xref: /freebsd/sys/contrib/openzfs/module/zfs/spa.c (revision c0a4a7bb942fd3302f0093e4353820916d3661d1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2018, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31  * Copyright 2018 Joyent, Inc.
32  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33  * Copyright 2017 Joyent, Inc.
34  * Copyright (c) 2017, Intel Corporation.
35  * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36  */
37 
38 /*
39  * SPA: Storage Pool Allocator
40  *
41  * This file contains all the routines used when modifying on-disk SPA state.
42  * This includes opening, importing, destroying, exporting a pool, and syncing a
43  * pool.
44  */
45 
46 #include <sys/zfs_context.h>
47 #include <sys/fm/fs/zfs.h>
48 #include <sys/spa_impl.h>
49 #include <sys/zio.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/dmu.h>
52 #include <sys/dmu_tx.h>
53 #include <sys/zap.h>
54 #include <sys/zil.h>
55 #include <sys/ddt.h>
56 #include <sys/vdev_impl.h>
57 #include <sys/vdev_removal.h>
58 #include <sys/vdev_indirect_mapping.h>
59 #include <sys/vdev_indirect_births.h>
60 #include <sys/vdev_initialize.h>
61 #include <sys/vdev_rebuild.h>
62 #include <sys/vdev_trim.h>
63 #include <sys/vdev_disk.h>
64 #include <sys/vdev_draid.h>
65 #include <sys/metaslab.h>
66 #include <sys/metaslab_impl.h>
67 #include <sys/mmp.h>
68 #include <sys/uberblock_impl.h>
69 #include <sys/txg.h>
70 #include <sys/avl.h>
71 #include <sys/bpobj.h>
72 #include <sys/dmu_traverse.h>
73 #include <sys/dmu_objset.h>
74 #include <sys/unique.h>
75 #include <sys/dsl_pool.h>
76 #include <sys/dsl_dataset.h>
77 #include <sys/dsl_dir.h>
78 #include <sys/dsl_prop.h>
79 #include <sys/dsl_synctask.h>
80 #include <sys/fs/zfs.h>
81 #include <sys/arc.h>
82 #include <sys/callb.h>
83 #include <sys/systeminfo.h>
84 #include <sys/zfs_ioctl.h>
85 #include <sys/dsl_scan.h>
86 #include <sys/zfeature.h>
87 #include <sys/dsl_destroy.h>
88 #include <sys/zvol.h>
89 
90 #ifdef	_KERNEL
91 #include <sys/fm/protocol.h>
92 #include <sys/fm/util.h>
93 #include <sys/callb.h>
94 #include <sys/zone.h>
95 #include <sys/vmsystm.h>
96 #endif	/* _KERNEL */
97 
98 #include "zfs_prop.h"
99 #include "zfs_comutil.h"
100 
101 /*
102  * The interval, in seconds, at which failed configuration cache file writes
103  * should be retried.
104  */
105 int zfs_ccw_retry_interval = 300;
106 
107 typedef enum zti_modes {
108 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
109 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
110 	ZTI_MODE_SCALE,			/* Taskqs scale with CPUs. */
111 	ZTI_MODE_NULL,			/* don't create a taskq */
112 	ZTI_NMODES
113 } zti_modes_t;
114 
115 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
116 #define	ZTI_PCT(n)	{ ZTI_MODE_ONLINE_PERCENT, (n), 1 }
117 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
118 #define	ZTI_SCALE	{ ZTI_MODE_SCALE, 0, 1 }
119 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
120 
121 #define	ZTI_N(n)	ZTI_P(n, 1)
122 #define	ZTI_ONE		ZTI_N(1)
123 
124 typedef struct zio_taskq_info {
125 	zti_modes_t zti_mode;
126 	uint_t zti_value;
127 	uint_t zti_count;
128 } zio_taskq_info_t;
129 
130 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
131 	"iss", "iss_h", "int", "int_h"
132 };
133 
134 /*
135  * This table defines the taskq settings for each ZFS I/O type. When
136  * initializing a pool, we use this table to create an appropriately sized
137  * taskq. Some operations are low volume and therefore have a small, static
138  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
139  * macros. Other operations process a large amount of data; the ZTI_BATCH
140  * macro causes us to create a taskq oriented for throughput. Some operations
141  * are so high frequency and short-lived that the taskq itself can become a
142  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
143  * additional degree of parallelism specified by the number of threads per-
144  * taskq and the number of taskqs; when dispatching an event in this case, the
145  * particular taskq is chosen at random. ZTI_SCALE is similar to ZTI_BATCH,
146  * but with number of taskqs also scaling with number of CPUs.
147  *
148  * The different taskq priorities are to handle the different contexts (issue
149  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
150  * need to be handled with minimum delay.
151  */
152 static const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
153 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
154 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
155 	{ ZTI_N(8),	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* READ */
156 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_SCALE,	ZTI_N(5) }, /* WRITE */
157 	{ ZTI_SCALE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
158 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
159 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
160 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
161 };
162 
163 static void spa_sync_version(void *arg, dmu_tx_t *tx);
164 static void spa_sync_props(void *arg, dmu_tx_t *tx);
165 static boolean_t spa_has_active_shared_spare(spa_t *spa);
166 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
167     const char **ereport);
168 static void spa_vdev_resilver_done(spa_t *spa);
169 
170 static uint_t	zio_taskq_batch_pct = 80;	  /* 1 thread per cpu in pset */
171 static uint_t	zio_taskq_batch_tpq;		  /* threads per taskq */
172 static const boolean_t	zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
173 static const uint_t	zio_taskq_basedc = 80;	  /* base duty cycle */
174 
175 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
176 
177 /*
178  * Report any spa_load_verify errors found, but do not fail spa_load.
179  * This is used by zdb to analyze non-idle pools.
180  */
181 boolean_t	spa_load_verify_dryrun = B_FALSE;
182 
183 /*
184  * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
185  * This is used by zdb for spacemaps verification.
186  */
187 boolean_t	spa_mode_readable_spacemaps = B_FALSE;
188 
189 /*
190  * This (illegal) pool name is used when temporarily importing a spa_t in order
191  * to get the vdev stats associated with the imported devices.
192  */
193 #define	TRYIMPORT_NAME	"$import"
194 
195 /*
196  * For debugging purposes: print out vdev tree during pool import.
197  */
198 static int		spa_load_print_vdev_tree = B_FALSE;
199 
200 /*
201  * A non-zero value for zfs_max_missing_tvds means that we allow importing
202  * pools with missing top-level vdevs. This is strictly intended for advanced
203  * pool recovery cases since missing data is almost inevitable. Pools with
204  * missing devices can only be imported read-only for safety reasons, and their
205  * fail-mode will be automatically set to "continue".
206  *
207  * With 1 missing vdev we should be able to import the pool and mount all
208  * datasets. User data that was not modified after the missing device has been
209  * added should be recoverable. This means that snapshots created prior to the
210  * addition of that device should be completely intact.
211  *
212  * With 2 missing vdevs, some datasets may fail to mount since there are
213  * dataset statistics that are stored as regular metadata. Some data might be
214  * recoverable if those vdevs were added recently.
215  *
216  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
217  * may be missing entirely. Chances of data recovery are very low. Note that
218  * there are also risks of performing an inadvertent rewind as we might be
219  * missing all the vdevs with the latest uberblocks.
220  */
221 uint64_t	zfs_max_missing_tvds = 0;
222 
223 /*
224  * The parameters below are similar to zfs_max_missing_tvds but are only
225  * intended for a preliminary open of the pool with an untrusted config which
226  * might be incomplete or out-dated.
227  *
228  * We are more tolerant for pools opened from a cachefile since we could have
229  * an out-dated cachefile where a device removal was not registered.
230  * We could have set the limit arbitrarily high but in the case where devices
231  * are really missing we would want to return the proper error codes; we chose
232  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
233  * and we get a chance to retrieve the trusted config.
234  */
235 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
236 
237 /*
238  * In the case where config was assembled by scanning device paths (/dev/dsks
239  * by default) we are less tolerant since all the existing devices should have
240  * been detected and we want spa_load to return the right error codes.
241  */
242 uint64_t	zfs_max_missing_tvds_scan = 0;
243 
244 /*
245  * Debugging aid that pauses spa_sync() towards the end.
246  */
247 static const boolean_t	zfs_pause_spa_sync = B_FALSE;
248 
249 /*
250  * Variables to indicate the livelist condense zthr func should wait at certain
251  * points for the livelist to be removed - used to test condense/destroy races
252  */
253 static int zfs_livelist_condense_zthr_pause = 0;
254 static int zfs_livelist_condense_sync_pause = 0;
255 
256 /*
257  * Variables to track whether or not condense cancellation has been
258  * triggered in testing.
259  */
260 static int zfs_livelist_condense_sync_cancel = 0;
261 static int zfs_livelist_condense_zthr_cancel = 0;
262 
263 /*
264  * Variable to track whether or not extra ALLOC blkptrs were added to a
265  * livelist entry while it was being condensed (caused by the way we track
266  * remapped blkptrs in dbuf_remap_impl)
267  */
268 static int zfs_livelist_condense_new_alloc = 0;
269 
270 /*
271  * ==========================================================================
272  * SPA properties routines
273  * ==========================================================================
274  */
275 
276 /*
277  * Add a (source=src, propname=propval) list to an nvlist.
278  */
279 static void
280 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
281     uint64_t intval, zprop_source_t src)
282 {
283 	const char *propname = zpool_prop_to_name(prop);
284 	nvlist_t *propval;
285 
286 	propval = fnvlist_alloc();
287 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
288 
289 	if (strval != NULL)
290 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
291 	else
292 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
293 
294 	fnvlist_add_nvlist(nvl, propname, propval);
295 	nvlist_free(propval);
296 }
297 
298 /*
299  * Get property values from the spa configuration.
300  */
301 static void
302 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
303 {
304 	vdev_t *rvd = spa->spa_root_vdev;
305 	dsl_pool_t *pool = spa->spa_dsl_pool;
306 	uint64_t size, alloc, cap, version;
307 	const zprop_source_t src = ZPROP_SRC_NONE;
308 	spa_config_dirent_t *dp;
309 	metaslab_class_t *mc = spa_normal_class(spa);
310 
311 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
312 
313 	if (rvd != NULL) {
314 		alloc = metaslab_class_get_alloc(mc);
315 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
316 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
317 		alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
318 
319 		size = metaslab_class_get_space(mc);
320 		size += metaslab_class_get_space(spa_special_class(spa));
321 		size += metaslab_class_get_space(spa_dedup_class(spa));
322 		size += metaslab_class_get_space(spa_embedded_log_class(spa));
323 
324 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
325 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
326 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
327 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
328 		    size - alloc, src);
329 		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
330 		    spa->spa_checkpoint_info.sci_dspace, src);
331 
332 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
333 		    metaslab_class_fragmentation(mc), src);
334 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
335 		    metaslab_class_expandable_space(mc), src);
336 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
337 		    (spa_mode(spa) == SPA_MODE_READ), src);
338 
339 		cap = (size == 0) ? 0 : (alloc * 100 / size);
340 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
341 
342 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
343 		    ddt_get_pool_dedup_ratio(spa), src);
344 
345 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
346 		    rvd->vdev_state, src);
347 
348 		version = spa_version(spa);
349 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
350 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
351 			    version, ZPROP_SRC_DEFAULT);
352 		} else {
353 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
354 			    version, ZPROP_SRC_LOCAL);
355 		}
356 		spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
357 		    NULL, spa_load_guid(spa), src);
358 	}
359 
360 	if (pool != NULL) {
361 		/*
362 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
363 		 * when opening pools before this version freedir will be NULL.
364 		 */
365 		if (pool->dp_free_dir != NULL) {
366 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
367 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
368 			    src);
369 		} else {
370 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
371 			    NULL, 0, src);
372 		}
373 
374 		if (pool->dp_leak_dir != NULL) {
375 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
376 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
377 			    src);
378 		} else {
379 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
380 			    NULL, 0, src);
381 		}
382 	}
383 
384 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
385 
386 	if (spa->spa_comment != NULL) {
387 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
388 		    0, ZPROP_SRC_LOCAL);
389 	}
390 
391 	if (spa->spa_compatibility != NULL) {
392 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
393 		    spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
394 	}
395 
396 	if (spa->spa_root != NULL)
397 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
398 		    0, ZPROP_SRC_LOCAL);
399 
400 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
401 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
402 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
403 	} else {
404 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
405 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
406 	}
407 
408 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
409 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
410 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
411 	} else {
412 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
413 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
414 	}
415 
416 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
417 		if (dp->scd_path == NULL) {
418 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
419 			    "none", 0, ZPROP_SRC_LOCAL);
420 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
421 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
422 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
423 		}
424 	}
425 }
426 
427 /*
428  * Get zpool property values.
429  */
430 int
431 spa_prop_get(spa_t *spa, nvlist_t **nvp)
432 {
433 	objset_t *mos = spa->spa_meta_objset;
434 	zap_cursor_t zc;
435 	zap_attribute_t za;
436 	dsl_pool_t *dp;
437 	int err;
438 
439 	err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
440 	if (err)
441 		return (err);
442 
443 	dp = spa_get_dsl(spa);
444 	dsl_pool_config_enter(dp, FTAG);
445 	mutex_enter(&spa->spa_props_lock);
446 
447 	/*
448 	 * Get properties from the spa config.
449 	 */
450 	spa_prop_get_config(spa, nvp);
451 
452 	/* If no pool property object, no more prop to get. */
453 	if (mos == NULL || spa->spa_pool_props_object == 0)
454 		goto out;
455 
456 	/*
457 	 * Get properties from the MOS pool property object.
458 	 */
459 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
460 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
461 	    zap_cursor_advance(&zc)) {
462 		uint64_t intval = 0;
463 		char *strval = NULL;
464 		zprop_source_t src = ZPROP_SRC_DEFAULT;
465 		zpool_prop_t prop;
466 
467 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
468 			continue;
469 
470 		switch (za.za_integer_length) {
471 		case 8:
472 			/* integer property */
473 			if (za.za_first_integer !=
474 			    zpool_prop_default_numeric(prop))
475 				src = ZPROP_SRC_LOCAL;
476 
477 			if (prop == ZPOOL_PROP_BOOTFS) {
478 				dsl_dataset_t *ds = NULL;
479 
480 				err = dsl_dataset_hold_obj(dp,
481 				    za.za_first_integer, FTAG, &ds);
482 				if (err != 0)
483 					break;
484 
485 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
486 				    KM_SLEEP);
487 				dsl_dataset_name(ds, strval);
488 				dsl_dataset_rele(ds, FTAG);
489 			} else {
490 				strval = NULL;
491 				intval = za.za_first_integer;
492 			}
493 
494 			spa_prop_add_list(*nvp, prop, strval, intval, src);
495 
496 			if (strval != NULL)
497 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
498 
499 			break;
500 
501 		case 1:
502 			/* string property */
503 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
504 			err = zap_lookup(mos, spa->spa_pool_props_object,
505 			    za.za_name, 1, za.za_num_integers, strval);
506 			if (err) {
507 				kmem_free(strval, za.za_num_integers);
508 				break;
509 			}
510 			spa_prop_add_list(*nvp, prop, strval, 0, src);
511 			kmem_free(strval, za.za_num_integers);
512 			break;
513 
514 		default:
515 			break;
516 		}
517 	}
518 	zap_cursor_fini(&zc);
519 out:
520 	mutex_exit(&spa->spa_props_lock);
521 	dsl_pool_config_exit(dp, FTAG);
522 	if (err && err != ENOENT) {
523 		nvlist_free(*nvp);
524 		*nvp = NULL;
525 		return (err);
526 	}
527 
528 	return (0);
529 }
530 
531 /*
532  * Validate the given pool properties nvlist and modify the list
533  * for the property values to be set.
534  */
535 static int
536 spa_prop_validate(spa_t *spa, nvlist_t *props)
537 {
538 	nvpair_t *elem;
539 	int error = 0, reset_bootfs = 0;
540 	uint64_t objnum = 0;
541 	boolean_t has_feature = B_FALSE;
542 
543 	elem = NULL;
544 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
545 		uint64_t intval;
546 		char *strval, *slash, *check, *fname;
547 		const char *propname = nvpair_name(elem);
548 		zpool_prop_t prop = zpool_name_to_prop(propname);
549 
550 		switch (prop) {
551 		case ZPOOL_PROP_INVAL:
552 			if (!zpool_prop_feature(propname)) {
553 				error = SET_ERROR(EINVAL);
554 				break;
555 			}
556 
557 			/*
558 			 * Sanitize the input.
559 			 */
560 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
561 				error = SET_ERROR(EINVAL);
562 				break;
563 			}
564 
565 			if (nvpair_value_uint64(elem, &intval) != 0) {
566 				error = SET_ERROR(EINVAL);
567 				break;
568 			}
569 
570 			if (intval != 0) {
571 				error = SET_ERROR(EINVAL);
572 				break;
573 			}
574 
575 			fname = strchr(propname, '@') + 1;
576 			if (zfeature_lookup_name(fname, NULL) != 0) {
577 				error = SET_ERROR(EINVAL);
578 				break;
579 			}
580 
581 			has_feature = B_TRUE;
582 			break;
583 
584 		case ZPOOL_PROP_VERSION:
585 			error = nvpair_value_uint64(elem, &intval);
586 			if (!error &&
587 			    (intval < spa_version(spa) ||
588 			    intval > SPA_VERSION_BEFORE_FEATURES ||
589 			    has_feature))
590 				error = SET_ERROR(EINVAL);
591 			break;
592 
593 		case ZPOOL_PROP_DELEGATION:
594 		case ZPOOL_PROP_AUTOREPLACE:
595 		case ZPOOL_PROP_LISTSNAPS:
596 		case ZPOOL_PROP_AUTOEXPAND:
597 		case ZPOOL_PROP_AUTOTRIM:
598 			error = nvpair_value_uint64(elem, &intval);
599 			if (!error && intval > 1)
600 				error = SET_ERROR(EINVAL);
601 			break;
602 
603 		case ZPOOL_PROP_MULTIHOST:
604 			error = nvpair_value_uint64(elem, &intval);
605 			if (!error && intval > 1)
606 				error = SET_ERROR(EINVAL);
607 
608 			if (!error) {
609 				uint32_t hostid = zone_get_hostid(NULL);
610 				if (hostid)
611 					spa->spa_hostid = hostid;
612 				else
613 					error = SET_ERROR(ENOTSUP);
614 			}
615 
616 			break;
617 
618 		case ZPOOL_PROP_BOOTFS:
619 			/*
620 			 * If the pool version is less than SPA_VERSION_BOOTFS,
621 			 * or the pool is still being created (version == 0),
622 			 * the bootfs property cannot be set.
623 			 */
624 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
625 				error = SET_ERROR(ENOTSUP);
626 				break;
627 			}
628 
629 			/*
630 			 * Make sure the vdev config is bootable
631 			 */
632 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
633 				error = SET_ERROR(ENOTSUP);
634 				break;
635 			}
636 
637 			reset_bootfs = 1;
638 
639 			error = nvpair_value_string(elem, &strval);
640 
641 			if (!error) {
642 				objset_t *os;
643 
644 				if (strval == NULL || strval[0] == '\0') {
645 					objnum = zpool_prop_default_numeric(
646 					    ZPOOL_PROP_BOOTFS);
647 					break;
648 				}
649 
650 				error = dmu_objset_hold(strval, FTAG, &os);
651 				if (error != 0)
652 					break;
653 
654 				/* Must be ZPL. */
655 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
656 					error = SET_ERROR(ENOTSUP);
657 				} else {
658 					objnum = dmu_objset_id(os);
659 				}
660 				dmu_objset_rele(os, FTAG);
661 			}
662 			break;
663 
664 		case ZPOOL_PROP_FAILUREMODE:
665 			error = nvpair_value_uint64(elem, &intval);
666 			if (!error && intval > ZIO_FAILURE_MODE_PANIC)
667 				error = SET_ERROR(EINVAL);
668 
669 			/*
670 			 * This is a special case which only occurs when
671 			 * the pool has completely failed. This allows
672 			 * the user to change the in-core failmode property
673 			 * without syncing it out to disk (I/Os might
674 			 * currently be blocked). We do this by returning
675 			 * EIO to the caller (spa_prop_set) to trick it
676 			 * into thinking we encountered a property validation
677 			 * error.
678 			 */
679 			if (!error && spa_suspended(spa)) {
680 				spa->spa_failmode = intval;
681 				error = SET_ERROR(EIO);
682 			}
683 			break;
684 
685 		case ZPOOL_PROP_CACHEFILE:
686 			if ((error = nvpair_value_string(elem, &strval)) != 0)
687 				break;
688 
689 			if (strval[0] == '\0')
690 				break;
691 
692 			if (strcmp(strval, "none") == 0)
693 				break;
694 
695 			if (strval[0] != '/') {
696 				error = SET_ERROR(EINVAL);
697 				break;
698 			}
699 
700 			slash = strrchr(strval, '/');
701 			ASSERT(slash != NULL);
702 
703 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
704 			    strcmp(slash, "/..") == 0)
705 				error = SET_ERROR(EINVAL);
706 			break;
707 
708 		case ZPOOL_PROP_COMMENT:
709 			if ((error = nvpair_value_string(elem, &strval)) != 0)
710 				break;
711 			for (check = strval; *check != '\0'; check++) {
712 				if (!isprint(*check)) {
713 					error = SET_ERROR(EINVAL);
714 					break;
715 				}
716 			}
717 			if (strlen(strval) > ZPROP_MAX_COMMENT)
718 				error = SET_ERROR(E2BIG);
719 			break;
720 
721 		default:
722 			break;
723 		}
724 
725 		if (error)
726 			break;
727 	}
728 
729 	(void) nvlist_remove_all(props,
730 	    zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
731 
732 	if (!error && reset_bootfs) {
733 		error = nvlist_remove(props,
734 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
735 
736 		if (!error) {
737 			error = nvlist_add_uint64(props,
738 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
739 		}
740 	}
741 
742 	return (error);
743 }
744 
745 void
746 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
747 {
748 	char *cachefile;
749 	spa_config_dirent_t *dp;
750 
751 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
752 	    &cachefile) != 0)
753 		return;
754 
755 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
756 	    KM_SLEEP);
757 
758 	if (cachefile[0] == '\0')
759 		dp->scd_path = spa_strdup(spa_config_path);
760 	else if (strcmp(cachefile, "none") == 0)
761 		dp->scd_path = NULL;
762 	else
763 		dp->scd_path = spa_strdup(cachefile);
764 
765 	list_insert_head(&spa->spa_config_list, dp);
766 	if (need_sync)
767 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
768 }
769 
770 int
771 spa_prop_set(spa_t *spa, nvlist_t *nvp)
772 {
773 	int error;
774 	nvpair_t *elem = NULL;
775 	boolean_t need_sync = B_FALSE;
776 
777 	if ((error = spa_prop_validate(spa, nvp)) != 0)
778 		return (error);
779 
780 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
781 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
782 
783 		if (prop == ZPOOL_PROP_CACHEFILE ||
784 		    prop == ZPOOL_PROP_ALTROOT ||
785 		    prop == ZPOOL_PROP_READONLY)
786 			continue;
787 
788 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
789 			uint64_t ver = 0;
790 
791 			if (prop == ZPOOL_PROP_VERSION) {
792 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
793 			} else {
794 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
795 				ver = SPA_VERSION_FEATURES;
796 				need_sync = B_TRUE;
797 			}
798 
799 			/* Save time if the version is already set. */
800 			if (ver == spa_version(spa))
801 				continue;
802 
803 			/*
804 			 * In addition to the pool directory object, we might
805 			 * create the pool properties object, the features for
806 			 * read object, the features for write object, or the
807 			 * feature descriptions object.
808 			 */
809 			error = dsl_sync_task(spa->spa_name, NULL,
810 			    spa_sync_version, &ver,
811 			    6, ZFS_SPACE_CHECK_RESERVED);
812 			if (error)
813 				return (error);
814 			continue;
815 		}
816 
817 		need_sync = B_TRUE;
818 		break;
819 	}
820 
821 	if (need_sync) {
822 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
823 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
824 	}
825 
826 	return (0);
827 }
828 
829 /*
830  * If the bootfs property value is dsobj, clear it.
831  */
832 void
833 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
834 {
835 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
836 		VERIFY(zap_remove(spa->spa_meta_objset,
837 		    spa->spa_pool_props_object,
838 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
839 		spa->spa_bootfs = 0;
840 	}
841 }
842 
843 static int
844 spa_change_guid_check(void *arg, dmu_tx_t *tx)
845 {
846 	uint64_t *newguid __maybe_unused = arg;
847 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
848 	vdev_t *rvd = spa->spa_root_vdev;
849 	uint64_t vdev_state;
850 
851 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
852 		int error = (spa_has_checkpoint(spa)) ?
853 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
854 		return (SET_ERROR(error));
855 	}
856 
857 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
858 	vdev_state = rvd->vdev_state;
859 	spa_config_exit(spa, SCL_STATE, FTAG);
860 
861 	if (vdev_state != VDEV_STATE_HEALTHY)
862 		return (SET_ERROR(ENXIO));
863 
864 	ASSERT3U(spa_guid(spa), !=, *newguid);
865 
866 	return (0);
867 }
868 
869 static void
870 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
871 {
872 	uint64_t *newguid = arg;
873 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
874 	uint64_t oldguid;
875 	vdev_t *rvd = spa->spa_root_vdev;
876 
877 	oldguid = spa_guid(spa);
878 
879 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
880 	rvd->vdev_guid = *newguid;
881 	rvd->vdev_guid_sum += (*newguid - oldguid);
882 	vdev_config_dirty(rvd);
883 	spa_config_exit(spa, SCL_STATE, FTAG);
884 
885 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
886 	    (u_longlong_t)oldguid, (u_longlong_t)*newguid);
887 }
888 
889 /*
890  * Change the GUID for the pool.  This is done so that we can later
891  * re-import a pool built from a clone of our own vdevs.  We will modify
892  * the root vdev's guid, our own pool guid, and then mark all of our
893  * vdevs dirty.  Note that we must make sure that all our vdevs are
894  * online when we do this, or else any vdevs that weren't present
895  * would be orphaned from our pool.  We are also going to issue a
896  * sysevent to update any watchers.
897  */
898 int
899 spa_change_guid(spa_t *spa)
900 {
901 	int error;
902 	uint64_t guid;
903 
904 	mutex_enter(&spa->spa_vdev_top_lock);
905 	mutex_enter(&spa_namespace_lock);
906 	guid = spa_generate_guid(NULL);
907 
908 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
909 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
910 
911 	if (error == 0) {
912 		/*
913 		 * Clear the kobj flag from all the vdevs to allow
914 		 * vdev_cache_process_kobj_evt() to post events to all the
915 		 * vdevs since GUID is updated.
916 		 */
917 		vdev_clear_kobj_evt(spa->spa_root_vdev);
918 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
919 			vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
920 
921 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
922 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
923 	}
924 
925 	mutex_exit(&spa_namespace_lock);
926 	mutex_exit(&spa->spa_vdev_top_lock);
927 
928 	return (error);
929 }
930 
931 /*
932  * ==========================================================================
933  * SPA state manipulation (open/create/destroy/import/export)
934  * ==========================================================================
935  */
936 
937 static int
938 spa_error_entry_compare(const void *a, const void *b)
939 {
940 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
941 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
942 	int ret;
943 
944 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
945 	    sizeof (zbookmark_phys_t));
946 
947 	return (TREE_ISIGN(ret));
948 }
949 
950 /*
951  * Utility function which retrieves copies of the current logs and
952  * re-initializes them in the process.
953  */
954 void
955 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
956 {
957 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
958 
959 	memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
960 	memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
961 
962 	avl_create(&spa->spa_errlist_scrub,
963 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
964 	    offsetof(spa_error_entry_t, se_avl));
965 	avl_create(&spa->spa_errlist_last,
966 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
967 	    offsetof(spa_error_entry_t, se_avl));
968 }
969 
970 static void
971 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
972 {
973 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
974 	enum zti_modes mode = ztip->zti_mode;
975 	uint_t value = ztip->zti_value;
976 	uint_t count = ztip->zti_count;
977 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
978 	uint_t cpus, flags = TASKQ_DYNAMIC;
979 	boolean_t batch = B_FALSE;
980 
981 	switch (mode) {
982 	case ZTI_MODE_FIXED:
983 		ASSERT3U(value, >, 0);
984 		break;
985 
986 	case ZTI_MODE_BATCH:
987 		batch = B_TRUE;
988 		flags |= TASKQ_THREADS_CPU_PCT;
989 		value = MIN(zio_taskq_batch_pct, 100);
990 		break;
991 
992 	case ZTI_MODE_SCALE:
993 		flags |= TASKQ_THREADS_CPU_PCT;
994 		/*
995 		 * We want more taskqs to reduce lock contention, but we want
996 		 * less for better request ordering and CPU utilization.
997 		 */
998 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
999 		if (zio_taskq_batch_tpq > 0) {
1000 			count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1001 			    zio_taskq_batch_tpq);
1002 		} else {
1003 			/*
1004 			 * Prefer 6 threads per taskq, but no more taskqs
1005 			 * than threads in them on large systems. For 80%:
1006 			 *
1007 			 *                 taskq   taskq   total
1008 			 * cpus    taskqs  percent threads threads
1009 			 * ------- ------- ------- ------- -------
1010 			 * 1       1       80%     1       1
1011 			 * 2       1       80%     1       1
1012 			 * 4       1       80%     3       3
1013 			 * 8       2       40%     3       6
1014 			 * 16      3       27%     4       12
1015 			 * 32      5       16%     5       25
1016 			 * 64      7       11%     7       49
1017 			 * 128     10      8%      10      100
1018 			 * 256     14      6%      15      210
1019 			 */
1020 			count = 1 + cpus / 6;
1021 			while (count * count > cpus)
1022 				count--;
1023 		}
1024 		/* Limit each taskq within 100% to not trigger assertion. */
1025 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1026 		value = (zio_taskq_batch_pct + count / 2) / count;
1027 		break;
1028 
1029 	case ZTI_MODE_NULL:
1030 		tqs->stqs_count = 0;
1031 		tqs->stqs_taskq = NULL;
1032 		return;
1033 
1034 	default:
1035 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1036 		    "spa_activate()",
1037 		    zio_type_name[t], zio_taskq_types[q], mode, value);
1038 		break;
1039 	}
1040 
1041 	ASSERT3U(count, >, 0);
1042 	tqs->stqs_count = count;
1043 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1044 
1045 	for (uint_t i = 0; i < count; i++) {
1046 		taskq_t *tq;
1047 		char name[32];
1048 
1049 		if (count > 1)
1050 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
1051 			    zio_type_name[t], zio_taskq_types[q], i);
1052 		else
1053 			(void) snprintf(name, sizeof (name), "%s_%s",
1054 			    zio_type_name[t], zio_taskq_types[q]);
1055 
1056 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1057 			if (batch)
1058 				flags |= TASKQ_DC_BATCH;
1059 
1060 			(void) zio_taskq_basedc;
1061 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1062 			    spa->spa_proc, zio_taskq_basedc, flags);
1063 		} else {
1064 			pri_t pri = maxclsyspri;
1065 			/*
1066 			 * The write issue taskq can be extremely CPU
1067 			 * intensive.  Run it at slightly less important
1068 			 * priority than the other taskqs.
1069 			 *
1070 			 * Under Linux and FreeBSD this means incrementing
1071 			 * the priority value as opposed to platforms like
1072 			 * illumos where it should be decremented.
1073 			 *
1074 			 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1075 			 * are equal then a difference between them is
1076 			 * insignificant.
1077 			 */
1078 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1079 #if defined(__linux__)
1080 				pri++;
1081 #elif defined(__FreeBSD__)
1082 				pri += 4;
1083 #else
1084 #error "unknown OS"
1085 #endif
1086 			}
1087 			tq = taskq_create_proc(name, value, pri, 50,
1088 			    INT_MAX, spa->spa_proc, flags);
1089 		}
1090 
1091 		tqs->stqs_taskq[i] = tq;
1092 	}
1093 }
1094 
1095 static void
1096 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1097 {
1098 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1099 
1100 	if (tqs->stqs_taskq == NULL) {
1101 		ASSERT3U(tqs->stqs_count, ==, 0);
1102 		return;
1103 	}
1104 
1105 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1106 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1107 		taskq_destroy(tqs->stqs_taskq[i]);
1108 	}
1109 
1110 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1111 	tqs->stqs_taskq = NULL;
1112 }
1113 
1114 /*
1115  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1116  * Note that a type may have multiple discrete taskqs to avoid lock contention
1117  * on the taskq itself. In that case we choose which taskq at random by using
1118  * the low bits of gethrtime().
1119  */
1120 void
1121 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1122     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1123 {
1124 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1125 	taskq_t *tq;
1126 
1127 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1128 	ASSERT3U(tqs->stqs_count, !=, 0);
1129 
1130 	if (tqs->stqs_count == 1) {
1131 		tq = tqs->stqs_taskq[0];
1132 	} else {
1133 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1134 	}
1135 
1136 	taskq_dispatch_ent(tq, func, arg, flags, ent);
1137 }
1138 
1139 /*
1140  * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1141  */
1142 void
1143 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1144     task_func_t *func, void *arg, uint_t flags)
1145 {
1146 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1147 	taskq_t *tq;
1148 	taskqid_t id;
1149 
1150 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1151 	ASSERT3U(tqs->stqs_count, !=, 0);
1152 
1153 	if (tqs->stqs_count == 1) {
1154 		tq = tqs->stqs_taskq[0];
1155 	} else {
1156 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1157 	}
1158 
1159 	id = taskq_dispatch(tq, func, arg, flags);
1160 	if (id)
1161 		taskq_wait_id(tq, id);
1162 }
1163 
1164 static void
1165 spa_create_zio_taskqs(spa_t *spa)
1166 {
1167 	for (int t = 0; t < ZIO_TYPES; t++) {
1168 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1169 			spa_taskqs_init(spa, t, q);
1170 		}
1171 	}
1172 }
1173 
1174 /*
1175  * Disabled until spa_thread() can be adapted for Linux.
1176  */
1177 #undef HAVE_SPA_THREAD
1178 
1179 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1180 static void
1181 spa_thread(void *arg)
1182 {
1183 	psetid_t zio_taskq_psrset_bind = PS_NONE;
1184 	callb_cpr_t cprinfo;
1185 
1186 	spa_t *spa = arg;
1187 	user_t *pu = PTOU(curproc);
1188 
1189 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1190 	    spa->spa_name);
1191 
1192 	ASSERT(curproc != &p0);
1193 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1194 	    "zpool-%s", spa->spa_name);
1195 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1196 
1197 	/* bind this thread to the requested psrset */
1198 	if (zio_taskq_psrset_bind != PS_NONE) {
1199 		pool_lock();
1200 		mutex_enter(&cpu_lock);
1201 		mutex_enter(&pidlock);
1202 		mutex_enter(&curproc->p_lock);
1203 
1204 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1205 		    0, NULL, NULL) == 0)  {
1206 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1207 		} else {
1208 			cmn_err(CE_WARN,
1209 			    "Couldn't bind process for zfs pool \"%s\" to "
1210 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1211 		}
1212 
1213 		mutex_exit(&curproc->p_lock);
1214 		mutex_exit(&pidlock);
1215 		mutex_exit(&cpu_lock);
1216 		pool_unlock();
1217 	}
1218 
1219 	if (zio_taskq_sysdc) {
1220 		sysdc_thread_enter(curthread, 100, 0);
1221 	}
1222 
1223 	spa->spa_proc = curproc;
1224 	spa->spa_did = curthread->t_did;
1225 
1226 	spa_create_zio_taskqs(spa);
1227 
1228 	mutex_enter(&spa->spa_proc_lock);
1229 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1230 
1231 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1232 	cv_broadcast(&spa->spa_proc_cv);
1233 
1234 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1235 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1236 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1237 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1238 
1239 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1240 	spa->spa_proc_state = SPA_PROC_GONE;
1241 	spa->spa_proc = &p0;
1242 	cv_broadcast(&spa->spa_proc_cv);
1243 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1244 
1245 	mutex_enter(&curproc->p_lock);
1246 	lwp_exit();
1247 }
1248 #endif
1249 
1250 /*
1251  * Activate an uninitialized pool.
1252  */
1253 static void
1254 spa_activate(spa_t *spa, spa_mode_t mode)
1255 {
1256 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1257 
1258 	spa->spa_state = POOL_STATE_ACTIVE;
1259 	spa->spa_mode = mode;
1260 	spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1261 
1262 	spa->spa_normal_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1263 	spa->spa_log_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1264 	spa->spa_embedded_log_class =
1265 	    metaslab_class_create(spa, &zfs_metaslab_ops);
1266 	spa->spa_special_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1267 	spa->spa_dedup_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1268 
1269 	/* Try to create a covering process */
1270 	mutex_enter(&spa->spa_proc_lock);
1271 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1272 	ASSERT(spa->spa_proc == &p0);
1273 	spa->spa_did = 0;
1274 
1275 	(void) spa_create_process;
1276 #ifdef HAVE_SPA_THREAD
1277 	/* Only create a process if we're going to be around a while. */
1278 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1279 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1280 		    NULL, 0) == 0) {
1281 			spa->spa_proc_state = SPA_PROC_CREATED;
1282 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1283 				cv_wait(&spa->spa_proc_cv,
1284 				    &spa->spa_proc_lock);
1285 			}
1286 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1287 			ASSERT(spa->spa_proc != &p0);
1288 			ASSERT(spa->spa_did != 0);
1289 		} else {
1290 #ifdef _KERNEL
1291 			cmn_err(CE_WARN,
1292 			    "Couldn't create process for zfs pool \"%s\"\n",
1293 			    spa->spa_name);
1294 #endif
1295 		}
1296 	}
1297 #endif /* HAVE_SPA_THREAD */
1298 	mutex_exit(&spa->spa_proc_lock);
1299 
1300 	/* If we didn't create a process, we need to create our taskqs. */
1301 	if (spa->spa_proc == &p0) {
1302 		spa_create_zio_taskqs(spa);
1303 	}
1304 
1305 	for (size_t i = 0; i < TXG_SIZE; i++) {
1306 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1307 		    ZIO_FLAG_CANFAIL);
1308 	}
1309 
1310 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1311 	    offsetof(vdev_t, vdev_config_dirty_node));
1312 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1313 	    offsetof(objset_t, os_evicting_node));
1314 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1315 	    offsetof(vdev_t, vdev_state_dirty_node));
1316 
1317 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1318 	    offsetof(struct vdev, vdev_txg_node));
1319 
1320 	avl_create(&spa->spa_errlist_scrub,
1321 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1322 	    offsetof(spa_error_entry_t, se_avl));
1323 	avl_create(&spa->spa_errlist_last,
1324 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1325 	    offsetof(spa_error_entry_t, se_avl));
1326 	avl_create(&spa->spa_errlist_healed,
1327 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1328 	    offsetof(spa_error_entry_t, se_avl));
1329 
1330 	spa_activate_os(spa);
1331 
1332 	spa_keystore_init(&spa->spa_keystore);
1333 
1334 	/*
1335 	 * This taskq is used to perform zvol-minor-related tasks
1336 	 * asynchronously. This has several advantages, including easy
1337 	 * resolution of various deadlocks.
1338 	 *
1339 	 * The taskq must be single threaded to ensure tasks are always
1340 	 * processed in the order in which they were dispatched.
1341 	 *
1342 	 * A taskq per pool allows one to keep the pools independent.
