1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 * Copyright 2016 Toomas Soome <tsoome@me.com> 30 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 31 * Copyright 2018 Joyent, Inc. 32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 33 * Copyright 2017 Joyent, Inc. 34 * Copyright (c) 2017, Intel Corporation. 35 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org> 36 */ 37 38 /* 39 * SPA: Storage Pool Allocator 40 * 41 * This file contains all the routines used when modifying on-disk SPA state. 42 * This includes opening, importing, destroying, exporting a pool, and syncing a 43 * pool. 44 */ 45 46 #include <sys/zfs_context.h> 47 #include <sys/fm/fs/zfs.h> 48 #include <sys/spa_impl.h> 49 #include <sys/zio.h> 50 #include <sys/zio_checksum.h> 51 #include <sys/dmu.h> 52 #include <sys/dmu_tx.h> 53 #include <sys/zap.h> 54 #include <sys/zil.h> 55 #include <sys/ddt.h> 56 #include <sys/vdev_impl.h> 57 #include <sys/vdev_removal.h> 58 #include <sys/vdev_indirect_mapping.h> 59 #include <sys/vdev_indirect_births.h> 60 #include <sys/vdev_initialize.h> 61 #include <sys/vdev_rebuild.h> 62 #include <sys/vdev_trim.h> 63 #include <sys/vdev_disk.h> 64 #include <sys/vdev_draid.h> 65 #include <sys/metaslab.h> 66 #include <sys/metaslab_impl.h> 67 #include <sys/mmp.h> 68 #include <sys/uberblock_impl.h> 69 #include <sys/txg.h> 70 #include <sys/avl.h> 71 #include <sys/bpobj.h> 72 #include <sys/dmu_traverse.h> 73 #include <sys/dmu_objset.h> 74 #include <sys/unique.h> 75 #include <sys/dsl_pool.h> 76 #include <sys/dsl_dataset.h> 77 #include <sys/dsl_dir.h> 78 #include <sys/dsl_prop.h> 79 #include <sys/dsl_synctask.h> 80 #include <sys/fs/zfs.h> 81 #include <sys/arc.h> 82 #include <sys/callb.h> 83 #include <sys/systeminfo.h> 84 #include <sys/spa_boot.h> 85 #include <sys/zfs_ioctl.h> 86 #include <sys/dsl_scan.h> 87 #include <sys/zfeature.h> 88 #include <sys/dsl_destroy.h> 89 #include <sys/zvol.h> 90 91 #ifdef _KERNEL 92 #include <sys/fm/protocol.h> 93 #include <sys/fm/util.h> 94 #include <sys/callb.h> 95 #include <sys/zone.h> 96 #include <sys/vmsystm.h> 97 #endif /* _KERNEL */ 98 99 #include "zfs_prop.h" 100 #include "zfs_comutil.h" 101 102 /* 103 * The interval, in seconds, at which failed configuration cache file writes 104 * should be retried. 105 */ 106 int zfs_ccw_retry_interval = 300; 107 108 typedef enum zti_modes { 109 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 110 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 111 ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */ 112 ZTI_MODE_NULL, /* don't create a taskq */ 113 ZTI_NMODES 114 } zti_modes_t; 115 116 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 117 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 } 118 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 119 #define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 } 120 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 121 122 #define ZTI_N(n) ZTI_P(n, 1) 123 #define ZTI_ONE ZTI_N(1) 124 125 typedef struct zio_taskq_info { 126 zti_modes_t zti_mode; 127 uint_t zti_value; 128 uint_t zti_count; 129 } zio_taskq_info_t; 130 131 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 132 "iss", "iss_h", "int", "int_h" 133 }; 134 135 /* 136 * This table defines the taskq settings for each ZFS I/O type. When 137 * initializing a pool, we use this table to create an appropriately sized 138 * taskq. Some operations are low volume and therefore have a small, static 139 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 140 * macros. Other operations process a large amount of data; the ZTI_BATCH 141 * macro causes us to create a taskq oriented for throughput. Some operations 142 * are so high frequency and short-lived that the taskq itself can become a 143 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 144 * additional degree of parallelism specified by the number of threads per- 145 * taskq and the number of taskqs; when dispatching an event in this case, the 146 * particular taskq is chosen at random. ZTI_SCALE is similar to ZTI_BATCH, 147 * but with number of taskqs also scaling with number of CPUs. 148 * 149 * The different taskq priorities are to handle the different contexts (issue 150 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 151 * need to be handled with minimum delay. 152 */ 153 static const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 154 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 155 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 156 { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */ 157 { ZTI_BATCH, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */ 158 { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 159 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 160 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 161 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */ 162 }; 163 164 static void spa_sync_version(void *arg, dmu_tx_t *tx); 165 static void spa_sync_props(void *arg, dmu_tx_t *tx); 166 static boolean_t spa_has_active_shared_spare(spa_t *spa); 167 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport); 168 static void spa_vdev_resilver_done(spa_t *spa); 169 170 static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */ 171 static uint_t zio_taskq_batch_tpq; /* threads per taskq */ 172 static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 173 static const uint_t zio_taskq_basedc = 80; /* base duty cycle */ 174 175 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */ 176 177 /* 178 * Report any spa_load_verify errors found, but do not fail spa_load. 179 * This is used by zdb to analyze non-idle pools. 180 */ 181 boolean_t spa_load_verify_dryrun = B_FALSE; 182 183 /* 184 * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ). 185 * This is used by zdb for spacemaps verification. 186 */ 187 boolean_t spa_mode_readable_spacemaps = B_FALSE; 188 189 /* 190 * This (illegal) pool name is used when temporarily importing a spa_t in order 191 * to get the vdev stats associated with the imported devices. 192 */ 193 #define TRYIMPORT_NAME "$import" 194 195 /* 196 * For debugging purposes: print out vdev tree during pool import. 197 */ 198 static int spa_load_print_vdev_tree = B_FALSE; 199 200 /* 201 * A non-zero value for zfs_max_missing_tvds means that we allow importing 202 * pools with missing top-level vdevs. This is strictly intended for advanced 203 * pool recovery cases since missing data is almost inevitable. Pools with 204 * missing devices can only be imported read-only for safety reasons, and their 205 * fail-mode will be automatically set to "continue". 206 * 207 * With 1 missing vdev we should be able to import the pool and mount all 208 * datasets. User data that was not modified after the missing device has been 209 * added should be recoverable. This means that snapshots created prior to the 210 * addition of that device should be completely intact. 211 * 212 * With 2 missing vdevs, some datasets may fail to mount since there are 213 * dataset statistics that are stored as regular metadata. Some data might be 214 * recoverable if those vdevs were added recently. 215 * 216 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries 217 * may be missing entirely. Chances of data recovery are very low. Note that 218 * there are also risks of performing an inadvertent rewind as we might be 219 * missing all the vdevs with the latest uberblocks. 220 */ 221 unsigned long zfs_max_missing_tvds = 0; 222 223 /* 224 * The parameters below are similar to zfs_max_missing_tvds but are only 225 * intended for a preliminary open of the pool with an untrusted config which 226 * might be incomplete or out-dated. 227 * 228 * We are more tolerant for pools opened from a cachefile since we could have 229 * an out-dated cachefile where a device removal was not registered. 230 * We could have set the limit arbitrarily high but in the case where devices 231 * are really missing we would want to return the proper error codes; we chose 232 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available 233 * and we get a chance to retrieve the trusted config. 234 */ 235 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1; 236 237 /* 238 * In the case where config was assembled by scanning device paths (/dev/dsks 239 * by default) we are less tolerant since all the existing devices should have 240 * been detected and we want spa_load to return the right error codes. 241 */ 242 uint64_t zfs_max_missing_tvds_scan = 0; 243 244 /* 245 * Debugging aid that pauses spa_sync() towards the end. 246 */ 247 static const boolean_t zfs_pause_spa_sync = B_FALSE; 248 249 /* 250 * Variables to indicate the livelist condense zthr func should wait at certain 251 * points for the livelist to be removed - used to test condense/destroy races 252 */ 253 static int zfs_livelist_condense_zthr_pause = 0; 254 static int zfs_livelist_condense_sync_pause = 0; 255 256 /* 257 * Variables to track whether or not condense cancellation has been 258 * triggered in testing. 259 */ 260 static int zfs_livelist_condense_sync_cancel = 0; 261 static int zfs_livelist_condense_zthr_cancel = 0; 262 263 /* 264 * Variable to track whether or not extra ALLOC blkptrs were added to a 265 * livelist entry while it was being condensed (caused by the way we track 266 * remapped blkptrs in dbuf_remap_impl) 267 */ 268 static int zfs_livelist_condense_new_alloc = 0; 269 270 /* 271 * ========================================================================== 272 * SPA properties routines 273 * ========================================================================== 274 */ 275 276 /* 277 * Add a (source=src, propname=propval) list to an nvlist. 278 */ 279 static void 280 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 281 uint64_t intval, zprop_source_t src) 282 { 283 const char *propname = zpool_prop_to_name(prop); 284 nvlist_t *propval; 285 286 propval = fnvlist_alloc(); 287 fnvlist_add_uint64(propval, ZPROP_SOURCE, src); 288 289 if (strval != NULL) 290 fnvlist_add_string(propval, ZPROP_VALUE, strval); 291 else 292 fnvlist_add_uint64(propval, ZPROP_VALUE, intval); 293 294 fnvlist_add_nvlist(nvl, propname, propval); 295 nvlist_free(propval); 296 } 297 298 /* 299 * Get property values from the spa configuration. 300 */ 301 static void 302 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 303 { 304 vdev_t *rvd = spa->spa_root_vdev; 305 dsl_pool_t *pool = spa->spa_dsl_pool; 306 uint64_t size, alloc, cap, version; 307 const zprop_source_t src = ZPROP_SRC_NONE; 308 spa_config_dirent_t *dp; 309 metaslab_class_t *mc = spa_normal_class(spa); 310 311 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 312 313 if (rvd != NULL) { 314 alloc = metaslab_class_get_alloc(mc); 315 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 316 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 317 alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa)); 318 319 size = metaslab_class_get_space(mc); 320 size += metaslab_class_get_space(spa_special_class(spa)); 321 size += metaslab_class_get_space(spa_dedup_class(spa)); 322 size += metaslab_class_get_space(spa_embedded_log_class(spa)); 323 324 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 325 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 326 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 327 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 328 size - alloc, src); 329 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL, 330 spa->spa_checkpoint_info.sci_dspace, src); 331 332 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 333 metaslab_class_fragmentation(mc), src); 334 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 335 metaslab_class_expandable_space(mc), src); 336 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 337 (spa_mode(spa) == SPA_MODE_READ), src); 338 339 cap = (size == 0) ? 0 : (alloc * 100 / size); 340 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 341 342 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 343 ddt_get_pool_dedup_ratio(spa), src); 344 345 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 346 rvd->vdev_state, src); 347 348 version = spa_version(spa); 349 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) { 350 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, 351 version, ZPROP_SRC_DEFAULT); 352 } else { 353 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, 354 version, ZPROP_SRC_LOCAL); 355 } 356 spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID, 357 NULL, spa_load_guid(spa), src); 358 } 359 360 if (pool != NULL) { 361 /* 362 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 363 * when opening pools before this version freedir will be NULL. 364 */ 365 if (pool->dp_free_dir != NULL) { 366 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 367 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 368 src); 369 } else { 370 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 371 NULL, 0, src); 372 } 373 374 if (pool->dp_leak_dir != NULL) { 375 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 376 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 377 src); 378 } else { 379 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 380 NULL, 0, src); 381 } 382 } 383 384 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 385 386 if (spa->spa_comment != NULL) { 387 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 388 0, ZPROP_SRC_LOCAL); 389 } 390 391 if (spa->spa_compatibility != NULL) { 392 spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY, 393 spa->spa_compatibility, 0, ZPROP_SRC_LOCAL); 394 } 395 396 if (spa->spa_root != NULL) 397 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 398 0, ZPROP_SRC_LOCAL); 399 400 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 401 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 402 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 403 } else { 404 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 405 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 406 } 407 408 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) { 409 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, 410 DNODE_MAX_SIZE, ZPROP_SRC_NONE); 411 } else { 412 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, 413 DNODE_MIN_SIZE, ZPROP_SRC_NONE); 414 } 415 416 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 417 if (dp->scd_path == NULL) { 418 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 419 "none", 0, ZPROP_SRC_LOCAL); 420 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 421 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 422 dp->scd_path, 0, ZPROP_SRC_LOCAL); 423 } 424 } 425 } 426 427 /* 428 * Get zpool property values. 429 */ 430 int 431 spa_prop_get(spa_t *spa, nvlist_t **nvp) 432 { 433 objset_t *mos = spa->spa_meta_objset; 434 zap_cursor_t zc; 435 zap_attribute_t za; 436 dsl_pool_t *dp; 437 int err; 438 439 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP); 440 if (err) 441 return (err); 442 443 dp = spa_get_dsl(spa); 444 dsl_pool_config_enter(dp, FTAG); 445 mutex_enter(&spa->spa_props_lock); 446 447 /* 448 * Get properties from the spa config. 449 */ 450 spa_prop_get_config(spa, nvp); 451 452 /* If no pool property object, no more prop to get. */ 453 if (mos == NULL || spa->spa_pool_props_object == 0) 454 goto out; 455 456 /* 457 * Get properties from the MOS pool property object. 458 */ 459 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 460 (err = zap_cursor_retrieve(&zc, &za)) == 0; 461 zap_cursor_advance(&zc)) { 462 uint64_t intval = 0; 463 char *strval = NULL; 464 zprop_source_t src = ZPROP_SRC_DEFAULT; 465 zpool_prop_t prop; 466 467 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL) 468 continue; 469 470 switch (za.za_integer_length) { 471 case 8: 472 /* integer property */ 473 if (za.za_first_integer != 474 zpool_prop_default_numeric(prop)) 475 src = ZPROP_SRC_LOCAL; 476 477 if (prop == ZPOOL_PROP_BOOTFS) { 478 dsl_dataset_t *ds = NULL; 479 480 err = dsl_dataset_hold_obj(dp, 481 za.za_first_integer, FTAG, &ds); 482 if (err != 0) 483 break; 484 485 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, 486 KM_SLEEP); 487 dsl_dataset_name(ds, strval); 488 dsl_dataset_rele(ds, FTAG); 489 } else { 490 strval = NULL; 491 intval = za.za_first_integer; 492 } 493 494 spa_prop_add_list(*nvp, prop, strval, intval, src); 495 496 if (strval != NULL) 497 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); 498 499 break; 500 501 case 1: 502 /* string property */ 503 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 504 err = zap_lookup(mos, spa->spa_pool_props_object, 505 za.za_name, 1, za.za_num_integers, strval); 506 if (err) { 507 kmem_free(strval, za.za_num_integers); 508 break; 509 } 510 spa_prop_add_list(*nvp, prop, strval, 0, src); 511 kmem_free(strval, za.za_num_integers); 512 break; 513 514 default: 515 break; 516 } 517 } 518 zap_cursor_fini(&zc); 519 out: 520 mutex_exit(&spa->spa_props_lock); 521 dsl_pool_config_exit(dp, FTAG); 522 if (err && err != ENOENT) { 523 nvlist_free(*nvp); 524 *nvp = NULL; 525 return (err); 526 } 527 528 return (0); 529 } 530 531 /* 532 * Validate the given pool properties nvlist and modify the list 533 * for the property values to be set. 534 */ 535 static int 536 spa_prop_validate(spa_t *spa, nvlist_t *props) 537 { 538 nvpair_t *elem; 539 int error = 0, reset_bootfs = 0; 540 uint64_t objnum = 0; 541 boolean_t has_feature = B_FALSE; 542 543 elem = NULL; 544 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 545 uint64_t intval; 546 char *strval, *slash, *check, *fname; 547 const char *propname = nvpair_name(elem); 548 zpool_prop_t prop = zpool_name_to_prop(propname); 549 550 switch (prop) { 551 case ZPOOL_PROP_INVAL: 552 if (!zpool_prop_feature(propname)) { 553 error = SET_ERROR(EINVAL); 554 break; 555 } 556 557 /* 558 * Sanitize the input. 559 */ 560 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 561 error = SET_ERROR(EINVAL); 562 break; 563 } 564 565 if (nvpair_value_uint64(elem, &intval) != 0) { 566 error = SET_ERROR(EINVAL); 567 break; 568 } 569 570 if (intval != 0) { 571 error = SET_ERROR(EINVAL); 572 break; 573 } 574 575 fname = strchr(propname, '@') + 1; 576 if (zfeature_lookup_name(fname, NULL) != 0) { 577 error = SET_ERROR(EINVAL); 578 break; 579 } 580 581 has_feature = B_TRUE; 582 break; 583 584 case ZPOOL_PROP_VERSION: 585 error = nvpair_value_uint64(elem, &intval); 586 if (!error && 587 (intval < spa_version(spa) || 588 intval > SPA_VERSION_BEFORE_FEATURES || 589 has_feature)) 590 error = SET_ERROR(EINVAL); 591 break; 592 593 case ZPOOL_PROP_DELEGATION: 594 case ZPOOL_PROP_AUTOREPLACE: 595 case ZPOOL_PROP_LISTSNAPS: 596 case ZPOOL_PROP_AUTOEXPAND: 597 case ZPOOL_PROP_AUTOTRIM: 598 error = nvpair_value_uint64(elem, &intval); 599 if (!error && intval > 1) 600 error = SET_ERROR(EINVAL); 601 break; 602 603 case ZPOOL_PROP_MULTIHOST: 604 error = nvpair_value_uint64(elem, &intval); 605 if (!error && intval > 1) 606 error = SET_ERROR(EINVAL); 607 608 if (!error) { 609 uint32_t hostid = zone_get_hostid(NULL); 610 if (hostid) 611 spa->spa_hostid = hostid; 612 else 613 error = SET_ERROR(ENOTSUP); 614 } 615 616 break; 617 618 case ZPOOL_PROP_BOOTFS: 619 /* 620 * If the pool version is less than SPA_VERSION_BOOTFS, 621 * or the pool is still being created (version == 0), 622 * the bootfs property cannot be set. 623 */ 624 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 625 error = SET_ERROR(ENOTSUP); 626 break; 627 } 628 629 /* 630 * Make sure the vdev config is bootable 631 */ 632 if (!vdev_is_bootable(spa->spa_root_vdev)) { 633 error = SET_ERROR(ENOTSUP); 634 break; 635 } 636 637 reset_bootfs = 1; 638 639 error = nvpair_value_string(elem, &strval); 640 641 if (!error) { 642 objset_t *os; 643 644 if (strval == NULL || strval[0] == '\0') { 645 objnum = zpool_prop_default_numeric( 646 ZPOOL_PROP_BOOTFS); 647 break; 648 } 649 650 error = dmu_objset_hold(strval, FTAG, &os); 651 if (error != 0) 652 break; 653 654 /* Must be ZPL. */ 655 if (dmu_objset_type(os) != DMU_OST_ZFS) { 656 error = SET_ERROR(ENOTSUP); 657 } else { 658 objnum = dmu_objset_id(os); 659 } 660 dmu_objset_rele(os, FTAG); 661 } 662 break; 663 664 case ZPOOL_PROP_FAILUREMODE: 665 error = nvpair_value_uint64(elem, &intval); 666 if (!error && intval > ZIO_FAILURE_MODE_PANIC) 667 error = SET_ERROR(EINVAL); 668 669 /* 670 * This is a special case which only occurs when 671 * the pool has completely failed. This allows 672 * the user to change the in-core failmode property 673 * without syncing it out to disk (I/Os might 674 * currently be blocked). We do this by returning 675 * EIO to the caller (spa_prop_set) to trick it 676 * into thinking we encountered a property validation 677 * error. 678 */ 679 if (!error && spa_suspended(spa)) { 680 spa->spa_failmode = intval; 681 error = SET_ERROR(EIO); 682 } 683 break; 684 685 case ZPOOL_PROP_CACHEFILE: 686 if ((error = nvpair_value_string(elem, &strval)) != 0) 687 break; 688 689 if (strval[0] == '\0') 690 break; 691 692 if (strcmp(strval, "none") == 0) 693 break; 694 695 if (strval[0] != '/') { 696 error = SET_ERROR(EINVAL); 697 break; 698 } 699 700 slash = strrchr(strval, '/'); 701 ASSERT(slash != NULL); 702 703 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 704 strcmp(slash, "/..") == 0) 705 error = SET_ERROR(EINVAL); 706 break; 707 708 case ZPOOL_PROP_COMMENT: 709 if ((error = nvpair_value_string(elem, &strval)) != 0) 710 break; 711 for (check = strval; *check != '\0'; check++) { 712 if (!isprint(*check)) { 713 error = SET_ERROR(EINVAL); 714 break; 715 } 716 } 717 if (strlen(strval) > ZPROP_MAX_COMMENT) 718 error = SET_ERROR(E2BIG); 719 break; 720 721 default: 722 break; 723 } 724 725 if (error) 726 break; 727 } 728 729 (void) nvlist_remove_all(props, 730 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO)); 731 732 if (!error && reset_bootfs) { 733 error = nvlist_remove(props, 734 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 735 736 if (!error) { 737 error = nvlist_add_uint64(props, 738 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 739 } 740 } 741 742 return (error); 743 } 744 745 void 746 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 747 { 748 char *cachefile; 749 spa_config_dirent_t *dp; 750 751 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 752 &cachefile) != 0) 753 return; 754 755 dp = kmem_alloc(sizeof (spa_config_dirent_t), 756 KM_SLEEP); 757 758 if (cachefile[0] == '\0') 759 dp->scd_path = spa_strdup(spa_config_path); 760 else if (strcmp(cachefile, "none") == 0) 761 dp->scd_path = NULL; 762 else 763 dp->scd_path = spa_strdup(cachefile); 764 765 list_insert_head(&spa->spa_config_list, dp); 766 if (need_sync) 767 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 768 } 769 770 int 771 spa_prop_set(spa_t *spa, nvlist_t *nvp) 772 { 773 int error; 774 nvpair_t *elem = NULL; 775 boolean_t need_sync = B_FALSE; 776 777 if ((error = spa_prop_validate(spa, nvp)) != 0) 778 return (error); 779 780 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 781 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 782 783 if (prop == ZPOOL_PROP_CACHEFILE || 784 prop == ZPOOL_PROP_ALTROOT || 785 prop == ZPOOL_PROP_READONLY) 786 continue; 787 788 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) { 789 uint64_t ver = 0; 790 791 if (prop == ZPOOL_PROP_VERSION) { 792 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 793 } else { 794 ASSERT(zpool_prop_feature(nvpair_name(elem))); 795 ver = SPA_VERSION_FEATURES; 796 need_sync = B_TRUE; 797 } 798 799 /* Save time if the version is already set. */ 800 if (ver == spa_version(spa)) 801 continue; 802 803 /* 804 * In addition to the pool directory object, we might 805 * create the pool properties object, the features for 806 * read object, the features for write object, or the 807 * feature descriptions object. 808 */ 809 error = dsl_sync_task(spa->spa_name, NULL, 810 spa_sync_version, &ver, 811 6, ZFS_SPACE_CHECK_RESERVED); 812 if (error) 813 return (error); 814 continue; 815 } 816 817 need_sync = B_TRUE; 818 break; 819 } 820 821 if (need_sync) { 822 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 823 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 824 } 825 826 return (0); 827 } 828 829 /* 830 * If the bootfs property value is dsobj, clear it. 831 */ 832 void 833 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 834 { 835 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 836 VERIFY(zap_remove(spa->spa_meta_objset, 837 spa->spa_pool_props_object, 838 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 839 spa->spa_bootfs = 0; 840 } 841 } 842 843 static int 844 spa_change_guid_check(void *arg, dmu_tx_t *tx) 845 { 846 uint64_t *newguid __maybe_unused = arg; 847 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 848 vdev_t *rvd = spa->spa_root_vdev; 849 uint64_t vdev_state; 850 851 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 852 int error = (spa_has_checkpoint(spa)) ? 853 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 854 return (SET_ERROR(error)); 855 } 856 857 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 858 vdev_state = rvd->vdev_state; 859 spa_config_exit(spa, SCL_STATE, FTAG); 860 861 if (vdev_state != VDEV_STATE_HEALTHY) 862 return (SET_ERROR(ENXIO)); 863 864 ASSERT3U(spa_guid(spa), !=, *newguid); 865 866 return (0); 867 } 868 869 static void 870 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 871 { 872 uint64_t *newguid = arg; 873 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 874 uint64_t oldguid; 875 vdev_t *rvd = spa->spa_root_vdev; 876 877 oldguid = spa_guid(spa); 878 879 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 880 rvd->vdev_guid = *newguid; 881 rvd->vdev_guid_sum += (*newguid - oldguid); 882 vdev_config_dirty(rvd); 883 spa_config_exit(spa, SCL_STATE, FTAG); 884 885 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 886 (u_longlong_t)oldguid, (u_longlong_t)*newguid); 887 } 888 889 /* 890 * Change the GUID for the pool. This is done so that we can later 891 * re-import a pool built from a clone of our own vdevs. We will modify 892 * the root vdev's guid, our own pool guid, and then mark all of our 893 * vdevs dirty. Note that we must make sure that all our vdevs are 894 * online when we do this, or else any vdevs that weren't present 895 * would be orphaned from our pool. We are also going to issue a 896 * sysevent to update any watchers. 897 */ 898 int 899 spa_change_guid(spa_t *spa) 900 { 901 int error; 902 uint64_t guid; 903 904 mutex_enter(&spa->spa_vdev_top_lock); 905 mutex_enter(&spa_namespace_lock); 906 guid = spa_generate_guid(NULL); 907 908 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 909 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 910 911 if (error == 0) { 912 spa_write_cachefile(spa, B_FALSE, B_TRUE); 913 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID); 914 } 915 916 mutex_exit(&spa_namespace_lock); 917 mutex_exit(&spa->spa_vdev_top_lock); 918 919 return (error); 920 } 921 922 /* 923 * ========================================================================== 924 * SPA state manipulation (open/create/destroy/import/export) 925 * ========================================================================== 926 */ 927 928 static int 929 spa_error_entry_compare(const void *a, const void *b) 930 { 931 const spa_error_entry_t *sa = (const spa_error_entry_t *)a; 932 const spa_error_entry_t *sb = (const spa_error_entry_t *)b; 933 int ret; 934 935 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark, 936 sizeof (zbookmark_phys_t)); 937 938 return (TREE_ISIGN(ret)); 939 } 940 941 /* 942 * Utility function which retrieves copies of the current logs and 943 * re-initializes them in the process. 944 */ 945 void 946 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 947 { 948 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 949 950 memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t)); 951 memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t)); 952 953 avl_create(&spa->spa_errlist_scrub, 954 spa_error_entry_compare, sizeof (spa_error_entry_t), 955 offsetof(spa_error_entry_t, se_avl)); 956 avl_create(&spa->spa_errlist_last, 957 spa_error_entry_compare, sizeof (spa_error_entry_t), 958 offsetof(spa_error_entry_t, se_avl)); 959 } 960 961 static void 962 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 963 { 964 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 965 enum zti_modes mode = ztip->zti_mode; 966 uint_t value = ztip->zti_value; 967 uint_t count = ztip->zti_count; 968 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 969 uint_t cpus, flags = TASKQ_DYNAMIC; 970 boolean_t batch = B_FALSE; 971 972 switch (mode) { 973 case ZTI_MODE_FIXED: 974 ASSERT3U(value, >, 0); 975 break; 976 977 case ZTI_MODE_BATCH: 978 batch = B_TRUE; 979 flags |= TASKQ_THREADS_CPU_PCT; 980 value = MIN(zio_taskq_batch_pct, 100); 981 break; 982 983 case ZTI_MODE_SCALE: 984 flags |= TASKQ_THREADS_CPU_PCT; 985 /* 986 * We want more taskqs to reduce lock contention, but we want 987 * less for better request ordering and CPU utilization. 988 */ 989 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100); 990 if (zio_taskq_batch_tpq > 0) { 991 count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) / 992 zio_taskq_batch_tpq); 993 } else { 994 /* 995 * Prefer 6 threads per taskq, but no more taskqs 996 * than threads in them on large systems. For 80%: 997 * 998 * taskq taskq total 999 * cpus taskqs percent threads threads 1000 * ------- ------- ------- ------- ------- 1001 * 1 1 80% 1 1 1002 * 2 1 80% 1 1 1003 * 4 1 80% 3 3 1004 * 8 2 40% 3 6 1005 * 16 3 27% 4 12 1006 * 32 5 16% 5 25 1007 * 64 7 11% 7 49 1008 * 128 10 8% 10 100 1009 * 256 14 6% 15 210 1010 */ 1011 count = 1 + cpus / 6; 1012 while (count * count > cpus) 1013 count--; 1014 } 1015 /* Limit each taskq within 100% to not trigger assertion. */ 1016 count = MAX(count, (zio_taskq_batch_pct + 99) / 100); 1017 value = (zio_taskq_batch_pct + count / 2) / count; 1018 break; 1019 1020 case ZTI_MODE_NULL: 1021 tqs->stqs_count = 0; 1022 tqs->stqs_taskq = NULL; 1023 return; 1024 1025 default: 1026 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 1027 "spa_activate()", 1028 zio_type_name[t], zio_taskq_types[q], mode, value); 1029 break; 1030 } 1031 1032 ASSERT3U(count, >, 0); 1033 tqs->stqs_count = count; 1034 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 1035 1036 for (uint_t i = 0; i < count; i++) { 1037 taskq_t *tq; 1038 char name[32]; 1039 1040 if (count > 1) 1041 (void) snprintf(name, sizeof (name), "%s_%s_%u", 1042 zio_type_name[t], zio_taskq_types[q], i); 1043 else 1044 (void) snprintf(name, sizeof (name), "%s_%s", 1045 zio_type_name[t], zio_taskq_types[q]); 1046 1047 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 1048 if (batch) 1049 flags |= TASKQ_DC_BATCH; 1050 1051 (void) zio_taskq_basedc; 1052 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 1053 spa->spa_proc, zio_taskq_basedc, flags); 1054 } else { 1055 pri_t pri = maxclsyspri; 1056 /* 1057 * The write issue taskq can be extremely CPU 1058 * intensive. Run it at slightly less important 1059 * priority than the other taskqs. 1060 * 1061 * Under Linux and FreeBSD this means incrementing 1062 * the priority value as opposed to platforms like 1063 * illumos where it should be decremented. 1064 * 1065 * On FreeBSD, if priorities divided by four (RQ_PPQ) 1066 * are equal then a difference between them is 1067 * insignificant. 1068 */ 1069 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) { 1070 #if defined(__linux__) 1071 pri++; 1072 #elif defined(__FreeBSD__) 1073 pri += 4; 1074 #else 1075 #error "unknown OS" 1076 #endif 1077 } 1078 tq = taskq_create_proc(name, value, pri, 50, 1079 INT_MAX, spa->spa_proc, flags); 1080 } 1081 1082 tqs->stqs_taskq[i] = tq; 1083 } 1084 } 1085 1086 static void 1087 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 1088 { 1089 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1090 1091 if (tqs->stqs_taskq == NULL) { 1092 ASSERT3U(tqs->stqs_count, ==, 0); 1093 return; 1094 } 1095 1096 for (uint_t i = 0; i < tqs->stqs_count; i++) { 1097 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 1098 taskq_destroy(tqs->stqs_taskq[i]); 1099 } 1100 1101 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 1102 tqs->stqs_taskq = NULL; 1103 } 1104 1105 /* 1106 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 1107 * Note that a type may have multiple discrete taskqs to avoid lock contention 1108 * on the taskq itself. In that case we choose which taskq at random by using 1109 * the low bits of gethrtime(). 1110 */ 1111 void 1112 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 1113 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 1114 { 1115 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1116 taskq_t *tq; 1117 1118 ASSERT3P(tqs->stqs_taskq, !=, NULL); 1119 ASSERT3U(tqs->stqs_count, !=, 0); 1120 1121 if (tqs->stqs_count == 1) { 1122 tq = tqs->stqs_taskq[0]; 1123 } else { 1124 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count]; 1125 } 1126 1127 taskq_dispatch_ent(tq, func, arg, flags, ent); 1128 } 1129 1130 /* 1131 * Same as spa_taskq_dispatch_ent() but block on the task until completion. 1132 */ 1133 void 1134 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 1135 task_func_t *func, void *arg, uint_t flags) 1136 { 1137 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1138 taskq_t *tq; 1139 taskqid_t id; 1140 1141 ASSERT3P(tqs->stqs_taskq, !=, NULL); 1142 ASSERT3U(tqs->stqs_count, !=, 0); 1143 1144 if (tqs->stqs_count == 1) { 1145 tq = tqs->stqs_taskq[0]; 1146 } else { 1147 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count]; 1148 } 1149 1150 id = taskq_dispatch(tq, func, arg, flags); 1151 if (id) 1152 taskq_wait_id(tq, id); 1153 } 1154 1155 static void 1156 spa_create_zio_taskqs(spa_t *spa) 1157 { 1158 for (int t = 0; t < ZIO_TYPES; t++) { 1159 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1160 spa_taskqs_init(spa, t, q); 1161 } 1162 } 1163 } 1164 1165 /* 1166 * Disabled until spa_thread() can be adapted for Linux. 1167 */ 1168 #undef HAVE_SPA_THREAD 1169 1170 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD) 1171 static void 1172 spa_thread(void *arg) 1173 { 1174 psetid_t zio_taskq_psrset_bind = PS_NONE; 1175 callb_cpr_t cprinfo; 1176 1177 spa_t *spa = arg; 1178 user_t *pu = PTOU(curproc); 1179 1180 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 1181 spa->spa_name); 1182 1183 ASSERT(curproc != &p0); 1184 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 1185 "zpool-%s", spa->spa_name); 1186 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 1187 1188 /* bind this thread to the requested psrset */ 1189 if (zio_taskq_psrset_bind != PS_NONE) { 1190 pool_lock(); 1191 mutex_enter(&cpu_lock); 1192 mutex_enter(&pidlock); 1193 mutex_enter(&curproc->p_lock); 1194 1195 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 1196 0, NULL, NULL) == 0) { 1197 curthread->t_bind_pset = zio_taskq_psrset_bind; 1198 } else { 1199 cmn_err(CE_WARN, 1200 "Couldn't bind process for zfs pool \"%s\" to " 1201 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1202 } 1203 1204 mutex_exit(&curproc->p_lock); 1205 mutex_exit(&pidlock); 1206 mutex_exit(&cpu_lock); 1207 pool_unlock(); 1208 } 1209 1210 if (zio_taskq_sysdc) { 1211 sysdc_thread_enter(curthread, 100, 0); 1212 } 1213 1214 spa->spa_proc = curproc; 1215 spa->spa_did = curthread->t_did; 1216 1217 spa_create_zio_taskqs(spa); 1218 1219 mutex_enter(&spa->spa_proc_lock); 1220 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1221 1222 spa->spa_proc_state = SPA_PROC_ACTIVE; 1223 cv_broadcast(&spa->spa_proc_cv); 1224 1225 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1226 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1227 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1228 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1229 1230 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1231 spa->spa_proc_state = SPA_PROC_GONE; 1232 spa->spa_proc = &p0; 1233 cv_broadcast(&spa->spa_proc_cv); 1234 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1235 1236 mutex_enter(&curproc->p_lock); 1237 lwp_exit(); 1238 } 1239 #endif 1240 1241 /* 1242 * Activate an uninitialized pool. 1243 */ 1244 static void 1245 spa_activate(spa_t *spa, spa_mode_t mode) 1246 { 1247 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1248 1249 spa->spa_state = POOL_STATE_ACTIVE; 1250 spa->spa_mode = mode; 1251 spa->spa_read_spacemaps = spa_mode_readable_spacemaps; 1252 1253 spa->spa_normal_class = metaslab_class_create(spa, &zfs_metaslab_ops); 1254 spa->spa_log_class = metaslab_class_create(spa, &zfs_metaslab_ops); 1255 spa->spa_embedded_log_class = 1256 metaslab_class_create(spa, &zfs_metaslab_ops); 1257 spa->spa_special_class = metaslab_class_create(spa, &zfs_metaslab_ops); 1258 spa->spa_dedup_class = metaslab_class_create(spa, &zfs_metaslab_ops); 1259 1260 /* Try to create a covering process */ 1261 mutex_enter(&spa->spa_proc_lock); 1262 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1263 ASSERT(spa->spa_proc == &p0); 1264 spa->spa_did = 0; 1265 1266 (void) spa_create_process; 1267 #ifdef HAVE_SPA_THREAD 1268 /* Only create a process if we're going to be around a while. */ 1269 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1270 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1271 NULL, 0) == 0) { 1272 spa->spa_proc_state = SPA_PROC_CREATED; 1273 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1274 cv_wait(&spa->spa_proc_cv, 1275 &spa->spa_proc_lock); 1276 } 1277 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1278 ASSERT(spa->spa_proc != &p0); 1279 ASSERT(spa->spa_did != 0); 1280 } else { 1281 #ifdef _KERNEL 1282 cmn_err(CE_WARN, 1283 "Couldn't create process for zfs pool \"%s\"\n", 1284 spa->spa_name); 1285 #endif 1286 } 1287 } 1288 #endif /* HAVE_SPA_THREAD */ 1289 mutex_exit(&spa->spa_proc_lock); 1290 1291 /* If we didn't create a process, we need to create our taskqs. */ 1292 if (spa->spa_proc == &p0) { 1293 spa_create_zio_taskqs(spa); 1294 } 1295 1296 for (size_t i = 0; i < TXG_SIZE; i++) { 1297 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 1298 ZIO_FLAG_CANFAIL); 1299 } 1300 1301 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1302 offsetof(vdev_t, vdev_config_dirty_node)); 1303 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1304 offsetof(objset_t, os_evicting_node)); 1305 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1306 offsetof(vdev_t, vdev_state_dirty_node)); 1307 1308 txg_list_create(&spa->spa_vdev_txg_list, spa, 1309 offsetof(struct vdev, vdev_txg_node)); 1310 1311 avl_create(&spa->spa_errlist_scrub, 1312 spa_error_entry_compare, sizeof (spa_error_entry_t), 1313 offsetof(spa_error_entry_t, se_avl)); 1314 avl_create(&spa->spa_errlist_last, 1315 spa_error_entry_compare, sizeof (spa_error_entry_t), 1316 offsetof(spa_error_entry_t, se_avl)); 1317 1318 spa_activate_os(spa); 1319 1320 spa_keystore_init(&spa->spa_keystore); 1321 1322 /* 1323 * This taskq is used to perform zvol-minor-related tasks 1324 * asynchronously. This has several advantages, including easy 1325 * resolution of various deadlocks. 