xref: /freebsd/sys/contrib/openzfs/module/zfs/spa.c (revision c9539b89010900499a200cdd6c0265ea5d950875)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2018, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31  * Copyright 2018 Joyent, Inc.
32  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33  * Copyright 2017 Joyent, Inc.
34  * Copyright (c) 2017, Intel Corporation.
35  * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36  */
37 
38 /*
39  * SPA: Storage Pool Allocator
40  *
41  * This file contains all the routines used when modifying on-disk SPA state.
42  * This includes opening, importing, destroying, exporting a pool, and syncing a
43  * pool.
44  */
45 
46 #include <sys/zfs_context.h>
47 #include <sys/fm/fs/zfs.h>
48 #include <sys/spa_impl.h>
49 #include <sys/zio.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/dmu.h>
52 #include <sys/dmu_tx.h>
53 #include <sys/zap.h>
54 #include <sys/zil.h>
55 #include <sys/ddt.h>
56 #include <sys/vdev_impl.h>
57 #include <sys/vdev_removal.h>
58 #include <sys/vdev_indirect_mapping.h>
59 #include <sys/vdev_indirect_births.h>
60 #include <sys/vdev_initialize.h>
61 #include <sys/vdev_rebuild.h>
62 #include <sys/vdev_trim.h>
63 #include <sys/vdev_disk.h>
64 #include <sys/vdev_draid.h>
65 #include <sys/metaslab.h>
66 #include <sys/metaslab_impl.h>
67 #include <sys/mmp.h>
68 #include <sys/uberblock_impl.h>
69 #include <sys/txg.h>
70 #include <sys/avl.h>
71 #include <sys/bpobj.h>
72 #include <sys/dmu_traverse.h>
73 #include <sys/dmu_objset.h>
74 #include <sys/unique.h>
75 #include <sys/dsl_pool.h>
76 #include <sys/dsl_dataset.h>
77 #include <sys/dsl_dir.h>
78 #include <sys/dsl_prop.h>
79 #include <sys/dsl_synctask.h>
80 #include <sys/fs/zfs.h>
81 #include <sys/arc.h>
82 #include <sys/callb.h>
83 #include <sys/systeminfo.h>
84 #include <sys/zfs_ioctl.h>
85 #include <sys/dsl_scan.h>
86 #include <sys/zfeature.h>
87 #include <sys/dsl_destroy.h>
88 #include <sys/zvol.h>
89 
90 #ifdef	_KERNEL
91 #include <sys/fm/protocol.h>
92 #include <sys/fm/util.h>
93 #include <sys/callb.h>
94 #include <sys/zone.h>
95 #include <sys/vmsystm.h>
96 #endif	/* _KERNEL */
97 
98 #include "zfs_prop.h"
99 #include "zfs_comutil.h"
100 
101 /*
102  * The interval, in seconds, at which failed configuration cache file writes
103  * should be retried.
104  */
105 int zfs_ccw_retry_interval = 300;
106 
107 typedef enum zti_modes {
108 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
109 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
110 	ZTI_MODE_SCALE,			/* Taskqs scale with CPUs. */
111 	ZTI_MODE_NULL,			/* don't create a taskq */
112 	ZTI_NMODES
113 } zti_modes_t;
114 
115 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
116 #define	ZTI_PCT(n)	{ ZTI_MODE_ONLINE_PERCENT, (n), 1 }
117 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
118 #define	ZTI_SCALE	{ ZTI_MODE_SCALE, 0, 1 }
119 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
120 
121 #define	ZTI_N(n)	ZTI_P(n, 1)
122 #define	ZTI_ONE		ZTI_N(1)
123 
124 typedef struct zio_taskq_info {
125 	zti_modes_t zti_mode;
126 	uint_t zti_value;
127 	uint_t zti_count;
128 } zio_taskq_info_t;
129 
130 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
131 	"iss", "iss_h", "int", "int_h"
132 };
133 
134 /*
135  * This table defines the taskq settings for each ZFS I/O type. When
136  * initializing a pool, we use this table to create an appropriately sized
137  * taskq. Some operations are low volume and therefore have a small, static
138  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
139  * macros. Other operations process a large amount of data; the ZTI_BATCH
140  * macro causes us to create a taskq oriented for throughput. Some operations
141  * are so high frequency and short-lived that the taskq itself can become a
142  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
143  * additional degree of parallelism specified by the number of threads per-
144  * taskq and the number of taskqs; when dispatching an event in this case, the
145  * particular taskq is chosen at random. ZTI_SCALE is similar to ZTI_BATCH,
146  * but with number of taskqs also scaling with number of CPUs.
147  *
148  * The different taskq priorities are to handle the different contexts (issue
149  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
150  * need to be handled with minimum delay.
151  */
152 static const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
153 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
154 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
155 	{ ZTI_N(8),	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* READ */
156 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_SCALE,	ZTI_N(5) }, /* WRITE */
157 	{ ZTI_SCALE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
158 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
159 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
160 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
161 };
162 
163 static void spa_sync_version(void *arg, dmu_tx_t *tx);
164 static void spa_sync_props(void *arg, dmu_tx_t *tx);
165 static boolean_t spa_has_active_shared_spare(spa_t *spa);
166 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
167     const char **ereport);
168 static void spa_vdev_resilver_done(spa_t *spa);
169 
170 static uint_t	zio_taskq_batch_pct = 80;	  /* 1 thread per cpu in pset */
171 static uint_t	zio_taskq_batch_tpq;		  /* threads per taskq */
172 static const boolean_t	zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
173 static const uint_t	zio_taskq_basedc = 80;	  /* base duty cycle */
174 
175 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
176 
177 /*
178  * Report any spa_load_verify errors found, but do not fail spa_load.
179  * This is used by zdb to analyze non-idle pools.
180  */
181 boolean_t	spa_load_verify_dryrun = B_FALSE;
182 
183 /*
184  * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
185  * This is used by zdb for spacemaps verification.
186  */
187 boolean_t	spa_mode_readable_spacemaps = B_FALSE;
188 
189 /*
190  * This (illegal) pool name is used when temporarily importing a spa_t in order
191  * to get the vdev stats associated with the imported devices.
192  */
193 #define	TRYIMPORT_NAME	"$import"
194 
195 /*
196  * For debugging purposes: print out vdev tree during pool import.
197  */
198 static int		spa_load_print_vdev_tree = B_FALSE;
199 
200 /*
201  * A non-zero value for zfs_max_missing_tvds means that we allow importing
202  * pools with missing top-level vdevs. This is strictly intended for advanced
203  * pool recovery cases since missing data is almost inevitable. Pools with
204  * missing devices can only be imported read-only for safety reasons, and their
205  * fail-mode will be automatically set to "continue".
206  *
207  * With 1 missing vdev we should be able to import the pool and mount all
208  * datasets. User data that was not modified after the missing device has been
209  * added should be recoverable. This means that snapshots created prior to the
210  * addition of that device should be completely intact.
211  *
212  * With 2 missing vdevs, some datasets may fail to mount since there are
213  * dataset statistics that are stored as regular metadata. Some data might be
214  * recoverable if those vdevs were added recently.
215  *
216  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
217  * may be missing entirely. Chances of data recovery are very low. Note that
218  * there are also risks of performing an inadvertent rewind as we might be
219  * missing all the vdevs with the latest uberblocks.
220  */
221 uint64_t	zfs_max_missing_tvds = 0;
222 
223 /*
224  * The parameters below are similar to zfs_max_missing_tvds but are only
225  * intended for a preliminary open of the pool with an untrusted config which
226  * might be incomplete or out-dated.
227  *
228  * We are more tolerant for pools opened from a cachefile since we could have
229  * an out-dated cachefile where a device removal was not registered.
230  * We could have set the limit arbitrarily high but in the case where devices
231  * are really missing we would want to return the proper error codes; we chose
232  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
233  * and we get a chance to retrieve the trusted config.
234  */
235 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
236 
237 /*
238  * In the case where config was assembled by scanning device paths (/dev/dsks
239  * by default) we are less tolerant since all the existing devices should have
240  * been detected and we want spa_load to return the right error codes.
241  */
242 uint64_t	zfs_max_missing_tvds_scan = 0;
243 
244 /*
245  * Debugging aid that pauses spa_sync() towards the end.
246  */
247 static const boolean_t	zfs_pause_spa_sync = B_FALSE;
248 
249 /*
250  * Variables to indicate the livelist condense zthr func should wait at certain
251  * points for the livelist to be removed - used to test condense/destroy races
252  */
253 static int zfs_livelist_condense_zthr_pause = 0;
254 static int zfs_livelist_condense_sync_pause = 0;
255 
256 /*
257  * Variables to track whether or not condense cancellation has been
258  * triggered in testing.
259  */
260 static int zfs_livelist_condense_sync_cancel = 0;
261 static int zfs_livelist_condense_zthr_cancel = 0;
262 
263 /*
264  * Variable to track whether or not extra ALLOC blkptrs were added to a
265  * livelist entry while it was being condensed (caused by the way we track
266  * remapped blkptrs in dbuf_remap_impl)
267  */
268 static int zfs_livelist_condense_new_alloc = 0;
269 
270 /*
271  * ==========================================================================
272  * SPA properties routines
273  * ==========================================================================
274  */
275 
276 /*
277  * Add a (source=src, propname=propval) list to an nvlist.
278  */
279 static void
280 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
281     uint64_t intval, zprop_source_t src)
282 {
283 	const char *propname = zpool_prop_to_name(prop);
284 	nvlist_t *propval;
285 
286 	propval = fnvlist_alloc();
287 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
288 
289 	if (strval != NULL)
290 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
291 	else
292 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
293 
294 	fnvlist_add_nvlist(nvl, propname, propval);
295 	nvlist_free(propval);
296 }
297 
298 /*
299  * Get property values from the spa configuration.
300  */
301 static void
302 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
303 {
304 	vdev_t *rvd = spa->spa_root_vdev;
305 	dsl_pool_t *pool = spa->spa_dsl_pool;
306 	uint64_t size, alloc, cap, version;
307 	const zprop_source_t src = ZPROP_SRC_NONE;
308 	spa_config_dirent_t *dp;
309 	metaslab_class_t *mc = spa_normal_class(spa);
310 
311 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
312 
313 	if (rvd != NULL) {
314 		alloc = metaslab_class_get_alloc(mc);
315 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
316 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
317 		alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
318 
319 		size = metaslab_class_get_space(mc);
320 		size += metaslab_class_get_space(spa_special_class(spa));
321 		size += metaslab_class_get_space(spa_dedup_class(spa));
322 		size += metaslab_class_get_space(spa_embedded_log_class(spa));
323 
324 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
325 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
326 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
327 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
328 		    size - alloc, src);
329 		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
330 		    spa->spa_checkpoint_info.sci_dspace, src);
331 
332 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
333 		    metaslab_class_fragmentation(mc), src);
334 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
335 		    metaslab_class_expandable_space(mc), src);
336 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
337 		    (spa_mode(spa) == SPA_MODE_READ), src);
338 
339 		cap = (size == 0) ? 0 : (alloc * 100 / size);
340 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
341 
342 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
343 		    ddt_get_pool_dedup_ratio(spa), src);
344 
345 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
346 		    rvd->vdev_state, src);
347 
348 		version = spa_version(spa);
349 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
350 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
351 			    version, ZPROP_SRC_DEFAULT);
352 		} else {
353 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
354 			    version, ZPROP_SRC_LOCAL);
355 		}
356 		spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
357 		    NULL, spa_load_guid(spa), src);
358 	}
359 
360 	if (pool != NULL) {
361 		/*
362 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
363 		 * when opening pools before this version freedir will be NULL.
364 		 */
365 		if (pool->dp_free_dir != NULL) {
366 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
367 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
368 			    src);
369 		} else {
370 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
371 			    NULL, 0, src);
372 		}
373 
374 		if (pool->dp_leak_dir != NULL) {
375 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
376 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
377 			    src);
378 		} else {
379 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
380 			    NULL, 0, src);
381 		}
382 	}
383 
384 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
385 
386 	if (spa->spa_comment != NULL) {
387 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
388 		    0, ZPROP_SRC_LOCAL);
389 	}
390 
391 	if (spa->spa_compatibility != NULL) {
392 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
393 		    spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
394 	}
395 
396 	if (spa->spa_root != NULL)
397 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
398 		    0, ZPROP_SRC_LOCAL);
399 
400 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
401 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
402 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
403 	} else {
404 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
405 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
406 	}
407 
408 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
409 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
410 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
411 	} else {
412 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
413 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
414 	}
415 
416 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
417 		if (dp->scd_path == NULL) {
418 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
419 			    "none", 0, ZPROP_SRC_LOCAL);
420 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
421 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
422 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
423 		}
424 	}
425 }
426 
427 /*
428  * Get zpool property values.
429  */
430 int
431 spa_prop_get(spa_t *spa, nvlist_t **nvp)
432 {
433 	objset_t *mos = spa->spa_meta_objset;
434 	zap_cursor_t zc;
435 	zap_attribute_t za;
436 	dsl_pool_t *dp;
437 	int err;
438 
439 	err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
440 	if (err)
441 		return (err);
442 
443 	dp = spa_get_dsl(spa);
444 	dsl_pool_config_enter(dp, FTAG);
445 	mutex_enter(&spa->spa_props_lock);
446 
447 	/*
448 	 * Get properties from the spa config.
449 	 */
450 	spa_prop_get_config(spa, nvp);
451 
452 	/* If no pool property object, no more prop to get. */
453 	if (mos == NULL || spa->spa_pool_props_object == 0)
454 		goto out;
455 
456 	/*
457 	 * Get properties from the MOS pool property object.
458 	 */
459 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
460 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
461 	    zap_cursor_advance(&zc)) {
462 		uint64_t intval = 0;
463 		char *strval = NULL;
464 		zprop_source_t src = ZPROP_SRC_DEFAULT;
465 		zpool_prop_t prop;
466 
467 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
468 			continue;
469 
470 		switch (za.za_integer_length) {
471 		case 8:
472 			/* integer property */
473 			if (za.za_first_integer !=
474 			    zpool_prop_default_numeric(prop))
475 				src = ZPROP_SRC_LOCAL;
476 
477 			if (prop == ZPOOL_PROP_BOOTFS) {
478 				dsl_dataset_t *ds = NULL;
479 
480 				err = dsl_dataset_hold_obj(dp,
481 				    za.za_first_integer, FTAG, &ds);
482 				if (err != 0)
483 					break;
484 
485 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
486 				    KM_SLEEP);
487 				dsl_dataset_name(ds, strval);
488 				dsl_dataset_rele(ds, FTAG);
489 			} else {
490 				strval = NULL;
491 				intval = za.za_first_integer;
492 			}
493 
494 			spa_prop_add_list(*nvp, prop, strval, intval, src);
495 
496 			if (strval != NULL)
497 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
498 
499 			break;
500 
501 		case 1:
502 			/* string property */
503 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
504 			err = zap_lookup(mos, spa->spa_pool_props_object,
505 			    za.za_name, 1, za.za_num_integers, strval);
506 			if (err) {
507 				kmem_free(strval, za.za_num_integers);
508 				break;
509 			}
510 			spa_prop_add_list(*nvp, prop, strval, 0, src);
511 			kmem_free(strval, za.za_num_integers);
512 			break;
513 
514 		default:
515 			break;
516 		}
517 	}
518 	zap_cursor_fini(&zc);
519 out:
520 	mutex_exit(&spa->spa_props_lock);
521 	dsl_pool_config_exit(dp, FTAG);
522 	if (err && err != ENOENT) {
523 		nvlist_free(*nvp);
524 		*nvp = NULL;
525 		return (err);
526 	}
527 
528 	return (0);
529 }
530 
531 /*
532  * Validate the given pool properties nvlist and modify the list
533  * for the property values to be set.
534  */
535 static int
536 spa_prop_validate(spa_t *spa, nvlist_t *props)
537 {
538 	nvpair_t *elem;
539 	int error = 0, reset_bootfs = 0;
540 	uint64_t objnum = 0;
541 	boolean_t has_feature = B_FALSE;
542 
543 	elem = NULL;
544 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
545 		uint64_t intval;
546 		char *strval, *slash, *check, *fname;
547 		const char *propname = nvpair_name(elem);
548 		zpool_prop_t prop = zpool_name_to_prop(propname);
549 
550 		switch (prop) {
551 		case ZPOOL_PROP_INVAL:
552 			if (!zpool_prop_feature(propname)) {
553 				error = SET_ERROR(EINVAL);
554 				break;
555 			}
556 
557 			/*
558 			 * Sanitize the input.
559 			 */
560 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
561 				error = SET_ERROR(EINVAL);
562 				break;
563 			}
564 
565 			if (nvpair_value_uint64(elem, &intval) != 0) {
566 				error = SET_ERROR(EINVAL);
567 				break;
568 			}
569 
570 			if (intval != 0) {
571 				error = SET_ERROR(EINVAL);
572 				break;
573 			}
574 
575 			fname = strchr(propname, '@') + 1;
576 			if (zfeature_lookup_name(fname, NULL) != 0) {
577 				error = SET_ERROR(EINVAL);
578 				break;
579 			}
580 
581 			has_feature = B_TRUE;
582 			break;
583 
584 		case ZPOOL_PROP_VERSION:
585 			error = nvpair_value_uint64(elem, &intval);
586 			if (!error &&
587 			    (intval < spa_version(spa) ||
588 			    intval > SPA_VERSION_BEFORE_FEATURES ||
589 			    has_feature))
590 				error = SET_ERROR(EINVAL);
591 			break;
592 
593 		case ZPOOL_PROP_DELEGATION:
594 		case ZPOOL_PROP_AUTOREPLACE:
595 		case ZPOOL_PROP_LISTSNAPS:
596 		case ZPOOL_PROP_AUTOEXPAND:
597 		case ZPOOL_PROP_AUTOTRIM:
598 			error = nvpair_value_uint64(elem, &intval);
599 			if (!error && intval > 1)
600 				error = SET_ERROR(EINVAL);
601 			break;
602 
603 		case ZPOOL_PROP_MULTIHOST:
604 			error = nvpair_value_uint64(elem, &intval);
605 			if (!error && intval > 1)
606 				error = SET_ERROR(EINVAL);
607 
608 			if (!error) {
609 				uint32_t hostid = zone_get_hostid(NULL);
610 				if (hostid)
611 					spa->spa_hostid = hostid;
612 				else
613 					error = SET_ERROR(ENOTSUP);
614 			}
615 
616 			break;
617 
618 		case ZPOOL_PROP_BOOTFS:
619 			/*
620 			 * If the pool version is less than SPA_VERSION_BOOTFS,
621 			 * or the pool is still being created (version == 0),
622 			 * the bootfs property cannot be set.
623 			 */
624 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
625 				error = SET_ERROR(ENOTSUP);
626 				break;
627 			}
628 
629 			/*
630 			 * Make sure the vdev config is bootable
631 			 */
632 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
633 				error = SET_ERROR(ENOTSUP);
634 				break;
635 			}
636 
637 			reset_bootfs = 1;
638 
639 			error = nvpair_value_string(elem, &strval);
640 
641 			if (!error) {
642 				objset_t *os;
643 
644 				if (strval == NULL || strval[0] == '\0') {
645 					objnum = zpool_prop_default_numeric(
646 					    ZPOOL_PROP_BOOTFS);
647 					break;
648 				}
649 
650 				error = dmu_objset_hold(strval, FTAG, &os);
651 				if (error != 0)
652 					break;
653 
654 				/* Must be ZPL. */
655 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
656 					error = SET_ERROR(ENOTSUP);
657 				} else {
658 					objnum = dmu_objset_id(os);
659 				}
660 				dmu_objset_rele(os, FTAG);
661 			}
662 			break;
663 
664 		case ZPOOL_PROP_FAILUREMODE:
665 			error = nvpair_value_uint64(elem, &intval);
666 			if (!error && intval > ZIO_FAILURE_MODE_PANIC)
667 				error = SET_ERROR(EINVAL);
668 
669 			/*
670 			 * This is a special case which only occurs when
671 			 * the pool has completely failed. This allows
672 			 * the user to change the in-core failmode property
673 			 * without syncing it out to disk (I/Os might
674 			 * currently be blocked). We do this by returning
675 			 * EIO to the caller (spa_prop_set) to trick it
676 			 * into thinking we encountered a property validation
677 			 * error.
678 			 */
679 			if (!error && spa_suspended(spa)) {
680 				spa->spa_failmode = intval;
681 				error = SET_ERROR(EIO);
682 			}
683 			break;
684 
685 		case ZPOOL_PROP_CACHEFILE:
686 			if ((error = nvpair_value_string(elem, &strval)) != 0)
687 				break;
688 
689 			if (strval[0] == '\0')
690 				break;
691 
692 			if (strcmp(strval, "none") == 0)
693 				break;
694 
695 			if (strval[0] != '/') {
696 				error = SET_ERROR(EINVAL);
697 				break;
698 			}
699 
700 			slash = strrchr(strval, '/');
701 			ASSERT(slash != NULL);
702 
703 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
704 			    strcmp(slash, "/..") == 0)
705 				error = SET_ERROR(EINVAL);
706 			break;
707 
708 		case ZPOOL_PROP_COMMENT:
709 			if ((error = nvpair_value_string(elem, &strval)) != 0)
710 				break;
711 			for (check = strval; *check != '\0'; check++) {
712 				if (!isprint(*check)) {
713 					error = SET_ERROR(EINVAL);
714 					break;
715 				}
716 			}
717 			if (strlen(strval) > ZPROP_MAX_COMMENT)
718 				error = SET_ERROR(E2BIG);
719 			break;
720 
721 		default:
722 			break;
723 		}
724 
725 		if (error)
726 			break;
727 	}
728 
729 	(void) nvlist_remove_all(props,
730 	    zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
731 
732 	if (!error && reset_bootfs) {
733 		error = nvlist_remove(props,
734 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
735 
736 		if (!error) {
737 			error = nvlist_add_uint64(props,
738 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
739 		}
740 	}
741 
742 	return (error);
743 }
744 
745 void
746 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
747 {
748 	char *cachefile;
749 	spa_config_dirent_t *dp;
750 
751 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
752 	    &cachefile) != 0)
753 		return;
754 
755 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
756 	    KM_SLEEP);
757 
758 	if (cachefile[0] == '\0')
759 		dp->scd_path = spa_strdup(spa_config_path);
760 	else if (strcmp(cachefile, "none") == 0)
761 		dp->scd_path = NULL;
762 	else
763 		dp->scd_path = spa_strdup(cachefile);
764 
765 	list_insert_head(&spa->spa_config_list, dp);
766 	if (need_sync)
767 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
768 }
769 
770 int
771 spa_prop_set(spa_t *spa, nvlist_t *nvp)
772 {
773 	int error;
774 	nvpair_t *elem = NULL;
775 	boolean_t need_sync = B_FALSE;
776 
777 	if ((error = spa_prop_validate(spa, nvp)) != 0)
778 		return (error);
779 
780 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
781 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
782 
783 		if (prop == ZPOOL_PROP_CACHEFILE ||
784 		    prop == ZPOOL_PROP_ALTROOT ||
785 		    prop == ZPOOL_PROP_READONLY)
786 			continue;
787 
788 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
789 			uint64_t ver = 0;
790 
791 			if (prop == ZPOOL_PROP_VERSION) {
792 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
793 			} else {
794 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
795 				ver = SPA_VERSION_FEATURES;
796 				need_sync = B_TRUE;
797 			}
798 
799 			/* Save time if the version is already set. */
800 			if (ver == spa_version(spa))
801 				continue;
802 
803 			/*
804 			 * In addition to the pool directory object, we might
805 			 * create the pool properties object, the features for
806 			 * read object, the features for write object, or the
807 			 * feature descriptions object.
808 			 */
809 			error = dsl_sync_task(spa->spa_name, NULL,
810 			    spa_sync_version, &ver,
811 			    6, ZFS_SPACE_CHECK_RESERVED);
812 			if (error)
813 				return (error);
814 			continue;
815 		}
816 
817 		need_sync = B_TRUE;
818 		break;
819 	}
820 
821 	if (need_sync) {
822 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
823 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
824 	}
825 
826 	return (0);
827 }
828 
829 /*
830  * If the bootfs property value is dsobj, clear it.
831  */
832 void
833 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
834 {
835 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
836 		VERIFY(zap_remove(spa->spa_meta_objset,
837 		    spa->spa_pool_props_object,
838 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
839 		spa->spa_bootfs = 0;
840 	}
841 }
842 
843 static int
844 spa_change_guid_check(void *arg, dmu_tx_t *tx)
845 {
846 	uint64_t *newguid __maybe_unused = arg;
847 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
848 	vdev_t *rvd = spa->spa_root_vdev;
849 	uint64_t vdev_state;
850 
851 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
852 		int error = (spa_has_checkpoint(spa)) ?
853 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
854 		return (SET_ERROR(error));
855 	}
856 
857 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
858 	vdev_state = rvd->vdev_state;
859 	spa_config_exit(spa, SCL_STATE, FTAG);
860 
861 	if (vdev_state != VDEV_STATE_HEALTHY)
862 		return (SET_ERROR(ENXIO));
863 
864 	ASSERT3U(spa_guid(spa), !=, *newguid);
865 
866 	return (0);
867 }
868 
869 static void
870 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
871 {
872 	uint64_t *newguid = arg;
873 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
874 	uint64_t oldguid;
875 	vdev_t *rvd = spa->spa_root_vdev;
876 
877 	oldguid = spa_guid(spa);
878 
879 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
880 	rvd->vdev_guid = *newguid;
881 	rvd->vdev_guid_sum += (*newguid - oldguid);
882 	vdev_config_dirty(rvd);
883 	spa_config_exit(spa, SCL_STATE, FTAG);
884 
885 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
886 	    (u_longlong_t)oldguid, (u_longlong_t)*newguid);
887 }
888 
889 /*
890  * Change the GUID for the pool.  This is done so that we can later
891  * re-import a pool built from a clone of our own vdevs.  We will modify
892  * the root vdev's guid, our own pool guid, and then mark all of our
893  * vdevs dirty.  Note that we must make sure that all our vdevs are
894  * online when we do this, or else any vdevs that weren't present
895  * would be orphaned from our pool.  We are also going to issue a
896  * sysevent to update any watchers.
897  */
898 int
899 spa_change_guid(spa_t *spa)
900 {
901 	int error;
902 	uint64_t guid;
903 
904 	mutex_enter(&spa->spa_vdev_top_lock);
905 	mutex_enter(&spa_namespace_lock);
906 	guid = spa_generate_guid(NULL);
907 
908 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
909 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
910 
911 	if (error == 0) {
912 		/*
913 		 * Clear the kobj flag from all the vdevs to allow
914 		 * vdev_cache_process_kobj_evt() to post events to all the
915 		 * vdevs since GUID is updated.
916 		 */
917 		vdev_clear_kobj_evt(spa->spa_root_vdev);
918 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
919 			vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
920 
921 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
922 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
923 	}
924 
925 	mutex_exit(&spa_namespace_lock);
926 	mutex_exit(&spa->spa_vdev_top_lock);
927 
928 	return (error);
929 }
930 
931 /*
932  * ==========================================================================
933  * SPA state manipulation (open/create/destroy/import/export)
934  * ==========================================================================
935  */
936 
937 static int
938 spa_error_entry_compare(const void *a, const void *b)
939 {
940 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
941 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
942 	int ret;
943 
944 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
945 	    sizeof (zbookmark_phys_t));
946 
947 	return (TREE_ISIGN(ret));
948 }
949 
950 /*
951  * Utility function which retrieves copies of the current logs and
952  * re-initializes them in the process.
953  */
954 void
955 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
956 {
957 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
958 
959 	memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
960 	memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
961 
962 	avl_create(&spa->spa_errlist_scrub,
963 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
964 	    offsetof(spa_error_entry_t, se_avl));
965 	avl_create(&spa->spa_errlist_last,
966 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
967 	    offsetof(spa_error_entry_t, se_avl));
968 }
969 
970 static void
971 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
972 {
973 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
974 	enum zti_modes mode = ztip->zti_mode;
975 	uint_t value = ztip->zti_value;
976 	uint_t count = ztip->zti_count;
977 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
978 	uint_t cpus, flags = TASKQ_DYNAMIC;
979 	boolean_t batch = B_FALSE;
980 
981 	switch (mode) {
982 	case ZTI_MODE_FIXED:
983 		ASSERT3U(value, >, 0);
984 		break;
985 
986 	case ZTI_MODE_BATCH:
987 		batch = B_TRUE;
988 		flags |= TASKQ_THREADS_CPU_PCT;
989 		value = MIN(zio_taskq_batch_pct, 100);
990 		break;
991 
992 	case ZTI_MODE_SCALE:
993 		flags |= TASKQ_THREADS_CPU_PCT;
994 		/*
995 		 * We want more taskqs to reduce lock contention, but we want
996 		 * less for better request ordering and CPU utilization.
997 		 */
998 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
999 		if (zio_taskq_batch_tpq > 0) {
1000 			count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1001 			    zio_taskq_batch_tpq);
1002 		} else {
1003 			/*
1004 			 * Prefer 6 threads per taskq, but no more taskqs
1005 			 * than threads in them on large systems. For 80%:
1006 			 *
1007 			 *                 taskq   taskq   total
1008 			 * cpus    taskqs  percent threads threads
1009 			 * ------- ------- ------- ------- -------
1010 			 * 1       1       80%     1       1
1011 			 * 2       1       80%     1       1
1012 			 * 4       1       80%     3       3
1013 			 * 8       2       40%     3       6
1014 			 * 16      3       27%     4       12
1015 			 * 32      5       16%     5       25
1016 			 * 64      7       11%     7       49
1017 			 * 128     10      8%      10      100
1018 			 * 256     14      6%      15      210
1019 			 */
1020 			count = 1 + cpus / 6;
1021 			while (count * count > cpus)
1022 				count--;
1023 		}
1024 		/* Limit each taskq within 100% to not trigger assertion. */
1025 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1026 		value = (zio_taskq_batch_pct + count / 2) / count;
1027 		break;
1028 
1029 	case ZTI_MODE_NULL:
1030 		tqs->stqs_count = 0;
1031 		tqs->stqs_taskq = NULL;
1032 		return;
1033 
1034 	default:
1035 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1036 		    "spa_activate()",
1037 		    zio_type_name[t], zio_taskq_types[q], mode, value);
1038 		break;
1039 	}
1040 
1041 	ASSERT3U(count, >, 0);
1042 	tqs->stqs_count = count;
1043 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1044 
1045 	for (uint_t i = 0; i < count; i++) {
1046 		taskq_t *tq;
1047 		char name[32];
1048 
1049 		if (count > 1)
1050 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
1051 			    zio_type_name[t], zio_taskq_types[q], i);
1052 		else
1053 			(void) snprintf(name, sizeof (name), "%s_%s",
1054 			    zio_type_name[t], zio_taskq_types[q]);
1055 
1056 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1057 			if (batch)
1058 				flags |= TASKQ_DC_BATCH;
1059 
1060 			(void) zio_taskq_basedc;
1061 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1062 			    spa->spa_proc, zio_taskq_basedc, flags);
1063 		} else {
1064 			pri_t pri = maxclsyspri;
1065 			/*
1066 			 * The write issue taskq can be extremely CPU
1067 			 * intensive.  Run it at slightly less important
1068 			 * priority than the other taskqs.
1069 			 *
1070 			 * Under Linux and FreeBSD this means incrementing
1071 			 * the priority value as opposed to platforms like
1072 			 * illumos where it should be decremented.
1073 			 *
1074 			 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1075 			 * are equal then a difference between them is
1076 			 * insignificant.
1077 			 */
1078 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1079 #if defined(__linux__)
1080 				pri++;
1081 #elif defined(__FreeBSD__)
1082 				pri += 4;
1083 #else
1084 #error "unknown OS"
1085 #endif
1086 			}
1087 			tq = taskq_create_proc(name, value, pri, 50,
1088 			    INT_MAX, spa->spa_proc, flags);
1089 		}
1090 
1091 		tqs->stqs_taskq[i] = tq;
1092 	}
1093 }
1094 
1095 static void
1096 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1097 {
1098 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1099 
1100 	if (tqs->stqs_taskq == NULL) {
1101 		ASSERT3U(tqs->stqs_count, ==, 0);
1102 		return;
1103 	}
1104 
1105 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1106 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1107 		taskq_destroy(tqs->stqs_taskq[i]);
1108 	}
1109 
1110 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1111 	tqs->stqs_taskq = NULL;
1112 }
1113 
1114 /*
1115  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1116  * Note that a type may have multiple discrete taskqs to avoid lock contention
1117  * on the taskq itself. In that case we choose which taskq at random by using
1118  * the low bits of gethrtime().
1119  */
1120 void
1121 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1122     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1123 {
1124 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1125 	taskq_t *tq;
1126 
1127 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1128 	ASSERT3U(tqs->stqs_count, !=, 0);
1129 
1130 	if (tqs->stqs_count == 1) {
1131 		tq = tqs->stqs_taskq[0];
1132 	} else {
1133 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1134 	}
1135 
1136 	taskq_dispatch_ent(tq, func, arg, flags, ent);
1137 }
1138 
1139 /*
1140  * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1141  */
1142 void
1143 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1144     task_func_t *func, void *arg, uint_t flags)
1145 {
1146 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1147 	taskq_t *tq;
1148 	taskqid_t id;
1149 
1150 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1151 	ASSERT3U(tqs->stqs_count, !=, 0);
1152 
1153 	if (tqs->stqs_count == 1) {
1154 		tq = tqs->stqs_taskq[0];
1155 	} else {
1156 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1157 	}
1158 
1159 	id = taskq_dispatch(tq, func, arg, flags);
1160 	if (id)
1161 		taskq_wait_id(tq, id);
1162 }
1163 
1164 static void
1165 spa_create_zio_taskqs(spa_t *spa)
1166 {
1167 	for (int t = 0; t < ZIO_TYPES; t++) {
1168 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1169 			spa_taskqs_init(spa, t, q);
1170 		}
1171 	}
1172 }
1173 
1174 /*
1175  * Disabled until spa_thread() can be adapted for Linux.
1176  */
1177 #undef HAVE_SPA_THREAD
1178 
1179 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1180 static void
1181 spa_thread(void *arg)
1182 {
1183 	psetid_t zio_taskq_psrset_bind = PS_NONE;
1184 	callb_cpr_t cprinfo;
1185 
1186 	spa_t *spa = arg;
1187 	user_t *pu = PTOU(curproc);
1188 
1189 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1190 	    spa->spa_name);
1191 
1192 	ASSERT(curproc != &p0);
1193 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1194 	    "zpool-%s", spa->spa_name);
1195 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1196 
1197 	/* bind this thread to the requested psrset */
1198 	if (zio_taskq_psrset_bind != PS_NONE) {
1199 		pool_lock();
1200 		mutex_enter(&cpu_lock);
1201 		mutex_enter(&pidlock);
1202 		mutex_enter(&curproc->p_lock);
1203 
1204 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1205 		    0, NULL, NULL) == 0)  {
1206 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1207 		} else {
1208 			cmn_err(CE_WARN,
1209 			    "Couldn't bind process for zfs pool \"%s\" to "
1210 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1211 		}
1212 
1213 		mutex_exit(&curproc->p_lock);
1214 		mutex_exit(&pidlock);
1215 		mutex_exit(&cpu_lock);
1216 		pool_unlock();
1217 	}
1218 
1219 	if (zio_taskq_sysdc) {
1220 		sysdc_thread_enter(curthread, 100, 0);
1221 	}
1222 
1223 	spa->spa_proc = curproc;
1224 	spa->spa_did = curthread->t_did;
1225 
1226 	spa_create_zio_taskqs(spa);
1227 
1228 	mutex_enter(&spa->spa_proc_lock);
1229 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1230 
1231 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1232 	cv_broadcast(&spa->spa_proc_cv);
1233 
1234 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1235 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1236 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1237 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1238 
1239 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1240 	spa->spa_proc_state = SPA_PROC_GONE;
1241 	spa->spa_proc = &p0;
1242 	cv_broadcast(&spa->spa_proc_cv);
1243 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1244 
1245 	mutex_enter(&curproc->p_lock);
1246 	lwp_exit();
1247 }
1248 #endif
1249 
1250 /*
1251  * Activate an uninitialized pool.
1252  */
1253 static void
1254 spa_activate(spa_t *spa, spa_mode_t mode)
1255 {
1256 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1257 
1258 	spa->spa_state = POOL_STATE_ACTIVE;
1259 	spa->spa_mode = mode;
1260 	spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1261 
1262 	spa->spa_normal_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1263 	spa->spa_log_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1264 	spa->spa_embedded_log_class =
1265 	    metaslab_class_create(spa, &zfs_metaslab_ops);
1266 	spa->spa_special_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1267 	spa->spa_dedup_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1268 
1269 	/* Try to create a covering process */
1270 	mutex_enter(&spa->spa_proc_lock);
1271 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1272 	ASSERT(spa->spa_proc == &p0);
1273 	spa->spa_did = 0;
1274 
1275 	(void) spa_create_process;
1276 #ifdef HAVE_SPA_THREAD
1277 	/* Only create a process if we're going to be around a while. */
1278 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1279 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1280 		    NULL, 0) == 0) {
1281 			spa->spa_proc_state = SPA_PROC_CREATED;
1282 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1283 				cv_wait(&spa->spa_proc_cv,
1284 				    &spa->spa_proc_lock);
1285 			}
1286 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1287 			ASSERT(spa->spa_proc != &p0);
1288 			ASSERT(spa->spa_did != 0);
1289 		} else {
1290 #ifdef _KERNEL
1291 			cmn_err(CE_WARN,
1292 			    "Couldn't create process for zfs pool \"%s\"\n",
1293 			    spa->spa_name);
1294 #endif
1295 		}
1296 	}
1297 #endif /* HAVE_SPA_THREAD */
1298 	mutex_exit(&spa->spa_proc_lock);
1299 
1300 	/* If we didn't create a process, we need to create our taskqs. */
1301 	if (spa->spa_proc == &p0) {
1302 		spa_create_zio_taskqs(spa);
1303 	}
1304 
1305 	for (size_t i = 0; i < TXG_SIZE; i++) {
1306 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1307 		    ZIO_FLAG_CANFAIL);
1308 	}
1309 
1310 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1311 	    offsetof(vdev_t, vdev_config_dirty_node));
1312 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1313 	    offsetof(objset_t, os_evicting_node));
1314 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1315 	    offsetof(vdev_t, vdev_state_dirty_node));
1316 
1317 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1318 	    offsetof(struct vdev, vdev_txg_node));
1319 
1320 	avl_create(&spa->spa_errlist_scrub,
1321 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1322 	    offsetof(spa_error_entry_t, se_avl));
1323 	avl_create(&spa->spa_errlist_last,
1324 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1325 	    offsetof(spa_error_entry_t, se_avl));
1326 	avl_create(&spa->spa_errlist_healed,
1327 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1328 	    offsetof(spa_error_entry_t, se_avl));
1329 
1330 	spa_activate_os(spa);
1331 
1332 	spa_keystore_init(&spa->spa_keystore);
1333 
1334 	/*
1335 	 * This taskq is used to perform zvol-minor-related tasks
1336 	 * asynchronously. This has several advantages, including easy
1337 	 * resolution of various deadlocks.
1338 	 *
1339 	 * The taskq must be single threaded to ensure tasks are always
1340 	 * processed in the order in which they were dispatched.
1341 	 *
1342 	 * A taskq per pool allows one to keep the pools independent.
1343 	 * This way if one pool is suspended, it will not impact another.