1343 	 * This way if one pool is suspended, it will not impact another.
1344 	 *
1345 	 * The preferred location to dispatch a zvol minor task is a sync
1346 	 * task. In this context, there is easy access to the spa_t and minimal
1347 	 * error handling is required because the sync task must succeed.
1348 	 */
1349 	spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1350 	    1, INT_MAX, 0);
1351 
1352 	/*
1353 	 * Taskq dedicated to prefetcher threads: this is used to prevent the
1354 	 * pool traverse code from monopolizing the global (and limited)
1355 	 * system_taskq by inappropriately scheduling long running tasks on it.
1356 	 */
1357 	spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1358 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1359 
1360 	/*
1361 	 * The taskq to upgrade datasets in this pool. Currently used by
1362 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1363 	 */
1364 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1365 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1366 }
1367 
1368 /*
1369  * Opposite of spa_activate().
1370  */
1371 static void
1372 spa_deactivate(spa_t *spa)
1373 {
1374 	ASSERT(spa->spa_sync_on == B_FALSE);
1375 	ASSERT(spa->spa_dsl_pool == NULL);
1376 	ASSERT(spa->spa_root_vdev == NULL);
1377 	ASSERT(spa->spa_async_zio_root == NULL);
1378 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1379 
1380 	spa_evicting_os_wait(spa);
1381 
1382 	if (spa->spa_zvol_taskq) {
1383 		taskq_destroy(spa->spa_zvol_taskq);
1384 		spa->spa_zvol_taskq = NULL;
1385 	}
1386 
1387 	if (spa->spa_prefetch_taskq) {
1388 		taskq_destroy(spa->spa_prefetch_taskq);
1389 		spa->spa_prefetch_taskq = NULL;
1390 	}
1391 
1392 	if (spa->spa_upgrade_taskq) {
1393 		taskq_destroy(spa->spa_upgrade_taskq);
1394 		spa->spa_upgrade_taskq = NULL;
1395 	}
1396 
1397 	txg_list_destroy(&spa->spa_vdev_txg_list);
1398 
1399 	list_destroy(&spa->spa_config_dirty_list);
1400 	list_destroy(&spa->spa_evicting_os_list);
1401 	list_destroy(&spa->spa_state_dirty_list);
1402 
1403 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1404 
1405 	for (int t = 0; t < ZIO_TYPES; t++) {
1406 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1407 			spa_taskqs_fini(spa, t, q);
1408 		}
1409 	}
1410 
1411 	for (size_t i = 0; i < TXG_SIZE; i++) {
1412 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1413 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1414 		spa->spa_txg_zio[i] = NULL;
1415 	}
1416 
1417 	metaslab_class_destroy(spa->spa_normal_class);
1418 	spa->spa_normal_class = NULL;
1419 
1420 	metaslab_class_destroy(spa->spa_log_class);
1421 	spa->spa_log_class = NULL;
1422 
1423 	metaslab_class_destroy(spa->spa_embedded_log_class);
1424 	spa->spa_embedded_log_class = NULL;
1425 
1426 	metaslab_class_destroy(spa->spa_special_class);
1427 	spa->spa_special_class = NULL;
1428 
1429 	metaslab_class_destroy(spa->spa_dedup_class);
1430 	spa->spa_dedup_class = NULL;
1431 
1432 	/*
1433 	 * If this was part of an import or the open otherwise failed, we may
1434 	 * still have errors left in the queues.  Empty them just in case.
1435 	 */
1436 	spa_errlog_drain(spa);
1437 	avl_destroy(&spa->spa_errlist_scrub);
1438 	avl_destroy(&spa->spa_errlist_last);
1439 	avl_destroy(&spa->spa_errlist_healed);
1440 
1441 	spa_keystore_fini(&spa->spa_keystore);
1442 
1443 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1444 
1445 	mutex_enter(&spa->spa_proc_lock);
1446 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1447 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1448 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1449 		cv_broadcast(&spa->spa_proc_cv);
1450 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1451 			ASSERT(spa->spa_proc != &p0);
1452 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1453 		}
1454 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1455 		spa->spa_proc_state = SPA_PROC_NONE;
1456 	}
1457 	ASSERT(spa->spa_proc == &p0);
1458 	mutex_exit(&spa->spa_proc_lock);
1459 
1460 	/*
1461 	 * We want to make sure spa_thread() has actually exited the ZFS
1462 	 * module, so that the module can't be unloaded out from underneath
1463 	 * it.
1464 	 */
1465 	if (spa->spa_did != 0) {
1466 		thread_join(spa->spa_did);
1467 		spa->spa_did = 0;
1468 	}
1469 
1470 	spa_deactivate_os(spa);
1471 
1472 }
1473 
1474 /*
1475  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1476  * will create all the necessary vdevs in the appropriate layout, with each vdev
1477  * in the CLOSED state.  This will prep the pool before open/creation/import.
1478  * All vdev validation is done by the vdev_alloc() routine.
1479  */
1480 int
1481 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1482     uint_t id, int atype)
1483 {
1484 	nvlist_t **child;
1485 	uint_t children;
1486 	int error;
1487 
1488 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1489 		return (error);
1490 
1491 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1492 		return (0);
1493 
1494 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1495 	    &child, &children);
1496 
1497 	if (error == ENOENT)
1498 		return (0);
1499 
1500 	if (error) {
1501 		vdev_free(*vdp);
1502 		*vdp = NULL;
1503 		return (SET_ERROR(EINVAL));
1504 	}
1505 
1506 	for (int c = 0; c < children; c++) {
1507 		vdev_t *vd;
1508 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1509 		    atype)) != 0) {
1510 			vdev_free(*vdp);
1511 			*vdp = NULL;
1512 			return (error);
1513 		}
1514 	}
1515 
1516 	ASSERT(*vdp != NULL);
1517 
1518 	return (0);
1519 }
1520 
1521 static boolean_t
1522 spa_should_flush_logs_on_unload(spa_t *spa)
1523 {
1524 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1525 		return (B_FALSE);
1526 
1527 	if (!spa_writeable(spa))
1528 		return (B_FALSE);
1529 
1530 	if (!spa->spa_sync_on)
1531 		return (B_FALSE);
1532 
1533 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1534 		return (B_FALSE);
1535 
1536 	if (zfs_keep_log_spacemaps_at_export)
1537 		return (B_FALSE);
1538 
1539 	return (B_TRUE);
1540 }
1541 
1542 /*
1543  * Opens a transaction that will set the flag that will instruct
1544  * spa_sync to attempt to flush all the metaslabs for that txg.
1545  */
1546 static void
1547 spa_unload_log_sm_flush_all(spa_t *spa)
1548 {
1549 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1550 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1551 
1552 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1553 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1554 
1555 	dmu_tx_commit(tx);
1556 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1557 }
1558 
1559 static void
1560 spa_unload_log_sm_metadata(spa_t *spa)
1561 {
1562 	void *cookie = NULL;
1563 	spa_log_sm_t *sls;
1564 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1565 	    &cookie)) != NULL) {
1566 		VERIFY0(sls->sls_mscount);
1567 		kmem_free(sls, sizeof (spa_log_sm_t));
1568 	}
1569 
1570 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1571 	    e != NULL; e = list_head(&spa->spa_log_summary)) {
1572 		VERIFY0(e->lse_mscount);
1573 		list_remove(&spa->spa_log_summary, e);
1574 		kmem_free(e, sizeof (log_summary_entry_t));
1575 	}
1576 
1577 	spa->spa_unflushed_stats.sus_nblocks = 0;
1578 	spa->spa_unflushed_stats.sus_memused = 0;
1579 	spa->spa_unflushed_stats.sus_blocklimit = 0;
1580 }
1581 
1582 static void
1583 spa_destroy_aux_threads(spa_t *spa)
1584 {
1585 	if (spa->spa_condense_zthr != NULL) {
1586 		zthr_destroy(spa->spa_condense_zthr);
1587 		spa->spa_condense_zthr = NULL;
1588 	}
1589 	if (spa->spa_checkpoint_discard_zthr != NULL) {
1590 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1591 		spa->spa_checkpoint_discard_zthr = NULL;
1592 	}
1593 	if (spa->spa_livelist_delete_zthr != NULL) {
1594 		zthr_destroy(spa->spa_livelist_delete_zthr);
1595 		spa->spa_livelist_delete_zthr = NULL;
1596 	}
1597 	if (spa->spa_livelist_condense_zthr != NULL) {
1598 		zthr_destroy(spa->spa_livelist_condense_zthr);
1599 		spa->spa_livelist_condense_zthr = NULL;
1600 	}
1601 }
1602 
1603 /*
1604  * Opposite of spa_load().
1605  */
1606 static void
1607 spa_unload(spa_t *spa)
1608 {
1609 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1610 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1611 
1612 	spa_import_progress_remove(spa_guid(spa));
1613 	spa_load_note(spa, "UNLOADING");
1614 
1615 	spa_wake_waiters(spa);
1616 
1617 	/*
1618 	 * If we have set the spa_final_txg, we have already performed the
1619 	 * tasks below in spa_export_common(). We should not redo it here since
1620 	 * we delay the final TXGs beyond what spa_final_txg is set at.
1621 	 */
1622 	if (spa->spa_final_txg == UINT64_MAX) {
1623 		/*
1624 		 * If the log space map feature is enabled and the pool is
1625 		 * getting exported (but not destroyed), we want to spend some
1626 		 * time flushing as many metaslabs as we can in an attempt to
1627 		 * destroy log space maps and save import time.
1628 		 */
1629 		if (spa_should_flush_logs_on_unload(spa))
1630 			spa_unload_log_sm_flush_all(spa);
1631 
1632 		/*
1633 		 * Stop async tasks.
1634 		 */
1635 		spa_async_suspend(spa);
1636 
1637 		if (spa->spa_root_vdev) {
1638 			vdev_t *root_vdev = spa->spa_root_vdev;
1639 			vdev_initialize_stop_all(root_vdev,
1640 			    VDEV_INITIALIZE_ACTIVE);
1641 			vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1642 			vdev_autotrim_stop_all(spa);
1643 			vdev_rebuild_stop_all(spa);
1644 		}
1645 	}
1646 
1647 	/*
1648 	 * Stop syncing.
1649 	 */
1650 	if (spa->spa_sync_on) {
1651 		txg_sync_stop(spa->spa_dsl_pool);
1652 		spa->spa_sync_on = B_FALSE;
1653 	}
1654 
1655 	/*
1656 	 * This ensures that there is no async metaslab prefetching
1657 	 * while we attempt to unload the spa.
1658 	 */
1659 	if (spa->spa_root_vdev != NULL) {
1660 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1661 			vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1662 			if (vc->vdev_mg != NULL)
1663 				taskq_wait(vc->vdev_mg->mg_taskq);
1664 		}
1665 	}
1666 
1667 	if (spa->spa_mmp.mmp_thread)
1668 		mmp_thread_stop(spa);
1669 
1670 	/*
1671 	 * Wait for any outstanding async I/O to complete.
1672 	 */
1673 	if (spa->spa_async_zio_root != NULL) {
1674 		for (int i = 0; i < max_ncpus; i++)
1675 			(void) zio_wait(spa->spa_async_zio_root[i]);
1676 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1677 		spa->spa_async_zio_root = NULL;
1678 	}
1679 
1680 	if (spa->spa_vdev_removal != NULL) {
1681 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1682 		spa->spa_vdev_removal = NULL;
1683 	}
1684 
1685 	spa_destroy_aux_threads(spa);
1686 
1687 	spa_condense_fini(spa);
1688 
1689 	bpobj_close(&spa->spa_deferred_bpobj);
1690 
1691 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1692 
1693 	/*
1694 	 * Close all vdevs.
1695 	 */
1696 	if (spa->spa_root_vdev)
1697 		vdev_free(spa->spa_root_vdev);
1698 	ASSERT(spa->spa_root_vdev == NULL);
1699 
1700 	/*
1701 	 * Close the dsl pool.
1702 	 */
1703 	if (spa->spa_dsl_pool) {
1704 		dsl_pool_close(spa->spa_dsl_pool);
1705 		spa->spa_dsl_pool = NULL;
1706 		spa->spa_meta_objset = NULL;
1707 	}
1708 
1709 	ddt_unload(spa);
1710 	spa_unload_log_sm_metadata(spa);
1711 
1712 	/*
1713 	 * Drop and purge level 2 cache
1714 	 */
1715 	spa_l2cache_drop(spa);
1716 
1717 	for (int i = 0; i < spa->spa_spares.sav_count; i++)
1718 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1719 	if (spa->spa_spares.sav_vdevs) {
1720 		kmem_free(spa->spa_spares.sav_vdevs,
1721 		    spa->spa_spares.sav_count * sizeof (void *));
1722 		spa->spa_spares.sav_vdevs = NULL;
1723 	}
1724 	if (spa->spa_spares.sav_config) {
1725 		nvlist_free(spa->spa_spares.sav_config);
1726 		spa->spa_spares.sav_config = NULL;
1727 	}
1728 	spa->spa_spares.sav_count = 0;
1729 
1730 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1731 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1732 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1733 	}
1734 	if (spa->spa_l2cache.sav_vdevs) {
1735 		kmem_free(spa->spa_l2cache.sav_vdevs,
1736 		    spa->spa_l2cache.sav_count * sizeof (void *));
1737 		spa->spa_l2cache.sav_vdevs = NULL;
1738 	}
1739 	if (spa->spa_l2cache.sav_config) {
1740 		nvlist_free(spa->spa_l2cache.sav_config);
1741 		spa->spa_l2cache.sav_config = NULL;
1742 	}
1743 	spa->spa_l2cache.sav_count = 0;
1744 
1745 	spa->spa_async_suspended = 0;
1746 
1747 	spa->spa_indirect_vdevs_loaded = B_FALSE;
1748 
1749 	if (spa->spa_comment != NULL) {
1750 		spa_strfree(spa->spa_comment);
1751 		spa->spa_comment = NULL;
1752 	}
1753 	if (spa->spa_compatibility != NULL) {
1754 		spa_strfree(spa->spa_compatibility);
1755 		spa->spa_compatibility = NULL;
1756 	}
1757 
1758 	spa_config_exit(spa, SCL_ALL, spa);
1759 }
1760 
1761 /*
1762  * Load (or re-load) the current list of vdevs describing the active spares for
1763  * this pool.  When this is called, we have some form of basic information in
1764  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1765  * then re-generate a more complete list including status information.
1766  */
1767 void
1768 spa_load_spares(spa_t *spa)
1769 {
1770 	nvlist_t **spares;
1771 	uint_t nspares;
1772 	int i;
1773 	vdev_t *vd, *tvd;
1774 
1775 #ifndef _KERNEL
1776 	/*
1777 	 * zdb opens both the current state of the pool and the
1778 	 * checkpointed state (if present), with a different spa_t.
1779 	 *
1780 	 * As spare vdevs are shared among open pools, we skip loading
1781 	 * them when we load the checkpointed state of the pool.
1782 	 */
1783 	if (!spa_writeable(spa))
1784 		return;
1785 #endif
1786 
1787 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1788 
1789 	/*
1790 	 * First, close and free any existing spare vdevs.
1791 	 */
1792 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1793 		vd = spa->spa_spares.sav_vdevs[i];
1794 
1795 		/* Undo the call to spa_activate() below */
1796 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1797 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1798 			spa_spare_remove(tvd);
1799 		vdev_close(vd);
1800 		vdev_free(vd);
1801 	}
1802 
1803 	if (spa->spa_spares.sav_vdevs)
1804 		kmem_free(spa->spa_spares.sav_vdevs,
1805 		    spa->spa_spares.sav_count * sizeof (void *));
1806 
1807 	if (spa->spa_spares.sav_config == NULL)
1808 		nspares = 0;
1809 	else
1810 		VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1811 		    ZPOOL_CONFIG_SPARES, &spares, &nspares));
1812 
1813 	spa->spa_spares.sav_count = (int)nspares;
1814 	spa->spa_spares.sav_vdevs = NULL;
1815 
1816 	if (nspares == 0)
1817 		return;
1818 
1819 	/*
1820 	 * Construct the array of vdevs, opening them to get status in the
1821 	 * process.   For each spare, there is potentially two different vdev_t
1822 	 * structures associated with it: one in the list of spares (used only
1823 	 * for basic validation purposes) and one in the active vdev
1824 	 * configuration (if it's spared in).  During this phase we open and
1825 	 * validate each vdev on the spare list.  If the vdev also exists in the
1826 	 * active configuration, then we also mark this vdev as an active spare.
1827 	 */
1828 	spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1829 	    KM_SLEEP);
1830 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1831 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1832 		    VDEV_ALLOC_SPARE) == 0);
1833 		ASSERT(vd != NULL);
1834 
1835 		spa->spa_spares.sav_vdevs[i] = vd;
1836 
1837 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1838 		    B_FALSE)) != NULL) {
1839 			if (!tvd->vdev_isspare)
1840 				spa_spare_add(tvd);
1841 
1842 			/*
1843 			 * We only mark the spare active if we were successfully
1844 			 * able to load the vdev.  Otherwise, importing a pool
1845 			 * with a bad active spare would result in strange
1846 			 * behavior, because multiple pool would think the spare
1847 			 * is actively in use.
1848 			 *
1849 			 * There is a vulnerability here to an equally bizarre
1850 			 * circumstance, where a dead active spare is later
1851 			 * brought back to life (onlined or otherwise).  Given
1852 			 * the rarity of this scenario, and the extra complexity
1853 			 * it adds, we ignore the possibility.
1854 			 */
1855 			if (!vdev_is_dead(tvd))
1856 				spa_spare_activate(tvd);
1857 		}
1858 
1859 		vd->vdev_top = vd;
1860 		vd->vdev_aux = &spa->spa_spares;
1861 
1862 		if (vdev_open(vd) != 0)
1863 			continue;
1864 
1865 		if (vdev_validate_aux(vd) == 0)
1866 			spa_spare_add(vd);
1867 	}
1868 
1869 	/*
1870 	 * Recompute the stashed list of spares, with status information
1871 	 * this time.
1872 	 */
1873 	fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
1874 
1875 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1876 	    KM_SLEEP);
1877 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1878 		spares[i] = vdev_config_generate(spa,
1879 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1880 	fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
1881 	    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
1882 	    spa->spa_spares.sav_count);
1883 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1884 		nvlist_free(spares[i]);
1885 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1886 }
1887 
1888 /*
1889  * Load (or re-load) the current list of vdevs describing the active l2cache for
1890  * this pool.  When this is called, we have some form of basic information in
1891  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1892  * then re-generate a more complete list including status information.
1893  * Devices which are already active have their details maintained, and are
1894  * not re-opened.
1895  */
1896 void
1897 spa_load_l2cache(spa_t *spa)
1898 {
1899 	nvlist_t **l2cache = NULL;
1900 	uint_t nl2cache;
1901 	int i, j, oldnvdevs;
1902 	uint64_t guid;
1903 	vdev_t *vd, **oldvdevs, **newvdevs;
1904 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1905 
1906 #ifndef _KERNEL
1907 	/*
1908 	 * zdb opens both the current state of the pool and the
1909 	 * checkpointed state (if present), with a different spa_t.
1910 	 *
1911 	 * As L2 caches are part of the ARC which is shared among open
1912 	 * pools, we skip loading them when we load the checkpointed
1913 	 * state of the pool.
1914 	 */
1915 	if (!spa_writeable(spa))
1916 		return;
1917 #endif
1918 
1919 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1920 
1921 	oldvdevs = sav->sav_vdevs;
1922 	oldnvdevs = sav->sav_count;
1923 	sav->sav_vdevs = NULL;
1924 	sav->sav_count = 0;
1925 
1926 	if (sav->sav_config == NULL) {
1927 		nl2cache = 0;
1928 		newvdevs = NULL;
1929 		goto out;
1930 	}
1931 
1932 	VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
1933 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
1934 	newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1935 
1936 	/*
1937 	 * Process new nvlist of vdevs.
1938 	 */
1939 	for (i = 0; i < nl2cache; i++) {
1940 		guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
1941 
1942 		newvdevs[i] = NULL;
1943 		for (j = 0; j < oldnvdevs; j++) {
1944 			vd = oldvdevs[j];
1945 			if (vd != NULL && guid == vd->vdev_guid) {
1946 				/*
1947 				 * Retain previous vdev for add/remove ops.
1948 				 */
1949 				newvdevs[i] = vd;
1950 				oldvdevs[j] = NULL;
1951 				break;
1952 			}
1953 		}
1954 
1955 		if (newvdevs[i] == NULL) {
1956 			/*
1957 			 * Create new vdev
1958 			 */
1959 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1960 			    VDEV_ALLOC_L2CACHE) == 0);
1961 			ASSERT(vd != NULL);
1962 			newvdevs[i] = vd;
1963 
1964 			/*
1965 			 * Commit this vdev as an l2cache device,
1966 			 * even if it fails to open.
1967 			 */
1968 			spa_l2cache_add(vd);
1969 
1970 			vd->vdev_top = vd;
1971 			vd->vdev_aux = sav;
1972 
1973 			spa_l2cache_activate(vd);
1974 
1975 			if (vdev_open(vd) != 0)
1976 				continue;
1977 
1978 			(void) vdev_validate_aux(vd);
1979 
1980 			if (!vdev_is_dead(vd))
1981 				l2arc_add_vdev(spa, vd);
1982 
1983 			/*
1984 			 * Upon cache device addition to a pool or pool
1985 			 * creation with a cache device or if the header
1986 			 * of the device is invalid we issue an async
1987 			 * TRIM command for the whole device which will
1988 			 * execute if l2arc_trim_ahead > 0.
1989 			 */
1990 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
1991 		}
1992 	}
1993 
1994 	sav->sav_vdevs = newvdevs;
1995 	sav->sav_count = (int)nl2cache;
1996 
1997 	/*
1998 	 * Recompute the stashed list of l2cache devices, with status
1999 	 * information this time.
2000 	 */
2001 	fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2002 
2003 	if (sav->sav_count > 0)
2004 		l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2005 		    KM_SLEEP);
2006 	for (i = 0; i < sav->sav_count; i++)
2007 		l2cache[i] = vdev_config_generate(spa,
2008 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2009 	fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2010 	    (const nvlist_t * const *)l2cache, sav->sav_count);
2011 
2012 out:
2013 	/*
2014 	 * Purge vdevs that were dropped
2015 	 */
2016 	for (i = 0; i < oldnvdevs; i++) {
2017 		uint64_t pool;
2018 
2019 		vd = oldvdevs[i];
2020 		if (vd != NULL) {
2021 			ASSERT(vd->vdev_isl2cache);
2022 
2023 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2024 			    pool != 0ULL && l2arc_vdev_present(vd))
2025 				l2arc_remove_vdev(vd);
2026 			vdev_clear_stats(vd);
2027 			vdev_free(vd);
2028 		}
2029 	}
2030 
2031 	if (oldvdevs)
2032 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2033 
2034 	for (i = 0; i < sav->sav_count; i++)
2035 		nvlist_free(l2cache[i]);
2036 	if (sav->sav_count)
2037 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
2038 }
2039 
2040 static int
2041 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2042 {
2043 	dmu_buf_t *db;
2044 	char *packed = NULL;
2045 	size_t nvsize = 0;
2046 	int error;
2047 	*value = NULL;
2048 
2049 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2050 	if (error)
2051 		return (error);
2052 
2053 	nvsize = *(uint64_t *)db->db_data;
2054 	dmu_buf_rele(db, FTAG);
2055 
2056 	packed = vmem_alloc(nvsize, KM_SLEEP);
2057 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2058 	    DMU_READ_PREFETCH);
2059 	if (error == 0)
2060 		error = nvlist_unpack(packed, nvsize, value, 0);
2061 	vmem_free(packed, nvsize);
2062 
2063 	return (error);
2064 }
2065 
2066 /*
2067  * Concrete top-level vdevs that are not missing and are not logs. At every
2068  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2069  */
2070 static uint64_t
2071 spa_healthy_core_tvds(spa_t *spa)
2072 {
2073 	vdev_t *rvd = spa->spa_root_vdev;
2074 	uint64_t tvds = 0;
2075 
2076 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2077 		vdev_t *vd = rvd->vdev_child[i];
2078 		if (vd->vdev_islog)
2079 			continue;
2080 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2081 			tvds++;
2082 	}
2083 
2084 	return (tvds);
2085 }
2086 
2087 /*
2088  * Checks to see if the given vdev could not be opened, in which case we post a
2089  * sysevent to notify the autoreplace code that the device has been removed.
2090  */
2091 static void
2092 spa_check_removed(vdev_t *vd)
2093 {
2094 	for (uint64_t c = 0; c < vd->vdev_children; c++)
2095 		spa_check_removed(vd->vdev_child[c]);
2096 
2097 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2098 	    vdev_is_concrete(vd)) {
2099 		zfs_post_autoreplace(vd->vdev_spa, vd);
2100 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2101 	}
2102 }
2103 
2104 static int
2105 spa_check_for_missing_logs(spa_t *spa)
2106 {
2107 	vdev_t *rvd = spa->spa_root_vdev;
2108 
2109 	/*
2110 	 * If we're doing a normal import, then build up any additional
2111 	 * diagnostic information about missing log devices.
2112 	 * We'll pass this up to the user for further processing.
2113 	 */
2114 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2115 		nvlist_t **child, *nv;
2116 		uint64_t idx = 0;
2117 
2118 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2119 		    KM_SLEEP);
2120 		nv = fnvlist_alloc();
2121 
2122 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2123 			vdev_t *tvd = rvd->vdev_child[c];
2124 
2125 			/*
2126 			 * We consider a device as missing only if it failed
2127 			 * to open (i.e. offline or faulted is not considered
2128 			 * as missing).
2129 			 */
2130 			if (tvd->vdev_islog &&
2131 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2132 				child[idx++] = vdev_config_generate(spa, tvd,
2133 				    B_FALSE, VDEV_CONFIG_MISSING);
2134 			}
2135 		}
2136 
2137 		if (idx > 0) {
2138 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2139 			    (const nvlist_t * const *)child, idx);
2140 			fnvlist_add_nvlist(spa->spa_load_info,
2141 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
2142 
2143 			for (uint64_t i = 0; i < idx; i++)
2144 				nvlist_free(child[i]);
2145 		}
2146 		nvlist_free(nv);
2147 		kmem_free(child, rvd->vdev_children * sizeof (char **));
2148 
2149 		if (idx > 0) {
2150 			spa_load_failed(spa, "some log devices are missing");
2151 			vdev_dbgmsg_print_tree(rvd, 2);
2152 			return (SET_ERROR(ENXIO));
2153 		}
2154 	} else {
2155 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2156 			vdev_t *tvd = rvd->vdev_child[c];
2157 
2158 			if (tvd->vdev_islog &&
2159 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2160 				spa_set_log_state(spa, SPA_LOG_CLEAR);
2161 				spa_load_note(spa, "some log devices are "
2162 				    "missing, ZIL is dropped.");
2163 				vdev_dbgmsg_print_tree(rvd, 2);
2164 				break;
2165 			}
2166 		}
2167 	}
2168 
2169 	return (0);
2170 }
2171 
2172 /*
2173  * Check for missing log devices
2174  */
2175 static boolean_t
2176 spa_check_logs(spa_t *spa)
2177 {
2178 	boolean_t rv = B_FALSE;
2179 	dsl_pool_t *dp = spa_get_dsl(spa);
2180 
2181 	switch (spa->spa_log_state) {
2182 	default:
2183 		break;
2184 	case SPA_LOG_MISSING:
2185 		/* need to recheck in case slog has been restored */
2186 	case SPA_LOG_UNKNOWN:
2187 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2188 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2189 		if (rv)
2190 			spa_set_log_state(spa, SPA_LOG_MISSING);
2191 		break;
2192 	}
2193 	return (rv);
2194 }
2195 
2196 /*
2197  * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2198  */
2199 static boolean_t
2200 spa_passivate_log(spa_t *spa)
2201 {
2202 	vdev_t *rvd = spa->spa_root_vdev;
2203 	boolean_t slog_found = B_FALSE;
2204 
2205 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2206 
2207 	for (int c = 0; c < rvd->vdev_children; c++) {
2208 		vdev_t *tvd = rvd->vdev_child[c];
2209 
2210 		if (tvd->vdev_islog) {
2211 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2212 			metaslab_group_passivate(tvd->vdev_mg);
2213 			slog_found = B_TRUE;
2214 		}
2215 	}
2216 
2217 	return (slog_found);
2218 }
2219 
2220 /*
2221  * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2222  */
2223 static void
2224 spa_activate_log(spa_t *spa)
2225 {
2226 	vdev_t *rvd = spa->spa_root_vdev;
2227 
2228 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2229 
2230 	for (int c = 0; c < rvd->vdev_children; c++) {
2231 		vdev_t *tvd = rvd->vdev_child[c];
2232 
2233 		if (tvd->vdev_islog) {
2234 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2235 			metaslab_group_activate(tvd->vdev_mg);
2236 		}
2237 	}
2238 }
2239 
2240 int
2241 spa_reset_logs(spa_t *spa)
2242 {
2243 	int error;
2244 
2245 	error = dmu_objset_find(spa_name(spa), zil_reset,
2246 	    NULL, DS_FIND_CHILDREN);
2247 	if (error == 0) {
2248 		/*
2249 		 * We successfully offlined the log device, sync out the
2250 		 * current txg so that the "stubby" block can be removed
2251 		 * by zil_sync().
2252 		 */
2253 		txg_wait_synced(spa->spa_dsl_pool, 0);
2254 	}
2255 	return (error);
2256 }
2257 
2258 static void
2259 spa_aux_check_removed(spa_aux_vdev_t *sav)
2260 {
2261 	for (int i = 0; i < sav->sav_count; i++)
2262 		spa_check_removed(sav->sav_vdevs[i]);
2263 }
2264 
2265 void
2266 spa_claim_notify(zio_t *zio)
2267 {
2268 	spa_t *spa = zio->io_spa;
2269 
2270 	if (zio->io_error)
2271 		return;
2272 
2273 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2274 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2275 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2276 	mutex_exit(&spa->spa_props_lock);
2277 }
2278 
2279 typedef struct spa_load_error {
2280 	boolean_t	sle_verify_data;
2281 	uint64_t	sle_meta_count;
2282 	uint64_t	sle_data_count;
2283 } spa_load_error_t;
2284 
2285 static void
2286 spa_load_verify_done(zio_t *zio)
2287 {
2288 	blkptr_t *bp = zio->io_bp;
2289 	spa_load_error_t *sle = zio->io_private;
2290 	dmu_object_type_t type = BP_GET_TYPE(bp);
2291 	int error = zio->io_error;
2292 	spa_t *spa = zio->io_spa;
2293 
2294 	abd_free(zio->io_abd);
2295 	if (error) {
2296 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2297 		    type != DMU_OT_INTENT_LOG)
2298 			atomic_inc_64(&sle->sle_meta_count);
2299 		else
2300 			atomic_inc_64(&sle->sle_data_count);
2301 	}
2302 
2303 	mutex_enter(&spa->spa_scrub_lock);
2304 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2305 	cv_broadcast(&spa->spa_scrub_io_cv);
2306 	mutex_exit(&spa->spa_scrub_lock);
2307 }
2308 
2309 /*
2310  * Maximum number of inflight bytes is the log2 fraction of the arc size.
2311  * By default, we set it to 1/16th of the arc.
2312  */
2313 static uint_t spa_load_verify_shift = 4;
2314 static int spa_load_verify_metadata = B_TRUE;
2315 static int spa_load_verify_data = B_TRUE;
2316 
2317 static int
2318 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2319     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2320 {
2321 	zio_t *rio = arg;
2322 	spa_load_error_t *sle = rio->io_private;
2323 
2324 	(void) zilog, (void) dnp;
2325 
2326 	/*
2327 	 * Note: normally this routine will not be called if
2328 	 * spa_load_verify_metadata is not set.  However, it may be useful
2329 	 * to manually set the flag after the traversal has begun.
2330 	 */
2331 	if (!spa_load_verify_metadata)
2332 		return (0);
2333 
2334 	/*
2335 	 * Sanity check the block pointer in order to detect obvious damage
2336 	 * before using the contents in subsequent checks or in zio_read().
2337 	 * When damaged consider it to be a metadata error since we cannot
2338 	 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2339 	 */
2340 	if (!zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_LOG)) {
2341 		atomic_inc_64(&sle->sle_meta_count);
2342 		return (0);
2343 	}
2344 
2345 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2346 	    BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2347 		return (0);
2348 
2349 	if (!BP_IS_METADATA(bp) &&
2350 	    (!spa_load_verify_data || !sle->sle_verify_data))
2351 		return (0);
2352 
2353 	uint64_t maxinflight_bytes =
2354 	    arc_target_bytes() >> spa_load_verify_shift;
2355 	size_t size = BP_GET_PSIZE(bp);
2356 
2357 	mutex_enter(&spa->spa_scrub_lock);
2358 	while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2359 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2360 	spa->spa_load_verify_bytes += size;
2361 	mutex_exit(&spa->spa_scrub_lock);
2362 
2363 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2364 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2365 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2366 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2367 	return (0);
2368 }
2369 
2370 static int
2371 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2372 {
2373 	(void) dp, (void) arg;
2374 
2375 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2376 		return (SET_ERROR(ENAMETOOLONG));
2377 
2378 	return (0);
2379 }
2380 
2381 static int
2382 spa_load_verify(spa_t *spa)
2383 {
2384 	zio_t *rio;
2385 	spa_load_error_t sle = { 0 };
2386 	zpool_load_policy_t policy;
2387 	boolean_t verify_ok = B_FALSE;
2388 	int error = 0;
2389 
2390 	zpool_get_load_policy(spa->spa_config, &policy);
2391 
2392 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2393 	    policy.zlp_maxmeta == UINT64_MAX)
2394 		return (0);
2395 
2396 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2397 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2398 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2399 	    DS_FIND_CHILDREN);
2400 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2401 	if (error != 0)
2402 		return (error);
2403 
2404 	/*
2405 	 * Verify data only if we are rewinding or error limit was set.
2406 	 * Otherwise nothing except dbgmsg care about it to waste time.
2407 	 */
2408 	sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2409 	    (policy.zlp_maxdata < UINT64_MAX);
2410 
2411 	rio = zio_root(spa, NULL, &sle,
2412 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2413 
2414 	if (spa_load_verify_metadata) {
2415 		if (spa->spa_extreme_rewind) {
2416 			spa_load_note(spa, "performing a complete scan of the "
2417 			    "pool since extreme rewind is on. This may take "
2418 			    "a very long time.\n  (spa_load_verify_data=%u, "
2419 			    "spa_load_verify_metadata=%u)",
2420 			    spa_load_verify_data, spa_load_verify_metadata);
2421 		}
2422 
2423 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2424 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2425 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2426 	}
2427 
2428 	(void) zio_wait(rio);
2429 	ASSERT0(spa->spa_load_verify_bytes);
2430 
2431 	spa->spa_load_meta_errors = sle.sle_meta_count;
2432 	spa->spa_load_data_errors = sle.sle_data_count;
2433 
2434 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2435 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2436 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2437 		    (u_longlong_t)sle.sle_data_count);
2438 	}
2439 
2440 	if (spa_load_verify_dryrun ||
2441 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2442 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2443 		int64_t loss = 0;
2444 
2445 		verify_ok = B_TRUE;
2446 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2447 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2448 
2449 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2450 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2451 		    spa->spa_load_txg_ts);
2452 		fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2453 		    loss);
2454 		fnvlist_add_uint64(spa->spa_load_info,
2455 		    ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2456 		fnvlist_add_uint64(spa->spa_load_info,
2457 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2458 	} else {
2459 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2460 	}
2461 
2462 	if (spa_load_verify_dryrun)
2463 		return (0);
2464 
2465 	if (error) {
2466 		if (error != ENXIO && error != EIO)
2467 			error = SET_ERROR(EIO);
2468 		return (error);
2469 	}
2470 
2471 	return (verify_ok ? 0 : EIO);
2472 }
2473 
2474 /*
2475  * Find a value in the pool props object.
2476  */
2477 static void
2478 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2479 {
2480 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2481 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2482 }
2483 
2484 /*
2485  * Find a value in the pool directory object.
2486  */
2487 static int
2488 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2489 {
2490 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2491 	    name, sizeof (uint64_t), 1, val);
2492 
2493 	if (error != 0 && (error != ENOENT || log_enoent)) {
2494 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2495 		    "[error=%d]", name, error);
2496 	}
2497 
2498 	return (error);
2499 }
2500 
2501 static int
2502 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2503 {
2504 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2505 	return (SET_ERROR(err));
2506 }
2507 
2508 boolean_t
2509 spa_livelist_delete_check(spa_t *spa)
2510 {
2511 	return (spa->spa_livelists_to_delete != 0);
2512 }
2513 
2514 static boolean_t
2515 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2516 {
2517 	(void) z;
2518 	spa_t *spa = arg;
2519 	return (spa_livelist_delete_check(spa));
2520 }
2521 
2522 static int
2523 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2524 {
2525 	spa_t *spa = arg;
2526 	zio_free(spa, tx->tx_txg, bp);
2527 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2528 	    -bp_get_dsize_sync(spa, bp),
2529 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2530 	return (0);
2531 }
2532 
2533 static int
2534 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2535 {
2536 	int err;
2537 	zap_cursor_t zc;
2538 	zap_attribute_t za;
2539 	zap_cursor_init(&zc, os, zap_obj);
2540 	err = zap_cursor_retrieve(&zc, &za);
2541 	zap_cursor_fini(&zc);
2542 	if (err == 0)
2543 		*llp = za.za_first_integer;
2544 	return (err);
2545 }
2546 
2547 /*
2548  * Components of livelist deletion that must be performed in syncing
2549  * context: freeing block pointers and updating the pool-wide data
2550  * structures to indicate how much work is left to do
2551  */
2552 typedef struct sublist_delete_arg {
2553 	spa_t *spa;
2554 	dsl_deadlist_t *ll;
2555 	uint64_t key;
2556 	bplist_t *to_free;
2557 } sublist_delete_arg_t;
2558 
2559 static void
2560 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2561 {
2562 	sublist_delete_arg_t *sda = arg;
2563 	spa_t *spa = sda->spa;
2564 	dsl_deadlist_t *ll = sda->ll;
2565 	uint64_t key = sda->key;
2566 	bplist_t *to_free = sda->to_free;
2567 
2568 	bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2569 	dsl_deadlist_remove_entry(ll, key, tx);
2570 }
2571 
2572 typedef struct livelist_delete_arg {
2573 	spa_t *spa;
2574 	uint64_t ll_obj;
2575 	uint64_t zap_obj;
2576 } livelist_delete_arg_t;
2577 
2578 static void
2579 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2580 {
2581 	livelist_delete_arg_t *lda = arg;
2582 	spa_t *spa = lda->spa;
2583 	uint64_t ll_obj = lda->ll_obj;
2584 	uint64_t zap_obj = lda->zap_obj;
2585 	objset_t *mos = spa->spa_meta_objset;
2586 	uint64_t count;
2587 
2588 	/* free the livelist and decrement the feature count */
2589 	VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2590 	dsl_deadlist_free(mos, ll_obj, tx);
2591 	spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2592 	VERIFY0(zap_count(mos, zap_obj, &count));
2593 	if (count == 0) {
2594 		/* no more livelists to delete */
2595 		VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2596 		    DMU_POOL_DELETED_CLONES, tx));
2597 		VERIFY0(zap_destroy(mos, zap_obj, tx));
2598 		spa->spa_livelists_to_delete = 0;
2599 		spa_notify_waiters(spa);
2600 	}
2601 }
2602 
2603 /*
2604  * Load in the value for the livelist to be removed and open it. Then,
2605  * load its first sublist and determine which block pointers should actually
2606  * be freed. Then, call a synctask which performs the actual frees and updates
2607  * the pool-wide livelist data.
