(spa));
10551
10552 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
10553
10554 /*
10555 * This should only be called for a non-faulted pool, and since a
10556 * future version would result in an unopenable pool, this shouldn't be
10557 * possible.
10558 */
10559 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
10560 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
10561
10562 spa->spa_uberblock.ub_version = version;
10563 vdev_config_dirty(spa->spa_root_vdev);
10564
10565 spa_config_exit(spa, SCL_ALL, FTAG);
10566
10567 txg_wait_synced(spa_get_dsl(spa), 0);
10568 }
10569
10570 static boolean_t
10571 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
10572 {
10573 (void) spa;
10574 int i;
10575 uint64_t vdev_guid;
10576
10577 for (i = 0; i < sav->sav_count; i++)
10578 if (sav->sav_vdevs[i]->vdev_guid == guid)
10579 return (B_TRUE);
10580
10581 for (i = 0; i < sav->sav_npending; i++) {
10582 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
10583 &vdev_guid) == 0 && vdev_guid == guid)
10584 return (B_TRUE);
10585 }
10586
10587 return (B_FALSE);
10588 }
10589
10590 boolean_t
10591 spa_has_l2cache(spa_t *spa, uint64_t guid)
10592 {
10593 return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
10594 }
10595
10596 boolean_t
10597 spa_has_spare(spa_t *spa, uint64_t guid)
10598 {
10599 return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
10600 }
10601
10602 /*
10603 * Check if a pool has an active shared spare device.
10604 * Note: reference count of an active spare is 2, as a spare and as a replace
10605 */
10606 static boolean_t
10607 spa_has_active_shared_spare(spa_t *spa)
10608 {
10609 int i, refcnt;
10610 uint64_t pool;
10611 spa_aux_vdev_t *sav = &spa->spa_spares;
10612
10613 for (i = 0; i < sav->sav_count; i++) {
10614 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
10615 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
10616 refcnt > 2)
10617 return (B_TRUE);
10618 }
10619
10620 return (B_FALSE);
10621 }
10622
10623 uint64_t
10624 spa_total_metaslabs(spa_t *spa)
10625 {
10626 vdev_t *rvd = spa->spa_root_vdev;
10627
10628 uint64_t m = 0;
10629 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
10630 vdev_t *vd = rvd->vdev_child[c];
10631 if (!vdev_is_concrete(vd))
10632 continue;
10633 m += vd->vdev_ms_count;
10634 }
10635 return (m);
10636 }
10637
10638 /*
10639 * Notify any waiting threads that some activity has switched from being in-
10640 * progress to not-in-progress so that the thread can wake up and determine
10641 * whether it is finished waiting.
10642 */
10643 void
10644 spa_notify_waiters(spa_t *spa)
10645 {
10646 /*
10647 * Acquiring spa_activities_lock here prevents the cv_broadcast from
10648 * happening between the waiting thread's check and cv_wait.
10649 */
10650 mutex_enter(&spa->spa_activities_lock);
10651 cv_broadcast(&spa->spa_activities_cv);
10652 mutex_exit(&spa->spa_activities_lock);
10653 }
10654
10655 /*
10656 * Notify any waiting threads that the pool is exporting, and then block until
10657 * they are finished using the spa_t.
10658 */
10659 void
10660 spa_wake_waiters(spa_t *spa)
10661 {
10662 mutex_enter(&spa->spa_activities_lock);
10663 spa->spa_waiters_cancel = B_TRUE;
10664 cv_broadcast(&spa->spa_activities_cv);
10665 while (spa->spa_waiters != 0)
10666 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
10667 spa->spa_waiters_cancel = B_FALSE;
10668 mutex_exit(&spa->spa_activities_lock);
10669 }
10670
10671 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
10672 static boolean_t
10673 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
10674 {
10675 spa_t *spa = vd->vdev_spa;
10676
10677 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
10678 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10679 ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
10680 activity == ZPOOL_WAIT_TRIM);
10681
10682 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
10683 &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
10684
10685 mutex_exit(&spa->spa_activities_lock);
10686 mutex_enter(lock);
10687 mutex_enter(&spa->spa_activities_lock);
10688
10689 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
10690 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
10691 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
10692 mutex_exit(lock);
10693
10694 if (in_progress)
10695 return (B_TRUE);
10696
10697 for (int i = 0; i < vd->vdev_children; i++) {
10698 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
10699 activity))
10700 return (B_TRUE);
10701 }
10702
10703 return (B_FALSE);
10704 }
10705
10706 /*
10707 * If use_guid is true, this checks whether the vdev specified by guid is
10708 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
10709 * is being initialized/trimmed. The caller must hold the config lock and
10710 * spa_activities_lock.
