1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 * Copyright 2016 Toomas Soome <tsoome@me.com> 30 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 31 * Copyright 2018 Joyent, Inc. 32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 33 * Copyright 2017 Joyent, Inc. 34 * Copyright (c) 2017, Intel Corporation. 35 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org> 36 * Copyright (c) 2023 Hewlett Packard Enterprise Development LP. 37 */ 38 39 /* 40 * SPA: Storage Pool Allocator 41 * 42 * This file contains all the routines used when modifying on-disk SPA state. 43 * This includes opening, importing, destroying, exporting a pool, and syncing a 44 * pool. 45 */ 46 47 #include <sys/zfs_context.h> 48 #include <sys/fm/fs/zfs.h> 49 #include <sys/spa_impl.h> 50 #include <sys/zio.h> 51 #include <sys/zio_checksum.h> 52 #include <sys/dmu.h> 53 #include <sys/dmu_tx.h> 54 #include <sys/zap.h> 55 #include <sys/zil.h> 56 #include <sys/brt.h> 57 #include <sys/ddt.h> 58 #include <sys/vdev_impl.h> 59 #include <sys/vdev_removal.h> 60 #include <sys/vdev_indirect_mapping.h> 61 #include <sys/vdev_indirect_births.h> 62 #include <sys/vdev_initialize.h> 63 #include <sys/vdev_rebuild.h> 64 #include <sys/vdev_trim.h> 65 #include <sys/vdev_disk.h> 66 #include <sys/vdev_raidz.h> 67 #include <sys/vdev_draid.h> 68 #include <sys/metaslab.h> 69 #include <sys/metaslab_impl.h> 70 #include <sys/mmp.h> 71 #include <sys/uberblock_impl.h> 72 #include <sys/txg.h> 73 #include <sys/avl.h> 74 #include <sys/bpobj.h> 75 #include <sys/dmu_traverse.h> 76 #include <sys/dmu_objset.h> 77 #include <sys/unique.h> 78 #include <sys/dsl_pool.h> 79 #include <sys/dsl_dataset.h> 80 #include <sys/dsl_dir.h> 81 #include <sys/dsl_prop.h> 82 #include <sys/dsl_synctask.h> 83 #include <sys/fs/zfs.h> 84 #include <sys/arc.h> 85 #include <sys/callb.h> 86 #include <sys/systeminfo.h> 87 #include <sys/zfs_ioctl.h> 88 #include <sys/dsl_scan.h> 89 #include <sys/zfeature.h> 90 #include <sys/dsl_destroy.h> 91 #include <sys/zvol.h> 92 93 #ifdef _KERNEL 94 #include <sys/fm/protocol.h> 95 #include <sys/fm/util.h> 96 #include <sys/callb.h> 97 #include <sys/zone.h> 98 #include <sys/vmsystm.h> 99 #endif /* _KERNEL */ 100 101 #include "zfs_prop.h" 102 #include "zfs_comutil.h" 103 #include <cityhash.h> 104 105 /* 106 * spa_thread() existed on Illumos as a parent thread for the various worker 107 * threads that actually run the pool, as a way to both reference the entire 108 * pool work as a single object, and to share properties like scheduling 109 * options. It has not yet been adapted to Linux or FreeBSD. This define is 110 * used to mark related parts of the code to make things easier for the reader, 111 * and to compile this code out. It can be removed when someone implements it, 112 * moves it to some Illumos-specific place, or removes it entirely. 113 */ 114 #undef HAVE_SPA_THREAD 115 116 /* 117 * The "System Duty Cycle" scheduling class is an Illumos feature to help 118 * prevent CPU-intensive kernel threads from affecting latency on interactive 119 * threads. It doesn't exist on Linux or FreeBSD, so the supporting code is 120 * gated behind a define. On Illumos SDC depends on spa_thread(), but 121 * spa_thread() also has other uses, so this is a separate define. 122 */ 123 #undef HAVE_SYSDC 124 125 /* 126 * The interval, in seconds, at which failed configuration cache file writes 127 * should be retried. 128 */ 129 int zfs_ccw_retry_interval = 300; 130 131 typedef enum zti_modes { 132 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 133 ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */ 134 ZTI_MODE_SYNC, /* sync thread assigned */ 135 ZTI_MODE_NULL, /* don't create a taskq */ 136 ZTI_NMODES 137 } zti_modes_t; 138 139 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 140 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 } 141 #define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 } 142 #define ZTI_SYNC { ZTI_MODE_SYNC, 0, 1 } 143 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 144 145 #define ZTI_N(n) ZTI_P(n, 1) 146 #define ZTI_ONE ZTI_N(1) 147 148 typedef struct zio_taskq_info { 149 zti_modes_t zti_mode; 150 uint_t zti_value; 151 uint_t zti_count; 152 } zio_taskq_info_t; 153 154 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 155 "iss", "iss_h", "int", "int_h" 156 }; 157 158 /* 159 * This table defines the taskq settings for each ZFS I/O type. When 160 * initializing a pool, we use this table to create an appropriately sized 161 * taskq. Some operations are low volume and therefore have a small, static 162 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 163 * macros. Other operations process a large amount of data; the ZTI_SCALE 164 * macro causes us to create a taskq oriented for throughput. Some operations 165 * are so high frequency and short-lived that the taskq itself can become a 166 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 167 * additional degree of parallelism specified by the number of threads per- 168 * taskq and the number of taskqs; when dispatching an event in this case, the 169 * particular taskq is chosen at random. ZTI_SCALE uses a number of taskqs 170 * that scales with the number of CPUs. 171 * 172 * The different taskq priorities are to handle the different contexts (issue 173 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 174 * need to be handled with minimum delay. 175 */ 176 static const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 177 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 178 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 179 { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */ 180 { ZTI_SYNC, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */ 181 { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 182 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 183 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 184 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */ 185 }; 186 187 static void spa_sync_version(void *arg, dmu_tx_t *tx); 188 static void spa_sync_props(void *arg, dmu_tx_t *tx); 189 static boolean_t spa_has_active_shared_spare(spa_t *spa); 190 static int spa_load_impl(spa_t *spa, spa_import_type_t type, 191 const char **ereport); 192 static void spa_vdev_resilver_done(spa_t *spa); 193 194 /* 195 * Percentage of all CPUs that can be used by the metaslab preload taskq. 196 */ 197 static uint_t metaslab_preload_pct = 50; 198 199 static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */ 200 static uint_t zio_taskq_batch_tpq; /* threads per taskq */ 201 202 #ifdef HAVE_SYSDC 203 static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 204 static const uint_t zio_taskq_basedc = 80; /* base duty cycle */ 205 #endif 206 207 #ifdef HAVE_SPA_THREAD 208 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */ 209 #endif 210 211 static uint_t zio_taskq_wr_iss_ncpus = 0; 212 213 /* 214 * Report any spa_load_verify errors found, but do not fail spa_load. 215 * This is used by zdb to analyze non-idle pools. 216 */ 217 boolean_t spa_load_verify_dryrun = B_FALSE; 218 219 /* 220 * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ). 221 * This is used by zdb for spacemaps verification. 222 */ 223 boolean_t spa_mode_readable_spacemaps = B_FALSE; 224 225 /* 226 * This (illegal) pool name is used when temporarily importing a spa_t in order 227 * to get the vdev stats associated with the imported devices. 228 */ 229 #define TRYIMPORT_NAME "$import" 230 231 /* 232 * For debugging purposes: print out vdev tree during pool import. 233 */ 234 static int spa_load_print_vdev_tree = B_FALSE; 235 236 /* 237 * A non-zero value for zfs_max_missing_tvds means that we allow importing 238 * pools with missing top-level vdevs. This is strictly intended for advanced 239 * pool recovery cases since missing data is almost inevitable. Pools with 240 * missing devices can only be imported read-only for safety reasons, and their 241 * fail-mode will be automatically set to "continue". 242 * 243 * With 1 missing vdev we should be able to import the pool and mount all 244 * datasets. User data that was not modified after the missing device has been 245 * added should be recoverable. This means that snapshots created prior to the 246 * addition of that device should be completely intact. 247 * 248 * With 2 missing vdevs, some datasets may fail to mount since there are 249 * dataset statistics that are stored as regular metadata. Some data might be 250 * recoverable if those vdevs were added recently. 251 * 252 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries 253 * may be missing entirely. Chances of data recovery are very low. Note that 254 * there are also risks of performing an inadvertent rewind as we might be 255 * missing all the vdevs with the latest uberblocks. 256 */ 257 uint64_t zfs_max_missing_tvds = 0; 258 259 /* 260 * The parameters below are similar to zfs_max_missing_tvds but are only 261 * intended for a preliminary open of the pool with an untrusted config which 262 * might be incomplete or out-dated. 263 * 264 * We are more tolerant for pools opened from a cachefile since we could have 265 * an out-dated cachefile where a device removal was not registered. 266 * We could have set the limit arbitrarily high but in the case where devices 267 * are really missing we would want to return the proper error codes; we chose 268 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available 269 * and we get a chance to retrieve the trusted config. 270 */ 271 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1; 272 273 /* 274 * In the case where config was assembled by scanning device paths (/dev/dsks 275 * by default) we are less tolerant since all the existing devices should have 276 * been detected and we want spa_load to return the right error codes. 277 */ 278 uint64_t zfs_max_missing_tvds_scan = 0; 279 280 /* 281 * Debugging aid that pauses spa_sync() towards the end. 282 */ 283 static const boolean_t zfs_pause_spa_sync = B_FALSE; 284 285 /* 286 * Variables to indicate the livelist condense zthr func should wait at certain 287 * points for the livelist to be removed - used to test condense/destroy races 288 */ 289 static int zfs_livelist_condense_zthr_pause = 0; 290 static int zfs_livelist_condense_sync_pause = 0; 291 292 /* 293 * Variables to track whether or not condense cancellation has been 294 * triggered in testing. 295 */ 296 static int zfs_livelist_condense_sync_cancel = 0; 297 static int zfs_livelist_condense_zthr_cancel = 0; 298 299 /* 300 * Variable to track whether or not extra ALLOC blkptrs were added to a 301 * livelist entry while it was being condensed (caused by the way we track 302 * remapped blkptrs in dbuf_remap_impl) 303 */ 304 static int zfs_livelist_condense_new_alloc = 0; 305 306 /* 307 * ========================================================================== 308 * SPA properties routines 309 * ========================================================================== 310 */ 311 312 /* 313 * Add a (source=src, propname=propval) list to an nvlist. 314 */ 315 static void 316 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval, 317 uint64_t intval, zprop_source_t src) 318 { 319 const char *propname = zpool_prop_to_name(prop); 320 nvlist_t *propval; 321 322 propval = fnvlist_alloc(); 323 fnvlist_add_uint64(propval, ZPROP_SOURCE, src); 324 325 if (strval != NULL) 326 fnvlist_add_string(propval, ZPROP_VALUE, strval); 327 else 328 fnvlist_add_uint64(propval, ZPROP_VALUE, intval); 329 330 fnvlist_add_nvlist(nvl, propname, propval); 331 nvlist_free(propval); 332 } 333 334 /* 335 * Add a user property (source=src, propname=propval) to an nvlist. 336 */ 337 static void 338 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval, 339 zprop_source_t src) 340 { 341 nvlist_t *propval; 342 343 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 344 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 345 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 346 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 347 nvlist_free(propval); 348 } 349 350 /* 351 * Get property values from the spa configuration. 352 */ 353 static void 354 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 355 { 356 vdev_t *rvd = spa->spa_root_vdev; 357 dsl_pool_t *pool = spa->spa_dsl_pool; 358 uint64_t size, alloc, cap, version; 359 const zprop_source_t src = ZPROP_SRC_NONE; 360 spa_config_dirent_t *dp; 361 metaslab_class_t *mc = spa_normal_class(spa); 362 363 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 364 365 if (rvd != NULL) { 366 alloc = metaslab_class_get_alloc(mc); 367 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 368 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 369 alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa)); 370 371 size = metaslab_class_get_space(mc); 372 size += metaslab_class_get_space(spa_special_class(spa)); 373 size += metaslab_class_get_space(spa_dedup_class(spa)); 374 size += metaslab_class_get_space(spa_embedded_log_class(spa)); 375 376 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 377 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 378 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 379 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 380 size - alloc, src); 381 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL, 382 spa->spa_checkpoint_info.sci_dspace, src); 383 384 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 385 metaslab_class_fragmentation(mc), src); 386 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 387 metaslab_class_expandable_space(mc), src); 388 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 389 (spa_mode(spa) == SPA_MODE_READ), src); 390 391 cap = (size == 0) ? 0 : (alloc * 100 / size); 392 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 393 394 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 395 ddt_get_pool_dedup_ratio(spa), src); 396 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONEUSED, NULL, 397 brt_get_used(spa), src); 398 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONESAVED, NULL, 399 brt_get_saved(spa), src); 400 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONERATIO, NULL, 401 brt_get_ratio(spa), src); 402 403 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 404 rvd->vdev_state, src); 405 406 version = spa_version(spa); 407 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) { 408 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, 409 version, ZPROP_SRC_DEFAULT); 410 } else { 411 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, 412 version, ZPROP_SRC_LOCAL); 413 } 414 spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID, 415 NULL, spa_load_guid(spa), src); 416 } 417 418 if (pool != NULL) { 419 /* 420 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 421 * when opening pools before this version freedir will be NULL. 422 */ 423 if (pool->dp_free_dir != NULL) { 424 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 425 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 426 src); 427 } else { 428 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 429 NULL, 0, src); 430 } 431 432 if (pool->dp_leak_dir != NULL) { 433 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 434 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 435 src); 436 } else { 437 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 438 NULL, 0, src); 439 } 440 } 441 442 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 443 444 if (spa->spa_comment != NULL) { 445 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 446 0, ZPROP_SRC_LOCAL); 447 } 448 449 if (spa->spa_compatibility != NULL) { 450 spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY, 451 spa->spa_compatibility, 0, ZPROP_SRC_LOCAL); 452 } 453 454 if (spa->spa_root != NULL) 455 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 456 0, ZPROP_SRC_LOCAL); 457 458 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 459 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 460 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 461 } else { 462 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 463 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 464 } 465 466 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) { 467 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, 468 DNODE_MAX_SIZE, ZPROP_SRC_NONE); 469 } else { 470 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, 471 DNODE_MIN_SIZE, ZPROP_SRC_NONE); 472 } 473 474 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 475 if (dp->scd_path == NULL) { 476 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 477 "none", 0, ZPROP_SRC_LOCAL); 478 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 479 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 480 dp->scd_path, 0, ZPROP_SRC_LOCAL); 481 } 482 } 483 } 484 485 /* 486 * Get zpool property values. 487 */ 488 int 489 spa_prop_get(spa_t *spa, nvlist_t **nvp) 490 { 491 objset_t *mos = spa->spa_meta_objset; 492 zap_cursor_t zc; 493 zap_attribute_t za; 494 dsl_pool_t *dp; 495 int err; 496 497 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP); 498 if (err) 499 return (err); 500 501 dp = spa_get_dsl(spa); 502 dsl_pool_config_enter(dp, FTAG); 503 mutex_enter(&spa->spa_props_lock); 504 505 /* 506 * Get properties from the spa config. 507 */ 508 spa_prop_get_config(spa, nvp); 509 510 /* If no pool property object, no more prop to get. */ 511 if (mos == NULL || spa->spa_pool_props_object == 0) 512 goto out; 513 514 /* 515 * Get properties from the MOS pool property object. 516 */ 517 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 518 (err = zap_cursor_retrieve(&zc, &za)) == 0; 519 zap_cursor_advance(&zc)) { 520 uint64_t intval = 0; 521 char *strval = NULL; 522 zprop_source_t src = ZPROP_SRC_DEFAULT; 523 zpool_prop_t prop; 524 525 if ((prop = zpool_name_to_prop(za.za_name)) == 526 ZPOOL_PROP_INVAL && !zfs_prop_user(za.za_name)) 527 continue; 528 529 switch (za.za_integer_length) { 530 case 8: 531 /* integer property */ 532 if (za.za_first_integer != 533 zpool_prop_default_numeric(prop)) 534 src = ZPROP_SRC_LOCAL; 535 536 if (prop == ZPOOL_PROP_BOOTFS) { 537 dsl_dataset_t *ds = NULL; 538 539 err = dsl_dataset_hold_obj(dp, 540 za.za_first_integer, FTAG, &ds); 541 if (err != 0) 542 break; 543 544 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, 545 KM_SLEEP); 546 dsl_dataset_name(ds, strval); 547 dsl_dataset_rele(ds, FTAG); 548 } else { 549 strval = NULL; 550 intval = za.za_first_integer; 551 } 552 553 spa_prop_add_list(*nvp, prop, strval, intval, src); 554 555 if (strval != NULL) 556 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); 557 558 break; 559 560 case 1: 561 /* string property */ 562 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 563 err = zap_lookup(mos, spa->spa_pool_props_object, 564 za.za_name, 1, za.za_num_integers, strval); 565 if (err) { 566 kmem_free(strval, za.za_num_integers); 567 break; 568 } 569 if (prop != ZPOOL_PROP_INVAL) { 570 spa_prop_add_list(*nvp, prop, strval, 0, src); 571 } else { 572 src = ZPROP_SRC_LOCAL; 573 spa_prop_add_user(*nvp, za.za_name, strval, 574 src); 575 } 576 kmem_free(strval, za.za_num_integers); 577 break; 578 579 default: 580 break; 581 } 582 } 583 zap_cursor_fini(&zc); 584 out: 585 mutex_exit(&spa->spa_props_lock); 586 dsl_pool_config_exit(dp, FTAG); 587 if (err && err != ENOENT) { 588 nvlist_free(*nvp); 589 *nvp = NULL; 590 return (err); 591 } 592 593 return (0); 594 } 595 596 /* 597 * Validate the given pool properties nvlist and modify the list 598 * for the property values to be set. 599 */ 600 static int 601 spa_prop_validate(spa_t *spa, nvlist_t *props) 602 { 603 nvpair_t *elem; 604 int error = 0, reset_bootfs = 0; 605 uint64_t objnum = 0; 606 boolean_t has_feature = B_FALSE; 607 608 elem = NULL; 609 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 610 uint64_t intval; 611 const char *strval, *slash, *check, *fname; 612 const char *propname = nvpair_name(elem); 613 zpool_prop_t prop = zpool_name_to_prop(propname); 614 615 switch (prop) { 616 case ZPOOL_PROP_INVAL: 617 /* 618 * Sanitize the input. 619 */ 620 if (zfs_prop_user(propname)) { 621 if (strlen(propname) >= ZAP_MAXNAMELEN) { 622 error = SET_ERROR(ENAMETOOLONG); 623 break; 624 } 625 626 if (strlen(fnvpair_value_string(elem)) >= 627 ZAP_MAXVALUELEN) { 628 error = SET_ERROR(E2BIG); 629 break; 630 } 631 } else if (zpool_prop_feature(propname)) { 632 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 633 error = SET_ERROR(EINVAL); 634 break; 635 } 636 637 if (nvpair_value_uint64(elem, &intval) != 0) { 638 error = SET_ERROR(EINVAL); 639 break; 640 } 641 642 if (intval != 0) { 643 error = SET_ERROR(EINVAL); 644 break; 645 } 646 647 fname = strchr(propname, '@') + 1; 648 if (zfeature_lookup_name(fname, NULL) != 0) { 649 error = SET_ERROR(EINVAL); 650 break; 651 } 652 653 has_feature = B_TRUE; 654 } else { 655 error = SET_ERROR(EINVAL); 656 break; 657 } 658 break; 659 660 case ZPOOL_PROP_VERSION: 661 error = nvpair_value_uint64(elem, &intval); 662 if (!error && 663 (intval < spa_version(spa) || 664 intval > SPA_VERSION_BEFORE_FEATURES || 665 has_feature)) 666 error = SET_ERROR(EINVAL); 667 break; 668 669 case ZPOOL_PROP_DELEGATION: 670 case ZPOOL_PROP_AUTOREPLACE: 671 case ZPOOL_PROP_LISTSNAPS: 672 case ZPOOL_PROP_AUTOEXPAND: 673 case ZPOOL_PROP_AUTOTRIM: 674 error = nvpair_value_uint64(elem, &intval); 675 if (!error && intval > 1) 676 error = SET_ERROR(EINVAL); 677 break; 678 679 case ZPOOL_PROP_MULTIHOST: 680 error = nvpair_value_uint64(elem, &intval); 681 if (!error && intval > 1) 682 error = SET_ERROR(EINVAL); 683 684 if (!error) { 685 uint32_t hostid = zone_get_hostid(NULL); 686 if (hostid) 687 spa->spa_hostid = hostid; 688 else 689 error = SET_ERROR(ENOTSUP); 690 } 691 692 break; 693 694 case ZPOOL_PROP_BOOTFS: 695 /* 696 * If the pool version is less than SPA_VERSION_BOOTFS, 697 * or the pool is still being created (version == 0), 698 * the bootfs property cannot be set. 699 */ 700 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 701 error = SET_ERROR(ENOTSUP); 702 break; 703 } 704 705 /* 706 * Make sure the vdev config is bootable 707 */ 708 if (!vdev_is_bootable(spa->spa_root_vdev)) { 709 error = SET_ERROR(ENOTSUP); 710 break; 711 } 712 713 reset_bootfs = 1; 714 715 error = nvpair_value_string(elem, &strval); 716 717 if (!error) { 718 objset_t *os; 719 720 if (strval == NULL || strval[0] == '\0') { 721 objnum = zpool_prop_default_numeric( 722 ZPOOL_PROP_BOOTFS); 723 break; 724 } 725 726 error = dmu_objset_hold(strval, FTAG, &os); 727 if (error != 0) 728 break; 729 730 /* Must be ZPL. */ 731 if (dmu_objset_type(os) != DMU_OST_ZFS) { 732 error = SET_ERROR(ENOTSUP); 733 } else { 734 objnum = dmu_objset_id(os); 735 } 736 dmu_objset_rele(os, FTAG); 737 } 738 break; 739 740 case ZPOOL_PROP_FAILUREMODE: 741 error = nvpair_value_uint64(elem, &intval); 742 if (!error && intval > ZIO_FAILURE_MODE_PANIC) 743 error = SET_ERROR(EINVAL); 744 745 /* 746 * This is a special case which only occurs when 747 * the pool has completely failed. This allows 748 * the user to change the in-core failmode property 749 * without syncing it out to disk (I/Os might 750 * currently be blocked). We do this by returning 751 * EIO to the caller (spa_prop_set) to trick it 752 * into thinking we encountered a property validation 753 * error. 754 */ 755 if (!error && spa_suspended(spa)) { 756 spa->spa_failmode = intval; 757 error = SET_ERROR(EIO); 758 } 759 break; 760 761 case ZPOOL_PROP_CACHEFILE: 762 if ((error = nvpair_value_string(elem, &strval)) != 0) 763 break; 764 765 if (strval[0] == '\0') 766 break; 767 768 if (strcmp(strval, "none") == 0) 769 break; 770 771 if (strval[0] != '/') { 772 error = SET_ERROR(EINVAL); 773 break; 774 } 775 776 slash = strrchr(strval, '/'); 777 ASSERT(slash != NULL); 778 779 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 780 strcmp(slash, "/..") == 0) 781 error = SET_ERROR(EINVAL); 782 break; 783 784 case ZPOOL_PROP_COMMENT: 785 if ((error = nvpair_value_string(elem, &strval)) != 0) 786 break; 787 for (check = strval; *check != '\0'; check++) { 788 if (!isprint(*check)) { 789 error = SET_ERROR(EINVAL); 790 break; 791 } 792 } 793 if (strlen(strval) > ZPROP_MAX_COMMENT) 794 error = SET_ERROR(E2BIG); 795 break; 796 797 default: 798 break; 799 } 800 801 if (error) 802 break; 803 } 804 805 (void) nvlist_remove_all(props, 806 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO)); 807 808 if (!error && reset_bootfs) { 809 error = nvlist_remove(props, 810 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 811 812 if (!error) { 813 error = nvlist_add_uint64(props, 814 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 815 } 816 } 817 818 return (error); 819 } 820 821 void 822 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 823 { 824 const char *cachefile; 825 spa_config_dirent_t *dp; 826 827 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 828 &cachefile) != 0) 829 return; 830 831 dp = kmem_alloc(sizeof (spa_config_dirent_t), 832 KM_SLEEP); 833 834 if (cachefile[0] == '\0') 835 dp->scd_path = spa_strdup(spa_config_path); 836 else if (strcmp(cachefile, "none") == 0) 837 dp->scd_path = NULL; 838 else 839 dp->scd_path = spa_strdup(cachefile); 840 841 list_insert_head(&spa->spa_config_list, dp); 842 if (need_sync) 843 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 844 } 845 846 int 847 spa_prop_set(spa_t *spa, nvlist_t *nvp) 848 { 849 int error; 850 nvpair_t *elem = NULL; 851 boolean_t need_sync = B_FALSE; 852 853 if ((error = spa_prop_validate(spa, nvp)) != 0) 854 return (error); 855 856 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 857 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 858 859 if (prop == ZPOOL_PROP_CACHEFILE || 860 prop == ZPOOL_PROP_ALTROOT || 861 prop == ZPOOL_PROP_READONLY) 862 continue; 863 864 if (prop == ZPOOL_PROP_INVAL && 865 zfs_prop_user(nvpair_name(elem))) { 866 need_sync = B_TRUE; 867 break; 868 } 869 870 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) { 871 uint64_t ver = 0; 872 873 if (prop == ZPOOL_PROP_VERSION) { 874 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 875 } else { 876 ASSERT(zpool_prop_feature(nvpair_name(elem))); 877 ver = SPA_VERSION_FEATURES; 878 need_sync = B_TRUE; 879 } 880 881 /* Save time if the version is already set. */ 882 if (ver == spa_version(spa)) 883 continue; 884 885 /* 886 * In addition to the pool directory object, we might 887 * create the pool properties object, the features for 888 * read object, the features for write object, or the 889 * feature descriptions object. 890 */ 891 error = dsl_sync_task(spa->spa_name, NULL, 892 spa_sync_version, &ver, 893 6, ZFS_SPACE_CHECK_RESERVED); 894 if (error) 895 return (error); 896 continue; 897 } 898 899 need_sync = B_TRUE; 900 break; 901 } 902 903 if (need_sync) { 904 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 905 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 906 } 907 908 return (0); 909 } 910 911 /* 912 * If the bootfs property value is dsobj, clear it. 913 */ 914 void 915 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 916 { 917 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 918 VERIFY(zap_remove(spa->spa_meta_objset, 919 spa->spa_pool_props_object, 920 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 921 spa->spa_bootfs = 0; 922 } 923 } 924 925 static int 926 spa_change_guid_check(void *arg, dmu_tx_t *tx) 927 { 928 uint64_t *newguid __maybe_unused = arg; 929 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 930 vdev_t *rvd = spa->spa_root_vdev; 931 uint64_t vdev_state; 932 933 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 934 int error = (spa_has_checkpoint(spa)) ? 935 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 936 return (SET_ERROR(error)); 937 } 938 939 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 940 vdev_state = rvd->vdev_state; 941 spa_config_exit(spa, SCL_STATE, FTAG); 942 943 if (vdev_state != VDEV_STATE_HEALTHY) 944 return (SET_ERROR(ENXIO)); 945 946 ASSERT3U(spa_guid(spa), !=, *newguid); 947 948 return (0); 949 } 950 951 static void 952 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 953 { 954 uint64_t *newguid = arg; 955 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 956 uint64_t oldguid; 957 vdev_t *rvd = spa->spa_root_vdev; 958 959 oldguid = spa_guid(spa); 960 961 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 962 rvd->vdev_guid = *newguid; 963 rvd->vdev_guid_sum += (*newguid - oldguid); 964 vdev_config_dirty(rvd); 965 spa_config_exit(spa, SCL_STATE, FTAG); 966 967 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 968 (u_longlong_t)oldguid, (u_longlong_t)*newguid); 969 } 970 971 /* 972 * Change the GUID for the pool. This is done so that we can later 973 * re-import a pool built from a clone of our own vdevs. We will modify 974 * the root vdev's guid, our own pool guid, and then mark all of our 975 * vdevs dirty. Note that we must make sure that all our vdevs are 976 * online when we do this, or else any vdevs that weren't present 977 * would be orphaned from our pool. We are also going to issue a 978 * sysevent to update any watchers. 979 */ 980 int 981 spa_change_guid(spa_t *spa) 982 { 983 int error; 984 uint64_t guid; 985 986 mutex_enter(&spa->spa_vdev_top_lock); 987 mutex_enter(&spa_namespace_lock); 988 guid = spa_generate_guid(NULL); 989 990 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 991 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 992 993 if (error == 0) { 994 /* 995 * Clear the kobj flag from all the vdevs to allow 996 * vdev_cache_process_kobj_evt() to post events to all the 997 * vdevs since GUID is updated. 998 */ 999 vdev_clear_kobj_evt(spa->spa_root_vdev); 1000 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 1001 vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]); 1002 1003 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); 1004 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID); 1005 } 1006 1007 mutex_exit(&spa_namespace_lock); 1008 mutex_exit(&spa->spa_vdev_top_lock); 1009 1010 return (error); 1011 } 1012 1013 /* 1014 * ========================================================================== 1015 * SPA state manipulation (open/create/destroy/import/export) 1016 * ========================================================================== 1017 */ 1018 1019 static int 1020 spa_error_entry_compare(const void *a, const void *b) 1021 { 1022 const spa_error_entry_t *sa = (const spa_error_entry_t *)a; 1023 const spa_error_entry_t *sb = (const spa_error_entry_t *)b; 1024 int ret; 1025 1026 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark, 1027 sizeof (zbookmark_phys_t)); 1028 1029 return (TREE_ISIGN(ret)); 1030 } 1031 1032 /* 1033 * Utility function which retrieves copies of the current logs and 1034 * re-initializes them in the process. 1035 */ 1036 void 1037 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 1038 { 1039 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 1040 1041 memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t)); 1042 memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t)); 1043 1044 avl_create(&spa->spa_errlist_scrub, 1045 spa_error_entry_compare, sizeof (spa_error_entry_t), 1046 offsetof(spa_error_entry_t, se_avl)); 1047 avl_create(&spa->spa_errlist_last, 1048 spa_error_entry_compare, sizeof (spa_error_entry_t), 1049 offsetof(spa_error_entry_t, se_avl)); 1050 } 1051 1052 static void 1053 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 1054 { 1055 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 1056 enum zti_modes mode = ztip->zti_mode; 1057 uint_t value = ztip->zti_value; 1058 uint_t count = ztip->zti_count; 1059 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1060 uint_t cpus, flags = TASKQ_DYNAMIC; 1061 1062 switch (mode) { 1063 case ZTI_MODE_FIXED: 1064 ASSERT3U(value, >, 0); 1065 break; 1066 1067 case ZTI_MODE_SYNC: 1068 1069 /* 1070 * Create one wr_iss taskq for every 'zio_taskq_wr_iss_ncpus', 1071 * not to exceed the number of spa allocators. 1072 */ 1073 if (zio_taskq_wr_iss_ncpus == 0) { 1074 count = MAX(boot_ncpus / spa->spa_alloc_count, 1); 1075 } else { 1076 count = MAX(1, 1077 boot_ncpus / MAX(1, zio_taskq_wr_iss_ncpus)); 1078 } 1079 count = MAX(count, (zio_taskq_batch_pct + 99) / 100); 1080 count = MIN(count, spa->spa_alloc_count); 1081 1082 /* 1083 * zio_taskq_batch_pct is unbounded and may exceed 100%, but no 1084 * single taskq may have more threads than 100% of online cpus. 1085 */ 1086 value = (zio_taskq_batch_pct + count / 2) / count; 1087 value = MIN(value, 100); 1088 flags |= TASKQ_THREADS_CPU_PCT; 1089 break; 1090 1091 case ZTI_MODE_SCALE: 1092 flags |= TASKQ_THREADS_CPU_PCT; 1093 /* 1094 * We want more taskqs to reduce lock contention, but we want 1095 * less for better request ordering and CPU utilization. 1096 */ 1097 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100); 1098 if (zio_taskq_batch_tpq > 0) { 1099 count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) / 1100 zio_taskq_batch_tpq); 1101 } else { 1102 /* 1103 * Prefer 6 threads per taskq, but no more taskqs 1104 * than threads in them on large systems. For 80%: 1105 * 1106 * taskq taskq total 1107 * cpus taskqs percent threads threads 1108 * ------- ------- ------- ------- ------- 1109 * 1 1 80% 1 1 1110 * 2 1 80% 1 1 1111 * 4 1 80% 3 3 1112 * 8 2 40% 3 6 1113 * 16 3 27% 4 12 1114 * 32 5 16% 5 25 1115 * 64 7 11% 7 49 1116 * 128 10 8% 10 100 1117 * 256 14 6% 15 210 1118 */ 1119 count = 1 + cpus / 6; 1120 while (count * count > cpus) 1121 count--; 1122 } 1123 /* Limit each taskq within 100% to not trigger assertion. */ 1124 count = MAX(count, (zio_taskq_batch_pct + 99) / 100); 1125 value = (zio_taskq_batch_pct + count / 2) / count; 1126 break; 1127 1128 case ZTI_MODE_NULL: 1129 tqs->stqs_count = 0; 1130 tqs->stqs_taskq = NULL; 1131 return; 1132 1133 default: 1134 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 1135 "spa_taskqs_init()", 1136 zio_type_name[t], zio_taskq_types[q], mode, value); 1137 break; 1138 } 1139 1140 ASSERT3U(count, >, 0); 1141 tqs->stqs_count = count; 1142 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 1143 1144 for (uint_t i = 0; i < count; i++) { 1145 taskq_t *tq; 1146 char name[32]; 1147 1148 if (count > 1) 1149 (void) snprintf(name, sizeof (name), "%s_%s_%u", 1150 zio_type_name[t], zio_taskq_types[q], i); 1151 else 1152 (void) snprintf(name, sizeof (name), "%s_%s", 1153 zio_type_name[t], zio_taskq_types[q]); 1154 1155 #ifdef HAVE_SYSDC 1156 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 1157 (void) zio_taskq_basedc; 1158 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 1159 spa->spa_proc, zio_taskq_basedc, flags); 1160 } else { 1161 #endif 1162 pri_t pri = maxclsyspri; 1163 /* 1164 * The write issue taskq can be extremely CPU 1165 * intensive. Run it at slightly less important 1166 * priority than the other taskqs. 1167 * 1168 * Under Linux and FreeBSD this means incrementing 1169 * the priority value as opposed to platforms like 1170 * illumos where it should be decremented. 1171 * 1172 * On FreeBSD, if priorities divided by four (RQ_PPQ) 1173 * are equal then a difference between them is 1174 * insignificant. 1175 */ 1176 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) { 1177 #if defined(__linux__) 1178 pri++; 1179 #elif defined(__FreeBSD__) 1180 pri += 4; 1181 #else 1182 #error "unknown OS" 1183 #endif 1184 } 1185 tq = taskq_create_proc(name, value, pri, 50, 1186 INT_MAX, spa->spa_proc, flags); 1187 #ifdef HAVE_SYSDC 1188 } 1189 #endif 1190 1191 tqs->stqs_taskq[i] = tq; 1192 } 1193 } 1194 1195 static void 1196 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 1197 { 1198 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1199 1200 if (tqs->stqs_taskq == NULL) { 1201 ASSERT3U(tqs->stqs_count, ==, 0); 1202 return; 1203 } 1204 1205 for (uint_t i = 0; i < tqs->stqs_count; i++) { 1206 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 1207 taskq_destroy(tqs->stqs_taskq[i]); 1208 } 1209 1210 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 1211 tqs->stqs_taskq = NULL; 1212 } 1213 1214 /* 1215 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 1216 * Note that a type may have multiple discrete taskqs to avoid lock contention 1217 * on the taskq itself. 1218 */ 1219 static taskq_t * 1220 spa_taskq_dispatch_select(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 1221 zio_t *zio) 1222 { 1223 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1224 taskq_t *tq; 1225 1226 ASSERT3P(tqs->stqs_taskq, !=, NULL); 1227 ASSERT3U(tqs->stqs_count, !=, 0); 1228 1229 if ((t == ZIO_TYPE_WRITE) && (q == ZIO_TASKQ_ISSUE) && 1230 (zio != NULL) && (zio->io_wr_iss_tq != NULL)) { 1231 /* dispatch to assigned write issue taskq */ 1232 tq = zio->io_wr_iss_tq; 1233 return (tq); 1234 } 1235 1236 if (tqs->stqs_count == 1) { 1237 tq = tqs->stqs_taskq[0]; 1238 } else { 1239 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count]; 1240 } 1241 return (tq); 1242 } 1243 1244 void 1245 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 1246 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent, 1247 zio_t *zio) 1248 { 1249 taskq_t *tq = spa_taskq_dispatch_select(spa, t, q, zio); 1250 taskq_dispatch_ent(tq, func, arg, flags, ent); 1251 } 1252 1253 /* 1254 * Same as spa_taskq_dispatch_ent() but block on the task until completion. 1255 */ 1256 void 1257 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 1258 task_func_t *func, void *arg, uint_t flags) 1259 { 1260 taskq_t *tq = spa_taskq_dispatch_select(spa, t, q, NULL); 1261 taskqid_t id = taskq_dispatch(tq, func, arg, flags); 1262 if (id) 1263 taskq_wait_id(tq, id); 1264 } 1265 1266 static void 1267 spa_create_zio_taskqs(spa_t *spa) 1268 { 1269 for (int t = 0; t < ZIO_TYPES; t++) { 1270 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1271 spa_taskqs_init(spa, t, q); 1272 } 1273 } 1274 } 1275 1276 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD) 1277 static void 1278 spa_thread(void *arg) 1279 { 1280 psetid_t zio_taskq_psrset_bind = PS_NONE; 1281 callb_cpr_t cprinfo; 1282 1283 spa_t *spa = arg; 1284 user_t *pu = PTOU(curproc); 1285 1286 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 1287 spa->spa_name); 1288 1289 ASSERT(curproc != &p0); 1290 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 1291 "zpool-%s", spa->spa_name); 1292 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 1293 1294 /* bind this thread to the requested psrset */ 1295 if (zio_taskq_psrset_bind != PS_NONE) { 1296 pool_lock(); 1297 mutex_enter(&cpu_lock); 1298 mutex_enter(&pidlock); 1299 mutex_enter(&curproc->p_lock); 1300 1301 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 1302 0, NULL, NULL) == 0) { 1303 curthread->t_bind_pset = zio_taskq_psrset_bind; 1304 } else { 1305 cmn_err(CE_WARN, 1306 "Couldn't bind process for zfs pool \"%s\" to " 1307 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1308 } 1309 1310 mutex_exit(&curproc->p_lock); 1311 mutex_exit(&pidlock); 1312 mutex_exit(&cpu_lock); 1313 pool_unlock(); 1314 } 1315 1316 #ifdef HAVE_SYSDC 1317 if (zio_taskq_sysdc) { 1318 sysdc_thread_enter(curthread, 100, 0); 1319 } 1320 #endif 1321 1322 spa->spa_proc = curproc; 1323 spa->spa_did = curthread->t_did; 1324 1325 spa_create_zio_taskqs(spa); 1326 1327 mutex_enter(&spa->spa_proc_lock); 1328 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1329 1330 spa->spa_proc_state = SPA_PROC_ACTIVE; 1331 cv_broadcast(&spa->spa_proc_cv); 1332 1333 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1334 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1335 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1336 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1337 1338 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1339 spa->spa_proc_state = SPA_PROC_GONE; 1340 spa->spa_proc = &p0; 1341 cv_broadcast(&spa->spa_proc_cv); 1342 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1343 1344 mutex_enter(&curproc->p_lock); 1345 lwp_exit(); 1346 } 1347 #endif 1348 1349 extern metaslab_ops_t *metaslab_allocator(spa_t *spa); 1350 1351 /* 1352 * Activate an uninitialized pool. 1353 */ 1354 static void 1355 spa_activate(spa_t *spa, spa_mode_t mode) 1356 { 1357 metaslab_ops_t *msp = metaslab_allocator(spa); 1358 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1359 1360 spa->spa_state = POOL_STATE_ACTIVE; 1361 spa->spa_mode = mode; 1362 spa->spa_read_spacemaps = spa_mode_readable_spacemaps; 1363 1364 spa->spa_normal_class = metaslab_class_create(spa, msp); 1365 spa->spa_log_class = metaslab_class_create(spa, msp); 1366 spa->spa_embedded_log_class = metaslab_class_create(spa, msp); 1367 spa->spa_special_class = metaslab_class_create(spa, msp); 1368 spa->spa_dedup_class = metaslab_class_create(spa, msp); 1369 1370 /* Try to create a covering process */ 1371 mutex_enter(&spa->spa_proc_lock); 1372 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1373 ASSERT(spa->spa_proc == &p0); 1374 spa->spa_did = 0; 1375 1376 #ifdef HAVE_SPA_THREAD 1377 /* Only create a process if we're going to be around a while. */ 1378 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1379 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1380 NULL, 0) == 0) { 1381 spa->spa_proc_state = SPA_PROC_CREATED; 1382 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1383 cv_wait(&spa->spa_proc_cv, 1384 &spa->spa_proc_lock); 1385 } 1386 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1387 ASSERT(spa->spa_proc != &p0); 1388 ASSERT(spa->spa_did != 0); 1389 } else { 1390 #ifdef _KERNEL 1391 cmn_err(CE_WARN, 1392 "Couldn't create process for zfs pool \"%s\"\n", 1393 spa->spa_name); 1394 #endif 1395 } 1396 } 1397 #endif /* HAVE_SPA_THREAD */ 1398 mutex_exit(&spa->spa_proc_lock); 1399 1400 /* If we didn't create a process, we need to create our taskqs. */ 1401 if (spa->spa_proc == &p0) { 1402 spa_create_zio_taskqs(spa); 1403 } 1404 1405 for (size_t i = 0; i < TXG_SIZE; i++) { 1406 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 1407 ZIO_FLAG_CANFAIL); 1408 } 1409 1410 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1411 offsetof(vdev_t, vdev_config_dirty_node)); 1412 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1413 offsetof(objset_t, os_evicting_node)); 1414 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1415 offsetof(vdev_t, vdev_state_dirty_node)); 1416 1417 txg_list_create(&spa->spa_vdev_txg_list, spa, 1418 offsetof(struct vdev, vdev_txg_node)); 1419 1420 avl_create(&spa->spa_errlist_scrub, 1421 spa_error_entry_compare, sizeof (spa_error_entry_t), 1422 offsetof(spa_error_entry_t, se_avl)); 1423 avl_create(&spa->spa_errlist_last, 1424 spa_error_entry_compare, sizeof (spa_error_entry_t), 1425 offsetof(spa_error_entry_t, se_avl)); 1426 avl_create(&spa->spa_errlist_healed, 1427 spa_error_entry_compare, sizeof (spa_error_entry_t), 1428 offsetof(spa_error_entry_t, se_avl)); 1429 1430 spa_activate_os(spa); 1431 1432 spa_keystore_init(&spa->spa_keystore); 1433 1434 /* 1435 * This taskq is used to perform zvol-minor-related tasks 1436 * asynchronously. This has several advantages, including easy 1437 * resolution of various deadlocks. 