1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2024 by Delphix. All rights reserved. 25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 * Copyright 2016 Toomas Soome <tsoome@me.com> 30 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 31 * Copyright 2018 Joyent, Inc. 32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 33 * Copyright 2017 Joyent, Inc. 34 * Copyright (c) 2017, Intel Corporation. 35 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org> 36 * Copyright (c) 2023 Hewlett Packard Enterprise Development LP. 37 * Copyright (c) 2023, 2024, Klara Inc. 38 */ 39 40 /* 41 * SPA: Storage Pool Allocator 42 * 43 * This file contains all the routines used when modifying on-disk SPA state. 44 * This includes opening, importing, destroying, exporting a pool, and syncing a 45 * pool. 46 */ 47 48 #include <sys/zfs_context.h> 49 #include <sys/fm/fs/zfs.h> 50 #include <sys/spa_impl.h> 51 #include <sys/zio.h> 52 #include <sys/zio_checksum.h> 53 #include <sys/dmu.h> 54 #include <sys/dmu_tx.h> 55 #include <sys/zap.h> 56 #include <sys/zil.h> 57 #include <sys/brt.h> 58 #include <sys/ddt.h> 59 #include <sys/vdev_impl.h> 60 #include <sys/vdev_removal.h> 61 #include <sys/vdev_indirect_mapping.h> 62 #include <sys/vdev_indirect_births.h> 63 #include <sys/vdev_initialize.h> 64 #include <sys/vdev_rebuild.h> 65 #include <sys/vdev_trim.h> 66 #include <sys/vdev_disk.h> 67 #include <sys/vdev_raidz.h> 68 #include <sys/vdev_draid.h> 69 #include <sys/metaslab.h> 70 #include <sys/metaslab_impl.h> 71 #include <sys/mmp.h> 72 #include <sys/uberblock_impl.h> 73 #include <sys/txg.h> 74 #include <sys/avl.h> 75 #include <sys/bpobj.h> 76 #include <sys/dmu_traverse.h> 77 #include <sys/dmu_objset.h> 78 #include <sys/unique.h> 79 #include <sys/dsl_pool.h> 80 #include <sys/dsl_dataset.h> 81 #include <sys/dsl_dir.h> 82 #include <sys/dsl_prop.h> 83 #include <sys/dsl_synctask.h> 84 #include <sys/fs/zfs.h> 85 #include <sys/arc.h> 86 #include <sys/callb.h> 87 #include <sys/systeminfo.h> 88 #include <sys/zfs_ioctl.h> 89 #include <sys/dsl_scan.h> 90 #include <sys/zfeature.h> 91 #include <sys/dsl_destroy.h> 92 #include <sys/zvol.h> 93 94 #ifdef _KERNEL 95 #include <sys/fm/protocol.h> 96 #include <sys/fm/util.h> 97 #include <sys/callb.h> 98 #include <sys/zone.h> 99 #include <sys/vmsystm.h> 100 #endif /* _KERNEL */ 101 102 #include "zfs_prop.h" 103 #include "zfs_comutil.h" 104 #include <cityhash.h> 105 106 /* 107 * spa_thread() existed on Illumos as a parent thread for the various worker 108 * threads that actually run the pool, as a way to both reference the entire 109 * pool work as a single object, and to share properties like scheduling 110 * options. It has not yet been adapted to Linux or FreeBSD. This define is 111 * used to mark related parts of the code to make things easier for the reader, 112 * and to compile this code out. It can be removed when someone implements it, 113 * moves it to some Illumos-specific place, or removes it entirely. 114 */ 115 #undef HAVE_SPA_THREAD 116 117 /* 118 * The "System Duty Cycle" scheduling class is an Illumos feature to help 119 * prevent CPU-intensive kernel threads from affecting latency on interactive 120 * threads. It doesn't exist on Linux or FreeBSD, so the supporting code is 121 * gated behind a define. On Illumos SDC depends on spa_thread(), but 122 * spa_thread() also has other uses, so this is a separate define. 123 */ 124 #undef HAVE_SYSDC 125 126 /* 127 * The interval, in seconds, at which failed configuration cache file writes 128 * should be retried. 129 */ 130 int zfs_ccw_retry_interval = 300; 131 132 typedef enum zti_modes { 133 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 134 ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */ 135 ZTI_MODE_SYNC, /* sync thread assigned */ 136 ZTI_MODE_NULL, /* don't create a taskq */ 137 ZTI_NMODES 138 } zti_modes_t; 139 140 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 141 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 } 142 #define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 } 143 #define ZTI_SYNC { ZTI_MODE_SYNC, 0, 1 } 144 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 145 146 #define ZTI_N(n) ZTI_P(n, 1) 147 #define ZTI_ONE ZTI_N(1) 148 149 typedef struct zio_taskq_info { 150 zti_modes_t zti_mode; 151 uint_t zti_value; 152 uint_t zti_count; 153 } zio_taskq_info_t; 154 155 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 156 "iss", "iss_h", "int", "int_h" 157 }; 158 159 /* 160 * This table defines the taskq settings for each ZFS I/O type. When 161 * initializing a pool, we use this table to create an appropriately sized 162 * taskq. Some operations are low volume and therefore have a small, static 163 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 164 * macros. Other operations process a large amount of data; the ZTI_SCALE 165 * macro causes us to create a taskq oriented for throughput. Some operations 166 * are so high frequency and short-lived that the taskq itself can become a 167 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 168 * additional degree of parallelism specified by the number of threads per- 169 * taskq and the number of taskqs; when dispatching an event in this case, the 170 * particular taskq is chosen at random. ZTI_SCALE uses a number of taskqs 171 * that scales with the number of CPUs. 172 * 173 * The different taskq priorities are to handle the different contexts (issue 174 * and interrupt) and then to reserve threads for high priority I/Os that 175 * need to be handled with minimum delay. Illumos taskq has unfair TQ_FRONT 176 * implementation, so separate high priority threads are used there. 177 */ 178 static zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 179 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 180 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 181 { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */ 182 #ifdef illumos 183 { ZTI_SYNC, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */ 184 #else 185 { ZTI_SYNC, ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* WRITE */ 186 #endif 187 { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 188 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 189 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FLUSH */ 190 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */ 191 }; 192 193 static void spa_sync_version(void *arg, dmu_tx_t *tx); 194 static void spa_sync_props(void *arg, dmu_tx_t *tx); 195 static boolean_t spa_has_active_shared_spare(spa_t *spa); 196 static int spa_load_impl(spa_t *spa, spa_import_type_t type, 197 const char **ereport); 198 static void spa_vdev_resilver_done(spa_t *spa); 199 200 /* 201 * Percentage of all CPUs that can be used by the metaslab preload taskq. 202 */ 203 static uint_t metaslab_preload_pct = 50; 204 205 static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */ 206 static uint_t zio_taskq_batch_tpq; /* threads per taskq */ 207 208 #ifdef HAVE_SYSDC 209 static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 210 static const uint_t zio_taskq_basedc = 80; /* base duty cycle */ 211 #endif 212 213 #ifdef HAVE_SPA_THREAD 214 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */ 215 #endif 216 217 static uint_t zio_taskq_write_tpq = 16; 218 219 /* 220 * Report any spa_load_verify errors found, but do not fail spa_load. 221 * This is used by zdb to analyze non-idle pools. 222 */ 223 boolean_t spa_load_verify_dryrun = B_FALSE; 224 225 /* 226 * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ). 227 * This is used by zdb for spacemaps verification. 228 */ 229 boolean_t spa_mode_readable_spacemaps = B_FALSE; 230 231 /* 232 * This (illegal) pool name is used when temporarily importing a spa_t in order 233 * to get the vdev stats associated with the imported devices. 234 */ 235 #define TRYIMPORT_NAME "$import" 236 237 /* 238 * For debugging purposes: print out vdev tree during pool import. 239 */ 240 static int spa_load_print_vdev_tree = B_FALSE; 241 242 /* 243 * A non-zero value for zfs_max_missing_tvds means that we allow importing 244 * pools with missing top-level vdevs. This is strictly intended for advanced 245 * pool recovery cases since missing data is almost inevitable. Pools with 246 * missing devices can only be imported read-only for safety reasons, and their 247 * fail-mode will be automatically set to "continue". 248 * 249 * With 1 missing vdev we should be able to import the pool and mount all 250 * datasets. User data that was not modified after the missing device has been 251 * added should be recoverable. This means that snapshots created prior to the 252 * addition of that device should be completely intact. 253 * 254 * With 2 missing vdevs, some datasets may fail to mount since there are 255 * dataset statistics that are stored as regular metadata. Some data might be 256 * recoverable if those vdevs were added recently. 257 * 258 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries 259 * may be missing entirely. Chances of data recovery are very low. Note that 260 * there are also risks of performing an inadvertent rewind as we might be 261 * missing all the vdevs with the latest uberblocks. 262 */ 263 uint64_t zfs_max_missing_tvds = 0; 264 265 /* 266 * The parameters below are similar to zfs_max_missing_tvds but are only 267 * intended for a preliminary open of the pool with an untrusted config which 268 * might be incomplete or out-dated. 269 * 270 * We are more tolerant for pools opened from a cachefile since we could have 271 * an out-dated cachefile where a device removal was not registered. 272 * We could have set the limit arbitrarily high but in the case where devices 273 * are really missing we would want to return the proper error codes; we chose 274 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available 275 * and we get a chance to retrieve the trusted config. 276 */ 277 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1; 278 279 /* 280 * In the case where config was assembled by scanning device paths (/dev/dsks 281 * by default) we are less tolerant since all the existing devices should have 282 * been detected and we want spa_load to return the right error codes. 283 */ 284 uint64_t zfs_max_missing_tvds_scan = 0; 285 286 /* 287 * Debugging aid that pauses spa_sync() towards the end. 288 */ 289 static const boolean_t zfs_pause_spa_sync = B_FALSE; 290 291 /* 292 * Variables to indicate the livelist condense zthr func should wait at certain 293 * points for the livelist to be removed - used to test condense/destroy races 294 */ 295 static int zfs_livelist_condense_zthr_pause = 0; 296 static int zfs_livelist_condense_sync_pause = 0; 297 298 /* 299 * Variables to track whether or not condense cancellation has been 300 * triggered in testing. 301 */ 302 static int zfs_livelist_condense_sync_cancel = 0; 303 static int zfs_livelist_condense_zthr_cancel = 0; 304 305 /* 306 * Variable to track whether or not extra ALLOC blkptrs were added to a 307 * livelist entry while it was being condensed (caused by the way we track 308 * remapped blkptrs in dbuf_remap_impl) 309 */ 310 static int zfs_livelist_condense_new_alloc = 0; 311 312 /* 313 * ========================================================================== 314 * SPA properties routines 315 * ========================================================================== 316 */ 317 318 /* 319 * Add a (source=src, propname=propval) list to an nvlist. 320 */ 321 static void 322 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval, 323 uint64_t intval, zprop_source_t src) 324 { 325 const char *propname = zpool_prop_to_name(prop); 326 nvlist_t *propval; 327 328 propval = fnvlist_alloc(); 329 fnvlist_add_uint64(propval, ZPROP_SOURCE, src); 330 331 if (strval != NULL) 332 fnvlist_add_string(propval, ZPROP_VALUE, strval); 333 else 334 fnvlist_add_uint64(propval, ZPROP_VALUE, intval); 335 336 fnvlist_add_nvlist(nvl, propname, propval); 337 nvlist_free(propval); 338 } 339 340 static int 341 spa_prop_add(spa_t *spa, const char *propname, nvlist_t *outnvl) 342 { 343 zpool_prop_t prop = zpool_name_to_prop(propname); 344 zprop_source_t src = ZPROP_SRC_NONE; 345 uint64_t intval; 346 int err; 347 348 /* 349 * NB: Not all properties lookups via this API require 350 * the spa props lock, so they must explicitly grab it here. 351 */ 352 switch (prop) { 353 case ZPOOL_PROP_DEDUPCACHED: 354 err = ddt_get_pool_dedup_cached(spa, &intval); 355 if (err != 0) 356 return (SET_ERROR(err)); 357 break; 358 default: 359 return (SET_ERROR(EINVAL)); 360 } 361 362 spa_prop_add_list(outnvl, prop, NULL, intval, src); 363 364 return (0); 365 } 366 367 int 368 spa_prop_get_nvlist(spa_t *spa, char **props, unsigned int n_props, 369 nvlist_t *outnvl) 370 { 371 int err = 0; 372 373 if (props == NULL) 374 return (0); 375 376 for (unsigned int i = 0; i < n_props && err == 0; i++) { 377 err = spa_prop_add(spa, props[i], outnvl); 378 } 379 380 return (err); 381 } 382 383 /* 384 * Add a user property (source=src, propname=propval) to an nvlist. 385 */ 386 static void 387 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval, 388 zprop_source_t src) 389 { 390 nvlist_t *propval; 391 392 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 393 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 394 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 395 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 396 nvlist_free(propval); 397 } 398 399 /* 400 * Get property values from the spa configuration. 401 */ 402 static void 403 spa_prop_get_config(spa_t *spa, nvlist_t *nv) 404 { 405 vdev_t *rvd = spa->spa_root_vdev; 406 dsl_pool_t *pool = spa->spa_dsl_pool; 407 uint64_t size, alloc, cap, version; 408 const zprop_source_t src = ZPROP_SRC_NONE; 409 spa_config_dirent_t *dp; 410 metaslab_class_t *mc = spa_normal_class(spa); 411 412 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 413 414 if (rvd != NULL) { 415 alloc = metaslab_class_get_alloc(mc); 416 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 417 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 418 alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa)); 419 420 size = metaslab_class_get_space(mc); 421 size += metaslab_class_get_space(spa_special_class(spa)); 422 size += metaslab_class_get_space(spa_dedup_class(spa)); 423 size += metaslab_class_get_space(spa_embedded_log_class(spa)); 424 425 spa_prop_add_list(nv, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 426 spa_prop_add_list(nv, ZPOOL_PROP_SIZE, NULL, size, src); 427 spa_prop_add_list(nv, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 428 spa_prop_add_list(nv, ZPOOL_PROP_FREE, NULL, 429 size - alloc, src); 430 spa_prop_add_list(nv, ZPOOL_PROP_CHECKPOINT, NULL, 431 spa->spa_checkpoint_info.sci_dspace, src); 432 433 spa_prop_add_list(nv, ZPOOL_PROP_FRAGMENTATION, NULL, 434 metaslab_class_fragmentation(mc), src); 435 spa_prop_add_list(nv, ZPOOL_PROP_EXPANDSZ, NULL, 436 metaslab_class_expandable_space(mc), src); 437 spa_prop_add_list(nv, ZPOOL_PROP_READONLY, NULL, 438 (spa_mode(spa) == SPA_MODE_READ), src); 439 440 cap = (size == 0) ? 0 : (alloc * 100 / size); 441 spa_prop_add_list(nv, ZPOOL_PROP_CAPACITY, NULL, cap, src); 442 443 spa_prop_add_list(nv, ZPOOL_PROP_DEDUPRATIO, NULL, 444 ddt_get_pool_dedup_ratio(spa), src); 445 spa_prop_add_list(nv, ZPOOL_PROP_BCLONEUSED, NULL, 446 brt_get_used(spa), src); 447 spa_prop_add_list(nv, ZPOOL_PROP_BCLONESAVED, NULL, 448 brt_get_saved(spa), src); 449 spa_prop_add_list(nv, ZPOOL_PROP_BCLONERATIO, NULL, 450 brt_get_ratio(spa), src); 451 452 spa_prop_add_list(nv, ZPOOL_PROP_DEDUP_TABLE_SIZE, NULL, 453 ddt_get_ddt_dsize(spa), src); 454 455 spa_prop_add_list(nv, ZPOOL_PROP_HEALTH, NULL, 456 rvd->vdev_state, src); 457 458 version = spa_version(spa); 459 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) { 460 spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL, 461 version, ZPROP_SRC_DEFAULT); 462 } else { 463 spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL, 464 version, ZPROP_SRC_LOCAL); 465 } 466 spa_prop_add_list(nv, ZPOOL_PROP_LOAD_GUID, 467 NULL, spa_load_guid(spa), src); 468 } 469 470 if (pool != NULL) { 471 /* 472 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 473 * when opening pools before this version freedir will be NULL. 474 */ 475 if (pool->dp_free_dir != NULL) { 476 spa_prop_add_list(nv, ZPOOL_PROP_FREEING, NULL, 477 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 478 src); 479 } else { 480 spa_prop_add_list(nv, ZPOOL_PROP_FREEING, 481 NULL, 0, src); 482 } 483 484 if (pool->dp_leak_dir != NULL) { 485 spa_prop_add_list(nv, ZPOOL_PROP_LEAKED, NULL, 486 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 487 src); 488 } else { 489 spa_prop_add_list(nv, ZPOOL_PROP_LEAKED, 490 NULL, 0, src); 491 } 492 } 493 494 spa_prop_add_list(nv, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 495 496 if (spa->spa_comment != NULL) { 497 spa_prop_add_list(nv, ZPOOL_PROP_COMMENT, spa->spa_comment, 498 0, ZPROP_SRC_LOCAL); 499 } 500 501 if (spa->spa_compatibility != NULL) { 502 spa_prop_add_list(nv, ZPOOL_PROP_COMPATIBILITY, 503 spa->spa_compatibility, 0, ZPROP_SRC_LOCAL); 504 } 505 506 if (spa->spa_root != NULL) 507 spa_prop_add_list(nv, ZPOOL_PROP_ALTROOT, spa->spa_root, 508 0, ZPROP_SRC_LOCAL); 509 510 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 511 spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 512 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 513 } else { 514 spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 515 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 516 } 517 518 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) { 519 spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL, 520 DNODE_MAX_SIZE, ZPROP_SRC_NONE); 521 } else { 522 spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL, 523 DNODE_MIN_SIZE, ZPROP_SRC_NONE); 524 } 525 526 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 527 if (dp->scd_path == NULL) { 528 spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE, 529 "none", 0, ZPROP_SRC_LOCAL); 530 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 531 spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE, 532 dp->scd_path, 0, ZPROP_SRC_LOCAL); 533 } 534 } 535 } 536 537 /* 538 * Get zpool property values. 539 */ 540 int 541 spa_prop_get(spa_t *spa, nvlist_t *nv) 542 { 543 objset_t *mos = spa->spa_meta_objset; 544 zap_cursor_t zc; 545 zap_attribute_t *za; 546 dsl_pool_t *dp; 547 int err = 0; 548 549 dp = spa_get_dsl(spa); 550 dsl_pool_config_enter(dp, FTAG); 551 za = zap_attribute_alloc(); 552 mutex_enter(&spa->spa_props_lock); 553 554 /* 555 * Get properties from the spa config. 556 */ 557 spa_prop_get_config(spa, nv); 558 559 /* If no pool property object, no more prop to get. */ 560 if (mos == NULL || spa->spa_pool_props_object == 0) 561 goto out; 562 563 /* 564 * Get properties from the MOS pool property object. 565 */ 566 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 567 (err = zap_cursor_retrieve(&zc, za)) == 0; 568 zap_cursor_advance(&zc)) { 569 uint64_t intval = 0; 570 char *strval = NULL; 571 zprop_source_t src = ZPROP_SRC_DEFAULT; 572 zpool_prop_t prop; 573 574 if ((prop = zpool_name_to_prop(za->za_name)) == 575 ZPOOL_PROP_INVAL && !zfs_prop_user(za->za_name)) 576 continue; 577 578 switch (za->za_integer_length) { 579 case 8: 580 /* integer property */ 581 if (za->za_first_integer != 582 zpool_prop_default_numeric(prop)) 583 src = ZPROP_SRC_LOCAL; 584 585 if (prop == ZPOOL_PROP_BOOTFS) { 586 dsl_dataset_t *ds = NULL; 587 588 err = dsl_dataset_hold_obj(dp, 589 za->za_first_integer, FTAG, &ds); 590 if (err != 0) 591 break; 592 593 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, 594 KM_SLEEP); 595 dsl_dataset_name(ds, strval); 596 dsl_dataset_rele(ds, FTAG); 597 } else { 598 strval = NULL; 599 intval = za->za_first_integer; 600 } 601 602 spa_prop_add_list(nv, prop, strval, intval, src); 603 604 if (strval != NULL) 605 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); 606 607 break; 608 609 case 1: 610 /* string property */ 611 strval = kmem_alloc(za->za_num_integers, KM_SLEEP); 612 err = zap_lookup(mos, spa->spa_pool_props_object, 613 za->za_name, 1, za->za_num_integers, strval); 614 if (err) { 615 kmem_free(strval, za->za_num_integers); 616 break; 617 } 618 if (prop != ZPOOL_PROP_INVAL) { 619 spa_prop_add_list(nv, prop, strval, 0, src); 620 } else { 621 src = ZPROP_SRC_LOCAL; 622 spa_prop_add_user(nv, za->za_name, strval, 623 src); 624 } 625 kmem_free(strval, za->za_num_integers); 626 break; 627 628 default: 629 break; 630 } 631 } 632 zap_cursor_fini(&zc); 633 out: 634 mutex_exit(&spa->spa_props_lock); 635 dsl_pool_config_exit(dp, FTAG); 636 zap_attribute_free(za); 637 638 if (err && err != ENOENT) 639 return (err); 640 641 return (0); 642 } 643 644 /* 645 * Validate the given pool properties nvlist and modify the list 646 * for the property values to be set. 647 */ 648 static int 649 spa_prop_validate(spa_t *spa, nvlist_t *props) 650 { 651 nvpair_t *elem; 652 int error = 0, reset_bootfs = 0; 653 uint64_t objnum = 0; 654 boolean_t has_feature = B_FALSE; 655 656 elem = NULL; 657 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 658 uint64_t intval; 659 const char *strval, *slash, *check, *fname; 660 const char *propname = nvpair_name(elem); 661 zpool_prop_t prop = zpool_name_to_prop(propname); 662 663 switch (prop) { 664 case ZPOOL_PROP_INVAL: 665 /* 666 * Sanitize the input. 667 */ 668 if (zfs_prop_user(propname)) { 669 if (strlen(propname) >= ZAP_MAXNAMELEN) { 670 error = SET_ERROR(ENAMETOOLONG); 671 break; 672 } 673 674 if (strlen(fnvpair_value_string(elem)) >= 675 ZAP_MAXVALUELEN) { 676 error = SET_ERROR(E2BIG); 677 break; 678 } 679 } else if (zpool_prop_feature(propname)) { 680 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 681 error = SET_ERROR(EINVAL); 682 break; 683 } 684 685 if (nvpair_value_uint64(elem, &intval) != 0) { 686 error = SET_ERROR(EINVAL); 687 break; 688 } 689 690 if (intval != 0) { 691 error = SET_ERROR(EINVAL); 692 break; 693 } 694 695 fname = strchr(propname, '@') + 1; 696 if (zfeature_lookup_name(fname, NULL) != 0) { 697 error = SET_ERROR(EINVAL); 698 break; 699 } 700 701 has_feature = B_TRUE; 702 } else { 703 error = SET_ERROR(EINVAL); 704 break; 705 } 706 break; 707 708 case ZPOOL_PROP_VERSION: 709 error = nvpair_value_uint64(elem, &intval); 710 if (!error && 711 (intval < spa_version(spa) || 712 intval > SPA_VERSION_BEFORE_FEATURES || 713 has_feature)) 714 error = SET_ERROR(EINVAL); 715 break; 716 717 case ZPOOL_PROP_DEDUP_TABLE_QUOTA: 718 error = nvpair_value_uint64(elem, &intval); 719 break; 720 721 case ZPOOL_PROP_DELEGATION: 722 case ZPOOL_PROP_AUTOREPLACE: 723 case ZPOOL_PROP_LISTSNAPS: 724 case ZPOOL_PROP_AUTOEXPAND: 725 case ZPOOL_PROP_AUTOTRIM: 726 error = nvpair_value_uint64(elem, &intval); 727 if (!error && intval > 1) 728 error = SET_ERROR(EINVAL); 729 break; 730 731 case ZPOOL_PROP_MULTIHOST: 732 error = nvpair_value_uint64(elem, &intval); 733 if (!error && intval > 1) 734 error = SET_ERROR(EINVAL); 735 736 if (!error) { 737 uint32_t hostid = zone_get_hostid(NULL); 738 if (hostid) 739 spa->spa_hostid = hostid; 740 else 741 error = SET_ERROR(ENOTSUP); 742 } 743 744 break; 745 746 case ZPOOL_PROP_BOOTFS: 747 /* 748 * If the pool version is less than SPA_VERSION_BOOTFS, 749 * or the pool is still being created (version == 0), 750 * the bootfs property cannot be set. 751 */ 752 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 753 error = SET_ERROR(ENOTSUP); 754 break; 755 } 756 757 /* 758 * Make sure the vdev config is bootable 759 */ 760 if (!vdev_is_bootable(spa->spa_root_vdev)) { 761 error = SET_ERROR(ENOTSUP); 762 break; 763 } 764 765 reset_bootfs = 1; 766 767 error = nvpair_value_string(elem, &strval); 768 769 if (!error) { 770 objset_t *os; 771 772 if (strval == NULL || strval[0] == '\0') { 773 objnum = zpool_prop_default_numeric( 774 ZPOOL_PROP_BOOTFS); 775 break; 776 } 777 778 error = dmu_objset_hold(strval, FTAG, &os); 779 if (error != 0) 780 break; 781 782 /* Must be ZPL. */ 783 if (dmu_objset_type(os) != DMU_OST_ZFS) { 784 error = SET_ERROR(ENOTSUP); 785 } else { 786 objnum = dmu_objset_id(os); 787 } 788 dmu_objset_rele(os, FTAG); 789 } 790 break; 791 792 case ZPOOL_PROP_FAILUREMODE: 793 error = nvpair_value_uint64(elem, &intval); 794 if (!error && intval > ZIO_FAILURE_MODE_PANIC) 795 error = SET_ERROR(EINVAL); 796 797 /* 798 * This is a special case which only occurs when 799 * the pool has completely failed. This allows 800 * the user to change the in-core failmode property 801 * without syncing it out to disk (I/Os might 802 * currently be blocked). We do this by returning 803 * EIO to the caller (spa_prop_set) to trick it 804 * into thinking we encountered a property validation 805 * error. 806 */ 807 if (!error && spa_suspended(spa)) { 808 spa->spa_failmode = intval; 809 error = SET_ERROR(EIO); 810 } 811 break; 812 813 case ZPOOL_PROP_CACHEFILE: 814 if ((error = nvpair_value_string(elem, &strval)) != 0) 815 break; 816 817 if (strval[0] == '\0') 818 break; 819 820 if (strcmp(strval, "none") == 0) 821 break; 822 823 if (strval[0] != '/') { 824 error = SET_ERROR(EINVAL); 825 break; 826 } 827 828 slash = strrchr(strval, '/'); 829 ASSERT(slash != NULL); 830 831 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 832 strcmp(slash, "/..") == 0) 833 error = SET_ERROR(EINVAL); 834 break; 835 836 case ZPOOL_PROP_COMMENT: 837 if ((error = nvpair_value_string(elem, &strval)) != 0) 838 break; 839 for (check = strval; *check != '\0'; check++) { 840 if (!isprint(*check)) { 841 error = SET_ERROR(EINVAL); 842 break; 843 } 844 } 845 if (strlen(strval) > ZPROP_MAX_COMMENT) 846 error = SET_ERROR(E2BIG); 847 break; 848 849 default: 850 break; 851 } 852 853 if (error) 854 break; 855 } 856 857 (void) nvlist_remove_all(props, 858 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO)); 859 860 if (!error && reset_bootfs) { 861 error = nvlist_remove(props, 862 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 863 864 if (!error) { 865 error = nvlist_add_uint64(props, 866 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 867 } 868 } 869 870 return (error); 871 } 872 873 void 874 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 875 { 876 const char *cachefile; 877 spa_config_dirent_t *dp; 878 879 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 880 &cachefile) != 0) 881 return; 882 883 dp = kmem_alloc(sizeof (spa_config_dirent_t), 884 KM_SLEEP); 885 886 if (cachefile[0] == '\0') 887 dp->scd_path = spa_strdup(spa_config_path); 888 else if (strcmp(cachefile, "none") == 0) 889 dp->scd_path = NULL; 890 else 891 dp->scd_path = spa_strdup(cachefile); 892 893 list_insert_head(&spa->spa_config_list, dp); 894 if (need_sync) 895 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 896 } 897 898 int 899 spa_prop_set(spa_t *spa, nvlist_t *nvp) 900 { 901 int error; 902 nvpair_t *elem = NULL; 903 boolean_t need_sync = B_FALSE; 904 905 if ((error = spa_prop_validate(spa, nvp)) != 0) 906 return (error); 907 908 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 909 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 910 911 if (prop == ZPOOL_PROP_CACHEFILE || 912 prop == ZPOOL_PROP_ALTROOT || 913 prop == ZPOOL_PROP_READONLY) 914 continue; 915 916 if (prop == ZPOOL_PROP_INVAL && 917 zfs_prop_user(nvpair_name(elem))) { 918 need_sync = B_TRUE; 919 break; 920 } 921 922 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) { 923 uint64_t ver = 0; 924 925 if (prop == ZPOOL_PROP_VERSION) { 926 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 927 } else { 928 ASSERT(zpool_prop_feature(nvpair_name(elem))); 929 ver = SPA_VERSION_FEATURES; 930 need_sync = B_TRUE; 931 } 932 933 /* Save time if the version is already set. */ 934 if (ver == spa_version(spa)) 935 continue; 936 937 /* 938 * In addition to the pool directory object, we might 939 * create the pool properties object, the features for 940 * read object, the features for write object, or the 941 * feature descriptions object. 942 */ 943 error = dsl_sync_task(spa->spa_name, NULL, 944 spa_sync_version, &ver, 945 6, ZFS_SPACE_CHECK_RESERVED); 946 if (error) 947 return (error); 948 continue; 949 } 950 951 need_sync = B_TRUE; 952 break; 953 } 954 955 if (need_sync) { 956 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 957 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 958 } 959 960 return (0); 961 } 962 963 /* 964 * If the bootfs property value is dsobj, clear it. 965 */ 966 void 967 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 968 { 969 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 970 VERIFY(zap_remove(spa->spa_meta_objset, 971 spa->spa_pool_props_object, 972 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 973 spa->spa_bootfs = 0; 974 } 975 } 976 977 static int 978 spa_change_guid_check(void *arg, dmu_tx_t *tx) 979 { 980 uint64_t *newguid __maybe_unused = arg; 981 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 982 vdev_t *rvd = spa->spa_root_vdev; 983 uint64_t vdev_state; 984 985 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 986 int error = (spa_has_checkpoint(spa)) ? 987 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 988 return (SET_ERROR(error)); 989 } 990 991 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 992 vdev_state = rvd->vdev_state; 993 spa_config_exit(spa, SCL_STATE, FTAG); 994 995 if (vdev_state != VDEV_STATE_HEALTHY) 996 return (SET_ERROR(ENXIO)); 997 998 ASSERT3U(spa_guid(spa), !=, *newguid); 999 1000 return (0); 1001 } 1002 1003 static void 1004 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 1005 { 1006 uint64_t *newguid = arg; 1007 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1008 uint64_t oldguid; 1009 vdev_t *rvd = spa->spa_root_vdev; 1010 1011 oldguid = spa_guid(spa); 1012 1013 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 1014 rvd->vdev_guid = *newguid; 1015 rvd->vdev_guid_sum += (*newguid - oldguid); 1016 vdev_config_dirty(rvd); 1017 spa_config_exit(spa, SCL_STATE, FTAG); 1018 1019 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 1020 (u_longlong_t)oldguid, (u_longlong_t)*newguid); 1021 } 1022 1023 /* 1024 * Change the GUID for the pool. This is done so that we can later 1025 * re-import a pool built from a clone of our own vdevs. We will modify 1026 * the root vdev's guid, our own pool guid, and then mark all of our 1027 * vdevs dirty. Note that we must make sure that all our vdevs are 1028 * online when we do this, or else any vdevs that weren't present 1029 * would be orphaned from our pool. We are also going to issue a 1030 * sysevent to update any watchers. 1031 * 1032 * The GUID of the pool will be changed to the value pointed to by guidp. 1033 * The GUID may not be set to the reserverd value of 0. 1034 * The new GUID will be generated if guidp is NULL. 1035 */ 1036 int 1037 spa_change_guid(spa_t *spa, const uint64_t *guidp) 1038 { 1039 uint64_t guid; 1040 int error; 1041 1042 mutex_enter(&spa->spa_vdev_top_lock); 1043 mutex_enter(&spa_namespace_lock); 1044 1045 if (guidp != NULL) { 1046 guid = *guidp; 1047 if (guid == 0) { 1048 error = SET_ERROR(EINVAL); 1049 goto out; 1050 } 1051 1052 if (spa_guid_exists(guid, 0)) { 1053 error = SET_ERROR(EEXIST); 1054 goto out; 1055 } 1056 } else { 1057 guid = spa_generate_guid(NULL); 1058 } 1059 1060 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 1061 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 1062 1063 if (error == 0) { 1064 /* 1065 * Clear the kobj flag from all the vdevs to allow 1066 * vdev_cache_process_kobj_evt() to post events to all the 1067 * vdevs since GUID is updated. 1068 */ 1069 vdev_clear_kobj_evt(spa->spa_root_vdev); 1070 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 1071 vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]); 1072 1073 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); 1074 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID); 1075 } 1076 1077 out: 1078 mutex_exit(&spa_namespace_lock); 1079 mutex_exit(&spa->spa_vdev_top_lock); 1080 1081 return (error); 1082 } 1083 1084 /* 1085 * ========================================================================== 1086 * SPA state manipulation (open/create/destroy/import/export) 1087 * ========================================================================== 1088 */ 1089 1090 static int 1091 spa_error_entry_compare(const void *a, const void *b) 1092 { 1093 const spa_error_entry_t *sa = (const spa_error_entry_t *)a; 1094 const spa_error_entry_t *sb = (const spa_error_entry_t *)b; 1095 int ret; 1096 1097 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark, 1098 sizeof (zbookmark_phys_t)); 1099 1100 return (TREE_ISIGN(ret)); 1101 } 1102 1103 /* 1104 * Utility function which retrieves copies of the current logs and 1105 * re-initializes them in the process. 1106 */ 1107 void 1108 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 1109 { 1110 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 1111 1112 memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t)); 1113 memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t)); 1114 1115 avl_create(&spa->spa_errlist_scrub, 1116 spa_error_entry_compare, sizeof (spa_error_entry_t), 1117 offsetof(spa_error_entry_t, se_avl)); 1118 avl_create(&spa->spa_errlist_last, 1119 spa_error_entry_compare, sizeof (spa_error_entry_t), 1120 offsetof(spa_error_entry_t, se_avl)); 1121 } 1122 1123 static void 1124 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 1125 { 1126 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 1127 enum zti_modes mode = ztip->zti_mode; 1128 uint_t value = ztip->zti_value; 1129 uint_t count = ztip->zti_count; 1130 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1131 uint_t cpus, flags = TASKQ_DYNAMIC; 1132 1133 switch (mode) { 1134 case ZTI_MODE_FIXED: 1135 ASSERT3U(value, >, 0); 1136 break; 1137 1138 case ZTI_MODE_SYNC: 1139 1140 /* 1141 * Create one wr_iss taskq for every 'zio_taskq_write_tpq' CPUs, 1142 * not to exceed the number of spa allocators, and align to it. 1143 */ 1144 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100); 1145 count = MAX(1, cpus / MAX(1, zio_taskq_write_tpq)); 1146 count = MAX(count, (zio_taskq_batch_pct + 99) / 100); 1147 count = MIN(count, spa->spa_alloc_count); 1148 while (spa->spa_alloc_count % count != 0 && 1149 spa->spa_alloc_count < count * 2) 1150 count--; 1151 1152 /* 1153 * zio_taskq_batch_pct is unbounded and may exceed 100%, but no 1154 * single taskq may have more threads than 100% of online cpus. 1155 */ 1156 value = (zio_taskq_batch_pct + count / 2) / count; 1157 value = MIN(value, 100); 1158 flags |= TASKQ_THREADS_CPU_PCT; 1159 break; 1160 1161 case ZTI_MODE_SCALE: 1162 flags |= TASKQ_THREADS_CPU_PCT; 1163 /* 1164 * We want more taskqs to reduce lock contention, but we want 1165 * less for better request ordering and CPU utilization. 1166 */ 1167 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100); 1168 if (zio_taskq_batch_tpq > 0) { 1169 count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) / 1170 zio_taskq_batch_tpq); 1171 } else { 1172 /* 1173 * Prefer 6 threads per taskq, but no more taskqs 1174 * than threads in them on large systems. For 80%: 1175 * 1176 * taskq taskq total 1177 * cpus taskqs percent threads threads 1178 * ------- ------- ------- ------- ------- 1179 * 1 1 80% 1 1 1180 * 2 1 80% 1 1 1181 * 4 1 80% 3 3 1182 * 8 2 40% 3 6 1183 * 16 3 27% 4 12 1184 * 32 5 16% 5 25 1185 * 64 7 11% 7 49 1186 * 128 10 8% 10 100 1187 * 256 14 6% 15 210 1188 */ 1189 count = 1 + cpus / 6; 1190 while (count * count > cpus) 1191 count--; 1192 } 1193 /* Limit each taskq within 100% to not trigger assertion. */ 1194 count = MAX(count, (zio_taskq_batch_pct + 99) / 100); 1195 value = (zio_taskq_batch_pct + count / 2) / count; 1196 break; 1197 1198 case ZTI_MODE_NULL: 1199 tqs->stqs_count = 0; 1200 tqs->stqs_taskq = NULL; 1201 return; 1202 1203 default: 1204 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 1205 "spa_taskqs_init()", 1206 zio_type_name[t], zio_taskq_types[q], mode, value); 1207 break; 1208 } 1209 1210 ASSERT3U(count, >, 0); 1211 tqs->stqs_count = count; 1212 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 1213 1214 for (uint_t i = 0; i < count; i++) { 1215 taskq_t *tq; 1216 char name[32]; 1217 1218 if (count > 1) 1219 (void) snprintf(name, sizeof (name), "%s_%s_%u", 1220 zio_type_name[t], zio_taskq_types[q], i); 1221 else 1222 (void) snprintf(name, sizeof (name), "%s_%s", 1223 zio_type_name[t], zio_taskq_types[q]); 1224 1225 #ifdef HAVE_SYSDC 1226 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 1227 (void) zio_taskq_basedc; 1228 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 1229 spa->spa_proc, zio_taskq_basedc, flags); 1230 } else { 1231 #endif 1232 pri_t pri = maxclsyspri; 1233 /* 1234 * The write issue taskq can be extremely CPU 1235 * intensive. Run it at slightly less important 1236 * priority than the other taskqs. 1237 * 1238 * Under Linux and FreeBSD this means incrementing 1239 * the priority value as opposed to platforms like 1240 * illumos where it should be decremented. 1241 * 1242 * On FreeBSD, if priorities divided by four (RQ_PPQ) 1243 * are equal then a difference between them is 1244 * insignificant. 1245 */ 1246 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) { 1247 #if defined(__linux__) 1248 pri++; 1249 #elif defined(__FreeBSD__) 1250 pri += 4; 1251 #else 1252 #error "unknown OS" 1253 #endif 1254 } 1255 tq = taskq_create_proc(name, value, pri, 50, 1256 INT_MAX, spa->spa_proc, flags); 1257 #ifdef HAVE_SYSDC 1258 } 1259 #endif 1260 1261 tqs->stqs_taskq[i] = tq; 1262 } 1263 } 1264 1265 static void 1266 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 1267 { 1268 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1269 1270 if (tqs->stqs_taskq == NULL) { 1271 ASSERT3U(tqs->stqs_count, ==, 0); 1272 return; 1273 } 1274 1275 for (uint_t i = 0; i < tqs->stqs_count; i++) { 1276 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 1277 taskq_destroy(tqs->stqs_taskq[i]); 1278 } 1279 1280 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 1281 tqs->stqs_taskq = NULL; 1282 } 1283 1284 #ifdef _KERNEL 1285 /* 1286 * The READ and WRITE rows of zio_taskqs are configurable at module load time 1287 * by setting zio_taskq_read or zio_taskq_write. 1288 * 1289 * Example (the defaults for READ and WRITE) 1290 * zio_taskq_read='fixed,1,8 null scale null' 1291 * zio_taskq_write='sync null scale null' 1292 * 1293 * Each sets the entire row at a time. 1294 * 1295 * 'fixed' is parameterised: fixed,Q,T where Q is number of taskqs, T is number 1296 * of threads per taskq. 1297 * 1298 * 'null' can only be set on the high-priority queues (queue selection for 1299 * high-priority queues will fall back to the regular queue if the high-pri 1300 * is NULL. 1301 */ 1302 static const char *const modes[ZTI_NMODES] = { 1303 "fixed", "scale", "sync", "null" 1304 }; 1305 1306 /* Parse the incoming config string. Modifies cfg */ 1307 static int 1308 spa_taskq_param_set(zio_type_t t, char *cfg) 1309 { 1310 int err = 0; 1311 1312 zio_taskq_info_t row[ZIO_TASKQ_TYPES] = {{0}}; 1313 1314 char *next = cfg, *tok, *c; 1315 1316 /* 1317 * Parse out each element from the string and fill `row`. The entire 1318 * row has to be set at once, so any errors are flagged by just 1319 * breaking out of this loop early. 1320 */ 1321 uint_t q; 1322 for (q = 0; q < ZIO_TASKQ_TYPES; q++) { 1323 /* `next` is the start of the config */ 1324 if (next == NULL) 1325 break; 1326 1327 /* Eat up leading space */ 1328 while (isspace(*next)) 1329 next++; 1330 if (*next == '\0') 1331 break; 1332 1333 /* Mode ends at space or end of string */ 1334 tok = next; 1335 next = strchr(tok, ' '); 1336 if (next != NULL) *next++ = '\0'; 1337 1338 /* Parameters start after a comma */ 1339 c = strchr(tok, ','); 1340 if (c != NULL) *c++ = '\0'; 1341 1342 /* Match mode string */ 1343 uint_t mode; 1344 for (mode = 0; mode < ZTI_NMODES; mode++) 1345 if (strcmp(tok, modes[mode]) == 0) 1346 break; 1347 if (mode == ZTI_NMODES) 1348 break; 1349 1350 /* Invalid canary */ 1351 row[q].zti_mode = ZTI_NMODES; 1352 1353 /* Per-mode setup */ 1354 switch (mode) { 1355 1356 /* 1357 * FIXED is parameterised: number of queues, and number of 1358 * threads per queue. 1359 */ 1360 case ZTI_MODE_FIXED: { 1361 /* No parameters? */ 1362 if (c == NULL || *c == '\0') 1363 break; 1364 1365 /* Find next parameter */ 1366 tok = c; 1367 c = strchr(tok, ','); 1368 if (c == NULL) 1369 break; 1370 1371 /* Take digits and convert */ 1372 unsigned long long nq; 1373 if (!(isdigit(*tok))) 1374 break; 1375 err = ddi_strtoull(tok, &tok, 10, &nq); 1376 /* Must succeed and also end at the next param sep */ 1377 if (err != 0 || tok != c) 1378 break; 1379 1380 /* Move past the comma */ 1381 tok++; 1382 /* Need another number */ 1383 if (!(isdigit(*tok))) 1384 break; 1385 /* Remember start to make sure we moved */ 1386 c = tok; 1387 1388 /* Take digits */ 1389 unsigned long long ntpq; 1390 err = ddi_strtoull(tok, &tok, 10, &ntpq); 1391 /* Must succeed, and moved forward */ 1392 if (err != 0 || tok == c || *tok != '\0') 1393 break; 1394 1395 /* 1396 * sanity; zero queues/threads make no sense, and 1397 * 16K is almost certainly more than anyone will ever 1398 * need and avoids silly numbers like UINT32_MAX 1399 */ 1400 if (nq == 0 || nq >= 16384 || 1401 ntpq == 0 || ntpq >= 16384) 1402 break; 1403 1404 const zio_taskq_info_t zti = ZTI_P(ntpq, nq); 1405 row[q] = zti; 1406 break; 1407 } 1408 1409 case ZTI_MODE_SCALE: { 1410 const zio_taskq_info_t zti = ZTI_SCALE; 1411 row[q] = zti; 1412 break; 1413 } 1414 1415 case ZTI_MODE_SYNC: { 1416 const zio_taskq_info_t zti = ZTI_SYNC; 1417 row[q] = zti; 1418 break; 1419 } 1420 1421 case ZTI_MODE_NULL: { 1422 /* 1423 * Can only null the high-priority queues; the general- 1424 * purpose ones have to exist. 1425 */ 1426 if (q != ZIO_TASKQ_ISSUE_HIGH && 1427 q != ZIO_TASKQ_INTERRUPT_HIGH) 1428 break; 1429 1430 const zio_taskq_info_t zti = ZTI_NULL; 1431 row[q] = zti; 1432 break; 1433 } 1434 1435 default: 1436 break; 1437 } 1438 1439 /* Ensure we set a mode */ 1440 if (row[q].zti_mode == ZTI_NMODES) 1441 break; 1442 } 1443 1444 /* Didn't get a full row, fail */ 1445 if (q < ZIO_TASKQ_TYPES) 1446 return (SET_ERROR(EINVAL)); 1447 1448 /* Eat trailing space */ 1449 if (next != NULL) 1450 while (isspace(*next)) 1451 next++; 1452 1453 /* If there's anything left over then fail */ 1454 if (next != NULL && *next != '\0') 1455 return (SET_ERROR(EINVAL)); 1456 1457 /* Success! Copy it into the real config */ 1458 for (q = 0; q < ZIO_TASKQ_TYPES; q++) 1459 zio_taskqs[t][q] = row[q]; 1460 1461 return (0); 1462 } 1463 1464 static int 1465 spa_taskq_param_get(zio_type_t t, char *buf, boolean_t add_newline) 1466 { 1467 int pos = 0; 1468 1469 /* Build paramater string from live config */ 1470 const char *sep = ""; 1471 for (uint_t q = 0; q < ZIO_TASKQ_TYPES; q++) { 1472 const zio_taskq_info_t *zti = &zio_taskqs[t][q]; 1473 if (zti->zti_mode == ZTI_MODE_FIXED) 1474 pos += sprintf(&buf[pos], "%s%s,%u,%u", sep, 1475 modes[zti->zti_mode], zti->zti_count, 1476 zti->zti_value); 1477 else 1478 pos += sprintf(&buf[pos], "%s%s", sep, 1479 modes[zti->zti_mode]); 1480 sep = " "; 1481 } 1482 1483 if (add_newline) 1484 buf[pos++] = '\n'; 1485 buf[pos] = '\0'; 1486 1487 return (pos); 1488 } 1489 1490 #ifdef __linux__ 1491 static int 1492 spa_taskq_read_param_set(const char *val, zfs_kernel_param_t *kp) 1493 { 1494 char *cfg = kmem_strdup(val); 1495 int err = spa_taskq_param_set(ZIO_TYPE_READ, cfg); 1496 kmem_free(cfg, strlen(val)+1); 1497 return (-err); 1498 } 1499 static int 1500 spa_taskq_read_param_get(char *buf, zfs_kernel_param_t *kp) 1501 { 1502 return (spa_taskq_param_get(ZIO_TYPE_READ, buf, TRUE)); 1503 } 1504 1505 static int 1506 spa_taskq_write_param_set(const char *val, zfs_kernel_param_t *kp) 1507 { 1508 char *cfg = kmem_strdup(val); 1509 int err = spa_taskq_param_set(ZIO_TYPE_WRITE, cfg); 1510 kmem_free(cfg, strlen(val)+1); 1511 return (-err); 1512 } 1513 static int 1514 spa_taskq_write_param_get(char *buf, zfs_kernel_param_t *kp) 1515 { 1516 return (spa_taskq_param_get(ZIO_TYPE_WRITE, buf, TRUE)); 1517 } 1518 #else 1519 /* 1520 * On FreeBSD load-time parameters can be set up before malloc() is available, 1521 * so we have to do all the parsing work on the stack. 