1326 * 1327 * The taskq must be single threaded to ensure tasks are always 1328 * processed in the order in which they were dispatched. 1329 * 1330 * A taskq per pool allows one to keep the pools independent. 1331 * This way if one pool is suspended, it will not impact another. 1332 * 1333 * The preferred location to dispatch a zvol minor task is a sync 1334 * task. In this context, there is easy access to the spa_t and minimal 1335 * error handling is required because the sync task must succeed. 1336 */ 1337 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri, 1338 1, INT_MAX, 0); 1339 1340 /* 1341 * Taskq dedicated to prefetcher threads: this is used to prevent the 1342 * pool traverse code from monopolizing the global (and limited) 1343 * system_taskq by inappropriately scheduling long running tasks on it. 1344 */ 1345 spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100, 1346 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); 1347 1348 /* 1349 * The taskq to upgrade datasets in this pool. Currently used by 1350 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA. 1351 */ 1352 spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100, 1353 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); 1354 } 1355 1356 /* 1357 * Opposite of spa_activate(). 1358 */ 1359 static void 1360 spa_deactivate(spa_t *spa) 1361 { 1362 ASSERT(spa->spa_sync_on == B_FALSE); 1363 ASSERT(spa->spa_dsl_pool == NULL); 1364 ASSERT(spa->spa_root_vdev == NULL); 1365 ASSERT(spa->spa_async_zio_root == NULL); 1366 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1367 1368 spa_evicting_os_wait(spa); 1369 1370 if (spa->spa_zvol_taskq) { 1371 taskq_destroy(spa->spa_zvol_taskq); 1372 spa->spa_zvol_taskq = NULL; 1373 } 1374 1375 if (spa->spa_prefetch_taskq) { 1376 taskq_destroy(spa->spa_prefetch_taskq); 1377 spa->spa_prefetch_taskq = NULL; 1378 } 1379 1380 if (spa->spa_upgrade_taskq) { 1381 taskq_destroy(spa->spa_upgrade_taskq); 1382 spa->spa_upgrade_taskq = NULL; 1383 } 1384 1385 txg_list_destroy(&spa->spa_vdev_txg_list); 1386 1387 list_destroy(&spa->spa_config_dirty_list); 1388 list_destroy(&spa->spa_evicting_os_list); 1389 list_destroy(&spa->spa_state_dirty_list); 1390 1391 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 1392 1393 for (int t = 0; t < ZIO_TYPES; t++) { 1394 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1395 spa_taskqs_fini(spa, t, q); 1396 } 1397 } 1398 1399 for (size_t i = 0; i < TXG_SIZE; i++) { 1400 ASSERT3P(spa->spa_txg_zio[i], !=, NULL); 1401 VERIFY0(zio_wait(spa->spa_txg_zio[i])); 1402 spa->spa_txg_zio[i] = NULL; 1403 } 1404 1405 metaslab_class_destroy(spa->spa_normal_class); 1406 spa->spa_normal_class = NULL; 1407 1408 metaslab_class_destroy(spa->spa_log_class); 1409 spa->spa_log_class = NULL; 1410 1411 metaslab_class_destroy(spa->spa_embedded_log_class); 1412 spa->spa_embedded_log_class = NULL; 1413 1414 metaslab_class_destroy(spa->spa_special_class); 1415 spa->spa_special_class = NULL; 1416 1417 metaslab_class_destroy(spa->spa_dedup_class); 1418 spa->spa_dedup_class = NULL; 1419 1420 /* 1421 * If this was part of an import or the open otherwise failed, we may 1422 * still have errors left in the queues. Empty them just in case. 1423 */ 1424 spa_errlog_drain(spa); 1425 avl_destroy(&spa->spa_errlist_scrub); 1426 avl_destroy(&spa->spa_errlist_last); 1427 1428 spa_keystore_fini(&spa->spa_keystore); 1429 1430 spa->spa_state = POOL_STATE_UNINITIALIZED; 1431 1432 mutex_enter(&spa->spa_proc_lock); 1433 if (spa->spa_proc_state != SPA_PROC_NONE) { 1434 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1435 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1436 cv_broadcast(&spa->spa_proc_cv); 1437 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1438 ASSERT(spa->spa_proc != &p0); 1439 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1440 } 1441 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1442 spa->spa_proc_state = SPA_PROC_NONE; 1443 } 1444 ASSERT(spa->spa_proc == &p0); 1445 mutex_exit(&spa->spa_proc_lock); 1446 1447 /* 1448 * We want to make sure spa_thread() has actually exited the ZFS 1449 * module, so that the module can't be unloaded out from underneath 1450 * it. 1451 */ 1452 if (spa->spa_did != 0) { 1453 thread_join(spa->spa_did); 1454 spa->spa_did = 0; 1455 } 1456 1457 spa_deactivate_os(spa); 1458 1459 } 1460 1461 /* 1462 * Verify a pool configuration, and construct the vdev tree appropriately. This 1463 * will create all the necessary vdevs in the appropriate layout, with each vdev 1464 * in the CLOSED state. This will prep the pool before open/creation/import. 1465 * All vdev validation is done by the vdev_alloc() routine. 1466 */ 1467 int 1468 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1469 uint_t id, int atype) 1470 { 1471 nvlist_t **child; 1472 uint_t children; 1473 int error; 1474 1475 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1476 return (error); 1477 1478 if ((*vdp)->vdev_ops->vdev_op_leaf) 1479 return (0); 1480 1481 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1482 &child, &children); 1483 1484 if (error == ENOENT) 1485 return (0); 1486 1487 if (error) { 1488 vdev_free(*vdp); 1489 *vdp = NULL; 1490 return (SET_ERROR(EINVAL)); 1491 } 1492 1493 for (int c = 0; c < children; c++) { 1494 vdev_t *vd; 1495 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1496 atype)) != 0) { 1497 vdev_free(*vdp); 1498 *vdp = NULL; 1499 return (error); 1500 } 1501 } 1502 1503 ASSERT(*vdp != NULL); 1504 1505 return (0); 1506 } 1507 1508 static boolean_t 1509 spa_should_flush_logs_on_unload(spa_t *spa) 1510 { 1511 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1512 return (B_FALSE); 1513 1514 if (!spa_writeable(spa)) 1515 return (B_FALSE); 1516 1517 if (!spa->spa_sync_on) 1518 return (B_FALSE); 1519 1520 if (spa_state(spa) != POOL_STATE_EXPORTED) 1521 return (B_FALSE); 1522 1523 if (zfs_keep_log_spacemaps_at_export) 1524 return (B_FALSE); 1525 1526 return (B_TRUE); 1527 } 1528 1529 /* 1530 * Opens a transaction that will set the flag that will instruct 1531 * spa_sync to attempt to flush all the metaslabs for that txg. 1532 */ 1533 static void 1534 spa_unload_log_sm_flush_all(spa_t *spa) 1535 { 1536 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 1537 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 1538 1539 ASSERT3U(spa->spa_log_flushall_txg, ==, 0); 1540 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx); 1541 1542 dmu_tx_commit(tx); 1543 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg); 1544 } 1545 1546 static void 1547 spa_unload_log_sm_metadata(spa_t *spa) 1548 { 1549 void *cookie = NULL; 1550 spa_log_sm_t *sls; 1551 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg, 1552 &cookie)) != NULL) { 1553 VERIFY0(sls->sls_mscount); 1554 kmem_free(sls, sizeof (spa_log_sm_t)); 1555 } 1556 1557 for (log_summary_entry_t *e = list_head(&spa->spa_log_summary); 1558 e != NULL; e = list_head(&spa->spa_log_summary)) { 1559 VERIFY0(e->lse_mscount); 1560 list_remove(&spa->spa_log_summary, e); 1561 kmem_free(e, sizeof (log_summary_entry_t)); 1562 } 1563 1564 spa->spa_unflushed_stats.sus_nblocks = 0; 1565 spa->spa_unflushed_stats.sus_memused = 0; 1566 spa->spa_unflushed_stats.sus_blocklimit = 0; 1567 } 1568 1569 static void 1570 spa_destroy_aux_threads(spa_t *spa) 1571 { 1572 if (spa->spa_condense_zthr != NULL) { 1573 zthr_destroy(spa->spa_condense_zthr); 1574 spa->spa_condense_zthr = NULL; 1575 } 1576 if (spa->spa_checkpoint_discard_zthr != NULL) { 1577 zthr_destroy(spa->spa_checkpoint_discard_zthr); 1578 spa->spa_checkpoint_discard_zthr = NULL; 1579 } 1580 if (spa->spa_livelist_delete_zthr != NULL) { 1581 zthr_destroy(spa->spa_livelist_delete_zthr); 1582 spa->spa_livelist_delete_zthr = NULL; 1583 } 1584 if (spa->spa_livelist_condense_zthr != NULL) { 1585 zthr_destroy(spa->spa_livelist_condense_zthr); 1586 spa->spa_livelist_condense_zthr = NULL; 1587 } 1588 } 1589 1590 /* 1591 * Opposite of spa_load(). 1592 */ 1593 static void 1594 spa_unload(spa_t *spa) 1595 { 1596 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1597 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED); 1598 1599 spa_import_progress_remove(spa_guid(spa)); 1600 spa_load_note(spa, "UNLOADING"); 1601 1602 spa_wake_waiters(spa); 1603 1604 /* 1605 * If we have set the spa_final_txg, we have already performed the 1606 * tasks below in spa_export_common(). We should not redo it here since 1607 * we delay the final TXGs beyond what spa_final_txg is set at. 1608 */ 1609 if (spa->spa_final_txg == UINT64_MAX) { 1610 /* 1611 * If the log space map feature is enabled and the pool is 1612 * getting exported (but not destroyed), we want to spend some 1613 * time flushing as many metaslabs as we can in an attempt to 1614 * destroy log space maps and save import time. 1615 */ 1616 if (spa_should_flush_logs_on_unload(spa)) 1617 spa_unload_log_sm_flush_all(spa); 1618 1619 /* 1620 * Stop async tasks. 1621 */ 1622 spa_async_suspend(spa); 1623 1624 if (spa->spa_root_vdev) { 1625 vdev_t *root_vdev = spa->spa_root_vdev; 1626 vdev_initialize_stop_all(root_vdev, 1627 VDEV_INITIALIZE_ACTIVE); 1628 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE); 1629 vdev_autotrim_stop_all(spa); 1630 vdev_rebuild_stop_all(spa); 1631 } 1632 } 1633 1634 /* 1635 * Stop syncing. 1636 */ 1637 if (spa->spa_sync_on) { 1638 txg_sync_stop(spa->spa_dsl_pool); 1639 spa->spa_sync_on = B_FALSE; 1640 } 1641 1642 /* 1643 * This ensures that there is no async metaslab prefetching 1644 * while we attempt to unload the spa. 1645 */ 1646 if (spa->spa_root_vdev != NULL) { 1647 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) { 1648 vdev_t *vc = spa->spa_root_vdev->vdev_child[c]; 1649 if (vc->vdev_mg != NULL) 1650 taskq_wait(vc->vdev_mg->mg_taskq); 1651 } 1652 } 1653 1654 if (spa->spa_mmp.mmp_thread) 1655 mmp_thread_stop(spa); 1656 1657 /* 1658 * Wait for any outstanding async I/O to complete. 1659 */ 1660 if (spa->spa_async_zio_root != NULL) { 1661 for (int i = 0; i < max_ncpus; i++) 1662 (void) zio_wait(spa->spa_async_zio_root[i]); 1663 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1664 spa->spa_async_zio_root = NULL; 1665 } 1666 1667 if (spa->spa_vdev_removal != NULL) { 1668 spa_vdev_removal_destroy(spa->spa_vdev_removal); 1669 spa->spa_vdev_removal = NULL; 1670 } 1671 1672 spa_destroy_aux_threads(spa); 1673 1674 spa_condense_fini(spa); 1675 1676 bpobj_close(&spa->spa_deferred_bpobj); 1677 1678 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1679 1680 /* 1681 * Close all vdevs. 1682 */ 1683 if (spa->spa_root_vdev) 1684 vdev_free(spa->spa_root_vdev); 1685 ASSERT(spa->spa_root_vdev == NULL); 1686 1687 /* 1688 * Close the dsl pool. 1689 */ 1690 if (spa->spa_dsl_pool) { 1691 dsl_pool_close(spa->spa_dsl_pool); 1692 spa->spa_dsl_pool = NULL; 1693 spa->spa_meta_objset = NULL; 1694 } 1695 1696 ddt_unload(spa); 1697 spa_unload_log_sm_metadata(spa); 1698 1699 /* 1700 * Drop and purge level 2 cache 1701 */ 1702 spa_l2cache_drop(spa); 1703 1704 for (int i = 0; i < spa->spa_spares.sav_count; i++) 1705 vdev_free(spa->spa_spares.sav_vdevs[i]); 1706 if (spa->spa_spares.sav_vdevs) { 1707 kmem_free(spa->spa_spares.sav_vdevs, 1708 spa->spa_spares.sav_count * sizeof (void *)); 1709 spa->spa_spares.sav_vdevs = NULL; 1710 } 1711 if (spa->spa_spares.sav_config) { 1712 nvlist_free(spa->spa_spares.sav_config); 1713 spa->spa_spares.sav_config = NULL; 1714 } 1715 spa->spa_spares.sav_count = 0; 1716 1717 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 1718 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1719 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1720 } 1721 if (spa->spa_l2cache.sav_vdevs) { 1722 kmem_free(spa->spa_l2cache.sav_vdevs, 1723 spa->spa_l2cache.sav_count * sizeof (void *)); 1724 spa->spa_l2cache.sav_vdevs = NULL; 1725 } 1726 if (spa->spa_l2cache.sav_config) { 1727 nvlist_free(spa->spa_l2cache.sav_config); 1728 spa->spa_l2cache.sav_config = NULL; 1729 } 1730 spa->spa_l2cache.sav_count = 0; 1731 1732 spa->spa_async_suspended = 0; 1733 1734 spa->spa_indirect_vdevs_loaded = B_FALSE; 1735 1736 if (spa->spa_comment != NULL) { 1737 spa_strfree(spa->spa_comment); 1738 spa->spa_comment = NULL; 1739 } 1740 if (spa->spa_compatibility != NULL) { 1741 spa_strfree(spa->spa_compatibility); 1742 spa->spa_compatibility = NULL; 1743 } 1744 1745 spa_config_exit(spa, SCL_ALL, spa); 1746 } 1747 1748 /* 1749 * Load (or re-load) the current list of vdevs describing the active spares for 1750 * this pool. When this is called, we have some form of basic information in 1751 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1752 * then re-generate a more complete list including status information. 1753 */ 1754 void 1755 spa_load_spares(spa_t *spa) 1756 { 1757 nvlist_t **spares; 1758 uint_t nspares; 1759 int i; 1760 vdev_t *vd, *tvd; 1761 1762 #ifndef _KERNEL 1763 /* 1764 * zdb opens both the current state of the pool and the 1765 * checkpointed state (if present), with a different spa_t. 1766 * 1767 * As spare vdevs are shared among open pools, we skip loading 1768 * them when we load the checkpointed state of the pool. 1769 */ 1770 if (!spa_writeable(spa)) 1771 return; 1772 #endif 1773 1774 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1775 1776 /* 1777 * First, close and free any existing spare vdevs. 1778 */ 1779 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1780 vd = spa->spa_spares.sav_vdevs[i]; 1781 1782 /* Undo the call to spa_activate() below */ 1783 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1784 B_FALSE)) != NULL && tvd->vdev_isspare) 1785 spa_spare_remove(tvd); 1786 vdev_close(vd); 1787 vdev_free(vd); 1788 } 1789 1790 if (spa->spa_spares.sav_vdevs) 1791 kmem_free(spa->spa_spares.sav_vdevs, 1792 spa->spa_spares.sav_count * sizeof (void *)); 1793 1794 if (spa->spa_spares.sav_config == NULL) 1795 nspares = 0; 1796 else 1797 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1798 ZPOOL_CONFIG_SPARES, &spares, &nspares)); 1799 1800 spa->spa_spares.sav_count = (int)nspares; 1801 spa->spa_spares.sav_vdevs = NULL; 1802 1803 if (nspares == 0) 1804 return; 1805 1806 /* 1807 * Construct the array of vdevs, opening them to get status in the 1808 * process. For each spare, there is potentially two different vdev_t 1809 * structures associated with it: one in the list of spares (used only 1810 * for basic validation purposes) and one in the active vdev 1811 * configuration (if it's spared in). During this phase we open and 1812 * validate each vdev on the spare list. If the vdev also exists in the 1813 * active configuration, then we also mark this vdev as an active spare. 1814 */ 1815 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *), 1816 KM_SLEEP); 1817 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1818 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1819 VDEV_ALLOC_SPARE) == 0); 1820 ASSERT(vd != NULL); 1821 1822 spa->spa_spares.sav_vdevs[i] = vd; 1823 1824 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1825 B_FALSE)) != NULL) { 1826 if (!tvd->vdev_isspare) 1827 spa_spare_add(tvd); 1828 1829 /* 1830 * We only mark the spare active if we were successfully 1831 * able to load the vdev. Otherwise, importing a pool 1832 * with a bad active spare would result in strange 1833 * behavior, because multiple pool would think the spare 1834 * is actively in use. 1835 * 1836 * There is a vulnerability here to an equally bizarre 1837 * circumstance, where a dead active spare is later 1838 * brought back to life (onlined or otherwise). Given 1839 * the rarity of this scenario, and the extra complexity 1840 * it adds, we ignore the possibility. 1841 */ 1842 if (!vdev_is_dead(tvd)) 1843 spa_spare_activate(tvd); 1844 } 1845 1846 vd->vdev_top = vd; 1847 vd->vdev_aux = &spa->spa_spares; 1848 1849 if (vdev_open(vd) != 0) 1850 continue; 1851 1852 if (vdev_validate_aux(vd) == 0) 1853 spa_spare_add(vd); 1854 } 1855 1856 /* 1857 * Recompute the stashed list of spares, with status information 1858 * this time. 1859 */ 1860 fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES); 1861 1862 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1863 KM_SLEEP); 1864 for (i = 0; i < spa->spa_spares.sav_count; i++) 1865 spares[i] = vdev_config_generate(spa, 1866 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1867 fnvlist_add_nvlist_array(spa->spa_spares.sav_config, 1868 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, 1869 spa->spa_spares.sav_count); 1870 for (i = 0; i < spa->spa_spares.sav_count; i++) 1871 nvlist_free(spares[i]); 1872 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1873 } 1874 1875 /* 1876 * Load (or re-load) the current list of vdevs describing the active l2cache for 1877 * this pool. When this is called, we have some form of basic information in 1878 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1879 * then re-generate a more complete list including status information. 1880 * Devices which are already active have their details maintained, and are 1881 * not re-opened. 1882 */ 1883 void 1884 spa_load_l2cache(spa_t *spa) 1885 { 1886 nvlist_t **l2cache = NULL; 1887 uint_t nl2cache; 1888 int i, j, oldnvdevs; 1889 uint64_t guid; 1890 vdev_t *vd, **oldvdevs, **newvdevs; 1891 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1892 1893 #ifndef _KERNEL 1894 /* 1895 * zdb opens both the current state of the pool and the 1896 * checkpointed state (if present), with a different spa_t. 1897 * 1898 * As L2 caches are part of the ARC which is shared among open 1899 * pools, we skip loading them when we load the checkpointed 1900 * state of the pool. 1901 */ 1902 if (!spa_writeable(spa)) 1903 return; 1904 #endif 1905 1906 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1907 1908 oldvdevs = sav->sav_vdevs; 1909 oldnvdevs = sav->sav_count; 1910 sav->sav_vdevs = NULL; 1911 sav->sav_count = 0; 1912 1913 if (sav->sav_config == NULL) { 1914 nl2cache = 0; 1915 newvdevs = NULL; 1916 goto out; 1917 } 1918 1919 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, 1920 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache)); 1921 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1922 1923 /* 1924 * Process new nvlist of vdevs. 1925 */ 1926 for (i = 0; i < nl2cache; i++) { 1927 guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID); 1928 1929 newvdevs[i] = NULL; 1930 for (j = 0; j < oldnvdevs; j++) { 1931 vd = oldvdevs[j]; 1932 if (vd != NULL && guid == vd->vdev_guid) { 1933 /* 1934 * Retain previous vdev for add/remove ops. 1935 */ 1936 newvdevs[i] = vd; 1937 oldvdevs[j] = NULL; 1938 break; 1939 } 1940 } 1941 1942 if (newvdevs[i] == NULL) { 1943 /* 1944 * Create new vdev 1945 */ 1946 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1947 VDEV_ALLOC_L2CACHE) == 0); 1948 ASSERT(vd != NULL); 1949 newvdevs[i] = vd; 1950 1951 /* 1952 * Commit this vdev as an l2cache device, 1953 * even if it fails to open. 1954 */ 1955 spa_l2cache_add(vd); 1956 1957 vd->vdev_top = vd; 1958 vd->vdev_aux = sav; 1959 1960 spa_l2cache_activate(vd); 1961 1962 if (vdev_open(vd) != 0) 1963 continue; 1964 1965 (void) vdev_validate_aux(vd); 1966 1967 if (!vdev_is_dead(vd)) 1968 l2arc_add_vdev(spa, vd); 1969 1970 /* 1971 * Upon cache device addition to a pool or pool 1972 * creation with a cache device or if the header 1973 * of the device is invalid we issue an async 1974 * TRIM command for the whole device which will 1975 * execute if l2arc_trim_ahead > 0. 1976 */ 1977 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 1978 } 1979 } 1980 1981 sav->sav_vdevs = newvdevs; 1982 sav->sav_count = (int)nl2cache; 1983 1984 /* 1985 * Recompute the stashed list of l2cache devices, with status 1986 * information this time. 1987 */ 1988 fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE); 1989 1990 if (sav->sav_count > 0) 1991 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), 1992 KM_SLEEP); 1993 for (i = 0; i < sav->sav_count; i++) 1994 l2cache[i] = vdev_config_generate(spa, 1995 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1996 fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1997 (const nvlist_t * const *)l2cache, sav->sav_count); 1998 1999 out: 2000 /* 2001 * Purge vdevs that were dropped 2002 */ 2003 for (i = 0; i < oldnvdevs; i++) { 2004 uint64_t pool; 2005 2006 vd = oldvdevs[i]; 2007 if (vd != NULL) { 2008 ASSERT(vd->vdev_isl2cache); 2009 2010 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 2011 pool != 0ULL && l2arc_vdev_present(vd)) 2012 l2arc_remove_vdev(vd); 2013 vdev_clear_stats(vd); 2014 vdev_free(vd); 2015 } 2016 } 2017 2018 if (oldvdevs) 2019 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 2020 2021 for (i = 0; i < sav->sav_count; i++) 2022 nvlist_free(l2cache[i]); 2023 if (sav->sav_count) 2024 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 2025 } 2026 2027 static int 2028 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 2029 { 2030 dmu_buf_t *db; 2031 char *packed = NULL; 2032 size_t nvsize = 0; 2033 int error; 2034 *value = NULL; 2035 2036 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 2037 if (error) 2038 return (error); 2039 2040 nvsize = *(uint64_t *)db->db_data; 2041 dmu_buf_rele(db, FTAG); 2042 2043 packed = vmem_alloc(nvsize, KM_SLEEP); 2044 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 2045 DMU_READ_PREFETCH); 2046 if (error == 0) 2047 error = nvlist_unpack(packed, nvsize, value, 0); 2048 vmem_free(packed, nvsize); 2049 2050 return (error); 2051 } 2052 2053 /* 2054 * Concrete top-level vdevs that are not missing and are not logs. At every 2055 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds. 2056 */ 2057 static uint64_t 2058 spa_healthy_core_tvds(spa_t *spa) 2059 { 2060 vdev_t *rvd = spa->spa_root_vdev; 2061 uint64_t tvds = 0; 2062 2063 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 2064 vdev_t *vd = rvd->vdev_child[i]; 2065 if (vd->vdev_islog) 2066 continue; 2067 if (vdev_is_concrete(vd) && !vdev_is_dead(vd)) 2068 tvds++; 2069 } 2070 2071 return (tvds); 2072 } 2073 2074 /* 2075 * Checks to see if the given vdev could not be opened, in which case we post a 2076 * sysevent to notify the autoreplace code that the device has been removed. 2077 */ 2078 static void 2079 spa_check_removed(vdev_t *vd) 2080 { 2081 for (uint64_t c = 0; c < vd->vdev_children; c++) 2082 spa_check_removed(vd->vdev_child[c]); 2083 2084 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 2085 vdev_is_concrete(vd)) { 2086 zfs_post_autoreplace(vd->vdev_spa, vd); 2087 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK); 2088 } 2089 } 2090 2091 static int 2092 spa_check_for_missing_logs(spa_t *spa) 2093 { 2094 vdev_t *rvd = spa->spa_root_vdev; 2095 2096 /* 2097 * If we're doing a normal import, then build up any additional 2098 * diagnostic information about missing log devices. 2099 * We'll pass this up to the user for further processing. 2100 */ 2101 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 2102 nvlist_t **child, *nv; 2103 uint64_t idx = 0; 2104 2105 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *), 2106 KM_SLEEP); 2107 nv = fnvlist_alloc(); 2108 2109 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2110 vdev_t *tvd = rvd->vdev_child[c]; 2111 2112 /* 2113 * We consider a device as missing only if it failed 2114 * to open (i.e. offline or faulted is not considered 2115 * as missing). 2116 */ 2117 if (tvd->vdev_islog && 2118 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 2119 child[idx++] = vdev_config_generate(spa, tvd, 2120 B_FALSE, VDEV_CONFIG_MISSING); 2121 } 2122 } 2123 2124 if (idx > 0) { 2125 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 2126 (const nvlist_t * const *)child, idx); 2127 fnvlist_add_nvlist(spa->spa_load_info, 2128 ZPOOL_CONFIG_MISSING_DEVICES, nv); 2129 2130 for (uint64_t i = 0; i < idx; i++) 2131 nvlist_free(child[i]); 2132 } 2133 nvlist_free(nv); 2134 kmem_free(child, rvd->vdev_children * sizeof (char **)); 2135 2136 if (idx > 0) { 2137 spa_load_failed(spa, "some log devices are missing"); 2138 vdev_dbgmsg_print_tree(rvd, 2); 2139 return (SET_ERROR(ENXIO)); 2140 } 2141 } else { 2142 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2143 vdev_t *tvd = rvd->vdev_child[c]; 2144 2145 if (tvd->vdev_islog && 2146 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 2147 spa_set_log_state(spa, SPA_LOG_CLEAR); 2148 spa_load_note(spa, "some log devices are " 2149 "missing, ZIL is dropped."); 2150 vdev_dbgmsg_print_tree(rvd, 2); 2151 break; 2152 } 2153 } 2154 } 2155 2156 return (0); 2157 } 2158 2159 /* 2160 * Check for missing log devices 2161 */ 2162 static boolean_t 2163 spa_check_logs(spa_t *spa) 2164 { 2165 boolean_t rv = B_FALSE; 2166 dsl_pool_t *dp = spa_get_dsl(spa); 2167 2168 switch (spa->spa_log_state) { 2169 default: 2170 break; 2171 case SPA_LOG_MISSING: 2172 /* need to recheck in case slog has been restored */ 2173 case SPA_LOG_UNKNOWN: 2174 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2175 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 2176 if (rv) 2177 spa_set_log_state(spa, SPA_LOG_MISSING); 2178 break; 2179 } 2180 return (rv); 2181 } 2182 2183 /* 2184 * Passivate any log vdevs (note, does not apply to embedded log metaslabs). 2185 */ 2186 static boolean_t 2187 spa_passivate_log(spa_t *spa) 2188 { 2189 vdev_t *rvd = spa->spa_root_vdev; 2190 boolean_t slog_found = B_FALSE; 2191 2192 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 2193 2194 for (int c = 0; c < rvd->vdev_children; c++) { 2195 vdev_t *tvd = rvd->vdev_child[c]; 2196 2197 if (tvd->vdev_islog) { 2198 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 2199 metaslab_group_passivate(tvd->vdev_mg); 2200 slog_found = B_TRUE; 2201 } 2202 } 2203 2204 return (slog_found); 2205 } 2206 2207 /* 2208 * Activate any log vdevs (note, does not apply to embedded log metaslabs). 2209 */ 2210 static void 2211 spa_activate_log(spa_t *spa) 2212 { 2213 vdev_t *rvd = spa->spa_root_vdev; 2214 2215 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 2216 2217 for (int c = 0; c < rvd->vdev_children; c++) { 2218 vdev_t *tvd = rvd->vdev_child[c]; 2219 2220 if (tvd->vdev_islog) { 2221 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 2222 metaslab_group_activate(tvd->vdev_mg); 2223 } 2224 } 2225 } 2226 2227 int 2228 spa_reset_logs(spa_t *spa) 2229 { 2230 int error; 2231 2232 error = dmu_objset_find(spa_name(spa), zil_reset, 2233 NULL, DS_FIND_CHILDREN); 2234 if (error == 0) { 2235 /* 2236 * We successfully offlined the log device, sync out the 2237 * current txg so that the "stubby" block can be removed 2238 * by zil_sync(). 2239 */ 2240 txg_wait_synced(spa->spa_dsl_pool, 0); 2241 } 2242 return (error); 2243 } 2244 2245 static void 2246 spa_aux_check_removed(spa_aux_vdev_t *sav) 2247 { 2248 for (int i = 0; i < sav->sav_count; i++) 2249 spa_check_removed(sav->sav_vdevs[i]); 2250 } 2251 2252 void 2253 spa_claim_notify(zio_t *zio) 2254 { 2255 spa_t *spa = zio->io_spa; 2256 2257 if (zio->io_error) 2258 return; 2259 2260 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 2261 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 2262 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 2263 mutex_exit(&spa->spa_props_lock); 2264 } 2265 2266 typedef struct spa_load_error { 2267 boolean_t sle_verify_data; 2268 uint64_t sle_meta_count; 2269 uint64_t sle_data_count; 2270 } spa_load_error_t; 2271 2272 static void 2273 spa_load_verify_done(zio_t *zio) 2274 { 2275 blkptr_t *bp = zio->io_bp; 2276 spa_load_error_t *sle = zio->io_private; 2277 dmu_object_type_t type = BP_GET_TYPE(bp); 2278 int error = zio->io_error; 2279 spa_t *spa = zio->io_spa; 2280 2281 abd_free(zio->io_abd); 2282 if (error) { 2283 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 2284 type != DMU_OT_INTENT_LOG) 2285 atomic_inc_64(&sle->sle_meta_count); 2286 else 2287 atomic_inc_64(&sle->sle_data_count); 2288 } 2289 2290 mutex_enter(&spa->spa_scrub_lock); 2291 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 2292 cv_broadcast(&spa->spa_scrub_io_cv); 2293 mutex_exit(&spa->spa_scrub_lock); 2294 } 2295 2296 /* 2297 * Maximum number of inflight bytes is the log2 fraction of the arc size. 2298 * By default, we set it to 1/16th of the arc. 2299 */ 2300 static int spa_load_verify_shift = 4; 2301 static int spa_load_verify_metadata = B_TRUE; 2302 static int spa_load_verify_data = B_TRUE; 2303 2304 static int 2305 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 2306 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 2307 { 2308 zio_t *rio = arg; 2309 spa_load_error_t *sle = rio->io_private; 2310 2311 (void) zilog, (void) dnp; 2312 2313 /* 2314 * Note: normally this routine will not be called if 2315 * spa_load_verify_metadata is not set. However, it may be useful 2316 * to manually set the flag after the traversal has begun. 2317 */ 2318 if (!spa_load_verify_metadata) 2319 return (0); 2320 2321 /* 2322 * Sanity check the block pointer in order to detect obvious damage 2323 * before using the contents in subsequent checks or in zio_read(). 2324 * When damaged consider it to be a metadata error since we cannot 2325 * trust the BP_GET_TYPE and BP_GET_LEVEL values. 2326 */ 2327 if (!zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_LOG)) { 2328 atomic_inc_64(&sle->sle_meta_count); 2329 return (0); 2330 } 2331 2332 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 2333 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 2334 return (0); 2335 2336 if (!BP_IS_METADATA(bp) && 2337 (!spa_load_verify_data || !sle->sle_verify_data)) 2338 return (0); 2339 2340 uint64_t maxinflight_bytes = 2341 arc_target_bytes() >> spa_load_verify_shift; 2342 size_t size = BP_GET_PSIZE(bp); 2343 2344 mutex_enter(&spa->spa_scrub_lock); 2345 while (spa->spa_load_verify_bytes >= maxinflight_bytes) 2346 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2347 spa->spa_load_verify_bytes += size; 2348 mutex_exit(&spa->spa_scrub_lock); 2349 2350 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size, 2351 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 2352 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 2353 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 2354 return (0); 2355 } 2356 2357 static int 2358 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 2359 { 2360 (void) dp, (void) arg; 2361 2362 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) 2363 return (SET_ERROR(ENAMETOOLONG)); 2364 2365 return (0); 2366 } 2367 2368 static int 2369 spa_load_verify(spa_t *spa) 2370 { 2371 zio_t *rio; 2372 spa_load_error_t sle = { 0 }; 2373 zpool_load_policy_t policy; 2374 boolean_t verify_ok = B_FALSE; 2375 int error = 0; 2376 2377 zpool_get_load_policy(spa->spa_config, &policy); 2378 2379 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND || 2380 policy.zlp_maxmeta == UINT64_MAX) 2381 return (0); 2382 2383 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 2384 error = dmu_objset_find_dp(spa->spa_dsl_pool, 2385 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, 2386 DS_FIND_CHILDREN); 2387 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 2388 if (error != 0) 2389 return (error); 2390 2391 /* 2392 * Verify data only if we are rewinding or error limit was set. 2393 * Otherwise nothing except dbgmsg care about it to waste time. 2394 */ 2395 sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) || 2396 (policy.zlp_maxdata < UINT64_MAX); 2397 2398 rio = zio_root(spa, NULL, &sle, 2399 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 2400 2401 if (spa_load_verify_metadata) { 2402 if (spa->spa_extreme_rewind) { 2403 spa_load_note(spa, "performing a complete scan of the " 2404 "pool since extreme rewind is on. This may take " 2405 "a very long time.\n (spa_load_verify_data=%u, " 2406 "spa_load_verify_metadata=%u)", 2407 spa_load_verify_data, spa_load_verify_metadata); 2408 } 2409 2410 error = traverse_pool(spa, spa->spa_verify_min_txg, 2411 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 2412 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio); 2413 } 2414 2415 (void) zio_wait(rio); 2416 ASSERT0(spa->spa_load_verify_bytes); 2417 2418 spa->spa_load_meta_errors = sle.sle_meta_count; 2419 spa->spa_load_data_errors = sle.sle_data_count; 2420 2421 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) { 2422 spa_load_note(spa, "spa_load_verify found %llu metadata errors " 2423 "and %llu data errors", (u_longlong_t)sle.sle_meta_count, 2424 (u_longlong_t)sle.sle_data_count); 2425 } 2426 2427 if (spa_load_verify_dryrun || 2428 (!error && sle.sle_meta_count <= policy.zlp_maxmeta && 2429 sle.sle_data_count <= policy.zlp_maxdata)) { 2430 int64_t loss = 0; 2431 2432 verify_ok = B_TRUE; 2433 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 2434 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 2435 2436 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 2437 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME, 2438 spa->spa_load_txg_ts); 2439 fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME, 2440 loss); 2441 fnvlist_add_uint64(spa->spa_load_info, 2442 ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count); 2443 fnvlist_add_uint64(spa->spa_load_info, 2444 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count); 2445 } else { 2446 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 2447 } 2448 2449 if (spa_load_verify_dryrun) 2450 return (0); 2451 2452 if (error) { 2453 if (error != ENXIO && error != EIO) 2454 error = SET_ERROR(EIO); 2455 return (error); 2456 } 2457 2458 return (verify_ok ? 0 : EIO); 2459 } 2460 2461 /* 2462 * Find a value in the pool props object. 2463 */ 2464 static void 2465 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 2466 { 2467 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 2468 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 2469 } 2470 2471 /* 2472 * Find a value in the pool directory object. 2473 */ 2474 static int 2475 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent) 2476 { 2477 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2478 name, sizeof (uint64_t), 1, val); 2479 2480 if (error != 0 && (error != ENOENT || log_enoent)) { 2481 spa_load_failed(spa, "couldn't get '%s' value in MOS directory " 2482 "[error=%d]", name, error); 2483 } 2484 2485 return (error); 2486 } 2487 2488 static int 2489 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 2490 { 2491 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 2492 return (SET_ERROR(err)); 2493 } 2494 2495 boolean_t 2496 spa_livelist_delete_check(spa_t *spa) 2497 { 2498 return (spa->spa_livelists_to_delete != 0); 2499 } 2500 2501 static boolean_t 2502 spa_livelist_delete_cb_check(void *arg, zthr_t *z) 2503 { 2504 (void) z; 2505 spa_t *spa = arg; 2506 return (spa_livelist_delete_check(spa)); 2507 } 2508 2509 static int 2510 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2511 { 2512 spa_t *spa = arg; 2513 zio_free(spa, tx->tx_txg, bp); 2514 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 2515 -bp_get_dsize_sync(spa, bp), 2516 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 2517 return (0); 2518 } 2519 2520 static int 2521 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp) 2522 { 2523 int err; 2524 zap_cursor_t zc; 2525 zap_attribute_t za; 2526 zap_cursor_init(&zc, os, zap_obj); 2527 err = zap_cursor_retrieve(&zc, &za); 2528 zap_cursor_fini(&zc); 2529 if (err == 0) 2530 *llp = za.za_first_integer; 2531 return (err); 2532 } 2533 2534 /* 2535 * Components of livelist deletion that must be performed in syncing 2536 * context: freeing block pointers and updating the pool-wide data 2537 * structures to indicate how much work is left to do 2538 */ 2539 typedef struct sublist_delete_arg { 2540 spa_t *spa; 2541 dsl_deadlist_t *ll; 2542 uint64_t key; 2543 bplist_t *to_free; 2544 } sublist_delete_arg_t; 2545 2546 static void 2547 sublist_delete_sync(void *arg, dmu_tx_t *tx) 2548 { 2549 sublist_delete_arg_t *sda = arg; 2550 spa_t *spa = sda->spa; 2551 dsl_deadlist_t *ll = sda->ll; 2552 uint64_t key = sda->key; 2553 bplist_t *to_free = sda->to_free; 2554 2555 bplist_iterate(to_free, delete_blkptr_cb, spa, tx); 2556 dsl_deadlist_remove_entry(ll, key, tx); 2557 } 2558 2559 typedef struct livelist_delete_arg { 2560 spa_t *spa; 2561 uint64_t ll_obj; 2562 uint64_t zap_obj; 2563 } livelist_delete_arg_t; 2564 2565 static void 2566 livelist_delete_sync(void *arg, dmu_tx_t *tx) 2567 { 2568 livelist_delete_arg_t *lda = arg; 2569 spa_t *spa = lda->spa; 2570 uint64_t ll_obj = lda->ll_obj; 2571 uint64_t zap_obj = lda->zap_obj; 2572 objset_t *mos = spa->spa_meta_objset; 2573 uint64_t count; 2574 2575 /* free the livelist and decrement the feature count */ 2576 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx)); 2577 dsl_deadlist_free(mos, ll_obj, tx); 2578 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx); 2579 VERIFY0(zap_count(mos, zap_obj, &count)); 2580 if (count == 0) { 2581 /* no more livelists to delete */ 2582 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT, 2583 DMU_POOL_DELETED_CLONES, tx)); 2584 VERIFY0(zap_destroy(mos, zap_obj, tx)); 2585 spa->spa_livelists_to_delete = 0; 2586 spa_notify_waiters(spa); 2587 } 2588 } 2589 2590 /* 2591 * Load in the value for the livelist to be removed and open it. Then, 2592 * load its first sublist and determine which block pointers should actually 2593 * be freed. Then, call a synctask which performs the actual frees and updates 2594 * the pool-wide livelist data. 2595 */ 2596 static void 2597 spa_livelist_delete_cb(void *arg, zthr_t *z) 2598 { 2599 spa_t *spa = arg; 2600 uint64_t ll_obj = 0, count; 2601 objset_t *mos = spa->spa_meta_objset; 2602 uint64_t zap_obj = spa->spa_livelists_to_delete; 2603 /* 2604 * Determine the next livelist to delete. This function should only 2605 * be called if there is at least one deleted clone. 2606 */ 2607 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj)); 2608 VERIFY0(zap_count(mos, ll_obj, &count)); 2609 if (count > 0) { 2610 dsl_deadlist_t *ll; 2611 dsl_deadlist_entry_t *dle; 2612 bplist_t to_free; 2613 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP); 2614 dsl_deadlist_open(ll, mos, ll_obj); 2615 dle = dsl_deadlist_first(ll); 2616 ASSERT3P(dle, !