1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 * Copyright 2016 Toomas Soome <tsoome@me.com> 30 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 31 * Copyright 2018 Joyent, Inc. 32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 33 * Copyright 2017 Joyent, Inc. 34 * Copyright (c) 2017, Intel Corporation. 35 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org> 36 */ 37 38 /* 39 * SPA: Storage Pool Allocator 40 * 41 * This file contains all the routines used when modifying on-disk SPA state. 42 * This includes opening, importing, destroying, exporting a pool, and syncing a 43 * pool. 44 */ 45 46 #include <sys/zfs_context.h> 47 #include <sys/fm/fs/zfs.h> 48 #include <sys/spa_impl.h> 49 #include <sys/zio.h> 50 #include <sys/zio_checksum.h> 51 #include <sys/dmu.h> 52 #include <sys/dmu_tx.h> 53 #include <sys/zap.h> 54 #include <sys/zil.h> 55 #include <sys/ddt.h> 56 #include <sys/vdev_impl.h> 57 #include <sys/vdev_removal.h> 58 #include <sys/vdev_indirect_mapping.h> 59 #include <sys/vdev_indirect_births.h> 60 #include <sys/vdev_initialize.h> 61 #include <sys/vdev_rebuild.h> 62 #include <sys/vdev_trim.h> 63 #include <sys/vdev_disk.h> 64 #include <sys/vdev_draid.h> 65 #include <sys/metaslab.h> 66 #include <sys/metaslab_impl.h> 67 #include <sys/mmp.h> 68 #include <sys/uberblock_impl.h> 69 #include <sys/txg.h> 70 #include <sys/avl.h> 71 #include <sys/bpobj.h> 72 #include <sys/dmu_traverse.h> 73 #include <sys/dmu_objset.h> 74 #include <sys/unique.h> 75 #include <sys/dsl_pool.h> 76 #include <sys/dsl_dataset.h> 77 #include <sys/dsl_dir.h> 78 #include <sys/dsl_prop.h> 79 #include <sys/dsl_synctask.h> 80 #include <sys/fs/zfs.h> 81 #include <sys/arc.h> 82 #include <sys/callb.h> 83 #include <sys/systeminfo.h> 84 #include <sys/zfs_ioctl.h> 85 #include <sys/dsl_scan.h> 86 #include <sys/zfeature.h> 87 #include <sys/dsl_destroy.h> 88 #include <sys/zvol.h> 89 90 #ifdef _KERNEL 91 #include <sys/fm/protocol.h> 92 #include <sys/fm/util.h> 93 #include <sys/callb.h> 94 #include <sys/zone.h> 95 #include <sys/vmsystm.h> 96 #endif /* _KERNEL */ 97 98 #include "zfs_prop.h" 99 #include "zfs_comutil.h" 100 101 /* 102 * The interval, in seconds, at which failed configuration cache file writes 103 * should be retried. 104 */ 105 int zfs_ccw_retry_interval = 300; 106 107 typedef enum zti_modes { 108 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 109 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 110 ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */ 111 ZTI_MODE_NULL, /* don't create a taskq */ 112 ZTI_NMODES 113 } zti_modes_t; 114 115 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 116 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 } 117 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 118 #define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 } 119 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 120 121 #define ZTI_N(n) ZTI_P(n, 1) 122 #define ZTI_ONE ZTI_N(1) 123 124 typedef struct zio_taskq_info { 125 zti_modes_t zti_mode; 126 uint_t zti_value; 127 uint_t zti_count; 128 } zio_taskq_info_t; 129 130 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 131 "iss", "iss_h", "int", "int_h" 132 }; 133 134 /* 135 * This table defines the taskq settings for each ZFS I/O type. When 136 * initializing a pool, we use this table to create an appropriately sized 137 * taskq. Some operations are low volume and therefore have a small, static 138 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 139 * macros. Other operations process a large amount of data; the ZTI_BATCH 140 * macro causes us to create a taskq oriented for throughput. Some operations 141 * are so high frequency and short-lived that the taskq itself can become a 142 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 143 * additional degree of parallelism specified by the number of threads per- 144 * taskq and the number of taskqs; when dispatching an event in this case, the 145 * particular taskq is chosen at random. ZTI_SCALE is similar to ZTI_BATCH, 146 * but with number of taskqs also scaling with number of CPUs. 147 * 148 * The different taskq priorities are to handle the different contexts (issue 149 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 150 * need to be handled with minimum delay. 151 */ 152 static const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 153 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 154 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 155 { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */ 156 { ZTI_BATCH, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */ 157 { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 158 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 159 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 160 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */ 161 }; 162 163 static void spa_sync_version(void *arg, dmu_tx_t *tx); 164 static void spa_sync_props(void *arg, dmu_tx_t *tx); 165 static boolean_t spa_has_active_shared_spare(spa_t *spa); 166 static int spa_load_impl(spa_t *spa, spa_import_type_t type, 167 const char **ereport); 168 static void spa_vdev_resilver_done(spa_t *spa); 169 170 static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */ 171 static uint_t zio_taskq_batch_tpq; /* threads per taskq */ 172 static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 173 static const uint_t zio_taskq_basedc = 80; /* base duty cycle */ 174 175 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */ 176 177 /* 178 * Report any spa_load_verify errors found, but do not fail spa_load. 179 * This is used by zdb to analyze non-idle pools. 180 */ 181 boolean_t spa_load_verify_dryrun = B_FALSE; 182 183 /* 184 * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ). 185 * This is used by zdb for spacemaps verification. 186 */ 187 boolean_t spa_mode_readable_spacemaps = B_FALSE; 188 189 /* 190 * This (illegal) pool name is used when temporarily importing a spa_t in order 191 * to get the vdev stats associated with the imported devices. 192 */ 193 #define TRYIMPORT_NAME "$import" 194 195 /* 196 * For debugging purposes: print out vdev tree during pool import. 197 */ 198 static int spa_load_print_vdev_tree = B_FALSE; 199 200 /* 201 * A non-zero value for zfs_max_missing_tvds means that we allow importing 202 * pools with missing top-level vdevs. This is strictly intended for advanced 203 * pool recovery cases since missing data is almost inevitable. Pools with 204 * missing devices can only be imported read-only for safety reasons, and their 205 * fail-mode will be automatically set to "continue". 206 * 207 * With 1 missing vdev we should be able to import the pool and mount all 208 * datasets. User data that was not modified after the missing device has been 209 * added should be recoverable. This means that snapshots created prior to the 210 * addition of that device should be completely intact. 211 * 212 * With 2 missing vdevs, some datasets may fail to mount since there are 213 * dataset statistics that are stored as regular metadata. Some data might be 214 * recoverable if those vdevs were added recently. 215 * 216 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries 217 * may be missing entirely. Chances of data recovery are very low. Note that 218 * there are also risks of performing an inadvertent rewind as we might be 219 * missing all the vdevs with the latest uberblocks. 220 */ 221 uint64_t zfs_max_missing_tvds = 0; 222 223 /* 224 * The parameters below are similar to zfs_max_missing_tvds but are only 225 * intended for a preliminary open of the pool with an untrusted config which 226 * might be incomplete or out-dated. 227 * 228 * We are more tolerant for pools opened from a cachefile since we could have 229 * an out-dated cachefile where a device removal was not registered. 230 * We could have set the limit arbitrarily high but in the case where devices 231 * are really missing we would want to return the proper error codes; we chose 232 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available 233 * and we get a chance to retrieve the trusted config. 234 */ 235 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1; 236 237 /* 238 * In the case where config was assembled by scanning device paths (/dev/dsks 239 * by default) we are less tolerant since all the existing devices should have 240 * been detected and we want spa_load to return the right error codes. 241 */ 242 uint64_t zfs_max_missing_tvds_scan = 0; 243 244 /* 245 * Debugging aid that pauses spa_sync() towards the end. 246 */ 247 static const boolean_t zfs_pause_spa_sync = B_FALSE; 248 249 /* 250 * Variables to indicate the livelist condense zthr func should wait at certain 251 * points for the livelist to be removed - used to test condense/destroy races 252 */ 253 static int zfs_livelist_condense_zthr_pause = 0; 254 static int zfs_livelist_condense_sync_pause = 0; 255 256 /* 257 * Variables to track whether or not condense cancellation has been 258 * triggered in testing. 259 */ 260 static int zfs_livelist_condense_sync_cancel = 0; 261 static int zfs_livelist_condense_zthr_cancel = 0; 262 263 /* 264 * Variable to track whether or not extra ALLOC blkptrs were added to a 265 * livelist entry while it was being condensed (caused by the way we track 266 * remapped blkptrs in dbuf_remap_impl) 267 */ 268 static int zfs_livelist_condense_new_alloc = 0; 269 270 /* 271 * ========================================================================== 272 * SPA properties routines 273 * ========================================================================== 274 */ 275 276 /* 277 * Add a (source=src, propname=propval) list to an nvlist. 278 */ 279 static void 280 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval, 281 uint64_t intval, zprop_source_t src) 282 { 283 const char *propname = zpool_prop_to_name(prop); 284 nvlist_t *propval; 285 286 propval = fnvlist_alloc(); 287 fnvlist_add_uint64(propval, ZPROP_SOURCE, src); 288 289 if (strval != NULL) 290 fnvlist_add_string(propval, ZPROP_VALUE, strval); 291 else 292 fnvlist_add_uint64(propval, ZPROP_VALUE, intval); 293 294 fnvlist_add_nvlist(nvl, propname, propval); 295 nvlist_free(propval); 296 } 297 298 /* 299 * Get property values from the spa configuration. 300 */ 301 static void 302 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 303 { 304 vdev_t *rvd = spa->spa_root_vdev; 305 dsl_pool_t *pool = spa->spa_dsl_pool; 306 uint64_t size, alloc, cap, version; 307 const zprop_source_t src = ZPROP_SRC_NONE; 308 spa_config_dirent_t *dp; 309 metaslab_class_t *mc = spa_normal_class(spa); 310 311 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 312 313 if (rvd != NULL) { 314 alloc = metaslab_class_get_alloc(mc); 315 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 316 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 317 alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa)); 318 319 size = metaslab_class_get_space(mc); 320 size += metaslab_class_get_space(spa_special_class(spa)); 321 size += metaslab_class_get_space(spa_dedup_class(spa)); 322 size += metaslab_class_get_space(spa_embedded_log_class(spa)); 323 324 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 325 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 326 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 327 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 328 size - alloc, src); 329 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL, 330 spa->spa_checkpoint_info.sci_dspace, src); 331 332 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 333 metaslab_class_fragmentation(mc), src); 334 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 335 metaslab_class_expandable_space(mc), src); 336 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 337 (spa_mode(spa) == SPA_MODE_READ), src); 338 339 cap = (size == 0) ? 0 : (alloc * 100 / size); 340 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 341 342 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 343 ddt_get_pool_dedup_ratio(spa), src); 344 345 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 346 rvd->vdev_state, src); 347 348 version = spa_version(spa); 349 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) { 350 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, 351 version, ZPROP_SRC_DEFAULT); 352 } else { 353 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, 354 version, ZPROP_SRC_LOCAL); 355 } 356 spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID, 357 NULL, spa_load_guid(spa), src); 358 } 359 360 if (pool != NULL) { 361 /* 362 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 363 * when opening pools before this version freedir will be NULL. 364 */ 365 if (pool->dp_free_dir != NULL) { 366 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 367 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 368 src); 369 } else { 370 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 371 NULL, 0, src); 372 } 373 374 if (pool->dp_leak_dir != NULL) { 375 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 376 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 377 src); 378 } else { 379 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 380 NULL, 0, src); 381 } 382 } 383 384 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 385 386 if (spa->spa_comment != NULL) { 387 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 388 0, ZPROP_SRC_LOCAL); 389 } 390 391 if (spa->spa_compatibility != NULL) { 392 spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY, 393 spa->spa_compatibility, 0, ZPROP_SRC_LOCAL); 394 } 395 396 if (spa->spa_root != NULL) 397 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 398 0, ZPROP_SRC_LOCAL); 399 400 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 401 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 402 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 403 } else { 404 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 405 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 406 } 407 408 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) { 409 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, 410 DNODE_MAX_SIZE, ZPROP_SRC_NONE); 411 } else { 412 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, 413 DNODE_MIN_SIZE, ZPROP_SRC_NONE); 414 } 415 416 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 417 if (dp->scd_path == NULL) { 418 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 419 "none", 0, ZPROP_SRC_LOCAL); 420 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 421 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 422 dp->scd_path, 0, ZPROP_SRC_LOCAL); 423 } 424 } 425 } 426 427 /* 428 * Get zpool property values. 429 */ 430 int 431 spa_prop_get(spa_t *spa, nvlist_t **nvp) 432 { 433 objset_t *mos = spa->spa_meta_objset; 434 zap_cursor_t zc; 435 zap_attribute_t za; 436 dsl_pool_t *dp; 437 int err; 438 439 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP); 440 if (err) 441 return (err); 442 443 dp = spa_get_dsl(spa); 444 dsl_pool_config_enter(dp, FTAG); 445 mutex_enter(&spa->spa_props_lock); 446 447 /* 448 * Get properties from the spa config. 449 */ 450 spa_prop_get_config(spa, nvp); 451 452 /* If no pool property object, no more prop to get. */ 453 if (mos == NULL || spa->spa_pool_props_object == 0) 454 goto out; 455 456 /* 457 * Get properties from the MOS pool property object. 458 */ 459 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 460 (err = zap_cursor_retrieve(&zc, &za)) == 0; 461 zap_cursor_advance(&zc)) { 462 uint64_t intval = 0; 463 char *strval = NULL; 464 zprop_source_t src = ZPROP_SRC_DEFAULT; 465 zpool_prop_t prop; 466 467 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL) 468 continue; 469 470 switch (za.za_integer_length) { 471 case 8: 472 /* integer property */ 473 if (za.za_first_integer != 474 zpool_prop_default_numeric(prop)) 475 src = ZPROP_SRC_LOCAL; 476 477 if (prop == ZPOOL_PROP_BOOTFS) { 478 dsl_dataset_t *ds = NULL; 479 480 err = dsl_dataset_hold_obj(dp, 481 za.za_first_integer, FTAG, &ds); 482 if (err != 0) 483 break; 484 485 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, 486 KM_SLEEP); 487 dsl_dataset_name(ds, strval); 488 dsl_dataset_rele(ds, FTAG); 489 } else { 490 strval = NULL; 491 intval = za.za_first_integer; 492 } 493 494 spa_prop_add_list(*nvp, prop, strval, intval, src); 495 496 if (strval != NULL) 497 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); 498 499 break; 500 501 case 1: 502 /* string property */ 503 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 504 err = zap_lookup(mos, spa->spa_pool_props_object, 505 za.za_name, 1, za.za_num_integers, strval); 506 if (err) { 507 kmem_free(strval, za.za_num_integers); 508 break; 509 } 510 spa_prop_add_list(*nvp, prop, strval, 0, src); 511 kmem_free(strval, za.za_num_integers); 512 break; 513 514 default: 515 break; 516 } 517 } 518 zap_cursor_fini(&zc); 519 out: 520 mutex_exit(&spa->spa_props_lock); 521 dsl_pool_config_exit(dp, FTAG); 522 if (err && err != ENOENT) { 523 nvlist_free(*nvp); 524 *nvp = NULL; 525 return (err); 526 } 527 528 return (0); 529 } 530 531 /* 532 * Validate the given pool properties nvlist and modify the list 533 * for the property values to be set. 534 */ 535 static int 536 spa_prop_validate(spa_t *spa, nvlist_t *props) 537 { 538 nvpair_t *elem; 539 int error = 0, reset_bootfs = 0; 540 uint64_t objnum = 0; 541 boolean_t has_feature = B_FALSE; 542 543 elem = NULL; 544 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 545 uint64_t intval; 546 char *strval, *slash, *check, *fname; 547 const char *propname = nvpair_name(elem); 548 zpool_prop_t prop = zpool_name_to_prop(propname); 549 550 switch (prop) { 551 case ZPOOL_PROP_INVAL: 552 if (!zpool_prop_feature(propname)) { 553 error = SET_ERROR(EINVAL); 554 break; 555 } 556 557 /* 558 * Sanitize the input. 559 */ 560 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 561 error = SET_ERROR(EINVAL); 562 break; 563 } 564 565 if (nvpair_value_uint64(elem, &intval) != 0) { 566 error = SET_ERROR(EINVAL); 567 break; 568 } 569 570 if (intval != 0) { 571 error = SET_ERROR(EINVAL); 572 break; 573 } 574 575 fname = strchr(propname, '@') + 1; 576 if (zfeature_lookup_name(fname, NULL) != 0) { 577 error = SET_ERROR(EINVAL); 578 break; 579 } 580 581 has_feature = B_TRUE; 582 break; 583 584 case ZPOOL_PROP_VERSION: 585 error = nvpair_value_uint64(elem, &intval); 586 if (!error && 587 (intval < spa_version(spa) || 588 intval > SPA_VERSION_BEFORE_FEATURES || 589 has_feature)) 590 error = SET_ERROR(EINVAL); 591 break; 592 593 case ZPOOL_PROP_DELEGATION: 594 case ZPOOL_PROP_AUTOREPLACE: 595 case ZPOOL_PROP_LISTSNAPS: 596 case ZPOOL_PROP_AUTOEXPAND: 597 case ZPOOL_PROP_AUTOTRIM: 598 error = nvpair_value_uint64(elem, &intval); 599 if (!error && intval > 1) 600 error = SET_ERROR(EINVAL); 601 break; 602 603 case ZPOOL_PROP_MULTIHOST: 604 error = nvpair_value_uint64(elem, &intval); 605 if (!error && intval > 1) 606 error = SET_ERROR(EINVAL); 607 608 if (!error) { 609 uint32_t hostid = zone_get_hostid(NULL); 610 if (hostid) 611 spa->spa_hostid = hostid; 612 else 613 error = SET_ERROR(ENOTSUP); 614 } 615 616 break; 617 618 case ZPOOL_PROP_BOOTFS: 619 /* 620 * If the pool version is less than SPA_VERSION_BOOTFS, 621 * or the pool is still being created (version == 0), 622 * the bootfs property cannot be set. 623 */ 624 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 625 error = SET_ERROR(ENOTSUP); 626 break; 627 } 628 629 /* 630 * Make sure the vdev config is bootable 631 */ 632 if (!vdev_is_bootable(spa->spa_root_vdev)) { 633 error = SET_ERROR(ENOTSUP); 634 break; 635 } 636 637 reset_bootfs = 1; 638 639 error = nvpair_value_string(elem, &strval); 640 641 if (!error) { 642 objset_t *os; 643 644 if (strval == NULL || strval[0] == '\0') { 645 objnum = zpool_prop_default_numeric( 646 ZPOOL_PROP_BOOTFS); 647 break; 648 } 649 650 error = dmu_objset_hold(strval, FTAG, &os); 651 if (error != 0) 652 break; 653 654 /* Must be ZPL. */ 655 if (dmu_objset_type(os) != DMU_OST_ZFS) { 656 error = SET_ERROR(ENOTSUP); 657 } else { 658 objnum = dmu_objset_id(os); 659 } 660 dmu_objset_rele(os, FTAG); 661 } 662 break; 663 664 case ZPOOL_PROP_FAILUREMODE: 665 error = nvpair_value_uint64(elem, &intval); 666 if (!error && intval > ZIO_FAILURE_MODE_PANIC) 667 error = SET_ERROR(EINVAL); 668 669 /* 670 * This is a special case which only occurs when 671 * the pool has completely failed. This allows 672 * the user to change the in-core failmode property 673 * without syncing it out to disk (I/Os might 674 * currently be blocked). We do this by returning 675 * EIO to the caller (spa_prop_set) to trick it 676 * into thinking we encountered a property validation 677 * error. 678 */ 679 if (!error && spa_suspended(spa)) { 680 spa->spa_failmode = intval; 681 error = SET_ERROR(EIO); 682 } 683 break; 684 685 case ZPOOL_PROP_CACHEFILE: 686 if ((error = nvpair_value_string(elem, &strval)) != 0) 687 break; 688 689 if (strval[0] == '\0') 690 break; 691 692 if (strcmp(strval, "none") == 0) 693 break; 694 695 if (strval[0] != '/') { 696 error = SET_ERROR(EINVAL); 697 break; 698 } 699 700 slash = strrchr(strval, '/'); 701 ASSERT(slash != NULL); 702 703 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 704 strcmp(slash, "/..") == 0) 705 error = SET_ERROR(EINVAL); 706 break; 707 708 case ZPOOL_PROP_COMMENT: 709 if ((error = nvpair_value_string(elem, &strval)) != 0) 710 break; 711 for (check = strval; *check != '\0'; check++) { 712 if (!isprint(*check)) { 713 error = SET_ERROR(EINVAL); 714 break; 715 } 716 } 717 if (strlen(strval) > ZPROP_MAX_COMMENT) 718 error = SET_ERROR(E2BIG); 719 break; 720 721 default: 722 break; 723 } 724 725 if (error) 726 break; 727 } 728 729 (void) nvlist_remove_all(props, 730 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO)); 731 732 if (!error && reset_bootfs) { 733 error = nvlist_remove(props, 734 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 735 736 if (!error) { 737 error = nvlist_add_uint64(props, 738 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 739 } 740 } 741 742 return (error); 743 } 744 745 void 746 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 747 { 748 char *cachefile; 749 spa_config_dirent_t *dp; 750 751 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 752 &cachefile) != 0) 753 return; 754 755 dp = kmem_alloc(sizeof (spa_config_dirent_t), 756 KM_SLEEP); 757 758 if (cachefile[0] == '\0') 759 dp->scd_path = spa_strdup(spa_config_path); 760 else if (strcmp(cachefile, "none") == 0) 761 dp->scd_path = NULL; 762 else 763 dp->scd_path = spa_strdup(cachefile); 764 765 list_insert_head(&spa->spa_config_list, dp); 766 if (need_sync) 767 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 768 } 769 770 int 771 spa_prop_set(spa_t *spa, nvlist_t *nvp) 772 { 773 int error; 774 nvpair_t *elem = NULL; 775 boolean_t need_sync = B_FALSE; 776 777 if ((error = spa_prop_validate(spa, nvp)) != 0) 778 return (error); 779 780 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 781 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 782 783 if (prop == ZPOOL_PROP_CACHEFILE || 784 prop == ZPOOL_PROP_ALTROOT || 785 prop == ZPOOL_PROP_READONLY) 786 continue; 787 788 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) { 789 uint64_t ver = 0; 790 791 if (prop == ZPOOL_PROP_VERSION) { 792 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 793 } else { 794 ASSERT(zpool_prop_feature(nvpair_name(elem))); 795 ver = SPA_VERSION_FEATURES; 796 need_sync = B_TRUE; 797 } 798 799 /* Save time if the version is already set. */ 800 if (ver == spa_version(spa)) 801 continue; 802 803 /* 804 * In addition to the pool directory object, we might 805 * create the pool properties object, the features for 806 * read object, the features for write object, or the 807 * feature descriptions object. 808 */ 809 error = dsl_sync_task(spa->spa_name, NULL, 810 spa_sync_version, &ver, 811 6, ZFS_SPACE_CHECK_RESERVED); 812 if (error) 813 return (error); 814 continue; 815 } 816 817 need_sync = B_TRUE; 818 break; 819 } 820 821 if (need_sync) { 822 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 823 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 824 } 825 826 return (0); 827 } 828 829 /* 830 * If the bootfs property value is dsobj, clear it. 831 */ 832 void 833 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 834 { 835 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 836 VERIFY(zap_remove(spa->spa_meta_objset, 837 spa->spa_pool_props_object, 838 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 839 spa->spa_bootfs = 0; 840 } 841 } 842 843 static int 844 spa_change_guid_check(void *arg, dmu_tx_t *tx) 845 { 846 uint64_t *newguid __maybe_unused = arg; 847 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 848 vdev_t *rvd = spa->spa_root_vdev; 849 uint64_t vdev_state; 850 851 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 852 int error = (spa_has_checkpoint(spa)) ? 853 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 854 return (SET_ERROR(error)); 855 } 856 857 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 858 vdev_state = rvd->vdev_state; 859 spa_config_exit(spa, SCL_STATE, FTAG); 860 861 if (vdev_state != VDEV_STATE_HEALTHY) 862 return (SET_ERROR(ENXIO)); 863 864 ASSERT3U(spa_guid(spa), !=, *newguid); 865 866 return (0); 867 } 868 869 static void 870 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 871 { 872 uint64_t *newguid = arg; 873 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 874 uint64_t oldguid; 875 vdev_t *rvd = spa->spa_root_vdev; 876 877 oldguid = spa_guid(spa); 878 879 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 880 rvd->vdev_guid = *newguid; 881 rvd->vdev_guid_sum += (*newguid - oldguid); 882 vdev_config_dirty(rvd); 883 spa_config_exit(spa, SCL_STATE, FTAG); 884 885 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 886 (u_longlong_t)oldguid, (u_longlong_t)*newguid); 887 } 888 889 /* 890 * Change the GUID for the pool. This is done so that we can later 891 * re-import a pool built from a clone of our own vdevs. We will modify 892 * the root vdev's guid, our own pool guid, and then mark all of our 893 * vdevs dirty. Note that we must make sure that all our vdevs are 894 * online when we do this, or else any vdevs that weren't present 895 * would be orphaned from our pool. We are also going to issue a 896 * sysevent to update any watchers. 897 */ 898 int 899 spa_change_guid(spa_t *spa) 900 { 901 int error; 902 uint64_t guid; 903 904 mutex_enter(&spa->spa_vdev_top_lock); 905 mutex_enter(&spa_namespace_lock); 906 guid = spa_generate_guid(NULL); 907 908 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 909 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 910 911 if (error == 0) { 912 /* 913 * Clear the kobj flag from all the vdevs to allow 914 * vdev_cache_process_kobj_evt() to post events to all the 915 * vdevs since GUID is updated. 916 */ 917 vdev_clear_kobj_evt(spa->spa_root_vdev); 918 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 919 vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]); 920 921 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); 922 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID); 923 } 924 925 mutex_exit(&spa_namespace_lock); 926 mutex_exit(&spa->spa_vdev_top_lock); 927 928 return (error); 929 } 930 931 /* 932 * ========================================================================== 933 * SPA state manipulation (open/create/destroy/import/export) 934 * ========================================================================== 935 */ 936 937 static int 938 spa_error_entry_compare(const void *a, const void *b) 939 { 940 const spa_error_entry_t *sa = (const spa_error_entry_t *)a; 941 const spa_error_entry_t *sb = (const spa_error_entry_t *)b; 942 int ret; 943 944 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark, 945 sizeof (zbookmark_phys_t)); 946 947 return (TREE_ISIGN(ret)); 948 } 949 950 /* 951 * Utility function which retrieves copies of the current logs and 952 * re-initializes them in the process. 953 */ 954 void 955 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 956 { 957 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 958 959 memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t)); 960 memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t)); 961 962 avl_create(&spa->spa_errlist_scrub, 963 spa_error_entry_compare, sizeof (spa_error_entry_t), 964 offsetof(spa_error_entry_t, se_avl)); 965 avl_create(&spa->spa_errlist_last, 966 spa_error_entry_compare, sizeof (spa_error_entry_t), 967 offsetof(spa_error_entry_t, se_avl)); 968 } 969 970 static void 971 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 972 { 973 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 974 enum zti_modes mode = ztip->zti_mode; 975 uint_t value = ztip->zti_value; 976 uint_t count = ztip->zti_count; 977 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 978 uint_t cpus, flags = TASKQ_DYNAMIC; 979 boolean_t batch = B_FALSE; 980 981 switch (mode) { 982 case ZTI_MODE_FIXED: 983 ASSERT3U(value, >, 0); 984 break; 985 986 case ZTI_MODE_BATCH: 987 batch = B_TRUE; 988 flags |= TASKQ_THREADS_CPU_PCT; 989 value = MIN(zio_taskq_batch_pct, 100); 990 break; 991 992 case ZTI_MODE_SCALE: 993 flags |= TASKQ_THREADS_CPU_PCT; 994 /* 995 * We want more taskqs to reduce lock contention, but we want 996 * less for better request ordering and CPU utilization. 997 */ 998 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100); 999 if (zio_taskq_batch_tpq > 0) { 1000 count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) / 1001 zio_taskq_batch_tpq); 1002 } else { 1003 /* 1004 * Prefer 6 threads per taskq, but no more taskqs 1005 * than threads in them on large systems. For 80%: 1006 * 1007 * taskq taskq total 1008 * cpus taskqs percent threads threads 1009 * ------- ------- ------- ------- ------- 1010 * 1 1 80% 1 1 1011 * 2 1 80% 1 1 1012 * 4 1 80% 3 3 1013 * 8 2 40% 3 6 1014 * 16 3 27% 4 12 1015 * 32 5 16% 5 25 1016 * 64 7 11% 7 49 1017 * 128 10 8% 10 100 1018 * 256 14 6% 15 210 1019 */ 1020 count = 1 + cpus / 6; 1021 while (count * count > cpus) 1022 count--; 1023 } 1024 /* Limit each taskq within 100% to not trigger assertion. */ 1025 count = MAX(count, (zio_taskq_batch_pct + 99) / 100); 1026 value = (zio_taskq_batch_pct + count / 2) / count; 1027 break; 1028 1029 case ZTI_MODE_NULL: 1030 tqs->stqs_count = 0; 1031 tqs->stqs_taskq = NULL; 1032 return; 1033 1034 default: 1035 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 1036 "spa_activate()", 1037 zio_type_name[t], zio_taskq_types[q], mode, value); 1038 break; 1039 } 1040 1041 ASSERT3U(count, >, 0); 1042 tqs->stqs_count = count; 1043 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 1044 1045 for (uint_t i = 0; i < count; i++) { 1046 taskq_t *tq; 1047 char name[32]; 1048 1049 if (count > 1) 1050 (void) snprintf(name, sizeof (name), "%s_%s_%u", 1051 zio_type_name[t], zio_taskq_types[q], i); 1052 else 1053 (void) snprintf(name, sizeof (name), "%s_%s", 1054 zio_type_name[t], zio_taskq_types[q]); 1055 1056 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 1057 if (batch) 1058 flags |= TASKQ_DC_BATCH; 1059 1060 (void) zio_taskq_basedc; 1061 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 1062 spa->spa_proc, zio_taskq_basedc, flags); 1063 } else { 1064 pri_t pri = maxclsyspri; 1065 /* 1066 * The write issue taskq can be extremely CPU 1067 * intensive. Run it at slightly less important 1068 * priority than the other taskqs. 1069 * 1070 * Under Linux and FreeBSD this means incrementing 1071 * the priority value as opposed to platforms like 1072 * illumos where it should be decremented. 1073 * 1074 * On FreeBSD, if priorities divided by four (RQ_PPQ) 1075 * are equal then a difference between them is 1076 * insignificant. 1077 */ 1078 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) { 1079 #if defined(__linux__) 1080 pri++; 1081 #elif defined(__FreeBSD__) 1082 pri += 4; 1083 #else 1084 #error "unknown OS" 1085 #endif 1086 } 1087 tq = taskq_create_proc(name, value, pri, 50, 1088 INT_MAX, spa->spa_proc, flags); 1089 } 1090 1091 tqs->stqs_taskq[i] = tq; 1092 } 1093 } 1094 1095 static void 1096 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 1097 { 1098 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1099 1100 if (tqs->stqs_taskq == NULL) { 1101 ASSERT3U(tqs->stqs_count, ==, 0); 1102 return; 1103 } 1104 1105 for (uint_t i = 0; i < tqs->stqs_count; i++) { 1106 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 1107 taskq_destroy(tqs->stqs_taskq[i]); 1108 } 1109 1110 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 1111 tqs->stqs_taskq = NULL; 1112 } 1113 1114 /* 1115 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 1116 * Note that a type may have multiple discrete taskqs to avoid lock contention 1117 * on the taskq itself. In that case we choose which taskq at random by using 1118 * the low bits of gethrtime(). 1119 */ 1120 void 1121 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 1122 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 1123 { 1124 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1125 taskq_t *tq; 1126 1127 ASSERT3P(tqs->stqs_taskq, !=, NULL); 1128 ASSERT3U(tqs->stqs_count, !=, 0); 1129 1130 if (tqs->stqs_count == 1) { 1131 tq = tqs->stqs_taskq[0]; 1132 } else { 1133 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count]; 1134 } 1135 1136 taskq_dispatch_ent(tq, func, arg, flags, ent); 1137 } 1138 1139 /* 1140 * Same as spa_taskq_dispatch_ent() but block on the task until completion. 1141 */ 1142 void 1143 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 1144 task_func_t *func, void *arg, uint_t flags) 1145 { 1146 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1147 taskq_t *tq; 1148 taskqid_t id; 1149 1150 ASSERT3P(tqs->stqs_taskq, !=, NULL); 1151 ASSERT3U(tqs->stqs_count, !=, 0); 1152 1153 if (tqs->stqs_count == 1) { 1154 tq = tqs->stqs_taskq[0]; 1155 } else { 1156 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count]; 1157 } 1158 1159 id = taskq_dispatch(tq, func, arg, flags); 1160 if (id) 1161 taskq_wait_id(tq, id); 1162 } 1163 1164 static void 1165 spa_create_zio_taskqs(spa_t *spa) 1166 { 1167 for (int t = 0; t < ZIO_TYPES; t++) { 1168 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1169 spa_taskqs_init(spa, t, q); 1170 } 1171 } 1172 } 1173 1174 /* 1175 * Disabled until spa_thread() can be adapted for Linux. 1176 */ 1177 #undef HAVE_SPA_THREAD 1178 1179 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD) 1180 static void 1181 spa_thread(void *arg) 1182 { 1183 psetid_t zio_taskq_psrset_bind = PS_NONE; 1184 callb_cpr_t cprinfo; 1185 1186 spa_t *spa = arg; 1187 user_t *pu = PTOU(curproc); 1188 1189 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 1190 spa->spa_name); 1191 1192 ASSERT(curproc != &p0); 1193 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 1194 "zpool-%s", spa->spa_name); 1195 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 1196 1197 /* bind this thread to the requested psrset */ 1198 if (zio_taskq_psrset_bind != PS_NONE) { 1199 pool_lock(); 1200 mutex_enter(&cpu_lock); 1201 mutex_enter(&pidlock); 1202 mutex_enter(&curproc->p_lock); 1203 1204 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 1205 0, NULL, NULL) == 0) { 1206 curthread->t_bind_pset = zio_taskq_psrset_bind; 1207 } else { 1208 cmn_err(CE_WARN, 1209 "Couldn't bind process for zfs pool \"%s\" to " 1210 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1211 } 1212 1213 mutex_exit(&curproc->p_lock); 1214 mutex_exit(&pidlock); 1215 mutex_exit(&cpu_lock); 1216 pool_unlock(); 1217 } 1218 1219 if (zio_taskq_sysdc) { 1220 sysdc_thread_enter(curthread, 100, 0); 1221 } 1222 1223 spa->spa_proc = curproc; 1224 spa->spa_did = curthread->t_did; 1225 1226 spa_create_zio_taskqs(spa); 1227 1228 mutex_enter(&spa->spa_proc_lock); 1229 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1230 1231 spa->spa_proc_state = SPA_PROC_ACTIVE; 1232 cv_broadcast(&spa->spa_proc_cv); 1233 1234 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1235 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1236 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1237 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1238 1239 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1240 spa->spa_proc_state = SPA_PROC_GONE; 1241 spa->spa_proc = &p0; 1242 cv_broadcast(&spa->spa_proc_cv); 1243 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1244 1245 mutex_enter(&curproc->p_lock); 1246 lwp_exit(); 1247 } 1248 #endif 1249 1250 /* 1251 * Activate an uninitialized pool. 1252 */ 1253 static void 1254 spa_activate(spa_t *spa, spa_mode_t mode) 1255 { 1256 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1257 1258 spa->spa_state = POOL_STATE_ACTIVE; 1259 spa->spa_mode = mode; 1260 spa->spa_read_spacemaps = spa_mode_readable_spacemaps; 1261 1262 spa->spa_normal_class = metaslab_class_create(spa, &zfs_metaslab_ops); 1263 spa->spa_log_class = metaslab_class_create(spa, &zfs_metaslab_ops); 1264 spa->spa_embedded_log_class = 1265 metaslab_class_create(spa, &zfs_metaslab_ops); 1266 spa->spa_special_class = metaslab_class_create(spa, &zfs_metaslab_ops); 1267 spa->spa_dedup_class = metaslab_class_create(spa, &zfs_metaslab_ops); 1268 1269 /* Try to create a covering process */ 1270 mutex_enter(&spa->spa_proc_lock); 1271 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1272 ASSERT(spa->spa_proc == &p0); 1273 spa->spa_did = 0; 1274 1275 (void) spa_create_process; 1276 #ifdef HAVE_SPA_THREAD 1277 /* Only create a process if we're going to be around a while. */ 1278 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1279 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1280 NULL, 0) == 0) { 1281 spa->spa_proc_state = SPA_PROC_CREATED; 1282 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1283 cv_wait(&spa->spa_proc_cv, 1284 &spa->spa_proc_lock); 1285 } 1286 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1287 ASSERT(spa->spa_proc != &p0); 1288 ASSERT(spa->spa_did != 0); 1289 } else { 1290 #ifdef _KERNEL 1291 cmn_err(CE_WARN, 1292 "Couldn't create process for zfs pool \"%s\"\n", 1293 spa->spa_name); 1294 #endif 1295 } 1296 } 1297 #endif /* HAVE_SPA_THREAD */ 1298 mutex_exit(&spa->spa_proc_lock); 1299 1300 /* If we didn't create a process, we need to create our taskqs. */ 1301 if (spa->spa_proc == &p0) { 1302 spa_create_zio_taskqs(spa); 1303 } 1304 1305 for (size_t i = 0; i < TXG_SIZE; i++) { 1306 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 1307 ZIO_FLAG_CANFAIL); 1308 } 1309 1310 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1311 offsetof(vdev_t, vdev_config_dirty_node)); 1312 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1313 offsetof(objset_t, os_evicting_node)); 1314 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1315 offsetof(vdev_t, vdev_state_dirty_node)); 1316 1317 txg_list_create(&spa->spa_vdev_txg_list, spa, 1318 offsetof(struct vdev, vdev_txg_node)); 1319 1320 avl_create(&spa->spa_errlist_scrub, 1321 spa_error_entry_compare, sizeof (spa_error_entry_t), 1322 offsetof(spa_error_entry_t, se_avl)); 1323 avl_create(&spa->spa_errlist_last, 1324 spa_error_entry_compare, sizeof (spa_error_entry_t), 1325 offsetof(spa_error_entry_t, se_avl)); 1326 avl_create(&spa->spa_errlist_healed, 1327 spa_error_entry_compare, sizeof (spa_error_entry_t), 1328 offsetof(spa_error_entry_t, se_avl)); 1329 1330 spa_activate_os(spa); 1331 1332 spa_keystore_init(&spa->spa_keystore); 1333 1334 /* 1335 * This taskq is used to perform zvol-minor-related tasks 1336 * asynchronously. This has several advantages, including easy 1337 * resolution of various deadlocks. 