1438 * 1439 * The taskq must be single threaded to ensure tasks are always 1440 * processed in the order in which they were dispatched. 1441 * 1442 * A taskq per pool allows one to keep the pools independent. 1443 * This way if one pool is suspended, it will not impact another. 1444 * 1445 * The preferred location to dispatch a zvol minor task is a sync 1446 * task. In this context, there is easy access to the spa_t and minimal 1447 * error handling is required because the sync task must succeed. 1448 */ 1449 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri, 1450 1, INT_MAX, 0); 1451 1452 /* 1453 * The taskq to preload metaslabs. 1454 */ 1455 spa->spa_metaslab_taskq = taskq_create("z_metaslab", 1456 metaslab_preload_pct, maxclsyspri, 1, INT_MAX, 1457 TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); 1458 1459 /* 1460 * Taskq dedicated to prefetcher threads: this is used to prevent the 1461 * pool traverse code from monopolizing the global (and limited) 1462 * system_taskq by inappropriately scheduling long running tasks on it. 1463 */ 1464 spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100, 1465 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); 1466 1467 /* 1468 * The taskq to upgrade datasets in this pool. Currently used by 1469 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA. 1470 */ 1471 spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100, 1472 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); 1473 } 1474 1475 /* 1476 * Opposite of spa_activate(). 1477 */ 1478 static void 1479 spa_deactivate(spa_t *spa) 1480 { 1481 ASSERT(spa->spa_sync_on == B_FALSE); 1482 ASSERT(spa->spa_dsl_pool == NULL); 1483 ASSERT(spa->spa_root_vdev == NULL); 1484 ASSERT(spa->spa_async_zio_root == NULL); 1485 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1486 1487 spa_evicting_os_wait(spa); 1488 1489 if (spa->spa_zvol_taskq) { 1490 taskq_destroy(spa->spa_zvol_taskq); 1491 spa->spa_zvol_taskq = NULL; 1492 } 1493 1494 if (spa->spa_metaslab_taskq) { 1495 taskq_destroy(spa->spa_metaslab_taskq); 1496 spa->spa_metaslab_taskq = NULL; 1497 } 1498 1499 if (spa->spa_prefetch_taskq) { 1500 taskq_destroy(spa->spa_prefetch_taskq); 1501 spa->spa_prefetch_taskq = NULL; 1502 } 1503 1504 if (spa->spa_upgrade_taskq) { 1505 taskq_destroy(spa->spa_upgrade_taskq); 1506 spa->spa_upgrade_taskq = NULL; 1507 } 1508 1509 txg_list_destroy(&spa->spa_vdev_txg_list); 1510 1511 list_destroy(&spa->spa_config_dirty_list); 1512 list_destroy(&spa->spa_evicting_os_list); 1513 list_destroy(&spa->spa_state_dirty_list); 1514 1515 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 1516 1517 for (int t = 0; t < ZIO_TYPES; t++) { 1518 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1519 spa_taskqs_fini(spa, t, q); 1520 } 1521 } 1522 1523 for (size_t i = 0; i < TXG_SIZE; i++) { 1524 ASSERT3P(spa->spa_txg_zio[i], !=, NULL); 1525 VERIFY0(zio_wait(spa->spa_txg_zio[i])); 1526 spa->spa_txg_zio[i] = NULL; 1527 } 1528 1529 metaslab_class_destroy(spa->spa_normal_class); 1530 spa->spa_normal_class = NULL; 1531 1532 metaslab_class_destroy(spa->spa_log_class); 1533 spa->spa_log_class = NULL; 1534 1535 metaslab_class_destroy(spa->spa_embedded_log_class); 1536 spa->spa_embedded_log_class = NULL; 1537 1538 metaslab_class_destroy(spa->spa_special_class); 1539 spa->spa_special_class = NULL; 1540 1541 metaslab_class_destroy(spa->spa_dedup_class); 1542 spa->spa_dedup_class = NULL; 1543 1544 /* 1545 * If this was part of an import or the open otherwise failed, we may 1546 * still have errors left in the queues. Empty them just in case. 1547 */ 1548 spa_errlog_drain(spa); 1549 avl_destroy(&spa->spa_errlist_scrub); 1550 avl_destroy(&spa->spa_errlist_last); 1551 avl_destroy(&spa->spa_errlist_healed); 1552 1553 spa_keystore_fini(&spa->spa_keystore); 1554 1555 spa->spa_state = POOL_STATE_UNINITIALIZED; 1556 1557 mutex_enter(&spa->spa_proc_lock); 1558 if (spa->spa_proc_state != SPA_PROC_NONE) { 1559 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1560 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1561 cv_broadcast(&spa->spa_proc_cv); 1562 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1563 ASSERT(spa->spa_proc != &p0); 1564 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1565 } 1566 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1567 spa->spa_proc_state = SPA_PROC_NONE; 1568 } 1569 ASSERT(spa->spa_proc == &p0); 1570 mutex_exit(&spa->spa_proc_lock); 1571 1572 /* 1573 * We want to make sure spa_thread() has actually exited the ZFS 1574 * module, so that the module can't be unloaded out from underneath 1575 * it. 1576 */ 1577 if (spa->spa_did != 0) { 1578 thread_join(spa->spa_did); 1579 spa->spa_did = 0; 1580 } 1581 1582 spa_deactivate_os(spa); 1583 1584 } 1585 1586 /* 1587 * Verify a pool configuration, and construct the vdev tree appropriately. This 1588 * will create all the necessary vdevs in the appropriate layout, with each vdev 1589 * in the CLOSED state. This will prep the pool before open/creation/import. 1590 * All vdev validation is done by the vdev_alloc() routine. 1591 */ 1592 int 1593 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1594 uint_t id, int atype) 1595 { 1596 nvlist_t **child; 1597 uint_t children; 1598 int error; 1599 1600 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1601 return (error); 1602 1603 if ((*vdp)->vdev_ops->vdev_op_leaf) 1604 return (0); 1605 1606 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1607 &child, &children); 1608 1609 if (error == ENOENT) 1610 return (0); 1611 1612 if (error) { 1613 vdev_free(*vdp); 1614 *vdp = NULL; 1615 return (SET_ERROR(EINVAL)); 1616 } 1617 1618 for (int c = 0; c < children; c++) { 1619 vdev_t *vd; 1620 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1621 atype)) != 0) { 1622 vdev_free(*vdp); 1623 *vdp = NULL; 1624 return (error); 1625 } 1626 } 1627 1628 ASSERT(*vdp != NULL); 1629 1630 return (0); 1631 } 1632 1633 static boolean_t 1634 spa_should_flush_logs_on_unload(spa_t *spa) 1635 { 1636 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1637 return (B_FALSE); 1638 1639 if (!spa_writeable(spa)) 1640 return (B_FALSE); 1641 1642 if (!spa->spa_sync_on) 1643 return (B_FALSE); 1644 1645 if (spa_state(spa) != POOL_STATE_EXPORTED) 1646 return (B_FALSE); 1647 1648 if (zfs_keep_log_spacemaps_at_export) 1649 return (B_FALSE); 1650 1651 return (B_TRUE); 1652 } 1653 1654 /* 1655 * Opens a transaction that will set the flag that will instruct 1656 * spa_sync to attempt to flush all the metaslabs for that txg. 1657 */ 1658 static void 1659 spa_unload_log_sm_flush_all(spa_t *spa) 1660 { 1661 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 1662 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 1663 1664 ASSERT3U(spa->spa_log_flushall_txg, ==, 0); 1665 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx); 1666 1667 dmu_tx_commit(tx); 1668 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg); 1669 } 1670 1671 static void 1672 spa_unload_log_sm_metadata(spa_t *spa) 1673 { 1674 void *cookie = NULL; 1675 spa_log_sm_t *sls; 1676 log_summary_entry_t *e; 1677 1678 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg, 1679 &cookie)) != NULL) { 1680 VERIFY0(sls->sls_mscount); 1681 kmem_free(sls, sizeof (spa_log_sm_t)); 1682 } 1683 1684 while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) { 1685 VERIFY0(e->lse_mscount); 1686 kmem_free(e, sizeof (log_summary_entry_t)); 1687 } 1688 1689 spa->spa_unflushed_stats.sus_nblocks = 0; 1690 spa->spa_unflushed_stats.sus_memused = 0; 1691 spa->spa_unflushed_stats.sus_blocklimit = 0; 1692 } 1693 1694 static void 1695 spa_destroy_aux_threads(spa_t *spa) 1696 { 1697 if (spa->spa_condense_zthr != NULL) { 1698 zthr_destroy(spa->spa_condense_zthr); 1699 spa->spa_condense_zthr = NULL; 1700 } 1701 if (spa->spa_checkpoint_discard_zthr != NULL) { 1702 zthr_destroy(spa->spa_checkpoint_discard_zthr); 1703 spa->spa_checkpoint_discard_zthr = NULL; 1704 } 1705 if (spa->spa_livelist_delete_zthr != NULL) { 1706 zthr_destroy(spa->spa_livelist_delete_zthr); 1707 spa->spa_livelist_delete_zthr = NULL; 1708 } 1709 if (spa->spa_livelist_condense_zthr != NULL) { 1710 zthr_destroy(spa->spa_livelist_condense_zthr); 1711 spa->spa_livelist_condense_zthr = NULL; 1712 } 1713 if (spa->spa_raidz_expand_zthr != NULL) { 1714 zthr_destroy(spa->spa_raidz_expand_zthr); 1715 spa->spa_raidz_expand_zthr = NULL; 1716 } 1717 } 1718 1719 /* 1720 * Opposite of spa_load(). 1721 */ 1722 static void 1723 spa_unload(spa_t *spa) 1724 { 1725 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1726 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED); 1727 1728 spa_import_progress_remove(spa_guid(spa)); 1729 spa_load_note(spa, "UNLOADING"); 1730 1731 spa_wake_waiters(spa); 1732 1733 /* 1734 * If we have set the spa_final_txg, we have already performed the 1735 * tasks below in spa_export_common(). We should not redo it here since 1736 * we delay the final TXGs beyond what spa_final_txg is set at. 1737 */ 1738 if (spa->spa_final_txg == UINT64_MAX) { 1739 /* 1740 * If the log space map feature is enabled and the pool is 1741 * getting exported (but not destroyed), we want to spend some 1742 * time flushing as many metaslabs as we can in an attempt to 1743 * destroy log space maps and save import time. 1744 */ 1745 if (spa_should_flush_logs_on_unload(spa)) 1746 spa_unload_log_sm_flush_all(spa); 1747 1748 /* 1749 * Stop async tasks. 1750 */ 1751 spa_async_suspend(spa); 1752 1753 if (spa->spa_root_vdev) { 1754 vdev_t *root_vdev = spa->spa_root_vdev; 1755 vdev_initialize_stop_all(root_vdev, 1756 VDEV_INITIALIZE_ACTIVE); 1757 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE); 1758 vdev_autotrim_stop_all(spa); 1759 vdev_rebuild_stop_all(spa); 1760 } 1761 } 1762 1763 /* 1764 * Stop syncing. 1765 */ 1766 if (spa->spa_sync_on) { 1767 txg_sync_stop(spa->spa_dsl_pool); 1768 spa->spa_sync_on = B_FALSE; 1769 } 1770 1771 /* 1772 * This ensures that there is no async metaslab prefetching 1773 * while we attempt to unload the spa. 1774 */ 1775 taskq_wait(spa->spa_metaslab_taskq); 1776 1777 if (spa->spa_mmp.mmp_thread) 1778 mmp_thread_stop(spa); 1779 1780 /* 1781 * Wait for any outstanding async I/O to complete. 1782 */ 1783 if (spa->spa_async_zio_root != NULL) { 1784 for (int i = 0; i < max_ncpus; i++) 1785 (void) zio_wait(spa->spa_async_zio_root[i]); 1786 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1787 spa->spa_async_zio_root = NULL; 1788 } 1789 1790 if (spa->spa_vdev_removal != NULL) { 1791 spa_vdev_removal_destroy(spa->spa_vdev_removal); 1792 spa->spa_vdev_removal = NULL; 1793 } 1794 1795 spa_destroy_aux_threads(spa); 1796 1797 spa_condense_fini(spa); 1798 1799 bpobj_close(&spa->spa_deferred_bpobj); 1800 1801 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1802 1803 /* 1804 * Close all vdevs. 1805 */ 1806 if (spa->spa_root_vdev) 1807 vdev_free(spa->spa_root_vdev); 1808 ASSERT(spa->spa_root_vdev == NULL); 1809 1810 /* 1811 * Close the dsl pool. 1812 */ 1813 if (spa->spa_dsl_pool) { 1814 dsl_pool_close(spa->spa_dsl_pool); 1815 spa->spa_dsl_pool = NULL; 1816 spa->spa_meta_objset = NULL; 1817 } 1818 1819 ddt_unload(spa); 1820 brt_unload(spa); 1821 spa_unload_log_sm_metadata(spa); 1822 1823 /* 1824 * Drop and purge level 2 cache 1825 */ 1826 spa_l2cache_drop(spa); 1827 1828 if (spa->spa_spares.sav_vdevs) { 1829 for (int i = 0; i < spa->spa_spares.sav_count; i++) 1830 vdev_free(spa->spa_spares.sav_vdevs[i]); 1831 kmem_free(spa->spa_spares.sav_vdevs, 1832 spa->spa_spares.sav_count * sizeof (void *)); 1833 spa->spa_spares.sav_vdevs = NULL; 1834 } 1835 if (spa->spa_spares.sav_config) { 1836 nvlist_free(spa->spa_spares.sav_config); 1837 spa->spa_spares.sav_config = NULL; 1838 } 1839 spa->spa_spares.sav_count = 0; 1840 1841 if (spa->spa_l2cache.sav_vdevs) { 1842 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 1843 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1844 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1845 } 1846 kmem_free(spa->spa_l2cache.sav_vdevs, 1847 spa->spa_l2cache.sav_count * sizeof (void *)); 1848 spa->spa_l2cache.sav_vdevs = NULL; 1849 } 1850 if (spa->spa_l2cache.sav_config) { 1851 nvlist_free(spa->spa_l2cache.sav_config); 1852 spa->spa_l2cache.sav_config = NULL; 1853 } 1854 spa->spa_l2cache.sav_count = 0; 1855 1856 spa->spa_async_suspended = 0; 1857 1858 spa->spa_indirect_vdevs_loaded = B_FALSE; 1859 1860 if (spa->spa_comment != NULL) { 1861 spa_strfree(spa->spa_comment); 1862 spa->spa_comment = NULL; 1863 } 1864 if (spa->spa_compatibility != NULL) { 1865 spa_strfree(spa->spa_compatibility); 1866 spa->spa_compatibility = NULL; 1867 } 1868 1869 spa->spa_raidz_expand = NULL; 1870 1871 spa_config_exit(spa, SCL_ALL, spa); 1872 } 1873 1874 /* 1875 * Load (or re-load) the current list of vdevs describing the active spares for 1876 * this pool. When this is called, we have some form of basic information in 1877 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1878 * then re-generate a more complete list including status information. 1879 */ 1880 void 1881 spa_load_spares(spa_t *spa) 1882 { 1883 nvlist_t **spares; 1884 uint_t nspares; 1885 int i; 1886 vdev_t *vd, *tvd; 1887 1888 #ifndef _KERNEL 1889 /* 1890 * zdb opens both the current state of the pool and the 1891 * checkpointed state (if present), with a different spa_t. 1892 * 1893 * As spare vdevs are shared among open pools, we skip loading 1894 * them when we load the checkpointed state of the pool. 1895 */ 1896 if (!spa_writeable(spa)) 1897 return; 1898 #endif 1899 1900 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1901 1902 /* 1903 * First, close and free any existing spare vdevs. 1904 */ 1905 if (spa->spa_spares.sav_vdevs) { 1906 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1907 vd = spa->spa_spares.sav_vdevs[i]; 1908 1909 /* Undo the call to spa_activate() below */ 1910 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1911 B_FALSE)) != NULL && tvd->vdev_isspare) 1912 spa_spare_remove(tvd); 1913 vdev_close(vd); 1914 vdev_free(vd); 1915 } 1916 1917 kmem_free(spa->spa_spares.sav_vdevs, 1918 spa->spa_spares.sav_count * sizeof (void *)); 1919 } 1920 1921 if (spa->spa_spares.sav_config == NULL) 1922 nspares = 0; 1923 else 1924 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1925 ZPOOL_CONFIG_SPARES, &spares, &nspares)); 1926 1927 spa->spa_spares.sav_count = (int)nspares; 1928 spa->spa_spares.sav_vdevs = NULL; 1929 1930 if (nspares == 0) 1931 return; 1932 1933 /* 1934 * Construct the array of vdevs, opening them to get status in the 1935 * process. For each spare, there is potentially two different vdev_t 1936 * structures associated with it: one in the list of spares (used only 1937 * for basic validation purposes) and one in the active vdev 1938 * configuration (if it's spared in). During this phase we open and 1939 * validate each vdev on the spare list. If the vdev also exists in the 1940 * active configuration, then we also mark this vdev as an active spare. 1941 */ 1942 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *), 1943 KM_SLEEP); 1944 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1945 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1946 VDEV_ALLOC_SPARE) == 0); 1947 ASSERT(vd != NULL); 1948 1949 spa->spa_spares.sav_vdevs[i] = vd; 1950 1951 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1952 B_FALSE)) != NULL) { 1953 if (!tvd->vdev_isspare) 1954 spa_spare_add(tvd); 1955 1956 /* 1957 * We only mark the spare active if we were successfully 1958 * able to load the vdev. Otherwise, importing a pool 1959 * with a bad active spare would result in strange 1960 * behavior, because multiple pool would think the spare 1961 * is actively in use. 1962 * 1963 * There is a vulnerability here to an equally bizarre 1964 * circumstance, where a dead active spare is later 1965 * brought back to life (onlined or otherwise). Given 1966 * the rarity of this scenario, and the extra complexity 1967 * it adds, we ignore the possibility. 1968 */ 1969 if (!vdev_is_dead(tvd)) 1970 spa_spare_activate(tvd); 1971 } 1972 1973 vd->vdev_top = vd; 1974 vd->vdev_aux = &spa->spa_spares; 1975 1976 if (vdev_open(vd) != 0) 1977 continue; 1978 1979 if (vdev_validate_aux(vd) == 0) 1980 spa_spare_add(vd); 1981 } 1982 1983 /* 1984 * Recompute the stashed list of spares, with status information 1985 * this time. 1986 */ 1987 fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES); 1988 1989 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1990 KM_SLEEP); 1991 for (i = 0; i < spa->spa_spares.sav_count; i++) 1992 spares[i] = vdev_config_generate(spa, 1993 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1994 fnvlist_add_nvlist_array(spa->spa_spares.sav_config, 1995 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, 1996 spa->spa_spares.sav_count); 1997 for (i = 0; i < spa->spa_spares.sav_count; i++) 1998 nvlist_free(spares[i]); 1999 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 2000 } 2001 2002 /* 2003 * Load (or re-load) the current list of vdevs describing the active l2cache for 2004 * this pool. When this is called, we have some form of basic information in 2005 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 2006 * then re-generate a more complete list including status information. 2007 * Devices which are already active have their details maintained, and are 2008 * not re-opened. 2009 */ 2010 void 2011 spa_load_l2cache(spa_t *spa) 2012 { 2013 nvlist_t **l2cache = NULL; 2014 uint_t nl2cache; 2015 int i, j, oldnvdevs; 2016 uint64_t guid; 2017 vdev_t *vd, **oldvdevs, **newvdevs; 2018 spa_aux_vdev_t *sav = &spa->spa_l2cache; 2019 2020 #ifndef _KERNEL 2021 /* 2022 * zdb opens both the current state of the pool and the 2023 * checkpointed state (if present), with a different spa_t. 2024 * 2025 * As L2 caches are part of the ARC which is shared among open 2026 * pools, we skip loading them when we load the checkpointed 2027 * state of the pool. 2028 */ 2029 if (!spa_writeable(spa)) 2030 return; 2031 #endif 2032 2033 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2034 2035 oldvdevs = sav->sav_vdevs; 2036 oldnvdevs = sav->sav_count; 2037 sav->sav_vdevs = NULL; 2038 sav->sav_count = 0; 2039 2040 if (sav->sav_config == NULL) { 2041 nl2cache = 0; 2042 newvdevs = NULL; 2043 goto out; 2044 } 2045 2046 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, 2047 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache)); 2048 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 2049 2050 /* 2051 * Process new nvlist of vdevs. 2052 */ 2053 for (i = 0; i < nl2cache; i++) { 2054 guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID); 2055 2056 newvdevs[i] = NULL; 2057 for (j = 0; j < oldnvdevs; j++) { 2058 vd = oldvdevs[j]; 2059 if (vd != NULL && guid == vd->vdev_guid) { 2060 /* 2061 * Retain previous vdev for add/remove ops. 2062 */ 2063 newvdevs[i] = vd; 2064 oldvdevs[j] = NULL; 2065 break; 2066 } 2067 } 2068 2069 if (newvdevs[i] == NULL) { 2070 /* 2071 * Create new vdev 2072 */ 2073 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 2074 VDEV_ALLOC_L2CACHE) == 0); 2075 ASSERT(vd != NULL); 2076 newvdevs[i] = vd; 2077 2078 /* 2079 * Commit this vdev as an l2cache device, 2080 * even if it fails to open. 2081 */ 2082 spa_l2cache_add(vd); 2083 2084 vd->vdev_top = vd; 2085 vd->vdev_aux = sav; 2086 2087 spa_l2cache_activate(vd); 2088 2089 if (vdev_open(vd) != 0) 2090 continue; 2091 2092 (void) vdev_validate_aux(vd); 2093 2094 if (!vdev_is_dead(vd)) 2095 l2arc_add_vdev(spa, vd); 2096 2097 /* 2098 * Upon cache device addition to a pool or pool 2099 * creation with a cache device or if the header 2100 * of the device is invalid we issue an async 2101 * TRIM command for the whole device which will 2102 * execute if l2arc_trim_ahead > 0. 2103 */ 2104 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 2105 } 2106 } 2107 2108 sav->sav_vdevs = newvdevs; 2109 sav->sav_count = (int)nl2cache; 2110 2111 /* 2112 * Recompute the stashed list of l2cache devices, with status 2113 * information this time. 2114 */ 2115 fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE); 2116 2117 if (sav->sav_count > 0) 2118 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), 2119 KM_SLEEP); 2120 for (i = 0; i < sav->sav_count; i++) 2121 l2cache[i] = vdev_config_generate(spa, 2122 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 2123 fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 2124 (const nvlist_t * const *)l2cache, sav->sav_count); 2125 2126 out: 2127 /* 2128 * Purge vdevs that were dropped 2129 */ 2130 if (oldvdevs) { 2131 for (i = 0; i < oldnvdevs; i++) { 2132 uint64_t pool; 2133 2134 vd = oldvdevs[i]; 2135 if (vd != NULL) { 2136 ASSERT(vd->vdev_isl2cache); 2137 2138 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 2139 pool != 0ULL && l2arc_vdev_present(vd)) 2140 l2arc_remove_vdev(vd); 2141 vdev_clear_stats(vd); 2142 vdev_free(vd); 2143 } 2144 } 2145 2146 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 2147 } 2148 2149 for (i = 0; i < sav->sav_count; i++) 2150 nvlist_free(l2cache[i]); 2151 if (sav->sav_count) 2152 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 2153 } 2154 2155 static int 2156 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 2157 { 2158 dmu_buf_t *db; 2159 char *packed = NULL; 2160 size_t nvsize = 0; 2161 int error; 2162 *value = NULL; 2163 2164 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 2165 if (error) 2166 return (error); 2167 2168 nvsize = *(uint64_t *)db->db_data; 2169 dmu_buf_rele(db, FTAG); 2170 2171 packed = vmem_alloc(nvsize, KM_SLEEP); 2172 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 2173 DMU_READ_PREFETCH); 2174 if (error == 0) 2175 error = nvlist_unpack(packed, nvsize, value, 0); 2176 vmem_free(packed, nvsize); 2177 2178 return (error); 2179 } 2180 2181 /* 2182 * Concrete top-level vdevs that are not missing and are not logs. At every 2183 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds. 2184 */ 2185 static uint64_t 2186 spa_healthy_core_tvds(spa_t *spa) 2187 { 2188 vdev_t *rvd = spa->spa_root_vdev; 2189 uint64_t tvds = 0; 2190 2191 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 2192 vdev_t *vd = rvd->vdev_child[i]; 2193 if (vd->vdev_islog) 2194 continue; 2195 if (vdev_is_concrete(vd) && !vdev_is_dead(vd)) 2196 tvds++; 2197 } 2198 2199 return (tvds); 2200 } 2201 2202 /* 2203 * Checks to see if the given vdev could not be opened, in which case we post a 2204 * sysevent to notify the autoreplace code that the device has been removed. 2205 */ 2206 static void 2207 spa_check_removed(vdev_t *vd) 2208 { 2209 for (uint64_t c = 0; c < vd->vdev_children; c++) 2210 spa_check_removed(vd->vdev_child[c]); 2211 2212 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 2213 vdev_is_concrete(vd)) { 2214 zfs_post_autoreplace(vd->vdev_spa, vd); 2215 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK); 2216 } 2217 } 2218 2219 static int 2220 spa_check_for_missing_logs(spa_t *spa) 2221 { 2222 vdev_t *rvd = spa->spa_root_vdev; 2223 2224 /* 2225 * If we're doing a normal import, then build up any additional 2226 * diagnostic information about missing log devices. 2227 * We'll pass this up to the user for further processing. 2228 */ 2229 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 2230 nvlist_t **child, *nv; 2231 uint64_t idx = 0; 2232 2233 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *), 2234 KM_SLEEP); 2235 nv = fnvlist_alloc(); 2236 2237 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2238 vdev_t *tvd = rvd->vdev_child[c]; 2239 2240 /* 2241 * We consider a device as missing only if it failed 2242 * to open (i.e. offline or faulted is not considered 2243 * as missing). 2244 */ 2245 if (tvd->vdev_islog && 2246 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 2247 child[idx++] = vdev_config_generate(spa, tvd, 2248 B_FALSE, VDEV_CONFIG_MISSING); 2249 } 2250 } 2251 2252 if (idx > 0) { 2253 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 2254 (const nvlist_t * const *)child, idx); 2255 fnvlist_add_nvlist(spa->spa_load_info, 2256 ZPOOL_CONFIG_MISSING_DEVICES, nv); 2257 2258 for (uint64_t i = 0; i < idx; i++) 2259 nvlist_free(child[i]); 2260 } 2261 nvlist_free(nv); 2262 kmem_free(child, rvd->vdev_children * sizeof (char **)); 2263 2264 if (idx > 0) { 2265 spa_load_failed(spa, "some log devices are missing"); 2266 vdev_dbgmsg_print_tree(rvd, 2); 2267 return (SET_ERROR(ENXIO)); 2268 } 2269 } else { 2270 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2271 vdev_t *tvd = rvd->vdev_child[c]; 2272 2273 if (tvd->vdev_islog && 2274 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 2275 spa_set_log_state(spa, SPA_LOG_CLEAR); 2276 spa_load_note(spa, "some log devices are " 2277 "missing, ZIL is dropped."); 2278 vdev_dbgmsg_print_tree(rvd, 2); 2279 break; 2280 } 2281 } 2282 } 2283 2284 return (0); 2285 } 2286 2287 /* 2288 * Check for missing log devices 2289 */ 2290 static boolean_t 2291 spa_check_logs(spa_t *spa) 2292 { 2293 boolean_t rv = B_FALSE; 2294 dsl_pool_t *dp = spa_get_dsl(spa); 2295 2296 switch (spa->spa_log_state) { 2297 default: 2298 break; 2299 case SPA_LOG_MISSING: 2300 /* need to recheck in case slog has been restored */ 2301 case SPA_LOG_UNKNOWN: 2302 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2303 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 2304 if (rv) 2305 spa_set_log_state(spa, SPA_LOG_MISSING); 2306 break; 2307 } 2308 return (rv); 2309 } 2310 2311 /* 2312 * Passivate any log vdevs (note, does not apply to embedded log metaslabs). 2313 */ 2314 static boolean_t 2315 spa_passivate_log(spa_t *spa) 2316 { 2317 vdev_t *rvd = spa->spa_root_vdev; 2318 boolean_t slog_found = B_FALSE; 2319 2320 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 2321 2322 for (int c = 0; c < rvd->vdev_children; c++) { 2323 vdev_t *tvd = rvd->vdev_child[c]; 2324 2325 if (tvd->vdev_islog) { 2326 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 2327 metaslab_group_passivate(tvd->vdev_mg); 2328 slog_found = B_TRUE; 2329 } 2330 } 2331 2332 return (slog_found); 2333 } 2334 2335 /* 2336 * Activate any log vdevs (note, does not apply to embedded log metaslabs). 2337 */ 2338 static void 2339 spa_activate_log(spa_t *spa) 2340 { 2341 vdev_t *rvd = spa->spa_root_vdev; 2342 2343 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 2344 2345 for (int c = 0; c < rvd->vdev_children; c++) { 2346 vdev_t *tvd = rvd->vdev_child[c]; 2347 2348 if (tvd->vdev_islog) { 2349 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 2350 metaslab_group_activate(tvd->vdev_mg); 2351 } 2352 } 2353 } 2354 2355 int 2356 spa_reset_logs(spa_t *spa) 2357 { 2358 int error; 2359 2360 error = dmu_objset_find(spa_name(spa), zil_reset, 2361 NULL, DS_FIND_CHILDREN); 2362 if (error == 0) { 2363 /* 2364 * We successfully offlined the log device, sync out the 2365 * current txg so that the "stubby" block can be removed 2366 * by zil_sync(). 2367 */ 2368 txg_wait_synced(spa->spa_dsl_pool, 0); 2369 } 2370 return (error); 2371 } 2372 2373 static void 2374 spa_aux_check_removed(spa_aux_vdev_t *sav) 2375 { 2376 for (int i = 0; i < sav->sav_count; i++) 2377 spa_check_removed(sav->sav_vdevs[i]); 2378 } 2379 2380 void 2381 spa_claim_notify(zio_t *zio) 2382 { 2383 spa_t *spa = zio->io_spa; 2384 2385 if (zio->io_error) 2386 return; 2387 2388 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 2389 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 2390 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 2391 mutex_exit(&spa->spa_props_lock); 2392 } 2393 2394 typedef struct spa_load_error { 2395 boolean_t sle_verify_data; 2396 uint64_t sle_meta_count; 2397 uint64_t sle_data_count; 2398 } spa_load_error_t; 2399 2400 static void 2401 spa_load_verify_done(zio_t *zio) 2402 { 2403 blkptr_t *bp = zio->io_bp; 2404 spa_load_error_t *sle = zio->io_private; 2405 dmu_object_type_t type = BP_GET_TYPE(bp); 2406 int error = zio->io_error; 2407 spa_t *spa = zio->io_spa; 2408 2409 abd_free(zio->io_abd); 2410 if (error) { 2411 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 2412 type != DMU_OT_INTENT_LOG) 2413 atomic_inc_64(&sle->sle_meta_count); 2414 else 2415 atomic_inc_64(&sle->sle_data_count); 2416 } 2417 2418 mutex_enter(&spa->spa_scrub_lock); 2419 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 2420 cv_broadcast(&spa->spa_scrub_io_cv); 2421 mutex_exit(&spa->spa_scrub_lock); 2422 } 2423 2424 /* 2425 * Maximum number of inflight bytes is the log2 fraction of the arc size. 2426 * By default, we set it to 1/16th of the arc. 2427 */ 2428 static uint_t spa_load_verify_shift = 4; 2429 static int spa_load_verify_metadata = B_TRUE; 2430 static int spa_load_verify_data = B_TRUE; 2431 2432 static int 2433 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 2434 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 2435 { 2436 zio_t *rio = arg; 2437 spa_load_error_t *sle = rio->io_private; 2438 2439 (void) zilog, (void) dnp; 2440 2441 /* 2442 * Note: normally this routine will not be called if 2443 * spa_load_verify_metadata is not set. However, it may be useful 2444 * to manually set the flag after the traversal has begun. 2445 */ 2446 if (!spa_load_verify_metadata) 2447 return (0); 2448 2449 /* 2450 * Sanity check the block pointer in order to detect obvious damage 2451 * before using the contents in subsequent checks or in zio_read(). 2452 * When damaged consider it to be a metadata error since we cannot 2453 * trust the BP_GET_TYPE and BP_GET_LEVEL values. 2454 */ 2455 if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) { 2456 atomic_inc_64(&sle->sle_meta_count); 2457 return (0); 2458 } 2459 2460 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 2461 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 2462 return (0); 2463 2464 if (!BP_IS_METADATA(bp) && 2465 (!spa_load_verify_data || !sle->sle_verify_data)) 2466 return (0); 2467 2468 uint64_t maxinflight_bytes = 2469 arc_target_bytes() >> spa_load_verify_shift; 2470 size_t size = BP_GET_PSIZE(bp); 2471 2472 mutex_enter(&spa->spa_scrub_lock); 2473 while (spa->spa_load_verify_bytes >= maxinflight_bytes) 2474 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2475 spa->spa_load_verify_bytes += size; 2476 mutex_exit(&spa->spa_scrub_lock); 2477 2478 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size, 2479 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 2480 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 2481 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 2482 return (0); 2483 } 2484 2485 static int 2486 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 2487 { 2488 (void) dp, (void) arg; 2489 2490 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) 2491 return (SET_ERROR(ENAMETOOLONG)); 2492 2493 return (0); 2494 } 2495 2496 static int 2497 spa_load_verify(spa_t *spa) 2498 { 2499 zio_t *rio; 2500 spa_load_error_t sle = { 0 }; 2501 zpool_load_policy_t policy; 2502 boolean_t verify_ok = B_FALSE; 2503 int error = 0; 2504 2505 zpool_get_load_policy(spa->spa_config, &policy); 2506 2507 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND || 2508 policy.zlp_maxmeta == UINT64_MAX) 2509 return (0); 2510 2511 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 2512 error = dmu_objset_find_dp(spa->spa_dsl_pool, 2513 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, 2514 DS_FIND_CHILDREN); 2515 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 2516 if (error != 0) 2517 return (error); 2518 2519 /* 2520 * Verify data only if we are rewinding or error limit was set. 2521 * Otherwise nothing except dbgmsg care about it to waste time. 2522 */ 2523 sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) || 2524 (policy.zlp_maxdata < UINT64_MAX); 2525 2526 rio = zio_root(spa, NULL, &sle, 2527 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 2528 2529 if (spa_load_verify_metadata) { 2530 if (spa->spa_extreme_rewind) { 2531 spa_load_note(spa, "performing a complete scan of the " 2532 "pool since extreme rewind is on. This may take " 2533 "a very long time.\n (spa_load_verify_data=%u, " 2534 "spa_load_verify_metadata=%u)", 2535 spa_load_verify_data, spa_load_verify_metadata); 2536 } 2537 2538 error = traverse_pool(spa, spa->spa_verify_min_txg, 2539 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 2540 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio); 2541 } 2542 2543 (void) zio_wait(rio); 2544 ASSERT0(spa->spa_load_verify_bytes); 2545 2546 spa->spa_load_meta_errors = sle.sle_meta_count; 2547 spa->spa_load_data_errors = sle.sle_data_count; 2548 2549 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) { 2550 spa_load_note(spa, "spa_load_verify found %llu metadata errors " 2551 "and %llu data errors", (u_longlong_t)sle.sle_meta_count, 2552 (u_longlong_t)sle.sle_data_count); 2553 } 2554 2555 if (spa_load_verify_dryrun || 2556 (!error && sle.sle_meta_count <= policy.zlp_maxmeta && 2557 sle.sle_data_count <= policy.zlp_maxdata)) { 2558 int64_t loss = 0; 2559 2560 verify_ok = B_TRUE; 2561 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 2562 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 2563 2564 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 2565 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME, 2566 spa->spa_load_txg_ts); 2567 fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME, 2568 loss); 2569 fnvlist_add_uint64(spa->spa_load_info, 2570 ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count); 2571 fnvlist_add_uint64(spa->spa_load_info, 2572 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count); 2573 } else { 2574 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 2575 } 2576 2577 if (spa_load_verify_dryrun) 2578 return (0); 2579 2580 if (error) { 2581 if (error != ENXIO && error != EIO) 2582 error = SET_ERROR(EIO); 2583 return (error); 2584 } 2585 2586 return (verify_ok ? 0 : EIO); 2587 } 2588 2589 /* 2590 * Find a value in the pool props object. 2591 */ 2592 static void 2593 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 2594 { 2595 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 2596 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 2597 } 2598 2599 /* 2600 * Find a value in the pool directory object. 2601 */ 2602 static int 2603 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent) 2604 { 2605 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2606 name, sizeof (uint64_t), 1, val); 2607 2608 if (error != 0 && (error != ENOENT || log_enoent)) { 2609 spa_load_failed(spa, "couldn't get '%s' value in MOS directory " 2610 "[error=%d]", name, error); 2611 } 2612 2613 return (error); 2614 } 2615 2616 static int 2617 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 2618 { 2619 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 2620 return (SET_ERROR(err)); 2621 } 2622 2623 boolean_t 2624 spa_livelist_delete_check(spa_t *spa) 2625 { 2626 return (spa->spa_livelists_to_delete != 0); 2627 } 2628 2629 static boolean_t 2630 spa_livelist_delete_cb_check(void *arg, zthr_t *z) 2631 { 2632 (void) z; 2633 spa_t *spa = arg; 2634 return (spa_livelist_delete_check(spa)); 2635 } 2636 2637 static int 2638 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2639 { 2640 spa_t *spa = arg; 2641 zio_free(spa, tx->tx_txg, bp); 2642 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 2643 -bp_get_dsize_sync(spa, bp), 2644 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 2645 return (0); 2646 } 2647 2648 static int 2649 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp) 2650 { 2651 int err; 2652 zap_cursor_t zc; 2653 zap_attribute_t za; 2654 zap_cursor_init(&zc, os, zap_obj); 2655 err = zap_cursor_retrieve(&zc, &za); 2656 zap_cursor_fini(&zc); 2657 if (err == 0) 2658 *llp = za.za_first_integer; 2659 return (err); 2660 } 2661 2662 /* 2663 * Components of livelist deletion that must be performed in syncing 2664 * context: freeing block pointers and updating the pool-wide data 2665 * structures to indicate how much work is left to do 2666 */ 2667 typedef struct sublist_delete_arg { 2668 spa_t *spa; 2669 dsl_deadlist_t *ll; 2670 uint64_t key; 2671 bplist_t *to_free; 2672 } sublist_delete_arg_t; 2673 2674 static void 2675 sublist_delete_sync(void *arg, dmu_tx_t *tx) 2676 { 2677 sublist_delete_arg_t *sda = arg; 2678 spa_t *spa = sda->spa; 2679 dsl_deadlist_t *ll = sda->ll; 2680 uint64_t key = sda->key; 2681 bplist_t *to_free = sda->to_free; 2682 2683 bplist_iterate(to_free, delete_blkptr_cb, spa, tx); 2684 dsl_deadlist_remove_entry(ll, key, tx); 2685 } 2686 2687 typedef struct livelist_delete_arg { 2688 spa_t *spa; 2689 uint64_t ll_obj; 2690 uint64_t zap_obj; 2691 } livelist_delete_arg_t; 2692 2693 static void 2694 livelist_delete_sync(void *arg, dmu_tx_t *tx) 2695 { 2696 livelist_delete_arg_t *lda = arg; 2697 spa_t *spa = lda->spa; 2698 uint64_t ll_obj = lda->ll_obj; 2699 uint64_t zap_obj = lda->zap_obj; 2700 objset_t *mos = spa->spa_meta_objset; 2701 uint64_t count; 2702 2703 /* free the livelist and decrement the feature count */ 2704 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx)); 2705 dsl_deadlist_free(mos, ll_obj, tx); 2706 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx); 2707 VERIFY0(zap_count(mos, zap_obj, &count)); 2708 if (count == 0) { 2709 /* no more livelists to delete */ 2710 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT, 2711 DMU_POOL_DELETED_CLONES, tx)); 2712 VERIFY0(zap_destroy(mos, zap_obj, tx)); 2713 spa->spa_livelists_to_delete = 0; 2714 spa_notify_waiters(spa); 2715 } 2716 } 2717 2718 /* 2719 * Load in the value for the livelist to be removed and open it. Then, 2720 * load its first sublist and determine which block pointers should actually 2721 * be freed. Then, call a synctask which performs the actual frees and updates 2722 * the pool-wide livelist data. 2723 */ 2724 static void 2725 spa_livelist_delete_cb(void *arg, zthr_t *z) 2726 { 2727 spa_t *spa = arg; 2728 uint64_t ll_obj = 0, count; 2729 objset_t *mos = spa->spa_meta_objset; 2730 uint64_t zap_obj = spa->spa_livelists_to_delete; 2731 /* 2732 * Determine the next livelist to delete. This function should only 2733 * be called if there is at least one deleted clone. 2734 */ 2735 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj)); 2736 VERIFY0(zap_count(mos, ll_obj, &count)); 2737 if (count > 0) { 2738 dsl_deadlist_t *ll; 2739 dsl_deadlist_entry_t *dle; 2740 bplist_t to_free; 2741 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP); 2742 dsl_deadlist_open(ll, mos, ll_obj); 2743 dle = dsl_deadlist_first(ll); 2744 ASSERT3P(dle, !