=, NULL); 2617 bplist_create(&to_free); 2618 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free, 2619 z, NULL); 2620 if (err == 0) { 2621 sublist_delete_arg_t sync_arg = { 2622 .spa = spa, 2623 .ll = ll, 2624 .key = dle->dle_mintxg, 2625 .to_free = &to_free 2626 }; 2627 zfs_dbgmsg("deleting sublist (id %llu) from" 2628 " livelist %llu, %lld remaining", 2629 (u_longlong_t)dle->dle_bpobj.bpo_object, 2630 (u_longlong_t)ll_obj, (longlong_t)count - 1); 2631 VERIFY0(dsl_sync_task(spa_name(spa), NULL, 2632 sublist_delete_sync, &sync_arg, 0, 2633 ZFS_SPACE_CHECK_DESTROY)); 2634 } else { 2635 VERIFY3U(err, ==, EINTR); 2636 } 2637 bplist_clear(&to_free); 2638 bplist_destroy(&to_free); 2639 dsl_deadlist_close(ll); 2640 kmem_free(ll, sizeof (dsl_deadlist_t)); 2641 } else { 2642 livelist_delete_arg_t sync_arg = { 2643 .spa = spa, 2644 .ll_obj = ll_obj, 2645 .zap_obj = zap_obj 2646 }; 2647 zfs_dbgmsg("deletion of livelist %llu completed", 2648 (u_longlong_t)ll_obj); 2649 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync, 2650 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY)); 2651 } 2652 } 2653 2654 static void 2655 spa_start_livelist_destroy_thread(spa_t *spa) 2656 { 2657 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL); 2658 spa->spa_livelist_delete_zthr = 2659 zthr_create("z_livelist_destroy", 2660 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa, 2661 minclsyspri); 2662 } 2663 2664 typedef struct livelist_new_arg { 2665 bplist_t *allocs; 2666 bplist_t *frees; 2667 } livelist_new_arg_t; 2668 2669 static int 2670 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 2671 dmu_tx_t *tx) 2672 { 2673 ASSERT(tx == NULL); 2674 livelist_new_arg_t *lna = arg; 2675 if (bp_freed) { 2676 bplist_append(lna->frees, bp); 2677 } else { 2678 bplist_append(lna->allocs, bp); 2679 zfs_livelist_condense_new_alloc++; 2680 } 2681 return (0); 2682 } 2683 2684 typedef struct livelist_condense_arg { 2685 spa_t *spa; 2686 bplist_t to_keep; 2687 uint64_t first_size; 2688 uint64_t next_size; 2689 } livelist_condense_arg_t; 2690 2691 static void 2692 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx) 2693 { 2694 livelist_condense_arg_t *lca = arg; 2695 spa_t *spa = lca->spa; 2696 bplist_t new_frees; 2697 dsl_dataset_t *ds = spa->spa_to_condense.ds; 2698 2699 /* Have we been cancelled? */ 2700 if (spa->spa_to_condense.cancelled) { 2701 zfs_livelist_condense_sync_cancel++; 2702 goto out; 2703 } 2704 2705 dsl_deadlist_entry_t *first = spa->spa_to_condense.first; 2706 dsl_deadlist_entry_t *next = spa->spa_to_condense.next; 2707 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist; 2708 2709 /* 2710 * It's possible that the livelist was changed while the zthr was 2711 * running. Therefore, we need to check for new blkptrs in the two 2712 * entries being condensed and continue to track them in the livelist. 2713 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl), 2714 * it's possible that the newly added blkptrs are FREEs or ALLOCs so 2715 * we need to sort them into two different bplists. 2716 */ 2717 uint64_t first_obj = first->dle_bpobj.bpo_object; 2718 uint64_t next_obj = next->dle_bpobj.bpo_object; 2719 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs; 2720 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs; 2721 2722 bplist_create(&new_frees); 2723 livelist_new_arg_t new_bps = { 2724 .allocs = &lca->to_keep, 2725 .frees = &new_frees, 2726 }; 2727 2728 if (cur_first_size > lca->first_size) { 2729 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj, 2730 livelist_track_new_cb, &new_bps, lca->first_size)); 2731 } 2732 if (cur_next_size > lca->next_size) { 2733 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj, 2734 livelist_track_new_cb, &new_bps, lca->next_size)); 2735 } 2736 2737 dsl_deadlist_clear_entry(first, ll, tx); 2738 ASSERT(bpobj_is_empty(&first->dle_bpobj)); 2739 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx); 2740 2741 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx); 2742 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx); 2743 bplist_destroy(&new_frees); 2744 2745 char dsname[ZFS_MAX_DATASET_NAME_LEN]; 2746 dsl_dataset_name(ds, dsname); 2747 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu " 2748 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu " 2749 "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname, 2750 (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj, 2751 (u_longlong_t)cur_first_size, (u_longlong_t)next_obj, 2752 (u_longlong_t)cur_next_size, 2753 (u_longlong_t)first->dle_bpobj.bpo_object, 2754 (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs); 2755 out: 2756 dmu_buf_rele(ds->ds_dbuf, spa); 2757 spa->spa_to_condense.ds = NULL; 2758 bplist_clear(&lca->to_keep); 2759 bplist_destroy(&lca->to_keep); 2760 kmem_free(lca, sizeof (livelist_condense_arg_t)); 2761 spa->spa_to_condense.syncing = B_FALSE; 2762 } 2763 2764 static void 2765 spa_livelist_condense_cb(void *arg, zthr_t *t) 2766 { 2767 while (zfs_livelist_condense_zthr_pause && 2768 !(zthr_has_waiters(t) || zthr_iscancelled(t))) 2769 delay(1); 2770 2771 spa_t *spa = arg; 2772 dsl_deadlist_entry_t *first = spa->spa_to_condense.first; 2773 dsl_deadlist_entry_t *next = spa->spa_to_condense.next; 2774 uint64_t first_size, next_size; 2775 2776 livelist_condense_arg_t *lca = 2777 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP); 2778 bplist_create(&lca->to_keep); 2779 2780 /* 2781 * Process the livelists (matching FREEs and ALLOCs) in open context 2782 * so we have minimal work in syncing context to condense. 2783 * 2784 * We save bpobj sizes (first_size and next_size) to use later in 2785 * syncing context to determine if entries were added to these sublists 2786 * while in open context. This is possible because the clone is still 2787 * active and open for normal writes and we want to make sure the new, 2788 * unprocessed blockpointers are inserted into the livelist normally. 2789 * 2790 * Note that dsl_process_sub_livelist() both stores the size number of 2791 * blockpointers and iterates over them while the bpobj's lock held, so 2792 * the sizes returned to us are consistent which what was actually 2793 * processed. 2794 */ 2795 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t, 2796 &first_size); 2797 if (err == 0) 2798 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep, 2799 t, &next_size); 2800 2801 if (err == 0) { 2802 while (zfs_livelist_condense_sync_pause && 2803 !(zthr_has_waiters(t) || zthr_iscancelled(t))) 2804 delay(1); 2805 2806 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 2807 dmu_tx_mark_netfree(tx); 2808 dmu_tx_hold_space(tx, 1); 2809 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE); 2810 if (err == 0) { 2811 /* 2812 * Prevent the condense zthr restarting before 2813 * the synctask completes. 2814 */ 2815 spa->spa_to_condense.syncing = B_TRUE; 2816 lca->spa = spa; 2817 lca->first_size = first_size; 2818 lca->next_size = next_size; 2819 dsl_sync_task_nowait(spa_get_dsl(spa), 2820 spa_livelist_condense_sync, lca, tx); 2821 dmu_tx_commit(tx); 2822 return; 2823 } 2824 } 2825 /* 2826 * Condensing can not continue: either it was externally stopped or 2827 * we were unable to assign to a tx because the pool has run out of 2828 * space. In the second case, we'll just end up trying to condense 2829 * again in a later txg. 2830 */ 2831 ASSERT(err != 0); 2832 bplist_clear(&lca->to_keep); 2833 bplist_destroy(&lca->to_keep); 2834 kmem_free(lca, sizeof (livelist_condense_arg_t)); 2835 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa); 2836 spa->spa_to_condense.ds = NULL; 2837 if (err == EINTR) 2838 zfs_livelist_condense_zthr_cancel++; 2839 } 2840 2841 /* 2842 * Check that there is something to condense but that a condense is not 2843 * already in progress and that condensing has not been cancelled. 2844 */ 2845 static boolean_t 2846 spa_livelist_condense_cb_check(void *arg, zthr_t *z) 2847 { 2848 (void) z; 2849 spa_t *spa = arg; 2850 if ((spa->spa_to_condense.ds != NULL) && 2851 (spa->spa_to_condense.syncing == B_FALSE) && 2852 (spa->spa_to_condense.cancelled == B_FALSE)) { 2853 return (B_TRUE); 2854 } 2855 return (B_FALSE); 2856 } 2857 2858 static void 2859 spa_start_livelist_condensing_thread(spa_t *spa) 2860 { 2861 spa->spa_to_condense.ds = NULL; 2862 spa->spa_to_condense.first = NULL; 2863 spa->spa_to_condense.next = NULL; 2864 spa->spa_to_condense.syncing = B_FALSE; 2865 spa->spa_to_condense.cancelled = B_FALSE; 2866 2867 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL); 2868 spa->spa_livelist_condense_zthr = 2869 zthr_create("z_livelist_condense", 2870 spa_livelist_condense_cb_check, 2871 spa_livelist_condense_cb, spa, minclsyspri); 2872 } 2873 2874 static void 2875 spa_spawn_aux_threads(spa_t *spa) 2876 { 2877 ASSERT(spa_writeable(spa)); 2878 2879 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2880 2881 spa_start_indirect_condensing_thread(spa); 2882 spa_start_livelist_destroy_thread(spa); 2883 spa_start_livelist_condensing_thread(spa); 2884 2885 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL); 2886 spa->spa_checkpoint_discard_zthr = 2887 zthr_create("z_checkpoint_discard", 2888 spa_checkpoint_discard_thread_check, 2889 spa_checkpoint_discard_thread, spa, minclsyspri); 2890 } 2891 2892 /* 2893 * Fix up config after a partly-completed split. This is done with the 2894 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 2895 * pool have that entry in their config, but only the splitting one contains 2896 * a list of all the guids of the vdevs that are being split off. 2897 * 2898 * This function determines what to do with that list: either rejoin 2899 * all the disks to the pool, or complete the splitting process. To attempt 2900 * the rejoin, each disk that is offlined is marked online again, and 2901 * we do a reopen() call. If the vdev label for every disk that was 2902 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 2903 * then we call vdev_split() on each disk, and complete the split. 2904 * 2905 * Otherwise we leave the config alone, with all the vdevs in place in 2906 * the original pool. 2907 */ 2908 static void 2909 spa_try_repair(spa_t *spa, nvlist_t *config) 2910 { 2911 uint_t extracted; 2912 uint64_t *glist; 2913 uint_t i, gcount; 2914 nvlist_t *nvl; 2915 vdev_t **vd; 2916 boolean_t attempt_reopen; 2917 2918 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 2919 return; 2920 2921 /* check that the config is complete */ 2922 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 2923 &glist, &gcount) != 0) 2924 return; 2925 2926 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 2927 2928 /* attempt to online all the vdevs & validate */ 2929 attempt_reopen = B_TRUE; 2930 for (i = 0; i < gcount; i++) { 2931 if (glist[i] == 0) /* vdev is hole */ 2932 continue; 2933 2934 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2935 if (vd[i] == NULL) { 2936 /* 2937 * Don't bother attempting to reopen the disks; 2938 * just do the split. 2939 */ 2940 attempt_reopen = B_FALSE; 2941 } else { 2942 /* attempt to re-online it */ 2943 vd[i]->vdev_offline = B_FALSE; 2944 } 2945 } 2946 2947 if (attempt_reopen) { 2948 vdev_reopen(spa->spa_root_vdev); 2949 2950 /* check each device to see what state it's in */ 2951 for (extracted = 0, i = 0; i < gcount; i++) { 2952 if (vd[i] != NULL && 2953 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2954 break; 2955 ++extracted; 2956 } 2957 } 2958 2959 /* 2960 * If every disk has been moved to the new pool, or if we never 2961 * even attempted to look at them, then we split them off for 2962 * good. 2963 */ 2964 if (!attempt_reopen || gcount == extracted) { 2965 for (i = 0; i < gcount; i++) 2966 if (vd[i] != NULL) 2967 vdev_split(vd[i]); 2968 vdev_reopen(spa->spa_root_vdev); 2969 } 2970 2971 kmem_free(vd, gcount * sizeof (vdev_t *)); 2972 } 2973 2974 static int 2975 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type) 2976 { 2977 char *ereport = FM_EREPORT_ZFS_POOL; 2978 int error; 2979 2980 spa->spa_load_state = state; 2981 (void) spa_import_progress_set_state(spa_guid(spa), 2982 spa_load_state(spa)); 2983 2984 gethrestime(&spa->spa_loaded_ts); 2985 error = spa_load_impl(spa, type, &ereport); 2986 2987 /* 2988 * Don't count references from objsets that are already closed 2989 * and are making their way through the eviction process. 2990 */ 2991 spa_evicting_os_wait(spa); 2992 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 2993 if (error) { 2994 if (error != EEXIST) { 2995 spa->spa_loaded_ts.tv_sec = 0; 2996 spa->spa_loaded_ts.tv_nsec = 0; 2997 } 2998 if (error != EBADF) { 2999 (void) zfs_ereport_post(ereport, spa, 3000 NULL, NULL, NULL, 0); 3001 } 3002 } 3003 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 3004 spa->spa_ena = 0; 3005 3006 (void) spa_import_progress_set_state(spa_guid(spa), 3007 spa_load_state(spa)); 3008 3009 return (error); 3010 } 3011 3012 #ifdef ZFS_DEBUG 3013 /* 3014 * Count the number of per-vdev ZAPs associated with all of the vdevs in the 3015 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the 3016 * spa's per-vdev ZAP list. 3017 */ 3018 static uint64_t 3019 vdev_count_verify_zaps(vdev_t *vd) 3020 { 3021 spa_t *spa = vd->vdev_spa; 3022 uint64_t total = 0; 3023 3024 if (vd->vdev_top_zap != 0) { 3025 total++; 3026 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 3027 spa->spa_all_vdev_zaps, vd->vdev_top_zap)); 3028 } 3029 if (vd->vdev_leaf_zap != 0) { 3030 total++; 3031 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 3032 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); 3033 } 3034 3035 for (uint64_t i = 0; i < vd->vdev_children; i++) { 3036 total += vdev_count_verify_zaps(vd->vdev_child[i]); 3037 } 3038 3039 return (total); 3040 } 3041 #else 3042 #define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0) 3043 #endif 3044 3045 /* 3046 * Determine whether the activity check is required. 3047 */ 3048 static boolean_t 3049 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label, 3050 nvlist_t *config) 3051 { 3052 uint64_t state = 0; 3053 uint64_t hostid = 0; 3054 uint64_t tryconfig_txg = 0; 3055 uint64_t tryconfig_timestamp = 0; 3056 uint16_t tryconfig_mmp_seq = 0; 3057 nvlist_t *nvinfo; 3058 3059 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 3060 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO); 3061 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG, 3062 &tryconfig_txg); 3063 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 3064 &tryconfig_timestamp); 3065 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ, 3066 &tryconfig_mmp_seq); 3067 } 3068 3069 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state); 3070 3071 /* 3072 * Disable the MMP activity check - This is used by zdb which 3073 * is intended to be used on potentially active pools. 3074 */ 3075 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) 3076 return (B_FALSE); 3077 3078 /* 3079 * Skip the activity check when the MMP feature is disabled. 3080 */ 3081 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0) 3082 return (B_FALSE); 3083 3084 /* 3085 * If the tryconfig_ values are nonzero, they are the results of an 3086 * earlier tryimport. If they all match the uberblock we just found, 3087 * then the pool has not changed and we return false so we do not test 3088 * a second time. 3089 */ 3090 if (tryconfig_txg && tryconfig_txg == ub->ub_txg && 3091 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp && 3092 tryconfig_mmp_seq && tryconfig_mmp_seq == 3093 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) 3094 return (B_FALSE); 3095 3096 /* 3097 * Allow the activity check to be skipped when importing the pool 3098 * on the same host which last imported it. Since the hostid from 3099 * configuration may be stale use the one read from the label. 3100 */ 3101 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID)) 3102 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID); 3103 3104 if (hostid == spa_get_hostid(spa)) 3105 return (B_FALSE); 3106 3107 /* 3108 * Skip the activity test when the pool was cleanly exported. 3109 */ 3110 if (state != POOL_STATE_ACTIVE) 3111 return (B_FALSE); 3112 3113 return (B_TRUE); 3114 } 3115 3116 /* 3117 * Nanoseconds the activity check must watch for changes on-disk. 3118 */ 3119 static uint64_t 3120 spa_activity_check_duration(spa_t *spa, uberblock_t *ub) 3121 { 3122 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1); 3123 uint64_t multihost_interval = MSEC2NSEC( 3124 MMP_INTERVAL_OK(zfs_multihost_interval)); 3125 uint64_t import_delay = MAX(NANOSEC, import_intervals * 3126 multihost_interval); 3127 3128 /* 3129 * Local tunables determine a minimum duration except for the case 3130 * where we know when the remote host will suspend the pool if MMP 3131 * writes do not land. 3132 * 3133 * See Big Theory comment at the top of mmp.c for the reasoning behind 3134 * these cases and times. 3135 */ 3136 3137 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100); 3138 3139 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && 3140 MMP_FAIL_INT(ub) > 0) { 3141 3142 /* MMP on remote host will suspend pool after failed writes */ 3143 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) * 3144 MMP_IMPORT_SAFETY_FACTOR / 100; 3145 3146 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp " 3147 "mmp_fails=%llu ub_mmp mmp_interval=%llu " 3148 "import_intervals=%llu", (u_longlong_t)import_delay, 3149 (u_longlong_t)MMP_FAIL_INT(ub), 3150 (u_longlong_t)MMP_INTERVAL(ub), 3151 (u_longlong_t)import_intervals); 3152 3153 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && 3154 MMP_FAIL_INT(ub) == 0) { 3155 3156 /* MMP on remote host will never suspend pool */ 3157 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) + 3158 ub->ub_mmp_delay) * import_intervals); 3159 3160 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp " 3161 "mmp_interval=%llu ub_mmp_delay=%llu " 3162 "import_intervals=%llu", (u_longlong_t)import_delay, 3163 (u_longlong_t)MMP_INTERVAL(ub), 3164 (u_longlong_t)ub->ub_mmp_delay, 3165 (u_longlong_t)import_intervals); 3166 3167 } else if (MMP_VALID(ub)) { 3168 /* 3169 * zfs-0.7 compatibility case 3170 */ 3171 3172 import_delay = MAX(import_delay, (multihost_interval + 3173 ub->ub_mmp_delay) * import_intervals); 3174 3175 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu " 3176 "import_intervals=%llu leaves=%u", 3177 (u_longlong_t)import_delay, 3178 (u_longlong_t)ub->ub_mmp_delay, 3179 (u_longlong_t)import_intervals, 3180 vdev_count_leaves(spa)); 3181 } else { 3182 /* Using local tunings is the only reasonable option */ 3183 zfs_dbgmsg("pool last imported on non-MMP aware " 3184 "host using import_delay=%llu multihost_interval=%llu " 3185 "import_intervals=%llu", (u_longlong_t)import_delay, 3186 (u_longlong_t)multihost_interval, 3187 (u_longlong_t)import_intervals); 3188 } 3189 3190 return (import_delay); 3191 } 3192 3193 /* 3194 * Perform the import activity check. If the user canceled the import or 3195 * we detected activity then fail. 3196 */ 3197 static int 3198 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config) 3199 { 3200 uint64_t txg = ub->ub_txg; 3201 uint64_t timestamp = ub->ub_timestamp; 3202 uint64_t mmp_config = ub->ub_mmp_config; 3203 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0; 3204 uint64_t import_delay; 3205 hrtime_t import_expire; 3206 nvlist_t *mmp_label = NULL; 3207 vdev_t *rvd = spa->spa_root_vdev; 3208 kcondvar_t cv; 3209 kmutex_t mtx; 3210 int error = 0; 3211 3212 cv_init(&cv, NULL, CV_DEFAULT, NULL); 3213 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL); 3214 mutex_enter(&mtx); 3215 3216 /* 3217 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed 3218 * during the earlier tryimport. If the txg recorded there is 0 then 3219 * the pool is known to be active on another host. 3220 * 3221 * Otherwise, the pool might be in use on another host. Check for 3222 * changes in the uberblocks on disk if necessary. 3223 */ 3224 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 3225 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config, 3226 ZPOOL_CONFIG_LOAD_INFO); 3227 3228 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) && 3229 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) { 3230 vdev_uberblock_load(rvd, ub, &mmp_label); 3231 error = SET_ERROR(EREMOTEIO); 3232 goto out; 3233 } 3234 } 3235 3236 import_delay = spa_activity_check_duration(spa, ub); 3237 3238 /* Add a small random factor in case of simultaneous imports (0-25%) */ 3239 import_delay += import_delay * random_in_range(250) / 1000; 3240 3241 import_expire = gethrtime() + import_delay; 3242 3243 while (gethrtime() < import_expire) { 3244 (void) spa_import_progress_set_mmp_check(spa_guid(spa), 3245 NSEC2SEC(import_expire - gethrtime())); 3246 3247 vdev_uberblock_load(rvd, ub, &mmp_label); 3248 3249 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp || 3250 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) { 3251 zfs_dbgmsg("multihost activity detected " 3252 "txg %llu ub_txg %llu " 3253 "timestamp %llu ub_timestamp %llu " 3254 "mmp_config %#llx ub_mmp_config %#llx", 3255 (u_longlong_t)txg, (u_longlong_t)ub->ub_txg, 3256 (u_longlong_t)timestamp, 3257 (u_longlong_t)ub->ub_timestamp, 3258 (u_longlong_t)mmp_config, 3259 (u_longlong_t)ub->ub_mmp_config); 3260 3261 error = SET_ERROR(EREMOTEIO); 3262 break; 3263 } 3264 3265 if (mmp_label) { 3266 nvlist_free(mmp_label); 3267 mmp_label = NULL; 3268 } 3269 3270 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz); 3271 if (error != -1) { 3272 error = SET_ERROR(EINTR); 3273 break; 3274 } 3275 error = 0; 3276 } 3277 3278 out: 3279 mutex_exit(&mtx); 3280 mutex_destroy(&mtx); 3281 cv_destroy(&cv); 3282 3283 /* 3284 * If the pool is determined to be active store the status in the 3285 * spa->spa_load_info nvlist. If the remote hostname or hostid are 3286 * available from configuration read from disk store them as well. 3287 * This allows 'zpool import' to generate a more useful message. 3288 * 3289 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory) 3290 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool 3291 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool 3292 */ 3293 if (error == EREMOTEIO) { 3294 char *hostname = "<unknown>"; 3295 uint64_t hostid = 0; 3296 3297 if (mmp_label) { 3298 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) { 3299 hostname = fnvlist_lookup_string(mmp_label, 3300 ZPOOL_CONFIG_HOSTNAME); 3301 fnvlist_add_string(spa->spa_load_info, 3302 ZPOOL_CONFIG_MMP_HOSTNAME, hostname); 3303 } 3304 3305 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) { 3306 hostid = fnvlist_lookup_uint64(mmp_label, 3307 ZPOOL_CONFIG_HOSTID); 3308 fnvlist_add_uint64(spa->spa_load_info, 3309 ZPOOL_CONFIG_MMP_HOSTID, hostid); 3310 } 3311 } 3312 3313 fnvlist_add_uint64(spa->spa_load_info, 3314 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE); 3315 fnvlist_add_uint64(spa->spa_load_info, 3316 ZPOOL_CONFIG_MMP_TXG, 0); 3317 3318 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO); 3319 } 3320 3321 if (mmp_label) 3322 nvlist_free(mmp_label); 3323 3324 return (error); 3325 } 3326 3327 static int 3328 spa_verify_host(spa_t *spa, nvlist_t *mos_config) 3329 { 3330 uint64_t hostid; 3331 char *hostname; 3332 uint64_t myhostid = 0; 3333 3334 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config, 3335 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 3336 hostname = fnvlist_lookup_string(mos_config, 3337 ZPOOL_CONFIG_HOSTNAME); 3338 3339 myhostid = zone_get_hostid(NULL); 3340 3341 if (hostid != 0 && myhostid != 0 && hostid != myhostid) { 3342 cmn_err(CE_WARN, "pool '%s' could not be " 3343 "loaded as it was last accessed by " 3344 "another system (host: %s hostid: 0x%llx). " 3345 "See: https://openzfs.github.io/openzfs-docs/msg/" 3346 "ZFS-8000-EY", 3347 spa_name(spa), hostname, (u_longlong_t)hostid); 3348 spa_load_failed(spa, "hostid verification failed: pool " 3349 "last accessed by host: %s (hostid: 0x%llx)", 3350 hostname, (u_longlong_t)hostid); 3351 return (SET_ERROR(EBADF)); 3352 } 3353 } 3354 3355 return (0); 3356 } 3357 3358 static int 3359 spa_ld_parse_config(spa_t *spa, spa_import_type_t type) 3360 { 3361 int error = 0; 3362 nvlist_t *nvtree, *nvl, *config = spa->spa_config; 3363 int parse; 3364 vdev_t *rvd; 3365 uint64_t pool_guid; 3366 char *comment; 3367 char *compatibility; 3368 3369 /* 3370 * Versioning wasn't explicitly added to the label until later, so if 3371 * it's not present treat it as the initial version. 3372 */ 3373 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 3374 &spa->spa_ubsync.ub_version) != 0) 3375 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 3376 3377 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 3378 spa_load_failed(spa, "invalid config provided: '%s' missing", 3379 ZPOOL_CONFIG_POOL_GUID); 3380 return (SET_ERROR(EINVAL)); 3381 } 3382 3383 /* 3384 * If we are doing an import, ensure that the pool is not already 3385 * imported by checking if its pool guid already exists in the 3386 * spa namespace. 3387 * 3388 * The only case that we allow an already imported pool to be 3389 * imported again, is when the pool is checkpointed and we want to 3390 * look at its checkpointed state from userland tools like zdb. 3391 */ 3392 #ifdef _KERNEL 3393 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 3394 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 3395 spa_guid_exists(pool_guid, 0)) { 3396 #else 3397 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 3398 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 3399 spa_guid_exists(pool_guid, 0) && 3400 !spa_importing_readonly_checkpoint(spa)) { 3401 #endif 3402 spa_load_failed(spa, "a pool with guid %llu is already open", 3403 (u_longlong_t)pool_guid); 3404 return (SET_ERROR(EEXIST)); 3405 } 3406 3407 spa->spa_config_guid = pool_guid; 3408 3409 nvlist_free(spa->spa_load_info); 3410 spa->spa_load_info = fnvlist_alloc(); 3411 3412 ASSERT(spa->spa_comment == NULL); 3413 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 3414 spa->spa_comment = spa_strdup(comment); 3415 3416 ASSERT(spa->spa_compatibility == NULL); 3417 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY, 3418 &compatibility) == 0) 3419 spa->spa_compatibility = spa_strdup(compatibility); 3420 3421 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 3422 &spa->spa_config_txg); 3423 3424 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0) 3425 spa->spa_config_splitting = fnvlist_dup(nvl); 3426 3427 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) { 3428 spa_load_failed(spa, "invalid config provided: '%s' missing", 3429 ZPOOL_CONFIG_VDEV_TREE); 3430 return (SET_ERROR(EINVAL)); 3431 } 3432 3433 /* 3434 * Create "The Godfather" zio to hold all async IOs 3435 */ 3436 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3437 KM_SLEEP); 3438 for (int i = 0; i < max_ncpus; i++) { 3439 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3440 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3441 ZIO_FLAG_GODFATHER); 3442 } 3443 3444 /* 3445 * Parse the configuration into a vdev tree. We explicitly set the 3446 * value that will be returned by spa_version() since parsing the 3447 * configuration requires knowing the version number. 3448 */ 3449 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3450 parse = (type == SPA_IMPORT_EXISTING ? 3451 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 3452 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse); 3453 spa_config_exit(spa, SCL_ALL, FTAG); 3454 3455 if (error != 0) { 3456 spa_load_failed(spa, "unable to parse config [error=%d]", 3457 error); 3458 return (error); 3459 } 3460 3461 ASSERT(spa->spa_root_vdev == rvd); 3462 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 3463 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 3464 3465 if (type != SPA_IMPORT_ASSEMBLE) { 3466 ASSERT(spa_guid(spa) == pool_guid); 3467 } 3468 3469 return (0); 3470 } 3471 3472 /* 3473 * Recursively open all vdevs in the vdev tree. This function is called twice: 3474 * first with the untrusted config, then with the trusted config. 3475 */ 3476 static int 3477 spa_ld_open_vdevs(spa_t *spa) 3478 { 3479 int error = 0; 3480 3481 /* 3482 * spa_missing_tvds_allowed defines how many top-level vdevs can be 3483 * missing/unopenable for the root vdev to be still considered openable. 3484 */ 3485 if (spa->spa_trust_config) { 3486 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds; 3487 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) { 3488 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile; 3489 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) { 3490 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan; 3491 } else { 3492 spa->spa_missing_tvds_allowed = 0; 3493 } 3494 3495 spa->spa_missing_tvds_allowed = 3496 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed); 3497 3498 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3499 error = vdev_open(spa->spa_root_vdev); 3500 spa_config_exit(spa, SCL_ALL, FTAG); 3501 3502 if (spa->spa_missing_tvds != 0) { 3503 spa_load_note(spa, "vdev tree has %lld missing top-level " 3504 "vdevs.", (u_longlong_t)spa->spa_missing_tvds); 3505 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) { 3506 /* 3507 * Although theoretically we could allow users to open 3508 * incomplete pools in RW mode, we'd need to add a lot 3509 * of extra logic (e.g. adjust pool space to account 3510 * for missing vdevs). 3511 * This limitation also prevents users from accidentally 3512 * opening the pool in RW mode during data recovery and 3513 * damaging it further. 3514 */ 3515 spa_load_note(spa, "pools with missing top-level " 3516 "vdevs can only be opened in read-only mode."); 3517 error = SET_ERROR(ENXIO); 3518 } else { 3519 spa_load_note(spa, "current settings allow for maximum " 3520 "%lld missing top-level vdevs at this stage.", 3521 (u_longlong_t)spa->spa_missing_tvds_allowed); 3522 } 3523 } 3524 if (error != 0) { 3525 spa_load_failed(spa, "unable to open vdev tree [error=%d]", 3526 error); 3527 } 3528 if (spa->spa_missing_tvds != 0 || error != 0) 3529 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2); 3530 3531 return (error); 3532 } 3533 3534 /* 3535 * We need to validate the vdev labels against the configuration that 3536 * we have in hand. This function is called twice: first with an untrusted 3537 * config, then with a trusted config. The validation is more strict when the 3538 * config is trusted. 3539 */ 3540 static int 3541 spa_ld_validate_vdevs(spa_t *spa) 3542 { 3543 int error = 0; 3544 vdev_t *rvd = spa->spa_root_vdev; 3545 3546 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3547 error = vdev_validate(rvd); 3548 spa_config_exit(spa, SCL_ALL, FTAG); 3549 3550 if (error != 0) { 3551 spa_load_failed(spa, "vdev_validate failed [error=%d]", error); 3552 return (error); 3553 } 3554 3555 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 3556 spa_load_failed(spa, "cannot open vdev tree after invalidating " 3557 "some vdevs"); 3558 vdev_dbgmsg_print_tree(rvd, 2); 3559 return (SET_ERROR(ENXIO)); 3560 } 3561 3562 return (0); 3563 } 3564 3565 static void 3566 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub) 3567 { 3568 spa->spa_state = POOL_STATE_ACTIVE; 3569 spa->spa_ubsync = spa->spa_uberblock; 3570 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 3571 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 3572 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 3573 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 3574 spa->spa_claim_max_txg = spa->spa_first_txg; 3575 spa->spa_prev_software_version = ub->ub_software_version; 3576 } 3577 3578 static int 3579 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type) 3580 { 3581 vdev_t *rvd = spa->spa_root_vdev; 3582 nvlist_t *label; 3583 uberblock_t *ub = &spa->spa_uberblock; 3584 boolean_t activity_check = B_FALSE; 3585 3586 /* 3587 * If we are opening the checkpointed state of the pool by 3588 * rewinding to it, at this point we will have written the 3589 * checkpointed uberblock to the vdev labels, so searching 3590 * the labels will find the right uberblock. However, if 3591 * we are opening the checkpointed state read-only, we have 3592 * not modified the labels. Therefore, we must ignore the 3593 * labels and continue using the spa_uberblock that was set 3594 * by spa_ld_checkpoint_rewind. 3595 * 3596 * Note that it would be fine to ignore the labels when 3597 * rewinding (opening writeable) as well. However, if we 3598 * crash just after writing the labels, we will end up 3599 * searching the labels. Doing so in the common case means 3600 * that this code path gets exercised normally, rather than 3601 * just in the edge case. 3602 */ 3603 if (ub->ub_checkpoint_txg != 0 && 3604 spa_importing_readonly_checkpoint(spa)) { 3605 spa_ld_select_uberblock_done(spa, ub); 3606 return (0); 3607 } 3608 3609 /* 3610 * Find the best uberblock. 3611 */ 3612 vdev_uberblock_load(rvd, ub, &label); 3613 3614 /* 3615 * If we weren't able to find a single valid uberblock, return failure. 3616 */ 3617 if (ub->ub_txg == 0) { 3618 nvlist_free(label); 3619 spa_load_failed(spa, "no valid uberblock found"); 3620 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 3621 } 3622 3623 if (spa->spa_load_max_txg != UINT64_MAX) { 3624 (void) spa_import_progress_set_max_txg(spa_guid(spa), 3625 (u_longlong_t)spa->spa_load_max_txg); 3626 } 3627 spa_load_note(spa, "using uberblock with txg=%llu", 3628 (u_longlong_t)ub->ub_txg); 3629 3630 3631 /* 3632 * For pools which have the multihost property on determine if the 3633 * pool is truly inactive and can be safely imported. Prevent 3634 * hosts which don't have a hostid set from importing the pool. 3635 */ 3636 activity_check = spa_activity_check_required(spa, ub, label, 3637 spa->spa_config); 3638 if (activity_check) { 3639 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay && 3640 spa_get_hostid(spa) == 0) { 3641 nvlist_free(label); 3642 fnvlist_add_uint64(spa->spa_load_info, 3643 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 3644 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 3645 } 3646 3647 int error = spa_activity_check(spa, ub, spa->spa_config); 3648 if (error) { 3649 nvlist_free(label); 3650 return (error); 3651 } 3652 3653 fnvlist_add_uint64(spa->spa_load_info, 3654 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE); 3655 fnvlist_add_uint64(spa->spa_load_info, 3656 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg); 3657 fnvlist_add_uint16(spa->spa_load_info, 3658 ZPOOL_CONFIG_MMP_SEQ, 3659 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)); 3660 } 3661 3662 /* 3663 * If the pool has an unsupported version we can't open it. 3664 */ 3665 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 3666 nvlist_free(label); 3667 spa_load_failed(spa, "version %llu is not supported", 3668 (u_longlong_t)ub->ub_version); 3669 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 3670 } 3671 3672 if (ub->ub_version >= SPA_VERSION_FEATURES) { 3673 nvlist_t *features; 3674 3675 /* 3676 * If we weren't able to find what's necessary for reading the 3677 * MOS in the label, return failure. 3678 */ 3679 if (label == NULL) { 3680 spa_load_failed(spa, "label config unavailable"); 3681 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 3682 ENXIO)); 3683 } 3684 3685 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ, 3686 &features) != 0) { 3687 nvlist_free(label); 3688 spa_load_failed(spa, "invalid label: '%s' missing", 3689 ZPOOL_CONFIG_FEATURES_FOR_READ); 3690 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 3691 ENXIO)); 3692 } 3693 3694 /* 3695 * Update our in-core representation with the definitive values 3696 * from the label. 3697 */ 3698 nvlist_free(spa->spa_label_features); 3699 spa->spa_label_features = fnvlist_dup(features); 3700 } 3701 3702 nvlist_free(label); 3703 3704 /* 3705 * Look through entries in the label nvlist's features_for_read. If 3706 * there is a feature listed there which we don't understand then we 3707 * cannot open a pool. 3708 */ 3709 if (ub->ub_version >= SPA_VERSION_FEATURES) { 3710 nvlist_t *unsup_feat; 3711 3712 unsup_feat = fnvlist_alloc(); 3713 3714 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 3715 NULL); nvp != NULL; 3716 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 3717 if (!zfeature_is_supported(nvpair_name(nvp))) { 3718 fnvlist_add_string(unsup_feat, 3719 nvpair_name(nvp), ""); 3720 } 3721 } 3722 3723 if (!nvlist_empty(unsup_feat)) { 3724 fnvlist_add_nvlist(spa->spa_load_info, 3725 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 3726 nvlist_free(unsup_feat); 3727 spa_load_failed(spa, "some features are unsupported"); 3728 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 3729 ENOTSUP)); 3730 } 3731 3732 nvlist_free(unsup_feat); 3733 } 3734 3735 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 3736 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3737 spa_try_repair(spa, spa->spa_config); 3738 spa_config_exit(spa, SCL_ALL, FTAG); 3739 nvlist_free(spa->spa_config_splitting); 3740 spa->spa_config_splitting = NULL; 3741 } 3742 3743 /* 3744 * Initialize internal SPA structures. 3745 */ 3746 spa_ld_select_uberblock_done(spa, ub); 3747 3748 return (0); 3749 } 3750 3751 static int 3752 spa_ld_open_rootbp(spa_t *spa) 3753 { 3754 int error = 0; 3755 vdev_t *rvd = spa->spa_root_vdev; 3756 3757 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 3758 if (error != 0) { 3759 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init " 3760 "[error=%d]", error); 3761 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3762 } 3763 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 3764 3765 return (0); 3766 } 3767 3768 static int 3769 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type, 3770 boolean_t reloading) 3771 { 3772 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 3773 nvlist_t *nv, *mos_config, *policy; 3774 int error = 0, copy_error; 3775 uint64_t healthy_tvds, healthy_tvds_mos; 3776 uint64_t mos_config_txg; 3777 3778 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE) 3779 != 0) 3780 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3781 3782 /* 3783 * If we're assembling a pool from a split, the config provided is 3784 * already trusted so there is nothing to do. 3785 */ 3786 if (type == SPA_IMPORT_ASSEMBLE) 3787 return (0); 3788 3789 healthy_tvds = spa_healthy_core_tvds(spa); 3790 3791 if (load_nvlist(spa, spa->spa_config_object, &mos_config) 3792 != 0) { 3793 spa_load_failed(spa, "unable to retrieve MOS config"); 3794 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3795 } 3796 3797 /* 3798 * If we are doing an open, pool owner wasn't verified yet, thus do 3799 * the verification here. 3800 */ 3801 if (spa->spa_load_state == SPA_LOAD_OPEN) { 3802 error = spa_verify_host(spa, mos_config); 3803 if (error != 0) { 3804 nvlist_free(mos_config); 3805 return (error); 3806 } 3807 } 3808 3809 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE); 3810 3811 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3812 3813 /* 3814 * Build a new vdev tree from the trusted config 3815 */ 3816 error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD); 3817 if (error != 0) { 3818 nvlist_free(mos_config); 3819 spa_config_exit(spa, SCL_ALL, FTAG); 3820 spa_load_failed(spa, "spa_config_parse failed [error=%d]", 3821 error); 3822 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 3823 } 3824 3825 /* 3826 * Vdev paths in the MOS may be obsolete. If the untrusted config was 3827 * obtained by scanning /dev/dsk, then it will have the right vdev 3828 * paths. We update the trusted MOS config with this information. 3829 * We first try to copy the paths with vdev_copy_path_strict, which 3830 * succeeds only when both configs have exactly the same vdev tree. 3831 * If that fails, we fall back to a more flexible method that has a 3832 * best effort policy. 