2608  */
2609 static void
2610 spa_livelist_delete_cb(void *arg, zthr_t *z)
2611 {
2612 	spa_t *spa = arg;
2613 	uint64_t ll_obj = 0, count;
2614 	objset_t *mos = spa->spa_meta_objset;
2615 	uint64_t zap_obj = spa->spa_livelists_to_delete;
2616 	/*
2617 	 * Determine the next livelist to delete. This function should only
2618 	 * be called if there is at least one deleted clone.
2619 	 */
2620 	VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2621 	VERIFY0(zap_count(mos, ll_obj, &count));
2622 	if (count > 0) {
2623 		dsl_deadlist_t *ll;
2624 		dsl_deadlist_entry_t *dle;
2625 		bplist_t to_free;
2626 		ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
2627 		dsl_deadlist_open(ll, mos, ll_obj);
2628 		dle = dsl_deadlist_first(ll);
2629 		ASSERT3P(dle, !=, NULL);
2630 		bplist_create(&to_free);
2631 		int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
2632 		    z, NULL);
2633 		if (err == 0) {
2634 			sublist_delete_arg_t sync_arg = {
2635 			    .spa = spa,
2636 			    .ll = ll,
2637 			    .key = dle->dle_mintxg,
2638 			    .to_free = &to_free
2639 			};
2640 			zfs_dbgmsg("deleting sublist (id %llu) from"
2641 			    " livelist %llu, %lld remaining",
2642 			    (u_longlong_t)dle->dle_bpobj.bpo_object,
2643 			    (u_longlong_t)ll_obj, (longlong_t)count - 1);
2644 			VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2645 			    sublist_delete_sync, &sync_arg, 0,
2646 			    ZFS_SPACE_CHECK_DESTROY));
2647 		} else {
2648 			VERIFY3U(err, ==, EINTR);
2649 		}
2650 		bplist_clear(&to_free);
2651 		bplist_destroy(&to_free);
2652 		dsl_deadlist_close(ll);
2653 		kmem_free(ll, sizeof (dsl_deadlist_t));
2654 	} else {
2655 		livelist_delete_arg_t sync_arg = {
2656 		    .spa = spa,
2657 		    .ll_obj = ll_obj,
2658 		    .zap_obj = zap_obj
2659 		};
2660 		zfs_dbgmsg("deletion of livelist %llu completed",
2661 		    (u_longlong_t)ll_obj);
2662 		VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
2663 		    &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
2664 	}
2665 }
2666 
2667 static void
2668 spa_start_livelist_destroy_thread(spa_t *spa)
2669 {
2670 	ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
2671 	spa->spa_livelist_delete_zthr =
2672 	    zthr_create("z_livelist_destroy",
2673 	    spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
2674 	    minclsyspri);
2675 }
2676 
2677 typedef struct livelist_new_arg {
2678 	bplist_t *allocs;
2679 	bplist_t *frees;
2680 } livelist_new_arg_t;
2681 
2682 static int
2683 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
2684     dmu_tx_t *tx)
2685 {
2686 	ASSERT(tx == NULL);
2687 	livelist_new_arg_t *lna = arg;
2688 	if (bp_freed) {
2689 		bplist_append(lna->frees, bp);
2690 	} else {
2691 		bplist_append(lna->allocs, bp);
2692 		zfs_livelist_condense_new_alloc++;
2693 	}
2694 	return (0);
2695 }
2696 
2697 typedef struct livelist_condense_arg {
2698 	spa_t *spa;
2699 	bplist_t to_keep;
2700 	uint64_t first_size;
2701 	uint64_t next_size;
2702 } livelist_condense_arg_t;
2703 
2704 static void
2705 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
2706 {
2707 	livelist_condense_arg_t *lca = arg;
2708 	spa_t *spa = lca->spa;
2709 	bplist_t new_frees;
2710 	dsl_dataset_t *ds = spa->spa_to_condense.ds;
2711 
2712 	/* Have we been cancelled? */
2713 	if (spa->spa_to_condense.cancelled) {
2714 		zfs_livelist_condense_sync_cancel++;
2715 		goto out;
2716 	}
2717 
2718 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2719 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2720 	dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
2721 
2722 	/*
2723 	 * It's possible that the livelist was changed while the zthr was
2724 	 * running. Therefore, we need to check for new blkptrs in the two
2725 	 * entries being condensed and continue to track them in the livelist.
2726 	 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
2727 	 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
2728 	 * we need to sort them into two different bplists.
2729 	 */
2730 	uint64_t first_obj = first->dle_bpobj.bpo_object;
2731 	uint64_t next_obj = next->dle_bpobj.bpo_object;
2732 	uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2733 	uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2734 
2735 	bplist_create(&new_frees);
2736 	livelist_new_arg_t new_bps = {
2737 	    .allocs = &lca->to_keep,
2738 	    .frees = &new_frees,
2739 	};
2740 
2741 	if (cur_first_size > lca->first_size) {
2742 		VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
2743 		    livelist_track_new_cb, &new_bps, lca->first_size));
2744 	}
2745 	if (cur_next_size > lca->next_size) {
2746 		VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
2747 		    livelist_track_new_cb, &new_bps, lca->next_size));
2748 	}
2749 
2750 	dsl_deadlist_clear_entry(first, ll, tx);
2751 	ASSERT(bpobj_is_empty(&first->dle_bpobj));
2752 	dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
2753 
2754 	bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
2755 	bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
2756 	bplist_destroy(&new_frees);
2757 
2758 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
2759 	dsl_dataset_name(ds, dsname);
2760 	zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
2761 	    "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
2762 	    "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
2763 	    (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
2764 	    (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
2765 	    (u_longlong_t)cur_next_size,
2766 	    (u_longlong_t)first->dle_bpobj.bpo_object,
2767 	    (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
2768 out:
2769 	dmu_buf_rele(ds->ds_dbuf, spa);
2770 	spa->spa_to_condense.ds = NULL;
2771 	bplist_clear(&lca->to_keep);
2772 	bplist_destroy(&lca->to_keep);
2773 	kmem_free(lca, sizeof (livelist_condense_arg_t));
2774 	spa->spa_to_condense.syncing = B_FALSE;
2775 }
2776 
2777 static void
2778 spa_livelist_condense_cb(void *arg, zthr_t *t)
2779 {
2780 	while (zfs_livelist_condense_zthr_pause &&
2781 	    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2782 		delay(1);
2783 
2784 	spa_t *spa = arg;
2785 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2786 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2787 	uint64_t first_size, next_size;
2788 
2789 	livelist_condense_arg_t *lca =
2790 	    kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
2791 	bplist_create(&lca->to_keep);
2792 
2793 	/*
2794 	 * Process the livelists (matching FREEs and ALLOCs) in open context
2795 	 * so we have minimal work in syncing context to condense.
2796 	 *
2797 	 * We save bpobj sizes (first_size and next_size) to use later in
2798 	 * syncing context to determine if entries were added to these sublists
2799 	 * while in open context. This is possible because the clone is still
2800 	 * active and open for normal writes and we want to make sure the new,
2801 	 * unprocessed blockpointers are inserted into the livelist normally.
2802 	 *
2803 	 * Note that dsl_process_sub_livelist() both stores the size number of
2804 	 * blockpointers and iterates over them while the bpobj's lock held, so
2805 	 * the sizes returned to us are consistent which what was actually
2806 	 * processed.
2807 	 */
2808 	int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
2809 	    &first_size);
2810 	if (err == 0)
2811 		err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
2812 		    t, &next_size);
2813 
2814 	if (err == 0) {
2815 		while (zfs_livelist_condense_sync_pause &&
2816 		    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2817 			delay(1);
2818 
2819 		dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2820 		dmu_tx_mark_netfree(tx);
2821 		dmu_tx_hold_space(tx, 1);
2822 		err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
2823 		if (err == 0) {
2824 			/*
2825 			 * Prevent the condense zthr restarting before
2826 			 * the synctask completes.
2827 			 */
2828 			spa->spa_to_condense.syncing = B_TRUE;
2829 			lca->spa = spa;
2830 			lca->first_size = first_size;
2831 			lca->next_size = next_size;
2832 			dsl_sync_task_nowait(spa_get_dsl(spa),
2833 			    spa_livelist_condense_sync, lca, tx);
2834 			dmu_tx_commit(tx);
2835 			return;
2836 		}
2837 	}
2838 	/*
2839 	 * Condensing can not continue: either it was externally stopped or
2840 	 * we were unable to assign to a tx because the pool has run out of
2841 	 * space. In the second case, we'll just end up trying to condense
2842 	 * again in a later txg.
2843 	 */
2844 	ASSERT(err != 0);
2845 	bplist_clear(&lca->to_keep);
2846 	bplist_destroy(&lca->to_keep);
2847 	kmem_free(lca, sizeof (livelist_condense_arg_t));
2848 	dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
2849 	spa->spa_to_condense.ds = NULL;
2850 	if (err == EINTR)
2851 		zfs_livelist_condense_zthr_cancel++;
2852 }
2853 
2854 /*
2855  * Check that there is something to condense but that a condense is not
2856  * already in progress and that condensing has not been cancelled.
2857  */
2858 static boolean_t
2859 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
2860 {
2861 	(void) z;
2862 	spa_t *spa = arg;
2863 	if ((spa->spa_to_condense.ds != NULL) &&
2864 	    (spa->spa_to_condense.syncing == B_FALSE) &&
2865 	    (spa->spa_to_condense.cancelled == B_FALSE)) {
2866 		return (B_TRUE);
2867 	}
2868 	return (B_FALSE);
2869 }
2870 
2871 static void
2872 spa_start_livelist_condensing_thread(spa_t *spa)
2873 {
2874 	spa->spa_to_condense.ds = NULL;
2875 	spa->spa_to_condense.first = NULL;
2876 	spa->spa_to_condense.next = NULL;
2877 	spa->spa_to_condense.syncing = B_FALSE;
2878 	spa->spa_to_condense.cancelled = B_FALSE;
2879 
2880 	ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
2881 	spa->spa_livelist_condense_zthr =
2882 	    zthr_create("z_livelist_condense",
2883 	    spa_livelist_condense_cb_check,
2884 	    spa_livelist_condense_cb, spa, minclsyspri);
2885 }
2886 
2887 static void
2888 spa_spawn_aux_threads(spa_t *spa)
2889 {
2890 	ASSERT(spa_writeable(spa));
2891 
2892 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2893 
2894 	spa_start_indirect_condensing_thread(spa);
2895 	spa_start_livelist_destroy_thread(spa);
2896 	spa_start_livelist_condensing_thread(spa);
2897 
2898 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2899 	spa->spa_checkpoint_discard_zthr =
2900 	    zthr_create("z_checkpoint_discard",
2901 	    spa_checkpoint_discard_thread_check,
2902 	    spa_checkpoint_discard_thread, spa, minclsyspri);
2903 }
2904 
2905 /*
2906  * Fix up config after a partly-completed split.  This is done with the
2907  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2908  * pool have that entry in their config, but only the splitting one contains
2909  * a list of all the guids of the vdevs that are being split off.
2910  *
2911  * This function determines what to do with that list: either rejoin
2912  * all the disks to the pool, or complete the splitting process.  To attempt
2913  * the rejoin, each disk that is offlined is marked online again, and
2914  * we do a reopen() call.  If the vdev label for every disk that was
2915  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2916  * then we call vdev_split() on each disk, and complete the split.
2917  *
2918  * Otherwise we leave the config alone, with all the vdevs in place in
2919  * the original pool.
2920  */
2921 static void
2922 spa_try_repair(spa_t *spa, nvlist_t *config)
2923 {
2924 	uint_t extracted;
2925 	uint64_t *glist;
2926 	uint_t i, gcount;
2927 	nvlist_t *nvl;
2928 	vdev_t **vd;
2929 	boolean_t attempt_reopen;
2930 
2931 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2932 		return;
2933 
2934 	/* check that the config is complete */
2935 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2936 	    &glist, &gcount) != 0)
2937 		return;
2938 
2939 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2940 
2941 	/* attempt to online all the vdevs & validate */
2942 	attempt_reopen = B_TRUE;
2943 	for (i = 0; i < gcount; i++) {
2944 		if (glist[i] == 0)	/* vdev is hole */
2945 			continue;
2946 
2947 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2948 		if (vd[i] == NULL) {
2949 			/*
2950 			 * Don't bother attempting to reopen the disks;
2951 			 * just do the split.
2952 			 */
2953 			attempt_reopen = B_FALSE;
2954 		} else {
2955 			/* attempt to re-online it */
2956 			vd[i]->vdev_offline = B_FALSE;
2957 		}
2958 	}
2959 
2960 	if (attempt_reopen) {
2961 		vdev_reopen(spa->spa_root_vdev);
2962 
2963 		/* check each device to see what state it's in */
2964 		for (extracted = 0, i = 0; i < gcount; i++) {
2965 			if (vd[i] != NULL &&
2966 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2967 				break;
2968 			++extracted;
2969 		}
2970 	}
2971 
2972 	/*
2973 	 * If every disk has been moved to the new pool, or if we never
2974 	 * even attempted to look at them, then we split them off for
2975 	 * good.
2976 	 */
2977 	if (!attempt_reopen || gcount == extracted) {
2978 		for (i = 0; i < gcount; i++)
2979 			if (vd[i] != NULL)
2980 				vdev_split(vd[i]);
2981 		vdev_reopen(spa->spa_root_vdev);
2982 	}
2983 
2984 	kmem_free(vd, gcount * sizeof (vdev_t *));
2985 }
2986 
2987 static int
2988 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2989 {
2990 	const char *ereport = FM_EREPORT_ZFS_POOL;
2991 	int error;
2992 
2993 	spa->spa_load_state = state;
2994 	(void) spa_import_progress_set_state(spa_guid(spa),
2995 	    spa_load_state(spa));
2996 
2997 	gethrestime(&spa->spa_loaded_ts);
2998 	error = spa_load_impl(spa, type, &ereport);
2999 
3000 	/*
3001 	 * Don't count references from objsets that are already closed
3002 	 * and are making their way through the eviction process.
3003 	 */
3004 	spa_evicting_os_wait(spa);
3005 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3006 	if (error) {
3007 		if (error != EEXIST) {
3008 			spa->spa_loaded_ts.tv_sec = 0;
3009 			spa->spa_loaded_ts.tv_nsec = 0;
3010 		}
3011 		if (error != EBADF) {
3012 			(void) zfs_ereport_post(ereport, spa,
3013 			    NULL, NULL, NULL, 0);
3014 		}
3015 	}
3016 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3017 	spa->spa_ena = 0;
3018 
3019 	(void) spa_import_progress_set_state(spa_guid(spa),
3020 	    spa_load_state(spa));
3021 
3022 	return (error);
3023 }
3024 
3025 #ifdef ZFS_DEBUG
3026 /*
3027  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3028  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3029  * spa's per-vdev ZAP list.
3030  */
3031 static uint64_t
3032 vdev_count_verify_zaps(vdev_t *vd)
3033 {
3034 	spa_t *spa = vd->vdev_spa;
3035 	uint64_t total = 0;
3036 
3037 	if (vd->vdev_top_zap != 0) {
3038 		total++;
3039 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3040 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3041 	}
3042 	if (vd->vdev_leaf_zap != 0) {
3043 		total++;
3044 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3045 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3046 	}
3047 
3048 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3049 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
3050 	}
3051 
3052 	return (total);
3053 }
3054 #else
3055 #define	vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3056 #endif
3057 
3058 /*
3059  * Determine whether the activity check is required.
3060  */
3061 static boolean_t
3062 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3063     nvlist_t *config)
3064 {
3065 	uint64_t state = 0;
3066 	uint64_t hostid = 0;
3067 	uint64_t tryconfig_txg = 0;
3068 	uint64_t tryconfig_timestamp = 0;
3069 	uint16_t tryconfig_mmp_seq = 0;
3070 	nvlist_t *nvinfo;
3071 
3072 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3073 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3074 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3075 		    &tryconfig_txg);
3076 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3077 		    &tryconfig_timestamp);
3078 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3079 		    &tryconfig_mmp_seq);
3080 	}
3081 
3082 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3083 
3084 	/*
3085 	 * Disable the MMP activity check - This is used by zdb which
3086 	 * is intended to be used on potentially active pools.
3087 	 */
3088 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3089 		return (B_FALSE);
3090 
3091 	/*
3092 	 * Skip the activity check when the MMP feature is disabled.
3093 	 */
3094 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3095 		return (B_FALSE);
3096 
3097 	/*
3098 	 * If the tryconfig_ values are nonzero, they are the results of an
3099 	 * earlier tryimport.  If they all match the uberblock we just found,
3100 	 * then the pool has not changed and we return false so we do not test
3101 	 * a second time.
3102 	 */
3103 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3104 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3105 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
3106 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3107 		return (B_FALSE);
3108 
3109 	/*
3110 	 * Allow the activity check to be skipped when importing the pool
3111 	 * on the same host which last imported it.  Since the hostid from
3112 	 * configuration may be stale use the one read from the label.
3113 	 */
3114 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3115 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3116 
3117 	if (hostid == spa_get_hostid(spa))
3118 		return (B_FALSE);
3119 
3120 	/*
3121 	 * Skip the activity test when the pool was cleanly exported.
3122 	 */
3123 	if (state != POOL_STATE_ACTIVE)
3124 		return (B_FALSE);
3125 
3126 	return (B_TRUE);
3127 }
3128 
3129 /*
3130  * Nanoseconds the activity check must watch for changes on-disk.
3131  */
3132 static uint64_t
3133 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3134 {
3135 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3136 	uint64_t multihost_interval = MSEC2NSEC(
3137 	    MMP_INTERVAL_OK(zfs_multihost_interval));
3138 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
3139 	    multihost_interval);
3140 
3141 	/*
3142 	 * Local tunables determine a minimum duration except for the case
3143 	 * where we know when the remote host will suspend the pool if MMP
3144 	 * writes do not land.
3145 	 *
3146 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
3147 	 * these cases and times.
3148 	 */
3149 
3150 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3151 
3152 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3153 	    MMP_FAIL_INT(ub) > 0) {
3154 
3155 		/* MMP on remote host will suspend pool after failed writes */
3156 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3157 		    MMP_IMPORT_SAFETY_FACTOR / 100;
3158 
3159 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3160 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3161 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3162 		    (u_longlong_t)MMP_FAIL_INT(ub),
3163 		    (u_longlong_t)MMP_INTERVAL(ub),
3164 		    (u_longlong_t)import_intervals);
3165 
3166 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3167 	    MMP_FAIL_INT(ub) == 0) {
3168 
3169 		/* MMP on remote host will never suspend pool */
3170 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3171 		    ub->ub_mmp_delay) * import_intervals);
3172 
3173 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3174 		    "mmp_interval=%llu ub_mmp_delay=%llu "
3175 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3176 		    (u_longlong_t)MMP_INTERVAL(ub),
3177 		    (u_longlong_t)ub->ub_mmp_delay,
3178 		    (u_longlong_t)import_intervals);
3179 
3180 	} else if (MMP_VALID(ub)) {
3181 		/*
3182 		 * zfs-0.7 compatibility case
3183 		 */
3184 
3185 		import_delay = MAX(import_delay, (multihost_interval +
3186 		    ub->ub_mmp_delay) * import_intervals);
3187 
3188 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3189 		    "import_intervals=%llu leaves=%u",
3190 		    (u_longlong_t)import_delay,
3191 		    (u_longlong_t)ub->ub_mmp_delay,
3192 		    (u_longlong_t)import_intervals,
3193 		    vdev_count_leaves(spa));
3194 	} else {
3195 		/* Using local tunings is the only reasonable option */
3196 		zfs_dbgmsg("pool last imported on non-MMP aware "
3197 		    "host using import_delay=%llu multihost_interval=%llu "
3198 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3199 		    (u_longlong_t)multihost_interval,
3200 		    (u_longlong_t)import_intervals);
3201 	}
3202 
3203 	return (import_delay);
3204 }
3205 
3206 /*
3207  * Perform the import activity check.  If the user canceled the import or
3208  * we detected activity then fail.
3209  */
3210 static int
3211 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3212 {
3213 	uint64_t txg = ub->ub_txg;
3214 	uint64_t timestamp = ub->ub_timestamp;
3215 	uint64_t mmp_config = ub->ub_mmp_config;
3216 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3217 	uint64_t import_delay;
3218 	hrtime_t import_expire;
3219 	nvlist_t *mmp_label = NULL;
3220 	vdev_t *rvd = spa->spa_root_vdev;
3221 	kcondvar_t cv;
3222 	kmutex_t mtx;
3223 	int error = 0;
3224 
3225 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
3226 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3227 	mutex_enter(&mtx);
3228 
3229 	/*
3230 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3231 	 * during the earlier tryimport.  If the txg recorded there is 0 then
3232 	 * the pool is known to be active on another host.
3233 	 *
3234 	 * Otherwise, the pool might be in use on another host.  Check for
3235 	 * changes in the uberblocks on disk if necessary.
3236 	 */
3237 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3238 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3239 		    ZPOOL_CONFIG_LOAD_INFO);
3240 
3241 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3242 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3243 			vdev_uberblock_load(rvd, ub, &mmp_label);
3244 			error = SET_ERROR(EREMOTEIO);
3245 			goto out;
3246 		}
3247 	}
3248 
3249 	import_delay = spa_activity_check_duration(spa, ub);
3250 
3251 	/* Add a small random factor in case of simultaneous imports (0-25%) */
3252 	import_delay += import_delay * random_in_range(250) / 1000;
3253 
3254 	import_expire = gethrtime() + import_delay;
3255 
3256 	while (gethrtime() < import_expire) {
3257 		(void) spa_import_progress_set_mmp_check(spa_guid(spa),
3258 		    NSEC2SEC(import_expire - gethrtime()));
3259 
3260 		vdev_uberblock_load(rvd, ub, &mmp_label);
3261 
3262 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3263 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3264 			zfs_dbgmsg("multihost activity detected "
3265 			    "txg %llu ub_txg  %llu "
3266 			    "timestamp %llu ub_timestamp  %llu "
3267 			    "mmp_config %#llx ub_mmp_config %#llx",
3268 			    (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3269 			    (u_longlong_t)timestamp,
3270 			    (u_longlong_t)ub->ub_timestamp,
3271 			    (u_longlong_t)mmp_config,
3272 			    (u_longlong_t)ub->ub_mmp_config);
3273 
3274 			error = SET_ERROR(EREMOTEIO);
3275 			break;
3276 		}
3277 
3278 		if (mmp_label) {
3279 			nvlist_free(mmp_label);
3280 			mmp_label = NULL;
3281 		}
3282 
3283 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3284 		if (error != -1) {
3285 			error = SET_ERROR(EINTR);
3286 			break;
3287 		}
3288 		error = 0;
3289 	}
3290 
3291 out:
3292 	mutex_exit(&mtx);
3293 	mutex_destroy(&mtx);
3294 	cv_destroy(&cv);
3295 
3296 	/*
3297 	 * If the pool is determined to be active store the status in the
3298 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
3299 	 * available from configuration read from disk store them as well.
3300 	 * This allows 'zpool import' to generate a more useful message.
3301 	 *
3302 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
3303 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3304 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
3305 	 */
3306 	if (error == EREMOTEIO) {
3307 		const char *hostname = "<unknown>";
3308 		uint64_t hostid = 0;
3309 
3310 		if (mmp_label) {
3311 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3312 				hostname = fnvlist_lookup_string(mmp_label,
3313 				    ZPOOL_CONFIG_HOSTNAME);
3314 				fnvlist_add_string(spa->spa_load_info,
3315 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3316 			}
3317 
3318 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3319 				hostid = fnvlist_lookup_uint64(mmp_label,
3320 				    ZPOOL_CONFIG_HOSTID);
3321 				fnvlist_add_uint64(spa->spa_load_info,
3322 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
3323 			}
3324 		}
3325 
3326 		fnvlist_add_uint64(spa->spa_load_info,
3327 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3328 		fnvlist_add_uint64(spa->spa_load_info,
3329 		    ZPOOL_CONFIG_MMP_TXG, 0);
3330 
3331 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3332 	}
3333 
3334 	if (mmp_label)
3335 		nvlist_free(mmp_label);
3336 
3337 	return (error);
3338 }
3339 
3340 static int
3341 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3342 {
3343 	uint64_t hostid;
3344 	char *hostname;
3345 	uint64_t myhostid = 0;
3346 
3347 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3348 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3349 		hostname = fnvlist_lookup_string(mos_config,
3350 		    ZPOOL_CONFIG_HOSTNAME);
3351 
3352 		myhostid = zone_get_hostid(NULL);
3353 
3354 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3355 			cmn_err(CE_WARN, "pool '%s' could not be "
3356 			    "loaded as it was last accessed by "
3357 			    "another system (host: %s hostid: 0x%llx). "
3358 			    "See: https://openzfs.github.io/openzfs-docs/msg/"
3359 			    "ZFS-8000-EY",
3360 			    spa_name(spa), hostname, (u_longlong_t)hostid);
3361 			spa_load_failed(spa, "hostid verification failed: pool "
3362 			    "last accessed by host: %s (hostid: 0x%llx)",
3363 			    hostname, (u_longlong_t)hostid);
3364 			return (SET_ERROR(EBADF));
3365 		}
3366 	}
3367 
3368 	return (0);
3369 }
3370 
3371 static int
3372 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3373 {
3374 	int error = 0;
3375 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3376 	int parse;
3377 	vdev_t *rvd;
3378 	uint64_t pool_guid;
3379 	char *comment;
3380 	char *compatibility;
3381 
3382 	/*
3383 	 * Versioning wasn't explicitly added to the label until later, so if
3384 	 * it's not present treat it as the initial version.
3385 	 */
3386 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3387 	    &spa->spa_ubsync.ub_version) != 0)
3388 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3389 
3390 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3391 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3392 		    ZPOOL_CONFIG_POOL_GUID);
3393 		return (SET_ERROR(EINVAL));
3394 	}
3395 
3396 	/*
3397 	 * If we are doing an import, ensure that the pool is not already
3398 	 * imported by checking if its pool guid already exists in the
3399 	 * spa namespace.
3400 	 *
3401 	 * The only case that we allow an already imported pool to be
3402 	 * imported again, is when the pool is checkpointed and we want to
3403 	 * look at its checkpointed state from userland tools like zdb.
3404 	 */
3405 #ifdef _KERNEL
3406 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3407 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3408 	    spa_guid_exists(pool_guid, 0)) {
3409 #else
3410 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3411 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3412 	    spa_guid_exists(pool_guid, 0) &&
3413 	    !spa_importing_readonly_checkpoint(spa)) {
3414 #endif
3415 		spa_load_failed(spa, "a pool with guid %llu is already open",
3416 		    (u_longlong_t)pool_guid);
3417 		return (SET_ERROR(EEXIST));
3418 	}
3419 
3420 	spa->spa_config_guid = pool_guid;
3421 
3422 	nvlist_free(spa->spa_load_info);
3423 	spa->spa_load_info = fnvlist_alloc();
3424 
3425 	ASSERT(spa->spa_comment == NULL);
3426 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3427 		spa->spa_comment = spa_strdup(comment);
3428 
3429 	ASSERT(spa->spa_compatibility == NULL);
3430 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3431 	    &compatibility) == 0)
3432 		spa->spa_compatibility = spa_strdup(compatibility);
3433 
3434 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3435 	    &spa->spa_config_txg);
3436 
3437 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3438 		spa->spa_config_splitting = fnvlist_dup(nvl);
3439 
3440 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3441 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3442 		    ZPOOL_CONFIG_VDEV_TREE);
3443 		return (SET_ERROR(EINVAL));
3444 	}
3445 
3446 	/*
3447 	 * Create "The Godfather" zio to hold all async IOs
3448 	 */
3449 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3450 	    KM_SLEEP);
3451 	for (int i = 0; i < max_ncpus; i++) {
3452 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3453 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3454 		    ZIO_FLAG_GODFATHER);
3455 	}
3456 
3457 	/*
3458 	 * Parse the configuration into a vdev tree.  We explicitly set the
3459 	 * value that will be returned by spa_version() since parsing the
3460 	 * configuration requires knowing the version number.
3461 	 */
3462 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3463 	parse = (type == SPA_IMPORT_EXISTING ?
3464 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3465 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3466 	spa_config_exit(spa, SCL_ALL, FTAG);
3467 
3468 	if (error != 0) {
3469 		spa_load_failed(spa, "unable to parse config [error=%d]",
3470 		    error);
3471 		return (error);
3472 	}
3473 
3474 	ASSERT(spa->spa_root_vdev == rvd);
3475 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3476 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3477 
3478 	if (type != SPA_IMPORT_ASSEMBLE) {
3479 		ASSERT(spa_guid(spa) == pool_guid);
3480 	}
3481 
3482 	return (0);
3483 }
3484 
3485 /*
3486  * Recursively open all vdevs in the vdev tree. This function is called twice:
3487  * first with the untrusted config, then with the trusted config.
3488  */
3489 static int
3490 spa_ld_open_vdevs(spa_t *spa)
3491 {
3492 	int error = 0;
3493 
3494 	/*
3495 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3496 	 * missing/unopenable for the root vdev to be still considered openable.
3497 	 */
3498 	if (spa->spa_trust_config) {
3499 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3500 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3501 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3502 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3503 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3504 	} else {
3505 		spa->spa_missing_tvds_allowed = 0;
3506 	}
3507 
3508 	spa->spa_missing_tvds_allowed =
3509 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3510 
3511 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3512 	error = vdev_open(spa->spa_root_vdev);
3513 	spa_config_exit(spa, SCL_ALL, FTAG);
3514 
3515 	if (spa->spa_missing_tvds != 0) {
3516 		spa_load_note(spa, "vdev tree has %lld missing top-level "
3517 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3518 		if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3519 			/*
3520 			 * Although theoretically we could allow users to open
3521 			 * incomplete pools in RW mode, we'd need to add a lot
3522 			 * of extra logic (e.g. adjust pool space to account
3523 			 * for missing vdevs).
3524 			 * This limitation also prevents users from accidentally
3525 			 * opening the pool in RW mode during data recovery and
3526 			 * damaging it further.
3527 			 */
3528 			spa_load_note(spa, "pools with missing top-level "
3529 			    "vdevs can only be opened in read-only mode.");
3530 			error = SET_ERROR(ENXIO);
3531 		} else {
3532 			spa_load_note(spa, "current settings allow for maximum "
3533 			    "%lld missing top-level vdevs at this stage.",
3534 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
3535 		}
3536 	}
3537 	if (error != 0) {
3538 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3539 		    error);
3540 	}
3541 	if (spa->spa_missing_tvds != 0 || error != 0)
3542 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3543 
3544 	return (error);
3545 }
3546 
3547 /*
3548  * We need to validate the vdev labels against the configuration that
3549  * we have in hand. This function is called twice: first with an untrusted
3550  * config, then with a trusted config. The validation is more strict when the
3551  * config is trusted.
3552  */
3553 static int
3554 spa_ld_validate_vdevs(spa_t *spa)
3555 {
3556 	int error = 0;
3557 	vdev_t *rvd = spa->spa_root_vdev;
3558 
3559 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3560 	error = vdev_validate(rvd);
3561 	spa_config_exit(spa, SCL_ALL, FTAG);
3562 
3563 	if (error != 0) {
3564 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3565 		return (error);
3566 	}
3567 
3568 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3569 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
3570 		    "some vdevs");
3571 		vdev_dbgmsg_print_tree(rvd, 2);
3572 		return (SET_ERROR(ENXIO));
3573 	}
3574 
3575 	return (0);
3576 }
3577 
3578 static void
3579 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3580 {
3581 	spa->spa_state = POOL_STATE_ACTIVE;
3582 	spa->spa_ubsync = spa->spa_uberblock;
3583 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3584 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3585 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3586 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3587 	spa->spa_claim_max_txg = spa->spa_first_txg;
3588 	spa->spa_prev_software_version = ub->ub_software_version;
3589 }
3590 
3591 static int
3592 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3593 {
3594 	vdev_t *rvd = spa->spa_root_vdev;
3595 	nvlist_t *label;
3596 	uberblock_t *ub = &spa->spa_uberblock;
3597 	boolean_t activity_check = B_FALSE;
3598 
3599 	/*
3600 	 * If we are opening the checkpointed state of the pool by
3601 	 * rewinding to it, at this point we will have written the
3602 	 * checkpointed uberblock to the vdev labels, so searching
3603 	 * the labels will find the right uberblock.  However, if
3604 	 * we are opening the checkpointed state read-only, we have
3605 	 * not modified the labels. Therefore, we must ignore the
3606 	 * labels and continue using the spa_uberblock that was set
3607 	 * by spa_ld_checkpoint_rewind.
3608 	 *
3609 	 * Note that it would be fine to ignore the labels when
3610 	 * rewinding (opening writeable) as well. However, if we
3611 	 * crash just after writing the labels, we will end up
3612 	 * searching the labels. Doing so in the common case means
3613 	 * that this code path gets exercised normally, rather than
3614 	 * just in the edge case.
3615 	 */
3616 	if (ub->ub_checkpoint_txg != 0 &&
3617 	    spa_importing_readonly_checkpoint(spa)) {
3618 		spa_ld_select_uberblock_done(spa, ub);
3619 		return (0);
3620 	}
3621 
3622 	/*
3623 	 * Find the best uberblock.
3624 	 */
3625 	vdev_uberblock_load(rvd, ub, &label);
3626 
3627 	/*
3628 	 * If we weren't able to find a single valid uberblock, return failure.
3629 	 */
3630 	if (ub->ub_txg == 0) {
3631 		nvlist_free(label);
3632 		spa_load_failed(spa, "no valid uberblock found");
3633 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3634 	}
3635 
3636 	if (spa->spa_load_max_txg != UINT64_MAX) {
3637 		(void) spa_import_progress_set_max_txg(spa_guid(spa),
3638 		    (u_longlong_t)spa->spa_load_max_txg);
3639 	}
3640 	spa_load_note(spa, "using uberblock with txg=%llu",
3641 	    (u_longlong_t)ub->ub_txg);
3642 
3643 
3644 	/*
3645 	 * For pools which have the multihost property on determine if the
3646 	 * pool is truly inactive and can be safely imported.  Prevent
3647 	 * hosts which don't have a hostid set from importing the pool.
3648 	 */
3649 	activity_check = spa_activity_check_required(spa, ub, label,
3650 	    spa->spa_config);
3651 	if (activity_check) {
3652 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3653 		    spa_get_hostid(spa) == 0) {
3654 			nvlist_free(label);
3655 			fnvlist_add_uint64(spa->spa_load_info,
3656 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3657 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3658 		}
3659 
3660 		int error = spa_activity_check(spa, ub, spa->spa_config);
3661 		if (error) {
3662 			nvlist_free(label);
3663 			return (error);
3664 		}
3665 
3666 		fnvlist_add_uint64(spa->spa_load_info,
3667 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3668 		fnvlist_add_uint64(spa->spa_load_info,
3669 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3670 		fnvlist_add_uint16(spa->spa_load_info,
3671 		    ZPOOL_CONFIG_MMP_SEQ,
3672 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3673 	}
3674 
3675 	/*
3676 	 * If the pool has an unsupported version we can't open it.
3677 	 */
3678 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3679 		nvlist_free(label);
3680 		spa_load_failed(spa, "version %llu is not supported",
3681 		    (u_longlong_t)ub->ub_version);
3682 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3683 	}
3684 
3685 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3686 		nvlist_t *features;
3687 
3688 		/*
3689 		 * If we weren't able to find what's necessary for reading the
3690 		 * MOS in the label, return failure.
3691 		 */
3692 		if (label == NULL) {
3693 			spa_load_failed(spa, "label config unavailable");
3694 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3695 			    ENXIO));
3696 		}
3697 
3698 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3699 		    &features) != 0) {
3700 			nvlist_free(label);
3701 			spa_load_failed(spa, "invalid label: '%s' missing",
3702 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
3703 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3704 			    ENXIO));
3705 		}
3706 
3707 		/*
3708 		 * Update our in-core representation with the definitive values
3709 		 * from the label.
3710 		 */
3711 		nvlist_free(spa->spa_label_features);
3712 		spa->spa_label_features = fnvlist_dup(features);
3713 	}
3714 
3715 	nvlist_free(label);
3716 
3717 	/*
3718 	 * Look through entries in the label nvlist's features_for_read. If
3719 	 * there is a feature listed there which we don't understand then we
3720 	 * cannot open a pool.
3721 	 */
3722 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3723 		nvlist_t *unsup_feat;
3724 
3725 		unsup_feat = fnvlist_alloc();
3726 
3727 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3728 		    NULL); nvp != NULL;
3729 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3730 			if (!zfeature_is_supported(nvpair_name(nvp))) {
3731 				fnvlist_add_string(unsup_feat,
3732 				    nvpair_name(nvp), "");
3733 			}
3734 		}
3735 
3736 		if (!nvlist_empty(unsup_feat)) {
3737 			fnvlist_add_nvlist(spa->spa_load_info,
3738 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3739 			nvlist_free(unsup_feat);
3740 			spa_load_failed(spa, "some features are unsupported");
3741 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3742 			    ENOTSUP));
3743 		}
3744 
3745 		nvlist_free(unsup_feat);
3746 	}
3747 
3748 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3749 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3750 		spa_try_repair(spa, spa->spa_config);
3751 		spa_config_exit(spa, SCL_ALL, FTAG);
3752 		nvlist_free(spa->spa_config_splitting);
3753 		spa->spa_config_splitting = NULL;
3754 	}
3755 
3756 	/*
3757 	 * Initialize internal SPA structures.
3758 	 */
3759 	spa_ld_select_uberblock_done(spa, ub);
3760 
3761 	return (0);
3762 }
3763 
3764 static int
3765 spa_ld_open_rootbp(spa_t *spa)
3766 {
3767 	int error = 0;
3768 	vdev_t *rvd = spa->spa_root_vdev;
3769 
3770 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3771 	if (error != 0) {
3772 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3773 		    "[error=%d]", error);
3774 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3775 	}
3776 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3777 
3778 	return (0);
3779 }
3780 
3781 static int
3782 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3783     boolean_t reloading)
3784 {
3785 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3786 	nvlist_t *nv, *mos_config, *policy;
3787 	int error = 0, copy_error;
3788 	uint64_t healthy_tvds, healthy_tvds_mos;
3789 	uint64_t mos_config_txg;
3790 
3791 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3792 	    != 0)
3793 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3794 
3795 	/*
3796 	 * If we're assembling a pool from a split, the config provided is
3797 	 * already trusted so there is nothing to do.
3798 	 */
3799 	if (type == SPA_IMPORT_ASSEMBLE)
3800 		return (0);
3801 
3802 	healthy_tvds = spa_healthy_core_tvds(spa);
3803 
3804 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3805 	    != 0) {
3806 		spa_load_failed(spa, "unable to retrieve MOS config");
3807 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3808 	}
3809 
3810 	/*
3811 	 * If we are doing an open, pool owner wasn't verified yet, thus do
3812 	 * the verification here.