1522 */ 1523 #define SPA_TASKQ_PARAM_MAX (128) 1524 1525 static int 1526 spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS) 1527 { 1528 char buf[SPA_TASKQ_PARAM_MAX]; 1529 int err; 1530 1531 (void) spa_taskq_param_get(ZIO_TYPE_READ, buf, FALSE); 1532 err = sysctl_handle_string(oidp, buf, sizeof (buf), req); 1533 if (err || req->newptr == NULL) 1534 return (err); 1535 return (spa_taskq_param_set(ZIO_TYPE_READ, buf)); 1536 } 1537 1538 static int 1539 spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS) 1540 { 1541 char buf[SPA_TASKQ_PARAM_MAX]; 1542 int err; 1543 1544 (void) spa_taskq_param_get(ZIO_TYPE_WRITE, buf, FALSE); 1545 err = sysctl_handle_string(oidp, buf, sizeof (buf), req); 1546 if (err || req->newptr == NULL) 1547 return (err); 1548 return (spa_taskq_param_set(ZIO_TYPE_WRITE, buf)); 1549 } 1550 #endif 1551 #endif /* _KERNEL */ 1552 1553 /* 1554 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 1555 * Note that a type may have multiple discrete taskqs to avoid lock contention 1556 * on the taskq itself. 1557 */ 1558 void 1559 spa_taskq_dispatch(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 1560 task_func_t *func, zio_t *zio, boolean_t cutinline) 1561 { 1562 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1563 taskq_t *tq; 1564 1565 ASSERT3P(tqs->stqs_taskq, !=, NULL); 1566 ASSERT3U(tqs->stqs_count, !=, 0); 1567 1568 /* 1569 * NB: We are assuming that the zio can only be dispatched 1570 * to a single taskq at a time. It would be a grievous error 1571 * to dispatch the zio to another taskq at the same time. 1572 */ 1573 ASSERT(zio); 1574 ASSERT(taskq_empty_ent(&zio->io_tqent)); 1575 1576 if (tqs->stqs_count == 1) { 1577 tq = tqs->stqs_taskq[0]; 1578 } else if ((t == ZIO_TYPE_WRITE) && (q == ZIO_TASKQ_ISSUE) && 1579 ZIO_HAS_ALLOCATOR(zio)) { 1580 tq = tqs->stqs_taskq[zio->io_allocator % tqs->stqs_count]; 1581 } else { 1582 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count]; 1583 } 1584 1585 taskq_dispatch_ent(tq, func, zio, cutinline ? TQ_FRONT : 0, 1586 &zio->io_tqent); 1587 } 1588 1589 static void 1590 spa_create_zio_taskqs(spa_t *spa) 1591 { 1592 for (int t = 0; t < ZIO_TYPES; t++) { 1593 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1594 spa_taskqs_init(spa, t, q); 1595 } 1596 } 1597 } 1598 1599 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD) 1600 static void 1601 spa_thread(void *arg) 1602 { 1603 psetid_t zio_taskq_psrset_bind = PS_NONE; 1604 callb_cpr_t cprinfo; 1605 1606 spa_t *spa = arg; 1607 user_t *pu = PTOU(curproc); 1608 1609 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 1610 spa->spa_name); 1611 1612 ASSERT(curproc != &p0); 1613 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 1614 "zpool-%s", spa->spa_name); 1615 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 1616 1617 /* bind this thread to the requested psrset */ 1618 if (zio_taskq_psrset_bind != PS_NONE) { 1619 pool_lock(); 1620 mutex_enter(&cpu_lock); 1621 mutex_enter(&pidlock); 1622 mutex_enter(&curproc->p_lock); 1623 1624 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 1625 0, NULL, NULL) == 0) { 1626 curthread->t_bind_pset = zio_taskq_psrset_bind; 1627 } else { 1628 cmn_err(CE_WARN, 1629 "Couldn't bind process for zfs pool \"%s\" to " 1630 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1631 } 1632 1633 mutex_exit(&curproc->p_lock); 1634 mutex_exit(&pidlock); 1635 mutex_exit(&cpu_lock); 1636 pool_unlock(); 1637 } 1638 1639 #ifdef HAVE_SYSDC 1640 if (zio_taskq_sysdc) { 1641 sysdc_thread_enter(curthread, 100, 0); 1642 } 1643 #endif 1644 1645 spa->spa_proc = curproc; 1646 spa->spa_did = curthread->t_did; 1647 1648 spa_create_zio_taskqs(spa); 1649 1650 mutex_enter(&spa->spa_proc_lock); 1651 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1652 1653 spa->spa_proc_state = SPA_PROC_ACTIVE; 1654 cv_broadcast(&spa->spa_proc_cv); 1655 1656 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1657 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1658 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1659 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1660 1661 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1662 spa->spa_proc_state = SPA_PROC_GONE; 1663 spa->spa_proc = &p0; 1664 cv_broadcast(&spa->spa_proc_cv); 1665 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1666 1667 mutex_enter(&curproc->p_lock); 1668 lwp_exit(); 1669 } 1670 #endif 1671 1672 extern metaslab_ops_t *metaslab_allocator(spa_t *spa); 1673 1674 /* 1675 * Activate an uninitialized pool. 1676 */ 1677 static void 1678 spa_activate(spa_t *spa, spa_mode_t mode) 1679 { 1680 metaslab_ops_t *msp = metaslab_allocator(spa); 1681 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1682 1683 spa->spa_state = POOL_STATE_ACTIVE; 1684 spa->spa_mode = mode; 1685 spa->spa_read_spacemaps = spa_mode_readable_spacemaps; 1686 1687 spa->spa_normal_class = metaslab_class_create(spa, msp); 1688 spa->spa_log_class = metaslab_class_create(spa, msp); 1689 spa->spa_embedded_log_class = metaslab_class_create(spa, msp); 1690 spa->spa_special_class = metaslab_class_create(spa, msp); 1691 spa->spa_dedup_class = metaslab_class_create(spa, msp); 1692 1693 /* Try to create a covering process */ 1694 mutex_enter(&spa->spa_proc_lock); 1695 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1696 ASSERT(spa->spa_proc == &p0); 1697 spa->spa_did = 0; 1698 1699 #ifdef HAVE_SPA_THREAD 1700 /* Only create a process if we're going to be around a while. */ 1701 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1702 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1703 NULL, 0) == 0) { 1704 spa->spa_proc_state = SPA_PROC_CREATED; 1705 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1706 cv_wait(&spa->spa_proc_cv, 1707 &spa->spa_proc_lock); 1708 } 1709 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1710 ASSERT(spa->spa_proc != &p0); 1711 ASSERT(spa->spa_did != 0); 1712 } else { 1713 #ifdef _KERNEL 1714 cmn_err(CE_WARN, 1715 "Couldn't create process for zfs pool \"%s\"\n", 1716 spa->spa_name); 1717 #endif 1718 } 1719 } 1720 #endif /* HAVE_SPA_THREAD */ 1721 mutex_exit(&spa->spa_proc_lock); 1722 1723 /* If we didn't create a process, we need to create our taskqs. */ 1724 if (spa->spa_proc == &p0) { 1725 spa_create_zio_taskqs(spa); 1726 } 1727 1728 for (size_t i = 0; i < TXG_SIZE; i++) { 1729 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 1730 ZIO_FLAG_CANFAIL); 1731 } 1732 1733 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1734 offsetof(vdev_t, vdev_config_dirty_node)); 1735 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1736 offsetof(objset_t, os_evicting_node)); 1737 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1738 offsetof(vdev_t, vdev_state_dirty_node)); 1739 1740 txg_list_create(&spa->spa_vdev_txg_list, spa, 1741 offsetof(struct vdev, vdev_txg_node)); 1742 1743 avl_create(&spa->spa_errlist_scrub, 1744 spa_error_entry_compare, sizeof (spa_error_entry_t), 1745 offsetof(spa_error_entry_t, se_avl)); 1746 avl_create(&spa->spa_errlist_last, 1747 spa_error_entry_compare, sizeof (spa_error_entry_t), 1748 offsetof(spa_error_entry_t, se_avl)); 1749 avl_create(&spa->spa_errlist_healed, 1750 spa_error_entry_compare, sizeof (spa_error_entry_t), 1751 offsetof(spa_error_entry_t, se_avl)); 1752 1753 spa_activate_os(spa); 1754 1755 spa_keystore_init(&spa->spa_keystore); 1756 1757 /* 1758 * This taskq is used to perform zvol-minor-related tasks 1759 * asynchronously. This has several advantages, including easy 1760 * resolution of various deadlocks. 1761 * 1762 * The taskq must be single threaded to ensure tasks are always 1763 * processed in the order in which they were dispatched. 1764 * 1765 * A taskq per pool allows one to keep the pools independent. 1766 * This way if one pool is suspended, it will not impact another. 1767 * 1768 * The preferred location to dispatch a zvol minor task is a sync 1769 * task. In this context, there is easy access to the spa_t and minimal 1770 * error handling is required because the sync task must succeed. 1771 */ 1772 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri, 1773 1, INT_MAX, 0); 1774 1775 /* 1776 * The taskq to preload metaslabs. 1777 */ 1778 spa->spa_metaslab_taskq = taskq_create("z_metaslab", 1779 metaslab_preload_pct, maxclsyspri, 1, INT_MAX, 1780 TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); 1781 1782 /* 1783 * Taskq dedicated to prefetcher threads: this is used to prevent the 1784 * pool traverse code from monopolizing the global (and limited) 1785 * system_taskq by inappropriately scheduling long running tasks on it. 1786 */ 1787 spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100, 1788 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); 1789 1790 /* 1791 * The taskq to upgrade datasets in this pool. Currently used by 1792 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA. 1793 */ 1794 spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100, 1795 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); 1796 } 1797 1798 /* 1799 * Opposite of spa_activate(). 1800 */ 1801 static void 1802 spa_deactivate(spa_t *spa) 1803 { 1804 ASSERT(spa->spa_sync_on == B_FALSE); 1805 ASSERT(spa->spa_dsl_pool == NULL); 1806 ASSERT(spa->spa_root_vdev == NULL); 1807 ASSERT(spa->spa_async_zio_root == NULL); 1808 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1809 1810 spa_evicting_os_wait(spa); 1811 1812 if (spa->spa_zvol_taskq) { 1813 taskq_destroy(spa->spa_zvol_taskq); 1814 spa->spa_zvol_taskq = NULL; 1815 } 1816 1817 if (spa->spa_metaslab_taskq) { 1818 taskq_destroy(spa->spa_metaslab_taskq); 1819 spa->spa_metaslab_taskq = NULL; 1820 } 1821 1822 if (spa->spa_prefetch_taskq) { 1823 taskq_destroy(spa->spa_prefetch_taskq); 1824 spa->spa_prefetch_taskq = NULL; 1825 } 1826 1827 if (spa->spa_upgrade_taskq) { 1828 taskq_destroy(spa->spa_upgrade_taskq); 1829 spa->spa_upgrade_taskq = NULL; 1830 } 1831 1832 txg_list_destroy(&spa->spa_vdev_txg_list); 1833 1834 list_destroy(&spa->spa_config_dirty_list); 1835 list_destroy(&spa->spa_evicting_os_list); 1836 list_destroy(&spa->spa_state_dirty_list); 1837 1838 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 1839 1840 for (int t = 0; t < ZIO_TYPES; t++) { 1841 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1842 spa_taskqs_fini(spa, t, q); 1843 } 1844 } 1845 1846 for (size_t i = 0; i < TXG_SIZE; i++) { 1847 ASSERT3P(spa->spa_txg_zio[i], !=, NULL); 1848 VERIFY0(zio_wait(spa->spa_txg_zio[i])); 1849 spa->spa_txg_zio[i] = NULL; 1850 } 1851 1852 metaslab_class_destroy(spa->spa_normal_class); 1853 spa->spa_normal_class = NULL; 1854 1855 metaslab_class_destroy(spa->spa_log_class); 1856 spa->spa_log_class = NULL; 1857 1858 metaslab_class_destroy(spa->spa_embedded_log_class); 1859 spa->spa_embedded_log_class = NULL; 1860 1861 metaslab_class_destroy(spa->spa_special_class); 1862 spa->spa_special_class = NULL; 1863 1864 metaslab_class_destroy(spa->spa_dedup_class); 1865 spa->spa_dedup_class = NULL; 1866 1867 /* 1868 * If this was part of an import or the open otherwise failed, we may 1869 * still have errors left in the queues. Empty them just in case. 1870 */ 1871 spa_errlog_drain(spa); 1872 avl_destroy(&spa->spa_errlist_scrub); 1873 avl_destroy(&spa->spa_errlist_last); 1874 avl_destroy(&spa->spa_errlist_healed); 1875 1876 spa_keystore_fini(&spa->spa_keystore); 1877 1878 spa->spa_state = POOL_STATE_UNINITIALIZED; 1879 1880 mutex_enter(&spa->spa_proc_lock); 1881 if (spa->spa_proc_state != SPA_PROC_NONE) { 1882 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1883 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1884 cv_broadcast(&spa->spa_proc_cv); 1885 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1886 ASSERT(spa->spa_proc != &p0); 1887 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1888 } 1889 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1890 spa->spa_proc_state = SPA_PROC_NONE; 1891 } 1892 ASSERT(spa->spa_proc == &p0); 1893 mutex_exit(&spa->spa_proc_lock); 1894 1895 /* 1896 * We want to make sure spa_thread() has actually exited the ZFS 1897 * module, so that the module can't be unloaded out from underneath 1898 * it. 1899 */ 1900 if (spa->spa_did != 0) { 1901 thread_join(spa->spa_did); 1902 spa->spa_did = 0; 1903 } 1904 1905 spa_deactivate_os(spa); 1906 1907 } 1908 1909 /* 1910 * Verify a pool configuration, and construct the vdev tree appropriately. This 1911 * will create all the necessary vdevs in the appropriate layout, with each vdev 1912 * in the CLOSED state. This will prep the pool before open/creation/import. 1913 * All vdev validation is done by the vdev_alloc() routine. 1914 */ 1915 int 1916 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1917 uint_t id, int atype) 1918 { 1919 nvlist_t **child; 1920 uint_t children; 1921 int error; 1922 1923 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1924 return (error); 1925 1926 if ((*vdp)->vdev_ops->vdev_op_leaf) 1927 return (0); 1928 1929 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1930 &child, &children); 1931 1932 if (error == ENOENT) 1933 return (0); 1934 1935 if (error) { 1936 vdev_free(*vdp); 1937 *vdp = NULL; 1938 return (SET_ERROR(EINVAL)); 1939 } 1940 1941 for (int c = 0; c < children; c++) { 1942 vdev_t *vd; 1943 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1944 atype)) != 0) { 1945 vdev_free(*vdp); 1946 *vdp = NULL; 1947 return (error); 1948 } 1949 } 1950 1951 ASSERT(*vdp != NULL); 1952 1953 return (0); 1954 } 1955 1956 static boolean_t 1957 spa_should_flush_logs_on_unload(spa_t *spa) 1958 { 1959 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1960 return (B_FALSE); 1961 1962 if (!spa_writeable(spa)) 1963 return (B_FALSE); 1964 1965 if (!spa->spa_sync_on) 1966 return (B_FALSE); 1967 1968 if (spa_state(spa) != POOL_STATE_EXPORTED) 1969 return (B_FALSE); 1970 1971 if (zfs_keep_log_spacemaps_at_export) 1972 return (B_FALSE); 1973 1974 return (B_TRUE); 1975 } 1976 1977 /* 1978 * Opens a transaction that will set the flag that will instruct 1979 * spa_sync to attempt to flush all the metaslabs for that txg. 1980 */ 1981 static void 1982 spa_unload_log_sm_flush_all(spa_t *spa) 1983 { 1984 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 1985 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 1986 1987 ASSERT3U(spa->spa_log_flushall_txg, ==, 0); 1988 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx); 1989 1990 dmu_tx_commit(tx); 1991 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg); 1992 } 1993 1994 static void 1995 spa_unload_log_sm_metadata(spa_t *spa) 1996 { 1997 void *cookie = NULL; 1998 spa_log_sm_t *sls; 1999 log_summary_entry_t *e; 2000 2001 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg, 2002 &cookie)) != NULL) { 2003 VERIFY0(sls->sls_mscount); 2004 kmem_free(sls, sizeof (spa_log_sm_t)); 2005 } 2006 2007 while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) { 2008 VERIFY0(e->lse_mscount); 2009 kmem_free(e, sizeof (log_summary_entry_t)); 2010 } 2011 2012 spa->spa_unflushed_stats.sus_nblocks = 0; 2013 spa->spa_unflushed_stats.sus_memused = 0; 2014 spa->spa_unflushed_stats.sus_blocklimit = 0; 2015 } 2016 2017 static void 2018 spa_destroy_aux_threads(spa_t *spa) 2019 { 2020 if (spa->spa_condense_zthr != NULL) { 2021 zthr_destroy(spa->spa_condense_zthr); 2022 spa->spa_condense_zthr = NULL; 2023 } 2024 if (spa->spa_checkpoint_discard_zthr != NULL) { 2025 zthr_destroy(spa->spa_checkpoint_discard_zthr); 2026 spa->spa_checkpoint_discard_zthr = NULL; 2027 } 2028 if (spa->spa_livelist_delete_zthr != NULL) { 2029 zthr_destroy(spa->spa_livelist_delete_zthr); 2030 spa->spa_livelist_delete_zthr = NULL; 2031 } 2032 if (spa->spa_livelist_condense_zthr != NULL) { 2033 zthr_destroy(spa->spa_livelist_condense_zthr); 2034 spa->spa_livelist_condense_zthr = NULL; 2035 } 2036 if (spa->spa_raidz_expand_zthr != NULL) { 2037 zthr_destroy(spa->spa_raidz_expand_zthr); 2038 spa->spa_raidz_expand_zthr = NULL; 2039 } 2040 } 2041 2042 /* 2043 * Opposite of spa_load(). 2044 */ 2045 static void 2046 spa_unload(spa_t *spa) 2047 { 2048 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 2049 spa->spa_export_thread == curthread); 2050 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED); 2051 2052 spa_import_progress_remove(spa_guid(spa)); 2053 spa_load_note(spa, "UNLOADING"); 2054 2055 spa_wake_waiters(spa); 2056 2057 /* 2058 * If we have set the spa_final_txg, we have already performed the 2059 * tasks below in spa_export_common(). We should not redo it here since 2060 * we delay the final TXGs beyond what spa_final_txg is set at. 2061 */ 2062 if (spa->spa_final_txg == UINT64_MAX) { 2063 /* 2064 * If the log space map feature is enabled and the pool is 2065 * getting exported (but not destroyed), we want to spend some 2066 * time flushing as many metaslabs as we can in an attempt to 2067 * destroy log space maps and save import time. 2068 */ 2069 if (spa_should_flush_logs_on_unload(spa)) 2070 spa_unload_log_sm_flush_all(spa); 2071 2072 /* 2073 * Stop async tasks. 2074 */ 2075 spa_async_suspend(spa); 2076 2077 if (spa->spa_root_vdev) { 2078 vdev_t *root_vdev = spa->spa_root_vdev; 2079 vdev_initialize_stop_all(root_vdev, 2080 VDEV_INITIALIZE_ACTIVE); 2081 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE); 2082 vdev_autotrim_stop_all(spa); 2083 vdev_rebuild_stop_all(spa); 2084 l2arc_spa_rebuild_stop(spa); 2085 } 2086 } 2087 2088 /* 2089 * Stop syncing. 2090 */ 2091 if (spa->spa_sync_on) { 2092 txg_sync_stop(spa->spa_dsl_pool); 2093 spa->spa_sync_on = B_FALSE; 2094 } 2095 2096 /* 2097 * This ensures that there is no async metaslab prefetching 2098 * while we attempt to unload the spa. 2099 */ 2100 taskq_wait(spa->spa_metaslab_taskq); 2101 2102 if (spa->spa_mmp.mmp_thread) 2103 mmp_thread_stop(spa); 2104 2105 /* 2106 * Wait for any outstanding async I/O to complete. 2107 */ 2108 if (spa->spa_async_zio_root != NULL) { 2109 for (int i = 0; i < max_ncpus; i++) 2110 (void) zio_wait(spa->spa_async_zio_root[i]); 2111 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 2112 spa->spa_async_zio_root = NULL; 2113 } 2114 2115 if (spa->spa_vdev_removal != NULL) { 2116 spa_vdev_removal_destroy(spa->spa_vdev_removal); 2117 spa->spa_vdev_removal = NULL; 2118 } 2119 2120 spa_destroy_aux_threads(spa); 2121 2122 spa_condense_fini(spa); 2123 2124 bpobj_close(&spa->spa_deferred_bpobj); 2125 2126 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 2127 2128 /* 2129 * Close all vdevs. 2130 */ 2131 if (spa->spa_root_vdev) 2132 vdev_free(spa->spa_root_vdev); 2133 ASSERT(spa->spa_root_vdev == NULL); 2134 2135 /* 2136 * Close the dsl pool. 2137 */ 2138 if (spa->spa_dsl_pool) { 2139 dsl_pool_close(spa->spa_dsl_pool); 2140 spa->spa_dsl_pool = NULL; 2141 spa->spa_meta_objset = NULL; 2142 } 2143 2144 ddt_unload(spa); 2145 brt_unload(spa); 2146 spa_unload_log_sm_metadata(spa); 2147 2148 /* 2149 * Drop and purge level 2 cache 2150 */ 2151 spa_l2cache_drop(spa); 2152 2153 if (spa->spa_spares.sav_vdevs) { 2154 for (int i = 0; i < spa->spa_spares.sav_count; i++) 2155 vdev_free(spa->spa_spares.sav_vdevs[i]); 2156 kmem_free(spa->spa_spares.sav_vdevs, 2157 spa->spa_spares.sav_count * sizeof (void *)); 2158 spa->spa_spares.sav_vdevs = NULL; 2159 } 2160 if (spa->spa_spares.sav_config) { 2161 nvlist_free(spa->spa_spares.sav_config); 2162 spa->spa_spares.sav_config = NULL; 2163 } 2164 spa->spa_spares.sav_count = 0; 2165 2166 if (spa->spa_l2cache.sav_vdevs) { 2167 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 2168 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 2169 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 2170 } 2171 kmem_free(spa->spa_l2cache.sav_vdevs, 2172 spa->spa_l2cache.sav_count * sizeof (void *)); 2173 spa->spa_l2cache.sav_vdevs = NULL; 2174 } 2175 if (spa->spa_l2cache.sav_config) { 2176 nvlist_free(spa->spa_l2cache.sav_config); 2177 spa->spa_l2cache.sav_config = NULL; 2178 } 2179 spa->spa_l2cache.sav_count = 0; 2180 2181 spa->spa_async_suspended = 0; 2182 2183 spa->spa_indirect_vdevs_loaded = B_FALSE; 2184 2185 if (spa->spa_comment != NULL) { 2186 spa_strfree(spa->spa_comment); 2187 spa->spa_comment = NULL; 2188 } 2189 if (spa->spa_compatibility != NULL) { 2190 spa_strfree(spa->spa_compatibility); 2191 spa->spa_compatibility = NULL; 2192 } 2193 2194 spa->spa_raidz_expand = NULL; 2195 2196 spa_config_exit(spa, SCL_ALL, spa); 2197 } 2198 2199 /* 2200 * Load (or re-load) the current list of vdevs describing the active spares for 2201 * this pool. When this is called, we have some form of basic information in 2202 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 2203 * then re-generate a more complete list including status information. 2204 */ 2205 void 2206 spa_load_spares(spa_t *spa) 2207 { 2208 nvlist_t **spares; 2209 uint_t nspares; 2210 int i; 2211 vdev_t *vd, *tvd; 2212 2213 #ifndef _KERNEL 2214 /* 2215 * zdb opens both the current state of the pool and the 2216 * checkpointed state (if present), with a different spa_t. 2217 * 2218 * As spare vdevs are shared among open pools, we skip loading 2219 * them when we load the checkpointed state of the pool. 2220 */ 2221 if (!spa_writeable(spa)) 2222 return; 2223 #endif 2224 2225 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2226 2227 /* 2228 * First, close and free any existing spare vdevs. 2229 */ 2230 if (spa->spa_spares.sav_vdevs) { 2231 for (i = 0; i < spa->spa_spares.sav_count; i++) { 2232 vd = spa->spa_spares.sav_vdevs[i]; 2233 2234 /* Undo the call to spa_activate() below */ 2235 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 2236 B_FALSE)) != NULL && tvd->vdev_isspare) 2237 spa_spare_remove(tvd); 2238 vdev_close(vd); 2239 vdev_free(vd); 2240 } 2241 2242 kmem_free(spa->spa_spares.sav_vdevs, 2243 spa->spa_spares.sav_count * sizeof (void *)); 2244 } 2245 2246 if (spa->spa_spares.sav_config == NULL) 2247 nspares = 0; 2248 else 2249 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2250 ZPOOL_CONFIG_SPARES, &spares, &nspares)); 2251 2252 spa->spa_spares.sav_count = (int)nspares; 2253 spa->spa_spares.sav_vdevs = NULL; 2254 2255 if (nspares == 0) 2256 return; 2257 2258 /* 2259 * Construct the array of vdevs, opening them to get status in the 2260 * process. For each spare, there is potentially two different vdev_t 2261 * structures associated with it: one in the list of spares (used only 2262 * for basic validation purposes) and one in the active vdev 2263 * configuration (if it's spared in). During this phase we open and 2264 * validate each vdev on the spare list. If the vdev also exists in the 2265 * active configuration, then we also mark this vdev as an active spare. 2266 */ 2267 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *), 2268 KM_SLEEP); 2269 for (i = 0; i < spa->spa_spares.sav_count; i++) { 2270 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 2271 VDEV_ALLOC_SPARE) == 0); 2272 ASSERT(vd != NULL); 2273 2274 spa->spa_spares.sav_vdevs[i] = vd; 2275 2276 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 2277 B_FALSE)) != NULL) { 2278 if (!tvd->vdev_isspare) 2279 spa_spare_add(tvd); 2280 2281 /* 2282 * We only mark the spare active if we were successfully 2283 * able to load the vdev. Otherwise, importing a pool 2284 * with a bad active spare would result in strange 2285 * behavior, because multiple pool would think the spare 2286 * is actively in use. 2287 * 2288 * There is a vulnerability here to an equally bizarre 2289 * circumstance, where a dead active spare is later 2290 * brought back to life (onlined or otherwise). Given 2291 * the rarity of this scenario, and the extra complexity 2292 * it adds, we ignore the possibility. 2293 */ 2294 if (!vdev_is_dead(tvd)) 2295 spa_spare_activate(tvd); 2296 } 2297 2298 vd->vdev_top = vd; 2299 vd->vdev_aux = &spa->spa_spares; 2300 2301 if (vdev_open(vd) != 0) 2302 continue; 2303 2304 if (vdev_validate_aux(vd) == 0) 2305 spa_spare_add(vd); 2306 } 2307 2308 /* 2309 * Recompute the stashed list of spares, with status information 2310 * this time. 2311 */ 2312 fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES); 2313 2314 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 2315 KM_SLEEP); 2316 for (i = 0; i < spa->spa_spares.sav_count; i++) 2317 spares[i] = vdev_config_generate(spa, 2318 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 2319 fnvlist_add_nvlist_array(spa->spa_spares.sav_config, 2320 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, 2321 spa->spa_spares.sav_count); 2322 for (i = 0; i < spa->spa_spares.sav_count; i++) 2323 nvlist_free(spares[i]); 2324 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 2325 } 2326 2327 /* 2328 * Load (or re-load) the current list of vdevs describing the active l2cache for 2329 * this pool. When this is called, we have some form of basic information in 2330 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 2331 * then re-generate a more complete list including status information. 2332 * Devices which are already active have their details maintained, and are 2333 * not re-opened. 2334 */ 2335 void 2336 spa_load_l2cache(spa_t *spa) 2337 { 2338 nvlist_t **l2cache = NULL; 2339 uint_t nl2cache; 2340 int i, j, oldnvdevs; 2341 uint64_t guid; 2342 vdev_t *vd, **oldvdevs, **newvdevs; 2343 spa_aux_vdev_t *sav = &spa->spa_l2cache; 2344 2345 #ifndef _KERNEL 2346 /* 2347 * zdb opens both the current state of the pool and the 2348 * checkpointed state (if present), with a different spa_t. 2349 * 2350 * As L2 caches are part of the ARC which is shared among open 2351 * pools, we skip loading them when we load the checkpointed 2352 * state of the pool. 2353 */ 2354 if (!spa_writeable(spa)) 2355 return; 2356 #endif 2357 2358 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2359 2360 oldvdevs = sav->sav_vdevs; 2361 oldnvdevs = sav->sav_count; 2362 sav->sav_vdevs = NULL; 2363 sav->sav_count = 0; 2364 2365 if (sav->sav_config == NULL) { 2366 nl2cache = 0; 2367 newvdevs = NULL; 2368 goto out; 2369 } 2370 2371 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, 2372 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache)); 2373 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 2374 2375 /* 2376 * Process new nvlist of vdevs. 2377 */ 2378 for (i = 0; i < nl2cache; i++) { 2379 guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID); 2380 2381 newvdevs[i] = NULL; 2382 for (j = 0; j < oldnvdevs; j++) { 2383 vd = oldvdevs[j]; 2384 if (vd != NULL && guid == vd->vdev_guid) { 2385 /* 2386 * Retain previous vdev for add/remove ops. 2387 */ 2388 newvdevs[i] = vd; 2389 oldvdevs[j] = NULL; 2390 break; 2391 } 2392 } 2393 2394 if (newvdevs[i] == NULL) { 2395 /* 2396 * Create new vdev 2397 */ 2398 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 2399 VDEV_ALLOC_L2CACHE) == 0); 2400 ASSERT(vd != NULL); 2401 newvdevs[i] = vd; 2402 2403 /* 2404 * Commit this vdev as an l2cache device, 2405 * even if it fails to open. 2406 */ 2407 spa_l2cache_add(vd); 2408 2409 vd->vdev_top = vd; 2410 vd->vdev_aux = sav; 2411 2412 spa_l2cache_activate(vd); 2413 2414 if (vdev_open(vd) != 0) 2415 continue; 2416 2417 (void) vdev_validate_aux(vd); 2418 2419 if (!vdev_is_dead(vd)) 2420 l2arc_add_vdev(spa, vd); 2421 2422 /* 2423 * Upon cache device addition to a pool or pool 2424 * creation with a cache device or if the header 2425 * of the device is invalid we issue an async 2426 * TRIM command for the whole device which will 2427 * execute if l2arc_trim_ahead > 0. 2428 */ 2429 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 2430 } 2431 } 2432 2433 sav->sav_vdevs = newvdevs; 2434 sav->sav_count = (int)nl2cache; 2435 2436 /* 2437 * Recompute the stashed list of l2cache devices, with status 2438 * information this time. 2439 */ 2440 fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE); 2441 2442 if (sav->sav_count > 0) 2443 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), 2444 KM_SLEEP); 2445 for (i = 0; i < sav->sav_count; i++) 2446 l2cache[i] = vdev_config_generate(spa, 2447 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 2448 fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 2449 (const nvlist_t * const *)l2cache, sav->sav_count); 2450 2451 out: 2452 /* 2453 * Purge vdevs that were dropped 2454 */ 2455 if (oldvdevs) { 2456 for (i = 0; i < oldnvdevs; i++) { 2457 uint64_t pool; 2458 2459 vd = oldvdevs[i]; 2460 if (vd != NULL) { 2461 ASSERT(vd->vdev_isl2cache); 2462 2463 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 2464 pool != 0ULL && l2arc_vdev_present(vd)) 2465 l2arc_remove_vdev(vd); 2466 vdev_clear_stats(vd); 2467 vdev_free(vd); 2468 } 2469 } 2470 2471 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 2472 } 2473 2474 for (i = 0; i < sav->sav_count; i++) 2475 nvlist_free(l2cache[i]); 2476 if (sav->sav_count) 2477 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 2478 } 2479 2480 static int 2481 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 2482 { 2483 dmu_buf_t *db; 2484 char *packed = NULL; 2485 size_t nvsize = 0; 2486 int error; 2487 *value = NULL; 2488 2489 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 2490 if (error) 2491 return (error); 2492 2493 nvsize = *(uint64_t *)db->db_data; 2494 dmu_buf_rele(db, FTAG); 2495 2496 packed = vmem_alloc(nvsize, KM_SLEEP); 2497 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 2498 DMU_READ_PREFETCH); 2499 if (error == 0) 2500 error = nvlist_unpack(packed, nvsize, value, 0); 2501 vmem_free(packed, nvsize); 2502 2503 return (error); 2504 } 2505 2506 /* 2507 * Concrete top-level vdevs that are not missing and are not logs. At every 2508 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds. 2509 */ 2510 static uint64_t 2511 spa_healthy_core_tvds(spa_t *spa) 2512 { 2513 vdev_t *rvd = spa->spa_root_vdev; 2514 uint64_t tvds = 0; 2515 2516 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 2517 vdev_t *vd = rvd->vdev_child[i]; 2518 if (vd->vdev_islog) 2519 continue; 2520 if (vdev_is_concrete(vd) && !vdev_is_dead(vd)) 2521 tvds++; 2522 } 2523 2524 return (tvds); 2525 } 2526 2527 /* 2528 * Checks to see if the given vdev could not be opened, in which case we post a 2529 * sysevent to notify the autoreplace code that the device has been removed. 2530 */ 2531 static void 2532 spa_check_removed(vdev_t *vd) 2533 { 2534 for (uint64_t c = 0; c < vd->vdev_children; c++) 2535 spa_check_removed(vd->vdev_child[c]); 2536 2537 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 2538 vdev_is_concrete(vd)) { 2539 zfs_post_autoreplace(vd->vdev_spa, vd); 2540 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK); 2541 } 2542 } 2543 2544 static int 2545 spa_check_for_missing_logs(spa_t *spa) 2546 { 2547 vdev_t *rvd = spa->spa_root_vdev; 2548 2549 /* 2550 * If we're doing a normal import, then build up any additional 2551 * diagnostic information about missing log devices. 2552 * We'll pass this up to the user for further processing. 2553 */ 2554 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 2555 nvlist_t **child, *nv; 2556 uint64_t idx = 0; 2557 2558 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *), 2559 KM_SLEEP); 2560 nv = fnvlist_alloc(); 2561 2562 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2563 vdev_t *tvd = rvd->vdev_child[c]; 2564 2565 /* 2566 * We consider a device as missing only if it failed 2567 * to open (i.e. offline or faulted is not considered 2568 * as missing). 2569 */ 2570 if (tvd->vdev_islog && 2571 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 2572 child[idx++] = vdev_config_generate(spa, tvd, 2573 B_FALSE, VDEV_CONFIG_MISSING); 2574 } 2575 } 2576 2577 if (idx > 0) { 2578 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 2579 (const nvlist_t * const *)child, idx); 2580 fnvlist_add_nvlist(spa->spa_load_info, 2581 ZPOOL_CONFIG_MISSING_DEVICES, nv); 2582 2583 for (uint64_t i = 0; i < idx; i++) 2584 nvlist_free(child[i]); 2585 } 2586 nvlist_free(nv); 2587 kmem_free(child, rvd->vdev_children * sizeof (char **)); 2588 2589 if (idx > 0) { 2590 spa_load_failed(spa, "some log devices are missing"); 2591 vdev_dbgmsg_print_tree(rvd, 2); 2592 return (SET_ERROR(ENXIO)); 2593 } 2594 } else { 2595 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2596 vdev_t *tvd = rvd->vdev_child[c]; 2597 2598 if (tvd->vdev_islog && 2599 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 2600 spa_set_log_state(spa, SPA_LOG_CLEAR); 2601 spa_load_note(spa, "some log devices are " 2602 "missing, ZIL is dropped."); 2603 vdev_dbgmsg_print_tree(rvd, 2); 2604 break; 2605 } 2606 } 2607 } 2608 2609 return (0); 2610 } 2611 2612 /* 2613 * Check for missing log devices 2614 */ 2615 static boolean_t 2616 spa_check_logs(spa_t *spa) 2617 { 2618 boolean_t rv = B_FALSE; 2619 dsl_pool_t *dp = spa_get_dsl(spa); 2620 2621 switch (spa->spa_log_state) { 2622 default: 2623 break; 2624 case SPA_LOG_MISSING: 2625 /* need to recheck in case slog has been restored */ 2626 case SPA_LOG_UNKNOWN: 2627 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2628 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 2629 if (rv) 2630 spa_set_log_state(spa, SPA_LOG_MISSING); 2631 break; 2632 } 2633 return (rv); 2634 } 2635 2636 /* 2637 * Passivate any log vdevs (note, does not apply to embedded log metaslabs). 2638 */ 2639 static boolean_t 2640 spa_passivate_log(spa_t *spa) 2641 { 2642 vdev_t *rvd = spa->spa_root_vdev; 2643 boolean_t slog_found = B_FALSE; 2644 2645 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 2646 2647 for (int c = 0; c < rvd->vdev_children; c++) { 2648 vdev_t *tvd = rvd->vdev_child[c]; 2649 2650 if (tvd->vdev_islog) { 2651 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 2652 metaslab_group_passivate(tvd->vdev_mg); 2653 slog_found = B_TRUE; 2654 } 2655 } 2656 2657 return (slog_found); 2658 } 2659 2660 /* 2661 * Activate any log vdevs (note, does not apply to embedded log metaslabs). 2662 */ 2663 static void 2664 spa_activate_log(spa_t *spa) 2665 { 2666 vdev_t *rvd = spa->spa_root_vdev; 2667 2668 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 2669 2670 for (int c = 0; c < rvd->vdev_children; c++) { 2671 vdev_t *tvd = rvd->vdev_child[c]; 2672 2673 if (tvd->vdev_islog) { 2674 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 2675 metaslab_group_activate(tvd->vdev_mg); 2676 } 2677 } 2678 } 2679 2680 int 2681 spa_reset_logs(spa_t *spa) 2682 { 2683 int error; 2684 2685 error = dmu_objset_find(spa_name(spa), zil_reset, 2686 NULL, DS_FIND_CHILDREN); 2687 if (error == 0) { 2688 /* 2689 * We successfully offlined the log device, sync out the 2690 * current txg so that the "stubby" block can be removed 2691 * by zil_sync(). 2692 */ 2693 txg_wait_synced(spa->spa_dsl_pool, 0); 2694 } 2695 return (error); 2696 } 2697 2698 static void 2699 spa_aux_check_removed(spa_aux_vdev_t *sav) 2700 { 2701 for (int i = 0; i < sav->sav_count; i++) 2702 spa_check_removed(sav->sav_vdevs[i]); 2703 } 2704 2705 void 2706 spa_claim_notify(zio_t *zio) 2707 { 2708 spa_t *spa = zio->io_spa; 2709 2710 if (zio->io_error) 2711 return; 2712 2713 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 2714 if (spa->spa_claim_max_txg < BP_GET_LOGICAL_BIRTH(zio->io_bp)) 2715 spa->spa_claim_max_txg = BP_GET_LOGICAL_BIRTH(zio->io_bp); 2716 mutex_exit(&spa->spa_props_lock); 2717 } 2718 2719 typedef struct spa_load_error { 2720 boolean_t sle_verify_data; 2721 uint64_t sle_meta_count; 2722 uint64_t sle_data_count; 2723 } spa_load_error_t; 2724 2725 static void 2726 spa_load_verify_done(zio_t *zio) 2727 { 2728 blkptr_t *bp = zio->io_bp; 2729 spa_load_error_t *sle = zio->io_private; 2730 dmu_object_type_t type = BP_GET_TYPE(bp); 2731 int error = zio->io_error; 2732 spa_t *spa = zio->io_spa; 2733 2734 abd_free(zio->io_abd); 2735 if (error) { 2736 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 2737 type != DMU_OT_INTENT_LOG) 2738 atomic_inc_64(&sle->sle_meta_count); 2739 else 2740 atomic_inc_64(&sle->sle_data_count); 2741 } 2742 2743 mutex_enter(&spa->spa_scrub_lock); 2744 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 2745 cv_broadcast(&spa->spa_scrub_io_cv); 2746 mutex_exit(&spa->spa_scrub_lock); 2747 } 2748 2749 /* 2750 * Maximum number of inflight bytes is the log2 fraction of the arc size. 2751 * By default, we set it to 1/16th of the arc. 2752 */ 2753 static uint_t spa_load_verify_shift = 4; 2754 static int spa_load_verify_metadata = B_TRUE; 2755 static int spa_load_verify_data = B_TRUE; 2756 2757 static int 2758 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 2759 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 2760 { 2761 zio_t *rio = arg; 2762 spa_load_error_t *sle = rio->io_private; 2763 2764 (void) zilog, (void) dnp; 2765 2766 /* 2767 * Note: normally this routine will not be called if 2768 * spa_load_verify_metadata is not set. However, it may be useful 2769 * to manually set the flag after the traversal has begun. 2770 */ 2771 if (!spa_load_verify_metadata) 2772 return (0); 2773 2774 /* 2775 * Sanity check the block pointer in order to detect obvious damage 2776 * before using the contents in subsequent checks or in zio_read(). 2777 * When damaged consider it to be a metadata error since we cannot 2778 * trust the BP_GET_TYPE and BP_GET_LEVEL values. 2779 */ 2780 if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) { 2781 atomic_inc_64(&sle->sle_meta_count); 2782 return (0); 2783 } 2784 2785 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 2786 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 2787 return (0); 2788 2789 if (!BP_IS_METADATA(bp) && 2790 (!spa_load_verify_data || !sle->sle_verify_data)) 2791 return (0); 2792 2793 uint64_t maxinflight_bytes = 2794 arc_target_bytes() >> spa_load_verify_shift; 2795 size_t size = BP_GET_PSIZE(bp); 2796 2797 mutex_enter(&spa->spa_scrub_lock); 2798 while (spa->spa_load_verify_bytes >= maxinflight_bytes) 2799 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2800 spa->spa_load_verify_bytes += size; 2801 mutex_exit(&spa->spa_scrub_lock); 2802 2803 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size, 2804 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 2805 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 2806 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 2807 return (0); 2808 } 2809 2810 static int 2811 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 2812 { 2813 (void) dp, (void) arg; 2814 2815 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) 2816 return (SET_ERROR(ENAMETOOLONG)); 2817 2818 return (0); 2819 } 2820 2821 static int 2822 spa_load_verify(spa_t *spa) 2823 { 2824 zio_t *rio; 2825 spa_load_error_t sle = { 0 }; 2826 zpool_load_policy_t policy; 2827 boolean_t verify_ok = B_FALSE; 2828 int error = 0; 2829 2830 zpool_get_load_policy(spa->spa_config, &policy); 2831 2832 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND || 2833 policy.zlp_maxmeta == UINT64_MAX) 2834 return (0); 2835 2836 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 2837 error = dmu_objset_find_dp(spa->spa_dsl_pool, 2838 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, 2839 DS_FIND_CHILDREN); 2840 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 2841 if (error != 0) 2842 return (error); 2843 2844 /* 2845 * Verify data only if we are rewinding or error limit was set. 2846 * Otherwise nothing except dbgmsg care about it to waste time. 2847 */ 2848 sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) || 2849 (policy.zlp_maxdata < UINT64_MAX); 2850 2851 rio = zio_root(spa, NULL, &sle, 2852 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 2853 2854 if (spa_load_verify_metadata) { 2855 if (spa->spa_extreme_rewind) { 2856 spa_load_note(spa, "performing a complete scan of the " 2857 "pool since extreme rewind is on. This may take " 2858 "a very long time.\n (spa_load_verify_data=%u, " 2859 "spa_load_verify_metadata=%u)", 2860 spa_load_verify_data, spa_load_verify_metadata); 2861 } 2862 2863 error = traverse_pool(spa, spa->spa_verify_min_txg, 2864 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 2865 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio); 2866 } 2867 2868 (void) zio_wait(rio); 2869 ASSERT0(spa->spa_load_verify_bytes); 2870 2871 spa->spa_load_meta_errors = sle.sle_meta_count; 2872 spa->spa_load_data_errors = sle.sle_data_count; 2873 2874 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) { 2875 spa_load_note(spa, "spa_load_verify found %llu metadata errors " 2876 "and %llu data errors", (u_longlong_t)sle.sle_meta_count, 2877 (u_longlong_t)sle.sle_data_count); 2878 } 2879 2880 if (spa_load_verify_dryrun || 2881 (!error && sle.sle_meta_count <= policy.zlp_maxmeta && 2882 sle.sle_data_count <= policy.zlp_maxdata)) { 2883 int64_t loss = 0; 2884 2885 verify_ok = B_TRUE; 2886 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 2887 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 2888 2889 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 2890 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME, 2891 spa->spa_load_txg_ts); 2892 fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME, 2893 loss); 2894 fnvlist_add_uint64(spa->spa_load_info, 2895 ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count); 2896 fnvlist_add_uint64(spa->spa_load_info, 2897 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count); 2898 } else { 2899 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 2900 } 2901 2902 if (spa_load_verify_dryrun) 2903 return (0); 2904 2905 if (error) { 2906 if (error != ENXIO && error != EIO) 2907 error = SET_ERROR(EIO); 2908 return (error); 2909 } 2910 2911 return (verify_ok ? 0 : EIO); 2912 } 2913 2914 /* 2915 * Find a value in the pool props object. 2916 */ 2917 static void 2918 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 2919 { 2920 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 2921 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 2922 } 2923 2924 /* 2925 * Find a value in the pool directory object. 