3833 */ 3834 copy_error = vdev_copy_path_strict(rvd, mrvd); 3835 if (copy_error != 0 || spa_load_print_vdev_tree) { 3836 spa_load_note(spa, "provided vdev tree:"); 3837 vdev_dbgmsg_print_tree(rvd, 2); 3838 spa_load_note(spa, "MOS vdev tree:"); 3839 vdev_dbgmsg_print_tree(mrvd, 2); 3840 } 3841 if (copy_error != 0) { 3842 spa_load_note(spa, "vdev_copy_path_strict failed, falling " 3843 "back to vdev_copy_path_relaxed"); 3844 vdev_copy_path_relaxed(rvd, mrvd); 3845 } 3846 3847 vdev_close(rvd); 3848 vdev_free(rvd); 3849 spa->spa_root_vdev = mrvd; 3850 rvd = mrvd; 3851 spa_config_exit(spa, SCL_ALL, FTAG); 3852 3853 /* 3854 * We will use spa_config if we decide to reload the spa or if spa_load 3855 * fails and we rewind. We must thus regenerate the config using the 3856 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to 3857 * pass settings on how to load the pool and is not stored in the MOS. 3858 * We copy it over to our new, trusted config. 3859 */ 3860 mos_config_txg = fnvlist_lookup_uint64(mos_config, 3861 ZPOOL_CONFIG_POOL_TXG); 3862 nvlist_free(mos_config); 3863 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE); 3864 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY, 3865 &policy) == 0) 3866 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy); 3867 spa_config_set(spa, mos_config); 3868 spa->spa_config_source = SPA_CONFIG_SRC_MOS; 3869 3870 /* 3871 * Now that we got the config from the MOS, we should be more strict 3872 * in checking blkptrs and can make assumptions about the consistency 3873 * of the vdev tree. spa_trust_config must be set to true before opening 3874 * vdevs in order for them to be writeable. 3875 */ 3876 spa->spa_trust_config = B_TRUE; 3877 3878 /* 3879 * Open and validate the new vdev tree 3880 */ 3881 error = spa_ld_open_vdevs(spa); 3882 if (error != 0) 3883 return (error); 3884 3885 error = spa_ld_validate_vdevs(spa); 3886 if (error != 0) 3887 return (error); 3888 3889 if (copy_error != 0 || spa_load_print_vdev_tree) { 3890 spa_load_note(spa, "final vdev tree:"); 3891 vdev_dbgmsg_print_tree(rvd, 2); 3892 } 3893 3894 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT && 3895 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) { 3896 /* 3897 * Sanity check to make sure that we are indeed loading the 3898 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds 3899 * in the config provided and they happened to be the only ones 3900 * to have the latest uberblock, we could involuntarily perform 3901 * an extreme rewind. 3902 */ 3903 healthy_tvds_mos = spa_healthy_core_tvds(spa); 3904 if (healthy_tvds_mos - healthy_tvds >= 3905 SPA_SYNC_MIN_VDEVS) { 3906 spa_load_note(spa, "config provided misses too many " 3907 "top-level vdevs compared to MOS (%lld vs %lld). ", 3908 (u_longlong_t)healthy_tvds, 3909 (u_longlong_t)healthy_tvds_mos); 3910 spa_load_note(spa, "vdev tree:"); 3911 vdev_dbgmsg_print_tree(rvd, 2); 3912 if (reloading) { 3913 spa_load_failed(spa, "config was already " 3914 "provided from MOS. Aborting."); 3915 return (spa_vdev_err(rvd, 3916 VDEV_AUX_CORRUPT_DATA, EIO)); 3917 } 3918 spa_load_note(spa, "spa must be reloaded using MOS " 3919 "config"); 3920 return (SET_ERROR(EAGAIN)); 3921 } 3922 } 3923 3924 error = spa_check_for_missing_logs(spa); 3925 if (error != 0) 3926 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 3927 3928 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) { 3929 spa_load_failed(spa, "uberblock guid sum doesn't match MOS " 3930 "guid sum (%llu != %llu)", 3931 (u_longlong_t)spa->spa_uberblock.ub_guid_sum, 3932 (u_longlong_t)rvd->vdev_guid_sum); 3933 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 3934 ENXIO)); 3935 } 3936 3937 return (0); 3938 } 3939 3940 static int 3941 spa_ld_open_indirect_vdev_metadata(spa_t *spa) 3942 { 3943 int error = 0; 3944 vdev_t *rvd = spa->spa_root_vdev; 3945 3946 /* 3947 * Everything that we read before spa_remove_init() must be stored 3948 * on concreted vdevs. Therefore we do this as early as possible. 3949 */ 3950 error = spa_remove_init(spa); 3951 if (error != 0) { 3952 spa_load_failed(spa, "spa_remove_init failed [error=%d]", 3953 error); 3954 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3955 } 3956 3957 /* 3958 * Retrieve information needed to condense indirect vdev mappings. 3959 */ 3960 error = spa_condense_init(spa); 3961 if (error != 0) { 3962 spa_load_failed(spa, "spa_condense_init failed [error=%d]", 3963 error); 3964 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 3965 } 3966 3967 return (0); 3968 } 3969 3970 static int 3971 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep) 3972 { 3973 int error = 0; 3974 vdev_t *rvd = spa->spa_root_vdev; 3975 3976 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 3977 boolean_t missing_feat_read = B_FALSE; 3978 nvlist_t *unsup_feat, *enabled_feat; 3979 3980 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 3981 &spa->spa_feat_for_read_obj, B_TRUE) != 0) { 3982 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3983 } 3984 3985 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 3986 &spa->spa_feat_for_write_obj, B_TRUE) != 0) { 3987 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3988 } 3989 3990 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 3991 &spa->spa_feat_desc_obj, B_TRUE) != 0) { 3992 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3993 } 3994 3995 enabled_feat = fnvlist_alloc(); 3996 unsup_feat = fnvlist_alloc(); 3997 3998 if (!spa_features_check(spa, B_FALSE, 3999 unsup_feat, enabled_feat)) 4000 missing_feat_read = B_TRUE; 4001 4002 if (spa_writeable(spa) || 4003 spa->spa_load_state == SPA_LOAD_TRYIMPORT) { 4004 if (!spa_features_check(spa, B_TRUE, 4005 unsup_feat, enabled_feat)) { 4006 *missing_feat_writep = B_TRUE; 4007 } 4008 } 4009 4010 fnvlist_add_nvlist(spa->spa_load_info, 4011 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 4012 4013 if (!nvlist_empty(unsup_feat)) { 4014 fnvlist_add_nvlist(spa->spa_load_info, 4015 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 4016 } 4017 4018 fnvlist_free(enabled_feat); 4019 fnvlist_free(unsup_feat); 4020 4021 if (!missing_feat_read) { 4022 fnvlist_add_boolean(spa->spa_load_info, 4023 ZPOOL_CONFIG_CAN_RDONLY); 4024 } 4025 4026 /* 4027 * If the state is SPA_LOAD_TRYIMPORT, our objective is 4028 * twofold: to determine whether the pool is available for 4029 * import in read-write mode and (if it is not) whether the 4030 * pool is available for import in read-only mode. If the pool 4031 * is available for import in read-write mode, it is displayed 4032 * as available in userland; if it is not available for import 4033 * in read-only mode, it is displayed as unavailable in 4034 * userland. If the pool is available for import in read-only 4035 * mode but not read-write mode, it is displayed as unavailable 4036 * in userland with a special note that the pool is actually 4037 * available for open in read-only mode. 4038 * 4039 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 4040 * missing a feature for write, we must first determine whether 4041 * the pool can be opened read-only before returning to 4042 * userland in order to know whether to display the 4043 * abovementioned note. 4044 */ 4045 if (missing_feat_read || (*missing_feat_writep && 4046 spa_writeable(spa))) { 4047 spa_load_failed(spa, "pool uses unsupported features"); 4048 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 4049 ENOTSUP)); 4050 } 4051 4052 /* 4053 * Load refcounts for ZFS features from disk into an in-memory 4054 * cache during SPA initialization. 4055 */ 4056 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 4057 uint64_t refcount; 4058 4059 error = feature_get_refcount_from_disk(spa, 4060 &spa_feature_table[i], &refcount); 4061 if (error == 0) { 4062 spa->spa_feat_refcount_cache[i] = refcount; 4063 } else if (error == ENOTSUP) { 4064 spa->spa_feat_refcount_cache[i] = 4065 SPA_FEATURE_DISABLED; 4066 } else { 4067 spa_load_failed(spa, "error getting refcount " 4068 "for feature %s [error=%d]", 4069 spa_feature_table[i].fi_guid, error); 4070 return (spa_vdev_err(rvd, 4071 VDEV_AUX_CORRUPT_DATA, EIO)); 4072 } 4073 } 4074 } 4075 4076 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 4077 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 4078 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0) 4079 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4080 } 4081 4082 /* 4083 * Encryption was added before bookmark_v2, even though bookmark_v2 4084 * is now a dependency. If this pool has encryption enabled without 4085 * bookmark_v2, trigger an errata message. 4086 */ 4087 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) && 4088 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) { 4089 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION; 4090 } 4091 4092 return (0); 4093 } 4094 4095 static int 4096 spa_ld_load_special_directories(spa_t *spa) 4097 { 4098 int error = 0; 4099 vdev_t *rvd = spa->spa_root_vdev; 4100 4101 spa->spa_is_initializing = B_TRUE; 4102 error = dsl_pool_open(spa->spa_dsl_pool); 4103 spa->spa_is_initializing = B_FALSE; 4104 if (error != 0) { 4105 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error); 4106 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4107 } 4108 4109 return (0); 4110 } 4111 4112 static int 4113 spa_ld_get_props(spa_t *spa) 4114 { 4115 int error = 0; 4116 uint64_t obj; 4117 vdev_t *rvd = spa->spa_root_vdev; 4118 4119 /* Grab the checksum salt from the MOS. */ 4120 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 4121 DMU_POOL_CHECKSUM_SALT, 1, 4122 sizeof (spa->spa_cksum_salt.zcs_bytes), 4123 spa->spa_cksum_salt.zcs_bytes); 4124 if (error == ENOENT) { 4125 /* Generate a new salt for subsequent use */ 4126 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 4127 sizeof (spa->spa_cksum_salt.zcs_bytes)); 4128 } else if (error != 0) { 4129 spa_load_failed(spa, "unable to retrieve checksum salt from " 4130 "MOS [error=%d]", error); 4131 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4132 } 4133 4134 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0) 4135 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4136 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 4137 if (error != 0) { 4138 spa_load_failed(spa, "error opening deferred-frees bpobj " 4139 "[error=%d]", error); 4140 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4141 } 4142 4143 /* 4144 * Load the bit that tells us to use the new accounting function 4145 * (raid-z deflation). If we have an older pool, this will not 4146 * be present. 4147 */ 4148 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE); 4149 if (error != 0 && error != ENOENT) 4150 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4151 4152 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 4153 &spa->spa_creation_version, B_FALSE); 4154 if (error != 0 && error != ENOENT) 4155 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4156 4157 /* 4158 * Load the persistent error log. If we have an older pool, this will 4159 * not be present. 4160 */ 4161 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last, 4162 B_FALSE); 4163 if (error != 0 && error != ENOENT) 4164 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4165 4166 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 4167 &spa->spa_errlog_scrub, B_FALSE); 4168 if (error != 0 && error != ENOENT) 4169 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4170 4171 /* 4172 * Load the livelist deletion field. If a livelist is queued for 4173 * deletion, indicate that in the spa 4174 */ 4175 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES, 4176 &spa->spa_livelists_to_delete, B_FALSE); 4177 if (error != 0 && error != ENOENT) 4178 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4179 4180 /* 4181 * Load the history object. If we have an older pool, this 4182 * will not be present. 4183 */ 4184 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE); 4185 if (error != 0 && error != ENOENT) 4186 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4187 4188 /* 4189 * Load the per-vdev ZAP map. If we have an older pool, this will not 4190 * be present; in this case, defer its creation to a later time to 4191 * avoid dirtying the MOS this early / out of sync context. See 4192 * spa_sync_config_object. 4193 */ 4194 4195 /* The sentinel is only available in the MOS config. */ 4196 nvlist_t *mos_config; 4197 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { 4198 spa_load_failed(spa, "unable to retrieve MOS config"); 4199 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4200 } 4201 4202 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, 4203 &spa->spa_all_vdev_zaps, B_FALSE); 4204 4205 if (error == ENOENT) { 4206 VERIFY(!nvlist_exists(mos_config, 4207 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 4208 spa->spa_avz_action = AVZ_ACTION_INITIALIZE; 4209 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 4210 } else if (error != 0) { 4211 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4212 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { 4213 /* 4214 * An older version of ZFS overwrote the sentinel value, so 4215 * we have orphaned per-vdev ZAPs in the MOS. Defer their 4216 * destruction to later; see spa_sync_config_object. 4217 */ 4218 spa->spa_avz_action = AVZ_ACTION_DESTROY; 4219 /* 4220 * We're assuming that no vdevs have had their ZAPs created 4221 * before this. Better be sure of it. 4222 */ 4223 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 4224 } 4225 nvlist_free(mos_config); 4226 4227 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 4228 4229 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object, 4230 B_FALSE); 4231 if (error && error != ENOENT) 4232 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4233 4234 if (error == 0) { 4235 uint64_t autoreplace = 0; 4236 4237 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 4238 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 4239 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 4240 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 4241 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 4242 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost); 4243 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim); 4244 spa->spa_autoreplace = (autoreplace != 0); 4245 } 4246 4247 /* 4248 * If we are importing a pool with missing top-level vdevs, 4249 * we enforce that the pool doesn't panic or get suspended on 4250 * error since the likelihood of missing data is extremely high. 4251 */ 4252 if (spa->spa_missing_tvds > 0 && 4253 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE && 4254 spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4255 spa_load_note(spa, "forcing failmode to 'continue' " 4256 "as some top level vdevs are missing"); 4257 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE; 4258 } 4259 4260 return (0); 4261 } 4262 4263 static int 4264 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type) 4265 { 4266 int error = 0; 4267 vdev_t *rvd = spa->spa_root_vdev; 4268 4269 /* 4270 * If we're assembling the pool from the split-off vdevs of 4271 * an existing pool, we don't want to attach the spares & cache 4272 * devices. 4273 */ 4274 4275 /* 4276 * Load any hot spares for this pool. 4277 */ 4278 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object, 4279 B_FALSE); 4280 if (error != 0 && error != ENOENT) 4281 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4282 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 4283 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 4284 if (load_nvlist(spa, spa->spa_spares.sav_object, 4285 &spa->spa_spares.sav_config) != 0) { 4286 spa_load_failed(spa, "error loading spares nvlist"); 4287 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4288 } 4289 4290 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4291 spa_load_spares(spa); 4292 spa_config_exit(spa, SCL_ALL, FTAG); 4293 } else if (error == 0) { 4294 spa->spa_spares.sav_sync = B_TRUE; 4295 } 4296 4297 /* 4298 * Load any level 2 ARC devices for this pool. 4299 */ 4300 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 4301 &spa->spa_l2cache.sav_object, B_FALSE); 4302 if (error != 0 && error != ENOENT) 4303 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4304 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 4305 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 4306 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 4307 &spa->spa_l2cache.sav_config) != 0) { 4308 spa_load_failed(spa, "error loading l2cache nvlist"); 4309 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4310 } 4311 4312 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4313 spa_load_l2cache(spa); 4314 spa_config_exit(spa, SCL_ALL, FTAG); 4315 } else if (error == 0) { 4316 spa->spa_l2cache.sav_sync = B_TRUE; 4317 } 4318 4319 return (0); 4320 } 4321 4322 static int 4323 spa_ld_load_vdev_metadata(spa_t *spa) 4324 { 4325 int error = 0; 4326 vdev_t *rvd = spa->spa_root_vdev; 4327 4328 /* 4329 * If the 'multihost' property is set, then never allow a pool to 4330 * be imported when the system hostid is zero. The exception to 4331 * this rule is zdb which is always allowed to access pools. 4332 */ 4333 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 && 4334 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) { 4335 fnvlist_add_uint64(spa->spa_load_info, 4336 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 4337 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 4338 } 4339 4340 /* 4341 * If the 'autoreplace' property is set, then post a resource notifying 4342 * the ZFS DE that it should not issue any faults for unopenable 4343 * devices. We also iterate over the vdevs, and post a sysevent for any 4344 * unopenable vdevs so that the normal autoreplace handler can take 4345 * over. 4346 */ 4347 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4348 spa_check_removed(spa->spa_root_vdev); 4349 /* 4350 * For the import case, this is done in spa_import(), because 4351 * at this point we're using the spare definitions from 4352 * the MOS config, not necessarily from the userland config. 4353 */ 4354 if (spa->spa_load_state != SPA_LOAD_IMPORT) { 4355 spa_aux_check_removed(&spa->spa_spares); 4356 spa_aux_check_removed(&spa->spa_l2cache); 4357 } 4358 } 4359 4360 /* 4361 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc. 4362 */ 4363 error = vdev_load(rvd); 4364 if (error != 0) { 4365 spa_load_failed(spa, "vdev_load failed [error=%d]", error); 4366 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4367 } 4368 4369 error = spa_ld_log_spacemaps(spa); 4370 if (error != 0) { 4371 spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]", 4372 error); 4373 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4374 } 4375 4376 /* 4377 * Propagate the leaf DTLs we just loaded all the way up the vdev tree. 4378 */ 4379 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4380 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE); 4381 spa_config_exit(spa, SCL_ALL, FTAG); 4382 4383 return (0); 4384 } 4385 4386 static int 4387 spa_ld_load_dedup_tables(spa_t *spa) 4388 { 4389 int error = 0; 4390 vdev_t *rvd = spa->spa_root_vdev; 4391 4392 error = ddt_load(spa); 4393 if (error != 0) { 4394 spa_load_failed(spa, "ddt_load failed [error=%d]", error); 4395 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4396 } 4397 4398 return (0); 4399 } 4400 4401 static int 4402 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport) 4403 { 4404 vdev_t *rvd = spa->spa_root_vdev; 4405 4406 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) { 4407 boolean_t missing = spa_check_logs(spa); 4408 if (missing) { 4409 if (spa->spa_missing_tvds != 0) { 4410 spa_load_note(spa, "spa_check_logs failed " 4411 "so dropping the logs"); 4412 } else { 4413 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 4414 spa_load_failed(spa, "spa_check_logs failed"); 4415 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, 4416 ENXIO)); 4417 } 4418 } 4419 } 4420 4421 return (0); 4422 } 4423 4424 static int 4425 spa_ld_verify_pool_data(spa_t *spa) 4426 { 4427 int error = 0; 4428 vdev_t *rvd = spa->spa_root_vdev; 4429 4430 /* 4431 * We've successfully opened the pool, verify that we're ready 4432 * to start pushing transactions. 4433 */ 4434 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4435 error = spa_load_verify(spa); 4436 if (error != 0) { 4437 spa_load_failed(spa, "spa_load_verify failed " 4438 "[error=%d]", error); 4439 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 4440 error)); 4441 } 4442 } 4443 4444 return (0); 4445 } 4446 4447 static void 4448 spa_ld_claim_log_blocks(spa_t *spa) 4449 { 4450 dmu_tx_t *tx; 4451 dsl_pool_t *dp = spa_get_dsl(spa); 4452 4453 /* 4454 * Claim log blocks that haven't been committed yet. 4455 * This must all happen in a single txg. 4456 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 4457 * invoked from zil_claim_log_block()'s i/o done callback. 4458 * Price of rollback is that we abandon the log. 4459 */ 4460 spa->spa_claiming = B_TRUE; 4461 4462 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 4463 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 4464 zil_claim, tx, DS_FIND_CHILDREN); 4465 dmu_tx_commit(tx); 4466 4467 spa->spa_claiming = B_FALSE; 4468 4469 spa_set_log_state(spa, SPA_LOG_GOOD); 4470 } 4471 4472 static void 4473 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg, 4474 boolean_t update_config_cache) 4475 { 4476 vdev_t *rvd = spa->spa_root_vdev; 4477 int need_update = B_FALSE; 4478 4479 /* 4480 * If the config cache is stale, or we have uninitialized 4481 * metaslabs (see spa_vdev_add()), then update the config. 4482 * 4483 * If this is a verbatim import, trust the current 4484 * in-core spa_config and update the disk labels. 4485 */ 4486 if (update_config_cache || config_cache_txg != spa->spa_config_txg || 4487 spa->spa_load_state == SPA_LOAD_IMPORT || 4488 spa->spa_load_state == SPA_LOAD_RECOVER || 4489 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 4490 need_update = B_TRUE; 4491 4492 for (int c = 0; c < rvd->vdev_children; c++) 4493 if (rvd->vdev_child[c]->vdev_ms_array == 0) 4494 need_update = B_TRUE; 4495 4496 /* 4497 * Update the config cache asynchronously in case we're the 4498 * root pool, in which case the config cache isn't writable yet. 4499 */ 4500 if (need_update) 4501 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 4502 } 4503 4504 static void 4505 spa_ld_prepare_for_reload(spa_t *spa) 4506 { 4507 spa_mode_t mode = spa->spa_mode; 4508 int async_suspended = spa->spa_async_suspended; 4509 4510 spa_unload(spa); 4511 spa_deactivate(spa); 4512 spa_activate(spa, mode); 4513 4514 /* 4515 * We save the value of spa_async_suspended as it gets reset to 0 by 4516 * spa_unload(). We want to restore it back to the original value before 4517 * returning as we might be calling spa_async_resume() later. 4518 */ 4519 spa->spa_async_suspended = async_suspended; 4520 } 4521 4522 static int 4523 spa_ld_read_checkpoint_txg(spa_t *spa) 4524 { 4525 uberblock_t checkpoint; 4526 int error = 0; 4527 4528 ASSERT0(spa->spa_checkpoint_txg); 4529 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4530 4531 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 4532 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 4533 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 4534 4535 if (error == ENOENT) 4536 return (0); 4537 4538 if (error != 0) 4539 return (error); 4540 4541 ASSERT3U(checkpoint.ub_txg, !=, 0); 4542 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0); 4543 ASSERT3U(checkpoint.ub_timestamp, !=, 0); 4544 spa->spa_checkpoint_txg = checkpoint.ub_txg; 4545 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp; 4546 4547 return (0); 4548 } 4549 4550 static int 4551 spa_ld_mos_init(spa_t *spa, spa_import_type_t type) 4552 { 4553 int error = 0; 4554 4555 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4556 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 4557 4558 /* 4559 * Never trust the config that is provided unless we are assembling 4560 * a pool following a split. 4561 * This means don't trust blkptrs and the vdev tree in general. This 4562 * also effectively puts the spa in read-only mode since 4563 * spa_writeable() checks for spa_trust_config to be true. 4564 * We will later load a trusted config from the MOS. 4565 */ 4566 if (type != SPA_IMPORT_ASSEMBLE) 4567 spa->spa_trust_config = B_FALSE; 4568 4569 /* 4570 * Parse the config provided to create a vdev tree. 4571 */ 4572 error = spa_ld_parse_config(spa, type); 4573 if (error != 0) 4574 return (error); 4575 4576 spa_import_progress_add(spa); 4577 4578 /* 4579 * Now that we have the vdev tree, try to open each vdev. This involves 4580 * opening the underlying physical device, retrieving its geometry and 4581 * probing the vdev with a dummy I/O. The state of each vdev will be set 4582 * based on the success of those operations. After this we'll be ready 4583 * to read from the vdevs. 4584 */ 4585 error = spa_ld_open_vdevs(spa); 4586 if (error != 0) 4587 return (error); 4588 4589 /* 4590 * Read the label of each vdev and make sure that the GUIDs stored 4591 * there match the GUIDs in the config provided. 4592 * If we're assembling a new pool that's been split off from an 4593 * existing pool, the labels haven't yet been updated so we skip 4594 * validation for now. 4595 */ 4596 if (type != SPA_IMPORT_ASSEMBLE) { 4597 error = spa_ld_validate_vdevs(spa); 4598 if (error != 0) 4599 return (error); 4600 } 4601 4602 /* 4603 * Read all vdev labels to find the best uberblock (i.e. latest, 4604 * unless spa_load_max_txg is set) and store it in spa_uberblock. We 4605 * get the list of features required to read blkptrs in the MOS from 4606 * the vdev label with the best uberblock and verify that our version 4607 * of zfs supports them all. 4608 */ 4609 error = spa_ld_select_uberblock(spa, type); 4610 if (error != 0) 4611 return (error); 4612 4613 /* 4614 * Pass that uberblock to the dsl_pool layer which will open the root 4615 * blkptr. This blkptr points to the latest version of the MOS and will 4616 * allow us to read its contents. 4617 */ 4618 error = spa_ld_open_rootbp(spa); 4619 if (error != 0) 4620 return (error); 4621 4622 return (0); 4623 } 4624 4625 static int 4626 spa_ld_checkpoint_rewind(spa_t *spa) 4627 { 4628 uberblock_t checkpoint; 4629 int error = 0; 4630 4631 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4632 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 4633 4634 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 4635 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 4636 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 4637 4638 if (error != 0) { 4639 spa_load_failed(spa, "unable to retrieve checkpointed " 4640 "uberblock from the MOS config [error=%d]", error); 4641 4642 if (error == ENOENT) 4643 error = ZFS_ERR_NO_CHECKPOINT; 4644 4645 return (error); 4646 } 4647 4648 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg); 4649 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg); 4650 4651 /* 4652 * We need to update the txg and timestamp of the checkpointed 4653 * uberblock to be higher than the latest one. This ensures that 4654 * the checkpointed uberblock is selected if we were to close and 4655 * reopen the pool right after we've written it in the vdev labels. 4656 * (also see block comment in vdev_uberblock_compare) 4657 */ 4658 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1; 4659 checkpoint.ub_timestamp = gethrestime_sec(); 4660 4661 /* 4662 * Set current uberblock to be the checkpointed uberblock. 4663 */ 4664 spa->spa_uberblock = checkpoint; 4665 4666 /* 4667 * If we are doing a normal rewind, then the pool is open for 4668 * writing and we sync the "updated" checkpointed uberblock to 4669 * disk. Once this is done, we've basically rewound the whole 4670 * pool and there is no way back. 4671 * 4672 * There are cases when we don't want to attempt and sync the 4673 * checkpointed uberblock to disk because we are opening a 4674 * pool as read-only. Specifically, verifying the checkpointed 4675 * state with zdb, and importing the checkpointed state to get 4676 * a "preview" of its content. 4677 */ 4678 if (spa_writeable(spa)) { 4679 vdev_t *rvd = spa->spa_root_vdev; 4680 4681 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4682 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 4683 int svdcount = 0; 4684 int children = rvd->vdev_children; 4685 int c0 = random_in_range(children); 4686 4687 for (int c = 0; c < children; c++) { 4688 vdev_t *vd = rvd->vdev_child[(c0 + c) % children]; 4689 4690 /* Stop when revisiting the first vdev */ 4691 if (c > 0 && svd[0] == vd) 4692 break; 4693 4694 if (vd->vdev_ms_array == 0 || vd->vdev_islog || 4695 !vdev_is_concrete(vd)) 4696 continue; 4697 4698 svd[svdcount++] = vd; 4699 if (svdcount == SPA_SYNC_MIN_VDEVS) 4700 break; 4701 } 4702 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg); 4703 if (error == 0) 4704 spa->spa_last_synced_guid = rvd->vdev_guid; 4705 spa_config_exit(spa, SCL_ALL, FTAG); 4706 4707 if (error != 0) { 4708 spa_load_failed(spa, "failed to write checkpointed " 4709 "uberblock to the vdev labels [error=%d]", error); 4710 return (error); 4711 } 4712 } 4713 4714 return (0); 4715 } 4716 4717 static int 4718 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type, 4719 boolean_t *update_config_cache) 4720 { 4721 int error; 4722 4723 /* 4724 * Parse the config for pool, open and validate vdevs, 4725 * select an uberblock, and use that uberblock to open 4726 * the MOS. 4727 */ 4728 error = spa_ld_mos_init(spa, type); 4729 if (error != 0) 4730 return (error); 4731 4732 /* 4733 * Retrieve the trusted config stored in the MOS and use it to create 4734 * a new, exact version of the vdev tree, then reopen all vdevs. 4735 */ 4736 error = spa_ld_trusted_config(spa, type, B_FALSE); 4737 if (error == EAGAIN) { 4738 if (update_config_cache != NULL) 4739 *update_config_cache = B_TRUE; 4740 4741 /* 4742 * Redo the loading process with the trusted config if it is 4743 * too different from the untrusted config. 4744 */ 4745 spa_ld_prepare_for_reload(spa); 4746 spa_load_note(spa, "RELOADING"); 4747 error = spa_ld_mos_init(spa, type); 4748 if (error != 0) 4749 return (error); 4750 4751 error = spa_ld_trusted_config(spa, type, B_TRUE); 4752 if (error != 0) 4753 return (error); 4754 4755 } else if (error != 0) { 4756 return (error); 4757 } 4758 4759 return (0); 4760 } 4761 4762 /* 4763 * Load an existing storage pool, using the config provided. This config 4764 * describes which vdevs are part of the pool and is later validated against 4765 * partial configs present in each vdev's label and an entire copy of the 4766 * config stored in the MOS. 4767 */ 4768 static int 4769 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport) 4770 { 4771 int error = 0; 4772 boolean_t missing_feat_write = B_FALSE; 4773 boolean_t checkpoint_rewind = 4774 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 4775 boolean_t update_config_cache = B_FALSE; 4776 4777 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4778 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 4779 4780 spa_load_note(spa, "LOADING"); 4781 4782 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache); 4783 if (error != 0) 4784 return (error); 4785 4786 /* 4787 * If we are rewinding to the checkpoint then we need to repeat 4788 * everything we've done so far in this function but this time 4789 * selecting the checkpointed uberblock and using that to open 4790 * the MOS. 4791 */ 4792 if (checkpoint_rewind) { 4793 /* 4794 * If we are rewinding to the checkpoint update config cache 4795 * anyway. 4796 */ 4797 update_config_cache = B_TRUE; 4798 4799 /* 4800 * Extract the checkpointed uberblock from the current MOS 4801 * and use this as the pool's uberblock from now on. If the 4802 * pool is imported as writeable we also write the checkpoint 4803 * uberblock to the labels, making the rewind permanent. 4804 */ 4805 error = spa_ld_checkpoint_rewind(spa); 4806 if (error != 0) 4807 return (error); 4808 4809 /* 4810 * Redo the loading process again with the 4811 * checkpointed uberblock. 4812 */ 4813 spa_ld_prepare_for_reload(spa); 4814 spa_load_note(spa, "LOADING checkpointed uberblock"); 4815 error = spa_ld_mos_with_trusted_config(spa, type, NULL); 4816 if (error != 0) 4817 return (error); 4818 } 4819 4820 /* 4821 * Retrieve the checkpoint txg if the pool has a checkpoint. 4822 */ 4823 error = spa_ld_read_checkpoint_txg(spa); 4824 if (error != 0) 4825 return (error); 4826 4827 /* 4828 * Retrieve the mapping of indirect vdevs. Those vdevs were removed 4829 * from the pool and their contents were re-mapped to other vdevs. Note 4830 * that everything that we read before this step must have been 4831 * rewritten on concrete vdevs after the last device removal was 4832 * initiated. Otherwise we could be reading from indirect vdevs before 4833 * we have loaded their mappings. 4834 */ 4835 error = spa_ld_open_indirect_vdev_metadata(spa); 4836 if (error != 0) 4837 return (error); 4838 4839 /* 4840 * Retrieve the full list of active features from the MOS and check if 4841 * they are all supported. 4842 */ 4843 error = spa_ld_check_features(spa, &missing_feat_write); 4844 if (error != 0) 4845 return (error); 4846 4847 /* 4848 * Load several special directories from the MOS needed by the dsl_pool 4849 * layer. 4850 */ 4851 error = spa_ld_load_special_directories(spa); 4852 if (error != 0) 4853 return (error); 4854 4855 /* 4856 * Retrieve pool properties from the MOS. 4857 */ 4858 error = spa_ld_get_props(spa); 4859 if (error != 0) 4860 return (error); 4861 4862 /* 4863 * Retrieve the list of auxiliary devices - cache devices and spares - 4864 * and open them. 4865 */ 4866 error = spa_ld_open_aux_vdevs(spa, type); 4867 if (error != 0) 4868 return (error); 4869 4870 /* 4871 * Load the metadata for all vdevs. Also check if unopenable devices 4872 * should be autoreplaced. 4873 */ 4874 error = spa_ld_load_vdev_metadata(spa); 4875 if (error != 0) 4876 return (error); 4877 4878 error = spa_ld_load_dedup_tables(spa); 4879 if (error != 0) 4880 return (error); 4881 4882 /* 4883 * Verify the logs now to make sure we don't have any unexpected errors 4884 * when we claim log blocks later. 4885 */ 4886 error = spa_ld_verify_logs(spa, type, ereport); 4887 if (error != 0) 4888 return (error); 4889 4890 if (missing_feat_write) { 4891 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT); 4892 4893 /* 4894 * At this point, we know that we can open the pool in 4895 * read-only mode but not read-write mode. We now have enough 4896 * information and can return to userland. 4897 */ 4898 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT, 4899 ENOTSUP)); 4900 } 4901 4902 /* 4903 * Traverse the last txgs to make sure the pool was left off in a safe 4904 * state. When performing an extreme rewind, we verify the whole pool, 4905 * which can take a very long time. 4906 */ 4907 error = spa_ld_verify_pool_data(spa); 4908 if (error != 0) 4909 return (error); 4910 4911 /* 4912 * Calculate the deflated space for the pool. This must be done before 4913 * we write anything to the pool because we'd need to update the space 4914 * accounting using the deflated sizes. 4915 */ 4916 spa_update_dspace(spa); 4917 4918 /* 4919 * We have now retrieved all the information we needed to open the 4920 * pool. If we are importing the pool in read-write mode, a few 4921 * additional steps must be performed to finish the import. 4922 */ 4923 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER || 4924 spa->spa_load_max_txg == UINT64_MAX)) { 4925 uint64_t config_cache_txg = spa->spa_config_txg; 4926 4927 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT); 4928 4929 /* 4930 * In case of a checkpoint rewind, log the original txg 4931 * of the checkpointed uberblock. 4932 */ 4933 if (checkpoint_rewind) { 4934 spa_history_log_internal(spa, "checkpoint rewind", 4935 NULL, "rewound state to txg=%llu", 4936 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg); 4937 } 4938 4939 /* 4940 * Traverse the ZIL and claim all blocks. 4941 */ 4942 spa_ld_claim_log_blocks(spa); 4943 4944 /* 4945 * Kick-off the syncing thread. 4946 */ 4947 spa->spa_sync_on = B_TRUE; 4948 txg_sync_start(spa->spa_dsl_pool); 4949 mmp_thread_start(spa); 4950 4951 /* 4952 * Wait for all claims to sync. We sync up to the highest 4953 * claimed log block birth time so that claimed log blocks 4954 * don't appear to be from the future. spa_claim_max_txg 4955 * will have been set for us by ZIL traversal operations 4956 * performed above. 4957 */ 4958 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 4959 4960 /* 4961 * Check if we need to request an update of the config. On the 4962 * next sync, we would update the config stored in vdev labels 4963 * and the cachefile (by default /etc/zfs/zpool.cache). 4964 */ 4965 spa_ld_check_for_config_update(spa, config_cache_txg, 4966 update_config_cache); 4967 4968 /* 4969 * Check if a rebuild was in progress and if so resume it. 4970 * Then check all DTLs to see if anything needs resilvering. 4971 * The resilver will be deferred if a rebuild was started. 4972 */ 4973 if (vdev_rebuild_active(spa->spa_root_vdev)) { 4974 vdev_rebuild_restart(spa); 4975 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 4976 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 4977 spa_async_request(spa, SPA_ASYNC_RESILVER); 4978 } 4979 4980 /* 4981 * Log the fact that we booted up (so that we can detect if 4982 * we rebooted in the middle of an operation). 4983 */ 4984 spa_history_log_version(spa, "open", NULL); 4985 4986 spa_restart_removal(spa); 4987 spa_spawn_aux_threads(spa); 4988 4989 /* 4990 * Delete any inconsistent datasets. 4991 * 4992 * Note: 4993 * Since we may be issuing deletes for clones here, 4994 * we make sure to do so after we've spawned all the 4995 * auxiliary threads above (from which the livelist 4996 * deletion zthr is part of). 4997 */ 4998 (void) dmu_objset_find(spa_name(spa), 4999 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 5000 5001 /* 5002 * Clean up any stale temporary dataset userrefs. 5003 */ 5004 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 5005 5006 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5007 vdev_initialize_restart(spa->spa_root_vdev); 5008 vdev_trim_restart(spa->spa_root_vdev); 5009 vdev_autotrim_restart(spa); 5010 spa_config_exit(spa, SCL_CONFIG, FTAG); 5011 } 5012 5013 spa_import_progress_remove(spa_guid(spa)); 5014 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 5015 5016 spa_load_note(spa, "LOADED"); 5017 5018 return (0); 5019 } 5020 5021 static int 5022 spa_load_retry(spa_t *spa, spa_load_state_t state) 5023 { 5024 spa_mode_t mode = spa->spa_mode; 5025 5026 spa_unload(spa); 5027 spa_deactivate(spa); 5028 5029 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 5030 5031 spa_activate(spa, mode); 5032 spa_async_suspend(spa); 5033 5034 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu", 5035 (u_longlong_t)spa->spa_load_max_txg); 5036 5037 return (spa_load(spa, state, SPA_IMPORT_EXISTING)); 5038 } 5039 5040 /* 5041 * If spa_load() fails this function will try loading prior txg's. If 5042 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 5043 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 5044 * function will not rewind the pool and will return the same error as 5045 * spa_load(). 