1338 * 1339 * The taskq must be single threaded to ensure tasks are always 1340 * processed in the order in which they were dispatched. 1341 * 1342 * A taskq per pool allows one to keep the pools independent. 1343 * This way if one pool is suspended, it will not impact another. 1344 * 1345 * The preferred location to dispatch a zvol minor task is a sync 1346 * task. In this context, there is easy access to the spa_t and minimal 1347 * error handling is required because the sync task must succeed. 1348 */ 1349 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri, 1350 1, INT_MAX, 0); 1351 1352 /* 1353 * Taskq dedicated to prefetcher threads: this is used to prevent the 1354 * pool traverse code from monopolizing the global (and limited) 1355 * system_taskq by inappropriately scheduling long running tasks on it. 1356 */ 1357 spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100, 1358 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); 1359 1360 /* 1361 * The taskq to upgrade datasets in this pool. Currently used by 1362 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA. 1363 */ 1364 spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100, 1365 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); 1366 } 1367 1368 /* 1369 * Opposite of spa_activate(). 1370 */ 1371 static void 1372 spa_deactivate(spa_t *spa) 1373 { 1374 ASSERT(spa->spa_sync_on == B_FALSE); 1375 ASSERT(spa->spa_dsl_pool == NULL); 1376 ASSERT(spa->spa_root_vdev == NULL); 1377 ASSERT(spa->spa_async_zio_root == NULL); 1378 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1379 1380 spa_evicting_os_wait(spa); 1381 1382 if (spa->spa_zvol_taskq) { 1383 taskq_destroy(spa->spa_zvol_taskq); 1384 spa->spa_zvol_taskq = NULL; 1385 } 1386 1387 if (spa->spa_prefetch_taskq) { 1388 taskq_destroy(spa->spa_prefetch_taskq); 1389 spa->spa_prefetch_taskq = NULL; 1390 } 1391 1392 if (spa->spa_upgrade_taskq) { 1393 taskq_destroy(spa->spa_upgrade_taskq); 1394 spa->spa_upgrade_taskq = NULL; 1395 } 1396 1397 txg_list_destroy(&spa->spa_vdev_txg_list); 1398 1399 list_destroy(&spa->spa_config_dirty_list); 1400 list_destroy(&spa->spa_evicting_os_list); 1401 list_destroy(&spa->spa_state_dirty_list); 1402 1403 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 1404 1405 for (int t = 0; t < ZIO_TYPES; t++) { 1406 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1407 spa_taskqs_fini(spa, t, q); 1408 } 1409 } 1410 1411 for (size_t i = 0; i < TXG_SIZE; i++) { 1412 ASSERT3P(spa->spa_txg_zio[i], !=, NULL); 1413 VERIFY0(zio_wait(spa->spa_txg_zio[i])); 1414 spa->spa_txg_zio[i] = NULL; 1415 } 1416 1417 metaslab_class_destroy(spa->spa_normal_class); 1418 spa->spa_normal_class = NULL; 1419 1420 metaslab_class_destroy(spa->spa_log_class); 1421 spa->spa_log_class = NULL; 1422 1423 metaslab_class_destroy(spa->spa_embedded_log_class); 1424 spa->spa_embedded_log_class = NULL; 1425 1426 metaslab_class_destroy(spa->spa_special_class); 1427 spa->spa_special_class = NULL; 1428 1429 metaslab_class_destroy(spa->spa_dedup_class); 1430 spa->spa_dedup_class = NULL; 1431 1432 /* 1433 * If this was part of an import or the open otherwise failed, we may 1434 * still have errors left in the queues. Empty them just in case. 1435 */ 1436 spa_errlog_drain(spa); 1437 avl_destroy(&spa->spa_errlist_scrub); 1438 avl_destroy(&spa->spa_errlist_last); 1439 avl_destroy(&spa->spa_errlist_healed); 1440 1441 spa_keystore_fini(&spa->spa_keystore); 1442 1443 spa->spa_state = POOL_STATE_UNINITIALIZED; 1444 1445 mutex_enter(&spa->spa_proc_lock); 1446 if (spa->spa_proc_state != SPA_PROC_NONE) { 1447 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1448 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1449 cv_broadcast(&spa->spa_proc_cv); 1450 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1451 ASSERT(spa->spa_proc != &p0); 1452 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1453 } 1454 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1455 spa->spa_proc_state = SPA_PROC_NONE; 1456 } 1457 ASSERT(spa->spa_proc == &p0); 1458 mutex_exit(&spa->spa_proc_lock); 1459 1460 /* 1461 * We want to make sure spa_thread() has actually exited the ZFS 1462 * module, so that the module can't be unloaded out from underneath 1463 * it. 1464 */ 1465 if (spa->spa_did != 0) { 1466 thread_join(spa->spa_did); 1467 spa->spa_did = 0; 1468 } 1469 1470 spa_deactivate_os(spa); 1471 1472 } 1473 1474 /* 1475 * Verify a pool configuration, and construct the vdev tree appropriately. This 1476 * will create all the necessary vdevs in the appropriate layout, with each vdev 1477 * in the CLOSED state. This will prep the pool before open/creation/import. 1478 * All vdev validation is done by the vdev_alloc() routine. 1479 */ 1480 int 1481 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1482 uint_t id, int atype) 1483 { 1484 nvlist_t **child; 1485 uint_t children; 1486 int error; 1487 1488 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1489 return (error); 1490 1491 if ((*vdp)->vdev_ops->vdev_op_leaf) 1492 return (0); 1493 1494 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1495 &child, &children); 1496 1497 if (error == ENOENT) 1498 return (0); 1499 1500 if (error) { 1501 vdev_free(*vdp); 1502 *vdp = NULL; 1503 return (SET_ERROR(EINVAL)); 1504 } 1505 1506 for (int c = 0; c < children; c++) { 1507 vdev_t *vd; 1508 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1509 atype)) != 0) { 1510 vdev_free(*vdp); 1511 *vdp = NULL; 1512 return (error); 1513 } 1514 } 1515 1516 ASSERT(*vdp != NULL); 1517 1518 return (0); 1519 } 1520 1521 static boolean_t 1522 spa_should_flush_logs_on_unload(spa_t *spa) 1523 { 1524 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1525 return (B_FALSE); 1526 1527 if (!spa_writeable(spa)) 1528 return (B_FALSE); 1529 1530 if (!spa->spa_sync_on) 1531 return (B_FALSE); 1532 1533 if (spa_state(spa) != POOL_STATE_EXPORTED) 1534 return (B_FALSE); 1535 1536 if (zfs_keep_log_spacemaps_at_export) 1537 return (B_FALSE); 1538 1539 return (B_TRUE); 1540 } 1541 1542 /* 1543 * Opens a transaction that will set the flag that will instruct 1544 * spa_sync to attempt to flush all the metaslabs for that txg. 1545 */ 1546 static void 1547 spa_unload_log_sm_flush_all(spa_t *spa) 1548 { 1549 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 1550 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 1551 1552 ASSERT3U(spa->spa_log_flushall_txg, ==, 0); 1553 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx); 1554 1555 dmu_tx_commit(tx); 1556 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg); 1557 } 1558 1559 static void 1560 spa_unload_log_sm_metadata(spa_t *spa) 1561 { 1562 void *cookie = NULL; 1563 spa_log_sm_t *sls; 1564 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg, 1565 &cookie)) != NULL) { 1566 VERIFY0(sls->sls_mscount); 1567 kmem_free(sls, sizeof (spa_log_sm_t)); 1568 } 1569 1570 for (log_summary_entry_t *e = list_head(&spa->spa_log_summary); 1571 e != NULL; e = list_head(&spa->spa_log_summary)) { 1572 VERIFY0(e->lse_mscount); 1573 list_remove(&spa->spa_log_summary, e); 1574 kmem_free(e, sizeof (log_summary_entry_t)); 1575 } 1576 1577 spa->spa_unflushed_stats.sus_nblocks = 0; 1578 spa->spa_unflushed_stats.sus_memused = 0; 1579 spa->spa_unflushed_stats.sus_blocklimit = 0; 1580 } 1581 1582 static void 1583 spa_destroy_aux_threads(spa_t *spa) 1584 { 1585 if (spa->spa_condense_zthr != NULL) { 1586 zthr_destroy(spa->spa_condense_zthr); 1587 spa->spa_condense_zthr = NULL; 1588 } 1589 if (spa->spa_checkpoint_discard_zthr != NULL) { 1590 zthr_destroy(spa->spa_checkpoint_discard_zthr); 1591 spa->spa_checkpoint_discard_zthr = NULL; 1592 } 1593 if (spa->spa_livelist_delete_zthr != NULL) { 1594 zthr_destroy(spa->spa_livelist_delete_zthr); 1595 spa->spa_livelist_delete_zthr = NULL; 1596 } 1597 if (spa->spa_livelist_condense_zthr != NULL) { 1598 zthr_destroy(spa->spa_livelist_condense_zthr); 1599 spa->spa_livelist_condense_zthr = NULL; 1600 } 1601 } 1602 1603 /* 1604 * Opposite of spa_load(). 1605 */ 1606 static void 1607 spa_unload(spa_t *spa) 1608 { 1609 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1610 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED); 1611 1612 spa_import_progress_remove(spa_guid(spa)); 1613 spa_load_note(spa, "UNLOADING"); 1614 1615 spa_wake_waiters(spa); 1616 1617 /* 1618 * If we have set the spa_final_txg, we have already performed the 1619 * tasks below in spa_export_common(). We should not redo it here since 1620 * we delay the final TXGs beyond what spa_final_txg is set at. 1621 */ 1622 if (spa->spa_final_txg == UINT64_MAX) { 1623 /* 1624 * If the log space map feature is enabled and the pool is 1625 * getting exported (but not destroyed), we want to spend some 1626 * time flushing as many metaslabs as we can in an attempt to 1627 * destroy log space maps and save import time. 1628 */ 1629 if (spa_should_flush_logs_on_unload(spa)) 1630 spa_unload_log_sm_flush_all(spa); 1631 1632 /* 1633 * Stop async tasks. 1634 */ 1635 spa_async_suspend(spa); 1636 1637 if (spa->spa_root_vdev) { 1638 vdev_t *root_vdev = spa->spa_root_vdev; 1639 vdev_initialize_stop_all(root_vdev, 1640 VDEV_INITIALIZE_ACTIVE); 1641 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE); 1642 vdev_autotrim_stop_all(spa); 1643 vdev_rebuild_stop_all(spa); 1644 } 1645 } 1646 1647 /* 1648 * Stop syncing. 1649 */ 1650 if (spa->spa_sync_on) { 1651 txg_sync_stop(spa->spa_dsl_pool); 1652 spa->spa_sync_on = B_FALSE; 1653 } 1654 1655 /* 1656 * This ensures that there is no async metaslab prefetching 1657 * while we attempt to unload the spa. 1658 */ 1659 if (spa->spa_root_vdev != NULL) { 1660 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) { 1661 vdev_t *vc = spa->spa_root_vdev->vdev_child[c]; 1662 if (vc->vdev_mg != NULL) 1663 taskq_wait(vc->vdev_mg->mg_taskq); 1664 } 1665 } 1666 1667 if (spa->spa_mmp.mmp_thread) 1668 mmp_thread_stop(spa); 1669 1670 /* 1671 * Wait for any outstanding async I/O to complete. 1672 */ 1673 if (spa->spa_async_zio_root != NULL) { 1674 for (int i = 0; i < max_ncpus; i++) 1675 (void) zio_wait(spa->spa_async_zio_root[i]); 1676 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1677 spa->spa_async_zio_root = NULL; 1678 } 1679 1680 if (spa->spa_vdev_removal != NULL) { 1681 spa_vdev_removal_destroy(spa->spa_vdev_removal); 1682 spa->spa_vdev_removal = NULL; 1683 } 1684 1685 spa_destroy_aux_threads(spa); 1686 1687 spa_condense_fini(spa); 1688 1689 bpobj_close(&spa->spa_deferred_bpobj); 1690 1691 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1692 1693 /* 1694 * Close all vdevs. 1695 */ 1696 if (spa->spa_root_vdev) 1697 vdev_free(spa->spa_root_vdev); 1698 ASSERT(spa->spa_root_vdev == NULL); 1699 1700 /* 1701 * Close the dsl pool. 1702 */ 1703 if (spa->spa_dsl_pool) { 1704 dsl_pool_close(spa->spa_dsl_pool); 1705 spa->spa_dsl_pool = NULL; 1706 spa->spa_meta_objset = NULL; 1707 } 1708 1709 ddt_unload(spa); 1710 spa_unload_log_sm_metadata(spa); 1711 1712 /* 1713 * Drop and purge level 2 cache 1714 */ 1715 spa_l2cache_drop(spa); 1716 1717 if (spa->spa_spares.sav_vdevs) { 1718 for (int i = 0; i < spa->spa_spares.sav_count; i++) 1719 vdev_free(spa->spa_spares.sav_vdevs[i]); 1720 kmem_free(spa->spa_spares.sav_vdevs, 1721 spa->spa_spares.sav_count * sizeof (void *)); 1722 spa->spa_spares.sav_vdevs = NULL; 1723 } 1724 if (spa->spa_spares.sav_config) { 1725 nvlist_free(spa->spa_spares.sav_config); 1726 spa->spa_spares.sav_config = NULL; 1727 } 1728 spa->spa_spares.sav_count = 0; 1729 1730 if (spa->spa_l2cache.sav_vdevs) { 1731 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 1732 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1733 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1734 } 1735 kmem_free(spa->spa_l2cache.sav_vdevs, 1736 spa->spa_l2cache.sav_count * sizeof (void *)); 1737 spa->spa_l2cache.sav_vdevs = NULL; 1738 } 1739 if (spa->spa_l2cache.sav_config) { 1740 nvlist_free(spa->spa_l2cache.sav_config); 1741 spa->spa_l2cache.sav_config = NULL; 1742 } 1743 spa->spa_l2cache.sav_count = 0; 1744 1745 spa->spa_async_suspended = 0; 1746 1747 spa->spa_indirect_vdevs_loaded = B_FALSE; 1748 1749 if (spa->spa_comment != NULL) { 1750 spa_strfree(spa->spa_comment); 1751 spa->spa_comment = NULL; 1752 } 1753 if (spa->spa_compatibility != NULL) { 1754 spa_strfree(spa->spa_compatibility); 1755 spa->spa_compatibility = NULL; 1756 } 1757 1758 spa_config_exit(spa, SCL_ALL, spa); 1759 } 1760 1761 /* 1762 * Load (or re-load) the current list of vdevs describing the active spares for 1763 * this pool. When this is called, we have some form of basic information in 1764 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1765 * then re-generate a more complete list including status information. 1766 */ 1767 void 1768 spa_load_spares(spa_t *spa) 1769 { 1770 nvlist_t **spares; 1771 uint_t nspares; 1772 int i; 1773 vdev_t *vd, *tvd; 1774 1775 #ifndef _KERNEL 1776 /* 1777 * zdb opens both the current state of the pool and the 1778 * checkpointed state (if present), with a different spa_t. 1779 * 1780 * As spare vdevs are shared among open pools, we skip loading 1781 * them when we load the checkpointed state of the pool. 1782 */ 1783 if (!spa_writeable(spa)) 1784 return; 1785 #endif 1786 1787 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1788 1789 /* 1790 * First, close and free any existing spare vdevs. 1791 */ 1792 if (spa->spa_spares.sav_vdevs) { 1793 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1794 vd = spa->spa_spares.sav_vdevs[i]; 1795 1796 /* Undo the call to spa_activate() below */ 1797 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1798 B_FALSE)) != NULL && tvd->vdev_isspare) 1799 spa_spare_remove(tvd); 1800 vdev_close(vd); 1801 vdev_free(vd); 1802 } 1803 1804 kmem_free(spa->spa_spares.sav_vdevs, 1805 spa->spa_spares.sav_count * sizeof (void *)); 1806 } 1807 1808 if (spa->spa_spares.sav_config == NULL) 1809 nspares = 0; 1810 else 1811 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1812 ZPOOL_CONFIG_SPARES, &spares, &nspares)); 1813 1814 spa->spa_spares.sav_count = (int)nspares; 1815 spa->spa_spares.sav_vdevs = NULL; 1816 1817 if (nspares == 0) 1818 return; 1819 1820 /* 1821 * Construct the array of vdevs, opening them to get status in the 1822 * process. For each spare, there is potentially two different vdev_t 1823 * structures associated with it: one in the list of spares (used only 1824 * for basic validation purposes) and one in the active vdev 1825 * configuration (if it's spared in). During this phase we open and 1826 * validate each vdev on the spare list. If the vdev also exists in the 1827 * active configuration, then we also mark this vdev as an active spare. 1828 */ 1829 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *), 1830 KM_SLEEP); 1831 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1832 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1833 VDEV_ALLOC_SPARE) == 0); 1834 ASSERT(vd != NULL); 1835 1836 spa->spa_spares.sav_vdevs[i] = vd; 1837 1838 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1839 B_FALSE)) != NULL) { 1840 if (!tvd->vdev_isspare) 1841 spa_spare_add(tvd); 1842 1843 /* 1844 * We only mark the spare active if we were successfully 1845 * able to load the vdev. Otherwise, importing a pool 1846 * with a bad active spare would result in strange 1847 * behavior, because multiple pool would think the spare 1848 * is actively in use. 1849 * 1850 * There is a vulnerability here to an equally bizarre 1851 * circumstance, where a dead active spare is later 1852 * brought back to life (onlined or otherwise). Given 1853 * the rarity of this scenario, and the extra complexity 1854 * it adds, we ignore the possibility. 1855 */ 1856 if (!vdev_is_dead(tvd)) 1857 spa_spare_activate(tvd); 1858 } 1859 1860 vd->vdev_top = vd; 1861 vd->vdev_aux = &spa->spa_spares; 1862 1863 if (vdev_open(vd) != 0) 1864 continue; 1865 1866 if (vdev_validate_aux(vd) == 0) 1867 spa_spare_add(vd); 1868 } 1869 1870 /* 1871 * Recompute the stashed list of spares, with status information 1872 * this time. 1873 */ 1874 fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES); 1875 1876 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1877 KM_SLEEP); 1878 for (i = 0; i < spa->spa_spares.sav_count; i++) 1879 spares[i] = vdev_config_generate(spa, 1880 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1881 fnvlist_add_nvlist_array(spa->spa_spares.sav_config, 1882 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, 1883 spa->spa_spares.sav_count); 1884 for (i = 0; i < spa->spa_spares.sav_count; i++) 1885 nvlist_free(spares[i]); 1886 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1887 } 1888 1889 /* 1890 * Load (or re-load) the current list of vdevs describing the active l2cache for 1891 * this pool. When this is called, we have some form of basic information in 1892 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1893 * then re-generate a more complete list including status information. 1894 * Devices which are already active have their details maintained, and are 1895 * not re-opened. 1896 */ 1897 void 1898 spa_load_l2cache(spa_t *spa) 1899 { 1900 nvlist_t **l2cache = NULL; 1901 uint_t nl2cache; 1902 int i, j, oldnvdevs; 1903 uint64_t guid; 1904 vdev_t *vd, **oldvdevs, **newvdevs; 1905 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1906 1907 #ifndef _KERNEL 1908 /* 1909 * zdb opens both the current state of the pool and the 1910 * checkpointed state (if present), with a different spa_t. 1911 * 1912 * As L2 caches are part of the ARC which is shared among open 1913 * pools, we skip loading them when we load the checkpointed 1914 * state of the pool. 1915 */ 1916 if (!spa_writeable(spa)) 1917 return; 1918 #endif 1919 1920 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1921 1922 oldvdevs = sav->sav_vdevs; 1923 oldnvdevs = sav->sav_count; 1924 sav->sav_vdevs = NULL; 1925 sav->sav_count = 0; 1926 1927 if (sav->sav_config == NULL) { 1928 nl2cache = 0; 1929 newvdevs = NULL; 1930 goto out; 1931 } 1932 1933 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, 1934 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache)); 1935 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1936 1937 /* 1938 * Process new nvlist of vdevs. 1939 */ 1940 for (i = 0; i < nl2cache; i++) { 1941 guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID); 1942 1943 newvdevs[i] = NULL; 1944 for (j = 0; j < oldnvdevs; j++) { 1945 vd = oldvdevs[j]; 1946 if (vd != NULL && guid == vd->vdev_guid) { 1947 /* 1948 * Retain previous vdev for add/remove ops. 1949 */ 1950 newvdevs[i] = vd; 1951 oldvdevs[j] = NULL; 1952 break; 1953 } 1954 } 1955 1956 if (newvdevs[i] == NULL) { 1957 /* 1958 * Create new vdev 1959 */ 1960 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1961 VDEV_ALLOC_L2CACHE) == 0); 1962 ASSERT(vd != NULL); 1963 newvdevs[i] = vd; 1964 1965 /* 1966 * Commit this vdev as an l2cache device, 1967 * even if it fails to open. 1968 */ 1969 spa_l2cache_add(vd); 1970 1971 vd->vdev_top = vd; 1972 vd->vdev_aux = sav; 1973 1974 spa_l2cache_activate(vd); 1975 1976 if (vdev_open(vd) != 0) 1977 continue; 1978 1979 (void) vdev_validate_aux(vd); 1980 1981 if (!vdev_is_dead(vd)) 1982 l2arc_add_vdev(spa, vd); 1983 1984 /* 1985 * Upon cache device addition to a pool or pool 1986 * creation with a cache device or if the header 1987 * of the device is invalid we issue an async 1988 * TRIM command for the whole device which will 1989 * execute if l2arc_trim_ahead > 0. 1990 */ 1991 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 1992 } 1993 } 1994 1995 sav->sav_vdevs = newvdevs; 1996 sav->sav_count = (int)nl2cache; 1997 1998 /* 1999 * Recompute the stashed list of l2cache devices, with status 2000 * information this time. 2001 */ 2002 fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE); 2003 2004 if (sav->sav_count > 0) 2005 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), 2006 KM_SLEEP); 2007 for (i = 0; i < sav->sav_count; i++) 2008 l2cache[i] = vdev_config_generate(spa, 2009 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 2010 fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 2011 (const nvlist_t * const *)l2cache, sav->sav_count); 2012 2013 out: 2014 /* 2015 * Purge vdevs that were dropped 2016 */ 2017 if (oldvdevs) { 2018 for (i = 0; i < oldnvdevs; i++) { 2019 uint64_t pool; 2020 2021 vd = oldvdevs[i]; 2022 if (vd != NULL) { 2023 ASSERT(vd->vdev_isl2cache); 2024 2025 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 2026 pool != 0ULL && l2arc_vdev_present(vd)) 2027 l2arc_remove_vdev(vd); 2028 vdev_clear_stats(vd); 2029 vdev_free(vd); 2030 } 2031 } 2032 2033 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 2034 } 2035 2036 for (i = 0; i < sav->sav_count; i++) 2037 nvlist_free(l2cache[i]); 2038 if (sav->sav_count) 2039 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 2040 } 2041 2042 static int 2043 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 2044 { 2045 dmu_buf_t *db; 2046 char *packed = NULL; 2047 size_t nvsize = 0; 2048 int error; 2049 *value = NULL; 2050 2051 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 2052 if (error) 2053 return (error); 2054 2055 nvsize = *(uint64_t *)db->db_data; 2056 dmu_buf_rele(db, FTAG); 2057 2058 packed = vmem_alloc(nvsize, KM_SLEEP); 2059 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 2060 DMU_READ_PREFETCH); 2061 if (error == 0) 2062 error = nvlist_unpack(packed, nvsize, value, 0); 2063 vmem_free(packed, nvsize); 2064 2065 return (error); 2066 } 2067 2068 /* 2069 * Concrete top-level vdevs that are not missing and are not logs. At every 2070 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds. 2071 */ 2072 static uint64_t 2073 spa_healthy_core_tvds(spa_t *spa) 2074 { 2075 vdev_t *rvd = spa->spa_root_vdev; 2076 uint64_t tvds = 0; 2077 2078 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 2079 vdev_t *vd = rvd->vdev_child[i]; 2080 if (vd->vdev_islog) 2081 continue; 2082 if (vdev_is_concrete(vd) && !vdev_is_dead(vd)) 2083 tvds++; 2084 } 2085 2086 return (tvds); 2087 } 2088 2089 /* 2090 * Checks to see if the given vdev could not be opened, in which case we post a 2091 * sysevent to notify the autoreplace code that the device has been removed. 2092 */ 2093 static void 2094 spa_check_removed(vdev_t *vd) 2095 { 2096 for (uint64_t c = 0; c < vd->vdev_children; c++) 2097 spa_check_removed(vd->vdev_child[c]); 2098 2099 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 2100 vdev_is_concrete(vd)) { 2101 zfs_post_autoreplace(vd->vdev_spa, vd); 2102 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK); 2103 } 2104 } 2105 2106 static int 2107 spa_check_for_missing_logs(spa_t *spa) 2108 { 2109 vdev_t *rvd = spa->spa_root_vdev; 2110 2111 /* 2112 * If we're doing a normal import, then build up any additional 2113 * diagnostic information about missing log devices. 2114 * We'll pass this up to the user for further processing. 2115 */ 2116 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 2117 nvlist_t **child, *nv; 2118 uint64_t idx = 0; 2119 2120 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *), 2121 KM_SLEEP); 2122 nv = fnvlist_alloc(); 2123 2124 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2125 vdev_t *tvd = rvd->vdev_child[c]; 2126 2127 /* 2128 * We consider a device as missing only if it failed 2129 * to open (i.e. offline or faulted is not considered 2130 * as missing). 2131 */ 2132 if (tvd->vdev_islog && 2133 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 2134 child[idx++] = vdev_config_generate(spa, tvd, 2135 B_FALSE, VDEV_CONFIG_MISSING); 2136 } 2137 } 2138 2139 if (idx > 0) { 2140 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 2141 (const nvlist_t * const *)child, idx); 2142 fnvlist_add_nvlist(spa->spa_load_info, 2143 ZPOOL_CONFIG_MISSING_DEVICES, nv); 2144 2145 for (uint64_t i = 0; i < idx; i++) 2146 nvlist_free(child[i]); 2147 } 2148 nvlist_free(nv); 2149 kmem_free(child, rvd->vdev_children * sizeof (char **)); 2150 2151 if (idx > 0) { 2152 spa_load_failed(spa, "some log devices are missing"); 2153 vdev_dbgmsg_print_tree(rvd, 2); 2154 return (SET_ERROR(ENXIO)); 2155 } 2156 } else { 2157 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2158 vdev_t *tvd = rvd->vdev_child[c]; 2159 2160 if (tvd->vdev_islog && 2161 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 2162 spa_set_log_state(spa, SPA_LOG_CLEAR); 2163 spa_load_note(spa, "some log devices are " 2164 "missing, ZIL is dropped."); 2165 vdev_dbgmsg_print_tree(rvd, 2); 2166 break; 2167 } 2168 } 2169 } 2170 2171 return (0); 2172 } 2173 2174 /* 2175 * Check for missing log devices 2176 */ 2177 static boolean_t 2178 spa_check_logs(spa_t *spa) 2179 { 2180 boolean_t rv = B_FALSE; 2181 dsl_pool_t *dp = spa_get_dsl(spa); 2182 2183 switch (spa->spa_log_state) { 2184 default: 2185 break; 2186 case SPA_LOG_MISSING: 2187 /* need to recheck in case slog has been restored */ 2188 case SPA_LOG_UNKNOWN: 2189 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2190 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 2191 if (rv) 2192 spa_set_log_state(spa, SPA_LOG_MISSING); 2193 break; 2194 } 2195 return (rv); 2196 } 2197 2198 /* 2199 * Passivate any log vdevs (note, does not apply to embedded log metaslabs). 2200 */ 2201 static boolean_t 2202 spa_passivate_log(spa_t *spa) 2203 { 2204 vdev_t *rvd = spa->spa_root_vdev; 2205 boolean_t slog_found = B_FALSE; 2206 2207 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 2208 2209 for (int c = 0; c < rvd->vdev_children; c++) { 2210 vdev_t *tvd = rvd->vdev_child[c]; 2211 2212 if (tvd->vdev_islog) { 2213 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 2214 metaslab_group_passivate(tvd->vdev_mg); 2215 slog_found = B_TRUE; 2216 } 2217 } 2218 2219 return (slog_found); 2220 } 2221 2222 /* 2223 * Activate any log vdevs (note, does not apply to embedded log metaslabs). 2224 */ 2225 static void 2226 spa_activate_log(spa_t *spa) 2227 { 2228 vdev_t *rvd = spa->spa_root_vdev; 2229 2230 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 2231 2232 for (int c = 0; c < rvd->vdev_children; c++) { 2233 vdev_t *tvd = rvd->vdev_child[c]; 2234 2235 if (tvd->vdev_islog) { 2236 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 2237 metaslab_group_activate(tvd->vdev_mg); 2238 } 2239 } 2240 } 2241 2242 int 2243 spa_reset_logs(spa_t *spa) 2244 { 2245 int error; 2246 2247 error = dmu_objset_find(spa_name(spa), zil_reset, 2248 NULL, DS_FIND_CHILDREN); 2249 if (error == 0) { 2250 /* 2251 * We successfully offlined the log device, sync out the 2252 * current txg so that the "stubby" block can be removed 2253 * by zil_sync(). 2254 */ 2255 txg_wait_synced(spa->spa_dsl_pool, 0); 2256 } 2257 return (error); 2258 } 2259 2260 static void 2261 spa_aux_check_removed(spa_aux_vdev_t *sav) 2262 { 2263 for (int i = 0; i < sav->sav_count; i++) 2264 spa_check_removed(sav->sav_vdevs[i]); 2265 } 2266 2267 void 2268 spa_claim_notify(zio_t *zio) 2269 { 2270 spa_t *spa = zio->io_spa; 2271 2272 if (zio->io_error) 2273 return; 2274 2275 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 2276 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 2277 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 2278 mutex_exit(&spa->spa_props_lock); 2279 } 2280 2281 typedef struct spa_load_error { 2282 boolean_t sle_verify_data; 2283 uint64_t sle_meta_count; 2284 uint64_t sle_data_count; 2285 } spa_load_error_t; 2286 2287 static void 2288 spa_load_verify_done(zio_t *zio) 2289 { 2290 blkptr_t *bp = zio->io_bp; 2291 spa_load_error_t *sle = zio->io_private; 2292 dmu_object_type_t type = BP_GET_TYPE(bp); 2293 int error = zio->io_error; 2294 spa_t *spa = zio->io_spa; 2295 2296 abd_free(zio->io_abd); 2297 if (error) { 2298 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 2299 type != DMU_OT_INTENT_LOG) 2300 atomic_inc_64(&sle->sle_meta_count); 2301 else 2302 atomic_inc_64(&sle->sle_data_count); 2303 } 2304 2305 mutex_enter(&spa->spa_scrub_lock); 2306 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 2307 cv_broadcast(&spa->spa_scrub_io_cv); 2308 mutex_exit(&spa->spa_scrub_lock); 2309 } 2310 2311 /* 2312 * Maximum number of inflight bytes is the log2 fraction of the arc size. 2313 * By default, we set it to 1/16th of the arc. 2314 */ 2315 static uint_t spa_load_verify_shift = 4; 2316 static int spa_load_verify_metadata = B_TRUE; 2317 static int spa_load_verify_data = B_TRUE; 2318 2319 static int 2320 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 2321 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 2322 { 2323 zio_t *rio = arg; 2324 spa_load_error_t *sle = rio->io_private; 2325 2326 (void) zilog, (void) dnp; 2327 2328 /* 2329 * Note: normally this routine will not be called if 2330 * spa_load_verify_metadata is not set. However, it may be useful 2331 * to manually set the flag after the traversal has begun. 2332 */ 2333 if (!spa_load_verify_metadata) 2334 return (0); 2335 2336 /* 2337 * Sanity check the block pointer in order to detect obvious damage 2338 * before using the contents in subsequent checks or in zio_read(). 2339 * When damaged consider it to be a metadata error since we cannot 2340 * trust the BP_GET_TYPE and BP_GET_LEVEL values. 2341 */ 2342 if (!zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_LOG)) { 2343 atomic_inc_64(&sle->sle_meta_count); 2344 return (0); 2345 } 2346 2347 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 2348 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 2349 return (0); 2350 2351 if (!BP_IS_METADATA(bp) && 2352 (!spa_load_verify_data || !sle->sle_verify_data)) 2353 return (0); 2354 2355 uint64_t maxinflight_bytes = 2356 arc_target_bytes() >> spa_load_verify_shift; 2357 size_t size = BP_GET_PSIZE(bp); 2358 2359 mutex_enter(&spa->spa_scrub_lock); 2360 while (spa->spa_load_verify_bytes >= maxinflight_bytes) 2361 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2362 spa->spa_load_verify_bytes += size; 2363 mutex_exit(&spa->spa_scrub_lock); 2364 2365 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size, 2366 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 2367 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 2368 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 2369 return (0); 2370 } 2371 2372 static int 2373 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 2374 { 2375 (void) dp, (void) arg; 2376 2377 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) 2378 return (SET_ERROR(ENAMETOOLONG)); 2379 2380 return (0); 2381 } 2382 2383 static int 2384 spa_load_verify(spa_t *spa) 2385 { 2386 zio_t *rio; 2387 spa_load_error_t sle = { 0 }; 2388 zpool_load_policy_t policy; 2389 boolean_t verify_ok = B_FALSE; 2390 int error = 0; 2391 2392 zpool_get_load_policy(spa->spa_config, &policy); 2393 2394 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND || 2395 policy.zlp_maxmeta == UINT64_MAX) 2396 return (0); 2397 2398 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 2399 error = dmu_objset_find_dp(spa->spa_dsl_pool, 2400 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, 2401 DS_FIND_CHILDREN); 2402 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 2403 if (error != 0) 2404 return (error); 2405 2406 /* 2407 * Verify data only if we are rewinding or error limit was set. 2408 * Otherwise nothing except dbgmsg care about it to waste time. 2409 */ 2410 sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) || 2411 (policy.zlp_maxdata < UINT64_MAX); 2412 2413 rio = zio_root(spa, NULL, &sle, 2414 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 2415 2416 if (spa_load_verify_metadata) { 2417 if (spa->spa_extreme_rewind) { 2418 spa_load_note(spa, "performing a complete scan of the " 2419 "pool since extreme rewind is on. This may take " 2420 "a very long time.\n (spa_load_verify_data=%u, " 2421 "spa_load_verify_metadata=%u)", 2422 spa_load_verify_data, spa_load_verify_metadata); 2423 } 2424 2425 error = traverse_pool(spa, spa->spa_verify_min_txg, 2426 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 2427 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio); 2428 } 2429 2430 (void) zio_wait(rio); 2431 ASSERT0(spa->spa_load_verify_bytes); 2432 2433 spa->spa_load_meta_errors = sle.sle_meta_count; 2434 spa->spa_load_data_errors = sle.sle_data_count; 2435 2436 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) { 2437 spa_load_note(spa, "spa_load_verify found %llu metadata errors " 2438 "and %llu data errors", (u_longlong_t)sle.sle_meta_count, 2439 (u_longlong_t)sle.sle_data_count); 2440 } 2441 2442 if (spa_load_verify_dryrun || 2443 (!error && sle.sle_meta_count <= policy.zlp_maxmeta && 2444 sle.sle_data_count <= policy.zlp_maxdata)) { 2445 int64_t loss = 0; 2446 2447 verify_ok = B_TRUE; 2448 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 2449 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 2450 2451 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 2452 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME, 2453 spa->spa_load_txg_ts); 2454 fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME, 2455 loss); 2456 fnvlist_add_uint64(spa->spa_load_info, 2457 ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count); 2458 fnvlist_add_uint64(spa->spa_load_info, 2459 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count); 2460 } else { 2461 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 2462 } 2463 2464 if (spa_load_verify_dryrun) 2465 return (0); 2466 2467 if (error) { 2468 if (error != ENXIO && error != EIO) 2469 error = SET_ERROR(EIO); 2470 return (error); 2471 } 2472 2473 return (verify_ok ? 0 : EIO); 2474 } 2475 2476 /* 2477 * Find a value in the pool props object. 2478 */ 2479 static void 2480 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 2481 { 2482 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 2483 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 2484 } 2485 2486 /* 2487 * Find a value in the pool directory object. 2488 */ 2489 static int 2490 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent) 2491 { 2492 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2493 name, sizeof (uint64_t), 1, val); 2494 2495 if (error != 0 && (error != ENOENT || log_enoent)) { 2496 spa_load_failed(spa, "couldn't get '%s' value in MOS directory " 2497 "[error=%d]", name, error); 2498 } 2499 2500 return (error); 2501 } 2502 2503 static int 2504 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 2505 { 2506 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 2507 return (SET_ERROR(err)); 2508 } 2509 2510 boolean_t 2511 spa_livelist_delete_check(spa_t *spa) 2512 { 2513 return (spa->spa_livelists_to_delete != 0); 2514 } 2515 2516 static boolean_t 2517 spa_livelist_delete_cb_check(void *arg, zthr_t *z) 2518 { 2519 (void) z; 2520 spa_t *spa = arg; 2521 return (spa_livelist_delete_check(spa)); 2522 } 2523 2524 static int 2525 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2526 { 2527 spa_t *spa = arg; 2528 zio_free(spa, tx->tx_txg, bp); 2529 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 2530 -bp_get_dsize_sync(spa, bp), 2531 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 2532 return (0); 2533 } 2534 2535 static int 2536 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp) 2537 { 2538 int err; 2539 zap_cursor_t zc; 2540 zap_attribute_t za; 2541 zap_cursor_init(&zc, os, zap_obj); 2542 err = zap_cursor_retrieve(&zc, &za); 2543 zap_cursor_fini(&zc); 2544 if (err == 0) 2545 *llp = za.za_first_integer; 2546 return (err); 2547 } 2548 2549 /* 2550 * Components of livelist deletion that must be performed in syncing 2551 * context: freeing block pointers and updating the pool-wide data 2552 * structures to indicate how much work is left to do 2553 */ 2554 typedef struct sublist_delete_arg { 2555 spa_t *spa; 2556 dsl_deadlist_t *ll; 2557 uint64_t key; 2558 bplist_t *to_free; 2559 } sublist_delete_arg_t; 2560 2561 static void 2562 sublist_delete_sync(void *arg, dmu_tx_t *tx) 2563 { 2564 sublist_delete_arg_t *sda = arg; 2565 spa_t *spa = sda->spa; 2566 dsl_deadlist_t *ll = sda->ll; 2567 uint64_t key = sda->key; 2568 bplist_t *to_free = sda->to_free; 2569 2570 bplist_iterate(to_free, delete_blkptr_cb, spa, tx); 2571 dsl_deadlist_remove_entry(ll, key, tx); 2572 } 2573 2574 typedef struct livelist_delete_arg { 2575 spa_t *spa; 2576 uint64_t ll_obj; 2577 uint64_t zap_obj; 2578 } livelist_delete_arg_t; 2579 2580 static void 2581 livelist_delete_sync(void *arg, dmu_tx_t *tx) 2582 { 2583 livelist_delete_arg_t *lda = arg; 2584 spa_t *spa = lda->spa; 2585 uint64_t ll_obj = lda->ll_obj; 2586 uint64_t zap_obj = lda->zap_obj; 2587 objset_t *mos = spa->spa_meta_objset; 2588 uint64_t count; 2589 2590 /* free the livelist and decrement the feature count */ 2591 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx)); 2592 dsl_deadlist_free(mos, ll_obj, tx); 2593 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx); 2594 VERIFY0(zap_count(mos, zap_obj, &count)); 2595 if (count == 0) { 2596 /* no more livelists to delete */ 2597 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT, 2598 DMU_POOL_DELETED_CLONES, tx)); 2599 VERIFY0(zap_destroy(mos, zap_obj, tx)); 2600 spa->spa_livelists_to_delete = 0; 2601 spa_notify_waiters(spa); 2602 } 2603 } 2604 2605 /* 2606 * Load in the value for the livelist to be removed and open it. Then, 2607 * load its first sublist and determine which block pointers should actually 2608 * be freed. Then, call a synctask which performs the actual frees and updates 2609 * the pool-wide livelist data. 2610 */ 2611 static void 2612 spa_livelist_delete_cb(void *arg, zthr_t *z) 2613 { 2614 spa_t *spa = arg; 2615 uint64_t ll_obj = 0, count; 2616 objset_t *mos = spa->spa_meta_objset; 2617 uint64_t zap_obj = spa->spa_livelists_to_delete; 2618 /* 2619 * Determine the next livelist to delete. This function should only 2620 * be called if there is at least one deleted clone. 2621 */ 2622 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj)); 2623 VERIFY0(zap_count(mos, ll_obj, &count)); 2624 if (count > 0) { 2625 dsl_deadlist_t *ll; 2626 dsl_deadlist_entry_t *dle; 2627 bplist_t to_free; 2628 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP); 2629 dsl_deadlist_open(ll, mos, ll_obj); 2630 dle = dsl_deadlist_first(ll); 2631 ASSERT3P(dle, !