1344 	 *
1345 	 * The preferred location to dispatch a zvol minor task is a sync
1346 	 * task. In this context, there is easy access to the spa_t and minimal
1347 	 * error handling is required because the sync task must succeed.
1348 	 */
1349 	spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1350 	    1, INT_MAX, 0);
1351 
1352 	/*
1353 	 * Taskq dedicated to prefetcher threads: this is used to prevent the
1354 	 * pool traverse code from monopolizing the global (and limited)
1355 	 * system_taskq by inappropriately scheduling long running tasks on it.
1356 	 */
1357 	spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1358 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1359 
1360 	/*
1361 	 * The taskq to upgrade datasets in this pool. Currently used by
1362 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1363 	 */
1364 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1365 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1366 }
1367 
1368 /*
1369  * Opposite of spa_activate().
1370  */
1371 static void
1372 spa_deactivate(spa_t *spa)
1373 {
1374 	ASSERT(spa->spa_sync_on == B_FALSE);
1375 	ASSERT(spa->spa_dsl_pool == NULL);
1376 	ASSERT(spa->spa_root_vdev == NULL);
1377 	ASSERT(spa->spa_async_zio_root == NULL);
1378 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1379 
1380 	spa_evicting_os_wait(spa);
1381 
1382 	if (spa->spa_zvol_taskq) {
1383 		taskq_destroy(spa->spa_zvol_taskq);
1384 		spa->spa_zvol_taskq = NULL;
1385 	}
1386 
1387 	if (spa->spa_prefetch_taskq) {
1388 		taskq_destroy(spa->spa_prefetch_taskq);
1389 		spa->spa_prefetch_taskq = NULL;
1390 	}
1391 
1392 	if (spa->spa_upgrade_taskq) {
1393 		taskq_destroy(spa->spa_upgrade_taskq);
1394 		spa->spa_upgrade_taskq = NULL;
1395 	}
1396 
1397 	txg_list_destroy(&spa->spa_vdev_txg_list);
1398 
1399 	list_destroy(&spa->spa_config_dirty_list);
1400 	list_destroy(&spa->spa_evicting_os_list);
1401 	list_destroy(&spa->spa_state_dirty_list);
1402 
1403 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1404 
1405 	for (int t = 0; t < ZIO_TYPES; t++) {
1406 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1407 			spa_taskqs_fini(spa, t, q);
1408 		}
1409 	}
1410 
1411 	for (size_t i = 0; i < TXG_SIZE; i++) {
1412 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1413 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1414 		spa->spa_txg_zio[i] = NULL;
1415 	}
1416 
1417 	metaslab_class_destroy(spa->spa_normal_class);
1418 	spa->spa_normal_class = NULL;
1419 
1420 	metaslab_class_destroy(spa->spa_log_class);
1421 	spa->spa_log_class = NULL;
1422 
1423 	metaslab_class_destroy(spa->spa_embedded_log_class);
1424 	spa->spa_embedded_log_class = NULL;
1425 
1426 	metaslab_class_destroy(spa->spa_special_class);
1427 	spa->spa_special_class = NULL;
1428 
1429 	metaslab_class_destroy(spa->spa_dedup_class);
1430 	spa->spa_dedup_class = NULL;
1431 
1432 	/*
1433 	 * If this was part of an import or the open otherwise failed, we may
1434 	 * still have errors left in the queues.  Empty them just in case.
1435 	 */
1436 	spa_errlog_drain(spa);
1437 	avl_destroy(&spa->spa_errlist_scrub);
1438 	avl_destroy(&spa->spa_errlist_last);
1439 	avl_destroy(&spa->spa_errlist_healed);
1440 
1441 	spa_keystore_fini(&spa->spa_keystore);
1442 
1443 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1444 
1445 	mutex_enter(&spa->spa_proc_lock);
1446 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1447 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1448 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1449 		cv_broadcast(&spa->spa_proc_cv);
1450 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1451 			ASSERT(spa->spa_proc != &p0);
1452 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1453 		}
1454 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1455 		spa->spa_proc_state = SPA_PROC_NONE;
1456 	}
1457 	ASSERT(spa->spa_proc == &p0);
1458 	mutex_exit(&spa->spa_proc_lock);
1459 
1460 	/*
1461 	 * We want to make sure spa_thread() has actually exited the ZFS
1462 	 * module, so that the module can't be unloaded out from underneath
1463 	 * it.
1464 	 */
1465 	if (spa->spa_did != 0) {
1466 		thread_join(spa->spa_did);
1467 		spa->spa_did = 0;
1468 	}
1469 
1470 	spa_deactivate_os(spa);
1471 
1472 }
1473 
1474 /*
1475  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1476  * will create all the necessary vdevs in the appropriate layout, with each vdev
1477  * in the CLOSED state.  This will prep the pool before open/creation/import.
1478  * All vdev validation is done by the vdev_alloc() routine.
1479  */
1480 int
1481 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1482     uint_t id, int atype)
1483 {
1484 	nvlist_t **child;
1485 	uint_t children;
1486 	int error;
1487 
1488 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1489 		return (error);
1490 
1491 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1492 		return (0);
1493 
1494 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1495 	    &child, &children);
1496 
1497 	if (error == ENOENT)
1498 		return (0);
1499 
1500 	if (error) {
1501 		vdev_free(*vdp);
1502 		*vdp = NULL;
1503 		return (SET_ERROR(EINVAL));
1504 	}
1505 
1506 	for (int c = 0; c < children; c++) {
1507 		vdev_t *vd;
1508 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1509 		    atype)) != 0) {
1510 			vdev_free(*vdp);
1511 			*vdp = NULL;
1512 			return (error);
1513 		}
1514 	}
1515 
1516 	ASSERT(*vdp != NULL);
1517 
1518 	return (0);
1519 }
1520 
1521 static boolean_t
1522 spa_should_flush_logs_on_unload(spa_t *spa)
1523 {
1524 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1525 		return (B_FALSE);
1526 
1527 	if (!spa_writeable(spa))
1528 		return (B_FALSE);
1529 
1530 	if (!spa->spa_sync_on)
1531 		return (B_FALSE);
1532 
1533 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1534 		return (B_FALSE);
1535 
1536 	if (zfs_keep_log_spacemaps_at_export)
1537 		return (B_FALSE);
1538 
1539 	return (B_TRUE);
1540 }
1541 
1542 /*
1543  * Opens a transaction that will set the flag that will instruct
1544  * spa_sync to attempt to flush all the metaslabs for that txg.
1545  */
1546 static void
1547 spa_unload_log_sm_flush_all(spa_t *spa)
1548 {
1549 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1550 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1551 
1552 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1553 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1554 
1555 	dmu_tx_commit(tx);
1556 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1557 }
1558 
1559 static void
1560 spa_unload_log_sm_metadata(spa_t *spa)
1561 {
1562 	void *cookie = NULL;
1563 	spa_log_sm_t *sls;
1564 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1565 	    &cookie)) != NULL) {
1566 		VERIFY0(sls->sls_mscount);
1567 		kmem_free(sls, sizeof (spa_log_sm_t));
1568 	}
1569 
1570 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1571 	    e != NULL; e = list_head(&spa->spa_log_summary)) {
1572 		VERIFY0(e->lse_mscount);
1573 		list_remove(&spa->spa_log_summary, e);
1574 		kmem_free(e, sizeof (log_summary_entry_t));
1575 	}
1576 
1577 	spa->spa_unflushed_stats.sus_nblocks = 0;
1578 	spa->spa_unflushed_stats.sus_memused = 0;
1579 	spa->spa_unflushed_stats.sus_blocklimit = 0;
1580 }
1581 
1582 static void
1583 spa_destroy_aux_threads(spa_t *spa)
1584 {
1585 	if (spa->spa_condense_zthr != NULL) {
1586 		zthr_destroy(spa->spa_condense_zthr);
1587 		spa->spa_condense_zthr = NULL;
1588 	}
1589 	if (spa->spa_checkpoint_discard_zthr != NULL) {
1590 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1591 		spa->spa_checkpoint_discard_zthr = NULL;
1592 	}
1593 	if (spa->spa_livelist_delete_zthr != NULL) {
1594 		zthr_destroy(spa->spa_livelist_delete_zthr);
1595 		spa->spa_livelist_delete_zthr = NULL;
1596 	}
1597 	if (spa->spa_livelist_condense_zthr != NULL) {
1598 		zthr_destroy(spa->spa_livelist_condense_zthr);
1599 		spa->spa_livelist_condense_zthr = NULL;
1600 	}
1601 }
1602 
1603 /*
1604  * Opposite of spa_load().
1605  */
1606 static void
1607 spa_unload(spa_t *spa)
1608 {
1609 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1610 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1611 
1612 	spa_import_progress_remove(spa_guid(spa));
1613 	spa_load_note(spa, "UNLOADING");
1614 
1615 	spa_wake_waiters(spa);
1616 
1617 	/*
1618 	 * If we have set the spa_final_txg, we have already performed the
1619 	 * tasks below in spa_export_common(). We should not redo it here since
1620 	 * we delay the final TXGs beyond what spa_final_txg is set at.
1621 	 */
1622 	if (spa->spa_final_txg == UINT64_MAX) {
1623 		/*
1624 		 * If the log space map feature is enabled and the pool is
1625 		 * getting exported (but not destroyed), we want to spend some
1626 		 * time flushing as many metaslabs as we can in an attempt to
1627 		 * destroy log space maps and save import time.
1628 		 */
1629 		if (spa_should_flush_logs_on_unload(spa))
1630 			spa_unload_log_sm_flush_all(spa);
1631 
1632 		/*
1633 		 * Stop async tasks.
1634 		 */
1635 		spa_async_suspend(spa);
1636 
1637 		if (spa->spa_root_vdev) {
1638 			vdev_t *root_vdev = spa->spa_root_vdev;
1639 			vdev_initialize_stop_all(root_vdev,
1640 			    VDEV_INITIALIZE_ACTIVE);
1641 			vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1642 			vdev_autotrim_stop_all(spa);
1643 			vdev_rebuild_stop_all(spa);
1644 		}
1645 	}
1646 
1647 	/*
1648 	 * Stop syncing.
1649 	 */
1650 	if (spa->spa_sync_on) {
1651 		txg_sync_stop(spa->spa_dsl_pool);
1652 		spa->spa_sync_on = B_FALSE;
1653 	}
1654 
1655 	/*
1656 	 * This ensures that there is no async metaslab prefetching
1657 	 * while we attempt to unload the spa.
1658 	 */
1659 	if (spa->spa_root_vdev != NULL) {
1660 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1661 			vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1662 			if (vc->vdev_mg != NULL)
1663 				taskq_wait(vc->vdev_mg->mg_taskq);
1664 		}
1665 	}
1666 
1667 	if (spa->spa_mmp.mmp_thread)
1668 		mmp_thread_stop(spa);
1669 
1670 	/*
1671 	 * Wait for any outstanding async I/O to complete.
1672 	 */
1673 	if (spa->spa_async_zio_root != NULL) {
1674 		for (int i = 0; i < max_ncpus; i++)
1675 			(void) zio_wait(spa->spa_async_zio_root[i]);
1676 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1677 		spa->spa_async_zio_root = NULL;
1678 	}
1679 
1680 	if (spa->spa_vdev_removal != NULL) {
1681 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1682 		spa->spa_vdev_removal = NULL;
1683 	}
1684 
1685 	spa_destroy_aux_threads(spa);
1686 
1687 	spa_condense_fini(spa);
1688 
1689 	bpobj_close(&spa->spa_deferred_bpobj);
1690 
1691 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1692 
1693 	/*
1694 	 * Close all vdevs.
1695 	 */
1696 	if (spa->spa_root_vdev)
1697 		vdev_free(spa->spa_root_vdev);
1698 	ASSERT(spa->spa_root_vdev == NULL);
1699 
1700 	/*
1701 	 * Close the dsl pool.
1702 	 */
1703 	if (spa->spa_dsl_pool) {
1704 		dsl_pool_close(spa->spa_dsl_pool);
1705 		spa->spa_dsl_pool = NULL;
1706 		spa->spa_meta_objset = NULL;
1707 	}
1708 
1709 	ddt_unload(spa);
1710 	spa_unload_log_sm_metadata(spa);
1711 
1712 	/*
1713 	 * Drop and purge level 2 cache
1714 	 */
1715 	spa_l2cache_drop(spa);
1716 
1717 	if (spa->spa_spares.sav_vdevs) {
1718 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
1719 			vdev_free(spa->spa_spares.sav_vdevs[i]);
1720 		kmem_free(spa->spa_spares.sav_vdevs,
1721 		    spa->spa_spares.sav_count * sizeof (void *));
1722 		spa->spa_spares.sav_vdevs = NULL;
1723 	}
1724 	if (spa->spa_spares.sav_config) {
1725 		nvlist_free(spa->spa_spares.sav_config);
1726 		spa->spa_spares.sav_config = NULL;
1727 	}
1728 	spa->spa_spares.sav_count = 0;
1729 
1730 	if (spa->spa_l2cache.sav_vdevs) {
1731 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1732 			vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1733 			vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1734 		}
1735 		kmem_free(spa->spa_l2cache.sav_vdevs,
1736 		    spa->spa_l2cache.sav_count * sizeof (void *));
1737 		spa->spa_l2cache.sav_vdevs = NULL;
1738 	}
1739 	if (spa->spa_l2cache.sav_config) {
1740 		nvlist_free(spa->spa_l2cache.sav_config);
1741 		spa->spa_l2cache.sav_config = NULL;
1742 	}
1743 	spa->spa_l2cache.sav_count = 0;
1744 
1745 	spa->spa_async_suspended = 0;
1746 
1747 	spa->spa_indirect_vdevs_loaded = B_FALSE;
1748 
1749 	if (spa->spa_comment != NULL) {
1750 		spa_strfree(spa->spa_comment);
1751 		spa->spa_comment = NULL;
1752 	}
1753 	if (spa->spa_compatibility != NULL) {
1754 		spa_strfree(spa->spa_compatibility);
1755 		spa->spa_compatibility = NULL;
1756 	}
1757 
1758 	spa_config_exit(spa, SCL_ALL, spa);
1759 }
1760 
1761 /*
1762  * Load (or re-load) the current list of vdevs describing the active spares for
1763  * this pool.  When this is called, we have some form of basic information in
1764  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1765  * then re-generate a more complete list including status information.
1766  */
1767 void
1768 spa_load_spares(spa_t *spa)
1769 {
1770 	nvlist_t **spares;
1771 	uint_t nspares;
1772 	int i;
1773 	vdev_t *vd, *tvd;
1774 
1775 #ifndef _KERNEL
1776 	/*
1777 	 * zdb opens both the current state of the pool and the
1778 	 * checkpointed state (if present), with a different spa_t.
1779 	 *
1780 	 * As spare vdevs are shared among open pools, we skip loading
1781 	 * them when we load the checkpointed state of the pool.
1782 	 */
1783 	if (!spa_writeable(spa))
1784 		return;
1785 #endif
1786 
1787 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1788 
1789 	/*
1790 	 * First, close and free any existing spare vdevs.
1791 	 */
1792 	if (spa->spa_spares.sav_vdevs) {
1793 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
1794 			vd = spa->spa_spares.sav_vdevs[i];
1795 
1796 			/* Undo the call to spa_activate() below */
1797 			if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1798 			    B_FALSE)) != NULL && tvd->vdev_isspare)
1799 				spa_spare_remove(tvd);
1800 			vdev_close(vd);
1801 			vdev_free(vd);
1802 		}
1803 
1804 		kmem_free(spa->spa_spares.sav_vdevs,
1805 		    spa->spa_spares.sav_count * sizeof (void *));
1806 	}
1807 
1808 	if (spa->spa_spares.sav_config == NULL)
1809 		nspares = 0;
1810 	else
1811 		VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1812 		    ZPOOL_CONFIG_SPARES, &spares, &nspares));
1813 
1814 	spa->spa_spares.sav_count = (int)nspares;
1815 	spa->spa_spares.sav_vdevs = NULL;
1816 
1817 	if (nspares == 0)
1818 		return;
1819 
1820 	/*
1821 	 * Construct the array of vdevs, opening them to get status in the
1822 	 * process.   For each spare, there is potentially two different vdev_t
1823 	 * structures associated with it: one in the list of spares (used only
1824 	 * for basic validation purposes) and one in the active vdev
1825 	 * configuration (if it's spared in).  During this phase we open and
1826 	 * validate each vdev on the spare list.  If the vdev also exists in the
1827 	 * active configuration, then we also mark this vdev as an active spare.
1828 	 */
1829 	spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1830 	    KM_SLEEP);
1831 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1832 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1833 		    VDEV_ALLOC_SPARE) == 0);
1834 		ASSERT(vd != NULL);
1835 
1836 		spa->spa_spares.sav_vdevs[i] = vd;
1837 
1838 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1839 		    B_FALSE)) != NULL) {
1840 			if (!tvd->vdev_isspare)
1841 				spa_spare_add(tvd);
1842 
1843 			/*
1844 			 * We only mark the spare active if we were successfully
1845 			 * able to load the vdev.  Otherwise, importing a pool
1846 			 * with a bad active spare would result in strange
1847 			 * behavior, because multiple pool would think the spare
1848 			 * is actively in use.
1849 			 *
1850 			 * There is a vulnerability here to an equally bizarre
1851 			 * circumstance, where a dead active spare is later
1852 			 * brought back to life (onlined or otherwise).  Given
1853 			 * the rarity of this scenario, and the extra complexity
1854 			 * it adds, we ignore the possibility.
1855 			 */
1856 			if (!vdev_is_dead(tvd))
1857 				spa_spare_activate(tvd);
1858 		}
1859 
1860 		vd->vdev_top = vd;
1861 		vd->vdev_aux = &spa->spa_spares;
1862 
1863 		if (vdev_open(vd) != 0)
1864 			continue;
1865 
1866 		if (vdev_validate_aux(vd) == 0)
1867 			spa_spare_add(vd);
1868 	}
1869 
1870 	/*
1871 	 * Recompute the stashed list of spares, with status information
1872 	 * this time.
1873 	 */
1874 	fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
1875 
1876 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1877 	    KM_SLEEP);
1878 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1879 		spares[i] = vdev_config_generate(spa,
1880 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1881 	fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
1882 	    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
1883 	    spa->spa_spares.sav_count);
1884 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1885 		nvlist_free(spares[i]);
1886 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1887 }
1888 
1889 /*
1890  * Load (or re-load) the current list of vdevs describing the active l2cache for
1891  * this pool.  When this is called, we have some form of basic information in
1892  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1893  * then re-generate a more complete list including status information.
1894  * Devices which are already active have their details maintained, and are
1895  * not re-opened.
1896  */
1897 void
1898 spa_load_l2cache(spa_t *spa)
1899 {
1900 	nvlist_t **l2cache = NULL;
1901 	uint_t nl2cache;
1902 	int i, j, oldnvdevs;
1903 	uint64_t guid;
1904 	vdev_t *vd, **oldvdevs, **newvdevs;
1905 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1906 
1907 #ifndef _KERNEL
1908 	/*
1909 	 * zdb opens both the current state of the pool and the
1910 	 * checkpointed state (if present), with a different spa_t.
1911 	 *
1912 	 * As L2 caches are part of the ARC which is shared among open
1913 	 * pools, we skip loading them when we load the checkpointed
1914 	 * state of the pool.
1915 	 */
1916 	if (!spa_writeable(spa))
1917 		return;
1918 #endif
1919 
1920 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1921 
1922 	oldvdevs = sav->sav_vdevs;
1923 	oldnvdevs = sav->sav_count;
1924 	sav->sav_vdevs = NULL;
1925 	sav->sav_count = 0;
1926 
1927 	if (sav->sav_config == NULL) {
1928 		nl2cache = 0;
1929 		newvdevs = NULL;
1930 		goto out;
1931 	}
1932 
1933 	VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
1934 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
1935 	newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1936 
1937 	/*
1938 	 * Process new nvlist of vdevs.
1939 	 */
1940 	for (i = 0; i < nl2cache; i++) {
1941 		guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
1942 
1943 		newvdevs[i] = NULL;
1944 		for (j = 0; j < oldnvdevs; j++) {
1945 			vd = oldvdevs[j];
1946 			if (vd != NULL && guid == vd->vdev_guid) {
1947 				/*
1948 				 * Retain previous vdev for add/remove ops.
1949 				 */
1950 				newvdevs[i] = vd;
1951 				oldvdevs[j] = NULL;
1952 				break;
1953 			}
1954 		}
1955 
1956 		if (newvdevs[i] == NULL) {
1957 			/*
1958 			 * Create new vdev
1959 			 */
1960 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1961 			    VDEV_ALLOC_L2CACHE) == 0);
1962 			ASSERT(vd != NULL);
1963 			newvdevs[i] = vd;
1964 
1965 			/*
1966 			 * Commit this vdev as an l2cache device,
1967 			 * even if it fails to open.
1968 			 */
1969 			spa_l2cache_add(vd);
1970 
1971 			vd->vdev_top = vd;
1972 			vd->vdev_aux = sav;
1973 
1974 			spa_l2cache_activate(vd);
1975 
1976 			if (vdev_open(vd) != 0)
1977 				continue;
1978 
1979 			(void) vdev_validate_aux(vd);
1980 
1981 			if (!vdev_is_dead(vd))
1982 				l2arc_add_vdev(spa, vd);
1983 
1984 			/*
1985 			 * Upon cache device addition to a pool or pool
1986 			 * creation with a cache device or if the header
1987 			 * of the device is invalid we issue an async
1988 			 * TRIM command for the whole device which will
1989 			 * execute if l2arc_trim_ahead > 0.
1990 			 */
1991 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
1992 		}
1993 	}
1994 
1995 	sav->sav_vdevs = newvdevs;
1996 	sav->sav_count = (int)nl2cache;
1997 
1998 	/*
1999 	 * Recompute the stashed list of l2cache devices, with status
2000 	 * information this time.
2001 	 */
2002 	fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2003 
2004 	if (sav->sav_count > 0)
2005 		l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2006 		    KM_SLEEP);
2007 	for (i = 0; i < sav->sav_count; i++)
2008 		l2cache[i] = vdev_config_generate(spa,
2009 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2010 	fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2011 	    (const nvlist_t * const *)l2cache, sav->sav_count);
2012 
2013 out:
2014 	/*
2015 	 * Purge vdevs that were dropped
2016 	 */
2017 	if (oldvdevs) {
2018 		for (i = 0; i < oldnvdevs; i++) {
2019 			uint64_t pool;
2020 
2021 			vd = oldvdevs[i];
2022 			if (vd != NULL) {
2023 				ASSERT(vd->vdev_isl2cache);
2024 
2025 				if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2026 				    pool != 0ULL && l2arc_vdev_present(vd))
2027 					l2arc_remove_vdev(vd);
2028 				vdev_clear_stats(vd);
2029 				vdev_free(vd);
2030 			}
2031 		}
2032 
2033 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2034 	}
2035 
2036 	for (i = 0; i < sav->sav_count; i++)
2037 		nvlist_free(l2cache[i]);
2038 	if (sav->sav_count)
2039 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
2040 }
2041 
2042 static int
2043 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2044 {
2045 	dmu_buf_t *db;
2046 	char *packed = NULL;
2047 	size_t nvsize = 0;
2048 	int error;
2049 	*value = NULL;
2050 
2051 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2052 	if (error)
2053 		return (error);
2054 
2055 	nvsize = *(uint64_t *)db->db_data;
2056 	dmu_buf_rele(db, FTAG);
2057 
2058 	packed = vmem_alloc(nvsize, KM_SLEEP);
2059 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2060 	    DMU_READ_PREFETCH);
2061 	if (error == 0)
2062 		error = nvlist_unpack(packed, nvsize, value, 0);
2063 	vmem_free(packed, nvsize);
2064 
2065 	return (error);
2066 }
2067 
2068 /*
2069  * Concrete top-level vdevs that are not missing and are not logs. At every
2070  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2071  */
2072 static uint64_t
2073 spa_healthy_core_tvds(spa_t *spa)
2074 {
2075 	vdev_t *rvd = spa->spa_root_vdev;
2076 	uint64_t tvds = 0;
2077 
2078 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2079 		vdev_t *vd = rvd->vdev_child[i];
2080 		if (vd->vdev_islog)
2081 			continue;
2082 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2083 			tvds++;
2084 	}
2085 
2086 	return (tvds);
2087 }
2088 
2089 /*
2090  * Checks to see if the given vdev could not be opened, in which case we post a
2091  * sysevent to notify the autoreplace code that the device has been removed.
2092  */
2093 static void
2094 spa_check_removed(vdev_t *vd)
2095 {
2096 	for (uint64_t c = 0; c < vd->vdev_children; c++)
2097 		spa_check_removed(vd->vdev_child[c]);
2098 
2099 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2100 	    vdev_is_concrete(vd)) {
2101 		zfs_post_autoreplace(vd->vdev_spa, vd);
2102 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2103 	}
2104 }
2105 
2106 static int
2107 spa_check_for_missing_logs(spa_t *spa)
2108 {
2109 	vdev_t *rvd = spa->spa_root_vdev;
2110 
2111 	/*
2112 	 * If we're doing a normal import, then build up any additional
2113 	 * diagnostic information about missing log devices.
2114 	 * We'll pass this up to the user for further processing.
2115 	 */
2116 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2117 		nvlist_t **child, *nv;
2118 		uint64_t idx = 0;
2119 
2120 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2121 		    KM_SLEEP);
2122 		nv = fnvlist_alloc();
2123 
2124 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2125 			vdev_t *tvd = rvd->vdev_child[c];
2126 
2127 			/*
2128 			 * We consider a device as missing only if it failed
2129 			 * to open (i.e. offline or faulted is not considered
2130 			 * as missing).
2131 			 */
2132 			if (tvd->vdev_islog &&
2133 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2134 				child[idx++] = vdev_config_generate(spa, tvd,
2135 				    B_FALSE, VDEV_CONFIG_MISSING);
2136 			}
2137 		}
2138 
2139 		if (idx > 0) {
2140 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2141 			    (const nvlist_t * const *)child, idx);
2142 			fnvlist_add_nvlist(spa->spa_load_info,
2143 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
2144 
2145 			for (uint64_t i = 0; i < idx; i++)
2146 				nvlist_free(child[i]);
2147 		}
2148 		nvlist_free(nv);
2149 		kmem_free(child, rvd->vdev_children * sizeof (char **));
2150 
2151 		if (idx > 0) {
2152 			spa_load_failed(spa, "some log devices are missing");
2153 			vdev_dbgmsg_print_tree(rvd, 2);
2154 			return (SET_ERROR(ENXIO));
2155 		}
2156 	} else {
2157 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2158 			vdev_t *tvd = rvd->vdev_child[c];
2159 
2160 			if (tvd->vdev_islog &&
2161 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2162 				spa_set_log_state(spa, SPA_LOG_CLEAR);
2163 				spa_load_note(spa, "some log devices are "
2164 				    "missing, ZIL is dropped.");
2165 				vdev_dbgmsg_print_tree(rvd, 2);
2166 				break;
2167 			}
2168 		}
2169 	}
2170 
2171 	return (0);
2172 }
2173 
2174 /*
2175  * Check for missing log devices
2176  */
2177 static boolean_t
2178 spa_check_logs(spa_t *spa)
2179 {
2180 	boolean_t rv = B_FALSE;
2181 	dsl_pool_t *dp = spa_get_dsl(spa);
2182 
2183 	switch (spa->spa_log_state) {
2184 	default:
2185 		break;
2186 	case SPA_LOG_MISSING:
2187 		/* need to recheck in case slog has been restored */
2188 	case SPA_LOG_UNKNOWN:
2189 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2190 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2191 		if (rv)
2192 			spa_set_log_state(spa, SPA_LOG_MISSING);
2193 		break;
2194 	}
2195 	return (rv);
2196 }
2197 
2198 /*
2199  * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2200  */
2201 static boolean_t
2202 spa_passivate_log(spa_t *spa)
2203 {
2204 	vdev_t *rvd = spa->spa_root_vdev;
2205 	boolean_t slog_found = B_FALSE;
2206 
2207 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2208 
2209 	for (int c = 0; c < rvd->vdev_children; c++) {
2210 		vdev_t *tvd = rvd->vdev_child[c];
2211 
2212 		if (tvd->vdev_islog) {
2213 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2214 			metaslab_group_passivate(tvd->vdev_mg);
2215 			slog_found = B_TRUE;
2216 		}
2217 	}
2218 
2219 	return (slog_found);
2220 }
2221 
2222 /*
2223  * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2224  */
2225 static void
2226 spa_activate_log(spa_t *spa)
2227 {
2228 	vdev_t *rvd = spa->spa_root_vdev;
2229 
2230 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2231 
2232 	for (int c = 0; c < rvd->vdev_children; c++) {
2233 		vdev_t *tvd = rvd->vdev_child[c];
2234 
2235 		if (tvd->vdev_islog) {
2236 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2237 			metaslab_group_activate(tvd->vdev_mg);
2238 		}
2239 	}
2240 }
2241 
2242 int
2243 spa_reset_logs(spa_t *spa)
2244 {
2245 	int error;
2246 
2247 	error = dmu_objset_find(spa_name(spa), zil_reset,
2248 	    NULL, DS_FIND_CHILDREN);
2249 	if (error == 0) {
2250 		/*
2251 		 * We successfully offlined the log device, sync out the
2252 		 * current txg so that the "stubby" block can be removed
2253 		 * by zil_sync().
2254 		 */
2255 		txg_wait_synced(spa->spa_dsl_pool, 0);
2256 	}
2257 	return (error);
2258 }
2259 
2260 static void
2261 spa_aux_check_removed(spa_aux_vdev_t *sav)
2262 {
2263 	for (int i = 0; i < sav->sav_count; i++)
2264 		spa_check_removed(sav->sav_vdevs[i]);
2265 }
2266 
2267 void
2268 spa_claim_notify(zio_t *zio)
2269 {
2270 	spa_t *spa = zio->io_spa;
2271 
2272 	if (zio->io_error)
2273 		return;
2274 
2275 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2276 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2277 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2278 	mutex_exit(&spa->spa_props_lock);
2279 }
2280 
2281 typedef struct spa_load_error {
2282 	boolean_t	sle_verify_data;
2283 	uint64_t	sle_meta_count;
2284 	uint64_t	sle_data_count;
2285 } spa_load_error_t;
2286 
2287 static void
2288 spa_load_verify_done(zio_t *zio)
2289 {
2290 	blkptr_t *bp = zio->io_bp;
2291 	spa_load_error_t *sle = zio->io_private;
2292 	dmu_object_type_t type = BP_GET_TYPE(bp);
2293 	int error = zio->io_error;
2294 	spa_t *spa = zio->io_spa;
2295 
2296 	abd_free(zio->io_abd);
2297 	if (error) {
2298 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2299 		    type != DMU_OT_INTENT_LOG)
2300 			atomic_inc_64(&sle->sle_meta_count);
2301 		else
2302 			atomic_inc_64(&sle->sle_data_count);
2303 	}
2304 
2305 	mutex_enter(&spa->spa_scrub_lock);
2306 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2307 	cv_broadcast(&spa->spa_scrub_io_cv);
2308 	mutex_exit(&spa->spa_scrub_lock);
2309 }
2310 
2311 /*
2312  * Maximum number of inflight bytes is the log2 fraction of the arc size.
2313  * By default, we set it to 1/16th of the arc.
2314  */
2315 static uint_t spa_load_verify_shift = 4;
2316 static int spa_load_verify_metadata = B_TRUE;
2317 static int spa_load_verify_data = B_TRUE;
2318 
2319 static int
2320 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2321     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2322 {
2323 	zio_t *rio = arg;
2324 	spa_load_error_t *sle = rio->io_private;
2325 
2326 	(void) zilog, (void) dnp;
2327 
2328 	/*
2329 	 * Note: normally this routine will not be called if
2330 	 * spa_load_verify_metadata is not set.  However, it may be useful
2331 	 * to manually set the flag after the traversal has begun.
2332 	 */
2333 	if (!spa_load_verify_metadata)
2334 		return (0);
2335 
2336 	/*
2337 	 * Sanity check the block pointer in order to detect obvious damage
2338 	 * before using the contents in subsequent checks or in zio_read().
2339 	 * When damaged consider it to be a metadata error since we cannot
2340 	 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2341 	 */
2342 	if (!zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_LOG)) {
2343 		atomic_inc_64(&sle->sle_meta_count);
2344 		return (0);
2345 	}
2346 
2347 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2348 	    BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2349 		return (0);
2350 
2351 	if (!BP_IS_METADATA(bp) &&
2352 	    (!spa_load_verify_data || !sle->sle_verify_data))
2353 		return (0);
2354 
2355 	uint64_t maxinflight_bytes =
2356 	    arc_target_bytes() >> spa_load_verify_shift;
2357 	size_t size = BP_GET_PSIZE(bp);
2358 
2359 	mutex_enter(&spa->spa_scrub_lock);
2360 	while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2361 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2362 	spa->spa_load_verify_bytes += size;
2363 	mutex_exit(&spa->spa_scrub_lock);
2364 
2365 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2366 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2367 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2368 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2369 	return (0);
2370 }
2371 
2372 static int
2373 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2374 {
2375 	(void) dp, (void) arg;
2376 
2377 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2378 		return (SET_ERROR(ENAMETOOLONG));
2379 
2380 	return (0);
2381 }
2382 
2383 static int
2384 spa_load_verify(spa_t *spa)
2385 {
2386 	zio_t *rio;
2387 	spa_load_error_t sle = { 0 };
2388 	zpool_load_policy_t policy;
2389 	boolean_t verify_ok = B_FALSE;
2390 	int error = 0;
2391 
2392 	zpool_get_load_policy(spa->spa_config, &policy);
2393 
2394 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2395 	    policy.zlp_maxmeta == UINT64_MAX)
2396 		return (0);
2397 
2398 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2399 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2400 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2401 	    DS_FIND_CHILDREN);
2402 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2403 	if (error != 0)
2404 		return (error);
2405 
2406 	/*
2407 	 * Verify data only if we are rewinding or error limit was set.
2408 	 * Otherwise nothing except dbgmsg care about it to waste time.
2409 	 */
2410 	sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2411 	    (policy.zlp_maxdata < UINT64_MAX);
2412 
2413 	rio = zio_root(spa, NULL, &sle,
2414 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2415 
2416 	if (spa_load_verify_metadata) {
2417 		if (spa->spa_extreme_rewind) {
2418 			spa_load_note(spa, "performing a complete scan of the "
2419 			    "pool since extreme rewind is on. This may take "
2420 			    "a very long time.\n  (spa_load_verify_data=%u, "
2421 			    "spa_load_verify_metadata=%u)",
2422 			    spa_load_verify_data, spa_load_verify_metadata);
2423 		}
2424 
2425 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2426 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2427 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2428 	}
2429 
2430 	(void) zio_wait(rio);
2431 	ASSERT0(spa->spa_load_verify_bytes);
2432 
2433 	spa->spa_load_meta_errors = sle.sle_meta_count;
2434 	spa->spa_load_data_errors = sle.sle_data_count;
2435 
2436 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2437 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2438 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2439 		    (u_longlong_t)sle.sle_data_count);
2440 	}
2441 
2442 	if (spa_load_verify_dryrun ||
2443 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2444 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2445 		int64_t loss = 0;
2446 
2447 		verify_ok = B_TRUE;
2448 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2449 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2450 
2451 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2452 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2453 		    spa->spa_load_txg_ts);
2454 		fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2455 		    loss);
2456 		fnvlist_add_uint64(spa->spa_load_info,
2457 		    ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2458 		fnvlist_add_uint64(spa->spa_load_info,
2459 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2460 	} else {
2461 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2462 	}
2463 
2464 	if (spa_load_verify_dryrun)
2465 		return (0);
2466 
2467 	if (error) {
2468 		if (error != ENXIO && error != EIO)
2469 			error = SET_ERROR(EIO);
2470 		return (error);
2471 	}
2472 
2473 	return (verify_ok ? 0 : EIO);
2474 }
2475 
2476 /*
2477  * Find a value in the pool props object.
2478  */
2479 static void
2480 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2481 {
2482 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2483 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2484 }
2485 
2486 /*
2487  * Find a value in the pool directory object.
2488  */
2489 static int
2490 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2491 {
2492 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2493 	    name, sizeof (uint64_t), 1, val);
2494 
2495 	if (error != 0 && (error != ENOENT || log_enoent)) {
2496 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2497 		    "[error=%d]", name, error);
2498 	}
2499 
2500 	return (error);
2501 }
2502 
2503 static int
2504 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2505 {
2506 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2507 	return (SET_ERROR(err));
2508 }
2509 
2510 boolean_t
2511 spa_livelist_delete_check(spa_t *spa)
2512 {
2513 	return (spa->spa_livelists_to_delete != 0);
2514 }
2515 
2516 static boolean_t
2517 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2518 {
2519 	(void) z;
2520 	spa_t *spa = arg;
2521 	return (spa_livelist_delete_check(spa));
2522 }
2523 
2524 static int
2525 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2526 {
2527 	spa_t *spa = arg;
2528 	zio_free(spa, tx->tx_txg, bp);
2529 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2530 	    -bp_get_dsize_sync(spa, bp),
2531 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2532 	return (0);
2533 }
2534 
2535 static int
2536 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2537 {
2538 	int err;
2539 	zap_cursor_t zc;
2540 	zap_attribute_t za;
2541 	zap_cursor_init(&zc, os, zap_obj);
2542 	err = zap_cursor_retrieve(&zc, &za);
2543 	zap_cursor_fini(&zc);
2544 	if (err == 0)
2545 		*llp = za.za_first_integer;
2546 	return (err);
2547 }
2548 
2549 /*
2550  * Components of livelist deletion that must be performed in syncing
2551  * context: freeing block pointers and updating the pool-wide data
2552  * structures to indicate how much work is left to do
2553  */
2554 typedef struct sublist_delete_arg {
2555 	spa_t *spa;
2556 	dsl_deadlist_t *ll;
2557 	uint64_t key;
2558 	bplist_t *to_free;
2559 } sublist_delete_arg_t;
2560 
2561 static void
2562 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2563 {
2564 	sublist_delete_arg_t *sda = arg;
2565 	spa_t *spa = sda->spa;
2566 	dsl_deadlist_t *ll = sda->ll;
2567 	uint64_t key = sda->key;
2568 	bplist_t *to_free = sda->to_free;
2569 
2570 	bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2571 	dsl_deadlist_remove_entry(ll, key, tx);
2572 }
2573 
2574 typedef struct livelist_delete_arg {
2575 	spa_t *spa;
2576 	uint64_t ll_obj;
2577 	uint64_t zap_obj;
2578 } livelist_delete_arg_t;
2579 
2580 static void
2581 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2582 {
2583 	livelist_delete_arg_t *lda = arg;
2584 	spa_t *spa = lda->spa;
2585 	uint64_t ll_obj = lda->ll_obj;
2586 	uint64_t zap_obj = lda->zap_obj;
2587 	objset_t *mos = spa->spa_meta_objset;
2588 	uint64_t count;
2589 
2590 	/* free the livelist and decrement the feature count */
2591 	VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2592 	dsl_deadlist_free(mos, ll_obj, tx);
2593 	spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2594 	VERIFY0(zap_count(mos, zap_obj, &count));
2595 	if (count == 0) {
2596 		/* no more livelists to delete */
2597 		VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2598 		    DMU_POOL_DELETED_CLONES, tx));
2599 		VERIFY0(zap_destroy(mos, zap_obj, tx));
2600 		spa->spa_livelists_to_delete = 0;
2601 		spa_notify_waiters(spa);
2602 	}
2603 }
2604 
2605 /*
2606  * Load in the value for the livelist to be removed and open it. Then,
2607  * load its first sublist and determine which block pointers should actually
2608  * be freed. Then, call a synctask which performs the actual frees and updates
2609  * the pool-wide livelist data.