5046 */ 5047 static int 5048 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request, 5049 int rewind_flags) 5050 { 5051 nvlist_t *loadinfo = NULL; 5052 nvlist_t *config = NULL; 5053 int load_error, rewind_error; 5054 uint64_t safe_rewind_txg; 5055 uint64_t min_txg; 5056 5057 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 5058 spa->spa_load_max_txg = spa->spa_load_txg; 5059 spa_set_log_state(spa, SPA_LOG_CLEAR); 5060 } else { 5061 spa->spa_load_max_txg = max_request; 5062 if (max_request != UINT64_MAX) 5063 spa->spa_extreme_rewind = B_TRUE; 5064 } 5065 5066 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING); 5067 if (load_error == 0) 5068 return (0); 5069 if (load_error == ZFS_ERR_NO_CHECKPOINT) { 5070 /* 5071 * When attempting checkpoint-rewind on a pool with no 5072 * checkpoint, we should not attempt to load uberblocks 5073 * from previous txgs when spa_load fails. 5074 */ 5075 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 5076 spa_import_progress_remove(spa_guid(spa)); 5077 return (load_error); 5078 } 5079 5080 if (spa->spa_root_vdev != NULL) 5081 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 5082 5083 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 5084 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 5085 5086 if (rewind_flags & ZPOOL_NEVER_REWIND) { 5087 nvlist_free(config); 5088 spa_import_progress_remove(spa_guid(spa)); 5089 return (load_error); 5090 } 5091 5092 if (state == SPA_LOAD_RECOVER) { 5093 /* Price of rolling back is discarding txgs, including log */ 5094 spa_set_log_state(spa, SPA_LOG_CLEAR); 5095 } else { 5096 /* 5097 * If we aren't rolling back save the load info from our first 5098 * import attempt so that we can restore it after attempting 5099 * to rewind. 5100 */ 5101 loadinfo = spa->spa_load_info; 5102 spa->spa_load_info = fnvlist_alloc(); 5103 } 5104 5105 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 5106 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 5107 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 5108 TXG_INITIAL : safe_rewind_txg; 5109 5110 /* 5111 * Continue as long as we're finding errors, we're still within 5112 * the acceptable rewind range, and we're still finding uberblocks 5113 */ 5114 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 5115 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 5116 if (spa->spa_load_max_txg < safe_rewind_txg) 5117 spa->spa_extreme_rewind = B_TRUE; 5118 rewind_error = spa_load_retry(spa, state); 5119 } 5120 5121 spa->spa_extreme_rewind = B_FALSE; 5122 spa->spa_load_max_txg = UINT64_MAX; 5123 5124 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 5125 spa_config_set(spa, config); 5126 else 5127 nvlist_free(config); 5128 5129 if (state == SPA_LOAD_RECOVER) { 5130 ASSERT3P(loadinfo, ==, NULL); 5131 spa_import_progress_remove(spa_guid(spa)); 5132 return (rewind_error); 5133 } else { 5134 /* Store the rewind info as part of the initial load info */ 5135 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 5136 spa->spa_load_info); 5137 5138 /* Restore the initial load info */ 5139 fnvlist_free(spa->spa_load_info); 5140 spa->spa_load_info = loadinfo; 5141 5142 spa_import_progress_remove(spa_guid(spa)); 5143 return (load_error); 5144 } 5145 } 5146 5147 /* 5148 * Pool Open/Import 5149 * 5150 * The import case is identical to an open except that the configuration is sent 5151 * down from userland, instead of grabbed from the configuration cache. For the 5152 * case of an open, the pool configuration will exist in the 5153 * POOL_STATE_UNINITIALIZED state. 5154 * 5155 * The stats information (gen/count/ustats) is used to gather vdev statistics at 5156 * the same time open the pool, without having to keep around the spa_t in some 5157 * ambiguous state. 5158 */ 5159 static int 5160 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 5161 nvlist_t **config) 5162 { 5163 spa_t *spa; 5164 spa_load_state_t state = SPA_LOAD_OPEN; 5165 int error; 5166 int locked = B_FALSE; 5167 int firstopen = B_FALSE; 5168 5169 *spapp = NULL; 5170 5171 /* 5172 * As disgusting as this is, we need to support recursive calls to this 5173 * function because dsl_dir_open() is called during spa_load(), and ends 5174 * up calling spa_open() again. The real fix is to figure out how to 5175 * avoid dsl_dir_open() calling this in the first place. 5176 */ 5177 if (MUTEX_NOT_HELD(&spa_namespace_lock)) { 5178 mutex_enter(&spa_namespace_lock); 5179 locked = B_TRUE; 5180 } 5181 5182 if ((spa = spa_lookup(pool)) == NULL) { 5183 if (locked) 5184 mutex_exit(&spa_namespace_lock); 5185 return (SET_ERROR(ENOENT)); 5186 } 5187 5188 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 5189 zpool_load_policy_t policy; 5190 5191 firstopen = B_TRUE; 5192 5193 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config, 5194 &policy); 5195 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 5196 state = SPA_LOAD_RECOVER; 5197 5198 spa_activate(spa, spa_mode_global); 5199 5200 if (state != SPA_LOAD_RECOVER) 5201 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 5202 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 5203 5204 zfs_dbgmsg("spa_open_common: opening %s", pool); 5205 error = spa_load_best(spa, state, policy.zlp_txg, 5206 policy.zlp_rewind); 5207 5208 if (error == EBADF) { 5209 /* 5210 * If vdev_validate() returns failure (indicated by 5211 * EBADF), it indicates that one of the vdevs indicates 5212 * that the pool has been exported or destroyed. If 5213 * this is the case, the config cache is out of sync and 5214 * we should remove the pool from the namespace. 5215 */ 5216 spa_unload(spa); 5217 spa_deactivate(spa); 5218 spa_write_cachefile(spa, B_TRUE, B_TRUE); 5219 spa_remove(spa); 5220 if (locked) 5221 mutex_exit(&spa_namespace_lock); 5222 return (SET_ERROR(ENOENT)); 5223 } 5224 5225 if (error) { 5226 /* 5227 * We can't open the pool, but we still have useful 5228 * information: the state of each vdev after the 5229 * attempted vdev_open(). Return this to the user. 5230 */ 5231 if (config != NULL && spa->spa_config) { 5232 *config = fnvlist_dup(spa->spa_config); 5233 fnvlist_add_nvlist(*config, 5234 ZPOOL_CONFIG_LOAD_INFO, 5235 spa->spa_load_info); 5236 } 5237 spa_unload(spa); 5238 spa_deactivate(spa); 5239 spa->spa_last_open_failed = error; 5240 if (locked) 5241 mutex_exit(&spa_namespace_lock); 5242 *spapp = NULL; 5243 return (error); 5244 } 5245 } 5246 5247 spa_open_ref(spa, tag); 5248 5249 if (config != NULL) 5250 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 5251 5252 /* 5253 * If we've recovered the pool, pass back any information we 5254 * gathered while doing the load. 5255 */ 5256 if (state == SPA_LOAD_RECOVER) { 5257 fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 5258 spa->spa_load_info); 5259 } 5260 5261 if (locked) { 5262 spa->spa_last_open_failed = 0; 5263 spa->spa_last_ubsync_txg = 0; 5264 spa->spa_load_txg = 0; 5265 mutex_exit(&spa_namespace_lock); 5266 } 5267 5268 if (firstopen) 5269 zvol_create_minors_recursive(spa_name(spa)); 5270 5271 *spapp = spa; 5272 5273 return (0); 5274 } 5275 5276 int 5277 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 5278 nvlist_t **config) 5279 { 5280 return (spa_open_common(name, spapp, tag, policy, config)); 5281 } 5282 5283 int 5284 spa_open(const char *name, spa_t **spapp, void *tag) 5285 { 5286 return (spa_open_common(name, spapp, tag, NULL, NULL)); 5287 } 5288 5289 /* 5290 * Lookup the given spa_t, incrementing the inject count in the process, 5291 * preventing it from being exported or destroyed. 5292 */ 5293 spa_t * 5294 spa_inject_addref(char *name) 5295 { 5296 spa_t *spa; 5297 5298 mutex_enter(&spa_namespace_lock); 5299 if ((spa = spa_lookup(name)) == NULL) { 5300 mutex_exit(&spa_namespace_lock); 5301 return (NULL); 5302 } 5303 spa->spa_inject_ref++; 5304 mutex_exit(&spa_namespace_lock); 5305 5306 return (spa); 5307 } 5308 5309 void 5310 spa_inject_delref(spa_t *spa) 5311 { 5312 mutex_enter(&spa_namespace_lock); 5313 spa->spa_inject_ref--; 5314 mutex_exit(&spa_namespace_lock); 5315 } 5316 5317 /* 5318 * Add spares device information to the nvlist. 5319 */ 5320 static void 5321 spa_add_spares(spa_t *spa, nvlist_t *config) 5322 { 5323 nvlist_t **spares; 5324 uint_t i, nspares; 5325 nvlist_t *nvroot; 5326 uint64_t guid; 5327 vdev_stat_t *vs; 5328 uint_t vsc; 5329 uint64_t pool; 5330 5331 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 5332 5333 if (spa->spa_spares.sav_count == 0) 5334 return; 5335 5336 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); 5337 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5338 ZPOOL_CONFIG_SPARES, &spares, &nspares)); 5339 if (nspares != 0) { 5340 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5341 (const nvlist_t * const *)spares, nspares); 5342 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5343 &spares, &nspares)); 5344 5345 /* 5346 * Go through and find any spares which have since been 5347 * repurposed as an active spare. If this is the case, update 5348 * their status appropriately. 5349 */ 5350 for (i = 0; i < nspares; i++) { 5351 guid = fnvlist_lookup_uint64(spares[i], 5352 ZPOOL_CONFIG_GUID); 5353 if (spa_spare_exists(guid, &pool, NULL) && 5354 pool != 0ULL) { 5355 VERIFY0(nvlist_lookup_uint64_array(spares[i], 5356 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, 5357 &vsc)); 5358 vs->vs_state = VDEV_STATE_CANT_OPEN; 5359 vs->vs_aux = VDEV_AUX_SPARED; 5360 } 5361 } 5362 } 5363 } 5364 5365 /* 5366 * Add l2cache device information to the nvlist, including vdev stats. 5367 */ 5368 static void 5369 spa_add_l2cache(spa_t *spa, nvlist_t *config) 5370 { 5371 nvlist_t **l2cache; 5372 uint_t i, j, nl2cache; 5373 nvlist_t *nvroot; 5374 uint64_t guid; 5375 vdev_t *vd; 5376 vdev_stat_t *vs; 5377 uint_t vsc; 5378 5379 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 5380 5381 if (spa->spa_l2cache.sav_count == 0) 5382 return; 5383 5384 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); 5385 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5386 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache)); 5387 if (nl2cache != 0) { 5388 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 5389 (const nvlist_t * const *)l2cache, nl2cache); 5390 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 5391 &l2cache, &nl2cache)); 5392 5393 /* 5394 * Update level 2 cache device stats. 5395 */ 5396 5397 for (i = 0; i < nl2cache; i++) { 5398 guid = fnvlist_lookup_uint64(l2cache[i], 5399 ZPOOL_CONFIG_GUID); 5400 5401 vd = NULL; 5402 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 5403 if (guid == 5404 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 5405 vd = spa->spa_l2cache.sav_vdevs[j]; 5406 break; 5407 } 5408 } 5409 ASSERT(vd != NULL); 5410 5411 VERIFY0(nvlist_lookup_uint64_array(l2cache[i], 5412 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)); 5413 vdev_get_stats(vd, vs); 5414 vdev_config_generate_stats(vd, l2cache[i]); 5415 5416 } 5417 } 5418 } 5419 5420 static void 5421 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features) 5422 { 5423 zap_cursor_t zc; 5424 zap_attribute_t za; 5425 5426 if (spa->spa_feat_for_read_obj != 0) { 5427 for (zap_cursor_init(&zc, spa->spa_meta_objset, 5428 spa->spa_feat_for_read_obj); 5429 zap_cursor_retrieve(&zc, &za) == 0; 5430 zap_cursor_advance(&zc)) { 5431 ASSERT(za.za_integer_length == sizeof (uint64_t) && 5432 za.za_num_integers == 1); 5433 VERIFY0(nvlist_add_uint64(features, za.za_name, 5434 za.za_first_integer)); 5435 } 5436 zap_cursor_fini(&zc); 5437 } 5438 5439 if (spa->spa_feat_for_write_obj != 0) { 5440 for (zap_cursor_init(&zc, spa->spa_meta_objset, 5441 spa->spa_feat_for_write_obj); 5442 zap_cursor_retrieve(&zc, &za) == 0; 5443 zap_cursor_advance(&zc)) { 5444 ASSERT(za.za_integer_length == sizeof (uint64_t) && 5445 za.za_num_integers == 1); 5446 VERIFY0(nvlist_add_uint64(features, za.za_name, 5447 za.za_first_integer)); 5448 } 5449 zap_cursor_fini(&zc); 5450 } 5451 } 5452 5453 static void 5454 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features) 5455 { 5456 int i; 5457 5458 for (i = 0; i < SPA_FEATURES; i++) { 5459 zfeature_info_t feature = spa_feature_table[i]; 5460 uint64_t refcount; 5461 5462 if (feature_get_refcount(spa, &feature, &refcount) != 0) 5463 continue; 5464 5465 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount)); 5466 } 5467 } 5468 5469 /* 5470 * Store a list of pool features and their reference counts in the 5471 * config. 5472 * 5473 * The first time this is called on a spa, allocate a new nvlist, fetch 5474 * the pool features and reference counts from disk, then save the list 5475 * in the spa. In subsequent calls on the same spa use the saved nvlist 5476 * and refresh its values from the cached reference counts. This 5477 * ensures we don't block here on I/O on a suspended pool so 'zpool 5478 * clear' can resume the pool. 5479 */ 5480 static void 5481 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 5482 { 5483 nvlist_t *features; 5484 5485 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 5486 5487 mutex_enter(&spa->spa_feat_stats_lock); 5488 features = spa->spa_feat_stats; 5489 5490 if (features != NULL) { 5491 spa_feature_stats_from_cache(spa, features); 5492 } else { 5493 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP)); 5494 spa->spa_feat_stats = features; 5495 spa_feature_stats_from_disk(spa, features); 5496 } 5497 5498 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 5499 features)); 5500 5501 mutex_exit(&spa->spa_feat_stats_lock); 5502 } 5503 5504 int 5505 spa_get_stats(const char *name, nvlist_t **config, 5506 char *altroot, size_t buflen) 5507 { 5508 int error; 5509 spa_t *spa; 5510 5511 *config = NULL; 5512 error = spa_open_common(name, &spa, FTAG, NULL, config); 5513 5514 if (spa != NULL) { 5515 /* 5516 * This still leaves a window of inconsistency where the spares 5517 * or l2cache devices could change and the config would be 5518 * self-inconsistent. 5519 */ 5520 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5521 5522 if (*config != NULL) { 5523 uint64_t loadtimes[2]; 5524 5525 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 5526 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 5527 fnvlist_add_uint64_array(*config, 5528 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2); 5529 5530 fnvlist_add_uint64(*config, 5531 ZPOOL_CONFIG_ERRCOUNT, 5532 spa_get_errlog_size(spa)); 5533 5534 if (spa_suspended(spa)) { 5535 fnvlist_add_uint64(*config, 5536 ZPOOL_CONFIG_SUSPENDED, 5537 spa->spa_failmode); 5538 fnvlist_add_uint64(*config, 5539 ZPOOL_CONFIG_SUSPENDED_REASON, 5540 spa->spa_suspended); 5541 } 5542 5543 spa_add_spares(spa, *config); 5544 spa_add_l2cache(spa, *config); 5545 spa_add_feature_stats(spa, *config); 5546 } 5547 } 5548 5549 /* 5550 * We want to get the alternate root even for faulted pools, so we cheat 5551 * and call spa_lookup() directly. 5552 */ 5553 if (altroot) { 5554 if (spa == NULL) { 5555 mutex_enter(&spa_namespace_lock); 5556 spa = spa_lookup(name); 5557 if (spa) 5558 spa_altroot(spa, altroot, buflen); 5559 else 5560 altroot[0] = '\0'; 5561 spa = NULL; 5562 mutex_exit(&spa_namespace_lock); 5563 } else { 5564 spa_altroot(spa, altroot, buflen); 5565 } 5566 } 5567 5568 if (spa != NULL) { 5569 spa_config_exit(spa, SCL_CONFIG, FTAG); 5570 spa_close(spa, FTAG); 5571 } 5572 5573 return (error); 5574 } 5575 5576 /* 5577 * Validate that the auxiliary device array is well formed. We must have an 5578 * array of nvlists, each which describes a valid leaf vdev. If this is an 5579 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 5580 * specified, as long as they are well-formed. 5581 */ 5582 static int 5583 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 5584 spa_aux_vdev_t *sav, const char *config, uint64_t version, 5585 vdev_labeltype_t label) 5586 { 5587 nvlist_t **dev; 5588 uint_t i, ndev; 5589 vdev_t *vd; 5590 int error; 5591 5592 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5593 5594 /* 5595 * It's acceptable to have no devs specified. 5596 */ 5597 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 5598 return (0); 5599 5600 if (ndev == 0) 5601 return (SET_ERROR(EINVAL)); 5602 5603 /* 5604 * Make sure the pool is formatted with a version that supports this 5605 * device type. 5606 */ 5607 if (spa_version(spa) < version) 5608 return (SET_ERROR(ENOTSUP)); 5609 5610 /* 5611 * Set the pending device list so we correctly handle device in-use 5612 * checking. 5613 */ 5614 sav->sav_pending = dev; 5615 sav->sav_npending = ndev; 5616 5617 for (i = 0; i < ndev; i++) { 5618 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 5619 mode)) != 0) 5620 goto out; 5621 5622 if (!vd->vdev_ops->vdev_op_leaf) { 5623 vdev_free(vd); 5624 error = SET_ERROR(EINVAL); 5625 goto out; 5626 } 5627 5628 vd->vdev_top = vd; 5629 5630 if ((error = vdev_open(vd)) == 0 && 5631 (error = vdev_label_init(vd, crtxg, label)) == 0) { 5632 fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 5633 vd->vdev_guid); 5634 } 5635 5636 vdev_free(vd); 5637 5638 if (error && 5639 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 5640 goto out; 5641 else 5642 error = 0; 5643 } 5644 5645 out: 5646 sav->sav_pending = NULL; 5647 sav->sav_npending = 0; 5648 return (error); 5649 } 5650 5651 static int 5652 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 5653 { 5654 int error; 5655 5656 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5657 5658 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 5659 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 5660 VDEV_LABEL_SPARE)) != 0) { 5661 return (error); 5662 } 5663 5664 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 5665 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 5666 VDEV_LABEL_L2CACHE)); 5667 } 5668 5669 static void 5670 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 5671 const char *config) 5672 { 5673 int i; 5674 5675 if (sav->sav_config != NULL) { 5676 nvlist_t **olddevs; 5677 uint_t oldndevs; 5678 nvlist_t **newdevs; 5679 5680 /* 5681 * Generate new dev list by concatenating with the 5682 * current dev list. 5683 */ 5684 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config, 5685 &olddevs, &oldndevs)); 5686 5687 newdevs = kmem_alloc(sizeof (void *) * 5688 (ndevs + oldndevs), KM_SLEEP); 5689 for (i = 0; i < oldndevs; i++) 5690 newdevs[i] = fnvlist_dup(olddevs[i]); 5691 for (i = 0; i < ndevs; i++) 5692 newdevs[i + oldndevs] = fnvlist_dup(devs[i]); 5693 5694 fnvlist_remove(sav->sav_config, config); 5695 5696 fnvlist_add_nvlist_array(sav->sav_config, config, 5697 (const nvlist_t * const *)newdevs, ndevs + oldndevs); 5698 for (i = 0; i < oldndevs + ndevs; i++) 5699 nvlist_free(newdevs[i]); 5700 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 5701 } else { 5702 /* 5703 * Generate a new dev list. 5704 */ 5705 sav->sav_config = fnvlist_alloc(); 5706 fnvlist_add_nvlist_array(sav->sav_config, config, 5707 (const nvlist_t * const *)devs, ndevs); 5708 } 5709 } 5710 5711 /* 5712 * Stop and drop level 2 ARC devices 5713 */ 5714 void 5715 spa_l2cache_drop(spa_t *spa) 5716 { 5717 vdev_t *vd; 5718 int i; 5719 spa_aux_vdev_t *sav = &spa->spa_l2cache; 5720 5721 for (i = 0; i < sav->sav_count; i++) { 5722 uint64_t pool; 5723 5724 vd = sav->sav_vdevs[i]; 5725 ASSERT(vd != NULL); 5726 5727 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 5728 pool != 0ULL && l2arc_vdev_present(vd)) 5729 l2arc_remove_vdev(vd); 5730 } 5731 } 5732 5733 /* 5734 * Verify encryption parameters for spa creation. If we are encrypting, we must 5735 * have the encryption feature flag enabled. 5736 */ 5737 static int 5738 spa_create_check_encryption_params(dsl_crypto_params_t *dcp, 5739 boolean_t has_encryption) 5740 { 5741 if (dcp->cp_crypt != ZIO_CRYPT_OFF && 5742 dcp->cp_crypt != ZIO_CRYPT_INHERIT && 5743 !has_encryption) 5744 return (SET_ERROR(ENOTSUP)); 5745 5746 return (dmu_objset_create_crypt_check(NULL, dcp, NULL)); 5747 } 5748 5749 /* 5750 * Pool Creation 5751 */ 5752 int 5753 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 5754 nvlist_t *zplprops, dsl_crypto_params_t *dcp) 5755 { 5756 spa_t *spa; 5757 char *altroot = NULL; 5758 vdev_t *rvd; 5759 dsl_pool_t *dp; 5760 dmu_tx_t *tx; 5761 int error = 0; 5762 uint64_t txg = TXG_INITIAL; 5763 nvlist_t **spares, **l2cache; 5764 uint_t nspares, nl2cache; 5765 uint64_t version, obj, ndraid = 0; 5766 boolean_t has_features; 5767 boolean_t has_encryption; 5768 boolean_t has_allocclass; 5769 spa_feature_t feat; 5770 char *feat_name; 5771 char *poolname; 5772 nvlist_t *nvl; 5773 5774 if (props == NULL || 5775 nvlist_lookup_string(props, "tname", &poolname) != 0) 5776 poolname = (char *)pool; 5777 5778 /* 5779 * If this pool already exists, return failure. 5780 */ 5781 mutex_enter(&spa_namespace_lock); 5782 if (spa_lookup(poolname) != NULL) { 5783 mutex_exit(&spa_namespace_lock); 5784 return (SET_ERROR(EEXIST)); 5785 } 5786 5787 /* 5788 * Allocate a new spa_t structure. 5789 */ 5790 nvl = fnvlist_alloc(); 5791 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool); 5792 (void) nvlist_lookup_string(props, 5793 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5794 spa = spa_add(poolname, nvl, altroot); 5795 fnvlist_free(nvl); 5796 spa_activate(spa, spa_mode_global); 5797 5798 if (props && (error = spa_prop_validate(spa, props))) { 5799 spa_deactivate(spa); 5800 spa_remove(spa); 5801 mutex_exit(&spa_namespace_lock); 5802 return (error); 5803 } 5804 5805 /* 5806 * Temporary pool names should never be written to disk. 5807 */ 5808 if (poolname != pool) 5809 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME; 5810 5811 has_features = B_FALSE; 5812 has_encryption = B_FALSE; 5813 has_allocclass = B_FALSE; 5814 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 5815 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 5816 if (zpool_prop_feature(nvpair_name(elem))) { 5817 has_features = B_TRUE; 5818 5819 feat_name = strchr(nvpair_name(elem), '@') + 1; 5820 VERIFY0(zfeature_lookup_name(feat_name, &feat)); 5821 if (feat == SPA_FEATURE_ENCRYPTION) 5822 has_encryption = B_TRUE; 5823 if (feat == SPA_FEATURE_ALLOCATION_CLASSES) 5824 has_allocclass = B_TRUE; 5825 } 5826 } 5827 5828 /* verify encryption params, if they were provided */ 5829 if (dcp != NULL) { 5830 error = spa_create_check_encryption_params(dcp, has_encryption); 5831 if (error != 0) { 5832 spa_deactivate(spa); 5833 spa_remove(spa); 5834 mutex_exit(&spa_namespace_lock); 5835 return (error); 5836 } 5837 } 5838 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) { 5839 spa_deactivate(spa); 5840 spa_remove(spa); 5841 mutex_exit(&spa_namespace_lock); 5842 return (ENOTSUP); 5843 } 5844 5845 if (has_features || nvlist_lookup_uint64(props, 5846 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 5847 version = SPA_VERSION; 5848 } 5849 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5850 5851 spa->spa_first_txg = txg; 5852 spa->spa_uberblock.ub_txg = txg - 1; 5853 spa->spa_uberblock.ub_version = version; 5854 spa->spa_ubsync = spa->spa_uberblock; 5855 spa->spa_load_state = SPA_LOAD_CREATE; 5856 spa->spa_removing_phys.sr_state = DSS_NONE; 5857 spa->spa_removing_phys.sr_removing_vdev = -1; 5858 spa->spa_removing_phys.sr_prev_indirect_vdev = -1; 5859 spa->spa_indirect_vdevs_loaded = B_TRUE; 5860 5861 /* 5862 * Create "The Godfather" zio to hold all async IOs 5863 */ 5864 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 5865 KM_SLEEP); 5866 for (int i = 0; i < max_ncpus; i++) { 5867 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 5868 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 5869 ZIO_FLAG_GODFATHER); 5870 } 5871 5872 /* 5873 * Create the root vdev. 5874 */ 5875 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5876 5877 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 5878 5879 ASSERT(error != 0 || rvd != NULL); 5880 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 5881 5882 if (error == 0 && !zfs_allocatable_devs(nvroot)) 5883 error = SET_ERROR(EINVAL); 5884 5885 if (error == 0 && 5886 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 5887 (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 && 5888 (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) { 5889 /* 5890 * instantiate the metaslab groups (this will dirty the vdevs) 5891 * we can no longer error exit past this point 5892 */ 5893 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) { 5894 vdev_t *vd = rvd->vdev_child[c]; 5895 5896 vdev_metaslab_set_size(vd); 5897 vdev_expand(vd, txg); 5898 } 5899 } 5900 5901 spa_config_exit(spa, SCL_ALL, FTAG); 5902 5903 if (error != 0) { 5904 spa_unload(spa); 5905 spa_deactivate(spa); 5906 spa_remove(spa); 5907 mutex_exit(&spa_namespace_lock); 5908 return (error); 5909 } 5910 5911 /* 5912 * Get the list of spares, if specified. 5913 */ 5914 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5915 &spares, &nspares) == 0) { 5916 spa->spa_spares.sav_config = fnvlist_alloc(); 5917 fnvlist_add_nvlist_array(spa->spa_spares.sav_config, 5918 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, 5919 nspares); 5920 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5921 spa_load_spares(spa); 5922 spa_config_exit(spa, SCL_ALL, FTAG); 5923 spa->spa_spares.sav_sync = B_TRUE; 5924 } 5925 5926 /* 5927 * Get the list of level 2 cache devices, if specified. 5928 */ 5929 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 5930 &l2cache, &nl2cache) == 0) { 5931 VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config, 5932 NV_UNIQUE_NAME, KM_SLEEP)); 5933 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 5934 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache, 5935 nl2cache); 5936 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5937 spa_load_l2cache(spa); 5938 spa_config_exit(spa, SCL_ALL, FTAG); 5939 spa->spa_l2cache.sav_sync = B_TRUE; 5940 } 5941 5942 spa->spa_is_initializing = B_TRUE; 5943 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg); 5944 spa->spa_is_initializing = B_FALSE; 5945 5946 /* 5947 * Create DDTs (dedup tables). 5948 */ 5949 ddt_create(spa); 5950 5951 spa_update_dspace(spa); 5952 5953 tx = dmu_tx_create_assigned(dp, txg); 5954 5955 /* 5956 * Create the pool's history object. 5957 */ 5958 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history) 5959 spa_history_create_obj(spa, tx); 5960 5961 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE); 5962 spa_history_log_version(spa, "create", tx); 5963 5964 /* 5965 * Create the pool config object. 5966 */ 5967 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 5968 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 5969 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 5970 5971 if (zap_add(spa->spa_meta_objset, 5972 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 5973 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 5974 cmn_err(CE_PANIC, "failed to add pool config"); 5975 } 5976 5977 if (zap_add(spa->spa_meta_objset, 5978 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 5979 sizeof (uint64_t), 1, &version, tx) != 0) { 5980 cmn_err(CE_PANIC, "failed to add pool version"); 5981 } 5982 5983 /* Newly created pools with the right version are always deflated. */ 5984 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 5985 spa->spa_deflate = TRUE; 5986 if (zap_add(spa->spa_meta_objset, 5987 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 5988 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 5989 cmn_err(CE_PANIC, "failed to add deflate"); 5990 } 5991 } 5992 5993 /* 5994 * Create the deferred-free bpobj. Turn off compression 5995 * because sync-to-convergence takes longer if the blocksize 5996 * keeps changing. 5997 */ 5998 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 5999 dmu_object_set_compress(spa->spa_meta_objset, obj, 6000 ZIO_COMPRESS_OFF, tx); 6001 if (zap_add(spa->spa_meta_objset, 6002 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 6003 sizeof (uint64_t), 1, &obj, tx) != 0) { 6004 cmn_err(CE_PANIC, "failed to add bpobj"); 6005 } 6006 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 6007 spa->spa_meta_objset, obj)); 6008 6009 /* 6010 * Generate some random noise for salted checksums to operate on. 6011 */ 6012 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 6013 sizeof (spa->spa_cksum_salt.zcs_bytes)); 6014 6015 /* 6016 * Set pool properties. 6017 */ 6018 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 6019 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 6020 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 6021 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 6022 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST); 6023 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM); 6024 6025 if (props != NULL) { 6026 spa_configfile_set(spa, props, B_FALSE); 6027 spa_sync_props(props, tx); 6028 } 6029 6030 for (int i = 0; i < ndraid; i++) 6031 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx); 6032 6033 dmu_tx_commit(tx); 6034 6035 spa->spa_sync_on = B_TRUE; 6036 txg_sync_start(dp); 6037 mmp_thread_start(spa); 6038 txg_wait_synced(dp, txg); 6039 6040 spa_spawn_aux_threads(spa); 6041 6042 spa_write_cachefile(spa, B_FALSE, B_TRUE); 6043 6044 /* 6045 * Don't count references from objsets that are already closed 6046 * and are making their way through the eviction process. 6047 */ 6048 spa_evicting_os_wait(spa); 6049 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 6050 spa->spa_load_state = SPA_LOAD_NONE; 6051 6052 spa_import_os(spa); 6053 6054 mutex_exit(&spa_namespace_lock); 6055 6056 return (0); 6057 } 6058 6059 /* 6060 * Import a non-root pool into the system. 6061 */ 6062 int 6063 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 6064 { 6065 spa_t *spa; 6066 char *altroot = NULL; 6067 spa_load_state_t state = SPA_LOAD_IMPORT; 6068 zpool_load_policy_t policy; 6069 spa_mode_t mode = spa_mode_global; 6070 uint64_t readonly = B_FALSE; 6071 int error; 6072 nvlist_t *nvroot; 6073 nvlist_t **spares, **l2cache; 6074 uint_t nspares, nl2cache; 6075 6076 /* 6077 * If a pool with this name exists, return failure. 6078 */ 6079 mutex_enter(&spa_namespace_lock); 6080 if (spa_lookup(pool) != NULL) { 6081 mutex_exit(&spa_namespace_lock); 6082 return (SET_ERROR(EEXIST)); 6083 } 6084 6085 /* 6086 * Create and initialize the spa structure. 6087 */ 6088 (void) nvlist_lookup_string(props, 6089 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 6090 (void) nvlist_lookup_uint64(props, 6091 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 6092 if (readonly) 6093 mode = SPA_MODE_READ; 6094 spa = spa_add(pool, config, altroot); 6095 spa->spa_import_flags = flags; 6096 6097 /* 6098 * Verbatim import - Take a pool and insert it into the namespace 6099 * as if it had been loaded at boot. 6100 */ 6101 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 6102 if (props != NULL) 6103 spa_configfile_set(spa, props, B_FALSE); 6104 6105 spa_write_cachefile(spa, B_FALSE, B_TRUE); 6106 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 6107 zfs_dbgmsg("spa_import: verbatim import of %s", pool); 6108 mutex_exit(&spa_namespace_lock); 6109 return (0); 6110 } 6111 6112 spa_activate(spa, mode); 6113 6114 /* 6115 * Don't start async tasks until we know everything is healthy. 6116 */ 6117 spa_async_suspend(spa); 6118 6119 zpool_get_load_policy(config, &policy); 6120 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 6121 state = SPA_LOAD_RECOVER; 6122 6123 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT; 6124 6125 if (state != SPA_LOAD_RECOVER) { 6126 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 6127 zfs_dbgmsg("spa_import: importing %s", pool); 6128 } else { 6129 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld " 6130 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg); 6131 } 6132 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind); 6133 6134 /* 6135 * Propagate anything learned while loading the pool and pass it 6136 * back to caller (i.e. rewind info, missing devices, etc). 6137 */ 6138 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info); 6139 6140 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6141 /* 6142 * Toss any existing sparelist, as it doesn't have any validity 6143 * anymore, and conflicts with spa_has_spare(). 6144 */ 6145 if (spa->spa_spares.sav_config) { 6146 nvlist_free(spa->spa_spares.sav_config); 6147 spa->spa_spares.sav_config = NULL; 6148 spa_load_spares(spa); 6149 } 6150 if (spa->spa_l2cache.sav_config) { 6151 nvlist_free(spa->spa_l2cache.sav_config); 6152 spa->spa_l2cache.sav_config = NULL; 6153 spa_load_l2cache(spa); 6154 } 6155 6156 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); 6157 spa_config_exit(spa, SCL_ALL, FTAG); 6158 6159 if (props != NULL) 6160 spa_configfile_set(spa, props, B_FALSE); 6161 6162 if (error != 0 || (props && spa_writeable(spa) && 6163 (error = spa_prop_set(spa, props)))) { 6164 spa_unload(spa); 6165 spa_deactivate(spa); 6166 spa_remove(spa); 6167 mutex_exit(&spa_namespace_lock); 6168 return (error); 6169 } 6170 6171 spa_async_resume(spa); 6172 6173 /* 6174 * Override any spares and level 2 cache devices as specified by 6175 * the user, as these may have correct device names/devids, etc. 6176 */ 6177 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 6178 &spares, &nspares) == 0) { 6179 if (spa->spa_spares.sav_config) 6180 fnvlist_remove(spa->spa_spares.sav_config, 6181 ZPOOL_CONFIG_SPARES); 6182 else 6183 spa->spa_spares.sav_config = fnvlist_alloc(); 6184 fnvlist_add_nvlist_array(spa->spa_spares.sav_config, 6185 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, 6186 nspares); 6187 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6188 spa_load_spares(spa); 6189 spa_config_exit(spa, SCL_ALL, FTAG); 6190 spa->spa_spares.sav_sync = B_TRUE; 6191 } 6192 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 6193 &l2cache, &nl2cache) == 0) { 6194 if (spa->spa_l2cache.sav_config) 6195 fnvlist_remove(spa->spa_l2cache.sav_config, 6196 ZPOOL_CONFIG_L2CACHE); 6197 else 6198 spa->spa_l2cache.sav_config = fnvlist_alloc(); 6199 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 6200 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache, 6201 nl2cache); 6202 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6203 spa_load_l2cache(spa); 6204 spa_config_exit(spa, SCL_ALL, FTAG); 6205 spa->spa_l2cache.sav_sync = B_TRUE; 6206 } 6207 6208 /* 6209 * Check for any removed devices. 6210 */ 6211 if (spa->spa_autoreplace) { 6212 spa_aux_check_removed(&spa->spa_spares); 6213 spa_aux_check_removed(&spa->spa_l2cache); 6214 } 6215 6216 if (spa_writeable(spa)) { 6217 /* 6218 * Update the config cache to include the newly-imported pool. 6219 */ 6220 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 6221 } 6222 6223 /* 6224 * It's possible that the pool was expanded while it was exported. 6225 * We kick off an async task to handle this for us. 6226 */ 6227 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 6228 6229 spa_history_log_version(spa, "import", NULL); 6230 6231 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 6232 6233 mutex_exit(&spa_namespace_lock); 6234 6235 zvol_create_minors_recursive(pool); 6236 6237 spa_import_os(spa); 6238 6239 return (0); 6240 } 6241 6242 nvlist_t * 6243 spa_tryimport(nvlist_t *tryconfig) 6244 { 6245 nvlist_t *config = NULL; 6246 char *poolname, *cachefile; 6247 spa_t *spa; 6248 uint64_t state; 6249 int error; 6250 zpool_load_policy_t policy; 6251 6252 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 6253 return (NULL); 6254 6255 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 6256 return (NULL); 6257 6258 /* 6259 * Create and initialize the spa structure. 6260 */ 6261 mutex_enter(&spa_namespace_lock); 6262 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 6263 spa_activate(spa, SPA_MODE_READ); 6264 6265 /* 6266 * Rewind pool if a max txg was provided. 6267 */ 6268 zpool_get_load_policy(spa->spa_config, &policy); 6269 if (policy.zlp_txg != UINT64_MAX) { 6270 spa->spa_load_max_txg = policy.zlp_txg; 6271 spa->spa_extreme_rewind = B_TRUE; 6272 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld", 6273 poolname, (longlong_t)policy.zlp_txg); 6274 } else { 6275 zfs_dbgmsg("spa_tryimport: importing %s", poolname); 6276 } 6277 6278 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile) 6279 == 0) { 6280 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile); 6281 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 6282 } else { 6283 spa->spa_config_source = SPA_CONFIG_SRC_SCAN; 6284 } 6285 6286 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING); 6287 6288 /* 6289 * If 'tryconfig' was at least parsable, return the current config. 6290 */ 6291 if (spa->spa_root_vdev != NULL) { 6292 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 6293 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname); 6294 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state); 6295 fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 6296 spa->spa_uberblock.ub_timestamp); 6297 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 6298 spa->spa_load_info); 6299 fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA, 6300 spa->spa_errata); 6301 6302 /* 6303 * If the bootfs property exists on this pool then we 6304 * copy it out so that external consumers can tell which 6305 * pools are bootable. 6306 */ 6307 if ((!error || error == EEXIST) && spa->spa_bootfs) { 6308 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6309 6310 /* 6311 * We have to play games with the name since the 6312 * pool was opened as TRYIMPORT_NAME. 6313 */ 6314 if (dsl_dsobj_to_dsname(spa_name(spa), 6315 spa->spa_bootfs, tmpname) == 0) { 6316 char *cp; 6317 char *dsname; 6318 6319 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6320 6321 cp = strchr(tmpname, '/'); 6322 if (cp == NULL) { 6323 (void) strlcpy(dsname, tmpname, 6324 MAXPATHLEN); 6325 } else { 6326 (void) snprintf(dsname, MAXPATHLEN, 6327 "%s/%s", poolname, ++cp); 6328 } 6329 fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS, 6330 dsname); 6331 kmem_free(dsname, MAXPATHLEN); 6332 } 6333 kmem_free(tmpname, MAXPATHLEN); 6334 } 6335 6336 /* 6337 * Add the list of hot spares and level 2 cache devices. 6338 */ 6339 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6340 spa_add_spares(spa, config); 6341 spa_add_l2cache(spa, config); 6342 spa_config_exit(spa, SCL_CONFIG, FTAG); 6343 } 6344 6345 spa_unload(spa); 6346 spa_deactivate(spa); 6347 spa_remove(spa); 6348 mutex_exit(&spa_namespace_lock); 6349 6350 return (config); 6351 } 6352 6353 /* 6354 * Pool export/destroy 6355 * 6356 * The act of destroying or exporting a pool is very simple. We make sure there 6357 * is no more pending I/O and any references to the pool are gone. Then, we 6358 * update the pool state and sync all the labels to disk, removing the 6359 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 6360 * we don't sync the labels or remove the configuration cache. 6361 */ 6362 static int 6363 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig, 6364 boolean_t force, boolean_t hardforce) 6365 { 6366 int error; 6367 spa_t *spa; 6368 6369 if (oldconfig) 6370 *oldconfig = NULL; 6371 6372 if (!