=, NULL); 2745 bplist_create(&to_free); 2746 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free, 2747 z, NULL); 2748 if (err == 0) { 2749 sublist_delete_arg_t sync_arg = { 2750 .spa = spa, 2751 .ll = ll, 2752 .key = dle->dle_mintxg, 2753 .to_free = &to_free 2754 }; 2755 zfs_dbgmsg("deleting sublist (id %llu) from" 2756 " livelist %llu, %lld remaining", 2757 (u_longlong_t)dle->dle_bpobj.bpo_object, 2758 (u_longlong_t)ll_obj, (longlong_t)count - 1); 2759 VERIFY0(dsl_sync_task(spa_name(spa), NULL, 2760 sublist_delete_sync, &sync_arg, 0, 2761 ZFS_SPACE_CHECK_DESTROY)); 2762 } else { 2763 VERIFY3U(err, ==, EINTR); 2764 } 2765 bplist_clear(&to_free); 2766 bplist_destroy(&to_free); 2767 dsl_deadlist_close(ll); 2768 kmem_free(ll, sizeof (dsl_deadlist_t)); 2769 } else { 2770 livelist_delete_arg_t sync_arg = { 2771 .spa = spa, 2772 .ll_obj = ll_obj, 2773 .zap_obj = zap_obj 2774 }; 2775 zfs_dbgmsg("deletion of livelist %llu completed", 2776 (u_longlong_t)ll_obj); 2777 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync, 2778 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY)); 2779 } 2780 } 2781 2782 static void 2783 spa_start_livelist_destroy_thread(spa_t *spa) 2784 { 2785 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL); 2786 spa->spa_livelist_delete_zthr = 2787 zthr_create("z_livelist_destroy", 2788 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa, 2789 minclsyspri); 2790 } 2791 2792 typedef struct livelist_new_arg { 2793 bplist_t *allocs; 2794 bplist_t *frees; 2795 } livelist_new_arg_t; 2796 2797 static int 2798 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 2799 dmu_tx_t *tx) 2800 { 2801 ASSERT(tx == NULL); 2802 livelist_new_arg_t *lna = arg; 2803 if (bp_freed) { 2804 bplist_append(lna->frees, bp); 2805 } else { 2806 bplist_append(lna->allocs, bp); 2807 zfs_livelist_condense_new_alloc++; 2808 } 2809 return (0); 2810 } 2811 2812 typedef struct livelist_condense_arg { 2813 spa_t *spa; 2814 bplist_t to_keep; 2815 uint64_t first_size; 2816 uint64_t next_size; 2817 } livelist_condense_arg_t; 2818 2819 static void 2820 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx) 2821 { 2822 livelist_condense_arg_t *lca = arg; 2823 spa_t *spa = lca->spa; 2824 bplist_t new_frees; 2825 dsl_dataset_t *ds = spa->spa_to_condense.ds; 2826 2827 /* Have we been cancelled? */ 2828 if (spa->spa_to_condense.cancelled) { 2829 zfs_livelist_condense_sync_cancel++; 2830 goto out; 2831 } 2832 2833 dsl_deadlist_entry_t *first = spa->spa_to_condense.first; 2834 dsl_deadlist_entry_t *next = spa->spa_to_condense.next; 2835 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist; 2836 2837 /* 2838 * It's possible that the livelist was changed while the zthr was 2839 * running. Therefore, we need to check for new blkptrs in the two 2840 * entries being condensed and continue to track them in the livelist. 2841 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl), 2842 * it's possible that the newly added blkptrs are FREEs or ALLOCs so 2843 * we need to sort them into two different bplists. 2844 */ 2845 uint64_t first_obj = first->dle_bpobj.bpo_object; 2846 uint64_t next_obj = next->dle_bpobj.bpo_object; 2847 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs; 2848 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs; 2849 2850 bplist_create(&new_frees); 2851 livelist_new_arg_t new_bps = { 2852 .allocs = &lca->to_keep, 2853 .frees = &new_frees, 2854 }; 2855 2856 if (cur_first_size > lca->first_size) { 2857 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj, 2858 livelist_track_new_cb, &new_bps, lca->first_size)); 2859 } 2860 if (cur_next_size > lca->next_size) { 2861 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj, 2862 livelist_track_new_cb, &new_bps, lca->next_size)); 2863 } 2864 2865 dsl_deadlist_clear_entry(first, ll, tx); 2866 ASSERT(bpobj_is_empty(&first->dle_bpobj)); 2867 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx); 2868 2869 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx); 2870 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx); 2871 bplist_destroy(&new_frees); 2872 2873 char dsname[ZFS_MAX_DATASET_NAME_LEN]; 2874 dsl_dataset_name(ds, dsname); 2875 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu " 2876 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu " 2877 "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname, 2878 (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj, 2879 (u_longlong_t)cur_first_size, (u_longlong_t)next_obj, 2880 (u_longlong_t)cur_next_size, 2881 (u_longlong_t)first->dle_bpobj.bpo_object, 2882 (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs); 2883 out: 2884 dmu_buf_rele(ds->ds_dbuf, spa); 2885 spa->spa_to_condense.ds = NULL; 2886 bplist_clear(&lca->to_keep); 2887 bplist_destroy(&lca->to_keep); 2888 kmem_free(lca, sizeof (livelist_condense_arg_t)); 2889 spa->spa_to_condense.syncing = B_FALSE; 2890 } 2891 2892 static void 2893 spa_livelist_condense_cb(void *arg, zthr_t *t) 2894 { 2895 while (zfs_livelist_condense_zthr_pause && 2896 !(zthr_has_waiters(t) || zthr_iscancelled(t))) 2897 delay(1); 2898 2899 spa_t *spa = arg; 2900 dsl_deadlist_entry_t *first = spa->spa_to_condense.first; 2901 dsl_deadlist_entry_t *next = spa->spa_to_condense.next; 2902 uint64_t first_size, next_size; 2903 2904 livelist_condense_arg_t *lca = 2905 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP); 2906 bplist_create(&lca->to_keep); 2907 2908 /* 2909 * Process the livelists (matching FREEs and ALLOCs) in open context 2910 * so we have minimal work in syncing context to condense. 2911 * 2912 * We save bpobj sizes (first_size and next_size) to use later in 2913 * syncing context to determine if entries were added to these sublists 2914 * while in open context. This is possible because the clone is still 2915 * active and open for normal writes and we want to make sure the new, 2916 * unprocessed blockpointers are inserted into the livelist normally. 2917 * 2918 * Note that dsl_process_sub_livelist() both stores the size number of 2919 * blockpointers and iterates over them while the bpobj's lock held, so 2920 * the sizes returned to us are consistent which what was actually 2921 * processed. 2922 */ 2923 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t, 2924 &first_size); 2925 if (err == 0) 2926 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep, 2927 t, &next_size); 2928 2929 if (err == 0) { 2930 while (zfs_livelist_condense_sync_pause && 2931 !(zthr_has_waiters(t) || zthr_iscancelled(t))) 2932 delay(1); 2933 2934 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 2935 dmu_tx_mark_netfree(tx); 2936 dmu_tx_hold_space(tx, 1); 2937 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE); 2938 if (err == 0) { 2939 /* 2940 * Prevent the condense zthr restarting before 2941 * the synctask completes. 2942 */ 2943 spa->spa_to_condense.syncing = B_TRUE; 2944 lca->spa = spa; 2945 lca->first_size = first_size; 2946 lca->next_size = next_size; 2947 dsl_sync_task_nowait(spa_get_dsl(spa), 2948 spa_livelist_condense_sync, lca, tx); 2949 dmu_tx_commit(tx); 2950 return; 2951 } 2952 } 2953 /* 2954 * Condensing can not continue: either it was externally stopped or 2955 * we were unable to assign to a tx because the pool has run out of 2956 * space. In the second case, we'll just end up trying to condense 2957 * again in a later txg. 2958 */ 2959 ASSERT(err != 0); 2960 bplist_clear(&lca->to_keep); 2961 bplist_destroy(&lca->to_keep); 2962 kmem_free(lca, sizeof (livelist_condense_arg_t)); 2963 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa); 2964 spa->spa_to_condense.ds = NULL; 2965 if (err == EINTR) 2966 zfs_livelist_condense_zthr_cancel++; 2967 } 2968 2969 /* 2970 * Check that there is something to condense but that a condense is not 2971 * already in progress and that condensing has not been cancelled. 2972 */ 2973 static boolean_t 2974 spa_livelist_condense_cb_check(void *arg, zthr_t *z) 2975 { 2976 (void) z; 2977 spa_t *spa = arg; 2978 if ((spa->spa_to_condense.ds != NULL) && 2979 (spa->spa_to_condense.syncing == B_FALSE) && 2980 (spa->spa_to_condense.cancelled == B_FALSE)) { 2981 return (B_TRUE); 2982 } 2983 return (B_FALSE); 2984 } 2985 2986 static void 2987 spa_start_livelist_condensing_thread(spa_t *spa) 2988 { 2989 spa->spa_to_condense.ds = NULL; 2990 spa->spa_to_condense.first = NULL; 2991 spa->spa_to_condense.next = NULL; 2992 spa->spa_to_condense.syncing = B_FALSE; 2993 spa->spa_to_condense.cancelled = B_FALSE; 2994 2995 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL); 2996 spa->spa_livelist_condense_zthr = 2997 zthr_create("z_livelist_condense", 2998 spa_livelist_condense_cb_check, 2999 spa_livelist_condense_cb, spa, minclsyspri); 3000 } 3001 3002 static void 3003 spa_spawn_aux_threads(spa_t *spa) 3004 { 3005 ASSERT(spa_writeable(spa)); 3006 3007 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 3008 3009 spa_start_raidz_expansion_thread(spa); 3010 spa_start_indirect_condensing_thread(spa); 3011 spa_start_livelist_destroy_thread(spa); 3012 spa_start_livelist_condensing_thread(spa); 3013 3014 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL); 3015 spa->spa_checkpoint_discard_zthr = 3016 zthr_create("z_checkpoint_discard", 3017 spa_checkpoint_discard_thread_check, 3018 spa_checkpoint_discard_thread, spa, minclsyspri); 3019 } 3020 3021 /* 3022 * Fix up config after a partly-completed split. This is done with the 3023 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 3024 * pool have that entry in their config, but only the splitting one contains 3025 * a list of all the guids of the vdevs that are being split off. 3026 * 3027 * This function determines what to do with that list: either rejoin 3028 * all the disks to the pool, or complete the splitting process. To attempt 3029 * the rejoin, each disk that is offlined is marked online again, and 3030 * we do a reopen() call. If the vdev label for every disk that was 3031 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 3032 * then we call vdev_split() on each disk, and complete the split. 3033 * 3034 * Otherwise we leave the config alone, with all the vdevs in place in 3035 * the original pool. 3036 */ 3037 static void 3038 spa_try_repair(spa_t *spa, nvlist_t *config) 3039 { 3040 uint_t extracted; 3041 uint64_t *glist; 3042 uint_t i, gcount; 3043 nvlist_t *nvl; 3044 vdev_t **vd; 3045 boolean_t attempt_reopen; 3046 3047 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 3048 return; 3049 3050 /* check that the config is complete */ 3051 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 3052 &glist, &gcount) != 0) 3053 return; 3054 3055 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 3056 3057 /* attempt to online all the vdevs & validate */ 3058 attempt_reopen = B_TRUE; 3059 for (i = 0; i < gcount; i++) { 3060 if (glist[i] == 0) /* vdev is hole */ 3061 continue; 3062 3063 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 3064 if (vd[i] == NULL) { 3065 /* 3066 * Don't bother attempting to reopen the disks; 3067 * just do the split. 3068 */ 3069 attempt_reopen = B_FALSE; 3070 } else { 3071 /* attempt to re-online it */ 3072 vd[i]->vdev_offline = B_FALSE; 3073 } 3074 } 3075 3076 if (attempt_reopen) { 3077 vdev_reopen(spa->spa_root_vdev); 3078 3079 /* check each device to see what state it's in */ 3080 for (extracted = 0, i = 0; i < gcount; i++) { 3081 if (vd[i] != NULL && 3082 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 3083 break; 3084 ++extracted; 3085 } 3086 } 3087 3088 /* 3089 * If every disk has been moved to the new pool, or if we never 3090 * even attempted to look at them, then we split them off for 3091 * good. 3092 */ 3093 if (!attempt_reopen || gcount == extracted) { 3094 for (i = 0; i < gcount; i++) 3095 if (vd[i] != NULL) 3096 vdev_split(vd[i]); 3097 vdev_reopen(spa->spa_root_vdev); 3098 } 3099 3100 kmem_free(vd, gcount * sizeof (vdev_t *)); 3101 } 3102 3103 static int 3104 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type) 3105 { 3106 const char *ereport = FM_EREPORT_ZFS_POOL; 3107 int error; 3108 3109 spa->spa_load_state = state; 3110 (void) spa_import_progress_set_state(spa_guid(spa), 3111 spa_load_state(spa)); 3112 spa_import_progress_set_notes(spa, "spa_load()"); 3113 3114 gethrestime(&spa->spa_loaded_ts); 3115 error = spa_load_impl(spa, type, &ereport); 3116 3117 /* 3118 * Don't count references from objsets that are already closed 3119 * and are making their way through the eviction process. 3120 */ 3121 spa_evicting_os_wait(spa); 3122 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 3123 if (error) { 3124 if (error != EEXIST) { 3125 spa->spa_loaded_ts.tv_sec = 0; 3126 spa->spa_loaded_ts.tv_nsec = 0; 3127 } 3128 if (error != EBADF) { 3129 (void) zfs_ereport_post(ereport, spa, 3130 NULL, NULL, NULL, 0); 3131 } 3132 } 3133 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 3134 spa->spa_ena = 0; 3135 3136 (void) spa_import_progress_set_state(spa_guid(spa), 3137 spa_load_state(spa)); 3138 3139 return (error); 3140 } 3141 3142 #ifdef ZFS_DEBUG 3143 /* 3144 * Count the number of per-vdev ZAPs associated with all of the vdevs in the 3145 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the 3146 * spa's per-vdev ZAP list. 3147 */ 3148 static uint64_t 3149 vdev_count_verify_zaps(vdev_t *vd) 3150 { 3151 spa_t *spa = vd->vdev_spa; 3152 uint64_t total = 0; 3153 3154 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) && 3155 vd->vdev_root_zap != 0) { 3156 total++; 3157 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 3158 spa->spa_all_vdev_zaps, vd->vdev_root_zap)); 3159 } 3160 if (vd->vdev_top_zap != 0) { 3161 total++; 3162 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 3163 spa->spa_all_vdev_zaps, vd->vdev_top_zap)); 3164 } 3165 if (vd->vdev_leaf_zap != 0) { 3166 total++; 3167 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 3168 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); 3169 } 3170 3171 for (uint64_t i = 0; i < vd->vdev_children; i++) { 3172 total += vdev_count_verify_zaps(vd->vdev_child[i]); 3173 } 3174 3175 return (total); 3176 } 3177 #else 3178 #define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0) 3179 #endif 3180 3181 /* 3182 * Determine whether the activity check is required. 3183 */ 3184 static boolean_t 3185 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label, 3186 nvlist_t *config) 3187 { 3188 uint64_t state = 0; 3189 uint64_t hostid = 0; 3190 uint64_t tryconfig_txg = 0; 3191 uint64_t tryconfig_timestamp = 0; 3192 uint16_t tryconfig_mmp_seq = 0; 3193 nvlist_t *nvinfo; 3194 3195 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 3196 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO); 3197 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG, 3198 &tryconfig_txg); 3199 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 3200 &tryconfig_timestamp); 3201 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ, 3202 &tryconfig_mmp_seq); 3203 } 3204 3205 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state); 3206 3207 /* 3208 * Disable the MMP activity check - This is used by zdb which 3209 * is intended to be used on potentially active pools. 3210 */ 3211 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) 3212 return (B_FALSE); 3213 3214 /* 3215 * Skip the activity check when the MMP feature is disabled. 3216 */ 3217 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0) 3218 return (B_FALSE); 3219 3220 /* 3221 * If the tryconfig_ values are nonzero, they are the results of an 3222 * earlier tryimport. If they all match the uberblock we just found, 3223 * then the pool has not changed and we return false so we do not test 3224 * a second time. 3225 */ 3226 if (tryconfig_txg && tryconfig_txg == ub->ub_txg && 3227 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp && 3228 tryconfig_mmp_seq && tryconfig_mmp_seq == 3229 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) 3230 return (B_FALSE); 3231 3232 /* 3233 * Allow the activity check to be skipped when importing the pool 3234 * on the same host which last imported it. Since the hostid from 3235 * configuration may be stale use the one read from the label. 3236 */ 3237 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID)) 3238 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID); 3239 3240 if (hostid == spa_get_hostid(spa)) 3241 return (B_FALSE); 3242 3243 /* 3244 * Skip the activity test when the pool was cleanly exported. 3245 */ 3246 if (state != POOL_STATE_ACTIVE) 3247 return (B_FALSE); 3248 3249 return (B_TRUE); 3250 } 3251 3252 /* 3253 * Nanoseconds the activity check must watch for changes on-disk. 3254 */ 3255 static uint64_t 3256 spa_activity_check_duration(spa_t *spa, uberblock_t *ub) 3257 { 3258 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1); 3259 uint64_t multihost_interval = MSEC2NSEC( 3260 MMP_INTERVAL_OK(zfs_multihost_interval)); 3261 uint64_t import_delay = MAX(NANOSEC, import_intervals * 3262 multihost_interval); 3263 3264 /* 3265 * Local tunables determine a minimum duration except for the case 3266 * where we know when the remote host will suspend the pool if MMP 3267 * writes do not land. 3268 * 3269 * See Big Theory comment at the top of mmp.c for the reasoning behind 3270 * these cases and times. 3271 */ 3272 3273 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100); 3274 3275 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && 3276 MMP_FAIL_INT(ub) > 0) { 3277 3278 /* MMP on remote host will suspend pool after failed writes */ 3279 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) * 3280 MMP_IMPORT_SAFETY_FACTOR / 100; 3281 3282 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp " 3283 "mmp_fails=%llu ub_mmp mmp_interval=%llu " 3284 "import_intervals=%llu", (u_longlong_t)import_delay, 3285 (u_longlong_t)MMP_FAIL_INT(ub), 3286 (u_longlong_t)MMP_INTERVAL(ub), 3287 (u_longlong_t)import_intervals); 3288 3289 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && 3290 MMP_FAIL_INT(ub) == 0) { 3291 3292 /* MMP on remote host will never suspend pool */ 3293 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) + 3294 ub->ub_mmp_delay) * import_intervals); 3295 3296 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp " 3297 "mmp_interval=%llu ub_mmp_delay=%llu " 3298 "import_intervals=%llu", (u_longlong_t)import_delay, 3299 (u_longlong_t)MMP_INTERVAL(ub), 3300 (u_longlong_t)ub->ub_mmp_delay, 3301 (u_longlong_t)import_intervals); 3302 3303 } else if (MMP_VALID(ub)) { 3304 /* 3305 * zfs-0.7 compatibility case 3306 */ 3307 3308 import_delay = MAX(import_delay, (multihost_interval + 3309 ub->ub_mmp_delay) * import_intervals); 3310 3311 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu " 3312 "import_intervals=%llu leaves=%u", 3313 (u_longlong_t)import_delay, 3314 (u_longlong_t)ub->ub_mmp_delay, 3315 (u_longlong_t)import_intervals, 3316 vdev_count_leaves(spa)); 3317 } else { 3318 /* Using local tunings is the only reasonable option */ 3319 zfs_dbgmsg("pool last imported on non-MMP aware " 3320 "host using import_delay=%llu multihost_interval=%llu " 3321 "import_intervals=%llu", (u_longlong_t)import_delay, 3322 (u_longlong_t)multihost_interval, 3323 (u_longlong_t)import_intervals); 3324 } 3325 3326 return (import_delay); 3327 } 3328 3329 /* 3330 * Perform the import activity check. If the user canceled the import or 3331 * we detected activity then fail. 3332 */ 3333 static int 3334 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config) 3335 { 3336 uint64_t txg = ub->ub_txg; 3337 uint64_t timestamp = ub->ub_timestamp; 3338 uint64_t mmp_config = ub->ub_mmp_config; 3339 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0; 3340 uint64_t import_delay; 3341 hrtime_t import_expire, now; 3342 nvlist_t *mmp_label = NULL; 3343 vdev_t *rvd = spa->spa_root_vdev; 3344 kcondvar_t cv; 3345 kmutex_t mtx; 3346 int error = 0; 3347 3348 cv_init(&cv, NULL, CV_DEFAULT, NULL); 3349 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL); 3350 mutex_enter(&mtx); 3351 3352 /* 3353 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed 3354 * during the earlier tryimport. If the txg recorded there is 0 then 3355 * the pool is known to be active on another host. 3356 * 3357 * Otherwise, the pool might be in use on another host. Check for 3358 * changes in the uberblocks on disk if necessary. 3359 */ 3360 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 3361 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config, 3362 ZPOOL_CONFIG_LOAD_INFO); 3363 3364 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) && 3365 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) { 3366 vdev_uberblock_load(rvd, ub, &mmp_label); 3367 error = SET_ERROR(EREMOTEIO); 3368 goto out; 3369 } 3370 } 3371 3372 import_delay = spa_activity_check_duration(spa, ub); 3373 3374 /* Add a small random factor in case of simultaneous imports (0-25%) */ 3375 import_delay += import_delay * random_in_range(250) / 1000; 3376 3377 import_expire = gethrtime() + import_delay; 3378 3379 spa_import_progress_set_notes(spa, "Checking MMP activity, waiting " 3380 "%llu ms", (u_longlong_t)NSEC2MSEC(import_delay)); 3381 3382 int interations = 0; 3383 while ((now = gethrtime()) < import_expire) { 3384 if (interations++ % 30 == 0) { 3385 spa_import_progress_set_notes(spa, "Checking MMP " 3386 "activity, %llu ms remaining", 3387 (u_longlong_t)NSEC2MSEC(import_expire - now)); 3388 } 3389 3390 (void) spa_import_progress_set_mmp_check(spa_guid(spa), 3391 NSEC2SEC(import_expire - gethrtime())); 3392 3393 vdev_uberblock_load(rvd, ub, &mmp_label); 3394 3395 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp || 3396 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) { 3397 zfs_dbgmsg("multihost activity detected " 3398 "txg %llu ub_txg %llu " 3399 "timestamp %llu ub_timestamp %llu " 3400 "mmp_config %#llx ub_mmp_config %#llx", 3401 (u_longlong_t)txg, (u_longlong_t)ub->ub_txg, 3402 (u_longlong_t)timestamp, 3403 (u_longlong_t)ub->ub_timestamp, 3404 (u_longlong_t)mmp_config, 3405 (u_longlong_t)ub->ub_mmp_config); 3406 3407 error = SET_ERROR(EREMOTEIO); 3408 break; 3409 } 3410 3411 if (mmp_label) { 3412 nvlist_free(mmp_label); 3413 mmp_label = NULL; 3414 } 3415 3416 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz); 3417 if (error != -1) { 3418 error = SET_ERROR(EINTR); 3419 break; 3420 } 3421 error = 0; 3422 } 3423 3424 out: 3425 mutex_exit(&mtx); 3426 mutex_destroy(&mtx); 3427 cv_destroy(&cv); 3428 3429 /* 3430 * If the pool is determined to be active store the status in the 3431 * spa->spa_load_info nvlist. If the remote hostname or hostid are 3432 * available from configuration read from disk store them as well. 3433 * This allows 'zpool import' to generate a more useful message. 3434 * 3435 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory) 3436 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool 3437 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool 3438 */ 3439 if (error == EREMOTEIO) { 3440 const char *hostname = "<unknown>"; 3441 uint64_t hostid = 0; 3442 3443 if (mmp_label) { 3444 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) { 3445 hostname = fnvlist_lookup_string(mmp_label, 3446 ZPOOL_CONFIG_HOSTNAME); 3447 fnvlist_add_string(spa->spa_load_info, 3448 ZPOOL_CONFIG_MMP_HOSTNAME, hostname); 3449 } 3450 3451 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) { 3452 hostid = fnvlist_lookup_uint64(mmp_label, 3453 ZPOOL_CONFIG_HOSTID); 3454 fnvlist_add_uint64(spa->spa_load_info, 3455 ZPOOL_CONFIG_MMP_HOSTID, hostid); 3456 } 3457 } 3458 3459 fnvlist_add_uint64(spa->spa_load_info, 3460 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE); 3461 fnvlist_add_uint64(spa->spa_load_info, 3462 ZPOOL_CONFIG_MMP_TXG, 0); 3463 3464 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO); 3465 } 3466 3467 if (mmp_label) 3468 nvlist_free(mmp_label); 3469 3470 return (error); 3471 } 3472 3473 static int 3474 spa_verify_host(spa_t *spa, nvlist_t *mos_config) 3475 { 3476 uint64_t hostid; 3477 const char *hostname; 3478 uint64_t myhostid = 0; 3479 3480 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config, 3481 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 3482 hostname = fnvlist_lookup_string(mos_config, 3483 ZPOOL_CONFIG_HOSTNAME); 3484 3485 myhostid = zone_get_hostid(NULL); 3486 3487 if (hostid != 0 && myhostid != 0 && hostid != myhostid) { 3488 cmn_err(CE_WARN, "pool '%s' could not be " 3489 "loaded as it was last accessed by " 3490 "another system (host: %s hostid: 0x%llx). " 3491 "See: https://openzfs.github.io/openzfs-docs/msg/" 3492 "ZFS-8000-EY", 3493 spa_name(spa), hostname, (u_longlong_t)hostid); 3494 spa_load_failed(spa, "hostid verification failed: pool " 3495 "last accessed by host: %s (hostid: 0x%llx)", 3496 hostname, (u_longlong_t)hostid); 3497 return (SET_ERROR(EBADF)); 3498 } 3499 } 3500 3501 return (0); 3502 } 3503 3504 static int 3505 spa_ld_parse_config(spa_t *spa, spa_import_type_t type) 3506 { 3507 int error = 0; 3508 nvlist_t *nvtree, *nvl, *config = spa->spa_config; 3509 int parse; 3510 vdev_t *rvd; 3511 uint64_t pool_guid; 3512 const char *comment; 3513 const char *compatibility; 3514 3515 /* 3516 * Versioning wasn't explicitly added to the label until later, so if 3517 * it's not present treat it as the initial version. 3518 */ 3519 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 3520 &spa->spa_ubsync.ub_version) != 0) 3521 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 3522 3523 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 3524 spa_load_failed(spa, "invalid config provided: '%s' missing", 3525 ZPOOL_CONFIG_POOL_GUID); 3526 return (SET_ERROR(EINVAL)); 3527 } 3528 3529 /* 3530 * If we are doing an import, ensure that the pool is not already 3531 * imported by checking if its pool guid already exists in the 3532 * spa namespace. 3533 * 3534 * The only case that we allow an already imported pool to be 3535 * imported again, is when the pool is checkpointed and we want to 3536 * look at its checkpointed state from userland tools like zdb. 3537 */ 3538 #ifdef _KERNEL 3539 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 3540 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 3541 spa_guid_exists(pool_guid, 0)) { 3542 #else 3543 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 3544 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 3545 spa_guid_exists(pool_guid, 0) && 3546 !spa_importing_readonly_checkpoint(spa)) { 3547 #endif 3548 spa_load_failed(spa, "a pool with guid %llu is already open", 3549 (u_longlong_t)pool_guid); 3550 return (SET_ERROR(EEXIST)); 3551 } 3552 3553 spa->spa_config_guid = pool_guid; 3554 3555 nvlist_free(spa->spa_load_info); 3556 spa->spa_load_info = fnvlist_alloc(); 3557 3558 ASSERT(spa->spa_comment == NULL); 3559 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 3560 spa->spa_comment = spa_strdup(comment); 3561 3562 ASSERT(spa->spa_compatibility == NULL); 3563 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY, 3564 &compatibility) == 0) 3565 spa->spa_compatibility = spa_strdup(compatibility); 3566 3567 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 3568 &spa->spa_config_txg); 3569 3570 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0) 3571 spa->spa_config_splitting = fnvlist_dup(nvl); 3572 3573 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) { 3574 spa_load_failed(spa, "invalid config provided: '%s' missing", 3575 ZPOOL_CONFIG_VDEV_TREE); 3576 return (SET_ERROR(EINVAL)); 3577 } 3578 3579 /* 3580 * Create "The Godfather" zio to hold all async IOs 3581 */ 3582 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3583 KM_SLEEP); 3584 for (int i = 0; i < max_ncpus; i++) { 3585 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3586 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3587 ZIO_FLAG_GODFATHER); 3588 } 3589 3590 /* 3591 * Parse the configuration into a vdev tree. We explicitly set the 3592 * value that will be returned by spa_version() since parsing the 3593 * configuration requires knowing the version number. 3594 */ 3595 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3596 parse = (type == SPA_IMPORT_EXISTING ? 3597 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 3598 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse); 3599 spa_config_exit(spa, SCL_ALL, FTAG); 3600 3601 if (error != 0) { 3602 spa_load_failed(spa, "unable to parse config [error=%d]", 3603 error); 3604 return (error); 3605 } 3606 3607 ASSERT(spa->spa_root_vdev == rvd); 3608 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 3609 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 3610 3611 if (type != SPA_IMPORT_ASSEMBLE) { 3612 ASSERT(spa_guid(spa) == pool_guid); 3613 } 3614 3615 return (0); 3616 } 3617 3618 /* 3619 * Recursively open all vdevs in the vdev tree. This function is called twice: 3620 * first with the untrusted config, then with the trusted config. 3621 */ 3622 static int 3623 spa_ld_open_vdevs(spa_t *spa) 3624 { 3625 int error = 0; 3626 3627 /* 3628 * spa_missing_tvds_allowed defines how many top-level vdevs can be 3629 * missing/unopenable for the root vdev to be still considered openable. 3630 */ 3631 if (spa->spa_trust_config) { 3632 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds; 3633 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) { 3634 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile; 3635 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) { 3636 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan; 3637 } else { 3638 spa->spa_missing_tvds_allowed = 0; 3639 } 3640 3641 spa->spa_missing_tvds_allowed = 3642 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed); 3643 3644 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3645 error = vdev_open(spa->spa_root_vdev); 3646 spa_config_exit(spa, SCL_ALL, FTAG); 3647 3648 if (spa->spa_missing_tvds != 0) { 3649 spa_load_note(spa, "vdev tree has %lld missing top-level " 3650 "vdevs.", (u_longlong_t)spa->spa_missing_tvds); 3651 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) { 3652 /* 3653 * Although theoretically we could allow users to open 3654 * incomplete pools in RW mode, we'd need to add a lot 3655 * of extra logic (e.g. adjust pool space to account 3656 * for missing vdevs). 3657 * This limitation also prevents users from accidentally 3658 * opening the pool in RW mode during data recovery and 3659 * damaging it further. 3660 */ 3661 spa_load_note(spa, "pools with missing top-level " 3662 "vdevs can only be opened in read-only mode."); 3663 error = SET_ERROR(ENXIO); 3664 } else { 3665 spa_load_note(spa, "current settings allow for maximum " 3666 "%lld missing top-level vdevs at this stage.", 3667 (u_longlong_t)spa->spa_missing_tvds_allowed); 3668 } 3669 } 3670 if (error != 0) { 3671 spa_load_failed(spa, "unable to open vdev tree [error=%d]", 3672 error); 3673 } 3674 if (spa->spa_missing_tvds != 0 || error != 0) 3675 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2); 3676 3677 return (error); 3678 } 3679 3680 /* 3681 * We need to validate the vdev labels against the configuration that 3682 * we have in hand. This function is called twice: first with an untrusted 3683 * config, then with a trusted config. The validation is more strict when the 3684 * config is trusted. 3685 */ 3686 static int 3687 spa_ld_validate_vdevs(spa_t *spa) 3688 { 3689 int error = 0; 3690 vdev_t *rvd = spa->spa_root_vdev; 3691 3692 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3693 error = vdev_validate(rvd); 3694 spa_config_exit(spa, SCL_ALL, FTAG); 3695 3696 if (error != 0) { 3697 spa_load_failed(spa, "vdev_validate failed [error=%d]", error); 3698 return (error); 3699 } 3700 3701 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 3702 spa_load_failed(spa, "cannot open vdev tree after invalidating " 3703 "some vdevs"); 3704 vdev_dbgmsg_print_tree(rvd, 2); 3705 return (SET_ERROR(ENXIO)); 3706 } 3707 3708 return (0); 3709 } 3710 3711 static void 3712 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub) 3713 { 3714 spa->spa_state = POOL_STATE_ACTIVE; 3715 spa->spa_ubsync = spa->spa_uberblock; 3716 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 3717 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 3718 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 3719 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 3720 spa->spa_claim_max_txg = spa->spa_first_txg; 3721 spa->spa_prev_software_version = ub->ub_software_version; 3722 } 3723 3724 static int 3725 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type) 3726 { 3727 vdev_t *rvd = spa->spa_root_vdev; 3728 nvlist_t *label; 3729 uberblock_t *ub = &spa->spa_uberblock; 3730 boolean_t activity_check = B_FALSE; 3731 3732 /* 3733 * If we are opening the checkpointed state of the pool by 3734 * rewinding to it, at this point we will have written the 3735 * checkpointed uberblock to the vdev labels, so searching 3736 * the labels will find the right uberblock. However, if 3737 * we are opening the checkpointed state read-only, we have 3738 * not modified the labels. Therefore, we must ignore the 3739 * labels and continue using the spa_uberblock that was set 3740 * by spa_ld_checkpoint_rewind. 3741 * 3742 * Note that it would be fine to ignore the labels when 3743 * rewinding (opening writeable) as well. However, if we 3744 * crash just after writing the labels, we will end up 3745 * searching the labels. Doing so in the common case means 3746 * that this code path gets exercised normally, rather than 3747 * just in the edge case. 3748 */ 3749 if (ub->ub_checkpoint_txg != 0 && 3750 spa_importing_readonly_checkpoint(spa)) { 3751 spa_ld_select_uberblock_done(spa, ub); 3752 return (0); 3753 } 3754 3755 /* 3756 * Find the best uberblock. 3757 */ 3758 vdev_uberblock_load(rvd, ub, &label); 3759 3760 /* 3761 * If we weren't able to find a single valid uberblock, return failure. 3762 */ 3763 if (ub->ub_txg == 0) { 3764 nvlist_free(label); 3765 spa_load_failed(spa, "no valid uberblock found"); 3766 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 3767 } 3768 3769 if (spa->spa_load_max_txg != UINT64_MAX) { 3770 (void) spa_import_progress_set_max_txg(spa_guid(spa), 3771 (u_longlong_t)spa->spa_load_max_txg); 3772 } 3773 spa_load_note(spa, "using uberblock with txg=%llu", 3774 (u_longlong_t)ub->ub_txg); 3775 if (ub->ub_raidz_reflow_info != 0) { 3776 spa_load_note(spa, "uberblock raidz_reflow_info: " 3777 "state=%u offset=%llu", 3778 (int)RRSS_GET_STATE(ub), 3779 (u_longlong_t)RRSS_GET_OFFSET(ub)); 3780 } 3781 3782 3783 /* 3784 * For pools which have the multihost property on determine if the 3785 * pool is truly inactive and can be safely imported. Prevent 3786 * hosts which don't have a hostid set from importing the pool. 3787 */ 3788 activity_check = spa_activity_check_required(spa, ub, label, 3789 spa->spa_config); 3790 if (activity_check) { 3791 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay && 3792 spa_get_hostid(spa) == 0) { 3793 nvlist_free(label); 3794 fnvlist_add_uint64(spa->spa_load_info, 3795 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 3796 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 3797 } 3798 3799 int error = spa_activity_check(spa, ub, spa->spa_config); 3800 if (error) { 3801 nvlist_free(label); 3802 return (error); 3803 } 3804 3805 fnvlist_add_uint64(spa->spa_load_info, 3806 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE); 3807 fnvlist_add_uint64(spa->spa_load_info, 3808 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg); 3809 fnvlist_add_uint16(spa->spa_load_info, 3810 ZPOOL_CONFIG_MMP_SEQ, 3811 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)); 3812 } 3813 3814 /* 3815 * If the pool has an unsupported version we can't open it. 3816 */ 3817 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 3818 nvlist_free(label); 3819 spa_load_failed(spa, "version %llu is not supported", 3820 (u_longlong_t)ub->ub_version); 3821 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 3822 } 3823 3824 if (ub->ub_version >= SPA_VERSION_FEATURES) { 3825 nvlist_t *features; 3826 3827 /* 3828 * If we weren't able to find what's necessary for reading the 3829 * MOS in the label, return failure. 3830 */ 3831 if (label == NULL) { 3832 spa_load_failed(spa, "label config unavailable"); 3833 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 3834 ENXIO)); 3835 } 3836 3837 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ, 3838 &features) != 0) { 3839 nvlist_free(label); 3840 spa_load_failed(spa, "invalid label: '%s' missing", 3841 ZPOOL_CONFIG_FEATURES_FOR_READ); 3842 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 3843 ENXIO)); 3844 } 3845 3846 /* 3847 * Update our in-core representation with the definitive values 3848 * from the label. 3849 */ 3850 nvlist_free(spa->spa_label_features); 3851 spa->spa_label_features = fnvlist_dup(features); 3852 } 3853 3854 nvlist_free(label); 3855 3856 /* 3857 * Look through entries in the label nvlist's features_for_read. If 3858 * there is a feature listed there which we don't understand then we 3859 * cannot open a pool. 3860 */ 3861 if (ub->ub_version >= SPA_VERSION_FEATURES) { 3862 nvlist_t *unsup_feat; 3863 3864 unsup_feat = fnvlist_alloc(); 3865 3866 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 3867 NULL); nvp != NULL; 3868 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 3869 if (!zfeature_is_supported(nvpair_name(nvp))) { 3870 fnvlist_add_string(unsup_feat, 3871 nvpair_name(nvp), ""); 3872 } 3873 } 3874 3875 if (!nvlist_empty(unsup_feat)) { 3876 fnvlist_add_nvlist(spa->spa_load_info, 3877 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 3878 nvlist_free(unsup_feat); 3879 spa_load_failed(spa, "some features are unsupported"); 3880 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 3881 ENOTSUP)); 3882 } 3883 3884 nvlist_free(unsup_feat); 3885 } 3886 3887 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 3888 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3889 spa_try_repair(spa, spa->spa_config); 3890 spa_config_exit(spa, SCL_ALL, FTAG); 3891 nvlist_free(spa->spa_config_splitting); 3892 spa->spa_config_splitting = NULL; 3893 } 3894 3895 /* 3896 * Initialize internal SPA structures. 3897 */ 3898 spa_ld_select_uberblock_done(spa, ub); 3899 3900 return (0); 3901 } 3902 3903 static int 3904 spa_ld_open_rootbp(spa_t *spa) 3905 { 3906 int error = 0; 3907 vdev_t *rvd = spa->spa_root_vdev; 3908 3909 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 3910 if (error != 0) { 3911 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init " 3912 "[error=%d]", error); 3913 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3914 } 3915 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 3916 3917 return (0); 3918 } 3919 3920 static int 3921 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type, 3922 boolean_t reloading) 3923 { 3924 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 3925 nvlist_t *nv, *mos_config, *policy; 3926 int error = 0, copy_error; 3927 uint64_t healthy_tvds, healthy_tvds_mos; 3928 uint64_t mos_config_txg; 3929 3930 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE) 3931 != 0) 3932 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3933 3934 /* 3935 * If we're assembling a pool from a split, the config provided is 3936 * already trusted so there is nothing to do. 3937 */ 3938 if (type == SPA_IMPORT_ASSEMBLE) 3939 return (0); 3940 3941 healthy_tvds = spa_healthy_core_tvds(spa); 3942 3943 if (load_nvlist(spa, spa->spa_config_object, &mos_config) 3944 != 0) { 3945 spa_load_failed(spa, "unable to retrieve MOS config"); 3946 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3947 } 3948 3949 /* 3950 * If we are doing an open, pool owner wasn't verified yet, thus do 3951 * the verification here. 3952 */ 3953 if (spa->spa_load_state == SPA_LOAD_OPEN) { 3954 error = spa_verify_host(spa, mos_config); 3955 if (error != 0) { 3956 nvlist_free(mos_config); 3957 return (error); 3958 } 3959 } 3960 3961 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE); 3962 3963 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3964 3965 /* 3966 * Build a new vdev tree from the trusted config 3967 */ 3968 error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD); 3969 if (error != 0) { 3970 nvlist_free(mos_config); 3971 spa_config_exit(spa, SCL_ALL, FTAG); 3972 spa_load_failed(spa, "spa_config_parse failed [error=%d]", 3973 error); 3974 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 3975 } 3976 3977 /* 3978 * Vdev paths in the MOS may be obsolete. If the untrusted config was 3979 * obtained by scanning /dev/dsk, then it will have the right vdev 3980 * paths. We update the trusted MOS config with this information. 3981 * We first try to copy the paths with vdev_copy_path_strict, which 3982 * succeeds only when both configs have exactly the same vdev tree. 3983 * If that fails, we fall back to a more flexible method that has a 3984 * best effort policy. 3985 */ 3986 copy_error = vdev_copy_path_strict(rvd, mrvd); 3987 if (copy_error != 0 || spa_load_print_vdev_tree) { 3988 spa_load_note(spa, "provided vdev tree:"); 3989 vdev_dbgmsg_print_tree(rvd, 2); 3990 spa_load_note(spa, "MOS vdev tree:"); 3991 vdev_dbgmsg_print_tree(mrvd, 2); 3992 } 3993 if (copy_error != 0) { 3994 spa_load_note(spa, "vdev_copy_path_strict failed, falling " 3995 "back to vdev_copy_path_relaxed"); 3996 vdev_copy_path_relaxed(rvd, mrvd); 3997 } 3998 3999 vdev_close(rvd); 4000 vdev_free(rvd); 4001 spa->spa_root_vdev = mrvd; 4002 rvd = mrvd; 4003 spa_config_exit(spa, SCL_ALL, FTAG); 4004 4005 /* 4006 * If 'zpool import' used a cached config, then the on-disk hostid and 4007 * hostname may be different to the cached config in ways that should 4008 * prevent import. Userspace can't discover this without a scan, but 4009 * we know, so we add these values to LOAD_INFO so the caller can know 4010 * the difference. 4011 * 4012 * Note that we have to do this before the config is regenerated, 4013 * because the new config will have the hostid and hostname for this 4014 * host, in readiness for import. 4015 */ 4016 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID)) 4017 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID, 4018 fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID)); 4019 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME)) 4020 fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME, 4021 fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME)); 4022 4023 /* 4024 * We will use spa_config if we decide to reload the spa or if spa_load 4025 * fails and we rewind. We must thus regenerate the config using the 4026 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to 4027 * pass settings on how to load the pool and is not stored in the MOS. 4028 * We copy it over to our new, trusted config. 