2926 */ 2927 static int 2928 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent) 2929 { 2930 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2931 name, sizeof (uint64_t), 1, val); 2932 2933 if (error != 0 && (error != ENOENT || log_enoent)) { 2934 spa_load_failed(spa, "couldn't get '%s' value in MOS directory " 2935 "[error=%d]", name, error); 2936 } 2937 2938 return (error); 2939 } 2940 2941 static int 2942 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 2943 { 2944 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 2945 return (SET_ERROR(err)); 2946 } 2947 2948 boolean_t 2949 spa_livelist_delete_check(spa_t *spa) 2950 { 2951 return (spa->spa_livelists_to_delete != 0); 2952 } 2953 2954 static boolean_t 2955 spa_livelist_delete_cb_check(void *arg, zthr_t *z) 2956 { 2957 (void) z; 2958 spa_t *spa = arg; 2959 return (spa_livelist_delete_check(spa)); 2960 } 2961 2962 static int 2963 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2964 { 2965 spa_t *spa = arg; 2966 zio_free(spa, tx->tx_txg, bp); 2967 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 2968 -bp_get_dsize_sync(spa, bp), 2969 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 2970 return (0); 2971 } 2972 2973 static int 2974 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp) 2975 { 2976 int err; 2977 zap_cursor_t zc; 2978 zap_attribute_t *za = zap_attribute_alloc(); 2979 zap_cursor_init(&zc, os, zap_obj); 2980 err = zap_cursor_retrieve(&zc, za); 2981 zap_cursor_fini(&zc); 2982 if (err == 0) 2983 *llp = za->za_first_integer; 2984 zap_attribute_free(za); 2985 return (err); 2986 } 2987 2988 /* 2989 * Components of livelist deletion that must be performed in syncing 2990 * context: freeing block pointers and updating the pool-wide data 2991 * structures to indicate how much work is left to do 2992 */ 2993 typedef struct sublist_delete_arg { 2994 spa_t *spa; 2995 dsl_deadlist_t *ll; 2996 uint64_t key; 2997 bplist_t *to_free; 2998 } sublist_delete_arg_t; 2999 3000 static void 3001 sublist_delete_sync(void *arg, dmu_tx_t *tx) 3002 { 3003 sublist_delete_arg_t *sda = arg; 3004 spa_t *spa = sda->spa; 3005 dsl_deadlist_t *ll = sda->ll; 3006 uint64_t key = sda->key; 3007 bplist_t *to_free = sda->to_free; 3008 3009 bplist_iterate(to_free, delete_blkptr_cb, spa, tx); 3010 dsl_deadlist_remove_entry(ll, key, tx); 3011 } 3012 3013 typedef struct livelist_delete_arg { 3014 spa_t *spa; 3015 uint64_t ll_obj; 3016 uint64_t zap_obj; 3017 } livelist_delete_arg_t; 3018 3019 static void 3020 livelist_delete_sync(void *arg, dmu_tx_t *tx) 3021 { 3022 livelist_delete_arg_t *lda = arg; 3023 spa_t *spa = lda->spa; 3024 uint64_t ll_obj = lda->ll_obj; 3025 uint64_t zap_obj = lda->zap_obj; 3026 objset_t *mos = spa->spa_meta_objset; 3027 uint64_t count; 3028 3029 /* free the livelist and decrement the feature count */ 3030 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx)); 3031 dsl_deadlist_free(mos, ll_obj, tx); 3032 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx); 3033 VERIFY0(zap_count(mos, zap_obj, &count)); 3034 if (count == 0) { 3035 /* no more livelists to delete */ 3036 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT, 3037 DMU_POOL_DELETED_CLONES, tx)); 3038 VERIFY0(zap_destroy(mos, zap_obj, tx)); 3039 spa->spa_livelists_to_delete = 0; 3040 spa_notify_waiters(spa); 3041 } 3042 } 3043 3044 /* 3045 * Load in the value for the livelist to be removed and open it. Then, 3046 * load its first sublist and determine which block pointers should actually 3047 * be freed. Then, call a synctask which performs the actual frees and updates 3048 * the pool-wide livelist data. 3049 */ 3050 static void 3051 spa_livelist_delete_cb(void *arg, zthr_t *z) 3052 { 3053 spa_t *spa = arg; 3054 uint64_t ll_obj = 0, count; 3055 objset_t *mos = spa->spa_meta_objset; 3056 uint64_t zap_obj = spa->spa_livelists_to_delete; 3057 /* 3058 * Determine the next livelist to delete. This function should only 3059 * be called if there is at least one deleted clone. 3060 */ 3061 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj)); 3062 VERIFY0(zap_count(mos, ll_obj, &count)); 3063 if (count > 0) { 3064 dsl_deadlist_t *ll; 3065 dsl_deadlist_entry_t *dle; 3066 bplist_t to_free; 3067 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP); 3068 dsl_deadlist_open(ll, mos, ll_obj); 3069 dle = dsl_deadlist_first(ll); 3070 ASSERT3P(dle, !=, NULL); 3071 bplist_create(&to_free); 3072 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free, 3073 z, NULL); 3074 if (err == 0) { 3075 sublist_delete_arg_t sync_arg = { 3076 .spa = spa, 3077 .ll = ll, 3078 .key = dle->dle_mintxg, 3079 .to_free = &to_free 3080 }; 3081 zfs_dbgmsg("deleting sublist (id %llu) from" 3082 " livelist %llu, %lld remaining", 3083 (u_longlong_t)dle->dle_bpobj.bpo_object, 3084 (u_longlong_t)ll_obj, (longlong_t)count - 1); 3085 VERIFY0(dsl_sync_task(spa_name(spa), NULL, 3086 sublist_delete_sync, &sync_arg, 0, 3087 ZFS_SPACE_CHECK_DESTROY)); 3088 } else { 3089 VERIFY3U(err, ==, EINTR); 3090 } 3091 bplist_clear(&to_free); 3092 bplist_destroy(&to_free); 3093 dsl_deadlist_close(ll); 3094 kmem_free(ll, sizeof (dsl_deadlist_t)); 3095 } else { 3096 livelist_delete_arg_t sync_arg = { 3097 .spa = spa, 3098 .ll_obj = ll_obj, 3099 .zap_obj = zap_obj 3100 }; 3101 zfs_dbgmsg("deletion of livelist %llu completed", 3102 (u_longlong_t)ll_obj); 3103 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync, 3104 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY)); 3105 } 3106 } 3107 3108 static void 3109 spa_start_livelist_destroy_thread(spa_t *spa) 3110 { 3111 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL); 3112 spa->spa_livelist_delete_zthr = 3113 zthr_create("z_livelist_destroy", 3114 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa, 3115 minclsyspri); 3116 } 3117 3118 typedef struct livelist_new_arg { 3119 bplist_t *allocs; 3120 bplist_t *frees; 3121 } livelist_new_arg_t; 3122 3123 static int 3124 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3125 dmu_tx_t *tx) 3126 { 3127 ASSERT(tx == NULL); 3128 livelist_new_arg_t *lna = arg; 3129 if (bp_freed) { 3130 bplist_append(lna->frees, bp); 3131 } else { 3132 bplist_append(lna->allocs, bp); 3133 zfs_livelist_condense_new_alloc++; 3134 } 3135 return (0); 3136 } 3137 3138 typedef struct livelist_condense_arg { 3139 spa_t *spa; 3140 bplist_t to_keep; 3141 uint64_t first_size; 3142 uint64_t next_size; 3143 } livelist_condense_arg_t; 3144 3145 static void 3146 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx) 3147 { 3148 livelist_condense_arg_t *lca = arg; 3149 spa_t *spa = lca->spa; 3150 bplist_t new_frees; 3151 dsl_dataset_t *ds = spa->spa_to_condense.ds; 3152 3153 /* Have we been cancelled? */ 3154 if (spa->spa_to_condense.cancelled) { 3155 zfs_livelist_condense_sync_cancel++; 3156 goto out; 3157 } 3158 3159 dsl_deadlist_entry_t *first = spa->spa_to_condense.first; 3160 dsl_deadlist_entry_t *next = spa->spa_to_condense.next; 3161 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist; 3162 3163 /* 3164 * It's possible that the livelist was changed while the zthr was 3165 * running. Therefore, we need to check for new blkptrs in the two 3166 * entries being condensed and continue to track them in the livelist. 3167 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl), 3168 * it's possible that the newly added blkptrs are FREEs or ALLOCs so 3169 * we need to sort them into two different bplists. 3170 */ 3171 uint64_t first_obj = first->dle_bpobj.bpo_object; 3172 uint64_t next_obj = next->dle_bpobj.bpo_object; 3173 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs; 3174 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs; 3175 3176 bplist_create(&new_frees); 3177 livelist_new_arg_t new_bps = { 3178 .allocs = &lca->to_keep, 3179 .frees = &new_frees, 3180 }; 3181 3182 if (cur_first_size > lca->first_size) { 3183 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj, 3184 livelist_track_new_cb, &new_bps, lca->first_size)); 3185 } 3186 if (cur_next_size > lca->next_size) { 3187 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj, 3188 livelist_track_new_cb, &new_bps, lca->next_size)); 3189 } 3190 3191 dsl_deadlist_clear_entry(first, ll, tx); 3192 ASSERT(bpobj_is_empty(&first->dle_bpobj)); 3193 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx); 3194 3195 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx); 3196 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx); 3197 bplist_destroy(&new_frees); 3198 3199 char dsname[ZFS_MAX_DATASET_NAME_LEN]; 3200 dsl_dataset_name(ds, dsname); 3201 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu " 3202 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu " 3203 "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname, 3204 (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj, 3205 (u_longlong_t)cur_first_size, (u_longlong_t)next_obj, 3206 (u_longlong_t)cur_next_size, 3207 (u_longlong_t)first->dle_bpobj.bpo_object, 3208 (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs); 3209 out: 3210 dmu_buf_rele(ds->ds_dbuf, spa); 3211 spa->spa_to_condense.ds = NULL; 3212 bplist_clear(&lca->to_keep); 3213 bplist_destroy(&lca->to_keep); 3214 kmem_free(lca, sizeof (livelist_condense_arg_t)); 3215 spa->spa_to_condense.syncing = B_FALSE; 3216 } 3217 3218 static void 3219 spa_livelist_condense_cb(void *arg, zthr_t *t) 3220 { 3221 while (zfs_livelist_condense_zthr_pause && 3222 !(zthr_has_waiters(t) || zthr_iscancelled(t))) 3223 delay(1); 3224 3225 spa_t *spa = arg; 3226 dsl_deadlist_entry_t *first = spa->spa_to_condense.first; 3227 dsl_deadlist_entry_t *next = spa->spa_to_condense.next; 3228 uint64_t first_size, next_size; 3229 3230 livelist_condense_arg_t *lca = 3231 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP); 3232 bplist_create(&lca->to_keep); 3233 3234 /* 3235 * Process the livelists (matching FREEs and ALLOCs) in open context 3236 * so we have minimal work in syncing context to condense. 3237 * 3238 * We save bpobj sizes (first_size and next_size) to use later in 3239 * syncing context to determine if entries were added to these sublists 3240 * while in open context. This is possible because the clone is still 3241 * active and open for normal writes and we want to make sure the new, 3242 * unprocessed blockpointers are inserted into the livelist normally. 3243 * 3244 * Note that dsl_process_sub_livelist() both stores the size number of 3245 * blockpointers and iterates over them while the bpobj's lock held, so 3246 * the sizes returned to us are consistent which what was actually 3247 * processed. 3248 */ 3249 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t, 3250 &first_size); 3251 if (err == 0) 3252 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep, 3253 t, &next_size); 3254 3255 if (err == 0) { 3256 while (zfs_livelist_condense_sync_pause && 3257 !(zthr_has_waiters(t) || zthr_iscancelled(t))) 3258 delay(1); 3259 3260 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 3261 dmu_tx_mark_netfree(tx); 3262 dmu_tx_hold_space(tx, 1); 3263 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE); 3264 if (err == 0) { 3265 /* 3266 * Prevent the condense zthr restarting before 3267 * the synctask completes. 3268 */ 3269 spa->spa_to_condense.syncing = B_TRUE; 3270 lca->spa = spa; 3271 lca->first_size = first_size; 3272 lca->next_size = next_size; 3273 dsl_sync_task_nowait(spa_get_dsl(spa), 3274 spa_livelist_condense_sync, lca, tx); 3275 dmu_tx_commit(tx); 3276 return; 3277 } 3278 } 3279 /* 3280 * Condensing can not continue: either it was externally stopped or 3281 * we were unable to assign to a tx because the pool has run out of 3282 * space. In the second case, we'll just end up trying to condense 3283 * again in a later txg. 3284 */ 3285 ASSERT(err != 0); 3286 bplist_clear(&lca->to_keep); 3287 bplist_destroy(&lca->to_keep); 3288 kmem_free(lca, sizeof (livelist_condense_arg_t)); 3289 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa); 3290 spa->spa_to_condense.ds = NULL; 3291 if (err == EINTR) 3292 zfs_livelist_condense_zthr_cancel++; 3293 } 3294 3295 /* 3296 * Check that there is something to condense but that a condense is not 3297 * already in progress and that condensing has not been cancelled. 3298 */ 3299 static boolean_t 3300 spa_livelist_condense_cb_check(void *arg, zthr_t *z) 3301 { 3302 (void) z; 3303 spa_t *spa = arg; 3304 if ((spa->spa_to_condense.ds != NULL) && 3305 (spa->spa_to_condense.syncing == B_FALSE) && 3306 (spa->spa_to_condense.cancelled == B_FALSE)) { 3307 return (B_TRUE); 3308 } 3309 return (B_FALSE); 3310 } 3311 3312 static void 3313 spa_start_livelist_condensing_thread(spa_t *spa) 3314 { 3315 spa->spa_to_condense.ds = NULL; 3316 spa->spa_to_condense.first = NULL; 3317 spa->spa_to_condense.next = NULL; 3318 spa->spa_to_condense.syncing = B_FALSE; 3319 spa->spa_to_condense.cancelled = B_FALSE; 3320 3321 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL); 3322 spa->spa_livelist_condense_zthr = 3323 zthr_create("z_livelist_condense", 3324 spa_livelist_condense_cb_check, 3325 spa_livelist_condense_cb, spa, minclsyspri); 3326 } 3327 3328 static void 3329 spa_spawn_aux_threads(spa_t *spa) 3330 { 3331 ASSERT(spa_writeable(spa)); 3332 3333 spa_start_raidz_expansion_thread(spa); 3334 spa_start_indirect_condensing_thread(spa); 3335 spa_start_livelist_destroy_thread(spa); 3336 spa_start_livelist_condensing_thread(spa); 3337 3338 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL); 3339 spa->spa_checkpoint_discard_zthr = 3340 zthr_create("z_checkpoint_discard", 3341 spa_checkpoint_discard_thread_check, 3342 spa_checkpoint_discard_thread, spa, minclsyspri); 3343 } 3344 3345 /* 3346 * Fix up config after a partly-completed split. This is done with the 3347 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 3348 * pool have that entry in their config, but only the splitting one contains 3349 * a list of all the guids of the vdevs that are being split off. 3350 * 3351 * This function determines what to do with that list: either rejoin 3352 * all the disks to the pool, or complete the splitting process. To attempt 3353 * the rejoin, each disk that is offlined is marked online again, and 3354 * we do a reopen() call. If the vdev label for every disk that was 3355 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 3356 * then we call vdev_split() on each disk, and complete the split. 3357 * 3358 * Otherwise we leave the config alone, with all the vdevs in place in 3359 * the original pool. 3360 */ 3361 static void 3362 spa_try_repair(spa_t *spa, nvlist_t *config) 3363 { 3364 uint_t extracted; 3365 uint64_t *glist; 3366 uint_t i, gcount; 3367 nvlist_t *nvl; 3368 vdev_t **vd; 3369 boolean_t attempt_reopen; 3370 3371 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 3372 return; 3373 3374 /* check that the config is complete */ 3375 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 3376 &glist, &gcount) != 0) 3377 return; 3378 3379 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 3380 3381 /* attempt to online all the vdevs & validate */ 3382 attempt_reopen = B_TRUE; 3383 for (i = 0; i < gcount; i++) { 3384 if (glist[i] == 0) /* vdev is hole */ 3385 continue; 3386 3387 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 3388 if (vd[i] == NULL) { 3389 /* 3390 * Don't bother attempting to reopen the disks; 3391 * just do the split. 3392 */ 3393 attempt_reopen = B_FALSE; 3394 } else { 3395 /* attempt to re-online it */ 3396 vd[i]->vdev_offline = B_FALSE; 3397 } 3398 } 3399 3400 if (attempt_reopen) { 3401 vdev_reopen(spa->spa_root_vdev); 3402 3403 /* check each device to see what state it's in */ 3404 for (extracted = 0, i = 0; i < gcount; i++) { 3405 if (vd[i] != NULL && 3406 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 3407 break; 3408 ++extracted; 3409 } 3410 } 3411 3412 /* 3413 * If every disk has been moved to the new pool, or if we never 3414 * even attempted to look at them, then we split them off for 3415 * good. 3416 */ 3417 if (!attempt_reopen || gcount == extracted) { 3418 for (i = 0; i < gcount; i++) 3419 if (vd[i] != NULL) 3420 vdev_split(vd[i]); 3421 vdev_reopen(spa->spa_root_vdev); 3422 } 3423 3424 kmem_free(vd, gcount * sizeof (vdev_t *)); 3425 } 3426 3427 static int 3428 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type) 3429 { 3430 const char *ereport = FM_EREPORT_ZFS_POOL; 3431 int error; 3432 3433 spa->spa_load_state = state; 3434 (void) spa_import_progress_set_state(spa_guid(spa), 3435 spa_load_state(spa)); 3436 spa_import_progress_set_notes(spa, "spa_load()"); 3437 3438 gethrestime(&spa->spa_loaded_ts); 3439 error = spa_load_impl(spa, type, &ereport); 3440 3441 /* 3442 * Don't count references from objsets that are already closed 3443 * and are making their way through the eviction process. 3444 */ 3445 spa_evicting_os_wait(spa); 3446 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 3447 if (error) { 3448 if (error != EEXIST) { 3449 spa->spa_loaded_ts.tv_sec = 0; 3450 spa->spa_loaded_ts.tv_nsec = 0; 3451 } 3452 if (error != EBADF) { 3453 (void) zfs_ereport_post(ereport, spa, 3454 NULL, NULL, NULL, 0); 3455 } 3456 } 3457 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 3458 spa->spa_ena = 0; 3459 3460 (void) spa_import_progress_set_state(spa_guid(spa), 3461 spa_load_state(spa)); 3462 3463 return (error); 3464 } 3465 3466 #ifdef ZFS_DEBUG 3467 /* 3468 * Count the number of per-vdev ZAPs associated with all of the vdevs in the 3469 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the 3470 * spa's per-vdev ZAP list. 3471 */ 3472 static uint64_t 3473 vdev_count_verify_zaps(vdev_t *vd) 3474 { 3475 spa_t *spa = vd->vdev_spa; 3476 uint64_t total = 0; 3477 3478 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) && 3479 vd->vdev_root_zap != 0) { 3480 total++; 3481 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 3482 spa->spa_all_vdev_zaps, vd->vdev_root_zap)); 3483 } 3484 if (vd->vdev_top_zap != 0) { 3485 total++; 3486 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 3487 spa->spa_all_vdev_zaps, vd->vdev_top_zap)); 3488 } 3489 if (vd->vdev_leaf_zap != 0) { 3490 total++; 3491 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 3492 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); 3493 } 3494 3495 for (uint64_t i = 0; i < vd->vdev_children; i++) { 3496 total += vdev_count_verify_zaps(vd->vdev_child[i]); 3497 } 3498 3499 return (total); 3500 } 3501 #else 3502 #define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0) 3503 #endif 3504 3505 /* 3506 * Determine whether the activity check is required. 3507 */ 3508 static boolean_t 3509 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label, 3510 nvlist_t *config) 3511 { 3512 uint64_t state = 0; 3513 uint64_t hostid = 0; 3514 uint64_t tryconfig_txg = 0; 3515 uint64_t tryconfig_timestamp = 0; 3516 uint16_t tryconfig_mmp_seq = 0; 3517 nvlist_t *nvinfo; 3518 3519 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 3520 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO); 3521 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG, 3522 &tryconfig_txg); 3523 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 3524 &tryconfig_timestamp); 3525 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ, 3526 &tryconfig_mmp_seq); 3527 } 3528 3529 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state); 3530 3531 /* 3532 * Disable the MMP activity check - This is used by zdb which 3533 * is intended to be used on potentially active pools. 3534 */ 3535 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) 3536 return (B_FALSE); 3537 3538 /* 3539 * Skip the activity check when the MMP feature is disabled. 3540 */ 3541 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0) 3542 return (B_FALSE); 3543 3544 /* 3545 * If the tryconfig_ values are nonzero, they are the results of an 3546 * earlier tryimport. If they all match the uberblock we just found, 3547 * then the pool has not changed and we return false so we do not test 3548 * a second time. 3549 */ 3550 if (tryconfig_txg && tryconfig_txg == ub->ub_txg && 3551 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp && 3552 tryconfig_mmp_seq && tryconfig_mmp_seq == 3553 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) 3554 return (B_FALSE); 3555 3556 /* 3557 * Allow the activity check to be skipped when importing the pool 3558 * on the same host which last imported it. Since the hostid from 3559 * configuration may be stale use the one read from the label. 3560 */ 3561 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID)) 3562 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID); 3563 3564 if (hostid == spa_get_hostid(spa)) 3565 return (B_FALSE); 3566 3567 /* 3568 * Skip the activity test when the pool was cleanly exported. 3569 */ 3570 if (state != POOL_STATE_ACTIVE) 3571 return (B_FALSE); 3572 3573 return (B_TRUE); 3574 } 3575 3576 /* 3577 * Nanoseconds the activity check must watch for changes on-disk. 3578 */ 3579 static uint64_t 3580 spa_activity_check_duration(spa_t *spa, uberblock_t *ub) 3581 { 3582 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1); 3583 uint64_t multihost_interval = MSEC2NSEC( 3584 MMP_INTERVAL_OK(zfs_multihost_interval)); 3585 uint64_t import_delay = MAX(NANOSEC, import_intervals * 3586 multihost_interval); 3587 3588 /* 3589 * Local tunables determine a minimum duration except for the case 3590 * where we know when the remote host will suspend the pool if MMP 3591 * writes do not land. 3592 * 3593 * See Big Theory comment at the top of mmp.c for the reasoning behind 3594 * these cases and times. 3595 */ 3596 3597 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100); 3598 3599 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && 3600 MMP_FAIL_INT(ub) > 0) { 3601 3602 /* MMP on remote host will suspend pool after failed writes */ 3603 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) * 3604 MMP_IMPORT_SAFETY_FACTOR / 100; 3605 3606 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp " 3607 "mmp_fails=%llu ub_mmp mmp_interval=%llu " 3608 "import_intervals=%llu", (u_longlong_t)import_delay, 3609 (u_longlong_t)MMP_FAIL_INT(ub), 3610 (u_longlong_t)MMP_INTERVAL(ub), 3611 (u_longlong_t)import_intervals); 3612 3613 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && 3614 MMP_FAIL_INT(ub) == 0) { 3615 3616 /* MMP on remote host will never suspend pool */ 3617 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) + 3618 ub->ub_mmp_delay) * import_intervals); 3619 3620 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp " 3621 "mmp_interval=%llu ub_mmp_delay=%llu " 3622 "import_intervals=%llu", (u_longlong_t)import_delay, 3623 (u_longlong_t)MMP_INTERVAL(ub), 3624 (u_longlong_t)ub->ub_mmp_delay, 3625 (u_longlong_t)import_intervals); 3626 3627 } else if (MMP_VALID(ub)) { 3628 /* 3629 * zfs-0.7 compatibility case 3630 */ 3631 3632 import_delay = MAX(import_delay, (multihost_interval + 3633 ub->ub_mmp_delay) * import_intervals); 3634 3635 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu " 3636 "import_intervals=%llu leaves=%u", 3637 (u_longlong_t)import_delay, 3638 (u_longlong_t)ub->ub_mmp_delay, 3639 (u_longlong_t)import_intervals, 3640 vdev_count_leaves(spa)); 3641 } else { 3642 /* Using local tunings is the only reasonable option */ 3643 zfs_dbgmsg("pool last imported on non-MMP aware " 3644 "host using import_delay=%llu multihost_interval=%llu " 3645 "import_intervals=%llu", (u_longlong_t)import_delay, 3646 (u_longlong_t)multihost_interval, 3647 (u_longlong_t)import_intervals); 3648 } 3649 3650 return (import_delay); 3651 } 3652 3653 /* 3654 * Remote host activity check. 3655 * 3656 * error results: 3657 * 0 - no activity detected 3658 * EREMOTEIO - remote activity detected 3659 * EINTR - user canceled the operation 3660 */ 3661 static int 3662 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config, 3663 boolean_t importing) 3664 { 3665 uint64_t txg = ub->ub_txg; 3666 uint64_t timestamp = ub->ub_timestamp; 3667 uint64_t mmp_config = ub->ub_mmp_config; 3668 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0; 3669 uint64_t import_delay; 3670 hrtime_t import_expire, now; 3671 nvlist_t *mmp_label = NULL; 3672 vdev_t *rvd = spa->spa_root_vdev; 3673 kcondvar_t cv; 3674 kmutex_t mtx; 3675 int error = 0; 3676 3677 cv_init(&cv, NULL, CV_DEFAULT, NULL); 3678 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL); 3679 mutex_enter(&mtx); 3680 3681 /* 3682 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed 3683 * during the earlier tryimport. If the txg recorded there is 0 then 3684 * the pool is known to be active on another host. 3685 * 3686 * Otherwise, the pool might be in use on another host. Check for 3687 * changes in the uberblocks on disk if necessary. 3688 */ 3689 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 3690 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config, 3691 ZPOOL_CONFIG_LOAD_INFO); 3692 3693 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) && 3694 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) { 3695 vdev_uberblock_load(rvd, ub, &mmp_label); 3696 error = SET_ERROR(EREMOTEIO); 3697 goto out; 3698 } 3699 } 3700 3701 import_delay = spa_activity_check_duration(spa, ub); 3702 3703 /* Add a small random factor in case of simultaneous imports (0-25%) */ 3704 import_delay += import_delay * random_in_range(250) / 1000; 3705 3706 import_expire = gethrtime() + import_delay; 3707 3708 if (importing) { 3709 spa_import_progress_set_notes(spa, "Checking MMP activity, " 3710 "waiting %llu ms", (u_longlong_t)NSEC2MSEC(import_delay)); 3711 } 3712 3713 int iterations = 0; 3714 while ((now = gethrtime()) < import_expire) { 3715 if (importing && iterations++ % 30 == 0) { 3716 spa_import_progress_set_notes(spa, "Checking MMP " 3717 "activity, %llu ms remaining", 3718 (u_longlong_t)NSEC2MSEC(import_expire - now)); 3719 } 3720 3721 if (importing) { 3722 (void) spa_import_progress_set_mmp_check(spa_guid(spa), 3723 NSEC2SEC(import_expire - gethrtime())); 3724 } 3725 3726 vdev_uberblock_load(rvd, ub, &mmp_label); 3727 3728 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp || 3729 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) { 3730 zfs_dbgmsg("multihost activity detected " 3731 "txg %llu ub_txg %llu " 3732 "timestamp %llu ub_timestamp %llu " 3733 "mmp_config %#llx ub_mmp_config %#llx", 3734 (u_longlong_t)txg, (u_longlong_t)ub->ub_txg, 3735 (u_longlong_t)timestamp, 3736 (u_longlong_t)ub->ub_timestamp, 3737 (u_longlong_t)mmp_config, 3738 (u_longlong_t)ub->ub_mmp_config); 3739 3740 error = SET_ERROR(EREMOTEIO); 3741 break; 3742 } 3743 3744 if (mmp_label) { 3745 nvlist_free(mmp_label); 3746 mmp_label = NULL; 3747 } 3748 3749 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz); 3750 if (error != -1) { 3751 error = SET_ERROR(EINTR); 3752 break; 3753 } 3754 error = 0; 3755 } 3756 3757 out: 3758 mutex_exit(&mtx); 3759 mutex_destroy(&mtx); 3760 cv_destroy(&cv); 3761 3762 /* 3763 * If the pool is determined to be active store the status in the 3764 * spa->spa_load_info nvlist. If the remote hostname or hostid are 3765 * available from configuration read from disk store them as well. 3766 * This allows 'zpool import' to generate a more useful message. 3767 * 3768 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory) 3769 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool 3770 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool 3771 */ 3772 if (error == EREMOTEIO) { 3773 const char *hostname = "<unknown>"; 3774 uint64_t hostid = 0; 3775 3776 if (mmp_label) { 3777 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) { 3778 hostname = fnvlist_lookup_string(mmp_label, 3779 ZPOOL_CONFIG_HOSTNAME); 3780 fnvlist_add_string(spa->spa_load_info, 3781 ZPOOL_CONFIG_MMP_HOSTNAME, hostname); 3782 } 3783 3784 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) { 3785 hostid = fnvlist_lookup_uint64(mmp_label, 3786 ZPOOL_CONFIG_HOSTID); 3787 fnvlist_add_uint64(spa->spa_load_info, 3788 ZPOOL_CONFIG_MMP_HOSTID, hostid); 3789 } 3790 } 3791 3792 fnvlist_add_uint64(spa->spa_load_info, 3793 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE); 3794 fnvlist_add_uint64(spa->spa_load_info, 3795 ZPOOL_CONFIG_MMP_TXG, 0); 3796 3797 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO); 3798 } 3799 3800 if (mmp_label) 3801 nvlist_free(mmp_label); 3802 3803 return (error); 3804 } 3805 3806 /* 3807 * Called from zfs_ioc_clear for a pool that was suspended 3808 * after failing mmp write checks. 3809 */ 3810 boolean_t 3811 spa_mmp_remote_host_activity(spa_t *spa) 3812 { 3813 ASSERT(spa_multihost(spa) && spa_suspended(spa)); 3814 3815 nvlist_t *best_label; 3816 uberblock_t best_ub; 3817 3818 /* 3819 * Locate the best uberblock on disk 3820 */ 3821 vdev_uberblock_load(spa->spa_root_vdev, &best_ub, &best_label); 3822 if (best_label) { 3823 /* 3824 * confirm that the best hostid matches our hostid 3825 */ 3826 if (nvlist_exists(best_label, ZPOOL_CONFIG_HOSTID) && 3827 spa_get_hostid(spa) != 3828 fnvlist_lookup_uint64(best_label, ZPOOL_CONFIG_HOSTID)) { 3829 nvlist_free(best_label); 3830 return (B_TRUE); 3831 } 3832 nvlist_free(best_label); 3833 } else { 3834 return (B_TRUE); 3835 } 3836 3837 if (!MMP_VALID(&best_ub) || 3838 !MMP_FAIL_INT_VALID(&best_ub) || 3839 MMP_FAIL_INT(&best_ub) == 0) { 3840 return (B_TRUE); 3841 } 3842 3843 if (best_ub.ub_txg != spa->spa_uberblock.ub_txg || 3844 best_ub.ub_timestamp != spa->spa_uberblock.ub_timestamp) { 3845 zfs_dbgmsg("txg mismatch detected during pool clear " 3846 "txg %llu ub_txg %llu timestamp %llu ub_timestamp %llu", 3847 (u_longlong_t)spa->spa_uberblock.ub_txg, 3848 (u_longlong_t)best_ub.ub_txg, 3849 (u_longlong_t)spa->spa_uberblock.ub_timestamp, 3850 (u_longlong_t)best_ub.ub_timestamp); 3851 return (B_TRUE); 3852 } 3853 3854 /* 3855 * Perform an activity check looking for any remote writer 3856 */ 3857 return (spa_activity_check(spa, &spa->spa_uberblock, spa->spa_config, 3858 B_FALSE) != 0); 3859 } 3860 3861 static int 3862 spa_verify_host(spa_t *spa, nvlist_t *mos_config) 3863 { 3864 uint64_t hostid; 3865 const char *hostname; 3866 uint64_t myhostid = 0; 3867 3868 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config, 3869 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 3870 hostname = fnvlist_lookup_string(mos_config, 3871 ZPOOL_CONFIG_HOSTNAME); 3872 3873 myhostid = zone_get_hostid(NULL); 3874 3875 if (hostid != 0 && myhostid != 0 && hostid != myhostid) { 3876 cmn_err(CE_WARN, "pool '%s' could not be " 3877 "loaded as it was last accessed by " 3878 "another system (host: %s hostid: 0x%llx). " 3879 "See: https://openzfs.github.io/openzfs-docs/msg/" 3880 "ZFS-8000-EY", 3881 spa_name(spa), hostname, (u_longlong_t)hostid); 3882 spa_load_failed(spa, "hostid verification failed: pool " 3883 "last accessed by host: %s (hostid: 0x%llx)", 3884 hostname, (u_longlong_t)hostid); 3885 return (SET_ERROR(EBADF)); 3886 } 3887 } 3888 3889 return (0); 3890 } 3891 3892 static int 3893 spa_ld_parse_config(spa_t *spa, spa_import_type_t type) 3894 { 3895 int error = 0; 3896 nvlist_t *nvtree, *nvl, *config = spa->spa_config; 3897 int parse; 3898 vdev_t *rvd; 3899 uint64_t pool_guid; 3900 const char *comment; 3901 const char *compatibility; 3902 3903 /* 3904 * Versioning wasn't explicitly added to the label until later, so if 3905 * it's not present treat it as the initial version. 3906 */ 3907 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 3908 &spa->spa_ubsync.ub_version) != 0) 3909 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 3910 3911 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 3912 spa_load_failed(spa, "invalid config provided: '%s' missing", 3913 ZPOOL_CONFIG_POOL_GUID); 3914 return (SET_ERROR(EINVAL)); 3915 } 3916 3917 /* 3918 * If we are doing an import, ensure that the pool is not already 3919 * imported by checking if its pool guid already exists in the 3920 * spa namespace. 3921 * 3922 * The only case that we allow an already imported pool to be 3923 * imported again, is when the pool is checkpointed and we want to 3924 * look at its checkpointed state from userland tools like zdb. 3925 */ 3926 #ifdef _KERNEL 3927 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 3928 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 3929 spa_guid_exists(pool_guid, 0)) { 3930 #else 3931 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 3932 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 3933 spa_guid_exists(pool_guid, 0) && 3934 !spa_importing_readonly_checkpoint(spa)) { 3935 #endif 3936 spa_load_failed(spa, "a pool with guid %llu is already open", 3937 (u_longlong_t)pool_guid); 3938 return (SET_ERROR(EEXIST)); 3939 } 3940 3941 spa->spa_config_guid = pool_guid; 3942 3943 nvlist_free(spa->spa_load_info); 3944 spa->spa_load_info = fnvlist_alloc(); 3945 3946 ASSERT(spa->spa_comment == NULL); 3947 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 3948 spa->spa_comment = spa_strdup(comment); 3949 3950 ASSERT(spa->spa_compatibility == NULL); 3951 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY, 3952 &compatibility) == 0) 3953 spa->spa_compatibility = spa_strdup(compatibility); 3954 3955 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 3956 &spa->spa_config_txg); 3957 3958 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0) 3959 spa->spa_config_splitting = fnvlist_dup(nvl); 3960 3961 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) { 3962 spa_load_failed(spa, "invalid config provided: '%s' missing", 3963 ZPOOL_CONFIG_VDEV_TREE); 3964 return (SET_ERROR(EINVAL)); 3965 } 3966 3967 /* 3968 * Create "The Godfather" zio to hold all async IOs 3969 */ 3970 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3971 KM_SLEEP); 3972 for (int i = 0; i < max_ncpus; i++) { 3973 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3974 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3975 ZIO_FLAG_GODFATHER); 3976 } 3977 3978 /* 3979 * Parse the configuration into a vdev tree. We explicitly set the 3980 * value that will be returned by spa_version() since parsing the 3981 * configuration requires knowing the version number. 3982 */ 3983 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3984 parse = (type == SPA_IMPORT_EXISTING ? 3985 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 3986 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse); 3987 spa_config_exit(spa, SCL_ALL, FTAG); 3988 3989 if (error != 0) { 3990 spa_load_failed(spa, "unable to parse config [error=%d]", 3991 error); 3992 return (error); 3993 } 3994 3995 ASSERT(spa->spa_root_vdev == rvd); 3996 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 3997 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 3998 3999 if (type != SPA_IMPORT_ASSEMBLE) { 4000 ASSERT(spa_guid(spa) == pool_guid); 4001 } 4002 4003 return (0); 4004 } 4005 4006 /* 4007 * Recursively open all vdevs in the vdev tree. This function is called twice: 4008 * first with the untrusted config, then with the trusted config. 4009 */ 4010 static int 4011 spa_ld_open_vdevs(spa_t *spa) 4012 { 4013 int error = 0; 4014 4015 /* 4016 * spa_missing_tvds_allowed defines how many top-level vdevs can be 4017 * missing/unopenable for the root vdev to be still considered openable. 4018 */ 4019 if (spa->spa_trust_config) { 4020 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds; 4021 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) { 4022 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile; 4023 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) { 4024 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan; 4025 } else { 4026 spa->spa_missing_tvds_allowed = 0; 4027 } 4028 4029 spa->spa_missing_tvds_allowed = 4030 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed); 4031 4032 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4033 error = vdev_open(spa->spa_root_vdev); 4034 spa_config_exit(spa, SCL_ALL, FTAG); 4035 4036 if (spa->spa_missing_tvds != 0) { 4037 spa_load_note(spa, "vdev tree has %lld missing top-level " 4038 "vdevs.", (u_longlong_t)spa->spa_missing_tvds); 4039 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) { 4040 /* 4041 * Although theoretically we could allow users to open 4042 * incomplete pools in RW mode, we'd need to add a lot 4043 * of extra logic (e.g. adjust pool space to account 4044 * for missing vdevs). 4045 * This limitation also prevents users from accidentally 4046 * opening the pool in RW mode during data recovery and 4047 * damaging it further. 4048 */ 4049 spa_load_note(spa, "pools with missing top-level " 4050 "vdevs can only be opened in read-only mode."); 4051 error = SET_ERROR(ENXIO); 4052 } else { 4053 spa_load_note(spa, "current settings allow for maximum " 4054 "%lld missing top-level vdevs at this stage.", 4055 (u_longlong_t)spa->spa_missing_tvds_allowed); 4056 } 4057 } 4058 if (error != 0) { 4059 spa_load_failed(spa, "unable to open vdev tree [error=%d]", 4060 error); 4061 } 4062 if (spa->spa_missing_tvds != 0 || error != 0) 4063 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2); 4064 4065 return (error); 4066 } 4067 4068 /* 4069 * We need to validate the vdev labels against the configuration that 4070 * we have in hand. This function is called twice: first with an untrusted 4071 * config, then with a trusted config. The validation is more strict when the 4072 * config is trusted. 4073 */ 4074 static int 4075 spa_ld_validate_vdevs(spa_t *spa) 4076 { 4077 int error = 0; 4078 vdev_t *rvd = spa->spa_root_vdev; 4079 4080 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4081 error = vdev_validate(rvd); 4082 spa_config_exit(spa, SCL_ALL, FTAG); 4083 4084 if (error != 0) { 4085 spa_load_failed(spa, "vdev_validate failed [error=%d]", error); 4086 return (error); 4087 } 4088 4089 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 4090 spa_load_failed(spa, "cannot open vdev tree after invalidating " 4091 "some vdevs"); 4092 vdev_dbgmsg_print_tree(rvd, 2); 4093 return (SET_ERROR(ENXIO)); 4094 } 4095 4096 return (0); 4097 } 4098 4099 static void 4100 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub) 4101 { 4102 spa->spa_state = POOL_STATE_ACTIVE; 4103 spa->spa_ubsync = spa->spa_uberblock; 4104 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 4105 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 4106 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 4107 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 4108 spa->spa_claim_max_txg = spa->spa_first_txg; 4109 spa->spa_prev_software_version = ub->ub_software_version; 4110 } 4111 4112 static int 4113 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type) 4114 { 4115 vdev_t *rvd = spa->spa_root_vdev; 4116 nvlist_t *label; 4117 uberblock_t *ub = &spa->spa_uberblock; 4118 boolean_t activity_check = B_FALSE; 4119 4120 /* 4121 * If we are opening the checkpointed state of the pool by 4122 * rewinding to it, at this point we will have written the 4123 * checkpointed uberblock to the vdev labels, so searching 4124 * the labels will find the right uberblock. However, if 4125 * we are opening the checkpointed state read-only, we have 4126 * not modified the labels. Therefore, we must ignore the 4127 * labels and continue using the spa_uberblock that was set 4128 * by spa_ld_checkpoint_rewind. 4129 * 4130 * Note that it would be fine to ignore the labels when 4131 * rewinding (opening writeable) as well. However, if we 4132 * crash just after writing the labels, we will end up 4133 * searching the labels. Doing so in the common case means 4134 * that this code path gets exercised normally, rather than 4135 * just in the edge case. 4136 */ 4137 if (ub->ub_checkpoint_txg != 0 && 4138 spa_importing_readonly_checkpoint(spa)) { 4139 spa_ld_select_uberblock_done(spa, ub); 4140 return (0); 4141 } 4142 4143 /* 4144 * Find the best uberblock. 4145 */ 4146 vdev_uberblock_load(rvd, ub, &label); 4147 4148 /* 4149 * If we weren't able to find a single valid uberblock, return failure. 4150 */ 4151 if (ub->ub_txg == 0) { 4152 nvlist_free(label); 4153 spa_load_failed(spa, "no valid uberblock found"); 4154 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 4155 } 4156 4157 if (spa->spa_load_max_txg != UINT64_MAX) { 4158 (void) spa_import_progress_set_max_txg(spa_guid(spa), 4159 (u_longlong_t)spa->spa_load_max_txg); 4160 } 4161 spa_load_note(spa, "using uberblock with txg=%llu", 4162 (u_longlong_t)ub->ub_txg); 4163 if (ub->ub_raidz_reflow_info != 0) { 4164 spa_load_note(spa, "uberblock raidz_reflow_info: " 4165 "state=%u offset=%llu", 4166 (int)RRSS_GET_STATE(ub), 4167 (u_longlong_t)RRSS_GET_OFFSET(ub)); 4168 } 4169 4170 4171 /* 4172 * For pools which have the multihost property on determine if the 4173 * pool is truly inactive and can be safely imported. Prevent 4174 * hosts which don't have a hostid set from importing the pool. 4175 */ 4176 activity_check = spa_activity_check_required(spa, ub, label, 4177 spa->spa_config); 4178 if (activity_check) { 4179 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay && 4180 spa_get_hostid(spa) == 0) { 4181 nvlist_free(label); 4182 fnvlist_add_uint64(spa->spa_load_info, 4183 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 4184 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 4185 } 4186 4187 int error = 4188 spa_activity_check(spa, ub, spa->spa_config, B_TRUE); 4189 if (error) { 4190 nvlist_free(label); 4191 return (error); 4192 } 4193 4194 fnvlist_add_uint64(spa->spa_load_info, 4195 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE); 4196 fnvlist_add_uint64(spa->spa_load_info, 4197 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg); 4198 fnvlist_add_uint16(spa->spa_load_info, 4199 ZPOOL_CONFIG_MMP_SEQ, 4200 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)); 4201 } 4202 4203 /* 4204 * If the pool has an unsupported version we can't open it. 4205 */ 4206 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 4207 nvlist_free(label); 4208 spa_load_failed(spa, "version %llu is not supported", 4209 (u_longlong_t)ub->ub_version); 4210 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 4211 } 4212 4213 if (ub->ub_version >= SPA_VERSION_FEATURES) { 4214 nvlist_t *features; 4215 4216 /* 4217 * If we weren't able to find what's necessary for reading the 4218 * MOS in the label, return failure. 4219 */ 4220 if (label == NULL) { 4221 spa_load_failed(spa, "label config unavailable"); 4222 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 4223 ENXIO)); 4224 } 4225 4226 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ, 4227 &features) != 0) { 4228 nvlist_free(label); 4229 spa_load_failed(spa, "invalid label: '%s' missing", 4230 ZPOOL_CONFIG_FEATURES_FOR_READ); 4231 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 4232 ENXIO)); 4233 } 4234 4235 /* 4236 * Update our in-core representation with the definitive values 4237 * from the label. 4238 */ 4239 nvlist_free(spa->spa_label_features); 4240 spa->spa_label_features = fnvlist_dup(features); 4241 } 4242 4243 nvlist_free(label); 4244 4245 /* 4246 * Look through entries in the label nvlist's features_for_read. If 4247 * there is a feature listed there which we don't understand then we 4248 * cannot open a pool. 4249 */ 4250 if (ub->ub_version >= SPA_VERSION_FEATURES) { 4251 nvlist_t *unsup_feat; 4252 4253 unsup_feat = fnvlist_alloc(); 4254 4255 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 4256 NULL); nvp != NULL; 4257 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 4258 if (!zfeature_is_supported(nvpair_name(nvp))) { 4259 fnvlist_add_string(unsup_feat, 4260 nvpair_name(nvp), ""); 4261 } 4262 } 4263 4264 if (!nvlist_empty(unsup_feat)) { 4265 fnvlist_add_nvlist(spa->spa_load_info, 4266 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 4267 nvlist_free(unsup_feat); 4268 spa_load_failed(spa, "some features are unsupported"); 4269 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 4270 ENOTSUP)); 4271 } 4272 4273 nvlist_free(unsup_feat); 4274 } 4275 4276 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 4277 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4278 spa_try_repair(spa, spa->spa_config); 4279 spa_config_exit(spa, SCL_ALL, FTAG); 4280 nvlist_free(spa->spa_config_splitting); 4281 spa->spa_config_splitting = NULL; 4282 } 4283 4284 /* 4285 * Initialize internal SPA structures. 