(spa_mode_global & SPA_MODE_WRITE)) 6373 return (SET_ERROR(EROFS)); 6374 6375 mutex_enter(&spa_namespace_lock); 6376 if ((spa = spa_lookup(pool)) == NULL) { 6377 mutex_exit(&spa_namespace_lock); 6378 return (SET_ERROR(ENOENT)); 6379 } 6380 6381 if (spa->spa_is_exporting) { 6382 /* the pool is being exported by another thread */ 6383 mutex_exit(&spa_namespace_lock); 6384 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS)); 6385 } 6386 spa->spa_is_exporting = B_TRUE; 6387 6388 /* 6389 * Put a hold on the pool, drop the namespace lock, stop async tasks, 6390 * reacquire the namespace lock, and see if we can export. 6391 */ 6392 spa_open_ref(spa, FTAG); 6393 mutex_exit(&spa_namespace_lock); 6394 spa_async_suspend(spa); 6395 if (spa->spa_zvol_taskq) { 6396 zvol_remove_minors(spa, spa_name(spa), B_TRUE); 6397 taskq_wait(spa->spa_zvol_taskq); 6398 } 6399 mutex_enter(&spa_namespace_lock); 6400 spa_close(spa, FTAG); 6401 6402 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 6403 goto export_spa; 6404 /* 6405 * The pool will be in core if it's openable, in which case we can 6406 * modify its state. Objsets may be open only because they're dirty, 6407 * so we have to force it to sync before checking spa_refcnt. 6408 */ 6409 if (spa->spa_sync_on) { 6410 txg_wait_synced(spa->spa_dsl_pool, 0); 6411 spa_evicting_os_wait(spa); 6412 } 6413 6414 /* 6415 * A pool cannot be exported or destroyed if there are active 6416 * references. If we are resetting a pool, allow references by 6417 * fault injection handlers. 6418 */ 6419 if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) { 6420 error = SET_ERROR(EBUSY); 6421 goto fail; 6422 } 6423 6424 if (spa->spa_sync_on) { 6425 /* 6426 * A pool cannot be exported if it has an active shared spare. 6427 * This is to prevent other pools stealing the active spare 6428 * from an exported pool. At user's own will, such pool can 6429 * be forcedly exported. 6430 */ 6431 if (!force && new_state == POOL_STATE_EXPORTED && 6432 spa_has_active_shared_spare(spa)) { 6433 error = SET_ERROR(EXDEV); 6434 goto fail; 6435 } 6436 6437 /* 6438 * We're about to export or destroy this pool. Make sure 6439 * we stop all initialization and trim activity here before 6440 * we set the spa_final_txg. This will ensure that all 6441 * dirty data resulting from the initialization is 6442 * committed to disk before we unload the pool. 6443 */ 6444 if (spa->spa_root_vdev != NULL) { 6445 vdev_t *rvd = spa->spa_root_vdev; 6446 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE); 6447 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE); 6448 vdev_autotrim_stop_all(spa); 6449 vdev_rebuild_stop_all(spa); 6450 } 6451 6452 /* 6453 * We want this to be reflected on every label, 6454 * so mark them all dirty. spa_unload() will do the 6455 * final sync that pushes these changes out. 6456 */ 6457 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 6458 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6459 spa->spa_state = new_state; 6460 vdev_config_dirty(spa->spa_root_vdev); 6461 spa_config_exit(spa, SCL_ALL, FTAG); 6462 } 6463 6464 /* 6465 * If the log space map feature is enabled and the pool is 6466 * getting exported (but not destroyed), we want to spend some 6467 * time flushing as many metaslabs as we can in an attempt to 6468 * destroy log space maps and save import time. This has to be 6469 * done before we set the spa_final_txg, otherwise 6470 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs. 6471 * spa_should_flush_logs_on_unload() should be called after 6472 * spa_state has been set to the new_state. 6473 */ 6474 if (spa_should_flush_logs_on_unload(spa)) 6475 spa_unload_log_sm_flush_all(spa); 6476 6477 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 6478 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6479 spa->spa_final_txg = spa_last_synced_txg(spa) + 6480 TXG_DEFER_SIZE + 1; 6481 spa_config_exit(spa, SCL_ALL, FTAG); 6482 } 6483 } 6484 6485 export_spa: 6486 spa_export_os(spa); 6487 6488 if (new_state == POOL_STATE_DESTROYED) 6489 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY); 6490 else if (new_state == POOL_STATE_EXPORTED) 6491 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT); 6492 6493 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6494 spa_unload(spa); 6495 spa_deactivate(spa); 6496 } 6497 6498 if (oldconfig && spa->spa_config) 6499 *oldconfig = fnvlist_dup(spa->spa_config); 6500 6501 if (new_state != POOL_STATE_UNINITIALIZED) { 6502 if (!hardforce) 6503 spa_write_cachefile(spa, B_TRUE, B_TRUE); 6504 spa_remove(spa); 6505 } else { 6506 /* 6507 * If spa_remove() is not called for this spa_t and 6508 * there is any possibility that it can be reused, 6509 * we make sure to reset the exporting flag. 6510 */ 6511 spa->spa_is_exporting = B_FALSE; 6512 } 6513 6514 mutex_exit(&spa_namespace_lock); 6515 return (0); 6516 6517 fail: 6518 spa->spa_is_exporting = B_FALSE; 6519 spa_async_resume(spa); 6520 mutex_exit(&spa_namespace_lock); 6521 return (error); 6522 } 6523 6524 /* 6525 * Destroy a storage pool. 6526 */ 6527 int 6528 spa_destroy(const char *pool) 6529 { 6530 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 6531 B_FALSE, B_FALSE)); 6532 } 6533 6534 /* 6535 * Export a storage pool. 6536 */ 6537 int 6538 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force, 6539 boolean_t hardforce) 6540 { 6541 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 6542 force, hardforce)); 6543 } 6544 6545 /* 6546 * Similar to spa_export(), this unloads the spa_t without actually removing it 6547 * from the namespace in any way. 6548 */ 6549 int 6550 spa_reset(const char *pool) 6551 { 6552 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 6553 B_FALSE, B_FALSE)); 6554 } 6555 6556 /* 6557 * ========================================================================== 6558 * Device manipulation 6559 * ========================================================================== 6560 */ 6561 6562 /* 6563 * This is called as a synctask to increment the draid feature flag 6564 */ 6565 static void 6566 spa_draid_feature_incr(void *arg, dmu_tx_t *tx) 6567 { 6568 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 6569 int draid = (int)(uintptr_t)arg; 6570 6571 for (int c = 0; c < draid; c++) 6572 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx); 6573 } 6574 6575 /* 6576 * Add a device to a storage pool. 6577 */ 6578 int 6579 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 6580 { 6581 uint64_t txg, ndraid = 0; 6582 int error; 6583 vdev_t *rvd = spa->spa_root_vdev; 6584 vdev_t *vd, *tvd; 6585 nvlist_t **spares, **l2cache; 6586 uint_t nspares, nl2cache; 6587 6588 ASSERT(spa_writeable(spa)); 6589 6590 txg = spa_vdev_enter(spa); 6591 6592 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 6593 VDEV_ALLOC_ADD)) != 0) 6594 return (spa_vdev_exit(spa, NULL, txg, error)); 6595 6596 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 6597 6598 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 6599 &nspares) != 0) 6600 nspares = 0; 6601 6602 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 6603 &nl2cache) != 0) 6604 nl2cache = 0; 6605 6606 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 6607 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 6608 6609 if (vd->vdev_children != 0 && 6610 (error = vdev_create(vd, txg, B_FALSE)) != 0) { 6611 return (spa_vdev_exit(spa, vd, txg, error)); 6612 } 6613 6614 /* 6615 * The virtual dRAID spares must be added after vdev tree is created 6616 * and the vdev guids are generated. The guid of their associated 6617 * dRAID is stored in the config and used when opening the spare. 6618 */ 6619 if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid, 6620 rvd->vdev_children)) == 0) { 6621 if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot, 6622 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0) 6623 nspares = 0; 6624 } else { 6625 return (spa_vdev_exit(spa, vd, txg, error)); 6626 } 6627 6628 /* 6629 * We must validate the spares and l2cache devices after checking the 6630 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 6631 */ 6632 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 6633 return (spa_vdev_exit(spa, vd, txg, error)); 6634 6635 /* 6636 * If we are in the middle of a device removal, we can only add 6637 * devices which match the existing devices in the pool. 6638 * If we are in the middle of a removal, or have some indirect 6639 * vdevs, we can not add raidz or dRAID top levels. 6640 */ 6641 if (spa->spa_vdev_removal != NULL || 6642 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { 6643 for (int c = 0; c < vd->vdev_children; c++) { 6644 tvd = vd->vdev_child[c]; 6645 if (spa->spa_vdev_removal != NULL && 6646 tvd->vdev_ashift != spa->spa_max_ashift) { 6647 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 6648 } 6649 /* Fail if top level vdev is raidz or a dRAID */ 6650 if (vdev_get_nparity(tvd) != 0) 6651 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 6652 6653 /* 6654 * Need the top level mirror to be 6655 * a mirror of leaf vdevs only 6656 */ 6657 if (tvd->vdev_ops == &vdev_mirror_ops) { 6658 for (uint64_t cid = 0; 6659 cid < tvd->vdev_children; cid++) { 6660 vdev_t *cvd = tvd->vdev_child[cid]; 6661 if (!cvd->vdev_ops->vdev_op_leaf) { 6662 return (spa_vdev_exit(spa, vd, 6663 txg, EINVAL)); 6664 } 6665 } 6666 } 6667 } 6668 } 6669 6670 for (int c = 0; c < vd->vdev_children; c++) { 6671 tvd = vd->vdev_child[c]; 6672 vdev_remove_child(vd, tvd); 6673 tvd->vdev_id = rvd->vdev_children; 6674 vdev_add_child(rvd, tvd); 6675 vdev_config_dirty(tvd); 6676 } 6677 6678 if (nspares != 0) { 6679 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 6680 ZPOOL_CONFIG_SPARES); 6681 spa_load_spares(spa); 6682 spa->spa_spares.sav_sync = B_TRUE; 6683 } 6684 6685 if (nl2cache != 0) { 6686 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 6687 ZPOOL_CONFIG_L2CACHE); 6688 spa_load_l2cache(spa); 6689 spa->spa_l2cache.sav_sync = B_TRUE; 6690 } 6691 6692 /* 6693 * We can't increment a feature while holding spa_vdev so we 6694 * have to do it in a synctask. 6695 */ 6696 if (ndraid != 0) { 6697 dmu_tx_t *tx; 6698 6699 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 6700 dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr, 6701 (void *)(uintptr_t)ndraid, tx); 6702 dmu_tx_commit(tx); 6703 } 6704 6705 /* 6706 * We have to be careful when adding new vdevs to an existing pool. 6707 * If other threads start allocating from these vdevs before we 6708 * sync the config cache, and we lose power, then upon reboot we may 6709 * fail to open the pool because there are DVAs that the config cache 6710 * can't translate. Therefore, we first add the vdevs without 6711 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 6712 * and then let spa_config_update() initialize the new metaslabs. 6713 * 6714 * spa_load() checks for added-but-not-initialized vdevs, so that 6715 * if we lose power at any point in this sequence, the remaining 6716 * steps will be completed the next time we load the pool. 6717 */ 6718 (void) spa_vdev_exit(spa, vd, txg, 0); 6719 6720 mutex_enter(&spa_namespace_lock); 6721 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 6722 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD); 6723 mutex_exit(&spa_namespace_lock); 6724 6725 return (0); 6726 } 6727 6728 /* 6729 * Attach a device to a mirror. The arguments are the path to any device 6730 * in the mirror, and the nvroot for the new device. If the path specifies 6731 * a device that is not mirrored, we automatically insert the mirror vdev. 6732 * 6733 * If 'replacing' is specified, the new device is intended to replace the 6734 * existing device; in this case the two devices are made into their own 6735 * mirror using the 'replacing' vdev, which is functionally identical to 6736 * the mirror vdev (it actually reuses all the same ops) but has a few 6737 * extra rules: you can't attach to it after it's been created, and upon 6738 * completion of resilvering, the first disk (the one being replaced) 6739 * is automatically detached. 6740 * 6741 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild) 6742 * should be performed instead of traditional healing reconstruction. From 6743 * an administrators perspective these are both resilver operations. 6744 */ 6745 int 6746 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing, 6747 int rebuild) 6748 { 6749 uint64_t txg, dtl_max_txg; 6750 vdev_t *rvd = spa->spa_root_vdev; 6751 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 6752 vdev_ops_t *pvops; 6753 char *oldvdpath, *newvdpath; 6754 int newvd_isspare; 6755 int error; 6756 6757 ASSERT(spa_writeable(spa)); 6758 6759 txg = spa_vdev_enter(spa); 6760 6761 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 6762 6763 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 6764 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 6765 error = (spa_has_checkpoint(spa)) ? 6766 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 6767 return (spa_vdev_exit(spa, NULL, txg, error)); 6768 } 6769 6770 if (rebuild) { 6771 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) 6772 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6773 6774 if (dsl_scan_resilvering(spa_get_dsl(spa))) 6775 return (spa_vdev_exit(spa, NULL, txg, 6776 ZFS_ERR_RESILVER_IN_PROGRESS)); 6777 } else { 6778 if (vdev_rebuild_active(rvd)) 6779 return (spa_vdev_exit(spa, NULL, txg, 6780 ZFS_ERR_REBUILD_IN_PROGRESS)); 6781 } 6782 6783 if (spa->spa_vdev_removal != NULL) 6784 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 6785 6786 if (oldvd == NULL) 6787 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 6788 6789 if (!oldvd->vdev_ops->vdev_op_leaf) 6790 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6791 6792 pvd = oldvd->vdev_parent; 6793 6794 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 6795 VDEV_ALLOC_ATTACH)) != 0) 6796 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 6797 6798 if (newrootvd->vdev_children != 1) 6799 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 6800 6801 newvd = newrootvd->vdev_child[0]; 6802 6803 if (!newvd->vdev_ops->vdev_op_leaf) 6804 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 6805 6806 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 6807 return (spa_vdev_exit(spa, newrootvd, txg, error)); 6808 6809 /* 6810 * Spares can't replace logs 6811 */ 6812 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 6813 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6814 6815 /* 6816 * A dRAID spare can only replace a child of its parent dRAID vdev. 6817 */ 6818 if (newvd->vdev_ops == &vdev_draid_spare_ops && 6819 oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) { 6820 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6821 } 6822 6823 if (rebuild) { 6824 /* 6825 * For rebuilds, the top vdev must support reconstruction 6826 * using only space maps. This means the only allowable 6827 * vdevs types are the root vdev, a mirror, or dRAID. 6828 */ 6829 tvd = pvd; 6830 if (pvd->vdev_top != NULL) 6831 tvd = pvd->vdev_top; 6832 6833 if (tvd->vdev_ops != &vdev_mirror_ops && 6834 tvd->vdev_ops != &vdev_root_ops && 6835 tvd->vdev_ops != &vdev_draid_ops) { 6836 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6837 } 6838 } 6839 6840 if (!replacing) { 6841 /* 6842 * For attach, the only allowable parent is a mirror or the root 6843 * vdev. 6844 */ 6845 if (pvd->vdev_ops != &vdev_mirror_ops && 6846 pvd->vdev_ops != &vdev_root_ops) 6847 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6848 6849 pvops = &vdev_mirror_ops; 6850 } else { 6851 /* 6852 * Active hot spares can only be replaced by inactive hot 6853 * spares. 6854 */ 6855 if (pvd->vdev_ops == &vdev_spare_ops && 6856 oldvd->vdev_isspare && 6857 !spa_has_spare(spa, newvd->vdev_guid)) 6858 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6859 6860 /* 6861 * If the source is a hot spare, and the parent isn't already a 6862 * spare, then we want to create a new hot spare. Otherwise, we 6863 * want to create a replacing vdev. The user is not allowed to 6864 * attach to a spared vdev child unless the 'isspare' state is 6865 * the same (spare replaces spare, non-spare replaces 6866 * non-spare). 6867 */ 6868 if (pvd->vdev_ops == &vdev_replacing_ops && 6869 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 6870 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6871 } else if (pvd->vdev_ops == &vdev_spare_ops && 6872 newvd->vdev_isspare != oldvd->vdev_isspare) { 6873 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6874 } 6875 6876 if (newvd->vdev_isspare) 6877 pvops = &vdev_spare_ops; 6878 else 6879 pvops = &vdev_replacing_ops; 6880 } 6881 6882 /* 6883 * Make sure the new device is big enough. 6884 */ 6885 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 6886 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 6887 6888 /* 6889 * The new device cannot have a higher alignment requirement 6890 * than the top-level vdev. 6891 */ 6892 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 6893 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6894 6895 /* 6896 * If this is an in-place replacement, update oldvd's path and devid 6897 * to make it distinguishable from newvd, and unopenable from now on. 6898 */ 6899 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 6900 spa_strfree(oldvd->vdev_path); 6901 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 6902 KM_SLEEP); 6903 (void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5, 6904 "%s/%s", newvd->vdev_path, "old"); 6905 if (oldvd->vdev_devid != NULL) { 6906 spa_strfree(oldvd->vdev_devid); 6907 oldvd->vdev_devid = NULL; 6908 } 6909 } 6910 6911 /* 6912 * If the parent is not a mirror, or if we're replacing, insert the new 6913 * mirror/replacing/spare vdev above oldvd. 6914 */ 6915 if (pvd->vdev_ops != pvops) 6916 pvd = vdev_add_parent(oldvd, pvops); 6917 6918 ASSERT(pvd->vdev_top->vdev_parent == rvd); 6919 ASSERT(pvd->vdev_ops == pvops); 6920 ASSERT(oldvd->vdev_parent == pvd); 6921 6922 /* 6923 * Extract the new device from its root and add it to pvd. 6924 */ 6925 vdev_remove_child(newrootvd, newvd); 6926 newvd->vdev_id = pvd->vdev_children; 6927 newvd->vdev_crtxg = oldvd->vdev_crtxg; 6928 vdev_add_child(pvd, newvd); 6929 6930 /* 6931 * Reevaluate the parent vdev state. 6932 */ 6933 vdev_propagate_state(pvd); 6934 6935 tvd = newvd->vdev_top; 6936 ASSERT(pvd->vdev_top == tvd); 6937 ASSERT(tvd->vdev_parent == rvd); 6938 6939 vdev_config_dirty(tvd); 6940 6941 /* 6942 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 6943 * for any dmu_sync-ed blocks. It will propagate upward when 6944 * spa_vdev_exit() calls vdev_dtl_reassess(). 6945 */ 6946 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 6947 6948 vdev_dtl_dirty(newvd, DTL_MISSING, 6949 TXG_INITIAL, dtl_max_txg - TXG_INITIAL); 6950 6951 if (newvd->vdev_isspare) { 6952 spa_spare_activate(newvd); 6953 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE); 6954 } 6955 6956 oldvdpath = spa_strdup(oldvd->vdev_path); 6957 newvdpath = spa_strdup(newvd->vdev_path); 6958 newvd_isspare = newvd->vdev_isspare; 6959 6960 /* 6961 * Mark newvd's DTL dirty in this txg. 6962 */ 6963 vdev_dirty(tvd, VDD_DTL, newvd, txg); 6964 6965 /* 6966 * Schedule the resilver or rebuild to restart in the future. We do 6967 * this to ensure that dmu_sync-ed blocks have been stitched into the 6968 * respective datasets. 6969 */ 6970 if (rebuild) { 6971 newvd->vdev_rebuild_txg = txg; 6972 6973 vdev_rebuild(tvd); 6974 } else { 6975 newvd->vdev_resilver_txg = txg; 6976 6977 if (dsl_scan_resilvering(spa_get_dsl(spa)) && 6978 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) { 6979 vdev_defer_resilver(newvd); 6980 } else { 6981 dsl_scan_restart_resilver(spa->spa_dsl_pool, 6982 dtl_max_txg); 6983 } 6984 } 6985 6986 if (spa->spa_bootfs) 6987 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH); 6988 6989 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH); 6990 6991 /* 6992 * Commit the config 6993 */ 6994 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 6995 6996 spa_history_log_internal(spa, "vdev attach", NULL, 6997 "%s vdev=%s %s vdev=%s", 6998 replacing && newvd_isspare ? "spare in" : 6999 replacing ? "replace" : "attach", newvdpath, 7000 replacing ? "for" : "to", oldvdpath); 7001 7002 spa_strfree(oldvdpath); 7003 spa_strfree(newvdpath); 7004 7005 return (0); 7006 } 7007 7008 /* 7009 * Detach a device from a mirror or replacing vdev. 7010 * 7011 * If 'replace_done' is specified, only detach if the parent 7012 * is a replacing vdev. 7013 */ 7014 int 7015 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 7016 { 7017 uint64_t txg; 7018 int error; 7019 vdev_t *rvd __maybe_unused = spa->spa_root_vdev; 7020 vdev_t *vd, *pvd, *cvd, *tvd; 7021 boolean_t unspare = B_FALSE; 7022 uint64_t unspare_guid = 0; 7023 char *vdpath; 7024 7025 ASSERT(spa_writeable(spa)); 7026 7027 txg = spa_vdev_detach_enter(spa, guid); 7028 7029 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 7030 7031 /* 7032 * Besides being called directly from the userland through the 7033 * ioctl interface, spa_vdev_detach() can be potentially called 7034 * at the end of spa_vdev_resilver_done(). 7035 * 7036 * In the regular case, when we have a checkpoint this shouldn't 7037 * happen as we never empty the DTLs of a vdev during the scrub 7038 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done() 7039 * should never get here when we have a checkpoint. 7040 * 7041 * That said, even in a case when we checkpoint the pool exactly 7042 * as spa_vdev_resilver_done() calls this function everything 7043 * should be fine as the resilver will return right away. 7044 */ 7045 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7046 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 7047 error = (spa_has_checkpoint(spa)) ? 7048 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 7049 return (spa_vdev_exit(spa, NULL, txg, error)); 7050 } 7051 7052 if (vd == NULL) 7053 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 7054 7055 if (!vd->vdev_ops->vdev_op_leaf) 7056 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7057 7058 pvd = vd->vdev_parent; 7059 7060 /* 7061 * If the parent/child relationship is not as expected, don't do it. 7062 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 7063 * vdev that's replacing B with C. The user's intent in replacing 7064 * is to go from M(A,B) to M(A,C). If the user decides to cancel 7065 * the replace by detaching C, the expected behavior is to end up 7066 * M(A,B). But suppose that right after deciding to detach C, 7067 * the replacement of B completes. We would have M(A,C), and then 7068 * ask to detach C, which would leave us with just A -- not what 7069 * the user wanted. To prevent this, we make sure that the 7070 * parent/child relationship hasn't changed -- in this example, 7071 * that C's parent is still the replacing vdev R. 7072 */ 7073 if (pvd->vdev_guid != pguid && pguid != 0) 7074 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 7075 7076 /* 7077 * Only 'replacing' or 'spare' vdevs can be replaced. 7078 */ 7079 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 7080 pvd->vdev_ops != &vdev_spare_ops) 7081 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7082 7083 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 7084 spa_version(spa) >= SPA_VERSION_SPARES); 7085 7086 /* 7087 * Only mirror, replacing, and spare vdevs support detach. 7088 */ 7089 if (pvd->vdev_ops != &vdev_replacing_ops && 7090 pvd->vdev_ops != &vdev_mirror_ops && 7091 pvd->vdev_ops != &vdev_spare_ops) 7092 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7093 7094 /* 7095 * If this device has the only valid copy of some data, 7096 * we cannot safely detach it. 7097 */ 7098 if (vdev_dtl_required(vd)) 7099 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 7100 7101 ASSERT(pvd->vdev_children >= 2); 7102 7103 /* 7104 * If we are detaching the second disk from a replacing vdev, then 7105 * check to see if we changed the original vdev's path to have "/old" 7106 * at the end in spa_vdev_attach(). If so, undo that change now. 7107 */ 7108 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 7109 vd->vdev_path != NULL) { 7110 size_t len = strlen(vd->vdev_path); 7111 7112 for (int c = 0; c < pvd->vdev_children; c++) { 7113 cvd = pvd->vdev_child[c]; 7114 7115 if (cvd == vd || cvd->vdev_path == NULL) 7116 continue; 7117 7118 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 7119 strcmp(cvd->vdev_path + len, "/old") == 0) { 7120 spa_strfree(cvd->vdev_path); 7121 cvd->vdev_path = spa_strdup(vd->vdev_path); 7122 break; 7123 } 7124 } 7125 } 7126 7127 /* 7128 * If we are detaching the original disk from a normal spare, then it 7129 * implies that the spare should become a real disk, and be removed 7130 * from the active spare list for the pool. dRAID spares on the 7131 * other hand are coupled to the pool and thus should never be removed 7132 * from the spares list. 7133 */ 7134 if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) { 7135 vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1]; 7136 7137 if (last_cvd->vdev_isspare && 7138 last_cvd->vdev_ops != &vdev_draid_spare_ops) { 7139 unspare = B_TRUE; 7140 } 7141 } 7142 7143 /* 7144 * Erase the disk labels so the disk can be used for other things. 7145 * This must be done after all other error cases are handled, 7146 * but before we disembowel vd (so we can still do I/O to it). 7147 * But if we can't do it, don't treat the error as fatal -- 7148 * it may be that the unwritability of the disk is the reason 7149 * it's being detached! 7150 */ 7151 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 7152 7153 /* 7154 * Remove vd from its parent and compact the parent's children. 7155 */ 7156 vdev_remove_child(pvd, vd); 7157 vdev_compact_children(pvd); 7158 7159 /* 7160 * Remember one of the remaining children so we can get tvd below. 7161 */ 7162 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 7163 7164 /* 7165 * If we need to remove the remaining child from the list of hot spares, 7166 * do it now, marking the vdev as no longer a spare in the process. 7167 * We must do this before vdev_remove_parent(), because that can 7168 * change the GUID if it creates a new toplevel GUID. For a similar 7169 * reason, we must remove the spare now, in the same txg as the detach; 7170 * otherwise someone could attach a new sibling, change the GUID, and 7171 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 7172 */ 7173 if (unspare) { 7174 ASSERT(cvd->vdev_isspare); 7175 spa_spare_remove(cvd); 7176 unspare_guid = cvd->vdev_guid; 7177 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 7178 cvd->vdev_unspare = B_TRUE; 7179 } 7180 7181 /* 7182 * If the parent mirror/replacing vdev only has one child, 7183 * the parent is no longer needed. Remove it from the tree. 7184 */ 7185 if (pvd->vdev_children == 1) { 7186 if (pvd->vdev_ops == &vdev_spare_ops) 7187 cvd->vdev_unspare = B_FALSE; 7188 vdev_remove_parent(cvd); 7189 } 7190 7191 /* 7192 * We don't set tvd until now because the parent we just removed 7193 * may have been the previous top-level vdev. 7194 */ 7195 tvd = cvd->vdev_top; 7196 ASSERT(tvd->vdev_parent == rvd); 7197 7198 /* 7199 * Reevaluate the parent vdev state. 7200 */ 7201 vdev_propagate_state(cvd); 7202 7203 /* 7204 * If the 'autoexpand' property is set on the pool then automatically 7205 * try to expand the size of the pool. For example if the device we 7206 * just detached was smaller than the others, it may be possible to 7207 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 7208 * first so that we can obtain the updated sizes of the leaf vdevs. 7209 */ 7210 if (spa->spa_autoexpand) { 7211 vdev_reopen(tvd); 7212 vdev_expand(tvd, txg); 7213 } 7214 7215 vdev_config_dirty(tvd); 7216 7217 /* 7218 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 7219 * vd->vdev_detached is set and free vd's DTL object in syncing context. 7220 * But first make sure we're not on any *other* txg's DTL list, to 7221 * prevent vd from being accessed after it's freed. 7222 */ 7223 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none"); 7224 for (int t = 0; t < TXG_SIZE; t++) 7225 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 7226 vd->vdev_detached = B_TRUE; 7227 vdev_dirty(tvd, VDD_DTL, vd, txg); 7228 7229 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE); 7230 spa_notify_waiters(spa); 7231 7232 /* hang on to the spa before we release the lock */ 7233 spa_open_ref(spa, FTAG); 7234 7235 error = spa_vdev_exit(spa, vd, txg, 0); 7236 7237 spa_history_log_internal(spa, "detach", NULL, 7238 "vdev=%s", vdpath); 7239 spa_strfree(vdpath); 7240 7241 /* 7242 * If this was the removal of the original device in a hot spare vdev, 7243 * then we want to go through and remove the device from the hot spare 7244 * list of every other pool. 7245 */ 7246 if (unspare) { 7247 spa_t *altspa = NULL; 7248 7249 mutex_enter(&spa_namespace_lock); 7250 while ((altspa = spa_next(altspa)) != NULL) { 7251 if (altspa->spa_state != POOL_STATE_ACTIVE || 7252 altspa == spa) 7253 continue; 7254 7255 spa_open_ref(altspa, FTAG); 7256 mutex_exit(&spa_namespace_lock); 7257 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 7258 mutex_enter(&spa_namespace_lock); 7259 spa_close(altspa, FTAG); 7260 } 7261 mutex_exit(&spa_namespace_lock); 7262 7263 /* search the rest of the vdevs for spares to remove */ 7264 spa_vdev_resilver_done(spa); 7265 } 7266 7267 /* all done with the spa; OK to release */ 7268 mutex_enter(&spa_namespace_lock); 7269 spa_close(spa, FTAG); 7270 mutex_exit(&spa_namespace_lock); 7271 7272 return (error); 7273 } 7274 7275 static int 7276 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, 7277 list_t *vd_list) 7278 { 7279 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7280 7281 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 7282 7283 /* Look up vdev and ensure it's a leaf. */ 7284 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 7285 if (vd == NULL || vd->vdev_detached) { 7286 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7287 return (SET_ERROR(ENODEV)); 7288 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 7289 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7290 return (SET_ERROR(EINVAL)); 7291 } else if (!vdev_writeable(vd)) { 7292 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7293 return (SET_ERROR(EROFS)); 7294 } 7295 mutex_enter(&vd->vdev_initialize_lock); 7296 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7297 7298 /* 7299 * When we activate an initialize action we check to see 7300 * if the vdev_initialize_thread is NULL. We do this instead 7301 * of using the vdev_initialize_state since there might be 7302 * a previous initialization process which has completed but 7303 * the thread is not exited. 7304 */ 7305 if (cmd_type == POOL_INITIALIZE_START && 7306 (vd->vdev_initialize_thread != NULL || 7307 vd->vdev_top->vdev_removing)) { 7308 mutex_exit(&vd->vdev_initialize_lock); 7309 return (SET_ERROR(EBUSY)); 7310 } else if (cmd_type == POOL_INITIALIZE_CANCEL && 7311 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE && 7312 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) { 7313 mutex_exit(&vd->vdev_initialize_lock); 7314 return (SET_ERROR(ESRCH)); 7315 } else if (cmd_type == POOL_INITIALIZE_SUSPEND && 7316 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) { 7317 mutex_exit(&vd->vdev_initialize_lock); 7318 return (SET_ERROR(ESRCH)); 7319 } 7320 7321 switch (cmd_type) { 7322 case POOL_INITIALIZE_START: 7323 vdev_initialize(vd); 7324 break; 7325 case POOL_INITIALIZE_CANCEL: 7326 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list); 7327 break; 7328 case POOL_INITIALIZE_SUSPEND: 7329 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list); 7330 break; 7331 default: 7332 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 7333 } 7334 mutex_exit(&vd->vdev_initialize_lock); 7335 7336 return (0); 7337 } 7338 7339 int 7340 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, 7341 nvlist_t *vdev_errlist) 7342 { 7343 int total_errors = 0; 7344 list_t vd_list; 7345 7346 list_create(&vd_list, sizeof (vdev_t), 7347 offsetof(vdev_t, vdev_initialize_node)); 7348 7349 /* 7350 * We hold the namespace lock through the whole function 7351 * to prevent any changes to the pool while we're starting or 7352 * stopping initialization. The config and state locks are held so that 7353 * we can properly assess the vdev state before we commit to 7354 * the initializing operation. 7355 */ 7356 mutex_enter(&spa_namespace_lock); 7357 7358 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 7359 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { 7360 uint64_t vdev_guid = fnvpair_value_uint64(pair); 7361 7362 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type, 7363 &vd_list); 7364 if (error != 0) { 7365 char guid_as_str[MAXNAMELEN]; 7366 7367 (void) snprintf(guid_as_str, sizeof (guid_as_str), 7368 "%llu", (unsigned long long)vdev_guid); 7369 fnvlist_add_int64(vdev_errlist, guid_as_str, error); 7370 total_errors++; 7371 } 7372 } 7373 7374 /* Wait for all initialize threads to stop. */ 7375 vdev_initialize_stop_wait(spa, &vd_list); 7376 7377 /* Sync out the initializing state */ 7378 txg_wait_synced(spa->spa_dsl_pool, 0); 7379 mutex_exit(&spa_namespace_lock); 7380 7381 list_destroy(&vd_list); 7382 7383 return (total_errors); 7384 } 7385 7386 static int 7387 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, 7388 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list) 7389 { 7390 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7391 7392 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 7393 7394 /* Look up vdev and ensure it's a leaf. */ 7395 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 7396 if (vd == NULL || vd->vdev_detached) { 7397 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7398 return (SET_ERROR(ENODEV)); 7399 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 7400 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7401 return (SET_ERROR(EINVAL)); 7402 } else if (!vdev_writeable(vd)) { 7403 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7404 return (SET_ERROR(EROFS)); 7405 } else if (!vd->vdev_has_trim) { 7406 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7407 return (SET_ERROR(EOPNOTSUPP)); 7408 } else if (secure && !vd->vdev_has_securetrim) { 7409 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7410 return (SET_ERROR(EOPNOTSUPP)); 7411 } 7412 mutex_enter(&vd->vdev_trim_lock); 7413 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7414 7415 /* 7416 * When we activate a TRIM action we check to see if the 7417 * vdev_trim_thread is NULL. We do this instead of using the 7418 * vdev_trim_state since there might be a previous TRIM process 7419 * which has completed but the thread is not exited. 7420 */ 7421 if (cmd_type == POOL_TRIM_START && 7422 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) { 7423 mutex_exit(&vd->vdev_trim_lock); 7424 return (SET_ERROR(EBUSY)); 7425 } else if (cmd_type == POOL_TRIM_CANCEL && 7426 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE && 7427 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) { 7428 mutex_exit(&vd->vdev_trim_lock); 7429 return (SET_ERROR(ESRCH)); 7430 } else if (cmd_type == POOL_TRIM_SUSPEND && 7431 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) { 7432 mutex_exit(&vd->vdev_trim_lock); 7433 return (SET_ERROR(ESRCH)); 7434 } 7435 7436 switch (cmd_type) { 7437 case POOL_TRIM_START: 7438 vdev_trim(vd, rate, partial, secure); 7439 break; 7440 case POOL_TRIM_CANCEL: 7441 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list); 7442 break; 7443 case POOL_TRIM_SUSPEND: 7444 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list); 7445 break; 7446 default: 7447 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 7448 } 7449 mutex_exit(&vd->vdev_trim_lock); 7450 7451 return (0); 7452 } 7453 7454 /* 7455 * Initiates a manual TRIM for the requested vdevs. This kicks off individual 7456 * TRIM threads for each child vdev. These threads pass over all of the free 7457 * space in the vdev's metaslabs and issues TRIM commands for that space. 7458 */ 7459 int 7460 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate, 7461 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist) 7462 { 7463 int total_errors = 0; 7464 list_t vd_list; 7465 7466 list_create(&vd_list, sizeof (vdev_t), 7467 offsetof(vdev_t, vdev_trim_node)); 7468 7469 /* 7470 * We hold the namespace lock through the whole function 7471 * to prevent any changes to the pool while we're starting or 7472 * stopping TRIM. The config and state locks are held so that 7473 * we can properly assess the vdev state before we commit to 7474 * the TRIM operation. 7475 */ 7476 mutex_enter(&spa_namespace_lock); 7477 7478 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 7479 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { 7480 uint64_t vdev_guid = fnvpair_value_uint64(pair); 7481 7482 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type, 7483 rate, partial, secure, &vd_list); 7484 if (error != 0) { 7485 char guid_as_str[MAXNAMELEN]; 7486 7487 (void) snprintf(guid_as_str, sizeof (guid_as_str), 7488 "%llu", (unsigned long long)vdev_guid); 7489 fnvlist_add_int64(vdev_errlist, guid_as_str, error); 7490 total_errors++; 7491 } 7492 } 7493 7494 /* Wait for all TRIM threads to stop. */ 7495 vdev_trim_stop_wait(spa, &vd_list); 7496 7497 /* Sync out the TRIM state */ 7498 txg_wait_synced(spa->spa_dsl_pool, 0); 7499 mutex_exit(&spa_namespace_lock); 7500 7501 list_destroy(&vd_list); 7502 7503 return (total_errors); 7504 } 7505 7506 /* 7507 * Split a set of devices from their mirrors, and create a new pool from them. 7508 */ 7509 int 7510 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 7511 nvlist_t *props, boolean_t exp) 7512 { 7513 int error = 0; 7514 uint64_t txg, *glist; 7515 spa_t *newspa; 7516 uint_t c, children, lastlog; 7517 nvlist_t **child, *nvl, *tmp; 7518 dmu_tx_t *tx; 7519 char *altroot = NULL; 7520 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 7521 boolean_t activate_slog; 7522 7523 ASSERT(spa_writeable(spa)); 7524 7525 txg = spa_vdev_enter(spa); 7526 7527 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7528 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 7529 error = (spa_has_checkpoint(spa)) ? 