4029 */ 4030 mos_config_txg = fnvlist_lookup_uint64(mos_config, 4031 ZPOOL_CONFIG_POOL_TXG); 4032 nvlist_free(mos_config); 4033 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE); 4034 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY, 4035 &policy) == 0) 4036 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy); 4037 spa_config_set(spa, mos_config); 4038 spa->spa_config_source = SPA_CONFIG_SRC_MOS; 4039 4040 /* 4041 * Now that we got the config from the MOS, we should be more strict 4042 * in checking blkptrs and can make assumptions about the consistency 4043 * of the vdev tree. spa_trust_config must be set to true before opening 4044 * vdevs in order for them to be writeable. 4045 */ 4046 spa->spa_trust_config = B_TRUE; 4047 4048 /* 4049 * Open and validate the new vdev tree 4050 */ 4051 error = spa_ld_open_vdevs(spa); 4052 if (error != 0) 4053 return (error); 4054 4055 error = spa_ld_validate_vdevs(spa); 4056 if (error != 0) 4057 return (error); 4058 4059 if (copy_error != 0 || spa_load_print_vdev_tree) { 4060 spa_load_note(spa, "final vdev tree:"); 4061 vdev_dbgmsg_print_tree(rvd, 2); 4062 } 4063 4064 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT && 4065 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) { 4066 /* 4067 * Sanity check to make sure that we are indeed loading the 4068 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds 4069 * in the config provided and they happened to be the only ones 4070 * to have the latest uberblock, we could involuntarily perform 4071 * an extreme rewind. 4072 */ 4073 healthy_tvds_mos = spa_healthy_core_tvds(spa); 4074 if (healthy_tvds_mos - healthy_tvds >= 4075 SPA_SYNC_MIN_VDEVS) { 4076 spa_load_note(spa, "config provided misses too many " 4077 "top-level vdevs compared to MOS (%lld vs %lld). ", 4078 (u_longlong_t)healthy_tvds, 4079 (u_longlong_t)healthy_tvds_mos); 4080 spa_load_note(spa, "vdev tree:"); 4081 vdev_dbgmsg_print_tree(rvd, 2); 4082 if (reloading) { 4083 spa_load_failed(spa, "config was already " 4084 "provided from MOS. Aborting."); 4085 return (spa_vdev_err(rvd, 4086 VDEV_AUX_CORRUPT_DATA, EIO)); 4087 } 4088 spa_load_note(spa, "spa must be reloaded using MOS " 4089 "config"); 4090 return (SET_ERROR(EAGAIN)); 4091 } 4092 } 4093 4094 error = spa_check_for_missing_logs(spa); 4095 if (error != 0) 4096 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 4097 4098 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) { 4099 spa_load_failed(spa, "uberblock guid sum doesn't match MOS " 4100 "guid sum (%llu != %llu)", 4101 (u_longlong_t)spa->spa_uberblock.ub_guid_sum, 4102 (u_longlong_t)rvd->vdev_guid_sum); 4103 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 4104 ENXIO)); 4105 } 4106 4107 return (0); 4108 } 4109 4110 static int 4111 spa_ld_open_indirect_vdev_metadata(spa_t *spa) 4112 { 4113 int error = 0; 4114 vdev_t *rvd = spa->spa_root_vdev; 4115 4116 /* 4117 * Everything that we read before spa_remove_init() must be stored 4118 * on concreted vdevs. Therefore we do this as early as possible. 4119 */ 4120 error = spa_remove_init(spa); 4121 if (error != 0) { 4122 spa_load_failed(spa, "spa_remove_init failed [error=%d]", 4123 error); 4124 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4125 } 4126 4127 /* 4128 * Retrieve information needed to condense indirect vdev mappings. 4129 */ 4130 error = spa_condense_init(spa); 4131 if (error != 0) { 4132 spa_load_failed(spa, "spa_condense_init failed [error=%d]", 4133 error); 4134 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4135 } 4136 4137 return (0); 4138 } 4139 4140 static int 4141 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep) 4142 { 4143 int error = 0; 4144 vdev_t *rvd = spa->spa_root_vdev; 4145 4146 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 4147 boolean_t missing_feat_read = B_FALSE; 4148 nvlist_t *unsup_feat, *enabled_feat; 4149 4150 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 4151 &spa->spa_feat_for_read_obj, B_TRUE) != 0) { 4152 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4153 } 4154 4155 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 4156 &spa->spa_feat_for_write_obj, B_TRUE) != 0) { 4157 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4158 } 4159 4160 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 4161 &spa->spa_feat_desc_obj, B_TRUE) != 0) { 4162 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4163 } 4164 4165 enabled_feat = fnvlist_alloc(); 4166 unsup_feat = fnvlist_alloc(); 4167 4168 if (!spa_features_check(spa, B_FALSE, 4169 unsup_feat, enabled_feat)) 4170 missing_feat_read = B_TRUE; 4171 4172 if (spa_writeable(spa) || 4173 spa->spa_load_state == SPA_LOAD_TRYIMPORT) { 4174 if (!spa_features_check(spa, B_TRUE, 4175 unsup_feat, enabled_feat)) { 4176 *missing_feat_writep = B_TRUE; 4177 } 4178 } 4179 4180 fnvlist_add_nvlist(spa->spa_load_info, 4181 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 4182 4183 if (!nvlist_empty(unsup_feat)) { 4184 fnvlist_add_nvlist(spa->spa_load_info, 4185 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 4186 } 4187 4188 fnvlist_free(enabled_feat); 4189 fnvlist_free(unsup_feat); 4190 4191 if (!missing_feat_read) { 4192 fnvlist_add_boolean(spa->spa_load_info, 4193 ZPOOL_CONFIG_CAN_RDONLY); 4194 } 4195 4196 /* 4197 * If the state is SPA_LOAD_TRYIMPORT, our objective is 4198 * twofold: to determine whether the pool is available for 4199 * import in read-write mode and (if it is not) whether the 4200 * pool is available for import in read-only mode. If the pool 4201 * is available for import in read-write mode, it is displayed 4202 * as available in userland; if it is not available for import 4203 * in read-only mode, it is displayed as unavailable in 4204 * userland. If the pool is available for import in read-only 4205 * mode but not read-write mode, it is displayed as unavailable 4206 * in userland with a special note that the pool is actually 4207 * available for open in read-only mode. 4208 * 4209 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 4210 * missing a feature for write, we must first determine whether 4211 * the pool can be opened read-only before returning to 4212 * userland in order to know whether to display the 4213 * abovementioned note. 4214 */ 4215 if (missing_feat_read || (*missing_feat_writep && 4216 spa_writeable(spa))) { 4217 spa_load_failed(spa, "pool uses unsupported features"); 4218 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 4219 ENOTSUP)); 4220 } 4221 4222 /* 4223 * Load refcounts for ZFS features from disk into an in-memory 4224 * cache during SPA initialization. 4225 */ 4226 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 4227 uint64_t refcount; 4228 4229 error = feature_get_refcount_from_disk(spa, 4230 &spa_feature_table[i], &refcount); 4231 if (error == 0) { 4232 spa->spa_feat_refcount_cache[i] = refcount; 4233 } else if (error == ENOTSUP) { 4234 spa->spa_feat_refcount_cache[i] = 4235 SPA_FEATURE_DISABLED; 4236 } else { 4237 spa_load_failed(spa, "error getting refcount " 4238 "for feature %s [error=%d]", 4239 spa_feature_table[i].fi_guid, error); 4240 return (spa_vdev_err(rvd, 4241 VDEV_AUX_CORRUPT_DATA, EIO)); 4242 } 4243 } 4244 } 4245 4246 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 4247 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 4248 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0) 4249 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4250 } 4251 4252 /* 4253 * Encryption was added before bookmark_v2, even though bookmark_v2 4254 * is now a dependency. If this pool has encryption enabled without 4255 * bookmark_v2, trigger an errata message. 4256 */ 4257 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) && 4258 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) { 4259 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION; 4260 } 4261 4262 return (0); 4263 } 4264 4265 static int 4266 spa_ld_load_special_directories(spa_t *spa) 4267 { 4268 int error = 0; 4269 vdev_t *rvd = spa->spa_root_vdev; 4270 4271 spa->spa_is_initializing = B_TRUE; 4272 error = dsl_pool_open(spa->spa_dsl_pool); 4273 spa->spa_is_initializing = B_FALSE; 4274 if (error != 0) { 4275 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error); 4276 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4277 } 4278 4279 return (0); 4280 } 4281 4282 static int 4283 spa_ld_get_props(spa_t *spa) 4284 { 4285 int error = 0; 4286 uint64_t obj; 4287 vdev_t *rvd = spa->spa_root_vdev; 4288 4289 /* Grab the checksum salt from the MOS. */ 4290 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 4291 DMU_POOL_CHECKSUM_SALT, 1, 4292 sizeof (spa->spa_cksum_salt.zcs_bytes), 4293 spa->spa_cksum_salt.zcs_bytes); 4294 if (error == ENOENT) { 4295 /* Generate a new salt for subsequent use */ 4296 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 4297 sizeof (spa->spa_cksum_salt.zcs_bytes)); 4298 } else if (error != 0) { 4299 spa_load_failed(spa, "unable to retrieve checksum salt from " 4300 "MOS [error=%d]", error); 4301 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4302 } 4303 4304 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0) 4305 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4306 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 4307 if (error != 0) { 4308 spa_load_failed(spa, "error opening deferred-frees bpobj " 4309 "[error=%d]", error); 4310 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4311 } 4312 4313 /* 4314 * Load the bit that tells us to use the new accounting function 4315 * (raid-z deflation). If we have an older pool, this will not 4316 * be present. 4317 */ 4318 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE); 4319 if (error != 0 && error != ENOENT) 4320 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4321 4322 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 4323 &spa->spa_creation_version, B_FALSE); 4324 if (error != 0 && error != ENOENT) 4325 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4326 4327 /* 4328 * Load the persistent error log. If we have an older pool, this will 4329 * not be present. 4330 */ 4331 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last, 4332 B_FALSE); 4333 if (error != 0 && error != ENOENT) 4334 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4335 4336 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 4337 &spa->spa_errlog_scrub, B_FALSE); 4338 if (error != 0 && error != ENOENT) 4339 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4340 4341 /* 4342 * Load the livelist deletion field. If a livelist is queued for 4343 * deletion, indicate that in the spa 4344 */ 4345 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES, 4346 &spa->spa_livelists_to_delete, B_FALSE); 4347 if (error != 0 && error != ENOENT) 4348 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4349 4350 /* 4351 * Load the history object. If we have an older pool, this 4352 * will not be present. 4353 */ 4354 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE); 4355 if (error != 0 && error != ENOENT) 4356 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4357 4358 /* 4359 * Load the per-vdev ZAP map. If we have an older pool, this will not 4360 * be present; in this case, defer its creation to a later time to 4361 * avoid dirtying the MOS this early / out of sync context. See 4362 * spa_sync_config_object. 4363 */ 4364 4365 /* The sentinel is only available in the MOS config. */ 4366 nvlist_t *mos_config; 4367 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { 4368 spa_load_failed(spa, "unable to retrieve MOS config"); 4369 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4370 } 4371 4372 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, 4373 &spa->spa_all_vdev_zaps, B_FALSE); 4374 4375 if (error == ENOENT) { 4376 VERIFY(!nvlist_exists(mos_config, 4377 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 4378 spa->spa_avz_action = AVZ_ACTION_INITIALIZE; 4379 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 4380 } else if (error != 0) { 4381 nvlist_free(mos_config); 4382 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4383 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { 4384 /* 4385 * An older version of ZFS overwrote the sentinel value, so 4386 * we have orphaned per-vdev ZAPs in the MOS. Defer their 4387 * destruction to later; see spa_sync_config_object. 4388 */ 4389 spa->spa_avz_action = AVZ_ACTION_DESTROY; 4390 /* 4391 * We're assuming that no vdevs have had their ZAPs created 4392 * before this. Better be sure of it. 4393 */ 4394 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 4395 } 4396 nvlist_free(mos_config); 4397 4398 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 4399 4400 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object, 4401 B_FALSE); 4402 if (error && error != ENOENT) 4403 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4404 4405 if (error == 0) { 4406 uint64_t autoreplace = 0; 4407 4408 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 4409 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 4410 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 4411 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 4412 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 4413 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost); 4414 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim); 4415 spa->spa_autoreplace = (autoreplace != 0); 4416 } 4417 4418 /* 4419 * If we are importing a pool with missing top-level vdevs, 4420 * we enforce that the pool doesn't panic or get suspended on 4421 * error since the likelihood of missing data is extremely high. 4422 */ 4423 if (spa->spa_missing_tvds > 0 && 4424 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE && 4425 spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4426 spa_load_note(spa, "forcing failmode to 'continue' " 4427 "as some top level vdevs are missing"); 4428 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE; 4429 } 4430 4431 return (0); 4432 } 4433 4434 static int 4435 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type) 4436 { 4437 int error = 0; 4438 vdev_t *rvd = spa->spa_root_vdev; 4439 4440 /* 4441 * If we're assembling the pool from the split-off vdevs of 4442 * an existing pool, we don't want to attach the spares & cache 4443 * devices. 4444 */ 4445 4446 /* 4447 * Load any hot spares for this pool. 4448 */ 4449 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object, 4450 B_FALSE); 4451 if (error != 0 && error != ENOENT) 4452 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4453 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 4454 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 4455 if (load_nvlist(spa, spa->spa_spares.sav_object, 4456 &spa->spa_spares.sav_config) != 0) { 4457 spa_load_failed(spa, "error loading spares nvlist"); 4458 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4459 } 4460 4461 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4462 spa_load_spares(spa); 4463 spa_config_exit(spa, SCL_ALL, FTAG); 4464 } else if (error == 0) { 4465 spa->spa_spares.sav_sync = B_TRUE; 4466 } 4467 4468 /* 4469 * Load any level 2 ARC devices for this pool. 4470 */ 4471 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 4472 &spa->spa_l2cache.sav_object, B_FALSE); 4473 if (error != 0 && error != ENOENT) 4474 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4475 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 4476 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 4477 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 4478 &spa->spa_l2cache.sav_config) != 0) { 4479 spa_load_failed(spa, "error loading l2cache nvlist"); 4480 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4481 } 4482 4483 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4484 spa_load_l2cache(spa); 4485 spa_config_exit(spa, SCL_ALL, FTAG); 4486 } else if (error == 0) { 4487 spa->spa_l2cache.sav_sync = B_TRUE; 4488 } 4489 4490 return (0); 4491 } 4492 4493 static int 4494 spa_ld_load_vdev_metadata(spa_t *spa) 4495 { 4496 int error = 0; 4497 vdev_t *rvd = spa->spa_root_vdev; 4498 4499 /* 4500 * If the 'multihost' property is set, then never allow a pool to 4501 * be imported when the system hostid is zero. The exception to 4502 * this rule is zdb which is always allowed to access pools. 4503 */ 4504 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 && 4505 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) { 4506 fnvlist_add_uint64(spa->spa_load_info, 4507 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 4508 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 4509 } 4510 4511 /* 4512 * If the 'autoreplace' property is set, then post a resource notifying 4513 * the ZFS DE that it should not issue any faults for unopenable 4514 * devices. We also iterate over the vdevs, and post a sysevent for any 4515 * unopenable vdevs so that the normal autoreplace handler can take 4516 * over. 4517 */ 4518 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4519 spa_check_removed(spa->spa_root_vdev); 4520 /* 4521 * For the import case, this is done in spa_import(), because 4522 * at this point we're using the spare definitions from 4523 * the MOS config, not necessarily from the userland config. 4524 */ 4525 if (spa->spa_load_state != SPA_LOAD_IMPORT) { 4526 spa_aux_check_removed(&spa->spa_spares); 4527 spa_aux_check_removed(&spa->spa_l2cache); 4528 } 4529 } 4530 4531 /* 4532 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc. 4533 */ 4534 error = vdev_load(rvd); 4535 if (error != 0) { 4536 spa_load_failed(spa, "vdev_load failed [error=%d]", error); 4537 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4538 } 4539 4540 error = spa_ld_log_spacemaps(spa); 4541 if (error != 0) { 4542 spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]", 4543 error); 4544 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4545 } 4546 4547 /* 4548 * Propagate the leaf DTLs we just loaded all the way up the vdev tree. 4549 */ 4550 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4551 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE); 4552 spa_config_exit(spa, SCL_ALL, FTAG); 4553 4554 return (0); 4555 } 4556 4557 static int 4558 spa_ld_load_dedup_tables(spa_t *spa) 4559 { 4560 int error = 0; 4561 vdev_t *rvd = spa->spa_root_vdev; 4562 4563 error = ddt_load(spa); 4564 if (error != 0) { 4565 spa_load_failed(spa, "ddt_load failed [error=%d]", error); 4566 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4567 } 4568 4569 return (0); 4570 } 4571 4572 static int 4573 spa_ld_load_brt(spa_t *spa) 4574 { 4575 int error = 0; 4576 vdev_t *rvd = spa->spa_root_vdev; 4577 4578 error = brt_load(spa); 4579 if (error != 0) { 4580 spa_load_failed(spa, "brt_load failed [error=%d]", error); 4581 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4582 } 4583 4584 return (0); 4585 } 4586 4587 static int 4588 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport) 4589 { 4590 vdev_t *rvd = spa->spa_root_vdev; 4591 4592 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) { 4593 boolean_t missing = spa_check_logs(spa); 4594 if (missing) { 4595 if (spa->spa_missing_tvds != 0) { 4596 spa_load_note(spa, "spa_check_logs failed " 4597 "so dropping the logs"); 4598 } else { 4599 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 4600 spa_load_failed(spa, "spa_check_logs failed"); 4601 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, 4602 ENXIO)); 4603 } 4604 } 4605 } 4606 4607 return (0); 4608 } 4609 4610 static int 4611 spa_ld_verify_pool_data(spa_t *spa) 4612 { 4613 int error = 0; 4614 vdev_t *rvd = spa->spa_root_vdev; 4615 4616 /* 4617 * We've successfully opened the pool, verify that we're ready 4618 * to start pushing transactions. 4619 */ 4620 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4621 error = spa_load_verify(spa); 4622 if (error != 0) { 4623 spa_load_failed(spa, "spa_load_verify failed " 4624 "[error=%d]", error); 4625 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 4626 error)); 4627 } 4628 } 4629 4630 return (0); 4631 } 4632 4633 static void 4634 spa_ld_claim_log_blocks(spa_t *spa) 4635 { 4636 dmu_tx_t *tx; 4637 dsl_pool_t *dp = spa_get_dsl(spa); 4638 4639 /* 4640 * Claim log blocks that haven't been committed yet. 4641 * This must all happen in a single txg. 4642 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 4643 * invoked from zil_claim_log_block()'s i/o done callback. 4644 * Price of rollback is that we abandon the log. 4645 */ 4646 spa->spa_claiming = B_TRUE; 4647 4648 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 4649 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 4650 zil_claim, tx, DS_FIND_CHILDREN); 4651 dmu_tx_commit(tx); 4652 4653 spa->spa_claiming = B_FALSE; 4654 4655 spa_set_log_state(spa, SPA_LOG_GOOD); 4656 } 4657 4658 static void 4659 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg, 4660 boolean_t update_config_cache) 4661 { 4662 vdev_t *rvd = spa->spa_root_vdev; 4663 int need_update = B_FALSE; 4664 4665 /* 4666 * If the config cache is stale, or we have uninitialized 4667 * metaslabs (see spa_vdev_add()), then update the config. 4668 * 4669 * If this is a verbatim import, trust the current 4670 * in-core spa_config and update the disk labels. 4671 */ 4672 if (update_config_cache || config_cache_txg != spa->spa_config_txg || 4673 spa->spa_load_state == SPA_LOAD_IMPORT || 4674 spa->spa_load_state == SPA_LOAD_RECOVER || 4675 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 4676 need_update = B_TRUE; 4677 4678 for (int c = 0; c < rvd->vdev_children; c++) 4679 if (rvd->vdev_child[c]->vdev_ms_array == 0) 4680 need_update = B_TRUE; 4681 4682 /* 4683 * Update the config cache asynchronously in case we're the 4684 * root pool, in which case the config cache isn't writable yet. 4685 */ 4686 if (need_update) 4687 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 4688 } 4689 4690 static void 4691 spa_ld_prepare_for_reload(spa_t *spa) 4692 { 4693 spa_mode_t mode = spa->spa_mode; 4694 int async_suspended = spa->spa_async_suspended; 4695 4696 spa_unload(spa); 4697 spa_deactivate(spa); 4698 spa_activate(spa, mode); 4699 4700 /* 4701 * We save the value of spa_async_suspended as it gets reset to 0 by 4702 * spa_unload(). We want to restore it back to the original value before 4703 * returning as we might be calling spa_async_resume() later. 4704 */ 4705 spa->spa_async_suspended = async_suspended; 4706 } 4707 4708 static int 4709 spa_ld_read_checkpoint_txg(spa_t *spa) 4710 { 4711 uberblock_t checkpoint; 4712 int error = 0; 4713 4714 ASSERT0(spa->spa_checkpoint_txg); 4715 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4716 4717 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 4718 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 4719 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 4720 4721 if (error == ENOENT) 4722 return (0); 4723 4724 if (error != 0) 4725 return (error); 4726 4727 ASSERT3U(checkpoint.ub_txg, !=, 0); 4728 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0); 4729 ASSERT3U(checkpoint.ub_timestamp, !=, 0); 4730 spa->spa_checkpoint_txg = checkpoint.ub_txg; 4731 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp; 4732 4733 return (0); 4734 } 4735 4736 static int 4737 spa_ld_mos_init(spa_t *spa, spa_import_type_t type) 4738 { 4739 int error = 0; 4740 4741 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4742 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 4743 4744 /* 4745 * Never trust the config that is provided unless we are assembling 4746 * a pool following a split. 4747 * This means don't trust blkptrs and the vdev tree in general. This 4748 * also effectively puts the spa in read-only mode since 4749 * spa_writeable() checks for spa_trust_config to be true. 4750 * We will later load a trusted config from the MOS. 4751 */ 4752 if (type != SPA_IMPORT_ASSEMBLE) 4753 spa->spa_trust_config = B_FALSE; 4754 4755 /* 4756 * Parse the config provided to create a vdev tree. 4757 */ 4758 error = spa_ld_parse_config(spa, type); 4759 if (error != 0) 4760 return (error); 4761 4762 spa_import_progress_add(spa); 4763 4764 /* 4765 * Now that we have the vdev tree, try to open each vdev. This involves 4766 * opening the underlying physical device, retrieving its geometry and 4767 * probing the vdev with a dummy I/O. The state of each vdev will be set 4768 * based on the success of those operations. After this we'll be ready 4769 * to read from the vdevs. 4770 */ 4771 error = spa_ld_open_vdevs(spa); 4772 if (error != 0) 4773 return (error); 4774 4775 /* 4776 * Read the label of each vdev and make sure that the GUIDs stored 4777 * there match the GUIDs in the config provided. 4778 * If we're assembling a new pool that's been split off from an 4779 * existing pool, the labels haven't yet been updated so we skip 4780 * validation for now. 4781 */ 4782 if (type != SPA_IMPORT_ASSEMBLE) { 4783 error = spa_ld_validate_vdevs(spa); 4784 if (error != 0) 4785 return (error); 4786 } 4787 4788 /* 4789 * Read all vdev labels to find the best uberblock (i.e. latest, 4790 * unless spa_load_max_txg is set) and store it in spa_uberblock. We 4791 * get the list of features required to read blkptrs in the MOS from 4792 * the vdev label with the best uberblock and verify that our version 4793 * of zfs supports them all. 4794 */ 4795 error = spa_ld_select_uberblock(spa, type); 4796 if (error != 0) 4797 return (error); 4798 4799 /* 4800 * Pass that uberblock to the dsl_pool layer which will open the root 4801 * blkptr. This blkptr points to the latest version of the MOS and will 4802 * allow us to read its contents. 4803 */ 4804 error = spa_ld_open_rootbp(spa); 4805 if (error != 0) 4806 return (error); 4807 4808 return (0); 4809 } 4810 4811 static int 4812 spa_ld_checkpoint_rewind(spa_t *spa) 4813 { 4814 uberblock_t checkpoint; 4815 int error = 0; 4816 4817 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4818 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 4819 4820 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 4821 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 4822 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 4823 4824 if (error != 0) { 4825 spa_load_failed(spa, "unable to retrieve checkpointed " 4826 "uberblock from the MOS config [error=%d]", error); 4827 4828 if (error == ENOENT) 4829 error = ZFS_ERR_NO_CHECKPOINT; 4830 4831 return (error); 4832 } 4833 4834 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg); 4835 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg); 4836 4837 /* 4838 * We need to update the txg and timestamp of the checkpointed 4839 * uberblock to be higher than the latest one. This ensures that 4840 * the checkpointed uberblock is selected if we were to close and 4841 * reopen the pool right after we've written it in the vdev labels. 4842 * (also see block comment in vdev_uberblock_compare) 4843 */ 4844 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1; 4845 checkpoint.ub_timestamp = gethrestime_sec(); 4846 4847 /* 4848 * Set current uberblock to be the checkpointed uberblock. 4849 */ 4850 spa->spa_uberblock = checkpoint; 4851 4852 /* 4853 * If we are doing a normal rewind, then the pool is open for 4854 * writing and we sync the "updated" checkpointed uberblock to 4855 * disk. Once this is done, we've basically rewound the whole 4856 * pool and there is no way back. 4857 * 4858 * There are cases when we don't want to attempt and sync the 4859 * checkpointed uberblock to disk because we are opening a 4860 * pool as read-only. Specifically, verifying the checkpointed 4861 * state with zdb, and importing the checkpointed state to get 4862 * a "preview" of its content. 4863 */ 4864 if (spa_writeable(spa)) { 4865 vdev_t *rvd = spa->spa_root_vdev; 4866 4867 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4868 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 4869 int svdcount = 0; 4870 int children = rvd->vdev_children; 4871 int c0 = random_in_range(children); 4872 4873 for (int c = 0; c < children; c++) { 4874 vdev_t *vd = rvd->vdev_child[(c0 + c) % children]; 4875 4876 /* Stop when revisiting the first vdev */ 4877 if (c > 0 && svd[0] == vd) 4878 break; 4879 4880 if (vd->vdev_ms_array == 0 || vd->vdev_islog || 4881 !vdev_is_concrete(vd)) 4882 continue; 4883 4884 svd[svdcount++] = vd; 4885 if (svdcount == SPA_SYNC_MIN_VDEVS) 4886 break; 4887 } 4888 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg); 4889 if (error == 0) 4890 spa->spa_last_synced_guid = rvd->vdev_guid; 4891 spa_config_exit(spa, SCL_ALL, FTAG); 4892 4893 if (error != 0) { 4894 spa_load_failed(spa, "failed to write checkpointed " 4895 "uberblock to the vdev labels [error=%d]", error); 4896 return (error); 4897 } 4898 } 4899 4900 return (0); 4901 } 4902 4903 static int 4904 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type, 4905 boolean_t *update_config_cache) 4906 { 4907 int error; 4908 4909 /* 4910 * Parse the config for pool, open and validate vdevs, 4911 * select an uberblock, and use that uberblock to open 4912 * the MOS. 4913 */ 4914 error = spa_ld_mos_init(spa, type); 4915 if (error != 0) 4916 return (error); 4917 4918 /* 4919 * Retrieve the trusted config stored in the MOS and use it to create 4920 * a new, exact version of the vdev tree, then reopen all vdevs. 4921 */ 4922 error = spa_ld_trusted_config(spa, type, B_FALSE); 4923 if (error == EAGAIN) { 4924 if (update_config_cache != NULL) 4925 *update_config_cache = B_TRUE; 4926 4927 /* 4928 * Redo the loading process with the trusted config if it is 4929 * too different from the untrusted config. 4930 */ 4931 spa_ld_prepare_for_reload(spa); 4932 spa_load_note(spa, "RELOADING"); 4933 error = spa_ld_mos_init(spa, type); 4934 if (error != 0) 4935 return (error); 4936 4937 error = spa_ld_trusted_config(spa, type, B_TRUE); 4938 if (error != 0) 4939 return (error); 4940 4941 } else if (error != 0) { 4942 return (error); 4943 } 4944 4945 return (0); 4946 } 4947 4948 /* 4949 * Load an existing storage pool, using the config provided. This config 4950 * describes which vdevs are part of the pool and is later validated against 4951 * partial configs present in each vdev's label and an entire copy of the 4952 * config stored in the MOS. 4953 */ 4954 static int 4955 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport) 4956 { 4957 int error = 0; 4958 boolean_t missing_feat_write = B_FALSE; 4959 boolean_t checkpoint_rewind = 4960 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 4961 boolean_t update_config_cache = B_FALSE; 4962 4963 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4964 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 4965 4966 spa_load_note(spa, "LOADING"); 4967 4968 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache); 4969 if (error != 0) 4970 return (error); 4971 4972 /* 4973 * If we are rewinding to the checkpoint then we need to repeat 4974 * everything we've done so far in this function but this time 4975 * selecting the checkpointed uberblock and using that to open 4976 * the MOS. 4977 */ 4978 if (checkpoint_rewind) { 4979 /* 4980 * If we are rewinding to the checkpoint update config cache 4981 * anyway. 4982 */ 4983 update_config_cache = B_TRUE; 4984 4985 /* 4986 * Extract the checkpointed uberblock from the current MOS 4987 * and use this as the pool's uberblock from now on. If the 4988 * pool is imported as writeable we also write the checkpoint 4989 * uberblock to the labels, making the rewind permanent. 4990 */ 4991 error = spa_ld_checkpoint_rewind(spa); 4992 if (error != 0) 4993 return (error); 4994 4995 /* 4996 * Redo the loading process again with the 4997 * checkpointed uberblock. 4998 */ 4999 spa_ld_prepare_for_reload(spa); 5000 spa_load_note(spa, "LOADING checkpointed uberblock"); 5001 error = spa_ld_mos_with_trusted_config(spa, type, NULL); 5002 if (error != 0) 5003 return (error); 5004 } 5005 5006 /* 5007 * Retrieve the checkpoint txg if the pool has a checkpoint. 5008 */ 5009 spa_import_progress_set_notes(spa, "Loading checkpoint txg"); 5010 error = spa_ld_read_checkpoint_txg(spa); 5011 if (error != 0) 5012 return (error); 5013 5014 /* 5015 * Retrieve the mapping of indirect vdevs. Those vdevs were removed 5016 * from the pool and their contents were re-mapped to other vdevs. Note 5017 * that everything that we read before this step must have been 5018 * rewritten on concrete vdevs after the last device removal was 5019 * initiated. Otherwise we could be reading from indirect vdevs before 5020 * we have loaded their mappings. 5021 */ 5022 spa_import_progress_set_notes(spa, "Loading indirect vdev metadata"); 5023 error = spa_ld_open_indirect_vdev_metadata(spa); 5024 if (error != 0) 5025 return (error); 5026 5027 /* 5028 * Retrieve the full list of active features from the MOS and check if 5029 * they are all supported. 5030 */ 5031 spa_import_progress_set_notes(spa, "Checking feature flags"); 5032 error = spa_ld_check_features(spa, &missing_feat_write); 5033 if (error != 0) 5034 return (error); 5035 5036 /* 5037 * Load several special directories from the MOS needed by the dsl_pool 5038 * layer. 5039 */ 5040 spa_import_progress_set_notes(spa, "Loading special MOS directories"); 5041 error = spa_ld_load_special_directories(spa); 5042 if (error != 0) 5043 return (error); 5044 5045 /* 5046 * Retrieve pool properties from the MOS. 5047 */ 5048 spa_import_progress_set_notes(spa, "Loading properties"); 5049 error = spa_ld_get_props(spa); 5050 if (error != 0) 5051 return (error); 5052 5053 /* 5054 * Retrieve the list of auxiliary devices - cache devices and spares - 5055 * and open them. 5056 */ 5057 spa_import_progress_set_notes(spa, "Loading AUX vdevs"); 5058 error = spa_ld_open_aux_vdevs(spa, type); 5059 if (error != 0) 5060 return (error); 5061 5062 /* 5063 * Load the metadata for all vdevs. Also check if unopenable devices 5064 * should be autoreplaced. 5065 */ 5066 spa_import_progress_set_notes(spa, "Loading vdev metadata"); 5067 error = spa_ld_load_vdev_metadata(spa); 5068 if (error != 0) 5069 return (error); 5070 5071 spa_import_progress_set_notes(spa, "Loading dedup tables"); 5072 error = spa_ld_load_dedup_tables(spa); 5073 if (error != 0) 5074 return (error); 5075 5076 spa_import_progress_set_notes(spa, "Loading BRT"); 5077 error = spa_ld_load_brt(spa); 5078 if (error != 0) 5079 return (error); 5080 5081 /* 5082 * Verify the logs now to make sure we don't have any unexpected errors 5083 * when we claim log blocks later. 5084 */ 5085 spa_import_progress_set_notes(spa, "Verifying Log Devices"); 5086 error = spa_ld_verify_logs(spa, type, ereport); 5087 if (error != 0) 5088 return (error); 5089 5090 if (missing_feat_write) { 5091 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT); 5092 5093 /* 5094 * At this point, we know that we can open the pool in 5095 * read-only mode but not read-write mode. We now have enough 5096 * information and can return to userland. 5097 */ 5098 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT, 5099 ENOTSUP)); 5100 } 5101 5102 /* 5103 * Traverse the last txgs to make sure the pool was left off in a safe 5104 * state. When performing an extreme rewind, we verify the whole pool, 5105 * which can take a very long time. 5106 */ 5107 spa_import_progress_set_notes(spa, "Verifying pool data"); 5108 error = spa_ld_verify_pool_data(spa); 5109 if (error != 0) 5110 return (error); 5111 5112 /* 5113 * Calculate the deflated space for the pool. This must be done before 5114 * we write anything to the pool because we'd need to update the space 5115 * accounting using the deflated sizes. 5116 */ 5117 spa_import_progress_set_notes(spa, "Calculating deflated space"); 5118 spa_update_dspace(spa); 5119 5120 /* 5121 * We have now retrieved all the information we needed to open the 5122 * pool. If we are importing the pool in read-write mode, a few 5123 * additional steps must be performed to finish the import. 5124 */ 5125 spa_import_progress_set_notes(spa, "Starting import"); 5126 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER || 5127 spa->spa_load_max_txg == UINT64_MAX)) { 5128 uint64_t config_cache_txg = spa->spa_config_txg; 5129 5130 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT); 5131 5132 /* 5133 * Before we do any zio_write's, complete the raidz expansion 5134 * scratch space copying, if necessary. 5135 */ 5136 if (RRSS_GET_STATE(&spa->spa_uberblock) == RRSS_SCRATCH_VALID) 5137 vdev_raidz_reflow_copy_scratch(spa); 5138 5139 /* 5140 * In case of a checkpoint rewind, log the original txg 5141 * of the checkpointed uberblock. 5142 */ 5143 if (checkpoint_rewind) { 5144 spa_history_log_internal(spa, "checkpoint rewind", 5145 NULL, "rewound state to txg=%llu", 5146 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg); 5147 } 5148 5149 spa_import_progress_set_notes(spa, "Claiming ZIL blocks"); 5150 /* 5151 * Traverse the ZIL and claim all blocks. 5152 */ 5153 spa_ld_claim_log_blocks(spa); 5154 5155 /* 5156 * Kick-off the syncing thread. 5157 */ 5158 spa->spa_sync_on = B_TRUE; 5159 txg_sync_start(spa->spa_dsl_pool); 5160 mmp_thread_start(spa); 5161 5162 /* 5163 * Wait for all claims to sync. We sync up to the highest 5164 * claimed log block birth time so that claimed log blocks 5165 * don't appear to be from the future. spa_claim_max_txg 5166 * will have been set for us by ZIL traversal operations 5167 * performed above. 5168 */ 5169 spa_import_progress_set_notes(spa, "Syncing ZIL claims"); 5170 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 5171 5172 /* 5173 * Check if we need to request an update of the config. On the 5174 * next sync, we would update the config stored in vdev labels 5175 * and the cachefile (by default /etc/zfs/zpool.cache). 5176 */ 5177 spa_import_progress_set_notes(spa, "Updating configs"); 5178 spa_ld_check_for_config_update(spa, config_cache_txg, 5179 update_config_cache); 5180 5181 /* 5182 * Check if a rebuild was in progress and if so resume it. 5183 * Then check all DTLs to see if anything needs resilvering. 5184 * The resilver will be deferred if a rebuild was started. 5185 */ 5186 spa_import_progress_set_notes(spa, "Starting resilvers"); 5187 if (vdev_rebuild_active(spa->spa_root_vdev)) { 5188 vdev_rebuild_restart(spa); 5189 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 5190 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5191 spa_async_request(spa, SPA_ASYNC_RESILVER); 5192 } 5193 5194 /* 5195 * Log the fact that we booted up (so that we can detect if 5196 * we rebooted in the middle of an operation). 5197 */ 5198 spa_history_log_version(spa, "open", NULL); 5199 5200 spa_import_progress_set_notes(spa, 5201 "Restarting device removals"); 5202 spa_restart_removal(spa); 5203 spa_spawn_aux_threads(spa); 5204 5205 /* 5206 * Delete any inconsistent datasets. 5207 * 5208 * Note: 5209 * Since we may be issuing deletes for clones here, 5210 * we make sure to do so after we've spawned all the 5211 * auxiliary threads above (from which the livelist 5212 * deletion zthr is part of). 5213 */ 5214 spa_import_progress_set_notes(spa, 5215 "Cleaning up inconsistent objsets"); 5216 (void) dmu_objset_find(spa_name(spa), 5217 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 5218 5219 /* 5220 * Clean up any stale temporary dataset userrefs. 5221 */ 5222 spa_import_progress_set_notes(spa, 5223 "Cleaning up temporary userrefs"); 5224 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 5225 5226 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5227 spa_import_progress_set_notes(spa, "Restarting initialize"); 5228 vdev_initialize_restart(spa->spa_root_vdev); 5229 spa_import_progress_set_notes(spa, "Restarting TRIM"); 5230 vdev_trim_restart(spa->spa_root_vdev); 5231 vdev_autotrim_restart(spa); 5232 spa_config_exit(spa, SCL_CONFIG, FTAG); 5233 spa_import_progress_set_notes(spa, "Finished importing"); 5234 } 5235 5236 spa_import_progress_remove(spa_guid(spa)); 5237 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 5238 5239 spa_load_note(spa, "LOADED"); 5240 5241 return (0); 5242 } 5243 5244 static int 5245 spa_load_retry(spa_t *spa, spa_load_state_t state) 5246 { 5247 spa_mode_t mode = spa->spa_mode; 5248 5249 spa_unload(spa); 5250 spa_deactivate(spa); 5251 5252 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 5253 5254 spa_activate(spa, mode); 5255 spa_async_suspend(spa); 5256 5257 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu", 5258 (u_longlong_t)spa->spa_load_max_txg); 5259 5260 return (spa_load(spa, state, SPA_IMPORT_EXISTING)); 5261 } 5262 5263 /* 5264 * If spa_load() fails this function will try loading prior txg's. If 5265 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 5266 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 5267 * function will not rewind the pool and will return the same error as 5268 * spa_load(). 5269 */ 5270 static int 5271 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request, 5272 int rewind_flags) 5273 { 5274 nvlist_t *loadinfo = NULL; 5275 nvlist_t *config = NULL; 5276 int load_error, rewind_error; 5277 uint64_t safe_rewind_txg; 5278 uint64_t min_txg; 5279 5280 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 5281 spa->spa_load_max_txg = spa->spa_load_txg; 5282 spa_set_log_state(spa, SPA_LOG_CLEAR); 5283 } else { 5284 spa->spa_load_max_txg = max_request; 5285 if (max_request != UINT64_MAX) 5286 spa->spa_extreme_rewind = B_TRUE; 5287 } 5288 5289 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING); 5290 if (load_error == 0) 5291 return (0); 5292 if (load_error == ZFS_ERR_NO_CHECKPOINT) { 5293 /* 5294 * When attempting checkpoint-rewind on a pool with no 5295 * checkpoint, we should not attempt to load uberblocks 5296 * from previous txgs when spa_load fails. 