2610  */
2611 static void
2612 spa_livelist_delete_cb(void *arg, zthr_t *z)
2613 {
2614 	spa_t *spa = arg;
2615 	uint64_t ll_obj = 0, count;
2616 	objset_t *mos = spa->spa_meta_objset;
2617 	uint64_t zap_obj = spa->spa_livelists_to_delete;
2618 	/*
2619 	 * Determine the next livelist to delete. This function should only
2620 	 * be called if there is at least one deleted clone.
2621 	 */
2622 	VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2623 	VERIFY0(zap_count(mos, ll_obj, &count));
2624 	if (count > 0) {
2625 		dsl_deadlist_t *ll;
2626 		dsl_deadlist_entry_t *dle;
2627 		bplist_t to_free;
2628 		ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
2629 		dsl_deadlist_open(ll, mos, ll_obj);
2630 		dle = dsl_deadlist_first(ll);
2631 		ASSERT3P(dle, !=, NULL);
2632 		bplist_create(&to_free);
2633 		int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
2634 		    z, NULL);
2635 		if (err == 0) {
2636 			sublist_delete_arg_t sync_arg = {
2637 			    .spa = spa,
2638 			    .ll = ll,
2639 			    .key = dle->dle_mintxg,
2640 			    .to_free = &to_free
2641 			};
2642 			zfs_dbgmsg("deleting sublist (id %llu) from"
2643 			    " livelist %llu, %lld remaining",
2644 			    (u_longlong_t)dle->dle_bpobj.bpo_object,
2645 			    (u_longlong_t)ll_obj, (longlong_t)count - 1);
2646 			VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2647 			    sublist_delete_sync, &sync_arg, 0,
2648 			    ZFS_SPACE_CHECK_DESTROY));
2649 		} else {
2650 			VERIFY3U(err, ==, EINTR);
2651 		}
2652 		bplist_clear(&to_free);
2653 		bplist_destroy(&to_free);
2654 		dsl_deadlist_close(ll);
2655 		kmem_free(ll, sizeof (dsl_deadlist_t));
2656 	} else {
2657 		livelist_delete_arg_t sync_arg = {
2658 		    .spa = spa,
2659 		    .ll_obj = ll_obj,
2660 		    .zap_obj = zap_obj
2661 		};
2662 		zfs_dbgmsg("deletion of livelist %llu completed",
2663 		    (u_longlong_t)ll_obj);
2664 		VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
2665 		    &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
2666 	}
2667 }
2668 
2669 static void
2670 spa_start_livelist_destroy_thread(spa_t *spa)
2671 {
2672 	ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
2673 	spa->spa_livelist_delete_zthr =
2674 	    zthr_create("z_livelist_destroy",
2675 	    spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
2676 	    minclsyspri);
2677 }
2678 
2679 typedef struct livelist_new_arg {
2680 	bplist_t *allocs;
2681 	bplist_t *frees;
2682 } livelist_new_arg_t;
2683 
2684 static int
2685 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
2686     dmu_tx_t *tx)
2687 {
2688 	ASSERT(tx == NULL);
2689 	livelist_new_arg_t *lna = arg;
2690 	if (bp_freed) {
2691 		bplist_append(lna->frees, bp);
2692 	} else {
2693 		bplist_append(lna->allocs, bp);
2694 		zfs_livelist_condense_new_alloc++;
2695 	}
2696 	return (0);
2697 }
2698 
2699 typedef struct livelist_condense_arg {
2700 	spa_t *spa;
2701 	bplist_t to_keep;
2702 	uint64_t first_size;
2703 	uint64_t next_size;
2704 } livelist_condense_arg_t;
2705 
2706 static void
2707 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
2708 {
2709 	livelist_condense_arg_t *lca = arg;
2710 	spa_t *spa = lca->spa;
2711 	bplist_t new_frees;
2712 	dsl_dataset_t *ds = spa->spa_to_condense.ds;
2713 
2714 	/* Have we been cancelled? */
2715 	if (spa->spa_to_condense.cancelled) {
2716 		zfs_livelist_condense_sync_cancel++;
2717 		goto out;
2718 	}
2719 
2720 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2721 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2722 	dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
2723 
2724 	/*
2725 	 * It's possible that the livelist was changed while the zthr was
2726 	 * running. Therefore, we need to check for new blkptrs in the two
2727 	 * entries being condensed and continue to track them in the livelist.
2728 	 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
2729 	 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
2730 	 * we need to sort them into two different bplists.
2731 	 */
2732 	uint64_t first_obj = first->dle_bpobj.bpo_object;
2733 	uint64_t next_obj = next->dle_bpobj.bpo_object;
2734 	uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2735 	uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2736 
2737 	bplist_create(&new_frees);
2738 	livelist_new_arg_t new_bps = {
2739 	    .allocs = &lca->to_keep,
2740 	    .frees = &new_frees,
2741 	};
2742 
2743 	if (cur_first_size > lca->first_size) {
2744 		VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
2745 		    livelist_track_new_cb, &new_bps, lca->first_size));
2746 	}
2747 	if (cur_next_size > lca->next_size) {
2748 		VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
2749 		    livelist_track_new_cb, &new_bps, lca->next_size));
2750 	}
2751 
2752 	dsl_deadlist_clear_entry(first, ll, tx);
2753 	ASSERT(bpobj_is_empty(&first->dle_bpobj));
2754 	dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
2755 
2756 	bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
2757 	bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
2758 	bplist_destroy(&new_frees);
2759 
2760 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
2761 	dsl_dataset_name(ds, dsname);
2762 	zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
2763 	    "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
2764 	    "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
2765 	    (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
2766 	    (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
2767 	    (u_longlong_t)cur_next_size,
2768 	    (u_longlong_t)first->dle_bpobj.bpo_object,
2769 	    (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
2770 out:
2771 	dmu_buf_rele(ds->ds_dbuf, spa);
2772 	spa->spa_to_condense.ds = NULL;
2773 	bplist_clear(&lca->to_keep);
2774 	bplist_destroy(&lca->to_keep);
2775 	kmem_free(lca, sizeof (livelist_condense_arg_t));
2776 	spa->spa_to_condense.syncing = B_FALSE;
2777 }
2778 
2779 static void
2780 spa_livelist_condense_cb(void *arg, zthr_t *t)
2781 {
2782 	while (zfs_livelist_condense_zthr_pause &&
2783 	    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2784 		delay(1);
2785 
2786 	spa_t *spa = arg;
2787 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2788 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2789 	uint64_t first_size, next_size;
2790 
2791 	livelist_condense_arg_t *lca =
2792 	    kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
2793 	bplist_create(&lca->to_keep);
2794 
2795 	/*
2796 	 * Process the livelists (matching FREEs and ALLOCs) in open context
2797 	 * so we have minimal work in syncing context to condense.
2798 	 *
2799 	 * We save bpobj sizes (first_size and next_size) to use later in
2800 	 * syncing context to determine if entries were added to these sublists
2801 	 * while in open context. This is possible because the clone is still
2802 	 * active and open for normal writes and we want to make sure the new,
2803 	 * unprocessed blockpointers are inserted into the livelist normally.
2804 	 *
2805 	 * Note that dsl_process_sub_livelist() both stores the size number of
2806 	 * blockpointers and iterates over them while the bpobj's lock held, so
2807 	 * the sizes returned to us are consistent which what was actually
2808 	 * processed.
2809 	 */
2810 	int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
2811 	    &first_size);
2812 	if (err == 0)
2813 		err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
2814 		    t, &next_size);
2815 
2816 	if (err == 0) {
2817 		while (zfs_livelist_condense_sync_pause &&
2818 		    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2819 			delay(1);
2820 
2821 		dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2822 		dmu_tx_mark_netfree(tx);
2823 		dmu_tx_hold_space(tx, 1);
2824 		err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
2825 		if (err == 0) {
2826 			/*
2827 			 * Prevent the condense zthr restarting before
2828 			 * the synctask completes.
2829 			 */
2830 			spa->spa_to_condense.syncing = B_TRUE;
2831 			lca->spa = spa;
2832 			lca->first_size = first_size;
2833 			lca->next_size = next_size;
2834 			dsl_sync_task_nowait(spa_get_dsl(spa),
2835 			    spa_livelist_condense_sync, lca, tx);
2836 			dmu_tx_commit(tx);
2837 			return;
2838 		}
2839 	}
2840 	/*
2841 	 * Condensing can not continue: either it was externally stopped or
2842 	 * we were unable to assign to a tx because the pool has run out of
2843 	 * space. In the second case, we'll just end up trying to condense
2844 	 * again in a later txg.
2845 	 */
2846 	ASSERT(err != 0);
2847 	bplist_clear(&lca->to_keep);
2848 	bplist_destroy(&lca->to_keep);
2849 	kmem_free(lca, sizeof (livelist_condense_arg_t));
2850 	dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
2851 	spa->spa_to_condense.ds = NULL;
2852 	if (err == EINTR)
2853 		zfs_livelist_condense_zthr_cancel++;
2854 }
2855 
2856 /*
2857  * Check that there is something to condense but that a condense is not
2858  * already in progress and that condensing has not been cancelled.
2859  */
2860 static boolean_t
2861 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
2862 {
2863 	(void) z;
2864 	spa_t *spa = arg;
2865 	if ((spa->spa_to_condense.ds != NULL) &&
2866 	    (spa->spa_to_condense.syncing == B_FALSE) &&
2867 	    (spa->spa_to_condense.cancelled == B_FALSE)) {
2868 		return (B_TRUE);
2869 	}
2870 	return (B_FALSE);
2871 }
2872 
2873 static void
2874 spa_start_livelist_condensing_thread(spa_t *spa)
2875 {
2876 	spa->spa_to_condense.ds = NULL;
2877 	spa->spa_to_condense.first = NULL;
2878 	spa->spa_to_condense.next = NULL;
2879 	spa->spa_to_condense.syncing = B_FALSE;
2880 	spa->spa_to_condense.cancelled = B_FALSE;
2881 
2882 	ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
2883 	spa->spa_livelist_condense_zthr =
2884 	    zthr_create("z_livelist_condense",
2885 	    spa_livelist_condense_cb_check,
2886 	    spa_livelist_condense_cb, spa, minclsyspri);
2887 }
2888 
2889 static void
2890 spa_spawn_aux_threads(spa_t *spa)
2891 {
2892 	ASSERT(spa_writeable(spa));
2893 
2894 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2895 
2896 	spa_start_indirect_condensing_thread(spa);
2897 	spa_start_livelist_destroy_thread(spa);
2898 	spa_start_livelist_condensing_thread(spa);
2899 
2900 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2901 	spa->spa_checkpoint_discard_zthr =
2902 	    zthr_create("z_checkpoint_discard",
2903 	    spa_checkpoint_discard_thread_check,
2904 	    spa_checkpoint_discard_thread, spa, minclsyspri);
2905 }
2906 
2907 /*
2908  * Fix up config after a partly-completed split.  This is done with the
2909  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2910  * pool have that entry in their config, but only the splitting one contains
2911  * a list of all the guids of the vdevs that are being split off.
2912  *
2913  * This function determines what to do with that list: either rejoin
2914  * all the disks to the pool, or complete the splitting process.  To attempt
2915  * the rejoin, each disk that is offlined is marked online again, and
2916  * we do a reopen() call.  If the vdev label for every disk that was
2917  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2918  * then we call vdev_split() on each disk, and complete the split.
2919  *
2920  * Otherwise we leave the config alone, with all the vdevs in place in
2921  * the original pool.
2922  */
2923 static void
2924 spa_try_repair(spa_t *spa, nvlist_t *config)
2925 {
2926 	uint_t extracted;
2927 	uint64_t *glist;
2928 	uint_t i, gcount;
2929 	nvlist_t *nvl;
2930 	vdev_t **vd;
2931 	boolean_t attempt_reopen;
2932 
2933 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2934 		return;
2935 
2936 	/* check that the config is complete */
2937 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2938 	    &glist, &gcount) != 0)
2939 		return;
2940 
2941 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2942 
2943 	/* attempt to online all the vdevs & validate */
2944 	attempt_reopen = B_TRUE;
2945 	for (i = 0; i < gcount; i++) {
2946 		if (glist[i] == 0)	/* vdev is hole */
2947 			continue;
2948 
2949 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2950 		if (vd[i] == NULL) {
2951 			/*
2952 			 * Don't bother attempting to reopen the disks;
2953 			 * just do the split.
2954 			 */
2955 			attempt_reopen = B_FALSE;
2956 		} else {
2957 			/* attempt to re-online it */
2958 			vd[i]->vdev_offline = B_FALSE;
2959 		}
2960 	}
2961 
2962 	if (attempt_reopen) {
2963 		vdev_reopen(spa->spa_root_vdev);
2964 
2965 		/* check each device to see what state it's in */
2966 		for (extracted = 0, i = 0; i < gcount; i++) {
2967 			if (vd[i] != NULL &&
2968 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2969 				break;
2970 			++extracted;
2971 		}
2972 	}
2973 
2974 	/*
2975 	 * If every disk has been moved to the new pool, or if we never
2976 	 * even attempted to look at them, then we split them off for
2977 	 * good.
2978 	 */
2979 	if (!attempt_reopen || gcount == extracted) {
2980 		for (i = 0; i < gcount; i++)
2981 			if (vd[i] != NULL)
2982 				vdev_split(vd[i]);
2983 		vdev_reopen(spa->spa_root_vdev);
2984 	}
2985 
2986 	kmem_free(vd, gcount * sizeof (vdev_t *));
2987 }
2988 
2989 static int
2990 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2991 {
2992 	const char *ereport = FM_EREPORT_ZFS_POOL;
2993 	int error;
2994 
2995 	spa->spa_load_state = state;
2996 	(void) spa_import_progress_set_state(spa_guid(spa),
2997 	    spa_load_state(spa));
2998 
2999 	gethrestime(&spa->spa_loaded_ts);
3000 	error = spa_load_impl(spa, type, &ereport);
3001 
3002 	/*
3003 	 * Don't count references from objsets that are already closed
3004 	 * and are making their way through the eviction process.
3005 	 */
3006 	spa_evicting_os_wait(spa);
3007 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3008 	if (error) {
3009 		if (error != EEXIST) {
3010 			spa->spa_loaded_ts.tv_sec = 0;
3011 			spa->spa_loaded_ts.tv_nsec = 0;
3012 		}
3013 		if (error != EBADF) {
3014 			(void) zfs_ereport_post(ereport, spa,
3015 			    NULL, NULL, NULL, 0);
3016 		}
3017 	}
3018 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3019 	spa->spa_ena = 0;
3020 
3021 	(void) spa_import_progress_set_state(spa_guid(spa),
3022 	    spa_load_state(spa));
3023 
3024 	return (error);
3025 }
3026 
3027 #ifdef ZFS_DEBUG
3028 /*
3029  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3030  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3031  * spa's per-vdev ZAP list.
3032  */
3033 static uint64_t
3034 vdev_count_verify_zaps(vdev_t *vd)
3035 {
3036 	spa_t *spa = vd->vdev_spa;
3037 	uint64_t total = 0;
3038 
3039 	if (vd->vdev_top_zap != 0) {
3040 		total++;
3041 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3042 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3043 	}
3044 	if (vd->vdev_leaf_zap != 0) {
3045 		total++;
3046 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3047 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3048 	}
3049 
3050 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3051 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
3052 	}
3053 
3054 	return (total);
3055 }
3056 #else
3057 #define	vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3058 #endif
3059 
3060 /*
3061  * Determine whether the activity check is required.
3062  */
3063 static boolean_t
3064 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3065     nvlist_t *config)
3066 {
3067 	uint64_t state = 0;
3068 	uint64_t hostid = 0;
3069 	uint64_t tryconfig_txg = 0;
3070 	uint64_t tryconfig_timestamp = 0;
3071 	uint16_t tryconfig_mmp_seq = 0;
3072 	nvlist_t *nvinfo;
3073 
3074 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3075 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3076 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3077 		    &tryconfig_txg);
3078 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3079 		    &tryconfig_timestamp);
3080 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3081 		    &tryconfig_mmp_seq);
3082 	}
3083 
3084 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3085 
3086 	/*
3087 	 * Disable the MMP activity check - This is used by zdb which
3088 	 * is intended to be used on potentially active pools.
3089 	 */
3090 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3091 		return (B_FALSE);
3092 
3093 	/*
3094 	 * Skip the activity check when the MMP feature is disabled.
3095 	 */
3096 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3097 		return (B_FALSE);
3098 
3099 	/*
3100 	 * If the tryconfig_ values are nonzero, they are the results of an
3101 	 * earlier tryimport.  If they all match the uberblock we just found,
3102 	 * then the pool has not changed and we return false so we do not test
3103 	 * a second time.
3104 	 */
3105 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3106 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3107 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
3108 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3109 		return (B_FALSE);
3110 
3111 	/*
3112 	 * Allow the activity check to be skipped when importing the pool
3113 	 * on the same host which last imported it.  Since the hostid from
3114 	 * configuration may be stale use the one read from the label.
3115 	 */
3116 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3117 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3118 
3119 	if (hostid == spa_get_hostid(spa))
3120 		return (B_FALSE);
3121 
3122 	/*
3123 	 * Skip the activity test when the pool was cleanly exported.
3124 	 */
3125 	if (state != POOL_STATE_ACTIVE)
3126 		return (B_FALSE);
3127 
3128 	return (B_TRUE);
3129 }
3130 
3131 /*
3132  * Nanoseconds the activity check must watch for changes on-disk.
3133  */
3134 static uint64_t
3135 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3136 {
3137 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3138 	uint64_t multihost_interval = MSEC2NSEC(
3139 	    MMP_INTERVAL_OK(zfs_multihost_interval));
3140 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
3141 	    multihost_interval);
3142 
3143 	/*
3144 	 * Local tunables determine a minimum duration except for the case
3145 	 * where we know when the remote host will suspend the pool if MMP
3146 	 * writes do not land.
3147 	 *
3148 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
3149 	 * these cases and times.
3150 	 */
3151 
3152 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3153 
3154 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3155 	    MMP_FAIL_INT(ub) > 0) {
3156 
3157 		/* MMP on remote host will suspend pool after failed writes */
3158 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3159 		    MMP_IMPORT_SAFETY_FACTOR / 100;
3160 
3161 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3162 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3163 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3164 		    (u_longlong_t)MMP_FAIL_INT(ub),
3165 		    (u_longlong_t)MMP_INTERVAL(ub),
3166 		    (u_longlong_t)import_intervals);
3167 
3168 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3169 	    MMP_FAIL_INT(ub) == 0) {
3170 
3171 		/* MMP on remote host will never suspend pool */
3172 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3173 		    ub->ub_mmp_delay) * import_intervals);
3174 
3175 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3176 		    "mmp_interval=%llu ub_mmp_delay=%llu "
3177 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3178 		    (u_longlong_t)MMP_INTERVAL(ub),
3179 		    (u_longlong_t)ub->ub_mmp_delay,
3180 		    (u_longlong_t)import_intervals);
3181 
3182 	} else if (MMP_VALID(ub)) {
3183 		/*
3184 		 * zfs-0.7 compatibility case
3185 		 */
3186 
3187 		import_delay = MAX(import_delay, (multihost_interval +
3188 		    ub->ub_mmp_delay) * import_intervals);
3189 
3190 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3191 		    "import_intervals=%llu leaves=%u",
3192 		    (u_longlong_t)import_delay,
3193 		    (u_longlong_t)ub->ub_mmp_delay,
3194 		    (u_longlong_t)import_intervals,
3195 		    vdev_count_leaves(spa));
3196 	} else {
3197 		/* Using local tunings is the only reasonable option */
3198 		zfs_dbgmsg("pool last imported on non-MMP aware "
3199 		    "host using import_delay=%llu multihost_interval=%llu "
3200 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3201 		    (u_longlong_t)multihost_interval,
3202 		    (u_longlong_t)import_intervals);
3203 	}
3204 
3205 	return (import_delay);
3206 }
3207 
3208 /*
3209  * Perform the import activity check.  If the user canceled the import or
3210  * we detected activity then fail.
3211  */
3212 static int
3213 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3214 {
3215 	uint64_t txg = ub->ub_txg;
3216 	uint64_t timestamp = ub->ub_timestamp;
3217 	uint64_t mmp_config = ub->ub_mmp_config;
3218 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3219 	uint64_t import_delay;
3220 	hrtime_t import_expire;
3221 	nvlist_t *mmp_label = NULL;
3222 	vdev_t *rvd = spa->spa_root_vdev;
3223 	kcondvar_t cv;
3224 	kmutex_t mtx;
3225 	int error = 0;
3226 
3227 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
3228 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3229 	mutex_enter(&mtx);
3230 
3231 	/*
3232 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3233 	 * during the earlier tryimport.  If the txg recorded there is 0 then
3234 	 * the pool is known to be active on another host.
3235 	 *
3236 	 * Otherwise, the pool might be in use on another host.  Check for
3237 	 * changes in the uberblocks on disk if necessary.
3238 	 */
3239 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3240 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3241 		    ZPOOL_CONFIG_LOAD_INFO);
3242 
3243 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3244 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3245 			vdev_uberblock_load(rvd, ub, &mmp_label);
3246 			error = SET_ERROR(EREMOTEIO);
3247 			goto out;
3248 		}
3249 	}
3250 
3251 	import_delay = spa_activity_check_duration(spa, ub);
3252 
3253 	/* Add a small random factor in case of simultaneous imports (0-25%) */
3254 	import_delay += import_delay * random_in_range(250) / 1000;
3255 
3256 	import_expire = gethrtime() + import_delay;
3257 
3258 	while (gethrtime() < import_expire) {
3259 		(void) spa_import_progress_set_mmp_check(spa_guid(spa),
3260 		    NSEC2SEC(import_expire - gethrtime()));
3261 
3262 		vdev_uberblock_load(rvd, ub, &mmp_label);
3263 
3264 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3265 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3266 			zfs_dbgmsg("multihost activity detected "
3267 			    "txg %llu ub_txg  %llu "
3268 			    "timestamp %llu ub_timestamp  %llu "
3269 			    "mmp_config %#llx ub_mmp_config %#llx",
3270 			    (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3271 			    (u_longlong_t)timestamp,
3272 			    (u_longlong_t)ub->ub_timestamp,
3273 			    (u_longlong_t)mmp_config,
3274 			    (u_longlong_t)ub->ub_mmp_config);
3275 
3276 			error = SET_ERROR(EREMOTEIO);
3277 			break;
3278 		}
3279 
3280 		if (mmp_label) {
3281 			nvlist_free(mmp_label);
3282 			mmp_label = NULL;
3283 		}
3284 
3285 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3286 		if (error != -1) {
3287 			error = SET_ERROR(EINTR);
3288 			break;
3289 		}
3290 		error = 0;
3291 	}
3292 
3293 out:
3294 	mutex_exit(&mtx);
3295 	mutex_destroy(&mtx);
3296 	cv_destroy(&cv);
3297 
3298 	/*
3299 	 * If the pool is determined to be active store the status in the
3300 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
3301 	 * available from configuration read from disk store them as well.
3302 	 * This allows 'zpool import' to generate a more useful message.
3303 	 *
3304 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
3305 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3306 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
3307 	 */
3308 	if (error == EREMOTEIO) {
3309 		const char *hostname = "<unknown>";
3310 		uint64_t hostid = 0;
3311 
3312 		if (mmp_label) {
3313 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3314 				hostname = fnvlist_lookup_string(mmp_label,
3315 				    ZPOOL_CONFIG_HOSTNAME);
3316 				fnvlist_add_string(spa->spa_load_info,
3317 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3318 			}
3319 
3320 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3321 				hostid = fnvlist_lookup_uint64(mmp_label,
3322 				    ZPOOL_CONFIG_HOSTID);
3323 				fnvlist_add_uint64(spa->spa_load_info,
3324 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
3325 			}
3326 		}
3327 
3328 		fnvlist_add_uint64(spa->spa_load_info,
3329 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3330 		fnvlist_add_uint64(spa->spa_load_info,
3331 		    ZPOOL_CONFIG_MMP_TXG, 0);
3332 
3333 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3334 	}
3335 
3336 	if (mmp_label)
3337 		nvlist_free(mmp_label);
3338 
3339 	return (error);
3340 }
3341 
3342 static int
3343 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3344 {
3345 	uint64_t hostid;
3346 	char *hostname;
3347 	uint64_t myhostid = 0;
3348 
3349 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3350 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3351 		hostname = fnvlist_lookup_string(mos_config,
3352 		    ZPOOL_CONFIG_HOSTNAME);
3353 
3354 		myhostid = zone_get_hostid(NULL);
3355 
3356 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3357 			cmn_err(CE_WARN, "pool '%s' could not be "
3358 			    "loaded as it was last accessed by "
3359 			    "another system (host: %s hostid: 0x%llx). "
3360 			    "See: https://openzfs.github.io/openzfs-docs/msg/"
3361 			    "ZFS-8000-EY",
3362 			    spa_name(spa), hostname, (u_longlong_t)hostid);
3363 			spa_load_failed(spa, "hostid verification failed: pool "
3364 			    "last accessed by host: %s (hostid: 0x%llx)",
3365 			    hostname, (u_longlong_t)hostid);
3366 			return (SET_ERROR(EBADF));
3367 		}
3368 	}
3369 
3370 	return (0);
3371 }
3372 
3373 static int
3374 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3375 {
3376 	int error = 0;
3377 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3378 	int parse;
3379 	vdev_t *rvd;
3380 	uint64_t pool_guid;
3381 	char *comment;
3382 	char *compatibility;
3383 
3384 	/*
3385 	 * Versioning wasn't explicitly added to the label until later, so if
3386 	 * it's not present treat it as the initial version.
3387 	 */
3388 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3389 	    &spa->spa_ubsync.ub_version) != 0)
3390 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3391 
3392 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3393 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3394 		    ZPOOL_CONFIG_POOL_GUID);
3395 		return (SET_ERROR(EINVAL));
3396 	}
3397 
3398 	/*
3399 	 * If we are doing an import, ensure that the pool is not already
3400 	 * imported by checking if its pool guid already exists in the
3401 	 * spa namespace.
3402 	 *
3403 	 * The only case that we allow an already imported pool to be
3404 	 * imported again, is when the pool is checkpointed and we want to
3405 	 * look at its checkpointed state from userland tools like zdb.
3406 	 */
3407 #ifdef _KERNEL
3408 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3409 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3410 	    spa_guid_exists(pool_guid, 0)) {
3411 #else
3412 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3413 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3414 	    spa_guid_exists(pool_guid, 0) &&
3415 	    !spa_importing_readonly_checkpoint(spa)) {
3416 #endif
3417 		spa_load_failed(spa, "a pool with guid %llu is already open",
3418 		    (u_longlong_t)pool_guid);
3419 		return (SET_ERROR(EEXIST));
3420 	}
3421 
3422 	spa->spa_config_guid = pool_guid;
3423 
3424 	nvlist_free(spa->spa_load_info);
3425 	spa->spa_load_info = fnvlist_alloc();
3426 
3427 	ASSERT(spa->spa_comment == NULL);
3428 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3429 		spa->spa_comment = spa_strdup(comment);
3430 
3431 	ASSERT(spa->spa_compatibility == NULL);
3432 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3433 	    &compatibility) == 0)
3434 		spa->spa_compatibility = spa_strdup(compatibility);
3435 
3436 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3437 	    &spa->spa_config_txg);
3438 
3439 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3440 		spa->spa_config_splitting = fnvlist_dup(nvl);
3441 
3442 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3443 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3444 		    ZPOOL_CONFIG_VDEV_TREE);
3445 		return (SET_ERROR(EINVAL));
3446 	}
3447 
3448 	/*
3449 	 * Create "The Godfather" zio to hold all async IOs
3450 	 */
3451 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3452 	    KM_SLEEP);
3453 	for (int i = 0; i < max_ncpus; i++) {
3454 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3455 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3456 		    ZIO_FLAG_GODFATHER);
3457 	}
3458 
3459 	/*
3460 	 * Parse the configuration into a vdev tree.  We explicitly set the
3461 	 * value that will be returned by spa_version() since parsing the
3462 	 * configuration requires knowing the version number.
3463 	 */
3464 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3465 	parse = (type == SPA_IMPORT_EXISTING ?
3466 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3467 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3468 	spa_config_exit(spa, SCL_ALL, FTAG);
3469 
3470 	if (error != 0) {
3471 		spa_load_failed(spa, "unable to parse config [error=%d]",
3472 		    error);
3473 		return (error);
3474 	}
3475 
3476 	ASSERT(spa->spa_root_vdev == rvd);
3477 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3478 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3479 
3480 	if (type != SPA_IMPORT_ASSEMBLE) {
3481 		ASSERT(spa_guid(spa) == pool_guid);
3482 	}
3483 
3484 	return (0);
3485 }
3486 
3487 /*
3488  * Recursively open all vdevs in the vdev tree. This function is called twice:
3489  * first with the untrusted config, then with the trusted config.
3490  */
3491 static int
3492 spa_ld_open_vdevs(spa_t *spa)
3493 {
3494 	int error = 0;
3495 
3496 	/*
3497 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3498 	 * missing/unopenable for the root vdev to be still considered openable.
3499 	 */
3500 	if (spa->spa_trust_config) {
3501 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3502 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3503 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3504 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3505 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3506 	} else {
3507 		spa->spa_missing_tvds_allowed = 0;
3508 	}
3509 
3510 	spa->spa_missing_tvds_allowed =
3511 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3512 
3513 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3514 	error = vdev_open(spa->spa_root_vdev);
3515 	spa_config_exit(spa, SCL_ALL, FTAG);
3516 
3517 	if (spa->spa_missing_tvds != 0) {
3518 		spa_load_note(spa, "vdev tree has %lld missing top-level "
3519 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3520 		if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3521 			/*
3522 			 * Although theoretically we could allow users to open
3523 			 * incomplete pools in RW mode, we'd need to add a lot
3524 			 * of extra logic (e.g. adjust pool space to account
3525 			 * for missing vdevs).
3526 			 * This limitation also prevents users from accidentally
3527 			 * opening the pool in RW mode during data recovery and
3528 			 * damaging it further.
3529 			 */
3530 			spa_load_note(spa, "pools with missing top-level "
3531 			    "vdevs can only be opened in read-only mode.");
3532 			error = SET_ERROR(ENXIO);
3533 		} else {
3534 			spa_load_note(spa, "current settings allow for maximum "
3535 			    "%lld missing top-level vdevs at this stage.",
3536 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
3537 		}
3538 	}
3539 	if (error != 0) {
3540 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3541 		    error);
3542 	}
3543 	if (spa->spa_missing_tvds != 0 || error != 0)
3544 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3545 
3546 	return (error);
3547 }
3548 
3549 /*
3550  * We need to validate the vdev labels against the configuration that
3551  * we have in hand. This function is called twice: first with an untrusted
3552  * config, then with a trusted config. The validation is more strict when the
3553  * config is trusted.
3554  */
3555 static int
3556 spa_ld_validate_vdevs(spa_t *spa)
3557 {
3558 	int error = 0;
3559 	vdev_t *rvd = spa->spa_root_vdev;
3560 
3561 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3562 	error = vdev_validate(rvd);
3563 	spa_config_exit(spa, SCL_ALL, FTAG);
3564 
3565 	if (error != 0) {
3566 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3567 		return (error);
3568 	}
3569 
3570 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3571 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
3572 		    "some vdevs");
3573 		vdev_dbgmsg_print_tree(rvd, 2);
3574 		return (SET_ERROR(ENXIO));
3575 	}
3576 
3577 	return (0);
3578 }
3579 
3580 static void
3581 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3582 {
3583 	spa->spa_state = POOL_STATE_ACTIVE;
3584 	spa->spa_ubsync = spa->spa_uberblock;
3585 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3586 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3587 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3588 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3589 	spa->spa_claim_max_txg = spa->spa_first_txg;
3590 	spa->spa_prev_software_version = ub->ub_software_version;
3591 }
3592 
3593 static int
3594 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3595 {
3596 	vdev_t *rvd = spa->spa_root_vdev;
3597 	nvlist_t *label;
3598 	uberblock_t *ub = &spa->spa_uberblock;
3599 	boolean_t activity_check = B_FALSE;
3600 
3601 	/*
3602 	 * If we are opening the checkpointed state of the pool by
3603 	 * rewinding to it, at this point we will have written the
3604 	 * checkpointed uberblock to the vdev labels, so searching
3605 	 * the labels will find the right uberblock.  However, if
3606 	 * we are opening the checkpointed state read-only, we have
3607 	 * not modified the labels. Therefore, we must ignore the
3608 	 * labels and continue using the spa_uberblock that was set
3609 	 * by spa_ld_checkpoint_rewind.
3610 	 *
3611 	 * Note that it would be fine to ignore the labels when
3612 	 * rewinding (opening writeable) as well. However, if we
3613 	 * crash just after writing the labels, we will end up
3614 	 * searching the labels. Doing so in the common case means
3615 	 * that this code path gets exercised normally, rather than
3616 	 * just in the edge case.
3617 	 */
3618 	if (ub->ub_checkpoint_txg != 0 &&
3619 	    spa_importing_readonly_checkpoint(spa)) {
3620 		spa_ld_select_uberblock_done(spa, ub);
3621 		return (0);
3622 	}
3623 
3624 	/*
3625 	 * Find the best uberblock.
3626 	 */
3627 	vdev_uberblock_load(rvd, ub, &label);
3628 
3629 	/*
3630 	 * If we weren't able to find a single valid uberblock, return failure.
3631 	 */
3632 	if (ub->ub_txg == 0) {
3633 		nvlist_free(label);
3634 		spa_load_failed(spa, "no valid uberblock found");
3635 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3636 	}
3637 
3638 	if (spa->spa_load_max_txg != UINT64_MAX) {
3639 		(void) spa_import_progress_set_max_txg(spa_guid(spa),
3640 		    (u_longlong_t)spa->spa_load_max_txg);
3641 	}
3642 	spa_load_note(spa, "using uberblock with txg=%llu",
3643 	    (u_longlong_t)ub->ub_txg);
3644 
3645 
3646 	/*
3647 	 * For pools which have the multihost property on determine if the
3648 	 * pool is truly inactive and can be safely imported.  Prevent
3649 	 * hosts which don't have a hostid set from importing the pool.
3650 	 */
3651 	activity_check = spa_activity_check_required(spa, ub, label,
3652 	    spa->spa_config);
3653 	if (activity_check) {
3654 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3655 		    spa_get_hostid(spa) == 0) {
3656 			nvlist_free(label);
3657 			fnvlist_add_uint64(spa->spa_load_info,
3658 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3659 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3660 		}
3661 
3662 		int error = spa_activity_check(spa, ub, spa->spa_config);
3663 		if (error) {
3664 			nvlist_free(label);
3665 			return (error);
3666 		}
3667 
3668 		fnvlist_add_uint64(spa->spa_load_info,
3669 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3670 		fnvlist_add_uint64(spa->spa_load_info,
3671 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3672 		fnvlist_add_uint16(spa->spa_load_info,
3673 		    ZPOOL_CONFIG_MMP_SEQ,
3674 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3675 	}
3676 
3677 	/*
3678 	 * If the pool has an unsupported version we can't open it.
3679 	 */
3680 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3681 		nvlist_free(label);
3682 		spa_load_failed(spa, "version %llu is not supported",
3683 		    (u_longlong_t)ub->ub_version);
3684 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3685 	}
3686 
3687 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3688 		nvlist_t *features;
3689 
3690 		/*
3691 		 * If we weren't able to find what's necessary for reading the
3692 		 * MOS in the label, return failure.
3693 		 */
3694 		if (label == NULL) {
3695 			spa_load_failed(spa, "label config unavailable");
3696 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3697 			    ENXIO));
3698 		}
3699 
3700 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3701 		    &features) != 0) {
3702 			nvlist_free(label);
3703 			spa_load_failed(spa, "invalid label: '%s' missing",
3704 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
3705 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3706 			    ENXIO));
3707 		}
3708 
3709 		/*
3710 		 * Update our in-core representation with the definitive values
3711 		 * from the label.
3712 		 */
3713 		nvlist_free(spa->spa_label_features);
3714 		spa->spa_label_features = fnvlist_dup(features);
3715 	}
3716 
3717 	nvlist_free(label);
3718 
3719 	/*
3720 	 * Look through entries in the label nvlist's features_for_read. If
3721 	 * there is a feature listed there which we don't understand then we
3722 	 * cannot open a pool.
3723 	 */
3724 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3725 		nvlist_t *unsup_feat;
3726 
3727 		unsup_feat = fnvlist_alloc();
3728 
3729 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3730 		    NULL); nvp != NULL;
3731 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3732 			if (!zfeature_is_supported(nvpair_name(nvp))) {
3733 				fnvlist_add_string(unsup_feat,
3734 				    nvpair_name(nvp), "");
3735 			}
3736 		}
3737 
3738 		if (!nvlist_empty(unsup_feat)) {
3739 			fnvlist_add_nvlist(spa->spa_load_info,
3740 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3741 			nvlist_free(unsup_feat);
3742 			spa_load_failed(spa, "some features are unsupported");
3743 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3744 			    ENOTSUP));
3745 		}
3746 
3747 		nvlist_free(unsup_feat);
3748 	}
3749 
3750 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3751 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3752 		spa_try_repair(spa, spa->spa_config);
3753 		spa_config_exit(spa, SCL_ALL, FTAG);
3754 		nvlist_free(spa->spa_config_splitting);
3755 		spa->spa_config_splitting = NULL;
3756 	}
3757 
3758 	/*
3759 	 * Initialize internal SPA structures.
3760 	 */
3761 	spa_ld_select_uberblock_done(spa, ub);
3762 
3763 	return (0);
3764 }
3765 
3766 static int
3767 spa_ld_open_rootbp(spa_t *spa)
3768 {
3769 	int error = 0;
3770 	vdev_t *rvd = spa->spa_root_vdev;
3771 
3772 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3773 	if (error != 0) {
3774 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3775 		    "[error=%d]", error);
3776 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3777 	}
3778 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3779 
3780 	return (0);
3781 }
3782 
3783 static int
3784 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3785     boolean_t reloading)
3786 {
3787 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3788 	nvlist_t *nv, *mos_config, *policy;
3789 	int error = 0, copy_error;
3790 	uint64_t healthy_tvds, healthy_tvds_mos;
3791 	uint64_t mos_config_txg;
3792 
3793 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3794 	    != 0)
3795 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3796 
3797 	/*
3798 	 * If we're assembling a pool from a split, the config provided is
3799 	 * already trusted so there is nothing to do.
3800 	 */
3801 	if (type == SPA_IMPORT_ASSEMBLE)
3802 		return (0);
3803 
3804 	healthy_tvds = spa_healthy_core_tvds(spa);
3805 
3806 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3807 	    != 0) {
3808 		spa_load_failed(spa, "unable to retrieve MOS config");
3809 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3810 	}
3811 
3812 	/*
3813 	 * If we are doing an open, pool owner wasn't verified yet, thus do
3814 	 * the verification here.