3813 	 */
3814 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
3815 		error = spa_verify_host(spa, mos_config);
3816 		if (error != 0) {
3817 			nvlist_free(mos_config);
3818 			return (error);
3819 		}
3820 	}
3821 
3822 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3823 
3824 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3825 
3826 	/*
3827 	 * Build a new vdev tree from the trusted config
3828 	 */
3829 	error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
3830 	if (error != 0) {
3831 		nvlist_free(mos_config);
3832 		spa_config_exit(spa, SCL_ALL, FTAG);
3833 		spa_load_failed(spa, "spa_config_parse failed [error=%d]",
3834 		    error);
3835 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3836 	}
3837 
3838 	/*
3839 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3840 	 * obtained by scanning /dev/dsk, then it will have the right vdev
3841 	 * paths. We update the trusted MOS config with this information.
3842 	 * We first try to copy the paths with vdev_copy_path_strict, which
3843 	 * succeeds only when both configs have exactly the same vdev tree.
3844 	 * If that fails, we fall back to a more flexible method that has a
3845 	 * best effort policy.
3846 	 */
3847 	copy_error = vdev_copy_path_strict(rvd, mrvd);
3848 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3849 		spa_load_note(spa, "provided vdev tree:");
3850 		vdev_dbgmsg_print_tree(rvd, 2);
3851 		spa_load_note(spa, "MOS vdev tree:");
3852 		vdev_dbgmsg_print_tree(mrvd, 2);
3853 	}
3854 	if (copy_error != 0) {
3855 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3856 		    "back to vdev_copy_path_relaxed");
3857 		vdev_copy_path_relaxed(rvd, mrvd);
3858 	}
3859 
3860 	vdev_close(rvd);
3861 	vdev_free(rvd);
3862 	spa->spa_root_vdev = mrvd;
3863 	rvd = mrvd;
3864 	spa_config_exit(spa, SCL_ALL, FTAG);
3865 
3866 	/*
3867 	 * We will use spa_config if we decide to reload the spa or if spa_load
3868 	 * fails and we rewind. We must thus regenerate the config using the
3869 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3870 	 * pass settings on how to load the pool and is not stored in the MOS.
3871 	 * We copy it over to our new, trusted config.
3872 	 */
3873 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
3874 	    ZPOOL_CONFIG_POOL_TXG);
3875 	nvlist_free(mos_config);
3876 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3877 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3878 	    &policy) == 0)
3879 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3880 	spa_config_set(spa, mos_config);
3881 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3882 
3883 	/*
3884 	 * Now that we got the config from the MOS, we should be more strict
3885 	 * in checking blkptrs and can make assumptions about the consistency
3886 	 * of the vdev tree. spa_trust_config must be set to true before opening
3887 	 * vdevs in order for them to be writeable.
3888 	 */
3889 	spa->spa_trust_config = B_TRUE;
3890 
3891 	/*
3892 	 * Open and validate the new vdev tree
3893 	 */
3894 	error = spa_ld_open_vdevs(spa);
3895 	if (error != 0)
3896 		return (error);
3897 
3898 	error = spa_ld_validate_vdevs(spa);
3899 	if (error != 0)
3900 		return (error);
3901 
3902 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3903 		spa_load_note(spa, "final vdev tree:");
3904 		vdev_dbgmsg_print_tree(rvd, 2);
3905 	}
3906 
3907 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3908 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3909 		/*
3910 		 * Sanity check to make sure that we are indeed loading the
3911 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3912 		 * in the config provided and they happened to be the only ones
3913 		 * to have the latest uberblock, we could involuntarily perform
3914 		 * an extreme rewind.
3915 		 */
3916 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
3917 		if (healthy_tvds_mos - healthy_tvds >=
3918 		    SPA_SYNC_MIN_VDEVS) {
3919 			spa_load_note(spa, "config provided misses too many "
3920 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
3921 			    (u_longlong_t)healthy_tvds,
3922 			    (u_longlong_t)healthy_tvds_mos);
3923 			spa_load_note(spa, "vdev tree:");
3924 			vdev_dbgmsg_print_tree(rvd, 2);
3925 			if (reloading) {
3926 				spa_load_failed(spa, "config was already "
3927 				    "provided from MOS. Aborting.");
3928 				return (spa_vdev_err(rvd,
3929 				    VDEV_AUX_CORRUPT_DATA, EIO));
3930 			}
3931 			spa_load_note(spa, "spa must be reloaded using MOS "
3932 			    "config");
3933 			return (SET_ERROR(EAGAIN));
3934 		}
3935 	}
3936 
3937 	error = spa_check_for_missing_logs(spa);
3938 	if (error != 0)
3939 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3940 
3941 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3942 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3943 		    "guid sum (%llu != %llu)",
3944 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3945 		    (u_longlong_t)rvd->vdev_guid_sum);
3946 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3947 		    ENXIO));
3948 	}
3949 
3950 	return (0);
3951 }
3952 
3953 static int
3954 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3955 {
3956 	int error = 0;
3957 	vdev_t *rvd = spa->spa_root_vdev;
3958 
3959 	/*
3960 	 * Everything that we read before spa_remove_init() must be stored
3961 	 * on concreted vdevs.  Therefore we do this as early as possible.
3962 	 */
3963 	error = spa_remove_init(spa);
3964 	if (error != 0) {
3965 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3966 		    error);
3967 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3968 	}
3969 
3970 	/*
3971 	 * Retrieve information needed to condense indirect vdev mappings.
3972 	 */
3973 	error = spa_condense_init(spa);
3974 	if (error != 0) {
3975 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3976 		    error);
3977 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3978 	}
3979 
3980 	return (0);
3981 }
3982 
3983 static int
3984 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3985 {
3986 	int error = 0;
3987 	vdev_t *rvd = spa->spa_root_vdev;
3988 
3989 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3990 		boolean_t missing_feat_read = B_FALSE;
3991 		nvlist_t *unsup_feat, *enabled_feat;
3992 
3993 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3994 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3995 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3996 		}
3997 
3998 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3999 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4000 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4001 		}
4002 
4003 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4004 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4005 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4006 		}
4007 
4008 		enabled_feat = fnvlist_alloc();
4009 		unsup_feat = fnvlist_alloc();
4010 
4011 		if (!spa_features_check(spa, B_FALSE,
4012 		    unsup_feat, enabled_feat))
4013 			missing_feat_read = B_TRUE;
4014 
4015 		if (spa_writeable(spa) ||
4016 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4017 			if (!spa_features_check(spa, B_TRUE,
4018 			    unsup_feat, enabled_feat)) {
4019 				*missing_feat_writep = B_TRUE;
4020 			}
4021 		}
4022 
4023 		fnvlist_add_nvlist(spa->spa_load_info,
4024 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4025 
4026 		if (!nvlist_empty(unsup_feat)) {
4027 			fnvlist_add_nvlist(spa->spa_load_info,
4028 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4029 		}
4030 
4031 		fnvlist_free(enabled_feat);
4032 		fnvlist_free(unsup_feat);
4033 
4034 		if (!missing_feat_read) {
4035 			fnvlist_add_boolean(spa->spa_load_info,
4036 			    ZPOOL_CONFIG_CAN_RDONLY);
4037 		}
4038 
4039 		/*
4040 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4041 		 * twofold: to determine whether the pool is available for
4042 		 * import in read-write mode and (if it is not) whether the
4043 		 * pool is available for import in read-only mode. If the pool
4044 		 * is available for import in read-write mode, it is displayed
4045 		 * as available in userland; if it is not available for import
4046 		 * in read-only mode, it is displayed as unavailable in
4047 		 * userland. If the pool is available for import in read-only
4048 		 * mode but not read-write mode, it is displayed as unavailable
4049 		 * in userland with a special note that the pool is actually
4050 		 * available for open in read-only mode.
4051 		 *
4052 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4053 		 * missing a feature for write, we must first determine whether
4054 		 * the pool can be opened read-only before returning to
4055 		 * userland in order to know whether to display the
4056 		 * abovementioned note.
4057 		 */
4058 		if (missing_feat_read || (*missing_feat_writep &&
4059 		    spa_writeable(spa))) {
4060 			spa_load_failed(spa, "pool uses unsupported features");
4061 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4062 			    ENOTSUP));
4063 		}
4064 
4065 		/*
4066 		 * Load refcounts for ZFS features from disk into an in-memory
4067 		 * cache during SPA initialization.
4068 		 */
4069 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4070 			uint64_t refcount;
4071 
4072 			error = feature_get_refcount_from_disk(spa,
4073 			    &spa_feature_table[i], &refcount);
4074 			if (error == 0) {
4075 				spa->spa_feat_refcount_cache[i] = refcount;
4076 			} else if (error == ENOTSUP) {
4077 				spa->spa_feat_refcount_cache[i] =
4078 				    SPA_FEATURE_DISABLED;
4079 			} else {
4080 				spa_load_failed(spa, "error getting refcount "
4081 				    "for feature %s [error=%d]",
4082 				    spa_feature_table[i].fi_guid, error);
4083 				return (spa_vdev_err(rvd,
4084 				    VDEV_AUX_CORRUPT_DATA, EIO));
4085 			}
4086 		}
4087 	}
4088 
4089 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4090 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4091 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4092 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4093 	}
4094 
4095 	/*
4096 	 * Encryption was added before bookmark_v2, even though bookmark_v2
4097 	 * is now a dependency. If this pool has encryption enabled without
4098 	 * bookmark_v2, trigger an errata message.
4099 	 */
4100 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4101 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4102 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4103 	}
4104 
4105 	return (0);
4106 }
4107 
4108 static int
4109 spa_ld_load_special_directories(spa_t *spa)
4110 {
4111 	int error = 0;
4112 	vdev_t *rvd = spa->spa_root_vdev;
4113 
4114 	spa->spa_is_initializing = B_TRUE;
4115 	error = dsl_pool_open(spa->spa_dsl_pool);
4116 	spa->spa_is_initializing = B_FALSE;
4117 	if (error != 0) {
4118 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4119 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4120 	}
4121 
4122 	return (0);
4123 }
4124 
4125 static int
4126 spa_ld_get_props(spa_t *spa)
4127 {
4128 	int error = 0;
4129 	uint64_t obj;
4130 	vdev_t *rvd = spa->spa_root_vdev;
4131 
4132 	/* Grab the checksum salt from the MOS. */
4133 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4134 	    DMU_POOL_CHECKSUM_SALT, 1,
4135 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
4136 	    spa->spa_cksum_salt.zcs_bytes);
4137 	if (error == ENOENT) {
4138 		/* Generate a new salt for subsequent use */
4139 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4140 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
4141 	} else if (error != 0) {
4142 		spa_load_failed(spa, "unable to retrieve checksum salt from "
4143 		    "MOS [error=%d]", error);
4144 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4145 	}
4146 
4147 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4148 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4149 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4150 	if (error != 0) {
4151 		spa_load_failed(spa, "error opening deferred-frees bpobj "
4152 		    "[error=%d]", error);
4153 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4154 	}
4155 
4156 	/*
4157 	 * Load the bit that tells us to use the new accounting function
4158 	 * (raid-z deflation).  If we have an older pool, this will not
4159 	 * be present.
4160 	 */
4161 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4162 	if (error != 0 && error != ENOENT)
4163 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4164 
4165 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4166 	    &spa->spa_creation_version, B_FALSE);
4167 	if (error != 0 && error != ENOENT)
4168 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4169 
4170 	/*
4171 	 * Load the persistent error log.  If we have an older pool, this will
4172 	 * not be present.
4173 	 */
4174 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4175 	    B_FALSE);
4176 	if (error != 0 && error != ENOENT)
4177 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4178 
4179 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4180 	    &spa->spa_errlog_scrub, B_FALSE);
4181 	if (error != 0 && error != ENOENT)
4182 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4183 
4184 	/*
4185 	 * Load the livelist deletion field. If a livelist is queued for
4186 	 * deletion, indicate that in the spa
4187 	 */
4188 	error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4189 	    &spa->spa_livelists_to_delete, B_FALSE);
4190 	if (error != 0 && error != ENOENT)
4191 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4192 
4193 	/*
4194 	 * Load the history object.  If we have an older pool, this
4195 	 * will not be present.
4196 	 */
4197 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4198 	if (error != 0 && error != ENOENT)
4199 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4200 
4201 	/*
4202 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
4203 	 * be present; in this case, defer its creation to a later time to
4204 	 * avoid dirtying the MOS this early / out of sync context. See
4205 	 * spa_sync_config_object.
4206 	 */
4207 
4208 	/* The sentinel is only available in the MOS config. */
4209 	nvlist_t *mos_config;
4210 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4211 		spa_load_failed(spa, "unable to retrieve MOS config");
4212 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4213 	}
4214 
4215 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4216 	    &spa->spa_all_vdev_zaps, B_FALSE);
4217 
4218 	if (error == ENOENT) {
4219 		VERIFY(!nvlist_exists(mos_config,
4220 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4221 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4222 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4223 	} else if (error != 0) {
4224 		nvlist_free(mos_config);
4225 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4226 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4227 		/*
4228 		 * An older version of ZFS overwrote the sentinel value, so
4229 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4230 		 * destruction to later; see spa_sync_config_object.
4231 		 */
4232 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
4233 		/*
4234 		 * We're assuming that no vdevs have had their ZAPs created
4235 		 * before this. Better be sure of it.
4236 		 */
4237 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4238 	}
4239 	nvlist_free(mos_config);
4240 
4241 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4242 
4243 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4244 	    B_FALSE);
4245 	if (error && error != ENOENT)
4246 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4247 
4248 	if (error == 0) {
4249 		uint64_t autoreplace = 0;
4250 
4251 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4252 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4253 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4254 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4255 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4256 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4257 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4258 		spa->spa_autoreplace = (autoreplace != 0);
4259 	}
4260 
4261 	/*
4262 	 * If we are importing a pool with missing top-level vdevs,
4263 	 * we enforce that the pool doesn't panic or get suspended on
4264 	 * error since the likelihood of missing data is extremely high.
4265 	 */
4266 	if (spa->spa_missing_tvds > 0 &&
4267 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4268 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4269 		spa_load_note(spa, "forcing failmode to 'continue' "
4270 		    "as some top level vdevs are missing");
4271 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4272 	}
4273 
4274 	return (0);
4275 }
4276 
4277 static int
4278 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4279 {
4280 	int error = 0;
4281 	vdev_t *rvd = spa->spa_root_vdev;
4282 
4283 	/*
4284 	 * If we're assembling the pool from the split-off vdevs of
4285 	 * an existing pool, we don't want to attach the spares & cache
4286 	 * devices.
4287 	 */
4288 
4289 	/*
4290 	 * Load any hot spares for this pool.
4291 	 */
4292 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4293 	    B_FALSE);
4294 	if (error != 0 && error != ENOENT)
4295 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4296 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4297 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4298 		if (load_nvlist(spa, spa->spa_spares.sav_object,
4299 		    &spa->spa_spares.sav_config) != 0) {
4300 			spa_load_failed(spa, "error loading spares nvlist");
4301 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4302 		}
4303 
4304 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4305 		spa_load_spares(spa);
4306 		spa_config_exit(spa, SCL_ALL, FTAG);
4307 	} else if (error == 0) {
4308 		spa->spa_spares.sav_sync = B_TRUE;
4309 	}
4310 
4311 	/*
4312 	 * Load any level 2 ARC devices for this pool.
4313 	 */
4314 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4315 	    &spa->spa_l2cache.sav_object, B_FALSE);
4316 	if (error != 0 && error != ENOENT)
4317 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4318 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4319 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4320 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4321 		    &spa->spa_l2cache.sav_config) != 0) {
4322 			spa_load_failed(spa, "error loading l2cache nvlist");
4323 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4324 		}
4325 
4326 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4327 		spa_load_l2cache(spa);
4328 		spa_config_exit(spa, SCL_ALL, FTAG);
4329 	} else if (error == 0) {
4330 		spa->spa_l2cache.sav_sync = B_TRUE;
4331 	}
4332 
4333 	return (0);
4334 }
4335 
4336 static int
4337 spa_ld_load_vdev_metadata(spa_t *spa)
4338 {
4339 	int error = 0;
4340 	vdev_t *rvd = spa->spa_root_vdev;
4341 
4342 	/*
4343 	 * If the 'multihost' property is set, then never allow a pool to
4344 	 * be imported when the system hostid is zero.  The exception to
4345 	 * this rule is zdb which is always allowed to access pools.
4346 	 */
4347 	if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4348 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4349 		fnvlist_add_uint64(spa->spa_load_info,
4350 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4351 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4352 	}
4353 
4354 	/*
4355 	 * If the 'autoreplace' property is set, then post a resource notifying
4356 	 * the ZFS DE that it should not issue any faults for unopenable
4357 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
4358 	 * unopenable vdevs so that the normal autoreplace handler can take
4359 	 * over.
4360 	 */
4361 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4362 		spa_check_removed(spa->spa_root_vdev);
4363 		/*
4364 		 * For the import case, this is done in spa_import(), because
4365 		 * at this point we're using the spare definitions from
4366 		 * the MOS config, not necessarily from the userland config.
4367 		 */
4368 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4369 			spa_aux_check_removed(&spa->spa_spares);
4370 			spa_aux_check_removed(&spa->spa_l2cache);
4371 		}
4372 	}
4373 
4374 	/*
4375 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4376 	 */
4377 	error = vdev_load(rvd);
4378 	if (error != 0) {
4379 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4380 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4381 	}
4382 
4383 	error = spa_ld_log_spacemaps(spa);
4384 	if (error != 0) {
4385 		spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4386 		    error);
4387 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4388 	}
4389 
4390 	/*
4391 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4392 	 */
4393 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4394 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4395 	spa_config_exit(spa, SCL_ALL, FTAG);
4396 
4397 	return (0);
4398 }
4399 
4400 static int
4401 spa_ld_load_dedup_tables(spa_t *spa)
4402 {
4403 	int error = 0;
4404 	vdev_t *rvd = spa->spa_root_vdev;
4405 
4406 	error = ddt_load(spa);
4407 	if (error != 0) {
4408 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4409 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4410 	}
4411 
4412 	return (0);
4413 }
4414 
4415 static int
4416 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4417 {
4418 	vdev_t *rvd = spa->spa_root_vdev;
4419 
4420 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4421 		boolean_t missing = spa_check_logs(spa);
4422 		if (missing) {
4423 			if (spa->spa_missing_tvds != 0) {
4424 				spa_load_note(spa, "spa_check_logs failed "
4425 				    "so dropping the logs");
4426 			} else {
4427 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4428 				spa_load_failed(spa, "spa_check_logs failed");
4429 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4430 				    ENXIO));
4431 			}
4432 		}
4433 	}
4434 
4435 	return (0);
4436 }
4437 
4438 static int
4439 spa_ld_verify_pool_data(spa_t *spa)
4440 {
4441 	int error = 0;
4442 	vdev_t *rvd = spa->spa_root_vdev;
4443 
4444 	/*
4445 	 * We've successfully opened the pool, verify that we're ready
4446 	 * to start pushing transactions.
4447 	 */
4448 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4449 		error = spa_load_verify(spa);
4450 		if (error != 0) {
4451 			spa_load_failed(spa, "spa_load_verify failed "
4452 			    "[error=%d]", error);
4453 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4454 			    error));
4455 		}
4456 	}
4457 
4458 	return (0);
4459 }
4460 
4461 static void
4462 spa_ld_claim_log_blocks(spa_t *spa)
4463 {
4464 	dmu_tx_t *tx;
4465 	dsl_pool_t *dp = spa_get_dsl(spa);
4466 
4467 	/*
4468 	 * Claim log blocks that haven't been committed yet.
4469 	 * This must all happen in a single txg.
4470 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4471 	 * invoked from zil_claim_log_block()'s i/o done callback.
4472 	 * Price of rollback is that we abandon the log.
4473 	 */
4474 	spa->spa_claiming = B_TRUE;
4475 
4476 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4477 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4478 	    zil_claim, tx, DS_FIND_CHILDREN);
4479 	dmu_tx_commit(tx);
4480 
4481 	spa->spa_claiming = B_FALSE;
4482 
4483 	spa_set_log_state(spa, SPA_LOG_GOOD);
4484 }
4485 
4486 static void
4487 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4488     boolean_t update_config_cache)
4489 {
4490 	vdev_t *rvd = spa->spa_root_vdev;
4491 	int need_update = B_FALSE;
4492 
4493 	/*
4494 	 * If the config cache is stale, or we have uninitialized
4495 	 * metaslabs (see spa_vdev_add()), then update the config.
4496 	 *
4497 	 * If this is a verbatim import, trust the current
4498 	 * in-core spa_config and update the disk labels.
4499 	 */
4500 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4501 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
4502 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
4503 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4504 		need_update = B_TRUE;
4505 
4506 	for (int c = 0; c < rvd->vdev_children; c++)
4507 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
4508 			need_update = B_TRUE;
4509 
4510 	/*
4511 	 * Update the config cache asynchronously in case we're the
4512 	 * root pool, in which case the config cache isn't writable yet.
4513 	 */
4514 	if (need_update)
4515 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4516 }
4517 
4518 static void
4519 spa_ld_prepare_for_reload(spa_t *spa)
4520 {
4521 	spa_mode_t mode = spa->spa_mode;
4522 	int async_suspended = spa->spa_async_suspended;
4523 
4524 	spa_unload(spa);
4525 	spa_deactivate(spa);
4526 	spa_activate(spa, mode);
4527 
4528 	/*
4529 	 * We save the value of spa_async_suspended as it gets reset to 0 by
4530 	 * spa_unload(). We want to restore it back to the original value before
4531 	 * returning as we might be calling spa_async_resume() later.
4532 	 */
4533 	spa->spa_async_suspended = async_suspended;
4534 }
4535 
4536 static int
4537 spa_ld_read_checkpoint_txg(spa_t *spa)
4538 {
4539 	uberblock_t checkpoint;
4540 	int error = 0;
4541 
4542 	ASSERT0(spa->spa_checkpoint_txg);
4543 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4544 
4545 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4546 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4547 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4548 
4549 	if (error == ENOENT)
4550 		return (0);
4551 
4552 	if (error != 0)
4553 		return (error);
4554 
4555 	ASSERT3U(checkpoint.ub_txg, !=, 0);
4556 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4557 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4558 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
4559 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
4560 
4561 	return (0);
4562 }
4563 
4564 static int
4565 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
4566 {
4567 	int error = 0;
4568 
4569 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4570 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4571 
4572 	/*
4573 	 * Never trust the config that is provided unless we are assembling
4574 	 * a pool following a split.
4575 	 * This means don't trust blkptrs and the vdev tree in general. This
4576 	 * also effectively puts the spa in read-only mode since
4577 	 * spa_writeable() checks for spa_trust_config to be true.
4578 	 * We will later load a trusted config from the MOS.
4579 	 */
4580 	if (type != SPA_IMPORT_ASSEMBLE)
4581 		spa->spa_trust_config = B_FALSE;
4582 
4583 	/*
4584 	 * Parse the config provided to create a vdev tree.
4585 	 */
4586 	error = spa_ld_parse_config(spa, type);
4587 	if (error != 0)
4588 		return (error);
4589 
4590 	spa_import_progress_add(spa);
4591 
4592 	/*
4593 	 * Now that we have the vdev tree, try to open each vdev. This involves
4594 	 * opening the underlying physical device, retrieving its geometry and
4595 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
4596 	 * based on the success of those operations. After this we'll be ready
4597 	 * to read from the vdevs.
4598 	 */
4599 	error = spa_ld_open_vdevs(spa);
4600 	if (error != 0)
4601 		return (error);
4602 
4603 	/*
4604 	 * Read the label of each vdev and make sure that the GUIDs stored
4605 	 * there match the GUIDs in the config provided.
4606 	 * If we're assembling a new pool that's been split off from an
4607 	 * existing pool, the labels haven't yet been updated so we skip
4608 	 * validation for now.
4609 	 */
4610 	if (type != SPA_IMPORT_ASSEMBLE) {
4611 		error = spa_ld_validate_vdevs(spa);
4612 		if (error != 0)
4613 			return (error);
4614 	}
4615 
4616 	/*
4617 	 * Read all vdev labels to find the best uberblock (i.e. latest,
4618 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
4619 	 * get the list of features required to read blkptrs in the MOS from
4620 	 * the vdev label with the best uberblock and verify that our version
4621 	 * of zfs supports them all.
4622 	 */
4623 	error = spa_ld_select_uberblock(spa, type);
4624 	if (error != 0)
4625 		return (error);
4626 
4627 	/*
4628 	 * Pass that uberblock to the dsl_pool layer which will open the root
4629 	 * blkptr. This blkptr points to the latest version of the MOS and will
4630 	 * allow us to read its contents.
4631 	 */
4632 	error = spa_ld_open_rootbp(spa);
4633 	if (error != 0)
4634 		return (error);
4635 
4636 	return (0);
4637 }
4638 
4639 static int
4640 spa_ld_checkpoint_rewind(spa_t *spa)
4641 {
4642 	uberblock_t checkpoint;
4643 	int error = 0;
4644 
4645 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4646 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4647 
4648 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4649 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4650 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4651 
4652 	if (error != 0) {
4653 		spa_load_failed(spa, "unable to retrieve checkpointed "
4654 		    "uberblock from the MOS config [error=%d]", error);
4655 
4656 		if (error == ENOENT)
4657 			error = ZFS_ERR_NO_CHECKPOINT;
4658 
4659 		return (error);
4660 	}
4661 
4662 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4663 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4664 
4665 	/*
4666 	 * We need to update the txg and timestamp of the checkpointed
4667 	 * uberblock to be higher than the latest one. This ensures that
4668 	 * the checkpointed uberblock is selected if we were to close and
4669 	 * reopen the pool right after we've written it in the vdev labels.
4670 	 * (also see block comment in vdev_uberblock_compare)
4671 	 */
4672 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4673 	checkpoint.ub_timestamp = gethrestime_sec();
4674 
4675 	/*
4676 	 * Set current uberblock to be the checkpointed uberblock.
4677 	 */
4678 	spa->spa_uberblock = checkpoint;
4679 
4680 	/*
4681 	 * If we are doing a normal rewind, then the pool is open for
4682 	 * writing and we sync the "updated" checkpointed uberblock to
4683 	 * disk. Once this is done, we've basically rewound the whole
4684 	 * pool and there is no way back.
4685 	 *
4686 	 * There are cases when we don't want to attempt and sync the
4687 	 * checkpointed uberblock to disk because we are opening a
4688 	 * pool as read-only. Specifically, verifying the checkpointed
4689 	 * state with zdb, and importing the checkpointed state to get
4690 	 * a "preview" of its content.
4691 	 */
4692 	if (spa_writeable(spa)) {
4693 		vdev_t *rvd = spa->spa_root_vdev;
4694 
4695 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4696 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4697 		int svdcount = 0;
4698 		int children = rvd->vdev_children;
4699 		int c0 = random_in_range(children);
4700 
4701 		for (int c = 0; c < children; c++) {
4702 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4703 
4704 			/* Stop when revisiting the first vdev */
4705 			if (c > 0 && svd[0] == vd)
4706 				break;
4707 
4708 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4709 			    !vdev_is_concrete(vd))
4710 				continue;
4711 
4712 			svd[svdcount++] = vd;
4713 			if (svdcount == SPA_SYNC_MIN_VDEVS)
4714 				break;
4715 		}
4716 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4717 		if (error == 0)
4718 			spa->spa_last_synced_guid = rvd->vdev_guid;
4719 		spa_config_exit(spa, SCL_ALL, FTAG);
4720 
4721 		if (error != 0) {
4722 			spa_load_failed(spa, "failed to write checkpointed "
4723 			    "uberblock to the vdev labels [error=%d]", error);
4724 			return (error);
4725 		}
4726 	}
4727 
4728 	return (0);
4729 }
4730 
4731 static int
4732 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4733     boolean_t *update_config_cache)
4734 {
4735 	int error;
4736 
4737 	/*
4738 	 * Parse the config for pool, open and validate vdevs,
4739 	 * select an uberblock, and use that uberblock to open
4740 	 * the MOS.
4741 	 */
4742 	error = spa_ld_mos_init(spa, type);
4743 	if (error != 0)
4744 		return (error);
4745 
4746 	/*
4747 	 * Retrieve the trusted config stored in the MOS and use it to create
4748 	 * a new, exact version of the vdev tree, then reopen all vdevs.
4749 	 */
4750 	error = spa_ld_trusted_config(spa, type, B_FALSE);
4751 	if (error == EAGAIN) {
4752 		if (update_config_cache != NULL)
4753 			*update_config_cache = B_TRUE;
4754 
4755 		/*
4756 		 * Redo the loading process with the trusted config if it is
4757 		 * too different from the untrusted config.
4758 		 */
4759 		spa_ld_prepare_for_reload(spa);
4760 		spa_load_note(spa, "RELOADING");
4761 		error = spa_ld_mos_init(spa, type);
4762 		if (error != 0)
4763 			return (error);
4764 
4765 		error = spa_ld_trusted_config(spa, type, B_TRUE);
4766 		if (error != 0)
4767 			return (error);
4768 
4769 	} else if (error != 0) {
4770 		return (error);
4771 	}
4772 
4773 	return (0);
4774 }
4775 
4776 /*
4777  * Load an existing storage pool, using the config provided. This config
4778  * describes which vdevs are part of the pool and is later validated against
4779  * partial configs present in each vdev's label and an entire copy of the
4780  * config stored in the MOS.
4781  */
4782 static int
4783 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
4784 {
4785 	int error = 0;
4786 	boolean_t missing_feat_write = B_FALSE;
4787 	boolean_t checkpoint_rewind =
4788 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4789 	boolean_t update_config_cache = B_FALSE;
4790 
4791 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4792 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4793 
4794 	spa_load_note(spa, "LOADING");
4795 
4796 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4797 	if (error != 0)
4798 		return (error);
4799 
4800 	/*
4801 	 * If we are rewinding to the checkpoint then we need to repeat
4802 	 * everything we've done so far in this function but this time
4803 	 * selecting the checkpointed uberblock and using that to open
4804 	 * the MOS.
4805 	 */
4806 	if (checkpoint_rewind) {
4807 		/*
4808 		 * If we are rewinding to the checkpoint update config cache
4809 		 * anyway.
4810 		 */
4811 		update_config_cache = B_TRUE;
4812 
4813 		/*
4814 		 * Extract the checkpointed uberblock from the current MOS
4815 		 * and use this as the pool's uberblock from now on. If the
4816 		 * pool is imported as writeable we also write the checkpoint
4817 		 * uberblock to the labels, making the rewind permanent.
4818 		 */
4819 		error = spa_ld_checkpoint_rewind(spa);
4820 		if (error != 0)
4821 			return (error);
4822 
4823 		/*
4824 		 * Redo the loading process again with the
4825 		 * checkpointed uberblock.
4826 		 */
4827 		spa_ld_prepare_for_reload(spa);
4828 		spa_load_note(spa, "LOADING checkpointed uberblock");
4829 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4830 		if (error != 0)
4831 			return (error);
4832 	}
4833 
4834 	/*
4835 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
4836 	 */
4837 	error = spa_ld_read_checkpoint_txg(spa);
4838 	if (error != 0)
4839 		return (error);
4840 
4841 	/*
4842 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4843 	 * from the pool and their contents were re-mapped to other vdevs. Note
4844 	 * that everything that we read before this step must have been
4845 	 * rewritten on concrete vdevs after the last device removal was
4846 	 * initiated. Otherwise we could be reading from indirect vdevs before
4847 	 * we have loaded their mappings.
4848 	 */
4849 	error = spa_ld_open_indirect_vdev_metadata(spa);
4850 	if (error != 0)
4851 		return (error);
4852 
4853 	/*
4854 	 * Retrieve the full list of active features from the MOS and check if
4855 	 * they are all supported.
4856 	 */
4857 	error = spa_ld_check_features(spa, &missing_feat_write);
4858 	if (error != 0)
4859 		return (error);
4860 
4861 	/*
4862 	 * Load several special directories from the MOS needed by the dsl_pool
4863 	 * layer.
4864 	 */
4865 	error = spa_ld_load_special_directories(spa);
4866 	if (error != 0)
4867 		return (error);
4868 
4869 	/*
4870 	 * Retrieve pool properties from the MOS.
4871 	 */
4872 	error = spa_ld_get_props(spa);
4873 	if (error != 0)
4874 		return (error);
4875 
4876 	/*
4877 	 * Retrieve the list of auxiliary devices - cache devices and spares -
4878 	 * and open them.
4879 	 */
4880 	error = spa_ld_open_aux_vdevs(spa, type);
4881 	if (error != 0)
4882 		return (error);
4883 
4884 	/*
4885 	 * Load the metadata for all vdevs. Also check if unopenable devices
4886 	 * should be autoreplaced.
4887 	 */
4888 	error = spa_ld_load_vdev_metadata(spa);
4889 	if (error != 0)
4890 		return (error);
4891 
4892 	error = spa_ld_load_dedup_tables(spa);
4893 	if (error != 0)
4894 		return (error);
4895 
4896 	/*
4897 	 * Verify the logs now to make sure we don't have any unexpected errors
4898 	 * when we claim log blocks later.
4899 	 */
4900 	error = spa_ld_verify_logs(spa, type, ereport);
4901 	if (error != 0)
4902 		return (error);
4903 
4904 	if (missing_feat_write) {
4905 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4906 
4907 		/*
4908 		 * At this point, we know that we can open the pool in
4909 		 * read-only mode but not read-write mode. We now have enough
4910 		 * information and can return to userland.
4911 		 */
4912 		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4913 		    ENOTSUP));
4914 	}
4915 
4916 	/*
4917 	 * Traverse the last txgs to make sure the pool was left off in a safe
4918 	 * state. When performing an extreme rewind, we verify the whole pool,
4919 	 * which can take a very long time.
4920 	 */
4921 	error = spa_ld_verify_pool_data(spa);
4922 	if (error != 0)
4923 		return (error);
4924 
4925 	/*
4926 	 * Calculate the deflated space for the pool. This must be done before
4927 	 * we write anything to the pool because we'd need to update the space
4928 	 * accounting using the deflated sizes.
4929 	 */
4930 	spa_update_dspace(spa);
4931 
4932 	/*
4933 	 * We have now retrieved all the information we needed to open the
4934 	 * pool. If we are importing the pool in read-write mode, a few
4935 	 * additional steps must be performed to finish the import.
4936 	 */
4937 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4938 	    spa->spa_load_max_txg == UINT64_MAX)) {
4939 		uint64_t config_cache_txg = spa->spa_config_txg;
4940 
4941 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4942 
4943 		/*
4944 		 * In case of a checkpoint rewind, log the original txg
4945 		 * of the checkpointed uberblock.
4946 		 */
4947 		if (checkpoint_rewind) {
4948 			spa_history_log_internal(spa, "checkpoint rewind",
4949 			    NULL, "rewound state to txg=%llu",
4950 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4951 		}
4952 
4953 		/*
4954 		 * Traverse the ZIL and claim all blocks.
4955 		 */
4956 		spa_ld_claim_log_blocks(spa);
4957 
4958 		/*
4959 		 * Kick-off the syncing thread.
4960 		 */
4961 		spa->spa_sync_on = B_TRUE;
4962 		txg_sync_start(spa->spa_dsl_pool);
4963 		mmp_thread_start(spa);
4964 
4965 		/*
4966 		 * Wait for all claims to sync.  We sync up to the highest
4967 		 * claimed log block birth time so that claimed log blocks
4968 		 * don't appear to be from the future.  spa_claim_max_txg
4969 		 * will have been set for us by ZIL traversal operations
4970 		 * performed above.
4971 		 */
4972 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4973 
4974 		/*
4975 		 * Check if we need to request an update of the config. On the
4976 		 * next sync, we would update the config stored in vdev labels
4977 		 * and the cachefile (by default /etc/zfs/zpool.cache).
4978 		 */
4979 		spa_ld_check_for_config_update(spa, config_cache_txg,
4980 		    update_config_cache);
4981 
4982 		/*
4983 		 * Check if a rebuild was in progress and if so resume it.
4984 		 * Then check all DTLs to see if anything needs resilvering.
4985 		 * The resilver will be deferred if a rebuild was started.
4986 		 */
4987 		if (vdev_rebuild_active(spa->spa_root_vdev)) {
4988 			vdev_rebuild_restart(spa);
4989 		} else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4990 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4991 			spa_async_request(spa, SPA_ASYNC_RESILVER);
4992 		}
4993 
4994 		/*
4995 		 * Log the fact that we booted up (so that we can detect if
4996 		 * we rebooted in the middle of an operation).
4997 		 */
4998 		spa_history_log_version(spa, "open", NULL);
4999 
5000 		spa_restart_removal(spa);
5001 		spa_spawn_aux_threads(spa);
5002 
5003 		/*
5004 		 * Delete any inconsistent datasets.
5005 		 *
5006 		 * Note:
5007 		 * Since we may be issuing deletes for clones here,
5008 		 * we make sure to do so after we've spawned all the
5009 		 * auxiliary threads above (from which the livelist
5010 		 * deletion zthr is part of).
5011 		 */
5012 		(void) dmu_objset_find(spa_name(spa),
5013 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5014 
5015 		/*
5016 		 * Clean up any stale temporary dataset userrefs.
5017 		 */
5018 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5019 
5020 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5021 		vdev_initialize_restart(spa->spa_root_vdev);
5022 		vdev_trim_restart(spa->spa_root_vdev);
5023 		vdev_autotrim_restart(spa);
5024 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5025 	}
5026 
5027 	spa_import_progress_remove(spa_guid(spa));
5028 	spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5029 
5030 	spa_load_note(spa, "LOADED");
5031 
5032 	return (0);
5033 }
5034 
5035 static int
5036 spa_load_retry(spa_t *spa, spa_load_state_t state)
5037 {
5038 	spa_mode_t mode = spa->spa_mode;
5039 
5040 	spa_unload(spa);
5041 	spa_deactivate(spa);
5042 
5043 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5044 
5045 	spa_activate(spa, mode);
5046 	spa_async_suspend(spa);
5047 
5048 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5049 	    (u_longlong_t)spa->spa_load_max_txg);
5050 
5051 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5052 }
5053 
5054 /*
5055  * If spa_load() fails this function will try loading prior txg's. If
5056  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5057  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5058  * function will not rewind the pool and will return the same error as
5059  * spa_load().
5060  */
5061 static int
5062 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5063     int rewind_flags)
5064 {
5065 	nvlist_t *loadinfo = NULL;
5066 	nvlist_t *config = NULL;
5067 	int load_error, rewind_error;
5068 	uint64_t safe_rewind_txg;
5069 	uint64_t min_txg;
5070 
5071 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5072 		spa->spa_load_max_txg = spa->spa_load_txg;
5073 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5074 	} else {
5075 		spa->spa_load_max_txg = max_request;
5076 		if (max_request != UINT64_MAX)
5077 			spa->spa_extreme_rewind = B_TRUE;
5078 	}
5079 
5080 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5081 	if (load_error == 0)
5082 		return (0);
5083 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5084 		/*
5085 		 * When attempting checkpoint-rewind on a pool with no
5086 		 * checkpoint, we should not attempt to load uberblocks
5087 		 * from previous txgs when spa_load fails.
5088 		 */
5089 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5090 		spa_import_progress_remove(spa_guid(spa));
5091 		return (load_error);
5092 	}
5093 
5094 	if (spa->spa_root_vdev != NULL)
5095 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5096 
5097 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5098 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5099 
5100 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
5101 		nvlist_free(config);
5102 		spa_import_progress_remove(spa_guid(spa));
5103 		return (load_error);
5104 	}
5105 
5106 	if (state == SPA_LOAD_RECOVER) {
5107 		/* Price of rolling back is discarding txgs, including log */
5108 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5109 	} else {
5110 		/*
5111 		 * If we aren't rolling back save the load info from our first
5112 		 * import attempt so that we can restore it after attempting
5113 		 * to rewind.