7530 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 7531 return (spa_vdev_exit(spa, NULL, txg, error)); 7532 } 7533 7534 /* clear the log and flush everything up to now */ 7535 activate_slog = spa_passivate_log(spa); 7536 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 7537 error = spa_reset_logs(spa); 7538 txg = spa_vdev_config_enter(spa); 7539 7540 if (activate_slog) 7541 spa_activate_log(spa); 7542 7543 if (error != 0) 7544 return (spa_vdev_exit(spa, NULL, txg, error)); 7545 7546 /* check new spa name before going any further */ 7547 if (spa_lookup(newname) != NULL) 7548 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 7549 7550 /* 7551 * scan through all the children to ensure they're all mirrors 7552 */ 7553 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 7554 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 7555 &children) != 0) 7556 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 7557 7558 /* first, check to ensure we've got the right child count */ 7559 rvd = spa->spa_root_vdev; 7560 lastlog = 0; 7561 for (c = 0; c < rvd->vdev_children; c++) { 7562 vdev_t *vd = rvd->vdev_child[c]; 7563 7564 /* don't count the holes & logs as children */ 7565 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops && 7566 !vdev_is_concrete(vd))) { 7567 if (lastlog == 0) 7568 lastlog = c; 7569 continue; 7570 } 7571 7572 lastlog = 0; 7573 } 7574 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 7575 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 7576 7577 /* next, ensure no spare or cache devices are part of the split */ 7578 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 7579 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 7580 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 7581 7582 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 7583 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 7584 7585 /* then, loop over each vdev and validate it */ 7586 for (c = 0; c < children; c++) { 7587 uint64_t is_hole = 0; 7588 7589 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 7590 &is_hole); 7591 7592 if (is_hole != 0) { 7593 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 7594 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 7595 continue; 7596 } else { 7597 error = SET_ERROR(EINVAL); 7598 break; 7599 } 7600 } 7601 7602 /* deal with indirect vdevs */ 7603 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops == 7604 &vdev_indirect_ops) 7605 continue; 7606 7607 /* which disk is going to be split? */ 7608 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 7609 &glist[c]) != 0) { 7610 error = SET_ERROR(EINVAL); 7611 break; 7612 } 7613 7614 /* look it up in the spa */ 7615 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 7616 if (vml[c] == NULL) { 7617 error = SET_ERROR(ENODEV); 7618 break; 7619 } 7620 7621 /* make sure there's nothing stopping the split */ 7622 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 7623 vml[c]->vdev_islog || 7624 !vdev_is_concrete(vml[c]) || 7625 vml[c]->vdev_isspare || 7626 vml[c]->vdev_isl2cache || 7627 !vdev_writeable(vml[c]) || 7628 vml[c]->vdev_children != 0 || 7629 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 7630 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 7631 error = SET_ERROR(EINVAL); 7632 break; 7633 } 7634 7635 if (vdev_dtl_required(vml[c]) || 7636 vdev_resilver_needed(vml[c], NULL, NULL)) { 7637 error = SET_ERROR(EBUSY); 7638 break; 7639 } 7640 7641 /* we need certain info from the top level */ 7642 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 7643 vml[c]->vdev_top->vdev_ms_array); 7644 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 7645 vml[c]->vdev_top->vdev_ms_shift); 7646 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 7647 vml[c]->vdev_top->vdev_asize); 7648 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 7649 vml[c]->vdev_top->vdev_ashift); 7650 7651 /* transfer per-vdev ZAPs */ 7652 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); 7653 VERIFY0(nvlist_add_uint64(child[c], 7654 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); 7655 7656 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); 7657 VERIFY0(nvlist_add_uint64(child[c], 7658 ZPOOL_CONFIG_VDEV_TOP_ZAP, 7659 vml[c]->vdev_parent->vdev_top_zap)); 7660 } 7661 7662 if (error != 0) { 7663 kmem_free(vml, children * sizeof (vdev_t *)); 7664 kmem_free(glist, children * sizeof (uint64_t)); 7665 return (spa_vdev_exit(spa, NULL, txg, error)); 7666 } 7667 7668 /* stop writers from using the disks */ 7669 for (c = 0; c < children; c++) { 7670 if (vml[c] != NULL) 7671 vml[c]->vdev_offline = B_TRUE; 7672 } 7673 vdev_reopen(spa->spa_root_vdev); 7674 7675 /* 7676 * Temporarily record the splitting vdevs in the spa config. This 7677 * will disappear once the config is regenerated. 7678 */ 7679 nvl = fnvlist_alloc(); 7680 fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children); 7681 kmem_free(glist, children * sizeof (uint64_t)); 7682 7683 mutex_enter(&spa->spa_props_lock); 7684 fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl); 7685 mutex_exit(&spa->spa_props_lock); 7686 spa->spa_config_splitting = nvl; 7687 vdev_config_dirty(spa->spa_root_vdev); 7688 7689 /* configure and create the new pool */ 7690 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname); 7691 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 7692 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE); 7693 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa)); 7694 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg); 7695 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 7696 spa_generate_guid(NULL)); 7697 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 7698 (void) nvlist_lookup_string(props, 7699 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 7700 7701 /* add the new pool to the namespace */ 7702 newspa = spa_add(newname, config, altroot); 7703 newspa->spa_avz_action = AVZ_ACTION_REBUILD; 7704 newspa->spa_config_txg = spa->spa_config_txg; 7705 spa_set_log_state(newspa, SPA_LOG_CLEAR); 7706 7707 /* release the spa config lock, retaining the namespace lock */ 7708 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 7709 7710 if (zio_injection_enabled) 7711 zio_handle_panic_injection(spa, FTAG, 1); 7712 7713 spa_activate(newspa, spa_mode_global); 7714 spa_async_suspend(newspa); 7715 7716 /* 7717 * Temporarily stop the initializing and TRIM activity. We set the 7718 * state to ACTIVE so that we know to resume initializing or TRIM 7719 * once the split has completed. 7720 */ 7721 list_t vd_initialize_list; 7722 list_create(&vd_initialize_list, sizeof (vdev_t), 7723 offsetof(vdev_t, vdev_initialize_node)); 7724 7725 list_t vd_trim_list; 7726 list_create(&vd_trim_list, sizeof (vdev_t), 7727 offsetof(vdev_t, vdev_trim_node)); 7728 7729 for (c = 0; c < children; c++) { 7730 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { 7731 mutex_enter(&vml[c]->vdev_initialize_lock); 7732 vdev_initialize_stop(vml[c], 7733 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list); 7734 mutex_exit(&vml[c]->vdev_initialize_lock); 7735 7736 mutex_enter(&vml[c]->vdev_trim_lock); 7737 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list); 7738 mutex_exit(&vml[c]->vdev_trim_lock); 7739 } 7740 } 7741 7742 vdev_initialize_stop_wait(spa, &vd_initialize_list); 7743 vdev_trim_stop_wait(spa, &vd_trim_list); 7744 7745 list_destroy(&vd_initialize_list); 7746 list_destroy(&vd_trim_list); 7747 7748 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT; 7749 newspa->spa_is_splitting = B_TRUE; 7750 7751 /* create the new pool from the disks of the original pool */ 7752 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE); 7753 if (error) 7754 goto out; 7755 7756 /* if that worked, generate a real config for the new pool */ 7757 if (newspa->spa_root_vdev != NULL) { 7758 newspa->spa_config_splitting = fnvlist_alloc(); 7759 fnvlist_add_uint64(newspa->spa_config_splitting, 7760 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)); 7761 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 7762 B_TRUE)); 7763 } 7764 7765 /* set the props */ 7766 if (props != NULL) { 7767 spa_configfile_set(newspa, props, B_FALSE); 7768 error = spa_prop_set(newspa, props); 7769 if (error) 7770 goto out; 7771 } 7772 7773 /* flush everything */ 7774 txg = spa_vdev_config_enter(newspa); 7775 vdev_config_dirty(newspa->spa_root_vdev); 7776 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 7777 7778 if (zio_injection_enabled) 7779 zio_handle_panic_injection(spa, FTAG, 2); 7780 7781 spa_async_resume(newspa); 7782 7783 /* finally, update the original pool's config */ 7784 txg = spa_vdev_config_enter(spa); 7785 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 7786 error = dmu_tx_assign(tx, TXG_WAIT); 7787 if (error != 0) 7788 dmu_tx_abort(tx); 7789 for (c = 0; c < children; c++) { 7790 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { 7791 vdev_t *tvd = vml[c]->vdev_top; 7792 7793 /* 7794 * Need to be sure the detachable VDEV is not 7795 * on any *other* txg's DTL list to prevent it 7796 * from being accessed after it's freed. 7797 */ 7798 for (int t = 0; t < TXG_SIZE; t++) { 7799 (void) txg_list_remove_this( 7800 &tvd->vdev_dtl_list, vml[c], t); 7801 } 7802 7803 vdev_split(vml[c]); 7804 if (error == 0) 7805 spa_history_log_internal(spa, "detach", tx, 7806 "vdev=%s", vml[c]->vdev_path); 7807 7808 vdev_free(vml[c]); 7809 } 7810 } 7811 spa->spa_avz_action = AVZ_ACTION_REBUILD; 7812 vdev_config_dirty(spa->spa_root_vdev); 7813 spa->spa_config_splitting = NULL; 7814 nvlist_free(nvl); 7815 if (error == 0) 7816 dmu_tx_commit(tx); 7817 (void) spa_vdev_exit(spa, NULL, txg, 0); 7818 7819 if (zio_injection_enabled) 7820 zio_handle_panic_injection(spa, FTAG, 3); 7821 7822 /* split is complete; log a history record */ 7823 spa_history_log_internal(newspa, "split", NULL, 7824 "from pool %s", spa_name(spa)); 7825 7826 newspa->spa_is_splitting = B_FALSE; 7827 kmem_free(vml, children * sizeof (vdev_t *)); 7828 7829 /* if we're not going to mount the filesystems in userland, export */ 7830 if (exp) 7831 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 7832 B_FALSE, B_FALSE); 7833 7834 return (error); 7835 7836 out: 7837 spa_unload(newspa); 7838 spa_deactivate(newspa); 7839 spa_remove(newspa); 7840 7841 txg = spa_vdev_config_enter(spa); 7842 7843 /* re-online all offlined disks */ 7844 for (c = 0; c < children; c++) { 7845 if (vml[c] != NULL) 7846 vml[c]->vdev_offline = B_FALSE; 7847 } 7848 7849 /* restart initializing or trimming disks as necessary */ 7850 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART); 7851 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART); 7852 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART); 7853 7854 vdev_reopen(spa->spa_root_vdev); 7855 7856 nvlist_free(spa->spa_config_splitting); 7857 spa->spa_config_splitting = NULL; 7858 (void) spa_vdev_exit(spa, NULL, txg, error); 7859 7860 kmem_free(vml, children * sizeof (vdev_t *)); 7861 return (error); 7862 } 7863 7864 /* 7865 * Find any device that's done replacing, or a vdev marked 'unspare' that's 7866 * currently spared, so we can detach it. 7867 */ 7868 static vdev_t * 7869 spa_vdev_resilver_done_hunt(vdev_t *vd) 7870 { 7871 vdev_t *newvd, *oldvd; 7872 7873 for (int c = 0; c < vd->vdev_children; c++) { 7874 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 7875 if (oldvd != NULL) 7876 return (oldvd); 7877 } 7878 7879 /* 7880 * Check for a completed replacement. We always consider the first 7881 * vdev in the list to be the oldest vdev, and the last one to be 7882 * the newest (see spa_vdev_attach() for how that works). In 7883 * the case where the newest vdev is faulted, we will not automatically 7884 * remove it after a resilver completes. This is OK as it will require 7885 * user intervention to determine which disk the admin wishes to keep. 7886 */ 7887 if (vd->vdev_ops == &vdev_replacing_ops) { 7888 ASSERT(vd->vdev_children > 1); 7889 7890 newvd = vd->vdev_child[vd->vdev_children - 1]; 7891 oldvd = vd->vdev_child[0]; 7892 7893 if (vdev_dtl_empty(newvd, DTL_MISSING) && 7894 vdev_dtl_empty(newvd, DTL_OUTAGE) && 7895 !vdev_dtl_required(oldvd)) 7896 return (oldvd); 7897 } 7898 7899 /* 7900 * Check for a completed resilver with the 'unspare' flag set. 7901 * Also potentially update faulted state. 7902 */ 7903 if (vd->vdev_ops == &vdev_spare_ops) { 7904 vdev_t *first = vd->vdev_child[0]; 7905 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 7906 7907 if (last->vdev_unspare) { 7908 oldvd = first; 7909 newvd = last; 7910 } else if (first->vdev_unspare) { 7911 oldvd = last; 7912 newvd = first; 7913 } else { 7914 oldvd = NULL; 7915 } 7916 7917 if (oldvd != NULL && 7918 vdev_dtl_empty(newvd, DTL_MISSING) && 7919 vdev_dtl_empty(newvd, DTL_OUTAGE) && 7920 !vdev_dtl_required(oldvd)) 7921 return (oldvd); 7922 7923 vdev_propagate_state(vd); 7924 7925 /* 7926 * If there are more than two spares attached to a disk, 7927 * and those spares are not required, then we want to 7928 * attempt to free them up now so that they can be used 7929 * by other pools. Once we're back down to a single 7930 * disk+spare, we stop removing them. 7931 */ 7932 if (vd->vdev_children > 2) { 7933 newvd = vd->vdev_child[1]; 7934 7935 if (newvd->vdev_isspare && last->vdev_isspare && 7936 vdev_dtl_empty(last, DTL_MISSING) && 7937 vdev_dtl_empty(last, DTL_OUTAGE) && 7938 !vdev_dtl_required(newvd)) 7939 return (newvd); 7940 } 7941 } 7942 7943 return (NULL); 7944 } 7945 7946 static void 7947 spa_vdev_resilver_done(spa_t *spa) 7948 { 7949 vdev_t *vd, *pvd, *ppvd; 7950 uint64_t guid, sguid, pguid, ppguid; 7951 7952 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 7953 7954 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 7955 pvd = vd->vdev_parent; 7956 ppvd = pvd->vdev_parent; 7957 guid = vd->vdev_guid; 7958 pguid = pvd->vdev_guid; 7959 ppguid = ppvd->vdev_guid; 7960 sguid = 0; 7961 /* 7962 * If we have just finished replacing a hot spared device, then 7963 * we need to detach the parent's first child (the original hot 7964 * spare) as well. 7965 */ 7966 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 7967 ppvd->vdev_children == 2) { 7968 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 7969 sguid = ppvd->vdev_child[1]->vdev_guid; 7970 } 7971 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 7972 7973 spa_config_exit(spa, SCL_ALL, FTAG); 7974 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 7975 return; 7976 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 7977 return; 7978 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 7979 } 7980 7981 spa_config_exit(spa, SCL_ALL, FTAG); 7982 7983 /* 7984 * If a detach was not performed above replace waiters will not have 7985 * been notified. In which case we must do so now. 7986 */ 7987 spa_notify_waiters(spa); 7988 } 7989 7990 /* 7991 * Update the stored path or FRU for this vdev. 7992 */ 7993 static int 7994 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 7995 boolean_t ispath) 7996 { 7997 vdev_t *vd; 7998 boolean_t sync = B_FALSE; 7999 8000 ASSERT(spa_writeable(spa)); 8001 8002 spa_vdev_state_enter(spa, SCL_ALL); 8003 8004 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 8005 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 8006 8007 if (!vd->vdev_ops->vdev_op_leaf) 8008 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 8009 8010 if (ispath) { 8011 if (strcmp(value, vd->vdev_path) != 0) { 8012 spa_strfree(vd->vdev_path); 8013 vd->vdev_path = spa_strdup(value); 8014 sync = B_TRUE; 8015 } 8016 } else { 8017 if (vd->vdev_fru == NULL) { 8018 vd->vdev_fru = spa_strdup(value); 8019 sync = B_TRUE; 8020 } else if (strcmp(value, vd->vdev_fru) != 0) { 8021 spa_strfree(vd->vdev_fru); 8022 vd->vdev_fru = spa_strdup(value); 8023 sync = B_TRUE; 8024 } 8025 } 8026 8027 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 8028 } 8029 8030 int 8031 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 8032 { 8033 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 8034 } 8035 8036 int 8037 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 8038 { 8039 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 8040 } 8041 8042 /* 8043 * ========================================================================== 8044 * SPA Scanning 8045 * ========================================================================== 8046 */ 8047 int 8048 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd) 8049 { 8050 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 8051 8052 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 8053 return (SET_ERROR(EBUSY)); 8054 8055 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd)); 8056 } 8057 8058 int 8059 spa_scan_stop(spa_t *spa) 8060 { 8061 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 8062 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 8063 return (SET_ERROR(EBUSY)); 8064 return (dsl_scan_cancel(spa->spa_dsl_pool)); 8065 } 8066 8067 int 8068 spa_scan(spa_t *spa, pool_scan_func_t func) 8069 { 8070 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 8071 8072 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 8073 return (SET_ERROR(ENOTSUP)); 8074 8075 if (func == POOL_SCAN_RESILVER && 8076 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) 8077 return (SET_ERROR(ENOTSUP)); 8078 8079 /* 8080 * If a resilver was requested, but there is no DTL on a 8081 * writeable leaf device, we have nothing to do. 8082 */ 8083 if (func == POOL_SCAN_RESILVER && 8084 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 8085 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 8086 return (0); 8087 } 8088 8089 return (dsl_scan(spa->spa_dsl_pool, func)); 8090 } 8091 8092 /* 8093 * ========================================================================== 8094 * SPA async task processing 8095 * ========================================================================== 8096 */ 8097 8098 static void 8099 spa_async_remove(spa_t *spa, vdev_t *vd) 8100 { 8101 if (vd->vdev_remove_wanted) { 8102 vd->vdev_remove_wanted = B_FALSE; 8103 vd->vdev_delayed_close = B_FALSE; 8104 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 8105 8106 /* 8107 * We want to clear the stats, but we don't want to do a full 8108 * vdev_clear() as that will cause us to throw away 8109 * degraded/faulted state as well as attempt to reopen the 8110 * device, all of which is a waste. 8111 */ 8112 vd->vdev_stat.vs_read_errors = 0; 8113 vd->vdev_stat.vs_write_errors = 0; 8114 vd->vdev_stat.vs_checksum_errors = 0; 8115 8116 vdev_state_dirty(vd->vdev_top); 8117 8118 /* Tell userspace that the vdev is gone. */ 8119 zfs_post_remove(spa, vd); 8120 } 8121 8122 for (int c = 0; c < vd->vdev_children; c++) 8123 spa_async_remove(spa, vd->vdev_child[c]); 8124 } 8125 8126 static void 8127 spa_async_probe(spa_t *spa, vdev_t *vd) 8128 { 8129 if (vd->vdev_probe_wanted) { 8130 vd->vdev_probe_wanted = B_FALSE; 8131 vdev_reopen(vd); /* vdev_open() does the actual probe */ 8132 } 8133 8134 for (int c = 0; c < vd->vdev_children; c++) 8135 spa_async_probe(spa, vd->vdev_child[c]); 8136 } 8137 8138 static void 8139 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 8140 { 8141 if (!spa->spa_autoexpand) 8142 return; 8143 8144 for (int c = 0; c < vd->vdev_children; c++) { 8145 vdev_t *cvd = vd->vdev_child[c]; 8146 spa_async_autoexpand(spa, cvd); 8147 } 8148 8149 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 8150 return; 8151 8152 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND); 8153 } 8154 8155 static __attribute__((noreturn)) void 8156 spa_async_thread(void *arg) 8157 { 8158 spa_t *spa = (spa_t *)arg; 8159 dsl_pool_t *dp = spa->spa_dsl_pool; 8160 int tasks; 8161 8162 ASSERT(spa->spa_sync_on); 8163 8164 mutex_enter(&spa->spa_async_lock); 8165 tasks = spa->spa_async_tasks; 8166 spa->spa_async_tasks = 0; 8167 mutex_exit(&spa->spa_async_lock); 8168 8169 /* 8170 * See if the config needs to be updated. 8171 */ 8172 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 8173 uint64_t old_space, new_space; 8174 8175 mutex_enter(&spa_namespace_lock); 8176 old_space = metaslab_class_get_space(spa_normal_class(spa)); 8177 old_space += metaslab_class_get_space(spa_special_class(spa)); 8178 old_space += metaslab_class_get_space(spa_dedup_class(spa)); 8179 old_space += metaslab_class_get_space( 8180 spa_embedded_log_class(spa)); 8181 8182 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 8183 8184 new_space = metaslab_class_get_space(spa_normal_class(spa)); 8185 new_space += metaslab_class_get_space(spa_special_class(spa)); 8186 new_space += metaslab_class_get_space(spa_dedup_class(spa)); 8187 new_space += metaslab_class_get_space( 8188 spa_embedded_log_class(spa)); 8189 mutex_exit(&spa_namespace_lock); 8190 8191 /* 8192 * If the pool grew as a result of the config update, 8193 * then log an internal history event. 8194 */ 8195 if (new_space != old_space) { 8196 spa_history_log_internal(spa, "vdev online", NULL, 8197 "pool '%s' size: %llu(+%llu)", 8198 spa_name(spa), (u_longlong_t)new_space, 8199 (u_longlong_t)(new_space - old_space)); 8200 } 8201 } 8202 8203 /* 8204 * See if any devices need to be marked REMOVED. 8205 */ 8206 if (tasks & SPA_ASYNC_REMOVE) { 8207 spa_vdev_state_enter(spa, SCL_NONE); 8208 spa_async_remove(spa, spa->spa_root_vdev); 8209 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 8210 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 8211 for (int i = 0; i < spa->spa_spares.sav_count; i++) 8212 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 8213 (void) spa_vdev_state_exit(spa, NULL, 0); 8214 } 8215 8216 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 8217 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8218 spa_async_autoexpand(spa, spa->spa_root_vdev); 8219 spa_config_exit(spa, SCL_CONFIG, FTAG); 8220 } 8221 8222 /* 8223 * See if any devices need to be probed. 8224 */ 8225 if (tasks & SPA_ASYNC_PROBE) { 8226 spa_vdev_state_enter(spa, SCL_NONE); 8227 spa_async_probe(spa, spa->spa_root_vdev); 8228 (void) spa_vdev_state_exit(spa, NULL, 0); 8229 } 8230 8231 /* 8232 * If any devices are done replacing, detach them. 8233 */ 8234 if (tasks & SPA_ASYNC_RESILVER_DONE || 8235 tasks & SPA_ASYNC_REBUILD_DONE) { 8236 spa_vdev_resilver_done(spa); 8237 } 8238 8239 /* 8240 * Kick off a resilver. 8241 */ 8242 if (tasks & SPA_ASYNC_RESILVER && 8243 !vdev_rebuild_active(spa->spa_root_vdev) && 8244 (!dsl_scan_resilvering(dp) || 8245 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))) 8246 dsl_scan_restart_resilver(dp, 0); 8247 8248 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) { 8249 mutex_enter(&spa_namespace_lock); 8250 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8251 vdev_initialize_restart(spa->spa_root_vdev); 8252 spa_config_exit(spa, SCL_CONFIG, FTAG); 8253 mutex_exit(&spa_namespace_lock); 8254 } 8255 8256 if (tasks & SPA_ASYNC_TRIM_RESTART) { 8257 mutex_enter(&spa_namespace_lock); 8258 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8259 vdev_trim_restart(spa->spa_root_vdev); 8260 spa_config_exit(spa, SCL_CONFIG, FTAG); 8261 mutex_exit(&spa_namespace_lock); 8262 } 8263 8264 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) { 8265 mutex_enter(&spa_namespace_lock); 8266 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8267 vdev_autotrim_restart(spa); 8268 spa_config_exit(spa, SCL_CONFIG, FTAG); 8269 mutex_exit(&spa_namespace_lock); 8270 } 8271 8272 /* 8273 * Kick off L2 cache whole device TRIM. 8274 */ 8275 if (tasks & SPA_ASYNC_L2CACHE_TRIM) { 8276 mutex_enter(&spa_namespace_lock); 8277 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8278 vdev_trim_l2arc(spa); 8279 spa_config_exit(spa, SCL_CONFIG, FTAG); 8280 mutex_exit(&spa_namespace_lock); 8281 } 8282 8283 /* 8284 * Kick off L2 cache rebuilding. 8285 */ 8286 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) { 8287 mutex_enter(&spa_namespace_lock); 8288 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER); 8289 l2arc_spa_rebuild_start(spa); 8290 spa_config_exit(spa, SCL_L2ARC, FTAG); 8291 mutex_exit(&spa_namespace_lock); 8292 } 8293 8294 /* 8295 * Let the world know that we're done. 8296 */ 8297 mutex_enter(&spa->spa_async_lock); 8298 spa->spa_async_thread = NULL; 8299 cv_broadcast(&spa->spa_async_cv); 8300 mutex_exit(&spa->spa_async_lock); 8301 thread_exit(); 8302 } 8303 8304 void 8305 spa_async_suspend(spa_t *spa) 8306 { 8307 mutex_enter(&spa->spa_async_lock); 8308 spa->spa_async_suspended++; 8309 while (spa->spa_async_thread != NULL) 8310 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 8311 mutex_exit(&spa->spa_async_lock); 8312 8313 spa_vdev_remove_suspend(spa); 8314 8315 zthr_t *condense_thread = spa->spa_condense_zthr; 8316 if (condense_thread != NULL) 8317 zthr_cancel(condense_thread); 8318 8319 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 8320 if (discard_thread != NULL) 8321 zthr_cancel(discard_thread); 8322 8323 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; 8324 if (ll_delete_thread != NULL) 8325 zthr_cancel(ll_delete_thread); 8326 8327 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 8328 if (ll_condense_thread != NULL) 8329 zthr_cancel(ll_condense_thread); 8330 } 8331 8332 void 8333 spa_async_resume(spa_t *spa) 8334 { 8335 mutex_enter(&spa->spa_async_lock); 8336 ASSERT(spa->spa_async_suspended != 0); 8337 spa->spa_async_suspended--; 8338 mutex_exit(&spa->spa_async_lock); 8339 spa_restart_removal(spa); 8340 8341 zthr_t *condense_thread = spa->spa_condense_zthr; 8342 if (condense_thread != NULL) 8343 zthr_resume(condense_thread); 8344 8345 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 8346 if (discard_thread != NULL) 8347 zthr_resume(discard_thread); 8348 8349 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; 8350 if (ll_delete_thread != NULL) 8351 zthr_resume(ll_delete_thread); 8352 8353 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 8354 if (ll_condense_thread != NULL) 8355 zthr_resume(ll_condense_thread); 8356 } 8357 8358 static boolean_t 8359 spa_async_tasks_pending(spa_t *spa) 8360 { 8361 uint_t non_config_tasks; 8362 uint_t config_task; 8363 boolean_t config_task_suspended; 8364 8365 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 8366 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 8367 if (spa->spa_ccw_fail_time == 0) { 8368 config_task_suspended = B_FALSE; 8369 } else { 8370 config_task_suspended = 8371 (gethrtime() - spa->spa_ccw_fail_time) < 8372 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC); 8373 } 8374 8375 return (non_config_tasks || (config_task && !config_task_suspended)); 8376 } 8377 8378 static void 8379 spa_async_dispatch(spa_t *spa) 8380 { 8381 mutex_enter(&spa->spa_async_lock); 8382 if (spa_async_tasks_pending(spa) && 8383 !spa->spa_async_suspended && 8384 spa->spa_async_thread == NULL) 8385 spa->spa_async_thread = thread_create(NULL, 0, 8386 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 8387 mutex_exit(&spa->spa_async_lock); 8388 } 8389 8390 void 8391 spa_async_request(spa_t *spa, int task) 8392 { 8393 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 8394 mutex_enter(&spa->spa_async_lock); 8395 spa->spa_async_tasks |= task; 8396 mutex_exit(&spa->spa_async_lock); 8397 } 8398 8399 int 8400 spa_async_tasks(spa_t *spa) 8401 { 8402 return (spa->spa_async_tasks); 8403 } 8404 8405 /* 8406 * ========================================================================== 8407 * SPA syncing routines 8408 * ========================================================================== 8409 */ 8410 8411 8412 static int 8413 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 8414 dmu_tx_t *tx) 8415 { 8416 bpobj_t *bpo = arg; 8417 bpobj_enqueue(bpo, bp, bp_freed, tx); 8418 return (0); 8419 } 8420 8421 int 8422 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 8423 { 8424 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx)); 8425 } 8426 8427 int 8428 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 8429 { 8430 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx)); 8431 } 8432 8433 static int 8434 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 8435 { 8436 zio_t *pio = arg; 8437 8438 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp, 8439 pio->io_flags)); 8440 return (0); 8441 } 8442 8443 static int 8444 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 8445 dmu_tx_t *tx) 8446 { 8447 ASSERT(!bp_freed); 8448 return (spa_free_sync_cb(arg, bp, tx)); 8449 } 8450 8451 /* 8452 * Note: this simple function is not inlined to make it easier to dtrace the 8453 * amount of time spent syncing frees. 8454 */ 8455 static void 8456 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 8457 { 8458 zio_t *zio = zio_root(spa, NULL, NULL, 0); 8459 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 8460 VERIFY(zio_wait(zio) == 0); 8461 } 8462 8463 /* 8464 * Note: this simple function is not inlined to make it easier to dtrace the 8465 * amount of time spent syncing deferred frees. 8466 */ 8467 static void 8468 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 8469 { 8470 if (spa_sync_pass(spa) != 1) 8471 return; 8472 8473 /* 8474 * Note: 8475 * If the log space map feature is active, we stop deferring 8476 * frees to the next TXG and therefore running this function 8477 * would be considered a no-op as spa_deferred_bpobj should 8478 * not have any entries. 8479 * 8480 * That said we run this function anyway (instead of returning 8481 * immediately) for the edge-case scenario where we just 8482 * activated the log space map feature in this TXG but we have 8483 * deferred frees from the previous TXG. 8484 */ 8485 zio_t *zio = zio_root(spa, NULL, NULL, 0); 8486 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 8487 bpobj_spa_free_sync_cb, zio, tx), ==, 0); 8488 VERIFY0(zio_wait(zio)); 8489 } 8490 8491 static void 8492 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 8493 { 8494 char *packed = NULL; 8495 size_t bufsize; 8496 size_t nvsize = 0; 8497 dmu_buf_t *db; 8498 8499 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 8500 8501 /* 8502 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 8503 * information. This avoids the dmu_buf_will_dirty() path and 8504 * saves us a pre-read to get data we don't actually care about. 8505 */ 8506 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 8507 packed = vmem_alloc(bufsize, KM_SLEEP); 8508 8509 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 8510 KM_SLEEP) == 0); 8511 memset(packed + nvsize, 0, bufsize - nvsize); 8512 8513 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 8514 8515 vmem_free(packed, bufsize); 8516 8517 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 8518 dmu_buf_will_dirty(db, tx); 8519 *(uint64_t *)db->db_data = nvsize; 8520 dmu_buf_rele(db, FTAG); 8521 } 8522 8523 static void 8524 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 8525 const char *config, const char *entry) 8526 { 8527 nvlist_t *nvroot; 8528 nvlist_t **list; 8529 int i; 8530 8531 if (!sav->sav_sync) 8532 return; 8533 8534 /* 8535 * Update the MOS nvlist describing the list of available devices. 8536 * spa_validate_aux() will have already made sure this nvlist is 8537 * valid and the vdevs are labeled appropriately. 8538 */ 8539 if (sav->sav_object == 0) { 8540 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 8541 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 8542 sizeof (uint64_t), tx); 8543 VERIFY(zap_update(spa->spa_meta_objset, 8544 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 8545 &sav->sav_object, tx) == 0); 8546 } 8547 8548 nvroot = fnvlist_alloc(); 8549 if (sav->sav_count == 0) { 8550 fnvlist_add_nvlist_array(nvroot, config, 8551 (const nvlist_t * const *)NULL, 0); 8552 } else { 8553 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP); 8554 for (i = 0; i < sav->sav_count; i++) 8555 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 8556 B_FALSE, VDEV_CONFIG_L2CACHE); 8557 fnvlist_add_nvlist_array(nvroot, config, 8558 (const nvlist_t * const *)list, sav->sav_count); 8559 for (i = 0; i < sav->sav_count; i++) 8560 nvlist_free(list[i]); 8561 kmem_free(list, sav->sav_count * sizeof (void *)); 8562 } 8563 8564 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 8565 nvlist_free(nvroot); 8566 8567 sav->sav_sync = B_FALSE; 8568 } 8569 8570 /* 8571 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. 8572 * The all-vdev ZAP must be empty. 8573 */ 8574 static void 8575 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) 8576 { 8577 spa_t *spa = vd->vdev_spa; 8578 8579 if (vd->vdev_top_zap != 0) { 8580 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 8581 vd->vdev_top_zap, tx)); 8582 } 8583 if (vd->vdev_leaf_zap != 0) { 8584 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 8585 vd->vdev_leaf_zap, tx)); 8586 } 8587 for (uint64_t i = 0; i < vd->vdev_children; i++) { 8588 spa_avz_build(vd->vdev_child[i], avz, tx); 8589 } 8590 } 8591 8592 static void 8593 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 8594 { 8595 nvlist_t *config; 8596 8597 /* 8598 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, 8599 * its config may not be dirty but we still need to build per-vdev ZAPs. 8600 * Similarly, if the pool is being assembled (e.g. after a split), we 8601 * need to rebuild the AVZ although the config may not be dirty. 8602 */ 8603 if (list_is_empty(&spa->spa_config_dirty_list) && 8604 spa->spa_avz_action == AVZ_ACTION_NONE) 8605 return; 8606 8607 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8608 8609 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || 8610 spa->spa_avz_action == AVZ_ACTION_INITIALIZE || 8611 spa->spa_all_vdev_zaps != 0); 8612 8613 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { 8614 /* Make and build the new AVZ */ 8615 uint64_t new_avz = zap_create(spa->spa_meta_objset, 8616 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); 8617 spa_avz_build(spa->spa_root_vdev, new_avz, tx); 8618 8619 /* Diff old AVZ with new one */ 8620 zap_cursor_t zc; 8621 zap_attribute_t za; 8622 8623 for (zap_cursor_init(&zc, spa->spa_meta_objset, 8624 spa->spa_all_vdev_zaps); 8625 zap_cursor_retrieve(&zc, &za) == 0; 8626 zap_cursor_advance(&zc)) { 8627 uint64_t vdzap = za.za_first_integer; 8628 if (zap_lookup_int(spa->spa_meta_objset, new_avz, 8629 vdzap) == ENOENT) { 8630 /* 8631 * ZAP is listed in old AVZ but not in new one; 8632 * destroy it 8633 */ 8634 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, 8635 tx)); 8636 } 8637 } 8638 8639 zap_cursor_fini(&zc); 8640 8641 /* Destroy the old AVZ */ 8642 VERIFY0(zap_destroy(spa->spa_meta_objset, 8643 spa->spa_all_vdev_zaps, tx)); 8644 8645 /* Replace the old AVZ in the dir obj with the new one */ 8646 VERIFY0(zap_update(spa->spa_meta_objset, 8647 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, 8648 sizeof (new_avz), 1, &new_avz, tx)); 8649 8650 spa->spa_all_vdev_zaps = new_avz; 8651 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { 8652 zap_cursor_t zc; 8653 zap_attribute_t za; 8654 8655 /* Walk through the AVZ and destroy all listed ZAPs */ 8656 for (zap_cursor_init(&zc, spa->spa_meta_objset, 8657 spa->spa_all_vdev_zaps); 8658 zap_cursor_retrieve(&zc, &za) == 0; 8659 zap_cursor_advance(&zc)) { 8660 uint64_t zap = za.za_first_integer; 8661 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); 8662 } 8663 8664 zap_cursor_fini(&zc); 8665 8666 /* Destroy and unlink the AVZ itself */ 8667 VERIFY0(zap_destroy(spa->spa_meta_objset, 8668 spa->spa_all_vdev_zaps, tx)); 8669 VERIFY0(zap_remove(spa->spa_meta_objset, 8670 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); 8671 spa->spa_all_vdev_zaps = 0; 8672 } 8673 8674 if (spa->spa_all_vdev_zaps == 0) { 8675 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, 8676 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, 8677 DMU_POOL_VDEV_ZAP_MAP, tx); 8678 } 8679 spa->spa_avz_action = AVZ_ACTION_NONE; 8680 8681 /* Create ZAPs for vdevs that don't have them. */ 8682 vdev_construct_zaps(spa->spa_root_vdev, tx); 8683 8684 config = spa_config_generate(spa, spa->spa_root_vdev, 8685 dmu_tx_get_txg(tx), B_FALSE); 8686 8687 /* 8688 * If we're upgrading the spa version then make sure that 8689 * the config object gets updated with the correct version. 8690 */ 8691 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 8692 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 8693 spa->spa_uberblock.ub_version); 8694 8695 spa_config_exit(spa, SCL_STATE, FTAG); 8696 8697 nvlist_free(spa->spa_config_syncing); 8698 spa->spa_config_syncing = config; 8699 8700 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 8701 } 8702 8703 static void 8704 spa_sync_version(void *arg, dmu_tx_t *tx) 8705 { 8706 uint64_t *versionp = arg; 8707 uint64_t version = *versionp; 8708 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 8709 8710 /* 8711 * Setting the version is special cased when first creating the pool. 8712 */ 8713 ASSERT(tx->tx_txg != TXG_INITIAL); 8714 8715 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 8716 ASSERT(version >= spa_version(spa)); 8717 8718 spa->spa_uberblock.ub_version = version; 8719 vdev_config_dirty(spa->spa_root_vdev); 8720 spa_history_log_internal(spa, "set", tx, "version=%lld", 8721 (longlong_t)version); 8722 } 8723 8724 /* 8725 * Set zpool properties. 8726 */ 8727 static void 8728 spa_sync_props(void *arg, dmu_tx_t *tx) 8729 { 8730 nvlist_t *nvp = arg; 8731 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 8732 objset_t *mos = spa->spa_meta_objset; 8733 nvpair_t *elem = NULL; 8734 8735 mutex_enter(&spa->spa_props_lock); 8736 8737 while ((elem = nvlist_next_nvpair(nvp, elem))) { 8738 uint64_t intval; 8739 char *strval, *fname; 8740 zpool_prop_t prop; 8741 const char *propname; 8742 zprop_type_t proptype; 8743 spa_feature_t fid; 8744 8745 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 8746 case ZPOOL_PROP_INVAL: 8747 /* 8748 * We checked this earlier in spa_prop_validate(). 8749 */ 8750 ASSERT(zpool_prop_feature(nvpair_name(elem))); 8751 8752 fname = strchr(nvpair_name(elem), '@') + 1; 8753 VERIFY0(zfeature_lookup_name(fname, &fid)); 8754 8755 spa_feature_enable(spa, fid, tx); 8756 spa_history_log_internal(spa, "set", tx, 8757 "%s=enabled", nvpair_name(elem)); 8758 break; 8759 8760 case ZPOOL_PROP_VERSION: 8761 intval = fnvpair_value_uint64(elem); 8762 /* 8763 * The version is synced separately before other 8764 * properties and should be correct by now. 8765 */ 8766 ASSERT3U(spa_version(spa), >=, intval); 8767 break; 8768 8769 case ZPOOL_PROP_ALTROOT: 8770 /* 8771 * 'altroot' is a non-persistent property. It should 8772 * have been set temporarily at creation or import time. 8773 */ 8774 ASSERT(spa->spa_root != NULL); 8775 break; 8776 8777 case ZPOOL_PROP_READONLY: 8778 case ZPOOL_PROP_CACHEFILE: 8779 /* 8780 * 'readonly' and 'cachefile' are also non-persistent 8781 * properties. 8782 */ 8783 break; 8784 case ZPOOL_PROP_COMMENT: 8785 strval = fnvpair_value_string(elem); 8786 if (spa->spa_comment != NULL) 8787 spa_strfree(spa->spa_comment); 8788 spa->spa_comment = spa_strdup(strval); 8789 /* 8790 * We need to dirty the configuration on all the vdevs 8791 * so that their labels get updated. We also need to 8792 * update the cache file to keep it in sync with the 8793 * MOS version. It's unnecessary to do this for pool 8794 * creation since the vdev's configuration has already 8795 * been dirtied. 8796 */ 8797 if (tx->tx_txg != TXG_INITIAL) { 8798 vdev_config_dirty(spa->spa_root_vdev); 8799 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 8800 } 8801 spa_history_log_internal(spa, "set", tx, 8802 "%s=%s", nvpair_name(elem), strval); 8803 break; 8804 case ZPOOL_PROP_COMPATIBILITY: 8805 strval = fnvpair_value_string(elem); 8806 if (spa->spa_compatibility != NULL) 8807 spa_strfree(spa->spa_compatibility); 8808 spa->spa_compatibility = spa_strdup(strval); 8809 /* 8810 * Dirty the configuration on vdevs as above. 8811 */ 8812 if (tx->tx_txg != TXG_INITIAL) { 8813 vdev_config_dirty(spa->spa_root_vdev); 8814 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 8815 } 8816 8817 spa_history_log_internal(spa, "set", tx, 8818 "%s=%s", nvpair_name(elem), strval); 8819 break; 8820 8821 default: 8822 /* 8823 * Set pool property values in the poolprops mos object. 