4286 */ 4287 spa_ld_select_uberblock_done(spa, ub); 4288 4289 return (0); 4290 } 4291 4292 static int 4293 spa_ld_open_rootbp(spa_t *spa) 4294 { 4295 int error = 0; 4296 vdev_t *rvd = spa->spa_root_vdev; 4297 4298 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 4299 if (error != 0) { 4300 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init " 4301 "[error=%d]", error); 4302 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4303 } 4304 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 4305 4306 return (0); 4307 } 4308 4309 static int 4310 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type, 4311 boolean_t reloading) 4312 { 4313 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 4314 nvlist_t *nv, *mos_config, *policy; 4315 int error = 0, copy_error; 4316 uint64_t healthy_tvds, healthy_tvds_mos; 4317 uint64_t mos_config_txg; 4318 4319 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE) 4320 != 0) 4321 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4322 4323 /* 4324 * If we're assembling a pool from a split, the config provided is 4325 * already trusted so there is nothing to do. 4326 */ 4327 if (type == SPA_IMPORT_ASSEMBLE) 4328 return (0); 4329 4330 healthy_tvds = spa_healthy_core_tvds(spa); 4331 4332 if (load_nvlist(spa, spa->spa_config_object, &mos_config) 4333 != 0) { 4334 spa_load_failed(spa, "unable to retrieve MOS config"); 4335 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4336 } 4337 4338 /* 4339 * If we are doing an open, pool owner wasn't verified yet, thus do 4340 * the verification here. 4341 */ 4342 if (spa->spa_load_state == SPA_LOAD_OPEN) { 4343 error = spa_verify_host(spa, mos_config); 4344 if (error != 0) { 4345 nvlist_free(mos_config); 4346 return (error); 4347 } 4348 } 4349 4350 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE); 4351 4352 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4353 4354 /* 4355 * Build a new vdev tree from the trusted config 4356 */ 4357 error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD); 4358 if (error != 0) { 4359 nvlist_free(mos_config); 4360 spa_config_exit(spa, SCL_ALL, FTAG); 4361 spa_load_failed(spa, "spa_config_parse failed [error=%d]", 4362 error); 4363 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4364 } 4365 4366 /* 4367 * Vdev paths in the MOS may be obsolete. If the untrusted config was 4368 * obtained by scanning /dev/dsk, then it will have the right vdev 4369 * paths. We update the trusted MOS config with this information. 4370 * We first try to copy the paths with vdev_copy_path_strict, which 4371 * succeeds only when both configs have exactly the same vdev tree. 4372 * If that fails, we fall back to a more flexible method that has a 4373 * best effort policy. 4374 */ 4375 copy_error = vdev_copy_path_strict(rvd, mrvd); 4376 if (copy_error != 0 || spa_load_print_vdev_tree) { 4377 spa_load_note(spa, "provided vdev tree:"); 4378 vdev_dbgmsg_print_tree(rvd, 2); 4379 spa_load_note(spa, "MOS vdev tree:"); 4380 vdev_dbgmsg_print_tree(mrvd, 2); 4381 } 4382 if (copy_error != 0) { 4383 spa_load_note(spa, "vdev_copy_path_strict failed, falling " 4384 "back to vdev_copy_path_relaxed"); 4385 vdev_copy_path_relaxed(rvd, mrvd); 4386 } 4387 4388 vdev_close(rvd); 4389 vdev_free(rvd); 4390 spa->spa_root_vdev = mrvd; 4391 rvd = mrvd; 4392 spa_config_exit(spa, SCL_ALL, FTAG); 4393 4394 /* 4395 * If 'zpool import' used a cached config, then the on-disk hostid and 4396 * hostname may be different to the cached config in ways that should 4397 * prevent import. Userspace can't discover this without a scan, but 4398 * we know, so we add these values to LOAD_INFO so the caller can know 4399 * the difference. 4400 * 4401 * Note that we have to do this before the config is regenerated, 4402 * because the new config will have the hostid and hostname for this 4403 * host, in readiness for import. 4404 */ 4405 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID)) 4406 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID, 4407 fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID)); 4408 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME)) 4409 fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME, 4410 fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME)); 4411 4412 /* 4413 * We will use spa_config if we decide to reload the spa or if spa_load 4414 * fails and we rewind. We must thus regenerate the config using the 4415 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to 4416 * pass settings on how to load the pool and is not stored in the MOS. 4417 * We copy it over to our new, trusted config. 4418 */ 4419 mos_config_txg = fnvlist_lookup_uint64(mos_config, 4420 ZPOOL_CONFIG_POOL_TXG); 4421 nvlist_free(mos_config); 4422 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE); 4423 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY, 4424 &policy) == 0) 4425 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy); 4426 spa_config_set(spa, mos_config); 4427 spa->spa_config_source = SPA_CONFIG_SRC_MOS; 4428 4429 /* 4430 * Now that we got the config from the MOS, we should be more strict 4431 * in checking blkptrs and can make assumptions about the consistency 4432 * of the vdev tree. spa_trust_config must be set to true before opening 4433 * vdevs in order for them to be writeable. 4434 */ 4435 spa->spa_trust_config = B_TRUE; 4436 4437 /* 4438 * Open and validate the new vdev tree 4439 */ 4440 error = spa_ld_open_vdevs(spa); 4441 if (error != 0) 4442 return (error); 4443 4444 error = spa_ld_validate_vdevs(spa); 4445 if (error != 0) 4446 return (error); 4447 4448 if (copy_error != 0 || spa_load_print_vdev_tree) { 4449 spa_load_note(spa, "final vdev tree:"); 4450 vdev_dbgmsg_print_tree(rvd, 2); 4451 } 4452 4453 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT && 4454 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) { 4455 /* 4456 * Sanity check to make sure that we are indeed loading the 4457 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds 4458 * in the config provided and they happened to be the only ones 4459 * to have the latest uberblock, we could involuntarily perform 4460 * an extreme rewind. 4461 */ 4462 healthy_tvds_mos = spa_healthy_core_tvds(spa); 4463 if (healthy_tvds_mos - healthy_tvds >= 4464 SPA_SYNC_MIN_VDEVS) { 4465 spa_load_note(spa, "config provided misses too many " 4466 "top-level vdevs compared to MOS (%lld vs %lld). ", 4467 (u_longlong_t)healthy_tvds, 4468 (u_longlong_t)healthy_tvds_mos); 4469 spa_load_note(spa, "vdev tree:"); 4470 vdev_dbgmsg_print_tree(rvd, 2); 4471 if (reloading) { 4472 spa_load_failed(spa, "config was already " 4473 "provided from MOS. Aborting."); 4474 return (spa_vdev_err(rvd, 4475 VDEV_AUX_CORRUPT_DATA, EIO)); 4476 } 4477 spa_load_note(spa, "spa must be reloaded using MOS " 4478 "config"); 4479 return (SET_ERROR(EAGAIN)); 4480 } 4481 } 4482 4483 error = spa_check_for_missing_logs(spa); 4484 if (error != 0) 4485 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 4486 4487 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) { 4488 spa_load_failed(spa, "uberblock guid sum doesn't match MOS " 4489 "guid sum (%llu != %llu)", 4490 (u_longlong_t)spa->spa_uberblock.ub_guid_sum, 4491 (u_longlong_t)rvd->vdev_guid_sum); 4492 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 4493 ENXIO)); 4494 } 4495 4496 return (0); 4497 } 4498 4499 static int 4500 spa_ld_open_indirect_vdev_metadata(spa_t *spa) 4501 { 4502 int error = 0; 4503 vdev_t *rvd = spa->spa_root_vdev; 4504 4505 /* 4506 * Everything that we read before spa_remove_init() must be stored 4507 * on concreted vdevs. Therefore we do this as early as possible. 4508 */ 4509 error = spa_remove_init(spa); 4510 if (error != 0) { 4511 spa_load_failed(spa, "spa_remove_init failed [error=%d]", 4512 error); 4513 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4514 } 4515 4516 /* 4517 * Retrieve information needed to condense indirect vdev mappings. 4518 */ 4519 error = spa_condense_init(spa); 4520 if (error != 0) { 4521 spa_load_failed(spa, "spa_condense_init failed [error=%d]", 4522 error); 4523 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4524 } 4525 4526 return (0); 4527 } 4528 4529 static int 4530 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep) 4531 { 4532 int error = 0; 4533 vdev_t *rvd = spa->spa_root_vdev; 4534 4535 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 4536 boolean_t missing_feat_read = B_FALSE; 4537 nvlist_t *unsup_feat, *enabled_feat; 4538 4539 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 4540 &spa->spa_feat_for_read_obj, B_TRUE) != 0) { 4541 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4542 } 4543 4544 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 4545 &spa->spa_feat_for_write_obj, B_TRUE) != 0) { 4546 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4547 } 4548 4549 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 4550 &spa->spa_feat_desc_obj, B_TRUE) != 0) { 4551 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4552 } 4553 4554 enabled_feat = fnvlist_alloc(); 4555 unsup_feat = fnvlist_alloc(); 4556 4557 if (!spa_features_check(spa, B_FALSE, 4558 unsup_feat, enabled_feat)) 4559 missing_feat_read = B_TRUE; 4560 4561 if (spa_writeable(spa) || 4562 spa->spa_load_state == SPA_LOAD_TRYIMPORT) { 4563 if (!spa_features_check(spa, B_TRUE, 4564 unsup_feat, enabled_feat)) { 4565 *missing_feat_writep = B_TRUE; 4566 } 4567 } 4568 4569 fnvlist_add_nvlist(spa->spa_load_info, 4570 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 4571 4572 if (!nvlist_empty(unsup_feat)) { 4573 fnvlist_add_nvlist(spa->spa_load_info, 4574 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 4575 } 4576 4577 fnvlist_free(enabled_feat); 4578 fnvlist_free(unsup_feat); 4579 4580 if (!missing_feat_read) { 4581 fnvlist_add_boolean(spa->spa_load_info, 4582 ZPOOL_CONFIG_CAN_RDONLY); 4583 } 4584 4585 /* 4586 * If the state is SPA_LOAD_TRYIMPORT, our objective is 4587 * twofold: to determine whether the pool is available for 4588 * import in read-write mode and (if it is not) whether the 4589 * pool is available for import in read-only mode. If the pool 4590 * is available for import in read-write mode, it is displayed 4591 * as available in userland; if it is not available for import 4592 * in read-only mode, it is displayed as unavailable in 4593 * userland. If the pool is available for import in read-only 4594 * mode but not read-write mode, it is displayed as unavailable 4595 * in userland with a special note that the pool is actually 4596 * available for open in read-only mode. 4597 * 4598 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 4599 * missing a feature for write, we must first determine whether 4600 * the pool can be opened read-only before returning to 4601 * userland in order to know whether to display the 4602 * abovementioned note. 4603 */ 4604 if (missing_feat_read || (*missing_feat_writep && 4605 spa_writeable(spa))) { 4606 spa_load_failed(spa, "pool uses unsupported features"); 4607 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 4608 ENOTSUP)); 4609 } 4610 4611 /* 4612 * Load refcounts for ZFS features from disk into an in-memory 4613 * cache during SPA initialization. 4614 */ 4615 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 4616 uint64_t refcount; 4617 4618 error = feature_get_refcount_from_disk(spa, 4619 &spa_feature_table[i], &refcount); 4620 if (error == 0) { 4621 spa->spa_feat_refcount_cache[i] = refcount; 4622 } else if (error == ENOTSUP) { 4623 spa->spa_feat_refcount_cache[i] = 4624 SPA_FEATURE_DISABLED; 4625 } else { 4626 spa_load_failed(spa, "error getting refcount " 4627 "for feature %s [error=%d]", 4628 spa_feature_table[i].fi_guid, error); 4629 return (spa_vdev_err(rvd, 4630 VDEV_AUX_CORRUPT_DATA, EIO)); 4631 } 4632 } 4633 } 4634 4635 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 4636 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 4637 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0) 4638 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4639 } 4640 4641 /* 4642 * Encryption was added before bookmark_v2, even though bookmark_v2 4643 * is now a dependency. If this pool has encryption enabled without 4644 * bookmark_v2, trigger an errata message. 4645 */ 4646 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) && 4647 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) { 4648 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION; 4649 } 4650 4651 return (0); 4652 } 4653 4654 static int 4655 spa_ld_load_special_directories(spa_t *spa) 4656 { 4657 int error = 0; 4658 vdev_t *rvd = spa->spa_root_vdev; 4659 4660 spa->spa_is_initializing = B_TRUE; 4661 error = dsl_pool_open(spa->spa_dsl_pool); 4662 spa->spa_is_initializing = B_FALSE; 4663 if (error != 0) { 4664 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error); 4665 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4666 } 4667 4668 return (0); 4669 } 4670 4671 static int 4672 spa_ld_get_props(spa_t *spa) 4673 { 4674 int error = 0; 4675 uint64_t obj; 4676 vdev_t *rvd = spa->spa_root_vdev; 4677 4678 /* Grab the checksum salt from the MOS. */ 4679 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 4680 DMU_POOL_CHECKSUM_SALT, 1, 4681 sizeof (spa->spa_cksum_salt.zcs_bytes), 4682 spa->spa_cksum_salt.zcs_bytes); 4683 if (error == ENOENT) { 4684 /* Generate a new salt for subsequent use */ 4685 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 4686 sizeof (spa->spa_cksum_salt.zcs_bytes)); 4687 } else if (error != 0) { 4688 spa_load_failed(spa, "unable to retrieve checksum salt from " 4689 "MOS [error=%d]", error); 4690 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4691 } 4692 4693 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0) 4694 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4695 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 4696 if (error != 0) { 4697 spa_load_failed(spa, "error opening deferred-frees bpobj " 4698 "[error=%d]", error); 4699 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4700 } 4701 4702 /* 4703 * Load the bit that tells us to use the new accounting function 4704 * (raid-z deflation). If we have an older pool, this will not 4705 * be present. 4706 */ 4707 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE); 4708 if (error != 0 && error != ENOENT) 4709 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4710 4711 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 4712 &spa->spa_creation_version, B_FALSE); 4713 if (error != 0 && error != ENOENT) 4714 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4715 4716 /* 4717 * Load the persistent error log. If we have an older pool, this will 4718 * not be present. 4719 */ 4720 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last, 4721 B_FALSE); 4722 if (error != 0 && error != ENOENT) 4723 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4724 4725 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 4726 &spa->spa_errlog_scrub, B_FALSE); 4727 if (error != 0 && error != ENOENT) 4728 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4729 4730 /* 4731 * Load the livelist deletion field. If a livelist is queued for 4732 * deletion, indicate that in the spa 4733 */ 4734 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES, 4735 &spa->spa_livelists_to_delete, B_FALSE); 4736 if (error != 0 && error != ENOENT) 4737 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4738 4739 /* 4740 * Load the history object. If we have an older pool, this 4741 * will not be present. 4742 */ 4743 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE); 4744 if (error != 0 && error != ENOENT) 4745 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4746 4747 /* 4748 * Load the per-vdev ZAP map. If we have an older pool, this will not 4749 * be present; in this case, defer its creation to a later time to 4750 * avoid dirtying the MOS this early / out of sync context. See 4751 * spa_sync_config_object. 4752 */ 4753 4754 /* The sentinel is only available in the MOS config. */ 4755 nvlist_t *mos_config; 4756 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { 4757 spa_load_failed(spa, "unable to retrieve MOS config"); 4758 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4759 } 4760 4761 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, 4762 &spa->spa_all_vdev_zaps, B_FALSE); 4763 4764 if (error == ENOENT) { 4765 VERIFY(!nvlist_exists(mos_config, 4766 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 4767 spa->spa_avz_action = AVZ_ACTION_INITIALIZE; 4768 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 4769 } else if (error != 0) { 4770 nvlist_free(mos_config); 4771 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4772 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { 4773 /* 4774 * An older version of ZFS overwrote the sentinel value, so 4775 * we have orphaned per-vdev ZAPs in the MOS. Defer their 4776 * destruction to later; see spa_sync_config_object. 4777 */ 4778 spa->spa_avz_action = AVZ_ACTION_DESTROY; 4779 /* 4780 * We're assuming that no vdevs have had their ZAPs created 4781 * before this. Better be sure of it. 4782 */ 4783 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 4784 } 4785 nvlist_free(mos_config); 4786 4787 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 4788 4789 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object, 4790 B_FALSE); 4791 if (error && error != ENOENT) 4792 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4793 4794 if (error == 0) { 4795 uint64_t autoreplace = 0; 4796 4797 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 4798 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 4799 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 4800 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 4801 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 4802 spa_prop_find(spa, ZPOOL_PROP_DEDUP_TABLE_QUOTA, 4803 &spa->spa_dedup_table_quota); 4804 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost); 4805 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim); 4806 spa->spa_autoreplace = (autoreplace != 0); 4807 } 4808 4809 /* 4810 * If we are importing a pool with missing top-level vdevs, 4811 * we enforce that the pool doesn't panic or get suspended on 4812 * error since the likelihood of missing data is extremely high. 4813 */ 4814 if (spa->spa_missing_tvds > 0 && 4815 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE && 4816 spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4817 spa_load_note(spa, "forcing failmode to 'continue' " 4818 "as some top level vdevs are missing"); 4819 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE; 4820 } 4821 4822 return (0); 4823 } 4824 4825 static int 4826 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type) 4827 { 4828 int error = 0; 4829 vdev_t *rvd = spa->spa_root_vdev; 4830 4831 /* 4832 * If we're assembling the pool from the split-off vdevs of 4833 * an existing pool, we don't want to attach the spares & cache 4834 * devices. 4835 */ 4836 4837 /* 4838 * Load any hot spares for this pool. 4839 */ 4840 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object, 4841 B_FALSE); 4842 if (error != 0 && error != ENOENT) 4843 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4844 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 4845 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 4846 if (load_nvlist(spa, spa->spa_spares.sav_object, 4847 &spa->spa_spares.sav_config) != 0) { 4848 spa_load_failed(spa, "error loading spares nvlist"); 4849 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4850 } 4851 4852 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4853 spa_load_spares(spa); 4854 spa_config_exit(spa, SCL_ALL, FTAG); 4855 } else if (error == 0) { 4856 spa->spa_spares.sav_sync = B_TRUE; 4857 } 4858 4859 /* 4860 * Load any level 2 ARC devices for this pool. 4861 */ 4862 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 4863 &spa->spa_l2cache.sav_object, B_FALSE); 4864 if (error != 0 && error != ENOENT) 4865 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4866 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 4867 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 4868 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 4869 &spa->spa_l2cache.sav_config) != 0) { 4870 spa_load_failed(spa, "error loading l2cache nvlist"); 4871 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4872 } 4873 4874 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4875 spa_load_l2cache(spa); 4876 spa_config_exit(spa, SCL_ALL, FTAG); 4877 } else if (error == 0) { 4878 spa->spa_l2cache.sav_sync = B_TRUE; 4879 } 4880 4881 return (0); 4882 } 4883 4884 static int 4885 spa_ld_load_vdev_metadata(spa_t *spa) 4886 { 4887 int error = 0; 4888 vdev_t *rvd = spa->spa_root_vdev; 4889 4890 /* 4891 * If the 'multihost' property is set, then never allow a pool to 4892 * be imported when the system hostid is zero. The exception to 4893 * this rule is zdb which is always allowed to access pools. 4894 */ 4895 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 && 4896 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) { 4897 fnvlist_add_uint64(spa->spa_load_info, 4898 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 4899 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 4900 } 4901 4902 /* 4903 * If the 'autoreplace' property is set, then post a resource notifying 4904 * the ZFS DE that it should not issue any faults for unopenable 4905 * devices. We also iterate over the vdevs, and post a sysevent for any 4906 * unopenable vdevs so that the normal autoreplace handler can take 4907 * over. 4908 */ 4909 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4910 spa_check_removed(spa->spa_root_vdev); 4911 /* 4912 * For the import case, this is done in spa_import(), because 4913 * at this point we're using the spare definitions from 4914 * the MOS config, not necessarily from the userland config. 4915 */ 4916 if (spa->spa_load_state != SPA_LOAD_IMPORT) { 4917 spa_aux_check_removed(&spa->spa_spares); 4918 spa_aux_check_removed(&spa->spa_l2cache); 4919 } 4920 } 4921 4922 /* 4923 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc. 4924 */ 4925 error = vdev_load(rvd); 4926 if (error != 0) { 4927 spa_load_failed(spa, "vdev_load failed [error=%d]", error); 4928 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4929 } 4930 4931 error = spa_ld_log_spacemaps(spa); 4932 if (error != 0) { 4933 spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]", 4934 error); 4935 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4936 } 4937 4938 /* 4939 * Propagate the leaf DTLs we just loaded all the way up the vdev tree. 4940 */ 4941 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4942 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE); 4943 spa_config_exit(spa, SCL_ALL, FTAG); 4944 4945 return (0); 4946 } 4947 4948 static int 4949 spa_ld_load_dedup_tables(spa_t *spa) 4950 { 4951 int error = 0; 4952 vdev_t *rvd = spa->spa_root_vdev; 4953 4954 error = ddt_load(spa); 4955 if (error != 0) { 4956 spa_load_failed(spa, "ddt_load failed [error=%d]", error); 4957 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4958 } 4959 4960 return (0); 4961 } 4962 4963 static int 4964 spa_ld_load_brt(spa_t *spa) 4965 { 4966 int error = 0; 4967 vdev_t *rvd = spa->spa_root_vdev; 4968 4969 error = brt_load(spa); 4970 if (error != 0) { 4971 spa_load_failed(spa, "brt_load failed [error=%d]", error); 4972 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4973 } 4974 4975 return (0); 4976 } 4977 4978 static int 4979 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport) 4980 { 4981 vdev_t *rvd = spa->spa_root_vdev; 4982 4983 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) { 4984 boolean_t missing = spa_check_logs(spa); 4985 if (missing) { 4986 if (spa->spa_missing_tvds != 0) { 4987 spa_load_note(spa, "spa_check_logs failed " 4988 "so dropping the logs"); 4989 } else { 4990 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 4991 spa_load_failed(spa, "spa_check_logs failed"); 4992 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, 4993 ENXIO)); 4994 } 4995 } 4996 } 4997 4998 return (0); 4999 } 5000 5001 static int 5002 spa_ld_verify_pool_data(spa_t *spa) 5003 { 5004 int error = 0; 5005 vdev_t *rvd = spa->spa_root_vdev; 5006 5007 /* 5008 * We've successfully opened the pool, verify that we're ready 5009 * to start pushing transactions. 5010 */ 5011 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 5012 error = spa_load_verify(spa); 5013 if (error != 0) { 5014 spa_load_failed(spa, "spa_load_verify failed " 5015 "[error=%d]", error); 5016 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 5017 error)); 5018 } 5019 } 5020 5021 return (0); 5022 } 5023 5024 static void 5025 spa_ld_claim_log_blocks(spa_t *spa) 5026 { 5027 dmu_tx_t *tx; 5028 dsl_pool_t *dp = spa_get_dsl(spa); 5029 5030 /* 5031 * Claim log blocks that haven't been committed yet. 5032 * This must all happen in a single txg. 5033 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 5034 * invoked from zil_claim_log_block()'s i/o done callback. 5035 * Price of rollback is that we abandon the log. 5036 */ 5037 spa->spa_claiming = B_TRUE; 5038 5039 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 5040 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 5041 zil_claim, tx, DS_FIND_CHILDREN); 5042 dmu_tx_commit(tx); 5043 5044 spa->spa_claiming = B_FALSE; 5045 5046 spa_set_log_state(spa, SPA_LOG_GOOD); 5047 } 5048 5049 static void 5050 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg, 5051 boolean_t update_config_cache) 5052 { 5053 vdev_t *rvd = spa->spa_root_vdev; 5054 int need_update = B_FALSE; 5055 5056 /* 5057 * If the config cache is stale, or we have uninitialized 5058 * metaslabs (see spa_vdev_add()), then update the config. 5059 * 5060 * If this is a verbatim import, trust the current 5061 * in-core spa_config and update the disk labels. 5062 */ 5063 if (update_config_cache || config_cache_txg != spa->spa_config_txg || 5064 spa->spa_load_state == SPA_LOAD_IMPORT || 5065 spa->spa_load_state == SPA_LOAD_RECOVER || 5066 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 5067 need_update = B_TRUE; 5068 5069 for (int c = 0; c < rvd->vdev_children; c++) 5070 if (rvd->vdev_child[c]->vdev_ms_array == 0) 5071 need_update = B_TRUE; 5072 5073 /* 5074 * Update the config cache asynchronously in case we're the 5075 * root pool, in which case the config cache isn't writable yet. 5076 */ 5077 if (need_update) 5078 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 5079 } 5080 5081 static void 5082 spa_ld_prepare_for_reload(spa_t *spa) 5083 { 5084 spa_mode_t mode = spa->spa_mode; 5085 int async_suspended = spa->spa_async_suspended; 5086 5087 spa_unload(spa); 5088 spa_deactivate(spa); 5089 spa_activate(spa, mode); 5090 5091 /* 5092 * We save the value of spa_async_suspended as it gets reset to 0 by 5093 * spa_unload(). We want to restore it back to the original value before 5094 * returning as we might be calling spa_async_resume() later. 5095 */ 5096 spa->spa_async_suspended = async_suspended; 5097 } 5098 5099 static int 5100 spa_ld_read_checkpoint_txg(spa_t *spa) 5101 { 5102 uberblock_t checkpoint; 5103 int error = 0; 5104 5105 ASSERT0(spa->spa_checkpoint_txg); 5106 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 5107 spa->spa_load_thread == curthread); 5108 5109 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 5110 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 5111 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 5112 5113 if (error == ENOENT) 5114 return (0); 5115 5116 if (error != 0) 5117 return (error); 5118 5119 ASSERT3U(checkpoint.ub_txg, !=, 0); 5120 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0); 5121 ASSERT3U(checkpoint.ub_timestamp, !=, 0); 5122 spa->spa_checkpoint_txg = checkpoint.ub_txg; 5123 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp; 5124 5125 return (0); 5126 } 5127 5128 static int 5129 spa_ld_mos_init(spa_t *spa, spa_import_type_t type) 5130 { 5131 int error = 0; 5132 5133 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5134 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 5135 5136 /* 5137 * Never trust the config that is provided unless we are assembling 5138 * a pool following a split. 5139 * This means don't trust blkptrs and the vdev tree in general. This 5140 * also effectively puts the spa in read-only mode since 5141 * spa_writeable() checks for spa_trust_config to be true. 5142 * We will later load a trusted config from the MOS. 5143 */ 5144 if (type != SPA_IMPORT_ASSEMBLE) 5145 spa->spa_trust_config = B_FALSE; 5146 5147 /* 5148 * Parse the config provided to create a vdev tree. 5149 */ 5150 error = spa_ld_parse_config(spa, type); 5151 if (error != 0) 5152 return (error); 5153 5154 spa_import_progress_add(spa); 5155 5156 /* 5157 * Now that we have the vdev tree, try to open each vdev. This involves 5158 * opening the underlying physical device, retrieving its geometry and 5159 * probing the vdev with a dummy I/O. The state of each vdev will be set 5160 * based on the success of those operations. After this we'll be ready 5161 * to read from the vdevs. 5162 */ 5163 error = spa_ld_open_vdevs(spa); 5164 if (error != 0) 5165 return (error); 5166 5167 /* 5168 * Read the label of each vdev and make sure that the GUIDs stored 5169 * there match the GUIDs in the config provided. 5170 * If we're assembling a new pool that's been split off from an 5171 * existing pool, the labels haven't yet been updated so we skip 5172 * validation for now. 5173 */ 5174 if (type != SPA_IMPORT_ASSEMBLE) { 5175 error = spa_ld_validate_vdevs(spa); 5176 if (error != 0) 5177 return (error); 5178 } 5179 5180 /* 5181 * Read all vdev labels to find the best uberblock (i.e. latest, 5182 * unless spa_load_max_txg is set) and store it in spa_uberblock. We 5183 * get the list of features required to read blkptrs in the MOS from 5184 * the vdev label with the best uberblock and verify that our version 5185 * of zfs supports them all. 5186 */ 5187 error = spa_ld_select_uberblock(spa, type); 5188 if (error != 0) 5189 return (error); 5190 5191 /* 5192 * Pass that uberblock to the dsl_pool layer which will open the root 5193 * blkptr. This blkptr points to the latest version of the MOS and will 5194 * allow us to read its contents. 5195 */ 5196 error = spa_ld_open_rootbp(spa); 5197 if (error != 0) 5198 return (error); 5199 5200 return (0); 5201 } 5202 5203 static int 5204 spa_ld_checkpoint_rewind(spa_t *spa) 5205 { 5206 uberblock_t checkpoint; 5207 int error = 0; 5208 5209 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5210 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 5211 5212 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 5213 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 5214 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 5215 5216 if (error != 0) { 5217 spa_load_failed(spa, "unable to retrieve checkpointed " 5218 "uberblock from the MOS config [error=%d]", error); 5219 5220 if (error == ENOENT) 5221 error = ZFS_ERR_NO_CHECKPOINT; 5222 5223 return (error); 5224 } 5225 5226 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg); 5227 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg); 5228 5229 /* 5230 * We need to update the txg and timestamp of the checkpointed 5231 * uberblock to be higher than the latest one. This ensures that 5232 * the checkpointed uberblock is selected if we were to close and 5233 * reopen the pool right after we've written it in the vdev labels. 5234 * (also see block comment in vdev_uberblock_compare) 5235 */ 5236 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1; 5237 checkpoint.ub_timestamp = gethrestime_sec(); 5238 5239 /* 5240 * Set current uberblock to be the checkpointed uberblock. 5241 */ 5242 spa->spa_uberblock = checkpoint; 5243 5244 /* 5245 * If we are doing a normal rewind, then the pool is open for 5246 * writing and we sync the "updated" checkpointed uberblock to 5247 * disk. Once this is done, we've basically rewound the whole 5248 * pool and there is no way back. 5249 * 5250 * There are cases when we don't want to attempt and sync the 5251 * checkpointed uberblock to disk because we are opening a 5252 * pool as read-only. Specifically, verifying the checkpointed 5253 * state with zdb, and importing the checkpointed state to get 5254 * a "preview" of its content. 5255 */ 5256 if (spa_writeable(spa)) { 5257 vdev_t *rvd = spa->spa_root_vdev; 5258 5259 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5260 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 5261 int svdcount = 0; 5262 int children = rvd->vdev_children; 5263 int c0 = random_in_range(children); 5264 5265 for (int c = 0; c < children; c++) { 5266 vdev_t *vd = rvd->vdev_child[(c0 + c) % children]; 5267 5268 /* Stop when revisiting the first vdev */ 5269 if (c > 0 && svd[0] == vd) 5270 break; 5271 5272 if (vd->vdev_ms_array == 0 || vd->vdev_islog || 5273 !vdev_is_concrete(vd)) 5274 continue; 5275 5276 svd[svdcount++] = vd; 5277 if (svdcount == SPA_SYNC_MIN_VDEVS) 5278 break; 5279 } 5280 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg); 5281 if (error == 0) 5282 spa->spa_last_synced_guid = rvd->vdev_guid; 5283 spa_config_exit(spa, SCL_ALL, FTAG); 5284 5285 if (error != 0) { 5286 spa_load_failed(spa, "failed to write checkpointed " 5287 "uberblock to the vdev labels [error=%d]", error); 5288 return (error); 5289 } 5290 } 5291 5292 return (0); 5293 } 5294 5295 static int 5296 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type, 5297 boolean_t *update_config_cache) 5298 { 5299 int error; 5300 5301 /* 5302 * Parse the config for pool, open and validate vdevs, 5303 * select an uberblock, and use that uberblock to open 5304 * the MOS. 5305 */ 5306 error = spa_ld_mos_init(spa, type); 5307 if (error != 0) 5308 return (error); 5309 5310 /* 5311 * Retrieve the trusted config stored in the MOS and use it to create 5312 * a new, exact version of the vdev tree, then reopen all vdevs. 5313 */ 5314 error = spa_ld_trusted_config(spa, type, B_FALSE); 5315 if (error == EAGAIN) { 5316 if (update_config_cache != NULL) 5317 *update_config_cache = B_TRUE; 5318 5319 /* 5320 * Redo the loading process with the trusted config if it is 5321 * too different from the untrusted config. 5322 */ 5323 spa_ld_prepare_for_reload(spa); 5324 spa_load_note(spa, "RELOADING"); 5325 error = spa_ld_mos_init(spa, type); 5326 if (error != 0) 5327 return (error); 5328 5329 error = spa_ld_trusted_config(spa, type, B_TRUE); 5330 if (error != 0) 5331 return (error); 5332 5333 } else if (error != 0) { 5334 return (error); 5335 } 5336 5337 return (0); 5338 } 5339 5340 /* 5341 * Load an existing storage pool, using the config provided. This config 5342 * describes which vdevs are part of the pool and is later validated against 5343 * partial configs present in each vdev's label and an entire copy of the 5344 * config stored in the MOS. 5345 */ 5346 static int 5347 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport) 5348 { 5349 int error = 0; 5350 boolean_t missing_feat_write = B_FALSE; 5351 boolean_t checkpoint_rewind = 5352 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 5353 boolean_t update_config_cache = B_FALSE; 5354 hrtime_t load_start = gethrtime(); 5355 5356 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5357 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 5358 5359 spa_load_note(spa, "LOADING"); 5360 5361 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache); 5362 if (error != 0) 5363 return (error); 5364 5365 /* 5366 * If we are rewinding to the checkpoint then we need to repeat 5367 * everything we've done so far in this function but this time 5368 * selecting the checkpointed uberblock and using that to open 5369 * the MOS. 5370 */ 5371 if (checkpoint_rewind) { 5372 /* 5373 * If we are rewinding to the checkpoint update config cache 5374 * anyway. 5375 */ 5376 update_config_cache = B_TRUE; 5377 5378 /* 5379 * Extract the checkpointed uberblock from the current MOS 5380 * and use this as the pool's uberblock from now on. If the 5381 * pool is imported as writeable we also write the checkpoint 5382 * uberblock to the labels, making the rewind permanent. 5383 */ 5384 error = spa_ld_checkpoint_rewind(spa); 5385 if (error != 0) 5386 return (error); 5387 5388 /* 5389 * Redo the loading process again with the 5390 * checkpointed uberblock. 5391 */ 5392 spa_ld_prepare_for_reload(spa); 5393 spa_load_note(spa, "LOADING checkpointed uberblock"); 5394 error = spa_ld_mos_with_trusted_config(spa, type, NULL); 5395 if (error != 0) 5396 return (error); 5397 } 5398 5399 /* 5400 * Drop the namespace lock for the rest of the function. 5401 */ 5402 spa->spa_load_thread = curthread; 5403 mutex_exit(&spa_namespace_lock); 5404 5405 /* 5406 * Retrieve the checkpoint txg if the pool has a checkpoint. 5407 */ 5408 spa_import_progress_set_notes(spa, "Loading checkpoint txg"); 5409 error = spa_ld_read_checkpoint_txg(spa); 5410 if (error != 0) 5411 goto fail; 5412 5413 /* 5414 * Retrieve the mapping of indirect vdevs. Those vdevs were removed 5415 * from the pool and their contents were re-mapped to other vdevs. Note 5416 * that everything that we read before this step must have been 5417 * rewritten on concrete vdevs after the last device removal was 5418 * initiated. Otherwise we could be reading from indirect vdevs before 5419 * we have loaded their mappings. 5420 */ 5421 spa_import_progress_set_notes(spa, "Loading indirect vdev metadata"); 5422 error = spa_ld_open_indirect_vdev_metadata(spa); 5423 if (error != 0) 5424 goto fail; 5425 5426 /* 5427 * Retrieve the full list of active features from the MOS and check if 5428 * they are all supported. 5429 */ 5430 spa_import_progress_set_notes(spa, "Checking feature flags"); 5431 error = spa_ld_check_features(spa, &missing_feat_write); 5432 if (error != 0) 5433 goto fail; 5434 5435 /* 5436 * Load several special directories from the MOS needed by the dsl_pool 5437 * layer. 5438 */ 5439 spa_import_progress_set_notes(spa, "Loading special MOS directories"); 5440 error = spa_ld_load_special_directories(spa); 5441 if (error != 0) 5442 goto fail; 5443 5444 /* 5445 * Retrieve pool properties from the MOS. 5446 */ 5447 spa_import_progress_set_notes(spa, "Loading properties"); 5448 error = spa_ld_get_props(spa); 5449 if (error != 0) 5450 goto fail; 5451 5452 /* 5453 * Retrieve the list of auxiliary devices - cache devices and spares - 5454 * and open them. 5455 */ 5456 spa_import_progress_set_notes(spa, "Loading AUX vdevs"); 5457 error = spa_ld_open_aux_vdevs(spa, type); 5458 if (error != 0) 5459 goto fail; 5460 5461 /* 5462 * Load the metadata for all vdevs. Also check if unopenable devices 5463 * should be autoreplaced. 5464 */ 5465 spa_import_progress_set_notes(spa, "Loading vdev metadata"); 5466 error = spa_ld_load_vdev_metadata(spa); 5467 if (error != 0) 5468 goto fail; 5469 5470 spa_import_progress_set_notes(spa, "Loading dedup tables"); 5471 error = spa_ld_load_dedup_tables(spa); 5472 if (error != 0) 5473 goto fail; 5474 5475 spa_import_progress_set_notes(spa, "Loading BRT"); 5476 error = spa_ld_load_brt(spa); 5477 if (error != 0) 5478 goto fail; 5479 5480 /* 5481 * Verify the logs now to make sure we don't have any unexpected errors 5482 * when we claim log blocks later. 5483 */ 5484 spa_import_progress_set_notes(spa, "Verifying Log Devices"); 5485 error = spa_ld_verify_logs(spa, type, ereport); 5486 if (error != 0) 5487 goto fail; 5488 5489 if (missing_feat_write) { 5490 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT); 5491 5492 /* 5493 * At this point, we know that we can open the pool in 5494 * read-only mode but not read-write mode. We now have enough 5495 * information and can return to userland. 5496 */ 5497 error = spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT, 5498 ENOTSUP); 5499 goto fail; 5500 } 5501 5502 /* 5503 * Traverse the last txgs to make sure the pool was left off in a safe 5504 * state. When performing an extreme rewind, we verify the whole pool, 5505 * which can take a very long time. 5506 */ 5507 spa_import_progress_set_notes(spa, "Verifying pool data"); 5508 error = spa_ld_verify_pool_data(spa); 5509 if (error != 0) 5510 goto fail; 5511 5512 /* 5513 * Calculate the deflated space for the pool. This must be done before 5514 * we write anything to the pool because we'd need to update the space 5515 * accounting using the deflated sizes. 5516 */ 5517 spa_import_progress_set_notes(spa, "Calculating deflated space"); 5518 spa_update_dspace(spa); 5519 5520 /* 5521 * We have now retrieved all the information we needed to open the 5522 * pool. If we are importing the pool in read-write mode, a few 5523 * additional steps must be performed to finish the import. 5524 */ 5525 spa_import_progress_set_notes(spa, "Starting import"); 5526 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER || 5527 spa->spa_load_max_txg == UINT64_MAX)) { 5528 uint64_t config_cache_txg = spa->spa_config_txg; 5529 5530 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT); 5531 5532 /* 5533 * Before we do any zio_write's, complete the raidz expansion 5534 * scratch space copying, if necessary. 5535 */ 5536 if (RRSS_GET_STATE(&spa->spa_uberblock) == RRSS_SCRATCH_VALID) 5537 vdev_raidz_reflow_copy_scratch(spa); 5538 5539 /* 5540 * In case of a checkpoint rewind, log the original txg 5541 * of the checkpointed uberblock. 5542 */ 5543 if (checkpoint_rewind) { 5544 spa_history_log_internal(spa, "checkpoint rewind", 5545 NULL, "rewound state to txg=%llu", 5546 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg); 5547 } 5548 5549 spa_import_progress_set_notes(spa, "Claiming ZIL blocks"); 5550 /* 5551 * Traverse the ZIL and claim all blocks. 5552 */ 5553 spa_ld_claim_log_blocks(spa); 5554 5555 /* 5556 * Kick-off the syncing thread. 5557 */ 5558 spa->spa_sync_on = B_TRUE; 5559 txg_sync_start(spa->spa_dsl_pool); 5560 mmp_thread_start(spa); 5561 5562 /* 5563 * Wait for all claims to sync. We sync up to the highest 5564 * claimed log block birth time so that claimed log blocks 5565 * don't appear to be from the future. spa_claim_max_txg 5566 * will have been set for us by ZIL traversal operations 5567 * performed above. 5568 */ 5569 spa_import_progress_set_notes(spa, "Syncing ZIL claims"); 5570 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 5571 5572 /* 5573 * Check if we need to request an update of the config. On the 5574 * next sync, we would update the config stored in vdev labels 5575 * and the cachefile (by default /etc/zfs/zpool.cache). 5576 */ 5577 spa_import_progress_set_notes(spa, "Updating configs"); 5578 spa_ld_check_for_config_update(spa, config_cache_txg, 5579 update_config_cache); 5580 5581 /* 5582 * Check if a rebuild was in progress and if so resume it. 5583 * Then check all DTLs to see if anything needs resilvering. 5584 * The resilver will be deferred if a rebuild was started. 5585 */ 5586 spa_import_progress_set_notes(spa, "Starting resilvers"); 5587 if (vdev_rebuild_active(spa->spa_root_vdev)) { 5588 vdev_rebuild_restart(spa); 5589 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 5590 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5591 spa_async_request(spa, SPA_ASYNC_RESILVER); 5592 } 5593 5594 /* 5595 * Log the fact that we booted up (so that we can detect if 5596 * we rebooted in the middle of an operation). 