5114 		 */
5115 		loadinfo = spa->spa_load_info;
5116 		spa->spa_load_info = fnvlist_alloc();
5117 	}
5118 
5119 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5120 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5121 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5122 	    TXG_INITIAL : safe_rewind_txg;
5123 
5124 	/*
5125 	 * Continue as long as we're finding errors, we're still within
5126 	 * the acceptable rewind range, and we're still finding uberblocks
5127 	 */
5128 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5129 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5130 		if (spa->spa_load_max_txg < safe_rewind_txg)
5131 			spa->spa_extreme_rewind = B_TRUE;
5132 		rewind_error = spa_load_retry(spa, state);
5133 	}
5134 
5135 	spa->spa_extreme_rewind = B_FALSE;
5136 	spa->spa_load_max_txg = UINT64_MAX;
5137 
5138 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5139 		spa_config_set(spa, config);
5140 	else
5141 		nvlist_free(config);
5142 
5143 	if (state == SPA_LOAD_RECOVER) {
5144 		ASSERT3P(loadinfo, ==, NULL);
5145 		spa_import_progress_remove(spa_guid(spa));
5146 		return (rewind_error);
5147 	} else {
5148 		/* Store the rewind info as part of the initial load info */
5149 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5150 		    spa->spa_load_info);
5151 
5152 		/* Restore the initial load info */
5153 		fnvlist_free(spa->spa_load_info);
5154 		spa->spa_load_info = loadinfo;
5155 
5156 		spa_import_progress_remove(spa_guid(spa));
5157 		return (load_error);
5158 	}
5159 }
5160 
5161 /*
5162  * Pool Open/Import
5163  *
5164  * The import case is identical to an open except that the configuration is sent
5165  * down from userland, instead of grabbed from the configuration cache.  For the
5166  * case of an open, the pool configuration will exist in the
5167  * POOL_STATE_UNINITIALIZED state.
5168  *
5169  * The stats information (gen/count/ustats) is used to gather vdev statistics at
5170  * the same time open the pool, without having to keep around the spa_t in some
5171  * ambiguous state.
5172  */
5173 static int
5174 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5175     nvlist_t *nvpolicy, nvlist_t **config)
5176 {
5177 	spa_t *spa;
5178 	spa_load_state_t state = SPA_LOAD_OPEN;
5179 	int error;
5180 	int locked = B_FALSE;
5181 	int firstopen = B_FALSE;
5182 
5183 	*spapp = NULL;
5184 
5185 	/*
5186 	 * As disgusting as this is, we need to support recursive calls to this
5187 	 * function because dsl_dir_open() is called during spa_load(), and ends
5188 	 * up calling spa_open() again.  The real fix is to figure out how to
5189 	 * avoid dsl_dir_open() calling this in the first place.
5190 	 */
5191 	if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5192 		mutex_enter(&spa_namespace_lock);
5193 		locked = B_TRUE;
5194 	}
5195 
5196 	if ((spa = spa_lookup(pool)) == NULL) {
5197 		if (locked)
5198 			mutex_exit(&spa_namespace_lock);
5199 		return (SET_ERROR(ENOENT));
5200 	}
5201 
5202 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5203 		zpool_load_policy_t policy;
5204 
5205 		firstopen = B_TRUE;
5206 
5207 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5208 		    &policy);
5209 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5210 			state = SPA_LOAD_RECOVER;
5211 
5212 		spa_activate(spa, spa_mode_global);
5213 
5214 		if (state != SPA_LOAD_RECOVER)
5215 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5216 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5217 
5218 		zfs_dbgmsg("spa_open_common: opening %s", pool);
5219 		error = spa_load_best(spa, state, policy.zlp_txg,
5220 		    policy.zlp_rewind);
5221 
5222 		if (error == EBADF) {
5223 			/*
5224 			 * If vdev_validate() returns failure (indicated by
5225 			 * EBADF), it indicates that one of the vdevs indicates
5226 			 * that the pool has been exported or destroyed.  If
5227 			 * this is the case, the config cache is out of sync and
5228 			 * we should remove the pool from the namespace.
5229 			 */
5230 			spa_unload(spa);
5231 			spa_deactivate(spa);
5232 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5233 			spa_remove(spa);
5234 			if (locked)
5235 				mutex_exit(&spa_namespace_lock);
5236 			return (SET_ERROR(ENOENT));
5237 		}
5238 
5239 		if (error) {
5240 			/*
5241 			 * We can't open the pool, but we still have useful
5242 			 * information: the state of each vdev after the
5243 			 * attempted vdev_open().  Return this to the user.
5244 			 */
5245 			if (config != NULL && spa->spa_config) {
5246 				*config = fnvlist_dup(spa->spa_config);
5247 				fnvlist_add_nvlist(*config,
5248 				    ZPOOL_CONFIG_LOAD_INFO,
5249 				    spa->spa_load_info);
5250 			}
5251 			spa_unload(spa);
5252 			spa_deactivate(spa);
5253 			spa->spa_last_open_failed = error;
5254 			if (locked)
5255 				mutex_exit(&spa_namespace_lock);
5256 			*spapp = NULL;
5257 			return (error);
5258 		}
5259 	}
5260 
5261 	spa_open_ref(spa, tag);
5262 
5263 	if (config != NULL)
5264 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5265 
5266 	/*
5267 	 * If we've recovered the pool, pass back any information we
5268 	 * gathered while doing the load.
5269 	 */
5270 	if (state == SPA_LOAD_RECOVER && config != NULL) {
5271 		fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5272 		    spa->spa_load_info);
5273 	}
5274 
5275 	if (locked) {
5276 		spa->spa_last_open_failed = 0;
5277 		spa->spa_last_ubsync_txg = 0;
5278 		spa->spa_load_txg = 0;
5279 		mutex_exit(&spa_namespace_lock);
5280 	}
5281 
5282 	if (firstopen)
5283 		zvol_create_minors_recursive(spa_name(spa));
5284 
5285 	*spapp = spa;
5286 
5287 	return (0);
5288 }
5289 
5290 int
5291 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5292     nvlist_t *policy, nvlist_t **config)
5293 {
5294 	return (spa_open_common(name, spapp, tag, policy, config));
5295 }
5296 
5297 int
5298 spa_open(const char *name, spa_t **spapp, const void *tag)
5299 {
5300 	return (spa_open_common(name, spapp, tag, NULL, NULL));
5301 }
5302 
5303 /*
5304  * Lookup the given spa_t, incrementing the inject count in the process,
5305  * preventing it from being exported or destroyed.
5306  */
5307 spa_t *
5308 spa_inject_addref(char *name)
5309 {
5310 	spa_t *spa;
5311 
5312 	mutex_enter(&spa_namespace_lock);
5313 	if ((spa = spa_lookup(name)) == NULL) {
5314 		mutex_exit(&spa_namespace_lock);
5315 		return (NULL);
5316 	}
5317 	spa->spa_inject_ref++;
5318 	mutex_exit(&spa_namespace_lock);
5319 
5320 	return (spa);
5321 }
5322 
5323 void
5324 spa_inject_delref(spa_t *spa)
5325 {
5326 	mutex_enter(&spa_namespace_lock);
5327 	spa->spa_inject_ref--;
5328 	mutex_exit(&spa_namespace_lock);
5329 }
5330 
5331 /*
5332  * Add spares device information to the nvlist.
5333  */
5334 static void
5335 spa_add_spares(spa_t *spa, nvlist_t *config)
5336 {
5337 	nvlist_t **spares;
5338 	uint_t i, nspares;
5339 	nvlist_t *nvroot;
5340 	uint64_t guid;
5341 	vdev_stat_t *vs;
5342 	uint_t vsc;
5343 	uint64_t pool;
5344 
5345 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5346 
5347 	if (spa->spa_spares.sav_count == 0)
5348 		return;
5349 
5350 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5351 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5352 	    ZPOOL_CONFIG_SPARES, &spares, &nspares));
5353 	if (nspares != 0) {
5354 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5355 		    (const nvlist_t * const *)spares, nspares);
5356 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5357 		    &spares, &nspares));
5358 
5359 		/*
5360 		 * Go through and find any spares which have since been
5361 		 * repurposed as an active spare.  If this is the case, update
5362 		 * their status appropriately.
5363 		 */
5364 		for (i = 0; i < nspares; i++) {
5365 			guid = fnvlist_lookup_uint64(spares[i],
5366 			    ZPOOL_CONFIG_GUID);
5367 			if (spa_spare_exists(guid, &pool, NULL) &&
5368 			    pool != 0ULL) {
5369 				VERIFY0(nvlist_lookup_uint64_array(spares[i],
5370 				    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs,
5371 				    &vsc));
5372 				vs->vs_state = VDEV_STATE_CANT_OPEN;
5373 				vs->vs_aux = VDEV_AUX_SPARED;
5374 			}
5375 		}
5376 	}
5377 }
5378 
5379 /*
5380  * Add l2cache device information to the nvlist, including vdev stats.
5381  */
5382 static void
5383 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5384 {
5385 	nvlist_t **l2cache;
5386 	uint_t i, j, nl2cache;
5387 	nvlist_t *nvroot;
5388 	uint64_t guid;
5389 	vdev_t *vd;
5390 	vdev_stat_t *vs;
5391 	uint_t vsc;
5392 
5393 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5394 
5395 	if (spa->spa_l2cache.sav_count == 0)
5396 		return;
5397 
5398 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5399 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5400 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
5401 	if (nl2cache != 0) {
5402 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5403 		    (const nvlist_t * const *)l2cache, nl2cache);
5404 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5405 		    &l2cache, &nl2cache));
5406 
5407 		/*
5408 		 * Update level 2 cache device stats.
5409 		 */
5410 
5411 		for (i = 0; i < nl2cache; i++) {
5412 			guid = fnvlist_lookup_uint64(l2cache[i],
5413 			    ZPOOL_CONFIG_GUID);
5414 
5415 			vd = NULL;
5416 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5417 				if (guid ==
5418 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5419 					vd = spa->spa_l2cache.sav_vdevs[j];
5420 					break;
5421 				}
5422 			}
5423 			ASSERT(vd != NULL);
5424 
5425 			VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
5426 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5427 			vdev_get_stats(vd, vs);
5428 			vdev_config_generate_stats(vd, l2cache[i]);
5429 
5430 		}
5431 	}
5432 }
5433 
5434 static void
5435 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5436 {
5437 	zap_cursor_t zc;
5438 	zap_attribute_t za;
5439 
5440 	if (spa->spa_feat_for_read_obj != 0) {
5441 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5442 		    spa->spa_feat_for_read_obj);
5443 		    zap_cursor_retrieve(&zc, &za) == 0;
5444 		    zap_cursor_advance(&zc)) {
5445 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5446 			    za.za_num_integers == 1);
5447 			VERIFY0(nvlist_add_uint64(features, za.za_name,
5448 			    za.za_first_integer));
5449 		}
5450 		zap_cursor_fini(&zc);
5451 	}
5452 
5453 	if (spa->spa_feat_for_write_obj != 0) {
5454 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5455 		    spa->spa_feat_for_write_obj);
5456 		    zap_cursor_retrieve(&zc, &za) == 0;
5457 		    zap_cursor_advance(&zc)) {
5458 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5459 			    za.za_num_integers == 1);
5460 			VERIFY0(nvlist_add_uint64(features, za.za_name,
5461 			    za.za_first_integer));
5462 		}
5463 		zap_cursor_fini(&zc);
5464 	}
5465 }
5466 
5467 static void
5468 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5469 {
5470 	int i;
5471 
5472 	for (i = 0; i < SPA_FEATURES; i++) {
5473 		zfeature_info_t feature = spa_feature_table[i];
5474 		uint64_t refcount;
5475 
5476 		if (feature_get_refcount(spa, &feature, &refcount) != 0)
5477 			continue;
5478 
5479 		VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5480 	}
5481 }
5482 
5483 /*
5484  * Store a list of pool features and their reference counts in the
5485  * config.
5486  *
5487  * The first time this is called on a spa, allocate a new nvlist, fetch
5488  * the pool features and reference counts from disk, then save the list
5489  * in the spa. In subsequent calls on the same spa use the saved nvlist
5490  * and refresh its values from the cached reference counts.  This
5491  * ensures we don't block here on I/O on a suspended pool so 'zpool
5492  * clear' can resume the pool.
5493  */
5494 static void
5495 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5496 {
5497 	nvlist_t *features;
5498 
5499 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5500 
5501 	mutex_enter(&spa->spa_feat_stats_lock);
5502 	features = spa->spa_feat_stats;
5503 
5504 	if (features != NULL) {
5505 		spa_feature_stats_from_cache(spa, features);
5506 	} else {
5507 		VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
5508 		spa->spa_feat_stats = features;
5509 		spa_feature_stats_from_disk(spa, features);
5510 	}
5511 
5512 	VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
5513 	    features));
5514 
5515 	mutex_exit(&spa->spa_feat_stats_lock);
5516 }
5517 
5518 int
5519 spa_get_stats(const char *name, nvlist_t **config,
5520     char *altroot, size_t buflen)
5521 {
5522 	int error;
5523 	spa_t *spa;
5524 
5525 	*config = NULL;
5526 	error = spa_open_common(name, &spa, FTAG, NULL, config);
5527 
5528 	if (spa != NULL) {
5529 		/*
5530 		 * This still leaves a window of inconsistency where the spares
5531 		 * or l2cache devices could change and the config would be
5532 		 * self-inconsistent.
5533 		 */
5534 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5535 
5536 		if (*config != NULL) {
5537 			uint64_t loadtimes[2];
5538 
5539 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
5540 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
5541 			fnvlist_add_uint64_array(*config,
5542 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
5543 
5544 			fnvlist_add_uint64(*config,
5545 			    ZPOOL_CONFIG_ERRCOUNT,
5546 			    spa_approx_errlog_size(spa));
5547 
5548 			if (spa_suspended(spa)) {
5549 				fnvlist_add_uint64(*config,
5550 				    ZPOOL_CONFIG_SUSPENDED,
5551 				    spa->spa_failmode);
5552 				fnvlist_add_uint64(*config,
5553 				    ZPOOL_CONFIG_SUSPENDED_REASON,
5554 				    spa->spa_suspended);
5555 			}
5556 
5557 			spa_add_spares(spa, *config);
5558 			spa_add_l2cache(spa, *config);
5559 			spa_add_feature_stats(spa, *config);
5560 		}
5561 	}
5562 
5563 	/*
5564 	 * We want to get the alternate root even for faulted pools, so we cheat
5565 	 * and call spa_lookup() directly.
5566 	 */
5567 	if (altroot) {
5568 		if (spa == NULL) {
5569 			mutex_enter(&spa_namespace_lock);
5570 			spa = spa_lookup(name);
5571 			if (spa)
5572 				spa_altroot(spa, altroot, buflen);
5573 			else
5574 				altroot[0] = '\0';
5575 			spa = NULL;
5576 			mutex_exit(&spa_namespace_lock);
5577 		} else {
5578 			spa_altroot(spa, altroot, buflen);
5579 		}
5580 	}
5581 
5582 	if (spa != NULL) {
5583 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5584 		spa_close(spa, FTAG);
5585 	}
5586 
5587 	return (error);
5588 }
5589 
5590 /*
5591  * Validate that the auxiliary device array is well formed.  We must have an
5592  * array of nvlists, each which describes a valid leaf vdev.  If this is an
5593  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
5594  * specified, as long as they are well-formed.
5595  */
5596 static int
5597 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
5598     spa_aux_vdev_t *sav, const char *config, uint64_t version,
5599     vdev_labeltype_t label)
5600 {
5601 	nvlist_t **dev;
5602 	uint_t i, ndev;
5603 	vdev_t *vd;
5604 	int error;
5605 
5606 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5607 
5608 	/*
5609 	 * It's acceptable to have no devs specified.
5610 	 */
5611 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
5612 		return (0);
5613 
5614 	if (ndev == 0)
5615 		return (SET_ERROR(EINVAL));
5616 
5617 	/*
5618 	 * Make sure the pool is formatted with a version that supports this
5619 	 * device type.
5620 	 */
5621 	if (spa_version(spa) < version)
5622 		return (SET_ERROR(ENOTSUP));
5623 
5624 	/*
5625 	 * Set the pending device list so we correctly handle device in-use
5626 	 * checking.
5627 	 */
5628 	sav->sav_pending = dev;
5629 	sav->sav_npending = ndev;
5630 
5631 	for (i = 0; i < ndev; i++) {
5632 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
5633 		    mode)) != 0)
5634 			goto out;
5635 
5636 		if (!vd->vdev_ops->vdev_op_leaf) {
5637 			vdev_free(vd);
5638 			error = SET_ERROR(EINVAL);
5639 			goto out;
5640 		}
5641 
5642 		vd->vdev_top = vd;
5643 
5644 		if ((error = vdev_open(vd)) == 0 &&
5645 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
5646 			fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
5647 			    vd->vdev_guid);
5648 		}
5649 
5650 		vdev_free(vd);
5651 
5652 		if (error &&
5653 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
5654 			goto out;
5655 		else
5656 			error = 0;
5657 	}
5658 
5659 out:
5660 	sav->sav_pending = NULL;
5661 	sav->sav_npending = 0;
5662 	return (error);
5663 }
5664 
5665 static int
5666 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
5667 {
5668 	int error;
5669 
5670 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5671 
5672 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5673 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
5674 	    VDEV_LABEL_SPARE)) != 0) {
5675 		return (error);
5676 	}
5677 
5678 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5679 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
5680 	    VDEV_LABEL_L2CACHE));
5681 }
5682 
5683 static void
5684 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
5685     const char *config)
5686 {
5687 	int i;
5688 
5689 	if (sav->sav_config != NULL) {
5690 		nvlist_t **olddevs;
5691 		uint_t oldndevs;
5692 		nvlist_t **newdevs;
5693 
5694 		/*
5695 		 * Generate new dev list by concatenating with the
5696 		 * current dev list.
5697 		 */
5698 		VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
5699 		    &olddevs, &oldndevs));
5700 
5701 		newdevs = kmem_alloc(sizeof (void *) *
5702 		    (ndevs + oldndevs), KM_SLEEP);
5703 		for (i = 0; i < oldndevs; i++)
5704 			newdevs[i] = fnvlist_dup(olddevs[i]);
5705 		for (i = 0; i < ndevs; i++)
5706 			newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
5707 
5708 		fnvlist_remove(sav->sav_config, config);
5709 
5710 		fnvlist_add_nvlist_array(sav->sav_config, config,
5711 		    (const nvlist_t * const *)newdevs, ndevs + oldndevs);
5712 		for (i = 0; i < oldndevs + ndevs; i++)
5713 			nvlist_free(newdevs[i]);
5714 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5715 	} else {
5716 		/*
5717 		 * Generate a new dev list.
5718 		 */
5719 		sav->sav_config = fnvlist_alloc();
5720 		fnvlist_add_nvlist_array(sav->sav_config, config,
5721 		    (const nvlist_t * const *)devs, ndevs);
5722 	}
5723 }
5724 
5725 /*
5726  * Stop and drop level 2 ARC devices
5727  */
5728 void
5729 spa_l2cache_drop(spa_t *spa)
5730 {
5731 	vdev_t *vd;
5732 	int i;
5733 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
5734 
5735 	for (i = 0; i < sav->sav_count; i++) {
5736 		uint64_t pool;
5737 
5738 		vd = sav->sav_vdevs[i];
5739 		ASSERT(vd != NULL);
5740 
5741 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5742 		    pool != 0ULL && l2arc_vdev_present(vd))
5743 			l2arc_remove_vdev(vd);
5744 	}
5745 }
5746 
5747 /*
5748  * Verify encryption parameters for spa creation. If we are encrypting, we must
5749  * have the encryption feature flag enabled.
5750  */
5751 static int
5752 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5753     boolean_t has_encryption)
5754 {
5755 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5756 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5757 	    !has_encryption)
5758 		return (SET_ERROR(ENOTSUP));
5759 
5760 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5761 }
5762 
5763 /*
5764  * Pool Creation
5765  */
5766 int
5767 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5768     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5769 {
5770 	spa_t *spa;
5771 	char *altroot = NULL;
5772 	vdev_t *rvd;
5773 	dsl_pool_t *dp;
5774 	dmu_tx_t *tx;
5775 	int error = 0;
5776 	uint64_t txg = TXG_INITIAL;
5777 	nvlist_t **spares, **l2cache;
5778 	uint_t nspares, nl2cache;
5779 	uint64_t version, obj, ndraid = 0;
5780 	boolean_t has_features;
5781 	boolean_t has_encryption;
5782 	boolean_t has_allocclass;
5783 	spa_feature_t feat;
5784 	char *feat_name;
5785 	char *poolname;
5786 	nvlist_t *nvl;
5787 
5788 	if (props == NULL ||
5789 	    nvlist_lookup_string(props, "tname", &poolname) != 0)
5790 		poolname = (char *)pool;
5791 
5792 	/*
5793 	 * If this pool already exists, return failure.
5794 	 */
5795 	mutex_enter(&spa_namespace_lock);
5796 	if (spa_lookup(poolname) != NULL) {
5797 		mutex_exit(&spa_namespace_lock);
5798 		return (SET_ERROR(EEXIST));
5799 	}
5800 
5801 	/*
5802 	 * Allocate a new spa_t structure.
5803 	 */
5804 	nvl = fnvlist_alloc();
5805 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5806 	(void) nvlist_lookup_string(props,
5807 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5808 	spa = spa_add(poolname, nvl, altroot);
5809 	fnvlist_free(nvl);
5810 	spa_activate(spa, spa_mode_global);
5811 
5812 	if (props && (error = spa_prop_validate(spa, props))) {
5813 		spa_deactivate(spa);
5814 		spa_remove(spa);
5815 		mutex_exit(&spa_namespace_lock);
5816 		return (error);
5817 	}
5818 
5819 	/*
5820 	 * Temporary pool names should never be written to disk.
5821 	 */
5822 	if (poolname != pool)
5823 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5824 
5825 	has_features = B_FALSE;
5826 	has_encryption = B_FALSE;
5827 	has_allocclass = B_FALSE;
5828 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5829 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5830 		if (zpool_prop_feature(nvpair_name(elem))) {
5831 			has_features = B_TRUE;
5832 
5833 			feat_name = strchr(nvpair_name(elem), '@') + 1;
5834 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
5835 			if (feat == SPA_FEATURE_ENCRYPTION)
5836 				has_encryption = B_TRUE;
5837 			if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
5838 				has_allocclass = B_TRUE;
5839 		}
5840 	}
5841 
5842 	/* verify encryption params, if they were provided */
5843 	if (dcp != NULL) {
5844 		error = spa_create_check_encryption_params(dcp, has_encryption);
5845 		if (error != 0) {
5846 			spa_deactivate(spa);
5847 			spa_remove(spa);
5848 			mutex_exit(&spa_namespace_lock);
5849 			return (error);
5850 		}
5851 	}
5852 	if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
5853 		spa_deactivate(spa);
5854 		spa_remove(spa);
5855 		mutex_exit(&spa_namespace_lock);
5856 		return (ENOTSUP);
5857 	}
5858 
5859 	if (has_features || nvlist_lookup_uint64(props,
5860 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5861 		version = SPA_VERSION;
5862 	}
5863 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5864 
5865 	spa->spa_first_txg = txg;
5866 	spa->spa_uberblock.ub_txg = txg - 1;
5867 	spa->spa_uberblock.ub_version = version;
5868 	spa->spa_ubsync = spa->spa_uberblock;
5869 	spa->spa_load_state = SPA_LOAD_CREATE;
5870 	spa->spa_removing_phys.sr_state = DSS_NONE;
5871 	spa->spa_removing_phys.sr_removing_vdev = -1;
5872 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5873 	spa->spa_indirect_vdevs_loaded = B_TRUE;
5874 
5875 	/*
5876 	 * Create "The Godfather" zio to hold all async IOs
5877 	 */
5878 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5879 	    KM_SLEEP);
5880 	for (int i = 0; i < max_ncpus; i++) {
5881 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5882 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5883 		    ZIO_FLAG_GODFATHER);
5884 	}
5885 
5886 	/*
5887 	 * Create the root vdev.
5888 	 */
5889 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5890 
5891 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5892 
5893 	ASSERT(error != 0 || rvd != NULL);
5894 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5895 
5896 	if (error == 0 && !zfs_allocatable_devs(nvroot))
5897 		error = SET_ERROR(EINVAL);
5898 
5899 	if (error == 0 &&
5900 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5901 	    (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
5902 	    (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
5903 		/*
5904 		 * instantiate the metaslab groups (this will dirty the vdevs)
5905 		 * we can no longer error exit past this point
5906 		 */
5907 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5908 			vdev_t *vd = rvd->vdev_child[c];
5909 
5910 			vdev_metaslab_set_size(vd);
5911 			vdev_expand(vd, txg);
5912 		}
5913 	}
5914 
5915 	spa_config_exit(spa, SCL_ALL, FTAG);
5916 
5917 	if (error != 0) {
5918 		spa_unload(spa);
5919 		spa_deactivate(spa);
5920 		spa_remove(spa);
5921 		mutex_exit(&spa_namespace_lock);
5922 		return (error);
5923 	}
5924 
5925 	/*
5926 	 * Get the list of spares, if specified.
5927 	 */
5928 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5929 	    &spares, &nspares) == 0) {
5930 		spa->spa_spares.sav_config = fnvlist_alloc();
5931 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
5932 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
5933 		    nspares);
5934 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5935 		spa_load_spares(spa);
5936 		spa_config_exit(spa, SCL_ALL, FTAG);
5937 		spa->spa_spares.sav_sync = B_TRUE;
5938 	}
5939 
5940 	/*
5941 	 * Get the list of level 2 cache devices, if specified.
5942 	 */
5943 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5944 	    &l2cache, &nl2cache) == 0) {
5945 		VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
5946 		    NV_UNIQUE_NAME, KM_SLEEP));
5947 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5948 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
5949 		    nl2cache);
5950 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5951 		spa_load_l2cache(spa);
5952 		spa_config_exit(spa, SCL_ALL, FTAG);
5953 		spa->spa_l2cache.sav_sync = B_TRUE;
5954 	}
5955 
5956 	spa->spa_is_initializing = B_TRUE;
5957 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5958 	spa->spa_is_initializing = B_FALSE;
5959 
5960 	/*
5961 	 * Create DDTs (dedup tables).
5962 	 */
5963 	ddt_create(spa);
5964 
5965 	spa_update_dspace(spa);
5966 
5967 	tx = dmu_tx_create_assigned(dp, txg);
5968 
5969 	/*
5970 	 * Create the pool's history object.
5971 	 */
5972 	if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
5973 		spa_history_create_obj(spa, tx);
5974 
5975 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5976 	spa_history_log_version(spa, "create", tx);
5977 
5978 	/*
5979 	 * Create the pool config object.
5980 	 */
5981 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5982 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5983 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5984 
5985 	if (zap_add(spa->spa_meta_objset,
5986 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5987 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5988 		cmn_err(CE_PANIC, "failed to add pool config");
5989 	}
5990 
5991 	if (zap_add(spa->spa_meta_objset,
5992 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5993 	    sizeof (uint64_t), 1, &version, tx) != 0) {
5994 		cmn_err(CE_PANIC, "failed to add pool version");
5995 	}
5996 
5997 	/* Newly created pools with the right version are always deflated. */
5998 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5999 		spa->spa_deflate = TRUE;
6000 		if (zap_add(spa->spa_meta_objset,
6001 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6002 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6003 			cmn_err(CE_PANIC, "failed to add deflate");
6004 		}
6005 	}
6006 
6007 	/*
6008 	 * Create the deferred-free bpobj.  Turn off compression
6009 	 * because sync-to-convergence takes longer if the blocksize
6010 	 * keeps changing.
6011 	 */
6012 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6013 	dmu_object_set_compress(spa->spa_meta_objset, obj,
6014 	    ZIO_COMPRESS_OFF, tx);
6015 	if (zap_add(spa->spa_meta_objset,
6016 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6017 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
6018 		cmn_err(CE_PANIC, "failed to add bpobj");
6019 	}
6020 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6021 	    spa->spa_meta_objset, obj));
6022 
6023 	/*
6024 	 * Generate some random noise for salted checksums to operate on.
6025 	 */
6026 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6027 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
6028 
6029 	/*
6030 	 * Set pool properties.
6031 	 */
6032 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6033 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6034 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6035 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6036 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6037 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6038 
6039 	if (props != NULL) {
6040 		spa_configfile_set(spa, props, B_FALSE);
6041 		spa_sync_props(props, tx);
6042 	}
6043 
6044 	for (int i = 0; i < ndraid; i++)
6045 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6046 
6047 	dmu_tx_commit(tx);
6048 
6049 	spa->spa_sync_on = B_TRUE;
6050 	txg_sync_start(dp);
6051 	mmp_thread_start(spa);
6052 	txg_wait_synced(dp, txg);
6053 
6054 	spa_spawn_aux_threads(spa);
6055 
6056 	spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6057 
6058 	/*
6059 	 * Don't count references from objsets that are already closed
6060 	 * and are making their way through the eviction process.
6061 	 */
6062 	spa_evicting_os_wait(spa);
6063 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6064 	spa->spa_load_state = SPA_LOAD_NONE;
6065 
6066 	spa_import_os(spa);
6067 
6068 	mutex_exit(&spa_namespace_lock);
6069 
6070 	return (0);
6071 }
6072 
6073 /*
6074  * Import a non-root pool into the system.
6075  */
6076 int
6077 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6078 {
6079 	spa_t *spa;
6080 	char *altroot = NULL;
6081 	spa_load_state_t state = SPA_LOAD_IMPORT;
6082 	zpool_load_policy_t policy;
6083 	spa_mode_t mode = spa_mode_global;
6084 	uint64_t readonly = B_FALSE;
6085 	int error;
6086 	nvlist_t *nvroot;
6087 	nvlist_t **spares, **l2cache;
6088 	uint_t nspares, nl2cache;
6089 
6090 	/*
6091 	 * If a pool with this name exists, return failure.
6092 	 */
6093 	mutex_enter(&spa_namespace_lock);
6094 	if (spa_lookup(pool) != NULL) {
6095 		mutex_exit(&spa_namespace_lock);
6096 		return (SET_ERROR(EEXIST));
6097 	}
6098 
6099 	/*
6100 	 * Create and initialize the spa structure.
6101 	 */
6102 	(void) nvlist_lookup_string(props,
6103 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6104 	(void) nvlist_lookup_uint64(props,
6105 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6106 	if (readonly)
6107 		mode = SPA_MODE_READ;
6108 	spa = spa_add(pool, config, altroot);
6109 	spa->spa_import_flags = flags;
6110 
6111 	/*
6112 	 * Verbatim import - Take a pool and insert it into the namespace
6113 	 * as if it had been loaded at boot.
6114 	 */
6115 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6116 		if (props != NULL)
6117 			spa_configfile_set(spa, props, B_FALSE);
6118 
6119 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6120 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6121 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6122 		mutex_exit(&spa_namespace_lock);
6123 		return (0);
6124 	}
6125 
6126 	spa_activate(spa, mode);
6127 
6128 	/*
6129 	 * Don't start async tasks until we know everything is healthy.
6130 	 */
6131 	spa_async_suspend(spa);
6132 
6133 	zpool_get_load_policy(config, &policy);
6134 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6135 		state = SPA_LOAD_RECOVER;
6136 
6137 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6138 
6139 	if (state != SPA_LOAD_RECOVER) {
6140 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6141 		zfs_dbgmsg("spa_import: importing %s", pool);
6142 	} else {
6143 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6144 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6145 	}
6146 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6147 
6148 	/*
6149 	 * Propagate anything learned while loading the pool and pass it
6150 	 * back to caller (i.e. rewind info, missing devices, etc).
6151 	 */
6152 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6153 
6154 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6155 	/*
6156 	 * Toss any existing sparelist, as it doesn't have any validity
6157 	 * anymore, and conflicts with spa_has_spare().
6158 	 */
6159 	if (spa->spa_spares.sav_config) {
6160 		nvlist_free(spa->spa_spares.sav_config);
6161 		spa->spa_spares.sav_config = NULL;
6162 		spa_load_spares(spa);
6163 	}
6164 	if (spa->spa_l2cache.sav_config) {
6165 		nvlist_free(spa->spa_l2cache.sav_config);
6166 		spa->spa_l2cache.sav_config = NULL;
6167 		spa_load_l2cache(spa);
6168 	}
6169 
6170 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6171 	spa_config_exit(spa, SCL_ALL, FTAG);
6172 
6173 	if (props != NULL)
6174 		spa_configfile_set(spa, props, B_FALSE);
6175 
6176 	if (error != 0 || (props && spa_writeable(spa) &&
6177 	    (error = spa_prop_set(spa, props)))) {
6178 		spa_unload(spa);
6179 		spa_deactivate(spa);
6180 		spa_remove(spa);
6181 		mutex_exit(&spa_namespace_lock);
6182 		return (error);
6183 	}
6184 
6185 	spa_async_resume(spa);
6186 
6187 	/*
6188 	 * Override any spares and level 2 cache devices as specified by
6189 	 * the user, as these may have correct device names/devids, etc.
6190 	 */
6191 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6192 	    &spares, &nspares) == 0) {
6193 		if (spa->spa_spares.sav_config)
6194 			fnvlist_remove(spa->spa_spares.sav_config,
6195 			    ZPOOL_CONFIG_SPARES);
6196 		else
6197 			spa->spa_spares.sav_config = fnvlist_alloc();
6198 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6199 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6200 		    nspares);
6201 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6202 		spa_load_spares(spa);
6203 		spa_config_exit(spa, SCL_ALL, FTAG);
6204 		spa->spa_spares.sav_sync = B_TRUE;
6205 	}
6206 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6207 	    &l2cache, &nl2cache) == 0) {
6208 		if (spa->spa_l2cache.sav_config)
6209 			fnvlist_remove(spa->spa_l2cache.sav_config,
6210 			    ZPOOL_CONFIG_L2CACHE);
6211 		else
6212 			spa->spa_l2cache.sav_config = fnvlist_alloc();
6213 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6214 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6215 		    nl2cache);
6216 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6217 		spa_load_l2cache(spa);
6218 		spa_config_exit(spa, SCL_ALL, FTAG);
6219 		spa->spa_l2cache.sav_sync = B_TRUE;
6220 	}
6221 
6222 	/*
6223 	 * Check for any removed devices.
6224 	 */
6225 	if (spa->spa_autoreplace) {
6226 		spa_aux_check_removed(&spa->spa_spares);
6227 		spa_aux_check_removed(&spa->spa_l2cache);
6228 	}
6229 
6230 	if (spa_writeable(spa)) {
6231 		/*
6232 		 * Update the config cache to include the newly-imported pool.
6233 		 */
6234 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6235 	}
6236 
6237 	/*
6238 	 * It's possible that the pool was expanded while it was exported.
6239 	 * We kick off an async task to handle this for us.
6240 	 */
6241 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6242 
6243 	spa_history_log_version(spa, "import", NULL);
6244 
6245 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6246 
6247 	mutex_exit(&spa_namespace_lock);
6248 
6249 	zvol_create_minors_recursive(pool);
6250 
6251 	spa_import_os(spa);
6252 
6253 	return (0);
6254 }
6255 
6256 nvlist_t *
6257 spa_tryimport(nvlist_t *tryconfig)
6258 {
6259 	nvlist_t *config = NULL;
6260 	char *poolname, *cachefile;
6261 	spa_t *spa;
6262 	uint64_t state;
6263 	int error;
6264 	zpool_load_policy_t policy;
6265 
6266 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6267 		return (NULL);
6268 
6269 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6270 		return (NULL);
6271 
6272 	/*
6273 	 * Create and initialize the spa structure.
6274 	 */
6275 	mutex_enter(&spa_namespace_lock);
6276 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6277 	spa_activate(spa, SPA_MODE_READ);
6278 
6279 	/*
6280 	 * Rewind pool if a max txg was provided.
6281 	 */
6282 	zpool_get_load_policy(spa->spa_config, &policy);
6283 	if (policy.zlp_txg != UINT64_MAX) {
6284 		spa->spa_load_max_txg = policy.zlp_txg;
6285 		spa->spa_extreme_rewind = B_TRUE;
6286 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6287 		    poolname, (longlong_t)policy.zlp_txg);
6288 	} else {
6289 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6290 	}
6291 
6292 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6293 	    == 0) {
6294 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6295 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6296 	} else {
6297 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6298 	}
6299 
6300 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6301 
6302 	/*
6303 	 * If 'tryconfig' was at least parsable, return the current config.
6304 	 */
6305 	if (spa->spa_root_vdev != NULL) {
6306 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6307 		fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6308 		fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6309 		fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6310 		    spa->spa_uberblock.ub_timestamp);
6311 		fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6312 		    spa->spa_load_info);
6313 		fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6314 		    spa->spa_errata);
6315 
6316 		/*
6317 		 * If the bootfs property exists on this pool then we
6318 		 * copy it out so that external consumers can tell which
6319 		 * pools are bootable.
6320 		 */
6321 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
6322 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6323 
6324 			/*
6325 			 * We have to play games with the name since the
6326 			 * pool was opened as TRYIMPORT_NAME.
6327 			 */
6328 			if (dsl_dsobj_to_dsname(spa_name(spa),
6329 			    spa->spa_bootfs, tmpname) == 0) {
6330 				char *cp;
6331 				char *dsname;
6332 
6333 				dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6334 
6335 				cp = strchr(tmpname, '/');
6336 				if (cp == NULL) {
6337 					(void) strlcpy(dsname, tmpname,
6338 					    MAXPATHLEN);
6339 				} else {
6340 					(void) snprintf(dsname, MAXPATHLEN,
6341 					    "%s/%s", poolname, ++cp);
6342 				}
6343 				fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6344 				    dsname);
6345 				kmem_free(dsname, MAXPATHLEN);
6346 			}
6347 			kmem_free(tmpname, MAXPATHLEN);
6348 		}
6349 
6350 		/*
6351 		 * Add the list of hot spares and level 2 cache devices.
6352 		 */
6353 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6354 		spa_add_spares(spa, config);
6355 		spa_add_l2cache(spa, config);
6356 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6357 	}
6358 
6359 	spa_unload(spa);
6360 	spa_deactivate(spa);
6361 	spa_remove(spa);
6362 	mutex_exit(&spa_namespace_lock);
6363 
6364 	return (config);
6365 }
6366 
6367 /*
6368  * Pool export/destroy
6369  *
6370  * The act of destroying or exporting a pool is very simple.  We make sure there
6371  * is no more pending I/O and any references to the pool are gone.  Then, we
6372  * update the pool state and sync all the labels to disk, removing the
6373  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6374  * we don't sync the labels or remove the configuration cache.
6375  */
6376 static int
6377 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6378     boolean_t force, boolean_t hardforce)
6379 {
6380 	int error;
6381 	spa_t *spa;
6382 
6383 	if (oldconfig)
6384 		*oldconfig = NULL;
6385 
6386 	if (!(spa_mode_global & SPA_MODE_WRITE))
6387 		return (SET_ERROR(EROFS));
6388 
6389 	mutex_enter(&spa_namespace_lock);
6390 	if ((spa = spa_lookup(pool)) == NULL) {
6391 		mutex_exit(&spa_namespace_lock);
6392 		return (SET_ERROR(ENOENT));
6393 	}
6394 
6395 	if (spa->spa_is_exporting) {
6396 		/* the pool is being exported by another thread */
6397 		mutex_exit(&spa_namespace_lock);
6398 		return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6399 	}
6400 	spa->spa_is_exporting = B_TRUE;
6401 
6402 	/*
6403 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6404 	 * reacquire the namespace lock, and see if we can export.