5297 */ 5298 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 5299 spa_import_progress_remove(spa_guid(spa)); 5300 return (load_error); 5301 } 5302 5303 if (spa->spa_root_vdev != NULL) 5304 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 5305 5306 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 5307 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 5308 5309 if (rewind_flags & ZPOOL_NEVER_REWIND) { 5310 nvlist_free(config); 5311 spa_import_progress_remove(spa_guid(spa)); 5312 return (load_error); 5313 } 5314 5315 if (state == SPA_LOAD_RECOVER) { 5316 /* Price of rolling back is discarding txgs, including log */ 5317 spa_set_log_state(spa, SPA_LOG_CLEAR); 5318 } else { 5319 /* 5320 * If we aren't rolling back save the load info from our first 5321 * import attempt so that we can restore it after attempting 5322 * to rewind. 5323 */ 5324 loadinfo = spa->spa_load_info; 5325 spa->spa_load_info = fnvlist_alloc(); 5326 } 5327 5328 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 5329 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 5330 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 5331 TXG_INITIAL : safe_rewind_txg; 5332 5333 /* 5334 * Continue as long as we're finding errors, we're still within 5335 * the acceptable rewind range, and we're still finding uberblocks 5336 */ 5337 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 5338 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 5339 if (spa->spa_load_max_txg < safe_rewind_txg) 5340 spa->spa_extreme_rewind = B_TRUE; 5341 rewind_error = spa_load_retry(spa, state); 5342 } 5343 5344 spa->spa_extreme_rewind = B_FALSE; 5345 spa->spa_load_max_txg = UINT64_MAX; 5346 5347 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 5348 spa_config_set(spa, config); 5349 else 5350 nvlist_free(config); 5351 5352 if (state == SPA_LOAD_RECOVER) { 5353 ASSERT3P(loadinfo, ==, NULL); 5354 spa_import_progress_remove(spa_guid(spa)); 5355 return (rewind_error); 5356 } else { 5357 /* Store the rewind info as part of the initial load info */ 5358 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 5359 spa->spa_load_info); 5360 5361 /* Restore the initial load info */ 5362 fnvlist_free(spa->spa_load_info); 5363 spa->spa_load_info = loadinfo; 5364 5365 spa_import_progress_remove(spa_guid(spa)); 5366 return (load_error); 5367 } 5368 } 5369 5370 /* 5371 * Pool Open/Import 5372 * 5373 * The import case is identical to an open except that the configuration is sent 5374 * down from userland, instead of grabbed from the configuration cache. For the 5375 * case of an open, the pool configuration will exist in the 5376 * POOL_STATE_UNINITIALIZED state. 5377 * 5378 * The stats information (gen/count/ustats) is used to gather vdev statistics at 5379 * the same time open the pool, without having to keep around the spa_t in some 5380 * ambiguous state. 5381 */ 5382 static int 5383 spa_open_common(const char *pool, spa_t **spapp, const void *tag, 5384 nvlist_t *nvpolicy, nvlist_t **config) 5385 { 5386 spa_t *spa; 5387 spa_load_state_t state = SPA_LOAD_OPEN; 5388 int error; 5389 int locked = B_FALSE; 5390 int firstopen = B_FALSE; 5391 5392 *spapp = NULL; 5393 5394 /* 5395 * As disgusting as this is, we need to support recursive calls to this 5396 * function because dsl_dir_open() is called during spa_load(), and ends 5397 * up calling spa_open() again. The real fix is to figure out how to 5398 * avoid dsl_dir_open() calling this in the first place. 5399 */ 5400 if (MUTEX_NOT_HELD(&spa_namespace_lock)) { 5401 mutex_enter(&spa_namespace_lock); 5402 locked = B_TRUE; 5403 } 5404 5405 if ((spa = spa_lookup(pool)) == NULL) { 5406 if (locked) 5407 mutex_exit(&spa_namespace_lock); 5408 return (SET_ERROR(ENOENT)); 5409 } 5410 5411 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 5412 zpool_load_policy_t policy; 5413 5414 firstopen = B_TRUE; 5415 5416 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config, 5417 &policy); 5418 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 5419 state = SPA_LOAD_RECOVER; 5420 5421 spa_activate(spa, spa_mode_global); 5422 5423 if (state != SPA_LOAD_RECOVER) 5424 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 5425 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 5426 5427 zfs_dbgmsg("spa_open_common: opening %s", pool); 5428 error = spa_load_best(spa, state, policy.zlp_txg, 5429 policy.zlp_rewind); 5430 5431 if (error == EBADF) { 5432 /* 5433 * If vdev_validate() returns failure (indicated by 5434 * EBADF), it indicates that one of the vdevs indicates 5435 * that the pool has been exported or destroyed. If 5436 * this is the case, the config cache is out of sync and 5437 * we should remove the pool from the namespace. 5438 */ 5439 spa_unload(spa); 5440 spa_deactivate(spa); 5441 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE); 5442 spa_remove(spa); 5443 if (locked) 5444 mutex_exit(&spa_namespace_lock); 5445 return (SET_ERROR(ENOENT)); 5446 } 5447 5448 if (error) { 5449 /* 5450 * We can't open the pool, but we still have useful 5451 * information: the state of each vdev after the 5452 * attempted vdev_open(). Return this to the user. 5453 */ 5454 if (config != NULL && spa->spa_config) { 5455 *config = fnvlist_dup(spa->spa_config); 5456 fnvlist_add_nvlist(*config, 5457 ZPOOL_CONFIG_LOAD_INFO, 5458 spa->spa_load_info); 5459 } 5460 spa_unload(spa); 5461 spa_deactivate(spa); 5462 spa->spa_last_open_failed = error; 5463 if (locked) 5464 mutex_exit(&spa_namespace_lock); 5465 *spapp = NULL; 5466 return (error); 5467 } 5468 } 5469 5470 spa_open_ref(spa, tag); 5471 5472 if (config != NULL) 5473 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 5474 5475 /* 5476 * If we've recovered the pool, pass back any information we 5477 * gathered while doing the load. 5478 */ 5479 if (state == SPA_LOAD_RECOVER && config != NULL) { 5480 fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 5481 spa->spa_load_info); 5482 } 5483 5484 if (locked) { 5485 spa->spa_last_open_failed = 0; 5486 spa->spa_last_ubsync_txg = 0; 5487 spa->spa_load_txg = 0; 5488 mutex_exit(&spa_namespace_lock); 5489 } 5490 5491 if (firstopen) 5492 zvol_create_minors_recursive(spa_name(spa)); 5493 5494 *spapp = spa; 5495 5496 return (0); 5497 } 5498 5499 int 5500 spa_open_rewind(const char *name, spa_t **spapp, const void *tag, 5501 nvlist_t *policy, nvlist_t **config) 5502 { 5503 return (spa_open_common(name, spapp, tag, policy, config)); 5504 } 5505 5506 int 5507 spa_open(const char *name, spa_t **spapp, const void *tag) 5508 { 5509 return (spa_open_common(name, spapp, tag, NULL, NULL)); 5510 } 5511 5512 /* 5513 * Lookup the given spa_t, incrementing the inject count in the process, 5514 * preventing it from being exported or destroyed. 5515 */ 5516 spa_t * 5517 spa_inject_addref(char *name) 5518 { 5519 spa_t *spa; 5520 5521 mutex_enter(&spa_namespace_lock); 5522 if ((spa = spa_lookup(name)) == NULL) { 5523 mutex_exit(&spa_namespace_lock); 5524 return (NULL); 5525 } 5526 spa->spa_inject_ref++; 5527 mutex_exit(&spa_namespace_lock); 5528 5529 return (spa); 5530 } 5531 5532 void 5533 spa_inject_delref(spa_t *spa) 5534 { 5535 mutex_enter(&spa_namespace_lock); 5536 spa->spa_inject_ref--; 5537 mutex_exit(&spa_namespace_lock); 5538 } 5539 5540 /* 5541 * Add spares device information to the nvlist. 5542 */ 5543 static void 5544 spa_add_spares(spa_t *spa, nvlist_t *config) 5545 { 5546 nvlist_t **spares; 5547 uint_t i, nspares; 5548 nvlist_t *nvroot; 5549 uint64_t guid; 5550 vdev_stat_t *vs; 5551 uint_t vsc; 5552 uint64_t pool; 5553 5554 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 5555 5556 if (spa->spa_spares.sav_count == 0) 5557 return; 5558 5559 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); 5560 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5561 ZPOOL_CONFIG_SPARES, &spares, &nspares)); 5562 if (nspares != 0) { 5563 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5564 (const nvlist_t * const *)spares, nspares); 5565 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5566 &spares, &nspares)); 5567 5568 /* 5569 * Go through and find any spares which have since been 5570 * repurposed as an active spare. If this is the case, update 5571 * their status appropriately. 5572 */ 5573 for (i = 0; i < nspares; i++) { 5574 guid = fnvlist_lookup_uint64(spares[i], 5575 ZPOOL_CONFIG_GUID); 5576 VERIFY0(nvlist_lookup_uint64_array(spares[i], 5577 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)); 5578 if (spa_spare_exists(guid, &pool, NULL) && 5579 pool != 0ULL) { 5580 vs->vs_state = VDEV_STATE_CANT_OPEN; 5581 vs->vs_aux = VDEV_AUX_SPARED; 5582 } else { 5583 vs->vs_state = 5584 spa->spa_spares.sav_vdevs[i]->vdev_state; 5585 } 5586 } 5587 } 5588 } 5589 5590 /* 5591 * Add l2cache device information to the nvlist, including vdev stats. 5592 */ 5593 static void 5594 spa_add_l2cache(spa_t *spa, nvlist_t *config) 5595 { 5596 nvlist_t **l2cache; 5597 uint_t i, j, nl2cache; 5598 nvlist_t *nvroot; 5599 uint64_t guid; 5600 vdev_t *vd; 5601 vdev_stat_t *vs; 5602 uint_t vsc; 5603 5604 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 5605 5606 if (spa->spa_l2cache.sav_count == 0) 5607 return; 5608 5609 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); 5610 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5611 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache)); 5612 if (nl2cache != 0) { 5613 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 5614 (const nvlist_t * const *)l2cache, nl2cache); 5615 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 5616 &l2cache, &nl2cache)); 5617 5618 /* 5619 * Update level 2 cache device stats. 5620 */ 5621 5622 for (i = 0; i < nl2cache; i++) { 5623 guid = fnvlist_lookup_uint64(l2cache[i], 5624 ZPOOL_CONFIG_GUID); 5625 5626 vd = NULL; 5627 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 5628 if (guid == 5629 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 5630 vd = spa->spa_l2cache.sav_vdevs[j]; 5631 break; 5632 } 5633 } 5634 ASSERT(vd != NULL); 5635 5636 VERIFY0(nvlist_lookup_uint64_array(l2cache[i], 5637 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)); 5638 vdev_get_stats(vd, vs); 5639 vdev_config_generate_stats(vd, l2cache[i]); 5640 5641 } 5642 } 5643 } 5644 5645 static void 5646 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features) 5647 { 5648 zap_cursor_t zc; 5649 zap_attribute_t za; 5650 5651 if (spa->spa_feat_for_read_obj != 0) { 5652 for (zap_cursor_init(&zc, spa->spa_meta_objset, 5653 spa->spa_feat_for_read_obj); 5654 zap_cursor_retrieve(&zc, &za) == 0; 5655 zap_cursor_advance(&zc)) { 5656 ASSERT(za.za_integer_length == sizeof (uint64_t) && 5657 za.za_num_integers == 1); 5658 VERIFY0(nvlist_add_uint64(features, za.za_name, 5659 za.za_first_integer)); 5660 } 5661 zap_cursor_fini(&zc); 5662 } 5663 5664 if (spa->spa_feat_for_write_obj != 0) { 5665 for (zap_cursor_init(&zc, spa->spa_meta_objset, 5666 spa->spa_feat_for_write_obj); 5667 zap_cursor_retrieve(&zc, &za) == 0; 5668 zap_cursor_advance(&zc)) { 5669 ASSERT(za.za_integer_length == sizeof (uint64_t) && 5670 za.za_num_integers == 1); 5671 VERIFY0(nvlist_add_uint64(features, za.za_name, 5672 za.za_first_integer)); 5673 } 5674 zap_cursor_fini(&zc); 5675 } 5676 } 5677 5678 static void 5679 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features) 5680 { 5681 int i; 5682 5683 for (i = 0; i < SPA_FEATURES; i++) { 5684 zfeature_info_t feature = spa_feature_table[i]; 5685 uint64_t refcount; 5686 5687 if (feature_get_refcount(spa, &feature, &refcount) != 0) 5688 continue; 5689 5690 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount)); 5691 } 5692 } 5693 5694 /* 5695 * Store a list of pool features and their reference counts in the 5696 * config. 5697 * 5698 * The first time this is called on a spa, allocate a new nvlist, fetch 5699 * the pool features and reference counts from disk, then save the list 5700 * in the spa. In subsequent calls on the same spa use the saved nvlist 5701 * and refresh its values from the cached reference counts. This 5702 * ensures we don't block here on I/O on a suspended pool so 'zpool 5703 * clear' can resume the pool. 5704 */ 5705 static void 5706 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 5707 { 5708 nvlist_t *features; 5709 5710 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 5711 5712 mutex_enter(&spa->spa_feat_stats_lock); 5713 features = spa->spa_feat_stats; 5714 5715 if (features != NULL) { 5716 spa_feature_stats_from_cache(spa, features); 5717 } else { 5718 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP)); 5719 spa->spa_feat_stats = features; 5720 spa_feature_stats_from_disk(spa, features); 5721 } 5722 5723 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 5724 features)); 5725 5726 mutex_exit(&spa->spa_feat_stats_lock); 5727 } 5728 5729 int 5730 spa_get_stats(const char *name, nvlist_t **config, 5731 char *altroot, size_t buflen) 5732 { 5733 int error; 5734 spa_t *spa; 5735 5736 *config = NULL; 5737 error = spa_open_common(name, &spa, FTAG, NULL, config); 5738 5739 if (spa != NULL) { 5740 /* 5741 * This still leaves a window of inconsistency where the spares 5742 * or l2cache devices could change and the config would be 5743 * self-inconsistent. 5744 */ 5745 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5746 5747 if (*config != NULL) { 5748 uint64_t loadtimes[2]; 5749 5750 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 5751 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 5752 fnvlist_add_uint64_array(*config, 5753 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2); 5754 5755 fnvlist_add_uint64(*config, 5756 ZPOOL_CONFIG_ERRCOUNT, 5757 spa_approx_errlog_size(spa)); 5758 5759 if (spa_suspended(spa)) { 5760 fnvlist_add_uint64(*config, 5761 ZPOOL_CONFIG_SUSPENDED, 5762 spa->spa_failmode); 5763 fnvlist_add_uint64(*config, 5764 ZPOOL_CONFIG_SUSPENDED_REASON, 5765 spa->spa_suspended); 5766 } 5767 5768 spa_add_spares(spa, *config); 5769 spa_add_l2cache(spa, *config); 5770 spa_add_feature_stats(spa, *config); 5771 } 5772 } 5773 5774 /* 5775 * We want to get the alternate root even for faulted pools, so we cheat 5776 * and call spa_lookup() directly. 5777 */ 5778 if (altroot) { 5779 if (spa == NULL) { 5780 mutex_enter(&spa_namespace_lock); 5781 spa = spa_lookup(name); 5782 if (spa) 5783 spa_altroot(spa, altroot, buflen); 5784 else 5785 altroot[0] = '\0'; 5786 spa = NULL; 5787 mutex_exit(&spa_namespace_lock); 5788 } else { 5789 spa_altroot(spa, altroot, buflen); 5790 } 5791 } 5792 5793 if (spa != NULL) { 5794 spa_config_exit(spa, SCL_CONFIG, FTAG); 5795 spa_close(spa, FTAG); 5796 } 5797 5798 return (error); 5799 } 5800 5801 /* 5802 * Validate that the auxiliary device array is well formed. We must have an 5803 * array of nvlists, each which describes a valid leaf vdev. If this is an 5804 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 5805 * specified, as long as they are well-formed. 5806 */ 5807 static int 5808 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 5809 spa_aux_vdev_t *sav, const char *config, uint64_t version, 5810 vdev_labeltype_t label) 5811 { 5812 nvlist_t **dev; 5813 uint_t i, ndev; 5814 vdev_t *vd; 5815 int error; 5816 5817 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5818 5819 /* 5820 * It's acceptable to have no devs specified. 5821 */ 5822 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 5823 return (0); 5824 5825 if (ndev == 0) 5826 return (SET_ERROR(EINVAL)); 5827 5828 /* 5829 * Make sure the pool is formatted with a version that supports this 5830 * device type. 5831 */ 5832 if (spa_version(spa) < version) 5833 return (SET_ERROR(ENOTSUP)); 5834 5835 /* 5836 * Set the pending device list so we correctly handle device in-use 5837 * checking. 5838 */ 5839 sav->sav_pending = dev; 5840 sav->sav_npending = ndev; 5841 5842 for (i = 0; i < ndev; i++) { 5843 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 5844 mode)) != 0) 5845 goto out; 5846 5847 if (!vd->vdev_ops->vdev_op_leaf) { 5848 vdev_free(vd); 5849 error = SET_ERROR(EINVAL); 5850 goto out; 5851 } 5852 5853 vd->vdev_top = vd; 5854 5855 if ((error = vdev_open(vd)) == 0 && 5856 (error = vdev_label_init(vd, crtxg, label)) == 0) { 5857 fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 5858 vd->vdev_guid); 5859 } 5860 5861 vdev_free(vd); 5862 5863 if (error && 5864 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 5865 goto out; 5866 else 5867 error = 0; 5868 } 5869 5870 out: 5871 sav->sav_pending = NULL; 5872 sav->sav_npending = 0; 5873 return (error); 5874 } 5875 5876 static int 5877 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 5878 { 5879 int error; 5880 5881 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5882 5883 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 5884 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 5885 VDEV_LABEL_SPARE)) != 0) { 5886 return (error); 5887 } 5888 5889 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 5890 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 5891 VDEV_LABEL_L2CACHE)); 5892 } 5893 5894 static void 5895 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 5896 const char *config) 5897 { 5898 int i; 5899 5900 if (sav->sav_config != NULL) { 5901 nvlist_t **olddevs; 5902 uint_t oldndevs; 5903 nvlist_t **newdevs; 5904 5905 /* 5906 * Generate new dev list by concatenating with the 5907 * current dev list. 5908 */ 5909 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config, 5910 &olddevs, &oldndevs)); 5911 5912 newdevs = kmem_alloc(sizeof (void *) * 5913 (ndevs + oldndevs), KM_SLEEP); 5914 for (i = 0; i < oldndevs; i++) 5915 newdevs[i] = fnvlist_dup(olddevs[i]); 5916 for (i = 0; i < ndevs; i++) 5917 newdevs[i + oldndevs] = fnvlist_dup(devs[i]); 5918 5919 fnvlist_remove(sav->sav_config, config); 5920 5921 fnvlist_add_nvlist_array(sav->sav_config, config, 5922 (const nvlist_t * const *)newdevs, ndevs + oldndevs); 5923 for (i = 0; i < oldndevs + ndevs; i++) 5924 nvlist_free(newdevs[i]); 5925 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 5926 } else { 5927 /* 5928 * Generate a new dev list. 5929 */ 5930 sav->sav_config = fnvlist_alloc(); 5931 fnvlist_add_nvlist_array(sav->sav_config, config, 5932 (const nvlist_t * const *)devs, ndevs); 5933 } 5934 } 5935 5936 /* 5937 * Stop and drop level 2 ARC devices 5938 */ 5939 void 5940 spa_l2cache_drop(spa_t *spa) 5941 { 5942 vdev_t *vd; 5943 int i; 5944 spa_aux_vdev_t *sav = &spa->spa_l2cache; 5945 5946 for (i = 0; i < sav->sav_count; i++) { 5947 uint64_t pool; 5948 5949 vd = sav->sav_vdevs[i]; 5950 ASSERT(vd != NULL); 5951 5952 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 5953 pool != 0ULL && l2arc_vdev_present(vd)) 5954 l2arc_remove_vdev(vd); 5955 } 5956 } 5957 5958 /* 5959 * Verify encryption parameters for spa creation. If we are encrypting, we must 5960 * have the encryption feature flag enabled. 5961 */ 5962 static int 5963 spa_create_check_encryption_params(dsl_crypto_params_t *dcp, 5964 boolean_t has_encryption) 5965 { 5966 if (dcp->cp_crypt != ZIO_CRYPT_OFF && 5967 dcp->cp_crypt != ZIO_CRYPT_INHERIT && 5968 !has_encryption) 5969 return (SET_ERROR(ENOTSUP)); 5970 5971 return (dmu_objset_create_crypt_check(NULL, dcp, NULL)); 5972 } 5973 5974 /* 5975 * Pool Creation 5976 */ 5977 int 5978 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 5979 nvlist_t *zplprops, dsl_crypto_params_t *dcp) 5980 { 5981 spa_t *spa; 5982 const char *altroot = NULL; 5983 vdev_t *rvd; 5984 dsl_pool_t *dp; 5985 dmu_tx_t *tx; 5986 int error = 0; 5987 uint64_t txg = TXG_INITIAL; 5988 nvlist_t **spares, **l2cache; 5989 uint_t nspares, nl2cache; 5990 uint64_t version, obj, ndraid = 0; 5991 boolean_t has_features; 5992 boolean_t has_encryption; 5993 boolean_t has_allocclass; 5994 spa_feature_t feat; 5995 const char *feat_name; 5996 const char *poolname; 5997 nvlist_t *nvl; 5998 5999 if (props == NULL || 6000 nvlist_lookup_string(props, "tname", &poolname) != 0) 6001 poolname = (char *)pool; 6002 6003 /* 6004 * If this pool already exists, return failure. 6005 */ 6006 mutex_enter(&spa_namespace_lock); 6007 if (spa_lookup(poolname) != NULL) { 6008 mutex_exit(&spa_namespace_lock); 6009 return (SET_ERROR(EEXIST)); 6010 } 6011 6012 /* 6013 * Allocate a new spa_t structure. 6014 */ 6015 nvl = fnvlist_alloc(); 6016 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool); 6017 (void) nvlist_lookup_string(props, 6018 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 6019 spa = spa_add(poolname, nvl, altroot); 6020 fnvlist_free(nvl); 6021 spa_activate(spa, spa_mode_global); 6022 6023 if (props && (error = spa_prop_validate(spa, props))) { 6024 spa_deactivate(spa); 6025 spa_remove(spa); 6026 mutex_exit(&spa_namespace_lock); 6027 return (error); 6028 } 6029 6030 /* 6031 * Temporary pool names should never be written to disk. 6032 */ 6033 if (poolname != pool) 6034 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME; 6035 6036 has_features = B_FALSE; 6037 has_encryption = B_FALSE; 6038 has_allocclass = B_FALSE; 6039 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 6040 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 6041 if (zpool_prop_feature(nvpair_name(elem))) { 6042 has_features = B_TRUE; 6043 6044 feat_name = strchr(nvpair_name(elem), '@') + 1; 6045 VERIFY0(zfeature_lookup_name(feat_name, &feat)); 6046 if (feat == SPA_FEATURE_ENCRYPTION) 6047 has_encryption = B_TRUE; 6048 if (feat == SPA_FEATURE_ALLOCATION_CLASSES) 6049 has_allocclass = B_TRUE; 6050 } 6051 } 6052 6053 /* verify encryption params, if they were provided */ 6054 if (dcp != NULL) { 6055 error = spa_create_check_encryption_params(dcp, has_encryption); 6056 if (error != 0) { 6057 spa_deactivate(spa); 6058 spa_remove(spa); 6059 mutex_exit(&spa_namespace_lock); 6060 return (error); 6061 } 6062 } 6063 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) { 6064 spa_deactivate(spa); 6065 spa_remove(spa); 6066 mutex_exit(&spa_namespace_lock); 6067 return (ENOTSUP); 6068 } 6069 6070 if (has_features || nvlist_lookup_uint64(props, 6071 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 6072 version = SPA_VERSION; 6073 } 6074 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 6075 6076 spa->spa_first_txg = txg; 6077 spa->spa_uberblock.ub_txg = txg - 1; 6078 spa->spa_uberblock.ub_version = version; 6079 spa->spa_ubsync = spa->spa_uberblock; 6080 spa->spa_load_state = SPA_LOAD_CREATE; 6081 spa->spa_removing_phys.sr_state = DSS_NONE; 6082 spa->spa_removing_phys.sr_removing_vdev = -1; 6083 spa->spa_removing_phys.sr_prev_indirect_vdev = -1; 6084 spa->spa_indirect_vdevs_loaded = B_TRUE; 6085 6086 /* 6087 * Create "The Godfather" zio to hold all async IOs 6088 */ 6089 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 6090 KM_SLEEP); 6091 for (int i = 0; i < max_ncpus; i++) { 6092 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 6093 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 6094 ZIO_FLAG_GODFATHER); 6095 } 6096 6097 /* 6098 * Create the root vdev. 6099 */ 6100 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6101 6102 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 6103 6104 ASSERT(error != 0 || rvd != NULL); 6105 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 6106 6107 if (error == 0 && !zfs_allocatable_devs(nvroot)) 6108 error = SET_ERROR(EINVAL); 6109 6110 if (error == 0 && 6111 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 6112 (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 && 6113 (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) { 6114 /* 6115 * instantiate the metaslab groups (this will dirty the vdevs) 6116 * we can no longer error exit past this point 6117 */ 6118 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) { 6119 vdev_t *vd = rvd->vdev_child[c]; 6120 6121 vdev_metaslab_set_size(vd); 6122 vdev_expand(vd, txg); 6123 } 6124 } 6125 6126 spa_config_exit(spa, SCL_ALL, FTAG); 6127 6128 if (error != 0) { 6129 spa_unload(spa); 6130 spa_deactivate(spa); 6131 spa_remove(spa); 6132 mutex_exit(&spa_namespace_lock); 6133 return (error); 6134 } 6135 6136 /* 6137 * Get the list of spares, if specified. 6138 */ 6139 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 6140 &spares, &nspares) == 0) { 6141 spa->spa_spares.sav_config = fnvlist_alloc(); 6142 fnvlist_add_nvlist_array(spa->spa_spares.sav_config, 6143 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, 6144 nspares); 6145 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6146 spa_load_spares(spa); 6147 spa_config_exit(spa, SCL_ALL, FTAG); 6148 spa->spa_spares.sav_sync = B_TRUE; 6149 } 6150 6151 /* 6152 * Get the list of level 2 cache devices, if specified. 6153 */ 6154 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 6155 &l2cache, &nl2cache) == 0) { 6156 VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config, 6157 NV_UNIQUE_NAME, KM_SLEEP)); 6158 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 6159 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache, 6160 nl2cache); 6161 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6162 spa_load_l2cache(spa); 6163 spa_config_exit(spa, SCL_ALL, FTAG); 6164 spa->spa_l2cache.sav_sync = B_TRUE; 6165 } 6166 6167 spa->spa_is_initializing = B_TRUE; 6168 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg); 6169 spa->spa_is_initializing = B_FALSE; 6170 6171 /* 6172 * Create DDTs (dedup tables). 6173 */ 6174 ddt_create(spa); 6175 /* 6176 * Create BRT table and BRT table object. 6177 */ 6178 brt_create(spa); 6179 6180 spa_update_dspace(spa); 6181 6182 tx = dmu_tx_create_assigned(dp, txg); 6183 6184 /* 6185 * Create the pool's history object. 6186 */ 6187 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history) 6188 spa_history_create_obj(spa, tx); 6189 6190 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE); 6191 spa_history_log_version(spa, "create", tx); 6192 6193 /* 6194 * Create the pool config object. 6195 */ 6196 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 6197 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 6198 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 6199 6200 if (zap_add(spa->spa_meta_objset, 6201 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 6202 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 6203 cmn_err(CE_PANIC, "failed to add pool config"); 6204 } 6205 6206 if (zap_add(spa->spa_meta_objset, 6207 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 6208 sizeof (uint64_t), 1, &version, tx) != 0) { 6209 cmn_err(CE_PANIC, "failed to add pool version"); 6210 } 6211 6212 /* Newly created pools with the right version are always deflated. */ 6213 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 6214 spa->spa_deflate = TRUE; 6215 if (zap_add(spa->spa_meta_objset, 6216 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6217 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 6218 cmn_err(CE_PANIC, "failed to add deflate"); 6219 } 6220 } 6221 6222 /* 6223 * Create the deferred-free bpobj. Turn off compression 6224 * because sync-to-convergence takes longer if the blocksize 6225 * keeps changing. 6226 */ 6227 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 6228 dmu_object_set_compress(spa->spa_meta_objset, obj, 6229 ZIO_COMPRESS_OFF, tx); 6230 if (zap_add(spa->spa_meta_objset, 6231 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 6232 sizeof (uint64_t), 1, &obj, tx) != 0) { 6233 cmn_err(CE_PANIC, "failed to add bpobj"); 6234 } 6235 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 6236 spa->spa_meta_objset, obj)); 6237 6238 /* 6239 * Generate some random noise for salted checksums to operate on. 6240 */ 6241 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 6242 sizeof (spa->spa_cksum_salt.zcs_bytes)); 6243 6244 /* 6245 * Set pool properties. 6246 */ 6247 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 6248 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 6249 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 6250 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 6251 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST); 6252 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM); 6253 6254 if (props != NULL) { 6255 spa_configfile_set(spa, props, B_FALSE); 6256 spa_sync_props(props, tx); 6257 } 6258 6259 for (int i = 0; i < ndraid; i++) 6260 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx); 6261 6262 dmu_tx_commit(tx); 6263 6264 spa->spa_sync_on = B_TRUE; 6265 txg_sync_start(dp); 6266 mmp_thread_start(spa); 6267 txg_wait_synced(dp, txg); 6268 6269 spa_spawn_aux_threads(spa); 6270 6271 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); 6272 6273 /* 6274 * Don't count references from objsets that are already closed 6275 * and are making their way through the eviction process. 6276 */ 6277 spa_evicting_os_wait(spa); 6278 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 6279 spa->spa_load_state = SPA_LOAD_NONE; 6280 6281 spa_import_os(spa); 6282 6283 mutex_exit(&spa_namespace_lock); 6284 6285 return (0); 6286 } 6287 6288 /* 6289 * Import a non-root pool into the system. 6290 */ 6291 int 6292 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 6293 { 6294 spa_t *spa; 6295 const char *altroot = NULL; 6296 spa_load_state_t state = SPA_LOAD_IMPORT; 6297 zpool_load_policy_t policy; 6298 spa_mode_t mode = spa_mode_global; 6299 uint64_t readonly = B_FALSE; 6300 int error; 6301 nvlist_t *nvroot; 6302 nvlist_t **spares, **l2cache; 6303 uint_t nspares, nl2cache; 6304 6305 /* 6306 * If a pool with this name exists, return failure. 6307 */ 6308 mutex_enter(&spa_namespace_lock); 6309 if (spa_lookup(pool) != NULL) { 6310 mutex_exit(&spa_namespace_lock); 6311 return (SET_ERROR(EEXIST)); 6312 } 6313 6314 /* 6315 * Create and initialize the spa structure. 6316 */ 6317 (void) nvlist_lookup_string(props, 6318 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 6319 (void) nvlist_lookup_uint64(props, 6320 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 6321 if (readonly) 6322 mode = SPA_MODE_READ; 6323 spa = spa_add(pool, config, altroot); 6324 spa->spa_import_flags = flags; 6325 6326 /* 6327 * Verbatim import - Take a pool and insert it into the namespace 6328 * as if it had been loaded at boot. 6329 */ 6330 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 6331 if (props != NULL) 6332 spa_configfile_set(spa, props, B_FALSE); 6333 6334 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE); 6335 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 6336 zfs_dbgmsg("spa_import: verbatim import of %s", pool); 6337 mutex_exit(&spa_namespace_lock); 6338 return (0); 6339 } 6340 6341 spa_activate(spa, mode); 6342 6343 /* 6344 * Don't start async tasks until we know everything is healthy. 6345 */ 6346 spa_async_suspend(spa); 6347 6348 zpool_get_load_policy(config, &policy); 6349 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 6350 state = SPA_LOAD_RECOVER; 6351 6352 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT; 6353 6354 if (state != SPA_LOAD_RECOVER) { 6355 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 6356 zfs_dbgmsg("spa_import: importing %s", pool); 6357 } else { 6358 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld " 6359 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg); 6360 } 6361 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind); 6362 6363 /* 6364 * Propagate anything learned while loading the pool and pass it 6365 * back to caller (i.e. rewind info, missing devices, etc). 6366 */ 6367 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info); 6368 6369 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6370 /* 6371 * Toss any existing sparelist, as it doesn't have any validity 6372 * anymore, and conflicts with spa_has_spare(). 6373 */ 6374 if (spa->spa_spares.sav_config) { 6375 nvlist_free(spa->spa_spares.sav_config); 6376 spa->spa_spares.sav_config = NULL; 6377 spa_load_spares(spa); 6378 } 6379 if (spa->spa_l2cache.sav_config) { 6380 nvlist_free(spa->spa_l2cache.sav_config); 6381 spa->spa_l2cache.sav_config = NULL; 6382 spa_load_l2cache(spa); 6383 } 6384 6385 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); 6386 spa_config_exit(spa, SCL_ALL, FTAG); 6387 6388 if (props != NULL) 6389 spa_configfile_set(spa, props, B_FALSE); 6390 6391 if (error != 0 || (props && spa_writeable(spa) && 6392 (error = spa_prop_set(spa, props)))) { 6393 spa_unload(spa); 6394 spa_deactivate(spa); 6395 spa_remove(spa); 6396 mutex_exit(&spa_namespace_lock); 6397 return (error); 6398 } 6399 6400 spa_async_resume(spa); 6401 6402 /* 6403 * Override any spares and level 2 cache devices as specified by 6404 * the user, as these may have correct device names/devids, etc. 6405 */ 6406 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 6407 &spares, &nspares) == 0) { 6408 if (spa->spa_spares.sav_config) 6409 fnvlist_remove(spa->spa_spares.sav_config, 6410 ZPOOL_CONFIG_SPARES); 6411 else 6412 spa->spa_spares.sav_config = fnvlist_alloc(); 6413 fnvlist_add_nvlist_array(spa->spa_spares.sav_config, 6414 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, 6415 nspares); 6416 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6417 spa_load_spares(spa); 6418 spa_config_exit(spa, SCL_ALL, FTAG); 6419 spa->spa_spares.sav_sync = B_TRUE; 6420 } 6421 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 6422 &l2cache, &nl2cache) == 0) { 6423 if (spa->spa_l2cache.sav_config) 6424 fnvlist_remove(spa->spa_l2cache.sav_config, 6425 ZPOOL_CONFIG_L2CACHE); 6426 else 6427 spa->spa_l2cache.sav_config = fnvlist_alloc(); 6428 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 6429 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache, 6430 nl2cache); 6431 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6432 spa_load_l2cache(spa); 6433 spa_config_exit(spa, SCL_ALL, FTAG); 6434 spa->spa_l2cache.sav_sync = B_TRUE; 6435 } 6436 6437 /* 6438 * Check for any removed devices. 6439 */ 6440 if (spa->spa_autoreplace) { 6441 spa_aux_check_removed(&spa->spa_spares); 6442 spa_aux_check_removed(&spa->spa_l2cache); 6443 } 6444 6445 if (spa_writeable(spa)) { 6446 /* 6447 * Update the config cache to include the newly-imported pool. 6448 */ 6449 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 6450 } 6451 6452 /* 6453 * It's possible that the pool was expanded while it was exported. 6454 * We kick off an async task to handle this for us. 6455 */ 6456 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 6457 6458 spa_history_log_version(spa, "import", NULL); 6459 6460 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 6461 6462 mutex_exit(&spa_namespace_lock); 6463 6464 zvol_create_minors_recursive(pool); 6465 6466 spa_import_os(spa); 6467 6468 return (0); 6469 } 6470 6471 nvlist_t * 6472 spa_tryimport(nvlist_t *tryconfig) 6473 { 6474 nvlist_t *config = NULL; 6475 const char *poolname, *cachefile; 6476 spa_t *spa; 6477 uint64_t state; 6478 int error; 6479 zpool_load_policy_t policy; 6480 6481 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 6482 return (NULL); 6483 6484 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 6485 return (NULL); 6486 6487 /* 6488 * Create and initialize the spa structure. 6489 */ 6490 mutex_enter(&spa_namespace_lock); 6491 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 6492 spa_activate(spa, SPA_MODE_READ); 6493 6494 /* 6495 * Rewind pool if a max txg was provided. 6496 */ 6497 zpool_get_load_policy(spa->spa_config, &policy); 6498 if (policy.zlp_txg != UINT64_MAX) { 6499 spa->spa_load_max_txg = policy.zlp_txg; 6500 spa->spa_extreme_rewind = B_TRUE; 6501 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld", 6502 poolname, (longlong_t)policy.zlp_txg); 6503 } else { 6504 zfs_dbgmsg("spa_tryimport: importing %s", poolname); 6505 } 6506 6507 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile) 6508 == 0) { 6509 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile); 6510 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 6511 } else { 6512 spa->spa_config_source = SPA_CONFIG_SRC_SCAN; 6513 } 6514 6515 /* 6516 * spa_import() relies on a pool config fetched by spa_try_import() 6517 * for spare/cache devices. Import flags are not passed to 6518 * spa_tryimport(), which makes it return early due to a missing log 6519 * device and missing retrieving the cache device and spare eventually. 6520 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch 6521 * the correct configuration regardless of the missing log device. 6522 */ 6523 spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG; 6524 6525 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING); 6526 6527 /* 6528 * If 'tryconfig' was at least parsable, return the current config. 6529 */ 6530 if (spa->spa_root_vdev != NULL) { 6531 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 6532 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname); 6533 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state); 6534 fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 6535 spa->spa_uberblock.ub_timestamp); 6536 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 6537 spa->spa_load_info); 6538 fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA, 6539 spa->spa_errata); 6540 6541 /* 6542 * If the bootfs property exists on this pool then we 6543 * copy it out so that external consumers can tell which 6544 * pools are bootable. 6545 */ 6546 if ((!error || error == EEXIST) && spa->spa_bootfs) { 6547 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6548 6549 /* 6550 * We have to play games with the name since the 6551 * pool was opened as TRYIMPORT_NAME. 6552 */ 6553 if (dsl_dsobj_to_dsname(spa_name(spa), 6554 spa->spa_bootfs, tmpname) == 0) { 6555 char *cp; 6556 char *dsname; 6557 6558 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6559 6560 cp = strchr(tmpname, '/'); 6561 if (cp == NULL) { 6562 (void) strlcpy(dsname, tmpname, 6563 MAXPATHLEN); 6564 } else { 6565 (void) snprintf(dsname, MAXPATHLEN, 6566 "%s/%s", poolname, ++cp); 6567 } 6568 fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS, 6569 dsname); 6570 kmem_free(dsname, MAXPATHLEN); 6571 } 6572 kmem_free(tmpname, MAXPATHLEN); 6573 } 6574 6575 /* 6576 * Add the list of hot spares and level 2 cache devices. 6577 */ 6578 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6579 spa_add_spares(spa, config); 6580 spa_add_l2cache(spa, config); 6581 spa_config_exit(spa, SCL_CONFIG, FTAG); 6582 } 6583 6584 spa_unload(spa); 6585 spa_deactivate(spa); 6586 spa_remove(spa); 6587 mutex_exit(&spa_namespace_lock); 6588 6589 return (config); 6590 } 6591 6592 /* 6593 * Pool export/destroy 6594 * 6595 * The act of destroying or exporting a pool is very simple. We make sure there 6596 * is no more pending I/O and any references to the pool are gone. Then, we 6597 * update the pool state and sync all the labels to disk, removing the 6598 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 6599 * we don't sync the labels or remove the configuration cache. 6600 */ 6601 static int 6602 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig, 6603 boolean_t force, boolean_t hardforce) 6604 { 6605 int error; 6606 spa_t *spa; 6607 6608 if (oldconfig) 6609 *oldconfig = NULL; 6610 6611 if (!(spa_mode_global & SPA_MODE_WRITE)) 6612 return (SET_ERROR(EROFS)); 6613 6614 mutex_enter(&spa_namespace_lock); 6615 if ((spa = spa_lookup(pool)) == NULL) { 6616 mutex_exit(&spa_namespace_lock); 6617 return (SET_ERROR(ENOENT)); 6618 } 6619 6620 if (spa->spa_is_exporting) { 6621 /* the pool is being exported by another thread */ 6622 mutex_exit(&spa_namespace_lock); 6623 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS)); 6624 } 6625 spa->spa_is_exporting = B_TRUE; 6626 6627 /* 6628 * Put a hold on the pool, drop the namespace lock, stop async tasks, 6629 * reacquire the namespace lock, and see if we can export. 6630 */ 6631 spa_open_ref(spa, FTAG); 6632 mutex_exit(&spa_namespace_lock); 6633 spa_async_suspend(spa); 6634 if (spa->spa_zvol_taskq) { 6635 zvol_remove_minors(spa, spa_name(spa), B_TRUE); 6636 taskq_wait(spa->spa_zvol_taskq); 6637 } 6638 mutex_enter(&spa_namespace_lock); 6639 spa_close(spa, FTAG); 6640 6641 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 6642 goto export_spa; 6643 /* 6644 * The pool will be in core if it's openable, in which case we can 6645 * modify its state. Objsets may be open only because they're dirty, 6646 * so we have to force it to sync before checking spa_refcnt. 6647 */ 6648 if (spa->spa_sync_on) { 6649 txg_wait_synced(spa->spa_dsl_pool, 0); 6650 spa_evicting_os_wait(spa); 6651 } 6652 6653 /* 6654 * A pool cannot be exported or destroyed if there are active 6655 * references. If we are resetting a pool, allow references by 6656 * fault injection handlers. 6657 */ 6658 if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) { 6659 error = SET_ERROR(EBUSY); 6660 goto fail; 6661 } 6662 6663 if (spa->spa_sync_on) { 6664 vdev_t *rvd = spa->spa_root_vdev; 6665 /* 6666 * A pool cannot be exported if it has an active shared spare. 6667 * This is to prevent other pools stealing the active spare 6668 * from an exported pool. At user's own will, such pool can 6669 * be forcedly exported. 