5597 */ 5598 spa_history_log_version(spa, "open", NULL); 5599 5600 spa_import_progress_set_notes(spa, 5601 "Restarting device removals"); 5602 spa_restart_removal(spa); 5603 spa_spawn_aux_threads(spa); 5604 5605 /* 5606 * Delete any inconsistent datasets. 5607 * 5608 * Note: 5609 * Since we may be issuing deletes for clones here, 5610 * we make sure to do so after we've spawned all the 5611 * auxiliary threads above (from which the livelist 5612 * deletion zthr is part of). 5613 */ 5614 spa_import_progress_set_notes(spa, 5615 "Cleaning up inconsistent objsets"); 5616 (void) dmu_objset_find(spa_name(spa), 5617 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 5618 5619 /* 5620 * Clean up any stale temporary dataset userrefs. 5621 */ 5622 spa_import_progress_set_notes(spa, 5623 "Cleaning up temporary userrefs"); 5624 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 5625 5626 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5627 spa_import_progress_set_notes(spa, "Restarting initialize"); 5628 vdev_initialize_restart(spa->spa_root_vdev); 5629 spa_import_progress_set_notes(spa, "Restarting TRIM"); 5630 vdev_trim_restart(spa->spa_root_vdev); 5631 vdev_autotrim_restart(spa); 5632 spa_config_exit(spa, SCL_CONFIG, FTAG); 5633 spa_import_progress_set_notes(spa, "Finished importing"); 5634 } 5635 zio_handle_import_delay(spa, gethrtime() - load_start); 5636 5637 spa_import_progress_remove(spa_guid(spa)); 5638 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 5639 5640 spa_load_note(spa, "LOADED"); 5641 fail: 5642 mutex_enter(&spa_namespace_lock); 5643 spa->spa_load_thread = NULL; 5644 cv_broadcast(&spa_namespace_cv); 5645 5646 return (error); 5647 5648 } 5649 5650 static int 5651 spa_load_retry(spa_t *spa, spa_load_state_t state) 5652 { 5653 spa_mode_t mode = spa->spa_mode; 5654 5655 spa_unload(spa); 5656 spa_deactivate(spa); 5657 5658 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 5659 5660 spa_activate(spa, mode); 5661 spa_async_suspend(spa); 5662 5663 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu", 5664 (u_longlong_t)spa->spa_load_max_txg); 5665 5666 return (spa_load(spa, state, SPA_IMPORT_EXISTING)); 5667 } 5668 5669 /* 5670 * If spa_load() fails this function will try loading prior txg's. If 5671 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 5672 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 5673 * function will not rewind the pool and will return the same error as 5674 * spa_load(). 5675 */ 5676 static int 5677 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request, 5678 int rewind_flags) 5679 { 5680 nvlist_t *loadinfo = NULL; 5681 nvlist_t *config = NULL; 5682 int load_error, rewind_error; 5683 uint64_t safe_rewind_txg; 5684 uint64_t min_txg; 5685 5686 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 5687 spa->spa_load_max_txg = spa->spa_load_txg; 5688 spa_set_log_state(spa, SPA_LOG_CLEAR); 5689 } else { 5690 spa->spa_load_max_txg = max_request; 5691 if (max_request != UINT64_MAX) 5692 spa->spa_extreme_rewind = B_TRUE; 5693 } 5694 5695 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING); 5696 if (load_error == 0) 5697 return (0); 5698 if (load_error == ZFS_ERR_NO_CHECKPOINT) { 5699 /* 5700 * When attempting checkpoint-rewind on a pool with no 5701 * checkpoint, we should not attempt to load uberblocks 5702 * from previous txgs when spa_load fails. 5703 */ 5704 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 5705 spa_import_progress_remove(spa_guid(spa)); 5706 return (load_error); 5707 } 5708 5709 if (spa->spa_root_vdev != NULL) 5710 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 5711 5712 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 5713 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 5714 5715 if (rewind_flags & ZPOOL_NEVER_REWIND) { 5716 nvlist_free(config); 5717 spa_import_progress_remove(spa_guid(spa)); 5718 return (load_error); 5719 } 5720 5721 if (state == SPA_LOAD_RECOVER) { 5722 /* Price of rolling back is discarding txgs, including log */ 5723 spa_set_log_state(spa, SPA_LOG_CLEAR); 5724 } else { 5725 /* 5726 * If we aren't rolling back save the load info from our first 5727 * import attempt so that we can restore it after attempting 5728 * to rewind. 5729 */ 5730 loadinfo = spa->spa_load_info; 5731 spa->spa_load_info = fnvlist_alloc(); 5732 } 5733 5734 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 5735 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 5736 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 5737 TXG_INITIAL : safe_rewind_txg; 5738 5739 /* 5740 * Continue as long as we're finding errors, we're still within 5741 * the acceptable rewind range, and we're still finding uberblocks 5742 */ 5743 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 5744 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 5745 if (spa->spa_load_max_txg < safe_rewind_txg) 5746 spa->spa_extreme_rewind = B_TRUE; 5747 rewind_error = spa_load_retry(spa, state); 5748 } 5749 5750 spa->spa_extreme_rewind = B_FALSE; 5751 spa->spa_load_max_txg = UINT64_MAX; 5752 5753 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 5754 spa_config_set(spa, config); 5755 else 5756 nvlist_free(config); 5757 5758 if (state == SPA_LOAD_RECOVER) { 5759 ASSERT3P(loadinfo, ==, NULL); 5760 spa_import_progress_remove(spa_guid(spa)); 5761 return (rewind_error); 5762 } else { 5763 /* Store the rewind info as part of the initial load info */ 5764 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 5765 spa->spa_load_info); 5766 5767 /* Restore the initial load info */ 5768 fnvlist_free(spa->spa_load_info); 5769 spa->spa_load_info = loadinfo; 5770 5771 spa_import_progress_remove(spa_guid(spa)); 5772 return (load_error); 5773 } 5774 } 5775 5776 /* 5777 * Pool Open/Import 5778 * 5779 * The import case is identical to an open except that the configuration is sent 5780 * down from userland, instead of grabbed from the configuration cache. For the 5781 * case of an open, the pool configuration will exist in the 5782 * POOL_STATE_UNINITIALIZED state. 5783 * 5784 * The stats information (gen/count/ustats) is used to gather vdev statistics at 5785 * the same time open the pool, without having to keep around the spa_t in some 5786 * ambiguous state. 5787 */ 5788 static int 5789 spa_open_common(const char *pool, spa_t **spapp, const void *tag, 5790 nvlist_t *nvpolicy, nvlist_t **config) 5791 { 5792 spa_t *spa; 5793 spa_load_state_t state = SPA_LOAD_OPEN; 5794 int error; 5795 int locked = B_FALSE; 5796 int firstopen = B_FALSE; 5797 5798 *spapp = NULL; 5799 5800 /* 5801 * As disgusting as this is, we need to support recursive calls to this 5802 * function because dsl_dir_open() is called during spa_load(), and ends 5803 * up calling spa_open() again. The real fix is to figure out how to 5804 * avoid dsl_dir_open() calling this in the first place. 5805 */ 5806 if (MUTEX_NOT_HELD(&spa_namespace_lock)) { 5807 mutex_enter(&spa_namespace_lock); 5808 locked = B_TRUE; 5809 } 5810 5811 if ((spa = spa_lookup(pool)) == NULL) { 5812 if (locked) 5813 mutex_exit(&spa_namespace_lock); 5814 return (SET_ERROR(ENOENT)); 5815 } 5816 5817 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 5818 zpool_load_policy_t policy; 5819 5820 firstopen = B_TRUE; 5821 5822 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config, 5823 &policy); 5824 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 5825 state = SPA_LOAD_RECOVER; 5826 5827 spa_activate(spa, spa_mode_global); 5828 5829 if (state != SPA_LOAD_RECOVER) 5830 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 5831 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 5832 5833 zfs_dbgmsg("spa_open_common: opening %s", pool); 5834 error = spa_load_best(spa, state, policy.zlp_txg, 5835 policy.zlp_rewind); 5836 5837 if (error == EBADF) { 5838 /* 5839 * If vdev_validate() returns failure (indicated by 5840 * EBADF), it indicates that one of the vdevs indicates 5841 * that the pool has been exported or destroyed. If 5842 * this is the case, the config cache is out of sync and 5843 * we should remove the pool from the namespace. 5844 */ 5845 spa_unload(spa); 5846 spa_deactivate(spa); 5847 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE); 5848 spa_remove(spa); 5849 if (locked) 5850 mutex_exit(&spa_namespace_lock); 5851 return (SET_ERROR(ENOENT)); 5852 } 5853 5854 if (error) { 5855 /* 5856 * We can't open the pool, but we still have useful 5857 * information: the state of each vdev after the 5858 * attempted vdev_open(). Return this to the user. 5859 */ 5860 if (config != NULL && spa->spa_config) { 5861 *config = fnvlist_dup(spa->spa_config); 5862 fnvlist_add_nvlist(*config, 5863 ZPOOL_CONFIG_LOAD_INFO, 5864 spa->spa_load_info); 5865 } 5866 spa_unload(spa); 5867 spa_deactivate(spa); 5868 spa->spa_last_open_failed = error; 5869 if (locked) 5870 mutex_exit(&spa_namespace_lock); 5871 *spapp = NULL; 5872 return (error); 5873 } 5874 } 5875 5876 spa_open_ref(spa, tag); 5877 5878 if (config != NULL) 5879 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 5880 5881 /* 5882 * If we've recovered the pool, pass back any information we 5883 * gathered while doing the load. 5884 */ 5885 if (state == SPA_LOAD_RECOVER && config != NULL) { 5886 fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 5887 spa->spa_load_info); 5888 } 5889 5890 if (locked) { 5891 spa->spa_last_open_failed = 0; 5892 spa->spa_last_ubsync_txg = 0; 5893 spa->spa_load_txg = 0; 5894 mutex_exit(&spa_namespace_lock); 5895 } 5896 5897 if (firstopen) 5898 zvol_create_minors_recursive(spa_name(spa)); 5899 5900 *spapp = spa; 5901 5902 return (0); 5903 } 5904 5905 int 5906 spa_open_rewind(const char *name, spa_t **spapp, const void *tag, 5907 nvlist_t *policy, nvlist_t **config) 5908 { 5909 return (spa_open_common(name, spapp, tag, policy, config)); 5910 } 5911 5912 int 5913 spa_open(const char *name, spa_t **spapp, const void *tag) 5914 { 5915 return (spa_open_common(name, spapp, tag, NULL, NULL)); 5916 } 5917 5918 /* 5919 * Lookup the given spa_t, incrementing the inject count in the process, 5920 * preventing it from being exported or destroyed. 5921 */ 5922 spa_t * 5923 spa_inject_addref(char *name) 5924 { 5925 spa_t *spa; 5926 5927 mutex_enter(&spa_namespace_lock); 5928 if ((spa = spa_lookup(name)) == NULL) { 5929 mutex_exit(&spa_namespace_lock); 5930 return (NULL); 5931 } 5932 spa->spa_inject_ref++; 5933 mutex_exit(&spa_namespace_lock); 5934 5935 return (spa); 5936 } 5937 5938 void 5939 spa_inject_delref(spa_t *spa) 5940 { 5941 mutex_enter(&spa_namespace_lock); 5942 spa->spa_inject_ref--; 5943 mutex_exit(&spa_namespace_lock); 5944 } 5945 5946 /* 5947 * Add spares device information to the nvlist. 5948 */ 5949 static void 5950 spa_add_spares(spa_t *spa, nvlist_t *config) 5951 { 5952 nvlist_t **spares; 5953 uint_t i, nspares; 5954 nvlist_t *nvroot; 5955 uint64_t guid; 5956 vdev_stat_t *vs; 5957 uint_t vsc; 5958 uint64_t pool; 5959 5960 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 5961 5962 if (spa->spa_spares.sav_count == 0) 5963 return; 5964 5965 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); 5966 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5967 ZPOOL_CONFIG_SPARES, &spares, &nspares)); 5968 if (nspares != 0) { 5969 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5970 (const nvlist_t * const *)spares, nspares); 5971 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5972 &spares, &nspares)); 5973 5974 /* 5975 * Go through and find any spares which have since been 5976 * repurposed as an active spare. If this is the case, update 5977 * their status appropriately. 5978 */ 5979 for (i = 0; i < nspares; i++) { 5980 guid = fnvlist_lookup_uint64(spares[i], 5981 ZPOOL_CONFIG_GUID); 5982 VERIFY0(nvlist_lookup_uint64_array(spares[i], 5983 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)); 5984 if (spa_spare_exists(guid, &pool, NULL) && 5985 pool != 0ULL) { 5986 vs->vs_state = VDEV_STATE_CANT_OPEN; 5987 vs->vs_aux = VDEV_AUX_SPARED; 5988 } else { 5989 vs->vs_state = 5990 spa->spa_spares.sav_vdevs[i]->vdev_state; 5991 } 5992 } 5993 } 5994 } 5995 5996 /* 5997 * Add l2cache device information to the nvlist, including vdev stats. 5998 */ 5999 static void 6000 spa_add_l2cache(spa_t *spa, nvlist_t *config) 6001 { 6002 nvlist_t **l2cache; 6003 uint_t i, j, nl2cache; 6004 nvlist_t *nvroot; 6005 uint64_t guid; 6006 vdev_t *vd; 6007 vdev_stat_t *vs; 6008 uint_t vsc; 6009 6010 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 6011 6012 if (spa->spa_l2cache.sav_count == 0) 6013 return; 6014 6015 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); 6016 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 6017 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache)); 6018 if (nl2cache != 0) { 6019 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 6020 (const nvlist_t * const *)l2cache, nl2cache); 6021 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 6022 &l2cache, &nl2cache)); 6023 6024 /* 6025 * Update level 2 cache device stats. 6026 */ 6027 6028 for (i = 0; i < nl2cache; i++) { 6029 guid = fnvlist_lookup_uint64(l2cache[i], 6030 ZPOOL_CONFIG_GUID); 6031 6032 vd = NULL; 6033 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 6034 if (guid == 6035 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 6036 vd = spa->spa_l2cache.sav_vdevs[j]; 6037 break; 6038 } 6039 } 6040 ASSERT(vd != NULL); 6041 6042 VERIFY0(nvlist_lookup_uint64_array(l2cache[i], 6043 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)); 6044 vdev_get_stats(vd, vs); 6045 vdev_config_generate_stats(vd, l2cache[i]); 6046 6047 } 6048 } 6049 } 6050 6051 static void 6052 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features) 6053 { 6054 zap_cursor_t zc; 6055 zap_attribute_t *za = zap_attribute_alloc(); 6056 6057 if (spa->spa_feat_for_read_obj != 0) { 6058 for (zap_cursor_init(&zc, spa->spa_meta_objset, 6059 spa->spa_feat_for_read_obj); 6060 zap_cursor_retrieve(&zc, za) == 0; 6061 zap_cursor_advance(&zc)) { 6062 ASSERT(za->za_integer_length == sizeof (uint64_t) && 6063 za->za_num_integers == 1); 6064 VERIFY0(nvlist_add_uint64(features, za->za_name, 6065 za->za_first_integer)); 6066 } 6067 zap_cursor_fini(&zc); 6068 } 6069 6070 if (spa->spa_feat_for_write_obj != 0) { 6071 for (zap_cursor_init(&zc, spa->spa_meta_objset, 6072 spa->spa_feat_for_write_obj); 6073 zap_cursor_retrieve(&zc, za) == 0; 6074 zap_cursor_advance(&zc)) { 6075 ASSERT(za->za_integer_length == sizeof (uint64_t) && 6076 za->za_num_integers == 1); 6077 VERIFY0(nvlist_add_uint64(features, za->za_name, 6078 za->za_first_integer)); 6079 } 6080 zap_cursor_fini(&zc); 6081 } 6082 zap_attribute_free(za); 6083 } 6084 6085 static void 6086 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features) 6087 { 6088 int i; 6089 6090 for (i = 0; i < SPA_FEATURES; i++) { 6091 zfeature_info_t feature = spa_feature_table[i]; 6092 uint64_t refcount; 6093 6094 if (feature_get_refcount(spa, &feature, &refcount) != 0) 6095 continue; 6096 6097 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount)); 6098 } 6099 } 6100 6101 /* 6102 * Store a list of pool features and their reference counts in the 6103 * config. 6104 * 6105 * The first time this is called on a spa, allocate a new nvlist, fetch 6106 * the pool features and reference counts from disk, then save the list 6107 * in the spa. In subsequent calls on the same spa use the saved nvlist 6108 * and refresh its values from the cached reference counts. This 6109 * ensures we don't block here on I/O on a suspended pool so 'zpool 6110 * clear' can resume the pool. 6111 */ 6112 static void 6113 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 6114 { 6115 nvlist_t *features; 6116 6117 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 6118 6119 mutex_enter(&spa->spa_feat_stats_lock); 6120 features = spa->spa_feat_stats; 6121 6122 if (features != NULL) { 6123 spa_feature_stats_from_cache(spa, features); 6124 } else { 6125 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP)); 6126 spa->spa_feat_stats = features; 6127 spa_feature_stats_from_disk(spa, features); 6128 } 6129 6130 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 6131 features)); 6132 6133 mutex_exit(&spa->spa_feat_stats_lock); 6134 } 6135 6136 int 6137 spa_get_stats(const char *name, nvlist_t **config, 6138 char *altroot, size_t buflen) 6139 { 6140 int error; 6141 spa_t *spa; 6142 6143 *config = NULL; 6144 error = spa_open_common(name, &spa, FTAG, NULL, config); 6145 6146 if (spa != NULL) { 6147 /* 6148 * This still leaves a window of inconsistency where the spares 6149 * or l2cache devices could change and the config would be 6150 * self-inconsistent. 6151 */ 6152 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6153 6154 if (*config != NULL) { 6155 uint64_t loadtimes[2]; 6156 6157 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 6158 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 6159 fnvlist_add_uint64_array(*config, 6160 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2); 6161 6162 fnvlist_add_uint64(*config, 6163 ZPOOL_CONFIG_ERRCOUNT, 6164 spa_approx_errlog_size(spa)); 6165 6166 if (spa_suspended(spa)) { 6167 fnvlist_add_uint64(*config, 6168 ZPOOL_CONFIG_SUSPENDED, 6169 spa->spa_failmode); 6170 fnvlist_add_uint64(*config, 6171 ZPOOL_CONFIG_SUSPENDED_REASON, 6172 spa->spa_suspended); 6173 } 6174 6175 spa_add_spares(spa, *config); 6176 spa_add_l2cache(spa, *config); 6177 spa_add_feature_stats(spa, *config); 6178 } 6179 } 6180 6181 /* 6182 * We want to get the alternate root even for faulted pools, so we cheat 6183 * and call spa_lookup() directly. 6184 */ 6185 if (altroot) { 6186 if (spa == NULL) { 6187 mutex_enter(&spa_namespace_lock); 6188 spa = spa_lookup(name); 6189 if (spa) 6190 spa_altroot(spa, altroot, buflen); 6191 else 6192 altroot[0] = '\0'; 6193 spa = NULL; 6194 mutex_exit(&spa_namespace_lock); 6195 } else { 6196 spa_altroot(spa, altroot, buflen); 6197 } 6198 } 6199 6200 if (spa != NULL) { 6201 spa_config_exit(spa, SCL_CONFIG, FTAG); 6202 spa_close(spa, FTAG); 6203 } 6204 6205 return (error); 6206 } 6207 6208 /* 6209 * Validate that the auxiliary device array is well formed. We must have an 6210 * array of nvlists, each which describes a valid leaf vdev. If this is an 6211 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 6212 * specified, as long as they are well-formed. 6213 */ 6214 static int 6215 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 6216 spa_aux_vdev_t *sav, const char *config, uint64_t version, 6217 vdev_labeltype_t label) 6218 { 6219 nvlist_t **dev; 6220 uint_t i, ndev; 6221 vdev_t *vd; 6222 int error; 6223 6224 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 6225 6226 /* 6227 * It's acceptable to have no devs specified. 6228 */ 6229 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 6230 return (0); 6231 6232 if (ndev == 0) 6233 return (SET_ERROR(EINVAL)); 6234 6235 /* 6236 * Make sure the pool is formatted with a version that supports this 6237 * device type. 6238 */ 6239 if (spa_version(spa) < version) 6240 return (SET_ERROR(ENOTSUP)); 6241 6242 /* 6243 * Set the pending device list so we correctly handle device in-use 6244 * checking. 6245 */ 6246 sav->sav_pending = dev; 6247 sav->sav_npending = ndev; 6248 6249 for (i = 0; i < ndev; i++) { 6250 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 6251 mode)) != 0) 6252 goto out; 6253 6254 if (!vd->vdev_ops->vdev_op_leaf) { 6255 vdev_free(vd); 6256 error = SET_ERROR(EINVAL); 6257 goto out; 6258 } 6259 6260 vd->vdev_top = vd; 6261 6262 if ((error = vdev_open(vd)) == 0 && 6263 (error = vdev_label_init(vd, crtxg, label)) == 0) { 6264 fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 6265 vd->vdev_guid); 6266 } 6267 6268 vdev_free(vd); 6269 6270 if (error && 6271 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 6272 goto out; 6273 else 6274 error = 0; 6275 } 6276 6277 out: 6278 sav->sav_pending = NULL; 6279 sav->sav_npending = 0; 6280 return (error); 6281 } 6282 6283 static int 6284 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 6285 { 6286 int error; 6287 6288 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 6289 6290 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 6291 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 6292 VDEV_LABEL_SPARE)) != 0) { 6293 return (error); 6294 } 6295 6296 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 6297 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 6298 VDEV_LABEL_L2CACHE)); 6299 } 6300 6301 static void 6302 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 6303 const char *config) 6304 { 6305 int i; 6306 6307 if (sav->sav_config != NULL) { 6308 nvlist_t **olddevs; 6309 uint_t oldndevs; 6310 nvlist_t **newdevs; 6311 6312 /* 6313 * Generate new dev list by concatenating with the 6314 * current dev list. 6315 */ 6316 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config, 6317 &olddevs, &oldndevs)); 6318 6319 newdevs = kmem_alloc(sizeof (void *) * 6320 (ndevs + oldndevs), KM_SLEEP); 6321 for (i = 0; i < oldndevs; i++) 6322 newdevs[i] = fnvlist_dup(olddevs[i]); 6323 for (i = 0; i < ndevs; i++) 6324 newdevs[i + oldndevs] = fnvlist_dup(devs[i]); 6325 6326 fnvlist_remove(sav->sav_config, config); 6327 6328 fnvlist_add_nvlist_array(sav->sav_config, config, 6329 (const nvlist_t * const *)newdevs, ndevs + oldndevs); 6330 for (i = 0; i < oldndevs + ndevs; i++) 6331 nvlist_free(newdevs[i]); 6332 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 6333 } else { 6334 /* 6335 * Generate a new dev list. 6336 */ 6337 sav->sav_config = fnvlist_alloc(); 6338 fnvlist_add_nvlist_array(sav->sav_config, config, 6339 (const nvlist_t * const *)devs, ndevs); 6340 } 6341 } 6342 6343 /* 6344 * Stop and drop level 2 ARC devices 6345 */ 6346 void 6347 spa_l2cache_drop(spa_t *spa) 6348 { 6349 vdev_t *vd; 6350 int i; 6351 spa_aux_vdev_t *sav = &spa->spa_l2cache; 6352 6353 for (i = 0; i < sav->sav_count; i++) { 6354 uint64_t pool; 6355 6356 vd = sav->sav_vdevs[i]; 6357 ASSERT(vd != NULL); 6358 6359 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 6360 pool != 0ULL && l2arc_vdev_present(vd)) 6361 l2arc_remove_vdev(vd); 6362 } 6363 } 6364 6365 /* 6366 * Verify encryption parameters for spa creation. If we are encrypting, we must 6367 * have the encryption feature flag enabled. 6368 */ 6369 static int 6370 spa_create_check_encryption_params(dsl_crypto_params_t *dcp, 6371 boolean_t has_encryption) 6372 { 6373 if (dcp->cp_crypt != ZIO_CRYPT_OFF && 6374 dcp->cp_crypt != ZIO_CRYPT_INHERIT && 6375 !has_encryption) 6376 return (SET_ERROR(ENOTSUP)); 6377 6378 return (dmu_objset_create_crypt_check(NULL, dcp, NULL)); 6379 } 6380 6381 /* 6382 * Pool Creation 6383 */ 6384 int 6385 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 6386 nvlist_t *zplprops, dsl_crypto_params_t *dcp) 6387 { 6388 spa_t *spa; 6389 const char *altroot = NULL; 6390 vdev_t *rvd; 6391 dsl_pool_t *dp; 6392 dmu_tx_t *tx; 6393 int error = 0; 6394 uint64_t txg = TXG_INITIAL; 6395 nvlist_t **spares, **l2cache; 6396 uint_t nspares, nl2cache; 6397 uint64_t version, obj, ndraid = 0; 6398 boolean_t has_features; 6399 boolean_t has_encryption; 6400 boolean_t has_allocclass; 6401 spa_feature_t feat; 6402 const char *feat_name; 6403 const char *poolname; 6404 nvlist_t *nvl; 6405 6406 if (props == NULL || 6407 nvlist_lookup_string(props, 6408 zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0) 6409 poolname = (char *)pool; 6410 6411 /* 6412 * If this pool already exists, return failure. 6413 */ 6414 mutex_enter(&spa_namespace_lock); 6415 if (spa_lookup(poolname) != NULL) { 6416 mutex_exit(&spa_namespace_lock); 6417 return (SET_ERROR(EEXIST)); 6418 } 6419 6420 /* 6421 * Allocate a new spa_t structure. 6422 */ 6423 nvl = fnvlist_alloc(); 6424 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool); 6425 (void) nvlist_lookup_string(props, 6426 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 6427 spa = spa_add(poolname, nvl, altroot); 6428 fnvlist_free(nvl); 6429 spa_activate(spa, spa_mode_global); 6430 6431 if (props && (error = spa_prop_validate(spa, props))) { 6432 spa_deactivate(spa); 6433 spa_remove(spa); 6434 mutex_exit(&spa_namespace_lock); 6435 return (error); 6436 } 6437 6438 /* 6439 * Temporary pool names should never be written to disk. 6440 */ 6441 if (poolname != pool) 6442 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME; 6443 6444 has_features = B_FALSE; 6445 has_encryption = B_FALSE; 6446 has_allocclass = B_FALSE; 6447 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 6448 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 6449 if (zpool_prop_feature(nvpair_name(elem))) { 6450 has_features = B_TRUE; 6451 6452 feat_name = strchr(nvpair_name(elem), '@') + 1; 6453 VERIFY0(zfeature_lookup_name(feat_name, &feat)); 6454 if (feat == SPA_FEATURE_ENCRYPTION) 6455 has_encryption = B_TRUE; 6456 if (feat == SPA_FEATURE_ALLOCATION_CLASSES) 6457 has_allocclass = B_TRUE; 6458 } 6459 } 6460 6461 /* verify encryption params, if they were provided */ 6462 if (dcp != NULL) { 6463 error = spa_create_check_encryption_params(dcp, has_encryption); 6464 if (error != 0) { 6465 spa_deactivate(spa); 6466 spa_remove(spa); 6467 mutex_exit(&spa_namespace_lock); 6468 return (error); 6469 } 6470 } 6471 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) { 6472 spa_deactivate(spa); 6473 spa_remove(spa); 6474 mutex_exit(&spa_namespace_lock); 6475 return (ENOTSUP); 6476 } 6477 6478 if (has_features || nvlist_lookup_uint64(props, 6479 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 6480 version = SPA_VERSION; 6481 } 6482 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 6483 6484 spa->spa_first_txg = txg; 6485 spa->spa_uberblock.ub_txg = txg - 1; 6486 spa->spa_uberblock.ub_version = version; 6487 spa->spa_ubsync = spa->spa_uberblock; 6488 spa->spa_load_state = SPA_LOAD_CREATE; 6489 spa->spa_removing_phys.sr_state = DSS_NONE; 6490 spa->spa_removing_phys.sr_removing_vdev = -1; 6491 spa->spa_removing_phys.sr_prev_indirect_vdev = -1; 6492 spa->spa_indirect_vdevs_loaded = B_TRUE; 6493 6494 /* 6495 * Create "The Godfather" zio to hold all async IOs 6496 */ 6497 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 6498 KM_SLEEP); 6499 for (int i = 0; i < max_ncpus; i++) { 6500 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 6501 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 6502 ZIO_FLAG_GODFATHER); 6503 } 6504 6505 /* 6506 * Create the root vdev. 6507 */ 6508 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6509 6510 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 6511 6512 ASSERT(error != 0 || rvd != NULL); 6513 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 6514 6515 if (error == 0 && !zfs_allocatable_devs(nvroot)) 6516 error = SET_ERROR(EINVAL); 6517 6518 if (error == 0 && 6519 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 6520 (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 && 6521 (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) { 6522 /* 6523 * instantiate the metaslab groups (this will dirty the vdevs) 6524 * we can no longer error exit past this point 6525 */ 6526 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) { 6527 vdev_t *vd = rvd->vdev_child[c]; 6528 6529 vdev_metaslab_set_size(vd); 6530 vdev_expand(vd, txg); 6531 } 6532 } 6533 6534 spa_config_exit(spa, SCL_ALL, FTAG); 6535 6536 if (error != 0) { 6537 spa_unload(spa); 6538 spa_deactivate(spa); 6539 spa_remove(spa); 6540 mutex_exit(&spa_namespace_lock); 6541 return (error); 6542 } 6543 6544 /* 6545 * Get the list of spares, if specified. 6546 */ 6547 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 6548 &spares, &nspares) == 0) { 6549 spa->spa_spares.sav_config = fnvlist_alloc(); 6550 fnvlist_add_nvlist_array(spa->spa_spares.sav_config, 6551 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, 6552 nspares); 6553 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6554 spa_load_spares(spa); 6555 spa_config_exit(spa, SCL_ALL, FTAG); 6556 spa->spa_spares.sav_sync = B_TRUE; 6557 } 6558 6559 /* 6560 * Get the list of level 2 cache devices, if specified. 6561 */ 6562 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 6563 &l2cache, &nl2cache) == 0) { 6564 VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config, 6565 NV_UNIQUE_NAME, KM_SLEEP)); 6566 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 6567 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache, 6568 nl2cache); 6569 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6570 spa_load_l2cache(spa); 6571 spa_config_exit(spa, SCL_ALL, FTAG); 6572 spa->spa_l2cache.sav_sync = B_TRUE; 6573 } 6574 6575 spa->spa_is_initializing = B_TRUE; 6576 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg); 6577 spa->spa_is_initializing = B_FALSE; 6578 6579 /* 6580 * Create DDTs (dedup tables). 6581 */ 6582 ddt_create(spa); 6583 /* 6584 * Create BRT table and BRT table object. 6585 */ 6586 brt_create(spa); 6587 6588 spa_update_dspace(spa); 6589 6590 tx = dmu_tx_create_assigned(dp, txg); 6591 6592 /* 6593 * Create the pool's history object. 6594 */ 6595 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history) 6596 spa_history_create_obj(spa, tx); 6597 6598 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE); 6599 spa_history_log_version(spa, "create", tx); 6600 6601 /* 6602 * Create the pool config object. 6603 */ 6604 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 6605 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 6606 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 6607 6608 if (zap_add(spa->spa_meta_objset, 6609 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 6610 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 6611 cmn_err(CE_PANIC, "failed to add pool config"); 6612 } 6613 6614 if (zap_add(spa->spa_meta_objset, 6615 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 6616 sizeof (uint64_t), 1, &version, tx) != 0) { 6617 cmn_err(CE_PANIC, "failed to add pool version"); 6618 } 6619 6620 /* Newly created pools with the right version are always deflated. */ 6621 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 6622 spa->spa_deflate = TRUE; 6623 if (zap_add(spa->spa_meta_objset, 6624 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6625 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 6626 cmn_err(CE_PANIC, "failed to add deflate"); 6627 } 6628 } 6629 6630 /* 6631 * Create the deferred-free bpobj. Turn off compression 6632 * because sync-to-convergence takes longer if the blocksize 6633 * keeps changing. 6634 */ 6635 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 6636 dmu_object_set_compress(spa->spa_meta_objset, obj, 6637 ZIO_COMPRESS_OFF, tx); 6638 if (zap_add(spa->spa_meta_objset, 6639 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 6640 sizeof (uint64_t), 1, &obj, tx) != 0) { 6641 cmn_err(CE_PANIC, "failed to add bpobj"); 6642 } 6643 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 6644 spa->spa_meta_objset, obj)); 6645 6646 /* 6647 * Generate some random noise for salted checksums to operate on. 6648 */ 6649 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 6650 sizeof (spa->spa_cksum_salt.zcs_bytes)); 6651 6652 /* 6653 * Set pool properties. 6654 */ 6655 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 6656 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 6657 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 6658 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 6659 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST); 6660 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM); 6661 spa->spa_dedup_table_quota = 6662 zpool_prop_default_numeric(ZPOOL_PROP_DEDUP_TABLE_QUOTA); 6663 6664 if (props != NULL) { 6665 spa_configfile_set(spa, props, B_FALSE); 6666 spa_sync_props(props, tx); 6667 } 6668 6669 for (int i = 0; i < ndraid; i++) 6670 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx); 6671 6672 dmu_tx_commit(tx); 6673 6674 spa->spa_sync_on = B_TRUE; 6675 txg_sync_start(dp); 6676 mmp_thread_start(spa); 6677 txg_wait_synced(dp, txg); 6678 6679 spa_spawn_aux_threads(spa); 6680 6681 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); 6682 6683 /* 6684 * Don't count references from objsets that are already closed 6685 * and are making their way through the eviction process. 6686 */ 6687 spa_evicting_os_wait(spa); 6688 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 6689 spa->spa_load_state = SPA_LOAD_NONE; 6690 6691 spa_import_os(spa); 6692 6693 mutex_exit(&spa_namespace_lock); 6694 6695 return (0); 6696 } 6697 6698 /* 6699 * Import a non-root pool into the system. 6700 */ 6701 int 6702 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 6703 { 6704 spa_t *spa; 6705 const char *altroot = NULL; 6706 spa_load_state_t state = SPA_LOAD_IMPORT; 6707 zpool_load_policy_t policy; 6708 spa_mode_t mode = spa_mode_global; 6709 uint64_t readonly = B_FALSE; 6710 int error; 6711 nvlist_t *nvroot; 6712 nvlist_t **spares, **l2cache; 6713 uint_t nspares, nl2cache; 6714 6715 /* 6716 * If a pool with this name exists, return failure. 6717 */ 6718 mutex_enter(&spa_namespace_lock); 6719 if (spa_lookup(pool) != NULL) { 6720 mutex_exit(&spa_namespace_lock); 6721 return (SET_ERROR(EEXIST)); 6722 } 6723 6724 /* 6725 * Create and initialize the spa structure. 6726 */ 6727 (void) nvlist_lookup_string(props, 6728 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 6729 (void) nvlist_lookup_uint64(props, 6730 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 6731 if (readonly) 6732 mode = SPA_MODE_READ; 6733 spa = spa_add(pool, config, altroot); 6734 spa->spa_import_flags = flags; 6735 6736 /* 6737 * Verbatim import - Take a pool and insert it into the namespace 6738 * as if it had been loaded at boot. 6739 */ 6740 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 6741 if (props != NULL) 6742 spa_configfile_set(spa, props, B_FALSE); 6743 6744 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE); 6745 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 6746 zfs_dbgmsg("spa_import: verbatim import of %s", pool); 6747 mutex_exit(&spa_namespace_lock); 6748 return (0); 6749 } 6750 6751 spa_activate(spa, mode); 6752 6753 /* 6754 * Don't start async tasks until we know everything is healthy. 6755 */ 6756 spa_async_suspend(spa); 6757 6758 zpool_get_load_policy(config, &policy); 6759 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 6760 state = SPA_LOAD_RECOVER; 6761 6762 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT; 6763 6764 if (state != SPA_LOAD_RECOVER) { 6765 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 6766 zfs_dbgmsg("spa_import: importing %s", pool); 6767 } else { 6768 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld " 6769 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg); 6770 } 6771 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind); 6772 6773 /* 6774 * Propagate anything learned while loading the pool and pass it 6775 * back to caller (i.e. rewind info, missing devices, etc). 6776 */ 6777 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info); 6778 6779 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6780 /* 6781 * Toss any existing sparelist, as it doesn't have any validity 6782 * anymore, and conflicts with spa_has_spare(). 6783 */ 6784 if (spa->spa_spares.sav_config) { 6785 nvlist_free(spa->spa_spares.sav_config); 6786 spa->spa_spares.sav_config = NULL; 6787 spa_load_spares(spa); 6788 } 6789 if (spa->spa_l2cache.sav_config) { 6790 nvlist_free(spa->spa_l2cache.sav_config); 6791 spa->spa_l2cache.sav_config = NULL; 6792 spa_load_l2cache(spa); 6793 } 6794 6795 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); 6796 spa_config_exit(spa, SCL_ALL, FTAG); 6797 6798 if (props != NULL) 6799 spa_configfile_set(spa, props, B_FALSE); 6800 6801 if (error != 0 || (props && spa_writeable(spa) && 6802 (error = spa_prop_set(spa, props)))) { 6803 spa_unload(spa); 6804 spa_deactivate(spa); 6805 spa_remove(spa); 6806 mutex_exit(&spa_namespace_lock); 6807 return (error); 6808 } 6809 6810 spa_async_resume(spa); 6811 6812 /* 6813 * Override any spares and level 2 cache devices as specified by 6814 * the user, as these may have correct device names/devids, etc. 6815 */ 6816 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 6817 &spares, &nspares) == 0) { 6818 if (spa->spa_spares.sav_config) 6819 fnvlist_remove(spa->spa_spares.sav_config, 6820 ZPOOL_CONFIG_SPARES); 6821 else 6822 spa->spa_spares.sav_config = fnvlist_alloc(); 6823 fnvlist_add_nvlist_array(spa->spa_spares.sav_config, 6824 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, 6825 nspares); 6826 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6827 spa_load_spares(spa); 6828 spa_config_exit(spa, SCL_ALL, FTAG); 6829 spa->spa_spares.sav_sync = B_TRUE; 6830 spa->spa_spares.sav_label_sync = B_TRUE; 6831 } 6832 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 6833 &l2cache, &nl2cache) == 0) { 6834 if (spa->spa_l2cache.sav_config) 6835 fnvlist_remove(spa->spa_l2cache.sav_config, 6836 ZPOOL_CONFIG_L2CACHE); 6837 else 6838 spa->spa_l2cache.sav_config = fnvlist_alloc(); 6839 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 6840 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache, 6841 nl2cache); 6842 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6843 spa_load_l2cache(spa); 6844 spa_config_exit(spa, SCL_ALL, FTAG); 6845 spa->spa_l2cache.sav_sync = B_TRUE; 6846 spa->spa_l2cache.sav_label_sync = B_TRUE; 6847 } 6848 6849 /* 6850 * Check for any removed devices. 6851 */ 6852 if (spa->spa_autoreplace) { 6853 spa_aux_check_removed(&spa->spa_spares); 6854 spa_aux_check_removed(&spa->spa_l2cache); 6855 } 6856 6857 if (spa_writeable(spa)) { 6858 /* 6859 * Update the config cache to include the newly-imported pool. 6860 */ 6861 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 6862 } 6863 6864 /* 6865 * It's possible that the pool was expanded while it was exported. 6866 * We kick off an async task to handle this for us. 6867 */ 6868 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 6869 6870 spa_history_log_version(spa, "import", NULL); 6871 6872 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 6873 6874 mutex_exit(&spa_namespace_lock); 6875 6876 zvol_create_minors_recursive(pool); 6877 6878 spa_import_os(spa); 6879 6880 return (0); 6881 } 6882 6883 nvlist_t * 6884 spa_tryimport(nvlist_t *tryconfig) 6885 { 6886 nvlist_t *config = NULL; 6887 const char *poolname, *cachefile; 6888 spa_t *spa; 6889 uint64_t state; 6890 int error; 6891 zpool_load_policy_t policy; 6892 6893 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 6894 return (NULL); 6895 6896 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 6897 return (NULL); 6898 6899 /* 6900 * Create and initialize the spa structure. 6901 */ 6902 char *name = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6903 (void) snprintf(name, MAXPATHLEN, "%s-%llx-%s", 6904 TRYIMPORT_NAME, (u_longlong_t)(uintptr_t)curthread, poolname); 6905 6906 mutex_enter(&spa_namespace_lock); 6907 spa = spa_add(name, tryconfig, NULL); 6908 spa_activate(spa, SPA_MODE_READ); 6909 kmem_free(name, MAXPATHLEN); 6910 6911 /* 6912 * Rewind pool if a max txg was provided. 6913 */ 6914 zpool_get_load_policy(spa->spa_config, &policy); 6915 if (policy.zlp_txg != UINT64_MAX) { 6916 spa->spa_load_max_txg = policy.zlp_txg; 6917 spa->spa_extreme_rewind = B_TRUE; 6918 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld", 6919 poolname, (longlong_t)policy.zlp_txg); 6920 } else { 6921 zfs_dbgmsg("spa_tryimport: importing %s", poolname); 6922 } 6923 6924 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile) 6925 == 0) { 6926 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile); 6927 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 6928 } else { 6929 spa->spa_config_source = SPA_CONFIG_SRC_SCAN; 6930 } 6931 6932 /* 6933 * spa_import() relies on a pool config fetched by spa_try_import() 6934 * for spare/cache devices. Import flags are not passed to 6935 * spa_tryimport(), which makes it return early due to a missing log 6936 * device and missing retrieving the cache device and spare eventually. 6937 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch 6938 * the correct configuration regardless of the missing log device. 6939 */ 6940 spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG; 6941 6942 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING); 6943 6944 /* 6945 * If 'tryconfig' was at least parsable, return the current config. 6946 */ 6947 if (spa->spa_root_vdev != NULL) { 6948 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 6949 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname); 6950 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state); 6951 fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 6952 spa->spa_uberblock.ub_timestamp); 6953 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 6954 spa->spa_load_info); 6955 fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA, 6956 spa->spa_errata); 6957 6958 /* 6959 * If the bootfs property exists on this pool then we 6960 * copy it out so that external consumers can tell which 6961 * pools are bootable. 6962 */ 6963 if ((!error || error == EEXIST) && spa->spa_bootfs) { 6964 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6965 6966 /* 6967 * We have to play games with the name since the 6968 * pool was opened as TRYIMPORT_NAME. 6969 */ 6970 if (dsl_dsobj_to_dsname(spa_name(spa), 6971 spa->spa_bootfs, tmpname) == 0) { 6972 char *cp; 6973 char *dsname; 6974 6975 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6976 6977 cp = strchr(tmpname, '/'); 6978 if (cp == NULL) { 6979 (void) strlcpy(dsname, tmpname, 6980 MAXPATHLEN); 6981 } else { 6982 (void) snprintf(dsname, MAXPATHLEN, 6983 "%s/%s", poolname, ++cp); 6984 } 6985 fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS, 6986 dsname); 6987 kmem_free(dsname, MAXPATHLEN); 6988 } 6989 kmem_free(tmpname, MAXPATHLEN); 6990 } 6991 6992 /* 6993 * Add the list of hot spares and level 2 cache devices. 6994 */ 6995 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6996 spa_add_spares(spa, config); 6997 spa_add_l2cache(spa, config); 6998 spa_config_exit(spa, SCL_CONFIG, FTAG); 6999 } 7000 7001 spa_unload(spa); 7002 spa_deactivate(spa); 7003 spa_remove(spa); 7004 mutex_exit(&spa_namespace_lock); 7005 7006 return (config); 7007 } 7008 7009 /* 7010 * Pool export/destroy 7011 * 7012 * The act of destroying or exporting a pool is very simple. We make sure there 7013 * is no more pending I/O and any references to the pool are gone. Then, we 7014 * update the pool state and sync all the labels to disk, removing the 7015 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 7016 * we don't sync the labels or remove the configuration cache. 7017 */ 7018 static int 7019 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig, 7020 boolean_t force, boolean_t hardforce) 7021 { 7022 int error = 0; 7023 spa_t *spa; 7024 hrtime_t export_start = gethrtime(); 7025 7026 if (oldconfig) 7027 *oldconfig = NULL; 7028 7029 if (!