6405 	 */
6406 	spa_open_ref(spa, FTAG);
6407 	mutex_exit(&spa_namespace_lock);
6408 	spa_async_suspend(spa);
6409 	if (spa->spa_zvol_taskq) {
6410 		zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6411 		taskq_wait(spa->spa_zvol_taskq);
6412 	}
6413 	mutex_enter(&spa_namespace_lock);
6414 	spa_close(spa, FTAG);
6415 
6416 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6417 		goto export_spa;
6418 	/*
6419 	 * The pool will be in core if it's openable, in which case we can
6420 	 * modify its state.  Objsets may be open only because they're dirty,
6421 	 * so we have to force it to sync before checking spa_refcnt.
6422 	 */
6423 	if (spa->spa_sync_on) {
6424 		txg_wait_synced(spa->spa_dsl_pool, 0);
6425 		spa_evicting_os_wait(spa);
6426 	}
6427 
6428 	/*
6429 	 * A pool cannot be exported or destroyed if there are active
6430 	 * references.  If we are resetting a pool, allow references by
6431 	 * fault injection handlers.
6432 	 */
6433 	if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
6434 		error = SET_ERROR(EBUSY);
6435 		goto fail;
6436 	}
6437 
6438 	if (spa->spa_sync_on) {
6439 		vdev_t *rvd = spa->spa_root_vdev;
6440 		/*
6441 		 * A pool cannot be exported if it has an active shared spare.
6442 		 * This is to prevent other pools stealing the active spare
6443 		 * from an exported pool. At user's own will, such pool can
6444 		 * be forcedly exported.
6445 		 */
6446 		if (!force && new_state == POOL_STATE_EXPORTED &&
6447 		    spa_has_active_shared_spare(spa)) {
6448 			error = SET_ERROR(EXDEV);
6449 			goto fail;
6450 		}
6451 
6452 		/*
6453 		 * We're about to export or destroy this pool. Make sure
6454 		 * we stop all initialization and trim activity here before
6455 		 * we set the spa_final_txg. This will ensure that all
6456 		 * dirty data resulting from the initialization is
6457 		 * committed to disk before we unload the pool.
6458 		 */
6459 		vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6460 		vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6461 		vdev_autotrim_stop_all(spa);
6462 		vdev_rebuild_stop_all(spa);
6463 
6464 		/*
6465 		 * We want this to be reflected on every label,
6466 		 * so mark them all dirty.  spa_unload() will do the
6467 		 * final sync that pushes these changes out.
6468 		 */
6469 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6470 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6471 			spa->spa_state = new_state;
6472 			vdev_config_dirty(rvd);
6473 			spa_config_exit(spa, SCL_ALL, FTAG);
6474 		}
6475 
6476 		/*
6477 		 * If the log space map feature is enabled and the pool is
6478 		 * getting exported (but not destroyed), we want to spend some
6479 		 * time flushing as many metaslabs as we can in an attempt to
6480 		 * destroy log space maps and save import time. This has to be
6481 		 * done before we set the spa_final_txg, otherwise
6482 		 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
6483 		 * spa_should_flush_logs_on_unload() should be called after
6484 		 * spa_state has been set to the new_state.
6485 		 */
6486 		if (spa_should_flush_logs_on_unload(spa))
6487 			spa_unload_log_sm_flush_all(spa);
6488 
6489 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6490 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6491 			spa->spa_final_txg = spa_last_synced_txg(spa) +
6492 			    TXG_DEFER_SIZE + 1;
6493 			spa_config_exit(spa, SCL_ALL, FTAG);
6494 		}
6495 	}
6496 
6497 export_spa:
6498 	spa_export_os(spa);
6499 
6500 	if (new_state == POOL_STATE_DESTROYED)
6501 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6502 	else if (new_state == POOL_STATE_EXPORTED)
6503 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
6504 
6505 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6506 		spa_unload(spa);
6507 		spa_deactivate(spa);
6508 	}
6509 
6510 	if (oldconfig && spa->spa_config)
6511 		*oldconfig = fnvlist_dup(spa->spa_config);
6512 
6513 	if (new_state != POOL_STATE_UNINITIALIZED) {
6514 		if (!hardforce)
6515 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
6516 		spa_remove(spa);
6517 	} else {
6518 		/*
6519 		 * If spa_remove() is not called for this spa_t and
6520 		 * there is any possibility that it can be reused,
6521 		 * we make sure to reset the exporting flag.
6522 		 */
6523 		spa->spa_is_exporting = B_FALSE;
6524 	}
6525 
6526 	mutex_exit(&spa_namespace_lock);
6527 	return (0);
6528 
6529 fail:
6530 	spa->spa_is_exporting = B_FALSE;
6531 	spa_async_resume(spa);
6532 	mutex_exit(&spa_namespace_lock);
6533 	return (error);
6534 }
6535 
6536 /*
6537  * Destroy a storage pool.
6538  */
6539 int
6540 spa_destroy(const char *pool)
6541 {
6542 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6543 	    B_FALSE, B_FALSE));
6544 }
6545 
6546 /*
6547  * Export a storage pool.
6548  */
6549 int
6550 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
6551     boolean_t hardforce)
6552 {
6553 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6554 	    force, hardforce));
6555 }
6556 
6557 /*
6558  * Similar to spa_export(), this unloads the spa_t without actually removing it
6559  * from the namespace in any way.
6560  */
6561 int
6562 spa_reset(const char *pool)
6563 {
6564 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6565 	    B_FALSE, B_FALSE));
6566 }
6567 
6568 /*
6569  * ==========================================================================
6570  * Device manipulation
6571  * ==========================================================================
6572  */
6573 
6574 /*
6575  * This is called as a synctask to increment the draid feature flag
6576  */
6577 static void
6578 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
6579 {
6580 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6581 	int draid = (int)(uintptr_t)arg;
6582 
6583 	for (int c = 0; c < draid; c++)
6584 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6585 }
6586 
6587 /*
6588  * Add a device to a storage pool.
6589  */
6590 int
6591 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6592 {
6593 	uint64_t txg, ndraid = 0;
6594 	int error;
6595 	vdev_t *rvd = spa->spa_root_vdev;
6596 	vdev_t *vd, *tvd;
6597 	nvlist_t **spares, **l2cache;
6598 	uint_t nspares, nl2cache;
6599 
6600 	ASSERT(spa_writeable(spa));
6601 
6602 	txg = spa_vdev_enter(spa);
6603 
6604 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6605 	    VDEV_ALLOC_ADD)) != 0)
6606 		return (spa_vdev_exit(spa, NULL, txg, error));
6607 
6608 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
6609 
6610 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6611 	    &nspares) != 0)
6612 		nspares = 0;
6613 
6614 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6615 	    &nl2cache) != 0)
6616 		nl2cache = 0;
6617 
6618 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6619 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
6620 
6621 	if (vd->vdev_children != 0 &&
6622 	    (error = vdev_create(vd, txg, B_FALSE)) != 0) {
6623 		return (spa_vdev_exit(spa, vd, txg, error));
6624 	}
6625 
6626 	/*
6627 	 * The virtual dRAID spares must be added after vdev tree is created
6628 	 * and the vdev guids are generated.  The guid of their associated
6629 	 * dRAID is stored in the config and used when opening the spare.
6630 	 */
6631 	if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
6632 	    rvd->vdev_children)) == 0) {
6633 		if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
6634 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
6635 			nspares = 0;
6636 	} else {
6637 		return (spa_vdev_exit(spa, vd, txg, error));
6638 	}
6639 
6640 	/*
6641 	 * We must validate the spares and l2cache devices after checking the
6642 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
6643 	 */
6644 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6645 		return (spa_vdev_exit(spa, vd, txg, error));
6646 
6647 	/*
6648 	 * If we are in the middle of a device removal, we can only add
6649 	 * devices which match the existing devices in the pool.
6650 	 * If we are in the middle of a removal, or have some indirect
6651 	 * vdevs, we can not add raidz or dRAID top levels.
6652 	 */
6653 	if (spa->spa_vdev_removal != NULL ||
6654 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6655 		for (int c = 0; c < vd->vdev_children; c++) {
6656 			tvd = vd->vdev_child[c];
6657 			if (spa->spa_vdev_removal != NULL &&
6658 			    tvd->vdev_ashift != spa->spa_max_ashift) {
6659 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6660 			}
6661 			/* Fail if top level vdev is raidz or a dRAID */
6662 			if (vdev_get_nparity(tvd) != 0)
6663 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6664 
6665 			/*
6666 			 * Need the top level mirror to be
6667 			 * a mirror of leaf vdevs only
6668 			 */
6669 			if (tvd->vdev_ops == &vdev_mirror_ops) {
6670 				for (uint64_t cid = 0;
6671 				    cid < tvd->vdev_children; cid++) {
6672 					vdev_t *cvd = tvd->vdev_child[cid];
6673 					if (!cvd->vdev_ops->vdev_op_leaf) {
6674 						return (spa_vdev_exit(spa, vd,
6675 						    txg, EINVAL));
6676 					}
6677 				}
6678 			}
6679 		}
6680 	}
6681 
6682 	for (int c = 0; c < vd->vdev_children; c++) {
6683 		tvd = vd->vdev_child[c];
6684 		vdev_remove_child(vd, tvd);
6685 		tvd->vdev_id = rvd->vdev_children;
6686 		vdev_add_child(rvd, tvd);
6687 		vdev_config_dirty(tvd);
6688 	}
6689 
6690 	if (nspares != 0) {
6691 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6692 		    ZPOOL_CONFIG_SPARES);
6693 		spa_load_spares(spa);
6694 		spa->spa_spares.sav_sync = B_TRUE;
6695 	}
6696 
6697 	if (nl2cache != 0) {
6698 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6699 		    ZPOOL_CONFIG_L2CACHE);
6700 		spa_load_l2cache(spa);
6701 		spa->spa_l2cache.sav_sync = B_TRUE;
6702 	}
6703 
6704 	/*
6705 	 * We can't increment a feature while holding spa_vdev so we
6706 	 * have to do it in a synctask.
6707 	 */
6708 	if (ndraid != 0) {
6709 		dmu_tx_t *tx;
6710 
6711 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
6712 		dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
6713 		    (void *)(uintptr_t)ndraid, tx);
6714 		dmu_tx_commit(tx);
6715 	}
6716 
6717 	/*
6718 	 * We have to be careful when adding new vdevs to an existing pool.
6719 	 * If other threads start allocating from these vdevs before we
6720 	 * sync the config cache, and we lose power, then upon reboot we may
6721 	 * fail to open the pool because there are DVAs that the config cache
6722 	 * can't translate.  Therefore, we first add the vdevs without
6723 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6724 	 * and then let spa_config_update() initialize the new metaslabs.
6725 	 *
6726 	 * spa_load() checks for added-but-not-initialized vdevs, so that
6727 	 * if we lose power at any point in this sequence, the remaining
6728 	 * steps will be completed the next time we load the pool.
6729 	 */
6730 	(void) spa_vdev_exit(spa, vd, txg, 0);
6731 
6732 	mutex_enter(&spa_namespace_lock);
6733 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6734 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6735 	mutex_exit(&spa_namespace_lock);
6736 
6737 	return (0);
6738 }
6739 
6740 /*
6741  * Attach a device to a mirror.  The arguments are the path to any device
6742  * in the mirror, and the nvroot for the new device.  If the path specifies
6743  * a device that is not mirrored, we automatically insert the mirror vdev.
6744  *
6745  * If 'replacing' is specified, the new device is intended to replace the
6746  * existing device; in this case the two devices are made into their own
6747  * mirror using the 'replacing' vdev, which is functionally identical to
6748  * the mirror vdev (it actually reuses all the same ops) but has a few
6749  * extra rules: you can't attach to it after it's been created, and upon
6750  * completion of resilvering, the first disk (the one being replaced)
6751  * is automatically detached.
6752  *
6753  * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
6754  * should be performed instead of traditional healing reconstruction.  From
6755  * an administrators perspective these are both resilver operations.
6756  */
6757 int
6758 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
6759     int rebuild)
6760 {
6761 	uint64_t txg, dtl_max_txg;
6762 	vdev_t *rvd = spa->spa_root_vdev;
6763 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6764 	vdev_ops_t *pvops;
6765 	char *oldvdpath, *newvdpath;
6766 	int newvd_isspare;
6767 	int error;
6768 
6769 	ASSERT(spa_writeable(spa));
6770 
6771 	txg = spa_vdev_enter(spa);
6772 
6773 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6774 
6775 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6776 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6777 		error = (spa_has_checkpoint(spa)) ?
6778 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6779 		return (spa_vdev_exit(spa, NULL, txg, error));
6780 	}
6781 
6782 	if (rebuild) {
6783 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
6784 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6785 
6786 		if (dsl_scan_resilvering(spa_get_dsl(spa)))
6787 			return (spa_vdev_exit(spa, NULL, txg,
6788 			    ZFS_ERR_RESILVER_IN_PROGRESS));
6789 	} else {
6790 		if (vdev_rebuild_active(rvd))
6791 			return (spa_vdev_exit(spa, NULL, txg,
6792 			    ZFS_ERR_REBUILD_IN_PROGRESS));
6793 	}
6794 
6795 	if (spa->spa_vdev_removal != NULL)
6796 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6797 
6798 	if (oldvd == NULL)
6799 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6800 
6801 	if (!oldvd->vdev_ops->vdev_op_leaf)
6802 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6803 
6804 	pvd = oldvd->vdev_parent;
6805 
6806 	if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6807 	    VDEV_ALLOC_ATTACH) != 0)
6808 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6809 
6810 	if (newrootvd->vdev_children != 1)
6811 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6812 
6813 	newvd = newrootvd->vdev_child[0];
6814 
6815 	if (!newvd->vdev_ops->vdev_op_leaf)
6816 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6817 
6818 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6819 		return (spa_vdev_exit(spa, newrootvd, txg, error));
6820 
6821 	/*
6822 	 * log, dedup and special vdevs should not be replaced by spares.
6823 	 */
6824 	if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
6825 	    oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
6826 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6827 	}
6828 
6829 	/*
6830 	 * A dRAID spare can only replace a child of its parent dRAID vdev.
6831 	 */
6832 	if (newvd->vdev_ops == &vdev_draid_spare_ops &&
6833 	    oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
6834 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6835 	}
6836 
6837 	if (rebuild) {
6838 		/*
6839 		 * For rebuilds, the top vdev must support reconstruction
6840 		 * using only space maps.  This means the only allowable
6841 		 * vdevs types are the root vdev, a mirror, or dRAID.
6842 		 */
6843 		tvd = pvd;
6844 		if (pvd->vdev_top != NULL)
6845 			tvd = pvd->vdev_top;
6846 
6847 		if (tvd->vdev_ops != &vdev_mirror_ops &&
6848 		    tvd->vdev_ops != &vdev_root_ops &&
6849 		    tvd->vdev_ops != &vdev_draid_ops) {
6850 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6851 		}
6852 	}
6853 
6854 	if (!replacing) {
6855 		/*
6856 		 * For attach, the only allowable parent is a mirror or the root
6857 		 * vdev.
6858 		 */
6859 		if (pvd->vdev_ops != &vdev_mirror_ops &&
6860 		    pvd->vdev_ops != &vdev_root_ops)
6861 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6862 
6863 		pvops = &vdev_mirror_ops;
6864 	} else {
6865 		/*
6866 		 * Active hot spares can only be replaced by inactive hot
6867 		 * spares.
6868 		 */
6869 		if (pvd->vdev_ops == &vdev_spare_ops &&
6870 		    oldvd->vdev_isspare &&
6871 		    !spa_has_spare(spa, newvd->vdev_guid))
6872 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6873 
6874 		/*
6875 		 * If the source is a hot spare, and the parent isn't already a
6876 		 * spare, then we want to create a new hot spare.  Otherwise, we
6877 		 * want to create a replacing vdev.  The user is not allowed to
6878 		 * attach to a spared vdev child unless the 'isspare' state is
6879 		 * the same (spare replaces spare, non-spare replaces
6880 		 * non-spare).
6881 		 */
6882 		if (pvd->vdev_ops == &vdev_replacing_ops &&
6883 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6884 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6885 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
6886 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
6887 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6888 		}
6889 
6890 		if (newvd->vdev_isspare)
6891 			pvops = &vdev_spare_ops;
6892 		else
6893 			pvops = &vdev_replacing_ops;
6894 	}
6895 
6896 	/*
6897 	 * Make sure the new device is big enough.
6898 	 */
6899 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6900 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6901 
6902 	/*
6903 	 * The new device cannot have a higher alignment requirement
6904 	 * than the top-level vdev.
6905 	 */
6906 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6907 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6908 
6909 	/*
6910 	 * If this is an in-place replacement, update oldvd's path and devid
6911 	 * to make it distinguishable from newvd, and unopenable from now on.
6912 	 */
6913 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6914 		spa_strfree(oldvd->vdev_path);
6915 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6916 		    KM_SLEEP);
6917 		(void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5,
6918 		    "%s/%s", newvd->vdev_path, "old");
6919 		if (oldvd->vdev_devid != NULL) {
6920 			spa_strfree(oldvd->vdev_devid);
6921 			oldvd->vdev_devid = NULL;
6922 		}
6923 	}
6924 
6925 	/*
6926 	 * If the parent is not a mirror, or if we're replacing, insert the new
6927 	 * mirror/replacing/spare vdev above oldvd.
6928 	 */
6929 	if (pvd->vdev_ops != pvops)
6930 		pvd = vdev_add_parent(oldvd, pvops);
6931 
6932 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
6933 	ASSERT(pvd->vdev_ops == pvops);
6934 	ASSERT(oldvd->vdev_parent == pvd);
6935 
6936 	/*
6937 	 * Extract the new device from its root and add it to pvd.
6938 	 */
6939 	vdev_remove_child(newrootvd, newvd);
6940 	newvd->vdev_id = pvd->vdev_children;
6941 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
6942 	vdev_add_child(pvd, newvd);
6943 
6944 	/*
6945 	 * Reevaluate the parent vdev state.
6946 	 */
6947 	vdev_propagate_state(pvd);
6948 
6949 	tvd = newvd->vdev_top;
6950 	ASSERT(pvd->vdev_top == tvd);
6951 	ASSERT(tvd->vdev_parent == rvd);
6952 
6953 	vdev_config_dirty(tvd);
6954 
6955 	/*
6956 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6957 	 * for any dmu_sync-ed blocks.  It will propagate upward when
6958 	 * spa_vdev_exit() calls vdev_dtl_reassess().
6959 	 */
6960 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6961 
6962 	vdev_dtl_dirty(newvd, DTL_MISSING,
6963 	    TXG_INITIAL, dtl_max_txg - TXG_INITIAL);
6964 
6965 	if (newvd->vdev_isspare) {
6966 		spa_spare_activate(newvd);
6967 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6968 	}
6969 
6970 	oldvdpath = spa_strdup(oldvd->vdev_path);
6971 	newvdpath = spa_strdup(newvd->vdev_path);
6972 	newvd_isspare = newvd->vdev_isspare;
6973 
6974 	/*
6975 	 * Mark newvd's DTL dirty in this txg.
6976 	 */
6977 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
6978 
6979 	/*
6980 	 * Schedule the resilver or rebuild to restart in the future. We do
6981 	 * this to ensure that dmu_sync-ed blocks have been stitched into the
6982 	 * respective datasets.
6983 	 */
6984 	if (rebuild) {
6985 		newvd->vdev_rebuild_txg = txg;
6986 
6987 		vdev_rebuild(tvd);
6988 	} else {
6989 		newvd->vdev_resilver_txg = txg;
6990 
6991 		if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6992 		    spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
6993 			vdev_defer_resilver(newvd);
6994 		} else {
6995 			dsl_scan_restart_resilver(spa->spa_dsl_pool,
6996 			    dtl_max_txg);
6997 		}
6998 	}
6999 
7000 	if (spa->spa_bootfs)
7001 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7002 
7003 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7004 
7005 	/*
7006 	 * Commit the config
7007 	 */
7008 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7009 
7010 	spa_history_log_internal(spa, "vdev attach", NULL,
7011 	    "%s vdev=%s %s vdev=%s",
7012 	    replacing && newvd_isspare ? "spare in" :
7013 	    replacing ? "replace" : "attach", newvdpath,
7014 	    replacing ? "for" : "to", oldvdpath);
7015 
7016 	spa_strfree(oldvdpath);
7017 	spa_strfree(newvdpath);
7018 
7019 	return (0);
7020 }
7021 
7022 /*
7023  * Detach a device from a mirror or replacing vdev.
7024  *
7025  * If 'replace_done' is specified, only detach if the parent
7026  * is a replacing vdev.
7027  */
7028 int
7029 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7030 {
7031 	uint64_t txg;
7032 	int error;
7033 	vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7034 	vdev_t *vd, *pvd, *cvd, *tvd;
7035 	boolean_t unspare = B_FALSE;
7036 	uint64_t unspare_guid = 0;
7037 	char *vdpath;
7038 
7039 	ASSERT(spa_writeable(spa));
7040 
7041 	txg = spa_vdev_detach_enter(spa, guid);
7042 
7043 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7044 
7045 	/*
7046 	 * Besides being called directly from the userland through the
7047 	 * ioctl interface, spa_vdev_detach() can be potentially called
7048 	 * at the end of spa_vdev_resilver_done().
7049 	 *
7050 	 * In the regular case, when we have a checkpoint this shouldn't
7051 	 * happen as we never empty the DTLs of a vdev during the scrub
7052 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7053 	 * should never get here when we have a checkpoint.
7054 	 *
7055 	 * That said, even in a case when we checkpoint the pool exactly
7056 	 * as spa_vdev_resilver_done() calls this function everything
7057 	 * should be fine as the resilver will return right away.
7058 	 */
7059 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7060 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7061 		error = (spa_has_checkpoint(spa)) ?
7062 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7063 		return (spa_vdev_exit(spa, NULL, txg, error));
7064 	}
7065 
7066 	if (vd == NULL)
7067 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7068 
7069 	if (!vd->vdev_ops->vdev_op_leaf)
7070 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7071 
7072 	pvd = vd->vdev_parent;
7073 
7074 	/*
7075 	 * If the parent/child relationship is not as expected, don't do it.
7076 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7077 	 * vdev that's replacing B with C.  The user's intent in replacing
7078 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
7079 	 * the replace by detaching C, the expected behavior is to end up
7080 	 * M(A,B).  But suppose that right after deciding to detach C,
7081 	 * the replacement of B completes.  We would have M(A,C), and then
7082 	 * ask to detach C, which would leave us with just A -- not what
7083 	 * the user wanted.  To prevent this, we make sure that the
7084 	 * parent/child relationship hasn't changed -- in this example,
7085 	 * that C's parent is still the replacing vdev R.
7086 	 */
7087 	if (pvd->vdev_guid != pguid && pguid != 0)
7088 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7089 
7090 	/*
7091 	 * Only 'replacing' or 'spare' vdevs can be replaced.
7092 	 */
7093 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7094 	    pvd->vdev_ops != &vdev_spare_ops)
7095 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7096 
7097 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7098 	    spa_version(spa) >= SPA_VERSION_SPARES);
7099 
7100 	/*
7101 	 * Only mirror, replacing, and spare vdevs support detach.
7102 	 */
7103 	if (pvd->vdev_ops != &vdev_replacing_ops &&
7104 	    pvd->vdev_ops != &vdev_mirror_ops &&
7105 	    pvd->vdev_ops != &vdev_spare_ops)
7106 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7107 
7108 	/*
7109 	 * If this device has the only valid copy of some data,
7110 	 * we cannot safely detach it.
7111 	 */
7112 	if (vdev_dtl_required(vd))
7113 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7114 
7115 	ASSERT(pvd->vdev_children >= 2);
7116 
7117 	/*
7118 	 * If we are detaching the second disk from a replacing vdev, then
7119 	 * check to see if we changed the original vdev's path to have "/old"
7120 	 * at the end in spa_vdev_attach().  If so, undo that change now.
7121 	 */
7122 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7123 	    vd->vdev_path != NULL) {
7124 		size_t len = strlen(vd->vdev_path);
7125 
7126 		for (int c = 0; c < pvd->vdev_children; c++) {
7127 			cvd = pvd->vdev_child[c];
7128 
7129 			if (cvd == vd || cvd->vdev_path == NULL)
7130 				continue;
7131 
7132 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7133 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
7134 				spa_strfree(cvd->vdev_path);
7135 				cvd->vdev_path = spa_strdup(vd->vdev_path);
7136 				break;
7137 			}
7138 		}
7139 	}
7140 
7141 	/*
7142 	 * If we are detaching the original disk from a normal spare, then it
7143 	 * implies that the spare should become a real disk, and be removed
7144 	 * from the active spare list for the pool.  dRAID spares on the
7145 	 * other hand are coupled to the pool and thus should never be removed
7146 	 * from the spares list.
7147 	 */
7148 	if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7149 		vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7150 
7151 		if (last_cvd->vdev_isspare &&
7152 		    last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7153 			unspare = B_TRUE;
7154 		}
7155 	}
7156 
7157 	/*
7158 	 * Erase the disk labels so the disk can be used for other things.
7159 	 * This must be done after all other error cases are handled,
7160 	 * but before we disembowel vd (so we can still do I/O to it).
7161 	 * But if we can't do it, don't treat the error as fatal --
7162 	 * it may be that the unwritability of the disk is the reason
7163 	 * it's being detached!
7164 	 */
7165 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7166 
7167 	/*
7168 	 * Remove vd from its parent and compact the parent's children.
7169 	 */
7170 	vdev_remove_child(pvd, vd);
7171 	vdev_compact_children(pvd);
7172 
7173 	/*
7174 	 * Remember one of the remaining children so we can get tvd below.
7175 	 */
7176 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
7177 
7178 	/*
7179 	 * If we need to remove the remaining child from the list of hot spares,
7180 	 * do it now, marking the vdev as no longer a spare in the process.
7181 	 * We must do this before vdev_remove_parent(), because that can
7182 	 * change the GUID if it creates a new toplevel GUID.  For a similar
7183 	 * reason, we must remove the spare now, in the same txg as the detach;
7184 	 * otherwise someone could attach a new sibling, change the GUID, and
7185 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7186 	 */
7187 	if (unspare) {
7188 		ASSERT(cvd->vdev_isspare);
7189 		spa_spare_remove(cvd);
7190 		unspare_guid = cvd->vdev_guid;
7191 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7192 		cvd->vdev_unspare = B_TRUE;
7193 	}
7194 
7195 	/*
7196 	 * If the parent mirror/replacing vdev only has one child,
7197 	 * the parent is no longer needed.  Remove it from the tree.
7198 	 */
7199 	if (pvd->vdev_children == 1) {
7200 		if (pvd->vdev_ops == &vdev_spare_ops)
7201 			cvd->vdev_unspare = B_FALSE;
7202 		vdev_remove_parent(cvd);
7203 	}
7204 
7205 	/*
7206 	 * We don't set tvd until now because the parent we just removed
7207 	 * may have been the previous top-level vdev.
7208 	 */
7209 	tvd = cvd->vdev_top;
7210 	ASSERT(tvd->vdev_parent == rvd);
7211 
7212 	/*
7213 	 * Reevaluate the parent vdev state.
7214 	 */
7215 	vdev_propagate_state(cvd);
7216 
7217 	/*
7218 	 * If the 'autoexpand' property is set on the pool then automatically
7219 	 * try to expand the size of the pool. For example if the device we
7220 	 * just detached was smaller than the others, it may be possible to
7221 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7222 	 * first so that we can obtain the updated sizes of the leaf vdevs.
7223 	 */
7224 	if (spa->spa_autoexpand) {
7225 		vdev_reopen(tvd);
7226 		vdev_expand(tvd, txg);
7227 	}
7228 
7229 	vdev_config_dirty(tvd);
7230 
7231 	/*
7232 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
7233 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7234 	 * But first make sure we're not on any *other* txg's DTL list, to
7235 	 * prevent vd from being accessed after it's freed.
7236 	 */
7237 	vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7238 	for (int t = 0; t < TXG_SIZE; t++)
7239 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7240 	vd->vdev_detached = B_TRUE;
7241 	vdev_dirty(tvd, VDD_DTL, vd, txg);
7242 
7243 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7244 	spa_notify_waiters(spa);
7245 
7246 	/* hang on to the spa before we release the lock */
7247 	spa_open_ref(spa, FTAG);
7248 
7249 	error = spa_vdev_exit(spa, vd, txg, 0);
7250 
7251 	spa_history_log_internal(spa, "detach", NULL,
7252 	    "vdev=%s", vdpath);
7253 	spa_strfree(vdpath);
7254 
7255 	/*
7256 	 * If this was the removal of the original device in a hot spare vdev,
7257 	 * then we want to go through and remove the device from the hot spare
7258 	 * list of every other pool.
7259 	 */
7260 	if (unspare) {
7261 		spa_t *altspa = NULL;
7262 
7263 		mutex_enter(&spa_namespace_lock);
7264 		while ((altspa = spa_next(altspa)) != NULL) {
7265 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
7266 			    altspa == spa)
7267 				continue;
7268 
7269 			spa_open_ref(altspa, FTAG);
7270 			mutex_exit(&spa_namespace_lock);
7271 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7272 			mutex_enter(&spa_namespace_lock);
7273 			spa_close(altspa, FTAG);
7274 		}
7275 		mutex_exit(&spa_namespace_lock);
7276 
7277 		/* search the rest of the vdevs for spares to remove */
7278 		spa_vdev_resilver_done(spa);
7279 	}
7280 
7281 	/* all done with the spa; OK to release */
7282 	mutex_enter(&spa_namespace_lock);
7283 	spa_close(spa, FTAG);
7284 	mutex_exit(&spa_namespace_lock);
7285 
7286 	return (error);
7287 }
7288 
7289 static int
7290 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7291     list_t *vd_list)
7292 {
7293 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7294 
7295 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7296 
7297 	/* Look up vdev and ensure it's a leaf. */
7298 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7299 	if (vd == NULL || vd->vdev_detached) {
7300 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7301 		return (SET_ERROR(ENODEV));
7302 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7303 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7304 		return (SET_ERROR(EINVAL));
7305 	} else if (!vdev_writeable(vd)) {
7306 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7307 		return (SET_ERROR(EROFS));
7308 	}
7309 	mutex_enter(&vd->vdev_initialize_lock);
7310 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7311 
7312 	/*
7313 	 * When we activate an initialize action we check to see
7314 	 * if the vdev_initialize_thread is NULL. We do this instead
7315 	 * of using the vdev_initialize_state since there might be
7316 	 * a previous initialization process which has completed but
7317 	 * the thread is not exited.
7318 	 */
7319 	if (cmd_type == POOL_INITIALIZE_START &&
7320 	    (vd->vdev_initialize_thread != NULL ||
7321 	    vd->vdev_top->vdev_removing)) {
7322 		mutex_exit(&vd->vdev_initialize_lock);
7323 		return (SET_ERROR(EBUSY));
7324 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7325 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7326 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7327 		mutex_exit(&vd->vdev_initialize_lock);
7328 		return (SET_ERROR(ESRCH));
7329 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7330 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7331 		mutex_exit(&vd->vdev_initialize_lock);
7332 		return (SET_ERROR(ESRCH));
7333 	}
7334 
7335 	switch (cmd_type) {
7336 	case POOL_INITIALIZE_START:
7337 		vdev_initialize(vd);
7338 		break;
7339 	case POOL_INITIALIZE_CANCEL:
7340 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7341 		break;
7342 	case POOL_INITIALIZE_SUSPEND:
7343 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7344 		break;
7345 	default:
7346 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7347 	}
7348 	mutex_exit(&vd->vdev_initialize_lock);
7349 
7350 	return (0);
7351 }
7352 
7353 int
7354 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7355     nvlist_t *vdev_errlist)
7356 {
7357 	int total_errors = 0;
7358 	list_t vd_list;
7359 
7360 	list_create(&vd_list, sizeof (vdev_t),
7361 	    offsetof(vdev_t, vdev_initialize_node));
7362 
7363 	/*
7364 	 * We hold the namespace lock through the whole function
7365 	 * to prevent any changes to the pool while we're starting or
7366 	 * stopping initialization. The config and state locks are held so that
7367 	 * we can properly assess the vdev state before we commit to
7368 	 * the initializing operation.
7369 	 */
7370 	mutex_enter(&spa_namespace_lock);
7371 
7372 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7373 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7374 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
7375 
7376 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7377 		    &vd_list);
7378 		if (error != 0) {
7379 			char guid_as_str[MAXNAMELEN];
7380 
7381 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
7382 			    "%llu", (unsigned long long)vdev_guid);
7383 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7384 			total_errors++;
7385 		}
7386 	}
7387 
7388 	/* Wait for all initialize threads to stop. */
7389 	vdev_initialize_stop_wait(spa, &vd_list);
7390 
7391 	/* Sync out the initializing state */
7392 	txg_wait_synced(spa->spa_dsl_pool, 0);
7393 	mutex_exit(&spa_namespace_lock);
7394 
7395 	list_destroy(&vd_list);
7396 
7397 	return (total_errors);
7398 }
7399 
7400 static int
7401 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7402     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
7403 {
7404 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7405 
7406 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7407 
7408 	/* Look up vdev and ensure it's a leaf. */
7409 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7410 	if (vd == NULL || vd->vdev_detached) {
7411 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7412 		return (SET_ERROR(ENODEV));
7413 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7414 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7415 		return (SET_ERROR(EINVAL));
7416 	} else if (!vdev_writeable(vd)) {
7417 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7418 		return (SET_ERROR(EROFS));
7419 	} else if (!vd->vdev_has_trim) {
7420 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7421 		return (SET_ERROR(EOPNOTSUPP));
7422 	} else if (secure && !vd->vdev_has_securetrim) {
7423 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7424 		return (SET_ERROR(EOPNOTSUPP));
7425 	}
7426 	mutex_enter(&vd->vdev_trim_lock);
7427 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7428 
7429 	/*
7430 	 * When we activate a TRIM action we check to see if the
7431 	 * vdev_trim_thread is NULL. We do this instead of using the
7432 	 * vdev_trim_state since there might be a previous TRIM process
7433 	 * which has completed but the thread is not exited.
7434 	 */
7435 	if (cmd_type == POOL_TRIM_START &&
7436 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
7437 		mutex_exit(&vd->vdev_trim_lock);
7438 		return (SET_ERROR(EBUSY));
7439 	} else if (cmd_type == POOL_TRIM_CANCEL &&
7440 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
7441 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
7442 		mutex_exit(&vd->vdev_trim_lock);
7443 		return (SET_ERROR(ESRCH));
7444 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
7445 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
7446 		mutex_exit(&vd->vdev_trim_lock);
7447 		return (SET_ERROR(ESRCH));
7448 	}
7449 
7450 	switch (cmd_type) {
7451 	case POOL_TRIM_START:
7452 		vdev_trim(vd, rate, partial, secure);
7453 		break;
7454 	case POOL_TRIM_CANCEL:
7455 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
7456 		break;
7457 	case POOL_TRIM_SUSPEND:
7458 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
7459 		break;
7460 	default:
7461 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7462 	}
7463 	mutex_exit(&vd->vdev_trim_lock);
7464 
7465 	return (0);
7466 }
7467 
7468 /*
7469  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
7470  * TRIM threads for each child vdev.  These threads pass over all of the free
7471  * space in the vdev's metaslabs and issues TRIM commands for that space.
7472  */
7473 int
7474 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
7475     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
7476 {
7477 	int total_errors = 0;
7478 	list_t vd_list;
7479 
7480 	list_create(&vd_list, sizeof (vdev_t),
7481 	    offsetof(vdev_t, vdev_trim_node));
7482 
7483 	/*
7484 	 * We hold the namespace lock through the whole function
7485 	 * to prevent any changes to the pool while we're starting or
7486 	 * stopping TRIM. The config and state locks are held so that
7487 	 * we can properly assess the vdev state before we commit to
7488 	 * the TRIM operation.
7489 	 */
7490 	mutex_enter(&spa_namespace_lock);
7491 
7492 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7493 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7494 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
7495 
7496 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
7497 		    rate, partial, secure, &vd_list);
7498 		if (error != 0) {
7499 			char guid_as_str[MAXNAMELEN];
7500 
7501 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
7502 			    "%llu", (unsigned long long)vdev_guid);
7503 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7504 			total_errors++;
7505 		}
7506 	}
7507 
7508 	/* Wait for all TRIM threads to stop. */
7509 	vdev_trim_stop_wait(spa, &vd_list);
7510 
7511 	/* Sync out the TRIM state */
7512 	txg_wait_synced(spa->spa_dsl_pool, 0);
7513 	mutex_exit(&spa_namespace_lock);
7514 
7515 	list_destroy(&vd_list);
7516 
7517 	return (total_errors);
7518 }
7519 
7520 /*
7521  * Split a set of devices from their mirrors, and create a new pool from them.
7522  */
7523 int
7524 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
7525     nvlist_t *props, boolean_t exp)
7526 {
7527 	int error = 0;
7528 	uint64_t txg, *glist;
7529 	spa_t *newspa;
7530 	uint_t c, children, lastlog;
7531 	nvlist_t **child, *nvl, *tmp;
7532 	dmu_tx_t *tx;
7533 	char *altroot = NULL;
7534 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
7535 	boolean_t activate_slog;
7536 
7537 	ASSERT(spa_writeable(spa));
7538 
7539 	txg = spa_vdev_enter(spa);
7540 
7541 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7542 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7543 		error = (spa_has_checkpoint(spa)) ?