6670 */ 6671 if (!force && new_state == POOL_STATE_EXPORTED && 6672 spa_has_active_shared_spare(spa)) { 6673 error = SET_ERROR(EXDEV); 6674 goto fail; 6675 } 6676 6677 /* 6678 * We're about to export or destroy this pool. Make sure 6679 * we stop all initialization and trim activity here before 6680 * we set the spa_final_txg. This will ensure that all 6681 * dirty data resulting from the initialization is 6682 * committed to disk before we unload the pool. 6683 */ 6684 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE); 6685 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE); 6686 vdev_autotrim_stop_all(spa); 6687 vdev_rebuild_stop_all(spa); 6688 6689 /* 6690 * We want this to be reflected on every label, 6691 * so mark them all dirty. spa_unload() will do the 6692 * final sync that pushes these changes out. 6693 */ 6694 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 6695 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6696 spa->spa_state = new_state; 6697 vdev_config_dirty(rvd); 6698 spa_config_exit(spa, SCL_ALL, FTAG); 6699 } 6700 6701 /* 6702 * If the log space map feature is enabled and the pool is 6703 * getting exported (but not destroyed), we want to spend some 6704 * time flushing as many metaslabs as we can in an attempt to 6705 * destroy log space maps and save import time. This has to be 6706 * done before we set the spa_final_txg, otherwise 6707 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs. 6708 * spa_should_flush_logs_on_unload() should be called after 6709 * spa_state has been set to the new_state. 6710 */ 6711 if (spa_should_flush_logs_on_unload(spa)) 6712 spa_unload_log_sm_flush_all(spa); 6713 6714 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 6715 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6716 spa->spa_final_txg = spa_last_synced_txg(spa) + 6717 TXG_DEFER_SIZE + 1; 6718 spa_config_exit(spa, SCL_ALL, FTAG); 6719 } 6720 } 6721 6722 export_spa: 6723 spa_export_os(spa); 6724 6725 if (new_state == POOL_STATE_DESTROYED) 6726 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY); 6727 else if (new_state == POOL_STATE_EXPORTED) 6728 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT); 6729 6730 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6731 spa_unload(spa); 6732 spa_deactivate(spa); 6733 } 6734 6735 if (oldconfig && spa->spa_config) 6736 *oldconfig = fnvlist_dup(spa->spa_config); 6737 6738 if (new_state != POOL_STATE_UNINITIALIZED) { 6739 if (!hardforce) 6740 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE); 6741 spa_remove(spa); 6742 } else { 6743 /* 6744 * If spa_remove() is not called for this spa_t and 6745 * there is any possibility that it can be reused, 6746 * we make sure to reset the exporting flag. 6747 */ 6748 spa->spa_is_exporting = B_FALSE; 6749 } 6750 6751 mutex_exit(&spa_namespace_lock); 6752 return (0); 6753 6754 fail: 6755 spa->spa_is_exporting = B_FALSE; 6756 spa_async_resume(spa); 6757 mutex_exit(&spa_namespace_lock); 6758 return (error); 6759 } 6760 6761 /* 6762 * Destroy a storage pool. 6763 */ 6764 int 6765 spa_destroy(const char *pool) 6766 { 6767 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 6768 B_FALSE, B_FALSE)); 6769 } 6770 6771 /* 6772 * Export a storage pool. 6773 */ 6774 int 6775 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force, 6776 boolean_t hardforce) 6777 { 6778 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 6779 force, hardforce)); 6780 } 6781 6782 /* 6783 * Similar to spa_export(), this unloads the spa_t without actually removing it 6784 * from the namespace in any way. 6785 */ 6786 int 6787 spa_reset(const char *pool) 6788 { 6789 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 6790 B_FALSE, B_FALSE)); 6791 } 6792 6793 /* 6794 * ========================================================================== 6795 * Device manipulation 6796 * ========================================================================== 6797 */ 6798 6799 /* 6800 * This is called as a synctask to increment the draid feature flag 6801 */ 6802 static void 6803 spa_draid_feature_incr(void *arg, dmu_tx_t *tx) 6804 { 6805 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6806 int draid = (int)(uintptr_t)arg; 6807 6808 for (int c = 0; c < draid; c++) 6809 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx); 6810 } 6811 6812 /* 6813 * Add a device to a storage pool. 6814 */ 6815 int 6816 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 6817 { 6818 uint64_t txg, ndraid = 0; 6819 int error; 6820 vdev_t *rvd = spa->spa_root_vdev; 6821 vdev_t *vd, *tvd; 6822 nvlist_t **spares, **l2cache; 6823 uint_t nspares, nl2cache; 6824 6825 ASSERT(spa_writeable(spa)); 6826 6827 txg = spa_vdev_enter(spa); 6828 6829 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 6830 VDEV_ALLOC_ADD)) != 0) 6831 return (spa_vdev_exit(spa, NULL, txg, error)); 6832 6833 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 6834 6835 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 6836 &nspares) != 0) 6837 nspares = 0; 6838 6839 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 6840 &nl2cache) != 0) 6841 nl2cache = 0; 6842 6843 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 6844 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 6845 6846 if (vd->vdev_children != 0 && 6847 (error = vdev_create(vd, txg, B_FALSE)) != 0) { 6848 return (spa_vdev_exit(spa, vd, txg, error)); 6849 } 6850 6851 /* 6852 * The virtual dRAID spares must be added after vdev tree is created 6853 * and the vdev guids are generated. The guid of their associated 6854 * dRAID is stored in the config and used when opening the spare. 6855 */ 6856 if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid, 6857 rvd->vdev_children)) == 0) { 6858 if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot, 6859 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0) 6860 nspares = 0; 6861 } else { 6862 return (spa_vdev_exit(spa, vd, txg, error)); 6863 } 6864 6865 /* 6866 * We must validate the spares and l2cache devices after checking the 6867 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 6868 */ 6869 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 6870 return (spa_vdev_exit(spa, vd, txg, error)); 6871 6872 /* 6873 * If we are in the middle of a device removal, we can only add 6874 * devices which match the existing devices in the pool. 6875 * If we are in the middle of a removal, or have some indirect 6876 * vdevs, we can not add raidz or dRAID top levels. 6877 */ 6878 if (spa->spa_vdev_removal != NULL || 6879 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { 6880 for (int c = 0; c < vd->vdev_children; c++) { 6881 tvd = vd->vdev_child[c]; 6882 if (spa->spa_vdev_removal != NULL && 6883 tvd->vdev_ashift != spa->spa_max_ashift) { 6884 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 6885 } 6886 /* Fail if top level vdev is raidz or a dRAID */ 6887 if (vdev_get_nparity(tvd) != 0) 6888 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 6889 6890 /* 6891 * Need the top level mirror to be 6892 * a mirror of leaf vdevs only 6893 */ 6894 if (tvd->vdev_ops == &vdev_mirror_ops) { 6895 for (uint64_t cid = 0; 6896 cid < tvd->vdev_children; cid++) { 6897 vdev_t *cvd = tvd->vdev_child[cid]; 6898 if (!cvd->vdev_ops->vdev_op_leaf) { 6899 return (spa_vdev_exit(spa, vd, 6900 txg, EINVAL)); 6901 } 6902 } 6903 } 6904 } 6905 } 6906 6907 for (int c = 0; c < vd->vdev_children; c++) { 6908 tvd = vd->vdev_child[c]; 6909 vdev_remove_child(vd, tvd); 6910 tvd->vdev_id = rvd->vdev_children; 6911 vdev_add_child(rvd, tvd); 6912 vdev_config_dirty(tvd); 6913 } 6914 6915 if (nspares != 0) { 6916 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 6917 ZPOOL_CONFIG_SPARES); 6918 spa_load_spares(spa); 6919 spa->spa_spares.sav_sync = B_TRUE; 6920 } 6921 6922 if (nl2cache != 0) { 6923 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 6924 ZPOOL_CONFIG_L2CACHE); 6925 spa_load_l2cache(spa); 6926 spa->spa_l2cache.sav_sync = B_TRUE; 6927 } 6928 6929 /* 6930 * We can't increment a feature while holding spa_vdev so we 6931 * have to do it in a synctask. 6932 */ 6933 if (ndraid != 0) { 6934 dmu_tx_t *tx; 6935 6936 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 6937 dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr, 6938 (void *)(uintptr_t)ndraid, tx); 6939 dmu_tx_commit(tx); 6940 } 6941 6942 /* 6943 * We have to be careful when adding new vdevs to an existing pool. 6944 * If other threads start allocating from these vdevs before we 6945 * sync the config cache, and we lose power, then upon reboot we may 6946 * fail to open the pool because there are DVAs that the config cache 6947 * can't translate. Therefore, we first add the vdevs without 6948 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 6949 * and then let spa_config_update() initialize the new metaslabs. 6950 * 6951 * spa_load() checks for added-but-not-initialized vdevs, so that 6952 * if we lose power at any point in this sequence, the remaining 6953 * steps will be completed the next time we load the pool. 6954 */ 6955 (void) spa_vdev_exit(spa, vd, txg, 0); 6956 6957 mutex_enter(&spa_namespace_lock); 6958 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 6959 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD); 6960 mutex_exit(&spa_namespace_lock); 6961 6962 return (0); 6963 } 6964 6965 /* 6966 * Attach a device to a vdev specified by its guid. The vdev type can be 6967 * a mirror, a raidz, or a leaf device that is also a top-level (e.g. a 6968 * single device). When the vdev is a single device, a mirror vdev will be 6969 * automatically inserted. 6970 * 6971 * If 'replacing' is specified, the new device is intended to replace the 6972 * existing device; in this case the two devices are made into their own 6973 * mirror using the 'replacing' vdev, which is functionally identical to 6974 * the mirror vdev (it actually reuses all the same ops) but has a few 6975 * extra rules: you can't attach to it after it's been created, and upon 6976 * completion of resilvering, the first disk (the one being replaced) 6977 * is automatically detached. 6978 * 6979 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild) 6980 * should be performed instead of traditional healing reconstruction. From 6981 * an administrators perspective these are both resilver operations. 6982 */ 6983 int 6984 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing, 6985 int rebuild) 6986 { 6987 uint64_t txg, dtl_max_txg; 6988 vdev_t *rvd = spa->spa_root_vdev; 6989 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 6990 vdev_ops_t *pvops; 6991 char *oldvdpath, *newvdpath; 6992 int newvd_isspare = B_FALSE; 6993 int error; 6994 6995 ASSERT(spa_writeable(spa)); 6996 6997 txg = spa_vdev_enter(spa); 6998 6999 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 7000 7001 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7002 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 7003 error = (spa_has_checkpoint(spa)) ? 7004 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 7005 return (spa_vdev_exit(spa, NULL, txg, error)); 7006 } 7007 7008 if (rebuild) { 7009 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) 7010 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7011 7012 if (dsl_scan_resilvering(spa_get_dsl(spa)) || 7013 dsl_scan_resilver_scheduled(spa_get_dsl(spa))) { 7014 return (spa_vdev_exit(spa, NULL, txg, 7015 ZFS_ERR_RESILVER_IN_PROGRESS)); 7016 } 7017 } else { 7018 if (vdev_rebuild_active(rvd)) 7019 return (spa_vdev_exit(spa, NULL, txg, 7020 ZFS_ERR_REBUILD_IN_PROGRESS)); 7021 } 7022 7023 if (spa->spa_vdev_removal != NULL) { 7024 return (spa_vdev_exit(spa, NULL, txg, 7025 ZFS_ERR_DEVRM_IN_PROGRESS)); 7026 } 7027 7028 if (oldvd == NULL) 7029 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 7030 7031 boolean_t raidz = oldvd->vdev_ops == &vdev_raidz_ops; 7032 7033 if (raidz) { 7034 if (!spa_feature_is_enabled(spa, SPA_FEATURE_RAIDZ_EXPANSION)) 7035 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7036 7037 /* 7038 * Can't expand a raidz while prior expand is in progress. 7039 */ 7040 if (spa->spa_raidz_expand != NULL) { 7041 return (spa_vdev_exit(spa, NULL, txg, 7042 ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS)); 7043 } 7044 } else if (!oldvd->vdev_ops->vdev_op_leaf) { 7045 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7046 } 7047 7048 if (raidz) 7049 pvd = oldvd; 7050 else 7051 pvd = oldvd->vdev_parent; 7052 7053 if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 7054 VDEV_ALLOC_ATTACH) != 0) 7055 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 7056 7057 if (newrootvd->vdev_children != 1) 7058 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 7059 7060 newvd = newrootvd->vdev_child[0]; 7061 7062 if (!newvd->vdev_ops->vdev_op_leaf) 7063 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 7064 7065 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 7066 return (spa_vdev_exit(spa, newrootvd, txg, error)); 7067 7068 /* 7069 * log, dedup and special vdevs should not be replaced by spares. 7070 */ 7071 if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE || 7072 oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) { 7073 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7074 } 7075 7076 /* 7077 * A dRAID spare can only replace a child of its parent dRAID vdev. 7078 */ 7079 if (newvd->vdev_ops == &vdev_draid_spare_ops && 7080 oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) { 7081 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7082 } 7083 7084 if (rebuild) { 7085 /* 7086 * For rebuilds, the top vdev must support reconstruction 7087 * using only space maps. This means the only allowable 7088 * vdevs types are the root vdev, a mirror, or dRAID. 7089 */ 7090 tvd = pvd; 7091 if (pvd->vdev_top != NULL) 7092 tvd = pvd->vdev_top; 7093 7094 if (tvd->vdev_ops != &vdev_mirror_ops && 7095 tvd->vdev_ops != &vdev_root_ops && 7096 tvd->vdev_ops != &vdev_draid_ops) { 7097 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7098 } 7099 } 7100 7101 if (!replacing) { 7102 /* 7103 * For attach, the only allowable parent is a mirror or 7104 * the root vdev. A raidz vdev can be attached to, but 7105 * you cannot attach to a raidz child. 7106 */ 7107 if (pvd->vdev_ops != &vdev_mirror_ops && 7108 pvd->vdev_ops != &vdev_root_ops && 7109 !raidz) 7110 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7111 7112 pvops = &vdev_mirror_ops; 7113 } else { 7114 /* 7115 * Active hot spares can only be replaced by inactive hot 7116 * spares. 7117 */ 7118 if (pvd->vdev_ops == &vdev_spare_ops && 7119 oldvd->vdev_isspare && 7120 !spa_has_spare(spa, newvd->vdev_guid)) 7121 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7122 7123 /* 7124 * If the source is a hot spare, and the parent isn't already a 7125 * spare, then we want to create a new hot spare. Otherwise, we 7126 * want to create a replacing vdev. The user is not allowed to 7127 * attach to a spared vdev child unless the 'isspare' state is 7128 * the same (spare replaces spare, non-spare replaces 7129 * non-spare). 7130 */ 7131 if (pvd->vdev_ops == &vdev_replacing_ops && 7132 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 7133 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7134 } else if (pvd->vdev_ops == &vdev_spare_ops && 7135 newvd->vdev_isspare != oldvd->vdev_isspare) { 7136 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7137 } 7138 7139 if (newvd->vdev_isspare) 7140 pvops = &vdev_spare_ops; 7141 else 7142 pvops = &vdev_replacing_ops; 7143 } 7144 7145 /* 7146 * Make sure the new device is big enough. 7147 */ 7148 vdev_t *min_vdev = raidz ? oldvd->vdev_child[0] : oldvd; 7149 if (newvd->vdev_asize < vdev_get_min_asize(min_vdev)) 7150 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 7151 7152 /* 7153 * The new device cannot have a higher alignment requirement 7154 * than the top-level vdev. 7155 */ 7156 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 7157 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7158 7159 /* 7160 * RAIDZ-expansion-specific checks. 7161 */ 7162 if (raidz) { 7163 if (vdev_raidz_attach_check(newvd) != 0) 7164 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7165 7166 /* 7167 * Fail early if a child is not healthy or being replaced 7168 */ 7169 for (int i = 0; i < oldvd->vdev_children; i++) { 7170 if (vdev_is_dead(oldvd->vdev_child[i]) || 7171 !oldvd->vdev_child[i]->vdev_ops->vdev_op_leaf) { 7172 return (spa_vdev_exit(spa, newrootvd, txg, 7173 ENXIO)); 7174 } 7175 /* Also fail if reserved boot area is in-use */ 7176 if (vdev_check_boot_reserve(spa, oldvd->vdev_child[i]) 7177 != 0) { 7178 return (spa_vdev_exit(spa, newrootvd, txg, 7179 EADDRINUSE)); 7180 } 7181 } 7182 } 7183 7184 if (raidz) { 7185 /* 7186 * Note: oldvdpath is freed by spa_strfree(), but 7187 * kmem_asprintf() is freed by kmem_strfree(), so we have to 7188 * move it to a spa_strdup-ed string. 7189 */ 7190 char *tmp = kmem_asprintf("raidz%u-%u", 7191 (uint_t)vdev_get_nparity(oldvd), (uint_t)oldvd->vdev_id); 7192 oldvdpath = spa_strdup(tmp); 7193 kmem_strfree(tmp); 7194 } else { 7195 oldvdpath = spa_strdup(oldvd->vdev_path); 7196 } 7197 newvdpath = spa_strdup(newvd->vdev_path); 7198 7199 /* 7200 * If this is an in-place replacement, update oldvd's path and devid 7201 * to make it distinguishable from newvd, and unopenable from now on. 7202 */ 7203 if (strcmp(oldvdpath, newvdpath) == 0) { 7204 spa_strfree(oldvd->vdev_path); 7205 oldvd->vdev_path = kmem_alloc(strlen(newvdpath) + 5, 7206 KM_SLEEP); 7207 (void) sprintf(oldvd->vdev_path, "%s/old", 7208 newvdpath); 7209 if (oldvd->vdev_devid != NULL) { 7210 spa_strfree(oldvd->vdev_devid); 7211 oldvd->vdev_devid = NULL; 7212 } 7213 spa_strfree(oldvdpath); 7214 oldvdpath = spa_strdup(oldvd->vdev_path); 7215 } 7216 7217 /* 7218 * If the parent is not a mirror, or if we're replacing, insert the new 7219 * mirror/replacing/spare vdev above oldvd. 7220 */ 7221 if (!raidz && pvd->vdev_ops != pvops) { 7222 pvd = vdev_add_parent(oldvd, pvops); 7223 ASSERT(pvd->vdev_ops == pvops); 7224 ASSERT(oldvd->vdev_parent == pvd); 7225 } 7226 7227 ASSERT(pvd->vdev_top->vdev_parent == rvd); 7228 7229 /* 7230 * Extract the new device from its root and add it to pvd. 7231 */ 7232 vdev_remove_child(newrootvd, newvd); 7233 newvd->vdev_id = pvd->vdev_children; 7234 newvd->vdev_crtxg = oldvd->vdev_crtxg; 7235 vdev_add_child(pvd, newvd); 7236 7237 /* 7238 * Reevaluate the parent vdev state. 7239 */ 7240 vdev_propagate_state(pvd); 7241 7242 tvd = newvd->vdev_top; 7243 ASSERT(pvd->vdev_top == tvd); 7244 ASSERT(tvd->vdev_parent == rvd); 7245 7246 vdev_config_dirty(tvd); 7247 7248 /* 7249 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 7250 * for any dmu_sync-ed blocks. It will propagate upward when 7251 * spa_vdev_exit() calls vdev_dtl_reassess(). 7252 */ 7253 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 7254 7255 if (raidz) { 7256 /* 7257 * Wait for the youngest allocations and frees to sync, 7258 * and then wait for the deferral of those frees to finish. 7259 */ 7260 spa_vdev_config_exit(spa, NULL, 7261 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 7262 7263 vdev_initialize_stop_all(tvd, VDEV_INITIALIZE_ACTIVE); 7264 vdev_trim_stop_all(tvd, VDEV_TRIM_ACTIVE); 7265 vdev_autotrim_stop_wait(tvd); 7266 7267 dtl_max_txg = spa_vdev_config_enter(spa); 7268 7269 tvd->vdev_rz_expanding = B_TRUE; 7270 7271 vdev_dirty_leaves(tvd, VDD_DTL, dtl_max_txg); 7272 vdev_config_dirty(tvd); 7273 7274 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, 7275 dtl_max_txg); 7276 dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_raidz_attach_sync, 7277 newvd, tx); 7278 dmu_tx_commit(tx); 7279 } else { 7280 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 7281 dtl_max_txg - TXG_INITIAL); 7282 7283 if (newvd->vdev_isspare) { 7284 spa_spare_activate(newvd); 7285 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE); 7286 } 7287 7288 newvd_isspare = newvd->vdev_isspare; 7289 7290 /* 7291 * Mark newvd's DTL dirty in this txg. 7292 */ 7293 vdev_dirty(tvd, VDD_DTL, newvd, txg); 7294 7295 /* 7296 * Schedule the resilver or rebuild to restart in the future. 7297 * We do this to ensure that dmu_sync-ed blocks have been 7298 * stitched into the respective datasets. 7299 */ 7300 if (rebuild) { 7301 newvd->vdev_rebuild_txg = txg; 7302 7303 vdev_rebuild(tvd); 7304 } else { 7305 newvd->vdev_resilver_txg = txg; 7306 7307 if (dsl_scan_resilvering(spa_get_dsl(spa)) && 7308 spa_feature_is_enabled(spa, 7309 SPA_FEATURE_RESILVER_DEFER)) { 7310 vdev_defer_resilver(newvd); 7311 } else { 7312 dsl_scan_restart_resilver(spa->spa_dsl_pool, 7313 dtl_max_txg); 7314 } 7315 } 7316 } 7317 7318 if (spa->spa_bootfs) 7319 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH); 7320 7321 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH); 7322 7323 /* 7324 * Commit the config 7325 */ 7326 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 7327 7328 spa_history_log_internal(spa, "vdev attach", NULL, 7329 "%s vdev=%s %s vdev=%s", 7330 replacing && newvd_isspare ? "spare in" : 7331 replacing ? "replace" : "attach", newvdpath, 7332 replacing ? "for" : "to", oldvdpath); 7333 7334 spa_strfree(oldvdpath); 7335 spa_strfree(newvdpath); 7336 7337 return (0); 7338 } 7339 7340 /* 7341 * Detach a device from a mirror or replacing vdev. 7342 * 7343 * If 'replace_done' is specified, only detach if the parent 7344 * is a replacing or a spare vdev. 7345 */ 7346 int 7347 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 7348 { 7349 uint64_t txg; 7350 int error; 7351 vdev_t *rvd __maybe_unused = spa->spa_root_vdev; 7352 vdev_t *vd, *pvd, *cvd, *tvd; 7353 boolean_t unspare = B_FALSE; 7354 uint64_t unspare_guid = 0; 7355 char *vdpath; 7356 7357 ASSERT(spa_writeable(spa)); 7358 7359 txg = spa_vdev_detach_enter(spa, guid); 7360 7361 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 7362 7363 /* 7364 * Besides being called directly from the userland through the 7365 * ioctl interface, spa_vdev_detach() can be potentially called 7366 * at the end of spa_vdev_resilver_done(). 7367 * 7368 * In the regular case, when we have a checkpoint this shouldn't 7369 * happen as we never empty the DTLs of a vdev during the scrub 7370 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done() 7371 * should never get here when we have a checkpoint. 7372 * 7373 * That said, even in a case when we checkpoint the pool exactly 7374 * as spa_vdev_resilver_done() calls this function everything 7375 * should be fine as the resilver will return right away. 7376 */ 7377 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7378 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 7379 error = (spa_has_checkpoint(spa)) ? 7380 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 7381 return (spa_vdev_exit(spa, NULL, txg, error)); 7382 } 7383 7384 if (vd == NULL) 7385 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 7386 7387 if (!vd->vdev_ops->vdev_op_leaf) 7388 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7389 7390 pvd = vd->vdev_parent; 7391 7392 /* 7393 * If the parent/child relationship is not as expected, don't do it. 7394 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 7395 * vdev that's replacing B with C. The user's intent in replacing 7396 * is to go from M(A,B) to M(A,C). If the user decides to cancel 7397 * the replace by detaching C, the expected behavior is to end up 7398 * M(A,B). But suppose that right after deciding to detach C, 7399 * the replacement of B completes. We would have M(A,C), and then 7400 * ask to detach C, which would leave us with just A -- not what 7401 * the user wanted. To prevent this, we make sure that the 7402 * parent/child relationship hasn't changed -- in this example, 7403 * that C's parent is still the replacing vdev R. 7404 */ 7405 if (pvd->vdev_guid != pguid && pguid != 0) 7406 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 7407 7408 /* 7409 * Only 'replacing' or 'spare' vdevs can be replaced. 7410 */ 7411 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 7412 pvd->vdev_ops != &vdev_spare_ops) 7413 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7414 7415 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 7416 spa_version(spa) >= SPA_VERSION_SPARES); 7417 7418 /* 7419 * Only mirror, replacing, and spare vdevs support detach. 7420 */ 7421 if (pvd->vdev_ops != &vdev_replacing_ops && 7422 pvd->vdev_ops != &vdev_mirror_ops && 7423 pvd->vdev_ops != &vdev_spare_ops) 7424 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7425 7426 /* 7427 * If this device has the only valid copy of some data, 7428 * we cannot safely detach it. 7429 */ 7430 if (vdev_dtl_required(vd)) 7431 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 7432 7433 ASSERT(pvd->vdev_children >= 2); 7434 7435 /* 7436 * If we are detaching the second disk from a replacing vdev, then 7437 * check to see if we changed the original vdev's path to have "/old" 7438 * at the end in spa_vdev_attach(). If so, undo that change now. 7439 */ 7440 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 7441 vd->vdev_path != NULL) { 7442 size_t len = strlen(vd->vdev_path); 7443 7444 for (int c = 0; c < pvd->vdev_children; c++) { 7445 cvd = pvd->vdev_child[c]; 7446 7447 if (cvd == vd || cvd->vdev_path == NULL) 7448 continue; 7449 7450 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 7451 strcmp(cvd->vdev_path + len, "/old") == 0) { 7452 spa_strfree(cvd->vdev_path); 7453 cvd->vdev_path = spa_strdup(vd->vdev_path); 7454 break; 7455 } 7456 } 7457 } 7458 7459 /* 7460 * If we are detaching the original disk from a normal spare, then it 7461 * implies that the spare should become a real disk, and be removed 7462 * from the active spare list for the pool. dRAID spares on the 7463 * other hand are coupled to the pool and thus should never be removed 7464 * from the spares list. 7465 */ 7466 if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) { 7467 vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1]; 7468 7469 if (last_cvd->vdev_isspare && 7470 last_cvd->vdev_ops != &vdev_draid_spare_ops) { 7471 unspare = B_TRUE; 7472 } 7473 } 7474 7475 /* 7476 * Erase the disk labels so the disk can be used for other things. 7477 * This must be done after all other error cases are handled, 7478 * but before we disembowel vd (so we can still do I/O to it). 7479 * But if we can't do it, don't treat the error as fatal -- 7480 * it may be that the unwritability of the disk is the reason 7481 * it's being detached! 7482 */ 7483 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 7484 7485 /* 7486 * Remove vd from its parent and compact the parent's children. 7487 */ 7488 vdev_remove_child(pvd, vd); 7489 vdev_compact_children(pvd); 7490 7491 /* 7492 * Remember one of the remaining children so we can get tvd below. 7493 */ 7494 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 7495 7496 /* 7497 * If we need to remove the remaining child from the list of hot spares, 7498 * do it now, marking the vdev as no longer a spare in the process. 7499 * We must do this before vdev_remove_parent(), because that can 7500 * change the GUID if it creates a new toplevel GUID. For a similar 7501 * reason, we must remove the spare now, in the same txg as the detach; 7502 * otherwise someone could attach a new sibling, change the GUID, and 7503 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 7504 */ 7505 if (unspare) { 7506 ASSERT(cvd->vdev_isspare); 7507 spa_spare_remove(cvd); 7508 unspare_guid = cvd->vdev_guid; 7509 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 7510 cvd->vdev_unspare = B_TRUE; 7511 } 7512 7513 /* 7514 * If the parent mirror/replacing vdev only has one child, 7515 * the parent is no longer needed. Remove it from the tree. 7516 */ 7517 if (pvd->vdev_children == 1) { 7518 if (pvd->vdev_ops == &vdev_spare_ops) 7519 cvd->vdev_unspare = B_FALSE; 7520 vdev_remove_parent(cvd); 7521 } 7522 7523 /* 7524 * We don't set tvd until now because the parent we just removed 7525 * may have been the previous top-level vdev. 7526 */ 7527 tvd = cvd->vdev_top; 7528 ASSERT(tvd->vdev_parent == rvd); 7529 7530 /* 7531 * Reevaluate the parent vdev state. 7532 */ 7533 vdev_propagate_state(cvd); 7534 7535 /* 7536 * If the 'autoexpand' property is set on the pool then automatically 7537 * try to expand the size of the pool. For example if the device we 7538 * just detached was smaller than the others, it may be possible to 7539 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 7540 * first so that we can obtain the updated sizes of the leaf vdevs. 7541 */ 7542 if (spa->spa_autoexpand) { 7543 vdev_reopen(tvd); 7544 vdev_expand(tvd, txg); 7545 } 7546 7547 vdev_config_dirty(tvd); 7548 7549 /* 7550 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 7551 * vd->vdev_detached is set and free vd's DTL object in syncing context. 7552 * But first make sure we're not on any *other* txg's DTL list, to 7553 * prevent vd from being accessed after it's freed. 7554 */ 7555 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none"); 7556 for (int t = 0; t < TXG_SIZE; t++) 7557 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 7558 vd->vdev_detached = B_TRUE; 7559 vdev_dirty(tvd, VDD_DTL, vd, txg); 7560 7561 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE); 7562 spa_notify_waiters(spa); 7563 7564 /* hang on to the spa before we release the lock */ 7565 spa_open_ref(spa, FTAG); 7566 7567 error = spa_vdev_exit(spa, vd, txg, 0); 7568 7569 spa_history_log_internal(spa, "detach", NULL, 7570 "vdev=%s", vdpath); 7571 spa_strfree(vdpath); 7572 7573 /* 7574 * If this was the removal of the original device in a hot spare vdev, 7575 * then we want to go through and remove the device from the hot spare 7576 * list of every other pool. 7577 */ 7578 if (unspare) { 7579 spa_t *altspa = NULL; 7580 7581 mutex_enter(&spa_namespace_lock); 7582 while ((altspa = spa_next(altspa)) != NULL) { 7583 if (altspa->spa_state != POOL_STATE_ACTIVE || 7584 altspa == spa) 7585 continue; 7586 7587 spa_open_ref(altspa, FTAG); 7588 mutex_exit(&spa_namespace_lock); 7589 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 7590 mutex_enter(&spa_namespace_lock); 7591 spa_close(altspa, FTAG); 7592 } 7593 mutex_exit(&spa_namespace_lock); 7594 7595 /* search the rest of the vdevs for spares to remove */ 7596 spa_vdev_resilver_done(spa); 7597 } 7598 7599 /* all done with the spa; OK to release */ 7600 mutex_enter(&spa_namespace_lock); 7601 spa_close(spa, FTAG); 7602 mutex_exit(&spa_namespace_lock); 7603 7604 return (error); 7605 } 7606 7607 static int 7608 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, 7609 list_t *vd_list) 7610 { 7611 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7612 7613 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 7614 7615 /* Look up vdev and ensure it's a leaf. */ 7616 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 7617 if (vd == NULL || vd->vdev_detached) { 7618 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7619 return (SET_ERROR(ENODEV)); 7620 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 7621 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7622 return (SET_ERROR(EINVAL)); 7623 } else if (!vdev_writeable(vd)) { 7624 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7625 return (SET_ERROR(EROFS)); 7626 } 7627 mutex_enter(&vd->vdev_initialize_lock); 7628 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7629 7630 /* 7631 * When we activate an initialize action we check to see 7632 * if the vdev_initialize_thread is NULL. We do this instead 7633 * of using the vdev_initialize_state since there might be 7634 * a previous initialization process which has completed but 7635 * the thread is not exited. 7636 */ 7637 if (cmd_type == POOL_INITIALIZE_START && 7638 (vd->vdev_initialize_thread != NULL || 7639 vd->vdev_top->vdev_removing || vd->vdev_top->vdev_rz_expanding)) { 7640 mutex_exit(&vd->vdev_initialize_lock); 7641 return (SET_ERROR(EBUSY)); 7642 } else if (cmd_type == POOL_INITIALIZE_CANCEL && 7643 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE && 7644 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) { 7645 mutex_exit(&vd->vdev_initialize_lock); 7646 return (SET_ERROR(ESRCH)); 7647 } else if (cmd_type == POOL_INITIALIZE_SUSPEND && 7648 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) { 7649 mutex_exit(&vd->vdev_initialize_lock); 7650 return (SET_ERROR(ESRCH)); 7651 } else if (cmd_type == POOL_INITIALIZE_UNINIT && 7652 vd->vdev_initialize_thread != NULL) { 7653 mutex_exit(&vd->vdev_initialize_lock); 7654 return (SET_ERROR(EBUSY)); 7655 } 7656 7657 switch (cmd_type) { 7658 case POOL_INITIALIZE_START: 7659 vdev_initialize(vd); 7660 break; 7661 case POOL_INITIALIZE_CANCEL: 7662 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list); 7663 break; 7664 case POOL_INITIALIZE_SUSPEND: 7665 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list); 7666 break; 7667 case POOL_INITIALIZE_UNINIT: 7668 vdev_uninitialize(vd); 7669 break; 7670 default: 7671 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 7672 } 7673 mutex_exit(&vd->vdev_initialize_lock); 7674 7675 return (0); 7676 } 7677 7678 int 7679 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, 7680 nvlist_t *vdev_errlist) 7681 { 7682 int total_errors = 0; 7683 list_t vd_list; 7684 7685 list_create(&vd_list, sizeof (vdev_t), 7686 offsetof(vdev_t, vdev_initialize_node)); 7687 7688 /* 7689 * We hold the namespace lock through the whole function 7690 * to prevent any changes to the pool while we're starting or 7691 * stopping initialization. The config and state locks are held so that 7692 * we can properly assess the vdev state before we commit to 7693 * the initializing operation. 7694 */ 7695 mutex_enter(&spa_namespace_lock); 7696 7697 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 7698 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { 7699 uint64_t vdev_guid = fnvpair_value_uint64(pair); 7700 7701 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type, 7702 &vd_list); 7703 if (error != 0) { 7704 char guid_as_str[MAXNAMELEN]; 7705 7706 (void) snprintf(guid_as_str, sizeof (guid_as_str), 7707 "%llu", (unsigned long long)vdev_guid); 7708 fnvlist_add_int64(vdev_errlist, guid_as_str, error); 7709 total_errors++; 7710 } 7711 } 7712 7713 /* Wait for all initialize threads to stop. */ 7714 vdev_initialize_stop_wait(spa, &vd_list); 7715 7716 /* Sync out the initializing state */ 7717 txg_wait_synced(spa->spa_dsl_pool, 0); 7718 mutex_exit(&spa_namespace_lock); 7719 7720 list_destroy(&vd_list); 7721 7722 return (total_errors); 7723 } 7724 7725 static int 7726 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, 7727 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list) 7728 { 7729 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7730 7731 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 7732 7733 /* Look up vdev and ensure it's a leaf. */ 7734 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 7735 if (vd == NULL || vd->vdev_detached) { 7736 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7737 return (SET_ERROR(ENODEV)); 7738 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 7739 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7740 return (SET_ERROR(EINVAL)); 7741 } else if (!vdev_writeable(vd)) { 7742 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7743 return (SET_ERROR(EROFS)); 7744 } else if (!vd->vdev_has_trim) { 7745 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7746 return (SET_ERROR(EOPNOTSUPP)); 7747 } else if (secure && !vd->vdev_has_securetrim) { 7748 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7749 return (SET_ERROR(EOPNOTSUPP)); 7750 } 7751 mutex_enter(&vd->vdev_trim_lock); 7752 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7753 7754 /* 7755 * When we activate a TRIM action we check to see if the 7756 * vdev_trim_thread is NULL. We do this instead of using the 7757 * vdev_trim_state since there might be a previous TRIM process 7758 * which has completed but the thread is not exited. 7759 */ 7760 if (cmd_type == POOL_TRIM_START && 7761 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing || 7762 vd->vdev_top->vdev_rz_expanding)) { 7763 mutex_exit(&vd->vdev_trim_lock); 7764 return (SET_ERROR(EBUSY)); 7765 } else if (cmd_type == POOL_TRIM_CANCEL && 7766 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE && 7767 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) { 7768 mutex_exit(&vd->vdev_trim_lock); 7769 return (SET_ERROR(ESRCH)); 7770 } else if (cmd_type == POOL_TRIM_SUSPEND && 7771 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) { 7772 mutex_exit(&vd->vdev_trim_lock); 7773 return (SET_ERROR(ESRCH)); 7774 } 7775 7776 switch (cmd_type) { 7777 case POOL_TRIM_START: 7778 vdev_trim(vd, rate, partial, secure); 7779 break; 7780 case POOL_TRIM_CANCEL: 7781 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list); 7782 break; 7783 case POOL_TRIM_SUSPEND: 7784 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list); 7785 break; 7786 default: 7787 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 7788 } 7789 mutex_exit(&vd->vdev_trim_lock); 7790 7791 return (0); 7792 } 7793 7794 /* 7795 * Initiates a manual TRIM for the requested vdevs. This kicks off individual 7796 * TRIM threads for each child vdev. These threads pass over all of the free 7797 * space in the vdev's metaslabs and issues TRIM commands for that space. 7798 */ 7799 int 7800 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate, 7801 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist) 7802 { 7803 int total_errors = 0; 7804 list_t vd_list; 7805 7806 list_create(&vd_list, sizeof (vdev_t), 7807 offsetof(vdev_t, vdev_trim_node)); 7808 7809 /* 7810 * We hold the namespace lock through the whole function 7811 * to prevent any changes to the pool while we're starting or 7812 * stopping TRIM. The config and state locks are held so that 7813 * we can properly assess the vdev state before we commit to 7814 * the TRIM operation. 7815 */ 7816 mutex_enter(&spa_namespace_lock); 7817 7818 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 7819 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { 7820 uint64_t vdev_guid = fnvpair_value_uint64(pair); 7821 7822 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type, 7823 rate, partial, secure, &vd_list); 7824 if (error != 0) { 7825 char guid_as_str[MAXNAMELEN]; 7826 7827 (void) snprintf(guid_as_str, sizeof (guid_as_str), 7828 "%llu", (unsigned long long)vdev_guid); 7829 fnvlist_add_int64(vdev_errlist, guid_as_str, error); 7830 total_errors++; 7831 } 7832 } 7833 7834 /* Wait for all TRIM threads to stop. */ 7835 vdev_trim_stop_wait(spa, &vd_list); 7836 7837 /* Sync out the TRIM state */ 7838 txg_wait_synced(spa->spa_dsl_pool, 0); 7839 mutex_exit(&spa_namespace_lock); 7840 7841 list_destroy(&vd_list); 7842 7843 return (total_errors); 7844 } 7845 7846 /* 7847 * Split a set of devices from their mirrors, and create a new pool from them. 7848 */ 7849 int 7850 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config, 7851 nvlist_t *props, boolean_t exp) 7852 { 7853 int error = 0; 7854 uint64_t txg, *glist; 7855 spa_t *newspa; 7856 uint_t c, children, lastlog; 7857 nvlist_t **child, *nvl, *tmp; 7858 dmu_tx_t *tx; 7859 const char *altroot = NULL; 7860 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 7861 boolean_t activate_slog; 7862 7863 ASSERT(spa_writeable(spa)); 7864 7865 txg = spa_vdev_enter(spa); 7866 7867 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7868 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 7869 error = (spa_has_checkpoint(spa)) ? 7870 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 7871 return (spa_vdev_exit(spa, NULL, txg, error)); 7872 } 7873 7874 /* clear the log and flush everything up to now */ 7875 activate_slog = spa_passivate_log(spa); 7876 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 7877 error = spa_reset_logs(spa); 7878 txg = spa_vdev_config_enter(spa); 7879 7880 if (activate_slog) 7881 spa_activate_log(spa); 7882 7883 if (error != 0) 7884 return (spa_vdev_exit(spa, NULL, txg, error)); 7885 7886 /* check new spa name before going any further */ 7887 if (spa_lookup(newname) != NULL) 7888 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 7889 7890 /* 7891 * scan through all the children to ensure they're all mirrors 7892 */ 7893 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 7894 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 7895 &children) != 0) 7896 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 7897 7898 /* first, check to ensure we've got the right child count */ 7899 rvd = spa->spa_root_vdev; 7900 lastlog = 0; 7901 for (c = 0; c < rvd->vdev_children; c++) { 7902 vdev_t *vd = rvd->vdev_child[c]; 7903 7904 /* don't count the holes & logs as children */ 7905 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops && 7906 !vdev_is_concrete(vd))) { 7907 if (lastlog == 0) 7908 lastlog = c; 7909 continue; 7910 } 7911 7912 lastlog = 0; 7913 } 7914 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 7915 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 7916 7917 /* next, ensure no spare or cache devices are part of the split */ 7918 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 7919 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 7920 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 7921 7922 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 7923 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 7924 7925 /* then, loop over each vdev and validate it */ 7926 for (c = 0; c < children; c++) { 7927 uint64_t is_hole = 0; 7928 7929 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 7930 &is_hole); 7931 7932 if (is_hole != 0) { 7933 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 7934 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 7935 continue; 7936 } else { 7937 error = SET_ERROR(EINVAL); 7938 break; 7939 } 7940 } 7941 7942 /* deal with indirect vdevs */ 7943 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops == 7944 &vdev_indirect_ops) 7945 continue; 7946 7947 /* which disk is going to be split? */ 7948 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 7949 &glist[c]) != 0) { 7950 error = SET_ERROR(EINVAL); 7951 break; 7952 } 7953 7954 /* look it up in the spa */ 7955 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 7956 if (vml[c] == NULL) { 7957 error = SET_ERROR(ENODEV); 7958 break; 7959 } 7960 7961 /* make sure there's nothing stopping the split */ 7962 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 7963 vml[c]->vdev_islog || 7964 !vdev_is_concrete(vml[c]) || 7965 vml[c]->vdev_isspare || 7966 vml[c]->vdev_isl2cache || 7967 !vdev_writeable(vml[c]) || 7968 vml[c]->vdev_children != 0 || 7969 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 7970 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 7971 error = SET_ERROR(EINVAL); 7972 break; 7973 } 7974 7975 if (vdev_dtl_required(vml[c]) || 7976 vdev_resilver_needed(vml[c], NULL, NULL)) { 7977 error = SET_ERROR(EBUSY); 7978 break; 7979 } 7980 7981 /* we need certain info from the top level */ 7982 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 7983 vml[c]->vdev_top->vdev_ms_array); 7984 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 7985 vml[c]->vdev_top->vdev_ms_shift); 7986 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 7987 vml[c]->vdev_top->vdev_asize); 7988 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 7989 vml[c]->vdev_top->vdev_ashift); 7990 7991 /* transfer per-vdev ZAPs */ 7992 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); 7993 VERIFY0(nvlist_add_uint64(child[c], 7994 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); 7995 7996 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); 7997 VERIFY0(nvlist_add_uint64(child[c], 7998 ZPOOL_CONFIG_VDEV_TOP_ZAP, 7999 vml[c]->vdev_parent->vdev_top_zap)); 8000 } 8001 8002 if (error != 0) { 8003 kmem_free(vml, children * sizeof (vdev_t *)); 8004 kmem_free(glist, children * sizeof (uint64_t)); 8005 return (spa_vdev_exit(spa, NULL, txg, error)); 8006 } 8007 8008 /* stop writers from using the disks */ 8009 for (c = 0; c < children; c++) { 8010 if (vml[c] != NULL) 8011 vml[c]->vdev_offline = B_TRUE; 8012 } 8013 vdev_reopen(spa->spa_root_vdev); 8014 8015 /* 8016 * Temporarily record the splitting vdevs in the spa config. This 8017 * will disappear once the config is regenerated. 