3815 	 */
3816 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
3817 		error = spa_verify_host(spa, mos_config);
3818 		if (error != 0) {
3819 			nvlist_free(mos_config);
3820 			return (error);
3821 		}
3822 	}
3823 
3824 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3825 
3826 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3827 
3828 	/*
3829 	 * Build a new vdev tree from the trusted config
3830 	 */
3831 	error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
3832 	if (error != 0) {
3833 		nvlist_free(mos_config);
3834 		spa_config_exit(spa, SCL_ALL, FTAG);
3835 		spa_load_failed(spa, "spa_config_parse failed [error=%d]",
3836 		    error);
3837 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3838 	}
3839 
3840 	/*
3841 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3842 	 * obtained by scanning /dev/dsk, then it will have the right vdev
3843 	 * paths. We update the trusted MOS config with this information.
3844 	 * We first try to copy the paths with vdev_copy_path_strict, which
3845 	 * succeeds only when both configs have exactly the same vdev tree.
3846 	 * If that fails, we fall back to a more flexible method that has a
3847 	 * best effort policy.
3848 	 */
3849 	copy_error = vdev_copy_path_strict(rvd, mrvd);
3850 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3851 		spa_load_note(spa, "provided vdev tree:");
3852 		vdev_dbgmsg_print_tree(rvd, 2);
3853 		spa_load_note(spa, "MOS vdev tree:");
3854 		vdev_dbgmsg_print_tree(mrvd, 2);
3855 	}
3856 	if (copy_error != 0) {
3857 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3858 		    "back to vdev_copy_path_relaxed");
3859 		vdev_copy_path_relaxed(rvd, mrvd);
3860 	}
3861 
3862 	vdev_close(rvd);
3863 	vdev_free(rvd);
3864 	spa->spa_root_vdev = mrvd;
3865 	rvd = mrvd;
3866 	spa_config_exit(spa, SCL_ALL, FTAG);
3867 
3868 	/*
3869 	 * We will use spa_config if we decide to reload the spa or if spa_load
3870 	 * fails and we rewind. We must thus regenerate the config using the
3871 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3872 	 * pass settings on how to load the pool and is not stored in the MOS.
3873 	 * We copy it over to our new, trusted config.
3874 	 */
3875 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
3876 	    ZPOOL_CONFIG_POOL_TXG);
3877 	nvlist_free(mos_config);
3878 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3879 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3880 	    &policy) == 0)
3881 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3882 	spa_config_set(spa, mos_config);
3883 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3884 
3885 	/*
3886 	 * Now that we got the config from the MOS, we should be more strict
3887 	 * in checking blkptrs and can make assumptions about the consistency
3888 	 * of the vdev tree. spa_trust_config must be set to true before opening
3889 	 * vdevs in order for them to be writeable.
3890 	 */
3891 	spa->spa_trust_config = B_TRUE;
3892 
3893 	/*
3894 	 * Open and validate the new vdev tree
3895 	 */
3896 	error = spa_ld_open_vdevs(spa);
3897 	if (error != 0)
3898 		return (error);
3899 
3900 	error = spa_ld_validate_vdevs(spa);
3901 	if (error != 0)
3902 		return (error);
3903 
3904 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3905 		spa_load_note(spa, "final vdev tree:");
3906 		vdev_dbgmsg_print_tree(rvd, 2);
3907 	}
3908 
3909 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3910 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3911 		/*
3912 		 * Sanity check to make sure that we are indeed loading the
3913 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3914 		 * in the config provided and they happened to be the only ones
3915 		 * to have the latest uberblock, we could involuntarily perform
3916 		 * an extreme rewind.
3917 		 */
3918 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
3919 		if (healthy_tvds_mos - healthy_tvds >=
3920 		    SPA_SYNC_MIN_VDEVS) {
3921 			spa_load_note(spa, "config provided misses too many "
3922 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
3923 			    (u_longlong_t)healthy_tvds,
3924 			    (u_longlong_t)healthy_tvds_mos);
3925 			spa_load_note(spa, "vdev tree:");
3926 			vdev_dbgmsg_print_tree(rvd, 2);
3927 			if (reloading) {
3928 				spa_load_failed(spa, "config was already "
3929 				    "provided from MOS. Aborting.");
3930 				return (spa_vdev_err(rvd,
3931 				    VDEV_AUX_CORRUPT_DATA, EIO));
3932 			}
3933 			spa_load_note(spa, "spa must be reloaded using MOS "
3934 			    "config");
3935 			return (SET_ERROR(EAGAIN));
3936 		}
3937 	}
3938 
3939 	error = spa_check_for_missing_logs(spa);
3940 	if (error != 0)
3941 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3942 
3943 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3944 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3945 		    "guid sum (%llu != %llu)",
3946 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3947 		    (u_longlong_t)rvd->vdev_guid_sum);
3948 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3949 		    ENXIO));
3950 	}
3951 
3952 	return (0);
3953 }
3954 
3955 static int
3956 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3957 {
3958 	int error = 0;
3959 	vdev_t *rvd = spa->spa_root_vdev;
3960 
3961 	/*
3962 	 * Everything that we read before spa_remove_init() must be stored
3963 	 * on concreted vdevs.  Therefore we do this as early as possible.
3964 	 */
3965 	error = spa_remove_init(spa);
3966 	if (error != 0) {
3967 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3968 		    error);
3969 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3970 	}
3971 
3972 	/*
3973 	 * Retrieve information needed to condense indirect vdev mappings.
3974 	 */
3975 	error = spa_condense_init(spa);
3976 	if (error != 0) {
3977 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3978 		    error);
3979 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3980 	}
3981 
3982 	return (0);
3983 }
3984 
3985 static int
3986 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3987 {
3988 	int error = 0;
3989 	vdev_t *rvd = spa->spa_root_vdev;
3990 
3991 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3992 		boolean_t missing_feat_read = B_FALSE;
3993 		nvlist_t *unsup_feat, *enabled_feat;
3994 
3995 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3996 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3997 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3998 		}
3999 
4000 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4001 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4002 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4003 		}
4004 
4005 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4006 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4007 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4008 		}
4009 
4010 		enabled_feat = fnvlist_alloc();
4011 		unsup_feat = fnvlist_alloc();
4012 
4013 		if (!spa_features_check(spa, B_FALSE,
4014 		    unsup_feat, enabled_feat))
4015 			missing_feat_read = B_TRUE;
4016 
4017 		if (spa_writeable(spa) ||
4018 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4019 			if (!spa_features_check(spa, B_TRUE,
4020 			    unsup_feat, enabled_feat)) {
4021 				*missing_feat_writep = B_TRUE;
4022 			}
4023 		}
4024 
4025 		fnvlist_add_nvlist(spa->spa_load_info,
4026 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4027 
4028 		if (!nvlist_empty(unsup_feat)) {
4029 			fnvlist_add_nvlist(spa->spa_load_info,
4030 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4031 		}
4032 
4033 		fnvlist_free(enabled_feat);
4034 		fnvlist_free(unsup_feat);
4035 
4036 		if (!missing_feat_read) {
4037 			fnvlist_add_boolean(spa->spa_load_info,
4038 			    ZPOOL_CONFIG_CAN_RDONLY);
4039 		}
4040 
4041 		/*
4042 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4043 		 * twofold: to determine whether the pool is available for
4044 		 * import in read-write mode and (if it is not) whether the
4045 		 * pool is available for import in read-only mode. If the pool
4046 		 * is available for import in read-write mode, it is displayed
4047 		 * as available in userland; if it is not available for import
4048 		 * in read-only mode, it is displayed as unavailable in
4049 		 * userland. If the pool is available for import in read-only
4050 		 * mode but not read-write mode, it is displayed as unavailable
4051 		 * in userland with a special note that the pool is actually
4052 		 * available for open in read-only mode.
4053 		 *
4054 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4055 		 * missing a feature for write, we must first determine whether
4056 		 * the pool can be opened read-only before returning to
4057 		 * userland in order to know whether to display the
4058 		 * abovementioned note.
4059 		 */
4060 		if (missing_feat_read || (*missing_feat_writep &&
4061 		    spa_writeable(spa))) {
4062 			spa_load_failed(spa, "pool uses unsupported features");
4063 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4064 			    ENOTSUP));
4065 		}
4066 
4067 		/*
4068 		 * Load refcounts for ZFS features from disk into an in-memory
4069 		 * cache during SPA initialization.
4070 		 */
4071 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4072 			uint64_t refcount;
4073 
4074 			error = feature_get_refcount_from_disk(spa,
4075 			    &spa_feature_table[i], &refcount);
4076 			if (error == 0) {
4077 				spa->spa_feat_refcount_cache[i] = refcount;
4078 			} else if (error == ENOTSUP) {
4079 				spa->spa_feat_refcount_cache[i] =
4080 				    SPA_FEATURE_DISABLED;
4081 			} else {
4082 				spa_load_failed(spa, "error getting refcount "
4083 				    "for feature %s [error=%d]",
4084 				    spa_feature_table[i].fi_guid, error);
4085 				return (spa_vdev_err(rvd,
4086 				    VDEV_AUX_CORRUPT_DATA, EIO));
4087 			}
4088 		}
4089 	}
4090 
4091 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4092 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4093 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4094 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4095 	}
4096 
4097 	/*
4098 	 * Encryption was added before bookmark_v2, even though bookmark_v2
4099 	 * is now a dependency. If this pool has encryption enabled without
4100 	 * bookmark_v2, trigger an errata message.
4101 	 */
4102 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4103 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4104 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4105 	}
4106 
4107 	return (0);
4108 }
4109 
4110 static int
4111 spa_ld_load_special_directories(spa_t *spa)
4112 {
4113 	int error = 0;
4114 	vdev_t *rvd = spa->spa_root_vdev;
4115 
4116 	spa->spa_is_initializing = B_TRUE;
4117 	error = dsl_pool_open(spa->spa_dsl_pool);
4118 	spa->spa_is_initializing = B_FALSE;
4119 	if (error != 0) {
4120 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4121 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4122 	}
4123 
4124 	return (0);
4125 }
4126 
4127 static int
4128 spa_ld_get_props(spa_t *spa)
4129 {
4130 	int error = 0;
4131 	uint64_t obj;
4132 	vdev_t *rvd = spa->spa_root_vdev;
4133 
4134 	/* Grab the checksum salt from the MOS. */
4135 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4136 	    DMU_POOL_CHECKSUM_SALT, 1,
4137 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
4138 	    spa->spa_cksum_salt.zcs_bytes);
4139 	if (error == ENOENT) {
4140 		/* Generate a new salt for subsequent use */
4141 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4142 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
4143 	} else if (error != 0) {
4144 		spa_load_failed(spa, "unable to retrieve checksum salt from "
4145 		    "MOS [error=%d]", error);
4146 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4147 	}
4148 
4149 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4150 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4151 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4152 	if (error != 0) {
4153 		spa_load_failed(spa, "error opening deferred-frees bpobj "
4154 		    "[error=%d]", error);
4155 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4156 	}
4157 
4158 	/*
4159 	 * Load the bit that tells us to use the new accounting function
4160 	 * (raid-z deflation).  If we have an older pool, this will not
4161 	 * be present.
4162 	 */
4163 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4164 	if (error != 0 && error != ENOENT)
4165 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4166 
4167 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4168 	    &spa->spa_creation_version, B_FALSE);
4169 	if (error != 0 && error != ENOENT)
4170 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4171 
4172 	/*
4173 	 * Load the persistent error log.  If we have an older pool, this will
4174 	 * not be present.
4175 	 */
4176 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4177 	    B_FALSE);
4178 	if (error != 0 && error != ENOENT)
4179 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4180 
4181 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4182 	    &spa->spa_errlog_scrub, B_FALSE);
4183 	if (error != 0 && error != ENOENT)
4184 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4185 
4186 	/*
4187 	 * Load the livelist deletion field. If a livelist is queued for
4188 	 * deletion, indicate that in the spa
4189 	 */
4190 	error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4191 	    &spa->spa_livelists_to_delete, B_FALSE);
4192 	if (error != 0 && error != ENOENT)
4193 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4194 
4195 	/*
4196 	 * Load the history object.  If we have an older pool, this
4197 	 * will not be present.
4198 	 */
4199 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4200 	if (error != 0 && error != ENOENT)
4201 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4202 
4203 	/*
4204 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
4205 	 * be present; in this case, defer its creation to a later time to
4206 	 * avoid dirtying the MOS this early / out of sync context. See
4207 	 * spa_sync_config_object.
4208 	 */
4209 
4210 	/* The sentinel is only available in the MOS config. */
4211 	nvlist_t *mos_config;
4212 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4213 		spa_load_failed(spa, "unable to retrieve MOS config");
4214 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4215 	}
4216 
4217 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4218 	    &spa->spa_all_vdev_zaps, B_FALSE);
4219 
4220 	if (error == ENOENT) {
4221 		VERIFY(!nvlist_exists(mos_config,
4222 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4223 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4224 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4225 	} else if (error != 0) {
4226 		nvlist_free(mos_config);
4227 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4228 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4229 		/*
4230 		 * An older version of ZFS overwrote the sentinel value, so
4231 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4232 		 * destruction to later; see spa_sync_config_object.
4233 		 */
4234 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
4235 		/*
4236 		 * We're assuming that no vdevs have had their ZAPs created
4237 		 * before this. Better be sure of it.
4238 		 */
4239 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4240 	}
4241 	nvlist_free(mos_config);
4242 
4243 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4244 
4245 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4246 	    B_FALSE);
4247 	if (error && error != ENOENT)
4248 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4249 
4250 	if (error == 0) {
4251 		uint64_t autoreplace = 0;
4252 
4253 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4254 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4255 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4256 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4257 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4258 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4259 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4260 		spa->spa_autoreplace = (autoreplace != 0);
4261 	}
4262 
4263 	/*
4264 	 * If we are importing a pool with missing top-level vdevs,
4265 	 * we enforce that the pool doesn't panic or get suspended on
4266 	 * error since the likelihood of missing data is extremely high.
4267 	 */
4268 	if (spa->spa_missing_tvds > 0 &&
4269 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4270 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4271 		spa_load_note(spa, "forcing failmode to 'continue' "
4272 		    "as some top level vdevs are missing");
4273 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4274 	}
4275 
4276 	return (0);
4277 }
4278 
4279 static int
4280 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4281 {
4282 	int error = 0;
4283 	vdev_t *rvd = spa->spa_root_vdev;
4284 
4285 	/*
4286 	 * If we're assembling the pool from the split-off vdevs of
4287 	 * an existing pool, we don't want to attach the spares & cache
4288 	 * devices.
4289 	 */
4290 
4291 	/*
4292 	 * Load any hot spares for this pool.
4293 	 */
4294 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4295 	    B_FALSE);
4296 	if (error != 0 && error != ENOENT)
4297 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4298 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4299 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4300 		if (load_nvlist(spa, spa->spa_spares.sav_object,
4301 		    &spa->spa_spares.sav_config) != 0) {
4302 			spa_load_failed(spa, "error loading spares nvlist");
4303 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4304 		}
4305 
4306 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4307 		spa_load_spares(spa);
4308 		spa_config_exit(spa, SCL_ALL, FTAG);
4309 	} else if (error == 0) {
4310 		spa->spa_spares.sav_sync = B_TRUE;
4311 	}
4312 
4313 	/*
4314 	 * Load any level 2 ARC devices for this pool.
4315 	 */
4316 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4317 	    &spa->spa_l2cache.sav_object, B_FALSE);
4318 	if (error != 0 && error != ENOENT)
4319 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4320 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4321 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4322 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4323 		    &spa->spa_l2cache.sav_config) != 0) {
4324 			spa_load_failed(spa, "error loading l2cache nvlist");
4325 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4326 		}
4327 
4328 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4329 		spa_load_l2cache(spa);
4330 		spa_config_exit(spa, SCL_ALL, FTAG);
4331 	} else if (error == 0) {
4332 		spa->spa_l2cache.sav_sync = B_TRUE;
4333 	}
4334 
4335 	return (0);
4336 }
4337 
4338 static int
4339 spa_ld_load_vdev_metadata(spa_t *spa)
4340 {
4341 	int error = 0;
4342 	vdev_t *rvd = spa->spa_root_vdev;
4343 
4344 	/*
4345 	 * If the 'multihost' property is set, then never allow a pool to
4346 	 * be imported when the system hostid is zero.  The exception to
4347 	 * this rule is zdb which is always allowed to access pools.
4348 	 */
4349 	if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4350 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4351 		fnvlist_add_uint64(spa->spa_load_info,
4352 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4353 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4354 	}
4355 
4356 	/*
4357 	 * If the 'autoreplace' property is set, then post a resource notifying
4358 	 * the ZFS DE that it should not issue any faults for unopenable
4359 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
4360 	 * unopenable vdevs so that the normal autoreplace handler can take
4361 	 * over.
4362 	 */
4363 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4364 		spa_check_removed(spa->spa_root_vdev);
4365 		/*
4366 		 * For the import case, this is done in spa_import(), because
4367 		 * at this point we're using the spare definitions from
4368 		 * the MOS config, not necessarily from the userland config.
4369 		 */
4370 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4371 			spa_aux_check_removed(&spa->spa_spares);
4372 			spa_aux_check_removed(&spa->spa_l2cache);
4373 		}
4374 	}
4375 
4376 	/*
4377 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4378 	 */
4379 	error = vdev_load(rvd);
4380 	if (error != 0) {
4381 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4382 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4383 	}
4384 
4385 	error = spa_ld_log_spacemaps(spa);
4386 	if (error != 0) {
4387 		spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4388 		    error);
4389 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4390 	}
4391 
4392 	/*
4393 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4394 	 */
4395 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4396 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4397 	spa_config_exit(spa, SCL_ALL, FTAG);
4398 
4399 	return (0);
4400 }
4401 
4402 static int
4403 spa_ld_load_dedup_tables(spa_t *spa)
4404 {
4405 	int error = 0;
4406 	vdev_t *rvd = spa->spa_root_vdev;
4407 
4408 	error = ddt_load(spa);
4409 	if (error != 0) {
4410 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4411 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4412 	}
4413 
4414 	return (0);
4415 }
4416 
4417 static int
4418 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4419 {
4420 	vdev_t *rvd = spa->spa_root_vdev;
4421 
4422 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4423 		boolean_t missing = spa_check_logs(spa);
4424 		if (missing) {
4425 			if (spa->spa_missing_tvds != 0) {
4426 				spa_load_note(spa, "spa_check_logs failed "
4427 				    "so dropping the logs");
4428 			} else {
4429 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4430 				spa_load_failed(spa, "spa_check_logs failed");
4431 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4432 				    ENXIO));
4433 			}
4434 		}
4435 	}
4436 
4437 	return (0);
4438 }
4439 
4440 static int
4441 spa_ld_verify_pool_data(spa_t *spa)
4442 {
4443 	int error = 0;
4444 	vdev_t *rvd = spa->spa_root_vdev;
4445 
4446 	/*
4447 	 * We've successfully opened the pool, verify that we're ready
4448 	 * to start pushing transactions.
4449 	 */
4450 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4451 		error = spa_load_verify(spa);
4452 		if (error != 0) {
4453 			spa_load_failed(spa, "spa_load_verify failed "
4454 			    "[error=%d]", error);
4455 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4456 			    error));
4457 		}
4458 	}
4459 
4460 	return (0);
4461 }
4462 
4463 static void
4464 spa_ld_claim_log_blocks(spa_t *spa)
4465 {
4466 	dmu_tx_t *tx;
4467 	dsl_pool_t *dp = spa_get_dsl(spa);
4468 
4469 	/*
4470 	 * Claim log blocks that haven't been committed yet.
4471 	 * This must all happen in a single txg.
4472 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4473 	 * invoked from zil_claim_log_block()'s i/o done callback.
4474 	 * Price of rollback is that we abandon the log.
4475 	 */
4476 	spa->spa_claiming = B_TRUE;
4477 
4478 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4479 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4480 	    zil_claim, tx, DS_FIND_CHILDREN);
4481 	dmu_tx_commit(tx);
4482 
4483 	spa->spa_claiming = B_FALSE;
4484 
4485 	spa_set_log_state(spa, SPA_LOG_GOOD);
4486 }
4487 
4488 static void
4489 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4490     boolean_t update_config_cache)
4491 {
4492 	vdev_t *rvd = spa->spa_root_vdev;
4493 	int need_update = B_FALSE;
4494 
4495 	/*
4496 	 * If the config cache is stale, or we have uninitialized
4497 	 * metaslabs (see spa_vdev_add()), then update the config.
4498 	 *
4499 	 * If this is a verbatim import, trust the current
4500 	 * in-core spa_config and update the disk labels.
4501 	 */
4502 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4503 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
4504 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
4505 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4506 		need_update = B_TRUE;
4507 
4508 	for (int c = 0; c < rvd->vdev_children; c++)
4509 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
4510 			need_update = B_TRUE;
4511 
4512 	/*
4513 	 * Update the config cache asynchronously in case we're the
4514 	 * root pool, in which case the config cache isn't writable yet.
4515 	 */
4516 	if (need_update)
4517 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4518 }
4519 
4520 static void
4521 spa_ld_prepare_for_reload(spa_t *spa)
4522 {
4523 	spa_mode_t mode = spa->spa_mode;
4524 	int async_suspended = spa->spa_async_suspended;
4525 
4526 	spa_unload(spa);
4527 	spa_deactivate(spa);
4528 	spa_activate(spa, mode);
4529 
4530 	/*
4531 	 * We save the value of spa_async_suspended as it gets reset to 0 by
4532 	 * spa_unload(). We want to restore it back to the original value before
4533 	 * returning as we might be calling spa_async_resume() later.
4534 	 */
4535 	spa->spa_async_suspended = async_suspended;
4536 }
4537 
4538 static int
4539 spa_ld_read_checkpoint_txg(spa_t *spa)
4540 {
4541 	uberblock_t checkpoint;
4542 	int error = 0;
4543 
4544 	ASSERT0(spa->spa_checkpoint_txg);
4545 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4546 
4547 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4548 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4549 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4550 
4551 	if (error == ENOENT)
4552 		return (0);
4553 
4554 	if (error != 0)
4555 		return (error);
4556 
4557 	ASSERT3U(checkpoint.ub_txg, !=, 0);
4558 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4559 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4560 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
4561 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
4562 
4563 	return (0);
4564 }
4565 
4566 static int
4567 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
4568 {
4569 	int error = 0;
4570 
4571 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4572 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4573 
4574 	/*
4575 	 * Never trust the config that is provided unless we are assembling
4576 	 * a pool following a split.
4577 	 * This means don't trust blkptrs and the vdev tree in general. This
4578 	 * also effectively puts the spa in read-only mode since
4579 	 * spa_writeable() checks for spa_trust_config to be true.
4580 	 * We will later load a trusted config from the MOS.
4581 	 */
4582 	if (type != SPA_IMPORT_ASSEMBLE)
4583 		spa->spa_trust_config = B_FALSE;
4584 
4585 	/*
4586 	 * Parse the config provided to create a vdev tree.
4587 	 */
4588 	error = spa_ld_parse_config(spa, type);
4589 	if (error != 0)
4590 		return (error);
4591 
4592 	spa_import_progress_add(spa);
4593 
4594 	/*
4595 	 * Now that we have the vdev tree, try to open each vdev. This involves
4596 	 * opening the underlying physical device, retrieving its geometry and
4597 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
4598 	 * based on the success of those operations. After this we'll be ready
4599 	 * to read from the vdevs.
4600 	 */
4601 	error = spa_ld_open_vdevs(spa);
4602 	if (error != 0)
4603 		return (error);
4604 
4605 	/*
4606 	 * Read the label of each vdev and make sure that the GUIDs stored
4607 	 * there match the GUIDs in the config provided.
4608 	 * If we're assembling a new pool that's been split off from an
4609 	 * existing pool, the labels haven't yet been updated so we skip
4610 	 * validation for now.
4611 	 */
4612 	if (type != SPA_IMPORT_ASSEMBLE) {
4613 		error = spa_ld_validate_vdevs(spa);
4614 		if (error != 0)
4615 			return (error);
4616 	}
4617 
4618 	/*
4619 	 * Read all vdev labels to find the best uberblock (i.e. latest,
4620 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
4621 	 * get the list of features required to read blkptrs in the MOS from
4622 	 * the vdev label with the best uberblock and verify that our version
4623 	 * of zfs supports them all.
4624 	 */
4625 	error = spa_ld_select_uberblock(spa, type);
4626 	if (error != 0)
4627 		return (error);
4628 
4629 	/*
4630 	 * Pass that uberblock to the dsl_pool layer which will open the root
4631 	 * blkptr. This blkptr points to the latest version of the MOS and will
4632 	 * allow us to read its contents.
4633 	 */
4634 	error = spa_ld_open_rootbp(spa);
4635 	if (error != 0)
4636 		return (error);
4637 
4638 	return (0);
4639 }
4640 
4641 static int
4642 spa_ld_checkpoint_rewind(spa_t *spa)
4643 {
4644 	uberblock_t checkpoint;
4645 	int error = 0;
4646 
4647 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4648 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4649 
4650 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4651 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4652 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4653 
4654 	if (error != 0) {
4655 		spa_load_failed(spa, "unable to retrieve checkpointed "
4656 		    "uberblock from the MOS config [error=%d]", error);
4657 
4658 		if (error == ENOENT)
4659 			error = ZFS_ERR_NO_CHECKPOINT;
4660 
4661 		return (error);
4662 	}
4663 
4664 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4665 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4666 
4667 	/*
4668 	 * We need to update the txg and timestamp of the checkpointed
4669 	 * uberblock to be higher than the latest one. This ensures that
4670 	 * the checkpointed uberblock is selected if we were to close and
4671 	 * reopen the pool right after we've written it in the vdev labels.
4672 	 * (also see block comment in vdev_uberblock_compare)
4673 	 */
4674 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4675 	checkpoint.ub_timestamp = gethrestime_sec();
4676 
4677 	/*
4678 	 * Set current uberblock to be the checkpointed uberblock.
4679 	 */
4680 	spa->spa_uberblock = checkpoint;
4681 
4682 	/*
4683 	 * If we are doing a normal rewind, then the pool is open for
4684 	 * writing and we sync the "updated" checkpointed uberblock to
4685 	 * disk. Once this is done, we've basically rewound the whole
4686 	 * pool and there is no way back.
4687 	 *
4688 	 * There are cases when we don't want to attempt and sync the
4689 	 * checkpointed uberblock to disk because we are opening a
4690 	 * pool as read-only. Specifically, verifying the checkpointed
4691 	 * state with zdb, and importing the checkpointed state to get
4692 	 * a "preview" of its content.
4693 	 */
4694 	if (spa_writeable(spa)) {
4695 		vdev_t *rvd = spa->spa_root_vdev;
4696 
4697 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4698 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4699 		int svdcount = 0;
4700 		int children = rvd->vdev_children;
4701 		int c0 = random_in_range(children);
4702 
4703 		for (int c = 0; c < children; c++) {
4704 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4705 
4706 			/* Stop when revisiting the first vdev */
4707 			if (c > 0 && svd[0] == vd)
4708 				break;
4709 
4710 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4711 			    !vdev_is_concrete(vd))
4712 				continue;
4713 
4714 			svd[svdcount++] = vd;
4715 			if (svdcount == SPA_SYNC_MIN_VDEVS)
4716 				break;
4717 		}
4718 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4719 		if (error == 0)
4720 			spa->spa_last_synced_guid = rvd->vdev_guid;
4721 		spa_config_exit(spa, SCL_ALL, FTAG);
4722 
4723 		if (error != 0) {
4724 			spa_load_failed(spa, "failed to write checkpointed "
4725 			    "uberblock to the vdev labels [error=%d]", error);
4726 			return (error);
4727 		}
4728 	}
4729 
4730 	return (0);
4731 }
4732 
4733 static int
4734 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4735     boolean_t *update_config_cache)
4736 {
4737 	int error;
4738 
4739 	/*
4740 	 * Parse the config for pool, open and validate vdevs,
4741 	 * select an uberblock, and use that uberblock to open
4742 	 * the MOS.
4743 	 */
4744 	error = spa_ld_mos_init(spa, type);
4745 	if (error != 0)
4746 		return (error);
4747 
4748 	/*
4749 	 * Retrieve the trusted config stored in the MOS and use it to create
4750 	 * a new, exact version of the vdev tree, then reopen all vdevs.
4751 	 */
4752 	error = spa_ld_trusted_config(spa, type, B_FALSE);
4753 	if (error == EAGAIN) {
4754 		if (update_config_cache != NULL)
4755 			*update_config_cache = B_TRUE;
4756 
4757 		/*
4758 		 * Redo the loading process with the trusted config if it is
4759 		 * too different from the untrusted config.
4760 		 */
4761 		spa_ld_prepare_for_reload(spa);
4762 		spa_load_note(spa, "RELOADING");
4763 		error = spa_ld_mos_init(spa, type);
4764 		if (error != 0)
4765 			return (error);
4766 
4767 		error = spa_ld_trusted_config(spa, type, B_TRUE);
4768 		if (error != 0)
4769 			return (error);
4770 
4771 	} else if (error != 0) {
4772 		return (error);
4773 	}
4774 
4775 	return (0);
4776 }
4777 
4778 /*
4779  * Load an existing storage pool, using the config provided. This config
4780  * describes which vdevs are part of the pool and is later validated against
4781  * partial configs present in each vdev's label and an entire copy of the
4782  * config stored in the MOS.
4783  */
4784 static int
4785 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
4786 {
4787 	int error = 0;
4788 	boolean_t missing_feat_write = B_FALSE;
4789 	boolean_t checkpoint_rewind =
4790 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4791 	boolean_t update_config_cache = B_FALSE;
4792 
4793 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4794 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4795 
4796 	spa_load_note(spa, "LOADING");
4797 
4798 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4799 	if (error != 0)
4800 		return (error);
4801 
4802 	/*
4803 	 * If we are rewinding to the checkpoint then we need to repeat
4804 	 * everything we've done so far in this function but this time
4805 	 * selecting the checkpointed uberblock and using that to open
4806 	 * the MOS.
4807 	 */
4808 	if (checkpoint_rewind) {
4809 		/*
4810 		 * If we are rewinding to the checkpoint update config cache
4811 		 * anyway.
4812 		 */
4813 		update_config_cache = B_TRUE;
4814 
4815 		/*
4816 		 * Extract the checkpointed uberblock from the current MOS
4817 		 * and use this as the pool's uberblock from now on. If the
4818 		 * pool is imported as writeable we also write the checkpoint
4819 		 * uberblock to the labels, making the rewind permanent.
4820 		 */
4821 		error = spa_ld_checkpoint_rewind(spa);
4822 		if (error != 0)
4823 			return (error);
4824 
4825 		/*
4826 		 * Redo the loading process again with the
4827 		 * checkpointed uberblock.
4828 		 */
4829 		spa_ld_prepare_for_reload(spa);
4830 		spa_load_note(spa, "LOADING checkpointed uberblock");
4831 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4832 		if (error != 0)
4833 			return (error);
4834 	}
4835 
4836 	/*
4837 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
4838 	 */
4839 	error = spa_ld_read_checkpoint_txg(spa);
4840 	if (error != 0)
4841 		return (error);
4842 
4843 	/*
4844 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4845 	 * from the pool and their contents were re-mapped to other vdevs. Note
4846 	 * that everything that we read before this step must have been
4847 	 * rewritten on concrete vdevs after the last device removal was
4848 	 * initiated. Otherwise we could be reading from indirect vdevs before
4849 	 * we have loaded their mappings.
4850 	 */
4851 	error = spa_ld_open_indirect_vdev_metadata(spa);
4852 	if (error != 0)
4853 		return (error);
4854 
4855 	/*
4856 	 * Retrieve the full list of active features from the MOS and check if
4857 	 * they are all supported.
4858 	 */
4859 	error = spa_ld_check_features(spa, &missing_feat_write);
4860 	if (error != 0)
4861 		return (error);
4862 
4863 	/*
4864 	 * Load several special directories from the MOS needed by the dsl_pool
4865 	 * layer.
4866 	 */
4867 	error = spa_ld_load_special_directories(spa);
4868 	if (error != 0)
4869 		return (error);
4870 
4871 	/*
4872 	 * Retrieve pool properties from the MOS.
4873 	 */
4874 	error = spa_ld_get_props(spa);
4875 	if (error != 0)
4876 		return (error);
4877 
4878 	/*
4879 	 * Retrieve the list of auxiliary devices - cache devices and spares -
4880 	 * and open them.
4881 	 */
4882 	error = spa_ld_open_aux_vdevs(spa, type);
4883 	if (error != 0)
4884 		return (error);
4885 
4886 	/*
4887 	 * Load the metadata for all vdevs. Also check if unopenable devices
4888 	 * should be autoreplaced.
4889 	 */
4890 	error = spa_ld_load_vdev_metadata(spa);
4891 	if (error != 0)
4892 		return (error);
4893 
4894 	error = spa_ld_load_dedup_tables(spa);
4895 	if (error != 0)
4896 		return (error);
4897 
4898 	/*
4899 	 * Verify the logs now to make sure we don't have any unexpected errors
4900 	 * when we claim log blocks later.
4901 	 */
4902 	error = spa_ld_verify_logs(spa, type, ereport);
4903 	if (error != 0)
4904 		return (error);
4905 
4906 	if (missing_feat_write) {
4907 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4908 
4909 		/*
4910 		 * At this point, we know that we can open the pool in
4911 		 * read-only mode but not read-write mode. We now have enough
4912 		 * information and can return to userland.
4913 		 */
4914 		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4915 		    ENOTSUP));
4916 	}
4917 
4918 	/*
4919 	 * Traverse the last txgs to make sure the pool was left off in a safe
4920 	 * state. When performing an extreme rewind, we verify the whole pool,
4921 	 * which can take a very long time.
4922 	 */
4923 	error = spa_ld_verify_pool_data(spa);
4924 	if (error != 0)
4925 		return (error);
4926 
4927 	/*
4928 	 * Calculate the deflated space for the pool. This must be done before
4929 	 * we write anything to the pool because we'd need to update the space
4930 	 * accounting using the deflated sizes.
4931 	 */
4932 	spa_update_dspace(spa);
4933 
4934 	/*
4935 	 * We have now retrieved all the information we needed to open the
4936 	 * pool. If we are importing the pool in read-write mode, a few
4937 	 * additional steps must be performed to finish the import.
4938 	 */
4939 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4940 	    spa->spa_load_max_txg == UINT64_MAX)) {
4941 		uint64_t config_cache_txg = spa->spa_config_txg;
4942 
4943 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4944 
4945 		/*
4946 		 * In case of a checkpoint rewind, log the original txg
4947 		 * of the checkpointed uberblock.
4948 		 */
4949 		if (checkpoint_rewind) {
4950 			spa_history_log_internal(spa, "checkpoint rewind",
4951 			    NULL, "rewound state to txg=%llu",
4952 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4953 		}
4954 
4955 		/*
4956 		 * Traverse the ZIL and claim all blocks.
4957 		 */
4958 		spa_ld_claim_log_blocks(spa);
4959 
4960 		/*
4961 		 * Kick-off the syncing thread.
4962 		 */
4963 		spa->spa_sync_on = B_TRUE;
4964 		txg_sync_start(spa->spa_dsl_pool);
4965 		mmp_thread_start(spa);
4966 
4967 		/*
4968 		 * Wait for all claims to sync.  We sync up to the highest
4969 		 * claimed log block birth time so that claimed log blocks
4970 		 * don't appear to be from the future.  spa_claim_max_txg
4971 		 * will have been set for us by ZIL traversal operations
4972 		 * performed above.
4973 		 */
4974 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4975 
4976 		/*
4977 		 * Check if we need to request an update of the config. On the
4978 		 * next sync, we would update the config stored in vdev labels
4979 		 * and the cachefile (by default /etc/zfs/zpool.cache).
4980 		 */
4981 		spa_ld_check_for_config_update(spa, config_cache_txg,
4982 		    update_config_cache);
4983 
4984 		/*
4985 		 * Check if a rebuild was in progress and if so resume it.
4986 		 * Then check all DTLs to see if anything needs resilvering.
4987 		 * The resilver will be deferred if a rebuild was started.
4988 		 */
4989 		if (vdev_rebuild_active(spa->spa_root_vdev)) {
4990 			vdev_rebuild_restart(spa);
4991 		} else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4992 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4993 			spa_async_request(spa, SPA_ASYNC_RESILVER);
4994 		}
4995 
4996 		/*
4997 		 * Log the fact that we booted up (so that we can detect if
4998 		 * we rebooted in the middle of an operation).
4999 		 */
5000 		spa_history_log_version(spa, "open", NULL);
5001 
5002 		spa_restart_removal(spa);
5003 		spa_spawn_aux_threads(spa);
5004 
5005 		/*
5006 		 * Delete any inconsistent datasets.
5007 		 *
5008 		 * Note:
5009 		 * Since we may be issuing deletes for clones here,
5010 		 * we make sure to do so after we've spawned all the
5011 		 * auxiliary threads above (from which the livelist
5012 		 * deletion zthr is part of).
5013 		 */
5014 		(void) dmu_objset_find(spa_name(spa),
5015 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5016 
5017 		/*
5018 		 * Clean up any stale temporary dataset userrefs.
5019 		 */
5020 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5021 
5022 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5023 		vdev_initialize_restart(spa->spa_root_vdev);
5024 		vdev_trim_restart(spa->spa_root_vdev);
5025 		vdev_autotrim_restart(spa);
5026 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5027 	}
5028 
5029 	spa_import_progress_remove(spa_guid(spa));
5030 	spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5031 
5032 	spa_load_note(spa, "LOADED");
5033 
5034 	return (0);
5035 }
5036 
5037 static int
5038 spa_load_retry(spa_t *spa, spa_load_state_t state)
5039 {
5040 	spa_mode_t mode = spa->spa_mode;
5041 
5042 	spa_unload(spa);
5043 	spa_deactivate(spa);
5044 
5045 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5046 
5047 	spa_activate(spa, mode);
5048 	spa_async_suspend(spa);
5049 
5050 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5051 	    (u_longlong_t)spa->spa_load_max_txg);
5052 
5053 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5054 }
5055 
5056 /*
5057  * If spa_load() fails this function will try loading prior txg's. If
5058  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5059  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5060  * function will not rewind the pool and will return the same error as
5061  * spa_load().
5062  */
5063 static int
5064 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5065     int rewind_flags)
5066 {
5067 	nvlist_t *loadinfo = NULL;
5068 	nvlist_t *config = NULL;
5069 	int load_error, rewind_error;
5070 	uint64_t safe_rewind_txg;
5071 	uint64_t min_txg;
5072 
5073 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5074 		spa->spa_load_max_txg = spa->spa_load_txg;
5075 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5076 	} else {
5077 		spa->spa_load_max_txg = max_request;
5078 		if (max_request != UINT64_MAX)
5079 			spa->spa_extreme_rewind = B_TRUE;
5080 	}
5081 
5082 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5083 	if (load_error == 0)
5084 		return (0);
5085 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5086 		/*
5087 		 * When attempting checkpoint-rewind on a pool with no
5088 		 * checkpoint, we should not attempt to load uberblocks
5089 		 * from previous txgs when spa_load fails.
5090 		 */
5091 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5092 		spa_import_progress_remove(spa_guid(spa));
5093 		return (load_error);
5094 	}
5095 
5096 	if (spa->spa_root_vdev != NULL)
5097 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5098 
5099 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5100 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5101 
5102 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
5103 		nvlist_free(config);
5104 		spa_import_progress_remove(spa_guid(spa));
5105 		return (load_error);
5106 	}
5107 
5108 	if (state == SPA_LOAD_RECOVER) {
5109 		/* Price of rolling back is discarding txgs, including log */
5110 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5111 	} else {
5112 		/*
5113 		 * If we aren't rolling back save the load info from our first
5114 		 * import attempt so that we can restore it after attempting
5115 		 * to rewind.