7544 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7545 		return (spa_vdev_exit(spa, NULL, txg, error));
7546 	}
7547 
7548 	/* clear the log and flush everything up to now */
7549 	activate_slog = spa_passivate_log(spa);
7550 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7551 	error = spa_reset_logs(spa);
7552 	txg = spa_vdev_config_enter(spa);
7553 
7554 	if (activate_slog)
7555 		spa_activate_log(spa);
7556 
7557 	if (error != 0)
7558 		return (spa_vdev_exit(spa, NULL, txg, error));
7559 
7560 	/* check new spa name before going any further */
7561 	if (spa_lookup(newname) != NULL)
7562 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
7563 
7564 	/*
7565 	 * scan through all the children to ensure they're all mirrors
7566 	 */
7567 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
7568 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
7569 	    &children) != 0)
7570 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7571 
7572 	/* first, check to ensure we've got the right child count */
7573 	rvd = spa->spa_root_vdev;
7574 	lastlog = 0;
7575 	for (c = 0; c < rvd->vdev_children; c++) {
7576 		vdev_t *vd = rvd->vdev_child[c];
7577 
7578 		/* don't count the holes & logs as children */
7579 		if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
7580 		    !vdev_is_concrete(vd))) {
7581 			if (lastlog == 0)
7582 				lastlog = c;
7583 			continue;
7584 		}
7585 
7586 		lastlog = 0;
7587 	}
7588 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7589 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7590 
7591 	/* next, ensure no spare or cache devices are part of the split */
7592 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7593 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7594 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7595 
7596 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7597 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7598 
7599 	/* then, loop over each vdev and validate it */
7600 	for (c = 0; c < children; c++) {
7601 		uint64_t is_hole = 0;
7602 
7603 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7604 		    &is_hole);
7605 
7606 		if (is_hole != 0) {
7607 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7608 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7609 				continue;
7610 			} else {
7611 				error = SET_ERROR(EINVAL);
7612 				break;
7613 			}
7614 		}
7615 
7616 		/* deal with indirect vdevs */
7617 		if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
7618 		    &vdev_indirect_ops)
7619 			continue;
7620 
7621 		/* which disk is going to be split? */
7622 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7623 		    &glist[c]) != 0) {
7624 			error = SET_ERROR(EINVAL);
7625 			break;
7626 		}
7627 
7628 		/* look it up in the spa */
7629 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7630 		if (vml[c] == NULL) {
7631 			error = SET_ERROR(ENODEV);
7632 			break;
7633 		}
7634 
7635 		/* make sure there's nothing stopping the split */
7636 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7637 		    vml[c]->vdev_islog ||
7638 		    !vdev_is_concrete(vml[c]) ||
7639 		    vml[c]->vdev_isspare ||
7640 		    vml[c]->vdev_isl2cache ||
7641 		    !vdev_writeable(vml[c]) ||
7642 		    vml[c]->vdev_children != 0 ||
7643 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7644 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7645 			error = SET_ERROR(EINVAL);
7646 			break;
7647 		}
7648 
7649 		if (vdev_dtl_required(vml[c]) ||
7650 		    vdev_resilver_needed(vml[c], NULL, NULL)) {
7651 			error = SET_ERROR(EBUSY);
7652 			break;
7653 		}
7654 
7655 		/* we need certain info from the top level */
7656 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7657 		    vml[c]->vdev_top->vdev_ms_array);
7658 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7659 		    vml[c]->vdev_top->vdev_ms_shift);
7660 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7661 		    vml[c]->vdev_top->vdev_asize);
7662 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7663 		    vml[c]->vdev_top->vdev_ashift);
7664 
7665 		/* transfer per-vdev ZAPs */
7666 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7667 		VERIFY0(nvlist_add_uint64(child[c],
7668 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7669 
7670 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7671 		VERIFY0(nvlist_add_uint64(child[c],
7672 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
7673 		    vml[c]->vdev_parent->vdev_top_zap));
7674 	}
7675 
7676 	if (error != 0) {
7677 		kmem_free(vml, children * sizeof (vdev_t *));
7678 		kmem_free(glist, children * sizeof (uint64_t));
7679 		return (spa_vdev_exit(spa, NULL, txg, error));
7680 	}
7681 
7682 	/* stop writers from using the disks */
7683 	for (c = 0; c < children; c++) {
7684 		if (vml[c] != NULL)
7685 			vml[c]->vdev_offline = B_TRUE;
7686 	}
7687 	vdev_reopen(spa->spa_root_vdev);
7688 
7689 	/*
7690 	 * Temporarily record the splitting vdevs in the spa config.  This
7691 	 * will disappear once the config is regenerated.
7692 	 */
7693 	nvl = fnvlist_alloc();
7694 	fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
7695 	kmem_free(glist, children * sizeof (uint64_t));
7696 
7697 	mutex_enter(&spa->spa_props_lock);
7698 	fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
7699 	mutex_exit(&spa->spa_props_lock);
7700 	spa->spa_config_splitting = nvl;
7701 	vdev_config_dirty(spa->spa_root_vdev);
7702 
7703 	/* configure and create the new pool */
7704 	fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
7705 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7706 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
7707 	fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
7708 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
7709 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7710 	    spa_generate_guid(NULL));
7711 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7712 	(void) nvlist_lookup_string(props,
7713 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7714 
7715 	/* add the new pool to the namespace */
7716 	newspa = spa_add(newname, config, altroot);
7717 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7718 	newspa->spa_config_txg = spa->spa_config_txg;
7719 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
7720 
7721 	/* release the spa config lock, retaining the namespace lock */
7722 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7723 
7724 	if (zio_injection_enabled)
7725 		zio_handle_panic_injection(spa, FTAG, 1);
7726 
7727 	spa_activate(newspa, spa_mode_global);
7728 	spa_async_suspend(newspa);
7729 
7730 	/*
7731 	 * Temporarily stop the initializing and TRIM activity.  We set the
7732 	 * state to ACTIVE so that we know to resume initializing or TRIM
7733 	 * once the split has completed.
7734 	 */
7735 	list_t vd_initialize_list;
7736 	list_create(&vd_initialize_list, sizeof (vdev_t),
7737 	    offsetof(vdev_t, vdev_initialize_node));
7738 
7739 	list_t vd_trim_list;
7740 	list_create(&vd_trim_list, sizeof (vdev_t),
7741 	    offsetof(vdev_t, vdev_trim_node));
7742 
7743 	for (c = 0; c < children; c++) {
7744 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7745 			mutex_enter(&vml[c]->vdev_initialize_lock);
7746 			vdev_initialize_stop(vml[c],
7747 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7748 			mutex_exit(&vml[c]->vdev_initialize_lock);
7749 
7750 			mutex_enter(&vml[c]->vdev_trim_lock);
7751 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7752 			mutex_exit(&vml[c]->vdev_trim_lock);
7753 		}
7754 	}
7755 
7756 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
7757 	vdev_trim_stop_wait(spa, &vd_trim_list);
7758 
7759 	list_destroy(&vd_initialize_list);
7760 	list_destroy(&vd_trim_list);
7761 
7762 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7763 	newspa->spa_is_splitting = B_TRUE;
7764 
7765 	/* create the new pool from the disks of the original pool */
7766 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7767 	if (error)
7768 		goto out;
7769 
7770 	/* if that worked, generate a real config for the new pool */
7771 	if (newspa->spa_root_vdev != NULL) {
7772 		newspa->spa_config_splitting = fnvlist_alloc();
7773 		fnvlist_add_uint64(newspa->spa_config_splitting,
7774 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
7775 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7776 		    B_TRUE));
7777 	}
7778 
7779 	/* set the props */
7780 	if (props != NULL) {
7781 		spa_configfile_set(newspa, props, B_FALSE);
7782 		error = spa_prop_set(newspa, props);
7783 		if (error)
7784 			goto out;
7785 	}
7786 
7787 	/* flush everything */
7788 	txg = spa_vdev_config_enter(newspa);
7789 	vdev_config_dirty(newspa->spa_root_vdev);
7790 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7791 
7792 	if (zio_injection_enabled)
7793 		zio_handle_panic_injection(spa, FTAG, 2);
7794 
7795 	spa_async_resume(newspa);
7796 
7797 	/* finally, update the original pool's config */
7798 	txg = spa_vdev_config_enter(spa);
7799 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7800 	error = dmu_tx_assign(tx, TXG_WAIT);
7801 	if (error != 0)
7802 		dmu_tx_abort(tx);
7803 	for (c = 0; c < children; c++) {
7804 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7805 			vdev_t *tvd = vml[c]->vdev_top;
7806 
7807 			/*
7808 			 * Need to be sure the detachable VDEV is not
7809 			 * on any *other* txg's DTL list to prevent it
7810 			 * from being accessed after it's freed.
7811 			 */
7812 			for (int t = 0; t < TXG_SIZE; t++) {
7813 				(void) txg_list_remove_this(
7814 				    &tvd->vdev_dtl_list, vml[c], t);
7815 			}
7816 
7817 			vdev_split(vml[c]);
7818 			if (error == 0)
7819 				spa_history_log_internal(spa, "detach", tx,
7820 				    "vdev=%s", vml[c]->vdev_path);
7821 
7822 			vdev_free(vml[c]);
7823 		}
7824 	}
7825 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
7826 	vdev_config_dirty(spa->spa_root_vdev);
7827 	spa->spa_config_splitting = NULL;
7828 	nvlist_free(nvl);
7829 	if (error == 0)
7830 		dmu_tx_commit(tx);
7831 	(void) spa_vdev_exit(spa, NULL, txg, 0);
7832 
7833 	if (zio_injection_enabled)
7834 		zio_handle_panic_injection(spa, FTAG, 3);
7835 
7836 	/* split is complete; log a history record */
7837 	spa_history_log_internal(newspa, "split", NULL,
7838 	    "from pool %s", spa_name(spa));
7839 
7840 	newspa->spa_is_splitting = B_FALSE;
7841 	kmem_free(vml, children * sizeof (vdev_t *));
7842 
7843 	/* if we're not going to mount the filesystems in userland, export */
7844 	if (exp)
7845 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7846 		    B_FALSE, B_FALSE);
7847 
7848 	return (error);
7849 
7850 out:
7851 	spa_unload(newspa);
7852 	spa_deactivate(newspa);
7853 	spa_remove(newspa);
7854 
7855 	txg = spa_vdev_config_enter(spa);
7856 
7857 	/* re-online all offlined disks */
7858 	for (c = 0; c < children; c++) {
7859 		if (vml[c] != NULL)
7860 			vml[c]->vdev_offline = B_FALSE;
7861 	}
7862 
7863 	/* restart initializing or trimming disks as necessary */
7864 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7865 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7866 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7867 
7868 	vdev_reopen(spa->spa_root_vdev);
7869 
7870 	nvlist_free(spa->spa_config_splitting);
7871 	spa->spa_config_splitting = NULL;
7872 	(void) spa_vdev_exit(spa, NULL, txg, error);
7873 
7874 	kmem_free(vml, children * sizeof (vdev_t *));
7875 	return (error);
7876 }
7877 
7878 /*
7879  * Find any device that's done replacing, or a vdev marked 'unspare' that's
7880  * currently spared, so we can detach it.
7881  */
7882 static vdev_t *
7883 spa_vdev_resilver_done_hunt(vdev_t *vd)
7884 {
7885 	vdev_t *newvd, *oldvd;
7886 
7887 	for (int c = 0; c < vd->vdev_children; c++) {
7888 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7889 		if (oldvd != NULL)
7890 			return (oldvd);
7891 	}
7892 
7893 	/*
7894 	 * Check for a completed replacement.  We always consider the first
7895 	 * vdev in the list to be the oldest vdev, and the last one to be
7896 	 * the newest (see spa_vdev_attach() for how that works).  In
7897 	 * the case where the newest vdev is faulted, we will not automatically
7898 	 * remove it after a resilver completes.  This is OK as it will require
7899 	 * user intervention to determine which disk the admin wishes to keep.
7900 	 */
7901 	if (vd->vdev_ops == &vdev_replacing_ops) {
7902 		ASSERT(vd->vdev_children > 1);
7903 
7904 		newvd = vd->vdev_child[vd->vdev_children - 1];
7905 		oldvd = vd->vdev_child[0];
7906 
7907 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7908 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7909 		    !vdev_dtl_required(oldvd))
7910 			return (oldvd);
7911 	}
7912 
7913 	/*
7914 	 * Check for a completed resilver with the 'unspare' flag set.
7915 	 * Also potentially update faulted state.
7916 	 */
7917 	if (vd->vdev_ops == &vdev_spare_ops) {
7918 		vdev_t *first = vd->vdev_child[0];
7919 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7920 
7921 		if (last->vdev_unspare) {
7922 			oldvd = first;
7923 			newvd = last;
7924 		} else if (first->vdev_unspare) {
7925 			oldvd = last;
7926 			newvd = first;
7927 		} else {
7928 			oldvd = NULL;
7929 		}
7930 
7931 		if (oldvd != NULL &&
7932 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
7933 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7934 		    !vdev_dtl_required(oldvd))
7935 			return (oldvd);
7936 
7937 		vdev_propagate_state(vd);
7938 
7939 		/*
7940 		 * If there are more than two spares attached to a disk,
7941 		 * and those spares are not required, then we want to
7942 		 * attempt to free them up now so that they can be used
7943 		 * by other pools.  Once we're back down to a single
7944 		 * disk+spare, we stop removing them.
7945 		 */
7946 		if (vd->vdev_children > 2) {
7947 			newvd = vd->vdev_child[1];
7948 
7949 			if (newvd->vdev_isspare && last->vdev_isspare &&
7950 			    vdev_dtl_empty(last, DTL_MISSING) &&
7951 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
7952 			    !vdev_dtl_required(newvd))
7953 				return (newvd);
7954 		}
7955 	}
7956 
7957 	return (NULL);
7958 }
7959 
7960 static void
7961 spa_vdev_resilver_done(spa_t *spa)
7962 {
7963 	vdev_t *vd, *pvd, *ppvd;
7964 	uint64_t guid, sguid, pguid, ppguid;
7965 
7966 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7967 
7968 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
7969 		pvd = vd->vdev_parent;
7970 		ppvd = pvd->vdev_parent;
7971 		guid = vd->vdev_guid;
7972 		pguid = pvd->vdev_guid;
7973 		ppguid = ppvd->vdev_guid;
7974 		sguid = 0;
7975 		/*
7976 		 * If we have just finished replacing a hot spared device, then
7977 		 * we need to detach the parent's first child (the original hot
7978 		 * spare) as well.
7979 		 */
7980 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
7981 		    ppvd->vdev_children == 2) {
7982 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
7983 			sguid = ppvd->vdev_child[1]->vdev_guid;
7984 		}
7985 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
7986 
7987 		spa_config_exit(spa, SCL_ALL, FTAG);
7988 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
7989 			return;
7990 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
7991 			return;
7992 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7993 	}
7994 
7995 	spa_config_exit(spa, SCL_ALL, FTAG);
7996 
7997 	/*
7998 	 * If a detach was not performed above replace waiters will not have
7999 	 * been notified.  In which case we must do so now.
8000 	 */
8001 	spa_notify_waiters(spa);
8002 }
8003 
8004 /*
8005  * Update the stored path or FRU for this vdev.
8006  */
8007 static int
8008 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8009     boolean_t ispath)
8010 {
8011 	vdev_t *vd;
8012 	boolean_t sync = B_FALSE;
8013 
8014 	ASSERT(spa_writeable(spa));
8015 
8016 	spa_vdev_state_enter(spa, SCL_ALL);
8017 
8018 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8019 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
8020 
8021 	if (!vd->vdev_ops->vdev_op_leaf)
8022 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8023 
8024 	if (ispath) {
8025 		if (strcmp(value, vd->vdev_path) != 0) {
8026 			spa_strfree(vd->vdev_path);
8027 			vd->vdev_path = spa_strdup(value);
8028 			sync = B_TRUE;
8029 		}
8030 	} else {
8031 		if (vd->vdev_fru == NULL) {
8032 			vd->vdev_fru = spa_strdup(value);
8033 			sync = B_TRUE;
8034 		} else if (strcmp(value, vd->vdev_fru) != 0) {
8035 			spa_strfree(vd->vdev_fru);
8036 			vd->vdev_fru = spa_strdup(value);
8037 			sync = B_TRUE;
8038 		}
8039 	}
8040 
8041 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8042 }
8043 
8044 int
8045 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8046 {
8047 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8048 }
8049 
8050 int
8051 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8052 {
8053 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8054 }
8055 
8056 /*
8057  * ==========================================================================
8058  * SPA Scanning
8059  * ==========================================================================
8060  */
8061 int
8062 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8063 {
8064 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8065 
8066 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8067 		return (SET_ERROR(EBUSY));
8068 
8069 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8070 }
8071 
8072 int
8073 spa_scan_stop(spa_t *spa)
8074 {
8075 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8076 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8077 		return (SET_ERROR(EBUSY));
8078 	return (dsl_scan_cancel(spa->spa_dsl_pool));
8079 }
8080 
8081 int
8082 spa_scan(spa_t *spa, pool_scan_func_t func)
8083 {
8084 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8085 
8086 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8087 		return (SET_ERROR(ENOTSUP));
8088 
8089 	if (func == POOL_SCAN_RESILVER &&
8090 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8091 		return (SET_ERROR(ENOTSUP));
8092 
8093 	/*
8094 	 * If a resilver was requested, but there is no DTL on a
8095 	 * writeable leaf device, we have nothing to do.
8096 	 */
8097 	if (func == POOL_SCAN_RESILVER &&
8098 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8099 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8100 		return (0);
8101 	}
8102 
8103 	return (dsl_scan(spa->spa_dsl_pool, func));
8104 }
8105 
8106 /*
8107  * ==========================================================================
8108  * SPA async task processing
8109  * ==========================================================================
8110  */
8111 
8112 static void
8113 spa_async_remove(spa_t *spa, vdev_t *vd)
8114 {
8115 	if (vd->vdev_remove_wanted) {
8116 		vd->vdev_remove_wanted = B_FALSE;
8117 		vd->vdev_delayed_close = B_FALSE;
8118 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8119 
8120 		/*
8121 		 * We want to clear the stats, but we don't want to do a full
8122 		 * vdev_clear() as that will cause us to throw away
8123 		 * degraded/faulted state as well as attempt to reopen the
8124 		 * device, all of which is a waste.
8125 		 */
8126 		vd->vdev_stat.vs_read_errors = 0;
8127 		vd->vdev_stat.vs_write_errors = 0;
8128 		vd->vdev_stat.vs_checksum_errors = 0;
8129 
8130 		vdev_state_dirty(vd->vdev_top);
8131 
8132 		/* Tell userspace that the vdev is gone. */
8133 		zfs_post_remove(spa, vd);
8134 	}
8135 
8136 	for (int c = 0; c < vd->vdev_children; c++)
8137 		spa_async_remove(spa, vd->vdev_child[c]);
8138 }
8139 
8140 static void
8141 spa_async_probe(spa_t *spa, vdev_t *vd)
8142 {
8143 	if (vd->vdev_probe_wanted) {
8144 		vd->vdev_probe_wanted = B_FALSE;
8145 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
8146 	}
8147 
8148 	for (int c = 0; c < vd->vdev_children; c++)
8149 		spa_async_probe(spa, vd->vdev_child[c]);
8150 }
8151 
8152 static void
8153 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8154 {
8155 	if (!spa->spa_autoexpand)
8156 		return;
8157 
8158 	for (int c = 0; c < vd->vdev_children; c++) {
8159 		vdev_t *cvd = vd->vdev_child[c];
8160 		spa_async_autoexpand(spa, cvd);
8161 	}
8162 
8163 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8164 		return;
8165 
8166 	spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8167 }
8168 
8169 static __attribute__((noreturn)) void
8170 spa_async_thread(void *arg)
8171 {
8172 	spa_t *spa = (spa_t *)arg;
8173 	dsl_pool_t *dp = spa->spa_dsl_pool;
8174 	int tasks;
8175 
8176 	ASSERT(spa->spa_sync_on);
8177 
8178 	mutex_enter(&spa->spa_async_lock);
8179 	tasks = spa->spa_async_tasks;
8180 	spa->spa_async_tasks = 0;
8181 	mutex_exit(&spa->spa_async_lock);
8182 
8183 	/*
8184 	 * See if the config needs to be updated.
8185 	 */
8186 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8187 		uint64_t old_space, new_space;
8188 
8189 		mutex_enter(&spa_namespace_lock);
8190 		old_space = metaslab_class_get_space(spa_normal_class(spa));
8191 		old_space += metaslab_class_get_space(spa_special_class(spa));
8192 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
8193 		old_space += metaslab_class_get_space(
8194 		    spa_embedded_log_class(spa));
8195 
8196 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8197 
8198 		new_space = metaslab_class_get_space(spa_normal_class(spa));
8199 		new_space += metaslab_class_get_space(spa_special_class(spa));
8200 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
8201 		new_space += metaslab_class_get_space(
8202 		    spa_embedded_log_class(spa));
8203 		mutex_exit(&spa_namespace_lock);
8204 
8205 		/*
8206 		 * If the pool grew as a result of the config update,
8207 		 * then log an internal history event.
8208 		 */
8209 		if (new_space != old_space) {
8210 			spa_history_log_internal(spa, "vdev online", NULL,
8211 			    "pool '%s' size: %llu(+%llu)",
8212 			    spa_name(spa), (u_longlong_t)new_space,
8213 			    (u_longlong_t)(new_space - old_space));
8214 		}
8215 	}
8216 
8217 	/*
8218 	 * See if any devices need to be marked REMOVED.
8219 	 */
8220 	if (tasks & SPA_ASYNC_REMOVE) {
8221 		spa_vdev_state_enter(spa, SCL_NONE);
8222 		spa_async_remove(spa, spa->spa_root_vdev);
8223 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
8224 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
8225 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
8226 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
8227 		(void) spa_vdev_state_exit(spa, NULL, 0);
8228 	}
8229 
8230 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8231 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8232 		spa_async_autoexpand(spa, spa->spa_root_vdev);
8233 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8234 	}
8235 
8236 	/*
8237 	 * See if any devices need to be probed.
8238 	 */
8239 	if (tasks & SPA_ASYNC_PROBE) {
8240 		spa_vdev_state_enter(spa, SCL_NONE);
8241 		spa_async_probe(spa, spa->spa_root_vdev);
8242 		(void) spa_vdev_state_exit(spa, NULL, 0);
8243 	}
8244 
8245 	/*
8246 	 * If any devices are done replacing, detach them.
8247 	 */
8248 	if (tasks & SPA_ASYNC_RESILVER_DONE ||
8249 	    tasks & SPA_ASYNC_REBUILD_DONE) {
8250 		spa_vdev_resilver_done(spa);
8251 	}
8252 
8253 	/*
8254 	 * Kick off a resilver.
8255 	 */
8256 	if (tasks & SPA_ASYNC_RESILVER &&
8257 	    !vdev_rebuild_active(spa->spa_root_vdev) &&
8258 	    (!dsl_scan_resilvering(dp) ||
8259 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8260 		dsl_scan_restart_resilver(dp, 0);
8261 
8262 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8263 		mutex_enter(&spa_namespace_lock);
8264 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8265 		vdev_initialize_restart(spa->spa_root_vdev);
8266 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8267 		mutex_exit(&spa_namespace_lock);
8268 	}
8269 
8270 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
8271 		mutex_enter(&spa_namespace_lock);
8272 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8273 		vdev_trim_restart(spa->spa_root_vdev);
8274 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8275 		mutex_exit(&spa_namespace_lock);
8276 	}
8277 
8278 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8279 		mutex_enter(&spa_namespace_lock);
8280 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8281 		vdev_autotrim_restart(spa);
8282 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8283 		mutex_exit(&spa_namespace_lock);
8284 	}
8285 
8286 	/*
8287 	 * Kick off L2 cache whole device TRIM.
8288 	 */
8289 	if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8290 		mutex_enter(&spa_namespace_lock);
8291 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8292 		vdev_trim_l2arc(spa);
8293 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8294 		mutex_exit(&spa_namespace_lock);
8295 	}
8296 
8297 	/*
8298 	 * Kick off L2 cache rebuilding.
8299 	 */
8300 	if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8301 		mutex_enter(&spa_namespace_lock);
8302 		spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8303 		l2arc_spa_rebuild_start(spa);
8304 		spa_config_exit(spa, SCL_L2ARC, FTAG);
8305 		mutex_exit(&spa_namespace_lock);
8306 	}
8307 
8308 	/*
8309 	 * Let the world know that we're done.
8310 	 */
8311 	mutex_enter(&spa->spa_async_lock);
8312 	spa->spa_async_thread = NULL;
8313 	cv_broadcast(&spa->spa_async_cv);
8314 	mutex_exit(&spa->spa_async_lock);
8315 	thread_exit();
8316 }
8317 
8318 void
8319 spa_async_suspend(spa_t *spa)
8320 {
8321 	mutex_enter(&spa->spa_async_lock);
8322 	spa->spa_async_suspended++;
8323 	while (spa->spa_async_thread != NULL)
8324 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8325 	mutex_exit(&spa->spa_async_lock);
8326 
8327 	spa_vdev_remove_suspend(spa);
8328 
8329 	zthr_t *condense_thread = spa->spa_condense_zthr;
8330 	if (condense_thread != NULL)
8331 		zthr_cancel(condense_thread);
8332 
8333 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8334 	if (discard_thread != NULL)
8335 		zthr_cancel(discard_thread);
8336 
8337 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8338 	if (ll_delete_thread != NULL)
8339 		zthr_cancel(ll_delete_thread);
8340 
8341 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8342 	if (ll_condense_thread != NULL)
8343 		zthr_cancel(ll_condense_thread);
8344 }
8345 
8346 void
8347 spa_async_resume(spa_t *spa)
8348 {
8349 	mutex_enter(&spa->spa_async_lock);
8350 	ASSERT(spa->spa_async_suspended != 0);
8351 	spa->spa_async_suspended--;
8352 	mutex_exit(&spa->spa_async_lock);
8353 	spa_restart_removal(spa);
8354 
8355 	zthr_t *condense_thread = spa->spa_condense_zthr;
8356 	if (condense_thread != NULL)
8357 		zthr_resume(condense_thread);
8358 
8359 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8360 	if (discard_thread != NULL)
8361 		zthr_resume(discard_thread);
8362 
8363 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8364 	if (ll_delete_thread != NULL)
8365 		zthr_resume(ll_delete_thread);
8366 
8367 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8368 	if (ll_condense_thread != NULL)
8369 		zthr_resume(ll_condense_thread);
8370 }
8371 
8372 static boolean_t
8373 spa_async_tasks_pending(spa_t *spa)
8374 {
8375 	uint_t non_config_tasks;
8376 	uint_t config_task;
8377 	boolean_t config_task_suspended;
8378 
8379 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
8380 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
8381 	if (spa->spa_ccw_fail_time == 0) {
8382 		config_task_suspended = B_FALSE;
8383 	} else {
8384 		config_task_suspended =
8385 		    (gethrtime() - spa->spa_ccw_fail_time) <
8386 		    ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
8387 	}
8388 
8389 	return (non_config_tasks || (config_task && !config_task_suspended));
8390 }
8391 
8392 static void
8393 spa_async_dispatch(spa_t *spa)
8394 {
8395 	mutex_enter(&spa->spa_async_lock);
8396 	if (spa_async_tasks_pending(spa) &&
8397 	    !spa->spa_async_suspended &&
8398 	    spa->spa_async_thread == NULL)
8399 		spa->spa_async_thread = thread_create(NULL, 0,
8400 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
8401 	mutex_exit(&spa->spa_async_lock);
8402 }
8403 
8404 void
8405 spa_async_request(spa_t *spa, int task)
8406 {
8407 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
8408 	mutex_enter(&spa->spa_async_lock);
8409 	spa->spa_async_tasks |= task;
8410 	mutex_exit(&spa->spa_async_lock);
8411 }
8412 
8413 int
8414 spa_async_tasks(spa_t *spa)
8415 {
8416 	return (spa->spa_async_tasks);
8417 }
8418 
8419 /*
8420  * ==========================================================================
8421  * SPA syncing routines
8422  * ==========================================================================
8423  */
8424 
8425 
8426 static int
8427 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8428     dmu_tx_t *tx)
8429 {
8430 	bpobj_t *bpo = arg;
8431 	bpobj_enqueue(bpo, bp, bp_freed, tx);
8432 	return (0);
8433 }
8434 
8435 int
8436 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8437 {
8438 	return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
8439 }
8440 
8441 int
8442 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8443 {
8444 	return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
8445 }
8446 
8447 static int
8448 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8449 {
8450 	zio_t *pio = arg;
8451 
8452 	zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
8453 	    pio->io_flags));
8454 	return (0);
8455 }
8456 
8457 static int
8458 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8459     dmu_tx_t *tx)
8460 {
8461 	ASSERT(!bp_freed);
8462 	return (spa_free_sync_cb(arg, bp, tx));
8463 }
8464 
8465 /*
8466  * Note: this simple function is not inlined to make it easier to dtrace the
8467  * amount of time spent syncing frees.
8468  */
8469 static void
8470 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
8471 {
8472 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
8473 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
8474 	VERIFY(zio_wait(zio) == 0);
8475 }
8476 
8477 /*
8478  * Note: this simple function is not inlined to make it easier to dtrace the
8479  * amount of time spent syncing deferred frees.
8480  */
8481 static void
8482 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
8483 {
8484 	if (spa_sync_pass(spa) != 1)
8485 		return;
8486 
8487 	/*
8488 	 * Note:
8489 	 * If the log space map feature is active, we stop deferring
8490 	 * frees to the next TXG and therefore running this function
8491 	 * would be considered a no-op as spa_deferred_bpobj should
8492 	 * not have any entries.
8493 	 *
8494 	 * That said we run this function anyway (instead of returning
8495 	 * immediately) for the edge-case scenario where we just
8496 	 * activated the log space map feature in this TXG but we have
8497 	 * deferred frees from the previous TXG.
8498 	 */
8499 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
8500 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
8501 	    bpobj_spa_free_sync_cb, zio, tx), ==, 0);
8502 	VERIFY0(zio_wait(zio));
8503 }
8504 
8505 static void
8506 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
8507 {
8508 	char *packed = NULL;
8509 	size_t bufsize;
8510 	size_t nvsize = 0;
8511 	dmu_buf_t *db;
8512 
8513 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
8514 
8515 	/*
8516 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
8517 	 * information.  This avoids the dmu_buf_will_dirty() path and
8518 	 * saves us a pre-read to get data we don't actually care about.
8519 	 */
8520 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
8521 	packed = vmem_alloc(bufsize, KM_SLEEP);
8522 
8523 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
8524 	    KM_SLEEP) == 0);
8525 	memset(packed + nvsize, 0, bufsize - nvsize);
8526 
8527 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
8528 
8529 	vmem_free(packed, bufsize);
8530 
8531 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
8532 	dmu_buf_will_dirty(db, tx);
8533 	*(uint64_t *)db->db_data = nvsize;
8534 	dmu_buf_rele(db, FTAG);
8535 }
8536 
8537 static void
8538 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
8539     const char *config, const char *entry)
8540 {
8541 	nvlist_t *nvroot;
8542 	nvlist_t **list;
8543 	int i;
8544 
8545 	if (!sav->sav_sync)
8546 		return;
8547 
8548 	/*
8549 	 * Update the MOS nvlist describing the list of available devices.
8550 	 * spa_validate_aux() will have already made sure this nvlist is
8551 	 * valid and the vdevs are labeled appropriately.
8552 	 */
8553 	if (sav->sav_object == 0) {
8554 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
8555 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
8556 		    sizeof (uint64_t), tx);
8557 		VERIFY(zap_update(spa->spa_meta_objset,
8558 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
8559 		    &sav->sav_object, tx) == 0);
8560 	}
8561 
8562 	nvroot = fnvlist_alloc();
8563 	if (sav->sav_count == 0) {
8564 		fnvlist_add_nvlist_array(nvroot, config,
8565 		    (const nvlist_t * const *)NULL, 0);
8566 	} else {
8567 		list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
8568 		for (i = 0; i < sav->sav_count; i++)
8569 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
8570 			    B_FALSE, VDEV_CONFIG_L2CACHE);
8571 		fnvlist_add_nvlist_array(nvroot, config,
8572 		    (const nvlist_t * const *)list, sav->sav_count);
8573 		for (i = 0; i < sav->sav_count; i++)
8574 			nvlist_free(list[i]);
8575 		kmem_free(list, sav->sav_count * sizeof (void *));
8576 	}
8577 
8578 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
8579 	nvlist_free(nvroot);
8580 
8581 	sav->sav_sync = B_FALSE;
8582 }
8583 
8584 /*
8585  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
8586  * The all-vdev ZAP must be empty.
8587  */
8588 static void
8589 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
8590 {
8591 	spa_t *spa = vd->vdev_spa;
8592 
8593 	if (vd->vdev_top_zap != 0) {
8594 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8595 		    vd->vdev_top_zap, tx));
8596 	}
8597 	if (vd->vdev_leaf_zap != 0) {
8598 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8599 		    vd->vdev_leaf_zap, tx));
8600 	}
8601 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
8602 		spa_avz_build(vd->vdev_child[i], avz, tx);
8603 	}
8604 }
8605 
8606 static void
8607 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
8608 {
8609 	nvlist_t *config;
8610 
8611 	/*
8612 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
8613 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
8614 	 * Similarly, if the pool is being assembled (e.g. after a split), we
8615 	 * need to rebuild the AVZ although the config may not be dirty.
8616 	 */
8617 	if (list_is_empty(&spa->spa_config_dirty_list) &&
8618 	    spa->spa_avz_action == AVZ_ACTION_NONE)
8619 		return;
8620 
8621 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8622 
8623 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
8624 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
8625 	    spa->spa_all_vdev_zaps != 0);
8626 
8627 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
8628 		/* Make and build the new AVZ */
8629 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
8630 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
8631 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
8632 
8633 		/* Diff old AVZ with new one */
8634 		zap_cursor_t zc;
8635 		zap_attribute_t za;
8636 
8637 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8638 		    spa->spa_all_vdev_zaps);
8639 		    zap_cursor_retrieve(&zc, &za) == 0;
8640 		    zap_cursor_advance(&zc)) {
8641 			uint64_t vdzap = za.za_first_integer;
8642 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
8643 			    vdzap) == ENOENT) {
8644 				/*
8645 				 * ZAP is listed in old AVZ but not in new one;
8646 				 * destroy it
8647 				 */
8648 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
8649 				    tx));
8650 			}
8651 		}
8652 
8653 		zap_cursor_fini(&zc);
8654 
8655 		/* Destroy the old AVZ */
8656 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8657 		    spa->spa_all_vdev_zaps, tx));
8658 
8659 		/* Replace the old AVZ in the dir obj with the new one */
8660 		VERIFY0(zap_update(spa->spa_meta_objset,
8661 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8662 		    sizeof (new_avz), 1, &new_avz, tx));
8663 
8664 		spa->spa_all_vdev_zaps = new_avz;
8665 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8666 		zap_cursor_t zc;
8667 		zap_attribute_t za;
8668 
8669 		/* Walk through the AVZ and destroy all listed ZAPs */
8670 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8671 		    spa->spa_all_vdev_zaps);
8672 		    zap_cursor_retrieve(&zc, &za) == 0;
8673 		    zap_cursor_advance(&zc)) {
8674 			uint64_t zap = za.za_first_integer;
8675 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8676 		}
8677 
8678 		zap_cursor_fini(&zc);
8679 
8680 		/* Destroy and unlink the AVZ itself */
8681 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8682 		    spa->spa_all_vdev_zaps, tx));
8683 		VERIFY0(zap_remove(spa->spa_meta_objset,
8684 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8685 		spa->spa_all_vdev_zaps = 0;
8686 	}
8687 
8688 	if (spa->spa_all_vdev_zaps == 0) {
8689 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8690 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8691 		    DMU_POOL_VDEV_ZAP_MAP, tx);
8692 	}
8693 	spa->spa_avz_action = AVZ_ACTION_NONE;
8694 
8695 	/* Create ZAPs for vdevs that don't have them. */
8696 	vdev_construct_zaps(spa->spa_root_vdev, tx);
8697 
8698 	config = spa_config_generate(spa, spa->spa_root_vdev,
8699 	    dmu_tx_get_txg(tx), B_FALSE);
8700 
8701 	/*
8702 	 * If we're upgrading the spa version then make sure that
8703 	 * the config object gets updated with the correct version.
8704 	 */
8705 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8706 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8707 		    spa->spa_uberblock.ub_version);
8708 
8709 	spa_config_exit(spa, SCL_STATE, FTAG);
8710 
8711 	nvlist_free(spa->spa_config_syncing);
8712 	spa->spa_config_syncing = config;
8713 
8714 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8715 }
8716 
8717 static void
8718 spa_sync_version(void *arg, dmu_tx_t *tx)
8719 {
8720 	uint64_t *versionp = arg;
8721 	uint64_t version = *versionp;
8722 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8723 
8724 	/*
8725 	 * Setting the version is special cased when first creating the pool.
8726 	 */
8727 	ASSERT(tx->tx_txg != TXG_INITIAL);
8728 
8729 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8730 	ASSERT(version >= spa_version(spa));
8731 
8732 	spa->spa_uberblock.ub_version = version;
8733 	vdev_config_dirty(spa->spa_root_vdev);
8734 	spa_history_log_internal(spa, "set", tx, "version=%lld",
8735 	    (longlong_t)version);
8736 }
8737 
8738 /*
8739  * Set zpool properties.
8740  */
8741 static void
8742 spa_sync_props(void *arg, dmu_tx_t *tx)
8743 {
8744 	nvlist_t *nvp = arg;
8745 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8746 	objset_t *mos = spa->spa_meta_objset;
8747 	nvpair_t *elem = NULL;
8748 
8749 	mutex_enter(&spa->spa_props_lock);
8750 
8751 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
8752 		uint64_t intval;
8753 		char *strval, *fname;
8754 		zpool_prop_t prop;
8755 		const char *propname;
8756 		zprop_type_t proptype;
8757 		spa_feature_t fid;
8758 
8759 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
8760 		case ZPOOL_PROP_INVAL:
8761 			/*
8762 			 * We checked this earlier in spa_prop_validate().
8763 			 */
8764 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
8765 
8766 			fname = strchr(nvpair_name(elem), '@') + 1;
8767 			VERIFY0(zfeature_lookup_name(fname, &fid));
8768 
8769 			spa_feature_enable(spa, fid, tx);
8770 			spa_history_log_internal(spa, "set", tx,
8771 			    "%s=enabled", nvpair_name(elem));
8772 			break;
8773 
8774 		case ZPOOL_PROP_VERSION:
8775 			intval = fnvpair_value_uint64(elem);
8776 			/*
8777 			 * The version is synced separately before other
8778 			 * properties and should be correct by now.
8779 			 */
8780 			ASSERT3U(spa_version(spa), >=, intval);
8781 			break;
8782 
8783 		case ZPOOL_PROP_ALTROOT:
8784 			/*
8785 			 * 'altroot' is a non-persistent property. It should
8786 			 * have been set temporarily at creation or import time.
8787 			 */
8788 			ASSERT(spa->spa_root != NULL);
8789 			break;
8790 
8791 		case ZPOOL_PROP_READONLY:
8792 		case ZPOOL_PROP_CACHEFILE:
8793 			/*
8794 			 * 'readonly' and 'cachefile' are also non-persistent
8795 			 * properties.
8796 			 */
8797 			break;
8798 		case ZPOOL_PROP_COMMENT:
8799 			strval = fnvpair_value_string(elem);
8800 			if (spa->spa_comment != NULL)
8801 				spa_strfree(spa->spa_comment);
8802 			spa->spa_comment = spa_strdup(strval);
8803 			/*
8804 			 * We need to dirty the configuration on all the vdevs
8805 			 * so that their labels get updated.  We also need to
8806 			 * update the cache file to keep it in sync with the
8807 			 * MOS version. It's unnecessary to do this for pool
8808 			 * creation since the vdev's configuration has already
8809 			 * been dirtied.
8810 			 */
8811 			if (tx->tx_txg != TXG_INITIAL) {
8812 				vdev_config_dirty(spa->spa_root_vdev);
8813 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8814 			}
8815 			spa_history_log_internal(spa, "set", tx,
8816 			    "%s=%s", nvpair_name(elem), strval);
8817 			break;
8818 		case ZPOOL_PROP_COMPATIBILITY:
8819 			strval = fnvpair_value_string(elem);
8820 			if (spa->spa_compatibility != NULL)
8821 				spa_strfree(spa->spa_compatibility);
8822 			spa->spa_compatibility = spa_strdup(strval);
8823 			/*
8824 			 * Dirty the configuration on vdevs as above.
8825 			 */
8826 			if (tx->tx_txg != TXG_INITIAL) {
8827 				vdev_config_dirty(spa->spa_root_vdev);
8828 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8829 			}
8830 
8831 			spa_history_log_internal(spa, "set", tx,
8832 			    "%s=%s", nvpair_name(elem), strval);
8833 			break;
8834 
8835 		default:
8836 			/*
8837 			 * Set pool property values in the poolprops mos object.