8018 */ 8019 nvl = fnvlist_alloc(); 8020 fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children); 8021 kmem_free(glist, children * sizeof (uint64_t)); 8022 8023 mutex_enter(&spa->spa_props_lock); 8024 fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl); 8025 mutex_exit(&spa->spa_props_lock); 8026 spa->spa_config_splitting = nvl; 8027 vdev_config_dirty(spa->spa_root_vdev); 8028 8029 /* configure and create the new pool */ 8030 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname); 8031 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 8032 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE); 8033 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa)); 8034 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg); 8035 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 8036 spa_generate_guid(NULL)); 8037 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 8038 (void) nvlist_lookup_string(props, 8039 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 8040 8041 /* add the new pool to the namespace */ 8042 newspa = spa_add(newname, config, altroot); 8043 newspa->spa_avz_action = AVZ_ACTION_REBUILD; 8044 newspa->spa_config_txg = spa->spa_config_txg; 8045 spa_set_log_state(newspa, SPA_LOG_CLEAR); 8046 8047 /* release the spa config lock, retaining the namespace lock */ 8048 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 8049 8050 if (zio_injection_enabled) 8051 zio_handle_panic_injection(spa, FTAG, 1); 8052 8053 spa_activate(newspa, spa_mode_global); 8054 spa_async_suspend(newspa); 8055 8056 /* 8057 * Temporarily stop the initializing and TRIM activity. We set the 8058 * state to ACTIVE so that we know to resume initializing or TRIM 8059 * once the split has completed. 8060 */ 8061 list_t vd_initialize_list; 8062 list_create(&vd_initialize_list, sizeof (vdev_t), 8063 offsetof(vdev_t, vdev_initialize_node)); 8064 8065 list_t vd_trim_list; 8066 list_create(&vd_trim_list, sizeof (vdev_t), 8067 offsetof(vdev_t, vdev_trim_node)); 8068 8069 for (c = 0; c < children; c++) { 8070 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { 8071 mutex_enter(&vml[c]->vdev_initialize_lock); 8072 vdev_initialize_stop(vml[c], 8073 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list); 8074 mutex_exit(&vml[c]->vdev_initialize_lock); 8075 8076 mutex_enter(&vml[c]->vdev_trim_lock); 8077 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list); 8078 mutex_exit(&vml[c]->vdev_trim_lock); 8079 } 8080 } 8081 8082 vdev_initialize_stop_wait(spa, &vd_initialize_list); 8083 vdev_trim_stop_wait(spa, &vd_trim_list); 8084 8085 list_destroy(&vd_initialize_list); 8086 list_destroy(&vd_trim_list); 8087 8088 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT; 8089 newspa->spa_is_splitting = B_TRUE; 8090 8091 /* create the new pool from the disks of the original pool */ 8092 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE); 8093 if (error) 8094 goto out; 8095 8096 /* if that worked, generate a real config for the new pool */ 8097 if (newspa->spa_root_vdev != NULL) { 8098 newspa->spa_config_splitting = fnvlist_alloc(); 8099 fnvlist_add_uint64(newspa->spa_config_splitting, 8100 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)); 8101 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 8102 B_TRUE)); 8103 } 8104 8105 /* set the props */ 8106 if (props != NULL) { 8107 spa_configfile_set(newspa, props, B_FALSE); 8108 error = spa_prop_set(newspa, props); 8109 if (error) 8110 goto out; 8111 } 8112 8113 /* flush everything */ 8114 txg = spa_vdev_config_enter(newspa); 8115 vdev_config_dirty(newspa->spa_root_vdev); 8116 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 8117 8118 if (zio_injection_enabled) 8119 zio_handle_panic_injection(spa, FTAG, 2); 8120 8121 spa_async_resume(newspa); 8122 8123 /* finally, update the original pool's config */ 8124 txg = spa_vdev_config_enter(spa); 8125 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 8126 error = dmu_tx_assign(tx, TXG_WAIT); 8127 if (error != 0) 8128 dmu_tx_abort(tx); 8129 for (c = 0; c < children; c++) { 8130 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { 8131 vdev_t *tvd = vml[c]->vdev_top; 8132 8133 /* 8134 * Need to be sure the detachable VDEV is not 8135 * on any *other* txg's DTL list to prevent it 8136 * from being accessed after it's freed. 8137 */ 8138 for (int t = 0; t < TXG_SIZE; t++) { 8139 (void) txg_list_remove_this( 8140 &tvd->vdev_dtl_list, vml[c], t); 8141 } 8142 8143 vdev_split(vml[c]); 8144 if (error == 0) 8145 spa_history_log_internal(spa, "detach", tx, 8146 "vdev=%s", vml[c]->vdev_path); 8147 8148 vdev_free(vml[c]); 8149 } 8150 } 8151 spa->spa_avz_action = AVZ_ACTION_REBUILD; 8152 vdev_config_dirty(spa->spa_root_vdev); 8153 spa->spa_config_splitting = NULL; 8154 nvlist_free(nvl); 8155 if (error == 0) 8156 dmu_tx_commit(tx); 8157 (void) spa_vdev_exit(spa, NULL, txg, 0); 8158 8159 if (zio_injection_enabled) 8160 zio_handle_panic_injection(spa, FTAG, 3); 8161 8162 /* split is complete; log a history record */ 8163 spa_history_log_internal(newspa, "split", NULL, 8164 "from pool %s", spa_name(spa)); 8165 8166 newspa->spa_is_splitting = B_FALSE; 8167 kmem_free(vml, children * sizeof (vdev_t *)); 8168 8169 /* if we're not going to mount the filesystems in userland, export */ 8170 if (exp) 8171 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 8172 B_FALSE, B_FALSE); 8173 8174 return (error); 8175 8176 out: 8177 spa_unload(newspa); 8178 spa_deactivate(newspa); 8179 spa_remove(newspa); 8180 8181 txg = spa_vdev_config_enter(spa); 8182 8183 /* re-online all offlined disks */ 8184 for (c = 0; c < children; c++) { 8185 if (vml[c] != NULL) 8186 vml[c]->vdev_offline = B_FALSE; 8187 } 8188 8189 /* restart initializing or trimming disks as necessary */ 8190 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART); 8191 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART); 8192 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART); 8193 8194 vdev_reopen(spa->spa_root_vdev); 8195 8196 nvlist_free(spa->spa_config_splitting); 8197 spa->spa_config_splitting = NULL; 8198 (void) spa_vdev_exit(spa, NULL, txg, error); 8199 8200 kmem_free(vml, children * sizeof (vdev_t *)); 8201 return (error); 8202 } 8203 8204 /* 8205 * Find any device that's done replacing, or a vdev marked 'unspare' that's 8206 * currently spared, so we can detach it. 8207 */ 8208 static vdev_t * 8209 spa_vdev_resilver_done_hunt(vdev_t *vd) 8210 { 8211 vdev_t *newvd, *oldvd; 8212 8213 for (int c = 0; c < vd->vdev_children; c++) { 8214 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 8215 if (oldvd != NULL) 8216 return (oldvd); 8217 } 8218 8219 /* 8220 * Check for a completed replacement. We always consider the first 8221 * vdev in the list to be the oldest vdev, and the last one to be 8222 * the newest (see spa_vdev_attach() for how that works). In 8223 * the case where the newest vdev is faulted, we will not automatically 8224 * remove it after a resilver completes. This is OK as it will require 8225 * user intervention to determine which disk the admin wishes to keep. 8226 */ 8227 if (vd->vdev_ops == &vdev_replacing_ops) { 8228 ASSERT(vd->vdev_children > 1); 8229 8230 newvd = vd->vdev_child[vd->vdev_children - 1]; 8231 oldvd = vd->vdev_child[0]; 8232 8233 if (vdev_dtl_empty(newvd, DTL_MISSING) && 8234 vdev_dtl_empty(newvd, DTL_OUTAGE) && 8235 !vdev_dtl_required(oldvd)) 8236 return (oldvd); 8237 } 8238 8239 /* 8240 * Check for a completed resilver with the 'unspare' flag set. 8241 * Also potentially update faulted state. 8242 */ 8243 if (vd->vdev_ops == &vdev_spare_ops) { 8244 vdev_t *first = vd->vdev_child[0]; 8245 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 8246 8247 if (last->vdev_unspare) { 8248 oldvd = first; 8249 newvd = last; 8250 } else if (first->vdev_unspare) { 8251 oldvd = last; 8252 newvd = first; 8253 } else { 8254 oldvd = NULL; 8255 } 8256 8257 if (oldvd != NULL && 8258 vdev_dtl_empty(newvd, DTL_MISSING) && 8259 vdev_dtl_empty(newvd, DTL_OUTAGE) && 8260 !vdev_dtl_required(oldvd)) 8261 return (oldvd); 8262 8263 vdev_propagate_state(vd); 8264 8265 /* 8266 * If there are more than two spares attached to a disk, 8267 * and those spares are not required, then we want to 8268 * attempt to free them up now so that they can be used 8269 * by other pools. Once we're back down to a single 8270 * disk+spare, we stop removing them. 8271 */ 8272 if (vd->vdev_children > 2) { 8273 newvd = vd->vdev_child[1]; 8274 8275 if (newvd->vdev_isspare && last->vdev_isspare && 8276 vdev_dtl_empty(last, DTL_MISSING) && 8277 vdev_dtl_empty(last, DTL_OUTAGE) && 8278 !vdev_dtl_required(newvd)) 8279 return (newvd); 8280 } 8281 } 8282 8283 return (NULL); 8284 } 8285 8286 static void 8287 spa_vdev_resilver_done(spa_t *spa) 8288 { 8289 vdev_t *vd, *pvd, *ppvd; 8290 uint64_t guid, sguid, pguid, ppguid; 8291 8292 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 8293 8294 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 8295 pvd = vd->vdev_parent; 8296 ppvd = pvd->vdev_parent; 8297 guid = vd->vdev_guid; 8298 pguid = pvd->vdev_guid; 8299 ppguid = ppvd->vdev_guid; 8300 sguid = 0; 8301 /* 8302 * If we have just finished replacing a hot spared device, then 8303 * we need to detach the parent's first child (the original hot 8304 * spare) as well. 8305 */ 8306 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 8307 ppvd->vdev_children == 2) { 8308 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 8309 sguid = ppvd->vdev_child[1]->vdev_guid; 8310 } 8311 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 8312 8313 spa_config_exit(spa, SCL_ALL, FTAG); 8314 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 8315 return; 8316 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 8317 return; 8318 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 8319 } 8320 8321 spa_config_exit(spa, SCL_ALL, FTAG); 8322 8323 /* 8324 * If a detach was not performed above replace waiters will not have 8325 * been notified. In which case we must do so now. 8326 */ 8327 spa_notify_waiters(spa); 8328 } 8329 8330 /* 8331 * Update the stored path or FRU for this vdev. 8332 */ 8333 static int 8334 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 8335 boolean_t ispath) 8336 { 8337 vdev_t *vd; 8338 boolean_t sync = B_FALSE; 8339 8340 ASSERT(spa_writeable(spa)); 8341 8342 spa_vdev_state_enter(spa, SCL_ALL); 8343 8344 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 8345 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 8346 8347 if (!vd->vdev_ops->vdev_op_leaf) 8348 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 8349 8350 if (ispath) { 8351 if (strcmp(value, vd->vdev_path) != 0) { 8352 spa_strfree(vd->vdev_path); 8353 vd->vdev_path = spa_strdup(value); 8354 sync = B_TRUE; 8355 } 8356 } else { 8357 if (vd->vdev_fru == NULL) { 8358 vd->vdev_fru = spa_strdup(value); 8359 sync = B_TRUE; 8360 } else if (strcmp(value, vd->vdev_fru) != 0) { 8361 spa_strfree(vd->vdev_fru); 8362 vd->vdev_fru = spa_strdup(value); 8363 sync = B_TRUE; 8364 } 8365 } 8366 8367 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 8368 } 8369 8370 int 8371 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 8372 { 8373 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 8374 } 8375 8376 int 8377 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 8378 { 8379 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 8380 } 8381 8382 /* 8383 * ========================================================================== 8384 * SPA Scanning 8385 * ========================================================================== 8386 */ 8387 int 8388 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd) 8389 { 8390 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 8391 8392 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 8393 return (SET_ERROR(EBUSY)); 8394 8395 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd)); 8396 } 8397 8398 int 8399 spa_scan_stop(spa_t *spa) 8400 { 8401 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 8402 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 8403 return (SET_ERROR(EBUSY)); 8404 8405 return (dsl_scan_cancel(spa->spa_dsl_pool)); 8406 } 8407 8408 int 8409 spa_scan(spa_t *spa, pool_scan_func_t func) 8410 { 8411 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 8412 8413 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 8414 return (SET_ERROR(ENOTSUP)); 8415 8416 if (func == POOL_SCAN_RESILVER && 8417 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) 8418 return (SET_ERROR(ENOTSUP)); 8419 8420 /* 8421 * If a resilver was requested, but there is no DTL on a 8422 * writeable leaf device, we have nothing to do. 8423 */ 8424 if (func == POOL_SCAN_RESILVER && 8425 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 8426 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 8427 return (0); 8428 } 8429 8430 if (func == POOL_SCAN_ERRORSCRUB && 8431 !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) 8432 return (SET_ERROR(ENOTSUP)); 8433 8434 return (dsl_scan(spa->spa_dsl_pool, func)); 8435 } 8436 8437 /* 8438 * ========================================================================== 8439 * SPA async task processing 8440 * ========================================================================== 8441 */ 8442 8443 static void 8444 spa_async_remove(spa_t *spa, vdev_t *vd) 8445 { 8446 if (vd->vdev_remove_wanted) { 8447 vd->vdev_remove_wanted = B_FALSE; 8448 vd->vdev_delayed_close = B_FALSE; 8449 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 8450 8451 /* 8452 * We want to clear the stats, but we don't want to do a full 8453 * vdev_clear() as that will cause us to throw away 8454 * degraded/faulted state as well as attempt to reopen the 8455 * device, all of which is a waste. 8456 */ 8457 vd->vdev_stat.vs_read_errors = 0; 8458 vd->vdev_stat.vs_write_errors = 0; 8459 vd->vdev_stat.vs_checksum_errors = 0; 8460 8461 vdev_state_dirty(vd->vdev_top); 8462 8463 /* Tell userspace that the vdev is gone. */ 8464 zfs_post_remove(spa, vd); 8465 } 8466 8467 for (int c = 0; c < vd->vdev_children; c++) 8468 spa_async_remove(spa, vd->vdev_child[c]); 8469 } 8470 8471 static void 8472 spa_async_probe(spa_t *spa, vdev_t *vd) 8473 { 8474 if (vd->vdev_probe_wanted) { 8475 vd->vdev_probe_wanted = B_FALSE; 8476 vdev_reopen(vd); /* vdev_open() does the actual probe */ 8477 } 8478 8479 for (int c = 0; c < vd->vdev_children; c++) 8480 spa_async_probe(spa, vd->vdev_child[c]); 8481 } 8482 8483 static void 8484 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 8485 { 8486 if (!spa->spa_autoexpand) 8487 return; 8488 8489 for (int c = 0; c < vd->vdev_children; c++) { 8490 vdev_t *cvd = vd->vdev_child[c]; 8491 spa_async_autoexpand(spa, cvd); 8492 } 8493 8494 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 8495 return; 8496 8497 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND); 8498 } 8499 8500 static __attribute__((noreturn)) void 8501 spa_async_thread(void *arg) 8502 { 8503 spa_t *spa = (spa_t *)arg; 8504 dsl_pool_t *dp = spa->spa_dsl_pool; 8505 int tasks; 8506 8507 ASSERT(spa->spa_sync_on); 8508 8509 mutex_enter(&spa->spa_async_lock); 8510 tasks = spa->spa_async_tasks; 8511 spa->spa_async_tasks = 0; 8512 mutex_exit(&spa->spa_async_lock); 8513 8514 /* 8515 * See if the config needs to be updated. 8516 */ 8517 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 8518 uint64_t old_space, new_space; 8519 8520 mutex_enter(&spa_namespace_lock); 8521 old_space = metaslab_class_get_space(spa_normal_class(spa)); 8522 old_space += metaslab_class_get_space(spa_special_class(spa)); 8523 old_space += metaslab_class_get_space(spa_dedup_class(spa)); 8524 old_space += metaslab_class_get_space( 8525 spa_embedded_log_class(spa)); 8526 8527 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 8528 8529 new_space = metaslab_class_get_space(spa_normal_class(spa)); 8530 new_space += metaslab_class_get_space(spa_special_class(spa)); 8531 new_space += metaslab_class_get_space(spa_dedup_class(spa)); 8532 new_space += metaslab_class_get_space( 8533 spa_embedded_log_class(spa)); 8534 mutex_exit(&spa_namespace_lock); 8535 8536 /* 8537 * If the pool grew as a result of the config update, 8538 * then log an internal history event. 8539 */ 8540 if (new_space != old_space) { 8541 spa_history_log_internal(spa, "vdev online", NULL, 8542 "pool '%s' size: %llu(+%llu)", 8543 spa_name(spa), (u_longlong_t)new_space, 8544 (u_longlong_t)(new_space - old_space)); 8545 } 8546 } 8547 8548 /* 8549 * See if any devices need to be marked REMOVED. 8550 */ 8551 if (tasks & SPA_ASYNC_REMOVE) { 8552 spa_vdev_state_enter(spa, SCL_NONE); 8553 spa_async_remove(spa, spa->spa_root_vdev); 8554 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 8555 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 8556 for (int i = 0; i < spa->spa_spares.sav_count; i++) 8557 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 8558 (void) spa_vdev_state_exit(spa, NULL, 0); 8559 } 8560 8561 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 8562 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8563 spa_async_autoexpand(spa, spa->spa_root_vdev); 8564 spa_config_exit(spa, SCL_CONFIG, FTAG); 8565 } 8566 8567 /* 8568 * See if any devices need to be probed. 8569 */ 8570 if (tasks & SPA_ASYNC_PROBE) { 8571 spa_vdev_state_enter(spa, SCL_NONE); 8572 spa_async_probe(spa, spa->spa_root_vdev); 8573 (void) spa_vdev_state_exit(spa, NULL, 0); 8574 } 8575 8576 /* 8577 * If any devices are done replacing, detach them. 8578 */ 8579 if (tasks & SPA_ASYNC_RESILVER_DONE || 8580 tasks & SPA_ASYNC_REBUILD_DONE || 8581 tasks & SPA_ASYNC_DETACH_SPARE) { 8582 spa_vdev_resilver_done(spa); 8583 } 8584 8585 /* 8586 * Kick off a resilver. 8587 */ 8588 if (tasks & SPA_ASYNC_RESILVER && 8589 !vdev_rebuild_active(spa->spa_root_vdev) && 8590 (!dsl_scan_resilvering(dp) || 8591 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))) 8592 dsl_scan_restart_resilver(dp, 0); 8593 8594 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) { 8595 mutex_enter(&spa_namespace_lock); 8596 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8597 vdev_initialize_restart(spa->spa_root_vdev); 8598 spa_config_exit(spa, SCL_CONFIG, FTAG); 8599 mutex_exit(&spa_namespace_lock); 8600 } 8601 8602 if (tasks & SPA_ASYNC_TRIM_RESTART) { 8603 mutex_enter(&spa_namespace_lock); 8604 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8605 vdev_trim_restart(spa->spa_root_vdev); 8606 spa_config_exit(spa, SCL_CONFIG, FTAG); 8607 mutex_exit(&spa_namespace_lock); 8608 } 8609 8610 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) { 8611 mutex_enter(&spa_namespace_lock); 8612 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8613 vdev_autotrim_restart(spa); 8614 spa_config_exit(spa, SCL_CONFIG, FTAG); 8615 mutex_exit(&spa_namespace_lock); 8616 } 8617 8618 /* 8619 * Kick off L2 cache whole device TRIM. 8620 */ 8621 if (tasks & SPA_ASYNC_L2CACHE_TRIM) { 8622 mutex_enter(&spa_namespace_lock); 8623 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8624 vdev_trim_l2arc(spa); 8625 spa_config_exit(spa, SCL_CONFIG, FTAG); 8626 mutex_exit(&spa_namespace_lock); 8627 } 8628 8629 /* 8630 * Kick off L2 cache rebuilding. 8631 */ 8632 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) { 8633 mutex_enter(&spa_namespace_lock); 8634 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER); 8635 l2arc_spa_rebuild_start(spa); 8636 spa_config_exit(spa, SCL_L2ARC, FTAG); 8637 mutex_exit(&spa_namespace_lock); 8638 } 8639 8640 /* 8641 * Let the world know that we're done. 8642 */ 8643 mutex_enter(&spa->spa_async_lock); 8644 spa->spa_async_thread = NULL; 8645 cv_broadcast(&spa->spa_async_cv); 8646 mutex_exit(&spa->spa_async_lock); 8647 thread_exit(); 8648 } 8649 8650 void 8651 spa_async_suspend(spa_t *spa) 8652 { 8653 mutex_enter(&spa->spa_async_lock); 8654 spa->spa_async_suspended++; 8655 while (spa->spa_async_thread != NULL) 8656 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 8657 mutex_exit(&spa->spa_async_lock); 8658 8659 spa_vdev_remove_suspend(spa); 8660 8661 zthr_t *condense_thread = spa->spa_condense_zthr; 8662 if (condense_thread != NULL) 8663 zthr_cancel(condense_thread); 8664 8665 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr; 8666 if (raidz_expand_thread != NULL) 8667 zthr_cancel(raidz_expand_thread); 8668 8669 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 8670 if (discard_thread != NULL) 8671 zthr_cancel(discard_thread); 8672 8673 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; 8674 if (ll_delete_thread != NULL) 8675 zthr_cancel(ll_delete_thread); 8676 8677 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 8678 if (ll_condense_thread != NULL) 8679 zthr_cancel(ll_condense_thread); 8680 } 8681 8682 void 8683 spa_async_resume(spa_t *spa) 8684 { 8685 mutex_enter(&spa->spa_async_lock); 8686 ASSERT(spa->spa_async_suspended != 0); 8687 spa->spa_async_suspended--; 8688 mutex_exit(&spa->spa_async_lock); 8689 spa_restart_removal(spa); 8690 8691 zthr_t *condense_thread = spa->spa_condense_zthr; 8692 if (condense_thread != NULL) 8693 zthr_resume(condense_thread); 8694 8695 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr; 8696 if (raidz_expand_thread != NULL) 8697 zthr_resume(raidz_expand_thread); 8698 8699 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 8700 if (discard_thread != NULL) 8701 zthr_resume(discard_thread); 8702 8703 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; 8704 if (ll_delete_thread != NULL) 8705 zthr_resume(ll_delete_thread); 8706 8707 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 8708 if (ll_condense_thread != NULL) 8709 zthr_resume(ll_condense_thread); 8710 } 8711 8712 static boolean_t 8713 spa_async_tasks_pending(spa_t *spa) 8714 { 8715 uint_t non_config_tasks; 8716 uint_t config_task; 8717 boolean_t config_task_suspended; 8718 8719 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 8720 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 8721 if (spa->spa_ccw_fail_time == 0) { 8722 config_task_suspended = B_FALSE; 8723 } else { 8724 config_task_suspended = 8725 (gethrtime() - spa->spa_ccw_fail_time) < 8726 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC); 8727 } 8728 8729 return (non_config_tasks || (config_task && !config_task_suspended)); 8730 } 8731 8732 static void 8733 spa_async_dispatch(spa_t *spa) 8734 { 8735 mutex_enter(&spa->spa_async_lock); 8736 if (spa_async_tasks_pending(spa) && 8737 !spa->spa_async_suspended && 8738 spa->spa_async_thread == NULL) 8739 spa->spa_async_thread = thread_create(NULL, 0, 8740 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 8741 mutex_exit(&spa->spa_async_lock); 8742 } 8743 8744 void 8745 spa_async_request(spa_t *spa, int task) 8746 { 8747 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 8748 mutex_enter(&spa->spa_async_lock); 8749 spa->spa_async_tasks |= task; 8750 mutex_exit(&spa->spa_async_lock); 8751 } 8752 8753 int 8754 spa_async_tasks(spa_t *spa) 8755 { 8756 return (spa->spa_async_tasks); 8757 } 8758 8759 /* 8760 * ========================================================================== 8761 * SPA syncing routines 8762 * ========================================================================== 8763 */ 8764 8765 8766 static int 8767 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 8768 dmu_tx_t *tx) 8769 { 8770 bpobj_t *bpo = arg; 8771 bpobj_enqueue(bpo, bp, bp_freed, tx); 8772 return (0); 8773 } 8774 8775 int 8776 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 8777 { 8778 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx)); 8779 } 8780 8781 int 8782 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 8783 { 8784 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx)); 8785 } 8786 8787 static int 8788 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 8789 { 8790 zio_t *pio = arg; 8791 8792 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp, 8793 pio->io_flags)); 8794 return (0); 8795 } 8796 8797 static int 8798 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 8799 dmu_tx_t *tx) 8800 { 8801 ASSERT(!bp_freed); 8802 return (spa_free_sync_cb(arg, bp, tx)); 8803 } 8804 8805 /* 8806 * Note: this simple function is not inlined to make it easier to dtrace the 8807 * amount of time spent syncing frees. 8808 */ 8809 static void 8810 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 8811 { 8812 zio_t *zio = zio_root(spa, NULL, NULL, 0); 8813 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 8814 VERIFY(zio_wait(zio) == 0); 8815 } 8816 8817 /* 8818 * Note: this simple function is not inlined to make it easier to dtrace the 8819 * amount of time spent syncing deferred frees. 8820 */ 8821 static void 8822 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 8823 { 8824 if (spa_sync_pass(spa) != 1) 8825 return; 8826 8827 /* 8828 * Note: 8829 * If the log space map feature is active, we stop deferring 8830 * frees to the next TXG and therefore running this function 8831 * would be considered a no-op as spa_deferred_bpobj should 8832 * not have any entries. 8833 * 8834 * That said we run this function anyway (instead of returning 8835 * immediately) for the edge-case scenario where we just 8836 * activated the log space map feature in this TXG but we have 8837 * deferred frees from the previous TXG. 8838 */ 8839 zio_t *zio = zio_root(spa, NULL, NULL, 0); 8840 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 8841 bpobj_spa_free_sync_cb, zio, tx), ==, 0); 8842 VERIFY0(zio_wait(zio)); 8843 } 8844 8845 static void 8846 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 8847 { 8848 char *packed = NULL; 8849 size_t bufsize; 8850 size_t nvsize = 0; 8851 dmu_buf_t *db; 8852 8853 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 8854 8855 /* 8856 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 8857 * information. This avoids the dmu_buf_will_dirty() path and 8858 * saves us a pre-read to get data we don't actually care about. 8859 */ 8860 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 8861 packed = vmem_alloc(bufsize, KM_SLEEP); 8862 8863 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 8864 KM_SLEEP) == 0); 8865 memset(packed + nvsize, 0, bufsize - nvsize); 8866 8867 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 8868 8869 vmem_free(packed, bufsize); 8870 8871 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 8872 dmu_buf_will_dirty(db, tx); 8873 *(uint64_t *)db->db_data = nvsize; 8874 dmu_buf_rele(db, FTAG); 8875 } 8876 8877 static void 8878 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 8879 const char *config, const char *entry) 8880 { 8881 nvlist_t *nvroot; 8882 nvlist_t **list; 8883 int i; 8884 8885 if (!sav->sav_sync) 8886 return; 8887 8888 /* 8889 * Update the MOS nvlist describing the list of available devices. 8890 * spa_validate_aux() will have already made sure this nvlist is 8891 * valid and the vdevs are labeled appropriately. 8892 */ 8893 if (sav->sav_object == 0) { 8894 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 8895 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 8896 sizeof (uint64_t), tx); 8897 VERIFY(zap_update(spa->spa_meta_objset, 8898 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 8899 &sav->sav_object, tx) == 0); 8900 } 8901 8902 nvroot = fnvlist_alloc(); 8903 if (sav->sav_count == 0) { 8904 fnvlist_add_nvlist_array(nvroot, config, 8905 (const nvlist_t * const *)NULL, 0); 8906 } else { 8907 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP); 8908 for (i = 0; i < sav->sav_count; i++) 8909 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 8910 B_FALSE, VDEV_CONFIG_L2CACHE); 8911 fnvlist_add_nvlist_array(nvroot, config, 8912 (const nvlist_t * const *)list, sav->sav_count); 8913 for (i = 0; i < sav->sav_count; i++) 8914 nvlist_free(list[i]); 8915 kmem_free(list, sav->sav_count * sizeof (void *)); 8916 } 8917 8918 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 8919 nvlist_free(nvroot); 8920 8921 sav->sav_sync = B_FALSE; 8922 } 8923 8924 /* 8925 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. 8926 * The all-vdev ZAP must be empty. 8927 */ 8928 static void 8929 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) 8930 { 8931 spa_t *spa = vd->vdev_spa; 8932 8933 if (vd->vdev_root_zap != 0 && 8934 spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) { 8935 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 8936 vd->vdev_root_zap, tx)); 8937 } 8938 if (vd->vdev_top_zap != 0) { 8939 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 8940 vd->vdev_top_zap, tx)); 8941 } 8942 if (vd->vdev_leaf_zap != 0) { 8943 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 8944 vd->vdev_leaf_zap, tx)); 8945 } 8946 for (uint64_t i = 0; i < vd->vdev_children; i++) { 8947 spa_avz_build(vd->vdev_child[i], avz, tx); 8948 } 8949 } 8950 8951 static void 8952 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 8953 { 8954 nvlist_t *config; 8955 8956 /* 8957 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, 8958 * its config may not be dirty but we still need to build per-vdev ZAPs. 8959 * Similarly, if the pool is being assembled (e.g. after a split), we 8960 * need to rebuild the AVZ although the config may not be dirty. 8961 */ 8962 if (list_is_empty(&spa->spa_config_dirty_list) && 8963 spa->spa_avz_action == AVZ_ACTION_NONE) 8964 return; 8965 8966 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8967 8968 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || 8969 spa->spa_avz_action == AVZ_ACTION_INITIALIZE || 8970 spa->spa_all_vdev_zaps != 0); 8971 8972 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { 8973 /* Make and build the new AVZ */ 8974 uint64_t new_avz = zap_create(spa->spa_meta_objset, 8975 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); 8976 spa_avz_build(spa->spa_root_vdev, new_avz, tx); 8977 8978 /* Diff old AVZ with new one */ 8979 zap_cursor_t zc; 8980 zap_attribute_t za; 8981 8982 for (zap_cursor_init(&zc, spa->spa_meta_objset, 8983 spa->spa_all_vdev_zaps); 8984 zap_cursor_retrieve(&zc, &za) == 0; 8985 zap_cursor_advance(&zc)) { 8986 uint64_t vdzap = za.za_first_integer; 8987 if (zap_lookup_int(spa->spa_meta_objset, new_avz, 8988 vdzap) == ENOENT) { 8989 /* 8990 * ZAP is listed in old AVZ but not in new one; 8991 * destroy it 8992 */ 8993 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, 8994 tx)); 8995 } 8996 } 8997 8998 zap_cursor_fini(&zc); 8999 9000 /* Destroy the old AVZ */ 9001 VERIFY0(zap_destroy(spa->spa_meta_objset, 9002 spa->spa_all_vdev_zaps, tx)); 9003 9004 /* Replace the old AVZ in the dir obj with the new one */ 9005 VERIFY0(zap_update(spa->spa_meta_objset, 9006 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, 9007 sizeof (new_avz), 1, &new_avz, tx)); 9008 9009 spa->spa_all_vdev_zaps = new_avz; 9010 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { 9011 zap_cursor_t zc; 9012 zap_attribute_t za; 9013 9014 /* Walk through the AVZ and destroy all listed ZAPs */ 9015 for (zap_cursor_init(&zc, spa->spa_meta_objset, 9016 spa->spa_all_vdev_zaps); 9017 zap_cursor_retrieve(&zc, &za) == 0; 9018 zap_cursor_advance(&zc)) { 9019 uint64_t zap = za.za_first_integer; 9020 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); 9021 } 9022 9023 zap_cursor_fini(&zc); 9024 9025 /* Destroy and unlink the AVZ itself */ 9026 VERIFY0(zap_destroy(spa->spa_meta_objset, 9027 spa->spa_all_vdev_zaps, tx)); 9028 VERIFY0(zap_remove(spa->spa_meta_objset, 9029 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); 9030 spa->spa_all_vdev_zaps = 0; 9031 } 9032 9033 if (spa->spa_all_vdev_zaps == 0) { 9034 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, 9035 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, 9036 DMU_POOL_VDEV_ZAP_MAP, tx); 9037 } 9038 spa->spa_avz_action = AVZ_ACTION_NONE; 9039 9040 /* Create ZAPs for vdevs that don't have them. */ 9041 vdev_construct_zaps(spa->spa_root_vdev, tx); 9042 9043 config = spa_config_generate(spa, spa->spa_root_vdev, 9044 dmu_tx_get_txg(tx), B_FALSE); 9045 9046 /* 9047 * If we're upgrading the spa version then make sure that 9048 * the config object gets updated with the correct version. 9049 */ 9050 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 9051 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 9052 spa->spa_uberblock.ub_version); 9053 9054 spa_config_exit(spa, SCL_STATE, FTAG); 9055 9056 nvlist_free(spa->spa_config_syncing); 9057 spa->spa_config_syncing = config; 9058 9059 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 9060 } 9061 9062 static void 9063 spa_sync_version(void *arg, dmu_tx_t *tx) 9064 { 9065 uint64_t *versionp = arg; 9066 uint64_t version = *versionp; 9067 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 9068 9069 /* 9070 * Setting the version is special cased when first creating the pool. 9071 */ 9072 ASSERT(tx->tx_txg != TXG_INITIAL); 9073 9074 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 9075 ASSERT(version >= spa_version(spa)); 9076 9077 spa->spa_uberblock.ub_version = version; 9078 vdev_config_dirty(spa->spa_root_vdev); 9079 spa_history_log_internal(spa, "set", tx, "version=%lld", 9080 (longlong_t)version); 9081 } 9082 9083 /* 9084 * Set zpool properties. 9085 */ 9086 static void 9087 spa_sync_props(void *arg, dmu_tx_t *tx) 9088 { 9089 nvlist_t *nvp = arg; 9090 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 9091 objset_t *mos = spa->spa_meta_objset; 9092 nvpair_t *elem = NULL; 9093 9094 mutex_enter(&spa->spa_props_lock); 9095 9096 while ((elem = nvlist_next_nvpair(nvp, elem))) { 9097 uint64_t intval; 9098 const char *strval, *fname; 9099 zpool_prop_t prop; 9100 const char *propname; 9101 const char *elemname = nvpair_name(elem); 9102 zprop_type_t proptype; 9103 spa_feature_t fid; 9104 9105 switch (prop = zpool_name_to_prop(elemname)) { 9106 case ZPOOL_PROP_VERSION: 9107 intval = fnvpair_value_uint64(elem); 9108 /* 9109 * The version is synced separately before other 9110 * properties and should be correct by now. 9111 */ 9112 ASSERT3U(spa_version(spa), >=, intval); 9113 break; 9114 9115 case ZPOOL_PROP_ALTROOT: 9116 /* 9117 * 'altroot' is a non-persistent property. It should 9118 * have been set temporarily at creation or import time. 9119 */ 9120 ASSERT(spa->spa_root != NULL); 9121 break; 9122 9123 case ZPOOL_PROP_READONLY: 9124 case ZPOOL_PROP_CACHEFILE: 9125 /* 9126 * 'readonly' and 'cachefile' are also non-persistent 9127 * properties. 9128 */ 9129 break; 9130 case ZPOOL_PROP_COMMENT: 9131 strval = fnvpair_value_string(elem); 9132 if (spa->spa_comment != NULL) 9133 spa_strfree(spa->spa_comment); 9134 spa->spa_comment = spa_strdup(strval); 9135 /* 9136 * We need to dirty the configuration on all the vdevs 9137 * so that their labels get updated. We also need to 9138 * update the cache file to keep it in sync with the 9139 * MOS version. It's unnecessary to do this for pool 9140 * creation since the vdev's configuration has already 9141 * been dirtied. 9142 */ 9143 if (tx->tx_txg != TXG_INITIAL) { 9144 vdev_config_dirty(spa->spa_root_vdev); 9145 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 9146 } 9147 spa_history_log_internal(spa, "set", tx, 9148 "%s=%s", elemname, strval); 9149 break; 9150 case ZPOOL_PROP_COMPATIBILITY: 9151 strval = fnvpair_value_string(elem); 9152 if (spa->spa_compatibility != NULL) 9153 spa_strfree(spa->spa_compatibility); 9154 spa->spa_compatibility = spa_strdup(strval); 9155 /* 9156 * Dirty the configuration on vdevs as above. 9157 */ 9158 if (tx->tx_txg != TXG_INITIAL) { 9159 vdev_config_dirty(spa->spa_root_vdev); 9160 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 9161 } 9162 9163 spa_history_log_internal(spa, "set", tx, 9164 "%s=%s", nvpair_name(elem), strval); 9165 break; 9166 9167 case ZPOOL_PROP_INVAL: 9168 if (zpool_prop_feature(elemname)) { 9169 fname = strchr(elemname, '@') + 1; 9170 VERIFY0(zfeature_lookup_name(fname, &fid)); 9171 9172 spa_feature_enable(spa, fid, tx); 9173 spa_history_log_internal(spa, "set", tx, 9174 "%s=enabled", elemname); 9175 break; 9176 } else if (!zfs_prop_user(elemname)) { 9177 ASSERT(zpool_prop_feature(elemname)); 9178 break; 9179 } 9180 zfs_fallthrough; 9181 default: 9182 /* 9183 * Set pool property values in the poolprops mos object. 9184 */ 9185 if (spa->spa_pool_props_object == 0) { 9186 spa->spa_pool_props_object = 9187 zap_create_link(mos, DMU_OT_POOL_PROPS, 9188 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 9189 tx); 9190 } 9191 9192 /* normalize the property name */ 9193 if (prop == ZPOOL_PROP_INVAL) { 9194 propname = elemname; 9195 proptype = PROP_TYPE_STRING; 9196 } else { 9197 propname = zpool_prop_to_name(prop); 9198 proptype = zpool_prop_get_type(prop); 9199 } 9200 9201 if (nvpair_type(elem) == DATA_TYPE_STRING) { 9202 ASSERT(proptype == PROP_TYPE_STRING); 9203 strval = fnvpair_value_string(elem); 9204 VERIFY0(zap_update(mos, 9205 spa->spa_pool_props_object, propname, 9206 1, strlen(strval) + 1, strval, tx)); 9207 spa_history_log_internal(spa, "set", tx, 9208 "%s=%s", elemname, strval); 9209 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 9210 intval = fnvpair_value_uint64(elem); 9211 9212 if (proptype == PROP_TYPE_INDEX) { 9213 const char *unused; 9214 VERIFY0(zpool_prop_index_to_string( 9215 prop, intval, &unused)); 9216 } 9217 VERIFY0(zap_update(mos, 9218 spa->spa_pool_props_object, propname, 9219 8, 1, &intval, tx)); 9220 spa_history_log_internal(spa, "set", tx, 9221 "%s=%lld", elemname, 9222 (longlong_t)intval); 9223 9224 switch (prop) { 9225 case ZPOOL_PROP_DELEGATION: 9226 spa->spa_delegation = intval; 9227 break; 9228 case ZPOOL_PROP_BOOTFS: 9229 spa->spa_bootfs = intval; 9230 break; 9231 case ZPOOL_PROP_FAILUREMODE: 9232 spa->spa_failmode = intval; 9233 break; 9234 case ZPOOL_PROP_AUTOTRIM: 9235 spa->spa_autotrim = intval; 9236 spa_async_request(spa, 9237 SPA_ASYNC_AUTOTRIM_RESTART); 9238 break; 9239 case ZPOOL_PROP_AUTOEXPAND: 9240 spa->spa_autoexpand = intval; 9241 if (tx->tx_txg != TXG_INITIAL) 9242 spa_async_request(spa, 9243 SPA_ASYNC_AUTOEXPAND); 9244 break; 9245 case ZPOOL_PROP_MULTIHOST: 9246 spa->spa_multihost = intval; 9247 break; 9248 default: 9249 break; 9250 } 9251 } else { 9252 ASSERT(0); /* not allowed */ 9253 } 9254 } 9255 9256 } 9257 9258 mutex_exit(&spa->spa_props_lock); 9259 } 9260 9261 /* 9262 * Perform one-time upgrade on-disk changes. spa_version() does not 9263 * reflect the new version this txg, so there must be no changes this 9264 * txg to anything that the upgrade code depends on after it executes. 9265 * Therefore this must be called after dsl_pool_sync() does the sync 9266 * tasks. 