(spa_mode_global & SPA_MODE_WRITE)) 7030 return (SET_ERROR(EROFS)); 7031 7032 mutex_enter(&spa_namespace_lock); 7033 if ((spa = spa_lookup(pool)) == NULL) { 7034 mutex_exit(&spa_namespace_lock); 7035 return (SET_ERROR(ENOENT)); 7036 } 7037 7038 if (spa->spa_is_exporting) { 7039 /* the pool is being exported by another thread */ 7040 mutex_exit(&spa_namespace_lock); 7041 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS)); 7042 } 7043 spa->spa_is_exporting = B_TRUE; 7044 7045 /* 7046 * Put a hold on the pool, drop the namespace lock, stop async tasks 7047 * and see if we can export. 7048 */ 7049 spa_open_ref(spa, FTAG); 7050 mutex_exit(&spa_namespace_lock); 7051 spa_async_suspend(spa); 7052 if (spa->spa_zvol_taskq) { 7053 zvol_remove_minors(spa, spa_name(spa), B_TRUE); 7054 taskq_wait(spa->spa_zvol_taskq); 7055 } 7056 mutex_enter(&spa_namespace_lock); 7057 spa->spa_export_thread = curthread; 7058 spa_close(spa, FTAG); 7059 7060 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 7061 mutex_exit(&spa_namespace_lock); 7062 goto export_spa; 7063 } 7064 7065 /* 7066 * The pool will be in core if it's openable, in which case we can 7067 * modify its state. Objsets may be open only because they're dirty, 7068 * so we have to force it to sync before checking spa_refcnt. 7069 */ 7070 if (spa->spa_sync_on) { 7071 txg_wait_synced(spa->spa_dsl_pool, 0); 7072 spa_evicting_os_wait(spa); 7073 } 7074 7075 /* 7076 * A pool cannot be exported or destroyed if there are active 7077 * references. If we are resetting a pool, allow references by 7078 * fault injection handlers. 7079 */ 7080 if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) { 7081 error = SET_ERROR(EBUSY); 7082 goto fail; 7083 } 7084 7085 mutex_exit(&spa_namespace_lock); 7086 /* 7087 * At this point we no longer hold the spa_namespace_lock and 7088 * there were no references on the spa. Future spa_lookups will 7089 * notice the spa->spa_export_thread and wait until we signal 7090 * that we are finshed. 7091 */ 7092 7093 if (spa->spa_sync_on) { 7094 vdev_t *rvd = spa->spa_root_vdev; 7095 /* 7096 * A pool cannot be exported if it has an active shared spare. 7097 * This is to prevent other pools stealing the active spare 7098 * from an exported pool. At user's own will, such pool can 7099 * be forcedly exported. 7100 */ 7101 if (!force && new_state == POOL_STATE_EXPORTED && 7102 spa_has_active_shared_spare(spa)) { 7103 error = SET_ERROR(EXDEV); 7104 mutex_enter(&spa_namespace_lock); 7105 goto fail; 7106 } 7107 7108 /* 7109 * We're about to export or destroy this pool. Make sure 7110 * we stop all initialization and trim activity here before 7111 * we set the spa_final_txg. This will ensure that all 7112 * dirty data resulting from the initialization is 7113 * committed to disk before we unload the pool. 7114 */ 7115 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE); 7116 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE); 7117 vdev_autotrim_stop_all(spa); 7118 vdev_rebuild_stop_all(spa); 7119 l2arc_spa_rebuild_stop(spa); 7120 7121 /* 7122 * We want this to be reflected on every label, 7123 * so mark them all dirty. spa_unload() will do the 7124 * final sync that pushes these changes out. 7125 */ 7126 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 7127 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 7128 spa->spa_state = new_state; 7129 vdev_config_dirty(rvd); 7130 spa_config_exit(spa, SCL_ALL, FTAG); 7131 } 7132 7133 /* 7134 * If the log space map feature is enabled and the pool is 7135 * getting exported (but not destroyed), we want to spend some 7136 * time flushing as many metaslabs as we can in an attempt to 7137 * destroy log space maps and save import time. This has to be 7138 * done before we set the spa_final_txg, otherwise 7139 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs. 7140 * spa_should_flush_logs_on_unload() should be called after 7141 * spa_state has been set to the new_state. 7142 */ 7143 if (spa_should_flush_logs_on_unload(spa)) 7144 spa_unload_log_sm_flush_all(spa); 7145 7146 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 7147 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 7148 spa->spa_final_txg = spa_last_synced_txg(spa) + 7149 TXG_DEFER_SIZE + 1; 7150 spa_config_exit(spa, SCL_ALL, FTAG); 7151 } 7152 } 7153 7154 export_spa: 7155 spa_export_os(spa); 7156 7157 if (new_state == POOL_STATE_DESTROYED) 7158 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY); 7159 else if (new_state == POOL_STATE_EXPORTED) 7160 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT); 7161 7162 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 7163 spa_unload(spa); 7164 spa_deactivate(spa); 7165 } 7166 7167 if (oldconfig && spa->spa_config) 7168 *oldconfig = fnvlist_dup(spa->spa_config); 7169 7170 if (new_state == POOL_STATE_EXPORTED) 7171 zio_handle_export_delay(spa, gethrtime() - export_start); 7172 7173 /* 7174 * Take the namespace lock for the actual spa_t removal 7175 */ 7176 mutex_enter(&spa_namespace_lock); 7177 if (new_state != POOL_STATE_UNINITIALIZED) { 7178 if (!hardforce) 7179 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE); 7180 spa_remove(spa); 7181 } else { 7182 /* 7183 * If spa_remove() is not called for this spa_t and 7184 * there is any possibility that it can be reused, 7185 * we make sure to reset the exporting flag. 7186 */ 7187 spa->spa_is_exporting = B_FALSE; 7188 spa->spa_export_thread = NULL; 7189 } 7190 7191 /* 7192 * Wake up any waiters in spa_lookup() 7193 */ 7194 cv_broadcast(&spa_namespace_cv); 7195 mutex_exit(&spa_namespace_lock); 7196 return (0); 7197 7198 fail: 7199 spa->spa_is_exporting = B_FALSE; 7200 spa->spa_export_thread = NULL; 7201 7202 spa_async_resume(spa); 7203 /* 7204 * Wake up any waiters in spa_lookup() 7205 */ 7206 cv_broadcast(&spa_namespace_cv); 7207 mutex_exit(&spa_namespace_lock); 7208 return (error); 7209 } 7210 7211 /* 7212 * Destroy a storage pool. 7213 */ 7214 int 7215 spa_destroy(const char *pool) 7216 { 7217 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 7218 B_FALSE, B_FALSE)); 7219 } 7220 7221 /* 7222 * Export a storage pool. 7223 */ 7224 int 7225 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force, 7226 boolean_t hardforce) 7227 { 7228 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 7229 force, hardforce)); 7230 } 7231 7232 /* 7233 * Similar to spa_export(), this unloads the spa_t without actually removing it 7234 * from the namespace in any way. 7235 */ 7236 int 7237 spa_reset(const char *pool) 7238 { 7239 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 7240 B_FALSE, B_FALSE)); 7241 } 7242 7243 /* 7244 * ========================================================================== 7245 * Device manipulation 7246 * ========================================================================== 7247 */ 7248 7249 /* 7250 * This is called as a synctask to increment the draid feature flag 7251 */ 7252 static void 7253 spa_draid_feature_incr(void *arg, dmu_tx_t *tx) 7254 { 7255 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 7256 int draid = (int)(uintptr_t)arg; 7257 7258 for (int c = 0; c < draid; c++) 7259 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx); 7260 } 7261 7262 /* 7263 * Add a device to a storage pool. 7264 */ 7265 int 7266 spa_vdev_add(spa_t *spa, nvlist_t *nvroot, boolean_t check_ashift) 7267 { 7268 uint64_t txg, ndraid = 0; 7269 int error; 7270 vdev_t *rvd = spa->spa_root_vdev; 7271 vdev_t *vd, *tvd; 7272 nvlist_t **spares, **l2cache; 7273 uint_t nspares, nl2cache; 7274 7275 ASSERT(spa_writeable(spa)); 7276 7277 txg = spa_vdev_enter(spa); 7278 7279 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 7280 VDEV_ALLOC_ADD)) != 0) 7281 return (spa_vdev_exit(spa, NULL, txg, error)); 7282 7283 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 7284 7285 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 7286 &nspares) != 0) 7287 nspares = 0; 7288 7289 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 7290 &nl2cache) != 0) 7291 nl2cache = 0; 7292 7293 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 7294 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 7295 7296 if (vd->vdev_children != 0 && 7297 (error = vdev_create(vd, txg, B_FALSE)) != 0) { 7298 return (spa_vdev_exit(spa, vd, txg, error)); 7299 } 7300 7301 /* 7302 * The virtual dRAID spares must be added after vdev tree is created 7303 * and the vdev guids are generated. The guid of their associated 7304 * dRAID is stored in the config and used when opening the spare. 7305 */ 7306 if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid, 7307 rvd->vdev_children)) == 0) { 7308 if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot, 7309 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0) 7310 nspares = 0; 7311 } else { 7312 return (spa_vdev_exit(spa, vd, txg, error)); 7313 } 7314 7315 /* 7316 * We must validate the spares and l2cache devices after checking the 7317 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 7318 */ 7319 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 7320 return (spa_vdev_exit(spa, vd, txg, error)); 7321 7322 /* 7323 * If we are in the middle of a device removal, we can only add 7324 * devices which match the existing devices in the pool. 7325 * If we are in the middle of a removal, or have some indirect 7326 * vdevs, we can not add raidz or dRAID top levels. 7327 */ 7328 if (spa->spa_vdev_removal != NULL || 7329 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { 7330 for (int c = 0; c < vd->vdev_children; c++) { 7331 tvd = vd->vdev_child[c]; 7332 if (spa->spa_vdev_removal != NULL && 7333 tvd->vdev_ashift != spa->spa_max_ashift) { 7334 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 7335 } 7336 /* Fail if top level vdev is raidz or a dRAID */ 7337 if (vdev_get_nparity(tvd) != 0) 7338 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 7339 7340 /* 7341 * Need the top level mirror to be 7342 * a mirror of leaf vdevs only 7343 */ 7344 if (tvd->vdev_ops == &vdev_mirror_ops) { 7345 for (uint64_t cid = 0; 7346 cid < tvd->vdev_children; cid++) { 7347 vdev_t *cvd = tvd->vdev_child[cid]; 7348 if (!cvd->vdev_ops->vdev_op_leaf) { 7349 return (spa_vdev_exit(spa, vd, 7350 txg, EINVAL)); 7351 } 7352 } 7353 } 7354 } 7355 } 7356 7357 if (check_ashift && spa->spa_max_ashift == spa->spa_min_ashift) { 7358 for (int c = 0; c < vd->vdev_children; c++) { 7359 tvd = vd->vdev_child[c]; 7360 if (tvd->vdev_ashift != spa->spa_max_ashift) { 7361 return (spa_vdev_exit(spa, vd, txg, 7362 ZFS_ERR_ASHIFT_MISMATCH)); 7363 } 7364 } 7365 } 7366 7367 for (int c = 0; c < vd->vdev_children; c++) { 7368 tvd = vd->vdev_child[c]; 7369 vdev_remove_child(vd, tvd); 7370 tvd->vdev_id = rvd->vdev_children; 7371 vdev_add_child(rvd, tvd); 7372 vdev_config_dirty(tvd); 7373 } 7374 7375 if (nspares != 0) { 7376 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 7377 ZPOOL_CONFIG_SPARES); 7378 spa_load_spares(spa); 7379 spa->spa_spares.sav_sync = B_TRUE; 7380 } 7381 7382 if (nl2cache != 0) { 7383 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 7384 ZPOOL_CONFIG_L2CACHE); 7385 spa_load_l2cache(spa); 7386 spa->spa_l2cache.sav_sync = B_TRUE; 7387 } 7388 7389 /* 7390 * We can't increment a feature while holding spa_vdev so we 7391 * have to do it in a synctask. 7392 */ 7393 if (ndraid != 0) { 7394 dmu_tx_t *tx; 7395 7396 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 7397 dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr, 7398 (void *)(uintptr_t)ndraid, tx); 7399 dmu_tx_commit(tx); 7400 } 7401 7402 /* 7403 * We have to be careful when adding new vdevs to an existing pool. 7404 * If other threads start allocating from these vdevs before we 7405 * sync the config cache, and we lose power, then upon reboot we may 7406 * fail to open the pool because there are DVAs that the config cache 7407 * can't translate. Therefore, we first add the vdevs without 7408 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 7409 * and then let spa_config_update() initialize the new metaslabs. 7410 * 7411 * spa_load() checks for added-but-not-initialized vdevs, so that 7412 * if we lose power at any point in this sequence, the remaining 7413 * steps will be completed the next time we load the pool. 7414 */ 7415 (void) spa_vdev_exit(spa, vd, txg, 0); 7416 7417 mutex_enter(&spa_namespace_lock); 7418 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 7419 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD); 7420 mutex_exit(&spa_namespace_lock); 7421 7422 return (0); 7423 } 7424 7425 /* 7426 * Attach a device to a vdev specified by its guid. The vdev type can be 7427 * a mirror, a raidz, or a leaf device that is also a top-level (e.g. a 7428 * single device). When the vdev is a single device, a mirror vdev will be 7429 * automatically inserted. 7430 * 7431 * If 'replacing' is specified, the new device is intended to replace the 7432 * existing device; in this case the two devices are made into their own 7433 * mirror using the 'replacing' vdev, which is functionally identical to 7434 * the mirror vdev (it actually reuses all the same ops) but has a few 7435 * extra rules: you can't attach to it after it's been created, and upon 7436 * completion of resilvering, the first disk (the one being replaced) 7437 * is automatically detached. 7438 * 7439 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild) 7440 * should be performed instead of traditional healing reconstruction. From 7441 * an administrators perspective these are both resilver operations. 7442 */ 7443 int 7444 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing, 7445 int rebuild) 7446 { 7447 uint64_t txg, dtl_max_txg; 7448 vdev_t *rvd = spa->spa_root_vdev; 7449 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 7450 vdev_ops_t *pvops; 7451 char *oldvdpath, *newvdpath; 7452 int newvd_isspare = B_FALSE; 7453 int error; 7454 7455 ASSERT(spa_writeable(spa)); 7456 7457 txg = spa_vdev_enter(spa); 7458 7459 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 7460 7461 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7462 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 7463 error = (spa_has_checkpoint(spa)) ? 7464 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 7465 return (spa_vdev_exit(spa, NULL, txg, error)); 7466 } 7467 7468 if (rebuild) { 7469 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) 7470 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7471 7472 if (dsl_scan_resilvering(spa_get_dsl(spa)) || 7473 dsl_scan_resilver_scheduled(spa_get_dsl(spa))) { 7474 return (spa_vdev_exit(spa, NULL, txg, 7475 ZFS_ERR_RESILVER_IN_PROGRESS)); 7476 } 7477 } else { 7478 if (vdev_rebuild_active(rvd)) 7479 return (spa_vdev_exit(spa, NULL, txg, 7480 ZFS_ERR_REBUILD_IN_PROGRESS)); 7481 } 7482 7483 if (spa->spa_vdev_removal != NULL) { 7484 return (spa_vdev_exit(spa, NULL, txg, 7485 ZFS_ERR_DEVRM_IN_PROGRESS)); 7486 } 7487 7488 if (oldvd == NULL) 7489 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 7490 7491 boolean_t raidz = oldvd->vdev_ops == &vdev_raidz_ops; 7492 7493 if (raidz) { 7494 if (!spa_feature_is_enabled(spa, SPA_FEATURE_RAIDZ_EXPANSION)) 7495 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7496 7497 /* 7498 * Can't expand a raidz while prior expand is in progress. 7499 */ 7500 if (spa->spa_raidz_expand != NULL) { 7501 return (spa_vdev_exit(spa, NULL, txg, 7502 ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS)); 7503 } 7504 } else if (!oldvd->vdev_ops->vdev_op_leaf) { 7505 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7506 } 7507 7508 if (raidz) 7509 pvd = oldvd; 7510 else 7511 pvd = oldvd->vdev_parent; 7512 7513 if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 7514 VDEV_ALLOC_ATTACH) != 0) 7515 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 7516 7517 if (newrootvd->vdev_children != 1) 7518 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 7519 7520 newvd = newrootvd->vdev_child[0]; 7521 7522 if (!newvd->vdev_ops->vdev_op_leaf) 7523 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 7524 7525 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 7526 return (spa_vdev_exit(spa, newrootvd, txg, error)); 7527 7528 /* 7529 * log, dedup and special vdevs should not be replaced by spares. 7530 */ 7531 if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE || 7532 oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) { 7533 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7534 } 7535 7536 /* 7537 * A dRAID spare can only replace a child of its parent dRAID vdev. 7538 */ 7539 if (newvd->vdev_ops == &vdev_draid_spare_ops && 7540 oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) { 7541 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7542 } 7543 7544 if (rebuild) { 7545 /* 7546 * For rebuilds, the top vdev must support reconstruction 7547 * using only space maps. This means the only allowable 7548 * vdevs types are the root vdev, a mirror, or dRAID. 7549 */ 7550 tvd = pvd; 7551 if (pvd->vdev_top != NULL) 7552 tvd = pvd->vdev_top; 7553 7554 if (tvd->vdev_ops != &vdev_mirror_ops && 7555 tvd->vdev_ops != &vdev_root_ops && 7556 tvd->vdev_ops != &vdev_draid_ops) { 7557 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7558 } 7559 } 7560 7561 if (!replacing) { 7562 /* 7563 * For attach, the only allowable parent is a mirror or 7564 * the root vdev. A raidz vdev can be attached to, but 7565 * you cannot attach to a raidz child. 7566 */ 7567 if (pvd->vdev_ops != &vdev_mirror_ops && 7568 pvd->vdev_ops != &vdev_root_ops && 7569 !raidz) 7570 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7571 7572 pvops = &vdev_mirror_ops; 7573 } else { 7574 /* 7575 * Active hot spares can only be replaced by inactive hot 7576 * spares. 7577 */ 7578 if (pvd->vdev_ops == &vdev_spare_ops && 7579 oldvd->vdev_isspare && 7580 !spa_has_spare(spa, newvd->vdev_guid)) 7581 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7582 7583 /* 7584 * If the source is a hot spare, and the parent isn't already a 7585 * spare, then we want to create a new hot spare. Otherwise, we 7586 * want to create a replacing vdev. The user is not allowed to 7587 * attach to a spared vdev child unless the 'isspare' state is 7588 * the same (spare replaces spare, non-spare replaces 7589 * non-spare). 7590 */ 7591 if (pvd->vdev_ops == &vdev_replacing_ops && 7592 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 7593 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7594 } else if (pvd->vdev_ops == &vdev_spare_ops && 7595 newvd->vdev_isspare != oldvd->vdev_isspare) { 7596 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7597 } 7598 7599 if (newvd->vdev_isspare) 7600 pvops = &vdev_spare_ops; 7601 else 7602 pvops = &vdev_replacing_ops; 7603 } 7604 7605 /* 7606 * Make sure the new device is big enough. 7607 */ 7608 vdev_t *min_vdev = raidz ? oldvd->vdev_child[0] : oldvd; 7609 if (newvd->vdev_asize < vdev_get_min_asize(min_vdev)) 7610 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 7611 7612 /* 7613 * The new device cannot have a higher alignment requirement 7614 * than the top-level vdev. 7615 */ 7616 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) { 7617 return (spa_vdev_exit(spa, newrootvd, txg, 7618 ZFS_ERR_ASHIFT_MISMATCH)); 7619 } 7620 7621 /* 7622 * RAIDZ-expansion-specific checks. 7623 */ 7624 if (raidz) { 7625 if (vdev_raidz_attach_check(newvd) != 0) 7626 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7627 7628 /* 7629 * Fail early if a child is not healthy or being replaced 7630 */ 7631 for (int i = 0; i < oldvd->vdev_children; i++) { 7632 if (vdev_is_dead(oldvd->vdev_child[i]) || 7633 !oldvd->vdev_child[i]->vdev_ops->vdev_op_leaf) { 7634 return (spa_vdev_exit(spa, newrootvd, txg, 7635 ENXIO)); 7636 } 7637 /* Also fail if reserved boot area is in-use */ 7638 if (vdev_check_boot_reserve(spa, oldvd->vdev_child[i]) 7639 != 0) { 7640 return (spa_vdev_exit(spa, newrootvd, txg, 7641 EADDRINUSE)); 7642 } 7643 } 7644 } 7645 7646 if (raidz) { 7647 /* 7648 * Note: oldvdpath is freed by spa_strfree(), but 7649 * kmem_asprintf() is freed by kmem_strfree(), so we have to 7650 * move it to a spa_strdup-ed string. 7651 */ 7652 char *tmp = kmem_asprintf("raidz%u-%u", 7653 (uint_t)vdev_get_nparity(oldvd), (uint_t)oldvd->vdev_id); 7654 oldvdpath = spa_strdup(tmp); 7655 kmem_strfree(tmp); 7656 } else { 7657 oldvdpath = spa_strdup(oldvd->vdev_path); 7658 } 7659 newvdpath = spa_strdup(newvd->vdev_path); 7660 7661 /* 7662 * If this is an in-place replacement, update oldvd's path and devid 7663 * to make it distinguishable from newvd, and unopenable from now on. 7664 */ 7665 if (strcmp(oldvdpath, newvdpath) == 0) { 7666 spa_strfree(oldvd->vdev_path); 7667 oldvd->vdev_path = kmem_alloc(strlen(newvdpath) + 5, 7668 KM_SLEEP); 7669 (void) sprintf(oldvd->vdev_path, "%s/old", 7670 newvdpath); 7671 if (oldvd->vdev_devid != NULL) { 7672 spa_strfree(oldvd->vdev_devid); 7673 oldvd->vdev_devid = NULL; 7674 } 7675 spa_strfree(oldvdpath); 7676 oldvdpath = spa_strdup(oldvd->vdev_path); 7677 } 7678 7679 /* 7680 * If the parent is not a mirror, or if we're replacing, insert the new 7681 * mirror/replacing/spare vdev above oldvd. 7682 */ 7683 if (!raidz && pvd->vdev_ops != pvops) { 7684 pvd = vdev_add_parent(oldvd, pvops); 7685 ASSERT(pvd->vdev_ops == pvops); 7686 ASSERT(oldvd->vdev_parent == pvd); 7687 } 7688 7689 ASSERT(pvd->vdev_top->vdev_parent == rvd); 7690 7691 /* 7692 * Extract the new device from its root and add it to pvd. 7693 */ 7694 vdev_remove_child(newrootvd, newvd); 7695 newvd->vdev_id = pvd->vdev_children; 7696 newvd->vdev_crtxg = oldvd->vdev_crtxg; 7697 vdev_add_child(pvd, newvd); 7698 7699 /* 7700 * Reevaluate the parent vdev state. 7701 */ 7702 vdev_propagate_state(pvd); 7703 7704 tvd = newvd->vdev_top; 7705 ASSERT(pvd->vdev_top == tvd); 7706 ASSERT(tvd->vdev_parent == rvd); 7707 7708 vdev_config_dirty(tvd); 7709 7710 /* 7711 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 7712 * for any dmu_sync-ed blocks. It will propagate upward when 7713 * spa_vdev_exit() calls vdev_dtl_reassess(). 7714 */ 7715 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 7716 7717 if (raidz) { 7718 /* 7719 * Wait for the youngest allocations and frees to sync, 7720 * and then wait for the deferral of those frees to finish. 7721 */ 7722 spa_vdev_config_exit(spa, NULL, 7723 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 7724 7725 vdev_initialize_stop_all(tvd, VDEV_INITIALIZE_ACTIVE); 7726 vdev_trim_stop_all(tvd, VDEV_TRIM_ACTIVE); 7727 vdev_autotrim_stop_wait(tvd); 7728 7729 dtl_max_txg = spa_vdev_config_enter(spa); 7730 7731 tvd->vdev_rz_expanding = B_TRUE; 7732 7733 vdev_dirty_leaves(tvd, VDD_DTL, dtl_max_txg); 7734 vdev_config_dirty(tvd); 7735 7736 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, 7737 dtl_max_txg); 7738 dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_raidz_attach_sync, 7739 newvd, tx); 7740 dmu_tx_commit(tx); 7741 } else { 7742 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 7743 dtl_max_txg - TXG_INITIAL); 7744 7745 if (newvd->vdev_isspare) { 7746 spa_spare_activate(newvd); 7747 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE); 7748 } 7749 7750 newvd_isspare = newvd->vdev_isspare; 7751 7752 /* 7753 * Mark newvd's DTL dirty in this txg. 7754 */ 7755 vdev_dirty(tvd, VDD_DTL, newvd, txg); 7756 7757 /* 7758 * Schedule the resilver or rebuild to restart in the future. 7759 * We do this to ensure that dmu_sync-ed blocks have been 7760 * stitched into the respective datasets. 7761 */ 7762 if (rebuild) { 7763 newvd->vdev_rebuild_txg = txg; 7764 7765 vdev_rebuild(tvd); 7766 } else { 7767 newvd->vdev_resilver_txg = txg; 7768 7769 if (dsl_scan_resilvering(spa_get_dsl(spa)) && 7770 spa_feature_is_enabled(spa, 7771 SPA_FEATURE_RESILVER_DEFER)) { 7772 vdev_defer_resilver(newvd); 7773 } else { 7774 dsl_scan_restart_resilver(spa->spa_dsl_pool, 7775 dtl_max_txg); 7776 } 7777 } 7778 } 7779 7780 if (spa->spa_bootfs) 7781 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH); 7782 7783 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH); 7784 7785 /* 7786 * Commit the config 7787 */ 7788 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 7789 7790 spa_history_log_internal(spa, "vdev attach", NULL, 7791 "%s vdev=%s %s vdev=%s", 7792 replacing && newvd_isspare ? "spare in" : 7793 replacing ? "replace" : "attach", newvdpath, 7794 replacing ? "for" : "to", oldvdpath); 7795 7796 spa_strfree(oldvdpath); 7797 spa_strfree(newvdpath); 7798 7799 return (0); 7800 } 7801 7802 /* 7803 * Detach a device from a mirror or replacing vdev. 7804 * 7805 * If 'replace_done' is specified, only detach if the parent 7806 * is a replacing or a spare vdev. 7807 */ 7808 int 7809 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 7810 { 7811 uint64_t txg; 7812 int error; 7813 vdev_t *rvd __maybe_unused = spa->spa_root_vdev; 7814 vdev_t *vd, *pvd, *cvd, *tvd; 7815 boolean_t unspare = B_FALSE; 7816 uint64_t unspare_guid = 0; 7817 char *vdpath; 7818 7819 ASSERT(spa_writeable(spa)); 7820 7821 txg = spa_vdev_detach_enter(spa, guid); 7822 7823 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 7824 7825 /* 7826 * Besides being called directly from the userland through the 7827 * ioctl interface, spa_vdev_detach() can be potentially called 7828 * at the end of spa_vdev_resilver_done(). 7829 * 7830 * In the regular case, when we have a checkpoint this shouldn't 7831 * happen as we never empty the DTLs of a vdev during the scrub 7832 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done() 7833 * should never get here when we have a checkpoint. 7834 * 7835 * That said, even in a case when we checkpoint the pool exactly 7836 * as spa_vdev_resilver_done() calls this function everything 7837 * should be fine as the resilver will return right away. 7838 */ 7839 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7840 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 7841 error = (spa_has_checkpoint(spa)) ? 7842 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 7843 return (spa_vdev_exit(spa, NULL, txg, error)); 7844 } 7845 7846 if (vd == NULL) 7847 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 7848 7849 if (!vd->vdev_ops->vdev_op_leaf) 7850 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7851 7852 pvd = vd->vdev_parent; 7853 7854 /* 7855 * If the parent/child relationship is not as expected, don't do it. 7856 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 7857 * vdev that's replacing B with C. The user's intent in replacing 7858 * is to go from M(A,B) to M(A,C). If the user decides to cancel 7859 * the replace by detaching C, the expected behavior is to end up 7860 * M(A,B). But suppose that right after deciding to detach C, 7861 * the replacement of B completes. We would have M(A,C), and then 7862 * ask to detach C, which would leave us with just A -- not what 7863 * the user wanted. To prevent this, we make sure that the 7864 * parent/child relationship hasn't changed -- in this example, 7865 * that C's parent is still the replacing vdev R. 7866 */ 7867 if (pvd->vdev_guid != pguid && pguid != 0) 7868 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 7869 7870 /* 7871 * Only 'replacing' or 'spare' vdevs can be replaced. 7872 */ 7873 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 7874 pvd->vdev_ops != &vdev_spare_ops) 7875 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7876 7877 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 7878 spa_version(spa) >= SPA_VERSION_SPARES); 7879 7880 /* 7881 * Only mirror, replacing, and spare vdevs support detach. 7882 */ 7883 if (pvd->vdev_ops != &vdev_replacing_ops && 7884 pvd->vdev_ops != &vdev_mirror_ops && 7885 pvd->vdev_ops != &vdev_spare_ops) 7886 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7887 7888 /* 7889 * If this device has the only valid copy of some data, 7890 * we cannot safely detach it. 7891 */ 7892 if (vdev_dtl_required(vd)) 7893 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 7894 7895 ASSERT(pvd->vdev_children >= 2); 7896 7897 /* 7898 * If we are detaching the second disk from a replacing vdev, then 7899 * check to see if we changed the original vdev's path to have "/old" 7900 * at the end in spa_vdev_attach(). If so, undo that change now. 7901 */ 7902 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 7903 vd->vdev_path != NULL) { 7904 size_t len = strlen(vd->vdev_path); 7905 7906 for (int c = 0; c < pvd->vdev_children; c++) { 7907 cvd = pvd->vdev_child[c]; 7908 7909 if (cvd == vd || cvd->vdev_path == NULL) 7910 continue; 7911 7912 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 7913 strcmp(cvd->vdev_path + len, "/old") == 0) { 7914 spa_strfree(cvd->vdev_path); 7915 cvd->vdev_path = spa_strdup(vd->vdev_path); 7916 break; 7917 } 7918 } 7919 } 7920 7921 /* 7922 * If we are detaching the original disk from a normal spare, then it 7923 * implies that the spare should become a real disk, and be removed 7924 * from the active spare list for the pool. dRAID spares on the 7925 * other hand are coupled to the pool and thus should never be removed 7926 * from the spares list. 7927 */ 7928 if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) { 7929 vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1]; 7930 7931 if (last_cvd->vdev_isspare && 7932 last_cvd->vdev_ops != &vdev_draid_spare_ops) { 7933 unspare = B_TRUE; 7934 } 7935 } 7936 7937 /* 7938 * Erase the disk labels so the disk can be used for other things. 7939 * This must be done after all other error cases are handled, 7940 * but before we disembowel vd (so we can still do I/O to it). 7941 * But if we can't do it, don't treat the error as fatal -- 7942 * it may be that the unwritability of the disk is the reason 7943 * it's being detached! 7944 */ 7945 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 7946 7947 /* 7948 * Remove vd from its parent and compact the parent's children. 7949 */ 7950 vdev_remove_child(pvd, vd); 7951 vdev_compact_children(pvd); 7952 7953 /* 7954 * Remember one of the remaining children so we can get tvd below. 7955 */ 7956 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 7957 7958 /* 7959 * If we need to remove the remaining child from the list of hot spares, 7960 * do it now, marking the vdev as no longer a spare in the process. 7961 * We must do this before vdev_remove_parent(), because that can 7962 * change the GUID if it creates a new toplevel GUID. For a similar 7963 * reason, we must remove the spare now, in the same txg as the detach; 7964 * otherwise someone could attach a new sibling, change the GUID, and 7965 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 7966 */ 7967 if (unspare) { 7968 ASSERT(cvd->vdev_isspare); 7969 spa_spare_remove(cvd); 7970 unspare_guid = cvd->vdev_guid; 7971 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 7972 cvd->vdev_unspare = B_TRUE; 7973 } 7974 7975 /* 7976 * If the parent mirror/replacing vdev only has one child, 7977 * the parent is no longer needed. Remove it from the tree. 7978 */ 7979 if (pvd->vdev_children == 1) { 7980 if (pvd->vdev_ops == &vdev_spare_ops) 7981 cvd->vdev_unspare = B_FALSE; 7982 vdev_remove_parent(cvd); 7983 } 7984 7985 /* 7986 * We don't set tvd until now because the parent we just removed 7987 * may have been the previous top-level vdev. 7988 */ 7989 tvd = cvd->vdev_top; 7990 ASSERT(tvd->vdev_parent == rvd); 7991 7992 /* 7993 * Reevaluate the parent vdev state. 7994 */ 7995 vdev_propagate_state(cvd); 7996 7997 /* 7998 * If the 'autoexpand' property is set on the pool then automatically 7999 * try to expand the size of the pool. For example if the device we 8000 * just detached was smaller than the others, it may be possible to 8001 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 8002 * first so that we can obtain the updated sizes of the leaf vdevs. 8003 */ 8004 if (spa->spa_autoexpand) { 8005 vdev_reopen(tvd); 8006 vdev_expand(tvd, txg); 8007 } 8008 8009 vdev_config_dirty(tvd); 8010 8011 /* 8012 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 8013 * vd->vdev_detached is set and free vd's DTL object in syncing context. 8014 * But first make sure we're not on any *other* txg's DTL list, to 8015 * prevent vd from being accessed after it's freed. 8016 */ 8017 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none"); 8018 for (int t = 0; t < TXG_SIZE; t++) 8019 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 8020 vd->vdev_detached = B_TRUE; 8021 vdev_dirty(tvd, VDD_DTL, vd, txg); 8022 8023 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE); 8024 spa_notify_waiters(spa); 8025 8026 /* hang on to the spa before we release the lock */ 8027 spa_open_ref(spa, FTAG); 8028 8029 error = spa_vdev_exit(spa, vd, txg, 0); 8030 8031 spa_history_log_internal(spa, "detach", NULL, 8032 "vdev=%s", vdpath); 8033 spa_strfree(vdpath); 8034 8035 /* 8036 * If this was the removal of the original device in a hot spare vdev, 8037 * then we want to go through and remove the device from the hot spare 8038 * list of every other pool. 8039 */ 8040 if (unspare) { 8041 spa_t *altspa = NULL; 8042 8043 mutex_enter(&spa_namespace_lock); 8044 while ((altspa = spa_next(altspa)) != NULL) { 8045 if (altspa->spa_state != POOL_STATE_ACTIVE || 8046 altspa == spa) 8047 continue; 8048 8049 spa_open_ref(altspa, FTAG); 8050 mutex_exit(&spa_namespace_lock); 8051 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 8052 mutex_enter(&spa_namespace_lock); 8053 spa_close(altspa, FTAG); 8054 } 8055 mutex_exit(&spa_namespace_lock); 8056 8057 /* search the rest of the vdevs for spares to remove */ 8058 spa_vdev_resilver_done(spa); 8059 } 8060 8061 /* all done with the spa; OK to release */ 8062 mutex_enter(&spa_namespace_lock); 8063 spa_close(spa, FTAG); 8064 mutex_exit(&spa_namespace_lock); 8065 8066 return (error); 8067 } 8068 8069 static int 8070 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, 8071 list_t *vd_list) 8072 { 8073 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 8074 8075 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 8076 8077 /* Look up vdev and ensure it's a leaf. */ 8078 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 8079 if (vd == NULL || vd->vdev_detached) { 8080 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8081 return (SET_ERROR(ENODEV)); 8082 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 8083 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8084 return (SET_ERROR(EINVAL)); 8085 } else if (!vdev_writeable(vd)) { 8086 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8087 return (SET_ERROR(EROFS)); 8088 } 8089 mutex_enter(&vd->vdev_initialize_lock); 8090 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8091 8092 /* 8093 * When we activate an initialize action we check to see 8094 * if the vdev_initialize_thread is NULL. We do this instead 8095 * of using the vdev_initialize_state since there might be 8096 * a previous initialization process which has completed but 8097 * the thread is not exited. 8098 */ 8099 if (cmd_type == POOL_INITIALIZE_START && 8100 (vd->vdev_initialize_thread != NULL || 8101 vd->vdev_top->vdev_removing || vd->vdev_top->vdev_rz_expanding)) { 8102 mutex_exit(&vd->vdev_initialize_lock); 8103 return (SET_ERROR(EBUSY)); 8104 } else if (cmd_type == POOL_INITIALIZE_CANCEL && 8105 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE && 8106 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) { 8107 mutex_exit(&vd->vdev_initialize_lock); 8108 return (SET_ERROR(ESRCH)); 8109 } else if (cmd_type == POOL_INITIALIZE_SUSPEND && 8110 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) { 8111 mutex_exit(&vd->vdev_initialize_lock); 8112 return (SET_ERROR(ESRCH)); 8113 } else if (cmd_type == POOL_INITIALIZE_UNINIT && 8114 vd->vdev_initialize_thread != NULL) { 8115 mutex_exit(&vd->vdev_initialize_lock); 8116 return (SET_ERROR(EBUSY)); 8117 } 8118 8119 switch (cmd_type) { 8120 case POOL_INITIALIZE_START: 8121 vdev_initialize(vd); 8122 break; 8123 case POOL_INITIALIZE_CANCEL: 8124 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list); 8125 break; 8126 case POOL_INITIALIZE_SUSPEND: 8127 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list); 8128 break; 8129 case POOL_INITIALIZE_UNINIT: 8130 vdev_uninitialize(vd); 8131 break; 8132 default: 8133 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 8134 } 8135 mutex_exit(&vd->vdev_initialize_lock); 8136 8137 return (0); 8138 } 8139 8140 int 8141 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, 8142 nvlist_t *vdev_errlist) 8143 { 8144 int total_errors = 0; 8145 list_t vd_list; 8146 8147 list_create(&vd_list, sizeof (vdev_t), 8148 offsetof(vdev_t, vdev_initialize_node)); 8149 8150 /* 8151 * We hold the namespace lock through the whole function 8152 * to prevent any changes to the pool while we're starting or 8153 * stopping initialization. The config and state locks are held so that 8154 * we can properly assess the vdev state before we commit to 8155 * the initializing operation. 8156 */ 8157 mutex_enter(&spa_namespace_lock); 8158 8159 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 8160 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { 8161 uint64_t vdev_guid = fnvpair_value_uint64(pair); 8162 8163 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type, 8164 &vd_list); 8165 if (error != 0) { 8166 char guid_as_str[MAXNAMELEN]; 8167 8168 (void) snprintf(guid_as_str, sizeof (guid_as_str), 8169 "%llu", (unsigned long long)vdev_guid); 8170 fnvlist_add_int64(vdev_errlist, guid_as_str, error); 8171 total_errors++; 8172 } 8173 } 8174 8175 /* Wait for all initialize threads to stop. */ 8176 vdev_initialize_stop_wait(spa, &vd_list); 8177 8178 /* Sync out the initializing state */ 8179 txg_wait_synced(spa->spa_dsl_pool, 0); 8180 mutex_exit(&spa_namespace_lock); 8181 8182 list_destroy(&vd_list); 8183 8184 return (total_errors); 8185 } 8186 8187 static int 8188 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, 8189 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list) 8190 { 8191 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 8192 8193 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 8194 8195 /* Look up vdev and ensure it's a leaf. */ 8196 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 8197 if (vd == NULL || vd->vdev_detached) { 8198 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8199 return (SET_ERROR(ENODEV)); 8200 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 8201 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8202 return (SET_ERROR(EINVAL)); 8203 } else if (!vdev_writeable(vd)) { 8204 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8205 return (SET_ERROR(EROFS)); 8206 } else if (!vd->vdev_has_trim) { 8207 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8208 return (SET_ERROR(EOPNOTSUPP)); 8209 } else if (secure && !vd->vdev_has_securetrim) { 8210 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8211 return (SET_ERROR(EOPNOTSUPP)); 8212 } 8213 mutex_enter(&vd->vdev_trim_lock); 8214 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8215 8216 /* 8217 * When we activate a TRIM action we check to see if the 8218 * vdev_trim_thread is NULL. We do this instead of using the 8219 * vdev_trim_state since there might be a previous TRIM process 8220 * which has completed but the thread is not exited. 8221 */ 8222 if (cmd_type == POOL_TRIM_START && 8223 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing || 8224 vd->vdev_top->vdev_rz_expanding)) { 8225 mutex_exit(&vd->vdev_trim_lock); 8226 return (SET_ERROR(EBUSY)); 8227 } else if (cmd_type == POOL_TRIM_CANCEL && 8228 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE && 8229 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) { 8230 mutex_exit(&vd->vdev_trim_lock); 8231 return (SET_ERROR(ESRCH)); 8232 } else if (cmd_type == POOL_TRIM_SUSPEND && 8233 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) { 8234 mutex_exit(&vd->vdev_trim_lock); 8235 return (SET_ERROR(ESRCH)); 8236 } 8237 8238 switch (cmd_type) { 8239 case POOL_TRIM_START: 8240 vdev_trim(vd, rate, partial, secure); 8241 break; 8242 case POOL_TRIM_CANCEL: 8243 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list); 8244 break; 8245 case POOL_TRIM_SUSPEND: 8246 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list); 8247 break; 8248 default: 8249 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 8250 } 8251 mutex_exit(&vd->vdev_trim_lock); 8252 8253 return (0); 8254 } 8255 8256 /* 8257 * Initiates a manual TRIM for the requested vdevs. This kicks off individual 8258 * TRIM threads for each child vdev. These threads pass over all of the free 8259 * space in the vdev's metaslabs and issues TRIM commands for that space. 8260 */ 8261 int 8262 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate, 8263 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist) 8264 { 8265 int total_errors = 0; 8266 list_t vd_list; 8267 8268 list_create(&vd_list, sizeof (vdev_t), 8269 offsetof(vdev_t, vdev_trim_node)); 8270 8271 /* 8272 * We hold the namespace lock through the whole function 8273 * to prevent any changes to the pool while we're starting or 8274 * stopping TRIM. The config and state locks are held so that 8275 * we can properly assess the vdev state before we commit to 8276 * the TRIM operation. 8277 */ 8278 mutex_enter(&spa_namespace_lock); 8279 8280 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 8281 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { 8282 uint64_t vdev_guid = fnvpair_value_uint64(pair); 8283 8284 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type, 8285 rate, partial, secure, &vd_list); 8286 if (error != 0) { 8287 char guid_as_str[MAXNAMELEN]; 8288 8289 (void) snprintf(guid_as_str, sizeof (guid_as_str), 8290 "%llu", (unsigned long long)vdev_guid); 8291 fnvlist_add_int64(vdev_errlist, guid_as_str, error); 8292 total_errors++; 8293 } 8294 } 8295 8296 /* Wait for all TRIM threads to stop. */ 8297 vdev_trim_stop_wait(spa, &vd_list); 8298 8299 /* Sync out the TRIM state */ 8300 txg_wait_synced(spa->spa_dsl_pool, 0); 8301 mutex_exit(&spa_namespace_lock); 8302 8303 list_destroy(&vd_list); 8304 8305 return (total_errors); 8306 } 8307 8308 /* 8309 * Split a set of devices from their mirrors, and create a new pool from them. 8310 */ 8311 int 8312 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config, 8313 nvlist_t *props, boolean_t exp) 8314 { 8315 int error = 0; 8316 uint64_t txg, *glist; 8317 spa_t *newspa; 8318 uint_t c, children, lastlog; 8319 nvlist_t **child, *nvl, *tmp; 8320 dmu_tx_t *tx; 8321 const char *altroot = NULL; 8322 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 8323 boolean_t activate_slog; 8324 8325 ASSERT(spa_writeable(spa)); 8326 8327 txg = spa_vdev_enter(spa); 8328 8329 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 8330 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 8331 error = (spa_has_checkpoint(spa)) ? 