5116 		 */
5117 		loadinfo = spa->spa_load_info;
5118 		spa->spa_load_info = fnvlist_alloc();
5119 	}
5120 
5121 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5122 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5123 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5124 	    TXG_INITIAL : safe_rewind_txg;
5125 
5126 	/*
5127 	 * Continue as long as we're finding errors, we're still within
5128 	 * the acceptable rewind range, and we're still finding uberblocks
5129 	 */
5130 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5131 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5132 		if (spa->spa_load_max_txg < safe_rewind_txg)
5133 			spa->spa_extreme_rewind = B_TRUE;
5134 		rewind_error = spa_load_retry(spa, state);
5135 	}
5136 
5137 	spa->spa_extreme_rewind = B_FALSE;
5138 	spa->spa_load_max_txg = UINT64_MAX;
5139 
5140 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5141 		spa_config_set(spa, config);
5142 	else
5143 		nvlist_free(config);
5144 
5145 	if (state == SPA_LOAD_RECOVER) {
5146 		ASSERT3P(loadinfo, ==, NULL);
5147 		spa_import_progress_remove(spa_guid(spa));
5148 		return (rewind_error);
5149 	} else {
5150 		/* Store the rewind info as part of the initial load info */
5151 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5152 		    spa->spa_load_info);
5153 
5154 		/* Restore the initial load info */
5155 		fnvlist_free(spa->spa_load_info);
5156 		spa->spa_load_info = loadinfo;
5157 
5158 		spa_import_progress_remove(spa_guid(spa));
5159 		return (load_error);
5160 	}
5161 }
5162 
5163 /*
5164  * Pool Open/Import
5165  *
5166  * The import case is identical to an open except that the configuration is sent
5167  * down from userland, instead of grabbed from the configuration cache.  For the
5168  * case of an open, the pool configuration will exist in the
5169  * POOL_STATE_UNINITIALIZED state.
5170  *
5171  * The stats information (gen/count/ustats) is used to gather vdev statistics at
5172  * the same time open the pool, without having to keep around the spa_t in some
5173  * ambiguous state.
5174  */
5175 static int
5176 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5177     nvlist_t *nvpolicy, nvlist_t **config)
5178 {
5179 	spa_t *spa;
5180 	spa_load_state_t state = SPA_LOAD_OPEN;
5181 	int error;
5182 	int locked = B_FALSE;
5183 	int firstopen = B_FALSE;
5184 
5185 	*spapp = NULL;
5186 
5187 	/*
5188 	 * As disgusting as this is, we need to support recursive calls to this
5189 	 * function because dsl_dir_open() is called during spa_load(), and ends
5190 	 * up calling spa_open() again.  The real fix is to figure out how to
5191 	 * avoid dsl_dir_open() calling this in the first place.
5192 	 */
5193 	if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5194 		mutex_enter(&spa_namespace_lock);
5195 		locked = B_TRUE;
5196 	}
5197 
5198 	if ((spa = spa_lookup(pool)) == NULL) {
5199 		if (locked)
5200 			mutex_exit(&spa_namespace_lock);
5201 		return (SET_ERROR(ENOENT));
5202 	}
5203 
5204 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5205 		zpool_load_policy_t policy;
5206 
5207 		firstopen = B_TRUE;
5208 
5209 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5210 		    &policy);
5211 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5212 			state = SPA_LOAD_RECOVER;
5213 
5214 		spa_activate(spa, spa_mode_global);
5215 
5216 		if (state != SPA_LOAD_RECOVER)
5217 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5218 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5219 
5220 		zfs_dbgmsg("spa_open_common: opening %s", pool);
5221 		error = spa_load_best(spa, state, policy.zlp_txg,
5222 		    policy.zlp_rewind);
5223 
5224 		if (error == EBADF) {
5225 			/*
5226 			 * If vdev_validate() returns failure (indicated by
5227 			 * EBADF), it indicates that one of the vdevs indicates
5228 			 * that the pool has been exported or destroyed.  If
5229 			 * this is the case, the config cache is out of sync and
5230 			 * we should remove the pool from the namespace.
5231 			 */
5232 			spa_unload(spa);
5233 			spa_deactivate(spa);
5234 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5235 			spa_remove(spa);
5236 			if (locked)
5237 				mutex_exit(&spa_namespace_lock);
5238 			return (SET_ERROR(ENOENT));
5239 		}
5240 
5241 		if (error) {
5242 			/*
5243 			 * We can't open the pool, but we still have useful
5244 			 * information: the state of each vdev after the
5245 			 * attempted vdev_open().  Return this to the user.
5246 			 */
5247 			if (config != NULL && spa->spa_config) {
5248 				*config = fnvlist_dup(spa->spa_config);
5249 				fnvlist_add_nvlist(*config,
5250 				    ZPOOL_CONFIG_LOAD_INFO,
5251 				    spa->spa_load_info);
5252 			}
5253 			spa_unload(spa);
5254 			spa_deactivate(spa);
5255 			spa->spa_last_open_failed = error;
5256 			if (locked)
5257 				mutex_exit(&spa_namespace_lock);
5258 			*spapp = NULL;
5259 			return (error);
5260 		}
5261 	}
5262 
5263 	spa_open_ref(spa, tag);
5264 
5265 	if (config != NULL)
5266 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5267 
5268 	/*
5269 	 * If we've recovered the pool, pass back any information we
5270 	 * gathered while doing the load.
5271 	 */
5272 	if (state == SPA_LOAD_RECOVER && config != NULL) {
5273 		fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5274 		    spa->spa_load_info);
5275 	}
5276 
5277 	if (locked) {
5278 		spa->spa_last_open_failed = 0;
5279 		spa->spa_last_ubsync_txg = 0;
5280 		spa->spa_load_txg = 0;
5281 		mutex_exit(&spa_namespace_lock);
5282 	}
5283 
5284 	if (firstopen)
5285 		zvol_create_minors_recursive(spa_name(spa));
5286 
5287 	*spapp = spa;
5288 
5289 	return (0);
5290 }
5291 
5292 int
5293 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5294     nvlist_t *policy, nvlist_t **config)
5295 {
5296 	return (spa_open_common(name, spapp, tag, policy, config));
5297 }
5298 
5299 int
5300 spa_open(const char *name, spa_t **spapp, const void *tag)
5301 {
5302 	return (spa_open_common(name, spapp, tag, NULL, NULL));
5303 }
5304 
5305 /*
5306  * Lookup the given spa_t, incrementing the inject count in the process,
5307  * preventing it from being exported or destroyed.
5308  */
5309 spa_t *
5310 spa_inject_addref(char *name)
5311 {
5312 	spa_t *spa;
5313 
5314 	mutex_enter(&spa_namespace_lock);
5315 	if ((spa = spa_lookup(name)) == NULL) {
5316 		mutex_exit(&spa_namespace_lock);
5317 		return (NULL);
5318 	}
5319 	spa->spa_inject_ref++;
5320 	mutex_exit(&spa_namespace_lock);
5321 
5322 	return (spa);
5323 }
5324 
5325 void
5326 spa_inject_delref(spa_t *spa)
5327 {
5328 	mutex_enter(&spa_namespace_lock);
5329 	spa->spa_inject_ref--;
5330 	mutex_exit(&spa_namespace_lock);
5331 }
5332 
5333 /*
5334  * Add spares device information to the nvlist.
5335  */
5336 static void
5337 spa_add_spares(spa_t *spa, nvlist_t *config)
5338 {
5339 	nvlist_t **spares;
5340 	uint_t i, nspares;
5341 	nvlist_t *nvroot;
5342 	uint64_t guid;
5343 	vdev_stat_t *vs;
5344 	uint_t vsc;
5345 	uint64_t pool;
5346 
5347 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5348 
5349 	if (spa->spa_spares.sav_count == 0)
5350 		return;
5351 
5352 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5353 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5354 	    ZPOOL_CONFIG_SPARES, &spares, &nspares));
5355 	if (nspares != 0) {
5356 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5357 		    (const nvlist_t * const *)spares, nspares);
5358 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5359 		    &spares, &nspares));
5360 
5361 		/*
5362 		 * Go through and find any spares which have since been
5363 		 * repurposed as an active spare.  If this is the case, update
5364 		 * their status appropriately.
5365 		 */
5366 		for (i = 0; i < nspares; i++) {
5367 			guid = fnvlist_lookup_uint64(spares[i],
5368 			    ZPOOL_CONFIG_GUID);
5369 			if (spa_spare_exists(guid, &pool, NULL) &&
5370 			    pool != 0ULL) {
5371 				VERIFY0(nvlist_lookup_uint64_array(spares[i],
5372 				    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs,
5373 				    &vsc));
5374 				vs->vs_state = VDEV_STATE_CANT_OPEN;
5375 				vs->vs_aux = VDEV_AUX_SPARED;
5376 			}
5377 		}
5378 	}
5379 }
5380 
5381 /*
5382  * Add l2cache device information to the nvlist, including vdev stats.
5383  */
5384 static void
5385 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5386 {
5387 	nvlist_t **l2cache;
5388 	uint_t i, j, nl2cache;
5389 	nvlist_t *nvroot;
5390 	uint64_t guid;
5391 	vdev_t *vd;
5392 	vdev_stat_t *vs;
5393 	uint_t vsc;
5394 
5395 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5396 
5397 	if (spa->spa_l2cache.sav_count == 0)
5398 		return;
5399 
5400 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5401 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5402 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
5403 	if (nl2cache != 0) {
5404 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5405 		    (const nvlist_t * const *)l2cache, nl2cache);
5406 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5407 		    &l2cache, &nl2cache));
5408 
5409 		/*
5410 		 * Update level 2 cache device stats.
5411 		 */
5412 
5413 		for (i = 0; i < nl2cache; i++) {
5414 			guid = fnvlist_lookup_uint64(l2cache[i],
5415 			    ZPOOL_CONFIG_GUID);
5416 
5417 			vd = NULL;
5418 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5419 				if (guid ==
5420 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5421 					vd = spa->spa_l2cache.sav_vdevs[j];
5422 					break;
5423 				}
5424 			}
5425 			ASSERT(vd != NULL);
5426 
5427 			VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
5428 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5429 			vdev_get_stats(vd, vs);
5430 			vdev_config_generate_stats(vd, l2cache[i]);
5431 
5432 		}
5433 	}
5434 }
5435 
5436 static void
5437 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5438 {
5439 	zap_cursor_t zc;
5440 	zap_attribute_t za;
5441 
5442 	if (spa->spa_feat_for_read_obj != 0) {
5443 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5444 		    spa->spa_feat_for_read_obj);
5445 		    zap_cursor_retrieve(&zc, &za) == 0;
5446 		    zap_cursor_advance(&zc)) {
5447 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5448 			    za.za_num_integers == 1);
5449 			VERIFY0(nvlist_add_uint64(features, za.za_name,
5450 			    za.za_first_integer));
5451 		}
5452 		zap_cursor_fini(&zc);
5453 	}
5454 
5455 	if (spa->spa_feat_for_write_obj != 0) {
5456 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5457 		    spa->spa_feat_for_write_obj);
5458 		    zap_cursor_retrieve(&zc, &za) == 0;
5459 		    zap_cursor_advance(&zc)) {
5460 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5461 			    za.za_num_integers == 1);
5462 			VERIFY0(nvlist_add_uint64(features, za.za_name,
5463 			    za.za_first_integer));
5464 		}
5465 		zap_cursor_fini(&zc);
5466 	}
5467 }
5468 
5469 static void
5470 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5471 {
5472 	int i;
5473 
5474 	for (i = 0; i < SPA_FEATURES; i++) {
5475 		zfeature_info_t feature = spa_feature_table[i];
5476 		uint64_t refcount;
5477 
5478 		if (feature_get_refcount(spa, &feature, &refcount) != 0)
5479 			continue;
5480 
5481 		VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5482 	}
5483 }
5484 
5485 /*
5486  * Store a list of pool features and their reference counts in the
5487  * config.
5488  *
5489  * The first time this is called on a spa, allocate a new nvlist, fetch
5490  * the pool features and reference counts from disk, then save the list
5491  * in the spa. In subsequent calls on the same spa use the saved nvlist
5492  * and refresh its values from the cached reference counts.  This
5493  * ensures we don't block here on I/O on a suspended pool so 'zpool
5494  * clear' can resume the pool.
5495  */
5496 static void
5497 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5498 {
5499 	nvlist_t *features;
5500 
5501 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5502 
5503 	mutex_enter(&spa->spa_feat_stats_lock);
5504 	features = spa->spa_feat_stats;
5505 
5506 	if (features != NULL) {
5507 		spa_feature_stats_from_cache(spa, features);
5508 	} else {
5509 		VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
5510 		spa->spa_feat_stats = features;
5511 		spa_feature_stats_from_disk(spa, features);
5512 	}
5513 
5514 	VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
5515 	    features));
5516 
5517 	mutex_exit(&spa->spa_feat_stats_lock);
5518 }
5519 
5520 int
5521 spa_get_stats(const char *name, nvlist_t **config,
5522     char *altroot, size_t buflen)
5523 {
5524 	int error;
5525 	spa_t *spa;
5526 
5527 	*config = NULL;
5528 	error = spa_open_common(name, &spa, FTAG, NULL, config);
5529 
5530 	if (spa != NULL) {
5531 		/*
5532 		 * This still leaves a window of inconsistency where the spares
5533 		 * or l2cache devices could change and the config would be
5534 		 * self-inconsistent.
5535 		 */
5536 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5537 
5538 		if (*config != NULL) {
5539 			uint64_t loadtimes[2];
5540 
5541 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
5542 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
5543 			fnvlist_add_uint64_array(*config,
5544 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
5545 
5546 			fnvlist_add_uint64(*config,
5547 			    ZPOOL_CONFIG_ERRCOUNT,
5548 			    spa_approx_errlog_size(spa));
5549 
5550 			if (spa_suspended(spa)) {
5551 				fnvlist_add_uint64(*config,
5552 				    ZPOOL_CONFIG_SUSPENDED,
5553 				    spa->spa_failmode);
5554 				fnvlist_add_uint64(*config,
5555 				    ZPOOL_CONFIG_SUSPENDED_REASON,
5556 				    spa->spa_suspended);
5557 			}
5558 
5559 			spa_add_spares(spa, *config);
5560 			spa_add_l2cache(spa, *config);
5561 			spa_add_feature_stats(spa, *config);
5562 		}
5563 	}
5564 
5565 	/*
5566 	 * We want to get the alternate root even for faulted pools, so we cheat
5567 	 * and call spa_lookup() directly.
5568 	 */
5569 	if (altroot) {
5570 		if (spa == NULL) {
5571 			mutex_enter(&spa_namespace_lock);
5572 			spa = spa_lookup(name);
5573 			if (spa)
5574 				spa_altroot(spa, altroot, buflen);
5575 			else
5576 				altroot[0] = '\0';
5577 			spa = NULL;
5578 			mutex_exit(&spa_namespace_lock);
5579 		} else {
5580 			spa_altroot(spa, altroot, buflen);
5581 		}
5582 	}
5583 
5584 	if (spa != NULL) {
5585 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5586 		spa_close(spa, FTAG);
5587 	}
5588 
5589 	return (error);
5590 }
5591 
5592 /*
5593  * Validate that the auxiliary device array is well formed.  We must have an
5594  * array of nvlists, each which describes a valid leaf vdev.  If this is an
5595  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
5596  * specified, as long as they are well-formed.
5597  */
5598 static int
5599 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
5600     spa_aux_vdev_t *sav, const char *config, uint64_t version,
5601     vdev_labeltype_t label)
5602 {
5603 	nvlist_t **dev;
5604 	uint_t i, ndev;
5605 	vdev_t *vd;
5606 	int error;
5607 
5608 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5609 
5610 	/*
5611 	 * It's acceptable to have no devs specified.
5612 	 */
5613 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
5614 		return (0);
5615 
5616 	if (ndev == 0)
5617 		return (SET_ERROR(EINVAL));
5618 
5619 	/*
5620 	 * Make sure the pool is formatted with a version that supports this
5621 	 * device type.
5622 	 */
5623 	if (spa_version(spa) < version)
5624 		return (SET_ERROR(ENOTSUP));
5625 
5626 	/*
5627 	 * Set the pending device list so we correctly handle device in-use
5628 	 * checking.
5629 	 */
5630 	sav->sav_pending = dev;
5631 	sav->sav_npending = ndev;
5632 
5633 	for (i = 0; i < ndev; i++) {
5634 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
5635 		    mode)) != 0)
5636 			goto out;
5637 
5638 		if (!vd->vdev_ops->vdev_op_leaf) {
5639 			vdev_free(vd);
5640 			error = SET_ERROR(EINVAL);
5641 			goto out;
5642 		}
5643 
5644 		vd->vdev_top = vd;
5645 
5646 		if ((error = vdev_open(vd)) == 0 &&
5647 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
5648 			fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
5649 			    vd->vdev_guid);
5650 		}
5651 
5652 		vdev_free(vd);
5653 
5654 		if (error &&
5655 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
5656 			goto out;
5657 		else
5658 			error = 0;
5659 	}
5660 
5661 out:
5662 	sav->sav_pending = NULL;
5663 	sav->sav_npending = 0;
5664 	return (error);
5665 }
5666 
5667 static int
5668 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
5669 {
5670 	int error;
5671 
5672 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5673 
5674 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5675 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
5676 	    VDEV_LABEL_SPARE)) != 0) {
5677 		return (error);
5678 	}
5679 
5680 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5681 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
5682 	    VDEV_LABEL_L2CACHE));
5683 }
5684 
5685 static void
5686 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
5687     const char *config)
5688 {
5689 	int i;
5690 
5691 	if (sav->sav_config != NULL) {
5692 		nvlist_t **olddevs;
5693 		uint_t oldndevs;
5694 		nvlist_t **newdevs;
5695 
5696 		/*
5697 		 * Generate new dev list by concatenating with the
5698 		 * current dev list.
5699 		 */
5700 		VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
5701 		    &olddevs, &oldndevs));
5702 
5703 		newdevs = kmem_alloc(sizeof (void *) *
5704 		    (ndevs + oldndevs), KM_SLEEP);
5705 		for (i = 0; i < oldndevs; i++)
5706 			newdevs[i] = fnvlist_dup(olddevs[i]);
5707 		for (i = 0; i < ndevs; i++)
5708 			newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
5709 
5710 		fnvlist_remove(sav->sav_config, config);
5711 
5712 		fnvlist_add_nvlist_array(sav->sav_config, config,
5713 		    (const nvlist_t * const *)newdevs, ndevs + oldndevs);
5714 		for (i = 0; i < oldndevs + ndevs; i++)
5715 			nvlist_free(newdevs[i]);
5716 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5717 	} else {
5718 		/*
5719 		 * Generate a new dev list.
5720 		 */
5721 		sav->sav_config = fnvlist_alloc();
5722 		fnvlist_add_nvlist_array(sav->sav_config, config,
5723 		    (const nvlist_t * const *)devs, ndevs);
5724 	}
5725 }
5726 
5727 /*
5728  * Stop and drop level 2 ARC devices
5729  */
5730 void
5731 spa_l2cache_drop(spa_t *spa)
5732 {
5733 	vdev_t *vd;
5734 	int i;
5735 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
5736 
5737 	for (i = 0; i < sav->sav_count; i++) {
5738 		uint64_t pool;
5739 
5740 		vd = sav->sav_vdevs[i];
5741 		ASSERT(vd != NULL);
5742 
5743 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5744 		    pool != 0ULL && l2arc_vdev_present(vd))
5745 			l2arc_remove_vdev(vd);
5746 	}
5747 }
5748 
5749 /*
5750  * Verify encryption parameters for spa creation. If we are encrypting, we must
5751  * have the encryption feature flag enabled.
5752  */
5753 static int
5754 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5755     boolean_t has_encryption)
5756 {
5757 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5758 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5759 	    !has_encryption)
5760 		return (SET_ERROR(ENOTSUP));
5761 
5762 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5763 }
5764 
5765 /*
5766  * Pool Creation
5767  */
5768 int
5769 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5770     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5771 {
5772 	spa_t *spa;
5773 	char *altroot = NULL;
5774 	vdev_t *rvd;
5775 	dsl_pool_t *dp;
5776 	dmu_tx_t *tx;
5777 	int error = 0;
5778 	uint64_t txg = TXG_INITIAL;
5779 	nvlist_t **spares, **l2cache;
5780 	uint_t nspares, nl2cache;
5781 	uint64_t version, obj, ndraid = 0;
5782 	boolean_t has_features;
5783 	boolean_t has_encryption;
5784 	boolean_t has_allocclass;
5785 	spa_feature_t feat;
5786 	char *feat_name;
5787 	char *poolname;
5788 	nvlist_t *nvl;
5789 
5790 	if (props == NULL ||
5791 	    nvlist_lookup_string(props, "tname", &poolname) != 0)
5792 		poolname = (char *)pool;
5793 
5794 	/*
5795 	 * If this pool already exists, return failure.
5796 	 */
5797 	mutex_enter(&spa_namespace_lock);
5798 	if (spa_lookup(poolname) != NULL) {
5799 		mutex_exit(&spa_namespace_lock);
5800 		return (SET_ERROR(EEXIST));
5801 	}
5802 
5803 	/*
5804 	 * Allocate a new spa_t structure.
5805 	 */
5806 	nvl = fnvlist_alloc();
5807 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5808 	(void) nvlist_lookup_string(props,
5809 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5810 	spa = spa_add(poolname, nvl, altroot);
5811 	fnvlist_free(nvl);
5812 	spa_activate(spa, spa_mode_global);
5813 
5814 	if (props && (error = spa_prop_validate(spa, props))) {
5815 		spa_deactivate(spa);
5816 		spa_remove(spa);
5817 		mutex_exit(&spa_namespace_lock);
5818 		return (error);
5819 	}
5820 
5821 	/*
5822 	 * Temporary pool names should never be written to disk.
5823 	 */
5824 	if (poolname != pool)
5825 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5826 
5827 	has_features = B_FALSE;
5828 	has_encryption = B_FALSE;
5829 	has_allocclass = B_FALSE;
5830 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5831 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5832 		if (zpool_prop_feature(nvpair_name(elem))) {
5833 			has_features = B_TRUE;
5834 
5835 			feat_name = strchr(nvpair_name(elem), '@') + 1;
5836 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
5837 			if (feat == SPA_FEATURE_ENCRYPTION)
5838 				has_encryption = B_TRUE;
5839 			if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
5840 				has_allocclass = B_TRUE;
5841 		}
5842 	}
5843 
5844 	/* verify encryption params, if they were provided */
5845 	if (dcp != NULL) {
5846 		error = spa_create_check_encryption_params(dcp, has_encryption);
5847 		if (error != 0) {
5848 			spa_deactivate(spa);
5849 			spa_remove(spa);
5850 			mutex_exit(&spa_namespace_lock);
5851 			return (error);
5852 		}
5853 	}
5854 	if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
5855 		spa_deactivate(spa);
5856 		spa_remove(spa);
5857 		mutex_exit(&spa_namespace_lock);
5858 		return (ENOTSUP);
5859 	}
5860 
5861 	if (has_features || nvlist_lookup_uint64(props,
5862 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5863 		version = SPA_VERSION;
5864 	}
5865 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5866 
5867 	spa->spa_first_txg = txg;
5868 	spa->spa_uberblock.ub_txg = txg - 1;
5869 	spa->spa_uberblock.ub_version = version;
5870 	spa->spa_ubsync = spa->spa_uberblock;
5871 	spa->spa_load_state = SPA_LOAD_CREATE;
5872 	spa->spa_removing_phys.sr_state = DSS_NONE;
5873 	spa->spa_removing_phys.sr_removing_vdev = -1;
5874 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5875 	spa->spa_indirect_vdevs_loaded = B_TRUE;
5876 
5877 	/*
5878 	 * Create "The Godfather" zio to hold all async IOs
5879 	 */
5880 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5881 	    KM_SLEEP);
5882 	for (int i = 0; i < max_ncpus; i++) {
5883 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5884 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5885 		    ZIO_FLAG_GODFATHER);
5886 	}
5887 
5888 	/*
5889 	 * Create the root vdev.
5890 	 */
5891 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5892 
5893 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5894 
5895 	ASSERT(error != 0 || rvd != NULL);
5896 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5897 
5898 	if (error == 0 && !zfs_allocatable_devs(nvroot))
5899 		error = SET_ERROR(EINVAL);
5900 
5901 	if (error == 0 &&
5902 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5903 	    (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
5904 	    (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
5905 		/*
5906 		 * instantiate the metaslab groups (this will dirty the vdevs)
5907 		 * we can no longer error exit past this point
5908 		 */
5909 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5910 			vdev_t *vd = rvd->vdev_child[c];
5911 
5912 			vdev_metaslab_set_size(vd);
5913 			vdev_expand(vd, txg);
5914 		}
5915 	}
5916 
5917 	spa_config_exit(spa, SCL_ALL, FTAG);
5918 
5919 	if (error != 0) {
5920 		spa_unload(spa);
5921 		spa_deactivate(spa);
5922 		spa_remove(spa);
5923 		mutex_exit(&spa_namespace_lock);
5924 		return (error);
5925 	}
5926 
5927 	/*
5928 	 * Get the list of spares, if specified.
5929 	 */
5930 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5931 	    &spares, &nspares) == 0) {
5932 		spa->spa_spares.sav_config = fnvlist_alloc();
5933 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
5934 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
5935 		    nspares);
5936 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5937 		spa_load_spares(spa);
5938 		spa_config_exit(spa, SCL_ALL, FTAG);
5939 		spa->spa_spares.sav_sync = B_TRUE;
5940 	}
5941 
5942 	/*
5943 	 * Get the list of level 2 cache devices, if specified.
5944 	 */
5945 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5946 	    &l2cache, &nl2cache) == 0) {
5947 		VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
5948 		    NV_UNIQUE_NAME, KM_SLEEP));
5949 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5950 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
5951 		    nl2cache);
5952 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5953 		spa_load_l2cache(spa);
5954 		spa_config_exit(spa, SCL_ALL, FTAG);
5955 		spa->spa_l2cache.sav_sync = B_TRUE;
5956 	}
5957 
5958 	spa->spa_is_initializing = B_TRUE;
5959 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5960 	spa->spa_is_initializing = B_FALSE;
5961 
5962 	/*
5963 	 * Create DDTs (dedup tables).
5964 	 */
5965 	ddt_create(spa);
5966 
5967 	spa_update_dspace(spa);
5968 
5969 	tx = dmu_tx_create_assigned(dp, txg);
5970 
5971 	/*
5972 	 * Create the pool's history object.
5973 	 */
5974 	if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
5975 		spa_history_create_obj(spa, tx);
5976 
5977 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5978 	spa_history_log_version(spa, "create", tx);
5979 
5980 	/*
5981 	 * Create the pool config object.
5982 	 */
5983 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5984 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5985 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5986 
5987 	if (zap_add(spa->spa_meta_objset,
5988 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5989 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5990 		cmn_err(CE_PANIC, "failed to add pool config");
5991 	}
5992 
5993 	if (zap_add(spa->spa_meta_objset,
5994 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5995 	    sizeof (uint64_t), 1, &version, tx) != 0) {
5996 		cmn_err(CE_PANIC, "failed to add pool version");
5997 	}
5998 
5999 	/* Newly created pools with the right version are always deflated. */
6000 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6001 		spa->spa_deflate = TRUE;
6002 		if (zap_add(spa->spa_meta_objset,
6003 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6004 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6005 			cmn_err(CE_PANIC, "failed to add deflate");
6006 		}
6007 	}
6008 
6009 	/*
6010 	 * Create the deferred-free bpobj.  Turn off compression
6011 	 * because sync-to-convergence takes longer if the blocksize
6012 	 * keeps changing.
6013 	 */
6014 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6015 	dmu_object_set_compress(spa->spa_meta_objset, obj,
6016 	    ZIO_COMPRESS_OFF, tx);
6017 	if (zap_add(spa->spa_meta_objset,
6018 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6019 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
6020 		cmn_err(CE_PANIC, "failed to add bpobj");
6021 	}
6022 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6023 	    spa->spa_meta_objset, obj));
6024 
6025 	/*
6026 	 * Generate some random noise for salted checksums to operate on.
6027 	 */
6028 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6029 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
6030 
6031 	/*
6032 	 * Set pool properties.
6033 	 */
6034 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6035 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6036 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6037 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6038 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6039 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6040 
6041 	if (props != NULL) {
6042 		spa_configfile_set(spa, props, B_FALSE);
6043 		spa_sync_props(props, tx);
6044 	}
6045 
6046 	for (int i = 0; i < ndraid; i++)
6047 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6048 
6049 	dmu_tx_commit(tx);
6050 
6051 	spa->spa_sync_on = B_TRUE;
6052 	txg_sync_start(dp);
6053 	mmp_thread_start(spa);
6054 	txg_wait_synced(dp, txg);
6055 
6056 	spa_spawn_aux_threads(spa);
6057 
6058 	spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6059 
6060 	/*
6061 	 * Don't count references from objsets that are already closed
6062 	 * and are making their way through the eviction process.
6063 	 */
6064 	spa_evicting_os_wait(spa);
6065 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6066 	spa->spa_load_state = SPA_LOAD_NONE;
6067 
6068 	spa_import_os(spa);
6069 
6070 	mutex_exit(&spa_namespace_lock);
6071 
6072 	return (0);
6073 }
6074 
6075 /*
6076  * Import a non-root pool into the system.
6077  */
6078 int
6079 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6080 {
6081 	spa_t *spa;
6082 	char *altroot = NULL;
6083 	spa_load_state_t state = SPA_LOAD_IMPORT;
6084 	zpool_load_policy_t policy;
6085 	spa_mode_t mode = spa_mode_global;
6086 	uint64_t readonly = B_FALSE;
6087 	int error;
6088 	nvlist_t *nvroot;
6089 	nvlist_t **spares, **l2cache;
6090 	uint_t nspares, nl2cache;
6091 
6092 	/*
6093 	 * If a pool with this name exists, return failure.
6094 	 */
6095 	mutex_enter(&spa_namespace_lock);
6096 	if (spa_lookup(pool) != NULL) {
6097 		mutex_exit(&spa_namespace_lock);
6098 		return (SET_ERROR(EEXIST));
6099 	}
6100 
6101 	/*
6102 	 * Create and initialize the spa structure.
6103 	 */
6104 	(void) nvlist_lookup_string(props,
6105 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6106 	(void) nvlist_lookup_uint64(props,
6107 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6108 	if (readonly)
6109 		mode = SPA_MODE_READ;
6110 	spa = spa_add(pool, config, altroot);
6111 	spa->spa_import_flags = flags;
6112 
6113 	/*
6114 	 * Verbatim import - Take a pool and insert it into the namespace
6115 	 * as if it had been loaded at boot.
6116 	 */
6117 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6118 		if (props != NULL)
6119 			spa_configfile_set(spa, props, B_FALSE);
6120 
6121 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6122 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6123 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6124 		mutex_exit(&spa_namespace_lock);
6125 		return (0);
6126 	}
6127 
6128 	spa_activate(spa, mode);
6129 
6130 	/*
6131 	 * Don't start async tasks until we know everything is healthy.
6132 	 */
6133 	spa_async_suspend(spa);
6134 
6135 	zpool_get_load_policy(config, &policy);
6136 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6137 		state = SPA_LOAD_RECOVER;
6138 
6139 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6140 
6141 	if (state != SPA_LOAD_RECOVER) {
6142 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6143 		zfs_dbgmsg("spa_import: importing %s", pool);
6144 	} else {
6145 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6146 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6147 	}
6148 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6149 
6150 	/*
6151 	 * Propagate anything learned while loading the pool and pass it
6152 	 * back to caller (i.e. rewind info, missing devices, etc).
6153 	 */
6154 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6155 
6156 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6157 	/*
6158 	 * Toss any existing sparelist, as it doesn't have any validity
6159 	 * anymore, and conflicts with spa_has_spare().
6160 	 */
6161 	if (spa->spa_spares.sav_config) {
6162 		nvlist_free(spa->spa_spares.sav_config);
6163 		spa->spa_spares.sav_config = NULL;
6164 		spa_load_spares(spa);
6165 	}
6166 	if (spa->spa_l2cache.sav_config) {
6167 		nvlist_free(spa->spa_l2cache.sav_config);
6168 		spa->spa_l2cache.sav_config = NULL;
6169 		spa_load_l2cache(spa);
6170 	}
6171 
6172 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6173 	spa_config_exit(spa, SCL_ALL, FTAG);
6174 
6175 	if (props != NULL)
6176 		spa_configfile_set(spa, props, B_FALSE);
6177 
6178 	if (error != 0 || (props && spa_writeable(spa) &&
6179 	    (error = spa_prop_set(spa, props)))) {
6180 		spa_unload(spa);
6181 		spa_deactivate(spa);
6182 		spa_remove(spa);
6183 		mutex_exit(&spa_namespace_lock);
6184 		return (error);
6185 	}
6186 
6187 	spa_async_resume(spa);
6188 
6189 	/*
6190 	 * Override any spares and level 2 cache devices as specified by
6191 	 * the user, as these may have correct device names/devids, etc.
6192 	 */
6193 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6194 	    &spares, &nspares) == 0) {
6195 		if (spa->spa_spares.sav_config)
6196 			fnvlist_remove(spa->spa_spares.sav_config,
6197 			    ZPOOL_CONFIG_SPARES);
6198 		else
6199 			spa->spa_spares.sav_config = fnvlist_alloc();
6200 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6201 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6202 		    nspares);
6203 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6204 		spa_load_spares(spa);
6205 		spa_config_exit(spa, SCL_ALL, FTAG);
6206 		spa->spa_spares.sav_sync = B_TRUE;
6207 	}
6208 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6209 	    &l2cache, &nl2cache) == 0) {
6210 		if (spa->spa_l2cache.sav_config)
6211 			fnvlist_remove(spa->spa_l2cache.sav_config,
6212 			    ZPOOL_CONFIG_L2CACHE);
6213 		else
6214 			spa->spa_l2cache.sav_config = fnvlist_alloc();
6215 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6216 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6217 		    nl2cache);
6218 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6219 		spa_load_l2cache(spa);
6220 		spa_config_exit(spa, SCL_ALL, FTAG);
6221 		spa->spa_l2cache.sav_sync = B_TRUE;
6222 	}
6223 
6224 	/*
6225 	 * Check for any removed devices.
6226 	 */
6227 	if (spa->spa_autoreplace) {
6228 		spa_aux_check_removed(&spa->spa_spares);
6229 		spa_aux_check_removed(&spa->spa_l2cache);
6230 	}
6231 
6232 	if (spa_writeable(spa)) {
6233 		/*
6234 		 * Update the config cache to include the newly-imported pool.
6235 		 */
6236 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6237 	}
6238 
6239 	/*
6240 	 * It's possible that the pool was expanded while it was exported.
6241 	 * We kick off an async task to handle this for us.
6242 	 */
6243 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6244 
6245 	spa_history_log_version(spa, "import", NULL);
6246 
6247 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6248 
6249 	mutex_exit(&spa_namespace_lock);
6250 
6251 	zvol_create_minors_recursive(pool);
6252 
6253 	spa_import_os(spa);
6254 
6255 	return (0);
6256 }
6257 
6258 nvlist_t *
6259 spa_tryimport(nvlist_t *tryconfig)
6260 {
6261 	nvlist_t *config = NULL;
6262 	char *poolname, *cachefile;
6263 	spa_t *spa;
6264 	uint64_t state;
6265 	int error;
6266 	zpool_load_policy_t policy;
6267 
6268 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6269 		return (NULL);
6270 
6271 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6272 		return (NULL);
6273 
6274 	/*
6275 	 * Create and initialize the spa structure.
6276 	 */
6277 	mutex_enter(&spa_namespace_lock);
6278 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6279 	spa_activate(spa, SPA_MODE_READ);
6280 
6281 	/*
6282 	 * Rewind pool if a max txg was provided.
6283 	 */
6284 	zpool_get_load_policy(spa->spa_config, &policy);
6285 	if (policy.zlp_txg != UINT64_MAX) {
6286 		spa->spa_load_max_txg = policy.zlp_txg;
6287 		spa->spa_extreme_rewind = B_TRUE;
6288 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6289 		    poolname, (longlong_t)policy.zlp_txg);
6290 	} else {
6291 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6292 	}
6293 
6294 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6295 	    == 0) {
6296 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6297 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6298 	} else {
6299 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6300 	}
6301 
6302 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6303 
6304 	/*
6305 	 * If 'tryconfig' was at least parsable, return the current config.
6306 	 */
6307 	if (spa->spa_root_vdev != NULL) {
6308 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6309 		fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6310 		fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6311 		fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6312 		    spa->spa_uberblock.ub_timestamp);
6313 		fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6314 		    spa->spa_load_info);
6315 		fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6316 		    spa->spa_errata);
6317 
6318 		/*
6319 		 * If the bootfs property exists on this pool then we
6320 		 * copy it out so that external consumers can tell which
6321 		 * pools are bootable.
6322 		 */
6323 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
6324 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6325 
6326 			/*
6327 			 * We have to play games with the name since the
6328 			 * pool was opened as TRYIMPORT_NAME.
6329 			 */
6330 			if (dsl_dsobj_to_dsname(spa_name(spa),
6331 			    spa->spa_bootfs, tmpname) == 0) {
6332 				char *cp;
6333 				char *dsname;
6334 
6335 				dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6336 
6337 				cp = strchr(tmpname, '/');
6338 				if (cp == NULL) {
6339 					(void) strlcpy(dsname, tmpname,
6340 					    MAXPATHLEN);
6341 				} else {
6342 					(void) snprintf(dsname, MAXPATHLEN,
6343 					    "%s/%s", poolname, ++cp);
6344 				}
6345 				fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6346 				    dsname);
6347 				kmem_free(dsname, MAXPATHLEN);
6348 			}
6349 			kmem_free(tmpname, MAXPATHLEN);
6350 		}
6351 
6352 		/*
6353 		 * Add the list of hot spares and level 2 cache devices.
6354 		 */
6355 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6356 		spa_add_spares(spa, config);
6357 		spa_add_l2cache(spa, config);
6358 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6359 	}
6360 
6361 	spa_unload(spa);
6362 	spa_deactivate(spa);
6363 	spa_remove(spa);
6364 	mutex_exit(&spa_namespace_lock);
6365 
6366 	return (config);
6367 }
6368 
6369 /*
6370  * Pool export/destroy
6371  *
6372  * The act of destroying or exporting a pool is very simple.  We make sure there
6373  * is no more pending I/O and any references to the pool are gone.  Then, we
6374  * update the pool state and sync all the labels to disk, removing the
6375  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6376  * we don't sync the labels or remove the configuration cache.
6377  */
6378 static int
6379 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6380     boolean_t force, boolean_t hardforce)
6381 {
6382 	int error;
6383 	spa_t *spa;
6384 
6385 	if (oldconfig)
6386 		*oldconfig = NULL;
6387 
6388 	if (!(spa_mode_global & SPA_MODE_WRITE))
6389 		return (SET_ERROR(EROFS));
6390 
6391 	mutex_enter(&spa_namespace_lock);
6392 	if ((spa = spa_lookup(pool)) == NULL) {
6393 		mutex_exit(&spa_namespace_lock);
6394 		return (SET_ERROR(ENOENT));
6395 	}
6396 
6397 	if (spa->spa_is_exporting) {
6398 		/* the pool is being exported by another thread */
6399 		mutex_exit(&spa_namespace_lock);
6400 		return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6401 	}
6402 	spa->spa_is_exporting = B_TRUE;
6403 
6404 	/*
6405 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6406 	 * reacquire the namespace lock, and see if we can export.