9267 */ 9268 static void 9269 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 9270 { 9271 if (spa_sync_pass(spa) != 1) 9272 return; 9273 9274 dsl_pool_t *dp = spa->spa_dsl_pool; 9275 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 9276 9277 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 9278 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 9279 dsl_pool_create_origin(dp, tx); 9280 9281 /* Keeping the origin open increases spa_minref */ 9282 spa->spa_minref += 3; 9283 } 9284 9285 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 9286 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 9287 dsl_pool_upgrade_clones(dp, tx); 9288 } 9289 9290 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 9291 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 9292 dsl_pool_upgrade_dir_clones(dp, tx); 9293 9294 /* Keeping the freedir open increases spa_minref */ 9295 spa->spa_minref += 3; 9296 } 9297 9298 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 9299 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 9300 spa_feature_create_zap_objects(spa, tx); 9301 } 9302 9303 /* 9304 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 9305 * when possibility to use lz4 compression for metadata was added 9306 * Old pools that have this feature enabled must be upgraded to have 9307 * this feature active 9308 */ 9309 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 9310 boolean_t lz4_en = spa_feature_is_enabled(spa, 9311 SPA_FEATURE_LZ4_COMPRESS); 9312 boolean_t lz4_ac = spa_feature_is_active(spa, 9313 SPA_FEATURE_LZ4_COMPRESS); 9314 9315 if (lz4_en && !lz4_ac) 9316 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 9317 } 9318 9319 /* 9320 * If we haven't written the salt, do so now. Note that the 9321 * feature may not be activated yet, but that's fine since 9322 * the presence of this ZAP entry is backwards compatible. 9323 */ 9324 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 9325 DMU_POOL_CHECKSUM_SALT) == ENOENT) { 9326 VERIFY0(zap_add(spa->spa_meta_objset, 9327 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, 9328 sizeof (spa->spa_cksum_salt.zcs_bytes), 9329 spa->spa_cksum_salt.zcs_bytes, tx)); 9330 } 9331 9332 rrw_exit(&dp->dp_config_rwlock, FTAG); 9333 } 9334 9335 static void 9336 vdev_indirect_state_sync_verify(vdev_t *vd) 9337 { 9338 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping; 9339 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births; 9340 9341 if (vd->vdev_ops == &vdev_indirect_ops) { 9342 ASSERT(vim != NULL); 9343 ASSERT(vib != NULL); 9344 } 9345 9346 uint64_t obsolete_sm_object = 0; 9347 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 9348 if (obsolete_sm_object != 0) { 9349 ASSERT(vd->vdev_obsolete_sm != NULL); 9350 ASSERT(vd->vdev_removing || 9351 vd->vdev_ops == &vdev_indirect_ops); 9352 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0); 9353 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0); 9354 ASSERT3U(obsolete_sm_object, ==, 9355 space_map_object(vd->vdev_obsolete_sm)); 9356 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=, 9357 space_map_allocated(vd->vdev_obsolete_sm)); 9358 } 9359 ASSERT(vd->vdev_obsolete_segments != NULL); 9360 9361 /* 9362 * Since frees / remaps to an indirect vdev can only 9363 * happen in syncing context, the obsolete segments 9364 * tree must be empty when we start syncing. 9365 */ 9366 ASSERT0(range_tree_space(vd->vdev_obsolete_segments)); 9367 } 9368 9369 /* 9370 * Set the top-level vdev's max queue depth. Evaluate each top-level's 9371 * async write queue depth in case it changed. The max queue depth will 9372 * not change in the middle of syncing out this txg. 9373 */ 9374 static void 9375 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa) 9376 { 9377 ASSERT(spa_writeable(spa)); 9378 9379 vdev_t *rvd = spa->spa_root_vdev; 9380 uint32_t max_queue_depth = zfs_vdev_async_write_max_active * 9381 zfs_vdev_queue_depth_pct / 100; 9382 metaslab_class_t *normal = spa_normal_class(spa); 9383 metaslab_class_t *special = spa_special_class(spa); 9384 metaslab_class_t *dedup = spa_dedup_class(spa); 9385 9386 uint64_t slots_per_allocator = 0; 9387 for (int c = 0; c < rvd->vdev_children; c++) { 9388 vdev_t *tvd = rvd->vdev_child[c]; 9389 9390 metaslab_group_t *mg = tvd->vdev_mg; 9391 if (mg == NULL || !metaslab_group_initialized(mg)) 9392 continue; 9393 9394 metaslab_class_t *mc = mg->mg_class; 9395 if (mc != normal && mc != special && mc != dedup) 9396 continue; 9397 9398 /* 9399 * It is safe to do a lock-free check here because only async 9400 * allocations look at mg_max_alloc_queue_depth, and async 9401 * allocations all happen from spa_sync(). 9402 */ 9403 for (int i = 0; i < mg->mg_allocators; i++) { 9404 ASSERT0(zfs_refcount_count( 9405 &(mg->mg_allocator[i].mga_alloc_queue_depth))); 9406 } 9407 mg->mg_max_alloc_queue_depth = max_queue_depth; 9408 9409 for (int i = 0; i < mg->mg_allocators; i++) { 9410 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth = 9411 zfs_vdev_def_queue_depth; 9412 } 9413 slots_per_allocator += zfs_vdev_def_queue_depth; 9414 } 9415 9416 for (int i = 0; i < spa->spa_alloc_count; i++) { 9417 ASSERT0(zfs_refcount_count(&normal->mc_allocator[i]. 9418 mca_alloc_slots)); 9419 ASSERT0(zfs_refcount_count(&special->mc_allocator[i]. 9420 mca_alloc_slots)); 9421 ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i]. 9422 mca_alloc_slots)); 9423 normal->mc_allocator[i].mca_alloc_max_slots = 9424 slots_per_allocator; 9425 special->mc_allocator[i].mca_alloc_max_slots = 9426 slots_per_allocator; 9427 dedup->mc_allocator[i].mca_alloc_max_slots = 9428 slots_per_allocator; 9429 } 9430 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 9431 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 9432 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 9433 } 9434 9435 static void 9436 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx) 9437 { 9438 ASSERT(spa_writeable(spa)); 9439 9440 vdev_t *rvd = spa->spa_root_vdev; 9441 for (int c = 0; c < rvd->vdev_children; c++) { 9442 vdev_t *vd = rvd->vdev_child[c]; 9443 vdev_indirect_state_sync_verify(vd); 9444 9445 if (vdev_indirect_should_condense(vd)) { 9446 spa_condense_indirect_start_sync(vd, tx); 9447 break; 9448 } 9449 } 9450 } 9451 9452 static void 9453 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx) 9454 { 9455 objset_t *mos = spa->spa_meta_objset; 9456 dsl_pool_t *dp = spa->spa_dsl_pool; 9457 uint64_t txg = tx->tx_txg; 9458 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 9459 9460 do { 9461 int pass = ++spa->spa_sync_pass; 9462 9463 spa_sync_config_object(spa, tx); 9464 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 9465 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 9466 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 9467 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 9468 spa_errlog_sync(spa, txg); 9469 dsl_pool_sync(dp, txg); 9470 9471 if (pass < zfs_sync_pass_deferred_free || 9472 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 9473 /* 9474 * If the log space map feature is active we don't 9475 * care about deferred frees and the deferred bpobj 9476 * as the log space map should effectively have the 9477 * same results (i.e. appending only to one object). 9478 */ 9479 spa_sync_frees(spa, free_bpl, tx); 9480 } else { 9481 /* 9482 * We can not defer frees in pass 1, because 9483 * we sync the deferred frees later in pass 1. 9484 */ 9485 ASSERT3U(pass, >, 1); 9486 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb, 9487 &spa->spa_deferred_bpobj, tx); 9488 } 9489 9490 brt_sync(spa, txg); 9491 ddt_sync(spa, txg); 9492 dsl_scan_sync(dp, tx); 9493 dsl_errorscrub_sync(dp, tx); 9494 svr_sync(spa, tx); 9495 spa_sync_upgrades(spa, tx); 9496 9497 spa_flush_metaslabs(spa, tx); 9498 9499 vdev_t *vd = NULL; 9500 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 9501 != NULL) 9502 vdev_sync(vd, txg); 9503 9504 if (pass == 1) { 9505 /* 9506 * dsl_pool_sync() -> dp_sync_tasks may have dirtied 9507 * the config. If that happens, this txg should not 9508 * be a no-op. So we must sync the config to the MOS 9509 * before checking for no-op. 9510 * 9511 * Note that when the config is dirty, it will 9512 * be written to the MOS (i.e. the MOS will be 9513 * dirtied) every time we call spa_sync_config_object() 9514 * in this txg. Therefore we can't call this after 9515 * dsl_pool_sync() every pass, because it would 9516 * prevent us from converging, since we'd dirty 9517 * the MOS every pass. 9518 * 9519 * Sync tasks can only be processed in pass 1, so 9520 * there's no need to do this in later passes. 9521 */ 9522 spa_sync_config_object(spa, tx); 9523 } 9524 9525 /* 9526 * Note: We need to check if the MOS is dirty because we could 9527 * have marked the MOS dirty without updating the uberblock 9528 * (e.g. if we have sync tasks but no dirty user data). We need 9529 * to check the uberblock's rootbp because it is updated if we 9530 * have synced out dirty data (though in this case the MOS will 9531 * most likely also be dirty due to second order effects, we 9532 * don't want to rely on that here). 9533 */ 9534 if (pass == 1 && 9535 spa->spa_uberblock.ub_rootbp.blk_birth < txg && 9536 !dmu_objset_is_dirty(mos, txg)) { 9537 /* 9538 * Nothing changed on the first pass, therefore this 9539 * TXG is a no-op. Avoid syncing deferred frees, so 9540 * that we can keep this TXG as a no-op. 9541 */ 9542 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 9543 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 9544 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 9545 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg)); 9546 break; 9547 } 9548 9549 spa_sync_deferred_frees(spa, tx); 9550 } while (dmu_objset_is_dirty(mos, txg)); 9551 } 9552 9553 /* 9554 * Rewrite the vdev configuration (which includes the uberblock) to 9555 * commit the transaction group. 9556 * 9557 * If there are no dirty vdevs, we sync the uberblock to a few random 9558 * top-level vdevs that are known to be visible in the config cache 9559 * (see spa_vdev_add() for a complete description). If there *are* dirty 9560 * vdevs, sync the uberblock to all vdevs. 9561 */ 9562 static void 9563 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx) 9564 { 9565 vdev_t *rvd = spa->spa_root_vdev; 9566 uint64_t txg = tx->tx_txg; 9567 9568 for (;;) { 9569 int error = 0; 9570 9571 /* 9572 * We hold SCL_STATE to prevent vdev open/close/etc. 9573 * while we're attempting to write the vdev labels. 9574 */ 9575 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 9576 9577 if (list_is_empty(&spa->spa_config_dirty_list)) { 9578 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 9579 int svdcount = 0; 9580 int children = rvd->vdev_children; 9581 int c0 = random_in_range(children); 9582 9583 for (int c = 0; c < children; c++) { 9584 vdev_t *vd = 9585 rvd->vdev_child[(c0 + c) % children]; 9586 9587 /* Stop when revisiting the first vdev */ 9588 if (c > 0 && svd[0] == vd) 9589 break; 9590 9591 if (vd->vdev_ms_array == 0 || 9592 vd->vdev_islog || 9593 !vdev_is_concrete(vd)) 9594 continue; 9595 9596 svd[svdcount++] = vd; 9597 if (svdcount == SPA_SYNC_MIN_VDEVS) 9598 break; 9599 } 9600 error = vdev_config_sync(svd, svdcount, txg); 9601 } else { 9602 error = vdev_config_sync(rvd->vdev_child, 9603 rvd->vdev_children, txg); 9604 } 9605 9606 if (error == 0) 9607 spa->spa_last_synced_guid = rvd->vdev_guid; 9608 9609 spa_config_exit(spa, SCL_STATE, FTAG); 9610 9611 if (error == 0) 9612 break; 9613 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR); 9614 zio_resume_wait(spa); 9615 } 9616 } 9617 9618 /* 9619 * Sync the specified transaction group. New blocks may be dirtied as 9620 * part of the process, so we iterate until it converges. 9621 */ 9622 void 9623 spa_sync(spa_t *spa, uint64_t txg) 9624 { 9625 vdev_t *vd = NULL; 9626 9627 VERIFY(spa_writeable(spa)); 9628 9629 /* 9630 * Wait for i/os issued in open context that need to complete 9631 * before this txg syncs. 9632 */ 9633 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]); 9634 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 9635 ZIO_FLAG_CANFAIL); 9636 9637 /* 9638 * Now that there can be no more cloning in this transaction group, 9639 * but we are still before issuing frees, we can process pending BRT 9640 * updates. 9641 */ 9642 brt_pending_apply(spa, txg); 9643 9644 /* 9645 * Lock out configuration changes. 9646 */ 9647 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 9648 9649 spa->spa_syncing_txg = txg; 9650 spa->spa_sync_pass = 0; 9651 9652 for (int i = 0; i < spa->spa_alloc_count; i++) { 9653 mutex_enter(&spa->spa_allocs[i].spaa_lock); 9654 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree)); 9655 mutex_exit(&spa->spa_allocs[i].spaa_lock); 9656 } 9657 9658 /* 9659 * If there are any pending vdev state changes, convert them 9660 * into config changes that go out with this transaction group. 9661 */ 9662 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 9663 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 9664 /* Avoid holding the write lock unless actually necessary */ 9665 if (vd->vdev_aux == NULL) { 9666 vdev_state_clean(vd); 9667 vdev_config_dirty(vd); 9668 continue; 9669 } 9670 /* 9671 * We need the write lock here because, for aux vdevs, 9672 * calling vdev_config_dirty() modifies sav_config. 9673 * This is ugly and will become unnecessary when we 9674 * eliminate the aux vdev wart by integrating all vdevs 9675 * into the root vdev tree. 9676 */ 9677 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9678 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 9679 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 9680 vdev_state_clean(vd); 9681 vdev_config_dirty(vd); 9682 } 9683 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9684 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 9685 } 9686 spa_config_exit(spa, SCL_STATE, FTAG); 9687 9688 dsl_pool_t *dp = spa->spa_dsl_pool; 9689 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 9690 9691 spa->spa_sync_starttime = gethrtime(); 9692 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 9693 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, 9694 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + 9695 NSEC_TO_TICK(spa->spa_deadman_synctime)); 9696 9697 /* 9698 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 9699 * set spa_deflate if we have no raid-z vdevs. 9700 */ 9701 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 9702 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 9703 vdev_t *rvd = spa->spa_root_vdev; 9704 9705 int i; 9706 for (i = 0; i < rvd->vdev_children; i++) { 9707 vd = rvd->vdev_child[i]; 9708 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 9709 break; 9710 } 9711 if (i == rvd->vdev_children) { 9712 spa->spa_deflate = TRUE; 9713 VERIFY0(zap_add(spa->spa_meta_objset, 9714 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 9715 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 9716 } 9717 } 9718 9719 spa_sync_adjust_vdev_max_queue_depth(spa); 9720 9721 spa_sync_condense_indirect(spa, tx); 9722 9723 spa_sync_iterate_to_convergence(spa, tx); 9724 9725 #ifdef ZFS_DEBUG 9726 if (!list_is_empty(&spa->spa_config_dirty_list)) { 9727 /* 9728 * Make sure that the number of ZAPs for all the vdevs matches 9729 * the number of ZAPs in the per-vdev ZAP list. This only gets 9730 * called if the config is dirty; otherwise there may be 9731 * outstanding AVZ operations that weren't completed in 9732 * spa_sync_config_object. 9733 */ 9734 uint64_t all_vdev_zap_entry_count; 9735 ASSERT0(zap_count(spa->spa_meta_objset, 9736 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); 9737 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, 9738 all_vdev_zap_entry_count); 9739 } 9740 #endif 9741 9742 if (spa->spa_vdev_removal != NULL) { 9743 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]); 9744 } 9745 9746 spa_sync_rewrite_vdev_config(spa, tx); 9747 dmu_tx_commit(tx); 9748 9749 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 9750 spa->spa_deadman_tqid = 0; 9751 9752 /* 9753 * Clear the dirty config list. 9754 */ 9755 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 9756 vdev_config_clean(vd); 9757 9758 /* 9759 * Now that the new config has synced transactionally, 9760 * let it become visible to the config cache. 9761 */ 9762 if (spa->spa_config_syncing != NULL) { 9763 spa_config_set(spa, spa->spa_config_syncing); 9764 spa->spa_config_txg = txg; 9765 spa->spa_config_syncing = NULL; 9766 } 9767 9768 dsl_pool_sync_done(dp, txg); 9769 9770 for (int i = 0; i < spa->spa_alloc_count; i++) { 9771 mutex_enter(&spa->spa_allocs[i].spaa_lock); 9772 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree)); 9773 mutex_exit(&spa->spa_allocs[i].spaa_lock); 9774 } 9775 9776 /* 9777 * Update usable space statistics. 9778 */ 9779 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 9780 != NULL) 9781 vdev_sync_done(vd, txg); 9782 9783 metaslab_class_evict_old(spa->spa_normal_class, txg); 9784 metaslab_class_evict_old(spa->spa_log_class, txg); 9785 9786 spa_sync_close_syncing_log_sm(spa); 9787 9788 spa_update_dspace(spa); 9789 9790 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) 9791 vdev_autotrim_kick(spa); 9792 9793 /* 9794 * It had better be the case that we didn't dirty anything 9795 * since vdev_config_sync(). 9796 */ 9797 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 9798 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 9799 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 9800 9801 while (zfs_pause_spa_sync) 9802 delay(1); 9803 9804 spa->spa_sync_pass = 0; 9805 9806 /* 9807 * Update the last synced uberblock here. We want to do this at 9808 * the end of spa_sync() so that consumers of spa_last_synced_txg() 9809 * will be guaranteed that all the processing associated with 9810 * that txg has been completed. 9811 */ 9812 spa->spa_ubsync = spa->spa_uberblock; 9813 spa_config_exit(spa, SCL_CONFIG, FTAG); 9814 9815 spa_handle_ignored_writes(spa); 9816 9817 /* 9818 * If any async tasks have been requested, kick them off. 9819 */ 9820 spa_async_dispatch(spa); 9821 } 9822 9823 /* 9824 * Sync all pools. We don't want to hold the namespace lock across these 9825 * operations, so we take a reference on the spa_t and drop the lock during the 9826 * sync. 9827 */ 9828 void 9829 spa_sync_allpools(void) 9830 { 9831 spa_t *spa = NULL; 9832 mutex_enter(&spa_namespace_lock); 9833 while ((spa = spa_next(spa)) != NULL) { 9834 if (spa_state(spa) != POOL_STATE_ACTIVE || 9835 !spa_writeable(spa) || spa_suspended(spa)) 9836 continue; 9837 spa_open_ref(spa, FTAG); 9838 mutex_exit(&spa_namespace_lock); 9839 txg_wait_synced(spa_get_dsl(spa), 0); 9840 mutex_enter(&spa_namespace_lock); 9841 spa_close(spa, FTAG); 9842 } 9843 mutex_exit(&spa_namespace_lock); 9844 } 9845 9846 taskq_t * 9847 spa_sync_tq_create(spa_t *spa, const char *name) 9848 { 9849 kthread_t **kthreads; 9850 9851 ASSERT(spa->spa_sync_tq == NULL); 9852 ASSERT3S(spa->spa_alloc_count, <=, boot_ncpus); 9853 9854 /* 9855 * - do not allow more allocators than cpus. 9856 * - there may be more cpus than allocators. 9857 * - do not allow more sync taskq threads than allocators or cpus. 9858 */ 9859 int nthreads = spa->spa_alloc_count; 9860 spa->spa_syncthreads = kmem_zalloc(sizeof (spa_syncthread_info_t) * 9861 nthreads, KM_SLEEP); 9862 9863 spa->spa_sync_tq = taskq_create_synced(name, nthreads, minclsyspri, 9864 nthreads, INT_MAX, TASKQ_PREPOPULATE, &kthreads); 9865 VERIFY(spa->spa_sync_tq != NULL); 9866 VERIFY(kthreads != NULL); 9867 9868 spa_taskqs_t *tqs = 9869 &spa->spa_zio_taskq[ZIO_TYPE_WRITE][ZIO_TASKQ_ISSUE]; 9870 9871 spa_syncthread_info_t *ti = spa->spa_syncthreads; 9872 for (int i = 0, w = 0; i < nthreads; i++, w++, ti++) { 9873 ti->sti_thread = kthreads[i]; 9874 if (w == tqs->stqs_count) { 9875 w = 0; 9876 } 9877 ti->sti_wr_iss_tq = tqs->stqs_taskq[w]; 9878 } 9879 9880 kmem_free(kthreads, sizeof (*kthreads) * nthreads); 9881 return (spa->spa_sync_tq); 9882 } 9883 9884 void 9885 spa_sync_tq_destroy(spa_t *spa) 9886 { 9887 ASSERT(spa->spa_sync_tq != NULL); 9888 9889 taskq_wait(spa->spa_sync_tq); 9890 taskq_destroy(spa->spa_sync_tq); 9891 kmem_free(spa->spa_syncthreads, 9892 sizeof (spa_syncthread_info_t) * spa->spa_alloc_count); 9893 spa->spa_sync_tq = NULL; 9894 } 9895 9896 void 9897 spa_select_allocator(zio_t *zio) 9898 { 9899 zbookmark_phys_t *bm = &zio->io_bookmark; 9900 spa_t *spa = zio->io_spa; 9901 9902 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 9903 9904 /* 9905 * A gang block (for example) may have inherited its parent's 9906 * allocator, in which case there is nothing further to do here. 9907 */ 9908 if (ZIO_HAS_ALLOCATOR(zio)) 9909 return; 9910 9911 ASSERT(spa != NULL); 9912 ASSERT(bm != NULL); 9913 9914 /* 9915 * First try to use an allocator assigned to the syncthread, and set 9916 * the corresponding write issue taskq for the allocator. 9917 * Note, we must have an open pool to do this. 9918 */ 9919 if (spa->spa_sync_tq != NULL) { 9920 spa_syncthread_info_t *ti = spa->spa_syncthreads; 9921 for (int i = 0; i < spa->spa_alloc_count; i++, ti++) { 9922 if (ti->sti_thread == curthread) { 9923 zio->io_allocator = i; 9924 zio->io_wr_iss_tq = ti->sti_wr_iss_tq; 9925 return; 9926 } 9927 } 9928 } 9929 9930 /* 9931 * We want to try to use as many allocators as possible to help improve 9932 * performance, but we also want logically adjacent IOs to be physically 9933 * adjacent to improve sequential read performance. We chunk each object 9934 * into 2^20 block regions, and then hash based on the objset, object, 9935 * level, and region to accomplish both of these goals. 9936 */ 9937 uint64_t hv = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level, 9938 bm->zb_blkid >> 20); 9939 9940 zio->io_allocator = (uint_t)hv % spa->spa_alloc_count; 9941 zio->io_wr_iss_tq = NULL; 9942 } 9943 9944 /* 9945 * ========================================================================== 9946 * Miscellaneous routines 9947 * ========================================================================== 9948 */ 9949 9950 /* 9951 * Remove all pools in the system. 9952 */ 9953 void 9954 spa_evict_all(void) 9955 { 9956 spa_t *spa; 9957 9958 /* 9959 * Remove all cached state. All pools should be closed now, 9960 * so every spa in the AVL tree should be unreferenced. 9961 */ 9962 mutex_enter(&spa_namespace_lock); 9963 while ((spa = spa_next(NULL)) != NULL) { 9964 /* 9965 * Stop async tasks. The async thread may need to detach 9966 * a device that's been replaced, which requires grabbing 9967 * spa_namespace_lock, so we must drop it here. 9968 */ 9969 spa_open_ref(spa, FTAG); 9970 mutex_exit(&spa_namespace_lock); 9971 spa_async_suspend(spa); 9972 mutex_enter(&spa_namespace_lock); 9973 spa_close(spa, FTAG); 9974 9975 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 9976 spa_unload(spa); 9977 spa_deactivate(spa); 9978 } 9979 spa_remove(spa); 9980 } 9981 mutex_exit(&spa_namespace_lock); 9982 } 9983 9984 vdev_t * 9985 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 9986 { 9987 vdev_t *vd; 9988 int i; 9989 9990 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 9991 return (vd); 9992 9993 if (aux) { 9994 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 9995 vd = spa->spa_l2cache.sav_vdevs[i]; 9996 if (vd->vdev_guid == guid) 9997 return (vd); 9998 } 9999 10000 for (i = 0; i < spa->spa_spares.sav_count; i++) { 10001 vd = spa->spa_spares.sav_vdevs[i]; 10002 if (vd->vdev_guid == guid) 10003 return (vd); 10004 } 10005 } 10006 10007 return (NULL); 10008 } 10009 10010 void 10011 spa_upgrade(spa_t *spa, uint64_t version) 10012 { 10013 ASSERT(spa_writeable(spa)); 10014 10015 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 10016 10017 /* 10018 * This should only be called for a non-faulted pool, and since a 10019 * future version would result in an unopenable pool, this shouldn't be 10020 * possible. 10021 */ 10022 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 10023 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 10024 10025 spa->spa_uberblock.ub_version = version; 10026 vdev_config_dirty(spa->spa_root_vdev); 10027 10028 spa_config_exit(spa, SCL_ALL, FTAG); 10029 10030 txg_wait_synced(spa_get_dsl(spa), 0); 10031 } 10032 10033 static boolean_t 10034 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav) 10035 { 10036 (void) spa; 10037 int i; 10038 uint64_t vdev_guid; 10039 10040 for (i = 0; i < sav->sav_count; i++) 10041 if (sav->sav_vdevs[i]->vdev_guid == guid) 10042 return (B_TRUE); 10043 10044 for (i = 0; i < sav->sav_npending; i++) { 10045 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 10046 &vdev_guid) == 0 && vdev_guid == guid) 10047 return (B_TRUE); 10048 } 10049 10050 return (B_FALSE); 10051 } 10052 10053 boolean_t 10054 spa_has_l2cache(spa_t *spa, uint64_t guid) 10055 { 10056 return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache)); 10057 } 10058 10059 boolean_t 10060 spa_has_spare(spa_t *spa, uint64_t guid) 10061 { 10062 return (spa_has_aux_vdev(spa, guid, &spa->spa_spares)); 10063 } 10064 10065 /* 10066 * Check if a pool has an active shared spare device. 10067 * Note: reference count of an active spare is 2, as a spare and as a replace 10068 */ 10069 static boolean_t 10070 spa_has_active_shared_spare(spa_t *spa) 10071 { 10072 int i, refcnt; 10073 uint64_t pool; 10074 spa_aux_vdev_t *sav = &spa->spa_spares; 10075 10076 for (i = 0; i < sav->sav_count; i++) { 10077 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 10078 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 10079 refcnt > 2) 10080 return (B_TRUE); 10081 } 10082 10083 return (B_FALSE); 10084 } 10085 10086 uint64_t 10087 spa_total_metaslabs(spa_t *spa) 10088 { 10089 vdev_t *rvd = spa->spa_root_vdev; 10090 10091 uint64_t m = 0; 10092 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 10093 vdev_t *vd = rvd->vdev_child[c]; 10094 if (!vdev_is_concrete(vd)) 10095 continue; 10096 m += vd->vdev_ms_count; 10097 } 10098 return (m); 10099 } 10100 10101 /* 10102 * Notify any waiting threads that some activity has switched from being in- 10103 * progress to not-in-progress so that the thread can wake up and determine 10104 * whether it is finished waiting. 10105 */ 10106 void 10107 spa_notify_waiters(spa_t *spa) 10108 { 10109 /* 10110 * Acquiring spa_activities_lock here prevents the cv_broadcast from 10111 * happening between the waiting thread's check and cv_wait. 10112 */ 10113 mutex_enter(&spa->spa_activities_lock); 10114 cv_broadcast(&spa->spa_activities_cv); 10115 mutex_exit(&spa->spa_activities_lock); 10116 } 10117 10118 /* 10119 * Notify any waiting threads that the pool is exporting, and then block until 10120 * they are finished using the spa_t. 10121 */ 10122 void 10123 spa_wake_waiters(spa_t *spa) 10124 { 10125 mutex_enter(&spa->spa_activities_lock); 10126 spa->spa_waiters_cancel = B_TRUE; 10127 cv_broadcast(&spa->spa_activities_cv); 10128 while (spa->spa_waiters != 0) 10129 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock); 10130 spa->spa_waiters_cancel = B_FALSE; 10131 mutex_exit(&spa->spa_activities_lock); 10132 } 10133 10134 /* Whether the vdev or any of its descendants are being initialized/trimmed. */ 10135 static boolean_t 10136 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity) 10137 { 10138 spa_t *spa = vd->vdev_spa; 10139 10140 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER)); 10141 ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); 10142 ASSERT(activity == ZPOOL_WAIT_INITIALIZE || 10143 activity == ZPOOL_WAIT_TRIM); 10144 10145 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ? 10146 &vd->vdev_initialize_lock : &vd->vdev_trim_lock; 10147 10148 mutex_exit(&spa->spa_activities_lock); 10149 mutex_enter(lock); 10150 mutex_enter(&spa->spa_activities_lock); 10151 10152 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ? 10153 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) : 10154 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE); 10155 mutex_exit(lock); 10156 10157 if (in_progress) 10158 return (B_TRUE); 10159 10160 for (int i = 0; i < vd->vdev_children; i++) { 10161 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i], 10162 activity)) 10163 return (B_TRUE); 10164 } 10165 10166 return (B_FALSE); 10167 } 10168 10169 /* 10170 * If use_guid is true, this checks whether the vdev specified by guid is 10171 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool 10172 * is being initialized/trimmed. The caller must hold the config lock and 10173 * spa_activities_lock. 10174 */ 10175 static int 10176 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid, 10177 zpool_wait_activity_t activity, boolean_t *in_progress) 10178 { 10179 mutex_exit(&spa->spa_activities_lock); 10180 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 10181 mutex_enter(&spa->spa_activities_lock); 10182 10183 vdev_t *vd; 10184 if (use_guid) { 10185 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 10186 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) { 10187 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 10188 return (EINVAL); 10189 } 10190 } else { 10191 vd = spa->spa_root_vdev; 10192 } 10193 10194 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity); 10195 10196 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 10197 return (0); 10198 } 10199 10200 /* 10201 * Locking for waiting threads 10202 * --------------------------- 10203 * 10204 * Waiting threads need a way to check whether a given activity is in progress, 10205 * and then, if it is, wait for it to complete. Each activity will have some 10206 * in-memory representation of the relevant on-disk state which can be used to 10207 * determine whether or not the activity is in progress. The in-memory state and 10208 * the locking used to protect it will be different for each activity, and may 10209 * not be suitable for use with a cvar (e.g., some state is protected by the 10210 * config lock). To allow waiting threads to wait without any races, another 10211 * lock, spa_activities_lock, is used. 10212 * 10213 * When the state is checked, both the activity-specific lock (if there is one) 10214 * and spa_activities_lock are held. In some cases, the activity-specific lock 10215 * is acquired explicitly (e.g. the config lock). In others, the locking is 10216 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting 10217 * thread releases the activity-specific lock and, if the activity is in 10218 * progress, then cv_waits using spa_activities_lock. 10219 * 10220 * The waiting thread is woken when another thread, one completing some 10221 * activity, updates the state of the activity and then calls 10222 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only 10223 * needs to hold its activity-specific lock when updating the state, and this 10224 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters. 10225 * 10226 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting, 10227 * and because it is held when the waiting thread checks the state of the 10228 * activity, it can never be the case that the completing thread both updates 10229 * the activity state and cv_broadcasts in between the waiting thread's check 10230 * and cv_wait. Thus, a waiting thread can never miss a wakeup. 10231 * 10232 * In order to prevent deadlock, when the waiting thread does its check, in some 10233 * cases it will temporarily drop spa_activities_lock in order to acquire the 10234 * activity-specific lock. The order in which spa_activities_lock and the 10235 * activity specific lock are acquired in the waiting thread is determined by 10236 * the order in which they are acquired in the completing thread; if the 10237 * completing thread calls spa_notify_waiters with the activity-specific lock 10238 * held, then the waiting thread must also acquire the activity-specific lock 10239 * first. 10240 */ 10241 10242 static int 10243 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity, 10244 boolean_t use_tag, uint64_t tag, boolean_t *in_progress) 10245 { 10246 int error = 0; 10247 10248 ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); 10249 10250 switch (activity) { 10251 case ZPOOL_WAIT_CKPT_DISCARD: 10252 *in_progress = 10253 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) && 10254 zap_contains(spa_meta_objset(spa), 10255 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) == 10256 ENOENT); 10257 break; 10258 case ZPOOL_WAIT_FREE: 10259 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS && 10260 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) || 10261 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) || 10262 spa_livelist_delete_check(spa)); 10263 break; 10264 case ZPOOL_WAIT_INITIALIZE: 10265 case ZPOOL_WAIT_TRIM: 10266 error = spa_vdev_activity_in_progress(spa, use_tag, tag, 10267 activity, in_progress); 10268 break; 10269 case ZPOOL_WAIT_REPLACE: 10270 mutex_exit(&spa->spa_activities_lock); 10271 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 10272 mutex_enter(&spa->spa_activities_lock); 10273 10274 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev); 10275 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 10276 break; 10277 case ZPOOL_WAIT_REMOVE: 10278 *in_progress = (spa->spa_removing_phys.sr_state == 10279 DSS_SCANNING); 10280 break; 10281 case ZPOOL_WAIT_RESILVER: 10282 *in_progress = vdev_rebuild_active(spa->spa_root_vdev); 10283 if (*in_progress) 10284 break; 10285 zfs_fallthrough; 10286 case ZPOOL_WAIT_SCRUB: 10287 { 10288 boolean_t scanning, paused, is_scrub; 10289 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 10290 10291 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB); 10292 scanning = (scn->scn_phys.scn_state == DSS_SCANNING); 10293 paused = dsl_scan_is_paused_scrub(scn); 10294 *in_progress = (scanning && !paused && 10295 is_scrub == (activity == ZPOOL_WAIT_SCRUB)); 10296 break; 10297 } 10298 case ZPOOL_WAIT_RAIDZ_EXPAND: 10299 { 10300 vdev_raidz_expand_t *vre = spa->spa_raidz_expand; 10301 *in_progress = (vre != NULL && vre->vre_state == DSS_SCANNING); 10302 break; 10303 } 10304 default: 10305 panic("unrecognized value for activity %d", activity); 10306 } 10307 10308 return (error); 10309 } 10310 10311 static int 10312 spa_wait_common(const char *pool, zpool_wait_activity_t activity, 10313 boolean_t use_tag, uint64_t tag, boolean_t *waited) 10314 { 10315 /* 10316 * The tag is used to distinguish between instances of an activity. 10317 * 'initialize' and 'trim' are the only activities that we use this for. 10318 * The other activities can only have a single instance in progress in a 10319 * pool at one time, making the tag unnecessary. 10320 * 10321 * There can be multiple devices being replaced at once, but since they 10322 * all finish once resilvering finishes, we don't bother keeping track 10323 * of them individually, we just wait for them all to finish. 10324 */ 10325 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE && 10326 activity != ZPOOL_WAIT_TRIM) 10327 return (EINVAL); 10328 10329 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES) 10330 return (EINVAL); 10331 10332 spa_t *spa; 10333 int error = spa_open(pool, &spa, FTAG); 10334 if (error != 0) 10335 return (error); 10336 10337 /* 10338 * Increment the spa's waiter count so that we can call spa_close and 10339 * still ensure that the spa_t doesn't get freed before this thread is 10340 * finished with it when the pool is exported. We want to call spa_close 10341 * before we start waiting because otherwise the additional ref would 10342 * prevent the pool from being exported or destroyed throughout the 10343 * potentially long wait. 10344 */ 10345 mutex_enter(&spa->spa_activities_lock); 10346 spa->spa_waiters++; 10347 spa_close(spa, FTAG); 10348 10349 *waited = B_FALSE; 10350 for (;;) { 10351 boolean_t in_progress; 10352 error = spa_activity_in_progress(spa, activity, use_tag, tag, 10353 &in_progress); 10354 10355 if (error || !in_progress || spa->spa_waiters_cancel) 10356 break; 10357 10358 *waited = B_TRUE; 10359 10360 if (cv_wait_sig(&spa->spa_activities_cv, 10361 &spa->spa_activities_lock) == 0) { 10362 error = EINTR; 10363 break; 10364 } 10365 } 10366 10367 spa->spa_waiters--; 10368 cv_signal(&spa->spa_waiters_cv); 10369 mutex_exit(&spa->spa_activities_lock); 10370 10371 return (error); 10372 } 10373 10374 /* 10375 * Wait for a particular instance of the specified activity to complete, where 10376 * the instance is identified by 'tag' 10377 */ 10378 int 10379 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag, 10380 boolean_t *waited) 10381 { 10382 return (spa_wait_common(pool, activity, B_TRUE, tag, waited)); 10383 } 10384 10385 /* 10386 * Wait for all instances of the specified activity complete 10387 */ 10388 int 10389 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited) 10390 { 10391 10392 return (spa_wait_common(pool, activity, B_FALSE, 0, waited)); 10393 } 10394 10395 sysevent_t * 10396 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 10397 { 10398 sysevent_t *ev = NULL; 10399 #ifdef _KERNEL 10400 nvlist_t *resource; 10401 10402 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl); 10403 if (resource) { 10404 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP); 10405 ev->resource = resource; 10406 } 10407 #else 10408 (void) spa, (void) vd, (void) hist_nvl, (void) name; 10409 #endif 10410 return (ev); 10411 } 10412 10413 void 10414 spa_event_post(sysevent_t *ev) 10415 { 10416 #ifdef _KERNEL 10417 if (ev) { 10418 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb); 10419 kmem_free(ev, sizeof (*ev)); 10420 } 10421 #else 10422 (void) ev; 10423 #endif 10424 } 10425 10426 /* 10427 * Post a zevent corresponding to the given sysevent. The 'name' must be one 10428 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be 10429 * filled in from the spa and (optionally) the vdev. This doesn't do anything 10430 * in the userland libzpool, as we don't want consumers to misinterpret ztest 10431 * or zdb as real changes. 10432 */ 10433 void 10434 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 10435 { 10436 spa_event_post(spa_event_create(spa, vd, hist_nvl, name)); 10437 } 10438 10439 /* state manipulation functions */ 10440 EXPORT_SYMBOL(spa_open); 10441 EXPORT_SYMBOL(spa_open_rewind); 10442 EXPORT_SYMBOL(spa_get_stats); 10443 EXPORT_SYMBOL(spa_create); 10444 EXPORT_SYMBOL(spa_import); 10445 EXPORT_SYMBOL(spa_tryimport); 10446 EXPORT_SYMBOL(spa_destroy); 10447 EXPORT_SYMBOL(spa_export); 10448 EXPORT_SYMBOL(spa_reset); 10449 EXPORT_SYMBOL(spa_async_request); 10450 EXPORT_SYMBOL(spa_async_suspend); 10451 EXPORT_SYMBOL(spa_async_resume); 10452 EXPORT_SYMBOL(spa_inject_addref); 10453 EXPORT_SYMBOL(spa_inject_delref); 10454 EXPORT_SYMBOL(spa_scan_stat_init); 10455 EXPORT_SYMBOL(spa_scan_get_stats); 10456 10457 /* device manipulation */ 10458 EXPORT_SYMBOL(spa_vdev_add); 10459 EXPORT_SYMBOL(spa_vdev_attach); 10460 EXPORT_SYMBOL(spa_vdev_detach); 10461 EXPORT_SYMBOL(spa_vdev_setpath); 10462 EXPORT_SYMBOL(spa_vdev_setfru); 10463 EXPORT_SYMBOL(spa_vdev_split_mirror); 10464 10465 /* spare statech is global across all pools) */ 10466 EXPORT_SYMBOL(spa_spare_add); 10467 EXPORT_SYMBOL(spa_spare_remove); 10468 EXPORT_SYMBOL(spa_spare_exists); 10469 EXPORT_SYMBOL(spa_spare_activate); 10470 10471 /* L2ARC statech is global across all pools) */ 10472 EXPORT_SYMBOL(spa_l2cache_add); 10473 EXPORT_SYMBOL(spa_l2cache_remove); 10474 EXPORT_SYMBOL(spa_l2cache_exists); 10475 EXPORT_SYMBOL(spa_l2cache_activate); 10476 EXPORT_SYMBOL(spa_l2cache_drop); 10477 10478 /* scanning */ 10479 EXPORT_SYMBOL(spa_scan); 10480 EXPORT_SYMBOL(spa_scan_stop); 10481 10482 /* spa syncing */ 10483 EXPORT_SYMBOL(spa_sync); /* only for DMU use */ 10484 EXPORT_SYMBOL(spa_sync_allpools); 10485 10486 /* properties */ 10487 EXPORT_SYMBOL(spa_prop_set); 10488 EXPORT_SYMBOL(spa_prop_get); 10489 EXPORT_SYMBOL(spa_prop_clear_bootfs); 10490 10491 /* asynchronous event notification */ 10492 EXPORT_SYMBOL(spa_event_notify); 10493 10494 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW, 10495 "Percentage of CPUs to run a metaslab preload taskq"); 10496 10497 /* BEGIN CSTYLED */ 10498 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW, 10499 "log2 fraction of arc that can be used by inflight I/Os when " 10500 "verifying pool during import"); 10501 /* END CSTYLED */ 10502 10503 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW, 10504 "Set to traverse metadata on pool import"); 10505 10506 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW, 10507 "Set to traverse data on pool import"); 10508 10509 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW, 10510 "Print vdev tree to zfs_dbgmsg during pool import"); 10511 10512 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD, 10513 "Percentage of CPUs to run an IO worker thread"); 10514 10515 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD, 10516 "Number of threads per IO worker taskqueue"); 10517 10518 /* BEGIN CSTYLED */ 10519 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW, 10520 "Allow importing pool with up to this number of missing top-level " 10521 "vdevs (in read-only mode)"); 10522 /* END CSTYLED */ 10523 10524 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT, 10525 ZMOD_RW, "Set the livelist condense zthr to pause"); 10526 10527 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT, 10528 ZMOD_RW, "Set the livelist condense synctask to pause"); 10529 10530 /* BEGIN CSTYLED */ 10531 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel, 10532 INT, ZMOD_RW, 10533 "Whether livelist condensing was canceled in the synctask"); 10534 10535 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel, 10536 INT, ZMOD_RW, 10537 "Whether livelist condensing was canceled in the zthr function"); 10538 10539 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT, 10540 ZMOD_RW, 10541 "Whether extra ALLOC blkptrs were added to a livelist entry while it " 10542 "was being condensed"); 10543 /* END CSTYLED */ 10544 10545 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_wr_iss_ncpus, UINT, ZMOD_RW, 10546 "Number of CPUs to run write issue taskqs"); 10547