=, NULL); 2632 bplist_create(&to_free); 2633 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free, 2634 z, NULL); 2635 if (err == 0) { 2636 sublist_delete_arg_t sync_arg = { 2637 .spa = spa, 2638 .ll = ll, 2639 .key = dle->dle_mintxg, 2640 .to_free = &to_free 2641 }; 2642 zfs_dbgmsg("deleting sublist (id %llu) from" 2643 " livelist %llu, %lld remaining", 2644 (u_longlong_t)dle->dle_bpobj.bpo_object, 2645 (u_longlong_t)ll_obj, (longlong_t)count - 1); 2646 VERIFY0(dsl_sync_task(spa_name(spa), NULL, 2647 sublist_delete_sync, &sync_arg, 0, 2648 ZFS_SPACE_CHECK_DESTROY)); 2649 } else { 2650 VERIFY3U(err, ==, EINTR); 2651 } 2652 bplist_clear(&to_free); 2653 bplist_destroy(&to_free); 2654 dsl_deadlist_close(ll); 2655 kmem_free(ll, sizeof (dsl_deadlist_t)); 2656 } else { 2657 livelist_delete_arg_t sync_arg = { 2658 .spa = spa, 2659 .ll_obj = ll_obj, 2660 .zap_obj = zap_obj 2661 }; 2662 zfs_dbgmsg("deletion of livelist %llu completed", 2663 (u_longlong_t)ll_obj); 2664 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync, 2665 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY)); 2666 } 2667 } 2668 2669 static void 2670 spa_start_livelist_destroy_thread(spa_t *spa) 2671 { 2672 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL); 2673 spa->spa_livelist_delete_zthr = 2674 zthr_create("z_livelist_destroy", 2675 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa, 2676 minclsyspri); 2677 } 2678 2679 typedef struct livelist_new_arg { 2680 bplist_t *allocs; 2681 bplist_t *frees; 2682 } livelist_new_arg_t; 2683 2684 static int 2685 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 2686 dmu_tx_t *tx) 2687 { 2688 ASSERT(tx == NULL); 2689 livelist_new_arg_t *lna = arg; 2690 if (bp_freed) { 2691 bplist_append(lna->frees, bp); 2692 } else { 2693 bplist_append(lna->allocs, bp); 2694 zfs_livelist_condense_new_alloc++; 2695 } 2696 return (0); 2697 } 2698 2699 typedef struct livelist_condense_arg { 2700 spa_t *spa; 2701 bplist_t to_keep; 2702 uint64_t first_size; 2703 uint64_t next_size; 2704 } livelist_condense_arg_t; 2705 2706 static void 2707 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx) 2708 { 2709 livelist_condense_arg_t *lca = arg; 2710 spa_t *spa = lca->spa; 2711 bplist_t new_frees; 2712 dsl_dataset_t *ds = spa->spa_to_condense.ds; 2713 2714 /* Have we been cancelled? */ 2715 if (spa->spa_to_condense.cancelled) { 2716 zfs_livelist_condense_sync_cancel++; 2717 goto out; 2718 } 2719 2720 dsl_deadlist_entry_t *first = spa->spa_to_condense.first; 2721 dsl_deadlist_entry_t *next = spa->spa_to_condense.next; 2722 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist; 2723 2724 /* 2725 * It's possible that the livelist was changed while the zthr was 2726 * running. Therefore, we need to check for new blkptrs in the two 2727 * entries being condensed and continue to track them in the livelist. 2728 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl), 2729 * it's possible that the newly added blkptrs are FREEs or ALLOCs so 2730 * we need to sort them into two different bplists. 2731 */ 2732 uint64_t first_obj = first->dle_bpobj.bpo_object; 2733 uint64_t next_obj = next->dle_bpobj.bpo_object; 2734 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs; 2735 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs; 2736 2737 bplist_create(&new_frees); 2738 livelist_new_arg_t new_bps = { 2739 .allocs = &lca->to_keep, 2740 .frees = &new_frees, 2741 }; 2742 2743 if (cur_first_size > lca->first_size) { 2744 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj, 2745 livelist_track_new_cb, &new_bps, lca->first_size)); 2746 } 2747 if (cur_next_size > lca->next_size) { 2748 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj, 2749 livelist_track_new_cb, &new_bps, lca->next_size)); 2750 } 2751 2752 dsl_deadlist_clear_entry(first, ll, tx); 2753 ASSERT(bpobj_is_empty(&first->dle_bpobj)); 2754 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx); 2755 2756 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx); 2757 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx); 2758 bplist_destroy(&new_frees); 2759 2760 char dsname[ZFS_MAX_DATASET_NAME_LEN]; 2761 dsl_dataset_name(ds, dsname); 2762 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu " 2763 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu " 2764 "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname, 2765 (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj, 2766 (u_longlong_t)cur_first_size, (u_longlong_t)next_obj, 2767 (u_longlong_t)cur_next_size, 2768 (u_longlong_t)first->dle_bpobj.bpo_object, 2769 (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs); 2770 out: 2771 dmu_buf_rele(ds->ds_dbuf, spa); 2772 spa->spa_to_condense.ds = NULL; 2773 bplist_clear(&lca->to_keep); 2774 bplist_destroy(&lca->to_keep); 2775 kmem_free(lca, sizeof (livelist_condense_arg_t)); 2776 spa->spa_to_condense.syncing = B_FALSE; 2777 } 2778 2779 static void 2780 spa_livelist_condense_cb(void *arg, zthr_t *t) 2781 { 2782 while (zfs_livelist_condense_zthr_pause && 2783 !(zthr_has_waiters(t) || zthr_iscancelled(t))) 2784 delay(1); 2785 2786 spa_t *spa = arg; 2787 dsl_deadlist_entry_t *first = spa->spa_to_condense.first; 2788 dsl_deadlist_entry_t *next = spa->spa_to_condense.next; 2789 uint64_t first_size, next_size; 2790 2791 livelist_condense_arg_t *lca = 2792 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP); 2793 bplist_create(&lca->to_keep); 2794 2795 /* 2796 * Process the livelists (matching FREEs and ALLOCs) in open context 2797 * so we have minimal work in syncing context to condense. 2798 * 2799 * We save bpobj sizes (first_size and next_size) to use later in 2800 * syncing context to determine if entries were added to these sublists 2801 * while in open context. This is possible because the clone is still 2802 * active and open for normal writes and we want to make sure the new, 2803 * unprocessed blockpointers are inserted into the livelist normally. 2804 * 2805 * Note that dsl_process_sub_livelist() both stores the size number of 2806 * blockpointers and iterates over them while the bpobj's lock held, so 2807 * the sizes returned to us are consistent which what was actually 2808 * processed. 2809 */ 2810 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t, 2811 &first_size); 2812 if (err == 0) 2813 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep, 2814 t, &next_size); 2815 2816 if (err == 0) { 2817 while (zfs_livelist_condense_sync_pause && 2818 !(zthr_has_waiters(t) || zthr_iscancelled(t))) 2819 delay(1); 2820 2821 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 2822 dmu_tx_mark_netfree(tx); 2823 dmu_tx_hold_space(tx, 1); 2824 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE); 2825 if (err == 0) { 2826 /* 2827 * Prevent the condense zthr restarting before 2828 * the synctask completes. 2829 */ 2830 spa->spa_to_condense.syncing = B_TRUE; 2831 lca->spa = spa; 2832 lca->first_size = first_size; 2833 lca->next_size = next_size; 2834 dsl_sync_task_nowait(spa_get_dsl(spa), 2835 spa_livelist_condense_sync, lca, tx); 2836 dmu_tx_commit(tx); 2837 return; 2838 } 2839 } 2840 /* 2841 * Condensing can not continue: either it was externally stopped or 2842 * we were unable to assign to a tx because the pool has run out of 2843 * space. In the second case, we'll just end up trying to condense 2844 * again in a later txg. 2845 */ 2846 ASSERT(err != 0); 2847 bplist_clear(&lca->to_keep); 2848 bplist_destroy(&lca->to_keep); 2849 kmem_free(lca, sizeof (livelist_condense_arg_t)); 2850 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa); 2851 spa->spa_to_condense.ds = NULL; 2852 if (err == EINTR) 2853 zfs_livelist_condense_zthr_cancel++; 2854 } 2855 2856 /* 2857 * Check that there is something to condense but that a condense is not 2858 * already in progress and that condensing has not been cancelled. 2859 */ 2860 static boolean_t 2861 spa_livelist_condense_cb_check(void *arg, zthr_t *z) 2862 { 2863 (void) z; 2864 spa_t *spa = arg; 2865 if ((spa->spa_to_condense.ds != NULL) && 2866 (spa->spa_to_condense.syncing == B_FALSE) && 2867 (spa->spa_to_condense.cancelled == B_FALSE)) { 2868 return (B_TRUE); 2869 } 2870 return (B_FALSE); 2871 } 2872 2873 static void 2874 spa_start_livelist_condensing_thread(spa_t *spa) 2875 { 2876 spa->spa_to_condense.ds = NULL; 2877 spa->spa_to_condense.first = NULL; 2878 spa->spa_to_condense.next = NULL; 2879 spa->spa_to_condense.syncing = B_FALSE; 2880 spa->spa_to_condense.cancelled = B_FALSE; 2881 2882 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL); 2883 spa->spa_livelist_condense_zthr = 2884 zthr_create("z_livelist_condense", 2885 spa_livelist_condense_cb_check, 2886 spa_livelist_condense_cb, spa, minclsyspri); 2887 } 2888 2889 static void 2890 spa_spawn_aux_threads(spa_t *spa) 2891 { 2892 ASSERT(spa_writeable(spa)); 2893 2894 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2895 2896 spa_start_indirect_condensing_thread(spa); 2897 spa_start_livelist_destroy_thread(spa); 2898 spa_start_livelist_condensing_thread(spa); 2899 2900 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL); 2901 spa->spa_checkpoint_discard_zthr = 2902 zthr_create("z_checkpoint_discard", 2903 spa_checkpoint_discard_thread_check, 2904 spa_checkpoint_discard_thread, spa, minclsyspri); 2905 } 2906 2907 /* 2908 * Fix up config after a partly-completed split. This is done with the 2909 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 2910 * pool have that entry in their config, but only the splitting one contains 2911 * a list of all the guids of the vdevs that are being split off. 2912 * 2913 * This function determines what to do with that list: either rejoin 2914 * all the disks to the pool, or complete the splitting process. To attempt 2915 * the rejoin, each disk that is offlined is marked online again, and 2916 * we do a reopen() call. If the vdev label for every disk that was 2917 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 2918 * then we call vdev_split() on each disk, and complete the split. 2919 * 2920 * Otherwise we leave the config alone, with all the vdevs in place in 2921 * the original pool. 2922 */ 2923 static void 2924 spa_try_repair(spa_t *spa, nvlist_t *config) 2925 { 2926 uint_t extracted; 2927 uint64_t *glist; 2928 uint_t i, gcount; 2929 nvlist_t *nvl; 2930 vdev_t **vd; 2931 boolean_t attempt_reopen; 2932 2933 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 2934 return; 2935 2936 /* check that the config is complete */ 2937 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 2938 &glist, &gcount) != 0) 2939 return; 2940 2941 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 2942 2943 /* attempt to online all the vdevs & validate */ 2944 attempt_reopen = B_TRUE; 2945 for (i = 0; i < gcount; i++) { 2946 if (glist[i] == 0) /* vdev is hole */ 2947 continue; 2948 2949 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2950 if (vd[i] == NULL) { 2951 /* 2952 * Don't bother attempting to reopen the disks; 2953 * just do the split. 2954 */ 2955 attempt_reopen = B_FALSE; 2956 } else { 2957 /* attempt to re-online it */ 2958 vd[i]->vdev_offline = B_FALSE; 2959 } 2960 } 2961 2962 if (attempt_reopen) { 2963 vdev_reopen(spa->spa_root_vdev); 2964 2965 /* check each device to see what state it's in */ 2966 for (extracted = 0, i = 0; i < gcount; i++) { 2967 if (vd[i] != NULL && 2968 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2969 break; 2970 ++extracted; 2971 } 2972 } 2973 2974 /* 2975 * If every disk has been moved to the new pool, or if we never 2976 * even attempted to look at them, then we split them off for 2977 * good. 2978 */ 2979 if (!attempt_reopen || gcount == extracted) { 2980 for (i = 0; i < gcount; i++) 2981 if (vd[i] != NULL) 2982 vdev_split(vd[i]); 2983 vdev_reopen(spa->spa_root_vdev); 2984 } 2985 2986 kmem_free(vd, gcount * sizeof (vdev_t *)); 2987 } 2988 2989 static int 2990 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type) 2991 { 2992 const char *ereport = FM_EREPORT_ZFS_POOL; 2993 int error; 2994 2995 spa->spa_load_state = state; 2996 (void) spa_import_progress_set_state(spa_guid(spa), 2997 spa_load_state(spa)); 2998 2999 gethrestime(&spa->spa_loaded_ts); 3000 error = spa_load_impl(spa, type, &ereport); 3001 3002 /* 3003 * Don't count references from objsets that are already closed 3004 * and are making their way through the eviction process. 3005 */ 3006 spa_evicting_os_wait(spa); 3007 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 3008 if (error) { 3009 if (error != EEXIST) { 3010 spa->spa_loaded_ts.tv_sec = 0; 3011 spa->spa_loaded_ts.tv_nsec = 0; 3012 } 3013 if (error != EBADF) { 3014 (void) zfs_ereport_post(ereport, spa, 3015 NULL, NULL, NULL, 0); 3016 } 3017 } 3018 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 3019 spa->spa_ena = 0; 3020 3021 (void) spa_import_progress_set_state(spa_guid(spa), 3022 spa_load_state(spa)); 3023 3024 return (error); 3025 } 3026 3027 #ifdef ZFS_DEBUG 3028 /* 3029 * Count the number of per-vdev ZAPs associated with all of the vdevs in the 3030 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the 3031 * spa's per-vdev ZAP list. 3032 */ 3033 static uint64_t 3034 vdev_count_verify_zaps(vdev_t *vd) 3035 { 3036 spa_t *spa = vd->vdev_spa; 3037 uint64_t total = 0; 3038 3039 if (vd->vdev_top_zap != 0) { 3040 total++; 3041 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 3042 spa->spa_all_vdev_zaps, vd->vdev_top_zap)); 3043 } 3044 if (vd->vdev_leaf_zap != 0) { 3045 total++; 3046 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 3047 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); 3048 } 3049 3050 for (uint64_t i = 0; i < vd->vdev_children; i++) { 3051 total += vdev_count_verify_zaps(vd->vdev_child[i]); 3052 } 3053 3054 return (total); 3055 } 3056 #else 3057 #define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0) 3058 #endif 3059 3060 /* 3061 * Determine whether the activity check is required. 3062 */ 3063 static boolean_t 3064 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label, 3065 nvlist_t *config) 3066 { 3067 uint64_t state = 0; 3068 uint64_t hostid = 0; 3069 uint64_t tryconfig_txg = 0; 3070 uint64_t tryconfig_timestamp = 0; 3071 uint16_t tryconfig_mmp_seq = 0; 3072 nvlist_t *nvinfo; 3073 3074 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 3075 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO); 3076 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG, 3077 &tryconfig_txg); 3078 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 3079 &tryconfig_timestamp); 3080 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ, 3081 &tryconfig_mmp_seq); 3082 } 3083 3084 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state); 3085 3086 /* 3087 * Disable the MMP activity check - This is used by zdb which 3088 * is intended to be used on potentially active pools. 3089 */ 3090 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) 3091 return (B_FALSE); 3092 3093 /* 3094 * Skip the activity check when the MMP feature is disabled. 3095 */ 3096 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0) 3097 return (B_FALSE); 3098 3099 /* 3100 * If the tryconfig_ values are nonzero, they are the results of an 3101 * earlier tryimport. If they all match the uberblock we just found, 3102 * then the pool has not changed and we return false so we do not test 3103 * a second time. 3104 */ 3105 if (tryconfig_txg && tryconfig_txg == ub->ub_txg && 3106 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp && 3107 tryconfig_mmp_seq && tryconfig_mmp_seq == 3108 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) 3109 return (B_FALSE); 3110 3111 /* 3112 * Allow the activity check to be skipped when importing the pool 3113 * on the same host which last imported it. Since the hostid from 3114 * configuration may be stale use the one read from the label. 3115 */ 3116 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID)) 3117 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID); 3118 3119 if (hostid == spa_get_hostid(spa)) 3120 return (B_FALSE); 3121 3122 /* 3123 * Skip the activity test when the pool was cleanly exported. 3124 */ 3125 if (state != POOL_STATE_ACTIVE) 3126 return (B_FALSE); 3127 3128 return (B_TRUE); 3129 } 3130 3131 /* 3132 * Nanoseconds the activity check must watch for changes on-disk. 3133 */ 3134 static uint64_t 3135 spa_activity_check_duration(spa_t *spa, uberblock_t *ub) 3136 { 3137 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1); 3138 uint64_t multihost_interval = MSEC2NSEC( 3139 MMP_INTERVAL_OK(zfs_multihost_interval)); 3140 uint64_t import_delay = MAX(NANOSEC, import_intervals * 3141 multihost_interval); 3142 3143 /* 3144 * Local tunables determine a minimum duration except for the case 3145 * where we know when the remote host will suspend the pool if MMP 3146 * writes do not land. 3147 * 3148 * See Big Theory comment at the top of mmp.c for the reasoning behind 3149 * these cases and times. 3150 */ 3151 3152 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100); 3153 3154 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && 3155 MMP_FAIL_INT(ub) > 0) { 3156 3157 /* MMP on remote host will suspend pool after failed writes */ 3158 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) * 3159 MMP_IMPORT_SAFETY_FACTOR / 100; 3160 3161 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp " 3162 "mmp_fails=%llu ub_mmp mmp_interval=%llu " 3163 "import_intervals=%llu", (u_longlong_t)import_delay, 3164 (u_longlong_t)MMP_FAIL_INT(ub), 3165 (u_longlong_t)MMP_INTERVAL(ub), 3166 (u_longlong_t)import_intervals); 3167 3168 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && 3169 MMP_FAIL_INT(ub) == 0) { 3170 3171 /* MMP on remote host will never suspend pool */ 3172 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) + 3173 ub->ub_mmp_delay) * import_intervals); 3174 3175 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp " 3176 "mmp_interval=%llu ub_mmp_delay=%llu " 3177 "import_intervals=%llu", (u_longlong_t)import_delay, 3178 (u_longlong_t)MMP_INTERVAL(ub), 3179 (u_longlong_t)ub->ub_mmp_delay, 3180 (u_longlong_t)import_intervals); 3181 3182 } else if (MMP_VALID(ub)) { 3183 /* 3184 * zfs-0.7 compatibility case 3185 */ 3186 3187 import_delay = MAX(import_delay, (multihost_interval + 3188 ub->ub_mmp_delay) * import_intervals); 3189 3190 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu " 3191 "import_intervals=%llu leaves=%u", 3192 (u_longlong_t)import_delay, 3193 (u_longlong_t)ub->ub_mmp_delay, 3194 (u_longlong_t)import_intervals, 3195 vdev_count_leaves(spa)); 3196 } else { 3197 /* Using local tunings is the only reasonable option */ 3198 zfs_dbgmsg("pool last imported on non-MMP aware " 3199 "host using import_delay=%llu multihost_interval=%llu " 3200 "import_intervals=%llu", (u_longlong_t)import_delay, 3201 (u_longlong_t)multihost_interval, 3202 (u_longlong_t)import_intervals); 3203 } 3204 3205 return (import_delay); 3206 } 3207 3208 /* 3209 * Perform the import activity check. If the user canceled the import or 3210 * we detected activity then fail. 3211 */ 3212 static int 3213 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config) 3214 { 3215 uint64_t txg = ub->ub_txg; 3216 uint64_t timestamp = ub->ub_timestamp; 3217 uint64_t mmp_config = ub->ub_mmp_config; 3218 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0; 3219 uint64_t import_delay; 3220 hrtime_t import_expire; 3221 nvlist_t *mmp_label = NULL; 3222 vdev_t *rvd = spa->spa_root_vdev; 3223 kcondvar_t cv; 3224 kmutex_t mtx; 3225 int error = 0; 3226 3227 cv_init(&cv, NULL, CV_DEFAULT, NULL); 3228 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL); 3229 mutex_enter(&mtx); 3230 3231 /* 3232 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed 3233 * during the earlier tryimport. If the txg recorded there is 0 then 3234 * the pool is known to be active on another host. 3235 * 3236 * Otherwise, the pool might be in use on another host. Check for 3237 * changes in the uberblocks on disk if necessary. 3238 */ 3239 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 3240 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config, 3241 ZPOOL_CONFIG_LOAD_INFO); 3242 3243 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) && 3244 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) { 3245 vdev_uberblock_load(rvd, ub, &mmp_label); 3246 error = SET_ERROR(EREMOTEIO); 3247 goto out; 3248 } 3249 } 3250 3251 import_delay = spa_activity_check_duration(spa, ub); 3252 3253 /* Add a small random factor in case of simultaneous imports (0-25%) */ 3254 import_delay += import_delay * random_in_range(250) / 1000; 3255 3256 import_expire = gethrtime() + import_delay; 3257 3258 while (gethrtime() < import_expire) { 3259 (void) spa_import_progress_set_mmp_check(spa_guid(spa), 3260 NSEC2SEC(import_expire - gethrtime())); 3261 3262 vdev_uberblock_load(rvd, ub, &mmp_label); 3263 3264 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp || 3265 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) { 3266 zfs_dbgmsg("multihost activity detected " 3267 "txg %llu ub_txg %llu " 3268 "timestamp %llu ub_timestamp %llu " 3269 "mmp_config %#llx ub_mmp_config %#llx", 3270 (u_longlong_t)txg, (u_longlong_t)ub->ub_txg, 3271 (u_longlong_t)timestamp, 3272 (u_longlong_t)ub->ub_timestamp, 3273 (u_longlong_t)mmp_config, 3274 (u_longlong_t)ub->ub_mmp_config); 3275 3276 error = SET_ERROR(EREMOTEIO); 3277 break; 3278 } 3279 3280 if (mmp_label) { 3281 nvlist_free(mmp_label); 3282 mmp_label = NULL; 3283 } 3284 3285 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz); 3286 if (error != -1) { 3287 error = SET_ERROR(EINTR); 3288 break; 3289 } 3290 error = 0; 3291 } 3292 3293 out: 3294 mutex_exit(&mtx); 3295 mutex_destroy(&mtx); 3296 cv_destroy(&cv); 3297 3298 /* 3299 * If the pool is determined to be active store the status in the 3300 * spa->spa_load_info nvlist. If the remote hostname or hostid are 3301 * available from configuration read from disk store them as well. 3302 * This allows 'zpool import' to generate a more useful message. 3303 * 3304 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory) 3305 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool 3306 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool 3307 */ 3308 if (error == EREMOTEIO) { 3309 const char *hostname = "<unknown>"; 3310 uint64_t hostid = 0; 3311 3312 if (mmp_label) { 3313 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) { 3314 hostname = fnvlist_lookup_string(mmp_label, 3315 ZPOOL_CONFIG_HOSTNAME); 3316 fnvlist_add_string(spa->spa_load_info, 3317 ZPOOL_CONFIG_MMP_HOSTNAME, hostname); 3318 } 3319 3320 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) { 3321 hostid = fnvlist_lookup_uint64(mmp_label, 3322 ZPOOL_CONFIG_HOSTID); 3323 fnvlist_add_uint64(spa->spa_load_info, 3324 ZPOOL_CONFIG_MMP_HOSTID, hostid); 3325 } 3326 } 3327 3328 fnvlist_add_uint64(spa->spa_load_info, 3329 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE); 3330 fnvlist_add_uint64(spa->spa_load_info, 3331 ZPOOL_CONFIG_MMP_TXG, 0); 3332 3333 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO); 3334 } 3335 3336 if (mmp_label) 3337 nvlist_free(mmp_label); 3338 3339 return (error); 3340 } 3341 3342 static int 3343 spa_verify_host(spa_t *spa, nvlist_t *mos_config) 3344 { 3345 uint64_t hostid; 3346 char *hostname; 3347 uint64_t myhostid = 0; 3348 3349 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config, 3350 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 3351 hostname = fnvlist_lookup_string(mos_config, 3352 ZPOOL_CONFIG_HOSTNAME); 3353 3354 myhostid = zone_get_hostid(NULL); 3355 3356 if (hostid != 0 && myhostid != 0 && hostid != myhostid) { 3357 cmn_err(CE_WARN, "pool '%s' could not be " 3358 "loaded as it was last accessed by " 3359 "another system (host: %s hostid: 0x%llx). " 3360 "See: https://openzfs.github.io/openzfs-docs/msg/" 3361 "ZFS-8000-EY", 3362 spa_name(spa), hostname, (u_longlong_t)hostid); 3363 spa_load_failed(spa, "hostid verification failed: pool " 3364 "last accessed by host: %s (hostid: 0x%llx)", 3365 hostname, (u_longlong_t)hostid); 3366 return (SET_ERROR(EBADF)); 3367 } 3368 } 3369 3370 return (0); 3371 } 3372 3373 static int 3374 spa_ld_parse_config(spa_t *spa, spa_import_type_t type) 3375 { 3376 int error = 0; 3377 nvlist_t *nvtree, *nvl, *config = spa->spa_config; 3378 int parse; 3379 vdev_t *rvd; 3380 uint64_t pool_guid; 3381 char *comment; 3382 char *compatibility; 3383 3384 /* 3385 * Versioning wasn't explicitly added to the label until later, so if 3386 * it's not present treat it as the initial version. 3387 */ 3388 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 3389 &spa->spa_ubsync.ub_version) != 0) 3390 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 3391 3392 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 3393 spa_load_failed(spa, "invalid config provided: '%s' missing", 3394 ZPOOL_CONFIG_POOL_GUID); 3395 return (SET_ERROR(EINVAL)); 3396 } 3397 3398 /* 3399 * If we are doing an import, ensure that the pool is not already 3400 * imported by checking if its pool guid already exists in the 3401 * spa namespace. 3402 * 3403 * The only case that we allow an already imported pool to be 3404 * imported again, is when the pool is checkpointed and we want to 3405 * look at its checkpointed state from userland tools like zdb. 3406 */ 3407 #ifdef _KERNEL 3408 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 3409 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 3410 spa_guid_exists(pool_guid, 0)) { 3411 #else 3412 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 3413 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 3414 spa_guid_exists(pool_guid, 0) && 3415 !spa_importing_readonly_checkpoint(spa)) { 3416 #endif 3417 spa_load_failed(spa, "a pool with guid %llu is already open", 3418 (u_longlong_t)pool_guid); 3419 return (SET_ERROR(EEXIST)); 3420 } 3421 3422 spa->spa_config_guid = pool_guid; 3423 3424 nvlist_free(spa->spa_load_info); 3425 spa->spa_load_info = fnvlist_alloc(); 3426 3427 ASSERT(spa->spa_comment == NULL); 3428 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 3429 spa->spa_comment = spa_strdup(comment); 3430 3431 ASSERT(spa->spa_compatibility == NULL); 3432 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY, 3433 &compatibility) == 0) 3434 spa->spa_compatibility = spa_strdup(compatibility); 3435 3436 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 3437 &spa->spa_config_txg); 3438 3439 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0) 3440 spa->spa_config_splitting = fnvlist_dup(nvl); 3441 3442 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) { 3443 spa_load_failed(spa, "invalid config provided: '%s' missing", 3444 ZPOOL_CONFIG_VDEV_TREE); 3445 return (SET_ERROR(EINVAL)); 3446 } 3447 3448 /* 3449 * Create "The Godfather" zio to hold all async IOs 3450 */ 3451 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3452 KM_SLEEP); 3453 for (int i = 0; i < max_ncpus; i++) { 3454 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3455 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3456 ZIO_FLAG_GODFATHER); 3457 } 3458 3459 /* 3460 * Parse the configuration into a vdev tree. We explicitly set the 3461 * value that will be returned by spa_version() since parsing the 3462 * configuration requires knowing the version number. 3463 */ 3464 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3465 parse = (type == SPA_IMPORT_EXISTING ? 3466 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 3467 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse); 3468 spa_config_exit(spa, SCL_ALL, FTAG); 3469 3470 if (error != 0) { 3471 spa_load_failed(spa, "unable to parse config [error=%d]", 3472 error); 3473 return (error); 3474 } 3475 3476 ASSERT(spa->spa_root_vdev == rvd); 3477 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 3478 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 3479 3480 if (type != SPA_IMPORT_ASSEMBLE) { 3481 ASSERT(spa_guid(spa) == pool_guid); 3482 } 3483 3484 return (0); 3485 } 3486 3487 /* 3488 * Recursively open all vdevs in the vdev tree. This function is called twice: 3489 * first with the untrusted config, then with the trusted config. 3490 */ 3491 static int 3492 spa_ld_open_vdevs(spa_t *spa) 3493 { 3494 int error = 0; 3495 3496 /* 3497 * spa_missing_tvds_allowed defines how many top-level vdevs can be 3498 * missing/unopenable for the root vdev to be still considered openable. 3499 */ 3500 if (spa->spa_trust_config) { 3501 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds; 3502 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) { 3503 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile; 3504 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) { 3505 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan; 3506 } else { 3507 spa->spa_missing_tvds_allowed = 0; 3508 } 3509 3510 spa->spa_missing_tvds_allowed = 3511 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed); 3512 3513 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3514 error = vdev_open(spa->spa_root_vdev); 3515 spa_config_exit(spa, SCL_ALL, FTAG); 3516 3517 if (spa->spa_missing_tvds != 0) { 3518 spa_load_note(spa, "vdev tree has %lld missing top-level " 3519 "vdevs.", (u_longlong_t)spa->spa_missing_tvds); 3520 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) { 3521 /* 3522 * Although theoretically we could allow users to open 3523 * incomplete pools in RW mode, we'd need to add a lot 3524 * of extra logic (e.g. adjust pool space to account 3525 * for missing vdevs). 3526 * This limitation also prevents users from accidentally 3527 * opening the pool in RW mode during data recovery and 3528 * damaging it further. 3529 */ 3530 spa_load_note(spa, "pools with missing top-level " 3531 "vdevs can only be opened in read-only mode."); 3532 error = SET_ERROR(ENXIO); 3533 } else { 3534 spa_load_note(spa, "current settings allow for maximum " 3535 "%lld missing top-level vdevs at this stage.", 3536 (u_longlong_t)spa->spa_missing_tvds_allowed); 3537 } 3538 } 3539 if (error != 0) { 3540 spa_load_failed(spa, "unable to open vdev tree [error=%d]", 3541 error); 3542 } 3543 if (spa->spa_missing_tvds != 0 || error != 0) 3544 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2); 3545 3546 return (error); 3547 } 3548 3549 /* 3550 * We need to validate the vdev labels against the configuration that 3551 * we have in hand. This function is called twice: first with an untrusted 3552 * config, then with a trusted config. The validation is more strict when the 3553 * config is trusted. 3554 */ 3555 static int 3556 spa_ld_validate_vdevs(spa_t *spa) 3557 { 3558 int error = 0; 3559 vdev_t *rvd = spa->spa_root_vdev; 3560 3561 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3562 error = vdev_validate(rvd); 3563 spa_config_exit(spa, SCL_ALL, FTAG); 3564 3565 if (error != 0) { 3566 spa_load_failed(spa, "vdev_validate failed [error=%d]", error); 3567 return (error); 3568 } 3569 3570 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 3571 spa_load_failed(spa, "cannot open vdev tree after invalidating " 3572 "some vdevs"); 3573 vdev_dbgmsg_print_tree(rvd, 2); 3574 return (SET_ERROR(ENXIO)); 3575 } 3576 3577 return (0); 3578 } 3579 3580 static void 3581 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub) 3582 { 3583 spa->spa_state = POOL_STATE_ACTIVE; 3584 spa->spa_ubsync = spa->spa_uberblock; 3585 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 3586 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 3587 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 3588 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 3589 spa->spa_claim_max_txg = spa->spa_first_txg; 3590 spa->spa_prev_software_version = ub->ub_software_version; 3591 } 3592 3593 static int 3594 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type) 3595 { 3596 vdev_t *rvd = spa->spa_root_vdev; 3597 nvlist_t *label; 3598 uberblock_t *ub = &spa->spa_uberblock; 3599 boolean_t activity_check = B_FALSE; 3600 3601 /* 3602 * If we are opening the checkpointed state of the pool by 3603 * rewinding to it, at this point we will have written the 3604 * checkpointed uberblock to the vdev labels, so searching 3605 * the labels will find the right uberblock. However, if 3606 * we are opening the checkpointed state read-only, we have 3607 * not modified the labels. Therefore, we must ignore the 3608 * labels and continue using the spa_uberblock that was set 3609 * by spa_ld_checkpoint_rewind. 3610 * 3611 * Note that it would be fine to ignore the labels when 3612 * rewinding (opening writeable) as well. However, if we 3613 * crash just after writing the labels, we will end up 3614 * searching the labels. Doing so in the common case means 3615 * that this code path gets exercised normally, rather than 3616 * just in the edge case. 3617 */ 3618 if (ub->ub_checkpoint_txg != 0 && 3619 spa_importing_readonly_checkpoint(spa)) { 3620 spa_ld_select_uberblock_done(spa, ub); 3621 return (0); 3622 } 3623 3624 /* 3625 * Find the best uberblock. 3626 */ 3627 vdev_uberblock_load(rvd, ub, &label); 3628 3629 /* 3630 * If we weren't able to find a single valid uberblock, return failure. 3631 */ 3632 if (ub->ub_txg == 0) { 3633 nvlist_free(label); 3634 spa_load_failed(spa, "no valid uberblock found"); 3635 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 3636 } 3637 3638 if (spa->spa_load_max_txg != UINT64_MAX) { 3639 (void) spa_import_progress_set_max_txg(spa_guid(spa), 3640 (u_longlong_t)spa->spa_load_max_txg); 3641 } 3642 spa_load_note(spa, "using uberblock with txg=%llu", 3643 (u_longlong_t)ub->ub_txg); 3644 3645 3646 /* 3647 * For pools which have the multihost property on determine if the 3648 * pool is truly inactive and can be safely imported. Prevent 3649 * hosts which don't have a hostid set from importing the pool. 3650 */ 3651 activity_check = spa_activity_check_required(spa, ub, label, 3652 spa->spa_config); 3653 if (activity_check) { 3654 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay && 3655 spa_get_hostid(spa) == 0) { 3656 nvlist_free(label); 3657 fnvlist_add_uint64(spa->spa_load_info, 3658 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 3659 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 3660 } 3661 3662 int error = spa_activity_check(spa, ub, spa->spa_config); 3663 if (error) { 3664 nvlist_free(label); 3665 return (error); 3666 } 3667 3668 fnvlist_add_uint64(spa->spa_load_info, 3669 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE); 3670 fnvlist_add_uint64(spa->spa_load_info, 3671 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg); 3672 fnvlist_add_uint16(spa->spa_load_info, 3673 ZPOOL_CONFIG_MMP_SEQ, 3674 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)); 3675 } 3676 3677 /* 3678 * If the pool has an unsupported version we can't open it. 3679 */ 3680 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 3681 nvlist_free(label); 3682 spa_load_failed(spa, "version %llu is not supported", 3683 (u_longlong_t)ub->ub_version); 3684 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 3685 } 3686 3687 if (ub->ub_version >= SPA_VERSION_FEATURES) { 3688 nvlist_t *features; 3689 3690 /* 3691 * If we weren't able to find what's necessary for reading the 3692 * MOS in the label, return failure. 3693 */ 3694 if (label == NULL) { 3695 spa_load_failed(spa, "label config unavailable"); 3696 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 3697 ENXIO)); 3698 } 3699 3700 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ, 3701 &features) != 0) { 3702 nvlist_free(label); 3703 spa_load_failed(spa, "invalid label: '%s' missing", 3704 ZPOOL_CONFIG_FEATURES_FOR_READ); 3705 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 3706 ENXIO)); 3707 } 3708 3709 /* 3710 * Update our in-core representation with the definitive values 3711 * from the label. 3712 */ 3713 nvlist_free(spa->spa_label_features); 3714 spa->spa_label_features = fnvlist_dup(features); 3715 } 3716 3717 nvlist_free(label); 3718 3719 /* 3720 * Look through entries in the label nvlist's features_for_read. If 3721 * there is a feature listed there which we don't understand then we 3722 * cannot open a pool. 3723 */ 3724 if (ub->ub_version >= SPA_VERSION_FEATURES) { 3725 nvlist_t *unsup_feat; 3726 3727 unsup_feat = fnvlist_alloc(); 3728 3729 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 3730 NULL); nvp != NULL; 3731 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 3732 if (!zfeature_is_supported(nvpair_name(nvp))) { 3733 fnvlist_add_string(unsup_feat, 3734 nvpair_name(nvp), ""); 3735 } 3736 } 3737 3738 if (!nvlist_empty(unsup_feat)) { 3739 fnvlist_add_nvlist(spa->spa_load_info, 3740 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 3741 nvlist_free(unsup_feat); 3742 spa_load_failed(spa, "some features are unsupported"); 3743 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 3744 ENOTSUP)); 3745 } 3746 3747 nvlist_free(unsup_feat); 3748 } 3749 3750 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 3751 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3752 spa_try_repair(spa, spa->spa_config); 3753 spa_config_exit(spa, SCL_ALL, FTAG); 3754 nvlist_free(spa->spa_config_splitting); 3755 spa->spa_config_splitting = NULL; 3756 } 3757 3758 /* 3759 * Initialize internal SPA structures. 3760 */ 3761 spa_ld_select_uberblock_done(spa, ub); 3762 3763 return (0); 3764 } 3765 3766 static int 3767 spa_ld_open_rootbp(spa_t *spa) 3768 { 3769 int error = 0; 3770 vdev_t *rvd = spa->spa_root_vdev; 3771 3772 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 3773 if (error != 0) { 3774 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init " 3775 "[error=%d]", error); 3776 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3777 } 3778 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 3779 3780 return (0); 3781 } 3782 3783 static int 3784 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type, 3785 boolean_t reloading) 3786 { 3787 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 3788 nvlist_t *nv, *mos_config, *policy; 3789 int error = 0, copy_error; 3790 uint64_t healthy_tvds, healthy_tvds_mos; 3791 uint64_t mos_config_txg; 3792 3793 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE) 3794 != 0) 3795 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3796 3797 /* 3798 * If we're assembling a pool from a split, the config provided is 3799 * already trusted so there is nothing to do. 3800 */ 3801 if (type == SPA_IMPORT_ASSEMBLE) 3802 return (0); 3803 3804 healthy_tvds = spa_healthy_core_tvds(spa); 3805 3806 if (load_nvlist(spa, spa->spa_config_object, &mos_config) 3807 != 0) { 3808 spa_load_failed(spa, "unable to retrieve MOS config"); 3809 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3810 } 3811 3812 /* 3813 * If we are doing an open, pool owner wasn't verified yet, thus do 3814 * the verification here. 3815 */ 3816 if (spa->spa_load_state == SPA_LOAD_OPEN) { 3817 error = spa_verify_host(spa, mos_config); 3818 if (error != 0) { 3819 nvlist_free(mos_config); 3820 return (error); 3821 } 3822 } 3823 3824 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE); 3825 3826 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3827 3828 /* 3829 * Build a new vdev tree from the trusted config 3830 */ 3831 error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD); 3832 if (error != 0) { 3833 nvlist_free(mos_config); 3834 spa_config_exit(spa, SCL_ALL, FTAG); 3835 spa_load_failed(spa, "spa_config_parse failed [error=%d]", 3836 error); 3837 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 3838 } 3839 3840 /* 3841 * Vdev paths in the MOS may be obsolete. If the untrusted config was 3842 * obtained by scanning /dev/dsk, then it will have the right vdev 3843 * paths. We update the trusted MOS config with this information. 3844 * We first try to copy the paths with vdev_copy_path_strict, which 3845 * succeeds only when both configs have exactly the same vdev tree. 3846 * If that fails, we fall back to a more flexible method that has a 3847 * best effort policy. 