8824 */ 8825 if (spa->spa_pool_props_object == 0) { 8826 spa->spa_pool_props_object = 8827 zap_create_link(mos, DMU_OT_POOL_PROPS, 8828 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 8829 tx); 8830 } 8831 8832 /* normalize the property name */ 8833 propname = zpool_prop_to_name(prop); 8834 proptype = zpool_prop_get_type(prop); 8835 8836 if (nvpair_type(elem) == DATA_TYPE_STRING) { 8837 ASSERT(proptype == PROP_TYPE_STRING); 8838 strval = fnvpair_value_string(elem); 8839 VERIFY0(zap_update(mos, 8840 spa->spa_pool_props_object, propname, 8841 1, strlen(strval) + 1, strval, tx)); 8842 spa_history_log_internal(spa, "set", tx, 8843 "%s=%s", nvpair_name(elem), strval); 8844 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 8845 intval = fnvpair_value_uint64(elem); 8846 8847 if (proptype == PROP_TYPE_INDEX) { 8848 const char *unused; 8849 VERIFY0(zpool_prop_index_to_string( 8850 prop, intval, &unused)); 8851 } 8852 VERIFY0(zap_update(mos, 8853 spa->spa_pool_props_object, propname, 8854 8, 1, &intval, tx)); 8855 spa_history_log_internal(spa, "set", tx, 8856 "%s=%lld", nvpair_name(elem), 8857 (longlong_t)intval); 8858 } else { 8859 ASSERT(0); /* not allowed */ 8860 } 8861 8862 switch (prop) { 8863 case ZPOOL_PROP_DELEGATION: 8864 spa->spa_delegation = intval; 8865 break; 8866 case ZPOOL_PROP_BOOTFS: 8867 spa->spa_bootfs = intval; 8868 break; 8869 case ZPOOL_PROP_FAILUREMODE: 8870 spa->spa_failmode = intval; 8871 break; 8872 case ZPOOL_PROP_AUTOTRIM: 8873 spa->spa_autotrim = intval; 8874 spa_async_request(spa, 8875 SPA_ASYNC_AUTOTRIM_RESTART); 8876 break; 8877 case ZPOOL_PROP_AUTOEXPAND: 8878 spa->spa_autoexpand = intval; 8879 if (tx->tx_txg != TXG_INITIAL) 8880 spa_async_request(spa, 8881 SPA_ASYNC_AUTOEXPAND); 8882 break; 8883 case ZPOOL_PROP_MULTIHOST: 8884 spa->spa_multihost = intval; 8885 break; 8886 default: 8887 break; 8888 } 8889 } 8890 8891 } 8892 8893 mutex_exit(&spa->spa_props_lock); 8894 } 8895 8896 /* 8897 * Perform one-time upgrade on-disk changes. spa_version() does not 8898 * reflect the new version this txg, so there must be no changes this 8899 * txg to anything that the upgrade code depends on after it executes. 8900 * Therefore this must be called after dsl_pool_sync() does the sync 8901 * tasks. 8902 */ 8903 static void 8904 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 8905 { 8906 if (spa_sync_pass(spa) != 1) 8907 return; 8908 8909 dsl_pool_t *dp = spa->spa_dsl_pool; 8910 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 8911 8912 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 8913 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 8914 dsl_pool_create_origin(dp, tx); 8915 8916 /* Keeping the origin open increases spa_minref */ 8917 spa->spa_minref += 3; 8918 } 8919 8920 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 8921 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 8922 dsl_pool_upgrade_clones(dp, tx); 8923 } 8924 8925 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 8926 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 8927 dsl_pool_upgrade_dir_clones(dp, tx); 8928 8929 /* Keeping the freedir open increases spa_minref */ 8930 spa->spa_minref += 3; 8931 } 8932 8933 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 8934 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 8935 spa_feature_create_zap_objects(spa, tx); 8936 } 8937 8938 /* 8939 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 8940 * when possibility to use lz4 compression for metadata was added 8941 * Old pools that have this feature enabled must be upgraded to have 8942 * this feature active 8943 */ 8944 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 8945 boolean_t lz4_en = spa_feature_is_enabled(spa, 8946 SPA_FEATURE_LZ4_COMPRESS); 8947 boolean_t lz4_ac = spa_feature_is_active(spa, 8948 SPA_FEATURE_LZ4_COMPRESS); 8949 8950 if (lz4_en && !lz4_ac) 8951 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 8952 } 8953 8954 /* 8955 * If we haven't written the salt, do so now. Note that the 8956 * feature may not be activated yet, but that's fine since 8957 * the presence of this ZAP entry is backwards compatible. 8958 */ 8959 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 8960 DMU_POOL_CHECKSUM_SALT) == ENOENT) { 8961 VERIFY0(zap_add(spa->spa_meta_objset, 8962 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, 8963 sizeof (spa->spa_cksum_salt.zcs_bytes), 8964 spa->spa_cksum_salt.zcs_bytes, tx)); 8965 } 8966 8967 rrw_exit(&dp->dp_config_rwlock, FTAG); 8968 } 8969 8970 static void 8971 vdev_indirect_state_sync_verify(vdev_t *vd) 8972 { 8973 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping; 8974 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births; 8975 8976 if (vd->vdev_ops == &vdev_indirect_ops) { 8977 ASSERT(vim != NULL); 8978 ASSERT(vib != NULL); 8979 } 8980 8981 uint64_t obsolete_sm_object = 0; 8982 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 8983 if (obsolete_sm_object != 0) { 8984 ASSERT(vd->vdev_obsolete_sm != NULL); 8985 ASSERT(vd->vdev_removing || 8986 vd->vdev_ops == &vdev_indirect_ops); 8987 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0); 8988 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0); 8989 ASSERT3U(obsolete_sm_object, ==, 8990 space_map_object(vd->vdev_obsolete_sm)); 8991 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=, 8992 space_map_allocated(vd->vdev_obsolete_sm)); 8993 } 8994 ASSERT(vd->vdev_obsolete_segments != NULL); 8995 8996 /* 8997 * Since frees / remaps to an indirect vdev can only 8998 * happen in syncing context, the obsolete segments 8999 * tree must be empty when we start syncing. 9000 */ 9001 ASSERT0(range_tree_space(vd->vdev_obsolete_segments)); 9002 } 9003 9004 /* 9005 * Set the top-level vdev's max queue depth. Evaluate each top-level's 9006 * async write queue depth in case it changed. The max queue depth will 9007 * not change in the middle of syncing out this txg. 9008 */ 9009 static void 9010 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa) 9011 { 9012 ASSERT(spa_writeable(spa)); 9013 9014 vdev_t *rvd = spa->spa_root_vdev; 9015 uint32_t max_queue_depth = zfs_vdev_async_write_max_active * 9016 zfs_vdev_queue_depth_pct / 100; 9017 metaslab_class_t *normal = spa_normal_class(spa); 9018 metaslab_class_t *special = spa_special_class(spa); 9019 metaslab_class_t *dedup = spa_dedup_class(spa); 9020 9021 uint64_t slots_per_allocator = 0; 9022 for (int c = 0; c < rvd->vdev_children; c++) { 9023 vdev_t *tvd = rvd->vdev_child[c]; 9024 9025 metaslab_group_t *mg = tvd->vdev_mg; 9026 if (mg == NULL || !metaslab_group_initialized(mg)) 9027 continue; 9028 9029 metaslab_class_t *mc = mg->mg_class; 9030 if (mc != normal && mc != special && mc != dedup) 9031 continue; 9032 9033 /* 9034 * It is safe to do a lock-free check here because only async 9035 * allocations look at mg_max_alloc_queue_depth, and async 9036 * allocations all happen from spa_sync(). 9037 */ 9038 for (int i = 0; i < mg->mg_allocators; i++) { 9039 ASSERT0(zfs_refcount_count( 9040 &(mg->mg_allocator[i].mga_alloc_queue_depth))); 9041 } 9042 mg->mg_max_alloc_queue_depth = max_queue_depth; 9043 9044 for (int i = 0; i < mg->mg_allocators; i++) { 9045 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth = 9046 zfs_vdev_def_queue_depth; 9047 } 9048 slots_per_allocator += zfs_vdev_def_queue_depth; 9049 } 9050 9051 for (int i = 0; i < spa->spa_alloc_count; i++) { 9052 ASSERT0(zfs_refcount_count(&normal->mc_allocator[i]. 9053 mca_alloc_slots)); 9054 ASSERT0(zfs_refcount_count(&special->mc_allocator[i]. 9055 mca_alloc_slots)); 9056 ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i]. 9057 mca_alloc_slots)); 9058 normal->mc_allocator[i].mca_alloc_max_slots = 9059 slots_per_allocator; 9060 special->mc_allocator[i].mca_alloc_max_slots = 9061 slots_per_allocator; 9062 dedup->mc_allocator[i].mca_alloc_max_slots = 9063 slots_per_allocator; 9064 } 9065 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 9066 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 9067 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 9068 } 9069 9070 static void 9071 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx) 9072 { 9073 ASSERT(spa_writeable(spa)); 9074 9075 vdev_t *rvd = spa->spa_root_vdev; 9076 for (int c = 0; c < rvd->vdev_children; c++) { 9077 vdev_t *vd = rvd->vdev_child[c]; 9078 vdev_indirect_state_sync_verify(vd); 9079 9080 if (vdev_indirect_should_condense(vd)) { 9081 spa_condense_indirect_start_sync(vd, tx); 9082 break; 9083 } 9084 } 9085 } 9086 9087 static void 9088 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx) 9089 { 9090 objset_t *mos = spa->spa_meta_objset; 9091 dsl_pool_t *dp = spa->spa_dsl_pool; 9092 uint64_t txg = tx->tx_txg; 9093 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 9094 9095 do { 9096 int pass = ++spa->spa_sync_pass; 9097 9098 spa_sync_config_object(spa, tx); 9099 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 9100 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 9101 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 9102 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 9103 spa_errlog_sync(spa, txg); 9104 dsl_pool_sync(dp, txg); 9105 9106 if (pass < zfs_sync_pass_deferred_free || 9107 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 9108 /* 9109 * If the log space map feature is active we don't 9110 * care about deferred frees and the deferred bpobj 9111 * as the log space map should effectively have the 9112 * same results (i.e. appending only to one object). 9113 */ 9114 spa_sync_frees(spa, free_bpl, tx); 9115 } else { 9116 /* 9117 * We can not defer frees in pass 1, because 9118 * we sync the deferred frees later in pass 1. 9119 */ 9120 ASSERT3U(pass, >, 1); 9121 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb, 9122 &spa->spa_deferred_bpobj, tx); 9123 } 9124 9125 ddt_sync(spa, txg); 9126 dsl_scan_sync(dp, tx); 9127 svr_sync(spa, tx); 9128 spa_sync_upgrades(spa, tx); 9129 9130 spa_flush_metaslabs(spa, tx); 9131 9132 vdev_t *vd = NULL; 9133 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 9134 != NULL) 9135 vdev_sync(vd, txg); 9136 9137 /* 9138 * Note: We need to check if the MOS is dirty because we could 9139 * have marked the MOS dirty without updating the uberblock 9140 * (e.g. if we have sync tasks but no dirty user data). We need 9141 * to check the uberblock's rootbp because it is updated if we 9142 * have synced out dirty data (though in this case the MOS will 9143 * most likely also be dirty due to second order effects, we 9144 * don't want to rely on that here). 9145 */ 9146 if (pass == 1 && 9147 spa->spa_uberblock.ub_rootbp.blk_birth < txg && 9148 !dmu_objset_is_dirty(mos, txg)) { 9149 /* 9150 * Nothing changed on the first pass, therefore this 9151 * TXG is a no-op. Avoid syncing deferred frees, so 9152 * that we can keep this TXG as a no-op. 9153 */ 9154 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 9155 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 9156 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 9157 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg)); 9158 break; 9159 } 9160 9161 spa_sync_deferred_frees(spa, tx); 9162 } while (dmu_objset_is_dirty(mos, txg)); 9163 } 9164 9165 /* 9166 * Rewrite the vdev configuration (which includes the uberblock) to 9167 * commit the transaction group. 9168 * 9169 * If there are no dirty vdevs, we sync the uberblock to a few random 9170 * top-level vdevs that are known to be visible in the config cache 9171 * (see spa_vdev_add() for a complete description). If there *are* dirty 9172 * vdevs, sync the uberblock to all vdevs. 9173 */ 9174 static void 9175 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx) 9176 { 9177 vdev_t *rvd = spa->spa_root_vdev; 9178 uint64_t txg = tx->tx_txg; 9179 9180 for (;;) { 9181 int error = 0; 9182 9183 /* 9184 * We hold SCL_STATE to prevent vdev open/close/etc. 9185 * while we're attempting to write the vdev labels. 9186 */ 9187 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 9188 9189 if (list_is_empty(&spa->spa_config_dirty_list)) { 9190 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 9191 int svdcount = 0; 9192 int children = rvd->vdev_children; 9193 int c0 = random_in_range(children); 9194 9195 for (int c = 0; c < children; c++) { 9196 vdev_t *vd = 9197 rvd->vdev_child[(c0 + c) % children]; 9198 9199 /* Stop when revisiting the first vdev */ 9200 if (c > 0 && svd[0] == vd) 9201 break; 9202 9203 if (vd->vdev_ms_array == 0 || 9204 vd->vdev_islog || 9205 !vdev_is_concrete(vd)) 9206 continue; 9207 9208 svd[svdcount++] = vd; 9209 if (svdcount == SPA_SYNC_MIN_VDEVS) 9210 break; 9211 } 9212 error = vdev_config_sync(svd, svdcount, txg); 9213 } else { 9214 error = vdev_config_sync(rvd->vdev_child, 9215 rvd->vdev_children, txg); 9216 } 9217 9218 if (error == 0) 9219 spa->spa_last_synced_guid = rvd->vdev_guid; 9220 9221 spa_config_exit(spa, SCL_STATE, FTAG); 9222 9223 if (error == 0) 9224 break; 9225 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR); 9226 zio_resume_wait(spa); 9227 } 9228 } 9229 9230 /* 9231 * Sync the specified transaction group. New blocks may be dirtied as 9232 * part of the process, so we iterate until it converges. 9233 */ 9234 void 9235 spa_sync(spa_t *spa, uint64_t txg) 9236 { 9237 vdev_t *vd = NULL; 9238 9239 VERIFY(spa_writeable(spa)); 9240 9241 /* 9242 * Wait for i/os issued in open context that need to complete 9243 * before this txg syncs. 9244 */ 9245 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]); 9246 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 9247 ZIO_FLAG_CANFAIL); 9248 9249 /* 9250 * Lock out configuration changes. 9251 */ 9252 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 9253 9254 spa->spa_syncing_txg = txg; 9255 spa->spa_sync_pass = 0; 9256 9257 for (int i = 0; i < spa->spa_alloc_count; i++) { 9258 mutex_enter(&spa->spa_allocs[i].spaa_lock); 9259 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree)); 9260 mutex_exit(&spa->spa_allocs[i].spaa_lock); 9261 } 9262 9263 /* 9264 * If there are any pending vdev state changes, convert them 9265 * into config changes that go out with this transaction group. 9266 */ 9267 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 9268 while (list_head(&spa->spa_state_dirty_list) != NULL) { 9269 /* 9270 * We need the write lock here because, for aux vdevs, 9271 * calling vdev_config_dirty() modifies sav_config. 9272 * This is ugly and will become unnecessary when we 9273 * eliminate the aux vdev wart by integrating all vdevs 9274 * into the root vdev tree. 9275 */ 9276 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9277 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 9278 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 9279 vdev_state_clean(vd); 9280 vdev_config_dirty(vd); 9281 } 9282 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9283 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 9284 } 9285 spa_config_exit(spa, SCL_STATE, FTAG); 9286 9287 dsl_pool_t *dp = spa->spa_dsl_pool; 9288 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 9289 9290 spa->spa_sync_starttime = gethrtime(); 9291 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 9292 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, 9293 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + 9294 NSEC_TO_TICK(spa->spa_deadman_synctime)); 9295 9296 /* 9297 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 9298 * set spa_deflate if we have no raid-z vdevs. 9299 */ 9300 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 9301 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 9302 vdev_t *rvd = spa->spa_root_vdev; 9303 9304 int i; 9305 for (i = 0; i < rvd->vdev_children; i++) { 9306 vd = rvd->vdev_child[i]; 9307 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 9308 break; 9309 } 9310 if (i == rvd->vdev_children) { 9311 spa->spa_deflate = TRUE; 9312 VERIFY0(zap_add(spa->spa_meta_objset, 9313 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 9314 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 9315 } 9316 } 9317 9318 spa_sync_adjust_vdev_max_queue_depth(spa); 9319 9320 spa_sync_condense_indirect(spa, tx); 9321 9322 spa_sync_iterate_to_convergence(spa, tx); 9323 9324 #ifdef ZFS_DEBUG 9325 if (!list_is_empty(&spa->spa_config_dirty_list)) { 9326 /* 9327 * Make sure that the number of ZAPs for all the vdevs matches 9328 * the number of ZAPs in the per-vdev ZAP list. This only gets 9329 * called if the config is dirty; otherwise there may be 9330 * outstanding AVZ operations that weren't completed in 9331 * spa_sync_config_object. 9332 */ 9333 uint64_t all_vdev_zap_entry_count; 9334 ASSERT0(zap_count(spa->spa_meta_objset, 9335 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); 9336 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, 9337 all_vdev_zap_entry_count); 9338 } 9339 #endif 9340 9341 if (spa->spa_vdev_removal != NULL) { 9342 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]); 9343 } 9344 9345 spa_sync_rewrite_vdev_config(spa, tx); 9346 dmu_tx_commit(tx); 9347 9348 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 9349 spa->spa_deadman_tqid = 0; 9350 9351 /* 9352 * Clear the dirty config list. 9353 */ 9354 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 9355 vdev_config_clean(vd); 9356 9357 /* 9358 * Now that the new config has synced transactionally, 9359 * let it become visible to the config cache. 9360 */ 9361 if (spa->spa_config_syncing != NULL) { 9362 spa_config_set(spa, spa->spa_config_syncing); 9363 spa->spa_config_txg = txg; 9364 spa->spa_config_syncing = NULL; 9365 } 9366 9367 dsl_pool_sync_done(dp, txg); 9368 9369 for (int i = 0; i < spa->spa_alloc_count; i++) { 9370 mutex_enter(&spa->spa_allocs[i].spaa_lock); 9371 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree)); 9372 mutex_exit(&spa->spa_allocs[i].spaa_lock); 9373 } 9374 9375 /* 9376 * Update usable space statistics. 9377 */ 9378 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 9379 != NULL) 9380 vdev_sync_done(vd, txg); 9381 9382 metaslab_class_evict_old(spa->spa_normal_class, txg); 9383 metaslab_class_evict_old(spa->spa_log_class, txg); 9384 9385 spa_sync_close_syncing_log_sm(spa); 9386 9387 spa_update_dspace(spa); 9388 9389 /* 9390 * It had better be the case that we didn't dirty anything 9391 * since vdev_config_sync(). 9392 */ 9393 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 9394 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 9395 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 9396 9397 while (zfs_pause_spa_sync) 9398 delay(1); 9399 9400 spa->spa_sync_pass = 0; 9401 9402 /* 9403 * Update the last synced uberblock here. We want to do this at 9404 * the end of spa_sync() so that consumers of spa_last_synced_txg() 9405 * will be guaranteed that all the processing associated with 9406 * that txg has been completed. 9407 */ 9408 spa->spa_ubsync = spa->spa_uberblock; 9409 spa_config_exit(spa, SCL_CONFIG, FTAG); 9410 9411 spa_handle_ignored_writes(spa); 9412 9413 /* 9414 * If any async tasks have been requested, kick them off. 9415 */ 9416 spa_async_dispatch(spa); 9417 } 9418 9419 /* 9420 * Sync all pools. We don't want to hold the namespace lock across these 9421 * operations, so we take a reference on the spa_t and drop the lock during the 9422 * sync. 9423 */ 9424 void 9425 spa_sync_allpools(void) 9426 { 9427 spa_t *spa = NULL; 9428 mutex_enter(&spa_namespace_lock); 9429 while ((spa = spa_next(spa)) != NULL) { 9430 if (spa_state(spa) != POOL_STATE_ACTIVE || 9431 !spa_writeable(spa) || spa_suspended(spa)) 9432 continue; 9433 spa_open_ref(spa, FTAG); 9434 mutex_exit(&spa_namespace_lock); 9435 txg_wait_synced(spa_get_dsl(spa), 0); 9436 mutex_enter(&spa_namespace_lock); 9437 spa_close(spa, FTAG); 9438 } 9439 mutex_exit(&spa_namespace_lock); 9440 } 9441 9442 /* 9443 * ========================================================================== 9444 * Miscellaneous routines 9445 * ========================================================================== 9446 */ 9447 9448 /* 9449 * Remove all pools in the system. 9450 */ 9451 void 9452 spa_evict_all(void) 9453 { 9454 spa_t *spa; 9455 9456 /* 9457 * Remove all cached state. All pools should be closed now, 9458 * so every spa in the AVL tree should be unreferenced. 9459 */ 9460 mutex_enter(&spa_namespace_lock); 9461 while ((spa = spa_next(NULL)) != NULL) { 9462 /* 9463 * Stop async tasks. The async thread may need to detach 9464 * a device that's been replaced, which requires grabbing 9465 * spa_namespace_lock, so we must drop it here. 9466 */ 9467 spa_open_ref(spa, FTAG); 9468 mutex_exit(&spa_namespace_lock); 9469 spa_async_suspend(spa); 9470 mutex_enter(&spa_namespace_lock); 9471 spa_close(spa, FTAG); 9472 9473 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 9474 spa_unload(spa); 9475 spa_deactivate(spa); 9476 } 9477 spa_remove(spa); 9478 } 9479 mutex_exit(&spa_namespace_lock); 9480 } 9481 9482 vdev_t * 9483 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 9484 { 9485 vdev_t *vd; 9486 int i; 9487 9488 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 9489 return (vd); 9490 9491 if (aux) { 9492 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 9493 vd = spa->spa_l2cache.sav_vdevs[i]; 9494 if (vd->vdev_guid == guid) 9495 return (vd); 9496 } 9497 9498 for (i = 0; i < spa->spa_spares.sav_count; i++) { 9499 vd = spa->spa_spares.sav_vdevs[i]; 9500 if (vd->vdev_guid == guid) 9501 return (vd); 9502 } 9503 } 9504 9505 return (NULL); 9506 } 9507 9508 void 9509 spa_upgrade(spa_t *spa, uint64_t version) 9510 { 9511 ASSERT(spa_writeable(spa)); 9512 9513 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 9514 9515 /* 9516 * This should only be called for a non-faulted pool, and since a 9517 * future version would result in an unopenable pool, this shouldn't be 9518 * possible. 9519 */ 9520 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 9521 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 9522 9523 spa->spa_uberblock.ub_version = version; 9524 vdev_config_dirty(spa->spa_root_vdev); 9525 9526 spa_config_exit(spa, SCL_ALL, FTAG); 9527 9528 txg_wait_synced(spa_get_dsl(spa), 0); 9529 } 9530 9531 static boolean_t 9532 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav) 9533 { 9534 (void) spa; 9535 int i; 9536 uint64_t vdev_guid; 9537 9538 for (i = 0; i < sav->sav_count; i++) 9539 if (sav->sav_vdevs[i]->vdev_guid == guid) 9540 return (B_TRUE); 9541 9542 for (i = 0; i < sav->sav_npending; i++) { 9543 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 9544 &vdev_guid) == 0 && vdev_guid == guid) 9545 return (B_TRUE); 9546 } 9547 9548 return (B_FALSE); 9549 } 9550 9551 boolean_t 9552 spa_has_l2cache(spa_t *spa, uint64_t guid) 9553 { 9554 return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache)); 9555 } 9556 9557 boolean_t 9558 spa_has_spare(spa_t *spa, uint64_t guid) 9559 { 9560 return (spa_has_aux_vdev(spa, guid, &spa->spa_spares)); 9561 } 9562 9563 /* 9564 * Check if a pool has an active shared spare device. 9565 * Note: reference count of an active spare is 2, as a spare and as a replace 9566 */ 9567 static boolean_t 9568 spa_has_active_shared_spare(spa_t *spa) 9569 { 9570 int i, refcnt; 9571 uint64_t pool; 9572 spa_aux_vdev_t *sav = &spa->spa_spares; 9573 9574 for (i = 0; i < sav->sav_count; i++) { 9575 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 9576 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 9577 refcnt > 2) 9578 return (B_TRUE); 9579 } 9580 9581 return (B_FALSE); 9582 } 9583 9584 uint64_t 9585 spa_total_metaslabs(spa_t *spa) 9586 { 9587 vdev_t *rvd = spa->spa_root_vdev; 9588 9589 uint64_t m = 0; 9590 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 9591 vdev_t *vd = rvd->vdev_child[c]; 9592 if (!vdev_is_concrete(vd)) 9593 continue; 9594 m += vd->vdev_ms_count; 9595 } 9596 return (m); 9597 } 9598 9599 /* 9600 * Notify any waiting threads that some activity has switched from being in- 9601 * progress to not-in-progress so that the thread can wake up and determine 9602 * whether it is finished waiting. 9603 */ 9604 void 9605 spa_notify_waiters(spa_t *spa) 9606 { 9607 /* 9608 * Acquiring spa_activities_lock here prevents the cv_broadcast from 9609 * happening between the waiting thread's check and cv_wait. 9610 */ 9611 mutex_enter(&spa->spa_activities_lock); 9612 cv_broadcast(&spa->spa_activities_cv); 9613 mutex_exit(&spa->spa_activities_lock); 9614 } 9615 9616 /* 9617 * Notify any waiting threads that the pool is exporting, and then block until 9618 * they are finished using the spa_t. 9619 */ 9620 void 9621 spa_wake_waiters(spa_t *spa) 9622 { 9623 mutex_enter(&spa->spa_activities_lock); 9624 spa->spa_waiters_cancel = B_TRUE; 9625 cv_broadcast(&spa->spa_activities_cv); 9626 while (spa->spa_waiters != 0) 9627 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock); 9628 spa->spa_waiters_cancel = B_FALSE; 9629 mutex_exit(&spa->spa_activities_lock); 9630 } 9631 9632 /* Whether the vdev or any of its descendants are being initialized/trimmed. */ 9633 static boolean_t 9634 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity) 9635 { 9636 spa_t *spa = vd->vdev_spa; 9637 9638 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER)); 9639 ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); 9640 ASSERT(activity == ZPOOL_WAIT_INITIALIZE || 9641 activity == ZPOOL_WAIT_TRIM); 9642 9643 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ? 9644 &vd->vdev_initialize_lock : &vd->vdev_trim_lock; 9645 9646 mutex_exit(&spa->spa_activities_lock); 9647 mutex_enter(lock); 9648 mutex_enter(&spa->spa_activities_lock); 9649 9650 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ? 9651 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) : 9652 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE); 9653 mutex_exit(lock); 9654 9655 if (in_progress) 9656 return (B_TRUE); 9657 9658 for (int i = 0; i < vd->vdev_children; i++) { 9659 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i], 9660 activity)) 9661 return (B_TRUE); 9662 } 9663 9664 return (B_FALSE); 9665 } 9666 9667 /* 9668 * If use_guid is true, this checks whether the vdev specified by guid is 9669 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool 9670 * is being initialized/trimmed. The caller must hold the config lock and 9671 * spa_activities_lock. 9672 */ 9673 static int 9674 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid, 9675 zpool_wait_activity_t activity, boolean_t *in_progress) 9676 { 9677 mutex_exit(&spa->spa_activities_lock); 9678 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 9679 mutex_enter(&spa->spa_activities_lock); 9680 9681 vdev_t *vd; 9682 if (use_guid) { 9683 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 9684 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) { 9685 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9686 return (EINVAL); 9687 } 9688 } else { 9689 vd = spa->spa_root_vdev; 9690 } 9691 9692 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity); 9693 9694 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9695 return (0); 9696 } 9697 9698 /* 9699 * Locking for waiting threads 9700 * --------------------------- 9701 * 9702 * Waiting threads need a way to check whether a given activity is in progress, 9703 * and then, if it is, wait for it to complete. Each activity will have some 9704 * in-memory representation of the relevant on-disk state which can be used to 9705 * determine whether or not the activity is in progress. The in-memory state and 9706 * the locking used to protect it will be different for each activity, and may 9707 * not be suitable for use with a cvar (e.g., some state is protected by the 9708 * config lock). To allow waiting threads to wait without any races, another 9709 * lock, spa_activities_lock, is used. 9710 * 9711 * When the state is checked, both the activity-specific lock (if there is one) 9712 * and spa_activities_lock are held. In some cases, the activity-specific lock 9713 * is acquired explicitly (e.g. the config lock). In others, the locking is 9714 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting 9715 * thread releases the activity-specific lock and, if the activity is in 9716 * progress, then cv_waits using spa_activities_lock. 9717 * 9718 * The waiting thread is woken when another thread, one completing some 9719 * activity, updates the state of the activity and then calls 9720 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only 9721 * needs to hold its activity-specific lock when updating the state, and this 9722 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters. 9723 * 9724 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting, 9725 * and because it is held when the waiting thread checks the state of the 9726 * activity, it can never be the case that the completing thread both updates 9727 * the activity state and cv_broadcasts in between the waiting thread's check 9728 * and cv_wait. Thus, a waiting thread can never miss a wakeup. 9729 * 9730 * In order to prevent deadlock, when the waiting thread does its check, in some 9731 * cases it will temporarily drop spa_activities_lock in order to acquire the 9732 * activity-specific lock. The order in which spa_activities_lock and the 9733 * activity specific lock are acquired in the waiting thread is determined by 9734 * the order in which they are acquired in the completing thread; if the 9735 * completing thread calls spa_notify_waiters with the activity-specific lock 9736 * held, then the waiting thread must also acquire the activity-specific lock 9737 * first. 9738 */ 9739 9740 static int 9741 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity, 9742 boolean_t use_tag, uint64_t tag, boolean_t *in_progress) 9743 { 9744 int error = 0; 9745 9746 ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); 9747 9748 switch (activity) { 9749 case ZPOOL_WAIT_CKPT_DISCARD: 9750 *in_progress = 9751 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) && 9752 zap_contains(spa_meta_objset(spa), 9753 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) == 9754 ENOENT); 9755 break; 9756 case ZPOOL_WAIT_FREE: 9757 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS && 9758 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) || 9759 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) || 9760 spa_livelist_delete_check(spa)); 9761 break; 9762 case ZPOOL_WAIT_INITIALIZE: 9763 case ZPOOL_WAIT_TRIM: 9764 error = spa_vdev_activity_in_progress(spa, use_tag, tag, 9765 activity, in_progress); 9766 break; 9767 case ZPOOL_WAIT_REPLACE: 9768 mutex_exit(&spa->spa_activities_lock); 9769 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 9770 mutex_enter(&spa->spa_activities_lock); 9771 9772 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev); 9773 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9774 break; 9775 case ZPOOL_WAIT_REMOVE: 9776 *in_progress = (spa->spa_removing_phys.sr_state == 9777 DSS_SCANNING); 9778 break; 9779 case ZPOOL_WAIT_RESILVER: 9780 if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev))) 9781 break; 9782 zfs_fallthrough; 9783 case ZPOOL_WAIT_SCRUB: 9784 { 9785 boolean_t scanning, paused, is_scrub; 9786 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 9787 9788 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB); 9789 scanning = (scn->scn_phys.scn_state == DSS_SCANNING); 9790 paused = dsl_scan_is_paused_scrub(scn); 9791 *in_progress = (scanning && !paused && 9792 is_scrub == (activity == ZPOOL_WAIT_SCRUB)); 9793 break; 9794 } 9795 default: 9796 panic("unrecognized value for activity %d", activity); 9797 } 9798 9799 return (error); 9800 } 9801 9802 static int 9803 spa_wait_common(const char *pool, zpool_wait_activity_t activity, 9804 boolean_t use_tag, uint64_t tag, boolean_t *waited) 9805 { 9806 /* 9807 * The tag is used to distinguish between instances of an activity. 9808 * 'initialize' and 'trim' are the only activities that we use this for. 9809 * The other activities can only have a single instance in progress in a 9810 * pool at one time, making the tag unnecessary. 9811 * 9812 * There can be multiple devices being replaced at once, but since they 9813 * all finish once resilvering finishes, we don't bother keeping track 9814 * of them individually, we just wait for them all to finish. 9815 */ 9816 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE && 9817 activity != ZPOOL_WAIT_TRIM) 9818 return (EINVAL); 9819 9820 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES) 9821 return (EINVAL); 9822 9823 spa_t *spa; 9824 int error = spa_open(pool, &spa, FTAG); 9825 if (error != 0) 9826 return (error); 9827 9828 /* 9829 * Increment the spa's waiter count so that we can call spa_close and 9830 * still ensure that the spa_t doesn't get freed before this thread is 9831 * finished with it when the pool is exported. We want to call spa_close 9832 * before we start waiting because otherwise the additional ref would 9833 * prevent the pool from being exported or destroyed throughout the 9834 * potentially long wait. 9835 */ 9836 mutex_enter(&spa->spa_activities_lock); 9837 spa->spa_waiters++; 9838 spa_close(spa, FTAG); 9839 9840 *waited = B_FALSE; 9841 for (;;) { 9842 boolean_t in_progress; 9843 error = spa_activity_in_progress(spa, activity, use_tag, tag, 9844 &in_progress); 9845 9846 if (error || !in_progress || spa->spa_waiters_cancel) 9847 break; 9848 9849 *waited = B_TRUE; 9850 9851 if (cv_wait_sig(&spa->spa_activities_cv, 9852 &spa->spa_activities_lock) == 0) { 9853 error = EINTR; 9854 break; 9855 } 9856 } 9857 9858 spa->spa_waiters--; 9859 cv_signal(&spa->spa_waiters_cv); 9860 mutex_exit(&spa->spa_activities_lock); 9861 9862 return (error); 9863 } 9864 9865 /* 9866 * Wait for a particular instance of the specified activity to complete, where 9867 * the instance is identified by 'tag' 9868 */ 9869 int 9870 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag, 9871 boolean_t *waited) 9872 { 9873 return (spa_wait_common(pool, activity, B_TRUE, tag, waited)); 9874 } 9875 9876 /* 9877 * Wait for all instances of the specified activity complete 9878 */ 9879 int 9880 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited) 9881 { 9882 9883 return (spa_wait_common(pool, activity, B_FALSE, 0, waited)); 9884 } 9885 9886 sysevent_t * 9887 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 9888 { 9889 sysevent_t *ev = NULL; 9890 #ifdef _KERNEL 9891 nvlist_t *resource; 9892 9893 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl); 9894 if (resource) { 9895 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP); 9896 ev->resource = resource; 9897 } 9898 #else 9899 (void) spa, (void) vd, (void) hist_nvl, (void) name; 9900 #endif 9901 return (ev); 9902 } 9903 9904 void 9905 spa_event_post(sysevent_t *ev) 9906 { 9907 #ifdef _KERNEL 9908 if (ev) { 9909 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb); 9910 kmem_free(ev, sizeof (*ev)); 9911 } 9912 #else 9913 (void) ev; 9914 #endif 9915 } 9916 9917 /* 9918 * Post a zevent corresponding to the given sysevent. The 'name' must be one 9919 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be 9920 * filled in from the spa and (optionally) the vdev. This doesn't do anything 9921 * in the userland libzpool, as we don't want consumers to misinterpret ztest 9922 * or zdb as real changes. 9923 */ 9924 void 9925 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 9926 { 9927 spa_event_post(spa_event_create(spa, vd, hist_nvl, name)); 9928 } 9929 9930 /* state manipulation functions */ 9931 EXPORT_SYMBOL(spa_open); 9932 EXPORT_SYMBOL(spa_open_rewind); 9933 EXPORT_SYMBOL(spa_get_stats); 9934 EXPORT_SYMBOL(spa_create); 9935 EXPORT_SYMBOL(spa_import); 9936 EXPORT_SYMBOL(spa_tryimport); 9937 EXPORT_SYMBOL(spa_destroy); 9938 EXPORT_SYMBOL(spa_export); 9939 EXPORT_SYMBOL(spa_reset); 9940 EXPORT_SYMBOL(spa_async_request); 9941 EXPORT_SYMBOL(spa_async_suspend); 9942 EXPORT_SYMBOL(spa_async_resume); 9943 EXPORT_SYMBOL(spa_inject_addref); 9944 EXPORT_SYMBOL(spa_inject_delref); 9945 EXPORT_SYMBOL(spa_scan_stat_init); 9946 EXPORT_SYMBOL(spa_scan_get_stats); 9947 9948 /* device manipulation */ 9949 EXPORT_SYMBOL(spa_vdev_add); 9950 EXPORT_SYMBOL(spa_vdev_attach); 9951 EXPORT_SYMBOL(spa_vdev_detach); 9952 EXPORT_SYMBOL(spa_vdev_setpath); 9953 EXPORT_SYMBOL(spa_vdev_setfru); 9954 EXPORT_SYMBOL(spa_vdev_split_mirror); 9955 9956 /* spare statech is global across all pools) */ 9957 EXPORT_SYMBOL(spa_spare_add); 9958 EXPORT_SYMBOL(spa_spare_remove); 9959 EXPORT_SYMBOL(spa_spare_exists); 9960 EXPORT_SYMBOL(spa_spare_activate); 9961 9962 /* L2ARC statech is global across all pools) */ 9963 EXPORT_SYMBOL(spa_l2cache_add); 9964 EXPORT_SYMBOL(spa_l2cache_remove); 9965 EXPORT_SYMBOL(spa_l2cache_exists); 9966 EXPORT_SYMBOL(spa_l2cache_activate); 9967 EXPORT_SYMBOL(spa_l2cache_drop); 9968 9969 /* scanning */ 9970 EXPORT_SYMBOL(spa_scan); 9971 EXPORT_SYMBOL(spa_scan_stop); 9972 9973 /* spa syncing */ 9974 EXPORT_SYMBOL(spa_sync); /* only for DMU use */ 9975 EXPORT_SYMBOL(spa_sync_allpools); 9976 9977 /* properties */ 9978 EXPORT_SYMBOL(spa_prop_set); 9979 EXPORT_SYMBOL(spa_prop_get); 9980 EXPORT_SYMBOL(spa_prop_clear_bootfs); 9981 9982 /* asynchronous event notification */ 9983 EXPORT_SYMBOL(spa_event_notify); 9984 9985 /* BEGIN CSTYLED */ 9986 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, INT, ZMOD_RW, 9987 "log2 fraction of arc that can be used by inflight I/Os when " 9988 "verifying pool during import"); 9989 /* END CSTYLED */ 9990 9991 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW, 9992 "Set to traverse metadata on pool import"); 9993 9994 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW, 9995 "Set to traverse data on pool import"); 9996 9997 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW, 9998 "Print vdev tree to zfs_dbgmsg during pool import"); 9999 10000 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD, 10001 "Percentage of CPUs to run an IO worker thread"); 10002 10003 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD, 10004 "Number of threads per IO worker taskqueue"); 10005 10006 /* BEGIN CSTYLED */ 10007 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, ULONG, ZMOD_RW, 10008 "Allow importing pool with up to this number of missing top-level " 10009 "vdevs (in read-only mode)"); 10010 /* END CSTYLED */ 10011 10012 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT, 10013 ZMOD_RW, "Set the livelist condense zthr to pause"); 10014 10015 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT, 10016 ZMOD_RW, "Set the livelist condense synctask to pause"); 10017 10018 /* BEGIN CSTYLED */ 10019 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel, 10020 INT, ZMOD_RW, 10021 "Whether livelist condensing was canceled in the synctask"); 10022 10023 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel, 10024 INT, ZMOD_RW, 10025 "Whether livelist condensing was canceled in the zthr function"); 10026 10027 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT, 10028 ZMOD_RW, 10029 "Whether extra ALLOC blkptrs were added to a livelist entry while it " 10030 "was being condensed"); 10031 /* END CSTYLED */ 10032