8332 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 8333 return (spa_vdev_exit(spa, NULL, txg, error)); 8334 } 8335 8336 /* clear the log and flush everything up to now */ 8337 activate_slog = spa_passivate_log(spa); 8338 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 8339 error = spa_reset_logs(spa); 8340 txg = spa_vdev_config_enter(spa); 8341 8342 if (activate_slog) 8343 spa_activate_log(spa); 8344 8345 if (error != 0) 8346 return (spa_vdev_exit(spa, NULL, txg, error)); 8347 8348 /* check new spa name before going any further */ 8349 if (spa_lookup(newname) != NULL) 8350 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 8351 8352 /* 8353 * scan through all the children to ensure they're all mirrors 8354 */ 8355 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 8356 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 8357 &children) != 0) 8358 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 8359 8360 /* first, check to ensure we've got the right child count */ 8361 rvd = spa->spa_root_vdev; 8362 lastlog = 0; 8363 for (c = 0; c < rvd->vdev_children; c++) { 8364 vdev_t *vd = rvd->vdev_child[c]; 8365 8366 /* don't count the holes & logs as children */ 8367 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops && 8368 !vdev_is_concrete(vd))) { 8369 if (lastlog == 0) 8370 lastlog = c; 8371 continue; 8372 } 8373 8374 lastlog = 0; 8375 } 8376 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 8377 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 8378 8379 /* next, ensure no spare or cache devices are part of the split */ 8380 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 8381 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 8382 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 8383 8384 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 8385 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 8386 8387 /* then, loop over each vdev and validate it */ 8388 for (c = 0; c < children; c++) { 8389 uint64_t is_hole = 0; 8390 8391 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 8392 &is_hole); 8393 8394 if (is_hole != 0) { 8395 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 8396 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 8397 continue; 8398 } else { 8399 error = SET_ERROR(EINVAL); 8400 break; 8401 } 8402 } 8403 8404 /* deal with indirect vdevs */ 8405 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops == 8406 &vdev_indirect_ops) 8407 continue; 8408 8409 /* which disk is going to be split? */ 8410 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 8411 &glist[c]) != 0) { 8412 error = SET_ERROR(EINVAL); 8413 break; 8414 } 8415 8416 /* look it up in the spa */ 8417 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 8418 if (vml[c] == NULL) { 8419 error = SET_ERROR(ENODEV); 8420 break; 8421 } 8422 8423 /* make sure there's nothing stopping the split */ 8424 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 8425 vml[c]->vdev_islog || 8426 !vdev_is_concrete(vml[c]) || 8427 vml[c]->vdev_isspare || 8428 vml[c]->vdev_isl2cache || 8429 !vdev_writeable(vml[c]) || 8430 vml[c]->vdev_children != 0 || 8431 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 8432 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 8433 error = SET_ERROR(EINVAL); 8434 break; 8435 } 8436 8437 if (vdev_dtl_required(vml[c]) || 8438 vdev_resilver_needed(vml[c], NULL, NULL)) { 8439 error = SET_ERROR(EBUSY); 8440 break; 8441 } 8442 8443 /* we need certain info from the top level */ 8444 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 8445 vml[c]->vdev_top->vdev_ms_array); 8446 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 8447 vml[c]->vdev_top->vdev_ms_shift); 8448 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 8449 vml[c]->vdev_top->vdev_asize); 8450 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 8451 vml[c]->vdev_top->vdev_ashift); 8452 8453 /* transfer per-vdev ZAPs */ 8454 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); 8455 VERIFY0(nvlist_add_uint64(child[c], 8456 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); 8457 8458 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); 8459 VERIFY0(nvlist_add_uint64(child[c], 8460 ZPOOL_CONFIG_VDEV_TOP_ZAP, 8461 vml[c]->vdev_parent->vdev_top_zap)); 8462 } 8463 8464 if (error != 0) { 8465 kmem_free(vml, children * sizeof (vdev_t *)); 8466 kmem_free(glist, children * sizeof (uint64_t)); 8467 return (spa_vdev_exit(spa, NULL, txg, error)); 8468 } 8469 8470 /* stop writers from using the disks */ 8471 for (c = 0; c < children; c++) { 8472 if (vml[c] != NULL) 8473 vml[c]->vdev_offline = B_TRUE; 8474 } 8475 vdev_reopen(spa->spa_root_vdev); 8476 8477 /* 8478 * Temporarily record the splitting vdevs in the spa config. This 8479 * will disappear once the config is regenerated. 8480 */ 8481 nvl = fnvlist_alloc(); 8482 fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children); 8483 kmem_free(glist, children * sizeof (uint64_t)); 8484 8485 mutex_enter(&spa->spa_props_lock); 8486 fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl); 8487 mutex_exit(&spa->spa_props_lock); 8488 spa->spa_config_splitting = nvl; 8489 vdev_config_dirty(spa->spa_root_vdev); 8490 8491 /* configure and create the new pool */ 8492 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname); 8493 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 8494 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE); 8495 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa)); 8496 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg); 8497 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 8498 spa_generate_guid(NULL)); 8499 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 8500 (void) nvlist_lookup_string(props, 8501 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 8502 8503 /* add the new pool to the namespace */ 8504 newspa = spa_add(newname, config, altroot); 8505 newspa->spa_avz_action = AVZ_ACTION_REBUILD; 8506 newspa->spa_config_txg = spa->spa_config_txg; 8507 spa_set_log_state(newspa, SPA_LOG_CLEAR); 8508 8509 /* release the spa config lock, retaining the namespace lock */ 8510 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 8511 8512 if (zio_injection_enabled) 8513 zio_handle_panic_injection(spa, FTAG, 1); 8514 8515 spa_activate(newspa, spa_mode_global); 8516 spa_async_suspend(newspa); 8517 8518 /* 8519 * Temporarily stop the initializing and TRIM activity. We set the 8520 * state to ACTIVE so that we know to resume initializing or TRIM 8521 * once the split has completed. 8522 */ 8523 list_t vd_initialize_list; 8524 list_create(&vd_initialize_list, sizeof (vdev_t), 8525 offsetof(vdev_t, vdev_initialize_node)); 8526 8527 list_t vd_trim_list; 8528 list_create(&vd_trim_list, sizeof (vdev_t), 8529 offsetof(vdev_t, vdev_trim_node)); 8530 8531 for (c = 0; c < children; c++) { 8532 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { 8533 mutex_enter(&vml[c]->vdev_initialize_lock); 8534 vdev_initialize_stop(vml[c], 8535 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list); 8536 mutex_exit(&vml[c]->vdev_initialize_lock); 8537 8538 mutex_enter(&vml[c]->vdev_trim_lock); 8539 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list); 8540 mutex_exit(&vml[c]->vdev_trim_lock); 8541 } 8542 } 8543 8544 vdev_initialize_stop_wait(spa, &vd_initialize_list); 8545 vdev_trim_stop_wait(spa, &vd_trim_list); 8546 8547 list_destroy(&vd_initialize_list); 8548 list_destroy(&vd_trim_list); 8549 8550 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT; 8551 newspa->spa_is_splitting = B_TRUE; 8552 8553 /* create the new pool from the disks of the original pool */ 8554 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE); 8555 if (error) 8556 goto out; 8557 8558 /* if that worked, generate a real config for the new pool */ 8559 if (newspa->spa_root_vdev != NULL) { 8560 newspa->spa_config_splitting = fnvlist_alloc(); 8561 fnvlist_add_uint64(newspa->spa_config_splitting, 8562 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)); 8563 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 8564 B_TRUE)); 8565 } 8566 8567 /* set the props */ 8568 if (props != NULL) { 8569 spa_configfile_set(newspa, props, B_FALSE); 8570 error = spa_prop_set(newspa, props); 8571 if (error) 8572 goto out; 8573 } 8574 8575 /* flush everything */ 8576 txg = spa_vdev_config_enter(newspa); 8577 vdev_config_dirty(newspa->spa_root_vdev); 8578 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 8579 8580 if (zio_injection_enabled) 8581 zio_handle_panic_injection(spa, FTAG, 2); 8582 8583 spa_async_resume(newspa); 8584 8585 /* finally, update the original pool's config */ 8586 txg = spa_vdev_config_enter(spa); 8587 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 8588 error = dmu_tx_assign(tx, TXG_WAIT); 8589 if (error != 0) 8590 dmu_tx_abort(tx); 8591 for (c = 0; c < children; c++) { 8592 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { 8593 vdev_t *tvd = vml[c]->vdev_top; 8594 8595 /* 8596 * Need to be sure the detachable VDEV is not 8597 * on any *other* txg's DTL list to prevent it 8598 * from being accessed after it's freed. 8599 */ 8600 for (int t = 0; t < TXG_SIZE; t++) { 8601 (void) txg_list_remove_this( 8602 &tvd->vdev_dtl_list, vml[c], t); 8603 } 8604 8605 vdev_split(vml[c]); 8606 if (error == 0) 8607 spa_history_log_internal(spa, "detach", tx, 8608 "vdev=%s", vml[c]->vdev_path); 8609 8610 vdev_free(vml[c]); 8611 } 8612 } 8613 spa->spa_avz_action = AVZ_ACTION_REBUILD; 8614 vdev_config_dirty(spa->spa_root_vdev); 8615 spa->spa_config_splitting = NULL; 8616 nvlist_free(nvl); 8617 if (error == 0) 8618 dmu_tx_commit(tx); 8619 (void) spa_vdev_exit(spa, NULL, txg, 0); 8620 8621 if (zio_injection_enabled) 8622 zio_handle_panic_injection(spa, FTAG, 3); 8623 8624 /* split is complete; log a history record */ 8625 spa_history_log_internal(newspa, "split", NULL, 8626 "from pool %s", spa_name(spa)); 8627 8628 newspa->spa_is_splitting = B_FALSE; 8629 kmem_free(vml, children * sizeof (vdev_t *)); 8630 8631 /* if we're not going to mount the filesystems in userland, export */ 8632 if (exp) 8633 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 8634 B_FALSE, B_FALSE); 8635 8636 return (error); 8637 8638 out: 8639 spa_unload(newspa); 8640 spa_deactivate(newspa); 8641 spa_remove(newspa); 8642 8643 txg = spa_vdev_config_enter(spa); 8644 8645 /* re-online all offlined disks */ 8646 for (c = 0; c < children; c++) { 8647 if (vml[c] != NULL) 8648 vml[c]->vdev_offline = B_FALSE; 8649 } 8650 8651 /* restart initializing or trimming disks as necessary */ 8652 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART); 8653 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART); 8654 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART); 8655 8656 vdev_reopen(spa->spa_root_vdev); 8657 8658 nvlist_free(spa->spa_config_splitting); 8659 spa->spa_config_splitting = NULL; 8660 (void) spa_vdev_exit(spa, NULL, txg, error); 8661 8662 kmem_free(vml, children * sizeof (vdev_t *)); 8663 return (error); 8664 } 8665 8666 /* 8667 * Find any device that's done replacing, or a vdev marked 'unspare' that's 8668 * currently spared, so we can detach it. 8669 */ 8670 static vdev_t * 8671 spa_vdev_resilver_done_hunt(vdev_t *vd) 8672 { 8673 vdev_t *newvd, *oldvd; 8674 8675 for (int c = 0; c < vd->vdev_children; c++) { 8676 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 8677 if (oldvd != NULL) 8678 return (oldvd); 8679 } 8680 8681 /* 8682 * Check for a completed replacement. We always consider the first 8683 * vdev in the list to be the oldest vdev, and the last one to be 8684 * the newest (see spa_vdev_attach() for how that works). In 8685 * the case where the newest vdev is faulted, we will not automatically 8686 * remove it after a resilver completes. This is OK as it will require 8687 * user intervention to determine which disk the admin wishes to keep. 8688 */ 8689 if (vd->vdev_ops == &vdev_replacing_ops) { 8690 ASSERT(vd->vdev_children > 1); 8691 8692 newvd = vd->vdev_child[vd->vdev_children - 1]; 8693 oldvd = vd->vdev_child[0]; 8694 8695 if (vdev_dtl_empty(newvd, DTL_MISSING) && 8696 vdev_dtl_empty(newvd, DTL_OUTAGE) && 8697 !vdev_dtl_required(oldvd)) 8698 return (oldvd); 8699 } 8700 8701 /* 8702 * Check for a completed resilver with the 'unspare' flag set. 8703 * Also potentially update faulted state. 8704 */ 8705 if (vd->vdev_ops == &vdev_spare_ops) { 8706 vdev_t *first = vd->vdev_child[0]; 8707 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 8708 8709 if (last->vdev_unspare) { 8710 oldvd = first; 8711 newvd = last; 8712 } else if (first->vdev_unspare) { 8713 oldvd = last; 8714 newvd = first; 8715 } else { 8716 oldvd = NULL; 8717 } 8718 8719 if (oldvd != NULL && 8720 vdev_dtl_empty(newvd, DTL_MISSING) && 8721 vdev_dtl_empty(newvd, DTL_OUTAGE) && 8722 !vdev_dtl_required(oldvd)) 8723 return (oldvd); 8724 8725 vdev_propagate_state(vd); 8726 8727 /* 8728 * If there are more than two spares attached to a disk, 8729 * and those spares are not required, then we want to 8730 * attempt to free them up now so that they can be used 8731 * by other pools. Once we're back down to a single 8732 * disk+spare, we stop removing them. 8733 */ 8734 if (vd->vdev_children > 2) { 8735 newvd = vd->vdev_child[1]; 8736 8737 if (newvd->vdev_isspare && last->vdev_isspare && 8738 vdev_dtl_empty(last, DTL_MISSING) && 8739 vdev_dtl_empty(last, DTL_OUTAGE) && 8740 !vdev_dtl_required(newvd)) 8741 return (newvd); 8742 } 8743 } 8744 8745 return (NULL); 8746 } 8747 8748 static void 8749 spa_vdev_resilver_done(spa_t *spa) 8750 { 8751 vdev_t *vd, *pvd, *ppvd; 8752 uint64_t guid, sguid, pguid, ppguid; 8753 8754 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 8755 8756 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 8757 pvd = vd->vdev_parent; 8758 ppvd = pvd->vdev_parent; 8759 guid = vd->vdev_guid; 8760 pguid = pvd->vdev_guid; 8761 ppguid = ppvd->vdev_guid; 8762 sguid = 0; 8763 /* 8764 * If we have just finished replacing a hot spared device, then 8765 * we need to detach the parent's first child (the original hot 8766 * spare) as well. 8767 */ 8768 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 8769 ppvd->vdev_children == 2) { 8770 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 8771 sguid = ppvd->vdev_child[1]->vdev_guid; 8772 } 8773 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 8774 8775 spa_config_exit(spa, SCL_ALL, FTAG); 8776 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 8777 return; 8778 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 8779 return; 8780 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 8781 } 8782 8783 spa_config_exit(spa, SCL_ALL, FTAG); 8784 8785 /* 8786 * If a detach was not performed above replace waiters will not have 8787 * been notified. In which case we must do so now. 8788 */ 8789 spa_notify_waiters(spa); 8790 } 8791 8792 /* 8793 * Update the stored path or FRU for this vdev. 8794 */ 8795 static int 8796 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 8797 boolean_t ispath) 8798 { 8799 vdev_t *vd; 8800 boolean_t sync = B_FALSE; 8801 8802 ASSERT(spa_writeable(spa)); 8803 8804 spa_vdev_state_enter(spa, SCL_ALL); 8805 8806 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 8807 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 8808 8809 if (!vd->vdev_ops->vdev_op_leaf) 8810 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 8811 8812 if (ispath) { 8813 if (strcmp(value, vd->vdev_path) != 0) { 8814 spa_strfree(vd->vdev_path); 8815 vd->vdev_path = spa_strdup(value); 8816 sync = B_TRUE; 8817 } 8818 } else { 8819 if (vd->vdev_fru == NULL) { 8820 vd->vdev_fru = spa_strdup(value); 8821 sync = B_TRUE; 8822 } else if (strcmp(value, vd->vdev_fru) != 0) { 8823 spa_strfree(vd->vdev_fru); 8824 vd->vdev_fru = spa_strdup(value); 8825 sync = B_TRUE; 8826 } 8827 } 8828 8829 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 8830 } 8831 8832 int 8833 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 8834 { 8835 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 8836 } 8837 8838 int 8839 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 8840 { 8841 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 8842 } 8843 8844 /* 8845 * ========================================================================== 8846 * SPA Scanning 8847 * ========================================================================== 8848 */ 8849 int 8850 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd) 8851 { 8852 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 8853 8854 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 8855 return (SET_ERROR(EBUSY)); 8856 8857 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd)); 8858 } 8859 8860 int 8861 spa_scan_stop(spa_t *spa) 8862 { 8863 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 8864 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 8865 return (SET_ERROR(EBUSY)); 8866 8867 return (dsl_scan_cancel(spa->spa_dsl_pool)); 8868 } 8869 8870 int 8871 spa_scan(spa_t *spa, pool_scan_func_t func) 8872 { 8873 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 8874 8875 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 8876 return (SET_ERROR(ENOTSUP)); 8877 8878 if (func == POOL_SCAN_RESILVER && 8879 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) 8880 return (SET_ERROR(ENOTSUP)); 8881 8882 /* 8883 * If a resilver was requested, but there is no DTL on a 8884 * writeable leaf device, we have nothing to do. 8885 */ 8886 if (func == POOL_SCAN_RESILVER && 8887 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 8888 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 8889 return (0); 8890 } 8891 8892 if (func == POOL_SCAN_ERRORSCRUB && 8893 !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) 8894 return (SET_ERROR(ENOTSUP)); 8895 8896 return (dsl_scan(spa->spa_dsl_pool, func)); 8897 } 8898 8899 /* 8900 * ========================================================================== 8901 * SPA async task processing 8902 * ========================================================================== 8903 */ 8904 8905 static void 8906 spa_async_remove(spa_t *spa, vdev_t *vd) 8907 { 8908 if (vd->vdev_remove_wanted) { 8909 vd->vdev_remove_wanted = B_FALSE; 8910 vd->vdev_delayed_close = B_FALSE; 8911 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 8912 8913 /* 8914 * We want to clear the stats, but we don't want to do a full 8915 * vdev_clear() as that will cause us to throw away 8916 * degraded/faulted state as well as attempt to reopen the 8917 * device, all of which is a waste. 8918 */ 8919 vd->vdev_stat.vs_read_errors = 0; 8920 vd->vdev_stat.vs_write_errors = 0; 8921 vd->vdev_stat.vs_checksum_errors = 0; 8922 8923 vdev_state_dirty(vd->vdev_top); 8924 8925 /* Tell userspace that the vdev is gone. */ 8926 zfs_post_remove(spa, vd); 8927 } 8928 8929 for (int c = 0; c < vd->vdev_children; c++) 8930 spa_async_remove(spa, vd->vdev_child[c]); 8931 } 8932 8933 static void 8934 spa_async_fault_vdev(spa_t *spa, vdev_t *vd) 8935 { 8936 if (vd->vdev_fault_wanted) { 8937 vd->vdev_fault_wanted = B_FALSE; 8938 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 8939 VDEV_AUX_ERR_EXCEEDED); 8940 } 8941 8942 for (int c = 0; c < vd->vdev_children; c++) 8943 spa_async_fault_vdev(spa, vd->vdev_child[c]); 8944 } 8945 8946 static void 8947 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 8948 { 8949 if (!spa->spa_autoexpand) 8950 return; 8951 8952 for (int c = 0; c < vd->vdev_children; c++) { 8953 vdev_t *cvd = vd->vdev_child[c]; 8954 spa_async_autoexpand(spa, cvd); 8955 } 8956 8957 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 8958 return; 8959 8960 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND); 8961 } 8962 8963 static __attribute__((noreturn)) void 8964 spa_async_thread(void *arg) 8965 { 8966 spa_t *spa = (spa_t *)arg; 8967 dsl_pool_t *dp = spa->spa_dsl_pool; 8968 int tasks; 8969 8970 ASSERT(spa->spa_sync_on); 8971 8972 mutex_enter(&spa->spa_async_lock); 8973 tasks = spa->spa_async_tasks; 8974 spa->spa_async_tasks = 0; 8975 mutex_exit(&spa->spa_async_lock); 8976 8977 /* 8978 * See if the config needs to be updated. 8979 */ 8980 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 8981 uint64_t old_space, new_space; 8982 8983 mutex_enter(&spa_namespace_lock); 8984 old_space = metaslab_class_get_space(spa_normal_class(spa)); 8985 old_space += metaslab_class_get_space(spa_special_class(spa)); 8986 old_space += metaslab_class_get_space(spa_dedup_class(spa)); 8987 old_space += metaslab_class_get_space( 8988 spa_embedded_log_class(spa)); 8989 8990 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 8991 8992 new_space = metaslab_class_get_space(spa_normal_class(spa)); 8993 new_space += metaslab_class_get_space(spa_special_class(spa)); 8994 new_space += metaslab_class_get_space(spa_dedup_class(spa)); 8995 new_space += metaslab_class_get_space( 8996 spa_embedded_log_class(spa)); 8997 mutex_exit(&spa_namespace_lock); 8998 8999 /* 9000 * If the pool grew as a result of the config update, 9001 * then log an internal history event. 9002 */ 9003 if (new_space != old_space) { 9004 spa_history_log_internal(spa, "vdev online", NULL, 9005 "pool '%s' size: %llu(+%llu)", 9006 spa_name(spa), (u_longlong_t)new_space, 9007 (u_longlong_t)(new_space - old_space)); 9008 } 9009 } 9010 9011 /* 9012 * See if any devices need to be marked REMOVED. 9013 */ 9014 if (tasks & SPA_ASYNC_REMOVE) { 9015 spa_vdev_state_enter(spa, SCL_NONE); 9016 spa_async_remove(spa, spa->spa_root_vdev); 9017 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 9018 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 9019 for (int i = 0; i < spa->spa_spares.sav_count; i++) 9020 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 9021 (void) spa_vdev_state_exit(spa, NULL, 0); 9022 } 9023 9024 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 9025 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 9026 spa_async_autoexpand(spa, spa->spa_root_vdev); 9027 spa_config_exit(spa, SCL_CONFIG, FTAG); 9028 } 9029 9030 /* 9031 * See if any devices need to be marked faulted. 9032 */ 9033 if (tasks & SPA_ASYNC_FAULT_VDEV) { 9034 spa_vdev_state_enter(spa, SCL_NONE); 9035 spa_async_fault_vdev(spa, spa->spa_root_vdev); 9036 (void) spa_vdev_state_exit(spa, NULL, 0); 9037 } 9038 9039 /* 9040 * If any devices are done replacing, detach them. 9041 */ 9042 if (tasks & SPA_ASYNC_RESILVER_DONE || 9043 tasks & SPA_ASYNC_REBUILD_DONE || 9044 tasks & SPA_ASYNC_DETACH_SPARE) { 9045 spa_vdev_resilver_done(spa); 9046 } 9047 9048 /* 9049 * Kick off a resilver. 9050 */ 9051 if (tasks & SPA_ASYNC_RESILVER && 9052 !vdev_rebuild_active(spa->spa_root_vdev) && 9053 (!dsl_scan_resilvering(dp) || 9054 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))) 9055 dsl_scan_restart_resilver(dp, 0); 9056 9057 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) { 9058 mutex_enter(&spa_namespace_lock); 9059 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 9060 vdev_initialize_restart(spa->spa_root_vdev); 9061 spa_config_exit(spa, SCL_CONFIG, FTAG); 9062 mutex_exit(&spa_namespace_lock); 9063 } 9064 9065 if (tasks & SPA_ASYNC_TRIM_RESTART) { 9066 mutex_enter(&spa_namespace_lock); 9067 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 9068 vdev_trim_restart(spa->spa_root_vdev); 9069 spa_config_exit(spa, SCL_CONFIG, FTAG); 9070 mutex_exit(&spa_namespace_lock); 9071 } 9072 9073 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) { 9074 mutex_enter(&spa_namespace_lock); 9075 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 9076 vdev_autotrim_restart(spa); 9077 spa_config_exit(spa, SCL_CONFIG, FTAG); 9078 mutex_exit(&spa_namespace_lock); 9079 } 9080 9081 /* 9082 * Kick off L2 cache whole device TRIM. 9083 */ 9084 if (tasks & SPA_ASYNC_L2CACHE_TRIM) { 9085 mutex_enter(&spa_namespace_lock); 9086 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 9087 vdev_trim_l2arc(spa); 9088 spa_config_exit(spa, SCL_CONFIG, FTAG); 9089 mutex_exit(&spa_namespace_lock); 9090 } 9091 9092 /* 9093 * Kick off L2 cache rebuilding. 9094 */ 9095 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) { 9096 mutex_enter(&spa_namespace_lock); 9097 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER); 9098 l2arc_spa_rebuild_start(spa); 9099 spa_config_exit(spa, SCL_L2ARC, FTAG); 9100 mutex_exit(&spa_namespace_lock); 9101 } 9102 9103 /* 9104 * Let the world know that we're done. 9105 */ 9106 mutex_enter(&spa->spa_async_lock); 9107 spa->spa_async_thread = NULL; 9108 cv_broadcast(&spa->spa_async_cv); 9109 mutex_exit(&spa->spa_async_lock); 9110 thread_exit(); 9111 } 9112 9113 void 9114 spa_async_suspend(spa_t *spa) 9115 { 9116 mutex_enter(&spa->spa_async_lock); 9117 spa->spa_async_suspended++; 9118 while (spa->spa_async_thread != NULL) 9119 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 9120 mutex_exit(&spa->spa_async_lock); 9121 9122 spa_vdev_remove_suspend(spa); 9123 9124 zthr_t *condense_thread = spa->spa_condense_zthr; 9125 if (condense_thread != NULL) 9126 zthr_cancel(condense_thread); 9127 9128 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr; 9129 if (raidz_expand_thread != NULL) 9130 zthr_cancel(raidz_expand_thread); 9131 9132 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 9133 if (discard_thread != NULL) 9134 zthr_cancel(discard_thread); 9135 9136 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; 9137 if (ll_delete_thread != NULL) 9138 zthr_cancel(ll_delete_thread); 9139 9140 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 9141 if (ll_condense_thread != NULL) 9142 zthr_cancel(ll_condense_thread); 9143 } 9144 9145 void 9146 spa_async_resume(spa_t *spa) 9147 { 9148 mutex_enter(&spa->spa_async_lock); 9149 ASSERT(spa->spa_async_suspended != 0); 9150 spa->spa_async_suspended--; 9151 mutex_exit(&spa->spa_async_lock); 9152 spa_restart_removal(spa); 9153 9154 zthr_t *condense_thread = spa->spa_condense_zthr; 9155 if (condense_thread != NULL) 9156 zthr_resume(condense_thread); 9157 9158 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr; 9159 if (raidz_expand_thread != NULL) 9160 zthr_resume(raidz_expand_thread); 9161 9162 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 9163 if (discard_thread != NULL) 9164 zthr_resume(discard_thread); 9165 9166 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; 9167 if (ll_delete_thread != NULL) 9168 zthr_resume(ll_delete_thread); 9169 9170 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 9171 if (ll_condense_thread != NULL) 9172 zthr_resume(ll_condense_thread); 9173 } 9174 9175 static boolean_t 9176 spa_async_tasks_pending(spa_t *spa) 9177 { 9178 uint_t non_config_tasks; 9179 uint_t config_task; 9180 boolean_t config_task_suspended; 9181 9182 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 9183 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 9184 if (spa->spa_ccw_fail_time == 0) { 9185 config_task_suspended = B_FALSE; 9186 } else { 9187 config_task_suspended = 9188 (gethrtime() - spa->spa_ccw_fail_time) < 9189 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC); 9190 } 9191 9192 return (non_config_tasks || (config_task && !config_task_suspended)); 9193 } 9194 9195 static void 9196 spa_async_dispatch(spa_t *spa) 9197 { 9198 mutex_enter(&spa->spa_async_lock); 9199 if (spa_async_tasks_pending(spa) && 9200 !spa->spa_async_suspended && 9201 spa->spa_async_thread == NULL) 9202 spa->spa_async_thread = thread_create(NULL, 0, 9203 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 9204 mutex_exit(&spa->spa_async_lock); 9205 } 9206 9207 void 9208 spa_async_request(spa_t *spa, int task) 9209 { 9210 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 9211 mutex_enter(&spa->spa_async_lock); 9212 spa->spa_async_tasks |= task; 9213 mutex_exit(&spa->spa_async_lock); 9214 } 9215 9216 int 9217 spa_async_tasks(spa_t *spa) 9218 { 9219 return (spa->spa_async_tasks); 9220 } 9221 9222 /* 9223 * ========================================================================== 9224 * SPA syncing routines 9225 * ========================================================================== 9226 */ 9227 9228 9229 static int 9230 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 9231 dmu_tx_t *tx) 9232 { 9233 bpobj_t *bpo = arg; 9234 bpobj_enqueue(bpo, bp, bp_freed, tx); 9235 return (0); 9236 } 9237 9238 int 9239 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 9240 { 9241 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx)); 9242 } 9243 9244 int 9245 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 9246 { 9247 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx)); 9248 } 9249 9250 static int 9251 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 9252 { 9253 zio_t *pio = arg; 9254 9255 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp, 9256 pio->io_flags)); 9257 return (0); 9258 } 9259 9260 static int 9261 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 9262 dmu_tx_t *tx) 9263 { 9264 ASSERT(!bp_freed); 9265 return (spa_free_sync_cb(arg, bp, tx)); 9266 } 9267 9268 /* 9269 * Note: this simple function is not inlined to make it easier to dtrace the 9270 * amount of time spent syncing frees. 9271 */ 9272 static void 9273 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 9274 { 9275 zio_t *zio = zio_root(spa, NULL, NULL, 0); 9276 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 9277 VERIFY(zio_wait(zio) == 0); 9278 } 9279 9280 /* 9281 * Note: this simple function is not inlined to make it easier to dtrace the 9282 * amount of time spent syncing deferred frees. 9283 */ 9284 static void 9285 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 9286 { 9287 if (spa_sync_pass(spa) != 1) 9288 return; 9289 9290 /* 9291 * Note: 9292 * If the log space map feature is active, we stop deferring 9293 * frees to the next TXG and therefore running this function 9294 * would be considered a no-op as spa_deferred_bpobj should 9295 * not have any entries. 9296 * 9297 * That said we run this function anyway (instead of returning 9298 * immediately) for the edge-case scenario where we just 9299 * activated the log space map feature in this TXG but we have 9300 * deferred frees from the previous TXG. 9301 */ 9302 zio_t *zio = zio_root(spa, NULL, NULL, 0); 9303 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 9304 bpobj_spa_free_sync_cb, zio, tx), ==, 0); 9305 VERIFY0(zio_wait(zio)); 9306 } 9307 9308 static void 9309 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 9310 { 9311 char *packed = NULL; 9312 size_t bufsize; 9313 size_t nvsize = 0; 9314 dmu_buf_t *db; 9315 9316 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 9317 9318 /* 9319 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 9320 * information. This avoids the dmu_buf_will_dirty() path and 9321 * saves us a pre-read to get data we don't actually care about. 9322 */ 9323 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 9324 packed = vmem_alloc(bufsize, KM_SLEEP); 9325 9326 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 9327 KM_SLEEP) == 0); 9328 memset(packed + nvsize, 0, bufsize - nvsize); 9329 9330 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 9331 9332 vmem_free(packed, bufsize); 9333 9334 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 9335 dmu_buf_will_dirty(db, tx); 9336 *(uint64_t *)db->db_data = nvsize; 9337 dmu_buf_rele(db, FTAG); 9338 } 9339 9340 static void 9341 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 9342 const char *config, const char *entry) 9343 { 9344 nvlist_t *nvroot; 9345 nvlist_t **list; 9346 int i; 9347 9348 if (!sav->sav_sync) 9349 return; 9350 9351 /* 9352 * Update the MOS nvlist describing the list of available devices. 9353 * spa_validate_aux() will have already made sure this nvlist is 9354 * valid and the vdevs are labeled appropriately. 9355 */ 9356 if (sav->sav_object == 0) { 9357 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 9358 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 9359 sizeof (uint64_t), tx); 9360 VERIFY(zap_update(spa->spa_meta_objset, 9361 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 9362 &sav->sav_object, tx) == 0); 9363 } 9364 9365 nvroot = fnvlist_alloc(); 9366 if (sav->sav_count == 0) { 9367 fnvlist_add_nvlist_array(nvroot, config, 9368 (const nvlist_t * const *)NULL, 0); 9369 } else { 9370 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP); 9371 for (i = 0; i < sav->sav_count; i++) 9372 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 9373 B_FALSE, VDEV_CONFIG_L2CACHE); 9374 fnvlist_add_nvlist_array(nvroot, config, 9375 (const nvlist_t * const *)list, sav->sav_count); 9376 for (i = 0; i < sav->sav_count; i++) 9377 nvlist_free(list[i]); 9378 kmem_free(list, sav->sav_count * sizeof (void *)); 9379 } 9380 9381 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 9382 nvlist_free(nvroot); 9383 9384 sav->sav_sync = B_FALSE; 9385 } 9386 9387 /* 9388 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. 9389 * The all-vdev ZAP must be empty. 9390 */ 9391 static void 9392 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) 9393 { 9394 spa_t *spa = vd->vdev_spa; 9395 9396 if (vd->vdev_root_zap != 0 && 9397 spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) { 9398 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 9399 vd->vdev_root_zap, tx)); 9400 } 9401 if (vd->vdev_top_zap != 0) { 9402 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 9403 vd->vdev_top_zap, tx)); 9404 } 9405 if (vd->vdev_leaf_zap != 0) { 9406 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 9407 vd->vdev_leaf_zap, tx)); 9408 } 9409 for (uint64_t i = 0; i < vd->vdev_children; i++) { 9410 spa_avz_build(vd->vdev_child[i], avz, tx); 9411 } 9412 } 9413 9414 static void 9415 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 9416 { 9417 nvlist_t *config; 9418 9419 /* 9420 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, 9421 * its config may not be dirty but we still need to build per-vdev ZAPs. 9422 * Similarly, if the pool is being assembled (e.g. after a split), we 9423 * need to rebuild the AVZ although the config may not be dirty. 9424 */ 9425 if (list_is_empty(&spa->spa_config_dirty_list) && 9426 spa->spa_avz_action == AVZ_ACTION_NONE) 9427 return; 9428 9429 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 9430 9431 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || 9432 spa->spa_avz_action == AVZ_ACTION_INITIALIZE || 9433 spa->spa_all_vdev_zaps != 0); 9434 9435 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { 9436 /* Make and build the new AVZ */ 9437 uint64_t new_avz = zap_create(spa->spa_meta_objset, 9438 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); 9439 spa_avz_build(spa->spa_root_vdev, new_avz, tx); 9440 9441 /* Diff old AVZ with new one */ 9442 zap_cursor_t zc; 9443 zap_attribute_t *za = zap_attribute_alloc(); 9444 9445 for (zap_cursor_init(&zc, spa->spa_meta_objset, 9446 spa->spa_all_vdev_zaps); 9447 zap_cursor_retrieve(&zc, za) == 0; 9448 zap_cursor_advance(&zc)) { 9449 uint64_t vdzap = za->za_first_integer; 9450 if (zap_lookup_int(spa->spa_meta_objset, new_avz, 9451 vdzap) == ENOENT) { 9452 /* 9453 * ZAP is listed in old AVZ but not in new one; 9454 * destroy it 9455 */ 9456 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, 9457 tx)); 9458 } 9459 } 9460 9461 zap_cursor_fini(&zc); 9462 zap_attribute_free(za); 9463 9464 /* Destroy the old AVZ */ 9465 VERIFY0(zap_destroy(spa->spa_meta_objset, 9466 spa->spa_all_vdev_zaps, tx)); 9467 9468 /* Replace the old AVZ in the dir obj with the new one */ 9469 VERIFY0(zap_update(spa->spa_meta_objset, 9470 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, 9471 sizeof (new_avz), 1, &new_avz, tx)); 9472 9473 spa->spa_all_vdev_zaps = new_avz; 9474 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { 9475 zap_cursor_t zc; 9476 zap_attribute_t *za = zap_attribute_alloc(); 9477 9478 /* Walk through the AVZ and destroy all listed ZAPs */ 9479 for (zap_cursor_init(&zc, spa->spa_meta_objset, 9480 spa->spa_all_vdev_zaps); 9481 zap_cursor_retrieve(&zc, za) == 0; 9482 zap_cursor_advance(&zc)) { 9483 uint64_t zap = za->za_first_integer; 9484 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); 9485 } 9486 9487 zap_cursor_fini(&zc); 9488 zap_attribute_free(za); 9489 9490 /* Destroy and unlink the AVZ itself */ 9491 VERIFY0(zap_destroy(spa->spa_meta_objset, 9492 spa->spa_all_vdev_zaps, tx)); 9493 VERIFY0(zap_remove(spa->spa_meta_objset, 9494 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); 9495 spa->spa_all_vdev_zaps = 0; 9496 } 9497 9498 if (spa->spa_all_vdev_zaps == 0) { 9499 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, 9500 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, 9501 DMU_POOL_VDEV_ZAP_MAP, tx); 9502 } 9503 spa->spa_avz_action = AVZ_ACTION_NONE; 9504 9505 /* Create ZAPs for vdevs that don't have them. */ 9506 vdev_construct_zaps(spa->spa_root_vdev, tx); 9507 9508 config = spa_config_generate(spa, spa->spa_root_vdev, 9509 dmu_tx_get_txg(tx), B_FALSE); 9510 9511 /* 9512 * If we're upgrading the spa version then make sure that 9513 * the config object gets updated with the correct version. 9514 */ 9515 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 9516 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 9517 spa->spa_uberblock.ub_version); 9518 9519 spa_config_exit(spa, SCL_STATE, FTAG); 9520 9521 nvlist_free(spa->spa_config_syncing); 9522 spa->spa_config_syncing = config; 9523 9524 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 9525 } 9526 9527 static void 9528 spa_sync_version(void *arg, dmu_tx_t *tx) 9529 { 9530 uint64_t *versionp = arg; 9531 uint64_t version = *versionp; 9532 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 9533 9534 /* 9535 * Setting the version is special cased when first creating the pool. 9536 */ 9537 ASSERT(tx->tx_txg != TXG_INITIAL); 9538 9539 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 9540 ASSERT(version >= spa_version(spa)); 9541 9542 spa->spa_uberblock.ub_version = version; 9543 vdev_config_dirty(spa->spa_root_vdev); 9544 spa_history_log_internal(spa, "set", tx, "version=%lld", 9545 (longlong_t)version); 9546 } 9547 9548 /* 9549 * Set zpool properties. 9550 */ 9551 static void 9552 spa_sync_props(void *arg, dmu_tx_t *tx) 9553 { 9554 nvlist_t *nvp = arg; 9555 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 9556 objset_t *mos = spa->spa_meta_objset; 9557 nvpair_t *elem = NULL; 9558 9559 mutex_enter(&spa->spa_props_lock); 9560 9561 while ((elem = nvlist_next_nvpair(nvp, elem))) { 9562 uint64_t intval; 9563 const char *strval, *fname; 9564 zpool_prop_t prop; 9565 const char *propname; 9566 const char *elemname = nvpair_name(elem); 9567 zprop_type_t proptype; 9568 spa_feature_t fid; 9569 9570 switch (prop = zpool_name_to_prop(elemname)) { 9571 case ZPOOL_PROP_VERSION: 9572 intval = fnvpair_value_uint64(elem); 9573 /* 9574 * The version is synced separately before other 9575 * properties and should be correct by now. 9576 */ 9577 ASSERT3U(spa_version(spa), >=, intval); 9578 break; 9579 9580 case ZPOOL_PROP_ALTROOT: 9581 /* 9582 * 'altroot' is a non-persistent property. It should 9583 * have been set temporarily at creation or import time. 9584 */ 9585 ASSERT(spa->spa_root != NULL); 9586 break; 9587 9588 case ZPOOL_PROP_READONLY: 9589 case ZPOOL_PROP_CACHEFILE: 9590 /* 9591 * 'readonly' and 'cachefile' are also non-persistent 9592 * properties. 9593 */ 9594 break; 9595 case ZPOOL_PROP_COMMENT: 9596 strval = fnvpair_value_string(elem); 9597 if (spa->spa_comment != NULL) 9598 spa_strfree(spa->spa_comment); 9599 spa->spa_comment = spa_strdup(strval); 9600 /* 9601 * We need to dirty the configuration on all the vdevs 9602 * so that their labels get updated. We also need to 9603 * update the cache file to keep it in sync with the 9604 * MOS version. It's unnecessary to do this for pool 9605 * creation since the vdev's configuration has already 9606 * been dirtied. 9607 */ 9608 if (tx->tx_txg != TXG_INITIAL) { 9609 vdev_config_dirty(spa->spa_root_vdev); 9610 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 9611 } 9612 spa_history_log_internal(spa, "set", tx, 9613 "%s=%s", elemname, strval); 9614 break; 9615 case ZPOOL_PROP_COMPATIBILITY: 9616 strval = fnvpair_value_string(elem); 9617 if (spa->spa_compatibility != NULL) 9618 spa_strfree(spa->spa_compatibility); 9619 spa->spa_compatibility = spa_strdup(strval); 9620 /* 9621 * Dirty the configuration on vdevs as above. 9622 */ 9623 if (tx->tx_txg != TXG_INITIAL) { 9624 vdev_config_dirty(spa->spa_root_vdev); 9625 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 9626 } 9627 9628 spa_history_log_internal(spa, "set", tx, 9629 "%s=%s", nvpair_name(elem), strval); 9630 break; 9631 9632 case ZPOOL_PROP_INVAL: 9633 if (zpool_prop_feature(elemname)) { 9634 fname = strchr(elemname, '@') + 1; 9635 VERIFY0(zfeature_lookup_name(fname, &fid)); 9636 9637 spa_feature_enable(spa, fid, tx); 9638 spa_history_log_internal(spa, "set", tx, 9639 "%s=enabled", elemname); 9640 break; 9641 } else if (!zfs_prop_user(elemname)) { 9642 ASSERT(zpool_prop_feature(elemname)); 9643 break; 9644 } 9645 zfs_fallthrough; 9646 default: 9647 /* 9648 * Set pool property values in the poolprops mos object. 9649 */ 9650 if (spa->spa_pool_props_object == 0) { 9651 spa->spa_pool_props_object = 9652 zap_create_link(mos, DMU_OT_POOL_PROPS, 9653 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 9654 tx); 9655 } 9656 9657 /* normalize the property name */ 9658 if (prop == ZPOOL_PROP_INVAL) { 9659 propname = elemname; 9660 proptype = PROP_TYPE_STRING; 9661 } else { 9662 propname = zpool_prop_to_name(prop); 9663 proptype = zpool_prop_get_type(prop); 9664 } 9665 9666 if (nvpair_type(elem) == DATA_TYPE_STRING) { 9667 ASSERT(proptype == PROP_TYPE_STRING); 9668 strval = fnvpair_value_string(elem); 9669 VERIFY0(zap_update(mos, 9670 spa->spa_pool_props_object, propname, 9671 1, strlen(strval) + 1, strval, tx)); 9672 spa_history_log_internal(spa, "set", tx, 9673 "%s=%s", elemname, strval); 9674 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 9675 intval = fnvpair_value_uint64(elem); 9676 9677 if (proptype == PROP_TYPE_INDEX) { 9678 const char *unused; 9679 VERIFY0(zpool_prop_index_to_string( 9680 prop, intval, &unused)); 9681 } 9682 VERIFY0(zap_update(mos, 9683 spa->spa_pool_props_object, propname, 9684 8, 1, &intval, tx)); 9685 spa_history_log_internal(spa, "set", tx, 9686 "%s=%lld", elemname, 9687 (longlong_t)intval); 9688 9689 switch (prop) { 9690 case ZPOOL_PROP_DELEGATION: 9691 spa->spa_delegation = intval; 9692 break; 9693 case ZPOOL_PROP_BOOTFS: 9694 spa->spa_bootfs = intval; 9695 break; 9696 case ZPOOL_PROP_FAILUREMODE: 9697 spa->spa_failmode = intval; 9698 break; 9699 case ZPOOL_PROP_AUTOTRIM: 9700 spa->spa_autotrim = intval; 9701 spa_async_request(spa, 9702 SPA_ASYNC_AUTOTRIM_RESTART); 9703 break; 9704 case ZPOOL_PROP_AUTOEXPAND: 9705 spa->spa_autoexpand = intval; 9706 if (tx->tx_txg != TXG_INITIAL) 9707 spa_async_request(spa, 9708 SPA_ASYNC_AUTOEXPAND); 9709 break; 9710 case ZPOOL_PROP_MULTIHOST: 9711 spa->spa_multihost = intval; 9712 break; 9713 case ZPOOL_PROP_DEDUP_TABLE_QUOTA: 9714 spa->spa_dedup_table_quota = intval; 9715 break; 9716 default: 9717 break; 9718 } 9719 } else { 9720 ASSERT(0); /* not allowed */ 9721 } 9722 } 9723 9724 } 9725 9726 mutex_exit(&spa->spa_props_lock); 9727 } 9728 9729 /* 9730 * Perform one-time upgrade on-disk changes. spa_version() does not 9731 * reflect the new version this txg, so there must be no changes this 9732 * txg to anything that the upgrade code depends on after it executes. 9733 * Therefore this must be called after dsl_pool_sync() does the sync 9734 * tasks. 