3848 */ 3849 copy_error = vdev_copy_path_strict(rvd, mrvd); 3850 if (copy_error != 0 || spa_load_print_vdev_tree) { 3851 spa_load_note(spa, "provided vdev tree:"); 3852 vdev_dbgmsg_print_tree(rvd, 2); 3853 spa_load_note(spa, "MOS vdev tree:"); 3854 vdev_dbgmsg_print_tree(mrvd, 2); 3855 } 3856 if (copy_error != 0) { 3857 spa_load_note(spa, "vdev_copy_path_strict failed, falling " 3858 "back to vdev_copy_path_relaxed"); 3859 vdev_copy_path_relaxed(rvd, mrvd); 3860 } 3861 3862 vdev_close(rvd); 3863 vdev_free(rvd); 3864 spa->spa_root_vdev = mrvd; 3865 rvd = mrvd; 3866 spa_config_exit(spa, SCL_ALL, FTAG); 3867 3868 /* 3869 * We will use spa_config if we decide to reload the spa or if spa_load 3870 * fails and we rewind. We must thus regenerate the config using the 3871 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to 3872 * pass settings on how to load the pool and is not stored in the MOS. 3873 * We copy it over to our new, trusted config. 3874 */ 3875 mos_config_txg = fnvlist_lookup_uint64(mos_config, 3876 ZPOOL_CONFIG_POOL_TXG); 3877 nvlist_free(mos_config); 3878 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE); 3879 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY, 3880 &policy) == 0) 3881 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy); 3882 spa_config_set(spa, mos_config); 3883 spa->spa_config_source = SPA_CONFIG_SRC_MOS; 3884 3885 /* 3886 * Now that we got the config from the MOS, we should be more strict 3887 * in checking blkptrs and can make assumptions about the consistency 3888 * of the vdev tree. spa_trust_config must be set to true before opening 3889 * vdevs in order for them to be writeable. 3890 */ 3891 spa->spa_trust_config = B_TRUE; 3892 3893 /* 3894 * Open and validate the new vdev tree 3895 */ 3896 error = spa_ld_open_vdevs(spa); 3897 if (error != 0) 3898 return (error); 3899 3900 error = spa_ld_validate_vdevs(spa); 3901 if (error != 0) 3902 return (error); 3903 3904 if (copy_error != 0 || spa_load_print_vdev_tree) { 3905 spa_load_note(spa, "final vdev tree:"); 3906 vdev_dbgmsg_print_tree(rvd, 2); 3907 } 3908 3909 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT && 3910 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) { 3911 /* 3912 * Sanity check to make sure that we are indeed loading the 3913 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds 3914 * in the config provided and they happened to be the only ones 3915 * to have the latest uberblock, we could involuntarily perform 3916 * an extreme rewind. 3917 */ 3918 healthy_tvds_mos = spa_healthy_core_tvds(spa); 3919 if (healthy_tvds_mos - healthy_tvds >= 3920 SPA_SYNC_MIN_VDEVS) { 3921 spa_load_note(spa, "config provided misses too many " 3922 "top-level vdevs compared to MOS (%lld vs %lld). ", 3923 (u_longlong_t)healthy_tvds, 3924 (u_longlong_t)healthy_tvds_mos); 3925 spa_load_note(spa, "vdev tree:"); 3926 vdev_dbgmsg_print_tree(rvd, 2); 3927 if (reloading) { 3928 spa_load_failed(spa, "config was already " 3929 "provided from MOS. Aborting."); 3930 return (spa_vdev_err(rvd, 3931 VDEV_AUX_CORRUPT_DATA, EIO)); 3932 } 3933 spa_load_note(spa, "spa must be reloaded using MOS " 3934 "config"); 3935 return (SET_ERROR(EAGAIN)); 3936 } 3937 } 3938 3939 error = spa_check_for_missing_logs(spa); 3940 if (error != 0) 3941 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 3942 3943 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) { 3944 spa_load_failed(spa, "uberblock guid sum doesn't match MOS " 3945 "guid sum (%llu != %llu)", 3946 (u_longlong_t)spa->spa_uberblock.ub_guid_sum, 3947 (u_longlong_t)rvd->vdev_guid_sum); 3948 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 3949 ENXIO)); 3950 } 3951 3952 return (0); 3953 } 3954 3955 static int 3956 spa_ld_open_indirect_vdev_metadata(spa_t *spa) 3957 { 3958 int error = 0; 3959 vdev_t *rvd = spa->spa_root_vdev; 3960 3961 /* 3962 * Everything that we read before spa_remove_init() must be stored 3963 * on concreted vdevs. Therefore we do this as early as possible. 3964 */ 3965 error = spa_remove_init(spa); 3966 if (error != 0) { 3967 spa_load_failed(spa, "spa_remove_init failed [error=%d]", 3968 error); 3969 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3970 } 3971 3972 /* 3973 * Retrieve information needed to condense indirect vdev mappings. 3974 */ 3975 error = spa_condense_init(spa); 3976 if (error != 0) { 3977 spa_load_failed(spa, "spa_condense_init failed [error=%d]", 3978 error); 3979 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 3980 } 3981 3982 return (0); 3983 } 3984 3985 static int 3986 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep) 3987 { 3988 int error = 0; 3989 vdev_t *rvd = spa->spa_root_vdev; 3990 3991 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 3992 boolean_t missing_feat_read = B_FALSE; 3993 nvlist_t *unsup_feat, *enabled_feat; 3994 3995 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 3996 &spa->spa_feat_for_read_obj, B_TRUE) != 0) { 3997 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3998 } 3999 4000 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 4001 &spa->spa_feat_for_write_obj, B_TRUE) != 0) { 4002 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4003 } 4004 4005 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 4006 &spa->spa_feat_desc_obj, B_TRUE) != 0) { 4007 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4008 } 4009 4010 enabled_feat = fnvlist_alloc(); 4011 unsup_feat = fnvlist_alloc(); 4012 4013 if (!spa_features_check(spa, B_FALSE, 4014 unsup_feat, enabled_feat)) 4015 missing_feat_read = B_TRUE; 4016 4017 if (spa_writeable(spa) || 4018 spa->spa_load_state == SPA_LOAD_TRYIMPORT) { 4019 if (!spa_features_check(spa, B_TRUE, 4020 unsup_feat, enabled_feat)) { 4021 *missing_feat_writep = B_TRUE; 4022 } 4023 } 4024 4025 fnvlist_add_nvlist(spa->spa_load_info, 4026 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 4027 4028 if (!nvlist_empty(unsup_feat)) { 4029 fnvlist_add_nvlist(spa->spa_load_info, 4030 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 4031 } 4032 4033 fnvlist_free(enabled_feat); 4034 fnvlist_free(unsup_feat); 4035 4036 if (!missing_feat_read) { 4037 fnvlist_add_boolean(spa->spa_load_info, 4038 ZPOOL_CONFIG_CAN_RDONLY); 4039 } 4040 4041 /* 4042 * If the state is SPA_LOAD_TRYIMPORT, our objective is 4043 * twofold: to determine whether the pool is available for 4044 * import in read-write mode and (if it is not) whether the 4045 * pool is available for import in read-only mode. If the pool 4046 * is available for import in read-write mode, it is displayed 4047 * as available in userland; if it is not available for import 4048 * in read-only mode, it is displayed as unavailable in 4049 * userland. If the pool is available for import in read-only 4050 * mode but not read-write mode, it is displayed as unavailable 4051 * in userland with a special note that the pool is actually 4052 * available for open in read-only mode. 4053 * 4054 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 4055 * missing a feature for write, we must first determine whether 4056 * the pool can be opened read-only before returning to 4057 * userland in order to know whether to display the 4058 * abovementioned note. 4059 */ 4060 if (missing_feat_read || (*missing_feat_writep && 4061 spa_writeable(spa))) { 4062 spa_load_failed(spa, "pool uses unsupported features"); 4063 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 4064 ENOTSUP)); 4065 } 4066 4067 /* 4068 * Load refcounts for ZFS features from disk into an in-memory 4069 * cache during SPA initialization. 4070 */ 4071 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 4072 uint64_t refcount; 4073 4074 error = feature_get_refcount_from_disk(spa, 4075 &spa_feature_table[i], &refcount); 4076 if (error == 0) { 4077 spa->spa_feat_refcount_cache[i] = refcount; 4078 } else if (error == ENOTSUP) { 4079 spa->spa_feat_refcount_cache[i] = 4080 SPA_FEATURE_DISABLED; 4081 } else { 4082 spa_load_failed(spa, "error getting refcount " 4083 "for feature %s [error=%d]", 4084 spa_feature_table[i].fi_guid, error); 4085 return (spa_vdev_err(rvd, 4086 VDEV_AUX_CORRUPT_DATA, EIO)); 4087 } 4088 } 4089 } 4090 4091 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 4092 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 4093 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0) 4094 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4095 } 4096 4097 /* 4098 * Encryption was added before bookmark_v2, even though bookmark_v2 4099 * is now a dependency. If this pool has encryption enabled without 4100 * bookmark_v2, trigger an errata message. 4101 */ 4102 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) && 4103 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) { 4104 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION; 4105 } 4106 4107 return (0); 4108 } 4109 4110 static int 4111 spa_ld_load_special_directories(spa_t *spa) 4112 { 4113 int error = 0; 4114 vdev_t *rvd = spa->spa_root_vdev; 4115 4116 spa->spa_is_initializing = B_TRUE; 4117 error = dsl_pool_open(spa->spa_dsl_pool); 4118 spa->spa_is_initializing = B_FALSE; 4119 if (error != 0) { 4120 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error); 4121 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4122 } 4123 4124 return (0); 4125 } 4126 4127 static int 4128 spa_ld_get_props(spa_t *spa) 4129 { 4130 int error = 0; 4131 uint64_t obj; 4132 vdev_t *rvd = spa->spa_root_vdev; 4133 4134 /* Grab the checksum salt from the MOS. */ 4135 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 4136 DMU_POOL_CHECKSUM_SALT, 1, 4137 sizeof (spa->spa_cksum_salt.zcs_bytes), 4138 spa->spa_cksum_salt.zcs_bytes); 4139 if (error == ENOENT) { 4140 /* Generate a new salt for subsequent use */ 4141 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 4142 sizeof (spa->spa_cksum_salt.zcs_bytes)); 4143 } else if (error != 0) { 4144 spa_load_failed(spa, "unable to retrieve checksum salt from " 4145 "MOS [error=%d]", error); 4146 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4147 } 4148 4149 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0) 4150 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4151 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 4152 if (error != 0) { 4153 spa_load_failed(spa, "error opening deferred-frees bpobj " 4154 "[error=%d]", error); 4155 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4156 } 4157 4158 /* 4159 * Load the bit that tells us to use the new accounting function 4160 * (raid-z deflation). If we have an older pool, this will not 4161 * be present. 4162 */ 4163 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE); 4164 if (error != 0 && error != ENOENT) 4165 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4166 4167 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 4168 &spa->spa_creation_version, B_FALSE); 4169 if (error != 0 && error != ENOENT) 4170 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4171 4172 /* 4173 * Load the persistent error log. If we have an older pool, this will 4174 * not be present. 4175 */ 4176 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last, 4177 B_FALSE); 4178 if (error != 0 && error != ENOENT) 4179 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4180 4181 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 4182 &spa->spa_errlog_scrub, B_FALSE); 4183 if (error != 0 && error != ENOENT) 4184 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4185 4186 /* 4187 * Load the livelist deletion field. If a livelist is queued for 4188 * deletion, indicate that in the spa 4189 */ 4190 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES, 4191 &spa->spa_livelists_to_delete, B_FALSE); 4192 if (error != 0 && error != ENOENT) 4193 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4194 4195 /* 4196 * Load the history object. If we have an older pool, this 4197 * will not be present. 4198 */ 4199 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE); 4200 if (error != 0 && error != ENOENT) 4201 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4202 4203 /* 4204 * Load the per-vdev ZAP map. If we have an older pool, this will not 4205 * be present; in this case, defer its creation to a later time to 4206 * avoid dirtying the MOS this early / out of sync context. See 4207 * spa_sync_config_object. 4208 */ 4209 4210 /* The sentinel is only available in the MOS config. */ 4211 nvlist_t *mos_config; 4212 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { 4213 spa_load_failed(spa, "unable to retrieve MOS config"); 4214 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4215 } 4216 4217 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, 4218 &spa->spa_all_vdev_zaps, B_FALSE); 4219 4220 if (error == ENOENT) { 4221 VERIFY(!nvlist_exists(mos_config, 4222 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 4223 spa->spa_avz_action = AVZ_ACTION_INITIALIZE; 4224 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 4225 } else if (error != 0) { 4226 nvlist_free(mos_config); 4227 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4228 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { 4229 /* 4230 * An older version of ZFS overwrote the sentinel value, so 4231 * we have orphaned per-vdev ZAPs in the MOS. Defer their 4232 * destruction to later; see spa_sync_config_object. 4233 */ 4234 spa->spa_avz_action = AVZ_ACTION_DESTROY; 4235 /* 4236 * We're assuming that no vdevs have had their ZAPs created 4237 * before this. Better be sure of it. 4238 */ 4239 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 4240 } 4241 nvlist_free(mos_config); 4242 4243 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 4244 4245 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object, 4246 B_FALSE); 4247 if (error && error != ENOENT) 4248 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4249 4250 if (error == 0) { 4251 uint64_t autoreplace = 0; 4252 4253 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 4254 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 4255 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 4256 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 4257 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 4258 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost); 4259 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim); 4260 spa->spa_autoreplace = (autoreplace != 0); 4261 } 4262 4263 /* 4264 * If we are importing a pool with missing top-level vdevs, 4265 * we enforce that the pool doesn't panic or get suspended on 4266 * error since the likelihood of missing data is extremely high. 4267 */ 4268 if (spa->spa_missing_tvds > 0 && 4269 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE && 4270 spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4271 spa_load_note(spa, "forcing failmode to 'continue' " 4272 "as some top level vdevs are missing"); 4273 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE; 4274 } 4275 4276 return (0); 4277 } 4278 4279 static int 4280 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type) 4281 { 4282 int error = 0; 4283 vdev_t *rvd = spa->spa_root_vdev; 4284 4285 /* 4286 * If we're assembling the pool from the split-off vdevs of 4287 * an existing pool, we don't want to attach the spares & cache 4288 * devices. 4289 */ 4290 4291 /* 4292 * Load any hot spares for this pool. 4293 */ 4294 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object, 4295 B_FALSE); 4296 if (error != 0 && error != ENOENT) 4297 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4298 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 4299 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 4300 if (load_nvlist(spa, spa->spa_spares.sav_object, 4301 &spa->spa_spares.sav_config) != 0) { 4302 spa_load_failed(spa, "error loading spares nvlist"); 4303 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4304 } 4305 4306 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4307 spa_load_spares(spa); 4308 spa_config_exit(spa, SCL_ALL, FTAG); 4309 } else if (error == 0) { 4310 spa->spa_spares.sav_sync = B_TRUE; 4311 } 4312 4313 /* 4314 * Load any level 2 ARC devices for this pool. 4315 */ 4316 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 4317 &spa->spa_l2cache.sav_object, B_FALSE); 4318 if (error != 0 && error != ENOENT) 4319 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4320 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 4321 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 4322 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 4323 &spa->spa_l2cache.sav_config) != 0) { 4324 spa_load_failed(spa, "error loading l2cache nvlist"); 4325 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4326 } 4327 4328 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4329 spa_load_l2cache(spa); 4330 spa_config_exit(spa, SCL_ALL, FTAG); 4331 } else if (error == 0) { 4332 spa->spa_l2cache.sav_sync = B_TRUE; 4333 } 4334 4335 return (0); 4336 } 4337 4338 static int 4339 spa_ld_load_vdev_metadata(spa_t *spa) 4340 { 4341 int error = 0; 4342 vdev_t *rvd = spa->spa_root_vdev; 4343 4344 /* 4345 * If the 'multihost' property is set, then never allow a pool to 4346 * be imported when the system hostid is zero. The exception to 4347 * this rule is zdb which is always allowed to access pools. 4348 */ 4349 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 && 4350 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) { 4351 fnvlist_add_uint64(spa->spa_load_info, 4352 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 4353 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 4354 } 4355 4356 /* 4357 * If the 'autoreplace' property is set, then post a resource notifying 4358 * the ZFS DE that it should not issue any faults for unopenable 4359 * devices. We also iterate over the vdevs, and post a sysevent for any 4360 * unopenable vdevs so that the normal autoreplace handler can take 4361 * over. 4362 */ 4363 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4364 spa_check_removed(spa->spa_root_vdev); 4365 /* 4366 * For the import case, this is done in spa_import(), because 4367 * at this point we're using the spare definitions from 4368 * the MOS config, not necessarily from the userland config. 4369 */ 4370 if (spa->spa_load_state != SPA_LOAD_IMPORT) { 4371 spa_aux_check_removed(&spa->spa_spares); 4372 spa_aux_check_removed(&spa->spa_l2cache); 4373 } 4374 } 4375 4376 /* 4377 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc. 4378 */ 4379 error = vdev_load(rvd); 4380 if (error != 0) { 4381 spa_load_failed(spa, "vdev_load failed [error=%d]", error); 4382 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4383 } 4384 4385 error = spa_ld_log_spacemaps(spa); 4386 if (error != 0) { 4387 spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]", 4388 error); 4389 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4390 } 4391 4392 /* 4393 * Propagate the leaf DTLs we just loaded all the way up the vdev tree. 4394 */ 4395 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4396 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE); 4397 spa_config_exit(spa, SCL_ALL, FTAG); 4398 4399 return (0); 4400 } 4401 4402 static int 4403 spa_ld_load_dedup_tables(spa_t *spa) 4404 { 4405 int error = 0; 4406 vdev_t *rvd = spa->spa_root_vdev; 4407 4408 error = ddt_load(spa); 4409 if (error != 0) { 4410 spa_load_failed(spa, "ddt_load failed [error=%d]", error); 4411 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4412 } 4413 4414 return (0); 4415 } 4416 4417 static int 4418 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport) 4419 { 4420 vdev_t *rvd = spa->spa_root_vdev; 4421 4422 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) { 4423 boolean_t missing = spa_check_logs(spa); 4424 if (missing) { 4425 if (spa->spa_missing_tvds != 0) { 4426 spa_load_note(spa, "spa_check_logs failed " 4427 "so dropping the logs"); 4428 } else { 4429 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 4430 spa_load_failed(spa, "spa_check_logs failed"); 4431 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, 4432 ENXIO)); 4433 } 4434 } 4435 } 4436 4437 return (0); 4438 } 4439 4440 static int 4441 spa_ld_verify_pool_data(spa_t *spa) 4442 { 4443 int error = 0; 4444 vdev_t *rvd = spa->spa_root_vdev; 4445 4446 /* 4447 * We've successfully opened the pool, verify that we're ready 4448 * to start pushing transactions. 4449 */ 4450 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4451 error = spa_load_verify(spa); 4452 if (error != 0) { 4453 spa_load_failed(spa, "spa_load_verify failed " 4454 "[error=%d]", error); 4455 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 4456 error)); 4457 } 4458 } 4459 4460 return (0); 4461 } 4462 4463 static void 4464 spa_ld_claim_log_blocks(spa_t *spa) 4465 { 4466 dmu_tx_t *tx; 4467 dsl_pool_t *dp = spa_get_dsl(spa); 4468 4469 /* 4470 * Claim log blocks that haven't been committed yet. 4471 * This must all happen in a single txg. 4472 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 4473 * invoked from zil_claim_log_block()'s i/o done callback. 4474 * Price of rollback is that we abandon the log. 4475 */ 4476 spa->spa_claiming = B_TRUE; 4477 4478 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 4479 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 4480 zil_claim, tx, DS_FIND_CHILDREN); 4481 dmu_tx_commit(tx); 4482 4483 spa->spa_claiming = B_FALSE; 4484 4485 spa_set_log_state(spa, SPA_LOG_GOOD); 4486 } 4487 4488 static void 4489 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg, 4490 boolean_t update_config_cache) 4491 { 4492 vdev_t *rvd = spa->spa_root_vdev; 4493 int need_update = B_FALSE; 4494 4495 /* 4496 * If the config cache is stale, or we have uninitialized 4497 * metaslabs (see spa_vdev_add()), then update the config. 4498 * 4499 * If this is a verbatim import, trust the current 4500 * in-core spa_config and update the disk labels. 4501 */ 4502 if (update_config_cache || config_cache_txg != spa->spa_config_txg || 4503 spa->spa_load_state == SPA_LOAD_IMPORT || 4504 spa->spa_load_state == SPA_LOAD_RECOVER || 4505 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 4506 need_update = B_TRUE; 4507 4508 for (int c = 0; c < rvd->vdev_children; c++) 4509 if (rvd->vdev_child[c]->vdev_ms_array == 0) 4510 need_update = B_TRUE; 4511 4512 /* 4513 * Update the config cache asynchronously in case we're the 4514 * root pool, in which case the config cache isn't writable yet. 4515 */ 4516 if (need_update) 4517 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 4518 } 4519 4520 static void 4521 spa_ld_prepare_for_reload(spa_t *spa) 4522 { 4523 spa_mode_t mode = spa->spa_mode; 4524 int async_suspended = spa->spa_async_suspended; 4525 4526 spa_unload(spa); 4527 spa_deactivate(spa); 4528 spa_activate(spa, mode); 4529 4530 /* 4531 * We save the value of spa_async_suspended as it gets reset to 0 by 4532 * spa_unload(). We want to restore it back to the original value before 4533 * returning as we might be calling spa_async_resume() later. 4534 */ 4535 spa->spa_async_suspended = async_suspended; 4536 } 4537 4538 static int 4539 spa_ld_read_checkpoint_txg(spa_t *spa) 4540 { 4541 uberblock_t checkpoint; 4542 int error = 0; 4543 4544 ASSERT0(spa->spa_checkpoint_txg); 4545 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4546 4547 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 4548 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 4549 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 4550 4551 if (error == ENOENT) 4552 return (0); 4553 4554 if (error != 0) 4555 return (error); 4556 4557 ASSERT3U(checkpoint.ub_txg, !=, 0); 4558 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0); 4559 ASSERT3U(checkpoint.ub_timestamp, !=, 0); 4560 spa->spa_checkpoint_txg = checkpoint.ub_txg; 4561 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp; 4562 4563 return (0); 4564 } 4565 4566 static int 4567 spa_ld_mos_init(spa_t *spa, spa_import_type_t type) 4568 { 4569 int error = 0; 4570 4571 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4572 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 4573 4574 /* 4575 * Never trust the config that is provided unless we are assembling 4576 * a pool following a split. 4577 * This means don't trust blkptrs and the vdev tree in general. This 4578 * also effectively puts the spa in read-only mode since 4579 * spa_writeable() checks for spa_trust_config to be true. 4580 * We will later load a trusted config from the MOS. 4581 */ 4582 if (type != SPA_IMPORT_ASSEMBLE) 4583 spa->spa_trust_config = B_FALSE; 4584 4585 /* 4586 * Parse the config provided to create a vdev tree. 4587 */ 4588 error = spa_ld_parse_config(spa, type); 4589 if (error != 0) 4590 return (error); 4591 4592 spa_import_progress_add(spa); 4593 4594 /* 4595 * Now that we have the vdev tree, try to open each vdev. This involves 4596 * opening the underlying physical device, retrieving its geometry and 4597 * probing the vdev with a dummy I/O. The state of each vdev will be set 4598 * based on the success of those operations. After this we'll be ready 4599 * to read from the vdevs. 4600 */ 4601 error = spa_ld_open_vdevs(spa); 4602 if (error != 0) 4603 return (error); 4604 4605 /* 4606 * Read the label of each vdev and make sure that the GUIDs stored 4607 * there match the GUIDs in the config provided. 4608 * If we're assembling a new pool that's been split off from an 4609 * existing pool, the labels haven't yet been updated so we skip 4610 * validation for now. 4611 */ 4612 if (type != SPA_IMPORT_ASSEMBLE) { 4613 error = spa_ld_validate_vdevs(spa); 4614 if (error != 0) 4615 return (error); 4616 } 4617 4618 /* 4619 * Read all vdev labels to find the best uberblock (i.e. latest, 4620 * unless spa_load_max_txg is set) and store it in spa_uberblock. We 4621 * get the list of features required to read blkptrs in the MOS from 4622 * the vdev label with the best uberblock and verify that our version 4623 * of zfs supports them all. 4624 */ 4625 error = spa_ld_select_uberblock(spa, type); 4626 if (error != 0) 4627 return (error); 4628 4629 /* 4630 * Pass that uberblock to the dsl_pool layer which will open the root 4631 * blkptr. This blkptr points to the latest version of the MOS and will 4632 * allow us to read its contents. 4633 */ 4634 error = spa_ld_open_rootbp(spa); 4635 if (error != 0) 4636 return (error); 4637 4638 return (0); 4639 } 4640 4641 static int 4642 spa_ld_checkpoint_rewind(spa_t *spa) 4643 { 4644 uberblock_t checkpoint; 4645 int error = 0; 4646 4647 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4648 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 4649 4650 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 4651 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 4652 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 4653 4654 if (error != 0) { 4655 spa_load_failed(spa, "unable to retrieve checkpointed " 4656 "uberblock from the MOS config [error=%d]", error); 4657 4658 if (error == ENOENT) 4659 error = ZFS_ERR_NO_CHECKPOINT; 4660 4661 return (error); 4662 } 4663 4664 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg); 4665 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg); 4666 4667 /* 4668 * We need to update the txg and timestamp of the checkpointed 4669 * uberblock to be higher than the latest one. This ensures that 4670 * the checkpointed uberblock is selected if we were to close and 4671 * reopen the pool right after we've written it in the vdev labels. 4672 * (also see block comment in vdev_uberblock_compare) 4673 */ 4674 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1; 4675 checkpoint.ub_timestamp = gethrestime_sec(); 4676 4677 /* 4678 * Set current uberblock to be the checkpointed uberblock. 4679 */ 4680 spa->spa_uberblock = checkpoint; 4681 4682 /* 4683 * If we are doing a normal rewind, then the pool is open for 4684 * writing and we sync the "updated" checkpointed uberblock to 4685 * disk. Once this is done, we've basically rewound the whole 4686 * pool and there is no way back. 4687 * 4688 * There are cases when we don't want to attempt and sync the 4689 * checkpointed uberblock to disk because we are opening a 4690 * pool as read-only. Specifically, verifying the checkpointed 4691 * state with zdb, and importing the checkpointed state to get 4692 * a "preview" of its content. 4693 */ 4694 if (spa_writeable(spa)) { 4695 vdev_t *rvd = spa->spa_root_vdev; 4696 4697 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4698 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 4699 int svdcount = 0; 4700 int children = rvd->vdev_children; 4701 int c0 = random_in_range(children); 4702 4703 for (int c = 0; c < children; c++) { 4704 vdev_t *vd = rvd->vdev_child[(c0 + c) % children]; 4705 4706 /* Stop when revisiting the first vdev */ 4707 if (c > 0 && svd[0] == vd) 4708 break; 4709 4710 if (vd->vdev_ms_array == 0 || vd->vdev_islog || 4711 !vdev_is_concrete(vd)) 4712 continue; 4713 4714 svd[svdcount++] = vd; 4715 if (svdcount == SPA_SYNC_MIN_VDEVS) 4716 break; 4717 } 4718 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg); 4719 if (error == 0) 4720 spa->spa_last_synced_guid = rvd->vdev_guid; 4721 spa_config_exit(spa, SCL_ALL, FTAG); 4722 4723 if (error != 0) { 4724 spa_load_failed(spa, "failed to write checkpointed " 4725 "uberblock to the vdev labels [error=%d]", error); 4726 return (error); 4727 } 4728 } 4729 4730 return (0); 4731 } 4732 4733 static int 4734 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type, 4735 boolean_t *update_config_cache) 4736 { 4737 int error; 4738 4739 /* 4740 * Parse the config for pool, open and validate vdevs, 4741 * select an uberblock, and use that uberblock to open 4742 * the MOS. 4743 */ 4744 error = spa_ld_mos_init(spa, type); 4745 if (error != 0) 4746 return (error); 4747 4748 /* 4749 * Retrieve the trusted config stored in the MOS and use it to create 4750 * a new, exact version of the vdev tree, then reopen all vdevs. 4751 */ 4752 error = spa_ld_trusted_config(spa, type, B_FALSE); 4753 if (error == EAGAIN) { 4754 if (update_config_cache != NULL) 4755 *update_config_cache = B_TRUE; 4756 4757 /* 4758 * Redo the loading process with the trusted config if it is 4759 * too different from the untrusted config. 4760 */ 4761 spa_ld_prepare_for_reload(spa); 4762 spa_load_note(spa, "RELOADING"); 4763 error = spa_ld_mos_init(spa, type); 4764 if (error != 0) 4765 return (error); 4766 4767 error = spa_ld_trusted_config(spa, type, B_TRUE); 4768 if (error != 0) 4769 return (error); 4770 4771 } else if (error != 0) { 4772 return (error); 4773 } 4774 4775 return (0); 4776 } 4777 4778 /* 4779 * Load an existing storage pool, using the config provided. This config 4780 * describes which vdevs are part of the pool and is later validated against 4781 * partial configs present in each vdev's label and an entire copy of the 4782 * config stored in the MOS. 4783 */ 4784 static int 4785 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport) 4786 { 4787 int error = 0; 4788 boolean_t missing_feat_write = B_FALSE; 4789 boolean_t checkpoint_rewind = 4790 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 4791 boolean_t update_config_cache = B_FALSE; 4792 4793 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4794 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 4795 4796 spa_load_note(spa, "LOADING"); 4797 4798 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache); 4799 if (error != 0) 4800 return (error); 4801 4802 /* 4803 * If we are rewinding to the checkpoint then we need to repeat 4804 * everything we've done so far in this function but this time 4805 * selecting the checkpointed uberblock and using that to open 4806 * the MOS. 4807 */ 4808 if (checkpoint_rewind) { 4809 /* 4810 * If we are rewinding to the checkpoint update config cache 4811 * anyway. 4812 */ 4813 update_config_cache = B_TRUE; 4814 4815 /* 4816 * Extract the checkpointed uberblock from the current MOS 4817 * and use this as the pool's uberblock from now on. If the 4818 * pool is imported as writeable we also write the checkpoint 4819 * uberblock to the labels, making the rewind permanent. 4820 */ 4821 error = spa_ld_checkpoint_rewind(spa); 4822 if (error != 0) 4823 return (error); 4824 4825 /* 4826 * Redo the loading process again with the 4827 * checkpointed uberblock. 4828 */ 4829 spa_ld_prepare_for_reload(spa); 4830 spa_load_note(spa, "LOADING checkpointed uberblock"); 4831 error = spa_ld_mos_with_trusted_config(spa, type, NULL); 4832 if (error != 0) 4833 return (error); 4834 } 4835 4836 /* 4837 * Retrieve the checkpoint txg if the pool has a checkpoint. 4838 */ 4839 error = spa_ld_read_checkpoint_txg(spa); 4840 if (error != 0) 4841 return (error); 4842 4843 /* 4844 * Retrieve the mapping of indirect vdevs. Those vdevs were removed 4845 * from the pool and their contents were re-mapped to other vdevs. Note 4846 * that everything that we read before this step must have been 4847 * rewritten on concrete vdevs after the last device removal was 4848 * initiated. Otherwise we could be reading from indirect vdevs before 4849 * we have loaded their mappings. 4850 */ 4851 error = spa_ld_open_indirect_vdev_metadata(spa); 4852 if (error != 0) 4853 return (error); 4854 4855 /* 4856 * Retrieve the full list of active features from the MOS and check if 4857 * they are all supported. 4858 */ 4859 error = spa_ld_check_features(spa, &missing_feat_write); 4860 if (error != 0) 4861 return (error); 4862 4863 /* 4864 * Load several special directories from the MOS needed by the dsl_pool 4865 * layer. 4866 */ 4867 error = spa_ld_load_special_directories(spa); 4868 if (error != 0) 4869 return (error); 4870 4871 /* 4872 * Retrieve pool properties from the MOS. 4873 */ 4874 error = spa_ld_get_props(spa); 4875 if (error != 0) 4876 return (error); 4877 4878 /* 4879 * Retrieve the list of auxiliary devices - cache devices and spares - 4880 * and open them. 4881 */ 4882 error = spa_ld_open_aux_vdevs(spa, type); 4883 if (error != 0) 4884 return (error); 4885 4886 /* 4887 * Load the metadata for all vdevs. Also check if unopenable devices 4888 * should be autoreplaced. 4889 */ 4890 error = spa_ld_load_vdev_metadata(spa); 4891 if (error != 0) 4892 return (error); 4893 4894 error = spa_ld_load_dedup_tables(spa); 4895 if (error != 0) 4896 return (error); 4897 4898 /* 4899 * Verify the logs now to make sure we don't have any unexpected errors 4900 * when we claim log blocks later. 4901 */ 4902 error = spa_ld_verify_logs(spa, type, ereport); 4903 if (error != 0) 4904 return (error); 4905 4906 if (missing_feat_write) { 4907 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT); 4908 4909 /* 4910 * At this point, we know that we can open the pool in 4911 * read-only mode but not read-write mode. We now have enough 4912 * information and can return to userland. 4913 */ 4914 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT, 4915 ENOTSUP)); 4916 } 4917 4918 /* 4919 * Traverse the last txgs to make sure the pool was left off in a safe 4920 * state. When performing an extreme rewind, we verify the whole pool, 4921 * which can take a very long time. 4922 */ 4923 error = spa_ld_verify_pool_data(spa); 4924 if (error != 0) 4925 return (error); 4926 4927 /* 4928 * Calculate the deflated space for the pool. This must be done before 4929 * we write anything to the pool because we'd need to update the space 4930 * accounting using the deflated sizes. 4931 */ 4932 spa_update_dspace(spa); 4933 4934 /* 4935 * We have now retrieved all the information we needed to open the 4936 * pool. If we are importing the pool in read-write mode, a few 4937 * additional steps must be performed to finish the import. 4938 */ 4939 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER || 4940 spa->spa_load_max_txg == UINT64_MAX)) { 4941 uint64_t config_cache_txg = spa->spa_config_txg; 4942 4943 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT); 4944 4945 /* 4946 * In case of a checkpoint rewind, log the original txg 4947 * of the checkpointed uberblock. 4948 */ 4949 if (checkpoint_rewind) { 4950 spa_history_log_internal(spa, "checkpoint rewind", 4951 NULL, "rewound state to txg=%llu", 4952 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg); 4953 } 4954 4955 /* 4956 * Traverse the ZIL and claim all blocks. 4957 */ 4958 spa_ld_claim_log_blocks(spa); 4959 4960 /* 4961 * Kick-off the syncing thread. 4962 */ 4963 spa->spa_sync_on = B_TRUE; 4964 txg_sync_start(spa->spa_dsl_pool); 4965 mmp_thread_start(spa); 4966 4967 /* 4968 * Wait for all claims to sync. We sync up to the highest 4969 * claimed log block birth time so that claimed log blocks 4970 * don't appear to be from the future. spa_claim_max_txg 4971 * will have been set for us by ZIL traversal operations 4972 * performed above. 4973 */ 4974 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 4975 4976 /* 4977 * Check if we need to request an update of the config. On the 4978 * next sync, we would update the config stored in vdev labels 4979 * and the cachefile (by default /etc/zfs/zpool.cache). 4980 */ 4981 spa_ld_check_for_config_update(spa, config_cache_txg, 4982 update_config_cache); 4983 4984 /* 4985 * Check if a rebuild was in progress and if so resume it. 4986 * Then check all DTLs to see if anything needs resilvering. 4987 * The resilver will be deferred if a rebuild was started. 4988 */ 4989 if (vdev_rebuild_active(spa->spa_root_vdev)) { 4990 vdev_rebuild_restart(spa); 4991 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 4992 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 4993 spa_async_request(spa, SPA_ASYNC_RESILVER); 4994 } 4995 4996 /* 4997 * Log the fact that we booted up (so that we can detect if 4998 * we rebooted in the middle of an operation). 4999 */ 5000 spa_history_log_version(spa, "open", NULL); 5001 5002 spa_restart_removal(spa); 5003 spa_spawn_aux_threads(spa); 5004 5005 /* 5006 * Delete any inconsistent datasets. 5007 * 5008 * Note: 5009 * Since we may be issuing deletes for clones here, 5010 * we make sure to do so after we've spawned all the 5011 * auxiliary threads above (from which the livelist 5012 * deletion zthr is part of). 5013 */ 5014 (void) dmu_objset_find(spa_name(spa), 5015 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 5016 5017 /* 5018 * Clean up any stale temporary dataset userrefs. 5019 */ 5020 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 5021 5022 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5023 vdev_initialize_restart(spa->spa_root_vdev); 5024 vdev_trim_restart(spa->spa_root_vdev); 5025 vdev_autotrim_restart(spa); 5026 spa_config_exit(spa, SCL_CONFIG, FTAG); 5027 } 5028 5029 spa_import_progress_remove(spa_guid(spa)); 5030 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 5031 5032 spa_load_note(spa, "LOADED"); 5033 5034 return (0); 5035 } 5036 5037 static int 5038 spa_load_retry(spa_t *spa, spa_load_state_t state) 5039 { 5040 spa_mode_t mode = spa->spa_mode; 5041 5042 spa_unload(spa); 5043 spa_deactivate(spa); 5044 5045 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 5046 5047 spa_activate(spa, mode); 5048 spa_async_suspend(spa); 5049 5050 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu", 5051 (u_longlong_t)spa->spa_load_max_txg); 5052 5053 return (spa_load(spa, state, SPA_IMPORT_EXISTING)); 5054 } 5055 5056 /* 5057 * If spa_load() fails this function will try loading prior txg's. If 5058 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 5059 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 5060 * function will not rewind the pool and will return the same error as 5061 * spa_load(). 