8838 			 */
8839 			if (spa->spa_pool_props_object == 0) {
8840 				spa->spa_pool_props_object =
8841 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
8842 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8843 				    tx);
8844 			}
8845 
8846 			/* normalize the property name */
8847 			propname = zpool_prop_to_name(prop);
8848 			proptype = zpool_prop_get_type(prop);
8849 
8850 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
8851 				ASSERT(proptype == PROP_TYPE_STRING);
8852 				strval = fnvpair_value_string(elem);
8853 				VERIFY0(zap_update(mos,
8854 				    spa->spa_pool_props_object, propname,
8855 				    1, strlen(strval) + 1, strval, tx));
8856 				spa_history_log_internal(spa, "set", tx,
8857 				    "%s=%s", nvpair_name(elem), strval);
8858 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8859 				intval = fnvpair_value_uint64(elem);
8860 
8861 				if (proptype == PROP_TYPE_INDEX) {
8862 					const char *unused;
8863 					VERIFY0(zpool_prop_index_to_string(
8864 					    prop, intval, &unused));
8865 				}
8866 				VERIFY0(zap_update(mos,
8867 				    spa->spa_pool_props_object, propname,
8868 				    8, 1, &intval, tx));
8869 				spa_history_log_internal(spa, "set", tx,
8870 				    "%s=%lld", nvpair_name(elem),
8871 				    (longlong_t)intval);
8872 
8873 				switch (prop) {
8874 				case ZPOOL_PROP_DELEGATION:
8875 					spa->spa_delegation = intval;
8876 					break;
8877 				case ZPOOL_PROP_BOOTFS:
8878 					spa->spa_bootfs = intval;
8879 					break;
8880 				case ZPOOL_PROP_FAILUREMODE:
8881 					spa->spa_failmode = intval;
8882 					break;
8883 				case ZPOOL_PROP_AUTOTRIM:
8884 					spa->spa_autotrim = intval;
8885 					spa_async_request(spa,
8886 					    SPA_ASYNC_AUTOTRIM_RESTART);
8887 					break;
8888 				case ZPOOL_PROP_AUTOEXPAND:
8889 					spa->spa_autoexpand = intval;
8890 					if (tx->tx_txg != TXG_INITIAL)
8891 						spa_async_request(spa,
8892 						    SPA_ASYNC_AUTOEXPAND);
8893 					break;
8894 				case ZPOOL_PROP_MULTIHOST:
8895 					spa->spa_multihost = intval;
8896 					break;
8897 				default:
8898 					break;
8899 				}
8900 			} else {
8901 				ASSERT(0); /* not allowed */
8902 			}
8903 		}
8904 
8905 	}
8906 
8907 	mutex_exit(&spa->spa_props_lock);
8908 }
8909 
8910 /*
8911  * Perform one-time upgrade on-disk changes.  spa_version() does not
8912  * reflect the new version this txg, so there must be no changes this
8913  * txg to anything that the upgrade code depends on after it executes.
8914  * Therefore this must be called after dsl_pool_sync() does the sync
8915  * tasks.
8916  */
8917 static void
8918 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8919 {
8920 	if (spa_sync_pass(spa) != 1)
8921 		return;
8922 
8923 	dsl_pool_t *dp = spa->spa_dsl_pool;
8924 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8925 
8926 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8927 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8928 		dsl_pool_create_origin(dp, tx);
8929 
8930 		/* Keeping the origin open increases spa_minref */
8931 		spa->spa_minref += 3;
8932 	}
8933 
8934 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8935 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8936 		dsl_pool_upgrade_clones(dp, tx);
8937 	}
8938 
8939 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8940 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8941 		dsl_pool_upgrade_dir_clones(dp, tx);
8942 
8943 		/* Keeping the freedir open increases spa_minref */
8944 		spa->spa_minref += 3;
8945 	}
8946 
8947 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8948 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8949 		spa_feature_create_zap_objects(spa, tx);
8950 	}
8951 
8952 	/*
8953 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8954 	 * when possibility to use lz4 compression for metadata was added
8955 	 * Old pools that have this feature enabled must be upgraded to have
8956 	 * this feature active
8957 	 */
8958 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8959 		boolean_t lz4_en = spa_feature_is_enabled(spa,
8960 		    SPA_FEATURE_LZ4_COMPRESS);
8961 		boolean_t lz4_ac = spa_feature_is_active(spa,
8962 		    SPA_FEATURE_LZ4_COMPRESS);
8963 
8964 		if (lz4_en && !lz4_ac)
8965 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
8966 	}
8967 
8968 	/*
8969 	 * If we haven't written the salt, do so now.  Note that the
8970 	 * feature may not be activated yet, but that's fine since
8971 	 * the presence of this ZAP entry is backwards compatible.
8972 	 */
8973 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8974 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
8975 		VERIFY0(zap_add(spa->spa_meta_objset,
8976 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
8977 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
8978 		    spa->spa_cksum_salt.zcs_bytes, tx));
8979 	}
8980 
8981 	rrw_exit(&dp->dp_config_rwlock, FTAG);
8982 }
8983 
8984 static void
8985 vdev_indirect_state_sync_verify(vdev_t *vd)
8986 {
8987 	vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
8988 	vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
8989 
8990 	if (vd->vdev_ops == &vdev_indirect_ops) {
8991 		ASSERT(vim != NULL);
8992 		ASSERT(vib != NULL);
8993 	}
8994 
8995 	uint64_t obsolete_sm_object = 0;
8996 	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
8997 	if (obsolete_sm_object != 0) {
8998 		ASSERT(vd->vdev_obsolete_sm != NULL);
8999 		ASSERT(vd->vdev_removing ||
9000 		    vd->vdev_ops == &vdev_indirect_ops);
9001 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9002 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9003 		ASSERT3U(obsolete_sm_object, ==,
9004 		    space_map_object(vd->vdev_obsolete_sm));
9005 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9006 		    space_map_allocated(vd->vdev_obsolete_sm));
9007 	}
9008 	ASSERT(vd->vdev_obsolete_segments != NULL);
9009 
9010 	/*
9011 	 * Since frees / remaps to an indirect vdev can only
9012 	 * happen in syncing context, the obsolete segments
9013 	 * tree must be empty when we start syncing.
9014 	 */
9015 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
9016 }
9017 
9018 /*
9019  * Set the top-level vdev's max queue depth. Evaluate each top-level's
9020  * async write queue depth in case it changed. The max queue depth will
9021  * not change in the middle of syncing out this txg.
9022  */
9023 static void
9024 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9025 {
9026 	ASSERT(spa_writeable(spa));
9027 
9028 	vdev_t *rvd = spa->spa_root_vdev;
9029 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9030 	    zfs_vdev_queue_depth_pct / 100;
9031 	metaslab_class_t *normal = spa_normal_class(spa);
9032 	metaslab_class_t *special = spa_special_class(spa);
9033 	metaslab_class_t *dedup = spa_dedup_class(spa);
9034 
9035 	uint64_t slots_per_allocator = 0;
9036 	for (int c = 0; c < rvd->vdev_children; c++) {
9037 		vdev_t *tvd = rvd->vdev_child[c];
9038 
9039 		metaslab_group_t *mg = tvd->vdev_mg;
9040 		if (mg == NULL || !metaslab_group_initialized(mg))
9041 			continue;
9042 
9043 		metaslab_class_t *mc = mg->mg_class;
9044 		if (mc != normal && mc != special && mc != dedup)
9045 			continue;
9046 
9047 		/*
9048 		 * It is safe to do a lock-free check here because only async
9049 		 * allocations look at mg_max_alloc_queue_depth, and async
9050 		 * allocations all happen from spa_sync().
9051 		 */
9052 		for (int i = 0; i < mg->mg_allocators; i++) {
9053 			ASSERT0(zfs_refcount_count(
9054 			    &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9055 		}
9056 		mg->mg_max_alloc_queue_depth = max_queue_depth;
9057 
9058 		for (int i = 0; i < mg->mg_allocators; i++) {
9059 			mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9060 			    zfs_vdev_def_queue_depth;
9061 		}
9062 		slots_per_allocator += zfs_vdev_def_queue_depth;
9063 	}
9064 
9065 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9066 		ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9067 		    mca_alloc_slots));
9068 		ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9069 		    mca_alloc_slots));
9070 		ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9071 		    mca_alloc_slots));
9072 		normal->mc_allocator[i].mca_alloc_max_slots =
9073 		    slots_per_allocator;
9074 		special->mc_allocator[i].mca_alloc_max_slots =
9075 		    slots_per_allocator;
9076 		dedup->mc_allocator[i].mca_alloc_max_slots =
9077 		    slots_per_allocator;
9078 	}
9079 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9080 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9081 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9082 }
9083 
9084 static void
9085 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9086 {
9087 	ASSERT(spa_writeable(spa));
9088 
9089 	vdev_t *rvd = spa->spa_root_vdev;
9090 	for (int c = 0; c < rvd->vdev_children; c++) {
9091 		vdev_t *vd = rvd->vdev_child[c];
9092 		vdev_indirect_state_sync_verify(vd);
9093 
9094 		if (vdev_indirect_should_condense(vd)) {
9095 			spa_condense_indirect_start_sync(vd, tx);
9096 			break;
9097 		}
9098 	}
9099 }
9100 
9101 static void
9102 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9103 {
9104 	objset_t *mos = spa->spa_meta_objset;
9105 	dsl_pool_t *dp = spa->spa_dsl_pool;
9106 	uint64_t txg = tx->tx_txg;
9107 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9108 
9109 	do {
9110 		int pass = ++spa->spa_sync_pass;
9111 
9112 		spa_sync_config_object(spa, tx);
9113 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9114 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9115 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9116 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9117 		spa_errlog_sync(spa, txg);
9118 		dsl_pool_sync(dp, txg);
9119 
9120 		if (pass < zfs_sync_pass_deferred_free ||
9121 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9122 			/*
9123 			 * If the log space map feature is active we don't
9124 			 * care about deferred frees and the deferred bpobj
9125 			 * as the log space map should effectively have the
9126 			 * same results (i.e. appending only to one object).
9127 			 */
9128 			spa_sync_frees(spa, free_bpl, tx);
9129 		} else {
9130 			/*
9131 			 * We can not defer frees in pass 1, because
9132 			 * we sync the deferred frees later in pass 1.
9133 			 */
9134 			ASSERT3U(pass, >, 1);
9135 			bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9136 			    &spa->spa_deferred_bpobj, tx);
9137 		}
9138 
9139 		ddt_sync(spa, txg);
9140 		dsl_scan_sync(dp, tx);
9141 		svr_sync(spa, tx);
9142 		spa_sync_upgrades(spa, tx);
9143 
9144 		spa_flush_metaslabs(spa, tx);
9145 
9146 		vdev_t *vd = NULL;
9147 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9148 		    != NULL)
9149 			vdev_sync(vd, txg);
9150 
9151 		/*
9152 		 * Note: We need to check if the MOS is dirty because we could
9153 		 * have marked the MOS dirty without updating the uberblock
9154 		 * (e.g. if we have sync tasks but no dirty user data). We need
9155 		 * to check the uberblock's rootbp because it is updated if we
9156 		 * have synced out dirty data (though in this case the MOS will
9157 		 * most likely also be dirty due to second order effects, we
9158 		 * don't want to rely on that here).
9159 		 */
9160 		if (pass == 1 &&
9161 		    spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
9162 		    !dmu_objset_is_dirty(mos, txg)) {
9163 			/*
9164 			 * Nothing changed on the first pass, therefore this
9165 			 * TXG is a no-op. Avoid syncing deferred frees, so
9166 			 * that we can keep this TXG as a no-op.
9167 			 */
9168 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9169 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9170 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9171 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9172 			break;
9173 		}
9174 
9175 		spa_sync_deferred_frees(spa, tx);
9176 	} while (dmu_objset_is_dirty(mos, txg));
9177 }
9178 
9179 /*
9180  * Rewrite the vdev configuration (which includes the uberblock) to
9181  * commit the transaction group.
9182  *
9183  * If there are no dirty vdevs, we sync the uberblock to a few random
9184  * top-level vdevs that are known to be visible in the config cache
9185  * (see spa_vdev_add() for a complete description). If there *are* dirty
9186  * vdevs, sync the uberblock to all vdevs.
9187  */
9188 static void
9189 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
9190 {
9191 	vdev_t *rvd = spa->spa_root_vdev;
9192 	uint64_t txg = tx->tx_txg;
9193 
9194 	for (;;) {
9195 		int error = 0;
9196 
9197 		/*
9198 		 * We hold SCL_STATE to prevent vdev open/close/etc.
9199 		 * while we're attempting to write the vdev labels.
9200 		 */
9201 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9202 
9203 		if (list_is_empty(&spa->spa_config_dirty_list)) {
9204 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
9205 			int svdcount = 0;
9206 			int children = rvd->vdev_children;
9207 			int c0 = random_in_range(children);
9208 
9209 			for (int c = 0; c < children; c++) {
9210 				vdev_t *vd =
9211 				    rvd->vdev_child[(c0 + c) % children];
9212 
9213 				/* Stop when revisiting the first vdev */
9214 				if (c > 0 && svd[0] == vd)
9215 					break;
9216 
9217 				if (vd->vdev_ms_array == 0 ||
9218 				    vd->vdev_islog ||
9219 				    !vdev_is_concrete(vd))
9220 					continue;
9221 
9222 				svd[svdcount++] = vd;
9223 				if (svdcount == SPA_SYNC_MIN_VDEVS)
9224 					break;
9225 			}
9226 			error = vdev_config_sync(svd, svdcount, txg);
9227 		} else {
9228 			error = vdev_config_sync(rvd->vdev_child,
9229 			    rvd->vdev_children, txg);
9230 		}
9231 
9232 		if (error == 0)
9233 			spa->spa_last_synced_guid = rvd->vdev_guid;
9234 
9235 		spa_config_exit(spa, SCL_STATE, FTAG);
9236 
9237 		if (error == 0)
9238 			break;
9239 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9240 		zio_resume_wait(spa);
9241 	}
9242 }
9243 
9244 /*
9245  * Sync the specified transaction group.  New blocks may be dirtied as
9246  * part of the process, so we iterate until it converges.
9247  */
9248 void
9249 spa_sync(spa_t *spa, uint64_t txg)
9250 {
9251 	vdev_t *vd = NULL;
9252 
9253 	VERIFY(spa_writeable(spa));
9254 
9255 	/*
9256 	 * Wait for i/os issued in open context that need to complete
9257 	 * before this txg syncs.
9258 	 */
9259 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
9260 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
9261 	    ZIO_FLAG_CANFAIL);
9262 
9263 	/*
9264 	 * Lock out configuration changes.
9265 	 */
9266 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9267 
9268 	spa->spa_syncing_txg = txg;
9269 	spa->spa_sync_pass = 0;
9270 
9271 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9272 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
9273 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9274 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
9275 	}
9276 
9277 	/*
9278 	 * If there are any pending vdev state changes, convert them
9279 	 * into config changes that go out with this transaction group.
9280 	 */
9281 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9282 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
9283 		/*
9284 		 * We need the write lock here because, for aux vdevs,
9285 		 * calling vdev_config_dirty() modifies sav_config.
9286 		 * This is ugly and will become unnecessary when we
9287 		 * eliminate the aux vdev wart by integrating all vdevs
9288 		 * into the root vdev tree.
9289 		 */
9290 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9291 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9292 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9293 			vdev_state_clean(vd);
9294 			vdev_config_dirty(vd);
9295 		}
9296 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9297 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9298 	}
9299 	spa_config_exit(spa, SCL_STATE, FTAG);
9300 
9301 	dsl_pool_t *dp = spa->spa_dsl_pool;
9302 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9303 
9304 	spa->spa_sync_starttime = gethrtime();
9305 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9306 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9307 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9308 	    NSEC_TO_TICK(spa->spa_deadman_synctime));
9309 
9310 	/*
9311 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
9312 	 * set spa_deflate if we have no raid-z vdevs.
9313 	 */
9314 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
9315 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
9316 		vdev_t *rvd = spa->spa_root_vdev;
9317 
9318 		int i;
9319 		for (i = 0; i < rvd->vdev_children; i++) {
9320 			vd = rvd->vdev_child[i];
9321 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
9322 				break;
9323 		}
9324 		if (i == rvd->vdev_children) {
9325 			spa->spa_deflate = TRUE;
9326 			VERIFY0(zap_add(spa->spa_meta_objset,
9327 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
9328 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
9329 		}
9330 	}
9331 
9332 	spa_sync_adjust_vdev_max_queue_depth(spa);
9333 
9334 	spa_sync_condense_indirect(spa, tx);
9335 
9336 	spa_sync_iterate_to_convergence(spa, tx);
9337 
9338 #ifdef ZFS_DEBUG
9339 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
9340 	/*
9341 	 * Make sure that the number of ZAPs for all the vdevs matches
9342 	 * the number of ZAPs in the per-vdev ZAP list. This only gets
9343 	 * called if the config is dirty; otherwise there may be
9344 	 * outstanding AVZ operations that weren't completed in
9345 	 * spa_sync_config_object.
9346 	 */
9347 		uint64_t all_vdev_zap_entry_count;
9348 		ASSERT0(zap_count(spa->spa_meta_objset,
9349 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
9350 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
9351 		    all_vdev_zap_entry_count);
9352 	}
9353 #endif
9354 
9355 	if (spa->spa_vdev_removal != NULL) {
9356 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
9357 	}
9358 
9359 	spa_sync_rewrite_vdev_config(spa, tx);
9360 	dmu_tx_commit(tx);
9361 
9362 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9363 	spa->spa_deadman_tqid = 0;
9364 
9365 	/*
9366 	 * Clear the dirty config list.
9367 	 */
9368 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
9369 		vdev_config_clean(vd);
9370 
9371 	/*
9372 	 * Now that the new config has synced transactionally,
9373 	 * let it become visible to the config cache.
9374 	 */
9375 	if (spa->spa_config_syncing != NULL) {
9376 		spa_config_set(spa, spa->spa_config_syncing);
9377 		spa->spa_config_txg = txg;
9378 		spa->spa_config_syncing = NULL;
9379 	}
9380 
9381 	dsl_pool_sync_done(dp, txg);
9382 
9383 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9384 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
9385 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9386 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
9387 	}
9388 
9389 	/*
9390 	 * Update usable space statistics.
9391 	 */
9392 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
9393 	    != NULL)
9394 		vdev_sync_done(vd, txg);
9395 
9396 	metaslab_class_evict_old(spa->spa_normal_class, txg);
9397 	metaslab_class_evict_old(spa->spa_log_class, txg);
9398 
9399 	spa_sync_close_syncing_log_sm(spa);
9400 
9401 	spa_update_dspace(spa);
9402 
9403 	/*
9404 	 * It had better be the case that we didn't dirty anything
9405 	 * since vdev_config_sync().
9406 	 */
9407 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9408 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9409 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
9410 
9411 	while (zfs_pause_spa_sync)
9412 		delay(1);
9413 
9414 	spa->spa_sync_pass = 0;
9415 
9416 	/*
9417 	 * Update the last synced uberblock here. We want to do this at
9418 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
9419 	 * will be guaranteed that all the processing associated with
9420 	 * that txg has been completed.
9421 	 */
9422 	spa->spa_ubsync = spa->spa_uberblock;
9423 	spa_config_exit(spa, SCL_CONFIG, FTAG);
9424 
9425 	spa_handle_ignored_writes(spa);
9426 
9427 	/*
9428 	 * If any async tasks have been requested, kick them off.
9429 	 */
9430 	spa_async_dispatch(spa);
9431 }
9432 
9433 /*
9434  * Sync all pools.  We don't want to hold the namespace lock across these
9435  * operations, so we take a reference on the spa_t and drop the lock during the
9436  * sync.
9437  */
9438 void
9439 spa_sync_allpools(void)
9440 {
9441 	spa_t *spa = NULL;
9442 	mutex_enter(&spa_namespace_lock);
9443 	while ((spa = spa_next(spa)) != NULL) {
9444 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
9445 		    !spa_writeable(spa) || spa_suspended(spa))
9446 			continue;
9447 		spa_open_ref(spa, FTAG);
9448 		mutex_exit(&spa_namespace_lock);
9449 		txg_wait_synced(spa_get_dsl(spa), 0);
9450 		mutex_enter(&spa_namespace_lock);
9451 		spa_close(spa, FTAG);
9452 	}
9453 	mutex_exit(&spa_namespace_lock);
9454 }
9455 
9456 /*
9457  * ==========================================================================
9458  * Miscellaneous routines
9459  * ==========================================================================
9460  */
9461 
9462 /*
9463  * Remove all pools in the system.
9464  */
9465 void
9466 spa_evict_all(void)
9467 {
9468 	spa_t *spa;
9469 
9470 	/*
9471 	 * Remove all cached state.  All pools should be closed now,
9472 	 * so every spa in the AVL tree should be unreferenced.
9473 	 */
9474 	mutex_enter(&spa_namespace_lock);
9475 	while ((spa = spa_next(NULL)) != NULL) {
9476 		/*
9477 		 * Stop async tasks.  The async thread may need to detach
9478 		 * a device that's been replaced, which requires grabbing
9479 		 * spa_namespace_lock, so we must drop it here.
9480 		 */
9481 		spa_open_ref(spa, FTAG);
9482 		mutex_exit(&spa_namespace_lock);
9483 		spa_async_suspend(spa);
9484 		mutex_enter(&spa_namespace_lock);
9485 		spa_close(spa, FTAG);
9486 
9487 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
9488 			spa_unload(spa);
9489 			spa_deactivate(spa);
9490 		}
9491 		spa_remove(spa);
9492 	}
9493 	mutex_exit(&spa_namespace_lock);
9494 }
9495 
9496 vdev_t *
9497 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
9498 {
9499 	vdev_t *vd;
9500 	int i;
9501 
9502 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
9503 		return (vd);
9504 
9505 	if (aux) {
9506 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
9507 			vd = spa->spa_l2cache.sav_vdevs[i];
9508 			if (vd->vdev_guid == guid)
9509 				return (vd);
9510 		}
9511 
9512 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
9513 			vd = spa->spa_spares.sav_vdevs[i];
9514 			if (vd->vdev_guid == guid)
9515 				return (vd);
9516 		}
9517 	}
9518 
9519 	return (NULL);
9520 }
9521 
9522 void
9523 spa_upgrade(spa_t *spa, uint64_t version)
9524 {
9525 	ASSERT(spa_writeable(spa));
9526 
9527 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9528 
9529 	/*
9530 	 * This should only be called for a non-faulted pool, and since a
9531 	 * future version would result in an unopenable pool, this shouldn't be
9532 	 * possible.
9533 	 */
9534 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
9535 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
9536 
9537 	spa->spa_uberblock.ub_version = version;
9538 	vdev_config_dirty(spa->spa_root_vdev);
9539 
9540 	spa_config_exit(spa, SCL_ALL, FTAG);
9541 
9542 	txg_wait_synced(spa_get_dsl(spa), 0);
9543 }
9544 
9545 static boolean_t
9546 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
9547 {
9548 	(void) spa;
9549 	int i;
9550 	uint64_t vdev_guid;
9551 
9552 	for (i = 0; i < sav->sav_count; i++)
9553 		if (sav->sav_vdevs[i]->vdev_guid == guid)
9554 			return (B_TRUE);
9555 
9556 	for (i = 0; i < sav->sav_npending; i++) {
9557 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
9558 		    &vdev_guid) == 0 && vdev_guid == guid)
9559 			return (B_TRUE);
9560 	}
9561 
9562 	return (B_FALSE);
9563 }
9564 
9565 boolean_t
9566 spa_has_l2cache(spa_t *spa, uint64_t guid)
9567 {
9568 	return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
9569 }
9570 
9571 boolean_t
9572 spa_has_spare(spa_t *spa, uint64_t guid)
9573 {
9574 	return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
9575 }
9576 
9577 /*
9578  * Check if a pool has an active shared spare device.
9579  * Note: reference count of an active spare is 2, as a spare and as a replace
9580  */
9581 static boolean_t
9582 spa_has_active_shared_spare(spa_t *spa)
9583 {
9584 	int i, refcnt;
9585 	uint64_t pool;
9586 	spa_aux_vdev_t *sav = &spa->spa_spares;
9587 
9588 	for (i = 0; i < sav->sav_count; i++) {
9589 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
9590 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
9591 		    refcnt > 2)
9592 			return (B_TRUE);
9593 	}
9594 
9595 	return (B_FALSE);
9596 }
9597 
9598 uint64_t
9599 spa_total_metaslabs(spa_t *spa)
9600 {
9601 	vdev_t *rvd = spa->spa_root_vdev;
9602 
9603 	uint64_t m = 0;
9604 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
9605 		vdev_t *vd = rvd->vdev_child[c];
9606 		if (!vdev_is_concrete(vd))
9607 			continue;
9608 		m += vd->vdev_ms_count;
9609 	}
9610 	return (m);
9611 }
9612 
9613 /*
9614  * Notify any waiting threads that some activity has switched from being in-
9615  * progress to not-in-progress so that the thread can wake up and determine
9616  * whether it is finished waiting.
9617  */
9618 void
9619 spa_notify_waiters(spa_t *spa)
9620 {
9621 	/*
9622 	 * Acquiring spa_activities_lock here prevents the cv_broadcast from
9623 	 * happening between the waiting thread's check and cv_wait.
9624 	 */
9625 	mutex_enter(&spa->spa_activities_lock);
9626 	cv_broadcast(&spa->spa_activities_cv);
9627 	mutex_exit(&spa->spa_activities_lock);
9628 }
9629 
9630 /*
9631  * Notify any waiting threads that the pool is exporting, and then block until
9632  * they are finished using the spa_t.
9633  */
9634 void
9635 spa_wake_waiters(spa_t *spa)
9636 {
9637 	mutex_enter(&spa->spa_activities_lock);
9638 	spa->spa_waiters_cancel = B_TRUE;
9639 	cv_broadcast(&spa->spa_activities_cv);
9640 	while (spa->spa_waiters != 0)
9641 		cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
9642 	spa->spa_waiters_cancel = B_FALSE;
9643 	mutex_exit(&spa->spa_activities_lock);
9644 }
9645 
9646 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
9647 static boolean_t
9648 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
9649 {
9650 	spa_t *spa = vd->vdev_spa;
9651 
9652 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
9653 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9654 	ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
9655 	    activity == ZPOOL_WAIT_TRIM);
9656 
9657 	kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
9658 	    &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
9659 
9660 	mutex_exit(&spa->spa_activities_lock);
9661 	mutex_enter(lock);
9662 	mutex_enter(&spa->spa_activities_lock);
9663 
9664 	boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
9665 	    (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
9666 	    (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
9667 	mutex_exit(lock);
9668 
9669 	if (in_progress)
9670 		return (B_TRUE);
9671 
9672 	for (int i = 0; i < vd->vdev_children; i++) {
9673 		if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
9674 		    activity))
9675 			return (B_TRUE);
9676 	}
9677 
9678 	return (B_FALSE);
9679 }
9680 
9681 /*
9682  * If use_guid is true, this checks whether the vdev specified by guid is
9683  * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
9684  * is being initialized/trimmed. The caller must hold the config lock and
9685  * spa_activities_lock.
9686  */
9687 static int
9688 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
9689     zpool_wait_activity_t activity, boolean_t *in_progress)
9690 {
9691 	mutex_exit(&spa->spa_activities_lock);
9692 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9693 	mutex_enter(&spa->spa_activities_lock);
9694 
9695 	vdev_t *vd;
9696 	if (use_guid) {
9697 		vd = spa_lookup_by_guid(spa, guid, B_FALSE);
9698 		if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
9699 			spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9700 			return (EINVAL);
9701 		}
9702 	} else {
9703 		vd = spa->spa_root_vdev;
9704 	}
9705 
9706 	*in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
9707 
9708 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9709 	return (0);
9710 }
9711 
9712 /*
9713  * Locking for waiting threads
9714  * ---------------------------
9715  *
9716  * Waiting threads need a way to check whether a given activity is in progress,
9717  * and then, if it is, wait for it to complete. Each activity will have some
9718  * in-memory representation of the relevant on-disk state which can be used to
9719  * determine whether or not the activity is in progress. The in-memory state and
9720  * the locking used to protect it will be different for each activity, and may
9721  * not be suitable for use with a cvar (e.g., some state is protected by the
9722  * config lock). To allow waiting threads to wait without any races, another
9723  * lock, spa_activities_lock, is used.
9724  *
9725  * When the state is checked, both the activity-specific lock (if there is one)
9726  * and spa_activities_lock are held. In some cases, the activity-specific lock
9727  * is acquired explicitly (e.g. the config lock). In others, the locking is
9728  * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
9729  * thread releases the activity-specific lock and, if the activity is in
9730  * progress, then cv_waits using spa_activities_lock.
9731  *
9732  * The waiting thread is woken when another thread, one completing some
9733  * activity, updates the state of the activity and then calls
9734  * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
9735  * needs to hold its activity-specific lock when updating the state, and this
9736  * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
9737  *
9738  * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
9739  * and because it is held when the waiting thread checks the state of the
9740  * activity, it can never be the case that the completing thread both updates
9741  * the activity state and cv_broadcasts in between the waiting thread's check
9742  * and cv_wait. Thus, a waiting thread can never miss a wakeup.
9743  *
9744  * In order to prevent deadlock, when the waiting thread does its check, in some
9745  * cases it will temporarily drop spa_activities_lock in order to acquire the
9746  * activity-specific lock. The order in which spa_activities_lock and the
9747  * activity specific lock are acquired in the waiting thread is determined by
9748  * the order in which they are acquired in the completing thread; if the
9749  * completing thread calls spa_notify_waiters with the activity-specific lock
9750  * held, then the waiting thread must also acquire the activity-specific lock
9751  * first.
9752  */
9753 
9754 static int
9755 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
9756     boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
9757 {
9758 	int error = 0;
9759 
9760 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9761 
9762 	switch (activity) {
9763 	case ZPOOL_WAIT_CKPT_DISCARD:
9764 		*in_progress =
9765 		    (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
9766 		    zap_contains(spa_meta_objset(spa),
9767 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
9768 		    ENOENT);
9769 		break;
9770 	case ZPOOL_WAIT_FREE:
9771 		*in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
9772 		    !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
9773 		    spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
9774 		    spa_livelist_delete_check(spa));
9775 		break;
9776 	case ZPOOL_WAIT_INITIALIZE:
9777 	case ZPOOL_WAIT_TRIM:
9778 		error = spa_vdev_activity_in_progress(spa, use_tag, tag,
9779 		    activity, in_progress);
9780 		break;
9781 	case ZPOOL_WAIT_REPLACE:
9782 		mutex_exit(&spa->spa_activities_lock);
9783 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9784 		mutex_enter(&spa->spa_activities_lock);
9785 
9786 		*in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
9787 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9788 		break;
9789 	case ZPOOL_WAIT_REMOVE:
9790 		*in_progress = (spa->spa_removing_phys.sr_state ==
9791 		    DSS_SCANNING);
9792 		break;
9793 	case ZPOOL_WAIT_RESILVER:
9794 		if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev)))
9795 			break;
9796 		zfs_fallthrough;
9797 	case ZPOOL_WAIT_SCRUB:
9798 	{
9799 		boolean_t scanning, paused, is_scrub;
9800 		dsl_scan_t *scn =  spa->spa_dsl_pool->dp_scan;
9801 
9802 		is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
9803 		scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
9804 		paused = dsl_scan_is_paused_scrub(scn);
9805 		*in_progress = (scanning && !paused &&
9806 		    is_scrub == (activity == ZPOOL_WAIT_SCRUB));
9807 		break;
9808 	}
9809 	default:
9810 		panic("unrecognized value for activity %d", activity);
9811 	}
9812 
9813 	return (error);
9814 }
9815 
9816 static int
9817 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
9818     boolean_t use_tag, uint64_t tag, boolean_t *waited)
9819 {
9820 	/*
9821 	 * The tag is used to distinguish between instances of an activity.
9822 	 * 'initialize' and 'trim' are the only activities that we use this for.
9823 	 * The other activities can only have a single instance in progress in a
9824 	 * pool at one time, making the tag unnecessary.
9825 	 *
9826 	 * There can be multiple devices being replaced at once, but since they
9827 	 * all finish once resilvering finishes, we don't bother keeping track
9828 	 * of them individually, we just wait for them all to finish.
9829 	 */
9830 	if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
9831 	    activity != ZPOOL_WAIT_TRIM)
9832 		return (EINVAL);
9833 
9834 	if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
9835 		return (EINVAL);
9836 
9837 	spa_t *spa;
9838 	int error = spa_open(pool, &spa, FTAG);
9839 	if (error != 0)
9840 		return (error);
9841 
9842 	/*
9843 	 * Increment the spa's waiter count so that we can call spa_close and
9844 	 * still ensure that the spa_t doesn't get freed before this thread is
9845 	 * finished with it when the pool is exported. We want to call spa_close
9846 	 * before we start waiting because otherwise the additional ref would
9847 	 * prevent the pool from being exported or destroyed throughout the
9848 	 * potentially long wait.
9849 	 */
9850 	mutex_enter(&spa->spa_activities_lock);
9851 	spa->spa_waiters++;
9852 	spa_close(spa, FTAG);
9853 
9854 	*waited = B_FALSE;
9855 	for (;;) {
9856 		boolean_t in_progress;
9857 		error = spa_activity_in_progress(spa, activity, use_tag, tag,
9858 		    &in_progress);
9859 
9860 		if (error || !in_progress || spa->spa_waiters_cancel)
9861 			break;
9862 
9863 		*waited = B_TRUE;
9864 
9865 		if (cv_wait_sig(&spa->spa_activities_cv,
9866 		    &spa->spa_activities_lock) == 0) {
9867 			error = EINTR;
9868 			break;
9869 		}
9870 	}
9871 
9872 	spa->spa_waiters--;
9873 	cv_signal(&spa->spa_waiters_cv);
9874 	mutex_exit(&spa->spa_activities_lock);
9875 
9876 	return (error);
9877 }
9878 
9879 /*
9880  * Wait for a particular instance of the specified activity to complete, where
9881  * the instance is identified by 'tag'
9882  */
9883 int
9884 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
9885     boolean_t *waited)
9886 {
9887 	return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
9888 }
9889 
9890 /*
9891  * Wait for all instances of the specified activity complete
9892  */
9893 int
9894 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
9895 {
9896 
9897 	return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
9898 }
9899 
9900 sysevent_t *
9901 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9902 {
9903 	sysevent_t *ev = NULL;
9904 #ifdef _KERNEL
9905 	nvlist_t *resource;
9906 
9907 	resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
9908 	if (resource) {
9909 		ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
9910 		ev->resource = resource;
9911 	}
9912 #else
9913 	(void) spa, (void) vd, (void) hist_nvl, (void) name;
9914 #endif
9915 	return (ev);
9916 }
9917 
9918 void
9919 spa_event_post(sysevent_t *ev)
9920 {
9921 #ifdef _KERNEL
9922 	if (ev) {
9923 		zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
9924 		kmem_free(ev, sizeof (*ev));
9925 	}
9926 #else
9927 	(void) ev;
9928 #endif
9929 }
9930 
9931 /*
9932  * Post a zevent corresponding to the given sysevent.   The 'name' must be one
9933  * of the event definitions in sys/sysevent/eventdefs.h.  The payload will be
9934  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
9935  * in the userland libzpool, as we don't want consumers to misinterpret ztest
9936  * or zdb as real changes.
9937  */
9938 void
9939 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9940 {
9941 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
9942 }
9943 
9944 /* state manipulation functions */
9945 EXPORT_SYMBOL(spa_open);
9946 EXPORT_SYMBOL(spa_open_rewind);
9947 EXPORT_SYMBOL(spa_get_stats);
9948 EXPORT_SYMBOL(spa_create);
9949 EXPORT_SYMBOL(spa_import);
9950 EXPORT_SYMBOL(spa_tryimport);
9951 EXPORT_SYMBOL(spa_destroy);
9952 EXPORT_SYMBOL(spa_export);
9953 EXPORT_SYMBOL(spa_reset);
9954 EXPORT_SYMBOL(spa_async_request);
9955 EXPORT_SYMBOL(spa_async_suspend);
9956 EXPORT_SYMBOL(spa_async_resume);
9957 EXPORT_SYMBOL(spa_inject_addref);
9958 EXPORT_SYMBOL(spa_inject_delref);
9959 EXPORT_SYMBOL(spa_scan_stat_init);
9960 EXPORT_SYMBOL(spa_scan_get_stats);
9961 
9962 /* device manipulation */
9963 EXPORT_SYMBOL(spa_vdev_add);
9964 EXPORT_SYMBOL(spa_vdev_attach);
9965 EXPORT_SYMBOL(spa_vdev_detach);
9966 EXPORT_SYMBOL(spa_vdev_setpath);
9967 EXPORT_SYMBOL(spa_vdev_setfru);
9968 EXPORT_SYMBOL(spa_vdev_split_mirror);
9969 
9970 /* spare statech is global across all pools) */
9971 EXPORT_SYMBOL(spa_spare_add);
9972 EXPORT_SYMBOL(spa_spare_remove);
9973 EXPORT_SYMBOL(spa_spare_exists);
9974 EXPORT_SYMBOL(spa_spare_activate);
9975 
9976 /* L2ARC statech is global across all pools) */
9977 EXPORT_SYMBOL(spa_l2cache_add);
9978 EXPORT_SYMBOL(spa_l2cache_remove);
9979 EXPORT_SYMBOL(spa_l2cache_exists);
9980 EXPORT_SYMBOL(spa_l2cache_activate);
9981 EXPORT_SYMBOL(spa_l2cache_drop);
9982 
9983 /* scanning */
9984 EXPORT_SYMBOL(spa_scan);
9985 EXPORT_SYMBOL(spa_scan_stop);
9986 
9987 /* spa syncing */
9988 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
9989 EXPORT_SYMBOL(spa_sync_allpools);
9990 
9991 /* properties */
9992 EXPORT_SYMBOL(spa_prop_set);
9993 EXPORT_SYMBOL(spa_prop_get);
9994 EXPORT_SYMBOL(spa_prop_clear_bootfs);
9995 
9996 /* asynchronous event notification */
9997 EXPORT_SYMBOL(spa_event_notify);
9998 
9999 /* BEGIN CSTYLED */
10000 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
10001 	"log2 fraction of arc that can be used by inflight I/Os when "
10002 	"verifying pool during import");
10003 /* END CSTYLED */
10004 
10005 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
10006 	"Set to traverse metadata on pool import");
10007 
10008 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
10009 	"Set to traverse data on pool import");
10010 
10011 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
10012 	"Print vdev tree to zfs_dbgmsg during pool import");
10013 
10014 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
10015 	"Percentage of CPUs to run an IO worker thread");
10016 
10017 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD,
10018 	"Number of threads per IO worker taskqueue");
10019 
10020 /* BEGIN CSTYLED */
10021 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
10022 	"Allow importing pool with up to this number of missing top-level "
10023 	"vdevs (in read-only mode)");
10024 /* END CSTYLED */
10025 
10026 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
10027 	ZMOD_RW, "Set the livelist condense zthr to pause");
10028 
10029 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
10030 	ZMOD_RW, "Set the livelist condense synctask to pause");
10031 
10032 /* BEGIN CSTYLED */
10033 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
10034 	INT, ZMOD_RW,
10035 	"Whether livelist condensing was canceled in the synctask");
10036 
10037 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
10038 	INT, ZMOD_RW,
10039 	"Whether livelist condensing was canceled in the zthr function");
10040 
10041 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
10042 	ZMOD_RW,
10043 	"Whether extra ALLOC blkptrs were added to a livelist entry while it "
10044 	"was being condensed");
10045 /* END CSTYLED */
10046