10711 */
10712 static int
10713 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
10714 zpool_wait_activity_t activity, boolean_t *in_progress)
10715 {
10716 mutex_exit(&spa->spa_activities_lock);
10717 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10718 mutex_enter(&spa->spa_activities_lock);
10719
10720 vdev_t *vd;
10721 if (use_guid) {
10722 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
10723 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
10724 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10725 return (EINVAL);
10726 }
10727 } else {
10728 vd = spa->spa_root_vdev;
10729 }
10730
10731 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
10732
10733 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10734 return (0);
10735 }
10736
10737 /*
10738 * Locking for waiting threads
10739 * ---------------------------
10740 *
10741 * Waiting threads need a way to check whether a given activity is in progress,
10742 * and then, if it is, wait for it to complete. Each activity will have some
10743 * in-memory representation of the relevant on-disk state which can be used to
10744 * determine whether or not the activity is in progress. The in-memory state and
10745 * the locking used to protect it will be different for each activity, and may
10746 * not be suitable for use with a cvar (e.g., some state is protected by the
10747 * config lock). To allow waiting threads to wait without any races, another
10748 * lock, spa_activities_lock, is used.
10749 *
10750 * When the state is checked, both the activity-specific lock (if there is one)
10751 * and spa_activities_lock are held. In some cases, the activity-specific lock
10752 * is acquired explicitly (e.g. the config lock). In others, the locking is
10753 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
10754 * thread releases the activity-specific lock and, if the activity is in
10755 * progress, then cv_waits using spa_activities_lock.
10756 *
10757 * The waiting thread is woken when another thread, one completing some
10758 * activity, updates the state of the activity and then calls
10759 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
10760 * needs to hold its activity-specific lock when updating the state, and this
10761 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
10762 *
10763 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
10764 * and because it is held when the waiting thread checks the state of the
10765 * activity, it can never be the case that the completing thread both updates
10766 * the activity state and cv_broadcasts in between the waiting thread's check
10767 * and cv_wait. Thus, a waiting thread can never miss a wakeup.
10768 *
10769 * In order to prevent deadlock, when the waiting thread does its check, in some
10770 * cases it will temporarily drop spa_activities_lock in order to acquire the
10771 * activity-specific lock. The order in which spa_activities_lock and the
10772 * activity specific lock are acquired in the waiting thread is determined by
10773 * the order in which they are acquired in the completing thread; if the
10774 * completing thread calls spa_notify_waiters with the activity-specific lock
10775 * held, then the waiting thread must also acquire the activity-specific lock
10776 * first.
10777 */
10778
10779 static int
10780 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
10781 boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
10782 {
10783 int error = 0;
10784
10785 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10786
10787 switch (activity) {
10788 case ZPOOL_WAIT_CKPT_DISCARD:
10789 *in_progress =
10790 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
10791 zap_contains(spa_meta_objset(spa),
10792 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
10793 ENOENT);
10794 break;
10795 case ZPOOL_WAIT_FREE:
10796 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
10797 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
10798 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
10799 spa_livelist_delete_check(spa));
10800 break;
10801 case ZPOOL_WAIT_INITIALIZE:
10802 case ZPOOL_WAIT_TRIM:
10803 error = spa_vdev_activity_in_progress(spa, use_tag, tag,
10804 activity, in_progress);
10805 break;
10806 case ZPOOL_WAIT_REPLACE:
10807 mutex_exit(&spa->spa_activities_lock);
10808 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10809 mutex_enter(&spa->spa_activities_lock);
10810
10811 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
10812 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10813 break;
10814 case ZPOOL_WAIT_REMOVE:
10815 *in_progress = (spa->spa_removing_phys.sr_state ==
10816 DSS_SCANNING);
10817 break;
10818 case ZPOOL_WAIT_RESILVER:
10819 *in_progress = vdev_rebuild_active(spa->spa_root_vdev);
10820 if (*in_progress)
10821 break;
10822 zfs_fallthrough;
10823 case ZPOOL_WAIT_SCRUB:
10824 {
10825 boolean_t scanning, paused, is_scrub;
10826 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
10827
10828 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
10829 scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
10830 paused = dsl_scan_is_paused_scrub(scn);
10831 *in_progress = (scanning && !paused &&
10832 is_scrub == (activity == ZPOOL_WAIT_SCRUB));
10833 break;
10834 }
10835 case ZPOOL_WAIT_RAIDZ_EXPAND:
10836 {
10837 vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
10838 *in_progress = (vre != NULL && vre->vre_state == DSS_SCANNING);
10839 break;
10840 }
10841 default:
10842 panic("unrecognized value for activity %d", activity);
10843 }
10844
10845 return (error);
10846 }
10847
10848 static int
10849 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
10850 boolean_t use_tag, uint64_t tag, boolean_t *waited)
10851 {
10852 /*
10853 * The tag is used to distinguish between instances of an activity.