5062 */ 5063 static int 5064 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request, 5065 int rewind_flags) 5066 { 5067 nvlist_t *loadinfo = NULL; 5068 nvlist_t *config = NULL; 5069 int load_error, rewind_error; 5070 uint64_t safe_rewind_txg; 5071 uint64_t min_txg; 5072 5073 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 5074 spa->spa_load_max_txg = spa->spa_load_txg; 5075 spa_set_log_state(spa, SPA_LOG_CLEAR); 5076 } else { 5077 spa->spa_load_max_txg = max_request; 5078 if (max_request != UINT64_MAX) 5079 spa->spa_extreme_rewind = B_TRUE; 5080 } 5081 5082 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING); 5083 if (load_error == 0) 5084 return (0); 5085 if (load_error == ZFS_ERR_NO_CHECKPOINT) { 5086 /* 5087 * When attempting checkpoint-rewind on a pool with no 5088 * checkpoint, we should not attempt to load uberblocks 5089 * from previous txgs when spa_load fails. 5090 */ 5091 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 5092 spa_import_progress_remove(spa_guid(spa)); 5093 return (load_error); 5094 } 5095 5096 if (spa->spa_root_vdev != NULL) 5097 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 5098 5099 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 5100 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 5101 5102 if (rewind_flags & ZPOOL_NEVER_REWIND) { 5103 nvlist_free(config); 5104 spa_import_progress_remove(spa_guid(spa)); 5105 return (load_error); 5106 } 5107 5108 if (state == SPA_LOAD_RECOVER) { 5109 /* Price of rolling back is discarding txgs, including log */ 5110 spa_set_log_state(spa, SPA_LOG_CLEAR); 5111 } else { 5112 /* 5113 * If we aren't rolling back save the load info from our first 5114 * import attempt so that we can restore it after attempting 5115 * to rewind. 5116 */ 5117 loadinfo = spa->spa_load_info; 5118 spa->spa_load_info = fnvlist_alloc(); 5119 } 5120 5121 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 5122 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 5123 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 5124 TXG_INITIAL : safe_rewind_txg; 5125 5126 /* 5127 * Continue as long as we're finding errors, we're still within 5128 * the acceptable rewind range, and we're still finding uberblocks 5129 */ 5130 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 5131 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 5132 if (spa->spa_load_max_txg < safe_rewind_txg) 5133 spa->spa_extreme_rewind = B_TRUE; 5134 rewind_error = spa_load_retry(spa, state); 5135 } 5136 5137 spa->spa_extreme_rewind = B_FALSE; 5138 spa->spa_load_max_txg = UINT64_MAX; 5139 5140 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 5141 spa_config_set(spa, config); 5142 else 5143 nvlist_free(config); 5144 5145 if (state == SPA_LOAD_RECOVER) { 5146 ASSERT3P(loadinfo, ==, NULL); 5147 spa_import_progress_remove(spa_guid(spa)); 5148 return (rewind_error); 5149 } else { 5150 /* Store the rewind info as part of the initial load info */ 5151 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 5152 spa->spa_load_info); 5153 5154 /* Restore the initial load info */ 5155 fnvlist_free(spa->spa_load_info); 5156 spa->spa_load_info = loadinfo; 5157 5158 spa_import_progress_remove(spa_guid(spa)); 5159 return (load_error); 5160 } 5161 } 5162 5163 /* 5164 * Pool Open/Import 5165 * 5166 * The import case is identical to an open except that the configuration is sent 5167 * down from userland, instead of grabbed from the configuration cache. For the 5168 * case of an open, the pool configuration will exist in the 5169 * POOL_STATE_UNINITIALIZED state. 5170 * 5171 * The stats information (gen/count/ustats) is used to gather vdev statistics at 5172 * the same time open the pool, without having to keep around the spa_t in some 5173 * ambiguous state. 5174 */ 5175 static int 5176 spa_open_common(const char *pool, spa_t **spapp, const void *tag, 5177 nvlist_t *nvpolicy, nvlist_t **config) 5178 { 5179 spa_t *spa; 5180 spa_load_state_t state = SPA_LOAD_OPEN; 5181 int error; 5182 int locked = B_FALSE; 5183 int firstopen = B_FALSE; 5184 5185 *spapp = NULL; 5186 5187 /* 5188 * As disgusting as this is, we need to support recursive calls to this 5189 * function because dsl_dir_open() is called during spa_load(), and ends 5190 * up calling spa_open() again. The real fix is to figure out how to 5191 * avoid dsl_dir_open() calling this in the first place. 5192 */ 5193 if (MUTEX_NOT_HELD(&spa_namespace_lock)) { 5194 mutex_enter(&spa_namespace_lock); 5195 locked = B_TRUE; 5196 } 5197 5198 if ((spa = spa_lookup(pool)) == NULL) { 5199 if (locked) 5200 mutex_exit(&spa_namespace_lock); 5201 return (SET_ERROR(ENOENT)); 5202 } 5203 5204 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 5205 zpool_load_policy_t policy; 5206 5207 firstopen = B_TRUE; 5208 5209 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config, 5210 &policy); 5211 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 5212 state = SPA_LOAD_RECOVER; 5213 5214 spa_activate(spa, spa_mode_global); 5215 5216 if (state != SPA_LOAD_RECOVER) 5217 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 5218 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 5219 5220 zfs_dbgmsg("spa_open_common: opening %s", pool); 5221 error = spa_load_best(spa, state, policy.zlp_txg, 5222 policy.zlp_rewind); 5223 5224 if (error == EBADF) { 5225 /* 5226 * If vdev_validate() returns failure (indicated by 5227 * EBADF), it indicates that one of the vdevs indicates 5228 * that the pool has been exported or destroyed. If 5229 * this is the case, the config cache is out of sync and 5230 * we should remove the pool from the namespace. 5231 */ 5232 spa_unload(spa); 5233 spa_deactivate(spa); 5234 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE); 5235 spa_remove(spa); 5236 if (locked) 5237 mutex_exit(&spa_namespace_lock); 5238 return (SET_ERROR(ENOENT)); 5239 } 5240 5241 if (error) { 5242 /* 5243 * We can't open the pool, but we still have useful 5244 * information: the state of each vdev after the 5245 * attempted vdev_open(). Return this to the user. 5246 */ 5247 if (config != NULL && spa->spa_config) { 5248 *config = fnvlist_dup(spa->spa_config); 5249 fnvlist_add_nvlist(*config, 5250 ZPOOL_CONFIG_LOAD_INFO, 5251 spa->spa_load_info); 5252 } 5253 spa_unload(spa); 5254 spa_deactivate(spa); 5255 spa->spa_last_open_failed = error; 5256 if (locked) 5257 mutex_exit(&spa_namespace_lock); 5258 *spapp = NULL; 5259 return (error); 5260 } 5261 } 5262 5263 spa_open_ref(spa, tag); 5264 5265 if (config != NULL) 5266 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 5267 5268 /* 5269 * If we've recovered the pool, pass back any information we 5270 * gathered while doing the load. 5271 */ 5272 if (state == SPA_LOAD_RECOVER && config != NULL) { 5273 fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 5274 spa->spa_load_info); 5275 } 5276 5277 if (locked) { 5278 spa->spa_last_open_failed = 0; 5279 spa->spa_last_ubsync_txg = 0; 5280 spa->spa_load_txg = 0; 5281 mutex_exit(&spa_namespace_lock); 5282 } 5283 5284 if (firstopen) 5285 zvol_create_minors_recursive(spa_name(spa)); 5286 5287 *spapp = spa; 5288 5289 return (0); 5290 } 5291 5292 int 5293 spa_open_rewind(const char *name, spa_t **spapp, const void *tag, 5294 nvlist_t *policy, nvlist_t **config) 5295 { 5296 return (spa_open_common(name, spapp, tag, policy, config)); 5297 } 5298 5299 int 5300 spa_open(const char *name, spa_t **spapp, const void *tag) 5301 { 5302 return (spa_open_common(name, spapp, tag, NULL, NULL)); 5303 } 5304 5305 /* 5306 * Lookup the given spa_t, incrementing the inject count in the process, 5307 * preventing it from being exported or destroyed. 5308 */ 5309 spa_t * 5310 spa_inject_addref(char *name) 5311 { 5312 spa_t *spa; 5313 5314 mutex_enter(&spa_namespace_lock); 5315 if ((spa = spa_lookup(name)) == NULL) { 5316 mutex_exit(&spa_namespace_lock); 5317 return (NULL); 5318 } 5319 spa->spa_inject_ref++; 5320 mutex_exit(&spa_namespace_lock); 5321 5322 return (spa); 5323 } 5324 5325 void 5326 spa_inject_delref(spa_t *spa) 5327 { 5328 mutex_enter(&spa_namespace_lock); 5329 spa->spa_inject_ref--; 5330 mutex_exit(&spa_namespace_lock); 5331 } 5332 5333 /* 5334 * Add spares device information to the nvlist. 5335 */ 5336 static void 5337 spa_add_spares(spa_t *spa, nvlist_t *config) 5338 { 5339 nvlist_t **spares; 5340 uint_t i, nspares; 5341 nvlist_t *nvroot; 5342 uint64_t guid; 5343 vdev_stat_t *vs; 5344 uint_t vsc; 5345 uint64_t pool; 5346 5347 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 5348 5349 if (spa->spa_spares.sav_count == 0) 5350 return; 5351 5352 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); 5353 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5354 ZPOOL_CONFIG_SPARES, &spares, &nspares)); 5355 if (nspares != 0) { 5356 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5357 (const nvlist_t * const *)spares, nspares); 5358 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5359 &spares, &nspares)); 5360 5361 /* 5362 * Go through and find any spares which have since been 5363 * repurposed as an active spare. If this is the case, update 5364 * their status appropriately. 5365 */ 5366 for (i = 0; i < nspares; i++) { 5367 guid = fnvlist_lookup_uint64(spares[i], 5368 ZPOOL_CONFIG_GUID); 5369 if (spa_spare_exists(guid, &pool, NULL) && 5370 pool != 0ULL) { 5371 VERIFY0(nvlist_lookup_uint64_array(spares[i], 5372 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, 5373 &vsc)); 5374 vs->vs_state = VDEV_STATE_CANT_OPEN; 5375 vs->vs_aux = VDEV_AUX_SPARED; 5376 } 5377 } 5378 } 5379 } 5380 5381 /* 5382 * Add l2cache device information to the nvlist, including vdev stats. 5383 */ 5384 static void 5385 spa_add_l2cache(spa_t *spa, nvlist_t *config) 5386 { 5387 nvlist_t **l2cache; 5388 uint_t i, j, nl2cache; 5389 nvlist_t *nvroot; 5390 uint64_t guid; 5391 vdev_t *vd; 5392 vdev_stat_t *vs; 5393 uint_t vsc; 5394 5395 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 5396 5397 if (spa->spa_l2cache.sav_count == 0) 5398 return; 5399 5400 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); 5401 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5402 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache)); 5403 if (nl2cache != 0) { 5404 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 5405 (const nvlist_t * const *)l2cache, nl2cache); 5406 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 5407 &l2cache, &nl2cache)); 5408 5409 /* 5410 * Update level 2 cache device stats. 5411 */ 5412 5413 for (i = 0; i < nl2cache; i++) { 5414 guid = fnvlist_lookup_uint64(l2cache[i], 5415 ZPOOL_CONFIG_GUID); 5416 5417 vd = NULL; 5418 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 5419 if (guid == 5420 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 5421 vd = spa->spa_l2cache.sav_vdevs[j]; 5422 break; 5423 } 5424 } 5425 ASSERT(vd != NULL); 5426 5427 VERIFY0(nvlist_lookup_uint64_array(l2cache[i], 5428 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)); 5429 vdev_get_stats(vd, vs); 5430 vdev_config_generate_stats(vd, l2cache[i]); 5431 5432 } 5433 } 5434 } 5435 5436 static void 5437 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features) 5438 { 5439 zap_cursor_t zc; 5440 zap_attribute_t za; 5441 5442 if (spa->spa_feat_for_read_obj != 0) { 5443 for (zap_cursor_init(&zc, spa->spa_meta_objset, 5444 spa->spa_feat_for_read_obj); 5445 zap_cursor_retrieve(&zc, &za) == 0; 5446 zap_cursor_advance(&zc)) { 5447 ASSERT(za.za_integer_length == sizeof (uint64_t) && 5448 za.za_num_integers == 1); 5449 VERIFY0(nvlist_add_uint64(features, za.za_name, 5450 za.za_first_integer)); 5451 } 5452 zap_cursor_fini(&zc); 5453 } 5454 5455 if (spa->spa_feat_for_write_obj != 0) { 5456 for (zap_cursor_init(&zc, spa->spa_meta_objset, 5457 spa->spa_feat_for_write_obj); 5458 zap_cursor_retrieve(&zc, &za) == 0; 5459 zap_cursor_advance(&zc)) { 5460 ASSERT(za.za_integer_length == sizeof (uint64_t) && 5461 za.za_num_integers == 1); 5462 VERIFY0(nvlist_add_uint64(features, za.za_name, 5463 za.za_first_integer)); 5464 } 5465 zap_cursor_fini(&zc); 5466 } 5467 } 5468 5469 static void 5470 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features) 5471 { 5472 int i; 5473 5474 for (i = 0; i < SPA_FEATURES; i++) { 5475 zfeature_info_t feature = spa_feature_table[i]; 5476 uint64_t refcount; 5477 5478 if (feature_get_refcount(spa, &feature, &refcount) != 0) 5479 continue; 5480 5481 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount)); 5482 } 5483 } 5484 5485 /* 5486 * Store a list of pool features and their reference counts in the 5487 * config. 5488 * 5489 * The first time this is called on a spa, allocate a new nvlist, fetch 5490 * the pool features and reference counts from disk, then save the list 5491 * in the spa. In subsequent calls on the same spa use the saved nvlist 5492 * and refresh its values from the cached reference counts. This 5493 * ensures we don't block here on I/O on a suspended pool so 'zpool 5494 * clear' can resume the pool. 5495 */ 5496 static void 5497 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 5498 { 5499 nvlist_t *features; 5500 5501 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 5502 5503 mutex_enter(&spa->spa_feat_stats_lock); 5504 features = spa->spa_feat_stats; 5505 5506 if (features != NULL) { 5507 spa_feature_stats_from_cache(spa, features); 5508 } else { 5509 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP)); 5510 spa->spa_feat_stats = features; 5511 spa_feature_stats_from_disk(spa, features); 5512 } 5513 5514 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 5515 features)); 5516 5517 mutex_exit(&spa->spa_feat_stats_lock); 5518 } 5519 5520 int 5521 spa_get_stats(const char *name, nvlist_t **config, 5522 char *altroot, size_t buflen) 5523 { 5524 int error; 5525 spa_t *spa; 5526 5527 *config = NULL; 5528 error = spa_open_common(name, &spa, FTAG, NULL, config); 5529 5530 if (spa != NULL) { 5531 /* 5532 * This still leaves a window of inconsistency where the spares 5533 * or l2cache devices could change and the config would be 5534 * self-inconsistent. 5535 */ 5536 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5537 5538 if (*config != NULL) { 5539 uint64_t loadtimes[2]; 5540 5541 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 5542 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 5543 fnvlist_add_uint64_array(*config, 5544 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2); 5545 5546 fnvlist_add_uint64(*config, 5547 ZPOOL_CONFIG_ERRCOUNT, 5548 spa_approx_errlog_size(spa)); 5549 5550 if (spa_suspended(spa)) { 5551 fnvlist_add_uint64(*config, 5552 ZPOOL_CONFIG_SUSPENDED, 5553 spa->spa_failmode); 5554 fnvlist_add_uint64(*config, 5555 ZPOOL_CONFIG_SUSPENDED_REASON, 5556 spa->spa_suspended); 5557 } 5558 5559 spa_add_spares(spa, *config); 5560 spa_add_l2cache(spa, *config); 5561 spa_add_feature_stats(spa, *config); 5562 } 5563 } 5564 5565 /* 5566 * We want to get the alternate root even for faulted pools, so we cheat 5567 * and call spa_lookup() directly. 5568 */ 5569 if (altroot) { 5570 if (spa == NULL) { 5571 mutex_enter(&spa_namespace_lock); 5572 spa = spa_lookup(name); 5573 if (spa) 5574 spa_altroot(spa, altroot, buflen); 5575 else 5576 altroot[0] = '\0'; 5577 spa = NULL; 5578 mutex_exit(&spa_namespace_lock); 5579 } else { 5580 spa_altroot(spa, altroot, buflen); 5581 } 5582 } 5583 5584 if (spa != NULL) { 5585 spa_config_exit(spa, SCL_CONFIG, FTAG); 5586 spa_close(spa, FTAG); 5587 } 5588 5589 return (error); 5590 } 5591 5592 /* 5593 * Validate that the auxiliary device array is well formed. We must have an 5594 * array of nvlists, each which describes a valid leaf vdev. If this is an 5595 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 5596 * specified, as long as they are well-formed. 5597 */ 5598 static int 5599 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 5600 spa_aux_vdev_t *sav, const char *config, uint64_t version, 5601 vdev_labeltype_t label) 5602 { 5603 nvlist_t **dev; 5604 uint_t i, ndev; 5605 vdev_t *vd; 5606 int error; 5607 5608 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5609 5610 /* 5611 * It's acceptable to have no devs specified. 5612 */ 5613 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 5614 return (0); 5615 5616 if (ndev == 0) 5617 return (SET_ERROR(EINVAL)); 5618 5619 /* 5620 * Make sure the pool is formatted with a version that supports this 5621 * device type. 5622 */ 5623 if (spa_version(spa) < version) 5624 return (SET_ERROR(ENOTSUP)); 5625 5626 /* 5627 * Set the pending device list so we correctly handle device in-use 5628 * checking. 5629 */ 5630 sav->sav_pending = dev; 5631 sav->sav_npending = ndev; 5632 5633 for (i = 0; i < ndev; i++) { 5634 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 5635 mode)) != 0) 5636 goto out; 5637 5638 if (!vd->vdev_ops->vdev_op_leaf) { 5639 vdev_free(vd); 5640 error = SET_ERROR(EINVAL); 5641 goto out; 5642 } 5643 5644 vd->vdev_top = vd; 5645 5646 if ((error = vdev_open(vd)) == 0 && 5647 (error = vdev_label_init(vd, crtxg, label)) == 0) { 5648 fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 5649 vd->vdev_guid); 5650 } 5651 5652 vdev_free(vd); 5653 5654 if (error && 5655 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 5656 goto out; 5657 else 5658 error = 0; 5659 } 5660 5661 out: 5662 sav->sav_pending = NULL; 5663 sav->sav_npending = 0; 5664 return (error); 5665 } 5666 5667 static int 5668 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 5669 { 5670 int error; 5671 5672 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5673 5674 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 5675 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 5676 VDEV_LABEL_SPARE)) != 0) { 5677 return (error); 5678 } 5679 5680 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 5681 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 5682 VDEV_LABEL_L2CACHE)); 5683 } 5684 5685 static void 5686 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 5687 const char *config) 5688 { 5689 int i; 5690 5691 if (sav->sav_config != NULL) { 5692 nvlist_t **olddevs; 5693 uint_t oldndevs; 5694 nvlist_t **newdevs; 5695 5696 /* 5697 * Generate new dev list by concatenating with the 5698 * current dev list. 5699 */ 5700 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config, 5701 &olddevs, &oldndevs)); 5702 5703 newdevs = kmem_alloc(sizeof (void *) * 5704 (ndevs + oldndevs), KM_SLEEP); 5705 for (i = 0; i < oldndevs; i++) 5706 newdevs[i] = fnvlist_dup(olddevs[i]); 5707 for (i = 0; i < ndevs; i++) 5708 newdevs[i + oldndevs] = fnvlist_dup(devs[i]); 5709 5710 fnvlist_remove(sav->sav_config, config); 5711 5712 fnvlist_add_nvlist_array(sav->sav_config, config, 5713 (const nvlist_t * const *)newdevs, ndevs + oldndevs); 5714 for (i = 0; i < oldndevs + ndevs; i++) 5715 nvlist_free(newdevs[i]); 5716 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 5717 } else { 5718 /* 5719 * Generate a new dev list. 5720 */ 5721 sav->sav_config = fnvlist_alloc(); 5722 fnvlist_add_nvlist_array(sav->sav_config, config, 5723 (const nvlist_t * const *)devs, ndevs); 5724 } 5725 } 5726 5727 /* 5728 * Stop and drop level 2 ARC devices 5729 */ 5730 void 5731 spa_l2cache_drop(spa_t *spa) 5732 { 5733 vdev_t *vd; 5734 int i; 5735 spa_aux_vdev_t *sav = &spa->spa_l2cache; 5736 5737 for (i = 0; i < sav->sav_count; i++) { 5738 uint64_t pool; 5739 5740 vd = sav->sav_vdevs[i]; 5741 ASSERT(vd != NULL); 5742 5743 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 5744 pool != 0ULL && l2arc_vdev_present(vd)) 5745 l2arc_remove_vdev(vd); 5746 } 5747 } 5748 5749 /* 5750 * Verify encryption parameters for spa creation. If we are encrypting, we must 5751 * have the encryption feature flag enabled. 5752 */ 5753 static int 5754 spa_create_check_encryption_params(dsl_crypto_params_t *dcp, 5755 boolean_t has_encryption) 5756 { 5757 if (dcp->cp_crypt != ZIO_CRYPT_OFF && 5758 dcp->cp_crypt != ZIO_CRYPT_INHERIT && 5759 !has_encryption) 5760 return (SET_ERROR(ENOTSUP)); 5761 5762 return (dmu_objset_create_crypt_check(NULL, dcp, NULL)); 5763 } 5764 5765 /* 5766 * Pool Creation 5767 */ 5768 int 5769 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 5770 nvlist_t *zplprops, dsl_crypto_params_t *dcp) 5771 { 5772 spa_t *spa; 5773 char *altroot = NULL; 5774 vdev_t *rvd; 5775 dsl_pool_t *dp; 5776 dmu_tx_t *tx; 5777 int error = 0; 5778 uint64_t txg = TXG_INITIAL; 5779 nvlist_t **spares, **l2cache; 5780 uint_t nspares, nl2cache; 5781 uint64_t version, obj, ndraid = 0; 5782 boolean_t has_features; 5783 boolean_t has_encryption; 5784 boolean_t has_allocclass; 5785 spa_feature_t feat; 5786 char *feat_name; 5787 char *poolname; 5788 nvlist_t *nvl; 5789 5790 if (props == NULL || 5791 nvlist_lookup_string(props, "tname", &poolname) != 0) 5792 poolname = (char *)pool; 5793 5794 /* 5795 * If this pool already exists, return failure. 5796 */ 5797 mutex_enter(&spa_namespace_lock); 5798 if (spa_lookup(poolname) != NULL) { 5799 mutex_exit(&spa_namespace_lock); 5800 return (SET_ERROR(EEXIST)); 5801 } 5802 5803 /* 5804 * Allocate a new spa_t structure. 5805 */ 5806 nvl = fnvlist_alloc(); 5807 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool); 5808 (void) nvlist_lookup_string(props, 5809 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5810 spa = spa_add(poolname, nvl, altroot); 5811 fnvlist_free(nvl); 5812 spa_activate(spa, spa_mode_global); 5813 5814 if (props && (error = spa_prop_validate(spa, props))) { 5815 spa_deactivate(spa); 5816 spa_remove(spa); 5817 mutex_exit(&spa_namespace_lock); 5818 return (error); 5819 } 5820 5821 /* 5822 * Temporary pool names should never be written to disk. 5823 */ 5824 if (poolname != pool) 5825 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME; 5826 5827 has_features = B_FALSE; 5828 has_encryption = B_FALSE; 5829 has_allocclass = B_FALSE; 5830 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 5831 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 5832 if (zpool_prop_feature(nvpair_name(elem))) { 5833 has_features = B_TRUE; 5834 5835 feat_name = strchr(nvpair_name(elem), '@') + 1; 5836 VERIFY0(zfeature_lookup_name(feat_name, &feat)); 5837 if (feat == SPA_FEATURE_ENCRYPTION) 5838 has_encryption = B_TRUE; 5839 if (feat == SPA_FEATURE_ALLOCATION_CLASSES) 5840 has_allocclass = B_TRUE; 5841 } 5842 } 5843 5844 /* verify encryption params, if they were provided */ 5845 if (dcp != NULL) { 5846 error = spa_create_check_encryption_params(dcp, has_encryption); 5847 if (error != 0) { 5848 spa_deactivate(spa); 5849 spa_remove(spa); 5850 mutex_exit(&spa_namespace_lock); 5851 return (error); 5852 } 5853 } 5854 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) { 5855 spa_deactivate(spa); 5856 spa_remove(spa); 5857 mutex_exit(&spa_namespace_lock); 5858 return (ENOTSUP); 5859 } 5860 5861 if (has_features || nvlist_lookup_uint64(props, 5862 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 5863 version = SPA_VERSION; 5864 } 5865 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5866 5867 spa->spa_first_txg = txg; 5868 spa->spa_uberblock.ub_txg = txg - 1; 5869 spa->spa_uberblock.ub_version = version; 5870 spa->spa_ubsync = spa->spa_uberblock; 5871 spa->spa_load_state = SPA_LOAD_CREATE; 5872 spa->spa_removing_phys.sr_state = DSS_NONE; 5873 spa->spa_removing_phys.sr_removing_vdev = -1; 5874 spa->spa_removing_phys.sr_prev_indirect_vdev = -1; 5875 spa->spa_indirect_vdevs_loaded = B_TRUE; 5876 5877 /* 5878 * Create "The Godfather" zio to hold all async IOs 5879 */ 5880 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 5881 KM_SLEEP); 5882 for (int i = 0; i < max_ncpus; i++) { 5883 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 5884 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 5885 ZIO_FLAG_GODFATHER); 5886 } 5887 5888 /* 5889 * Create the root vdev. 5890 */ 5891 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5892 5893 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 5894 5895 ASSERT(error != 0 || rvd != NULL); 5896 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 5897 5898 if (error == 0 && !zfs_allocatable_devs(nvroot)) 5899 error = SET_ERROR(EINVAL); 5900 5901 if (error == 0 && 5902 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 5903 (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 && 5904 (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) { 5905 /* 5906 * instantiate the metaslab groups (this will dirty the vdevs) 5907 * we can no longer error exit past this point 5908 */ 5909 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) { 5910 vdev_t *vd = rvd->vdev_child[c]; 5911 5912 vdev_metaslab_set_size(vd); 5913 vdev_expand(vd, txg); 5914 } 5915 } 5916 5917 spa_config_exit(spa, SCL_ALL, FTAG); 5918 5919 if (error != 0) { 5920 spa_unload(spa); 5921 spa_deactivate(spa); 5922 spa_remove(spa); 5923 mutex_exit(&spa_namespace_lock); 5924 return (error); 5925 } 5926 5927 /* 5928 * Get the list of spares, if specified. 5929 */ 5930 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5931 &spares, &nspares) == 0) { 5932 spa->spa_spares.sav_config = fnvlist_alloc(); 5933 fnvlist_add_nvlist_array(spa->spa_spares.sav_config, 5934 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, 5935 nspares); 5936 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5937 spa_load_spares(spa); 5938 spa_config_exit(spa, SCL_ALL, FTAG); 5939 spa->spa_spares.sav_sync = B_TRUE; 5940 } 5941 5942 /* 5943 * Get the list of level 2 cache devices, if specified. 5944 */ 5945 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 5946 &l2cache, &nl2cache) == 0) { 5947 VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config, 5948 NV_UNIQUE_NAME, KM_SLEEP)); 5949 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 5950 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache, 5951 nl2cache); 5952 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5953 spa_load_l2cache(spa); 5954 spa_config_exit(spa, SCL_ALL, FTAG); 5955 spa->spa_l2cache.sav_sync = B_TRUE; 5956 } 5957 5958 spa->spa_is_initializing = B_TRUE; 5959 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg); 5960 spa->spa_is_initializing = B_FALSE; 5961 5962 /* 5963 * Create DDTs (dedup tables). 5964 */ 5965 ddt_create(spa); 5966 5967 spa_update_dspace(spa); 5968 5969 tx = dmu_tx_create_assigned(dp, txg); 5970 5971 /* 5972 * Create the pool's history object. 5973 */ 5974 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history) 5975 spa_history_create_obj(spa, tx); 5976 5977 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE); 5978 spa_history_log_version(spa, "create", tx); 5979 5980 /* 5981 * Create the pool config object. 5982 */ 5983 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 5984 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 5985 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 5986 5987 if (zap_add(spa->spa_meta_objset, 5988 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 5989 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 5990 cmn_err(CE_PANIC, "failed to add pool config"); 5991 } 5992 5993 if (zap_add(spa->spa_meta_objset, 5994 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 5995 sizeof (uint64_t), 1, &version, tx) != 0) { 5996 cmn_err(CE_PANIC, "failed to add pool version"); 5997 } 5998 5999 /* Newly created pools with the right version are always deflated. */ 6000 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 6001 spa->spa_deflate = TRUE; 6002 if (zap_add(spa->spa_meta_objset, 6003 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6004 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 6005 cmn_err(CE_PANIC, "failed to add deflate"); 6006 } 6007 } 6008 6009 /* 6010 * Create the deferred-free bpobj. Turn off compression 6011 * because sync-to-convergence takes longer if the blocksize 6012 * keeps changing. 6013 */ 6014 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 6015 dmu_object_set_compress(spa->spa_meta_objset, obj, 6016 ZIO_COMPRESS_OFF, tx); 6017 if (zap_add(spa->spa_meta_objset, 6018 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 6019 sizeof (uint64_t), 1, &obj, tx) != 0) { 6020 cmn_err(CE_PANIC, "failed to add bpobj"); 6021 } 6022 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 6023 spa->spa_meta_objset, obj)); 6024 6025 /* 6026 * Generate some random noise for salted checksums to operate on. 6027 */ 6028 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 6029 sizeof (spa->spa_cksum_salt.zcs_bytes)); 6030 6031 /* 6032 * Set pool properties. 6033 */ 6034 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 6035 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 6036 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 6037 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 6038 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST); 6039 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM); 6040 6041 if (props != NULL) { 6042 spa_configfile_set(spa, props, B_FALSE); 6043 spa_sync_props(props, tx); 6044 } 6045 6046 for (int i = 0; i < ndraid; i++) 6047 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx); 6048 6049 dmu_tx_commit(tx); 6050 6051 spa->spa_sync_on = B_TRUE; 6052 txg_sync_start(dp); 6053 mmp_thread_start(spa); 6054 txg_wait_synced(dp, txg); 6055 6056 spa_spawn_aux_threads(spa); 6057 6058 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); 6059 6060 /* 6061 * Don't count references from objsets that are already closed 6062 * and are making their way through the eviction process. 6063 */ 6064 spa_evicting_os_wait(spa); 6065 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 6066 spa->spa_load_state = SPA_LOAD_NONE; 6067 6068 spa_import_os(spa); 6069 6070 mutex_exit(&spa_namespace_lock); 6071 6072 return (0); 6073 } 6074 6075 /* 6076 * Import a non-root pool into the system. 6077 */ 6078 int 6079 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 6080 { 6081 spa_t *spa; 6082 char *altroot = NULL; 6083 spa_load_state_t state = SPA_LOAD_IMPORT; 6084 zpool_load_policy_t policy; 6085 spa_mode_t mode = spa_mode_global; 6086 uint64_t readonly = B_FALSE; 6087 int error; 6088 nvlist_t *nvroot; 6089 nvlist_t **spares, **l2cache; 6090 uint_t nspares, nl2cache; 6091 6092 /* 6093 * If a pool with this name exists, return failure. 6094 */ 6095 mutex_enter(&spa_namespace_lock); 6096 if (spa_lookup(pool) != NULL) { 6097 mutex_exit(&spa_namespace_lock); 6098 return (SET_ERROR(EEXIST)); 6099 } 6100 6101 /* 6102 * Create and initialize the spa structure. 6103 */ 6104 (void) nvlist_lookup_string(props, 6105 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 6106 (void) nvlist_lookup_uint64(props, 6107 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 6108 if (readonly) 6109 mode = SPA_MODE_READ; 6110 spa = spa_add(pool, config, altroot); 6111 spa->spa_import_flags = flags; 6112 6113 /* 6114 * Verbatim import - Take a pool and insert it into the namespace 6115 * as if it had been loaded at boot. 6116 */ 6117 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 6118 if (props != NULL) 6119 spa_configfile_set(spa, props, B_FALSE); 6120 6121 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE); 6122 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 6123 zfs_dbgmsg("spa_import: verbatim import of %s", pool); 6124 mutex_exit(&spa_namespace_lock); 6125 return (0); 6126 } 6127 6128 spa_activate(spa, mode); 6129 6130 /* 6131 * Don't start async tasks until we know everything is healthy. 6132 */ 6133 spa_async_suspend(spa); 6134 6135 zpool_get_load_policy(config, &policy); 6136 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 6137 state = SPA_LOAD_RECOVER; 6138 6139 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT; 6140 6141 if (state != SPA_LOAD_RECOVER) { 6142 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 6143 zfs_dbgmsg("spa_import: importing %s", pool); 6144 } else { 6145 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld " 6146 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg); 6147 } 6148 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind); 6149 6150 /* 6151 * Propagate anything learned while loading the pool and pass it 6152 * back to caller (i.e. rewind info, missing devices, etc). 6153 */ 6154 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info); 6155 6156 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6157 /* 6158 * Toss any existing sparelist, as it doesn't have any validity 6159 * anymore, and conflicts with spa_has_spare(). 6160 */ 6161 if (spa->spa_spares.sav_config) { 6162 nvlist_free(spa->spa_spares.sav_config); 6163 spa->spa_spares.sav_config = NULL; 6164 spa_load_spares(spa); 6165 } 6166 if (spa->spa_l2cache.sav_config) { 6167 nvlist_free(spa->spa_l2cache.sav_config); 6168 spa->spa_l2cache.sav_config = NULL; 6169 spa_load_l2cache(spa); 6170 } 6171 6172 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); 6173 spa_config_exit(spa, SCL_ALL, FTAG); 6174 6175 if (props != NULL) 6176 spa_configfile_set(spa, props, B_FALSE); 6177 6178 if (error != 0 || (props && spa_writeable(spa) && 6179 (error = spa_prop_set(spa, props)))) { 6180 spa_unload(spa); 6181 spa_deactivate(spa); 6182 spa_remove(spa); 6183 mutex_exit(&spa_namespace_lock); 6184 return (error); 6185 } 6186 6187 spa_async_resume(spa); 6188 6189 /* 6190 * Override any spares and level 2 cache devices as specified by 6191 * the user, as these may have correct device names/devids, etc. 6192 */ 6193 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 6194 &spares, &nspares) == 0) { 6195 if (spa->spa_spares.sav_config) 6196 fnvlist_remove(spa->spa_spares.sav_config, 6197 ZPOOL_CONFIG_SPARES); 6198 else 6199 spa->spa_spares.sav_config = fnvlist_alloc(); 6200 fnvlist_add_nvlist_array(spa->spa_spares.sav_config, 6201 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, 6202 nspares); 6203 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6204 spa_load_spares(spa); 6205 spa_config_exit(spa, SCL_ALL, FTAG); 6206 spa->spa_spares.sav_sync = B_TRUE; 6207 } 6208 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 6209 &l2cache, &nl2cache) == 0) { 6210 if (spa->spa_l2cache.sav_config) 6211 fnvlist_remove(spa->spa_l2cache.sav_config, 6212 ZPOOL_CONFIG_L2CACHE); 6213 else 6214 spa->spa_l2cache.sav_config = fnvlist_alloc(); 6215 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 6216 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache, 6217 nl2cache); 6218 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6219 spa_load_l2cache(spa); 6220 spa_config_exit(spa, SCL_ALL, FTAG); 6221 spa->spa_l2cache.sav_sync = B_TRUE; 6222 } 6223 6224 /* 6225 * Check for any removed devices. 6226 */ 6227 if (spa->spa_autoreplace) { 6228 spa_aux_check_removed(&spa->spa_spares); 6229 spa_aux_check_removed(&spa->spa_l2cache); 6230 } 6231 6232 if (spa_writeable(spa)) { 6233 /* 6234 * Update the config cache to include the newly-imported pool. 6235 */ 6236 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 6237 } 6238 6239 /* 6240 * It's possible that the pool was expanded while it was exported. 6241 * We kick off an async task to handle this for us. 6242 */ 6243 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 6244 6245 spa_history_log_version(spa, "import", NULL); 6246 6247 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 6248 6249 mutex_exit(&spa_namespace_lock); 6250 6251 zvol_create_minors_recursive(pool); 6252 6253 spa_import_os(spa); 6254 6255 return (0); 6256 } 6257 6258 nvlist_t * 6259 spa_tryimport(nvlist_t *tryconfig) 6260 { 6261 nvlist_t *config = NULL; 6262 char *poolname, *cachefile; 6263 spa_t *spa; 6264 uint64_t state; 6265 int error; 6266 zpool_load_policy_t policy; 6267 6268 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 6269 return (NULL); 6270 6271 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 6272 return (NULL); 6273 6274 /* 6275 * Create and initialize the spa structure. 6276 */ 6277 mutex_enter(&spa_namespace_lock); 6278 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 6279 spa_activate(spa, SPA_MODE_READ); 6280 6281 /* 6282 * Rewind pool if a max txg was provided. 6283 */ 6284 zpool_get_load_policy(spa->spa_config, &policy); 6285 if (policy.zlp_txg != UINT64_MAX) { 6286 spa->spa_load_max_txg = policy.zlp_txg; 6287 spa->spa_extreme_rewind = B_TRUE; 6288 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld", 6289 poolname, (longlong_t)policy.zlp_txg); 6290 } else { 6291 zfs_dbgmsg("spa_tryimport: importing %s", poolname); 6292 } 6293 6294 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile) 6295 == 0) { 6296 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile); 6297 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 6298 } else { 6299 spa->spa_config_source = SPA_CONFIG_SRC_SCAN; 6300 } 6301 6302 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING); 6303 6304 /* 6305 * If 'tryconfig' was at least parsable, return the current config. 6306 */ 6307 if (spa->spa_root_vdev != NULL) { 6308 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 6309 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname); 6310 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state); 6311 fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 6312 spa->spa_uberblock.ub_timestamp); 6313 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 6314 spa->spa_load_info); 6315 fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA, 6316 spa->spa_errata); 6317 6318 /* 6319 * If the bootfs property exists on this pool then we 6320 * copy it out so that external consumers can tell which 6321 * pools are bootable. 6322 */ 6323 if ((!error || error == EEXIST) && spa->spa_bootfs) { 6324 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6325 6326 /* 6327 * We have to play games with the name since the 6328 * pool was opened as TRYIMPORT_NAME. 6329 */ 6330 if (dsl_dsobj_to_dsname(spa_name(spa), 6331 spa->spa_bootfs, tmpname) == 0) { 6332 char *cp; 6333 char *dsname; 6334 6335 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6336 6337 cp = strchr(tmpname, '/'); 6338 if (cp == NULL) { 6339 (void) strlcpy(dsname, tmpname, 6340 MAXPATHLEN); 6341 } else { 6342 (void) snprintf(dsname, MAXPATHLEN, 6343 "%s/%s", poolname, ++cp); 6344 } 6345 fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS, 6346 dsname); 6347 kmem_free(dsname, MAXPATHLEN); 6348 } 6349 kmem_free(tmpname, MAXPATHLEN); 6350 } 6351 6352 /* 6353 * Add the list of hot spares and level 2 cache devices. 6354 */ 6355 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6356 spa_add_spares(spa, config); 6357 spa_add_l2cache(spa, config); 6358 spa_config_exit(spa, SCL_CONFIG, FTAG); 6359 } 6360 6361 spa_unload(spa); 6362 spa_deactivate(spa); 6363 spa_remove(spa); 6364 mutex_exit(&spa_namespace_lock); 6365 6366 return (config); 6367 } 6368 6369 /* 6370 * Pool export/destroy 6371 * 6372 * The act of destroying or exporting a pool is very simple. We make sure there 6373 * is no more pending I/O and any references to the pool are gone. Then, we 6374 * update the pool state and sync all the labels to disk, removing the 6375 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 6376 * we don't sync the labels or remove the configuration cache. 