6407 	 */
6408 	spa_open_ref(spa, FTAG);
6409 	mutex_exit(&spa_namespace_lock);
6410 	spa_async_suspend(spa);
6411 	if (spa->spa_zvol_taskq) {
6412 		zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6413 		taskq_wait(spa->spa_zvol_taskq);
6414 	}
6415 	mutex_enter(&spa_namespace_lock);
6416 	spa_close(spa, FTAG);
6417 
6418 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6419 		goto export_spa;
6420 	/*
6421 	 * The pool will be in core if it's openable, in which case we can
6422 	 * modify its state.  Objsets may be open only because they're dirty,
6423 	 * so we have to force it to sync before checking spa_refcnt.
6424 	 */
6425 	if (spa->spa_sync_on) {
6426 		txg_wait_synced(spa->spa_dsl_pool, 0);
6427 		spa_evicting_os_wait(spa);
6428 	}
6429 
6430 	/*
6431 	 * A pool cannot be exported or destroyed if there are active
6432 	 * references.  If we are resetting a pool, allow references by
6433 	 * fault injection handlers.
6434 	 */
6435 	if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
6436 		error = SET_ERROR(EBUSY);
6437 		goto fail;
6438 	}
6439 
6440 	if (spa->spa_sync_on) {
6441 		vdev_t *rvd = spa->spa_root_vdev;
6442 		/*
6443 		 * A pool cannot be exported if it has an active shared spare.
6444 		 * This is to prevent other pools stealing the active spare
6445 		 * from an exported pool. At user's own will, such pool can
6446 		 * be forcedly exported.
6447 		 */
6448 		if (!force && new_state == POOL_STATE_EXPORTED &&
6449 		    spa_has_active_shared_spare(spa)) {
6450 			error = SET_ERROR(EXDEV);
6451 			goto fail;
6452 		}
6453 
6454 		/*
6455 		 * We're about to export or destroy this pool. Make sure
6456 		 * we stop all initialization and trim activity here before
6457 		 * we set the spa_final_txg. This will ensure that all
6458 		 * dirty data resulting from the initialization is
6459 		 * committed to disk before we unload the pool.
6460 		 */
6461 		vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6462 		vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6463 		vdev_autotrim_stop_all(spa);
6464 		vdev_rebuild_stop_all(spa);
6465 
6466 		/*
6467 		 * We want this to be reflected on every label,
6468 		 * so mark them all dirty.  spa_unload() will do the
6469 		 * final sync that pushes these changes out.
6470 		 */
6471 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6472 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6473 			spa->spa_state = new_state;
6474 			vdev_config_dirty(rvd);
6475 			spa_config_exit(spa, SCL_ALL, FTAG);
6476 		}
6477 
6478 		/*
6479 		 * If the log space map feature is enabled and the pool is
6480 		 * getting exported (but not destroyed), we want to spend some
6481 		 * time flushing as many metaslabs as we can in an attempt to
6482 		 * destroy log space maps and save import time. This has to be
6483 		 * done before we set the spa_final_txg, otherwise
6484 		 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
6485 		 * spa_should_flush_logs_on_unload() should be called after
6486 		 * spa_state has been set to the new_state.
6487 		 */
6488 		if (spa_should_flush_logs_on_unload(spa))
6489 			spa_unload_log_sm_flush_all(spa);
6490 
6491 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6492 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6493 			spa->spa_final_txg = spa_last_synced_txg(spa) +
6494 			    TXG_DEFER_SIZE + 1;
6495 			spa_config_exit(spa, SCL_ALL, FTAG);
6496 		}
6497 	}
6498 
6499 export_spa:
6500 	spa_export_os(spa);
6501 
6502 	if (new_state == POOL_STATE_DESTROYED)
6503 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6504 	else if (new_state == POOL_STATE_EXPORTED)
6505 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
6506 
6507 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6508 		spa_unload(spa);
6509 		spa_deactivate(spa);
6510 	}
6511 
6512 	if (oldconfig && spa->spa_config)
6513 		*oldconfig = fnvlist_dup(spa->spa_config);
6514 
6515 	if (new_state != POOL_STATE_UNINITIALIZED) {
6516 		if (!hardforce)
6517 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
6518 		spa_remove(spa);
6519 	} else {
6520 		/*
6521 		 * If spa_remove() is not called for this spa_t and
6522 		 * there is any possibility that it can be reused,
6523 		 * we make sure to reset the exporting flag.
6524 		 */
6525 		spa->spa_is_exporting = B_FALSE;
6526 	}
6527 
6528 	mutex_exit(&spa_namespace_lock);
6529 	return (0);
6530 
6531 fail:
6532 	spa->spa_is_exporting = B_FALSE;
6533 	spa_async_resume(spa);
6534 	mutex_exit(&spa_namespace_lock);
6535 	return (error);
6536 }
6537 
6538 /*
6539  * Destroy a storage pool.
6540  */
6541 int
6542 spa_destroy(const char *pool)
6543 {
6544 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6545 	    B_FALSE, B_FALSE));
6546 }
6547 
6548 /*
6549  * Export a storage pool.
6550  */
6551 int
6552 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
6553     boolean_t hardforce)
6554 {
6555 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6556 	    force, hardforce));
6557 }
6558 
6559 /*
6560  * Similar to spa_export(), this unloads the spa_t without actually removing it
6561  * from the namespace in any way.
6562  */
6563 int
6564 spa_reset(const char *pool)
6565 {
6566 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6567 	    B_FALSE, B_FALSE));
6568 }
6569 
6570 /*
6571  * ==========================================================================
6572  * Device manipulation
6573  * ==========================================================================
6574  */
6575 
6576 /*
6577  * This is called as a synctask to increment the draid feature flag
6578  */
6579 static void
6580 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
6581 {
6582 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6583 	int draid = (int)(uintptr_t)arg;
6584 
6585 	for (int c = 0; c < draid; c++)
6586 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6587 }
6588 
6589 /*
6590  * Add a device to a storage pool.
6591  */
6592 int
6593 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6594 {
6595 	uint64_t txg, ndraid = 0;
6596 	int error;
6597 	vdev_t *rvd = spa->spa_root_vdev;
6598 	vdev_t *vd, *tvd;
6599 	nvlist_t **spares, **l2cache;
6600 	uint_t nspares, nl2cache;
6601 
6602 	ASSERT(spa_writeable(spa));
6603 
6604 	txg = spa_vdev_enter(spa);
6605 
6606 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6607 	    VDEV_ALLOC_ADD)) != 0)
6608 		return (spa_vdev_exit(spa, NULL, txg, error));
6609 
6610 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
6611 
6612 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6613 	    &nspares) != 0)
6614 		nspares = 0;
6615 
6616 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6617 	    &nl2cache) != 0)
6618 		nl2cache = 0;
6619 
6620 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6621 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
6622 
6623 	if (vd->vdev_children != 0 &&
6624 	    (error = vdev_create(vd, txg, B_FALSE)) != 0) {
6625 		return (spa_vdev_exit(spa, vd, txg, error));
6626 	}
6627 
6628 	/*
6629 	 * The virtual dRAID spares must be added after vdev tree is created
6630 	 * and the vdev guids are generated.  The guid of their associated
6631 	 * dRAID is stored in the config and used when opening the spare.
6632 	 */
6633 	if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
6634 	    rvd->vdev_children)) == 0) {
6635 		if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
6636 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
6637 			nspares = 0;
6638 	} else {
6639 		return (spa_vdev_exit(spa, vd, txg, error));
6640 	}
6641 
6642 	/*
6643 	 * We must validate the spares and l2cache devices after checking the
6644 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
6645 	 */
6646 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6647 		return (spa_vdev_exit(spa, vd, txg, error));
6648 
6649 	/*
6650 	 * If we are in the middle of a device removal, we can only add
6651 	 * devices which match the existing devices in the pool.
6652 	 * If we are in the middle of a removal, or have some indirect
6653 	 * vdevs, we can not add raidz or dRAID top levels.
6654 	 */
6655 	if (spa->spa_vdev_removal != NULL ||
6656 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6657 		for (int c = 0; c < vd->vdev_children; c++) {
6658 			tvd = vd->vdev_child[c];
6659 			if (spa->spa_vdev_removal != NULL &&
6660 			    tvd->vdev_ashift != spa->spa_max_ashift) {
6661 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6662 			}
6663 			/* Fail if top level vdev is raidz or a dRAID */
6664 			if (vdev_get_nparity(tvd) != 0)
6665 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6666 
6667 			/*
6668 			 * Need the top level mirror to be
6669 			 * a mirror of leaf vdevs only
6670 			 */
6671 			if (tvd->vdev_ops == &vdev_mirror_ops) {
6672 				for (uint64_t cid = 0;
6673 				    cid < tvd->vdev_children; cid++) {
6674 					vdev_t *cvd = tvd->vdev_child[cid];
6675 					if (!cvd->vdev_ops->vdev_op_leaf) {
6676 						return (spa_vdev_exit(spa, vd,
6677 						    txg, EINVAL));
6678 					}
6679 				}
6680 			}
6681 		}
6682 	}
6683 
6684 	for (int c = 0; c < vd->vdev_children; c++) {
6685 		tvd = vd->vdev_child[c];
6686 		vdev_remove_child(vd, tvd);
6687 		tvd->vdev_id = rvd->vdev_children;
6688 		vdev_add_child(rvd, tvd);
6689 		vdev_config_dirty(tvd);
6690 	}
6691 
6692 	if (nspares != 0) {
6693 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6694 		    ZPOOL_CONFIG_SPARES);
6695 		spa_load_spares(spa);
6696 		spa->spa_spares.sav_sync = B_TRUE;
6697 	}
6698 
6699 	if (nl2cache != 0) {
6700 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6701 		    ZPOOL_CONFIG_L2CACHE);
6702 		spa_load_l2cache(spa);
6703 		spa->spa_l2cache.sav_sync = B_TRUE;
6704 	}
6705 
6706 	/*
6707 	 * We can't increment a feature while holding spa_vdev so we
6708 	 * have to do it in a synctask.
6709 	 */
6710 	if (ndraid != 0) {
6711 		dmu_tx_t *tx;
6712 
6713 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
6714 		dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
6715 		    (void *)(uintptr_t)ndraid, tx);
6716 		dmu_tx_commit(tx);
6717 	}
6718 
6719 	/*
6720 	 * We have to be careful when adding new vdevs to an existing pool.
6721 	 * If other threads start allocating from these vdevs before we
6722 	 * sync the config cache, and we lose power, then upon reboot we may
6723 	 * fail to open the pool because there are DVAs that the config cache
6724 	 * can't translate.  Therefore, we first add the vdevs without
6725 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6726 	 * and then let spa_config_update() initialize the new metaslabs.
6727 	 *
6728 	 * spa_load() checks for added-but-not-initialized vdevs, so that
6729 	 * if we lose power at any point in this sequence, the remaining
6730 	 * steps will be completed the next time we load the pool.
6731 	 */
6732 	(void) spa_vdev_exit(spa, vd, txg, 0);
6733 
6734 	mutex_enter(&spa_namespace_lock);
6735 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6736 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6737 	mutex_exit(&spa_namespace_lock);
6738 
6739 	return (0);
6740 }
6741 
6742 /*
6743  * Attach a device to a mirror.  The arguments are the path to any device
6744  * in the mirror, and the nvroot for the new device.  If the path specifies
6745  * a device that is not mirrored, we automatically insert the mirror vdev.
6746  *
6747  * If 'replacing' is specified, the new device is intended to replace the
6748  * existing device; in this case the two devices are made into their own
6749  * mirror using the 'replacing' vdev, which is functionally identical to
6750  * the mirror vdev (it actually reuses all the same ops) but has a few
6751  * extra rules: you can't attach to it after it's been created, and upon
6752  * completion of resilvering, the first disk (the one being replaced)
6753  * is automatically detached.
6754  *
6755  * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
6756  * should be performed instead of traditional healing reconstruction.  From
6757  * an administrators perspective these are both resilver operations.
6758  */
6759 int
6760 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
6761     int rebuild)
6762 {
6763 	uint64_t txg, dtl_max_txg;
6764 	vdev_t *rvd = spa->spa_root_vdev;
6765 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6766 	vdev_ops_t *pvops;
6767 	char *oldvdpath, *newvdpath;
6768 	int newvd_isspare;
6769 	int error;
6770 
6771 	ASSERT(spa_writeable(spa));
6772 
6773 	txg = spa_vdev_enter(spa);
6774 
6775 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6776 
6777 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6778 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6779 		error = (spa_has_checkpoint(spa)) ?
6780 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6781 		return (spa_vdev_exit(spa, NULL, txg, error));
6782 	}
6783 
6784 	if (rebuild) {
6785 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
6786 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6787 
6788 		if (dsl_scan_resilvering(spa_get_dsl(spa)))
6789 			return (spa_vdev_exit(spa, NULL, txg,
6790 			    ZFS_ERR_RESILVER_IN_PROGRESS));
6791 	} else {
6792 		if (vdev_rebuild_active(rvd))
6793 			return (spa_vdev_exit(spa, NULL, txg,
6794 			    ZFS_ERR_REBUILD_IN_PROGRESS));
6795 	}
6796 
6797 	if (spa->spa_vdev_removal != NULL)
6798 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6799 
6800 	if (oldvd == NULL)
6801 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6802 
6803 	if (!oldvd->vdev_ops->vdev_op_leaf)
6804 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6805 
6806 	pvd = oldvd->vdev_parent;
6807 
6808 	if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6809 	    VDEV_ALLOC_ATTACH) != 0)
6810 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6811 
6812 	if (newrootvd->vdev_children != 1)
6813 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6814 
6815 	newvd = newrootvd->vdev_child[0];
6816 
6817 	if (!newvd->vdev_ops->vdev_op_leaf)
6818 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6819 
6820 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6821 		return (spa_vdev_exit(spa, newrootvd, txg, error));
6822 
6823 	/*
6824 	 * log, dedup and special vdevs should not be replaced by spares.
6825 	 */
6826 	if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
6827 	    oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
6828 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6829 	}
6830 
6831 	/*
6832 	 * A dRAID spare can only replace a child of its parent dRAID vdev.
6833 	 */
6834 	if (newvd->vdev_ops == &vdev_draid_spare_ops &&
6835 	    oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
6836 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6837 	}
6838 
6839 	if (rebuild) {
6840 		/*
6841 		 * For rebuilds, the top vdev must support reconstruction
6842 		 * using only space maps.  This means the only allowable
6843 		 * vdevs types are the root vdev, a mirror, or dRAID.
6844 		 */
6845 		tvd = pvd;
6846 		if (pvd->vdev_top != NULL)
6847 			tvd = pvd->vdev_top;
6848 
6849 		if (tvd->vdev_ops != &vdev_mirror_ops &&
6850 		    tvd->vdev_ops != &vdev_root_ops &&
6851 		    tvd->vdev_ops != &vdev_draid_ops) {
6852 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6853 		}
6854 	}
6855 
6856 	if (!replacing) {
6857 		/*
6858 		 * For attach, the only allowable parent is a mirror or the root
6859 		 * vdev.
6860 		 */
6861 		if (pvd->vdev_ops != &vdev_mirror_ops &&
6862 		    pvd->vdev_ops != &vdev_root_ops)
6863 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6864 
6865 		pvops = &vdev_mirror_ops;
6866 	} else {
6867 		/*
6868 		 * Active hot spares can only be replaced by inactive hot
6869 		 * spares.
6870 		 */
6871 		if (pvd->vdev_ops == &vdev_spare_ops &&
6872 		    oldvd->vdev_isspare &&
6873 		    !spa_has_spare(spa, newvd->vdev_guid))
6874 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6875 
6876 		/*
6877 		 * If the source is a hot spare, and the parent isn't already a
6878 		 * spare, then we want to create a new hot spare.  Otherwise, we
6879 		 * want to create a replacing vdev.  The user is not allowed to
6880 		 * attach to a spared vdev child unless the 'isspare' state is
6881 		 * the same (spare replaces spare, non-spare replaces
6882 		 * non-spare).
6883 		 */
6884 		if (pvd->vdev_ops == &vdev_replacing_ops &&
6885 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6886 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6887 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
6888 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
6889 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6890 		}
6891 
6892 		if (newvd->vdev_isspare)
6893 			pvops = &vdev_spare_ops;
6894 		else
6895 			pvops = &vdev_replacing_ops;
6896 	}
6897 
6898 	/*
6899 	 * Make sure the new device is big enough.
6900 	 */
6901 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6902 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6903 
6904 	/*
6905 	 * The new device cannot have a higher alignment requirement
6906 	 * than the top-level vdev.
6907 	 */
6908 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6909 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6910 
6911 	/*
6912 	 * If this is an in-place replacement, update oldvd's path and devid
6913 	 * to make it distinguishable from newvd, and unopenable from now on.
6914 	 */
6915 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6916 		spa_strfree(oldvd->vdev_path);
6917 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6918 		    KM_SLEEP);
6919 		(void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5,
6920 		    "%s/%s", newvd->vdev_path, "old");
6921 		if (oldvd->vdev_devid != NULL) {
6922 			spa_strfree(oldvd->vdev_devid);
6923 			oldvd->vdev_devid = NULL;
6924 		}
6925 	}
6926 
6927 	/*
6928 	 * If the parent is not a mirror, or if we're replacing, insert the new
6929 	 * mirror/replacing/spare vdev above oldvd.
6930 	 */
6931 	if (pvd->vdev_ops != pvops)
6932 		pvd = vdev_add_parent(oldvd, pvops);
6933 
6934 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
6935 	ASSERT(pvd->vdev_ops == pvops);
6936 	ASSERT(oldvd->vdev_parent == pvd);
6937 
6938 	/*
6939 	 * Extract the new device from its root and add it to pvd.
6940 	 */
6941 	vdev_remove_child(newrootvd, newvd);
6942 	newvd->vdev_id = pvd->vdev_children;
6943 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
6944 	vdev_add_child(pvd, newvd);
6945 
6946 	/*
6947 	 * Reevaluate the parent vdev state.
6948 	 */
6949 	vdev_propagate_state(pvd);
6950 
6951 	tvd = newvd->vdev_top;
6952 	ASSERT(pvd->vdev_top == tvd);
6953 	ASSERT(tvd->vdev_parent == rvd);
6954 
6955 	vdev_config_dirty(tvd);
6956 
6957 	/*
6958 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6959 	 * for any dmu_sync-ed blocks.  It will propagate upward when
6960 	 * spa_vdev_exit() calls vdev_dtl_reassess().
6961 	 */
6962 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6963 
6964 	vdev_dtl_dirty(newvd, DTL_MISSING,
6965 	    TXG_INITIAL, dtl_max_txg - TXG_INITIAL);
6966 
6967 	if (newvd->vdev_isspare) {
6968 		spa_spare_activate(newvd);
6969 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6970 	}
6971 
6972 	oldvdpath = spa_strdup(oldvd->vdev_path);
6973 	newvdpath = spa_strdup(newvd->vdev_path);
6974 	newvd_isspare = newvd->vdev_isspare;
6975 
6976 	/*
6977 	 * Mark newvd's DTL dirty in this txg.
6978 	 */
6979 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
6980 
6981 	/*
6982 	 * Schedule the resilver or rebuild to restart in the future. We do
6983 	 * this to ensure that dmu_sync-ed blocks have been stitched into the
6984 	 * respective datasets.
6985 	 */
6986 	if (rebuild) {
6987 		newvd->vdev_rebuild_txg = txg;
6988 
6989 		vdev_rebuild(tvd);
6990 	} else {
6991 		newvd->vdev_resilver_txg = txg;
6992 
6993 		if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6994 		    spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
6995 			vdev_defer_resilver(newvd);
6996 		} else {
6997 			dsl_scan_restart_resilver(spa->spa_dsl_pool,
6998 			    dtl_max_txg);
6999 		}
7000 	}
7001 
7002 	if (spa->spa_bootfs)
7003 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7004 
7005 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7006 
7007 	/*
7008 	 * Commit the config
7009 	 */
7010 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7011 
7012 	spa_history_log_internal(spa, "vdev attach", NULL,
7013 	    "%s vdev=%s %s vdev=%s",
7014 	    replacing && newvd_isspare ? "spare in" :
7015 	    replacing ? "replace" : "attach", newvdpath,
7016 	    replacing ? "for" : "to", oldvdpath);
7017 
7018 	spa_strfree(oldvdpath);
7019 	spa_strfree(newvdpath);
7020 
7021 	return (0);
7022 }
7023 
7024 /*
7025  * Detach a device from a mirror or replacing vdev.
7026  *
7027  * If 'replace_done' is specified, only detach if the parent
7028  * is a replacing vdev.
7029  */
7030 int
7031 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7032 {
7033 	uint64_t txg;
7034 	int error;
7035 	vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7036 	vdev_t *vd, *pvd, *cvd, *tvd;
7037 	boolean_t unspare = B_FALSE;
7038 	uint64_t unspare_guid = 0;
7039 	char *vdpath;
7040 
7041 	ASSERT(spa_writeable(spa));
7042 
7043 	txg = spa_vdev_detach_enter(spa, guid);
7044 
7045 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7046 
7047 	/*
7048 	 * Besides being called directly from the userland through the
7049 	 * ioctl interface, spa_vdev_detach() can be potentially called
7050 	 * at the end of spa_vdev_resilver_done().
7051 	 *
7052 	 * In the regular case, when we have a checkpoint this shouldn't
7053 	 * happen as we never empty the DTLs of a vdev during the scrub
7054 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7055 	 * should never get here when we have a checkpoint.
7056 	 *
7057 	 * That said, even in a case when we checkpoint the pool exactly
7058 	 * as spa_vdev_resilver_done() calls this function everything
7059 	 * should be fine as the resilver will return right away.
7060 	 */
7061 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7062 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7063 		error = (spa_has_checkpoint(spa)) ?
7064 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7065 		return (spa_vdev_exit(spa, NULL, txg, error));
7066 	}
7067 
7068 	if (vd == NULL)
7069 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7070 
7071 	if (!vd->vdev_ops->vdev_op_leaf)
7072 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7073 
7074 	pvd = vd->vdev_parent;
7075 
7076 	/*
7077 	 * If the parent/child relationship is not as expected, don't do it.
7078 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7079 	 * vdev that's replacing B with C.  The user's intent in replacing
7080 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
7081 	 * the replace by detaching C, the expected behavior is to end up
7082 	 * M(A,B).  But suppose that right after deciding to detach C,
7083 	 * the replacement of B completes.  We would have M(A,C), and then
7084 	 * ask to detach C, which would leave us with just A -- not what
7085 	 * the user wanted.  To prevent this, we make sure that the
7086 	 * parent/child relationship hasn't changed -- in this example,
7087 	 * that C's parent is still the replacing vdev R.
7088 	 */
7089 	if (pvd->vdev_guid != pguid && pguid != 0)
7090 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7091 
7092 	/*
7093 	 * Only 'replacing' or 'spare' vdevs can be replaced.
7094 	 */
7095 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7096 	    pvd->vdev_ops != &vdev_spare_ops)
7097 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7098 
7099 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7100 	    spa_version(spa) >= SPA_VERSION_SPARES);
7101 
7102 	/*
7103 	 * Only mirror, replacing, and spare vdevs support detach.
7104 	 */
7105 	if (pvd->vdev_ops != &vdev_replacing_ops &&
7106 	    pvd->vdev_ops != &vdev_mirror_ops &&
7107 	    pvd->vdev_ops != &vdev_spare_ops)
7108 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7109 
7110 	/*
7111 	 * If this device has the only valid copy of some data,
7112 	 * we cannot safely detach it.
7113 	 */
7114 	if (vdev_dtl_required(vd))
7115 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7116 
7117 	ASSERT(pvd->vdev_children >= 2);
7118 
7119 	/*
7120 	 * If we are detaching the second disk from a replacing vdev, then
7121 	 * check to see if we changed the original vdev's path to have "/old"
7122 	 * at the end in spa_vdev_attach().  If so, undo that change now.
7123 	 */
7124 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7125 	    vd->vdev_path != NULL) {
7126 		size_t len = strlen(vd->vdev_path);
7127 
7128 		for (int c = 0; c < pvd->vdev_children; c++) {
7129 			cvd = pvd->vdev_child[c];
7130 
7131 			if (cvd == vd || cvd->vdev_path == NULL)
7132 				continue;
7133 
7134 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7135 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
7136 				spa_strfree(cvd->vdev_path);
7137 				cvd->vdev_path = spa_strdup(vd->vdev_path);
7138 				break;
7139 			}
7140 		}
7141 	}
7142 
7143 	/*
7144 	 * If we are detaching the original disk from a normal spare, then it
7145 	 * implies that the spare should become a real disk, and be removed
7146 	 * from the active spare list for the pool.  dRAID spares on the
7147 	 * other hand are coupled to the pool and thus should never be removed
7148 	 * from the spares list.
7149 	 */
7150 	if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7151 		vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7152 
7153 		if (last_cvd->vdev_isspare &&
7154 		    last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7155 			unspare = B_TRUE;
7156 		}
7157 	}
7158 
7159 	/*
7160 	 * Erase the disk labels so the disk can be used for other things.
7161 	 * This must be done after all other error cases are handled,
7162 	 * but before we disembowel vd (so we can still do I/O to it).
7163 	 * But if we can't do it, don't treat the error as fatal --
7164 	 * it may be that the unwritability of the disk is the reason
7165 	 * it's being detached!
7166 	 */
7167 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7168 
7169 	/*
7170 	 * Remove vd from its parent and compact the parent's children.
7171 	 */
7172 	vdev_remove_child(pvd, vd);
7173 	vdev_compact_children(pvd);
7174 
7175 	/*
7176 	 * Remember one of the remaining children so we can get tvd below.
7177 	 */
7178 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
7179 
7180 	/*
7181 	 * If we need to remove the remaining child from the list of hot spares,
7182 	 * do it now, marking the vdev as no longer a spare in the process.
7183 	 * We must do this before vdev_remove_parent(), because that can
7184 	 * change the GUID if it creates a new toplevel GUID.  For a similar
7185 	 * reason, we must remove the spare now, in the same txg as the detach;
7186 	 * otherwise someone could attach a new sibling, change the GUID, and
7187 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7188 	 */
7189 	if (unspare) {
7190 		ASSERT(cvd->vdev_isspare);
7191 		spa_spare_remove(cvd);
7192 		unspare_guid = cvd->vdev_guid;
7193 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7194 		cvd->vdev_unspare = B_TRUE;
7195 	}
7196 
7197 	/*
7198 	 * If the parent mirror/replacing vdev only has one child,
7199 	 * the parent is no longer needed.  Remove it from the tree.
7200 	 */
7201 	if (pvd->vdev_children == 1) {
7202 		if (pvd->vdev_ops == &vdev_spare_ops)
7203 			cvd->vdev_unspare = B_FALSE;
7204 		vdev_remove_parent(cvd);
7205 	}
7206 
7207 	/*
7208 	 * We don't set tvd until now because the parent we just removed
7209 	 * may have been the previous top-level vdev.
7210 	 */
7211 	tvd = cvd->vdev_top;
7212 	ASSERT(tvd->vdev_parent == rvd);
7213 
7214 	/*
7215 	 * Reevaluate the parent vdev state.
7216 	 */
7217 	vdev_propagate_state(cvd);
7218 
7219 	/*
7220 	 * If the 'autoexpand' property is set on the pool then automatically
7221 	 * try to expand the size of the pool. For example if the device we
7222 	 * just detached was smaller than the others, it may be possible to
7223 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7224 	 * first so that we can obtain the updated sizes of the leaf vdevs.
7225 	 */
7226 	if (spa->spa_autoexpand) {
7227 		vdev_reopen(tvd);
7228 		vdev_expand(tvd, txg);
7229 	}
7230 
7231 	vdev_config_dirty(tvd);
7232 
7233 	/*
7234 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
7235 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7236 	 * But first make sure we're not on any *other* txg's DTL list, to
7237 	 * prevent vd from being accessed after it's freed.
7238 	 */
7239 	vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7240 	for (int t = 0; t < TXG_SIZE; t++)
7241 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7242 	vd->vdev_detached = B_TRUE;
7243 	vdev_dirty(tvd, VDD_DTL, vd, txg);
7244 
7245 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7246 	spa_notify_waiters(spa);
7247 
7248 	/* hang on to the spa before we release the lock */
7249 	spa_open_ref(spa, FTAG);
7250 
7251 	error = spa_vdev_exit(spa, vd, txg, 0);
7252 
7253 	spa_history_log_internal(spa, "detach", NULL,
7254 	    "vdev=%s", vdpath);
7255 	spa_strfree(vdpath);
7256 
7257 	/*
7258 	 * If this was the removal of the original device in a hot spare vdev,
7259 	 * then we want to go through and remove the device from the hot spare
7260 	 * list of every other pool.
7261 	 */
7262 	if (unspare) {
7263 		spa_t *altspa = NULL;
7264 
7265 		mutex_enter(&spa_namespace_lock);
7266 		while ((altspa = spa_next(altspa)) != NULL) {
7267 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
7268 			    altspa == spa)
7269 				continue;
7270 
7271 			spa_open_ref(altspa, FTAG);
7272 			mutex_exit(&spa_namespace_lock);
7273 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7274 			mutex_enter(&spa_namespace_lock);
7275 			spa_close(altspa, FTAG);
7276 		}
7277 		mutex_exit(&spa_namespace_lock);
7278 
7279 		/* search the rest of the vdevs for spares to remove */
7280 		spa_vdev_resilver_done(spa);
7281 	}
7282 
7283 	/* all done with the spa; OK to release */
7284 	mutex_enter(&spa_namespace_lock);
7285 	spa_close(spa, FTAG);
7286 	mutex_exit(&spa_namespace_lock);
7287 
7288 	return (error);
7289 }
7290 
7291 static int
7292 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7293     list_t *vd_list)
7294 {
7295 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7296 
7297 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7298 
7299 	/* Look up vdev and ensure it's a leaf. */
7300 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7301 	if (vd == NULL || vd->vdev_detached) {
7302 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7303 		return (SET_ERROR(ENODEV));
7304 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7305 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7306 		return (SET_ERROR(EINVAL));
7307 	} else if (!vdev_writeable(vd)) {
7308 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7309 		return (SET_ERROR(EROFS));
7310 	}
7311 	mutex_enter(&vd->vdev_initialize_lock);
7312 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7313 
7314 	/*
7315 	 * When we activate an initialize action we check to see
7316 	 * if the vdev_initialize_thread is NULL. We do this instead
7317 	 * of using the vdev_initialize_state since there might be
7318 	 * a previous initialization process which has completed but
7319 	 * the thread is not exited.
7320 	 */
7321 	if (cmd_type == POOL_INITIALIZE_START &&
7322 	    (vd->vdev_initialize_thread != NULL ||
7323 	    vd->vdev_top->vdev_removing)) {
7324 		mutex_exit(&vd->vdev_initialize_lock);
7325 		return (SET_ERROR(EBUSY));
7326 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7327 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7328 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7329 		mutex_exit(&vd->vdev_initialize_lock);
7330 		return (SET_ERROR(ESRCH));
7331 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7332 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7333 		mutex_exit(&vd->vdev_initialize_lock);
7334 		return (SET_ERROR(ESRCH));
7335 	}
7336 
7337 	switch (cmd_type) {
7338 	case POOL_INITIALIZE_START:
7339 		vdev_initialize(vd);
7340 		break;
7341 	case POOL_INITIALIZE_CANCEL:
7342 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7343 		break;
7344 	case POOL_INITIALIZE_SUSPEND:
7345 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7346 		break;
7347 	default:
7348 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7349 	}
7350 	mutex_exit(&vd->vdev_initialize_lock);
7351 
7352 	return (0);
7353 }
7354 
7355 int
7356 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7357     nvlist_t *vdev_errlist)
7358 {
7359 	int total_errors = 0;
7360 	list_t vd_list;
7361 
7362 	list_create(&vd_list, sizeof (vdev_t),
7363 	    offsetof(vdev_t, vdev_initialize_node));
7364 
7365 	/*
7366 	 * We hold the namespace lock through the whole function
7367 	 * to prevent any changes to the pool while we're starting or
7368 	 * stopping initialization. The config and state locks are held so that
7369 	 * we can properly assess the vdev state before we commit to
7370 	 * the initializing operation.
7371 	 */
7372 	mutex_enter(&spa_namespace_lock);
7373 
7374 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7375 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7376 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
7377 
7378 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7379 		    &vd_list);
7380 		if (error != 0) {
7381 			char guid_as_str[MAXNAMELEN];
7382 
7383 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
7384 			    "%llu", (unsigned long long)vdev_guid);
7385 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7386 			total_errors++;
7387 		}
7388 	}
7389 
7390 	/* Wait for all initialize threads to stop. */
7391 	vdev_initialize_stop_wait(spa, &vd_list);
7392 
7393 	/* Sync out the initializing state */
7394 	txg_wait_synced(spa->spa_dsl_pool, 0);
7395 	mutex_exit(&spa_namespace_lock);
7396 
7397 	list_destroy(&vd_list);
7398 
7399 	return (total_errors);
7400 }
7401 
7402 static int
7403 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7404     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
7405 {
7406 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7407 
7408 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7409 
7410 	/* Look up vdev and ensure it's a leaf. */
7411 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7412 	if (vd == NULL || vd->vdev_detached) {
7413 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7414 		return (SET_ERROR(ENODEV));
7415 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7416 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7417 		return (SET_ERROR(EINVAL));
7418 	} else if (!vdev_writeable(vd)) {
7419 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7420 		return (SET_ERROR(EROFS));
7421 	} else if (!vd->vdev_has_trim) {
7422 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7423 		return (SET_ERROR(EOPNOTSUPP));
7424 	} else if (secure && !vd->vdev_has_securetrim) {
7425 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7426 		return (SET_ERROR(EOPNOTSUPP));
7427 	}
7428 	mutex_enter(&vd->vdev_trim_lock);
7429 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7430 
7431 	/*
7432 	 * When we activate a TRIM action we check to see if the
7433 	 * vdev_trim_thread is NULL. We do this instead of using the
7434 	 * vdev_trim_state since there might be a previous TRIM process
7435 	 * which has completed but the thread is not exited.
7436 	 */
7437 	if (cmd_type == POOL_TRIM_START &&
7438 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
7439 		mutex_exit(&vd->vdev_trim_lock);
7440 		return (SET_ERROR(EBUSY));
7441 	} else if (cmd_type == POOL_TRIM_CANCEL &&
7442 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
7443 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
7444 		mutex_exit(&vd->vdev_trim_lock);
7445 		return (SET_ERROR(ESRCH));
7446 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
7447 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
7448 		mutex_exit(&vd->vdev_trim_lock);
7449 		return (SET_ERROR(ESRCH));
7450 	}
7451 
7452 	switch (cmd_type) {
7453 	case POOL_TRIM_START:
7454 		vdev_trim(vd, rate, partial, secure);
7455 		break;
7456 	case POOL_TRIM_CANCEL:
7457 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
7458 		break;
7459 	case POOL_TRIM_SUSPEND:
7460 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
7461 		break;
7462 	default:
7463 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7464 	}
7465 	mutex_exit(&vd->vdev_trim_lock);
7466 
7467 	return (0);
7468 }
7469 
7470 /*
7471  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
7472  * TRIM threads for each child vdev.  These threads pass over all of the free
7473  * space in the vdev's metaslabs and issues TRIM commands for that space.
7474  */
7475 int
7476 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
7477     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
7478 {
7479 	int total_errors = 0;
7480 	list_t vd_list;
7481 
7482 	list_create(&vd_list, sizeof (vdev_t),
7483 	    offsetof(vdev_t, vdev_trim_node));
7484 
7485 	/*
7486 	 * We hold the namespace lock through the whole function
7487 	 * to prevent any changes to the pool while we're starting or
7488 	 * stopping TRIM. The config and state locks are held so that
7489 	 * we can properly assess the vdev state before we commit to
7490 	 * the TRIM operation.
7491 	 */
7492 	mutex_enter(&spa_namespace_lock);
7493 
7494 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7495 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7496 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
7497 
7498 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
7499 		    rate, partial, secure, &vd_list);
7500 		if (error != 0) {
7501 			char guid_as_str[MAXNAMELEN];
7502 
7503 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
7504 			    "%llu", (unsigned long long)vdev_guid);
7505 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7506 			total_errors++;
7507 		}
7508 	}
7509 
7510 	/* Wait for all TRIM threads to stop. */
7511 	vdev_trim_stop_wait(spa, &vd_list);
7512 
7513 	/* Sync out the TRIM state */
7514 	txg_wait_synced(spa->spa_dsl_pool, 0);
7515 	mutex_exit(&spa_namespace_lock);
7516 
7517 	list_destroy(&vd_list);
7518 
7519 	return (total_errors);
7520 }
7521 
7522 /*
7523  * Split a set of devices from their mirrors, and create a new pool from them.
7524  */
7525 int
7526 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
7527     nvlist_t *props, boolean_t exp)
7528 {
7529 	int error = 0;
7530 	uint64_t txg, *glist;
7531 	spa_t *newspa;
7532 	uint_t c, children, lastlog;
7533 	nvlist_t **child, *nvl, *tmp;
7534 	dmu_tx_t *tx;
7535 	char *altroot = NULL;
7536 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
7537 	boolean_t activate_slog;
7538 
7539 	ASSERT(spa_writeable(spa));
7540 
7541 	txg = spa_vdev_enter(spa);
7542 
7543 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7544 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7545 		error = (spa_has_checkpoint(spa)) ?