10854 * 'initialize' and 'trim' are the only activities that we use this for.
10855 * The other activities can only have a single instance in progress in a
10856 * pool at one time, making the tag unnecessary.
10857 *
10858 * There can be multiple devices being replaced at once, but since they
10859 * all finish once resilvering finishes, we don't bother keeping track
10860 * of them individually, we just wait for them all to finish.
10861 */
10862 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
10863 activity != ZPOOL_WAIT_TRIM)
10864 return (EINVAL);
10865
10866 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
10867 return (EINVAL);
10868
10869 spa_t *spa;
10870 int error = spa_open(pool, &spa, FTAG);
10871 if (error != 0)
10872 return (error);
10873
10874 /*
10875 * Increment the spa's waiter count so that we can call spa_close and
10876 * still ensure that the spa_t doesn't get freed before this thread is
10877 * finished with it when the pool is exported. We want to call spa_close
10878 * before we start waiting because otherwise the additional ref would
10879 * prevent the pool from being exported or destroyed throughout the
10880 * potentially long wait.
10881 */
10882 mutex_enter(&spa->spa_activities_lock);
10883 spa->spa_waiters++;
10884 spa_close(spa, FTAG);
10885
10886 *waited = B_FALSE;
10887 for (;;) {
10888 boolean_t in_progress;
10889 error = spa_activity_in_progress(spa, activity, use_tag, tag,
10890 &in_progress);
10891
10892 if (error || !in_progress || spa->spa_waiters_cancel)
10893 break;
10894
10895 *waited = B_TRUE;
10896
10897 if (cv_wait_sig(&spa->spa_activities_cv,
10898 &spa->spa_activities_lock) == 0) {
10899 error = EINTR;
10900 break;
10901 }
10902 }
10903
10904 spa->spa_waiters--;
10905 cv_signal(&spa->spa_waiters_cv);
10906 mutex_exit(&spa->spa_activities_lock);
10907
10908 return (error);
10909 }
10910
10911 /*
10912 * Wait for a particular instance of the specified activity to complete, where
10913 * the instance is identified by 'tag'
10914 */
10915 int
10916 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
10917 boolean_t *waited)
10918 {
10919 return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
10920 }
10921
10922 /*
10923 * Wait for all instances of the specified activity complete
10924 */
10925 int
10926 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
10927 {
10928
10929 return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
10930 }
10931
10932 sysevent_t *
10933 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10934 {
10935 sysevent_t *ev = NULL;
10936 #ifdef _KERNEL
10937 nvlist_t *resource;
10938
10939 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
10940 if (resource) {
10941 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
10942 ev->resource = resource;
10943 }
10944 #else
10945 (void) spa, (void) vd, (void) hist_nvl, (void) name;
10946 #endif
10947 return (ev);
10948 }
10949
10950 void
10951 spa_event_post(sysevent_t *ev)
10952 {
10953 #ifdef _KERNEL
10954 if (ev) {
10955 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
10956 kmem_free(ev, sizeof (*ev));
10957 }
10958 #else
10959 (void) ev;
10960 #endif
10961 }
10962
10963 /*
10964 * Post a zevent corresponding to the given sysevent. The 'name' must be one
10965 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
10966 * filled in from the spa and (optionally) the vdev. This doesn't do anything
10967 * in the userland libzpool, as we don't want consumers to misinterpret ztest
10968 * or zdb as real changes.