6377 */ 6378 static int 6379 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig, 6380 boolean_t force, boolean_t hardforce) 6381 { 6382 int error; 6383 spa_t *spa; 6384 6385 if (oldconfig) 6386 *oldconfig = NULL; 6387 6388 if (!(spa_mode_global & SPA_MODE_WRITE)) 6389 return (SET_ERROR(EROFS)); 6390 6391 mutex_enter(&spa_namespace_lock); 6392 if ((spa = spa_lookup(pool)) == NULL) { 6393 mutex_exit(&spa_namespace_lock); 6394 return (SET_ERROR(ENOENT)); 6395 } 6396 6397 if (spa->spa_is_exporting) { 6398 /* the pool is being exported by another thread */ 6399 mutex_exit(&spa_namespace_lock); 6400 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS)); 6401 } 6402 spa->spa_is_exporting = B_TRUE; 6403 6404 /* 6405 * Put a hold on the pool, drop the namespace lock, stop async tasks, 6406 * reacquire the namespace lock, and see if we can export. 6407 */ 6408 spa_open_ref(spa, FTAG); 6409 mutex_exit(&spa_namespace_lock); 6410 spa_async_suspend(spa); 6411 if (spa->spa_zvol_taskq) { 6412 zvol_remove_minors(spa, spa_name(spa), B_TRUE); 6413 taskq_wait(spa->spa_zvol_taskq); 6414 } 6415 mutex_enter(&spa_namespace_lock); 6416 spa_close(spa, FTAG); 6417 6418 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 6419 goto export_spa; 6420 /* 6421 * The pool will be in core if it's openable, in which case we can 6422 * modify its state. Objsets may be open only because they're dirty, 6423 * so we have to force it to sync before checking spa_refcnt. 6424 */ 6425 if (spa->spa_sync_on) { 6426 txg_wait_synced(spa->spa_dsl_pool, 0); 6427 spa_evicting_os_wait(spa); 6428 } 6429 6430 /* 6431 * A pool cannot be exported or destroyed if there are active 6432 * references. If we are resetting a pool, allow references by 6433 * fault injection handlers. 6434 */ 6435 if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) { 6436 error = SET_ERROR(EBUSY); 6437 goto fail; 6438 } 6439 6440 if (spa->spa_sync_on) { 6441 vdev_t *rvd = spa->spa_root_vdev; 6442 /* 6443 * A pool cannot be exported if it has an active shared spare. 6444 * This is to prevent other pools stealing the active spare 6445 * from an exported pool. At user's own will, such pool can 6446 * be forcedly exported. 6447 */ 6448 if (!force && new_state == POOL_STATE_EXPORTED && 6449 spa_has_active_shared_spare(spa)) { 6450 error = SET_ERROR(EXDEV); 6451 goto fail; 6452 } 6453 6454 /* 6455 * We're about to export or destroy this pool. Make sure 6456 * we stop all initialization and trim activity here before 6457 * we set the spa_final_txg. This will ensure that all 6458 * dirty data resulting from the initialization is 6459 * committed to disk before we unload the pool. 6460 */ 6461 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE); 6462 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE); 6463 vdev_autotrim_stop_all(spa); 6464 vdev_rebuild_stop_all(spa); 6465 6466 /* 6467 * We want this to be reflected on every label, 6468 * so mark them all dirty. spa_unload() will do the 6469 * final sync that pushes these changes out. 6470 */ 6471 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 6472 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6473 spa->spa_state = new_state; 6474 vdev_config_dirty(rvd); 6475 spa_config_exit(spa, SCL_ALL, FTAG); 6476 } 6477 6478 /* 6479 * If the log space map feature is enabled and the pool is 6480 * getting exported (but not destroyed), we want to spend some 6481 * time flushing as many metaslabs as we can in an attempt to 6482 * destroy log space maps and save import time. This has to be 6483 * done before we set the spa_final_txg, otherwise 6484 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs. 6485 * spa_should_flush_logs_on_unload() should be called after 6486 * spa_state has been set to the new_state. 6487 */ 6488 if (spa_should_flush_logs_on_unload(spa)) 6489 spa_unload_log_sm_flush_all(spa); 6490 6491 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 6492 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6493 spa->spa_final_txg = spa_last_synced_txg(spa) + 6494 TXG_DEFER_SIZE + 1; 6495 spa_config_exit(spa, SCL_ALL, FTAG); 6496 } 6497 } 6498 6499 export_spa: 6500 spa_export_os(spa); 6501 6502 if (new_state == POOL_STATE_DESTROYED) 6503 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY); 6504 else if (new_state == POOL_STATE_EXPORTED) 6505 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT); 6506 6507 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6508 spa_unload(spa); 6509 spa_deactivate(spa); 6510 } 6511 6512 if (oldconfig && spa->spa_config) 6513 *oldconfig = fnvlist_dup(spa->spa_config); 6514 6515 if (new_state != POOL_STATE_UNINITIALIZED) { 6516 if (!hardforce) 6517 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE); 6518 spa_remove(spa); 6519 } else { 6520 /* 6521 * If spa_remove() is not called for this spa_t and 6522 * there is any possibility that it can be reused, 6523 * we make sure to reset the exporting flag. 6524 */ 6525 spa->spa_is_exporting = B_FALSE; 6526 } 6527 6528 mutex_exit(&spa_namespace_lock); 6529 return (0); 6530 6531 fail: 6532 spa->spa_is_exporting = B_FALSE; 6533 spa_async_resume(spa); 6534 mutex_exit(&spa_namespace_lock); 6535 return (error); 6536 } 6537 6538 /* 6539 * Destroy a storage pool. 6540 */ 6541 int 6542 spa_destroy(const char *pool) 6543 { 6544 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 6545 B_FALSE, B_FALSE)); 6546 } 6547 6548 /* 6549 * Export a storage pool. 6550 */ 6551 int 6552 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force, 6553 boolean_t hardforce) 6554 { 6555 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 6556 force, hardforce)); 6557 } 6558 6559 /* 6560 * Similar to spa_export(), this unloads the spa_t without actually removing it 6561 * from the namespace in any way. 6562 */ 6563 int 6564 spa_reset(const char *pool) 6565 { 6566 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 6567 B_FALSE, B_FALSE)); 6568 } 6569 6570 /* 6571 * ========================================================================== 6572 * Device manipulation 6573 * ========================================================================== 6574 */ 6575 6576 /* 6577 * This is called as a synctask to increment the draid feature flag 6578 */ 6579 static void 6580 spa_draid_feature_incr(void *arg, dmu_tx_t *tx) 6581 { 6582 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6583 int draid = (int)(uintptr_t)arg; 6584 6585 for (int c = 0; c < draid; c++) 6586 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx); 6587 } 6588 6589 /* 6590 * Add a device to a storage pool. 6591 */ 6592 int 6593 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 6594 { 6595 uint64_t txg, ndraid = 0; 6596 int error; 6597 vdev_t *rvd = spa->spa_root_vdev; 6598 vdev_t *vd, *tvd; 6599 nvlist_t **spares, **l2cache; 6600 uint_t nspares, nl2cache; 6601 6602 ASSERT(spa_writeable(spa)); 6603 6604 txg = spa_vdev_enter(spa); 6605 6606 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 6607 VDEV_ALLOC_ADD)) != 0) 6608 return (spa_vdev_exit(spa, NULL, txg, error)); 6609 6610 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 6611 6612 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 6613 &nspares) != 0) 6614 nspares = 0; 6615 6616 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 6617 &nl2cache) != 0) 6618 nl2cache = 0; 6619 6620 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 6621 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 6622 6623 if (vd->vdev_children != 0 && 6624 (error = vdev_create(vd, txg, B_FALSE)) != 0) { 6625 return (spa_vdev_exit(spa, vd, txg, error)); 6626 } 6627 6628 /* 6629 * The virtual dRAID spares must be added after vdev tree is created 6630 * and the vdev guids are generated. The guid of their associated 6631 * dRAID is stored in the config and used when opening the spare. 6632 */ 6633 if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid, 6634 rvd->vdev_children)) == 0) { 6635 if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot, 6636 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0) 6637 nspares = 0; 6638 } else { 6639 return (spa_vdev_exit(spa, vd, txg, error)); 6640 } 6641 6642 /* 6643 * We must validate the spares and l2cache devices after checking the 6644 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 6645 */ 6646 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 6647 return (spa_vdev_exit(spa, vd, txg, error)); 6648 6649 /* 6650 * If we are in the middle of a device removal, we can only add 6651 * devices which match the existing devices in the pool. 6652 * If we are in the middle of a removal, or have some indirect 6653 * vdevs, we can not add raidz or dRAID top levels. 6654 */ 6655 if (spa->spa_vdev_removal != NULL || 6656 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { 6657 for (int c = 0; c < vd->vdev_children; c++) { 6658 tvd = vd->vdev_child[c]; 6659 if (spa->spa_vdev_removal != NULL && 6660 tvd->vdev_ashift != spa->spa_max_ashift) { 6661 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 6662 } 6663 /* Fail if top level vdev is raidz or a dRAID */ 6664 if (vdev_get_nparity(tvd) != 0) 6665 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 6666 6667 /* 6668 * Need the top level mirror to be 6669 * a mirror of leaf vdevs only 6670 */ 6671 if (tvd->vdev_ops == &vdev_mirror_ops) { 6672 for (uint64_t cid = 0; 6673 cid < tvd->vdev_children; cid++) { 6674 vdev_t *cvd = tvd->vdev_child[cid]; 6675 if (!cvd->vdev_ops->vdev_op_leaf) { 6676 return (spa_vdev_exit(spa, vd, 6677 txg, EINVAL)); 6678 } 6679 } 6680 } 6681 } 6682 } 6683 6684 for (int c = 0; c < vd->vdev_children; c++) { 6685 tvd = vd->vdev_child[c]; 6686 vdev_remove_child(vd, tvd); 6687 tvd->vdev_id = rvd->vdev_children; 6688 vdev_add_child(rvd, tvd); 6689 vdev_config_dirty(tvd); 6690 } 6691 6692 if (nspares != 0) { 6693 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 6694 ZPOOL_CONFIG_SPARES); 6695 spa_load_spares(spa); 6696 spa->spa_spares.sav_sync = B_TRUE; 6697 } 6698 6699 if (nl2cache != 0) { 6700 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 6701 ZPOOL_CONFIG_L2CACHE); 6702 spa_load_l2cache(spa); 6703 spa->spa_l2cache.sav_sync = B_TRUE; 6704 } 6705 6706 /* 6707 * We can't increment a feature while holding spa_vdev so we 6708 * have to do it in a synctask. 6709 */ 6710 if (ndraid != 0) { 6711 dmu_tx_t *tx; 6712 6713 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 6714 dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr, 6715 (void *)(uintptr_t)ndraid, tx); 6716 dmu_tx_commit(tx); 6717 } 6718 6719 /* 6720 * We have to be careful when adding new vdevs to an existing pool. 6721 * If other threads start allocating from these vdevs before we 6722 * sync the config cache, and we lose power, then upon reboot we may 6723 * fail to open the pool because there are DVAs that the config cache 6724 * can't translate. Therefore, we first add the vdevs without 6725 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 6726 * and then let spa_config_update() initialize the new metaslabs. 6727 * 6728 * spa_load() checks for added-but-not-initialized vdevs, so that 6729 * if we lose power at any point in this sequence, the remaining 6730 * steps will be completed the next time we load the pool. 6731 */ 6732 (void) spa_vdev_exit(spa, vd, txg, 0); 6733 6734 mutex_enter(&spa_namespace_lock); 6735 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 6736 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD); 6737 mutex_exit(&spa_namespace_lock); 6738 6739 return (0); 6740 } 6741 6742 /* 6743 * Attach a device to a mirror. The arguments are the path to any device 6744 * in the mirror, and the nvroot for the new device. If the path specifies 6745 * a device that is not mirrored, we automatically insert the mirror vdev. 6746 * 6747 * If 'replacing' is specified, the new device is intended to replace the 6748 * existing device; in this case the two devices are made into their own 6749 * mirror using the 'replacing' vdev, which is functionally identical to 6750 * the mirror vdev (it actually reuses all the same ops) but has a few 6751 * extra rules: you can't attach to it after it's been created, and upon 6752 * completion of resilvering, the first disk (the one being replaced) 6753 * is automatically detached. 6754 * 6755 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild) 6756 * should be performed instead of traditional healing reconstruction. From 6757 * an administrators perspective these are both resilver operations. 6758 */ 6759 int 6760 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing, 6761 int rebuild) 6762 { 6763 uint64_t txg, dtl_max_txg; 6764 vdev_t *rvd = spa->spa_root_vdev; 6765 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 6766 vdev_ops_t *pvops; 6767 char *oldvdpath, *newvdpath; 6768 int newvd_isspare; 6769 int error; 6770 6771 ASSERT(spa_writeable(spa)); 6772 6773 txg = spa_vdev_enter(spa); 6774 6775 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 6776 6777 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 6778 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 6779 error = (spa_has_checkpoint(spa)) ? 6780 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 6781 return (spa_vdev_exit(spa, NULL, txg, error)); 6782 } 6783 6784 if (rebuild) { 6785 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) 6786 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6787 6788 if (dsl_scan_resilvering(spa_get_dsl(spa))) 6789 return (spa_vdev_exit(spa, NULL, txg, 6790 ZFS_ERR_RESILVER_IN_PROGRESS)); 6791 } else { 6792 if (vdev_rebuild_active(rvd)) 6793 return (spa_vdev_exit(spa, NULL, txg, 6794 ZFS_ERR_REBUILD_IN_PROGRESS)); 6795 } 6796 6797 if (spa->spa_vdev_removal != NULL) 6798 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 6799 6800 if (oldvd == NULL) 6801 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 6802 6803 if (!oldvd->vdev_ops->vdev_op_leaf) 6804 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6805 6806 pvd = oldvd->vdev_parent; 6807 6808 if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 6809 VDEV_ALLOC_ATTACH) != 0) 6810 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 6811 6812 if (newrootvd->vdev_children != 1) 6813 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 6814 6815 newvd = newrootvd->vdev_child[0]; 6816 6817 if (!newvd->vdev_ops->vdev_op_leaf) 6818 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 6819 6820 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 6821 return (spa_vdev_exit(spa, newrootvd, txg, error)); 6822 6823 /* 6824 * log, dedup and special vdevs should not be replaced by spares. 6825 */ 6826 if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE || 6827 oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) { 6828 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6829 } 6830 6831 /* 6832 * A dRAID spare can only replace a child of its parent dRAID vdev. 6833 */ 6834 if (newvd->vdev_ops == &vdev_draid_spare_ops && 6835 oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) { 6836 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6837 } 6838 6839 if (rebuild) { 6840 /* 6841 * For rebuilds, the top vdev must support reconstruction 6842 * using only space maps. This means the only allowable 6843 * vdevs types are the root vdev, a mirror, or dRAID. 6844 */ 6845 tvd = pvd; 6846 if (pvd->vdev_top != NULL) 6847 tvd = pvd->vdev_top; 6848 6849 if (tvd->vdev_ops != &vdev_mirror_ops && 6850 tvd->vdev_ops != &vdev_root_ops && 6851 tvd->vdev_ops != &vdev_draid_ops) { 6852 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6853 } 6854 } 6855 6856 if (!replacing) { 6857 /* 6858 * For attach, the only allowable parent is a mirror or the root 6859 * vdev. 6860 */ 6861 if (pvd->vdev_ops != &vdev_mirror_ops && 6862 pvd->vdev_ops != &vdev_root_ops) 6863 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6864 6865 pvops = &vdev_mirror_ops; 6866 } else { 6867 /* 6868 * Active hot spares can only be replaced by inactive hot 6869 * spares. 6870 */ 6871 if (pvd->vdev_ops == &vdev_spare_ops && 6872 oldvd->vdev_isspare && 6873 !spa_has_spare(spa, newvd->vdev_guid)) 6874 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6875 6876 /* 6877 * If the source is a hot spare, and the parent isn't already a 6878 * spare, then we want to create a new hot spare. Otherwise, we 6879 * want to create a replacing vdev. The user is not allowed to 6880 * attach to a spared vdev child unless the 'isspare' state is 6881 * the same (spare replaces spare, non-spare replaces 6882 * non-spare). 6883 */ 6884 if (pvd->vdev_ops == &vdev_replacing_ops && 6885 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 6886 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6887 } else if (pvd->vdev_ops == &vdev_spare_ops && 6888 newvd->vdev_isspare != oldvd->vdev_isspare) { 6889 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6890 } 6891 6892 if (newvd->vdev_isspare) 6893 pvops = &vdev_spare_ops; 6894 else 6895 pvops = &vdev_replacing_ops; 6896 } 6897 6898 /* 6899 * Make sure the new device is big enough. 6900 */ 6901 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 6902 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 6903 6904 /* 6905 * The new device cannot have a higher alignment requirement 6906 * than the top-level vdev. 6907 */ 6908 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 6909 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6910 6911 /* 6912 * If this is an in-place replacement, update oldvd's path and devid 6913 * to make it distinguishable from newvd, and unopenable from now on. 6914 */ 6915 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 6916 spa_strfree(oldvd->vdev_path); 6917 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 6918 KM_SLEEP); 6919 (void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5, 6920 "%s/%s", newvd->vdev_path, "old"); 6921 if (oldvd->vdev_devid != NULL) { 6922 spa_strfree(oldvd->vdev_devid); 6923 oldvd->vdev_devid = NULL; 6924 } 6925 } 6926 6927 /* 6928 * If the parent is not a mirror, or if we're replacing, insert the new 6929 * mirror/replacing/spare vdev above oldvd. 6930 */ 6931 if (pvd->vdev_ops != pvops) 6932 pvd = vdev_add_parent(oldvd, pvops); 6933 6934 ASSERT(pvd->vdev_top->vdev_parent == rvd); 6935 ASSERT(pvd->vdev_ops == pvops); 6936 ASSERT(oldvd->vdev_parent == pvd); 6937 6938 /* 6939 * Extract the new device from its root and add it to pvd. 6940 */ 6941 vdev_remove_child(newrootvd, newvd); 6942 newvd->vdev_id = pvd->vdev_children; 6943 newvd->vdev_crtxg = oldvd->vdev_crtxg; 6944 vdev_add_child(pvd, newvd); 6945 6946 /* 6947 * Reevaluate the parent vdev state. 6948 */ 6949 vdev_propagate_state(pvd); 6950 6951 tvd = newvd->vdev_top; 6952 ASSERT(pvd->vdev_top == tvd); 6953 ASSERT(tvd->vdev_parent == rvd); 6954 6955 vdev_config_dirty(tvd); 6956 6957 /* 6958 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 6959 * for any dmu_sync-ed blocks. It will propagate upward when 6960 * spa_vdev_exit() calls vdev_dtl_reassess(). 6961 */ 6962 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 6963 6964 vdev_dtl_dirty(newvd, DTL_MISSING, 6965 TXG_INITIAL, dtl_max_txg - TXG_INITIAL); 6966 6967 if (newvd->vdev_isspare) { 6968 spa_spare_activate(newvd); 6969 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE); 6970 } 6971 6972 oldvdpath = spa_strdup(oldvd->vdev_path); 6973 newvdpath = spa_strdup(newvd->vdev_path); 6974 newvd_isspare = newvd->vdev_isspare; 6975 6976 /* 6977 * Mark newvd's DTL dirty in this txg. 6978 */ 6979 vdev_dirty(tvd, VDD_DTL, newvd, txg); 6980 6981 /* 6982 * Schedule the resilver or rebuild to restart in the future. We do 6983 * this to ensure that dmu_sync-ed blocks have been stitched into the 6984 * respective datasets. 6985 */ 6986 if (rebuild) { 6987 newvd->vdev_rebuild_txg = txg; 6988 6989 vdev_rebuild(tvd); 6990 } else { 6991 newvd->vdev_resilver_txg = txg; 6992 6993 if (dsl_scan_resilvering(spa_get_dsl(spa)) && 6994 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) { 6995 vdev_defer_resilver(newvd); 6996 } else { 6997 dsl_scan_restart_resilver(spa->spa_dsl_pool, 6998 dtl_max_txg); 6999 } 7000 } 7001 7002 if (spa->spa_bootfs) 7003 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH); 7004 7005 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH); 7006 7007 /* 7008 * Commit the config 7009 */ 7010 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 7011 7012 spa_history_log_internal(spa, "vdev attach", NULL, 7013 "%s vdev=%s %s vdev=%s", 7014 replacing && newvd_isspare ? "spare in" : 7015 replacing ? "replace" : "attach", newvdpath, 7016 replacing ? "for" : "to", oldvdpath); 7017 7018 spa_strfree(oldvdpath); 7019 spa_strfree(newvdpath); 7020 7021 return (0); 7022 } 7023 7024 /* 7025 * Detach a device from a mirror or replacing vdev. 7026 * 7027 * If 'replace_done' is specified, only detach if the parent 7028 * is a replacing vdev. 7029 */ 7030 int 7031 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 7032 { 7033 uint64_t txg; 7034 int error; 7035 vdev_t *rvd __maybe_unused = spa->spa_root_vdev; 7036 vdev_t *vd, *pvd, *cvd, *tvd; 7037 boolean_t unspare = B_FALSE; 7038 uint64_t unspare_guid = 0; 7039 char *vdpath; 7040 7041 ASSERT(spa_writeable(spa)); 7042 7043 txg = spa_vdev_detach_enter(spa, guid); 7044 7045 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 7046 7047 /* 7048 * Besides being called directly from the userland through the 7049 * ioctl interface, spa_vdev_detach() can be potentially called 7050 * at the end of spa_vdev_resilver_done(). 7051 * 7052 * In the regular case, when we have a checkpoint this shouldn't 7053 * happen as we never empty the DTLs of a vdev during the scrub 7054 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done() 7055 * should never get here when we have a checkpoint. 7056 * 7057 * That said, even in a case when we checkpoint the pool exactly 7058 * as spa_vdev_resilver_done() calls this function everything 7059 * should be fine as the resilver will return right away. 7060 */ 7061 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7062 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 7063 error = (spa_has_checkpoint(spa)) ? 7064 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 7065 return (spa_vdev_exit(spa, NULL, txg, error)); 7066 } 7067 7068 if (vd == NULL) 7069 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 7070 7071 if (!vd->vdev_ops->vdev_op_leaf) 7072 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7073 7074 pvd = vd->vdev_parent; 7075 7076 /* 7077 * If the parent/child relationship is not as expected, don't do it. 7078 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 7079 * vdev that's replacing B with C. The user's intent in replacing 7080 * is to go from M(A,B) to M(A,C). If the user decides to cancel 7081 * the replace by detaching C, the expected behavior is to end up 7082 * M(A,B). But suppose that right after deciding to detach C, 7083 * the replacement of B completes. We would have M(A,C), and then 7084 * ask to detach C, which would leave us with just A -- not what 7085 * the user wanted. To prevent this, we make sure that the 7086 * parent/child relationship hasn't changed -- in this example, 7087 * that C's parent is still the replacing vdev R. 7088 */ 7089 if (pvd->vdev_guid != pguid && pguid != 0) 7090 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 7091 7092 /* 7093 * Only 'replacing' or 'spare' vdevs can be replaced. 7094 */ 7095 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 7096 pvd->vdev_ops != &vdev_spare_ops) 7097 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7098 7099 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 7100 spa_version(spa) >= SPA_VERSION_SPARES); 7101 7102 /* 7103 * Only mirror, replacing, and spare vdevs support detach. 7104 */ 7105 if (pvd->vdev_ops != &vdev_replacing_ops && 7106 pvd->vdev_ops != &vdev_mirror_ops && 7107 pvd->vdev_ops != &vdev_spare_ops) 7108 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7109 7110 /* 7111 * If this device has the only valid copy of some data, 7112 * we cannot safely detach it. 7113 */ 7114 if (vdev_dtl_required(vd)) 7115 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 7116 7117 ASSERT(pvd->vdev_children >= 2); 7118 7119 /* 7120 * If we are detaching the second disk from a replacing vdev, then 7121 * check to see if we changed the original vdev's path to have "/old" 7122 * at the end in spa_vdev_attach(). If so, undo that change now. 7123 */ 7124 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 7125 vd->vdev_path != NULL) { 7126 size_t len = strlen(vd->vdev_path); 7127 7128 for (int c = 0; c < pvd->vdev_children; c++) { 7129 cvd = pvd->vdev_child[c]; 7130 7131 if (cvd == vd || cvd->vdev_path == NULL) 7132 continue; 7133 7134 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 7135 strcmp(cvd->vdev_path + len, "/old") == 0) { 7136 spa_strfree(cvd->vdev_path); 7137 cvd->vdev_path = spa_strdup(vd->vdev_path); 7138 break; 7139 } 7140 } 7141 } 7142 7143 /* 7144 * If we are detaching the original disk from a normal spare, then it 7145 * implies that the spare should become a real disk, and be removed 7146 * from the active spare list for the pool. dRAID spares on the 7147 * other hand are coupled to the pool and thus should never be removed 7148 * from the spares list. 7149 */ 7150 if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) { 7151 vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1]; 7152 7153 if (last_cvd->vdev_isspare && 7154 last_cvd->vdev_ops != &vdev_draid_spare_ops) { 7155 unspare = B_TRUE; 7156 } 7157 } 7158 7159 /* 7160 * Erase the disk labels so the disk can be used for other things. 7161 * This must be done after all other error cases are handled, 7162 * but before we disembowel vd (so we can still do I/O to it). 7163 * But if we can't do it, don't treat the error as fatal -- 7164 * it may be that the unwritability of the disk is the reason 7165 * it's being detached! 7166 */ 7167 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 7168 7169 /* 7170 * Remove vd from its parent and compact the parent's children. 7171 */ 7172 vdev_remove_child(pvd, vd); 7173 vdev_compact_children(pvd); 7174 7175 /* 7176 * Remember one of the remaining children so we can get tvd below. 7177 */ 7178 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 7179 7180 /* 7181 * If we need to remove the remaining child from the list of hot spares, 7182 * do it now, marking the vdev as no longer a spare in the process. 7183 * We must do this before vdev_remove_parent(), because that can 7184 * change the GUID if it creates a new toplevel GUID. For a similar 7185 * reason, we must remove the spare now, in the same txg as the detach; 7186 * otherwise someone could attach a new sibling, change the GUID, and 7187 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 7188 */ 7189 if (unspare) { 7190 ASSERT(cvd->vdev_isspare); 7191 spa_spare_remove(cvd); 7192 unspare_guid = cvd->vdev_guid; 7193 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 7194 cvd->vdev_unspare = B_TRUE; 7195 } 7196 7197 /* 7198 * If the parent mirror/replacing vdev only has one child, 7199 * the parent is no longer needed. Remove it from the tree. 7200 */ 7201 if (pvd->vdev_children == 1) { 7202 if (pvd->vdev_ops == &vdev_spare_ops) 7203 cvd->vdev_unspare = B_FALSE; 7204 vdev_remove_parent(cvd); 7205 } 7206 7207 /* 7208 * We don't set tvd until now because the parent we just removed 7209 * may have been the previous top-level vdev. 7210 */ 7211 tvd = cvd->vdev_top; 7212 ASSERT(tvd->vdev_parent == rvd); 7213 7214 /* 7215 * Reevaluate the parent vdev state. 7216 */ 7217 vdev_propagate_state(cvd); 7218 7219 /* 7220 * If the 'autoexpand' property is set on the pool then automatically 7221 * try to expand the size of the pool. For example if the device we 7222 * just detached was smaller than the others, it may be possible to 7223 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 7224 * first so that we can obtain the updated sizes of the leaf vdevs. 7225 */ 7226 if (spa->spa_autoexpand) { 7227 vdev_reopen(tvd); 7228 vdev_expand(tvd, txg); 7229 } 7230 7231 vdev_config_dirty(tvd); 7232 7233 /* 7234 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 7235 * vd->vdev_detached is set and free vd's DTL object in syncing context. 7236 * But first make sure we're not on any *other* txg's DTL list, to 7237 * prevent vd from being accessed after it's freed. 7238 */ 7239 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none"); 7240 for (int t = 0; t < TXG_SIZE; t++) 7241 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 7242 vd->vdev_detached = B_TRUE; 7243 vdev_dirty(tvd, VDD_DTL, vd, txg); 7244 7245 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE); 7246 spa_notify_waiters(spa); 7247 7248 /* hang on to the spa before we release the lock */ 7249 spa_open_ref(spa, FTAG); 7250 7251 error = spa_vdev_exit(spa, vd, txg, 0); 7252 7253 spa_history_log_internal(spa, "detach", NULL, 7254 "vdev=%s", vdpath); 7255 spa_strfree(vdpath); 7256 7257 /* 7258 * If this was the removal of the original device in a hot spare vdev, 7259 * then we want to go through and remove the device from the hot spare 7260 * list of every other pool. 7261 */ 7262 if (unspare) { 7263 spa_t *altspa = NULL; 7264 7265 mutex_enter(&spa_namespace_lock); 7266 while ((altspa = spa_next(altspa)) != NULL) { 7267 if (altspa->spa_state != POOL_STATE_ACTIVE || 7268 altspa == spa) 7269 continue; 7270 7271 spa_open_ref(altspa, FTAG); 7272 mutex_exit(&spa_namespace_lock); 7273 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 7274 mutex_enter(&spa_namespace_lock); 7275 spa_close(altspa, FTAG); 7276 } 7277 mutex_exit(&spa_namespace_lock); 7278 7279 /* search the rest of the vdevs for spares to remove */ 7280 spa_vdev_resilver_done(spa); 7281 } 7282 7283 /* all done with the spa; OK to release */ 7284 mutex_enter(&spa_namespace_lock); 7285 spa_close(spa, FTAG); 7286 mutex_exit(&spa_namespace_lock); 7287 7288 return (error); 7289 } 7290 7291 static int 7292 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, 7293 list_t *vd_list) 7294 { 7295 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7296 7297 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 7298 7299 /* Look up vdev and ensure it's a leaf. */ 7300 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 7301 if (vd == NULL || vd->vdev_detached) { 7302 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7303 return (SET_ERROR(ENODEV)); 7304 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 7305 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7306 return (SET_ERROR(EINVAL)); 7307 } else if (!vdev_writeable(vd)) { 7308 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7309 return (SET_ERROR(EROFS)); 7310 } 7311 mutex_enter(&vd->vdev_initialize_lock); 7312 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7313 7314 /* 7315 * When we activate an initialize action we check to see 7316 * if the vdev_initialize_thread is NULL. We do this instead 7317 * of using the vdev_initialize_state since there might be 7318 * a previous initialization process which has completed but 7319 * the thread is not exited. 7320 */ 7321 if (cmd_type == POOL_INITIALIZE_START && 7322 (vd->vdev_initialize_thread != NULL || 7323 vd->vdev_top->vdev_removing)) { 7324 mutex_exit(&vd->vdev_initialize_lock); 7325 return (SET_ERROR(EBUSY)); 7326 } else if (cmd_type == POOL_INITIALIZE_CANCEL && 7327 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE && 7328 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) { 7329 mutex_exit(&vd->vdev_initialize_lock); 7330 return (SET_ERROR(ESRCH)); 7331 } else if (cmd_type == POOL_INITIALIZE_SUSPEND && 7332 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) { 7333 mutex_exit(&vd->vdev_initialize_lock); 7334 return (SET_ERROR(ESRCH)); 7335 } 7336 7337 switch (cmd_type) { 7338 case POOL_INITIALIZE_START: 7339 vdev_initialize(vd); 7340 break; 7341 case POOL_INITIALIZE_CANCEL: 7342 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list); 7343 break; 7344 case POOL_INITIALIZE_SUSPEND: 7345 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list); 7346 break; 7347 default: 7348 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 7349 } 7350 mutex_exit(&vd->vdev_initialize_lock); 7351 7352 return (0); 7353 } 7354 7355 int 7356 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, 7357 nvlist_t *vdev_errlist) 7358 { 7359 int total_errors = 0; 7360 list_t vd_list; 7361 7362 list_create(&vd_list, sizeof (vdev_t), 7363 offsetof(vdev_t, vdev_initialize_node)); 7364 7365 /* 7366 * We hold the namespace lock through the whole function 7367 * to prevent any changes to the pool while we're starting or 7368 * stopping initialization. The config and state locks are held so that 7369 * we can properly assess the vdev state before we commit to 7370 * the initializing operation. 7371 */ 7372 mutex_enter(&spa_namespace_lock); 7373 7374 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 7375 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { 7376 uint64_t vdev_guid = fnvpair_value_uint64(pair); 7377 7378 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type, 7379 &vd_list); 7380 if (error != 0) { 7381 char guid_as_str[MAXNAMELEN]; 7382 7383 (void) snprintf(guid_as_str, sizeof (guid_as_str), 7384 "%llu", (unsigned long long)vdev_guid); 7385 fnvlist_add_int64(vdev_errlist, guid_as_str, error); 7386 total_errors++; 7387 } 7388 } 7389 7390 /* Wait for all initialize threads to stop. */ 7391 vdev_initialize_stop_wait(spa, &vd_list); 7392 7393 /* Sync out the initializing state */ 7394 txg_wait_synced(spa->spa_dsl_pool, 0); 7395 mutex_exit(&spa_namespace_lock); 7396 7397 list_destroy(&vd_list); 7398 7399 return (total_errors); 7400 } 7401 7402 static int 7403 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, 7404 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list) 7405 { 7406 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7407 7408 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 7409 7410 /* Look up vdev and ensure it's a leaf. */ 7411 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 7412 if (vd == NULL || vd->vdev_detached) { 7413 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7414 return (SET_ERROR(ENODEV)); 7415 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 7416 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7417 return (SET_ERROR(EINVAL)); 7418 } else if (!vdev_writeable(vd)) { 7419 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7420 return (SET_ERROR(EROFS)); 7421 } else if (!vd->vdev_has_trim) { 7422 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7423 return (SET_ERROR(EOPNOTSUPP)); 7424 } else if (secure && !vd->vdev_has_securetrim) { 7425 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7426 return (SET_ERROR(EOPNOTSUPP)); 7427 } 7428 mutex_enter(&vd->vdev_trim_lock); 7429 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7430 7431 /* 7432 * When we activate a TRIM action we check to see if the 7433 * vdev_trim_thread is NULL. We do this instead of using the 7434 * vdev_trim_state since there might be a previous TRIM process 7435 * which has completed but the thread is not exited. 7436 */ 7437 if (cmd_type == POOL_TRIM_START && 7438 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) { 7439 mutex_exit(&vd->vdev_trim_lock); 7440 return (SET_ERROR(EBUSY)); 7441 } else if (cmd_type == POOL_TRIM_CANCEL && 7442 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE && 7443 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) { 7444 mutex_exit(&vd->vdev_trim_lock); 7445 return (SET_ERROR(ESRCH)); 7446 } else if (cmd_type == POOL_TRIM_SUSPEND && 7447 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) { 7448 mutex_exit(&vd->vdev_trim_lock); 7449 return (SET_ERROR(ESRCH)); 7450 } 7451 7452 switch (cmd_type) { 7453 case POOL_TRIM_START: 7454 vdev_trim(vd, rate, partial, secure); 7455 break; 7456 case POOL_TRIM_CANCEL: 7457 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list); 7458 break; 7459 case POOL_TRIM_SUSPEND: 7460 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list); 7461 break; 7462 default: 7463 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 7464 } 7465 mutex_exit(&vd->vdev_trim_lock); 7466 7467 return (0); 7468 } 7469 7470 /* 7471 * Initiates a manual TRIM for the requested vdevs. This kicks off individual 7472 * TRIM threads for each child vdev. These threads pass over all of the free 7473 * space in the vdev's metaslabs and issues TRIM commands for that space. 7474 */ 7475 int 7476 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate, 7477 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist) 7478 { 7479 int total_errors = 0; 7480 list_t vd_list; 7481 7482 list_create(&vd_list, sizeof (vdev_t), 7483 offsetof(vdev_t, vdev_trim_node)); 7484 7485 /* 7486 * We hold the namespace lock through the whole function 7487 * to prevent any changes to the pool while we're starting or 7488 * stopping TRIM. The config and state locks are held so that 7489 * we can properly assess the vdev state before we commit to 7490 * the TRIM operation. 7491 */ 7492 mutex_enter(&spa_namespace_lock); 7493 7494 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 7495 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { 7496 uint64_t vdev_guid = fnvpair_value_uint64(pair); 7497 7498 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type, 7499 rate, partial, secure, &vd_list); 7500 if (error != 0) { 7501 char guid_as_str[MAXNAMELEN]; 7502 7503 (void) snprintf(guid_as_str, sizeof (guid_as_str), 7504 "%llu", (unsigned long long)vdev_guid); 7505 fnvlist_add_int64(vdev_errlist, guid_as_str, error); 7506 total_errors++; 7507 } 7508 } 7509 7510 /* Wait for all TRIM threads to stop. */ 7511 vdev_trim_stop_wait(spa, &vd_list); 7512 7513 /* Sync out the TRIM state */ 7514 txg_wait_synced(spa->spa_dsl_pool, 0); 7515 mutex_exit(&spa_namespace_lock); 7516 7517 list_destroy(&vd_list); 7518 7519 return (total_errors); 7520 } 7521 7522 /* 7523 * Split a set of devices from their mirrors, and create a new pool from them. 7524 */ 7525 int 7526 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config, 7527 nvlist_t *props, boolean_t exp) 7528 { 7529 int error = 0; 7530 uint64_t txg, *glist; 7531 spa_t *newspa; 7532 uint_t c, children, lastlog; 7533 nvlist_t **child, *nvl, *tmp; 7534 dmu_tx_t *tx; 7535 char *altroot = NULL; 7536 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 7537 boolean_t activate_slog; 7538 7539 ASSERT(spa_writeable(spa)); 7540 7541 txg = spa_vdev_enter(spa); 7542 7543 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7544 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 7545 error = (spa_has_checkpoint(spa)) ? 