7546 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7547 		return (spa_vdev_exit(spa, NULL, txg, error));
7548 	}
7549 
7550 	/* clear the log and flush everything up to now */
7551 	activate_slog = spa_passivate_log(spa);
7552 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7553 	error = spa_reset_logs(spa);
7554 	txg = spa_vdev_config_enter(spa);
7555 
7556 	if (activate_slog)
7557 		spa_activate_log(spa);
7558 
7559 	if (error != 0)
7560 		return (spa_vdev_exit(spa, NULL, txg, error));
7561 
7562 	/* check new spa name before going any further */
7563 	if (spa_lookup(newname) != NULL)
7564 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
7565 
7566 	/*
7567 	 * scan through all the children to ensure they're all mirrors
7568 	 */
7569 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
7570 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
7571 	    &children) != 0)
7572 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7573 
7574 	/* first, check to ensure we've got the right child count */
7575 	rvd = spa->spa_root_vdev;
7576 	lastlog = 0;
7577 	for (c = 0; c < rvd->vdev_children; c++) {
7578 		vdev_t *vd = rvd->vdev_child[c];
7579 
7580 		/* don't count the holes & logs as children */
7581 		if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
7582 		    !vdev_is_concrete(vd))) {
7583 			if (lastlog == 0)
7584 				lastlog = c;
7585 			continue;
7586 		}
7587 
7588 		lastlog = 0;
7589 	}
7590 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7591 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7592 
7593 	/* next, ensure no spare or cache devices are part of the split */
7594 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7595 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7596 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7597 
7598 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7599 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7600 
7601 	/* then, loop over each vdev and validate it */
7602 	for (c = 0; c < children; c++) {
7603 		uint64_t is_hole = 0;
7604 
7605 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7606 		    &is_hole);
7607 
7608 		if (is_hole != 0) {
7609 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7610 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7611 				continue;
7612 			} else {
7613 				error = SET_ERROR(EINVAL);
7614 				break;
7615 			}
7616 		}
7617 
7618 		/* deal with indirect vdevs */
7619 		if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
7620 		    &vdev_indirect_ops)
7621 			continue;
7622 
7623 		/* which disk is going to be split? */
7624 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7625 		    &glist[c]) != 0) {
7626 			error = SET_ERROR(EINVAL);
7627 			break;
7628 		}
7629 
7630 		/* look it up in the spa */
7631 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7632 		if (vml[c] == NULL) {
7633 			error = SET_ERROR(ENODEV);
7634 			break;
7635 		}
7636 
7637 		/* make sure there's nothing stopping the split */
7638 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7639 		    vml[c]->vdev_islog ||
7640 		    !vdev_is_concrete(vml[c]) ||
7641 		    vml[c]->vdev_isspare ||
7642 		    vml[c]->vdev_isl2cache ||
7643 		    !vdev_writeable(vml[c]) ||
7644 		    vml[c]->vdev_children != 0 ||
7645 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7646 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7647 			error = SET_ERROR(EINVAL);
7648 			break;
7649 		}
7650 
7651 		if (vdev_dtl_required(vml[c]) ||
7652 		    vdev_resilver_needed(vml[c], NULL, NULL)) {
7653 			error = SET_ERROR(EBUSY);
7654 			break;
7655 		}
7656 
7657 		/* we need certain info from the top level */
7658 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7659 		    vml[c]->vdev_top->vdev_ms_array);
7660 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7661 		    vml[c]->vdev_top->vdev_ms_shift);
7662 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7663 		    vml[c]->vdev_top->vdev_asize);
7664 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7665 		    vml[c]->vdev_top->vdev_ashift);
7666 
7667 		/* transfer per-vdev ZAPs */
7668 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7669 		VERIFY0(nvlist_add_uint64(child[c],
7670 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7671 
7672 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7673 		VERIFY0(nvlist_add_uint64(child[c],
7674 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
7675 		    vml[c]->vdev_parent->vdev_top_zap));
7676 	}
7677 
7678 	if (error != 0) {
7679 		kmem_free(vml, children * sizeof (vdev_t *));
7680 		kmem_free(glist, children * sizeof (uint64_t));
7681 		return (spa_vdev_exit(spa, NULL, txg, error));
7682 	}
7683 
7684 	/* stop writers from using the disks */
7685 	for (c = 0; c < children; c++) {
7686 		if (vml[c] != NULL)
7687 			vml[c]->vdev_offline = B_TRUE;
7688 	}
7689 	vdev_reopen(spa->spa_root_vdev);
7690 
7691 	/*
7692 	 * Temporarily record the splitting vdevs in the spa config.  This
7693 	 * will disappear once the config is regenerated.
7694 	 */
7695 	nvl = fnvlist_alloc();
7696 	fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
7697 	kmem_free(glist, children * sizeof (uint64_t));
7698 
7699 	mutex_enter(&spa->spa_props_lock);
7700 	fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
7701 	mutex_exit(&spa->spa_props_lock);
7702 	spa->spa_config_splitting = nvl;
7703 	vdev_config_dirty(spa->spa_root_vdev);
7704 
7705 	/* configure and create the new pool */
7706 	fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
7707 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7708 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
7709 	fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
7710 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
7711 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7712 	    spa_generate_guid(NULL));
7713 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7714 	(void) nvlist_lookup_string(props,
7715 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7716 
7717 	/* add the new pool to the namespace */
7718 	newspa = spa_add(newname, config, altroot);
7719 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7720 	newspa->spa_config_txg = spa->spa_config_txg;
7721 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
7722 
7723 	/* release the spa config lock, retaining the namespace lock */
7724 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7725 
7726 	if (zio_injection_enabled)
7727 		zio_handle_panic_injection(spa, FTAG, 1);
7728 
7729 	spa_activate(newspa, spa_mode_global);
7730 	spa_async_suspend(newspa);
7731 
7732 	/*
7733 	 * Temporarily stop the initializing and TRIM activity.  We set the
7734 	 * state to ACTIVE so that we know to resume initializing or TRIM
7735 	 * once the split has completed.
7736 	 */
7737 	list_t vd_initialize_list;
7738 	list_create(&vd_initialize_list, sizeof (vdev_t),
7739 	    offsetof(vdev_t, vdev_initialize_node));
7740 
7741 	list_t vd_trim_list;
7742 	list_create(&vd_trim_list, sizeof (vdev_t),
7743 	    offsetof(vdev_t, vdev_trim_node));
7744 
7745 	for (c = 0; c < children; c++) {
7746 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7747 			mutex_enter(&vml[c]->vdev_initialize_lock);
7748 			vdev_initialize_stop(vml[c],
7749 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7750 			mutex_exit(&vml[c]->vdev_initialize_lock);
7751 
7752 			mutex_enter(&vml[c]->vdev_trim_lock);
7753 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7754 			mutex_exit(&vml[c]->vdev_trim_lock);
7755 		}
7756 	}
7757 
7758 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
7759 	vdev_trim_stop_wait(spa, &vd_trim_list);
7760 
7761 	list_destroy(&vd_initialize_list);
7762 	list_destroy(&vd_trim_list);
7763 
7764 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7765 	newspa->spa_is_splitting = B_TRUE;
7766 
7767 	/* create the new pool from the disks of the original pool */
7768 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7769 	if (error)
7770 		goto out;
7771 
7772 	/* if that worked, generate a real config for the new pool */
7773 	if (newspa->spa_root_vdev != NULL) {
7774 		newspa->spa_config_splitting = fnvlist_alloc();
7775 		fnvlist_add_uint64(newspa->spa_config_splitting,
7776 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
7777 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7778 		    B_TRUE));
7779 	}
7780 
7781 	/* set the props */
7782 	if (props != NULL) {
7783 		spa_configfile_set(newspa, props, B_FALSE);
7784 		error = spa_prop_set(newspa, props);
7785 		if (error)
7786 			goto out;
7787 	}
7788 
7789 	/* flush everything */
7790 	txg = spa_vdev_config_enter(newspa);
7791 	vdev_config_dirty(newspa->spa_root_vdev);
7792 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7793 
7794 	if (zio_injection_enabled)
7795 		zio_handle_panic_injection(spa, FTAG, 2);
7796 
7797 	spa_async_resume(newspa);
7798 
7799 	/* finally, update the original pool's config */
7800 	txg = spa_vdev_config_enter(spa);
7801 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7802 	error = dmu_tx_assign(tx, TXG_WAIT);
7803 	if (error != 0)
7804 		dmu_tx_abort(tx);
7805 	for (c = 0; c < children; c++) {
7806 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7807 			vdev_t *tvd = vml[c]->vdev_top;
7808 
7809 			/*
7810 			 * Need to be sure the detachable VDEV is not
7811 			 * on any *other* txg's DTL list to prevent it
7812 			 * from being accessed after it's freed.
7813 			 */
7814 			for (int t = 0; t < TXG_SIZE; t++) {
7815 				(void) txg_list_remove_this(
7816 				    &tvd->vdev_dtl_list, vml[c], t);
7817 			}
7818 
7819 			vdev_split(vml[c]);
7820 			if (error == 0)
7821 				spa_history_log_internal(spa, "detach", tx,
7822 				    "vdev=%s", vml[c]->vdev_path);
7823 
7824 			vdev_free(vml[c]);
7825 		}
7826 	}
7827 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
7828 	vdev_config_dirty(spa->spa_root_vdev);
7829 	spa->spa_config_splitting = NULL;
7830 	nvlist_free(nvl);
7831 	if (error == 0)
7832 		dmu_tx_commit(tx);
7833 	(void) spa_vdev_exit(spa, NULL, txg, 0);
7834 
7835 	if (zio_injection_enabled)
7836 		zio_handle_panic_injection(spa, FTAG, 3);
7837 
7838 	/* split is complete; log a history record */
7839 	spa_history_log_internal(newspa, "split", NULL,
7840 	    "from pool %s", spa_name(spa));
7841 
7842 	newspa->spa_is_splitting = B_FALSE;
7843 	kmem_free(vml, children * sizeof (vdev_t *));
7844 
7845 	/* if we're not going to mount the filesystems in userland, export */
7846 	if (exp)
7847 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7848 		    B_FALSE, B_FALSE);
7849 
7850 	return (error);
7851 
7852 out:
7853 	spa_unload(newspa);
7854 	spa_deactivate(newspa);
7855 	spa_remove(newspa);
7856 
7857 	txg = spa_vdev_config_enter(spa);
7858 
7859 	/* re-online all offlined disks */
7860 	for (c = 0; c < children; c++) {
7861 		if (vml[c] != NULL)
7862 			vml[c]->vdev_offline = B_FALSE;
7863 	}
7864 
7865 	/* restart initializing or trimming disks as necessary */
7866 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7867 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7868 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7869 
7870 	vdev_reopen(spa->spa_root_vdev);
7871 
7872 	nvlist_free(spa->spa_config_splitting);
7873 	spa->spa_config_splitting = NULL;
7874 	(void) spa_vdev_exit(spa, NULL, txg, error);
7875 
7876 	kmem_free(vml, children * sizeof (vdev_t *));
7877 	return (error);
7878 }
7879 
7880 /*
7881  * Find any device that's done replacing, or a vdev marked 'unspare' that's
7882  * currently spared, so we can detach it.
7883  */
7884 static vdev_t *
7885 spa_vdev_resilver_done_hunt(vdev_t *vd)
7886 {
7887 	vdev_t *newvd, *oldvd;
7888 
7889 	for (int c = 0; c < vd->vdev_children; c++) {
7890 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7891 		if (oldvd != NULL)
7892 			return (oldvd);
7893 	}
7894 
7895 	/*
7896 	 * Check for a completed replacement.  We always consider the first
7897 	 * vdev in the list to be the oldest vdev, and the last one to be
7898 	 * the newest (see spa_vdev_attach() for how that works).  In
7899 	 * the case where the newest vdev is faulted, we will not automatically
7900 	 * remove it after a resilver completes.  This is OK as it will require
7901 	 * user intervention to determine which disk the admin wishes to keep.
7902 	 */
7903 	if (vd->vdev_ops == &vdev_replacing_ops) {
7904 		ASSERT(vd->vdev_children > 1);
7905 
7906 		newvd = vd->vdev_child[vd->vdev_children - 1];
7907 		oldvd = vd->vdev_child[0];
7908 
7909 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7910 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7911 		    !vdev_dtl_required(oldvd))
7912 			return (oldvd);
7913 	}
7914 
7915 	/*
7916 	 * Check for a completed resilver with the 'unspare' flag set.
7917 	 * Also potentially update faulted state.
7918 	 */
7919 	if (vd->vdev_ops == &vdev_spare_ops) {
7920 		vdev_t *first = vd->vdev_child[0];
7921 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7922 
7923 		if (last->vdev_unspare) {
7924 			oldvd = first;
7925 			newvd = last;
7926 		} else if (first->vdev_unspare) {
7927 			oldvd = last;
7928 			newvd = first;
7929 		} else {
7930 			oldvd = NULL;
7931 		}
7932 
7933 		if (oldvd != NULL &&
7934 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
7935 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7936 		    !vdev_dtl_required(oldvd))
7937 			return (oldvd);
7938 
7939 		vdev_propagate_state(vd);
7940 
7941 		/*
7942 		 * If there are more than two spares attached to a disk,
7943 		 * and those spares are not required, then we want to
7944 		 * attempt to free them up now so that they can be used
7945 		 * by other pools.  Once we're back down to a single
7946 		 * disk+spare, we stop removing them.
7947 		 */
7948 		if (vd->vdev_children > 2) {
7949 			newvd = vd->vdev_child[1];
7950 
7951 			if (newvd->vdev_isspare && last->vdev_isspare &&
7952 			    vdev_dtl_empty(last, DTL_MISSING) &&
7953 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
7954 			    !vdev_dtl_required(newvd))
7955 				return (newvd);
7956 		}
7957 	}
7958 
7959 	return (NULL);
7960 }
7961 
7962 static void
7963 spa_vdev_resilver_done(spa_t *spa)
7964 {
7965 	vdev_t *vd, *pvd, *ppvd;
7966 	uint64_t guid, sguid, pguid, ppguid;
7967 
7968 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7969 
7970 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
7971 		pvd = vd->vdev_parent;
7972 		ppvd = pvd->vdev_parent;
7973 		guid = vd->vdev_guid;
7974 		pguid = pvd->vdev_guid;
7975 		ppguid = ppvd->vdev_guid;
7976 		sguid = 0;
7977 		/*
7978 		 * If we have just finished replacing a hot spared device, then
7979 		 * we need to detach the parent's first child (the original hot
7980 		 * spare) as well.
7981 		 */
7982 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
7983 		    ppvd->vdev_children == 2) {
7984 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
7985 			sguid = ppvd->vdev_child[1]->vdev_guid;
7986 		}
7987 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
7988 
7989 		spa_config_exit(spa, SCL_ALL, FTAG);
7990 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
7991 			return;
7992 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
7993 			return;
7994 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7995 	}
7996 
7997 	spa_config_exit(spa, SCL_ALL, FTAG);
7998 
7999 	/*
8000 	 * If a detach was not performed above replace waiters will not have
8001 	 * been notified.  In which case we must do so now.
8002 	 */
8003 	spa_notify_waiters(spa);
8004 }
8005 
8006 /*
8007  * Update the stored path or FRU for this vdev.
8008  */
8009 static int
8010 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8011     boolean_t ispath)
8012 {
8013 	vdev_t *vd;
8014 	boolean_t sync = B_FALSE;
8015 
8016 	ASSERT(spa_writeable(spa));
8017 
8018 	spa_vdev_state_enter(spa, SCL_ALL);
8019 
8020 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8021 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
8022 
8023 	if (!vd->vdev_ops->vdev_op_leaf)
8024 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8025 
8026 	if (ispath) {
8027 		if (strcmp(value, vd->vdev_path) != 0) {
8028 			spa_strfree(vd->vdev_path);
8029 			vd->vdev_path = spa_strdup(value);
8030 			sync = B_TRUE;
8031 		}
8032 	} else {
8033 		if (vd->vdev_fru == NULL) {
8034 			vd->vdev_fru = spa_strdup(value);
8035 			sync = B_TRUE;
8036 		} else if (strcmp(value, vd->vdev_fru) != 0) {
8037 			spa_strfree(vd->vdev_fru);
8038 			vd->vdev_fru = spa_strdup(value);
8039 			sync = B_TRUE;
8040 		}
8041 	}
8042 
8043 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8044 }
8045 
8046 int
8047 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8048 {
8049 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8050 }
8051 
8052 int
8053 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8054 {
8055 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8056 }
8057 
8058 /*
8059  * ==========================================================================
8060  * SPA Scanning
8061  * ==========================================================================
8062  */
8063 int
8064 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8065 {
8066 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8067 
8068 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8069 		return (SET_ERROR(EBUSY));
8070 
8071 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8072 }
8073 
8074 int
8075 spa_scan_stop(spa_t *spa)
8076 {
8077 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8078 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8079 		return (SET_ERROR(EBUSY));
8080 	return (dsl_scan_cancel(spa->spa_dsl_pool));
8081 }
8082 
8083 int
8084 spa_scan(spa_t *spa, pool_scan_func_t func)
8085 {
8086 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8087 
8088 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8089 		return (SET_ERROR(ENOTSUP));
8090 
8091 	if (func == POOL_SCAN_RESILVER &&
8092 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8093 		return (SET_ERROR(ENOTSUP));
8094 
8095 	/*
8096 	 * If a resilver was requested, but there is no DTL on a
8097 	 * writeable leaf device, we have nothing to do.
8098 	 */
8099 	if (func == POOL_SCAN_RESILVER &&
8100 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8101 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8102 		return (0);
8103 	}
8104 
8105 	return (dsl_scan(spa->spa_dsl_pool, func));
8106 }
8107 
8108 /*
8109  * ==========================================================================
8110  * SPA async task processing
8111  * ==========================================================================
8112  */
8113 
8114 static void
8115 spa_async_remove(spa_t *spa, vdev_t *vd)
8116 {
8117 	if (vd->vdev_remove_wanted) {
8118 		vd->vdev_remove_wanted = B_FALSE;
8119 		vd->vdev_delayed_close = B_FALSE;
8120 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8121 
8122 		/*
8123 		 * We want to clear the stats, but we don't want to do a full
8124 		 * vdev_clear() as that will cause us to throw away
8125 		 * degraded/faulted state as well as attempt to reopen the
8126 		 * device, all of which is a waste.
8127 		 */
8128 		vd->vdev_stat.vs_read_errors = 0;
8129 		vd->vdev_stat.vs_write_errors = 0;
8130 		vd->vdev_stat.vs_checksum_errors = 0;
8131 
8132 		vdev_state_dirty(vd->vdev_top);
8133 
8134 		/* Tell userspace that the vdev is gone. */
8135 		zfs_post_remove(spa, vd);
8136 	}
8137 
8138 	for (int c = 0; c < vd->vdev_children; c++)
8139 		spa_async_remove(spa, vd->vdev_child[c]);
8140 }
8141 
8142 static void
8143 spa_async_probe(spa_t *spa, vdev_t *vd)
8144 {
8145 	if (vd->vdev_probe_wanted) {
8146 		vd->vdev_probe_wanted = B_FALSE;
8147 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
8148 	}
8149 
8150 	for (int c = 0; c < vd->vdev_children; c++)
8151 		spa_async_probe(spa, vd->vdev_child[c]);
8152 }
8153 
8154 static void
8155 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8156 {
8157 	if (!spa->spa_autoexpand)
8158 		return;
8159 
8160 	for (int c = 0; c < vd->vdev_children; c++) {
8161 		vdev_t *cvd = vd->vdev_child[c];
8162 		spa_async_autoexpand(spa, cvd);
8163 	}
8164 
8165 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8166 		return;
8167 
8168 	spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8169 }
8170 
8171 static __attribute__((noreturn)) void
8172 spa_async_thread(void *arg)
8173 {
8174 	spa_t *spa = (spa_t *)arg;
8175 	dsl_pool_t *dp = spa->spa_dsl_pool;
8176 	int tasks;
8177 
8178 	ASSERT(spa->spa_sync_on);
8179 
8180 	mutex_enter(&spa->spa_async_lock);
8181 	tasks = spa->spa_async_tasks;
8182 	spa->spa_async_tasks = 0;
8183 	mutex_exit(&spa->spa_async_lock);
8184 
8185 	/*
8186 	 * See if the config needs to be updated.
8187 	 */
8188 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8189 		uint64_t old_space, new_space;
8190 
8191 		mutex_enter(&spa_namespace_lock);
8192 		old_space = metaslab_class_get_space(spa_normal_class(spa));
8193 		old_space += metaslab_class_get_space(spa_special_class(spa));
8194 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
8195 		old_space += metaslab_class_get_space(
8196 		    spa_embedded_log_class(spa));
8197 
8198 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8199 
8200 		new_space = metaslab_class_get_space(spa_normal_class(spa));
8201 		new_space += metaslab_class_get_space(spa_special_class(spa));
8202 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
8203 		new_space += metaslab_class_get_space(
8204 		    spa_embedded_log_class(spa));
8205 		mutex_exit(&spa_namespace_lock);
8206 
8207 		/*
8208 		 * If the pool grew as a result of the config update,
8209 		 * then log an internal history event.
8210 		 */
8211 		if (new_space != old_space) {
8212 			spa_history_log_internal(spa, "vdev online", NULL,
8213 			    "pool '%s' size: %llu(+%llu)",
8214 			    spa_name(spa), (u_longlong_t)new_space,
8215 			    (u_longlong_t)(new_space - old_space));
8216 		}
8217 	}
8218 
8219 	/*
8220 	 * See if any devices need to be marked REMOVED.
8221 	 */
8222 	if (tasks & SPA_ASYNC_REMOVE) {
8223 		spa_vdev_state_enter(spa, SCL_NONE);
8224 		spa_async_remove(spa, spa->spa_root_vdev);
8225 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
8226 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
8227 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
8228 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
8229 		(void) spa_vdev_state_exit(spa, NULL, 0);
8230 	}
8231 
8232 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8233 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8234 		spa_async_autoexpand(spa, spa->spa_root_vdev);
8235 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8236 	}
8237 
8238 	/*
8239 	 * See if any devices need to be probed.
8240 	 */
8241 	if (tasks & SPA_ASYNC_PROBE) {
8242 		spa_vdev_state_enter(spa, SCL_NONE);
8243 		spa_async_probe(spa, spa->spa_root_vdev);
8244 		(void) spa_vdev_state_exit(spa, NULL, 0);
8245 	}
8246 
8247 	/*
8248 	 * If any devices are done replacing, detach them.
8249 	 */
8250 	if (tasks & SPA_ASYNC_RESILVER_DONE ||
8251 	    tasks & SPA_ASYNC_REBUILD_DONE) {
8252 		spa_vdev_resilver_done(spa);
8253 	}
8254 
8255 	/*
8256 	 * Kick off a resilver.
8257 	 */
8258 	if (tasks & SPA_ASYNC_RESILVER &&
8259 	    !vdev_rebuild_active(spa->spa_root_vdev) &&
8260 	    (!dsl_scan_resilvering(dp) ||
8261 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8262 		dsl_scan_restart_resilver(dp, 0);
8263 
8264 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8265 		mutex_enter(&spa_namespace_lock);
8266 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8267 		vdev_initialize_restart(spa->spa_root_vdev);
8268 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8269 		mutex_exit(&spa_namespace_lock);
8270 	}
8271 
8272 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
8273 		mutex_enter(&spa_namespace_lock);
8274 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8275 		vdev_trim_restart(spa->spa_root_vdev);
8276 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8277 		mutex_exit(&spa_namespace_lock);
8278 	}
8279 
8280 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8281 		mutex_enter(&spa_namespace_lock);
8282 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8283 		vdev_autotrim_restart(spa);
8284 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8285 		mutex_exit(&spa_namespace_lock);
8286 	}
8287 
8288 	/*
8289 	 * Kick off L2 cache whole device TRIM.
8290 	 */
8291 	if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8292 		mutex_enter(&spa_namespace_lock);
8293 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8294 		vdev_trim_l2arc(spa);
8295 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8296 		mutex_exit(&spa_namespace_lock);
8297 	}
8298 
8299 	/*
8300 	 * Kick off L2 cache rebuilding.
8301 	 */
8302 	if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8303 		mutex_enter(&spa_namespace_lock);
8304 		spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8305 		l2arc_spa_rebuild_start(spa);
8306 		spa_config_exit(spa, SCL_L2ARC, FTAG);
8307 		mutex_exit(&spa_namespace_lock);
8308 	}
8309 
8310 	/*
8311 	 * Let the world know that we're done.
8312 	 */
8313 	mutex_enter(&spa->spa_async_lock);
8314 	spa->spa_async_thread = NULL;
8315 	cv_broadcast(&spa->spa_async_cv);
8316 	mutex_exit(&spa->spa_async_lock);
8317 	thread_exit();
8318 }
8319 
8320 void
8321 spa_async_suspend(spa_t *spa)
8322 {
8323 	mutex_enter(&spa->spa_async_lock);
8324 	spa->spa_async_suspended++;
8325 	while (spa->spa_async_thread != NULL)
8326 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8327 	mutex_exit(&spa->spa_async_lock);
8328 
8329 	spa_vdev_remove_suspend(spa);
8330 
8331 	zthr_t *condense_thread = spa->spa_condense_zthr;
8332 	if (condense_thread != NULL)
8333 		zthr_cancel(condense_thread);
8334 
8335 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8336 	if (discard_thread != NULL)
8337 		zthr_cancel(discard_thread);
8338 
8339 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8340 	if (ll_delete_thread != NULL)
8341 		zthr_cancel(ll_delete_thread);
8342 
8343 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8344 	if (ll_condense_thread != NULL)
8345 		zthr_cancel(ll_condense_thread);
8346 }
8347 
8348 void
8349 spa_async_resume(spa_t *spa)
8350 {
8351 	mutex_enter(&spa->spa_async_lock);
8352 	ASSERT(spa->spa_async_suspended != 0);
8353 	spa->spa_async_suspended--;
8354 	mutex_exit(&spa->spa_async_lock);
8355 	spa_restart_removal(spa);
8356 
8357 	zthr_t *condense_thread = spa->spa_condense_zthr;
8358 	if (condense_thread != NULL)
8359 		zthr_resume(condense_thread);
8360 
8361 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8362 	if (discard_thread != NULL)
8363 		zthr_resume(discard_thread);
8364 
8365 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8366 	if (ll_delete_thread != NULL)
8367 		zthr_resume(ll_delete_thread);
8368 
8369 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8370 	if (ll_condense_thread != NULL)
8371 		zthr_resume(ll_condense_thread);
8372 }
8373 
8374 static boolean_t
8375 spa_async_tasks_pending(spa_t *spa)
8376 {
8377 	uint_t non_config_tasks;
8378 	uint_t config_task;
8379 	boolean_t config_task_suspended;
8380 
8381 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
8382 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
8383 	if (spa->spa_ccw_fail_time == 0) {
8384 		config_task_suspended = B_FALSE;
8385 	} else {
8386 		config_task_suspended =
8387 		    (gethrtime() - spa->spa_ccw_fail_time) <
8388 		    ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
8389 	}
8390 
8391 	return (non_config_tasks || (config_task && !config_task_suspended));
8392 }
8393 
8394 static void
8395 spa_async_dispatch(spa_t *spa)
8396 {
8397 	mutex_enter(&spa->spa_async_lock);
8398 	if (spa_async_tasks_pending(spa) &&
8399 	    !spa->spa_async_suspended &&
8400 	    spa->spa_async_thread == NULL)
8401 		spa->spa_async_thread = thread_create(NULL, 0,
8402 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
8403 	mutex_exit(&spa->spa_async_lock);
8404 }
8405 
8406 void
8407 spa_async_request(spa_t *spa, int task)
8408 {
8409 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
8410 	mutex_enter(&spa->spa_async_lock);
8411 	spa->spa_async_tasks |= task;
8412 	mutex_exit(&spa->spa_async_lock);
8413 }
8414 
8415 int
8416 spa_async_tasks(spa_t *spa)
8417 {
8418 	return (spa->spa_async_tasks);
8419 }
8420 
8421 /*
8422  * ==========================================================================
8423  * SPA syncing routines
8424  * ==========================================================================
8425  */
8426 
8427 
8428 static int
8429 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8430     dmu_tx_t *tx)
8431 {
8432 	bpobj_t *bpo = arg;
8433 	bpobj_enqueue(bpo, bp, bp_freed, tx);
8434 	return (0);
8435 }
8436 
8437 int
8438 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8439 {
8440 	return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
8441 }
8442 
8443 int
8444 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8445 {
8446 	return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
8447 }
8448 
8449 static int
8450 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8451 {
8452 	zio_t *pio = arg;
8453 
8454 	zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
8455 	    pio->io_flags));
8456 	return (0);
8457 }
8458 
8459 static int
8460 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8461     dmu_tx_t *tx)
8462 {
8463 	ASSERT(!bp_freed);
8464 	return (spa_free_sync_cb(arg, bp, tx));
8465 }
8466 
8467 /*
8468  * Note: this simple function is not inlined to make it easier to dtrace the
8469  * amount of time spent syncing frees.
8470  */
8471 static void
8472 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
8473 {
8474 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
8475 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
8476 	VERIFY(zio_wait(zio) == 0);
8477 }
8478 
8479 /*
8480  * Note: this simple function is not inlined to make it easier to dtrace the
8481  * amount of time spent syncing deferred frees.
8482  */
8483 static void
8484 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
8485 {
8486 	if (spa_sync_pass(spa) != 1)
8487 		return;
8488 
8489 	/*
8490 	 * Note:
8491 	 * If the log space map feature is active, we stop deferring
8492 	 * frees to the next TXG and therefore running this function
8493 	 * would be considered a no-op as spa_deferred_bpobj should
8494 	 * not have any entries.
8495 	 *
8496 	 * That said we run this function anyway (instead of returning
8497 	 * immediately) for the edge-case scenario where we just
8498 	 * activated the log space map feature in this TXG but we have
8499 	 * deferred frees from the previous TXG.
8500 	 */
8501 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
8502 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
8503 	    bpobj_spa_free_sync_cb, zio, tx), ==, 0);
8504 	VERIFY0(zio_wait(zio));
8505 }
8506 
8507 static void
8508 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
8509 {
8510 	char *packed = NULL;
8511 	size_t bufsize;
8512 	size_t nvsize = 0;
8513 	dmu_buf_t *db;
8514 
8515 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
8516 
8517 	/*
8518 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
8519 	 * information.  This avoids the dmu_buf_will_dirty() path and
8520 	 * saves us a pre-read to get data we don't actually care about.
8521 	 */
8522 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
8523 	packed = vmem_alloc(bufsize, KM_SLEEP);
8524 
8525 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
8526 	    KM_SLEEP) == 0);
8527 	memset(packed + nvsize, 0, bufsize - nvsize);
8528 
8529 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
8530 
8531 	vmem_free(packed, bufsize);
8532 
8533 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
8534 	dmu_buf_will_dirty(db, tx);
8535 	*(uint64_t *)db->db_data = nvsize;
8536 	dmu_buf_rele(db, FTAG);
8537 }
8538 
8539 static void
8540 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
8541     const char *config, const char *entry)
8542 {
8543 	nvlist_t *nvroot;
8544 	nvlist_t **list;
8545 	int i;
8546 
8547 	if (!sav->sav_sync)
8548 		return;
8549 
8550 	/*
8551 	 * Update the MOS nvlist describing the list of available devices.
8552 	 * spa_validate_aux() will have already made sure this nvlist is
8553 	 * valid and the vdevs are labeled appropriately.
8554 	 */
8555 	if (sav->sav_object == 0) {
8556 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
8557 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
8558 		    sizeof (uint64_t), tx);
8559 		VERIFY(zap_update(spa->spa_meta_objset,
8560 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
8561 		    &sav->sav_object, tx) == 0);
8562 	}
8563 
8564 	nvroot = fnvlist_alloc();
8565 	if (sav->sav_count == 0) {
8566 		fnvlist_add_nvlist_array(nvroot, config,
8567 		    (const nvlist_t * const *)NULL, 0);
8568 	} else {
8569 		list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
8570 		for (i = 0; i < sav->sav_count; i++)
8571 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
8572 			    B_FALSE, VDEV_CONFIG_L2CACHE);
8573 		fnvlist_add_nvlist_array(nvroot, config,
8574 		    (const nvlist_t * const *)list, sav->sav_count);
8575 		for (i = 0; i < sav->sav_count; i++)
8576 			nvlist_free(list[i]);
8577 		kmem_free(list, sav->sav_count * sizeof (void *));
8578 	}
8579 
8580 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
8581 	nvlist_free(nvroot);
8582 
8583 	sav->sav_sync = B_FALSE;
8584 }
8585 
8586 /*
8587  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
8588  * The all-vdev ZAP must be empty.
8589  */
8590 static void
8591 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
8592 {
8593 	spa_t *spa = vd->vdev_spa;
8594 
8595 	if (vd->vdev_top_zap != 0) {
8596 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8597 		    vd->vdev_top_zap, tx));
8598 	}
8599 	if (vd->vdev_leaf_zap != 0) {
8600 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8601 		    vd->vdev_leaf_zap, tx));
8602 	}
8603 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
8604 		spa_avz_build(vd->vdev_child[i], avz, tx);
8605 	}
8606 }
8607 
8608 static void
8609 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
8610 {
8611 	nvlist_t *config;
8612 
8613 	/*
8614 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
8615 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
8616 	 * Similarly, if the pool is being assembled (e.g. after a split), we
8617 	 * need to rebuild the AVZ although the config may not be dirty.
8618 	 */
8619 	if (list_is_empty(&spa->spa_config_dirty_list) &&
8620 	    spa->spa_avz_action == AVZ_ACTION_NONE)
8621 		return;
8622 
8623 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8624 
8625 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
8626 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
8627 	    spa->spa_all_vdev_zaps != 0);
8628 
8629 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
8630 		/* Make and build the new AVZ */
8631 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
8632 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
8633 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
8634 
8635 		/* Diff old AVZ with new one */
8636 		zap_cursor_t zc;
8637 		zap_attribute_t za;
8638 
8639 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8640 		    spa->spa_all_vdev_zaps);
8641 		    zap_cursor_retrieve(&zc, &za) == 0;
8642 		    zap_cursor_advance(&zc)) {
8643 			uint64_t vdzap = za.za_first_integer;
8644 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
8645 			    vdzap) == ENOENT) {
8646 				/*
8647 				 * ZAP is listed in old AVZ but not in new one;
8648 				 * destroy it
8649 				 */
8650 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
8651 				    tx));
8652 			}
8653 		}
8654 
8655 		zap_cursor_fini(&zc);
8656 
8657 		/* Destroy the old AVZ */
8658 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8659 		    spa->spa_all_vdev_zaps, tx));
8660 
8661 		/* Replace the old AVZ in the dir obj with the new one */
8662 		VERIFY0(zap_update(spa->spa_meta_objset,
8663 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8664 		    sizeof (new_avz), 1, &new_avz, tx));
8665 
8666 		spa->spa_all_vdev_zaps = new_avz;
8667 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8668 		zap_cursor_t zc;
8669 		zap_attribute_t za;
8670 
8671 		/* Walk through the AVZ and destroy all listed ZAPs */
8672 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8673 		    spa->spa_all_vdev_zaps);
8674 		    zap_cursor_retrieve(&zc, &za) == 0;
8675 		    zap_cursor_advance(&zc)) {
8676 			uint64_t zap = za.za_first_integer;
8677 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8678 		}
8679 
8680 		zap_cursor_fini(&zc);
8681 
8682 		/* Destroy and unlink the AVZ itself */
8683 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8684 		    spa->spa_all_vdev_zaps, tx));
8685 		VERIFY0(zap_remove(spa->spa_meta_objset,
8686 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8687 		spa->spa_all_vdev_zaps = 0;
8688 	}
8689 
8690 	if (spa->spa_all_vdev_zaps == 0) {
8691 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8692 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8693 		    DMU_POOL_VDEV_ZAP_MAP, tx);
8694 	}
8695 	spa->spa_avz_action = AVZ_ACTION_NONE;
8696 
8697 	/* Create ZAPs for vdevs that don't have them. */
8698 	vdev_construct_zaps(spa->spa_root_vdev, tx);
8699 
8700 	config = spa_config_generate(spa, spa->spa_root_vdev,
8701 	    dmu_tx_get_txg(tx), B_FALSE);
8702 
8703 	/*
8704 	 * If we're upgrading the spa version then make sure that
8705 	 * the config object gets updated with the correct version.
8706 	 */
8707 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8708 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8709 		    spa->spa_uberblock.ub_version);
8710 
8711 	spa_config_exit(spa, SCL_STATE, FTAG);
8712 
8713 	nvlist_free(spa->spa_config_syncing);
8714 	spa->spa_config_syncing = config;
8715 
8716 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8717 }
8718 
8719 static void
8720 spa_sync_version(void *arg, dmu_tx_t *tx)
8721 {
8722 	uint64_t *versionp = arg;
8723 	uint64_t version = *versionp;
8724 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8725 
8726 	/*
8727 	 * Setting the version is special cased when first creating the pool.
8728 	 */
8729 	ASSERT(tx->tx_txg != TXG_INITIAL);
8730 
8731 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8732 	ASSERT(version >= spa_version(spa));
8733 
8734 	spa->spa_uberblock.ub_version = version;
8735 	vdev_config_dirty(spa->spa_root_vdev);
8736 	spa_history_log_internal(spa, "set", tx, "version=%lld",
8737 	    (longlong_t)version);
8738 }
8739 
8740 /*
8741  * Set zpool properties.
8742  */
8743 static void
8744 spa_sync_props(void *arg, dmu_tx_t *tx)
8745 {
8746 	nvlist_t *nvp = arg;
8747 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8748 	objset_t *mos = spa->spa_meta_objset;
8749 	nvpair_t *elem = NULL;
8750 
8751 	mutex_enter(&spa->spa_props_lock);
8752 
8753 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
8754 		uint64_t intval;
8755 		char *strval, *fname;
8756 		zpool_prop_t prop;
8757 		const char *propname;
8758 		zprop_type_t proptype;
8759 		spa_feature_t fid;
8760 
8761 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
8762 		case ZPOOL_PROP_INVAL:
8763 			/*
8764 			 * We checked this earlier in spa_prop_validate().
8765 			 */
8766 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
8767 
8768 			fname = strchr(nvpair_name(elem), '@') + 1;
8769 			VERIFY0(zfeature_lookup_name(fname, &fid));
8770 
8771 			spa_feature_enable(spa, fid, tx);
8772 			spa_history_log_internal(spa, "set", tx,
8773 			    "%s=enabled", nvpair_name(elem));
8774 			break;
8775 
8776 		case ZPOOL_PROP_VERSION:
8777 			intval = fnvpair_value_uint64(elem);
8778 			/*
8779 			 * The version is synced separately before other
8780 			 * properties and should be correct by now.
8781 			 */
8782 			ASSERT3U(spa_version(spa), >=, intval);
8783 			break;
8784 
8785 		case ZPOOL_PROP_ALTROOT:
8786 			/*
8787 			 * 'altroot' is a non-persistent property. It should
8788 			 * have been set temporarily at creation or import time.
8789 			 */
8790 			ASSERT(spa->spa_root != NULL);
8791 			break;
8792 
8793 		case ZPOOL_PROP_READONLY:
8794 		case ZPOOL_PROP_CACHEFILE:
8795 			/*
8796 			 * 'readonly' and 'cachefile' are also non-persistent
8797 			 * properties.
8798 			 */
8799 			break;
8800 		case ZPOOL_PROP_COMMENT:
8801 			strval = fnvpair_value_string(elem);
8802 			if (spa->spa_comment != NULL)
8803 				spa_strfree(spa->spa_comment);
8804 			spa->spa_comment = spa_strdup(strval);
8805 			/*
8806 			 * We need to dirty the configuration on all the vdevs
8807 			 * so that their labels get updated.  We also need to
8808 			 * update the cache file to keep it in sync with the
8809 			 * MOS version. It's unnecessary to do this for pool
8810 			 * creation since the vdev's configuration has already
8811 			 * been dirtied.
8812 			 */
8813 			if (tx->tx_txg != TXG_INITIAL) {
8814 				vdev_config_dirty(spa->spa_root_vdev);
8815 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8816 			}
8817 			spa_history_log_internal(spa, "set", tx,
8818 			    "%s=%s", nvpair_name(elem), strval);
8819 			break;
8820 		case ZPOOL_PROP_COMPATIBILITY:
8821 			strval = fnvpair_value_string(elem);
8822 			if (spa->spa_compatibility != NULL)
8823 				spa_strfree(spa->spa_compatibility);
8824 			spa->spa_compatibility = spa_strdup(strval);
8825 			/*
8826 			 * Dirty the configuration on vdevs as above.
8827 			 */
8828 			if (tx->tx_txg != TXG_INITIAL) {
8829 				vdev_config_dirty(spa->spa_root_vdev);
8830 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8831 			}
8832 
8833 			spa_history_log_internal(spa, "set", tx,
8834 			    "%s=%s", nvpair_name(elem), strval);
8835 			break;
8836 
8837 		default:
8838 			/*
8839 			 * Set pool property values in the poolprops mos object.