9735 */ 9736 static void 9737 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 9738 { 9739 if (spa_sync_pass(spa) != 1) 9740 return; 9741 9742 dsl_pool_t *dp = spa->spa_dsl_pool; 9743 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 9744 9745 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 9746 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 9747 dsl_pool_create_origin(dp, tx); 9748 9749 /* Keeping the origin open increases spa_minref */ 9750 spa->spa_minref += 3; 9751 } 9752 9753 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 9754 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 9755 dsl_pool_upgrade_clones(dp, tx); 9756 } 9757 9758 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 9759 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 9760 dsl_pool_upgrade_dir_clones(dp, tx); 9761 9762 /* Keeping the freedir open increases spa_minref */ 9763 spa->spa_minref += 3; 9764 } 9765 9766 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 9767 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 9768 spa_feature_create_zap_objects(spa, tx); 9769 } 9770 9771 /* 9772 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 9773 * when possibility to use lz4 compression for metadata was added 9774 * Old pools that have this feature enabled must be upgraded to have 9775 * this feature active 9776 */ 9777 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 9778 boolean_t lz4_en = spa_feature_is_enabled(spa, 9779 SPA_FEATURE_LZ4_COMPRESS); 9780 boolean_t lz4_ac = spa_feature_is_active(spa, 9781 SPA_FEATURE_LZ4_COMPRESS); 9782 9783 if (lz4_en && !lz4_ac) 9784 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 9785 } 9786 9787 /* 9788 * If we haven't written the salt, do so now. Note that the 9789 * feature may not be activated yet, but that's fine since 9790 * the presence of this ZAP entry is backwards compatible. 9791 */ 9792 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 9793 DMU_POOL_CHECKSUM_SALT) == ENOENT) { 9794 VERIFY0(zap_add(spa->spa_meta_objset, 9795 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, 9796 sizeof (spa->spa_cksum_salt.zcs_bytes), 9797 spa->spa_cksum_salt.zcs_bytes, tx)); 9798 } 9799 9800 rrw_exit(&dp->dp_config_rwlock, FTAG); 9801 } 9802 9803 static void 9804 vdev_indirect_state_sync_verify(vdev_t *vd) 9805 { 9806 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping; 9807 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births; 9808 9809 if (vd->vdev_ops == &vdev_indirect_ops) { 9810 ASSERT(vim != NULL); 9811 ASSERT(vib != NULL); 9812 } 9813 9814 uint64_t obsolete_sm_object = 0; 9815 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 9816 if (obsolete_sm_object != 0) { 9817 ASSERT(vd->vdev_obsolete_sm != NULL); 9818 ASSERT(vd->vdev_removing || 9819 vd->vdev_ops == &vdev_indirect_ops); 9820 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0); 9821 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0); 9822 ASSERT3U(obsolete_sm_object, ==, 9823 space_map_object(vd->vdev_obsolete_sm)); 9824 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=, 9825 space_map_allocated(vd->vdev_obsolete_sm)); 9826 } 9827 ASSERT(vd->vdev_obsolete_segments != NULL); 9828 9829 /* 9830 * Since frees / remaps to an indirect vdev can only 9831 * happen in syncing context, the obsolete segments 9832 * tree must be empty when we start syncing. 9833 */ 9834 ASSERT0(range_tree_space(vd->vdev_obsolete_segments)); 9835 } 9836 9837 /* 9838 * Set the top-level vdev's max queue depth. Evaluate each top-level's 9839 * async write queue depth in case it changed. The max queue depth will 9840 * not change in the middle of syncing out this txg. 9841 */ 9842 static void 9843 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa) 9844 { 9845 ASSERT(spa_writeable(spa)); 9846 9847 vdev_t *rvd = spa->spa_root_vdev; 9848 uint32_t max_queue_depth = zfs_vdev_async_write_max_active * 9849 zfs_vdev_queue_depth_pct / 100; 9850 metaslab_class_t *normal = spa_normal_class(spa); 9851 metaslab_class_t *special = spa_special_class(spa); 9852 metaslab_class_t *dedup = spa_dedup_class(spa); 9853 9854 uint64_t slots_per_allocator = 0; 9855 for (int c = 0; c < rvd->vdev_children; c++) { 9856 vdev_t *tvd = rvd->vdev_child[c]; 9857 9858 metaslab_group_t *mg = tvd->vdev_mg; 9859 if (mg == NULL || !metaslab_group_initialized(mg)) 9860 continue; 9861 9862 metaslab_class_t *mc = mg->mg_class; 9863 if (mc != normal && mc != special && mc != dedup) 9864 continue; 9865 9866 /* 9867 * It is safe to do a lock-free check here because only async 9868 * allocations look at mg_max_alloc_queue_depth, and async 9869 * allocations all happen from spa_sync(). 9870 */ 9871 for (int i = 0; i < mg->mg_allocators; i++) { 9872 ASSERT0(zfs_refcount_count( 9873 &(mg->mg_allocator[i].mga_alloc_queue_depth))); 9874 } 9875 mg->mg_max_alloc_queue_depth = max_queue_depth; 9876 9877 for (int i = 0; i < mg->mg_allocators; i++) { 9878 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth = 9879 zfs_vdev_def_queue_depth; 9880 } 9881 slots_per_allocator += zfs_vdev_def_queue_depth; 9882 } 9883 9884 for (int i = 0; i < spa->spa_alloc_count; i++) { 9885 ASSERT0(zfs_refcount_count(&normal->mc_allocator[i]. 9886 mca_alloc_slots)); 9887 ASSERT0(zfs_refcount_count(&special->mc_allocator[i]. 9888 mca_alloc_slots)); 9889 ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i]. 9890 mca_alloc_slots)); 9891 normal->mc_allocator[i].mca_alloc_max_slots = 9892 slots_per_allocator; 9893 special->mc_allocator[i].mca_alloc_max_slots = 9894 slots_per_allocator; 9895 dedup->mc_allocator[i].mca_alloc_max_slots = 9896 slots_per_allocator; 9897 } 9898 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 9899 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 9900 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 9901 } 9902 9903 static void 9904 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx) 9905 { 9906 ASSERT(spa_writeable(spa)); 9907 9908 vdev_t *rvd = spa->spa_root_vdev; 9909 for (int c = 0; c < rvd->vdev_children; c++) { 9910 vdev_t *vd = rvd->vdev_child[c]; 9911 vdev_indirect_state_sync_verify(vd); 9912 9913 if (vdev_indirect_should_condense(vd)) { 9914 spa_condense_indirect_start_sync(vd, tx); 9915 break; 9916 } 9917 } 9918 } 9919 9920 static void 9921 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx) 9922 { 9923 objset_t *mos = spa->spa_meta_objset; 9924 dsl_pool_t *dp = spa->spa_dsl_pool; 9925 uint64_t txg = tx->tx_txg; 9926 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 9927 9928 do { 9929 int pass = ++spa->spa_sync_pass; 9930 9931 spa_sync_config_object(spa, tx); 9932 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 9933 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 9934 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 9935 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 9936 spa_errlog_sync(spa, txg); 9937 dsl_pool_sync(dp, txg); 9938 9939 if (pass < zfs_sync_pass_deferred_free || 9940 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 9941 /* 9942 * If the log space map feature is active we don't 9943 * care about deferred frees and the deferred bpobj 9944 * as the log space map should effectively have the 9945 * same results (i.e. appending only to one object). 9946 */ 9947 spa_sync_frees(spa, free_bpl, tx); 9948 } else { 9949 /* 9950 * We can not defer frees in pass 1, because 9951 * we sync the deferred frees later in pass 1. 9952 */ 9953 ASSERT3U(pass, >, 1); 9954 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb, 9955 &spa->spa_deferred_bpobj, tx); 9956 } 9957 9958 brt_sync(spa, txg); 9959 ddt_sync(spa, txg); 9960 dsl_scan_sync(dp, tx); 9961 dsl_errorscrub_sync(dp, tx); 9962 svr_sync(spa, tx); 9963 spa_sync_upgrades(spa, tx); 9964 9965 spa_flush_metaslabs(spa, tx); 9966 9967 vdev_t *vd = NULL; 9968 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 9969 != NULL) 9970 vdev_sync(vd, txg); 9971 9972 if (pass == 1) { 9973 /* 9974 * dsl_pool_sync() -> dp_sync_tasks may have dirtied 9975 * the config. If that happens, this txg should not 9976 * be a no-op. So we must sync the config to the MOS 9977 * before checking for no-op. 9978 * 9979 * Note that when the config is dirty, it will 9980 * be written to the MOS (i.e. the MOS will be 9981 * dirtied) every time we call spa_sync_config_object() 9982 * in this txg. Therefore we can't call this after 9983 * dsl_pool_sync() every pass, because it would 9984 * prevent us from converging, since we'd dirty 9985 * the MOS every pass. 9986 * 9987 * Sync tasks can only be processed in pass 1, so 9988 * there's no need to do this in later passes. 9989 */ 9990 spa_sync_config_object(spa, tx); 9991 } 9992 9993 /* 9994 * Note: We need to check if the MOS is dirty because we could 9995 * have marked the MOS dirty without updating the uberblock 9996 * (e.g. if we have sync tasks but no dirty user data). We need 9997 * to check the uberblock's rootbp because it is updated if we 9998 * have synced out dirty data (though in this case the MOS will 9999 * most likely also be dirty due to second order effects, we 10000 * don't want to rely on that here). 10001 */ 10002 if (pass == 1 && 10003 BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp) < txg && 10004 !dmu_objset_is_dirty(mos, txg)) { 10005 /* 10006 * Nothing changed on the first pass, therefore this 10007 * TXG is a no-op. Avoid syncing deferred frees, so 10008 * that we can keep this TXG as a no-op. 10009 */ 10010 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 10011 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 10012 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 10013 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg)); 10014 break; 10015 } 10016 10017 spa_sync_deferred_frees(spa, tx); 10018 } while (dmu_objset_is_dirty(mos, txg)); 10019 } 10020 10021 /* 10022 * Rewrite the vdev configuration (which includes the uberblock) to 10023 * commit the transaction group. 10024 * 10025 * If there are no dirty vdevs, we sync the uberblock to a few random 10026 * top-level vdevs that are known to be visible in the config cache 10027 * (see spa_vdev_add() for a complete description). If there *are* dirty 10028 * vdevs, sync the uberblock to all vdevs. 10029 */ 10030 static void 10031 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx) 10032 { 10033 vdev_t *rvd = spa->spa_root_vdev; 10034 uint64_t txg = tx->tx_txg; 10035 10036 for (;;) { 10037 int error = 0; 10038 10039 /* 10040 * We hold SCL_STATE to prevent vdev open/close/etc. 10041 * while we're attempting to write the vdev labels. 10042 */ 10043 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 10044 10045 if (list_is_empty(&spa->spa_config_dirty_list)) { 10046 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 10047 int svdcount = 0; 10048 int children = rvd->vdev_children; 10049 int c0 = random_in_range(children); 10050 10051 for (int c = 0; c < children; c++) { 10052 vdev_t *vd = 10053 rvd->vdev_child[(c0 + c) % children]; 10054 10055 /* Stop when revisiting the first vdev */ 10056 if (c > 0 && svd[0] == vd) 10057 break; 10058 10059 if (vd->vdev_ms_array == 0 || 10060 vd->vdev_islog || 10061 !vdev_is_concrete(vd)) 10062 continue; 10063 10064 svd[svdcount++] = vd; 10065 if (svdcount == SPA_SYNC_MIN_VDEVS) 10066 break; 10067 } 10068 error = vdev_config_sync(svd, svdcount, txg); 10069 } else { 10070 error = vdev_config_sync(rvd->vdev_child, 10071 rvd->vdev_children, txg); 10072 } 10073 10074 if (error == 0) 10075 spa->spa_last_synced_guid = rvd->vdev_guid; 10076 10077 spa_config_exit(spa, SCL_STATE, FTAG); 10078 10079 if (error == 0) 10080 break; 10081 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR); 10082 zio_resume_wait(spa); 10083 } 10084 } 10085 10086 /* 10087 * Sync the specified transaction group. New blocks may be dirtied as 10088 * part of the process, so we iterate until it converges. 10089 */ 10090 void 10091 spa_sync(spa_t *spa, uint64_t txg) 10092 { 10093 vdev_t *vd = NULL; 10094 10095 VERIFY(spa_writeable(spa)); 10096 10097 /* 10098 * Wait for i/os issued in open context that need to complete 10099 * before this txg syncs. 10100 */ 10101 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]); 10102 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 10103 ZIO_FLAG_CANFAIL); 10104 10105 /* 10106 * Now that there can be no more cloning in this transaction group, 10107 * but we are still before issuing frees, we can process pending BRT 10108 * updates. 10109 */ 10110 brt_pending_apply(spa, txg); 10111 10112 /* 10113 * Lock out configuration changes. 10114 */ 10115 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 10116 10117 spa->spa_syncing_txg = txg; 10118 spa->spa_sync_pass = 0; 10119 10120 for (int i = 0; i < spa->spa_alloc_count; i++) { 10121 mutex_enter(&spa->spa_allocs[i].spaa_lock); 10122 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree)); 10123 mutex_exit(&spa->spa_allocs[i].spaa_lock); 10124 } 10125 10126 /* 10127 * If there are any pending vdev state changes, convert them 10128 * into config changes that go out with this transaction group. 10129 */ 10130 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 10131 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 10132 /* Avoid holding the write lock unless actually necessary */ 10133 if (vd->vdev_aux == NULL) { 10134 vdev_state_clean(vd); 10135 vdev_config_dirty(vd); 10136 continue; 10137 } 10138 /* 10139 * We need the write lock here because, for aux vdevs, 10140 * calling vdev_config_dirty() modifies sav_config. 10141 * This is ugly and will become unnecessary when we 10142 * eliminate the aux vdev wart by integrating all vdevs 10143 * into the root vdev tree. 10144 */ 10145 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 10146 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 10147 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 10148 vdev_state_clean(vd); 10149 vdev_config_dirty(vd); 10150 } 10151 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 10152 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 10153 } 10154 spa_config_exit(spa, SCL_STATE, FTAG); 10155 10156 dsl_pool_t *dp = spa->spa_dsl_pool; 10157 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 10158 10159 spa->spa_sync_starttime = gethrtime(); 10160 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 10161 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, 10162 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + 10163 NSEC_TO_TICK(spa->spa_deadman_synctime)); 10164 10165 /* 10166 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 10167 * set spa_deflate if we have no raid-z vdevs. 10168 */ 10169 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 10170 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 10171 vdev_t *rvd = spa->spa_root_vdev; 10172 10173 int i; 10174 for (i = 0; i < rvd->vdev_children; i++) { 10175 vd = rvd->vdev_child[i]; 10176 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 10177 break; 10178 } 10179 if (i == rvd->vdev_children) { 10180 spa->spa_deflate = TRUE; 10181 VERIFY0(zap_add(spa->spa_meta_objset, 10182 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 10183 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 10184 } 10185 } 10186 10187 spa_sync_adjust_vdev_max_queue_depth(spa); 10188 10189 spa_sync_condense_indirect(spa, tx); 10190 10191 spa_sync_iterate_to_convergence(spa, tx); 10192 10193 #ifdef ZFS_DEBUG 10194 if (!list_is_empty(&spa->spa_config_dirty_list)) { 10195 /* 10196 * Make sure that the number of ZAPs for all the vdevs matches 10197 * the number of ZAPs in the per-vdev ZAP list. This only gets 10198 * called if the config is dirty; otherwise there may be 10199 * outstanding AVZ operations that weren't completed in 10200 * spa_sync_config_object. 10201 */ 10202 uint64_t all_vdev_zap_entry_count; 10203 ASSERT0(zap_count(spa->spa_meta_objset, 10204 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); 10205 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, 10206 all_vdev_zap_entry_count); 10207 } 10208 #endif 10209 10210 if (spa->spa_vdev_removal != NULL) { 10211 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]); 10212 } 10213 10214 spa_sync_rewrite_vdev_config(spa, tx); 10215 dmu_tx_commit(tx); 10216 10217 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 10218 spa->spa_deadman_tqid = 0; 10219 10220 /* 10221 * Clear the dirty config list. 10222 */ 10223 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 10224 vdev_config_clean(vd); 10225 10226 /* 10227 * Now that the new config has synced transactionally, 10228 * let it become visible to the config cache. 10229 */ 10230 if (spa->spa_config_syncing != NULL) { 10231 spa_config_set(spa, spa->spa_config_syncing); 10232 spa->spa_config_txg = txg; 10233 spa->spa_config_syncing = NULL; 10234 } 10235 10236 dsl_pool_sync_done(dp, txg); 10237 10238 for (int i = 0; i < spa->spa_alloc_count; i++) { 10239 mutex_enter(&spa->spa_allocs[i].spaa_lock); 10240 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree)); 10241 mutex_exit(&spa->spa_allocs[i].spaa_lock); 10242 } 10243 10244 /* 10245 * Update usable space statistics. 10246 */ 10247 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 10248 != NULL) 10249 vdev_sync_done(vd, txg); 10250 10251 metaslab_class_evict_old(spa->spa_normal_class, txg); 10252 metaslab_class_evict_old(spa->spa_log_class, txg); 10253 /* spa_embedded_log_class has only one metaslab per vdev. */ 10254 metaslab_class_evict_old(spa->spa_special_class, txg); 10255 metaslab_class_evict_old(spa->spa_dedup_class, txg); 10256 10257 spa_sync_close_syncing_log_sm(spa); 10258 10259 spa_update_dspace(spa); 10260 10261 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) 10262 vdev_autotrim_kick(spa); 10263 10264 /* 10265 * It had better be the case that we didn't dirty anything 10266 * since vdev_config_sync(). 10267 */ 10268 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 10269 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 10270 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 10271 10272 while (zfs_pause_spa_sync) 10273 delay(1); 10274 10275 spa->spa_sync_pass = 0; 10276 10277 /* 10278 * Update the last synced uberblock here. We want to do this at 10279 * the end of spa_sync() so that consumers of spa_last_synced_txg() 10280 * will be guaranteed that all the processing associated with 10281 * that txg has been completed. 10282 */ 10283 spa->spa_ubsync = spa->spa_uberblock; 10284 spa_config_exit(spa, SCL_CONFIG, FTAG); 10285 10286 spa_handle_ignored_writes(spa); 10287 10288 /* 10289 * If any async tasks have been requested, kick them off. 10290 */ 10291 spa_async_dispatch(spa); 10292 } 10293 10294 /* 10295 * Sync all pools. We don't want to hold the namespace lock across these 10296 * operations, so we take a reference on the spa_t and drop the lock during the 10297 * sync. 10298 */ 10299 void 10300 spa_sync_allpools(void) 10301 { 10302 spa_t *spa = NULL; 10303 mutex_enter(&spa_namespace_lock); 10304 while ((spa = spa_next(spa)) != NULL) { 10305 if (spa_state(spa) != POOL_STATE_ACTIVE || 10306 !spa_writeable(spa) || spa_suspended(spa)) 10307 continue; 10308 spa_open_ref(spa, FTAG); 10309 mutex_exit(&spa_namespace_lock); 10310 txg_wait_synced(spa_get_dsl(spa), 0); 10311 mutex_enter(&spa_namespace_lock); 10312 spa_close(spa, FTAG); 10313 } 10314 mutex_exit(&spa_namespace_lock); 10315 } 10316 10317 taskq_t * 10318 spa_sync_tq_create(spa_t *spa, const char *name) 10319 { 10320 kthread_t **kthreads; 10321 10322 ASSERT(spa->spa_sync_tq == NULL); 10323 ASSERT3S(spa->spa_alloc_count, <=, boot_ncpus); 10324 10325 /* 10326 * - do not allow more allocators than cpus. 10327 * - there may be more cpus than allocators. 10328 * - do not allow more sync taskq threads than allocators or cpus. 10329 */ 10330 int nthreads = spa->spa_alloc_count; 10331 spa->spa_syncthreads = kmem_zalloc(sizeof (spa_syncthread_info_t) * 10332 nthreads, KM_SLEEP); 10333 10334 spa->spa_sync_tq = taskq_create_synced(name, nthreads, minclsyspri, 10335 nthreads, INT_MAX, TASKQ_PREPOPULATE, &kthreads); 10336 VERIFY(spa->spa_sync_tq != NULL); 10337 VERIFY(kthreads != NULL); 10338 10339 spa_syncthread_info_t *ti = spa->spa_syncthreads; 10340 for (int i = 0; i < nthreads; i++, ti++) { 10341 ti->sti_thread = kthreads[i]; 10342 ti->sti_allocator = i; 10343 } 10344 10345 kmem_free(kthreads, sizeof (*kthreads) * nthreads); 10346 return (spa->spa_sync_tq); 10347 } 10348 10349 void 10350 spa_sync_tq_destroy(spa_t *spa) 10351 { 10352 ASSERT(spa->spa_sync_tq != NULL); 10353 10354 taskq_wait(spa->spa_sync_tq); 10355 taskq_destroy(spa->spa_sync_tq); 10356 kmem_free(spa->spa_syncthreads, 10357 sizeof (spa_syncthread_info_t) * spa->spa_alloc_count); 10358 spa->spa_sync_tq = NULL; 10359 } 10360 10361 uint_t 10362 spa_acq_allocator(spa_t *spa) 10363 { 10364 int i; 10365 10366 if (spa->spa_alloc_count == 1) 10367 return (0); 10368 10369 mutex_enter(&spa->spa_allocs_use->sau_lock); 10370 uint_t r = spa->spa_allocs_use->sau_rotor; 10371 do { 10372 if (++r == spa->spa_alloc_count) 10373 r = 0; 10374 } while (spa->spa_allocs_use->sau_inuse[r]); 10375 spa->spa_allocs_use->sau_inuse[r] = B_TRUE; 10376 spa->spa_allocs_use->sau_rotor = r; 10377 mutex_exit(&spa->spa_allocs_use->sau_lock); 10378 10379 spa_syncthread_info_t *ti = spa->spa_syncthreads; 10380 for (i = 0; i < spa->spa_alloc_count; i++, ti++) { 10381 if (ti->sti_thread == curthread) { 10382 ti->sti_allocator = r; 10383 break; 10384 } 10385 } 10386 ASSERT3S(i, <, spa->spa_alloc_count); 10387 return (r); 10388 } 10389 10390 void 10391 spa_rel_allocator(spa_t *spa, uint_t allocator) 10392 { 10393 if (spa->spa_alloc_count > 1) 10394 spa->spa_allocs_use->sau_inuse[allocator] = B_FALSE; 10395 } 10396 10397 void 10398 spa_select_allocator(zio_t *zio) 10399 { 10400 zbookmark_phys_t *bm = &zio->io_bookmark; 10401 spa_t *spa = zio->io_spa; 10402 10403 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 10404 10405 /* 10406 * A gang block (for example) may have inherited its parent's 10407 * allocator, in which case there is nothing further to do here. 10408 */ 10409 if (ZIO_HAS_ALLOCATOR(zio)) 10410 return; 10411 10412 ASSERT(spa != NULL); 10413 ASSERT(bm != NULL); 10414 10415 /* 10416 * First try to use an allocator assigned to the syncthread, and set 10417 * the corresponding write issue taskq for the allocator. 10418 * Note, we must have an open pool to do this. 10419 */ 10420 if (spa->spa_sync_tq != NULL) { 10421 spa_syncthread_info_t *ti = spa->spa_syncthreads; 10422 for (int i = 0; i < spa->spa_alloc_count; i++, ti++) { 10423 if (ti->sti_thread == curthread) { 10424 zio->io_allocator = ti->sti_allocator; 10425 return; 10426 } 10427 } 10428 } 10429 10430 /* 10431 * We want to try to use as many allocators as possible to help improve 10432 * performance, but we also want logically adjacent IOs to be physically 10433 * adjacent to improve sequential read performance. We chunk each object 10434 * into 2^20 block regions, and then hash based on the objset, object, 10435 * level, and region to accomplish both of these goals. 10436 */ 10437 uint64_t hv = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level, 10438 bm->zb_blkid >> 20); 10439 10440 zio->io_allocator = (uint_t)hv % spa->spa_alloc_count; 10441 } 10442 10443 /* 10444 * ========================================================================== 10445 * Miscellaneous routines 10446 * ========================================================================== 10447 */ 10448 10449 /* 10450 * Remove all pools in the system. 10451 */ 10452 void 10453 spa_evict_all(void) 10454 { 10455 spa_t *spa; 10456 10457 /* 10458 * Remove all cached state. All pools should be closed now, 10459 * so every spa in the AVL tree should be unreferenced. 10460 */ 10461 mutex_enter(&spa_namespace_lock); 10462 while ((spa = spa_next(NULL)) != NULL) { 10463 /* 10464 * Stop async tasks. The async thread may need to detach 10465 * a device that's been replaced, which requires grabbing 10466 * spa_namespace_lock, so we must drop it here. 10467 */ 10468 spa_open_ref(spa, FTAG); 10469 mutex_exit(&spa_namespace_lock); 10470 spa_async_suspend(spa); 10471 mutex_enter(&spa_namespace_lock); 10472 spa_close(spa, FTAG); 10473 10474 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 10475 spa_unload(spa); 10476 spa_deactivate(spa); 10477 } 10478 spa_remove(spa); 10479 } 10480 mutex_exit(&spa_namespace_lock); 10481 } 10482 10483 vdev_t * 10484 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 10485 { 10486 vdev_t *vd; 10487 int i; 10488 10489 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 10490 return (vd); 10491 10492 if (aux) { 10493 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 10494 vd = spa->spa_l2cache.sav_vdevs[i]; 10495 if (vd->vdev_guid == guid) 10496 return (vd); 10497 } 10498 10499 for (i = 0; i < spa->spa_spares.sav_count; i++) { 10500 vd = spa->spa_spares.sav_vdevs[i]; 10501 if (vd->vdev_guid == guid) 10502 return (vd); 10503 } 10504 } 10505 10506 return (NULL); 10507 } 10508 10509 void 10510 spa_upgrade(spa_t *spa, uint64_t version) 10511 { 10512 ASSERT(spa_writeable(spa)); 10513 10514 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 10515 10516 /* 10517 * This should only be called for a non-faulted pool, and since a 10518 * future version would result in an unopenable pool, this shouldn't be 10519 * possible. 10520 */ 10521 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 10522 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 10523 10524 spa->spa_uberblock.ub_version = version; 10525 vdev_config_dirty(spa->spa_root_vdev); 10526 10527 spa_config_exit(spa, SCL_ALL, FTAG); 10528 10529 txg_wait_synced(spa_get_dsl(spa), 0); 10530 } 10531 10532 static boolean_t 10533 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav) 10534 { 10535 (void) spa; 10536 int i; 10537 uint64_t vdev_guid; 10538 10539 for (i = 0; i < sav->sav_count; i++) 10540 if (sav->sav_vdevs[i]->vdev_guid == guid) 10541 return (B_TRUE); 10542 10543 for (i = 0; i < sav->sav_npending; i++) { 10544 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 10545 &vdev_guid) == 0 && vdev_guid == guid) 10546 return (B_TRUE); 10547 } 10548 10549 return (B_FALSE); 10550 } 10551 10552 boolean_t 10553 spa_has_l2cache(spa_t *spa, uint64_t guid) 10554 { 10555 return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache)); 10556 } 10557 10558 boolean_t 10559 spa_has_spare(spa_t *spa, uint64_t guid) 10560 { 10561 return (spa_has_aux_vdev(spa, guid, &spa->spa_spares)); 10562 } 10563 10564 /* 10565 * Check if a pool has an active shared spare device. 10566 * Note: reference count of an active spare is 2, as a spare and as a replace 10567 */ 10568 static boolean_t 10569 spa_has_active_shared_spare(spa_t *spa) 10570 { 10571 int i, refcnt; 10572 uint64_t pool; 10573 spa_aux_vdev_t *sav = &spa->spa_spares; 10574 10575 for (i = 0; i < sav->sav_count; i++) { 10576 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 10577 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 10578 refcnt > 2) 10579 return (B_TRUE); 10580 } 10581 10582 return (B_FALSE); 10583 } 10584 10585 uint64_t 10586 spa_total_metaslabs(spa_t *spa) 10587 { 10588 vdev_t *rvd = spa->spa_root_vdev; 10589 10590 uint64_t m = 0; 10591 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 10592 vdev_t *vd = rvd->vdev_child[c]; 10593 if (!vdev_is_concrete(vd)) 10594 continue; 10595 m += vd->vdev_ms_count; 10596 } 10597 return (m); 10598 } 10599 10600 /* 10601 * Notify any waiting threads that some activity has switched from being in- 10602 * progress to not-in-progress so that the thread can wake up and determine 10603 * whether it is finished waiting. 10604 */ 10605 void 10606 spa_notify_waiters(spa_t *spa) 10607 { 10608 /* 10609 * Acquiring spa_activities_lock here prevents the cv_broadcast from 10610 * happening between the waiting thread's check and cv_wait. 10611 */ 10612 mutex_enter(&spa->spa_activities_lock); 10613 cv_broadcast(&spa->spa_activities_cv); 10614 mutex_exit(&spa->spa_activities_lock); 10615 } 10616 10617 /* 10618 * Notify any waiting threads that the pool is exporting, and then block until 10619 * they are finished using the spa_t. 10620 */ 10621 void 10622 spa_wake_waiters(spa_t *spa) 10623 { 10624 mutex_enter(&spa->spa_activities_lock); 10625 spa->spa_waiters_cancel = B_TRUE; 10626 cv_broadcast(&spa->spa_activities_cv); 10627 while (spa->spa_waiters != 0) 10628 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock); 10629 spa->spa_waiters_cancel = B_FALSE; 10630 mutex_exit(&spa->spa_activities_lock); 10631 } 10632 10633 /* Whether the vdev or any of its descendants are being initialized/trimmed. */ 10634 static boolean_t 10635 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity) 10636 { 10637 spa_t *spa = vd->vdev_spa; 10638 10639 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER)); 10640 ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); 10641 ASSERT(activity == ZPOOL_WAIT_INITIALIZE || 10642 activity == ZPOOL_WAIT_TRIM); 10643 10644 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ? 10645 &vd->vdev_initialize_lock : &vd->vdev_trim_lock; 10646 10647 mutex_exit(&spa->spa_activities_lock); 10648 mutex_enter(lock); 10649 mutex_enter(&spa->spa_activities_lock); 10650 10651 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ? 10652 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) : 10653 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE); 10654 mutex_exit(lock); 10655 10656 if (in_progress) 10657 return (B_TRUE); 10658 10659 for (int i = 0; i < vd->vdev_children; i++) { 10660 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i], 10661 activity)) 10662 return (B_TRUE); 10663 } 10664 10665 return (B_FALSE); 10666 } 10667 10668 /* 10669 * If use_guid is true, this checks whether the vdev specified by guid is 10670 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool 10671 * is being initialized/trimmed. The caller must hold the config lock and 10672 * spa_activities_lock. 10673 */ 10674 static int 10675 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid, 10676 zpool_wait_activity_t activity, boolean_t *in_progress) 10677 { 10678 mutex_exit(&spa->spa_activities_lock); 10679 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 10680 mutex_enter(&spa->spa_activities_lock); 10681 10682 vdev_t *vd; 10683 if (use_guid) { 10684 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 10685 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) { 10686 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 10687 return (EINVAL); 10688 } 10689 } else { 10690 vd = spa->spa_root_vdev; 10691 } 10692 10693 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity); 10694 10695 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 10696 return (0); 10697 } 10698 10699 /* 10700 * Locking for waiting threads 10701 * --------------------------- 10702 * 10703 * Waiting threads need a way to check whether a given activity is in progress, 10704 * and then, if it is, wait for it to complete. Each activity will have some 10705 * in-memory representation of the relevant on-disk state which can be used to 10706 * determine whether or not the activity is in progress. The in-memory state and 10707 * the locking used to protect it will be different for each activity, and may 10708 * not be suitable for use with a cvar (e.g., some state is protected by the 10709 * config lock). To allow waiting threads to wait without any races, another 10710 * lock, spa_activities_lock, is used. 10711 * 10712 * When the state is checked, both the activity-specific lock (if there is one) 10713 * and spa_activities_lock are held. In some cases, the activity-specific lock 10714 * is acquired explicitly (e.g. the config lock). In others, the locking is 10715 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting 10716 * thread releases the activity-specific lock and, if the activity is in 10717 * progress, then cv_waits using spa_activities_lock. 10718 * 10719 * The waiting thread is woken when another thread, one completing some 10720 * activity, updates the state of the activity and then calls 10721 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only 10722 * needs to hold its activity-specific lock when updating the state, and this 10723 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters. 10724 * 10725 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting, 10726 * and because it is held when the waiting thread checks the state of the 10727 * activity, it can never be the case that the completing thread both updates 10728 * the activity state and cv_broadcasts in between the waiting thread's check 10729 * and cv_wait. Thus, a waiting thread can never miss a wakeup. 10730 * 10731 * In order to prevent deadlock, when the waiting thread does its check, in some 10732 * cases it will temporarily drop spa_activities_lock in order to acquire the 10733 * activity-specific lock. The order in which spa_activities_lock and the 10734 * activity specific lock are acquired in the waiting thread is determined by 10735 * the order in which they are acquired in the completing thread; if the 10736 * completing thread calls spa_notify_waiters with the activity-specific lock 10737 * held, then the waiting thread must also acquire the activity-specific lock 10738 * first. 10739 */ 10740 10741 static int 10742 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity, 10743 boolean_t use_tag, uint64_t tag, boolean_t *in_progress) 10744 { 10745 int error = 0; 10746 10747 ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); 10748 10749 switch (activity) { 10750 case ZPOOL_WAIT_CKPT_DISCARD: 10751 *in_progress = 10752 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) && 10753 zap_contains(spa_meta_objset(spa), 10754 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) == 10755 ENOENT); 10756 break; 10757 case ZPOOL_WAIT_FREE: 10758 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS && 10759 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) || 10760 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) || 10761 spa_livelist_delete_check(spa)); 10762 break; 10763 case ZPOOL_WAIT_INITIALIZE: 10764 case ZPOOL_WAIT_TRIM: 10765 error = spa_vdev_activity_in_progress(spa, use_tag, tag, 10766 activity, in_progress); 10767 break; 10768 case ZPOOL_WAIT_REPLACE: 10769 mutex_exit(&spa->spa_activities_lock); 10770 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 10771 mutex_enter(&spa->spa_activities_lock); 10772 10773 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev); 10774 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 10775 break; 10776 case ZPOOL_WAIT_REMOVE: 10777 *in_progress = (spa->spa_removing_phys.sr_state == 10778 DSS_SCANNING); 10779 break; 10780 case ZPOOL_WAIT_RESILVER: 10781 *in_progress = vdev_rebuild_active(spa->spa_root_vdev); 10782 if (*in_progress) 10783 break; 10784 zfs_fallthrough; 10785 case ZPOOL_WAIT_SCRUB: 10786 { 10787 boolean_t scanning, paused, is_scrub; 10788 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 10789 10790 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB); 10791 scanning = (scn->scn_phys.scn_state == DSS_SCANNING); 10792 paused = dsl_scan_is_paused_scrub(scn); 10793 *in_progress = (scanning && !paused && 10794 is_scrub == (activity == ZPOOL_WAIT_SCRUB)); 10795 break; 10796 } 10797 case ZPOOL_WAIT_RAIDZ_EXPAND: 10798 { 10799 vdev_raidz_expand_t *vre = spa->spa_raidz_expand; 10800 *in_progress = (vre != NULL && vre->vre_state == DSS_SCANNING); 10801 break; 10802 } 10803 default: 10804 panic("unrecognized value for activity %d", activity); 10805 } 10806 10807 return (error); 10808 } 10809 10810 static int 10811 spa_wait_common(const char *pool, zpool_wait_activity_t activity, 10812 boolean_t use_tag, uint64_t tag, boolean_t *waited) 10813 { 10814 /* 10815 * The tag is used to distinguish between instances of an activity. 10816 * 'initialize' and 'trim' are the only activities that we use this for. 10817 * The other activities can only have a single instance in progress in a 10818 * pool at one time, making the tag unnecessary. 10819 * 10820 * There can be multiple devices being replaced at once, but since they 10821 * all finish once resilvering finishes, we don't bother keeping track 10822 * of them individually, we just wait for them all to finish. 10823 */ 10824 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE && 10825 activity != ZPOOL_WAIT_TRIM) 10826 return (EINVAL); 10827 10828 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES) 10829 return (EINVAL); 10830 10831 spa_t *spa; 10832 int error = spa_open(pool, &spa, FTAG); 10833 if (error != 0) 10834 return (error); 10835 10836 /* 10837 * Increment the spa's waiter count so that we can call spa_close and 10838 * still ensure that the spa_t doesn't get freed before this thread is 10839 * finished with it when the pool is exported. We want to call spa_close 10840 * before we start waiting because otherwise the additional ref would 10841 * prevent the pool from being exported or destroyed throughout the 10842 * potentially long wait. 10843 */ 10844 mutex_enter(&spa->spa_activities_lock); 10845 spa->spa_waiters++; 10846 spa_close(spa, FTAG); 10847 10848 *waited = B_FALSE; 10849 for (;;) { 10850 boolean_t in_progress; 10851 error = spa_activity_in_progress(spa, activity, use_tag, tag, 10852 &in_progress); 10853 10854 if (error || !in_progress || spa->spa_waiters_cancel) 10855 break; 10856 10857 *waited = B_TRUE; 10858 10859 if (cv_wait_sig(&spa->spa_activities_cv, 10860 &spa->spa_activities_lock) == 0) { 10861 error = EINTR; 10862 break; 10863 } 10864 } 10865 10866 spa->spa_waiters--; 10867 cv_signal(&spa->spa_waiters_cv); 10868 mutex_exit(&spa->spa_activities_lock); 10869 10870 return (error); 10871 } 10872 10873 /* 10874 * Wait for a particular instance of the specified activity to complete, where 10875 * the instance is identified by 'tag' 10876 */ 10877 int 10878 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag, 10879 boolean_t *waited) 10880 { 10881 return (spa_wait_common(pool, activity, B_TRUE, tag, waited)); 10882 } 10883 10884 /* 10885 * Wait for all instances of the specified activity complete 10886 */ 10887 int 10888 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited) 10889 { 10890 10891 return (spa_wait_common(pool, activity, B_FALSE, 0, waited)); 10892 } 10893 10894 sysevent_t * 10895 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 10896 { 10897 sysevent_t *ev = NULL; 10898 #ifdef _KERNEL 10899 nvlist_t *resource; 10900 10901 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl); 10902 if (resource) { 10903 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP); 10904 ev->resource = resource; 10905 } 10906 #else 10907 (void) spa, (void) vd, (void) hist_nvl, (void) name; 10908 #endif 10909 return (ev); 10910 } 10911 10912 void 10913 spa_event_post(sysevent_t *ev) 10914 { 10915 #ifdef _KERNEL 10916 if (ev) { 10917 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb); 10918 kmem_free(ev, sizeof (*ev)); 10919 } 10920 #else 10921 (void) ev; 10922 #endif 10923 } 10924 10925 /* 10926 * Post a zevent corresponding to the given sysevent. The 'name' must be one 10927 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be 10928 * filled in from the spa and (optionally) the vdev. This doesn't do anything 10929 * in the userland libzpool, as we don't want consumers to misinterpret ztest 10930 * or zdb as real changes. 10931 */ 10932 void 10933 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 10934 { 10935 spa_event_post(spa_event_create(spa, vd, hist_nvl, name)); 10936 } 10937 10938 /* state manipulation functions */ 10939 EXPORT_SYMBOL(spa_open); 10940 EXPORT_SYMBOL(spa_open_rewind); 10941 EXPORT_SYMBOL(spa_get_stats); 10942 EXPORT_SYMBOL(spa_create); 10943 EXPORT_SYMBOL(spa_import); 10944 EXPORT_SYMBOL(spa_tryimport); 10945 EXPORT_SYMBOL(spa_destroy); 10946 EXPORT_SYMBOL(spa_export); 10947 EXPORT_SYMBOL(spa_reset); 10948 EXPORT_SYMBOL(spa_async_request); 10949 EXPORT_SYMBOL(spa_async_suspend); 10950 EXPORT_SYMBOL(spa_async_resume); 10951 EXPORT_SYMBOL(spa_inject_addref); 10952 EXPORT_SYMBOL(spa_inject_delref); 10953 EXPORT_SYMBOL(spa_scan_stat_init); 10954 EXPORT_SYMBOL(spa_scan_get_stats); 10955 10956 /* device manipulation */ 10957 EXPORT_SYMBOL(spa_vdev_add); 10958 EXPORT_SYMBOL(spa_vdev_attach); 10959 EXPORT_SYMBOL(spa_vdev_detach); 10960 EXPORT_SYMBOL(spa_vdev_setpath); 10961 EXPORT_SYMBOL(spa_vdev_setfru); 10962 EXPORT_SYMBOL(spa_vdev_split_mirror); 10963 10964 /* spare statech is global across all pools) */ 10965 EXPORT_SYMBOL(spa_spare_add); 10966 EXPORT_SYMBOL(spa_spare_remove); 10967 EXPORT_SYMBOL(spa_spare_exists); 10968 EXPORT_SYMBOL(spa_spare_activate); 10969 10970 /* L2ARC statech is global across all pools) */ 10971 EXPORT_SYMBOL(spa_l2cache_add); 10972 EXPORT_SYMBOL(spa_l2cache_remove); 10973 EXPORT_SYMBOL(spa_l2cache_exists); 10974 EXPORT_SYMBOL(spa_l2cache_activate); 10975 EXPORT_SYMBOL(spa_l2cache_drop); 10976 10977 /* scanning */ 10978 EXPORT_SYMBOL(spa_scan); 10979 EXPORT_SYMBOL(spa_scan_stop); 10980 10981 /* spa syncing */ 10982 EXPORT_SYMBOL(spa_sync); /* only for DMU use */ 10983 EXPORT_SYMBOL(spa_sync_allpools); 10984 10985 /* properties */ 10986 EXPORT_SYMBOL(spa_prop_set); 10987 EXPORT_SYMBOL(spa_prop_get); 10988 EXPORT_SYMBOL(spa_prop_clear_bootfs); 10989 10990 /* asynchronous event notification */ 10991 EXPORT_SYMBOL(spa_event_notify); 10992 10993 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW, 10994 "Percentage of CPUs to run a metaslab preload taskq"); 10995 10996 /* BEGIN CSTYLED */ 10997 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW, 10998 "log2 fraction of arc that can be used by inflight I/Os when " 10999 "verifying pool during import"); 11000 /* END CSTYLED */ 11001 11002 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW, 11003 "Set to traverse metadata on pool import"); 11004 11005 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW, 11006 "Set to traverse data on pool import"); 11007 11008 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW, 11009 "Print vdev tree to zfs_dbgmsg during pool import"); 11010 11011 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RW, 11012 "Percentage of CPUs to run an IO worker thread"); 11013 11014 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RW, 11015 "Number of threads per IO worker taskqueue"); 11016 11017 /* BEGIN CSTYLED */ 11018 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW, 11019 "Allow importing pool with up to this number of missing top-level " 11020 "vdevs (in read-only mode)"); 11021 /* END CSTYLED */ 11022 11023 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT, 11024 ZMOD_RW, "Set the livelist condense zthr to pause"); 11025 11026 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT, 11027 ZMOD_RW, "Set the livelist condense synctask to pause"); 11028 11029 /* BEGIN CSTYLED */ 11030 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel, 11031 INT, ZMOD_RW, 11032 "Whether livelist condensing was canceled in the synctask"); 11033 11034 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel, 11035 INT, ZMOD_RW, 11036 "Whether livelist condensing was canceled in the zthr function"); 11037 11038 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT, 11039 ZMOD_RW, 11040 "Whether extra ALLOC blkptrs were added to a livelist entry while it " 11041 "was being condensed"); 11042 11043 #ifdef _KERNEL 11044 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_read, 11045 spa_taskq_read_param_set, spa_taskq_read_param_get, ZMOD_RW, 11046 "Configure IO queues for read IO"); 11047 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_write, 11048 spa_taskq_write_param_set, spa_taskq_write_param_get, ZMOD_RW, 11049 "Configure IO queues for write IO"); 11050 #endif 11051 /* END CSTYLED */ 11052 11053 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_write_tpq, UINT, ZMOD_RW, 11054 "Number of CPUs per write issue taskq"); 11055