7546 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 7547 return (spa_vdev_exit(spa, NULL, txg, error)); 7548 } 7549 7550 /* clear the log and flush everything up to now */ 7551 activate_slog = spa_passivate_log(spa); 7552 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 7553 error = spa_reset_logs(spa); 7554 txg = spa_vdev_config_enter(spa); 7555 7556 if (activate_slog) 7557 spa_activate_log(spa); 7558 7559 if (error != 0) 7560 return (spa_vdev_exit(spa, NULL, txg, error)); 7561 7562 /* check new spa name before going any further */ 7563 if (spa_lookup(newname) != NULL) 7564 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 7565 7566 /* 7567 * scan through all the children to ensure they're all mirrors 7568 */ 7569 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 7570 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 7571 &children) != 0) 7572 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 7573 7574 /* first, check to ensure we've got the right child count */ 7575 rvd = spa->spa_root_vdev; 7576 lastlog = 0; 7577 for (c = 0; c < rvd->vdev_children; c++) { 7578 vdev_t *vd = rvd->vdev_child[c]; 7579 7580 /* don't count the holes & logs as children */ 7581 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops && 7582 !vdev_is_concrete(vd))) { 7583 if (lastlog == 0) 7584 lastlog = c; 7585 continue; 7586 } 7587 7588 lastlog = 0; 7589 } 7590 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 7591 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 7592 7593 /* next, ensure no spare or cache devices are part of the split */ 7594 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 7595 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 7596 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 7597 7598 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 7599 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 7600 7601 /* then, loop over each vdev and validate it */ 7602 for (c = 0; c < children; c++) { 7603 uint64_t is_hole = 0; 7604 7605 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 7606 &is_hole); 7607 7608 if (is_hole != 0) { 7609 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 7610 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 7611 continue; 7612 } else { 7613 error = SET_ERROR(EINVAL); 7614 break; 7615 } 7616 } 7617 7618 /* deal with indirect vdevs */ 7619 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops == 7620 &vdev_indirect_ops) 7621 continue; 7622 7623 /* which disk is going to be split? */ 7624 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 7625 &glist[c]) != 0) { 7626 error = SET_ERROR(EINVAL); 7627 break; 7628 } 7629 7630 /* look it up in the spa */ 7631 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 7632 if (vml[c] == NULL) { 7633 error = SET_ERROR(ENODEV); 7634 break; 7635 } 7636 7637 /* make sure there's nothing stopping the split */ 7638 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 7639 vml[c]->vdev_islog || 7640 !vdev_is_concrete(vml[c]) || 7641 vml[c]->vdev_isspare || 7642 vml[c]->vdev_isl2cache || 7643 !vdev_writeable(vml[c]) || 7644 vml[c]->vdev_children != 0 || 7645 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 7646 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 7647 error = SET_ERROR(EINVAL); 7648 break; 7649 } 7650 7651 if (vdev_dtl_required(vml[c]) || 7652 vdev_resilver_needed(vml[c], NULL, NULL)) { 7653 error = SET_ERROR(EBUSY); 7654 break; 7655 } 7656 7657 /* we need certain info from the top level */ 7658 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 7659 vml[c]->vdev_top->vdev_ms_array); 7660 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 7661 vml[c]->vdev_top->vdev_ms_shift); 7662 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 7663 vml[c]->vdev_top->vdev_asize); 7664 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 7665 vml[c]->vdev_top->vdev_ashift); 7666 7667 /* transfer per-vdev ZAPs */ 7668 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); 7669 VERIFY0(nvlist_add_uint64(child[c], 7670 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); 7671 7672 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); 7673 VERIFY0(nvlist_add_uint64(child[c], 7674 ZPOOL_CONFIG_VDEV_TOP_ZAP, 7675 vml[c]->vdev_parent->vdev_top_zap)); 7676 } 7677 7678 if (error != 0) { 7679 kmem_free(vml, children * sizeof (vdev_t *)); 7680 kmem_free(glist, children * sizeof (uint64_t)); 7681 return (spa_vdev_exit(spa, NULL, txg, error)); 7682 } 7683 7684 /* stop writers from using the disks */ 7685 for (c = 0; c < children; c++) { 7686 if (vml[c] != NULL) 7687 vml[c]->vdev_offline = B_TRUE; 7688 } 7689 vdev_reopen(spa->spa_root_vdev); 7690 7691 /* 7692 * Temporarily record the splitting vdevs in the spa config. This 7693 * will disappear once the config is regenerated. 7694 */ 7695 nvl = fnvlist_alloc(); 7696 fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children); 7697 kmem_free(glist, children * sizeof (uint64_t)); 7698 7699 mutex_enter(&spa->spa_props_lock); 7700 fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl); 7701 mutex_exit(&spa->spa_props_lock); 7702 spa->spa_config_splitting = nvl; 7703 vdev_config_dirty(spa->spa_root_vdev); 7704 7705 /* configure and create the new pool */ 7706 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname); 7707 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 7708 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE); 7709 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa)); 7710 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg); 7711 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 7712 spa_generate_guid(NULL)); 7713 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 7714 (void) nvlist_lookup_string(props, 7715 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 7716 7717 /* add the new pool to the namespace */ 7718 newspa = spa_add(newname, config, altroot); 7719 newspa->spa_avz_action = AVZ_ACTION_REBUILD; 7720 newspa->spa_config_txg = spa->spa_config_txg; 7721 spa_set_log_state(newspa, SPA_LOG_CLEAR); 7722 7723 /* release the spa config lock, retaining the namespace lock */ 7724 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 7725 7726 if (zio_injection_enabled) 7727 zio_handle_panic_injection(spa, FTAG, 1); 7728 7729 spa_activate(newspa, spa_mode_global); 7730 spa_async_suspend(newspa); 7731 7732 /* 7733 * Temporarily stop the initializing and TRIM activity. We set the 7734 * state to ACTIVE so that we know to resume initializing or TRIM 7735 * once the split has completed. 7736 */ 7737 list_t vd_initialize_list; 7738 list_create(&vd_initialize_list, sizeof (vdev_t), 7739 offsetof(vdev_t, vdev_initialize_node)); 7740 7741 list_t vd_trim_list; 7742 list_create(&vd_trim_list, sizeof (vdev_t), 7743 offsetof(vdev_t, vdev_trim_node)); 7744 7745 for (c = 0; c < children; c++) { 7746 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { 7747 mutex_enter(&vml[c]->vdev_initialize_lock); 7748 vdev_initialize_stop(vml[c], 7749 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list); 7750 mutex_exit(&vml[c]->vdev_initialize_lock); 7751 7752 mutex_enter(&vml[c]->vdev_trim_lock); 7753 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list); 7754 mutex_exit(&vml[c]->vdev_trim_lock); 7755 } 7756 } 7757 7758 vdev_initialize_stop_wait(spa, &vd_initialize_list); 7759 vdev_trim_stop_wait(spa, &vd_trim_list); 7760 7761 list_destroy(&vd_initialize_list); 7762 list_destroy(&vd_trim_list); 7763 7764 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT; 7765 newspa->spa_is_splitting = B_TRUE; 7766 7767 /* create the new pool from the disks of the original pool */ 7768 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE); 7769 if (error) 7770 goto out; 7771 7772 /* if that worked, generate a real config for the new pool */ 7773 if (newspa->spa_root_vdev != NULL) { 7774 newspa->spa_config_splitting = fnvlist_alloc(); 7775 fnvlist_add_uint64(newspa->spa_config_splitting, 7776 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)); 7777 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 7778 B_TRUE)); 7779 } 7780 7781 /* set the props */ 7782 if (props != NULL) { 7783 spa_configfile_set(newspa, props, B_FALSE); 7784 error = spa_prop_set(newspa, props); 7785 if (error) 7786 goto out; 7787 } 7788 7789 /* flush everything */ 7790 txg = spa_vdev_config_enter(newspa); 7791 vdev_config_dirty(newspa->spa_root_vdev); 7792 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 7793 7794 if (zio_injection_enabled) 7795 zio_handle_panic_injection(spa, FTAG, 2); 7796 7797 spa_async_resume(newspa); 7798 7799 /* finally, update the original pool's config */ 7800 txg = spa_vdev_config_enter(spa); 7801 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 7802 error = dmu_tx_assign(tx, TXG_WAIT); 7803 if (error != 0) 7804 dmu_tx_abort(tx); 7805 for (c = 0; c < children; c++) { 7806 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { 7807 vdev_t *tvd = vml[c]->vdev_top; 7808 7809 /* 7810 * Need to be sure the detachable VDEV is not 7811 * on any *other* txg's DTL list to prevent it 7812 * from being accessed after it's freed. 7813 */ 7814 for (int t = 0; t < TXG_SIZE; t++) { 7815 (void) txg_list_remove_this( 7816 &tvd->vdev_dtl_list, vml[c], t); 7817 } 7818 7819 vdev_split(vml[c]); 7820 if (error == 0) 7821 spa_history_log_internal(spa, "detach", tx, 7822 "vdev=%s", vml[c]->vdev_path); 7823 7824 vdev_free(vml[c]); 7825 } 7826 } 7827 spa->spa_avz_action = AVZ_ACTION_REBUILD; 7828 vdev_config_dirty(spa->spa_root_vdev); 7829 spa->spa_config_splitting = NULL; 7830 nvlist_free(nvl); 7831 if (error == 0) 7832 dmu_tx_commit(tx); 7833 (void) spa_vdev_exit(spa, NULL, txg, 0); 7834 7835 if (zio_injection_enabled) 7836 zio_handle_panic_injection(spa, FTAG, 3); 7837 7838 /* split is complete; log a history record */ 7839 spa_history_log_internal(newspa, "split", NULL, 7840 "from pool %s", spa_name(spa)); 7841 7842 newspa->spa_is_splitting = B_FALSE; 7843 kmem_free(vml, children * sizeof (vdev_t *)); 7844 7845 /* if we're not going to mount the filesystems in userland, export */ 7846 if (exp) 7847 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 7848 B_FALSE, B_FALSE); 7849 7850 return (error); 7851 7852 out: 7853 spa_unload(newspa); 7854 spa_deactivate(newspa); 7855 spa_remove(newspa); 7856 7857 txg = spa_vdev_config_enter(spa); 7858 7859 /* re-online all offlined disks */ 7860 for (c = 0; c < children; c++) { 7861 if (vml[c] != NULL) 7862 vml[c]->vdev_offline = B_FALSE; 7863 } 7864 7865 /* restart initializing or trimming disks as necessary */ 7866 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART); 7867 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART); 7868 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART); 7869 7870 vdev_reopen(spa->spa_root_vdev); 7871 7872 nvlist_free(spa->spa_config_splitting); 7873 spa->spa_config_splitting = NULL; 7874 (void) spa_vdev_exit(spa, NULL, txg, error); 7875 7876 kmem_free(vml, children * sizeof (vdev_t *)); 7877 return (error); 7878 } 7879 7880 /* 7881 * Find any device that's done replacing, or a vdev marked 'unspare' that's 7882 * currently spared, so we can detach it. 7883 */ 7884 static vdev_t * 7885 spa_vdev_resilver_done_hunt(vdev_t *vd) 7886 { 7887 vdev_t *newvd, *oldvd; 7888 7889 for (int c = 0; c < vd->vdev_children; c++) { 7890 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 7891 if (oldvd != NULL) 7892 return (oldvd); 7893 } 7894 7895 /* 7896 * Check for a completed replacement. We always consider the first 7897 * vdev in the list to be the oldest vdev, and the last one to be 7898 * the newest (see spa_vdev_attach() for how that works). In 7899 * the case where the newest vdev is faulted, we will not automatically 7900 * remove it after a resilver completes. This is OK as it will require 7901 * user intervention to determine which disk the admin wishes to keep. 7902 */ 7903 if (vd->vdev_ops == &vdev_replacing_ops) { 7904 ASSERT(vd->vdev_children > 1); 7905 7906 newvd = vd->vdev_child[vd->vdev_children - 1]; 7907 oldvd = vd->vdev_child[0]; 7908 7909 if (vdev_dtl_empty(newvd, DTL_MISSING) && 7910 vdev_dtl_empty(newvd, DTL_OUTAGE) && 7911 !vdev_dtl_required(oldvd)) 7912 return (oldvd); 7913 } 7914 7915 /* 7916 * Check for a completed resilver with the 'unspare' flag set. 7917 * Also potentially update faulted state. 7918 */ 7919 if (vd->vdev_ops == &vdev_spare_ops) { 7920 vdev_t *first = vd->vdev_child[0]; 7921 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 7922 7923 if (last->vdev_unspare) { 7924 oldvd = first; 7925 newvd = last; 7926 } else if (first->vdev_unspare) { 7927 oldvd = last; 7928 newvd = first; 7929 } else { 7930 oldvd = NULL; 7931 } 7932 7933 if (oldvd != NULL && 7934 vdev_dtl_empty(newvd, DTL_MISSING) && 7935 vdev_dtl_empty(newvd, DTL_OUTAGE) && 7936 !vdev_dtl_required(oldvd)) 7937 return (oldvd); 7938 7939 vdev_propagate_state(vd); 7940 7941 /* 7942 * If there are more than two spares attached to a disk, 7943 * and those spares are not required, then we want to 7944 * attempt to free them up now so that they can be used 7945 * by other pools. Once we're back down to a single 7946 * disk+spare, we stop removing them. 7947 */ 7948 if (vd->vdev_children > 2) { 7949 newvd = vd->vdev_child[1]; 7950 7951 if (newvd->vdev_isspare && last->vdev_isspare && 7952 vdev_dtl_empty(last, DTL_MISSING) && 7953 vdev_dtl_empty(last, DTL_OUTAGE) && 7954 !vdev_dtl_required(newvd)) 7955 return (newvd); 7956 } 7957 } 7958 7959 return (NULL); 7960 } 7961 7962 static void 7963 spa_vdev_resilver_done(spa_t *spa) 7964 { 7965 vdev_t *vd, *pvd, *ppvd; 7966 uint64_t guid, sguid, pguid, ppguid; 7967 7968 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 7969 7970 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 7971 pvd = vd->vdev_parent; 7972 ppvd = pvd->vdev_parent; 7973 guid = vd->vdev_guid; 7974 pguid = pvd->vdev_guid; 7975 ppguid = ppvd->vdev_guid; 7976 sguid = 0; 7977 /* 7978 * If we have just finished replacing a hot spared device, then 7979 * we need to detach the parent's first child (the original hot 7980 * spare) as well. 7981 */ 7982 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 7983 ppvd->vdev_children == 2) { 7984 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 7985 sguid = ppvd->vdev_child[1]->vdev_guid; 7986 } 7987 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 7988 7989 spa_config_exit(spa, SCL_ALL, FTAG); 7990 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 7991 return; 7992 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 7993 return; 7994 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 7995 } 7996 7997 spa_config_exit(spa, SCL_ALL, FTAG); 7998 7999 /* 8000 * If a detach was not performed above replace waiters will not have 8001 * been notified. In which case we must do so now. 8002 */ 8003 spa_notify_waiters(spa); 8004 } 8005 8006 /* 8007 * Update the stored path or FRU for this vdev. 8008 */ 8009 static int 8010 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 8011 boolean_t ispath) 8012 { 8013 vdev_t *vd; 8014 boolean_t sync = B_FALSE; 8015 8016 ASSERT(spa_writeable(spa)); 8017 8018 spa_vdev_state_enter(spa, SCL_ALL); 8019 8020 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 8021 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 8022 8023 if (!vd->vdev_ops->vdev_op_leaf) 8024 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 8025 8026 if (ispath) { 8027 if (strcmp(value, vd->vdev_path) != 0) { 8028 spa_strfree(vd->vdev_path); 8029 vd->vdev_path = spa_strdup(value); 8030 sync = B_TRUE; 8031 } 8032 } else { 8033 if (vd->vdev_fru == NULL) { 8034 vd->vdev_fru = spa_strdup(value); 8035 sync = B_TRUE; 8036 } else if (strcmp(value, vd->vdev_fru) != 0) { 8037 spa_strfree(vd->vdev_fru); 8038 vd->vdev_fru = spa_strdup(value); 8039 sync = B_TRUE; 8040 } 8041 } 8042 8043 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 8044 } 8045 8046 int 8047 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 8048 { 8049 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 8050 } 8051 8052 int 8053 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 8054 { 8055 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 8056 } 8057 8058 /* 8059 * ========================================================================== 8060 * SPA Scanning 8061 * ========================================================================== 8062 */ 8063 int 8064 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd) 8065 { 8066 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 8067 8068 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 8069 return (SET_ERROR(EBUSY)); 8070 8071 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd)); 8072 } 8073 8074 int 8075 spa_scan_stop(spa_t *spa) 8076 { 8077 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 8078 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 8079 return (SET_ERROR(EBUSY)); 8080 return (dsl_scan_cancel(spa->spa_dsl_pool)); 8081 } 8082 8083 int 8084 spa_scan(spa_t *spa, pool_scan_func_t func) 8085 { 8086 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 8087 8088 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 8089 return (SET_ERROR(ENOTSUP)); 8090 8091 if (func == POOL_SCAN_RESILVER && 8092 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) 8093 return (SET_ERROR(ENOTSUP)); 8094 8095 /* 8096 * If a resilver was requested, but there is no DTL on a 8097 * writeable leaf device, we have nothing to do. 8098 */ 8099 if (func == POOL_SCAN_RESILVER && 8100 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 8101 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 8102 return (0); 8103 } 8104 8105 return (dsl_scan(spa->spa_dsl_pool, func)); 8106 } 8107 8108 /* 8109 * ========================================================================== 8110 * SPA async task processing 8111 * ========================================================================== 8112 */ 8113 8114 static void 8115 spa_async_remove(spa_t *spa, vdev_t *vd) 8116 { 8117 if (vd->vdev_remove_wanted) { 8118 vd->vdev_remove_wanted = B_FALSE; 8119 vd->vdev_delayed_close = B_FALSE; 8120 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 8121 8122 /* 8123 * We want to clear the stats, but we don't want to do a full 8124 * vdev_clear() as that will cause us to throw away 8125 * degraded/faulted state as well as attempt to reopen the 8126 * device, all of which is a waste. 8127 */ 8128 vd->vdev_stat.vs_read_errors = 0; 8129 vd->vdev_stat.vs_write_errors = 0; 8130 vd->vdev_stat.vs_checksum_errors = 0; 8131 8132 vdev_state_dirty(vd->vdev_top); 8133 8134 /* Tell userspace that the vdev is gone. */ 8135 zfs_post_remove(spa, vd); 8136 } 8137 8138 for (int c = 0; c < vd->vdev_children; c++) 8139 spa_async_remove(spa, vd->vdev_child[c]); 8140 } 8141 8142 static void 8143 spa_async_probe(spa_t *spa, vdev_t *vd) 8144 { 8145 if (vd->vdev_probe_wanted) { 8146 vd->vdev_probe_wanted = B_FALSE; 8147 vdev_reopen(vd); /* vdev_open() does the actual probe */ 8148 } 8149 8150 for (int c = 0; c < vd->vdev_children; c++) 8151 spa_async_probe(spa, vd->vdev_child[c]); 8152 } 8153 8154 static void 8155 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 8156 { 8157 if (!spa->spa_autoexpand) 8158 return; 8159 8160 for (int c = 0; c < vd->vdev_children; c++) { 8161 vdev_t *cvd = vd->vdev_child[c]; 8162 spa_async_autoexpand(spa, cvd); 8163 } 8164 8165 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 8166 return; 8167 8168 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND); 8169 } 8170 8171 static __attribute__((noreturn)) void 8172 spa_async_thread(void *arg) 8173 { 8174 spa_t *spa = (spa_t *)arg; 8175 dsl_pool_t *dp = spa->spa_dsl_pool; 8176 int tasks; 8177 8178 ASSERT(spa->spa_sync_on); 8179 8180 mutex_enter(&spa->spa_async_lock); 8181 tasks = spa->spa_async_tasks; 8182 spa->spa_async_tasks = 0; 8183 mutex_exit(&spa->spa_async_lock); 8184 8185 /* 8186 * See if the config needs to be updated. 8187 */ 8188 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 8189 uint64_t old_space, new_space; 8190 8191 mutex_enter(&spa_namespace_lock); 8192 old_space = metaslab_class_get_space(spa_normal_class(spa)); 8193 old_space += metaslab_class_get_space(spa_special_class(spa)); 8194 old_space += metaslab_class_get_space(spa_dedup_class(spa)); 8195 old_space += metaslab_class_get_space( 8196 spa_embedded_log_class(spa)); 8197 8198 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 8199 8200 new_space = metaslab_class_get_space(spa_normal_class(spa)); 8201 new_space += metaslab_class_get_space(spa_special_class(spa)); 8202 new_space += metaslab_class_get_space(spa_dedup_class(spa)); 8203 new_space += metaslab_class_get_space( 8204 spa_embedded_log_class(spa)); 8205 mutex_exit(&spa_namespace_lock); 8206 8207 /* 8208 * If the pool grew as a result of the config update, 8209 * then log an internal history event. 8210 */ 8211 if (new_space != old_space) { 8212 spa_history_log_internal(spa, "vdev online", NULL, 8213 "pool '%s' size: %llu(+%llu)", 8214 spa_name(spa), (u_longlong_t)new_space, 8215 (u_longlong_t)(new_space - old_space)); 8216 } 8217 } 8218 8219 /* 8220 * See if any devices need to be marked REMOVED. 8221 */ 8222 if (tasks & SPA_ASYNC_REMOVE) { 8223 spa_vdev_state_enter(spa, SCL_NONE); 8224 spa_async_remove(spa, spa->spa_root_vdev); 8225 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 8226 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 8227 for (int i = 0; i < spa->spa_spares.sav_count; i++) 8228 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 8229 (void) spa_vdev_state_exit(spa, NULL, 0); 8230 } 8231 8232 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 8233 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8234 spa_async_autoexpand(spa, spa->spa_root_vdev); 8235 spa_config_exit(spa, SCL_CONFIG, FTAG); 8236 } 8237 8238 /* 8239 * See if any devices need to be probed. 8240 */ 8241 if (tasks & SPA_ASYNC_PROBE) { 8242 spa_vdev_state_enter(spa, SCL_NONE); 8243 spa_async_probe(spa, spa->spa_root_vdev); 8244 (void) spa_vdev_state_exit(spa, NULL, 0); 8245 } 8246 8247 /* 8248 * If any devices are done replacing, detach them. 8249 */ 8250 if (tasks & SPA_ASYNC_RESILVER_DONE || 8251 tasks & SPA_ASYNC_REBUILD_DONE) { 8252 spa_vdev_resilver_done(spa); 8253 } 8254 8255 /* 8256 * Kick off a resilver. 8257 */ 8258 if (tasks & SPA_ASYNC_RESILVER && 8259 !vdev_rebuild_active(spa->spa_root_vdev) && 8260 (!dsl_scan_resilvering(dp) || 8261 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))) 8262 dsl_scan_restart_resilver(dp, 0); 8263 8264 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) { 8265 mutex_enter(&spa_namespace_lock); 8266 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8267 vdev_initialize_restart(spa->spa_root_vdev); 8268 spa_config_exit(spa, SCL_CONFIG, FTAG); 8269 mutex_exit(&spa_namespace_lock); 8270 } 8271 8272 if (tasks & SPA_ASYNC_TRIM_RESTART) { 8273 mutex_enter(&spa_namespace_lock); 8274 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8275 vdev_trim_restart(spa->spa_root_vdev); 8276 spa_config_exit(spa, SCL_CONFIG, FTAG); 8277 mutex_exit(&spa_namespace_lock); 8278 } 8279 8280 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) { 8281 mutex_enter(&spa_namespace_lock); 8282 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8283 vdev_autotrim_restart(spa); 8284 spa_config_exit(spa, SCL_CONFIG, FTAG); 8285 mutex_exit(&spa_namespace_lock); 8286 } 8287 8288 /* 8289 * Kick off L2 cache whole device TRIM. 8290 */ 8291 if (tasks & SPA_ASYNC_L2CACHE_TRIM) { 8292 mutex_enter(&spa_namespace_lock); 8293 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8294 vdev_trim_l2arc(spa); 8295 spa_config_exit(spa, SCL_CONFIG, FTAG); 8296 mutex_exit(&spa_namespace_lock); 8297 } 8298 8299 /* 8300 * Kick off L2 cache rebuilding. 8301 */ 8302 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) { 8303 mutex_enter(&spa_namespace_lock); 8304 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER); 8305 l2arc_spa_rebuild_start(spa); 8306 spa_config_exit(spa, SCL_L2ARC, FTAG); 8307 mutex_exit(&spa_namespace_lock); 8308 } 8309 8310 /* 8311 * Let the world know that we're done. 8312 */ 8313 mutex_enter(&spa->spa_async_lock); 8314 spa->spa_async_thread = NULL; 8315 cv_broadcast(&spa->spa_async_cv); 8316 mutex_exit(&spa->spa_async_lock); 8317 thread_exit(); 8318 } 8319 8320 void 8321 spa_async_suspend(spa_t *spa) 8322 { 8323 mutex_enter(&spa->spa_async_lock); 8324 spa->spa_async_suspended++; 8325 while (spa->spa_async_thread != NULL) 8326 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 8327 mutex_exit(&spa->spa_async_lock); 8328 8329 spa_vdev_remove_suspend(spa); 8330 8331 zthr_t *condense_thread = spa->spa_condense_zthr; 8332 if (condense_thread != NULL) 8333 zthr_cancel(condense_thread); 8334 8335 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 8336 if (discard_thread != NULL) 8337 zthr_cancel(discard_thread); 8338 8339 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; 8340 if (ll_delete_thread != NULL) 8341 zthr_cancel(ll_delete_thread); 8342 8343 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 8344 if (ll_condense_thread != NULL) 8345 zthr_cancel(ll_condense_thread); 8346 } 8347 8348 void 8349 spa_async_resume(spa_t *spa) 8350 { 8351 mutex_enter(&spa->spa_async_lock); 8352 ASSERT(spa->spa_async_suspended != 0); 8353 spa->spa_async_suspended--; 8354 mutex_exit(&spa->spa_async_lock); 8355 spa_restart_removal(spa); 8356 8357 zthr_t *condense_thread = spa->spa_condense_zthr; 8358 if (condense_thread != NULL) 8359 zthr_resume(condense_thread); 8360 8361 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 8362 if (discard_thread != NULL) 8363 zthr_resume(discard_thread); 8364 8365 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; 8366 if (ll_delete_thread != NULL) 8367 zthr_resume(ll_delete_thread); 8368 8369 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 8370 if (ll_condense_thread != NULL) 8371 zthr_resume(ll_condense_thread); 8372 } 8373 8374 static boolean_t 8375 spa_async_tasks_pending(spa_t *spa) 8376 { 8377 uint_t non_config_tasks; 8378 uint_t config_task; 8379 boolean_t config_task_suspended; 8380 8381 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 8382 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 8383 if (spa->spa_ccw_fail_time == 0) { 8384 config_task_suspended = B_FALSE; 8385 } else { 8386 config_task_suspended = 8387 (gethrtime() - spa->spa_ccw_fail_time) < 8388 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC); 8389 } 8390 8391 return (non_config_tasks || (config_task && !config_task_suspended)); 8392 } 8393 8394 static void 8395 spa_async_dispatch(spa_t *spa) 8396 { 8397 mutex_enter(&spa->spa_async_lock); 8398 if (spa_async_tasks_pending(spa) && 8399 !spa->spa_async_suspended && 8400 spa->spa_async_thread == NULL) 8401 spa->spa_async_thread = thread_create(NULL, 0, 8402 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 8403 mutex_exit(&spa->spa_async_lock); 8404 } 8405 8406 void 8407 spa_async_request(spa_t *spa, int task) 8408 { 8409 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 8410 mutex_enter(&spa->spa_async_lock); 8411 spa->spa_async_tasks |= task; 8412 mutex_exit(&spa->spa_async_lock); 8413 } 8414 8415 int 8416 spa_async_tasks(spa_t *spa) 8417 { 8418 return (spa->spa_async_tasks); 8419 } 8420 8421 /* 8422 * ========================================================================== 8423 * SPA syncing routines 8424 * ========================================================================== 8425 */ 8426 8427 8428 static int 8429 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 8430 dmu_tx_t *tx) 8431 { 8432 bpobj_t *bpo = arg; 8433 bpobj_enqueue(bpo, bp, bp_freed, tx); 8434 return (0); 8435 } 8436 8437 int 8438 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 8439 { 8440 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx)); 8441 } 8442 8443 int 8444 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 8445 { 8446 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx)); 8447 } 8448 8449 static int 8450 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 8451 { 8452 zio_t *pio = arg; 8453 8454 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp, 8455 pio->io_flags)); 8456 return (0); 8457 } 8458 8459 static int 8460 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 8461 dmu_tx_t *tx) 8462 { 8463 ASSERT(!bp_freed); 8464 return (spa_free_sync_cb(arg, bp, tx)); 8465 } 8466 8467 /* 8468 * Note: this simple function is not inlined to make it easier to dtrace the 8469 * amount of time spent syncing frees. 8470 */ 8471 static void 8472 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 8473 { 8474 zio_t *zio = zio_root(spa, NULL, NULL, 0); 8475 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 8476 VERIFY(zio_wait(zio) == 0); 8477 } 8478 8479 /* 8480 * Note: this simple function is not inlined to make it easier to dtrace the 8481 * amount of time spent syncing deferred frees. 8482 */ 8483 static void 8484 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 8485 { 8486 if (spa_sync_pass(spa) != 1) 8487 return; 8488 8489 /* 8490 * Note: 8491 * If the log space map feature is active, we stop deferring 8492 * frees to the next TXG and therefore running this function 8493 * would be considered a no-op as spa_deferred_bpobj should 8494 * not have any entries. 8495 * 8496 * That said we run this function anyway (instead of returning 8497 * immediately) for the edge-case scenario where we just 8498 * activated the log space map feature in this TXG but we have 8499 * deferred frees from the previous TXG. 8500 */ 8501 zio_t *zio = zio_root(spa, NULL, NULL, 0); 8502 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 8503 bpobj_spa_free_sync_cb, zio, tx), ==, 0); 8504 VERIFY0(zio_wait(zio)); 8505 } 8506 8507 static void 8508 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 8509 { 8510 char *packed = NULL; 8511 size_t bufsize; 8512 size_t nvsize = 0; 8513 dmu_buf_t *db; 8514 8515 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 8516 8517 /* 8518 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 8519 * information. This avoids the dmu_buf_will_dirty() path and 8520 * saves us a pre-read to get data we don't actually care about. 8521 */ 8522 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 8523 packed = vmem_alloc(bufsize, KM_SLEEP); 8524 8525 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 8526 KM_SLEEP) == 0); 8527 memset(packed + nvsize, 0, bufsize - nvsize); 8528 8529 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 8530 8531 vmem_free(packed, bufsize); 8532 8533 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 8534 dmu_buf_will_dirty(db, tx); 8535 *(uint64_t *)db->db_data = nvsize; 8536 dmu_buf_rele(db, FTAG); 8537 } 8538 8539 static void 8540 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 8541 const char *config, const char *entry) 8542 { 8543 nvlist_t *nvroot; 8544 nvlist_t **list; 8545 int i; 8546 8547 if (!sav->sav_sync) 8548 return; 8549 8550 /* 8551 * Update the MOS nvlist describing the list of available devices. 8552 * spa_validate_aux() will have already made sure this nvlist is 8553 * valid and the vdevs are labeled appropriately. 8554 */ 8555 if (sav->sav_object == 0) { 8556 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 8557 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 8558 sizeof (uint64_t), tx); 8559 VERIFY(zap_update(spa->spa_meta_objset, 8560 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 8561 &sav->sav_object, tx) == 0); 8562 } 8563 8564 nvroot = fnvlist_alloc(); 8565 if (sav->sav_count == 0) { 8566 fnvlist_add_nvlist_array(nvroot, config, 8567 (const nvlist_t * const *)NULL, 0); 8568 } else { 8569 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP); 8570 for (i = 0; i < sav->sav_count; i++) 8571 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 8572 B_FALSE, VDEV_CONFIG_L2CACHE); 8573 fnvlist_add_nvlist_array(nvroot, config, 8574 (const nvlist_t * const *)list, sav->sav_count); 8575 for (i = 0; i < sav->sav_count; i++) 8576 nvlist_free(list[i]); 8577 kmem_free(list, sav->sav_count * sizeof (void *)); 8578 } 8579 8580 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 8581 nvlist_free(nvroot); 8582 8583 sav->sav_sync = B_FALSE; 8584 } 8585 8586 /* 8587 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. 8588 * The all-vdev ZAP must be empty. 8589 */ 8590 static void 8591 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) 8592 { 8593 spa_t *spa = vd->vdev_spa; 8594 8595 if (vd->vdev_top_zap != 0) { 8596 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 8597 vd->vdev_top_zap, tx)); 8598 } 8599 if (vd->vdev_leaf_zap != 0) { 8600 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 8601 vd->vdev_leaf_zap, tx)); 8602 } 8603 for (uint64_t i = 0; i < vd->vdev_children; i++) { 8604 spa_avz_build(vd->vdev_child[i], avz, tx); 8605 } 8606 } 8607 8608 static void 8609 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 8610 { 8611 nvlist_t *config; 8612 8613 /* 8614 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, 8615 * its config may not be dirty but we still need to build per-vdev ZAPs. 8616 * Similarly, if the pool is being assembled (e.g. after a split), we 8617 * need to rebuild the AVZ although the config may not be dirty. 8618 */ 8619 if (list_is_empty(&spa->spa_config_dirty_list) && 8620 spa->spa_avz_action == AVZ_ACTION_NONE) 8621 return; 8622 8623 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8624 8625 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || 8626 spa->spa_avz_action == AVZ_ACTION_INITIALIZE || 8627 spa->spa_all_vdev_zaps != 0); 8628 8629 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { 8630 /* Make and build the new AVZ */ 8631 uint64_t new_avz = zap_create(spa->spa_meta_objset, 8632 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); 8633 spa_avz_build(spa->spa_root_vdev, new_avz, tx); 8634 8635 /* Diff old AVZ with new one */ 8636 zap_cursor_t zc; 8637 zap_attribute_t za; 8638 8639 for (zap_cursor_init(&zc, spa->spa_meta_objset, 8640 spa->spa_all_vdev_zaps); 8641 zap_cursor_retrieve(&zc, &za) == 0; 8642 zap_cursor_advance(&zc)) { 8643 uint64_t vdzap = za.za_first_integer; 8644 if (zap_lookup_int(spa->spa_meta_objset, new_avz, 8645 vdzap) == ENOENT) { 8646 /* 8647 * ZAP is listed in old AVZ but not in new one; 8648 * destroy it 8649 */ 8650 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, 8651 tx)); 8652 } 8653 } 8654 8655 zap_cursor_fini(&zc); 8656 8657 /* Destroy the old AVZ */ 8658 VERIFY0(zap_destroy(spa->spa_meta_objset, 8659 spa->spa_all_vdev_zaps, tx)); 8660 8661 /* Replace the old AVZ in the dir obj with the new one */ 8662 VERIFY0(zap_update(spa->spa_meta_objset, 8663 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, 8664 sizeof (new_avz), 1, &new_avz, tx)); 8665 8666 spa->spa_all_vdev_zaps = new_avz; 8667 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { 8668 zap_cursor_t zc; 8669 zap_attribute_t za; 8670 8671 /* Walk through the AVZ and destroy all listed ZAPs */ 8672 for (zap_cursor_init(&zc, spa->spa_meta_objset, 8673 spa->spa_all_vdev_zaps); 8674 zap_cursor_retrieve(&zc, &za) == 0; 8675 zap_cursor_advance(&zc)) { 8676 uint64_t zap = za.za_first_integer; 8677 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); 8678 } 8679 8680 zap_cursor_fini(&zc); 8681 8682 /* Destroy and unlink the AVZ itself */ 8683 VERIFY0(zap_destroy(spa->spa_meta_objset, 8684 spa->spa_all_vdev_zaps, tx)); 8685 VERIFY0(zap_remove(spa->spa_meta_objset, 8686 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); 8687 spa->spa_all_vdev_zaps = 0; 8688 } 8689 8690 if (spa->spa_all_vdev_zaps == 0) { 8691 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, 8692 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, 8693 DMU_POOL_VDEV_ZAP_MAP, tx); 8694 } 8695 spa->spa_avz_action = AVZ_ACTION_NONE; 8696 8697 /* Create ZAPs for vdevs that don't have them. */ 8698 vdev_construct_zaps(spa->spa_root_vdev, tx); 8699 8700 config = spa_config_generate(spa, spa->spa_root_vdev, 8701 dmu_tx_get_txg(tx), B_FALSE); 8702 8703 /* 8704 * If we're upgrading the spa version then make sure that 8705 * the config object gets updated with the correct version. 8706 */ 8707 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 8708 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 8709 spa->spa_uberblock.ub_version); 8710 8711 spa_config_exit(spa, SCL_STATE, FTAG); 8712 8713 nvlist_free(spa->spa_config_syncing); 8714 spa->spa_config_syncing = config; 8715 8716 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 8717 } 8718 8719 static void 8720 spa_sync_version(void *arg, dmu_tx_t *tx) 8721 { 8722 uint64_t *versionp = arg; 8723 uint64_t version = *versionp; 8724 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 8725 8726 /* 8727 * Setting the version is special cased when first creating the pool. 8728 */ 8729 ASSERT(tx->tx_txg != TXG_INITIAL); 8730 8731 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 8732 ASSERT(version >= spa_version(spa)); 8733 8734 spa->spa_uberblock.ub_version = version; 8735 vdev_config_dirty(spa->spa_root_vdev); 8736 spa_history_log_internal(spa, "set", tx, "version=%lld", 8737 (longlong_t)version); 8738 } 8739 8740 /* 8741 * Set zpool properties. 8742 */ 8743 static void 8744 spa_sync_props(void *arg, dmu_tx_t *tx) 8745 { 8746 nvlist_t *nvp = arg; 8747 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 8748 objset_t *mos = spa->spa_meta_objset; 8749 nvpair_t *elem = NULL; 8750 8751 mutex_enter(&spa->spa_props_lock); 8752 8753 while ((elem = nvlist_next_nvpair(nvp, elem))) { 8754 uint64_t intval; 8755 char *strval, *fname; 8756 zpool_prop_t prop; 8757 const char *propname; 8758 zprop_type_t proptype; 8759 spa_feature_t fid; 8760 8761 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 8762 case ZPOOL_PROP_INVAL: 8763 /* 8764 * We checked this earlier in spa_prop_validate(). 8765 */ 8766 ASSERT(zpool_prop_feature(nvpair_name(elem))); 8767 8768 fname = strchr(nvpair_name(elem), '@') + 1; 8769 VERIFY0(zfeature_lookup_name(fname, &fid)); 8770 8771 spa_feature_enable(spa, fid, tx); 8772 spa_history_log_internal(spa, "set", tx, 8773 "%s=enabled", nvpair_name(elem)); 8774 break; 8775 8776 case ZPOOL_PROP_VERSION: 8777 intval = fnvpair_value_uint64(elem); 8778 /* 8779 * The version is synced separately before other 8780 * properties and should be correct by now. 8781 */ 8782 ASSERT3U(spa_version(spa), >=, intval); 8783 break; 8784 8785 case ZPOOL_PROP_ALTROOT: 8786 /* 8787 * 'altroot' is a non-persistent property. It should 8788 * have been set temporarily at creation or import time. 8789 */ 8790 ASSERT(spa->spa_root != NULL); 8791 break; 8792 8793 case ZPOOL_PROP_READONLY: 8794 case ZPOOL_PROP_CACHEFILE: 8795 /* 8796 * 'readonly' and 'cachefile' are also non-persistent 8797 * properties. 8798 */ 8799 break; 8800 case ZPOOL_PROP_COMMENT: 8801 strval = fnvpair_value_string(elem); 8802 if (spa->spa_comment != NULL) 8803 spa_strfree(spa->spa_comment); 8804 spa->spa_comment = spa_strdup(strval); 8805 /* 8806 * We need to dirty the configuration on all the vdevs 8807 * so that their labels get updated. We also need to 8808 * update the cache file to keep it in sync with the 8809 * MOS version. It's unnecessary to do this for pool 8810 * creation since the vdev's configuration has already 8811 * been dirtied. 8812 */ 8813 if (tx->tx_txg != TXG_INITIAL) { 8814 vdev_config_dirty(spa->spa_root_vdev); 8815 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 8816 } 8817 spa_history_log_internal(spa, "set", tx, 8818 "%s=%s", nvpair_name(elem), strval); 8819 break; 8820 case ZPOOL_PROP_COMPATIBILITY: 8821 strval = fnvpair_value_string(elem); 8822 if (spa->spa_compatibility != NULL) 8823 spa_strfree(spa->spa_compatibility); 8824 spa->spa_compatibility = spa_strdup(strval); 8825 /* 8826 * Dirty the configuration on vdevs as above. 