8840 			 */
8841 			if (spa->spa_pool_props_object == 0) {
8842 				spa->spa_pool_props_object =
8843 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
8844 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8845 				    tx);
8846 			}
8847 
8848 			/* normalize the property name */
8849 			propname = zpool_prop_to_name(prop);
8850 			proptype = zpool_prop_get_type(prop);
8851 
8852 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
8853 				ASSERT(proptype == PROP_TYPE_STRING);
8854 				strval = fnvpair_value_string(elem);
8855 				VERIFY0(zap_update(mos,
8856 				    spa->spa_pool_props_object, propname,
8857 				    1, strlen(strval) + 1, strval, tx));
8858 				spa_history_log_internal(spa, "set", tx,
8859 				    "%s=%s", nvpair_name(elem), strval);
8860 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8861 				intval = fnvpair_value_uint64(elem);
8862 
8863 				if (proptype == PROP_TYPE_INDEX) {
8864 					const char *unused;
8865 					VERIFY0(zpool_prop_index_to_string(
8866 					    prop, intval, &unused));
8867 				}
8868 				VERIFY0(zap_update(mos,
8869 				    spa->spa_pool_props_object, propname,
8870 				    8, 1, &intval, tx));
8871 				spa_history_log_internal(spa, "set", tx,
8872 				    "%s=%lld", nvpair_name(elem),
8873 				    (longlong_t)intval);
8874 
8875 				switch (prop) {
8876 				case ZPOOL_PROP_DELEGATION:
8877 					spa->spa_delegation = intval;
8878 					break;
8879 				case ZPOOL_PROP_BOOTFS:
8880 					spa->spa_bootfs = intval;
8881 					break;
8882 				case ZPOOL_PROP_FAILUREMODE:
8883 					spa->spa_failmode = intval;
8884 					break;
8885 				case ZPOOL_PROP_AUTOTRIM:
8886 					spa->spa_autotrim = intval;
8887 					spa_async_request(spa,
8888 					    SPA_ASYNC_AUTOTRIM_RESTART);
8889 					break;
8890 				case ZPOOL_PROP_AUTOEXPAND:
8891 					spa->spa_autoexpand = intval;
8892 					if (tx->tx_txg != TXG_INITIAL)
8893 						spa_async_request(spa,
8894 						    SPA_ASYNC_AUTOEXPAND);
8895 					break;
8896 				case ZPOOL_PROP_MULTIHOST:
8897 					spa->spa_multihost = intval;
8898 					break;
8899 				default:
8900 					break;
8901 				}
8902 			} else {
8903 				ASSERT(0); /* not allowed */
8904 			}
8905 		}
8906 
8907 	}
8908 
8909 	mutex_exit(&spa->spa_props_lock);
8910 }
8911 
8912 /*
8913  * Perform one-time upgrade on-disk changes.  spa_version() does not
8914  * reflect the new version this txg, so there must be no changes this
8915  * txg to anything that the upgrade code depends on after it executes.
8916  * Therefore this must be called after dsl_pool_sync() does the sync
8917  * tasks.
8918  */
8919 static void
8920 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8921 {
8922 	if (spa_sync_pass(spa) != 1)
8923 		return;
8924 
8925 	dsl_pool_t *dp = spa->spa_dsl_pool;
8926 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8927 
8928 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8929 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8930 		dsl_pool_create_origin(dp, tx);
8931 
8932 		/* Keeping the origin open increases spa_minref */
8933 		spa->spa_minref += 3;
8934 	}
8935 
8936 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8937 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8938 		dsl_pool_upgrade_clones(dp, tx);
8939 	}
8940 
8941 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8942 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8943 		dsl_pool_upgrade_dir_clones(dp, tx);
8944 
8945 		/* Keeping the freedir open increases spa_minref */
8946 		spa->spa_minref += 3;
8947 	}
8948 
8949 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8950 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8951 		spa_feature_create_zap_objects(spa, tx);
8952 	}
8953 
8954 	/*
8955 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8956 	 * when possibility to use lz4 compression for metadata was added
8957 	 * Old pools that have this feature enabled must be upgraded to have
8958 	 * this feature active
8959 	 */
8960 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8961 		boolean_t lz4_en = spa_feature_is_enabled(spa,
8962 		    SPA_FEATURE_LZ4_COMPRESS);
8963 		boolean_t lz4_ac = spa_feature_is_active(spa,
8964 		    SPA_FEATURE_LZ4_COMPRESS);
8965 
8966 		if (lz4_en && !lz4_ac)
8967 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
8968 	}
8969 
8970 	/*
8971 	 * If we haven't written the salt, do so now.  Note that the
8972 	 * feature may not be activated yet, but that's fine since
8973 	 * the presence of this ZAP entry is backwards compatible.
8974 	 */
8975 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8976 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
8977 		VERIFY0(zap_add(spa->spa_meta_objset,
8978 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
8979 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
8980 		    spa->spa_cksum_salt.zcs_bytes, tx));
8981 	}
8982 
8983 	rrw_exit(&dp->dp_config_rwlock, FTAG);
8984 }
8985 
8986 static void
8987 vdev_indirect_state_sync_verify(vdev_t *vd)
8988 {
8989 	vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
8990 	vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
8991 
8992 	if (vd->vdev_ops == &vdev_indirect_ops) {
8993 		ASSERT(vim != NULL);
8994 		ASSERT(vib != NULL);
8995 	}
8996 
8997 	uint64_t obsolete_sm_object = 0;
8998 	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
8999 	if (obsolete_sm_object != 0) {
9000 		ASSERT(vd->vdev_obsolete_sm != NULL);
9001 		ASSERT(vd->vdev_removing ||
9002 		    vd->vdev_ops == &vdev_indirect_ops);
9003 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9004 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9005 		ASSERT3U(obsolete_sm_object, ==,
9006 		    space_map_object(vd->vdev_obsolete_sm));
9007 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9008 		    space_map_allocated(vd->vdev_obsolete_sm));
9009 	}
9010 	ASSERT(vd->vdev_obsolete_segments != NULL);
9011 
9012 	/*
9013 	 * Since frees / remaps to an indirect vdev can only
9014 	 * happen in syncing context, the obsolete segments
9015 	 * tree must be empty when we start syncing.
9016 	 */
9017 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
9018 }
9019 
9020 /*
9021  * Set the top-level vdev's max queue depth. Evaluate each top-level's
9022  * async write queue depth in case it changed. The max queue depth will
9023  * not change in the middle of syncing out this txg.
9024  */
9025 static void
9026 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9027 {
9028 	ASSERT(spa_writeable(spa));
9029 
9030 	vdev_t *rvd = spa->spa_root_vdev;
9031 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9032 	    zfs_vdev_queue_depth_pct / 100;
9033 	metaslab_class_t *normal = spa_normal_class(spa);
9034 	metaslab_class_t *special = spa_special_class(spa);
9035 	metaslab_class_t *dedup = spa_dedup_class(spa);
9036 
9037 	uint64_t slots_per_allocator = 0;
9038 	for (int c = 0; c < rvd->vdev_children; c++) {
9039 		vdev_t *tvd = rvd->vdev_child[c];
9040 
9041 		metaslab_group_t *mg = tvd->vdev_mg;
9042 		if (mg == NULL || !metaslab_group_initialized(mg))
9043 			continue;
9044 
9045 		metaslab_class_t *mc = mg->mg_class;
9046 		if (mc != normal && mc != special && mc != dedup)
9047 			continue;
9048 
9049 		/*
9050 		 * It is safe to do a lock-free check here because only async
9051 		 * allocations look at mg_max_alloc_queue_depth, and async
9052 		 * allocations all happen from spa_sync().
9053 		 */
9054 		for (int i = 0; i < mg->mg_allocators; i++) {
9055 			ASSERT0(zfs_refcount_count(
9056 			    &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9057 		}
9058 		mg->mg_max_alloc_queue_depth = max_queue_depth;
9059 
9060 		for (int i = 0; i < mg->mg_allocators; i++) {
9061 			mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9062 			    zfs_vdev_def_queue_depth;
9063 		}
9064 		slots_per_allocator += zfs_vdev_def_queue_depth;
9065 	}
9066 
9067 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9068 		ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9069 		    mca_alloc_slots));
9070 		ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9071 		    mca_alloc_slots));
9072 		ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9073 		    mca_alloc_slots));
9074 		normal->mc_allocator[i].mca_alloc_max_slots =
9075 		    slots_per_allocator;
9076 		special->mc_allocator[i].mca_alloc_max_slots =
9077 		    slots_per_allocator;
9078 		dedup->mc_allocator[i].mca_alloc_max_slots =
9079 		    slots_per_allocator;
9080 	}
9081 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9082 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9083 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9084 }
9085 
9086 static void
9087 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9088 {
9089 	ASSERT(spa_writeable(spa));
9090 
9091 	vdev_t *rvd = spa->spa_root_vdev;
9092 	for (int c = 0; c < rvd->vdev_children; c++) {
9093 		vdev_t *vd = rvd->vdev_child[c];
9094 		vdev_indirect_state_sync_verify(vd);
9095 
9096 		if (vdev_indirect_should_condense(vd)) {
9097 			spa_condense_indirect_start_sync(vd, tx);
9098 			break;
9099 		}
9100 	}
9101 }
9102 
9103 static void
9104 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9105 {
9106 	objset_t *mos = spa->spa_meta_objset;
9107 	dsl_pool_t *dp = spa->spa_dsl_pool;
9108 	uint64_t txg = tx->tx_txg;
9109 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9110 
9111 	do {
9112 		int pass = ++spa->spa_sync_pass;
9113 
9114 		spa_sync_config_object(spa, tx);
9115 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9116 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9117 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9118 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9119 		spa_errlog_sync(spa, txg);
9120 		dsl_pool_sync(dp, txg);
9121 
9122 		if (pass < zfs_sync_pass_deferred_free ||
9123 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9124 			/*
9125 			 * If the log space map feature is active we don't
9126 			 * care about deferred frees and the deferred bpobj
9127 			 * as the log space map should effectively have the
9128 			 * same results (i.e. appending only to one object).
9129 			 */
9130 			spa_sync_frees(spa, free_bpl, tx);
9131 		} else {
9132 			/*
9133 			 * We can not defer frees in pass 1, because
9134 			 * we sync the deferred frees later in pass 1.
9135 			 */
9136 			ASSERT3U(pass, >, 1);
9137 			bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9138 			    &spa->spa_deferred_bpobj, tx);
9139 		}
9140 
9141 		ddt_sync(spa, txg);
9142 		dsl_scan_sync(dp, tx);
9143 		svr_sync(spa, tx);
9144 		spa_sync_upgrades(spa, tx);
9145 
9146 		spa_flush_metaslabs(spa, tx);
9147 
9148 		vdev_t *vd = NULL;
9149 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9150 		    != NULL)
9151 			vdev_sync(vd, txg);
9152 
9153 		/*
9154 		 * Note: We need to check if the MOS is dirty because we could
9155 		 * have marked the MOS dirty without updating the uberblock
9156 		 * (e.g. if we have sync tasks but no dirty user data). We need
9157 		 * to check the uberblock's rootbp because it is updated if we
9158 		 * have synced out dirty data (though in this case the MOS will
9159 		 * most likely also be dirty due to second order effects, we
9160 		 * don't want to rely on that here).
9161 		 */
9162 		if (pass == 1 &&
9163 		    spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
9164 		    !dmu_objset_is_dirty(mos, txg)) {
9165 			/*
9166 			 * Nothing changed on the first pass, therefore this
9167 			 * TXG is a no-op. Avoid syncing deferred frees, so
9168 			 * that we can keep this TXG as a no-op.
9169 			 */
9170 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9171 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9172 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9173 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9174 			break;
9175 		}
9176 
9177 		spa_sync_deferred_frees(spa, tx);
9178 	} while (dmu_objset_is_dirty(mos, txg));
9179 }
9180 
9181 /*
9182  * Rewrite the vdev configuration (which includes the uberblock) to
9183  * commit the transaction group.
9184  *
9185  * If there are no dirty vdevs, we sync the uberblock to a few random
9186  * top-level vdevs that are known to be visible in the config cache
9187  * (see spa_vdev_add() for a complete description). If there *are* dirty
9188  * vdevs, sync the uberblock to all vdevs.
9189  */
9190 static void
9191 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
9192 {
9193 	vdev_t *rvd = spa->spa_root_vdev;
9194 	uint64_t txg = tx->tx_txg;
9195 
9196 	for (;;) {
9197 		int error = 0;
9198 
9199 		/*
9200 		 * We hold SCL_STATE to prevent vdev open/close/etc.
9201 		 * while we're attempting to write the vdev labels.
9202 		 */
9203 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9204 
9205 		if (list_is_empty(&spa->spa_config_dirty_list)) {
9206 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
9207 			int svdcount = 0;
9208 			int children = rvd->vdev_children;
9209 			int c0 = random_in_range(children);
9210 
9211 			for (int c = 0; c < children; c++) {
9212 				vdev_t *vd =
9213 				    rvd->vdev_child[(c0 + c) % children];
9214 
9215 				/* Stop when revisiting the first vdev */
9216 				if (c > 0 && svd[0] == vd)
9217 					break;
9218 
9219 				if (vd->vdev_ms_array == 0 ||
9220 				    vd->vdev_islog ||
9221 				    !vdev_is_concrete(vd))
9222 					continue;
9223 
9224 				svd[svdcount++] = vd;
9225 				if (svdcount == SPA_SYNC_MIN_VDEVS)
9226 					break;
9227 			}
9228 			error = vdev_config_sync(svd, svdcount, txg);
9229 		} else {
9230 			error = vdev_config_sync(rvd->vdev_child,
9231 			    rvd->vdev_children, txg);
9232 		}
9233 
9234 		if (error == 0)
9235 			spa->spa_last_synced_guid = rvd->vdev_guid;
9236 
9237 		spa_config_exit(spa, SCL_STATE, FTAG);
9238 
9239 		if (error == 0)
9240 			break;
9241 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9242 		zio_resume_wait(spa);
9243 	}
9244 }
9245 
9246 /*
9247  * Sync the specified transaction group.  New blocks may be dirtied as
9248  * part of the process, so we iterate until it converges.
9249  */
9250 void
9251 spa_sync(spa_t *spa, uint64_t txg)
9252 {
9253 	vdev_t *vd = NULL;
9254 
9255 	VERIFY(spa_writeable(spa));
9256 
9257 	/*
9258 	 * Wait for i/os issued in open context that need to complete
9259 	 * before this txg syncs.
9260 	 */
9261 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
9262 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
9263 	    ZIO_FLAG_CANFAIL);
9264 
9265 	/*
9266 	 * Lock out configuration changes.
9267 	 */
9268 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9269 
9270 	spa->spa_syncing_txg = txg;
9271 	spa->spa_sync_pass = 0;
9272 
9273 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9274 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
9275 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9276 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
9277 	}
9278 
9279 	/*
9280 	 * If there are any pending vdev state changes, convert them
9281 	 * into config changes that go out with this transaction group.
9282 	 */
9283 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9284 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
9285 		/*
9286 		 * We need the write lock here because, for aux vdevs,
9287 		 * calling vdev_config_dirty() modifies sav_config.
9288 		 * This is ugly and will become unnecessary when we
9289 		 * eliminate the aux vdev wart by integrating all vdevs
9290 		 * into the root vdev tree.
9291 		 */
9292 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9293 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9294 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9295 			vdev_state_clean(vd);
9296 			vdev_config_dirty(vd);
9297 		}
9298 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9299 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9300 	}
9301 	spa_config_exit(spa, SCL_STATE, FTAG);
9302 
9303 	dsl_pool_t *dp = spa->spa_dsl_pool;
9304 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9305 
9306 	spa->spa_sync_starttime = gethrtime();
9307 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9308 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9309 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9310 	    NSEC_TO_TICK(spa->spa_deadman_synctime));
9311 
9312 	/*
9313 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
9314 	 * set spa_deflate if we have no raid-z vdevs.
9315 	 */
9316 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
9317 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
9318 		vdev_t *rvd = spa->spa_root_vdev;
9319 
9320 		int i;
9321 		for (i = 0; i < rvd->vdev_children; i++) {
9322 			vd = rvd->vdev_child[i];
9323 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
9324 				break;
9325 		}
9326 		if (i == rvd->vdev_children) {
9327 			spa->spa_deflate = TRUE;
9328 			VERIFY0(zap_add(spa->spa_meta_objset,
9329 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
9330 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
9331 		}
9332 	}
9333 
9334 	spa_sync_adjust_vdev_max_queue_depth(spa);
9335 
9336 	spa_sync_condense_indirect(spa, tx);
9337 
9338 	spa_sync_iterate_to_convergence(spa, tx);
9339 
9340 #ifdef ZFS_DEBUG
9341 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
9342 	/*
9343 	 * Make sure that the number of ZAPs for all the vdevs matches
9344 	 * the number of ZAPs in the per-vdev ZAP list. This only gets
9345 	 * called if the config is dirty; otherwise there may be
9346 	 * outstanding AVZ operations that weren't completed in
9347 	 * spa_sync_config_object.
9348 	 */
9349 		uint64_t all_vdev_zap_entry_count;
9350 		ASSERT0(zap_count(spa->spa_meta_objset,
9351 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
9352 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
9353 		    all_vdev_zap_entry_count);
9354 	}
9355 #endif
9356 
9357 	if (spa->spa_vdev_removal != NULL) {
9358 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
9359 	}
9360 
9361 	spa_sync_rewrite_vdev_config(spa, tx);
9362 	dmu_tx_commit(tx);
9363 
9364 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9365 	spa->spa_deadman_tqid = 0;
9366 
9367 	/*
9368 	 * Clear the dirty config list.
9369 	 */
9370 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
9371 		vdev_config_clean(vd);
9372 
9373 	/*
9374 	 * Now that the new config has synced transactionally,
9375 	 * let it become visible to the config cache.
9376 	 */
9377 	if (spa->spa_config_syncing != NULL) {
9378 		spa_config_set(spa, spa->spa_config_syncing);
9379 		spa->spa_config_txg = txg;
9380 		spa->spa_config_syncing = NULL;
9381 	}
9382 
9383 	dsl_pool_sync_done(dp, txg);
9384 
9385 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9386 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
9387 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9388 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
9389 	}
9390 
9391 	/*
9392 	 * Update usable space statistics.
9393 	 */
9394 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
9395 	    != NULL)
9396 		vdev_sync_done(vd, txg);
9397 
9398 	metaslab_class_evict_old(spa->spa_normal_class, txg);
9399 	metaslab_class_evict_old(spa->spa_log_class, txg);
9400 
9401 	spa_sync_close_syncing_log_sm(spa);
9402 
9403 	spa_update_dspace(spa);
9404 
9405 	/*
9406 	 * It had better be the case that we didn't dirty anything
9407 	 * since vdev_config_sync().
9408 	 */
9409 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9410 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9411 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
9412 
9413 	while (zfs_pause_spa_sync)
9414 		delay(1);
9415 
9416 	spa->spa_sync_pass = 0;
9417 
9418 	/*
9419 	 * Update the last synced uberblock here. We want to do this at
9420 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
9421 	 * will be guaranteed that all the processing associated with
9422 	 * that txg has been completed.
9423 	 */
9424 	spa->spa_ubsync = spa->spa_uberblock;
9425 	spa_config_exit(spa, SCL_CONFIG, FTAG);
9426 
9427 	spa_handle_ignored_writes(spa);
9428 
9429 	/*
9430 	 * If any async tasks have been requested, kick them off.
9431 	 */
9432 	spa_async_dispatch(spa);
9433 }
9434 
9435 /*
9436  * Sync all pools.  We don't want to hold the namespace lock across these
9437  * operations, so we take a reference on the spa_t and drop the lock during the
9438  * sync.
9439  */
9440 void
9441 spa_sync_allpools(void)
9442 {
9443 	spa_t *spa = NULL;
9444 	mutex_enter(&spa_namespace_lock);
9445 	while ((spa = spa_next(spa)) != NULL) {
9446 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
9447 		    !spa_writeable(spa) || spa_suspended(spa))
9448 			continue;
9449 		spa_open_ref(spa, FTAG);
9450 		mutex_exit(&spa_namespace_lock);
9451 		txg_wait_synced(spa_get_dsl(spa), 0);
9452 		mutex_enter(&spa_namespace_lock);
9453 		spa_close(spa, FTAG);
9454 	}
9455 	mutex_exit(&spa_namespace_lock);
9456 }
9457 
9458 /*
9459  * ==========================================================================
9460  * Miscellaneous routines
9461  * ==========================================================================
9462  */
9463 
9464 /*
9465  * Remove all pools in the system.
9466  */
9467 void
9468 spa_evict_all(void)
9469 {
9470 	spa_t *spa;
9471 
9472 	/*
9473 	 * Remove all cached state.  All pools should be closed now,
9474 	 * so every spa in the AVL tree should be unreferenced.
9475 	 */
9476 	mutex_enter(&spa_namespace_lock);
9477 	while ((spa = spa_next(NULL)) != NULL) {
9478 		/*
9479 		 * Stop async tasks.  The async thread may need to detach
9480 		 * a device that's been replaced, which requires grabbing
9481 		 * spa_namespace_lock, so we must drop it here.
9482 		 */
9483 		spa_open_ref(spa, FTAG);
9484 		mutex_exit(&spa_namespace_lock);
9485 		spa_async_suspend(spa);
9486 		mutex_enter(&spa_namespace_lock);
9487 		spa_close(spa, FTAG);
9488 
9489 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
9490 			spa_unload(spa);
9491 			spa_deactivate(spa);
9492 		}
9493 		spa_remove(spa);
9494 	}
9495 	mutex_exit(&spa_namespace_lock);
9496 }
9497 
9498 vdev_t *
9499 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
9500 {
9501 	vdev_t *vd;
9502 	int i;
9503 
9504 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
9505 		return (vd);
9506 
9507 	if (aux) {
9508 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
9509 			vd = spa->spa_l2cache.sav_vdevs[i];
9510 			if (vd->vdev_guid == guid)
9511 				return (vd);
9512 		}
9513 
9514 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
9515 			vd = spa->spa_spares.sav_vdevs[i];
9516 			if (vd->vdev_guid == guid)
9517 				return (vd);
9518 		}
9519 	}
9520 
9521 	return (NULL);
9522 }
9523 
9524 void
9525 spa_upgrade(spa_t *spa, uint64_t version)
9526 {
9527 	ASSERT(spa_writeable(spa));
9528 
9529 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9530 
9531 	/*
9532 	 * This should only be called for a non-faulted pool, and since a
9533 	 * future version would result in an unopenable pool, this shouldn't be
9534 	 * possible.
9535 	 */
9536 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
9537 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
9538 
9539 	spa->spa_uberblock.ub_version = version;
9540 	vdev_config_dirty(spa->spa_root_vdev);
9541 
9542 	spa_config_exit(spa, SCL_ALL, FTAG);
9543 
9544 	txg_wait_synced(spa_get_dsl(spa), 0);
9545 }
9546 
9547 static boolean_t
9548 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
9549 {
9550 	(void) spa;
9551 	int i;
9552 	uint64_t vdev_guid;
9553 
9554 	for (i = 0; i < sav->sav_count; i++)
9555 		if (sav->sav_vdevs[i]->vdev_guid == guid)
9556 			return (B_TRUE);
9557 
9558 	for (i = 0; i < sav->sav_npending; i++) {
9559 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
9560 		    &vdev_guid) == 0 && vdev_guid == guid)
9561 			return (B_TRUE);
9562 	}
9563 
9564 	return (B_FALSE);
9565 }
9566 
9567 boolean_t
9568 spa_has_l2cache(spa_t *spa, uint64_t guid)
9569 {
9570 	return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
9571 }
9572 
9573 boolean_t
9574 spa_has_spare(spa_t *spa, uint64_t guid)
9575 {
9576 	return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
9577 }
9578 
9579 /*
9580  * Check if a pool has an active shared spare device.
9581  * Note: reference count of an active spare is 2, as a spare and as a replace
9582  */
9583 static boolean_t
9584 spa_has_active_shared_spare(spa_t *spa)
9585 {
9586 	int i, refcnt;
9587 	uint64_t pool;
9588 	spa_aux_vdev_t *sav = &spa->spa_spares;
9589 
9590 	for (i = 0; i < sav->sav_count; i++) {
9591 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
9592 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
9593 		    refcnt > 2)
9594 			return (B_TRUE);
9595 	}
9596 
9597 	return (B_FALSE);
9598 }
9599 
9600 uint64_t
9601 spa_total_metaslabs(spa_t *spa)
9602 {
9603 	vdev_t *rvd = spa->spa_root_vdev;
9604 
9605 	uint64_t m = 0;
9606 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
9607 		vdev_t *vd = rvd->vdev_child[c];
9608 		if (!vdev_is_concrete(vd))
9609 			continue;
9610 		m += vd->vdev_ms_count;
9611 	}
9612 	return (m);
9613 }
9614 
9615 /*
9616  * Notify any waiting threads that some activity has switched from being in-
9617  * progress to not-in-progress so that the thread can wake up and determine
9618  * whether it is finished waiting.
9619  */
9620 void
9621 spa_notify_waiters(spa_t *spa)
9622 {
9623 	/*
9624 	 * Acquiring spa_activities_lock here prevents the cv_broadcast from
9625 	 * happening between the waiting thread's check and cv_wait.
9626 	 */
9627 	mutex_enter(&spa->spa_activities_lock);
9628 	cv_broadcast(&spa->spa_activities_cv);
9629 	mutex_exit(&spa->spa_activities_lock);
9630 }
9631 
9632 /*
9633  * Notify any waiting threads that the pool is exporting, and then block until
9634  * they are finished using the spa_t.
9635  */
9636 void
9637 spa_wake_waiters(spa_t *spa)
9638 {
9639 	mutex_enter(&spa->spa_activities_lock);
9640 	spa->spa_waiters_cancel = B_TRUE;
9641 	cv_broadcast(&spa->spa_activities_cv);
9642 	while (spa->spa_waiters != 0)
9643 		cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
9644 	spa->spa_waiters_cancel = B_FALSE;
9645 	mutex_exit(&spa->spa_activities_lock);
9646 }
9647 
9648 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
9649 static boolean_t
9650 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
9651 {
9652 	spa_t *spa = vd->vdev_spa;
9653 
9654 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
9655 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9656 	ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
9657 	    activity == ZPOOL_WAIT_TRIM);
9658 
9659 	kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
9660 	    &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
9661 
9662 	mutex_exit(&spa->spa_activities_lock);
9663 	mutex_enter(lock);
9664 	mutex_enter(&spa->spa_activities_lock);
9665 
9666 	boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
9667 	    (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
9668 	    (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
9669 	mutex_exit(lock);
9670 
9671 	if (in_progress)
9672 		return (B_TRUE);
9673 
9674 	for (int i = 0; i < vd->vdev_children; i++) {
9675 		if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
9676 		    activity))
9677 			return (B_TRUE);
9678 	}
9679 
9680 	return (B_FALSE);
9681 }
9682 
9683 /*
9684  * If use_guid is true, this checks whether the vdev specified by guid is
9685  * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
9686  * is being initialized/trimmed. The caller must hold the config lock and
9687  * spa_activities_lock.
9688  */
9689 static int
9690 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
9691     zpool_wait_activity_t activity, boolean_t *in_progress)
9692 {
9693 	mutex_exit(&spa->spa_activities_lock);
9694 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9695 	mutex_enter(&spa->spa_activities_lock);
9696 
9697 	vdev_t *vd;
9698 	if (use_guid) {
9699 		vd = spa_lookup_by_guid(spa, guid, B_FALSE);
9700 		if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
9701 			spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9702 			return (EINVAL);
9703 		}
9704 	} else {
9705 		vd = spa->spa_root_vdev;
9706 	}
9707 
9708 	*in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
9709 
9710 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9711 	return (0);
9712 }
9713 
9714 /*
9715  * Locking for waiting threads
9716  * ---------------------------
9717  *
9718  * Waiting threads need a way to check whether a given activity is in progress,
9719  * and then, if it is, wait for it to complete. Each activity will have some
9720  * in-memory representation of the relevant on-disk state which can be used to
9721  * determine whether or not the activity is in progress. The in-memory state and
9722  * the locking used to protect it will be different for each activity, and may
9723  * not be suitable for use with a cvar (e.g., some state is protected by the
9724  * config lock). To allow waiting threads to wait without any races, another
9725  * lock, spa_activities_lock, is used.
9726  *
9727  * When the state is checked, both the activity-specific lock (if there is one)
9728  * and spa_activities_lock are held. In some cases, the activity-specific lock
9729  * is acquired explicitly (e.g. the config lock). In others, the locking is
9730  * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
9731  * thread releases the activity-specific lock and, if the activity is in
9732  * progress, then cv_waits using spa_activities_lock.
9733  *
9734  * The waiting thread is woken when another thread, one completing some
9735  * activity, updates the state of the activity and then calls
9736  * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
9737  * needs to hold its activity-specific lock when updating the state, and this
9738  * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
9739  *
9740  * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
9741  * and because it is held when the waiting thread checks the state of the
9742  * activity, it can never be the case that the completing thread both updates
9743  * the activity state and cv_broadcasts in between the waiting thread's check
9744  * and cv_wait. Thus, a waiting thread can never miss a wakeup.
9745  *
9746  * In order to prevent deadlock, when the waiting thread does its check, in some
9747  * cases it will temporarily drop spa_activities_lock in order to acquire the
9748  * activity-specific lock. The order in which spa_activities_lock and the
9749  * activity specific lock are acquired in the waiting thread is determined by
9750  * the order in which they are acquired in the completing thread; if the
9751  * completing thread calls spa_notify_waiters with the activity-specific lock
9752  * held, then the waiting thread must also acquire the activity-specific lock
9753  * first.
9754  */
9755 
9756 static int
9757 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
9758     boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
9759 {
9760 	int error = 0;
9761 
9762 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9763 
9764 	switch (activity) {
9765 	case ZPOOL_WAIT_CKPT_DISCARD:
9766 		*in_progress =
9767 		    (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
9768 		    zap_contains(spa_meta_objset(spa),
9769 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
9770 		    ENOENT);
9771 		break;
9772 	case ZPOOL_WAIT_FREE:
9773 		*in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
9774 		    !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
9775 		    spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
9776 		    spa_livelist_delete_check(spa));
9777 		break;
9778 	case ZPOOL_WAIT_INITIALIZE:
9779 	case ZPOOL_WAIT_TRIM:
9780 		error = spa_vdev_activity_in_progress(spa, use_tag, tag,
9781 		    activity, in_progress);
9782 		break;
9783 	case ZPOOL_WAIT_REPLACE:
9784 		mutex_exit(&spa->spa_activities_lock);
9785 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9786 		mutex_enter(&spa->spa_activities_lock);
9787 
9788 		*in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
9789 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9790 		break;
9791 	case ZPOOL_WAIT_REMOVE:
9792 		*in_progress = (spa->spa_removing_phys.sr_state ==
9793 		    DSS_SCANNING);
9794 		break;
9795 	case ZPOOL_WAIT_RESILVER:
9796 		if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev)))
9797 			break;
9798 		zfs_fallthrough;
9799 	case ZPOOL_WAIT_SCRUB:
9800 	{
9801 		boolean_t scanning, paused, is_scrub;
9802 		dsl_scan_t *scn =  spa->spa_dsl_pool->dp_scan;
9803 
9804 		is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
9805 		scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
9806 		paused = dsl_scan_is_paused_scrub(scn);
9807 		*in_progress = (scanning && !paused &&
9808 		    is_scrub == (activity == ZPOOL_WAIT_SCRUB));
9809 		break;
9810 	}
9811 	default:
9812 		panic("unrecognized value for activity %d", activity);
9813 	}
9814 
9815 	return (error);
9816 }
9817 
9818 static int
9819 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
9820     boolean_t use_tag, uint64_t tag, boolean_t *waited)
9821 {
9822 	/*
9823 	 * The tag is used to distinguish between instances of an activity.
9824 	 * 'initialize' and 'trim' are the only activities that we use this for.
9825 	 * The other activities can only have a single instance in progress in a
9826 	 * pool at one time, making the tag unnecessary.
9827 	 *
9828 	 * There can be multiple devices being replaced at once, but since they
9829 	 * all finish once resilvering finishes, we don't bother keeping track
9830 	 * of them individually, we just wait for them all to finish.
9831 	 */
9832 	if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
9833 	    activity != ZPOOL_WAIT_TRIM)
9834 		return (EINVAL);
9835 
9836 	if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
9837 		return (EINVAL);
9838 
9839 	spa_t *spa;
9840 	int error = spa_open(pool, &spa, FTAG);
9841 	if (error != 0)
9842 		return (error);
9843 
9844 	/*
9845 	 * Increment the spa's waiter count so that we can call spa_close and
9846 	 * still ensure that the spa_t doesn't get freed before this thread is
9847 	 * finished with it when the pool is exported. We want to call spa_close
9848 	 * before we start waiting because otherwise the additional ref would
9849 	 * prevent the pool from being exported or destroyed throughout the
9850 	 * potentially long wait.
9851 	 */
9852 	mutex_enter(&spa->spa_activities_lock);
9853 	spa->spa_waiters++;
9854 	spa_close(spa, FTAG);
9855 
9856 	*waited = B_FALSE;
9857 	for (;;) {
9858 		boolean_t in_progress;
9859 		error = spa_activity_in_progress(spa, activity, use_tag, tag,
9860 		    &in_progress);
9861 
9862 		if (error || !in_progress || spa->spa_waiters_cancel)
9863 			break;
9864 
9865 		*waited = B_TRUE;
9866 
9867 		if (cv_wait_sig(&spa->spa_activities_cv,
9868 		    &spa->spa_activities_lock) == 0) {
9869 			error = EINTR;
9870 			break;
9871 		}
9872 	}
9873 
9874 	spa->spa_waiters--;
9875 	cv_signal(&spa->spa_waiters_cv);
9876 	mutex_exit(&spa->spa_activities_lock);
9877 
9878 	return (error);
9879 }
9880 
9881 /*
9882  * Wait for a particular instance of the specified activity to complete, where
9883  * the instance is identified by 'tag'
9884  */
9885 int
9886 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
9887     boolean_t *waited)
9888 {
9889 	return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
9890 }
9891 
9892 /*
9893  * Wait for all instances of the specified activity complete
9894  */
9895 int
9896 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
9897 {
9898 
9899 	return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
9900 }
9901 
9902 sysevent_t *
9903 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9904 {
9905 	sysevent_t *ev = NULL;
9906 #ifdef _KERNEL
9907 	nvlist_t *resource;
9908 
9909 	resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
9910 	if (resource) {
9911 		ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
9912 		ev->resource = resource;
9913 	}
9914 #else
9915 	(void) spa, (void) vd, (void) hist_nvl, (void) name;
9916 #endif
9917 	return (ev);
9918 }
9919 
9920 void
9921 spa_event_post(sysevent_t *ev)
9922 {
9923 #ifdef _KERNEL
9924 	if (ev) {
9925 		zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
9926 		kmem_free(ev, sizeof (*ev));
9927 	}
9928 #else
9929 	(void) ev;
9930 #endif
9931 }
9932 
9933 /*
9934  * Post a zevent corresponding to the given sysevent.   The 'name' must be one
9935  * of the event definitions in sys/sysevent/eventdefs.h.  The payload will be
9936  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
9937  * in the userland libzpool, as we don't want consumers to misinterpret ztest
9938  * or zdb as real changes.
9939  */
9940 void
9941 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9942 {
9943 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
9944 }
9945 
9946 /* state manipulation functions */
9947 EXPORT_SYMBOL(spa_open);
9948 EXPORT_SYMBOL(spa_open_rewind);
9949 EXPORT_SYMBOL(spa_get_stats);
9950 EXPORT_SYMBOL(spa_create);
9951 EXPORT_SYMBOL(spa_import);
9952 EXPORT_SYMBOL(spa_tryimport);
9953 EXPORT_SYMBOL(spa_destroy);
9954 EXPORT_SYMBOL(spa_export);
9955 EXPORT_SYMBOL(spa_reset);
9956 EXPORT_SYMBOL(spa_async_request);
9957 EXPORT_SYMBOL(spa_async_suspend);
9958 EXPORT_SYMBOL(spa_async_resume);
9959 EXPORT_SYMBOL(spa_inject_addref);
9960 EXPORT_SYMBOL(spa_inject_delref);
9961 EXPORT_SYMBOL(spa_scan_stat_init);
9962 EXPORT_SYMBOL(spa_scan_get_stats);
9963 
9964 /* device manipulation */
9965 EXPORT_SYMBOL(spa_vdev_add);
9966 EXPORT_SYMBOL(spa_vdev_attach);
9967 EXPORT_SYMBOL(spa_vdev_detach);
9968 EXPORT_SYMBOL(spa_vdev_setpath);
9969 EXPORT_SYMBOL(spa_vdev_setfru);
9970 EXPORT_SYMBOL(spa_vdev_split_mirror);
9971 
9972 /* spare statech is global across all pools) */
9973 EXPORT_SYMBOL(spa_spare_add);
9974 EXPORT_SYMBOL(spa_spare_remove);
9975 EXPORT_SYMBOL(spa_spare_exists);
9976 EXPORT_SYMBOL(spa_spare_activate);
9977 
9978 /* L2ARC statech is global across all pools) */
9979 EXPORT_SYMBOL(spa_l2cache_add);
9980 EXPORT_SYMBOL(spa_l2cache_remove);
9981 EXPORT_SYMBOL(spa_l2cache_exists);
9982 EXPORT_SYMBOL(spa_l2cache_activate);
9983 EXPORT_SYMBOL(spa_l2cache_drop);
9984 
9985 /* scanning */
9986 EXPORT_SYMBOL(spa_scan);
9987 EXPORT_SYMBOL(spa_scan_stop);
9988 
9989 /* spa syncing */
9990 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
9991 EXPORT_SYMBOL(spa_sync_allpools);
9992 
9993 /* properties */
9994 EXPORT_SYMBOL(spa_prop_set);
9995 EXPORT_SYMBOL(spa_prop_get);
9996 EXPORT_SYMBOL(spa_prop_clear_bootfs);
9997 
9998 /* asynchronous event notification */
9999 EXPORT_SYMBOL(spa_event_notify);
10000 
10001 /* BEGIN CSTYLED */
10002 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
10003 	"log2 fraction of arc that can be used by inflight I/Os when "
10004 	"verifying pool during import");
10005 /* END CSTYLED */
10006 
10007 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
10008 	"Set to traverse metadata on pool import");
10009 
10010 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
10011 	"Set to traverse data on pool import");
10012 
10013 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
10014 	"Print vdev tree to zfs_dbgmsg during pool import");
10015 
10016 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
10017 	"Percentage of CPUs to run an IO worker thread");
10018 
10019 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD,
10020 	"Number of threads per IO worker taskqueue");
10021 
10022 /* BEGIN CSTYLED */
10023 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
10024 	"Allow importing pool with up to this number of missing top-level "
10025 	"vdevs (in read-only mode)");
10026 /* END CSTYLED */
10027 
10028 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
10029 	ZMOD_RW, "Set the livelist condense zthr to pause");
10030 
10031 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
10032 	ZMOD_RW, "Set the livelist condense synctask to pause");
10033 
10034 /* BEGIN CSTYLED */
10035 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
10036 	INT, ZMOD_RW,
10037 	"Whether livelist condensing was canceled in the synctask");
10038 
10039 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
10040 	INT, ZMOD_RW,
10041 	"Whether livelist condensing was canceled in the zthr function");
10042 
10043 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
10044 	ZMOD_RW,
10045 	"Whether extra ALLOC blkptrs were added to a livelist entry while it "
10046 	"was being condensed");
10047 /* END CSTYLED */
10048