10969 */
10970 void
10971 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10972 {
10973 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
10974 }
10975
10976 /* state manipulation functions */
10977 EXPORT_SYMBOL(spa_open);
10978 EXPORT_SYMBOL(spa_open_rewind);
10979 EXPORT_SYMBOL(spa_get_stats);
10980 EXPORT_SYMBOL(spa_create);
10981 EXPORT_SYMBOL(spa_import);
10982 EXPORT_SYMBOL(spa_tryimport);
10983 EXPORT_SYMBOL(spa_destroy);
10984 EXPORT_SYMBOL(spa_export);
10985 EXPORT_SYMBOL(spa_reset);
10986 EXPORT_SYMBOL(spa_async_request);
10987 EXPORT_SYMBOL(spa_async_suspend);
10988 EXPORT_SYMBOL(spa_async_resume);
10989 EXPORT_SYMBOL(spa_inject_addref);
10990 EXPORT_SYMBOL(spa_inject_delref);
10991 EXPORT_SYMBOL(spa_scan_stat_init);
10992 EXPORT_SYMBOL(spa_scan_get_stats);
10993
10994 /* device manipulation */
10995 EXPORT_SYMBOL(spa_vdev_add);
10996 EXPORT_SYMBOL(spa_vdev_attach);
10997 EXPORT_SYMBOL(spa_vdev_detach);
10998 EXPORT_SYMBOL(spa_vdev_setpath);
10999 EXPORT_SYMBOL(spa_vdev_setfru);
11000 EXPORT_SYMBOL(spa_vdev_split_mirror);
11001
11002 /* spare statech is global across all pools) */
11003 EXPORT_SYMBOL(spa_spare_add);
11004 EXPORT_SYMBOL(spa_spare_remove);
11005 EXPORT_SYMBOL(spa_spare_exists);
11006 EXPORT_SYMBOL(spa_spare_activate);
11007
11008 /* L2ARC statech is global across all pools) */
11009 EXPORT_SYMBOL(spa_l2cache_add);
11010 EXPORT_SYMBOL(spa_l2cache_remove);
11011 EXPORT_SYMBOL(spa_l2cache_exists);
11012 EXPORT_SYMBOL(spa_l2cache_activate);
11013 EXPORT_SYMBOL(spa_l2cache_drop);
11014
11015 /* scanning */
11016 EXPORT_SYMBOL(spa_scan);
11017 EXPORT_SYMBOL(spa_scan_range);
11018 EXPORT_SYMBOL(spa_scan_stop);
11019
11020 /* spa syncing */
11021 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
11022 EXPORT_SYMBOL(spa_sync_allpools);
11023
11024 /* properties */
11025 EXPORT_SYMBOL(spa_prop_set);
11026 EXPORT_SYMBOL(spa_prop_get);
11027 EXPORT_SYMBOL(spa_prop_clear_bootfs);
11028
11029 /* asynchronous event notification */
11030 EXPORT_SYMBOL(spa_event_notify);
11031
11032 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW,
11033 "Percentage of CPUs to run a metaslab preload taskq");
11034
11035 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
11036 "log2 fraction of arc that can be used by inflight I/Os when "
11037 "verifying pool during import");
11038
11039 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
11040 "Set to traverse metadata on pool import");
11041
11042 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
11043 "Set to traverse data on pool import");
11044
11045 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
11046 "Print vdev tree to zfs_dbgmsg during pool import");
11047
11048 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RW,
11049 "Percentage of CPUs to run an IO worker thread");
11050
11051 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RW,
11052 "Number of threads per IO worker taskqueue");
11053
11054 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
11055 "Allow importing pool with up to this number of missing top-level "
11056 "vdevs (in read-only mode)");
11057
11058 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
11059 ZMOD_RW, "Set the livelist condense zthr to pause");
11060
11061 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
11062 ZMOD_RW, "Set the livelist condense synctask to pause");
11063
11064 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
11065 INT, ZMOD_RW,
11066 "Whether livelist condensing was canceled in the synctask");
11067
11068 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
11069 INT, ZMOD_RW,
11070 "Whether livelist condensing was canceled in the zthr function");
11071
11072 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
11073 ZMOD_RW,
11074 "Whether extra ALLOC blkptrs were added to a livelist entry while it "
11075 "was being condensed");
11076
11077 #ifdef _KERNEL
11078 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_read,
11079 spa_taskq_read_param_set, spa_taskq_read_param_get, ZMOD_RW,
11080 "Configure IO queues for read IO");
11081 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_write,
11082 spa_taskq_write_param_set, spa_taskq_write_param_get, ZMOD_RW,
11083 "Configure IO queues for write IO");
11084 #endif
11085
11086 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_write_tpq, UINT, ZMOD_RW,
11087 "Number of CPUs per write issue taskq");
11088