8827 */ 8828 if (tx->tx_txg != TXG_INITIAL) { 8829 vdev_config_dirty(spa->spa_root_vdev); 8830 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 8831 } 8832 8833 spa_history_log_internal(spa, "set", tx, 8834 "%s=%s", nvpair_name(elem), strval); 8835 break; 8836 8837 default: 8838 /* 8839 * Set pool property values in the poolprops mos object. 8840 */ 8841 if (spa->spa_pool_props_object == 0) { 8842 spa->spa_pool_props_object = 8843 zap_create_link(mos, DMU_OT_POOL_PROPS, 8844 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 8845 tx); 8846 } 8847 8848 /* normalize the property name */ 8849 propname = zpool_prop_to_name(prop); 8850 proptype = zpool_prop_get_type(prop); 8851 8852 if (nvpair_type(elem) == DATA_TYPE_STRING) { 8853 ASSERT(proptype == PROP_TYPE_STRING); 8854 strval = fnvpair_value_string(elem); 8855 VERIFY0(zap_update(mos, 8856 spa->spa_pool_props_object, propname, 8857 1, strlen(strval) + 1, strval, tx)); 8858 spa_history_log_internal(spa, "set", tx, 8859 "%s=%s", nvpair_name(elem), strval); 8860 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 8861 intval = fnvpair_value_uint64(elem); 8862 8863 if (proptype == PROP_TYPE_INDEX) { 8864 const char *unused; 8865 VERIFY0(zpool_prop_index_to_string( 8866 prop, intval, &unused)); 8867 } 8868 VERIFY0(zap_update(mos, 8869 spa->spa_pool_props_object, propname, 8870 8, 1, &intval, tx)); 8871 spa_history_log_internal(spa, "set", tx, 8872 "%s=%lld", nvpair_name(elem), 8873 (longlong_t)intval); 8874 8875 switch (prop) { 8876 case ZPOOL_PROP_DELEGATION: 8877 spa->spa_delegation = intval; 8878 break; 8879 case ZPOOL_PROP_BOOTFS: 8880 spa->spa_bootfs = intval; 8881 break; 8882 case ZPOOL_PROP_FAILUREMODE: 8883 spa->spa_failmode = intval; 8884 break; 8885 case ZPOOL_PROP_AUTOTRIM: 8886 spa->spa_autotrim = intval; 8887 spa_async_request(spa, 8888 SPA_ASYNC_AUTOTRIM_RESTART); 8889 break; 8890 case ZPOOL_PROP_AUTOEXPAND: 8891 spa->spa_autoexpand = intval; 8892 if (tx->tx_txg != TXG_INITIAL) 8893 spa_async_request(spa, 8894 SPA_ASYNC_AUTOEXPAND); 8895 break; 8896 case ZPOOL_PROP_MULTIHOST: 8897 spa->spa_multihost = intval; 8898 break; 8899 default: 8900 break; 8901 } 8902 } else { 8903 ASSERT(0); /* not allowed */ 8904 } 8905 } 8906 8907 } 8908 8909 mutex_exit(&spa->spa_props_lock); 8910 } 8911 8912 /* 8913 * Perform one-time upgrade on-disk changes. spa_version() does not 8914 * reflect the new version this txg, so there must be no changes this 8915 * txg to anything that the upgrade code depends on after it executes. 8916 * Therefore this must be called after dsl_pool_sync() does the sync 8917 * tasks. 8918 */ 8919 static void 8920 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 8921 { 8922 if (spa_sync_pass(spa) != 1) 8923 return; 8924 8925 dsl_pool_t *dp = spa->spa_dsl_pool; 8926 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 8927 8928 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 8929 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 8930 dsl_pool_create_origin(dp, tx); 8931 8932 /* Keeping the origin open increases spa_minref */ 8933 spa->spa_minref += 3; 8934 } 8935 8936 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 8937 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 8938 dsl_pool_upgrade_clones(dp, tx); 8939 } 8940 8941 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 8942 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 8943 dsl_pool_upgrade_dir_clones(dp, tx); 8944 8945 /* Keeping the freedir open increases spa_minref */ 8946 spa->spa_minref += 3; 8947 } 8948 8949 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 8950 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 8951 spa_feature_create_zap_objects(spa, tx); 8952 } 8953 8954 /* 8955 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 8956 * when possibility to use lz4 compression for metadata was added 8957 * Old pools that have this feature enabled must be upgraded to have 8958 * this feature active 8959 */ 8960 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 8961 boolean_t lz4_en = spa_feature_is_enabled(spa, 8962 SPA_FEATURE_LZ4_COMPRESS); 8963 boolean_t lz4_ac = spa_feature_is_active(spa, 8964 SPA_FEATURE_LZ4_COMPRESS); 8965 8966 if (lz4_en && !lz4_ac) 8967 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 8968 } 8969 8970 /* 8971 * If we haven't written the salt, do so now. Note that the 8972 * feature may not be activated yet, but that's fine since 8973 * the presence of this ZAP entry is backwards compatible. 8974 */ 8975 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 8976 DMU_POOL_CHECKSUM_SALT) == ENOENT) { 8977 VERIFY0(zap_add(spa->spa_meta_objset, 8978 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, 8979 sizeof (spa->spa_cksum_salt.zcs_bytes), 8980 spa->spa_cksum_salt.zcs_bytes, tx)); 8981 } 8982 8983 rrw_exit(&dp->dp_config_rwlock, FTAG); 8984 } 8985 8986 static void 8987 vdev_indirect_state_sync_verify(vdev_t *vd) 8988 { 8989 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping; 8990 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births; 8991 8992 if (vd->vdev_ops == &vdev_indirect_ops) { 8993 ASSERT(vim != NULL); 8994 ASSERT(vib != NULL); 8995 } 8996 8997 uint64_t obsolete_sm_object = 0; 8998 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 8999 if (obsolete_sm_object != 0) { 9000 ASSERT(vd->vdev_obsolete_sm != NULL); 9001 ASSERT(vd->vdev_removing || 9002 vd->vdev_ops == &vdev_indirect_ops); 9003 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0); 9004 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0); 9005 ASSERT3U(obsolete_sm_object, ==, 9006 space_map_object(vd->vdev_obsolete_sm)); 9007 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=, 9008 space_map_allocated(vd->vdev_obsolete_sm)); 9009 } 9010 ASSERT(vd->vdev_obsolete_segments != NULL); 9011 9012 /* 9013 * Since frees / remaps to an indirect vdev can only 9014 * happen in syncing context, the obsolete segments 9015 * tree must be empty when we start syncing. 9016 */ 9017 ASSERT0(range_tree_space(vd->vdev_obsolete_segments)); 9018 } 9019 9020 /* 9021 * Set the top-level vdev's max queue depth. Evaluate each top-level's 9022 * async write queue depth in case it changed. The max queue depth will 9023 * not change in the middle of syncing out this txg. 9024 */ 9025 static void 9026 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa) 9027 { 9028 ASSERT(spa_writeable(spa)); 9029 9030 vdev_t *rvd = spa->spa_root_vdev; 9031 uint32_t max_queue_depth = zfs_vdev_async_write_max_active * 9032 zfs_vdev_queue_depth_pct / 100; 9033 metaslab_class_t *normal = spa_normal_class(spa); 9034 metaslab_class_t *special = spa_special_class(spa); 9035 metaslab_class_t *dedup = spa_dedup_class(spa); 9036 9037 uint64_t slots_per_allocator = 0; 9038 for (int c = 0; c < rvd->vdev_children; c++) { 9039 vdev_t *tvd = rvd->vdev_child[c]; 9040 9041 metaslab_group_t *mg = tvd->vdev_mg; 9042 if (mg == NULL || !metaslab_group_initialized(mg)) 9043 continue; 9044 9045 metaslab_class_t *mc = mg->mg_class; 9046 if (mc != normal && mc != special && mc != dedup) 9047 continue; 9048 9049 /* 9050 * It is safe to do a lock-free check here because only async 9051 * allocations look at mg_max_alloc_queue_depth, and async 9052 * allocations all happen from spa_sync(). 9053 */ 9054 for (int i = 0; i < mg->mg_allocators; i++) { 9055 ASSERT0(zfs_refcount_count( 9056 &(mg->mg_allocator[i].mga_alloc_queue_depth))); 9057 } 9058 mg->mg_max_alloc_queue_depth = max_queue_depth; 9059 9060 for (int i = 0; i < mg->mg_allocators; i++) { 9061 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth = 9062 zfs_vdev_def_queue_depth; 9063 } 9064 slots_per_allocator += zfs_vdev_def_queue_depth; 9065 } 9066 9067 for (int i = 0; i < spa->spa_alloc_count; i++) { 9068 ASSERT0(zfs_refcount_count(&normal->mc_allocator[i]. 9069 mca_alloc_slots)); 9070 ASSERT0(zfs_refcount_count(&special->mc_allocator[i]. 9071 mca_alloc_slots)); 9072 ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i]. 9073 mca_alloc_slots)); 9074 normal->mc_allocator[i].mca_alloc_max_slots = 9075 slots_per_allocator; 9076 special->mc_allocator[i].mca_alloc_max_slots = 9077 slots_per_allocator; 9078 dedup->mc_allocator[i].mca_alloc_max_slots = 9079 slots_per_allocator; 9080 } 9081 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 9082 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 9083 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 9084 } 9085 9086 static void 9087 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx) 9088 { 9089 ASSERT(spa_writeable(spa)); 9090 9091 vdev_t *rvd = spa->spa_root_vdev; 9092 for (int c = 0; c < rvd->vdev_children; c++) { 9093 vdev_t *vd = rvd->vdev_child[c]; 9094 vdev_indirect_state_sync_verify(vd); 9095 9096 if (vdev_indirect_should_condense(vd)) { 9097 spa_condense_indirect_start_sync(vd, tx); 9098 break; 9099 } 9100 } 9101 } 9102 9103 static void 9104 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx) 9105 { 9106 objset_t *mos = spa->spa_meta_objset; 9107 dsl_pool_t *dp = spa->spa_dsl_pool; 9108 uint64_t txg = tx->tx_txg; 9109 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 9110 9111 do { 9112 int pass = ++spa->spa_sync_pass; 9113 9114 spa_sync_config_object(spa, tx); 9115 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 9116 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 9117 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 9118 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 9119 spa_errlog_sync(spa, txg); 9120 dsl_pool_sync(dp, txg); 9121 9122 if (pass < zfs_sync_pass_deferred_free || 9123 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 9124 /* 9125 * If the log space map feature is active we don't 9126 * care about deferred frees and the deferred bpobj 9127 * as the log space map should effectively have the 9128 * same results (i.e. appending only to one object). 9129 */ 9130 spa_sync_frees(spa, free_bpl, tx); 9131 } else { 9132 /* 9133 * We can not defer frees in pass 1, because 9134 * we sync the deferred frees later in pass 1. 9135 */ 9136 ASSERT3U(pass, >, 1); 9137 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb, 9138 &spa->spa_deferred_bpobj, tx); 9139 } 9140 9141 ddt_sync(spa, txg); 9142 dsl_scan_sync(dp, tx); 9143 svr_sync(spa, tx); 9144 spa_sync_upgrades(spa, tx); 9145 9146 spa_flush_metaslabs(spa, tx); 9147 9148 vdev_t *vd = NULL; 9149 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 9150 != NULL) 9151 vdev_sync(vd, txg); 9152 9153 /* 9154 * Note: We need to check if the MOS is dirty because we could 9155 * have marked the MOS dirty without updating the uberblock 9156 * (e.g. if we have sync tasks but no dirty user data). We need 9157 * to check the uberblock's rootbp because it is updated if we 9158 * have synced out dirty data (though in this case the MOS will 9159 * most likely also be dirty due to second order effects, we 9160 * don't want to rely on that here). 9161 */ 9162 if (pass == 1 && 9163 spa->spa_uberblock.ub_rootbp.blk_birth < txg && 9164 !dmu_objset_is_dirty(mos, txg)) { 9165 /* 9166 * Nothing changed on the first pass, therefore this 9167 * TXG is a no-op. Avoid syncing deferred frees, so 9168 * that we can keep this TXG as a no-op. 9169 */ 9170 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 9171 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 9172 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 9173 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg)); 9174 break; 9175 } 9176 9177 spa_sync_deferred_frees(spa, tx); 9178 } while (dmu_objset_is_dirty(mos, txg)); 9179 } 9180 9181 /* 9182 * Rewrite the vdev configuration (which includes the uberblock) to 9183 * commit the transaction group. 9184 * 9185 * If there are no dirty vdevs, we sync the uberblock to a few random 9186 * top-level vdevs that are known to be visible in the config cache 9187 * (see spa_vdev_add() for a complete description). If there *are* dirty 9188 * vdevs, sync the uberblock to all vdevs. 9189 */ 9190 static void 9191 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx) 9192 { 9193 vdev_t *rvd = spa->spa_root_vdev; 9194 uint64_t txg = tx->tx_txg; 9195 9196 for (;;) { 9197 int error = 0; 9198 9199 /* 9200 * We hold SCL_STATE to prevent vdev open/close/etc. 9201 * while we're attempting to write the vdev labels. 9202 */ 9203 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 9204 9205 if (list_is_empty(&spa->spa_config_dirty_list)) { 9206 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 9207 int svdcount = 0; 9208 int children = rvd->vdev_children; 9209 int c0 = random_in_range(children); 9210 9211 for (int c = 0; c < children; c++) { 9212 vdev_t *vd = 9213 rvd->vdev_child[(c0 + c) % children]; 9214 9215 /* Stop when revisiting the first vdev */ 9216 if (c > 0 && svd[0] == vd) 9217 break; 9218 9219 if (vd->vdev_ms_array == 0 || 9220 vd->vdev_islog || 9221 !vdev_is_concrete(vd)) 9222 continue; 9223 9224 svd[svdcount++] = vd; 9225 if (svdcount == SPA_SYNC_MIN_VDEVS) 9226 break; 9227 } 9228 error = vdev_config_sync(svd, svdcount, txg); 9229 } else { 9230 error = vdev_config_sync(rvd->vdev_child, 9231 rvd->vdev_children, txg); 9232 } 9233 9234 if (error == 0) 9235 spa->spa_last_synced_guid = rvd->vdev_guid; 9236 9237 spa_config_exit(spa, SCL_STATE, FTAG); 9238 9239 if (error == 0) 9240 break; 9241 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR); 9242 zio_resume_wait(spa); 9243 } 9244 } 9245 9246 /* 9247 * Sync the specified transaction group. New blocks may be dirtied as 9248 * part of the process, so we iterate until it converges. 9249 */ 9250 void 9251 spa_sync(spa_t *spa, uint64_t txg) 9252 { 9253 vdev_t *vd = NULL; 9254 9255 VERIFY(spa_writeable(spa)); 9256 9257 /* 9258 * Wait for i/os issued in open context that need to complete 9259 * before this txg syncs. 9260 */ 9261 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]); 9262 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 9263 ZIO_FLAG_CANFAIL); 9264 9265 /* 9266 * Lock out configuration changes. 9267 */ 9268 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 9269 9270 spa->spa_syncing_txg = txg; 9271 spa->spa_sync_pass = 0; 9272 9273 for (int i = 0; i < spa->spa_alloc_count; i++) { 9274 mutex_enter(&spa->spa_allocs[i].spaa_lock); 9275 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree)); 9276 mutex_exit(&spa->spa_allocs[i].spaa_lock); 9277 } 9278 9279 /* 9280 * If there are any pending vdev state changes, convert them 9281 * into config changes that go out with this transaction group. 9282 */ 9283 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 9284 while (list_head(&spa->spa_state_dirty_list) != NULL) { 9285 /* 9286 * We need the write lock here because, for aux vdevs, 9287 * calling vdev_config_dirty() modifies sav_config. 9288 * This is ugly and will become unnecessary when we 9289 * eliminate the aux vdev wart by integrating all vdevs 9290 * into the root vdev tree. 9291 */ 9292 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9293 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 9294 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 9295 vdev_state_clean(vd); 9296 vdev_config_dirty(vd); 9297 } 9298 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9299 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 9300 } 9301 spa_config_exit(spa, SCL_STATE, FTAG); 9302 9303 dsl_pool_t *dp = spa->spa_dsl_pool; 9304 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 9305 9306 spa->spa_sync_starttime = gethrtime(); 9307 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 9308 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, 9309 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + 9310 NSEC_TO_TICK(spa->spa_deadman_synctime)); 9311 9312 /* 9313 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 9314 * set spa_deflate if we have no raid-z vdevs. 9315 */ 9316 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 9317 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 9318 vdev_t *rvd = spa->spa_root_vdev; 9319 9320 int i; 9321 for (i = 0; i < rvd->vdev_children; i++) { 9322 vd = rvd->vdev_child[i]; 9323 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 9324 break; 9325 } 9326 if (i == rvd->vdev_children) { 9327 spa->spa_deflate = TRUE; 9328 VERIFY0(zap_add(spa->spa_meta_objset, 9329 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 9330 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 9331 } 9332 } 9333 9334 spa_sync_adjust_vdev_max_queue_depth(spa); 9335 9336 spa_sync_condense_indirect(spa, tx); 9337 9338 spa_sync_iterate_to_convergence(spa, tx); 9339 9340 #ifdef ZFS_DEBUG 9341 if (!list_is_empty(&spa->spa_config_dirty_list)) { 9342 /* 9343 * Make sure that the number of ZAPs for all the vdevs matches 9344 * the number of ZAPs in the per-vdev ZAP list. This only gets 9345 * called if the config is dirty; otherwise there may be 9346 * outstanding AVZ operations that weren't completed in 9347 * spa_sync_config_object. 9348 */ 9349 uint64_t all_vdev_zap_entry_count; 9350 ASSERT0(zap_count(spa->spa_meta_objset, 9351 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); 9352 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, 9353 all_vdev_zap_entry_count); 9354 } 9355 #endif 9356 9357 if (spa->spa_vdev_removal != NULL) { 9358 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]); 9359 } 9360 9361 spa_sync_rewrite_vdev_config(spa, tx); 9362 dmu_tx_commit(tx); 9363 9364 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 9365 spa->spa_deadman_tqid = 0; 9366 9367 /* 9368 * Clear the dirty config list. 9369 */ 9370 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 9371 vdev_config_clean(vd); 9372 9373 /* 9374 * Now that the new config has synced transactionally, 9375 * let it become visible to the config cache. 9376 */ 9377 if (spa->spa_config_syncing != NULL) { 9378 spa_config_set(spa, spa->spa_config_syncing); 9379 spa->spa_config_txg = txg; 9380 spa->spa_config_syncing = NULL; 9381 } 9382 9383 dsl_pool_sync_done(dp, txg); 9384 9385 for (int i = 0; i < spa->spa_alloc_count; i++) { 9386 mutex_enter(&spa->spa_allocs[i].spaa_lock); 9387 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree)); 9388 mutex_exit(&spa->spa_allocs[i].spaa_lock); 9389 } 9390 9391 /* 9392 * Update usable space statistics. 9393 */ 9394 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 9395 != NULL) 9396 vdev_sync_done(vd, txg); 9397 9398 metaslab_class_evict_old(spa->spa_normal_class, txg); 9399 metaslab_class_evict_old(spa->spa_log_class, txg); 9400 9401 spa_sync_close_syncing_log_sm(spa); 9402 9403 spa_update_dspace(spa); 9404 9405 /* 9406 * It had better be the case that we didn't dirty anything 9407 * since vdev_config_sync(). 9408 */ 9409 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 9410 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 9411 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 9412 9413 while (zfs_pause_spa_sync) 9414 delay(1); 9415 9416 spa->spa_sync_pass = 0; 9417 9418 /* 9419 * Update the last synced uberblock here. We want to do this at 9420 * the end of spa_sync() so that consumers of spa_last_synced_txg() 9421 * will be guaranteed that all the processing associated with 9422 * that txg has been completed. 9423 */ 9424 spa->spa_ubsync = spa->spa_uberblock; 9425 spa_config_exit(spa, SCL_CONFIG, FTAG); 9426 9427 spa_handle_ignored_writes(spa); 9428 9429 /* 9430 * If any async tasks have been requested, kick them off. 9431 */ 9432 spa_async_dispatch(spa); 9433 } 9434 9435 /* 9436 * Sync all pools. We don't want to hold the namespace lock across these 9437 * operations, so we take a reference on the spa_t and drop the lock during the 9438 * sync. 9439 */ 9440 void 9441 spa_sync_allpools(void) 9442 { 9443 spa_t *spa = NULL; 9444 mutex_enter(&spa_namespace_lock); 9445 while ((spa = spa_next(spa)) != NULL) { 9446 if (spa_state(spa) != POOL_STATE_ACTIVE || 9447 !spa_writeable(spa) || spa_suspended(spa)) 9448 continue; 9449 spa_open_ref(spa, FTAG); 9450 mutex_exit(&spa_namespace_lock); 9451 txg_wait_synced(spa_get_dsl(spa), 0); 9452 mutex_enter(&spa_namespace_lock); 9453 spa_close(spa, FTAG); 9454 } 9455 mutex_exit(&spa_namespace_lock); 9456 } 9457 9458 /* 9459 * ========================================================================== 9460 * Miscellaneous routines 9461 * ========================================================================== 9462 */ 9463 9464 /* 9465 * Remove all pools in the system. 9466 */ 9467 void 9468 spa_evict_all(void) 9469 { 9470 spa_t *spa; 9471 9472 /* 9473 * Remove all cached state. All pools should be closed now, 9474 * so every spa in the AVL tree should be unreferenced. 9475 */ 9476 mutex_enter(&spa_namespace_lock); 9477 while ((spa = spa_next(NULL)) != NULL) { 9478 /* 9479 * Stop async tasks. The async thread may need to detach 9480 * a device that's been replaced, which requires grabbing 9481 * spa_namespace_lock, so we must drop it here. 9482 */ 9483 spa_open_ref(spa, FTAG); 9484 mutex_exit(&spa_namespace_lock); 9485 spa_async_suspend(spa); 9486 mutex_enter(&spa_namespace_lock); 9487 spa_close(spa, FTAG); 9488 9489 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 9490 spa_unload(spa); 9491 spa_deactivate(spa); 9492 } 9493 spa_remove(spa); 9494 } 9495 mutex_exit(&spa_namespace_lock); 9496 } 9497 9498 vdev_t * 9499 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 9500 { 9501 vdev_t *vd; 9502 int i; 9503 9504 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 9505 return (vd); 9506 9507 if (aux) { 9508 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 9509 vd = spa->spa_l2cache.sav_vdevs[i]; 9510 if (vd->vdev_guid == guid) 9511 return (vd); 9512 } 9513 9514 for (i = 0; i < spa->spa_spares.sav_count; i++) { 9515 vd = spa->spa_spares.sav_vdevs[i]; 9516 if (vd->vdev_guid == guid) 9517 return (vd); 9518 } 9519 } 9520 9521 return (NULL); 9522 } 9523 9524 void 9525 spa_upgrade(spa_t *spa, uint64_t version) 9526 { 9527 ASSERT(spa_writeable(spa)); 9528 9529 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 9530 9531 /* 9532 * This should only be called for a non-faulted pool, and since a 9533 * future version would result in an unopenable pool, this shouldn't be 9534 * possible. 9535 */ 9536 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 9537 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 9538 9539 spa->spa_uberblock.ub_version = version; 9540 vdev_config_dirty(spa->spa_root_vdev); 9541 9542 spa_config_exit(spa, SCL_ALL, FTAG); 9543 9544 txg_wait_synced(spa_get_dsl(spa), 0); 9545 } 9546 9547 static boolean_t 9548 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav) 9549 { 9550 (void) spa; 9551 int i; 9552 uint64_t vdev_guid; 9553 9554 for (i = 0; i < sav->sav_count; i++) 9555 if (sav->sav_vdevs[i]->vdev_guid == guid) 9556 return (B_TRUE); 9557 9558 for (i = 0; i < sav->sav_npending; i++) { 9559 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 9560 &vdev_guid) == 0 && vdev_guid == guid) 9561 return (B_TRUE); 9562 } 9563 9564 return (B_FALSE); 9565 } 9566 9567 boolean_t 9568 spa_has_l2cache(spa_t *spa, uint64_t guid) 9569 { 9570 return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache)); 9571 } 9572 9573 boolean_t 9574 spa_has_spare(spa_t *spa, uint64_t guid) 9575 { 9576 return (spa_has_aux_vdev(spa, guid, &spa->spa_spares)); 9577 } 9578 9579 /* 9580 * Check if a pool has an active shared spare device. 9581 * Note: reference count of an active spare is 2, as a spare and as a replace 9582 */ 9583 static boolean_t 9584 spa_has_active_shared_spare(spa_t *spa) 9585 { 9586 int i, refcnt; 9587 uint64_t pool; 9588 spa_aux_vdev_t *sav = &spa->spa_spares; 9589 9590 for (i = 0; i < sav->sav_count; i++) { 9591 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 9592 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 9593 refcnt > 2) 9594 return (B_TRUE); 9595 } 9596 9597 return (B_FALSE); 9598 } 9599 9600 uint64_t 9601 spa_total_metaslabs(spa_t *spa) 9602 { 9603 vdev_t *rvd = spa->spa_root_vdev; 9604 9605 uint64_t m = 0; 9606 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 9607 vdev_t *vd = rvd->vdev_child[c]; 9608 if (!vdev_is_concrete(vd)) 9609 continue; 9610 m += vd->vdev_ms_count; 9611 } 9612 return (m); 9613 } 9614 9615 /* 9616 * Notify any waiting threads that some activity has switched from being in- 9617 * progress to not-in-progress so that the thread can wake up and determine 9618 * whether it is finished waiting. 9619 */ 9620 void 9621 spa_notify_waiters(spa_t *spa) 9622 { 9623 /* 9624 * Acquiring spa_activities_lock here prevents the cv_broadcast from 9625 * happening between the waiting thread's check and cv_wait. 9626 */ 9627 mutex_enter(&spa->spa_activities_lock); 9628 cv_broadcast(&spa->spa_activities_cv); 9629 mutex_exit(&spa->spa_activities_lock); 9630 } 9631 9632 /* 9633 * Notify any waiting threads that the pool is exporting, and then block until 9634 * they are finished using the spa_t. 9635 */ 9636 void 9637 spa_wake_waiters(spa_t *spa) 9638 { 9639 mutex_enter(&spa->spa_activities_lock); 9640 spa->spa_waiters_cancel = B_TRUE; 9641 cv_broadcast(&spa->spa_activities_cv); 9642 while (spa->spa_waiters != 0) 9643 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock); 9644 spa->spa_waiters_cancel = B_FALSE; 9645 mutex_exit(&spa->spa_activities_lock); 9646 } 9647 9648 /* Whether the vdev or any of its descendants are being initialized/trimmed. */ 9649 static boolean_t 9650 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity) 9651 { 9652 spa_t *spa = vd->vdev_spa; 9653 9654 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER)); 9655 ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); 9656 ASSERT(activity == ZPOOL_WAIT_INITIALIZE || 9657 activity == ZPOOL_WAIT_TRIM); 9658 9659 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ? 9660 &vd->vdev_initialize_lock : &vd->vdev_trim_lock; 9661 9662 mutex_exit(&spa->spa_activities_lock); 9663 mutex_enter(lock); 9664 mutex_enter(&spa->spa_activities_lock); 9665 9666 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ? 9667 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) : 9668 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE); 9669 mutex_exit(lock); 9670 9671 if (in_progress) 9672 return (B_TRUE); 9673 9674 for (int i = 0; i < vd->vdev_children; i++) { 9675 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i], 9676 activity)) 9677 return (B_TRUE); 9678 } 9679 9680 return (B_FALSE); 9681 } 9682 9683 /* 9684 * If use_guid is true, this checks whether the vdev specified by guid is 9685 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool 9686 * is being initialized/trimmed. The caller must hold the config lock and 9687 * spa_activities_lock. 9688 */ 9689 static int 9690 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid, 9691 zpool_wait_activity_t activity, boolean_t *in_progress) 9692 { 9693 mutex_exit(&spa->spa_activities_lock); 9694 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 9695 mutex_enter(&spa->spa_activities_lock); 9696 9697 vdev_t *vd; 9698 if (use_guid) { 9699 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 9700 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) { 9701 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9702 return (EINVAL); 9703 } 9704 } else { 9705 vd = spa->spa_root_vdev; 9706 } 9707 9708 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity); 9709 9710 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9711 return (0); 9712 } 9713 9714 /* 9715 * Locking for waiting threads 9716 * --------------------------- 9717 * 9718 * Waiting threads need a way to check whether a given activity is in progress, 9719 * and then, if it is, wait for it to complete. Each activity will have some 9720 * in-memory representation of the relevant on-disk state which can be used to 9721 * determine whether or not the activity is in progress. The in-memory state and 9722 * the locking used to protect it will be different for each activity, and may 9723 * not be suitable for use with a cvar (e.g., some state is protected by the 9724 * config lock). To allow waiting threads to wait without any races, another 9725 * lock, spa_activities_lock, is used. 9726 * 9727 * When the state is checked, both the activity-specific lock (if there is one) 9728 * and spa_activities_lock are held. In some cases, the activity-specific lock 9729 * is acquired explicitly (e.g. the config lock). In others, the locking is 9730 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting 9731 * thread releases the activity-specific lock and, if the activity is in 9732 * progress, then cv_waits using spa_activities_lock. 9733 * 9734 * The waiting thread is woken when another thread, one completing some 9735 * activity, updates the state of the activity and then calls 9736 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only 9737 * needs to hold its activity-specific lock when updating the state, and this 9738 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters. 9739 * 9740 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting, 9741 * and because it is held when the waiting thread checks the state of the 9742 * activity, it can never be the case that the completing thread both updates 9743 * the activity state and cv_broadcasts in between the waiting thread's check 9744 * and cv_wait. Thus, a waiting thread can never miss a wakeup. 9745 * 9746 * In order to prevent deadlock, when the waiting thread does its check, in some 9747 * cases it will temporarily drop spa_activities_lock in order to acquire the 9748 * activity-specific lock. The order in which spa_activities_lock and the 9749 * activity specific lock are acquired in the waiting thread is determined by 9750 * the order in which they are acquired in the completing thread; if the 9751 * completing thread calls spa_notify_waiters with the activity-specific lock 9752 * held, then the waiting thread must also acquire the activity-specific lock 9753 * first. 9754 */ 9755 9756 static int 9757 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity, 9758 boolean_t use_tag, uint64_t tag, boolean_t *in_progress) 9759 { 9760 int error = 0; 9761 9762 ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); 9763 9764 switch (activity) { 9765 case ZPOOL_WAIT_CKPT_DISCARD: 9766 *in_progress = 9767 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) && 9768 zap_contains(spa_meta_objset(spa), 9769 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) == 9770 ENOENT); 9771 break; 9772 case ZPOOL_WAIT_FREE: 9773 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS && 9774 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) || 9775 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) || 9776 spa_livelist_delete_check(spa)); 9777 break; 9778 case ZPOOL_WAIT_INITIALIZE: 9779 case ZPOOL_WAIT_TRIM: 9780 error = spa_vdev_activity_in_progress(spa, use_tag, tag, 9781 activity, in_progress); 9782 break; 9783 case ZPOOL_WAIT_REPLACE: 9784 mutex_exit(&spa->spa_activities_lock); 9785 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 9786 mutex_enter(&spa->spa_activities_lock); 9787 9788 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev); 9789 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9790 break; 9791 case ZPOOL_WAIT_REMOVE: 9792 *in_progress = (spa->spa_removing_phys.sr_state == 9793 DSS_SCANNING); 9794 break; 9795 case ZPOOL_WAIT_RESILVER: 9796 if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev))) 9797 break; 9798 zfs_fallthrough; 9799 case ZPOOL_WAIT_SCRUB: 9800 { 9801 boolean_t scanning, paused, is_scrub; 9802 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 9803 9804 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB); 9805 scanning = (scn->scn_phys.scn_state == DSS_SCANNING); 9806 paused = dsl_scan_is_paused_scrub(scn); 9807 *in_progress = (scanning && !paused && 9808 is_scrub == (activity == ZPOOL_WAIT_SCRUB)); 9809 break; 9810 } 9811 default: 9812 panic("unrecognized value for activity %d", activity); 9813 } 9814 9815 return (error); 9816 } 9817 9818 static int 9819 spa_wait_common(const char *pool, zpool_wait_activity_t activity, 9820 boolean_t use_tag, uint64_t tag, boolean_t *waited) 9821 { 9822 /* 9823 * The tag is used to distinguish between instances of an activity. 9824 * 'initialize' and 'trim' are the only activities that we use this for. 9825 * The other activities can only have a single instance in progress in a 9826 * pool at one time, making the tag unnecessary. 9827 * 9828 * There can be multiple devices being replaced at once, but since they 9829 * all finish once resilvering finishes, we don't bother keeping track 9830 * of them individually, we just wait for them all to finish. 9831 */ 9832 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE && 9833 activity != ZPOOL_WAIT_TRIM) 9834 return (EINVAL); 9835 9836 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES) 9837 return (EINVAL); 9838 9839 spa_t *spa; 9840 int error = spa_open(pool, &spa, FTAG); 9841 if (error != 0) 9842 return (error); 9843 9844 /* 9845 * Increment the spa's waiter count so that we can call spa_close and 9846 * still ensure that the spa_t doesn't get freed before this thread is 9847 * finished with it when the pool is exported. We want to call spa_close 9848 * before we start waiting because otherwise the additional ref would 9849 * prevent the pool from being exported or destroyed throughout the 9850 * potentially long wait. 9851 */ 9852 mutex_enter(&spa->spa_activities_lock); 9853 spa->spa_waiters++; 9854 spa_close(spa, FTAG); 9855 9856 *waited = B_FALSE; 9857 for (;;) { 9858 boolean_t in_progress; 9859 error = spa_activity_in_progress(spa, activity, use_tag, tag, 9860 &in_progress); 9861 9862 if (error || !in_progress || spa->spa_waiters_cancel) 9863 break; 9864 9865 *waited = B_TRUE; 9866 9867 if (cv_wait_sig(&spa->spa_activities_cv, 9868 &spa->spa_activities_lock) == 0) { 9869 error = EINTR; 9870 break; 9871 } 9872 } 9873 9874 spa->spa_waiters--; 9875 cv_signal(&spa->spa_waiters_cv); 9876 mutex_exit(&spa->spa_activities_lock); 9877 9878 return (error); 9879 } 9880 9881 /* 9882 * Wait for a particular instance of the specified activity to complete, where 9883 * the instance is identified by 'tag' 9884 */ 9885 int 9886 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag, 9887 boolean_t *waited) 9888 { 9889 return (spa_wait_common(pool, activity, B_TRUE, tag, waited)); 9890 } 9891 9892 /* 9893 * Wait for all instances of the specified activity complete 9894 */ 9895 int 9896 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited) 9897 { 9898 9899 return (spa_wait_common(pool, activity, B_FALSE, 0, waited)); 9900 } 9901 9902 sysevent_t * 9903 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 9904 { 9905 sysevent_t *ev = NULL; 9906 #ifdef _KERNEL 9907 nvlist_t *resource; 9908 9909 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl); 9910 if (resource) { 9911 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP); 9912 ev->resource = resource; 9913 } 9914 #else 9915 (void) spa, (void) vd, (void) hist_nvl, (void) name; 9916 #endif 9917 return (ev); 9918 } 9919 9920 void 9921 spa_event_post(sysevent_t *ev) 9922 { 9923 #ifdef _KERNEL 9924 if (ev) { 9925 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb); 9926 kmem_free(ev, sizeof (*ev)); 9927 } 9928 #else 9929 (void) ev; 9930 #endif 9931 } 9932 9933 /* 9934 * Post a zevent corresponding to the given sysevent. The 'name' must be one 9935 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be 9936 * filled in from the spa and (optionally) the vdev. This doesn't do anything 9937 * in the userland libzpool, as we don't want consumers to misinterpret ztest 9938 * or zdb as real changes. 9939 */ 9940 void 9941 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 9942 { 9943 spa_event_post(spa_event_create(spa, vd, hist_nvl, name)); 9944 } 9945 9946 /* state manipulation functions */ 9947 EXPORT_SYMBOL(spa_open); 9948 EXPORT_SYMBOL(spa_open_rewind); 9949 EXPORT_SYMBOL(spa_get_stats); 9950 EXPORT_SYMBOL(spa_create); 9951 EXPORT_SYMBOL(spa_import); 9952 EXPORT_SYMBOL(spa_tryimport); 9953 EXPORT_SYMBOL(spa_destroy); 9954 EXPORT_SYMBOL(spa_export); 9955 EXPORT_SYMBOL(spa_reset); 9956 EXPORT_SYMBOL(spa_async_request); 9957 EXPORT_SYMBOL(spa_async_suspend); 9958 EXPORT_SYMBOL(spa_async_resume); 9959 EXPORT_SYMBOL(spa_inject_addref); 9960 EXPORT_SYMBOL(spa_inject_delref); 9961 EXPORT_SYMBOL(spa_scan_stat_init); 9962 EXPORT_SYMBOL(spa_scan_get_stats); 9963 9964 /* device manipulation */ 9965 EXPORT_SYMBOL(spa_vdev_add); 9966 EXPORT_SYMBOL(spa_vdev_attach); 9967 EXPORT_SYMBOL(spa_vdev_detach); 9968 EXPORT_SYMBOL(spa_vdev_setpath); 9969 EXPORT_SYMBOL(spa_vdev_setfru); 9970 EXPORT_SYMBOL(spa_vdev_split_mirror); 9971 9972 /* spare statech is global across all pools) */ 9973 EXPORT_SYMBOL(spa_spare_add); 9974 EXPORT_SYMBOL(spa_spare_remove); 9975 EXPORT_SYMBOL(spa_spare_exists); 9976 EXPORT_SYMBOL(spa_spare_activate); 9977 9978 /* L2ARC statech is global across all pools) */ 9979 EXPORT_SYMBOL(spa_l2cache_add); 9980 EXPORT_SYMBOL(spa_l2cache_remove); 9981 EXPORT_SYMBOL(spa_l2cache_exists); 9982 EXPORT_SYMBOL(spa_l2cache_activate); 9983 EXPORT_SYMBOL(spa_l2cache_drop); 9984 9985 /* scanning */ 9986 EXPORT_SYMBOL(spa_scan); 9987 EXPORT_SYMBOL(spa_scan_stop); 9988 9989 /* spa syncing */ 9990 EXPORT_SYMBOL(spa_sync); /* only for DMU use */ 9991 EXPORT_SYMBOL(spa_sync_allpools); 9992 9993 /* properties */ 9994 EXPORT_SYMBOL(spa_prop_set); 9995 EXPORT_SYMBOL(spa_prop_get); 9996 EXPORT_SYMBOL(spa_prop_clear_bootfs); 9997 9998 /* asynchronous event notification */ 9999 EXPORT_SYMBOL(spa_event_notify); 10000 10001 /* BEGIN CSTYLED */ 10002 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW, 10003 "log2 fraction of arc that can be used by inflight I/Os when " 10004 "verifying pool during import"); 10005 /* END CSTYLED */ 10006 10007 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW, 10008 "Set to traverse metadata on pool import"); 10009 10010 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW, 10011 "Set to traverse data on pool import"); 10012 10013 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW, 10014 "Print vdev tree to zfs_dbgmsg during pool import"); 10015 10016 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD, 10017 "Percentage of CPUs to run an IO worker thread"); 10018 10019 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD, 10020 "Number of threads per IO worker taskqueue"); 10021 10022 /* BEGIN CSTYLED */ 10023 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW, 10024 "Allow importing pool with up to this number of missing top-level " 10025 "vdevs (in read-only mode)"); 10026 /* END CSTYLED */ 10027 10028 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT, 10029 ZMOD_RW, "Set the livelist condense zthr to pause"); 10030 10031 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT, 10032 ZMOD_RW, "Set the livelist condense synctask to pause"); 10033 10034 /* BEGIN CSTYLED */ 10035 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel, 10036 INT, ZMOD_RW, 10037 "Whether livelist condensing was canceled in the synctask"); 10038 10039 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel, 10040 INT, ZMOD_RW, 10041 "Whether livelist condensing was canceled in the zthr function"); 10042 10043 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT, 10044 ZMOD_RW, 10045 "Whether extra ALLOC blkptrs were added to a livelist entry while it " 10046 "was being condensed"); 10047 /* END CSTYLED */ 10048